KERNELS FOR THE »-DELETION PROBLEM

By
Neeldhara Misra

THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAL

A thesis submitted to the
Board of Studies in Mathematical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of
HOMI BHABHA NATIONAL INSTITUTE

September 2011

Neeldhara Misra

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation pre-
pared by Neeldhara Misra entitled “Kernels for the F-Deletion Problem” may
be accepted as fulfilling the dissertation requirement for the Degree of Doctor of
Philosophy.

__ Date
Chairman : Chair of committe
__ Date
Convener : Conv of Committe
__ Date
Member : Member 1 of committe
__ Date

Member : Member 2 of committe

Final approval and acceptance of this dissertation is contingent upon the can-
didate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it may be accepted as fulfilling the dissertation requirement.

Guide : Venkatesh Raman

DECLARATION

I, hereby declare that the investigation presented in the thesis
has been carried out by me. The work is original and the
work has not been submitted earlier as a whole or in part for

a degree/diploma at this or any other Institution or University.

Neeldhara Misra

ACKNOWLEDGEMENTS

I have been extremely fortunate in having enjoyed the guidance and care of my
advisor, Prof. Venkatesh Raman. His presence has been a source of inspiration and
strength like no other, and every opportunity of interaction has been a treasured
learning experience. More importantly than leading me up to successes, he found
me the motivation that I needed to last me through the inevitably larger number
of failures. I will never cease be amazed at his expertise and teaching, and my own
stroke of luck for having had the chance to witness it from close quarters.

[am also deeply obliged to Prof. Saket Saurabh for his relentless efforts in
advancing my comprehension of a number of things, technical and non-technical
alike. He has always been incredibly accessible and it is thanks to his infinite
patience that I eventually got around to messing with things that I would otherwise
keep at a safe distance. I also learned from him to value the pursuit as much as, and
irrespective of, the associated discovery. The energy and intensity that he brings
to research is nothing short of magical, and the experience has been a privilege.

Prof. Mike Fellows and Frances Rosamond have my eternal gratitude for taking
care of me at various stages, and ensuring that I have nothing less than the time
of my life! They have been very generous in their enthusiastic support, and I have
certainly received from them much more than I deserve.

I would like to thank Prof. Fedor Fomin, whom I had an opportunity to
visit at the University of Bergen — the stay was intensely enriching. He was
very generous in with sharing his profound experience, and the discussions were
delightful. Special thanks are due to Prof. Pinar Heggernes, Pim van’t Hof, Daniel
Marx, and Yngve Villanger for a particularly memorable collaboration. I learned
a good deal from Daniel Lokshtanov, and I am thankful for his time and valuable
insights.

Thanks to Somnath Sikdar, Geevarghese Philip, and M. S. Ramanujan, the
typical day was always something to look forward to!

I would like to thank Abhimanyu M. Ambalath, Radheshyam Balasundaram,
Chintan Rao H., Venkata Koppula, Matthias Mnich, N. S. Narayanaswamy, and
Bal Sri Shankar, for many exciting discussions. I also enjoyed very much a number

of discussions with Prof. Ronojoy Adhikari - thank you!

I will be forever grateful to all the faculty at the Department of Theoretical
Computer Science. Any understanding that I might have developed about Com-
puter Science certainly is thanks to their patient, creative, and inspiring teaching. I
am equally thankful to all my friends and colleagues for being tirelessly supportive.

The work leading to this thesis executed at IMSc and the University of Bergen. I
would like to thank both institutions for the financial support, excellent infrastruc-
ture and wonderful research environments. Special thanks to the administrative
staff, who have always been especially helpful.

My parents happen to be my life, universe, and everything. For chasing my
dreams with me, in true no-matter-what style, thanks very much indeed. I will

add that more can be said that goes without saying, and is therefore left unsaid.

Abstract

In this thesis, we use the parameterized framework for the design and analysis
of algorithms for NP-complete problems. This amounts to studying the param-
eterized version of the classical decision version. Herein, the classical language
appended with a secondary measure called a “parameter”. The central notion in
parameterized complexity is that of fized-parameter tractability, which means given
an instance (z, k) of a parameterized language L, deciding whether (x,k) € L in
time f(k)-p(|z|), where f is an arbitrary function of k alone and p is a polynomial
function. The notion of kernelization formalizes preprocessing or data reduction,
and refers to polynomial time algorithms that transform any given input into an
equivalent instance whose size is bounded as a function of the parameter alone.

The center of our attention in this thesis is the /~-DELETION problem, a vastly
general question that encompasses many fundamental optimization problems as
special cases. In particular, we provide evidence supporting a conjecture about the
kernelization complexity of the problem, and this work branches off in a number of
directions, leading to results of independent interest. We also study the COLORFUL
MOTIFS problem, a well-known question that arises frequently in practice. Our
investigation demonstrates the hardness of the problem even when restricted to

very simple graph classes.

The F-Deletion Problem Let F be a finite family of graphs. The F-DELETION
problem takes as input a graph G on n vertices, and a positive integer k. The
question is whether it is possible to delete at most k vertices from G such that
the remaining graph contains no graph from F as a minor. This question encom-
passes fundamental problems such as VERTEX COVER (consider F consisting of
the graph with two vertices and one edge) or FEEDBACK VERTEX SET (the set
F consists of a cycle with three vertices). A number of other deletion-based opti-
mization problems also turn out to be special cases of PLANAR F-DELETION, for
instance: DIAMOND HITTING SET, OUTERPLANAR DELETION SET, PATHWIDTH
r-DELETION SET and TREEWIDTH r-DELETION SET.

The general F-DELETION problem is NP-complete. From the parameterized
perspective, by one of the most well-known consequences of the celebrated Graph

Minor theory of Robertson and Seymour, the F-DELETION problem is fixed-

parameter tractable for every finite set of forbidden minors. It is conjectured that
the F-DELETION problem admits a polynomial kernel if, and only if, F contains
a planar graph. We refer to the /-DELETION question when restricted to the case
when F contains a planar graph as the PLANAR F-DELETION problem.

We obtain a number of kernelization results for the PLANAR F-DELETION prob-
lem. We give a linear vertex kernel on graphs excluding ¢-claw K, the star with
t leves, as an induced subgraph, where ¢ is a fixed integer, and a obtain polyno-
mial kernels for the case when F contains graph 6. as a minor for a fixed integer
c. The graph 6. consists of two vertices connected by c¢ parallel edges. Even
though this may appear to be a very restricted class of problems it already encom-
passes well-studied problems such as VERTEX COVER, FEEDBACK VERTEX SET
and DIAMOND HITTING SET. The generic kernelization algorithm is based on a
non-trivial application of protrusion techniques, previously used only for problems
on topological graph classes. We also demonstrate an approximation algorithm
achieving an approximation ratio of O(log3/ 2OPT), where OPT is the size of an
optimal solution on general undirected graphs. The approximation algorithm is
used crucially in the kernelization routines.

We also show an algorithm for PLANAR F-DELETION that runs in time 20(10gk)p?2,

O(k log k) .
22 YO0 Since

improving substantially from what was known previously,
PLANAR F-DELETION is a generalization of VERTEX COVER, we have that it can-
not be solved in time 2°®n°M unless Exponential Time Hypothesis fails, so our
algorithm is also quite close to being optimal. This algorithm uses the technique
of iterative compression, and the instance encountered at every iteration is subject
to kernelization. The intermediate kernelization algorithm is quite non-trivial and
requires reformulating some of the fundamental machinery that was used in all the
other situations. Also, towards the kernel, we show a “decomposition lemma” that
asserts that any graph of constant treewidth can essentially be partitioned into a
number of protrusions. We believe this result to be of independent interest.

We also consider the complementary “packing” question: we wish to maximize
the number of vertex (or edge) disjoint minor models of graphs in F. We show
that the packing number is closely related to the size of the optimal F-hitting
set in the special case when F = {6.}. Independently, but on a related note, we
show two lower bounds, demonstrating that the problem of finding if there are at

least k wvertex-disjoint minor models of 4. is unlikely to admit a polynomial kernel

7

parameterized by k, and this is also true for the problem of checking if there are

at least k vertez-disjoint cycles of odd length (again parameterized by k).

Colorful Motifs We study the problem of COLORFUL MOTIFS on various graph
classes. We prove that the problem of COLORFUL MOTIFS restricted to superstars
is NP-complete. Further, we show NP-completeness on graphs of diameter two.
We apply this result towards settling the classical complexity of CONNECTED
DOMINATING SET on graphs of diameter two — specifically, we show that it is
NP-complete. Further, we show that on graphs of diameter two, the problem is
NP-complete and is unlikely to admit a polynomial kernel.

Next, we show that obtaining polynomial kernels for COLORFUL MOTIFS on
comb graphs is infeasible, but we show the existence of n polynomial kernels.
Further, we study the problem of COLORFUL MOTIFS on trees, where we observe
that the natural strategies for many polynomial kernels are not successful. For
instance, we show that “guessing” a root vertex, which helped in the case of comb
graphs, fails as a strategy because the ROOTED COLORFUL MOTIF problem has

no polynomial kernels on trees.

Contents

3

Introduction

I.I

I.2

1.3

Parameterized Complexity and Kernelization

Specific Problems: A Brief Overview

Organization of the Thesis

Technical Preliminaries

2.1

2.2

Notational Conventions o v v v v v i i i

Definitions L
22,0 Graphs Lo Lo
2.2.2 Kernelization Lo oo oL
2.2.3 Treewidth and Tree Decompositions

2.2.4

Monadic Second Order Logic MSO)

Interlude: Problem Kernels

3.1

Examplesof Kernels

Max3Sat
d-Hitting Set oo oo
Crown Decomposition : Vertex Cover

CliqueCover i

I0

13

13

13

13

17

17

20

21

Neeldhara Misra

i

CONTENTS

4 Interlude: Matching Theory

4.1

4.2

The g-expansion lemma L L.
Applications of q—Expansion Lemma in Kernelization
4.2.1 VertexCover o i e e e e
422 (m—K)Coloring.

4.2.3 Edge-Dominating Set

s Independent Feedback Vertex Set

5.1

A CubicKernel

6 Interlude: Protrusions and Finite Integer Index

6.4

6.5

The Blueprint L
Some Definitions Lo L L Lo
Examples of proving FII
6.3.1 An Example: Independent Set
One example of provingnot FII
6.4.1 A Simple Sufficient Condition for Showing FII

The Reduction Basedon FII

7 Some Combinatorial Explorations

7.1

7.2

7-3

7.4

75

Partitioning Property of Graphs of Bounded Treewidth
Inferring Protrusions from Subgraphs of Constant Treewidth
Facts concerning minor modelsof 8. L oL
7.3.1 Minor Models of 0. do not have Cut Vertices.
Some MSO Formulations

A Bound on the treewidth of YES instances of PLaANAR F-DELETION

29
30
33
33
35

37

41

44

59

59
61

64
64
68
69

70

73
73

79

82
82
83

86

CONTENTS

8 JFp-Deletion: An Approximation Algorithm
8.1 An Introduction to the {F}-DELETION problem
8.2 A First Approximation Algorithm
8.2.1 TheAlgorithm
8.2.2 Analysis: Correctness and Running Time
8.2.3 'The Approximation Ratio
8.3 Bootstrapping: An Improved Algorithm
8.3.1 The Second Algorithm

8.3.2 Analysis and Approximation Ratio

9 DPlanar {F}-Deletion: Kernels on Claw-Free Graphs
9.1 Finding Protrusions o oL
9.2 Finding Protrusions o oL L
9.2.1 Bounding the boundaryof X
9.2.2 Finite IntegerIndex oL

9.3 Analysis and Kernel Size — Proof of Theorem 9.1

10 ©.-Deletion
ro.1 Finding hitting sets excluding a fixed vertex
10.2 Reducing the Maximum Degree of the Graph

10.3 Protrusion-Based Reductions

11 Disjoint Planar F-deletion
11.1 Combinatorial Tools
rr.1.1 Hypergraph Lemmata
11.2 Detecting Protrusionso 00000

11.3 Replacing Protrusions

iii

89
89
91
92
97
I0I
I0I
109

108

11§
116
118
118
119

120

123
124

128

Neeldhara Misra

Neeldhara Misra

iv CONTENTS
11.4 The Kernel and the Algorithm, 152
11.4.1 A FPT Algorithm for F-Deletion 154

12 An Erdos-Pésa result for packing and covering Mg, 157
12.1 The Erdds-Pésa Property for 6. 158
12.2 Unbounded treewidth implies a large packing 158
12.3 Bounded treewidth and a small packing number implies a small cover 163
12.3.1 Thechoiceof w. 164

12.3.2 'The Algorithm for finding a .-hittingset. 167

12.3.3 Analysis and Approximation Ratio 167

12.4 Edge-Disjoint {6.}-packing: Some Observations 168

13 Interlude: Lower Bounds in Kernelization 175
13.1 Composition Algorithms o 0L 175
13.2 Polynomial Parameter Transformations. 177
13.2.1 (Vertex) Disjoint Cycles 179

13.2.2 Turing Kernelization 182

14 A Study of Some Packing Versions 183
14.1 Vertex-Disjoint {0 }-packing: No Polynomial Kernels 184
14.2 Odd Cycle Packing: No Polynomial Kernels 189

15 Colorful Motifs 193
15.1 Hardness On Superstar Graphs 197
15.2 Colorful Motifs on Graphs of Diameter Two and Three 202
15.3 Many Polynomial Kernels on Combs 207

15.3.1 A Composition Algorithm 207

CONTENTS v

15.3.2 Many Polynomial Kernels 209

15.4 Hardness of Kernelization for Restricted Variants 210
15.4.1 Hardness witha Fixed Root 210

15.4.2 Hardness with a Fixed Subset of Vertices 212

15.5 Connected Dominating Set. 213

16 Summary and Open Problems 219
16.1 The F-deletion Problem 219
16.2 Packing Variants of F-deletion 221
16.3 Colorful Motifs 222

16.4 Concluding Remarks 222

vi

CONTENTS

List of Figures

2.2

4.3

4-4

Algorithms for computationally intractable problems
Data Reduction: A Schematic View
Kernelization
G is a minor of H, or equivalently, H is a minor model of G.
Graphs Ty, t-claw K; y witht =7,and 0, withc=7
AColorful Motif
A pair of elements that share vertices, from the bramble that consists
of thesetof crossesofagrid.

Possible paths among vertices a,b,cintree T

An informal schematic of the auxiliary bipartite graph H constructed

A vertex v € Sp with a copy u & Sa. Ifu & Sa, then it is either
unsaturated or reachable from an unsaturated vertex (say w). Thus,
v is reachable from either u or w, implying it should be in Rx by

construction, not S 5 - thus we arrive at a contradiction.

Any maximal matching has at most k edges in a YES instance of

VERTEX CoVER. The remaining vertices form an independent set. . .

The subsets S and T obtained from an application of the expansion

lemma.

vii

34

viii

45

4.6

5.2

5-3
5-4
5.5
5.6

5-7
5.8

5-9

LIST OF FIGURES

If a vertex has an independent neighborhood of size at least k, then at
least one of the edges incident on the vertex is forced in any solution.

This is recorded with a new vertex, and the independent neighbor-

hoodisdeleted. 38
S and T obtained from the g-expansion lemma with q = (k + 1).
Herek=2. e 39
An example of an of size eleven in
a graph. Notice that there is a feedback vertex set of size five. 42

Forbidden subgraphs for YES instances of independent feedback ver-

TEX SEL. o o v v v v e e e e e e e e e e e e e e 42
Reduction from feedback vertex set to independent feedback vertex set 43
The operation of “coloring” a vertex v black. 45
A reduction rule for adjacent degree two vertices. 45

Removing more than (k + 2) vertices of degree two between a fixed

pair of vertices of higher degree. 46
A 5-flower passing through the vertexv. 47
A picture of two (k+2) starsfork=3. 52

The first part of Reduction Rule 5.8. Involves deleting edges incident
on v with their other endpoints in T. Vertices labeled * belong to S

and vertices colored redarein T. 53

The first part of Reduction Rule 5.8. We add a cycle of length four

between verticesin Sandv. 54
Two ways of counting the edges that have one endpoint each in an

independent feedback vertex set, and the remaining forest. 56
An example of a protrusion. Lo L L. 60

Gluing two t-boundaried graphs by ®. Note how the graph induced
on the boundary has edges from both the graphs being glued together. 62

An example of replacing a protrusion with a new t-boundaried graph. 63

LIST OF FIGURES ix

6.4

6.5
6.6
6.7

6.8

7.2
7-3
7-4

7-5

I0.1
I10.2

10.3

10.4

10.5

[llustrating the behavior of the function fg. The number of doubly-
circled vertices vertices correspond to the value of fg(S), where S is
the subset of the boundary indicated by the dotted periphery. 65
A schematic of the proof of Claim 6.1 67
Thegraphs Guand Hp. o o o 00000000 oo 68
Thegraphs G, @ Hp. . . o oo oo oo 68
Finding a protrusion on more than ¢ but at most 2c vertices by using
the tree decomposition of a protrusion on more than 2c vertices. . . 71
The definition of a (s, p)-dissolution for a graph of treewidth b. . . 74
A bound on the number of vertices in the components below vi. . . 76
The procedure for constructing S’ from S ={x,y,z}. 77
Marking nodes from the boundary, and more. 80
The form of a minimal minor model of 8.. In this example, the

dashed edges may be contracted to obtain the 6o graph. 83
An example of () atajoinnode 94
The first approximation algorithm: a schematic view. 98
An example of f() atajoinnode L 107
Simplifying Protrusions: the overall scheme. 118
The O graph, forc=7. L. 123
An example of f() atajoinnode oL 127

An example of a 05 flower of size 4. If k = 3, then the flower rule

would involve deleting the vertex v and reducingk to 2. 129

The Flower Rule either applies, or it is feasible to find a hitting set H,,
of size k©!) of all minor models passing through v, such thatv ¢ H,,.
The hitting sets H,, will be useful for the subsequent reduction rule. 131

The hitting set in Selective Flower Rule 132

10.6
10.7

10.8

10.9

II.I

I1.2

I2.1

I12.2

12.3

13.1

13.2

14.1

14.2
14.3

14.4

14.5

14.6

LIST OF FIGURES

A pictureof two c-stars, C =5. Lo 133
A pictureof two c-stars, C =5. Lo 134

The first part of Reduction Rule 10.3. Involves deleting edges inci-
dent on v with their other endpoints in T. Vertices labeled x belong

to S and vertices colored red arein T. 134

Part two of Reduction Rule 10.3. Vertices of T have been omitted
forclarity. L 135

The disjoint version of PLANAR F DELETION. 142

The incidence graph of a hypergraph on the vertex set{a, b, c, d, e, f, g}
with edges {a, b, e, g},{b, e},{d, e, f}{b,g} and {c,g}. 144

A pair of elements that share vertices, from the bramble that consists

of thesetof crossesofagrid. 159
A schematic of the construction of brambles B; and B,. 162
The dashed paths form a collection of cross-free paths. 162

[lustrating the utility of PPT Reductions in Kernelization: A PPT
reduction from A to B allows us to obtain a kernel for A whenever

B admits a kernelization algorithm. 179

Disjoint Factors <pp¢ Disjoint Cycles 181

Reduction from Disjoint Factors to VERTEX DisjoiNT 0.-PAcKING
for ¢ = 5. The big black vertices all correspond to the letteri. 186

Hardness reduction: The forward direction. 187
Hardness reduction: One case that is ruled out in the reverse direction. 188

Hardness reduction: The second case that is ruled out in the reverse
direction. e 188

Disjoint Factors <ppt Odd Vertex Disjoint Cycle Packing 190

A two-coloring of the reduced instance without the edges (xp,yp),
T<p<Ke o e 192

LIST OF FIGURES xi

I5.1
15.2

I5.3

15.4
15.5
15.6
15.7
15.8

I5.9

Graph classes: combs, superstars, caterpillars and lobsters. 195
An Illustration of the Reduction 199
Reduction from CoLorruL SET COVER to COLORFUL MOTIF on su-

perstar graphs. Note that the highlighted color in each F; corre-

spondsto C(Fi) oo 200
Afliceofthegraph Q L L L L 203
Afliceofthegraph Q L oL 205
ASliceofthe Graph R o L o 206
ACombGraph 207
An illustration of the T, ® Tq operation 208
An illustration of the composition 212

15.10An Illustration of the Reduction in the proof of Theorem 15.10 . . 215

xii

LIST OF FIGURES

List of Tables

15.1 Summary of Results. Apart from the results tabulated, we also prove
that CONNECTED DOMINATING SET on Graphs of Diameter Two is
NP-Complete.

15.2 The Diameter Two Argument Summary

xiii

7. Introduction

Every great and deep o{zﬁfou/éf bears in [fseé" its ouwn solution.
It ﬁr&es us to c/mnje our z‘/u'nhhﬁ i order to ﬁmf/ it

Niels Bohr

“The time has come,” the walvus said] to talk of many things:
Of shoes and ships - and sealing wax - of mbbajes and kings.”

Lewis Carroll

One of the greatest achievements of theoretical computer science is the development
of the theory of NP-completeness. This theory offers an explanation as to why some
problems are unlikely to admit fast algorithms. It also provides a solid and convincing
foundation for the classification of computationally hard problems. Unfortunately,
most problems that arise in practical applications turn out to be intractable. Thus,
a significant part of research in theoretical computer science is devoted to finding
algorithms with a provably good running time and solution quality. We do not ex-
pect to achieve these apparently contradictory goals simultaneously: hence, in real-life
situations one often resorts to heuristics that abandon one or both these demands.

femriﬁ/e m{'mby time aceurate solutions

o

KERNELIZATION

BRUTE FORCE &
EXACT EXPONENTIAL
ALGORITHMS

APPROXIMATION &
RANDOMIZED
ALGORITHMS

Figure 1.1: Algorithms for computationally intractable problems

Our ability of formally comparing heuristic measures and evaluating them (both in
absolute and relative terms), depends on developing well-defined measures of effi-
ciency and extent of simplification. For a long time, the mathematical analysis of

2 CHAPTER 1. INTRODUCTION

polynomial-time preprocessing algorithms was neglected. The basic reason for this
anomalous development was the following: if we start with an instance I of an NP-
hard problem and seek an efficient (polynomial-time) subroutine that replaces I with
an equivalent instance I’ such that [I’| < |I| then we can use the said subroutine to
actually so/ve the problem in polynomial time, which in turn would imply P = NP —
discouraging efforts in this research direction. The situation has changed drastically
with advent of parameterized complexity where the issue of replacing an instance of a
parameterized problem by an equivalent one of smaller size can be framed in a natural

manner.

1.1 Parameterized Complexity and Kernelization

It is almost always the case that in addition to the overall input size (the sole “di-
mension” considered in the classical NP-completeness theory) there is a secondary
measurement that crucially affects the computational complexity of real-world prob-
lems. The basic idea of parameterized complexity is to capitalize on these additional
measures and incorporate them into the design and analysis of algorithms. The the-
ory introduces a formal secondary measurement known as the parameter to capture
the secondary measure. The parameter can represent an aggregate of bounds (e.g.,
the number of sequences and the alphabet size and the approximation performance).
It is in some sense a natural two-dimensional sequel to the classical theory of NP-

completeness.

More precisely, the subject deals with the study of parameterized problems. A pa-
rameterized problem is a language L C £* x N, where X is a finite alphabet and N is
the set of non-negative integers. The second component is called the parameter of the
problem. The central notion in parameterized complexity is that of fixed-parameter
tractability, which means given an instance (x, k) of a parameterized language L, de-
ciding whether (x,k) € L in time f(k) - p(|x|), where f is an arbitrary function of k
alone and p is a polynomial function. Such an algorithm is called a fixed-parameter
tractable algorithm and we call a problem that admits an algorithm of this kind fixed-
parameter tractable (FPT).

We now turn to the formal notion that captures the notion of simplification, which is
what most heuristics do when applied to a problem. A data reduction rule for a param-
eterized language L is a function ¢ : Z* x N — X* x N that maps an instance (x, k)

of L to an equivalent instance (x’, k) of L such that

1.1. PARAMETERIZED COMPLEXITY AND KERNELIZATION 3

® 4

PoLyNOMIAL
TiME

N %4

NO INSTANCES OF L YES INSTANCES OF L

Figure 1.2: Data Reduction: A Schematic View

1. ¢ is computable in time polynomial in [x| and k;

2. [} < Ixl.

Two instances of L are equivalent if (x,k) € L if and only if (x’,k’) € L.

We exploit the notion of a parameter to further our program of formalizing prepro-
cessing algorithms. We might now understand preprocessing to be a polynomial al-
gorithm that returns as output an instance equivalent to the input instance, but in
size only a function of the parameter.

Formally, a kernelization algorithm consists of a finite set of data reduction rules such
that by applying the rules to an instance (x, k) (in some specified order) one obtains
an instance (x’,k’) with the property that [x'| < g(k) and k' < g(k), for some
function g only depending on k. Such a “reduced” instance is called a problem kernel
and g(k) is called the kernel size.

4 CHAPTER 1. INTRODUCTION

It is folklore that a parameterized problem IT is in FPT
if and only if there exists a computable function g such |X| n

that TT admits a kernel of size g(k). However, kernels

obtained by this theoretical result are usually of expo-
. . . : (k)

nential (or even worse) size, while problem-specific data

reduction rules often achieve quadratic (g(k) = O(k?))

or even linear-size (g(k) = O(k)) kernels. So a natural)

question for any concrete FPT problem is whether it ad-

mits polynomial-time kernelization to a problem kernel

that is bounded by a polynomial function of the param-

eter (g(k) = O(kC(1)).)

Polynomial kernels form our basic notion of efficient ker-
nelization. As we noted above, there is no reason to be-

lieve that every problem in FPT admits a polynomial ker-

Paé/nam[a/ Time

nel. In fact, recent developments demonstrate that under
reasonable complexity theoretic assumptions some prob-)

lems in FPT do not admit polynomial kernels.

For formal definitions, the reader is referred to Chap-
ter 2 (Technical Preliminaries), and for a comprehensive
study of fixed-parameter tractability and kernelization,)
we refer to the books [DF99, FGo6, Nieo6] and the sur-
veys [GNo7, MRS11]. In this thesis, we develop kernel- (k)
:plk)

Figure 1.3: Kernelization

ization algorithms for general classes of problems, while

7
demonstrating lower bounds on some occasions. In the X
rest of this chapter, we introduce the problems, and de-

scribe the organization of the thesis.

1.2 Specific Problems: A Brief Overview

A large class of graph optimization problems are of the

following kind: we are interested in the smallest subset of vertices whose removal
makes the remaining graph possess a given property. For example, the VErRTEX COVER
problem involves finding the smallest number of vertices whose removal makes the

graph independent.

A very generic form of this question, that would account for several special cases,

1.2. SPECIFIC PROBLEMS: A BRIEF OVERVIEW 5

would be to ask the following:

Let H be a fixed graph. What is the smallest number of vertices after

whose removal the graph does not contain any copy of H?

Whenever the property desired of the graph can be “phrased” in terms of avoiding
copies of a fixed graph, the particular question we are interested in becomes a special
case of the one above. For example, when we look for a vertex cover, we want to
“avoid” edges: thus, setting H to be the single edge makes the problem above exactly
the question of finding the optimal vertex cover.

We may make the question above somewhat more general, by requiring that we avoid
not only a single graph H, but an entire set of specified graphs:

Let F be a fixed collection of graphs. What is the smallest number of

vertices after whose removal the graph does not contain any copy of
H, for every H € 2

A popular special case of

this question is the FEEDBACK

VERTEX SET problem: recall |\v
that a feedback vertex set is a ’ G
set of vertices whose removal — /I\T i~ H
makes the graph a forest. In \| '

the above, setting F to be the g <
family of all cycles, gives us ex-

actly the question of finding
Figure 1.4: G is a minor of H, or equivalently, H is a minor

an optimal feedback vertex set.
model of G.

A “copy of H” is usually un-

derstood to be the presence of

H as a subgraph. As we will see, requiring that we avoid the presence of H as a minor
makes the question more succinct. When we avoid H as a minor, we not only avoid
copies of H as a subgraph, but also copies of all graphs that can be contracted to H
as subgraphs. We note that if H can be obtained from H’ by a series of contractions,
then H' is called a minor model of H (see Figure 1.4). So the question that we are now

suggesting is the following:

6 CHAPTER 1. INTRODUCTION

Let J be a fixed collection of graphs. What is the smallest number of

vertices after whose removal the graph does not contain any copy of

any minor model of H, for every H € 3?

Thus, the question of finding an optimal FEEDBACK VERTEX SET can be now obtained
as a special case of the problem above by simply setting F to be a single graph, the
triangle (a cycle on three vertices). Since any cycle can be contracted to a triangle, a
graph that is free of minor models of triangles is a graph that is free of cycles (unless
the graph is a multigraph, in which case we simply set F to be a double edge instead
of a triangle).

As we might imagine, a substantial number of questions may turn out to be special
cases of the problem above. Thus, it is tempting to pursue algorithmic solutions for
such a problem, since it provides answers for multiple questions “in one shot”. This

goal lies at the heart of this thesis.

Let us state the F-DELETION question formally. We first define the notion of a F-
hitting set.

Definition 1.1 (F-hitting set). Let G be a graph and let F be a collection of graphs. A
F-hitting set is a subser S C V(G) such thar G\ S does not contain H as a minor, for all
He3J.

The question of F-DELETION is the following:

F-DELETION

Input: A graph G, a family of graphs F.
Parameter: k
Question: Does there exist F-hitting set S such that [S| < k?

As we have already observed, for particular choices of F, this question corresponds
to well-studied problems: For instance, it is the VERTEX COVER problem when F
consists of an edge. When F = {A}, a triangle, this is the feedback vertex set problem.
Other famous cases are F = {K;3,Ks}, F = {K33,Ks} and F = {K3, To}, which
correspond to removing vertices to obtain outerplanar graphs, planar graphs, and
graphs of pathwidth one respectively (see Figure 1.5). Here, K; ; denotes the complete
bipartite graph with bipartitions of sizes i and j, and K; denotes the complete graph

1.2. SPECIFIC PROBLEMS: A BRIEF OVERVIEW 7

e

K7 t7
Figure 1.5: Graphs Ty, t-claw Ky ¢ with t =7, and 8, withc =7

on i vertices. Further, a T, is a star on three leaves, each of whose edges has been
subdivided exactly once.

KEeRNELS FOR F-DELETION: THE CONJECTURE

The general F-deletion problem is NP-complete. From the parameterized per-
spective, by one of the most well-known consequences of the celebrated Graph
Minor theory of Robertson and Seymour, the F-deletion problem is fixed-
parameter tractable for every finite set of forbidden minors. It is conjectured that
the F-DELETION problem admits a polynomial kernel if, and only if, F contains
a planar graph.

This conjecture is addressed in this thesis, and we make progress by showing that many
special cases of the PLANAR F-DELETION problem do admit polynomial kernels. These
results require several intermediate results that are of independent interest. We first
show, in Chapter 8, that PLaANAR F-DELETION admits an approximation algorithm
with ratio O(log®/? OPT). Then, in Chapter 9 we restrict ourselves to a subclass of
graphs, called t-claw-free graphs (those that exclude K; ¢ as an induced subgraph),
and show that PLaNAR F-DELETION admits a polynomial kernel on this graph class.
In an independent endeavor, we show in Chapter 1o that when F contains a particular
graph, called . (a pair of vertices with ¢ edges between them, see Figure 1.5), then
F-DELETION admits a polynomial kernel on general graphs.

Finally, in Chapter 11, we arrive at general result, namely that the disjoint version of
the PLANAR F-DELETION admits a polynomial kernel on general graphs (Chapter 11).
The input to the disjoint version is a graph with a partition of the vertex set into two

parts such that the graph induced on either partition does not contain JF as a minor.

8 CHAPTER 1. INTRODUCTION

One of the parts is declared forbidden, and we are required to find an optimal F-
hitting set from the other part. An important consequence of the polynomial kernel
for this problem is an uniform FPT algorithm for the PLANAR F-DELETION problem

klogk)., O

. o(1)
that runs in time 2°! n°U). No algorithm running in time (2% ")) was

known previously.

As we pointed out above, FEEDBACK VERTEX SET is a well-studied special case of F-
DELETION — and we investigate the variant INDEPENDENT FEEDBACK VERTEX SET,
where we require that the vertices of the feedback vertex set induce an independent
subgraph. In Chapter 5, we study the minimization version, and demonstrate poly-
nomial kernels for INDEPENDENT FEEDBACK VERTEX SET under the standard param-
eterization (solution size). This also serves the purpose of demonstrating some of the
techniques used in the more general settings. While a polynomial kernel for FEED-
BACK VERTEX SET was known before [Tho10], we note that a kernel for INDEPENDENT
FeepBACK VERTEX SET would imply a kernel of the same size for FEEDBACK VERTEX

SET because of a parameter-preserving reduction from the latter to the former.

Further, the F-DELETION problem triggers interest in various related problems that
are also examined, and are also of independent interest. One natural complemen-
tary question is to do with packing: note that F-DELETION can be thought of as a
“covering” problem (attempting to “hit” all minor models of graphs in F with the
smallest possible subset), and the corresponding packing question involves maximiz-
ing the number of vertex (or edge) disjoint minor models of graphs in F. In Chap-
ter 12, we provide an Erdés-Pésa style result for the case when & = {6.}, demon-
strating a relationship between the sizes of the optimal covering number and hitting
set size. This result borrows techniques from the approximation algorithm for the F-
DELETION problem and also makes use of known connections between brambles and

treewidth [ST93] (see Chapter 2 for definitions).

In this context, we apply the “Erdés-Pésa property” of 8. minor models to make
partial progress towards finding polynomial kernels for packing edge disjoint minor
models of 6.. In particular, in polynomial time, we are able to reduce any instance
of the problem to one where the maximum degree is bounded by a poylnomial in
k. Independently, but on a related note, we show two lower bounds, demonstrating
that the problem of finding if there are at least k vertex-disjoint minor models of 6. is
unlikely to admit a polynomial kernel parameterized by k, and this is also true for the
problem of checking if there are at least k vertex-disjoint cycles of odd length (again
parameterized by k). These results are presented in Chapter 14.

1.2. SPECIFIC PROBLEMS: A BRIEF OVERVIEW 9

™

N

\
/

S
%
N\

/

{/

Figure 1.6: A Colorful Motif

The second central problem that we investigate in this thesis is the CoLorruL MoTIF
problem. The GrarH MOTIF problem concerns a vertex-colored undirected graph G
and a multiset M of colors. We are asked whether there is a set S of vertices of G such
that the subgraph induced on S is connected and there is a color-preserving bijective
mapping from S to M. That is, the problem is to find if there is a connected subgraph
H of G such that the multiset of colors of H is identical to M.

The GrarH MoOTIF problem has immense utility in bioinformatics, especially in the
context of metabolic network analysis (eg. motif search in metabolic reaction graphs
with vertices representing reactions and edges connecting successive reactions) [BHK " 09,
LESo6] . The problem is NP-complete even in very restricted cases, such as when G is

a tree with maximum degree 3, or when G is a bipartite graph with maximum degree

4 and M is a multiset over just two colors. When parameterized by [M|, the problem

is FPT, and it is W[2]-hard when parameterized by the number of colors in M, even
when G is a tree [FFHVo7].

The CororruL MoOTIF problem is a simpler version of the GrapH MOTIF problem,
where M is a set (and not a multiset). Even this problem is NP-hard on simple
classes of graphs, such as when G is a tree with maximum degree 3 [FFHVo7]. The
problem is FPT on general graphs when parameterized by [M|, and the current fastest
FPT algorithm, by Guillemot and Sikora, runs in O*(2M)) time and polynomial

10 CHAPTER 1. INTRODUCTION

space [GS10].

Formally, the CoLorrUL MOTIF problem is the following:

CoOLORFUL MOTIF

Input: A graph G = (V,E), k € N, and a coloring function ¢ : V — [Kk].

Parameter: k

Question: Does G contain a subtree T on k vertices such that ¢ restricted to T is
bijective?

In Chapter 15, we study the kernelization complexity of CoLorFUL MOTIF on var-
ious graph classes and obtain the second example of “many polynomial kernels” in
the literature (see Chapter 13, Section 13.2.2 for a formal definition, and Chapter 15,
Lemma 15.5 for a simple example). The results we obtain in the context of CoLorrUL
Mortir contribute to the rapidly growing collection of problems for which polyno-
mial kernels do not exist under reasonable complexity-theoretic assumptions. Given
that many of our results pertain to very special graph classes, we hope these hardness
results — which make these special problems available as starting points for further
reductions — will be useful in settling the kernelization complexity of many other

problems.

1.3 Organization of the Thesis

The structure of the thesis is, briefly, as follows. Chapter 2 introduces the necessary
technical framework in which the problems above are studied. Chapters 3, 4, 6 and 13
survey important techniques that are used in the rest of the thesis. Chapter s is about
INDEPENDENT FEEDBACK VERTEX SET [MPRS10], Which asks for a feedback vertex
set of size at most k that induces an independent graph (the problem is parameter-
ized by solution size). We use this problem to illustrate techniques based on crown

decompositions that will be useful in subsequent chapters.

Chapters 8,9,10,11 are about the F-DeLETION problem based on work in [FLM " 11].
Chapter 12 covers an Erd8s-Pésa-style result for a certain class of graphs that generalize
cycles [FLM *10a]. We also describe how this result can be applied to reduce the
maximum degree of instances of the EDGE-DISJOINT 6. PACKING problem. Chapter 14

shows that the vertex-disjoint packing variant of a special case of the F-DELETION

1.3. ORGANIZATION OF THE THESIS I1

problem is unlikely to admit a polynomial kernel [FLM " 1ob]. Finally, in Chapter 15,
we study the CoLORFUL MOTIF problem [ABH" 10].

I2

CHAPTER 1. INTRODUCTION

The secret of ‘getting ahead (s getting started.

Mark Twain

In the bqg[nm'nj the Universe was created,

This has made a lot of peaple very angry and has been wzﬂeﬁl r.ejardeo{ as a bad move.
%@/AJ Adams

This chapter is an overview of the notation and definitions used in the rest of the
document, and a collection of technical results that will be useful in future discussions.

2.1 Notational Conventions

The letters G, H, etc. are used to refer to graphs, and &, H, J, etc. are used to refer to
finite or infinite collections of graphs. The small letters k and 1 are generally reserved
for referring to problem parameters.

We use V(G) to denote the vertex set of a graph G, and E(G) to denote the edge
set. The notation Mg refers to minor models of G, that is, it is the set of graphs that
contain G as a minor (for the notion of a minor, cf. Section 2.2.1). Small letters
u, v, x etc. are used to denote vertices of graphs. The degree of a vertex v in G is the
number of edges incident on v, and is denoted by d(v). We use A(G) to denote the
maximum degree of G, and 5(G) to refer to the minimum degree of a graph G.

Forn € N, we use [n] to denote the set {1,...,n}.

2.2 Definitions

2.2.1 Graphs

A graph G is a pair (V, E), where V is a finite set and E C V x V. The elements of V
are referred to as the vertices of the graph and the elements of E are called its edges. A

13

2. Technical Preliminaries

14 CHAPTER 2. TECHNICAL PRELIMINARIES

graph G’ is a subgraph of G if V(G’) C V(G) and E(G’) C E(G). The subgraph G’
is called an induced subgraph of G if E(G’) = {{u, v} € E(G) | u,v € V(G’)}. Given
a subset S C V(G) the subgraph induced by S is denoted by G[S]. The subgraph
induced by V(G)\S is denoted by G\ S. We denote by N(S) the open neighbourhood
of S, i.e. the set of vertices in V(G) \ S adjacent to S.

Contraction and Minors By contracting an edge (u,v) of a graph G, we mean iden-
tifying the vertices u and v, keeping all the parallel edges and removing all the loops.
A minor of a graph G is a graph H that can be obtained from a subgraph of G by
contracting edges. We keep parallel edges after contraction since the graph 6. which
we want to exclude as a minor itself contains parallel edges. We use the following

equivalent characterization of minors for ease of presentation.

Proposition 2.1 ([Dieos]). A graph H is a minor of G if and only if there is a map
¢ : V(H) = 2V such that for every vertexv € V(H), Gld(v)] is connected, for every
pair of vertices v,u € V(H), d(u) N d(v) = 0, and for every edge (u,v) € E(H), there
is an edge (W', V') € E(G) such tharu' € d(u) andv' € d(v).

Definition 2.1. Let G, H be two graphs. A subgraph G’ of G is said to be a minor model
of Hin G if G’ contains H as a minor. The subgraph G’ is 2 minimal minor model of
H in G if no proper subgraph of G’ is a minor model of H in G.

From Proposition 2.1 we get:

Corollary 2.2. Foranyc € N, a subgraph M of a graph G is a minimal minor model of
0. in G if and only if M consists of two trees, say Ty and T, and a set S of ¢ edges, each
of which has one end vertex in Ty and the other in T,.

A graph class C is minor closed if any minor of any graph in C is also an element of C.
A minor closed graph class € is H-minor-free or simply H-free if H ¢ C.

Chromatic Number A k-coloring of a graph G is a vertex coloring that is an assign-
ment of one of k possible colors to each vertex of G (i.e., a vertex coloring) such that
no two adjacent vertices receive the same color. The chromatic number of a graph G is
the smallest number of colors y(G) needed to color the vertices of G so that no two
adjacent vertices share the same color, i.e., the smallest value of k possible to obtain
a k-coloring. For example, the chromatic number of an edgeless graph is 1 and the

complete graph on n vertices is n.

2.2. DEFINITIONS IS

Brambles. We say that two subsets of V(G) rouch if they either have at least one

vertex in common or if there is at least one edge with one endpoint in each subset.

Definition 2.2 (Brambles). A bramble B of a graph G is a collection of mutually touching
connected subgraphs, called the elements of the bramble.

The canonical example of a bramble is the set of crosses (union of a row and a column)
of an (1 x 1)-grid (see Figure 2.1).

Further, the following terms are also

useful:

* A hitting set of a bramble is a subset
of vertices S whose intersection with ~ ¢—6—0—0—0—
every element of the bramble is non- 1 -
trivial. 1
x PForabramble B, the order of Bisthe
minimum cardinality of a hittingsee
of the bramble. I -
* For a graph G, bramble number of G~ o0&
is the maximum order of a bramble ——
of G. mENN.
For instance, for the example of the set
of crosses of the (1 x 1)-grid above, the
vertices of any row (or column), would Figure 2.1: A pair of elements that share ver-

intersect all elements of the bramble tices, from the bramble that consists

and would therefore constitute a hitting of the set of crosses of a grid.

set.

Trees and the Helly Property

A tree is a connected graph with the property that the removal of any edge disconnects
the graph. Equivalently, a connected graph without cycles is a tree. We will need the
Helly property of trees, which states that if we have a collection of subtrees of a tree that
pairwise intersect, then there is at least one vertex that is common to 4/ the subtrees

considered. We prove this below.

Lemma 2.1 (Helly Property for trees). Let Ty, Ta, ..., Ty be subtrees of a tree T. Suppose
V() NV(T;) #0 Vi,j.

16 CHAPTER 2. TECHNICAL PRELIMINARIES

Figure 2.2: Possible paths among vertices a, b, ¢ in tree T

Then
V(THNV(T)N...NnV(T,) # 0.

Proof. Let a, b, c be any vertices of T. Let
S = {i: T; contains at least 2 of a, b, c}.

Claim 2.1. (N, V(Ts) # 0.

Let Py be unique (a,b)-path in T, let P, be unique (b, c)-path in T, and let P3 be
unique (a,c)-path in T. Since T is a tree, the intersection V(Py) N V(P2) N V(P3)
is nonempty; additionally, the intersection must be a single vertex, say x. (See Figure

2.2.)

Every Ts for s € S must contain at least one of Py, P2, and P3. Therefore, x € V(T;)
forall s € S, and the claim is proven.

We now prove the lemma with a proof by induction on the number of subtrees n.
The basis cases 1 = 1, 2 are trivial. Suppose the result is true for all collections of less
than n subtrees of tree T (that intersect pairwise). Consider n subtrees Ty, To, ..., T,
of T that intersect pairwise. By the induction hypothesis, we know that there exist

vertices a, b, ¢ such that
acV(TH)NV(T)N---NV(Tnl),

beV(T)NV(Tz)N---NV(Ty)
ce V(T NV(T,).

2.2. DEFINITIONS 17

Note that every subtree T; contains two of the vertices a, b, ¢, and by our previous
claim, it follows that

V(THNV(T)N...nV(T,) # 0.

2.2.2 Kernelization

A parameterized problem L is a subset of Z* X N for some finite alphabet . An
instance of a parameterized problem consists of (x, k), where k is called the parame-
ter. A central notion in parameterized complexity is fixed parameter tractability (FPT)
which means for a given instance (x, k) solvability in time f(k) - p(|x]), where f is
an arbitrary function of k and p is a polynomial in the input size. The notions of

kernelization is formally defined as follows.

Definition 2.3. A kernelization algorithm, or in short, a kernel for a parameterized
problem Q C I* x N is an algorithm that, given (x,k) € LZ* X N, outputs in time
polynomial in |x| + k a pair (x', k') € Z* x N such that (a) (x,K) € Q if and only if
(x', k') € Qand (b) |x'| +X' < g(K), where g is an arbitrary computable function. The
Sfunction § is referred to as the size of the kernel. If g is a polynomial function then we say
that Q admits a polynomial kernel.

For further details about kernelization, we refer the reader to Chapter 3.

2.2.3 Treewidth and Tree Decompositions

The concept of treewidth was discovered independently by several different researchers
and given several different names. The actual term ‘treewidth’ and its definition in

terms of tree decompositions were introduced by Robertson and Seymour [RS86].

Let G be a graph. A tree decomposition of a graph G is a pair (T, X = {X¢}tev(m)) such
that

* Utev(mXe = V(G),
* for every edge {x,y} € E(G) there isat € V(T) such that {x,y} C X, and
* for every vertex v € V(G) the subgraph of T induced by the set {t | v € X} is

connected.

18 CHAPTER 2. TECHNICAL PRELIMINARIES

The width of a tree decomposition is (maxtev(T) |Xt|) — 1 and the treewidth of G is
the minimum width over all tree decompositions of G. A tree decomposition (T, X)
is called a nice tree decomposition if T is a tree rooted at some node v where X, = 0,

each node of T has at most two children, and each node is of one of the following

kinds:

1. Introduce node: a node t that has only one child t’ where X; D X and [X{| =
Xer| + 1.

2. Forget node: a node t that has only one child t’ where X; C Xy and [X{| =
Xer| = 1.

3. Join node: a node t with two children t; and t;, such that X; = X, = X, .

4. Base node: a node t that is a leaf of t, is different than the root, and X, = 0.

Notice that, according to the above definition, the root v of T is either a forget node
or a join node. It is well known that any tree decomposition of G can be transformed
into a nice tree decomposition in time O(|V(G)| + |[E(G)|) maintaining the same
width [Klog4]. We use G to denote the graph induced on the vertices Uy X}, where
t’ ranges over all descendants of t, including t. We use Hy to denote G¢[V(G¢) \ X¢J.

For a vertex v € G, we denote the subtree of T induced by the set {t | v € X} by T,.

Tree decompositions have a number of useful properties. We make note of an obser-

vation that will be useful in subsequent chapters.

Lemma 2.2. IfB C V(G) induces a connected subgraph of G, then Tg := U{T, | v €
V(B)} is a subtree of T.

Proof: We prove this by contradiction. Suppose Tg, as defined in the statement of
the lemma, is not a subtree of T, and is instead an union of at least two disjoint
subtrees. Without loss of generality, let T be the union of two disjoint subtrees T;
and T,. Fori = 1,2 let B; denote U{v € B | v € X(T;)}, where X(T;) denotes the
union of the bags corresponding to the vertices in T;. Since B induces a connected
subgraph of G, there exists an edge (u,v) with u € By and v € B,. By the definition
of a tree decomposition, there is a bag Xy, that contains both u and v, and this
bag must belong to both Ty and T,. But this would imply that the two subtrees Ty
and T, share a common vertex, and are not disconnected, contradicting our starting

assumption.]

2.2. DEFINITIONS 19

It is well-known that the chromatic number of a graph is a lower bound for its
treewidth. We will find this bound useful in Chapter 9 (Section 9.2.1). For the

sake of completeness, we provide a proof here.

Proposition 2.3. For any graph G, X(G) < tw(G) + 1, where X(G) is the chromatic
number of G.

Proof: We show the inequality by induction on [V(G)|; [V(G)| =n. Fixn > 2 and
assume that x(G) < tw(G) + 1 holds true for any graph with at most n vertices. Let
G be a graph with [V(G)| = n+1. We show that [V(G)| > 2, then there are is a vertex
v in G such that d(v) < tw(G). Consider T, a nice tree decomposition of G such
that for any other nice tree decomposition T’, V(T) < V(T’). Let t be a leaf node
in this decomposition, and let t’ be the parent node of t. Note that there is a vertex
v € X¢ \ X (we use X; to denote the bag associated with t). Indeed, if not, we have
that the bags X and X/ are identical, and we may obtain a nice tree decomposition
on fewer vertices by deleting t, contradicting the assumption of vertex-minimality of
T. Note that all neighbors of v are contained in X — this follows directly from the
definition of a tree decomposition and the fact that v lies in a leaf node whose parent
does not contain v. Therefore, we have that that d(v) < tw(G).

So consider a vertex v of G such that d(v) < tw(G). By induction,

X(G\{v}) < w(G\ {v}) +1,

and that is clearly at most tw(G) + 1. Since d(v) < w(G), there is always a color
class X in the (ew(G) + 1)-coloring of G \ {v} which is such that v is not adjacent
to any vertex in X (note that X may not contain any vertices at all). So by extending
the (tw(G) + 1)-coloring of G \ {v} by adding v to the color class X, we have that
X(G) < tw(G) + 1. H

Given a graph G and S C V(G), we define 0 (S) as the set of vertices in S that have
a neighbor in V(G) \ S. Foraset S C V(G) the neighborhood of S is Ng(S) =
06(V(G) \' S). When it is clear from the context, we omit the subscripts. We now
define the notion of a protrusion, introduced in [BFL " 09].

Definition 2.4 (r-protrusion). Given a graph G, we say that a set X C V(G) is an
r-protrusion of G if rw(G[X]) < 1 and [0(X)| < .

For more about protrusions, we refer the reader to Chapter 6.

20 CHAPTER 2. TECHNICAL PRELIMINARIES

2.2.4 Monadic Second Order Logic (MSO)

The syntax of MSO on graphs includes the logical connectives V, /\, =, &, =,
variables for vertices, edges, sets of vertices and sets of edges, the quantifiers V, 3 that

can be applied to these variables, and the following five binary relations:

I. u € U where u is a vertex variable and U is a vertex set variable;
2. d € D where d is an edge variable and D is an edge set variable;

3. inc(d,u), where d is an edge variable, 1 is a vertex variable, and the interpre-

tation is that the edge d is incident on the vertex u;

4. adj(u,v), where u and v are vertex variables u, and the interpretation is that u

and v are adjacent;

5. equality of variables representing vertices, edges, set of vertices and set of edges.

Many common graph-theoretic notions such as vertex degree, connectivity, planarity,
being acyclic, and so on, can be expressed in MSO, as can be seen from introductory
expositions [BPT92, Coug7]. Of particular interest to us are p-MIN-MSO problems.
In a p-MIN-MSO graph problem TT, we are given a graph G and an integer k as input.
The objective is to decide whether there is a vertex/edge set S of size at most k such
that the MSO-expressible predicate Pri(G, S) is satisfied.

The following well known result states that every optimization problem expressible in
MSO has a linear time algorithm on graphs of bounded treewidth, and we will find

this very useful in various situations.

Theorem ([ALS91, Bodg6, BPT92, Cougo, CM93]). Let & be a property that is ex-
pressible in Monadic Second Order Logic. For any fixed positive integer t, there is an

algorithm that, given a graph G of treewidth at most t as input, finds a largest (alterna-
tively, smallest) set S of vertices of G that satisfies & in time f(t,|$|)[V(G)|.

This result is revisited in Chapter 7.

The ab[/ié/ to sz'm,u/zﬁ means to eliminate the unnecessary
s0 that the necessary may speak.

Hans Hoﬁmm

SL}nla/tzv, 5[m,a/tﬁ/.

/—/emy Vavid Thoreau

In attacking computationally hard problems, it is common (especially in practice) to
attempt “reducing” the input instance using efficient pre-processing. Historically, as
an algorithmic technique, preprocessing was somewhat underrated in the theoretical
context, since their correctness and performance was tricky to analyze. In recent times,
ideas from parameterized complexity have offered a natural but formal framework for
the analysis of many well-known heuristics. These ideas also provided the opportunity
for a new kind of algorithm design, and developments in this direction have evolved
into what is now a well known specialization when it comes to algorithms for NP-hard
problems: kernelization.

Informally, preprocessing involves obtaining equivalent instances that are “simpler”
than the original. To make the notion precise, we will need well-defined measures of
efficiency and simplicity. In our discussions, for the former, we use the conventional
benchmark of polynomial time computabiliry. As for simplicity, we restrict ourselves to
considerations of size. Thus our attempts will be concentrated on making the instance
size as small as possible, where the size of an instance is defined according to the
problem under consideration.

Many input instances have the property that they consist of some parts that are rela-
tively easy to handle, and other parts that form the “really hard” core of the problem.
The data reduction paradigm aims to efficiently “cut away easy parts” of the given
problem instance and to produce a new and size-reduced instance where exhaustive
search methods and other cost-intensive algorithms can be applied.

For a long time, the mathematical analysis of polynomial time preprocessing algo-
rithms was neglected. The basic reason for this was the following anomaly: if we start

21

3. Interlude: Problem Kernels

22 CHAPTER 3. INTERLUDE: PROBLEM KERNELS

with an instance I of an NP-hard problem and can show that in polynomial time
we can replace this with an equivalent instance I’ with |[I’| < [I| then that would
imply P=NP in classical complexity. The situation changed drastically with advent
of parameterized complexity. Combining tools from parameterized complexity and
classical complexity it has become possible to derive upper and lower bounds on the
sizes of reduced instances, or so called kernels. The importance of preprocessing and
the mathematical challenges it poses is beautifully expressed in the following quote by
Fellows [Felo6]:

It has become clear, however, that far from being trivial and uninteresting,
that pre-processing has unexpected practical power for real world input dis-
tributions, and is mathematically a much deeper subject than has generally

been understood.

In the framework of parameterized complexity, each problem instance comes with
a parameter kK and the parameterized problem is said to admit a polynomial kernel
if there is a polynomial time algorithm (the degree of polynomial is independent of
k), called a kernelization algorithm, that reduces the input instance down to an in-
stance with size bounded by a polynomial p(k) in k, while preserving the answer.
This reduced instance is called a p(k) kernel for the problem. If p(k) = O(k), then
we call it a /inear kernel. Kernelization has been extensively studied in the realm of
parameterized complexity, resulting in polynomial kernels for a variety of problems.
Notable examples include a 2k-sized vertex kernel for VErTEX CovEr [CK]Jo1], 2 67k
kernel for DOMINATING SET on planar graphs [CFKXo7], and an O(k?) kernel for
FeepBack VERTEX SET [Tho1o] parameterized by the solution size.

3.1 Examples of Kernels

We illustrate the method of kernelization using the parameterized version of Max3Sat
where given a boolean 3-CNF formula and an integer parameter k, we would like to
know whether there is an assignment to the variables that satisfies at least k of the
clauses. Our other examples in this Section include a kernel for d-Hrrting SET using
the Sunflower Lemma, a 4k sized kernel for VERTEX COVER using crown decomposition
and a 2 kernel for (Epge) CLiQUE COVER.

3.1. EXAMPLES OF KERNELS 23

3.1.1 Max3Sat

We begin with a simple example: the classical satisfiability problem on propositional
formulas asks if there is an assignment that satisfies a given formula. The following is
an optimization version of the problem, and asks for an assignment that satisfies the

largest number of clauses. We state the decision version:

Max-3-SAT: Given a propositional formula ¢ in 3CNE does there exist

an assignment of the variables that satisfies at least k clauses?

Let ¢ be the given boolean CNF 3-SAT formula with n variables and m clauses. It
is well known that in any boolean CNF formula, there is an assignment that satisfies
at least half of the clauses (given any assignment that doesn’t satisfy half the clauses,
its bitwise complement will). So if the parameter k is less than m/2, then there is
an assignment to the variables that satisfies at least k of the clauses. In this case, we
conclude that the given input is a YES-instance of the problem, and the kernel is a
trivial YES-instance. Otherwise, m < 2k, and so n < 6k, and the instance given as
input itself is the kernel.

3.1.2 d-Hitting Set

In this Section we give a kernelization algorithm for the d-Hrrting SET problem

which is defined as follows:

d-Hrrring ST (d-HS) : Given a collection € of d element subsets of an
universe U and a positive integer k, the problem is to determine whether
there exists a subset U’ C U of size at most k such that U’ contains at

least one element from each set in C.

Our kernelization algorithm is based on the following widely used Sunflower Lemma.
We first define the terminology used in the statement of the lemma. A sunflower with
k petals and a core Y is a collection of sets S1,S; - - - Sy such that S; N'S; =Y for all
i # j; the sets S; \ Y are petals and we require that none of them be empty. Note that

a family of pairwise disjoint sets is a sunflower (with an empty core).

Lemma 3.1 ([FGo6]). [Sunflower Lemma] Let I be a family of sets over an universe
W each of cardinality s. If |F| > sl(k — 1)® then F contains a sunflower with k petals
and such a sunflower can be computed in time polynomial in the size of T and U.

24 CHAPTER 3. INTERLUDE: PROBLEM KERNELS

Now we are ready to prove the following theorem about kernelization for d-HS.

Theorem 3.1. d-HS has a kernel of size O(k4d!d?). That is, given an instance (U, C, k)
of A-HS, we can replace it with an equivalent instance (U, €' k') with |C'| < O(k%d!d)

in polynomial time.

Proof. 'The crucial observation is that if € contains a sunflower S = {Sy,---, Sx41}
of cardinality k + 1 then every hitting set of € of size at most k must intersect with
the core Y of the sunflower S, otherwise we will need hitting set of size more than k.
Therefore if we let @’ = € \ (S UY) then the instance (U, C, k) and (U, C’, k) are

equivalent.

Now we apply the Sunflower Lemma for all d’ € {1,---, d}, repeatedly replacing
sunflowers of size at least k + 1 with their cores until the number of sets for any fixed
d’ € {1,---,d} is at most O(k4'd’!). Summing over all d we obtain the desired
kernel of size O(k4d!d). [l

3.1.3 Crown Decomposition : Vertex Cover

In this Section we introduce a crown decomposition based kernelization for VERTEX
Cover. It is based on a connection between matchings and vertex cover which is that
the maximum size of a matching is a lower bound for the minimum cardinality vertex
cover. We first define VERTEX COVER precisely as follows.

VERTEX CoVER (VC): Given a graph G = (V, E) and a positive integer k, does
there exist a subset V/ C V of size at most k such that for every edge (u,v) € E
eitherue V'orve V.

VERTEX COVER can be modelled as 2-HS with universe U = Vand € = {{u, v}| (uwv) €
E} and hence using Theorem 3.1 we get a kernel with at most 4k? edges and 8k? ver-

tices. Here we give a kernel with at most 4k vertices.
Now we define crown decomposition.

Definition 3.1. A crown decomposition of a graph G = (V,E) is a partitioning of V
as C, H and R, where C and H are nonempty and the partition satisfies the following
properties.

1. C is an independent set.

3.1. EXAMPLES OF KERNELS 25

2. There are no edges between vertices of C and R, that is N[C] N R = {.

3. Let &' be the set of edges between vertices of C and H. Then €' contains a match-
ing of size |H|, that is the bipartite subgraph G' = (C U H, ') has a matching
saturating all the vertices of H.

We need the following lemma by Chor et. al. [CFJos] which makes it possible to

find a crown decomposition efficiently.

Lemma 3.2. Ifa graph G = (V,) has an independent set 1 C V such that IN(I)] <
1|, then a crown decomposition (C,H,R) of G such that C C 1 can be found in time
O(m+n), given G and 1.

The crown-decomposition gives us a global method to reduce the instance size. Its

importance is evident from the following simple lemma.

Lemma 3.3. Let (C,H,R) be a crown decomposition of a graph G = (V,E). Then G
has a vertex cover of size k if and only if G’ = G[R] has a vertex cover of sizek’ = k—|H|.

Proof. Suppose G has a vertex cover V' of size k in G. Now, we have a matching of
size [H| between C and H that saturates every vertex of H. Thus [V/N(HUC)| > [H],
as any vertex cover must pick one vertex form each of the matching edge. Hence the
number of vertices in V' covering the edges not incident to HU C is at most k — [H],

proving one direction of the result.

For the other direction, it is enough to observe that if V" is a vertex cover of size
k — [H| for G’ then V" U H is a vertex cover of size k for G.]

Theorem 3.2. Vertex Cover has a kernel of size 4.

Proof. Given an input graph G = (V, E) and a positive integer k, we do as follows.
We first find a maximal matching M of G. Let V(M) be the set of endpoints of
edges in M. Now if [V(M)| > 2k, we answer NO and stop as any vertex cover
must contain at least one vertex from each of the matching edges and hence has size
more than k. Now we distinguish two cases based on the size of [V — V(M)|. If
[V —V(M)| < 2k, then we stop as we have obtained a kernel of size at most 4k. Else
[V —V(M)| > 2k. In this case we have found an independent set I = V — V(M)
such that [N(I)| < |[V(M)| < |I| and hence we can apply Lemma 3.2 to obtain a

crown decomposition (C,H,R) of G. Given a crown decomposition (C,H,R), we

26 CHAPTER 3. INTERLUDE: PROBLEM KERNELS

apply Lemma 3.3 and obtain a smaller instance for a vertex cover with G’ = G[R]
and parameter k’ = k — [H|. Now we repeat the above procedure with this reduced
instance until either we get a NO answer or we have |V — V(M)| < 2k resulting in a
kernel of size 4k. O

The bound obtained on the kernel for VERTEX CoVER in Theorem 3.2 can be further
improved to 2k with much more sophisticated use of crown decomposition. An inde-
pendently developed method to obtain a 2k size kernel for VErTEX CoVER is through
a linear programming formulation of VErRTEX CovER. On close inspection, however,
it can inferred that the mechanics of the linear programming approach amount to per-
forming crown-based reductions. See [FGo6] and [Nieo6] for further details about
the linear programming based kernelization of VErRTEX COVER.

3.1.4 Clique Cover

Unfortunately, not all known problem kernels are shown to have polynomial size.
Here, we present some data reduction results with exponential-size kernels. Clearly,
it is a pressing challenge to find out whether these bounds can be improved to poly-

nomial ones.

In this section, we study the (EpGE) CLIQUE COVER problem, where the input consists
of an undirected graph G = (V, E) and a nonnegative integer k and the question is
whether there is a set of at most k cliques in G such that each edge in E has both its

endpoints in at least one of the selected cliques.

Given an n-vertex and m-edge graph G, we use N(v) to denote the neighborhood of
vertex v in G, namely, N(v) := {u | {u, v} € E}. The closed neighborhood of vertex v,
denoted by N[v], is equal to N(v) U {v}.

We formulate data reduction rules for a generalized version of (EDGE) CLIQUE COVER
in which already some edges may be marked as “covered”. Then, the question is to

find a clique cover of size k that covers all uncovered edges. We apply the following
data reduction rules [GGHNo6]:

1. Remove isolated vertices and vertices that are only adjacent to covered edges.

2. If an uncovered edge {u, v} is contained in exactly one maximal clique C, that is,
if the common neighbors of u and v induce a clique, then add C to the solution,

mark its edges as covered, and decrease k by one.

3.1. EXAMPLES OF KERNELS 27

3. If there is an edge {u, v} whose endpoints have exactly the same closed neighbor-
hood, that is, N[u] = N[v], then mark all edges incident to u as covered. To
reconstruct a solution for the non-reduced instance, add u to every clique con-
taining v.

The correctness of the rules is easy to prove. To show the following problem kernel,
only the first and third rule are needed.

Theorem 3.3 ((GGHNo6]). (EpGE) CLIQUE COVER admits a problem kernel with at
most 2¥ vertices.

Proof. Consider any graph G = (V, E) with more than 2* vertices that has a clique
cover Cy,...,Cx of size k. We assign to each vertex v € V a binary vector b, of
length k where bit 1, T <1 <k, is set to 1 if and only if v is contained in clique C;.
Since there are only 2* possible vectors, there mustbe w # v € Vwith b,, = b,. Ifb,,
and b, are zero, the first rule applies; otherwise, 1 and v are contained in the same
cliques. This means that u and v are connected and share the same neighborhood,
and thus the third rule applies. O

2.8

CHAPTER 3. INTERLUDE: PROBLEM KERNELS

The essence of mathematics is not to make simple f/u'n_qs complicated

but to make camp/[mfea/ t/uh_q.s simple.

d Qu//{en

The further a mathematical theory is developed
the more harmoniously and uniformly does its constraction proceed
and unsuspected relations are disclosed

between hitherto separated branches o the science.

Vavid Hilbert

In this chapter, we introduce the g-expansion lemma, a variation of Hall’s Theorem.
The g-expansion lemma is a generalization of a result due to Thomassé [Tho1o, The-
orem 2.3], and captures a certain property of neighborhood sets in graphs that has
been used implicitly by several authors to obtain polynomial kernels for many graph
problems. When q = 1, the application of this lemma is exactly the well-known
Crown Reduction Rule [AFLSo7].

Consider a bipartite graph with partitions (A & B). One direction of Hall’s theorem
guarantees the existence of a matching saturating A if every vertex subset S of A
has a neighborhood at least as large as itself. Further, if every vertex subset has a
neighborhood that is at least q times as large as itself (for some positive integer q > 1)
then we can argue, along similar lines, the existence of q matchings saturating A, all
vertex-disjoint in B. In the context of applying this result in kernelization, it is useful
to rephrase it with a weaker hypothesis, and a weaker conclusion. Specifically, the
version of the statement that is useful requires only the size of B to be at least q - [A[,
and guarantees the existence of q matchings, vertex-disjoint in B, that saturate some
non-empty subset of A.

We first present a tighter version of the previous statement, obtaining the same conclu-
sion with the requirement that |B| is at least q-m, where m is the size of the maximum
matching in the bipartite graph. Then we demonstrate how the lemma may be used
in kernelization algorithms by providing three examples: VErRTEX COVER, (n — k)
CoLORING, and EDGE DomINATING SET. We hope that a general strategy emerges

29

4. Interlude: Mafc/nhj T/zemy

30 CHAPTER 4. INTERLUDE: MATCHING THEORY

from these examples that would be useful in the context of other problems. Indeed,
the g-expansion lemma is crucial in the kernelization for INDEPENDENT FEEDBACK
VERTEX SET, and a special case of the F-DeLETION problem. For all the problems
that are discussed in this chapter, the sizes of the kernels obtained differ from the sizes

of the best-known kernels by only constant factor.

4.1 'The g-expansion lemma

Consider a bipartite graph G with vertex bipartition A & B. Given subsets S C A
and T C B, we say that S has |S| g-stars in T if to every x € S we can associate
a subset Fy € N(x) N T such that (a) for all x € S, [Fi| = q; (b) for any pair of
vertices X,y € S, Fx N Fy = 0. Observe that if S has [S| g-stars in T then every
vertex x in S could be thought of as the center of a star with its q leaves in T, with
all these stars being vertex-disjoint. Further, a collection of [S| g-stars is also a family
of q edge-disjoint matchings, each saturating S.

We are now ready to state and prove the main lemma of this chapter.

Lemma 4.1. [The q-expansion lemma] Ler q be a positive integer, and let m be the
size of the maximum matching in a bipartite graph G with vertex bipartition A & B.
If there are no isolated vertices in B, and |B| > mq, then there exist nonempty vertex
sets S C AT C B such that S has |S| q-stars in T and no vertex in T has a neighbor
outside S.

Furthermore, the sets S, T can be found in time polynomial in the size of G.

Proof. Consider the graph H obtained from G = (AWB, E) by adding (q—1) copies
of all the vertices in A, and giving all copies of a vertex v the same neighborhood
in B as v. Formally, let {u;,15,...,1u,} denote the vertices of A, and let Ay, ..., Aq

denote q vertex sets, with q vertices each:
N 09 i
Aq = {u, ,...u](o)}.

Further, we use X to denote Ay U - - - U Aq. The graph H is the bipartite graph (X &
B, E*), where E* is given by:

U {(u?),v) | ugj) € A;,v € B such that (ui,v) € E}. (See Figure 4.1)

1<i<q

4.1. THE Q-EXPANSION LEMMA 31

S
® o o.o
[]
E]. (o] d
0 THE REST ()
[] []
E] [BN

MATCHED

PARTNERS OF S
REACHABLE FROM

I~ o UNSATURATED
@: VERTICES
[]
(o]
[]
L)
. UNSATURATED
VERTICES

[]E

Figure 4.1: An informal schematic of the auxiliary bipartite graph H constructed in
the proof.

Let M be a maximum matching in H. For the rest of this discussion, vertices are

saturated and unsaturated with respect to this fixed matching M.

Let Ux be the vertices in X that are unsaturated, and Rx be those that are reachable
from Ux via alternating paths. We let SA = X\ (Ux U Rx). Let Ug be the set of
unsaturated vertices in B, and let T denote the set of partners of S 5 in the matching M,
thatis, T ={x € B [{u,x} € M and u € S} (see Figure 4.1).

Note that S5 is non-empty: since |B| > mq , the set Ug of unsaturated vertices of B
in H is non-empty. Further, by the assumption that B admits no isolated vertices, the
neighbors of Ug form a non-trivial subset of A. Now, notice that neighbors of Ug
cannot lie in either Ux or Rx (in both cases we obtain augmenting paths, contradicting
the fact that M is a maximum matching). Therefore, the neighbors of Ug must lie in

Sa, and therefore S is non-empty.

32 CHAPTER 4. INTERLUDE: MATCHING THEORY

For every v € A, let C(v) be the set of all copies of v (including v). We claim that
either C(v) N Sao = C(v), or C(v) N SA = 0 (see Figure 4.2). Suppose thatv € Sa
but a copy of v, say u, is in Ux. Let {v,w} € M. Then v is reachable from u because
{u,w} € E(H), contradicting the assumption that v € Sa. In the case whenv € S
but a copy of w is in Rx, let {w, u} be the last edge on some alternating path from Ux
to u. Since {w,v} € E(H), we have that there is also an alternating path from Ux
to v, contradicting the fact that v € So. Now, let S = {v € A|C(v) C Sa}. Then the
subgraph G[S U T] contains q edge-disjoint matchings, each of which saturates S in
G — this is because in H, M saturates each copy of v € S separately.

THE MATCHING
EDGE INCIDENT ON V

COPIES OF V

Figure 4.2: A vertex v € Sa with a copy u ¢ Sa. Ifu ¢ Sa, then it is either
unsaturated or reachable from an unsaturated vertex (say w). Thus, v is
reachable from either u or w, implying it should be in Rx by construc-

tion, not SA - thus we arrive at a contradiction.

We now show that no vertex in T has a neighbor outside S in G. Notice that if no
vertex in T has a neighbor outside S5 in H, then from the construction no vertex
in T has a neighbor outside S in G, thus it sufhices to prove that no vertex in T has a
neighbor outside S in H. For the purpose of contradiction, let us assume that for
somev € T,u € N(v), butu ¢ Sa. Suppose u € Rx. We know that u € Rx
because there is some unsaturated vertex (say w) that is connected by an alternating
path to u. This path can be extended to a path to v using the edge {u, v}, and can be
further extended to v’, where {v,v'} € M. However, v’ € S, and by construction,
there is no path from w € Ux to v/, a contradiction. If u € Uy, then we arrive at a
contradiction along the same lines (in fact, the paths from w to a vertex in S will be
of length two in this case). This proves the claim that no vertex in T has a neighbor
outside S in H.

This concludes the proof.

4.2. APPLICATIONS OF Q-EXPANSION LEMMA IN KERNELIZATION 33

4.2 Applications of q—Expansion Lemma in Kerneliza-

tion

Lemma 4.1 provides us an uniform way to view several known kernel results in the
literature and is easy to apply. In this section we derive several known kernel results
for VErTEX COVER, (n — k)-COLORING, and EDGE-DoOMINATING SET. By similar ar-
guments, kernels for many problems including MAXIMUM SATISFIABILITY, SET SPLIT-
TING, MINIMUM MAaXIMAL SET, IRREDUNDANT SET can be derived almost directly

from g-Expansion Lemma.

4.2.1 Vertex Cover

The VErTEX COVER question asks for a subset of vertices S such that G \ S is an
independent set. Such a subset is called a vertex cover. In the optimization setting,
we seek a vertex cover of minimum cardinality, and the parameterized version of the

question asks if there exists a vertex cover of size at most k, where k is the parameter:

VERTEX COVER

Input: A graph G.

Parameter: k

Question: Does there exist a subset S C V(G), such that G\ S is an independent set,
and |S] < k?

This problem has a problem kernel on 2k vertices, obtained using arguments based on
a theorem of Nembhauser-Trotter, or using LP relaxation [HN94]. We present a sim-
ple argument that yields a 3k-vertex kernel for this problem, using the q-Expansion
Lemma with q = 1.

Remove all isolated vertices from G: this does not affect the size of any minimal vertex
cover of G. Find a maximal matching M of G. If M contains more than k edges,
then G does not have a vertex cover of size at most k, and the input is a NO instance.
Otherwise, let A be the set of (at most 2k) vertices that constitute the endpoints of
the edges in M, and let B = V(G) \ A. Now GIB] is an independent set, and every
vertex in B has a neighbor in A. Consider the bipartite graph H = (A w B, E’)

34 CHAPTER 4. INTERLUDE: MATCHING THEORY

obtained from G by deleting all edges with both endpoints in A. Now we apply
the q-Expansion Lemma to H with q = 1.

. g

Size of maximum matching < k

® © 0000060606060 06000 0 0 0 0 0 0
An independent set.

Figure 4.3: Any maximal matching has at most k edges in a YES instance of VERTEX

Cover. The remaining vertices form an independent set.

We find a maximum matching M; of H. As before, if [M;| > k then we can im-
mediately answer NO, and so we can assume that [M | < k. If |[B| > M|, then by
the g-Expansion Lemma (with q = 1), we can find in polynomial time nonempty
vertex sets S C A, T C B such that H[S U T] contains a matching saturating S, and
in H (and hence in G), no vertex in T has a neighbor outside S. It follows that there
exists a minimum-size vertex cover of G that contains all of S and none of T, and so

we remove S U T from G and set k := k — [S].

o 0 ¢ ® , [I J
N
VANl RN Z8N //I\\// /f
! NI A

' SCA,N(T)CS

, ’\/\/\’
I A KNV A
[Va & 1y VA LAY
I\,/ 17 I\ QN
iy 4 AN AN
® 6 0 O ® 0 0 0 O ® o ® 6 06 06 0O

TCB

Figure 4.4: The subsets S and T obtained from an application of the expansion

lemma.

4.2. APPLICATIONS OF Q-EXPANSION LEMMA IN KERNELIZATION 35

By repeating this procedure, we finally obtain a graph where |B| < [M| = k. Thus G[AU
B] is the kernel for the problem, and |A U B| < 3k. This concludes the description of

a 3k-vertex kernel:

Lemma 4.2. Vertex Cover admits a kernel on 3k vertices when parameterized by solution

size.

4.2.2 (n—k) Coloring

Given a graph G and a positive integer k as input, the (n — k) GrarH COLORING
problem asks whether the vertices of G can be properly colored using at most (n — k)
colors. If this is indeed feasible, then the chromatic number of G is at most (n — k)
and this is denoted by x(G) < (n — k). We consider this problem parameterized
by k. Note that the version of the problem that asks if a given graph can be colored
with at most k colors, when parameterized by k, is clearly not solvable in FPT time.

This follows from the fact that the question is NP-complete for fixed values of k.

(n — k) Grara COLORING

Input: A graph G= (V, E).
Parameter: k
Question: Does there exist a partition of V(G) into (n — k) parts such that each part

induces an independent subgraph?

This problem has a kernel on 3k—3 vertices, obtained using the fact that the minimum
number of colors needed to properly color G is equal to the minimum number of
cliques needed to cover the complement G of G [CFJos]. In this section, present a
simple argument that yields a (3k — 3)-vertex kernel for this problem, using the q-

Expansion Lemma with q = 1.

If a vertex v in G is adjacent to every other vertex of G, then in any proper coloring
of G, v must get a unique color. Therefore, if there are 1 vertices in G that are each
adjacent to all other (except itself) vertices in G, and G’ is the graph obtained from G
by removing all these “global” vertices, then the chromatic number of G (the smallest
number of colors required to properly color G), X(G), is at most (n — k) if and only
if X(G’) is at most (n — k — 1). So we can assume without loss of generality that G
does not contain such global vertices. It follows that the complement G of G does

not contain any isolated vertex.

36 CHAPTER 4. INTERLUDE: MATCHING THEORY

Construct G, and find a maximal matching M’ of G. If M’ contains at least k edges,
then X(G) < (n—k), and the input is a YES instance, as follows: The two endpoints
of each edge in M are not adjacent in G, and so can be given the same color. This
uses up |M’| colors. The remaining n — 2|M’| vertices of G can be properly colored
using at most n — 2|M’| colors, and this gives a proper coloring of G using at most
n—2M'| +|M’| = n—|M’| = (n — k) colors. So we can assume without loss of
generality that [M'| < k.

Let A be the set of (at most 2k — 2) vertices that constitute the endpoints of the edges
in M/, and let B = V(G) \ A. Now GI[B] is an independent set, and every vertex
in B has a neighbor in A. Consider the bipartite graph H = (A & B, E’) obtained
from G by deleting all edges both of whose end vertices are in A. Now we apply
the q-Expansion Lemma to H, with q = 1.

We find a maximum matching M of H. As before, if [M| > k then we can im-
mediately answer YES, and so we can assume that [M| < k. If |B] > [M|, then
by g-Expansion Lemma we can find, in polynomial time, vertex sets S C A, T C
B; S, T # 0 such that H[S UT] contains a matching saturating S, and in H (and hence
in G), no vertex in T has a neighbor outside S. We claim that x(G) < (n — k)
if and only if x(G \ (SUT)) < (n — k — |T|). Note that the number of vertices
in G\ (SUT)isn’ = n—|S| — [T|, and so the parameter has dropped from k
to k — [S| in the new instance. To see this, suppose x(G) < (n — k), and consider
any coloring € : V — [n —k] of G with at most n —k colors. In G, any vertex win T
is adjacent to every other vertex in B, and to every vertex in A \ S. We now recolor
the vertices of S as follows: for each v € S, we assign to v the color C(u), where u is
the vertex to which v is matched by M. Clearly u is not adjacent to v in G, and after
this recoloring, u and v are the only two vertices in G that have the color C(u). G
is thus properly colored by at most (n — k) colors after the recoloring, and the new
colors of the vertices in S form a subset of the colors of the vertices in T. It follows
that X(G\ (SUT)) < (n—k—[T]). Essentially the same argument yields the converse

direction as well.

So we remove S U T from G and set k := k — [S|. By repeating this procedure, we
finally obtain a graph where [B| < [M| < k—1. The kernel is G[AUB], with |[AUB| <
(3k — 3):

Lemma 4.3. 7he (n —XK) Graph Coloring problem admits a kernel on (3k — 3) vertices
when parameterized by .

4.2. APPLICATIONS OF Q-EXPANSION LEMMA IN KERNELIZATION 37

4.2.3 Edge-Dominating Set

Anedge e = (u,V) € E(G) is adjacent to anotheredge e’ = (u’,v’) € E(G) if {u,v}N
{u,v'} # ¢. Given a graph G and a positive integer k as an input, the EDGE
DoMINATING SET problem asks whether G has a edge dominating set — a set S C
E(G) of edges such that any edge in G is adjacent to least one edge in S — of size at
most k.

EpGe DoOMINATING SET

Input: A graph G= (V, E).

Parameter: k

Question: Does there exist a subset of edges, S C E(G), such thatevery edge e € E(G)

is adjacent to some edge in S, and [S| < k?

We now present a simple argument that yields a 2k(k + 3)-vertex kernel for this
problem, using the g-Expansion Lemma with q set to (k + 1).

Remove all isolated vertices from G: this does not affect the size of any minimal edge
dominating set of G. Find a maximal matching M of G. Note that any edge in an
edge dominating set can dominate at most two edges from a matching. Thus, if M
contains more than 2k edges, then G does not have a edge dominating set of size at
most k, and the input is a NO instance. Otherwise, let A be the set of (at most 4k)
vertices that constitute the endpoints of the edges in M, and let B = V(G) \ A.
Now G[B] is an independent set, and every vertex in B has a neighbor in A. Consider
the bipartite graph H = (A W B, E’) obtained from G by deleting all edges with both
endpoints in A. Now we apply the q-Expansion Lemma to H with q = (k+ 1).

38 CHAPTER 4. INTERLUDE: MATCHING THEORY

N(v), An independent set.

Ve

IN(v)| > k

:

vVe— ol,

Figure 4.5: If a vertex has an independent neighborhood of size at least k, then at
least one of the edges incident on the vertex is forced in any solution.

This is recorded with a new vertex, and the independent neighborhood

is deleted.

We find a maximum matching My of H. As before, if [M;| > 2k then we can
immediately answer NO, and so we can assume that |[M| < 2k. If [B| > [M4]-(k+1),
then by the q-Expansion Lemma (with q = (k+ 1)), we can find in polynomial time
nonempty vertex sets S C A, T C B such that H[S U T] contains |S| (k + 1)-stars,
saturating S in H (and hence in G), and no vertex in T has a neighbor outside S.
For every u € S, any edge dominating set of size at most k picks at least one edge
incident on u. Indeed, since the other endpoints of all edges incident on u form an
independent set, an edge dominating set that picks no edges incident on u must pick
at least (k+1) distinct edges to dominate the edges of the star centered at u, and such
a edge dominating set is no longer of size at most k. Notice that the presence of any
edge incident on u in the edge dominating set also accounts for dominating all the
edges on the star centered at u. Noting that T is an independent set, and there are
no edges from T outside S, it can be verified that we may obtain an equivalent and
smaller instance by removing all vertices in T and edges incident on them, and adding
the edges (u,vy,) for all u € S, where v, is a new vertex. Note that the parameter

remains unchanged.

4.2. APPLICATIONS OF Q-EXPANSION LEMMA IN KERNELIZATION 39

Figure 4.6: S and T obtained from the g-expansion lemma with q = (k + 1).
Here k = 2.

By repeating this procedure, we finally obtain a graph where [B] < [M4]- (k+1) =
(2k-k+1). Thus G[AUB] is the kernel for the problem, and [AUB| < 2k(k+1)+4k =
2k(k + 3):

Lemma 4.4. Edge Dominating Set admits a kernel on 2K(k + 3) vertices when parame-

terized by solution size.

40

CHAPTER 4. INTERLUDE: MATCHING THEORY

The art af a/m’nj mathematics (s ﬁm/in_q that spec[a/ case
that contains all the germs of jenem/[é/.

Vavid Hilbert

Each problem that | solved became a rule

which served aﬁerwarals to solve other problems.

Kene Vescartes

The question of finding a feedback vertex set of size at most k is a well-studied problem
in the kernelization context. Note that this is a special case of the problem of finding
a F-hitting set of size at most k. Indeed, if we use 0, to denote the graph with
two vertices and a single edge between them, then note that with F = {0,}, a F-
hitting set corresponds exactly to a feedback vertex set. It turns out that a certain
technique used in the kernelization algorithm for the feedback vertex set problem can
be generalized into an useful subroutine in the kernelization program that we develop
for the more general problem of finding a F-hitting set of size at most k. The objective
of this chapter is to introduce the generalized version of this technique in an isolated
but interesting context. We note that the technique involves an application of Hall’s
theorem to simplify vertices of “high” degree in the input instance.

The particular context in which we wish to explore this technique is the INDEPEN-
DENT FEEDBACK VERTEX SET problem. It is a natural variant of the standard feedback
vertex set problem, wherein we require that the graph induced on the solution be
independent. The formal definition of the problem is the following:

INDEPENDENT FEEDBACK VERTEX SET

Input: A graph G.
Parameter: k
Question: Does there exist a subset S C V(G), such that G \ S is a forest, G[S] is an

independent set, and |S| < k?

41

5. Independent Feedback Vertex Set

42 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

D¢

Figure 5.1: An example of an of size eleven in a

graph. Notice that there is a feedback vertex set of size five.

The problem is NP-complete by a simple reduction from feedback vertex set (see
Lemma 5.1). In this chapter, we show that the problem admits a cubic kernel, and

this also demonstrates that the problem is fixed-parameter tractable.

Remark. Note that any YES-instance of IFVS cannot contain a K4 (a complete graph
on four vertices) as a subgraph. More generally, the W,, (a wheel graph on n vertices)
is a forbidden subgraph for this problem for odd values of n. We provide a brief
explanation. Let vy,..., v, be the vertices on the outer rim of the wheel. Note that
for any consecutive pair {vi, v(i11)}, 1 <1 < n, atleast one of the vertices {vi,V(i;1)}
must belong to any independent feedback vertex set. Further, because of the fact that
the feedback vertex set is an independent set and the vertices {vi,v(i;1)} share an
edge, exactly one of them belong to any independent feedback vertex set. With these
restraints, it is easy to check that if n is odd, then no feedback vertex set can be formed
that is also independent.

Figure 5.2: Forbidden subgraphs for YES instances of independent feedback vertex

set.

43

Before we discuss further advances in the fixed-parameter tractability context, we
present the proof that the problem is NP-complete.

Lemma s.1. Independent Feedback Vertex Set is NP-complete.
Proof. 'The proof is by a reduction from FEepBack VERTEX SET. Let (G, k) be a

feedback vertex set instance. Let H be the graph obtained from G by subdividing
every edge. Formally,

* V(H)=V(G)U{ve | e € E(G)}and

* E(H) = {(X)Ve)> (Ve>y) | €= (X>y) € E(G)}

L
N4

Figure 5.3: Reduction from feedback vertex set to independent feedback vertex set

We claim that the independent feedback vertex set instance (H, k) is equivalent to
(G,k):

& If S is a feedback vertex set of G, then notice that the vertices corresponding to S
in H form an independent feedback vertex set of H, since no two vertices of G share

an edge in H.
¢ Let S be a feedback vertex set of H. For every x € S C V(H), consider vy € V(G)

given as follows:

{ X ifx € V(G)
Vi =

z where z € N(x) is an arbitrarily chosen neighbor of x in H

Notice that if x ¢ V(G), then Ny (x) consists of exactly two vertices, both of which
correspond to vertices of G. In this case, every cycle passing through x must pass
through both its neighbors. Therefore, x may be replaced by either of its neighbors in
any feedback vertex set. This proves that the set {vy | x € S} is a feedback vertex set
of size at most k for G.

44 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

]

We now turn to the question of obtaining polynomial kernels. A natural starting
point would be to “imitate” the procedures in place for FEEDBACK VERTEX SET. In
what follows, we provide a detailed description of this approach — which turns out

to be successful after some appropriate modifications.

s.1 A Cubic Kernel

The kernelization algorithm is described in the following two phases:

> First, the instance is simplified with respect to a degree reduction procedure. 'This
involves the recursive application of reduction rules that transform an instance (G, k)
of INDEPENDENT FEEDBACK VERTEX SET into an equivalent instance (H, 1) where 1 <

k, and the maximum degree of H is at most O(k?).

> Subsequently, we argue that if the maximum degree of a graph is bounded by A,
then any YES-instance of INDEPENDENT FEEDBACK VERTEX SET has at most O(kA)
vertices. Together with the degree reduction procedure, this argument leads us to a

cubic kernel.

For each reduction rule described below, the input instance is an arbitrary but fixed
instance denoted by (G, k).

We refer to a vertex v € G as irrelevant if it does not belong to any cycle, and relevant

otherwise. Notice that isolated vertices and pendant vertices are irrelevant.

Reduction Rule 5.1 (Irrelevant Vertex Rule). Lez X denote the set of all irrelevant vertices
in G. The reduced instance is (G \ X, k).

The soundness of Rule 5.1 is evident, since it is clear that an irrelevant vertex would

never participate in a minimal solution.

We now describe an annnotation procedure that will be useful subsequently. At var-
ious stages during kernelization, we would like to encode the fact that a vertex v of
the reduced instance never participates in a solution of the reduced instance. To-
wards this, we modify the instance to include (k + 1) triangles that intersect pre-

cisely at one vertex, and are otherwise isolated from the remaining vertices of the

5.1. A CUBIC KERNEL 45

graph G. Formally, we add the vertices {x1,y1,2},...,{Xx+1,Yx+1, 2} to the graph,
along with the adjacencies (xi,Yi), (xi,z) and (yi,z) forall T < i1 < (k+1).
Let A\; denote the triangle induced by the vertices (xi,Yi,z). Notice that the in-
stance ((GU A7 U...UAx41),k+ 1) is equivalent to the instance (G, k), and that
any solution of ((G U Ay U...U Ayy1),k + 1) contains the vertex z. We say a
vertex Vv is colored black to mean that we introduce the edge (v, z). An uncolored vertex
is a vertex that has not been colored black. Notice that if v is a vertex colored black,

then v is not a part of any independent feedback vertex set of size at most k.

Al
7

Figure 5.4: The operation of “coloring” a vertex v black.

Reduction Rule 5.2. IfG has a vertex x of degree two adjacent to verticesy andz, y # x
and z # X, and at least one of \y or z also have degree two, then short circuit by removing x
and joining Y and z by a new edge (even if y and z were adjacent earlier).

The proof of the soundness of Rule 5.2 is deferred to Lemma s.2.

N -
.7 \\..
i

AN -
.// \\.

[L]
Figure 5.5: A reduction rule for adjacent degree two vertices.

Notice that after the application of Reduction Rule 5.2, we are left with a graph where

every vertex of degree two is adjacent to vertices of degree greater than two. We now

46 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

ensure that the number of vertices of degree two “between” any pair of vertices of
degree greater than two is also bounded, with the help of the following reduction

rule.

Reduction Rule 5.3 (Intermediate Degree Two Vertices). Let (G, k) be an instance of
Independent Feedback Vertex Set. Let uy,\y, ... U, be vertices such that

N(LL]) :N(ul) = :N(ur) :{va})

and let v > (k + 2). Let H be the graph obtained from G after the removal of vertices
{wi,uzy ..., U} and the inclusion of two new vertices {\Lq, Wy, |, and the edges

(X) ua)) (X) ub)) (U)ua)) (U)ub)-

The vertices o and uy in H are colored black. The reduced instance is (H, k).

Again, the proof of the soundness of Rule 5.3 is deferred to Lemma 5.2.

Uq Up

X Y
Figure 5.6: Removing more than (k + 2) vertices of degree two between a fixed pair
of vertices of higher degree.

Our next reduction rule ensures that the total number of vertices of degree two in a

reduced instance is bounded.

5.1. A CUBIC KERNEL 47

Reduction Rule 5.4 (Detecting Vertex Disjoint Cycles). Consider the graph H con-
structed as follows:

* V(H) =V(G)
* (W, v) € V(H) ifin G, there exist at least two vertices X and \ of degree two with
neighbors W and v.

If the size of a maximum matching in H is greater than X, then return that G does not
have an independent feedback vertex set of size at most X.
The proof of the soundness of Rule 5.4 is deferred to Lemma 5.2.

Next, we apply the “flower” rule, which ensures that vertices that are at the inter-
section of more than k cycles that are otherwise vertex-disjoint are “forced” into an

independent feedback vertex set.

Definition 5.1. Given a graph G and a vertexv € V(G), an {-flower passing through v

is a set of U distinct cycles in G, each containing v and no two sharing any vertex other

<A
Ay,

Figure 5.7: A 5-flower passing through the vertex v.

thanv.

Reduction Rule 5.5 (Flower Rule). Lez v be a vertex at the center of a (k + 1)-flower.
Let H be the graph obtained by deleting v from G and coloring all neighbors of v black.
The reduced instance is then (H, k).

Rule 5.5 is standard in the literature of feedback vertex set and is known to be sound
(this is also easily verified) and in polynomial time [Thoro].

Our final rules are quite straightforward, we ensure that vertices with self-loops are

forced in solutions and infeasible instances are detected to the extent possible:

Reduction Rule 5.6. Let (G, k) be an instance of Independent Feedback Vertex Set.

48 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

— If'G has an uncolored vertex x with a self-loop then remove x, color all neighbors of x
black, and decrease the parameter X by one. That is, let the resulting instance be (G \

{X}>k_ ”

— If G has a black vertex x with a self-loop, then return that G does not have an inde-
pendent feedback vertex set of size at most k.

Reduction Rule 5.7. Let (G, k) be an instance of Independent Feedback Vertex Set.
Ifk =0 and G is not a forest then return that G does not have an independent feedback

vertex set of size at most X.

Reduction rules 5.6 and 5.7 are trivially checked to be sound, and applicable in poly-
nomial time.

We now turn to the proofs of soundness of rules 5.2,5.3 and 5.4. We note that
rule 5.2 is a modification of a traditional “short circuiting” reduction rule usually
applied to FEEDBACK VERTEX SET instances. Rules 5.3 and 5.4 are newly introduced
for INDEPENDENT FEEDBACK VERTEX SET to control the number of degree two ver-
tices, since we are not able to delete them. That these reduction rules are polynomial
time applicable is easy to check. Below, we show the correctness of these two rules,
and also establish that there are at most O(k?) vertices of degree two in a reduced

instance.

Lemma s.2. Reduction rules 5.2,5.3 and 5.4 are sound, and a graph reduced with respect
to the rules 5.1 — 5.5 is either a NO instance or has O (K>) vertices of degree two.

Proof. In this proof, we use G to refer to the graph corresponding to the input instance

and H to refer to the graph corresponding to the reduced instance.

Reduction Rule 5.2: Let vy,..., Vv, denote a “chain” of degree two vertices, that is,
(Vi,Vit1) is an edge for every i € {1,2,...,r — 1} and every v; has degree two in G.
Let x and y denote the neighbors of vi and v, respectively. Recall that this reduction

rule replaces {v1,...,v,} with a single vertex v that is adjacent to x and y.

Observe that any minimal independent feedback vertex set of G intersects {v1, ..., v,}
in at most one vertex. If the intersection is empty, then notice that there is nothing
to prove, since the same subset is clearly an independent feedback vertex set of H.
Further, if a minimal independent feedback vertex set contains a vertex v; and neither

x or Yy, then again there is nothing to prove (the same subset, with v; replaced by

5.1. A CUBIC KERNEL 49

v is an independent feedback vertex set of H — independence is ensured with the
premise that x and y do not belong to the independent feedback vertex set under
consideration). Also observe that a minimal independent feedback vertex set of G
will not contain any v; if it contains at least one of x and y, since both x and y
necessarily belong to any cycle passing through v;, for any 1 < i < r. This completes
the argument for the soundness of Reduction Rule 5.2.

Reduction Rule 5.3: Note that H is a subgraph of G except that u, and u; are
colored black, and the vertices {uq, Uy, X, y} form a cycle of length four. Thus, any
independent feedback vertex set of G that contains x or y is also an independent
feedback vertex set of H. We now show that any independent feedback vertex set of
G of size at most k contains at least one of x or y. Trivially, any independent feedback

vertex set S of size at most k can contain at most k vertices from the subset:
{LL],LLz, L))ur}°

Thus, if 1 > (k + 2), then there exist i and j for which G \ S contains u; and u;.
Since the vertices
X—U—y—uy—X

form a cycle, it is clear that S must contain at least one of x or y.

Now consider S, and independent feedback vertex set of H. It is straightforward
that S contains at least one of x or y. We only need to demonstrate that any cycle
passing through the vertices {1, u2, ..., u,} necessarily contains both x and y. This
is evident: since each 1 is a vertex of degree two with neighbors x and y, and any
vertex on a cycle is of degree two, it is clear that any cycle passing through u; contains
x and y. Therefore, every cycle passing through any u; is hit by S, since S contains at
least one of x or y. This concludes the proof of soundness for Reduction Rule 5.3.

Reduction Rule 5.4 We show that a matching of size r in the auxiliary graph H (see
Rule 5.4) corresponds to r vertex-disjoint cycles in G. It then follows that if r > k,
then there is no independent feedback vertex set of size at most k, and the instance is

a NO instance — this also implies the correctness of the rule.

Notice that every edge (u, V) in H corresponds to a four-cycle in G containing u and
y edge (U, p y g

v. The other two vertices on the cycle have degree two in G, and therefore do not

participate in any other cycles. Now, consider the collection of cycles corresponding

to the edges of a matching. Clearly, since the edges of a matching do not share any

50 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

endpoints, the cycles do not share any of the edge endpoints, and since we argued
that remaining participants of these cycles can belong to at most one cycle, it is clear

that all these cycles are mutually vertex disjoint, as desired.

A Cubic Bound on the Number of Degree Two Vertices Consider again the aux-
iliary graph H obtained in Reduction Rule 5.4. Using arguments similar to those in
the proof of the soundness of Reduction Rule 5.4, it is easily verified that any r-star
in H corresponds to a -flower in G. Therefore, since G is reduced with respect to the

flower rule (Reduction Rule s5.5), the maximum degree of any vertex in H is at most

k.

Since the maximum matching of H is at most k, the total number of edges in H is

clearly bounded by
k + 2k(k),

where k counts the edges in the matching, and 2k is the number of matched vertices,
so that the second term counts all remaining edges (recall that the maximum degree

is at most k).

Since the instance is reduced with respect to Reduction Rule 5.3, every edge in G
corresponds to at most k + 2 vertices of degree two. Therefore, the total number of

degree two vertices in G is at most:

(k 4+ 2k(k))(k +2) = O(k>).

This completes the proof of the bound on the number of degree two vertices of a

reduced instance.

]

Lemma s5.3. Given an undirected multi graph G on m edges and a positive integer X,
in O(mk) time we can

1. produce a multi-graph H where at least (n—1t) vertices have degree at least three, where
t = O(k3), and no vertex is at the center of a r-flower for v >k

2. and compute a positive integer 1,

such that (G, X) and (H, 1) are equivalent instances of Independent Feedback Vertex Set.

s.1. A CUBIC KERNEL ST

Remark s.1. Our inability to completely eliminate vertices of degree two is one of the key
points of difference between the Independent Feedback Vertex Set and Feedback Vertex
Set problems.

At this point, we abuse notation and continue to use (G, k) to indicate the instance
obtained from G after it is reduced with respect to reduction rules 5.1 — 5.5. For our
next argument we need to find, for every vertex v, a subset of vertices that hit all cycles

passing through v.

Further, we require this subset to exclude v and be of size polynomial in k. For a given
v € V(G), such a hitting set H,, € V(G) \ {v} can be found in polynomial time due
to the following Theorem:

Theorem 5.1 ([Tho1o] Corollary 2.1). Let v be a vertex of a graph G, and let there be
no self-loop atv. If there is no (k + 1)-flower passing through v, then there exists a set
X C V(G) \ {v} of size at most 2k which intersects every cycle that passes through v, and

such a set can be found in polynomial time.

Reduction Rule §.8. Having established the choice of H,, for allv, we are now ready to
describe the q-expansion Rule with q = (kK + 2).

Given an instance (G, k), and a family of sets H,,, we show that if there is a vertex v
with degree more than 2k+(k+2)k, then we can reduce its degree to at most 2k+(k+
2)k by repeatedly applying the q-expansion lemma with q = (k + 2). Consider the
graph Greduction \ H,. Let the components of this graph that contain a neighbor
of v be Cy,C3,...,C;. Note that v cannot have more than two neighbors into any
component, since this would imply a cycle passing through v that lies outside H,..
Also note that if (G, k) is a YES-instance, then at most k of the C;’s can contain
cycles, and the rest induce trees. Without loss of generality, let Cy, C,,...,C, be
the components that contain cycles, and let C,1, ..., C; be the remaining. We also
have the understanding that p < k. In the discussion that follows, all statements
about components are made in the context of those that do not contain cycles; and
we will ignore the first p components. We say that a component C; is adjacent to H,
if there exists a vertex u € C; and w € H,, such that (u,w) € E(G). Next we show
that components that are trees are adjacent to H, by demonstrating that if they are
not, then all vertices in such a component are irrelevant. Recall a vertex is irrelevant
if there is no cycle that contains it. Consider a vertex u in a component C that is not
adjacent to H,,. Since G[CU{v}] does not contain any cycles, clearly any u € C cannot

52 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

belong to a cycle if C is not adjacent to H,,. This renders the vertex u irrelevant. Since
the graph is assumed to be reduced with respect to the irrelevant vertex rule, we have
shown that tree component is adjacent to H,..

(.... P) H,

Figure 5.8: A picture of two (k + 2) stars for k = 3.

Now, consider a bipartite graph G with vertex bipartitions H, and C. Here C =
{c1,...,cs) contains a vertex ¢; corresponding to each tree component C; (notice
that s would amount to (r —p)). We add an edge (v, c;) if there is a vertex w € C;
such that {v,w} € E(G).

Now, v has at most h, edges to vertices in H,, (since G is a simple graph). Since v
has at most one edge to each Cj, it follows that if d(v) > h, + (k + 2)h,, + p, then
the number of components that are trees is more than (k + 2)h,. Now by applying
g-expansion lemma with ¢ = (k+2), A = H,, and B = C, we find a subset S C H,,
and T C D such that S has |S| (k + 2)-stars in T and N(T) = S.

The reduction rule involves deleting edges of the form (v,u) for all u € Cj such
that ¢; € T (see Figure 5.9), and adding a pair of subdivided edges between v and w
for all w € S (notice that this creates a cycle of length four involving v and w)

whenever such a cycle does not already exist (see Figure 5.10).

Formally, consider w € S for which there is no four-cycle involving w, v, and a pair
of vertices that have been annotated black. For all such w, we add vertices {wq, Wy}
and the edges (v, wq), (V,Wp), (W,Wq) and (w,wy). Finally, for every w € S, we
color the vertices wq and wy, black, and for all ¢; € T, we color all neighbors of v in

the component C; black.

s.1. A CUBIC KERNEL 53

Figure 5.9: The first part of Reduction Rule 5.8. Involves deleting edges incident
on v with their other endpoints in T. Vertices labeled x belong to S and

vertices colored red are in T.

We note that this is done to ensure that no independent feedback vertex set in the
reduced instance intersects non-trivially with {wq, Wy} for any w € S. All neighbors
of v are also blacklisted, for reasons that will be clear presently.

This completes the description of the g-expansion reduction rule with q = (k + 2).
Let G be the graph obtained after applying the reduction rule. The following lemma

shows the correctness of the rule.

Lemma 5.4 (Soundness). Let G, S andv be as above and Gy be the graph obtained after
applying the q-expansion rule. Then (G,K) is an yes instance of Independent Feedback
Vertex Set if and only if (G, k) is an yes instance of Independent Feedback Vertex Set.

Proof. We first show that if G has an independent feedback vertex set Z of size at
most k, then the same vertex subset Z when considered in G hits all cycles in G and
is independent. We first argue that — by construction — either v € Zor S C Z.
Indeed, let w € S, and assume that v ¢ Z. Observe that w, ¢ Z, and wy, ¢ Z (recall
that wo, wy, are colored black). Thus, if v ¢ Z, then w € Z, since Z must contain
at least one vertex from the four-cycle {v, wq, Wy, w}. Since this is true of all w € S,
we have thatifv ¢ Z, then S C Z.

Suppose v € Z. Notice that Gg \ {v} is the same as G \ {v}. Therefore Z \ {v}, an
independent feedback vertex set of Gg \ {v} is also a feedback vertex set of G \ {v}.

Further, Z is also an independent feedback vertex set of G: all we need to establish is

54 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

Figure 5.10: The first part of Reduction Rule 5.8. We add a cycle of length four
between vertices in S and v.

that Z does not contain any neighbors of v. Notice that this is true, since every u
that is a neighbor of v in G is either a neighbor of v in Gg, or is colored black.
Therefore, if v € Z, then Z does not contain any neighbor of v. This shows that Z is
an independent feedback vertex set of size at most k of G. The case when S C Z is

similar.

To prove that an independent feedback vertex set of size at most k in G implies an
independent feedback vertex set of size at most k in Gg, it suffices to prove that
whenever G admits an independent feedback vertex set of size at most k, G also has
an independent feedback vertex set of size at most k that contains either v or all of S,

and none of the neighbors of v in components corresponding to vertices in T.

We first establish that 27y independent feedback vertex set of size at most k contains
either v or all of S. Note that this will account for our first requirement. Consider
an independent feedback vertex set W that does not contain v, and omits at least one
vertex from S. Let x be a vertex in S that is not in W. Let x1,...,Xxx;2 denote the
neighbors of x in distinct components that formed the (k 4 2)-star incident on x.
Since [W| < Xk, there exist 1,j such that x; ¢ W and x; ¢ W. This implies that
in G\W, the vertices {x, v, X, X; } induce a four-cycle. This contradicts the assumption
that W is a feedback vertex set.

Now, we show that if there exists an independent feedback vertex set of size at most k,

s.1. A CUBIC KERNEL 55

there exists one that contains none of the neighbors of v in components corresponding
to vertices in T. Let W an independent feedback vertex set of size at most k, and
let X € W be vertices in W that are neighbors of v in components corresponding to
vertices in T. Clearly, if v € W, then X = (), because W is an independent feedback
vertex set. The other situation iswhenv ¢ W, and therefore, S C W. Consider W\ X.
We claim that W'\ X is also an independent feedback vertex set of size at most k. That
the size of W\ X is at most k is clear, since [W/| < k by assumption, and it also obvious
that W\ X is independent. To show that W\ X is a feedback vertex set, observe that any
cycle that passes through the vertices in X must necessarily intersect S. This follows
from the fact that the neighborhood of X is contained in {v} U, and if the cycle does
not intersect S at all, then it is easy to see that v is a cut vertex of the proposed cycle:
this is a contradiction since it is impossible for a cycle to admit a cut vertex. This

concludes the proof. O

Notice that the reduction rule for bounding the degree applies as long as there are
vertices of degree more than 2k+ (k+2)k, since h, + (k+2)h, +p < k+(k+2)k+k
(recall that h, < k and p is the number of components that contain cycles, and
thus p < k). This concludes the first part of the description. We now turn to the
claim that if A is a bound on the maximum degree of the graph, then there are no
more than kA vertices in G if (G, k) is a YES-instance of the problem.

Lemma s.5. Let G be a graph on . vertices that has at least (n — t) vertices of degree at
least 5, and maximum degree A. Then the size of the minimum feedback vertex set for G

is greater than %

Proof: Let F be a minimum feedback vertex set for G, and let Er be the set of edges
with at least one end point in F. Since G \ F is a forest, there are at most n — [F| — 1
edges in G \ F (See Figure 5.11).

Thus (s
_t .
AF > B¢l > EG) ot F 1> P
which implies
(A—1)[F > M)
2
and further,
nd-—2)—td
F>=n

56

CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

FVS of size at most k

DYAVAVIVVIN

max degree at most ¢
at most ck edges

at least (n-t)d/2 - (n-k-1) edges

at least (n-t) vertices have degree d or more

A forest on (n-k) vertices

at most (n-k-1) edges induced on the forest

Figure s.11: Two ways of counting the edges that have one endpoint each in an
independent feedback vertex set, and the remaining forest.

s.1. A CUBIC KERNEL 57

Now, consider a graph G is a graph for which A is bounded above by an arbitrary but
fixed positive integer c. This gives us following result.

Lemma 5.6. Let G be the class of graphs such that the maximum degree of every graph G €
§ is bounded by A. Then Independent Feedback Vertex Set has a kernel on O(KA) vertices
and edges.

Proof. Given a graph G € G, we first apply Lemma 5.3 and obtain a graph H where
at least (n — t) vertices have degree at least three. Using Lemma 5.5 we know that

every minimum feedback vertex set of H must have size at least

nod—2)—td
2(A—-1)

where 8 is at least three. This simplifies to:

(n —td)
2(A—1)°

Hence if k < (n—18)/2(A—1) then we return that G does not have a feedback vertex
set of size at most k. Thus k > (n — td)/2(A — 1) and hence n < 2k(A — 1) + 6.
Again, from Lemma 5.5, recall that t = (k + 2k(k))(k + 2), thus we have that:

n < 2k(A — 1) + (k + 2k(K)) (k + 2)8,

or equivalently:

n < 2k(A—1) + 3(k + 2k(k)) (k + 2),

with our understanding that & > 3.

Furthermore, the number of edges in the graph with feedback vertex set of size at
most k and with maximum degree A is bounded by kA+(n—k—1) — this expression
accounts for, respectively, edges incident on the vertices in the feedback vertex set
and the edges induced by the forest. Hence, if the number of edges in G’ is more
than 3kA — 3k + (k + 2k(k))(k + 2), we return that G does not have a feedback
vertex set of size at most k. In all other cases we have that [V(G’)| = O(kA + k3)
and [E(G’)| = O(kA + k3). Thus the lemma follows. H

58 CHAPTER s. INDEPENDENT FEEDBACK VERTEX SET

Lemma 5.6 combined with the degree reduction procedure described previously lead
us to the conclusion that we can, in polynomial time, either bound the number of ver-
tices and edges of the given INDEPENDENT FEEDBACK VERTEX SET instance by O(k?),
or report that the input is a NO instance of the problem. Thus, we have:

Theorem s.2. Independent Feedback Vertex Set has a kernel on O(k>) vertices and edges.

The sculptor produces the bmuﬁﬁ/ statue é)/ c/rga,mh_q away

such parts of the marble block as are not needed — it is a process of elimination.

Elbert Hubbard

That's the secret to /Lﬁ — replace one worry with another.

Charlie Brown

The notion of protrusions and finite integer index is central to all the kernelization
algorithms in this thesis. In this chapter, we explore in brief the theorems that we will
find useful in subsequent discussions. We refer the reader to [BFL" 09, dF97] for a
comprehensive exposition.

6.1 The Blueprint

In the context of problems on graphs, there are three central ideas that form the un-
dercurrent of all protrusion-based reduction rules:

> describing an equivalence that classifies all instances of a problem in an useful man-
ner,

> the ability to easily identify, given a problem, whether the said equivalence has a
finite number of equivalence classes (finite index),

> given an instance of a problem, finding large subgraphs that “can be replaced” with

smaller subgraphs that are equivalent to the original.

It is quite non-trivial to describe the exact circumstances in which a subgraph may
be replaced. This was formally captured by the notion of a protrusion: specifically, a
T-protrusion in a graph G is a subgraph H such that:

¢ the number of vertices in H that have neighbors in G \ H is at most 7, and,

{> the treewidth of H is at most T.

59

6. Interlude: Protrusions and Finite Integer Index

60CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

The size of the protrusion is the number of vertices in it, that is, [V(H)|. The vertices
in H that have neighbors in G \ H comprise the boundary of H (See Figure 6.1). The

notion of a protrusion was introduced in [BFL" 09].

F N\ 27 27 (The Boundary of

I ’ /| Wn \the\ protrusion

A Protrusion of size 40,
with a boundary of four vertices and treewidth two.

Figure 6.1: An example of a protrusion.

Informally, the protrusion H may be thought of as a part of the graph that is separated
from the “rest of the graph” by a small-sized separator, and everything about H may
be understood in terms of the graph induced on H itself and the limited interaction it
has with G \ H via its boundary vertices. If the size of the protrusion is large, we may
want to replace it with another graph X that is much smaller, and whose behavior
with respect to G \ H is identical to H in the context of the problem that we are
studying. Specifically, we would like that the solution to the problem in question does
not change after we have made the replacement (or changes in a controlled manner

that can be tracked as we make these replacements).

6.2. SOME DEFINITIONS 61

This motivates us to define an equivalence that captures the essence of what we hope
to do in terms the replacement. We would like to declare H equivalent to X if the
size of the solution of G and (G \ H) U* X is exactly the same, where U* is some
notion of replacement that we have not defined precisely yet. Notice, however, that a
natural notion of replacement would leave the boundary vertices intact and perform
a cut-and-paste on the rest of H. This is precisely what the protrusion based reduction
rules do. These, combined with some combinatorial properties of planar graphs or
more generally on graphs excluding a fixed graph H as a minor, result in polynomial
and in most cases linear kernel for variety of problems. In what follows we give the

required definitions and set up the machinery for the later use.

6.2 Some Definitions

Given a graph G = (V,E) and S C V, we define 9 (S) as the set of vertices in S that
have a neighbor in V\S. ForasetS C V the neighborhood of Sis Ng (S) = 05 (V\S).
When it is clear from the context, we omit the subscripts. We now define the notion

of a protrusion.

Definition 6.1. [r-protrusion] Given a graph G = (V,), we say that a set X C 'V is
an r-protrusion of G if10(X)| < 1 and tw(G[X]) < .

For an r-protrusion X, the vertex set X’ = X\ 0(X) is a restricted v-protrusion. The set

X is the restricted protrusion of X and X is the protrusion of X’.

We now define the notion of t-boundaried graphs and various operations on them.

Definition 6.2. [t-Boundaried Graphs] A t-boundaried graph is a graph G = (V, E)
with t distinguished vertices, uniquely labeled from 1 to t. The set 0(G) of labeled vertices
is called the boundary of G. The vertices in 0(G) are referred to as boundary vertices or
terminals.

For a graph G = (V, E) and a vertex set S C V, we will sometimes consider the graph
GIS] as the |0(S)|-boundaried graph with 9(S) being the boundary.

Definition 6.3. [Gluing by &] Ler Gy and G, be two t-boundaried graphs. We denote
by G1 & G the t-boundaried graph obtained by taking the disjoint union of Gy and G,
and identifying each vertex of 0(G1) with the vertex of 0(G2) with the same label; that
is, we glue them together on the boundaries. In G1 ® G there is an edge between two
labeled vertices if there is an edge between them in Gy or in G,. (See Figure 6.2.)

62CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

Figure 6.2: Gluing two t-boundaried graphs by &. Note how the graph induced on
the boundary has edges from both the graphs being glued together.

6.2. SOME DEFINITIONS 63

Definition 6.4. [Legality] Let G be a graph class, Gy and G, be two t-boundaried
graphs, and G1,Gz € G. We say that Gy & G is legal with respect to G if the unified
graph G1 @ Ga € G. If the class G is clear from the context we do not say with respect ro
which graph class the operation is legal.

Definition 6.5. [Replacement] Let G = (V, E) be a graph containing an v-protrusion
X. Let X' be the restricted protrusion of X and let Gy be an v-boundaried graph. The act
of replacing X' with Gy corresponds to changing G into G[V\ X'] ® G1. Replacing G[X]
with Gy corresponds to replacing X' with G,. (See Figure 6.3.)

Figure 6.3: An example of replacing a protrusion with a new t-boundaried graph.

Definition 6.6. For a parameterized problem 11 on a graph class G and two t-boundaried
graphs Gy and Ga, we say that G1 = G if there exists a constant ¢ such that for all
t-boundaried graphs Gs and for all k: (a) Gy ® Gj is legal if and only if G2 & G3 is
legal; (b) (G1 & G3,k) € T if and only if (G, ® G3,k+c) € TI.

64CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

Definition 6.7. [Finite Integer Index] We say that a parameterized problem 11 has finite
integer index in a graph class G if for every t there exists a finite set 8 of t-boundaried
graphs such that 8 C G and for any t-boundaried graph Gy there exists Go € 8 such that
G2 =n Gy. Such a set 8 is called a set of representatives for (11, t).

Note that for every t, the relation =y on t-boundaried graphs is an equivalence re-
lation. A problem TT is finite integer index (FII), if and only if for every t, =p is of

finite index, that is, has a finite number of equivalence classes.

The parameterized versions of many fundamental optimization problems have finite
integer index, including problems like DoMINATING SET, T-DoMINATING SET, -
THRrRESHOLD DOMINATING SET, EFFICIENT DOMINATING SET, VERTEX COVER, CON-
NECTED T-DOMINATING SET, CONNECTED VERTEX COVER, MINIMUM MAXIMAL MATCH-
ING, CONNECTED DOMINATING SET, ALMOST OUTERPLANAR, FEEDBACK VERTEX SET,
CycLE DomMiNaTION, EDGE DOMINATING SET, CLIQUE TRANSVERSAL, INDEPENDENT
SET, 1-SCATTERED SET, MIN LEAF SPANNING TREE, INDUCED MATCHING, TRIANGLE
PackiNG, CycLE PACKING, and MaxiMuM FuLL-DEGREE SpANNING TREE [BFL " 09,
dF97]. Both generic VERTEX-H-PACKING and VERTEX-S8-PACKING also have finite
integer index [BFL" 09].

Examples of problems not having finite integer index are LONGEST PaTH, LONGEST
CycLge, MaxiMmuM Cut, MINIMUM COVERING BY CLIQUES, INDEPENDENT DOMINAT-
ING SET, and MiNntMmuM Lear OuT-BRANCHING [dF97].

6.3 Examples of proving FII

In this section we give couple of examples that will demonstrate how one can show a
problem to be FII [BFL" 09, dF97].

6.3.1 An Example: Independent Set

Lemma 6.1. INDEPENDENT SET has FII.

Proof. Throughout the proof we fix t, that is, the number of vertices in the boundary
of the graph. Given a t-boundaried graph G with boundary set X, we define a function

6.3. EXAMPLES OF PROVING FII 65

Boundary Vertices

The set S

Figure 6.4: Illustrating the behavior of the function fg. The number of doubly-
circled vertices vertices correspond to the value of f(S), where S is the

subset of the boundary indicated by the dotted periphery.

fg : 2% — N as follows (see Figure 6.4):

fg(S):= max 1.
I is an independent set of G
INXCS

For a fixed constant ¢, let 1. be a function from 2% to {c} which uniformly defines ¢
for every element in the domain. We make a couple of remarks about the function
fe which will be useful later in the proof.

1. Forany G, S,S’ C X, [fg(S) —fg(S")| < t.

2. Forany S C X we have that fg(0) < fg(S) < fg(0) + t. (Monotonicity of

subsets.)

66CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

Note that the properties above follow directly from the definition of fg. Now, let
T={g|g:2% —{0,1,...,t}}. Now observe that for any t-boundaried graph G
with boundary set X, there exists a function g € T such that fg := 1. + g, where ¢
is the size of the maximum independent set in G \ X. We say that two t boundaried
graphs G; and G; are equivalent with respect to = if there exists a function g € T
such that fg, := 1., + g and fg, := 1., + g. Here, ¢; and c; are the sizes of the
maximum independent set of G; \ X and G2 \ X, respectively. It is easy to observe
that =7 is an equivalence relation. Furthermore, since the size of T is upper bounded
by 22" we have that = has finite index.

Recall that a problem TT is finite integer index, if and only if for every t, =g is of
finite index, that is, has a finite number of equivalence classes. For TT =INDEPENDENT
SET, we will show this by showing that =r refines =y. That is, if G; =1 G, then
G1 =171 G 2.

Claim 6.1. If Gy =1 G, then Gy =n1 G,.

Proof- For two t-boundaried graphs G; and G, recall that G; =y G if there exists
a constant ¢ such that for all t-boundaried graphs G3 and for all k: (G & G3,k) €Tl
if and only if (G2 & G3,k+c¢) €TI.

Let ¢y and ¢, be the sizes of the maximum independent set of Gy \ X and G2 \ X,
respectively. Without loss of generality assume that ¢y < c,. For the purpose of proof
choose ¢ := ¢ —cy. Now (G; @ G3,k) € TT means that G; @ G3 has an independent
set of size k. Let this set be I and its intersection with X be X N I;. Now we know
that G, has an independent set I of size g(XN1;) +c, such that its intersection with
the boundary X is contained in X N I;. This implies that I U (I1 N (V(G3) \ X)) is
an independent set in G, @ G3. The size of this independent set is:

LUl N (VG \ XD = g(XNh)+c2+k— (I3 NV(Gy)|
> ktcx+g(XNh)—(g(XNI)+cq)
= k+cy;—cq
= k+c

This shows that (G2 @ G3,k + c) € T. We can similarly show the reverse direction,
that is, if (G2 @ G3,k 4+ ¢) € IT then (Gy & Gs,k) € TI. This proves the claim.
(see Figure 6.5) L]

The above claim shows that =t indeed refines = and thus has finite index. This
proves that INDEPNDENT SET has FII.]

6.3. EXAMPLES OF PROVING FII

(Gl @Gg,k’) eIl

There is an independent set of size k

° g o ©
o o o
Gl o 0° © o 00%00 G
o o o
X
g(XﬂIl)-i-Cl
k
o o G1 =T GQ
2 o © o O| (5 hasan independent set
© of size g(X N I1) + co
o o
o o
o (o) o
Go o 09794 0 00%00 Gs
o (o]
g(XﬂIl)—l—Cg
]{I—I—(CQ —Cl)

(GQ@Gg,k—FC)EH

Figure 6.5: A schematic of the proof of Claim 6.1

68CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

6.4 One example of proving not FII

In this section we work out an example that demonstrates how we could show a prob-
lem does not have FII. We illustrate this with an example of LONGEST PATH.

Theorem 6.1. LONGEST PATH does not have FII.

Proof. Let Tl= LoNGEsT PATH in this proof For each n > 1, let G,, be the two

terminal graph defined by the vertex set V(= {x1,x2}U{a1, ..., an}and theedge
setE(Gn) ={(x7,a1)}U{(ai,air1) |1 <i<n-T1} Slmllarly, for eachp > 1,letH,
be the two terminal graph defined by the vertex set V(H,) = {y 1, Y2t U{by,. p}
and the edge set E(H,) = {(y2,b1)} U{(bi, biy1) [1< p—1}L
[J *—o—0—0 000 °
X2 X1 a1 az s an
—o—0—0 00 0o [J
by -+« by by Y2 Ui

Figure 6.6: The graphs G, and Hp.

In these two terminal graphs the first terminals are X7 and y; and the second terminals

are X2 and Y. Also observe that the length of a maximum path of G, @ H,, is

max{n, p}.
Yz Y
—_— —_—
by o by by X2 X1 ap az an

Figure 6.7: The graphs G,, ® Hp.

We will show that every even n < m, the graphs G, and G, are not equivalent, that
is, G, Zn Gm. For contradiction assume that G, =py G, and n < m. This implies

6.4. ONE EXAMPLE OF PROVING NOT FII 69

that there exists a ¢ such that for all k and for all two terminal graph G, we have that
(Gn @ G, k) € TTif and only if (G,,, @ G,k + ¢) € TI. We obtain our contradiction
by considering the following three cases based on the value of c.

* Suppose ¢ > 0, now consider k = m and G = H,,,. Clearly G,, & G has a path
of length at least m := max{n, m} and hence (G,, ® G,k) € TI. However,
G @ G has a path of length m := max{m, m} and hence does not have a path
of length k + ¢ and thus (G, ® G,k) & TT.

* Now assume that ¢ < 0. Now consider k = m — ¢ and G = H,,. Clearly
Gn @ G has a path of length m := max{n, m} and hence does not have a
path of length k asn < m and ¢ < 0. Thus (G,, ® G,k) ¢ TI. However,
Gm @ G has a path of length m := max{m, m} and hence has a path of length
k+c=m—c+ cand thus (G, ® G,k) € TI.

* Finally, consider the case of c = 0. Letk = mand G = H,, ;1. Clearly G,, ® G
has a path of length n 41 := max{n,n + 1} and hence does not have a path of
length k asn < m — 2. Thus (G,, & G, k) ¢ TT. However, G,,, & G has a path
of length m := max{m, n + 1} and hence it has a path of length k = m— and
thus (G, ® G,k) € TI.

Thus the above argument shows that =p; does not have finitely many equivalence
classes for t = 2. This completes the proof that LonGesT PaTH does not have FII. [

6.4.1 A Simple Sufficient Condition for Showing FII

The notion of strong monotonicity is an easily checked sufficient condition for a p-
MIN-MSO problem to have finite integer index. We first introduce the concept of a

signature, followed by the definition of strong monotonicity.

Definition 6.8. [Signatures] Lez TT be a p-MIN-MSO problem. For a t-boundaried
graph G we define the signature function {Z : H, — N U {oco} as follows. For a pair
(G',S") € Hy, if there is no set S C V(G) such that Pri(G & G',S U S') holds, then
CR((G",S") = oo. Otherwise (E((G',S")) is the size of the smallest S C V(G) such
that Pri(G ® G',SUS’) holds.

Definition 6.9. [Strong Monotonicity] A p-MIN-MSO problem 1 is said to be strongly
monotone if there exists a function f : N — N such that the following condition is

70CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

satisfied. For every t-boundaried graph G, there is a subset S C V(G) such that for
every (G',S") € Hy such that (2 ((G',S")) is finite, Pr(G & G',S U S’) holds and
S| < CE((G',S") + f(t).

The next lemma provides the application of strong monotonicity in demonstrating

finite integer index.

Lemma 6.2 ([BFL"09]). Every strongly monotone p-MiN-MSO problem has finite in-

teger index.

In practice, it is much easier to show finite integer index by establishing strong mono-

tonicity. We will encounter a simple application of Lemma 6.2 in Chapter 9.

6.5 'The Reduction Based on FII

In this section we provide reduction rules for graph problems that have finite integer
index. The main reduction lemma is the following, and this will be the crux of several

of our reduction rules in subsequent chapters.

Lemma 6.3 ([BFL"09]). Let T1 be a problem that has finite integer index. There exists
a constant ¢ and an algorithm that given as input a graph G, an integer X, and a r-
protrusion X in G with |X| > ¢, outputs in O(|X|) steps a graph G* = (V*,E*) and
an integer X*, such that [V(G*)| < |V(G)|, k* < k, and (G*,k*) € T if and only if
(G,k) eTL

Proof. Let 8 be a set of representatives for (TT,2r) and let ¢ = maxyes|[Y]. Let ¢
be a mapping from 2r-boundaried graphs with at most 2c vertices to 8 such that for
any 2r-boundaried graph H on at most 2c vertices, H =y ((H). Also, let 1 be a
mapping from 2r-boundaried graphs with at most 2¢ vertices to N such that for any
2r-boundaried graph H" and k’,

(HoH k+n(H)) €Tl & (¢(H)@H', k) Tl

If [X| > 2c, then we find a 2r-protrusion X’ C X such that ¢ < [X’| < 2¢ and work
on X’ instead of X. This can be done in time O(|X]) since G[X] has treewidth at most
1. In particular, consider a nice tree-decomposition of G[X] and pick a lowermost bag

b such that the total number of vertices appearing in bags below b is more than ¢

6.s. THE REDUCTION BASED ON FII 71

(see Figure 6.8). Let X’ be the set of vertices appearing in b or in bags below b. The
choice of b ensures that ¢ < |X’| < 2¢. From now on, we assume that |X| < 2c.

The vertices in the highlighted bag
will be the boundary of the protrusion

formed by the graph corresponding
to this section of the tree-deomposition.

‘ The total number of vertices in the
“. graph corresponding to this part of the
' tree decomposition is more than c.

Figure 6.8: Finding a protrusion on more than ¢ but at most 2c vertices by using

the tree decomposition of a protrusion on more than 2c vertices.

Let H = ¢(G[X]) and k* = k —n(G[X]). We make G* from G by replacing the
2r-protrusion G[X] with H. Since |X| > ¢ and H has at most ¢ vertices, we have
that [V(G*)| < [V(G)|. By the choice of H and k* we have that (G*,k*) € TT if and
only if (G, k) € TI. The running time of the algorithm is O(|X|). This concludes the
proof.]

72CHAPTER 6. INTERLUDE: PROTRUSIONS AND FINITE INTEGER INDEX

[cannot tell my story without rmc/uhj a long way back.

Herman Hesse

1t is a mistake to think you can solve

any major problems just with potatoes.

Poi{j/aw Adams

This chapter acts as a prelude the next four chapters, that focus entirely on the PLANAR
F-DELETION problem. In this chapter we collect important auxiliary results which
we will find useful subsequently (often on more than one occasion). Many of the
results in this chapter have no specific context with the PLaNAR F-DELETION problem,
and we believe that they may be of independent interest, and applicable in other

circumstances as well.

7.1 Partitioning Property of Graphs of Bounded Treewidth

We begin with a decomposition lemma which shows that any “large enough” graph
can be broken down into a multitude of T-protrusions of “large” size, where r is pro-
portional to the treewidth of the graph. This is applied in resolving the disjoint version
of the PLANAR F-DELETION problem in Chapter 11.

We informally remark that the size of the protrusions detected by this lemma is pro-
portional to the size of the graph, making them viable for kernelization. However,
while the lemma makes a powerful statement, we note that it does not directly imply
that any graph of substantial size contains a protrusion that can be reduced — this is
because the protrusion-based reduction rule requires the treewidth of the protrusions
in question to be a constant, while this lemma implies protrusions whose treewidth
is proportional to the treewidth of the graph, which in general is not necessarily con-
stant.

We begin by defining the notion of a dissolution, which is essentially a partition into
protrusions (see Figure 7.1).

73

7. Some Combinatorial Exp/omt[ons

74 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

%) from Vi to Vj
\ Vs, . i}
=

N\ 1/

Neighbors of V; in U

IN(Vi) nu| < (2b+2)
Figure 7.1: The definition of a (s, p)-dissolution for a graph of treewidth b.

Definition 7.1. Let G be a graph of treewidth b. An (s,p)-dissolution of G is defined
to be a partition of the vertex set of G into (p + 1) parts Vi,. .., Vy and U such that:

O Among the first p partitions, there are no edges with endpoints in different partitions,
that is, for all1 <1 # s <p, ifu € Vyandv € Vs, then (u,v) ¢ E(G).

& Each of the first p parts bas size at least s, that is, |Vi| > s, for everyi, 1 <1< p.

& The neighborhood of Vi in U is at most (2b + 2):

IN(V;)NU| < 2b+ 2,

Jor everyi, 1 < i< p.

Note that we described a dissolution as a partition into protrusions because each part
V; along with its neighborhood in U is clearly a (2b 4 2)-protrusion in G. We now
claim that there exists a constant d such that any graph G with more than d - (bsp)

vertices has a (s, p)-dissolution.

Lemma 7.1 (Partitioning Lemma). Ler G be a graph of treewidth b. There is an integer
constant Q such that if G has at least (d - bsp) vertices (for some integers s and p), G
admits a (s, p)-dissolution.

7.1. PARTITIONING PROPERTY OF GRAPHS OF BOUNDED TREEWIDTH7s

Proof. Let G be a graph on at least (d - bsp) vertices and let (X, T) be a nice tree-
decomposition of G of width b. Given an arbitrary tree-decomposition of G of
width b, a nice tree-decomposition can be constructed in polynomial time as de-
scribed in [DSTo2], and the only property of nice tree-decompositions (as opposed
to normal tree-decompositions) we will use in this proof is that the maximum degree
of the decomposition tree T is three. For T C V(T) we use X(T’) to denote Ugqe7/Xq.

Claim 7.1. There is a set S C V't of size 2p such that there are 2p connected components
Tiyeeoy Top of T\ S such that for every i, X(T;)| > 3s + .

A word of caution — observe that we do not claim that Ty,..., T, are the only
components of T \ S.

Proof. We begin by introducing terminology that will be used in this proof. For a
rooted tree T, and a vertex v € T, a component C of T \ {v} is said to be below v if all

vertices of C are descendants of vin T.

We construct the set S with a simple greedy procedure. We root the tree T at some root
1. In the beginning S = () and T" = T. We maintain a loop invariant that T" is the
connected component of T\ S that contains r. Now, at step 1 of the greedy procedure
we pick a lowermost vertex vi in V(T") such that there is a connected component T;
of T" \ {vi} below v; such that |[X(T;)| > 3s + b. Now we add v; to S and update T"
accordingly. The procedure terminates when no vertex v in T, has this property. In
particular, if for any v € T", every component C of T" \ v (below v) has fewer than

(3s + b) vertices, the procedure terminates.

Note that if this procedure does not terminate during the first 2p steps, then it pro-
duces a set S and components Ty, ..., T, with the desired property. Thus it only

remains to prove that the procedure does not terminate during the first 2p steps.

In the first step, observe that since T" = T and a nice tree decomposition has at least
n bags,
X(T")| > n > dbsp.

Recall that T is a binary tree and we always pick a lowermost vertex v; in V(T") such
that there is a connected component T; of T"\{v;} below v; such that [X(T;)| > 3s+b.
Since T" is a ternary tree, v; has at most two children in T" — say x and y. Note that
the connected components of T" \ {x} and T" \ {y} have less than (3s + b) vertices
each (else we contradict the assumption that v; was the “lowermost” vertex of T with

the said property).

76 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

<2-(3s+b)

Figure 7.2: A bound on the number of vertices in the components below v;.

Therefore, the total number of vertices in all components below v; put together is

bounded by:

Vertices below x Vertices below y

((3s+1b)-2)+((3s +Ab) -2)+2,

the last summand accounting for x and y (see also Figure 7.2). Thus, at every step,
IX(T")| decreases by at most

12s + 6b < 12sb

at each step. Hence the procedure does not terminate during the first 2p steps for a
suitable choice of d, such as 32. We first note that it is useful to rewrite 32 as (12-2)+8.

Now note that

n > (12sb)(2p) + 8(sbp)

and after (2p — 1) steps of our procedure we will have that

n > (12sb) - 14 8(sb)p,

which gives us enough vertices to find one with the desired property. Indeed, the

removal of the root clearly leaves us with two components, at least one of which must

7.1. PARTITIONING PROPERTY OF GRAPHS OF BOUNDED TREEWIDTH77

The tree decomposition of G

Figure 7.3: The procedure for constructing S’ from S = {x,y, z}.

have at least 4(sb) vertices, and therefore at least (3s +b) vertices; and it now remains

only to find the lowermost vertex that continues to have this property.

Clearly, with the above analysis, the claim follows.

]

Having constructed S and Ty, ..., Ty, as described in Claim 7.1 we construct S’ from
S as follows. In the beginning S’ = S and then, whenever two vertices u and v are in

S’ and their lowest common ancestor t in V7 is not, we add t to S’.

From the fact that any binary tree on 1 leaves has at most | internal nodes, we deduce
that [S’| < 2[S|. Notice that any node v in a tree can be the least common ancestor
only of nodes in the subtree rooted at v, and the subtree rooted at a leaf is empty.
Thus an unmarked leaf can never be the least common ancestor of any pair of nodes
from S. Therefore, from the given tree decomposition and a subset of its nodes, S, we
may obtain an “equivalent” one where every leaf belongs to S — simply by recursively
removing leaves that are not in S. In this tree, the number of leaves is at most [S|,
and the total number of nodes chosen in S’ is at most twice the number of leaves.
Therefore, |S’| < 2|S|. Let S* = S"\ S.

Since [S| > 2p and |S’| < 2[S|, it follows that

1S*| < 2p.
Note that therefore, at most p of the components Ty,..., T,, contain at least two
vertices of S*. Hence, at least p of the components Ty, ..., T, contain at most one
vertex of S*. Without loss of generality Ty, ..., T, contain at most one vertex of S*

each. For every i < p, if T; contains no vertex of $* then T = Tj is a component of

78 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

T\ S’ with [X(T/)| > s. If T; contains one vertex v of $*, since v has degree at most
3and [X(Ti)| = 3s + b, T; \ {v} has at least one component T, with [X(T/)| > s.

Now, let Vi = X(T/) and U be the vertices not appearing in any V;. Clearly [V;| > s.
Also, every T/ has at most two neighbors in S’. Let these neighbours be u and v
(with w = v if T/ has one neighbor in S’). Since N(V;) C X, U X,, it follows that
IN(Vi)| < 2b + 2. This concludes the proof.]

For the sake of completeness, we state a more general version of Lemma 7.1. Let f bea
function that associates a natural number with every vertex, that s, lec f : V(G) — N.
Let the function f : 2¥ — N be defined as follows:

£(S) = Zf(v).

veSs
We define a (f, s, p)-dissolution as follows:

Definition 7.2. Let G be a graph of treewidth b, and let f be defined as above. An
(f, s, p)-dissolution of G is defined to be a partition of the vertex set of G into (p + 1)
parts Vi, ..., Vy and U such that:

& Among the first p partitions, there are no edges with endpoints in different partitions,
that is, for all1 <1 # s <p, ifu €V, andv € Vs, then (u,v) ¢ E(G).

& Each of the first p parts is such that £(V;) > s, for everyi, 1 <1 < p.

& The neighborhood of Vi in U is at most (2b + 2):

IN(Vi) nU| < 2b + 2,
Soreveryi, 1 <1< p.
Then, we have the following generalization of Lemma 7.1. The proof is exactly along
the lines of the proof of Lemma 7.1 with only minor modifications.

Lemma 7.2 (Generalized Partitioning Lemma). Let G be a graph of treewidth b, let
f:V(G) — N be a function, and let f : 2V — N be defined as follows:

£(S) = Zf(v).

veSs

There is an integer constant A such that if G has at least (d-bsp) vertices (for some integers
s and p), G admits a (f, s, p)-dissolution.

7.2. INFERRING PROTRUSIONS FROM SUBGRAPHS OF CONSTANT TREEWIDTH79

7.2 Inferring Protrusions from Subgraphs of Constant

Treewidth

Our aim in this section is to demonstrate a (2T + 1)-protrusion within X, where T is
a constant and X is a subgraph of G that has treewidth . This technique is applied
in Chapters 9 and ro. Notice that the graph induced on all of X is already half-way
through to being a protrusion, since it has constant treewidth. On the other hand,
the graph induced on X may not have a constant-sized boundary, hence we face the
need to identify a suitable subgraph that does have a constant-sized boundary.

A good starting point appears to be the tree decomposition of G[X], since given that X
has constant treewidth, we will have bags of constant size. Notice that if we can
identify a collection of bags that:

* correspond to a large enough subgraph of X, and
* have a limited number of vertices from 9(X),

then we will be done. This is achieved by a neat trick that involves eliminating a
carefully chosen set of bags such that the components that remain all have a limited
number of vertices from 0(X), and at least one of the components corresponds to a

large enough subgraph. Keeping this goal in mind, let us turn to the formal proof.

Lemma 7.3. There is a linear time algorithm that:

— given an n-vertex graph G and a subset of vertices X such that tw(G[X]) < T,
— outputs a 2(t + 1)-protrusion of G of size at least

(awmore)
4pX)+1/"

Proof. 'The algorithm begins by computing a nice tree decomposition of G[X] of width

at most T. Since T is a constant, this can be done in linear time [Bod96].

The nice tree decomposition of G[X] is a pair (T,B = {B¢}eev(T)), where T is a
rooted binary tree. We will now mark some of the nodes of T (see Figure 7.4). For
every v € 9(X), we mark the topmost node { in T such that v € By. In this manner,
at most [0(X)| nodes are marked. Now we mark more nodes of T by exhaustively

applying the following rule: if 1 and v are marked, mark their least common ancestor
in T. Let M be the set of all marked nodes of T.

80 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

G\X

a(X) = {X>Uaz}

X

The tree decomposition of X

Figure 7.4: Marking nodes from the boundary, and more.

From the fact that any binary tree on 1 leaves has at most 1 internal nodes, we deduce
that [M| < 2[9(X)|. Notice that any node v in a tree can be the least common ancestor
only of nodes in the subtree rooted at v, and the subtree rooted at a leaf is empty. Thus
an unmarked leaf can never be the least common ancestor of any pair of marked nodes.
Therefore, from the given marked tree decomposition, we may obtain an “equivalent”
one where every leaf is a marked node — simply by removing, recursively, leaves
that are not marked. In this tree, the number of leaves is at most 9(X), and the
total number of marked nodes is at most twice the number of leaves. This shows

that [M| < 2[9(X)].

Since T is a binary tree, it follows that T\ M has at most 2|M| + 1 connected com-

ponents. Let the vertex sets of these connected components be C;,C,...C,, 1 <
2IM| + 1.

We now show that for all i, C; is adjacent to at most two bags in M. We will repeatedly
make use of the fact that least common ancestors of marked nodes were marked in our
construction of M. Let us consider the subtree C;, and imagine it rooted at the vertex
that is closest to the root of T. Let r; denote this root. Further, let A; and B; denote
the two subtrees rooted at the two children of r;. Notice that if one of the leaves of A;
(respectively, B;) is adjacent to a vertex in M, then no leaf of B; (respectively, A;) can
be adjacent to a vertex of M — because if leaves of both subtrees are adjacent to
marked vertices, then T; would be marked as well, and would not be in one of the
components of T \ M. By a similar reasoning, at most one of the leaves of A; (or B;)
is adjacent to marked nodes — if more than one of the leaves of, say, A; is adjacent
to marked nodes, then that would require us to mark an internal node of C;, again a
contradiction. Finally, notice that no leaf is adjacent to zwo marked nodes, since this

would cause the leaf to be marked. Thus, at most one of the leaves of the subtree C;

7.2. INFERRING PROTRUSIONS FROM SUBGRAPHS OF CONSTANT TREEWIDTHS81

is adjacent to a marked node, and at most one marked node is adjacent to any of the

leaves.

The only other nodes that might be adjacent to a marked node are the root, or internal
nodes that have degree two. We distinguish two cases, in the context of the root —

and we remark that the case for the internal nodes is similar.

o If the root has degree two in C;, we are done, as the root can have at most one
other neighbor in T, and as we have already argued, at most one of the leaves of C;
is adjacent to at most one marked vertex, and thus, in this case, C; is adjacent to at

most two marked nodes.

o If the root has degree one in C;, then notice that if both children of the root are
marked, none of the leaves of the subtree rooted at the only child of r; (in C;) might
be adjacent to a marked node (if it were, again, r; would be compelled to belong
to M). So either both neighbors of the root are marked and none of the leaves of C;
are adjacent to a marked node, or exactly one of the neighbors of the root is marked,
and at most one of the leaves of C; is adjacent to at most one marked vertex. In either

case, C; is adjacent to at most two marked nodes.

For every i < 1, let D; denote the set of bags C; and the bags from M that were
adjacent to bags in Cj, that is:

Di = Ci U NT(Cl)

Further, let P; denote the vertices of G that appear in all the bags of Dy, that is:

P, = U B..

uebD;

We claim that the subgraphs induced on any of the P; form protrusions. We only
need to show that P; contains a limited number of vertices from 0(X). Given our
setup, note that any vertex from 9(X) that appears in C; must also appear in N1 (C;).
This is because we are dealing with a tree decomposition, and if a vertex makes an
appearance in bags A and B, then it must present itself in all bags that are on the path
from A and B. Recall that every vertex v from 0(X) is in some marked bag B. If v
is in a bag A from Cj, then failure to appear in both marked bags that are neighbors

82 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

of C; would imply that not all bags between A and the marked bag that contained v
contain v, contradicting the fact that we are working with a tree decomposition.

Given that any vertex from 0(X) that appears in C; must also appear in N1(Cy), it
is easy to see that Py N 0(X) is a constant: since N1(C;) comprises at most two bags,
each of size at most (T+1), C; can accommodate at most 2(t+ 1) vertices from 0(X).
Thus every P; is a 2(t + 1)-protrusion of G.

Since 1 < 2|[M|+1 < 4[9(X)[+1, the pigeon-hole principle yields that there is a pro-
% vertices. The algorithm constructs M and Py ... P,
and outputs the largest protrusion P;. It is easy to implement this procedure to run

trusion P; with at least

in linear time. This concludes the proof.]

7.3 Facts concerning minor models of 6,

In this section, we collect some results about minor models of ©... These results will be
relevant to the kernelization algorithm for F-DELETION when F contains the graph

0. (see Chapter 10). In particular, we show the following:

* Minor models of 6. do not contain any cut vertices.

* On graphs of constant treewidth, an optimal 0.-hitting set may be found in poly-
nomial time.

* On graphs of constant treewidth, a maximum collection of subgraphs may be found
in polynomial time, such that each of them contain a minor model of 6., and are
vertex disjoint except at a single vertex.

* In polynomial time, we can either classify an instance of ©.-DeLETION as a NO
instance, or determine a hitting set T, of size k) for all minor models that pass
through a specified vertex v. We note thatv ¢ T,.

7.3.1 Minor Models of 6. do not have Cut Vertices

We will need the following description of minimal minor models of 6. for the proof of
our first observation. The proof of this proposition is immediate from the definition

of a minimal minor model and the graph 6.

Proposition 7.1. For any ¢ € N, a subgraph M of graph G is a minimal minor-model
of 0. in G if and only if M consists of two trees, say Ty and Ty, and a set S of ¢ edges, each
of which has one end vertex in Ty and the other in T,.

7.4. SOME MSO FORMULATIONS 83

.® ®
Phe |
PR L)
////’/’ ‘
oI ------ ® @
| AY
| ’,‘ '\\\
| - RN
- \
‘:1: 777777 ‘ .\I /
‘ S~ v
| Y ‘//
| /
@z ------ ® ¢
S ‘
R L J
~ |
N
[

L J
Figure 7.5: The form of a minimal minor model of .. In this example, the dashed
edges may be contracted to obtain the 09 graph.

Observation 7.2. Forc > 2, any minimal © . minor-model M of a graph G is a connected
subgraph of G, and does not contain a vertex whose degree in M is less than 2, or a vertex
whose deletion from M results in a disconnected graph (a cut vertex of M.

Proof. From Proposition 7.1, whose terminology we use in this proof, M is connected
and contains no isolated vertex. Suppose x is a vertex of degree exactly one in M.
Then x is a leaf node in one of the two trees in M, say Ty, and no edge in S is incident
on x. Removing x from Ty results in a smaller 6. minor-model, contradicting the

minimality of M. It follows that every vertex of M has degree at least two.

Now suppose x is a cut vertex in M which belongs to, say, the tree Ty. Let T{, TZ, ..., T}

be the subtrees of T; obtained when x is deleted from Ty. Let M’ be the graph ob-
tained by deleting x from M. If 1 > 0, then each T} has a leaf node, which, by the
above argument, has at least one neighbor in T,. If 1 = 0, then M’ = T,. Thus M’ is

connected in all cases, and so x is not a cut vertex, a contradiction.]

7.4 Some MSO Formulations

The following well known result states that every optimization problem expressible in

MSO has a linear time algorithm on graphs of bounded treewidth.

Proposition 7.3 ([ALS91, Bod96, BPT92, Cougo, CM93]). Let & be a property that is
expressible in Monadic Second Order Logic. For any fixed positive integer t, there is an al-
gorithm that, given a graph G of treewidth at most t as input, finds a largest (alternatively,
smallest) set S of vertices of G that satisfies & in time f(t,|d|)|V(G)].

84 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

In the kernelization procedure, we will need to find an optimal 0.-hitting set on
graphs of constant treewidth. To this end, we demonstrate that the property of being
an optimal 0.-hitting set can be expressed in MSO, and appeal to Proposition 7.3 to
conclude that an optimal 6.-hitting set can be found in polynomial time on graphs

of constant treewidth.

We will also encounter the need to identify, the largest 6. “flower” in polynomial time:
this involves finding a maximum-size collection M of minimal 6, minor-models, all
of which pass through v and no two of which share any vertex other than v. Our
strategy is again to describe a MSO formulation and apply Proposition 7.3.

MSO formulation of H minor-models. For a graph G, we use ¢11(G) to denote
an MSO formula which states that G contains H as a minor — equivalently, that G
contains a H minor model. Let V(H) = {hy,...,h¢}. Then, ¢ (G) is given by:

dn(G) = 3Xy,...,Xc C V(G)[
/\(leX]:®)/\ /\ COTITL(G,XI)/\
1) 1<i<ge
N\ IxeXiAyeXlx,y) € E(G)]

(hiyhy)€E(H)

] (7.1)

Here, conn (G, X) is the standard MSO formulation for expressing the fact that G[X]
isa connected subgraph. Formula 7.1 states that the graph G contains ¢ vertex-disjoint
connected subgraphs, Xj, ..., Xc, such that whenever (hi,h;) € E(H), there is at
least one edge in G with one endpoint each in the subgraphs X; and X;j. Clearly, if we
contract the subgraphs X1, ... X, to vertices x1, ... X, then G[x1,...,X.] contains H
as a subgraph, and thus H is a minor of G whenever ¢ (G) is satisfiable. It is also easy
to see, from the definition of a minor, that if G contains H as a minor, then ¢ (G)

is satisfiable.

Minimum-size F-hitting set. Let J be a finite forbidden set. A minimum-size F-
hitting set of graph G can be expressed as:

Minimize S € V(G)[A\ —dn(G\ S)] (7.2)

Hed

7.4. SOME MSO FORMULATIONS 85

Formula 7.2 seeks the smallest subset of vertices S for which G\ S does not contain H
as a minor, for every H € F. Clearly, the subset S that is identified by formula 7.2 is
an optimal F-hitting set.

Largest 0, “flower”. We will need the notion of a 0. flower to proceed further.

Definition 7.3. Given a graph G and a vertex v € V(G), an 0 -flower of size {
passing through v is a set of € different © . minor-models in G, each containing v and no
two sharing any vertex other than v.

Letv be a fixed vertex. We describe a MSO representation of a witness for a 0. -flower
passing through v of the largest size. A maximum-size set M of 6. minor-models

in G, all of which pass through v and no two of which share any vertex other than v,

can be represented as follows:

Maximize S C V(G) :

MaxConn(G’, X)

A\ x e X
JF CE(G YxeS|IXTV/
< E(G) X - N YWeSy#x = y¢X]
N do. (XU{V}

(7.3)

Formula 7.3 identifies a subset S of vertices with the property that each vertex in S
belongs to a minor model of 6., and each of these minor models are vertex-disjoint
except for v. We let F denote the subset of edges that participate in this collection
of minor models, and let G’ denote the graph with vertex set V(G) and edge set F,
and V' = V(G) \ {v}. Notice that for every vertex in x € S, the formula above
identifies a subgraph X of G that contains x and is such that X U {v} contains a minor
model of .. The witness subsets are vertex-disjoint because of the criteria that no
two vertices of S belong to the same witness subgraph, and because the subgraphs are
required to be maximally connected in G’. Indeed, let x,y € S, and let X and Y be

the corresponding witness subgraphs. For the sake of contradiction, assume that X

86 CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

and Y are not vertex-disjoint. Let u € X and u € Y. Then, there is a path from u
to Yy because Y is a connected subgraph of G’, and therefore y € X, because X is a
maximally connected subgraph of G’: this contradicts the fact that no two vertices
of S belong to the same witness subgraph.

Proposition 7.3 together with MSO formulations 7.2 and 7.3 given above allow us to
find optimal F-hitting sets and 6. flowers in polynomial time on graphs of constant
treewidth. Note that we can also find 6. -hitting sets in polynomial time on graphs of
constant treewidth, by simply using the set {0.} as F in the MSO formula 7.2. We

make a note of these observations in the following lemmas:

Lemma 7.4. Let G be a graph on n vertices and v a vertex of G. Given a tree de-
composition of width t € O(1) of G, we can, in O(n) time, find both (1) a smallest
set S C 'V of vertices of G such that the graph G \ S does not contain 0. as a mi-
nor, and (2) a largest collection {My,Ma, ..., My} of O. minor models of G such that
fr1 <1< <1, (VIM) V(M) = vl

Lemma 7.5. Let F be a collection of graphs, let G be a graph on n vertices and v a vertex
of G. Given a tree decomposition of width t € O(1) of G, we can, in O(n) time, find
the smallest set S C V of vertices of G such that the graph G \'S does not contain H as a
minor, for anyH € F.

7.5 A Bound on the treewidth of YES instances of Pra-

NAR F-DELETION

In this section, we establish that if G is a YES-instance of PLANAR F-DELETION, then
the treewidth of G is bounded by a function of k. Although this is a relatively simple
observation to make from certain known results, it is a crucial starting point for our

subsequent endeavors, both in the context of kernelization and approximation.

Lemma 7.6. Let F be an obstruction set containing a planar graph of size h. If G has an

F-hitting set S of size at most K, then w(G \ S) < d and w(G) < k+ d, where d =
202(14h—24)5_

Proof. By assumption, F contains at least one planar graph. Let h be the size of the
smallest planar graph H contained in &F. By a result of Robertson et al. [RST94], H
is a minor of the (£ x {)-grid, where { = 14h — 24. In the same paper, Robertson

7.5. ABOUND ON THE TREEWIDTH OF YES INSTANCES OF PLANARF-DELETIONS7

et al. [RST94] have shown that any graph with treewidth greater than 202¢ contains
a (€x{)-grid as a minor. Let S be a F-hitting set of G of size at most k. Since the ({ x
€)-grid contains H as a minor, we have that tw(G \ S) < 202% . Therefore, tw(G) <
k 4 d, where d = 202 — indeed, a tree decomposition of width (k 4 d) can be
obtained by adding the vertices of S to every bag in an optimal tree decomposition
of G\ S. This completes the proof of the lemma. O

It turns out that the bound we obtain in Lemma 7.6 can be tightened significantly in
the special case when F = 0.. This is established in a result from [BTTvL9s] that
establishes a linear bound on the treewidth of a graph that does not contain minor

models of O.:

Lemma 7.7 ([BTTvLos]). Every graph not containing a ©. as a minor has tree-width
at most (2¢ — 1).

This has the following immediate corollary:

Corollary 7.4. Let F be an obstruction set containing ©.. If G has an F-hitting set S of
size at most X, then tw(G) < k+ (2c —1).

Proof. Let S be a F-hitting set of G of size at most k. Since 6. € F, due to
Lemma 7.7, we have that tw(G \ S) < (2¢ —1). Therefore, tw(G) < k+ (2c —1) —
indeed, a tree decomposition of width (k + d) can be obtained by adding the vertices
of S to every bag in an optimal tree decomposition of G\ S. This completes the proof.

]

88

CHAPTER 7. SOME COMBINATORIAL EXPLORATIONS

The intellect has little to do on the road to discovery.
There comes a leap in consciousness, call it intuition or what you will]

and the solution comes to you and [you Adon't know w/t)/ or how.

Albert Einstein

Its ta&[nﬂ Merry. The tree is t‘a/h'nj.

The Lord of the EyJ

This chapter marks our first encounter with the F-DEeLETION problem. Since this
question is at the heart of this thesis, we will first spend some time acquainting our-
selves with the problem. This will be followed by an approximation algorithm with
an approximation ratio of O(OPT?4/log OPT). In the final section, we present an
algorithm with an improved approximation ratio of O(log®>'* OPT).

8.1 An Introduction to the {F}-DELETION problem

We use F to denote a family of graphs. Imagine that we are interested in the class
of graphs that exclude H as a minor, for every H € F. For example, if F were to
consist of just a triangle, then we are talking about forests when we consider the class
of simple graphs that exclude a triangle as a minor. In the setting of multigraphs, we
might think of forests as the class of graphs that exclude the double edge (a pair of
vertices with two edges between them) as a minor. Note that the FEEDBACK VERTEX
SET question asks if there exists a small subset of vertices S such that G \ S induces a
forest.

Generalizing this setting, it is natural to ask if, given a graph G and a family F, there
exists a small set of vertices S such that G \ S induces a graph that excludes H as
a minor, for every H € JF. For particular choices of F, this corresponds to well-
studied problems: we have already seen feedback vertex set to be a special case of this
question, and it is easy to see that so is VERTEX Cover. Other famous cases are F =
{K23,Ka}, F ={K3,3,Ks} and F = {K3, T}, which correspond to removing vertices

89

8. Fp-Deletion: An Approximation Algorithm

90 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

to obtain outerplanar graphs, planar graphs, and graphs of pathwidth one respectively.
Here, K;; denotes the complete bipartite graph with bipartitions of sizes i and j,
and K; denotes the complete graph on 1 vertices. Further, a T, is a star on three

leaves, each of whose edges has been subdivided exactly once.

We are now ready to state the F-DELETION question formally. We first define the
notion of a F-hitting set.

Definition 8.1 (F-hitting set). Let G be a graph and let F be a collection of graphs. A
F-hitting set is a subser S C V(G) such that G \ S does not contain H as a minor, for
allH € F.

The question of F-DELETION is the following:

F-DELETION

Input: A graph G, a family of graphs .
Parameter: k
Question: Does there exist F-hitting set S such that [S| < k?

It is quite evident that the general F-deletion problem is NP-complete, since a num-
ber of NP-complete problems are special cases of the F-deletion question. From the
parameterized perspective, by one of the most well-known consequences of the cel-
ebrated Graph Minor theory of Robertson and Seymour, the F-deletion problem is
fixed-parameter tractable for every finite set of forbidden minors, in a non-uniform
sense — that is, we have a fixed-parameter tractable algorithm whenever F is given

explicitly.

In this chapter, we discuss an approximation algorithm for F-DELETION, when JF con-
tains at least one planar graph. Even with this restraint, notice that all the special cases
we described previously are accommodated for, so the question retains its generality.
We refer to the problem we address as PLaNAR F-DELETION:

PrLANAR F-DELETION

Input: A graph G, a family of graphs F that contains at least one planar graph.
Parameter: k
Question: Does there exist F-hitting set S such that [S| < k?

We are now ready to describe the approximation algorithm.

8.2. A FIRST APPROXIMATION ALGORITHM 91

8.2 A First Approximation Algorithm

The approximation algorithm for PLaNAR F-DELETION is based on a divide-and-
conquer strategy. We begin with an informal discussion leading us up to a situation
where the strategy presents itself. Let H be an arbitrary planar graph in JF of the
smallest size, and let h denote |H|.

Imagine that we have found some way of identifying a section of the graph — say Gy
— that is guaranteed to have at least one minor-model of H, and has a simple enough
local structure for us to solve the problem exactly in polynomial time. Further, sup-
pose there is a small subset of vertices S such that Gy is one of the connected com-
ponents of G \ S. If we are able to obtain these ingredients in polynomial time, then
a recursive strategy is quite natural: we pick S in our solution, find a locally optimal
solution on Gy and append it to S. Then it only remains to recursively solve the prob-
lem on each of the remaining connected components. The base case of the recursion

is reached when we have graphs where the problem can be solved optimally.

Once the above is formalized, it is not difhicult to “verify” that the strategy would
yield a valid F-hitting set. However, we wish to emphasize the intuition for why the
solution might be an approximation to the optimal. Let OPT denote the size of the
optimal F-hitting set. Notice that:

> The number of recursive calls is a lower bound on OPT. This is because every
recursive call guarantees the existence of at least one minor-model of H that is vertex-
disjoint from any discovered in previous calls. This is why it is important that S

separates Gyy from all the other pieces on which we will recurse.

> The size of the solution thus obtained is at most (OPT - |S|). This establishes our
incentive for finding a small separator whose removal gives us at least one component

with a minor model of H.

Before we present the algorithm precisely, let us recall and collect some relevant facts

that will be required.

Guaranteeing the existence of a minor model of H = The first thing we need to formal-
ize is the idea of finding a section of the graph that contains at least one minor-model
of H. We will make use of the following:

92 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

¢ Any planar graph H of size h is a minor of the (t x t)-grid, where t = (14h —
24). [RST94]

¢ Any graph with treewidth greater than 202 containsatxt grid asa minor. [RST94]

Clearly, we are able to conclude from the above that if h is the size of H and tw(G) >
202(14h=24)° "then G has a minor model of H, and this is the criteria that we will
make use of. Notice here our dependence on the fact that F has at least one planar
graph. Let d denote the constant (202(14h=24)° 4 1) So now our task is reduced to

finding a section of the graph that has treewidth at least d.

Finding an optimal solution on Gy; The other property we desire of Gy is that it be
simple enough for us to solve the problem in polynomial time. To this end, we recall
that PLaNAR F-DELETION is polynomial time on graphs of constant treewidth (see
Lemma 7.5). So if we can ensure that the treewidth of Gy is, for instance, (d + 1),
then we can identify an optimal F-hitting set in polynomial time. This will also be
the situation in the base case of the recursion — we will be able to stop when we
encounter graphs of constant treewidth, and as we will soon see, we will either be able

to find a suitable Gy, or conclude that the entire graph has constant treewidth.

A Bound on the treewidth of G We also need, for a starting point, that if G isa YES-
instance of PraNAR F-DELETION, then the treewidth of G is bounded by a function
of k. This enables us to reject instances of large treewidth, and if the treewidth is
small, we will have a tree decomposition of bounded width to work on. We recall

Lemma 7.6 from Chapter 7, which gives us exactly what we need:

Lemma. Let F be an obstruction set containing a planar graph of size h. If G has an

F-hitting set S of size at most K, then w(G \ S) < d and w(G) < k+ d, where d =
202(14h724)5'

8.2.1 The Algorithm

We are now ready to present a first approximation algorithm for PLANAR F-DELETION.
We first describe an algorithm that solves the decision version, where k denotes the size
of the solution sought, and we will see subsequently that this algorithm produces an
approximate solution with the desired ratio when run at most n times with different
values of k.

8.2. A FIRST APPROXIMATION ALGORITHM 93

If tw(G) < d, then we find an optimum F-hitting set of G in linear time using
Lemma 7.5. If the treewidth of the input graph is more than d then we find an
approximate tree decomposition of width € using an algorithm of Feige et al. [FHLo8]
such that

tw(G) <€ < d'tw(G)+/log tw(G),

where d’ is a fixed constant. If £ > (k + d)d’y/log(k + d), then by Lemma 7.6,
we know that the size of a minimum F-hitting set of G is at least (k + 1), and thus

the algorithm aborts at this point and returns a NO answer. Else, we know that the
treewidth of G is bounded:

w(G) << (k+d)d log(k + d).

In the next step we compute S and Gy, keeping in mind that our goal is to identify
a section of the graph that has treewidth exactly (d + 1). This is done by a bottom-
up calculation performed on the tree decomposition. We begin by converting the
given tree decomposition to a nice tree decomposition of the same width in linear
time [Klog4]. Given a nice tree decomposition (T, X = {Xi}tev (1)) of G, recall
that Hy refers to the subgraph induced on the union of vertices appearing in all bags
present in the subtree rooted at t, except the vertices at the bag corresponding to
node t itself. Notationally,

Hy = G [V(Gy) \ Xl
We define the function 3 : V(T) — N as follows:
B(t) = ew(Hy).

Notice that the value of 3 is zero at the leaves, and as we move our way up the tree
starting from the leaves, 3 is non-decreasing — that is, it either increases or stays the

same:

o If tisaleaf node, H; is empty, and tw(Hy) is zero.

e Iftisan introduce node, and s is the child of t, then H; and H; correspond to the
same graph and the value of B does not change.

e If t is a forget node, and s is the child of t, then H¢ has at most one vertex more

than Hg, and the treewidth of H is at most one more than Hy.

94 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

t: {b,x,y}

[yt | [{0y}

{b,x}

{b}
B(t) = tw(Gl{a, c}])

{ {a,b} J [{a,b}] Introduce nodes
‘ \ Join nodes
{ {b} J { {a,b,¢} } Forget nodes
Leaf nodes

{a, b}

{a}

A cross-section of a nice tree-decomposition

Figure 8.1: An example of () at a join node

o If t is a join node with children r and s, it is evident that the treewidth of Hy is at
most
maX{tW(Hs)) tW(HT)}>

thus, relative to one of 1 or s, 3 does not change, and relative to the other, it

increases.

Notice that we do not expect to be able to compute 3 precisely at each node in poly-
nomial time, since computing the optimal treewidth of a general graph is NP-hard.
However, we will see that the extent to which we will need to compute 3() will be

computable in polynomial time.

We compute 3 in a bottom up fashion starting from base nodes and moving towards

8.2. A FIRST APPROXIMATION ALGORITHM 95

the root: at every node we check if $(t) = tw(H¢) > d. We abort this computation
the first time that we find a node t such that 3(t) = tw(H.) > d.

Let P = V(Hy), Q = (V(G) \ P) \ X{ and S = X, where X; is the subset of vertices
in the bag corresponding to node t. Let Gy and G* denote, respectively, the graphs
induced on P and Q. Notice that Gy has exactly the property we need: 1. it has
treewidth at least d by choice, and this guarantees a minor model of H, and 2. has
treewidth at most (d + 1), because it is easily checked that if t is the first node at
which the 3(t) > d, then the increase in 3() is at most one from its child node, and
thus the problem of finding a F-hitting set is polynomial time solvable on Gy.

We can now recursively solve the problem on the graphs induced on Gy and the
connected components of G*, after including S in our solution. Notice that the base
case is achieved when the treewidth of the entire graph is at most d. An outline of the

algorithm can be found in Algorithm 1 and a schematic view can be found in 8.2.

96

CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

Algorithm 1 Hrt-SeT-1-(G, k)

I:

2:

2

10:
II:
12:
13:
14:

I5:
16:
17:
18:
19:

20:

PN v oW

if tw(G) < d then

Find S, an optimal F-hitting set of G using Lemma 7.5.

if |S| > k then

Return NO.
else
Return S.

end if
end if
Compute an approximate tree decomposition (T, X = {X(}tev (1)) of width €.
if { > (k+ d)+/log(k + d), where d is as in Lemma 7.6 then

Return that G does not have F-hitting set of size at most k.
end if
Convert (T, X = {X¢}tev(T)) to a nice tree decomposition of the same width.
Find a partitioning of vertex set V(G) into Gy, G* and X (a bag corresponding
to a node in T) such that tw(Gy) = (d + 1) as explained in the description of
the algorithm.
Compute an optimal solution on Gy, and let Y denote this solution.
Let Z denote Hrr-SeT-I-(G*, k — OPT(GH)).
if (Z is NO) or (Y| > k) then

Return NO
end if
Return X U Y | JHrr-Set-1-(G*, k — OPT(Gy))

8.2. A FIRST APPROXIMATION ALGORITHM 97

8.2.2 Analysis: Correctness and Running Time

We now turn to an analysis of the algorithm. We first reason that the set that is output
by the algorithm is indeed a F-hitting set, and then argue that the algorithm requires
polynomial time. Finally, we show that with input (G, k), the size of the F-hitting set
returned by the algorithm is bounded by O(k?y/logk). The proof is by induction

on the depth of recursion.

Lemma 8.1 (Correctness). If Algorithm 1 returns a NO answer, then there is no hitting
set of size at most X in the input graph G. Else, let S denote the output of Algorithm 1.
Then, the following holds:

(i) S is a F-hitting set for the input graph G,
(ii) |S| = O(k?+/logk), and

(iii) S is computed in polynomial time.

Proof: Suppose the Algorithm returns a NO answer because the approximate treewidth ¢
exceeds (k + d)+/log(k + d), where d is as in Lemma 7.6. In this case, correctness
follows from Lemma 7.6 and the correctness of the approximation algorithm that is

used to compute the treewidth.

Other than the above, the algorithm returns a NO answer when the subroutine de-
signed to find an optimal hitting set on a subgraph of the input graph returns a so-
lution of size greater than k. The correctness of this is evident: if the size of the
optimal hitting set in a subgraph of G exceeds k, then the size of the optimal hitting
set of G also exceeds k. This, together with the correctness of the optimal algorithm

(Lemma 7.5) implies the correctness of the NO answer in this situation.

Finally, the algorithm returns a NO answer when a recursive call returns a NO an-
swer. The correctness of this follows by induction on the depth of recursion. We
may assume, by the induction hypothesis, that if a recursive call to G* returns a NO
answer, then the size of the optimal hitting set of G* is greater than k. Since G* is
a subgraph of G, clearly G has no hitting set of size at most k. The base case of this

induction is described in the paragraphs above.

Thus we may conclude that when the algorithm returns a NO answer, then the input
graph G indeed does not admit any F-hitting set of size at most k.

We begin with a proof of (i). Let 9 denote the depth of recursion in Algorithm 1.
If 9 is one, then the problem is solved optimally, and the correctness follows from

Lemma 7.5.

98

CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

Input: (G, k)
Compute an x-approximate tree decomposition of the graph.

A A
A

w(G) < o-(k+d)p .2 s w(G) > - (k+d)?

Compute Gy and S.
L*d<tw(GH) <(d+1)

* Gy is a connected component of G \ S

*|S| <o (k+d)

4 4 4 4 4 4 4 4 4«

Let Gn, Gy, .., Gy be the components of G \ S

4 4 4 <«

Solve Optimally “

b, 4
v IS 4
v IS v 4
IS v 4
‘ ‘ ’ ’
4 b
a < 14 IS
4 < 4 &
a »
« < v »
a < v »

4
4V LN

Return SUS{HUS;U...US,

Figure 8.2: The first approximation algorithm: a schematic view.

8.2. A FIRST APPROXIMATION ALGORITHM 99

Our induction hypothesis is that the algorithm returns a F-hitting set when the depth
of recursion is 9. Consider the situation when the depth of recursion is (2 + 1). At

this point, the algorithm returns as the solution:

S(Gh) UXq U (Hrr-Ser-1-(G*)),

where:

e Gy is a subgraph of constant treewidth,

e S(Gy) is an optimal F-hitting set on the graph Gy,

o X, separates Gy from the rest of the graph,

e G~ is the rest of the graph, (G \ Gy) \ X¢, and

o |X{ < (k+d)d’ m (since Xy is the vertices of a bag picked from a tree
decomposition of this width).

Notice that for any minor model My of H in G, we have the following:

e My is contained in Gy,

e My, is contained in G*,

e My intersects X (since My is a connected subgraph, and X, separates Gy and G*,
any My, that is not entirely contained in one of the these parts is forced to go accross

through the separator Xy).
Notice that any My is thus “hit”, respectively, by:

e S(Gy), which is a hitting set of Gy by Lemma 7.5,

e Hit-SeT-I-(G*): the depth of recursion for G* is at most ? (by assumption) —
and notice that the output of the algorithm is a F-hitting set of G* by the induction
hypothesis,

e X, the separator that is included in the solution.

This proves that the output of Hrt-SET-I-(G) is a F-hitting set for G. We now turn
to (ii), to show that the size of the hitting set is at most O(k? \/@c) Let S(G, k)
denote the output of the algorithm on input (G, k). Let G} and G}, denote the graphs
that is obtained as G* and Gy, respectively, at the i*" level of recursion. Also, let X}
denote the separator that is chosen at the i*" level of recursion. Then we have the

general relation:

S(Gf,1) = OPT(Gl, ") +1S(Gfi_q), i — DI +IXE.

100 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

If the algorithm does not return a NO answer, then G§ has no minor models of H,

and hence S(Gg, 0) is the empty set.

S(Gg,0)] = 0.

Note that S(G) is given by:

OPT(GE) +1S(G, k — 1) + XK.

Expanding this using the recurrence above, we get:

S(G) = (OPT(GK) + OPT(GK ") +--- + OPT(G},)) + k- max{X{}.

Note that the algorithm returns NO if OPT(G},) > k for any 1 < i < k, so we may
assume that OPT(G},) < k. Further, notice that X! = O(k+/logk), forall 1 < i <
k. Thus, we have:

S(G) =k?+ k- O(ky/logk),

or

S(G) = O(k*+/logk).

Finally, to show that the algorithm runs in polynomial time, observe that the algo-

rithm involves:

* k computations of an approximate tree decomposition of the input graph (or
a subgraph of it),
* k computations of the sets G, G* and X4,

* k computations of optimal hitting set of Gn.

The approximate tree decompositions can be obtained in polynomial time [FHLo8],
and the optimal hitting sets for Gy, which is a graph of constant treewidth by design,
is also a polynomial time computation (Lemma 7.5). To see that the computation of
the sets Gy, G* and X is polynomial time, observe that it involves checking if the

treewidth of a certain subgraph is at most a constant d, and these checks are executed

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM 101

at most polynomially many times (as any nice tree decomposition of a graph on n

vertices can be shown to have at most a polynomial number nodes).

Thus, in summary, it is easily checked that the algorithm runs in polynomial time,

and this concludes the proof.

]

8.2.3 'The Approximation Ratio

To get an approximation algorithm out of Algorithm 1, we run it with different values
ofk, 1 <k < n, starting from 1, and stop at the earliest point when we are successful.
By our choice of k we know that G does not have F-hitting set of size at most k — 1
and hence OPT > k. This implies that the size of S returned by Algorithm 1 is at
most O(k?/log k) (see Lemma 8.1). This gives us our first approximation algorithm:

Lemma 8.2. Let F be an obstruction set containing a planar graph, and let OPT be
the size of the smallest F-hitting set. Given a graph G, in polynomial time we can find
a subset S C V(G) such that GV \ S] contains no element of F as a minor and |S| =

O(OPT2 - vOPT).

8.3 Bootstrapping: An Improved Algorithm

In this section, we improve the approximation ratio further from O(OPT-4/log OPT)
to O(log OPT3/2). However, this does not render Algorithm 1 obsolete, because we
use the outpur of Algorithm 1 to obtain the algorithm with an improved approxima-
tion ratio. For convenience, we will again resolve the decision version of the problem
approximately, and then run this algorithm repeatedly to get the desired approxima-
tion ratio relative to OPT. For ease of presentation, we will discuss the ideas of the
algorithm with respect to the decision version, and we use (G, k) denote the input
instance of PLANAR F-DELETION.

The central theme is to define a function p on graphs that respects the following:

> the value of 1 on the graph corresponding to the input instance is polynomial in k,
> we can find a small separator X that separates the input graph into two parts Ga

and Gg such that the values u(Ga) and u(Gg) are at most a constant fraction of

u(G),

102 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

> and the problem is easily solved when ((G) is a small constant.

Then the idea is again to recurse on the parts G o and Gg and picking X in the solution.
In the first approximation algorithm, at any recursion depth we had to deal with
only two instances. In this situation, the recursion tree unfolds as a binary tree (not
necessarily complete). So this time, with some additional observations, we maintain
that the rotal size of the separators that are picked at any given depth of recursion is
“small” - let’s say A. Thus, the size of the hitting set returned will be:

A - depth of recursion,

Note that the depth of recursion will be logarthmic in the value of the function on the
entire graph: this is due to the “constant fraction drop” in the value of the function
whose value is polynomial in k to begin with, and the fact that we will never recurse
beyond the point when the value of the function is, say, zero. So overall, this implies
a depth of recursion that is proportional to log(k®"), or O(log k); and the size of
the hitting set obtained will be:

A-O(logk).

Thus, if we can guarantee that the total size of the separators picked at every stage

is O(ky/log k), as before, then we will realize the improvement in the approximation

ratio from O(OPT - y/log OPT) to O(log OPT3/2).

We now proceed with an informal description of the function that meets our re-
quirements. Let us begin obtaining a hitting set of size at most O(k?/logk) using
Algorithm 1. If the algorithm says NO we simply repeat the negative answer. Else,
consider the solution produced by the algorithm. For ease of discussion, let us refer
to the vertices of the graph that belong to the hitting set as marked vertices, and we
use m to refer to the total number of marked nodes (m = O(k?y/logk)). Let us
define u(G) to be the number of marked vertices in G:

w(G) := Number of marked vertices in G.

Note that the set of marked vertices stays fixed throughout the algorithm, even on
subproblems, and is not recomputed at any point. Thus, Algorithm 1 is run only

once, and the entire analysis is with respect to this fixed set of marked vertices.

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM 103

Now, to find a small separator, the natural starting point is again a tree decomposi-
tion of G; because the vertices in bags of the tree decompositions are good candidate
separators, and they will be of the desired size given the fact that the treewidth is at
most (k + d)/log(k + d) for any feasible instance. It turns out that the treewidth
“spreads out” over all the instances at any given depth of recursion. This has the conse-
quence that the total size of the separators picked at any depth of recursion continues
to be of the desired size. However, we defer the details of this calculation to the next

section.

Thus it is now only a matter of finding a bag that separates the graph into parts where
the number of marked nodes is a constant fraction of the total number of marked
nodes in the graph. For any bag t, let us consider p(H¢), where Hy is the subgraph
induced on the union of vertices appearing in all bags present in the subtree rooted

at t, except the vertices at the bag corresponding to node t itself.

For the given tree decomposition, let us analyze the behavior of (t on the graphs Hy.
It is easy to verify the following:

> the value of w(H¢) at an introduce node t is the same as the value of p(Hy) if s is
the child of t.

> the value of 1(Hy) at a forget node t is at most one more than value of n(Hs) if s is
the child of t (it is possible that the forgotten vertex v was marked, and this vertex
appears in the graph H, but not in Hj.

> the value of pt(H¢) at a join node t is p(H,) 4+ p(Hs), where r and s are the children
of t.

Consider the node at the greatest distance from the root at which p(H;) is more
than, say, (m/«): that is, a node t such that for some constant &, pu(H¢) > (m/o)
and pu(Hg) < (m/«), where s is the child of t (if t has two children, then the aforesaid
is required to be true of each of the children). Notice that any node t which realizes
this property is either a join node or a forget node, because the value of () does not

“jump” at an introduce node.

Notice that if t is a forget node with child s, the subgraphs Hs and G \ (Hy UX{) are
exactly the pieces we need, separated by X;. Notice that p(G \ Hy) is at most m(1 —
1/«), since the total number of marked vertices in the graph is at most m and the
number of marked vertices of H is at least (m/) by choice of t. Thus, u(G \ (H¢ U
X)) is also at most (m(1—1/«)), since G \ (H¢ UX¢) is a subgraph of G \ Hy. So for
any choice of « strictly greater than 1, we have the constant factor drop that we seck.

104 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

The case when t is a join node is slightly more involved. Let r and s be the child
nodes of t. Notice that X; = X = X,, and the natural candidates for G5 and Gg
(the subgraphs to recurse on) would be some combinations of the pieces obtained

after the deletion of X;. Let’s consolidate what we know:

n(Hs) < m/ocand p(H,) < m/«,
r(Hs) + p(Hy) <m

w(H) > m/a,
and

WG\ (He UXy)) < (T —=1/0)m.

Let us first get an easy case out of the way: if at least one of u(Hs) or pu(H,) was
at most m/2c, then the choice of GA and Gg is immediate: suppose, WLOG,
that u(Hg) < m/2«, then let Go be H, U G \ (H{ U X;), and let Gg be H,. Notice
that u(Gg) < m/«x, and

(2o —1)

wWGaA) <m2ax+m(1—1/x) = (1/2a+1—1/x)m = 7o

.m’

and notice that this a constant fraction of m for any choice of «.

On the other hand, if neither of u(Hg) or u(H,) is at most m/2«, then we have:

w(Hg) > m/2aand u(H,) > m/2c.

In particular, let:

w(Hs) = m(1/20 + 8) and w(H,) = m(1/20 + 8,).

Since we know that u(Hg) + u(H,) < m, we have that:

(1/oe+8s+ 08, <1) = 8+ 06, < 1—1/a,

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM 10§

and this means that at least one of 85 or &, is at most (1 — 1/x)/2: let

o—1

2a
WLOG. Now we are tempted to recurse on Hg U G \ (H¢ U X{) and H,. As be-
fore, u(Gg) < m/o. Let us now examine u(Hs U G \ (Hy U X¢)):

ds <

rHs UGN\ (HeUXy)) < m(1/2a0 4 (¢ —1)/2a) + m(1 = T/),

which works out to:

(3ax—2)

HH UG\ (HiUXy)) <m-
2

For this to be a constant fraction of m, we require that (36—2) < 2«, or equivalently,
that « < 2. So by what we had in the case of the forget node, and the conclusion
we have drawn here, we are successful in finding suitable choices of GA and Gg in
all cases for any choice of « in the range (1,2). For ease of presentation, we chose o
to be 3/2, or we look for nodes in the tree decomposition where the value of p flips
to being more than (2/3)m. With these ideas in mind, we now turn to a formal

description of the algorithm.

8.3.1 'The Second Algorithm

As before, we first describe an algorithm that solves the decision version, where k de-
notes the size of the solution sought, and we will see subsequently that this algorithm
produces an approximate solution with the desired ratio when run at most n times
with different values of k. The input to this algorithm is (G, k), and a hitting set S of
size at most O(k?/log k). We use m to denote V(G) N S.

If |S| = 1, there is a F-hitting set of size one. This solution can be found in O(n)
time by experimenting with every vertex as a candidate solution, and we return the

solution thus obtained. If |S| = 0, there is nothing to do, we return the empty set.

We find an approximate tree decomposition of width £ using an algorithm of Feige et
al. [FHLo8] such that

tw(G) <€ < d'tw(G)/log tw(G),

106 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

where d’ is a fixed constant. As before, if £ > (k + d)d’+/log(k + d), then by
Lemma 7.6, we know that the size of a minimum F-hitting set of G is at least (k+1),
and thus the algorithm aborts at this point and returns a NO answer. Else, we know

that the treewidth of G is bounded:

w(G) <L < (k+d)d"log(k + d).

In the next step we compute G5, Gg and X. This is done by a bottom-up calcula-
tion performed on the tree decomposition. We begin by converting the given tree
decomposition to a nice tree decomposition of the same width in linear time [Klog4].
Given a nice tree decomposition (T, X = {X(}tev (1)) of G, recall that H, refers to the
subgraph induced on the union of vertices appearing in all bags present in the subtree
rooted at t, except the vertices at the bag corresponding to node t itself. Notationally,

Hy = G¢[V(Gy) \ X¢l.
We define the function f : V(T) — N as follows:
B(t) = [H N S].

Notice that the value of 3 is zero at the leaves, and as we move our way up the tree
starting from the leaves, 3 is non-decreasing. This follows from our discussion of the

behavior of () preceding this algorithm, and is easily checked as well.

We compute 3 in a bottom up fashion starting from base nodes and moving to-
wards the root. We abort this computation the first time that we find a node t such
that B(t) > (2/3)m. We determine subgraphs Ga and Gg of G in the following

manner:

e tis a forget node with child node s. In this case, let GA be H; and let Gg
be G\ (H{ U Xy).

e tis ajoin node with child nodes s and r
o If B(s) <m/2: GaisHy UG\ (H{ UX;) and Gg is H,.
o IfB(r) <m/2: GAisH, UG\ (H{ UX¢) and Gg is Hg.

It is easy to check that these cases are exhaustive. We can now recursively solve the
problem on the graphs induced on G and Gg, after picking X in the solution. In the
instances that we recurse on, the hitting sets given by GA NZ and Gg N Z respectively.
Notice that the value of the parameter k is unchanged in the recursive instances -

the depth of recursion is not determined by k, and k is simply used as a reference to

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM

i

{b,x}

{b}
B(t) = Glla,cinZ

{ {a,b} [{a, b}] Introduce nodes
‘ \ Join nodes
()] [{ab,0}] Forget nodes
Leaf nodes
{a, b}
{a}

A cross-section of a nice tree-decomposition

Figure 8.3: An example of 3() at a join node

107

108 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

bound the width of the tree decompositions obtained in the recursive instances. The
base cases are realized when the value of 3 at the root is zero or one. An outline of the
algorithm can be found in Algorithm 2.

8.3.2 Analysis and Approximation Ratio

It is easy to check, and is exactly along the lines of the proof of Lemma 8.1, that Al-
gorithm 2 returns a F-hitting set, and that the algorithm runs in polynomial time.
Both proofs can be carried out by a simple induction on the depth of recursion. We
will provide a proof of the fact that the size of solution output by the algorithm
is O(k(log k)3/2), and conclude this chapter with a brief note on how this algorithm

can be used to derive an approximation of the promised ratio.

Lemma 8.3. Let k be the size of the optimal F-hitting set of the graph G. Then, the size
of the hitting set output by Algorithm 2 is O (k(log k)3/2).

Proof Let
Gj“)) G](Z),,GJ(Z])

denote the graphs corresponding to instances obtained at recursion depth i. Notice
that the recursion tree is a binary tree, and there are at most 2* instances at recursion
depth i (with the convention that the root of the tree that corresponds to the original
instance has recursion depth 0). For a graph G, we will also use the notation GA
and Gg to denote the two instances that Algorithm 2 recurses on when given G as

input.
At recursion depth j, let
}\j(])’}\j(z)’ s y}\j(zj)
denote the sizes of the separators chosen for each of the 2J instances (if there are fewer

instances, then the remaining A;’s are identified with zero). Let A; denote the sum of

the sizes of all the separators chosen at recursion depth j:

A = A1) +A(2) + ...+ A (2).

Further, let

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM 109

k]“))kj(z)))k)(z))

denote the sizes of the optimal F-hitting set of the graphs G;(1), G;(2),...,G;(2))
(respectively). Recall that k is the size of the optimal F-hitting set of the graph G. Note
that the graphs corresponding to instances obtained at any given depth of recursion are
subgraphs of G that are vertex-disjoint: this can be shown by induction on the depth
of recursion. At the first level of recursion these graphs are obtained by the removal
of a separator, and hence are vertex-disjoint. Assuming that the graphs at recursion
depth j are vertex-disjoint, the graphs at recursion depth (j + 1) are vertex-disjoint
because they are obtained from the graphs at recursion depth j after the removal of

vertex separators. As a result, we have the following:

k(1) +%(2) +...+%(2) < k.

Observe that the tree decomposition of the graph G;(i) for any 1 < i < 2J has width
atmost (k;j(i)+d) (c.f. Lemma 7.6) and therefore the approximate tree decomposition
has width at most:

(kj(i) + d)y/log(k;(i) + d).

Since A;(1) is the size of the separator obtained by picking a bag in this tree decom-
position, we have that:

and that A; is given by:

D (k) + d)y/log(Kk; (i) + d).
1<ig2)

We claim that the above is at most (k 4+ d(27))/log(k + d). This is easy to see:

110 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

k)-(1)+kj(2)+ 4K(2) < Kk
k(1) +)+ (52) +d) +...+ (5(2) +d) < k+d(2)
(1) +) + (k;(2) +) + ... (w')) Viogk+ @) < (k+d(2)
(Zm@ i)+d)) Vioglk+d) < (k+d(2))
S icic (0500 + @) y/loglk+) < (k+d(2)
Y icicn (1) + A)y/log(ks () +d)) < (k+d(2)

where the last step follows from the fact that k;(1) < k. Thus, we finally have that:

A < (k+d(29))y/1og(k + d).

This establishes that the size of all the separators at any recursion depth j when put

together is at most (k + d(2))/log(k + d). We are now ready to prove a bound on
the size of the solution obtained by Algorithm 2.

Let (G, S) denote the output of the algorithm on input (G, S). We then have the

following recursive relationship:

Z1<i<zi |G(Gj(i),5j(i))| = Z]gigzi A+
2 1<i<2 16((Gj (1)) A, S5(1) N (G;(1))a)l +
> 1ciea IS((G5 (1)), S5(1) N (G5(1)))

Notice that (Gj(i)) A corresponds to the graph Gj;1(21 — 1) and the graph (G;(1))s
corresponds to the graph Gj.1(21), and as expected, the number of instances at recur-

sion depth (j + 1) has potentially doubled from the number of instances at recursion
depth j. The algorithm stops when S N G4 is an empty set:

16(G;(1), D) =0

Note that the size of the hitting set output by the algorithm is given by:

IS(G1(1), (SN G+ 16(G1(2), (SN G1(2)))] + Ao,

or equivalently:

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM I11

I6(Ga, (SN GA))|+16(GE, (SN GE))|+ Ao.

Lety denote the depth of the recursion tree. Unfolding the recursion above, it is easy

to see that we obtain the size of the hitting set output by the algorithm to be:

S(G) =Mo+ A1 +...+ Ay

Recall that:

A < (k+d(29)y/1og(k + d),

and therefore, the size of the hitting set amounts to:

(ky/log(k+d)) -y + Y d(2)

1<y

Clearly, the crucial term that governs the size of the output is the depth of recursion.

Notice that the choices of G4 and Gp were made to ensure:

N

W —

5
either SN GAl| < g|S|, or SNGAl <

and

2
SN Gyl < IS

So the depth of recursion is proportional to O(log|S|) or O(log(k?*v/k)), which
amounts to O(logk). Substituting for vy, we see that the term:

Z a(2)

1<5<y

is proportional to k, and

(ky/log(k+d)) -y

112 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

is simply (ky/log(k + d)) - (log k). Therefore, we have that the size of the hitting set
returned by the algorithm is O(k(log k)3/2), as desired.

]

To get an approximation algorithm out of Algorithm 2, we run it with different values
ofk, T < k < n, starting from 1, and stop at the earliest point when we are successful.
By our choice of k we know that G does not have F-hitting set of size at most k—1 and
hence OPT > k. This, together with Lemma 8.3,implies that the size of S returned
by Algorithm 2 is O(OPT(log OPT)3/2). This gives us the promised approximation
algorithm:

Theorem 8.1. Let F be an obstruction set containing a planar graph, and let OPT be
the size of the smallest F-hitting set. Given a graph G, in polynomial time we can find
a subset S C V(G) such that GV \ S] contains no element of F as a minor and |S| =
O(OPT - (OPT)3/2).

Algorithm 2 Hrr-Set-11-(G, S)
i: if SN G = () then
Return ()
end if
Compute an approximate tree decomposition (T, X = {X(}1ev(1)) of width €.

R

Convert (T, X = {X¢}tev(T)) to a nice tree decomposition of the same width.

AN N W

Find a partitioning of vertex set V(G) into Ga, G® and X, (a bag corresponding
to anode in T) such that |GA N'S| < (5/6)|S|, and |Gg| < (2/3)|S, as described
in the proof.

7: Return Hrt-SET-1I-(GA,S N GA) U HIT-SET-1I-(GR, SN G) U X}

This concludes our description of the approximation algorithm for PLaNar F-DELETION.
To emphasize the consequences of this algorithm, we summarize a few implications
of it, obtained by making different choices for the family F. One of the consequences
of this algorithm is an approximation for the TREEWIDTH 1-DELETION SET problem,
which is the following. Letm be a fixed constant. In the TREEwIDTH N-DELETION SET
problem, we are given an input graph G and the objective is to delete the minimum
number of vertices from a graph such that the resulting graph has treewidth at mostn.
For instance, the TREEWIDTH 1-DELETION SET is simply the FEEDBACK VERTEX SET
problem. We obtain the following corollary of Theorem 8.r1.

8.3. BOOTSTRAPPING: AN IMPROVED ALGORITHM I13

Corollary 8.2. FeepBack VERTEX SET, DiamonDp HitTiNG SET, PATHWIDTH ONE
DEeLETION SET, OUTERPLANAR DELETION SET 4724 TREEWIDTH 1-DELETION SET ad-
mit a factor O(log™'* n) approximation algorithm on general undirected graphs.

114 CHAPTER 8. Fp-DELETION: AN APPROXIMATION ALGORITHM

One recognizes one’s course

b)/ ﬂ{l:%ol/f}’lhj the paths that stray ﬁfom it
Albert Camus

That’s a nice trick.

The Matrix Reloaded

In this chapter we show that if the obstruction set F contains a planar graph then the
PLANAR F-DELETION problem has a linear vertex kernel on graphs excluding K ¢ as
an induced subgraph:

Theorem 9.1. Let F be an obstruction set containing a planar graph. Then Planar F-
Deletion admits a linear vertex kernel on graphs excluding K ¢ as an induced subgraph,
where 1t is a fixed integer.

Several well studied graph classes do not contain graphs with induced K; . Of course,
every graph with maximum vertex degree at most (t—1) is Ky (-free. The class of K; 3-
free graphs, also known as claw-free graphs, contains line graphs and de Bruijn graphs.
Unit disc graphs are known to be Ky 7-free [CCJ90].

As a corollary we obtain that FEEDBACK VERTEX SET, D1amonD HrtTING SET, PATH-
wiDTH ONE DELETION SET, and OUTERPLANAR DELETION SET admit a linear vertex
kernel on graphs excluding K ¢ as an induced subgraph. With the same methodol-
ogy we also obtain a O(k log k) vertex kernel for Disjornt CycLE PACKING on graphs
excluding K ¢ as an induced subgraph. We note that DisjointT CycLe PackiNG does
not admit a polynomial kernel on general graphs [BTYo9] unless coNP C NP /poly.

We begin by recalling the fact that all YES-instances of this problem have treewidth
bounded in the parameter k (see Lemma 7.6 in Chapter 7 for a proof):

Lemma. Ler F be an obstruction set containing a planar graph of size h. If G has an F-

hitting set S of size at most X, then (G \ S) < d and w(G) < kK + d, where d =
202(14h—24)5_

115

9. Planar{F }-Deletion: Kernels on Claw-Free Graphs

116CHAPTER 9. PLANAR{F}-DELETION: KERNELS ON CLAW-FREE GRAPHS

Central to the reduction rules obtained in this chapter is the notion of a protrusion,
and a method for reducing them. Recall that a protrusion is a part of the graph that
has constant treewidth, and is “cut oft” from the rest of the graph by a constant-sized
separator. We state the result that lets us simplify protrusions whenever the problem

in question has finite integer index.

The Protrusion Rule This rule suggests the replacement of any large r-protrusion
for a fixed constant 1 that depends only on F (that is, only on the problem) with a

smaller and equivalent v-protrusion. For this, we recall Lemma 6.3 (see Chapter 6):

Lemma ([BFL" 09]). Let T be a problem that has finite integer index. Then there exists
a computable function y : N — N and an algorithm that given an instance (G,)
and an v-protrusion X of G of size at least y(v), runs in O(|X|) time and outputs an
instance (G*,K*) such that [V(G*)| < [V(G)|, kK* < K, and (G*,k*) € T if and only
if (G, k) e Tl

Remark 9.1. IfG does not have Ky 1 as an induced subgraph then the proof of Lemma 6.3
also ensures that the graph G’ does not contain Ky v as an induced subgraph. This ensures
that the reduced instance belongs to the same graph class as the original. The remark is not
only true about the class of graphs excluding Ky as an induced subgraph, but also for any
graph class G that can be characterized by either finite set of forbidden subgraphs or induced
subgraphs or minors. That is, if G is in G then the graph G’ returned by Lemma 6.3 is
also in S.

Given this setup, we are only left with the task of efliciently finding large r-protrusions
whenever the instance considered is large enough. Also, we would need to prove that
PraNAR JF-DELETION has finite integer index. These tasks are accomplished in the
next section, and in the subsequent section we perform an analysis to determine the
size of the kernel that is obtained by repeated application of the protrusion rule until

no longer possible.

9.1 Finding Protrusions

The first challenge is to argue the existence of a substantial-sized protrusion when-
ever the graph excludes K; ¢ as an induced subgraph, is a YES-instance of Pranar
F-DELETION, and is suitably large. First, recall that by Lemma 7.3, we have the fol-

lowing:

9.1. FINDING PROTRUSIONS 117
¢ Let X be some subgraph of G that has treewidth T for some constant T. We know

that given X, we can find a (27 4 2)-protrusion within X. Further, the size of this

protrusion depends inversely on the boundary of X — specifically, it turns out that

(&m0
4-PX)|+1)°

Observe that we already know of a X that would fit the result above. Consider S,

the protrusion is of size:

the approximate F-hitting set from the previous chapter. When we remove S from G,
recall that we are left with a subgraph of constant treewidth. In subsequent discussion,

we use G \ S as our choice of X.

Now, let us spend a moment considering how protrusions of the kind we find will
be useful towards kernelization. From Lemma 6.3, we know that if we have an «-
protrusion on more than y(«) vertices, the graph can be subjected to a protrusion-
based reduction. This also means that when the protrusion rule no longer applies, it
is because the size of the protrusion falls short of y(). In particular, in our situation

this means:

The size of the protrusion
N\

X
<4-|a(><)r+1> sv(r+2)

Rewriting this, we obtain:

X <v(2T+2)+4-[0(X)]+1.

This means that we have a bound on X the moment we have some bound on 0(X),
which, in our case, amounts to controlling the neighborhood of the approximate
hitting set. Observe further that a bound on X implies a bound on the size of the
entire graph: since X is G\ S, the total number of vertices is simply (|X|+S|) and |S]
is already polynomially bounded in k. Thus, our next focus is to obtain a bound
on 9(X), or the neighborhood of S; and to this end we will show the following:

¢ If F contains a planar graph of size h, G excludes K; ¢ as an induced subgraph,
and S is a F-hitting set, then 96 (G\S) = N(S) < g(h, t):|S| for some computable
function g of h and t.

118CHAPTER 9. PLANAR{F}-DELETION: KERNELS ON CLAW-FREE GRAPHS

} The F-hitting set
S| = poly(k)
The graph
w(X) =d G

s YES Ty

IS Y(2d+2) > (%)? > > > B> B> P> B> Reduce! > > > B> > P> B> (G*,k*)
(g =4N(S)+1)

IX| < qy(2d+2) N(S) <|S|- constant

|V|:|X|+|S|lsboundcd > > > > > > > > > > D> D> > D> KCrnCl!

Figure 9.1: Simplifying Protrusions: the overall scheme.

We first make the arguments towards these two statements, after which we will show
that PLANAR F-DELETION has finite integer index. The overall strategy of implement-

ing the protrusion replacement technique is shown in Figure 9.1.

9.2 Finding Protrusions

9.2.1 Bounding the boundary of X
We first show that the size of the neighborhood of any hitting set into the rest of the
graph is linear in the size of the hitting set itself.

Lemma 9.1. Let G be a graph excluding Ky « as an induced subgraph, and let F be an
obstruction that contains a planar graph of size W. Let S be an F-hitting set, and let X
denote G \'S. We then have:

P(X) < g(hyt) - [S],

Jfor some computable function g of h and t.

9.2. FINDING PROTRUSIONS 119

Proof. The boundary of X is the set of vertices in X with neighbors in S, or equiva-
lently, the neighborhood of S in X:

a(X) = [Nx(v).

veSs

Thus, we have that
PX)] <2 Les Nx(V)]
< [S]- maxyes [Nx(v)].

Therefore, notice that it suffices to bound the neighborhood of an arbitrary but fixed
vertex v € S by some function of h and t.

Since X = G\ S, by Lemma 7.6, tw(X) < d for d = 20204724 e will make use
of the well known fact that a graph of treewidth d is d+1 colorable (see Proposition 2.3
for a short proof). We will now show that [Nx(v)| < (t —1)(d + 1). Consider
the graph G[Nx(v)]. Since tw(G \' S) < d we have that tw(G[Nx(v)]) < d and
hence G[Nx(v)] is (d + 1) colorable.

Fix a coloring k of G[Nx(v)] with d + 1 colors. Notice that no color class may
admit t vertices or more: since the color classes induce an independent set, a color
class of size t or more would imply the presence of K; ¢ as an induced subgraph in G,
a contradiction. Since there are at most (d + 1) color classes with less than t vertices

in each, we have:

INx(W)I < (t=T1)(d +1).

Thus, for
g(h,t) = (t—1)(202(14"=24° 1 1),

we have [0(X) < |S| - g(h,t), as desired. O

9.2.2 Finite Integer Index

Next, we show that PLANAR F-DELETION has finite integer index. Recall Lemma 6.2,

which gives us an easy sufficient condition for proving finite integer index:

Lemma ([BFL*09]). Every strongly monotone p-MIN-MSQO problem has finite integer
index.

120CHAPTER 9. PLANAR{F}-DELETION: KERNELS ON CLAW-FREE GRAPHS

We apply Lemma 6.2 above to show that PLaNAR F-DELETION has finite integer in-
dex. (We refer the reader to Definition 6.9 in Chapter 6 for the definition of strong

monotonicity.)

Lemma 9.2. Planar F-Deletion has finite integer index.

Proof. One can easily formulate PLANAR F-DELETION in MSO, which shows that it
is a p-MIN-MSO problem (see Section 7.3 in Chapter 7). To complete the proof that
PraNAR F-DELETION has finite integer index we show that TT = PLaNAR F-DELETION
is strongly monotone. Given a t-boundaried graph G, with 9(G) as its boundary,
let S” C V(G) be a minimum set of vertices in G such that G \ S” does not contain
any graph in F as a minor. Let S = S” U 9(G).

Now for any (G’,S’) € H; such that CZ((G’,S’)) is finite, we have that G @
G'[(V(G)UV(G")) \ (SUS")] does not contain any graph in F as a minor and [S| <
C2((G',S’)) + t. This proves that PLaNAR F-DELETION is strongly monotone. By
Lemma 6.2, PLaNAR F-DELETION has finite integer index. [

9.3 Analysis and Kernel Size — Proof of Theorem 9.1

Now we combine everything we have gathered, along with Lemma 7.3 so far into a

proof of Theorem 9.1.

Proof of Theorem 9.1. Let (G, k) be an instance of PLaANAR F-DELETION and h be
the size of a smallest planar graph in the obstruction set F. We first apply Theorem 8.1,
an approximation algorithm for PLaNnar F-DELETION with factor O(log*/? OPT),
and obrtain a set S such that G \ S contains no graph in F as a minor. If the size of
the set S is more than O(klogs/ 2X) then we return that (G, k) is a NO-instance to
Pranar F-DELeTION. This is justified by the approximation guarantee provided by
the Theorem 8.1.

Now we obtain the kernel in two phases: we first apply the protrusion rule selectively
(Lemma 6.3) and get a polynomial kernel. Then, we apply the protrusion rule exhaus-
tively on the obtained kernel to get a smaller kernel. This is done in order to reduce
the running time complexity of the kernelization algorithm. To obtain the kernel we

follow the following steps.

9.3. ANALYSIS AND KERNEL SIZE — PROOF OF THEOREM ?? I21

Applying the Protrusion Rule. Let X denote V(G) \ S, and let d denote the treewidth
of G[X]. By Lemma 7.6, d < 202(14h—24)°
a 2(d + 1)-protrusion Y of G of size at least

. We apply Lemma 7.3 and obtain
W. By Lemma 9.2, PLaNAR J-
DeLETION has finite integer index. Let y : N — N be the function defined in
Lemma 6.3. Ifﬁ > v(2d+1), then using Lemma 6.3 we replace the 2(d+1)-
protrusion Y in G and obtain an instance (G*, k*) such that [V(G*)| < [V(G)], k* <
k, and (G*,k*) is a YES-instance of Pranar F-DeLeTION if and only if (G, k) is
a YES-instance of Pranar F-DELETION . Recall that G* also excludes Kj ¢ as an

induced subgraph.

Let (G*, k*) be a reduced instance with hitting set X. In other words, there is no (2d+
2)-protrusion of size y(2d +2) in G*\ X, and Protrusion Rule no longer applies. We
claim that the number of vertices in this graph is bounded by O(klog®/? k). Indeed,
since we cannot apply the Protrusion Rule, we have that % < v(2d + 2).

Because k* < k, we have that
V(G| < v(2d + 2)(40(X)] + 1) + [S].
By Lemma 9.1, [9(X)| < g(h,t) - [S| and thus

V(G*)I = O(v(2d +2) - klog** k) = O(klog™* k).

'This gives us a polynomial time algorithm that returns a vertex kernel of size O(klog®/? k).

Now we give a kernel of smaller size. We would like to replace every large (2d + 2)-
protrusion in graph by a smaller one. We find a (2d + 2)-protrusion Y of size at
least y(2d + 2) by guessing the boundary 9(Y) of size at most 2d + 2. This could be
performed in time k©(4). So let (G*, k*) be the reduced instance on which we cannot
apply the Protrusion Rule. If G is a YES-instance then there is a F-hitting set X of size
at most k such that tw(G\X) < d. Now applying the analysis above with this X yields
that |[V(G*)| = O(k). Hence if the number of vertices in the reduced instance G*,
to which we can not apply the Protrusion Rule, is more than O(k) then we return
that G is a NO-instance. This concludes the proof of the theorem. O

Corollary 9.2. FEepBack VERTEX SET, DiamonD Hrtting SET, PATHWIDTH ONE
DELETION SET, OUTERPLANAR DELETION SET admit linear vertex kernel on graphs ex-

cluding K as an induced subgraph.

The methodology used in proving Theorem 9.1 is not limited to PLaNAR F-DELETION.
For example, it is possible to obtain an O(klog k) vertex kernel on Ky ¢-free graphs for

122CHAPTER 9. PLANAR{F}-DELETION: KERNELS ON CLAW-FREE GRAPHS

Disjoint CycLE PackiNG, which is for a given graph G and positive integer k to de-
termine if there are k vertex disjoint cycles in G. It is interesting to note that DisjoiNT
CycLe PAckING does not admit a polynomial kernel on general graphs [BTYo9]. For
our kernelization algorithm, we use the following Erd8s-Pésa property [EP65b]: given
a positive integer £ every graph G either has { vertex disjoint cycles or there exists
aset S C V(G) of size at most (4€1log) such that G \ S is a forest. So given a
graph G and positive integer k, we first apply the factor 2 approximation algorithm
given in [BBF99] and obtain a set S such that G\ S is a forest. If the size of S is more
than (8klogk) then we return that G has k vertex disjoint cycles. Else, we use the
fact that DisjoinT CycLE Packing [BFL" 09] has finite integer index and apply the
protrusion reduction rule in G \ S to obtain an equivalent instance (G*,k*), as in
Theorem 9.1. The analysis for kernel size used in the proof of Theorem 9.1 together
with the observation that tw(G \ S) < 1 shows that if (G, k) is a yes instance then the
size of V(G*) is at most O(k log k).

Corollary 9.3. Disjoint CycLe PackiNG has O(klogk) vertex kernel on graphs ex-
cluding Ky as an induced graph.

10. O -Deletion

To every problem, there is a most simple solution.

{1}4#14 Christie

But the simplest t/u'nﬁ is ﬂ/zﬁm/t

Karl Von Clausewitz

Let 6. be a graph with two vertices and ¢ > 1 parallel edges (see Figure 10.1). The
result that will be the focus of this chapter is the following theorem.

Theorem 10.1. Let F be an obstruction set containing ©.. Then Planar F-Deletion
admits a kernel of size O (k? log®/% X).

Although the theorem addresses a restricted case of the PLANAR F-DELETION problem,
its applicability is not restricted to any graph class and it holds in general.

We use ©.-DELETION to refer

to the problem of Pranar F-

DeLETION When 0, € F. Also,

we use the term 0.-hitting set to

refer to a subset of vertices S such _@_
that G \ S does not contain any

minor models of 0. 07

A number of well-studied NP-
hard combinatorial problems are Figure 10.1: The 0 graph, for ¢ = 7.
special cases of ©O.-DELETION.
When ¢ = 1, this is the classi-
cal VErTEX COVER problem [NT74]. For ¢ = 2, this is another well studied prob-
lem, the FEEDBACK VERTEX SET problem [BBF99, BYGNR98, CGHW98, Kar72].

When ¢ = 3, this is the Diamonp Hrrring SET problem [F]Pr1o].

We note that the size of the best known kernel for ¢ = 2 is O(k?), which is very close
to the size of the kernel in Theorem 10.1. Further, Dell and van Melkebeek showed
that no NP-hard vertex deletion problem based on a graph property that is inherited

123

124 CHAPTER 10. O¢-DELETION

by subgraphs can have kernels of size O(k?~¢) unless coNP C NP/poly [DvM1o].
Thus, the sizes of the kernels in Theorem 10.1 are tight up to a polylogarithmic factor.

In this chapter, we combine ideas from previous chapters involving kernelization for
INDEPENDENT FEEDBACK VERTEX SET (Chapter 5) and PLANAR F-DELETION on claw-
free graphs (Chapter 9). Our first goal is to reduce vertices of “large” degree so as to
obtain an equivalent instance where the maximum degree is bounded. In particu-
lar, we will be reduce any given instance to a graph where the maximum degree is
bounded by some polynomial in k. Notice that having done this, we have arrived at a
subclass of k©(1)_claw-free graphs. At this stage, we appeal to the procedures applied
for PLANAR F-DELETION on claw-free graphs to complete the reduction.

Our understanding of the minor models of 0, from Section 7.3 of Chapter 7 will be
useful in proving the reduction rule that bounds the maximum degree of the graph.
This reduction rule will involve an application of the g-expansion lemma, in a manner

that is similar to its application in the context of INDEPENDENT FEEDBACK VERTEX

Set (c.f. Chapter s).

ro.1 Finding hitting sets excluding a fixed vertex

Consider a vertex v € V(G). The kernelization algorithm requires a hitting set T,
of size kO for all minor models of 0. passing through v, assuming that v is not at
the center of a 6. flower of size more than k (see Chapter 7 for the definition of a
0.-flower). It is required that v ¢ T,. In this section, we show that such a hitting set
can be found in polynomial time provided G \ {v} does not contain any minor model
of 0, that is, all minor models of 6. in G pass through v. Note that this is along
the lines of Corollary 2.1 in [Tho1o] (see Theorem 5.1), which achieved the same
result except that the flowers were formed of cycles. Here, we have a more general
structure, namely minor models of 6.. In due course, we will apply this algorithm
as a subroutine in finding hitting sets of minor models passing through a vertex v
without any assumption on G \ {v}.

Lemma 10.1. Let G be a n-vertex graph containing O, as a minor and v be a vertex
such that G' = G \ {v} does not contain 0. as a minor and the maximum size of a
Sflower containing v is at most k. Then there exists a set T, of size O(k) such thatv ¢ T,
and G\ T,, does not contain ©. as a minor. Further, we can find the set T,, in polynomial
time.

10.1. FINDING HITTING SETS EXCLUDING A FIXED VERTEX 12§

Proof. We first recall Lemma 7.7, because of which we know that the treewidth of a
graph that does not contain 6. as a minor is bounded by (2c —1). Thus, in particular,
the treewidth of G is at most (2¢ — 1).

The algorithm for finding T, is exactly along the lines of the first approximation al-
gorithm in Chapter 8. We only need a different choice of the 3 function to work
with.

We first find an approximate tree decomposition of width € using an algorithm of
Feige et al. [FHLo8] such that

w(G) <€ < d'w(G)/log tw(G),

where d’ is a fixed constant. Since tw(G’) < (2¢ — 1) = O(1), we know that the

treewidth of the approximate tree decomposition is also a constant.

We convert the given tree decomposition to a nice tree decomposition of the same
width in linear time [Klog4]. Given a nice tree decomposition (T, X = {Xi}tev (1))
of a graph G, recall that H; refers to the subgraph induced on the union of vertices
appearing in all bags present in the subtree rooted at t, except the vertices at the bag
corresponding to node t itself. Notationally,

Hy = Gt[V(Gt) \Xt]-

Further, we let Mg, (G, V) to denote the maximum number of minor models of 0, in
the graph G, whose vertex sets intersect precisely at v. In other words, Mg, (G, V) is
the size of the largest 6.-flower passing through v.

We define the function : V(T) — N as follows:
ﬁ(t) = 9:)/IE)C(Ht U {V},V),

that is, the value of § at a node t is size of the largest 6. flower centered at v in the
graph Hy U {v} (recall that the tree decomposition computed is of the graph G’, that

does not contain v).

Notice that the value of 3 is zero at the leaves, and as we move our way up the tree
starting from the leaves, 3 is non-decreasing — that is, it either increases or stays the

same:

o Iftis a leaf node, H; is empty, and tw(Hy) is zero.

126 CHAPTER 10. O¢-DELETION

e Iftisan introduce node, and s is the child of t, then H; and H correspond to the
same graph and the value of 3 does not change.

o If t is a forget node, and s is the child of t, then H; has at most one vertex more
than Hy, and the number of minor models of 8 vertex disjoint except for vin (HsU
{v}) is at most one more than the number of them (H; U {v}).

o If t is a join node with children r and s, it is evident that the number of vertex

disjoint minor models of 6. in H; is at most
mec (Hs U {V})V) + fmec (HT‘ U {V}y\)))

and in this case as well, the value of () does not decrease from what it was at the

child nodes.

We compute () in a bottom-up fashion, starting at the leaves. Notice that the value
of B() at any node t is in fact the same as the maximum size of a 0. flower passing
through v in the graph H U{v}, and thus the computation of 3() is polynomial time
(c.f. Lemma 7.4). Starting from the leaves, let t be the earliest node at which the
value of () becomes non-zero. Since 3() is a non-decreasing function from leaves to
root, the node t can be identified unambiguously, except when (1) = 0, and t does

not exist. In this case, we return the empty set and abort.

Else, let G* be the graph induced on the vertex set V(G’) \ H¢ and let S be the subset
of vertices in the node corresponding to the bag s, where s is the child node of t (in
case t is a join node, we let s refer to either of the children). We now recursively solve
the problem on G*, after including S in our solution. Notice that the base case is

achieved when the graph G’ U {v} has no minor models of 0..

Running Time: Observe that each recursive call provides evidence for at least minor
model of 6. passing through v, vertex-disjoint from those discovered by previous
recursive calls. Since the size of the largest 0, flower passing through v is at most k, the
number of recursive calls is easily seen to be at most k. Since we spend only polynomial
time in computing an approximate tree decomposition and the (3() function, the

algorithm runs in polynomial time.

Correctness: Our proof is by induction on the depth of recursion. The base case is
easily seen to be correct: if the size of the largest 0. flower passing through v is zero,

then there are no minor models to be hit, and the algorithm returns an empty set.

10.1. FINDING HITTING SETS EXCLUDING A FIXED VERTEX

t: {b,x,y}

[yt | [{byxu})

{b,x}

{b}

{a, b} [{a, b}] Introduce nodes
‘ \ Join nodes
[{b}] { {a,b,c} } Forget nodes
Leaf nodes
{a,b}
{a}

A cross-section of a nice tree-decomposition

Figure 10.2: An example of 3() at a join node

B(t) = Mo (Gla,ctU{vi])

127

128 CHAPTER 10. O¢-DELETION

Let us continue to use the notation used in the description of the algorithm. The
inductive hypothesis is that the algorithm correctly returns a hitting set for minor
models of 8. passing through v in the graph G*. It remains to be shown that all the
minor models of 0. passing through v in the graph H U {v} are hit by S, that is,
(Hy U{v}) \' S contains no minor models of ..

This is easily seen by contradiction: indeed, if not, then Hg U {v} contains minor
models of 6. and (s) is non-zero, contradicting the fact that t is the earliest node at

which () assumes a non-zero value.

The Size of the Solution: We have at most k recursive calls. Let s1,..., s, denote
the bags whose vertices were picked at recursion levels 1,. ..,k respectively. Recall
that the treewidth of G, the graph at the topmost level of recursion, was seen to be
a constant. The graphs we work with at any deeper levels of recursion are subgraphs
of G’, and their treewidth is at most the treewidth of G’, and therefore a constant.
Therefore, we have that

’Xsi| = 0(1))

where we use X; to denote the vertices in the bag at node s of a tree decomposition.
We may hence conclude that the size of the solution obtained is k - tw(G’) = O(k).

]

10.2 Reducing the Maximum Degree of the Graph

In this section, we describe the reduction rules used by the kernelization algorithm.
In contrast to the reduction rules employed by most known kernelization algorithms,
these rules cannot always be applied on general graphs in polynomial time. Hence
the algorithm does nor proceed by applying these rules exhaustively, as is typical in
kernelization programs. We describe how to arrive at situations where these rules can
in fact be applied in polynomial time, and prove that even this selective application

of rules results in a kernel of size polynomial in the parameter k.

We present a set of reduction rules which, given an input instance (G, k) of ©,-
DELETION, obtains an equivalent instance (G’,k’) where k’ < k and the maximum
degree of G’ is at most a polynomial in k. This part of the kernelization program for

©.-DELETION is along the lines of the degree reduction procedures employed for the

10.2. REDUCING THE MAXIMUM DEGREE OF THE GRAPH 129

Figure 10.3: An example of a 05 flower of size 4. If k = 3, then the flower rule

would involve deleting the vertex v and reducing k to 2.

FeepBACK VERTEX SET (see [Tho10]) and the INDEPENDENT FEEDBACK VERTEX SET
(see Chapter 5) problems.

For this discussion, we say that a vertex v is irrelevant if it is not a part of any 0, minor

model, and is relevant otherwise. For each rule below, the input instance is (G, k).

Reduction Rule 10.1 (Irrelevant Vertex Rule). Delete all irrelevant vertices in G.

Recall that given a graph G and a vertex v € V(G), an O -flower of size { passing
through v is a set of { different 6, minor-models in G, each containing v and no two

sharing any vertex other than v (see Figure 10.3 for a simplified example).

Reduction Rule 10.2 (Flower Rule). Ifa 0 -flower of size greater than k passes through a
vertex v of G, then includev in the solution and remove it from G to obtain the equivalent
instance (G \ {v}, (k —1)).

The argument for the soundness of these reduction rules is straight forward. One can
test whether a particular vertex v is part of any minimal minor-model corresponding
to 0. using the rooted minor testing algorithm of Robertson and Seymour [RS95].
It is not clear, however, that we can check whether a vertex is a part of a 6. flower of
size greater than k in polynomial time. We defer the application of the flower rule
and apply it only when the problem of finding a 6. flower of size greater than k can

be solved in polynomial time.

130 CHAPTER 10. ©c-DELETION

Given an instance (G, k) of ©.-DEeLETION, we first apply Lemma 8.1 on (G, k). The
polynomial time algorithm described in Lemma 8.1, given a graph G and a positive
integer k either reports that G has no 8.-hitting set of size at most k, or finds a 6.-
hitting set of size at most O(k log®>/?). If the algorithm reports that G has has no
0. -hitting set of size at most k, then we return that (G, k) is a NO-instance of ©.-
DeLeTION. Else, we assume that we have a hitting set 8 of size O(klog®? k). Now
we proceed with a description of the selective application of the flower rule, and the
process of obtaining hitting sets H,, for minor models of 0. that pass through a vertex

v. The latter is a non-trivial task since we require thatv ¢ H,,.

To apply the Flower Rule selectively we use 8, the 0.-hitting set. For a vertexv € 8
let 8, :=8\{v}andlet G, := G\ 8,. By Lemma 7.7, we know that if the treewidth
of a graph is more than (2c—1), the the graph contains 6. as a minor. Since deleting v
from G,, makes it 0.-minor-free, tw(G,) < (2c—1)+1 = O(1). Now by Lemma 7.4,
we find in linear time the size of the largest flower centered at v, in G,.. If for any
vertex v € 8 the size of the flower in G, is at least k+ 1, we apply the Flower Rule and
get an equivalent instance (G = G \ {v},k «— k —1). We apply the Flower Rule in
such a manner until no longer possible. We abuse notation and continue to use (G, k)
to refer to the instance that is reduced with respect to exhaustive application of the
Selective Flower Rule. Thus, for every vertex v € § the size of any flower passing

through v in G, is at most k (see Figure 10.4).

Now we describe how to find, for a given v € V(G), a hitting set H,, C V(G)\{v} for
all minor-models of 6. that contain v. Since this hitting set is required to exclude v,
H, cannot be the trivial hitting set {v}. If v ¢ 8, then H,, = 8. On the other hand,
suppose v € 8. Since the maximum size of a flower containing v in the graph G, is
at most k by Lemma 10.1, we can find a set T, of size O(k) that does not contain
v and hits all the 6. minor-models passing through v in G,. Hence in this case we
set Hy, = 8, UT, (See Figure 10.5.). We denote [H,| by h,. Notice that H, is defined
algorithmically, that is, there could be many small hitting sets in V(G) \ {v} hitting

all minor-models containing v, and H,, is one of them.

We now turn to the last and most elaborate reduction rule of this section. This is the

reduction rule that involves an application of the g-expansion lemma, with q = c.

Given an instance (G, k), 8, and a family of sets H,,, we show that if there is a vertex v
with degree more than ch,+c(c—1)h,, then we can reduce its degree to at most ch,, +
c(c — 1)h, by repeatedly applying the g-expansion lemma with q = c. Observe that

131

10.2. REDUCING THE MAXIMUM DEGREE OF THE GRAPH

*o[n1 uononpar uanbasqns a1 10§ [NJasn aq [A s19s Jumry AYY ‘Y P A IBYI YONS ‘A
ysnorys Surssed sppow oUW [[€JO () 4 9ZIS JO A} 395 SUMIY B puly 01 3[qIsed) s 1 10 ‘sardde 1oyate Symy samopg oy, :Fo1 amBiy
‘9 ur A ySnory Surssed "4 P a ey yons ‘o) ur A ygnoxy Surssed sppow 1ourw g
S[epow Jouru e sy g N 4| [[& 707 395 umIIy B | SN S9AIS 1°0T BUIWID

>WD>|_||v>I 49 49 9499 994994994 A.mDM—QQNH.OHNEED‘H

'213-2g st {a} \ ‘9 3 S Tomop 15331e] Jo I7ZI§

A

ON &

A

(A%D) << << << [POPR« <« « « « ;a 01 Adde opn1 1omop ayp a0
" SAA LT

132 CHAPTER 10. O¢-DELETION

&W%

OOOO OOOOS

\/

Sy
Figure 10.5: The hitting set in Selective Flower Rule

for every vertex v the set H,, is also a 6 hitting set for G, that is, H,, hits 2// minor-
models of 0. in G.

Let v be a fixed vertex whose degree is more than ch, + c(c — 1)h,. Consider
the graph G \ H,. Let the components of this graph that contain a neighbor of v
be Cy,Cs,...,Cy. Note that v cannot have more than (¢ — 1) neighbors into any
component, else contracting the component will form a 6. minor and will contradict
the fact that H, hits all the 8, minors. Also note that none of the C;’s can contain a

minor model of 0.

We say that a component C; is adjacent to H, if there exists a vertex u € C; and w €
H, such that (u,w) € E(G). Next we show that vertices in components that are
not adjacent to H, are irrelevant in G. Recall a vertex is irrelevant if there is no
minimal minor model of 6, that contains it. Consider a vertex u in a component C
that is not adjacent to H,. Since G[V(C) U {v}] does not contain any 6. minor
we have that if u is a part of a minimal minor model M C G, then v € M and
also there exists a vertex u' € M such that u' ¢ C U {v}. Then the removal of v
disconnects u from u’ in M, a contradiction to Observation 7.2 that for ¢ > 2, any
minimal 6. minor model M of a graph G does not contain a cut vertex. Applying
the Irrelevant Vertex Rule to the vertices in all such components leaves us with a new
set of components D1, D;, ..., Ds, such that for every i, in Dj, there is at least one

vertex that is adjacent to a vertex in H,,.

As before, we continue to use G to refer to the graph obtained after the Irrelevant
Vertex Rule has been applied in the context described above. We also update the
sets H, for v € V(G) by deleting all the vertices w from these sets those have been

removed using Irrelevant Vertex Rule.

10.2. REDUCING THE MAXIMUM DEGREE OF THE GRAPH 133

Figure 10.6: A picture of two c-stars, ¢ = 5.

Now, consider a bipartite graph G with vertex bipartitions H, and D. Here D =
{d1,...,ds} contains a vertex d; corresponding to each component D;. We add an
edge (v, d;) if there is a vertex w € D; such that (v,w) € E(G).

Even though we start with a simple graph (graphs without parallel edges) it is possible
that after applying reduction rules parallel edges may appear. However, throughout
the algorithm, we ensure that the number of parallel edges between any pair of vertices
isat most c. Now, v has at most ch,, edges to vertices in H,,. Since v has at most (¢c—1)
edges to each Dj, it follows that if d(v) > ch, + c(c — T)h,, then the number of
components |D| is more than ch,. Now by applying q-expansion lemma with q =
¢, A =H,,and B = D, we findasubset S C H, and T C D such that S has |S| c-stars
in T (see Figure 10.6) and N(T) = S (see Figure 10.7).

The reduction rule involves deleting edges of the form (v,u) for all u € Dj, such
that d; € T, and adding c edges between v and w for all w € S. We add these edges
only if they were not present before so that the number of egdes between any pair of
vertices remains at most ¢. For example, if v and w are non-adjacent, we add ¢ edges,

if v and w have ¢ edges between them, then we add no extra edges.
Reduction Rule 10.3 (The Expansion Rule). Lezv be a vertex whose degree is more than
ch, +c(c —1)h,,

where h, := |H,|, and H, is a O.-hitting set for all © .-minor models passing through v.
Let G be the bipartite graph with vertex bipartitions Hy, and D, where D = {d,, ..., ds}

134 CHAPTER 0. ©c-DELETION

Figure 10.7: A picture of two c-stars, ¢ = 5.

H,

(oo oo ooeoees)

Figure 10.8: The first part of Reduction Rule 10.3. Involves deleting edges incident

on v with their other endpoints in T. Vertices labeled % belong to S
and vertices colored red are in T.

10.2. REDUCING THE MAXIMUM DEGREE OF THE GRAPH 135

Figure 10.9: Part two of Reduction Rule 10.3. Vertices of T have been omitted for

clarity.

contains a vertex Q; corresponding to each component D; of G \ H,, and a vertexx € H,
and di € D are adjacent if there exists a vertex in the component Dy that is adjacent to
X.

Apply the q-expansion lemma with q = c, A =H,, and B = D 1o find subsets S C H,,
and T C D such that S has |S| c-stars in T and N(T) = S.

& Delete all edges of the form (v,) for allw € Dy, such that d; € T. (See Figure 10.8.)

& Add edges between v andw for allw € S in such a way that the total number of edges
between v and w is exactly c. That is, and if v and w have (c — 1) edges between
them, we add v extra edges between them. (See Figure 10.9.)

This completes the description of the q-expansion reduction rule with q = c. Let Gg
be the graph obtained after applying the reduction rule. The following lemma shows

the correctness of the rule.

Lemma 10.2. Let G, S and v be as above and Gy be the graph obtained after applying
the c-expansion rule. Then (G, k) is an yes instance of ©-Deletion if and only if (Gg, k)
is an yes instance of ©-Deletion.

Proof. We first show that if G has hitting set Z of size at most k, then the same hitting
set Z hits all the minor-models of 0. in G. Observe that either v € Z or S C Z.
Suppose v € Z, then observe that Gg \ {v} is the same as G \ {v}. Therefore Z\ {v},

136 CHAPTER 10. ©c-DELETION

a hitting set of Gg \ {v} is also a hitting set of G \ {v}. This shows that Z is a hitting
set of size at most k of G. The case when S C Z is similar.

To prove that a hitting set of size at most k in G implies a hitting set of size at most k
in Gg, it suffices to prove that whenever there is a hitting set of size at most k, there
also exists a hitting set of size at most k that contains either v or all of S. Consider
a hitting set W that does not contain v, and omits at least one vertex from S. Note
the [S| c-stars in G[8 U T, along with v, correspond to minor-models of 0, centered
at v in G, vertex-disjoint except for v. Thus, such a hitting set must pick at least one
vertex from each of the components. Let D be the collection of components D; such
that the (corresponding) vertex d; € T. Let X denote the set of all vertices of W
that appeared in any D; € D. Consider the hitting set W’ obtained from W by
removing X and adding S, thatis, W’ := (W \ X) U S.

We now argue that W’ is also a hitting set of size at most k. Indeed, let S’ be the set
of vertices in S that do not already belong to W. Clearly, for every such vertex that W
omitted, W must have had to pick distinct vertices from D to hit the 6. minor-models
formed by the corresponding c-stars. Formally, there exists a X’ C X such that there
is a bijection between S’ and X', implying that [W'| < [W| < k.

Finally, observe that W/ must also hit all minor-models of 6. in G. If not, there exists
a minor-model M that contains some vertex u € X. Hence, u € D; for some 1,
and M contains some vertex in H,, \ S. However, v separates u from H, \ Sin G\ S,

contradicting Observation 7.2 that M does not contain a cut vertex. This concludes

the proof.]

Observe that all edges that are added during the application of the g-expansion re-
duction rule have at least one end point in 8, and hence 8 remains a hitting set of Gg.
We are now ready to summarize the algorithm that bounds the degree of the graph
(see Algorithm 4).

Now we are ready to prove the lemma which bounds the maximum degree of the

instance.

Lemma 10.3. There exists a polynomial time algorithm that, given an instance (G, k)
of Oc-Deletion returns an equivalent instance (G',X’) such that X' < k and that the
maximum degree of G' is O(klog*?x).

Proof. Let the instance output by Algorithm 4 be (H,1). By the correctness of re-

duction rules 10.1,10.2, and 10.3, it is clear that the instance (H, 1) is equivalent to

10.2. REDUCING THE MAXIMUM DEGREE OF THE GRAPH 137

Algorithm 3 Bounp-DEGREE-PRELUDE(G, k)

I:

N

10:
IT:
I2:
13:
14:
Is:
16:
17:

N Row

Apply reduction rule 10.1, the Irrelevant Vertex Rule, and let (G*, k*) denote the
reduced instance.
if (G*,k*) = (G, k) then
Continue.
else
Return BouND-DEGREE-PRELUDE(G™, k*).
end if
Apply Lemma 8.2. If the output of the algorithm is NO, then return NO and
abort. Else, let § denote an approximate hitting set of size O(klog>/* k).
Forv € 8 determine if v is at the center of a .-flower of size greater than k in
the graph (G \ 8) U{v}, using Lemma 7.4.
if v is at the center of a 0. flower of size greater than k then
Apply reduction rule 10.2 and let (G*, k*) denote the reduced instance.
Return BouNDp-DEGREE-PRELUDE(G*, k*).
else
Find T, using Lemma r1o0.1.
Let H, := T, US8,, where 8, := 8 \ {v}.
end if
Forv ¢ 8, let H, := 8.
Return [G, k,{H, | v € V(G)].

the input instance (G, k). Further, by Lemma r10.2, the degree of every vertex in H
is at most ch, + c(c — 1)h, < O(klog®?k). It only remains to be shown that
Algorithm 4 runs in polynomial time.

Forv € V(G), let A(v) be the number of neighbors of v to which v has fewer than ¢

parallel edges. Observe that the application of g-expansion reduction rule never in-

creases A(v) for any vertex and decreases A(v) for at least one vertex. The other rules

delete vertices, which can never increase A(v) for any vertex. Thus with each applica-

tion of any reduction rule, the value of

Z AV) | +n

veV(G)

decreases by at least one, and since

D A <n?,

veV(G)

138 CHAPTER 10. ©c-DELETION

Algorithm 4 Bounp-DEeGREE(G, k)

1: X := BouND-DEGREE-PRELUDE(G, k).
: Let G,k and H, forv € V(G) be as given by X.

IS

3: forv e V(G) do

4 if d(v) > ch, + c(c — 1)h, then

5: Apply Reduction Rule 10.3, and let (G*, k*) denote the reduced instance.
6: Return Bounp-DEGREE(G*, k*).

7 end if

8: end for

: Return (G, k).

o

it is clear that the algorithm runs in polynomial time.

This concludes the proof.]

10.3 Protrusion-Based Reductions

At this point, we have shown that any instance of ©.-DELETION can be reduced to
one where the maximum degree is bounded by O(klog®? k).

If Lemma 10.3 returns that (G, k) is a NO-instance to ©.-DELETION then we return
the same. Else we obtain an equivalent instance (G’,k’) such that k’ < k and the
maximum degree of G’ is bounded by O(k 10g3/ 2X). We also have a 0 -hitting set,
S, of G’ of size at most O(klogg/ 2X) from Lemma 8.2. Let d denote the treewidth
of the graph after the removal of S, thatis, d := tw(G \ S).

Now, we obtain our kernel in two phases: we first apply the protrusion rule selec-
tively (Lemma 6.3) and get a polynomial kernel. Then, we apply the protrusion rule
exhaustively on the obtained kernel to get a smaller kernel. To obtain the kernel we

follow the following steps.

Applying the Protrusion Rule. By Lemma 7.7, the treewidth of a graph that does not

contain 6. as a minor is bounded by (2c — 1). Hence d < 2¢ — 1. Now we apply
V(6NI-Is|
4IN(S)+1 "
Lemma 9.2, ©.-DELETION has finite integer index. Lety : N — N be the function

defined in Lemma 6.3. Hence if W > v(2d + 1) then using Lemma 6.3

we replace the 2(d + 1)-protrusion Y of G’ and obtain an instance G* such that

Lemma 7.3 and get a 2(d + 1)-protrusion Y of G’ of size at least

10.3. PROTRUSION-BASED REDUCTIONS 139

IV(G*)| < [V(G")], k* < k/, and (G*,k*) is a YES-instance of ©.-DEeLETION if and
only if (G’,k’) is a YES-instance of ©.-DELETION .

Before applying the Protrusion Rule again, if necessary, we bound the maximum de-
gree of the graph by reapplying Lemma 10.3. This is done because the application
of the protrusion rule could potentially increase the maximum degree of the graph.
We alternately apply the protrusion rule and Lemma 10.3 in this fashion, until either
Lemma 10.3 returns that G is a NO instance, or the protrusion rule ceases to apply.
Observe that this process will always terminate as the procedure that bounds the max-
imum degree never increases the number of vertices and the protrusion rule always

reduces the number of vertices.

Let (G*,k*) be a reduced instance with hitting set S. In other words, there is no
(2d + 2)-protrusion of size y(2d + 2) in G* \ S, and the protrusion rule no longer
applies. Now we show that the number of vertices and edges of this graph is bounded
by O(k?log’ k). We first bound the number of vertices. Since we cannot apply the

Protrusion Rule, W < v(2d + 2). Since k* < k this implies that

v(2d +2)(4IN(S)|+ 1) + S|

v(2d + 2)(4IS|A(G*) + 1) + [S]

v(2d + 2)(O(klog*? k) x O(klog®? k) + 1) + O(klog*? k)
O(k? log” k).

IV(G™)]

YA/ AN/ANIV/AN

To get the desired bound on the number of edges we first observe that since tw(G* \
S) < (2¢ — 1) = d, we have that the number of edges in G* \ S < d|V(G*) \
S| = O(k?log® k). Also the number of edges incident on the vertices in S is at most
S|+ A(G*) < O(k?(log k)?). This gives us a polynomial time algorithm that returns
a kernel of size O(k? log> k).

Now we give a kernel of smaller size. To do so we apply combination of rules to
bound the degree and the protrusion rule as before. The only difference is that we
would like to replace any large (2d + 2)-protrusion in graph by a smaller one. We
find a 2d + 2-protrusion Y of size at least y(2d + 2) by guessing the boundary 9(Y)
of size at most 2d + 2. This could be performed in time k®(%), So let (G*, k*) be the
reduced instance on which we can not apply the Protrusion Rule. Then we know that
A(G*) = O(klog®? k). If G is a YES-instance then there exists a 0.-hitting set S of
size at most k such that tw(G \ S) < (2c — 1) = d. Now applying the analysis above
with this S yields that [V(G*)| = O(k?log®/?k) and [E(G*)| < O(k?log*/* k).

Hence if the number of vertices or edges in the reduced instance G*, to which we can

140 CHAPTER 10. ©c-DELETION

not apply the Protrusion Rule, is more than O(k? log®/? k) then we return that G is
a NO-instance. With this, we have a proof of Theorem 10.1.

Theorem 10.1 has following immediate corollary.

Corollary 10.2. 7he VErTEX COVER, FEEDBACK VERTEX SET and DiamonD HitTING
SET problems, when parameterized by solution size, admit kernels of size O (k* log®/? k).

We note, however, that VERTEX CoVER and FEEDBACK VERTEX SET are among the
most deeply studied problems from the point of view of kernelization, and admit
smaller kernels — specifically, VErTEX CoVER (see [Nieo6]) is known to have a kernel
on 2k vertices and FEEDBACK VERTEX SET is known to have a kernel on O(k?) vertices

and edges (see [Tho1o]).

The greatest c/m//anje to any thinker
is stating the problem in a way that will allow a solution.

Berdrand Kussel

Wait a minute, wait a minute.

You ain't heard nothin’yet!

714 Jazz J/yen

In this chapter we introduce the disjoint version of the PLANAR F-DELETION problem,
and show that it has a polynomial kernel on general graphs. The disjoint version of the
problem, Di1sjoINT PLANAR F-DELETION, is similar to PLANAR F-DELETION, except
for the following:

e asubset S of (k + 1) vertices in the input graph G are declared forbidden,
e G\ S and GIS] contain no minor models of any graph in F, and
e we seck a F-hitting set of size at most k that does not contain any of the forbidden

vertices.

This style of reformulation is actually common in the literature because of a technique
used to obtain faster FPT algorithms called iterative compression. "The technique in-
volves starting with a sub-optimal solution and improving it iteratively, and the “dis-
joint” version is typically what is encountered at every iteration of this technique.
Iterative compression has been a vastly successful technique for achieving fast FPT
algorithms. It was used for improving the running time of the FEepBACK VERTEX SET
problem, and the intermediate problem encountered therein was called the Forest
BrpArTITION problem (see [CFL" 08, CCL10]). The input to FOREST BIPARTITION is
a graph G and a partition of V(G) into two parts A and B such that G[A] and G[B]
are forests. The goal is to find S C B, of size at most k, such that G\ S is a forest. The
DisjoINT PLANAR F-DELETION can be thought of as a considerably generalized version
of this problem, and as we will see later in this chapter, we are able to use the kernel-
ization algorithm for the disjoint version as a subroutine in an iterative compression
algorithm to obtain a faster FPT algorithm for PLanar F-DELETION.

141

77. Dzls/bthf Planar F -deletion

142 CHAPTER 11. DISJOINT PLANAR F-DELETION

G\S S

The graphs G \ S and G[S] contain no minor models of graphs in F.
A F-hitting set of size at most k in G \ S is sought.

Figure 11.1: The disjoint version of PLANAR J DELETION.

Formally, the problem is the following:

DisjoiNT PLANAR F-DELETION

Input: A graph G, a family of graphs &, a positive integer k and a F-hitting set S
of size (k + 1).

Parameter: k

Question: Does there exist a F-hitting set X such that [X| < k,and SN'S = 02

In this chapter, we demonstrate a polynomial kernel for D1sjoiNT PLANAR F-DELETION.

Theorem 11.1. 7he DisjoINT PLANAR F-DELETION problem has an O (k) annotated
kernel that does not increase the parameter. D1SJOINT PLANAR F-DELETION also has a
polynomial kernel.

Theorem 11.1 has an important corollary:

klogk).,2

Corollary 11.2. There exists an algorithm for Planar F-Deletion that runs in time 2°' n-.
The road map for demonstrating a polynomial kernel for D1sjoINT PLANAR F-DELETION

is similar to our previous kernelization algorithms: we observe the protrusion reduc-

tion rule applies to the problem, and demonstrate that any instance of large enough

size is either a NO instance or contains a protrusion that can be reduced.

11.1. COMBINATORIAL TOOLS 143

So far, our strategy for demonstrating protrusions on sufficiently large YES instances
had been to exploit an approximate hitting set and the structure of the rest of the
graph. In this chapter, however, we use the decomposition lemma introduced in
Chapter 7. This lemma is applied to an instance of DisjoiNT PLANAR F-DELETION
to find protrusions in large instances, and the protrusions are reduced thereafter. The
application involves exploiting the situation of the problem, namely that G[B] and
G \ B do not contain some constant-sized planar graph as a minor. It turns out that
we can think of an instance of D1sjoINT PLANAR F-DELETION as the incidence graph
of a hypergraph, where the incidence graph excludes the complete graph on a constant
number of vertices as a minor. The number of edges in such graphs is subject to known

bounds, and these results are also stated and used in this chapter.

However, finding protrusions in the case of DisjoINT PLANAR F-DELETION is not
enough, because we are unable to demonstrate that the problem has finite integer in-
dex. However, we are able to show that an important equivalence relation, different
from the canonical one, but devised to suit the DisjoiNT PLANAR F-DELETION prob-
lem, has finite index, and this leads to a more careful protrusion replacement tech-
nique that works to give us a polynomial kernel. The application of the decomposition
lemma, and the workarounds to handle the fact that DisjoiNT PLANAR F-DELETION
is not suitable for protrusion-based reductions right away, form the essence of this

chapter.

11.1 Combinatorial Tools

We describe some results about hypergraphs that will be subsequently utilized in the

analysis of kernelization.

11.1.1 Hypergraph Lemmata

A hypergraph 3 consists of a vertex set V(I3{), and a hyperedge set E(3{) of subsets of
V(H). A hypergraph is simple if it has no multiple hyperedges and all its hyperedges
have arity at least 2. The incidence graph of a hypergraph 3{ is the bipartite graph I(3)
on the vertex set V(H) U E(H) such that v € V(H) is adjacent to e € E(H) in I(HK)
if and only if v € e. (See Figure 11.2 for an example.)

144 CHAPTER 11. DISJOINT PLANAR F-DELETION

abcdef?8

bl

Figure 11.2: The incidence graph of a hypergraph on the vertex set{a, b, ¢, d, e, f, g}
with edges {a, b, e, g},{b, e},{d, e, f},{b, g} and {c, g}.

Kostochka [Kos82] show that there exists a constant sy, such that every graph with no
K minor has average degree at most sy,. Later Thomason [Thoo1] refined this result
by proving that there is a constant sy, such that every n-vertex graph with no Ky, -
minor has at most (sp \/M)n edges. Moreover, this result is tight up to the value
of s, =0.319...+ o(1). The following lemma is due to Norine et al. [NSTWo6]

Lemma 11.1 ((NSTWo06]). Let G be a graph that does not contain Ky, as a minor. Then
G has at most 2°7V1°8 cliques.

The following lemma is proven in [FiOT10]. We provide its proof here for complete-

ness.

Lemma 11.2 ([FmOTo9]). Let H be a simple n-vertex hypergraph such that its incidence
graph WH) does not contain Ky, as a minor. Then [E(H)| < 2snVIcehn,

Proof. Targeting towards a contradiction, let us assume that the lemma does not hold.
Let H be the counterexample such that its incidence graph has minimum number of
edges. Then for every hyperedge e of 3, every proper subset of e of size at least 2
also should be a hyperedge of . Indeed, if e’ C e is not a hyperedge of I, then the
incidence graph of the hypergraph obtained from 3 by replacing e by e’ is proper
subgraph of I(J), which contradicts its minimality. Therefore, for every hyperedge e
of I all its subsets of size 2 are also hyperedges of .

Let us construct a graph G. The vertex set of G is V(H) and two vertices of G are
adjacent if and only if there is a hyperedge in H of size two, containing these vertices.

Then every clique of G corresponds to some hyperedge of H, and G isa minor of I(H).

11.2. DETECTING PROTRUSIONS 145

By Lemma 11.1, the number of cliques in G, and thus the number of hyperedges in
I(H) is at most 250 V198 hn, [l

Lemma 11.3. Ler H be an n-vertex hypergraph (not necessarily simple) such that its
incidence graph 1(H) does not contain Ky, as a minor. Then the number of hyperedges of
H of size at least N is at most 25"V'°6Mh(h — 1)n /2.

Proof. Every hyperedge of size at least h cannot have multiplicity more than h(h —
1)/2 because otherwise I(H) would contain K}, as a minor. Then the proof follows
from Lemma 11.2. n

In the next section we will use a (s, p)-dissolution, a notion introduced in Chapter 7.
We recall the definition and the lemma associated with it here for convenience (see

Chapter 7 for a detailed proof):

Definition. Lez G be a graph of treewidth b. An (s,p)-dissolution of G is defined to be
a partition of the vertex set of G into (p + 1) parts Vi, ..., Vy and U such that:

& Among the first p partitions, there are no edges with endpoints in different partitions,
that is, for all 1 < v # s <p, ifu € Vy andv € Vs, then (u,v) ¢ E(G).

O Each of the first p parts bas size at least s, that is, |Vi| > s, for everyi, 1 <1< p.

& The neighborhood of Vi in U is at most (2b + 2):

IN(V;)NU| < 2b + 2,
Jor everyi, 1 < i< p.

Lemma. Let G be a graph of treewidth v. There is an integer constant d such that if G
has at least (d - bsp) vertices (for some integers s and p), G admits a (s, p)-dissolution.

11.2 Detecting Protrusions

In this section, we demonstrate how we infer the presence of a protrusion from the fact
that we have “large” input instance. We will apply Lemma 7.1 for graphs of treewidth
b (see Chapter 7 or the previous section). We have that there is an integer constant d
such that if G has at least (d - bsp) vertices (for some integers s and p), G admits a
(s, p)-dissolution. We will now exploit the structure of the (s, p)-dissolution to infer

the existence of protrusions. To obtain a suitable protrusion, that is, one that has a

146 CHAPTER 11. DISJOINT PLANAR F-DELETION

large enough number of vertices, we will also require s and p to be sufficiently large.
The following lemma shows that there are we can achieve this with choices of s and p
which are polynomial in k. This amounts to saying that as long as the size of the input
instance is more than kO(1), we are able to detect a protrusion that will be appropriate

for further reduction.

Lemma 11.4. Let (G, S,K) be an instance of D1sjoINT PLANAR F-DELETION. For any
C, there exist constants & and (3 (that depend only on F) such that if the total number
of vertices in G is more than (a(K + 1) +XK) - ¢ - (B(k + 1) + k), then, there exists a
T-protrusion on at least ¢ vertices, where v is bounded by a constant that depends only on
the size of some planar graph in F.

Proof. We begin by applying Lemma 7.6 on G \ S and concluding that G \ S is a
graph of constant treewidth, say b. Thus we may apply Lemma 7.1 to obtain a (s, p)-
dissolution of G\ S, for values of s and p that will be determined in the course of this
proof. For the rest of this discussion, we use h to denote the smallest planar graph in
F (among those planar graphs of J that have the smallest size, H is chosen arbitrarily).
Let (V1,...,Vp, U) denote the (s, p)-dissolution of G \ S.

Given this setup, we first show that there exists a constant « such that if the number
of parts p in the (s, p)-dissolution of (G \ S) is more than (- (k+1)+k), then there
exists a part V; such that every connected component of V; has at most h neighbors
in S.

We let Cq,...,Cy be the connected components of G[V \ (U U S)]. Consider the
hypergraph H with the vertex set S: for every Ci, 1 < i <y, we define the hyperedge
e = N (Cl) NSs.

Observe that the incidence graph I({) is a minor of G \ U — indeed, it is exactly
the graph obtained by contracting the vertices of C; into a single vertex in the graph
G\ U. Now, if G \ U were to be H-minor-free, then I(3H) would clearly be H-minor-
free as well, and the hypotheses of Lemma 11.3 would hold. While we do not know in
advance that G \ U is H-minor-free, we do know that if the graph G is a YES instance
of DisjoINT PLANAR F-DELETION, then there exists S* C (V' \ S), of size at most k,

such that G \ S* does not contain H as a minor.

Therefore, we have that there is a subgraph H* such that I(H*) is indeed H-minor-
free. We also know that H{* has at most k edges fewer than H. Also, we may apply
Lemma 11.3 to I(3*). Recall that H* is a hypergraph on (k + 1) vertices, therefore,

11.2. DETECTING PROTRUSIONS 147

by Lemma11.3, the number of edges of size at least h, counting multiplicity, in H* is
at most
25hA /log hh(h —1)
2

S(k+T1).

We let o denote 25m V18 "h(h — 1) /2.

Recall that we wish to arrive at the existence of a part V; that does not contain any
component with neighborhood larger than h in S. First, note that every component
corresponds to an edge in H. For components that have more than h neighbors in S,
two cases arise: either the component corresponds to an edge of size at least h in JH*,
or it corresponds to an edge of I that does not exist in H*. What we have shown so

far amounts to the following:

There are at most (& - (k + 1)) components of the first kind,
and at most k components of the second.

Therefore, if p, the number of parts, is more than («-(k+1)+k), then there necessarily

exists a part where no component has more than h neighbors in S.

Having found a part where all components have a constant-sized neighborhood in S,
we are only one step away from deducing a protrusion: we need either one of these
components to have enough vertices to qualify as a protrusion that can be subject
to a reduction, or we need a collection of components whose size is large enough in
the aggregate, and are such that all of them have the same neighborhood in S. We
will now show that there exists a constant 3 such that if the size of each part s in the
(s,p)-dissolution of G \ S is at least {3 - k, then there exists a set of components that
have the desired property.

Recall that H* is H-minor-free, and by Lemma 11.2, we have that the number of
simple hyperedges (without counting multiplicity) in a (k + 1) vertex hypergraph
whose incidence graph is H-minor-free is at most

2nVIBM L (I 4 1),

Recall also that H had at most k edges more than H*, and therefore, the number of

edges in JH is at most

2snVlos (e 4 1) 4k,

We use p to denote 25mV1°8 M,

148 CHAPTER 11. DISJOINT PLANAR F-DELETION

Now, let e be a fixed hyperedge of size at most h in H{. Let c[e] denote the number
of of components C such that N(C) = e, and let w(c[e]) denote the total number
of vertices in all the components C such that N(C) = e. Notice that since the total
number of distinct hyperedges is at most 3(k + 1) + k, and we have that:

Therefore, if s > (B(k + 1) 4+ k)c, then there exists a collection of components in
which the total number of vertices exceeds ¢, and whose neighborhood is exactly e

(for some e). This completes the argument.

]

11.3 Replacing Protrusions

In this section we describe an algorithm that takes a protrusion of large enough size
and replaces it with a smaller one. We first note that the results that are known about
protrusion replacement cannot be used directly for DisjoiNT PLANAR F-DELETION.
Here, we make a problem-specific adaptation of the results in [BFL" 09] that is suit-
able in our context. We begin with some definitions. The first notion that we intro-

duce is that of a label-preserving isomorphism.

Definition 11.1. Ler Gy and G, be two graphs, and let t be a fixed positive integer. For
i€ {1,2}, let fg, be a function that associates with every vertex of V(Gy) some subset of
[t]. The image of a vertexv € G under fg, is called the label of that vertex. We say that
that G is label-wise isomorphic 0 G, and denote it by Gy =, G,, if there is an map
h: V(Gy) — V(Gy) such that (a) W is one to one and onto; (b) (u,v) € E(G1) if and
only if (h(u), h(v)) € E(Gy) and (c) g, (v) = fg,(h(v)). Wecallh alabel-preserving

isomorphism.

Notice that the first two conditions of Definition 11.1 simply indicate that Gy and G>
are isomorphic. Now, let G be a t-boundaried graph, that is, G has t distinguished
vertices, uniquely labeled from 1 to t. Given a t-boundaried graph G, we define a
canonical labeling function pg : V(G) — 2. The function p1g maps every distin-
guished vertex v with label £ € [t] to the set {{}, that is pg (v) = {{}, and for all vertices
v e (V(G) \ 0(G)) we have that ug(v) = 0.

11.3. REPLACING PROTRUSIONS 149

Next we define a notion of labeled edge contraction. Let H be a graph together with
a function iy : V(H) — 2% and (u,v) € E(H). Furthermore, let H' be the graph
obtained from H by identifying the vertices wand v into w,,,, removing all the parallel
edges and removing all the loops. Then by labeled edge contraction of an edge (u,v)
of a graph H, we mean obtaining a graph H’ with the label function fy : V(H’) —
2, For x € V(H’) N V(H) we have that fiy/(x) = fi(x) and for wy, we define
fu/(wyy) = fr(u) U fu(v). Now we introduce a notion of labeled minors of a

t-boundaried graph.

Definition 11.2. Let H be a graph together with a function f : V(H) — 2 and G be
a t-boundaried graph with canonical labeling function wg. A graph H is called a labeled
minor of G, if we can obtain a labeled isomorphic copy of H from G by performing edge
deletion and labeled edge contraction.

Remark 11.1. We note that the notion of a label-preserving isomorphism for graphs de-
pends only on the labeling function, and is oblivious to the boundary. In particular, if G
and H are two labeled t-boundaried graphs that are label-wise isomorphic, a label preserv-
ing isomorphism is not required to necessarily map the boundary vertices of G to boundary
vertices of H.

Finally, we define the notion of h-folios and equivalence on t-boundaried graphs.

Definition 11.3. A h-folio of a t-boundaried graph G is the set My (G) of all t-labeled
minors of G on at most h vertices.

Definition 11.4. Let t and h be two fixed integers and Gy and G, be two t-boundaried
graphs. We say that G1 = G, if Mn(G1) = My (G>).

The number of t-labeled graphs on at most h vertices is a function of t and h, so the
number of possible sets My, (G) is as well. This yields the following observation

Observation 11.3. For fixed integers W and t, = is an equivalence relation with finite
index on t boundaried graphs.

Proof. Clearly, the number of equivalence classes of =}! is exactly equal to the number
of distinct h-folios that exist for the universe of t-boundaried graphs. A h-folio is a

collection of labeled graphs on at most h vertices. The total number of labeled graphs
on at most h vertices is 2(2) - (26)". The number of possible h-folios is therefore

h
229" "and this establishes that =M has finite index. [

150 CHAPTER 11. DISJOINT PLANAR F-DELETION

Definition 11.5. For a fixed family F of finite graphs and two t-boundaried graphs G,
and G, we say that Gy =5 G, if for all t-boundaried graphs Gs and forallZ C V(G3),

(G1® G3\ Z) is F free if and only if (G, & G3 \ Z) is F free .

The main lemma of this section is the following.

Lemma 11.5. Let F be a finite family of graphs, and let @ = maxyes{|V(H)[}. Further,
let t be a fixed positive integer, and let | = (q + t). Then the relation =. refines =.
That is, if Gy =l G, then G; =5 G,. Also, for every fixed t, =5 has finite index.

Proof: Suppose Gy =! G, and, for the sake of contradiction, G1 #Z5 G,. Then there
exists a t-boundaried graph G3 and some subset Z C G3 is such that:

* cither (G; ® G3 \ Z) is F free and (G, @ G3 \ Z) is not F free

e or (G; ® G3\ Z)isnot Ffree and (G, ® G3 \ Z) is F free

We consider the first situation. We assume that the graphs G, G2 and G3 have the
canonical labeling associated with them. Since (G, & G3 \ Z) is not F free , there
exists a minor model of some graph H € Fin (G, & G3 \ Z). We use MS’S) to refer
to a witness minor model. By Proposition 2.1 we have that there isamap ¢ : V(H) —
2VIG") such that for every vertex v € V(H), G'[d(v)] is connected, for every pair of
verticesv,u € V(H), d(u)Nd(v) = 0, and for every edge uv € E(H), there is an edge
u'v’ € E(G’) such that u’ € ¢(u) and v/ € ¢(v). Let P1,P,,..., P} be the these
pairwise disjoint connected components of M,(f 3)and let Qi denote P; N V(G,).
Note that the Q; corresponding to parts P; that involve vertices from 9(G,) may not
induce connected subgraphs of G, but instead be composed of smaller components.
Since there are at most t vertices on the boundary, the total number of components
in the subgraph given by U ; Q; is at most (h + t).

Now, we consider the labeled graph H* obtained by contracting (using labeled edge
contraction operations) the connected components of U ;Q; in G,. Clearly, H*
belongs to the 1-folio of G;, and by our assumption on the equivalence of G and G,
H* also belongs to the 1-folio of G;. This implies that G; contains a minor model of
H* that preserves labels. Specifically, there is a collection of connected components

Ri,...,Ry that is, for every component of X of U ;Q; that contain any vertices

11.3. REPLACING PROTRUSIONS ISI

from 9(G;), there exists a component R; in G that contains exactly the same set of

boundary vertices.

Finally, we observe that the components Ry, ..., Ry can be extended to a minor model
M,(l’s) of Hin Gy & G3 \ Z. Indeed, consider Y; given by P; N V(G3). To begin
with, M,q’3) consists of all components Y; and R; that do not contain any vertices
from 9(G3). Now, consider {P; | Py N 0(G3) # 0}, that is, the sub collection of those
components of M\>®) that have a non-trivial intersection with the boundary. For
every such component X, let Xg denote the intersection of X with 0(G3). Note that
the elements of Xp also appear in some components of Ry, ..., Ry (since the minor

model was designed to preserve labels). Let if,...,1iX be such that

We let Mx denote the subgraph induced on the vertices U™ Rix with X N V(G3).
Now, we show that Mx is a connected component of G; & G3 \ Z. We do this by
showing that between any pair of vertices in Xg, there exists a path in Mx. Notice

that this suffices, since every vertex in Mx \ Xp has a path to some vertex in Xg.

To begin with, recall that X is a connected component in G, & G3 \ Z. Now, consider
the subgraph (X N V(G2)), and observe that it is a collection of connected compo-
nents Ty, ..., T, that can be placed in one-one correspondence with the components
{Ri)x J™ 4. Itis also clear that each T; contains at least one vertex from 9(G;), and we
let t; be an arbitrarily chosen representative from T; N 0(G;). Since X is connected
in G, @ G3 \ Z, there is a path P;j between t; and t;j forall 1 <1 # j < m. The
path Py; comprises of subpaths that lie in vertices of (XNV(G3)) and the components
Ti,..., Tin. Notice that since the T, induces a connected component in G, there are
no edges between vertices of T; and Tj in G2, and by the definition of gluing, there
are no edges from vertices in (V(G3) N X) \ 0(G3) to any Ty. Thus, the path Py; can
only enter and exit a component at boundary vertices. For every subpath of Py; that
lies in entirely a component Ty let a and b denote the boundary vertices at which the
subpath begins and ends (note that a and b need not be distinct). Now, let Rix be the
component corresponding to Ty in (G; @Gz \ Z). Notice that {a, b} C Rix, and since
Rix is connected, there is a corresponding subpath connecting the vertices a and b in
(G1 @ G3 \ Z). Stitching these subpaths gives us a path Q;; between vertices t; and
tj in G; @ G3 \ Z, and this shows that Mx indeed induces a connected component.

Now, for every X, we add Mx to M\{"?). It is easy to check that the M!}"* that

we have constructed is a minor model of H in G & Gz \ Z. This contradicts the

152 CHAPTER 11. DISJOINT PLANAR F-DELETION

assumption that G & G3\ Z is F-free. The argument for the second case is symmetric.
Also, note that since =5 is refined by =[', an equivalence relation with finite index
(recall Observation 11.3), clearly, =5 also has finite index for every fixed t. O

Finally, we introduce the protrusion replacement lemma.

Lemma 11.6. Let F be a finite family of graphs. There exists a constant ¢ and an algorithm
that given a graph G, a r-protrusion X in G with |X| > ¢, outputs in O(|X|) time an
instance G* such that |V (G*)| < |V(G)|, and for every all Z C (V(G) \ X) U 9(X),

(G\ Z) is F free if and only if (G* \ Z) is F free .

Proof. Let 8 be a set of representatives for the equivalence classes of =5 and let ¢ =
maxyes |Y|. Let ¢ be a mapping from 2r-boundaried graphs with at most 2¢ vertices
to 8 such that for any 2r-boundaried graph H on at most 2¢ vertices, H =1 ((H).

If [X| > 2c¢, then we find a 2r-protrusion X’ C X such that ¢ < [X’| < 2¢ and work
on X’ instead of X. This can be done in time O(|X]) since G[X] has treewidth at most
7. In particular, consider a nice tree-decomposition of G[X] and pick a lowermost bag
b such that the number of vertices appearing in bags below b is more than ¢’. Let X’
be the set of vertices appearing in b or in bags below b. The choice of b ensures that
¢ < |X’| < 2c¢. Notice that 9(X) N (X’ \ 9(X’)) = 0. From now on, we assume that
IX| < 2c.

Let H = ¢(GI[X]). We make G* from G by replacing the 2r-protrusion G[X] with
H. By the definition of =5 we have that for every all Z C (V(G) \ X) U 9(X), (G \
Z) is J free if and only if (G*\ Z) is F free . Since |H| < |X| we have that [V(G*)| <
[V(G)|. The running time of the algorithm is O(|X|). This concludes the proof. [

11.4 The Kernel and the Algorithm

We are now ready to describe the kernelization procedure for DisjoiNT PraNnar F-
DELETION. We note that we will first obtain an annotated kernel of size O(k3). We
then reduce this further to an instance of DisjoiNT PLANAR F-DELETION without
annotations, whose size is bounded by k©!).

Proof of Theorem 11.1. For this proof, we will require the fact that DisjoiNT PLANAR
F-DELETION is an annotated p-MIN-MSO problem, which takes as input a triplet

11.4. THE KERNEL AND THE ALGORITHM 153

(G,Y,k), and YES-instances are required to satisfy a CMSO-expressible property
Pri(G, T), where T is a vertex subset of G of size at most k, and is such that T C Y. The
input in the case of D1sjoINT PLANAR F-DELETION is easily seen to be (G, G \ S, k),
restricted to those graphs that satisfy the property that G[S] and G\ S are F-free. Fur-
ther, the property Pri(G, T) is given by: (Anes—dn(G)), where ¢ (G) denotes the
fact that H is a minor of G, well-known to be expressible in MSO (see Chapter 7).
From now onwards we will assume that we have an arbitrary YES-instance and we
will bound its size by O(k?).

We treat (G, S, k), an instance of DisjoiNT PLANAR F-DELETION, as an instance of an
annotated p-MIN-MSO problem with Y = G\ S. Now we outline a polynomial time
procedure that takes as input (G, S, k) such that G[S] and G\ S does not contain any
graph from JF as a minor and an annotated set Y and outputs an instance (G, S, k)
and an annotated set Y/ C G’ \ S with the following properties. (a) G has a F-hitting
set Z C Y of size at most k if and only if G” has F-hitting set Z’ C Y’ of size at most
k; and (b) G’[S] and G’ \ S does not contain any minor from F. Of course, we can
perform this procedure when the size of V(G). We will run this procedure several

times to reduce the instance size.

Let (G, S, k) be such that G[S] and G \ S does not contain any graph from ¥ and Y
be an annotated set. Recall Lemma 11.4, due to which there exist constants « and 3
(that depend only on F) such that if the total number of vertices in G is more than
c-(a(k+T1)+k)- (B (k+T1)+k), then, there exists a r-protrusion on at least ¢ vertices,

where 1 is bounded by a constant that depends only on the size of some planar graph
inJ.

We consider the case when the size of the instance G is more than ¢ - (x(k + 1) +
k) - (B(k + 1) + k) for a suitable choice of ¢ to be determined in the course of this
proof. Let X be the protrusion in G given by Lemma 11.4. Since DisjoiNT PLANAR
F-DELETION is an annotated p-MIN-MSO problem, by [BFL* 09, Lemma 1], there is
an integer q and an O(|X|) time algorithm, that computes a set of vertices Z C XNY
with |Z| < gk, such that if there exists W C Y such that W is a solution for (G, S, k),
then there exists a solution W’ such that the part of W’ that lies in the protrusion X
is contained in Z, that is W/ N X C Z. At this stage we update our instance (G, S, k)
and Y to (G, S,k) and (Y \ X) U Z.

Furthermore, by [BFL" 09, Lemma 2], given a subset Q of X that has O(k) vertices,
we can find a collection of O(k) protrusions Xy, ..., X; that cover the protrusion X,
that is, U!_; X; = X, with the additional property that all vertices of Q lie only on the

154 CHAPTER 11. DISJOINT PLANAR F-DELETION

boundaries of these protrusions, thatis, Q N X; € 9(X;). We set Q as Z U (S N X).
Now, choosing ¢ to be greater than gk + dl gives us a protrusion on enough vertices
so that we are left with at least one protrusion among X;’s, say X, on at least d vertices
such that Lemma 11.6 is applicable. Specifically, since X, N Z lies in 9(Xy), we know
that there is always a solution that does not involve the non-boundary vertices of
Xy. Recall that Lemma 11.6 guarantees that if there exists a solution that lies outside
Xy \ 9(X,) in G, then there is a solution in the graph that is obtained after replacing
Xy with a smaller protrusion. Therefore, we apply Lemma 11.6 with &F, G and X, and
obtain an equivalent instance G’. By the properties of G’ returned by Lemma 11.6,
we have that (G’, S, k) and Y satisfies all the desired properties. In particular, note
that due to the equivalence established in Lemma 11.6, G’\ S is F-free because G\ S is
F-free. Also the replacement can be performed in O(n) time, since it involves finding
Xy, which can be done in linear time, and then looking up a table of constant size,
and performing the replacement, which only takes time proportional to the size of

the protrusion.

Now we repeat the above procedure as long as the size of the reduced instance is
large enough for an application of Lemma 11.4. Notice that if the input is a YES-
instance, when the procedure terminates we have an equivalent instance (G, S, k)
and an annotated set Y/ C G’ \ S with [V(G)| = O(k?). Clearly, G’[S] and G’ \ S

are F-free.

So overall, our kernelization algorithm does the following: it performs the above pro-
cedure on the given instance and if the size of reduced instance is more than O(k3),
it returns NO, else it returns an annotated kernel of size O(k?), which will be crucial

to our algorithm. Note that we can obtain the annotated kernel in O(n?) time.

We can remove the annotation by utilizing the fact that DisjoiNT PLANAR F-DELETION
is NP-complete and thus there is a polynomial time reduction from our annotated p-
MIN-MSO problem to DisjoiNT PLaNAR F-DELETION. Thus we first obtain an O(k?)
sized annotated kernel and then on this instance apply the polynomial time reduction
to get a polynomial kernel. This completes the proof. H

11.4.1 A FPT Algorithm for F-Deletion

We now turn to the FPT algorithm that is based on iterative compression, and also

uses the kernel obtained in Theorem 11.1 in every iteration.

11.4. THE KERNEL AND THE ALGORITHM Iss

Proof of Corollary 11.2. Let n be the number of vertices of G and m be the number
of edges of G. Given an instance of PLaANAR F-DELETION, we first apply Lemma 11
of [FLM " 11], that given a graph G and a positive integer k, either reports that G
has no F-hitting set of size at most k or finds a F-hitting set S of size at most { =

nklog3/2

k. In the first case we also return that G does not have a F-hitting set
of size at most k. Now we order the vertices of S as vy,...,v; and define V; =
viy.. oy viJU(V(G)\ S) for every 1 < i < L. Notice that if G has a F-hitting set Y
of size k then Y N V; is a F-hitting set of G[V;] for every 1 < {. Furthermore, if Y is
F-hitting set of G[Vi] then Y U {v; 1} is a F-hitting set of G[Vi;1]. We iteratively go
from 1 to £ and in the i*" step we will have G[V;], a solution S of size k+ 1 for G[V;],
and the objective is to check whether there exists a solution of size at most k or not.
We first “guess” the part of S that will participate in the final solution of size at most
k — let us call this Z. If G[S \ Z] does not contain any graph in F as minor then we
get (G, S\ Z,k — |Z|) — an instance of DisjoIiNT PLANAR F-DELETION. We will give
an algorithm for DisjoINT PLANAR F-DELETION that runs in time 2°©(%1°8%In2_ Note
that we can perform one step of the iteration by solving 2% instances of DisjoInT
PLANAR F-DELETION. Now, if G[V;] does not have solution of size k then we return
that G does not have F-hitting set of size at most k. Else, we have F-hitting set Y of size
at most k for G[V;]. Using Y we get another instance, namely (G[Vii1], YUWvii1,k),
that can be solved by running an algorithm for DisjoiNT PLANAR F-DELETION 25T
times. Thus in at most £ iterations we would have solved the problem. Now we give
an algorithm to solve D1sjoINT PLANAR F-DELETION.

Given an instance (G, S, k) to DisjoiNT PLANAR F-DELETION, we set Y, the set of
annotated vertices, to be G \ S and run the kernelization algorithm described in The-
orem 11.1. The annotated kernel is an instance (G’, S, k’) with a set Y’ of annotated
vertices, such that: G has a F-hitting set of size at most k in G\ S ifand only if G’ has a
F-hitting set of size at most k’ < kin (G’\S)NY” and further, |V(G')| < dk>. Apply-
ing a brute force algorithm that enumerates all subsets of size at most k of (G’\S)NY’

. . . 3 .
gives us a worst case running time of: (d]‘z), which amounts to 20klogk)

time for
solving the PLANAR F-DEeLETION problem. Thus, the total time time to solve Pra-
NAR F-DELETION is O((2K+12klosk)2k+10) plus the time taken to obtain S and to
run the kernelization algorithm. While the kernelization algorithm runs in O(n?)
time, the current implementation of Lemma 11 in [FLM " 11] though runs in poly-
nomial time, may take more than quadratic time. Here, we outline an algorithm that
runs in time O(2°®n?). This would imply an algorithm for PLanar F-DELETION

that runs in time 20%1°8k)n2 The algorithm described in Lemma 11 in [FLM " 11]

156 CHAPTER 11. DISJOINT PLANAR F-DELETION

computes an approximate tree-decomposition and given a tree-decomposition runs
in O(n +m) = O(n?) time. However, there is a known algorithm by Reed [Ree92]
that runs in time O(2°nlogn) and either reports that tw(G) > k or returns a
tree-decomposition of width 5k. Using the algorithm of Reed [Ree92] in Lemma 11
of [FLM " 11] instead of using polynomial time approximation for tree-decomposition
we can obtain the desired S in O(2°%)n?). This completes the proof. O

1/t was one of those parties where you wu_q/l twice bz:ﬁre you speak
and then decide not to say it aﬁ‘gr all

P G Wodehouse

You see, theve is only one constant. One universal. It is the only real truth.

Causality. Action, reaction. Canse and eﬁ‘épt

The Matrix Reloaded

Let G be a graph, and let 3 be a class of graphs. The packing and covering problems
are two natural questions that arise in this setting:

¢ The H-PACKING problem asks for a set of vertex-disjoint subgraphs of G, called an
H-packing, such that each of these subgraphs is isomorphic to some graph in K.

¢ The H-covERING problem asks for a set S C V(G) of vertices, an H-cover, such
that G \ S contains no subgraph isomorphic to any graph in .

It often turns out that the two problems are closely related in the sense that the absence
of a “large” packing implies the presence of a “small” cover. This notion is captured
formally by the Erdés-Pésa property:

The class 3 is said to have the Erdés-Pdsa property if there exists a
function f : N — N such that, for every k > 0, every graph G either contains an
H-packing of size at least k, or has an H-cover of size at most f (k).

Let H be a fixed connected graph. The class H = MH consists of graphs that con-
tain H as a minor. Observe that for H = 04, and H = 0,, H{ = MH consists of all
graphs that contain at least one edge and all graphs that contain at least one cycle,
respectively. Note that the Erdds-Pdsa property has already been established for these

cases:

& A collection of vertex-disjoint subgraphs, each isomorphic to 01, is clearly a mazch-
ing. It is well-known that if the maximum matching of a graph is of size at most k,

then it has a vertex cover of size at most 2k.

157

12. An Erdos-Pisa result for packing and covering Mo,

158 CHAPTER r2. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

¢ By the classical result of Erd8s-Pésa [EP65b], the class H = MO, has the Erdds-
Pésa property with f(k) = O(klogk), that is, if the largest collection of vertex-
disjoint cycles of a graph is less than k, then there exists a feedback vertex set of

size O(klogk).

We will demonstrate that the class H = M8, has the Erdés-Pésa property for every
fixed ¢ > 0. To describe the Erd8s-Pdsa property formally, we need the notion of
a MO-cover; which we have already encountered: it is the F-hitting set for F = 6.

Definition 12.1 (0.-hitting set). Given a graph G and a vertex subser S C V(G), we
call S a ©.-hitting set if G \ S does not contain ©. as a minor.

In this chapter, as long as the context is unambiguous, we will use the term “hitting
set” to refer to a 0.-hitting set. The theorem that lies at the heart of this chapter is the

following:

Theorem 12.1. [Erdds-Pésa property for 0.] Every graph G either contains k vertex-
disjoint © .-minor models, or has a ©.-hitting-set of size at most f(k) = O(k? log k).

12.1 The Erd8s-Pésa Property for O,

The Erd8s-Pésa property for MO, is shown by establishing the following two lemmas.

Lemma 12.1. [f the treewidth of a graph G is at least 2¢*X?, then G contains at least k
vertex-disjoint © . -minor-models.

Lemma 12.2. Ifthe treewidth of G is less than 2¢2k? and G contains fewer than K vertex-
disjoint O .-minor-models, then G contains a . -hitting set of size at mostnk? = O(k?),
where the constant | depends only on c.

The proof of Theorem 12.1 follows from the above two lemmas.

Proof of Theorem 12.1. Suppose graph G does not contain k vertex-disjoint 0 .-minor-
models. Then by Lemma 12.1, G has treewidth at most 2c?k?. Now by applying
Lemma 12.2, we have that G contains a 0.-hitting set of size at most f(k). [

12.2 Unbounded treewidth implies a large packing

We require the notion of brambles for our proof of Lemma 12.1, so we introduce some

elementary definitions first.

12.2. UNBOUNDED TREEWIDTH IMPLIES A LARGE PACKING 159

Brambles. We say that two subsets of V(G) rouch if they either have at least one

vertex in common or if there is at least one edge with one endpoint in each subset.

Definition 12.2 (Brambles). A bramble B of a graph G is a collection of mutually touch-
ing connected subgraphs, called the elements of the bramble.

The canonical example of a bramble is the set of crosses (union of a row and a column)

ofan (1 x 1)-grid.

Further, the following terms are also

useful:

* A hitting set of a bramble is a subset
of vertices S whose intersection with ~~ ¢—p—0—0—0—
every element of the bramble is non- | | [
trivial. [1 | |

% Forabramble B, the order of Bisthe
minimum cardinality of a hittingsee ~—~ _
of the bramble. I I S

* For a graph G, bramble number of G~ o—0—0—0—0—
is the maximum order of a bramble —— —
of G. L

For instance, for the example of the set

of crosses of the (1 x 1)-grid above, the

vertices of any row (or column), would Figure 12.1: A pair of elements that share ver-

intersect all elements of the bramble tices, from the bramble that con-

. .. sists of the set of crosses of a grid.
and would therefore constitute a hitting &

set.

Brambles and Treewidth. Let B be a

bramble of a graph G, and let (T,{T, : v € V(T)}) be a tree-decomposition of G of
the minimum width. Consider an element B of B. Because B is connected, Tg =
U[T, : v € V(B)} is a subtree of T (see Lemma 2.2). Furthermore, because any two
bramble elements touch, {Tg : B € B} is a pairwise intersecting family of subtrees
of T. Indeed, if a pair of brambles B; and B; have a common vertex v, then consider
any vertex X € T such that v € T, (such a bag exists because every vertex of G
appears in at least one of the bags of its tree decomposition, by definition). Clearly,

X is common to the subtrees Tg, and Tg;. Similarly, if there is an edge (u,v) with

160CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

u € Bj and v € Bj, then the consider a vertex y € T such that (u,v) € Ty, — again,
such a bag exists because every edge of G appears in at least one of the bags of its tree
decomposition, by definition. Note that y belongs to both Tg, and Tg;, and we have
that {Tg : B € B} is a pairwise intersecting family of subtrees of T.

By the Helly property of a family of pairwise intersecting subtrees (see Lemma 2.1),
therefore, these subtrees have a vertex x in common. The corresponding subset Ty
of V is thus a hitting set of B. This shows that the order of B is at most |T/|, which
in turn is no greater than the tree-width of G. Because this is true for any bramble B,
we conclude that the bramble number is bounded above by the size of the bags of the
optimal tree decomposition, that is, (1 + tw(G)). In fact, the converse is also true: if
the treewidth is large, then there exists a bramble of large order. This is summarized

in the following theorem, first shown by Seymour and Thomas [ST93].

Proposition 12.2. [ST93] 7he trecwidth of a graph G is at least k if and only if it has
a bramble of order (k + 1).

We now make another useful observation:

Lemma 12.3. [BBRo7] Let B be a bramble in a graph G. Then G contains a path that

intersects every element of B.

Proof. Let P be a path in G that (1) intersects as many elements of B as possible, and
(2) is as short as possible. Let v be an endpoint of P. There is a bramble element X

that only intersects P at v, as otherwise we could delete v from P.

Suppose P does not intersect some bramble element Z. Since X and Z touch, there is
a path Q starting at v through X to some vertex in Z, and Q NP = {v}. Thus PUQ
is a path that also hits Z. This contradicts that P hits the most elements of B. O]

Recall, at this point, that a minor model of 0. consists of two connected components
with ¢ vertex-disjoint paths between them. We need to find, given only the assump-
tion of “large” treewidth, k vertex-disjoint subgraphs, each containing a minor model
of 0. as a subgraph. We use the assumption of large treewidth to imply the existence
of a bramble of large order. In this bramble, we utilize the path that hits every ele-
ment to partition the elements of the brambles carefully into two smaller brambles,
each with large enough order. Then we prove the existence of a large number of ver-

tex disjoint paths “going across”. This is shown by contradiction — the absence of a

12.2. UNBOUNDED TREEWIDTH IMPLIES A LARGE PACKING 161

large collection of vertex-disjoint paths will imply small cut between the two bram-
bles, which turns out to be impossible because of the structure of the brambles and
the fact that none of them admit small hitting set. We are now ready for a precise

proof of Lemma 12.1.

Our proof of Lemma 12.1 uses some ideas from the proof of Lemma 3.2 in [WRo8].

Proof of Lemma 12.1. We show that if the treewidth of a graph G is at least 2¢%Kk?,

then G contains at least k vertex-disjoint 8.-minor-models.

If the treewidth of G is at least 2¢2k?, then by Proposition 12.2, G contains a bramble
(call it B) of order at least 2c?k? + 1. By Lemma 12.3, there exists a path that visits
every element of the bramble at least once. Let P be such a path, and let vy,..., v be
the vertices of P (stated in the order of their appearance in P). Note thatt > 2¢2k?+1,
else P would be a hitting set of B with fewer vertices than the order of B.

For 1 < i < t, let B; denote the set of all elements of B which contain the vertex v;.
Note that for T < 1 < t, U}:IB]- is a bramble. Let O; denote the order of this
bramble. Let s be the smallest number such that O > ¢?k?. The existence of such s
is guaranteed by the fact that Oy =1, O > 2¢?k?,and for 1 <i < t—1, 0141 <
O;+1.

Let By = U;_; By, and let B, = B \ B; (see Figure 12.2). Since the value of O; only
increases by one in a single step, we have that the order of B, is at least c?k?, or else
the union of the smallest hitting sets for B¢ and for B, would be a hitting set of B
which has fewer vertices than the order of B. Let P; be the sub-path of P starting
at vy and ending at v, and P, the subpath starting at vs; and ending at v,. By the

above argument, P; and P; contain at least c*k? vertices each.

Now, there must exist a collection, say P, of at least c?k? vertex-disjoint paths that
begin in P; and end in P,. If not, then by Menger’s theorem, there exists a P1—P;
separator, say S, of size less than c?k?. Note that S cannot be a hitting set of the
brambles B and B, since the order of each of these is at least c?k?. So there exist
elements A € B1,B € B, such that ANS =0 = BNS. Butsince A and B touch
(being elements of B), and A NPy # 0, BN P, # 0, S cannot be a P1-P; separator.

We now show that PUP; UP; contains k vertex-disjoint 8. minor-models. Let E,, be
the set of vertices that form the end points (on Py and P;) of the paths in P. Fori €
{1,2}, let Qi = P; N E,. We label both Q; and Q, with a common index set [M],
where M = [Q] = |Q2]. Let f : [M] — [M] be the following bijection: f(i) = j if

162CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

Vi V2 Vs Vs+1 -+ Vi1 Vi
O; O, -+ O Osy1 -+ Ot Oy

|Og] = (c?k? +1)

V] € (Bil Vi € B)’1
vy € By, vt € By,
vi € By, vt € By,
V] € Bip Vi € 3]']3
B] BZ

Figure 12.2: A schematic of the construction of brambles B and B;.

Figure 12.3: The dashed paths form a collection of cross-free paths.

12.3. BOUNDED TREEWIDTHAND A SMALL PACKING NUMBER IMPLIES A SMALL COVER163

and only if there is a path in P that begins in i and ends in j. We say that a subset of
paths C C P is cross-free under this labeling if there does not exist 1,1’ € Q;NC;i < i’
and f(1) > f(1).

Note that since the paths in P are vertex-disjoint, the numbers (1), f(2),...,f(M)
form a permutation of M, and by Erd8s-Szekeres Theorem [ES35], the sequence
(f(1),f(2),...,f(M)) contains a monotonically increasing or decreasing subsequence
of length at least \/M = ck. Fori € {1,2}, let Q{ denote the intersection of Q;
with this subsequence. It is easy to verify that the paths in P that have their end points
in Qf, Q5 form a cross-free collection. These paths together with Py, P, contain at

least k vertex-disjoint 6, minor-models. O

12.3 Bounded treewidth and a small packing number

implies a small cover

In this section, we show that if G has treewidth at most 2c?k? and does not have more
than k’ = k — 1 disjoint minor-models of 6, then there exists aset S C V(G), [S| =
O(k?), such that G \ S does not contain 8. as a minor.

The hitting set is obtained using methods that are similar to the second approximation
algorithm (Algorithm 2) in Chapter 8. There are, however, some notable points of
difference. In this algorithm, our choice of measure effectively bounds the treewidth of
the graph. This plays into the analysis of the size of the solution that we obtain. Also,
this algorithm is not a polynomial time procedure, since it relies on the computation
of an optimal tree decomposition. Finally, given the premise that the input graph
G has treewidth at most 2c¢?k? and does not have more than k’ = k — 1 disjoint
minor-models of 0., this algorithm always returns a hitting set of size O(k?), and

hence constitutes a proof of Lemma 12.2.

Recall, from Chapter 8, that Algorithm 2 required a function p on graphs that has
the following properties:

> the value of 1 on the graph corresponding to the input instance is polynomial in k,

> we can find a small separator X that separates the input graph into two parts Ga
and Gg such that the value of the function on each of G5 and Gg is at most a
constant fraction of what it was on the entire graph,

> and the problem is easily solved when the value of the function is a small constant.

164CHAPTER r2. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

The algorithm that determines a hitting set, as before, recurses on the parts G4 and Gg
and picks X in the solution. Intuitively, X serves to cover all the minor models that
have vertices in Ga and Gg, and the remaining minor models are covered recursively.
Our description of the algorithm proceeds in three parts. We first propose a choice of
n and demonstrate that the three properties are satisfied. We then provide a formal
description of the algorithm. Finally, we demonstrate correctness by showing that the

algorithm always returns a hitting set of size O (k?).

12.3.1 The choice of 1

The maximum number of vertex-disjoint minor models of 6. in G turns out to be a
suitable choice for p. For the rest of this discussion, we will use the term packing num-
ber to refer to the maximum number of vertex-disjoint minor models of 8. present
in a graph. Thus, we are suggesting that the packing number of G is an appropriate
choice for p(G). We now verify each of the three properties stated previously.

The value of 11 on the entire graph is kO!!"). 'The first criteria is easily established, as

we have the premise that G does not have more than (k — 1) disjoint minor-models
of O..

Existence of a small separator that reduces the packing number by a constant frac-
tion in each part. Our next goal is to find a small separator that separates the graph
into parts where the packing number is a constant fraction of the packing number of
the entire graph. Again, we consider the tree decomposition of G with the intention
of using the bags as separators. For any bag t, let us consider the behavior of p on the
graphs H¢, which is the subgraph induced on the union of vertices appearing in all
bags present in the subtree rooted at t, except the vertices at the bag corresponding to
node t itself. We use m to denote u(G).

For the given tree decomposition, let us analyze the behavior of (on the graphs Hy.
It is easy to verify the following:

> the value of u(H;) at an introduce node t is the same as the value of w(Hy) if s is
the child of t.

> the value of n(Hy) at a forget node t is at most one more than value of p(Hs) if s is
the child of t (it is possible that the forgotten vertex v was marked, and this vertex
appears in the graph Hy but not in Hy.

12.3. BOUNDED TREEWIDTHAND A SMALL PACKING NUMBER IMPLIES A SMALL COVER165

> the value of pt(H¢) at a join node t is p(H,) 4+ p(Hs), where r and s are the children
of t.

Consider the node with the largest distance from the root at which p(H;) is more
than (m/3): thatis, a node t such that for some constant &, t(H¢) > (m/3) and u(Hg) <
(m/3), where s is the child of t (if t has two children, then the aforesaid is required to
be true of each of the children). Notice that any node t which realizes this property is
either a join node or an introduce node, because the value of p() does not “jump” at

an introduce node.

Notice that if t is a forget node with child s, the subgraphs Hs and G \ (Hy UX{) are
exactly the pieces we need, separated by X;. Notice that t(G\ H¢) is at most m(1— %),
since the packing number of the graph is at most m and the packing number of Hy
is at least (m/3) by choice of t. Thus, u(G \ (H¢ U X¢)) is also at most (m(1 — %)),
since G \ (H¢ U X¢) is a subgraph of G \ Hy.

Now we turn to the case when t is a join node. Let r and s be the child nodes of t.
Notice that Xy = X = X, and the natural candidates for GA and Gg (the subgraphs
to recurse on) would be some combinations of the pieces obtained after the deletion

of X;. Let’s consolidate what we know:

u(Hs) <m/3and pu(H,) < m/3,
r(Hs) + p(H) <m
u(He) > m/3,

and

G\ (He UXy)) < <1 — ;;) m.

Thus, note that u(Hs U H,) < (2/3)m and p(G \ (Hy U Xy)) < (2/3)m. Thus
we achieve a constant factor drop in both instances Go := (Hs U H;) and Gg =

G \ (H¢ U Xy). Our observations are summarized in the following claim:

Claim 12.1. In a graph G, there exists a separator S such that G \ S admits a partition
into two parts Ga and Gy with the following properties:

H(GA) < (2/3)u(G) and n(Gp) < (2/3)u(G).

166CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

Thus, we will be able to obtain separators whose sizes are proportional to the treewidth.
Again, because of our premise, the treewidth is bounded by 2¢?k?, and so is the size

of the separators that are obtained as bags of the tree decomposition.

Remark 12.1. A crucial point is that at every stage of recursion, the packing number
drops by a fraction, and the treewidth decreases appropriately — since we already know,
by Lemma 12.1 that if the treewidth is large, then the packing number is large as well.
So, for example, if the packing number is (k/2), then the treewidth is at most 2¢* (k/2)?.
At every level of recursion, the algorithm computes an optimal tree decomposition of the
current instance before proceeding. This will be apparent in the description of the algorithm

in the next section.

Finding a hitting set of bounded size when the value of . is a constant. Towards
establishing the last property, we show that if the maximum number of vertex dis-
joint minor models of 0, is bounded by a constant, say d, then the treewidth is also
bounded by a constant. Indeed, recall that any graph with treewidth greater than 202*’
contains a t X t grid as a minor. Further, notice thata (d+1)c x d grid contains more
than d vertex disjoint minor models of 0.. Therefore, if the treewidth exceeds 202
for t = dc, then we contradict our assumption that the maximum number of vertex
disjoint minor models of O is bounded by d. Hence, if the maximum number of ver-
tex disjoint minor models of 6. is bounded, by say d, then the treewidth is bounded
by 20(24¢)° "4 constant.

We describe the procedure for obtaining a hitting set when 1(G) = 1, as this is the case
that is relevant to the algorithm. Now, we compute the tree decomposition which, as
discussed, will have bags of constant size. Starting from the leaves and working our
way upwards, we identify the first node t at which the value of the measure flips from
0 to 1. We claim that X, which is the set of vertices in the bag corresponding to the
node t, constitutes a 0.-hitting set of constant size. Indeed, let the components of
G\XinH¢beHy,...,Hp,andlet Hy 1, ..., Hq denote remaining the components
of G\ X. If there is a minor model of 0. in any H;, 1 < 1 < p, then we contradict
the choice of t as being the first node at which the value of () changed from 0 to 1.
On the other hand, if there is a minor model of 6. in any H;, p < 1 < g, then we
contradict the assumption that u(G) = 1. The fact that X; is constant size follows
from our previous inference that G has constant treewidth when the packing number

is a constant (in this case, 1).

Thus we have shown the following claim:

12.3. BOUNDED TREEWIDTHAND A SMALL PACKING NUMBER IMPLIES A SMALL COVER167

Claim 12.2. If W(G) =1, then G admits a O .-hitting set of constant size.

12.3.2 The Algorithm for finding a 6.-hitting set

We are now ready for a formal description of the algorithm that finds a 8 -hitting set,
which is provided below, in Algorithm 5.

Algorithm s Hrt-Se1(G, 1(G))

1: Compute an optimal tree decomposition (T, X = {X¢}tev(T)) of G.

2: Convert (T, X = {X¢}tev(T)) to a nice tree decomposition of the same width.
if 1(G) =1 then
Return a solution of constant size (see Claim 12.2).

else

Find a partitioning of vertex set V(G) into G5, G and X; (a bag correspond-
ing to a node in T) such that u(Ga) < (2/3)u(G), and u(Gg) < (2/3)u(G)
(See Claim 12.1).

7 Return Hir-SET(G A, (2/3)1(G)) U Hit-SET(G3, (2/3)1(G)) U X

8: end if

12.3.3 Analysis and Approximation Ratio

It is easy to see that Algorithm § runs in polynomial time. This follows by a simple
induction on the depth of recursion. We will provide a proof of correctness and the
fact that that the size of solution output by the algorithm is O (k?).

The fact that the subset of vertices returned by the hit all minor models of 6. in the
graph follows from induction on the depth of recursion. The correctness of the base
case follows from Claim 12.2. For the induction step, recall that we begin by identify-
ing a set node t in the tree decomposition of G, and the vertices in the corresponding
bag X, are included in our solution. With the induction hypothesis, we may assume
that we have hitting sets of minor models of 8. in the graphs G4 and Gg (obtained
in accordance with Claim 12.1). Let us denote these hitting sets by Sy and S, and
now consider G \ {S1 U S;}. Note that any remaining minor models have vertices in
Ga and Gg, and therefore in X, because minor models are connected subgraphs and
X separates G from Gg. Therefore, S; U S, U X, indeed hits all minor models of
0. in G.

168CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

The size of the solution returned by Algorithm s is governed by the following recur-

rence (see Claim 12.1):

S(G,u(G)) < 3(Ga, (2/3)u(G)) + S(Gg, (2/3)u(G)) + tw(G).

Note that by Lemma 12.1, we have that tw(G) < ¢?u(G)?. We know that u(G) is
bounded by k, and we abuse notation and use k to denote n(G). Thus, note that
S(G, u(G)) is upper bounded by T(G, k), which is given by the following recurrence:

T(G,k) =T(Ga,2/3k) + T(Gg,2/3k) + c?k2.

The base case is that when k = 1, we have, from Claim 12.2:

T(G,1)=0(1).

Expanding the recurrence above, together with the fact that T(G, 1) = O(1) we ob-
tain:

d i
T(G,k) = c2k? + (Z (g) .c2k2> +0(1)

i=1

The following sum is a geometric series and tends to a constant in the limit i — oo,
and is therefore bounded by a constant when taken only up to a finite number of

terms:

3 (5)

The above proves that the recurrence solves to O(k?), as desired.

12.4 Edge-Disjoint {0.}-packing: Some Observations

We demonstrate a polynomial time procedure for bounding (by a polynomial function
of k) the maximum degree of instances of the problem of packing at least k edge-

disjoint copies of 6. minor models in G. Formally, the problem is the following:

12.4. EDGE-DISJOINT {0 }-PACKING: SOME OBSERVATIONS 169

EDGE-DISJOINT 0. PACKING

Input: A graph G, a non-negative integer k
Parameter: k
Question: Does there exist S, S, ... C V, r > k, such that G[S;] induces a 0,

.S,
minor model, and E(S;) NE(S;) =0 forall T <i<1?

Our recipe for bounding the degree is as follows: We first argue, using the Erdds-Pdsa
property, that either the input graph admits a “small” hitting set for all minor models
passing through a vertex, or that there must be a “large” number of vertex-disjoint
minor models of 0. In the latter case, we are already done, as we may return a trivial
YES-instance as a kernel. Otherwise, we find an approximate hitting set, and use it to
find hitting sets for every vertex v: these sets H,, hit all minor models that contain v.
Thus, for every v, we have a small set of vertices that hits all minor models that pass
through v. We are now able to use expansion properties to bound the degree of every

vertex.

We begin by recalling the Erdés-Pésa property for packing disjoint minor models
of 0.:

Every graph G either contains k vertex-disjoint ©.-minor models, or has a 0. -hitting-set
of size at most f(k) = O(k?).

Thus, notice that we may apply an approximation algorithm to find a 6.-hitting set,
with one of the following outcomes: we are either able to conclude that the graph
has no 0.-hitting set of size O(k?), or we have a 0.-hitting set of size O(k? log k).
Notice that in the first case, due to the Erdés-Pdsa property, we may conclude that
the input instance is a YES instance of EDGE-DISJOINT 6. PACKING, and we are done.
Thus we are left with the situation when we have a 0.-hitting set of size O (k? log k).
Let us call this hitting set 8. Before we describe the procedure for bounding the degree

using 8, let us observe the following reduction rules:

Reduction Rule 12.1 (Irrelevant Vertex Rule). If a vertex v is not contained in any

minimal minor model of O in G, then deletev.

Definition 12.3 (r-flower). A r-flower passing through v is a collection of v subsets
of V(G):
{$1,S2,...,S;}

170CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

that interesect pairwise exactly at v:

SiﬂSj :{V}, V1 gl,] <r

and are such that G[Si] contains a minor model of O, for all1 <1< .

Reduction Rule 12.2 (Flower Rule). If a k-flower passes through a vertex v of G, then
return a trivial YES instance.

The soundness of the irrelevant vertex rule is evident. From the definition of a 1-
flower, it follows that the structure of a r-flower corresponds to T edge-disjoint minor
models of 6.. Therefore, if a graph admits a k-flower, then we have witnesses for
k edge-disjoint minor models of 8. and therefore we may declare the input a YES

instance.

We note that one can test whether a particular vertex v is part of any minimal minor-
model corresponding to 0. using the rooted minor testing algorithm of Robertson
and Seymour [RS9s]. It is not clear, however, that one might check whether a vertex
is a part of a 0, flower of size at least k in polynomial time. We defer the application
of the flower rule and apply it only when the problem of finding a 8. flower of size at

least k can be solved in polynomial time.

Foravertexv € 8 let 8, := 8\ {v} and let G, := G\ 8,. By Lemma 7.7, we know
that any graph of treewidth greater than (2c — 1) contains a 0., as a minor. Since
deleting v from G, makes it .-minor-free, we have that for a fixed ¢, tw(G,) <
(2c = 1) +1 = O(1). Now by Lemma 7.4, we find in linear time the size of the
largest flower containing v in G,,. If for any vertex v € 8 the size of the flower in G,
is at least k + 1, we apply Flower Rule and stop. So from now onwards we assume
that for every vertex v € 8 the maximum size of a flower passing through v in G, is

at most k.

Now we describe how to find, for a given v € V(G), a hitting set H,, C V(G)\{v} for
all minor-models of O that contain v. Since this hitting set is required to excludev, H,,
cannot be the trivial hitting set {v}. If v ¢ 8, then H, = 8. On the other hand,
suppose v € 8. Since the maximum size of a flower containing v in the graph G, is
at most k by Lemma 10.1, we can find a set T, of size O(k) that does not contain
v and hits all the 8, minor-models passing through v in G,,. Hence in this case we
set H, = 8, UT,. We denote |[H,| by h,. Note that H, is defined algorithmically,

12.4. EDGE-DISJOINT {0 }-PACKING: SOME OBSERVATIONS 171

that is, there could be many small hitting sets in V(G) \ {v} hitting all minor-models
containing v, and H, is one of them.

Observe that for every vertex v the set H,, is also a 0. hitting set for G, that is, H,
hits 2// minor-models of 6. in G. Consider the graph G \ H,.. Let the components of
this graph that contain a neighbor of v be C;, Cs, ..., Cy. Note that v cannot have
more than (¢ — 1) neighbors into any component, else contracting the component
will form a . minor and will contradict the fact that H,, hits all the 6, minors. Also

note that none of the Ci’s can contain a minor model of 6.

We say that a component C; is adjacent to H,, if there exists a vertex u € C; and w €
H, such that (u,w) € E(G). Next we show that vertices in components that are
not adjacent to H, are irrelevant in G. Recall a vertex is irrelevant if there is no
minimal minor model of 0, that contains it. Consider a vertex u in a component C
that is not adjacent to H,. Since G[V(C) U {v}] does not contain any 0. minor
we have that if u is a part of a minimal minor model M C G, then v € M and
also there exists a vertex u' € M such that u’ ¢ C U {v}. Then the removal of v
disconnects u from u’ in M, a contradiction to Observation 7.2 that for ¢ > 2, any
minimal 6. minor model M of a graph G does not contain a cut vertex. Applying
the Irrelevant Vertex Rule to the vertices in all such components leaves us with a new
set of components D1, D>, ..., D, such that for every i, in D, there is at least one

vertex that is adjacent to a vertex in H,.

As before, we continue to use G to refer to the graph obtained after the Irrelevant
Vertex Rule has been applied in the context described above. We also update the
sets H, for v € V(G) by deleting all the vertices w from these sets those have been

removed using Irrelevant Vertex Rule.

Now, consider a bipartite graph G with vertex bipartitions H, and D. Here D =
{d1,...,ds} contains a vertex d; corresponding to each component D;. We add an
edge (v, d;) if there is a vertex w € D; such that (v,w) € E(G).

Now, we describe a greedy algorithm that demonstrates the presence of at least k
edge-disjoint minor models of 6, all containing the vertex v, when the degree of v is
suitably large. Consider the vertices in H,,, and let

{U«h---)uhv}

be a list of vertices in H,, in order of decreasing degree in G: that is, the vertices that

“see” the largest number of components appear the earliest in this ordering. Let the

172CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.
modified degree of u;, denoted x;, be defined as the number of ‘new’ component

vertices seen by u;, that is, the number of components that are adjacent to u; but not
to u; for any j < i. Formally:

xi := [N(di) \ Ur<j<iN(dj) N N(dy)|

Further, let y(i) denote the number of “new” (in the same sense as before) edge-

disjoint minor models that are possible between d; and v:

Yi = LXi/CJ

Notice that if there exists j, 1 <j < s, such that:

then we obtain k edge disjoint minor models of ., all intersecting exactly at v. In
this case, we return YES and stop. Else, notice that the number of components is

precisely the sum of all x;, which is in turn bounded:

<

h, h
Z chHrC {2914—21} c(k+hy).
i=1 i=1

Thus we arrive at the following reduction rule:

Reduction Rule 12.3 (High Degree). Ifa vertexv has degree more than c(k+h,), then

return a trivial YES instance.

Notice that after the application of the high degree reduction rule, we are either done,
or left with a graph where the degree of every vertex is bounded by c(k + h,) =
O(k?logk).

With this, we arrive at the following theorem:

Theorem 12.3. We can reduce, in polynomial time, a general instance of EDGE-DISJOINT 0.
PACKING 0 an equivalent instance where the maximum degree is bounded by O (k* log k).

12.4. EDGE-DISJOINT {0 }-PACKING: SOME OBSERVATIONS 173

Using the arguments in Section 10.3, we can infer the existence of a suitable protrusion
given an instance where the maximum degree is bounded by k©"). However, since
we are unable to demonstrate that the problem is CMSO-expressible, or that it has
finite integer index, the protrusion-based reduction rules do not apply. From this
point, the argument can be completed to one for obtaining a polynomial kernel if we
are able to prove that EDGE-DISJOINT O, PACKING is CMSO-expressible, or that it has
finite integer index. We leave this as an interesting open problem.

174CHAPTER 12. AN ERDOS-POSA RESULT FOR PACKING AND COVERING M.

[t isn't that 1,‘/15)/ can't see the solution.
[t is that tf/te)/ can't see the /mfab/em.

Chesterton, G K

The ivvationality of a thing is no arqument against its existence,

rather a condition of it

Friedrich Wilkelm Nietzsche

So far, most of our work involved the design of kernelization algorithms leading up
to polynomial-sized kernels. While every problem that is fixed-parameter tractable
admits a kernel’, there are fixed-parameter tractable problems for which polynomial-
sized kernels are not known. An explanation was provided in the work of Bodlaen-
der et al. [BDFHo9] where it was shown that unless NP € CoNP/poly, there are
fixed-parameter tractable problems that do not admit a polynomial sized kernel. This
triggered further work on showing lower bounds of kernels, and in this chapter, we
briefly summarize developments in the area starting from the framework developed in
the paper by Bodlaender et al. [BDFHo9]. We will apply this framework to concrete
examples in the next two chapters.

13.1 Composition Algorithms

In the classical setting, a distillation algorithm is defined as follows.

Definition 13.1. Let Q, Q' C {0, 1}* be classical problems. A distillation from Q in Q'
is a polynomial time algorithm D that receives as inputs finite sequences X = (X1, ...,X¢)
with xi € {0, 1}* for i € [t] and outputs a string D(X) € {0, 1}* such that

1. |D(X)| = (maxiepx))°"

"The size of the kernel that any FPT problem is guaranteed to have is proportional to f, if the FPT
algorithm runs in time f(k)p(n). Note that the size of such a kernel cannot be a polynomial function
of k, unless P=NP.

175

3. Interlude: Lower Bounds in Kernelization

176 CHAPTER 13. INTERLUDE: LOWER BOUNDS IN KERNELIZATION
2. D(x) € Q' if and only if for some i € [t] : x; € Q.

If Q" = Q we speak of a self-distillation. We say that Q has a distillation if there is a
distillation from Q in Q' for some Q. The following theorem is crucial to the theory

of lower bounds in kernelization.

Theorem 13.1 ([ES11]). If any NP-complete problem has a distillation algorithm then
NP C CoNP/poly.

In this section we introduce composition algorithms, distillation-type algorithms for
parameterized problems. The existence of a composition algorithm for a parameter-
ized problem along with a polynomial kernel implies a distillation algorithm for the
corresponding classical problem (c.f [BDFHo9]).

The formal definition of a composition algorithm is the following:

Definition 13.2 ([BDFHo9]). Let TT be a parameterized problem. A composition
of T is a polynomial time algorithm A that receives as inputs finite sequences X =
((x1,k)y (x2,K)y ooy (x4, K)) with xi € {0, 1} fori € [t]. The algorithm is required to
output an instance A(X) == (y,1) € {0, 1}* X N such that

. 1=k

2. (y,V) € T ifand only if for some i € [t] : (xi,k) € TI.

It turns out that if the parameterized version of a NP-complete problem admits both
a composition and a polynomial kernel, then it also has a distillation. This will imply
that if a parameterized problem has a composition algorithm, then it has no polyno-
mial kernel unless NP C CoNP/poly, due to Theorem 13.1.

Theorem 13.2 ((BDFHo9]). LetTT be a compositional parameterized problem, and such
that P, the underlying classical problem, is NP-complete. IfT1 has a polynomial kernel,
then P also has a distillation algorithm.

Algorithms that compose multiple instances of a problem into one (respecting a num-
ber of properties) have been developed for various problems ([BDFHo9, CFM11,
DLSo09]). As an illustration, we provide a rather simple example of composition al-

gorithm.

13.2. POLYNOMIAL PARAMETER TRANSFORMATIONS 177

k-PatH
Input: A graph G and a non-negative integer k.
Parameter: k

Question: Does G have a path of length k?

O via the technique

This problem is shown to be in FPT with running time 2°*)n
of color coding. The algorithm randomly “colors” the vertex set with k colors, that
is, it picks uniformly at random a function ¢ : V — [k] and hopes that the vertices
of the k-path we are after are colored distinctly. That is, the function restricted to
at least one witness k-length path is injective. It then uses dynamic programming
to actually identify the colorful path from the colored graph. The algorithm is de-
randomized using a family of hash functions, and the reader is referred to [AYZ95]

for more details.

We present now a composition for k-pATH. Suppose the input instances are:

(th))"')(Gt)k)

A composition algorithm is trivial, it simply provides the disjoint union G’ of all the
graphs as the output. Notice that this consumes linear time, and leaves the parameter
unchanged. Clearly, G’ has a path of length at most k if, and only if, there exists 1, 1 <
i < t, such that G; has a path of length at most k.

Informally speaking, the disjoint union strategy works whenever we look for con-
nected structures that are required to satisfy properties that are functions of the vertices
participating in the structure (and are independent of rest of the graph). Typically,
the fact that the property is “local” helps the forward direction and the connectivity
aids the reverse direction of the argument. Examples include k-CycLe, k-TREE or
k-Out TREE in a directed graph. Thus these problems, though FPT, do not admit
polynomial kernels unless NP C CoNP/poly.

13.2 Polynomial Parameter Transformations

In this section, we introduce the notion of transformations, which will allow us to

prove results for problems that do not obviously have compositions.

178 CHAPTER r3. INTERLUDE: LOWER BOUNDS IN KERNELIZATION

We begin by describing what we mean by a polynomial parameter transformation

[BTYo9, DLSo9].

Definition 13.3 (Polynomial parameter transformation). Let P and Q be parameter-
ized problems. We say that P is polynomial parameter reducible to Q, written P <ppt Q,
if there exists a polynomial time computable function f : {0,1}* — {0, 1}, and a poly-
nomial p : N — N, and for all x € {0,1}* and k € N if f(x,k) = (y, 1), then the
Jollowing hold:

1. (x,k) € P, ifand only if (y,1) € Q, and

2. 1< p(k)

We call f a polynomial parameter transformation from P to Q.

Notice the differences with the notion of fixed-parameter reductions introduced by
Downey and Fellows (see [DF9sc, DFgsa, DF9sb]). In general fixed-parameter re-
ductions, one is allowed f(k)p(|x|) time for an input instance (x, k) where f is an
arbitrary function and p is a polynomial function, and the resulting parameter is al-
lowed to be an arbitrary function of the original parameter. Here the running time
allowed is only a polynomial in |x| and k and the resulting parameter value is only a

polynomial function of the original parameter.

Polynomial parameter transformations are used to show non-existence of polynomial

sized kernels using the following theorem.

Theorem 13.3 ([BTY09]). Let (A, K) and (B, 1) be parameterized problems such that A
is NP-complete, and B € NP. Suppose that there is a polynomial parameter transforma-
tion from A to B. Then, if B has a polynomial kernel, then A has a polynomial kernel.

As an easy corollary of Theorem 13.3, note that whenever (A, k) and (B, 1) are param-
eterized problems (such that A is NP-complete, and B € NP) and A <p,,¢ B, if A is
compositional, then B does not have a polynomial kernel unless NP C CoNP/poly.
A natural strategy to prove that a problem A is unlikely to admit a polynomial kernel,
is to reduce some NP-complete problem B, for which we have a composition, to A

using a polynomial parameter transformation.

13.2. POLYNOMIAL PARAMETER TRANSFORMATIONS

179

X

zEA
Instance of A
. NPcompleteness
PPT Reduction
Reduction
f(x) =y O
Kernelization K(y)

Instance of B

Figure 13.1: Illustrating the utility of PPT Reductions in Kernelization: A PPT re-
duction from A to B allows us to obtain a kernel for A whenever B

admits a kernelization algorithm.

13.2.1 (Vertex) Disjoint Cycles

Consider the following two parameterized problems.

VERTEX DisjoinT CYCLES

Input: Undirected graph G = (V, E) and a non-negative integer k.
Parameter: k
Question: Does G contain at least k vertex-disjoint cycles?

EbpcGe Disjoint CycLEs
Input: Undirected graph G = (V, E) and a non-negative integer k.
Parameter: k

Question: Does G contain at least k edge-disjoint cycles?

180 CHAPTER r3. INTERLUDE: LOWER BOUNDS IN KERNELIZATION

The problem of VErTEX DisjoiNT CycCLEs is strongly related to the Feedback Vertex
Set (FVS) problem, wherein the question is whether there exist k vertices whose dele-
tion makes the graph acyclic (usually studied with k as the parameter). Clearly, if a
graph has more than k vertex disjoint cycles, then it cannot have a FVS of size k or less,
as any FVS has to pick at least one vertex from every cycle. If there are at most k vertex
disjoint cycles, the implications are less immediate, but an upper bound of O(k log k)
on the size of the optimal FVS is known, due to a result by Erdds and Pésa [EP65a].
For the FVS problem, there is a kernel of size O(k?) ([Tho1o]) by Thomassé, who im-
proved upon a kernel of size O(k*) ([Bodo7]). The EpGe Disjoint CycLEs problem
has a polynomial kernel (see [BTYo09]).

In contrast, it is shown in [BTYo9] that the VErTEX Disjoint CycLEs problem does
not admit a polynomial kernel through a polynomial parameter transformation from
an intermediate problem called DisjoiNT Factors. For the rest of this discussion,

when we say disjoint cycles we mean vertex disjoint cycles.

We begin by describing the DisjoiNT FacTors problem. For a positive integer k,
we use Ly to denote the alphabet {1,2,...,k}, and L} to denote the set of all words
over L. Forx € Ly, an x factor of aword wy - - - w, € L} isasubstringw; - - - wj; 1 <
i <j < rsuch that wi = wj =x. A word w € L is said to have the disjoint factor
property if there exist disjoint (non-overlapping) factors fq,fa,..., fx in w, where
for 1 < i<k, f;isanifactor of w.

DisjoIiNT FacTogs is the following problem:

DisjoinT FacTORrs

Input: Awordw € L§
Parameter: k> 1
Question: Does w have the Disjoint Factors property?

In [BTY09], a composition algorithm is described for the DisjoinT FacTORS problem,

implying that polynomial kernelization is infeasible:
Theorem 13.4 ([BTYo9]). Disjoint Factors parameterized by X does not admit a poly-
nomial kernel unless NP C CoNP/poly.

We are now ready to describe a polynomial parameter transformation from DisjoINT

Facrors to VErRTEX DisjoiNnT CYCLES.

13.2. POLYNOMIAL PARAMETER TRANSFORMATIONS 181

Given an input (W, k) of DisjoinT FacTors, with W = wy - - - wy,, aword in {0, T}*,
we build a graph G = (V, E) as follows. First, we take n vertices v1,...,Vvy, and
edges {vi,vi;1} for T < i < n, ie., these vertices form a path of length n. Let P
denote this subgraph of G. Then, for each i € Ly, we add a vertex x;, and make x;
incident to each vertex v; with wj = 1, i.e., to each vertex representing the letter i.

See Figure 13.2 for an illustration.

We next claim that G has k disjoint cycles if and only if (W, k) has the requested k
disjoint factors. Suppose G has k disjoint cycles c1,...,cx. As P is a path, each of
these cycles must contain at least one vertex not on P, i.e., of the form x;, and hence
each of these cycles contains exactly one vertex x; (as the cycles are vertex disjoint,
and there are k vertices available outside P). For 1 < j <k, the cycle ¢; thus consists
of xj and a subpath of P. This subpath must start and end with a vertex incident to ;.
These both represent letters in W equal to j. Let F; be the factor of W corresponding
to the vertices on P in ¢j. Now, Fy,...,Fy are disjoint factors, each of length at
least two (as the cycles have length at least three), and F; starts and ends with j, for
allj, 1<j <k

w = 1123343422

Figure 13.2: Disjoint Factors <pp¢ Disjoint Cycles

Conversely, if we have disjoint factors Fy, . .., Fi with the properties as in the Disjoint
Factors problem, we build k vertex disjoint cycles as follows: for each j,1 < j < k,
take the cycle consisting of x; and the vertices corresponding to factor F;. Thus we
have shown:

Theorem 13.5 ([BTY09]). Disjoint Factors does not admit a polynomial kernel unless
NP C CoNP/poly.

182 CHAPTER r3. INTERLUDE: LOWER BOUNDS IN KERNELIZATION

13.2.2 Turing Kernelization

Although a parameterized problem may not necessarily admit a polynomial kernel,
it may evidently admit many of them, with the property that the instance is in the
language if and only if at least one of the kernels corresponds to an instance that is
in the language. It is established in [FFL" 09] that k-LEar OuT-BRANCHING admits
n independent kernels of size O(k?). It was not a kernel in the usual “many to one”
sense, though it was kernel in the “one to many” sense. This brings us to the notion

of Turing kernelization. In order to define this we first define the notion of t-oracle.

Definition 13.4. A t-oracle for a parameterized problem 11 is an oracle that takes as input
(I k) with |1] < t, k < t and decides whether (1,k) € T in constant time.

Definition 13.5. A parameterized problem 11 is said to have g(k)-sized turning kernel
if there is an algorithm which given an input (1,X) together with a g(k)-oracle for T1
decides whether (1,k) € T in time polynomial in |1| and k. |x'|, k" <= g(k).

Observe that the well known notion of kernel or many to one kernel is a special case
of turing kernelization. In particular, many to one kernels are equivalent to turing
kernels where the kernelization algorithm is only allowed to make one oracle call and

must return the same answer as the oracle.

[don't believe it

Prove it to me and | still won't believe it

%‘ff{‘” Adams

Relax Luther, it’s much worse than you think

Mission Ompossidle

In this chapter, we demonstrate kernelization lower bounds for two packing prob-
lems: VERTEX DisjoINT 0.-PackING and VERTEX DisjoiNT Opp CyCLE PACKING.
In particular, these results imply that these problems do not have polynomial kernels

unless NP C CoNP/poly.

First, we study the VERTEX Di1sjoINT 0.-PACKING problem, which is a generalization
of the DisjoinT CycLEs problem. In the parameterized DisjoiNT CycLEs problem
the input consists of an undirected graph G and a positive integer parameter k, and
the question is whether G contains at least k vertex-disjoint cycles. This problem is
NP-complete [G]79], and it has long been known to have a kernel of size exponential
in k, from an early result due to Bodlaender [Bodg4] and a folklore theorem of pa-
rameterized complexity [DF99]. It was open for a long time whether this problem has
a polynomial kernel. Quite recently, Bodlaender et al. [BTYo9] showed that DisjoiNT
CyctLes does 7ot have a polynomial kernel unless NP C CoNP/poly, which is widely
believed to be unlikely.

Recall that for a positive integer ¢, we define 6. to be the multigraph which consists
of two vertices and ¢ parallel edges between them. For each positive integer ¢, we
define the VErTEX Di1sjoINT 0.-PACKING problem as follows:

VERTEX DisjoINT 0.-PACKING

Input: An undirected graph G and a positive integer k.
Parameter: k
Question: Does G contain at least k vertex-disjoint subgraphs Hj, Ha,..., Hy such

4. A Szfuaé/ af Some Pachhj Versions

that for each 1 < 1 < k, (1) H; contains a 0. as a minor, and, (2) no

proper subgraph of H; contains 6. as a minor?

183

184 CHAPTER 14. A STUDY OF SOME PACKING VERSIONS

Note that for ¢ = 1, the VErRTEX DisjoIiNT 0.-PACKING problem is equivalent to
asking whether there exists a matching of size (number of edges) at least k in G, and can
be solved in polynomial time by finding a maximum matching in G [MV80]. Forc =
2, this problem is equivalent to the DisjoiNT CycLEs problem, and hence is NP-
complete [G]79] and has no polynomial kernel unless NP C CoNP/poly [BTYo9].

In this chapter, we show that for each fixed ¢ > 3 the problem remains NP-complete
and has no polynomial kernel unless NP C CoNP/poly.

The second problem that we explore is the VErRTEX Disjoint Opp CycLE PACKING
problem. Cycles of odd length are interesting for various reasons. One of them is that
they provide a natural analog of the FEEDBACK VERTEX SET problem. Recall that the
FEEDBACK VERTEX SET question asks, for a graph G, a smallest subset of vertices S such
that the graph G\ S has no cycles. Finding a feedback vertex set is interesting because
graphs that do not have cycles (forests) are an interesting (and from the algorithmic
point of view, a “tractable”) graph class. Similarly, the class of bipartite graphs (graphs
whose vertex set can be partitioned into two independent parts) is another interesting
graph class, and relevant to us because they are exactly the graphs that do not have

cycles of odd length.

It is natural to ask both the covering and packing question for odd cycles. The covering
question corresponds to Opp CycLE TRAVERSAL, and has been shown FPT [RSVoy,
LSSo9], while the question of whether it admits a polynomial kernel is regarded an
interesting open problem in the kernelization literature. The complementary packing

problem has two versions again:

¢ Are there at least k vertex disjoint cycles of odd length?
¢ Are there at least k edge disjoint cycles of odd length?

The vertex disjoint version has been studied for the special case of packing triangles,
for which a cubic kernel has been obtained [FHR " 05]. In this chapter, we show that

the general question (for both versions), is not likely to admit a polynomial kernel.

14.1 Vertex-Disjoint {0.}-packing: No Polynomial Ker-

nels

In this section, we show the lower bound for VERTEX DisjoINT 0.-PACKING:

14.1. VERTEX-DISJOINT {0 }-PACKING: NO POLYNOMIAL KERNELS 185

Theorem 14.1. For any fixed integer ¢ > 3, the Vertex Disjoint ©.-Packing problem is
NP-complete, and has no kernel of size bounded by X4, for any fixed constant d, unless
NP C CoNP/poly.

Proof. 'This proof is by a reduction from DisjoiNT FacTors. We begin by not-
ing that the derived classical problem corresponding to DisjoinT FacTors is NP-
complete [BTYo9]. Also, the derived classical problem corresponding to VERTEX Dis-
JOINT 0.-PACKING is easily seen to be in NP. Further, Disjoint FacToRs is known
to admit a composition algorithm [BTYo9], and hence does not have polynomial
kernels unless NP C CoNP/poly. We now proceed to describe the reduction.

We begin by recalling the definition of DisjoiNT FacTORS, the problem we will reduce
from towards the proof the theorem. For a positive integer k, we use Ly to denote
the alphabet {1,2, ...k}, and L} to denote the set of all words over Ly. For x € Ly,
an x factor of a word wy ---w, € Li is a substring w; - --wj;1 <1 <j < rsuch
that wi = wj = x. A word w € L is said to have the disjoint factor property if there
exist disjoint (non-overlapping) factors f1, f2, ..., fx in W, where for 1 <1 <k, f; is

an 1 factor of w.

DisjoinT Facrors is the following problem:

DisjoIiNT FACTORS

Inpu: Awordw € L}
Parameter: k>1
Question: Does w have the Disjoint Factors property?

Note that to prove the theorem, it suffices to demonstrate a polynomial parameter
transformation from DisjoiNT FacToRs to VERTEX DisjoIinT 0.-PackinG (this fol-

lows from Theorems 13.3 and 13.4).

Given an instance of DisjoINT FACTORS consisting of a positive integer k and a
word W = X1X2...X, € L}, we construct an instance (G, k) of VERTEX DisjoINT
0.-PAckING as follows (See Figure 14.1.). We create vertices v, V2, ..., Vv, and add
the edges (vi,Vvit1);1 <1< n. Thatis, we create a path (called the spine of G) that
mimics w. For T <1 < n,let Li(x;) be the letter that corresponds to vertex v; on
this spine. We then introduce a “dominating” vertex for each letter in the alphabet.
That is, for 1T < 1 < k, we create a vertex D; and make D; adjacent to all the ver-

tices vj; Ly (v;) = 1. We use D(vj) to denote the dominating vertex corresponding to

186 CHAPTER 14. A STUDY OF SOME PACKING VERSIONS

T1 T2 Tn

Figure 14.1: Reduction from Disjoint Factors to VERTEX DisjoINT 0.-PACKING

for ¢ = 5. The big black vertices all correspond to the letter i.

vertex vj. Finally, for each vj;1 < j < m, we introduce a set S(vj) of (c — 2) new

“special” vertices, and make each of these new vertices adjacent to v; and to D (vj).

In the reduced instance (G, k), G is the graph constructed as above, and k has the same
value as for the input DisjoiNT FAcTORS instance. It is easy to see that this construc-
tion can be performed in polynomial time. Now, VERTEX DisjoINT 0.-PACKING is
evidently in NP, and Disjoint Factors is NP-complete [BT Y09, Theorem s]. From
Lemma 14.1, the reduction described above is both a Karp reduction and a polyno-

mial parameter transofrmation, and the theorem follows. O]

Lemma 14.1. Let (W = X1X2...Xn,K) be an instance of Disjoint Factors, and
let (G, k) be an instance of Vertex Disjoint ©.-Packing constructed from (w, k) as de-
scribed in the proof of Theorem 14.1. Then (w, k) is a YES instance of Disjoint Factors
if and only if (G, k) is a YES instance of Vertex Disjoint ©.-Packing.

Proof. Let £ = x4,---x; = { be an {-factor of w for some 1T < € < k. The sub-
graph H of G induced by the vertex set {D¢,Vi,...,v;} U S(vi) forms a minimal
0. minor model (See Figure 14.2.). Indeed, one can pick exactly ¢ vertex-disjoint
paths between D and v; in H, consisting of: the edge (D¢, Vi), the (c — 2)
paths (D¢,y,vi);y € S(vi) each of length two, and the path that consists of the
edge (Dq,Vvj) followed by the path from v; to v; along the spine of G. Note that
this 6. minor model intersects the spine only at vertices corresponding to the (-
factor x; ...x; of w, and that the only other vertices it contains are the dominating

vertex corresponding to { and special vertices corresponding to v;. It follows that if w

14.1. VERTEX-DISJOINT {6 }-PACKING: NO POLYNOMIAL KERNELS 187

has the disjoint factor property, then G contains k vertex-disjoint minor-models of

0., each constructed from one of the disjoint factors in the manner specified above.

Figure 14.2: Hardness reduction: The forward direction.

Now suppose G contains k vertex-disjoint minimal minor-models of 0. If we remove
all the dominating vertices Di;1 < i < k from G, then the remaining graph does
not contain any cycle. Therefore any minor model of 6. in G must contain at least
one of the dominating vertices. Since there are k vertex-disjoint minimal minor-
models in G, each of these must contain exactly one of the dominating vertices. For
letter £;1 < £ < k, let M denote the minimal 6. minor model of G that contains Dj,.
Now, if Py = vi---vj is a subpath of the spine such that Ly(vi) = Lc(v;) = {,
then x; - - - x; is an ({-factor of w. If each M¢;1 < € < K contains such a Py, then
since the Mys are vertex-disjoint, w has the disjoint factors property, and the claim
is proved. We now argue that each My;1 < € < k must contain such a Pg. So
let 1 <€ <k

First we show that My must contain at least two vertices v, Vv; from the spine such
that Ly(vi) =€ = Ly (vj). If M¢ contains no such vertex, then in My, either Dy is
isolated, or all of D¢’s neighbors (which are all special vertices) are pendant vertices.
By Observation 7.2, neither of this can happen, and so M, contains at least one such
vertex. Suppose M, contains exactly one such vertex, say v;. Then, since any vertex
in My has degree at least 2 (Observation 7.2), and since Dy is the only “dominating”
vertex (see the construction) in My, the only special vertices that are present in M,
are those that are adjacent to v;. If M, contains no neighbor of v; that lies on the
spine, then My is the subgraph of G induced on Dy, vi, and some subset of S(v;). It
is clear that such a subgraph cannot contain a 6. as a minor (Figure 14.3), and so M,

contains at least one neighbor of v; that lies on the spine of G.

188 CHAPTER 14. A STUDY OF SOME PACKING VERSIONS

D,

e

Figure 14.3: Hardness reduction: One case that is ruled out in the reverse direction.

(%

Figure 14.4: Hardness reduction: The second case that is ruled out in the reverse

direction.

Let w be such a neighbor. From the assumption, Ly (w) # (. Since w has degree at
least 2 in M, and none of the vertices in S(w) can be in M; (since they would have
degree one in M;), M; contains a neighbor of w other than v that lies on the spine
in G. Repeating this argument, we reach a vertex on the spine that can have only
one neighbor in My, a contradiction. Thus M, contains at least two vertices Vi, V;
such that Ly (vi) = Li(v5) = (. If M does not contain the subpath of the spine
from v; to vj, then My is the subgraph of G induced on Dy, vji,Vvj, and some
subset of S(vi) U S(vj) (Figure 14.4). In particular, by Observation 7.2 and a similar
argument as above, no other vertex on the spine is in My. Dy is then a cut vertex for
this subgraph, which contradicts Observation 7.2. It follows that M, must contain a
subpath of the spine from v; to vj.]

14.2. ODD CYCLE PACKING: NO POLYNOMIAL KERNELS 189

14.2 Odd Cycle Packing: No Polynomial Kernels

In this section, we show kernel lower bounds for VErTEX DisjoinT Opp CyCLE PACK-
ING and EpGe Disjoint Opp CycLe PACKING.

Theorem 14.2. The Vertex Disjoint Odd Cycle Packing and Edge Disjoint Odd Cy-
cle Packing problems are NP-complete, and have no polynomial kernels, unless NP C
CoNP/poly.

Proof. We begin again by noting that the derived classical problem corresponding to
DisjoinT Factors is NP-complete [BTY09, Theorem s]. It is clear that the derived
classical problem corresponding to VERTEX D1sjoiNT ObpD CycLE PACKING is in NP.

We refer the reader to the beginning of the proof of Theorem 14.1 in the previous

section or Section 13.2.1 in Chapter 13 for the definition of disjoint factors.

We will demonstrate polynomial parameter transformations from DisjoiNt FAcTORS
to VERTEX DisjoinT Opp CycLE PackinGg and Epge Disjoint Opp CycLe PackiNg.
This fact that this suffices to prove the theorem follows from Theorems 13.3 and 13.4.

The same construction works for both the VErRTEX Disjoint Opp CycLE PAcKING
and EpGe DisjoiNT OpD CycLE PACKING problems. The proofs of equivalence are

also nearly identical, as we will see shortly.

Given an input (W, k) of Disjoint Factors, with W = wy - - - wy,, aword in {0, 1},
we build a graph G = (V, E) as follows. First, we have n vertices vi,...,v,. Let P
denote this subgraph of G. Then, for each i € Ly, we add a vertex x;, and make x;

incident to each vertex v; with w; =1, i.e., to each vertex representing the letter 1.

We repeat this construction again, essentially duplicating the graph we have built so
far, as follows. We have . more vertices 11, ..., u,. Then, for each 1 € Ly, we add a
vertex Yi, and make y; incident to each vertex u; with wy = i. This time, however,
we add the edges {ui, uiy1} for T < i < n — so that these vertices form a path of
length n. Let Q denote this subgraph of G.

We now subdivide all the edges on the path P and let 1; denote the vertex between v;
and vy 1. Similarly, we subdivide all the edges on the path Q and let s; denote the
vertex between u; and uiy7. For T <1 < (n—1), we add the edges (vi,si), and
finally add edges (x;,y;) for 1 <j < k.

This completes the construction, see Figure 14.5 for an illustration.

190 CHAPTER 14. A STUDY OF SOME PACKING VERSIONS

w = 1122312 « The factor indicated below.

Figure 14.5: Disjoint Factors <pp¢ Odd Vertex Disjoint Cycle Packing

We now argue the correctness of the reduction. In the forward direction, we show that
if w contains k disjoint factors, one for each letter in L, then G contains k mutually
vertex disjoint cycles, each of odd length. Notice that since any collection of vertex
disjoint cycles is also edge disjoint, the claim demonstrates the correctness of the for-
ward direction for both VErTEX DisjoinT Opbp CycLE PAcKING and EDGE DisjoINT
Opbp CycLE PackING.

Claim 14.1. Ifw contains K disjoint factors, one for each letter in L, then G contains k
mutually vertex disjoint cycles, each of odd length.

For a fixed letter 1 € L, we first show that an i-factor corresponds to a cycle of odd
length in G. Let the i factor be wy, - - - wq. Indeed, consider the following cycle:

Xi—Vp—Sp—Up 41— = - —Sq—Uq—Yi—Xi.

This cycle comprises of a sub path on Q and four other
edges: (xi,Vp), (Vp,Sp), (Uq,yi) and (yi,xi). Thus, if we show that the sub
path on Q is of odd length, it follows that the entire cycle has odd length. Notice that
any sub path of Q that corresponds to a factor (that is, the end points of the path are
vertices 1 and j such that wi = wj) has even length, since the path is subdivided. The

14.2. ODD CYCLE PACKING: NO POLYNOMIAL KERNELS 191

sub path of Q that belongs to the cycle is easily seen to be a sub path corresponding

to a factor but short of one edge (the edge (u,,sy)). Therefore, this sub path is of
odd length.

We now argue that two cycles corresponding to different factors do not have any
vertices in common. Given the way the cycles are chosen above, it is clear that the
vertices X, Yi belong to exactly one of the chosen cycles. The vertex vy, is chosen on the
basis of the fact that wy, is the starting point of the i-factor, thus if v, belongs to two
cycles, that means that the corresponding factors in w are not disjoint. Similarly, the
sub paths on the path Q correspond to the sub word w41 ... wq. Thus, itis clear that
if the sub paths corresponding to two different cycles intersect, then the corresponding
factors are not disjoint in w. It is easily checked that the vertices s, belongs to exactly
one of the chosen cycles: By construction, a neighbor of s, from P is always picked
in the cycle that s, belongs to, and s, has an unique neighbor (namely, v;,) on P.
Since v, belongs to exactly one of the chosen cycles, so does s,,. This concludes the
proof of Claim 14.1.

In the reverse direction, we show that if G contains k mutually edge disjoint cycles,
each of odd length, then w contains k disjoint factors, one for each letter in L. Notice
that no assumptions are made about whether the cycles share vertices, so in particular
the proof holds when all the cycles are vertex disjoint. Thus the following claim estab-
lishes the reverse direction of the reduction for both VErTEX DisjoinT Opp CyCLE
PackiNG and EpGe DisjoinT Opbp CycLE PACKING.

Claim 14.2. If G contains K mutually edge disjoint cycles, each of odd length, then w
contains K disjoint factors, one for each letter in L.

Let Cy,..., Cx denote the k mutually edge disjoint cycles, each of odd length. We
first demonstrate that each cycle C; must involve x,, and y,, for some T < p < k.

Notice that the graph G without the edges {(xp,yp) | T < p < k} is bipartite. This
is demonstrated by the following two-coloring of V(G) (see Figure 14.6): vertices x,,
and yp, are colored red, their neighbors on the paths P and Q are colored blue, and
the remaining “subdivison vertices” are colored red. It is easy to to verify that this is

indeed a two-coloring of G in the absence of the edges

Ec:={(xp,yp) | T <p <kl

Therefore, it is clear that any odd cycle C; must involve one of the edges in Ec. As
there are only k edges in Ec and the cycles Cy,..., Cy are edge-disjoint, it is clear

192 CHAPTER 14. A STUDY OF SOME PACKING VERSIONS

that each C; contains exactly one edge of the form (xp,yy). This shows that each

cycle C; must involve x,, and y,, for some T < p < k.

The intersection of the cycle that contains {x;,, Yy, } with the path Q determines a p-
factor by construction, and the fact that the cycles are disjoint imply that the factors
thus obtained are also disjoint. This concludes the proof of Claim 14.2.

The proof of the theorem follows from Claims 14.1 and 14.2 above. O

w = 1122312

Y1 Y2

LL] —39S7 —uz—SZ —1L3—S3 —U4—S4 —u5—55 —LL(.}—SG—LW

Jodoidsdodods

X1 X2

Figure 14.6: A two-coloring of the reduced instance without the edges (xp,Yp),
1<p<k

5. Co/orfu/ Motifs

Just when you think it can'’t get any worse, it can.

And just when you think it can’t get any better, it can.

Nicholas Sparks

“Would you tell me, please, which way | ought to go from here?”
“That depends a good deal on where you want to get to.”
1 dow’t much care where —"

“Then it doesn’t matter which way you go. ”

Lewis Carroll

The GrarH MOTIF problem concerns a vertex-colored undirected graph G and a mu/-
tiset Ml of colors. We are asked whether there is a set S of vertices of G such that the
subgraph induced on S is connected and there is a color-preserving bijective mapping
from S to M. That is, the problem is to find if there is a connected subgraph H of G
such that the multiset of colors of H is identical to M.

The Grara MoTIF problem has immense utility in bioinformatics, especially in the
context of metabolic network analysis (eg. motif search in metabolic reaction graphs
with vertices representing reactions and edges connecting successive reactions) [BHK " 09,
LESo6] . The problem is NP-complete even in very restricted cases, such as when G is

a tree with maximum degree 3, or when G is a bipartite graph with maximum degree 4
and M is a multiset over just two colors. When parameterized by [M|, the problem

is FPT, and it is W[2]-hard when parameterized by the number of colors in M, even
when G is a tree [FFHVo7].

The CoLorFUL MOTIE problem is a simpler version of the GrapH MoTIF problem,
where M is a set (and not a multiset). Even this problem is NP-hard on simple classes
of graphs, such as when G is a tree with maximum degree 3 [FFHVo07]. The problem is
FPT on general graphs when parameterized by [MJ, and the current fastest FPT algo-
rithm, by Guillemot and Sikora, runs in O*(2™!) time and polynomial space [GS10].

We now turn to an example of a seemingly simple graph class on which the problem
continues to be intractable. A graph is called a comb graph if (i) it is a tree, (i) all
vertices are of degree at most 3, (iii) all the vertices of degree 3 lie on a single simple

193

194 CHAPTER 15. COLORFUL MOTIFS

path. Cygan et al. [CPPW 0] recently showed that the problem is NP-hard even
on comb graphs. Further, they show that the parameterized version of the problem
is unlikely to admit a polynomial kernel on forests (a disjoint union of trees) unless
NP C CoNP/poly, which would in turn imply an unlikely collapse of the Polynomial
Hierarchy [CCHOo5]. Hierarchy collapses to the third level.

We begin by pushing the borders of classical tractability. We show that while the
problem is polynomial time on caterpillars (trees where the removal of all leaf vertices
results in a parh, called the spine of the caterpillar), it is NP-hard on /lobsters (trees
where the removal of all leaf vertices results in a caterpillar). In fact, we show that
even more is true: the problem is NP-hard even on rooted trees of height two, or
equivalently, on trees of diameter at most four. See Figure 15.1 for an overview of

some of the graph classes mentioned.

Next, we extend the known results on the hardness of kernelization for this prob-
lem [CPPW1o0]. Specifically, we show that the lower bound can be tightened to hold
for comb graphs as well. This is established by demonstrating a simple but unusual
composition algorithm for the problem restricted to comb graphs. The composition
is unusual because it is not the trivial composition (via disjoint union), and yet, it
does not employ gadgets to encode the identity of the instances. To the best of our
knowledge, this is an uncommon style of composition. On the positive side, we show
a straightforward argument that yields polynomially many polynomial kernels for the
problem on comb graphs, # /z the many polynomial kernels obtained for k-Leaf Out
Branching [FFL" 09]. Again, to the best of our knowledge, this is one of the very few
examples of many polynomial kernels for a parameterized problem for which polyno-

mial kernelization is infeasible.

However, in our attempts to obtain many polynomial kernels for the more general
case of trees, we learn that some natural approaches fail. Specifically, we show that two
natural variants of the problem — Rootep CororruL MoTir', SuBser COLORFUL
Motir* — do not admit polynomial kernels unless NP C CoNP/poly. This shows,
for instance, that the “guess” for obtaining many polynomial kernels has to be more

than, or different from, a subset of vertices.

While we show that CoLorruL MoTir is NP-hard on trees of diameter at most four,
the kernelization complexity of the problem on this class of graphs is still open. How-

ever, we show that CoLorrFUL MoTIF is NP-hard on general graphs of diameter zhree,

"Does there exist a colorful subtree that contains a specific vertex?
2Does there exist a colorful subtree that contains a specific subset of vertices?

195

T AL
| A

superstars

NN

caterpillars

e ﬁ//

Figure 15.1: Graph classes: combs, superstars, caterpillars and lobsters.

and the same reduction also shows that polynomial kernels are unlikely for graphs of
diameter three. We employ a reduction from CoLorRFUL MOTIF on general graphs.
Using similar techniques, we show that the problem is NP-hard on general graphs of
diameter zwo. This turns out to be useful to show the NP-hardness of CONNECTED
DoOMINATING SET on the same class of graphs.

The results we obrtain in this chapter contribute to the rapidly growing collection of
problems for which polynomial kernels do not exist under reasonable complexity-
theoretic assumptions. Given that many of our results pertain to very special graph
classes, we hope these hardness results — which make these special problems available
as starting points for further reductions — will be useful in settling the kernelization
complexity of many other problems. In fact, we demonstrate the utility of the NP-
completeness of COLORFUL MOTIF on graphs of diameter two, by showing that Con-
NECTED DOMINATING SET on graphs of diameter two is NP-complete. The classical
complexity of CONNECTED DOMINATING SET on graphs of diameter two was hitherto
unknown, although it was known to be NP-complete on graphs of diameter three,

and trivial on graphs of diameter one. We summarize these results in Table 15.1.

CHAPTER 15. COLORFUL MOTIFS

196

Graph Class Classical Complexity Kernelization Complexity
Colorful Motifs
Comb Graphs NP-Complete [CPPW10] No Poly Kernel [Lemma 15.4],
Many Poly Kernels [Lemma 15.5]
Superstar Graphs NP-Complete [Theorem 15.2] -
Lobsters NP-Complete [Corollary 15.6] | No Poly Kernel [Corollary 15.6]
Diameter Two Graphs | NP-Complete [Corollary 15.4] -
Diameter Three Graphs | NP-Complete [Corollary 15.5] No Poly Kernel [Corollary 15.5]
Rooted Colorful Motifs
Trees NP-Complete [Proposition 15.7] 7 No Poly Kernel [Proposition 15.8]
Subset Colorful Motifs
Trees NP-Complete [Proposition 15.9] | No Poly Kernel [Proposition 15.9]

Table 15.1: Summary of Results. Apart from the results tabulated, we also prove that CoNNECTED DOMINATING SET on Graphs of

Diameter Two is NP-Complete.

15.1. HARDNESS ON SUPERSTAR GRAPHS 197

15.1 Hardness On Superstar Graphs

We begin by observing that the CoLorruL MoOTIE problem is NP-complete even on
simple classes of graphs. It is already known that the problem is NP-complete on
comb graphs [CPPW1o]. In this section, we show that the problem is NP-complete
on superstars — or equivalently, on rooted trees of height at most two. To begin with,
consider COLORFUL MOTIF on paths. A solution corresponds to a colorful subpath,
which, if it exists, we can find in polynomial time by guessing its end points. It is
easy to see that this approach can be extended to a polynomial time algorithm for
CoLorrUL MOTIF on caterpillars, in which case we are looking for a colorful “sub-
caterpillar”: We may guess the end points of the spine of the subcaterpillar, and for
any given guess, if the subpath on the spine does not span the entire set of colors, we
check if they can be found on the leaves.

Recall that a lobster is a tree where the removal of all leaf vertices results in a caterpillar.
Lobsters are a natural generalization of caterpillars, and we show that the CoLorruL
Morir problem is NP-hard on lobsters. In fact, we show that the problem is NP-
hard on lobsters whose spine has just oze vertex. Observe that every such graph is a
superstar graph; thus we show that the problem is NP-hard on superstars. To show
these hardness results, we reduce from the following variant of the well-known SET
CovVeER problem:

CororruL SET COVER

Input: A finite universe U, a finite family ¥ = {Fy, F2,...,F.} of subsets of U

such that there is no i, j for which F; UF; = U, and a function of represen-

tatives C : F — U such that C(F;) € F;.
Question: Does there exist R C J such that Jg.4 S = U and C is injective on R ?

We will need the fact that SET Cover is NP-complete even when no two sets in the
family span the universe. Formally, if the input to SET COVER is restricted to families
that have the property that no two subsets in the family are such that their union is
the universe, it remains NP-complete:

At-LeEasT-THREE SET COVER

Input: A finite universe U, a finite family ¥ = {Fy, F,,...,F,} of subsets of U,

such that there is no 1,j for which F; UF; = W.

198 CHAPTER 15. COLORFUL MOTIFS

Question: Does there exist R € F such [Jg o S = U2

Proposition 15.1. AT-LEAST-THREE SET COVER 75 NP-complete.

Proof. 'The statement follows by an easy reduction from the well-known Ser Cover
problem which is among Karp’s original list of 21 NP-complete problems [Kar72]:

SET CoVER
Input: A finite universe U, a finite family ¥ = {Fy, F,,...,F,} of subsets of U,
and a positive integer k.

Question: Does there exist R C F, with |R| < k, such that U S=u
SeR

If k = 1, check if there exists i such that F; = U. If this is the case, return a trivial
YES-instance of AT-LeasT-THREE SET CoVER. If k > 1, then in time (121)’ examine
if that there exists 1,j for which F; U F; = U: if there is, return again a trivial YES-
instance of AT-LEasT-THREE SET COVER, and if not, return the original instance. The

correctness of this reduction is immediate.

]

Lemma 15.1. CoLOrRFUL SET COVER is NP-hard.

Proof. We establish this by a reduction from At-Least-THREE SET CoVER. Let (U, F =
{Fq,...,F.}, k) be an instance of AT-LeasT-THREE SET CovER. We construct an in-
stance (U’,F’, C) of CoLorruL SET COVER as follows (see Figure 15.2 for an exam-
ple). We construct F’ essentially by making k “copies” of every family in F. More pre-
cisely, let X = {x1,%2,...,xx} be aset disjoint from U. For 1 <i<n,1 <j <k, let
Fi; = FiU{x;}. For T <i<n,1 <j <k, wedefine C(Fy5) = xj. Weset U = UUX
and ' ={F; | 1 <i<n,1<j <k} Note that, as required, U’ = UU X, and
there are no indices i, j, p, q for which Fi; UF,q = U".

Now, suppose the given AT-LEasT-THREE SET COVER instance is a YES instance, and
R = {Fi,,Fi,,..., Fi,} be a set cover of size at most k in the AT-LEAsT-THREE SET
Cover instance. In the reduced instance, consider the set R" = {F;, U {x;},Fi, U
koo Fyy Ul For 1 < < klee B = {F; | 1T <1< np Ift <Kk,
then arbitrarily pick an element from each Fj,t < j < k and add it to R". Call

15.1. HARDNESS ON SUPERSTAR GRAPHS 199

Reduction from At-Least-Three Set Cover
to Colorful Set Cover

F1 F2 F3 F4 F5
k=3

(] (] 0] (] 0]

e (&) &)) &)

o o o o o

Legend

[— (L]) (J
ﬂ) 1 X2 x3

Figure 15.2: An Illustration of the Reduction

this new set R”. We claim that R” is a solution for the instance CoLorruL SET COVER
of (W, ", €). Consider d € X. Since we have picked at least one element from each F;
into our solution, d is covered by R”. Suppose d € U. Let d € F;; € R (note that
such an Fy; exists since R is a solution for the SET Cover instance). Then, Fy, U{x;} €
R’ C R”, implying that d is covered by R” and hence, the reduced instance is a YES
instance of CoLORFUL SET COVER.

Conversely, suppose the reduced instance is a YES instance of CoLoRFUL SET COVER,
and let R” be a colorful set cover. It is easy to see that R” contains exactly one element
from each F{. Let R” = {F{, F5, ..., F{}. Define R = {F{\X, F5\X,..., FY\X}. Note
thatany d € U covered by some F/ € R” will be covered by F/\X € R. Since |R| < k,
it is indeed a solution for the AT-LEasT-THREE SET COVER instance.

]

Theorem 15.2. COLORFUL MOTIF o7 superstar graphs is NP-hard.

Proof. 'The proofis by reduction from CorLorruL SET Cover. Let (U, F = {Fy,...,F,},C)
be an instance of CoLorruL SET Cover. Without loss of generality, we assume that
Uses S = U. We construct a graph T as follows. For each set Fy € J and each ele-
ment x € Fy, add a vertex x[i] to V(T). Note that the same element in U may appear
any number of times as a vertex, once for each time it appears in the sets Fi, 1 <1 < n.

For each set F;, add a new “set” vertex u; and make it adjacent to all the vertices x[i]

200 CHAPTER 15. COLORFUL MOTIFS

that correspond to elements of F;. Finally, add a “root” vertex r and make 1 adjacent

to all the vertices u;. This completes the description of T. More formally,

V(T) ={
E(T) ={

x[i] [x € Fi, 1 <i<nfu{ug,...,ufU{r}
(x[il,ui) [x € Fi, T <i<mjuU{(ug, 1) [1 <1< n}

Reduction from Colorful Set Cover
to Colorful Motifs on Superstars
F1 F2 F3 F4 F5
o o o o o

Figure 15.3: Reduction from CorLorruL SET CovER to COLORFUL MOTIF on su-
perstar graphs. Note that the highlighted color in each F; corresponds
to C(FL)

For every x € U, we let ¢, be a color in the set of colors of the CoLorruL MoOTIF
instance. Also, for simplicity, let f; denote C(F;). The coloring function c labels each
vertex x[i], x € F; with the color cy. The “set” vertex u; gets the color ¢, where F; is
the set that u; represents. The root vertex 1 gets a new color, named c¢,. Formally,

c(xli) ={ex Ix € Fi, T <i<m}

c(uy) ={cr [T<i<m,and c(r) = c,}.

Note that the color set used contains one color for each element in U, and the new

color ¢,. T is clearly a superstar; the reduced instance is (T, [U| + 1, ¢).

Now, suppose that the given CoLorruL SET COVER instance is a YES instance, and
let R ={Fi,, Fi,,..., Fi,} C F be a solution for this instance. Consider the subtree T
of T consisting of (1) the subtrees rooted at ui,,...,u,, (2) the vertex 7, and (3)

the edges (1,uy,),...,(r,u;,). From the subtree rooted at each u; in T’, remove

15.1. HARDNESS ON SUPERSTAR GRAPHS 201

those leaves that have the same color as u;. From the remaining leaves, arbitrarily
delete all but one leaf of each color. Call the resulting tree T”. It is clear from the
construction of T” that it does not contain two vertices of same color. Now, consider
the color ¢y for any x € U U {r}. We claim that T” contains a vertex of color c.
If ¢, = cy, then we are done since T” contains the vertex 1. Suppose ¢« # c,. Let F,,
be an element of R which covers the element x € U in the solution to the CoLorFUL
St Cover instance. Then, either C(F,,) = x, in which case we can immediately see
that T”contains u,, which is colored with color ¢y, or C(F,) # x, in which case
our construction of T” ensures that the subtree of T” rooted at u, has a leaf with
color ¢y. Thus T” is a colorful subtree of T with [U| + 1 colors.

Conversely, suppose that the reduced instance is a YES instance of CoLorFUL MOTIE
and let T be a colorful subtree of T with [U| + T colors. Let {ui,,ui,,...,ui,} =
V(T") N{u1,...,un}. Let R = {F;,,Fi,,...,Fi,}. In the original instance of Cor-
ORFUL SET COVER, the elements of R get the colors {c(ui,),c(ui,),...,c(uy,)}, and
these are all distinct. Consider d € U. Since T” is colorful with |U|+ 1 colors, some
vertex of T” is colored cq4, and cq # c,. Hence, the vertex of T colored cg is either
some ; or a leaf adjacent to some ;. Since we are picking the corresponding F; in R,
we ensure that R covers d and hence the given instance is a YES instance of CoLORFUL
SET COVER. Il

Proposition 15.3. Lez (T, C) be an instance of COLORFUL MOTIE, where T is a superstar
graph. Letuy, ...\, be the children of the root of T. Let Vi denote the set of leaves adjacent
to Wi, and let U; denote Vi U{wi}. For X C V(T), let c(X) denote the set of colors used
on X, that is:

c(X)={d|3Ix € X,c(x) =d}.

The CoLORFUL MOTIF problem is NP-hard on superstar graphs even on instances where
no two subtrees are colored with the entire set of colors: that is, for any i # j,

(c(Ui) Uc(Uy)) \ C # .

Proof: Note that the claim follows from the reduction stated in the proof of theorem
15.2, because of the fact that an instance of CorLorruL SET COVER is such that there
is no 1, j for which F; UF; = U. This rules out the possibility of the reduced instance
obtained in the proof above having two subtrees that are colored with the entire set

of colors.

]

202 CHAPTER 15. COLORFUL MOTIFS

15.2 Colorful Motifs on Graphs of Diameter Two and
Three

In this section, we consider the CoLorrUL MOTIF problem restricted to graphs of
diameter two and three. We show that the CoLorFUL MOTIF problem on superstars
reduces to COLORFUL MOTIF on graphs of diameter two, thereby establishing that the
problem is NP-complete. Also, we show that the CoLorFUL MOTIE problem on gen-
eral graphs reduces to CoLorrFUL MOTIF on graphs of diameter three, thereby estab-
lishing that the problem is NP-complete, and that polynomial kernels are infeasible.

These reductions are quite similar, with only subtle differences.

Lemma 15.2. 7he CoLORFUL MOTIE problem on superstars with parameter k reduces to
CoLORFUL MOTIF with parameter X on graphs of diameter two.

Proof. Note that superstars are graphs of diameter four. Let (T, k, c¢) be an instance
of CoLORFUL MOTIF on superstars. A superstar can be, by definition, rooted at a
vertex T such that the graph is a rooted tree of height two. Let r denote the root of T,
and assume that the neighbors of 1 are ordered in some arbitrary but fixed fashion.
Let T(i) denote the graph induced on the i*" neighbor of , and the leaves of T that

are adjacent to it, that is,

T(1) =T U (N \ 7)].

We refer to the graph induced on T(i) as the i*" subtree. Note that, by Proposi-
tion 15.3, we may assume that any colorful subtree of T intersects non-trivially with
more than two subtrees. We now describe an instance (Q, k,cq) that is equivalent
to (T, k,), and is such that Q has diameter two. The graph Q is obtained from T in

the following steps: First, we add (';) new vertices:

V(Q) = V(T)U{vli,jl | i,j € [kl and i # j}.

We use X to denote the set of newly introduced vertices, that is, {V[i,jl | i,j €
[k] and i # j}. The new vertices get the same color as 7, that is, cq(u) = c(r) for all
vertices u € V(Q) \ V(T). For all “original” vertices u in V(T), cq(u) = c(u). The

15.2. COLORFUL MOTIFS ON GRAPHS OF DIAMETER TWO AND THREE203

edge set of Q retains all the original edges in T, Further, for every pair of distinct sub-
trees T(1) and T(j), we make the vertex v[i, j] global® to all the vertices in T(1) UT(j).
Finally, make every vli, j] global to the set of all vertices in the closed neighborhood
of 1, and induce a clique on all vertices V[i, j] (see Figure 15.4). Formally:

(@) V{u,vlju e T(i),v € T(j), fori,j € [kl and 1 # j, (u,v) € E(Q) if, and only
if, (u,v) € E(T)

(b) Vi,j €[kl,i#k,andue T(1)UT(), (Vii,jl,u) € E

() Yue Xand Vv € N[r], (u,v) € E

(d) vu,veX, (u,v) ek

(oo Yoo)

vli,]

Figure 15.4: A Slice of the graph Q

Notice that Q is a graph of diameter two. Indeed, any pair of vertices within the same
subtree have distance at most two (via their parent), and any pair of vertices in distinct
subtrees T(1) and T(j) are reachable by a path of length at most two: if i # k + 1
and j # k + 1, then v[i,j] is a common neighbor of any pair of vertices (u,v) such
that uw € T(i) and v € T(j), thus making them distance two apart. Any v[i,j] is
distance one from any vertex in T(i) or T(j) and is distance two from a vertex in any
other subtree T(1), because v[l,u] (for any choice of u) is a common neighbor of a
vertex in T(1) and v[i,j] (recall that the graph induced on vertices v[i, j] induces a
clique, and V[l,u] is adjacent to every vertex in T(1)).

3The operation of making a vertex v global to a set S involves making v adjacent to every vertex
in S.

204 CHAPTER 15. COLORFUL MOTIFS

We now claim that (T, k,c) is a YES-instance of Cororrur MoTirF if, and only
if, (Q,cq,k) is a YES-instance of CoLorruL MoTir. Notice that any colorful sub-
tree T’ in T is a colorful subtree of Q. In the converse, let R be a colorful subtree
of Q. Observe that none of the newly introduced vertices (or edges) are used in R:
such vertices connect precisely two subtrees, and therefore R intersects at most two
subtrees of Q. Notice that R \ V[i,j] is a colorful subtree of T, which contradicts our
assumption that any colorful subtree of T intersects non-trivially with more than two
subtrees. Thus, R functions as a colorful subtree T” of T. It is easy to see that this is

also a polynomial parameter transformation. This completes the proof the lemma.
O
Corollary 15.4. 7he CoLORFUL MOTIE problem is NP-hard on graphs of diameter two.

Proof. By Theorem 15.2, CoLorRrUL MoTIF is NP-hard on superstars, and due the
polynomial reduction established in Lemma 15.2, we have that the CoLorruL MoOTIF
problem is NP-hard on graphs of diameter two. [

Lemma 15.3. 7he COLORFUL MOTIF problem with parameter k reduces to COLORFUL
Motk with parameter (K + 1) on graphs of diameter three.

Proof. Let (T, ¢, k) be an instance of CoLorFUL MoTIF with k colors. Let T(i) denote

the subset of vertices in T that have color 1, that is:

TA) ={veTl|clh) =1i.

We refer to the set of vertices in T(1) as the color class i. We now describe an in-
stance (R, ¢y, k + 1) that is equivalent to T, and is such that R has diameter three. To
this end, we describe an intermediate instance (Q, cq,k + 1) based on (T, ¢, k). The
graph Q is obtained from T in the following steps: First, we add (%) new vertices:

V(Q) =V(T)U{vli,jl | i,j € [kl and 1 # j}.

The new vertices form the color class (k+1), thatis, cq(u) = k+1 for all vertices u €
V(Q) \ V(T). We abuse notation and use T(1) to refer to color class i in Q, for i €
[k + 1]. For all “original” vertices win V(T), cq(u) = c(u). The edge set of Q retains
all the original edges in T, and further, we add edges so that every color class induces
a clique. Finally, for every pair of distinct color classes T(i) and T(j), we make the
vertex V[i, j] global to all the vertices in T(i) U T(j) (see Figure 15.5). Formally:

15.2. COLORFUL MOTIFS ON GRAPHS OF DIAMETER TWO AND THREE205

(a) Foreveryie [k+ 1], V{u,v} € T(i), (u,v) € E(Q)

(b) Y{u,vhue T{i),v € T(j), fori,j € [kl and 1 # j, (u,v) € E(Q) if, and only
if, (u,v) € E(T)

(© Vi,jelkl,i#k andue TA)UTE), (Wi,jl,u) € E

(oo Yoo)

vli,]

Figure 15.5: A Slice of the graph Q

Notice that Q is a graph of diameter two. Indeed, any pair of vertices within the same
color class T(1) have distance one, and any pair of vertices in distinct color classes T(1)
and T(j) are reachable by a path of length at most two: if i # k+ 1 andj # k + 1,
then v[i,j] is a common neighbor of any pair of vertices (u,v) such that u € T(i)
and v € T(j), thus making them distance two apart. Any v[i, j] is distance one from
any vertex in T (i) or T(j) and is distance two from a vertex in any other color class T(1),
because v[l,1'], for any I’ # 1, is a common neighbor of a vertex in T(1) and v[i, j]
(recall that T(k + 1) induces a clique, and v[l, 1] is adjacent to every vertex in T(1)).

We are now ready to provide a description of (R, ¢y, k + 1). The graph R is obtained
from Q by replacing every v[i,j] € T(k + 1) with the following vertex set:

VI, il = A, 317, viE, 312 L v, 104,

where dy; is the number of neighbors of v[i,j] in V(R) \ T(k + 1). We assume that
the vertices in N(V[i, j]) are ordered in some arbitrary but fixed fashion. We then add
the edges (V[i,j]'V, 1), where uy is the 1" neighbor of v[i,j]. We then add edges so
that T(k + 1) induces a clique. Again, for all original vertices u in V(Q), ¢, (u) =
cq(u). Forall verticesu € T(k + 1), welet ¢, (u) =k + 1.

206 CHAPTER 15. COLORFUL MOTIFS

(SRy S)

vfi, j]

Figure 15.6: A Slice of the Graph R

Observe that R is a graph of diameter three. Again, every pair of vertices within
the same color class T(i) have distance one. Any pair of vertices in distinct color
classes T(i) and T(j), if i # k+ 1 and j # k + 1 are reachable by a path of length at
most three. Letu € T(i) be the 15" neighbor of V[i,j] in Q, and letv € T(j) be the 1t"
neighbor of v[i,j]. Then (u,v[i,jl'*) € E, (v[i,jl'*,V[i,jl*) € E, and (V[i,jl*,V) €
E, establishing a path of length three between u and v. Further, it is easy to see that
any v[i,j]! is distance two from any vertex in T(i) or T(j) or any other color class T(1),

for similar reasons.

We now claim that (T,c,k) is a YES-instance of Cororrur MoTirF if, and only
if, (R,cy,k + 1) is a YES-instance of CorLorruL Mortir. Notice that any colorful
subtree T" in T can be trivially extended to a colorful subtree R’ in R - indeed, we
may let R” to be T U{(u,v)}, wherew € T" and v € T(k + 1) such that (u,v) € E
(note that such a v always exists). Conversely, let R” be a colorful subtree of R. Let u
be the vertex in R’ from T(k + 1). Notice that u is necessarily a leaf of R’, since no
vertex u € T(k+ 1) has degree more than one outside T(k + 1). Notice that the sub-
tree R’ \ {u} gives us a colorful subtree T of T, as required. It is easy to see that this

is also a polynomial parameter transformation. This completes the proof the lemma.

]

Corollary 15.5. 7he CoLORFUL MOTIF problem is NP-hard on graphs of diameter three,
and does not admit a polynomial kernel unless NP C CoNP/poly.

Proof. The CororruL MoTir is NP-hard and does not admit a polynomial kernel
unless NP C CoNP/poly (this follows from the results in [CPPW10]). Note that the

15.3. MANY POLYNOMIAL KERNELS ON COMBS 207

polynomial reduction established in Lemma 15.3, is a polynomial parameter trans-

formation, therefore the corollary follows. O

15.3 Many Polynomial Kernels on Combs

In [CPPW10], Cygan et al. show that CoLorruL MoTIF is NP-complete on comb
graphs, defined as follows:

Definition 15.1. A graph G = (V, E) is called a comb graph if (i) it is a tree, (ii) all
vertices are of degree at most 3, (iii) all the vertices of degree 3 lie on a single simple path.
The maximal path, which starts and ends in degree 3 vertices is called the spine of a comb
graph. One of the two endpoint vertices of the spine is arbitrarily chosen as the first vertex,
and the other as the last. A path from a degree 3 vertex to a leaf which contains exactly

one degree 3 vertex, is called a tooth.

T
- |
|

Figure 15.7: A Comb Graph

In this section, we present a composition algorithm for CoLorrUL MOTIF on comb
graphs. Note that in [CPPW 0], it is observed that CoLorrUL MoTIF is unlikely to
admit polynomial kernels on forests. This simple composition obtained using disjoint
union does not work “as is” when we restrict our attention to comb graphs, since the
graph resulting from the disjoint union of comb graphs is not a comb graph, as it is

not connected.

15.3.1 A Composition Algorithm

We begin by introducing some notation that will be useful presently. Let (T, k, ¢) be
an instance of CoLORFUL MOTIF restricted to comb graphs, that is, let T denote a
comb graph, and let ¢ : V(T) — [k] be a coloring function.

208 CHAPTER 15. COLORFUL MOTIFS

Let T, and T4 be two comb graphs, and let 1, € V(T,,) be the last vertex on the spine
of T, and let f4 € V(T4) be the first vertex on the spine of T,. We define T, ® T as

follows:

@) V(T, ©Tq) = V(T,) W V(Tq) U{vp,vq}, where {vy,, vq} are “new” vertices, and

(ii) E(Tp O] Tq) = E(Tp) W E(Tq) U{(lpﬂ)p)a (Vpavq)> (Vq)fq)}

Figure 15.8: An illustration of the T, ® Ty operation

We are now ready to describe the composition algorithm:

Lemma 15.4. 7he CoLORFUL MOTIE problem does not admit a polynomial kernel on
comb graphs unless NP C CoNP/poly.

Proof. Let (Tq,cq,k), (T2,c2,k),...(Tt,ct, k) be the instances that are input to the
composition algorithm. Let T denote the graph:

T=ThohLo--0T.

Let N denote the set of all new vertices introduced by the ® operations. Notice that
any vertex of T that does not belong to N is a vertex from one of the instances T;. We

will refer to such vertices in T as being from T(T;).

We refer to the pair of vertices in N adjacent to the endpoints of the spine of a T; as
the guards of T; (notice that any T; has at most two guard vertices). We define the
coloring function ¢ on T as follows. For every vertex u € T, c(u) = c;(u). For every
vertex U that is a guard of T;, c(u) = c(v), where v is the vertex of T; adjacent to .

We now claim that (T, k) is the composed instance.

We first show that if 31,1 € [t], such that T; is a YES-instance of CoLorRFUL MOTIF,
then T is a YES instance of CoLorruL Motir. Notice that the colorful connected

subtree of T; also exists in T, and hence we are done.

15.3. MANY POLYNOMIAL KERNELS ON COMBS 209

Conversely, let T be a YES-instance of CoLorruL MoTik. Let R be a colorful con-
nected subtree of T. Notice that by construction, if V(R) intersects with T(T;) and T(T;)
for i # j, then it contains two vertices of the same color — indeed, this follows from
the observation that V(R) would have to contain the guard vertices of T; and Tj to be
connected, and this would lead to multiple occurrences of the colors that occur at the

endpoints of the spines of T; and Tj.

Thus, V(R) intersects with T(T;) for exactly one value of 1, T <1 < t. Clearly, Ris a
colorful connected subtree of T;. Thus, by Theorem 13.2, CoLorrFuL MOTIF admits
no polynomial kernel on comb graphs unless NP C CoNP/poly. [

Corollary 15.6. 7he COLORFUL MOTIF problem on lobsters does not admit a polynomial
kernel unless NP C CoNP/poly.

Proof. Recall that a lobster is a tree where the removal of all leaf vertices results in
a caterpillar. Clearly, the problem is NP-complete due to Theorem 15.2. Further,
observe that the composition described in the proof of 15.4 can be imitated with
minor changes to obtain a similar result on lobsters. Indeed, we only need to observe
that it suflices to subdivide only edges along the spine of the lobster (which is the spine
of the caterpillar obtained by removing all the leaves of the lobster). If a solution does
not intersect the spine, it is contained in one of the “dangling superstars”, and this is

easily detected before applying the composition. O

15.3.2 Many Polynomial Kernels

Although a parameterized problem may not necessarily admit a polynomial kernel, it
may admit many of them, with the property that the instance is in the language if and
only if at least one of the kernels corresponds to an instance that is in the language.
We now show that the CoLorruL MoTIF problem admits n kernels of size O(k?)
each on comb graphs. This is established by showing that a closely related variant,
the RooTEp CoLORFUL MOTIF problem, admits a polynomial kernel. The RooTED
CoLorrUL MOTIF problem is the following:

RooteEp COLORFUL MOTIF

Input: A graph G = (V,E), k € N, a coloring functionc : V — [k],and r € V.
Parameter: k
Question: Does G contain a subtree T on k vertices, containing 1, such that ¢ restricted

to T is bijective?

210 CHAPTER 15. COLORFUL MOTIFS

Lemma 15.5. 7he COLORFUL MOTIE problem admits many polynomial kernels on comb
graphs.

Proof. Let T = (V, E) be a comb graph, and let (T, k, ¢, u) be an instance of RooTED
CororruL Motir. We first show that T can be reduced to an equivalent instance T,
on at most O(k?) vertices. Notice that we may obtain an equivalent instance T,
from T by deleting all vertices in T that lie outside the k-neighborhood of u. This
is because any colorful subtree of T rooted at u will not involve vertices outside the
k-neighborhood of u.

We now observe that T,, has at most O(k?) vertices. Note that in the k-neighborhood
of win T, there are at most 2k vertices that belong to the spine and from each of these
vertices, there is a tooth of length at most k. Also, if u lies on a tooth, there are at
most 2k more vertices on the same tooth, and if u lies on the spine then there are at
most k more vertices on the tooth rooted at u, if at all one exists. Hence, in T,,, there
are at most 2k vertices of degree 3 each having a tooth of length at most k and at most
one other tooth, which is of length at most 2k. So, the total number of vertices in T,
is at most 2k + 2k - k+ 2k = O(k?). Notice that there are n choices for u from T, and
repeating the procedure above by “guessing the root” gives us n polynomial kernels

for the problem, as desired.

]

15.4 Hardness of Kernelization for Restricted Variants

In this section, we demonstrate the infeasibility of some strategies for showing many
polynomial kernels for CoLorRFUL MOTIF restricted to trees. Observe that the CoL-
ORFUL MOTIF problem is unlikely to admit a polynomial kernel on trees, since a poly-
nomial kernel on trees would imply a polynomial kernelization procedure for comb

graphs, which is infeasible (see Lemma 15.4).

15.4.1 Hardness with a Fixed Root

In the case of comb graphs, we were able to establish that the problem of finding
a colorful subtree with a fixed root admits a O(k?) kernel. Unfortunately, this ap-

15.4. HARDNESS OF KERNELIZATION FOR RESTRICTED VARIANTS 211

proach does not extend to trees, as we establish that RooTEp CoLoRFUL MOTIF is

compositional on trees.

Proposition 15.7. 7he RooTED COLORFUL MOTIF problem restricted to trees is NP-

hard.

Proof. By reduction from CoLORFUL MOTIF restricted to trees, which is NP-hard on

trees (in fact, on the even more restricted class of comb graphs) as shown by Cygan et

al [CPPW10].

Let (T, k, ¢) be an instance of CoLorFUL MoTIF where T is a tree. Let {vi,v2,...,V¢}
be the vertices in T that have color 1 in T. Make ¢ copies Ti, T2,..., Tpof T. Add a
new vertex v, and for 1 < i < ¢, make v adjacent to the copy of v; in T;; let this graph
be T’. Let ¢’ be the coloring function that gives all copies of a vertex in T the same
color as it has in T, and the color k + 1 to the new vertex v. (T’;k + 1,¢’,v) is the
reduced instance of RooTED CoLorRFUL MOTIF. T is clearly a tree, and it is easy to
see that (T, k, ¢) is a yes instance of CoLorruL MoTIF if and only if (T',k + 1,c¢’,v)
is a yes instance of RooTED CoLORFUL MOTIF. O

Proposition 15.8. 7he RooTED COLORFUL MOTIF problem when restricted to trees does

not admit a polynomial kernel unless NP C ColNP/poly.

Proof. From Proposition 15.7, the RooTED CoLORFUL MoOTIF problem is NP-
complete when restricted to trees. We now describe a composition algorithm for
RooTep CoLORFUL MOTIF on trees.

Let (Ty,v1,c1,k), (T2, v2,c2,k)y ... (Ty, vy, €y, k) be the input instances, where Ty =
(Vi, E1). Consider the tree T = (V, E) described as follows:

. V={utU{u,uz...,uUicr Vi

2. (u,uy) € E, forallie [r], and (ui,v;) € E, forall i € [r]

3. E;y C Eforallie [t].
Consider the coloring function ¢ : V. — [k + 2] defined as follows: for all v €
Vi, ¢(v) = ¢i(v). Further, c(u;) = k + 1 for all u;, and c(u) = k + 2.

We now claim that (T,k + 2,¢,v) is the composed instance. Indeed, if T; has a

colorful subtree rooted at v; then we have a colorful subtree (on k + 2 colors) rooted

212 CHAPTER 15. COLORFUL MOTIFS

U
%m
Figure 15.9: An illustration of the composition

at v, which extends the tree rooted at v; using the edges (vi,u;) and (ui,u). In the
reverse direction, suppose T has a colorful subtree T’ rooted at u. Then, observe that
T’ contains vertices from exactly one of the Tis. This is because if T’ contains vertices
from T; and Tj then T’ contains vertices u; and 1 both of which have the same color

, a contradiction to the assumption that T’ was colorful. This completes the proof.

]

15.4.2 Hardness with a Fixed Subset of Vertices
Now, we have seen that “fixing” one vertex does not help the cause of kernelization

for trees in general. In fact, more is true: fixing any constant number of vertices does

not help. The problem we study in this section is the following:

SuBseT COLORFUL MOTIF

Input: A graph G = (V,E), a coloring function ¢ : V — [kl, and a set of ver-
tices U C V, |U| =s = O(1).

Parameter: k

Question: Does G contain a subtree T on k vertices, such that U C V(T), and ¢

restricted to T is bijective?

Proposition 15.9. 7he SUBSET COLORFUL MOTIE problem restricted to trees does not
admit a polynomial kernel unless NP C CoNP/poly.

Proof. To prove this proposition, it is sufficient to show that there exists a polynomial
parameter transformation from the RooTEp CoLoRFUL MOTIF problem restricted to
trees to the SuBSET COLORFUL MOTIF problem restricted to trees (Theorem 13.3 and

Propositions 15.7 and 15.8). We now proceed to give such a transformation.

15.5. CONNECTED DOMINATING SET 213

Let (T, v, c, k), where T = (V, E), be an input instance to RooTED COLORFUL MOTIF.
Let s’ = s — 1. Construct the tree T" = (V',E’) as follows: (i) T’ = (V/,E')
where V! =V U{uy,uz,...,ul} (i) ' =EU{(vyuy),...,(v,ul)}

Now, we define a coloring function ¢’ : V' — [k + s'] as follows:

(i) c'(v)=c(v),VWwveV
(i) c'(u;) =k+j,Vje[s’]

(T, ¢/y{v,uq, ..., ull, k +s’) is the reduced instance of SuBseT COLORFUL MOTIF.
It is easy to see that the reduction is a polynomial parameter transformation, and the

proposition follows. O

15.5 Connected Dominating Set

In this section, we show that CONNECTED DOMINATING SET on graphs of diameter
two is NP-complete. The classical complexity of CoNNECTED DOMINATING SET on
graphs of diameter two was hitherto unknown, although it was known to be NP-
complete on graphs of diameter three, and trivial on graphs of diameter one. We
establish this by a non-trivial reduction from CoLorFUL MOTIF on graphs of diameter
two, which is NP-complete by Lemma 15.2.

Theorem 15.10. 7he CONNECTED DOMINATING SET problem, when restricted to graphs
of diameter two, is NP-complete.

Proof. We establish this by demonstrating a reduction from CoLorRFUL MOTIE on
graphs of diameter two. Let (G, k, ¢) be an instance of CoLoRFUL MOTIF on graphs
of diameter two. Let C(1) denote the subset of vertices in C that have color 1. That
is, C(i) = {v € G| c(v) = i}. We refer to set of vertices in C(i) as the color class 1.
We now describe an equivalent instance (H, k) of CONNECTED DOMINATING SET on
graphs of diameter two.

We define the following simple operations before we begin:

1. inducing a clique on S, where S C V: Add the edges (u,v) forallu,v € S, u #
V.

214 CHAPTER 15. COLORFUL MOTIFS

2. inducing a complete bipartite graph on (S, T), where S, T CV,SNT =0: Add
the edges (u,v) forallue S,veT.

3. inducing a matching on (S, T), where S, T CV,SNT =0, |S| = |T| and there
exists a natural ordering of the vertices in S and T (thatis, S = {s1,s2,...,8:}
and T ={ty,t2,...,t,}): Add the edges (si,t;) forall i, T <i <.

4. making u global to S, given a vertex u and a set S C V: Add all edges (u,v)
where v € S.

The graph H is obtained from G, in a series of several steps. We describe the graph H
by the sequence of modifications made to G to arrive at H.

(1) To begin with, let H = G.
(2) Induce a clique on C(i), forall i € [k].

(3) For every color class C(1), add (k + 1) new vertices vi(1),vi(2),...,vi(k + 1).
We refer to this set as H(i). Induce a complete bipartite graph on (C(1), H(i)).

(4) For every pair (i,j) such that i # j, induce a matching on (H(i), H(j)), where
the ordering on the vertices in H; and Hj; is the natural one established by the
labels. (That is, the j*™ vertex of H; is vi(j).) Further, for every pair of ver-
tices (vi(p),v;(q)), where p # g, add an edge and subdivide it. We refer to the set
of all such subdivided vertices as D(1,j). Welet D = UpD(1i,j), where P = (Dzd).

(s) Induce a clique on D, the set of subdivided vertices.
(6) Foreveryu € D(i,j), we make u global to C(1), for every |, where | # iand 1 #
j.

Claim 15.1. 7he graph H has diameter two.

Proof. We show this by demonstrating a path of length at most two for every pair of

vertices U and w. This is done in a series of cases, summarized in table 15.2.

The detailed case analysis proceeds as follows:

(i) uwe C(i)and w € C(i). In this case the distance between u and w is one,

because C(1) is a clique.

15.5. CONNECTED DOMINATING SET 215

Reduction from Colorful Motifs on Graphs of Diameter Two
to Connected Dominating Set on Graphs of Diameter Two

C(k)
— —
O
O
O
O
O
— —

Clique

HiH) (000000

C“)L 00000] Kkt

Figure 15.10: An Illustration of the Reduction in the proof of Theorem 15.10

(i) uwe C(i) and w € C(j), where j # i. In this case, there exists a path of length
at most two because the original graph has diameter two.

(iii) u € H(i) and w € H(i). In this case there exists a path of length two because
for every vertex x € C(1), by construction in step 3, (u,x) and (w, x) are both
edges in the graph.

(iv) uwe H(i) andv € H(j), 1 #j. Letu =v;i(p) and let w = v;(q). If p = q, the
edge introduced by the matching make 1 and v adjacent, otherwise, there exists
a subdivided vertex that is a common neighbor of both 1 and w, which implies
a path of length two.

(v) u e H(i) and w € C(i). By step 3 in the construction, (u,w) is an edge in the
graph.

(vi) u € H(i) and w € C(j), where j # 1. Let u = vi(p). Then (u,vj(p)) is a

216 CHAPTER 15. COLORFUL MOTIFS

C H D
C | G hasdiameter two | Complete bipartition D is a clique,
and matching edges and a neighbor into D always exists
H | [A Symmetric Case] Matching edges, or D is a clique,
a common neighbor in D | and a neighbor into D always exists

’ D ‘ [A Symmetric Case] ‘ [A Symmetric Case] ‘ Clique

Table 15.2: The Diameter Two Argument Summary

matching edge and (v;(p), w) is an edge (by step 3 in the construction). This
establishes a path of length two.

(vii) u € D andw € D. In this case the distance between 1 and w is one, because D
is a clique by step 5 of construction.

(viii) u € D(i,j) and w € C(1), where L # i and | # j. In this case the distance
between u and w is one, because u is global to C(1) by step 6 of construction.

(ix) u € D(i,j) and w € C(i) (respectively, w € C(j)). u is adjacent to a vertex
in H(i) (respectively, in H(j)), which is in turn adjacent to w. This establishes a
path of length two.

(x) u € D andw € H(j) for some j. Either u is adjacent to w, or is adjacent to a
vertex that is adjacent to w (recall that w is adjacent to at least one vertex in D

and D induces a clique).

This case analysis establishes that H is indeed a graph of diameter two.

O

Now we prove that any colorful subtree of G is a connected dominating set of H. It
is clearly connected. Notice that all vertices in H(i) are dominated for all i € [k]: any
vertex in H(i) is adjacent to all vertices in C(i) and a colorful tree contains one vertex

from C(1). A similar argument shows that all vertices in D are dominated.

Conversely, we argue the graph induced on any connected dominating set of size

at most k induces a colorful subtree in G. Notice that it suffices to prove that any

15.5. CONNECTED DOMINATING SET 217

connected dominating set intersects non-trivially with every C(1), that is, if S is a

connected dominating set of size at most k, then:
SN C{H) > 1.

Because |S| < k, this implies that [S N C(1)] = 1. Because S is connected, the vertices
of S induce a colorful subtree. Therefore, we now only need to establish that [S N

C(1)] > 1. For the sake of contradiction, suppose not. In particular, let

ISNC@{i) =0

Notice that no vertex u ¢ C(i) dominates more than one vertex in H(1). Indeed:

(a) If uw € H(i), then because H(i) induces an independent set, u dominates no
vertex other than itself.

(b) Ifu € D, u has at most one neighbor in H(i), and therefore dominates at most

one vertex of H(1).

(o) Ifu € H(j),j # 1, u has at most one neighbor in H(i) (indeed, the matching

partner is the only one), and therefore dominates at most one vertex of H(i).

(d) Itis easy to see that all other vertices have no neighbors in H(i).

Therefore, any dominating set that does not intersect with C(1) is forced to pick more
than k vertices to dominate all vertices in H(i), contradicting the assumption that S

was a dominating set of size at most k. This completes the proof.

]

218 CHAPTER 15. COLORFUL MOTIFS

You're searching, Joe, for things that don't exist; [mean beginnings.
Ends and éc:g[nm'njs — there are no such things. There ave only middles.

Kobert Trost

he seemed to approach the grave as an hyperbolic curve approaches a straight line —
less divectly as he got nearer, till it was a/auélﬁ/ i he would ever reach it at all.

Thomas Hmy

In this final chapter, we summarize the results presented in this thesis and establish
possible directions for further research.

16.1 The F-deletion Problem

In this thesis we gave the first kernelization algorithms for a subset of F-DELETION
problems and a generic approximation algorithm for the F-DELETION problem when
the set of excluded minors F contains at least one planar graph. Our approach
generalizes and unifies known kernelization algorithms for p-VeErTEX COVER and p-
FeepBack VERTEX SET. By the celebrated result of Robertson and Seymour, every
F-DELETION problem is FPT and our work naturally leads to the following questions:

¢ Does every F-DELETION problem have a polynomial kernel?

¢ Can it be that for some finite sets of minor obstructions ¥ = {O5,...,0,} the
answer to this question is NO?

¢ The case when F = {Ks, K3 3}, which amounts to vertex deletion to planar graphs,
is an interesting challenge.

Our early work has led us to the following conjecture:

The F-DEeLETION problem admits a polynomial kernel if, and only if, F
contains a planar graph.

219

16. Summary and Open Problems

220 CHAPTER 16. SUMMARY AND OPEN PROBLEMS

Towards the “forward” direction of this conjecture, in this thesis we showed the fol-

lowing:

% F-DELETION admits an approximation algorithm with ratio O (log*/* OPT), when

the class of excluded minors for F contains at least one planar graph.

% Then we restrict ourselves to a subclass of graphs, called t-claw-free graphs (those
that exclude Ky ¢ as an induced subgraph), and show that F-DEeLETION admits a poly-

nomial kernel on this graph class, again provided F contains at least one planar graph.

% In an independent endeavor, we show that when F contains the 8. graph (a pair
of vertices with ¢ edges between them), then F-DeLETION admits a polynomial kernel

on general graphs.

% The disjoint version of the F-DeLETION admits a polynomial kernel on general
graphs if F contains at least one planar graph. Recall that the input to the disjoint
version is a graph with a partition of the vertex set into two parts such that the graph
induced on either partition does not contain JF as a minor. One of the parts is declared

forbidden, and we are required to find an optimal F-hitting set from the other part.

% An important consequence of the polynomial kernel for this problem is an uni-

klogk) O(])_

form FPT algorithm for the F-DEeLETION problem that runs in time 20(n

No algorithm running in time (257" nOM) was known previously.

The remaining components of this conjecture are left open.

The approximation algorithm obtained in this thesis is rather general. While sev-
eral generic approximation algorithms are known for problems of minimum vertex
deletion to obtain subgraphs with property P, like when P is a hereditary property
with a finite number of minimal forbidden subgraphs [LY93], or can be expressed
as a universal first order sentence over subsets of edges of the graph [KT9s], we are
not aware of any generic approximation algorithm for the case when a property P is

characterized by a finite set of forbidden minors.

In fact, our approximation algorithm combined with the fact that a graph G that
excludes a fixed graph H as a minor has treewidth at most O(\/m) gives us an
approximation algorithm for F-DELETION (note that we now do not require JF to
contain a planar graph) with factor O(y/n). In the context of approximation, we

conclude with the following open problems:

16.2. PACKING VARIANTS OF F-DELETION 221

¢ Does F-DELETION admit a constant-factor approximation algorithm when the
class of excluded minors for F contains at least one planar graph?

¢ Can we show that F-DELETION (without any restrictions on the family J) does
. o . 1 1
not admit an approximation algorithm within a n(2=<) factor, for any fixed € > 0?

Another line of thought is to consider F-DELETION wherein we require the solution
to possess a fixed, desirable property, such as connectivity, or independence. In this
thesis, we demonstrated a polynomial kernel for . It will be interesting to see which
other subclasses of the F-DELETION problem admit polynomial kernels when the so-
lution is required to be independent. However, the question of connectivity seems to

be settled in the negative (as far as kernelization is concerned).

16.2 Packing Variants of F-deletion

In this thesis, we also consider the complementary “packing” question: we wish
to maximize the number of vertex (or edge) disjoint minor models of graphs in F.
We provide an Erdés-Pésa style result for the case when F = { 6. }. This borrows
techniques from the approximation algorithm for the F-DELETION problem and also

makes use of known connections between brambles and treewidth.

In this context, we apply the “Erdés-Pdsa property” of 8. minor models to make
partial progress towards finding polynomial kernels for packing edge disjoint minor
models of 6.. In particular, in polynomial time, we are able to reduce any instance
of the problem to one where the maximum degree is bounded by a poylnomial in
k. Independently, but on a related note, we show two lower bounds, demonstrating
that the problem of finding if there are at least k vertex-disjoint minor models of 6. is
unlikely to admit a polynomial kernel parameterized by k, and this is also true for the
problem of checking if there are at least k vertex-disjoint cycles of odd length (again
parameterized by k).

The two natural questions in this context are the following:
¢ For what choices of H does the problem of Epge-Disjornt M(H)-PACKING prob-
lem admit a polynomial kernel?

¢ For what choices of H does the problem of VerTEX-Disjoint M(H)-packiNG

problem admit a polynomial kernel?

222 CHAPTER 16. SUMMARY AND OPEN PROBLEMS

A dichotomy result for either of the problems above would be the most desirable result

in this direction.

16.3 Colorful Motifs

We studied the problem of CoLorrUL MOTIF on various graph classes. We proved
that the problem of CoLorrUL MoOTIF restricted to superstars is NP-Complete. We
also showed NP-completeness on graphs of diameter two. We applied this result
towards settling the classical complexity of CONNECTED DOMINATING SET on graphs
of diameter two — specifically, we show that it is NP-Complete. Further, we showed
that on graphs of diameter two, the problem is NP-Complete and is unlikely to admit

a polynomial kernel.

Next, we showed that obtaining polynomial kernels for CoLorruL MOTIF 0n comb
graphs is infeasible, but we show the existence of n polynomial kernels. Further, we
study the problem of CoLorFUL MOTIF on trees, where we observe that the natural
strategies for many polynomial kernels are not successful. For instance, we show that
“guessing” a root vertex, which helped in the case of comb graphs, fails as a strategy
because the RooTEp CoLoRFUL MOTIF problem has no polynomial kernels on trees.

We summarize our results about COLORFUL MOTIE in special graph classes below:

% On the class of comb graphs, CoLorruL Mortir is NP-Complete and RooTED
CorLorruL MoTrr has an O(k?) kernel. Equivalently, CoLorruL MoTir has nn kernels
of size O(k?) each.

% SuBseT CoLORFUL MoTIF does not admit a polynomial kernel on trees unless
NP C CoNP/poly.

Finally, we leave open the questions of whether the CoLorruL MoTIF problem admits
polynomial kernels on superstars, and many polynomial kernels when restricted to

trees.

16.4 Concluding Remarks

The notion of kernelization is popular in practice — in many cases, it can be thought

of as a precise way of stating all the heuristic-based preprocessing steps that have been

16.4. CONCLUDING REMARKS 223

popular and effective for a long time. In theory, the notion is important for more
than one reason — there is an increasingly popular feeling that kernelization is #be
way of understanding fixed-parameter tractability. The theorem that establishes the
equivalence of these notions is more than a syntactic equality — it encodes an entire
philosophy, and immediately puts on offer a possible “right way” of viewing FPT.
Kernelization complexity is fast evolving as one the most important benchmarks for
a deeper understanding of problem complexity. In this thesis, we hope that we have
demonstrated this to a large extent with the help of questions that are generic, funda-

mental and practical.

224 CHAPTER 16. SUMMARY AND OPEN PROBLEMS

References

[ABH" 10]

[AFLSo7]

[ALS91]

[AYZ95]

[BBF99]

[BBRo7]

[BDFHo9)]

[BFL"09]

[BHK " 09]

Abhimanyu M. Ambalath, Radheshyam Balasundaram, Chintan Rao
H, Venkata Koppula, Neeldhara Misra, Geevarghese Philip, and M S
Ramanujan, On the kernelization complexity of colorful motifs, Interna-
tional Symposium on Parameterized and Exact Computation (IPEC),

2010, pp. 14—25. IT

Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and
W. Henry Suters, Crown structures for vertex cover kernelization, Theory
Comput. Syst. 41 (2007), no. 3, 411—430. 29

S Arnborg,] Lagergren, and D Seese, Easy problems for tree-decomposable
graphs, J. Algorithms 12 (1991), no. 2, 308-340. 20, 83

Noga Alon, Raphael Yuster, and Uri Zwick, Color-coding, Journal of the
ACM 42 (1995), no. 4, 844-856. 177

Vineet Bafna, Piotr Berman, and Toshihiro Fujito, A 2-approximation
algorithm for the undirected feedback vertex set problem, SIAM J. Discr.
Math. 12 (1999), no. 3, 289—297. 122, 123

Etienne Birmelé, John Adrian Bondy, and Bruce A. Reed, Brambles,
prisms, and grids, Graph theory in Paris, Trends Math., Birkhduser Ver-
lag, 2007, pp. 37—44. 160

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and
Danny Hermelin, On Problems Without Polynomial Kernels, J. Com-

put. Syst. Sci. 75 (2009), no. 8, 423—434. 175, 176

H. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh,
and D. M. Thilikos, (Meta) Kernelization, Proceedings of the soth An-
nual Symposium on Foundations of Computer Science (FOCS), IEEE,
2009, pp. 629-638. 19, 59, 60, 64, 70, 116, 119, 122, 148, 153

Sharon Bruckner, Falk Hiiffner, Richard M. Karp, Ron Shamir, and
Roded Sharan, Topology-free querying of protein interaction networks,
The 13th Annual International Conference on Research in Compu-
tational Molecular Biology (RECOMB), LNCS, vol. 5541, Springer,

2009, pp. 74-89. 9, 193

225

Neeldhara Misra
References

Neeldhara Misra

226

[Bodg4]

[Bodo6]

[Bodo7]

(BPT92]

(BT TvLogs]

[BTYo9]

[BYGNR9S8]

[CCHOos]

[CCJ90]

BIBLIOGRAPHY

Hans L. Bodlaender, On disjoint cycles, International Journal of Foun-
dations of Computer Science 5 (1994), 59—68. 183

Hans L. Bodlaender, A [inear-time algorithm for finding tree-
decompositions of small treewidth, SIAM J. Comput. 25 (1996), no. 6,

1305—1317. 20, 79, 83

_, A Cubic Kernel for Feedback Vertex Set, STACS’07: Pro-
ceedings of the 24th Annual Conference on Theoretical Aspects

of Computer Science (Berlin, Heidelberg), Springer-Verlag, 2007,
pp- 320—331. 180

Richard B. Borie, Gary R. Parker, and Craig A. Tovey, Automatic Gen-
eration of Linear-Time Algorithms from Predicate Calculus Descriptions
of Problems on Recursively Constructed Graph Families, Algorithmica 7

(1992), 555—581. 20, 83

Hans L. Bodlaender, Richard B. Tann, Dimitris M. Thilikos, and
Jan van Leeuwen, On interval routing schemes and treewidth, Graph-
Theoretic Concepts in Computer Science, Lecture Notes in Computer
Science, vol. 1017, 1995, pp. 181-196. 87

Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo, Kernel Bounds
for Disjoint Cycles and Disjoint Paths, Proceedings of the 17th Annual
European Symposium (ESA 2009), Lecture Notes in Comput. Sci., vol.
5757, Springer, 2009, pp. 635—646. 115, 122, 178, 180, 181, 183, 184,
185, 186, 189

Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth, Ap-
proximation algorithms for the feedback vertex set problem with applica-
tions to constraint satisfaction and Bayesian inference, SIAM J. Comput-

ing 27 (1998), no. 4, 942-959. 123

Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and
Mitsunori Ogihara, Competing provers yield improved Karp-Lipton col-

lapse results, Information and Computation 198 (2005), no. 1, 1-23.

194

Brent N. Clark, Charles J. Colbourn, and David S. Johnson, Unit disk
graphs, Discrete Math. 86 (1990), no. 1-3, 165—177. 115

BIBLIOGRAPHY 227

[CCL10]

[CEJos]

[CFKXo07]

[CFL"08]

[CFM11]

[CGHW98]

[CKJor]

[CM93]

[Cougo]

[Coug7]

Yixin Cao, Jianer Chen, and Yang Liu, On feedback vertex set new mea-
sure and new structures, 12th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), Lecture Notes in Computer Science,
vol. 6139, 2010, pp. 93—104. 141

Benny Chor, Michael R. Fellows, and David W. Juedes, Linear kernels in
linear time, or how to save k colors in O(n?) steps, Proceedings of the 30th
International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), LNCS, vol. 3353, Springer, 2005, pp. 257-269. 25, 35

Jianer Chen, Henning Fernau, Iyad A. Kanj, and Ge Xia, Parametric
duality and kernelization: Lower bounds and upper bounds on kernel size,
SIAM Journal on Computing 37 (2007), no. 4, 1077—1106. 22

Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Vil-
langer, Improved algorithms for feedback vertex set problems, J. Comput.
Syst. Sci 74 (2008), no. 7, 1188-1198. 141

Yijia Chen, Jorg Flum, and Moritz Miiller, Lower bounds for kerneliza-
tions and other preprocessing procedures, Theory Comput. Syst 48 (2011),
no. 4, 803—839. 176

Fabidn A. Chudak, Michel X. Goemans, Dorit S. Hochbaum,
and David P Williamson, A primal-dual interpretation of two 2-
approximation algorithms for the feedback vertex set problem in undirected
graphs, Operations Research Letters 22 (1998), no. 4-5, 111-118. 123

Jianer Chen, Iyad A. Kanj, and Weijia Jia, Vertex Cover: Further 0b-
servations and further improvements,]. Algorithms 41 (2001), no. 2,
280—301. 22

Bruno Courcelle and M Mosbah, Monadic second-order evaluations
on tree-decomposable graphs, Theor. Comp. Sci. 109 (1993), no. 1-2,
49—82. 20, 83

Bruno Courcelle, 7he monadic second-order logic of graphs. i. recognizable
sets of finite graphs, Information and Computation 85 (1990), no. 1,
12—75. 20, 83

Bruno Courcelle, 7he expression of graph properties and graph transfor-

mations in monadic second-order logic, Handbook of Graph Grammars

228

[CPPW10]

[DF9sa]

[DF9sb]

[DF9sc]

[dF97]

[DF99]

[Dieos]

[DLSo9]

[DSTo2]

[DvM10]

BIBLIOGRAPHY

and Computing by Graph Transformations, Volume 1: Foundations,
World Scientific, 1997, pp. 313—400. 20

M. Cygan, M. Pilipczuk, M. Pilipczuk, and]. O. Wojtaszczyk, Im-
proved FPT algorithm and quadratic kernel for pathwidth one vertex dele-
tion, Proceedings of the 5th International Symposium on Parameterized
and Exact Computation (IPEC 2010), Lecture Notes in Comput. Sci.,
Springer, 2010, pp. 95—106. 194, 196, 197, 206, 207, 211

Rod G. Downey and Michael R. Fellows, Fixed-parameter Tractability
and Completeness I: Basic Results, SIAM J. Comput. 24 (1995), no. 4,

873—921. 178

, Fixed-parameter Tractability and Completeness II: On Com-

pleteness for W[1], Theor. Comput. Sci. 141 (1995), no. 1-2, 109—131.
178

, Parameterized Computational Feasibility, Feasible Mathemat-

ics I, Boston: Birkhiuser, 1995, pp. 219—244. 178

Babette de Fluiter, Algorithms for graphs of small treewidth, Ph.D. thesis,
Utrecht University, 1997. 59, 64

R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer,
1999. 4, 183

Reinhard Diestel, Graph theory, third ed., Graduate Texts in Mathe-
matics, vol. 173, Springer-Verlag, Berlin, 2005. 14

Michael Dom, Daniel Lokshtanov, and Saket Saurabh, Incompressibility
Through Colors and IDs, ICALP "09: Proceedings of the 36th Interna-
tional Colloquium on Automata, Languages and Programming (Berlin,
Heidelberg), Springer-Verlag, 2009, pp. 378—389. 176, 178

Josep Diaz, Maria Serna, and Dimitrios M. Thilikos, Counting H-
colorings of partial k-trees, Theoretical Computer Science 281 (2002),

291-309. 75

Holger Dell and Dieter van Melkebeek, Satisfrability allows no nontrivial
sparsification unless the polynomial-time hierarchy collapses, Proceedings
of 42th ACM Symposium on Theory of Computing (STOC 2010),
ACM, 2010, pp. 251-260. 124

BIBLIOGRAPHY 229

[EP65a]

[EP65b]

[ES35]

[Felo6]

[FFHVo7]

[FFL*o09]

[FGo6]

[FHLo8]

[FHR " o5]

P. Erd8s and P. Pésa, On Independent Circuits Contained in a Graph,
Canadian Journal of Mathematics 17 (1965), 347—352. 180

Paul Erdés and Louis Pésa, On independent circuits contained in a graph,
Canadian J. Math. 17 (1965), 347-352. 122, 158

P Erdés and G. Szekeres, A combinatorial problem in geometry, Com-
positio Math. 2 (1935), 463—470. 163

Michael R. Fellows, 7he lost continent of polynomial time: Preprocessing
and kernelization, Proceedings of 2nd International Workshop on Pa-
rameterized and Exact Computation (IWPEC), Lecture Notes in Com-
put. Sci., vol. 4169, Springer, 2006, pp. 276—277. 22

Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane
Vialette, Sharp tractability borderlines for finding connected motifs in
vertex-colored graphs, Proceedings of the 34th International Colloquium
on Automata, Languages and Programming (ICALP), LNCS, vol.

4596, 2007, pp. 340—351. 9, 193

Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible,
Saket Saurabh, and Yngve Villanger, Kernel(s) for Problems with No Ker-
nel: On Out-Trees with Many Leaves, Proceedings of the 26th Annual
Symposium on Theoretical Aspects of Computer Science (STACS),

2009, pp. 421—432. 182, 194

Jorg Flum and Martin Grohe, Parameterized complexity theory, Texts
in Theoretical Computer Science. An EATCS Series, Springer-Verlag,
Berlin, 2006. 4, 23, 26

Uriel Feige, Mohammadtaghi Hajiaghayi, and James R. Lee, /mproved
approximation algorithms for minimum weight vertex separators, SIAM J.
Comput. 38 (2008), no. 2, 629—-657. MR MR2411037 (2009g:68267)
93, 100, 105, 125

Mike Fellows, Pinar Heggernes, Frances Rosamond, Christian Sloper,
and Jan Arne Telle, Finding k disjoint triangles in an arbitrary graph,
Graph-Theoretic Concepts in Computer Science, Lecture Notes in

Computer Science, vol. 3353, 2005, pp. 235—244. 184

230

[FiOT10]

[FJP10]

[FLM* roa]

[FLM™ 10b]

[FLM™11]

[FmOTog]

[FS11]

BIBLIOGRAPHY

Fedor V. Fomin, Sang il Oum, and Dimitrios M. Thilikos, Rank-width
and tree-width of H-minor-free graphs, Eur.]J. Comb. 31 (2010), no. 7,
1617-1628. 144

Samuel Fiorini, Gwenaél Joret, and Ugo Pietropaoli, Hitting diamonds
and growing cacti, Proceedings of the 14th Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO 2010), Lecture
Notes in Comput. Sci., vol. 6080, Springer, 2010, pp. 191—204. 123

Fedor V Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese
Philip, and Saket Saurabh, An Erdos-Pésa result for generalized cycles,
Unpublished Manuscript, 2010. 10

., Lower bounds for some packing problems, Unpublished

Manuscript, 2010. 11

, Hitting forbidden minors: Approximation and kernelization,

Proceedings of Symposium on Theoretical Aspects of Computer Sci-

ence, 2011. 10, 155, 156

Fedor V. Fomin, S.-il Oum, and Dimitrios M. Thilikos, Rank-width
and tree-width of H-minor-free graphs, Manuscript (2009). 144

Lance Fortnow and Rahul Santhanam, Infeasibility of instance compres-
sion and succinct PCPs for NP, Journal of Computer and System Sciences
77 (2011), no. 1, 91 — 106. 176

[GGHNo6] Jens Gramm, Jiong Guo, Falk Hiiffner, and Rolf Niedermeier, Daza

(GJ79]

reduction, exact, and heuristic algorithms for clique cover, Proceedings
of the 8th Workshop on Algorithm Engineering and Experiments
(ALENEX ’06), SIAM, 2006, pp. 86-94. 26, 27

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP—Completeness, Freeman, 1979. 183, 184

[GNo7] Jiong Guo and Rolf Niedermeier, Invitation to data reduction and prob-

[GS10]

lem kernelization, SIGACT News 38 (2007), no. 1, 31—45. 4

Sylvain Guillemot and Florian Sikora, Finding and counting vertex-
colored subtrees, Mathematical Foundations of Computer Science, Lec-
ture Notes in Computer Science, Springer Berlin / Heidelberg, 2010,

pPp- 405—416. 10, 193

BIBLIOGRAPHY 231

[HNo94]

[Kar72]

(Klog4]

[Kos82]

[KTos]

[LESo6]

[LSSo9]

[LY93]

[MPRS10]

[MRS11]

[MVS8o]

Dorit S. Hochbaum and Joseph Naor, Simple and fast algorithms for
linear and integer programs with two variables per inequality, SIAM J.
Comput. 23 (1994), no. 6, 1179—1192. 33

Richard M. Karp, Reducibility among combinatorial problems, Complex-
ity of Computer Communications, 1972, pp. 85-103. 123, 198

Ton Kloks, Treewidth — computations and approximations, Lecture Notes
in Comput. Sci., vol. 842, Springer, 1994. 18, 93, 106, 125

A. V. Kostochka, The minimum Hadwiger number for graphs with a given
mean degree of vertices, Metody Diskret. Analiz. (1982), no. 38, 37—58.

144

P. G. Kolaitis and M. N. Thakur, Approximation properties of NP mini-
mization classes,]. Comput. System Sci. 50 (1995), 391—411. 220

Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot, Motif
search in graphs: Application to metabolic networks, IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 3 (2006), no. 4,

360—368. 9, 193

Daniel Lokshtanov, Saket Saurabh, and Somnath Sikdar, Simpler pa-
rameterized algorithm for OCT, Combinatorial Algorithms, Lecture
Notes in Computer Science, vol. 5874, 2009, pp. 380—384. 184

C. Lund and M Yannakakis, 7he approximation of maximum subgraph
problems, Proceedings of the 20th International Colloquium Automata,
Languages and Programming (ICALP 1993), Lecture Notes in Com-
put. Sci., vol. 700, Springer, 1993, pp. 40—51. 220

Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket
Saurabh, Independent feedback vertex set, 2010, Accepted at COCOON

20II. IO

Neeldhara Misra, Venkatesh Raman, and Saket Saurabh, Lower bounds

on kernelization, Discrete Optim. 8 (2011), no. 1, 110-128. 4

Silvio Micali and Vijay V. Vazirani, An O(+/|VI|E|) Algorithm for Find-
ing Maximum Matching in General Graphs, Proceedings of the 21st An-
nual Symposium on Foundations of Computer Science (FOCS), 1980,

pp. 17—27. 184

232

[Nieo6]

[NSTWo6]

[NT74]

[Reeg2]

[RS86]

[RS95]

[RST94]

[RSVo4]

[ST93]

BIBLIOGRAPHY

Rolf Niedermeier, /nvitation to Fixed Parameter Algorithms (Oxford Lec-
ture Series in Mathematics and Its Applications), Oxford University Press,
USA, March 2006. 4, 26, 140

Serguei Norine, Paul Seymour, Robin Thomas, and Paul Wollan, Proper
minor-closed families are small, J. Combin. Theory Ser. B 96 (2006),

no. 5, 754-757. 144

G. L. Nemhauser and L. E. Trotter, Jr., Properties of vertex packing and
independence system polyhedra, Math. Programming 6 (1974), 48—61.
123

Bruce A. Reed, Finding approximate separators and computing tree width
quickly, Proceedings of the twenty-fourth annual ACM Symposium on
Theory of Computing (STOC), ACM Press, 1992, pp. 221—228. 156

Neil Robertson and Paul D. Seymour, Graph minors. II. Algorithmic
aspects of tree-width, Journal of Algorithms 7 (1986), no. 3, 309—322.
17

, Graph minors. XIII. The disjoint paths problem, J. Comb. The-
ory Ser. B 63 (1995), 65—110. 129, 170

Neil Robertson, Paul D. Seymour, and Robin Thomas, Quickly exclud-
ing a planar graph, J. Comb. Theory Ser. B 62 (1994), 323—348. 86,

87,92

Bruce Reed, Kaleigh Smith, and Adrian Vetta, Finding odd cycle
transversals, Operations Research Letters 32 (2004), no. 4, 299 — 301.
184

Paul D. Seymour and Robin Thomas, Graph searching and a min-max
theorem for tree-width,]. Combin. Theory Ser. B §8 (1993), no. 1,
22—33. 8, 160

[Thoot] Andrew Thomason, 7he extremal function for complete minors, J. Com-

[Tho1o]

bin. Theory Ser. B 81 (2001), no. 2, 318-338. 144

Stéphan Thomassé, A quadratic kernel for feedback vertex ser, ACM
Transactions on Algorithms 6 (2010), no. 2. 8, 22, 29, 47, 51, 124,
129, 140, 180

BIBLIOGRAPHY 233

[WRo08] David R. Wood and Bruce A. Reed, Polynomial treewidth forces a large
grid-like-minor, Tech. Report arXiv:0809.0724v3, arxiv.org, 2008. 161

	Introduction
	Parameterized Complexity and Kernelization
	Specific Problems: A Brief Overview
	Organization of the Thesis

	Technical Preliminaries
	Notational Conventions
	Definitions
	Graphs
	Kernelization
	Treewidth and Tree Decompositions
	Monadic Second Order Logic (MSO)

	Interlude: Problem Kernels
	Examples of Kernels
	Max3Sat
	d-Hitting Set
	Crown Decomposition : Vertex Cover
	Clique Cover

	Interlude: Matching Theory
	The q-expansion lemma
	Applications of q–Expansion Lemma in Kernelization
	Vertex Cover
	(n-k) Coloring
	Edge-Dominating Set

	Independent Feedback Vertex Set
	A Cubic Kernel

	Interlude: Protrusions and Finite Integer Index
	The Blueprint
	Some Definitions
	Examples of proving FII
	An Example: Independent Set

	One example of proving not FII
	A Simple Sufficient Condition for Showing FII

	The Reduction Based on FII

	Some Combinatorial Explorations
	Partitioning Property of Graphs of Bounded Treewidth
	Inferring Protrusions from Subgraphs of Constant Treewidth
	Facts concerning minor models of c
	Minor Models of c do not have Cut Vertices

	Some MSO Formulations
	A Bound on the treewidth of YES instances of Planar F-Deletion

	FP-Deletion: An Approximation Algorithm
	An Introduction to the {F}-deletion problem
	A First Approximation Algorithm
	The Algorithm
	Analysis: Correctness and Running Time
	The Approximation Ratio

	Bootstrapping: An Improved Algorithm
	The Second Algorithm
	Analysis and Approximation Ratio

	Planar {F}-Deletion: Kernels on Claw-Free Graphs
	Finding Protrusions
	Finding Protrusions
	Bounding the boundary of X
	Finite Integer Index

	Analysis and Kernel Size – Proof of Theorem 9.1

	c-Deletion
	Finding hitting sets excluding a fixed vertex
	Reducing the Maximum Degree of the Graph
	Protrusion-Based Reductions

	Disjoint Planar F-deletion
	Combinatorial Tools
	Hypergraph Lemmata

	Detecting Protrusions
	Replacing Protrusions
	The Kernel and the Algorithm
	A FPT Algorithm for F-Deletion

	An Erdos-Pósa result for packing and covering Mc
	The Erdős-Pósa Property for c
	Unbounded treewidth implies a large packing
	Bounded treewidth and a small packing number implies a small cover
	The choice of
	The Algorithm for finding a c-hitting set
	Analysis and Approximation Ratio

	Edge-Disjoint {c}-packing: Some Observations

	Interlude: Lower Bounds in Kernelization
	Composition Algorithms
	Polynomial Parameter Transformations
	(Vertex) Disjoint Cycles
	Turing Kernelization

	A Study of Some Packing Versions
	Vertex-Disjoint {c}-packing: No Polynomial Kernels
	Odd Cycle Packing: No Polynomial Kernels

	Colorful Motifs
	Hardness On Superstar Graphs
	Colorful Motifs on Graphs of Diameter Two and Three
	Many Polynomial Kernels on Combs
	A Composition Algorithm
	Many Polynomial Kernels

	Hardness of Kernelization for Restricted Variants
	Hardness with a Fixed Root
	Hardness with a Fixed Subset of Vertices

	Connected Dominating Set

	Summary and Open Problems
	The F-deletion Problem
	Packing Variants of F-deletion
	Colorful Motifs
	Concluding Remarks

