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Abstract

This thesis studies four problems on graphs using the Probabilistic Method. The first two

are finding the maximum size of an induced acyclic tournament and acyclic subgraph re-

spectively, in random directed graphs. The third one deals with finding the maximum size of

an induced path, cycle or tree, in a random graph, while the last one is about an improved

lower bound on the independence number of certain uniform hypergraphs.

Given a simple directed graph D = (V,A), let the size of the largest induced acyclic

tournament be denoted by mat(D). Let D ∈ D(n, p) (with p = p(n)) be a random instance,

obtained by choosing each of the
(
n
2

)
possible undirected edges independently with probability

2p and then orienting each chosen edge in one of two possible directions with probability 1/2.

We show that for such a random instance, mat(D) is asymptotically almost surely (a.a.s.)

one of only 2 possible values, namely either b∗ or b∗ + 1, where b∗ = b2(logr n) + 0.5c and

r = p−1.

It is also shown that if, asymptotically, 2(logr n) + 1 is not within a distance of w(n)/(lnn)

(for any sufficiently slow w(n) → ∞) from an integer, then mat(D) is b2(logr n) + 1c a.a.s.

As a consequence, it is shown that mat(D) is 1-point concentrated for all n belonging to a

subset of positive integers of density 1 if p is independent of n. It is also shown that there

are functions p = p(n) for which mat(D) is provably not concentrated in a single value. We

also establish thresholds (on p) for the existence of induced acyclic tournaments of size i

which are sharp for i = i(n)→∞.

We also analyze a polynomial time heuristic and show that it produces a solution whose size

is at least logr n+ Θ(
√

logr n). Our results are valid as long as p ≥ 1/n. All of these results

also carry over (with some slight changes) to a related model which allows 2-cycles.



For the next problem, given a simple directed graph D = (V,A), let the size of the

largest induced acyclic subgraph (dag) of D be denoted by mas(D). Let D ∈ D(n, p) be

a random instance as in the previous chapter. We obtain improved bounds on the range of

concentration, upper and lower bounds of mas(D). Our main result is that

mas(D) ≥
⌊
2 logq np−X

⌋
where q = (1− p)−1, X = 1 if p ≥ n−1/3+ε (ε > 0 is any constant), X = W/(ln q) if p ≥ C/n,

and C,W are suitably large constants. This improves the previously known lower bounds

given by Spencer and Subramanian [61, 63] where there is an O(ln lnnp/ ln q) term instead of

X. We also obtain a slight improvement on the upper bound, using an upper bound on the

number of acyclic orientations of an undirected graph. We also analyze a polynomial-time

heuristic to find a large induced dag and show that it produces a solution whose size is at

least logq np+ Θ(
√

logq np). Our results also carry over to the related model D2(n, p).

The next problem deals with random undirected graphs. We study the concentration

of the largest induced paths, trees and cycles (holes) in the random graph model G(n, p),

and prove a 2-point concentration for the size of the largest induced path and hole, for all

p ≥ n−1/2 ln2 n. As a corollary, we obtain an improvement over a result of Erdős and Palka

[29] concerning the size of the largest induced tree in a random graph.

In the last problem, we consider the independence number of Kr-free graphs and linear

k-uniform hypergraphs in terms of the degree sequence, and obtain new lower bounds for

them. This answers some old questions raised by Caro and Tuza [21]. Our proof technique

is an extension of a method of Caro and Wei [20, 72], and we also give a new short proof of

the main result of [21] using this approach. As byproducts, we also obtain some non-trivial

identities involving binomial coefficients, which may be of independent interest.

i
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Chapter 1

Introduction

1.1 Graph Theory

Many problems occuring in diverse areas such as fields related to computer science, VLSI

design, operations research, economics and even statistical physics, deal with the combina-

torics of the interconnections between certain elements or nodes. A node could be a resistor,

transistor, capacitor etc. in an electrical network, or a city in a network of intercity roadways

or a web router in a computer network. For example, consider the following problems:

(i) A postman has to visit certain houses in an area to deliver mail, and return. In what

order should he visit the houses to minimize his travel? What if some of the routes

connecting these houses are much longer than the straight-line distance, while shortcuts

exist between others?

(ii) Or, how should m jobs be distributed amongst n persons where each person is qualified

for a certain subset of jobs, and each job requires a certain number of persons?

All these problems can be modelled by representing certain elements of the problem in-

stance as nodes, and specifying interconnections between the nodes. The common feature

in all these is that the internal structure of a node is not needed for modelling the problem.

Only the interconnections (or lack of them) between nodes are important.

A graph is a very simple structure that has been found to be extremely useful in modelling

these, and many other such problems occurring in various disciplines. A graphG = (V,E) is a

set V of elements called vertices, together with a collection E of pairs of vertices called edges.

Graph theory is a branch of discrete mathematics that deals with the study of graphs as

2



abstract objects. Graph theory (along with Topology) originated with Leonhard Euler’s 1736

solution of the famous Königsberg Bridges problem. Over the last two-and-a-half centuries,

graph theory has been systematically built up from a collection of problem-solving “tricks” to

an important branch of Discrete Mathematics. In the last sixty years or so, the emergence of

Computer Science and the significant role of graph theory in modelling problems in computer

science has led to a tremendous increase in interest in the area and acceleration in its growth.

Many computational problems in Computer Science, Operations Research and several other

areas can be modelled as graphs, and graph algorithms are used to solve these problems.

Figure 1.1: The Bridges of Königsberg

1.2 Random Graphs

Random Graphs is the probabilistic/statistical analysis of graphs. In this branch of Graph

Theory, instead of looking at individual graphs, one looks at probability distributions over

n-vertex graphs, and studies their properties and invariants from a probabilistic or statistical

point of view. The theory of random graphs can be thought of as a confluence of Probability

Theory and Graph Theory. The concept of a random graph was first used by Erdös in 1947

[25] in a famous result that proved a lower bound on the diagonal Ramsey numbers R(k, k).

Since then, it remained more or less an interesting “trick” until 1959, when Erdős and Rényi

[26, 27] published a series of seminal papers that established the study of random graphs

(random structures in general) as a separate field in itself.

Studying random graphs has applications in many areas of research, from graph theory, al-

gorithms, operations research, computational complexity and statistical mechanics, to game

theory and economics. These applications can be roughly classified into three categories:

3



• Showing the existence of one (or many) graphs having certain properties.

• Giving insights into the structure or behaviour of “most” (in some sense) graphs - or

sometimes, all “large enough” graphs.

• Enabling a stochastic analysis of certain graph algorithms, network models etc.

The Probabilistic Method The rise of random graphs as an area of study has been

hand-in-hand with the rise of a branch of combinatorics called “Probabilistic Combinatorics”.

Probabilistic Combinatorics uses ideas from probability theory to solve combinatorial prob-

lems. In fact, Erdős ’s 1947 paper [25] is also cited as one of the first papers to use the

probabilistic method of solving combinatorial problems. Initially regarded by the majority

Combinatorics community as just “a fanciful way of counting”, it was later shown to be

more powerful than straightforward counting, as one could leverage the existing techniques

in probability theory to solve problems that would have been very difficult to solve using

direct counting techniques. Today, the Probabilistic Method has found applications that

are both wide and deep, in areas ranging from number theory, additive combinatorics, the

geometry of Banach spaces, and graph theory, to - perhaps most significantly - theoretical

computer science. It has also fuelled much development in Discrete Probability, particu-

larly in the discovery of new inequalities like the Lovász Local Lemma and concentration

inequalities.

1.3 Thesis Outline

The outline of the rest of this thesis is as follows. Some preliminaries of Discrete Proba-

bility and graphs, directed graphs, hypergraphs and some random models are presented in

Chapters 2 and 3 respectively. The work in Chapters 4-7 was done in collaboration with my

advisor Prof. C. R. Subramanian. Chapter 8 was done in collaboration with Profs. C. R.

Subramanian and Dhruv Mubayi.

The thesis is concerned with the study of a few graph invariants of a random digraph

or a random graph. We present both theoretical and algorithmic results related to these

invariants. For random digraphs, we study and determine the most likely values that the

size of a largest induced acyclic tournament or the size of a largest induced acyclic subgraph

can take. A tournament is a directed graph obtained by orienting the edges of a complete

undirected graph. For random graphs, we study the most likely values that the sizes of a

largest induced path, a largest induced cycle or a largest induced tree can take. For the case

4



of tournaments (in random digraphs) and induced paths and cycles (in random graphs),

it is shown that the most likely values are from a set of two consecutive positive integers.

In addition, we also obtain new lower bounds on the size of a largest independent set in

an arbitrary (not a random instance) graph or a linear hypergraph in terms of its degree

sequence. An outline of the presentation of these results is given below.

In Chapter 4 we present several theoretical and algorithmic results relating to largest

induced acyclic tournaments in random directed graphs. These include a general two-point

concentration result, special cases where one-point concentration can or cannot be obtained

and threshold results, as well as algorithms to find large acyclic tournaments induced in

random digraphs, alongwith their analyses.

In Chapters 5 and 6 we present results on a related topic: the size of a largest induced

acyclic subgraph present in a random directed graph. These include concentration results

as well as lower and upper bounds. An interesting case for the lower bound is when the

variance of the random variable under question becomes much larger than the square of

its expectation, and most second-moment based techniques seem to fail. A combination of

Talagrand’s inequality with the Paley-Zygmund inequality is used to handle this case. We

focus on lower bounds in Chapter 5. In Chapter 6, we cover upper bounds as well as the

algorithmic question of finding a large induced acyclic subgraph. As in Chapter 4, heuristics

are suggested and analyzed.

Next, in Chapter 7 we study a group of problems in random graphs - that of determining

the size of a largest induced path, cycle (hole) or tree. The concentration of the sizes of

largest induced paths, trees and cycles are studied in the random graph model G(n, p). A

2-point concentration is proved for the size of the largest induced path and hole, for all

p ≥ n−1/2(lnn)2. As a corollary, an improvement is obtained over a result of Erdős and

Palka [29] concerning the size of the largest induced tree in a random graph.

Chapter 8 deals with a different problem: finding a degree-sequence based lower bound

on the independence number (size of a largest independent set) of general and linear k-

uniform hypergraphs. A new proof of a theorem given by Caro and Tuza [21] is given,

and some old questions asked by them are answered. The key idea is an extension of the

random-permutation technique used in the probabilistic proof of Turan’s theorem given by

Bopanna-Caro-Wei [9] to hypergraphs, particularly linear hypergraphs.

Finally, in Chapter 9, some open problems and potential future directions are presented.
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Notation : Throughout, we use standard notation. <+ denotes the positive real numbers,

N denotes the set of natural numbers. Given a natural number n ∈ Z+, we indicate the

set {1, . . . , n} by [n]. We also use standard notations like O(.), Ω(.), o(.) and ω(.) with the

usual meanings. We ignore floors and ceilings wherever they are not crucial. For a sequence

of events {En}n≥1 defined over a corresponding sequence of probability spaces {Ωn}n≥1, we

use the phrase En holds asymptotically almost surely (a.a.s) to mean that the sequence of

probabilities {Pn}n≥1 associated with the events {En} tends to 1 as n tends to infinity.
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Chapter 2

Basics of Discrete Probability

2.1 Basic Definitions

We provide a quick overview of standard notions, facts and results from probability theory.

We focus throughout only on discrete probability spaces. Throughout the thesis, a sample

space Ω refers to a finite or a countably infinite set. A σ-field over Ω is a collection F
of subsets of Ω, called events, such that (i) empty set ∅ belongs to F , (ii) F is closed

under complementations, and (iii) F is closed under the union of members of any countable

subcollection of itself.

A probability space is a triple (Ω,Σ, P ), where Ω is a sample space, Σ is a σ-field over

Ω, and P : Σ → [0, 1] is a function such that (i) P (Ω) = 1, (ii) P is countably additive,

that is, for any countable collection {Ai}i∈I of mutually disjoint events from Σ, P (∪i∈IAi) =∑
i∈I P (Ai).

If E2 is an event with non-zero probability, then the conditional probability of E1 given E2

(denoted by Pr[E1|E2]) is the probability of E1 in the probability space conditioned by E2

and is defined to be

Pr[E1|E2] = Pr[E1 ∩ E2]/Pr[E2]

A finite collection of events {Ei|i ∈ I} is totally independent if for all subsets S ⊆ I,

Pr

[⋂
i∈S

Ei

]
=

∏
i∈S

Pr[Ei]

These events are k-wise independent if every subcollection of k events is totally independent.

For k = 2, this notion is often referred to as pairwise independence.
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A real random variable X (associated with a probability space (Ω,F , P )) is a real-valued

function X : Ω → <, such that ∀x ∈ <, the set {ω ∈ Ω|X(ω) ≤ x} is an event in F . By

our assumption on the probability spaces, each of the random variables we will consider is

a discrete random variable , that is, it takes values only from a range which is either finite

or a countable subset of <. An indicator random variable is a discrete random variable

whose range is {0, 1}. Throughout, we will study the behavior of several random variables

defined over a common probability space. Two random variables X and Y are independent

if, for any two events EX and EY associated only with X and Y respectively, EX and EY
are independent. This definition is naturally extendible to any finite collection of random

variables.

The expectation or first moment (denoted by E[X]) of a random variable X is defined by

E[X] =
∑

x xPr[X = x] where Pr[X = x] = Pr[{ω|X(ω) = x}] and the summation is over

the range of X.

In general, the k-th moment mk
X and the k-th central moment µkX of a random variable

X are defined as follows:

mk
X = E[Xk]

µkX = E[(X − E[X])k]

For k = 2, the central moment is often referred to as the variance, and is denoted by either

V ar(X) or σ2 = σ2(X) and its positive square root is often called the standard deviation,

denoted by σ = σ(X).

The Covariance of two random variables X, Y is defined to be

COV (X, Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ]

Clearly, when X = Y , the covariance reduces to the variance of X.

2.2 Basic Relations Between Probabilistic Operators

and Inequalities

The following theorem is a simple but powerful observation and follows from the definition

of the notion of expectation.
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Theorem 2.2.1 (Linearity of Expectation): Let X1, X2, ..., Xk be arbitrary random vari-

ables, and h(X1, .., Xk) be a linear function. Then

E[h(X1, ..., Xk)] = h(E[X1], E[X2], ..., E[Xk])

Proposition 2.2.2 (Boole-Bonferroni Inequalities): Let E1, E2, ..., En be arbitrary events.

Then for even k

Pr

[
n⋃
i=1

Ei

]
≥

k∑
j=1

(−1)j+1
∑

i1<i2<...<ij

Pr

[
j⋂
r=1

Eir

]
and for odd k

Pr

[
n⋃
i=1

Ei

]
≤

k∑
j=1

(−1)j+1
∑

i1<i2<...<ij

Pr

[
j⋂
r=1

Eir

]
The case k = 1 is used very often, and is referred to as the union bound.

2.2.1 Variance of Sums of (Indicator) Random Variables

When the random variable in question is the sum of other random variables, it is often useful

to express the second central moment in terms of such moments of the summands as follows:

Let X =
∑

iXi be the sum of a finite number of other random variables Xi, i ∈ I. Then,

Proposition 2.2.3

σ2(X) =
∑
i

σ2(Xi) +
∑
i 6=j

COV (Xi, Xj)

where the second summation is over ordered pairs (i, j). The special case when the Xi’s are

indicator random variables is especially useful and will be used several times in the coming

chapters. The following well-known upper bounds on tail probabilities will often be applied

later in the thesis.

Theorem 2.2.4 (Markov’s Inequality): Let Y be a non-negative random variable. Then for

all t ∈ <+, we have tPr[Y ≥ t] ≤ E[Y ] and hence

Pr[Y ≥ t] ≤ E[Y ]/t

Theorem 2.2.5 (Chebyshev’s Inequality): Let X be a random variable with expectation µX

and standard deviation σX . Then for all t ∈ <+,

Pr[|X − µX | ≥ tσX ] ≤ (1/t2)

The proof follows simply by applying Markov’s inequality to the random variable (X−µX)2.
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The Paley-Zygmund Inequality is a slightly weaker version of the one-sided version of the

previous theorem.

Theorem 2.2.6 (Paley-Zygmund Inequality): Let X be a random variable which takes non-

negative values. Then, for every θ : 0 < θ < 1:

Pr[X > θE[X]] ≥ (1− θ)2E[X]2

E[X2]

Taking the limit as θ → 0, the Paley-Zygmund Inequality gives the following:

Pr[X > 0] ≥ E[X]2/E[X2].

Theorem 2.2.7 (Chernoff-Hoeffding Bounds): Let X1, X2, ...Xn be independent indicator

random variables such that, Pr[Xi = 1] = pi for each i. Then, for X =
∑n

i=1Xi, µ =

E[X] =
∑n

i=1 pi,

Pr[X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ
for any δ ≥ 0

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2 for any δ, 0 ≤ δ ≤ 1

The above two inequalities are often combined (for every ε ∈ [0, 1]) as:

Pr[|X − µ| ≥ εµ] ≤ 2e−µε
2/3

2.3 Advanced Inequalities

2.3.1 Lovász Local Lemma

For a finite collection of totally independent events, the probability of the intersection of

all these events is exactly the product of the probabilities of the individual events. Often,

the events under consideration are not independent and we need to estimate the probability

of the intersection which may become complicated due to the dependencies between events.

However, when each event is influenced by only a few other events, we can give a non-zero

lower bound on the required probability. The following lemma, proved by Erdős and Lovász

[28] in 1975 can be extremely useful in such situations.
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Lemma 2.3.1 Let A = {E1, E2, ..., En} be a collection of events such that for all 1 ≤ i ≤ n,

Ei is totally independent of all events but those in Di ⊆ A\{Ei}.
If there exists a real sequence {xi}ni=1, xi ∈ [0, 1), such that

∀i ∈ [n], Pr[Ei] ≤ xi
∏

j:Ej∈Di

(1− xj), then

Pr

[
n⋂
i=1

Ei

]
≥

n∏
i=1

(1− xi) > 0

2.3.2 Concentration Inequalities

For the case when the indicator variables Xi’s are not independent, Chernoff’s bounds cannot

be applied. However, if the variables fulfil certain weaker conditions, some concentration

results can still be obtained. Before presenting the first theorem, we mention the conditions

which need to be fulfilled:

Definition A collection of random variables {X1, X2, ...} is a discrete-time martingale if it

satisfies the following conditions:

(i) ∀n,E[|Xn|] <∞, and

(ii) ∀n, E[Xn+1|X1, X2, ..., Xn] = Xn.

Doob’s Martingale Let Ω =
∏n

i=1 Ωi form probability space with a probability distri-

bution P over Ω. Suppose f : Ω → < is f = f(X1, . . . , Xn), then the sequence Yi =

{E [f |X1, . . . , Xi]}ni=0, where Y0 = E [f ] by definition, forms a martingale, known as a Doob

Martingale.

Note that in the Doob Martingale defined above, Y0 = E [f ];Yn = f .

Theorem 2.3.2 (Azuma’s Inequality): Suppose {Xk : k = 0, 1, 2, ...} is a martingale, and

|Xk −Xk−1| ≤ ck. Then for all n > 0, t ∈ <+,

(i) Pr(Xn −X0 ≥ t) ≤ e−t
2/(2

∑n
k=1 c

2
k).

(ii) Pr(Xn −X0 ≤ −t) ≤ e−t
2/(2

∑n
k=1 c

2
k).

Theorem 2.3.3 (see [9, 40]) Suppose that Z1, . . . , ZN are independent random variables

taking their values in some sets Γ1, . . . ,ΓN respectively. Suppose further that X = f(Z1, . . . , ZN),

where f : Γ1 × . . .ΓN → R+ is a function such that for some function ψ : N → N , the

following two conditions hold:

(i) If z, z′ ∈ Γ =
∏N

i=1 Γi differ only in one component, then |f(z)− f(z′)| ≤ 1.
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(ii) If z ∈ Γ and r ∈ R+ with f(z) ≥ r, then there exists a set J ⊆ {1, . . . , N} with

|J | ≤ ψ(r), such that we have f(y) ≥ r for every y ∈ Γ with yi = zi whenever i ∈ J .

(f is said to be ψ-certifiable in such a case).

Then for every r ∈ R+ and t ≥ 0,

Pr[X ≤ r − t]Pr[X ≥ r] ≤ e−t
2/4ψ(r)

In particular, if m is a median of X, then for every t ≥ 0,

Pr[X ≤ m− t] ≤ 2e−t
2/4ψ(m)

and

Pr[X ≥ m+ t] ≤ 2e−t
2/4ψ(m+t).

A median of X is any value m such that Pr[X ≤ m] ≤ 0.5 and Pr[X ≥ m] ≤ 0.5. �
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Chapter 3

Basics of (Random) Graph Theory

3.1 Basic Definitions

Figure 3.1: A simple undirected graph

We provide a quick review of some basic notions and facts about graphs, digraphs and

hypergraphs. For a set V and a nonnegative integer k, we use the notation
(
V
k

)
to denote

the set of all k-sized subsets of V . We use 2V to denote the collection of all subsets of V .

A (simple, undirected) graph G = (V,E) is an ordered pair where V is a set of elements

known as vertices, and E ⊆
(
V
2

)
is a collection of elements known as (undirected) edges.

Figure 3.2: A directed graph
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A directed graph or digraph D = (V,A) is a graph whose edge set consists of ordered pairs

A ⊂ V × V called arcs or directed edges. For a given unordered pair {u, v} ∈
(
V
2

)
, we allow

one or both of the arcs (u, v) and (v, u). We do not allow two copies of the same arc (u, v).

If, for every {u, v} ∈
(
V
2

)
, at most one of the two arcs (u, v), (v, u) is allowed, then it is

called a simple digraph or also as an oriented graph. An oriented graph D is also a digraph

obtained by orienting the edges of an undirected graph G. In that case, we say that D has

G as its underlying undirected graph. A tournament is a simple digraph D = (V,A) whose

underlying undirected graph is G = (V,E) where E =
(
V
2

)
.

For a graph G = (V,E) or a directed graph (simple or otherwise) D = (V,A), a path P in

G (or D) is a sequence (u0, e1, u1, . . . , ek, uk) such that ui’s are distinct (except possibly that

u0 = uk) and each ei is an edge (or arc) in E (or in A) joining ui−1 and ui. If u0 = uk, then P

forms a cycle (or a directed cycle). For graphs or simple digraphs, every cycle should involve

at least k vertices and k edges for some k ≥ 3. But, for a general digraph, we can have cycles

on just two vertices as, for example, the cycle formed by (u, v) and (u, v) assuming both of

these arcs are present in A. The length of a path or a cycle (undirected or directed) is the

number of vertices in it.

An graph G (or digraph D) is acyclic if G (or D) contains no cycle (or directed cycle).

An acyclic graph on n vertices can have at most n − 1 edges in it. But, an acyclic digraph

on n vertices can have as many as
(
n
2

)
arcs.

An independent set in an undirected graph G = (V,E) is a subset A of V such that(
A
2

)
∩ E = ∅. The maximum size of an independent set in G is a well-studied numerical

invaraint (a value being the same for isomorphic copies) of graphs and is known as the

independence number of G and is denoted by α(G).

A hypergraph (alternatively, a set system) H = (V,E) is a pair, consisting of a set V of

vertices, and a collection E ⊂ 2V of subsets of V which are known as edges or hyperedges.

A hypergraph (or set system) is said to be k-uniform (for some k ≥ 1) if E ⊆
(
V
k

)
. A graph

is a 2-uniform hypergraph. An independent set in a k-uniform hypergraph G = (V,E) is a

subset A of V such that
(
A
k

)
∩ E = ∅. Independence number (denoted by α(G)) is similarly

defined by for hypergraphs.
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Figure 3.3: A hypergraph

3.2 Some Models of Random Graphs

In this section, we give a brief overview of various models for defining random graphs (or

digraphs). Before talking about the behaviour or characteristics of random graphs, we need

to define what we mean by “random”, that is, we need to decide on a probability space from

which such graphs are to be chosen.

Please note that unless stated otherwise, all graphs in this thesis are labelled graphs. For

convenience, (without loss of generality) we take the vertex set to be V = {1, 2, ..., n}, and

indicate the set of all n-vertex undirected graphs by Gn. We use N to denote the quantity(
n
2

)
.

1. G(n,M): In this model, the probability space is uniform distribution over all graphs

having n vertices and M edges. Consider the set S of all graphs over V having M

edges. The size of S is clearly
(
N
M

)
. Convert S into a probability space G(n,M) by

making all graphs in it equiprobable. Each element of S is chosen with probability(
N
M

)−1
.

2. G(n, p): This is closely related to the G(n,M) model. Instead of fixing the number

of edges, each potential edge in
(
V
2

)
is included as an edge with the same probability

p. The random choices are independent for different potential edges. Each graph over

V and having m edges is chosen with probability pm(1 − p)N−m. Thus, the number

of edges is itself a random variable, but all graphs with a given number of edges are
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equiprobable. It is easily seen that G(n, 1/2) is the uniform distribution over all n-

vertex simple graphs. This model and the previous one have been studied in great

detail with many interesting observations forming the theory of random graphs.

3. D(n, p): This is a model of simple directed graphs whose study forms a major part

of this thesis. It was introduced by Subramanian in 2003 (see [63]). Let the vertex

set be V = {1, 2, ..., n}. Choose each undirected edge joining distinct elements of V

independently with probability 2p. For each chosen {u, v}, independently orient it

in one of the two directions {u → v, v → u} in D with equal probability = 1/2.

The resulting directed graph is an orientation of a simple graph, that is, there are

no 2-cycles. Each simple digraph on V having m arcs is chosen with probability

pm(1− 2p)N−m.

There is also a closely related model, which has been well-studied in the literature

(see e.g. [51]), which we denote by D2(n, p) following the notation of [61]:

4. D2(n, p): It is similar to the D(n, p) model, except that 2-cycles are allowed. The

vertex set is again V = [n], and each possible arc (i, j) ∈ V × V , (i 6= j) is chosen

independently with probability p = p(n). Each digraph on V having m arcs is chosen

with probability pm(1− p)n(n−1)−m.

5. G(n, d): In this model, the graph is constrained to be d-regular. The uniform distribu-

tion over all n-vertex, d-regular graphs is chosen.

There are several other less common models. We mention briefly some of them:

6. G{K(n,m); p}: Labelled bipartite graphs with vertex sets U and W , |U | = n, |W | = m,

in which each U −W edge is chosen independently with probability p.

7. ~Gk−out. Each vertex in V chooses k other vertices uniformly and independently from

the
(
n−1
k

)
choices, and directs arcs from itself towards these vertices.

8. “Small worlds”- the Albert-Barabási model: In order to model various large networks

like the world-wide web, acquaintance networks, power-grid and telephone networks

etc., Barabási and Albert [11] defined a “preferential attachment” model. In this

model, vertices are added to the graph sequentially, and when a new vertex v is added,

the probability of an edge between v and a pre-existing vertex u is proportional to

the pre-existing degree of u. Thus, a vertex having more neighbours is likely to keep

gaining neighbours at a faster rate than a vertex having fewer neighbours. Most of the
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initial work was of an experimental/simulation-based nature. Bollobás and Riordan

[18] were the first to define a mathematical model with the required properties and

prove some theoretical results like precise bounds on the diameter.

This thesis will be concerned with only the three random models G(n, p) (for undirected

graphs), D(n, p) (for simple digraphs) and D2(n, p) (for digraphs). Also, we will be mostly

concerned with the asymptotic behavior of the models as n becomes large. Precisely, we will

consider a sequence {G(n, p) : n ≥ 1} (similarly for D(n, p) and D2(n, p)) of random graphs

where we allow p = p(n) to depend on n. We will be interested in the “typical behavior”

of G ∈ G(n, p) as n→∞. By “typical”, we mean a statement which holds with probability

q(n) where q(n) → 1. In that case, we say that a.a.s., the random graph G exhibits the

behavior. These are described precisely later in the following chapters.

3.3 Some Random Graph Phenomena

3.3.1 Thresholds

One of the most intriguing discoveries made by Erdős and Rényi during their seminal work on

random graphs (see [30, 31]) was that of threshold or phase transition phenomena. Basically,

they discovered that for many graph properties, as the number of edges M = M(n) is

increased from zero to
(
n
2

)
, the random graph G ∈ G(n,M) goes from a.a.s. not having the

property to a.a.s. having it (or vice versa), for a very small change in the number of edges.

By the contiguity of G(n, p) and G(n,M), the same could be said for the G(n, p) model, in

terms of the edge probability p = p(n) increasing from zero to 1.

A property P is a collection of labelled graphs which is closed under isomorphism. The

random graph G ∈ G(n, p) is said to have the property P if G ∈ P a.a.s. A graph property

P is said to have a threshold p0 = p0(n) if there exists some q = q(n) such that (i) G doesn’t

have P a.a.s. if p ≤ p0(n)− q(n) and (ii) G has P a.a.s. if p ≥ p0(n) + q(n), or vice versa.

The case when the random graph G(n, p) goes from a.a.s. not having P to a.a.s. having P
is called a 0− 1 threshold, and the opposite case is known as a 1− 0 threshold.

3.3.2 Concentration of Measure

A closely related phenomenon, which will be the focus of much of this thesis, is that of

concentration of measure. As the name suggests, it means the presence of almost all the

probability mass of a random variable in a very small interval. Given a sequence of random
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variables X = X(n) over a sequence of probability spaces Ω = Ω(n), we say that X is

concentrated in the range [a, b] (a = a(n), b = b(n)) if the probability that X lies outside the

range [a, b] goes to zero as n tends to infinity:

lim
n→∞

Pr(X 6∈ [a, b]) = 0.

A graph invariant is a real-valued function f(G) (G is a graph or a digraph) such that

f(G) = F (H) whenever G and H are isomorphic. Clique number ω(G) or the independence

number α(G) are examples of graph invariants. Given a graph invariant f = f(G), one gets

a corresponding random variable, X = f(G) : G ∈ G(n, p)/D(n, p). An important section

of the theory of random graphs deals with the asymptotic concentrations of various graph

invariants for different ranges of the edge probability p = p(n).
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Chapter 4

Largest Induced Acyclic Tournaments

in Random Digraphs

4.1 Introduction

A tournament is a simple directed graph whose underlying undirected graph is a complete

graph. A tournament is acyclic if and only if it is transitive, that is, the underlying edge

relation is a linear order. Given a directed graph D = (V,A), we want to find the maximum

size of an induced acyclic tournament in D, denoted by mat(D). This study is motivated

by the following reasons: firstly, this forms a toy problem, so to say, for studying some of

the basic techniques used to prove concentration of random variables. An understanding of

these techniques and their strong and weak points, developed in this chapter, shall help us

in tackling the harder problem that lies ahead - that of determining the concentration of

mas(D) - the size of the largest induced acyclic subgraph of a digraph D.

Secondly, the algorithmic version of this problem is important for several applications

in theoretical computer science. Although known to be NP-hard in the worst case, and

even up to any reasonable approximation, studying mat(D) for random digraphs gives an

understanding of the average case hardness of this problem. This is useful in many instances,

for designing algorithms that are much more efficient on average-case inputs.

Both the above points are discussed in detail later. In this chapter, we study the problem

of determining mat(D) for random digraphs both from an analytical and an algorithmic

point of view.
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Figure 4.1: An acyclic tournament on 8 vertices

Note: Throughout this chapter, r denotes p−1. <+ denotes the positive real numbers, and

standard “O” notation is used, including O(f(n)) and Ω(f(n)) to denote the set of functions

upper and lower bounded respectively, by a constant times f(n), o(f(n)) to denote the set

of functions growing asymptotically slower (with n) than f(n), and ω(f(n)) to denote the

set of functions asymptotically faster than f(n).

We study the D(n, p) model of a simple random digraph (see Chapter 3) introduced in

[63]. In what follows, p = p(n) ≤ 0.5 is a real number.

Figure 4.2: In Figure 3.2 the largest induced acyclic tournament is {4,5,6}

4.1.1 Analytical aspects

Subramanian [63] first studied the related problem of determining mas(D), the size of a

largest induced acyclic subgraph in a random digraph D = (V,E), and later Spencer and

Subramanian [61] obtained the following result.
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Theorem 4.1.1 [61] Let D ∈ D(n, p) and w = np. There is a sufficiently large constant W

such that : If p satisfies w ≥ W , then, a.a.s,

mas(D) ∈
[(

2

ln q

)
(lnw − ln lnw −O(1)),

(
2

ln q

)
(lnw + 3e)

]
where q = (1− p)−1.

Thus, with high probability (1−o(1)), mas(D) lies in an integer band of width O
(

ln lnw
ln q

)
.

But this upper bound on width is asymptotically Θ(r ln lnw), and hence can become large

for small values of p. However, if we focus on more restricted subgraphs, namely, induced

acyclic tournaments, then the optimum size can be shown (see Theorem 4.1.2 below) to be

one of two consecutive values a.a.s. In other words, we obtain a 2-point concentration for

mat(D). This is one of our main results in this chapter.

Theorem 4.1.2 Let {D(n, p) : p = p(n), n ≥ 1} be an infinite sequence of probability

distributions. Let w = w(n) be any sufficiently slowly growing function of n (say, any w

with w <
√
n always) such that w → ∞ as n → ∞. Let D ∈ D(n, p). Then, a.a.s., the

following holds:

(i) Suppose p ≥ 1/n. Define

d = 2 logr n+ 1 =
2(lnn)

ln r
+ 1; b∗ = bd− 1/2c = b2(logr n) + 0.5c.

Then, mat(D) is either b∗ or b∗ + 1.

(ii) mat(D) ∈ {2, 3} if 1/(wn) ≤ p < 1/n.

(iii) mat(D) = 2 if wn−2 ≤ p < 1/(wn).

(iv) mat(D) ≤ 2 if 1/(wn2) ≤ p < wn−2.

(v) mat(D) = 1 if p < (wn2)−1.

Similar two-point concentration results are known for maximum clique size ω(G) of a random

undirected graph G ∈ G(n, p) for p ≤ 0.5 (see [17, 14, 40]). The chromatic number χ(G)

is another parameter which has been shown to be 2-point concentrated for sparse random

undirected graphs (see [47, 7, 1]). However, unlike the case of mat(D), there is no explicit

closed form expression for ω(G). With some assumptions about p = p(n), one can also prove

(proof presented in Section 3) a stronger one-point concentration (Theorem 4.1.3 below) on

mat(D) for all large values of n.
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Theorem 4.1.3 Let D(n, p), d be as defined in Theorem 4.1.2. Let w = w(n) be any

function so that as n→∞, w(n) ≤ 0.5(lnn) and w →∞. If p ≥ 1/n is such that d satisfies
w

lnn
≤ dde − d ≤ 1− w

lnn
for all large values of n, then a.a.s. mat(D) = bdc.

As a consequence, we also obtain the following concentration result. For any choice of

p = p(n) and any given definition of f(n) = 1 − o(1), let Nf,p denote the set of natural

numbers n such that mat(D) takes a specific value with probability at least f(n). Let us

call p = p(n) a constant function if, for some a ∈ [0, 0.5], p(n) = a for every n. Then,

Corollary 4.1.4 For every constant function p = p(n), there exists a function f = f(n) =

1− o(1) such that the set Nf,p is a subset of natural numbers having density 1.

Our proof (presented in Subsection 4.4.1) of the above corollary is direct and does not take

recourse to the Borel-Cantelli Lemma which is applied in similar one-point concentration

proofs. Perhaps, similar direct proofs are possible in other cases where the Borel-Cantelli

lemma has been used, as for example, in proving a one-point concentration result for the

clique number ω(G) of random undirected graphs.

It is interesting to note that the bounds on dde−d assumed in Theorem 4.1.3 are essentially

tight. We give an example of a function p = p(n) such that the assumptions in Theorem

4.1.3 do not hold, and prove that mat(D) is not 1-point concentrated:

Theorem 4.1.5 For any fixed j ∈ Z+ (with j ≥ 3) and c ∈ R+, let D ∈ D(n, p), p =

n−2/(j−1+ c
lnn

). Then, for every sufficiently large n, each of the two events (i) mat(D) = j−1

and (ii) mat(D) = j, occurs with probability lower bounded by a positive constant.

The proof of this theorem is provided in Subsection 4.4.2 and is based on applying Lovász

Local Lemma and Paley-Zygmund Inequality.

We also establish a threshold (on p) for the existence of induced acyclic tournaments of

size i. For every fixed i, the threshold is coarse and is a sharp one if i = i(n) varies with n

and is any suitably growing function which goes to ∞ as n → ∞. These are stated in the

following theorem whose proof is presented in Subsection 4.4.3.

Theorem 4.1.6 For every (positive) integer valued function i = i(n) such that i(n) ∈
{1, . . . , b2 log2 nc} for every n, there exist functions pi = pi(n) ∈ [0, 1] and qi = qi(n) ∈ [0, 1]

such that : If D ∈ D(n, p) with 1/n ≤ p = p(n) ≤ 0.5, then a.a.s.

(a) if p ≥ pi + qi then mat(D) ≥ i, while
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(b) if p ≤ pi − qi then mat(D) < i.

Also, if i = i(n)→∞ is a growing function of n, then the threshold pi(n) is a sharp threshold

in the sense that qi(n) = o(pi(n)).

The proof of Theorem 4.1.7 (see Subsection 4.1.2) suggests a correspondence between

cliques in arbitrary undirected graphs and acyclic tournaments in specific orientations of

these graphs. A quantitative statement of this relationship can be obtained when random

graphs are compared to random digraphs. See Lemma 4.2.1 of Subsection 4.2.1 for the

statement and its proof.

Outline : The presentation of the results is organized as follows: Firstly, in Section 4.2, we

discuss some connections between the acyclic tournament number mat(D) and the clique

number ω(G). In Section 4.3, we provide the proof of Theorem 4.1.2. In Section 4.4, Theorem

4.1.3, Corollary 4.1.4 and Theorem 4.1.3 are proved. The proofs of the Theorems 4.1.2 and

4.1.3 are based on the Second Moment Method. We also present the proof of Theorem 4.1.6

in Section 4.4. 4.1.2.

4.1.2 Algorithmic aspects

By MAT(D, k), we denote the following computational problem : Given a simple directed

graph D = (V,A) and k, determine if mat(D) ≥ k. By MAT(D), we denote its optimization

version. That is, given D, find an induced acyclic tournament of maximum size. MAT(D, k)

is known to be NP-complete [36], even if D is restricted to be a tournament [59]. Also,

MAT(D) is known to be hard to approximate ([49]) when the input is an arbitrary digraph:

For some ε > 0, a polynomial-time approximation algorithm with an approximation ratio of

O(nε) is not possible unless P = NP .

Below we strengthen both of these results as follows. We show that MAT(D) is hard and

inapproximable even when D is restricted to be acyclic (a dag), as shown in Theorem 4.1.7.

Theorem 4.1.7 MAT(D, k) is NP-complete when D is restricted to be acyclic. Also, for ev-

ery ε ≥ (log n)−γ, for some constant 0 < γ < 1, the optimization problem MAT(D) is not effi-

ciently approximable with an approximation ratio of n1−ε unless NP ⊆ ZPTIME(2(logn)O(1)
),

even if D is restricted to be acyclic.

Proof : We reduce the NP-complete Maximum Clique problem MC(G, k) to the MAT(D, k)

problem as follows. Given an instance (G = (V,E), k) of the first problem, compute an

23



instance f(G) = (G′ = (V,A), k) in polynomial time where

A = {(u, v) : uv ∈ E, u < v}.

Clearly, G′ is a dag and it is easy to see that a set V ′ ⊆ V induces a clique in G if and only

if V ′ induces an acyclic tournament in G′. This establishes that MAT(D, k) is NP-hard even

if D is restricted to be a dag.

The inapproximability of MAT(D) follows from the following observation. Note that the

reduction G → f(G) is an L-reduction in the sense of [54], since |f(G)| = |G| and ω(G) =

mat(G′). Hence, any inapproximability result on maximum clique in undirected graphs (for

example [38, 42]), implies a similar inapproximability for the MAT(D) problem.

However, the average case version of the problem - finding mat(D) for a random digraph

D - offers some hope. In this version, we seek to design efficient algorithms for computing

an optimal solution which succeed a.a.s. over a random digraph. We use the model D(n, p)

defined before for studying random digraphs.

We show (see Theorem 4.5.1) that a.a.s. every maximal induced acyclic tournament is of

size which is at least nearly half of the optimal size. Hence any greedy heuristic obtains

a solution whose approximation ratio is a.a.s. 2. This is similar to the case of cliques in

undirected random graphs (see e.g. [14]).

We also study another heuristic which combines greedy and brute-force approaches as follows.

We first apply the greedy heuristic to get a partial solution whose size is nearly logr n −
c
√

logr n for some arbitrary constant c. Amongst the remaining vertices, let C be the set

of vertices such that each vertex in C can be individually and “safely” added to the partial

solution. Then, in the subgraph induced by C we find an optimal solution by brute-force

and combine it with the partial solution. It is shown in Theorem 4.6.1 that this modified

approach produces a solution whose size is at least logr n + c
√

logr n. This results in an

additive improvement of Θ(
√

logr n) over the simple greedy approach. The improvement

is due to the fact we stop using greedy heuristic at a point where it is possible to apply

brute-force efficiently. This approach is similar to (and was motivated by) the one used in

[44] for finding large independent sets in G(n, 1/2).

As a consequence, we see that the problem of finding an optimal induced acyclic tourna-

ment can be approximated within a ratio of 2− o(1) a.a.s. for random digraphs. This is in

sharp contrast to the worst-case version where, by Theorem 4.1.7, it is very unlikely to be

approximable even with a large multiplicative ratio.

Outline : The presentation of the algorithmic results is as follows. Theorem 4.5.1 is stated

and proved in Section 4.5. Theorem 4.6.1 is stated and proved in Section 4.6.
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4.1.3 Non-simple random digraphs

Each of the concentration and algorithmic results mentioned before also carry over (with

some slight changes) to a related random model D2(n, p) where we allow 2-cycles to be

present and each of the potential arcs is chosen independently. These are presented in

Section 6. In Section 7, we present some observations on the concentration of the maximum

size of an induced tournament (not necessarily acyclic) for the two models of random directed

graphs. Finally, in Section 8, we conclude with a summary and some open problems.

Notations : Throughout, we use standard notation. <+ denotes the positive real numbers,

N denotes the set of natural numbers. We often use the short notations p = p(n), w = w(n)

to denote functions (real or integer valued) over N . We also use standard notations like

O(.), Ω(.), o(.) and ω(.) with usual meanings.

4.2 mat(D) versus ω(G)

In this section, we explore some connections between the maximum acyclic tournament

number mat(D) and the clique number ω(G). A few such connections, such as the reduction

of CLIQUE(G, k) to MAT (D, k) have already been shown previously. The first additional

result is the connection between the probability distribution of mat(D), D ∈ D(n, p) and

ω(G), G ∈ G(n, p), for some 0 < p = p(n) ≤ 1/2.

4.2.1 Comparision of Probability distributions

The following lemma relates the probabilities in the two models D(n, p) and G(n, p) for

having, respectively, acyclic tournament number and clique number equal to a given value.

Its proof is similar to the proof of an analogous relationship involving mas(D) and α(G)

(maximum size of an independent set in G) established in [63].

Lemma 4.2.1 For any positive integer b, for a random digraph D ∈ D(n, p),

Pr[mat(D) ≥ b] ≥ Pr[ω(G) ≥ b].

where G ∈ G(n, p).

Proof : Given a linear ordering σ of vertices of D and a subset A of size b, we say that

D[A] is consistent with σ if for every σi, σj ∈ A with i < j, D[A] has the arc (σi, σj).

Let τ denote an arbitrary but fixed ordering of V . Once we fix τ , the spanning subgraph of

D formed by arcs of the form (τ(i), τ(j)) (i < j) is having the same distribution as G(n, p).
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Hence, for any A, the event of D[A] being consistent with τ is equivalent to the event of A

inducing a clique in G(n, p). Hence,

Pr( mat(D) ≥ b ) = Pr( ∃A, |A| = b, D[A] is an acyclic tournament )

= Pr( ∃A, |A| = b, ∃σ, D[A] is consistent with σ )

= Pr( ∃σ, ∃A, |A| = b, D[A] is consistent with σ )

≥ Pr( ∃A, |A| = b, D[A] is consistent with τ )

= Pr( ω(G) ≥ b ).

Hence it is natural that we have a bigger lower bound for mat(D) than we have for ω(G).

Note : Recall that we first draw an undirected G ∈ G(n, 2p) and then choose uniformly

randomly an orientation of E(G). Hence, for any fixed A ⊆ V of size b with b = ω(1),

Pr( D[A] is an acyclic tournament | G[A] induces a clique ) =
b!

2(b2)
= o(1).

However, there are so many cliques of size b in G that one of them manages to induce an

acyclic tournament.

4.2.2 Lower Bounds

Another intriguing connection between mat(D) and ω(G) stems from the degree-sequence

based lower bound expressions that can be obtained for them. In [9], Alon and Spencer gave

a probabilistic proof of the following degree-sequence based lower bound on the independence

number α(G) of an n-vertex graph G:

α(G) ≥
∑
v∈V

1

d(v) + 1

where d(v) is the degree of the vertex v ∈ V [G]. Applying this bound to the complement

graph Ḡ, one obtains a lower bound on the clique number of the graph G:

ω(G) ≥
∑
v∈V

1

n− d(v)
(4.1)

A similar expression can be obtained for acyclic tournaments in digraphs:
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Theorem 4.2.2 Given a simple digraph D = (V,E) on n vertices, with d+(v), d−(v) denot-

ing the out-degree and in-degree, respectively, of the vertex v, the maximum acyclic tourna-

ment of D is of size

mat(D) ≥ max

{∑
v∈V

1

n− d−(v)
,
∑
v∈V

1

n− d+(v)

}
(4.2)

Proof Choose uniformly at random a linear ordering ’<’ over V and define two sets Ii and

Io as follows :

(i) Ii is the set of those v ∈ V satisfying : for every u such that u < v, u is an in-neighbor

of v.

(ii) Io is the set of those v ∈ V satisfying : for every u such that u < v, u is an out-neighbor

of v.

Writing each of |Ii| and |Io| as a sum of indicator variables (one for each v) and applying

Linearity of Expectation, it can be easily verified that µi = E[|Ii|] =
∑

v∈V
1

n−d−(v)
and also

that µo = E[|Io|] =
∑

v∈V
1

n−d+(v)
. Also, E[max{|Ii|, |Io|}] ≥ max{µi, µo}. Hence there exists

a linear ordering for which either Ii or Io is of size at least max{µi, µo}. In any case, each of

Ii and Io always induces an acyclic tournament. This proves the theorem.

4.3 Analysis of D(n, p)
Let U be any fixed subset of V of size b. The following two easy-to-verify claims play a role

in the analysis.

Claim 4.3.1 A directed acyclic graph H = (U,A) has at most one (directed) hamilton path.

Proof : Order the vertices of U along a hamilton path P (if any exists) of H. An arc

(u, v) ∈ A is a forward arc if u comes before v in P and is a backward arc otherwise. Since

H is acyclic, any arc (v, u) ∈ A must be a forward arc, since otherwise the segment of P

from u to v along with (v, u) forms a cycle in H.

Now if there is another hamilton path Q in H, Q 6= P , then walking along P , consider the

first vertex a where Q differs from P . Then in the path Q, a is visited after some vertex a′

that comes after a in P . But this implies that (a′, a) is a backward arc in H contradicting

the observation earlier that H has no backward arc.

Claim 4.3.2 Pr[D[U ] is an acyclic tournament ] = b! p(
b
2)
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Proof : By Claim 4.3.1, any acyclic tournament on U has exactly one hamilton path P

which is also a linear ordering of U . Also, there are exactly b! choices for P . For every fixed

linear ordering σ of U , let E(U, σ) denote the event that D[U ] is an acyclic tournament with

the hamilton path σ. This event happens whenever each of the
(
b
2

)
forward arcs with respect

to σ are present in D[U ], which is a collection of
(
b
2

)
identical and independent events. Hence,

we have

Pr(E(U, σ)) = p(
b
2).

Hence, Pr[D[U ] is an acyclic tournament ] =
∑

σ Pr(E(u, σ)) = b! p(
b
2).

Before we proceed further, we introduce some notations which play an important role in the

analysis. Define δ = dde − d. Then, it follows that

b∗ =

{
d− 2 + δ if δ > 1/2;

d− 1 + δ if δ ≤ 1/2.

For a given b, let m =
(
n
b

)
and let {A1, . . . , Am} denote the set of all b-sized subsets of V . For

i ∈ [m], let Xi denote the random variable that indicates whether D[Ai] induces an acyclic

tournament or not. Let X(b) = X(n, b) denote the number of induced acyclic tournaments

of size b in D. Since there are
(
n
b

)
sets of size b, it follows by Linearity of Expectation that

E[X(n, b)] =
∑
i

E[Xi] =

(
n

b

)
b! p(

b
2).

We are only interested in the behavior of E[X(n, b)] for b ∈ [1, b∗+ 2]. From the definition of

b∗, it follows that b∗+2 ≤ dde+1 ≤ 2(lnn)
ln r

+3 ≤ 3(lnn) for sufficiently large n since p ≤ 1/2.

As a result, we have

[1− o(1)] · f(n, p, b)b ≤ E[X(n, b)] ≤ f(n, p, b)b . . . . . . (A)

where f : (<+)3 → <+ such that f(n, p, b) = n p(b−1)/2.

Setting f(n, p, b) = 1 and solving for b, we see that

f(n, p, b) > 1 if b < d; f(n, p, d) = 1; f(n, p, b) < 1 if b > d.

4.3.1 Proof of mat(D) ≤ b∗ + 1

First, we focus on proving the upper bound of Theorem 4.1.2. This is done by proving that

Pr(X(b∗ + 2) > 0) ≤ E[X(b∗ + 2)] = o(1).
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Recall that b∗ can be expressed in terms of d and δ in two different ways depending on the

value of δ.

Case I: δ > 1/2

E[X(b∗ + 2)] = E[X(d+ δ)]

≤ f(n, p, d+ δ)d+δ

=
(
f(n, p, d) · pδ/2

)d+δ

= pδ(d+δ)/2 = pδd/2 · pδ2/2

= n−δ · pδ(1+δ)/2 ≤ n−δ since p ≤ 1 and δ ≥ 0

≤ n−1/2 = o(1).

Case II: δ ≤ 1/2

E[X(b∗ + 2)] = E[X(d+ 1 + δ)]

≤ f(n, p, d+ 1 + δ)d+1+δ

=
(
f(n, p, d) · p(1+δ)/2

)d+1+δ

= p(1+δ)(d+1+δ)/2 = p(1+δ)d/2 · p(1+δ)2/2

= n−(1+δ) · p(1+δ)(2+δ)/2 ≤ n−(1+δ) since p ≤ 1 and δ ≥ 0

≤ n−1 = o(1).

This establishes the upper bound.

4.3.2 Proof of mat(D) ≥ b∗

Next, we focus on proving the lower bound of Theorem 4.1.2. For this, we first show that

E[X(b∗)]→∞ as n→∞.

Case I: δ > 1/2

E[X(b∗)] = E[X(d− 2 + δ)]

≥ [1− o(1)] · f(n, p, d− 2 + δ)d−2+δ

= [1− o(1)] ·
(
f(n, p, d) · p(−2+δ)/2

)d−2+δ

= [1− o(1)] · p(−2+δ)(d−2+δ)/2 = p(−2+δ)d/2 · p(−2+δ)2/2

= [1− o(1)] · n2−δ · p(2−δ)(1−δ)/2

≥ [1− o(1)] · n2−δ · p3/8 since p ≤ 1 and δ > 1/2

≥ n1/2 → ∞ as n → ∞.
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Case II: δ ≤ 1/2

E[X(b∗)] = E[X(d− 1 + δ)]

≥ [1− o(1)] · f(n, p, d− 1 + δ)d−1+δ

= [1− o(1)] ·
(
f(n, p, d) · p(−1+δ)/2

)d−1+δ

= [1− o(1)] · p(−1+δ)(d−1+δ)/2 = p(−1+δ)d/2 · p(−1+δ)2/2

= [1− o(1)] · n1−δ · p(−1+δ)δ/2

≥ [1− o(1)] · n1−δ since p ≤ 1 and δ ≤ 1/2

≥ n1/2 → ∞ as n → ∞.

For the sake of notational simplicity, we use X to denote X(b∗) and use b to denote b∗ for

the rest of this section. Now, we need to show that X > 0 with high probability. We use

the well-known Second Moment Method to establish this. Let V ar(X) denote the variance

of X.

Recall that Xi denotes the indicator random variable for the i-th b-size subset of V . Using

standard arguments (see [9]), it can be seen that

V ar(X) ≤ E[X] +
∑
i 6=j

COV (Xi, Xj) (4.3)

where the second sum is over ordered pairs and COV (Xi, Xj) = E(XiXj) − E(Xi)E(Xj)

is the covariance between Xi and Xj. Note that Xi and Xj are independent whenever

|Ai ∩ Aj| ≤ 1 and in that case COV (Xi, Xj) = 0. Otherwise, with |Ai ∩ Aj| = l, we have

COV (Xi, Xj) ≤ E(XiXj) = E(Xi)E(Xj|Xi = 1)

= b!p(
b
2) · (b!/l!) · p(

b
2)−(l2) (4.4)

where the last equality follows from Claim 4.3.2. Also, for any fixed i, the number of b-sized

subsets Aj such that |Ai ∩ Aj| = l is exactly
(
b
l

)(
n−b
b−l

)
. As a result,∑

i 6=j

COV (Xi, Xj) =
∑
i

∑
j : 2≤|Ai∩Aj |≤b−1

COV (Xi, Xj)

≤
∑
i

b!p(
b
2) ·

( ∑
2≤l≤b−1

(
b

l

)(
n− b
b− l

)(
b!

l!

)
· p(

b
2)−(l2)

)

= E[X] ·

( ∑
2≤l≤b−1

(
b

l

)(
n− b
b− l

)(
b!

l!

)
· p(

b
2)−(l2)

)
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= E[X]2 ·

( ∑
2≤l≤b−1

(b)l
(l!)2

(
n− b
b− l

)(
n

b

)−1

· p−(l2)

)
= E[X]2 ·M (4.5)

where M = M(n, p, b) is as defined above. Applying Chebyshev’s Inequality and (4.3), it

follows that

Pr[X = 0] ≤ V ar(X)(E[X])−2 ≤

(
E[X] +

∑
i 6=j

COV (Xi, Xj)

)
(E[X])−2 (4.6)

Combining (4.6) and (4.5), we notice that

Pr(X = 0) ≤ (E[X])−1 +M = o(1) (4.7)

provided M = M(n, b) = o(1) since it has already been shown that E[X] → ∞. Thus, we

only need to show that M = o(1) to complete the arguments.

Now, we focus on showing that M = o(1). Notice that

M =
∑

2≤l≤b−1

(b)l
(l!)2

·
(
n− b
b− l

)
·
(
n

b

)−1

· p−(l2)

≤
∑

2≤l≤b−1

(
b

l

)2

· 1

(n)l
· p−(l2) =

∑
2≤l≤b−1

(
b

l

)2

· 1 + o(1)

nl
· p−(l2)

= (1 + o(1))
∑

2≤l≤b−1

(
b

l

)2

pl(d−l)/2 = (1 + o(1))
∑

2≤l≤b−1

Fl

where the last-but-one equality follows using f(n, p, d) = 1.

Let tl be the ratio between successive terms: tl = Fl+1/Fl. Now take the ratio of ratios:

sl = tl+1/tl.

tl = Fl+1/Fl =

(
b
l+1

)2
p(l+1)(d−l−1)/2(
b
l

)2
pl(d−l)/2

=

(
b− l
l + 1

)2

p−l+(d−1)/2

sl =

((
b− l − 1

b− l

)(
l + 1

l + 2

))2

p−1

First we state the following easy-to-prove fact regarding any sequence of positive real num-

bers.

Fact 4.3.3 For a sequence of positive real numbers a1, . . . , an, if si = ai+2ai/a
2
i+1 ≥ 1 for

all 1 ≤ i ≤ n− 2, then for all i ∈ [n], we have ai ≤ max{a1, an}.
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Proof Consider the ratio bi := ai+1/ai. Since si = bi+1/bi ≥ 1 we get that for all i ∈ [n− 1],

bi+1 ≥ bi. There are only two possibilities for b1:

• b1 ≥ 1. Then bi ≥ 1 for all i ∈ [n−], implying that ai ≤ an for all i ∈ [n]. Hence we

are done.

• b1 < 1. In this case there is a unique k : 1 < k ≤ n such that bk ≥ 1, but for all j < k,

bj < 1. Then for all j < k, we have aj < a1, whereas for all j ≥ k the situation reduces

to the first case, and again we get aj ≤ an.

Thus in all the above cases, either aj ≤ a1 or aj ≤ an. Therefore for all i ∈ [n], ai ≤ (a1 +an).

Claim 4.3.4 (i) If p ≤ 1/4, then sl ≥ 1 for every b with 2 ≤ l ≤ b− 3. (ii) If p > 1/4, then

sl ≥ 1 for every b with 2 ≤ l ≤ b− 4 and also tb−2 > 1.

From the above (Fact 4.3.3 and Claim 4.3.4), the proof of Theorem 4.1.2 follows easily,

as we get that for all l : 2 ≤ l ≤ b − 1, for all p ≥ 1/n, Fl ≤ max{F2, Fb−1}. Now F2 =(
2
2

)2
p2.(d−2)/2 = p2( d−1

2
− 1

2) = p−1

n2 = O(1/n) and Fb−1 =
(
b
b−1

)2
p(b−1)(d−b+1)/2 ≤ b2

(
p(b−1)/2

)
=

b2
(
p(b−d)/2

n

)
≤ b2

(
r(d−b)/2

n

)
≤ b2

(
r3/4

n

)
= O

(
(lnn)2

n1/4

)
. Therefore, M = (1 + o(1)) ·

∑b−1
l=2 Fl =

O
(

(lnn)3

n1/4

)
= o(1).

Proof of Claim 4.3.4 Case (i) : Assume that p ≤ 1/4 and 2 ≤ l ≤ b − 3. Then, we have

(b− l − 1)/(b− l) ≥ 2/3 and (l + 1)/(l + 2) ≥ 3/4. This implies that sl ≥ p−1/4 ≥ 1.

Case (ii) : Assume that p > 1/4 and l ≤ b−4. It can be verified that the square term in sl is

at least 1/2 and p−1 ≥ 2, so sl ≥ 1. Now tb−2 = (2/(b−1))2p−(b−2)+(d−1)/2 ≥ (4rbp2)/(nb2) ≥
4np2.5

b2
→∞, using our assumption that p > 1/4.

We have thus completely established that M = o(1) for all p ≥ 1/n, thereby establishing

that Pr(X = 0) = o(1). Hence, a.a.s., mat(D) ∈ {b∗, b∗ + 1} for the stated range of p. The

remaining parts of Theorem 4.1.2 are straightforward to derive and are given below for the

sake of completeness.

For 1/wn ≤ p < 1/n,

E[X(n, 4)] =

(
n

4

)
· 4! · p(

4
2) ≤ n4p6 ≤ (1/n2) = o(1).

Now, an acyclic tournament of size 2 is simply an edge which a.a.s. exists since :

Pr[mat(D) < 2] = Pr[D is the empty graph] = (1− 2p)(
n
2) ≤ e−n(n−1)p = o(1),

since p ≥ 1/wn ≥ w/n2. Hence, when 1/wn ≤ p ≤ 1/n, mat(D) ∈ {2, 3}, a.a.s.
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For wn−2 ≤ p < 1/wn,

E[X(n, 3)] =

(
n

3

)
· 3! · p(

3
2) ≤ n3p3 = o(1) since np = o(1).

The proof for mat(D) ≥ 2 is the same as in the previous case, since n2p = ω(1), and hence,

at least one arc will exist, a.a.s. So when w/n2 ≤ p ≤ 1/wn, mat(D) = 2, a.a.s.

For (wn2)−1 ≤ p ≤ w/n2, E[X(n, 3)] = o(1), as in the previous case, and so mat(D) =

1 or 2, a.a.s.. When p < (wn2)−1, mat(D) = 1 since D a.a.s. has no directed edge.

This completes the proof of Theorem 4.1.2.

4.4 One-point Concentration and threshold results

Recall the definition of d, δ from the proof of Theorem 4.1.2. The proof of Theorem 4.1.3

proceeds by considering the following 2 cases:

Case 0 < w/ lnn ≤ δ ≤ 1/2 : In this case, bdc = b∗. From theorem 4.1.2, it only remains

to show that Pr[mat(D) ≥ b∗ + 1]→ 0 as n→∞. We again use the first moment method

to show that E[X(b∗ + 1)] = o(1).

By our assumption about p, δ ≤ 1/2. Hence, by definition, b∗ + 1 = d+ δ. Thus,

E[X(b∗ + 1)] ≤ f(n, p, d+ δ)d+δ

= (pδ/2)d+δ = pδ(d+δ)/2

= n−δ · pδ(1+δ)/2

≤ n−δ ≤ n−w/ lnn

= e−w → 0 as n→∞

Case 1/2 < δ ≤ 1− w/ lnn < 1 : Here, bdc = b∗ + 1. The proof proceeds by verifying that

Pr[X(b∗+1) = 0] = o(1), and hence, mat(D) ≥ b∗+1 a.a.s. Together with the upper bound

on mat(D) when p ≥ 1/n in Theorem 4.1.2, this gives the desired result. Briefly, this can

be seen as follows:

From (4.7), it suffices to show that

(i) E[X(n, b∗ + 1)]→∞ as n→∞, and

(ii) M = M(n, p, b∗ + 1) = o(1).
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To prove (i), we notice that

E[X(b∗ + 1)] ≥ [1− o(1)].f(n, p, d+ δ − 1)d+δ−1

= [1− o(1)].(p(δ−1)/2)d+δ−1 = [1− o(1)].p(δ−1)(d+δ−1)/2

= [1− o(1)].n1−δ · p−δ(1−δ)/2

≥ [1− o(1)].nw/ lnn

= [1− o(1)].ew → ∞ as n→∞

To prove (ii), we need to go along the proof of Theorem 4.1.2, and evaluate M(n, p, b∗ + 1).

An easy check reveals that M(n, p, b∗ + 1) = M(n, p, b∗) ·O((lnn)3) + Tb∗ ,

where

Tb∗ =

(
b∗ + 1

b∗

)2 (
(n)b∗p

(b
∗
2 )
)−1

≤ 2

(
b∗ + 1

b∗

)2 (
np(b∗−1)/2

)−b∗

Now, from the proof of Theorem 4.1.2, we have that M(n, p, b∗) = O
(

(lnn)3

n1/4

)
. Therefore

M(n, p, b∗ + 1) = O
(

(lnn)6

n1/4

)
+ Tb∗ .

Next, using the definition of b∗ when δ > 1/2, we have

Tb∗ ≤ 2(b∗ + 1)2(np(b∗−1)/2)−b
∗

= 2(b∗ + 1)2(np(d−3+δ)/2)−b
∗

= 2(b∗ + 1)2(p−1+δ/2)−b
∗

= 2(b∗ + 1)2pb
∗(1−δ/2)

= o(1)

Thus it is verified that both M.O(lnn)3 and Tb∗ , and hence their sum, are o(1).

4.4.1 Proof of Corollary 4.1.4

Let p be fixed but arbitrary. It follows from the definitions of d and δ, that for every n, we

have n = r
k−(1+δ)

2 for some nonnegative integer k. Also, it follows from Theorem 4.1.3 that

for every sufficiently large n, mat(D) is concentrated on one value if w
lnn
≤ δ ≤ 1 − w

lnn
.

Hence, for every such n, we must have

r
k−2
2

+ w
2 lnn ≤ n ≤ r

k−1
2
− w

2 lnn .

For every k ≥ 2, we define two values as follows.

mk,l = min{n : n ≥ r
k−2
2

+ w
2 lnn}; mk,h = max{n : n ≤ r

k−1
2
− w

2 lnn}.
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It follows that mat(D) is just one value for every sufficiently large n ∈ R where R =
⋃
k≥2Rk

and Rk = {n : mk,l ≤ n ≤ mk,h}. Hence it suffices to show that R is a subset of density 1 of

the set N of positive integers. Now, N − R =
⋃
k≥3 Sk where Sk = {n ∈ N : mk−1,h < n <

mk,l}.

For every k ≥ 3,

|Rk| ≈ r
k−2
2

(
r

1
2
− w

2 lnmk,h − r
w

2 lnmk,l

)
and |Sk| ≈ r

k−2
2

(
r

w
2 lnmk,l − r−

w
2 lnmk−1,h

)
.

By choosing w suitably, we can ensure that w/ lnn → 0 as n → ∞. Also, mk,h and mk,l

grow exponentially in k. Hence, for every sufficiently large k,

|Rk| ≈ r
k−2
2

(
r

1
2 − 1

)
and |Sk| = O

(
r
k−2
2

(
w(rk/2)

k ln t

))
= o

(
r
k−2
2

)
.

Thus, for all sufficiently large k, we have
∑

j≤k+1 |Sj| = O(|Sk+1|) = o(|Rk|). As a result,

we have
|R ∩ [n]|

n
→ 1 as n→∞.

This shows that R has density 1 as a subset of N . This completes the proof of Corollary

4.1.4.

4.4.2 Proof of Theorem 4.1.5

The proof is based on an application of Lovász Local Lemma stated below.

Lemma 4.4.1 Let A = {E1, E2, ..., Em} be a collection of events over a probability space

such that each Ei is totally independent of all but the events in Di ⊆ A\{Ei}.
If there exists a real sequence {xi}mi=1, xi ∈ [0, 1), such that

∀i ∈ [m], Pr[Ei] ≤ xi
∏

j:Ej∈Di

(1− xj), then

Pr

[
m⋂
i=1

Ei

]
≥

m∏
i=1

(1− xi) > 0.

Hence, with positive probability, none of the events occur.

First, notice that for the given value of p, d = (j + c/(lnn)), b := b∗ = j − 1 and δ =

1 − c/ lnn > 1/2, for sufficiently large n. By Theorem 4.1.2, we know that for the given

probability p = p(n), mat(D) ∈ {b, b+1} a.a.s. Therefore to prove Theorem 4.1.5, it suffices
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to show that there exist constants 0 < c1 ≤ c2 < 1 such that c1 ≤ Pr(mat(D) = b+ 1) ≤ c2

for all sufficiently large n. This is proved below. For various symbols like, d, δ and b∗, we

use the same meanings used in the proof of Theorem 4.1.2.

Consider the expected number of acyclic tournaments of size b+ 1:

E[Xb+1] ≈ (npb/2)b+1 =
(
np(d+δ−2)/2

)b+1
= (p(−1+δ)/2)b+1

= (p−c/2(lnn))d−1+δ = (rc/2(lnn))d−1+δ = (ec/2(logr n))d−1+δ

= (ec)1+(δ/2(logr n)) ≈ ec
′

for some constant c′ > 0. If the expectation had been a constant less than 1, a simple appli-

cation of Markov’s inequality would have established the upper bound on the probability.

(i) Proof of Pr(mat(D) = b+ 1) ≤ c2 :

We apply Lovász Local Lemma 4.4.1 to prove this claim. For every i, 1 ≤ i ≤ N :=
(
n
b+1

)
,

define Ei to be the event that Ai induces an acyclic tournament, where Ai is the i-th (b+1)-set

in some fixed ordering of all (b+ 1)-subsets of V . For every i, Pr(Ei) = q := (b+ 1)!p(
b+1
2 ) =

o(1). Choose xi = x = 25q for each i. Construct the dependency graph on N events by

joining Ei and Ej if |Ai ∩ Aj| ≥ 2. It can be seen that each Ei is totally independent of all

other Ej’s which are not adjacent to Ei. Note that the dependency graph is regular with

the uniform degree of any Ei being given by deg(Ei) =
∑

2≤k≤b
(
b+1
k

)(
n−b−1
b+1−k

)
. It is easy to

see that deg(Ei) ≤
(
b+1

2

)(
n−2
b−1

)
≈ Y where Y := N(b4/2n2). Using q = o(1) and Nq ≈ ec

′
, it

follows that Y q = Nqb4/(2n2) = o(1) and also that ln(1− 25q) = −25q[1 + o(1)]. To apply

Local Lemma, it suffices to prove that

q ≤ 25q(1− 25q)Y

Equivalently, it suffices to prove that

1 ≤ 25eY (ln(1−25q)) = 25e−25Y q[1+o(1)] = 25[1− o(1)]

The above clearly holds true. Now applying 4.4.1, one gets that

Pr[∩iEi] ≥
N∏
i=1

(1− x) = (1− 25q)N ≈ e−25Nq ≥ e−25ec
′

.
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Therefore, Pr(mat(D) = b + 1) ≤ Pr[mat(D) ≥ b + 1] = Pr[∪iEi] ≤ c2 where c2 :=

1− e−25ec
′
.

(ii) Proof of Pr(mat(D) = b+ 1) ≥ c1 :

To prove this, we use the following version of Paley-Zygmund Inequality (see [33]).

Pr[Xb+1 > 0] ≥ E[Xb+1]2/E[X2
b+1] (4.8)

Notice that the RHS of the previous inequality 4.8 is exactly 1/(1+z), where z = V ar(Xb+1)/E[Xb+1]2.

As in the proof of Theorem 4.1.3, z ≤ E[Xb+1]−1 + M(n, p, b + 1), and M(n, p, b + 1) ≤
M(n, p, b).(lnn)3+Tb. Now, M(n, p, b) = O

(
(lnn)6

n1/4

)
= o(1), and it was shown that Tb = o(1).

Therefore, we get that z ≤ e−c
′
+o(1) ≈ e−c

′
, and therefore 1/(1+z) in 4.8 is at least c′1 where

c1 is the constant defined by c1 = 1/(1+e−c
′
). This proves that Pr(mat(D) ≥ b+1) ≥ c1. As

a result, Pr(mat(D) = b+1) = Pr(mat(D) ≥ b+1)−Pr(mat(D) ≥ b+2) ≥ c1−o(1) ≈ c1.

Hence there exist constants c1, c2 ∈ (0, 1) such that,

c1 ≤ Pr[mat(D) = b+ 1] ≤ c2 and hence

1− o(1)− c2 ≤ Pr[mat(D) = b] ≤ 1− o(1)− c1.

Thus, mat(D) is not concentrated at any single point.

4.4.3 Proof of Theorem 4.1.6

First, we prove the following lemma, from which the theorem follows as an easy consequence:

Lemma 4.4.2 Let i = i(n) ∈ {1, . . . b2 log2 nc} be any fixed function of n. Let D ∈ D(n, p)

and let w = w(n) be any function of n so that as n→∞, w →∞ and w ≤ (0.5 lnn). Then,

asymptotically almost surely, the following are true :

(i) If p ≥ n−2/(i−1+ w
lnn

), then mat(D) ≥ i.

(ii) If p ≤ n−2/(i−1− w
lnn

), then mat(D) < i.

Proof The probability of having an induced acyclic tournament of size i only increases with

increasing p. From the one-point concentration result of Theorem 4.1.3, it follows that if p
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is such that d (defined before) satisfies d ≥ i+ w
lnn

, then a.a.s. mat(D) ≥ i. Similarly, if p is

such that d satisfies d ≤ i− w
lnn

, then a.a.s. mat(D) < i. However,

d ≥ i+
w

lnn
⇔ logr n ≥

i− 1

2
+

w

2 lnn

⇔ n ≥ p−( i−1
2

+ w
2 lnn)

⇔ p ≥ n−2/(i−1+ w
lnn)

Similarly, we have

d ≤ i− w

lnn
⇔ p ≤ n−2/(i−1− w

lnn)

This completes the proof of the lemma.

From the above lemma, Theorem 4.1.6 can be proved as follows. We choose w(n) =
√

lnn

and it satisfies the conditions of the lemma above. We set lbi(n) = n−2/(i−1− w
lnn

) and ubi(n) =

n−2/(i−1+ w
lnn

), and define pi(n) = (ubi(n) + lbi(n))/2, and qi(n) = (ubi(n)− lbi(n))/2.

If i(n) → ∞, we choose w(n) = i(n)/4 so that w(n) → ∞. Also, it can be verified that

lbi(n) = ubi(n)[1 − o(1)] and hence qi(n) = o(pi(n)), so we have a sharp threshold for such

i = i(n).

Remark: In the above proof, notice that the ratio qi
pi
≤ ubi−lbi

ubi
which is

1− e−
w

(i−1)2−(w/ lnn)2 = 1−
(

1−O
(

w

(i− 1)2 − (w/ lnn)2

))
= O(1/i)

for w = i/4.

4.5 Finding an induced acyclic tournament

In this section, we obtain a lower bound on the size of any maximal induced acyclic tourna-

ment. As a consequence, it follows that the following simple greedy heuristic GRDMAT(D)

(described below) for finding a large induced acyclic tournament inside a random digraph,

a.a.s., produces an acyclic tournament of size within a constant factor (≥ 1/2) of the opti-

mal. It is easy to inductively verify that GRDMAT(D) always outputs a maximal acyclic

tournament.
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GRDMAT(D = (V,E))

1. A := ∅.

2. while ∃ u ∈ V \ A such that D[A ∪ {u}] induces an acyclic tournament do

3. Add u to A. (* ties in the choice of u are broken arbitrarily *)

4. end

5. Return D[A] and halt.

The following theorem proves a lower bound on the size of any maximal acyclic tournament.

In what follows, we assume that p ≥ n−1/4 mainly to focus on the interesting range of p. If p

is smaller, then mat(D) ≤ 9 a.a.s. and one can find provably optimal solutions in polynomial

time.

Theorem 4.5.1 Given D ∈ D(n, p) with p ≥ n−1/4 and any w = w(n) such that w(n)→∞
as n→∞, with probability 1− o(1), every maximal induced acyclic tournament is of size at

least dδ logr ne, where δ = 1− ln(lnnp+w)
lnn

.

Proof : Without loss of generality, we assume that p ≥ n−1/4 so that logr n ≥ 4. Hence

d = δ(logr n) > 3 and bdc ≥ 3.

For any induced acyclic tournament D[A] of size |A| = b, b ≤ d = δ(logr n), and any vertex

u ∈ V \ A, the probability that u can be added to A is given by:

Pr[D[A ∪ {u}] is an acyclic tournament] = (b+ 1)pb

The above equality is true since D[A ∪ {u}] induces an acyclic tournament if and only if u

can be added to any of the b+1 positions in the unique hamilton path of D[A] in such a way

that each of the edges joining u with vertices in A is present and is oriented in the proper

direction. Also, this probability decreases with increasing b.

This event depends only on the edges joining u with the vertices in A, and hence, is inde-

pendent of events corresponding to other vertices in V \ A. Therefore, the probability that

D[A] is a maximal acyclic tournament is given by

Pr(D[A] is maximal ) = Pr[∀u ∈ V \ A, u can’t be added to A]

=
(
1− (b+ 1)pb

)n−b
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As b increases, this probability increases and hence achieves its maximum (for b ≤ d) at

b = bdc. Hence, for an induced acyclic tournament D[A] of size bdc, we have (using (d +

1)(n− d) ≥ nd) :

Pr(D[A] is maximal ) ≤
(

1− (bdc+ 1)p
δ(lnn)
ln r

)n−bdc
≤
(

1− d+ 1

nδ

)n−d
≤ e−

(d+1)(n−d)
nδ ≤ e−dn

1−δ
.

For any fixed set A of size b ≤ d, let E(A) denote the event that D[A] is a maximal induced

acyclic tournament.

Pr(E(A)) ≤ b!p(
b
2)e−dn

1−δ

Thus,

Pr(∃A, |A| = b : E(A) ) ≤
(
n

b

)
b!p(

b
2)e−dn

1−δ

≤
(
np(b−1)/2

)b
e−dn

1−δ
= (f(n, p, b))be−dn

1−δ
(4.9)

where we recall that f(n, p, b) = np(b−1)/2.

Note that for each b ≤ bdc,

f(n, p, b+ 1)b+1

(f(n, p, b))b
= f(n, p, b+ 1)pb/2 = npb ≥ npd = n1−δ = (lnnp) + w.

Hence ∑
b≤d

(f(n, p, b))b ≤ (f(n, p, bdc))bdc
∑
b≤bdc

(lnnp+ w)−(bdc−b) = 2(f(n, p, bdc))bdc.

As a result, taking the union bound over all choices of A, we see that (using bdc ≥ 3)

Pr(∃A, |A| ≤ bdc : E(A)) ≤ 2 (f(n, p, bdc))bdc e−dn1−δ ≤ 2 (np)bdc e−dn
1−δ

For δ = 1− ln(lnnp+w)
lnn

, this probability is :

Pr[∃A, |A| ≤ d : E(A)] ≤ 2 · ed(lnnp−(lnnp+w)) = 2 · e−dw ≤ 2e−w → 0 as n→∞.

Hence, every maximal induced acyclic tournament is of size at least dde. �
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4.6 Another efficient heuristic with improved guaran-

tee

We present below another efficient heuristic which will be analyzed and be shown to have

an additive improvement of Θ
(√

logr n
)

over the guarantee given (in Section 4) on the

size of any maximal solution. It is similar to a heuristic presented in [44] for finding large

independent sets in G ∈ G(n, 1/2). We show that, for every large constant c > 0, one can

find in polynomial time an acyclic tournament of size at least blogr n+ c
√

logr nc.

The idea is to construct greedily a solution A of size g(n, p, c) = dlogr n−c
√

logr ne and then

add an optimal solution (found by an exhaustive search) in the subgraph induced by those

vertices each of which can be safely and individually added to A to get a bigger solution.

We will show that exhaustive search can be done in polynomial time and yields (a.a.s.) a

solution of size 2c
√

logr n. As a result, we finally get a solution of the stated size. The

algorithm is described below.

ACYTOUR(D = (V,E), p, c)

1. Choose and fix a linear ordering σ of V .

2. c′ = 1.2c; A = ∅; B = V .

3. while B 6= ∅ and |A| < g(n/2, p, c′) do

4. Let u be the σ-smallest vertex in B.

5. If D[A ∪ {u}] induces an acyclic tournament then add u to A.

6. remove u from B. endwhile

7. if |A| < g(n/2, p, c′) or |B| < n/2, then Return FAIL and halt.

8. C = {u ∈ B : ∀v ∈ A, v → u ∈ E}; r = p−1; µ = |B|p|A|.

9. if |C| 6∈ [(0.9)µ, (1.1)µ] then Return FAIL.

10. for each X ⊂ C : |X| = b2c′
√

logr n/2c − 1 do

11. if D[X] is an acylic tournament then Return D[A ∪X] and halt. endfor

12. Return FAIL.
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We analyze the above algorithm and obtain the following result.

Theorem 4.6.1 Let D ∈ D(n, p). For every sufficiently large constant c ≥ 1 : if p is such

that n−1/c2 ≤ p ≤ 0.5, then, with probability 1− o(1), ACYTOUR(D) will output an induced

acyclic tournament of size at least b′ = b(1 + ε′) logr nc, where ε′ = c/
√

logr n.

Proof : Recall our assumption that c is sufficiently large.

Correctness : First, we prove the correctness. Note that D[A] is always an induced acyclic

tournament. Also, each u ∈ C is such that D[A∪{u}] is an acyclic tournament with u as the

unique sink vertex (having zero out-degree). Hence, any acyclic tournament D[X] present

as a subgraph in D[C] can be safely added to A so that D[A ∪ X] also induces an acyclic

tournament.

Analysis : Consider the following events defined as

Failure at step 7 : E1 := |A| < g(n/2, p, c′) or |B| < n/2 ;

Failure at step 9 : E2 := E1 ∩ E ′2 where E ′2 := |C| 6∈ [(0.9)µ, (1.1)µ]

Failure at step 12 : E3 := E1 ∩ E2 ∩ E ′3 where E ′3 := mat(D[C]) < b2c′
√

logr n/2c − 1(4.10)

If none of the events {E1, E2, E3} holds, then the algorithm will succeed and output a solution

whose size is

|A ∪X| ≥ logr(n/2)− c′
√

logr(n/2) + 2c′
√

logr n/2− 2

≥ (1 + ε′)(logr n) + (c′ − c)
√

logr n/2− 2.5− logr 2

≥ (1 + ε′)(logr n) + (0.2c)
√

logr n/2− 3.5

≥ (1 + ε′)(logr n).

The probability of this happening is

Pr(E1 ∩ E2 ∩ E3) = 1−Pr(E1 ∪ E2 ∪ E3)

The events E1, E ′2 and E ′3 are totally independent since they are determined by pairwise

disjoint sets of potential edges. Also, the events E1, E2 and E3 are mutually exclusive and

hence

Pr(E1 ∪ E2 ∪ E3) = Pr(E1) + Pr(E2) + Pr(E3)

≤ Pr(E1) + Pr(E ′2 | E1) + Pr(E ′3 | E1 ∩ E2) (4.11)

Let V1 denote the set of first n/2 vertices of σ. Then, by Theorem 4.5.1, any maximal tour-

nament in D[V1]) is of size at least logr(n/2)− logr(ln(n/2) + ln ln(n/2)) ≥ g(n/2, p, c′) =

dlogr(n/2)− c′
√

logr(n/2)e, with probability 1− o(1). Hence, Pr(E1) = o(1).
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For any fixed vertex u ∈ B,

Pr(u ∈ C) = Pr(∀ v ∈ A, (v, u) ∈ E) = p|A|.

Hence

µ = E[|C|] = |B| · p|A|.

Since |C| is the sum of |B| identical and independent indicator random variables, by applying

Chernoff-Hoeffding bounds (see [53, 9]), we get that

Pr(|C| 6∈ [(0.9)µ, (1.1)µ] ≤ 2e−µ/300.

Since |A| = g(n/2, p, c′), we deduce that

µ ≈ |B| · 2rc′
√

logr n/2/n,

after justifiably ignoring the effect of the ceiling function used in the definition of g(n/2, p, c).

More precisely, since we know that E1 has not occured, |B| ≥ n/2 and hence

rc
′
√

logr n/2 ≤ µ ≤ 2rc
′
√

logr n/2 (4.12)

It is easy to verify that µ→∞ as n→∞. Hence Pr(E ′2 | E1) = o(1).

Given that neither of E1 and E2 holds, it follows that |C| ≥ (0.9)µ ≈ (0.9) · rc′
√

logr n/2.

Hence, using r ≥ 2 and applying Theorem 4.1.2,

mat(D[C]) ≥ b2c′
√

logr n/2 + 0.5 + 2 logr 0.9c ≥ b2c′
√

logr n/2c − 1

with probability 1− o(1). This establishes that Pr(E ′3 | E1 ∩ E2) = o(1). It then follows from

(6.2) that ACYTOUR(D) outputs a solution of required size with probability 1− o(1).

Time Complexity : It is easy to see that the running time is polynomial except for the

for loop of lines 10 and 11. The maximum number of iterations of the for loop is at most(
|C|
|X|

)
≤
(

(1.1)µ

b2c′
√

logr(n/2)c

)
≤
(

(1.1) · 2rc′
√

logr(n/2)

b2c′
√

logr(n/2)c

)
= O

(
r4c′2(logr n)

)
= O

(
nO(1)

)
.

where the upper bound on µ is the one obtained in 4.12. Since each iteration takes polynomial

time, the algorithm finishes in polynomial time always.

Remark In Theorem 4.6.1, we assume that p ≥ n−1/c2 . This is because if p ≤ n−1/c2 , then

mat(D) ≤ d2c2 + 1e a.a.s. and hence even a provably optimal solution can be found in

polynomial time a.a.s..
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4.7 mat(D) for non-simple random digraphs

We also consider another model introduced in [61] which does not force the random digraph

to be simple and allows cycles of length 2.

Model D ∈ D2(n, p) : Choose each directed edge u → v joining distinct elements of V

independently with probability p.

Note that if D ∈ D2(n, p) and D′ ∈ D2(n, 1− p), then for every b, we have

Pr(mat(D) = b) = Pr(mat(D′) = b).

Hence, for the rest of this section, without loss of generality, we assume that p ≤ 0.5 and

use q to denote 1− p.

The maximum size of any induced acyclic tournament is determined by those unordered

pairs {u, v} such that exactly one arc between u and v is present. Hence, if D ∈ D2(n, p)

and D′ ∈ D(n, pq), then for every b, we have

Pr(mat(D) = b) = Pr(mat(D′) = b).

Hence, we can obtain the following analogues of Lemma 4.2.1, Theorems 4.1.2, 4.1.3, 4.1.6,

4.5.1, 4.6.1 and Corollary 4.1.4.

Lemma 4.7.1 For any positive integer b, for a random digraph D ∈ D2(n, p),

Pr[mat(D) ≥ b] ≥ Pr[ω(G) ≥ b].

where G ∈ G(n, pq).

Theorem 4.7.2 Let D ∈ D2(n, p) with p ≥ 1/n. Define

d = 2 log(pq)−1 n+ 1 =
2(lnn)

ln(pq)−1
+ 1; b∗ = bd− 1/2c.

Then, a.a.s. as n→∞, mat(D) is either b∗ or b∗ + 1.

Theorem 4.7.3 Let D ∈ D2(n, p). Let w = w(n) be any function so that as n → ∞,

w ≤ 0.5(lnn) and w →∞. If p = p(n), p ≥ 1/n, is such that d (defined in Theorem 4.7.2)

satisfies w
lnn
≤ dde − d ≤ 1− w

lnn
for all large values of n, then mat(D) is a.a.s equal to bdc.

Corollary 4.7.4 Let D ∈ D2(n, p). For every constant function p = p(n), there exists a

function f = f(n) = 1 − o(1) such that the set Nf,p is a subset of natural numbers having

density 1.
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Our goal is to obtain a threshold statement in terms of p = p(n). Firstly, observe that

Theorem 4.1.6 can be applied straightaway to get a threshold statement (for D2(n, p) model)

in terms of the parameter pq. However, to get a threshold in terms of p more work needs to

be done. Before stating the analogue of the threshold theorem, we need some definitions:

Let w = w(n) be a sufficiently slow-growing function of n, such that w = ω(1) and

w = o(lnn). Let i = i(n) be a suitably growing function which goes to∞ as n→∞. Define

a = n−2/(i−1+ w
lnn

), and b = n−2/(i−1− w
lnn

). Let f(x, y) denote the function x2 − x+ y.

Theorem 4.7.5 Let i = i(n) ∈ {1, . . . blog4 nc} (for every n) be any fixed function of n.

Then, there exist functions c = ci(n) ∈ [0, 1] and d = di(n) ∈ [0, 1] such that : If D ∈ D2(n, p)

with p ≥ 1/n, then, asymptotically almost surely, the following are true :

(i) If p ≥ c, then pq ≥ a and hence mat(D) ≥ i.

(ii) If p ≤ d, then pq ≤ b and hence mat(D) < i,

where c, d are the real positive roots in the range [0, 1/2] of the quadratic equations f(x, a) = 0

and f(y, b) = 0 respectively. Also, if i = i(n) is a growing function, then c− d = o(c).

Hence it follows that we obtain thresholds (sharp if i = i(n) increases) for the existence of

induced acyclic tournaments of size i.

Proof : Notice that pq = p(1−p) = p−p2 and hence if pq = y, y ∈ <+, then p2−p+y = 0,

i.e. f(p, y) = 0. Now, taking y to be a and b respectively, we get that if p = c, then pq = a;

if p = d, then pq = b. Also, since pq is increasing when x ∈ [0, 1/2], p ≥ c implies pq ≥ a,

and p ≤ d implies pq ≤ b. The Claims (i) and (ii) now follow by applying Lemma 4.4.2. It

is easy to check that for each y = a, b, f(x, y) = 0 has 2 positive real roots only one of which

lies in the range [0, 1/2].

Now, for a sharp threshold we need to show that (c− d) = o(c), i.e. 1− d/c = o(1). This

is proved as follows: If d/c ≥ (1 − 1/
√
i), then we are done, since 1 − d/c ≤ 1/

√
i = o(1).

Therefore, assume that d/c ≤ (1 − 1/
√
i). Now, c ∈ [0, 1/2] and hence c ≤ 1/2. By our

assumption, d ≤ (1− 1/
√
i)c ≤ 1

2
(1− 1/

√
i). Hence, c + d ≤ 1− 1

2
√
i
. Since c and d satisfy

f(c, a) = 0 and f(d, b) = 0, after subtracting, we get f(c, a)− f(d, b) = (c− d)(c+ d− 1) +

a − b = 0. Therefore, c − d = a−b
1−c−d . Now using the upper bound on c + d, we get c − d ≤

a−b
1/(2
√
i)

= 2(a− b)
√
i. Observe that a ≤ c ≤ 2a, since a = c− c2 and c ∈ [0, 1/2]. Therefore,

(c− d)/c ≤ (c− d)/a ≤ 2(a− b)
√
i/a. But from the remark following the proof of Theorem

4.1.6, we have that (a − b)/a = O(1/i). Therefore (c − d)/c = O(
√
i/i) = O(1/

√
i) = o(1).

Thus in this case too, the threshold is seen to be sharp.
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Theorem 4.7.6 Given D ∈ D2(n, p) with pq ≥ n−1/4 and any w = w(n) such that w(n)→
∞ as n→∞, with probability 1− o(1), every maximal induced acyclic tournament is of size

at least d = bδ log(pq)−1 nc, where δ = 1− ln(ln(npq)+w)
lnn

.

Theorem 4.7.7 Let D ∈ D2(n, p). For every sufficiently large constant c ≥ 1 : if p ≤ 0.5 is

such that n−1/c2 ≤ pq ≤ 0.25, then, with probability 1− o(1), ACYTOUR(D) will output an

induced acyclic tournament of size at least b′ = b(1+ε′) log(pq)−1 nc, where ε′ = c/
√

log(pq)−1 n.

Remark However, in the case of D2(n, p) model, we need to slightly modify the description

of ACYTOUR(D) as follows : In the definition of C (Line 8), we also need to require that

(u, v) 6∈ E for each v ∈ A.

4.8 On the maximum size of induced tournaments

Suppose we drop the requirement of acyclicity of the induced tournament. It then reduces

to the clique problem as follows. Let us first recall some basic facts about the distributions

of ω(G) and α(G) for G ∈ G(n, p). ω(G) (α(G)) denotes the maximum size of a clique

(an independent set) in G. It is easy to verify that ω(G) for G ∈ G(n, p) and α(G) for

G ∈ G(n, 1−p) are identically distributed. Also, by the classical results of Bollobás and Erdős

[17], and Grimmett and McDiarmid (see e.g. [14], Chapter 11), ω(G) is a.a.s. concentrated

in just two values for every p = p(n) ≤ 1 − n−ε for some suitably small constant ε > 0.

But it does not seem to exhibit such sharp concentration behavior for larger values of p. In

particular, if p is such that p = 1− n−2/3, ω(G) is only known (see [33]) to be concentrated

in a band of Θ(n2/3).

This has implications to the concentration of the maximum size of an induced (need not be

acyclic) tournament in a random digraph. We use ω(D) to denote the maximum size of an

induced tournament in D. It is clear that ω(D) for D ∈ D(n, p) and ω(G) for G ∈ G(n, 2p)

are identically distributed for every p = p(n) ≤ 0.5. Similarly, ω(D) for D ∈ D2(n, p) and

ω(G) for G ∈ G(n, 2p(1− p)) are identically distributed for every p = p(n) ≤ 1.

But, unlike the case of mat(D), the concentration of ω(D) is quite different between the

two models D(n, p) and D2(n, p). First, we focus on the model D2(n, p). Since 2p(1−p) ≤ 0.5

for any 0 ≤ p ≤ 1, ω(G) is 2-point concentrated for G ∈ G(n, 2p(1−p)), and hence we notice

that ω(D) is always concentrated in just two values for any p.
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If D ∈ D(n, p), then ω(D) is concentrated in just two values a.a.s. for any p = p(n) ≤ 0.25.

However, for 0.25 < p ≤ 0.5, ω(D) is not tightly concentrated and has the same distribution

and concentration behavior as ω(G) for certain ranges of p ≥ 0.5 (see the discussion before).

4.9 Summary

The problem of determining the size of the largest induced acyclic tournament mat(D) in a

random digraph was studied. We showed that a.a.s. mat(D) takes one of only two possible

values. The result is valid for all ranges of the arc probability p. The value of mat(D) also

has an explicit closed form expression (for all ranges of p) which does not seem to exist for

clique number ω(G) of a random graph.

The results of this chapter and those of [63], [61] and [24] show that mat(D) of a random

digraph behaves like the clique number ω(G) of a random graph and maximum induced

acyclic subgraph size mas(D) behaves like the independence number α(G) of a random

graph (see also the discussion above in Section 7).

We then showed that a.a.s. every maximal acyclic tournament is of a size which is at least

nearly half of the optimal size. As a result, one immediately gets an efficient approximation

algorithm whose approximation ratio is bounded by 2 + O((ln lnn)/(lnn)). We also con-

sidered and analyzed another efficient heuristic whose approximation ratio was shown to be

2−O(1/
√

logr n).

An interesting and natural open problem that comes to mind is the following.

Open Problem : Let p be a constant such that 0 < p ≤ 0.5. Design a polynomial time

algorithm which, given D ∈ D(n, p), a.a.s. finds an induced acyclic tournament of size at

least (1 + ε) logr n for some positive constant ε.

Solving this problem could turn out to be as hard as designing an efficient algorithm which

finds, given G ∈ G(n, 1/2), a clique of size (1 + ε) log2 n and the latter problem has remained

open for more than three decades.

47



Chapter 5

Largest Induced Acyclic Subgraphs in

Random Digraphs: Concentration and

Lower Bounds

5.1 Introduction

A directed acyclic graph (dag) is a digraph without any directed cycles. Given a directed

graph D = (V,A), we want to find the maximum size (i.e. number of vertices) of an induced

dag in D, denoted by mas(D). In this chapter, we shall study this parameter theoretically

for random digraphs. We shall first obtain some improved bounds on the concentration of

the distribution of the digraph invariant mas(D). Next, we shall look at the existing lower

bounds of the parameter mas(D) using the D(n, p) and D2(n, p) models of random digraphs,

and obtain improved lower bounds. The proofs of our results are presented in Section 5.4.

Figure 5.1: A directed acyclic graph
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Notation : In what follows, p ≤ 0.5 is a real number. Throughout the chapter, we use q

to denote (1− p)−1 and w to denote np.

Figure 5.2: A maximum induced acyclic subgraph: {0,2,3,4,5,6}

5.1.1 Improved concentration results

The theoretical aspects of this problem were studied initially by Subramanian [63] and later

Spencer and Subramanian [61] obtained the following result:

Theorem 5.1.1 [61] Let D ∈ D(n, p) and w = np. There is a sufficiently large constant C

such that : If p satisfies w ≥ C, then a.a.s,

mas(D) ∈
[(

2

ln q

)
(lnw − ln lnw −O(1)),

(
2

ln q

)
(lnw + 3e)

]
where q = (1− p)−1.

The above theorem implies that mas(D) is concentrated in an integer band of width

O
(

ln lnw
ln q

)
. For small p, this width can become quite large, for example, for p = C/n, it is

Θ(n). For the concentration of the parameter mas(D), we initially establish an “essentially”√
logq w (= O(

√
p−1 lnw)) width for all ranges of p by using (see Chapter 2) Talagrand’s

Inequality. For a random variable X, define its median to be any value m such that Pr(X ≤
m) ≥ 0.5 and Pr(X ≥ m) ≥ 0.5.

Theorem 5.1.2 Let D ∈ D(n, p) (p = o(1)) with w = np and m being a median value of

mas(D). Then, for any β = β(n) such that limn→∞ β =∞, w.h.p.

|mas(D)−m| ≤ β
√

logq w

The proof of this theorem follows from a standard application of Talagrand’s inequality and

is presented in Section 5.3. Theorem 5.1.2 provides a sharper concentration than Theorem

5.1.1 for all p such that p = o((ln lnn)2/(lnn)). However, it does not give the location
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of the concentration, i.e. the value of the median m. For small values of p, it will be

better if we can obtain and prove explicit lower and upper bounds with a difference which is

asymptotically at most the range of concentration proved by Theorem 5.1.2. However, the

difference of the currently known bounds is much larger. This indicates that these bounds are

not tight and it should be possible to find sharper upper and/or lower bounds. Conversely,

if the precise location of the median of the distribution mas(D) could be ascertained, a

straightforward application of Talagrand’s inequality would lead to sharp and explicit upper

and lower bounds.

5.1.2 Improved explicit lower bounds

We also obtain improvements over known lower and upper bounds. The following theorem

improves the lower bound of Theorem 5.1.1 in the range p = ω(n−1/2 log n):

Theorem 5.1.3 Let D ∈ D(n, p). There is a large positive constant W such that : For any

β = β(n)→∞ and p = p(n) with n−1/2(lnn)β(n) ≤ p ≤ 1/2, a.a.s.,

mas(D) ≥
(

1

ln q

)
(2 lnw −W )

The gap between 2 logq np and the lower bound in Theorem 5.1.3 is O(1/ ln q) = O(p−1),

which can become large when p is small. This gap can be reduced to an absolute constant

when p is larger:

Theorem 5.1.4 For every small constant ε > 0, the following is true : Given D ∈ D(n, p),

if p is such that n−1/3+ε ≤ p ≤ 1/2, then a.a.s

mas(D) ≥ 2 lnw

ln q
− 1

The proofs of Theorems 5.1.3 and 5.1.4 are presented in Section 5.4. The theorems are

established by a common proof (both being based on the Second Moment Method) with

occasionally separate arguments to take care of the different assumptions and conclusions of

the two theorems.

For p ≤ n−1/2 log n, the last two theorems do not apply. The basic problem is that the

variance of the number of topologically ordered sets shoots up when p is in this range. How-

ever, as Theorem 5.1.2 shows, the concentration of mas(D) is quite sharp around a median.

To utilize this fact and overcome the problem of large variance, we combine Talagrand’s

inequality with a second moment-based inequality to get an approximate estimate of the
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location of a median of mas(D). As a result, we obtain the following theorem which is

proved in Section 5.5.

Theorem 5.1.5 There exist suitable positive constants C and W such that given p, with

C/n ≤ p ≤ 1/2 and D ∈ D(n, p), a.a.s.

mas(D) ≥ 2

ln q
(lnw −W )

A similar technique was used by Alan Frieze for independent sets in random graphs (though

he used Azuma’s inequality, see [33]. Later Janson,  Luczak, and Rućınski obtained a slightly

easier proof of Frieze’s result by replacing Azuma’s with Talagrand’s inequality in the proof

[40]).

Thus, this theorem extends the result of Theorem 5.1.3 to a much bigger range of p. As

a consequence, the difference between the known upper and lower bounds is reduced to

O(1/ ln q) (which is O(1/p), thereby improving the gap guaranteed by Theorem 5.1.1) for

all p ≥ C/n (where C is some suitable constant). 1 Even though Theorem 5.1.3 appears

to be subsumed by Theorem 5.1.5, we state it separately because the lower bound on p,

namely p = ω(n−1/2(lnn)), is the point upto which we can show that the variance of the

random variable considered is asymptotically smaller than the square of its mean. Also,

the estimated constant W for this range is smaller than the corresponding one for Theorem

5.1.5.

5.2 mas(D) versus α(G)

In this section, we explore some connections between the maximum acyclic subgraph number

mas(D) and the independence number α(G). As in the previous chapter, the results compare

(a) the probability distributions of α(G),mas(D), where G ∈ G(n, p) and D ∈ D(n, p)

respectively, and (b) lower bounds of α(G), mas(D) in arbitrary graphs (and corresponding

digraphs, in some sense - to be made precise later).

1This can be seen, for example, by comparing (i) the gap of O
(

ln lnw
ln q

)
between the upper and lower

bounds for mas(D) guaranteed by Theorem 5.1.1 alone, and (ii) the gap of O
(

1
ln q

)
between the upper

bound of Theorems 5.1.1 together with the lower bound of Theorem 5.1.5. When C ≥ ee
W

, where W is the

constant of Theorem 5.1.5, the gap is strictly reduced.
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5.2.1 Comparison of Probability distributions

The following lemma proved in [63] relates the probabilities in the models D(n, p) and G(n, p)

for having, respectively, maximum acyclic subgraph number and independence number equal

to a given value. We present this result with its proof for the benefit of the reader.

Lemma 5.2.1 For any positive integer b, for a random digraph D ∈ D(n, p), 0 ≤ p ≤ 1/2,

Pr[mas(D) ≥ b] ≥ Pr[α(G) ≥ b].

where G ∈ G(n, p).

Proof : Given a linear ordering σ of vertices of D and a subset A of size b, we say that

D[A] is consistent with σ if there is no pair of vertices σi, σj ∈ A with i < j, such that D[A]

has the arc (σj, σi).

Let τ denote an arbitrary but fixed ordering of V . Once we fix τ , the spanning subgraph of

D formed by arcs of the form (τ(i), τ(j)) (i < j) is having the same distribution as G(n, p).

Hence, for any A, the event of D[A] being consistent with τ is equivalent to the event of A

inducing an independent set in G(n, p). Hence,

Pr( mas(D) ≥ b ) = Pr( ∃A, |A| = b, D[A] is an induced acyclic subgraph )

= Pr( ∃A, |A| = b, ∃σ, D[A] is consistent with σ )

= Pr( ∃σ, ∃A, |A| = b, D[A] is consistent with σ )

≥ Pr( ∃A, |A| = b, D[A] is consistent with τ )

= Pr( α(G) ≥ b ).

Hence it is natural that we have a bigger lower bound for mas(D) than we have for α(G).

5.2.2 Lower Bounds

Another intriguing connection between mas(D) and α(G) stems from the degree-sequence

based lower bound expressions that can be obtained for them. In [9], Alon and Spencer gave

a probabilistic proof of the following degree-sequence based lower bound on the independence

number α(G) of an n-vertex graph G:

α(G) ≥
∑
v∈V

1

d(v) + 1
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where d(v) is the degree of the vertex v ∈ V [G]. A similar expression can be obtained for

induced acyclic subgraphs in digraphs:

Theorem 5.2.2 Given a simple digraph D = (V,E) on n vertices, with d+(v), d−(v) denot-

ing the out-degree and in-degree, respectively, of the vertex v, the maximum induced acyclic

subgraph of D is of size

mas(D) ≥ max

{∑
v∈V

1

d−(v) + 1
,
∑
v∈V

1

d+(v) + 1

}
(5.1)

Proof Choose uniformly at random a linear ordering ’<’ over V and define two sets Ii and

Io as follows :

(i) Ii is the set of those v ∈ V satisfying : for every in-neighbor u of v, we have u < v.

(ii) Io is the set of those v ∈ V satisfying : for every out-neighbor u of v, we have u < v.

Writing each of |Ii| and |Io| as a sum of indicator variables (one for each v) and applying

Linearity of Expectation, it can be easily verified that µi = E[|Ii|] =
∑

v∈V
1

d−(v)+1
and also

that µo = E[|Io|] =
∑

v∈V
1

d+(v)+1
. Also, E[max{|Ii|, |Io|}] ≥ max{µi, µo}. Hence there exists

a linear ordering for which either Ii or Io is of size at least max{µi, µo}. In any case, each of

Ii and Io always induces an acyclic subgraph of D. This proves the theorem.

5.3 Proof of Theorem 5.1.2

A statement of Talagrand’s inequality can be found in Chapter 2. To use Talagrand’s

however, we first need a lemma about the Lipschitz bound of the random variable mas(D).

Lemma 5.3.1 For any two digraphs D, D′ which differ only in edges incident at a single

vertex,

|mas(D)−mas(D′)| ≤ 1

Proof : Let v be the vertex at whose incident edges D and D′ differ. Remove the vertex v

from D and D′. The resulting digraphs are now identical, and so mas(D\v) = mas(D′\v).

Now, restoring the vertex v to D and D′ can only retain or increase the size of the optimal

DAGs in D and D′. So either both mas(D) and mas(D′) remain the same or both rise by

1, or only one of them rises. In all cases, we have |mas(D)−mas(D′)| ≤ 1. �
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Proof (of Theorem 5.1.2): The proof follows from Theorem 2.3.3 and Lemma 5.3.1. We

view D as a n-tuple (E1, . . . , En) where Ei is the set of edges joining vertex i with some

j ≤ i − 1. Let mas(D) be the random variable X of Theorem 2.3.3. By Lemma 5.3.1, it

follows that if two digraphs on V differ only in Ei, then their mas(D) values differ by at

most 1. Also, by definition X is mas(D)-certifiable (the Ei’s associated with the vertices

of any r-sized induced dag certify that mas(D) ≥ r). Then X satisfies the requirements of

Theorem 2.3.3 and hence applying the theorem, we have

Pr[|X −m| ≥ t] ≤ 2e−t
2/20 logq w. (5.2)

where m is a median of X. The denominator in the RHS exponent follows by observing that

ψ(m) = m, and m ≤ 2 logq w + O(p−1) ≤ 2.5 logq w. Taking t = β
√

logq w, where β is any

asymptotically increasing function of n, the result follows. �

5.4 Proofs of Theorems 5.1.3 and 5.1.4:

We now present the proofs of Theorems 5.1.3 and 5.1.4. Before that, we introduce some

facts, notations and definitions: (F1) For p, 0 ≤ p ≤ 0.5, it is easy to verify that p ≤
ln q and ln q ≤ (1.5)p. (N1) We use the standard notation (n)b to denote the expression

n(n− 1) . . . (n− b+ 1) defined for all positive integers n and b. (D1) Given a directed graph

D = (V,E), a topological ordering of a set A ⊆ V is a permutation σ : [|A|] → A such

that every arc in D[A] is of the form σ(i) → σ(j), where i < j. (D2) A pair of vertices

σ(i), σ(j) ∈ A is said to be consistent with an ordering σ if they do not induce a backward

arc in D[A], i.e. an arc of the form σ(i) → σ(j), where i > j. (D3) Let Sn denote the

set of all permutations of [n]. Given a permutation σ ∈ Sn, an inversion is defined to an

(unordered) pair of elements i, j ∈ [n], such that i < j but σ(i) > σ(j).

Figure 5.3: A topological ordering of the directed acyclic graph in Figure 5.1
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We use the following (easily provable) identity from [62].

Lemma 5.4.1 [62] For σ ∈ Sn, let i(σ) denote the number of inversions in σ. Then∑
σ∈Sn

qi(σ) = (1 + q)(1 + q + q2)...(1 + q + q2 + ...+ qn−1)

Proofs (of Theorems 5.1.3 and 5.1.4) The proofs of both theorems are essentially the

same and we give a common proof highlighting at appropriate places where they differ. Given

D ∈ D(n, p), consider the random variable

Y = Y (b) = |{(A, σ) : A ⊆ V, |A| = b, σ : [b]→ A}|.

where σ is a linear ordering of the vertices of A. Let Ti = (Ai, σi), Ai ⊆ V, |Ai| = b be the i-th

ordered b-set. Define an indicator random variable Yi which is set to 1 if σi is a topological

ordering for D[Ai], and zero otherwise. Then,

Y = Y (b) =

(n)b∑
i=1

Yi ; Also, for each i, E[Yi] = Pr[Yi = 1] = (1− p)(
b
2).

Hence, by linearity of expectation, E[Y ] =
∑(n)b

i=1 E[Yi] = (n)b(1− p)(
b
2). Define

b∗ =

⌊
2 lnnp

ln q
−X

⌋
=

2 lnnp

ln q
−X − δ

where (i) X = 1 if p ≥ n−1/3+ε and X = W/(ln q) if p ≥ n−1/2(lnn)2 and (ii) δ, 0 ≤ δ < 1,

is defined to be the fractional part of the expression 2 logq np −X. We first prove that the

first moment at b∗ goes to infinity as n→∞.

Lemma 5.4.2 At b = b∗, E[Y ]→∞ as n→∞.

Proof : The proof is by substituting the value of b∗ in E[Y (b∗)]:

E[Y ] = (n)b(1− p)(
b
2) ≥ (n− b)b(1− p)(

b
2) = nb(1− b/n)b(1− p)(

b
2)

But for p = ω(n−1/2(lnn)), b/n ≤ 2(lnnp)
n(ln q)

≤ 2(lnnp)
np

and hence b2/n ≤ 4(lnnp)2

np2
= o(1). Hence,

b2/n→ 0 as n→∞, so that (1− b/n)b → 1 as n→∞. Hence, as n→∞,

E[Y ] ≈ nb(1− p)(
b
2) = (n(1− p)(b−1)/2)b ≥ (n(1− p)lnnp/ ln q)b = (n/np)b ≥ p− lnnp/ ln q

Since p = ω(n−1/2(lnn)), np = ω(1), whereas ln q ≤ ln 2. Therefore, lnnp/ ln q = ω(1) and

so, E[Y ]→∞ as n→∞. �
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Now we continue with the proof of the main theorems. It is based on the Second Moment

method. By applying Chebyshev’s Inequality to the random variable Y , we have

Pr[Y = 0] ≤ V ar(Y )/E[Y ]2 = (E[Y 2]− E[Y ]2)/E[Y ]2 (5.3)

But Y =
∑

i Yi is the sum of indicator variables and hence from standard arguments, e.g.

Proposition 2.2.3,

V ar(Y ) =
∑
i

V ar(Yi) +
∑
i 6=j

Cov(Yi, Yj) ≤ E[Y ] +
∑
i 6=j

Cov(Yi, Yj) (5.4)

where the sum is over ordered pairs (i, j) and Cov(Yi, Yj) = E[YiYj]−E[Yi]E[Yj] denotes the

covariance of the random variables Yi and Yj. Clearly, if |Ai ∩ Aj| < 2, then Yi and Yj are

independent and hence Cov(Yi, Yj) = 0. On the other hand, even if |Ai ∩Aj| = b, Yi and Yj

could still be different random variables having non-zero covariance, since the permutations

σi and σj could differ. Hence, only the pairs (i, j) for which 2 ≤ |Ai∩Aj| ≤ b are of interest.

Now, ∑
i 6=j

Cov(Yi, Yj) ≤
∑
i 6=j

E[YiYj] =
∑
i 6=j

E[Yi] · E[Yj|Yi = 1]

=
∑
i

E[Yi]

 ∑
j:2≤|Ai∩Aj |≤b

E[Yj|Yi = 1]


≤

∑
i

E[Yi]E[Y ].M = E[Y ]2.M (5.5)

where M denotes maxi
∑

j:2≤|Ai∩Aj |≤bE[Yj|Yi = 1]/E[Y ].

If it can be shown that M = o(1), this implies that V ar(Y ) ≤ E[Y ] + o (E[Y ]2) and hence

that Pr(Y = 0) ≤ (E[Y ])−1 + o(1) = o(1) since E[Y ]→∞. This establishes that with high

probability, Y = Y (b∗) > 0 and hence mas(D) ≥ b∗. Hence, it suffices to only show that

M = o(1).

We first find a combinatorial expression for M .

Lemma 5.4.3

M =
b∑
l=2

(
b
l

)(
n−b
b−l

)(
n
b

)
l!

(1− p)−(l2)
l∏

i=1

(
1− ri

1− r

)
where r = (1− 2p)/(1− p).
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Proof For Ti, Tj, 1 ≤ i, j ≤ (n)b, define Ai,j := Ai ∩ Aj. For u, v ∈ Aj, if σ−1
i (u) < σ−1

i (v),

we say u <i v. Similarly if σ−1
j (u) < σ−1

j (v), say u <j v. Since we are given Yi = 1, we can

treat σi (restricted to the set Ai,j) as the natural ordering induced by the vertex labelling,

i.e. u <i v if and only if u < v. Let σ denote the restriction of σj to Ai,j. Given u, v ∈ Aj,
suppose u <j v. Then there are only 3 possibilities:

Case (i) At least one of u, v 6∈ Ai,j. In this case, the probability of not having the arc (v, u) is

independent of the fact that Yi = 1. Hence

Pr[(v, u) 6∈ D[Aj]|Yi = 1] = Pr[(v, u) 6∈ D[Aj]] = 1− p

The number of such pairs is clearly
(
b
2

)
−
(
l
2

)
.

Case (ii) Both u, v ∈ Ai,j and v <i u. Here, Yi = 1 implies that (u, v) 6∈ D[Aj]. For Yj = 1, we

need (v, u) 6∈ D[Aj]. Hence the conditional probability becomes:

Pr[(v, u) 6∈ D[Aj]|(u, v) 6∈ D[Aj]] =
1− 2p

1− p

The number of such pairs is clearly i(σ) (i(σ) defined as in Lemma 5.4.1) i.e. the

number of inversions of σj restricted to Ai,j.

Case (iii) Both u, v ∈ Ai,j, and u <i v. In this case, Yi = 1 implies that (v, u) 6∈ D[Aj]. Hence,

Pr[(v, u) 6∈ D[Aj]|Yi = 1] = Pr[(v, u) 6∈ D[Aj]|(v, u) 6∈ D[Aj]] = 1

For a fixed σi and σj, the number of such pairs is all the remaining pairs (from cases

(i) and (ii)) i.e.
(
l
2

)
− i(σ).

Since the event Yj = 1 depends only on the presence or absence of the arcs (v, u), u <j v ∈ Aj
and each arc is chosen independently of all the other arcs, the net probability expression

obtained is

E[Yj|Yi = 1] = Pr[Yj = 1|Yi = 1]

=
∏

u<jv ; u,v∈Aj

Pr[ (v, u) 6∈ D[Aj] | Yi = 1 ]

=

 ∏
Case(i)

(1− p)

 ·
 ∏
Case(ii)

1− 2p

1− p

 ·
 ∏
Case(iii)

1


= (1− p)(

b
2)−(l2) ·

(
1− 2p

1− p

)i(σ)

· 1(l2)−i(σ)
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As a result, we have

E[Yj|Yi = 1] = Pr[Yj = 1|Yi = 1] = (1− p)(
b
2)−(l2)

(
1− 2p

1− p

)i(σ)

M is therefore:

M = maxi
∑

2≤l≤b

∑
j:|Ai∩Aj |=l

Pr[Yj = 1|Yi = 1]/E[Y ]

Once Ai is fixed, Aj such that |Ai ∩ Aj| = l, can be chosen in
(
n−b
b−l

)(
b
l

)
ways. Let Sk be the

group of all permutations of a k-element set. Given Ai, Aj and a permutation σ over Ai,j, a

permutation π over Aj (whose restriction to Ai ∩Aj is σ) can be chosen in b!/l! ways. Thus,

M =
b∑
l=2

(n)−1
b

(
b

l

)(
n− b
b− l

)
(b!/l!)(1− p)−(l2)

∑
σ∈Sl

(
1− 2p

1− p

)i(σ)

=
b∑
l=2

(
n

b

)−1(
b

l

)(
n− b
b− l

)
((1− p)−(l2)/l!)

∑
σ∈Sl

(
1− 2p

1− p

)i(σ)

The inner sum is
∑

σ∈Sl r
i(σ) (r as defined in the statement of this lemma). Therefore ap-

plying Lemma 5.4.1 to the above expression, we get the required expression for M . �

Thus by the above lemma, we get

M =
b∑
l=2

(
b

l

)2
(n− b)b−l

(n)b
(1− p)−(l2)

l∏
i=1

(
1− ri

1− r

)

≤
b∑
l=2

(
b

l

)2
(1− l/n)−l

nl
(1− p)−(l2)

l∏
i=1

(
1− ri

1− r

)
Since l ≤ b, we have (1− l/n)−l ≤ (1− b/n)−b → 1 as n→∞.

M ≤
b∑
l=2

(
b

l

)2

n−l(1− p)−(l2)
l∏

i=1

(
1− ri

1− r

)

=
b∑
l=2

(1− r)−l
(
b

l

)2

n−l(1− p)−(l2)
l∏

i=1

(1− ri) =
b∑
l=2

Al

We bound the value of Al in the following two ways:

Al ≤
(
b

l

)2(
1

np(1− p)l/2

)l
,
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by substituting the value of r in terms of p and simplifying, and,

Al ≤
(
b

l

)2

l!

(
1

n(1− p)l/2

)l
, since r < 1.

Case I : 2 ≤ l ≤ t, where t = 2/ ln q:

Al ≤
(
b

l

)2

l!

(
1

n(1− p)l/2

)l
≤
(

b2

n(1− p)l/2

)l
≤
(

b2

n(1− p)t/2

)l
≤
(
b2e

n

)l
= o(1)

since b2e/n ≤ 1/(log n)2 = o(1).

Therefore,
∑t

l=2Al ≤
∑∞

l=2(b2e/n)l = s2/(1 − s) ≤ s2(1 + 2s) = o(1) where s = b2e/n =

o(1).

Case II: t < l ≤ b/2:

Al ≤
(
b

l

)2

l!

(
1

n(1− p)l/2

)l
≤
(

eb2

nl(1− p)l/2

)l
≤
(

eb2

nt(1− p)l/2

)l
≤

(
eb(lnnp)

n(1− p)b/4

)l
≤
(
eb(lnnp)

√
np

n

)l
≤
(
eb
√
p(lnnp)
√
n

)l
.

Now b
√
p(lnnp) = O(p−1/2(lnn)2) = O

(
n1/4(lnn)

)
because of our assumption about p.

Hence, the summation can be upper-bounded by (b/2)
(
eb
√
p(lnnp)√
n

)t
, which is less than

(b/2)(n−1/8)t, and is clearly o(1).

Until now the proof arguments for both Theorems 5.1.3 and 5.1.4 are the same. The proofs

vary for the remaining cases. First, we complete the

Proof of Theorem 5.1.3 : Our assumption is p = ω(n−1/2(lnn)).

Case III : b/2 < l ≤ b :

Al ≤
(
b

l

)2(
1

np(1− p)l/2

)l
≤
(

e2b2

npl2(1− p)l/2

)l
≤
(

4e2

np(1− p)b/2

)l
≤

(
4e2(1− p)δ/2

np(1/np)(1− p)−X/2

)l
≤
(

4e2

eW/2

)l
for W ≥ 8. The summation can therefore be upper-bounded by (b/2) (4/e2)

−b/2
, which is

again o(1), as limn→∞ b = ∞. This establishes that M = o(1). So, we conclude that the

probability that there is no topologically ordered set of size b =
⌊
2 logq np−W/(ln q)

⌋
, goes

to zero for a suitably chosen constant W (in fact W = 8 suffices). This proves the lower

bound and hence completes the proof of Theorem 5.1.3. �
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Proof of Theorem 5.1.4 : The proof is along the same lines and the only difference

occurs when l > b/2. Case III (in the previous proof) gets split into two subcases :

Case IIIa : b/2 < l ≤ b− c′, where c′ = 8/ ln q:

Al ≤
(
b

l

)2(
1

np(1− p)l/2

)l
≤
(

e2b2

npl2(1− p)l/2

)l
≤
(

4e2

np(1− p)(b−c′)/2

)l
≤

(
4e2(1− p)(X+δ)/2

np(1/np)(1− p)−c′/2

)l
≤
(

4e2

e4

)l
Again the summation is upper bounded by (b/2) (4/e2)

−b/2
, which is o(1).

Case IIIb: b− c′ < l ≤ b: Here we look at the ratio of successive terms:

Al+1/Al =

(
b− l
l + 1

)2(
1

n(1− p)l

)(
1− rl+1

1− r

)
≥ 1

2b2

(
(1− p)1+X+δ

np(1/np)2(1− p)−c′
)
≥
(
np(1− p)c′+1+X+δ

2b2

)
= Ω

(
np3(lnnp)−2

)
For p ≥ n−1/3+ε, np3(lnnp)−2 = ω(1). Hence, the ratio Al+1

l+1/Al ≥ 1 in the stated range of

l. So the function Al is increasing in the range b − c′ ≤ l ≤ b, and the maximum value is

therefore attained at l = b. For this value of l (using the assumption X = 1) :

Ab ≤
(
b

b

)2(
1

np(1− p)b/2

)b
=
(
(1− p)(1+δ)/2

)b
= O

(
(1− p)(lnnp)/(ln q)

)
= O

(
e−(lnnp)

)
= O

(
(np)−1

)
= o(n−2/3)

Therefore, the summation is upper-bounded as follows:

b∑
b−c′

Al ≤ c′Ab = o
(
p−1n−2/3

)
= o(1).

This establishes that M = o(1) and we conclude that the probability that there is no topo-

logically ordered set of size b =
⌊
2 logq np− 1

⌋
, goes to zero. This proves the lower bound

and hence completes the proof of Theorem 5.1.4. �

5.5 Proof of Theorem 5.1.5

When p = o(n−1/2 lnn), the variance of the number of topologically ordered sets shoots up

when p is in this range, and so the second moment method fails. However, as Theorem 5.1.2
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shows, the concentration of mas(D) is quite sharp. To utilize this fact and overcome the

problem of large variance, we use a technique which Alan Frieze first used for independent sets

in random graphs (see [33], [40]). The technique involves combining a strong concentration

inequality (such as Azuma’s, Talagrand’s etc.) which gives sharp concentration around an

unknown value with a weak lower bound on the random variable in question - (here, mas(D))

- around a known value, to get past the “large variance” barrier. For the sake of simplicity,

we sometimes treat some real valued expressions as sizes of induced dags without worrying

about their possibly non-integer values. The proof arguments can be easily seen to carry

over when we approximate these values by appropriate nearest integers.

We use the well-known Paley-Zygmund inequality to get a lower bound on Pr[Y (b) > 0]:

Pr[Y (b) > 0] ≥ E[Y (b)]2/E[Y (b)2]

Specifically, we show

Lemma 5.5.1 There exist positive constants C,W and c, such that if p ≥ C/n and b ≈
2

ln q
(lnw −W ), then

Pr[Y (b) > 0] ≥ exp

(
−c(lnw)2n

(w)3/2

)
Given Lemma 5.5.1, Theorem 5.1.5 follows easily, as shown below: Let b∗ = 2

ln q
(lnw −W ′),

where W ′ = 2W , b and W as in Lemma 5.5.1. Now, by Theorem 2.3.3,

Pr[mas(D) < b∗]Pr[mas(D) ≥ b] ≤ exp(−(b− b∗)2/4b) = exp(−Ω
(
p−1/ lnw

)
)

Therefore, applying Lemma 5.5.1,

Pr[mas(D) < b∗] ≤ exp(−Ω(p−1/ lnw))

Pr[mas(D) ≥ b]
≤ exp(−Ω(p−1/ lnw) + cn(ln2w)/(w)3/2)

= exp

(
−p−1Ω

(
1

lnw
− c(ln2w)√

w

))
= o(1)

since p ≥ C/n. �

The proof of Lemma 5.5.1 follows from standard calculations and arguments as briefly shown

below.

Proof of Lemma 5.5.1 To get a lower bound on the RHS, i.e. E[Y (b)]2/E[Y (b)2], it

suffices to get an upper bound on the reciprocal, i.e. E[Y (b)2]/E[Y (b)]2. Recall from Section
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5.4 the meanings of Y and Yi, 1 ≤ i ≤ m = (n)b. We have (as derived for V ar(Y ) in the

previous section) that

E[Y 2] ≤ E[Y ] +
∑
i

E[Yi]E[Y ].M = E[Y ] + E[Y ]2.M (5.6)

where M denotes maxi
∑

j:0≤|Ai∩Aj |≤bE[Yj|Yi = 1]/E[Y ] (here the maximization can be

removed since the maximized expression is actually the same for all i as the random digraph

model D(n, p) is homogenous). Note that M is defined essentially in the same way as in

previous section except that j ∈ {0, 1, . . . , b}.2

Therefore,

E[Y 2]/E[Y ]2 = E[Y ]−1 +M

Hence, the lower bound can be obtained by showing that max{E[Y ]−1,M} is at most

exp(O(n ln2w/(w)3/2)). Now, at b = 2
ln q

(lnw − W ), it is easy to check (by choosing W

sufficiently large) that E[Y ] = ω(1), and hence E[Y ]−1 = o(1). Therefore, the asymptotics

of E[Y 2]/E[Y ]2 is mainly governed by the quantity M . We use the expression for M proved

in Section 5.4.

Lemma 5.5.2 (Section 5.4)

M =
b∑
l=0

(
b
l

)(
n−b
b−l

)(
n
b

)
l!

(1− p)−(l2)
l∏

i=1

(
1− ri

1− r

)
where r = (1− 2p)/(1− p).

Write M ≤
∑b

l=0 ul.Tl, where ul =
(
b
l

)(
n−b
b−l

)
(1− p)−(l2)/

(
n
b

)
and Tl =

∏l
i=1

(
1−ri
1−r

)
/l!

Notice that Tl =
∏l

i=1(1 + r + . . .+ ri−1)/i ≤ 1 for every l. Also,

ul =

((
b
l

)(
n−b
b−l

)(
n
b

) )
e(

l
2) ln q ≤

(
b2e

nl
e(l−1) ln q/2

)l
We split the summation into three parts:

Case I : 0 ≤ l ≤ b/2:

e(l−1) ln q/2 ≤ eb ln q/4 ≤ elnw/2

Hence, ul ≤
(
b2e

nl

√
w

)l
≤ e

b2
√
w

n ≤ ec(ln
2 w)n/w3/2

Here, we used the standard fact (which was also used in [33]) that (A/x)x is maximized when

x = A/e and hence (A/x)x ≤ exp(A/e) (easily derivable using elementary calculus).

2There is a slight difference: the expression in Section 5.4 concerns the variance, so the summation is

from l = 2 to b, as pairs of b-sets with intersection sizes zero and 1 do not contribute to the variance. Here,

however, the sum is from l = 0 to b.
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Case II: b/2 < l ≤ 2
ln q

(lnw − ln lnw − 3) + 1:

ul ≤
(
2ebe(l−1) ln q/2/n

)l ≤ (
4e lnw

w
e(l−1) ln q/2

)l
≤

(
4e lnw

w

w

e3 lnw

)l
< 1

Case III: 2
ln q

(lnw − ln lnw − 3) + 1 < l ≤ b: For l < b,

ul
ul+1

=

(
b
l

)(
n−b
b−l

)
e(

l
2) ln q(

b
l+1

)(
n−b
b−l−1

)
e(

l+1
2 ) ln q

=
(l + 1)(n− 2b+ l + 1)

(b− l)2
e−l ln q ≤ bn

(b− l)2
e−l ln q

≤ bn

(b− l)2
e6 ln2w/w2

Therefore,

ul/ub ≤
(

1

(b− l)!

)2 (
bne6 ln2w/w2

)b−l ≤ (
bne8 ln2w

(b− l)2w2

)b−l
≤ e

2
(√

bne3 lnw
w

)

≤ e2
√

2e3n((lnw)/w)3/2

For the third inequality, another well-known fact (A/x2)x ≤ exp(2
√
A/e) was used. Now,

ub = (1− p)−(b2)/

(
n

b

)
≤ eln q(b2)/

(
n

b

)
≤

(
be(b−1) ln q/2/n

)b
≤

(
bpe−W

)b
= eb(ln bp−W )

Also, for l in this range,

Tl =
1

l!

l∏
j=1

(1− rj)
1− r

=
(
(1− r)−l/l!

) l∏
j=1

(1− rj) ≤
(
e(1− p))

lp

)l
= el(1−ln q−ln(lp))

Therefore

ulTl ≤ exp

(
2
√

2e3 log3/2w

w3/2
n+ l(1− ln q − ln lp) + b(ln bp−W )

)

= exp

(
2
√

2e3 log3/2w

w3/2
n+ l(1− ln q)−Wb+ l ln(bp/lp) + (b− l) ln(bp)

)

< exp

(
2
√

2e3 log3/2w

w3/2
n+ l(1 + ln 2− ln q)−Wb+

2 ln lnw

ln q
ln(bp)

)

< exp

(
2
√

2e3 log3/2w

w3/2
n

)

63



by adjusting the constant W so that Wb > l(1 + ln 2− ln q) + 2(ln lnw) ln(bp)
ln q

. (In fact W = 32

suffices, though we have not made any attempt to obtain the best possible constant, for the

sake of ease of presentation).

Thus, from the above three cases, we have that M = exp(O(p
−1 ln2 w√

w
)). Therefore,

Pr[Y > 0] ≥ E[Y ]2/E[Y 2] = 1/(M + o(1)) ≥ exp(−cp
−1 ln2w√
w

)

where c is a fixed constant. This proves the Lemma 5.5.1 and completes the proof of Theorem

5.1.5. �

Conclusions

The problem of determining mas(D), the size of the largest induced acyclic subgraph in a

random directed graph D = (V,E), was studied. The range of the concentration of mas(D)

was reduced from the previously known O(p−1 ln lnnp) to O(
√
β(n) logq np) for all p =

p(n) = Ω(n−1), by applying Talagrand’s inequality. Using the Second Moment method, the

known lower bound was improved from 2
ln q

(lnnp− ln lnnp−O(1)) to 2
ln q

(lnnp−O(1)) for all

p ≥ C/n, and in particular, to 2 lnnp
ln q
−1, for p ≥ n−1/3+ε for any constant ε. Thus, for “nearly

every” p = p(n), the concentration band was improved to O(min{p−1,
√
β(n) logq np}).
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Chapter 6

Largest Induced Acyclic Subgraphs in

Random Digraphs: Upper Bounds

and Algorithms

6.1 Introduction

In the previous chapter on largest induced acyclic subgraphs in random digraphs, we defined

the digraph invariant mas(D) and obtained some concentration results and lower bounds

on it. In the current chapter, we shall initially focus on obtaining improved upper bounds.

Next, we shall also consider the algorithmic question of finding efficiently a maximum-sized

induced acyclic subgraph in a given n-vertex digraph D = (V,E), drawn according to the

distribution D(n, p). Finally, we shall briefly state the analogues of the theorems derived in

the previous chapter and this chapter, for the case when the random digraph D is drawn

using the model D2(n, p).

In Section 6.2, using known upper bounds on the number of acyclic orientations of an

undirected graph, we obtain the following slight improvement (not asymptotic) on the upper

bound of Theorem 5.1.1.

Theorem 6.1.1 Let D ∈ D(n, p). If p satisfies n−1/2+ε ≤ p ≤ 0.5 where ε > 0 is any

constant, then a.a.s ( with q = (1− p)−1 )

mas(D) ≤
⌈

2

ln q
(lnw + ln(7e))

⌉
To compare the bound in Theorem 6.1.1 with that in 5.1.1, notice that 2 ln(7e) ≈ 5.9, whereas

6e ≈ 16.31. Hence Theorem 6.1.1 gives an additive improvement of around 10.4/(ln q) in
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the upper bound. This method also indicates why we are unlikely to get any asymptotic

improvement in the upper bound, by using the first moment method. Using a very different

idea, we shall see this intuition rigorously proved later.

Theorems 5.1.2, 5.1.3, 5.1.4, 5.1.5 and 6.1.1 also carry over to a related model D2(n, p) in

which each possible directed arc exists independently with probability p. The theorems and

a sketch of the corresponding proofs are given in Section 6.5.

6.1.1 The algorithmic aspects

By MAS(D, k), we denote the following computational problem : Given a simple directed

graph D = (V,A) and k, determine if mas(D) ≥ k. The problem, as stated above, is a

“decision version”, having a Yes/No answer. The optimization version, MAS(D), requires

us to find a maximum-sized induced acyclic digraph (size being the number of vertices).

However, MAS(D, k) is known to be NP-complete [36]. In fact, even finding an approxi-

mate solution to the optimization version MAS(D) is known to be hard [49] when the input

is an arbitrary digraph: for some ε > 0, a polynomial-time approximation algorithm with an

approximation ratio of O(nε) is not possible unless P = NP .

If we focus on random digraphs drawn from D(n, p), it was shown in [63] that a greedily

built solution is of size at least ε(logq np) (for p = Ω(n−1)), for every fixed ε < 1. It was

also predicted in [63] that ε can be made to approach 1 asymptotically. In Section 6.4,

we improve this algorithmic result further by studying a heuristic which combines greedy

and brute-force approaches as follows. We first apply the greedy heuristic to get a partial

solution whose size is nearly logq np − c
√

logq np for some arbitrary constant c. Then, in

the subgraph induced by those vertices each of which can be safely added to the partial

solution, we find an optimal solution by brute-force and combine it with the partial solution.

It is shown that (for every fixed p) this modified approach produces a solution whose size is

at least logq np + c
√

logq np. This results in an additive improvement of Θ(
√

logq np) over

the simple greedy approach. The improvement is mainly due to the fact we stop using the

greedy heuristic at a point where it is possible to apply brute-force efficiently. This approach

is similar to (and was motivated by) the “expose-and-merge” approach used in [52, 44] for

finding large independent sets in G(n, 1/2).
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6.2 Upper Bound: Acyclic Orientations

In this section, we prove Theorem 6.1.1. Throughout this section, we define b to be b =

d2(lnw + ln(7e))/(ln q) + 1e. Consider an undirected graph G = (V,E). Let ao(G) denote

the number of acyclic orientations of G. An orientation O of G is obtained by directing

each edge {i, j} ∈ E(G) from i to j (indicated by (i, j)) or vice-versa to get the digraph

D = (V,A), A = O(G). An orientation O is acyclic if the resulting digraph D has no directed

cycles.

Let a(m) be the maximum number of acyclic orientations of any simple undirected graph

Y , where Y has b vertices and m edges. Then the probability that the induced digraph on

a fixed b-set R of V [D], D ∈ D(n, p) is a dag is upper-bounded by:

Pr[D[R] is acyclic] = EY ∈G(b,2p)
ao(Y )

2|E(Y )|

≤
(b2)∑
m=0

a(m)

2m

((b
2

)
m

)
(2p)m(1− 2p)(

b
2)−m (6.1)

We use the simple upper bound a(m) ≤ (d + 1)b, where d = 2m/b is the average degree of

any such graph, obtained in [50]. Let Z denote the number of edges in the random subgraph

of G(n, 2p) induced by R. Since G[R] is drawn according to the distribution G(b, 2p), Z has

expectation given by E[Z] =
(
b
2

)
2p.

The variable Z is in fact binomial and using Chernoff-Hoeffding large-deviation bounds

([53], [9]), the probability of its being much larger than the expected value can be tightly

bounded:

Pr[Z > 3E[Z]] ≤ (e23−3)E[Z] < e−2b(p/ ln q) lnnp < (np)−2(p/ ln q)b ≤ n−2b(p/ ln q)(1/2+ε)

= n−b(p/ ln q)(1+2ε)

For 0 ≤ p ≤ 1/2, 0.7 ≤ p/ ln q ≤ 1 [63]. Now, the sum in (8) can be broken into two parts,

as m ≤ 3E[Z] and m > 3E[Z]:

Pr[D[R] is acyclic ] ≤
∑

m≤b3E[Z]c

a(m)

((b
2

)
m

)
(p)m(1− 2p)(

b
2)−m

+
∑

m>b3E[Z]c+1

a(m)

2m

((b
2

)
m

)
(2p)m(1− 2p)(

b
2)−m
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≤ a(b3E[Z]c)(1− p)(
b
2) +

(
b!

23E[Z]

)
Pr[Z > 3E[Z]]

≤ (6bp+ 1)b(1− p)(
b
2) +

b!

23E[Z]
n−b(0.7)(1+2ε)

≤ (6bp+ 1)b(1− p)(
b
2) + (b!)n−b[(0.7)(1+2ε)+(6 ln 2)(lnnp/ lnn)(p/ ln q)]

Since (lnnp/ lnn) ≥ (1/2 + ε) and (p/ ln q) ≥ 0.7, on applying the union bound over all

b-sized subsets of V , we see that the probability that there exists an acyclic b-set A ⊂ V is

at most (
n

b

)
[(6bp+ 1)b(1− p)(

b
2) + (b!)n−b((0.7)(1+2ε)+0.7)]

Let Pb denote Pr[∃R, |R| = b, D[R] is acyclic].

Pb ≤
(
n

b

)
[(6bp+ 1)b(1− p)(

b
2) + (b!)n−b(1+ε)] ≤

(
n

b

)
(6bp+ 1)b(1− p)(

b
2) + n−bε

=

(
n

b

)
(6bp+ 1)b(1− p)(

b
2) + o(1) ≤

(
(6enp+ en/b)(1− p)(b−1)/2

)b
+ o(1)

≤
(
(6enp+ en(ln q)/(2 lnw))(1− p)(b−1)/2

)b
+ o(1)

≤
(
((6 + o(1))enp)(1− p)(b−1)/2

)b
+ o(1)

The first expression in the previous inequality goes to zero since the base (which is raised to

its b-th power) is bounded by a constant less than 1 for our definition of b. As a result, we get

that mas(D) ≤ 2dlogq w+ logq(7e)e. We observe that the additive second order term of this

expression is marginally better than the corresponding term in the expression obtained in

[61], although the asymptotics of both terms are the same, that is, mas(D) = 2(lnnp)
ln q

+O(p−1).

6.3 Upper Bound: Layered Construction

The central difficulty in obtaining an accurate estimate of the upper bound on mas(D) is

that of obtaining an exact closed-form expression for the probability that a given set of b

vertices induces an acyclic subgraph. In this section, we shall see a new approach to this

basic problem: the layered construction , which will yield us an expression for the exact

probability, whose asymptotics can be easily estimated.

The Layered Construction The central idea is very simple: given a directed acyclic

graph dag A = (V,E) on n labelled vertices, obtain a partition P = P(A) of the vertex set

V (A), (called the layers of A), as follows: The vertices of indegree zero form the first part
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P1 = P1(A) (called layer 1), remove P1 from V (A), and recurse on the remaining dag A \P1

to obtain P2, P3, . . . , Pk, (called respectively layer 2, layer 3 etc.) where k ≤ n.

Claim 6.3.1 Given a dag A, the partition P(A) is uniquely determined.

Proof The proof is obvious since at each step of the partitioning process, all, and only those,

vertices which have in-degree zero, go into the part being assigned. Hence given the dag A,

the part P1(A) is uniquely determined. Recursively, the parts P2(A), P3(A), . . . , Pk(A) are

also uniquely determined. �

Claim 6.3.2 Given a dag A and the layers of A, i.e. P(A), there do not exist i, j ∈ [k],

such that j > i and there is an arc from some vertex in layer j to some vertex in layer i.

Proof Suppose there exist some i, j ∈ [k] such that i < j and layer i has a vertex u which

has an incoming arc from layer j, then during the construction of layer i, vertex u would not

have in-degree zero, since layer j was yet to be constructed. Hence by construction, u could

not be in layer i. Thus we get a contradiction. �

Claim 6.3.3 Given a dag A and P(A), the subgraph induced by vertices in any given layer

is an independent set.

Proof If there exists a layer i which does not induce an independent set, then some vertex

in layer i had non-zero indegree in the subgraph induced by layers i, i+ 1, . . . , k, which is a

contradiction. �

Claim 6.3.4 Given a dag A and the layers of A, for each 1 < i ≤ k, each vertex in layer i

has at least one in-coming arc from layer i− 1.

Proof Suppose not, then we have i such that the layer i has a vertex v which has zero in-

degree from layer i−1. Then, even during the construction of layer i−1 and by Claim 6.3.2,

v would have zero in-degree. By construction, this implies v ∈ Pi−1, which is a contradiction,

since v ∈ Pi. �

Thus, from Claims 6.3.1-6.3.4, we can get an exact expression for the probability Pdag that

the subgraph induced by some b vertices forms a dag. Before proceeding further, we need a

definition:

Definition A k-composition of a positive integer r is a solution, in positive integers, of the

equation

x1 + x2 + . . .+ xk = r

where 1 ≤ k ≤ r.
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Applying the notion of k-compositions, we derive an exact expression for the probability of

an arbitrary b-set inducing an acyclic subgraph. It is based on the following procedure for

forcing a b-set to induce a dag :

Choose some k ∈ [b], choose a k-composition of b. Create layers of sizes according to the

chosen composition, choose vertices to lie in each of the layers, force each layer to induce

an independent set, ensure arcs are only from lower-indexed layers to higher-indexed layers,

and each vertex in layer i has at least one in-coming arc from some vertex in layer i − 1,

where i = 2, . . . , k.

Let the set of k-compositions of b be denoted by Ck(b). From the above method, we get

an exact expression for the probability Pdag:

Pdag =
b∑

k=1

∑
(bi)∈Ck(b)

(
b

b1, b2, . . . , bk

)
(1− 2p)

∑k
i=1 (bi2 )(1− p)(

b
2)−

∑k
i=1 (bi2 ).

k∏
i=2

(
1−

(
1− 2p

1− p

)bi−1

)bi

= (1− p)(
b
2)

b∑
k=1

∑
Ck(b)

(
b

b1, b2, . . . , bk

)(
1− 2p

1− p

)∑k
i=1 (bi2 )

.

k∏
i=2

(
1−

(
1− 2p

1− p

)bi−1

)bi

Now the first moment method can be applied to find an upper bound on mas(D): Let

X = X(n, p, b) be the number of induced dags of size b in the random digraph D ∈ D(n, p).

Pr[D has a dag of size b] = Pr[X > 0] ≤ E [X] =

(
n

b

)
· Pdag

=

(
n

b

)
(1− p)(

b
2)

b∑
k=1

∑
Ck(b)

(
b

b1, b2, . . . , bk

)
.

(
1− 2p

1− p

)∑k
i=1 (bi2 ) k∏

i=2

(
1−

(
1− 2p

1− p

)bi−1

)bi

Let k = b2(lnw + ln a)c and b = bk/(ln q)c + 1, where the range of a ∈ <+ is be specified

below.
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Lemma 6.3.5 For p = p(n) such that n−0.5(lnn)2 ≤ p, p = o((lnn)−1) and for any constant

a < e1/2 − e−1/2, the following holds: E [X]→∞ as n→∞.

Hence, for p in the above range, an application of the first moment method to this random

variable does not give an upper bound on mas(D) which is less than 2(lnw+x)
ln q

for some

suitable positive constant x.

To keep the proof arguments simpler, we ignore floors and ceilings and also assume, without

loss of generality, that k divides b. Without these assumptions, we only need to change the

value of a to a ± o(1) and hence Lemma 6.3.5 still holds true. Focus on the term T of the

expression for E [X] for which b1 = b2 = . . . = bk = b/k. We shall show that the term T goes

to infinity as n→∞.

Proof Taking Stirling’s approximation and using (n)b = nb(1− o(1)) and using r to denote
p

1−p , it follows that T is lower bounded by:

T ≈ (n)b

( √
2πb/k

(b/ek)(b/k)

)k

(1− p)(
b
2) (1− r)k.(b/k)(b/k−1)/2

(
1− (1− r)b/k

)b−b/k
≥

(
n(1 + o(1)).ek(1− p)(b−1)/2(1− r)(b/k−1)/2

b

)b (
1− (1− r)

1
ln q

)b
=

(
n(1 + o(1)).e(ln q)(1− r)(b/k−1)/2

npa

)b (
1− (1− r)

1
ln q

)b
=

((e
a

)
(1 + o(1)).(1− r)(b/k−1)/2

(
1− (1− r)

1
ln q

))b
≥

((e
a

)
(1 + o(1))e((b/k−1)/2) ln(1−r)

(
1− eln(1−r) 1

ln q

))b
Now, since p = o((lnn)−1), ln (1− r) = (1 + o(1)). ln(1− p), and so we get that the LHS

≥
((e

a

)
(1 + o(1))e−1/2+o(1)

(
1− e−(1+o(1))

))b
≥

((
e1/2

a

)
(1 + o(1))eo(1)

(
1− e−(1+o(1))

))b
≥

((
e1/2 − e−1/2−o(1)

a

))b
→ ∞

for any positive a < e1/2 − e−1/2.

�
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6.4 An efficient heuristic with improved guarantee

It was shown in [63] that, for every fixed δ < 1, with probability 1 − o(1), every maximal

induced dag is of size is at least δ(logq np). A maximal solution can be obtained in linear

time. It was also mentioned in [63] that one can possibly set δ = 1. We further refine this

analysis and show that the above statement holds for some δ = δ(n)→ 1. Precisely, we have

the following strengthening of Theorem 3.1 of [63].

Theorem 6.4.1 Let p = p(n) ≤ 0.5 be such that w = np ≥ X for some sufficiently large

constant X > 0. Then, for D ∈ D(n, p), with probability 1 − o(1), every maximal induced

dag is of size at least δ(logq w) where δ = 1− 2(ln lnw)+10
lnw

.

The proof of this theorem follows by substituting the value of δ in the analysis given in [63].

We present below another efficient heuristic which will be analyzed and shown to have

an additive improvement (for every fixed p ≤ 0.5) of Θ
(√

logq w
)

over the guarantee given

in [63] and in Theorem 6.4.1. It is similar to a heuristic presented in [44] for finding large

independent sets in G ∈ G(n, 1/2). We show that, for every fixed c > 0, one can find in

polynomial time an induced DAG of size at least blogq w + c
√

logq wc.

Let C be the set of those vertices which could be each individually added to the greedy

solution. The idea is to construct greedily a solution A of size g(n, p, c) = dlogq w−c
√

logq we
and then add an optimal solution (found by an exhaustive search) in the subgraph induced

by vertices in C. We will show that exhaustive search can be done in polynomial time and

yields (a.a.s.) a solution of size 2c
√

logq w. As a result, we finally get a solution of the stated

size. The algorithm is described below.

MAXDAG(D = (V,E), c)

1. Choose and fix a linear ordering σ of V .

2. c′ := 1.2c; A := ∅; B := V .

3. while B > n/2 and |A| < g(n/2, p, c′) do

4. Let u be the σ-smallest vertex in B.

5. If D[A ∪ {u}] induces an acyclic subgraph then add u to A.

6. remove u from B. endwhile

7. if |A| < g(n/2, p, c′), then Return FAIL and halt.

72



8. C := {u ∈ B : (u, v) 6∈ E, ∀v ∈ A}; µ = |B|(1− p)|A|.

9. if |C| 6∈ [(0.9)µ, (1.1)µ] then Return FAIL.

10. for each X ⊂ C : |X| =
⌈
2c′
√

logq w/2 + 2 logq 0.9−W
⌉

do

11. if D[X] is acyclic then Return D[A ∪X] and halt. endfor

12. Return FAIL.

We analyze the above algorithm and obtain the following result.

Theorem 6.4.2 Let p = p(n) ≤ 0.5 be such that p ≥ τ for some fixed but arbitrary positive

constant τ and let D ∈ D(n, p). Then, for every constant c ≥ 1, with probability 1 − o(1),

MAXDAG(D, c) will output an induced acyclic subgraph of size at least b′ = b(1+ε′) logq npc,
where ε′ = c/

√
logq np.

Proof : Without loss of generality, we assume that c is sufficiently large.

Correctness : First, we prove the correctness. Note that D[A] is always an induced acyclic

subgraph. Also, each u ∈ C is such that D[A ∪ {u}] is an acyclic subgraph with u as a sink

vertex (having zero out-degree). Hence, any acyclic subgraph D[X] present as a subgraph

in D[C] can be safely added to A so that D[A ∪X] also induces an acyclic subgraph of D.

Time Complexity : It is easy to see that the running time is polynomial except for the

for loop of lines 10 and 11. The maximum number of iterations of the for loop is at most(
(1.1) · |B|(1− p)|A|

b2c′
√

logq w/2c

)
≤

(
(2.2) · p−1qc

′
√

logq w/2

b2c′
√

logq w/2c

)
≤ q2c′2(logq w/2) · ((2.2)p−1)2c′

√
logq w/2

= O
(
nO(1)

)
,

since p is a constant. Since each iteration takes polynomial time, the algorithm always

finishes in polynomial time.

Analysis : Consider the following events defined as

E1 : |A| < g(n/2, p, c′) ;

E2 : |C| 6∈ [(0.9)µ, (1.1)µ] ;

E3 : mas(D[C]) <
⌈
2c′
√

logq w/2 + 2 logq 0.9−W
⌉

;
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If none of these events holds, then the algorithm will succeed and output a solution whose

size is

|A ∪X| ≥ logq(w/2)− c′
√

logq(w/2) + 2c′
√

logq w/2 + 2 logq 0.9−W

≥ (1 + ε′)(logq w) + (c′ − c)
√

logq w/2 + 2 logq 0.9−W − logq 2

≥ (1 + ε′)(logq w) + (0.2c)
√

logq w/2 + 2 logq 0.9− (W + logq 2)

≥ (1 + ε′)(logq w)

We have

Pr(E1 E2 E3) = Pr(E1) ·Pr(E2 | E1) ·Pr(E3 | E1 E2)

≥ 1−
∑
i≤3

Pr(Ei | ∧j<i Ej) (6.2)

Let V1 denote the set of first n/2 vertices of σ. Now using Theorem 6.4.1, the greedy

algorithm run on the first n/2 vertices yields with probability 1− o(1), an acyclic subgraph

of size

δ(logq(w/2)) ≥ logq w/2− 2(logq(lnw/2))− (10/ ln q) ≥ g(n/2, p, c′)

= dlogq w/2− c′
√

logq w/2e,

with probability 1− o(1). Here, δ is defined in Theorem 6.4.1. Hence, Pr(E1) = o(1).

For any fixed vertex u ∈ B,

Pr(u ∈ C) = Pr(∀ v ∈ A, (u, v) 6∈ E) = (1− p)|A|.

Hence

µ = E[|C|] = |B| · (1− p)|A|.

Since |C| is the sum of |B| identical and independent indicator random variables, by applying

Chernoff-Hoeffding bounds (see [53, 9]), we get that

Pr (|C| 6∈ [(0.9)µ, (1.1)µ]) ≤ 2e−µ/300.

Since |A| = g(n/2, p, c′), we deduce that

µ ≈ |B| · 2qc
′
√

logq w/2/w,

after justifiably ignoring the effect of the ceiling function used in the definition of g(n/2, p, c′).

Given that E1 holds and also since |B| ≥ n/2, it is easy to verify that µ → ∞ as n → ∞.

Hence Pr(E2 | E1) = o(1).
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Given that neither of E1 and E2 holds, it follows that |C| ≥ (0.9)µ ≈ (0.9) ·p−1 ·qc
′
√

logq w/2.

Hence, using q ≤ 2 and applying Theorem 5.1.4,

mas(D[C]) ≥ b2c′
√

logq w/2c+ 2 logq 0.9−W ≥ b2c′
√

logq w/2c − 1

with probability 1 − o(1). This establishes that Pr(E3 | E1 E2) = o(1). It then follows from

(6.2) that MAXDAG(D, c) outputs a solution of required size with probability 1− o(1). �

6.5 Bounds for the Non-simple Case

“What happens if the random digraph be allowed to have 2-cycles”? - This question is

addressed in the current section. The model, which was introduced in [63], is as follows:

Model D ∈ D2(n, p): Choose each directed edge u → v joining distinct elements of V

independently with probability p.

Let D ∈ D2(n, p). Using similar arguments as in the D(n, p) case, the following analogues

of Theorems 5.1.2, 5.1.3, 5.1.4, 5.1.5 and 6.1.1 can be derived.

Theorem 6.5.1 For p ≤ 1/2, for any β = β(n) such that β →∞ as n→∞, a.a.s

|mas(D)−m| ≤ β
√

logq w

where m is a median of mas(D).

Theorem 6.5.2 There is a large constant W such that if n−1/2(ln2 n)β(n) ≤ p ≤ 1/2 (where

β(n)→∞ as n→∞), then a.a.s.

mas(D) ≥
(

1

ln q

)
(2 lnnp−W )

Theorem 6.5.3 For every ε > 0, the following is true : if n−1/3+ε ≤ p ≤ 1/2 then a.a.s.

mas(D) ≥
(

2 lnnp

ln q

)
− 1

Theorem 6.5.4 There exist suitable positive constants C and W such that if p satisfies

C/n ≤ p ≤ 1/2, then a.a.s.

mas(D) ≥ 2

ln q
(lnnp−W )

Theorem 6.5.5 For every ε > 0, if n−1/2+ε ≤ p ≤ 1/2 then a.a.s.

mas(D) ≤ 2

ln q
(2 lnnp+ ln(7e)) + 1
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The Lower Bound: The analysis proceeds as in the D(n, p) case. The random variable

X = Xb is again the number of topologically ordered sets of size b, and the second moment

method is used. The expression for M = Cov(Yi, Yj)/E[Y ]2 (where Y =
∑

i Yi and Y , Yi are

as in Section 5.4) is given by

M =
b∑
l=2

(
b

l

)2(
n− b
b− l

)
(n)−1

b (1− p)−(l2)
∑
σ∈Sl

(1− p)i(σ)

The proofs of theorems 6.5.2 and 6.5.3 can now be obtained using similar arguments as in

Section 5.4.

The Upper Bound The upper bound given in Theorem 6.5.5 can be proved using essen-

tially the same ideas as in Section 6.2. However, there are certain differences which need to

be handled carefully. We use the notation of Section 6.2.

Pr[D[R] is acyclic ] ≤
(b2)∑
m=0

a(m)

2m
Pr[G[R] is simple and has |E[R]| = m]

≤
(b2)∑
m=0

a(m)

2m

((b
2

)
m

)
(2p(1− p))m((1− p)2)(

b
2)−m (6.3)

Let Z be the number of edges in the random undirected graph G[R], conditioned on G[R]

being simple. The average degree is therefore d = 2Z/b. Then, E[Z] =
(
b
2

)
2p(1−p)

1−p2 =

b(b− 1)p/(1 + p). As in Section 6.2, Chernoff bounds can be applied when Z > 3E[Z], and

the sum in (10) can be split into 2 parts - when m ≤ 3E[Z], and when m > 3E[Z]. Again,

a(m) is bounded simply by (d + 1)b in the first case and b! in the second case respectively.

It is easy to verify that these bounds can be put together to yield the statement of Theorem

6.5.5.

Algorithmic Aspects Coming to the MAS(D, k) problem, the following theorems can

easily be proved following the proofs in Section 6.4.

Theorem 6.5.6 Let p = p(n) be such that w = np ≥ X for some sufficiently large constant

X > 0. Then, for D ∈ D2(n, p), every maximal induced dag is of size at least δ(logq w)

where δ = 1− 2 ln lnw+10
lnw

.

Theorem 6.5.7 Let p = p(n) be such that p ≥ τ for some fixed but arbitrary constant τ and

let D ∈ D2(n, p). Then, for every constant c ≥ 1, with probability 1− o(1), MAXDAG(D, c)

will output an induced acyclic subgraph of size at least (1+ε′) logq np, where ε′ = c/
√

logq np.
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Conclusions

We used an upper bound on the maximum number ao(G) of acyclic orientations of an

undirected graph G = (V,E), to get an upper bound on mas(D). This bound seems to be

”nearly” the best possible, using the first moment method in the following sense. We also

obtained an exact expression for the probability of an arbitrary b-set inducing a dag for any

b. We also obtained a lower bound on this probability which, in turn, led to a lower bound

on the expected number of induced induced dags of size b. This lower bound was shown to

approach ∞ asymptotically for a value of b which is of the form b = 2(lnnp)
ln q

+ X for some

positive X = Θ((ln q)−1).

Next, we analyse a polynomial time heuristic MAXDAG(D, c) for getting a large induced

acyclic subgraph in a random digraph, and show that for fixed values of the arc-probability

p, it gives an acyclic subgraph of size at least logq w+ c
√

logq w for any constant c, which is

a slight improvement over the bound of the greedy heuristic MaximalAcyclic(D) given in

[63]. Also, it was noted that the MaximalAcyclic(D) algorithm yields a subgraph of size

at least ε(logq w) for some ε = ε(n)→ 1 as n→∞.

Finally, we obtained analogues of all the results obtained in this and the previous chapter,

for random digraphs with 2-cycles allowed i.e. D2(n, p). It is seen that the analysis does not

differ significantly. A few differences were highlighted when they occurred.
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Chapter 7

On Induced Paths, Holes and Trees in

Random Graphs

7.1 Introduction

In this chapter, we study the sizes of largest induced subgraphs, such as paths, holes and

trees in random graphs. We present and prove a 2-point concentration for largest induced

paths and largest holes and also present a considerably improved concentration result on the

size of the largest induced trees. The random model we use for random graphs is the G(n, p)

model introduced in Chapter 3 with some assumption on p = p(n). Throughout, we assume

that V = {1, 2, . . . , n}.

Notation : Given a natural number n ∈ Z+, we indicate the set {1, . . . , n} by [n]. Define

q := (1− p)−1. We ignore floors and ceilings wherever they are not crucial. We use B(n, µ)

to denote the sum of n identically and independently distributed indicator variables each

having mean µ. For non-negative integers n and b, we use (n)b to denote the expression∏
0≤j≤b−1 n− j. We use lnn to denote the natural logarithm of n. For a set A and an integer

k ≥ 0, we use
(
A
k

)
to denote the collection {B ⊆ A : |B| = k}.

7.1.1 Previous Work

The problem of finding large induced trees in the random graph G(n, p) was first studied by

Erdős and Palka in [29]. Given a graph G, denote by T (G) the size (= number of vertices)

of any largest induced tree in G. Erdős and Palka showed that

Theorem 7.1.1 For every ε > 0, for every fixed p : 0 < p < 1, a.a.s. G ∈ G(n, p) has T (G)
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satisfying

(2− ε) logq n < T (G) < (2 + ε) logq n

They also conjectured that for p = c/n (c > 1 is any constant), G ∈ G(n, p) a.a.s. has

an induced tree of size γ(c)n where γ(c) depends only on c. This was verified affirmatively

and independently by de la Vega [69] and several others including Frieze and Jackson [35],

Kučera and Rödl [46], and  Luczak and Palka [48] who showed that when p = c/n, c ∈ <+,

T (G) ≥ γ(c)n, where γ(c) depends only on the constant c. Later de la Vega [70] determined

the constant γ(c) to ≈ 2 ln c/c.

Given a graph G, let h(G) denote the size of a largest induced cycle (shortly hole) in G.

Large holes in random graphs were first studied by Frieze and Jackson in [34], in which they

showed that the random graph G(n, p), p = c/n, a.a.s. has a hole of size Ω(nc−3). They also

proved that for any fixed d ≥ 3, the random regular graph G(n, d) a.a.s. has a hole of size

Ω(nd−2). Later Suen [64] improved the lower bound for h(G), for G ∈ G(n, c/n), for any

fixed c > 1 and ε > 0, to at least (h(c) − ε)n where h(c) is defined below and approaches

(ln c)/c for large enough c.

The question of studying the size of the largest induced path in G(n, p), was first studied

by Frieze and Jackson in [34], in the course of their work on holes. Since a hole is just an

induced path with an edge joining the endpoints, the existence of a large hole in G(n, p) is

very likely if a large induced path is shown to exist a.a.s., and this was the idea used by

Frieze and Jackson. On the other hand, large induced paths in G(n, p) are interesting in

their own right, and Suen [64] studied this problem, showing that when p = c/n, for any

fixed c > 1 and any ε > 0, a.a.s. the random graph G(n, p) has an induced path of size at

least (1− ε)h(c)n, where

h(c) = c−1

∫ c

1

(1− y(ζ)

ζ
dζ

where y(ζ) is the smallest positive root of y = eζ(y−1). As c→∞, h(c)→ (ln c)/c and hence

a.a.s., mip(G) ≥ (1− ε)(n ln c)/c. Almost all of the above mentioned previous results are for

sparse random graphs (that is, for p = c/n for constant c > 1). But no previous work on

tight concentration of these invariants is known to have been carried out. The dense case

(corresponding to higher values of p = p(n)) has not been looked at in such great detail. In

this chapter, we look at this case and obtain very tight concentration results.
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7.1.2 Improved results on sizes of induced paths, trees and holes

Throughout the chapter, we assume that G ∈ G(n, p) for p = p(n) ≤ 1− ε where ε > 0 is an

arbitrary but fixed constant. We study induced subgraphs (paths, holes and trees) for dense

random graphs. Our first result is a 2-point concentration for mip(G), for G ∈ G(n, p) and

p ≥ n−1/2(lnn)2:

Definition Let b∗ = b∗(n, p) be the maximum integer b such that (n)bp
b−1(1 − p)(

b−1
2 ) ≥

np/(ln lnn).

It can be verified (see Claim 7.2.1). using the given lower bound on p, that

b2(logq np) + 2c ≤ b∗ ≤ d2 logq np+ 3e . . . . . . . . . (A)

Theorem 7.1.2 If p ≥ n−1/2(lnn)2, then mip(G) lies in the set {b∗, b∗ + 1} a.a.s.

Since an induced path is also an induced tree, we get a significant additive improvement over

Erdős and Palka’s long-standing (30 year old) lower bound for T (G) (which was for fixed

0 < p < 1) as a corollary.

Corollary 7.1.3 If p ≥ n−1/2(lnn)2, then there exists an induced tree of size b∗ in G a.a.s.

The above corollary, combined with a more careful analysis of Erdős and Palka’s first moment

bound gives

Corollary 7.1.4 For p ≥ n−1/2(lnn)2 and G ∈ G(n, p),

b∗ ≤ T (G) ≤ 2 logq np+O(1/ ln q)

a.a.s. As a result, T (G) = 2(logq np) +O(1/ ln q) a.a.s.

Hence it is seen that the asymptotic upper bound on the range of concentration of T (G) is

improved, from the previously known bound of O(lnn/ ln q), to O(1/ ln q) = O(1/p).

As for induced paths, we also obtain a similar 2-point concentration for the size of a longest

hole:

Definition Let h∗ = h∗(n, p) be the maximum integer b such that (n)bp
b(1− p)(

b−1
2 )−1/2b ≥

np/(ln lnn).

Also, it can be verified (see Claim 7.3.1). using the given lower bound on p, that

b2(logq np) + 2c ≤ h∗ ≤ d2 logq np+ 2e . . . . . . . . . (B)

Theorem 7.1.5 Let G ∈ G(n, p). Then, provided p ≥ n−1/2(lnn)2, a.a.s., h(G) ∈ {h∗, h∗ +

1}.

The proofs of the above results involve just the well-known first and second moment methods.
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7.2 Induced paths : Proof of Theorem 7.1.2

For b ≥ 1, let X(b) = X(n, b, p) be the number of induced paths on b vertices in G ∈ G(n, p).

The following claim determines b∗ upto constant additive factors.

Claim 7.2.1 For p ≥ n−1/2(ln2 n), b2 logq np+ 2c ≤ b∗ ≤ d2 logq np+ 3e.

Proof The upper bound follows from the proof of Claim 7.2.2 given below. Hence we

establish only the lower bound. Suppose b = b2(logq np) + 2c. Let 0 ≤ δ < 1 be such that

b = 2 logq np+ 2− δ. Let X denote X(b).

(b− 2)/2 = logq np− (δ/2)

Now, (n)b ≥ (n−b)b = nb(1−b/n)b. From the assumed lower bound on p and the established

upper bound on b∗, it follows that b∗ = O(n1/2/(lnn)). Hence (1− b/n)b = e−o(1) = 1− o(1).

Hence for all p ≥ n−1/2(ln2 n), we get

2E [X] ≥ n[1− o(1)](np(1− p)(b−2)/2)b−1

≈ n(np(1− p)logq np(1− p)−δ/2)b−1

= n(1− p)−δ logq np−Θ(1)

=

(
n(1− p)−Θ(1)

(np)δ

)
= Ω(n1/4) ≥ lnn for large n

This establishes that b∗ ≥ b2(logq np) + 2c. In fact, a more careful analysis shows that

b∗ ≥ d2(logq np) + 2e for n−1/2(ln2 n) ≤ p ≤ 1/5(lnn). �

7.2.1 Proof of mip(G) ≤ b∗ + 1

Using Inequality (A) (stated before) and also the lower bound on p, we notice that b∗ =

O(n1/2/(lnn)).

The probability that a given ordered (orderings considered up to reversal) set A of b vertices

induces a path is given by

Pr[G[A] is an induced path ] = pb−1(1− p)(
b−1
2 )

Hence the expected number of b-length induced paths is

E [X(b)] =

(
n

b

)
b!

2
pb−1(1− p)(

b−1
2 ) =

(n)b
2
pb−1(1− p)(

b−1
2 )
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Hence, for b = b∗ ±O(1),

E [X(b+ 1)]

E [X(b)]
= (n− b)p(1− p)b−1 ≈ (1− p)±O(1)

np
= Θ

(
1

np

)
As a result,

E [X(b∗ + 2)] = O(E[X(b∗ + 1)](np)−1) = O((ln lnn)−1) = o(1) (7.1)

This establishes that mip(G) ≤ b∗+1 a.a.s. In fact, we can prove the following upper bound

on mip(G) which holds for any value of p = p(n).

Claim 7.2.2 For any p = p(n), mip(G) ≤ d2 logq np+ 3e a.a.s.

Proof Suppose b = d2(logq np) + 4e. Let X denote X(b). Let 0 ≤ δ < 1 be such that

b = 2 logq np+ 4 + δ.

(b− 2)/2 = logq np+ 1 + (δ/2)

Now, (n)b = n(n− 1) . . . (n− b+ 1) ≤ nbe−b(b−1)/2n. Hence for all p ≥ 2/n, we get

2E [X] ≤ ne−(b2)/n(np(1− p)(b−2)/2)b−1

= ne−b(b−1)/2n(np(1− p)logq np(1− p)1+δ/2)b−1

= ne−(b2)/n(1− p)(2+δ) logq np+Θ(1)

= e−b(b−1)/2n

(
n(1− p)Θ(1)

(np)2+δ

)
= A ·B

where A ≤ 1 and B ≤ n always. Let ω = ω(n) be a sufficiently slowly growing function. For

p ≥ w/
√
n, we have B → 0. For p such that p ≤ ω/

√
n, we have A = o(n−1). Hence, for

p ≥ 2/n, E[X]→ 0.

When p < 2/n, the largest component of G(n, p) is a.a.s O(lnn) in size (see e.g. [14]), and

hence much smaller than 2 logq np. �

7.2.2 Proof of mip(G) ≥ b∗

Let b = b∗. Consider the variance and the expectation of the random variable X = X(b)

defined in the previous sub-subsection. Let Xi be the indicator variable for the i-th ordered

b-set to induce a path, for a fixed enumeration of ordered b-sets. Therefore, X =
∑

iXi.
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Applying Chebyshev’s Inequality and using standard simplifications (see e.g. [9], Chapter

4), it follows that

Pr(X = 0) ≤ V ar(X)

E [X]2
≤ 1

E [X]
+M (7.2)

where M :=
∑

i

∑
j:2≤|Ai∩Aj |≤b−1(E [XiXj]− E [Xi]E [Xj])/E [X]2.

Since the random graph model G(n, p) is homogenous, the above expression for M simplifies

to:

M =
∑

j:2≤|A1∩Aj |≤b−1

E [Xj|X1 = 1]− E [Xj]

E [X]
(7.3)

By our choice of b = b∗, it follows that E [X] → ∞ and hence it suffices to prove that

M = o(1) in order to deduce that mip(G) ≥ b∗ with probability 1 − o(1). That M = o(1)

follows from Claim 7.2.6 (established below) as follows : Using the previously observed fact

b∗ = O(n1/2/(lnn)), we infer that M = O(b4p/n2) = o(1). This completes the proof of

Theorem 7.1.2.

It remains to show that M = o(1) and the following bound on M will be useful in that

direction and it is established in Subsection 7.2.3.

For the remainder of this section, we use α denote any fixed and “sufficiently slowly”

growing function α = α(n). We will use this as a short notation to represent any ω(1)

growth that arises in the proof arguments.

Lemma 7.2.3

M ≤
b−1∑
l=2

Fl

where

Fl =
(n− b)b−l

(n)b
· p−l · (1− p)l−(l2) ·

min{l,b−l+1}∑
k=1

f(k) ;

f(k) =

(
(b− l + 1)2k

(k!)2

)
·
(

lk−1

(k − 1)!

)
· 2k · k! ·

[(
p

1− p

)k
− pl(1− p)(

l
2)−l

]
From the above expression,

M ≤
l≤(b+1)/2∑

l=2

Fl +
∑

l>(b+1)/2

Fl = M1 +M2.
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Claim 7.2.4 f(k) is maximized at k = kmax = min{l, b − l + 1}. Further
∑

k f(k) is

(1 + o(1))f(kmax).

Proof of Claim 7.2.4 We prove the claim for all large values of n. We have the ratio

f(k + 1)

f(k)
=

2(b− l + 1)2l

k(k + 1)

(
pk+1(1− p)−k−1 − pl(1− p)(

l
2)−l

pk(1− p)−k − pl(1− p)(
l
2)−l

)

=
2(b− l + 1)2lp

k(k + 1)(1− p)

(
1− pl−k−1(1− p)(

l
2)−l+k+1

1− pl−k(1− p)(
l
2)−l+k

)

=
2(b− l + 1)2lp

k(k + 1)(1− p)
· S where

S =

1− a
(

1−p
p

)
1− a

 where a =

(
p

1− p

)l−k
· (1− p)(

l
2)

We use Claim 7.2.5 stated and proved below. If p ≥ 1/2, then the ratio is at least (b +

1)p/(1 − p) ≥ α. Suppose p ≤ 1/2. When l ≤ L :=
√

2
100(ln q)

, kmax = l, hence, for all

k < kmax, the ratio is at least 2(b−l+1)2l3p2

100k2(1−p) ≥ (b + 1)p ≥ α for all large n, for the assumed

range of p. For l with L < l ≤ (b+ 1)/2, the ratio is at least (b+ 1)p/2 ≥ α again as n→∞.

Therefore f(k) achieves its maximum fmax at k = l when l ≤ (b+ 1)/2. When l > (b+ 1)/2.

kmax = b− l+ 1 and hence, for all k < kmax, the ratio is at least 2lp/(1− p) ≥ (b+ 1)p ≥ α.

It follows that
∑

k f(k) is upper bounded by the sum of a finite and increasing geometric

series with a common ratio α = ω(1). Hence
∑

k f(k) = [1 + o(1)]f(kmax). �

Claim 7.2.5 (i) S ≥ 1 if p ≥ 1/2.

(ii) S ≥ l2(ln q)
100

if l ≤ L :=
√

2
100(ln q)

; S ≥ 1− e−1/200 if l > L.

Proof If p ≥ 1/2, then 1− p ≤ p, and hence
(

1−p
p

)
≤ 1. Therefore, S =

(
1−a(1−p)p−1

1−a

)
≥ 1.

Now assume p < 1/2. Write l = β
√

2
ln q

and let x = (1− p)(
l
2). Since k < kmax ≤ l, we have

a(1−p)
p
≤ x. Hence, for each l, we have S ≥ 1 − x. Now β2

2(ln q)
= l2

4
≤
(
l
2

)
≤ l2

2
= β2

ln q
and

hence x ≤ e−β
2/2.

When l ≤ L, we have β ≤ 1/10 and hence x = 1−β2/2+O(β4) and S ≥ β2/2−O(β4) ≥
l2(ln q)

100
.

For l > L, we have β ≥ 1/10 and x ≤ e−1/200 and hence S ≥ 1− e−1/200.

This completes the proof of Claim 7.2.5. �
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Claim 7.2.6 M ≤ M1 +M2 = O(b4p/n2).

Proof We consider two cases.

Case 1: l ≤ (b+ 1)/2. By Claim 7.2.4,

l∑
k=1

f(k) = (1 + o(1))f(l)

≤

[
2e2

(
b− l + 1

l

)2

l · p

1− p

]l
·
[
1− (1− p)(

l
2)
]

=

[
2e2 (b− l + 1)2

l
· p

1− p

]l
·
[
1− (1− p)(

l
2)
]

Therefore

Fl ≤ Gl :=
(1 + o(1)) · (n− b)b−l

(1− p)(
l
2) · (n)b

·
(

2e2(b− l + 1)2

l

)l
·
[
1− (1− p)(

l
2)
]

By definition of Gl,

G2 = (1 + o(1)).
(n− b)b−2

(1− p)(n)b
·
(

2e2(b− 1)2

2

)2

· [1− (1− p)] = O

(
b4p

n2

)
.

Therefore, the ratio Gl/G2 is given by

Gl

G2

=
(n− b)b−l
(n− b)b−2

· (1− p)1−(l2) · 4(2e2(b− l + 1)2)l

ll (2e2(b− 1)2)2 ·
[1− (1− p)(

l
2)]

p

=
O(1)

nl−2
· (1− p)1−(l2) · (2e2(b− l + 1)2)l−2

ll
· [1− (1− p)(

l
2)]

p

= O(1) ·
(

2e2(b− l + 1)2(1− p)−(l+1)/2

nl

)l−2

· [1− (1− p)(
l
2)]

pl2

Consider the base T1 of the first term of the product, namely, T1 := 2e2(b−l+1)2(1−p)−(l+1)/2

nl
.

When l < b(ln q)−1c, we have (1− p)−(l+1)/2 < 1. Therefore T1 ≤ 2e2b2

n
= o(1) for each such

l. For every l such that b(ln q)−1c ≤ l ≤ (b+ 1)/2, we have (1− p)−(l+1)/2 ≤ √np and hence

T1 = O
(

(lnnp)2√
np

)
= o(1), since b = O(p−1(lnnp)).

Suppose p ≤ 1/2 and hence ln q
p
≤ 3/2. Write l = β

√
2

ln q
and x = (1−p)(

l
2). For bounding the

second term T2 := 1−x
pl2

for the case β ≤ 1, we apply, as explained before, 1−x ≤ β2 = l2(ln q)
2

and hence T2 ≤ 3/4. For β ≥ 1, we have pl2 ≥ 2p
ln q
≥ 4

3
. Hence, T2 = 1−x

pl2
≤ 3

4
< 1. As a

result, T l21 · T2 ≤ (1/α)l−2 for every l ≥ 3.
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Suppose p ≥ 1/2. Then, T2 ≤ 2/l2 < 1. Hence, T l21 · T2 ≤ (1/α)l−2 for every l ≥ 3.

Therefore, the sum
∑l≤(b+1)/2

l=2 Gl is upper bounded by the sum of an infinite geometric

progression, whose first term is G2 and common ratio is 1/α. Hence we get,

M1 =

l≤(b+1)/2∑
l=2

Fl ≤
l≤(b+1)/2∑

l=2

Gl ≤ [1 + o(1)] ·G2 = O

(
b4p

n2

)
Case 2: l > (b+ 1)/2. Using Stirling’s asymptotic estimate of factorials,

b−l+1∑
k=1

f(k) = [1 + o(1)] · f(b− l + 1) ≤
(

p

1− p
· (2e2l)

)b−l+1

.

Therefore,

Fl ≤ Gl :=
(n− b)b−l · (2e2l)b−l+1

(n)b
· pb−2l+1

(1− p)b−2l+(l2)+1
.

Using the definition of Gl and also that of b = b∗,

Gb−1 =
n− b
(n)b

· (2e2(b− 1))2 ·
(

p

1− p

)−b+3

· 1

(1− p)(
b−1
2 )

≤ np2(2e2(b− 1))2(1− p)b−3

(n)bpb−1(1− p)(
b−1
2 )

=
np2(1− p)b−3(2e2(b− 1))2

E [X(b)]

= O

(
np2(ln lnn)b2

(np)3

)
= O

(
b2(ln lnn)

n2p

)
Now, the ratio Gl/Gb−1 is given by

Gl

Gb−1

= (n− b− 1)b−l−1 · (2e2l)b−l−1 ·
(

p

1− p

)2b−2l−2

· (1− p)(
b−1
2 )−(l2) ·

(
l

b− 1

)2

≤
(
np2(2e2l)

(1− p)2

)b−l−1

· (1− p)(
b−1
2 )−(l2) =

(
np2(2e2l)(1− p)(b+l)/2

(1− p)3

)b−l−1

≤
(
np2l ·O(1)

(np)3/2

)b−l−1

≤
(
O(1) · l√p
√
n

)b−l−1

since (b+ l)/2 ≥ 3b/4 for l > (b+ 1)/2

=

(
O

(
lnnp
√
np

))b−l−1

for l < b− 1

Therefore

M2 =
∑

l>(b+1)/2

Fl ≤
∑

l>(b+1)/2

Gl = (1 + o(1))Ġb−1 = O

(
b2 ln lnn

n2p

)
= o

(
b4p

n2

)
.
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Hence,

M = M1 +M2 = O

(
b4p

n2

)
.

�

7.2.3 Proof of Lemma 7.2.3

Proof As shown in Equation 7.3, fix the first ordered set Ai to be A1. Let the number of

vertices in the intersection be l.

Claim 7.2.7 If G[Aj] is an induced path, then the induced subgraph G[A1 ∩ Aj] must be a

union of path segments. The order of occurrence, as well as the alignment (i.e. which end

of a segment comes first) of these segments in G[A1] and G[Aj] however, can differ.

Proof Notice that G[A1 ∩ Aj] is an induced subgraph of G[A1] as well as G[Aj]. Since

both G[A1] and G[Aj] are paths of length b, the only possible induced subgraphs are disjoint

unions of path segments. It is easy to see, however, that even for a fixed A1, and A1 ∩ Aj,
there is no constraint on the relative ordering and alignment of these segments in G[Aj]. �

We next make an observation on the conditional probability Pr[Xj = 1|X1 = 1] when there

are l vertices in the intersection A1 ∩ Aj, divided into k path segments:

Claim 7.2.8 For any ordered set Aj which has k intersection segments with A1 and has

intersection |A1 ∩ Aj| = l, the conditional probability is given by:

Pr[Xj = 1|X1 = 1] = pb−1−(l−k)(1− p)(
b−1
2 )−(l2)+l−k

Proof The proof follows by counting the number of edges and non-edges lying in the in-

tersection A1 ∩ Aj, when |A1 ∩ Aj| = l and A1 ∩ Aj induces k contiguous segments on A1.

�

Given the ordered b-set A1, let S(l, k) be the number of ways of choosing an ordered b-set

Aj, such that |A1 ∩ Aj| = l, and A1 ∩ Aj induces a forest on k vertex disjoint paths in G.

Then from Claim 7.2.8 and Equation 7.1, it follows that

M ≤
b−1∑
l=2

l∑
k=1

S(l, k)

(n)b
.[p−(l−k)(1− p)−(l2)+l−k − 1] (7.4)

We next define three sets of tuples which will help determine the value of S(l, k):

Definition Let the set T1 denote all tuples (a0, b1, a1, b2, . . . , bk, ak), such that

(i)
∑k

i=1 bi = l, ∀i : bi ≥ 1, bi ∈ Z+.

87



(ii)
∑k

i=0 ai = b− l, ai ∈ Z+, a0, ak ≥ 0, ∀i 6= 0, k : ai ≥ 1.

Definition Given a tuple τ ∈ T1, let T2(τ) denote the set of all tuples (π, c1, . . . , ck), where

π is an ordering of {1, . . . , k}, and for i = 1, . . . , k,

ci ∈

{
{0} if bi = 1

{0, 1} otherwise

Definition Let T12 denote the set of all ordered pairs (τ1, τ2) where τ1 ∈ T1 and τ2 ∈ T2(τ1).

Definition Let T3 denote the set of tuples (d0, . . . , dk) such that
∑k

i=0 di = b − l, di ∈ Z+,

d0, dk ≥ 0 and di ≥ 1 for all other i.

Finally, let T = T12 × T3. To get an upper bound on S(l, k), just observe the following:

Proposition 7.2.9 Given A1 and an ordered set B of b − l vertices, each element of T
specifies (in a bijective fashion) a unique ordered set Aj having b vertices, such that Aj \A1 =

B, |A1 ∩ Aj| = l and A1 ∩ Aj induces a collection of k disjoint and separated sub-paths of

A1.

Proof Given an element of T = T12×T3, say u = ((a0, b1, . . . , ak), (π, c1, . . . , ck), (d0, . . . , dk)),

first, divide the ordered set A1 into an ordered partition into paths having a0, b1, a1, . . . , ak

vertices respectively. The paths corresponding to integers bi are chosen to lie in the intersec-

tion A1 ∩Aj. Let these intersection segments be called P1, . . . , Pk. By the definition of bi’s,

the total number of vertices in the intersection is thus l. Order the Pi’s using the ordering π.

For each Pi, call the end-point occuring earlier in A1 as the “head” if ci = 0, otherwise the

head is the end-point occuring later in A1. Next, divide B into ordered parts D0, . . . , Dk,

having sizes d0, . . . , dk. Now, insert P1 between D0 and D1, P2 between D1 and D2, and

so on, while ensuring that the head of each Pi succeeds the last vertex of Di−1. By the

definitions of Pis and Dis, we get a unique ordered b-set Aj such that A1 ∩Aj has l vertices,

divided into k separated path segments. �

The value of S(l, k) can now be ascertained from the following claim:

Claim 7.2.10 S(l, k) = (n− b)b−l.|T |

Proof Choose an ordered set B of size b− l, in (n− b)b−l ways, and apply Proposition 7.2.9.

�
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Hence, to upper-bound S(l, k), we need to upper-bound the sizes of the sets Ti, i = 1, 2, 3.

Clearly, |T2(τ)| is at most k!2k for each τ ∈ T1. To estimate the sizes of Ti, i = 1, 3, we recall

a basic combinatorial fact:

Proposition 7.2.11 (see e.g. [68], Chapter 13) The number of integral solutions of
∑

i xi =

a, with integral constraints xi ≥ ci; a, ci ∈ Z; 1 ≤ i ≤ r, is
(
a−(

∑
i ci)+r−1
r−1

)
.

Hence, the set T3 consisting of all integral solutions of
∑

i di = b − l, such that d0, dk ≥ 0

and di ≥ 1, for i = 1, . . . , k, has cardinality
(
b−l+1
k

)
. The size of T1 can be determined by

counting all solutions, in non-negative integers of the following pairs of equations∑
(ai):a0,ak≥0,a1,...ak−1≥1

ai = b− l (7.5)

∑
(bj):bj≥1

bj = l (7.6)

The number of solutions satisfying both of the above equations, by Proposition, 7.2.11 comes

to
(
b−l+1
k

)(
l−1
k−1

)
. Therefore, |T1| =

(
b−l+1
k

)
.
(
l−1
k−1

)
. ¿From the above argument and Claim 7.2.10

we get

S(l, k) ≤ (n− b)b−l
(
b− l + 1

k

)2(
l − 1

k − 1

)
2kk!

≤ (n− b)b−l
(b− l + 1)2k

(k!)2

(
l − 1

k − 1

)
2kk!

Plugging the above bound on S(l, k) in Equation (7.4) proves the Lemma. �

7.3 Holes – Proof of Theorem 7.1.5

Redefine, for this section, X := X(n, b, p) to be the number of holes of size b in G ∈ G(n, p).

The following claim determines h∗ upto constant additive factors.

Claim 7.3.1 (i) For p ≥ n−1/2(lnn)2, b2 logq np+ 2c ≤ h∗ ≤ d2 logq np+ 2e.
(ii) For any p = p(n), h(G) ≤ d2(logq np) + 2e a.a.s.

Proof Suppose p ≥ n−1/2(lnn)2. Write b = 2(logq np) + 2 + δ where δ is defined by the

value we assign to b. Let X denote X(b). We have, after employing simplifications similar
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to the ones employed before,

E[X] =
(n)b
2b
· pb · (1− p)(

b−1
2 )−1

≈ (np)1−δ · (1− p)Θ(1)

2b(1− p)
→ 0 for b = d2(logq np) + 3e
= Ω((lnn)2) for b = b2(logq np) + 2c

This establishes Part (i) of the claim. For Part (ii) of the claim, the ’≈’ in the second

equation will be replaced by ’≤’, thereby establishing the claim. �

Proof of Theorem 7.1.5 The proof of this theorem is along similar lines as the proof of

Theorem 7.1.2. Consider the ratio r(b) of the expected number of holes of size b + 1 to the

expected number of holes of size b, where b = h∗ ±O(1).

r(b) =
E [X(b+ 1)]

E [X(b)]
= (n− b)p(1− p)b−1 b

b+ 1

= Θ

(
np

1

(np)2

)
= Θ

(
1

np

)
Hence, it follows from the definition of h∗ that

E [X(h∗ + 2)] = O(E[X(h∗ + 1)](np)−1) = O

(
lnn

np

)
= o(1) (7.7)

This establishes that h(G) ≤ h∗ + 1 a.a.s.

For the lower bound, set b = h∗ and using a fixed but arbitrary enumeration of all cyclically

ordered subsets of size b, write X = X(b) =
∑

1≤i≤mXi, where m = (n)b/(2b), note that

E[X] → ∞. Here, Xi denotes the indicator random variable for the i-th cyclically ordered

set inducing a hole. We again use Chebyshev’s inequality and arguments similar to those

used for induced paths. As before, it suffices to prove that Mh = o(1) where Mh is defined

by equation (7.3). An upper bound for Mh is given by Lemma 7.3.2. Comparing this bound

with the upper bound on M (for induced paths) stated in 7.2.3 and applying Claim 7.2.6,

we deduce that Mh ≤ O (b4p/n2) = o(1) for p ≥ n−1/2(lnn)2. Thus, we have shown that

Pr[h(G) < h∗] = Pr[X = 0] ≤ (E[X])−1 +Mh = o(1) and

Hence, it follows that h(G) ∈ {h∗, h∗ + 1} a.a.s. �
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It remains to prove the following lemma.

Lemma 7.3.2

Mh ≤
b−1∑
l=2

min{l,b−l}∑
k=1

(n− b)b−l
(n)b

· b
2

k
·
(
b− l − 1

k − 1

)2(
l − 1

k − 1

)
2kk!

(
p−(l−k)(1− p)−(l2)+l−k − 1

)
= O

(
b4p/n2)

)
Proof An induced cycle can be considered to be an induced path with the endpoints joined.

The argument for holes therefore, follows exactly the same lines as those of paths, with the

following differences:

(i) We define S(l, k) in an analogous way for holes. To upper bound S(l, k), we note that

in choosing the intersection Ai ∩ Aj and the difference set Aj\Ai, the parts a0 and ak

are now considered as one part - say a0 - since the last and first vertex of Ai will be

joined. Since a0 must now differentiate between b1 and bk, there must be at least one

vertex in the segment corresponding to a0. This changes the number of solutions of

equation (7.5) to
(
b−l−1
k−1

)
, for both choices of Ai\Aj and Aj\Ai.

(ii) For Ai\Aj, we also need to introduce a multiplicative factor of b to account for the

choice of the starting vertex of the “first” non-intersecting segment of size a0. Another

multiplicative factor of b is introduced to account for the fact that number of potential

holes is (n)b/(2b). For Aj\Ai, we have already accounted for the starting vertex in the

term (n − b)b−l. We also need to divide by a factor of k since the number of ways in

the k paths of Ai ∩ Aj can be cyclically ordered is k!/k.

To prove the bound in the lemma, we shall use the results of Section 7.2. Notice that

expressions for M,Mh are both very similar. We’ll define Fh(l) and fh(k) similar to Fl and

f(k) respectively, from Section 7.2:(
b− l − 1

k − 1

)2(
l − 1

k − 1

)
2kk![pk(1− p)−k − pl(1− p)(

l
2)−l]

=

(
b− l
k

)2(
k

b− l

)2(
l − 1

k − 1

)
2kk![pk(1− p)−k − pl(1− p)(

l
2)−l]

≤
(
b− l + 1

k

)2(
k

b− l

)2(
l − 1

k − 1

)
2kk![pk(1− p)−k − pl(1− p)(

l
2)−l]

However, note that for k > b− l,
(
b−l
k

)
= 0. Hence, define fh(k) as follows:

fh(k) =

{
0 if either k > b− l or k > l(
b−l+1
k

)2 ·
(
k
b−l

)2 ·
(
l−1
k−1

)
· 2kk! · [pk(1− p)−k − pl(1− p)(

l
2)−l], otherwise
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Observe that fh(k) ≤ f(k).
(
k
b−l

)2
. Define

Fh(l) :=
(n− b)b−l

(n)b
b2p−l(1− p)l−(l2)

min{l,b−l}∑
k

fh(k)

Hence,

Mh ≤
b−1∑
l=2

Fh(l).

Notice that the ratio of successive terms

fh(k + 1)

fh(k)
=

f(k + 1)

f(k)
.

(
k + 1

k

)2

is greater than the ratio of f(k)’s, and hence we can bound the sum
∑

k fh(k) by (1 +

o(1)).fh(kmax), where kmax = min{l, b − l}. Therefore, ignoring constant multiplicative

factors, one can upper bound the terms Fh(l) by Gh(l), where Gh(l) is defined as follows:

Gh(l) =


(n−b)b−l

(n)b(1−p)(
l
2)
· b2 ·

(
l
b−l

)2 ·
(

2e2(b−l+1)2

l

)l
· [1− (1− p)(

l
2)], l ≤ b/2

(n−b)b−l

(n)b(1−p)(
l
2)
· b2 · (2e2l)

b−l ·
(

p
1−p

)b−2l

, l > b/2

Again, it is easy to see that the ratios Gh(l)
Gh(2)

(for l ≤ b/2) and Gh(l)/Gh(b− 1) (for l > b/2)

are the same as Gl
G2

(or Gl
Gb−1

) in the proof of Claim 7.2.6 except that for the former case, we

need to multiply by a factor of
(
l(b−2)
2(b−l)

)2

which is at most l2. Since Gl
G2
≤ (1/α)l−2, the l2

multiplicative factor can also be easily absorbed.

Inspecting the terms for l = 2, b− 1, we get that Gh(2) = O(b4p/n2), and

Gh(b− 1) =
n− b

(n)b(1− p)(
b−1
2 )

(2e2b2(b− 1)).

(
1− p
p

)b−2

≤ 2e2b3np2

(n)bpb(1− p)(
b−1
2 )−1

(1− p)b−3 = O

(
b2p2n(1− p)b−3

E [X(h∗)]

)
= O

(
b2p−1(ln lnnp)

n2

)
= O

(
b4p · (ln lnn)

n2(lnnp)2

)
= o

(
b4p

n2

)
.

Therefore, the dominating term is Gh(2), and hence the sum
∑b−1

l=2 Fh(l) can be bound by

Θ(1) ·Gh(2) = O
(
b4p
n2

)
, which is o(1) for p ≥ n−1/2+o(1).

�
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7.4 Conclusion

We investigated certain non-monotone functions on graphs, such as the size of the largest

induced path (mip(G)), induced cycle (h(G)) and induced tree (T (G)), in the random graph

model G(n, p) and obtained a 2-point concentration of mip(G) and h(G), while improving

the lower bound for T (G). The 2-point concentration results for mip(G) and h(G) lead to

the following question:

Question 1 : Given a fixed p : 0 < p < 1, do there exist 2 consecutive values b(n), b(n)+1,

such that for G ∈ G(n, p), a.a.s. T (G) is either b(n) or b(n) + 1?

Our results work for moderately-dense to dense random graphs:e.g. mip(G) is 2-point

concentrated for p ≥ n−1/2(lnn)2. What happens when the edge probability is smaller? Here

an interesting observation is that several well-known techniques, such as sharp concentration

inequalities (e.g. Azuma’s, Talagrand’s, etc.) employed for commonly-encountered monotone

functions such as the independence number α(G) or the chromatic number χ(G), do not work

for mip(G), because the Lipschitz coefficient of mip(G) cannot be bounded by any constant.

Indeed, if G is a forest where every component (except one) is a path on k + 1 vertices

and the remaining component P is a path on 2k + 2 vertices, then mip(G) = 2k + 1. But

if the middle edge of P is removed to get G′, then mip(G′) = k. Even the application of

polynomial concentration inequalities (see [71]) seems non-trivial due to the large degree of

the polynomials involved. As such, it may be interesting to consider the following question:

Question 2 : Is there a function f(n) = o(p−1(lnnp)), such that the random variable

mip(G), G ∈ G(n, p) with p = p(n), 1/n ≤ p ≤ n−1/2, a.a.s. takes integer values from an

interval of length at most f(n) ?

Solving the last problem could give an easy proof of the following question investigated

and asked by Suen [64], as well as de la Vega [70], which has remained open for more than

two decades:

Question 3 : Does mip(G)
p−1 lnnp

→ 2 when n→∞, for p = Θ(1/n)?
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Chapter 8

Independence Number of Locally

Sparse Graphs and Hypergraphs

8.1 Introduction

For k ≥ 2, a k-uniform hypergraph H is a pair (V (H), E(H)) where E ⊆
(
V (H)
k

)
. A

set I ⊂ V (H) is an independent set of H if e 6⊆ I for every e ∈ E(H), or equivalently,(
I
k

)
∩E(H) = ∅. The independence number of H, denoted by α(H), is the maximum size of

an independent set in H. For u ∈ V (H), its degree in H, denoted by dH(u), is defined to be

|{e ∈ E(H) : u ∈ e}| (we omit the subscript if it is obvious from the context). Throughout

this chapter, we use t to denote k − 1 except in some places where it stands for some real

value (the correct meaning can be easily inferred from the context). Also, we use the term

graph whenever k happens to be 2. A k-uniform hypergraph is linear if it has no 2-cycles

where a 2-cycle is a set of 2 hyperedges containing at most 2t vertices. The dual of the above

definition says that a linear hypergraph is one in which every pair of vertices is contained in

at most one hyperedge.

A graph is said to be Kr-free if it does not contain any set of r vertices which form a

clique. In [67], Turán proved a theorem giving a tight bound on the maximum number of

edges that a Kr-free graph can have, which has since become the cornerstone theorem of

extremal graph theory. Turán’s theorem, when applied to the complement G of a graph G

(i.e., the graph obtained by retaining the vertex set of G, and replacing the edges of G by

non-edges and vice-versa), yields a lower bound α(G) ≥ n
d+1

where d denotes the average

degree in G of its vertices.

94



Caro [20] and Wei [72] independently proved that α(G) ≥
∑

v
1

d(v)+1
which is at least

n
d+1

. The probabilistic proof of their result later appeared in Alon and Spencer’s book [9].
1 One natural extension of Turán’s theorem to k-uniform hypergraphs H is the bound

α(H) > ck
n
d1/t

, and this was shown via an easy probabilistic argument by Spencer [60]. Caro

and Tuza [21] improved this bound for arbitrary k-uniform hypergraphs. In order to state

their lower bound, we need the following definition (of fractional binomial coefficients) from

[37].

Definition For t > 0, a ≥ 0, d ∈ N(
d+ 1/t

a

)
:=

(td+ 1)(t(d− 1) + 1)...(t(d− a+ 1) + 1)

a!ta

What Caro and Tuza [21] showed was that

α(H) ≥
∑

v∈V (H)

1(
d(v)+1/t
d(v)

) . (8.1)

Indeed, an easy consequence of (8.1) is the following result.

Theorem 8.1.1 (Caro-Tuza [21]) For every k ≥ 3, there exists dk > 0 such that every

k-uniform hypergraph H has

α(H) ≥ dk
∑

v∈V (H)

1

(d(v) + 1)1/t
.

As a corollary, one infers the bound of Spencer above. Later, Thiele [66] provided a lower

bound on the independence number of non-uniform hypergraphs, based on the degree rank

(a generalization of degree sequence).

In this chapter, we prove new lower bounds for the independence number of locally sparse

graphs and linear k-uniform hypergraphs. The starting point of our approach is the prob-

abilistic proof of Boppana-Caro-Wei. This approach, together with some additional simple

ideas, quickly yields a new short proof of the asymptotic version of Theorem 8.1.1 (see Sec-

tion 8.2 for the detailed proof). Later, in section 8.4 we shall also give a probabilistic proof

of the exact Caro-Tuza expression.

1According to R. Bopanna [19], the probabilistic argument in [9] was obtained by him, although it is

possible that it was known earlier.
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8.1.1 Kr-free graphs

For certain classes of sparse graphs, improvements of the Caro-Wei bound (in terms of average

degree d) are known. Ajtai, Komlós and Szemerédi [5] proved a lower bound of Ω
(
n log d
d

)
for the independence number of triangle-free graphs. An elegant and simpler proof was later

given by Shearer [56], who also improved the constant involved. Ajtai, Erdős, Komlós and

Szemerédi [3] showed that for Kr-free graphs (r > 3), the independence number is lower-

bounded by cr(n/d) log( (log d)
r

), where cr ∈ <+ depends only on r. They also conjectured

that the optimal bound is cr
n log d
d

. Shearer [58] improved their bound to Ω
(

n log d
d log log d

)
.

Caro and Tuza [21] raised the following question in their 1991 chapter :

(i) Can the lower bounds of Ajtai et al [5] and Shearer ([56], [58]) be generalized in terms

of degree sequences?

We answer this question via the following two theorems.

Theorem 8.1.2 For every ε ∈ (0, 1) there exists c > 0 such that the following holds: Every

triangle-free graph G with average degree D has independence number at least

c(logD)
∑

v∈V (G)

1

max {Dε, d(v)}
.

Theorem 8.1.3 For every ε ∈ (0, 1) and r ≥ 4, there exists c > 0 such that the following

holds: Every Kr-free graph G with average degree D has independence number at least

c
logD

log logD

∑
v∈V (G)

1

max {Dε, d(v)}
.

8.1.2 Linear Hypergraphs

As mentioned earlier, a lower bound of Ω
(
n/d1/t

)
for an n vertex k-uniform hypergraph

with average degree d can be inferred from Theorem 8.1.1. Caro and Tuza [21] also raised

the following question:

(ii) How can one extend the lower bounds of Ajtai et al [5] and Shearer ([56], [58]) to

hypergraphs?

As it turns out, such extensions were known for the class of linear k-uniform hypergraphs.

Indeed, the lower bound

α(H) = Ω

(
n

(
log d

d

)1/t
)
, (8.2)
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where H is a linear k-uniform hypergraph with average degree d was proved by Duke-

Lefmann-Rödl [22], using the results of [4]. Our final result generalizes (8.2) in terms of the

degree sequence of the hypergraph.

Theorem 8.1.4 For every k ≥ 3 and ε ∈ (0, 1), there exists c > 0 such that the following

holds: Every linear k-uniform hypergraph H with average degree D has independence number

at least

c(logD)1/t
∑

v∈V (H)

1

max {Dε/t, (d(v))1/t}
.

We also describe an infinite family of k-uniform linear hypergraphs to illustrate that the ratio

between the bounds of Theorem 8.1.4 and (8.2) can be unbounded in terms of the number

of vertices.

The remainder of this chapter is organized as follows. In Section 8.2, we give a new short

proof of Theorem 8.1.1. In Section 8.3, we apply the analysis in Section 8.2 to the special case

of linear hypergraphs, and obtain a “warm-up” result - Theorem 8.3.1, which will be helpful

in proving the main technical result, Theorem 8.5.1, proved in Section 8.5. The expression

obtained in Theorem 8.5.1 plays a crucial role in the proofs of Theorems 8.1.2, 8.1.3 and

8.1.4; these are provided in Section 8.6. In Section 8.7, we give infinite families of Kr-free

graphs and k-uniform linear hypergraphs which illustrate that the bounds in Theorems 8.1.2,

8.1.3 and 8.1.4 can be bigger than the corresponding bounds in [5, 4, 22, 56, 58] by arbitrarily

large multiplicative factors. Finally, in section 8.9, we state several combinatorial identities

which follow as simple corollaries of Theorem 8.5.1.

8.2 A new proof of Theorem 8.1.1

In this section we obtain a new short proof of the asymptotic version of Theorem 8.1.1. First

we obtain the following theorem which is later used to prove Theorem 8.1.1.

Theorem 8.2.1 For every k ≥ 2, there exists a constant c = ck such that any k-uniform

hypergraph H on n vertices and m ≥ 1 hyperedges satisfies∑
J⊂V (H)

1(
n
|J |

) > c
n

m1/k
. . . . . . (A)

where we sum over all independent sets J .
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Proof Let tk(n,m) denote the LHS of (A). Consider any edge e ∈ E(H). The edge e can

belong to at most
(
n−k
j−k

)
non-independent sets of size j. Since there are m edges there are

at most m
(
n−k
j−k

)
sets of size j that are not independent. Thus, at least

(
n
j

)
−m

(
n−k
j−k

)
sets of

size j are independent. Hence we have

tk(n,m) ≥
n∑
j=1

(
1−m

(
n−k
j−k

)(
n
j

) ) =
n∑
j=1

(
1−m (j)k

(n)k

)

>

bn/(2m)1/kc∑
j=1

(
1−mjk

nk

)
≥

bn/(2m)1/kc∑
j=1

(
1−m 1

2m

)
≥ 1

2

⌊
n

(2m)1/k

⌋
≥ ck

n

m1/k

for some suitably chosen ck which is close to 2−(k+1)/k. �

Let H = (V,E) be a k-uniform hypergraph. For k ≥ 3 and for u ∈ V with dH(u) ≥ 1,

the link graph associated with u in H is the t-uniform hypergraph Lu = (U, F ) where

U := {v 6= u : ∃e ∈ E : {u, v} ⊆ e} and F = {e \ u : u ∈ e ∈ E}. Let I(H) denote the

collection of independent sets of H.

Proof of Theorem 8.1.1. As mentioned in the Introduction, the proof is an extension of

the technique used in Alon and Spencer’s book [9]. Let H = (V,E) be an arbitrary k-uniform

hypergraph. Choose uniformly at random a total ordering ≺ on V . Define an edge e ∈ E to

be backward for a vertex v ∈ e if u≺v for every u ∈ e \ {v}. Define a random subset I to be

the set of those vertices v such that no edge e incident at v is backward for v with respect

to ≺. Clearly, I is independent in H. We have E[|I|] =
∑

v Pr(v ∈ I). If dv = 0, then v ∈ I
with probability 1. Hence, we assume that d(v) ≥ 1. ¿From the definition of I, it follows

that v ∈ I if and only if for every e incident at v, e \ {v} 6⊆ Sv = {u ∈ V (Lv) : u≺v}. In

other words, Sv is an independent set in Lv. Let lv = |V (Lv)|. Then

Pr[v ∈ I] =
∑

J∈I(Lv)

|J |!(lv − |J |)!
(lv + 1)!

=
1

lv + 1

∑
J∈I(Lv)

1(
lv
|J |

)
Applying Theorem 8.2.1 to the t-uniform link graph Lv (with c = ck−1), we get

Pr[v ∈ I] ≥ c

lv + 1

(
lv

d(v)1/(k−1)

)
≥ clv

lv + 1

(
1

(d(v) + 1)1/(k−1)

)
.

Since lv ≥ k− 1, we get Pr[v ∈ I] ≥ ((k− 1)c/k) 1
(d(v)+1)1/(k−1) . By choosing dk = (k− 1)c/k,

we get the lower bound of the theorem. �
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8.3 Linearity : Probability of having no backward edges

In this section, we state and prove a warm-up result on the probability of having no backward

edges incident at a vertex for a randomly chosen linear ordering (Theorem 8.3.1 below). The

problem is the same as in the previous section, only, now the hypergraph under consideration

is assumed to be linear and we get an explicit closed-form expression for this probability.

This result will be helpful for the proof of the main technical theorem, given in the next

section.

Theorem 8.3.1 Let H be a linear k-uniform hypergraph and let v be an arbitrary vertex

having degree d. For a uniformly chosen total ordering ≺ on V , the probability Pv(0) that v

has no backward edge incident at it, is given by

Pv(0) =
1(

d+1/t
d

)
Remark. It is interesting to note that the above expression when summed over all vertices,

is the same bound which Caro and Tuza obtain in [21] (using very different methods),

although their bound holds for independent sets in general k-uniform hypergraphs. This

apparent coincidence is explained (and proved) in section 8.4, thus giving a probabilistic

proof of the exact Caro-Tuza expression.

We prove the theorem using the well-known Principle of Inclusion and Exclusion (PIE).

First we state an identity involving binomial coefficients.

Lemma 8.3.2 Given non-negative integers d and t,

d∑
r=0

(−1)r
(
d

r

)
1

tr + 1
=

1(
d+1/t
d

)
For proof see [37], Equation 5.41. Alternatively, it can be proved using the Chu-Vandermonde

identity (see e.g. [37], Equation 5.93), as shown below:

Proof of Lemma 8.3.2 Write the LHS as
∑

r≥0 tr, since
(
d
r

)
= 0 for r > d. Now,

tr+1

tr
=

(−1)(d− r)(tr + 1)

(r + 1)(tr + t+ 1)

=
(r − d)(r + 1/t)

(r + 1)(r + 1 + 1/t)
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Also, notice that t0 = 1. Therefore, the LHS can be written as the generalised hyper-

geometric function F (1/t,−d; 1 + 1/t; 1), where the generalised hypergeometric function

F (a1, ..., am; b1, ..., bn; z) is given by

F (a1, ..., am; b1, ..., bn; z) =
∞∑
r=0

(a1)(r)(a2)(r)...(am)(r)

(b1)(r)...(bn)(r)

zr

r!

where p(q) = p(p + 1)...(p + q − 1) is the rising factorial. Next, we use the general version

of Vandermonde convolution - also known as Chu-Vandermonde identity (a special case of

Gauss’s Hypergeometric Theorem, see e.g. [37], Chapter 5, equation 5.93, also [8, 10, 13, 73])

F (a,−n; c; 1) =
(c− a)(n)

c(n)

The above is true whenever a, c are complex numbers and n is a natural number, such that

R(a)− n < R(c). In our case, a = 1/t, n = d and c = 1 + 1/t. Hence we get (c− a)(n) = d!,

and c(n) = (1 + 1/t)(d) = (1 + 1/t)(2 + 1/t)...(d+ 1/t). Therefore, the LHS of (8.3) becomes

F (1/t,−d; 1 + 1/t; 1) =
d!

(1 + 1/t)(2 + 1/t)...(d+ 1/t)
=

1(
d+1/t
d

) �

Proof of Theorem 8.3.1 Firstly, observe that since H is linear, the number of vertices

that are neighbors of v is exactly (k− 1)d = td. Next, notice that since the random ordering

is uniformly chosen, only the relative arrangement of these td neighbors and the vertex v,

i.e. td+ 1 vertices in all, will determine the required probability. Hence the total number of

orderings under consideration is (td+ 1)!.

Label the hyperedges incident at v with 1, ..., d arbitrarily. For a permutation π, we say

that π has the property T≥S if the edges with labels in S, S ⊆ [d] are backward. Also, say

π has the property T=S if the edges with labels in S are backward and no other edges are

backward. For a set S of hyperedges incident at v, let N(T≥S) denote the number of orderings

having the property T≥S, that is, the number of permutations such that the hyperedges in S

will all be backward edges. N(T=S) is similarly defined. N(T≥S) is determined as follows :

Suppose S has r hyperedges incident at v. For a fixed arrangement of the vertices belonging

to edges in S, the number of permutations of the remaining vertices is (td + 1)!/(tr + 1)!.

In each allowed permutation, the vertex v must occur only after the vertices of S (i.e. the

rightmost position). However the remaining tr vertices can be arranged among themselves

in (tr)! ways. Thus we have

N(T≥S) = (td+ 1)!
(tr)!

(tr + 1)!
=

(td+ 1)!

(tr + 1)
.
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Clearly, if a permutation has the property T≥S, it has the property T=S′ for some S ′ ⊇ S.

Hence for every S ⊂ [d],

N(T≥S) =
∑
S′⊇S

N(T=S′).

Therefore, by PIE (see [62], Chapter 2),

N(T=∅) =
∑
S

(−1)|S|N(T≥S).

∑
|S|=r

N(T≥S) =

(
d

r

)
N(T≥[r]) =

(
d

r

)
(td+ 1)!

tr + 1
.

Hence we get the required probability to be

Pv(0) =

(
d∑
r=0

(
d

r

)
(−1)r

(td+ 1)!

tr + 1

)
× 1

(td+ 1)!

=
d∑
r=0

(
d

r

)
(−1)r

1

tr + 1
.

By Lemma 8.3.2,

Pv(0) =
1(

d+1/t
d

) ,
and this completes the proof. �

8.4 Probabilistic proof of the Caro-Tuza lower bound

expression

In this section, we extend the result of the previous section (for linear k-uniform hypergraphs)

to general k-uniform hypergraphs, thus obtaining an alternate proof of Caro and Tuza’s [21]

Theorem 8.1.1. First we state a generalized version of the problem:

Problem Given an s-uniform hypergraph S over a universe U of n vertices {a1, . . . , an}
and d hyperedges C1, . . . , Cd such that C1 ∪ . . . ∪ Cd = U \ {an}, what fraction fr(S) of

orderings of the vertices of S will have no edge occurring entirely before an?

The following lemma shows that the exact expression for this fraction obtained in the

previous section (assuming linearity) is actually a lower bound for the more general case.

Lemma 8.4.1 With the parameters defined as above: fr(S) ≥ fs(d) =
(
d+1/s
d

)−1
.

To get some idea of why this might be true, let us first look at an example:
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Example : Take r = 4, s = 2,m = 0, such that S = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. Then

fr(S) = 56/120. On the other hand, fs(d) = 128/315 < 56/120 = fr(S).

Lemma 8.4.1 implies Equation 8.1 as follows: Let the hypergraph S = Su in Lemma 8.4.1

be the link hypergraph Lu corresponding to a vertex u (as defined in Section 8.2), with

an := u, with s := k − 1, and d := d(u). As in the proof of Theorem 8.1.1, let I be the

independent set formed by choosing a uniform random ordering of V (H) and studying the

size of the set I consisting of those vertices which have no backward edges with respect to the

random ordering. Then the probability that u ∈ I is exactly the fraction fr(S) of orderings

having no edge occuring entirely before an. Let X = |I|. Then by linearity of expectation,

the expected size of I is given by

E[X] =
∑

v∈V (H)

Pr[v ∈ I] =
∑

v∈V (H)

fr(Sv) ≥
∑

v∈V (H)

fs(d(v))

thereby yielding an alternate probabilistic proof of 8.1.

Proof of Lemma 8.4.1 Define l = l(S) =
∑

i 6=j |Ci∩Cj|. The proof proceeds by induction

on l. The base case is l = 0 corresponding to the case when any two sets Ci, Cj, j 6= i are

disjoint and this case has already been handled in Section 8.3.

Assume the Lemma for l ≤ r ∈ N, and consider S such that l(S) = r + 1. The idea is

to ‘disconnect’, in some sense, the edges, vertex-by-vertex, and show that at each step the

fraction fr(S) does not increase. Choose a vertex a which belongs to more than one edge,

say Ci and some other edge Cj. In order to decrease the intersection of Ci with Cj by at

least one, we add a new vertex a′ to the universe U which will belong only to the edge Ci,

and remove a from Ci, to get a new s-uniform hypergraph S ′ which satisfies l(S ′) ≤ l(S)−1.

Since the number of elements in the universe has gone up by 1, the total number of order-

ings increases by a factor of n+ 1. So it only remains to show that the number of favorable

orderings, that is, orderings with no backward edge increases by a factor of at most n + 1.

Formally, apply the following procedure:

Procedure: Linearize(S,U)

(i) If l(S) = 0, then return LINEAR.

(ii) Choose some a ∈ Ci ∩ Cj for some i 6= j;

(iii) U ′ := U ∪ {a′}; C ′i := (Ci ∪ {a′}) \ {a}; S ′ := (S ∪ {C ′i}) \ {Ci}.
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(iv) Return (S ′,U ′).

Claim 8.4.2 With (S,U) as defined above and (S ′,U ′) = Linearize(S,U), we have fr(S) ≥
fr(S ′).

Lemma 8.4.1 now follows from Claim 8.4.2 (whose proof is provided below), the fact that

l(S ′) ≤ l(S)− 1 and by applying induction on l. �

Proof of Claim 8.4.2 Let Perm(S) be the set of all linear orderings of the vertices of S,

that is, bijections ≺ : S → [|S|]. We use the shorthand a≺b to indicate ≺(a) < ≺(b). Given

an ordering ≺ and a subset C ⊂ U \{an}, call C backward if for all aj ∈ C, aj≺an, otherwise

call C forward. Similarly, a vertex a ∈ C is a a backward vertex if a≺an and is a forward

vertex otherwise. Call ≺ ∈ Perm(S) good if the number of backward edges in ≺ is zero. Let

Good(S) := {≺ ∈ Perm(S) : ≺ is good }
Bad(S) := Perm(S) \Good(S)

Then by definition, fr(S) = |Good(S)|/|Perm(S)|. Clearly, |Perm(S ′)| = (n+1)|Perm(S)|.
So, it suffices to prove that |Good(S ′)| ≤ (n + 1)|Good(S)| to prove the claim. Let ≺′ ∈
Perm(S ′). Let ≺ be the projection of ≺′ into Perm(S), obtained by removing the extra

vertex a′. Notice that the only edge of S ′ whose status (forward or backward) can depend

on the position of the new element is the edge C ′i; all other edges are unaffected by this

addition. Consider the following cases of an arbitrary ≺ ∈ Perm(S) :

(i) ≺ has no backward edges and at least one vertex of Ci other than a is a forward vertex.

Such an ordering is the projection of exactly n+ 1 good orderings of S ′, since a′ could

be placed in any position in ≺ to get a good ordering of S ′.

(ii) ≺ has no backward edges with a as the only forward vertex of Ci. Such an ordering is

the projection of a bad ordering of S ′ if and only if a′ is placed as a backward vertex.

Call the collection of all such orderings ≺′ ∈ Bad(S ′) whose projection is an ordering

of this Type (ii) as Loss(S ′).

(iii) ≺ has Ci as the only backward edge. Such an ordering is in Bad(S), but it can be

the projection of a good ordering of S ′ if and only if a′ is placed as a forward vertex.

Call the collection of all such good orderings of S ′ whose projections are Type (iii)

orderings of S as as Gain(S ′).

(iv) ≺ is none of the three types above. Such an ordering is the projection of only bad

orderings of S ′.
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Types (i) and (ii) are all the orderings belonging to Good(S), and these together are the

projections of (n+ 1)|Good(S)| − |Loss(S ′)|-many good orderings of S ′. Clearly,

|Good(S ′)| = (n+ 1).|Good(S)| − |Loss(S ′)|+ |Gain(S ′)| (8.3)

To complete the proof, it suffices to show that |Loss(S ′)| ≥ |Gain(S ′)|. But notice that

an ordering in Gain(S ′) can be converted into a unique ordering in Loss(S ′), simply by

exchanging the positions of the vertices a and a′. Thus there exists an injective map from

Gain(S ′) to Loss(S ′) and hence |Gain(S ′)| ≤ |Loss(S ′)|. So we get that fr(S ′) ≤ fr(S). �

8.5 Linearity : Probability of having few backward

edges

Now, we consider the more general case when at most A − 1 backward edges are allowed.

In this section, we get an exact expression for the corresponding probabiity. This estimate

plays an important role later in getting new and improved lower bounds on α(H) for locally

sparse graphs and linear hypergraphs. Our goal in this section is to prove the following

result.

Theorem 8.5.1 For a k-uniform linear hypergraph H, a vertex v having degree d, a uni-

formly chosen permutation π induces at most A−1 backward edges with probability Pv(A−1)

given by

Pv(A− 1) =

 1 if d ≤ A− 1;

tA
tA+1

(dA)
(d+1/t
d−A )

if d ≥ A.

Corollary 8.5.2 As d→∞, the asymptotic expression for the probability Pv(A−1) is given

by

Pv(A− 1) ∼ 1

1 + (1/(tA))

(
A

d

)1/t

= Ω((A/d)1/t)

Proof The asymptotics are w.r.t. d→∞, d ≥ A. The expression for having at most A− 1

backward edges is

Pv(A− 1) =
1

1 + (tA)−1

d(d− 1)...(A+ 1)

(d− A)!

(d− A)!

(d+ 1/t)(d− 1 + 1/t)...(A+ 1 + 1/t)

=
1

1 + (tA)−1

1

(1 + 1/td)(1 + (t(d− 1))−1)...(1 + (t(A+ 1))−1)
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Now, for 0 < x, we have (1 + x)−1 > e−x. So we get

Pv(A− 1) > (1 + (tA)−1)−1e(−1/t)
∑d
r=A+1(1/r)

= (1 + (tA)−1)−1e(−1/t)[
∑d
r=1(1/r)−

∑A
r=1(1/r)]

= (1 + (tA)−1)−1e(−1/t)[ln d−lnA]+O((d−A)/(tdA))

= (1 + (tA)−1)−1e(−1/t) ln(d/A)−O((d−A)/(tdA))

= (1 + (tA)−1)−1(A/d)1/tΩ(1)

= Ω((A/d)1/t)

The above expression therefore becomes Ω((A/d)1/t). �

The version of PIE used most commonly deals with N(T=∅), i.e. the number of elements

in the set of interest - in this case, permutations of [td + 1] which do not have any of the

properties under consideration (in this case, backward edges with respect to v). However

we need something slightly different - an expression for the number of permutations which

have at least A backward edges. Clearly, the remaining permutations are those which have

at most A− 1 backward edges.

Therefore, we use a slightly modified version of PIE, which is stated below in Theorem

8.5.5. This form is well-known (see e.g. [62], Chapter 2, Exercise 1), although it seems to be

used less frequently. For the sake of completeness, we provide a simple proof. First we state

and prove two identities involving binomial coefficients:

Lemma 8.5.3 For a, b nonnegative integers,

b∑
i=0

(−1)i
(
a+ b

a+ i

)(
a+ i− 1

i

)
= 1

Proof of Lemma 8.5.3 The proof is by induction on b. For b = 0, the LHS reduces to

0∑
i=0

(−1)i
(
a+ 0

a+ i

)(
a+ i− 1

i

)
which is clearly 1. Assume the lemma to be true for b = c and consider the LHS when

b = c+ 1:

c+1∑
i=0

(−1)i
(
a+ 1 + c

a+ i

)(
a+ i− 1

i

)
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=
c+1∑
i=0

(−1)i
[(
a+ c

a+ i

)
+

(
a+ c

a+ i− 1

)](
a+ i− 1

i

)

=
c+1∑
i=0

(−1)i
[(
a+ c

a+ i

)(
a+ i− 1

i

)
+

(
a+ c

a+ i− 1

)(
a+ i− 1

i

)]

= 1 +
c+1∑
i=0

(−1)i
(

a+ c

a+ i− 1

)(
a+ i− 1

i

)
by the induction hypothesis, since

(
a+c
a+c+1

)
= 0. Now, the second sum is

c+1∑
i=0

(−1)i
(

a+ c

a+ i− 1

)(
a+ i− 1

i

)

=
(a+ c)!

(a− 1)!(c+ 1)!

c+1∑
i=0

(−1)i
(
c+ 1

i

)
= 0

�

Lemma 8.5.4 Given non-negative integers d,A, d ≥ A and a positive integer t,

d−A∑
r=0

(−1)r
(

d

r + A

)(
A+ r − 1

r

)
1

t(r + A) + 1
= 1−

(
At

tA+ 1

) (
d
A

)(
d+1/t
d−A

)
Proof of Lemma 8.5.4 Let the LHS be denoted by Sd. Then, using the identity

(
n
r

)
=(

n−1
r

)
+
(
n−1
r−1

)
, we have

Sd =
d−A∑
r=0

(−1)r
[(

d− 1

r + A

)
+

(
d− 1

r + A− 1

)](
A+ r − 1

r

)
1

tr + tA+ 1

= Sd−1 +
d−A∑
r=0

(−1)r
(

d− 1

r + A− 1

)(
A+ r − 1

r

)
1

tr + tA+ 1

since
(
d−1
d

)
= 0. Now the second sum can be simplified as

Td =
d−A∑
r=0

(−1)r
(

d− 1

r + A− 1

)(
A+ r − 1

r

)
1

tr + tA+ 1

=

(
(d− 1)!

(d− A)!(A− 1)!

) d−A∑
r=0

(−1)r
(
d− A
r

)
1

tr + tA+ 1

=

(
d− 1

A− 1

)
1

tA+ 1

d−A∑
r=0

(−1)r
(
d− A
r

)
1

(t/(tA+ 1))r + 1
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By Lemma 8.3.2, we get

Td =
1

tA+ 1

(
d−1
A−1

)(
d−A+(tA+1)/t

d−A

)
Therefore,

Sd = Sd−1 +
1

tA+ 1

(
d−1
A−1

)(
d+1/t
d−A

)
Unraveling the recursion and noticing that SA = 1/(tA+ 1), we get that

Sd = (1/(tA+ 1))
d−A∑
r=0

(
d−r−1
A−1

)(
d+1/t−r
d−A−r

)
= (1/(tA+ 1))

d−A∑
r=0

(
A−1+r
A−1

)(
A+1/t+r

r

)
by reversing the order of summation. Finally, the following claim completes the proof.

Claim. For d ≥ A, t ≥ 0,

1

tA+ 1

d−A∑
r=0

(
A−1+r
A−1

)(
A+1/t+r

r

) = 1− tA

tA+ 1

(
d
A

)(
d+1/t
d−A

)
Proof of Claim. We use induction on d. When d = A, the LHS is (tA + 1)−1, while the

RHS is 1− At
tA+1

, so we have equality. Now assume equality for d and consider the LHS for

d+ 1:

1

tA+ 1

d−A+1∑
r=0

(
A−1+r

r

)(
A+1/t+r

r

)
= 1− At

tA+ 1

(
d
A

)(
d+1/t
d−A

) + (At+ 1)−1

(
d

d−A+1

)(
d+1+1/t
d−A+1

)
= 1− At

(tA+ 1)
(
d+1+1/t
d−A+1

) [(d
A

)
d+ 1 + 1/t

d− A+ 1
− (At)−1

(
d

d− A+ 1

)]
= 1− At

(tA+ 1)
(
d+1+1/t
d−A+1

) [(d+ 1

A

)
+

(
d+ 1

d− A+ 1

)
(t(d+ 1))−1 − (At)−1

(
d

A− 1

)]
= 1− At

(tA+ 1)
(
d+1+1/t
d−A+1

)(d+ 1

A

)
which is the required expression on the RHS. �
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We now present the generalized PIE and its well-known proof.

Theorem 8.5.5 Let S be an n-set and E1, E2, ...Ed not necessarily distinct subsets of S.

For any subset M of [d], define N(M) to be the number of elements of S in ∩i∈MEi and for

0 ≤ j ≤ d, define Nj :=
∑
|M |=j N(M). Then the number N≥a of elements of S in at least

a, 0 ≤ a ≤ d of the sets Ei, 1 ≤ i ≤ d, is

N≥a =
d−a∑
i=0

(−1)i
(
a+ i− 1

i

)
Ni+a ... (MPIE)

Proof Take an element e ∈ S.

(i) Suppose e is in no intersection of at least a Ei’s. Then e does not contribute to any of

the summands in the RHS of the equation (MPIE), and hence, its net contribution to

the RHS is zero.

(ii) Suppose e belongs to exactly a+ j of the Ei’s, 0 ≤ j ≤ d− a. Then its contribution to

the RHS of (MPIE) is
j∑
l=0

(−1)l
(
a+ j

a+ l

)(
a+ l − 1

l

)
and by Lemma 8.5.3 this is equal to 1. �

Proof of Theorem 8.5.1 If d ≤ A− 1, then Pv(A− 1) = 1 obviously. The proof is similar

to the proof of Theorem 8.3.1, except that in place of the PIE, we use Theorem 8.5.5. The

set under consideration is the set of permutations of [td+1], the subsets Ei correspond to the

permutations for which the i-th edge is backward. It is easy to see that N(M) = N(T≥M)

under the notation used in Theorem 8.3.1 and hence N(M) = (td+1)!
t|M |+1

. Therefore we have

Nj =
(
d
j

) (td+1)!
tj+1

as before. Hence the expression for the probability Qv(A) that at least A

edges are backward under a uniformly random permutation π, becomes:

Qv(A) =
d−A∑
i=0

(−1)i
(

d

i+ A

)(
A+ i− 1

i

)
1

t(i+ A) + 1
.

By Lemma 8.5.4 the RHS of the above expression is

Qv(A) = 1−
(

1

1 + (tA)−1

) (
d
A

)(
d+1/t
d−A

) .
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Hence the probability of having at most A− 1 backward edges is given by

Pv(A− 1) =
1

1 + (tA)−1

(
d
A

)(
d+1/t
d−A

)
and the proof is complete. �

8.6 Lower bounds for linear hypergraphs and Kr-free

graphs

In this section we prove Theorems 8.1.2, 8.1.3, and 8.1.4. These follow by a simple application

of Corollary 8.5.2. Since the proofs follow the same outline, we prove them simultaneously,

highlighting only the differences as and when they occur.

Proofs of Theorems 8.1.2, 8.1.3 and 8.1.4. Consider a uniformly chosen random per-

mutation of the vertices of the graph/hypergraph under consideration. Let D be the average

degree of the graph or hypergraph and A = Dε. Let I be the set of those vertices each

having at most A− 1 backward edges incident on it. Clearly, the expected size of I is

E[|I|] =
∑
v∈V

Pv(A− 1) ≥ c
∑
v∈V

(
A

max {A, d(v)}

)1/t

= cA1/t
∑
v∈V

(
1

max {A, d(v)}

)1/t

for some constant c = c(k, ε). (For a graph, k = 2 and hence t = 1). Also, by construction,

the average degree of the sub(hyper)graph induced by I is at most k(A − 1). Therefore,

there exists an independent set I ′ of size at least as follows

(i) Case t = 1, graph is K3-free: By [56], α(G) is at least

Ω

(
log(2(A− 1))

|I|
2(A− 1)

)
= Ω

(
logD

∑
v∈V

1

max {A, d(v)}

)

(ii) Case t = 1, graph is Kr-free (r > 3): By [58], α(G) is at least

Ω

(
log(2(A− 1))

log log(2(A− 1))

|I|
2(A− 1)

)
= Ω

(
logD

log logD

∑
v∈V

1

max {A, d(v)}

)

(iii) Case t > 1, hypergraph is linear: By [22], α(H) is at least

Ω

(
(log k(A− 1))1/t |I|

(k(A− 1))1/t

)
= Ω

(
(logD)1/t

∑
v∈V

1

(max {A, d(v)})1/t

)

The above three cases prove Theorems 8.1.2, 8.1.3 and 8.1.4 respectively.

109



Note: An inspection of the proofs above show why we need ε to be a fixed constant. It is

because all three expressions above essentially have logA i.e. ε logD in the numerator. So,

if ε = o(1), then logA = o(logD), and we would get asymptotically weaker results. �

8.7 Construction comparing average degree vs. degree

sequence based bounds

A degree sequence-based bound obviously reduces to a bound based on average degree,

when the (hyper)graph is regular. However, the convexity of the function x−1/t, x ≥ 1

and t ∈ N, shows that the bounds in Theorems 8.1.2, 8.1.3 and 8.1.4 are better than the

corresponding average degree-based bounds proved in [4], [56] and [58] respectively provided

the minimum degree is at least A, although it is not clear a priori if the improvement can

become significantly larger. Also, at least half the vertices will have degree at most 2D, so

even in the general case (no restriction on the minimum degree) our bounds are no worse

than the average degree based bounds (ignoring the constant factors). In fact, they can be

much larger than the latter bounds. We now give infinite families of Kr-free graphs and

linear k-uniform hypergraphs which show that

(i) The bounds given by Theorem 8.1.2, 8.1.3 can be better than the bounds in [5, 56, 58]

respectively by a multiplicative factor of log(|V (G)|).

(ii) The bound in Theorem 8.1.4 can be better than the bound in [4] by a multiplicative

factor of ((log |V (H)|)/(log log |V (H)|))(1−ε)/t, where ε is the constant mentioned in

Theorem 8.1.4.

Case (i) Take a set of n disjoint graphs, K1,1, K2,2, K4,4, ... , K2n−1,2n−1 . For each i ∈ [n], join

one of the parts of the component K2i,2i to one of the parts in K2i−1,2i−1 , by introducing

a complete bipartite graph between them. (Use the other part of K2i,2i for joining to

K2i+1,2i+1). Let G denote the resulting connected triangle-free graph.

The total number of vertices is 2n+1 − 2, whereas the average degree is

dav = 2|E(G)|/|V (G)| = (2n + 1)/2 − o(1). Hence, the average degree based bound

gives Θ(|V (G)| log dav/dav) = Θ(log dav). Denote by l the maximum j such that 3.2j ≤
A < 3.2j+1, where A := dεav. For every fixed ε ∈ (0, 1), we have n− l = Θ(n). Theorem

8.1.2 gives

c log dav
∑
v∈V

1

max{d(v), A}
= c log dav

[
1

A
+

l∑
j=1

3.2j

A
+

n−2∑
j=l+1

(
3.2j

3.2j

)
+

2n−1

2n−1

]
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= c(log dav) [Θ(1) + Θ(n)]

= c(log dav)Θ(log(|V (G)|))

The same example works for Theorem 8.1.3 also, since triangle-free graphs are obviously

Kr-free, for r ≥ 3.

Case (ii) Fix some m = m(n) = k2n . For each i ∈ {0, . . . , n− 1}, first create a connected linear

hypergraph as follows: Take the vertex set as [k]2
i
, i.e. the set of 2i-dimensional vectors

with each co-ordinate of a vector taking values in {1, 2, . . . , k}. Let each hyperedge

consists of the k vertices which have all but one co-ordinate fixed. Call this hypergraph

an i-unit. It can be verified easily that each i-unit is k-uniform and 2i-regular. Now

for each i, create an i-component as follows:

(i) Take mi = d m
k2i
e disjoint unions of i-units and linearly order them, say i1, . . . , imi .

(ii) Consider the sets of vertices of size k formed by choosing at most one vertex from

each i-unit. Add such edges greedily, ensuring the following:

(i) No vertex belongs to more than one such edge;

(ii) Choose the first edge from i-units i1, . . . , ik, the second one from i2, . . . , ik+1,

etc. - in general the j-th such edge has one vertex from each of the i-units

ij (mod mi), ij+1 (mod mi), . . . ij+k−1 (mod mi).

Each i-component is a connected, linear k-uniform graph and the degree of every

vertex is either 2i or 2i + 1. Take the disjoint unions of n such i-components, one

for every i ∈ {0, . . . , n − 1}, to get the hypergraph H = H(n) = (V,E). For each

j ∈ {0, . . . , n− 2}, greedily add a maximal matching between components j and j+ 1,

with each edge taking only one vertex from component j (and remaining k − 1 from

the component j + 1), and no vertex belonging to more than one such edge. Let G be

the resulting connected, linear k-uniform graph. The total number of vertices in the

j-th component is mj · k2j = m(1 + o(1)), and hence |V | = nm(1 + o(1)). Also, the

average degree is dav ∼ (2n − 1)/n ∼ 2n/n. Let l denote the greatest integer j such

that 2j ≤ (dav)
ε ∼ 2εn/nε. Therefore the average degree based bounds in [4, 22] give a

lower bound of

α(H) = Ω(mn1+1/t(log dav)
1/t/2n/t) . . . (A)

Notice that the degree of any vertex in the i-th component (after G has been con-

structed) is always between 2i and 2i + 3. For a vertex v such that d(v) < dεav, the

actual degree does not play a role in the expression in Theorem 8.1.4. For vertices v
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such that d(v) ≥ dεav, this increase is negligible (2εn/nε + 3) ∼ 2εn/nε. Therefore, the

bound in Theorem 8.1.4 gives

α(H) = Ω

(
(log dav)

1/t

[
l∑

j=0

mnε/t

2εn/t
+

n−1∑
j=l+1

m

2j/t

])

= Ω

(
m(log dav)

1/t

[
ε2−εn/tn1+ε/t + 2−εn/tnε/t

(1− 2−(n−l−1)/t)

1− 2−1/t

])
= Ω

(
m(log dav)

1/t × 2−εn/t
[
εn1+ε/t + nε/t

(1− 2−(n−l−1)/t)

1− 2−1/t

])
= Ω

(
m(log dav)

1/t × 2−εn/t(εn1+ε/t + Θ(nε/t))
)
. . . (B)

The ratio of the bound in (B) to the one in (A) can be seen to be Ω((2n/n)(1−ε)/t),

which is Ω((log |V |/ log log |V |))(1−ε)/t).

8.8 Binomial Identities

In the course of this chapter, certain non-trivial binomial identities were also obtained, with

semi-combinatorial proofs. Some of the identities are new, to the best of our knowledge, and

may be of independent interest. These are described below:

A∑
a=0

d−a∑
i=0

(
d

a+ i

)(
a+ i

i

)
2i(2d− 2a− i)!(2a+ i)! = (d!)24d−A(A+ 1)

(
2A+ 1

A

)
(8.4)

The LHS (when divided by (2d+1)!) amounts to the expression for Pv(A) when k = 3: choose

a + i hyperedges from the d hyperedges incident on v, of these a hyperedges are backward,

while i hyperedges each have one vertex occurring prior to v in the random permutation.

These i vertices can be chosen from i pairs in 2i ways. The (2a+ i) vertices before v can be

arranged in (2a + i)! ways amongst themselves. The remaining (2d− 2a− i) vertices occur

after v and can be arranged amongst themselves in (2d − 2a − i)! ways. The RHS is easily

obtained from Theorem 8.5.1 by taking t = 2.

Even the A = 0 case of the above identity gives (after some rearrangements):

d∑
i=0

(
d+ i

d

)
2−i = 2d

The above identity merits discussion in some detail in [37] (Chapter 5, eqs. 5.20, 5.135-8); a

nice combinatorial proof of it is provided in [65].
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The next identity (for the more general case k ≥ 3) is much more complicated. Given

i ∈ Z+, let Ct−1
i denote the set of all solutions in non-negative integers j = (j1, j2, . . . , jt−1)

of the equation j · 1 = i i.e. Ct−1
i := {(j1, . . . , jt−1) :

∑t−1
l=1 jl = i ; ∀l jl ≥ 0}. Then

A∑
a=0

d−a∑
i=0

∑
j∈Ct−1

i

[(
d

a+ i

)(
a+ i

a, j1, . . . , jt−1

)
(ta+

t−1∑
s=1

s.js)!(td− (ta+
t−1∑
s=1

s.js))!
t−1∏
r=1

(
t

r

)jr]

= (td+ 1)!(1 + (tA+ t)−1)−1

[(
d

A+ 1

)/(
d+ 1/t

d− A− 1

)]
(8.5)

The LHS again follows by similar arguments as for (8.4), this time for general t. There are

a backward edges, i1 edges which have one vertex before v, i2 edges with 2 vertices before

v, and so on. The RHS follows from Theorem 8.5.1.

Our proof techniques for identities (8.4, 8.5) involving PIE, are non-standard. It may be

an interesting problem in Enumerative Combinatorics to come up with combinatorial proofs

of the identities (8.4, 8.5). In particular, for (8.5), it would be interesting to come up with

proofs using any standard technique such as induction, generating functions, the WZ method

etc.

8.9 Concluding Remarks

As the constructions of Section 8.7 show, our degree-sequence-based lower bounds can be

asymptotically better than the previous average-degree-based bounds. This is in spite of

using the previous bounds in the proof. The power of the random permutation method lies

in that it allows us to obtain a relatively large sparse induced subgraph, over which the

application of the average-degree bound yields a much better result than a straightforward

application over the entire graph would have.

With regard to the tightness of our results and the weakening parameter A, firstly, from

the proof of Theorems 8.1.2-8.1.4, it is clear that ε = logA/ logD has to be at least a

constant. Ideally, we may want to have ε = 0 in the bounds of Theorems 8.1.2, 8.1.3 and

8.1.4. The following example, however, shows that it is possible to construct a triangle-free

graph for which the bound in say, Theorem 8.1.2 would give a value more than the number

of vertices: Take a disjoint union of A = Kn/3,n/3 and B = Kn/3, and introduce a perfect

matching between B and one of the parts of A. Now, |V | = n, D ∼ 2n/9, and hence if ε = 0,

Theorem 8.1.2 would give a lower bound of Ω(n log n), which is asymptotically larger than

|V |. Similar examples can be constructed with linear hypergraphs also.
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Chapter 9

Conclusion and Future Directions

9.1 Summary

In this thesis we studied some (di)-graph invariants over random (di)-graphs,and obtained

results on their concentration, for a range of edge/arc probabilities.

For a random directed graph D ∈ D(n, p), we first considered the size of the largest

induced acyclic tournament, mat(D). We showed that for all p = p(n), mat(D) is two-point

concentrated at {b∗, b∗+1}, where b∗ = d2 logp−1 n+0.5e. Further, for every fixed p, mat(D)

is one-point concentrated for most n, i.e. for a dense subset of integers. Moreover, we showed

some non-1-point concentration results for the case when b∗ = b∗(n) is always close to some

integer. We also obtained threshold results for the digraph properties mat(D) = k, for each

k ∈ Z+. Next, we analysed some heuristic algorithms for obtaining a large induced acyclic

tournament in a given random digraph. We showed that a greedy heuristic always yields a

maximal acyclic tournament, and hence, a.a.s. every maximal acyclic tournament is of size

at least logp−1 n, and further that an improved algorithm based on Matula’s “expose-and-

merge” paradigm yields a slight improvement of logp−1 n+ c
√

logp−1 n, where c ∈ <+ is any

real number.

We also considered the problem of the size mas(D) of the largest induced acyclic subgraph

in a random digraph D ∈ D(n, p). We improved upon the earlier bound of

2

ln q
(lnnp− ln lnnp−O(1)) ,
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(where q = (1 − p)−1), given by Subramanian [63] and Spencer and Subramanian [61],

showing that for p ≥ C/n, where C is a suitably large constant,

mas(D) ≥ 2

ln q
(lnnp−O(1)) .

Besides, we gave a small additive improvement on the upper bound for mas(D), using the

idea of counting the number of acyclic orientations. As a result, the gap between the upper

and the lower bounds on mas(D) was improved from O(p−1 ln lnnp) to O(p−1). Using

Talagrand’s inequality, we showed that the actual gap is ∼
√
p−1 lnnp. Further, as in

the case of mat(D), we also analyzed some heuristic algorithms and showed that a.a.s.

an algorithm based on Matula’s “expose-and-merge” paradigm yields an induced acyclic

subgraph of logq n+ c
√

logq n, where c ∈ <+ is any real number.

Next, we studied the size of a largest induced path, cycle or tree in the random graph

G(n, p), indicated by mip(G), h(G) and T (G) respectively. Using the first and second mo-

ment methods, together with some innovative ways of computing the second moment, we

were able to show that

T (G) ≥ mip(G) ≥ d2 logq np+ 2e.

This improves the old lower bound given by Erdős and Palka [29] for T (G). We also obtained

2-point concentration results for mip(G), and h(G) when n−1/2 ln2 n ≤ p ≤ 1 − ε, for any

real ε > 0.

Finally, we looked into the problem of finding a degree-sequence based lower bound on the

independence number of general and linear k-uniform hypergraphs. Extending the Bopanna-

Caro-Wei technique for independence numbers of graphs, we gave a probabilistic proof of a

result of Caro and Tuza [21], showing that for any k-uniform hypergraph H = (V,E)

α(H) ≥
∑

v∈V (H)

1(
d(v)+1/t
d(v)

) .
Further, we used this method, together with a special formulation of the Principle of Inclusion

and Exclusion, to show that for any linear k-uniform hypergraph H, there exists c > 0 such

that the following holds:

α(H) ≥ c(logD)
1

k−1

∑
v∈V (H)

1

max{D
ε

k−1 , (d(v))
1

k−1}
.

This answered some questions asked by Caro and Tuza in their 1991 paper [21].
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Future Directions

In the final section of this thesis, we shall discuss some future directions that the research

done in this thesis can lead to:

(i) In Chapters 5, 6, we’ve seen the size of the largest induced directed acyclic subgraph

(DAG) of a random digraph D(n, p). What would such a largest DAG look like? For

example, does it have a directed hamiltonian path(s)? Through an easy first moment

calculation, it can be shown that the answer is “no”. Still other questions remain

interesting, e.g. the number of sources and sinks, the number of layered orderings and

their general structure, i.e. the number of vertices in each layer.

(ii) Is it possible to obtain a lower bound of the order of (2 logq np)(1− o(1)) on mip(G),

G ∈ G(n, p), when p = O(n−1/2)? This might require newer techniques for proving

concentration of a random variable.

(iii) In the reverse direction of the previous question, is it possible to prove that mas(D)

and/or mip(G) are not concentrated in an interval of constant length, for p = o(n−1/2)?

(iv) Recently, the Caro-Wei lower bound on graphs (see Chapter 8) was improved by Angel,

Campigotto and Laforest [2] using the Bhatia-Davis inequality, essentially by looking

at the variance of a certain random variable, instead of just the expected value as the

Bopanna-Caro-Wei method does. Is it possible to have a similar improved lower bound

for the independence number of hypergraphs also?
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