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Synopsis

In this thesis we study the algorithmic complexity of Graph Isomorphism and Boolean
Function Isomorphism and some variants of these problems.

First, we define and study an optimization problem of the Graph Isomorphism problem
that we call the Approximate Graph Isomorphism problem. Given two graphs G and H,
we are interested in finding a bijection π from V(G) to V(H) that maximizes the num-
ber of matches (edges mapped to edges or non-edges mapped to non-edges). We give an
α-approximation algorithm for this problem that runs in time nO(log n/α2) for any constant
α. We prove this by combining the nO(log n) time additive error approximation algorithm
of Arora et al. [AFK02] with a simple averaging algorithm. We also consider the cor-
responding minimization problem (of mismatches) and we prove that it is NP-hard to
α-approximate for any constant factor α. Furthermore, we show that it is also NP-hard
to approximate the maximum number of edges mapped to edges beyond a factor of 0.94.
We also explore these optimization problems for bounded color class graphs which is a
well studied tractable special case of Graph Isomorphism [Bab79, FHL80] and we show
hardness of approximation results for these problems.

Next, we study the complexity of the Boolean Isomorphism problem which is defined as
follows: Given two graphs G and H, test whether there exists a permutation π : [n] →
[n] such that f π(x1, · · · , xn) = f (xπ(1), · · · , xπ(n)) and g(x1, · · · , xn) are equivalent. We
study the computational complexity of the exact and approximate versions of the Boolean
Isomorphism problem.

The objective in the Approximate Boolean Isomorphism problem is to construct a permu-
tation π : [n] → [n] such that Pr[ f π(x) , g(x)] ≤ ε for two given isomorphic Boolean
functions f and g. We show that for Boolean functions computable by constant-depth
polynomial-size circuits as well as for functions representable as linear threshold func-
tions, there is a randomized 2Õ(

√
n(log(n/ε))O(1))-time algorithm that computes a permutation

π such that Pr[ f π(x) , g(x)] ≤ ε.

v



We then study the complexity of the Boolean Isomorphism problem based on the repre-
sentation in which the functions f and g are given with the aim of bounding the complex-
ity of the isomorphism problem by the complexity of the satisfiability problem for that
representation. We show that when f and g are given as Horn-CNFs, then the Boolean
Isomorphism problem is polynomial-time equivalent to the Graph Isomorphism problem.
We also show that the Boolean Isomorphism problem is polynomial-time equivalent to
Graph Isomorphism when f and g are given as bounded-rank decision trees. As a conse-
quence we obtain a 2O((log s)O(1) √n)-time algorithm for testing whether two functions given
as size-s decision trees are isomorphic. Furthermore, we prove a trichotomy theorem
regarding the complexity of the Boolean Isomorphism problem when the functions are
given as decision lists.
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Chapter 1

Introduction

The topic of this thesis is the computational complexity of the isomorphism problem of
graphs, the isomorphism problem for Boolean functions for various representations, and
some variants of these problems, especially centered on notions of approximate isomor-
phism.

Classifying computational problems based on the resources - time and space - required
to solve them is one of the important objectives of computer science, and in particular,
of complexity theory. The class P of problems that are decidable in polynomial time by
deterministic Turing machines is widely accepted as the correct notion of problems that
are efficiently solvable [Edm65, Cob65]. Proving that P is different from NP, the class of
problems that are decidable in polynomial time by non-deterministic Turing machines is
an outstanding open problem in complexity theory.

Cook [Coo71] introduced the theory of NP-completeness by showing that SAT is NP-
complete. He proved that the computation of a polynomial-time non-deterministic Turing
machine on an input can be encoded as a Boolean formula in time polynomial in the size
of the description of the Turing machine such that the non-deterministic Turing machine
accepts the input if and only if the Boolean formula is satisfiable. A consequence of
this theorem is that if SAT ∈ P then NP = P. Karp, in [Kar72], defined the notion
of polynomial-time many-one reductions and showed that a wide variety of seemingly
different problems are NP-complete.

Given an instance of I of a problem A, a reduction is an encoding R(I) of the instance I
to another problemB. A polynomial-time many-one reduction is a function f computable
by a polynomial time deterministic Turing machine that takes as input an instance I of
a problem A and outputs an input instance f (I) of B with the property that I is a “yes”-
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instance of A if and only if f (I) is a “yes”-instance of B. If A is reducible to B, it is
denoted as A ≤ B since B is computationally at least as hard as A. As a consequence, if
there is a polynomial time algorithm for B, then we can combine that with the reduction
f to obtain a polynomial time algorithm for A.

1.1 Graph Isomorphism

The Graph Isomorphism problem is a very natural algorithmic question about graphs.
Given two graphs G and H on n vertices, a graph isomorphism is a bijection π :
V(G) → V(H) such that for each pair (u, v) of vertices in G, (u, v) ∈ E(G) if and only
if (π(u), π(v)) ∈ E(H). In other words, if G is isomorphic to H, then G can be “redrawn”
to look identical to H. If there is an isomorphism between the two graphs G and H, we
will say that G and H are isomorphic and denote it by G � H. The Graph Isomorphism
problem (for convenience we will sometimes write GI to denote Graph Isomorphism) is
the following algorithmic question: Given two graphs G and H, on n vertices, are the two
graphs isomorphic?

The problem is clearly in the complexity class NP, and whether or not Graph Isomor-
phism has a polynomial-time algorithm is a celebrated open question in the field of al-
gorithmic complexity. Garey and Johnson, in their book on NP-completeness [GJ79],
highlight Graph Isomorphism as one of the challenging open problems of the field along
with integer factoring.

The computational complexity of Graph Isomorphism has been well-studied for over
four decades. Goldreich, Micali and Wigderson [GMW87] proved that the graph non-
isomorphism problem has a two-round interactive protocol. Building on that, Boppana,
Hastad and Zachos [BHZ87] showed that if coNP-complete problems have constant-
round interactive protocols, then the Polynomial-Time Hierarchy (PH) collapses to the
second level (Σp

2). It follows as a consequence of these results that if GI is NP-complete
then the polynomial-time hierarchy collapses to the second level (i.e. PH = Σ

p
2). On the

other hand, Torán [Tor04] has shown that GI is hard for the class of problems that are NC1-
reducible1 to computing the determinant of an integer matrix. This is the best hardness
result known for Graph Isomorphism. It is an open problem whether Graph Isomorphism
is hard for the class P under logspace reductions.

1A language A is NC1-reducible to B if for each n, there is a circuit of size nO(1), depth O(log n) with
AND, OR gates with fan-in 1 and oracle gates for the language B with unbounded fan-in which decides if a
string x ∈ {0, 1}n is in A. The size of an oracle gate is the number of wires w that feed into it and contributes
log w to the depth of the circuit.
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On the algorithmic side, the fastest known algorithm for testing the isomorphism of
two graphs, due to Luks [BL83], runs in time 2O(

√
n log n). This algorithm combines the

bounded degree graph isomorphism algorithm of Luks [Luk82] with a degree reduction
trick due to Zemlyachenko [ZKT85]. These algorithms use permutation group theory
and reduce the isomorphism problem to finding the automorphisms of the graph. Cur-
rently known techniques are even unable to give an algorithm with running time 2O(n1/2−ε)

for general graphs and this remains an open problem. For testing the isomorphism of
strongly regular graphs, Spielman [Spi96] gave a deterministic 2O(n1/3)-time algorithm.
More recently, Babai et al [BCS+13] have given a deterministic algorithm for the same
problem which runs in time 2O(n1/5).

It is interesting to note that Graph Isomorphism has also been studied in the area of pat-
tern recognition as the graph matching problem; see [LR13] for a recent survey. In graph-
based pattern recognition, images are represented as graphs and the problem of checking
whether the images are identical essentially amounts to checking if there is a permutation
of the vertices of one graph such that the most of edges in the first graph is correctly
mapped to edges in the other graph and most of the non-edges in the first graph is cor-
rectly mapped to the non-edges in the second graph. Various heuristic methods have
been used successfully in this area; see [GXTL10]. This motivates a theoretical study of
approximate graph isomorphism in this thesis.

Approximate Graph Isomorphism

We define and study four variants of the approximate graph isomorphism problem in this
thesis. The basic version of approximate Graph Isomorphism is the following optimiza-
tion problem: we are given two graphs G and H as input, and the objective is to compute
a bijection π : (V) → V(H) such that most edges of G are mapped to edges of H by π,
and most non-edges of G are mapped to non-edges of H. Unlike Graph Isomorphism,
for which techniques from permutation group theory turn out to be algorithmically use-
ful, for approximate Graph Isomorphism such techniques do not appear meaningful be-
cause approximate isomorphisms from graph G to graph H do not have a group-theoretic
structure. We study the following versions of the approximate graph isomorphism prob-
lem [AKKV12]:

1. Max-EGI: Given G1,G2, find a bijection π : V(G1) → V(G2) that maximizes the
number of edges of G1 that are mapped to edges of G2. Assuming the hardness of
an average-case instance of Subgraph Isomorphism, explained in detail in Chap-
ter 2, we show that there is no polynomial-time algorithm that approximates the
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optimum better than a factor of 1/2 + ε of the optimum for any ε. The proof, de-
tailed in Chapter 2, is via a reduction that preserves approximability. More recently,
O’Donnell et al [OWWZ14] have shown that there is no constant factor approxima-
tion algorithm for Max-EGI assuming the hardness of the random 3XOR hypothesis

of Feige [Fei02] which we explain in Section 2.3 of Chapter 2.

2. Max-PGI: Given G1,G2, find a bijection π : V(G1) → V(G2) that maximizes the
number of vertex pairs (u, v) that are mapped correctly. I.e. the number of ver-
tex pairs (u, v) in the graph G1 such that (u, v) is an edge in G1 if and only if
(π(u), π(v)) is an edge in graph G2. For this maximization problem, we obtain an α-
approximation algorithm that runs in time nO(log n/α2) in [AKKV12]. We combine an
additive error approximation algorithm for the more general quadratic assignment
problem, due to [AFK02], with the observation that a random permutation performs
well when the difference in the number of edges in the two graphs is large.

3. Min-EGI: Given G1,G2, find a bijection π : V(G1) → V(G2) that minimizes the
number of edges in G1 that are mapped to non-edges in G2. This is the minimization
version of Max-EGI. In [AKKV12], we observe that for this problem there is no
polynomial-time constant factor approximation algorithm unless P = NP.

4. Min-PGI: Given G1,G2, find a bijection π : V(G1)→ V(G2) that minimizes the total
number of vertex pairs (u, v) in G1 that are incorrectly mapped by π (i.e. edges to
non-edges or non-edges to edges). For this problem, we show a weaker result than
for Min-EGI that there is no polynomial-time approximation scheme unless P =

NP. We also observe that designing a polynomial-time algorithm that approximates
the optimum to any constant is at least as hard as GI.

5. In Chapter 2, we also study the four problems mentioned above for the case of
vertex-colored graphs. We denote the problems as Max-EGIk, Max-PGIk, Min-
EGIk, and Min-PGIk respectively, where the k indicates that the input graphs G1

and G2 are vertex-colored and there are at most k vertices with a particular color.
Isomorphism testing of vertex-colored graphs with bounded color-class size is a
well-studied special case of graph isomorphism for which polynomial-time algo-
rithms are known [FHL80, Bab79].

In Chapter 2, we show that the optimization problem for graphs with bounded color-
class size is harder to approximate than the general case. Specifically, we show
that there is no polynomial-time 0.94- approximation algorithm for Max-EGIk and
Max-PGIk unless P = NP. For Min-EGIk, we show that there is no polynomial-
time constant-factor approximation algorithm, for any constant unless P = NP.
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Similarly for Min-PGIk, we show that there is no polynomial-time constant-factor
approximation algorithm for any constant assuming the Unique Games Conjec-
ture [Kho02].

1.2 Boolean Isomorphism

Another set of problems that we consider in this thesis concerns the isomorphism problem
for Boolean functions, which we will refer to in the rest of the thesis as the Boolean Iso-

morphism problem. The Boolean Isomorphism problem is the following decision prob-
lem: Given two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} on n

Boolean variables, test if there is a bijection π : [n] → [n] such that f (xπ(1), . . . , xπ(n)) and
g(x1, . . . , xn) are equivalent Boolean functions.

Naturally, the computational complexity of this problem depends on the input representa-
tion. For instance, when the inputs f and g are given as CNF formulas, then the Boolean
Isomorphism problem is coNP-hard since a CNF formula f is unsatisfiable if and only if
f is isomorphic to the function g that is 0 on all inputs. When the Boolean functions f and
g are given as formulas or circuits, notice that the isomorphism problem is in the com-
plexity class Σ

p
2 . For, we can guess the permutation π of the variables with a polynomially

bounded existential quantifier and with a polynomially bounded universal quantifier we
check if the two functions f (xπ(1), . . . , xπ(n)) and g(x1, . . . , xn) are equivalent.

Agrawal and Thierauf, in [AT96] showed that the Boolean isomorphism problem for
circuits is not complete for Σ

p
2 unless the polynomial hierarchy collapses to the third

level. Their proof is on the lines of the Boppana-Hastad-Zachos argument [BHZ87].
They give an interactive protocol for Boolean Nonisomorphism in which the random-
ized polynomial-time verifier has oracle access to SAT. Furthermore, Thierauf [Thi00],
has studied the Boolean isomorphism problem for various other representations like read-
once branching programs, probabilistic branching programs etc.

When the two n-variate Boolean functions f and g are given as truth-tables, then the input
size is already N = 2n+1. Therefore, even the brute-force algorithm of testing if each per-
mutation π ∈ S n is an isomorphism between the functions f and g takes only NO(log log N)

time. A Boolean function f : {0, 1}n → {0, 1} on n variables can be encoded as a hyper-
graph H(V,E) where the vertex set V is the set of the variables of the Boolean function
f and a subset E ⊆ [n] is a hyperedge if and only if for the characteristic vector x of the
set E, f (x) = 1. In [Luk99], Luks has given an algorithm for testing the isomorphism
of two hypergraphs on n vertices in time 2O(n). Consequently, there is a polynomial-time
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algorithm for the isomorphism problem when the functions f and g are given as truth
tables.

Since Boolean Isomorphism, when the functions f and g are input in a particular rep-
resentation, is computationally at least as hard as the unsatisfiability problem for that
representation, obtaining a 2o(n) time algorithm for Boolean Isomorphism even for 3-CNF
formulas is difficult. At this point, we can ask the following two motivating questions:

1. Given two Boolean functions f and g, suppose we are only interested in comput-
ing an approximate isomorphism? I.e. a permutation π such that for most inputs
x ∈ {0, 1}n we have f (xπ(1), · · · , xπ(n)) = g(x1, · · · , xn). Specifically, is there a 2o(n)-
time algorithm for computing such an approximate solution when f and g are CNF
formulas?

2. Suppose f and g are input in representations for which satisfiability is in polynomial
time. For instance, suppose f and g are given 2-CNFs or Horn-CNFs. Is there a
2o(n) time algorithm for Boolean Isomorphism in these cases?

In the rest of this chapter we elaborate on these questions and describe our results in this
context.

Approximate Boolean Isomorphism

As we described before, given two Boolean functions as circuits or formulas computing
them, there is a 2O(n) time algorithm known for testing the isomorphism. But even for the
case when the functions are given as 3-CNFs, obtaining an algorithm with running time
2o(n) for the isomorphism problem appears difficult. In particular, it will contradict the
exponential time hypothesis2 [IPZ01].

Moreover, a hypergraph with m hyperedges on n vertices can be encoded as a disjunction
of m terms, where each term corresponds to a hyperedge and is the conjunction of the
variables corresponding to the vertices in the hyperedge. Therefore, the isomorphism of
monotone DNFs is also at least as hard as Hypergraph Isomorphism. Since there is no
algorithm known for Hypergraph Isomorphism which has a running time better than 2O(n),
a 2o(n) time algorithm for Boolean Isomorphism problem for the special class of monotone
DNFs, seems difficult.

2Let sk be the infimum over all δ such that there is a 2δn-time algorithm for k-SAT. The Exponential
Time Hypothesis (ETH) states that for all k, sk > 0. Sometimes ETH also refers to the weaker statement
that there is is no 2o(n)-time algorithm for k-SAT.
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This motivates the question whether it is easier to find approximate isomorphisms, which
we will now define. Two Boolean functions f and g are said to be ε-close if

Pr
x∈{0,1}n

[ f (x) , g(x)] ≤ ε,

for x ∈ {0, 1}n picked uniformly at random. In other words, f and g differ in at most
ε2n many points in {0, 1}n. We say that Boolean functions f and g are ε-approximately

isomorphic if there is a bijection π : [n]→ [n] such that f (xπ(1), . . . , xπ(n)) and g(x1, . . . , xn)
are ε-close. Since 2o(n) time algorithms for Boolean Isomorphism, when f and g are given
as circuits, appears difficult to solve, we ask the following question: Given two isomorphic
Boolean functions f and g on n variables as formulas or circuits, is there an algorithm for
constructing an ε-approximate isomorphism π that runs in time 2o(n)?

In Chapter 3, one of the problems that we study is approximate Boolean Isomorphism
for Boolean functions f and g given by constant depth polynomial-size circuits, also
known as AC0 circuits. More precisely, given isomorphic Boolean functions f and g

input by circuits of size s and depth d, we give a randomized 2O((log s)O(d) √n) time algorithm
to construct an approximate isomorphism. Our algorithm is based on the seminal work
of Linial, Mansour and Nisan [LMN93] in which they showed that Boolean functions
computable by circuits of size s and depth d have their Fourier spectrum ε-concentrated
on sets of poly-logarithmic size. More precisely, they proved the following statement for
any function f computable by circuits of size s and depth d:∑

|S |≤(log(2s/ε))d

f̂ (S )2 ≤ ε,

where f̂ (S ) are the Fourier coefficients of f . We use this result and approximate the
Boolean function by estimating the Fourier coefficients.

In fact, in Chapter 3 we prove the more general statement that if f and g are two iso-
morphic Boolean functions, f and g input as oracles, such that

∑
|S |≤t f̂ (S )2 ≤ ε and∑

|S |≤t ĝ(S )2 ≤ ε, then there is a randomized algorithm that runs in time 2O((log n/δ)O(1)tO(1) √n)

which constructs an δ-approximate isomorphism, where δ depends on ε.

Exact Boolean Isomorphism

In Chapters 4 and 5, we turn back to the exact Boolean isomorphism problem. We study
the complexity of Boolean Isomorphism for representations like Horn-CNFs, decision
trees and decision lists.
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Our aim is to explore representations of Boolean functions for which there are 2o(n)-
time algorithms for Boolean Isomorphism. Observe that given a graph G(V, E) on n

vertices v1, . . . , vn, we can construct the following 2-DNF fG on n variables x1, . . . , xn:
fG = ∨(vi,v j)∈E xi ∧ x j. This 2-DNF has |E|many minimal satisfying assignments and there-
fore two graphs G and G′ are isomorphic if and only if the Boolean functions represented
by the 2-DNFs, fG and fG′ are isomorphic. Hence, we cannot expect to obtain an algo-
rithm for Boolean Isomorphism with running time better than 2O(

√
n log n) as this would

give a faster algorithm for testing Graph Isomorphism.

Since for any representation, Boolean Isomorphism is computationally at least as hard as
the satisfiability problem for that representation, an interesting question is to compare the
complexity of Boolean Isomorphism with SAT for that representation. More specifically,
is Boolean Isomorphism reducible to Graph Isomorphism or Hypergraph Isomorphism
given oracle access to Boolean satisfiability?

In particular, if a representation has polynomial-time satisfiability algorithm, then is
Boolean Isomorphism for that representation polynomial-time reducible to Graph Iso-
morphism? Examples of such representations are 2-CNFs, Horn-CNFs, decision trees
etc. We study the isomorphism problem for these models and also for a generalization of
decision trees, called decision lists.

In Chapter 4 of the thesis, we show the following results.

• Given two Boolean functions f and g as decision trees of size s, there is a determin-
istic algorithm that runs in time nO(log s) that constructs two hypergraphsH f andHg

on n vertices with the property that each hyperedge is of size O(log s) such that the
Boolean functions f and g are isomorphic if and only ifH f andHg are isomorphic.
Using the Hypergraph Isomorphism algorithm of Babai and Codenotti [BC08], for
hypergraphs with bounded hyperedge size, this gives an algorithm for testing iso-
morphism of Boolean functions represented as decision trees in time 2O((log s)O(1) √n).

• When the two Boolean functions f and g on n variables are given as Horn-CNFs
with m clauses, we give a polynomial-time many-one reduction of the Boolean
Isomorphism problem to Graph Isomorphism problem. Further, we show that the
Boolean Isomorphism problem when the functions are represented as Horn-CNFs
is complete for GI under polynomial-time many-one reductions.

• We then study Boolean Isomorphism when the inputs are represented as deci-
sion lists. A decision list is a sequence of tuples 〈 f1, b1〉, . . . , 〈 fm, bm〉, 〈1, bm+1〉,
where fis are Boolean functions and bis are Boolean constants [Riv87]. The
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function value computed by this decision list at an input x is the Boolean value
bi such that f j(x) = 0 for all j < i and fi(x) = 1. Observe that any CNF
F = C1 ∧ C2 ∧ · · · ∧ Cm can be written as the decision list in the following way
easily: 〈¬C1, 0〉, 〈¬C2, 0〉, · · · , 〈¬Cm, 0〉, 〈1, 0〉. Since the function computed by the
decision list 〈 f1,¬b1〉, . . . , 〈 fm,¬bm〉, 〈1,¬bm+1〉 is the complement of the function
computed by the decision list 〈 f1, b1〉, . . . , 〈 fm, bm〉, 〈1, bm+1〉, decision lists also en-
code DNFs. We show that the complexity of the isomorphism problem for deci-
sion lists depends on the representation of the fis by proving a trichotomy theorem
for the complexity of the isomorphism problem, similar to the trichotomy theorem
proved for the isomorphism problem for constraint satisfaction problem by Böhler
et al [BHRV04].

The crucial ingredient in all the results stated above is the notion of a permutation preserv-

ing normal form. A permutation preserving normal form for f is a representation N f such
that, (i) if g is a Boolean function that is equivalent to f , then Ng is identical to N f , and (ii)
if g is a Boolean function isomorphic to f , then there is a way to rename the variables in
Ng such that it becomes identical to N f . To reduce the Boolean isomorphism problem to
graph or Hypergraph Isomorphism, we construct a permutation preserving normal form
by using the satisfiability problem for that representation as an oracle and then encode
this normal form as a graph or hypergraph. Permutation preserving normal forms were
first formally used by Böhler et al [BHRV04] in order to study the isomorphism problem
for constraint satisfaction problems.

In all the normal form constructions in Chapter 4, the queries to the satisfiability oracle
are themselves functions in the same representation as f and on n variables. Furthermore,
the graphs or hypergraphs that are constructed have O(n) vertices. Therefore, if the satis-
fiability problem for that representation has an algorithm that runs in time t(n), then this
gives an algorithm for Boolean Isomorphism that runs in time O(t(n) + 2O(

√
n log n)). Re-

ductions of this form were studied by Impagliazzo, Paturi and Zane [IPZ01], who called
these as Sub-Exponential time Reduction Families.

It is interesting to ask which representations of Boolean functions have this property. We
explore this question in Chapter 5 and show an example where this is true: If f is a k-CNF
then there is an O(αn +2O(

√
n log n)) time algorithm for testing isomorphism, where αn is the

running time of the satisfiability algorithm for k-CNFs. Schöning [Sch99] has proved that
there is an algorithm to test the satisfiability of k-CNFs in time (2(1−1/k))n. Consequently,
given two k-CNFs f and g, there is a (2(1 − 1/k))n + 2O(

√
n log n) time algorithm to test if

f and g are isomorphic, which is many times faster than the 2O(n)-time algorithm using
Luks’ [Luk99] hypergraph isomorphism testing algorithm.

9
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Figure 1.1: Two Hamiltonian-path equivalent graphs that are different, but have the same
set of Hamiltonian paths: f − a − b − d − c − e, f − a − d − b − c − e, e − c − d − b − a −
f , e − c − b − d − a − f

Motivated by this connection between Boolean satisfiability and isomorphism, we define
and study a notion of generalized isomorphisms of graphs. We will explain generalized
isomorphisms using the example of Hamiltonian paths in graphs. First, we will define
a notion of Hamiltonian-path equivalence. Two graphs G and H are Hamiltonian-path
equivalent if the set of Hamiltonian paths in the two graphs are identical. It is possible
that two graphs are different, yet are Hamiltonian-path equivalent; Figure 1.1 shows an
example.

Similarly, we call two graphs Hamiltonian-path isomorphic if there is a bijection between
the vertices of the two graphs such that the set of Hamiltonian paths in one graph is
mapped by the permutation to the set of Hamiltonian paths in the other graph. For
any property P, we can define and the study if there is a faster algorithm for the P-
isomorphism problem using the algorithm for testing whether a graph has the property P.
This is a generalized notion of isomorphism because if P is the property that the graph
has an edge, then P-isomorphism is precisely the Graph Isomorphism problem.

In Chapter 5, we define the P-isomorphism problem, when (i) P is the set of graphs with
Hamiltonian paths, (ii) when P is the set of 3-colorable graphs, and (iii) when P is the set
of graphs homomorphic to a fixed graph H.

1.3 Organization of the thesis

We now give a brief chapter-wise outline of the thesis.

Approximate Graph Isomorphism: In Chapter 2 of the thesis we study approximate
Graph Isomorphism.

Approximate Boolean Isomorphism We extend the idea of approximate isomorphism to

10



Boolean functions in Chapter 3. We show that if f and g are two Boolean functions such
that the Fourier spectrum of the functions is ε-concentrated on sets of size t(ε), then there
is a randomized algorithm for the approximate Boolean Isomorphism problem which runs
in time 2O((log n)O(1)tO(1)

√
n).

Complexity of Boolean Isomorphism In Chapter 4, we study the complexity of exact
Boolean Isomorphism. For Horn-CNFs, decision trees and decision lists, we show how
the problem is reducible to Hypergraph Isomorphism by constructing permutation pre-
serving normal forms for these representations.

In Chapter 5, we show that for k-CNFs (and more generally k-decision lists), if there is
a satisfiability algorithms that runs in time αn, then there is an algorithm for the Boolean
isomorphism problem that runs in time O(αn + 2O(

√
n log n). In the final section of the

chapter, we will also explore a notion of generalized Graph Isomorphism, motivated by
the connection between satisfiability and Boolean Isomorphism.

11
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Chapter 2

Approximate Graph Isomorphism

The Graph Isomorphism problem (GI for short) is the computational problem of deciding,
given two graphs G1 and G2 on n vertices, if there exists a bijection π : V(G1) → V(G2)
such that (u, v) ∈ E1 iff (π(u), π(v)) ∈ E2. There is no polynomial time algorithm currently
known for GI and it is also known that if GI is NP-hard, then PH ⊆ Σ

p
2 [GMW87, BHZ87].

Although the fastest known algorithm for the Graph Isomorphism problem has running
time 2O(

√
n log n) [BL83, ZKT85], polynomial-time algorithms are known for many inter-

esting subclasses, e.g. bounded degree graphs [Luk82], bounded genus graphs [Mil83],
and bounded eigenvalue multiplicity graphs [BGM82].

In this chapter we study a natural optimization problem corresponding to the Graph Iso-
morphism problem, which we will call the Approximate Graph Isomorphism problem.
Intuitively, an approximate isomorphism between two graphs G and H is a permutation
π : V(G) → V(H) such that the graphs π(G) and H are “close” to each other. To define
this problem formally, we need a suitable definition of distance between graphs. We study
different versions of the approximate isomorphism problem depending on two notions of
distance which we will describe formally in the next section. The main motivation for this
study is to explore if approximate isomorphisms can be computed efficiently, given that
the best known algorithm for computing exact isomorphisms has running time 2O(

√
n log n).

To the best of our knowledge, the only previous theoretical study of Approximate Graph
Isomorphism is the work of Arora, Frieze and Kaplan [AFK02]. More recently, there
has been work by O’Donnell et al [OWWZ14] who study a version of the Approximate
Graph Isomorphism problem, that they call Robust Graph Isomorphism. Approximate
Graph Isomorphism has also been studied in the setting of property testing [FM06] and
the testing algorithm uses ideas similar to [AFK02].
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Figure 2.1: Two isomorphic graphs G and H

2.1 Preliminaries

Let G1 = (V1, E1) and G2 = (V2, E2) be two input graphs on n of vertices. The pairwise

distance between G1 and G2, denoted by dp(G1,G2), is defined as |E(G1)4E(G2)|. This is
set of edges that are present in either G1 or G2 but not in both. Similarly, the edgewise

distance between G1 and G2, denoted by de(G1,G2), is defined as |E(G1) \ E(G2)|. This
quantity is the set of edges in G1 that are not present in G2. We study the complexity of
the following optimization problems:

• Max-EGI: Given G1,G2, find a bijection π : V1 → V2 that maximizes the number of
matched edges, i.e., de(Gπ

1,G2) = |E1| − de(Gπ
1,G2).

• Max-PGI: Given G1,G2, find a bijection π : V1 → V2 that maximizes matched
vertex pairs, i.e., dp(Gπ

1,G2) =
(

n
2

)
− dp(Gπ

1,G2).

• Min-EGI: Given G1,G2, find a bijection π : V1 → V2 that minimizes mismatched
edges, de(Gπ

1,G2).

• Min-PGI: Given G1,G2, find a bijection π : V1 → V2 that minimizes mismatched
pairs, dp(Gπ

1,G2).

Example 2.1.1. Figure 2.1 shows two graphs G and H that are isomorphic under the

permutation π =
( 1 2 3 4 5

a b d e c
)
. For this permutation π, dp(Gπ,H) = de(Gπ,H) = 0 while

dp(Gπ,H) = 10 and de(Gπ,H) = 7.

The permutation σ =
( 1 2 3 4 5

a b c d e
)

is not an isomorphism since (2, 5) is an edge in G whereas

(b, e) is not an edge in H. This is an approximate isomorphism and the distance be-

tween the graphs under this approximate isomorphism is as follows: dp(Gπ,H) = 4 and

de(Gπ,H) = 2 while dp(Gπ,H) = 6 and de(Gπ,H) = 5.

We first recall the notion of an α-approximation algorithm for an optimization problem.
We call an algorithmA for a maximization problem an α-approximation algorithm, where
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α < 1, if given an instance I of the problem with an optimum OPT(I), A outputs a
solution with value A(I) such that A(I) ≥ αOPT(I). Similarly, for a minimization
problem, we say B is a β-approximation algorithm for β > 1, if for any instance I of
the problem with an optimum OPT(I), B outputs a solution with value B(I) such that
B(I) ≤ βOPT(I).

Arora, Frieze and Kaplan, in [AFK02], studied the maximization problem Max-PGI as an
instance of the quadratic assignment problem. They formulate Max-PGI as an instance
of a quadratic assignment problem. Given a pair of n-vertex isomorphic graphs their al-
gorithm, based on randomized rounding, computes a permutation that has additive error

εn2 and runs in time nO(log n/ε2). The problem Max-EGI can also be viewed as an optimiza-
tion variant of Subgraph Isomorphism. Very recently O’Donnell et al [OWWZ14] have
studied this problem as Robust Graph Isomorphism.

Observe that dp(Gπ
1,G2) + dp(G1,G2) =

(
n
2

)
and de(Gπ

1,G2) + de(Gπ
1,G2) = |E1|. Thus

solving one of the maximization problems with additive error is equivalent to solving the
corresponding minimization problem with the same additive error. However, the min-
imization problems behave differently for multiplicative factor approximations, so we
study them separately.

A natural restriction of the Graph Isomorphism problem is to vertex-colored graphs
(G1,G2) where V(G1) = C1 ·∪C2 ·∪ · · · ·∪Cm and V(G2) = C′1 ·∪C′2 ·∪ · · · ·∪C′m, and Ci, C′i
contain the vertices of G1 and G2, respectively, that are colored i. The problem is to com-
pute a color-preserving isomorphism π between G1 and G2, i.e., an isomorphism π such
that for any vertex u, both u and π(u) have the same color. The bounded color-class ver-
sion GIk of the Graph Isomorphism problem consists of instances such that |Ci| = |C′i | ≤ k

for all i. For GIk, randomized [Bab79] and deterministic [FHL80] polynomial time algo-
rithms are known.

It is, therefore, natural to study the optimization problems defined above in the setting of
vertex-colored graphs where the objective function is optimized over all color-preserving
bijections π : V1 → V2. We denote these problems as Max-PGIk, Max-EGIk, Min-PGIk
and Min-EGIk, where k is a bound on the number of vertices having the same color.

2.1.1 Outline of the Chapter

We now give an outline of the theorems that we prove in this chapter.

Section 2.2 deals with the maximization problems Max-PGI and Max-EGI. The first
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theorem that will be proved in this chapter is the following:

Theorem 2.1.2. For any constant α < 1, there is an α-approximation algorithm for Max-

PGI running in time nO(log n/(1−α)4).

The proof uses a result of Arora, Frieze and Kaplan [AFK02] which gives an additive
error approximation algorithms for a quadratic assignment problem based on randomized
rounding. Among the various problems they study, they also observe that approximate
graph isomorphisms between n vertex graphs can be computed up to additive error εn2

in time nO(log n/ε2). We show that this algorithm can be modified to obtain a multiplicative
error approximation scheme for the problem. We obtain the α-approximation algorithm
for Max-PGI by combining the nO(log n) time additive error algorithm of [AFK02] with a
simple averaging algorithm.

Next we consider the Max-EGI problem. Langberg et al. [LRS06] proved that there is
no polynomial-time (1/2 + ε)-approximation algorithm for the Maximum Graph Homo-
morphism problem (see Definition 2.2.5) for any constant ε > 0 assuming average-case
hardness for a version of the Subgraph Isomorphism problem [Fei02]. We give a factor-
preserving reduction from the Maximum Graph Homomorphism problem to Max-EGI

thus obtaining the following result.

Theorem 2.1.3. There is no ( 1
2 + ε)-approximation algorithm for Max-EGI for any con-

stant ε > 0 assuming the hardness for the refutation problem for Subgraph Isomorphism

(Definition 2.2.6).

The paper of O’Donnell et al [OWWZ14], published recently have improved this result
to state that there is no constant factor approximation algorithm for Max-EGI under the
random 3XOR hypothesis of Feige [Fei02].

Unlike in the case of GIk, where polynomial time algorithms are known [Bab79, FHL80,
Luk86], we show that in the optimization setting these problems are computationally
harder. We prove the following theorem by giving a factor-preserving reduction from
Max-2Lin-2 (e.g. see [KKMO04]) to Max-PGIk and Max-EGIk. The input to the problem
Max-2Lin-2 is a set of equations on two variables over GF(2) and the goal is to maximize
the number of equations that are satisfied.

Theorem 2.1.4. For any k ≥ 2, Max-PGIk and Max-EGIk are NP-hard to approximate

beyond a factor of 0.94.

Since, assuming the Unique Games Conjecture (UGC for short) of Khot [Kho02], it is NP-
hard to approximate Max-2Lin-2 beyond a factor of 0.878 [KKMO04], the same bound
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holds under UGC for Max-PGIk and Max-EGIk by the same reduction. Since Max-PGIk
and Max-EGIk are easily seen to be instances of generalized 2CSP, they have constant
factor approximation algorithms, for a constant factor depending on k. In fact, it turns out
that Max-EGI2 and Max-PGI2 are tightly classified by Max-2Lin-2 with almost matching
upper and lower bounds (details are given in Section 2.2). However, we do not know of
similar gap-preserving reductions from general unique games (with alphabet size more
than 2) to Max-PGIk or Max-EGIk for any k.

In Section 2.3, we study the corresponding minimization problems for graphs and vertex-
colored graphs with bounded color-class size. The main results of that section show
that the complexity of Min-PGI and Min-EGI is significantly different from Max-PGI and
Max-EGI.

Theorem 2.1.5. There is no polynomial-time approximation algorithm for Min-PGI with

any multiplicative approximation guarantee unless GI ∈ P.

Theorem 2.1.6. There is no α-approximation algorithm for Min-PGI that runs in time

polynomial in n and 1/α unless P = NP.

Theorem 2.1.7. There is no polynomial-time approximation algorithm for Min-EGI with

any multiplicative approximation guarantee unless P = NP.

In the case of Min-PGIk and Min-EGIk, we prove that Min-PGIk is as hard as the mini-
mization version of Max-2Lin-2, known in literature as the Min-Uncut problem, and that
Min-EGI4 is inapproximable for any constant factor unless P = NP by reducing the Near-
est Codeword Problem (NCP) to it.

Remark. We remark that there does not seem to be any coset structure to the set of approx-
imate isomorphisms that we can exploit to obtain approximate isomorphism algorithms.
For instance, it is not clear how to define a notion of an approximate automorphism. If
we were to define an approximate automorphism as a permutation π of vertices such that
de(Gπ,G) = k, for some number k, then the graph G in Figure 2.1 shows a simple counter-
example. Here the permutation π =

( 1 2 3 4 5
1 3 2 4 5

)
has de(Gπ,G) = 1 and σ =

( 1 2 3 4 5
4 5 2 3 1

)
has

de(Gσ,G) = 1. But π ◦ σ is the permutation
( 1 2 3 4 5

4 2 5 3 1
)

which has d2(Gπ◦σ,G) = 2. This
shows that composing approximate isomorphism can increase the distance between the
graphs. Hence, we do not believe that the group-theoretic techniques which were used
in the algorithms for exact Graph Isomorphism are useful in the setting of approximate
isomorphisms.
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2.2 Maximizing the number of matches

We first observe that computing optimal solutions to Max-PGI is NP-hard via a reduction
from CLIQUE.

Proposition 2.2.1. Computing optimal solutions to Max-PGI instances is NP-hard.

Proof. Let (G, k) be an instance of the CLIQUE problem. Define the graphs G1 = G and
G2 = Kk ∪ Kn−k, i.e., a k-clique and n − k isolated vertices. Let πopt be a bijection that
achieves the optimum value for this Max-PGI instance. Then G has a k-clique if and only
if dp(Gπopt ,G2) =

(
n
2

)
− |EG| +

(
k
2

)
. �

Next we give a general method for combining an additive error approximation algo-
rithm for Max-PGI with a simple averaging approximation algorithm to design an α-
approximation algorithm for Max-PGI for any constant α < 1.

Lemma 2.2.2. Suppose A is an algorithm such that for any ε > 0, given a Max-PGI

instance in form of two n-vertex graphs G1 = (V1, E1) and G2 = (V2, E2), computes a

bijection π : V1 → V2 such that dp(Gπ
1,G2) ≥ OPT − εn2 in time T (n, ε). Then there is

an algorithm that computes for each α < 1 an α-approximate solution for any Max-PGI

instance (G1,G2) in time O(T (n, (1 − α)2/9) + n3).

Proof. Without loss of generality we can assume V1 = V2 = [n]. We denote the num-
ber of edges in Gi by ti and the number of non-edges by ti. Observe that the optimum
for Max-PGI satisfies OPT ≤ t1 + t2 since the best permutation is an isomorphism. Let
π : [n]→ [n] be a permutation chosen uniformly at random. Then, the following calcula-
tion shows that the expected number s of matched pairs is

s =
t1t2 + t1t2(

n
2

) =

(
n
2

)
− t2(
n
2

) t1 +
t2(
n
2

) ((
n
2

)
− t1

)
= t1 + t2 −

2t1t2(
n
2

) .
We can deterministically compute a permutation σ such that dp(Gσ

1 ,G2) ≥ s using the
method of conditional probabilities; we defer this detail to the end of the proof. We now
show how this can be combined with the additive error approximation algorithm A for
Max-PGI to obtain an α-approximation algorithm for Max-PGI. This combined algo-
rithm distinguishes two cases based on the number of edges and non-edges in G1 and G2,
respectively.
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Case 1 (min{t1, t2} ≤ (1 − α)
(

n
2

)
/2): In this case we compute a permutation σ with

dp(Gσ
1 ,G2) ≥ s. Since

t1t2 = max{t1, t2}min{t1, t2} ≤
(
t1 + t2

)
(1 − α)

(
n
2

)
/2,

it follows that
t1 + t2 − 2t1t2/

(
n
2

)
≥ α

(
t1 + t2

)
≥ αOPT.

Case 2 (min{t1, t2} > (1−α)
(

n
2

)
/2): In this case we use algorithmA with ε = (1−α)2/9 to

obtain a permutation π with dp(Gπ
1,G2) ≥ OPT − εn2. Since t1 + t2 + t̄1 + t2 = 2

(
n
2

)
, either

t1 + t2 ≤
(

n
2

)
or t̄1 + t2 ≤

(
n
2

)
. Without loss of generality assume t1 + t2 ≤

(
n
2

)
(otherwise we

interchange G1 and G2), implying that either t1 ≤
(

n
2

)
/2 or t2 ≤

(
n
2

)
/2. Further, since the

expected value Eσ
[
dp(Gσ

1 ,G2)
]

= t1 + t2−2t1t2/
(

n
2

)
, it follows that for sufficiently large n,

OPT ≥ t1 − t1t2/

(
n
2

)
+ t2 − t1t2/

(
n
2

)
≥

min{t1, t2}

2
>

1 − α
4

(
n
2

)
≥

εn2

1 − α
.

Hence, dp(Gπ
1,G2) ≥ OPT − εn2 ≥ αOPT.

It remains to show how a permutation which achieves at least the expected number s

of matched pairs can be computed deterministically. Suppose that σ : [i] → [n] is a
partial permutation. Let π : [n] → [n] be a random permutation that extends σ, i.e.,
π( j) = σ( j) for j ∈ [i]. Let s(σ) denote the expected number of matched pairs over
random permutations π that extend σ. It is easy to see that we can compute s(σ) in
polynomial time. We do this by counting the pairs in three parts: (a) pairs with both end
points in [i], (b) pairs with both end points in [n] \ [i], and (c) pairs with one end point
in [i] and the other in [n] \ [i]. Matched pairs of type (a) depend only on σ and can be
counted straightaway. The expected number of matched pairs of type (b) is computed
exactly as s above (since π restricted on [n] \ [i] is random). The expected number of
matched pairs of type (c) is given by

∑
j∈[i]

n jnσ( j)+(n−i−n j)(n−i−nσ( j))
n−i , where n j is the number of

neighbors of j in the graph G1 contained in [n] \ [i] and nσ( j) is the number of neighbors
of σ( j) in the graph G2 contained in [n] \ {σ(l) | l ∈ [i]}. The entire computation of s(σ)
takes O(n2) time.

Now, for k ∈ [n] \ {σ(l) | l ∈ [i]}, let σk : [i + 1] → [n] denote the extension of σ by
setting σ(i + 1) = k. Since a random extension π of σ can map i + 1 uniformly to any
k ∈ [n] \ {σ(l) | l ∈ [i]} it follows that

s(σ) =
1

n − i

∑
k

s(σk),
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where the summation is over all k ∈ [n] \ {σ(l) | l ∈ [i]}.

Furthermore, each s(σk) is efficiently computable, as explained above. Reusing partial
computations, we can find k such that s(σk) ≥ s(σ) in time O(n2). Continuing thus, when
we fix the permutation on all of [n] we obtain a σ with dp(Gσ

1 ,G2) ≥ s in O(n3) time. �

Note that any polynomial time additive ε-error algorithm for Max-PGI, i.e., an algo-
rithm running in time npoly(1/ε) with an additive error ≤ εn2, gives a polynomial time
α-approximation algorithm for Max-PGI running in time npoly(1/(1−α)).

To complete the proof of Theorem 2.1.2, we formulate Max-PGI as an instance of
a quadratic optimization problem called the Quadratic Assignment Problem (QAP for
short) as was done in [AFK02] and use an additive error approximation algorithm for the
Quadratic Assignment Problem due to Arora, Frieze and Kaplan [AFK02].

Quadratic Assignment Problem. The quadratic assignment problem is an assignment
problem where the objective is to maximize a quadratic polynomial under linear con-
straints. Given {ci jkl}1≤i, j,k,l≤n, the maximization version of the quadratic assignment prob-

lem is to find an n×n permutation matrix x = (xi j) that maximizes val(x) =
∑

i, j,k,l ci jklxi jxkl.
The minimization version of the problem is to find an n × n permutation matrix x = (xi, j)
that minimizes val(x) =

∑
i, j,k,l ci jklxi jxkl.

The quadratic assignment problem generalizes many combinatorial optimization prob-
lems like maximum acyclic subgraph, betweenness etc. [AFK02]. We now give a sim-
ple proposition from [AFK02] regarding the approximability of the quadratic assignment
problem.

Proposition 2.2.3. There is no α-approximation algorithm for the minimization version

of the quadratic assignment problem for any α < 1 unless P = NP.

Proof. We will reduce the Hamiltonian cycle problem to the minimization version of
the quadratic assignment problem. Let G(V, E) be an instance of the Hamiltonian cycle
problem. Define the instance of quadratic assignment problem where ci jkl = 1 if and
only if k = i + 1 and ( j, l) < E. The variable xi, j is an indicator variable for the fact
that the ith vertex in the Hamiltonian path is j. This minimum of the objective function∑

i, j,k,l ci jklxi jxkl is 0 if and only if the graph has a Hamiltonian cycle. Thus, if there is
an α-approximation algorithm for the quadratic assignment problem for any α > 1, then
there is a polynomial-time algorithm for Hamiltonian cycle. �

Arora, Frieze and Kaplan in [AFK02] give a general quasipolynomial-time algorithm
for QAP with an additive error. Formally, they prove the following theorem.
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Theorem 2.2.4 ([AFK02]). There is an algorithm that, given an instance of QAP where

each of the ci jkl is bounded in absolute value by a constant c and given an ε, finds an

assignment to xi j such that val(x) ≥ val(x∗)−εn2 where x∗ is the assignment which attains

the optimum. The algorithm runs in time nO(c2 log n/ε2).

An instance of Max-PGI consisting of graphs G1 = ([n], E1) and G2 = ([n], E2) can be
naturally expressed as a QAP instance by setting

ci jkl =

1 if (i, k) ∈ E1 and ( j, l) ∈ E2 or (i, k) < E1 and ( j, l) < E2

0 otherwise.

This ensures that val(x) = dp(Gπx
1 ,G2) for all permutation matrices x with corresponding

permutation πx; in particular, the optimum solutions of the Max-PGI and QAP instances
achieve the same value.

Thus for the Max-PGI problem, using Theorem 2.2.4 we can find a permutation π such
that dp(Gπ

1,G2) ≥ OPT − εn2 in time nO(log n/ε2). Combining this with Lemma 2.2.2, we
get an α-approximation algorithm for Max-PGI running in time nO(log n/(1−α)4) and this
completes the proof of Theorem 2.1.2.

In contrast to the quasipolynomial-time approximation scheme for Max-PGI, we now
show that Max-EGI is likely to be (1

2 + ε)-hard to approximate. To this end, we define the
Maximum Graph Homomorphism problem (MGH) first studied in [LRS06].

Definition 2.2.5 (Maximum Graph Homomorphism Problem). Given two graphs G1 =

(V1, E1) and G2 = (V2, E2), compute a mapping φ : V1 → V2 that maximizes the cardinal-

ity of the set {(u, v) ∈ E1 | (φ(u), φ(v)) ∈ E2}.

Langberg et al. [LRS06] proved that MGH is hard to approximate beyond a factor of 1/2+

ε assuming the hardness of certain average case instances of Subgraph Isomorphism. We
now define the average case instance of Subgraph Isomorphism that is studied in [LRS06],
which they refer to as the refutation problem for Subgraph Isomorphism. We note that
this assumption is a rather weak assumption as the computational hardness of this average-
case instance is not known, although Subgraph Isomorphism is an NP-complete problem.
The work in [LRS06] is along the lines of the work of Feige [Fei02] who used average-
case hardness assumptions to prove hardness of approximating optimization problems.

Let 4n be the set of all triangle free graphs on n vertices. Let 4n,p be the distribution
obtained by choosing a random graph G ∈ Gn,p and then considering edges in some order
and deleting any edge that is part of a triangle.
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Definition 2.2.6 (Refutation problem for Subgraph Isomorphism, [LRS06]). Given a pa-

rameter c > 0 and a pair of graphs G ∈ 4n,p, H ∈ 4n,p′ , where p = c ln n/n and p′ � p,

find an algorithm that (a) returns “yes” if H contains G as a subgraph and (b) return

“no” on most instances, i.e. with probability at least 1/2, the algorithm return “no”.

To prove Theorem 2.1.3, we give a factor-preserving reduction from MGH to Max-EGI.

Lemma 2.2.7. There is a polynomial-time algorithm that for a given MGH instance I,

constructs a Max-EGI instance I′ with OPT(I) = OPT(I′).

Proof. Given an MGH instance I = (G1,G2), we construct the Max-EGI instance I′ =

(G′1,G
′
2) as follows. The graphs G′1 and G′2 both have vertex set V1 × V2. For each edge

(u1, v1) in the graph G1, we put a single edge between the vertices (u1,w2) and (v1,w2)
in E′1, where w2 is an arbitrary but fixed vertex in V2, and for each edge (u2, v2) in the
graph G2, we put all |V1|

2 edges between V1 × {u2} and V1 × {v2} in E′2. It suffices to prove
the following claim.

Claim. There is a mapping φ : V1 → V2 such that
∣∣∣{(u, v) ∈ E1 | (φ(u), φ(v)) ∈

E2
}∣∣∣ = k if and only if there is a permutation π : V1 × V2 → V1 × V2 such that

|
{
(u, v) ∈ E′1 | (π(u), π(v)) ∈ E′2

}
| = k.

Given the mapping φ, we construct the permutation π as follows: For each u1 ∈ V1, π
maps the vertex (u1,w2) of G′1 to the vertex (u1, φ(u1)) in G′2. The remaining |V1| · |V2|− |V1|

vertices of G′1 are mapped arbitrarily.

Then each edge (u1, v1) ∈ E1 is satisfied by φ if and only if the corresponding edge
between (u1,w2) and (v1,w2) in E′1 is satisfied by π. This follows from the fact that
(φ(u1), φ(v1)) ∈ E2 if and only there is an edge between (u1, φ(u1)) and (v1, φ(v1)) in E′2.

Similarly, given a permutation π between G′1 and G′2, we can obtain a mapping φ : V1 → V2

achieving the same number of matched edges by letting φ(u1) = v2, where v2 is the second
component of the vertex π(u1,w2). �

Unlike in the case of Max-PGI, we observe that there cannot be constant factor approx-
imation algorithms for Max-PGIk for all constants. This is in interesting contrast to the
fact that GI for graphs with bounded color-class size is in P. We now prove the hardness
of approximating Max-PGIk and Max-EGIk for any k ≥ 2.

We prove the hardness by exhibiting a factor-preserving reduction from Max-2Lin-2,
which is hard to approximate above a guarantee of 0.94 unless P = NP [Hås01]. The
problem of Max-2Lin-2 can be stated thus
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Problem 2.2.8. Given a set E ⊆
{
xi + x j = b | i, j ∈ [n], b ∈ {0, 1}

}
of m equations over

F2, find an assignment to the variables x1, . . . , xn that maximizes the number of equations

satisfied.

The following lemma proves the factor-preserving reduction from Max-2Lin-2 to Max-
PGIk. The proof for Max-EGIk is similar.

Lemma 2.2.9. For any k ≥ 2, there is a polynomial-time algorithm that for a given Max-

2Lin-2 instance I constructs a Max-PGI2k instance I′ such that OPT(I′) = (2k)2OPT(I).

Proof. Let E ⊆
{
xi + x j = b | i, j ∈ [n], b ∈ {0, 1}

}
be the equations of I. As a first

step, if there is a pair of equations xi + x j = 1 and xi + x j = 0 in E, remove both these
equations and add a new equation yi + y j = 1 on two new variables yi and y j. Let E′ be
the new set of equations obtained. Notice that OPT(E) = OPT(E′). We now describe
the construction of the instance I′ of Max-PGI2k. For each variable xi, put two sets of
vertices V0

i and V1
i with k vertices each of color i. Let xl + xm = b be an equation in E′.

In the graph G1, add a complete bipartite graph between V0
l and V0

m and another complete
bipartite graph between V1

l and V1
m. Similarly, add the complete bipartite graph between

V0
l and Vb

m and between V1
l and V1⊕b

m in G2. If there is no equation in E′ connecting the
variables xl and xm, add a complete bipartite graph between the color classes l and m in G1

and the empty graph between l and m in G2. Similarly, make all color classes cliques in G1

and independent sets in G2. The idea is that assigning xi 7→ 0 corresponds to mapping
V0

i and V1
i to themselves, respectively, while assigning xi 7→ 1 corresponds to mapping

V0
i to V1

i and vice versa.

Given an assignment σ : [n] → {0, 1} that satisfies t of the equations in E, let πσ be the
permutation that maps the jth vertex in Vb

i to the jth vertex in Vb⊕σ(i)
i . For each satisfied

equation xi + x j = b, this guarantees that all (2k)2 pairs in (V0
i ∪ V1

i ) × (V0
j ∪ V1

j ) are
matched. Thus OPT(I′) ≥ dp(Gπσ

1 ,G2) = (2k)2t.

To prove the converse, let π : [n]→ [n] be a permutation with dp(Gπ
1,G2) = t. Define fi as

the number of vertices in V0
i that are mapped to V1

i by π (it is also the number of vertices
in V1

i mapped to V0
i ). If fi ∈ {0, k} for all i, it is straightforward to reverse the above

construction, obtaining an assignment that satisfies dp(Gπ
1,G2)/(2k)2 equations.

If there is an i with fi < {0, k}, then the number of matched pairs between color classes
i and j is given by the sum 4

[
(k − f j) fi + (k − fi) f j

]
. Define d

i
p(Gπ

1,G2) as

d
i
p(Gπ

1,G2) =
∑

j

4
[
(k − f j) fi + (k − fi) f j

]
.
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This can be re-written as

d
i
p(Gπ

1,G2) = k2
∑

j

4
[(

1 −
f j

k

)
fi

k
+

(
1 −

fi

k

)
f j

k

]
.

Let mp′i(π) = (1/k2)d
i
p(Gπ

1,G2) =
∑

j 4
[
(1 − f ′j ) f ′i + (1 − f ′i ) f ′j

]
where f ′i = fi/k and f ′j =

f j/k.

Define πi,b (for b ∈ {0, 1}) as the permutation that maps the jth vertex of Vb′
i to the jth vertex

of Vb⊕b′
i , and that acts like π on all other color classes. Thus, d

i
p(Gπi,0

1 ,G2) = 4
∑

j f ′j and

d
i
p(Gπi,1

1 ,G2) = 4
∑

j(1 − f ′j ).

Since mp′i(π) is a convex combination of d
i
p(Gπi,0

1 ,G2) and d
i
p(Gπi,1

1 ,G2), one of the two
must be at least as large as mp′i(π). Replace π by that permutation, and repeat this process
until fi ∈ {0, k} for all i. �

This construction still works if we replace dp(Gπ
1,G2) with de(Gπ

1,G2), as for all equations
xi+x j = b in E, exactly half of the possible edges between color classes i and j are present.
It follows that there is a factor-preserving reduction from Max-2Lin-2 to Max-EGI2k.

Lemma 2.2.10. For any k ≥ 2, there is a polynomial-time algorithm that for a given Max-

2Lin-2 instance I constructs a Max-EGI2k instance I′ such that OPT(I′) = 2k2OPT(I).

Since there is no α-approximation algorithm for Max-2Lin-2 for α > 0.94 unless P =

NP [Hås01], Lemmas 2.2.9 and 2.2.10 complete the proof of Theorem 2.1.4 that there is
no α-approximation algorithm for Max-PGIk and Max-EGIk for α > 0.94 unless P = NP.

We now exhibit a simple reduction from the Max-PGI2 problem to Max-2CSP(2) prob-
lem. The same method can be used to reduce the Max-PGIk problem to the more general
Max-2CSP(q), where q = k!. The Max-2CSP(q) is a constraint satisfaction problem
where the input is a set of constraints of arity two and the domain is a set of values from
{1, · · · , q}. Guruswami and Raghavendra [GR08] proved that the there is a constant factor
approximation algorithm for the Max-2CSP(q) problem where the approximation guar-
antee depends on q.

Lemma 2.2.11. There is a polynomial-time algorithm that for two given vertex-colored

graphs G1 and G2 where each color class has size at most 2, outputs a Max-2CSP(2)
instance F = { f1, . . . , fm} where m = |E(G1)| and fi : {0, 1}2 → {0, 1} such that there is a

color-preserving bijection π : V(G1) → V(G2) with de(Gπ
1,G2) = k, if and only if there is

an assignment which satisfies k constraints in F .
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Proof. For each color class Ci, we assign a variable xi. For an edge e from Ci to C j

in G1, construct the function fe : {0, 1}2 → {0, 1} over the variables xi and x j as follows.
Any Boolean assignment to the variables can be looked upon as a permutation: If xi 7→

0, then we have the identity permutation on Ci, otherwise the permutation swaps the
vertices of Ci. The value fe on that particular assignment is 1 if the permutation that
it corresponds to sends the edge e to an edge in G2. Hence there is an assignment that
satisfies k constraints if and only if there is a permutation π with de(Gπ

1,G2) = k. �

Thus, both Max-PGIk and Max-EGIk have constant factor approximation algorithms by
virtue of the semidefinite programming based approximation algorithm for Max-2CSP(q)
due to [GR08].

As the problem of Max-2CSP(2) has an approximation algorithm with a guarantee
of 0.874, due to [LLZ02], this implies an approximation algorithm for Max-EGI2 with
the same guarantee and since Max-2Lin-2 is hard to approximate beyond 0.878 under
UGC [KKMO04], we have almost matching upper and lower bounds for Max-EGI2 un-
der UGC.

Remark. We remark that the Unique Games Conjecture(UGC), introduced by
Khot [Kho02], is a weaker hardness assumption than NP-hardness. The UGC conjec-
tures that it is NP-hard to decide the promise problem label cover with unique con-

straints, which we explain now. For a directed graph G(V, E), an alphabet Σ, and a set
of permutations {πe : Σ → Σ | e ∈ E}, the value of a map φ : V → Σ, is defined as
valφ(G) = |{e = (u, v) ∈ E | πe(φ(u)) = φ(v)}|. The value of the graph, val(G) is the max-
imum of this quantity over all maps φ : V → Σ. Given parameters ε, δ > 0, the objective
of label cover with unique constraints is to test if val(G) ≤ ε or val(G) ≥ 1 − δ. The UGC
states for every ε, δ, there is some Σ such that this decision problem is NP-hard. The
relevance of UGC comes from the fact that under this assumption, we can prove many
optimal lower bounds for optimization problems [Kho02].

2.3 Minimizing the number of mismatches

In this section we consider the minimization problems Min-PGI and Min-EGI, where the
objective is to minimize the number of mismatched pairs and edges, respectively.

Theorem 2.1.5. There is no polynomial-time approximation algorithm for Min-PGI with

any multiplicative approximation guarantee unless GI ∈ P.
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Proof. Assume that there is a polynomial time α-approximation algorithm A for Min-
PGI. We will give a polynomial time algorithm for graphs isomorphism using the approx-
imation algorithmA. Let G1 and G2 be the inputs to the Graph Isomorphism problem. If
the two input graphs G1 and G2 are isomorphic, then there is a bijection π : V1 → V2 such
that dp(Gπ

1,G2) = 0, and if G1 and G2 are not isomorphic, then dp(Gπ
1,G2) > 0 for all π.

Thus, it immediately follows that G1 and G2 are isomorphic, if and only if A outputs a
bijection σ : V(G1)→ V(G2) with dp(Gσ

1 ,G2) = 0 (i.e., an isomorphism). �

The hardness assumption in the theorem above is weak since it is generally believed that
Graph Isomorphism has a polynomial-time algorithm. Next we show that Min-PGI is
unlikely to have a polynomial-time approximation scheme unless P = NP. In order to
show that it is unlikely that Min-PGI has a polynomial-time approximation scheme, we
give a gap-preserving reduction from the Vertex-disjoint Triangle Packing problem (VTP)
defined as follows: Given a graph G find the maximum number of vertex-disjoint triangles
that can be packed into G. We look at the corresponding gap version of the VTP problem:

Problem 2.3.1 (Gap-VTPα,β). Given a graph G and α > β,

1. Answer YES, if at least αn/3 triangles can be packed into G.

2. Answer NO, if at most βn/3 triangles can be packed into G.

It is known that the VTP problem does not have an algorithm which when given a graph
and parameter α as input, computes a vertex-disjoint triangle packing of size at least
αOPT in time O(npoly(1/(1−α))) unless P = NP [CR02]. It is also known that for a fixed value
of β < 1, Gap-VTP1,β is NP-hard on graphs of bounded degree [GI03, Pet94]. Indeed,
Petrank [Pet94] gives a gap-preserving reduction from 3Sat to 3DimensionalMatching.
It is not hard to see that replacing the hyperedges in the generated instances with triangles
results in a gap-preserving reduction to VTP, as all triangles in the resulting graph cor-
respond to a hyperedge. All vertices in the generated graph G have degree 4 or 6. Thus
there is a β such that Gap-VTP1,β is NP-hard on such graphs. By attaching the gadget
depicted in Fig 2.2 to each vertex of degree 4 in G, we obtain a 6-regular graph G′, which
we again consider as VTP instance.

Let n and n′ denote the number of vertices in G and G′, respectively. If G can be packed
with n/3 vertex-disjoint triangles, then G′ can also be packed fully by vertex-disjoint
triangles. If OPT(G) ≤ βn/3, then OPT(G′) ≤

(
1 − 1−β

13

)
n′/3. Thus there is a β′ such that

Gap-VTP1,β′ is NP-hard on 6-uniform graphs.

Lemma 2.3.2. Given a Gap-VTPα,β instance I (a 6-uniform graph on n vertices), in
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Figure 2.2: Converting a VTP instance G of degrees 4 and 6 to a 6-uniform VTP in-
stance G′

polynomial time we can find an Min-PGI instance I′ such that

OPT(I) ≥
αn
3
⇒ OPT(I′) ≤ 2n(2 − α)

OPT(I) ≤
βn
3
⇒ OPT(I′) ≥

2n
3

(4 − β)

This reduction together with the hardness of VTP proves Theorem 2.1.6.

Proof. Let the instance I of VTP be a 6-regular graph G on n vertices. We construct
a Min-PGI instance I′ = (G1,G2) as follows: G1 := G and G2 is a collection of n/3
vertex-disjoint triangles on the same vertex set as G1, without any further edges. Suppose
OPT(I) ≥ αn/3, then there is a permutation π that maps at least αn/3 triangles to vertex-
disjoint triangles of G1. Hence the number of edges of G1 that are mapped to non-edges
of G2 is at most 3n−αn. Similarly, the number of edges of G2 that are images of non-edges
of G1 is at most (1 − α)n. Therefore, OPT(I′) ≤ dp(Gπ

1,G2) ≤ 2n(2 − α).

Now suppose OPT(I) ≤ βn/3. Since G1 has at most βn/3 disjoint triangles, any permu-
tation π maps at least (1 − β)n/3 non-edges of G1 to edges of G2. Further, since G1 has at
least 2n edges more than G2 and since already at least (1 − β)n/3 of the edges of G2 are
images of non-edges of G1, π maps at least 2n + (1 − β)n/3 edges of G1 to non-edges of
G2. Thus we have

dp(Gπ
1,G2) ≥

n
3

(1 − β) + 2n +
n
3

(1 − β) =
2n
3

(4 − β).

�

Next we prove Theorem 2.1.7.
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Theorem 2.1.7. There is no polynomial time approximation algorithm for Min-EGI with

any multiplicative approximation guarantee unless P = NP.

Proof. The theorem follows from the following reduction from the CLIQUE problem.
Given an instance (G, k) of CLIQUE, we construct the instance of Min-EGI as follows. G1

consists of a k-clique and n − k independent vertices, and G2 := G. (G, k) ∈ CLIQUE if
and only if there exists a π such that in the Min-EGI problem de(Gπ

1,G2) = 0. Hence any
polynomial-time approximation algorithm with a multiplicative guarantee for Min-EGI

gives a polynomial time algorithm for CLIQUE. �

Now we will prove two results that show that approximating Min-PGIk and Min-EGIk to
any constant factor is hard. First, we will prove the inapproximability of the Min-PGIk
problem. For this, we will use the Min-Uncut problem. The input for the Min-Uncut

problem is a set E ⊆
{
xi + x j = 1 | i, j ∈ [n]

}
of m equations. The objective is to minimize

the number of equations that must be removed from the set E so that there is an assignment
to the variables that satisfy all the equations. If we construct a graph on n vertices, with
an edge between i and j if the equation xi + x j = 1 is present in the set of equations,
then the objective of the Min-Uncut problem is to find a cut that partitions the vertex set
into two parts such that the number of edges within each part is minimized. This problem
is known to be MaxSNP-hard [KSTW00], and assuming the Unique Games Conjecture,
hard to approximate within any constant factor [Kho02]. The following lemma shows that
Min-PGIk is as hard as the Min-Uncut problem.

Lemma 2.3.3. Let I be an instance of Min-Uncut and let k be a positive integer. There

is a polynomial-time algorithm that constructs an instance I′ of Min-PGI2k such that

OPT(I′) = (2k)2OPT(I).

The proof of this lemma is similar to the proof of Lemma 2.2.9. Given a set E ⊆{
xi + x j = 1 | i, j ∈ [n]

}
of equations over F2, we construct an instance I′ of Min-PGI2k ex-

actly as described in the proof of Lemma 2.2.9. If the minimum number of equations that
have to be deleted from E to make the rest satisfiable is at most t, then there is an assign-
ment such that at most t equations in E are not satisfied. This implies that there is a per-
mutation π such that the only edges that are mapped to non-edges and vice-versa are from
at most t pairs of color classes. The same argument as in the proof of Lemma 2.2.9 shows
that for any permutation π there is a permutation σ such that dp(Gσ

1 ,G2) ≤ dp(Gπ
1,G2) and

σ has the following property: For any color class j, σ maps all the vertices in V0
j to V1

j

and vice-versa or is the identity mapping on that color class.

Finally we show that Min-EGI4 is hard to approximate.
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Theorem 2.3.4. For any constant α > 1, there is no α-approximation algorithm for Min-

EGI4 unless P = NP.

An instance of NCP consists of a subspace S of Fn
2 given as a set of basis vectors B =

{s1, . . . , sk} and a vector v ∈ Fn
2. The objective is to find a vector u ∈ S which minimizes

the hamming weight wt(u + v), i.e., the number of bits where u and v differ. It is NP-hard
to approximate NCP within any constant factor [ABSS97]. The following lemma gives a
reduction that transfers this hardness to Min-EGI4.

Lemma 2.3.5. There is a polynomial-time algorithm that for a given NCP instance I,

constructs a Min-EGI4 instance I′ with OPT(I′) = OPT(I).

The idea of the proof is to construct two graphs G1 and G2 such that any vector from the
given subspace S that is equal to v in all but k positions, can be converted into a color-
preserving bijection from V(G1) to V(G2) that maps all but k edges to edges, and vice
versa.

Let the instance I be given by the vector v ∈ Fn
2 and the basis B = {s1, . . . , sm} of the

subspace S, i.e., S =
{∑m

i=1 αisi | αi ∈ {0, 1}
}
. The computation of a vector u ∈ S can

be thought of as n circuits C1, . . . ,Cn. Thus Ci computes the ith bit of u, i.e., Ci(α) =⊕
j∈[m],s j,i=1 α j, where α = α1 · · ·αm is the input and s j,i is the ith bit of s j. We assume that

these circuits contain only parity gates with fanin 2.

We now proceed to construct a graph G from these circuits such that there is a one-one
correspondence between all assignments of values to α and all automorphisms of G. For
each input bit α j, add two vertices α j,0, α j,1 of the same color. Assigning α j = 0 corre-
sponds to the identity permutation on this color class, assigning α j = 1 corresponds to
exchanging these vertices. We also add two vertices of the same color for the output of
each parity gate. To get the desired correspondence between assignments and automor-
phisms, we use the graph gadget of Torán [Tor04]: For a parity gate with inputs x and y

which computes z = x ⊕ y, the gadget G⊕ connects the vertices x0, x1 corresponding to x,
y0, y1 corresponding to y, and z0, z1 corresponding to z using four additional intermediate
vertices w0,0,w0,1,w1,0,w1,1 that receive the same (new) color. For b ∈ {0, 1}, the vertex xb

is connected to wb,0 and wb,1, while yb is connected to w0,b and w1,b. The vertex wb1,b2 is
connected to zb1⊕b2 for b1, b2 ∈ {0, 1}. The construction is depicted in Figure 2.3.

The gadget is useful due to the following lemma.

Lemma 2.3.6 ([Tor04]). There is a unique automorphism φ for G⊕ which maps xi to xa⊕i

and yi to yb⊕i for a, b, i ∈ {0, 1}. This automorphism φ maps zi to za⊕b⊕i.
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Figure 2.3: Gadget G⊕ corresponding to a parity gate z = x ⊕ y [Tor04]

Lemma 2.3.6 implies that the automorphisms of G exactly correspond to the valid compu-
tations of the circuits C1, . . . ,Cn on all possible 2m assignments. We obtain the two graphs
G1 and G2 for the Min-EGI4 instance I′ from the graph G by adding marker gadgets to the
vertices corresponding to the output bits. Let ui,0 and ui,1 be the vertices corresponding to
the output bit of Ci. For each circuit, we add a new vertex u′i (with a new color) in G1 as
well as in G2. In G1, we connect u′i to ui,0 if vi = 0, and to ui,1 otherwise, whereas in G2,
we connect u′i to ui,0 unconditionally. Now we are ready to prove Lemma 2.3.5.

Proof of Lemma 2.3.5. Given an instance of NCP specified by a subspace S generated by
the basis vectors B = {s1, . . . , sm} and a vector v ∈ Fn

2, we construct graphs G1 and G2 as
described above.

Suppose there exists a vector u =
∑m

i=1 αisi such that wt(u + v) ≤ t. Given this α, we
construct an automorphism πα of G as follows: For each input node of Ci, apply the
automorphism on the vertices corresponding to the value of αi to it. For each parity
gate, Lemma 2.3.6 specifies how to extend an automorphism to the output vertices of the
gadget, given a permutation of the input vertices. Continuing this process for the whole
graph we get an automorphism of G that maps the vertex ui,0 to ui,ui . We extend this
automorphism to a mapping from G1 to G2, fixing the output marker vertices u′i . The
only unmatched edges are those incident to the vertices u′i with ui , vi, so all but at most
t edges of G1 are mapped to edges of G2.

Now suppose that there is a permutation π such that de(Gπ
1,G2) ≤ t. By construction,

each parity gate is used for only one output bit, so at most t output bits are affected by
the mismatched edges. Thus we can convert this permutation π to a new permutation σ
such that de(Gσ

1 ,G2) ≤ de(Gπ
1,G2) where the only edge that is mapped to a non-edge is

(ui,b, u′i). This is because for each circuit C j, starting from a permutation of its inputs,
we can consistently extend the permutation till the output gate of C j. Thus depending on
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whether the input vertices were flipped by the permutation or not, we can assign a value
to each α j and hence get a vector u ∈ S such that wt(u + v) ≤ t. This completes the proof
of the lemma and finishes the proof of Theorem 2.3.4. �

2.4 Summary and Open Problems

Although GI expressed as an optimization problem was mentioned in [AFK02], as far as
we know this is the first time that the complexity of the other three variants of this opti-
mization problem has been studied. Considering the upper and lower complexity bounds
that we have proved in this paper, the following questions seem particularly interesting.

1. In Theorem 2.1.2 we describe an α-approximation algorithm for Max-PGI that runs
in quasi-polynomial time. Does Max-PGI also have a polynomial-time approxi-
mation scheme? It is also interesting that the property tester for graph isomor-
phism [FM06], also has a quasi-polynomial time bound on the running time. That
paper also uses ideas that are similar to [AFK02].

2. Recently, it has been shown in [OWWZ14] that Max-EGI has no constant factor
approximation algorithm under the random 3XOR hypothesis of Feige [Fei02]. The
reduction uses the idea of encoding an XOR gate with a graph gadget similar to
[Tor04, CFI92]. It remains open if the same hardness result can be proved under
stronger assumptions.

3. In the case of vertex-colored graphs, even though we can rule out the existence
of a PTAS for Max-PGIk and Max-EGIk for k > 2, it remains open whether these
problems have efficient approximation algorithms providing a good constant factor
approximation guarantee.
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Chapter 3

Approximate Boolean Isomorphism

Boolean Isomorphism is the decision problem of checking if the input Boolean functions
f , g : {0, 1}n → {0, 1} are isomorphic: is there a permutation π : [n]→ [n] of the variables
{x1, x2, . . . , xn} such that the Boolean functions f (x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n))
are equivalent. As explained in Chapter 1, the complexity of Boolean Isomorphism de-
pends on the representation of the inputs.

Consider any representation of the Boolean functions f and g such that the representa-
tions can be evaluated on any given input in {0, 1}n in time polynomial in n and the size
of the representation. We have the following simple algorithm for Boolean Isomorphism
that runs in time O∗(2O(n))1: First, compute the truth-tables of the functions f and g in
time O∗(2n) by evaluating the representations on all 2n inputs. Now, the truth tables for f

and g can be encoded as hypergraphs G f and Gg with vertex set [n] in a straightforward
manner. A subset S ⊆ [n] is an edge in G f if and only if f (xS ) = 1, where xS ∈ {0, 1}n

is the characteristic vector corresponding to S . I.e. χS (i) = 1 if and only if i ∈ S . Hyper-
graph Isomorphism for n-vertex and m-edge hypergraphs has a 2O(n)mO(1) algorithm due
to Luks [Luk99] which yields the claimed O∗(2O(n)) time algorithm for testing if f and g

are isomorphic.

As observed in Chapter 1, even for f and g represented as 3-CNF formulas, solving
Boolean Isomorphism in 2o(n) time appears very difficult since it is at least as hard as
obtaining such algorithms for 3-CNF satisfiability. On the other hand, there are represen-
tations for which the satisfiability problem can be solved in polynomial time, but a 2o(n)

time algorithm for Boolean Isomorphism appears difficult due to a different bottleneck.
For instance, consider monotone DNF formulas for which satisfiability is a trivial prob-
lem. We give a simple reduction showing that Hypergraph Isomorphism is polynomial-

1Here O∗() suppresses factors that are polynomial in the input size.
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time reducible to Boolean Isomorphism for monotone DNFs.2

Proposition. Hypergraph Isomorphism is polynomial-time reducible to Boolean Isomor-
phism for monotone DNF formulas.

Proof. Suppose H1 and H2 are hypergraphs on vertex set [n]. Let E1 and E2 be their
respective hyperedge sets. The easy case for the reduction is when the hyperedges in E1

are not subsets of each other (which must also hold in E2, for otherwise the hypergraphs
are not isomorphic).

In that case, for each hyperedge E ∈ E1, such that E = {i1, . . . , ir}, we include a monotone
term TE = ∧r

j=1xi j in the DNF formula F1 so that F1 = ∨E∈E1TE. The monotone DNF
formula F2 = ∨E∈E2TE is similarly defined.

Now, we claim that the hypergraphs H1 and H2 are isomorphic if and only if F1 and F2

are isomorphic as Boolean functions. The forward direction is obvious. For the reverse
direction suppose π : [n] → [n] is an isomorphism between F1 and F2. Since F π

1 and F2

are equivalent Boolean functions, it follows every term T2 in F2 must contain some term
T π

1 in F π
1 . In turn, T π

1 must contain some term T ′2 of F2. However, by the assumed subset
free property of the hyperedges in the two hypergraphs it follows that T π

1 = T2. Thus, π
must map hyperedges ofH1 to hyperedges ofH2 making it an isomorphism.

We now consider the general case when the hypergraphs H1 and H2 need not have the
subset-free property. In this case we first transform them to new hypergraphsH ′1 andH ′2
on a vertex set of size O(n) and whose hyperedges are subset-free. Letting [n] denote
the original vertex set, we introduce new vertices {w0,w1, . . . ,wn}. For each hyperedge E

of H1 include the hyperedge E ∪ {w|E|} in H ′1. Additionally, include hyperedges {w0,wi}

1 ≤ i ≤ n in H ′1 as well as hyperedges {i,wi}1 ≤ i ≤ n. By construction the hypergraph
H ′1 is subset-free. Furthermore, we claim that H1 and H2 are isomorphic if and only if
H ′1 and H ′2 are isomorphic. The construction enforces that any isomorphism from H ′1 to
H ′2 must fix the vertex w0 and consequently each wi is also fixed.

Combined with the reduction for the subset-free case above completes the proof. To wit,
the two hypergraphsH1 andH2 are isomorphic if and only if the monotone DNF formulas
FH1 and FH2 are isomorphic (as Boolean functions). �

Thus, a 2o(n) time algorithm for Boolean Isomorphism when f and g are monotone DNF
formulas would yield a 2o(n) time algorithm for Hypergraph Isomorphism, improving upon
Luks’s 2O(n) time algorithm for Hypergraph Isomorphism, which is an open problem for

2There is also a simple polynomial-time reduction in the other direction, from Boolean Isomorphism for
monotone DNFs to Hypergraph Isomorphism.
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over a decade now. Since Boolean Isomorphism is as hard as Hypergraph Isomorphism,
even for monotone DNFs, we investigate approximate Boolean Isomorphism. Our ap-
proach to the approximation problem is via Fourier analytic techniques for Boolean func-
tions. It turns out that this works for certain restricted circuit representations for the input
functions f and g.

Remark. We note here that approximate function isomorphism has been studied in the
framework of property testing. We recall that in property testing the objective is to test
whether two given Boolean functions are close to being isomorphic or far apart. The
main goal is to design a property tester with low query complexity and time complexity is
of secondary importance. Nearly matching upper and lower bounds are known ([AB10,
BO10, CGSM11]) for the Boolean isomorphism problem in the setting of property testing.
In contrast, the results in this chapter are algorithmic and the goal is to efficiently compute
a good approximate isomorphism.

3.1 Preliminaries

For the rest of this chapter, it is convenient to consider Boolean functions with domain
{±1}n and range {±1}. As we will explain shortly, this notation is useful for representing
Boolean functions as polynomials in the Fourier basis representation, which helps in the
analysis of the algorithms in this chapter. We will denote the set of all n-ary Boolean
functions f : {±1}n → {±1} by Bn. Let g : {±1}n → {±1} be a Boolean function and let
π : [n] → [n] be any permutation. The Boolean function gπ : {±1}n → {±1} obtained
by applying the permutation π to the function g is defined as follows: gπ(x1, x2, . . . , xn) =

g(xπ(1), xπ(2), . . . , xπ(n)).

This defines a (faithful) group action of the permutation group S n on the set Bn. I.e.
g(πψ) = (gπ)ψ for all g ∈ Bn and π, ψ ∈ S n, and gπ = gψ for all g ∈ Bn if and only if π = ψ.

Definition 3.1.1. Two Boolean functions f , g ∈ Bn are said to be isomorphic (denoted by

f � g) if there exists a permutation π : [n]→ [n] such that ∀x ∈ {±1}n, f (x) = gπ(x).

Our notion of approximate isomorphism of Boolean functions is based on the notion of
closeness of Boolean functions which we now recall.

Definition 3.1.2. Two Boolean functions f , g are 1
2` -close if Prx∈{0,1}n

[
f (x) , g(x)

]
≤ 1

2` .

Definition 3.1.3. Two Boolean functions f , g are 1
2` -approximate isomorphic if there is a

permutation π : [n]→ [n] such that the functions f and gπ are 1
2` -close.
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We now give a brief overview of Fourier analysis of Boolean functions that we will use
in this chapter.

3.1.1 Fourier Analysis Cheat Sheet

The study of Boolean functions by using Fourier analysis of the abelian group Zn
2 was

initiated in the seminal work of Kahn, Kalai and Linial [KKL88]. Linial, Mansour and
Nisan [LMN93] built on this to study the properties of the Fourier spectrum of bounded

depth Boolean circuits.

The fundamental idea is to study the linear space of real functions on Zn
2. The set F =

{ f : {−1, 1}n → R} of real-valued functions forms a 2n-dimensional vector space over R,
where vector addition is defined as ( f + g)(x) = f (x) + g(x). The vector space F forms an
inner product space with inner product defined as follows:

〈 f , g〉 = Ex∈{−1,1}n
[
f (x)g(x)

]
=

1
2n

∑
x∈{−1,1}n

f (x)g(x).

The `2-norm of a function f ∈ F is ‖ f ‖2 =
√
〈 f , f 〉. Clearly any Boolean function

f : {−1, 1}n → {−1, 1} has unit norm under this inner product since

〈 f , f 〉 =
1
2n

∑
x∈{±1}n

f (x)2.

The standard basis for the vector space consists of the functions { fa | a ∈ {±1}n} where

fa(x) =

−1 if x = a,

1 otherwise.

In order to analyze the properties of Boolean functions, it is useful to look at the Fourier

basis of F , which is the set {χS

∣∣∣S ⊆ [n]} defined as χS (x) =
∏

i∈S xi. These are pre-
cisely the 2n parity functions in the {0, 1}n domain. It is easy to observe the following
proposition.

Proposition 3.1.4. For any S ⊆ [n], Ex[χS (x)] = 0 for S , ∅ and Ex[χ∅(x)] = 1.

As a consequence, we have the following proposition:
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Proposition 3.1.5. For any S ,T ⊆ [n],

〈χS , χT 〉 =

1 if S = T,

0 otherwise.

Furthermore, 〈χS , χT 〉 = Ex[χS4T (x)]. It follows that the Fourier basis is an orthonormal
basis with respect to the inner product. Thus, any f ∈ F can be written as f =

∑
f̂SχS .

This is the Fourier representation of f , and the numbers f̂S = 〈 f , χS 〉 are the Fourier

coefficients of f . The Fourier spectrum of the Boolean functions f is the set of its Fourier
coefficients. The orthonormality of the Fourier basis yields the following useful observa-
tions.

Theorem 3.1.6 (Plancheral’s identity). Let f a real valued function on {±1}n. Then

〈 f , f 〉 =
∑

S⊆[n] f̂ (S )2.

Proof. Since 〈 f , f 〉 = 〈
∑

S⊆[n] f̂ (S )χS ,
∑

S⊆[n] f̂ (S )χS 〉, by the linearity of the inner product
〈 f , f 〉 =

∑
S ,T⊆[n] f̂ (S ) f̂ (T )〈χS , χT 〉. By Proposition 3.1.5, we have 〈 f , f 〉 =

∑
S⊆[n] f̂ (S )2.

�

The following important corollary is a direct consequence of the fact that Boolean func-
tions have unit norm under the inner product that we defined.

Corollary 3.1.7 (Parseval’s identity). Let f : {±1}n → {±1} be any Boolean function.

Then
∑

S⊆[n] f̂ (S )2 = 1.

3.1.2 Outline of the chapter

We will now define the notion of (t(ε), ε)-concentration of a Boolean function and state
the main result of this chapter.

Definition 3.1.8. A Boolean function f : {±1}n → {±1} is said to be (t(ε), ε)-concentrated,

if
∑
|S |>t(ε) f̂ (S )2 ≤ ε.

From now on we will write t(ε) as t while keeping in mind that the number t is a function
of the concentration ε. The main theorem in this chapter can be stated as follows.

Theorem 3.1.9. Let f and g be isomorphic (t, ε)-concentrated Boolean functions. Then,

there is a randomized 2Õ(t′(δ)
√

n)-time algorithm that makes oracle queries to the Boolean

functions f and g and constructs a permutation π such that f and gπ and δ-close.
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The rest of the chapter is organized as follows. In Section 3.2 we state Theorem 3.1.9
formally and prove it. As corollaries to this theorem, we will see what this says about
the approximate isomorphism problem for AC0 functions and linear threshold functions.
Finally, in Section 3.3 we examine a general problem: given two n-variable Boolean
functions f and g as Boolean formulas, consider the optimization problem where the
objective is to find a permutation π that maximizes |{x ∈ {0, 1}n | f (x) = gπ(x)}|. We
observe that this problem is coNP-hard under polynomial-time Turing reductions.

A natural question to ask next is whether there is a polynomial-time approximation algo-
rithm for this problem. The trivial algorithm to compute the permutation π that maximizes
|{x ∈ {0, 1}n | f (x) = gπ(x)}| is the brute-force algorithm of computing the truth-table of
the functions and then picking the π that maximizes |{x ∈ {0, 1}n | f (x) = gπ(x)}| by
checking this for each permutation. This algorithm takes takes 2O(n log n) time.

The interesting question to ask is if we can do better than the brute-force search over all
permutations. In the final section of the chapter, we give a simple 2O(n) time deterministic
approximation algorithm for this problem which takes as input Boolean functions f and
g, represented as Boolean circuits, such that f and gπ agree on a constant fraction of the
inputs for some permutation π, outputs a permutation σ such that f and gσ agree on an
O( 1
√

n ) fraction of the inputs. We do not know if there is a faster algorithm or a 2O(n) time
algorithm that achieves a better approximation ratio.

3.2 Testing isomorphism using Fourier coefficients

We now consider the problem of computing an approximate isomorphism for two Boolean
functions f , g that are (t, ε)-concentrated. We start with two propositions that relate the
isomorphism of Boolean functions f and g to their Fourier coefficients.

Proposition 3.2.1. Let π : [n] → [n] be any permutation, g any Boolean function and

S ⊆ [n], then ĝπ(S ) = ĝ(S π) where S π = { i | π(i) ∈ S }.

Proof. From the definition, we have

ĝπ(S ) =
1
2n

∑
x∈{−1,1}n

gπ(x)χS (x)

=
1
2n

∑
x1,...,xn∈{−1,1}

g(xπ(1),...,π(n))χS (x1, . . . , xn).

The permutation π defines a bijection from {−1, 1}n to {−1, 1}n where π(b1, . . . , bn) =
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(bπ(1), . . . , bπ(n)). Hence,∑
x1,...,xn∈{−1,1}

g(xπ(1),...,π(n))χS (x1, . . . , xn) =
∑

x1,...,xn∈{0,1}

g(x1, . . . , xn)
∏
i∈S

xπ−1(i).

This completes the proof since χS π is exactly
∏

i∈S xπ−1(i). �

Proposition 3.2.2. Two Boolean functions f , g : {−1.1}n → {−1, 1} are isomorphic via

permutation π if and only if f̂ (S ) = ĝ(S π) for each subset S .

Proof. Suppose π : [n] → [n] is an isomorphism. I.e. f (x) = gπ(x) for all x ∈ {−1, 1}n.
Consider any subset S ⊆ [n]

f̂ (S ) =
1
2n

∑
x∈{−1,1}n

f (x)χS (x) =
1
2n

∑
x∈{−1,1}n

gπ(x)χS (x) = ĝπ(S )

Since ĝπ(S ) = ĝ(S π) from the previous proposition, this completes the proof of the for-
ward direction of the proposition.

Conversely, if f̂ (S ) = ĝ(S π) for each subset S , again by the previous proposition we have
f̂ (S ) = ĝπ(S ) which implies that f = gπ. �

3.2.1 Approximate Isomorphism for (t, ε)-concentrated functions

In this subsection we prove that the problem of checking if two (t, ε)-concentrated
Boolean functions f , g are 1/2`-approximately isomorphic is efficiently reducible, via a
randomized reduction with oracle access to f and g, to checking if two “low-degree” poly-
nomials (whose degrees depend on `) are isomorphic. We first outline this randomized
reduction using the Fourier spectrum of the Boolean functions f and g.

Since f and g are (t, ε)-concentrated, we know that∑
S⊆[n],|S |>t

f̂ (S )2 ≤ ε and
∑

S⊆[n],|S |>t

f̂ (S )2 ≤ ε.

We will consider the function f̃ =
∑
|S |≤t f̂ (S )χS . Notice that each χS =

∏
i∈S xi is a mono-

mial, and hence f̃ is a degree-t polynomial that approximates f . Given (t, ε)-concentrated
Boolean functions f , g as an instance of Boolean Isomorphism, our aim is to replace them
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with the polynomials f̃ and g̃ in the isomorphism problem:

f̃ =
∑

S⊆[n],|S |≤t

f̂ (S )χS and g̃ =
∑

S⊆[n],|S |≤t

ĝ(S )χS . (3.1)

This is because f̃ and g̃ are of degree t and have only nt terms. The idea is that checking
if there is an isomorphism between the functions f̃ and g̃ is likely to be easier. Since
the polynomials f̃ , g̃ : {−1, 1}n → R are no longer Boolean-valued functions, we need to
formalize an appropriate notion of isomorphism here.

Definition 3.2.3. Let f ′, g′ : {−1, 1}n → R be two functions from F . We say that f ′ and

g′ are 1
2` -approximate isomorphic if there exists a permutation π : [n] → [n] such that

‖ f ′ − g′π‖22 ≤
1
2` .

Notice that this definition of 1
2` -approximate isomorphism for real-valued functions differs

from the notion of 1
2` -approximate isomorphism for Boolean functions in Definition 3.1.3.

However, the next proposition shows that if Boolean functions f and g are 1
2` -close then

‖ f − g‖ is small.

Proposition 3.2.4. If f , g : {−1, 1}n → {−1, 1} are 1
2` -close, then ‖ f − g‖22 ≤ 4 1

2`

Proof. From the definition, we have,

‖ f − g‖22 =
1
2n

∑
x∈{−1,1}n

( f (x) − g(x))2.

Observing that ( f (x) − g(x))2 is 4 if f (x) , g(x) and zero otherwise, we have

‖ f − g‖22 =
4|{x | f (x) , g(x)}|

2n

This completes the proof. �

We now explain the connection between 1
2` -approximate isomorphism of two functions

and their Fourier coefficients.

Lemma 3.2.5. Let f and g be two Boolean functions that are 1
2` -approximate isomorphic

via permutation π : [n]→ [n]. Then ∀S ⊆ [n] :
∣∣∣ f̂ (S ) − ĝπ(S )

∣∣∣ ≤ 2
2`/2 .

Proof. Notice that
∑

S⊆[n]( f̂ (S ) − ĝπ(S ))2 = ‖ f − gπ‖22. Suppose f , g are 1
2` -approximate

isomorphic via permutation π. By Proposition 3.2.4 we know that
∑

S⊆[n]( f̂ (S )− ĝπ(S ))2 =

‖ f − gπ‖22 ≤
4
2` . Hence for each subset S ⊆ [n] we have

(
f̂ (S ) − ĝπ(S )

)2
≤ 4

2` . �
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Let f and g be two Boolean functions that are 1
2` -approximate isomorphic via permutation

π : [n] → [n]. By the above proposition | f̂ (S ) − ĝπ(S )| is bounded by 2
2`/2 . Furthermore,

since both f̂ (S ) and ĝπ(S ) are Fourier coefficients of Boolean functions f and gπ, we have
0 ≤ | f̂ (S )| ≤ 1 and 0 ≤ |ĝπ(S )| ≤ 1. Hence, the bound implies that the b`/2c − 1 most
significant positions in the binary representation of f̂ (S ) and ĝπ(S ) are identical.

For each subset S , let f̂`(S ) denote the truncation of f̂ (S ) to the first b`/2c − 1 bits. Thus,
| f̂`(S ) − f̂ (S )| ≤ 1

2b`/2c−1 for each S . Similarly, ĝ`(S ) denotes the truncation of ĝ(S ) to the
first b`/2c − 1 bits. We define the following two functions f` and g` from {−1, 1}n → R:

f` =
∑
S⊆[n]

f̂`(S )χS and g` =
∑
S⊆[n]

ĝ`(S )χS . (3.2)

The following lemma formally summarizes the above discussion and gives us a way to
reduce isomorphism of Boolean functions to exact isomorphism of low-degree polynomi-
als.

Lemma 3.2.6. Let f and g be two Boolean functions that are 1
2` -approximate isomorphic

via permutation π : [n] → [n]. Then f` = gπ` , i.e. the functions f` and g` are (exactly)

isomorphic via the permutation π.

Lemma 3.2.5 and Proposition 3.2.4 yield the following observation.

Lemma 3.2.7. Suppose f , g are two Boolean functions that are 1
2` -approximate isomor-

phic via permutation π. Then ‖ f̃ − g̃π‖22 ≤
4
2` . I.e. f̃ and g̃ are 4

2` -approximate isomorphic

via the same permutation π. Furthermore, | f̂ (S ) − ĝπ(S )| ≤ 2
2`/2 for all S : |S | ≤ t.

Proof. By Lemma 3.2.5 and Proposition 3.2.4 we have
∑

S⊆[n]
(
f̂ (S )− ĝπ(S )

)2
≤ 4

2` , which
implies ‖ f̃ − g̃π‖22 =

∑
|S |≤t

(
f̂ (S ) − ĝπ(S )

)2
≤ 4

2` . It follows that | f̂ (S ) − ĝπ(S )| ≤ 2
2`/2 for all

S : |S | ≤ t. �

Now, if | f̂ (S ) − ĝπ(S )| ≤ 2
2`/2 for all S : |S | ≤ t, it implies that f̂`(S ) = ĝπ` (S ) for all

S : |S | ≤ t, where f̂`(S ) and ĝ`(S ) are defined in Equation 3.2. Indeed, if we truncate
the coefficients of the polynomials f̃ and g̃ also to the first b`/2c − 1 bits we obtain the
polynomials:
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f̃`(x1, . . . , xn) =
∑

S :|S |≤t

f̂`(S )χS (3.3)

g̃`(x1, . . . , xn) =
∑

S :|S |≤t

ĝ`(S )χS . (3.4)

It clearly follows that π is an exact isomorphism between f̃` and g̃`. We summarize the
above discussion in the following lemma which is crucial for our algorithm.

Lemma 3.2.8. Suppose f , g are two Boolean functions that are 1
2` -approximate isomor-

phic via permutation π. Then:

1. ‖ f̃ −g̃π‖22 ≤
4
2` . I.e. f̃ and g̃ are 4

2` -approximate isomorphic via the same permutation

π, and hence | f̂ (S ) − ĝπ(S )| ≤ 2
2`/2 for all S : |S | ≤ t.

2. Consequently, π is an exact isomorphism between the polynomials f̃` and g̃`.

Now, if π is an exact isomorphism between f̃` and g̃` what can we infer about π as an
approximate isomorphism between f and g? The following lemma quantifies it.

Lemma 3.2.9. Suppose f and g are (t, δ)-concentrated Boolean functions such that π is

an exact isomorphism between f̃` and g̃` (where f̃ and g̃ are given by Equation 3.1). Then

π is an (δ + ε)2-approximate isomorphism between f and g, where ε = 2nt/2

2(`−1)/2 .

Proof. Since π is an exact isomorphism between f̃` and g̃` we have f̃` = g̃π` . Now consider
‖ f − gπ‖22. By triangle inequality

‖ f − gπ‖2 ≤ ‖ f − f̃ ‖ + ‖ f̃ − f̃`‖ + ‖ f̃` − g̃π`‖ + ‖g̃π − g̃π`‖ + ‖gπ − g̃π‖

= ‖ f − f̃ ‖ + ‖ f̃ − f̃`‖ + ‖g̃π − g̃π`‖ + ‖gπ − g̃π‖.

Since f and g are (t, δ)-concentrated, both ‖ f − f̃ ‖ and ‖gπ − g̃π‖ are bounded by δ. Fur-
thermore,

‖ f̃ − f̃`‖22 =
∑

S :|S |≤t

( f̂ (S ) − f̂`(S ))2 ≤
∑

S :|S |≤t

4
2`−1 ≤

4nt

2`−1 .

Hence, ‖ f̃ − f̃`‖ ≤ 2nt/2

2(`−1)/2 and, likewise, ‖g̃π − g̃π`‖ ≤
2nt/2

2(`−1)/2 . Putting it together with
Proposition 3.2.4 we get

4 Pr[ f , gπ] = ‖ f − gπ‖22 ≤
(
2δ +

4nt/2

2(`−1)/2

)2

.
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It follows that f and g are (δ + ε)2-approximate isomorphic via the permutation π. �

Our goal now is to design an efficient algorithm that will compute the polynomials f̃` and
g̃`, where ` will be appropriately chosen in the analysis. In order to compute f̃` and g̃`
we need to estimate to b`/2c − 1 bits of precision, the Fourier coefficients f̂ (S ) and ĝ(S )
for each subset S : |S | ≤ t. Now, by definition, f̂ (S ) is the average of f (x)χS (x) where x

is uniformly distributed in {−1, 1}n. Hence, following a standard Monte-Carlo sampling
procedure, we can estimate f̂ (S ) quite accurately from a random sample of inputs from
{−1, 1}n and with high probability we can exactly compute f̂`(S ) for all S : |S | ≤ t. We
formally explain this in the next lemma.

Lemma 3.2.10. Given f : {−1, 1}n → {−1, 1} as a black-box, there is a randomized

algorithm C with running time poly(nt, 2`) that outputs the set { f̂`(S ) | |S | ≤ t} with

probability at least 1 − 1
2Ω(n) .

Proof. We use the same technique as [LMN93] to estimate the required Fourier coeffi-
cients.

1. For each subset S ⊂ [n] such that |S | ≤ t do the following two steps:

2. Pick xi ∈r {−1, 1}n and compute the value f (xi)χS (xi) for i ∈ [m].

3. Estimate the Fourier coefficient as α f (S ) = 1
m

∑m
i=1 f (xi)χS (xi).

Applying Chernoff bounds, for each subset S we have Pr
[∣∣∣ f̂ (S ) − α f (S )

∣∣∣ ≥ λ] ≤ 2e−λ
2m/2.

In our case we set λ = 1
2b`/2c−1 . In order to estimate f̂ (S ) for each S : |S | ≤ t within the

prescribed accuracy and with small error probability, we set m = tn log n2`. The entire
procedure runs in poly(nt, 2`) time. Furthermore, by a simple union bound it follows that
with probability at least 1 − 2−Ω(n) we have α f (S ) = f̂`(S ) for each S : |S | ≤ t with
high probability. Thus, the randomized algorithm computes the polynomial f̃` with high
probability. �

3.2.2 Exact isomorphism test for low degree polynomials

We now deal with the problem of checking if the polynomials f̃` =
∑

S :|S |≤t f̂`(S )χS and
g̃` =

∑
S :|S |≤t ĝ`(S )χS are isomorphic, and if so to compute an exact isomorphism π. To

this end, we will encode f` and g` as weighted hypergraphs G f and Gg respectively.
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The vertex sets for both graphs is [n]. Let E denote the set of all subsets S ⊂ [n] of size
at most t. The weight functions for the edges are w f and wg for G f and Gg defined as
follows:

w f (S ) =

 f̂`(S ) ∀S ⊆ [n], |S | ≤ t

0 otherwise,
and wg(S ) =

ĝ`(S ) ∀S ⊆ [n], |S | ≤ t

0 otherwise.

The isomorphism problem for the polynomials f` and g` is now the edge-weighted hy-
pergraph isomorphism problem, where G f and Gg are the two edge-weighted graphs, and
the problem is to compute a permutation on [n] that maps edges to edges (preserving
edge weights) and non-edges to non-edges. Our aim is to apply the Babai-Codenotti iso-
morphism algorithm for hypergraphs with hyperedge size bounded by k [BC08]. Their
algorithm has running time 2Õ(k2 √n). We adapt their algorithm to work for hypergraphs
with edge weights as follows: Since the edge weights for the graphs G f and Gg can be
encoded by b`/2c − 1 length bit strings, we encode the weights into the hyperedges by
introducing new vertices.

More precisely, we create new graphs G′f and G′g corresponding to f and g, where the
number of vertices is now n + O(`). Let the set of new vertices be {v1, . . . , vr}, where
r = O(`). Let S ⊂ [n] be a hyperedge in the original graph G f . A subset T ⊂ {v1, . . . , vr}

encodes an r-bit string via a natural bijection (the jth bit is 1 if and only if v j ∈ T ).
Let T (S ) ⊂ {v1, . . . , vr} denote the encoding of the number f̂`(S ) for each hyperedge
S ∈ E. Similarly, let T ′(S ) ⊂ {v1, . . . , vr} denote the encoding of the number ĝ`(S ). The
hyperedge S ∪ T (S ) encodes S along with its weight f̂`(S ) for each S in G′f . Similarly,
S ∪ T ′(S ) encodes S along with its weight ĝ`(S ) for each S in G′g. The following lemma
is an easy consequence of our construction of the hypergraphs.

Lemma 3.2.11. There exists a permutation π : [n] → [n] such that f̃` = g̃π` if and only if

µ : [n + r]→ [n + r] defined by

µ(i) =

π(i) if i ≤ n

i if i > n

is a hypergraph isomorphism between G′f and G′g.

Since, as candidate isomorphisms between G′f and G′g we wish to consider only permuta-
tions on [n]∪{v1, . . . , vr} that fix each vi, 1 ≤ i ≤ r, we perform the following operation on
G′f and G′g so that any isomorphism between G′f and G′g is an identity on the set {v1, . . . , vr}.
For each vertex Vi, we add a n + i length path starting at vi. Since the hypergraphs G′f
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and G′g did not have paths of length more than n originally, any isomorphism between the
hypergraphs cannot map vi to a vertex other than vi.

With this construction, it is sufficient to construct an isomorphism between the hyper-
graphs G′f and G′g to compute an isomorphism between f̃` and g̃`. Now we invoke the
algorithm of [BC08] on G′f and G′g which will yield an isomorphism ψ between f̃` and
g̃`. In summary, the algorithm for isomorphism testing f` and g` carries out the following
steps.

Isomorphism Test for Polynomials

1. Construct the hypergraphs G′f and G′g as defined above.

2. Run the algorithm of Babai and Codenotti [BC08] on the hypergraphs G′f and G′g
and output isomorphism ψ or report they are non-isomorphic.

Lemma 3.2.12. The isomorphism of polynomials f̃` and g̃` (defined by Equation 3.2)

can be tested in time 2O(
√

n)(`+t)2 logO(1) n. If the polynomials are isomorphic, then an exact

isomorphism can be computed in the same running time bound.

3.2.3 Approximate Isomorphism Algorithm

We now give an outline of the entire algorithm.

Input: Two (t, δ)-concentrated Boolean functions f , g along with parameters t and
`.

Step 1. Compute the polynomials f̃` and g̃` using the randomized algorithm of
Lemma 3.2.10.

Step 2. Check if f̃` and g̃` are isomorphic using the polynomial isomorphism algo-
rithm described above. If they are not isomorphic reject else output the computed
exact isomorphism π.

Suppose π is an exact isomorphism between f̃` and g̃` computed by the above algo-
rithm. By Lemma 3.2.9 π is a (δ+ ε)2-approximate isomorphism between f and g, where
ε = 2nt/2

2(`−1)/2 . From Lemmas 3.2.10 and 3.2.12 it follows that the overall running time
of the algorithm is poly(nt, 2`) + 2O(

√
n)(`+t)2 logO(1) n and the error probability, as argued in

Lemma 3.2.10, is at most 2−Ω(n).
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This gives us the following theorem about approximate isomorphism of (t, ε)-
concentrated Boolean functions.

Theorem 3.2.13. Given two (t, δ)-concentrated Boolean functions f , g which are 1
2` -

isomorphic, there is a randomized algorithm running in time 2O((`+t)2 logO(1) n
√

n) that com-

putes a (δ + ε)-approximate isomorphism between f and g where ε = 2nt/2/2(`−1)/2 and

the error probability of the algorithm is bounded by 2−Ω(n).

If the two Boolean functions f and g are isomorphic, then we get the following theorem
about approximate isomorphism for f and g.

Theorem 3.2.14. Given two isomorphic Boolean functions f and g that are (t, δ)-
concentrated and a parameter θ > 0, there is a randomized 2t(

√
θ/2) log(n/θ)

√
n-time algo-

rithm that computes an θ-approximate isomorphism between f to g, and the error proba-

bility of the algorithm is bounded by 2−Ω(n).

Proof. Notice first that if f and g are isomorphic, then for any ` > 0, f and g are 1
2` -

approximately isomorphic. Also, by Lemma 3.2.9, we know that if π is an isomorphism
between between f̃` and g̃`, then π is a (δ + ε)2-approximate isomorphism between f and
g. For δ + ε ≤

√
θ, it is enough to set δ and ε such that δ ≤

√
θ/2 and ε ≤

√
θ/2.

For this, fix the value of t = t(δ) = t(
√
θ/2) and ` = O(t log(n/θ)) in Lemma 3.2.9.

Using Lemma 3.2.10, we can compute f̃` and g̃` in time poly(2t(log(n/θ)) and construct an
isomorphism between f̃` and g̃` using Lemma 3.2.12 in randomized time 2t2 log(n/θ)

√
n. �

We will now see two applications of Theorem 3.2.14.

3.2.3.1 AC0 Functions

The first application is the isomorphism problem for the class of Boolean functions that
are computable by Boolean circuits of depth d and size s, where the gates allowed are
unbounded fan-in AND and OR gates, and negation gates. The class of constant depth
unbounded fan-in circuits is well-studied in complexity theory. The class AC0 consists of
languages L ⊆ {0, 1}∗ for which there is a nonuniform family of circuits {Cn}n>0 such that:
(i) For each n the circuit Cn takes n input bits and accepts precisely the length n strings
in L, and (ii) There are a constant d and a polynomial p(n) such that Cn is an unbounded
fan-in circuit of depth bounded by d and size bounded by p(n) for each n. Furst, Saxe and
Sipser [FSS81] proved that the language of all binary strings of odd parity (i.e. the range
of the parity function) is not in AC0. A far reaching improvement of this result was due to
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Håstad [Hås86] who obtained essentially optimal lower bounds for computing the parity
of n variables.

Let ACs,d,n denote the class of n-input Boolean functions computable by circuits of size
at most s and depth at most d. Linial, Mansour and Nisan proved the following theorem
about the Fourier coefficients of such Boolean functions in their seminal work [LMN93].

Theorem 3.2.15 ([LMN93]). Let f : {±1}n → {±1} be computable by a Boolean circuit

of size s and depth d. Then, for any integer t > 0∑
S⊆[n],|S |>t

f̂ (S )2 ≤ 2s2−t1/d

In other words, any Boolean function f computable by a circuit of size s and depth d is
(log(ε/2s)−d, ε)-concentrated.

Now, suppose f , g ∈ ACs,d,n are isomorphic Boolean functions. As a consequence of
Theorem 3.2.14 there is a randomized algorithm that computes an ε-approximate isomor-
phism between f and g in time 2log(n/ε)O(d) √n for any positive ε. This is substantially faster
than the 2O(n) time algorithm for computing an exact isomorphism.

Remark. Given a Boolean function f (x1, · · · , xn), we used a real polynomial f̃ (x1, · · · , xn)
that approximates f to reduce the isomorphism problem of Boolean functions to the iso-
morphism problem for hypergraphs. This is possible because for any permutation π of
the Boolean functions, the approximating polynomial for the function f (xπ(1), · · · , xπ(n)) is
obtained by permuting the monomials in f̃ according to π. One could think of the poly-
nomial as a sort of an approximate permutation preserving normal form (as described in
Chapter 1) for the function.

Razborov [Raz87] and Smolensky [Smo87] in their seminal work on constant-depth cir-
cuits with Mod gates, also have shown that functions computed by AC0 circuits are well
approximated by polynomials of degree (log n)O(d) over, say, rationals. However, these
approximating polynomials do not seem to have a crucial property that we used for com-
puting an approximate isomorphism between f and g. What we require is that f and g

are approximately isomorphic via π if and only if the corresponding polynomials that ap-
proximate f and g are exactly isomorphic via π. In fact the approximating polynomials
construction in [Raz87, Smo87] crucially use the circuit structure for the given functions f

and g. Hence, if we construct approximating polylog-degree polynomials p1 and p2 start-
ing from two different ACs,n,d circuits for the same function f , it appears unlikely that
p1 and p2 will be isomorphic. Similarly, it is not clear if the approximation of constant-
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depth circuits by probabilistic polynomials [Tar93] can be used in designing isomorphism
testing algorithms.

3.2.3.2 Linear Threshold Functions

A second class of functions where this result is applicable is the set of linear threshold
functions.

Definition 3.2.16. A function f : {±1}n → {±1} is a linear threshold function if

f (x1, · · · , xn) = sgn(
∑

i∈[n] wixi + θ) where w1, · · · ,wn, θ ∈ R.

The class of linear threshold functions is one of most well-studied classes of Boolean
functions with applications in a wide variety of areas. The following theorem was proved
by Klivans, O’Donnell and Servedio about the concentration of the Fourier coefficients of
linear threshold functions.

Theorem 3.2.17 ([KOS04]). Let f : {±1}n → {±1} be any linear threshold function and

let ε < 1/2. Then, the function f is ((21/ε)2, ε)-concentrated.

As a corollary, using Theorem 3.2.14 we can see that there is a randomized algorithm that
computes an ε-approximate isomorphism between linear threshold functions f and g in
time 2(log n/ε)

√
n.

3.3 A general approximate isomorphism algorithm

In this section we study the approximate isomorphism problem for general Boolean func-
tions. Given two n-variable Boolean functions f and g as Boolean circuits comput-
ing them, consider the optimization problem of finding a permutation π that minimizes
|{x ∈ {±1}n | f (x) , gπ(x)}|, which we will call MinBooleanIso. A brute-force search
that runs in n! time by cycling through all permutations yields a trivial algorithm for this
optimization problem.

We show that MinBooleanIso is coNP-hard under Turing reductions. We give a
polynomial-time Turing reduction from the coNP-complete problem TAUTOLOGY

(checking if a propositional formula is a tautology) to MinBooleanIso.

Lemma 3.3.1. TAUTOLOGY is polynomial-time Turing reducible to MinBooleanIso.
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Proof. Given f : {±1}n → {±1} as an n-variable propositional formula, we define func-
tions gi : {±1}n → {±1} for i ∈ [n] such that

gi(x) =

1 if x = −1i1n−i

−1 otherwise

The Boolean function f is a tautology if f (x) = −1 for all x ∈ {±1}n. Observe that if f is
a tautology then for each i, |{x ∈ {0, 1}n | f (x) , gπi (x)}| = 1 for all permutations π.

We now describe a polynomial-time algorithm for TAUTOLOGY with MinBooleanIso

as oracle. For each gi, compute (with a query to the function oracle MinBooleanIso) a
permutation πi that minimizes |{x ∈ {0, 1}n | f (x) , gπi

i (x)}|. If f (π−1
i (−1i1n−i)) = −1

for each i, the algorithm describing the Turing reduction “accepts” f as a tautology and
otherwise it “rejects” f .

We now show the correctness of this reduction. If f is a tautology, then clearly for each
πi we have f (π−1

i (−1i1n−i)) = −1.

Conversely, suppose f is not a tautology. We want to show that for some i, the ora-
cle query to MinBooleanIso with f and gi as inputs returns a permutation πi such that
f (π−1

i (−1i1n−i)) = 1. Since f is not a tautology, the set f −1(1) = {x ∈ {±1}n | f (x) = 1} is
nonempty. Let | f −1(1)| = N. For any permutation π, either (i) it maps all the elements in
f −1(1) incorrectly, in which case |{x ∈ {±1}n | f (x) , gπi (x)}| = N + 1, or (ii) it maps all
except one element from f −1(1) incorrectly, in which case |{x ∈ {±1}n | f (x) , gπi (x)}| =
N −1. Suppose x ∈ f −1(1) is a string with i number of −1s. Then, there is a permutation π
such that |{x ∈ {±1}n | f (x) , gπi (x)}| = N−1 since any permutation that maps x to −1i1n−1

has this property. Therefore, when the algorithm queries the MinBooleanIso oracle with
f and gi, it will return a π with this property. In this case, the pre-image of −1i1n−1 will
be in f −1(1). In other words, f (π−1(−1i1n−i)) = 1 and the algorithm will reject. �

Corresponding to the minimization problem, we look at the maximization problem: Find
π that maximizes |{x ∈ {±1}n | f (x) = gπ(x)}|. Of course computing an optimal solution
to this problem is polynomial-time equivalent to MinBooleanIso. In the remainder of
this section we design a simple approximate isomorphism algorithm for the maximization

problem. Our simple algorithm is based on the method of conditional probabilities. We
first examine how good a random permutation is as an approximate isomorphism. Then
we describe a deterministic algorithm for computing a permutation with the same solution
quality.
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3.3.1 Estimating the guarantee of a random permutation

For Boolean functions f and g, we now estimate the random variable |{x | f (x) = gπ(x)}|
when the permutation π is picked uniformly at random from the symmetric group S n.

Lemma 3.3.2. Let f : {−1, 1}n → {−1, 1} and g : {−1, 1}n → {−1, 1} be δ-close Boolean

functions for some δ > 0. Then,

Eπ
[
|{x | f (x) = gπ(x)}|

]
≥

δ22n

64
√

n
.

Proof. Let si( f ) denote the cardinality | {x ∈ {0, 1}n| wt(x) = i, f (x) = 1} | where wt(x) is
the hamming weight of the Boolean string x. Clearly, si( f ) ≤

(
n
i

)
. For each u ∈ {0, 1}n

define the 0-1 random variable Xu which takes value 1 if and only if f (u) = gπ(u) for
π ∈ S n picked uniformly at random. If wt(u) = i, then

Pr
π

[Xu = 1] =
si(g)(

n
i

) f (u) +

(
n
i

)
− si(g)(

n
i

) (1 − f (u)) .

The sum X =
∑

u∈{0,1}n Xu is the random variable | {x| f (x) = gπ(x)} | for a random permuta-
tion π ∈ S n. We have

Eπ [X] =

n∑
i=0

∑
u:wt(u)=i

si(g)(
n
i

) f (u) +

n∑
i=0

∑
u:wt(u)=i

(
n
i

)
− si(g)(

n
i

) (1 − f (u)) (3.5)

=

n∑
i=0

si(g)si( f )(
n
i

) +

n∑
i=0

(
(

n
i

)
− si(g))(

(
n
i

)
− si( f ))(

n
i

) (3.6)

≥ max
i

 si( f )si(g)(
n
i

) ,
(
(

n
i

)
− si(g))(

(
n
i

)
− si( f ))(

n
i

)  . (3.7)

Since f and g are δ-close for some constant δ > 0, the fraction δ = maxσ∈S n |{x| f (x) =

gσ(x)}|/2n is a constant (independent of n). For 0 ≤ i ≤ n, define δi as the following:

δi = |{x | f (x) = gτ(x),wt(x) = i}|/
(
n
i

)
.
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Thus
∑n

i=0 δi

(
n
i

)
= δ2n which we can write as

√
n∑

i=0

(δi + δn−
√

n+i)
(
n
i

)
+

n/2+
√

n∑
i=n/2−

√
n

δi

(
n
i

)
= δ2n.

Since each δi ≤ 1,
∑√

n
i=0(δi + δn−

√
n+i)

(
n
i

)
≤ 2n

√
n+1 ≤ 22

√
n log n for sufficiently large n.

Let A denote the sum
∑n/2+

√
n

i=n/2−
√

n
δi

(
n
i

)
. Then,

A ≥ δ2n

(
1 −

22
√

n log n

δ2n

)
≥
δ

2
2n.

By averaging, there is some hamming weight i in the range n/2 −
√

n ≤ i ≤ n/2 +
√

n,
such that

δi

(
n
i

)
= |{u | wt(u) = i and f (u) = gπ(u)}| ≥

δ2n

4
√

n
.

We fix this value of i and let S denote the set {u | wt(u) = i and f (u) = gπ(u)}. Assume
without loss of generality that | f −1(1) ∩ S | > δ2n

8
√

n (Otherwise we consider f −1(0) ∩ S ).
Thus, we have si( f ) ≥ | f −1(1)∩ S | = |(gπ)−1(1)∩ S | ≥ δ2n

8
√

n . Similarly, si(g) = {u | wt(u) =

i and gπ(u) = 1} ⊇ (gπ)−1(1) ∩ S . Hence |(gπ)−1(1) ∩ S | ≤ |{u | wt(u) = i and gπ(u) = 1}| =
|{u | wt(u) = i and g(u) = 1}| = si(g). Therefore, both si( f ) and si(g) are at least δ2n/8

√
n.

Combined with Equation 3.5 and using the inequality
(

n
i

)
≤ 2n
√

n for large enough n, we get
the desired lower bound on E[X]:

E[X] ≥
si( f )si(g)(

n
i

) ≥
δ222n

64n
(

n
i

) ≥ δ22n

64
√

n
.

�

Using the estimate for the expected value of the size of the set {x | f (x) = gπ(x)}, where π
is picked at random, we get an approximate isomorphism algorithm which is given in the
next theorem.

Theorem 3.3.3. There is a deterministic 2O(n) time algorithm that takes two Boolean func-

tions f , g : {0, 1}n → {0, 1} as input (give either by Boolean circuits or by black-box ac-

cess) and outputs a permutation σ with the following property: If f and gπ are δ-close for

some permutation π and constant δ, then

| {x | f (x) = gσ(x)} | ≥ Ω

(
2n

√
n

)
.
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Proof. Let X denote the random variable | {x | f (x) = gπ(x)} where π is picked uniformly
at random from S n. From the previous lemma we know that the Eπ[X] ≥ Ω(2n/

√
n). Now

we show how to compute a permutation σ such that |{x| f (x) = gσ(x)}| ≥ Eπ[X],

Let σi be an injective map σi : {1, 2, . . . , i} → [n] and let S σi
n denote the set of per-

mutations {π ∈ S n | π(l) = σ( j) for 1 ≤ l ≤ i}. Given the partial permutation σi defined
on {1, 2, . . . , i}, define random variables Xσi,u for each u ∈ {0, 1}n where Xσi,u = 1 if
f (u) = gπ(u) for π picked uniformly at random from S σi

n . Let Xσi =
∑

u Xσi,u. Similar
to Equation 3.5, we can write an expression for E[Xσi] and compute it exactly in time
2O(n) for a given σi. For j ∈ [n] \ {σi(1), σi(2), . . . , σi(i)} let σi, j denote the extension of
σi that maps i + 1 to j. In time 2O(n) we can compute E[Xσi, j] for every j, and choose
the permutation σi+1 as that σi, j which maximizes E[Xσi, j]. In particular, this will sat-
isfy E[Xσi+1] ≥ E[Xσi]. Continuing this process until i = n yields σn = σ such that
|{x | f (x) = gσ(x)}| ≥ Eπ[X], where π is randomly picked from S n. �

3.4 Summary and Open Problems

Motivated by the question whether Boolean Isomorphism has algorithms faster than
Luks’s 2O(n) time algorithm [Luk99], we initiate the study of approximate Boolean Iso-
morphism. The main result of this chapter is an approximate isomorphism testing algo-
rithm for Boolean functions whose Fourier spectrum is concentrated in a small set. The
obvious question here, which we have been unable to answer until now, is if there are
other properties that can be utilized to obtain approximation testing algorithms for other
classes of Boolean functions.

Another interesting direction to pursue is whether there are good property testing algo-
rithms for this problem. Tight bounds are known for property testing Boolean function
isomorphism [AB10], though they make no assumption about the structural properties of
the functions. If query complexity is measured, then the algorithm given in this chapter
can be used to obtain a good tester. Unfortunately, the running time of the algorithm is
n! which makes it uninteresting. A concrete problem to look at this stage is whether the
ideas in this chapter can be used to obtain a better tester for Boolean isomorphism.

An interesting question that remains at this point is whether there is a polynomial-time ap-
proximation scheme for approximate Boolean Isomorphism when the functions are given
as Boolean formulas or circuits. It is open whether there is a constant factor approx-
imation algorithm for approximate Boolean Isomorphism even when the functions are
represented as 3-CNFs. More generally, it would be interesting to investigate how the
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representation of the Boolean functions influences the computational complexity of com-
puting approximate isomorphisms. We do now see how to approach this question.

In the next chapter, we will study how the representation of the Boolean functions that are
given as input influences the complexity of exact Boolean Isomorphism.
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Chapter 4

Boolean Isomorphism for some
Representations

In this chapter and the next, we will study the Boolean Isomorphism problem (not the
approximate but the exact version) for certain representation classes. The results in these
chapters are motivated by the question: how closely is the complexity of Boolean Iso-
morphism for a particular representation class related to the satisfiability problem? More
precisely, we seek answers to the following questions:

• Is it possible to efficiently transform Boolean Isomorphism for a particular rep-
resentation to Graph Isomorphism (or bounded rank Hypergraph Isomorphism) if
there is an efficient Satisfiability test for that representation? This seems the most
natural approach to obtain an algorithm that runs faster than O∗(2O(n)) for Boolean
Isomorphism.

• Since bounded rank Hypergraph Isomorphism has a 2o(n) time algorithm, a related
question would be if Boolean Isomorphism for a particular representation can be
solved as fast as Satisfiability or Equivalence for that representation.

As we described in the previous chapter, Hypergraph Isomorphism is polynomial-time
reducible to Boolean Isomorphism for monotone DNFs. Therefore, even for classes of
Boolean functions that have polynomial-time satisfiability algorithms, it is difficult to de-
sign algorithms for Boolean Isomorphism that run faster than the hypergraph isomorphism
testing algorithm of Luks [Luk99].

An interesting question that we can ask here, is for which representations of Boolean func-
tions that have efficient satisfiability algorithms, can we give solve Boolean Isomorphism

55



as fast as Graph Isomorphism? As we explained in Chapter 1, Boolean Isomorphism for
2-CNFs is already as hard as Graph Isomorphism.

With this question in mind, we study Boolean Isomorphism for two representations of
Boolean functions that have efficient satisfiability testing algorithms: Horn-CNFs and
decision trees. We also study Boolean Isomorphism for decision lists which is a more
general class of representations (4.1.3).

Two well-studied representations of Boolean functions are 2-CNFs and Horn-CNFs. Re-
call that Horn-CNF formulas are conjunctive normal form formulas with the restriction
that each clause contains at most one positive literal. It turns out that for both represen-
tations Boolean Isomorphism is polynomial-time equivalent to GI. The result for 2-CNF
representation is already shown in [BHRV04]. We prove a somewhat stronger result for
decision lists.

We also study Boolean Isomorphism for Boolean decision trees. Decision trees are a
natural representation for Boolean functions and are fundamental to Boolean function
complexity due to their conceptual simplicity. See, for example, the survey by Buhrman
and de Wolf [BdW02] on complexity measures for Boolean functions and the central
role of decision tree complexity in the field. Decision lists were introduced as a flexible
representation for Boolean functions by Rivest [Riv87] in the context of machine learning.
In the field of algorithmic learning theory, decision trees too have played a significant role
in learnability of Boolean functions. The polynomial time PAC learning algorithm of
decision trees given by Kushilevitz and Mansour [KM93] is an example.

4.1 Preliminaries

We start with some basic definitions that will be useful in this chapter.

Decision Trees

Definition 4.1.1. A decision tree T f on variables X = {x1, . . . , xn} is an ordered binary

tree in which each leaf is labeled with a Boolean value and each inner node is labeled

with a variable in X and has exactly two children. Any assignment b1, . . . , bn defines a

path from the root of T f to a leaf: At an inner node labeled with xi, proceed to the left

child if bi = 0 and to the right child otherwise. The function value T f (b1, . . . , bn) is the

label of the leaf node reached along this path.
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Decision trees are a natural representation for Boolean functions and are fundamental to
Boolean function complexity. The size |T | of a decision tree T is the number of its leaves.
We may assume that on the path from the root to any leaf, each variable occurs at most
once as label of an inner node. Indeed, querying the same variable a second time will
always yield the same result as before, so the second occurrence can be removed together
with the subtree rooted at its non-reachable child without changing the represented func-
tion.

The satisfiability and equivalence problems for decision trees have simple polynomial-
time algorithms. Given a decision tree T , the Boolean function represented by T is sat-
isfiable if and only if one of the leaves of T is labeled with the constant 1. For checking
the equivalence of Boolean functions f and g given as decision trees T f and Tg, we can
construct a decision tree T for the function f ⊕ g. Two Boolean functions f and g are
equivalent if and only if f ⊕ g is not satisfiable. To construct the decision tree T for f ⊕ g,
we attach the decision tree Tg to the leaves of T f labeled with 0 and we attach the decision
tree Tg (obtained by complementing the leaves of the decision tree Tg) to the leaves of T f

labeled with 1. We can then prune this decision tree to remove nodes with the same label
in a path to obtain the decision tree T . To check equivalence it is sufficient to check if all
the leaves of the decision tree T are labeled with the constant 0.

Thus, Boolean Isomorphism for decision trees, denoted DT-Iso, is in NP.

We give a polynomial time reduction from Boolean Isomorphism for bounded rank de-

cision trees to Hypergraph Isomorphism for bounded rank hypergraph. One corollary of
this is a 2

√
s(log s)O(1) time algorithm for Boolean Isomorphism of size-s decision trees.

We first define the notion of rank for decision trees as given by Ehrenfeucht and Haussler
in [EH89]. Let T be a decision tree and v be a node in T .

The rank of the node v, rk(v), is defined as follows,

rk(v) =


0 if v is a leaf,

max{rk(v1), rk(v2)} v1 and v2 are children of v with rk(v1) , rk(v2),

rk(v1) + 1 otherwise.

The rank of the decision tree T is rank of its root node. For a Boolean function f , the rank
of f is defined as follows:

rk( f ) = min{rk(T ) | T is a decision tree that represents f }.
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T1: x1

0 x2

1 x3

x4

0 1

0

T2: x1

x2

x3

x4

1 0

0

0

x4

0 x3

0 x2

0 1

Figure 4.1: The decision tree T1 computes the function x1∧ (x2∨ (x3∧ x4)) and has rank 1.
The decision tree T2 computes the function (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) and
has rank 2.

In other words, the rank of a decision tree T is the depth of the largest full binary tree that
can be embedded into T . The rank of a hypergraph is the maximum hyperedge size in the
hypergraph. In Section 4.2, we prove the following theorem:

Theorem 4.1.2. Let f and g be two Boolean functions of rank r given as decision trees

T1 and T2. There is a deterministic algorithm running in time nO(r) that constructs two

hypergraphs H1 and H2, each of which have hyperedges of size O(r) such that f � g if

and only ifH1 � H2.

Along the way we prove that the isomorphism of rank-1 decision trees is complete for
deterministic logspace. In Section 4.2, we prove a converse to Theorem 4.1.2, that Graph
Isomorphism is polynomial-time reducible to Boolean Isomorphism for decision trees of
rank 2.

Decision Lists

The next important class of functions that we study in this chapter are the class of decision
lists, which were introduced by Rivest [Riv87] in learning theory.

Definition 4.1.3 ([Riv87]). A C-decision list (C-DL) L, where C is a finite class of Boolean

functions, is a sequence of pairs 〈 fi, bi〉i≤m where bi ∈ {0, 1}, fm = 1, and for i = 1, . . . ,m−
1, fi(x1, . . . , xn) = gi(xi1 , . . . , xik) for some gi ∈ C, where 1 ≤ i1, . . . , ik ≤ n. For a Boolean

assignment x, the decision list L has the value L(x) = bi, where i = min{ j ≥ 1 | f j(x) = 1}.

If C = {x1, x1}, then C-DL coincides with rank-1 decision trees (defined in the previous
chapter). Similarly, if C consists of conjunctions of r literals then every r-CNF or r-DNF
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formula has a C-decision list. We call such decision lists r-decision lists (or r-DLs, in
short). For r ≥ 3, the satisfiability problem for r-DLs is clearly NP-complete, and the
equivalence problem is coNP-complete. Furthermore, every rank-r decision tree of size s

has an r-decision list of length O(s) [Blu92]. Our results on the complexity of Boolean
Isomorphism for C-DLs, denoted C-DL-Iso, are summarized below.

Example 4.1.4. The function AND(x1, x2, x3, x4) = x1 ∧ x2 ∧ x3 ∧ x4 can be rep-

resented as the 1-decision list 〈¬x1, 0〉, 〈¬x2, 0〉, 〈¬x3, 0〉, 〈¬x4, 0〉, 〈1, 1〉. Any k-CNF

F(x1, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm can be represented as the k-decision lists

〈¬C1, 0〉, 〈¬C2, 0〉, · · · , 〈¬Cm, 0〉, 〈1, 0〉.

Horn-CNFs

Definition 4.1.5 (Horn-CNF). A CNF formula F = C1 ∧C2 ∧ · · · ∧Cm is a Horn-CNF if

each clause Ci is of the form xi1 ∧ xi2 ∧ · · · ∧ xik ⇒ xi′ , where xi js are variables and xi′

is either a variable or a Boolean constant. In other words, each clause of the Horn-CNF

has at most one positive literal. We will call the variables xi js as the antecedent and the

literal xi′ as the consequent.

The satisfiability problem for Horn-CNFs is P-complete and hence the equivalence prob-
lem is solvable in polynomial time. We prove the following theorem.

Theorem 4.1.6. Let f and g be two Boolean functions on n variables given as Horn-

CNFs. There is an algorithm running in time nO(1) that constructs two hypergraphs H1

andH2 such that f � g if and only ifH1 � H2.

Since hypergraph isomorphism is reducible to graph isomorphism, this also shows that
testing isomorphism of Horn-CNFs is polynomial-time many-one reducible to graph iso-
morphism.

Further in the same section, we note a simple observation (already shown in [BHRV04])
that Boolean Isomorphism for 2-CNFs is reducible to Graph Isomorphism. We also ex-
hibit a polynomial time reduction from Graph Isomorphism to Boolean Isomorphism for
monotone 2-CNF.

By a representation of a Boolean function f : {0, 1}n → {0, 1} we mean a finite descrip-
tion R for f , such that for any input x ∈ {0, 1}n we can evaluate R(x) = f (x) in time
polynomial in the size of R. Examples of representations include circuits, branching pro-
grams, formulas, decision trees etc. Two representations R and R′ are equivalent (denoted
R ≡ R′) if they describe the same Boolean function.
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Let π be a permutation of the input variables x1, x2, . . . , xn. Then f π denotes the Boolean
function f (xπ(1), xπ(2), . . . , xπ(n)). Similarly, we assume that we can transform any represen-
tation R of the function f into a representation Rπ for f π by replacing each input variable xi

in R by xπ(i).

Let R and R′ be sets of representations of Boolean functions. A permutation preserving

normal form representation (in short, normal form) for R is a mapping N : R → R′ such
that (i) NR ≡ R for any R ∈ R, (ii) R1 ≡ R2 implies NR1 = NR2 , and (iii) for each
permutation π we have NRπ = (NR)π.

A canonical form representation for R is a mapping C : R → R′ such that (i) for any
R ∈ R, the function represented by CR is isomorphic to the one described by R, and
(ii) for any two representations R1 and R2, the functions described by R1 and by R2 are
isomorphic if and only if CR1 = CR2 .

Given a Boolean function f defined on the variables X, a variable x ∈ X and a bit b ∈

{0, 1}, the restricted function f |x←b is the Boolean function defined on the variables X \

{x} that is obtained from f by fixing the value of x to b. For X′ ⊂ X we also use the
notation f |X′←b for the restricted function where all variables in X′ are fixed to b.

4.2 Boolean Isomorphism for Decision Trees

This section consists of two parts. In Section 4.2.1, we show that Boolean Isomorphism
for rank-1 Boolean functions is in polynomial time. In fact, we will give a polynomial-
time algorithm for computing a canonical form representation for rank-1 Boolean func-
tions. If the rank-1 function is given as a rank-1 decision tree, we show that Boolean
Isomorphism is complete for deterministic logspace. In Section 4.2.2, we build on the
rank-1 case to give a polynomial-time reduction from Boolean Isomorphism for bounded
rank Boolean functions to Hypergraph Isomorphism for bounded rank hypergraphs. This
yields a moderately exponential-time algorithm for Boolean Isomorphism for bounded
rank decision trees.

We begin with a few simple observations.

Proposition 4.2.1. Let f be a rank-r Boolean function on variables x1, . . . , xn. Then there

exists some variable xi such that f |xi←0 or f |xi←1 has rank at most r − 1. Additionally, for

all variables xi the restricted functions f |xi←0 and f |xi←1 have rank at most r.

Proof. Since f is a rank-r Boolean function, there is some decision tree T f computing f
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which is of rank r. Let xi be the variable that the root of T f is labelled with. Since the
decision tree T f is of rank r, one of the children of the root must have at most rank r−1. If
it is the left child, then f |xi←0 has rank at most r−1; otherwise f |xi←1 has rank at most r−1.

The second part holds because fixing any variable to a constant does not increase the rank
of T f . �

Proposition 4.2.2. Let T be a decision tree that represents some Boolean function f on

the variables X, and let x ∈ X and b ∈ {0, 1}. Then a decision tree T |x←b for the restricted

function f |x←b can be computed in time O(|T |).

Proof. To obtain T |x←b from T , remove each inner node labelled with x along with the
subtree rooted at its child selected by b. �

Proposition 4.2.3. Given a decision tree T that represents some Boolean function f , it

can be checked whether f = 0 or f = 1 in time O(|T |).

Proof. It suffices to check whether all leaves of T are labelled with the desired constant.
�

Using these observations, we can minimize the rank of decision trees.

Theorem 4.2.4. Given as input a decision tree T , we can check if the represented Boolean

function f has rank r and, if so, construct a rank-r decision tree for it in time poly(nr · |T |).

Proof. The algorithm is recursive. As base case, suppose r = 1 and let f be the function
represented by the given decision tree T . Find a variable x and a bit b such that f |x←b

is constant; this can be checked using Propositions 4.2.2 and 4.2.3. If no such x and b

exist, reject T as it has rank more than 1. Proceeding recursively with the function f |x←b

(which has only n− 1 variables), we can check if f is of rank 1 and also compute a rank-1
decision tree for it.

For checking if f has rank r, we sketch a simple recursive procedure: Find a variable x

and a bit b ∈ {0, 1} such that f |x←b is of rank at most r − 1 (checked recursively). If f |x←b

has rank at most r (checked recursively) then f is of rank at most r, else f has rank more
than r. If no such variable exists then f has rank more than r.

By Proposition 4.2.1, the desired variables can always be found if f has rank r. The
running time follows since if t(n, r, s) is the time to check if an n-variate function repre-
sented by a decision tree T of size s is of rank r, then by the above algorithm we have the
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following recurrence:

t(n, r, s) ≤ 2n · t(n − 1, r − 1, s − 1) + t(n − 1, r, s − 1) + |T |.

It is easy to verify by induction that t(n, r, s) = O((nr s)3). �

4.2.1 Boolean Isomorphism for Rank-1 Boolean Functions

In this section, we describe a normal form for rank-1 Boolean functions, whose structure
allows to decide Boolean Isomorphism efficiently. We then show that when the input is
a rank-1 decision tree, Boolean Isomorphism (and even computing canonical forms) can
be done in logspace. To show that this is optimal, we give a reduction from a known
logspace-complete problem.

4.2.1.1 Normal Form for Rank-1 Boolean Functions

Let f be a rank-1 Boolean function given by some decision tree T f which is not nec-
essarily rank 1. For Boolean constants c, b ∈ {0, 1}, let Xc,b( f ) =

{
x

∣∣∣ f |x←b = c
}
. By

Propositions 4.2.2 and 4.2.3, these sets can be computed efficiently.

Next, we define f0 = f and, for j ≥ 1, f j = f j−1|V j,0( f )←1,V j,1( f )←0, where V j,b( f ) =

X j mod 2,b( f j−1) for b ∈ {0, 1}. The variable set {x1, x2, . . . , xn} is thus partitioned into k ≤ n

subsets V1,0( f )∪V1,1( f ), . . . ,Vk,0( f )∪Vk,1( f ). The level of a variable x is the index j such
that x ∈ V j,0( f ) ∪ V j,1( f ).

The normal form of T f is defined as N f =

S 1,0( f ), S 1,1( f ), . . . , S k−1,0( f ), S k−1,1( f ), 〈1, k mod 2〉, where S j,b( f ) = {〈xb
i , j mod 2〉 |

xi ∈ V j,b( f )}; we here use the notation x1
i = xi and x0

i = xi. See Figure 4.2 for an example.

This sequence N f represents the same function as the decision list obtained from it by
replacing each S j,b( f ) with the list of pairs contained in it. Clearly, N f is equivalent to T f

and only depends on f (i.e., not on the structure of T f ). The next two lemmas imply that
N f is a permutation preserving normal form representation for T f .

Lemma 4.2.5. Suppose f and g are two isomorphic rank-1 Boolean functions and π is an

isomorphism from f to g. For any input variable x, if x is in level j for f then variable π(x)
is in level j for g.

Proof. For all bits c, b ∈ {0, 1}, we have f |x←b = c if and only if g|π(x)←b = c as π is an
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Figure 4.2: A rank-1 function f where V1,1( f ) = {x1, x3}, V1,0( f ) = {x2}, V2,1( f ) = {x4, x5}

isomorphism; so π maps Xc,b( f ) to Xc,b(g). This implies that π is an isomorphism from f j

to g j for all levels j.

Now let x be a variable in level j for f , i.e., there is a bit b ∈ {0, 1} such that x ∈

X j mod 2,b( f j−1). By the above observation, we have π(x) ∈ X j mod 2,b(g j−1), so π(x) is in
level j for g. �

This implies that the number of variables in each level coincides for two isomorphic
Boolean functions of rank 1. The next lemma is in the converse direction.

Lemma 4.2.6. Let T f and Tg be decision trees for two Boolean functions f and g of

rank 1, defined on the n variables x1, . . . , xn. Let N f and Ng be the corresponding normal

form sequences obtained as in the discussion above. Suppose for each level j, |V j,0( f )| =
|V j,0(g)| and |V j,1( f )| = |V j,1(g)|, then f and g are isomorphic.

Proof. For each level j, we have |V j,0( f )| = |V j,0(g)| and |V j,1( f )| = |V j,1(g)|, so there are
bijections between the sets V j,0( f ) and V j,0(g) and between V j,1( f ) and V j,1(g); we may
assume that each of these bijections preserves the relative order of the variables w.r.t. the
indices. As these variable sets are disjoint, these bijections can be combined into a single
bijection π. Rename the variables in N f according to π; then Nπ

f and Ng are identical
because of the way they are sorted. Since the normal form for the function f π is obtained
from the normal form of f by renaming the variables according to π, this implies f π = g

and thus f � g. �

Hence, the defined sequences are normal forms for rank-1 functions and in time poly-
nomial in the size of the input decision tree we can compute the normal form. Given
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T f and Tg, Lemma 4.2.6 shows that by comparing the sizes of the sets V j,0 and V j,1 for the
two functions we can check if the Boolean functions are isomorphic or not. This gives us
the following theorem.

Theorem 4.2.7. Given Boolean functions of rank 1 by decision trees, there is a polynomial

time algorithm that checks if the functions are isomorphic.

4.2.1.2 Isomorphism of Rank-1 Decision Trees in Logspace

We now show that if the rank-1 function f is given as a decision tree T f which is of rank 1,
then the canonization problem is in logspace. We first show how the sets V j,b( f ) can be
computed in logspace.

For each internal node of T f , at least one of its children is a leaf (labeled by a constant).
We can partition the internal nodes in the tree into subsets L1, . . . , Lm, where L1 has con-
secutive nodes starting from the root that have a leaf child labelled with 1, L2 is the next
set of consecutive nodes with a leaf child labelled with 0, and so on. We further classify
the variables in each L j into the subset L j,0 of nodes in L j whose left child is a leaf and
subset L j,1 of nodes whose right child is a leaf. These sets can be computed in logspace
by inspection of the input decision tree.

Lemma 4.2.8. L j,b = V j,b( f ) for all levels j and bits b ∈ {0, 1}.

Proof. Since for each x ∈ L1,b, the restriction f |x←b is 1, we have L1,b ⊆ V1,b( f ). No
variable outside the set L1,b has this property, so L1,b = V1,b( f ). A simple inductive
argument generalizes this to the higher levels. �

Together with Lemma 4.2.6 this gives a logspace isomorphism test for rank-1 decision
trees. With the following theorem, we observe that this can be strengthened to canoniza-
tion.

Theorem 4.2.9. Given a rank-1 decision tree T , a canonical form CT of T can be com-

puted in logspace, i.e., CT = CT ′ whenever T and T ′ describe isomorphic functions.

Proof. To obtain CT from T , we first order the variables of L j such that all the nodes
whose left child is a constant come first followed by the nodes whose right child is a
constant. We do this for all the sets L1, . . . , Lm. Now starting from the root, rename the
variables with the root node getting the variable x1 followed by x2 and so on. The resulting
decision tree CT can clearly be computed in logspace. As CT only depends on the sizes of
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Figure 4.3: The reduction from Ord to DiOddPathCenter

the sets L j,b, Lemmas 4.2.6 and 4.2.8 imply that decision trees that represent isomorphic
functions receive the same canonical form. �

4.2.1.3 Hardness for Logspace

We now show the logspace completeness. We will give a reduction from the problem
Ord, which is known to be complete for L [Ete97]. The input to Ord is a directed path P

given as a set of edges and two vertices s and t. The problem is test if s occurs before t is
the path P.

We will first reduce Ord to the DiOddPathCenter problem which is defined as follows:
Given a directed path P with an odd number of vertices and a vertex u ∈ P, test if u is the
center of the path P.

Lemma 4.2.10. DiOddPathCenter is L-complete.

Proof. The problem can easily be solved in logspace. To prove the hardness, we reduce
from Ord using (P, s, t)→ (P′, n) as reduction, where n is the vertex having no successor
and 1 is the vertex having no predecessor in P, and where P′ is defined by

V(P′) = V(P) ∪ {i′ | i ∈ V(P)} ∪ {ŝ}

E(P′) = {(i, j) | (i, j) ∈ E(P) ∧ j , t} ∪ {( j′, i′) | (i, j) ∈ E(P) ∧ j < {s, t}}

∪ {(ŝ, i′) | (i, s) ∈ E(P)} ∪ {(s′, ŝ), (t′, 1), (1′, t), (n, n′)} .

The path P′ consist of a forward and a reversed copy of P that are joined together, where
the part before the first copy of t is swapped with the part after the second copy of t, and
where the second copy of s is duplicated; see Fig. 4.3 for an illustration. If s precedes t

in P (left side), then n is the center of P′, but if t precedes s then n′ is the center of P′

(right side). �
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We now describe how to construct two decision trees T1 and T2 from an instance P of
DiOddPathCenter: For each v ∈ V there is a variable xv, and both T1 and T2 contain one
internal node for each xv. If v is the successor of v′ in P, xv becomes the right child of
xv′ in T1, and xv′ becomes the right child of xv in T2. The right child of xv, where v is the
vertex without successor (or without predecessor, respectively) is a leaf labeled with 1.
In both trees, the left child of xu is a leaf labeled with 1. The left children of all other
variables are leaves labeled with 0.

Lemma 4.2.11. Let T1 and T2 be the decision trees constructed from an instance (P, u)
of DiOddPathCenter. Let f1 and f2 be the functions represented by the decision trees,

respectively. Then, f1 � f2 if and only if (P, u) ∈ DiOddPathCenter.

Proof. For the purposes of this proof, identify the vertices of P with the integers 1, . . . , n
such that the vertex i is the successor of i − 1. To prove the lemma, it is sufficient to
show that f1 is isomorphic to f2 if and only if u = (n + 1)/2. Since T1 and T2 are rank 1
decision trees, Lemmas 4.2.5 and 4.2.6 imply that the functions represented by them are
isomorphic if and only if |Vi,b( f1)| = |Vi,b( f2)| for all i and b. In the case of T1, V1,0( f1) =

{1, . . . , u−1},V1,1( f1) = ∅,V2,0( f1) = {u},V2,1( f1) = ∅,V3,0( f1) = {u+1, . . . , n},V3,1( f1) = ∅

and Vi,b( f1) = ∅ for any larger i. Similarly for T2, V1,0( f2) = {n, . . . , u + 1},V1,1( f2) =

∅,V2,0( f2) = {u},V2,1( f2) = ∅,V3,0( f2) = {u− 1, . . . , 1},V3,1( f2) = ∅ and Vi,b( f2) = ∅ for any
larger i. Thus f1 � f2 if and only if u = (n + 1)/2. �

4.2.2 Isomorphism of Rank-r Boolean Functions

Like for rank-1 decision trees, we first give a normal form representation for rank-r de-
cision trees. Next, we exploit the structure of this normal form to give a reduction from
the Boolean Isomorphism problem for bounded rank decision trees to Hypergraph Iso-
morphism for bounded rank hypergraphs. Concluding this section, we show that Graph
Isomorphism is reducible to Boolean Isomorphism for rank-r decision trees, for r ≥ 2.

4.2.2.1 Normal Form for Bounded Rank Boolean Functions

Let T f be a decision tree for a function f of rank r. For a bit b ∈ {0, 1}, let Xb( f ) be the
subset of variables xi such that f |xi←b has rank at most r − 1. Let f0 = f , and for j ≥ 1
let f j = f j−1|X0( f j−1)←1,X1( f j−1)←0, and also define the variable sets V j,b( f ) = Xb( f j−1), for b ∈

{0, 1}. Again, the variables of f are partitioned into V1,0( f )∪V1,1( f ), . . . ,Vk,0( f )∪Vk,1( f ).
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Generalizing the normal form for rank-1 decision trees, which is a list of pairs that com-
prise of one literal and one constant each and that are grouped into sets, the normal form
for f is a list N f of pairs that comprise of one literal and one normal form of a Boolean
function of rank r − 1 that are grouped into sets. We define the normal form N f as the
sequence of sets S 1,0( f ), S 1,1( f ), . . . , S k,0( f ), S k,1( f ), where each set S j,b( f ) is constructed
from V j,b( f ) as follows. For each variable xi ∈ V j,b( f ), include 〈xb

i ,N f |xi←b〉 in S j,b( f ),
where x1

i = xi and x0
i = xi, and where N f |xi←b is defined recursively based on the decreas-

ing rank. To evaluate N f on a given assignment a, find the smallest j such that S j,b( f )
contains a pair whose first component is a literal satisfied by a, and recursively evaluate
the normal form in the second component of this pair.

Since for each xi, checking if f |xi←b has rank at most r − 1 and to compute a decision tree
for it takes poly(nr−1|T |) time by Theorem 4.2.4, and since this process has to be repeated
for at most n steps, the normal form can be constructed in time poly(nr|T |).

Lemma 4.2.12. Given a decision tree T f that represents a Boolean function f of rank r,

a normal form representation N f for f can be computed in time poly(nr|T |).

Proof. Let N f be the normal form described above. Clearly, N f represents the function f .
Also, N f only depends on the function f (and not the structure of T f ), so equivalent
decision trees T and T ′ receive the same normal form NT = NT ′ . If π is an isomorphism
from f to g, then a similar argument as in Lemma 4.2.5 shows that x ∈ V j,b( f ) implies
π(x) ∈ V j,b(g). Additionally, ( f j)π = g j and ( f j−1|x←b)π = g j−1|π(x)←b, so (N f j−1 |x←b)

π =

Ng j−1 |π(x)←b . This implies (S j,b( f ))π = S j,b(g). Thus N f is indeed a permutation preserving
normal form.

To analyze the running time, let t(n, r, |T |) denote the time for constructing the normal
form of an n-variate Boolean function of rank r given by a decision tree T . For each
variable xi, for each ` ∈ {1, . . . , r − 1}, we have to spend at most t(n − 1, r − 1, |T | − 1)
time to construct the normal form for f |xi←b if f |xi←b is of rank ` and at most another
t(n − 1, r, |T | − 1) time to construct the normal form for f |xi←b. To obtain the decision tree
T |xi←b, we have to spend |T | time. This gives the following recurrence for t(n, r, |T |):

t(n, r, |T |) ≤ 2nr · t(n − 1, r − 1, |T | − 1) + t(n − 1, r, |T | − 1) + |T |.

It can be verified that t(n, r) = ncr|T |c satisfies this recurrence for a constant c ≥ 3. �

67



4.2.2.2 Reduction to Hypergraph Isomorphism

We now describe our reduction of rank-r decision tree isomorphism to bounded rank
hypergraph isomorphism, where the rank of a hypergraph is the maximum size of any
hyperedge in it.

Given a rank-r Boolean function as a decision tree, we first construct the normal form
for f , N f in time nO(r) as described earlier. The next step is to construct a vertex-colored
hypergraph corresponding to the normal form. We will encode all the information in the
normal form using hyperedges. The construction is inductive.

Rank-1 functions: The case of rank-1 functions is easy, since the normal form for a rank-1
Boolean function consists of a decision tree where for each node, one of its children is a
constant. In the hypergraph corresponding to the rank-1 function f , for each variable xi

that appears in the normal form we add a vertex vi. Add the vertices (i, b) where 1 ≤ i ≤ n

and b ∈ {0, 1}. We also add two vertices 0 and 1 corresponding to the constants. Now for
each variable xi, if xi ∈ V j,b( f ) and one of its children is labeled with the constant c, add
the hyperedge {vi, ( j, b), c} in the hypergraph. We color all the vertices corresponding to
the variables with one color and each ( j, b) with a separate color. The vertices 0 and 1 are
colored with different colors as well. Call the resulting rank-3 hypergraph H f . We have
the following lemma.

Lemma 4.2.13. Let f and g be Boolean functions of rank 1 given by decision trees, and

let H f and Hg be the hypergraphs constructed as above. Then, f and g are isomorphic

as functions if and only if the hypergraphsH f andHg are isomorphic.

Proof. If f and g are rank 1 functions that are isomorphic, then we have seen that
|V j,b( f )| = |V j,b(g)| for all j, b. In the construction of the hypergraph, for each variable
xi, there are fixed j, b, c such that {vi, ( j, b), c} is a hyperedge. Also, the color of the vertex
( j, b) is different for different values of j, b. Thus the hypergraphs are isomorphic if and
only if the sets V j,b( f ) and V j,b(g) are of the same cardinality, which proves the lemma. �

Rank-r functions: Let f be a rank-r function, and let N f = 〈li,Nxi〉i≤k, where k ≤ n

and li ∈ {xi, xi}, be the normal form for f . The vertex set for the hypergraph H f is
{u1, . . . , un} ∪ {vd

1, . . . , v
d
n | 1 ≤ d ≤ r} ∪ {(l, i, b, j) | 1 ≤ l ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ r,

b ∈ {0, 1}} ∪ {0, 1}. Intuitively, the vertices u1, . . . , un will encode the variables x1, . . . , xn

and v1
1, . . . , v

1
n will encode the variables x1, . . . , xn at the outermost level in 〈l1,Nxi〉 pairs.

LetHi denote the hypergraph encoding Nxi , constructed inductively. The vertex set ofHi

will be {vd
1, . . . , v

d
n | 2 ≤ d ≤ r} ∪ {(l, i, b, j) | 1 ≤ l ≤ r − 1, 1 ≤ i ≤ n, b ∈ {0, 1},
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2 ≤ j ≤ r} ∪ {0, 1}. We define the edge set for H f as follows: For every 〈li,Nxi〉 in the
normal form and every edge e ∈ Hi, we include e ∪ {v1

i } ∪ {(l, j, b, 1)} in the edge set if
xi ∈ V l

j,b( f ) (where b encodes whether li is xi or xi) and the edges {ui, v1
i } for all i. Assume,

inductively, that Hi is of rank at most 2(r − 1) + 1. Then clearly H f is of rank at most
2r + 1. If f � g via π ∈ S n, then since N f and Ng are their normal form representations
(N f )π = Ng, where (N f )π is obtained by replacing xi by xπ(i) for all i in N f . By induction
on the rank r, we can easily argue that there is a π ∈ S n such that (N f )π = Ng if and only
if the hypergraphs H f and Hg are isomorphic.

Lemma 4.2.14. Let f and g be Boolean functions of rank r given by decision trees. Let

H f and Hg be the hypergraphs constructed as above. Then, f and g are isomorphic as

functions if and only if the hypergraphsH f andHg are isomorphic.

Proof. Suppose f and g are isomorphic functions. From the construction of the nor-
mal form, we know that any isomorphism maps the vertices in V l

j,b( f ) to the vertices in
the set V l

j,b(g). Let π be such an isomorphism. Therefore we know that for xi ∈ V l
j,b( f ),

π(xi) ∈ V l
j,b(g). We will show that π induces an isomorphism between the hypergraphs. By

induction hypothesis, the Boolean function corresponding to Nxi is isomorphic to Nπ(xi).
Thus, extending π with the identity on all non-variable vertices results in an isomorphism
between the hypergraphsHxi andHπ(xi). Since this is true for all xis, π induces an isomor-
phism between the hypergraphsH f andHg.

To prove the other direction, let π be an isomorphism between the hypergraphs
H f and Hg. Then, for any vertex vi corresponding to a variable xi at depth 1, the hy-
pergraphs Hxi and Hπ(xi) are isomorphic. By induction hypothesis, this implies that the
functions represented by the normal forms Nxi and Nπ(xi) are isomorphic. Since this is true
for all the vertices vi corresponding to depth 1 variables xi, π (restricted to the variables
of f ) is an isomorphism for the Boolean functions f and g. The base case of the induction
is when the decision trees are of rank 1 and this is taken care of in Lemma 4.2.13. �

According to the construction, the hypergraphH f corresponding to the rank-r function f

has 2nr vertices and rank 2r + 1. The size of the hypergraph is at most nO(r) since any
rank-r Boolean function has a rank-r decision tree of size nO(r). In particular, the normal
form that we construct is of size at most nO(r). We formulate these observations in the
following theorem.

Theorem 4.2.15. Let f and g be Boolean functions of rank r given by decision trees

T f and Tg. There is an algorithm running in time nO(r) that outputs two hypergraphs

H f and Hg of rank 2r + 1 and size nO(r) such that f and g are isomorphic if and only if

the hypergraphsH f andHg are isomorphic.
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Since any decision tree of size s has rank at most O(log s), it has a normal form represen-
tation of size nO(log s) which can be computed in nO(log s) ·sO(1). Hence we have the following
corollary.

Corollary 4.2.16. Let f and g be two decision trees of size s. There is an sO(log s) time

algorithm which computes hypergraphs H f and Hg of logarithmic rank and size sO(log s)

such that f and g are isomorphic if and only ifH f � Hg.

Combining this with the isomorphism algorithm for hypergraphs of bounded rank due to
Babai and Codenotti [BC08], we observe the following:

Corollary 4.2.17. Given two Boolean functions f and g as decision trees of size s, there

is a 2
√

s(log s)O(1) time algorithm to check if f � g.

4.2.2.3 GI-Hardness of DT-Iso

We will show that isomorphism testing even for rank-2 decision trees is GI-hard.

Let G = (V, E) be a graph with V = {v1, v2 . . . , vn} and E = {e1, e2, . . . , em}. We en-
code G as a Boolean function fG on n + m Boolean variables v1, . . . , vn and e1, . . . , em

as follows: fG(e1, . . . , em, v1, . . . , vn) = 1 if and only if exactly three variables ei, v j, vk

are 1, all remaining variables are 0, and ei = {v j, vk} ∈ E. Here the Boolean variables
vi and e j correspond, by abuse of notation, to elements of V ∪ E. We can write fG as
fG =

∨
e={u,v}(e ∧ (

∧
e′,e e′) ∧ u ∧ v ∧ (

∧
w,u,v w)).

Lemma 4.2.18. For any graph G = (V, E), the function fG is of rank 2 and can be repre-

sented by a rank-2 decision tree of size O(|E|2|V |).

Proof. Note that if any edge variable e is set to 1 where e = {u, v}, all the terms in fG
disappear, except the one where the variable appears un-negated. Thus, fG|e←1 =

∧
e′,e e′∧

u ∧ v ∧
∧

w,u,v w. Since fG|e←1 is a conjunction of literals, it is a rank 1 function. Since fG
is zero if all the edge variables are set to 0, this proves that fG is a rank-2 function. �

Theorem 4.2.19. Let G = (VG, EG) and H = (VH, EH) be two graphs in which all vertices

have at least two neighbors, and let fG and fH be the functions as defined above. Then,

G � H if and only if fG � fH.

Proof. The function fG encodes the graph G in the sense that for an assignment a to the
variables, fG(a) = 1 exactly if a encodes an edge e = {u, v} ∈ EG, i.e., ae = au = av = 1
and ax = 0 for all x ∈ (VG ∪ EG) \ {e, u, v}.
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Any isomorphism π from G to H can be extended to map each edge e = {u, v} ∈ EG

to π(e) = {π(u), π(v)}. Then π sends the satisfying assignments of fG to the satisfying
assignments of fH, implying that fG � fH.

Conversely, if π is an isomorphism from fG to fH, it induces a bijection between the
satisfying assignments of the two functions. As a variable is an edge variable if and only
if it occurs in only one satisfying assignment, π maps edge variables to edge variables and
vertex variables to vertex variables. It follows that π restricted to VG is an isomorphism
from G to H. �

As any pair of graphs can be modified to meet the degree requirement of Theorem 4.2.19
by adding two universal vertices to each graph, we have the following corollary.

Corollary 4.2.20. GI ≤m
p DT-Iso.

4.3 Boolean Isomorphism for Decision Lists

In this section, we consider C-DL isomorphism. We first observe that satisfiability of C-
DLs is related to the Constraint Satisfaction Problem (CSP) where the constraints come
from the class C.

Definition 4.3.1. A constraint of arity k is a Boolean function C : {0, 1}k → {0, 1}. For

a constraint C of arity k and variables xi1 , . . . , xik (not necessarily different), the corre-

sponding constraint application is the Boolean function C(xi1 , . . . , xik). For a finite class C

of constraints, a C-CSP instance I is a set of applications of constraints in C and repre-

sents the conjunction of these constraint applications. A constraint C is called

• 0-valid, if C(0) = 1,

• 1-valid, if C(1) = 1,

• Horn, if it is a Horn-CNF, i.e., each clause has at most one positive literal,

• anti-Horn, if it is an anti-Horn-CNF, i.e., each clause has at most one negative

literal,

• bijunctive, if it is a 2-CNF, and

• affine, if it is a conjunction of parities.
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A class C of constraints is called 0-valid, 1-valid, Horn, anti-Horn, bijunctive or affine, if

every constraint in it has the respective property; and it is called Schaefer if it is Horn,

anti-Horn, bijunctive or affine.

Schaefer proved the following dichotomy theorem regarding the satisfiability of CSP in-
stances.

Theorem 4.3.2 ([Sch78]). Let C be a class of constraints. The satisfiability problem for

C-CSP instances is in P if C is 0-valid, 1-valid or Schaefer, and NP-complete otherwise.

Böhler et al. considered Boolean Isomorphism for CSP instances.

Theorem 4.3.3 ([BHRV04]). Let C be a class of constraints. Boolean Isomorphism for

C-CSP instances is polynomial-time reducible to GI if C is Schaefer, and coNP-hard

otherwise.

Recall that in a C-DL L = 〈 f1, b1〉, . . . , 〈 fm, bm〉 each fi is required to be isomorphic to
some function C ∈ C (cf. Definition 4.1.3), and thus can be viewed as application of the
constraint C.

For a class of constraints C, we define its complement as C = {¬C | C ∈ C}, and observe
the following.

Lemma 4.3.4. For any C-CSP instance I, there is an equivalent C-DL LI .

Proof. Given a C-CSP instance I =
{
Ci(xi,1, . . . , xi,ki) | i ∈ {1, . . . ,m}

}
, we define

LI = 〈¬C1(x1,1, . . . , x1,k1), 0〉, . . . , 〈¬Cm(xm,1, . . . , xm,km), 0〉, 〈1, 1〉 .

The decision list LI represents the function
∧m

i=1 Ci(xi,1, . . . , xi,ki) and thus is equivalent
to I. �

Combining this lemma with Theorem 4.3.3, we observe that C-DL satisfiability is coNP-
hard if C is not Schaefer. The interesting cases of C-DL Boolean Isomorphism are thus
those where C is Schaefer, i.e., where C consists of either (i) disjunctions of conjunctions
of literals of which at most one is negative, (ii) disjunctions of conjunctions of literals of
which at most one is positive, (iii) disjunctions of parities of literals or (iv) disjunctions
of conjunctions of two literals.

In Section 4.3.2, we show that in all these cases, C-DL Boolean Isomorphism is reducible
to GI. Moreover, when C consists of parities of two literals, Boolean Isomorphism is in
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polynomial time. We refer to this last case as 2⊕-DL and consider it in Section 4.3.1. In
Section 4.3.3 we show that Graph Isomorphism is reducible to C-DL-Iso when C is any
of the above four classes (with k ≥ 3 in the case of parities). This shows the Schaefer-type
dichotomy for Boolean Isomorphism of decision lists.

4.3.1 Parities of size 2

Let L be a 2⊕-DL, i.e., L is given by a sequence of pairs 〈pi, bi〉 where bi ∈ {0, 1} and
each pi is a parity of two literals. We say that a pair 〈pi, bi〉 fires on an assignment x, if i

is the least index such that pi(x) = 1. Let fL denote the function represented by L.

We first construct a normal form representation for 2⊕-DLs to obtain an equivalent de-
cision list where the tuples are partitioned into the sets B1, . . . , Bm, where the second
component of each pair in Bk is 1 if k is odd, and is 0 if k is even (in this normal form the
set B1 could possibly be empty). We then exploit the structure of the normal form to give
a polynomial time algorithm for the 2⊕-DL Boolean Isomorphism.

We now explain the normal form NL (which is also a 2⊕-DL) for a given 2⊕-DL L. The
idea is that each Bk includes as many tuples as possible, even if some of them are re-
dundant, as this choice does not depend on the order of the variables. For all pairs of
literals li and l j, such that L evaluates to 1 under all assignments with li ⊕ l j = 1, we add
〈li ⊕ l j, 1〉 to the set B1. We can find such pairs by replacing all occurrences of l j by li in
the decision list and checking if it represents the constant function 1. To compute Bk for
k ≥ 2, find literals li and l j (whose parity was not included in some Br with r < k) such
that L evaluates to k mod 2 under all assignments that satisfy (li⊕ l j)∧

∧
〈p,r mod 2〉∈Br ,r<k ¬p.

For each such pair we include 〈li⊕ l j, k mod 2〉 in Bk. We define the normal form NL for L

by NL = B1, B2, . . . , Bm−1, 〈1,m mod 2〉; it represents the same function as the 2⊕-DL that
results from replacing each set Bk with the sequence of the pairs that are contained in it.
The following lemma summarizes this normal form construction.

Lemma 4.3.5. If L is a 2⊕-DL then NL is a permutation preserving normal form repre-

sentation for L. Moreover, NL is computable in time polynomial in |L|.

Proof. The sets B1, B2, . . . , Bm can be computed in time polynomial in |L| since there are
at most

(
2n
2

)
pairs of literals and for each pair (li, l j), checking if it belongs to the set Bk

reduces to checking the satisfiability of a conjunction of parities of size 2.

The construction clearly is a normal form representation since the sets Bk depend only
on the function, and equivalent functions will give same sets. To show that this normal
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form representation is isomorphism preserving, suppose f and g are isomorphic Boolean
functions with 2⊕-DLs L f and Lg respectively where π is the isomorphism. Then 〈li ⊕

l j, k mod 2〉 is in the set Bk of the function f if and only if 〈lπ(i) ⊕ lπ( j), k mod 2〉 is in the
set Bk corresponding to g since π is an isomorphism between f and g. Thus Nπ

f = N f π =

Ng. �

Example 4.3.6. The normal form of the 2⊕-DL L = 〈x1 ⊕ x2, 0〉〈x2 ⊕ x3, 1〉〈1, 0〉 is NL =

B1, B2, B3, 〈1, 0〉 with B1 = ∅, B2 = {〈x1 ⊕ x2, 0〉, 〈x1 ⊕ x2, 0〉} and B3 = {〈x1 ⊕ x3, 1〉, 〈x1 ⊕

x3, 1〉, 〈x2 ⊕ x3, 1〉, 〈x2 ⊕ x3, 1〉}. The set B4, which is not used for the normal form, has one

element for each remaining parity of two literals.

Let L be a 2⊕-DL and NL = B1, B2, . . . , Bm−1, 〈1,m mod 2〉 be its normal form. We will
efficiently encode NL as a sequence S L so that the following holds: For two 2⊕-DLs
L1 and L2, the functions fL1 and fL2 represented by them are isomorphic if and only if the
sequences S L1 and S L2 are equal. We first state a couple of easy observations.

Lemma 4.3.7. If 〈li ⊕ l j, b〉 is in some set Bk of the normal form NL of L, then 〈li ⊕ l j, b〉 is

also in Bk.

Proof. Suppose 〈li ⊕ l j, b〉 is in Bk for some k ≤ m, i.e., L evaluates to b = k mod 2 under
all assignments that satisfy (li ⊕ l j) ∧

∧
p∈Br ,r<k ¬p. As li ⊕ l j and li ⊕ l j are equivalent,

this implies that L evaluates to b under all assignments that satisfy (li ⊕ l j)∧
∧

p∈Br ,r<k ¬p.
Hence 〈li ⊕ l j, b〉 is in Bk. �

Lemma 4.3.8. If both 〈li1 ⊕ li2 , b〉 and 〈li2 ⊕ li3 , b〉 are in some set Bk of the normal form NL

of L, then 〈li1 ⊕ li3 , b〉 is also in Bk.

Proof. This follows from the fact that if li1⊕li3 = 1, then either li1⊕li2 = 1 or li2⊕li3 = 1. �

Lemma 4.3.9. If 〈li1 ⊕ li2 , b〉 is in some set Br and 〈li1 ⊕ l j, b〉 is in some set Bk with r < k,

then 〈li2 ⊕ l j, b〉 is also in Bk.

Proof. In all assignments that do not let 〈li1 ⊕ li2 , b〉 fire, li1 and li2 take the same value.
Thus these two literals can be used interchangeably in Bk. �

We call two literals li and l j equivalent after Bk (denoted li ≡k l j) if li = l j or if
〈li ⊕ l j, b〉 ∈ Br for some b ∈ {0, 1} and r ∈ {1, . . . , k}. This relation is transitive by
Lemmas 4.3.8 and 4.3.9. The relation ≡k partitions the set of variables X into the equiv-
alence classes [xi]k = {x j ∈ X | xi ≡k x j}, xi ∈ X. The complementary equivalence class
of [xi]k is [xi]k = {x j ∈ X | xi ≡k x j}; note that it is possible that [xi]k = ∅. By definition,
the equivalence classes of ≡k are a refinement of the equivalence classes of ≡k+1.
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Example 4.3.10. Consider the 2⊕-DL L = 〈x1⊕x2, 1〉〈x2⊕x3, 1〉〈x5⊕x6, 1〉〈x4⊕x5, 0〉〈x1⊕

x6, 1〉〈1, 0〉. The equivalence classes of ≡1 are [x1]1 = {x1}, [x2]1 = [x3]1 = {x2, x3},

[x4]1 = {x4}, [x5]1 = {x5}, and [x6]1 = {x6}. The classes [x1]1 and [x2]1 are complementary

to each other, as are [x5]1 and [x6]1. The complementary class of [x4]1 is ∅.

The equivalence classes of ≡2 are similar to those of ≡1, the only difference is that

[x4]1 and [x5]1 are joined to [x4]2 = [x5]2 = {x4, x5}, which is complementary to [x6]2 =

{x6}.

The equivalence classes of ≡3 are [x1]3 = [x4]3 = [x5]3 = {x1, x4, x5} and [x2]3 = [x3]3 =

[x6]3 = {x2, x3, x6}; they are complementary to each other.

For ≡4 there is only one equivalence class, i.e., it contains all variables. It is complemen-

tary to itself.

Given a normal form NL = B1, . . . , Bm−1, 〈1,m mod 2〉, we encode the sizes and inclusion
structure of these equivalence classes as S L = C1, . . . ,Cm−1, where the Ck are lists that are
constructed as follows. To construct C1, consider each pair {[xi]1, [xi]1} of complementary
equivalence classes of ≡1. We may assume |[xi]1| ≥ |[xi]1| and add the pair of sizes
(|[xi]1|, |[xi]1|) to C1. The list C1 is sorted lexicographically. For an equivalence class [xi]1

with |[xi]1| ≥ |[xi]1|, we use pos1([xi]1, [xi]1) to denote the position of the first occurrence
of (|[xi]1|, |[xi]1|) in C1, and for an equivalence class [xi′]1 with |[xi′]1| < |[xi′]1|, we let
pos1([xi′]1, [xi′]1) = − pos1([xi′]1, [xi′]1).

We now describe the construction of Ck for k ≥ 2. For each pair {[xi]k, [xi]k} of
complementary equivalence classes of ≡k, we again assume |[xi]k| ≥ |[xi]k| and in-
clude the pair of sizes (|[xi]1|, |[xi]1|) in Ck. This pair is annotated with the positions
of the equivalence classes of ≡k−1 in Ck−1 that are contained in [xi]k and [xi]k: Let
{S 1,T1}, . . . , {S `,T`} be the pairs of equivalence classes of ≡k−1 such that

⋃`
j=1 S j = [xi]k

and
⋃`

j=1 T j = [xi]k. Define A[xi]k as the sorted list that contains posk−1(S j,T j) for each
j ∈ {1, . . . , `}, and define A′[xi]k

as the sorted list that contains posk−1(T j, S j) for each
j ∈ {1, . . . , `}. If |[xi]k| = |[xi]k|, we assume w.l.o.g. that A[xi]k ≥ A′[xi]k

. We now an-
notate the entry (|[xi]1|, |[xi]1|) of Ck with A[xi]k , and sort Ck w.r.t. the annotations. We
define posk([xi]k, [xi]k) as the position of the first pair (|[xi]1|, |[xi]1|) in Ck that is annotated
with A[xi]k . In the asymmetric cases where |[xi]k| > |[xi]k| or A[xi]k > A′[xi]k

, we define
posk([xi]k, [xi]k) = − posk([xi]k, [xi]k). In the symmetric cases where |[xi]k| = |[xi]k| and
A[xi]k = A′[xi]k

, we define posk([xi]k, [xi]k) = posk([xi]k, [xi]k).

Example 4.3.11. Consider again the 2⊕-DL L from Example 4.3.10. This results in the

sequence S L = C1,C2,C3. For k = 1, we have C1 = (1, 0), (1, 1), (2, 1) and the posi-
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tions pos1([x4]1, ∅) = 1, pos1(∅, [x4]1) = −1, pos1([x5]1, [x4]1) = pos1([x4]1, [x5]1) = 2,

pos1([x2]1, [x1]1) = 3, and pos1([x1]1, [x2]1) = −3.

For k = 2, we have C2 = (2, 1)3, (2, 1)1,2, where the subscripts denote the annotations.

The positions are pos2([x2]2, [x1]2) = 1, pos2([x1]2, [x2]2) = −1, pos2([x4]2, [x6]2) = 2,

and pos2([x6]2, [x4]2) = −2.

For k = 3, we have C3 = (3, 3)−2,1 and pos3([x2]3, [x1]3) = 1 and pos3([x1]3, [x2]3) = −1.

Lemma 4.3.12. The functions represented by two 2⊕-DLs L and L′ are isomorphic if and

only if the structural representations S L and S L′ of their normal forms NL = B1, . . . , Bm−1,

〈1,m mod 2〉 and NL′ = B′1, . . . , B
′
m−1, 〈1,m mod 2〉 are equal.

Proof. In this proof, we denote equivalence after Bk with ≡k and equivalence after B′k
with ≡′k. As the normal form is isomorphism preserving, any isomorphism π from L to L′

maps NL to NL′ . This implies that xi ≡k x j if and only if π(xi) ≡′k π(x j). In particular,
the isomorphism π preserves sizes of and inclusions between the equivalence classes. It
follows that S L = S L′ .

For the reverse direction, we show that the normal form NL can be reconstructed from S L

up to renaming of variables. This proves that non-isomorphic functions cannot re-
ceive the same structural representations. Given S L = C1, . . . ,Cm−1, we reconstruct
N′L = B′1, . . . , B

′
m−1, 〈1,m mod 2〉 as follows. For C1 = (u1,1, v1,1), . . . , (u1,s, v1,s), define

disjoint sets of variables U1, j and V1, j with |U1, j| = u1, j and |V1, j| = v1, j for j ∈ {1, . . . , s},
insert into B1 all pairs 〈xi ⊕ xi′ , 1〉 and all pairs 〈xi ⊕ xi′ , 1〉 with (xi, xi′) ∈

⋃
j U2

1, j ∪ V2
1, j,

and all pairs 〈xi ⊕ xi′ , 1〉 and all pairs 〈xi ⊕ xi′ , 1〉 with (xi, xi′) ∈
⋃

j U1, j × V1, j. For
k ≥ 2, consider an entry (uk, j, vk, j) in Ck with annotation pk, j,1, . . . , pk, j,`. If some po-
sition occurs multiple times (i.e., if Ck−1 contains multiple pairs with the same cardi-
nality), arbitrarily disambiguate the position values so that each position occurs exactly
once in all annotations in Ck. Define Uk, j =

⋃
i:pk, j,i>0 Uk−1,pk, j,i ∪

⋃
i:pk, j,i<0 Vk−1,−pk, j,i and

Vk, j =
⋃

i:pk, j,i>0 Vk−1,pk, j,i ∪
⋃

i:pk, j,i<0 Uk−1,−pk, j,i . Insert into Bk all pairs 〈xi ⊕ xi′ , k mod 2〉 and
all pairs 〈xi ⊕ xi′ , k mod 2〉 with (xi, xi′) ∈

⋃
j U2

k, j ∪ V2
k, j, and all pairs 〈xi ⊕ xi′ , k mod 2〉

and all pairs 〈xi ⊕ xi′ , k mod 2〉 with (xi, xi′) ∈
⋃

j Uk, j × Vk, j, unless the respective parity
of two literals is already included in some Br with r < k.

To show that there is an isomorphism π that maps NL = B1, . . . , Bm−1, 〈1,m mod 2〉 to N′L,
we prove by induction on k that for each assignment of the pairs of complementary equiva-
lence classes to entries in C1 of matching cardinality, and for each choice of orientations of
symmetric pairs of complementary equivalence classes, there is a π that maps B1, . . . , Bk

to B′1, . . . , B
′
k and that follows the given assignment and orientations. In the base case
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k = 1, we take any bijection π that sends each pair of complementary equivalence classes
{[xi]1, [xi]1}, when it is assigned to the pair (u j, v j) to the pair of sets {U1, j,V1, j}. Moreover,
the assignment within each such pair with |[xi]1| = |[xi]1| can be chosen according to the
desired orientation. For k ≥ 2, the prescribed assignment and orientation of the pairs of
complementary equivalence classes of ≡k to the entries in Ck induce via the annotations
an assignment and orientation of the pairs of complementary equivalence classes of ≡k−1

to the entries in Ck−1. The inductive hypothesis ensures that there is a π that observes the
latter and maps B1, . . . , Bk−1 to B′1, . . . , B

′
k−1. This π also observes the former and maps Bk

to B′k. �

This immediately implies the following.

Theorem 4.3.13. Boolean Isomorphism for 2⊕-DL is in polynomial time.

4.3.2 Reduction to Graph Isomorphism

In this section, we show that C-DL Boolean Isomorphism is reducible to Graph Isomor-
phism if C is Schaefer. We give a reduction from C-DL-Iso to the label-respecting iso-
morphism problem of labeled trees, which is equivalent to Graph Isomorphism [RZ00].
In this problem, we are given two rooted trees and additionally each vertex has a label.
We ask if there is an isomorphism between the trees which is label-respecting, i.e., two
vertices in the first tree have the same label if and only if their images in the second tree
have the same label. An equivalent generalized version is finding isomorphism of colored
labeled trees, in which each vertex also has a color and we ask for a color-preserving,
label-respecting isomorphism.

Theorem 4.3.14. Let C be a class of functions, each depending on at most r variables,

such that C is Schaefer. Then the C-DL Boolean Isomorphism is polynomial-time re-

ducible to Graph Isomorphism.

Proof. Given a C-DL L on variables {x1, . . . , xn}, we compute a normal form in polyno-
mial time for the associated Boolean function fL. We may assume that in each pair 〈 fi, bi〉

in L, fi is a conjunction (or parity) of literals, i.e., the outer disjunctions are resolved by
splitting into several pairs.

We first observe that each fi is identified by the set of literals that occur in its rep-
resentation. For such a set C of literals, we denote the identified function with fC.
For example, when C is Horn, the set C = {x1, x2, . . . , x`−1, x`} identifies the function
fC = x1 ∧ x2 ∧ · · · ∧ x`−1 ∧ x` in C.
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We find all sets C of at most r literals, such that all assignments that satisfy fC force fL to
the same value, and include them in T1. In general, Ti consists of all sets C of at most r

literals, such that all assignments that satisfy fC∧
∧

C′∈T j, j<i ¬ fC′ force fL to the same value.
Checking if some set C fulfills this condition reduces to satisfiability of C-CSP instances,
and thus can be implemented efficiently by Theorem 4.3.2.

The resulting sequence T1, . . . ,Tm partitions the class of all sets of at most r literals (as r

is constant, there are only polynomially many). Similarly to the case of 2⊕-DLs, the se-
quence NL = T1, . . . ,Tm−1, 〈1,m mod 2〉 is a normal form; it represents the same function
as the decision list obtained from NL by replacing each Tk with the pairs 〈 fC, k mod 2〉,
C ∈ Tk.

We will now encode NL as a labeled tree TL (in the sense of [RZ00]). It turns out that two
C-DLs L1 and L2 represent isomorphic functions if and only if there is a label-respecting
tree isomorphism from TL1 to TL2 . We outline the encoding algorithm which takes NL as
input and computes a labeled tree TL: Let T1,T2, . . . ,Tm−1 be the r-tuple sets defining NL.
We create a root node with m − 1 children corresponding to T1,T2, . . . ,Tm−1, where the
node for Ti is colored i. In the subtree rooted at the node corresponding to Ti we create
a child c for each set C ∈ Ti. The node c will have |C| children which are leaves labeled
by the corresponding variable name (in x1, x2, . . . , xn) and colored p or n depending on
whether that literal occurring in C is positive or negative. This completes the construction
of the labeled tree TL.

It is easy to verify that if the Boolean functions represented by L1 and L2 are isomorphic
via a permutation π then, in fact, π acting on the leaf labels of TL1 induces an isomor-
phism from TL1 to TL2 . Conversely, if there is a label-respecting isomorphism ψ from TL1

to TL2 , then ψ induces a permutation π on the leaf labels of TL1 , which turns out to be an
isomorphism from fL1 to fL2 . �

4.3.3 GI-Hardness of C-DL-Iso

Böhler et al. [BHRV04] showed that if C contains ∨2 (the disjunction of two variables)
or if C contains ⊕3 (the parity of three variables), then GI is polynomial-time reducible
to isomorphism of C-CSP instances. As ∨2 is both bijunctive and anti-Horn, this implies
that isomorphism of C-CSP is GI-hard if C is bijunctive, anti-Horn or affine with arity
at least 3. Lemma 4.3.4 transfers the GI-hardness to isomorphism of C-DLs, where C is
bijunctive, anti-Horn or affine with arity at least 3.

To extend the GI-hardness to C-DLs where C is Horn, we give a simple reduction from
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graph isomorphism to 2-DNF isomorphism, where all literals are positive. This is suffi-
cient as for each 2-DNF f =

∨m
j=1 xi j ∧ xi′j , the decision list L f = 〈xi1 ∧ xi′1

, 1〉, . . . , 〈xim ∧

xi′m , 1〉, 〈1, 0〉 is equivalent to f , and the complement of x ∧ y is Horn.

Given a graph G = (V, E), define the function fG =
∨

e={u,v}∈E u∧ v over the variable set V .

Lemma 4.3.15. Let G,H be two graphs. Then G � H if and only if fG � fH.

Proof. It is clear that if π is an isomorphism between the graphs, then by renaming the
variables in fG according to π, we get fH. To prove the converse, we note that the min-
imum weight satisfying assignments of fG are exactly those which have two ones in po-
sitions that correspond to an edge in G. Since any isomorphism between fG and fH must
send minimum weight satisfying assignments of fG to those of fH, each isomorphism
between the Boolean functions fG and fH corresponds to an isomorphism between the
graphs G and H. �

The following theorem summarizes the results of this section.

Theorem 4.3.16. GI ≤m
p C-DL-Iso, if C is Schaefer and, if it is affine, includes a parity

with arity at least 3.

4.4 Boolean Isomorphism for Horn-CNFs

In this section we study Boolean Isomorphism for Horn-CNFs. Given two Horn-CNFs,
the goal is to test if the functions computed by them are isomorphic. Similar to the pre-
vious section, the idea of the algorithm is to construct an isomorphism preserving normal
form from the given Horn-CNF which is then encoded as a hypergraph. The normal form
construction will run in time polynomial in the number of variables and the size of the
input Horn-CNFs. It will involve queries to an oracle to the satisfiability of Horn-CNFs.
It is well-known that the satisfiability of Horn-CNFs is P-complete and this will complete
the proof of Theorem 4.1.6.

We use ideas from the exact learning algorithm of Angluin, Frazier and Pitt [AFP92] for
conjunction of Horn clauses. The outline of our algorithm is as follows: Our aim is to
construct a permutation preserving normal form for a given Horn-CNF T , which we will
call the target. At each step of the algorithm we have a hypothesis H, which is a Horn-
CNF, such that T ⇒ H, i.e. H is true whenever T is true. Then we find assignments
x ∈ {0, 1}n such that T (x) = 0 and H(x) = 1 in a canonical way. What we mean by
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this is that for any T ′ which is equivalent to T , this procedure generates the same set of
assignments x. Moreover if T ′ is isomorphic to T and π is an isomorphism, then the set
of assignments for T ′ are isomorphic copies of the assignments for T under the same
isomorphism π. From this set of assignments we modify the hypothesis. The procedure
continues until the hypothesis is equivalent to the Horn-CNF T .

Notice that the algorithm is very similar to a learning algorithm where the assignments
x ∈ {0, 1}n such that T (x) = 0 and H(x) = 1 are the counter-examples of an equivalence
query. But unlike in a learning algorithm, we are not handicapped by the fact that the
function T is available only as a black-box. The place where we use the property of
Horn-CNFs is when we construct the counter-examples. We will use the easily verifiable
and well-known fact that Horn-CNFs have a unique minimal satisfying assignment.

We now describe the algorithm for constructing the permutation preserving normal form.
Let T = T1 ∧ T2 ∧ · · · ∧ Tm be the given Horn-CNF.

Step 1: Let H be the constant function 1 and set j = 1.

Step 2: Compute the set of minimum weight satisfying assignments of ¬T ∧H. Call it W j.
If W j is empty, return H as the normal form N.

Step 3: Otherwise, for each assignment a = (a1, . . . , an) ∈ W j, define

C′a =


∧

i|ai=1

xi

⇒ xk : ak = 0

 .
Step 4: Remove clauses C ∈ C′a such that T ∧ ¬C is satisfiable to obtain the set Ca. Define

H j =
∧

a∈W j
∧

C∈Ca
C. Set H ← H ∧ H j and j← j + 1. Go to Step 2.

Let us look at an example Horn-CNF and see how the algorithm works on a Horn-CNF.

Example 4.4.1. Consider the following Horn-CNF.

T = (x1 → y1) ∧ (y1 → x1) ∧ (x2 → y2) ∧ (y2 → x2) ∧ (x3 → y3) ∧ (y3 → x3)

∧ (y1 ∧ y2 ∧ y3 → z).

In the first iteration of the algorithm, in Step 2 the set W1 will be the assignments that set

exactly one of the xi to 1 and all the other variables to 0 and exactly one of the yi to 1 and

all the other variables to 0. After removing the unwanted clauses in Step 4, this gives us

the hypothesis H = (x1 → y1)∧(y1 → x1)∧(x2 → y2)∧(y2 → x2)∧(x3 → y3)∧(y3 → x3).
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In the second iteration, the set of minimum weight assignments that satisfy H and falsify

T is exactly the one assignment that sets all the variables x1, x2, x3, y1, y2, y3 to 1 and z to

0. Thus we get the hypothesis H = (x1 → y1)∧ (y1 → x1)∧ (x2 → y2)∧ (y2 → x2)∧ (x3 →

y3) ∧ (y3 → x3) ∧ (x1 ∧ x2 ∧ x3 ∧ y1 ∧ y2 ∧ y3 → z) which is equivalent to T and the

algorithm stops.

We now proceed to the proof of the correctness of the algorithm. First we show that there
are only polynomially many assignments in the set W j in Step 2 of the algorithm.

Lemma 4.4.2. Let a be a minimum weight satisfying assignment of ¬T ∧ H. Then there

exists an i such that a is the minimum weight satisfying assignment of the Horn-CNF

¬Ti ∧ H.

Proof. Any satisfying assignment for the formula ¬T ∧ H satisfies a Horn-CNF ¬Ti ∧ H

for some i ≤ m. Since each ¬Ti ∧ H is a Horn-CNF, it has a unique minimum weight
satisfying assignment. Hence, if a is a minimum weight satisfying assignment of ¬T ∧H,
then we know that it is the satisfying assignment for some ¬Ti ∧H. Let a′ be the minimal
model for ¬Ti ∧ H, then a′ is also a satisfying assignment for ¬T ∧ H. Hence a′ ≤ a and
consequently, a′ = a. �

This lemma proves that we can execute Step 2 in the algorithm in time poly(n)m to con-
struct the set W j of minimum weight negative counter-examples.

We will now prove that when the algorithm ends the value of j will be at most m and the
hypothesis H will be the isomorphism preserving normal form for the Horn-CNF T . To
that end, define the set

S j =

∅ if j = 0{
Ti | ∃a ∈ W j such that Ti(a) = 0

}
\ S j−1 otherwise

We now prove the following lemma about the sets S j.

Lemma 4.4.3. For any j ≤ m let H be the hypothesis before the execution of Step 4 of the

jth iteration of the algorithm. Then H ≡ T j, where T j is the conjunction of the clauses in⋃
i≤ j Si.

Proof. We will prove this by induction on j. To prove the base case, assume that j = 1.
For T 1 =

∧
Ti∈S1

Ti and the hypothesis H, we will first show that for any assignment a

which falsifies T 1 also falsifies H. If T 1(a) = 0, then for some Tl ∈ S1, Tl(a) = 0. This
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implies that a sets all variables in antecedent(Tl) to 1 and consequent(Tl) to 0. Notice that∧
xi∈antecedent(Tl) xi ⇒ consequent(Tl) is a clause in H due to Step 3 and this is not removed

in Step 4 of the first iteration. Therefore H(a) = 0. Since the clause
∧

xi∈antecedent(Tl) xi ⇒

consequent(Tl) is not removed in Step 4 of the first iteration for any Tl ∈ S 1, H(a) = 1
whenever T (a) = 1. This proves the base case.

Now assume j > 1. Let H′ be the hypothesis after executing Step 4 of the ( j−1)th iteration
and by induction assumption we know that H′ ≡ T j−1. Let Tl ∈ S j be a clause such that
for some a ∈ W j, Tl(a) = 0 and H′(a) = 1. Since a falsifies Tl, a sets consequent(Tl) to
false. The assignment a is a negative counter-example to the hypothesis H′ and hence the
set Ca at the jth iteration contains a clause C such that consequent(C) = consequent(Tl)
and antecedent(Tl) ⊆ antecedent(C). Therefore, Tl ⇒ C and hence is not removed in Step
4 of the jth iteration. Also, for any a′ such that Tl(a′) = 0, we have a′ ≥ a since a was
the minimal model for the Horn-CNF ¬Tl ∧ H′. Therefore, C(a′) = 0. Since we proved
that the clause C is not removed by Step 4 of the jth iteration and C is a clause in the
hypothesis H, H(a) = 0. This completes the proof of the lemma. �

At the jth iteration of the algorithm, if the set W j is empty, then we know that the hypoth-
esis H is equivalent to T . Note that at the jth iteration, the formula T j =

∧
i≤ j

∧
Tl∈Si

Tl

is a sub-formula of T . Since T has at most m clauses, within m steps we will compute
the normal form H. We now prove two claims which show that the normal form that we
constructed is in fact an isomorphism preserving normal form.

Lemma 4.4.4. Let T and T ′ be equivalent Horn-CNFs. If H and H′ are the normal forms

computed for the formulas T and T ′ according to the algorithm, then H = H′.

Proof. The proof is by induction. In the ith iteration of the algorithm, let H and H′ be
the hypotheses. By induction assumption, they are identical. In Step 3, we compute the
minimum weight satisfying assignments of ¬T and ¬T ′. Since T ≡ T ′, these sets are
identical. Hence the hypothesis constructed after Step 3 are identical. For any clause C

in the hypothesis, C is not implied by the formula T if and only if C is not implied by the
formula T ′. Thus the hypotheses H and H′ at the (i + 1)th iteration of the algorithm are
also identical. �

Lemma 4.4.5. Let T and T ′ be isomorphic Horn-CNFs and let π be an isomorphism

between them. Let H and H′ be the normal forms computed by the algorithm for the

formulas T and T ′. Then Hπ = H′, where Hπ is the formula obtained from H by renaming

the variables of H according to π.
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Proof. The proof is by induction. In the first iteration of the algorithm, let W1 and W ′1 be
the set of minimum weight counter-examples generated by the algorithm for T and T ′ re-
spectively when the hypothesis is the constant function. If π is any isomorphism between
T and T ′, then π(W1) = W ′1. Therefore if H and H′ are the hypotheses constructed at the
first iteration, then Hπ = H′.

Suppose at the ith stage, we have hypotheses Hi and H′i such that for any π which is an
isomorphism between T and T ′, Hπ

i = H′πi . Since ¬T ∧ Hi and ¬T ∧ H′i are isomorphic,
the sets Wi and W ′

i of minimum weight satisfying assignments are also isomorphic. The
lemma follows. �

Given an isomorphism preserving normal form H, we can construct a hypergraph H in
the following way: the vertex set V = {x1, . . . , xn, x1, . . . , xn} ∪ {u1, . . . , un} and the edge
set E = { Var(C) | ∀ clauses C in H} ∪ {(xi, xi, ui | 1 ≤ i ≤ n} where Var(C) is the set of
literals in the clause C.

This completes the proof of the Theorem 4.1.6.

4.4.1 GI-completeness of Horn-CNF isomorphism

We now outline a simple reduction from hypergraph isomorphism to the isomorphism of
Horn-CNFs. Given a hypergraphH(V,E), we will construct a DNF F(H) as follows:

F(H) =
∨
E∈E

∧
v∈E

xv ∧ xE


Observe that the minimal models of this DNF are precisely those assignments that satisfy
the variables corresponding to an edge E ∈ E. Since any isomorphism between two
DNFs must map the minimal models of one to the minimal models of the other, we have
the following lemma.

Lemma 4.4.6. LetH1 andH2 be two hypergraphs and let F(H1) and F(H2) be the DNFs

constructed as above. ThenH1 � H2 if and only if F(H1) � F(H2)

Clearly, two Boolean functions are isomorphic if and only if their complement functions
are isomorphic. The complement of F(H) is a Horn-CNF and this proves the following
theorem.

Theorem 4.4.7. Hypergraph isomorphism is polynomial-time reducible to Horn-CNF

isomorphism.
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Representation Complexity of Boolean Isomorphism
Truth-table P
k-CNF, k-DNF, Monotone-DNF GI-complete
Horn-CNF GI-complete
Rank-1 decision trees L-complete
Rank-r decision trees, r ≥ 2 GI-complete, 2O(r2 √n)-time isomorphism

testing algorithm
2⊕-decision lists P
C-decision lists, where C is Horn, anti-
Horn, bijunctive

GI-complete

4.5 Summary and Open Problems

In this chapter we looked at Boolean Isomorphism for classes of functions that have ef-
ficient satisfiability and equivalence testing algorithms. The results that we saw in the
chapter use ideas that are similar to the ideas that were used in designing exact learning
algorithms for these classes. Table 4.5 lists the complexity of the Boolean Isomorphism
for various representations of the functions.

The algorithm for constructing permutation preserving normal forms for decision trees
by looking at all possible assignments that fix the value of the function is similar to the
learning algorithm for bounded rank decision trees proved by Simon [Sim95]. This re-
mains the best known learning algorithm for decision trees in the exact learning model.
Similarly in the case of Horn-CNFs, we used ideas of the learning algorithm of Angluin,
Frazier and Pitt [AFP92] to construct the normal form.

It is worth wondering whether it is possible to use the learning algorithms to construct
isomorphism preserving normal forms for other classes of functions. In the next chapter,
we will see that this idea also works for decision lists. In [AT96], they used learning
algorithms of Boolean formulas in a black-box manner to construct a normal form and
design an IP protocol for Boolean non-isomorphism. Even though the normal form that
they construct is not permutation preserving, it is not clear whether ideas from that learn-
ing algorithm can be used in a non black-box manner to construct permutation preserving
normal forms.

Another class of functions which have efficient equivalence testing algorithms but we do
not know any reduction from Boolean Isomorphism to graph isomorphism is the class of
read-2 CNFs. The satisfiability and equivalence of read-2 CNFs can be checked efficiently
using resolution. The complexity of Boolean Isomorphism for it remains open. On the
other hand, it is known that equivalent read-1 formulas are syntactically identical and

84



hence Boolean Isomorphism is reducible to tree isomorphism.
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Chapter 5

Isomorphism Testing via Satisfiability

In Chapter 4, we saw that Boolean Isomorphism for some representations is polynomial-
time many-one reducible to Graph and Hypergraph Isomorphism. The main ingredient in
the proofs is the computation of permutation preserving normal forms for the given rep-
resentation. Recall that a permutation preserving normal form for a Boolean function f

on n variables is a representation N f such that (i) N f is equivalent to f , (ii) if g is equiv-
alent to f , Ng is identical to N f , and (iii) for each permutation π we have N f π = (N f )π.
Furthermore, the algorithms we described for computing permutation preserving normal
form use the satisfiability testing algorithm for that representation as subroutine, and each
satisfiability query made to the subroutine was for some n variable Boolean function (in
the same representation).

This motivates the following natural question: If there is an αn-time satisfiability algo-
rithm for a representation of Boolean functions, say CNF, is there an O∗(αn+o(n))-time
Boolean Isomorphism algorithm for that representation? Proving this statement for ar-
bitrary representations of Boolean functions seems difficult. We saw in Chapter 2 that
Hypergraph Isomorphism is reducible to Boolean Isomorphism for monotone DNFs in
which n-vertex hypergraphs are encoded as monotone DNFs on 2n + 1 variables. But
the best known algorithm for Hypergraph Isomorphism has a running time of cn for a
large constant c [Luk99]. However, in this chapter, we will see some interesting examples
of representations of Boolean functions which have O∗(αn)-time satisfiability algorithm
(for some α < 2) which can be used to obtain an O∗(αn+o(n))-time algorithm for Boolean
Isomorphism.

We show that if f and g are k-CNF formulas there is an isomorphism test with running
time O∗(αn+o(n)), where O∗(αn) is the running time bound for the fastest k-CNF SAT algo-
rithm. This result can also be viewed as a SERF reduction [IPZ01] from k-CNF isomor-

87



phism to k-CNF satisfiability. We further observe that this is true for the representation
class of k-decision lists. Recall that k-CNFs and k-DNFs can be encoded as k-decision
lists and Rivest [Riv87] showed that there are example of functions that have polynomial-
sized k-decision lists but do not have polynomial-sized k-CNFs and k-DNFs.

Motivated by the above connection, we turn back to the graph-theoretic setting and in-
troduce a generalized graph isomorphism problem. In this problem, the input instance is
two graphs G = ([n], E) and G′ = ([n], E′) and we seek a bijection π : [n]→ [n] as usual.
However, we do not demand that π preserves all adjacencies between vertices. We only
require that π preserves a specified graph property. As illustration, consider the graph
3-colorability property. For a graph G, let W(G) denote the set of all proper 3-colorings
of G. The generalized isomorphism problem corresponding to 3-colorings is to check if
there is a bijection π from V(G) to V(G′) such that π(W(G)) = W(G′).

More generally, for a large class of graph properties P we can similarly define and study
the P-isomorphism problem. The question we study is whether these generalized iso-
morphism problems have algorithms which are as fast as algorithms for testing the graph
property P. Apart from setting up a framework for these questions we give positive an-
swers for natural properties like 3-coloring and Hamiltonian paths.

Another motivation for defining generalized Graph Isomorphism is that it is related to an
interesting class of constraint satisfaction problems. The k-CNF satisfiability is a special
case of Γ-CSP satisfiability where Γ is a k-ary relation over some alphabet Σ. Given a
CSP instance S with k-ary constraints over n variables, the CSP is satisfiable if there is a
assignment a : [n] → Σ to the variables in S , such that all constraints in S are satisfied
by the assignment. Furthermore, the Γ-CSP satisfiability problem has been shown to be
polynomial-time equivalent to the H-coloring problem for directed graphs H ([FV98]).
We recall some definitions at this point.

For a fixed graph H, let P be the set of graphs G which are homomorphic to the graph H:
A homomorphism is a map φ : V(G) → V(H) such that φ maps edges in G to edges in
H.1 Then we define the corresponding P-isomorphism problem as follows. Given a pair
of n-vertex graphs G and G′ as input check if there is a bijection π : V(G) → V(G′) such
that the set of homomorphisms from π(G) to H is identical to the set of homomorphism
from G′ to H. We refer to this as H-coloring Isomorphism. Indeed, notice that if we let
H = K3 then we get the 3-coloring Isomorphism already defined.

1A graph homomorphism φ is not a bijection in general and it needs only to map edges to edges.
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5.1 Boolean Isomorphism for k-CNF

In this section we show that given an algorithm for k-CNF-satisfiability in time αn, we
can solve Boolean Isomorphism for k-CNF in time αn+o(n). We do this by constructing
an permutation preserving normal form for k-CNF formulas in time nO(k)αn and then we
can encode the normal form as a bounded rank hypergraph to which we can apply the
bounded-rank Hypergraph Isomorphism algorithm [BC08].

For a k-CNF formula F = C1 ∧ C2 ∧ . . .Cm, we describe an algorithm to construct a
hypergraph HF of rank k (i.e. with hyperedges of size at most k) with the following two
properties.

1. If F and F′ are identical Boolean functions given as k-CNF, then the hypergraphs
HF and HF′ are identical.

2. Let F and F′ be Boolean functions represented as k-CNF. Then the hypergraph HF

is isomorphic to HF′ if and only if F and F′ are isomorphic as Boolean functions.
Furthermore, given an isomorphism between HF and HF′ in polynomial-time we
can compute an isomorphism between F and F′.

Let F = C1 ∧ C2 ∧ · · · ∧ Cm be a k-CNF defined over the variables x1, . . . , xn. In order
to construct the hypergraph HF we will cycle through all the 2k

(
n
k

)
clauses C of size k and

pick C if and only if F → C. Note that F → C is easy to check with a k-CNF satisfiability
algorithm because F ∧ ¬C is satisfiable if and only if F 9 C. Furthermore, F ∧ ¬C is an
OR of k instances of k-CNF satisfiability.

Let S F be the set of all clauses implied by F. For each Boolean variable xi in F we
introduce two vertices yi and zi, where yi stands for xi and zi for xi. We also include
another vertex t in HF . These 2n + 1 vertices form the vertex set of HF . We now define
the edge set. We include all pairs {(yi, zi) | 1 ≤ i ≤ n} and all pairs {(t, yi) | 1 ≤ i ≤ n} as
edges. For each clause C ∈ S F we include a hyperedge eC of size k, where eC contains yi

if xi is in C and contains zi if xi is in C. Notice that t is the unique vertex that is not in any
hyperedge of size k and is adjacent to all the yi.

Lemma 5.1.1. Let F and F′ be Boolean functions given as k-CNF. Then F is isomorphic

to F′ if and only if the hypergraphs HF and HF′ are isomorphic.

Proof. Suppose F and F′ are isomorphic as Boolean functions via the permutation π on
the variable set x1, x2, . . . , xn. Clearly, since F is logically equivalent to F̂ = ∧C∈S FC and
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F′ is logically equivalent to F̂′ = ∧C∈S F′C it follows that π is an isomorphism from F̂ to
F̂′.

Now, for each clause C of size k, we know that C is implied by F if and only if the clause
π(C) is implied by F′. Hence π maps the set S F to S F′ . Define the permutation ψ on the
vertex set of HF as follows: if π(xi) = x j then ψ(yi) = y j and ψ(zi) = z j and ψ(t) = t.

Conversely, suppose the hypergraphs HF and HF′ are isomorphic via the isomorphism
ψ. Clearly, by the uniqueness of the special vertex t, ψ maps t to t. Hence ψ induces
a permutation on the yi’s and on the zi’s such that ψ(yi) = y j iff ψ(zi) = z j. We define
π(xi) = x j) iff ψ(yi) = y j. It follows that a k-clause C is in S F if and only if the k-
clause π(C) is in S F′ . Furthermore, for each clause C ∈ S F , note that a truth assignment
(x1, x2, . . . , xn) satisfies C iff (π(x1), π(x2), . . . , π(xn)) satisfies π(C). Therefore, a truth
assignment (x1, x2, . . . , xn) satisfies F̂ = ∧C∈S FC if and only if (π(x1), π(x2), . . . , π(xn))
satisfies F̂′ = ∧C∈S F′C. �

We now state the main theorem of this section.

Theorem 5.1.2. Given an O∗(αn)-time satisfiability algorithm for k-CNF formulas, there

is an O∗(αn+o(n))-time algorithm for Boolean Isomorphism for k-CNF.

Proof. Let F and F′ be the k-CNF formulas as input instance for Boolean Isomorphism.
Since we have already described the algorithm and argued its correctness in Lemma 5.1.1,
it suffices to do a running time analysis. Since there are 2k

(
n
k

)
k-clauses we can compute

the sets of k-clauses S F and S F′ implied by F and F′ respectively, in time O∗(2k
(

n
k

)
αn).

The resulting hypergraphs HF and HF′ have vertex sets of size 2n + 1 and nO(k) edges.
Since the hypergraphs have hyperedges of size at most k, we can use the algorithm of
Babai and Codenotti [BC08] to test if HF and HF′ are isomorphic and, if so, to compute
an isomorphism ψ in time 2k2(log n)O(1) √n. As explained in Lemma 5.1.1, fromψ we can
recover an isomorphism between F and F′ in polynomial time. Thus, for k = o(

√
n) the

overall running time of our algorithm is O∗(αn+o(n)). �

Remark. We note here that the fastest known algorithm for k-CNF satisfiability has run-
ning time αn for α = 1 −Ω( 1

k ).

The algorithm as an SERF reduction

We now briefly describe how the above O∗(αn+o(n))-time algorithm for Boolean Isomor-
phism for k-CNF can be viewed as a SERF reduction from Boolean Isomorphism to k-
CNF-Satisfiability. We briefly recall the definition given in [IPZ01]. A language A is
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SERF-reducible to a language B, denoted by A ≤S ERF B, if there is a constant c such that
for every ε > 0, there is a Turing machine M = Mε with the following properties:

1. MB solves A,

2. M runs in time 2ε|x|A for the input x, and

3. Every query x′ to B made by M satisfies |x′|B ≤ c|x|A, where | · | is the size of the
chosen complexity parameter for the language.

In other words, suppose A ≤S ERF B and for every ε there is an algorithm for deciding B

that runs in time 2εn, then for every ε′ there is an algorithm for deciding A that runs in
time 2ε

′n. SERF reductions were introduced in [IPZ01] to study the exact exponential-
time complexity of NP-hard problems. For a given complexity parameter | · | suppose we
hypothesize that a language A (for example, satisfiable k-CNF formulas) does not have
algorithms with running time O∗(2o(|x|)). Now, if A is SERF reducible to B then assumed
hypothesis implies that B too does not have algorithms with running time O∗(2o(|x|)) (where
| · | here stands for the complexity parameter of B). Thus, SERF reducibility gives a notion
of computational hardness in the context of subexponential-time algorithms, just as NP-
hardness in the context of polynomial-time computation.

Our algorithm for k-CNF Isomorphism can be seen as a SERF reduction of k-CNF Iso-
morphism to k-CNF satisfiability. In the case of k-CNF Isomorphism and k-CNFSAT
the complexity parameter for both problems in the definition of SERF reductions is the
number of variables n.

Theorem 5.1.3. k-CNF-Iso ≤S ERF k-CNF-SAT.

Proof. Let the constant c in the definition be 1. The isomorphism testing algorithm for
k-CNF that we described above is a SERF reduction. For k-CNF isomorphism, the com-
plexity parameter is the number of variables in the CNF instance. The algorithm at each
stage queries the k-CNF satisfiability algorithm with a CNF with the same number of
variables. Finally, we use the algorithm of Babai and Codenotti [BC08] to test the iso-
morphism of rank-k hypergraphs and this algorithm runs in time 2Õ(k2 √n). �

Boolean Isomorphism for k-DL

We now briefly describe how the isomorphism algorithm for k-CNFs can be extended to
the representation class of k-decision lists. Recall that a k-decision list (k-DL) is a function

91



f that can be expressed as a decision lists 〈C1, b1〉, . . . , 〈Cm, bm〉, 〈1, bm+1〉 where Cis are
conjunctions on at most k literals. We explain an algorithm for Boolean Isomorphism for
k-DLs that is nearly as fast as any satisfiability algorithm for k-DLs. Firstly, observe that
the k-DL satisfiability has an O∗(αn) time algorithm where αn is the running time of the
satisfiability algorithm for k-CNFs, for constant k.

Proposition 5.1.4. Suppose there is an αn time satisfiability algorithm for k-CNFs, then

there is a O(nkαn) time algorithm for the satisfiability problem for k-DLs.

Proof. Let f be the decision lists 〈C1, b1〉, . . . , 〈Cm, bm〉, 〈1, 1〉. Let Ci1 , · · · ,Cir be the
conjunctions such that i1 < i2 < · · · < ir and 〈Ci j , 1〉 is a tuple in the decision list for each
j ≤ r. Then f can be represented as the following Boolean formula:

f =

r∨
s=1

∧
j<is

¬C j ∧Cis .

Thus, f is a disjunction of r ≤ nO(k), k-CNFs. Therefore, in time nO(k)αn, we can check if
f is satisfiable. �

To construct a permutation preserving normal form for a given k-DL L computing a func-
tion f , we find all conjunctions C of at most k literals, such that all assignments that
satisfy C force f to the same truth-value, and include them in T1. In general, Ti con-
sists of all conjunctions C of at most k literals, such that all assignments that satisfy
C ∧

∧
C′∈T j, j<i ¬C′ force f to the same truth-value. Checking this amounts to check-

ing if C ∧
∧

C′∈T j, j<i ¬C′ ⇒ f is a tautology. This formula is a tautology if and only
if C ∧

∧
C′∈T j, j<i ¬C′ ∧ ¬ f is not satisfiable. Since f can be written as a disjunction of

CNFs, using Proposition 5.1.4, we get the following theorem for Boolean Isomorphism
for k-DLs. The sets T1, . . . ,Tr form a permutation preserving normal form and we can en-
code it as hypergraph of rank 2k. Now, using the algorithm for bounded rank Hypergraph
Isomorphism of Babai and Codenotti [BC08], we obtain the following theorem.

Theorem 5.1.5. Let f and g be two k-decision lists on n variables. If there is an αn time

algorithm for k-CNF satisfiability, then there is an O(nkαn + 2O(k2 √n)) time algorithm for

k-DL Isomorphism.

5.2 A Generalized Graph Isomorphism Problem

We define generalized graph isomorphism motivated by the connection between the iso-
morphism problem and satisfiability problem for Boolean functions that we have already
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Figure 5.1: Two P+-equivalent graphs that have the same set of Hamiltonian paths: f −
a − b − d − c − e, f − a − d − b − c − e, e − c − d − b − a − f , e − c − b − d − a − f

seen.

Let P be any graph property that is closed under permutations π ∈ S n. More precisely,
P is a subset of undirected graphs such that for any graph G and any permutation π of its
vertices G ∈ P if and only if π(G) ∈ P.

We denote G ⊃ H to mean that the graph G is obtained by adding edges to H. From P we
can define a monotone graph property P+ and an antimonotone graph property P−:

P+ = {G | G ⊃ H for some H ∈ P},

P− = {G | G ⊂ H for some H ∈ P}.

The following proposition is immediate from the definition.

Proposition 5.2.1. For any P both P+ and P− are in NPP. In particular, if P is

polynomial-time recognizable, then P+ and P− are in NP.

Definition 5.2.2. We say two graphs G1 and G2 are P+-equivalent if for every H ∈ P,:

G1 ⊃ H ⇐⇒ G2 ⊃ H. Similarly, G1 and G2 are P−-equivalent if for every H ∈ P:

G1 ⊂ H ⇐⇒ G2 ⊂ H.

Consider the following example: If P is the set of all simple paths of length n on n ver-
tices. Then P+ are precisely graphs that have Hamiltonian paths. Applying the definition
in this setting, two graphs are P+ equivalent precisely when they have the same set of
Hamiltonian paths. Figure 5.1 shows two graphs that are P+ equivalent for this property.

We now define a notion of generalized isomorphism with respect to a graph property P.

Definition 5.2.3. We say two n-vertex graphs G1 and G2 are P+-isomorphic if there is a

permutation π ∈ S n such that π(G1) and G2 are P+-equivalent. Similarly, G1 and G2 are

P−-isomorphic if π(G1) and G2 are P−-equivalent for some permutation π.
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For a graph property P, the P+ Isomorphism problem (P− Isomorphism) is to decide if
G1 and G2 are P-isomorphic (respectively, P− isomorphic).

For each graph G ∈ P+ we have an edge-minimal subgraph G∗ ⊂ G such that G∗ and G

are P+-equivalent. I.e. G∗ and G are P+-equivalent but for each edge e ∈ G∗ the graphs
G∗ \ e and G are not P+-equivalent. Moreover, computing G∗ from G is polynomial-time
reducible to testing P+ equivalence. For each edge e ∈ G, if G \e and G are P+-equivalent
we discard e from G. Finally, we are left with the subgraph G∗ consisting of edges that
cannot be discarded maintaining P+ equivalence with G.

Likewise, for each G we have an edge-maximal graph G∗ such that G and G∗ are P−-
equivalent but G and G∗ + e are not for any new edge e. Similar to the above we can see
that computing G∗ from G is polynomial-time reducible to testing P− equivalence. We
summarize this below.

Lemma 5.2.4. Let P be a graph property. If there is an αn-time algorithm for deciding

P+ equivalence (P− equivalence) then for any given graph G, the graph G∗ (respectively

G∗) can be computed from G in time O∗(αn).

Lemma 5.2.5. For any two graphs G and G′:

1. G and G′ are P+-equivalent if and only if G∗ = G′∗.

2. G and G′ are P−-equivalent if and only if G∗ = G′∗.

Proof. Suppose G∗ = G′∗. Since G and G∗ are P+-equivalent, and G′ and G′∗ are P+-
equivalent. It follows that G and G′ are P+-equivalent. Conversely, suppose G and G′ are
P+ equivalent. We know that G∗ and G′∗ are P+-equivalent. Suppose e is an edge in G∗
and not in G′∗. Since e < G′∗ it means there is a subgraph H ∈ P such that e ∈ H and
H ⊂ G′∗ (otherwise, we could delete e from G′∗ preserving P+ equivalence). However,
H 1 G∗ as e < G∗. This contradicts the P+ equivalence of G∗ and G′∗. The second part
can be proved similarly. �

We now extend the above lemma to give a characterization of P+ Isomorphism and P−

Isomorphism in terms of Graph Isomorphism.

Lemma 5.2.6. For any two graphs G and G′:

1. G and G′ are P+-isomorphic if and only if the graphs G∗ and G′∗ are isomorphic.

2. G and G′ are P−-isomorphic if and only if the graphs G∗ and G′∗ are isomorphic.
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Proof. We will prove only the first part as the second part is similar. For any permutation
π notice that π(G∗) = π(G)∗. Suppose π is a P+ isomorphism from G to G′. Then π(G)
and G′ are P+-equivalent which implies π(G∗) = G′∗. Hence π is an isomorphism between
the graphs G∗ and G′∗.

Conversely, if π is an isomorphism between the graphs G∗ and G′∗ we have π(G∗) = G′∗
which implies π(G) and G′ are P+-equivalent by Lemma 5.2.5. �

We now discuss three examples of generalized graph isomorphism problems.

5.2.1 Hamiltonian-Path Isomorphism

Let the graph property P consist of the set of all simple paths of length n on n vertices.
Thus, for each n there are n! labeled paths of length n which are members of P and P is a
polynomial-time decidable property. The graph property P+ is the NP-complete language
consisting of all graphs with Hamiltonian paths.

Now, P+ Isomorphism is the problem of checking for two given graphs G1 and G2 on
vertex set [n] if there is a bijection π : [n] → [n] such that π(G1) and G2 have identical
sets of Hamiltonian paths. We terms this problem as Hamiltonian-Path Isomorphism.
Using Lemmas 5.2.6 and 5.2.4 we show the following algorithm for Hamiltonian-Path
Isomorphism.

Theorem 5.2.7. There is a randomized O∗(1.657n+o(n)) time algorithm that takes as input

two graphs G and G′ and accepts with probability more than 2/3 if they are Hamiltonian-

Path isomorphic and rejects with probability 2/3 if they are not Hamiltonian-Path iso-

morphic.

Proof. By Lemma 5.2.6 we can check if G and G′ are Hamiltonian-Path isomorphic by
first computing G∗ and G′∗ and then checking if G∗ and G′∗ are isomorphic graphs. Since
graph isomorphism can be solved in time 2O(

√
n lg n), it suffices to bound the running time

of the algorithm for computing the graph G∗ from G for the Hamiltonian Path property.

By Lemma 5.2.4 it suffices to give an O∗(αn) time algorithm for checking if two graphs
G1 and G2 on vertex set [n] are Hamiltonian-Path equivalent. Note that G1 and G2 are not
Hamiltonian-Path equivalent iff either there is an edge e in G1 \ G2 such that e lies on a
Hamiltonian path in G1 or there is an edge e in G2 \G1 such that e lies on a Hamiltonian
path in G2. But this condition is easy to check using an algorithm for the Hamiltonian Path
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problem: for each e ∈ G1 \ G2 check if the graph G1,e, obtained from G1 by subdividing
the edge e by adding a new vertex ue, is Hamiltonian.

Now, we can apply the important result of Björklund [Bjö10] that the Hamiltonian Path
problem has an O∗(1.657n) time randomized algorithm with constant success probability
and one-sided error. We can reduce the error probability to a suitable inverse polynomial
and use it as oracle for Hamiltonian Path in the above computation. It now follows from
standard arguments for randomized computation that Hamiltonian-Path isomorphism has
an O∗(αn+o(n)) time randomized algorithm with success probability 2/3. �

5.2.2 3-Coloring Isomorphism

We now discuss an example of P− Isomorphism. We will consider the property P− to be
the set of all 3-colorable graphs G. The underlying property P consists of all complete
tripartite graphs (which are maximally 3-colorable under edge addition). Notice that each
complete tripartite graph is uniquely 3-colorable and hence we observe the following.

Proposition 5.2.8. Two graphs G and G′ on vertex set [n] are 3-colorable isomorphic

precisely when there is a permutation π : [n] → [n] such that for every 3-coloring f :
[n] → {1, 2, 3}, f is a proper 3-coloring of the graph π(G) if and only if it is a proper

3-coloring of the graph G′.

There is a deterministic algorithm for checking 3-colorability of graphs that runs in time
O∗(1.3289n) due to Beigel and Eppstein [BE05]. We show that it can be used to obtain a
3-coloring isomorphism test with a similar running time.

Theorem 5.2.9. There is a O∗(1.3289n+o(n)) time algorithm for 3-coloring Isomorphism.

Proof. By Lemmas 5.2.6, 5.2.5 and 5.2.4 it suffices to show an O∗(1.3289n) time algo-
rithm for testing 3-coloring equivalence of the input graphs G1 and G2. The graphs G1

and G2 are 3-coloring inequivalent if there is a 3-coloring f : [n] → {1, 2, 3} which is
proper for one of them and not proper for the other. Consider the edges e in the symmet-
ric difference G14G2 one by one. If e = (u, v) ∈ G1 \G2, then we contract the pair (u, v)
in the graph G2 (drop any multiple edges) to obtain an n − 1 vertex graph G2,e. The graph
G2,e is 3-colorable if and only if G2 has a 3-coloring that gives the same color to both u

and v which would make G1 and G2 inequivalent. It follows that G1 and G2 are 3-coloring
inequivalent if and only if either for some edge e ∈ G1 \ G2 G2,e is 3-colorable or for an
e ∈ G2 \G1 the graph G1,e is 3-colorable. Putting it together, 3-coloring equivalence can
be tested in time O∗(1.3289n) which proves the theorem. �
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5.2.3 H-coloring Isomorphism

Finally, we briefly discuss a generalization of 3-coloring Isomorphism called H-coloring
Isomorphism.

Definition 5.2.10. For two graphs G and G′, a homomorphism φ : G → G′ is a map

such that ∀(u, v) ∈ E(G), (φ(u), φ(v)) ∈ E(G′). Let HOM(G,G′) denote the set of all

homomorphisms from G to G′.

An H-coloring of a graph G is a homomorphism from the graph G to the graph H. The
H-coloring problem is: Given a graph G, check if HOM(G,H) is empty or not. When H

is the complete graph Kk, this is the standard k-coloring problem. The trivial algorithm
for testing if a graph is H-colorable is to list down all the H-colorings and this runs in
time |H|n.

Definition 5.2.11. The decision problem H-coloring Isomorphism is to test, given two

graphs G and G′, whether there exists a bijection π : V(G) → V(G′) such that

HOM(π(G),H) = HOM(G′,H).

For arbitrary H we have a simple |H|n+o(n)-time algorithm for H-coloring Isomorphism.
We first express H-coloring Isomorphism in the language of P−-isomorphisms. The prop-
erty P is the set of graphs G such that HOM(G,H) , ∅ and for all (u, v) < E(G) there
exists some homomorphism φ ∈ HOM(G,H) such that the image (φ(u), φ(v)) < E(H).
In other words, P is the set of all graphs G with the maximum number of edges such
that adding any new edge to G kills some homomorphism in HOM(G,H). For instance,
observe that when H = Kk then P is the set of all complete k-partite graphs.

The corresponding antimonotone property P− consists of all graphs obtained by edge
deletion from graphs inP. Two graphs G and G′ areP−-equivalent (i.e. H-coloring equiv-
alent) precisely when HOM(G,H) = HOM(G′,H).

Let (G,G′) be an instance of H-coloring isomorphism. By Lemma 5.2.6, it suffices to
test if G∗ and G′∗ are isomorphic graphs. Therefore, we need an algorithm to compute G∗

from G. Following this approach, we first obtain a simple |H|n+o(n) time algorithm for the
H-coloring Isomorphism for any graph H.

Proposition 5.2.12. For any graph H there is an |H|n+o(n) time algorithm for the H-

coloring Isomorphism.

Proof. We first construct the graphs G∗ as follows: For each pair of vertices (u, v) < E(G),
we check if there is a homomorphism φ from G to H such that (φ(u), φ(v)) < E(H). Since
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there are at most |H|n many H-colorings for G, this can be done in time |H|n. If there are
no such homomorphisms, then we can add the edge (u, v) to the graph G. Iterating over
all such pairs we can construct the graph G∗ in time |H|n poly(n). Similarly, we construct
the graph G′∗ from G. Now, by Lemma 5.2.6, it is sufficient to test if G∗ and G′∗ are
isomorphic which can be done in time 2O(

√
n log n). �

5.3 Summary and Open Problems

The last result is really a brute-force algorithm that works for any graph H. In keeping
with the theme of this chapter, the question that remains open is the following: if H is a
class of graphs such that for any H ∈ H , H-coloring has a cn time algorithm for c < |H|,
then is there a cn+o(n) time algorithm for H-coloring Isomorphism for any H ∈ H?

Overall, in this chapter we explored the question whether faster satisfiability and equiv-
alence testing yields faster isomorphism algorithms for the corresponding problems. It
would be nice to syntactically classify which representation classes of Boolean functions
have such isomorphism algorithms.

In the last two chapters the reductions from Boolean isomorphism to graph isomorphism
used ideas from learning theory to construct permutation preserving normal forms. An
interesting question is whether a relationship between learning algorithms and normal
forms can be formally expressed. Exact learning algorithms use counterexamples to con-
struct a new hypothesis after each equivalence query. A question to explore would be
to see for which representation classes of Boolean functions is there a way to construct
counterexamples so that we manage to obtain permutation preserving normal forms using
the learning algorithm.
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[Bjö10] Andreas Björklund, Determinant sums for undirected hamiltonicity, FOCS,
2010, pp. 173–182.
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