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Synopsis

The thesis is divided into two main parts. The first part deals with proof systems com-
putable by Boolean circuit families that characterize the complexity class NC0 (bounded
fanin, constant depth), which is one of the weakest complexity classes. A proof system
for a language L is a function f : {0, 1}∗ → {0, 1}∗ such that Range( f ) = L. We initi-
ate a study of NC0 computable proof systems with an overarching goal of showing that
such proof systems cannot capture the language Taut. We begin by studying NC0 proof
systems in the context of regular languages. We give sufficient conditions for a regular
language to have a proof system computable in NC0. On the other hand, we show that an
explicit regular language does not have a proof system computable in NC0. By general-
izing techniques used in constructing proof systems for regular languages, we construct
NC0 proof systems for languages complete for various complexity classes ranging from
NC1 to P. It remains open to characterize the regular languages that indeed have proof
systems that are computable in NC0. In the context of Taut, we study 2TAUT and show
a reduction from 2TAUT to the language associated with directed connectivity in terms
of proof systems. We show that the set of all undirected graphs that have a path between
two fixed vertices s and t has an NC0 proof system. Our study shows that the question of
whether a language can be generated using these restricted proof systems is unrelated to
the computational complexity of their associated membership problem.

In the second part of the thesis, we study the problem of testing if a given arithmetic
circuit computes the identically zero polynomial (PIT) and give efficient algorithms for
certain special cases. We also determine the complexity of other natural problems that
arise in the context of arithmetic circuits. We give a multilinearity and identity test for
read-thrice formulas. We then give efficient algorithms for PIT on polynomials of the
form f1 f2 f3 · · · fm + g1g2 · · · gs where fis and gis are presented as read-once formulas. We
show a hardness of representation for the elementary symmetric polynomial against read-
once formulas with the added restriction that every leaf is labeled ax where a is a non-zero
field element and x is a variable. Finally, we study some natural problems in the context
of arithmetic circuits. These include counting the number of monomials, and checking

v



if a given monomial has non-zero coefficient in the polynomial computed by a given
arithmetic circuit.We observe that even for monotone (no negative constants) read-twice
formulas, counting the number of monomials is #P-hard. We also show that checking if
the coefficient of a monomial is zero in a polynomial computed by a read-once formula is
in logspace.
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Chapter 1

Introduction

The thesis consists of two parts. In the first part, we study proof systems that can be com-
puted by very little resources. In the second part, we look at the problem of testing if the
polynomial computed by an input arithmetic circuit is identically zero. The background
and motivation for each of the parts together with a summary of our results is described
below.

1.1 Proof systems computable in NC0

1.1.1 Background and Motivation

The complexity class NP is the set of all languages that have short proofs that can be
efficiently verified. More precisely, L ∈ NP if there exists an efficient algorithm A such
that for every string x, there exists a string y, |y| = O(|x|c) such that x ∈ L ⇐⇒ A(x, y) =

1. For example: Sat - The language of all satisfiable propositional formulas. A proof that
a propositional formula F is indeed satisfiable can be an assignment ~a to the variables
in F that satisfies it. The verifier algorithm just needs to check if indeed ~a is a satisfying
assignment and this can be done in polynomial time. An interesting fundamental question
is: For some formula F that is not satisfiable, is there a short proof of F < Sat that can be
verified efficiently? Equivalently: Are there efficient procedures and short certificates to
prove that a propositional formula is a tautology? This forms the basis of the question: Is
NP = coNP? It is in this context that the notion of proof systems was first introduced by
Cook and Reckhow in [CR79].

A computable function f : {0, 1}∗ → {0, 1}∗ is a proof system for L if Range( f ) = L.
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From the fact that Taut is coNP complete, it follows that NP = coNP if and only if
there exists a polynomial time computable proof system for Taut with short proofs (See
[Coo71]). Hence, one way of showing NP , coNP is to show that for every polynomial
time computable proof system f for Taut, there exists a family of tautologies such that f

needs inputs of super polynomial length to produce members of this family. As of now,
we do not know how to show even a super linear lower bound on proof length.

Since we do not yet know whether or not NP equals co-NP, a reasonable question to
ask is how much more computational power and/or proof length is needed before we
can show that Taut has a proof system. For instance, allowing the verifier the power
of randomized polynomial-time computation on polynomial-sized proofs characterizes
the class MA; allowing quantum power characterizes the class QCMA; one could also
allow the verifier access to some advice, yielding non-uniform classes; see for instance
[Hir10, HI10, CK07, Pud09].

An even more interesting, and equally reasonable, approach is to ask: how much do we
need to reduce the computational power of the verifier before we can formally establish
that Taut does not have a proof system within those bounds? This approach has seen a
rich body of results, starting from the path-breaking work of Cook and Reckhow [CR79].
Haken showed in [Hak85] that any proof for the pigeon hole principle (PHP) in the Reso-
lution proof system requires exponential length. This was followed by a result by Ajtai in
[Ajt94] showing that PHP needs super polynomial length proof for AC0

−Frege proof sys-
tems. Krajicek et al. in [KPW95] improved Ajtai’s result to an exponential lower bound
for length of proofs in AC0

−Frege systems for PHP. The common theme in these results
is limiting the verifier’s power by restricting the nature of proof verification, equivalently,
the syntax of the proof. See [BP01, Seg07] for excellent surveys on the topic.

Instead of restricting the proof syntax, if we only restrict the computational power of the
verifier, it is not immediately obvious that we get anywhere. This is because it is already
known that NP is characterized by short proofs with verifiers computable by uniform
AC0 circuit families. AC0 is the family of circuits over {∧,∨,¬} that have constant depth
and unbounded fanin. With regard to computing Boolean functions, AC0 is a very weak
class of circuits. For instance, in AC0 we cannot even check if a binary string has an
odd number of 1s [Ajt83, FSS84, Hås86]. This handicap of AC0 does not seem to matter
when being used to compute proof systems. The fact that every language in NP has
an AC0 proof system means that NP = coNP if and only if Taut has a proof system
computable in uniform AC0. Hence, it is natural to ask what happens when we restrict
verifiers to be computed by a class even weaker than AC0. Hence, we go even below AC0

and ask: Is there a proof system for Taut that can be computed in uniform NC0? The
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class NC0 consists of circuits over {∧,∨,¬} that have constant depth and all gates have
bounded fanin. These circuits constitute one of the weakest computational models in
computational complexity. In an NC0 proof system, each output bit depends on just O(1)
bits of the input, so to enumerate L as the range of an NC0 function f , f must be able to do
highly local corrections to an alleged proof while maintaining the global property that the
output word belongs to L. Unlike locally-decodable error-correcting codes, the correction
here must be deterministic and always correct. We also note that unlike verifiers that
output a Boolean value based on the veracity of the input proof provided, we study proof
systems that are expected to output a valid theorem for any proof given as input. It is easy
to see that if the amount of computational resource allowed is at least that of AC0, then
these two notions coincide.

Since NC0-computable proof systems are functions which shrink the input by at most a
constant factor, every language with an NC0 proof system is computable in nonuniform
nondeterministic linear time.

A related line of research studies NC0-computable functions in a cryptographic context
[Hås87, AIK06, AIK08, CM01, MST06]. One of the main problems in this area is to
construct pseudorandom generators which are computed by NC0 circuits [AIK06, AIK08,
CM01, MST06]. This question asks for NC0-computable functions for which the range
is hard to distinguish from a uniform distribution. In another thread [Vio11, Vio12], for a
function f , one is interested in the uniform distribution over 〈x, f (x)〉. Sampling exactly
from this distribution may be possible even if computing f (x) is hard. However, it is
shown that for some functions (such as detecting exact-Hamming-weight αn), getting
even close to the uniform distribution via specific types of NC0 circuits (d-local circuits)
is not possible. In contrast, we are looking here at the related, but possibly easier problem
of understanding which sets can appear at all as the range of NC0-computable functions,
irrespective of the distribution on the support.

Recall that we do not know a family of tautologies for which we can show even a super lin-
ear lower bound on proof length against polynomial time computable proof systems. Such
a super linear lower bound would imply that Taut is not in NTIME(O(n)). If NP , coNP,
then clearly Taut is not in NTIME(O(nk)) for any constant k. Compared to showing that
Taut < NTIME(O(n)), it should be easier to show that Taut does not have a uniform NC0

proof system because NC0 is a further restriction. Hence showing lower bounds for NC0

computable proof systems is a possible starting point towards finding super linear lower
bounds against general proof systems. This further justifies studying the NC0 restriction.

Is NC0 too strong a restriction? To answer this, we note that Cryan and Miltersen [CM01]
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exhibit an NC0-computable function whose range is NP complete. Thus, there are NP-
complete languages that admit an NC0 proof system. This suggests that the NC0 re-
striction, in the context of proof systems, does not render the proof systems completely
useless. An NP-complete language having an NC0 proof system raises another natural
question: Do we need the full power of AC0 to construct proof systems for languages in
NP? We observe that the AC0 computable proof systems mentioned earlier for languages
in NP have exactly one unbounded fanin ∧ gate. If we disallow this unbounded fanin
gate, how much of NP can we still capture? Disallowing the only unbounded fanin gate
is equivalent to restricting the computational power of the verifier to NC0 circuit families.
Note that the non-deterministic time hierarchy theorem implies that there are languages
in NP that do not have NC0 proof systems. But this does not give us an explicit example.

1.1.2 Our results

Our aim is to study proof systems computable in NC0, understand their capabilities, and
discover connections (or the lack of them) to computational complexity classes. From
here on, we use the term “NC0 proof system” to mean a proof system that is computable
by an NC0 circuit family.

In Chapter 2, we give an introduction to constructing NC0 computable proof systems. We
initially focus on regular languages and develop ideas that we use later to construct NC0

proof systems for a variety of natural problems. We start by showing that any regular
language that has deterministic finite automata (DFA) with at most two states has an NC0

proof system. Following this we show, in Theorem 2.9, a regular language that has a DFA
with only 3 states but does not have even non-uniform NC0 proof systems. We do this
by looking at circuit structure and a careful counting argument to show a lower bound
of O(log log n) on the depth of any bounded fanin proof system generating this regular
language. Thus two natural questions arise: (1) What regular languages have proof sys-
tems computable in NC0? (2) How much computational power suffices to compute proof
systems for all regular languages? We partially answer question 1 in Section 2.2.2 by
giving sufficient conditions for a regular language to have a proof system computable in
NC0. We exhibit a general construction for NC0 proof systems which works for all reg-
ular languages that are accepted by a strongly connected NFA. Our construction directly
transforms this NFA into an NC0 proof system.

We explore some closure and non-closure properties of NC0 proof systems in 2.2.3 before
showing that for every regular language, we can construct a proof system computable
by circuits of bounded depth and poly log fanin in the output size (Theorem 2.29). We
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refer to the class of circuits of bounded depth and poly log fanin in the output length
as poly log AC0. Hence Theorem 2.29 essentially answers question 2 stated above. We
also observe that due to Theorem 2.9, the upper bound we obtain in Theorem 2.29 is
asymptotically tight.

In Section 2.3.1, we give constructions for many non-regular languages. Among them
are an NC1 complete language (Proposition 2.30) and a P complete language (Propo-
sition 2.34). We explore poly log AC0 construction for proof systems in Section 2.3.2.
We generalize the idea from proof of Theorem 2.29 and show a similar construction of
poly log AC0 for languages that have branching programs with certain properties. We push
this technique further to show a poly log AC0 proof system for languages corresponding
to the 1 instances of threshold functions (Theorem 2.38).

We devote Chapter 3 to showing lower bounds. We start by generalize the counting ar-
gument used in Theorem 2.9 and show that languages such as 0∗1∗, Exact-Countn

k and
Thresholdn

k functions do not have NC0 computable proof systems for certain values of n

and k. Although we show lower bounds for more regular languages, it remains open to
characterize the regular languages that indeed have proof systems that are computable in
NC0.

The simple counting argument we use in the proof of Theorem 2.9 fails for the language
Majority - the set of all strings over {0, 1} that have at least as many 1s as 0s. We devote
the whole of subsection 3.3 to showing that Majority does not have proof systems com-
putable in NC0. We notice that the reason the previous counting argument does not work
for Majority is because of the presence of input bits that could influence the value of a
large number of output bits. We try to work around these “high-influence” input bits by
hardwiring them to well chosen values such that we obtain a circuit that still generates a
non trivial part of Majority. We do this iteratively till we are finally left with a small num-
ber of input bits, which are not hardwired, that generate a large number of possible output
strings. We then argue that this is not possible unless the depth of the circuit is ω(1). We
first give an intuitive idea of the proof in subsection 3.3 and then proceed to a full formal
proof under Theorem 3.6. We use this to show Corollary 3.16 that the language of all
pairs of graphs that are isomorphic to each other does not have an NC0 proof system.

Given that there exists a regular language that does not admit an NC0 proof system (The-
orem 2.9) while there is an NP-complete language that does ([CM01]), the class of lan-
guages that admit an NC0 computable proof system slices vertically across complexity
classes. In other words, the complexity of generating exactly the strings of a language L

and the complexity of deciding if a string belongs to L seem to be completely unrelated
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to each other. This makes the study NC0 computable proof systems even more intriguing.

In Chapter 4, we return to the question of whether Taut has a proof system computable
in NC0. We believe that Taut does not have NC0 proof systems because otherwise NP =

coNP. Although it seems like showing that no NC0 proof system can capture Taut should
be easier than showing NP , coNP, we have not yet succeeded. So we ask the same
question about 2TAUT - the set of all 2DNFs that are tautologies. The language 2TAUT
is in non-deterministic logspace (NL), and hence may well have an NC0 proof system. The
standard NL algorithm for 2TAUT is via a reduction to the problem of s − t connectivity
STConn in a related implication graph. So it is interesting to ask – does STConn have
an NC0 proof system? We do not know yet. We first show, in Theorem 4.13, that a
“reduction” from 2TAUT to STConn exists in the proof systems context as well. i.e., we
show that if STConn has an NC0 computable proof system, then so does 2TAUT. As a
main result of Chapter 4, we show that USTConn - the undirected analogue of STConn,
a language complete for L (logspace), has an NC0 proof system. The idea is to look at
an s − t path as an exclusive-or (EXOR) of the (s, t) edge and a simple cycle involving
s and t. We first demonstrate the proof technique on the special case of undirected grid
graphs (Theorem 4.11). We then use the same high level idea to get Theorem 4.13. Our
construction relies on a careful decomposition of even-degrees-only graphs (established
in the proof of Theorem 4.14) that may be of independent interest.

We end Chapter 4 by partially answering the question of how much computational power
do proof systems need to generate the languages in NP. i.e., do we need all of AC0 to
compute proof systems for languages in NP? For instance, by further restricting the fanin
of ∧ gates (∨ gates)in an AC0 circuit family to be bounded, we obtain the class SAC0

(coSAC0). Can we capture all of NP with these restricted classes? We show in Theorem
4.19 that there is a language A in NP such that any proof system for A will need to be at
least as powerful as SAC0 or coSAC0. On the other hand, we show that languages from a
large fraction of NP have proof systems that can be computed by SAC0 or coSAC0 circuit
families.

In conclusion, the capabilities and weaknesses of NC0 proof systems that we discover
in our study show that the question of whether a language has an NC0 proof system is
unrelated to the computational complexity of their associated membership problem. The
reason for this might be that proof systems computed by such restricted circuits are very
sensitive to the encoding used. On the other hand, although NC0 is a strong restriction
on the circuit structure, showing that Taut does not have proof systems computable in
NC0 seems quite difficult. In fact, we do not yet have a characterization of even regular
languages that admit an NC0 proof system. We show various languages that do not have
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NC0 proof systems, but essentially all of them are consequences of either Theorem 2.9 or
Theorem 3.6. It is not clear if lower bound techniques which are used against restricted
circuit classes (cf. [Weg87, Vol99]) are applicable to show lower bounds for NC0 proof
systems.

Most of the results in Chapters 2, 3 and 4 have appeared in [BDK+13] and [KLMS13].

1.2 Polynomial Identity Testing and Arithmetic Formu-
las

1.2.1 Background and Motivation

The Polynomial Identity Testing (PIT) problem is the most fundamental computational
question that can be asked about polynomials: is the polynomial given by some implicit
representation identically zero? The implicit representations of the polynomials can be
arithmetic circuits, branching programs etc., or the polynomial could be presented as a
black-box, where the black-box takes a query in the form of an assignment to the vari-
ables and outputs the evaluation of the polynomial on the assignment. PIT has a ran-
domized polynomial time algorithm on almost all input representations, independently
discovered by Schwartz and Zippel [Sch80, Zip79]. However, obtaining deterministic
polynomial time algorithms for PIT remained open since then. In 2004, Impagliazzo
and Kabanets [KI04] showed that a deterministic polynomial time algorithm for PIT im-
plies lower bounds (either NEXP 1 P/poly or permanent does not have polynomial size
arithmetic circuits), thus making it one of the central problems in algebraic complexity.
Following [KI04], intense efforts over the last decade have been directed towards de-
randomizing PIT (see for instance [SY10, Sax14]). The attempts fall into two categories:
considering special cases ([Sax14]), and optimizing the number of random bits used in
the Schwartz-Zippel test [BHS08, BE11].

The recent progress on PIT mainly focuses on special cases where the polynomials are
computed by restricted forms of arithmetic circuits. They can be seen as following one
of the two main lines of restrictions: 1. Shallow circuits based on alternation depth of
circuits computing the polynomial. 2. Restriction on the number of times a variable is
read by formulas (circuits with fanout 1) computing the polynomial.

The study of PIT on shallow circuits began with depth two circuits, where determin-
istic polynomial time algorithms are known even when the polynomial is given as a
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black-box [BT88, KS01]. Further, there were several interesting approaches that lead
to deterministic PIT algorithms on depth three circuits with bounded top fan-in [DS07,
KS07]. However, progressing from bounded fan-in depth three circuits seemed to be
a big challenge. In 2008, Agrawal and Vinay [AV08] explained this difficulty, show-
ing that deterministic polynomial time algorithms for PIT on depth four circuits implies
sub-exponential time deterministic algorithms for general circuits. There have been sev-
eral interesting approaches towards obtaining black-box algorithms for PIT on restricted
classes of depth three and four circuits, see [Sax14, SY10] for further details. Recently,
Gupta, Kamath, Kayal and Saptharishi [GKKS13] showed that, over infinite fields, de-
terministic polynomial time algorithms for PIT on depth three circuits would also imply
lower bounds for the permanent.

A formula computing a polynomial that depends on all of its variables must read each
variable at least once (count each leaf labeled x as reading the variable x). The simplest
such formulas read each variable exactly once; these are Read-Once Formulas ROFs, and
the polynomials computed by such formulas are known as read-once polynomials (ROP).
In the case of an ROP f presented by a read-once formula computing it, a simple reacha-
bility algorithm on formulas can be applied to test if f ≡ 0. Shpilka and Volkovich [SV08]
gave a deterministic polynomial time algorithm for PIT on ROPs given as a black-box.
Generalizing this to formulas that read a variable more than once, they obtained a deter-
ministic polynomial time algorithm for polynomials presented as a sum of O(1) ROFs.
Anderson et al. [AvMV11] showed that if a read-k formula, with k ∈ O(1), is additionally
restricted to compute multilinear polynomials at every gate, then PIT on such formulas
can be done in deterministic polynomial time. Note that not all read-k multilinear poly-
nomials can be expressed as a sum of O(1) read-once formulas. The result by [AvMV11]
subsumes the result in [SV08] since a k-sum of read-once formulas is read-k and computes
multilinear polynomials at every gate. Both [SV08] and [AvMV11] crucially exploit the
multilinearity property of the polynomials computed under the respective models.

PIT algorithms check whether the polynomial computed by the circuit has at least one
monomial. Natural generalizations/variants of this question are (1) MonCount: compute
the number of monomials in the polynomial computed by a given circuit, and (2) ZMC:
Decide whether a given monomial has zero coefficient in the polynomial computed by
a given circuit. ZMC was first studied by Koiran and Perifel [KP07]. More recently,
Fournier, Malod and Mengel [FMM12a] showed that ZMC and MonCount character-
ize certain levels of the counting hierarchy (CH, the hierarchy based on the complexity
classes PP and C=P). In fact, MonCount remains hard even if restricted to formulas.
They also show that if the circuits compute multilinear polynomials, then these problems
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become easier (equivalent to PP and PIT respectively), and that multilinearity checking
itself is equivalent to PIT. All these results from [FMM12a] are in the non-black-box
model, where the circuit is given explicitly in the input.

Since PIT on Read-k formulas appears easier than on general read formulas, naturally one
could ask whether MonCount and ZMC become easier as well.

1.2.2 Our results

In Chapter 5, we try to extend the results of [SV08] and [AvMV11] in the following two
ways:

• We attempt to remove the multilinearity requirement in [AvMV11]. We give a mul-
tilinearity and identity test for read-twice and read-thrice formulas. Note that both
Read-twice and Read-thrice formulas can compute non-multilinear polynomials.
Our tests are intertwined with a PIT algorithm for subformulas. We give a deter-
ministic polynomial-time algorithm that simultaneously decides whether a Read-2
Formula is multilinear and whether it is identically zero (Theorem 5.5). It uses the
sum-of-k-ROFs test from [SV08] on some subformulas as well as on some formulas
obtained by transforming subformulas of the input formula. Thus it is inherently a
non-blackbox algorithm; so is the polynomial-time algorithm from [SV08]. In The-
orem 5.6, we give a multilinearity and identity test for read-thrice formulas. How-
ever, this does not gather as much information as the test for read-twice. Hence we
feel that the multilinearity test for the read-twice case can potentially be extended
to formulas that read variables more than twice.

• We attempt to extend the class considered in [SV08] to the class of polynomials
of the form

∑k
i=1 figi where the fis and gis are presented as ROFs and k is some

constant. These are read-2k polynomials, not necessarily multilinear.

Over the ring of integers and the field of rationals, we give an efficient deterministic
non-blackbox PIT algorithm for the case k = 2; the polynomial is f1 f2 + g1g2 where
f1, f2, g1, g2 are all read-once polynomials presented by ROFs. This class can also
be seen as a special case of read-4 polynomials. Our algorithm exploits the struc-
tural decomposition properties of ROPs and combines this with an algorithm that
extracts greatest common divisors of the coefficients in an ROP. The algorithm eas-
ily generalises to polynomials of the form f1 f2 f3 · · · fm +g1g2 · · · gs where fis and gis
are presented as ROFs, but m, s can be unbounded; that is, the class

∑(2)
·
∏
·ROF.

Note that this class of polynomials includes non-multilinear polynomials and also
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polynomials with no bound on the number of times variables are read. Thus it is
incomparable with the classes considered in [SV08], [AvMV11]. This result is pre-
sented in Section 5.3, Theorem 5.7. We also sketch a way to modify the proof of
Theorem 5.7 to work for polynomials over any field (Theorem 5.11).

Central to the PIT algorithm in [SV08] is a “hardness of representation” lemma showing
that the polynomial Mn = x1x2 · · · xn, consisting of just a single monomial, cannot be
represented as a sum of less than n/3 ROPs of a particular form (weakly 0-justified).
More recently, a similar hardness of representation result appeared in [Kay12]: ifMn is
represented as a sum of powers of low-degree (at most d) polynomials, then the number
of summands is exp(Ω(n/d)). As is implicit in [Kay12], such a hardness of representation
statement can be used to give a PIT algorithm. We analyze this connection explicitly, and
show that the results in [Kay12] lead to a deterministic sub-exponential time algorithm
for black-box PIT for sums of powers of polynomials with appropriate size and degree
(Chapter 5, Section 5.4, Theorem 5.15).

A minor drawback of both these statements is that they consider a model that cannot
even individually compute all monomials. One would expect any reasonable model of
representing polynomials to be able to computeMn. In Section 5.5, we consider the re-
striction of read-once formulas to constant-free formulas that are only allowed leaf labels
ax, where x is a variable and a is a field element. This model can compute any single
monomial. We show (Theorem 5.18) that the elementary symmetric polynomial Symn,d

of degree d cannot be written as a sum of powers of such formulas unless the number of
summands is Ω(log(n/d)). This appears weak compared to the n/3 bound from [SV08],
but this is to be expected since unlike in [SV08] where the ROPs could only be added,
we allow sums of powers. We also consider 0 − justified read-once formulas with alterna-
tion depth (between + and ×) 3, and obtain a similar hardness-of-representation result for
the polynomialMn against sums of powers of polynomials computed by such formulas,
showing that n

1
2−ε summands are needed (Theorem 5.20). Again, this appears weak com-

pared to the exp(Ω(n/d)) bound from [Kay12], but unlike in [Kay12] where the degree of
the inner functions is a parameter, our inner ROPs could have arbitrarily high degree.

In Chapter 6, we study the problems of ZMC and MonCount. We observe that even
for monotone (no negative constants) read-twice formulas, MonCount is #P-hard. This
further leads us to the investigation: where exactly does hardness for MonCount and
ZMC begin? Further, translating the classes between NP and PSPACE down to classes
below P, can we show that on restricted circuits, MonCount and ZMC are complete for
the translated classes?
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Starting with ROFs, we show (Theorem 6.2) that MonCount for ROFs is in the GapNC1-
hierarchy, i.e., the AC0-closure of GapNC1, where GapNC1 is the class of Boolean prob-
lems that can be computed by arithmetic formulas over the integers with constants 0, 1,
-1. The GapNC1-hierarchy is an intriguing class that lies between NC1 and DLOG and
has been studied extensively in the last two decades; see for instance [All04]. We also
show that ZMC for ROFs is in logspace (Theorem 6.13). It is straightforward to see that
ZMC for ROFs is hard for C=NC1, so this is almost tight. (The “gap” between Boolean
NC1, C=NC1, GapNC1 and DLOG is very small.)

Another equally natural and well-studied restriction is when the circuit is an algebraic
branching program BP with edges labeled by the allowed constants or by variables. Eval-
uation of BPs on Boolean-valued inputs is complete for the arithmetic class GapL, the
logspace analogue of the class GapP. The GapL hierarchy (the AC0 closure of GapL)
is known to be contained in log n depth threshold circuits TC1 and hence in log2 n depth
Boolean circuits NC2. Two restrictions on BPs, in order of increasing generality, are:
(1) occur-once BPs, or OBPs, where each variable appears at most once anywhere in the
BP; these subsume ROFs, and (2) multilinear BPs, or MBPs, where the polynomial com-
puted at every node is multilinear. Again, deterministic algorithms are known for PIT on
OBPs, [JQS10]. We show that MonCount for OBPs is in the GapL hierarchy (Theorem
6.10), while ZMC for OBPs and even MBPs is complete for the complexity class C=L

(Theorem 6.12). (As a comparison, a well-known complete problem for C=L is testing
singularity of an integer matrix [ABO99].)

A related problem explored in [FMM12a] as a tool to solving MonCount is that of check-
ing, given a circuit C and monomial m, whether C computes any monomial that extends
m. Denote this problem ExistExtMon. Though our algorithms for MonCount do not need
this subroutine, we also show that for OBPs (and hence for ROFs), ExistExtMon lies in
the GapL hierarchy (Theorem 6.14).

Most of the results in Chapter 5 and 6 appear in [MRS14a] and [MRS14b].
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Chapter 2

Constructions of small depth proof
systems

In this chapter, we introduce NC0 proof systems. We start with some basic definitions
in section 2.1. In section 2.2, we show constructions of NC0 proof systems for various
languages starting from regular to P-complete. In section 2.2.2, we give sufficient condi-
tions for a regular language to have a proof system computable in NC0. In section 2.2.3,
we show that for every regular language L, there is a circuit family of depth (log log n)
that computes a proof system for L. Finally, section 2.3 discusses NC0 proof systems for
some non-regular languages and also proof systems computable by bounded depth and
polylogarithmic fanin circuit families.

2.1 Preliminaries

A Boolean circuit C is a labelled directed acyclic graph with one or more designated
output gates. Each leaf of C is labelled by either a variable or a Boolean value and each
internal node is labelled by one of {∨,∧,¬}. The internal nodes are also called “gates” of
the circuit. Each gate in a Boolean circuit computes a Boolean function of its inputs in a
natural inductive way. Since the number of leaves for any circuit is fixed, circuits are by
definition a non-uniform model of computation.

A family
(
Cn

)
n≥1 of Boolean circuits is a collection of Boolean circuits that work on

inputs of various lengths. For formal definitions and notation regarding circuits and circuit
families, see [Vol99].
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A proof system for a language L ⊆ {0, 1}∗ is a function f : {0, 1}∗ −→ {0, 1}∗ such that
Range( f ) = L.

A family of Boolean circuits
(
Cn

)
n≥1 is said to be a proof system for a language L ⊆ {0, 1}n

if it satisfies the following conditions:

1. Output length: For some function m : N −→ N, and for all n ≥ 1,

• If L ∩ {0, 1}n , ∅, then Cn : {0, 1}m(n) → {0, 1}n.

• Otherwise Cn is empty.

2. Soundness: For all n where Cn is non-empty, and for all words x ∈ {0, 1}m(n), Cn(x) ∈
L.

3. Completeness: For all y ∈ L ∩ {0, 1}n, there is a word x ∈ {0, 1}m(n) such that
Cn(x) = y; we say that x is a proof of the theorem “y ∈ L”.

That is, the circuit family has as its range exactly the set L. For some functions s, d :
N −→ N, each Cn has size s(n), depth d(n).

We say a family of Boolean circuitsP = (Cn)n≥1 is a proof system for a function f : {0, 1}∗ −→
{0, 1} if P is a proof system for the language L = f −1(1).

We will call each individual circuit Cn in a proof system P a “proof circuit”. The circuit
family P is said to be a constant-depth proof system if the AND and OR gates have
unbounded fan-in, and for some constant d and for all n, d(n) ≤ d. A constant-depth
proof system of polynomial size (for some constant c and for all n, s(n) ≤ nc) is said to be
an AC0 proof system. Note that the size bound is non-standard: it is measured in terms of
the output length, not input length.

The circuit family is said to be an NC0 proof system if the AND and OR gates have
bounded fan-in, and for some constant d and for all n, d(n) ≤ d. This, along with the
fan-in bound, implies s(n) ≤ cn for some constant c.

If a function f : {0, 1}∗ −→ {0, 1} has a proof system of a particular type (constant-depth,
AC0, NC0), then we say that f admits a proof system of that type.

If the circuit family is uniform, then we say that the proof system is uniform. Here, a
uniform circuit family is a family whose direct connection language, i.e., a language de-
scribing the structure (nodes, wires, gates types) of the circuits in the family, is decidable.
If the direct connection language is decidable in polynomial time, then the family is said
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to be P-uniform. If the language is decidable in logarithmic time, then the family is said
to be DLOGTIME-uniform. (For more formal definitions, we refer the reader to [Vol99].)

We remark that all upper bounds of NC0 proof systems in this chapter will yield DLOGTIME-
uniform proof systems, unless explicitly stated otherwise.

For a language L ⊆ {0, 1}∗, we say that L admits an NC0 proof system, or that L is
enumerable in NC0, if its characteristic function χL admits such a proof system. In other
words, there is an NC0 circuit family which produces as output all the strings in L and no
other strings. As before, if C(x) = y, then we view x as a proof that y ∈ L. Note that a
string y ∈ L can have multiple proofs x such that C(x) = y.

We observe that uniform AC0 proof systems do exist for every NP set. In fact, a more
general statement is true. (Here uniformity only refers to computable direct connection
languages.)

Proposition 2.1 (Folklore).

1. Every language in NP admits a uniform AC0 proof system.

2. More generally, every computable language admits a uniform constant depth proof

system.

3. Even more generally, every language admits a constant-depth proof system.

Proof. (Sketch.) For an arbitrary language L with characteristic function χL = f , let n be
a length where L is non-empty. Pick an arbitrary w ∈ L=n. Restricted to length n, f is
computed by a constant-depth Boolean circuit (possibly of size exponential in n) D. The
circuit Cn extends D: If on input x, D(x) = 1, then output x otherwise output w. Clearly
Cn is also constant-depth, and its range is exactly L=n, proving (3).

Now let the computable language L be decided by the deterministic Turing Machine M.
The run-time of M with respect to the length of the input can be assumed to be com-
putable. Also a default word w ∈ L=n can be found effectively if it exists. A proof of a
word y ∈ L is an encoding of an accepting sequence of configurations of M on input y.
The correctness of such a sequence of configurations can be checked locally, essentially
in two consecutive configurations only three letters (around the head position on the tape)
can be different. If our circuit reads an input that is not such an encoding, then it outputs
some default value w ∈ L of the appropriate length as above. All of this can be done by a
constant depth uniform circuit, proving (2).
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Finally, let L be accepted in polynomial time by the nondeterministic Turing machine
M. Proceeding as above, the checking circuit is of size polynomial in the output word,
proving (1). �

As mentioned already in the introduction, Cryan and Miltersen [CM01] exhibit an NP-
complete language that admits even a uniform NC0 proof system. But it is quite easy
to see that this is not the case for every NP language. Indeed, as noted earlier, for any
uniform NC0 proof system, m(n) ∈ O(n) and the circuits Cn are also of size O(n); each bit
of the output depends on O(1) bits of the input proof. Thus if L has NC0 proof systems,
then strings in L have linear-sized proofs that are locally verifiable. This leads to the
following observation, which will be considerably strengthened in Chapter 3.

Proposition 2.2. There are non-trivial languages in NP that do not admit any DLOGTIME-

uniform NC0 proof system.

Proof. If a language L has a DLOGTIME-uniform NC0 proof system, then it can be
recognised in NTIME(n): given an input y, guess the linear-sized proof x, evaluate the
circuit C|y|(x), and verify that its output is y. But by the nondeterministic time hierarchy
theorem [Coo73] we know that NP is not contained in NTIME(n). �

2.2 Proof systems for regular languages

In this section, we will give a gentle introduction to constructing proof systems com-
putable in NC0. We will start by constructing proof systems for certain simple regular
languages and show possible generalizations wherever possible. The regular languages
we consider will be on the alphabet {0, 1} unless stated otherwise.

2.2.1 Simple examples

Consider regular languages accepted by automata with at most one state. There are only
two possible languages - {0, 1}∗ and ∅. The first language has a trivial NC0 proof system
that takes as input a binary string, and outputs it without any change. The second language
also has a trivial NC0 proof system that is empty.

We now look at the languages accepted by deterministic finite state automata (DFA) with
exactly two states:
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1. Lend1 - All strings ending with a 1.

2. LOR - All strings with at least one 1.

3. L⊕ - All strings that have an odd number of 1s.

4. Lend-odd - All strings that end with an odd number of 1s.

Constructing an NC0 proof system for Lend1 can be done by simply hardwiring the last
output bit to be 1 and the rest of the output bits are just copied from the input. This
immediately generalizes to the following:

Lemma 2.3. Let L be any language over a finite alphabet Σ and w a fixed string in Σ∗.

Then L admits an NC0 proof system if and only if L · {w} does.

This can be further generalized to concatenation with finite sets: For any two languages
L1 and L2, define the language L1 · L2 = {w1w2|w1 ∈ L1 ∧ w2 ∈ L2}.

Lemma 2.4. Let S be any finite language and L be any language - both over a finite

alphabet Σ. If L admits an NC0 proof system then, the languages L · S and S · L admit an

NC0 proof system.

Proof. Let P = (Cn)n>0 be an NC0 proof system for L. Let S = {s1, s2, · · · , sk} where k

is a constant independent of n. For each i ∈ [k], let |si| = `i. To generate the strings of
length n in L · S , we use the proof circuits Cn−`1 ,Cn−`2 , · · · ,Cn−`k along with an input m of
length dlog ke bits. We output the concatenation of the string output by Cn−`m and sm. To
generate strings of length n in s · L, we output the concatenation of sm with the output of
Cn−`m .

In essence, the construction is a multiplexer that choses the correct strings from O(1)
many choices to get a length n string as output. The choice of the multiplexer is based on
the input m. Since k is a constant and each output bit of the circuits from P is a function of
only O(1) many input bits, we conclude that our construction indeed gives an NC0 circuit
family. �

We now show a construction for LOR:

Proposition 2.5. The language LOR admits an NC0 proof system.
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Proof. The circuit Cn : {0, 1}2n−1 → {0, 1}n takes as input bit strings a = a1 . . . an and
b = b1 . . . bn−1, and outputs a sequence w = w1 . . .wn where

(for 1 ≤ i ≤ n) wi =

 ai if (bi−1 ∨ ai) = bi

1 otherwise.

Here for notational convenience we assume that b0 = 0, bn = 1. Notice that if each bi

correctly encodes the OR of the prefix a1 . . . ai, then bn = 1 ensures that at least one
wi = ai is 1. Otherwise if there is ever a discrepancy between the bi’s and the prefix
OR’s of a j’s, we introduce a 1 at the first such wi (and maybe others too); thus w is
indeed in LOR. Since for each string a ∈ LOR there is a correct string b with b0 = 0,
bi = bi−1 ∨ ai and bn = 1, every string in LOR is produced by Cn. Thus Cn is an onto map
from {0, 1}2n−1 → LOR ∩ {0, 1}n completing the proof. �

Now we look at the language L⊕. The idea used in the proof of Proposition 2.5 of in-
terpreting the input as a string that gives the prefix ORs of the intended output can be
used again. But this time we interpret the input as a string of prefix EXORs to obtain the
following:

Proposition 2.6. L⊕ admits an NC0 proof system.

Proof. The circuit Cn : {0, 1}n−1 → {0, 1}n takes as input a bit string a = a1 . . . an−1 and
outputs a sequence w = w1 . . .wn where

(for 1 ≤ i ≤ n) wi = ai−1 ⊕ ai

Here we will hardwire a0 = 0 and an = 1. Hardwiring a0 and an this way ensures that
the output string always has an odd parity. This is because the parity of the output is just
(0 ⊕ a1) ⊕ (a1 ⊕ a2) ⊕ (a2 ⊕ a3) · · · (an ⊕ 1) = 1. Notice that any string with odd number of
1s can be produced by just giving as input the string that holds the prefix parities. �

This idea of taking prefix parities generalizes to the word problem over finite groups. The
word problem for a finite monoid M with identity e is (membership in) the language:
{〈m1,m2, . . . ,mn〉 ∈ M∗ :

∏n
i=1 mi = e}. We assume here that for some constant c depend-

ing only on M, each element of M is described by a bit string of exactly c bits.

Proposition 2.7. The word problem for finite groups admits an NC0 proof system.

Proof. We describe the circuit Cn : {0, 1}cn−c → {0, 1}cn. (Since the word problem contains
only words of lengths divisible by c, we produce circuits only for such lengths.) Given
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the encoding of a sequence g1, . . . , gn−1, and assuming that g0 = gn = e, Cn produces the
sequence 〈h1, . . . , hn〉 where hi = g−1

i−1gi. Thus
∏

hi = e and the word is indeed in the
language. Conversely, every word 〈h1, . . . , hn〉 in the language is produced by this circuit
on input g1, . . . , gn−1 where gi =

∏
j≤i h j. �

In proving Proposition 2.7, we used all the three group axioms: associativity, existence
of an identity and existence of inverses. However, for the earlier example of LOR, the OR

operation is associative and has an identity, but not all elements have an inverse. Yet we
were able to show that the language LOR has an NC0 proof system.

Now we tackle the language Lend-odd. We construct an NC0 proof system for this by asking
for a proof that is closely connected to the DFA on two states that recognizes it:

Proposition 2.8. The language Lend-odd has an NC0 proof system.

Proof. We use automaton D = {Q = {q0, q1},Σ = {0, 1}, δ, F = {q1}, q0} where q0 is the
start state and δ is defined as follows:

δ 0 1

q0 q0 q1

q1 q0 q0

We first observe that for every pair of states p, q in D, there is a string wp,q of length
exactly 2 such that δ̂(p,wp,q) = q. These strings are listed below:

q0 q1

q0 00 01

q1 10 11

We construct proof circuit P that takes as input a proof x. The proof x is interpreted as
blocks consisting of a word wi of length 2 sandwiched between two states si−1 and si.
The proof is expected to have the property that for any i, δ̂(si−1,wi) = si. We allow the
last block to have a word of length 1 to accommodate for odd length strings in L. We
hardwire s0 = q0 and sdn/2e = q1 since q0 and q1 are the start and final state respectively.
So to output strings of length n, the input string is of length n + n

2 − 1.

The output string P is constructed as follows: For any i, if indeed δ̂(si−1,wi) = si, then we
output wi as is. Otherwise, we output wsi−1,si .

The idea behind the construction is that the output is always consistent with the sequence
of intermediate states provided in the proof.
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Soundness: Follows from the fact that the last state is hardwired to q1 and that every
string we output is consistent with the state sequence in the proof.

Completeness: For any string y ∈ L, a proof that produces y would be a string that
encodes the string y along with the intermediate alternate states in an accepting run of the
automaton D on y.

Constant depth: Verifying if δ̂(si−1,wi) = si depends on only 4 input bits. The transi-
tion function can be implemented in constant size. Hence the construction gives an NC0

circuit family. �

So far, we have shown NC0 proof systems for regular languages that have DFAs of at most
two states. Looking at languages with a DFA of exactly three states recognizing it, we
already arrive at our first example of a language that does not admit NC0 proof systems:

Theorem 2.9. The language Exact-Orn on n bits, that consists of all strings with exactly

one 1, does not admit an NC0 proof system.

Proof. Suppose there is such a proof system, namely an NC0-computable function f :
{0, 1}m −→ {0, 1}n. Let Ri ⊆ [m] be the proof bit positions that have a path to the ith
output bit. For each i, there is at least one setting of the Ri bits that places a 1 in the ith bit
of the output (producing the output string ei). All extensions of this setting must produce
ei. Therefore | f −1(ei)| ≥ 2m−|Ri |. Let c = maxn

i=1 |Ri|; by assumption, c ∈ O(1). Then for
each i ∈ [n], | f −1(ei)| ≥ 2m−c. But the f −1(ei) partition {0, 1}m. Hence

2m =

n∑
i=1

| f −1(ei)| ≥
n∑

i=1

2m−c = n2m−c.

Therefore c ≥ log n, so ∃i ∈ [n] : |Ri| ≥ log n, a contradiction. �

Note that the above proof implies that any proof system for Exact-Orn needs depth
Ω(log log n). We will generalize the above proof to obtain lower bounds for other lan-
guages in Chapter 3.

We now describe some generic constructions and closures. They are easy to see, but we
state them explicitly for later use.

Lemma 2.10. If A, B ⊆ {0, 1}∗ admit NC0 proof systems, then so does A ∪ B.
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Proof. Let the proof systems for A and B be witnessed by circuit families C′ and C′′, with
proof lengths m′(n) and m′′(n) respectively. We construct the circuit family C for A ∪ B,
with proof length m′(n) + m′′(n) + 1, as follows: Cn consists of a copy of C′n and a copy of
C′′n , and has an input x for C′, and input y for C′′, and an extra input bit b. It outputs the
string (C′n(x) ∧ b) ∨ (C′′n (y) ∧ b̄) where the combination with b and b̄ is done for each bit
position. �

Note that in the above proof, the depth of the circuit for A ∪ B is two more than the
maximum depth of the circuits for A and B. Since union is associative, a union of k

sets can be expressed as a binary tree of unions of depth dlog ke. Thus the union of k

languages, each with an NC0 proof system of depth d, has an NC0 proof system of depth
d + 2dlog2 ke. In particular, we get the following nonuniform upper bounds.

Lemma 2.11. Suppose L ⊆ {0, 1}∗ has the property that there is a constant k, and for

each n, |L ∩ {0, 1}n| ≤ k. That is, at each length, at most k strings of that length are in L.

Then L admits a nonuniform NC0 proof system.

We can show that the complement of the languages considered in Lemma 2.11 have an
NC0 proof system:

Lemma 2.12. Suppose L ⊆ {0, 1}∗ has the property that there is a constant k, and for

each n, |L ∩ {0, 1}n| ≥ 2n − k. That is, at each length, at most k strings of that length are

not in L. Then L admits a nonuniform NC0 proof system.

Proof. The circuit C for OR−1(1) outputs all strings except the string of all 0s. We first
generalize this to exclude any fixed string y from the output. This is done as follows: Let
y ∈ {0, 1}n be the string that is to be excluded from the output of our proof circuit. Take the
output bits w1, . . . ,wn of C and feed them to a layer of XOR gates that does a bit-by-bit
XOR of w and y. The output of the XOR layer is our output string. Since C never outputs
all 0s, the output after XOR-ing with y can never be y.

Now we push this further to exclude k strings.

Let L=n = {0, 1}n \ U, where U =
{
u1, u2, . . . , uk

}
and u1, . . . , uk ∈ {0, 1}n are the strings

excluded from L.

The proof is by induction on |U |. The base case of |U | = 1 has already been shown.

Assume we have a proof circuit for L=n \U for all U with |U | < k. Induction step: |U | = k.
Let l be the first position where there is at least one string in U which has 0 at l and at
least one string in U that has a 1 at l. Since |U | > 1, there exists such an l. Now partition
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U into U0 and U1 based on whether a string has a 0 or a 1 at the l’th position. Now by
the choice of l, |U0| < k and |U1| < k. From the induction hypothesis we have a proof
circuit C0 for {0, 1}n \ U0 and a proof circuit C1 for {0, 1}n \ U1. We want the language
L=n = L0 ∩ L1. We construct proof circuit C for L=n that uses the outputs of C0 and C1,
and takes an additional bit b as input. Let s ∈ L be an arbitrary fixed string. Define C(bx)
where b is a bit as follows:

• C(bx) = C0(x) if b = 0 and C0(x)l = 0;

• C(bx) = C1(x) if b = 1 and C1(x)l = 1;

• C(bx) = s otherwise.

�

2.2.2 Sufficient conditions

A simple observation relating deciding membership to verifying proofs is as follows:

Proposition 2.13. Every language decidable in nonuniform NC0 has a nonuniform NC0

proof system.

Proof. Let L be a language decidable in nonuniform NC0. Let C be an NC0 circuit family
that decides it. We construct an NC0 proof system D for L as follows: D outputs the input
x if C(x) = 1 and otherwise outputs w where w is a fixed string in L. It is easy to see that
D enumerates exactly the words accepted by C. �

We now use the ideas developed so far to give sufficient conditions for a regular language
to admit an NC0 proof system.

Our first sufficient condition abstracts the strategy used to show that OR has an NC0 proof
system. This strategy exploits the fact that there is a DFA for OR, where every useful state
has a path to an “absorbing” final state. (Here, by useful we mean that the state q lies on
some path from the start state to a final state. This is syntactic usefulness, and may not
correspond to real usefulness for acceptance if for each such path through q there is also
another accepting path avoiding q. But we show that it is useful for designing NC0 proof
systems.

Theorem 2.14. Let L be a regular language accepted by an NFA M = (Q,Σ, δ, F, q0). Let

F′ ⊆ F denote the set of absorbing final states; that is, F′ = { f ∈ F | ∀a ∈ Σ, δ( f , a) = f }.

Suppose M satisfies the following condition:
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For each q ∈ Q, if there is a path from q to some f ∈ F, then there is a path

from q to some f ′ ∈ F′.

Then L has an NC0 proof system.

Proof. We assume without loss of generality that all states of M are useful (they lie on
some accepting path); if not, we remove non-useful states (and the hypothesized property
continues to hold). The hypothesis is that from each state q, we can reach some absorbing
final state via a word of length at most k = |Q| − 1. Pick any such word arbitrarily, pad
it arbitrarily with a suffix so that its length is exactly k, and denote the resulting word as
fin(q) (i.e., fin(q) “finalizes” q). Clearly, δ(q,fin(q)) ∈ F′.

The proof consists of the word x broken into blocks of size k, with the remainder bits at
the beginning. In addition, the proof provides the state of M after each block on some
accepting run. So the total proof is x0, x1, . . . , xN , q1, . . . , qN where N = bn/kc, each
qi ∈ Q, xi ∈ Σk for i ≥ 1, and x0 ∈ Σ<k are the remainder bits.

The word w output by the proof system on such a proof is also broken into blocks in the
same way, and each block is defined as follows:

w0 = x0

w1 =

 x1 if q2 ∈ δ(q0, x0x1)
fin(δ(q0, x0)) otherwise.

For 2 ≤ i ≤ N,wi =

 xi if qi ∈ δ(qi−1, xi)
fin(qi−1) otherwise.

(Note that for string lengths less than 2k, we only have O(1) many strings in L. So strings
of these lengths can be generated trivially by a circuit that takes as input a number i ∈ [2k]
and outputs the i’th word for that length according to some ordering fixed beforehand.)

To see that our construction gives us an NC0 family, note that since |Q| and |Σ| are constant,
the transition function δ can be implemented by a circuit of constant size. And since k

is a constant, checking if qi ∈ δ(qi−1, xi) can be done in NC0. Thus the above can be
implemented in NC0. �

We now look at a subset of regular languages called star-free languages. A regular lan-
guage is called star-free if the language has a regular expression that does not use any
Kleene star, but is allowed to use union, intersection and complementation. For example
the language OR can be captured by the expression φc 1 φc where c denotes complement.
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The language Exact-Or is also star-free and can be written as (φc 1 φc 1 φc)c ∩ (φc 1 φc).
However, we know from 2.5 and 2.9 that OR has an NC0 proof system and Exact-Or does
not. Observe that the complements in the expression for OR are applied to the empty set,
whereas those in Exact-Or are applied to non-empty sets too. Based on this, we formu-
late and prove the following sufficient condition for a star-free regular language to have
an NC0 proof system.

Definition 2.15. Strict star-free expressions over an alphabet Σ are exactly the expres-

sions obtained as follows:

1. ε, a for each a ∈ Σ, Σ∗ = ∅̄ are strict star free.

2. If r and s are strict star free, so is (r · s).

3. If r and s are strict star free, so is (r + s).

Theorem 2.16. Let r be a strict star-free expression describing a language L = L(r).
Then L admits an NC0 proof system.

Proof. We first note that in a regular expression, · distributes over +. Hence it is possible
to repeatedly apply this rule of distributivity to arrive at an expression that is of the form
s1 + s2 + · · · + sk, where each si is simply a concatenation without any +. So we assume
that we have a strict star-free regular expression in this form.

Now, if we can show that each of the expressions si has an NC0 proof system, then, we
can use the fact that NC0 proof systems are closed under finite union (Lemma 2.10).

The following claim shows that this is indeed true:

Claim 2.17. Let L be a language recognized by a strict star-free expression s that does

not have a +. Then L admits NC0 proof systems.

Proof. The expression s must be of the form w1 ∅̄ w2 ∅̄ . . . wk−1 ∅̄ wk, where wi ∈ Σ+ for
1 < i < k and w1,wk ∈ Σ∗. Let s = w1 ∅̄ w2 ∅̄ . . . wk−1 ∅̄ wk. Note that if w1 , ε, then we
can hardwire w1 to be the first |w1| symbols in the output of our proof circuit. Similarly
wk can be hardwired at the end. Now for the central ∅̄ w2 ∅̄ w3 . . . wk−1 ∅̄ part: Notice
that any minimal DFA for this expression will have a self-absorbing final state to which
all states have a path. Hence Theorem 2.14 implies that we have an NC0 proof system
for this language. Using this NC0 proof system, and hardwiring w1 and wk as prefix and
suffix respectively, we obtain an NC0 proof system for L. �

This completes the proof of Theorem 2.16. �
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Theorem 2.14 essentially characterizes functions like OR. On the other hand, the parity
function, that has an NC0 proof system, cannot be recognized by any DFA or NFA with
an absorbing final state. The strategy used in constructing the proof system for parity
exploits the fact that the underlying graph of the DFA for parity is strongly connected. In
this scenario, the idea of using prefix parities as the input can be seen as taking the state
of the automaton after each symbol as input. Hardwiring the last bit to 1 can be seen as
forcing the end state to be the accepting state of the automaton. The same idea is used
in Proposition 2.8 where we ask for a string that encodes the intermediate states in an
accepting run.

In the following result, we abstract this property and prove that strong connectivity in an
NFA recognizer is indeed sufficient for the language to admit an NC0 proof system.

Theorem 2.18. Let L be accepted by NFA M = (Q,Σ, δ, F, q0). If the directed graph

underlying M is strongly connected, then L admits an NC0 proof system.

Proof. We use the term “walk” to denote a path that is not necessarily simple, and “closed
walk” to denote a walk that begins and ends at the same vertex. The proof system circuit
construction we describe below is applied only for those lengths where L is non-empty.

The idea behind the NC0 proof system we will construct here is as follows: We take as
input a sequence of blocks of symbols x1, x2, . . . , xk, each of length l and as proof, we
take the sequence of states q1, q2, . . . , qk that M reaches after each of these blocks, on
some accepting run. Now we make the circuit verify at the end of each block whether
that part of the proof is valid. If it is valid, then we output the block as is. Otherwise, if
some xi does not take M from qi−1 to qi, then we want to make our circuit output a string
of length l that indeed makes M go from qi−1 to qi. So we make our circuit output a string
of symbols which will first take M from qi−1 to q0, then from q0 to qi. To ensure that this
length is indeed l, we sandwich in between a string of symbols that takes M on a closed
walk from q0 to q0. We now proceed to formally prove that closed walks of the required
length always exist, and that this can be done in NC0.

Define the following set of non-negative integers:

T =
{
` | there is a closed walk through q0 of length exactly `

}
Since M is strongly connected, we know that T is non-empty. Let g be the greatest
common divisor of all the numbers in T . Note that though T is infinite, it has a finite
subset T ′ whose gcd is g.

Claim 2.19. For every p ∈ Q, ∃`p, rp ∈ {0, 1, . . . , g − 1} such that
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1. the length of every path from q0 to p is ≡ `p (mod g);

2. the length of every path from p to q0 is ≡ rp (mod g).

Proof. Let `, `′ be the lengths of two q0-to-p paths, and let r, r′ be the lengths of two
p-to-q0 paths. Then there are closed walks through q0 of length ` + r, ` + r′, `′ + r, `′ + r′,
and so g must divide all these lengths. So ` = −r (mod g) = −r′ (mod g), and r = −`

(mod g) = −`′ (mod g). It follows that ` ≡ `′ (mod g) and r ≡ r′ (mod g). �

From here onwards, for each p ∈ Q, by `p and rp we mean the numbers as defined in the
above claim.

Choose a subset S of states as follows:

S =
{
q ∈ Q | there is a walk from q0 to q whose length is 0 mod g

}
Claim 2.20. For every p ∈ S , `p = rp = 0.

Proof. By the definition of S , we have `p = 0. Suppose rp , 0. Let w be a word taking
M from p to q0. Appending this to any word w′ that takes M from q0 to p gives a closed
walk through q0 whose length is 0 + rp , 0 (mod g). This contradicts the fact that g is
the gcd of numbers in T . �

Claim 2.21. There is a constant c0 such that for every K ≥ c0, there is a closed walk

through q0 of length exactly Kg.

Proof. This follows from Lemma 2.22 below. �

Note that if g = 1, then every state is in S , and for every state p, lp = rp = 0. Claim 2.21
then asserts that there are closed walks through q0 of every possible length exceeding c0.

Let K = |Q|. Now set t = bK−1
g c and ` = t · g. Then for every p ∈ S , there is a path from

q0 to p of length t′g on word α(p), and a path from p to q0 of length t′′g on word β(p),
where 0 ≤ t′, t′′ ≤ t. (α(p) and β(p) are not necessarily unique. We can arbitrarily pick
any such string.)

If for all accepting states f ∈ F, ` f . n (mod g), then L=n = ∅, and the circuit Cn is
empty.

Otherwise, let r = n (mod g). There is at least one final state f such that ` f ≡ r (mod g).
Thus there is at least one string of length t′g + r, with 0 ≤ t′ ≤ t, that takes M from q0 to
f .
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We now construct a proof circuit C : Σn × Qn −→ Σn. We consider the inputs of the proof
circuit to be divided into blocks. We choose the block size to be a multiple of g, with the
possible exception of the last block. In particular, we choose block size cg = (2t + c0)g
where c0 is the constant from Claim 2.21. The last block is of size c′g + r for some
0 ≤ c′ ≤ c.

Let k = bn/cgc. Now the total proof is x1, . . . , xk, xk+1, q1, . . . , qk, qk+1 where each qi ∈ Q,
xi ∈ Σcg for i ≤ k, and xk+1 ∈ Σc′g+r for some 0 ≤ c′ < c.

The word w output by the proof system on such a proof is also broken into blocks in the
same way, and each block is obtained as follows:

1. For 1 ≤ i < k, if qi ∈ δ(qi−1, xi), then wi = xi. Otherwise, wi is obtained by
concatenating β(qi−1), a word u such that q0 ∈ δ(q0, u), and α(qi). We need |u| =

(c− t′ − t′′)g, and we know that (c− t′ − t′′) ≥ c0g, and hence Claim 2.21 guarantees
that such a word u exists.

2. If qk+1 ∈ δ(qk−1, xkxk+1) and qk+1 ∈ F, then let wkwk+1 = xkxk+1.

Otherwise, let wkwk+1 have as suffix a string of length t′g + r in L, where 0 ≤ t′ ≤ t.
By the choice of t we know that such a string exists. This leaves a prefix of length
(cg + c′g + r)− (t′g + r) = (c + c′ − t)g with (c + c′ − t) ≥ c0g. We insert here a word
u such that u takes q0 to q0; by Claim 2.21, such a word exists.

This completes the proof of the Theorem 2.18 except for Lemma 2.22, which is stated
and proved below. �

Lemma 2.22 (Folklore). Let T be a set of positive integers with gcd g. There is a constant

c0 such that for every K ≥ c0, Kg can be generated as a non-negative integral combination

of the integers in T .

Proof. We prove the statement by induction on |T |. Let T = {m1,m2, . . . ,mt} be the given
set.

Basis: If t = 1, then g = m1 and Kg = Km1, so set c0 to 1.

Inductive Hypothesis: Assume the statement is true for all sets of size t − 1.

Inductive Step: T is a set of size t.

It suffices to prove the statement when g = 1; for larger g, let T ′ be the set {t/g | t ∈ T }.
Then T ′ has gcd 1, and if we can generate all numbers beyond c0 with T ′, then we can
generate all Kg for K ≥ c0 with T . So now assume T has gcd 1.
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Let g′ denote the gcd of the subset R consisting of the first t − 1 numbers. If g′ = 1, then,
even without using the last number mt, we are already done by induction. Otherwise, let
m = mt. Then the numbers g′,m are co-prime (because gcd for T is 1). By induction,
there is a constant c′ such that using only numbers from R, we can generate K′g′ for any
K′ ≥ c′. Set c = (c′ + m)g′. Consider any number n ≥ c.

The numbers 0 < n − (c′ + m − 1)g′, n − (c′ + m − 2)g′, . . . , n − (c′ + 1)g′, n − c′g′ all have
different residues modulo m.
(If not, suppose for some 0 ≤ i < j ≤ m− 1, n− (c′ + i)g′ ≡ n− (c′ + j)g′ (mod m). Then
( j − i)g′ ≡ 0 (mod m), and so m must divide ( j − i)g′. Since 0 < j − i < m, m does not
divide j − i. But m is co-prime to g′. Contradiction.)
So for some 0 ≤ i < m, and for some non-negative integer a, n − (c′ + i)g′ = am. That is,
n = (c′+ i)g′+am. By the induction hypothesis, (c′+ i)g′ can be generated using numbers
in R ⊆ T . And m ∈ T . So n can be generated from T . �

Example 2.23. The following shows the construction of the proof circuit as in the proof
of Theorem 2.18 for the regular language L = (19 +06)∗. Consider the NFA for L shown in
Figure 2.1. Using the same notation as in Theorem 2.18, we have T = {6, 9}. The greatest

...

Figure 2.1: The strongly connected NFA from Example 2.23

common divisor of the numbers in T is g = 3. Then we have S = {q3, q6, q′3}. It is easy to
see that in our example, Claim 2.21 goes through for c0 = 2. We choose the block length
to be

` =

⌊
|Q| − 1

g

⌋
g + c0g +

⌊
|Q| − 1

g

⌋
g = 12 + 6 + 12 = 30.

This is chosen such that in the case of an input block that claims to take state p to state
p′ and does not have the correct proof, our proof system can output a set of at most 12
symbols to go from p to q0, and then cycle around q0 using kg symbols where k > c0 is
chosen appropriately and finally output at most 12 symbols to go from q0 to p′. Note that
in this way, for each pair of states p, p′ ∈ S , we can produce a path p{ q0 { q0 { p′ of
length exactly 30. For example: Consider the pair q3, q′3. There is a path of length 6 from
q3 to q0 and a path of length 3 from q0 to q′3. Since we want the total length of the path
from q3 to q′3 to be exactly 30, we sandwich a closed walk of length 21 at q0. It is easy to
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see that such a closed walk exists in the NFA shown: two rounds of C6 and one round of
C9.

Theorem 2.18 gives the following corollary:

Corollary 2.24. For every n > 1, the language MODn={ x | |x|1 ≡ 1 mod n } admits an

NC0 proof system.

All the proof systems that we constructed for the regular languages till now are obtained
by applying one of Theorems 2.14, 2.16, 2.18, in conjunction with a generic closure
property.

Now that we have established certain sufficient conditions for a regular language to have
NC0 proof systems, we want to ask the opposite question - How much more resources are
needed to construct proof systems for every regular language?

2.2.3 Closures and Non-closures

In this section, we identify a class of circuits that have sufficient power to compute proof
systems for every regular language.

Theorem 2.14 and Theorem 2.18 suggest that there exists a connection between the struc-
ture of automatons and proof systems. To understand this better, we first explore the
extent to which the structure of regular languages can be used to construct proof systems.
At the base level, we know that all finite languages have NC0 proof systems. Building
regular expressions involves unions, concatenation, and Kleene closure. And the result-
ing class of regular languages is also closed under many more operations. We examine
these operations one by one with respect to NC0 proof systems:

Theorem 2.25. Let C denote the class of languages with NC0 proof systems. Then C is

closed under

1. finite union (Lemma 2.10),

2. concatenation with finite sets

(Lemma 2.4),

3. reversal,

4. fixed-length morphisms,

5. inverses of fixed-length morphisms,

6. fixed-length regular transductions

computed by strongly connected

(nondeterministic) finite-state au-

tomata.
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Proof. Closure under reversal is trivial.

Let h be a fixed-length morphism h : {0, 1} −→ {0, 1}k for some fixed k. Given a proof
system (Cn) for L, a proof system (Dn) for h(L) consists of n parallel applications of h

to the each bit of the output of the circuit Cn. Given a proof system D′n for L, a proof
system C′n for h−1(L) consists of n parallel applications of h−1 applied to disjoint k-length
blocks of the output of the circuit D′kn. C′n needs additional input for each block to choose
between possibly multiple pre-images.

If L has an NC0 proof system (Cn) and h is a regular transduction computed by a strongly
connected automaton M, the construction from 2.18 with the output w of Cn as input will
produce a word x ∈ L(M). A small modification allows us output the transduction h(x)
instead of x. This works provided there are constants k, ` such that each edge in M is
labeled by a pair (a, b) with a ∈ {0, 1}k and b ∈ {0, 1}`. �

We now observe some non-closures. We will crucially use the fact that the language
Exact-Or does not admit NC0 proof systems (See Theorem 2.9).

Theorem 2.26. Let C denote the class of languages with NC0 proof systems. C is not

closed under

1. complementation,

2. concatenation,

3. symmetric difference,

4. cyclic shifts,

5. permutations and shuffles,

6. intersection,

7. quotients.

Proof. To see complementation, note that Thn
2 has an automaton with an absorbing final

state and hence using Theorem 2.14 has an NC0 proof system. However, its complement
Exact-Or ∪ 0∗ does not have an NC0 proof system as a consequence of generalizing
Theorem 2.9 (see page 46). The languages denoted by the regular expressions 1, 0∗, 10∗,
and the languages Th1, Th2 all have NC0 proof systems. The language Exact-Or does
not, but it can be written as 0∗ · 10∗ (concatenation), as Th2∆Th1 (symmetric difference),
as the result of cyclic shifts or permutations on 10∗, and as the shuffle of 1 and 0∗.

To see the last two non-closures, it is easier to use non-binary alphabets; the coding
back to {0, 1} is straightforward. The languages (0∗10∗ ∪ (0 + 1 + a)∗a(0 + 1 + a)∗) and
(0∗10∗ ∪ (0 + 1 + b)∗b(0 + 1 + b)∗) both have NC0 proof systems (this follows from The-
orem 2.14), but their intersection is Exact-Or. Also, consider the languages A = a0∗,
B1 = {xay | |x| = |y|, x ∈ Exact-Or, y ∈ 0∗}, B2 = {xay | |x| = |y|, x ∈ (0 + 1)∗, y ∈ Th1}.
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Then A and B = B1 ∪ B2 have NC0 proof systems but Exact-Or = B | A.
(A proof system for B is as follows: the input proof at length 2n + 1 consists of a word
w ∈ (0 + 1)n and the sequence of n states q1, . . . , qn allegedly seen by an automaton M for
Exact-Or on reading w. The circuit copies w into x. If qi−1,wi, qi is consistent with M,
then it sets yi to 0, otherwise it sets yi to 1. It can be verified that the range of this circuit
is exactly B=2n+1.) �

A natural idea is to somehow use the structure of the syntactic monoid (equivalently, the
unique minimal deterministic automaton) to decide whether or not a regular language
has an NC0 proof system, and if so, to build one. Unfortunately, this idea collapses at
once: the languages Exact-Or and Th2 have the same syntactic monoid; by Theorem 2.9,
Exact-Or has no NC0 proof system; and by Proposition 2.14 Th2 has such a proof system.

The next idea is to use the structure of a well-chosen (nondeterministic) automaton for the
language to build a proof system; Theorem 2.14 and Theorem 2.18 do exactly this. They
describe two possible structures that can be used. However, one is subsumed in the other;
see Observation 2.27 below.

Observation 2.27. Let L be accepted by an automaton with a universally reachable ab-

sorbing final state. Then L is accepted by a strongly connected automaton.

Proof. Let M be the non-deterministic automaton with universally reachable and absorb-
ing final state q. That is, q is an accepting state such that (1) q is reachable from every
other state of M, and (2) there is a transition from q to q on every letter in Σ. Add ε-moves
from q to every state of M to get automaton M′. Then M′ is strongly connected, and
L(M′) = L(M). �

A small generalisation beyond strongly connected automata is automata with exactly two
strongly connected components. However, the automaton for Exact-Or is like this, so
even with this small extension, we can no longer construct NC0 proof systems. (In fact,
we need as much as Ω(log log n) depth.)

Finite languages do not have strongly connected automata. But they are strict star-free
and hence have NC0 proof systems. Strict star-free expressions lack non-trivial Kleene
closure. What can we say about their Kleene closure? It turns out that for any regular
language, not just a strict-star-free one, the Kleene closure has an NC0 proof system.

Theorem 2.28. If L is regular, then L∗ has an NC0 proof system.
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Proof. Let M be an automaton accepting L, with no useless states. Adding ε moves from
every final state to the start state q0, and adding q0 to the set of final states, gives an
automaton M′ for L∗. Now M′ is strongly connected, so Theorem 2.18 gives the NC0

proof system. �

Based on the above discussion and known (counter-) examples, we conjecture the follow-
ing characterization. The structure implies the proof system, but the converse seems hard
to prove.

Conjecture 1. Let L be a regular language. The following are equivalent:

1. L has an NC0 proof system.

2. For some finite k, L =
⋃k

i=1 ui · Li · vi, where each ui, vi is a finite word, and each Li

is a regular language accepted by some strongly connected automaton.

An interesting question arising from this is whether the following languages are decidable:

Reg-SCC =

{
M |

M is a finite-state automaton; L(M) is accepted by
some strongly connected finite automaton

}
Reg-NC0-PS =

{
M |

M is a finite-state automaton; L(M) has an NC0 proof
system

}
(Instead of a finite-state automaton, the input language could be described in any form
that guarantees that it is a regular language.)

It can be shown that Reg-SCC is indeed decidable by using the result of Igor Grunsky et
al. in [GKP06]. The main result from [GKP06] shows that for every regular language L,
there exists a constant cL such that every NFA with more than cL states that recognizes L

contains at least 2 mergeable states. Moreover, cL can be computed from a representation
of L. The key observation is that merging two states in a strongly connected NFA results
in a strongly connected NFA. So if there is a strongly connected NFA for L, then there is
one with at most cL states. Hence the problem of checking if a regular language L has a
strongly connected NFA can be decided by first computing cL and then checking if any
NFA with at most cL states accepts L.

2.2.4 An upper bound for all regular languages

We now establish the main result of this section. NC0 is the restriction of AC0 where
the fanin of each gate is bounded by a constant. By putting a fanin bound that is ω(1)
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but o(nc) for every constant c (“sub-polynomial”), we obtain intermediate classes. In
particular, restricting the fanin of each gate to be at most poly log n gives the class that we
call poly log AC0 lying between NC0 and AC0. We show that it is large enough to have
proof systems for all regular languages. As mentioned earlier, Theorem 2.9 implies that
this upper bound is tight.

The idea behind the construction is the following: Start with an automaton A that accepts
the regular language. As proof that a string x is accepted by A, we expect to be given the
state of A after it reads xi and x j for certain values of i, j. The values of (i, j) are chosen in
a way so that any inconsistencies can be checked and corrected very locally. These values
of i, j can be seen as forming a tree that we describe more precisely in the proof. For
convenience, we convert the automaton accepting the language into a branching program,
which are defined as follows:

A Branching program (BP) Pn on n inputs is a directed acyclic graph with a start node s

and a sink node t and each edge labelled by a literal or a bit. The branching program P

accepts an input x if there is a path from s to t where all edges labels take on the value 1.
A family of branching programs is a collection of branching programs (Pn)n≥1 - one for
each input length.

Theorem 2.29. Every regular language has a poly log AC0 proof system.

Proof. Let A = (Q,Σ, δ, q0, F) be an automaton for L. We assume that Σ = {0, 1}, larger
finite alphabets can be suitably coded. We unroll the computation of A on inputs of length
n to get a layered branching program B with n+1 layers numbered 0 to n. The initial layer
of B has just the start node s which behaves like q0 in the automaton, while every other
layer of the branching program has as many vertices as |Q|. Since A may have multiple
accepting states, we add an extra layer at the end with a single sink node t, and connect all
copies of accepting states at layer n to t by edges labeled 1. Note that B has the following
properties:

• Length l = n + 2.

• Every layer except the first and last layer has width (number of vertices in that layer)
w = |Q|.

• Edges are only between consecutive layers. These edges and their labelling are
according to δ.

• All edges from layer i − 1 to layer i are labelled either xi or xi.
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• A word a = a1 . . . an is accepted by A if and only if B has a path from s to t (with
n + 1 edges) with all edge labels consistent with a.

Any vertex u ∈ B can be indexed by a two tuple (`, p) where ` stands for the layer where
u appears and p is the position where u appears within layer `.

Represent the interval (0, n + 1] as a binary tree T where

1. the root corresponds to the interval (0, n + 1] = {1, 2, . . . , n + 1},

2. a node corresponding to interval (i, j] has children corresponding to intervals (i, d i+ j
2 e]

(left child) and (d i+ j
2 e, j] (right child), and

3. a node corresponding to interval (k − 1, k] for k ∈ [n + 1] is a leaf.

We call this the interval tree. For each interval (i, j] in T , we provide a pair of states 〈u, v〉;
these are intended to be the states qi and q j in the alleged accepting run ρ. (Note that the
state sequence on ρ itself is now supposed to be specified at the leaves of T .)

Consider the interval tree T for (0, n + 1] described above. The input to the proof system
consists of a string a ∈ {0, 1}n and a pair of labels 〈u, v〉 for each node in the interval tree.
The labels u, v point to nodes of B. For interval (i, j], the labels are of the form u = (i, p),
v = ( j, q). Since i, j are determined by the node in T , the input only specifies the pair
〈p, q〉 rather than 〈u, v〉. That is, it specifies a pair of states from A. At the root node, the
labeling is hardwired to be 〈s, t〉.

Given a word a = a1 . . . an and a labeling as above of the interval tree, we define feasibility
and consistency as follows:

1. A leaf node (k − 1, k] with k ∈ [n], labeled 〈p, q〉, is

(a) feasible if there exists an edge from (k − 1, p) to (k, q) in B. (That is, there
exists b ∈ Σ such that q ∈ δ(p, b).)

(b) consistent if there exists an edge from (k − 1, p) to (k, q) in B labeled xk if
ak = 1, labeled xk if ak = 0. (That is, q ∈ δ(p, ak).)

(The case k = n + 1 is simpler: feasible and consistent if p is a final state of A.)

2. An internal node (i, j] labeled 〈p, q〉 is

(a) feasible if there exists a path from (i, p) to ( j, q) in B. (That is, there exists a
word b ∈ Σ j−i such that q ∈ δ̃(p, b).)

34



(b) consistent if it is feasible, both its children are feasible, and the labels 〈p′, q′〉
and 〈p′′, q′′〉 of its left and right children respectively satisfy: p = p′, q = q′′,
q′ = p′′.

3. A node is fully consistent if all its ancestors (including itself) are consistent.

Since the label at the root of T is hardwired, the root node is always feasible. But it may
not be consistent.

For each node (i, j] in the interval tree, and each potential labeling 〈p, q〉 for this node,
let u = (i, p) and v = ( j, q). Define the predicate R(u, v) to be 1 if and only if there is
a path from u to v in B. (i.e., this potential labeling is feasible.) Whenever R(u, v) = 1,
fix a partial assignment wu,v that assigns 1 to all literals that occur as labels along an
arbitrarily chosen path from u to v). Note that wu,v assigns exactly j−i bits, to the variables
xi+1, . . . , x j. We call wu,v the feasibility witness for the pair (u, v).

Let y be the output string of the proof system we construct. A bit yk of the output y is
computed as follows: Find the lowest ancestor of the node (k−1, k] that is fully consistent.

• If the leaf node (k − 1, k] is fully consistent, output ak.

• If there is no such node, then the root node is inconsistent. Since it is feasible, the
word ws,t is defined. Output the kth bit of ws,t.

• If such a node is found, and it is not the leaf node itself but some (i, j] labeled
〈p, q〉, let u = (i, p) and v = ( j, q). The word wu,v is defined and assigns a value to
xk. Output this value.

It follows from this construction that every word a ∈ L can be produced as output: give
in the proof the word a, and label the interval tree fully consistent with an s − t path of B

consistent with a (equivalently, an accepting run of A on a).

It also follows that every word y output by this construction belongs to L. On any proof,
moving down from the root of the interval tree, locate the frontier of lowest fully consis-
tent nodes. These nodes are feasible and correspond to a partition of the input positions,
and the procedure described above outputs a word constructed by patching together the
feasibility-witnesses for each part.

To see that the above construction can be implemented in depth O(log log n) with O(1)
alternations, observe that each of the conditions - feasibility, consistency and equality of
two labels depend on O(log w) bits. Hence depth of O(log log n) and O(1) alternations
suffices for their implementation.
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More formally, define the following set of predicates:

• Equal : [w]2 −→ {0, 1} the Equality predicate on log w bits.

• For each 0 ≤ i < j ≤ n + 1, Feasiblei, j : [w]2 −→ {0, 1} is the Feasibility predicate
with arguments the labels (p, q) at interval (i, j].

• For each 0 ≤ i < j + 1 ≤ n + 1, Consistenti, j : [w]6 −→ {0, 1} is the Consistency
predicate at an internal node, with arguments the labels at interval (i, j] and at its
children.

• For each 0 < k ≤ n + 1, ConsistentLeafk : [w]2 × Σ −→ {0, 1} is the Consistency
predicate at leaf (k − 1, k] with arguments the label 〈p, q〉 and the bit ak at the leaf.

All the predicates depend on O(log w) bits. So a naive truth-table implementation suffices
to compute them in depth O(log w) with O(1) alternations.

For any 0 < k ≤ n + 1, let the nodes on the path from (k − 1, k] to the root of the interval
tree be the intervals (k− 1, k] = (i0, j0), (i1, j1], . . . , (ir, jr] = (0, n + 1]. Note: r ∈ O(log n).

Given a labeling of the tree, the output at position k is given by the expression below. (It
looks ugly, but it is just implementing the scheme described above. We write it in this
detail to make the poly log AC0 computation explicit.)

yk =

ak ∧ ConsistentLeafk ∧
r∧

h=1

Consistentih, jh


∨

[
(ws,t)k ∧ Consistent0,n+1

]
∨

 r∨
h=1

(w(ih,ph),( jh,qh))k ∧ Consistentih−1, jh−1 ∧

r∧
g=h

Consistentig, jg


where the arguments to the predicates are taken from the tree labeling. This computation
adds O(1) alternations and O(log log n) depth to the computation of the predicates, so it is
in poly log AC0. �

2.3 Proof systems for other languages

2.3.1 NC0 proof systems

In this section, we construct NC0 proof systems for a variety of languages. We start with
an NC1-complete problem, viz. reachability in bounded width directed acyclic graphs.
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A layered graph with vertices arranged in layers from 0, 1, . . . , L with exactly W vertices
per layer (numbered from 0, . . . ,W − 1) and edges between vertices in layer i to i + 1 for
i ∈ {0, . . . , L − 1} is a positive instance of reachability if and only if there is a directed
path from vertex 0 at layer 0 to vertex 0 at layer L. A description of the graph consists
of a layer by layer encoding of the edges as a bit vector. In other words it consists of a
string x = x0x1 . . . xL−1 ∈ ({0, 1}W

2
)L where the xi is indexed by j, k ∈ {0, . . . ,W − 1} and

xi[ j, k] = 1 if and only if there is an edge from j-th vertex on the i-th layer to the k-th
vertex on the (i + 1)-th layer. The language BWDRW (where BWDR stands for Bounded
Width Directed Reach) consists of those strings x ∈ ({0, 1}W

2
)L which describe a positive

instance of reachability. Then we have:

Proposition 2.30. For every fixed W, the language BWDRW admits an NC0 proof system.

Proof. The proof consists of a string x ∈ ({0, 1}W
2
)L which describes the graph and a string

v = v1 . . . vL−1 ∈ ({0, 1}V)L−1 representing a path. Here V = dlog We is the number of bits
required to describe a vertex at a given layer in binary.

Given x, v we first replace each vi which occurs in v and which represents a number
greater than W − 1 by the bit string consisting of V zeros. This requires a circuit of depth
O(log(V)) = O(log log W). For the ease of notation we continue to refer to the modified v

as v.

Next, for each i ∈ {0, . . . , L − 1}, we add the edge represented by (vi, vi+1) to the graph
represented by x by setting xi[vi, vi+1] = 1. This ensures that the graph contains the path
represented by v, i.e. it is a positive instance. Clearly to address the appropriate bits of xi

we need a circuit of depth O(log V) = O(log log W). Finally, we output this modified x.
It is easy to see that all positive instances will be output by this circuit for some inputs.
Since W is a constant, we will obtain an NC0 proof system. �

In the above proof, we crucially used the fact that the width W was a fixed constant. It
is not clear how to capture directed reach in graphs with unbounded width. We show a
connection between directed reach and the set of all tautologies expressed as 2DNFs in
Theorem 4.1 of Chapter 4. However, we can show that the complement of connected-
ness has an NC0 proof system. In the following proposition, we will define the language
UnReach that is known to be NL-complete ([Imm88],[Sze88]) and show that it has an
NC0 proof system:

Proposition 2.31. The language UnReach defined below has an NC0 proof system under
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the standard adjacency matrix encoding.

UnReach =

{
A ∈ {0, 1}n×n|

A is the adjacency matrix of a directed graph G with

no path from s = 1 to t = n.

}

Proof. As proof, we take as input an adjacency matrix A and an n-bit vector X with X(s) =

1 and X(t) = 0 hardwired. Intuitively, X is like a characteristic vector that represents all
vertices that can be reached by s.

The adjacency matrix B output by our proof system is:

B[i, j] =

 1 if A[i, j] = 1 and it is not the case that X(i) = 1 and X( j) = 0,
0 otherwise

Soundness: No matter what A is, X describes an s, t cut since X(s) = 1 and X(t) = 0
and ∀i, j, X(i) = 1 ∧ X( j) = 0 =⇒ B[i, j] = 0. So any graph output by the proof system
will not have a path from s to t.

Completeness: For any G ∈ UnReach, use the adjacency matrix of G as A and give
input X such that X(v) = 1 for a vertex v if and only if v is reachable from s. �

The idea from the proof of Proposition 2.30 can be used for addition and comparison.
Consider the function f+ : {0, 1}n × {0, 1}n × {0, 1}n+1 → {0, 1} such that f+(a, b, s) = 1
if and only if A + B = S where a, b are the n-bit binary representations of the numbers
A, B and s is the (n + 1)-bit binary representation of S . Also consider the function f≤ :
{0, 1}n × {0, 1}n → {0, 1} where f≤(a, b) = 1 ⇐⇒ A ≤ B, where again a, b are the n-bit
binary representations of numbers A, B.

Proposition 2.32. The language L+ = f −1
+ (1) admits an NC0 proof system.

Proof. The circuit Cn : {0, 1}3n → {0, 1}3n maps three strings α = αn−1 . . . α0, β =

βn−1 . . . β0 and γ = γn . . . γ1 (for notational convenience assume that γ0 = 0) to strings
a, b, s with the intent that γ will serve as the carry sequence in the grade-school addition
of the two numbers α, β. Also, if we ever discover a discrepancy between the assumed
carry sequence and the two numbers α, β we correct the error by altering α, β appropri-
ately to yield a, b. Formally, for 0 ≤ i ≤ n − 1, if Th3

2(αi, βi, γi) = γi+1 then ai = αi, bi = βi

otherwise, set ai, bi arbitrarily under the constraint that Th3
2(ai, bi, γi) = γi+1. Also set

si = ai ⊕ bi ⊕ γi. Set sn = γn. The input-alteration ensures that the output is always in
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the language, and for each word 〈a, b, s〉 in the language, the proof that gives the correct
carry sequence ensures that the word is produced as output. �

Proposition 2.33. The language L≤ = f −1
≤ (1) admits an NC0 proof system.

Proof. The proof consists of four n-bit strings α, α′, γ, β, with the intent that γ is the carry
sequence for the sum of α, α′ which yields β. Again in the proof we ensure that if the carry
bits γi, γi−1 are compatible with α, α′ summing to β, then copy αi, βi to ai, bi respectively.
Otherwise, set ai = 0, bi = 1 (which ensures that if a j = b j for j > i then a < b). As
before, the input alteration guarantees soundness, and the proof with the correct carry bits
guarantees completeness. �

We now consider a P-complete language, Grid Circuit Value. An instance consists of a
planar circuit with vertices embedded in a square grid so that the circuit wires lie only
along the grid edges and are directed to go only due east or due north. All possible
wires are present. The gates can be arbitrary functions of the two inputs and two outputs.
All inputs are present on the outer face of the circuit (i.e. on the southern and western
boundaries). It is easy to see that this problem is contained in P. To see that it is P hard, we
reduce the Circuit Value Problem to it under, say, DLogspace reductions. First make the
circuit planar by using the usual cross-over gadget [Gol77] to remove all crossings. Now,
embed the circuit in the grid by using a method similar to the one used in [ABC+09, CD06]
to obtain the required embedding. Finally we replace all missing wires by altering the
gates to ignore the value from any missing input and output an arbitrary value, say zero
along all missing outputs.

Using the strategy of locally correcting the input if the proof shows an inconsistency, we
can show the following:

Proposition 2.34. The Grid Circuit Value Problem admits an NC0 proof system.

Proof. The proof consists of a string describing the circuit, that is, the truth tables of
(both outputs) of a gate for each gate position and a value for each of the wires in the
circuit. Since each truth table is for a 2-input and 2-output gate, it is represented by a
truth table of 8 bits. Thus for a grid consisting of n vertices on each side, with m input
variables, the input string is (g, v) ∈ {0, 1}8n2

× {0, 1}2(n−1)n. The output of the circuit is a
pair (g′, x, b) ∈ {0, 1}8n2

× {0, 1}2n−1 × {0, 1} with g′ describing new truth tables obtained
by copying those from g already consistent with v, and modifying the others to make
them consistent with the values in v (this is always possible by setting one entry of each
inconsistent truth-table). The string x describes the values (from v) corresponding to
inputs and b the value of the output gate. �
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Remark 2.35. As mentioned earlier, Cryan and Miltersen [CM01] (and in fact already
Agrawal et al. [AAR98]) show that a certain NP-complete language admits an NC0 proof
system. The language they consider is just an encoding of 3-SAT: for each n, instances
with n variables are encoded by an M = 23

(
n
3

)
bit string, where each bit indicates whether

the corresponding potential clause is present in the instance. A proof consists of an as-
signment to the propositional variables and a suggestion for a 3-CNF, which is modified
by the proof system in order to be satisfied by the given assignment. The clause bit is
flipped if (and only if) (1) it is on, and (2) the clause is not satisfied by the assignment.
Since each potential clause has its reserved “indicator bit”, checking whether the clause is
satisfied by the assignment requires looking at exactly three fixed bits of the assignment.
It is easy to see that this system generates exactly the satisfiable 3-SAT instances.

2.3.2 poly log AC0 proof systems

While proving Theorem 2.29, we unrolled the computation of a w-state automaton on
inputs of length n into a layered branching program BP of width w with ` = n + 2 layers.
The BP so obtained is nondeterministic whenever the automaton is. The BP has a very
restricted structure which we exploited to construct the poly log AC0 proof system.

We observe that some restrictions on the BP structure can be relaxed and still we can
construct a poly log AC0 proof system.

Definition 2.36. A branching program for length-n inputs is structured if it satisfies the

following:

1. It is layered: vertices are partitioned into n + 1 layers V0, . . . ,Vn and all edges are

between adjacent layers E ⊆ ∪i(Vi−1 × Vi).

2. Each layer has the same size w = |Vi|, the width of the BP. (This is not critical; we

can let w = max |Vi|.)

3. There is a permutation σ ∈ S n such that for i ∈ [n], all edges in Vi−1 × Vi read xσ(i)

or xσ(i).

Non-uniform automata [Bar89, BT88] give rise to branching programs that are structured
with w the number of states in the automaton. For instance, the language {xx | x ∈ {0, 1}∗}
is not regular. But if the input bits are provided in the order 1,m + 1, 2,m + 2, . . . ,m, 2m

then it can be decided by a finite-state automaton. This gives rise to a structured BP where
σ is the inverse of the above order. (eg r2 = m + 1, r3 = 2, σ(m + 1) = 2, σ(2) = 3. )
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The idea behind the construction in Theorem 2.29 works for such structured BPs. It yields
a proof system with depth O(log log n + log w). This means that for w ∈ O(poly log n),
we still get poly log AC0 proof systems. Potentially, this is much bigger than the class of
languages accepted by non-uniform finite-state automata. Formally,

Theorem 2.37. Languages accepted by structured branching programs of width w ∈

(log n)O(1) have poly log AC0 proof systems.

For the language Maj of strings with at least as many 1s as 0s, and in general for thresh-
old languages Thn

k of strings with at least k 1s, we know that there are constant-width
branching programs, but these are not structured in the sense above. It can be shown
that a structured BP for Maj must have width Ω(n) (a family of growing automata Mn for
Maj, where Mn is guaranteed to be correct only on {0, 1}n, must have 1 + n/2 states in
Mn). This is much much more than the poly log width bound used in the construction in
Theorem 2.29. Nevertheless, we show below how we can modify that construction to get
a poly log AC0 proof system even for threshold languages.

Theorem 2.38. For every n and t ≤ n, the language Thn
t has a poly log AC0 proof system.

Proof. We follow the approach in Theorem 2.29: the input to the proof system is a word
a = a1, . . . , an and auxiliary information in the interval tree allowing us to correct the
word if necessary. The labeling of the tree is different for this language, and is as follows.
Each interval (i, j] in the tree gets a label which is an integer in the range {0, 1, . . . , j − i}.
The intention is that for an input a = a1, . . . , an, the label of interval (i, j] is no more than
the number of 1s in the subword ai+1 . . . a j formed at the leaves of the tree rooted at (i, j].
At a leaf node (k − 1, k], we do not give explicit labels; ak serves as the label. At the root
also, we do not give an explicit label; the label t is hard-wired. (We restrict the label of
any interval (i, j] to the range [0, j − i], and interpret larger numbers as j − i.)

For any node u of T , let l(u) denote the label of u. A node u with children v,w is consistent
if l(u) ≤ l(v) + l(w).

The output of our proof system y1, . . . , yn is constructed as follows:

• If all nodes on the path from (k − 1, k] to the root in T are consistent, then yk = ak.

• Otherwise, yk = 1.

An example input and output are shown in Figure 2.2 for the proof system we constructed
that generates the language Thn

t=n/2. In the figure, the input is x along with the values for
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the nodes in the interval tree constructed above x. The length of x is 16 and hence we
hardwire the root node with label 8. The input x shown is providing a wrong count of 7
at the node corresponding to the interval [8, 16]. Our proof system outputs string y which
has a 1 for every bit in the subtree under this node, hence making sure the output has at
least eight 1s.

Figure 2.2: Example input/output of proof system for Th16
8

In analogy with Theorem 2.29, we use here for each interval (i, j] the feasibility witness
1 j−i, independent of the actual labels. Thus the construction forces this property: at a
node u corresponding to interval (i, j] labelled `(u), the subword yi+1, . . . , y j has at least
min{`(u), j− i} 1s. Thus, the output word is always in Thn

t . Every word in Thn
t is produced

by the system at least once, on the proof that gives, for each interval other than (0, n], the
number of 1s in the corresponding subword.

As before, the Consistenti, j predicate at a node depends on 3 labels, each of which is
O(log n) bits long. A truth-table implementation is not good enough; it will give an AC0

circuit. But the actual consistency check only involves adding and comparing m = log n

bit numbers. Since addition and comparison are in AC0, this can be done in depth O(log m)
with O(1) alternations. Thus the overall depth is O(log log n). �

Corollary 2.39. For every n and t ≤ n, Exact-Countnt has a poly log AC0 proof system.
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Proof. We follow the same approach as Theorem 2.38. We redefine consistent as follows:
For any node u of T , let l(u) denote the label of u. A node u with children v,w is consistent
if l(u) = l(v) + l(w). Let the output of our proof system be y1, . . . , yn. The construction is
as follows:

• If all nodes on the path from (k − 1, k] to the root in T are consistent, then yk = ak.

• Otherwise, let u = (p, q] be the topmost node along the path from (k − 1, k] to the
root that is not consistent. We output yk = 1 if k − p ≤ l(u), 0 otherwise.

That is, for u = (i, j] labeled `(u), if L = min{`(u), j − i}, use feasibility witness 1L0 j−i−L.
�

Combining the statements of Theorem 2.9 and Corollary 2.39, we can see that the depth of
any proof system for Exact-Or has to be Θ(log log n). A depth upper bound of O(log log n)
for Exact-Or can be seen more directly as follows: Take as input a number i ∈ [n]. Output
1 at the i’th output position and 0s elsewhere. Depth log log n suffices for this construction
because each output bit y j is 1 if and only if i = j.

2.4 Conclusion

We developed techniques to construct proof systems computable by NC0 circuit families
for a variety of languages.

The main open question that arises at this point is a combinatorial characterization of
all languages that admit NC0 proof systems. Our generic results from Section 2.2.2 and
2.2.3 can be seen as a first step towards such a characterization for regular languages.
We believe that further progress essentially depends on developing strong lower bound
techniques. We start studying lower bound techniques in the next chapter.

Our construction from Theorem 2.29 can be generalized to work for languages accepted
by growing-monoids or growing-non-uniform-automata with poly-log growth rate (see eg
[BLM93]). Can we obtain good upper bounds for linearly growing automata?
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Chapter 3

Lower bounds on depth of proof
systems

In this chapter we show explicit examples of languages that do not admit NC0 proof
systems, some of them even regular. In section 3.1, we generalize the counting technique
used in Theorem 2.9 to derive lower bounds on the depth of proof systems for other
languages. We then show, in section 3.2, that a similar counting technique works for
Majority, the set of all strings with at least as many 1s as 0s, if we restrict the proof
circuits further to have the property that each input bit is connected to only O(1) output
bits. To show a lower bound on depth for Majority against proof systems without this
restriction, we use a more involved counting done over many stages. This is described in
section 3.3.

3.1 Generalizing Exact-Or

We have already seen an example (Theorem 2.9) of a language that cannot be generated
by an NC0 proof system. We now generalize the technique used in the proof of Theorem
2.9 to derive a criterion which implies non-constant lower bounds for the depth of an
enumerating circuit family.

Theorem 3.1. Let L be a language and `, t : N→ N functions. Suppose for each length n

where L=n is non-empty, there is a set W of t(n) distinct strings W = {w1, . . . ,wt(n)} ⊆ L=n

satisfying the following: For each w ∈ W, there exists a set S = {i1, . . . , i`(n)} ⊆ [n] of `(n)
positions such that if x is in L=n , and if x agrees with w on S , then x equals w. That is,

the bits of w in positions indexed by S fix all the remaining bits. Then the depth of any
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bounded fan-in circuit family that enumerates L is at least log log t(n) − log `(n).

Proof. Let f : {0, 1}m(n) −→ {0, 1}n be a depth-d(n)-circuit enumerating the length n

members of L, and let `(n) and t(n) be as in the statement of the theorem. Denote the
resulting words w1, . . . ,wt(n).

For each of the w j the following holds: The `(n) crucial bits have paths to at most r(n) =

`(n)2d(n) bits of the proof. Thus there is a setting to r(n) bits of the proof, all extensions of
which generate the same output w j. Hence | f −1(w j)| ≥ 2m(n)−r(n).

Now we just count the number of proofs. As there are m(n) proof bits,

2m(n) = number of proofs ≥
t(n)∑
j=1

number of proofs for w j ≥ t(n)2m(n)−r(n)

and hence

2r(n) ≥ t(n); `(n)2d(n) = r(n) ≥ log t(n); d(n) ≥ log log t(n) − log `(n).

�

Using this theorem, we can show that several functions are not enumerable in constant
depth.

Exact Counting. Consider the function Exact-Countnk on n bits: it evaluates to 1 if and
only if exactly k of the input bits are 1. (Exact-Orn is precisely Exact-Countn1.) For
each length n there are exactly

(
n
k

)
words in Exact-Countnk . And whenever k bits of a

word are set to value 1, then all remaining bits are bound to take the value 0. So for
Exact-Countnk the parameters t(n) and `(n) defined in the theorem above take the values(

n
k

)
and k, respectively, which yields a lower bound of

d(n) = log log
(
n
k

)
− log k ≥ log log

(
nk

kk

)
− log k = log(log n − log k)

on the depth of an enumerating circuit family. For k(n) sub-linear in n this gives an
unbounded function; thus for every sub-linear k(n), Exact-Countnk does not admit an NC0

proof system. Note that for a constant k, this language is even regular.
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The threshold functions ¬Thn
k+1 and dually Thn

n−k for sub-linear k. Let Thn
a be the

function that evaluates to 1, if and only if at least a of the n inputs are set to 1. The lower
bounds for these languages are derived precisely by the same argument given above for
Exact-Countnk . So they also yield the same set of parameters.

In more detail: Strings in Thn
n−k (or ¬Thn

k+1) can have at most k 0s (at most k 1s, respec-
tively). There are t(n) =

(
n
k

)
ways of choosing l(n) = k positions from [n]; for each such

choice, setting the bits in the chosen positions to 0 (1, resp.) forces all other bits to be 1
(0, resp.).

The language 0∗1∗ and iterations. First consider 0∗1∗, whose members consist of a
(possibly empty) block of 0’s followed by a (possibly empty) block of 1’s. The n + 1
length-n members of 0∗1∗ are in 1-1 correspondence to the members of Exact-Countn+1

1

via the NC0 mapping w1 . . .wn 7−→ x1 . . . xn+1, where xi := wi−1 ⊕ wi, with the convention
that w0 := 0 and wn+1 := 1. Thus an NC0 proof system of 0∗1∗ would directly yield
one for Exact-Countn+1

1 , which we have shown to be impossible. The parameters from
the theorem are `(n) = 2 (two consecutive bits with different values or simply w1 = 1
or wn = 0) and t(n) = n + 1. By the same argument, for sub-linear k, the languages
consisting of either exactly or up to k alternating blocks of 0’s and 1’s do not admit NC0

proof systems.

Majority: The language Majority (same as Thn
n/2) consists of those words which have at

least as many 1’s as 0’s. We show in the following section that if we restrict the power of
proof systems to an even weaker class than NC0, then a simple counting argument gives
us a lower bound on the depth of such restricted circuits

3.2 Constant influence

Motivated by their investigation into NC0 cryptography [AIK06, AIK08], Applebaum et
al. [AIK09] investigate cryptography with constant input locality. As a related question
we ask which languages can be proven by circuits that have the property that every input
bit is connected to at most O(1) many output bits.

In the remainder of this section, we look at proof circuits that are NC0 like before, but
with the added restriction that each input bit can only influence at most O(1) many output
bits. We show that Exact-Countnk and Thn

k do not have proof circuits of small depth with
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this added restriction even when k is allowed to be linear in n.

The proof is based on the following observation about any proof circuit for Exact-Countnk:
Let C be a proof circuit for Exact-Countnk . For an output gate i of C we denote by sup(i)
the set of all input gates of C that have a path to i. For a set S of output gates of C

we let sup(S ) =
⋃

i∈S sup(i). Now, for any set of output positions S ⊆ [n], |S | = k and
i ∈ [n], i < S , we have sup(S )∩ sup(i) , ∅. If this were not true, then we could obtain
(k + 1) 1s in the output by setting the bits in sup(S ) to get k 1s corresponding to the
positions in S , and by setting the sup(i) to get a 1 in the ith output position.

The above can be generalized to the following:

Lemma 3.2. For n ≥ c2d + k, the language Exact-Countnk does not have a proof circuit

of depth d with each input bit influencing at most c output bits.

Proof. Suppose such a circuit exists, take any output position i ∈ [n]. We know that
| sup(i)| ≤ 2d. Let T be the set of all output bits j for which sup(i)∩ sup( j) , ∅. |T | ≤ c2d.
Now if n ≥ c2d + k, then we can find a set S ⊆ [n] of output positions such that |S | = k

and S ∩ T = ∅. This implies that sup(S )∩ sup(i) = ∅, contradicting the observation made
above. �

Corollary 3.3. The language Exact-Countnn/2 does not have a proof system of constant

depth and constant influence.

A similar observation as above holds for threshold functions as well: Let C be a proof
circuit for Thn

k . Then, for any subset of output positions S ⊆ [n], |S | = n − k and any
i < [n], we have sup(S ) ∩ sup(i) , ∅. If this were not true, then we can force C to output
n − k + 1 0s by setting the support of S and the support of i such that we get 0s in all the
S positions and position i.

Lemma 3.4. The function Thn
k does not have a proof circuit of depth d with each input bit

influencing at most c output bits if n > k ≥ c2d.

Proof. Suppose such a circuit exists, call it C. Take any output position i ∈ [n]. We
know that | sup(i)| ≤ 2d. Let T be the set of all output bits which have a support bit in
sup(i). |T | ≤ c2d. Now since k ≥ c2d, we can find a set of output positions S ⊆ [n] with
|S | = n − k such that S ∩ T = ∅. Since T was all the bits that are influenced by sup(i), we
have sup(S ) ∩ sup(i) = ∅. The above observation can be used to conclude that C can be
forced to output a string that has more than n − k 0s. �

We have the following immediate corollary:
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Corollary 3.5. Majority does not have a proof circuit family with constant depth and

constant influence.

Majority does not admit an NC0 proof system. But this does not follow from an extension
of the techniques described so far, and requires a completely different and significantly
more non-trivial approach. We describe this in the following section.

3.3 Majority does not admit NC0 proof systems

The language Maj consists of all 0-1-words that contain at least as many 1’s as 0’s. The
language ExMaj consists of all 0-1-words w that contain exactly d|w|/2e 1’s. Clearly,
ExMaj ⊆ Maj. If w is in ExMaj, and if a single bit in w is flipped from 1 to 0, then the
resulting string w′ is not in Maj. We will exploit this to show that Maj does not admit an
NC0 proof system.

Intuitive Idea

Assume that there is an NC0 proof system for Maj. The idea of the proof is that there
are two types of inputs: inputs that influence a linear number of outputs – call these the
high-fanout inputs, and inputs that influence a sublinear number of outputs – these are
the low-fanout inputs. (Note our non-standard use of the term fanout which refers to the
number of output bits an input is connected to instead of the number of wires leaving the
gate.) Since every output is connected to a constant number of inputs, there can only be a
constant number of high-fanout inputs. So nearly all inputs are of low-fanout. However,
by Corollary 3.5, we know that not all input positions can be low fanout.

We will try to find an output xi whose value can be changed by manipulating only the set
S of low-fanout inputs connected to xi. Also, since low-fanout inputs are only connected
to a sublinear number of outputs, we can assume that S is connected to less than n/2 of
the outputs. So we can find a word w in Maj that has a 1 at every position that depends
on the input bits of S and assign the remaining outputs in such a way that we even get a
word w in ExMaj. Since this is a valid word in Maj, the proof system needs to generate
it, hence there is an assignment of the inputs that outputs w.

But now we can modify the input bits in S and toggle xi to the value 0. Toggling the input
bits in S only affects output bits that were assigned to 1, hence this might flip additional
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bits from value 1 to value 0. But the word generated in this way by the proof system has
fewer 1’s than w and hence is not in Maj. It follows there is no NC0 proof system for Maj.

Formalising this idea is a bit more complicated. It turns out that we need a finer gradation
of what we consider high-fanout. We will define a decreasing function g : N −→ N, and
at stage e, we consider an input connected to more than g(e) output bits as high-fanout.
Say that Xe is the set of high-fanout inputs at stage e. If we can find an output xi as above,
we will have obtained a contradiction. But we may not immediately succeed in finding
such an xi, because it may be the case that settings to the high-fanout bits Xe fix each
output xi. We then carefully fix a small set Re of output bits and an assignment we to
these bits in a way such that each output outside of Re can be toggled without changing
the input setting to Xe. At this point, we look for a string in ExMaj compatible with we,
and try to obtain a contradiction by toggling a carefully chosen output. At any stage e, we
say that an assignment for a subset of the input positions as “compatible” with we if in the
positions Re, the output is we. If we still cannot obtain a contradiction, we move on to the
next stage. Finally, we show that if we complete stage c for some suitably chosen constant
c, then we get a different kind of contradiction: a few high-fanout input bits completely
determine many output bits. A simple counting argument shows that this cannot happen
for Maj.

To make this argument rigorous, we define a certain assertion Πe concerning stage e. This
assertion states that there is a setting we to a set Re of output bits satisfying 4 properties:
(1) Re is small, (2) assignments to Xe compatible with we do not fix any output bit outside
Re, (3) the forbidden set Fe+1, consisting of output bits sharing a low-fanout input with
some bit in Re, is small, and (4) every non-forbidden-output is connected to at least one
input that will enter the high-fanout set at stage e + 1. Then the above argument can be
rephrased as: Π0 is true, Πe ⇒ Πe+1, but at least one of Π0, . . . ,Πc−1 is not true. This is
obviously a contradiction.

With this idea in mind, we now state and prove our theorem.

Theorem 3.6. The language Maj does not admit an NC0 proof system.

Proof. Assume that (Cn) is an NC0 family of circuits enumerating Maj. Let d be the
maximal depth of the circuits Cn and let c ≤ 2d be the maximum number of input bits
connected to the same output bit. It is easy to see that no projection (each output bit is
either some input bit or the negation of some input bit) can be a proof system for Maj.
Hence c ≥ 2.

Let In and Out denote the sets of input and output bits of Cn, respectively. For a set A of
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nodes of the circuit, define the sets

Out(A) := {y ∈ Out | y is connected to some x ∈ A}

In(A) := {x ∈ In | x is connected to some y ∈ A}

For a singleton {x} whose only element is an input/output bit, we simply write Out(x) or
In(x).

Define functions f , g as follows:

f (e) :=

1 for e = 0

c5 f (e−1)+1 for e > 0

g(e) :=
cn
f (e)

Clearly, f is an increasing function, and g is a decreasing function. Note that f does not
depend on the value of n. All arguments in the proof will work for a choice of n ≥ 4 · f (c).
We use g to define the high-fanout set at each stage;

Xe :=
{

x ∈ In
 |Out(x)| > g(e)

}
Note that for each e, Xe−1 ⊆ Xe. Also, since there are at most cn input-output-connections
in circuit Cn, and since each input bit in Xe contributes more than g(e) input-output con-
nections, we obtain

|Xe| · g(e) < (number of input-output connections in Cn) ≤ cn = f (e) · g(e).

Thus the function f (e) yields an upper bound for the size of Xe.

We now state an assertion concerning the circuit Cn, for a parameter e; call this assertion
Πe.

Assertion 1 (Πe). There exists a set Re ⊆ Out, and a setting we to Re, satisfying the

following properties.

1. |Re| ≤ 2 f (e)+1.

2. for each y ∈ Out \Re, for each assignment q : Xe → {0, 1} compatible with we, and

for each value b ∈ {0, 1}, there is a legal configuration of the circuit extending we∪q

and setting y to b.
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3. Let Fe+1 := Re ∪ Out(In(Re) \ Xe+1). (Fe+1 denotes the set of forbidden outputs.)

Then |Fe+1| ≤
n
c3 .

4. ∀y ∈ Out \Fe+1, In(y) ∩ (Xe+1 \ Xe) , ∅.

We prove the theorem by contradiction. Assuming that (Cn) enumerates Maj, we will
show that for all sufficiently large n, the following statements hold:

(A). Π0 is true.

(B). Π0,Π1, . . . ,Πc−1 are not simultaneously true.

(C). For all 1 ≤ e < c, Πe−1 =⇒ Πe.

With these statements established in Lemmas 3.7, 3.8, and 3.9 below, we reach a contra-
diction, and the proof of the main theorem is complete. �

Proof of the Statements (A)-(C)

Lemma 3.7 (Statement (A)). Π0 is true.

Proof. Note that X0 = ∅. Define R0 = ∅, w0 = ε. Then F1 = ∅. Properties 1,3 are trivial.
Property 2 holds because no bit in Maj is fixed; each y can take values 0 and 1.

It remains to show Property 4. Suppose Property 4 fails; that is, there is an output bit y

with no connections to X1. Then the neighbourhood of y, defined as N(y) = Out(In(y)),
has size at most c × g(1) = n/c4 < n/2. So there exists a string z in ExMaj with only
1s at members of N(y), and hence a configuration β of the circuit compatible with z. By
changing the input settings in β only in In(y), we can set output y to 0. Since In(y) reached
only positions set to 1 in β, the change strictly decreases the number of 1s in the output.
Thus Cn outputs a string not in Maj, a contradiction. Hence Property 4 must hold. �

Lemma 3.8 (Statement (B)). Π0,Π1, . . . ,Πc−1 are not simultaneously true.

Proof. Assume to the contrary that for each e ∈ {0, 1, . . . , c − 1}, Πe is true. Define
F = ∪c

e=1Fe, and let G := Out \F denote the remaining output bits.

Consider any output bit y ∈ G. For each e ∈ [c], y is not in Fe, so by property 4 in Πe−1,
In(y) has a bit in Xe \ Xe−1. Thus In(y) has at least c bits in Xc. But In(y) has at most c bits
overall, so In(y) is in fact completely contained in Xc.
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By property 3 of each Πe, we know that |G| ≥ n−c(n/c3) = n−n/c2 ≥ 3n/4. As remarked
earlier, f (e) is an upper bound on |Xe|, and so |Xc| < f (c). We saw above that for each
y ∈ G, In(y) ⊆ Xc. Thus, in legal configurations of the circuit, the assignment to G is
determined by the assignment to Xc. But there are less than 2 f (c) distinct assignments to
Xc, while there are at least

(
|G|
n
4

)
≥ 2n/4 distinct assignments to G corresponding to strings

in Maj. For sufficiently large n, this is impossible. �

Lemma 3.9 (Statement (C)). For all 1 ≤ e < c, Πe−1 =⇒ Πe.

Proof. To show that Πe holds, we first describe a procedure that extends Re−1 and we−1

to Re and we, and then show that the extension satisfies properties 1 to 4 of Πe. The
immediate objective of the extension procedure is to satisfy property 2 of Πe; control the
input bits in Xe \ Xe−1 by restricting the output to a configuration that does not allow the
Xe part of the input to fix further output bits.

Set R = Re−1 and w = we−1. Define the set Q as follows.

Q :=
{

q ∈ {0, 1}Xe

 q is compatible with w
}
.

Perform the Prune procedure described below.

The Prune Procedure: Perform the following step as long as possible.

Find a partial assignment q ∈ Q, a position y in Out \R, and a value b ∈ {0, 1}
such that all configurations of the circuit extending q set y to b. Add y to R, set
y to b in w making w incompatible with q, and remove from Q all assignments
(including q) that are incompatible with w.

After the Prune procedure terminates, set Re to the resulting R, and we to the resulting w.

The four claims below show that this choice of Re and we satisfies Πe. First, we state a
simple but important observation: After every step in the Prune procedure, Q satisfies

Q =

{
q ∈ {0, 1}Xe

 q is compatible with w
}
.

In connection with the first property stated in Πe and proven below, this implies that Q is
not empty as long as n > 2 f (e)+2.

Claim 3.10 (Property 1 of Πe holds). |Re| ≤ 2 f (e)+1.
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Proof. We start with |Q| = 2|Xe | and R = Re−1. Each time we add a position to R, we
discard at least one element from Q. So |Re| ≤ |Re−1| + 2|Xe |.

Using the fact that f (e) is an upper bound for |Xe|, the property 1 of Πe−1, and the definition
of f , we get: |Re| ≤ |Re−1| + 2|Xe | ≤ 2 f (e−1)+1 + 2 f (e) ≤ 2 f (e)+1. �

Claim 3.11 (Property 2 of Πe holds). For each y ∈ Out \Re, for each assignment q : Xe →

{0, 1} compatible with we, and for each value b ∈ {0, 1}, there is a legal configuration of

the circuit extending we ∪ q and setting y to b.

Proof. Recall that, the way the Prune procedure is defined, all settings q : Xe −→ {0, 1}
compatible with we are in Q, and none of them determine the bit at any position y ∈

Out \Re. Hence for any such y, and any value b, it is possible to extend q ∪ we and set the
bit at position y to b. �

Claim 3.12 (Property 3 of Πe holds). For sufficiently large n, |Fe+1| ≤ n/c3.

Proof. Recall that Fe+1 := Re ∪ Out(In(Re) \ Xe+1).

n
c3 − |Fe+1| ≥

n
c3 − (|Re| + c · |Re| · g(e + 1))

=
n
c3 − |Re|

(
1 + c ·

nc
f (e + 1)

)
≥

n
c3 − 2 f (e)+1 ·

(
1 +

nc2

f (e + 1)

)
using Claim 3.10

= n ·
(

1
c3 −

c22 f (e)+1

f (e + 1)

)
− 2 f (e)+1

= δen − 2 f (e)+1

It suffices to show that δe > 0, because then we can choose a sufficiently large n and
ensure that δen exceeds 2 f (e)+1. (Note, for e ≤ c, δe and f (e) are constants independent of
n.)

δe > 0 ⇐⇒ δec3 f (e + 1) > 0.

δec3 f (e + 1) = f (e + 1) − c52 f (e)+1

= c5 f (e)+1 − c52 f (e)+1

≥ 2 f (e)+1c4 f (e) − c52 f (e)+1 since c ≥ 2

= 2 f (e)+1
[
c4 f (e) − c5

]
> 0 since e ≥ 1 and c ≥ 2, 4 f (e) ≥ 5.
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�

Alternative proof. Using Claim 1, the definitions of Xe+1, g and f , and the facts that c ≥ 2
and 1 ≤ e ≤ c − 1 along with the choice of n ≥ 4 f (c) we get

|Fe+1| ≤ |Re| + |Out(In(Re) \ Xe+1)|

≤ 2 f (e)+1 + g(e + 1) · 2 f (e)+1 · c

= 2 f (e)+1 +
cn

f (e + 1)
· 2 f (e)+1 · c

≤ c f (c−1)+1 +
c2n2 f (e)+1

c5 f (e)+1

≤
f (c)
c4 +

c2n
c6 ·

2 f (e)+1

c f (e)+1

≤
n
c4 +

n
c4 =

n
c3

�

Claim 3.13 (Property 4 of Πe holds). For sufficiently large n, ∀y ∈ Out \Fe+1, In(y) ∩
(Xe+1 \ Xe) , ∅.

Proof. Suppose the claim does not hold. That is, suppose there exists a y ∈ Out \Fe+1 such
that In(y) ∩ (Xe+1 \ Xe) = ∅. But note that In(y) ∩ In(Re) ⊆ Xe+1; otherwise y would have
been in Fe+1 by definition. Putting these together, we conclude that In(y) ∩ In(Re) ⊆ Xe.
Generalising the corresponding argument used in establishing statement (A), we will now
show that this is not possible.

Consider the e-neighbourhood of y defined as U := Out(In(y) \ Xe). Since y < Fe+1, the
sets U and Re are disjoint. We have that |U | ≤ n/c4, since by definition of f , for e > 0,
f (e) ≥ c6, and hence |U | ≤ c · g(e) ≤ c2n/ f (e) ≤ n/c4. Together with Claim 3.10, for
sufficiently large n, |Re ∪ U | < n/2. Hence there exists a string z in ExMaj with only 1s
at positions in U, and agreeing with we at positions in Re. Hence there is a configuration
β of the circuit compatible with z; let this configuration restricted to Xe be α. (Thus β
extends α ∪ we.) We have already established property 2 of Πe. Applying this to y and α
with b = 0, we conclude that there is another configuration γ, also extending α∪we, such
that γ has a 0 at y.

Now change the input settings of β only at positions in In(y) \ Xe to match the settings in
γ. This change can affect only the output bits in U. In particular, it changes output y from
1 to 0. Since U had only 1s in β, the change strictly decreases the number of 1s in the
output. Thus Cn outputs a string not in Maj, a contradiction. �
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With Claims 3.10, 3.11, 3.12, 3.13, Lemma 3.9 is established. �

We note here that the lower bound on depth that we just showed for Majority is only ω(1),
while the upper bound on depth for the proof system that we constructed for Majority
(Theorem 2.38) has a depth of O(log log n). Closing this gap between the lower bound
and the upper bound is an interesting open problem.

Recall, from section 3.1, that we generalized Theorem 2.9 to Exact-Countnk only for sub-
linear k. We will now show that the Majority lower bound from Theorem 3.6 can be used
to show that Exact-Countnk does not have NC0 proof systems even for k = n/2.

We first make an observation for languages, like Majority, that are derived from monotone
boolean functions. Recall that a function f is monotone if whenever f (x) = 1 and y

dominates x (that is, ∀i ∈ [n], xi = 1 ⇒ yi = 1), then it also holds that f (y) = 1. For such
a function, a string x is a minterm if f (x) = 1 but x does not dominate any z with f (z) = 1.
Minterms( f ) denotes the set of all minterms of f . Clearly, Minterms( f ) ⊆ f −1(1). The
following lemma observes that for any monotone function f , constructing a proof system
for a language that sits in between Minterms( f ) and f −1(1) suffices to get a proof system
for f −1(1).

Lemma 3.14. Let f : {0, 1}∗ −→ {0, 1} be a monotone boolean function and let L =

f −1(1). Let Ln = L∩{0, 1}n. Let L′ be a language such that for each length n, (Minterms(L)∩
{0, 1}n) ⊆ (L′∩ {0, 1}n) ⊆ Ln. If L′ has a proof system of depth d, size s and a alternations,

then L has a proof system of depth d + 1, size s + n and at most a + 1 alternations.

Proof. Let C be a proof circuit for L′ that takes input string x. We construct a proof
system for L using C and asking another input string y ∈ {0, 1}n. The i’th output bit of our
proof system is C(x)i ∨ yi. �

From here on, for any language A, we let UpClose(A) denote the language B = {y : ∃x ∈

A, |x| = |y|,∀i, xi = 1 =⇒ yi = 1}.

Lemma 3.15. The following languages do not have NC0 proof systems.

1. ExMaj, consisting of strings x with exactly d|x|/2e 1s.

2. ExMajEven, consisting of all even length strings in ExMaj

3. EqualOnes = {xy | x, y ∈ {0, 1}∗, |x| = |y|, |x|1 = |y|1}.

Proof. 1. To show that ExMaj does not have NC0 proof systems, note that:
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• From 3.6, the language Maj does not have NC0 proof systems

• Minterms(Maj) = ExMaj.

• Lemma 3.14 now implies ExMaj does not have an NC0 proof system.

By the same argument, ExMaj restricted to even-length strings, call it ExMajEven,
has no NC0 proof systems.

2. We will show that if EqualOnes has an NC0 proof system, then so does the language
ExMajEven. Consider the slice

EqualOnes=2n = {xy | |x| = |y| = n; x and y have an equal number of 1s}.

If x, y are length-n strings, then xy ∈ EqualOnes=2n if and only if xy′ ∈ ExMajEven,
where y′ is the bitwise complement of y. Thus a depth d proof system for EqualOnes
implies a depth d + 1 proof system for ExMajEven.

�

Corollary 3.16. The language GI = {G1,G2 | Graph G1 is isomorphic to graph G2} does

not have an NC0 proof system. Here we assume that G1 and G2 are specified via their

0-1 adjacency matrices, and that 1s on the diagonal are allowed (the graphs may have

self-loops).

Proof. Let G1,G2 be n-node isomorphic graphs with adjacency matrices A1, A2. Then
(A1, A2) is in GI=2n2

. Let yb be the string appearing on the diagonal of Ab. Then y1y2 ∈

EqualOnes=2n.

Conversely, for each xy ∈ EqualOnes=2n where |x| = |y| = n, the pair (Diag(x),Diag(y)) is
in GI=2n2

. (For an n-bit vector w, Diag(w) is the n × n matrix with w on the diagonal and
zeroes elsewhere.)

Thus a depth d proof system for G implies a depth d proof system for EqualOnes.

�

3.4 Conclusion

In this chapter, we showed various languages that do not have even non-uniform NC0

proof systems. All lower bounds seem to develop either on the fact that Exact-Or does
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not have NC0 proof systems or that Maj does not. We do not yet have a characterization
of even regular languages with respect to NC0 proof systems.

For Maj, we have given a proof system with O(log log n) depth and O(1) alternations in
Theorem 2.38, and we have shown that ω(1) depth is needed in Section 3.3. Can this gap
between the upper and lower bounds be closed?

To answer the main question of characterizing languages with NC0 proof systems, a pos-
sible tool is from Agrawal’s result on constant-depth isomorphisms [Agr10]. If we have
an NC0 isomorphism between two languages A and B, and B admits an NC0 proof system,
then so does A. The proofs for A are taken to be the proofs for B, then we simulate the
proof system for B, and to the obtained word in B we apply the isomorphism from B to A

and enumerate an element from A.

In fact, our work seems to bear further interesting connections to recent examinations on
isomorphism of complete sets for the class NP. This work was started in the nineties in a
paper by Agrawal et al. [AAR98] where it was shown that (1) every language complete for
NP under AC0 reductions is in fact already complete under (non-uniform) NC0 reductions
(this is called “gap theorem” in [AAR98]), and (2) that all languages complete for NP

under AC0 reductions are (non-uniformly) AC0 isomorphic (that is, the reduction is an
AC0 bijection). This was later improved to uniform AC0 isomorphisms [Agr10]. It follows
from a result in [AAI+01] that this cannot be improved to P-uniform NC0 isomorphisms.
Using our results on proof systems, we obtain a very simple direct proof:

Proposition 3.17. There are sets A and B that are NP complete under NC0 reductions but

not NC0 isomorphic.

Proof. Let A be the NP-complete set from [CM01] that admits an NC0 proof system,
cf. Remark 2.35. A is NP complete under AC0 reductions, hence by the gap theorem of
[AAR98], is also NP-complete under NC0 reductions.

Let B be the disjoint union of A and the language Exact-Or.
i.e., B = ({0} ◦ A) ∪ ({1} ◦ Exact-Or). Then B is complete for NP under NC0 reductions
because A reduces to B in NC0.

If now A and B are NC0 isomorphic, then we obtain an NC0 proof system P for B. From
the proof system P, we can obtain an NC0 proof system for Exact-Or as follows: Let
string y = y1y2 · · · yn be the output of P. If y1 = 1, we output y as is. Else, we output 10n−1.
Hence we arrive at a contradiction using Theorem 2.9.

�
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Chapter 4

2TAUT and NC0 proof systems

In this chapter we try to understand NC0 proof systems better in the context of 2TAUT
- the language of all 2DNFs that are tautologies. The main goal is to understand the
relationship between Taut and NC0 proof systems. However, the language 2TAUT has
more structure because of the connection with implication graphs. In particular we know
that 2TAUT and directed graph reachability are equivalent in computational complexity.
In the following section, we will show that 2TAUT is at least as easy as directed graph
reachability in terms of proof systems as well.

4.1 Directed Reachability and 2TAUT

Let UnSat denote the language of all unsatisfiable formulas. Recall that deciding if a
2CNF formula F belongs to UnSat can be done in polynomial time. This is because one
can build the following “implication graph” G from F: G is a directed graph with twice
as many vertices as number of variables in F - one vertex for each possible literal. Each
clause (`i∨` j) of F can be written as two implications: `i =⇒ ` j and ` j =⇒ `i. An edge
(`i, ` j) is present in G if the implication `i =⇒ ` j is in the formula F. i.e., for every term
(`i ∨ ` j) in the formula F, G will have two edges namely - (`i, ` j) and (` j, `i). Let vertices
ui be associated with literals xi and vertices vi be associated with the literal xi. Now F is
unsatisfiable if and only if there exists an i such that there is a path from ui to vi and a
path from vi to ui. Checking existence of such paths can be done in polynomial time and
hence deciding if F is unsatisfiable is in P. Let 2UnSat denote all 2CNF formulas that are
unsatisfiable. Note that since 2TAUT = {F| F ∈ 2UnSat}, deciding if a 2DNF formula F

is in 2TAUT is also in non-deterministic logspace and hence in P.
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Recall that the encoding used by [CM01] in their construction of an NC0 proof system for
the NP-Complete problem E3SAT has exactly 23

(
n
3

)
bits - one bit for each possible clause

(See Remark 2.35). Using a similar idea, we can encode 2CNF formulas on n variables
by a bit string of 2n(2n − 1) bits - one bit for each possible clause (each clause has two
literals. For the first literal, we have 2n possible choices and for the second we have 2n−1
possible choices). Note that here we are allowing for trivial clauses like (xi ∨ xi). We will
also assume that if the bit corresponding to a clause li ∨ l j is 1, then the bit corresponding
to the clause l j ∨ li is also 1 and vice versa. This encoding would correspond to the
adjacency matrix of the implication graph on 2n vertices described previously but without
the diagonal entries. However, for convenience, we will generate adjacency matrices of
the implication graphs along with the diagonal entries included. In other words, we allow
for self-loops in the graph. This is equivalent to allowing clauses such as (xi ∨ xi) in the
formula. Hence we work with this encoding of 4n2 bits for the remainder of this section.
It is easy to go from the 4n2 bit encoding to the 2n(2n − 1) bit encoding: merely hide the
diagonal entries from being output.

Let STConn be the language of all n vertex graphs with a path from vertex 1 to vertex n.
In the following, we will show a reduction between proof systems generating 2TAUT and
STConn. More precisely, we show that if STConn has an NC0 proof system, then so does
2TAUT.

Define the following languages:

STConnn =

A ∈ {0, 1}n×n|

A is the adjacency matrix of a directed graph G where
vertices s = 0, t = n − 1 are in the same connected
component.


STConn =

⋃
n>0

STConnn

When handling graphs, throughout this section, we write u{ v to denote “∃ a path from
u to v” where u and v are vertices of the graph being used.

We will show that a proof system for the set STConn can be used to construct a proof
system for 2UnSat with only a constant blowup to the depth of the proof system:

Theorem 4.1. If STConn has an NC0 proof system, then 2UnSat has an NC0 proof system.

Proof. Let Q be a proof system computable in NC0 for STConn.

We first show that using output of circuits fromQ, we can generate the language GoodConn
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defined as follows:
GoodConn =

⋃
i

Goodi

where Goodi is defined as:

Goodi = {G ⊆ STConn2n+2|∃i ∈ [n],∃ simple path 0→ i{ i→ 2n + 1}

where i is short for n + i.

Lemma 4.2. If STConn has an NC0 proof system, then so does GoodConn.

Proof. We construct proof system GC computable in NC0 for GoodConn by using proof
system Q of STConn. Let Q ∈ Q be the proof circuit that outputs adjacency matri-
ces of graphs in STConn2n+2. We number the vertices of the graph output by Q as
0, 1, 2, . . . , (2n + 1). Let s = 0 and t = 2n + 1 as shown in Figure 4.1. Let the adja-
cency matrix output by Q be H.

Figure 4.1: Vertex numbering

Construction: We will construct proof circuit P ∈ GC that outputs every graph in
GoodConn on 2n + 2 vertices. P takes the following as input: H and another adjacency
matrix B. P outputs every edge in H, every edge in B and also some additional edges
determined by the following rules:

1. If H[s, t] = 1, then include path s→ 1→ n + 1→ t.

2. For each i ∈ [n], if H[s, i] = 1, then include path s→ i→ i→ t.
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3. For each i ∈ [n], if H[i, t] = 1, then include path s→ i→ i→ t.

4. For each i ∈ [n], if H[s, i] = 1, then add edge (i→ t).

5. For each i, j ∈ [n] such that i , j, if H[s, i] = H[ j, t] = 1, then add edge ( j, i).

Intuitively, the vertices from 1 to n represent the literals x1, · · · , xn and the vertices from
n + 1 to 2n represent the literals x1, · · · , xn. The idea behind the construction is to force a
simple path s → i { i → t for some i ∈ [n]. However, if the graph H output by P was
such that it had a simple path s → i { i → t and no other edges, then none of the rules
apply. The extra input B is simply for upward closure (like in Lemma 3.14) to guarantee
completeness.

Soundness: Let G be a graph output by P. We need to show that G is in GoodConn. It
suffices to show the following:

Claim 4.3. ∃i ∈ [n] such that G ∈ Goodi

Proof. Let G = P(H, B). Since G has all edges from H and H ∈ STConn2n+2, G has a
simple path ρ from s to t. Consider the last edge (u, t) in ρ. We have the following cases:

• Case u = s: Rule 1 implies G ∈ Good1.

• Case u = i for some i ∈ [n]: Rule 3 implies G ∈ Goodi.

• Case u = i for some i ∈ [n]: Consider the first edge (s, v) in ρ. We have three cases:

– Case v = j for some j ∈ [n]: Rule 2 implies G ∈ GOOD j.

– Case v = i: Straightforward to see G ∈ GOODi.

– Case v = j for some j ∈ [n] and j , i: Rule 4 and Rule 5 together imply
G ∈ GOOD j. An example of this case is shown in Figure 4.2.

�

Completeness: We need to show that any graph G ∈ GoodConn can be produced by P.
We observe the following:

Observation 4.4. Let J ∈ STConn2n+2 be a graph that has a simple path s → i { i → t

for some i ∈ [n] and no other edges. If B is all 0s, then P(J, B) is exactly J.
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Figure 4.2: Example of Rules 4 and 5

From definition of GoodConn, G ∈ GoodConn implies G ∈ Goodi for some i ∈ [n]. Hence
there exists a simple path ρ that proceeds as s → i { i → t in G. Consider a graph J

with path ρ and no other edges. Then J is an output of Q. Let B be the (2n + 2)× (2n + 2)
adjacency matrix of G. Then P(J, B) = G.

GC is computable in NC0:

Lemma 4.5. If Q is computable in NC0, then GC is computable in NC0.

Proof. Assume Q is computable in NC0. It suffices to show that each output in a proof
circuit P ∈ GC is a function of only O(1) of its input bits. P uses the output H of a
proof circuit Q ∈ Q. Let A be the output adjacency matrix of P. To see that the rules
determining the edges can be implemented in NC0, we explicitly write down the circuit
for each type of edge:

• (Rule 1) A[s, 1] = H[s, t] ∨ H[s, n + 1] ∨ H[1, t] ∨ H[s, 1] ∨ B[s, 1].

• (Rules 2 and 3)

– For all i ∈ [n] \ {1}, A[s, i] = H[s, i] ∨ H[i, t] ∨ H[s, i] ∨ B[s, i].

– For all i ∈ [n] \ {1}, A[i, i] = H[s, i] ∨ H[i, t] ∨ H[i, i] ∨ B[i, i]

• (Rules 2,3 and 4) For all i ∈ [n], A[i, t] = H[s, i]∨H[s, i]∨H[i, t]∨H[i, t]∨ B[i, t].

• (Rule 5) For all i, j ∈ [n], i , j, A[ j, i] = (H[s, i] ∧ H[ j, t]) ∨ H[ j, i] ∨ B[ j, i].

For all edges e = (u, v) that do not fall under any of the above types, A[e] = H[e] ∨ B[e].

Thus each output bit is a function of at most 4 bits from H and 1 bit from B. H is the
output of the proof circuit Q. Hence if proof system Q is an NC0 circuit family, then so is
P. �
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This completes the proof of Lemma 4.2. �

We define the following languages which have paths in the reverse direction as GoodConn:

GoodR
i = {G ⊆ STConn2n+2|∃i ∈ [n],∃ simple path 2n + 2→ i{ i→ 0}

GoodConnR =
⋃

i

GoodR
i

where the R in the superscript means “reversed”.

Note that GoodConnR can be generated using proof circuits from GC and either number-
ing the vertices of the output graph in reverse or by reversing the direction of each edge in
the output graph. Let GCR be such a proof system. The following is an easy observation:

Observation 4.6. GCR is computable in NC0 if and only if GC is computable in NC0.

We now show how to use the proof system for GoodConn to obtain a proof system for
2TAUT.

Lemma 4.7. If GoodConn has an NC0 proof system, then so does 2TAUT.

Proof. We will construct proof system P that generates all 2CNF formulas that are un-
satisfiable and hence for 2TAUT. The idea is to take two graphs: G1 with a path from
some i ∈ [n] to i, and G2 with a path from j to j for some j ∈ [n], and combine them
together to get a graph with path i{ i{ i. When the vertices from 1 to n are interpreted
as positive literals and vertices from n + 1 to 2n + 1 are interpreted as negated literals,
we get an implication graph of a formula that is not satisfiable. We will describe the con-
struction of a proof circuit P ∈ P that generates every such formula on n variables. As
mentioned before, the encoding we use has 4n2 bits and represents the adjacency matrix
of the implication graph. Equivalently, each bit represents a clause in the formula.

Construction: P takes the following as input:

• Adjacency matrix A1 of a graph G1 ∈ GoodConn on 2n + 2 vertices.

• Adjacency matrix A2 of a graph G2 ∈ GoodConnR on 2n + 2 vertices.

• (2n + 2) × (2n + 2) Adjacency matrix B.
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The guarantee that the first two input adjacency matrices come from GoodConn and
GoodConnR respectively is achieved by using the outputs of the appropriate proof cir-
cuit P1 ∈ GC and P2 ∈ GC

R as constructed before.

For convenience, we will make P compute a graph on 2n + 2 vertices. For the final output
graph, we do not output the vertices s and t or any edges that involve s or t.

P outputs a graph that has all edges in G1, all edges in G2, all edges indicated by B and
some additional edges determined by the following “Stitch” rule:

• Stitch rule: If (i, t) ∈ G1 and (t, j) ∈ G2, then add edges (i, j) and ( j, i).

Soundness: We need to show that any graph G output by P is an implication graph for a
formula in 2UnSat. It suffices to show that there exists an i such that there is a path i{ i

and i { i. Putting together these two paths results in a walk starting at i and ending at i

via i. For convenience, we will refer to this as a path (although strictly a walk) and write
i{ i{ i.

Claim 4.8. For any graph G output by a circuit P ∈ P, ∃i ∈ [n] such that there is a path

i{ i{ i.

Proof. Let G = P(G1,G2, B). Since G1 ∈ GoodConn, there exists an i ∈ [n] such that a
path ρ1: s → i { i → t is in G1. Similarly a path ρ2: t → j { j → s exists in G2. We
now have two cases:

1. If i = j, then since G contains all edges in G1 and G2, G has a path ρ: i{ i{ i.

2. If i , j, then the Stitch rule forces the edges (i, j) and ( j, i). Together with ρ1 and
ρ2, we get a path ρ:i

ρ1
 i→ j

ρ2
 j→ i. An example of this case is shown in Figure

4.3.

�

Completeness: Take any formula F ∈ 2UnSat on n variables. Let the implication graph
of F be G. We will show that G is produced by P. We know that in G, ∃i ∈ [n] such that
there is a simple path ρ: i{ i{ i. We can think of ρ as two parts: i{ i and i{ i. Let
the first part be ρ1 and the second part be ρ2. Define graph G1 on 2n vertices to contain
the path ρ1 and no other edges. Similarly let G2 be a graph on 2n vertices with the path
ρ2 and no other edges. Construct graph G′1 on 2n + 2 vertices as follows: G′1 is exactly
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Figure 4.3: Effect of Stitch Rule

G1 with two additional vertices s = 0 and t = 2n + 2 and edges (s, i) and (i, t). Clearly
G′1 ∈ GoodConn. Similarly construct G′2 from G2 such that G′2 ∈ GoodConnR. Adjacency
matrix A1 of G′1 is produced as output by proof system P1 on some input and adjacency
matrix A2 of G′2 is produced as output by proof system P2 on some input. Let B be the
adjacency matrix of G. It is easy to see that P(A1, A2, B) = G.

P is computable in NC0:

Lemma 4.9. If GC is computable in NC0, then P is computable in NC0.

Proof. We need to show that every output bit of a proof circuit P ∈ P is a function of
at most O(1) many input bits. P uses outputs A1 and A2 of proof circuits P1 ∈ GC and
P2 ∈ GC

R. Let output adjacency matrix of P be A. P incorporates only one rule and this
can be expressed formally as follows:

• For all i, j ∈ [n], A[i, j] = (A1[i, t] ∧ A2[t, j]) ∨ A1[i, j] ∨ A2[i, j] ∨ B[i, j]
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• For all i, j ∈ [n], A[ j, i] = (A1[i, t] ∧ A2[t, j]) ∨ A1[ j, i] ∨ A2[ j, i] ∨ B[ j, i]

For all edges e = (i, j) that do not look like (i, j) or ( j, i), A[i, j] = A1[i, j]∨A2[i, j]∨B[i, j].
Hence each output bit is a function of at most two bits from A1, two bits from A2 and one
bit from B.

Combining Observation 4.6 and the fact that A1 and A2 are outputs of proof circuits P1 ∈

GC and P2 ∈ GC
R, we have the lemma. �

This completes proof of Lemma 4.7. �

Combining Lemma 4.2 and Lemma 4.7 completes the proof of Theorem 4.1. �

Intuitively, reachability and connectedness are global properties. Hence intuition suggests
that STConn should not have NC0 proof systems. However, we have not been able to show
this. In the following section, we study USTConn - the undirected analogue of STConn
and show that USTConn has a proof system computable in NC0.

4.2 Undirected Reachability

In this section, we show that the set USTConn of all undirected graphs with a path between
two fixed vertices s and t has a proof system computable in NC0.

Correcting an input that has no s-t path can be done locally by just adding the edge (s, t)
to the output. However, detecting that the input does not have an s-t path with only local
checks seems difficult. Always adding the (s, t) edge without checking for the absence
of an s − t path does not give us completeness. For this reason, we interpret the input
differently.

The idea is as follows: We will first construct an NC0 proof system C for the language
Cycles of all undirected graphs that are a union of edge disjoint cycles. Consider a circuit
C ∈ C that outputs graphs on n vertices. The proof system we construct for USTConn
takes the adjacency matrix of the graph G output by C and does an EXOR with the edge
(s, t) to obtain a graph G′ (i.e., if the edge (s, t) was present, we remove it and if the edge
(s, t) was not present, we add it). Note that if G contained a cycle with the (s, t) edge,
then removing this edge leaves an s-t path in the resultant graph. If G did not contain an
(s, t) edge, then the EXOR with (s, t) results in a graph with an s-t path of length 1. To
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get completeness, we take the upward closure of the graph G′ by computing a bitwise OR
with another input adjacency matrix (just like Lemma 3.14).

We first demonstrate this idea on the grid graph analogue of USTConn. In the grid graph
case, generating the language of all grid graphs that look like edge disjoint cycles becomes
very easy and hence helps in understanding the main idea better.

Define the following languages:

GridCycles =

{
A ∈ {0, 1}2n(n−1)|

A is the adjacency matrix of an undirected grid graph
G on n2 vertices that is a union of edge disjoint cycles.

}

GRID =

{
A ∈ {0, 1}2n(n−1)|

A is the adjacency matrix of an undirected grid graph
G on n2 vertices that has a path from (1, 1) to (n, n).

}

We think of a grid graph with n2 vertices as having n rows and n columns with a vertex
at the intersection of a row and column. Edges are of exactly two types: (1) Horizontal
edges - edges between two vertices that are adjacent and in the same row and (2) Vertical
edges - edges between two vertices are adjacent and in the same column.

We call the empty area created by the intersection of two consecutive rows and two con-
secutive columns as a “cell”. In other words, a cell is the area enclosed by the 4-cycles of
the grid graph. A grid graph on n2 vertices will have exactly (n − 1)2 cells.

We first construct an NC0 proof system for GridCycles.

Theorem 4.10. The language GridCycles has an NC0 proof system.

Proof. We will construct a proof circuit that outputs every G ∈ GridCycles on n2 vertices.

The idea is that the set of all 4-cycles in a grid graph forms a generating set for GridCycles
over addition modulo 2. For any cycle C, the 4-cycles that generate C are given by the
cells that are enclosed by C.

Construction: Our proof system takes as input one bit for each cell. We will hardwire
0 for cells beyond the boundary of the grid graph. This way we ensure that all edges have
two values adjacent to them.

We output an edge e if the two bits adjacent to e are different.
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Soundness: Let k be the number of cells assigned 1 by the input. We proceed by induc-
tion on k. Base case: k = 0. Output graph will have no edges and hence is a union of edge
disjoint cycles trivially. Induction step: k > 0. Take any input a with k 1s. Let G be the
output of the proof system on input a. Pick any cell c that is set to 1 by the input. Let a′

be the string obtained from a with 0 assigned to c and remaining values unchanged. Let
G′ be the graph output on a′. From induction hypothesis G′ ∈ GridCycles. Now we look
at how G′ changes when we switch on c. If all the four cells adjacent to c are assigned 0,
then clearly assigning 1 to c will just add another edge disjoint cycle (the cycle around c)
to G′ to give G and hence G ∈ GridCycles. Else if some of the cells adjacent to c are 1,
then by construction, when c is assigned 1, only those edges of the 4-cycle around c are
output that are not present in any other cycle. The key observation here is that when two
cycles intersect at an edge, removing the edge results in a bigger cycle. Hence we always
obtain edge disjoint cycles. Hence G ∈ GridCycles in this case too.

Completeness: Take any graph G ∈ GridCycles. Assign 1 to all cells that are enclosed
within a cycle. It is easy to see that our proof system will produce G on this assignment.

Depth: Each output bit looks at exactly two input bits. Hence the construction is in
NC0.

�

Now we use the proof system for GridCycles to construct a proof system for GRID.

Theorem 4.11. GRID has an NC0 proof system.

Proof. The idea is to add (modulo 2) an s-t path with graphs from GridCycles. Through-
out this proof we will consider grid graphs on n2 vertices. For any grid graph H and a
path ρ in a grid graph, we define the grid graph G′ = H ⊕ ρ as follows: Let G′ = (V ′, E′)
such that

e ∈ E′ ⇐⇒ (e ∈ H ∧ e < ρ) ∨ (e < H ∧ e ∈ ρ)

Construction: Our proof system takes as input a graph H ∈ GridCycles. We output
the adjacency matrix of the graph G′ = H ⊕ ρ where ρ is some fixed simple path from s

to t. For convenience, let us fix ρ to be the path that starts at s and proceeds horizontally
along the first row till (1, n) and then proceeds vertically along the last column to reach t).
Let GRID′ be the language generated by this proof system. We will show that GRID =
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UpClose(GRID′) and hence obtain a proof system for GRID using Lemma 3.14. An
example input and output are shown in Figure 4.4. In the figure, the output edges are
indicated by the thick blue edges, while the dotted line segments merely indicate the grid.
The input bits are shown in their respective cells. We observe that our construction so far

Figure 4.4: Example input and output

is sound:

Observation 4.12. Let H be any graph from GridCycles and σ any simple path from s

to t. Then, H ⊕ σ has a simple path between s and t.

A formal proof for this observation proceeds by induction on number of cycles in H

and uses the fact that in any graph, if vertices s and t have degree one and all other
vertices have even degree, then the graph consists of zero or more cycles and an s − t

path, all pairwise disjoint. We do not prove this observation formally here since we show
soundness for the general graph case later.

So the ⊕ operation does not disconnect s and t. Hence all graphs in GRID′ have an s-t
path. Also, every graph G that has a simple s-t path σ and no other edges can be written
as H ⊕ ρ for some H ∈ GridCycles. To see this, consider a graph H = G ⊕ ρ. It is easy to
see that H is indeed in GridCycles.

However, GRID′ does not have any graph that has “loose edges” - edges that are not part
of any cycle and not part of an s-t path. Hence, GRID can be seen as UpClose(GRID′).
Now we just use Lemma 3.14 to obtain a proof system or GRID. �

Now we generalize Theorem 4.11 to the language Undirected Reachability, which is
known to be in (and complete for) L ([Rei08]). Our proof system will output adjacency
matrices of all graphs that have a path between s and t, and of no other graphs. In the pro-
cess, we generalize Theorem 4.10 to give an NC0 proof system for the set of all undirected
graphs that are a union of edge-disjoint cycles.

70



Define the following languages:

USTConn =

A ∈ {0, 1}n×n|

A is the adjacency matrix of an undirected graph G

where vertices s = 1, t = n are in the same connected
component.


Cycles =

A ∈ {0, 1}n×n|

A is the adjacency matrix of an undirected graph G =

(V, E) where E is the union of edge-disjoint simple
cycles.


(For simplicity, we will say G ∈ USTConn or G ∈ Cycles instead of referring to the
adjacency matrices. )

Theorem 4.13. The language USTConn has an NC0 proof system.

Proof. We will need an addition operation on graphs: G1 ⊕ G2 denotes the graph ob-
tained by adding the corresponding adjacency matrices modulo 2. If A is a collection of
graphs and B = UpClose(A), then B is the collection of super-graphs obtained by adding
edges. Note that (undirected) reachability is monotone and hence UpClose(USTConn) =

USTConn.

Let L1 = {G = G1 ⊕ (s, t)|G1 ∈ Cycles} and L2 = UpClose(L1). We show:

1. L2 = USTConn.

2. If L1 has an NC0 proof system, then L2 has an NC0 proof system.

3. If Cycles has an NC0 proof system, then L1 has an NC0 proof system.

4. Cycles has an NC0 proof system.

Proof of 1: We show that L1 ⊆ USTConn ⊆ L2. Then applying upward closure, L2 =

UpClose(L1) ⊆ UpClose(USTConn) = USTConn ⊆ UpClose(L2) = L2.

L1 ⊆ USTConn: Any graph G ∈ L1 looks like G = H ⊕ (s, t), where H ∈ Cycles. If
(s, t) < H, then (s, t) ∈ G and we are done. If (s, t) ∈ H, then s and t lie on a cycle C and
hence removing the (s, t) edge will still leave s and t connected by a path C \ {(s, t)}.

USTConn ⊆ L2: Let G ∈ USTConn. Let ρ be an s-t path in G. Let H = (V, E) be a graph
such that E = edges in ρ. Then, G ∈ UpClose({H}). We can write H as H′ ⊕ (s, t) where
H′ = H ⊕ (s, t). If ρ = (s, t), then E(H′) is empty and hence H′ ∈ Cycles. Else ρ , (s, t),
and then H′ = H ⊕ (s, t) = ρ ∪ (s, t) since ρ is a simple path, and hence H′ ∈ Cycles.
Either way, H′ ∈ CYCLES and so H ∈ L1. Hence G ∈ L2.
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Proof of 2: Note that Minterms(USTConn) is exactly the set of graphs where the edge
set is a simple s-t path. We have seen that L1 ⊆ USTConn. As above, we can see that
H ∈ Minterms(USTConn) =⇒ H ⊕ (s, t) ∈ Cycles =⇒ H ∈ L1. Statement 2 now
follows from Lemma 3.14.

Proof of 3: Let A be the adjacency matrix output by the NC0 proof system for Cycles.
The proof system for L1 outputs A′ such that A′[s, t] = A[s, t] and rest of A′ is same as A.

Proof of 4: This is of independent interest, and is proved in Theorem 4.14 below.

This completes the proof of theorem 4.13. �

We now construct NC0 proof systems for the language Cycles.

Theorem 4.14. The language Cycles has an NC0 proof system.

Proof. To design an NC0 proof system for Cycles, we try to follow the technique we used
for GridCycles. While generating graphs in GridCycles, we observed that the 4-cycles
of a grid graph form a generating set that is also local when used for generating edges.
We want to identify such a generating set for Cycles.

Let T be a family of graphs. We say that an edge e is generated by a sub-family S ⊆ T

if the number of graphs in S which contain e is odd. We say that the family T generates
a graph G if there is some sub-family S ⊆ T such that every edge in G is generated by
S, and no other edge is generated. We first observe that to generate every graph in the set
Cycles, we can set T to be the set of all triangles. Given any cycle, it is easy to come up
with a set of triangles that generates the cycle; namely, take any triangulation of the cycle.
Therefore, if we let T be the set of all triangles on n vertices, it will generate every graph
in Cycles. Also, no other graph will be generated because any set S ⊆ Cycles generates a
set contained in Cycles (see Lemma 4.16 below). This immediately gives a proof system
for Cycles: given a vector x ∈

(
n
3

)
, we will interpret it as a subset S of triangles. We will

output an edge e if it is a part of odd number of triangles in S. Finally, because of the
properties observed above, any graph generated in this way will be a graph from the set
Cycles.

Unfortunately, this is not an NC0 proof system because to decide if an edge is generated,
we need to look at Ω(n) triangles. For designing an NC0 proof system we need to come
up with a set of triangles such that for any graph G ∈ Cycles, every edge in G is a part of
O(1) triangles.

So on the one hand, we want the set of triangles to generate every graph in Cycles, and
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on the other hand we need that for any graph G ∈ Cycles, every edge in G is a part of
O(1) triangles. We show that such a set of triangles indeed exists.

Thus our task now is to find a set of triangles T ⊆ Cycles such that:

1. Every graph in Cycles can be generated using triangles from T . i.e.,

Cycles ⊆ Span(T ) ,

 |T |∑
i=1

aiti | ∀i, ai ∈ {0, 1}, ti ∈ T


2. Every graph generated from triangles in T is in Cycles; Span(T ) ⊆ Cycles.

3. ∀u, v ∈ [n], the edge (u, v) is contained in at most 6 triangles in T .

Once we find such a set T , then our proof system asks as input the coefficients ai which
indicate the linear combination needed to generate a graph in Cycles. An edge e is present
in the output if, among the triangles that contain e, an odd number of them have coefficient
set to 1 in the input. By property 3, each output edge needs to see only O(1) input bits
and hence the circuit we build is NC0. We will now find and describe T in detail.

Let the vertices of the graph be numbered from 1 to n. Define the length of an edge (i, j)
as |i − j|. A triple 〈i, j, k〉 denotes the set of all graphs on n vertices that have exactly one
triangle on vertices (u, v,w) where |u − v| = i, |v − w| = j, and |u − w| = k and no other
edges. So each graph in 〈i, j, k〉 is on n vertices but has exactly three edges that form a
triangle with lengths i, j and k. We now define the set

T =

n/2⋃
i=1

〈i, i, 2i〉 ∪ 〈i, i + 1, 2i + 1〉

Although the graphs in T have all n vertices, we sometimes refer to them as triangles
when it is convenient.

Observation 4.15. It can be seen that |T | ≤ 3
2n2. This is linear in the length of the output,

which has
(

n
2

)
independent bits.

We now show that T satisfies all properties listed earlier in reverse order.
T satisfies property 3: Take any edge e = (u, v). Let its length be l = |u − v|. e can either
be the longest edge in a triangle or one of the two shorter ones. If l is even, then e can be
the longest edge for only 1 triangle in T and can be a shorter edge in at most 4 triangles
in T . If l is odd, then e can be the longest edge for at most 2 triangles in T and can be a
shorter edge in at most 4 triangles. Hence, any edge is contained in at most 6 triangles.
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T satisfies property 2: To see this, note first that T ⊆ Cycles. Next, observe the following
closure property of cycles:

Lemma 4.16. For any G1,G2 ∈ Cycles, the graph G1 ⊕G2 ∈ Cycles.

Proof. A well-known fact about connected graphs is that they are Eulerian if and only
if every vertex has even degree. The analogue for general (not necessarily connected)
graphs is Veblen’s theorem [Veb12], which states that G ∈ Cycles if and only if every
vertex in G has even degree.

Using this, we see that if for i ∈ [2], Gi ∈ Cycles and if we add the adjacency matri-
ces modulo 2, then degrees of vertices remain even and so the resulting graph is also in
Cycles. �

It follows that Span(T ) ⊆ Cycles.

T satisfies property 1: We will show that any graph G ∈ Cycles can be written as a
linear combination of graphs in T . Define, for a graph G, the parameter d(G) = (l,m)
where l is the length of the longest edge in G and m is the number of edges in G that have
length l. For graphs G1,G2 ∈ Cycles, with d(G1) = (l1,m1) and d(G2) = (l2,m2), we say
d(G1) < d(G2) if and only if either l1 < l2 holds or l1 = l2 and m1 < m2. Note that for any
graph G ∈ Cycles with d(G) = (l,m), l ≥ 2 (unless G is the graph with no edges).

Claim 4.17. Let G ∈ Cycles. If d(G) = (2, 1), then G ∈ T.

Proof. It is easy to see that G has to be a graph that has a triangle with edge lengths 1, 1
and 2 and no other edges. All such graphs are contained in T by definition. �

Lemma 4.18. For every G ∈ Cycles with d(G) = (l,m), either G ∈ T or there is a t ∈ T,

and H ∈ Cycles such that G = H ⊕ t and d(H) < d(G).

Proof. If G ∈ T , then we are done. So now consider the case when G < T :

Let e be a longest edge in G. Let C be a cycle that contains e. Pick t ∈ T such that e is the
longest edge in t. G can be written as H⊕ t where H = G⊕ t. From Lemma 4.16 and since
T ⊆ Cycles, we know that H ∈ Cycles. Let t have the edges e, e1, e2. Any edge present
in both G and t will not be present in H. Since e ∈ G ∩ t, e < H. Lengths of e1 and e2 are
both less than l since e was the longest edge in t. Hence the number of times an edge of
length l appears in H is reduced by 1 and the new edges added (if any) to H (namely e1

and e2) have length less then l. Hence if m > 1, then d(H) = (l,m − 1) < d(G). If m = 1,
then d(H) = (l′,m′) for some m′ and l′ < l, and hence d(H) < d(G). �
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By repeatedly applying Lemma 4.18, we can obtain the exact combination of triangles
from T that can be used to give any G ∈ Cycles.

Figure 4.5 illustrates such a repeated application of Lemma 4.18 on an example graph G

shown at the top. The numbers in black next to vertices indicate vertex numbers and the
numbers on the edges indicate the edge lengths. The final decomposition S has all graphs
belonging to T . In Figure 4.6, the graphs in S are superimposed on each other. Any edge
that appears twice in the graph formed by the superimposition does not exist in G since G

is a sum modulo 2 of the graphs from S .

A more formal proof will proceed by induction on the parameter d(G) and each appli-
cation of Lemma 4.18 gives a graph H with a d(H) < d(G) and hence allows for the
induction hypothesis to be applied. The base case of the induction is given by Lemma
4.17. Hence T satisfies property 1.

Since T satisfies all three properties, we obtain an NC0 proof system for Cycles, proving
the theorem.

�

4.3 Pushing the Bounds

We know that any language in NP has AC0 proof systems. In the bounded fanin model,
this corresponds to O(log n) depth. A natural question to ask is if depth Ω(log n) is neces-
sary. The class obtained by restricting AC0 by not allowing ∧ gates (∨ gates) to have un-
bounded fanin and forcing all negations to be applied to leaves is called SAC0 (coSAC0).
The class SACi was defined in [BCD+89]. It has been known that SAC0 is not closed
under complement (see [Ven91]) and hence SAC0 ( AC0.

The following theorem implies that there is a language in NP for which any proof system
generating it requires power at least that of SAC0 or coSAC0.

Theorem 4.19 (Srikanth Srinivasan (private communication)). There is a language A in

NP such that any bounded-fanin proof system for A needs Ω(log n) depth.

Proof. Let A ⊆ {0, 1}∗ be an error correcting code of constant rate (For each n, A has
2Ω(n) strings of length n) and linear distance (the Hamming distance between two words
of length n is Ω(n)) that can be efficiently computed. Such codes are known to exist. See
for example [Jus72]. Suppose there is a proof system Cn : {0, 1}m −→ {0, 1}n of depth
d that outputs exactly the strings in A. Assume that C is non-degenerate. i.e., for every
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input position i, ∃x ∈ {0, 1}m such that C(x) , C(x ⊕ ei). Note that m ∈ Ω(n) since A

has constant rate (|A ∩ {0, 1}n| = 2Ω(n)). Note that since each output bit is a function of
at most 2d input bits, it must be the case that there exists an input position i such that
xi is connected to at most O(2d) output positions. For this i, let x be an input such that
C(x) , C(x ⊕ ei). But since C(x) and C(x ⊕ ei) are both codewords in A, they must differ
in at least Ω(n) positions since A is has linear distance. This implies that xi is connected
to at least Ω(n) output positions and this is true for all i. Hence d = Ω(log n). �

However, we note that proof systems for a big fragment of NP do not require the full
power of AC0. In particular, for every language in NP, an extremely simple padding
yields another language with simpler proof systems.

Theorem 4.20. Let L be any language in NP.

1. If L contains 0∗, then L has a proof system where negations appear only at leaf

level, ∧ gates have unbounded fanin, ∨ gates have O(1) fanin, and the depth is

O(1). That is, L has a coSAC0 proof system.

2. If L contains 1∗, then L has a proof system where negations appear only at leaf

level, ∨ gates have unbounded fanin, ∧ gates have O(1) fanin, and the depth is

O(1). That is, L has an SAC0 proof system.

3. The language ({1} · L · {0}) ∪ 0∗ ∪ 1∗ has both SAC0 and coSAC0 proof systems.

Proof. Let L be a language in NP. Then there is a family of uniform polynomial-sized
circuits (Cn), where each Cn has q(n) gates, n standard inputs x and p(n) auxiliary inputs
y, such that for each x ∈ {0, 1}n, x ∈ L ⇐⇒ ∃y : Cn(x, y) = 1. We use this circuit to
construct the proof system. The input to the proof system consists of words x = x1 . . . xn,
y = y1 . . . yp(n), z = z1 . . . zq(n). The intention is that y represents the witness such that
Cn(x, y) = 1, and z represents the vector of values computed at each gate of Cn on input
x, y. There are two ways of doing self-correction with this information:

• Check for consistency: Check that every gate gi = g j◦gk satisfies zi = z j◦zk. Output
the string w where 〈w〉 = 〈x〉 ∧ (

∧q(n)
i=1 [zi = z j ◦ zk]). If even one gate is inconsistent,

w equals 0∗, otherwise w is the input x that has been certified by y, z; hence w is in
L∪ 0∗. Every string in L can be produced by giving witness y and consistent z. The
expression shows that this is a coSAC0 circuit.

• Look for an inconsistency: Find a gate gi = g j ◦ gk where zi , z j ◦ zk. Output the
string w where 〈w〉 = 〈x〉 ∨ (

∨q(n)
i=1 [zi , z j ◦ zk]). If even one gate is inconsistent, w
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equals 1∗, otherwise w equals the input x that has been certified by y, z; hence w is
in L ∪ 1∗. Every string in L can be produced by giving suitable y, z. The expression
shows that this is an SAC0 circuit.

�

4.4 Discussion

Although we expected USTConn to not admit NC0 proof systems, a different way of look-
ing at paths in terms of cycles enabled us to detect if the input was faulty. The generating
set used in the proof system for USTConn is of independent interest and potentially has
applications in other areas.

In the case of directed graphs and STConn, it seems that a natural thing to try would be
to use a directed version of the generating set T used in proof of Theorem 4.13. The
problem with one such approach is that certain cycles might need multiple copies of the
same triangle. Such a need for multiplicities essentially means that the input cannot be
just a bit string anymore, but will have to be a string of natural numbers. Bounding the
multiplicity has proven to be quite difficult so far.

Are there NC0 proof system for STConn or 2TAUT? The results of Chapter 2 and 3 make
it clear that it is not easy to guess one way or the other. We observe that the minterms of
2TAUT cannot have an NC0 proof system:

Proposition 4.21. The language M consisting of the minterms of 2TAUT (under the 4n2

bits encoding described earlier) does not have an NC0 proof system.

Proof. Note that in any minterm m ∈ M, if the terms Ci = (xi ∧ xi) and C′i = (xi ∧ xi)
are present, then no other terms can be present. This is because Ci ∨ C′i is already a
tautology and hence if any other term was present, then the resulting formula would not
be a minterm.

We construct proof system for Exact-Or∪ 0∗ using a proof system for P of M. Let P ∈ P

output a formula F ∈ M on n variables. We construct output string y of length n as
follows: yi = 1 if and only if both Ci and C′i are present in F. It is easy to see that we only
output strings that have at most one 1. This is exactly the language ¬Thn

2 = Exact-Or∪0∗.
Using the lower bound established in Chapter 3 Section 3.1, we conclude that M cannot
have an NC0 proof system. �
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This observation about minterms of 2TAUT does not help in guessing if 2TAUT has an
NC0 proof system. This is because we know that the language LOR has an NC0 proof
system while the language Exact-Or consisting of its minterms does not.

The consequences of Taut having an NC0 proof system suggest that showing that Taut
does not have proof systems computable by such restricted models as NC0 should be easy.
But we are yet to show such a result. In fact, even showing that Taut does not have NC0

proof systems which are further restricted to force each input bit to only influence O(1)
many output bits is still open.

78



+=

+=

+=

+=

=

+ +

+ +

Figure 4.5: Decomposition of G into graphs from T
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Figure 4.6: Decomposition of G into graphs from T (superimposed)
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Chapter 5

Arithmetic Circuits and PIT

In this chapter we study the problem PIT of checking if an input arithmetic circuit is
identically zero. We give deterministic polynomial time algorithms for PIT for certain
restricted classes of polynomials. We start with defining the basic terms and notation.

5.1 Preliminaries

Circuits, formulas, polynomials.

Let X = {x1, . . . , xn} be a set of variables. An arithmetic circuit C over a ring R is a
directed acyclic graph with internal nodes labeled + or × and leaves labeled from X ∪ R.
Every node has in-degree zero or two, and there is exactly one node of out-degree zero,
called the output gate. Unless otherwise stated, we consider R to be the ring of integers
Z, and we allow only the constants {−1, 0, 1} in the circuits. An arithmetic formula F is
an arithmetic circuit where fan-out for every gate is at most one.

The depth of a circuit is the length of a longest root-to-leaf path. The alternation depth
of the formula is the maximum number of maximal blocks of + and × gates on any root-
to-leaf path in the formula. In the literature on identity testing, depth is used to mean
alternation-depth. However we differentiate between these, as is done in uniform circuit
complexity literature, because bounded fanin is crucial to some of our algorithms. Note
that converting a circuit to a bounded fanin circuit increases only the depth, not the size
or the alternation depth.

Every node in C computes a polynomial in R[x1, . . . , xn] in a natural way. Let g be a gate
in a circuit (or formula) C. We denote by pg the polynomial computed at gate g of C.
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We denote by pC the polynomial pr, where r is the output gate of C. For a gate g, let
subvarg

∆
= {xi | xi is a leaf in the subtree rooted under g}.

A read-once arithmetic formula (ROF for short) is an arithmetic formula where each
variable occurs at most once as a label. More generally, in a read-k arithmetic formula a
variable occurs at most k times as a label.

We say that an ROF is constant-free (denoted CF-ROF) if the labels at the leaves are of
the form ax for x ∈ X and a ∈ F \ {0}. We call polynomials computed by such formulas
constant-free ROPs, denoted CF-ROP.

For a polynomial f ∈ F[x1, x2, · · · , xn], a set S ⊆ [n] and an assignment a, let fS→aS

denote the polynomial on variables {xi : i < S } obtained from f by setting x j = a j

for j ∈ S . Using notation from [SV08], for a polynomial f , var( f ) denotes the set of
variables that f depends on non-trivially. We say that f is 0-justified if for all S ⊆ var( f ),
var( f |S→0) = var( f ) \ S . So an ROF F is 0-justified if and only if for every xi ∈ var( f ),
the coefficient of the monomial xi is non-zero.

Complexity Classes.

For all the standard complexity classes, the reader is referred to [AB09]. We provide
below the definitions of some of the less-familiar complexity classes that are used in this
chapter. Let f = ( fn)n≥0 be a family of integer valued functions fn : {0, 1}n → Z. f

is in the complexity class GapL exactly when there is some nondeterministic logspace
machine M such that for every x, f (x) equals the number of accepting paths of M on x

minus the number of rejecting paths of M on x. C=L is the class of languages L such that
for some f ∈ GapL, for every x, x ∈ L ⇔ f (x) = 0. The GapL hierarchy, at an intuitive
level, can be seen as classes of functions built over bit access to other functions, with a
deterministic logspace machine at the base and access to GapL functions at the first level.
It is known to be contained in NC2. Due to technical subtleties in the definition of the
GapL hierarchy, the reader is referred to [AO94, ABO99] or [AV11].

GapNC1 denotes the class of families of functions ( fn)(n≥0), fn : {0, 1}n → Z, where
fn can be computed by a uniform polynomial size log depth arithmetic circuit. This
equals the class of functions computed by uniform polynomial-sized arithmetic formu-
las ([BCGR92]). C=NC1 is the class of languages L such that for some GapNC1 function
family ( fn)n≥0, and for every x, x ∈ L ⇐⇒ f|x|(x) = 0. The GapNC1 hierarchy comprises
of languages accepted by polynomial-size constant depth unbounded fanin circuits (AC0)
with oracle access to bits of GapNC1 functions. It follows from the results of [HAB02]
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that the hierarchy is contained in DLOG.

Notation.

A monomial is represented by the sequence of degrees of the variables. For instance, over
x1, x2, x3, the monomial x2

1 is represented as (2, 0, 0), and the monomial x1x3 is represented
as (1, 0, 1). For a degree sequence m = (d1, . . . , dn) we denote the monomial

∏n
i=1 xdi

i

by Xm. For any set S ⊆ [n], we denote by mS the multilinear monomial
∏

i∈S xi. For a
monomial m and polynomial p, coeff(p,m) denotes the coefficient of m in p. [statement S ]
is a Boolean 0-1 valued predicate that takes value 1 exactly when the statement S is true.

We use the following short-forms for some computational problems used in this chapter.

PIT: Short for Polynomial Identity Test. Given an arithmetic circuit C over Z, test if the
polynomial pC computed by C is identically zero or not.

MLIN: Short for ’Multilinear’, the problem is to decide if a given arithmetic circuit C

computes a polynomial that is multilinear or not.

ExistExtMon: Short for “Exists an Extension to a given Monomial”. Given an arithmetic
circuit C, and a monomial m, test if there is a monomial M with non-zero coefficient
in pC such that M extends m; that is, m|M.

Note that for a polynomial p, when the input monomial is a single variable xi, Exis-

tExtMon reduces to checking if the partial derivative of p with respect to xi is identically
zero.

The following propositions list some of the known results we use in this chapter.

Proposition 5.1 ((follows from [BCGR92, HAB02])). Evaluating an arithmetic formula

where the leaves are labelled {−1, 0, 1} is in DLOG (even GapNC1).

Proposition 5.2 ([SV08]). Given k ROFs in n variables, there is a deterministic (non

black-box) algorithm that checks whether they sum to zero or not. The running time of the

algorithm is nO(k).

Proposition 5.3 ([AvMV11]). Given as input a read-k arithmetic formula F on n vari-

ables of size s that has the property that the polynomial computed by every subformula is

multilinear, there is a deterministic algorithm that checks if F is identically zero. The run-

ning time of the algorithm is sO(1)nkO(k)
(for constant read, this running time is polynomial

in n).
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The following result can be obtained by easy reductions to known log-space complete
problems [CM87].

Proposition 5.4 ([CM87]). The following problems are in DLOG:

1) Given a formula F, a gate g ∈ F, and a variable x, check whether x ∈ subvarg.

2) Given a rooted tree T , and two nodes u, v, find lowest common ancestor (LCA) of u and

v.

5.2 Multilinearity and identity tests

In this section we consider read-restricted formulas, and the problems of testing mul-
tilinearity MLIN and testing identically zero PIT on read-2 and read-3 formulas. One
way to test multilinearity is to take second order partial derivatives with respect to each
variable and then check for identity on each of the resulting polynomials as described in
[FMM12b]. The problem with this approach, when applied to read restricted formulas,
is that computing partial derivatives as given in [FMM12b] could increase the number of
times a variable is read and hence require computing PIT on a higher read formula.

In the following we show how to compute MLIN and PIT for the read-2 case:

Read-2 Formulas

The individual degree of a variable in a polynomial p computed by read-twice formula F

is bounded by two. Thus, multilinearity testing boils down to testing if the second order
partial derivative of F with respect to xi is zero for every variable xi. Note that the second-
order partial derivative of F with respect to xi is a polynomial in n−1 variables; thus MLIN

reduces to n instances of PIT on n − 1 variables. Our approach is to use the inductive
structure of a read-twice polynomial to test these partial derivatives for zero, using the
knowledge of multilinearity of gates at the lower levels. As an aid in this computation,
we also check, for each gate g and each variable x, whether x survives in pg. We say that
x survives in g if ExistExtMon(g, x) = 1 (this is equivalent to saying x ∈ var(g)).

Theorem 5.5. For read-twice formulas, the problems PIT, ExistExtMon(φ, x), and MLIN

(where φ is the input formula and x is a single variable in it) are in P.

Proof. Let φ be the given read-twice formula on variables x1, . . . , xn, with S internal
nodes. Without loss of generality, assume that φ is strictly alternating. That is, inputs to

84



a + gate are either leaves or are × gates, and inputs to a × gate are either leaves or are +

gates.

We proceed by induction on the structure of the formula φ.

We iteratively compute, for each gate g in φ and each variable x ∈ X, the following set of
0-1 valued functions:

PIT(g) = 1 ⇔ pg ≡ 0

MLIN(g) = 1 ⇔ pg is multilinear

ExistExtMon(g, x) = 1 ⇔ x survives in pg (i.e., pg has a monomial m that contains x)

The base case is when φ is a single variable or a constant. That is, φ consists of a single
gate g that is labelled L ∈ {x1, . . . , xn} ∪ {0,+1,−1}. Then PIT(g) = 1 if and only if L = 0,
MLIN(g) = 1 always, and ExistExtMon(g, x) = 1 if and only if L = x.

Now assume that for every gate u below the root gate of φ, the above functions have been
computed and stored as bits. Let f be the root gate of φ. We show how to compute these
functions at f . The order in which we compute them depends on whether f is a × or a +

gate.

First, consider f = g × h. We compute the functions in the order given below.

1. PIT( f ): f is identically zero if and only if at least one of g, h is. Thus PIT( f ) =

PIT(g) ∨ PIT(h).

2. MLIN( f ): If f is identically zero, then it is vacuously multilinear. Otherwise, for it
to be multilinear, it must be the product of two (non-zero) multilinear polynomials
in disjoint sets of variables. Thus

MLIN( f ) = PIT( f ) ∨

MLIN(g) ∧MLIN(h)∧∧
x∈X

[
¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x)

]
Note that the PIT( f ) term is necessary, since f can be multilinear even if, for in-
stance, g is not, provided h ≡ 0.

3. ExistExtMon( f , x): x appears in p f if and only if p f . 0 and x appears in at least
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one of pg, ph. Thus

ExistExtMon( f , x) = ¬PIT( f ) ∧
[
ExistExtMon(g, x) ∨ ExistExtMon(h, x)

]
Next, consider f = g + h. We compute the functions in the order given below.

1. MLIN( f ): Since f is read-twice, a non-multilinear monomial in g cannot get can-
celled by a non-multilinear monomial in h; that would require at least 4 occurrences
of some variable. Thus, f is multilinear only if both g and h are. The converse is
trivially true. Thus MLIN( f ) = MLIN(g) ∧MLIN(h).

2. ExistExtMon( f , x): This is the non-trivial part of this proof; we defer the description
to a bit later.

3. PIT( f ): Once we compute the functions above, this is straightforward:

PIT( f ) = [ f (0) = 0] ∧
∧
x∈X

¬ExistExtMon( f , x)

Checking if f (0) = 0 is feasible; see Proposition 5.1.

We now complete the description for computing ExistExtMon( f , x) when f = g + h. If x

survives in neither g nor h, then it does not survive in f . But if it survives in exactly one
of g, h, it cannot get cancelled in the sum, so it survives in f . Thus

ExistExtMon(g, x) = 0 ∧ ExistExtMon(h, x) = 0 =⇒ ExistExtMon( f , x) = 0

ExistExtMon(g, x) ⊕ ExistExtMon(h, x) = 1 =⇒ ExistExtMon( f , x) = 1

So now assume that x survives in both g and h. We can write the polynomials computed
at g, h as pg = αx + α′ and ph = βx + β′, where α′, β′ do not involve x; and we know that
α . 0, β . 0. We want to determine whether α + β ≡ 0.

Since x appears in Vg and Vh, and since f is read-twice, we conclude that x is read exactly
once each in g and in h. Hence α, β also do not involve x.

We construct a formula computing α as follows: In the sub-formula rooted at g, let ρ be
the unique path from x to g. For each + gate u on the path ρ, let u′ be the child of u not
on ρ; replace u′ by the constant 0. Thus we retain only the parts that multiply x; that is,
we compute αx. Setting x = 1 gives us a formula G computing α. A similar construction
with the formula rooted at h gives a formula H computing β. Set F = G + H. Note that F
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is also a read-twice formula, and it computes α+β. Thus in this case ExistExtMon( f , x) =

1⇔ PIT(F) = 0, so we need to determine PIT(F).

Let Y denote the set of variables appearing in F; Y ⊆ X \ {x}. Partition Y:

A: variables occurring only in G; B: variables occurring only in H;
C: variables occurring in G and H.

If A∪B = ∅, then Y = C, and each variable in F appears once in G and once in H. That is,
both G and H are read-once formulas. We can now determine PIT(F) in time polynomial
in the size of F using Proposition 5.2.

If A∪B , ∅, then let y ∈ A. If y survives in G, it cannot get cancelled by anything in H, so
it survives in F and F . 0. Similarly, if any y ∈ B survives in H, then F . 0. We briefly
defer how to determine this and complete the high-level argument. If no y ∈ A survives in
G, and no y ∈ B survives in H, then let F′ = G′+ H′ be the formula obtained from F,G,H

by setting variables in A ∪ B to 0. Clearly, the polynomial computed remains the same;
thus α + β = pF = pF |A∪B←0 = pF′ . But F′ satisfies the previous case (with respect to F′,
A′∪B′ = ∅), and so we can use Proposition 5.2 as before to determine PIT(F′) = PIT(F).

What remains is to describe how we determine whether a variable y ∈ A survives in G.
(The situation for y ∈ B surviving in H is identical.) We exploit the special structure of
G: there is a path ρ where all the + gates have one argument 0 and the path ends in a leaf
labeled 1. Let T = {T1, . . . ,T`} be the subtrees hanging off the × gates on ρ; let ui be the
root of Ti. Note that each Ti ∈ T is a sub-formula of our input formula φ, and hence by
the iterative construction we know the values of the functions PIT, MLIN, ExistExtMon at
gates in these sub-trees. In fact, we already know that PIT(ui) = 0 for all i, since we are
in the situation where α . 0, and α =

∏`
i=1 pui . Hence, if y appears in just one sub-tree Ti,

then ExistExtMon(G, y) = ExistExtMon(ui, y). If y appears in two sub-trees Ti,T j, then
ExistExtMon(G, y) = ExistExtMon(ui, y) ∨ ExistExtMon(u j, y). �

A question that arises naturally here is whether this algorithm is optimal, or whether the
PIT problem for read-twice formulas is in some class smaller than P. Note that the input
formula F can be re-structured into an equivalent log-depth formula F′, as described in
[Bus87, BCGR92]. If the resulting formula is also read-twice, then it appears that the
above algorithm can be applied to F′, with a careful implementation to keep track of par-
tial values, to yield an upper bound in NC. However, we have not examined the possibility
of such an implementation, because it is not at all clear that the depth restructuring does
actually preserve the number of times a variable is read.
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Read-3 Formulas

The algorithm in the previous subsection crucially uses the PIT algorithm from [SV08]
for k-sum-of-ROFs. A stronger result due to [AvMV11] gives PIT algorithms for read-k
formulas that compute multilinear polynomials at each node. Using this algorithm instead
of [SV08], we obtain poly-time PIT and MLIN tests for read-thrice (as opposed to read-
twice) formulas. However, we pay a cost: we can no longer check at every node g whether
a variable survives at g (the bit ExistExtMon(g, x)). We can compute this information
only at nodes g where all descendants compute multilinear formulas. The fact that we
can compute ExistExtMon(g, x) everywhere in the read-twice case may be of independent
interest (it seems to be a useful fact where enumerating monomials is concerned). In the
following, we prove that for read-3 formulas, PIT and MLIN are in P:

Theorem 5.6. Given a read-thrice formula F with leaves labeled by variables from X =

{x1, . . . , xn} or constants from {−1, 0, 1} and nodes labeled + or ×, there is an efficient

deterministic algorithm that decides if F computes the identically zero polynomial, and if

not, whether it computes a multilinear polynomial.

Proof. Algorithm Idea: We proceed bottom-up, processing nodes of the formula, collect-
ing as much information as possible/necessary about the polynomial computed at each
node. The type of information collected for a node g could be: MLIN(g),PIT(g),ExistExtMon(g, x)
for x ∈ X.

For nodes g computing multilinear polynomials, we will compute all this information.

For nodes where we detect non-multilinearity (and hence know that the polynomial is not
identically zero), we will not compute any additional information.

We repeatedly use collected information to prune the formula. For instance, we ensure
that no leaf is labeled 0 by moving the zeroes up (replace g + 0 by g; g × 0 by 0). We
ensure that for each non-leaf node g, var(g) , ∅ (replace a node adding or multiplying
constants by a leaf labeled with the resulting value). Note that the resulting formulas can
have any constants from Z at the leaves.

Further, for nodes g where we determine that the identically zero formula is computed,
we will cut away the subformula rooted at g, replacing it by a leaf labelled zero, and then
eliminate the zero-leaf as discussed above. Thus a node that is processed and not deleted
necessarily computes a non-zero polynomial.

We will also maintain the following property: for nodes g where we determine that a mul-
tilinear formula is computed, the subformula rooted at g computes multilinear formulas
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at each node.

Assume that we have a pruned formula. At a leaf, the required information is trivial to
compute. Consider a node f where the information has been computed at the children of
f .

Case 1: f = g × h. PIT( f ) = PIT(g) ∨ PIT(h). However, by the pruning we have de-
scribed above, we know that g, h . 0 and so f . 0, PIT( f ) = 0.

Since f . 0, if either of g, h is non-multilinear then so is f . If both g and h are
multilinear, then f is multilinear if and only no variable survives in both g and h.
Thus we can compute MLIN( f ) from the information at g, h:

MLIN( f ) = MLIN(g) ∧MLIN(h) ∧
∧
x∈X

(¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x))

When f is multilinear, we need to compute the auxiliary information as well. Note
that we have already ensured that all nodes below g and h compute multilinear poly-
nomials, so this property is already true for f . For any x ∈ X, ExistExtMon( f , x) =

ExistExtMon(g, x) ∨ ExistExtMon(h, x).

Case 2: f = g + h. Computing MLIN( f ): Since the formula is read-thrice, if any one of
g, h (say g) is not multilinear and hence has an x2 term for some x ∈ X, then this
term cannot be cancelled by the other summand (say h) since h has at most one
occurerence of x. So f is not multilinear. If g, h are both multilinear, then so is
g + h. Thus

MLIN( f ) = MLIN(g) ∧MLIN(h)

Computing PIT( f ): If f is not multilinear, then f . 0 and so PIT( f ) = 0. In this
case, we do not compute any further information about f .

But if f is multilinear, we still need to check if f ≡ 0. We have already ensured that
all nodes in the sub-formulas rooted at g, h and hence in the sub-formula rooted at
f compute multilinear polynomials. And the sub-formula is read-thrice. So using
Proposition 5.3, we can test whether f ≡ 0.

Computing the remaining information: If we detect that a multilinear f is identi-
cally 0, we replace the subformula rooted at f by 0 and move the constants up as
far as possible.

If we detect that f is multilinear but f . 0, then we need to compute the bits
ExistExtMon( f , x). By multilinearity, f (X) = Ax + B where A, B do not use x.
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We want to know if A ≡ 0 (this is equivalent to ExistExtMon( f , x) = 0). A is
computed by the formula f |x=1 − f |x=0. We have already ensured that all nodes in
the sub-formulas rooted at g, h and hence in the sub-formula rooted at f compute
multilinear polynomials. Thus the formula for A is multilinear and reads every
variable at most 6 times. Using Proposition 5.3, we can test whether A ≡ 0.

�

From now on, it is more convenient for us to allow leaves to be labeled by forms ax+b for
some x ∈ X and some a, b ∈ F. This does not change the class of polynomials computed,
even when restricted to ROFs. Henceforth we assume that ROFs are of this form.

5.3 Identity testing for
∑(2)
·
∏
·ROPs over Z or Q

In this section we show that PIT can be solved efficiently for formulas presented in the
form f1 f2 . . . fm + g1g2 . . . gs, where each of the fi, g j is an ROF over the field of rationals.

Theorem 5.7. Given Read-Once Formulas computing each of the polynomials f1, f2, · · · , fr,

g1, g2, . . . , gs ∈ Q[x1, . . . , xn], checking if f1 · f2 · · · fr ≡ g1 · g2 · · · gs can be done in deter-

ministic polynomial time.

A crucial ingredient in our proof is the following structural characterization from [RS11,
RS13] and its constructive version; this is a direct consequence of the characterisation of
ROPs given in [SV08].

Lemma 5.8 ([RS13]). Let f . 0 be an ROP. Then exactly one of the following holds:

1. k ≥ 1, there exist ROPs f1, . . . , fk, with var( fi)∩var( f j) = ∅ for all distinct i, j ∈ [k],
such that f = a + f1 + · · · + fk, for some a ∈ F, and each fi is either uni-variate or

decomposes into variable-disjoint factors.

2. k ≥ 2, there exist ROPs f1, . . . , fk, with var( fi)∩var( f j) = ∅ for all distinct i, j ∈ [k],
such that f = a × f1 × f2 × · · · × fk for some a ∈ F \ {0}, and none of the fis can be

factorised into variable-disjoint factors.

Furthermore, ROFs computing such fis can be constructed from an ROF computing f in

polynomial time.
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Given an ROF over Q, we can clear all denominators to get an ROF over Z, without
changing the status of the ? ≡ 0? question. So we now assume that all the numbers
a, b appearing in the ROF (recall, leaf labels are of the form ax + b) are integers. For a
polynomial p(X), let content(p(X)) denote the greatest common divisor (gcd) of the non-
zero coefficients of p. The next crucial ingredient in our proof is that for an ROF f , we
can efficiently compute its content.

Lemma 5.9. There is a polynomial-time algorithm that, given an ROF f in Z[X], com-

putes content( f ) and constructs an ROF f ′ in Q[X] such that f = content( f ) · f ′.

Proof. It suffices to show how to compute content( f ); then the ROF f ′ is just 1
content( f ) × f .

We proceed bottom-up, or alternatively, we prove this by induction on the structure of f .

For a polynomial p ∈ Z[X], let p̂ = p − p(0), where p(0) = p(0, . . . , 0), and let p̂′ be the
polynomial such that p̂ = content( p̂)p̂′.

If f is a single leaf node, then computing content( f ) and content( f̂ ) is trivial. Otherwise,
say f = g ◦ h. Since f is an ROF, var(g) ∩ var(h) = ∅.

Case f = g + h: Then f̂ = ĝ + ĥ, and f (0) = g(0) + h(0). So

content( f ) = gcd(content(ĝ), content(ĥ), g(0) + h(0)),

content( f̂ ) = gcd(content(ĝ), content(ĥ)).

Case f = g × h: Then f̂ = ĝĥ + h(0)ĝ + g(0)ĥ, and f (0) = g(0)h(0). We can show that

Claim 5.10. For any two variable-disjoint polynomials p, q ∈ Z[X], content(pq) =

content(p)content(q).

Proof. Let p = content(p)(a1M1 + a2M2 + · · ·+ akMk) and q = content(q)(b1N1 + b2N2 +

· · · + b`N`), where Mi,N j are monomials. By definition of content, gcd(. . . , ai, . . .) =

gcd(. . . , b j, . . .) = 1. Since p and q are variable-disjoint, every monomial of the form
content(p)content(q)(aib jMiN j) appears in the polynomial p × q, and there are no other
monomials. Hence content(p)content(q)|content(p × q). For the converse, we need to
show that gcd(S ) = 1, where S = {aib j | i ∈ [k], j ∈ [`]}. Suppose not. Let c be the largest
prime that divides all numbers in S . Then, ∀i ∈ [k],

c|aib1 and c|aib2 and . . . and c|aibk.

Hence c|ai or (c|b1, c|b2, · · · , c|b`) .

Hence c|ai or c = 1, since gcd(b1, . . . , b`) = 1.
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Thus we conclude that c divides gcd(a1, . . . , ak) = 1, a contradiction. �

Using this claim, we see that

content( f ) = content(g) × content(h),

content( f̂ ) = gcd(content(ĝ)content(ĥ), h(0)content(ĝ), g(0)content(ĥ)).

�

Now we have all the ingredients for proving Theorem 5.7.

Proof of Theorem 5.7. Let f = f1 · f2 · · · fr and g = g1 · g2 · · · gs As discussed above,
without loss of generality, each fi, gi is in Z[X]. Using Lemmas 5.8 and 5.9, we can
compute the irreducible variable-disjoint factors of each fi and each gi, and also pull out
the content for each factor. That is, we express each fi as αi fi,1 · · · fi,ki , and each gi as
βigi,1 · · · gi,`i where the fi, js, gi, js are irreducible and have content 1. We obtain ROFs in
Q[X] for each of the fi, js and gi, js. Note that if

∑
i ki ,

∑
j ` j, then there cannot be a

component-wise matching between the factors of f and g, and hence we conclude f . g.
Otherwise,

∑
i ki =

∑
j ` j. We now form multisets of the factors of f and of g, and we

knock off equivalent factors one by one. (See Algorithm 1.) Detecting equivalent factors
(the condition in Step 6) requires an identity test p ≡ q?, or p− q ≡ 0?, for ROFs in Q[X].
Since we have explicit ROFs computing p and q, this can be done using Proposition
5.2. �

Recently, Amir Shpilka observed that the proof of Theorem 5.7 can be modified to work
for polynomials over any field F. We sketch the proof specifically for the part that is
different from proof of Theorem 5.7:

Theorem 5.11 (Amir Shpilka (private communication)). Given Read-Once Formulas

computing each of the polynomials f1, f2, · · · , fr, g1, g2, . . . , gs ∈ F[x1, . . . , xn], checking if

f1 · f2 · · · fr ≡ g1 · g2 · · · gs can be done in deterministic polynomial time.

Proof. We use Lemma 5.8 to obtain a product of irreducible factors for each fi and gi.
That is, we express each fi as fi,1 · · · fi,ki , and each gi as gi,1 · · · gi,`i where the fi, js and gi, js
are irreducible. Since these polynomials are over an arbitrary field F, the notion of content
does not exist. The factorization is now unique only upto scalar multiples. We show how
to handle this. Similar to proof of Theorem 5.7, we want to find a match on the right side
for each irreducible component from the left side. For ease of notation, let p = fi, j and
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Algorithm 1 Test if
∏r

i=1 αi
∏ki

j=1 fi, j ≡
∏s

i=1 βi
∏`i

j=1 gi, j

1: S ← { f1,1, · · · , f1,k1 , f2,1, · · · , f2,k2 , . . . , fr,1, · · · , fr,kr}

2: T ← {g1,1, · · · , g1,`1 , g2,1, · · · , g2,`2 , . . . , gs,1, · · · , gs,`s}

3: (Both S and T are multisets; repeated factors are retained with multiplicity.)
4: for p ∈ S do
5: for q ∈ T do
6: if p ≡ q then
7: if S and T have unequal number of copies of p and q then
8: Return No
9: else

10: S ← S \ {p}. (Remove all copies).
11: T ← T \ {q}. (Remove all copies).
12: end if
13: end if
14: end for
15: end for
16: if (α1α2 · · ·αr = β1β2 · · · βs) ∧ (S = T = ∅) then
17: Return Yes
18: else
19: Return No
20: end if

q = gu,v. We want to check if q is a match for p. i.e., is p = cq for some c ∈ F? p

and q are both ROPs and hence the individual degree of each variable is at most 1. We
know that p . 0 and q . 0. By Combinatorial Nullstellensatz ([Alo99] or see Proposition
5.13 below), it must be the case that there is an ~a ∈ {0, 1}n such that p(a) , 0. We find a

using Algorithm 2. Step 3 of the algorithm can be achieved using Proposition 5.2. Once
we have ~a, we set c = p(~a)/q(~a). We then check if p − cq ≡ 0 using Proposition 5.2.
If yes, then we knock off p and q from their respective sides and continue this process
of finding a component wise matching while retaining c as a scalar multiple on the right
side. If p − cq . 0, then q is not a match for p and we continue trying to find a match
for p exactly like in proof of Theorem 5.7. If no match is found, then the inputs are not
identically equal.

�

5.4 PIT for sums of powers of low degree polynomials

In this section, we give a blackbox identity testing algorithm for multilinear sums of
powers of low-degree polynomials.
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Algorithm 2 Find ~a ∈ {0, 1}n such that p(a) , 0
1: for k = 1 to n do
2: a[k]← 0
3: if p|xk=0 ≡ 0 then
4: a[k]← 1
5: p← p|xk=1

6: else
7: p← p|xk=0

8: end if
9: end for

We say that a polynomial f has a sum-powers representation of degree d and size s if
there are polynomials fi each of degree at most d, and a set of positive integers ei, such
that f = f e1

1 + . . . + f es
s . In [Kay12], it is shown that computing the full multilinear

monomial Mn = x1x2 · · · xn using sums of powers of low-degree polynomials requires
exponentially many summands:

Proposition 5.12. [Kay12] There is a constant c such that for the polynomial x1x2 · · · xn,

any sum-powers representation of degree d requires size s ≥ 2
cn
d .

Shpilka and Volkovich [SV08] proved that sum of less than n/3 0-justified ROPs cannot
equal Mn, and used it to obtain a black-box PIT algorithm for bounded sums of ROPs.
Using these ideas along with Proposition 5.12, we note that such a hardness of represen-
tation for sums of powers of low-degree polynomials, where the final sum is multilinear,
gives sub-exponential time algorithms for black-box PIT for this class.

Let R = {0, 1} ⊆ F be a finite set that contains 0. For any k > 0, define

Wn
k (R) , {~a ∈ Rn| ~a has at most k non-zero coordinates}.

In Theorem 7.4 of [SV10], it is shown that for a certain kind of formula F (k-sum of
degree-d 0-justified preprocessed ROP), and for any R ⊆ F containing 0 and of size at
least d + 1, F ≡ 0 if and only if F |Wn

3k(R)≡ 0. The proof uses the Combinatorial Nullstel-
lensatz [Alo99], see also Lemma 2.13 in [SV10]. We re-state it here for convenience:

Proposition 5.13 (Combinatorial Nullstellensatz, [Alo99]). Let P ∈ F[x1, . . . , xn] be a

polynomial where for every i ∈ [n], the degree of xi is bounded by t. Let R ⊆ F have size

at least t + 1, and S = Rn. Then P ≡ 0⇔ P|S ≡ 0.

Along similar lines, using Propositions 5.12,5.13, we show that

Lemma 5.14. Let C(n, s, d) be the class of all n-variate multilinear polynomials that

have a sum-powers representation of degree d and size s. Let c be the constant from
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Proposition 5.12. For f ∈ C(n, s, d), R = {0, 1}, and k = (d log s)/c, f |Wn
k (R) ≡ 0 ⇐⇒

f ≡ 0.

Proof. The⇐ direction in the claim is trivial. To prove the⇒ direction, we proceed by
induction on n.

Base case: n ≤ k. Then Wn
k (R) = Rn. Using Proposition 5.13 (since f is multilinear, R is

large enough), we conclude that f ≡ 0.

Induction Step: n > k. Suppose f . 0. Consider any i ∈ [n], and let f ′ = f |xi=0.
Then f ′ ∈ C(n − 1, s, d). Since f |Wn

k (R) ≡ 0, we have f ′|Wn−1
k (R) ≡ 0. So by the induction

hypothesis, f ′ ≡ 0. Hence xi| f . Since this holds for every i ∈ [n], the monomial x1 · · · xn

must divide f . Since f is multilinear, it must be that f = x1 · · · xn. But n > k = (d log s)/c,
so s < 2cn/d. This contradicts Proposition 5.12. Hence we conclude f ≡ 0. �

This gives the required black-box PIT algorithm, since for our choice of k in the above
lemma, |Wn

k ({0, 1})| ∈ nO(k) ∈ 2O(d log s log n). Thus

Theorem 5.15. Let C(n, s, d) be the class of all n-variate multilinear polynomials that

have a sum-powers representation of degree d and size s. There is a deterministic black-

box PIT algorithm for C(n, s, d) running in time 2O(d log n log s).

We note that a more general result follows from Proposition 5.12 and Lemma 2.17 from
[AvMV14] that was shown recently.

Remark 5.16. Though f is multilinear in Lemma 5.14 (and hence Theorem 5.15), the

polynomials fi in the sum-powers representation of f need not be multilinear.

5.5 Hardness of representation for sum of powers of CF-
ROPs

The hardness of representation result from [Kay12], stated in Proposition 5.12, and its
precursor from [SV08],[SV10], are both for Mn, the former using low-degree polyno-
mials and the latter using a kind of ROPs called 0-justified ROPs. Note that ROPs, even
when 0-justified, can have high degree, so these results are incomparable. Here we extend
such a hardness result in two ways.

Our first hardness result is for elementary symmetric polynomials Symn,d, not just for
d = n when we get Symn,d = Mn. It works against another subclass of ROPs, CF-ROF;
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as is the case in [SV08, SV10], this class too can have high-degree polynomials. Recall
that this class consists of polynomials computed by read-once formulas that have + and
× gates, and labels ax at leaves (a , 0). Hence for any f in this class, f (0) = 0. We show
that powers of such polynomials cannot add up to elementary symmetric polynomials of
arbitrary degree d ≤ n unless there are many such summands. First, we establish a useful
property of this class.

Lemma 5.17. For every CF-ROP f ∈ F[x1, . . . , xn], there is a set S ⊆ [n] with |S | ≤

|var( f )|/2 such that deg( f |S→0) ≤ 1.

Proof. Consider a CF-ROF F computing f . If F has a single node, then f is already
linear, so set S = ∅. Otherwise, F = G1 ◦ G2, where G1,G2 are variable-disjoint CF-
ROFs computing CF-ROPs g1, g2, respectively.

Case 1: ◦ = ×. Without loss of generality, assume |var(g1)| ≤ |var( f )|/2. For S = {i : xi ∈

var(g1)}, g1|S→0 ≡ f |S→0 ≡ 0.

Case 2: ◦ = +. Inductively, we can find sets S i of at most half the variables of each gi,
such that gi|S i→0 has degree at most 1. Define S = S 1 ∪ S 2. Since G1,G2 are variable-
disjoint, |S | ≤ |var( f )|/2, and f |S→0 has degree at most 1. �

We use this to get our hardness-of-representation result for CF-ROPs, irrespective of
degree.

Theorem 5.18. Fix any d ∈ [n]. Suppose there are CF-ROPs f1, . . . , fk, and positive

integers e1, . . . , ek such that
k∑

i=1

f ei
i = Symn,d.

Then k ≥ min{log n
d , 2

Ω(d)}.

Proof. Let f = Symn,d.

We repeatedly apply Lemma 5.17 to restrictions of the fi’s to obtain a formula of degree
at most 1. Let S 0 = T0 = ∅, and let S i+1 be the set obtained by applying the Lemma to
fi+1|Ti→0, where each Ti = S 1 ∪ . . . ∪ S i. Define S = Tk. Since at least half the variables
survive at each stage, we see that r , |var( f |S→0)| ≥ |var( f )|/2k = n/2k.

• If r ≥ d, then f |S→0 = Symr,d . 0. Add any r − d surviving variables to the set
S to obtain the expression Symd,d = f |S→0 =

∑k
i=1( fi|S→0)ei where each fi is either

linear or identically 0. Let k′ be the number of non-zero polynomials fi|S→0. By
Proposition 5.12, k′ ∈ 2Ω(d), and k ≥ k′.
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• If r < d, then n/2k ≤ r < d. So k > log( n
d ).

Thus if k ≤ log n
d , then k ∈ 2Ω(d). �

What this tells us is that there is a threshold r ∼ log log n such that any sum-powers
representation of Symn,d using CF-ROPs needs size 2Ω(d) for d ≤ r, and size ≥ log n

d for
d ≥ r.

Our second hardness result is forMn, but works against a different class of ROFs. These
ROFs may not be constant-free, but they have bounded alternation-depth, and are also
0-justified. Again, first we establish a useful property of the class.

Lemma 5.19. Let f ∈ F[x1, . . . , xn] be computed by an ROF with alternation depth 3.

For any degree bound 1 ≤ d ≤ n, there is an S ⊆ [n] of size at most |var( f )|/d, and an

assignment of values AS to the variables xi for i ∈ S , such that deg( f |S→A) ≤ d. Moreover,

if f is 0-justified, then we can find an AS with all non-zero values.

Proof. Let f be computed by the ROF F with alternation depth 3, where no gate computes
the 0 polynomial.

If the top gate in F is a +, then F =
∑r

i=1 fi, where each summand fi is of the form∏ti
j=1 `i, j and the factors `i, j’s are linear forms on disjoint variable sets. We find a partial

assignment that kills all summand of degree more than d. For each such summand fi,
identify the factor with fewest variables, and assign values to the variables in it to make
it 0. We assign values to at most |var( fi)|/d variables, so overall no more than |var( f )|/d
variables are set.

Further, if f is 0-justified and read-once, then each fi is also a 0-justified ROF. Hence no
factor of fi vanishes at 0; each factor `i, j is of the form

∑p
k=1 ai, j,kxi, j,k − ci, j where ci, j , 0.

We can kill such a factor with an assignment avoiding 0s (eg set xi, j,k = ci, j/pai, j,k.)

If the top gate in F is a ×, then F =
∏r

i=1 Fi, where the Fi have alternation depth 2 and
are on disjoint variables. If f has degree more than d, it suffices to kill any one factor
Fi to make the polynomial 0. Choosing the factor with fewest variables, and proceeding
as above, we set no more than |var( f )|/d variables. Again, since F is an ROF, if F is
0-justified, then so are the Fi. So AS can be chosen avoiding 0s. �

Using this, we get a hardness of representation result for 0-justified alternation-depth 3
ROPs.
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Theorem 5.20. Let ε ∈ (0, 1
2 ). If there are 0-justified, alternation-depth-3 ROPs f1, . . . , fs,

and non-negative integers e1, . . . , es such that

s∑
i=1

f ei
i = x1 · · · xn

then s ≥ n
1
2−ε .

Proof. Let d be a parameter to be chosen later. We identify a subset of variables S and an
assignment A avoiding zeroes to variables of S , such that under this partial assignment,
all the fi’s are reduced to degree at most d. We show that for any d ∈ [n], this is possible
with |S | = t ≤ s2n

d . This gives a sum-powers representation of degree d and size s for∏
xi<S xi = Mn−t. Invoking Kayal’s result from Proposition 5.12, we see that s ≥ 2c(n−t)/d,

and hence log s + cns2

d2 ≥
cn
d . Choosing d = 4n1−2ε , we conclude that s ≥ n

1
2−ε .

The construction of S proceeds in stages. At the kth stage, polynomials f1, . . . , fi−1 have
already been reduced to low-degree polynomials, and we consider fi. We want to use
Lemma 5.19 at each stage. This requires that each polynomial fi, after all the substitu-
tions from the previous stages, is still a 0-justified ROF with alternation-depth 3. The
alternation-depth-3 ROF is obvious; it is only maintaining 0-justified that is a bit tricky.
We describe the construction for stage 1; the other stages are similar.

Applying Lemma 5.19 to f1 with d as the parameter, we obtain a set R1 of variables with
|R1| ≤ n/d and an assignment AR1 avoiding 0, such that deg( f1|R1→AR1

) ≤ d. It may be the
case that for some i > 1, the polynomial fi|R1→AR1

is no longer 0-justified. We fix this by
augmenting R1 as follows.

Assume first that the ROFs for all the fi’s have top-gate +; we will discuss top-gate ×
later. So, as discussed in the proof of Lemma 5.19, each fi has the form

∑∏
` j,k where

each ` j,k is a linear form. If fi|R1→AR1
is not 0-justified, then some of the linear forms in

it are homogeneous linear (no constant term). We identify such linear forms in each fi,
i ≥ 2. Call this set L1. That is,

L1 =

{
` |
` is a linear form at level-2 of some fi; `|R1→AR1

is homogeneous linear but not
identically 0.

}
Since each fi is a ROF, it contributes at most |R1| linear forms to L1. Hence |L1| ≤ (s −

1)|R1|. Now pick a minimal set T1 of variables from X \ R1 that intersects each of the
linear forms in L1. By minimality, |T | ≤ |L1| ≤ (s − 1)|R1|. We want to assign non-
zero values AT1 to variables in T1 in such a way that for all i ≥ 2, the fi|R1→AR1 ;T1→AT1

are 0-justified. We must ensure that the linear forms in L1 become homogeneous (or
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vanish altogether), and we must also ensure that previously non-homogeneous forms do
not become homogeneous. To achieve this, consider

L2 =

{
` |
` is a linear form at level-2 of some fi; `|R1→AR1

. 0;
`|R1→AR1

contains a variable from T1.

}
Clearly, L1 ⊆ L2. It suffices to find an assignment AT1 to variables in T1, avoiding ze-
roes, such that for each ` ∈ L2, either `|R1→AR1 ;T1→AT1

≡ 0 or `|R1→AR1 ;T1→AT1
(0) , 0. For

sufficiently large fields, such an assignment can always be found.

If some of the fi’s have top-gate ×, we need only a minor modification. We use this fact:

Observation 5.21. If F =
∏

Fr is a read-once formula, then F is 0-justified if and only

if for each r, Fr is 0-justified and satisfies Fr(0) , 0.

Treat each factor of the polynomials with top-gate × exactly as we dealt with the other
polynomials. Add their level-2 linear factors to L1. Note that each such fi can have many
factors, but since it is read-once, any one variable can occur in at most one of these factors.
So fi still contributes no more than R1 linear forms to L1. Also modify the definition of L2

to include also all linear forms at level 3 of such fi’s, containing a variable of T1. Finally,
look for an assignment also satisfying the additional condition that the factors do not
vanish at 0. Again, over sufficiently large fields, it is possible to find such an assignment.

Now we set S 1 = R1 ∪ T1, and A1 = AR1 ∪ AT1 . We have ensured the following:

1. deg( f1|S 1→A1) ≤ d; and

2. for i ≥ 2, fi|S 1→A1 is 0-justified.

Furthermore, |S 1| = |R1| + |T1| ≤ |R1|(1 + (s − 1)) ≤ sn/d.

Other stages are identical, working on the polynomials restricted by the already-chosen
assignments. Finally, S = S 1 ∪ . . . ∪ S s, and so |S | ≤ s2n/d, as required. �

5.6 Conclusion and open problems

Our results show that for the restricted case of read-2 and read-3 formulas, PIT and MLIN

can indeed be decided efficiently in the non-black box setting. We feel the techniques we
use for read-2 should be helpful is attacking PIT for formulas that read variables more
often. We conclude with some natural problems that are open:

99



• Can the results of [SV08] be extended to the case
∑k

i=1 f ri
i , where f ′i s are ROFs?

• Can a hardness of representation for Symn,d be transformed into a polynomial iden-
tity test for a related model?

• Can the bound given by Theorem 5.18 be improved? We conjecture:

Conjecture 2. There is a constant ε > 0 such that if there are CF-ROPs f1, . . . , fk,

and integers e1, . . . ek ≥ 0 satisfying

k∑
i=1

f ei
i = Symn,n/2,

then k = Ω(nε).

• Do the results of [AvMV11] extend to read-k-multilinear branching programs?

• Can we obtain a blackbox version of PIT for Read-2 and Read-3 formulas?
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Chapter 6

Problems on Monomials

In this chapter we study the complexity of some natural computational problems that arise
in the context of arithmetic circuits. These problems are defined over an input arithmetic
circuit C and sometimes also an input monomial m. The problems we study are: (1)
Computing the number of monomials in the polynomial computed by C (Section 6.2), (2)
Checking if the coefficient of m in the polynomial computed by C is zero (Section 6.3),
and (3) Checking if there is a monomial M in the polynomial computed by C such that
m ⊆ M. We start with some definitions:

6.1 Preliminaries

An algebraic branching program (ABP for short) over a ring R is an undirected acyclic
graph B with edges labeled from {x1, . . . , xn} ∪ R, and with two designated nodes, s with
zero in-degree, and t with zero out-degree. For any directed path ρ in B, define

weight(ρ) =
∏

e: an edge in ρ

label(e).

Any pair of nodes u, v in B computes a polynomial in R[x1 . . . xn] defined as follows:

pB(u, v) =
∑

ρ: ρ is a u{ v path in B

weight(ρ).

The ABP B computes the polynomial pB
4
= pB(s, t). We drop the subscript B from the

above when clear from context.
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Unless otherwise stated, we consider R to be the ring of integers Z, and we allow only the
constants {−1, 0, 1} in the circuits and branching programs.

We consider the following restrictions of ABPs in increasing order of generality: (1) occur-
once ABPs (OBP for short), where each variable appears at most once anywhere in the
ABP (such BPs generalize ROFs), (2) read-once ABPs, where no path has two occur-
rences of the same variable, and (3) multilinear BPs, or MBPs, where the polynomial
computed at every node is multilinear.

For any arithmetic circuit C, we let pC denote the polynomial computed by C.

A formula of size s computing a polynomial on n variables can be converted to an ABP
of size O(s) computing the same polynomial. Furthermore, if a variable is read k times in
the formula, then it appears k times as a label in the ABP. This is done by constructing the
ABP from the formula inductively starting with the leaves and proceeding upwards. An
ABP of size s can be converted to an equivalent arithmetic circuit of size O(s). For more
on conversion between formulas, ABPs and circuits, see [Nis91].

We use the following short-forms (some of these were introduced in 5) for some compu-
tational problems used in this chapter.

MonCount: Given an arithmetic circuit (or branching program) C, compute the number
of monomials in the polynomial computed by C. For a polynomial p, #p denotes
the number of monomials in p. For any gate g in C, let #g denote #pg. (The constant
term, even if non-zero, does not count as a monomial.)

ZMC: Given an arithmetic circuit (or branching program) C, and a monomial m, test if
coeff(pC,m) = 0 or not. We will use ZMCas a Boolean predicate that takes the
value 1 if and only if coeff(pC,m) = 0.

ExistExtMon: Given an arithmetic circuit (or branching program) C, and a monomial m,
test if there is a monomial M with non-zero coefficient in pC such that M extends
m; that is, m|M.

6.2 Counting Monomials

We now consider the MonCount problem. First we show that it is very hard even for read-
twice formulas. Then we consider ROFs and OBPs. In both ROFs and OBPs, a monomial,
once generated in a sub-formula/program, can be cancelled only by multiplication with a
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zero polynomial. We exploit this fact to obtain efficient algorithms for counting mono-
mials in ROFs and OBPs. We use the fact that for ROFs, almost everything (like PIT,
MonCount, ZMC etc.) is easy and in P (See [SV08]).

6.2.1 Hardness of MonCount

We show that even for formulas that are monotone (no negative constants) and are read-
twice, and furthermore, are decomposable as the sum of two read-once formulas, MonCount

is as hard as #P.

Theorem 6.1. MonCount is #P complete for the sum of two monotone read-once formu-

las.

Proof. First we show hardness. Valiant showed [Val79] that the problem of computing the
number of perfect matchings in a bipartite graph is #P hard. We reduce this to the problem
of computing the number of monomials common to two monotone read-once alternation-
depth two formulas. Then we reduce the latter problem to computing the number of
monomials in the sum of two monotone alternation-depth two read once formulas.

Let G = (U,V, E) be a bipartite graph with |U | = |V | = n. Let X = {xuv | (u, v) ∈ E}. Define
two polynomials

f =
∏
u∈U

( ∑
v:(u,v)∈E

xuv
)
; g =

∏
v∈V

( ∑
u:(u,v)∈E

xuv
)

Clearly, both f and g are computable by alternation-depth two read-once formulas. Con-
sider a monomial m common to both f and g. Since m is in f , it contains, for each u ∈ U,
exactly one variable of the form xuv. Similarly, since m is in g, it contains, for each v ∈ V ,
exactly one variable of the form xuv. Thus the set {(u, v) | xuv ∈ m} is a perfect match-
ing in G. Conversely, any perfect matching M in G corresponds to a unique monomial∏

(u,v)∈M xuv that is common to both f and g. Therefore, the number of perfect matchings
in G is equal to the number of common monomials of f and g. Let #( f ∩ g) denote the
latter number.

Since f and g are monotone formulas, adding them cannot result in any monomial can-
cellations. Thus

#( f + g) = # f + #g − #( f ∩ g)

Since # f and #g are ROFs, # f and #g can be computed easily in P. (Theorem 6.2 below
shows that in fact it can be computed in DLOG.) Hence, using the above relation, comput-
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ing #( f ∩g) reduces to computing #( f +g), and the reduction is computable in polynomial
time (even logspace).

To see the #P upper bound, consider f + g, where f and g are monotone ROFs. A
monomial m appears in f + g if and only if it appears in at least one of f , g. Now
define a nondeterministic machine M as follows: M guesses a monomial m, computes
a = ZMC( f ,m) and b = ZMC(g,m), and accepts if a ∧ b = 0. The number of accepting
paths of M is exactly #( f + g). Since f and g are ROFs, a and b can be computed in
polynomial time (Theorem 6.13 below shows that in fact it can be computed in DLOG).
All potential monomials are multilinear and so can be guessed in polynomial time. Hence
M is an NP machine, as required. �

6.2.2 Counting Monomials in Read-Once Formulas

Theorem 6.2. Given a read-once formula F, MonCount(pF) can be computed by an AC0

circuit with oracle gates for GapNC1 functions. Hence it can be computed in DLOG.

Define a 0-1 valued bit NZ(g), to indicate whether or not the constant term of pg is non-
zero, as follows:

NZ(g) =

1 if pg(0) , 0

0 otherwise.

Lemma 6.3. The language L defined below is in C=NC1:

L = {〈F, g〉 | F is an arithmetic formula, g is a gate in F, and pg(0) = 0}

Proof. Convert F to formula F′ where all variables are set to 0, and g is the output gate.
Then F′ evaluates to pg(0), so we need to check if F′ evaluates to 0. By Proposition 5.1,
this check can be performed in C=NC1. �

Proof. (of Theorem 6.2) Since F is a read-once formula, we can compute the value of # f

for each gate f inductively, based on the structure of F beneath f . When f is a leaf node,
it is labelled 0 or ±1 or xi for some i.

#(0) = #(±1) = 0; #(xi) = 1.

Now assume f is not a leaf. Suppose f = g+h, then g and h are variable-disjoint read-once
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formulas. Since the monomials of g and h are distinct,

# f = #g + #h; (6.1)

Finally, suppose f = g × h, then again g and h are variable-disjoint. Each pair of mono-
mials m in p f and m′ in pg gives rise to a monomial mm′ in p f . In addition, if pg(0) , 0,
then each m′ also appears as a monomial in p f ; similarly for ph(0) and m. Thus

# f = [#g × #h] + [#g × NZ(h)] + [NZ(g) × #h]. (6.2)

Using Equation 6.1 and Equation 6.2, we can transform the given read-once formula F

to a new formula F′ over Z that computes MonCount(F). The transformation is local,
and can be done in AC0 with oracle access to C=NC1. For each gate f in F the local
transformation can be described as follows: If f is a leaf gate, then relabel f by # f . If
f = g + h gate, then it remains a + gate with children #g and #h. If f = g × h, using
Equation 6.2 involves using #g and #h more than once, and so we do not get a formula.
However, we can modify Equation 6.2 so that # f gets the structure of a formula, with
oracle access to NZ. We use the identity

# f = #(g × h) = (#g + NZ(g)) × (#h + NZ(h)) − (NZ(g) × NZ(h)) .

The values NZ(g) and NZ(h) can be obtained with oracle access to the language L defined
in Lemma 6.3. Now #g and #h are used only once.

Thus, from F we construct a formula F′′ where the leaves of F′′ are labeled by con-
stants 0,±1 or by the outputs of C=NC1 oracle gates. Equivalently, in AC0(C=NC1), we
can transform F to formula F′ whose leaves are labeled by 0,±1. By construction, F′

is variable-free, and #pF = val(F′). By Proposition 5.1, val(F′) can be computed in
GapNC1, completing the proof. �

Remark 6.4. The AC0 circuit constructed above needs oracle access mainly to C=NC1

gates, which check whether a GapNC1 function is zero or not. Only the topmost oracle

query requires the entire value of the GapNC1 function.

For any polynomial p, p ≡ 0 if and only if the constant term of p is 0 and MonCount(p)
is 0. Hence, from Theorem 6.2 and Lemma 6.3, we have the following:

Corollary 6.5. In the non-blackbox setting, PIT on ROFs is in the GapNC hierarchy and

hence in DLOG.
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6.2.3 Counting Monomials in Occur-Once Branching Programs

We now show how to count monomials in OBPs. The approach used in Theorem 6.2 does
not directly generalize to OBPs, i.e. knowing MonCount at immediately preceding nodes
is not enough to compute MonCount at a given node in an OBP. However, since every
variable occurs at most once in an OBP, every path generating a monomial involving a
variable x should pass through the only edge labeled x. This allows us to keep track
of the monomials at any given node of the OBP, given the monomial count of all of its
predecessors.

We begin with some notations. Let B be an occur-once BP on the set of variables X, and
u, v be any nodes in B. Let c(u, v) be the constant term in p(u, v). We define the 0-1 valued
indicator function that describes whether this term is non-zero:

NZ(u, v) =

1 if c(u, v) , 0,

0 otherwise.

We cannot directly use the strategy we used for ROFs, since even in an OBP, there can
be cancellations due to the constant terms. For instance, in the figure below, #p(s, b) =

#p(s, c) = 1, but #p(s, t) = 0.

b
1

��
s x // a

1
@@

−1 ��

t

c
1

@@

We therefore identify edges critical for a polynomial. We say that edge e = (w, u) of B is

critical to v if

1. label((w, u)) ∈ X; and

2. B has a directed path ρ from u to v consisting only of edges labeled by {−1, 1}.

We have the following structural property for the monomials in p(s, v):

Lemma 6.6. In an occur-once OBP B with start node s, for any node v in B,

p(s, v) = c(s, v) +
∑

(w,u) critical to v

p(s,w) · label(w, u) · c(u, v) .

Proof. First, note that if edges (w, u) , (w′, u′) are both critical to v, then the monomials
in p(s,w) · label(w, u) and p(s,w′) · label(w′, u′) will be disjoint, because P is occur-once.
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(The variables labeling (w, u) and (w′, u′) make the monomials distinct.) Moreover, for
any monomial m in p(s, v), there is exactly one critical edge (w, u) such that the mono-
mial m has non-zero coefficient in the polynomial p(s,w) × label(w, u). The critical edge
corresponds to the last variable of the monomial to be “collected” en route to v from s.
This completes the proof. �

For nodes w, u, v in B where (w, u) is an edge, define a 0-1 valued indicator function that
specifies whether or not (w, u) is critical to v. That is,

critical(〈w, u〉, v) =

1 if (w, u) is critical for v

0 otherwise

Using this and Lemma 6.6, we can show:

Lemma 6.7. In an occur-once OBP B with start node s, for any node v in B,

#p(s, v) =
∑

e=(w,u)

critical(〈w, u〉, v) ·
(
#p(s,w) + NZ(s,w)

)
· NZ(u, v).

Proof. Consider the expression p(s,w) × label(w, u), where (w, u) is an edge critical to v.
Then label(w, u) is in X, and multiplies every monomial in p(s,w). Hence every monomial
of p(s,w) contributes a monomial to p(s,w) × label(w, u). Additionally, if c(s,w) , 0,
then c(s,w) × label(w, u) too contributes a monomial. Hence

#[p(s,w) × label(w, u)] = #p(s,w) + NZ(s,w) .

Using this observation along with Lemma 6.6 completes the proof. �

If w is not in a layer to the left of v, then (w, u) cannot be critical to v, and so #p(s,w)
is not required while computing #p(s, v). Hence we can sequentially evaluate #p(s, v) for
all nodes v in layers going left to right, provided we have all the values NZ(s,w),NZ(u, v)
and critical(〈w, u〉, v).

Lemma 6.8. Define languages L1, L2 as follows:

L1 = {〈B, u, v〉 | B is an OBP, u, v are nodes in B, and NZ(u, v) = 0. }

L2 = {〈B, u, v,w〉 | B is an OBP, u, v,w are nodes in B, and critical(〈w, u〉, v) = 1. }

Then L1 and L2 are both in C=L.
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Proof. Delete from B all edges with labels from X to get a variable-free BP B′. Then
pB′(u, v) = cB(u, v). Checking whether pB′(u, v) = 0 is the canonical complete problem for
C=L. Hence L1 is in C=L. To check membership in L2, we need to check that label(w, u) ∈
X and that v is reachable from u in B′. This can be done in NLOG, which is contained in
C=L. �

From Lemma 6.7, the comment following it, and Lemma 6.8, we obtain a polynomial
time algorithm to count the monomials in pB.

Theorem 6.9. Given an occur-once branching program B, the number of monomials in

pB can be computed in P.

With a little bit of care, we can obtain the following stronger result:

Theorem 6.10. Given an occur-once branching program B, the number of monomials in

pB can be computed in the GapL hierarchy and hence in NC2.

Proof. Starting from B, we construct another BP B′ as follows: B′ has a node v′ for each
node v of B. For each triple w, u, v where (w, u) is an edge in B, we check via oracles for
L1 and L2 whether (w, u) is critical to v and whether NZ(u, v) = 1. If both checks pass, we
add an edge from w′ to v′. We also check whether NZ(s,w) = 1, and if so, we add an edge
from s′ to v′. (We do this for every w, u, so we may end up with multiple parallel edges
from s′ to v′. To avoid this, we can subdivide each such edge added.) B′ thus implements
the right-hand-side expression in Lemma 6.7. It follows that pB′(s′, v′) equals #pB(s, v).
Note that B′ can be constructed in logspace with oracle access to C=L. Also, since B′

is variable-free, it can be evaluated in GapL. Hence #pB can be computed in the GapL
hierarchy. �

As in Corollary 6.5, using Theorem 6.10 and Lemma 6.8, we have:

Corollary 6.11. In the non-blackbox setting, PIT on OBPs is in the GapL hierarchy and

hence in NC2.

6.3 Zero-test on a Monomial Coefficient (ZMC)

From [FMM12a], ZMC is known to be in the second level of CH and hard for the class
C=P. For the very restricted case of depth-3 read-3 formulas, ZMC is known to be NP-
hard. (In Proposition 13 of [Str13], hardness is shown for depth-3 degree-3 formulas. It
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can be verified that the hard formulas there are also read-thrice.) For the case of multilin-
ear BPs (i.e. MBPs), we show that ZMC exactly characterizes the complexity class C=L.

Theorem 6.12. Given a BP B computing a multilinear polynomial pB, and given a multi-

linear monomial m, the coefficient of m in pB can be computed in GapL. Hence ZMC for

multilinear BPs is complete for C=L.

Proof. We first show that ZMC, even for OBPs, is hard for C=L. A complete problem for
C=L is: does a BP B with labels from {−1, 0, 1} evaluate to 0? Add a node t′ as the new
target node, and add edge t → t′ labeled x to get B′. Then B′ is an OBP, and (B′, x) ∈ ZMC

if and only if B evaluates to 0.

Now we show the upper bound. We show that given a branching program B computing
a multilinear polynomial pB, and given a multilinear monomial m, the coefficient of m in
pB can be computed in GapL. This will imply that the zero-test is in C=L.

Let S ⊆ [n] be such that m = mS . Let pB =
∑

T⊆[n] coeff(pB,mT )mT . We are interested
in coeff(pB,mS ). The idea is to construct a branching program B′ computing a univariate
polynomial, and a monomial m′, such that m ∈ pB if and only if m′ ∈ pB′ . We obtain B′

by relabelling the edges of B as follows:

label in B constant c xi for i ∈ S xi for i < S

label in B′ constant c y 0

B′ now computes a univariate polynomial pB′ in y.

Observe that the coefficient cS of m in pB is equal to the coefficient of y|S | in pB′ . To see
this, note that

pB =
∑
T⊆[n]

coeff(pB,mT )mT =
∑
T⊆S

coeff(pB,mT )mT +
∑
T*S

coeff(pB,mT )mT

The substitution described above sends the second sum to zero in B′. Hence,

pB′(y) =
∑
T⊆S

coeff(pB,mT )y|T | =
|S |∑
j=0


∑
T⊆S
|T |= j

coeff(pB,mT )

 y j

The only monomial in pB that generates y|S | in pB′ is
∏

i∈S xi = mS ; hence coeff(pB′ , y|S |) =

coeff(pB,mS ).

(This argument only requires that pB be multilinear; we do not need B to be occur-once
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or even read-once.)

Thus the problem now reduces to computing the coefficient of y|S | in B′, which is a branch-
ing program over just one input variable. A standard construction allows us to explicitly
construct all coefficients of pB′(y) in another branching program B′′. For completeness,
we describe the construction of B′′. For each node v in B′, B′′ has |S |+1 nodes v0, . . . , v|S |,
with the intention that vi should compute the coefficient of yi in the polynomial pB′(s, v).
The start node of B′′ is the node s0, and the final node is t|S |. If edge (u, v) has label y in B′,
we include the edges (ui, vi+1) with label 1, for 0 ≤ i < |S |, in B′′. If edge (u, v) has label
` , y in B′, we include the edges (ui, vi) with label `, for 0 ≤ i ≤ |S | , in B′′. By induction
on the structure of B′, we see that the value computed by B′′ at t|S | is the coefficient of y|S |

in pB′(s, v).

The above transformation from B′ to B′′ can be done in DLOG. Since B′′ is variable-free,
it can be evaluated in GapL. Composing these procedures, we obtain a GapL procedure
for computing the coefficient of m in pB. �

The upper bound above, for ZMC on MBPs, also applies to ROFs, since ROFs can be con-
verted to OBPs by a standard construction. However, with a careful top-down algorithm,
we can give a stronger upper bound of DLOG for ZMC on ROFs.

Theorem 6.13. Given a read-once formula F computing a polynomial pF , and given a

multilinear monomial m, the coefficient of m in pF can be computed in DLOG. Hence

ZMC for ROFs is in DLOG.

Proof. For any T ⊆ [n], and any gate g in F, let α(g,T ) denote the coefficient of monomial
mT in pg. (That is, α(g,T ) = coeff(pg,mT ).) Let r be the output gate. Let S ⊆ [n] be such
that m = mS . The goal is to compute α(r, S ). First, we observe some properties of α:

1. For any gate g and any T ⊆ [n], if T * subvarg, then α(g,T ) = 0.

2. For a leaf g labelled xi, α(g,T ) = 1 if T = {i}, 0 otherwise.

3. For a leaf g labelled by a constant c, α(g,T )=c if T = ∅, 0 otherwise.

4. For an addition gate that computes g + h, α(g + h,T ) = α(g,T ) +α(h,T ). And since
F is an ROF, at least one of α(g,T ), α(h,T ) is zero.

5. For a product gate that computes g × h,

α(g × h,T ) = α(g,T ∩ subvarg) · α(h,T ∩ subvarh) · [T ⊆ subvarg ∪ subvarh].
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This is because α(g × h,T ) =
∑

Z⊆T α(g,Z)α(h,T \ Z). But if either Z * subvarg

or T \ Z * subvarh, then α(g,Z) = 0 or α(h,T \ Z) = 0. Further, F is a read once
formula, so subvarg ∩ subvarh = ∅, and subvarg and subvarh partition subvar(g×h).
Hence T must also be similarly partitioned.

Now we construct a formula F′ whose evaluation gives us α(r, S ). F′ will recursively
compute α(g, S ∩ subvarg) for each gate g. If g is a leaf, we just use properties (2,3) to
compute α(g, S∩subvarg). We show how to compute α( f , S∩subvar f ) for an internal gate
f with children g and h knowing the values for α(g, S ∩ subvarg) and α(h, S ∩ subvarh):

• Case f = g + h:

α( f , S ∩ subvar f ) = α(g, S ∩ subvar f ) + α(h, S ∩ subvar f ) from property (4)

= α(g, S ∩ subvarg)[S ∩ subvarg = S ∩ subvar f ]

+ α(h, S ∩ subvarh)[S ∩ subvarh = S ∩ subvar f ] from property (1)

• Case f = g × h:

α( f , S ∩ subvar f ) = α(g, S ∩ subvarg) · α(h, S ∩ subvarh) from properties (1,5)

This gives us the formula F′ that computes α(r, S ) at the topmost gate. By Proposition 5.1,
F′ can be evaluated in GapNC1. Constructing F′ from F requires a local transformation
at + gates and computation of the predicates [S ∩subvar f = S ∩subvarg]. By Proposition
5.4, these predicates can be computed in DLOG. �

For ROFs, the lower bound proof in Theorem 6.12 can be modified to show that ZMC on
ROFs is hard for C=NC1. It is natural to ask whether there is a matching upper bound.
In our construction above, we need to compute predicates of the form [x ∈ subvarg]. If
these can be computed in NC1 for ROFs, then the monomial coefficients can be computed
in GapNC1 and hence the upper bound of ZMC can be improved to C=NC1. However,
this depends on the specific encoding in which the formula is presented. In the standard
pointer representation, the problem models reachability in out-degree-1 directed acyclic
graphs, and hence is as hard as DLOG. Perhaps, under some other encoding, an upper
bound of NC1 is possible. To see why this may be plausible, consider the problem of
testing whether two trees are isomorphic. (And note that the undirected graph underlying

111



a formula is a tree.) For trees encoded as pointer lists, isomorphism testing is DLOG-
complete, whereas for trees encoded as strings, the same problem of isomorphism testing
is complete for NC1 ([JMT98]).

6.4 Checking existence of monomial extensions

We now address the problem ExistExtMon. Given a monomial m, one wants to check if
the polynomial computed by the input arithmetic circuit has a monomial M that extends
m (that is, with m|M). This problem is seemingly harder than ZMC, and hence the bound
of Theorem 6.12 does not directly apply to ExistExtMon. We show that ExistExtMon for
OBPs is in the GapL hierarchy.

Theorem 6.14. The following problem lies in the GapL hierarchy: Given an occur-once

branching program B and a multilinear monomial m, check whether pB contains any

monomial M such that m|M.

Proof. Let S ⊆ [n] be such that m = mS . If S = ∅, then this amounts to checking if
pB . 0. By Corollary 6.11, this is in the GapL hierarchy. So now assume that S , ∅. We
call an edge that is labelled by a variable from S a “bridge”.

The algorithm is as follows:

if ∃i ∈ S such that xi does not appear in B at all then
Output NO and halt.

else if ∃ layer l with more than one bridge to layer l + 1 then
Output NO and halt.

else
For each layer l that has a bridge e to layer l + 1 in B, remove all edges except e.

Call the branching program thus obtained B′.
end if
Output PIT(pB′) and halt.

We now show that mS has an extended monomial in pB if and only if the above algorithm
outputs YES. If any of the variables of mS do not appear at all in B, then clearly an
extension to mS cannot exist. So the algorithm rejects correctly. If there is a layer with
more than one bridge to the next layer, then any path can go through at most one of these
bridges. Since B is occur-once, every path would compute a monomial with at least one
variable from mS missing. So the algorithm correctly rejects. We are only interested
in monomial extensions of mS . So paths that do not go through all the bridges can be
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ignored. Hence we can safely delete all non-bridge edges in layers which have a bridge
to the next layer. Thus pB′ is a polynomial where each monomial is an extension of mS .

By Corollary 6.11, the above algorithm is in the GapL hierarchy. �

With a little bit of care, the above bound can be brought down to DLOG for the case of
ROFs.

Theorem 6.15. The following problem is in DLOG: Given a read-once formula F com-

puting a polynomial pF , and given a multilinear monomial m, check whether pF contains

any monomial M such that m|M.

Proof. Let S ⊆ [n] be such that m = mS . If S = ∅, then this amounts to checking if
pF . 0. By Corollary 6.5, this is in DLOG. So now assume that S , ∅. Similar to the
case of branching programs, we transform F to a new formula F′ as follows:

if ∃xi ∈ S such that xi does not appear in F at all then
Output NO and halt.

else if ∃xi, x j ∈ S , i , j, with LCA(xi, x j) in F labeled + then
Output NO and halt.

else
For every xi ∈ S , and every + gate g on the unique leaf-to-root path γ from xi,

replace the input of g not on the path γ by 0.
Let F′ be the resulting formula.

end if
Output PIT(F′).

We show correctness of the above algorithm. Since F is read-once, if any of the two
variables in S have a + gate as their least common ancestor, then m cannot appear as a
monomial in F. If the algorithm reaches the else statement, then all sub-formulas that are
additively related to some variable xi in S are removed. This implies that every monomial
produced by F′ has m as a factor. Also, any monomial m′ of pF with m|m′ has the same
coefficient in pF′ as in pF . Thus, the resulting formula F′ computes a polynomial that
contains exactly all monomials m′ of pF such that m|m′. This proves the correctness.

For the complexity bound, we note that the transformation from F to F′ can be done
in DLOG (using Proposition 5.4). Then by Corollary 6.5, the overall algorithm can be
implemented in DLOG. �
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6.5 Conclusion

Although one would expect the complexity of MonCount to reduce drastically for the
case of severely restricted circuits, it remains #P hard for even read-twice formulas. How-
ever, the complexity of ZMC and ExistExtMon, does reduces drastically for the case of
restricted circuits as expected. Ideally, we would like these problems to characterise com-
plexity classes within P; we have partially succeeded in this. We leave open the question
of extending these bounds for formulas and branching programs that are constant-read. It
appears that this will require non-trivial modifications of our techniques.
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