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SYNOPSIS

This thesis is divided into two parts. In the first part, we consider an involution of P3

which induces a finite morphism φ : P3 → P5 such that the image of φ is contained

in the Grassmannian variety Gr(2,C4) in P5. We consider the pull back of the universal

quotient bundle on the Grassmannian Gr(2,C4) under the morphism φ. We show that the

resulting rank 2 bundle on P3 is a null correlation bundle. In the second part, we consider

the second symmetric power S 2(C) of a smooth irreducible projective curve C of genus g

over the field of complex numbers. Given a vector bundle E over C of rank r, there is a

naturally associated vector bundle of rank 2r over S 2(C). We study the semi-stability of

this vector bundle with respect to the ample divisor x + C on S 2(C) when E is a rank two

stable bundle on C. We also study the semi-stability of the restriction of this vector bundle

on the curves of the form x + C. In the subsequent sections we will state those results in

details.

Let X be a non-singular irreducible projective variety of dimension n over C. Fix an ample

divisor H on X. For a coherent torsion free sheaf V on X, the first Chern class of V is

defined as c1(V) := c1(det(V)). Given a coherent torsion free sheafV on X,we define the

slope ofV with respect to the ample divisor class H as µH(V) := c1(V)·Hn−1

rank(V) . We say thatV

is µH − stable (respectively, µH − semi-stable) if for every coherent subsheafW ofV with

0 < rank(W) < rank(V) we have µH(W) < µH(V) (respectively, µH(W) ≤ µH(V)).

We will simply write stable (respectively, semi-stable) to denote µH−stable (respectively,

µH − semi-stable) when there is no confusion regarding the ample divisor H.

The study of stable and semistable bundles are very fundamental in algebraic geometry,

specially when we want to construct moduli space of vector bundles. The rank and the

Chern classes are the most natural numerical invariants of a vector bundle. If we try to

describe the space of all (isomorphic classes) of vector bundles of fixed rank and Chern

classes, we see that these invariants are not sufficient to describe such space as it may be

too “big” (for an example see [Har80, Theorem 2.5]). We need some more conditions and
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thus stability and semistability comes into picture by the works of Seshadri, Narasimhan,

Mumford, Takemoto, Gieseker, Maruyama ...

Null Correlation Bundle on Projective Three Space

Let Pn denotes the projective n-space over C, the field of complex numbers. Let V be a

stable rank two vector bundles on P3 and let H ⊂ P3 be hyperplane. One particular interest

is to study the stability property of the restrictionV|H on H. Maruyama showed that ifV

is a semistable rank two vector bundle on P3, then for a general hyperplane H ⊂ P3, the

restriction V|H is semistable. W. Barth proved a more stronger result. He showed that

if V is a stable rank two bundle on Pn, n ≥ 4 then for a general hyperplane H ⊂ Pn, the

restriction V|H is stable. For rank two stable bundles on P3, the same conclusion holds

except in one case. W. Barth called the bundle on P3 with this exceptional property a “null

correlation bundle”. More precisely, he proved the following result:

Theorem 0.1. ([Barth77]) Let V be some rank two µ-stable bundle on Pn, the complex

projective n-space. If n ≥ 4, there is a non-empty open set U ⊂ Pn∗, the dual projective

space, such that the restriction ofV to all hyperplanes parametrized by U is again stable.

The same holds for n = 3, unlessV is a null correlation bundle.

A null correlation bundle is unique up to translation by automorphisms of P3 and by

tensoring by line bundles. In [Barth77], Barth gives a construction of this bundle and

showed that the Chern classes of this bundle are c1 = 0, c2 = 1. It turns out that any stable

rank two vector bundle on P3 with Chern classes c1 = 0, c2 = 1 is a null correlation bundle

([O-S-S, Chapter 2, Lemma 4.3.2]). So the moduli space MP3(0, 1) of stable rank two

vector bundles with Chern classes c1 = 0, c2 = 1 is the space of null correlation bundles

on P3. The moduli space MP3(0, 1) for the null correlation bundles on P3 is isomorphic

to the complement P5 \ Gr(2,C4) in P5 of the Grassmannian variety of two dimensional

quotients of C4 ([O-S-S, Chapter 2, Theorem 4.3.4]). Since the stability and semistability
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preserves with respect to tensoring by line bundles, any vector bundle which arises from a

null correlation bundle by tensoring by line bundles, will also be called a null correlation

bundle.

Let [x1, x2, x3, x4] be the homogeneous co-ordinates of P3 and let σ : P3 → P3 be an

involution defined by [x1, x2, x3, x4] 7→ [−x1,−x2, x3, x4]. The automorphism σ lifts to an

automorphism of the vector space H0(P3,OP3(2)). Let V be the σ-invariant subspace of

H0(P3,OP3(2)), i.e. V = {v ∈ H0(P3,OP3(2)) : σ(v) = v}. Then V = 〈X2
1 , X

2
2 , X

2
3 , X

2
4 , X1X2 +

X3X4, X1X2 − X3X4〉. The vector space V defines a base point free linear system on P3 and

hence induces a finite morphism

φ : P3 → P5

given by

[x1, x2, x3, x4] 7→ [x2
1, x

2
2, x

2
3, x

2
4, x1x2 + x3x4, x1x2 − x3x4].

The image of φ is contained in the quadric Z2Z3−Z0Z1 +Z4Z5,where [Z0,Z1,Z2,Z3,Z4,Z5]

is the homogeneous co-ordinates of P5. This quadric defines the Grassmannian variety,

Gr(2,C4) − of two dimensional quotient spaces of C4, in P5 under the Plücker embedding.

So we can think of φ as a morphism φ : P3 → Gr(2,C4). Let Qu denotes the universal

quotient bundle on the Grassmannian Gr(2,C4) and define Q := φ∗(Qu). Then Q is a

globally generated rank two vector bundle on P3. We use the geometry of Grassmannian

variety to show that the Chern classes of this bundle are c1(Q) = 2, c2(Q) = 2. We obtain

the following result:

Theorem 0.2. The rank two vector bundle Q is a null correlation bundle on P3.

This gives an alternative construction of null correlation bundle on P3. Now consider an

automorphism g : P3 → P3 of P3. If we consider the morphism τ : P3 → P3 defined by

τ = gσg−1, then τ is also an involution on P3. If we replaceσwith τ, then the vector bundle

we get is g∗(Q). Since null correlation bundle is unique up to translation by automorphisms

of P3, the bundle g∗(Q) is also a null correlation bundle.
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Semi-stability of Secant Bundle on Second Symmetric Power of a Curve

Let C be a smooth irreducible projective curve of genus g over the field of complex num-

bers C. On the space C ×C, consider the following involution C ×C −→ C ×C, (x, y) 7→

(y, x). The resulting quotient space is denoted by S 2(C), called the second symmetric

power of C. It is a smooth irreducible projective surface over C. A point in S 2(C) can

be thought as an effective divisor of degree 2 on C and S 2(C) can be regarded as the set

of all effective divisors of degree 2 on C. With respect to this identification, we can write

an element of S 2(C) as x + y, x, y ∈ C. Set ∆2 := {(D, p) ∈ S 2(C) × C : D = p + q,

for some q ∈ C}. Then ∆2 is a divisor in S 2(C) × C, called the universal divisor of de-

gree 2 on C. Let q1 and q2 be the projections from S 2(C) × C onto the first and second

factors respectively. Then the restriction of the first projection to ∆2 induces a morphism

q : ∆2 −→ S 2(C), which is a two sheeted ramified covering. For any vector bundle E of

rank r on C we construct a bundle F2(E) := (q)∗(q∗2(E) |∆2) of rank 2r over S 2(C). Note

that the map C × C → ∆2, (x, y) 7→ (x + y, y) is an isomorphism. Let pi : C × C → C

be the i-th coordinate projection, i = 1, 2, and π : C × C → S 2(C) be the quotient map.

Then F2(E) = π∗p∗2E. This bundle is called the secant bundle on S 2(C). This was first

introduced by R. Schwarzenberger ([S64]).

Assume g ≥ 2. Let Pic2(C) denotes the variety parameterizing all degree 2 line bundles

on C and let ν : S 2(C) → Pic2(C) be map defined by {x, y} 7→ x + y. (Here we are

considering the unordered collection {x, y} of points x, y ∈ C as an element of S 2(C) and

we are identifying the divisor x + y on C and the corresponding line bundle on C.) Let

θ ∈ H2(S 2(C),Z) be the pull back of the class of theta divisor in H2(Pic2(C),Z) under

the map ν. Using Künneth formula we can write H2(S 2(C) × C,Z) = (H2(S 2(C),Z) ⊗

H0(C,Z)) ⊕ (H1(S 2(C),Z) ⊗ H1(C,Z)) ⊕ (H0(S 2(C),Z) ⊗ H2(C,Z)). Let δ be the class of

the universal divisor ∆2. Then using above we can decompose δ as δ = δ2,0 + δ1,1 + δ0,2,

where δi, j ∈ Hi(S 2(C),Z) ⊗ H j(C,Z). Let’s denote the Künneth component δ2,0 by x.

Let E be a line bundle on C of degree d. Then the Chern polynomial of the vector bundle
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F2(E) over S 2(C) is given by ct(F2(E)) = (1− xt)1−d+getθ/(1−xt) (See [ACGH, Chapter VIII,

Lemma 2.5]). From this we get that the first Chern class

c1(F2(E)) = (d − g − 1)x + θ

and the second Chern class

c2(F2(E)) =

(
d − g

2

)
x2 + (d − g)x · θ +

θ2

2
.

The cohomology group H4(S 2(C),Z) is canonically isomorphic to Z. Also we have x2 =

1, x · θ = g, θ2 = g(g − 1). Using this we get c2(F2(E)) =
(

d
2

)
. (See [ELN11])

Fixing a point x ∈ C, the image of {x} ×C in S 2(C) defines an ample divisor H′ on S 2(C),

which we denote by x + C. The stability and semistability of the vector bundle F2(E),

where E is a line bundle is obtained in [ELN11] by El Mazouni, Laytimi, and Nagaraj.

They proved the following result.

Theorem 0.3. [ELN11] Let E be a very ample line bundle on C.

(1) The vector bundle F2(E) on S 2(C) is semistable with respect to the ample divisor x+C.

(2) Assume that genus of C is greater than zero or genus of C is zero and degree(E) is

greater than one. Then the vector bundle F2(E) is stable with respect to the ample divisor

x + C.

In [BN13], Biswas and Nagaraj improved the above results significantly by classifying all

the stable and semistable secant bundles F2(E) for non-trivial line bundles E.

Theorem 0.4. [BN13] Let C be a smooth irreducible projective curve of genus g on C

and let E be a non-trivial line bundle on C.

(1) The vector bundle F2(E) on S 2(C) is µ-semistable with respect to the ample divisor

x + C.
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(2) If E and E′ are two line bundles on C such that F2(E) � F2(E′), then E � E′. In fact,

every isomorphism of F2(E) and F2(E′) induces an isomorphism of E and E′.

(3) The vector bundle F2(E) is µ-stable with respect to the ample divisor x + C, unless

E � OC(x) or E � OC(−x) for some x ∈ C.

Now let E be a rank two stable vector bundle on C and consider the associated rank 4

vector bundle F2(E) on S 2(C). One can ask about the stability and semistability of this

bundle with respect to the ample divisor x + C. In the second part of this thesis we gave a

partial answer of this question.

To find the Chern character of F2(E), for any rank r vector bundle E, first choose a

filtration of E such that the successive quotients are line bundles and use the fact that

F2(⊕Mk) = ⊕F2(Mk) where Mk’s are line bundles over C. Then the Chern character of

F2(E) has the following expression ([BL11]):

ch(F2(E)) = degree(E)(1 − exp(−x)) − r(g − 1) + r(1 + g + θ)exp(−x).

From the above expression one can easily see that c1(F2(E)) = (d− r(g + 1))x + rθ, where

d = degree E.

We prove the following:

Theorem 0.5. Let E be a rank two µ-stable vector bundle of even degree d ≥ 2 on C such

that F2(E) is globally generated. Then the bundle F2(E) on S 2(C) is µH′-semistable with

respect to the ample class H′ = x + C.

Let E be a non-zero vector bundle on C and k ∈ Z, we denote by µk(E) the rational

number µk(E) := degree(E)+k
rank(E) . We say that the vector bundle E is (k, l)-stable (respectively,

(k, l)-semistable) if, for every proper subbundle F of E we have µk(F) < µ−l(E/F) (resp.

µk(F) ≤ µ−l(E/F)). Note that usual µ-stability is equivalent to (0, 0)-stability. If g ≥ 3,

then there always exists a (0, 1)-stable bundle and if g ≥ 4, then the set of (0, 1)-stable
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bundles form a dense open subset of the moduli space of stable bundles over C of rank 2

and degree d ([NR78, Section 5]). We obtain the following result:

Theorem 0.6. Assume the genus of C greater than 2. Let E be a rank two (0, 1)-stable

bundle of odd degree d ≥ 1 on C such that F2(E) is globally generated. Then the bundle

F2(E) on S 2(C) is µH′-semistable with respect to the ample class H′ = x + C.

Also, regarding the restriction of F2(E) on the curves of the form x + C we prove the

following:

Theorem 0.7. Let C be a smooth irreducible projective curve over C of genus g and let

E be a rank to vector bundle on C of degree d ≥ 3. Then for any x ∈ C,F2(E)|x+C is not

semistable.

8



1 PRELIMINARIES

In this section we will recall some basic and well known results of stability and semista-

bility of vector bundles on a smooth irreducible projective varieties, which are essential

for the rest of the chapters. We will follow mainly [O-S-S], [Friedman], [HL]. For the

sake of completeness we will also give proof of some of the stated results. The words

“line bundle”, “invertible sheaf” and “locally free sheaf of rank one” will be used inter-

changeably. The same is true for the words “vector bundle” and “locally free sheaf of

finite rank”.

1.1 Stable and Semistable Sheaves

Let X be a non-singular irreducible projective variety of dimension n over C, the field of

complex numbers. Let V be coherent sheaf on X. We say that V is torsion free if for

every x ∈ X,Vx is a torsion free OX,x module, i.e. f a = 0 for a ∈ Vx and f ∈ OX,x

always implies a = 0 or f = 0 The dual of V, denoted by V∗, is the coherent sheaf

HomOX (V,OX). The coherent sheaf V∗∗ := (V∗)∗ is called the double dual of V. There

is a canonical homomorphism σ : V → V∗∗. The stalk ofV at the generic point of X is a

finite dimensional vector space. Since this vector space is isomorphic to its double dual,

the kernel and cokernel of the map σ are supported on proper closed subsets of X. Also

Ker(σ) is precisely the torsion subsheaf ofV, i.e. for every x ∈ X

Ker(σ)x = {a ∈ Vx : f a = 0, for some f ∈ OX,x, f , 0}.

ThusV is torsion free if and only if σ is a monomorphism.

Definition 1.1. A coherent sheaf V on X is called reflexive if the canonical homomor-

phism σ : V → V∗∗ is an isomorphism.

A reflexive sheaf is necessarily torsion free. If V is locally free then obviously it is

9



reflexive. But there are example of reflexive sheaves which are not locally free ([O-S-S,

Chapter 2, Example 1.1.13]). Also dual of any coherent sheaf is always reflexive ([Har80,

Corollary 1.2]).

LetV be a locally free sheaf on X of rank r. The determinant ofV, denoted by det(V), is

defined as det(V) := (ΛrV)∗∗. Now assumeV is a coherent torsion free sheaf on X. Then

there is an open dense subset U of X such that the restriction V|U is locally free. The

rank of V is defined to be the rank of the locally free sheaf V|U . Let the rank of V be r.

we define the determinant of V to be det(V) := (ΛrV)∗∗. The determinant of a coherent

torsion free sheaf V is a reflexive sheaf of rank one. This is actually a line bundle. This

follows from the following result.

Lemma 1.2. Let E be a rank one reflexive sheaf on X. Then E is locally free.

Proof. See [O-S-S, Chapter 2, Lemma 1.1.15]. �

Remark 1.3. Let V be a coherent sheaf on X. Then it has a finite locally free resolution

0 → Vm → Vm−1 → · · · → V0 → V → 0. The determinant of V is defined by

det(V) :=
⊗

det(Vi)(−1)i
. This definition does not depend on the locally free resolutions

([HL, 1.1.17], [Har, Chapter III, Ex. 6.8, 6.9]).

Definition 1.4. LetV be a coherent sheaf on X. We say thatV is normal if for every open

subset U ⊆ X and every closed subset Y ⊆ U of codimension at least 2, the restriction

map Γ(U,V)→ Γ(U − Y,V) is surjective. ([Barth77, Page 128])

Reflexive sheaves on X has the following characterization:

Lemma 1.5. LetV be a coherent sheaf on X. ThenV is reflexive if and only if it is torsion

free and normal.

Proof. See [O-S-S, Chapter 2, Lemma 1.1.12]. �

The following results gives a criterion for a coherent sheaf to be normal.
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Lemma 1.6. Let V be a coherent sheaf on X and assume that there is a short exact

sequence 0 → V → E → Q → 0 of sheaves with E reflexive. If Q is torsion free then V

is normal.

Proof. ([O-S-S, Chapter 2, Lemma 1.1.16]) Let U ba an open subset of X and let Y be a

closed subset of U of codimension at least 2. SinceV,Q are torsion free, the restrictions

V(U) → V(U − Y) and Q(U) → Q(U − Y) are injective. Now consider the following

commutative diagram

0 V(U) E(U) Q(U)

0 V(U − Y) E(U − Y) Q(U − Y)

where the horizontal rows are exact, the leftmost and rightmost arrows are injective. Also

the middle arrow is an isomorphism since E being reflexive is both torsion free and nor-

mal. From this diagram it follows that the restriction V(U) → V(U − Y) is an isomor-

phism. �

Definition 1.7. Let V be be a coherent torsion free sheaf on X. Fix an ample divisor H

on X. The first Chern class of V is defined as c1(V) := c1(det(V)). The slope of V with

respect to the ample divisor H is defined as

µH(V) :=
degreeH(V)

rank(V)

where degreeH(V) := c1(V) · Hn−1. We say that a coherent torsion free sheaf V on X is

µH − stable (respectively, µH − semistable) if for every coherent subsheafW of V with

0 < rank(W) < rank(V) we have

µH(W) < µH(V) (respectively, µH(W) ≤ µH(V)).

We will write µ-stable (respectively, µ-semistable) when there is no confusion regard-
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ing the ample divisor H. Sometimes we will also simply write “stable” (respectively,

“semistable”) instead of µ-stable (respectively, µ-semistable). µ-stable sheaves are also

called slope stable or Mumford stable. Similarly for µ-semistable sheaves.

Lemma 1.8. Suppose

0→V′ →V → V′′ → 0

be an exact sequence of non-zero coherent torsion free sheaves on X and let µ := µH.

Then

min(µ(V′), µ(V′′)) ≤ µ(V) ≤ max(µ(V′), µ(V′′)),

and equality holds at either end if and only if µ(V′) = µ(V) = µ(V′′).

Proof. ([Friedman, Chapter 4, Lemma 2]) Let r′ = rank(V′), r′′ = rank(V′′). Since both

rank and degree are additive, we have

µ(V) =
r′

r′ + r′′
µ(V′) +

r′′

r′ + r′′
µ(V′′).

So µ(V) = λµ(V′) + (1 − λ)µ(V′′), for some λ ∈ R with 0 < λ < 1. From this the

conclusion follows. �

Remark 1.9. More generally, if V is a vector bundle and V = Vl ⊃ Vl−1 ⊃ Vl−2 ⊃

· · · ⊃ V1 ⊃ (0) be a flag of subbundles of V then µ(V) ≤ max(µ(Vi+1/Vi)) and µ(V) ≥

min(µ(Vi+1/Vi)). And equality holds in one case if and only if equality holds for the other

one if and only if µ(Vi+1/Vi) = µ(V j+1/V j) for all i and j ([Shatz77, Section 2]).

Now we state some equivalent condition for a coherent torsion free sheaf on X to be stable

(respectively, semistable).

Lemma 1.10. Let V be a coherent torsion free sheaf on X and let µ := µH. Then the

following conditions are equivalent:

(i)V is stable (respectively, semistable).
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(ii) For every coherent subsheafW ofV with 0 < rank(W) < rank(V) such thatV/W

is torsion free we have µ(W) < µ(V) (respectively, µ(W) ≤ µ(V)).

(iii) For every torsion free quotient Q ofV with 0 < rank(Q) < rank(V) we have µ(Q) >

µ(V) (respectively, µ(Q) ≥ µ(V)).

Proof. ([Friedman, Chapter 4, Lemma 5]) The equivalence follows from Lemma 1.8. �

Example 1.11. Let X be a smooth projective variety of dimension n over C and fix an

ample line bundle H.

(1) Any line bundle L on X is stable.

(2) Let L,M be two line bundles on X and consider the vector bundle E = L ⊕ M. From

Lemma 1.8, it follows that E is semistable if and only if degreeH(L) = degreeH(M). Also

E is never stable.

(3) Let L,M be two line bundles on X of degrees 0, 1 respectively. Suppose we have a

non-trivial extension 0 → L → E → M → 0 on X. Then E is stable. Since degree is

additive, we have µ(E) = 1
2 . Let F be a rank one coherent torsion free sheaf on X which

is a subsheaf of E. There are two possibilities. First, suppose there is a non-zero map

F → L. In this case, µ(F) < µ(L) = 0 < µ(E). Second, suppose there is a non-zero map

F → M. Then µ(F) < µ(M) = 1. Since µ(F) is an integer, µ(F) ≤ 0 < µ(E).

Lemma 1.12. LetV be a coherent torsion free sheaf on X. Then

(i)V is stable if and only if for any line bundle L on X,V ⊗ L is stable.

(ii)V is stable if and only ifV∗, the dual ofV, is stable.

Proof. See [Takemoto72, Proposition 1.4]. �

The example 1.11(3) is a particular case of the following general result.
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Lemma 1.13. Let

0→V′ →V → V′′ → 0

be an exact sequence of non-zero coherent torsion free sheaves on X with µ(V′) = µ(V) =

µ(V′′) where µ := µH. ThenV is semistable if and only if bothV′ andV′′ are semistable,

andV is never stable. In particular, if bothV′ andV′′ are rank 1, thenV is semistable.

Proof. ([Friedman, Chapter 4, Lemma 6]) Let V be semistable. Suppose W′ be a co-

herent proper subsheaf of V′. ThenW′ is also a coherent proper subsheaf of V and so

µ(W′) ≤ µ(V) = µ(V′). Now suppose W′′ be a coherent proper subsheaf of V′′ and

letW be the inverse image ofW′′ in V. Then we have the following exact sequence of

coherent torsion free sheaves on X :

0→V′ →W→W′′ → 0.

Now using Lemma 1.8 and the fact that µ(V′) = µ(V) = µ(V′′) we see that V′′ is also

semistable.

Conversely, assume that both V′ and V′′ are semistable. Let W be a proper coherent

subsheaf ofV. Then we have the following commutative diagram of torsion free sheaves

on X :

0 V′ V V′′ 0

0 W′ W W′′ 0

where the horizontal rows are exact and the vertical arrows are monomorphisms. If either

ofW′ orW′′ is zero then we are done. So assume that bothW′ andW′′ are non-zero.

Now using that bothV′ andV′′ are semistable with µ(V′) = µ(V) = µ(V′′) and Lemma

1.8, we see thatV is semistable. �

Lemma 1.14. Let V,W be two coherent torsion free semistable sheaves on X and let
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µ := µH.

(1) If µ(V) > µ(W), then Hom(V,W) = 0.

(ii) If µ(V) = µ(W) with at least one of V and W is stable and if φ : V → W is

non-trivial then φ is either injective or generically surjective.

(iii) If V,W are vector bundles and c1(V) = c1(W), rank(V) = rank(W) and if at

least one of V andW is stable, then any non-trivial homomorphism φ : V → W is an

isomorphism.

Proof. ([O-S-S, Chapter 2, Lemma 1.2.8]) (i) Let φ : V →W be a non-trivial homomor-

phism and let E := Im(φ). Since both V andW are semistable we have µ(V) ≤ µ(E) ≤

µ(W) contradicting the given assumption.

(ii) Let E := Im(φ). Suppose rank(E) < rank(V) and rank(E) < rank(W). Now if V

is stable then we have µ(V) < µ(E) ≤ µ(W) and if W is stable then we have µ(V) ≤

µ(E) < µ(W). Both of these contradict the given assumption. Thus we must have either

rank(E) = rank(V) or rank(E) = rank(W). In the first case we have φ is a monomorphism

and in the second case φ is generically surjective.

(iii) By (ii) we have that φ is a monomorphism and hence det(φ) : det(V) → det(W)

is also a monomorphism. From the given condition it follows that det(φ) is actually an

isomorphism. Thus so is φ. �

Remark 1.15. If V = W then the conclusion of (iii) remains true for any torsion free

sheafV([Friedman, Chapter 4, Proposition 7]).

LetV be a coherent torsion free sheaf on X. We say thatV is simple if End(V) = {λ · Id :

λ ∈ C}. As an application of the above we get the following result.

Corollary 1.16. LetV be a coherent stable torsion free sheaf on X. ThenV is simple.

Proof. ([Friedman, Chapter 4, Corollary 8]) Let φ : V → V be a non-zero homomor-
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phism. Then by Lemma 1.14(iii) and Remark 1.15 above, φ is an isomorphism. Choose

x ∈ X such thatV is free at x. Let λ ∈ C be an eigenvalue of φ(x) : V(x) → V(x) where

V(x) is the fiber ofV at x. Now consider the map (φ − λ · Id) : V → V. This map is not

an isomorphism and hence must be zero. �

Lemma 1.17. Let V be a coherent torsion free semistable sheaf on X. If rank(V) and

degreeH(V) are co-prime, thenV is stable.

Proof. IfV is not stable then there is a proper subsheafW ofV such that µ(V) = µ(W)

and this contradicts that rank(V) and degreeH(V) are co-prime. �

Now we will state Bertini’s theorem. Before that we will recall some definitions. Here we

will consider varieties defined over an arbitrary algebraically closed field (of any charac-

teristic), not merely over C.

Definition 1.18. Let k be an algebraically closed field. A group variety G over k is a

variety G over k together with morphisms

σ : G ×G → G, ρ : G → G, e : Spec(k)→ G

satisfying the followings:

(a) Associativity : The following diagram

G ×G ×G G ×G

G ×G G ×G

σ × 1G σ

1G × σ

σ

commutes.

(b) Law of inverse : Both the compositions
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G
∆
−→ G ×G

1G×ρ
−−−→ G

σ
−→ G

and

G
∆
−→ G ×G

ρ×1G
−−−→ G

σ
−→ G

equal to e ◦ π where π : G → Spec(k) is the structure morphism and ∆ : G → G × G is

the diagonal morphism.

(c) Law of identity : The compositions

G � Spec(k) ×k G
e×1G
−−−→ G ×G

σ
−→ G

and

G � G ×k Spec(k)
1G×e
−−−→ G ×G

σ
−→ G

both equal to 1G. ([MF])

Remark 1.19. Since k is algebraically closed, to say that G is a group variety is same as

saying that the set G(k), of k-rational points of G (which is just the set of all closed points

of G) forms a group under the morphisms σ, ρ, e.

Definition 1.20. (1) Let G be a group variety over k and let X be a variety over k. We say

that G acts on X is there is a morphism θ : G × X → X which induces a homomorphism

G(k)→ Aut(X) of groups.

(2) A homogeneous space is a variety X over k together with a group variety G over k

acting on it such that the group G(k) acts transitively on X(k).

Remark 1.21. (1) Any group variety is a homogeneous space with respect to the action

of left multiplication on itself. Also a group variety is necessarily a non-singular variety.

([Har, Chapter III, Section 10])

(2) The projective space Pn
k is a homogeneous space for the action of PGL(n).
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Proposition 1.22. (Kleiman) Let X be a homogeneous space with group variety G over

an algebraically closed field k of characteristic zero. Let f : Y → X and g : Z → X be

morphisms of non-singular varieties Y,Z to X. For any σ ∈ G(k), let Yσ be Y with the

morphism σ ◦ f to X. Then there is a non-empty open subset V ⊆ G such that for every

σ ∈ V(k),Yσ ×X Z is non-singular and either empty or dimension exactly

dim(Y) + dim(Z) − dim(X).

Proof. See [Har, Chapter III, Theorem 10.8]. �

As a corollary of the above result we get Bertini’s theorem.

Corollary 1.23. (Bertini) Let X be a non-singular projective variety over an algebraically

closed field k of characteristic zero. Let ð be a linear system without base points. Then

almost every element of ð, considered as a closed subscheme of X, is non-singular (but

may be reducible).

Proof. See [Har, Chapter III, Corollary 10.9]. �

Remark 1.24. The hypothesis “X is projective” is not necessary if we choose ð to be a

finite dimensional linear system. If X is projective and if ð is a linear system with base

points D, then by considering the base-point-free linear system ð on X −D we get a more

general result “a general member of ð can have singularities only at the base points”

([Har, Chapter III, Remark 10.9.2]).

1.2 Stable and Semistable Bundles on Projective Spaces

Let Pn denotes the projective n-space over C. Since H∗(Pn,Z) = Z[h]/hn+1Z, where h is

the class of a hyperplane, we can consider the Chern classes of a vector bundle on Pn as

integers.
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LetV be a torsion free coherent sheaf on Pn of rank 2. Then there is a uniquely determined

integer kV such that c1(V(kV)) ∈ {0,−1}. From the Chern class computations it is easy

to see that kV = −
c1(V)

2 , for c1(V) even and kV = −
c1(V)+1

2 , for c1(V) odd. Set Vnorm :=

V(kV).We say thatV is normalized ifV = Vnorm. IfV is a normalized rank two coherent

torsion free sheaf on Pn, then µ(V) ∈ {0,−1
2 }.

Proposition 1.25. Let V be a rank 2 normalized reflexive sheaf on Pn. Then V is stable

if and only ifV has no sections, i.e. H0(Pn,V) = 0. If c1(V) = 0 thenV is semistable if

and only if H0(Pn,V(−1)) = 0.

Proof. ([O-S-S, Chapter 2, Lemma 1.2.5]) If H0(Pn,V) , 0, then we have a monomor-

phism OPn →V. Now µ(OPn) = 0 ≥ µ(V) and henceV is not stable.

Conversely assume that H0(P3,V) = 0. Let W be a rank one coherent subsheaf of V

with a torsion free quotient Q = V/W. Then by Lemma 1.6, W is normal. Since it

is a subsheaf of a torsion free sheaf, it is also torsion free. Thus by Lemma 1.5, W is

reflexive and hence by Lemma 1.2, W is locally free. SoW = OPn(k) for some k ∈ Z.

The inclusionW ↪→V defines a non-zero section ofV(−k). By the assumption, −k > 0.

Hence µ(W) = k < µ(V).

If c1(V) is even, then one can show in exactly the same way that V is semistable if and

only if H0(Pn,V(−1)) = 0. �

If c1(V) = −1 in the above proposition, then “stable” and “semistable” are same. As an

immediate application of the above proposition we have the following result.

Corollary 1.26. Let V be a rank two vector bundle on Pn and suppose c1(V) = 2t, for

some t ∈ Z. Then V is stable if and only if H0(Pn,V(−t)) = 0. Also V is semistable but

not stable if and only if H0(Pn,V(−t)) , 0 and H0(Pn,V(−t − 1)) , 0.

Proof. Since c1(V) = 2t, we have, c1(V(−t)) = 0. Now the conclusion follows from the

above proposition. �
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Let V be a rank r torsion free coherent sheaf on Pn. Then there is a unique integer kV

such that c1(V) ∈ {0, 1, · · · ,−r + 1}. Chern class computaion shows that if ci(V) = mr + i

with m, i ∈ Z and 0 ≤ i ≤ r − 1, then kV = −
c1(V)+i

r . We say that V is normalized if

c1(V) ∈ {0, 1, · · · ,−r + 1}. For rank 3 normalized reflexive sheaves on Pn we have the

following criterion of stability and semistability.

Lemma 1.27. LetV be a normalized rank 3 reflexive sheaf on Pn. ThenV is stable if and

only if

H0(Pn,V) = H0(Pn,V∗) = 0, for c1(V) = 0

H0(Pn,V) = H0(Pn,V∗(−1)) = 0, for c1(V) = −1,−2.

If c1(V) = 0 thenV is semistable if and only if

H0(Pn,V(−1)) = H0(Pn,V∗(−1)) = 0.

Proof. ([O-S-S, Chapter 2, Remark 1.2.6]) This is similar to the case of rank 2. �

We saw before that a stable vector bundle over a smooth irreducible projective variety is

simple. For rank two vector bundles over Pn the converse is also true.

Proposition 1.28. LetV be a rank two simple bundle on Pn. ThenV is stable.

Proof. ([O-S-S, Chapter 2, Theorem 1.2.10]) Without loss of generality we can assume

thatV is normalized. SupposeV is not stable. Then by Proposition 2.18,H0(P3,V) , 0.

AlsoV∗ = V⊗det(V∗). So H0(Pn,V∗) , 0. Let s ∈ H0(Pn,V) and t ∈ H0(Pn,V∗) be two

non-zero sections. Then t ⊗ s ∈ H0(Pn,V∗ ⊗V) defines an endomorphism ofV which in

each fiber has rank at most one. Thus it can not be of the form λ · Id for some λ ∈ C. This

contradicts thatV is simple. �

Remark 1.29. For vector bundles of rank at least three the above proposition does not

hold in general. See [O-S-S, Page 89-90].
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Let V be a vector bundle on Pn and let s ∈ H0(Pn,V) be a global section of V. Then s

determines a morphismOPn →V. Taking duals (i.e. applying the functorHomOPn (·,OPn))

we get a morphismV∗ → OPn . The image of this morphism is a sheaf of ideals I of OPn .

The corresponding closed subscheme Y of Pn is called the scheme of zeros of s, and is

denoted by (s)0.

Remark 1.30. Let V be a rank two vector bundle on Pn, n ≥ 2 and let s ∈ H0(Pn,V) be

a non-zero global section. Let Y be the corresponding scheme of zeros of s. If Y is empty

then the morphism V∗ → OPn is a surjection. In this case, V is a direct sum of two line

bundles. If Y has a component D which is of codimension 1, then D is a divisor. In this

case, the section s lies in the image of the map H0(Pn,V(−D)) → H0(Pn,V) obtained

by taking cohomology long exact sequence corresponding to the short exact sequence

0 → V(−D) → V → V|D → 0. Let t ∈ H0(Pn,V(−D)) be the section whose image is s.

Then the scheme of zeros of t has codimension ≥ 2.

The following result gives a criterion for two distinct sections of a rank two bundle on P3

to have distinct scheme of zeros.

Proposition 1.31. Let V be a rank two vector bundle on P3, and assume that for every

non-zero section s ∈ H0(P3,V), the scheme of zeros (s)0 has codimension 2. Then two

non-zero sections s, s′ ∈ H0(P3,V) have the same scheme of zeros if and only if s = λs′,

for some λ ∈ C, λ , 0.

Proof. See [Har78, Proposition 1.3]. �

Lemma 1.32. LetV be a rank two vector bundle on Pn and let s ∈ H0(Pn,V) be a global

section ofV. Let Y be the scheme of zeros of s and let IY be the ideal sheaf of Y. Then we

have an exact sequence

0→ OPn
s
−→ V → IY(k)→ 0

where k := c1(V).
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Proof. See [Barth77, Lemma 3]. �

The next result, analogous to Bertini’s theorem for divisors (corollary 1.23), gives a crite-

rion for the scheme of zeros of sections to be non-singular. For this result we will consider

vector bundles on projective spaces over an arbitrary algebraically closed field k of any

characteristic.

Proposition 1.33. Let k be an algebraically closed field and let Pn
k be the projective n-

space over k. LetV be a rank two vector bundle on Pn
k .

(1) If V(−1) is generated by global sections, then for all sufficiently general sections

s ∈ H0(Pn,V), the scheme of zeros (s)0 is non-singular (but not necessarily connected).

(2) If characteristic of k is zero, then the above conclusion holds for weaker condition that

V is generated by global sections.

(3) If H1(Pn,V∗) = 0 and n ≥ 3, then (s)0 is connected for every s ∈ H0(Pn,V).

Proof. See [Har78, Proposition 1.4]. �

Now we will state a very useful results for computing Chern classes of globally generated

rank two vector bundles over P3. Before that we recall a well known result.

Lemma 1.34. Let V be a vector bundle on Pn which is generated by global sections. If

c1(V) = 0 thenV is trivial.

Proof. See [O-S-S, Chapter 1, §3]. Also see [LN10, Lemma 3.9] for a proof for vector

bundles on non-singular irreducible projective variety over C. �

Lemma 1.35. Let V be a non-trivial rank two vector bundle on P3 together with a sur-

jection

C4 ⊗ OP3 →V.

Then c1(V) = 2m and c2(V) = 2m2 for some integer m ≥ 1.
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Proof. ([LN10, Lemma 3.5]) The surjection C4⊗OP3 →V gives rise to an exact sequence

of vector bundles on P3 :

0→ S → C4 ⊗ OP3 →V.

Let c1(V) = a and c2(V) = b. Since V is generated by global sections and non-trivial,

a > 0 (Lemma 1.34). Since S is a rank two bundle, we have c3(S ) = 0. from this we get

that 2ba − a3 = 0. Since a , 0, a2 − 2ab = 0. From this the conclusion follows. �
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2 Null Correlation Bundle on Projective Three Space

In this section, we will define null correlation bundle on P3, the projective three space

over C and prove the main result: Theorem 0.2.

2.1 Space of Null Correlation Bundles

Let Ω1
P3 denotes the cotangent bundle of P3 and let’s consider the projective space bundle

P(Ω1
P3). Then we have

P(Ω1
P3) � {(x,H) ∈ P3 × P3∗ : x ∈ H}.

Let p : P(Ω1
P3)→ P3 be the projection and consider the 4 × 4 complex matrix

A =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


.

Then for all x ∈ C4 we have 〈Ax, x〉 = 0 where 〈x, y〉 =
∑

i xiyi. Now choose a homo-

geneous coordinate (x0, x1, x2, x3) of P3 and let (ξ0, ξ1, ξ2, ξ3) be the dual homogeneous

coordinate of P3∗. With respect to these coordinates A defines an isomorphism

Φ : P3 → P3∗.

W. Barth called such an isomorphism as null-correlation. The condition 〈Ax, x〉 = 0

implies the existence of a section

g : P3 ↪→ P(Ω1
P3), x 7→ (x,Φ(x)).
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We can consider this section as a subbundle of Ω1
P3 ,OP3(a) ↪→ Ω1

P3 . It can be proved that

a = −2. Thus the section g defines a trivial subbundle OP3 ⊂ Ω1
P3 . By taking dual we get a

surjection

TP3(−1)→ OP3(1),

where TP3 is the tangent bundle of P3. The kernel of the above surjection,V say is a rank

two vector bundle on P3. This bundle is called a null correlation bundle on P3. Using the

short exact sequence

0→V → TP3(−1)→ OP3(1)→ 0

we can compute the Chern classes of the bundle V to get c1(V) = 0, c2(V) = 1. Also

the bundle V is stable but the restriction V|H to any hyperplane H ⊂ P3 is semistable,

not stable ([O-S-S, Chapter2, Theorem 1.3.1]). A null correlation bundle is unique up

to translation by automorphisms of P3 and by tensoring by line bundles as given by the

following result:

Theorem 2.1. ([Barth77]) Let V be some rank two µ-stable bundle on Pn, the complex

projective n-space. If n ≥ 4, there is a non-empty open set U ⊂ Pn∗, the dual projective

space, such that the restriction ofV to all hyperplanes parametrized by U is again stable.

The same holds for n = 3, unlessV is Null correlation bundle.

From the above theorem it is obvious that any rank two vector bundle on P3 that occurs

as a kernel of a surjective morphism

TP3(−1)→ OP3(1)

is a null correlation bundle on P3.

Now we will give a short description of the space of all null correlation bundles on P3.

Let S be a projective variety of over C and let c1, c2 · · · , cr ∈ Z. A family of rank r stable

bundles over Pn with Chern classes c1, c2, · · · , cr and parametrized by S is a rank r vector
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bundleV over S × Pn such that for all s ∈ S the bundle

Vs := V|s×Pn

over Pn � s × Pn is stable and has Chern classes

ci(Vs) = ci.

Let p : S × Pn → S be the projection onto the first factor. Two families V and W

parametrized by S are said to be equivalent if there is a line bundle L over S such that

W � V ⊗ p∗L.

We denote by
∑

:=
∑Pn

c1,c2,··· ,cr
(S ) the set of equivalence classes of families of rank r stable

bundles over Pn with Chern classes c1, c2, · · · , cr and parametrized by S .

Let Var denotes the category of projective varieties over C and let Sets denotes the cate-

gory of sets. Then we have a contravariant functor

∑
: Var→ Sets.

Definition 2.2. A fine moduli space for rank r stable bundles over Pn with given Chern

classes c1, c2, · · · , cr ∈ Z is a scheme M := MPn(c1, c2, · · · , cr) over C together with a

bundle U overM× Pn such that the contravariant functor
∑

=
∑Pn

c1,c2,··· ,cr
is represented

by the pair (M,U).

It was proved by Le Potier in [lePotier79] that there is no fine moduli space for rank 2

stable bundles over P2 with c1 = 0 and c2 even.

Definition 2.3. A schemeM := MPn(c1, c2, · · · , cr) over C is a coarse moduli space for

the contravariant functor
∑Pn

c1,c2,··· ,cr
if the following conditions are satisfied:
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(i) there is a natural transformation of contravariant functors

∑
→ Hom(−,MPn(c1, c2, · · · , cr))

which is bijective for any (reduced) point x0.

(ii) for every variety X and every natural transformations
∑
→ Hom(−, X) there is a

unique morphism

φ :MPn(c1, c2, · · · , cr)→ X

for which the diagram

∑Pn

c1,c2,··· ,cr
Hom(−,MPn(c1, c2, · · · , cr))

Hom(−, X) Hom(−, X)

φ∗

Id

commutes.

The existence of the moduli space M := MP3(0, 1) is of particular interest. Before de-

scribing this space, we will recall some results.

Lemma 2.4. Let V be a rank two stable bundle on P3 with Chern classes c1(V) =

0, c2(V) = 1. Suppose H1(P3,V(−2)) = 0. ThenV fits into the exact sequence

0→ OP3(−1)→ Ω1
P3(1)→V → 0.

In other words,V is a null correlation bundle on P3.

Proof. See [O-S-S, Chapter 2, §3, Example 6]. �

The next result shows that the condition H1(P3,V(−2)) = 0 in the above lemma is not

necessary.
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Lemma 2.5. Let V be a rank two stable bundle on P3 with Chern classes c1(V) =

0, c2(V) = 1. Then

H1(P3,V(−2)) = 0.

Proof. See [O-S-S, Chapter 2, Lemma 4.3.1]. �

Combining above two lemmas we get the following result.

Lemma 2.6. Every stable rank 2 bundleV on P3 with Chern classes c1(V) = 0, c2(V) =

1 is given by an exact sequence

0→ OP3(−1)→ Ω1
P3(1)→V → 0.

Each of these bundlesV is a null correlation bundle on P3.

Proof. See [O-S-S, Chapter 2, Lemma 4.3.2]. �

The above lemma shows that the moduli spaceMP3(0, 1) is the actually the moduli space

of null correlation bundles on P3. The description of this space is given in the following

result.

Proposition 2.7. The moduli space MP3(0, 1) for the null correlation bundles on P3 is

isomorphic to the complement

P5 \Gr(2,C4)

in P5 of the Grassmannian variety of two dimensional quotients of C4.

Proof. See [O-S-S, Chapter 2, Theorem 4.3.4]. �
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2.2 Main Result

Let σ : P3 → P3 be the automorphism

[x1, x2, x3, x4] 7→ [−x1,−x2, x3, x4].

Then σ is an involution i.e., σ2 = idP3 . The automorphism σ lifts to an automorphism of

the vector space

H0(P3,OP3(2))

with subspace of σ invariants (i.e., v ∈ H0(P3,OP3(2));σ(v) = v)

V =< X2
1 , X

2
2 , X

2
3 , X

2
4 , X1X2 + X3X4, X1X2 − X3X4 > .

Clearly the linear system defined by V is base point free on P3 and hence

[x1, x2, x3, x4] 7→ [x2
1, x

2
2, x

2
3, x

2
4, x1x2 + x3x4, x1x2 − x3x4]

gives a morphism

φ : P3 → P5.

Since this morphism is defined byσ invariants, the morphism φ factors through P3/< σ >.

In other words, we have the following commutative diagram:

P3 φ
−→ P5

↓ ↗

P3/< σ >
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Set [Z0,Z1, . . . ,Z5] as homogeneous coordinates of P5. Note that image of P3 under φ is

contained in the intersection of two linearly independent quadrics, namely

Z2Z3 − Z0Z1 + Z4Z5 (1)

and

2Z0Z1 + 2Z2Z3 − Z2
4 − Z2

5 . (2)

Since a non constant morphism from a projective space is always finite, the image of P3

under φ is equal to intersection of two quadrics in P5. Degree considerations will imply

that the morphism φ maps P3/< σ > in a bijective manner onto the intersection of the

quadrics (1) and (2).

Since equation (1) defines the Grassmannian Gr(2,C4) in P5 under the Plüker imbedding,

the morphism φ can also be thought of as a morphism into the Grassmannian Gr(2,C4).

Let

Q := φ∗(Qu),

where Qu is the universal quotient bundle on the Gassmannian Gr(2,C4) of rank two.

Chern classes of the rank two vector bundle Q on P3

First note that the determinant of the universal quotient bundle on the Grassmannian

Gr(2,C4) is the restriction of OP5(1). Thus we see that the determinant of Q is OP3(2),

and hence the first Chern class of Q,

c1(Q) = 2[H], (3)

where H is the hyperplane class of P3.

Next we calculate the second Chern class c2(Q) of Q on P3. This can be found by con-

sidering the pull back under the morphism φ of a two dimensional linear subspace of P5
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contained in Gr(2,C4) (see below 2.8). Let’s consider a two dimensional linear subspace

defined by Z4 = Z2 − Z0 = Z1 − Z3 = 0 contained in Gr(2,C4). Then the pull back of this

linear subspace under the morphism φ is the scheme `1 ∪ `2, where `1 ⊂ P
3(resp. `2 ⊂ P

3)

is a line defined by X1 − X3 = X2 + X4 = 0 (resp. X1 + X3 = X2 − X4 = 0). From this we

see that

c2(Q) = 2[H2]. (4)

Remark 2.8. A rank two vector bundle E on P3 which is generated globally by four

sections induces an exact sequence

0→ S → O4
P3 → E → 0 (5)

where S is a rank 2 vector bundle on P3. From this exact sequence we see that

c2(S ) = c2(E),

[LN10, Lemma 3.3]. This Chern class is the class of the pull back, under the morphism

of P3 to Gr(2,C4) given by the exact sequence (5), of a two dimensional linear subspace

of P5 contained in Gr(2,C4) [GH, p. 757].

Stability property of the bundle Q

Note that, by construction, the rank two bundle Q on P3 comes with an exact sequence

0→ E → O4
P3 → Q→ 0.

In fact this exact sequence is the pull back of the universal exact sequence on Gr(2,C4).

Since Q is quotient of the trivial bundle of rank four, Q is generated by the images of

these four sections. It is easy to see that these are four independent sections of Q. Let V

be the four dimensional subspace of H0(Q) generated by these four sections of Q. Since
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the morphism

φ : P3 → Gr(2,C4)(⊂ P(∧2V) ' P5)

is given by the linear system

∧2V ⊂ H0(P3, det(Q)) = H0(P3,OP3(2))

we see that, for a general element s of V the zero set is a non degenerate (i.e., not contained

in a hyperplane) codimension two smooth subscheme of degree two of P3 and hence dis-

joint union of two lines. In fact smoothness of the subscheme follows from the general re-

sult of Kleiman [Har, Section III, Theorem 10.8]. To see the zero locus is non-degenerate

we argue as follows: By Bertini’s Theorem [Har, Section III, Corollary 10.9], φ−1(H) is

a smooth quadric in P3, where H is a general hyperplane of P5. Restriction of φ to such a

quadric will pull back the class of a linear plane contained in Gr(2,C4)(⊂ P(∧2V) ' P5)

to a multiple of the class of one of the rulings of the quadric.

Let s be a general global section of Q. By previous observation

(s)0 = {p ∈ P3 : s(p) = 0} = `1 ∪ `2,

where `1 and `2 are two disjoint lines in P3. The section s gives rise to an exact sequence

0→ OP3 → Q→ I`1∪`2(2)→ 0 (6)

[Barth77, Lemma 3]. Tensoring the exact sequence (6) by OP3(−1) and using the fact

that `1 ∪ `2 is not contained in a hyperplane, we conclude that H0(P3,Q(−1)) = 0. Since

c1(Q) = 2, using Corollary 1.26 we have the following:

Lemma 2.9. The bundle Q on P3 is stable.
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Restriction of the bundle Q to hyperplanes of P3

The aim of this section is to prove the following

Lemma 2.10. The bundle Q|H is semi-stable but not stable, where H is any hyper-plane

of P3.

Proof: Let H be a hyper-plane of P3. Since c1(Q) = 2 and H ' P2, using Corollary 1.26

we see that to prove the lemma, we only need to show

H0(H,Q|H(−1)) , 0 and H0(H,Q|H(−2)) = 0.

The restriction of the exact sequence (6) to H gives an exact sequence on H:

0→ OH → Q|H → I`1∪`2(2) ⊗ OH → 0. (7)

Suppose that the lines `1 and `2 are not contained in H. Then

H ∩ (`1 ∪ `2) = {p1, p2},

where p1 and p2 are two distinct points of H. In this case the exact sequence (7) reduced

to the following exact sequence

0→ OH → Q|H → I{p1,p2}(2)→ 0. (8)

Tensoring the exact sequence (8) by OH(−1) (resp. by OH(−2)) and taking the cohomol-

ogy, we see that H0(H,Q|H(−1)) , 0 ( respectively, H0(H,Q|H(−2)) = 0).

Since `1 and `2 are disjoint, a hyper-plane H of P3 can contain at most one of these lines.

Suppose a hyper-plane H contains one of these lines, say `1. Then H intersects `2 at

exactly one point, say at p. So, the restriction of the exact sequence (6) to H give rise to
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an exact sequence

0→ OH(1)→ Q|H → Ip(1)→ 0. (9)

Tensoring the exact sequence (9) by OH(−1) (resp. by OH(−2)) and taking the cohomol-

ogy, we see that H0(H,Q|H(−1)) , 0 ( respectively, H0(H,Q|H(−2)) = 0). This completes

the proof the lemma.

Note that, in [Barth77], a Null correlation bundle is defined to be a rank two bundle on

P3 with the first Chern class c1 = 0 and the second Chern class c2 = 1, which is stable

but when restricted to a general hyper plane is not stable, only semi-stable. It is easy to

see that the bundle Q(−1), where Q is the rank two bundle on P3 that we defined above,

is a Null correlation bundle. Since tensoring by line bundle does not change the stability

properties of a bundle, any bundle which is obtained from Null-correlation bundle by

tensoring by a line bundle will also be called Null correlation bundle. Using above two

lemmas we get the main result of this section.

Theorem 2.11. The rank two vector bundle Q is a null correlation bundle on P3.

Remark 2.12. According to Barth [Barth77], a Null-correlation bundle is homogeneous

for the symplectic group and is unique up to translation by automorphisms of P3.

If we replace the involution σ in our construction by a conjugate involution gσg−1 the

bundle we get is g∗(Q), where g is an automorphism of P3. Since a Null-correlation bundle

is a unique bundle (up to translation by automorphisms) which is stable but the restriction

of it to any hyper-plane H is semi-stable, not stable [Barth77], we conclude that the

bundle Q, that we constructed above, is a Null-correlation bundle on P3.
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3 Semistability of Secant Bundles on Second Symmetric

Power of Curves

Let C be a smooth irreducible projective curve of genus g over C, the field of complex

numbers. Consider the variety Cn := C×C×· · ·×C (n times), the n-fold cartesian product

of C. Let S n denotes the symmetric group of n elements. Then there is a natural action

of S n on Cn, given by (σ, (x1, x2, · · · , xn)) 7→ (xσ(1), xσ(2), · · · xσ(n)). The quotient S n(C) :=

Cn/S n is called the n-th symmetric power of C. It is an irreducible smooth projective

variety of dimension n. A point in S n(C) can be thought as an effective divisor of degree

n on C and S n(C) can be regarded as the set of all effective divisors of degree n on C.

With respect to this identification, we can write an element of S n(C) as
∑n

i=1 xi, xi ∈ C.

Given a vector bundle E on C, there is a naturally associated vector bundle on S n(C). In

this section we will recall some properties of this bundle and also prove the main results:

Theorems 0.5, 0.6, 0.7.

3.1 Secant Bundles on Symmetric Power of Curves

Consider the variety S n(C)×C. Set ∆n := {(D, p) ∈ S n(C)×C : p ∈ D}. Then ∆n is a divisor

on S n(C) ×C, called the universal divisor of degree n on C. Let q1 : S n(C) ×C → S n(C)

and q2 : S n(C)×C → C be the projections. Let q := q1|∆n : ∆n → S n(C) be the restriction

of q1. Then q is a finite morphism of degree n. Let E be a vector bundle of rank r on C.

Then we have the following exact sequence of S n(C) ×C modules:

0→ q∗2E ⊗ OS n(C)×C(−∆n)→ q∗2E → q∗2E ⊗ O∆n → 0.
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Set Fn(E) := (q2)∗(q∗1E ⊗ O∆n) = q∗(q∗1E|∆n). Then from the above exact sequence we get

an exact sequence on S n(C) :

0→ (q2)∗(q∗1E⊗OS n(C)×C(−∆n))→ (q2)∗(q∗1E)→ Fn(E)→ R1(q2)∗(q∗1E⊗OS n(C)×C(−∆n)).

The coherent sheaf Fn(E) is actually a vector bundle on S n(C) of rank nr. This bundle

is called the secant bundle on S n(C). This was first introduced by R. Schwarzenberger

([S64]).

Let πi : Cn → C be the i-th coordinate projections and let E(n) := ⊕n
i=1π

∗
i E. Then E(n)

is a locally free sheaf of rank nr on Cn. Let π : Cn → S n(C) be the natural quotient

morphism. This is a Galois covering morphism with the Galois group S n. Then the action

of S n on Cn induces an action on E(n). Any element of S n permutes the fiber of E(n)

the same way as it permutes the elements of Cn. The action of S n on E(n) induces an

action on π∗E(n). Let Vn(E) := (π∗E(n))S n ⊂ π∗E(n) be the invariant subsheaf defined

as follows: Over any open set U the sections are the S n-invariant sections of π∗E(n), i.e.

Γ(U,Vn(E)) := Γ(U, π∗E(n))S n Since π is finite proper surjective morphism of smooth

projective varieties, π∗E(n) is locally free. The coherent sheaf Vn(E) is also locally free

because locally it is a direct summand of π∗E(n).

Proposition 3.1. The two vector bundlesVn(E) and Fn(E) on S n(C) as defined above are

canonically isomorphic.

Proof. See [BL11, Proposition 2.1]. �

Assume g ≥ 2. Let Picn(C) denotes the the variety parametrizing all degree n line bundles

on C and let ν : S n(C) → Picn(C) be map defined by {x1, x2, . . . , xn} 7→
∑n

i=1 xi. (Here

{x1, x2, · · · , xn} is an unordered collection of points xi ∈ C, considered as an element of

S n(C) and we are identifying the divisor
∑n

i=1 xi on C and the corresponding line bundle

on C.) Let θ ∈ H2(S n(C),Z) be the pull back of the class of theta divisor in H2(Picn(C),Z)
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under the map ν. Using Künneth formula we can write

H2(S n(C) ×C,Z) =

(H2(S n(C),Z) ⊗ H0(C,Z)) ⊕ (H1(S n(C),Z) ⊗ H1(C,Z)) ⊕ (H0(S n(C),Z) ⊗ H2(C,Z))

Let δ be the class of the universal divisor ∆n. Then using above we can decompose δ

as δ = δ2,0 + δ1,1 + δ0,2, where δi, j ∈ Hi(S n(C),Z) ⊗ H j(C,Z). Let’s denote the Künneth

component δ2,0 by x.

Lemma 3.2. Let E be a line bundle on C and let the degree of E is d, then the Chern

polynomial of Fn(E) is

ct(Fn(E)) = (1 − xt)n−d+g−1etθ/(1−xt).

Proof. See [ACGH, Chapter VIII, Lemma 2.5]. �

Remark 3.3. Let n = 2 and E be a line bundle on C of degree d. Then from the above

Lemma we get that the first Chern class

c1(F2(E)) = (d − g − 1)x + θ

and the second Chern class

c2(F2(E)) =

(
d − g

2

)
x2 + (d − g)x · θ +

θ2

2
.

The cohomology group H4(S 2(C),Z) is canonically isomorphic to Z. Also we have x2 =

1, x · θ = g, θ2 = g(g − 1). Using this we get c2(F2(E)) =
(

d
2

)
. (See [ELN11])

Now assume E is any rank r vector bundle on C. Choose a filtration of E such that the

successive quotients are line bundles. This filtration induces a filtration of subbundles of
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Fn(E). Also note that if V = ⊕kLk, where each Lk is a line bundle on C, then Fn(V) =

⊕kFn(Lk). Using this, we see that, the Chern character of Fn(E) is ([BL11])

ch(Fn(E)) = degree(E)(1 − e−x) − r(g − 1) + r(n + g − 1 + θ)e−x.

In particular, when n = 2 the first Chern class of F2(E) is given by

c1(F2(E)) = (d − r(g + 1))x + rθ, (10)

where d = degree(E).

Let C be a smooth irreducible projective curve of genus g over C. Let E be a line bundle

on C of degree d. Consider the associated vector bundle F2(E) of rank two on S 2(C), the

second symmetric power of C. Let x ∈ C and consider the divisor H′ = x + C on S 2(C).

Then H′ is an ample divisor on S 2(C). The following results gives criterion for F2(E) to

be stable and semistable with respect to H′.

Theorem 3.4. Let E be a very ample line bundle on C. Then the vector bundle F2(E) on

S 2(C) is semistable with respect to the ample divisor x + C.

Proof. See [ELN11, Theorem 4.3]. �

Theorem 3.5. Let E be a very ample line bundle on C. Assume that genus of C is greater

than zero or genus of C is zero and degree(E) is greater than one. Then the vector bundle

F2(E) is stable with respect to the ample divisor x + C.

Proof. See [ELN11, Theorem 4.6]. �

Remark 3.6. Let C = P1 and E = OP1(1) then S 2(C) = P2 and F2(E) = OP2 ⊕OP2 . Hence

F2(E) is not stable. We will see later that the condition on degree of E in Theorem 3.5 is

a necessary and sufficient one.

We have a further generalization of the above theorems.
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Theorem 3.7. Let E be a non-trivial line bundle on C.

(1) The vector bundle F2(E) on S 2(C) is semistable with respect to the ample divisor x+C.

(2) If E and E′ are two line bundles on C such that F2(E) � F2(E′), then E � E′. In fact,

every isomorphism of F2(E) and F2(E′) induces an isomorphism of E and E′.

(3) The vector bundle F2(E) is stable with respect to the ample divisor x + C, unless

E � OC(x) or E � OC(−x) for some x ∈ C.

Proof. See [BN13, Theorem 1.1]. �

Theorem 3.7(2) is a special case of the following result.

Theorem 3.8. Assume genus of C is greater than one. If E and E′ are two semistable

bundles on C such that the vector bundles Fn(E) and Fn(E′) on S n(C) are isomorphic for

a fixed n, then E is isomorphic to E′.

Proof. See [BN12, Theorem 1.1]. �

Remark 3.9. The condition on genus of C in the above theorem can be relaxed with an

additional assumption that µ(E) > n−1 and µ(E′) > n−1. See [BP11, Theorem 2.1, 3.1].

Let x ∈ C. Then x + S n−1(C) is an ample divisor on S n(C). The following result gives a

criterion for the vector bundle Fn(E) on S n(C) to be stable when E is a line bundle on C.

Theorem 3.10. Let E be a line bundle on C of degree d ≥ n. Then the vector bundle

Fn(E) on S n(C) is stable with respect to the ample divisor x + S n−1(C).

Proof. See [M, Proposition 4.3.6]. �

3.2 Main Results

Let C be a smooth irreducible projective curve of genus g over C. Let E be a rank 2 vector

bundle on C. and let F2(E) be the associated secant bundle on S 2(C). Define a morphism
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f : C ×C → S 2(C) ×C by (x, y) 7→ (x + y, y). Then this morphism gives an isomorphism

of C ×C onto the universal divisor ∆2. Let π : C ×C → S 2(C) be the quotient map and let

q : ∆2 → S 2(C) be the map obtained by restricting the projection q1 : S 2(C)×C → S 2(C)

to ∆2. Then we have q ◦ f = π. Let pi : C × C → C be the i-th coordinate projections,

i = 1, 2. Then we have F2(E) = π∗p∗2E. Fix an element x ∈ C. Then the image of x ×C in

S 2(C) (under the morphism π) is an ample divisor. We denote this divisor by x + C. We

prove the following result:

Theorem 3.11. Let E be a rank two stable vector bundle of even degree d ≥ 2 on C such

that F2(E) is globally generated. Then the bundle F2(E) on S 2(C) is µH′-semistable with

respect to the ample class H′ = x + C.

Remark 3.12. If E is an even degree vector bundle which is a quotient of direct sum of

very ample line bundles, i.e. if there is a surjection ⊕Li → E where each Li is a very

ample line bundle on C, then E satisfies the property of Theorem 3.11.

We recall some well known results.

Lemma 3.13. Let f : X −→ Y be a finite surjective morphism of non-singular surfaces,

F be a vector bundle on Y, and H be an ample divisor on Y. Assume f ∗(F) is µ f ∗(H)-

semistable (respectively, µ f ∗(H)-stable). Then F is µH-semistable (respectively, µH-stable).

Proof. ([ELN11, Lemma 4.4]). If F is not µH-semistable (respectively, µH-stable) then

there is a torsion free coherent proper subsheaf M of F such that µH(M) > µH(F) (re-

spectively, µH(M) ≥ µH(F)). Then we have µ f ∗(H)( f ∗(M)) > µ f ∗(H)( f ∗(F)) (respectively,

µ f ∗(H)( f ∗(M)) ≥ µ f ∗(H)( f ∗(F))). This contradicts that f ∗(F) is µ f ∗(H)-semistable (respec-

tively, µ f ∗(H)-stable). �

Note that π : C × C → S 2(C) is a finite surjective morphism between two non-singular

surfaces. So by Lemma 3.13, to prove Theorem 3.11 it is sufficient to prove that the vector

bundle π∗F2(E) is semistable on C × C with respect to the ample divisor H := π∗(H′) =

[x ×C + C × x].
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The first Chern class of F2(E) is given by c1(F2(E)) = (d − 2(g + 1))x + 2θ (see equation

(10)). Thus c1(π∗F2(E)) = π∗c1(F2(E)) = (d − 2(g + 1))[x × C + C × x] + 2π∗(θ). To find

an expression for π∗(θ) we use the following result:

Lemma 3.14. Let C be a smooth irreducible curve of genus g ≥ 1 and let KC be the

canonical bundle of C. Let Jg−1(C) be the variety of line bundles of degree g − 1 on C,

and let Θ be the divisor on Jg−1(C) consisting of line bundles with non-zero sections. Let

ξ be a line bundle on C of degree g − 3 and

νξ : C ×C −→ Jg−1(C)

be the morphism (x, y) 7→ OC×C(x + y) ⊗ ξ. Then

ν∗ξ(Θ) � p∗1(KC ⊗ ξ
∗) ⊗ p∗2(KC ⊗ ξ

∗) ⊗ OC×C(−∆)

where ∆ is the diagonal of C ×C and pi : C ×C −→ C is the i-th coordinate projection.

Proof. ([ELN11, Lemma 4.5]) For each x ∈ C we have

νξ |x×C(Θ) = p∗2(KC ⊗ ξ
∗(−x))|x×C

and

νξ |C×x(Θ) = p∗1(KC ⊗ ξ
∗(−x))|C×x.

From this we can conclude the result. �

Using this we get π∗(θ) = (g + 1)[x ×C + C × x] − ∆. Thus

c1(π∗(F2(E))) = d[x ×C + C × x] − 2∆,
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and

µH(π∗(F2(E))) =
d − 2

2
.

Now ∆ is canonically isomorphic to C and hence any vector bundle on C can be consider

as a vector bundle on ∆ in a canonical way. Also note that p∗i (E)|∆ = E. The vector bundle

π∗(F2(E)) fits in the following short exact sequence on C ×C :

0→ π∗(F2(E))→ p∗1(E) ⊕ p∗2(E)
σ
−→ E = p∗1(E)|∆ = p∗2(E)|∆ → 0 (11)

where the map σ is given by σ : (u, v) 7→ u|∆ − v|∆. Let φi : p∗1(E) ⊕ p∗2(E) −→ p∗i (E) be

the restriction of the projection p∗1(E) ⊕ p∗2(E) −→ p∗i (E) to π∗(F2(E)) ⊂ p∗1(E) ⊕ p∗2(E).

Then from the exact sequence (11), we get the following two exact sequences:

0→ p∗1(E) ⊗ OC×C(−∆)→ π∗(F2(E))
φ1
−→ p∗2(E)→ 0, (12)

and

0→ p∗2(E) ⊗ OC×C(−∆)→ π∗(F2(E))
φ2
−→ p∗1(E)→ 0 (13)

[BN12, Section 3].

Now we prove the following result.

Lemma 3.15. p∗i (E) is µH-stable, ∀i = 1, 2.

Proof. Due to symmetry, we will do it only for p2
∗E. Since over a smooth irreducible

projective surface double dual of a coherent torsion free sheaf is free, by taking double

dual if necessary, we see that to prove stability or semistability it is enough to consider

subsheaves which are line bundles. Let L be a line bundle on C × C which is a subsheaf

of p2
∗E such that the quotient, M say, is torsion free. We have an exact sequence

0 −→ L −→ p2
∗E −→ M −→ 0.
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We restrict this exact sequence to x × C and C × x, respectively, to obtain the following

exact sequences

0 −→ L|x×C −→ E −→ M|x×C −→ 0,

and

0 −→ L|C×x −→ OC ⊕ OC −→ M|C×x −→ 0.

From the first exact sequence we get, deg(L|x×C) = c1(L).[x × C] < µ(E) = d
2 , since E is

stable. And from the second exact sequence we get deg(L|C×x) = c1(L).[C × x] ≤ 0. Thus

deg(L) = c1(L).[x ×C + C × x] < d
2 = µH(p∗2E), proving the Lemma. �

Proof. ( of Theorem 3.11):

Let L be a line bundle which is a subsheaf of π∗(F2(E)) such that the quotient is tor-

sion free. Suppose there is a non-zero homomorphism from L to p∗1(E)(−∆) := p∗1(E) ⊗

OC×C(−∆). Then µH(L) < µH(p∗1(E)(−∆)) = d−4
2 < d−2

2 . So assume that there is no

non-zero map from L to p∗1(E)(−∆). Thus there is an injection L → p∗2(E) so that

µH(L) < µH(p∗2(E)) = d
2 . Since d is even, µH(L) ≤ d

2 − 1 = d−2
2 .

Now let F be a rank two coherent subsheaf of π∗(F2(E)) such that quotient is torsion-free.

Then we have the following commutative diagram:

0 p∗1(E)(−∆) π∗(F2(E)) p∗2(E) 0

0 F′ F F′′ 0

where the vertical arrows are injections. Suppose that both F′ and F′′ are non-zero. These

two are rank 1 coherent sheaf. So we have, deg(F′) = µH(F′) < µH(p∗1(E)(−∆)) = d−4
2 and

deg(F′′) = µH(F′′) < µH(p∗2(E)) = d
2 . Thus µH(F) = 1

2 (deg(F′)+ deg(F′′)) < d−2
2 . Now

assume at least one of F′ and F′′ is zero. First let F′′ be zero. Then we have an injection

F → p∗1(E)(−∆) and the cokernel is a torsion sheaf. If the cokernel is supported at only
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finitely many points, then µH(F) = µH(p∗1(E)(−∆)) < d−2
2 . If the cokernel is supported at

a co-dimension 1 subscheme, then µH(F) < µH(p∗1(E)(−∆)) < d−2
2 . Now let F′ is zero.

So we have an injection F → p∗2(E) and the cokernel is a torsion sheaf. If the cokernel

is supported at a subscheme of co-dimension 1, then µH(F) < µH(p∗2(E)) = d
2 so that

µH(F) ≤ d−1
2 . If µH(F) = d−1

2 , then the cokernel is supported on a divisor of degree one.

Now an effective divisor of degree one on C × C is of the form x × C or C × x, for some

x ∈ C. Thus c1(F) is of the form c1(p∗2(E)) + [−x × C] or c1(p∗2(E)) + [−C × x]. But

c1(π∗(F2(E)) = d[C × x + x × C] − 2∆, therefore c1((π∗(F2(E)/F)) = (d + 1)[x × C] −

2∆ or d[x×C]+[C×x]−2∆. In both the cases the torsion free sheaf π∗(F2(E)/F restricted

to any curve of the form x × C has negative degree. This gives a contradiction to the fact

that π∗(F2(E) is generated by sections. Thus we have, µH(F) ≤ d−2
2 . If the cokernel is

supported only at finitely many points then µH(F) = µH(p∗2(E)) = d
2 . In this case, F is a

rank two stable sheaf and hence it is isomorphic to p∗2(E). So the exact sequence (2) splits,

i.e., π∗(F2(E)) � p∗1(E)(−∆) ⊕ p∗2(E). Since p∗1(E)|x×C is trivial, deg(p∗1(E)(−∆)|x×C) < 0.

This contradicts the fact that F2(E) and hence π∗(F2(E)) is globally generated.

Let F be a rank 3 coherent subsheaf of π∗(F2(E)) such that the quotient is torsion free.

Then we have the following commutative diagram:

0 p∗1(E)(−∆) π∗(F2(E)) p∗2(E) 0

0 F′ F F” 0

where the vertical arrows are injections. We have two possibilities: (I) rankF′ = 2 and

rankF′′ = 1; (II) rankF′ = 1 and rankF′′ = 2. Suppose that rankF′ = 2 and rankF′′ = 1.

By the arguments above, we have, µH(F′) ≤ d−4
2 and µH(F′′) < d

2 . So

µH(F) <
3d − 8

6
<

d − 2
2

.

Now assume that rankF′ = 1 and rankF′′ = 2. In this case, we have, µH(F′) < d−4
2 and

44



µH(F′′) ≤ d
2 . If d is even, µH(F′) ≤ d−4

2 − 1, hence µH(F) ≤ 3d−6
6 = d−2

2 . �

Now we prove the semistablity of F2(E) for degree E odd. First we recall some defini-

tions.

Definition 3.16. Let E be a non-zero vector bundle on C and k ∈ Z, we denote by µk(E)

the rational number

µk(E) :=
degree(E) + k

rank(E)
.

We say that the vector bundle E is (k, l)-stable (resp. (k, l)-semistable) if, for every proper

subbundle F of E we have

µk(F) < µ−l(E/F)(resp.µk(F) ≤ µ−l(E/F)).

Note that usual Mumford stability is equivalent to (0, 0)-stability. If g ≥ 3, then there

always exists a (0, 1)-stable bundle and if g ≥ 4, then the set of (0, 1)-stable bundles form

a dense open subset of the moduli space of stable bundles over C of rank 2 and degree d.

[NR78, Section 5]

Theorem 3.17. Assume the genus of C greater than 2. Let E be a rank two (0, 1)-stable

bundle of odd degree d ≥ 1 on C such that F2(E) is globally generated. Then the bundle

F2(E) on S 2(C) is µH′-semistable with respect to the ample class H′ = x + C.

Proof. Let L be a line bundle which is a subsheaf of π∗(F2(E)) such that the quotient

is torsion free. Suppose there is a non-zero homomorphism from L to p∗1(E)(−∆) :=

p∗1(E)⊗OC×C(−∆). Then µH(L) < µH(p∗1(E)(−∆)) = d−4
2 < d−2

2 . So assume that there is no

non-zero map from L to p∗1(E)(−∆). Thus there is an injection L → p∗2(E). Now consider

the exact sequence,

0 −→ L −→ p∗2(E) −→ M −→ 0, (14)
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where M is a sheaf of rank 1. Restricting the above exact sequence to C × x, we see that,

c1(L).[C × x] ≤ 0. On the other hand, restricting the above exact sequence to C × x and

using that E is (0.1)-stable, we get that c1(L).[C × x] < d−1
2 . Since L is a line bundle,

c1(L).[C × x] ≤ d−3
2 . So we have µH(L) ≤ d−3

2 < d−2
2 .

Let’s assume F be a rank two coherent subsheaf of π∗(F2(E)) such that quotient is torsion-

free. Then we have the following commutative diagram:

0 p∗1(E)(−∆) π∗(F2(E)) p∗2(E) 0

0 F′ F F′′ 0

where the vertical arrows are injections. We need to consider three different cases: (I)

rank F′ = 1 = rank F′′; (II) F′′ = 0; (III) F′ = 0. In each of these cases, we can argue

exactly as in the case of even degree to conclude that µH(F) ≤ d−2
2 = µH(π∗F2(E)).

Now assume F is subsheaf of π∗F2(E) rank 3. Then again we have the following commu-

tative diagram:

0 p∗1(E)(−∆) π∗(F2(E)) p∗2(E) 0

0 F′ F F” 0

where the vertical arrows are injections. We have two possibilities: (I) rankF′ = 2 and

rankF′′ = 1; (II) rankF′ = 1 and rankF′′ = 2. Using the same argument as in Theorem

3.11, we can show that in the case of (I), µH(F) < d−2
2 . Now consider the case (II). In this

case, restricting the exact sequence 0→ F′ → p∗1(E)(−∆) to x ×C and C × x, we get that

0→ F′|x×C → OC(−x)

and

0→ F′|C×x → E ⊗ OC(−x).
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From these two exact sequences and using the fact that E is (0, 1)-stable we see that

µH(F′) < d−4
2 and hence µH(F′) ≤ d−6

2 . Also using the same argument as above, we have,

in any case, µH(F′′) ≤ d
2 . Combining all these, we get that µH(F) < d−2

2 . �

Now we will investigate the restriction of F2(E) to the curves of the form x + C where

x + C is the reduced divisor of S 2(C) whose support equals to {x + c : c ∈ C}. For this we

have the following theorem.

Theorem 3.18. Let C be a smooth irreducible projective curve over C of genus g and let

E be a rank two vector bundle on C of degree d ≥ 3. Then for any x ∈ C,F2(E)|x+C is not

semistable.

Proof. First note that, since E is locally free, p∗2E is flat over S 2(C) and using the base

change formula we get

F2(E)|x+C = π∗(p∗2E|π−1(x+C)).

Also we have the following exact sequence

0→ p∗2E|π−1(x+C) → p∗2E|x×C ⊕ p∗2E|C×x → E|(x,x) → 0.

From this exact sequence and using the fact that π|x×C : x×C → x+C and π|C×x : C× x→

x + C are isomorphisms and p∗2E|x×C = E and p∗2E|C×x = Ex ⊗OC, we get an injective map

0→ E ⊗ OC(−x)→ F2(E)|x+C.

Now the degree of E ⊗ OC(−x) = d − 2 and that of F2(E)|x+C = d − 2. So the cokernel

is rank 2 coherent sheaf of degree zero. If it is torsion free then clearly F2(E)|x+C is not

semistable. If the cokernel has torsion, then there is an effective divisor D such that the

above map factors through E ⊗ OC(−x) ⊗ OC(D) and the cokernel will be again torsion

free. But in this case the degree of the cokernel will be of negative degree. So in this case

F2(E)|x+C has a torsion free quotient of negative degree and hence not semistable. �
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