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Synopsis

A fundamental theorem about connectivity in finite undirected graphs is Menger’s

Theorem [60], which states the following.

Let G be a finite undirected graph and s and t be two nonadjacent vertices.

Then, the minimum number of vertices whose removal disconnects s and t

is equal to the maximum number of pairwise vertex disjoint paths from s to

t.

There is a corresponding edge version of this theorem and also vertex and arc versions

on directed graphs. This min-max theorem is an extremely fundamental one in combina-

torial optimization and the minimum s-t cut can be computed in polynomial time [1]. In

this thesis, we refer to generalizations of the problem of finding the minimum set of ver-

tices disconnecting two vertices in graph, as graph separation problems. Some natural

examples include the problem of finding the minimum number of vertices disconnecting

vertices of a given set from each other, and the problem of finding the minimum number

of vertices disconnecting multiple specified pairs of vertices.

It turns out that these problems are computationally intractable in the classical set-

ting, and therein lies the motivation behind the study of these problems from the point

of view of the field of Parameterized Complexity.

The goal of Parameterized Complexity is to find ways of solving NP-hard problems

more efficiently than by brute force. Here, the aim is to restrict the combinatorial explo-

sion of computational difficulty of the problems to a parameter that is hopefully much

smaller than the input size. An instance of a parameterized problem is a pair (I, k)

where I is the main part and k is the parameter; the latter is a non-negative integer. A

parameterized problem is fixed-parameter tractable if there exists a computable function
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f and a constant c such that instances (I, k) can be solved in time O(f(k)‖I‖c) where

‖I‖ denotes the size of I . FPT is the class of all fixed-parameter tractable problems and

algorithms which run in the time specified above are called FPT algorithms.

Marx [73] initiated the study of graph separation problems in Parameterized Com-

plexity by studying the MULTIWAY CUT problem where the input is an undirected

graph, a set of terminals and a budget k and the objective will be to test if there are

k vertices which intersect all paths between every pair of terminals. This problem is

known to be NP-hard [25] even for 3 terminals. Marx gave the first FPT algorithm for

this problem which did not rely on results from Graph Minors. In the course of giving

his FPT algorithm, he introduced a notion of “important separators” which has subse-

quently proved to be an extremely fundamental tool in obtaining FPT algorithms for a

large number of graph separation problems and consequently settling many open prob-

lems. Notable examples include the first FPT algorithms for DIRECTED FEEDBACK

VERTEX SET [17], ALMOST 2-SAT [90], and MULTICUT [79, 10].

In recent years, the area of design of parameterized algorithms for graph separa-

tion problems has seen a lot of activity resulting in new algorithms and techniques. In

a parallel line of research, a lot of classical problems which are not graph separation

problems or even graph problems in some cases have been found to have a graph sep-

aration problem at their core. Notable examples of this include the VERTEX COVER

problem [88], the ALMOST 2-SAT [90] problem, DELETION q-Horn BACKDOOR SET

DETECTION [38], and SATISFIABILITY [38]. The frequent occurrences of graph sepa-

ration problems at the heart of various seemingly unrelated problems has also motivated

the study of these problems and the search for improved algorithms and more powerful

and general techniques.

In this thesis, we will present results extending in both the directions mentioned
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above. That is, we

• design new techniques and frameworks to obtain new as well as improved FPT

algorithms for certain kinds of parameterized graph separation problems;

• present problems which are not graph separation problems themselves, but have

some variant of graph separation at their core, after which by using our new frame-

works as well as existing ones, we give new as well as improved FPT algorithms.

In particular, we first study the VERTEX COVER problem and give improved FPT

algorithms with two different parameters. The first algorithm is parameterized by the

size of the minimum vertex cover above the size of a maximum matching. We first prove

structural characterizations relating maximum matchings and minimum vertex covers

which extend the known results in this direction. Following this, we show that this

structural characterization in fact proves that we can cast the VERTEX COVER problem

as a graph separation problem and by applying the notion of important separators, we

improve upon the previous best algorithm.

The second algorithm for VERTEX COVER is parameterized by the size of the min-

imum vertex cover above the size of the optimum solution to the standard LP relax-

ation of the Vertex Cover Integer Linear Program. This algorithm is an example of

the power of the recently developed framework of parameterizing above LP and as a

consequence of this algorithm, we get the first improved FPT algorithm for the ODD

CYCLE TRANSVERSAL problem after the initial algorithm given in 2003. This result

also improves upon the previous best bounds for a number of problems, all of whom

have VERTEX COVER with this particular parameter as a generalization.

We also introduce a generalization of the concept of important separators which is

applicable to many problems where important separators break down. Furthermore,

we also design a generic subroutine which imposes certain structure on a given graph,
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which can then be exploited to design FPT algorithms for certain problems. We demon-

strate the power of this technique by introducing a parity based generalization of the

MULTIWAY CUT problem, called PMWC. Parity based graph separation problems have

attracted a lot of attention in recent years and we add to the results and techniques in

this direction with our FPT algorithm for PMWC and the generalization of important

separators.

The next framework we introduce is an application of important separators to ob-

tain greedy approximation algorithms for graph separation problems. Following this,

we consider the DELETION q-Horn BACKDOOR SET DETECTION and SATISFIABIL-

ITY problems and show that both of these problems can be recast as graph separation

problems and by applying our framework in spite of it being designed only for graph

separation problems, obtain FPT-approximation algorithms for the above two problems

as well. This gives us the first FPT-approximation algorithm for DELETION q-Horn

BACKDOOR SET DETECTION as well as the first FPT algorithm for SATISFIABILITY

parameterized by the size of the smallest q-Horn de letion set.

Finally, we give a framework for obtaining efficient FPT algorithms for a number

of problems. Here, efficient implies that the dependence of the running time on the in-

put size is linear. We introduce a graph separation problem on skew-symmetric graphs,

called the d-SKEW-SYMMETRIC MULTICUT problem and give an FPT algorithm for

this problem which has a linear dependence on the input size. Following this, we show

that a large number of problems studied in parameterized complexity have parameter

preserving linear time reductions to this problem and therefore, obtain linear time FPT

algorithms for all these problems for which the existence of such algorithms was an

open problem over the last decade. The most notable example is the ODD CYCLE

TRANSVERSAL problem, which has been known to have linear time FPT algorithms
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only on special graph classes and for which the existence of a linear time FPT algo-

rithm on general graphs was an open question since 2003. However, using the linear

time parameter preserving reduction from this problem to d-SKEW-SYMMETRIC MUL-

TICUT, we answer this question in the affirmative.

As a result of our techniques and frameworks we get the following new results.

New FPT algorithms

1. We obtain aO(2.3146knO(1)) algorithm for VERTEX COVER parameterized above

the size of the optimum value of the LP where n is number of vertices in the input

graph.

2. We introduce a parity based generalization of the classical MULTIWAY CUT prob-

lem, called the PARITY MULTIWAY CUT problem and give an algorithm for this

problem which runs in time O(2O(k
3)nO(1)), where n is the number of vertices in

the input graph.

3. We introduce a graph separation problem on skew-symmetric graphs, namely the

d-SKEW-SYMMETRIC MULTICUT problem, show that it generalizes numerous

well studied parameterized problems and give an algorithm which runs in time

O((4d)kk4(m + n)) where m and n are the number of edges and vertices in the

input graph respectively.

4. We obtain an FPT algorithm for DELETION q-Horn BACKDOOR SET DETEC-

TION which runs in time O(12kk5`) where ` is the length of the input formula.

5. We obtain an FPT algorithm for SATISFIABILITY which runs in time O(12kk5`)

where k is the size of the smallest q-Horn deletion backdoor set of the given

formula and ` is the length of the input formula.
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FPT algorithms with improved dependence on the parameter

1. We obtainO(2.3146knO(1)) algorithms for VERTEX COVER parameterized above

the size of the maximum matching and ODD CYCLE TRANSVERSAL where n

is the number of vertices in the input graph. This is the first improvement (with

respect to the parameter) for ODD CYCLE TRANSVERSAL after the first algorithm

of Reed et al. (2004).

2. We obtain O(2.3146k`O(1)) algorithms for ALMOST 2-SAT where ` is the length

of the input formula.

FPT algorithms with improved dependence on the input size

1. We obtain an algorithm for ODD CYCLE TRANSVERSAL which runs in time

O(4kk4(m + n)), which is the first linear time FPT algorithm for this problem

and answers a question asked by Reed et al. (2004).

2. We obtain an algorithm for ALMOST 2-SAT which runs in time O(4kk4`) and

an algorithm for VERTEX COVER parameterized above the size of the maximum

matching running in time O(4kk4(m+ n)) given a graph with a matching.

Organization of Thesis. Chapters 1 and 2 contain description of basic nota-

tions and definitions regarding Parameterized Complexity. Chapter 3 gives the intuition

behind the notion of important separators, followed by the formal definitions of both

vertex and arc separators, and finally concluding with the presentation of a template

using which we will describe some of the algorithms which appear later in the thesis.

In Chapter 4, we recall some definitions and classical results regarding matchings and

vertex covers and using these, prove a structural characterization which extends the well

known König-Egerváry theorem. In Chapter 5, we use the characterization proved in

xii



the previous chapter along with the template for important separators given in Chapter

3 to give an improved FPT algorithm for the ABOVE GUARANTEE VERTEX COVER

problem. In Chapter 6, we consider the parameterization of the VERTEX COVER prob-

lem above the value of the optimum LP solution and give the first FPT algorithm for

this problem and as a consequence obtain improved FPT algorithms for a number of

parameterized problems. In Chapter 7, we introduce a generalization of important sep-

arators and use it to give an FPT algorithm for the PMWC problem. In Chapter 8, we

introduce a framework of applying important separators to obtain greedy polynomial

time approximation algorithms and illustrate it with the MULTIWAY CUT problem as an

example. In Chapter 9, we study the problem of computing the smallest backdoor sets to

the class of q-Horn formulas and apply the framework described in the previous chapter

to obtain an FPT algorithm for DELETION q-Horn BACKDOOR SET DETECTION. In

Chapter 10, we develop a framework to obtain linear time FPT algorithms for a number

of problems by introducing the d-SKEW-SYMMETRIC MULTICUT problem and giving

the first FPT algorithm for this problem which also has a linear dependence on the input

size.
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1
Parameterized Complexity

In this Chapter we give a broad overview of the field of Parameterized Complexity.

1.1 Introduction

Definition 1.1.1. ([85]) A parameterized problem is a language L ⊆ Σ∗ × N, where Σ

is a finite alphabet. The second component is called the parameter of the problem.

Definition 1.1.2. ([85]) A parameterized problem L is said to be Fixed Parameter

Tractable (FPT) if it can be determined in time f(k) · nO(1) whether or not (x, k) ∈ L,

where f is a computable function depending only on k and n = |(x, k)|. The complexity

class containing all fixed parameter tractable problems is called FPT.

Unless specified otherwise, we will assume that the parameter k is a non negative

integer encoded with a unary alphabet. In the thesis, the parameterized problems will

be either on graphs or on CNF-formulas and the objective will to test if there is a set of

k vertices/edges or variables/clauses which satisfy a certain property. We refer to such

sets as solutions to the given instance.
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Definition 1.1.3. Let L1, L2 ⊆ Σ∗×N be two parameterized problems. A parameterized

(many one ) reduction from L1 is a triple (f, f1, f2) where f1, f2 : N → N and f :

Σ∗ × N→ Σ∗ such that

1. f(x, k) is computable in time f1(k).|(x, k)|O(1) and

2. (x, k) ∈ L1 if and only if (f(x, k), f2(k)) ∈ L2.

The parameterized reduction (f, f1, f2) is said to be a parameter preserving parameter-

ized reduction if f2(k) = k.

The Weft Hierarchy consists of parameterized complexity classes W[1] ⊆ W[2] ⊆

· · · which are defined as the closure of certain parameterized problems under FPT-

reductions (see [27, 33] for definitions). There is strong theoretical evidence that param-

eterized problems that are hard for classes W[i] are not fixed-parameter tractable. For

example FPT = W[1] implies that the Exponential Time Hypothesis (ETH) fails; that

is, FPT = W[1] implies the existence of a 2o(n) algorithm for n-variable 3-SAT [33].

1.2 Some Standard Techniques for Designing FPT Al-

gorithms

In this section, we give a summary of the standard FPT techniques used or referred to

in this thesis.

1.2.1 Bounded Search Trees

The method of bounded search trees is one of the earliest known and simplest techniques

used in the design of FPT algorithms. The main idea behind this technique is to find

in polynomial time, a small set of elements such that at least one of them must occur in
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any feasible solution to the problem. Then we guess an element of this set to be in the

solution we are trying to construct, process the input instance so that it reflects our choice

of this element, make the necessary changes to the parameter value, and recursively

solve the problem on the resulting instance. The small set of elements identified is

usually a forbidden structure which needs to be removed and is usually of constant size,

although the size of this set can be as large as logarithmic in the size of the input instance.

As long as the depth of the recursion tree is bounded by some function of the parameter,

since the time taken at each node of the recursion tree is polynomial, this results in an

FPT algorithm. There is an easy O∗(2k) algorithm for VERTEX COVER [80, 27] using

this method.

1.2.2 Iterative Compression

Iterative Compression is a useful technique for designing FPT algorithms for minimiza-

tion problems. This technique was first introduced in [91] to solve the ODD CYCLE

TRANSVERSAL problem, where we are interested in finding a set of at most k vertices

such that after removing these vertices, the resulting graph is bipartite. This method was

also used in obtaining FPT algorithms for EDGE BIPARTIZATION, CHORDAL DELE-

TION, CLUSTER VERTEX DELETION and FVS on undirected graphs [45, 75, 50, 26,

13]. This technique was also used by Chen et al. [17] to show that the DFVS problem is

FPT, and by Razgon and Barry O’Sullivan [90] to show that ALMOST 2-SAT is FPT,

two long standing open problems in the area of Parameterized Complexity. This tech-

nique is also used to design exact exponential algorithms (see [34]) and for other results

based on this method, we refer the reader to a survey articles [47, 51].

We will give a sketch of this method as applied to a graph problem. The central idea

here is to design an FPT algorithm which, when given a k+1−sized solution for a prob-
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lem, either compresses it to a solution of size at most k or proves that there is no solution

of size at most k. This is known as the compression step of the algorithm. The method

adopted usually is to begin with a subgraph that trivially admits a (k+1)−sized solution

and then expand it iteratively. In any iteration, we try find a compressed (k−sized) so-

lution for the instance corresponding to the current subgraph. If we find such a solution,

we use this solution and (usually) the vertex or edge we add to get the next subgraph, to

get a (k + 1)−sized solution for this instance and start the next iteration. We stop when

we either get a solution of size k for the entire graph, or if some intermediate instance

turns out to be incompressible. In order to stop when some intermediate instance turns

out to be incompressible, the problem must have the property that the solution size in

any subgraph is at most the solution size in the whole graph.

1.2.3 Kernelization

Kernelization is a polynomial time algorithm that preprocesses instances of problems

and returns equivalent instances with a guaranteed upper bound on the size of the output,

which is called the kernel of the instance. Kernelization is usually achieved by applying

a set of reduction rules that allow us to remove or ignore parts of the instance that are

easy to handle.

Kernelization has received increasing interest over the last decade, maturing from

a technique to prove fixed parameter tractability, into a stand alone field of research.

In recent years there has been many kernelization results for a variety of problems.

Some notable examples are the linear vertex kernel for VERTEX COVER by Chen et al.

[14], the quadratic vertex kernel for FVS in undirected graphs by Thomasse [95], and

a polynomial kernel for MULTICUT in trees due to Bousquet et al. [11]. For further

results we refer the reader to the survey articles [48, 6].
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2
Notations, Definitions and Conventions

2.1 Basic Notations

We assume that the reader is familiar with basic notions like sets, functions, polynomi-

als, relations, integers etc. In particular, for these notions we follow the same notations

as that in [85].

2.2 Growth of Functions

We employ mainly the big-Oh (O) notation (see [21]) and the big-Oh-star (O∗) notation

introduced in [100]. Let f : N → N and g : N → N be two functions from Natural

numbers to Natural numbers. We say that f(n) = O(g(n)) if there exist constants c, and

n0 such that for all n ≥ n0, f(n) ≤ c.g(n). The notation O∗ notation is essentially the

big-Oh notation which hides polynomial factors and hence is used only for exponential

time algorithms. We use O∗(f(n)) to denote O(f(n).nc) where c is some constant. In

this thesis, we will use the O∗ notation to hide factors polynomial in input size in order
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to focus on the function of the parameter. Hence, for us, O∗(f(k)) denotes O(f(k).nc)

where k is the value of some parameter, n is the size of the input instance, and c is some

constant.

2.3 Graphs

2.3.1 Undirected Graphs

An undirected graphG is a pair (V,E) where V andE are unordered sets. The elements

of V are called vertices of G. E consists of unordered pairs of vertices and elements of

E are called edges of G. A vertex u and a vertex v are said to be adjacent if E contains

the pair (u, v). The edge (u, v) is said to be incident on the vertices u and v, while u

and v are called the endpoints of the edge (u, v). An undirected graph G is called a

simple undirected graph if there is no edge in E of the form (v, v) where v is a vertex

of G. In this thesis, unless explicitly mentioned otherwise, the graphs we consider are

all simple undirected graphs. The open neighborhood or just neighborhood of a vertex

v in the graph G is the set N(v) = {u|(u, v) ∈ E} and by closed neighborhood of a

vertex v, we mean the set N [v] = {v} ∪ N(v). Let S be a set of vertices of G. We

denote by (open) neighborhood of S, the set N(S) = (
⋃
v∈S N(v)) \ S and by closed

neighborhood of S we denote the set N(S) ∪ S.

A walk in the graphG is a sequenceW = v1, . . . , vt of vertices such that (vi, vi+1) ∈

E for every 1 ≤ i ≤ t − 1 and it is called a walk from vi to vt in G. The length of this

walk is t− 1. A walk in which any vertex occurs at most once is called a path. A walk

where the first vertex is same as the last vertex and all the other vertices are distinct is

called a cycle. The walks vi, vi+1, . . . , vj , 1 ≤ i ≤ t, i ≤ j ≤ t are called subwalks

of the walk W . If W is a path these walks are called subpaths of W . A graph is called
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acyclic if it does not contain a cycle.

A vertex u is said to be reachable from a vertex v in G, if there is a path from u

to v in G. The graph G is said to be connected if there is a path between every pair of

vertices in G.

A set S of vertices (or edges) with some property is said to be a maximal set with

that property if there is no set S ′ of vertices (respectively edges) such that S ′ ⊃ S and

S ′ has the same property.

A set S of vertices (or edges) with some property is said to be a minimal set with

that property if there is no set S ′ of vertices (respectively edges) such that S ′ ⊂ S and

S ′ has the same property.

A connected component of G is an induced subgraph X = G[C] of G such that C is

a maximal subset of V such that G[C] is connected.

A connected acyclic graph is called a tree and a graph whose connected components

are trees is called a forest.

The line graph L(G) of G is a graph where there is a vertex for every edge of G and

two vertices of L(G) are adjacent if and only if their corresponding edges are adjacent

in G.

For a set T of vertices of G, we say that a path is a T -path if both endpoints of the

path are in T and the internal vertices are disjoint from T .

2.3.2 Matchings

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges.

A vertex is called matched (or saturated) if it is an endpoint of one of the edges in the

matching. Otherwise the vertex is unmatched or unsaturated. A vertex v ∈ V is said

to be saturated by M if it is the endpoint of an edge in M and it is left unsaturated by
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M if v is not the endpoint of any edge in M . A maximum matching of the graph is a

matching that contains the largest possible number of edges. A perfect matching is a

matching which saturates every vertex of the graph. A set S of vertices is called a vertex

cover of a given graph if every edge of the graph has an endpoint in the set S. The

smallest such set of vertices is called the minimum vertex cover of the graph. Given a

graphG, we use µ(G) and β(G) to denote, respectively, the size of a maximum matching

and a minimum vertex cover. A graph G = (V,E) is said to be König if β(G) = µ(G).

2.3.3 Directed Graphs

A directed graph (or digraph)D is a pair (V,A) where V andA are sets. The elements of

V are called vertices of D. The set A consists of ordered pairs of vertices and elements

of A are called arcs of D. The arc (u, v) is said to be incident on the vertices u and v,

while u and v are called the end points of the arc (u, v).

Furthermore, for an arc a = (u, v) ∈ A, we refer to u as the tail of this arc and denote

it by Tail(a) and we refer to v as the head of this arc and denote it by Head(a). For a set

of arcs P , we denote by Tail(P ), the set
⋃
a∈P{Tail(a)} and we denote by Head(P ) the

set
⋃
a∈P{Head(a)}. For a set of vertices V ′, we let A[V ′] denote the set of arcs with

both end points in the set V ′. For a set of vertices V ′, we let δ+(V ′) denote the set of

arcs which have their tail in V ′ and their head in V \V ′. Similarly, we let δ−(V ′) denote

the set of arcs which have their head in V ′ and their tail in V \ V ′. We also use N+(V ′)

to denote the set Head(δ+(V ′)) and N−(V ′) to denote the set Tail(δ−(V ′)).

The undirected graph obtained from D by ignoring the ordering among the pairs

constituting the arcs, is called the underlying undirected graph of D. A directed graph

D is called a simple directed graph if there is no edge in A of the form (v, v) where

v is a vertex of D. The out neighborhood of a vertex u in the digraph D is the set
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N+(u) = {v|(u, v) ∈ A} and the in neighborhood of u is the set N−(u) = {v|(v, u) ∈

A}. Let S be a set of vertices of D. We denote by out neighborhood of S, the set

N+(S) = (
⋃
v∈S N

+(v)) \ S and by in neighborhood of S we denote the set N−(S) =

(
⋃
v∈S N

−(v)) \ S.

A walk in the digraphD is a sequenceW = v1, . . . , vt of vertices such that (vi, vi+1) ∈

A for every 1 ≤ i ≤ t − 1 and it is called a walk from vi to vt in D. The length of this

walk is t− 1. A walk in which any vertex occurs at most once is called a path. A walk

where the first vertex is same as the last vertex and all the other vertices are distinct is

called a cycle. The walks vi, vi+1, . . . , vj , 1 ≤ i ≤ t, i ≤ j ≤ t are called subwalks of

the walk W . If W is a path these walks are called subpaths of W .

A vertex u is said to be reachable from a vertex v in G, if there is a path from u to v

in G. The graph G is said to be strongly connected if there is a path between every pair

of vertices in G.

A graph D′ = (V ′, A′) is called a subgraph of D if V ′ ⊆ V and A′ ⊆ A. We say

D′ is a subgraph of D induced by the vertex set S ⊆ V if V ′ = S and A′ = {(u, v) ∈

A|u, v ∈ S} and denote it by D[S]. We say that D′ is a subgraph of D induced by the

arc set S ⊆ A if A′ = S and V ′ = {v ∈ V | there is an arc of M incident on v} and

denote it by D[S].

A set S of vertices (or arcs) with some property is said to be an inclusionwise max-

imal set with that property if there is no set S ′ of vertices (respectively arcs) such that

S ′ ⊃ S and S ′ has the same property and a set S of vertices (or arcs) with some prop-

erty is said to be an inclusionwise minimal set with that property if there is no set S ′ of

vertices (respectively arcs) such that S ′ ⊂ S and S ′ has the same property.

Formulas. We assume an infinite supply of propositional variables. A literal is a vari-

able x or a negated variable x̄; if y = x̄ is a literal, then we write ȳ = x. For a set
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S of literals we put S̄ = { x̄ : x ∈ S }; S is consistent if S ∩ S̄ = ∅. A clause is a

finite consistent set of literals; we consider a clause as a disjunction of its literals. A

finite set of clauses is a CNF formula (or formula, for short); we consider a formula

to be the conjunction of its clauses. A variable x occurs in a clause C if x ∈ C ∪ C̄;

var(C) denotes the set of variables which occur in C. For a set X of variables, lit(X)

denotes the set of literals of the variables in X , that is lit(X) = X ∪ X̄ and for a

set L of literals, var(L) denotes the set of variables whose literals are in L, that is

var(L) = {x : x ∈ L or x̄ ∈ L }. A variable x occurs in a formula F if it occurs

in one of its clauses, and we let var(F ) =
⋃
C∈F var(C) and lit(F ) = var(F ) ∪ var(F ).

The length of a CNF formula F , denoted by ‖F‖, is defined as
∑

C∈F |C|.

By C(F ) we denote the set of clauses of a CNF formula F . A formula is Horn if

each of its clauses contains at most one positive literal, a formula is Krom (or 2CNF, or

quadratic) if each clause contains at most two literals. The length of a CNF formula F

is defined as
∑

C∈F |C|.

If F is a formula and X a set of variables, then we denote by F \ X the formula

obtained from F after removing all literals in lit(X) from the clauses in F . If X = {x}

we simply write F \ x instead of F \ {x}.

Let F be a formula and X ⊆ var(F ). A truth assignment is a mapping τ : X →

{ 0, 1 } defined on some set X of variables; we write var(τ) = X . For x ∈ var(τ)

we define τ(x̄) = 1 − τ(x). For a truth assignment τ and a formula F , we define

F [τ ] = {C \ τ−1(0) : C ∈ F, C ∩ τ−1(1) = ∅ }, i.e., F [τ ] denotes the result of

instantiating variables according to τ and applying standard simplifications. A truth

assignment τ satisfies a clause C if C contains some literal x with τ(x) = 1; τ satisfies

a formula F if it satisfies all clauses of F . A formula is satisfiable if it is satisfied by

some truth assignment; otherwise it is unsatisfiable.
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3
Important Separators: Intuition and

Applications

The notion of important separators was formally introduced in [73] to handle the MUL-

TIWAY CUT problem and the same concept was used implicitly in [16] to give an im-

proved algorithm for the same problem. Subsequently, Chen et al. [17] used this idea

to resolve the fixed parameter tractability of the DIRECTED FEEDBACK VERTEX SET

problem and Razgon and Barry O’ Sullivan [90] proved the fixed parameter tractability

of the ALMOST 2-SAT problem using this concept. Some of the more recent applica-

tions of this notion have been in FPT algorithms for DIRECTED MULTIWAY CUT[19],

MULTICUT [79, 10], ABOVE GUARANTEE VERTEX COVER [88] , SUBSET DIRECTED

FEEDBACK VERTEX SET [18], PARITY MULTIWAY CUT [68], and MULTICUT ON

DAGS [63]. In this chapter, we describe this simple yet powerful notion and describe a

framework using which we will describe the algorithms that come later in the thesis.

Organization of the Chapter In Section 3.1 we give a brief description of the

intuition behind the concept of important separators. In Section 3.2, we first present
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the definition of important vertex separators in undirected graphs, some basic lemmata

stemming from these definitions, present an upper bound on the number of important

separators of bounded size and give the algorithm of Chen et al. to enumerate all such

important separators. We then give analogous versions of these results for arc separators

in directed graphs. Towards the end of this section, we show that the bound on the

number of important separators proved earlier is essentially tight. Finally, Section 3.3

contains an important separator template which allows us to describe the algorithms in

the thesis in a modular fashion. We also give an illustration of this template using the

MULTIWAY CUT problem as an example.

3.1 Motivation behind important separators

Given a graph G = (V,E) disjoint vertex sets X and Y , suppose we are asked to

find a minimum set of vertices in G whose removal disconnects X from Y and also

disconnects every pair of vertices in Y . In such cases, if chosen carefully, the set of

vertices which we choose to separate X from Y will also help us in separating some

pairs of vertices in Y . Intuitively, “the closer it is to Y , the better is the chance of it

separating vertices in Y ” and hence some separators seem to be more important than

others. The sets S1 = {s1, s2, s3} and S2 = {s3, s4, s5} (see Fig. 3.1) are sets of the

same size which separate X and Y . However, S2 is more important for us since it also

separates the vertices in Y , whereas S1 does not. This intuition was formalized in [73]

and used to give an FPT algorithm for the MULTIWAY CUT problem.

14



Figure 3.1: S1 = {s1, s2, s3} and S2 = {s3, s4, s5} are two X-Y vertex separators. But
S2 also separates vertices of Y while S1 does not.

3.2 Important Separators

3.2.1 Separators in Undirected Graphs

Definition 3.2.1. Let G = (V,E) be an undirected graph and let X ⊆ V . We define the

function f̃ : 2V → N as f̃(X) = |N(X)|.

Definition 3.2.2. Let G = (V,E) be an undirected graph, let X ⊆ V and S ⊆ V \X .

We denote by RG(X,S) the set of vertices of G reachable from X in G \ S and by

NRG(X,S) the set of vertices ofG not reachable fromX inG\S. We drop the subscript

G if it is clear from the context.

Definition 3.2.3. Let Z be a finite set. A function f : 2Z → R is submodular if for all

subsets A and B of Z, f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).
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Lemma 3.2.4. LetG = (V,E) be an undirected graph and let f̃ : 2V → N be a function

defined as above. Then the function f̃ is submodular.

Definition 3.2.5. Let G = (V,E) be an undirected graph and let X, Y ⊂ V be two

disjoint vertex sets. A subset S ⊆ V \ (X ∪ Y ) is called an X-Y separator in G if

RG(X,S) ∩ Y = φ or in other words there is no path from X to Y in the graph G \ S.

We denote by λG(X, Y ) the size of the smallest X-Y separator in G. An X-Y separator

S1 is said to cover an X-Y separator S with respect to X if R(X,S1) ⊃ R(X,S). If

the set X is clear from the context, we just say that S1 covers S. An X-Y separator is

said to be inclusionwise minimal if none of its proper subsets is an X-Y separator.

Definition 3.2.6. Two X-Y separators S and S1 are said to be incomparable if neither

covers the other.

Definition 3.2.7. ([73]) Let G = (V,E) be an undirected graph and let X, Y ⊂ V be

two disjoint vertex sets. An X-Y separator S1 is said to dominate an X-Y separator S

with respect to X if |S1| ≤ |S| and S1 covers S2 with respect to X . If the set X is clear

from the context, we just say that S1 dominates S.

Observation 3.2.8. Let S1 and S2 be two incomparableX-Y separators. Then,R(X,S1)∩

S2 6= ∅ and R(X,S2) ∩ S1 6= ∅. That is, there is a vertex of S1 reachable from X in

the graph G \ S2 and a vertex of S2 reachable from X in the graph G \ S1. Also,

NR(X,S1) ∩ S2 6= ∅ and NR(X,S2) ∩ S1 6= ∅. That is, there is a vertex of S1 sep-

arated from X in the graph G \ S2 and a vertex of S2 separated from X in the graph

G \ S1.

Lemma 3.2.9. LetG = (V,E) be a graph and let s, t ∈ V . LetX and Y be two minimal

s-t separators such that Y dominates X . Then, Y is also a (X \ Y )-t separator.

Proof. This follows from the fact that every vertex in X \ Y is in R(s, Y ).

16



Lemma 3.2.10. Let G = (V,E) be a graph and let s, t ∈ V . Let X and Y be two

minimal s-t separators which are disjoint and incomparable. Let Xnr (Ynr) be the set

of vertices of X (respectively Y ) which are not reachable from s in G \ Y (respectively

G\X), let Xr (Yr) be the set of vertices of X (respectively Y ) which are reachable from

s in G \ Y (respectively G \ X). Then, Yr is a minimal s-Xnr separator in the graph

G[R(s,X) ∪X].

Proof. Since we are considering a subgraph of G which does not contain Ynr, Yr is

indeed an s-Xnr separator in G′ = G[R(s,X)∪X]. We now claim that Yr is a minimal

separator as well. Suppose that this is not the case and let v ∈ Yr be such that there is no

s-Xnr path in G′ in G′ \ (Yr \ {v}). We know that Y is a minimal s-t separator. Hence,

the graph G \ (Y \ {v}) contains an s-t path, say P . Since X is an s-t separator, P must

intersect X . Consider a traversal of the path P from s to t and let u ∈ X be the last

vertex of X on P . Since v ∈ R(s,X), u must occur after v in this traversal. We claim

that u ∈ Xnr. If this were not the case and u ∈ Xr, then we can replace the subpath of

P from s to u with another path P1 from s to u entirely disjoint from Y ( P1 exists by

the definition of Xr) to get an s-t path disjoint from Y , which is a contradiction. Hence,

we have that u ∈ Xnr. In fact, by the same argument, we have that every vertex of X

which occurs after v in this traversal must be from Xnr. Now, let x ∈ Xnr be the first

vertex of X which occurs after v in P . Consider the subpath of P from v to x, call it Px.

Since this path does not intersect Xr, this path also exists in G′ \ (Yr \ {v}). Since v lies

in R(s,X) and Y is a minimal s-t separator, G′ contains a path P2 from s to v which

does not intersect X ∪ (Yr \ {v}). Hence, the concatenation of the paths P2 and Px is

a walk from s to x in G′ \ (Yr \ {v}). Thus, we conclude that Yr is a minimal s-Xnr

separator in G′.

Proposition 3.2.11. IfR ⊇ X is any vertex set disjoint from Y such thatN(R)∩Y = φ
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then N(R) is an X-Y separator.

3.2.2 Important Vertex Separators

Definition 3.2.12. ([73]) Let G = (V,E) be an undirected graph, X, Y ⊂ V be dis-

joint vertex sets and S ⊆ V \ (X ∪ Y ) be an X-Y separator in G. We say that S is an

important X-Y separator if it is inclusionwise minimal and there does not exist another

X-Y separator S1 such that S1 dominates S with respect to X . If S ⊂ V is an impor-

tant X-Y separator then the set R(X,S) is called an important set and the subgraph

G[R(X,S)] is called an important component if it is connected.

Lemma 3.2.13. ([73]) Let G = (V,E) be an undirected graph, X, Y ⊂ V be disjoint

vertex sets. There exists a unique important X-Y separator S∗ of size λG(X, Y ).

Proof. Consider a minimum size X-Y separator of size λG(X, Y ). Since it is minimal,

this separator is either important or there is another that dominates it. Hence, there is at

least one important X-Y separator of size λG(X, Y ). Now we show that there cannot

be two such important X-Y separators.

Suppose S1 and S2 are two important X-Y separators of size λG(X, Y ) where S1 6=

S2 and let R1 = R(X,S1) and R2 = R(X,S2). We know that R1, R2 ⊃ X , and by the

minimality of S1 and S2, N(R1) = S1 and N(R2) = S2. But S1, S2 ∩ Y = φ. Hence

by Proposition 3.2.11 the sets N(R1 ∪ R2) and N(R1 ∩ R2) are also X-Y separators

and hence f̃(R1 ∪ R2), f̃(R1 ∩ R2) ≥ λG(X, Y ). By the submodularity of f̃ (Lemma

3.2.4), we have that

f̃(R1)︸ ︷︷ ︸
=λG(X,Y )

+ f̃(R2)︸ ︷︷ ︸
=λG(X,Y )

≥ f̃(R1 ∪R2)︸ ︷︷ ︸
≥λG(X,Y )

+ f̃(R1 ∩R2)︸ ︷︷ ︸
≥λG(X,Y )
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which implies that f̃(R1 ∪ R2) = λG(X, Y ). But this contradicts our assumption that

S1 and S2 were important X-Y separators since N(R1∪R2) is an X-Y separator which

dominates both S1 and S2.

Note: In the future we will continue to refer to the unique smallest important X-Y

separator as S∗ without explicit reference to Lemma 3.2.13.

We now show that there is a polynomial time algorithm which computes the unique

minimum X-Y separator. We first require the following lemma from [77].

Lemma 3.2.14. (LEMMA 2.4,[77]) Let s, t be two vertices in a graph G = (V,E)

such that the minimum size of an s-t separator is ` > 0. Then, there is a collection

X = {X1, . . . , Xq} of sets where {s} ⊆ Xi ⊆ V \ {t} such that

1. X1 ⊂ X2 ⊂ · · · ⊂ Xq,

2. |N(Xi)| = ` for every 1 ≤ i ≤ q and

3. every s-t separator of size ` is fully contained in
⋃q
i=1N(Xi).

Furthermore, there is anO(`(|V |+ |E|)) time algorithm that produces the setsX1, X2 \

X1, . . . , Xq \Xq−1 corresponding to such a collection X .

Lemma 3.2.15. Given an undirected graph G = (V,E), disjoint vertex subsets X and

Y and a positive integer k, there is an algorithm which in time O(k(m + n)) time

either concludes that there is no X-Y separator of size at most k or returns the unique

minimum important X-Y separator where n = |V | and m = |E|.

Proof. We can, in O(k(m + n)) time check if the size of the minimum X-Y separator

is at most k by running k iterations of the Ford-Fulkerson algorithm [35]. If the size of

the minimum separator exceeds k, then we return that there is no X-Y separator of size
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at most k. Therefore, we assume in the rest of this proof that the size of the minimum

X-Y separator is at most k. Let X = {X1, . . . , Xq} be a collection with the properties

mentioned in Lemma 3.2.14 where “X acts as s and Y acts as t". This can be formalized

as follows. We add vertices s and t to the graph G, make k + 1 copies of each vertex

in X ∪ Y and add edges from s to all the copies of the vertices in X and from t to all

the copies of the vertices in Y . It is clear from this construction that no s-t separator

of size at most k will contain any of these newly added vertices and therefore, the s-t

separators of size at most k are in one to one correspondence with the X-Y separators

of size at most k.

We now claim that S = N(Xq) is the unique minimum important X-Y separator.

If this were not the case, then there is an X-Y separator S ′ which dominates S. Since

S is clearly a minimum Xq-Y separator, for every vertex v ∈ S, there is a path from v

to Y in the graph G \ Xq. Furthermore, if S ′ dominates S, then there is a vertex v ∈

(S∩R(X,S ′). This implies that S ′ contains a vertex in V \Xq, which is a contradiction

since Lemma 3.2.14 guarantees that all minimum X-Y separators are contained in the

set
⋃q
i=1N(Xi). Therefore, the algorithm simply has to return the set N(Xq). This

concludes the proof of the lemma.

Lemma 3.2.16. ([79]) Let G = (V,E) be an undirected graph, X, Y ⊂ V be disjoint

vertex sets and let S be an important X-Y separator. Then R(X,S) ⊇ R(X,S∗).

Proof. Suppose that this is not the case and let R1 = R(X,S) and R2 = R(X,S∗)

where S 6= S∗. We know that R1, R2 ⊃ X and the minimality of S and S∗ implies that

N(R1) = S and N(R2) = S∗. But S, S∗ ∩ Y = φ. Hence, by Proposition 3.2.11, the

setsN(R1∪R2) andN(R1∩R2) are alsoX-Y separators and hence f̃(R1∪R2), f̃(R1∩

R2) ≥ λG(X, Y ). By the submodularity of f̃ (Lemma 3.2.4) we have that

20



f̃(R1) + f̃(R2)︸ ︷︷ ︸
=λG(X,Y )

≥ f̃(R1 ∪R2) + f̃(R1 ∩R2)︸ ︷︷ ︸
≥λG(X,Y )

which implies that f̃(R1∪R2) ≤ f̃(R1). But this contradicts our assumption that S was

an important X-Y separator since N(R1 ∪ R2) is an X-Y separator which dominates

S.

Lemma 3.2.17. Let G = (V,E) be an undirected graph, X, Y ⊂ V be disjoint vertex

sets and S be an important X-Y separator.

(1) S is a {v} − Y separator for every v ∈ R(X,S).

(2) For every v ∈ S, S \ {v} is an important X-Y separator in G \ {v}.

(3) If S is an X ′ − Y separator for some X ′ ⊃ X such that G[X ′] is connected, then S

is also an important X ′ − Y separator.

Proof. For the first statement, suppose that this were not the case. Since v ∈ R(X,S)

there is a path from X to v in G \ S. Now since there is also a path from v to Y , this

implies the existence of a path from X to Y in G \S. But, this is not possible since S is

an X-Y separator.

For the second statement, suppose that S ′ = S \ {v} is not an important X-Y

separator in G′ = G\{v}. Then there is an X-Y separator S1 in G′ which dominates S ′

in G′. Consider the set S2 = S1 ∪ {v}. Observe that S2 is also an X-Y separator in G.

This is because any path from X to Y which does not contain v exists in G′ and hence

must contain a vertex of S2. Now, since S1 dominates S ′ in G′, S2 dominates S in G

which contradicts our assumption that S is an important X-Y separator.

For the third statement, suppose that this is not the case. Since S is a minimal X-

Y separator, S is also a minimal X ′ − Y separator. Therefore, if S is not an important

X ′−Y separator it must be the case that there is anX ′−Y separator S1 which dominates
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S with respect to X ′. We will show that S1 also dominates S with respect to X , which

contradicts our assumption that S is an important X-Y separator. Clearly, |S1| ≤ |S|.

Hence it is enough for us to show that R(X,S) ⊂ R(X,S1).

First we prove that R(X,S) ⊆ R(X,S1). Consider a vertex v in R(X,S). Clearly

R(X ′, S) ⊇ R(X,S), which means that v ∈ R(X ′, S) and since S1 dominates S with

respect to X ′, v is in R(X ′, S1). Since G[X ′] is connected and contains X , the vertices

reachable fromX inG\S1 and those reachable fromX ′ inG\S1 are the same implying

that v ∈ R(X,S1).

Now consider some vertex u ∈ S \ S1. By the minimality of S, u has a neighbor

w in R(X,S). But w is also in R(X,S1) which implies that u ∈ R(X,S1) and hence

R(X,S) ⊂ R(X,S1).

The following lemma is implicit in [16].

Lemma 3.2.18. ([16]) Let G = (V,E) be an undirected graph, X, Y ⊂ V be disjoint

vertex sets of G. For every k ≥ 0 there are at most 4k important X-Y separators of

size at most k. Furthermore, there is an algorithm that runs in time 4kk(m + n) which

enumerates all such important X-Y separators, where n = |V | and m = |E|.

Proof. Given G,X, Y, k ≥ 0 we define a measure µ(G,X, Y, k) = 2k− λG(X, Y ). We

prove by induction on µ(G,X, Y,K) that there are at most 2µ(G,X,Y,k) important X-Y

separators of size at most k.

For the base case, if 2k − λG(X, Y ) < k then λG(X, Y ) > k and hence the number

of important separators of size at most k is 0. If λG(X, Y ) = 0, it means that there

is no path from X to Y and hence the empty set alone is the important X-Y separa-

tor. For the induction step, consider G,X, Y, k ≥ 0 such that µ = µ(G,X, Y, k) ≥

k, λG(X, Y ) > 0 and assume that the statement of the lemma holds for all G′, X ′, Y ′, k′

where µ(G′, X ′, Y ′, k′) < µ.
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By Lemma 3.2.13, there is a unique important X-Y separator S∗ of size λG(X, Y ).

Since we have assumed λG(X, Y ) to be positive, S∗ is non empty. Consider a vertex

v ∈ S∗. Any importantX-Y separator S either contains v or does not contain v. For any

important X-Y separator S which contains v, S \ {v} is an important X-Y separator in

G\{v} (Lemma 3.2.17(2)). Hence the number of important X-Y separators containing

v, of size at most k in G is at most the number of important X-Y separators of size at

most k − 1 in G \ {v}. Observe that λG\{v}(X, Y ) = λG(X, Y )− 1 which implies that

µ(G\{v}, X, Y, k−1) < µ and by induction hypothesis, the number of important X-Y

separators of size at most k− 1 in G \ {v} is bounded by 2µ−1 which is also a bound on

the number of important X-Y separators in G which have size at most k and contain v.

Now let S be an importantX-Y separator of size at most k which does not contain v.

By Lemma 3.2.16 we know thatR(X,S) ⊇ R(X,S∗) and by the minimality of S∗, v has

a neighbor inR(X,S) which implies thatR(X,S) ⊇ R(X,S∗)∪{v}. We now setX ′ =

R(X,S∗) ∪ {v}. By Lemma 3.2.17(3) we know that S is a also an important X ′ − Y

separator. Thus a bound on the number of important X ′ − Y separators of size at most

k is also a bound on the number of important X-Y separators of size at most k which

do not contain v. First note that λG(X ′, Y ) > λG(X, Y ) since otherwise we would have

an X-Y separator which dominates S∗ with respect to X . Now, µ(G,X ′, Y, k) < µ and

by induction hypothesis, the number of important X ′−Y separators of size at most k is

bounded by 2µ−1.

Summing up the bounds we get that the number of important X-Y separators of size

at most k is bounded by 2 · 2µ−1 = 2µ ≤ 22k.

The algorithm follows from the proof above. We apply Lemma 3.2.15 to compute the

smallest important X-Y separator S∗ or conclude that no such separator of size at most

k exists. Then, we pick a vertex v of S∗ and recursively enumerate all the important
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X-Y separators containing v and those that do not contain v. Since the algorithm of

Lemma 3.2.15 takes time O(k(m + n), the running time follows. This completes the

proof of the lemma.

3.2.3 Arc Separators in Directed Graphs

In this section we consider directed graphs and give analogous definitions and lemmata

for arc separators in directed graphs.

Definition 3.2.19. Let D = (V,A) be a directed graph, let X ⊆ V and S ⊆ A. We

denote by RD(X,S) the set of vertices of D reachable from X in G \ S. We drop the

explicit reference to D if it is clear from the context.

Lemma 3.2.20. Let D = (V,A) be an undirected graph and let f̂a : 2V → N be a

function defined as f̂a(X) = |δ+(X)|. Then the function f̂a is submodular.

Definition 3.2.21. LetD = (V,A) be a directed graph and letX, Y ⊂ V be two disjoint

vertex sets. A subset Sa ⊆ A is called an X-Y arc separator in D if R(X,Sa) ∩ Y = φ

or in other words Y is separated from X in D \ Sa. We denote by λD(X, Y ) the size

of the smallest X-Y arc separator in D. An X-Y arc separator S1
a is said to cover an

X-Y arc separator Sa with respect to X if R(X,S1
a) ⊃ R(X,Sa). If the set X is clear

from the context we just say that S1
a covers Sa. An X-Y arc separator is said to be

inclusionwise minimal if none of its proper subsets is an X-Y arc separator.

Definition 3.2.22. LetD = (V,A) be a directed graph and letX, Y ⊂ V be two disjoint

vertex sets. AnX-Y arc separator S1
a is said to dominate anX-Y arc separator Sa with

respect to X if |S1
a| ≤ |Sa| and S1

a covers Sa with respect to X . If the set X is clear

from the context we just say that S1
a dominates Sa.
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Observation 3.2.23. Observe that any inclusionwise minimal X-Y arc separator does

not contain an arc with both endpoints in X .

Proposition 3.2.24. If R ⊇ X is any vertex set disjoint from Y then δ+(R) is an X-Y

arc separator.

3.2.4 Important Arc Separators

Definition 3.2.25. Let D = (V,A) be a directed graph, X, Y ⊂ V be disjoint vertex

sets and Sa ⊆ A be an X-Y arc separator in D. We say that Sa is an important X-Y

arc separator if it is inclusionwise minimal and there does not exist another X-Y arc

separator S1
a which dominates Sa with respect to X . If Sa ⊂ A is an important X-Y

arc separator then the set R(X,Sa) is called an important set.

Lemma 3.2.26. Let D = (V,A) be a directed graph, X, Y ⊂ V be disjoint vertex sets.

There exists a unique important X-Y arc separator S∗a of size λD(X, Y ).

Lemma 3.2.27. Let s, t be two vertices in a digraph D = (V,A) such that the minimum

size of an s-t separator is ` > 0. Then, there is a collection X = {X1, . . . , Xq} of sets

where {s} ⊆ Xi ⊆ V \ {t} such that

1. X1 ⊂ X2 ⊂ · · · ⊂ Xq,

2. Xi is reachable from s in D[Xi],

3. |δ+(Xi)| = ` for every 1 ≤ i ≤ q and

4. every s-t separator of size ` is fully contained in
⋃q
i=1 δ

+(Xi).

Furthermore, there is anO(`(|V |+ |A|)) time algorithm that produces the setsX1, X2 \

X1, . . . , Xq \Xq−1 corresponding to such a collection X .
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Figure 3.2: An illustration of the sets in the proof of Lemma 3.2.27. The blue circles are
the strongly connected components of D1 and α(s) = 5 and α(t) = 2.

Proof. This proof is from [77]. However, the proof in [77] does not need that Xi is

reachable from s in D[Xi]. Thus, we need to do a bit more extra work for the version

presented here. We first run ` iterations of the Ford-Fulkerson algorithm on the graph

with unit capacities on all arcs to find a maximum s-t flow. LetD1 be the residual graph.

Let C1, . . . , Cq be a topological ordering of the strongly connected components of D1

such that i < j if there is a path from Ci to Cj . Recall that there is a t-s path in D1. Let

Cx and Cy be the strongly connected components of D1 containing t and s respectively.

Since there is a path from t to s in D1, x < y. For each x < i ≤ y, let Yi =
⋃q
j=iCj

(see Figure 3.2). We first show that |δ+(Yi)| = `. Since no arcs leave Yi in the graph D1,

no flow enters Yi and every arc in δ+(Yi) is saturated by the maximum flow. Therefore,

|δ+(Yi)| = `.

We now show that every arc which is part of a minimum s-t separator is contained

in
⋃q
i=1 δ

+(Yi). Consider a minimum s-t separator S and an arc (a, b) ∈ S. Let Y be the

set of vertices reachable from s in D \ S. Since F is a minimum s-t separator, it must

be the case that δ+(Y ) = F and therefore, δ+(Y ) is saturated by the maximum flow.
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Therefore, we have that (b, a) is an arc in D1. Since no flow enters the set Y , there is no

cycle in D1 containing the arc (b, a) and therefore, if the strongly connected component

containing b is Cib and that containing a is Cia , then ib < ia. Furthermore, since there is

flow from s to a from b to t, it must be the case that x < ib < ia < y and hence the arc

(a, b) appears in the set δ+(Yia).

Finally, we define the set R(Yi) to be the set of vertices of Yi which are reachable

from s in the graph D[Yi]. Then, the sets R(Yy) ⊂ R(Yy−1) ⊂ · · · ⊂ R(Yx+1) form a

collection of the kind described in the statement of the lemma.

In order to compute these sets, we first need to run the Ford-Fulkerson algorithm for

` iterations and perform a topological sort of the strongly connected components of D1.

This takes time O(`(|V | + |A|)). During this procedure, we also assign indices to the

strongly connected components in the manner described above, that is, i < j ifCi occurs

before Cj in the topological ordering. InO(`(|V |+ |A|)) time, we can assign indices to

vertices such that the index of a vertex v (denoted by α(v)) is the index of the strongly

connected component containing v. We then perform the following preprocessing for

every vertex v such that α(v) < α(s). We go through the list of in-neighbors of v and

find

β(v) = max
u∈N−(v)

{
α(u) | α(v) < α(u)

}
and

γ(v) = min
u∈N−(v)

{
α(u) | α(v) < α(u)

}
and set β′(v) = min{β(v), α(s)} and γ′(v) = max{γ(v), α(t) + 1}.

The meaning of these numbers is that the vertex v occurs in each of the setsN+(Yβ′(v)),

N+(Yβ′(v)−1), . . . , N+(Yγ′(v)). This preprocessing can be done in time O(m+ n) since

we only compute the maximum and minimum in the adjacency list of each vertex. A

vertex v is said to be i-forbidden for all γ′(v) ≤ i ≤ β′(v). We now describe the
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algorithm to compute the sets in the collection.

Computing the collection. We do a modified (directed) breadth first search (BFS)

starting from s by using only out-going arcs. Along with the standard BFS queue, we

also maintain an additional forbidden queue.

We begin by setting i = α(s) and start the BFS by considering the out-neighbors

of s. We add a vertex to the BFS queue only if it is both unvisited and not i-forbidden.

If a vertex is found to be i-forbidden (and it is not already in the forbidden queue), we

add this vertex to the forbidden queue. Finally, when the BFS queue is empty and every

unvisited out-neighbor of every vertex in this tree is in the forbidden queue, we return

the set of vertices added to the BFS tree in the current iteration as R(Yi) \ R(Yi+1).

Following this, the vertices in the forbidden queue which are not (i − 1)-forbidden are

removed and added to the BFS queue and the algorithm continues after decreasing i by

1. The algorithm finally stops when i = α(t).

We claim that this algorithm returns each of the setsR(Yα(s)), R(Yα(s)−1)\R(Yα(s)),

. . . , R(Yα(t)+1) \ R(Yα(t)+2) and runs in time O(`(|V | + |A|). In order to bound the

running time, first observe that the vertices which are i-forbidden are exactly the vertices

in the set N+(R(Yi)) and therefore the number of i-forbidden vertices for each i is at

most `. This implies that the number of vertices in the forbidden queue at any time is

at most `. Hence, testing if a vertex is i-forbidden or already in the forbidden queue for

a fixed i can be done in time O(`). Therefore, the time taken by the algorithm is O(`)

times the time required for a BFS in D, which implies a bound of O(`(|V |+ |A|)).

For the correctness, we prove the following invariant for each iteration. Whenever a

set is returned in an iteration,

• the set of vertices currently in the forbidden queue are exactly the i-forbidden

vertices
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• the vertices in the current BFS tree are exactly the vertices in the set R(Yi).

For the first iteration, this is clearly true. We assume that the invariant holds at the end

of iteration j ≥ 1 (where i = i′) and consider the (j+ 1)-th iteration (where i is now set

as i′ − 1).

Let Pj be the vertices present in the BFS tree at the end of the j-th iteration and Pj+1

be the vertices present in the BFS tree at the end of the (j + 1)-th iteration. We claim

that the set Pj+1 = R(Yi′−1).

Since we never add a vertex to Pj+1 if it is (i′−1)-forbidden, the vertices in Pj+1\Pj
are precisely those vertices which are reachable from Pj via a path disjoint from (i′−1)-

forbidden vertices. Since the invariant holds for the preceding iteration, we know that

Pj = R(Yi′) and by our observation about Pj+1 \ Pj , we have that Pj+1 is the set of

vertices reachable from R(Yi′) via paths disjoint from (i′−1)-forbidden vertices, which

implies that Pj+1 = R(Yi′−1) since R(Yi′−1) is precisely the set of vertices reachable

from R(Yi′) via paths disjoint from (i′ − 1)-forbidden vertices. We now show that the

vertices in the forbidden queue are exactly the (i′−1)-forbidden vertices. Since the BFS

tree in iteration j+1 could not be grown any further, every out-neighbor of every vertex

in the tree is in the forbidden queue. Since we have already shown that the vertices

in the BFS tree, that is in Pj+1, are precisely the vertices in R(Yi′−1), we have that

every (i′ − 1)-forbidden vertex is already in the forbidden queue. This proves that the

invariant holds in this iteration as well and completes the proof of correctness of the

algorithm.

Lemma 3.2.28. Given an directed graph D = (V,A), disjoint vertex subsets X and Y

and a positive integer k, there is an algorithm which in time O(k(m + n)) time either

concludes that there is no X-Y arc separator of size at most k or returns the unique

minimum important X-Y arc separator where n = |V | and m = |E|.
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Proof. We can, inO(k(m+n)) time check if the size of the minimumX-Y arc separator

is at most k by running k iterations of the Ford-Fulkerson algorithm [35]. If the size of

the minimum arc separator exceeds k, then we return that there is no X-Y arc separator

of size at most k. Therefore, we assume in the rest of this proof that the size of the

minimum X-Y arc separator is at most k. Let X = {X1, . . . , Xq} be a collection with

the properties mentioned in Lemma 3.2.27 where “X acts as s and Y acts as t". This

can be formalized as follows. We add vertices s and t to the graph G, make k+ 1 copies

of each vertex in X ∪ Y and add edges from s to all the copies of the vertices in X

and from t to all the copies of the vertices in Y . It is clear from this construction that

no s-t separator of size at most k will contain any of these newly added vertices and

therefore, the s-t separators of size at most k are in one to one correspondence with the

X-Y separators of size at most k.

We now claim that S = N(Xq) is the unique minimum importantX-Y arc separator.

If this were not the case, then there is anX-Y arc separator S ′ which dominates S. Since

S is clearly a minimum Xq-Y arc separator, for every vertex v ∈ Head(S), there is a

path from v to Y in the graph G \ Xq. Furthermore, if S ′ dominates S, then there is a

vertex v ∈ (Head(S)∩R(X,S ′)). This implies that S ′ contains an arc in A[V \Xq]\S,

which is a contradiction since Lemma 3.2.27 guarantees that all minimum X-Y arc

separators are contained in the set
⋃q
i=1 δ

+(Xi). Therefore, the algorithm simply has to

return the set δ+(Xq). This concludes the proof of the lemma.

Lemma 3.2.29. Let D = (V,A) be a directed graph, X, Y ⊂ V be disjoint vertex sets

and let Sa be an important X-Y arc separator. Then R(X,S) ⊇ R(X,S∗a).

Lemma 3.2.30. Let D = (V,A) be a directed graph, X, Y ⊂ V be disjoint vertex sets

and Sa be an important X-Y arc separator.

1. For every v ∈ R(X,Sa), Sa is a {v} − Y arc separator.
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2. For every arc e ∈ Sa, Sa \ {e} is an important X-Y arc separator in D \ {e}.

3. If Sa is an X ′−Y arc separator for some X ′ ⊃ X such that X ′ is reachable from

X in the induced subgraph D[X ′], then Sa is an important X ′ − Y arc separator.

Proof. For the first statement, suppose this were not the case. Since v ∈ R(X,S) there

is a path from X to v in G \ S. Now since there is also a path from v to Y , this results

in a walk from X to Y which can be converted to a path from X to Y in G \ S. But this

is not possible since S is an X-Y arc separator.

For the second statement, suppose that S ′a = Sa \ {e} is not an important X-Y

arc separator in D′ = D \ {e}. Then, in D′, there is an X-Y arc separator S1
a which

dominates S ′a. Consider the set S2
a = S1

a ∪ {e}. Observe that S2
a is also an X-Y arc

separator in D. This is because any path from X to Y which does not contain the arc e,

exists in D′ and hence must contain an arc in S2
a . Now, since S1

a dominates S ′a in D′, S2
a

dominates Sa in G which contradicts our assumption that Sa is an important X-Y arc

separator.

For the third statement, assume that this is not the case. Clearly Sa is a minimal

X ′−Y arc separator and hence there is an X ′−Y arc separator S1
a which dominates Sa

with respect to X ′. We will prove that S1
a also dominates Sa with respect to X . Since

we already have that |S1
a| ≤ |Sa|, it is enough for us to show thatR(X,Sa) ⊂ R(X,S1

a).

First we prove that R(X,Sa) ⊆ R(X,S1
a). Consider a vertex v in R(X,Sa). Clearly

R(X ′, Sa) ⊇ R(X,Sa). But,R(X ′, Sa) ⊂ R(X ′, S1
a), which means that v ∈ R(X ′, S1

a).

Since X ′ contains X and is reachable from X in D[X ′], and S1
a does not contain an arc

with both end points inside X ′ (by Observation 3.2.23), X ′ is reachable from X in

D[X ′] \ S1
a also, and hence v ∈ R(X,S1

a).

Now, consider some arc e = (u,w) ∈ Sa \ S1
a . By the minimality of Sa, u ∈

R(X,Sa) and w /∈ R(X,Sa). But we have shown that u is also in R(X,S1
a), which
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implies that w ∈ R(X,S1
a) and hence R(X,Sa) ⊂ R(X,S1

a).

Lemma 3.2.31. Let D = (V,A) be an undirected graph, X, Y ⊂ V be disjoint vertex

sets of D. For every k ≥ 0 there are at most 4k important X-Y arc separators of size at

most k. Furthermore,

Proof. Given D,X, Y, k ≥ 0 we define a measure µa(D,X, Y, k) = 2k − λD(X, Y ).

We prove by induction on µa(D,X, Y,K) that there are at most 2µa(D,X,Y,k) important

X-Y arc separators of size at most k. For the base case, if 2k − λD(X, Y ) < k, then

λD(X, Y ) > k and hence the number of important X-Y arc separators of size at most

k is 0. If λD(X, Y ) = 0, it means that there is no path from X to Y and hence the

empty set alone is the important X-Y arc separator. Consider D,X, Y, k ≥ 0 such that

µa = µa(D,X, Y, k) ≥ k, λD(X, Y ) > 0 and assume that the statement holds for all

D′, X ′, Y ′, k′ where µa(D′, X ′, Y ′, k′) < µa.

By Lemma 3.2.26 there is a unique importantX-Y arc separator S∗a of size λD(X, Y ).

Since we have assumed λD(X, Y ) to be positive, S∗a is non empty. Consider an arc

e = (u, v) ∈ S∗. Any important X-Y arc separator S either contains e or does not

contain e. For any important X-Y arc separator Sa which contains e, Sa \ {e} is an

important X-Y arc separator in D \ {e} by Lemma 3.2.30(2). Hence the number of

important X-Y arc separators of size at most k in D which contain e, is at most the

number of important X-Y arc separators of size at most k − 1 in D \ {e}. Observe

λD\{e}(X, Y ) = λD(X, Y )−1 which implies that µa(D \{e}, X, Y, k−1) < µa and by

induction hypothesis, the number of important X-Y arc separators of size at most k− 1

in D \ {e} is bounded by 2µa−1 which is also a bound on the number of important X-Y

arc separators of size at most k in D which contain e.

Now let Sa be an important X-Y arc separator of size at most k which does not
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contain e. By Lemma 3.2.29 we know thatR(X,Sa) ⊇ R(X,S∗a) and by the minimality

of S∗a , u ∈ R(X,Sa) and v /∈ R(X,Sa) which implies thatR(X,Sa) ⊇ R(X,S∗a)∪{v}.

We now set X ′ = R(X,S∗a) ∪ {v}. By Proposition 3.2.30(3) we know that Sa is a

also an important X ′ − Y arc separator. Thus a bound on the number of important

X ′−Y arc separators of size at most k is also a bound on the number of important X-Y

arc separators of size at most k which do not contain v. First note that λD(X ′, Y ) >

λD(X, Y ) since otherwise we would have an X-Y arc separator which dominates S∗a .

Now, µa(D,X ′, Y, k) < µa and by induction hypothesis, the number of important X ′ −

Y arc separators of size at most k is bounded by 2µa−1.

Summing up the bounds we get that the number of important X-Y arc separators of

size at most k is bounded by 2 · 2µa−1 = 2µa ≤ 22k.

The algorithm follows from the proof of above. We apply Lemma 3.2.28 to compute

the smallest important X-Y separator S∗ or conclude that no such separator of size at

most k exists. Then, we pick a vertex v of S∗ and recursively enumerate all the important

X-Y separators containing v and those that do not contain v. Since the algorithm of

Lemma 3.2.28 takes time O(k(m + n), the running time follows. This completes the

proof of the lemma.

3.2.5 Tight Instances for the Bound on Number of Important Sepa-

rators

In this section we demonstrate instances which have a large number of important sepa-

rators, thus proving that the bounds stated in the previous sections are essentially tight.

Lemma 3.2.32. The bound of 4k on the number of important X-Y separators and im-

portant X-Y arc separators is tight up to a polynomial factor of k.
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Figure 3.3: Graphs which achieve the given bound on important (arc) separators upto a
polynomial factor of k.

Proof. In the proof of Lemma 3.2.18 we have shown that the number of important X-Y

separators is bounded by the sum of the important separators which contain and those

which do not contain some vertex of the smallest important X-Y separator. This is sum

is clearly maximized when the measure µ decreases precisely by 1 in either branch.

Based on this idea, we demonstrate instances (see Fig. 3.3(1)) where the number of

important X-Y separators is at least 4k/poly(k) where poly(k) is some polynomial

function of k.

For the instance shown in Fig. 3.3(1), any minimal X-Y separator is an important

X-Y separator. Hence the number of important X-Y separators of size at most k is the

number of minimal X-Y separators of size at most k. But any minimal X-Y separator

of size say p, corresponds to a subtree of T rooted at X and with p leaves. Hence the

number of minimal X-Y separators of size at most k is the number of subtrees of T
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which are rooted at X and have at most k leaves. But this number is the Catalan number

Ck−1 which is asymptotically 4k

k3/2
. An analogous arguments holds for important X-Y

arc separators.

Remark 3.2.33. The example of the tight instances given above can be found in the

slides of Dániel Marx titled Important separators and spiders.

The Important Separator Template

1. Show that either there is a solution for the given instance which contains a minimalX-Y

separator of bounded size for two vertex sets X and Y or there is a possible branch-

ing/reduction which enables us to guarantee such a solution, or the problem is tractable

(FPT).

2. Define a dominating set for the set of all minimal X-Y separators of bounded size and

show that there is a solution which intersects an X-Y separator in this dominating set.

Following this, prove the existence of a bounded set of vertices which either intersects

the dominating set or contains a branchable vertex.

For most problems the dominating set is simply the set of all importantX-Y separators

of a particular size. However, in this thesis, we introduce a more intricate notion of

dominating set depending on the problem at hand.

3. Show that the bounded set of vertices referred to above can be computed in FPT time.

4. Combine the above steps to obtain a branching algorithm.

3.3 The Important Separators Template

In this section, we describe a template for applying the important separator notion to

design FPT algorithms. The purpose of presenting this template is two-fold. Firstly, it

serves to isolate and describe the novel features of some of the algorithms which we in-
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troduce in the thesis. Secondly, it provides a useful alternate perspective on the existing

FPT algorithms for graph separation problems since they all follow this template to a

certain extent.

3.3.1 Applying the template to Multiway Cut

We explain the algorithm for MULTIWAY CUT given by Marx and Chen et al. using

the above template. However, for ease of description, we describe an algorithm with a

worse dependence on the parameter compared to that given by Chen et al.

Let (G = (V,E), T, k) be the given instance of MULTIWAY CUT and let t1 ∈ T

where |V | = n and |E| = m.

1. Any optimum solution contains a minimal t1-T \ t1 separator of size at most k.

Otherwise we are already done.

2. The set of important t1-T \ t1 separators of size at most k forms a dominating

set [73], that is, there is a solution for the given instance which contains an impor-

tant t1-T \t1 separator of size at most k . The number of such important separators

is bounded by 4k (Lemma 3.2.18) and therefore the union of the vertices in the

important separators is a set which intersects some solution for the given instance

and has size at most 4kk.

3. The set of important t1-T \ t1 separators of size at most k can be computed in time

O(4kk(m+ n)) (Lemma 3.2.18).

4. Branch on the vertices in the union of the important t1-T \ t1 separators of size at

most k.
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The above algorithm results in a search tree of depth at most k where each internal

node has at most 4kk children, implying a search tree with at most 22k2+k log k leaves.

Since the time spent at each internal node is bounded byO(4kk(m+n)), this algorithm

runs in time O(22k2+k+log kk(m+ n)).
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Part II

Above Guarantee Parameterizations of

Vertex Cover
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4
Matchings and Vertex Covers

4.1 The Maximum Matching Problem

The classical notions of matchings and vertex covers have been at the center of serious

study for several decades in the area of Combinatorial Optimization [70]. In 1931, König

and Egerváry independently proved the following result of fundamental importance

Theorem 4.1.1. ([70]) In a bipartite graph, the size of the maximum matching is equal

to the size of the minimum vertex cover.

This led to a polynomial-time algorithm for finding a minimum vertex cover in bi-

partite graphs. Interestingly, this min-max relationship holds for a larger class of graphs

known as König-Egerváry graphs (or König graphs) and it includes bipartite graphs as

a proper subclass (see Fig. 4.1). In this section, we recall some classical theorems on

the subject of matchings and the definitions of the combinatorial objects used in the

majority of these results.

Definition 4.1.2. Given a graph G = (V,E) and a matching M , we call a path P =
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Figure 4.1: A non-bipartite König graph where the size of the minimum vertex cover
(green vertices) is equal to the size of the maximum matching (red edges).

v1, . . . , vt in the graph, an M -alternating path (or alternating path if M is clear from

the context) if for every 2 ≤ i ≤ t− 1 in P , either (vi−1, vi) ∈M or (vi, vi+1) ∈M but

not both.

The following theorem of Berge is a fundamental result relating maximum matchings

and alternating paths.

Theorem 4.1.3. ([4]) A matching M in a graph G is not of maximum cardinality if and

only if there is an alternating path between two vertices left unsaturated by M

Theorem 4.1.3 led to a polynomial time algorithm to compute a maximum matching in

a bipartite graph.

Theorem 4.1.4. Maximum matching in a bipartite graph can be computed in polynomial

time.

Definition 4.1.5. Given a graph G = (V,E) and a matching M , we call an alternating

path P = v1, . . . , vt in the graph, an odd M -path from v1 to vt (or from vt to v1) if the

edges (v1, v2) and (vt−1, vt) are in M (see Fig 4.2) and an even M -path from v1 to vt if
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Figure 4.2: Illustrations of the two types of M -alternating paths and an M -flower. The
non matched edges are represented by the dashed lines. (a) An oddM -path v1, v2, v3, v4.
(b) An even M -path v1, v2, v3, v4, v5, v6, v7. (c) An M -flower with root v1, base v4, stem
v1, v2, v3, v4, blossom v4, v5, v6, v7, v8, v4, and a blossom path v5, v6, v7, v8.

the edge (v1, v2) is in M , but the edge (vt−1, vt) is not. If v1 ∈ X and vt ∈ Y , then P is

also called an odd (respectively even) M -path from X to Y .

Note that, by our definition, a single matched edge is an odd M -path. In addition, we

consider a path consisting of a single vertex to be an even M -path.

Definition 4.1.6. An odd cycle C = v1, v2, . . . , vt, v1 is called an M -blossom (or blos-

som if M is clear from the context) if the path v2, . . . , vt is an odd M -path. The vertex

v1 is called the base of the blossom. The odd M -path v2, . . . , vt is called a blossom

M -path (or blossom path if M is clear from the context).

Definition 4.1.7. The union of a blossom C and an odd M -path P is called an M -

flower (or flower if M is clear from the context) if the base of C is an endpoint of P

and C and P do not intersect in any other vertex. The base of C is also called the base

of the flower, P is called the stem and the endpoint of P disjoint from C is called the

root of the flower. If the root of the blossom is in a set X , then the flower is referred to

as an X-flower.

Definition 4.1.8. Given a graph G = (V,E) and a matching M , an M -alternating

tree (or alternating tree if M is clear from the context) rooted at a saturated vertex v
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is defined as the output of the following procedure. Label v even, and keep all the other

vertices unlabeled at this point.

1. For each even vertex u, label it’s matching partner u′ odd and make u′ a child of u.

2. For each odd vertex u, make its unlabeled neighbors the children of u and label them

even.

3. If neither of the above operations can label an unlabeled vertex, then return the tree

constructed.

The following observations are a consequence of the definition of alternating trees.

Observation 4.1.9. Given a graph G = (V,E) and a matching M in G, consider the

M -alternating tree rooted at a saturated vertex v ∈ V .

(a) There is an odd (even) M -path from v to a vertex u if and only if u is labeled odd

(respectively even) in this tree.

(b) G has an M -flower rooted in v if and only if there is an edge between two vertices

labeled odd in this tree.

Observation 4.1.10. Given a graph G = (V,E), a matching M , and a vertex u, we can

test in time O(m) if there is an M -flower in G with u as the root. Furthermore, given a

vertex v, we can test in time O(m) if there is an odd (or even) M -path from u to v in G.

Proof. This follows from the fact that the alternating tree rooted at u can be computed

in time O(m) assuming that the matching has been given in the form of an appropriate

data structure. Since this is straightforward, we do not give a detailed proof.

4.2 König Graphs with Extendable Vertex Covers

In this section we obtain an extension of the result by König and Egerváry relating max-

imum matchings and minimum vertex covers. More precisely, we address the following
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question.

When does a König graph have a minimum vertex cover containing a spec-

ified subset of vertices of the graph?

While the question can be considered an extension of that studied by König and

Egerváry, the answer we obtain revolves around the structures of alternating paths and

flowers (see previous section) used by Berge [4] and Edmonds [29] in their classical

results.

We begin by giving a sketch of our characterization. Consider the path P` = v1, . . . , v`,

where ` is even. It is clearly a König graph since the size of the maximum matching is

`
2

and we have a vertex cover of size `
2

comprising the vertices v2, v4, . . . , v`. However,

observe that there is no minimum vertex cover which contains v1 and v` since any min-

imum vertex cover containing v1 is forced to exclude the set {v2, v4, . . . , v`}. In other

words, if there is an odd M -path between two vertices of the König graph, then we

cannot have a minimum vertex cover containing both end points of the path. Similarly,

consider a graph which is an M -flower. By an argument similar to the previous one (for

an odd length path), observe that there cannot be a minimum vertex cover for this graph

containing the root.

The above arguments give us an idea as to what type of structures must necessar-

ily be excluded for the given annotated König graph to have a minimum vertex cover

containing the annotated vertices Our main contribution in this regard is a proof that it

is also sufficient for the above structures to be absent from the given annotated graph

for it to have a minimum vertex cover containing the annotated vertices. Before we

present a formal proof of our characterization., we revisit a different characterization of

König graphs, followed by some structural observations regarding alternating paths and

flowers in König graphs.
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Lemma 4.2.1 (see, for example, [81]). A graph G = (V,E) is König if and only if there

exists a bipartition of V as V1 ] V2, with V1 a vertex cover of G such that there exists a

matching across the cut (V1, V2) saturating every vertex of V1.

Due to Lemma 4.2.1, we define a König graph G as a triple (A,B,E) where the vertex

set of the graph isA∪B withA being a minimum vertex cover ofG,B the corresponding

independent set and E is the edge set of the graph. We also have the following simple

observation about König graphs.

Observation 4.2.2. Given a König graph G = (A,B,E), let M be a maximum match-

ing of G and let U be the set of vertices left unsaturated by M . Then, M saturates A

across the cut (A,B) and no vertex of U is present in any minimum vertex cover of G.

Proof. Since every minimum vertex cover of a König graph contains exactly one vertex

of each edge in any maximum matching, it must be the case that M saturates A across

the cut (A,B). Furthermore, if a vertex in U occurs in some minimum vertex cover of

G, say S, then since any vertex cover is forced to contain at least one vertex from each

edge of M , S has size at least |M | + 1, which is a contradiction. This completes the

proof.

The following consequences follow from the definitions in the previous section.

Lemma 4.2.3. Let G = (A,B,E) be a König graph with a maximum matching M and

let L ⊆ A and R ⊆ B be vertex subsets.

(a) There is no odd M -path from A to A.

(b) Any odd M -path from B to B contains exactly one edge between two vertices in A.

(c) There is no blossom with the base in B.

46



(d) In any blossom in G, one of the two neighbors of the base in the blossom is in B.

(e) A minimum vertex cover of G contains at most 1 endpoint of an odd M -path. Fur-

thermore, if a minimum vertex cover of G does not contain a vertex u, then it does

not contain any vertex which has an even M -path to u.

(f) Let P = v1, . . . , vt be an odd M -path from B to B. Then there is an edge (u, v)

such that u, v ∈ A and there is an odd M -path P1 from v1 to u and an odd M -path

P2 from vt to v such that every matched edge in P is present in either P1 or P2.

(g) Consider a vertex v and an even M -path P from some vertex u to v. Then P does

not contain the matching partner of v.

Proof. (a) Consider the bipartite graph obtained from G by deleting edges with both

endpoints in A. If there were an odd M -path from A to A in G, then this path also

exists in the bipartite graph which we constructed, implying an odd path between

the same partition of the bipartite graph, a contradiction.

(b) We know that any odd M -path from B to B which does not contain an edge be-

tween two vertices in A is also an odd path from B to B in the bipartite graph

constructed as described in (a), a contradiction. Hence any such path must contain

at least one edge between two vertices of A. We now show that there is exactly

one such edge. Let P = v1, . . . , vt be the odd M -path under consideration and

suppose that there are two edges e1 = (vi, vi+1) and e2 = (vj, vj+1) in P such that

vi, vi+1, vj, vj+1 ∈ A. Assume without loss of generality that i + 1 < j. Then, the

edges (vi+1, vi+2), (vj−1, vj) must be in M . They cannot be the same edge since

that would mean a matched edge between vertices of A. However, the subpath

vi+1, vi+2, . . . , vj is an odd M -path from A to A , which contradicts (a).

47



(c) If this were not the case, then there is a blossom with some vertex b ∈ B as its

base. Let u1 and u2 be the neighbors of b in the blossom. Since B is independent,

u1, u2 ∈ A. However, by definition, the blossom path between u1 and u2 is an odd

M -path, a contradiction to (a).

(d) Let u1 and u2 be the neighbors of the base of the blossom within the blossom.

Suppose u1, u2 ∈ A. Then the blossom path from u1 to u2 is an odd M -path from

A to A which contradicts (a).

(e) Let P = v1, . . . , vt be an odd M -path and let S be a minimum vertex cover for

G. Note that since S is a minimum vertex cover for G, S must contain exactly one

end point of each matched edge in M . We prove by induction on t that if v1 ∈ S,

then vt /∈ S. In the base case, when t = 2, the claim is clearly true. Therefore, let

t > 2 and assume that our claim is true ∀t′ < t. Consider the path v1, . . . , vt−2. It is

clearly an odd M -path. By the induction hypothesis, v1 ∈ S implies that vt−2 /∈ S.

Since S is a vertex cover, it must be the case that vt−1 ∈ S in order to cover the edge

(vt−2, vt−1). However, for S to be a minimum vertex cover, it must contain exactly

one vertex from the matched edge (vt−1, vt), implying that vt /∈ S. For the proof of

the second statement, suppose that G contains a minimum vertex cover S excluding

u and let v a vertex such that there is an even M -path P from v to u. The statement

is clearly true if u = v. Therefore, let P = v1, . . . , vt be this path where v = v1 and

u = vt and t > 1. Since vt is not in S, it must be the case that vt−1 ∈ S. Since P is

an even M -path, the subpath of P from v1 to vt−1 is an odd M -path and by the first

statement, vt−1 ∈ S implies that v1 /∈ S. Therefore, we have that v is also disjoint

from S.

(f) Let P = v1, . . . , vt be an odd M -path from B to B. Let vi and vi+1 be the vertices
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occurring in P such that vi, vi+1 ∈ A given by (b). Let P1 be the subpath of P from

v1 to vi and let P2 be the subpath of P from vi+1 to vt. We claim that P1 and P2 are

both odd M -paths. Note that vi, vi+1 ∈ A implies that (vi, vi+1) /∈ M . Since P is

an M -alternating path, the edges (vi−1, vi) and (vi+1, vi+2) are in M . Therefore, P1

is an M -alternating path where the first and last edges are matched edges, that is, P1

is an odd M -path. The same is the case for P2 and since P1 and P2 together contain

every matched edge in P , the claim follows.

(g) Let v′ be the matching partner of v and suppose P contains v′. Observe that u 6= v′

since that would imply that the first edge of P is a matched edge, implying that the

first edge of P is (v′, v), which is a contradiction to our assumption that P is an

even M -path from u to v. Since v′ is not an end point of P , v′ has two edges of P

incident on it. Since P is an alternating path, at least one of these two edges is that

edge (v′, v). Since v is an endpoint of P , it must be the case that the last edge of

P is the edge (v′, v). Since (v′, v) is a matched edge, it contradicts our assumption

that P is an even M -path from u to v.

Using the above observations, we prove our main structural result.

Lemma 4.2.4. Let G = (A,B,E) be a König graph with a maximum matching M , let

L ⊆ A and R ⊆ B be saturated vertex subsets, and let U ⊆ B be the set of vertices of

G left unsaturated by M .Then, G has a minimum vertex cover containing L ∪ R if and

only if G contains none of the following structures.

1. an odd M -path from L ∪R to L ∪R

49



2. an even M -path from L ∪R to U .

3. an R flower

Proof. (⇒)Let A = a1, . . . , ar and M = {m1, . . . ,mr} where mi = (ai, bi) and let

U = {br+1, . . . , b|B|}. Suppose G has a minimum vertex cover S containing L and

R. Consider an odd M -path in G. By Lemma 4.2.3(e), it cannot be the case that both

endpoints of this path are in S. Hence, any odd M -path in G has at least one endpoint

disjoint from L ∪R.

Suppose that G has an even M -path P from L ∪ R to a vertex u ∈ U . Since no

vertex in U is part of any minimum vertex cover (by Observation 4.2.2), U is disjoint

from S. Therefore, by Lemma 4.2.3(e), any vertex which has an evenM -path to U must

also be disjoint from S. Since L ∪ R ⊆ S, it cannot be the case that a vertex in L ∪ R

has an even M -path to a vertex in U .

Finally, consider the case when G has an R-flower. Then, the root of the flower is in

S since R ⊆ S. By the definition of flowers, the stem is an odd M -path from the root

to the base and by Lemma 4.2.3(e) the base is not in S. This implies that S contains

both neighbors of the base in the blossom, a contradiction to Lemma 4.2.3(e) since the

blossom path between these two vertices is an odd M -path.

(⇐) Suppose G has no odd M -paths from L ∪ R to L ∪ R, no even M -paths from

L ∪ R to U and no R-flowers. We define S1 as the set of all vertices to which there is

an even M -path from R. We define the set S2 as the set of all vertices ai such that mi is

not covered by S1. We let S denote the union of S1 and S2. Formally,

S1 = {v| there is an even M -path from R to v}.
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S2 = {ai|V (mi) ∩ S1 = φ}.

S = S1 ∪ S2.

We claim that S is a minimum vertex cover of G, containing L ∪ R. We first prove

that S contains L ∪ R. Recall that by definition, a single vertex is an even M -path

and hence S1 contains R. Suppose there is a vertex ai in L which is not in S. By the

definition of S, bi ∈ S1, implying that there is an even M -path P from R to bi. By

Lemma 4.2.3(g) P does not contain ai. Hence, P + (bi, ai) is an odd M -path from R

to L, a contradiction to our assumption that there are no odd M -paths from L ∪ R to

L ∪R. Hence, we conclude that L ∪R ⊆ S.

We now prove that S is indeed a vertex cover. Suppose that S is not a vertex cover

and let e = (ai, bj) be an edge left uncovered by S. Note that the definition of S implies

that e cannot be a matched edge since if S1 picked neither endpoint of a matched edge,

then we will have added the vertex of that edge lying in A, into S2 and hence in S as

well. Therefore, i 6= j. Since ai /∈ S, it must be the case that bi ∈ S1. Hence there is

an even M -path P = v1, . . . , vt from R to bi where vt = bi. By Lemma 4.2.3(g) P does

not contain ai.

If P did not contain bj , then P + (bi, ai) + (ai, bj) is an even M -path from R to

bj . But this implies that bj ∈ S1 ⊆ S, a contradiction to our assumption that e was not

covered by S. Therefore, we assume that P contains bj . Furthermore, since bj /∈ S,

we have that bj /∈ R, which implies that bj is not an endpoint of P and hence there are

two edges incident on bj in P . Since one of the edges incident on bj in P is a matched

edge, it must be the case that bj /∈ U and bj has a matching partner aj . Furthermore,

aj is adjacent to bj in P . If aj occurs immediately after bj , then the subpath of P from
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v1 to bj is an even M -path, in which case bj would have been added to S1, covering the

edge e. Hence, aj must occur immediately before bj in P . Let P ′ be the subpath of P

from v1 to bj . Now, P ′ + (bj, ai) is an even M -path from R to ai, which implies that

ai ∈ S1 ⊆ S, a contradiction. We have thus established that S is indeed a vertex cover

of G.

We now prove that S is a minimum vertex cover ofG. In particular we will prove that

S contains exactly one vertex from every edge of M . Since we have already shown that

S is a vertex cover, it contains at least one vertex from every matched edge. Furthermore,

due to the absence of even M -paths from L ∪R to U , no vertex of U is in S. Therefore

it is enough for us to prove that S does not contain both end points of any matched edge.

Suppose there is a matched edgemj such that both aj and bj are in S. Then it must be the

case that both aj and bj are in S1 as well. This could only be possible if there were even

M -paths P1 = x1, . . . , xs and P2 = y1, . . . , yt fromR to aj and bj respectively. For each

matched edge mi such that S contains both end points, let P i
1 and P i

2 be even M -paths

of least length from R to ai and bi respectively. Among all such matched edges, let md

be one which minimizes the sum |P i
1| + |P i

2|, that is |P d
1 | + |P d

2 | = mini{|P i
1| + |P i

2|}.

For the sake of convenience, in the rest of the proof of this lemma, we refer to the paths

P d
1 and P d

2 as P1 and P2. By Lemma 4.2.3(g), P1 does not contain bd and P2 does not

contain ad. We now consider the following two cases.

1. If P1 and P2 do not intersect at all, then P1 + (aj, bj) + Rev(P2) is an odd M -path

from R to R, a contradiction.

2. Suppose P1 and P2 do intersect and let yq = xp be the last vertex along P2 when

traversing from y1, which is also present in P1. Since one of the two edges incident

on yq in P2 is a matched edge, it must be the case that the edge (yq−1, yq) is a matched

edge. For the same reason, it must be the case that one of the two edges (xp, xp+1)
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or (xp−1, xp) is the same as the edge (yq−1, yq), that is, either yq−1 = xp+1 or yq−1 =

xp−1. Since P1 and P2 are both disjoint from either ad or bd, the edge (yq−1, yq)

cannot be the edge md since it occurs in both paths. We now consider the following

two cases.

(a) xp−1 = yq−1. Let P ′1 be the subpath of P1 from xp to xs and let P ′2 be the subpath

of P2 from yq to yt. Then, the paths P ′1 and P ′2 along with the edgemd form a blossom

C. Let P ′′1 be the subpath of P1 from x1 to xp. By our assumption regarding yq, P ′′1 is

disjoint from P ′2. Since P ′′1 is an odd M -path from x1 to xp disjoint from the blossom

C, we have a flower with x1 as the root. However, x1 ∈ R, which implies that there

is an R flower in G, a contradiction to our assumption.

(b) xp+1 = yq−1. Let P ′1 be the subpath of P1 from x1 to xp and let P ′2 be the subpath

of P2 from y1 to yq−1. Then, the paths P ′1 and P ′2 are even M -paths from R to the two

endpoints of the matched edge (yq, yq−1). Since we know that the edge (yq−1, yq)

is distinct from the edge md, it must be the case that |P ′1| + |P ′2| < |P1| + |P2|, a

contradiction to our choice of md.

This concludes the proof that S is a minimum vertex cover of G containing L ∪ R and

hence the proof of the lemma.

Since a perfect matching does not leave any vertex unsaturated, we have the following

special case of the above lemma which will be a crucial component of the next chapter.

Lemma 4.2.5. Let G = (A,B,E) be a König graph with a perfect matching M , let

L ⊆ A and R ⊆ B, be vertex subsets.Then, G has a minimum vertex cover containing

L ∪ R if and only if G contains neither an odd M -path from L ∪ R to L ∪ R nor an

R-flower.
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4.3 Computing extendable vertex covers

In this section, we show that we can compute a minimum vertex cover containing the

annotated vertices of a König graph (if one exists) in polynomial time. We begin with

the following definition.

Definition 4.3.1. Consider a König graph G = (A,B,E) a maximum matching M of

G and let U be the set of vertices left unsaturated by M . Let R(U) be the set of vertices

in V \ U which to which there is an alternating path from a vertex in U . We denote by

G/U the graph induced on the set V \R(U).

Observation 4.3.2. Consider a König graph G = (A,B,E) a maximum matching M

and let U be the set of vertices left unsaturated by M . Then, the graph G/U is a König

graph with a perfect matching.

Proof. Consider the set of alternating trees rooted at the vertices of L where L is the set

of neighbors of U . Observe that the union of the vertices in these trees is precisely the

set R(U) \ U . Since by definition, any vertex occurs along with its matching partner in

an alternating tree, every vertex in the graph G/U also occurs with its matching partner.

Therefore, G/U has a perfect matching. Furthermore, since A is a vertex cover for

G, the set A \ R(U) is a vertex cover for G/U . Since G/U has a matching saturating

A \R(U) across the cut (A \R(U), B \R(U)) in G/U , it must be a König graph.

Lemma 4.3.3. Consider a König graphG = (A,B,E). LetM be a maximum matching

of G and U be the set of vertices left unsaturated by M . Let X be the set of vertices of G

to which there is an odd length alternating path from U . Then, for any minimum vertex

cover S of G, X = S ∩R(U) and S \X is a minimum vertex cover for G/U .
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Proof. Observe that X ⊆ A since U ⊆ B. Let Y be the set of vertices in B whose

matching partners are in X . By Observation 4.1.9, for any vertex y ∈ Y , there is a

vertex of U labeled even in the alternating tree rooted at y. Therefore, since U is not

part of any minimum vertex cover of G, neither is Y (Lemma 4.2.3(e)), implying that

X is part of every minimum vertex cover of G.

Lemma 4.3.4. Let G = (A,B,E) be a König graph with a perfect matching M , let

L ⊆ A, R ⊆ B be saturated vertex subsets. IfG has a minimum vertex cover containing

L ∪R, then one such minimum vertex cover can be computed in time O(mn).

Proof. Observe that the sets S1 and S2 defined in the proof of Lemma 4.2.4 can be

computed in timeO(mn). Since we have already shown that S = S1∪S2 is a minimum

vertex cover of G, this completes the proof of the lemma.

Lemma 4.3.5. Let G = (A,B,E) be a König graph with a maximum matching M , let

L ⊆ A, R ⊆ B be vertex subsets and let U ⊆ B be the set of vertices left unsaturated by

M . If G has a minimum vertex cover containing L ∪ R, then one such minimum vertex

cover can be computed in time O(mn).

Proof. We begin by first computing the intersection of the minimum vertex cover with

the set R(U) which is part of every minimum vertex cover (Lemma 4.3.3). This can

be done in time O(mn) by constructing alternating trees for every vertex in B. Now,

by Lemma 4.3.3, it only remains for us to compute a minimum vertex cover containing

L′ = L\R(U) andR′ = R\R(U) in the graphG′ = G/U , which is a König graph with

a perfect matching. This can be done in timeO(mn) by Lemma 4.3.4, which completes

the proof of the lemma.
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4.4 Characterizing König graphs with a unique mini-

mum vertex cover

In this section, we give a complete characterization of König graphs based on the number

of minimum vertex covers which they contain.

The following observation follows from Lemma 4.3.3 and implies that it is sufficient

for us to restrict our attention to König graphs with perfect matchings.

Observation 4.4.1. Consider a König graph G = (A,B,E) with a maximum matching

M where U is the set of vertices left unsaturated by M . Then, G has a unique mini-

mum vertex cover if and only if the graph G/U , which is a König graph with a perfect

matching, has a unique minimum vertex cover.

Lemma 4.4.2. Consider a König graph G = (V,E) with a perfect matching M . Then,

G has a unique minimum vertex cover if and only if every vertex of G is in the stem of a

flower.

Proof. (⇒) Suppose that G has a unique minimum vertex cover S and there is a vertex

v ∈ V which is not in the stem of a flower. We first consider the case when v /∈ S.

Consider the alternating tree rooted at v, call it T . We now construct a set S ′ as follows.

Initially, set S ′ = S ∩ (V \ V (T )). Now, for every vertex labeled even in T , we add

this vertex to S ′. Clearly, |S ′| = |S| since every matched edge in G contributes exactly

1 vertex to S ′. By our assumption, there is a unique minimum vertex cover and hence it

must be the case that S ′ is not a vertex cover. This implies that there is an edge (u,w)

not covered by S ′. If u and w were both in T , then they must both be labeled odd, which

implies the presence of a flower with the stem containing v (by Observation 4.1.9).

Similarly, if neither u nor w were in T , then the set S ∩ (V \ V (T )) will contain either
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u or w since S is a vertex cover of G. Hence, we are left with the case when exactly

one of u or w is in T . Assume without loss of generality that u is in T and w is not.

Since w /∈ S ′, it must be the case that w /∈ S, implying that u ∈ S. However, u /∈ S ′

implies that u is labeled odd in T . This also implies that the edge (u,w) is not a matched

edge and hence the path in T from v to u, along with the edge (u,w) implies that there

is an even M -path from v to w, a contradiction to Observation 4.1.9. The case when

v ∈ S can be argued similarly by considering the alternating tree rooted at the matching

partner of v which is not in S.

(⇐) Suppose that every vertex of G is part of the stem of a flower. Consider an

arbitrary vertex v and a flower whose stem contains v. We claim that if the parity of

the shortest path along the stem from the base to v is even, then v is in every minimum

vertex cover of G and if it is odd, then v is in no minimum vertex cover of G. Suppose

that v is the base of the flower and not part of some minimum vertex cover, then the

two neighbors of v in the blossom are both in the minimum vertex cover, contradicting

Lemma 4.2.3(e) since there is an odd M -path between them. Suppose that v is not the

base of this flower. By Lemma 4.2.3(a), if a vertex u has an odd M -path to v, then since

v is part of every minimum vertex cover, u is not in any minimum vertex cover. Since no

vertex at an odd distance along the stem from the base is in any minimum vertex cover,

every vertex at an even distance along the stem from the base is part of every minimum

vertex cover. This proves our claim and in fact also shows that if every vertex is part of

the stem of a flower, then no vertex will be at an even distance (along the stem) from

the base of one flower and at an odd distance (along the stem) from the base of another

flower. Hence, the presence or absence of a vertex in any minimum vertex cover of G is

solely determined by its position in the stem of any flower. Since every vertex in G is in

the stem of a flower, the lemma follows.
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Observation 4.4.1 along with Lemma 4.4.2 gives a complete characterization of König

graphs with unique a minimum vertex cover.

4.5 Notes

If we restrict ourselves to bipartite graphs with a perfect matching, it is clear that either

partition forms a vertex cover. We note that Lemma 4.4.2 is a generalization of this

trivial observation. In other words, since the presence of a flower requires the presence

of an odd cycle, by Lemma 4.4.2, a bipartite graph with a perfect matching has at least

2 minimum vertex covers.

We conclude with the following corollary of Observation 4.4.1 applied to bipartite

graphs, which is very well known.

Corollary 4.5.1. A bipartite graph G = (V,E) with a maximum matching M has a

unique vertex cover if and only if U = V where U is the set of vertices of G reachable

from U via alternating paths.
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5
Vertex Cover Parameterized Above

Maximum Matching

5.1 Introduction

The standard version of VERTEX COVER, where we are interested in finding a vertex

cover of size at most k for the given parameter k was one of the earliest problems that

was shown to be FPT [27]. After a long race, the current best algorithm for VERTEX

COVER runs in time O(1.2738k + kn) [15]. However, when k < m, the size of the

maximum matching, the standard version of VERTEX COVER is not interesting, as the

answer is trivially NO. And if m is comparable to the size of the vertex set itself, for

example, when the graph has a perfect matching, then for the cases the problem is in-

teresting, the running time of the standard version is not practical, as k, is quite large in

these cases. This motivates the parameterization of VERTEX COVER above the size of

the maximum matching.
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ABOVE GUARANTEE VERTEX COVER (AGVC) Parameter: k

Input: Graph G, a maximum matching M for G, positive integer k.

Question: Does G have a vertex cover of size at most |M |+ k?

Prior to the work presented in this chapter, the only known parameterized algorithm

for ABOVE GUARANTEE VERTEX COVER was the consequence of a parameter preserv-

ing reduction from AGVC to the ALMOST 2-SAT problem. In ALMOST 2-SAT, we

are given a 2-SAT formula φ, a positive integer k and the objective is to check whether

there exists a set of at most k clauses whose deletion from φmakes the resulting formula

satisfiable. The ALMOST 2-SAT problem was introduced in [72] and a decade later it

was shown by Razgon and Barry O’Sullivan [90] to have an O∗(15k) time algorithm,

thereby proving fixed-parameter tractability of the problem when k is the parameter.

The ALMOST 2-SAT problem is a fundamental problem in the context of designing

parameterized algorithms. This is evident from the fact that there is a polynomial time

parameter preserving reduction from problems like ODD CYCLE TRANSVERSAL [62]

and ABOVE GUARANTEE VERTEX COVER [81] to it. An FPT algorithm for ALMOST

2-SAT led to FPT algorithms for several problems, including AGVC and KÖNIG VER-

TEX DELETION [81]. In recent times this has been used as a subroutine in obtaining

a parameterized approximation as well as an FPT algorithm for MULTICUT [78, 79].

Later chapters in the thesis will also demonstrate the utility of having an FPT algorithm

for ALMOST 2-SAT. Therefore, a strong motivation for obtaining a faster FPT algo-

rithm for ABOVE GUARANTEE VERTEX COVER is that it also implies a faster FPT

algorithm for ALMOST 2-SAT and a number of other problems which are summarized

in Fig. 5.1.

In this chapter, we present an improved FPT algorithm for AGVC by using our

structural results described in the previous chapter and the important separator template.
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Figure 5.1: Some of the many problems which have a parameter preserving reduction to
AGVC. Out of these reductions, the reduction from KVDpm takes the parameter from
k to k

2
while the rest are all parameter preserving reductions.

5.2 Algorithm for AGVC

We first apply the following lemma that allows us to assume that the input graph has a

perfect matching.

Lemma 5.2.1. [81, LEMMA 5] If (G = (V,E),M, k) is an instance of ABOVE GUAR-

ANTEE VERTEX COVER and G is a graph without a perfect matching, then in time

O(m
√
n), we can obtain an instance (G′,M ′, k) such that G′ has a perfect matching

M ′ and (G,M, k) is a YES instance of ABOVE GUARANTEE VERTEX COVER if and

only if (G′,M, k) is a YES instance of ABOVE GUARANTEE VERTEX COVERwhere
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n = |V | and m = |E|.

Due to Lemma 5.2.1, we assume that in our input instance (G,M, k), the matching M

is a perfect matching of G. We now describe the iterative compression step, which is

central to our algorithm, in detail.

Iterative Compression for AGVC. Given an instance (G = (V,E),M, k) of

ABOVE GUARANTEE VERTEX COVER letM = {m1, . . . ,mn/2} be a perfect matching

for G where n = |V |. Define Mi = {m1, . . . ,mi}, mi = (ai, bi), and Gi = G[V (Mi)],

1 ≤ i ≤ n
2
. We iterate through the instances (Gi,Mi, k) starting from i = k + 1 and for

the ith instance, with the help of a known solution Si of size at most |Mi| + k + 1 we

try to find a solution Ŝi of size at most |Mi|+ k. Formally, the compression problem we

address is the following.

AGVC COMPRESSION (AGVCC) Parameter: k

Input: (G,M, S, k) where (G = (V,E),M, k) is an instance of AGVC and S a

vertex cover of G of size at most |M |+ k + 1.

Question: Does G have a vertex cover Ŝ of size at most |M |+ k?

We reduce the AGVC problem to n
2
− k instances of the AGVCC problem as follows.

Let Ii = (Gi,Mi, Si, k) be the ith instance. Clearly, the set V (Mk+1) is a vertex cover

of size at most |Mk+1|+k+ 1 for the instance Ik+1. It is also easy to see that if Ŝi−1 is a

vertex cover of size at most |Mi−1|+ k for instance Ii−1, then the set Ŝi−1 ∪ V (mi) is a

vertex cover of size at most |Mi|+k+1 for the instance Ii. We use these two observations

to start off the iteration with the instance (Gk+1,Mk+1, Sk+1, k) where Sk+1 = V (Mk+1)

and look for a vertex cover of size at most |Mk+1|+ k for this instance. If we find such

a vertex cover Ŝk+1, we set Sk+2 = Ŝk+1 ∪ V (mk+2) and look for a vertex cover of

size at most |Mk+2| + k for the instance Ik+2 and so on. If, during any iteration, the
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corresponding instance does not have a vertex cover of the required size, it implies that

the original instance is also a NO instance. Finally the solution for the original input

instance will be Ŝn
2
. Since there can be at most n

2
iterations, the total time taken is

bounded by n
2

times the time required to solve the AGVCC problem.

Our algorithm for AGVCC is as follows. Let the input instance be I = (G =

(V,E), S,M, k). Let M ′ be the edges in M which have both vertices in S. Note that

|M ′| ≤ k + 1. Then, G \ V (M ′) is a König graph and by Lemma 4.2.1 has a parti-

tion (A,B) such that A is a minimum vertex cover and there is a matching saturating

A across the cut (A,B), which in this case is M \ M ′. We guess a subset Y ⊆ M ′

with the intention of picking both vertices of these edges in our solution (see Fig. 5.2).

For the remaining edges of M ′, exactly one vertex from each edge will be part of our

eventual solution. For each edge of M ′ \Y , we guess the vertex which is not part of our

eventual solution. Let T be the set of vertices guessed in this way to be disjoint from the

solution. Define L = A∩NG(T ) and R = B ∩NG(T ). Clearly our guess forces L∪R

to be in the solution (see Fig. 5.3). We have thus reduced this problem to the problem

of checking if the instance (G[V (M \M ′)], A,M \M ′, k − |M ′|) has a vertex cover

of size at most |M \M ′| + k − |M ′| which contains L and R. We formally define this

annotated variant as follows.

ANNOTATED AGVC (A-AGVC) Parameter: k

Input: (G = (A,B,E),M,L,R, k), where (G = (A,B,E),M, k) is an instance of

AGVC, L ⊆ A and R ⊆ B.

Question: Does G have a vertex cover of size at most |M |+ k containing L ∪R?

Our main result is the following lemma.

Lemma 5.2.2. There is an algorithm for A-AGVC which runs in time O(4kkmn) on

an input (G,M,L,R, k), where n is the number of vertices in G and m is the number
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Figure 5.2: An illustration of the partition of
S into sets Y and N where Y is part of the
solution we want to find and N is disjoint
from the solution we want to find.

Figure 5.3: An illustration of a partition of
N where the red vertices are the vertices in
T and the neighbors of T in G \ V (N) are
forced to be in the solution we are looking
for.

of edges in G.

Given Lemma 5.2.2 the running time of our algorithm for AGVCC is bounded as

follows. For every 0 ≤ i ≤ k, for every i sized subset Y , for every guess of T , we run

the algorithm for A-AGVC with parameter k − i. For each i, there are
(
k+1
i

)
subsets

of M ′ of size i, and for every choice of Y of size i, there are 2k+1−i choices for T and

for every choice of T , running the algorithm for A-AGVC given by Lemma 5.2.2 takes

time O(4k−ikmn). Hence, the running time of our algorithm for AGVCC is bounded

by O(Σk
i=0

(
k+1
i

)
2k+1−i4k−ikmn) = O(9kkmn) and hence our algorithm for ABOVE

GUARANTEE VERTEX COVER runs in time O(9kkmn2). Thus we have the following

theorem.

Theorem 5.2.3. AGVC can be solved in time O(9kkmn2).

The rest of the chapter is devoted to presenting a proof of Lemma 5.2.2
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5.3 Phase 1

In this section, we describe how to apply Phase 1 of the important separator template.

In order to do so, we use Lemma 4.2.5 to model the A-AGVC problem as a problem of

eliminating certain paths in a directed graph.

Note that, given an instance (G = (A,B,E),M,L,R, k) of A-AGVC, in order

to find a minimum vertex cover containing L ∪ R, it is sufficient to find the set M ′ of

matched edges which have both end points in this minimum vertex cover. This follows

from the fact that the graph G\V (M ′) is then a König graph and has a minimum vertex

cover that contains (L∪R)\V (M ′). Thus, by Lemma 4.3.5, a minimum vertex cover of

G\V (M ′) containing (L∪R)\V (M ′) can be computed in polynomial time. Hence, in

the rest of the chapter, whenever we talk about a solution S for an instance of A-AGVC,

we mean the set of edges of M which have both endpoints in the minimum vertex cover

under consideration.

Definition 5.3.1. Given an instance (G = (A,B,E),M,L,R, k) of A-AGVC we con-

struct a directed graph D(G) corresponding to this instance as follows. Remove all the

edges in G[A], orient all the edges of M from A to B and the remaining edges from B

to A.

An immediate observation to this is the following.

Observation 5.3.2. There is a path from u ∈ A to v ∈ B in D(G) if and only if there

is an odd M -path from u to v in G. Furthermore, for any set S of arcs in D(G) which

correspond to edges of M in G, there is a path from u ∈ A to v ∈ B in D(G)\S if and

only if there is an odd M -path from u to v in G \ V (S).

Proof. The first statement of the observation follows from the definition of D(G). For

the proof of the second statement, suppose that there is a path from u ∈ A to v ∈ B in
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D(G)\S. Since the only out-neighbor of u in D(G) is the matching partner of u and the

only in-neighbor of v in D(G) is the matching partner of v, neither u nor v is in the set

V (S). Therefore, the u to v path in D(G)\S clearly corresponds to a u to v odd M -path

in G \ V (S). The converse direction of the second statement simply follows from the

definition of D(G).

Even though the edges of D(G) are directed (and henceforth will be called arcs), they

originate in G and have a fixed direction. Hence we will occasionally use the same set

of edges/arcs in both the undirected and directed sense. For example we may say that a

set S of edges of G is both a solution for the corresponding instance (undirected) and an

arc separator in the graph D(G) (directed).

The following lemma gives the first part of Phase 1, that is we show that there is a

solution which corresponds to an X-Y separator for some sets X and Y .

Lemma 5.3.3. Given an instance (G = (A,B,E),M,L,R, k) of A-AGVC, suppose

that there is an L-R path in D(G) and let S be a solution to this instance. Then, S is an

L-R arc separator in D(G).

Proof. Since S is a solution, the graph G \ V (S) is a König graph with a minimum

vertex cover containing (L ∪R) \ V (S). By Observation 5.3.2, we know that if there is

an L-R path in D(G)\S, then there is an odd M -path from L to R in G \ V (S) and by

Lemma 4.2.5, this implies that there is no minimum vertex cover forG\V (S) containing

(L ∪R) \ V (S), a contradiction.

The next lemma is used to handle the case when the instance does not have oddM -paths

from L to R.

Lemma 5.3.4. Let (G = (A,B,E),M,L,R, k) be an instance of A-AGVC such that

there are no odd M -paths from L to R in G. If there is an odd M -path P from R to R
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Figure 5.4: An illustration of the two sub cases for the flower in Lemma 5.3.4. (a)
u1, u2 ∈ B. (b) u1 ∈ A, u2 ∈ B.

(or an R-flower P), then there is an edge (u, v) such that u, v ∈ A \ L and there is an

oddM -path from u toR and an oddM -path from v toR such that any edge ofM which

occurs in P (respectively in P) occurs in one of these two odd M -paths. Moreover, this

edge can be found in time O(mn).

Proof. Suppose P = v1, . . . , vt is an R to R odd M -path. Since v1, vt ∈ R, v1, vt ∈ B

and by Lemma 4.2.3(f) there is an edge (u, v) such that u, v ∈ A and there are odd

M -paths from u and v to v1 and vt respectively, which are odd M -paths from u to R and

v to R respectively. Furthermore, any edge of M present in P occurs in one of these

two odd M -paths.

Suppose that P is a flower with root v1 ∈ R and base b. Let u1 and u2 be the neigh-

bors of b in the blossom. We know by Lemma 4.2.3(c) that b ∈ A and by Lemma 4.2.3(d)

that at least one of u1 and u2 is in B. We first consider the case when u1, u2 ∈ B. Ap-

plying Lemma 4.2.3(f) on the blossom path from u1 to u2 (see Fig. 5.4) we know that

there is an edge (u, v) such that u, v ∈ A and there are odd M -paths P1 and P2 from
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u1 to u and u2 to v respectively which lie inside the blossom path. Since P1 and P2 lie

entirely within this blossom path, they do not intersect the stem of the flower. We also

know by the definition of flowers that there are even M -paths P3 and P4 from the root

to u1 and u2 respectively. Hence, Rev(P1 + P3) and Rev(P2 + P4) are odd M -paths

from u and v respectively to R and every edge of M present in the stem of P occurs in

P3 and P4 and every edge of M present in the blossom of P occurs in P1 or P2.

We now consider the case when exactly one of u1 and u2, is in A. Suppose that

u1 ∈ A. We claim that there is an odd M -path from u1 to R and one from b to R. By

the definition of a flower, the stem, say P is an odd M -path from b to R. Let P ′ be

the blossom path from u1 to u2. Observe that P ′ + (u2, b) + Rev(P ) is indeed an odd

M -path from u1 to R and it contains every edge of M which is present in P .

In either of these cases, we have found an edge (u, v) such that u, v ∈ A and there

are odd M -paths from both these vertices to R. Since we have assumed that there are no

L to R odd M -paths, u, v ∈ A \ L. That we can find this edge in time O(mn) follows

from Observation 4.1.10.

Finally we come to the last part of Phase 1, where we show that the problem is solv-

able in polynomial time if none of the forbidden structures exist. This follows from

Lemma 4.2.5, which states that if neither of the forbidden structures exist, then there is

indeed a minimum vertex cover for G containing L ∪ R and by Lemma 4.3.5, which

gives a polynomial time algorithm to compute such a vertex cover.

Summarizing this section, we have shown that either there is a solution for the given

instance which is an L-R arc separator in D(G) (Lemma 5.3.3), or there is an edge in G

on which we can branch and make progress (Lemma 5.3.4), or the problem is solvable

in polynomial time (Lemma 4.3.5). This completes Phase 1 of the important separator
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template.

5.4 Phase 2

In this section, we demonstrate that Phase 2 of the important separator template is appli-

cable by showing the existence of a dominating set of bounded size for the set of L-R

arc separators in D(G).

Lemma 5.4.1. Given an instance (G = (A,B,E),M,L,R, k) of A-AGVC, any im-

portant L-R arc separator in D(G) comprises precisely arcs corresponding to some

subset of M .

Proof. Let X be an important L-R arc separator in D(G). Suppose there is an arc

e = (bj, ai) ∈ X such that e /∈ M . The minimality of X implies that bj and ai are

reachable from L in D(G) but only bj is reachable from L in D(G)\X . Now, consider

the set X ′ = (X \ e) ∪ (ai, bi). Clearly |X ′| ≤ |X|. Now, X ′ is also a minimal L-R arc

separator in D(G) since any L-R path containing the arc e also contains the arc (ai, bi).

Now, ai is reachable from L in D(G)\X ′ and all vertices reachable from L in D(G)\X

are also reachable from L in D(G)\X ′. Hence the set of vertices reachable from L in

D(G)\X ′ is a strict superset of the set of vertices reachable from L in D(G)\X . This

contradicts our assumption that X was an important L-R arc separator.

Lemma 5.4.2. Let (G = (A,B,E),M,L,R, k) be an instance of A-AGVC. If (G =

(A,B,E),M,L,R, k) is a YES instance, then it has a solution which contains an im-

portant L-R arc separator in D(G).

Proof. Let S be a solution for the given instance. By Lemma 7.4.3, we have that S is

an L-R arc separator in D(G). Let SLR be a minimal subset of S such that the graph

D(G)\SLR does not contain a path from L to R.
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LetK be the set of vertices reachable fromL in D(G)\SLR. If SLR is an importantL-

R arc separator, we are done since S itself is a solution which satisfies our claim. If this

were not the case, then there is an important L-R arc separator S ′LR such that |S ′LR| ≤

|SLR| and K ′ ⊃ K where K ′ is the set of vertices reachable from L in D(G)\S ′LR.

Consider the set Ŝ = (S \ SLR) ∪ S ′LR. We claim that Ŝ is a solution which satisfies

our claim. Clearly, |Ŝ| ≤ |S| and Ŝ contains an important L-R arc separator in D(G).

By Lemma 5.4.1, S ′LR ⊆M and hence Ŝ ⊆M . Therefore, it remains to prove that Ŝ is

indeed a solution to the given instance.

If Ŝ were not a solution, then Ĝ = G \ V (Ŝ) is a König graph that does not have a

minimum vertex cover containing (L ∪ R) \ V (Ŝ). Lemma 4.2.5 implies that there is

either an odd M -path from L ∪ R to L ∪ R or an R-flower in Ĝ. Since Ŝ is an L-R arc

separator in D(G), Ĝ does not have odd M -paths from L to R. Therefore there must be

either an M -path from R to R or an R-flower in Ĝ. Let this odd M -path (or R-flower)

be P . Note that in either case, P must contain an edge in S ′′ = SLR \ S ′LR.

By Lemma 5.3.4, we know that there is an edge (u, v) such that u, v ∈ A and there is

an oddM -path from u toR and from v toR in Ĝ, where u, v ∈ A. By Observation 5.3.2,

this implies a path from u to R, say P1 and a path from v to R, say P2 in D(Ĝ). By

Lemma 5.3.4, we also know that every edge of M in P is present in P1 or P2. Suppose

the edge mj = (aj, bj) be an edge which is present in SLR \ S ′LR and P . Therefore, mj

is present in either P1 or P2. We assume without loss of generality that mj is present in

P1. Since S ′LR dominates SLR with respect to L, it must be the case that aj is reachable

from L in D(G)\S ′LR via a path, say P3. Therefore, combining the path P3 with the path

P1, we have a path from L to R in D(G) which is disjoint from S ′LR, a contradiction.

This concludes the proof of the lemma.

Lemma 5.4.3. Let (G = (A,B,E),M,L,R, k) be an instance of A-AGVC and let
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D =D(G)= (V,A) be defined as above. Then the number of important L-R arc separa-

tors of size at most k in the graph D is bounded by 4k.

Proof. Given D,L,R, k ≥ 0 we define a measure µa(D,L,R, k) = 2k − λD(L,R).

We prove by induction on µa(D,L,R,K) that there are at most 2µa(D,L,R,k) important

L-R arc separators of size at most k. For the base case, if 2k − λD(L,R) < k then

λD(L,R) > k and hence the number of important L-R arc separators of size at most

k is 0. If λD(L,R) = 0, it means that there is no path from L to R and hence the

empty set is the only important L-R arc separator. Consider D,L,R, k ≥ 0 such that

µa = µa(D,L,R, k) ≥ k, λD(L,R) > 0 and assume that the statement of the Lemma

holds for all D′, L′, R′, k′ where µa(D′, L′, R′, k′) < µa.

By Lemma 3.2.26, there is a unique importantL-R arc separator S∗ of size λD(L,R).

Since we have assumed λD(L,R) to be positive, S∗ is non empty. Consider an arc

e = (u, v) ∈ S∗. By Lemma 5.4.1, there is some i such that u = ai and v = bi. Any

important L-R arc separator S either contains e or does not contain e. For any important

L-R arc separator S which contains e, S \ {e} is an important L-R arc separator in

D\{e} by Lemma 3.2.30(2). Hence the number of important L-R arc separators of size

at most k in D which contain e, is at most the number of important L-R arc separators

of size at most k − 1 in D \ {e}. Observe that λD\{e}(L,R) = λD(L,R) − 1 which

implies that µa(D \ {e}, L,R, k− 1) < µa and by the induction hypothesis, the number

of important L-R arc separators of size at most k − 1 in D \ {e} is bounded by 2µa−1

which is also a bound on the number of important L-R arc separators of size at most k

in D which contain e.

Now let S be an importantL-R arc separator of size at most k which does not contain

e. By Lemma 3.2.29 we know that KS ⊇ KS∗ and by the minimality of S∗, ai ∈ KS∗

and since KS ⊇ KS∗ , ai is in KS . But e /∈ S, which implies that bi is in KS which
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implies that KS ⊇ KS∗ ∪ {bi}. But by Lemma 5.4.1, no other edge incident on bi can

be in S. Hence the vertices in δ+(bi) are also reachable from L in D \ S. We now

set X = KS∗ ∪ δ+(bi) and by Lemma 3.2.30(3) we know that S is also an important

X-R arc separator. We set L′ = A ∩ X . Since there cannot be paths from R to R

in D(G), any X-R separator is also an L′-R separator. Thus a bound on the number

of important L′-R arc separators of size at most k is also a bound on the number of

important L-R arc separators of size at most k which do not contain the arc e. First note

that λD(L′, R) > λD(L,R) since otherwise we would have an L-R arc separator S ′ of

size at most S∗ such that KS′ ⊃ KS∗ . Now, µa(D,L′, R, k) < µa and by the induction

hypothesis, the number of important L′-R arc separators of size at most k is bounded by

2µa−1.

Summing up the upper bounds in both cases, the number of important L-R arc sep-

arators of size at most k is bounded by 2.2µa−1 = 2µa ≤ 22k.

We have thus shown that the set of important L-R arc separators of size at most k is

indeed a dominating set for the set of L-R arc separators of size at most k with respect

to this problem (Lemma 5.4.2) and that the size of the dominating set is bounded by 4k

(Lemma 5.4.3). Therefore, there is a solution which intersects the set of 4kk vertices in

the union of the vertices in all important separators of size at most k. This completes

Phase 2 of the important separator template.

5.5 Phase 3

In this section, we show that the dominating set, that is, the set of important L-R arc

separators defined in the previous section can be computed in FPT time. The proof is

the same as that seen in Chapter 3. However, since the analysis of our final algorithm
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will require us to take a closer look at how this particular algorithm is interlinked with

the rest of the steps, we have presented the algorithm to compute the set of important

arc separators in terms of the problem at hand.

Lemma 5.5.1. The set of important L-R arc separators of size at most k can be enu-

merated in time O(4kk(m+ n)).

Proof. The algorithm for enumerating the important L-R arc separators of size at most

k follows from the proof of Lemma 5.4.3. The algorithm first computes the unique

smallest important L-R separator S∗ using the algorithm described in Lemma 3.2.28,

selects an arc e ∈ S∗ and recursively enumerates all important L-R arc separators which

contain e and those which do not. It follows from the proof of Lemma 5.4.3 that this

algorithm runs in time O(4kk(m+ n)).

Thus, Lemma 5.5.1 gives an algorithm running in time O(4kk(m + n)) to compute the

dominating set. This completes Phase 3.

5.6 Phase 4

Finally, we combine the first three phases (summarized in Fig. 9.7) to obtain our algo-

rithm for A-AGVC.

We are now ready to prove Lemma 5.2.2 by describing an algorithm (Algorithm.

5.6.1) for A-AGVC. In order to make the analysis of our algorithm simpler (and stronger),

we embed the algorithm for enumerating important separators (Lemma 5.4.3) into our

algorithm for A-AGVC.

Correctness. The Correctness of Step 1 is obvious. In Steps 6 and 8 we are merely

guessing the vertex which covers the edge (u, v), while Step 11 is correct due to Lemma 4.2.5.
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Input : An instance (G,M,L,R, k) of A-AGVC
Output: A solution of size at most k for the instance (G,M,L,R, k) if it exists

and NOotherwise
1 if k < 0 then return NO

2 Compute a mimimum size L-R arc separator S in the directed graph D(G)
3 if |S| = 0 then
4 if there an odd M -path from R to R or an R-flower then
5 compute the edge e = (u, v) given by Lemma 5.3.4
6 S1 ← Solve− AAGV C(G,M,L ∪ {u}, R, k)
7 if S1 is not NO then return S1

8 S2 ← Solve− AAGV C(G,L ∪ {v}, R, k)
9 return S2

10 end
11 else return φ
12 end
13 if |S| > k then return NO

14 else Compute the unique minimum size important L-R separator S∗ in D(G)
(Lemma 3.2.28) and select an arc e = (w, z) ∈ S∗

15 S3 ← Solve− AAGV C(G \ {e},M \ {e}, L,R, k − 1)
16 if S3 is not NO then return S3 ∪ {e}
17 S4 ← Solve− AAGV C(G,M,A ∩ (δ+D(G)(z) ∪KS∗), R, k)

18 return S4

Algorithm 5.6.1: Algorithm Solve− AAGV C for A-AGVC
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Phase 1.
(a) If there is an odd M -path from L to R in G, then the solution contains an L-R arc
separator in D(G) (Lemma 5.3.3).
(b) If there are no odd M -paths from L to R, but there is either an odd M -path
from R to R or an R-flower, then there exists a branch-able edge (u, v) between two
vertices in A which can be computed in time O(mn) (Lemma 5.3.4)
(c) If neither of these two cases occur, then the graph already has a minimum vertex
cover containing L ∪R and this can be computed in time O(mn) (Lemma 4.2.5).

Phase 2. If there is a solution containing an L-R arc separator in D(G), there is one
which contains an important L-R arc separator in D(G) (Lemma 5.4.2). The number
of important L-R arc separators of size at most k is at most 4k (Lemma 5.4.3) and
hence the number of vertices in their union is at most 4kk.

Phase 3. The set of important L-R arc separators of size at most k in D(G) can be
enumerated in time O(4kkmn) (Lemma 5.5.1).

Step 13 is correct because the size of the minimum L-R separator in D(G) is a lower

bound on the solution size. Steps 15 and 17 are part of enumerating the important L-R

arc separators as seen in Lemma 5.4.3. Since we have shown in Lemma 5.4.2 that if

there is a solution, there is one which contains an important L-R separator in D(G),

these steps are also correct.

Running Time. In order to analyze the algorithm, we define the search tree T(G,M,L,R, k)

resulting from a call to Solve − AAGV C(G,M,L,R, k) inductively as follows. The

tree T(G,M,L,R, k) is a rooted tree whose root node corresponds to the instance

(G,M,L,R, k). If Solve − AAGV C(G,M,L,R, k) does not make a recursive call,

then (G,M,L,R, k) is said to be the only node of this tree. If it does make recursive

calls, then the children of (G,M,L,R, k) correspond to the instances given as input to

the recursive calls made inside the current procedure call. The subtree rooted at a child

node (G′,M ′, L′, R′, k′) is the search tree T(G′,M ′, L′, R′, k′).
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Given an instance I = (G,M,L,R, k), we prove by induction on µ(I) = 2k −

λD(G)(L,R) that the number of leaves of the tree T(I) is bounded by max{22µ(I), 1}.

In the base case, if µ(I) < k, then λ(L,R) > k in which case the number of leaves is 1.

Assume that µ(I) ≥ k and our claim holds for all instances I ′ such that µ(I ′) < µ(I).

Suppose λ(L,R) = 0. In this case, the children I1 and I2 of this node correspond

to the recursive calls made in Steps 6 and 8. By Lemma 5.3.4 there are odd M -paths

from u to R and from v to R. Hence, λ(L ∪ {u}, R) > 0 and λ(L ∪ {v}, R) > 0. This

implies that µ(I1), µ(I2) < µ(I). By the induction hypothesis, the number of leaves in

the search trees rooted at I1 and I2 are at most 2µ(I1) and 2µ(I2) respectively. Hence the

number of leaves in the search tree rooted at I is at most 2.2µ(I)−1 = 2µ(I).

Suppose λ(L,R) > 0. In this case, the children I1 and I2 of this node correspond to

the recursive calls made in Steps 15 and 17. But in these two cases, as seen in the proof

of Lemma 5.4.3, µ(I1), µ(I2) < µ(I) and hence by applying the induction hypothesis

on the two child nodes and summing up the number of leaves in the subtrees rooted at

each, we can bound the number of leaves in the subtree of I by 2µ(I).

Therefore, the number of leaves of the search tree T rooted at the input instance

I = (G,M,L,R, k) is 2µ(I) ≤ 22k. The time spent at any internal node of the search

tree is bounded by O(k(m + n) + mn) since at every node, we either find an M -path

from R to R or an R-flower or find a minimum L-R arc separator if one of size at most

k exists. Therefore the running time of the algorithm is O(4kkmn). This completes the

proof of Lemma 5.2.2.

5.7 Corollaries

The following corollaries are obtained using known FPT reductions [88, 81, 44].
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Lemma 5.7.1. ALMOST 2-SAT can be solved in time O(9kkmn2).

Lemma 5.7.2. KÖNIG VERTEX DELETION on graphs with a perfect matching can be

solved in time O(3kkmn2).

Lemma 5.7.3. RHORN BACKDOOR DETECTION can be solved in time O(9kkmn2).
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6
Vertex Cover Parameterized Above LP

Optimum

6.1 Introduction

The well known integer linear programming formulation (ILP) for VERTEX COVER is

as follows.

ILP FORMULATION OF MINIMUM VERTEX COVER – ILPVC

Instance: A graph G = (V,E).

Feasible Solution: A function x : V → {0, 1} satisfying edge constraints

x(u) + x(v) ≥ 1 for each edge (u, v) ∈ E.

Goal: To minimize w(x) = Σu∈V x(u) over all feasible solutions x.

In the standard linear programming relaxation of the above ILP, the constraint x(v) ∈

{0, 1} is replaced with x(v) ≥ 0, for all v ∈ V . For a graph G, we call this relax-

ation LPVC(G). Clearly, every integer feasible solution is also a feasible solution to

LPVC(G). Clearly the size of a minimum vertex cover of a graph is at least the min-
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Problem Name Previous f(k)/Reference New f(k) in this paper
AGVC 4k [23] 2.3146k

ALMOST 2-SAT 4k [23] 2.3146k

RHORN-BACKDOOR SET DETECTION 4k [23, 44] 2.3146k

KÖNIG VERTEX DELETION 4k [23, 81] 1.5214k

SPLIT VERTEX DELETION 5k [12] 2.3146k

ODD CYCLE TRANSVERSAL 3k [91] 2.3146k

VERTEX COVER PARAM BY OCT 2k (folklore) 1.5214k

VERTEX COVER PARAM BY KVD – 1.5214k

Table 6.1: The table gives the previous f(k) bound in the running time of various prob-
lems and the ones obtained in this paper.

imum value of LPVC for the graph. This allows us to parameterize VERTEX COVER

above the minimum value of LPVC for the input graph. Prior to our study, a similar

parameterization had recently been studied by Cygan et al. [23] in the context of the

MULTIWAY CUT problem, as a consequence of which they obtained an O(4knO(1)) al-

gorithm for VERTEX COVER parameterized above the size of the maximum matching.

In this chapter, we develop a O(2.3146(k−vc∗(G))nO(1)) time branching algorithm for

VERTEX COVER ABOVE LP. In an effort to present the key ideas of our algorithm in

as clear a way as possible, we first present a simpler and slightly slower algorithm in

Section 6.3. This algorithm exhaustively applies a collection of previously known pre-

processing steps. If no further preprocessing is possible the algorithm simply selects an

arbitrary vertex v and recursively tries to find a vertex cover of size at most k by consid-

ering whether v is in the solution or not. While the algorithm is simple, the analysis is

more involved as it is not obvious that the measure k−vc∗(G) actually drops in the recur-

sive calls. In order to prove that the measure does drop we string together several known

results about the linear programming relaxation of VERTEX COVER, such as the clas-

sical Nemhauser-Trotter theorem and properties of “minimum surplus sets”. We find it
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intriguing that, as our analysis shows, combining well-known reduction rules with naive

branching yields fast FPT algorithms for all problems in Figure 10.1. We then show in

Section 6.4 that adding several more involved branching rules to our algorithm yields

an improved running time of O(2.3146(k−vc∗(G))nO(1)). Using this algorithm we obtain

even faster algorithms for the problems in Figure 10.1.

We give a list of problems with their previous best running time and the ones ob-

tained in this paper in Table 6.1. The most notable among them is the new algorithm

for ODD CYCLE TRANSVERSAL, the problem of deleting at most k vertices to obtain

a bipartite graph. The parameterized complexity of ODD CYCLE TRANSVERSAL was

a long standing open problem in the area, and only in 2003 Reed et al. [91] developed

an algorithm for the problem running in time O∗(3k). However, there has been no fur-

ther improvement over this algorithm in the last 9 years; though reinterpretations of the

algorithm have been published [49, 69].

We also find the algorithm for KÖNIG VERTEX DELETION, the problem of deleting

at most k vertices to obtain a König graph very interesting. KÖNIG VERTEX DELETION

is a natural variant of the odd cycle transversal problem. In [81] it was shown that given

a minimum vertex cover one can solve KÖNIG VERTEX DELETION in polynomial time.

In this article we show a relationship between the measure k−vc∗(G) and the minimum

number of vertices needed to delete to obtain a König graph. This relationship together

with a reduction rule for KÖNIG VERTEX DELETION based on the Nemhauser-Trotter

theorem gives an algorithm for the problem with running time O∗(1.5214k).

We also note that using our algorithm, we obtain a polynomial time algorithm for

VERTEX COVER that, given an input (G, k) returns an equivalent instance (G′ = (V ′, E ′), k′)

such that k′ ≤ k and |V (G′)| ≤ 2k − c log k for any fixed constant c. This is known as

a kernel for VERTEX COVER in the literature. We note that this kernel is simpler than
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another kernel with the same size bound [65].

Organization of the chapter. In Section 6.3, we give a simple branching algorithm

and introduce the nature of analysis which will be required for such algorithms. In

Section 6.4, we present our main algorithm using much more involved branching rules.

In Section 10.4, we give the applications of our result to numerous other parameterized

problems.

6.2 Preliminaries

The surplus of an independent set X ⊆ V is defined as surplus(X) = |N(X)| −

|X|. For a set A of independent sets of a graph, surplus(A) = minX∈A surplus(X).

The surplus of a graph G, surplus(G), is defined to be the minimum surplus over all

independent sets in the graph.

By the phrase “an optimum solution to LPVC(G)”, we mean a feasible solution with

x(v) ≥ 0 for all v ∈ V minimizing the objective function w(x) =
∑

u∈V x(u). It is well

known that for any graph G, there exists an optimum solution to LPVC(G), such that

x(u) ∈ {0, 1
2
, 1} for all u ∈ V [83]. Such a feasible optimum solution to LPVC(G) is

called a half integral solution and can be found in polynomial time [83]. In this chapter

we always deal with half integral optimum solutions to LPVC(G). Thus, by default

whenever we refer to an optimum solution to LPVC(G) we will be referring to a half

integral optimum solution to LPVC(G). Furthermore, it is also known that the modified

LP resulting from forcing certain variables to a value in {0, 1
2
, 1} also has a half integral

optimum solution. Let V C(G) be the set of all minimum vertex covers of G and vc(G)

denote the size of a minimum vertex cover of G. Let V C∗(G) be the set of all optimal

solutions (including non half integral optimal solution) to LPVC(G). By vc∗(G) we
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denote the value of an optimum solution to LPVC(G). We define V x
i = {u ∈ V :

x(u) = i} for each i ∈ {0, 1
2
, 1} and define x ≡ i, i ∈ {0, 1

2
, 1}, if x(u) = i for every

u ∈ V . Clearly, vc(G) ≥ vc∗(G) and vc∗(G) ≤ |V |
2

since x ≡ 1
2

is always a feasible

solution to LPVC(G). We also refer to the x ≡ 1
2

solution simply as the all 1
2

solution.

In branching algorithms, we say that a branching step results in a drop of (p1, p2, ..., pl)

where pi, 1 ≤ i ≤ l is an integer, if the measure we use in the analysis drops respectively

by p1, p2, ..., pl in the corresponding branches. We also call the vector (p1, p2, . . . , pl)

the branching vector of the step.

6.3 A Simple Algorithm for VERTEX COVER ABOVE LP

In this section, we give a simpler algorithm for VERTEX COVER ABOVE LP. The algo-

rithm has two phases, a preprocessing phase and a branching phase. We first describe

the preprocessing steps used in the algorithm and then give a simple description of the

algorithm. Finally, we prove its correctness and the bound on the running time of the

algorithm.

6.3.1 Preprocessing

We describe three standard preprocessing rules to simplify the input instance. We first

state the (known) results which allow for their correctness, and then describe the rules.

Lemma 6.3.1. [84, 87] For a graph G, in time O(m
√
n), we can compute an optimal

solution x to LPVC(G) where n is the number of vertices in G and m is the number

of edges. Furthermore, in time O(mn
√
n), we can compute an optimal solution x to

LPVC(G)such that all 1
2

is the unique optimal solution to LPVC(G[V x
1/2]). Furthermore,

surplus(G[V x
1/2]) > 0.
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Lemma 6.3.2. [84] Let G be a graph and x be an optimal solution to LPVC(G). There

is a minimum vertex cover for G which contains all the vertices in V x
1 and none of the

vertices in V x
0 .

Preprocessing Rule 1. Apply Lemma 6.3.1 to compute an optimal solution x to LPVC(G)

such that all 1
2

is the unique optimum solution to LPVC(G[V x
1/2]). Delete the vertices in

V x
0 ∪ V x

1 from the graph after including V x
1 in the vertex cover we develop, and reduce

k by |V x
1 |.

In the discussions in the rest of the chapter, we say that Preprocessing Rule 1 applies (or

is applicable) if all 1
2

is not the unique solution to LPVC(G) and that it doesn’t apply (or

is not applicable) if all 1
2

is the unique solution to LPVC(G).

The soundness/correctness of Preprocessing Rule 1 follows from Lemma 6.3.2. The

time required to check if it is applicable and to apply it is O(mn
√
n). After the appli-

cation of Preprocessing Rule 1, we know that x ≡ 1
2

is the unique optimal solution to

LPVC of the resulting graph and the graph has a surplus of at least 1.

Lemma 6.3.3. [15, 84] Let G(V,E) be a graph, and let S ⊆ V be an independent

subset such that surplus(Y ) ≥ surplus(S) for every set Y ⊆ S. Then there exists a

minimum vertex cover for G that contains either all of S or none of S. In particular, if

S is an independent set with the minimum surplus, then there exists a minimum vertex

cover for G, that contains all of S or none of S.

The following lemma, which handles without branching, the case when the minimum

surplus of the graph is 1, follows from the above lemma.

Lemma 6.3.4. [15, 84] Let G be a graph, and let Z ⊆ V (G) be an independent set

such that surplus(Z) = 1 and for every Y ⊆ Z, surplus(Y ) ≥ surplus(Z). Then,
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1. If the graph induced by N(Z) is not an independent set, then there exists a mini-

mum vertex cover in G that includes all of N(Z) and excludes all of Z.

2. If the graph induced by N(Z) is an independent set, let G′ be the graph obtained

from G by removing Z ∪ N(Z) and adding a vertex z, followed by making z

adjacent to every vertex v ∈ G \ (Z ∪ N(Z)) which was adjacent to a vertex in

N(Z) (also called identifying the vertices of N(Z)).Then, G has a vertex cover

of size at most k if and only if G′ has a vertex cover of size at most k − |Z|.

We now give two preprocessing rules to handle the case when the surplus of the graph

is 1.

Preprocessing Rule 2. If there is a set Z such that surplus(Z) = 1 and N(Z) is not

an independent set, then apply Lemma 6.3.4 to reduce the instance as follows. Include

N(Z) in the vertex cover, delete Z ∪N(Z) from the graph, and decrease k by |N(Z)|.

Preprocessing Rule 3. If there is a set Z such that surplus(Z) = 1 and N(Z) is an

independent set, then apply Lemma 6.3.4 to reduce the instance as follows. Remove Z

from the graph, identify the vertices of N(Z), and decrease k by |Z|.

The correctness of Preprocessing Rules 2 and 3 follows from Lemma 6.3.4. The entire

preprocessing phase of the algorithm is summarized in Figure 6.1. Recall that each

preprocessing rule can be applied only when none of the preceding rules are applicable,

and that Preprocessing Rule 1 is applicable if and only if there is a solution to LPVC(G)

which does not assign 1
2

to every vertex. Hence, when Preprocessing Rule 1 does not

apply, all 1
2

is the unique solution for LPVC(G). We now show that we can test whether

Preprocessing Rules 2 and 3 are applicable on the current instance in polynomial time.
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Lemma 6.3.5. Given an instance (G, k) of VERTEX COVER ABOVE LP on which Pre-

processing Rule 1 does not apply, we can test if Preprocessing Rule 2 applies on this

instance in time O(m2
√
n).

Proof. We first prove the following claim.

Claim 1. The graph G (in the statement of the lemma) contains a set Z such that

surplus(Z) = 1 and N(Z) is not independent if and only if there is an edge (u, v) ∈ E

such that solving LPVC(G) with x(u) = x(v) = 1 results in a solution with value exactly

1
2

greater than the value of the original LPVC(G).

Proof. Suppose there is an edge (u, v) such that w(x′) = w(x) + 1
2

where x is the solu-

tion to the original LPVC(G) and x′ is the solution to LPVC(G) with x′(u) = x′(v) = 1

and let Z = V x′
0 . We claim that the set Z is a set with surplus 1 and that N(Z)

is not independent. Since N(Z) contains the vertices u and v, N(Z) is not an in-

dependent set. Now, since x ≡ 1
2

(Preprocessing Rule 1 does not apply), w(x′) =

w(x)− 1
2
|Z|+ 1

2
|N(Z)| = w(x) + 1

2
. Hence, |N(Z)| − |Z| = surplus(Z) = 1.

Conversely, suppose that there is a set Z such that surplus(Z) = 1 and N(Z)

contains vertices u and v such that (u, v) ∈ E. Let x′ be the assignment which assigns 0

to all vertices in Z, 1 to all vertices in N(Z) and 1
2

to the rest of the vertices. Clearly, x′

is a feasible assignment and w(x′) = |N(Z)|+ 1
2
|V \ (Z∪N(Z))|. Since Preprocessing

Rule 1 does not apply, w(x′)−w(x) = |N(Z)|− 1
2
(|Z|+ |N(Z)|) = 1

2
(|N(Z)|−|Z|) =

1
2
, which proves the converse part of the claim.

Given the above claim, we check if Preprocessing Rule 2 applies by doing the fol-

lowing for every edge (u, v) in the graph. Set x(u) = x(v) = 1 and solve the resulting

LP looking for a solution whose optimum value is exactly 1
2

more than the optimum

value of LPVC(G). The time required to check for applicability and to apply the rule is
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bounded by m times the time to compute an optimum solution to LPVC(G), which is

O(m2
√
n).

Lemma 6.3.6. Given an instance (G, k) of VERTEX COVER ABOVE LP on which Pre-

processing Rules 1 and 2 do not apply, we can test if Preprocessing Rule 3 applies on

this instance in time O(mn
√
n).

Proof. We first prove a claim analogous to that proved in the previous lemma.

Claim 2. The graph G (in the statement of the lemma) contains a set Z such that

surplus(Z) = 1 and N(Z) is independent if and only if there is a vertex u ∈ V such

that solving LPVC(G) with x(u) = 0 results in a solution with value exactly 1
2

greater

than the value of the original LPVC(G).

Proof. Suppose there is a vertex u such that w(x′) = w(x) + 1
2

where x is the solution

to the original LPVC(G) and x′ is the solution to LPVC(G) with x′(u) = 0 and let

Z = V x′
0 . We claim that the set Z is a set with surplus 1 and that N(Z) is independent.

Since x ≡ 1
2

(Preprocessing Rule 1 does not apply), w(x′) = w(x)− 1
2
|Z|+ 1

2
|N(Z)| =

w(x) + 1
2
. Hence, |N(Z)| − |Z| = surplus(Z) = 1. Since Preprocessing Rule 2 does

not apply, it must be the case that N(Z) is independent.

Conversely, suppose that there is a set Z such that surplus(Z) = 1 and N(Z) is

independent. Let x′ be the assignment which assigns 0 to all vertices of Z and 1 to all

vertices of N(Z) and 1
2

to the rest of the vertices. Clearly, x′ is a feasible assignment

and w(x′) = |N(Z)|+ 1
2
|V \ (Z ∪N(Z))|. Since Preprocessing Rule 1 does not apply,

w(x′) − w(x) = |N(Z)| − 1
2
(|Z| + |N(Z)|) = 1

2
(|N(Z)| − |Z|) = 1

2
. This proves the

converse part of the claim with u being any vertex of Z.

Given the above claim, we check if Preprocessing Rule 3 applies by doing the fol-

lowing for every vertex u in the graph. Set x(u) = 0, solve the resulting LP and look for
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The rules are applied in the order in which they are presented, that is, any rule is
applied only when none of the earlier rules are applicable.

Preprocessing rule 1: Apply Lemma 6.3.1 to compute an optimal solution x to
LPVC(G) such that all 1

2 is the unique optimum solution to LPVC(G[V x
1/2]).

Delete the vertices in V x
0 ∪V x

1 from the graph after including V x
1 in the vertex

cover we develop, and reduce k by |V x
1 |.

Preprocessing rule 2:Apply Lemma 6.3.5 to test if there is a set Z such that
surplus(Z) = 1 and N(Z) is not an independent set. If such a set does
exist, then we apply Lemma 6.3.4 to reduce the instance as follows. Include
N(Z) in the vertex cover, delete Z ∪N(Z) from the graph, and decrease k by
|N(Z)|.

Preprocessing rule 3: Apply Lemma 6.3.6 to test if there is a set Z such that
surplus(Z) = 1 and N(Z) is an independent set. If there is such a set Z
then apply Lemma 6.3.4 to reduce the instance as follows. Remove Z from
the graph, identify the vertices of N(Z), and decrease k by |Z|.

Figure 6.1: Preprocessing Steps

a solution whose optimum value exactly 1
2

more than the optimum value of LPV C(G).

The time required to check for applicability and to apply the rule is bounded by n times

the time to compute an optimum solution to LPVC(G), which is O(mn
√
n).

Definition 6.3.7. For a graph G, we denote byR(G) the graph obtained after applying

Preprocessing Rules 1, 2 and 3 exhaustively in this order.

Strictly speakingR(G) is not a well defined function since the reduced graph could

depend on which sets the reduction rules are applied on, and these sets, in turn, depend

on the solution to the LP. To overcome this technicality we let R be a function not only

of the graph G but also of the representation of G in memory. Since our reduction rules

are deterministic (and the LP solver we use as a black box is deterministic as well),

running the reduction rules on (a specific representation of) G will always result in the

same graph, making the function R(G) well defined. Finally, observe that for any G
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the all 1
2

solution is the unique optimum solution to the LPVC(R(G)) and R(G) has a

surplus of at least 2.

6.3.2 Branching

After the preprocessing rules are applied exhaustively, we pick an arbitrary vertex u in

the graph and branch on it. In other words, in one branch, we add u into the vertex cover,

decrease k by 1, and delete u from the graph, and in the other branch, we add N(u) into

the vertex cover, decrease k by |N(u)|, and delete {u} ∪ N(u) from the graph. The

correctness of this algorithm follows from the soundness of the preprocessing rules and

the fact that the branching is exhaustive.

6.3.3 Analysis

In order to analyze the running time of our algorithm, we define a measure µ = µ(G, k) =

k − vc∗(G). We first show that our preprocessing rules do not increase this measure.

Following this, we will prove a lower bound on the decrease in the measure occurring

as a result of the branching, thus allowing us to bound the running time of the algorithm

in terms of the measure µ. For each case, we let (G′, k′) be the instance resulting by

the application of the preprocessing rule or branch, and let x′ be an optimum solution to

LPVC(G′).

1. Consider the application of Preprocessing Rule 1. We know that k′ = k − |V x
1 |.

Since x′ ≡ 1
2

is the unique optimum solution to LPVC(G′), and G′ comprises

precisely the vertices of V x
1/2, the value of the optimum solution to LPVC(G′) is

exactly |V x
1 | less than that of G. Hence, µ(G, k) = µ(G′, k′).

2. We now consider the application of Preprocessing Rule 2 and let V ′ be the set

of vertices in the graph resulting from the application of the rule. We know that
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N(Z) was not independent. In this case, k′ = k − |N(Z)|. We also know that

w(x′) =
∑

u∈V ′ x
′(u) = w(x) − 1

2
(|Z| + |N(Z)|) + 1

2
(|V x′

1 | − |V x′
0 |). Adding

and subtracting 1
2
(|N(Z)|), we get w(x′) = w(x)− |N(Z)|+ 1

2
(|N(Z)| − |Z|) +

1
2
(|V x′

1 | − |V x′
0 |). But, Z ∪ V x′

0 is an independent set in G, and N(Z ∪ V x′
0 ) =

N(Z)∪V x′
1 in G. Since surplus(G) ≥ 1, |N(Z ∪V x′

0 )|− |Z ∪V x′
0 | ≥ 1. Hence,

w(x′) = w(x)− |N(Z)|+ 1
2
(|N(Z ∪ V x′

0 )| − |Z ∪ V x′
0 |) ≥ w(x)− |N(Z)|+ 1

2
.

Thus, µ(G′, k′) ≤ µ(G, k)− 1
2
.

3. We now consider the application of Preprocessing Rule 3. We know that N(Z)

was independent. In this case, k′ = k − |Z|. We claim that w(x′) ≥ w(x)− |Z|.

Suppose that this is not true. Then, it must be the case thatw(x′) ≤ w(x)−|Z|− 1
2
.

We will now consider three cases depending on the value x′(z) where z is the

vertex in G′ resulting from the identification of N(Z).

Case 1: x′(z) = 1. Now consider the following function x′′ : V → {0, 1
2
, 1}. For

every vertex v in G′ \ {z}, retain the value assigned by x′, that is x′′(v) = x′(v).

For every vertex in N(Z), assign 1 and for every vertex in Z, assign 0. Clearly

this is a feasible solution. But now, w(x′′) = w(x′)− 1 + |N(Z)| = w(x′)− 1 +

(|Z| + 1) ≤ w(x) − 1
2
. Hence, we have a feasible solution of value less than the

optimum, which is a contradiction.

Case 2: x′(z) = 0. Now consider the following function x′′ : V → {0, 1
2
, 1}. For

every vertex v in G′ \ {z}, retain the value assigned by x′, that is x′′(v) = x′(v).

For every vertex in Z, assign 1 and for every vertex in N(Z), assign 0. Clearly

this is a feasible solution. But now, w(x′′) = w(x′) + |Z| ≤ w(x)− 1
2
. Hence, we

have a feasible solution of value less than the optimum, which is a contradiction.

Case 3: x′(z) = 1
2
. Now consider the following function x′′ : V → {0, 1

2
, 1}. For

every vertex v in G′ \ {z}, retain the value assigned by x′, that is x′′(v) = x′(v).
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For every vertex inZ∪N(Z), assign 1
2
. Clearly this is a feasible solution. But now,

w(x′′) = w(x′)− 1
2
+ 1

2
(|Z|+ |N(Z)|) = w(x′)− 1

2
+ 1

2
(|Z|+ |Z|+1) ≤ w(x)− 1

2
.

Hence, we have a feasible solution of value less than the optimum, which is a

contradiction.

Hence, w(x′) ≥ w(x)− |Z|, which implies that µ(G′, k′) ≤ µ(G, k).

4. We now consider the branching step.

(a) Consider the case when we pick u in the vertex cover. In this case, k′ = k−1.

We claim that w(x′) ≥ w(x) − 1
2
. Suppose that this is not the case. Then,

it must be the case that w(x′) ≤ w(x)− 1. Consider the following function

x′′ : V → {0, 1
2
, 1}. For every vertex v ∈ V \ {u}, x′′(v) = x′(v) and

x′′(u) = 1. Now, x′′ is clearly a feasible solution for LPVC(G) and has a

value at most that of x. But this contradicts our assumption that x ≡ 1
2

is the

unique optimum solution to LPVC(G). Hence, w(x′) ≥ w(x) − 1
2
, which

implies that µ(G′, k′) ≤ µ(G, k)− 1
2
.

(b) Consider the case when we don’t pick u in the vertex cover. In this case,

k′ = k−|N(u)|. We know thatw(x′) = w(x)− 1
2
(|{u}|+|N(u)|)+ 1

2
(|V x′

1 |−

|V x′
0 |). Adding and subtracting 1

2
(|N(u)|), we get w(x′) = w(x)−|N(u)|−

1
2
(|{u}| − |N(u)|) + 1

2
(|V x′

1 | − |V x′
0 |). But, {u} ∪ V x′

0 is an independent

set in G, and N({u} ∪ V x′
0 ) = N(u) ∪ V x′

1 in G. Since surplus(G) ≥ 2,

|N({u} ∪ V x′
0 )| − |{u} ∪ V x′

0 | ≥ 2. Hence, w(x′) = w(x) − |N(u)| +
1
2
(|N({u} ∪ V x′

0 )| − |{u} ∪ V x′
0 |) ≥ w(x)− |N(u)|+ 1.

Hence, µ(G′, k′) ≤ µ(G, k)− 1.

We have thus shown that the preprocessing rules do not increase the measure µ =

µ(G, k) and the branching step results in a (1
2
, 1) branching vector, resulting in the re-
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currence T (µ) ≤ T (µ− 1
2
) + T (µ− 1) which solves to (2.6181)µ = (2.6181)k−vc

∗(G).

Thus, we get a O∗(2.6181(k−vc∗(G))) algorithm for VERTEX COVER ABOVE LP.

Theorem 6.3.8. VERTEX COVER ABOVE LP can be solved in timeO∗((2.6181)k−vc
∗(G)).

By applying the above theorem iteratively for increasing values of k, we can compute a

minimum vertex cover of G and hence we have the following corollary.

Corollary 6.3.9. There is an algorithm that, given a graphG, runs in timeO∗(2.6181(vc(G)−vc∗(G)))

and computes a minimum vertex cover of G.

6.4 Improved Algorithm for VERTEX COVER ABOVE LP

In this section we give an improved algorithm for VERTEX COVER ABOVE LP using

some more branching steps based on the structure of the neighborhood of the vertex

(set) on which we branch. The goal is to achieve branching vectors better that (1
2
, 1).

6.4.1 Some general claims to measure the drops

First, we capture the drop in the measure in the branching steps, including when we

branch on a larger sized sets. In particular, when we branch on a set S of vertices, in

one branch we set all vertices of S to 1, and in the other, we set all vertices of S to

0. Note, however that such a branching on S may not be exhaustive (as the branching

doesn’t explore the possibility that some vertices of S are set to 0 and some are set to 1)

unless the set S satisfies the premise of Lemma 6.3.3. Let µ = µ(G, k) be the measure

as defined in the previous section.

Lemma 6.4.1. LetG be a graph with surplus(G) = p, and let S be an independent set.

LetHS be the collection of all independent sets ofG that contain S (including S). Then,
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including S in the vertex cover while branching leads to a decrease of min{ |S|
2
, p
2
} in µ;

and the branching excluding S from the vertex cover leads to a drop of surplus(HS)
2

≥ p
2

in µ.

Proof. Let (G′, k′) be the instance resulting from the branching, and let x′ be an opti-

mum solution to LPVC(G′). Consider the case when we pick S in the vertex cover. In

this case, k′ = k−|S|. We know that w(x′) = w(x)− |S|
2

+ 1
2
(|V x′

1 |−|V x′
0 |). If V x′

0 = ∅,

then we know that V x′
1 = ∅, and hence we have that w(x′) = w(x)− |S|

2
. Else, by adding

and subtracting 1
2
(|S|), we get w(x′) = w(x)− |S|+ |S|

2
+ 1

2
(|V x′

1 | − |V x′
0 |). However,

N(V x′
0 ) ⊆ S∪V x′

1 inG. Thus, w(x′) ≥ w(x)−|S|+ 1
2
(|N(V x′

0 )|−|V x′
0 |). We also know

that V x′
0 is an independent set in G, and thus, |N(V x′

0 )| − |V x′
0 | ≥ surplus(G) = p.

Hence, in the first case µ(G′, k′) ≤ µ(G, k) − |S|
2

and in the second case µ(G′, k′) ≤

µ(G, k)− p
2
. Thus, the drop in the measure when S is included in the vertex cover is at

least min{ |S|
2
, p
2
}.

Consider the case when we don’t pick S in the vertex cover. In this case, k′ =

k − |N(S)|. We know that w(x′) = w(x) − 1
2
(|S| + |N(S)|) + 1

2
(|V x′

1 | − |V x′
0 |).

Adding and subtracting 1
2
(|N(S)|), we get w(x′) = w(x) − |N(S)| + 1

2
(|N(S)| −

|S|) + 1
2
(|V x′

1 | − |V x′
0 |). But, S ∪ V x′

0 is an independent set in G, and N(S ∪ V x′
0 ) =

N(S) ∪ V x′
1 in G. Thus, |N(S ∪ V x′

0 )| − |S ∪ V x′
0 | ≥ surplus(HS). Hence, w(x′) =

w(x)− |N(S)|+ 1
2
(|N(S ∪ V x′

0 )| − |S ∪ V x′
0 |) ≥ w(x)− |N(S)|+ surplus(HS)

2
. Hence,

µ(G′, k′) ≤ µ(G, k)− surplus(HS)
2

.

Thus, after the preprocessing steps (when the surplus of the graph is at least 2), suppose

we manage to find (in polynomial time) a set S ⊆ V such that

• surplus(G) = surplus(S) = surplus(HS),

• |S| ≥ 2, and
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• that the branching that sets all of S to 0 or all of S to 1 is exhaustive.

Then, Lemma 6.4.1 guarantees that branching on this set right away leads to a (1, 1)

branching vector. We now explore the cases in which such sets do exist. Note that the

first condition above implies the third from the Lemma 6.3.3. First, we show that if there

exists a set S such that |S| ≥ 2 and surplus (G) = surplus(S), then we can find such a

set in polynomial time.

Lemma 6.4.2. Let G be a graph on which Preprocessing Rule 1 does not apply (i.e. all

1
2

is the unique solution to LPVC(G)). If G has an independent set S ′ such that |S ′| ≥ 2

and surplus(S ′) = surplus(G), then in time O(mn2
√
n) we can find an independent

set S such that |S| ≥ 2 and surplus(S) = surplus(G).

Proof. By our assumption we know that G has an independent set S ′ such that |S ′| ≥

2 and surplus(S ′) = surplus(G). Let u, v ∈ S ′. Let H be the collection of all

independent sets of G containing u and v. Let x be an optimal solution to LPVC(G)

obtained after setting x(u) = 0 and x(v) = 0. Take S = V x
0 , clearly, we have that

{u, v} ⊆ V x
0 . We now have the following claim.

Claim 3. surplus(S) = surplus(G).

Proof. We know that the objective value of LPVC(G) after setting x(u) = x(v) = 0,

w(x) = |V |/2 + (|N(S)| − |S|)/2 = |V |/2 + surplus(S)/2, as all 1
2

is the unique

solution to LPVC(G).

Another solution x′, for LPVC(G) that sets u and v to 0, is obtained by setting

x′(a) = 0 for every a ∈ S ′, x′(a) = 1 for every a ∈ N(S ′) and by setting all other

variables to 1/2. It is easy to see that such a solution is a feasible solution of the required

kind and w(x′) = |V |/2 + (|N(S ′)| − |S ′|)/2 = |V |/2 + surplus(S ′)/2. However, as

x is also an optimum solution, w(x) = w(x′), and hence we have that surplus(S) ≤
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surplus(S′). But as S ′ is a set of minimum surplus in G, we have that surplus(S) =

surplus(S ′) = surplus(G) proving the claim.

Thus, we can find a such a set S in polynomial time by solving LPVC(G) after setting

x(u) = 0 and x(v) = 0 for every pair of vertices u, v such that (u, v) /∈ E and picking

that set V x
0 which has the minimum surplus among all x′s among all pairs u, v. Since

any V x
0 contains at least 2 vertices, we have that |S| ≥ 2. The bound on the time required

to find this set follows from Lemma 6.3.1.

6.4.2 (1,1) drops in the measure

Lemma 6.4.1 and Lemma 6.4.2 together imply that, if there is a minimum surplus set of

size at least 2 in the graph, then we can find and branch on that set to get a (1, 1) drop in

the measure.

Suppose that there is no minimum surplus set of size more than 1. Note that, by

Lemma 6.4.1, when surplus(G) ≥ 2, we get a drop of (surplus(G))/2 ≥ 1 in the

branch where we exclude a vertex or a set. Hence, if we find a vertex (set) to exclude in

either branch of a two way branching, we get a (1, 1) branching vector. We now identify

another such case.

Lemma 6.4.3. Let v be a vertex such that G[N(v) \ {u}] is a clique for some neighbor

u of v. Then, there exists a minimum vertex cover that excludes either v or u.

Proof. Towards the proof we first show the following well known observation.

Claim 4. Let G be a graph and v be a vertex. Then there exists a minimum vertex cover

for G containing N(v) or at most |N(v)| − 2 vertices from N(v).

Proof. If a minimum vertex cover of G, say C, contains exactly |N(v)| − 1 vertices

of N(v), then we know that C must contain v. Observe that C ′ = C \ {v} ∪ N(v)
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is also a vertex cover of G of the same size as C. However, in this case, we have a

minimum vertex cover containing N(v). Thus, there exists a minimum vertex cover of

G containing N(v) or at most |N(v)| − 2 vertices from N(v).

Let v be a vertex such that G[N(v) \ {u}] is a clique. Consider a minimum vertex

cover and suppose that v is in the vertex cover. Clearly, N(v) is not contained in this

vertex cover. SinceG[N(v)\{u}] is a clique this vertex cover contains at least |N(v)|−2

vertices from G[N(v) \ {u}]. Hence, by Claim 4, the vertex u is not part of the vertex

cover. This completes the proof.

Next, in order to identify another case where we might obtain a (1, 1) branching vector,

we first observe and capture the fact that when Preprocessing Rule 2 is applied, the

measure k − vc∗(G) actually drops by at least 1
2

(as proved in item 2 of the analysis of

the simple algorithm in Section 6.3.3).

Lemma 6.4.4. Let (G, k) be the input instance and (G′, k′) be the instance obtained

after applying Preprocessing Rule 2. Then, µ(G′, k′) ≤ µ(G, k)− 1
2
.

Thus, after we branch on an arbitrary vertex, if we are able to apply Preprocessing Rule 2

in the branch where we include that vertex, we get a (1, 1) drop. This is because, in the

branch where we exclude the vertex, we get a drop of 1 by Lemma 6.4.1, and in the

branch where we include the vertex, we get a drop of 1
2

by Lemma 6.4.1, which is then

followed by a drop of 1
2

due to Lemma 6.4.4.

Thus, after preprocessing, the algorithm performs the following steps (see Figure 6.2)

each of which results in a (1, 1) drop as argued before. Note that Preprocessing Rule 1

cannot apply in the graph G \ {v} since the surplus of G can drop by at most 1 by delet-

ing a vertex. Hence, checking if rule B3 applies is equivalent to checking if, for some

vertex v, Preprocessing Rule 2 applies in the graphG\{v}. Recall that, by Lemma 6.3.5
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we can check this in polynomial time and hence we can check if B3 applies on the graph

in polynomial time.

Branching Rules.
These branching rules are applied in this order.

B 1. Apply Lemma 6.4.2 to test if there is a set S such that surplus(S)=surplus(G)
and |S| ≥ 2. If so, then branch on S.

B 2. Let v be a vertex such that G[N(v)\{u}] is a clique for some vertex u in N(v).
Then in one branch add N(v) into the vertex cover, decrease k by |N(v)|, and delete
N [v] from the graph. In the other branch add N(u) into the vertex cover, decrease k
by |N(u)|, and delete N [u] from the graph.

B 3. Apply Lemma 6.3.5 to test if there is a vertex v such that Preprocessing Rule 2
applies in G \ {v}. If there is such a vertex, then branch on v.

Figure 6.2: Outline of the branching steps yielding (1, 1) drop.

6.4.3 A Branching step yielding (1/2, 3/2) drop

Now, suppose none of the preprocessing and branching rules presented thus far apply.

Let v be a vertex with degree at least 4. Let S = {v} and recall thatHS is the collection

of all independent sets containing S, and surplus (HS) is the surplus of an independent

set with minimum surplus inHS . We claim that surplus(HS) ≥ 3.

As the preprocessing rules don’t apply, clearly surplus(HS) ≥ surplus(G) ≥

2. If surplus(HS) = 2, then the set that realizes surplus(HS) is not S (as the

surplus(S) = degree(v) − 1 = 3), but a superset of S, which is of cardinality at

least 2. Then, the Branching Rule B1 would have applied which is a contradiction. This

proves the claim. Hence, by Lemma 6.4.1, we get a drop of at least 3/2 in the branch that

excludes the vertex v resulting in a (1/2, 3/2) drop. This branching step is illustrated in

Figure 6.3.
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B 4. If there exists a vertex v of degree at least 4 then branch on v.

Figure 6.3: The branching step yielding a (1/2, 3/2) drop.

Figure 6.4: Illustrations of the branches of rules (a) B5 and (b) B6

6.4.4 A Branching step yielding (1, 3/2, 3/2) drop

Next, we observe that when branching on a vertex, if in the branch that includes the ver-

tex in the vertex cover (which guarantees a drop of 1/2), any of the Branching Rules B1

or B2 or B3 applies, then combining the subsequent branching with this branch of the

current branching step results in a net drop of (1, 3/2, 3/2) (which is (1, 1/2+1, 1/2+1))

(see Figure 6.10 (a)). Thus, we add the following branching rule to the algorithm (Fig-

ure 6.5).

B 5. Let v be a vertex. If B1 applies in R(G \ {v}) or there exists a vertex w in

R(G \ {v}) on which either B2 or B3 applies then branch on v.

Figure 6.5: The branching step yielding a (1, 3/2, 3/2) drop.
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6.4.5 The Final branching step

Finally, if the preprocessing and branching rules presented thus far do not apply, then

note that we are left with a 3-regular graph. In this case, we simply pick a vertex v

and branch. However, we execute the branching step carefully in order to simplify the

analysis of the drop. More precisely, we execute the following step at the end.

B 6. Pick an arbitrary degree 3 vertex v in G and let x, y and z be the neighbors of

v. Then in one branch add v into the vertex cover, decrease k by 1, and delete v from

the graph. The other branch that excludes v from the vertex cover, is performed as

follows. Delete x from the graph, decrease k by 1, and obtain R(G \ {x}). During

the process of obtainingR(G \ {x}), Preprocessing Rule 3 would have been applied

on vertices y and z to obtain a ‘merged’ vertex vyz (see proof of correctness of this

rule). Now delete vyz from the graphR(G \ {x}), and decrease k by 1.

Figure 6.6: Outline of the last step.

6.4.6 Complete Algorithm and Correctness

A detailed outline of the algorithm is given in Figure 6.7. Note that we have already

argued the correctness and analyzed the drops of all steps except the last step, B6.

The correctness of this branching rule will follow from the fact that R(G \ {x}) is

obtained by applying Preprocessing Rule 3 alone and that too only on the neighbors

of x, that is, on the degree 2 vertices of G \ {x} (Lemma 6.4.10). Lemma 6.4.15 (to

appear later) shows the correctness of deleting vyz from the graph R(G \ {x}) without

branching. Thus, the correctness of this algorithm follows from the soundness of the

preprocessing rules and the fact that the branching is exhaustive.

The running time will be dominated by the way B6 and the subsequent branching
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Preprocessing Step. Apply Preprocessing Rules 1, 2 and 3 in this order exhaustively
on G.

Connected Components. Apply the algorithm on connected components of G sep-
arately. Furthermore, if a connected component has size at most 10, then solve
the problem optimally in O(1) time.

Branching Rules.
These branching rules are applied in this order.

B1 If there is a set S such that surplus(S)=surplus(G) and |S| ≥ 2, then branch on
S.

B2 Let v be a vertex such that G[N(v) \ {u}] is a clique for some vertex u in N(v).
Then in one branch add N(v) into the vertex cover, decrease k by |N(v)|, and delete
N [v] from the graph. In the other branch add N(u) into the vertex cover, decrease k
by |N(u)|, and delete N [u] from the graph.

B3 Let v be a vertex. If Preprocessing Rule 2 can be applied to obtain R(G \ {v})
from G \ {v}, then branch on v.

B4 If there exists a vertex v of degree at least 4 then branch on v.

B5 Let v be a vertex. If B1 applies in R(G \ {v}) or if there exists a vertex w in
R(G \ {v}) on which B2 or B3 applies then branch on v.

B6 Pick an arbitrary degree 3 vertex v in G and let x, y and z be the neighbors of
v. Then in one branch add v into the vertex cover, decrease k by 1, and delete v
from the graph. The other branch, the one that excludes v from the vertex cover, is
performed as follows. Delete x from the graph, decrease k by 1, and obtain R(G \
{x}). Now, delete vyz from the graph R(G \ {x}), the vertex that has been created
by the application of Preprocessing Rule 3 on v while obtaining R(G \ {x}) and
decrease k by 1.

Figure 6.7: Outline of the Complete algorithm.

apply. We will see that B6 is our most expensive branching rule. In fact, this step

dominates the running time of the algorithm of O∗(2.3146µ(G,k)) due to a branching

vector of (3/2, 3/2, 5/2, 5/2, 2). We will argue that when we apply B6 on a vertex, say

v, then on either side of the branch we will be able to branch using rules B1, or B2, or
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Rule B1 B2 B3 B4 B5 B6

Branching Vector (1,1) (1,1) (1,1) (1
2
, 3
2
) (3

2
, 3
2
, 1) (3

2
, 3
2
, 5
2
, 5
2
, 2)

Running time 2µ 2µ 2µ 2.1479µ 2.3146µ 2.3146µ

Figure 6.8: A table giving the decrease in the measure due to each branching rule.

B3 or B4. More precisely, we show that in the branch where we include v in the vertex

cover,

• there is a vertex of degree 4 in R(G \ {v}). Thus, B4 will apply on the graph

R(G \ {v}) (if any of the earlier branching rules applied in this graph, then rule

B5 would have applied on G).

• R(G \ {v}) has a degree 4 vertex w such that there is a vertex of degree 4 in the

graph R(R(G \ {v}) \ {w}) and thus one of the Branching Rules B1, B2, B3 or

B4 applies on the graphR(R(G \ {v}) \ {w}).

Similarly, in the branch where we exclude the vertex v from the solution (and add the

vertices x and vyz into the vertex cover), we will show that a degree 4 vertex remains in

the reduced graph. This yields the claimed branching vector (see Figure 6.4.6). The rest

of the section is geared towards showing this.

We start with the following definition.

Definition 6.4.5. We say that a graph G is irreducible if Preprocessing Rules 1, 2 and 3

and the Branching Rules B1, B2, B3, B4 and B5 do not apply on G.

Observe that when we apply B6, the current graph is 3-regular. Thus, after we delete a

vertex v from the graph G and apply Preprocessing Rule 3 we will get a degree 4 vertex.

Our goal is to identify conditions that ensure that the degree 4 vertices we obtain by
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applying Preprocessing Rule 3 survive in the graphR(G\{v}). We prove the existence

of degree 4 vertices in subsequent branches after applying B6 as follows.

• We do a closer study of the way Preprocessing Rules 1, 2 and 3 apply on G \ {v}

if Preprocessing Rules 1, 2 and 3 and the Branching Rules B1, B2 and B3 do not

apply on G. Based on our observations, we prove some structural properties of

the graphR(G \ {v}), This is achieved by Lemma 6.4.10.

• Next, we show that Lemma 6.4.10, along with the fact that the graph is irre-

ducible implies a lower bound of 7 on the length of the shortest cycle in the graph

(Lemma 6.4.13). This lemma allows us to argue that when the preprocessing rules

are applied, their effect is local.

• Finally, Lemmas 6.4.10 and 6.4.13 together ensure the presence of the required

number of degree 4 vertices in the subsequent branching (Lemma 6.4.14).

Main Structural Lemmas: Lemmas 6.4.10 and 6.4.13

We start with some simple well known observations that we use repeatedly in this sec-

tion. These observations follow from results in [84]. We give proofs for completeness.

Lemma 6.4.6. Let G be an undirected graph, then the following are equivalent.

(1) Preprocessing Rule 1 applies (i.e. All 1
2

is not the unique solution to the LPVC(G).)

(2) There exists an independent set I of G such that surplus(I) ≤ 0.

(3) There exists an optimal solution x to LPVC(G) that assigns 0 to some vertex.

Proof. (1) =⇒ (3): As we know that the optimum solution is half-integral, there exists

an optimum solution that assigns 0 or 1 to some vertex. Suppose no vertex is assigned

0. Then, for any vertex which is assigned 1, its value can be reduced to 1
2

maintaining
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feasibility (as all its neighbors have been assigned value ≥ 1
2
) which is a contradiction

to the optimality of the given solution.

(3) =⇒ (2): Let I = V x
0 , and suppose that surplus(I) > 0. Then consider the

solution x′ that assigns 1/2 to vertices in I ∪N(I), retaining the value of x for the other

vertices. Then x′ is a feasible solution whose objective value w(x′) drops from w(x) by

(|N(I)| − |I|)/2 = surplus(I)/2 > 0 which is a contradiction to the optimality of x.

(2) =⇒ (1): Setting all vertices in I to 0, all vertices in N(I) to 1 and setting the

remaining vertices to 1
2

gives a feasible solution whose objective value is at most |V |/2,

and hence all 1
2

is not the unique solution to LPVC(G).

Lemma 6.4.7. Let G be an undirected graph, then the following are equivalent.

(1) Preprocessing Rule 1 or 2 or 3 applies.

(2) There exists an independent set I such that surplus(I) ≤ 1.

(3) There exists a vertex v such that an optimal solution x to LPVC(G \ {v}) assigns 0

to some vertex.

Proof. The fact that (1) and (2) are equivalent follows from the definition of the prepro-

cessing rules and Lemma 6.4.6.

(3) =⇒ (2). By Lemma 6.4.6, there exists an independent set I in G \ {v} whose

surplus is at most 0. The same set will have surplus at most 1 in G.

(2) =⇒ (3). Let v ∈ N(I). Then I is an independent set in G \ {v} with surplus at

most 0, and hence by Lemma 6.4.6, there exists an optimal solution to LPVC(G \ {v})

that assigns 0 to some vertex.

We now prove an auxiliary lemma about the application of Preprocessing Rule 3 which

will be useful in simplifying later proofs.
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Lemma 6.4.8. Let G be a graph and GR be the graph obtained from G by applying

Preprocessing Rule 3 on an independent set Z. Let z denote the newly added vertex

corresponding to Z in GR.

1. If GR has an independent set I such that surplus(I) = p, then G also has an

independent set I ′ such that surplus(I ′) = p and |I ′| ≥ |I|.

2. Furthermore, if z ∈ I ∪N(I) then |I ′| > |I|.

Proof. Let Z denote the minimum surplus independent set on which Preprocessing

Rule 3 has been applied and z denote the newly added vertex. Observe that since

Preprocessing Rule 3 applies on Z, we have that Z and N(Z) are independent sets,

|N(Z)| = |Z|+ 1 and |N(Z)| ≥ 2.

Let I be an independent set of GR such that surplus(I) = p.

• If both I and N(I) do not contain z then we have that G has an independent set I

such that surplus(I) = p.

• Suppose z ∈ I . Then consider the following set: I ′ := I\{z}∪N(Z). Notice that

z represents N(Z) and thus I do not have any neighbors of N(Z). This implies

that I ′ is an independent set in G. Now we will show that surplus(I ′) = p. We

know that |N(Z)| = |Z|+ 1 and N(I ′) = N(I) ∪ Z. Thus,

|N(I ′)| − |I ′| = (|N(I)|+ |Z|)− |I ′|

= (|N(I)|+ |Z|)− (|I| − 1 + |N(Z)|)

= (|N(I)|+ |Z|)− (|I|+ |Z|)

= |N(I)| − |I| = surplus(I) = p.
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• Suppose z ∈ N(I). Then consider the following set: I ′ := I ∪ Z. Notice that z

represents N(Z) and since z /∈ I we have that I do not have any neighbors of Z.

This implies that I ′ is an independent set in G. We show that surplus(I ′) = p.

We know that |N(Z)| = |Z|+ 1. Thus,

|N(I ′)| − |I ′| = (|N(I)| − 1 + |N(Z)|)− |I ′|

= (|N(I)| − 1 + |N(Z)|)− (|I|+ |Z|)

= (|N(I)|+ |Z|)− (|I|+ |Z|)

= |N(I)| − |I| = surplus(I) = p.

From the construction of I ′, it is clear that |I ′| ≥ |I| and if z ∈ (I∪N(I)) then |I ′| > |I|.

This completes the proof.

We now give some definitions that will be useful in formulating the statement of the

main structural lemma.

Definition 6.4.9. Let G be a graph and P = P1, P2, · · · , P` be a sequence of exhaustive

applications of Preprocessing Rules 1, 2 and 3 applied in this order on G to obtain G′.

Let P3 = Pa, Pb, · · · , Pt be the subsequence of P restricted to Preprocessing Rule 3.

Furthermore let Zj , j ∈ {a, . . . , t} denote the minimum surplus independent set corre-

sponding to Pt on which the Preprocessing Rule 3 has been applied and zj denote the

newly added vertex (See Lemma 6.3.4). Let Z∗ = {zj | j ∈ {a, . . . , t}} be the set of

these newly added vertices.

• We say that an application of Preprocessing Rule 3 is trivial if the minimum sur-

plus independent set Zj on which Pj is applied has size 1, that is, |Zj| = 1.
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• We say that all applications of Preprocessing Rule 3 are independent if for all

j ∈ {a, . . . , t}, N [Zj] ∩ Z∗ = ∅.

Essentially, independent applications of Preprocessing Rule 3 mean that the set on which

the rule is applied, as well as all its neighbors are vertices in the original graph.

Next, we state and prove one of the main structural lemmas of this section.

Lemma 6.4.10. Let G = (V,E) be a graph on which Preprocessing Rules 1, 2 and 3

and the Branching Rules B1, B2 and B3 do not apply. Then for any vertex v ∈ V ,

1. Preprocessing Rules 1 and 2 have not been applied while obtaining R(G \ {v})

from G \ {v};

2. and all applications of the Preprocessing Rule 3 while obtainingR(G\{v}) from

G \ {v} are independent and trivial.

Proof. Fix a vertex v. Let G0 = G \ {v}, G1, . . . , Gt = R(G \ {v}) be a sequence of

graphs obtained by applying Preprocessing Rules 1, 2 and 3 in this order to obtain the

reduced graphR(G \ {v}).

We first observe that Preprocessing Rule 2 never applies in obtaining R(G \ {v})

from G\{v} since otherwise, B3 would have applied on G. Next, we show that Prepro-

cessing Rule 1 does not apply. Let q be the least integer such that Preprocessing Rule 1

applies on Gq and it does not apply to any graph Gq′ , q′ < q. Suppose that q ≥ 1. Then,

only Preprocessing Rule 3 has been applied on G0, . . . , Gq−1. This implies that Gq has

an independent set Iq such that surplus(Iq) ≤ 0. Then, by Lemma 6.4.8, Gq−1 also has

an independent set I ′q such that surplus(I ′q) ≤ 0 and thus by Lemma 6.4.6 Preprocess-

ing Rule 1 applies to Gq−1. This contradicts the assumption that on Gq−1 Preprocessing

Rule 1 does not apply. Thus, we conclude that q must be zero. So, G \ {v} has an

independent set I0 such that surplus(I0) ≤ 0 in G \ {v} and thus I0 is an independent
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set in G such that surplus(I0) ≤ 1 in G. By Lemma 6.4.7 this implies that either of

Preprocessing Rules 1, 2 or 3 is applicable onG, a contradiction to the given assumption.

Now we show the second part of the lemma. By the first part we know that the Gi’s

have been obtained by applications of Preprocessing Rule 3 alone. Let Zi, 0 ≤ i ≤ t−1

be the sets in Gi on which Preprocessing Rule 3 has been applied. Let the newly added

vertex corresponding to N(Zi) in this process be z′i. We now make the following claim.

Claim 5. For any i ≥ 0, ifGi has an independent set Ii such that surplus(Ii) = 1, then

G has an independent set I such that |I| ≥ |Ii| and surplus(I) = 2. Furthermore, if

(Ii ∪N(Ii)) ∩ {z1, . . . , zi−1} 6= φ, then |I| > |Ii|.

Proof. We prove the claim by induction on the length of the sequence of graphs. For

the base case consider q = 0. Since Preprocessing Rules 1, 2, and 3 do not apply on

G, we have that surplus(G) ≥ 2. Since I0 is an independent set in G \ {v} we have

that I0 is an independent set in G also. Furthermore since surplus(I0) = 1 in G \ {v},

we have that surplus(I0) = 2 in G, as surplus(G) ≥ 2. This implies that G has an

independent set I0 with surplus(I0) = 2 = surplus(G). Furthermore, since G0 does

not have any newly introduced vertices, the last assertion is vacuously true. Now let

q ≥ 1. Suppose that Gq has a set |Iq| and surplus(Iq) = 1. Thus, by Lemma 6.4.8,

Gq−1 also has an independent set I ′q such that |I ′q| ≥ |Iq| and surplus(I ′q) = 1. Now

by the induction hypothesis, G has an independent set I such that |I| ≥ |I ′q| ≥ |Iq| and

surplus(I) = 2 = surplus(G).

Next we consider the case when (Iq ∪ N(Iq)) ∩ {z′1, . . . , z′q−1} 6= ∅. If z′q−1 /∈

Iq ∪N(Iq) then we have that Iq is an independent set in Gq−1 such that (Iq ∪N(Iq)) ∩

{z′1, . . . , z′q−2} 6= ∅. Thus, by the induction hypothesis, we have that G has an in-

dependent set I such that |I| > |Iq| and surplus(I) = 2 = surplus(G). On the

other hand, if z′q−1 ∈ Iq ∪ N(Iq) then by Lemma 6.4.8, we know that Gq−1 has an
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independent set I ′q such that |I ′q| > |Iq| and surplus(I ′q) = 1. Now by induction hy-

pothesis we know that G has an independent set I such that |I| ≥ |I ′q| > |Iq| and

surplus(I) = 2 = surplus(G). This concludes the proof of the claim.

We first show that all the applications of Preprocessing Rule 3 are trivial. Claim 5

implies that if we have a non-trivial application of Preprocessing Rule 3 then it implies

that G has an independent set I such that |I| ≥ 2 and surplus(I) = 2 = surplus(G).

Then, B1 would apply on G, a contradiction.

Finally, we show that all the applications of Preprocessing Rule 3 are independent.

Let q be the least integer such that the application of Preprocessing Rule 3 on Gq is

not independent. That is, the application of Preprocessing Rule 3 on Gq′ , q′ < q, is

trivial and independent. Observe that q ≥ 1. We already know that every application of

Preprocessing Rule 3 is trivial. This implies that the set Zq contains a single vertex. Let

Zq = {zq}. Since the application of Preprocessing Rule 3 on Zq is not independent we

have that (Zq ∪ N(Zq)) ∩ {z′1, · · · , z′q−1} 6= ∅. We also know that surplus(Zq) = 1

and thus by Claim 5 we have that G has an independent set I such that |I| ≥ 2 >

|Zq| and surplus(I) = 2 = surplus(G). This implies that B1 would apply on G, a

contradiction. Hence, we conclude that all the applications of Preprocessing Rule 3 are

independent. This proves the lemma.

Let g(G) denote the girth of the graph, that is, the length of the smallest cycle in G. Our

next goal of this section is to obtain a lower bound on the girth of an irreducible graph.

Towards this, we first introduce the notion of an untouched vertex.

Definition 6.4.11. We say that a vertex v is untouched by an application of Preprocess-

ing Rule 2 or Preprocessing Rule 3, if {v} ∩ (Z ∪ N(Z)) = ∅, where Z is the set on

which the rule is applied.
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We now prove an auxiliary lemma regarding the application of the preprocessing rules

on graphs of a certain girth and following that, we will prove a lower bound on the girth

of irreducible graphs.

Lemma 6.4.12. Let G be a graph on which Preprocessing Rules 1, 2 and 3 and the

Branching Rules B1, B2, B3 do not apply and suppose that g(G) ≥ 5. Then for any

vertex v ∈ V , any vertex x /∈ N2[v] is untouched by the preprocessing rules applied to

obtain the graphR(G \ {v}) from G \ {v} and has the same degree as it does in G.

Proof. Since the preprocessing rules do not apply in G, the minimum degree of G is at

least 3 and since the graph G does not have cycles of length 3 or 4, for any vertex v, the

neighbors of v are independent and there are no edges between vertices in the first and

second neighborhood of v.

We know by Lemma 6.4.10 that only Preprocessing Rule 3 applies on the graph

G \ {v} and it applies only in a trivial and independent way. Let U = {u1, . . . , ut}

be the degree 3 neighbors of v in G and let D represent the set of the remaining (high

degree) neighbors of v. Let P1, . . . , Pl be the sequence of applications of Preprocessing

Rule 3 on the graph G \ {v}, let Zi be the minimum surplus set corresponding to the

application of Pi and let zi be the new vertex created during the application of Pi.

We prove by induction on i, that

• the application Pi corresponds to a vertex uj ∈ U ,

• any vertex x /∈ N2[v] \D is untouched by this application, and

• after the application of Pi, the degree of x /∈ N2[v] in the resulting graph is the

same as that in G.

In the base case, i = 1. Clearly, the only vertices of degree 2 in the graph G \ {v}

are the degree 3 neighbors of v. Hence, the application P1 corresponds to some uj ∈ U .
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Since the graph G has girth at least 5, no vertex in D can lie in the set {uj} ∪ N(uj)

and hence must be untouched by the application of P1. Since uj is a neighbor of v,

it is clear that the application of P1 leaves any vertex disjoint from N2[v] untouched.

Now, suppose that after the application of P1, a vertex w disjoint from N2[v] \ D has

lost a degree. Then, it must be the case that the application of P1 identified two of w’s

neighbors, say w1 and w2 as the vertex z1. But since P1 is applied on the vertex uj , this

implies the existence of a 4 cycle uj, w1, w, w2 in G, which is a contradiction.

We assume as the induction hypothesis that the claim holds for all i′ such that 1 ≤

i′ < i for some i > 1. Now, consider the application of Pi. By Lemma 6.4.10, this

application cannot be on any of the vertices created by the application of Pl (l < i),

and by the induction hypothesis, after the application of Pi−1, any vertex disjoint from

N2[v] \D remains untouched and retains the degree (which is ≥ 3) it had in the original

graph. Hence, the application of Pi must occur on some vertex uj ∈ U . Now, suppose

that a vertex w disjoint from N2[v] \D has lost a degree. Then, it must be the case that

Pi identified two of w’s neighbors say w1 and w2 as the vertex zi. Since Pi is applied

on the vertex uj , this implies the existence of a 4 cycle uj, w1, w, w2 in G, which is

a contradiction. Finally, after the application of Pi, since no vertex outside N2[v] \ D

has ever lost degree and they all had degree at least 3 to begin with, we cannot apply

Preprocessing Rule 3 any further. This completes the proof of the claim.

Hence, after applying Preprocessing Rule 3 exhaustively on G \ {v}, any vertex

disjoint from N2[v] is untouched and has the same degree as in the graph G. This

completes the proof of the lemma.

Recall that the graph is irreducible if none of the preprocessing rules or Branching Rules

B1 through B5 apply, i.e: the algorithm has reached B6.
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Figure 6.9: Cases of Lemma 6.4.13 when there is a 5 cycle or a 6 cycle in the graph

Lemma 6.4.13. Let G be a connected 3-regular irreducible graph with at least 11 ver-

tices. Then, g(G) ≥ 7.

Proof. 1. Suppose G contains a triangle v1, v2, v3. Let v4 be the remaining neighbor

of v1. Now, G[N(v1) \ {v4}] is a clique, which implies that Branching Rule B2

applies and hence contradicts the irreducibilty of G. Hence, g(G) ≥ 4.

2. Suppose G contains a cycle v1, v2, v3, v4 of length 4. Since G does not contain

triangles, it must be the case that v1 and v3 are independent. Recall that G has

minimum surplus 2, and hence surplus of the set {v1, v3} is at least 2. Since v2

and v4 account for two neighbors of both v1 and v3, the neighborhood of {v1, v3}

can contain at most 2 more vertices (G is 3 regular). Since the minimum surplus

of G is 2, |N({v1, v3})| = 4 and hence {v1, v3} is a minimum surplus set of

size 2, which implies that Branching Rule B1 applies and hence contradicts the

irreducibility of G. Hence, g(G) ≥ 5.
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3. Suppose that G contains a 5 cycle v1, . . . , v5. Since g(G) ≥ 5, this cycle does not

contain chords. Let v′i denote the remaining neighbor of the vertex vi in the graph

G. Since there are no triangles or 4 cycles, v′i 6= v′j for any i 6= j, and for any i and

j such that |i− j| = 1, v′i and v′j are independent. Now, we consider the following

2 cases.

Case 1: Suppose that for every i, j such that |i − j| 6= 1, v′i and v′j are adjacent.

Then, since G is a connected 3-regular graph, G has size 10, which is a contradic-

tion.

Case 2: Suppose that for some i, j such that |i − j| 6= 1, v′i and v′j are indepen-

dent (see Figure 6.9). Assume without loss of generality that i = 1 and j = 3.

Consider the vertex v′1 and let x and y be the remaining 2 neighbors of v′1 (the first

neighbor being v1). Note that x or y cannot be incident to v3, since otherwise x

or y will coincide with v′3. Hence, v3 is disjoint from N2[v
′
1]. By Lemma 6.4.10

and Lemma 6.4.12, only Preprocessing Rule 3 applies and the applications are

only on the vertices v1, x and y and leaves v3 untouched and the degree of vertex

v3 unchanged. Now, let v̂1 be the vertex which is created as a result of applying

Preprocessing Rule 3 on v1. Let v̂4 be the vertex created when v4 is identified

with another vertex during some application of Preprocessing Rule 3. If v4 is un-

touched, then we let v̂4 = v4. Similarly, let v̂′3 be the vertex created when v′3 is

identified with another vertex during some application of Preprocessing Rule 3. If

v′3 is untouched, then we let v̂′3 = v′3. Since v3 is untouched and its degree remains

3 in the graphR(G\{v}), the neighborhood of v3 in this graph can be covered by

a 2 clique v̂1, v̂4 and a vertex v̂′3, which implies that Branching Rule B2 applies in

this graph, implying that Branching Rule B5 applies in the graph G, contradicting

the irreducibility of G. Hence, g(G) ≥ 6.
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4. Suppose that G contains a 6 cycle v1, . . . , v6. Since g(G) ≥ 6, this cycle does

not contain chords. Let v′i denote the remaining neighbor of each vertex vi in the

graph G. Let x and y denote the remaining neighbors of v′1 (see Figure 6.9). Note

that both v3 and v5 are disjoint from N2[v
′
1] (if this were not the case, then we

would have cycles of length ≤ 5). Hence, by Lemma 6.4.10 and Lemma 6.4.12,

we know that only Preprocessing Rule 3 applies and the applications are only on

the vertices v1, x and y, vertices v3 and v5 are untouched, and the degree of v3 and

v5 in the graphR(G \ {v′1}) is 3. Let v̂1 be the vertex which is created as a result

of applying Preprocessing Rule 3 on v1. Let v̂4 be the vertex created when v4 is

identified with another vertex during some application of Preprocessing Rule 3.

If v4 is untouched, then we let v̂4 = v4. Now, in the graph R(G \ {v′1}), the

vertices v3 and v5 are independent and share two neighbors v̂1 and v̂4. The fact

that they have degree 3 each and the surplus of graph R(G \ {v′1}) is at least 2

(Lemma 6.4.10, Lemma 6.4.7) implies that {v3, v5} is a minimum surplus set of

size at least 2 in the graph R(G \ {v′1}), which implies that branching rule B2

applies in this graph, implying that Branching Rule B5 applies in the graph G,

contradicting the irreducibility of G. Hence, g(G) ≥ 7.

This completes the proof of the lemma.

Correctness and Analysis of the last step

In this section we combine all the results proved above and show the existence of degree

4 vertices in subsequent branchings after B6. Towards this we prove the following

lemma.

Lemma 6.4.14. LetG be a connected 3 regular irreducible graph on at least 11 vertices.

Then, for any vertex v ∈ V ,
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1. R(G \ {v}) contains three degree 4 vertices, say w1, w2, w3; and

2. for any wi, i ∈ {1, 2, 3},R(R(G \ {v}) \ {wi}) contains wj , i 6= j as a degree 4

vertex.

Proof. 1. Let v1, v2, v3 be the neighbors of v. SinceGwas irreducible, B1, B2, B3 do

not apply on R(G \ {v}) (else B5 would have applied on G). By Lemma 6.4.10

and Lemma 6.4.12, we know that only Preprocessing Rule 3 would have been

applied to get R(G \ {v}) from G \ {v} and the applications are only on these

three vertices v1, v2, v3. Let w1, w2 and w3 be the three vertices which are created

as a result of applying Preprocessing Rule 3 on these three vertices respectively.

We claim that the degree of each wi in the resulting graph is 4. Suppose that the

degree of wj is at most 3 for some j. But this can happen only if there was an

edge between two vertices which are at a distance of 2 from v, that is, a path of

length 3 between wi and wj for some i 6= j. This implies the existence of a cycle

of length 5 in G, which contradicts Lemma 6.4.13.

2. Note that, by Lemma 6.4.12, it is sufficient to show that wi is disjoint fromN2[wj]

for any i 6= j. Suppose that this is not the case and let wi lie in N2[wj]. First,

suppose that wi lies in N2[wj] \ N1[wj] and there is no wk in N1[wi]. Let x be a

common neighbor of wi and wj . This implies that, in G, x has paths of length 3

to v via wi and via wj , which implies the existence of a cycle of length at most 6,

a contradiction. Now, suppose that wi lies in N1[wj]. But this can happen only if

there was an edge between two vertices which are at a distance of 2 from v. This

implies the existence of a cycle of length 5 in G, contradicting Lemma 6.4.13.

The next lemma shows the correctness of deleting vyz from the graphR(G\{x}) without
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branching.

Lemma 6.4.15. Let G be a connected irreducible graph on at least 11 vertices, v be

a vertex of degree 3, and x, y, z be the set of its neighbors. Then, G \ {x} contains a

vertex cover of size at most k which excludes v if and only if R(G \ {x}) contains a

vertex cover of size at most k − 3 which contains vyz, where vyz is the vertex created in

the graph G \ {x} by the application of Preprocessing Rule 3 on the vertex v.

Proof. We know by Lemma 6.4.12 that there will be exactly 3 applications of Prepro-

cessing Rule 3 in the graph G \ {x}, and they will be on the three neighbors of x. Let

G1, G2, G3 be the graphs which result after each such application, in that order. We

assume without loss of generality that the third application of Preprocessing Rule 3 is

on the vertex v.

By the correctness of Preprocessing Rule 3, if G \ {x} has a vertex cover of size

at most k which excludes v, then G2 has a vertex cover of size at most k − 2 which

excludes v. Since this vertex cover must then contain y and z, it is easy to see that G3

contains a vertex cover of size at most k − 3 containing vyz.

Conversely, if G3 has a vertex cover of size at most k − 3 containing vyz, then

replacing vyz with the vertices y and z results in a vertex cover for G2 of size at most

k − 2 containing y and z (by the correctness of Preprocessing Rule 3). Again, by the

correctness of Preprocessing Rule 3, it follows that G \ {x} contains a vertex cover of

size at most k containing y and z. Since v is adjacent to only y and z in G \ {x}, we

may assume that this vertex cover excludes v.

Thus, when Branching Rule B6 applies on the graph G, we know the following about

the graph.

• G is a 3 regular graph. This follows from the fact that Preprocessing Rules 1, 2

and 3 and the Branching Rule B4 do not apply.
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• g(G) ≥ 7. This follows from Lemma 6.4.13.

Let v be an arbitrary vertex and x, y and z be the neighbors of v. Since G is irreducible,

Lemma 6.4.14 implies thatR(G \ {x}) contains 3 degree 4 vertices, w1, w2 and w3. We

let vyz be w1. Lemma 6.4.14 also implies that for any i, the graphR(R(G\{x})\{wi})

contains 2 degree 4 vertices. Since the vertex vyz is one of the three degree 4 vertices,

in the graphR(R(G \ {x}) \ vyz), the vertices w2 and w3 have degree 4 and one of the

Branching Rules B1, or B2, or B3 or B4 will apply in this graph. Hence, we combine

the execution of the rule B6 along with the subsequent execution of one of the rules B1,

B2, B3 or B4 (see Fig. 6.10). To analyze the drops in the measure for the combined

application of these rules, we consider each root to leaf path in the tree of Fig. 6.10 (b)

and argue the drops in each path.

• Consider the subtree in which v is not picked in the vertex cover from G, that is, x

is picked in the vertex cover, following which we branch on some vertex w during

the subsequent branching, from the graphR(R(G \ {x}) \ vyz).

Let the instances (corresponding to the nodes of the subtree) be (G, k), (G1, k1),

(G2, k2) and (G′2, k
′
2). That is, G1 = R(R(G \ {x}) \ {vyz}), G′2 = R(G1 \ {w})

and G2 = R(G1 \N [w]).

By Lemma 6.4.1, we know that µ(G \ {x}, k − 1) ≤ µ(G, k) − 1
2
. This implies

that µ(R(G \ {x}), k′) ≤ µ(G, k) − 1
2

where (R(G \ {x}), k′) is the instance

obtained by applying the preprocessing rules on G \ {x}.

By Lemma 6.4.1, we also know that including vyz into the vertex cover will give a

further drop of 1
2
. Hence, µ(R(G \{x}) \{vyz}, k′− 1) ≤ µ(G, k)− 1. Applying

further preprocessing will not increase the measure. Hence µ(G1, k1) ≤ µ(G, k)−

1.
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Now, when we branch on the vertex w in the next step, we know that we use one

of the rules B1, B2, B3 or B4. Hence, µ(G2, k2) ≤ µ(G1, k1)− 3
2

and µ(G′2, k
′
2) ≤

µ(G1, k1) − 1
2

(since B4 gives the worst branching vector). But this implies that

µ(G2, k2) ≤ µ(G, k)− 5
2

and µ(G′2, k
′
2) ≤ µ(G, k)− 3

2
.

This completes the analysis of the branch of rule B6 where v is not included in

the vertex cover.

• Consider the subtree in which v is included in the vertex cover, by Lemma 6.4.14

we have that R(G \ {v}) has exactly three degree 4 vertices, say w1, w2, w3 and

furthermore for any wi, i ∈ {1, 2, 3}, R(R(G \ {v}) \ {wi}) contains 2 degree 4

vertices. Since G is irreducible, we have that for any vertex v in G, the Branching

Rules B1, B2 and B3 do not apply on the graphR(G \ {v}). Thus, we know that

in the branch where we include v in the vertex cover, the first branching rule that

applies on the graph R(G \ {v}) is B4. Without loss of generality, we assume

that B4 is applied on the vertex w1. Thus, in the branch where we include w1

in the vertex cover, we know that R(R(G \ {v}) \ {w1}) contains w2 and w3 as

degree 4 vertices, This implies that in the graphR(R(G \ {v}) \ {w1}) one of the

Branching Rules B1, B2, B3 or B4 apply on a vertex w∗1. Hence, we combine the

execution of the rule B6 along with the subsequent executions of B4 and one of

the rules B1, B2, B3 or B4 (see Fig. 6.10).

We let the instances corresponding to the nodes of this subtree be (G, k), (G1, k1),

(G2, k2), (G′2, k
′
2), (G3, k3) and (G′3, k

′
3), where G1 = R(G \ {v}), G2 = R(G1 \

N [w1]), G′2 = R(G1 \ {w1}), G3 = R(G′2 \N [w∗1]) and G′3 = R(G′2 \ {w∗1}).

Lemma 6.4.1, and the fact that preprocessing rules do not increase the measure

implies that µ(G1, k1) ≤ µ(G, k).
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Figure 6.10: Illustrations of the branches of rules (a) B5 and (b) B6

Now, since B4 has been applied to branch on w1, the analysis of the drop of

measure due to B4 shows that µ(G2, k2) ≤ µ(G1, k1) − 3
2

and µ(G′2, k
′
2) ≤

µ(G1, k1) − 1
2
. Similarly, since, in the graph G′2, we branch on vertex w∗1 us-

ing one of the rules B1, B2, B3 or B4, we have that µ(G3, k3) ≤ µ(G′2, k
′
2) − 3

2

and µ(G′3, k
′
3) ≤ µ(G′2, k

′
2)− 1

2
.

Combining these, we get that µ(G3, k3) ≤ µ(G, k)− 5
2

and µ(G′3, k
′
3) ≤ µ(G, k)−

3
2
. This completes the analysis of rule B6 where v is included in the vertex

cover. Combining the analysis for both the cases results in a branching vector

of (3
2
, 5
2
, 5
2
, 3
2
, 2) for the rule B6.

Finally, we combine all the above results to obtain the following theorem.

Theorem 6.4.16. VERTEX COVER ABOVE LP can be solved in timeO∗((2.3146)k−vc
∗(G)).

Proof. Let us fix µ = µ(G, k) = k−vc∗(G). We have thus shown that the preprocessing

rules do not increase the measure. Branching Rules B1 or B2 or B3 results in a (1, 1)

decrease in µ(G, k) = µ, resulting in the recurrence T (µ) ≤ T (µ−1)+T (µ−1) which

solves to 2µ = 2k−vc
∗(G).
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Rule B1 B2 B3 B4 B5 B6

Branching Vector (1,1) (1,1) (1,1) (1
2
, 3
2
) (3

2
, 3
2
, 1) (3

2
, 3
2
, 5
2
, 5
2
, 2)

Running time 2µ 2µ 2µ 2.1479µ 2.3146µ 2.3146µ

Figure 6.11: A table giving the decrease in the measure due to each branching rule.

Branching Rule B4 results in a (1
2
, 3
2
) decrease in µ(G, k) = µ, resulting in the

recurrence T (µ) ≤ T (µ− 1
2
) + T (µ− 3

2
) which solves to 2.1479µ = 2.1479k−vc

∗(G).

Branching Rule B5 combined with the next step in the algorithm results in a (1, 3
2
, 3
2
)

branching vector, resulting in the recurrence T (µ) ≤ T (µ−1)+2T (µ− 3
2
) which solves

to 2.3146µ = 2.3146k−vc
∗(G).

We analyzed the way the algorithm works after an application of Branching Rule B6

before Theorem 6.4.16. An overview of drop in measure is given in Figure 6.4.6.

This leads to a (3
2
, 5
2
, 2, 3

2
, 5
2
) branching vector, resulting in the recurrence T (µ) ≤

T (µ− 1) + 2T (µ− 3
2
) which solves to 2.3146µ = 2.3146k−vc

∗(G).

Thus, we get an O(2.3146(k−vc∗(G))nO(1)) algorithm for VERTEX COVER ABOVE

LP.

6.5 Applications

In this section we give several applications of the algorithm developed for VERTEX

COVER ABOVE LP.

6.5.1 An algorithm for ABOVE GUARANTEE VERTEX COVER

Since the value of the LP relaxation is at least the size of the maximum matching, our

algorithm also runs in time O∗(2.3146k−m) where k is the size of the minimum vertex
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cover and m is the size of the maximum matching.

Theorem 6.5.1. ABOVE GUARANTEE VERTEX COVER can be solved in timeO∗(2.3146`)

time, where ` is the excess of the minimum vertex cover size above the size of the maxi-

mum matching.

Now by the known reductions in [44, 78, 88] (see also Figure 5.1) we get the following

corollary to Theorem 6.5.1.

Corollary 6.5.2. ALMOST 2-SAT, ALMOST 2-SAT(v), RHORN-BACKDOOR SET DE-

TECTION can be solved in timeO∗(2.3146k), and KVDpm can be solved in timeO∗(2.3146
k
2 ) =

O∗(1.5214k).

6.5.2 Algorithms for ODD CYCLE TRANSVERSAL and SPLIT VER-

TEX DELETION

We describe a generic algorithm for both ODD CYCLE TRANSVERSAL and SPLIT

VERTEX DELETION. Let X, Y ∈ {Clique, Independent Set}. A graph G is called

an (X, Y )-graph if its vertices can be partitioned into X and Y . Observe that when

X = Y = independent set, this corresponds to a bipartite graph and when X = clique

and Y = independent set, this corresponds to a split graph. In this section we outline an

algorithm that runs in time O∗(2.3146k) and solves the following problem.

(X,Y)-DELETION SET Parameter: k

Input: An undirected graph G and a positive integer k

Question: Does G have a vertex subset S of size at most k such that its deletion

leaves a (X, Y )-graph?
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We solve the (X,Y)-DELETION SET problem by using a parameter preserving reduction

to the ALMOST 2 SAT(V) problem.

Construction : Given a graph G = (V,E) and (X, Y ), we construct a 2-

SAT formula φ(G,X, Y ) as follows. The formula φ(G,X, Y ) has a variable

xv for each vertex v ∈ V . We now add the following clauses to φ(G,X, Y ).

If X = clique, then, for every non-edge (u, v) /∈ E, we add the clause

(xu ∨ xv). If X = independent set, then for every edge (u, v) ∈ E, we

add the clause (xu ∨ xv). Similarly, if Y = clique, then for every non-edge

(u, v) /∈ E, we add the clause (x̄u ∨ x̄v) and if Y = independent set, then

for every edge (u, v) ∈ E, we add the clause (x̄u ∨ x̄v). This completes the

construction of φ(G,X, Y ).

Lemma 6.5.3. Given a graph G = (V,E) and (X, Y ), let φ(G,X, Y ) be the 2-SAT

formula obtained by the above construction. Then, (G, k) is a YES instance of (X,Y)-

DELETION SET if and only if (φ(G,X, Y ), k) is a YES instance of ALMOST 2 SAT(V).

Proof. Suppose there is a set S ⊆ V such that |S| ≤ k and G \ S is an (X, Y )-graph.

Let Sv be the set of variables of φ = φ(G,X, Y ) which correspond to the vertices in S.

Clearly, |Sv| ≤ k. We claim that φ \ Sv is satisfiable by the following assignment. For

each vertex in theX-partition ofG\S, assign the corresponding variable the value 0 and

for each vertex in the Y -partition ofG\S, assign the corresponding variable the value 1.

Suppose that this assignment does not satisfy φ \ Sv and let C be an unsatisfied clause.

By the construction, we know that C is of the form (xu ∨ xv) or (x̄u ∨ x̄v). We consider

only the first case, since the second is analogous to the first. If (u, v) ∈ E, then it must

be the case that X = independent set (by construction). Since this clause is unsatisfied,

the value assigned to both xu and xv was 0. But this implies that u and v lie in the

X-partition of G\S, where X = independent set, which is a contradiction. Similarly, if

121



(u, v) /∈ E, then it must be the case that X = clique (by construction). Since this clause

is unsatisfied, the value assigned to both xu and xv was 0. But this implies that u and v

lie in the X-partition of G \ S, where X = clique, which is a contradiction.

Conversely, let Sv be a set of variables of φ = φ(G,X, Y ) such that |Sv| ≤ k and

φ \ Sv is satisfiable. Let ρ be a satisfying assignment to φ \ Sv and let S be the set of

vertices of G which correspond to Sv. Clearly, |S| ≤ k. We now define the following

partition of the vertices in G \S. For each vertex of G \S, if the corresponding variable

is assigned 0 by ρ, then add it into partition A or into partition B otherwise. We claim

that the partition (A,B) of G \ S is an (X, Y ) partition. Suppose that A is not an X-

partition, where X = clique. We only consider this case since the remaining cases can

be argued analogously. Consider a non-edge (u, v) such that u, v ∈ A. But, by the

construction, φ contains the clause (xu ∨ xv). Since G \ S contains both the vertices u

and v, it must be the case that φ \ Sv contains both xu and xv, implying that it contains

the clause (xu ∨ xv). But, by the construction of the set A, ρ assigned 0 to both xu and

xv, which is a contradiction. This completes the proof of the lemma.

Combining the above lemma with Theorem 6.5.1, we have the following.

Theorem 6.5.4. (X,Y)-DELETION SET can be solved in time O∗(2.3146k).

As a corollary to the above theorem we get the following new results.

Corollary 6.5.5. ODD CYCLE TRANSVERSAL and SPLIT VERTEX DELETION can be

solved in time O∗(2.3146k).

Observe that the reduction from EDGE BIPARTIZATION to ODD CYCLE TRANSVER-

SAL represented in Figure 5.1, along with the above corollary implies that EDGE BI-

PARTIZATION can also be solved in time O∗(2.3146k). However, we note that there is

an algorithm for this problem due to Guo et al. [46], running in time O∗(2k).
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6.5.3 An algorithm for KÖNIG VERTEX DELETION

A graph G is called König if the size of a minimum vertex cover equals that of a max-

imum matching in the graph. Clearly bipartite graphs are König but there are non-

bipartite graphs that are König (a triangle with an edge attached to one of its vertices,

for example). Thus the KÖNIG VERTEX DELETION problem, as stated below, is closely

connected to ODD CYCLE TRANSVERSAL.

KÖNIG VERTEX DELETION (KVD) Parameter: k

Input: An undirected graph G and a positive integer k

Question: DoesG have a vertex subset S of size at most k such thatG\S is a König

graph?

If the input graph G to KÖNIG VERTEX DELETION has a perfect matching then this

problem is called KVDpm. By Corollary 6.5.2, we already know that KVDpm has an

algorithm with running time O∗(1.5214k) by a polynomial time reduction to ABOVE

GUARANTEE VERTEX COVER, that maps k to k/2. However, there is no known re-

duction if we do not assume that the input graph has a perfect matching and it required

several interesting structural theorems in [81] to show that KVD can be solved as fast

as ABOVE GUARANTEE VERTEX COVER. Here, we outline an algorithm for KVD that

runs in O∗(1.5214k) and uses an interesting reduction rule. However, for our algorithm

we take a detour and solve a slightly different, although equally interesting problem.

Given a graph, a set S of vertices is called König vertex deletion set (kvd set) if its re-

moval leaves a König graph. The auxiliary problem we study is following.
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VERTEX COVER PARAM BY KVD Parameter: k

Input: An undirected graph G, a König vertex deletion set S of size at most k and a

positive integer `

Question: Does G have a vertex cover of size at most `?

This fits into the recent study of problems parameterized by other structural param-

eters. See, for example, ODD CYCLE TRANSVERSAL parameterized by various struc-

tural parameters [57] or TREEWIDTH parameterized by vertex cover [7] or VERTEX

COVER parameterized by feedback vertex set [56] or DOMINATING SET parameterized

by max-leaf number [30]. For our proofs we will use the following characterization of

König graphs.

Lemma 6.5.6. [81, Lemma 1] A graph G = (V,E) is König if and only if there exists

a bipartition of V into V1 ] V2, with V1 a vertex cover of G such that there exists a

matching across the cut (V1, V2) saturating every vertex of V1.

Note that in VERTEX COVER PARAM BY KVD,G\S is a König graph. So one could

branch on all subsets of S to include in the output vertex cover, and for those elements

not picked in S, we could pick its neighbors in G \ S and delete them. However, the

resulting graph need not be König adding to the complications. Note, however, that

such an algorithm would yield an O∗(2k) algorithm for VERTEX COVER PARAM BY

OCT. That is, if S were an odd cycle transversal then the resulting graph after deleting

the neighbors of vertices not picked from S will remain a bipartite graph, where an

optimum vertex cover can be found in polynomial time.

Given a graphG = (V,E) and two disjoint vertex subsets V1, V2 of V , we let (V1, V2)

denote the bipartite graph with vertex set V1 ∪V2 and the edge set described as {{u, v} :

{u, v} ∈ E and u ∈ V1, v ∈ V2}. Now, we describe an algorithm based on Theorem 6.3.8,

that solves VERTEX COVER PARAM BY KVD in time O∗(1.5214k).
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Theorem 6.5.7. VERTEX COVER PARAM BY KVD can be solved in timeO∗(1.5214k).

Proof. Let G be the input graph, S be a kvd set of size at most k. We first apply

Lemma 6.3.1 on G = (V,E) and obtain an optimum solution to LPVC(G) such that all

1
2

is the unique optimum solution to LPVC(G[V x
1/2]). Due to Lemma 6.3.2, this implies

that there exists a minimum vertex cover of G that contains all the vertices in V x
1 and

none of the vertices in V x
0 . Hence, the problem reduces to finding a vertex cover of size

`′ = `− |V x
1 | for the graph G′ = G[V x

1/2]. Before we describe the rest of the algorithm,

we prove the following lemma regarding kvd sets inG andG′ which shows that ifG has

a kvd set of size at most k then so does G′. Even though this looks straight forward, the

fact that König graphs are not hereditary (i.e. induced subgraphs of König graphs need

not be König) makes this a non-trivial claim to prove.

Lemma 6.5.8. Let G and G′ be defined as above. Let S be a kvd set of graph G of size

at most k. Then, there is a kvd set of graph G′ of size at most k.

Proof. It is known that the sets (V x
0 , V

x
1 , V

x
1/2) form a crown decomposition of the graph

G [20]. In other words, N(V x
0 ) = V x

1 and there is a matching saturating V x
1 in the

bipartite graph (V x
1 , V

x
0 ). The set V x

0 is called the crown and the set V x
1 is called the

head of the decomposition. For ease of presentation, we will refer to the set V x
0 as C,

V x
1 as H and the set V x

1/2 as R. In accordance with Lemma 6.5.6, let A be the minimum

vertex cover and let I be the corresponding independent set of G \ S such that there is a

matching saturating A across the bipartite graph (A, I). First of all, note that if the set

S is disjoint from C ∪ H , H ⊆ A, and C ⊆ I , we are done, since the set S itself can

be taken as a kvd set for G′. This last assertion follows because there exists a matching

saturating H into C. Hence, we may assume that this is not the case. However, we will

argue that given a kvd set of G of size at most k we will always be able to modify it in a

way that it is of size at most k, it is disjoint from C ∪H , H ⊆ A, and C ⊆ I . This will
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Figure 6.12: An illustration of case 2 of Lemma 6.5.8

allow us to prove our lemma. Towards this, we now consider the set H ′ = H ∩ I and

consider the following two cases.

1. H ′ is empty. We now consider the set S ′ = S \ (C ∪H) and claim that S ′ is also a

kvd set ofG of size at most k such thatG\S ′ has a vertex coverA′ = (A\C)∪H

with the corresponding independent set being I ′ = I∪C. In other words, we move

all the vertices of H to A and the vertices of C to I . Clearly, the size of the set S ′

is at most that of S. The set I ′ is independent since I was initially independent,

and the newly added vertices have edges only to vertices of H , which are not in

I ′. Hence, the set A′ is indeed a vertex cover of G \ S ′. Now, the vertices of R,

which lie in A, (and hence A′) were saturated by vertices not in H , since H ∩ I

was empty. Hence, we may retain the matching edges saturating these vertices,

and as for the vertices of H , we may use the matching edges given by the crown

decomposition to saturate these vertices and thus there is a matching saturating

every vertex in A′ across the bipartite graph (A′, I ′). Hence, we now have a kvd

set S ′ disjoint from C ∪ H, such that H is part of the vertex cover and C lies in

the independent set of the König graph G \ S ′.
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2. H ′ is non empty. Let C1 be the set of vertices in A ∩ C which are adjacent to H ′

(see Fig. 6.5.8) , let C2 be the set of vertices in C ∩ S, which are adjacent to H ′,

and let P be the set of vertices of R ∩ A which are saturated by vertices of H ′ in

the bipartite graph (A, I). We now consider the set S ′ = (S \ C2) ∪ P and claim

that S ′ is also a kvd set of G of size at most k such that G \ S ′ has a minimum

vertex cover A′ = (A \ (C1 ∪ P )) ∪ H ′ with the corresponding independent set

being I ′ = (I \ H ′) ∪ (C1 ∪ C2). In other words, we move the set H ′ to A, the

sets C1 and C2 to I and the set P to S. The set I ′ is independent since I was

independent and the vertices added to I are adjacent only to vertices of H , which

are not in I ′. Hence, A′ is indeed a vertex cover of G \ S ′. To see that there is

still a matching saturating A′ into I ′, note that any vertex previously saturated by

a vertex not in H can still be saturated by the same vertex. As for vertices of H ′,

which have been newly added toA, they can be saturated by the vertices inC1∪C2.

Observe that C1∪C2 is precisely the neighborhood of H ′ in C and since there is a

matching saturating H in the bipartite graph (H,C) by Hall’s Matching Theorem

we have that for every subset Ĥ ⊆ H , |N(Ĥ) ∩ (C1 ∪ C2)| ≥ |Ĥ|. Hence, by

Hall’s Matching Theorem there is a matching saturating A′ in the bipartite graph

(A′, I ′). It now remains to show that |S ′| ≤ k.

SinceN(H ′) = C1∪C2 in the bipartite graph (C,H), we know that |C1|+ |C2| ≥

|H ′|. In addition, the vertices of C1 have to be saturated in the bipartite graph

(A, I) by vertices in H ′. Hence, we also have that |C1|+ |P | ≤ |H ′|. This implies

that |C2| ≥ |P |. Hence, |S ′| ≤ |S| ≤ k. This completes the proof of the claim.

But now, notice that we have a kvd set of size at most k such that there are no

vertices of H in the independent set side of the corresponding König graph. Thus,

we have fallen into Case 1, which has been handled above.
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This completes the proof of the lemma.

We now show that µ = vc(G′) − vc∗(G′) ≤ k
2
. Let O be a kvd set of G′ and define G′′

as the Kónig graph G′ \ O. It is well known that in König graphs, |M | = vc(G′′) =

vc∗(G′′), where M is a maximum matching in the graph G′′. This implies that vc(G′) ≤

vc(G′′) + |O| = |M |+ |O|. But, we also know that vc∗(G′) ≥ |M |+ 1
2
(|O|) and hence,

vc(G′) − vc∗(G′) ≤ 1
2
(|O|). By Lemma 6.5.8, we know that there is an O such that

|O| ≤ k and hence, vc(G′)− vc∗(G′) ≤ k
2
.

By Corollary 6.3.9, in time O∗(2.3146vc(G
′)−vc∗(G′)), we can compute a minimum

vertex cover of G′ and hence in time O∗(2.3146k/2). If the size of the minimum vertex

cover obtained for G′ is at most `′, then we return yes else we return no. We complete

the proof of the theorem with a remark that, in the algorithm described above, we do

not, in fact, even require a kvd set to be part of the input.

It is known that, given a minimum vertex cover, a minimum sized kvd set can be com-

puted in polynomial time [81]. Hence, Theorem 6.5.7 has the following corollary.

Corollary 6.5.9. KVD can be solved in time O∗(1.5214k).

Since the size of a minimum Odd Cycle Transversal is at least the size of a minimum

König Vertex Deletion set, we also have the following corollary.

Corollary 6.5.10. VERTEX COVER PARAM BY OCT can be solved in timeO∗(1.5214k).

6.5.4 A simple improved kernel for VERTEX COVER

We give a kernelization for VERTEX COVER based on Theorem 6.3.8 as follows. Ex-

haustively, apply the Preprocessing rules 1 through 3 (see Section 6.3). When the rules

no longer apply, if k−vc∗(G) ≤ log k, then solve the problem in timeO∗(2.3146log k) =
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O(nO(1)). Otherwise, just return the instance. We claim that the number of vertices in

the returned instance is at most 2k − 2 log k. Since k − vc∗(G) > log k, vc∗(G) is

upper bounded by k − log k. But, we also know that when Preprocessing Rule 1 is no

longer applicable, all 1
2

is the unique optimum to LPVC(G) and hence, the number of

vertices in the graph G is twice the value of the optimum value of LPVC(G). Hence,

|V | = 2vc∗(G) ≤ 2(k − log k). Observe that by the same method we can also show

that in the reduced instance the number of vertices is upper bounded by 2k − c log k

for any fixed constant c. Independently, Lampis [65] has also shown an upper bound of

2k − c log k on the size of a kernel for VERTEX COVER for any fixed constant c.

6.6 Conclusion

We have demonstrated that using the change in LP values to analyze branching algo-

rithms can give powerful results for parameterized complexity. We believe that our

algorithm is the beginning of a race to improve the running time bound for ABOVE

GUARANTEE VERTEX COVER. Furthermore, the running time bound for the classical

VERTEX COVER problem, has seen no improvement in the last several years after an ini-

tial plethora of results. We believe that our algorithm may lead towards an improvement

in this time bound by reducing the need to resort to too many refined branchings, which

is possibly the reason why the progress in this direction has stagnated.

Our other contribution is to exhibit several parameterized problems that are equiva-

lent to or reduce to ABOVE GUARANTEE VERTEX COVER through parameterized re-

ductions.
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Part III

Parity Based Graph Separation
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7
Parity Multiway Cut

7.1 Introduction

In this chapter, we study a parity based generalization of the classical MULTIWAY CUT

problem. Formally, we study the PARITY MULTIWAY CUT problem which is defined as:

PARITY MULTIWAY CUT (PMWC) Parameter: k

Input: A graph G = (V,E), vertex subsets Te and To (T = Te ∪ To), integer k

Question: Is there a vertex set S of size at most k which intersects

1. all odd paths from a vertex v ∈ To to every other vertex u ∈ T \ {v},

2. all even paths from a vertex v ∈ Te to every other vertex u ∈ T \ {v}?

When Te = To, this is precisely the classical MULTIWAY CUT problem. If To = ∅

then this is the EVEN MULTIWAY CUT problem and if Te = ∅ then this is the ODD

MULTIWAY CUT problem.

Unlike MULTIWAY CUT, PMWC (when the solution is not allowed to contain the
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terminals) is already NP-complete for the case when |T | = 2. Indeed, consider the fol-

lowing reduction from VERTEX COVER to PMWC. Given an instance (G = (V,E), k)

of VERTEX COVER, add two new vertices t1 and t2, make them both adjacent to every

vertex in V , and set To = {t1, t2} and Te = ∅. Call this new graph G′. It is easy to see

that G has a vertex cover of size at most k if and only if G′ has k-sized vertex subset that

intersects every odd To-path. In fact, our argument shows that OMWC is NP-complete

for the case when |T | = 2. One can similarly show that EMWC is NP-complete for the

case when |T | = 2.

In this chapter, we study the variant of the problem where the solution to an instance

(G, T = Te ∪ To, k) of PMWC is allowed to intersect the set T . This problem is NP-

complete for unbounded T because it is a generalization of MULTIWAY CUT. In this

chapter, the focus is on optimizing the dependence of our algorithms on the parameter

k. Therefore, we will suppress the dependence of the algorithms on the input size by

using the O∗() notation. Our main result with respect to this problem is the following.

Theorem 7.1.1. PMWC can be solved in time O∗(2O(k3)).

In the course of obtaining our algorithm, we introduce two generic subroutines

which apply to a wider range of graph separation problems. In particular,

• we first design an FPT algorithm that reduces the input instance to a highly struc-

tured instance while preserving a solution. In this particular case, the structure

induced on the given instance is bipartiteness of the input graph. This algorithm

gives a general approach for parity based graph separation problems and has al-

ready been utilized for other problems as well.

• we introduce a generalization of important separators which allows us to “over-

load” certain properties onto the parts of the graph disjoint from the separator.
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The motivation behind such a generalization is that it allows us to define a more

involved notion of dominating set of separators and therefore paves the way for

the application of the Important Separators Template.

Overview of the algorithm. The algorithm for PMWC has three stages; in the first

stage, using the technique of iterative compression, we reduce the problem to solving a

bounded number of instances of the problem where the even terminals are bounded by

a linear function of k. In the second stage, we reduce the instance to one with a solution

whose removal leaves a bipartite graph. In the final stage, we define the generalization of

important separators and apply the important separator template to solve this restricted

version of the problem.

We note that the special case OMWC can be shown to be FPT be a reduction to the

SUBSET ODD CYCLE TRANSVERSAL problem which was shown to be FPT in [58].

However, such an algorithm for OMWC would have a significantly worse dependence

on the parameter k when compared to the algorithm we present in this chapter.

Our main motivation for studying this parity based generalizations of graph separa-

tion problems is the recently initiated parameterized study of parity versions of graphs

minors by Kawarabayashi, Reed and Wollan [55] and separation problems similar to

MULTIWAY CUT [10, 19, 79]. Furthermore, Geelen et al. [40] proved an odd variant

of Mader’s T -path Theorem in which they showed that, given a graph G and a subset

T of vertices, there are either k vertex disjoint odd T -paths, or there is a vertex set of

size at most 2k which intersects every odd T -path. This result has already turned out

to be useful in graph theory [40, 59], as well as in the design of parameterized algo-

rithms [52, 54, 53]. This result was crucial in settling the parameterized complexity of

finding k vertex disjoint odd length cycles in a graph [53]. Observe that, this odd vari-

ant of Mader’s T -path Theorem naturally gives rise to the OMWC problem, which is a
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special case of PMWC.

In an instance (G, T = Te ∪ To, k) of PMWC, the vertices in T are called terminals,

those in Te are called even terminals and those in To are called odd terminals. Vertices

in Te \ To are called purely even terminals and those in To \ Te are called purely odd

terminals.

7.2 Bounding the number of even terminals

In this section, we give an algorithm which allows us to assume that the number of even

terminals in a given instance is bounded linearly in k.

7.2.1 Preprocessing

We begin with a preprocessing rule which allows us to assume that the solution we are

searching for is disjoint from the set of terminals.

Preprocessing Rule 1. Let (G, T = Te ∪ To, k) be an instance of PMWC and let

T = {t1, . . . , tl}. For every terminal ti ∈ T , add 2 new vertices t1i and t2i and add edges

(t1, t
1
i ) and (t1i , t

2
i ) . Let this graph be G′. Set T ′o = {t2i |ti ∈ To} and T ′e = {t2i |ti ∈ Te}

and T ′ = T ′o ∪ T ′e. Finally, return the instance (G′, T ′ = T ′e ∪ T ′o, k).

It is clear that the above rule can be applied in polynomial time. The correctness of the

rule follows from the following lemma.

Lemma 7.2.1. Given an instance (G, T = Te ∪ To, k) of PMWC, let (G′, T ′ = T ′e ∪

T ′o, k) be the instance obtained by the application of Preprocessing Rule 1 on (G, T =

Te∪To, k). Then, (G, T = Te∪To, k) is a YES instance if and only if (G′, T ′ = T ′e∪T ′o, k)

is a YES instance and has a solution disjoint from T ′.
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Proof. Suppose that S is a solution for the instance (G, T = Te∪To, k). We claim that S

is a solution for the instance (G′, T ′ = Te∪T ′o, k) disjoint from T ′. Clearly, |S| ≤ k and

S is disjoint from T ′. If S were not a solution for the instance (G′, T ′ = T ′e∪T ′o, k) then

there is a path P of forbidden parity between two terminals t2i and t2j . But the subpath of

P from ti to tj is a path with the same parity as P from ti to tj in G \S, a contradiction.

Conversely, suppose that S ′ is a solution for the instance (G′, T ′, k) disjoint from

T ′. If S ′ contains a vertex not in G, then it must be a vertex t1i for some i. For every

i such that t1i ∈ S ′, we replace it with the vertex ti. Let the resulting set be S. Now,

the vertices in S are all present in G. We claim that S is a solution for the instance

(G, T = Te ∪ To, k). Clearly, |S| ≤ k. Therefore, if S were not a solution, then there is

a path P of forbidden parity between two terminals ti and tj in the graph G \ S. Since

ti and tj are not in S, t1i and t1j are not in S ′. Let P1 be the path comprising two edges

from t2i to ti, that is, P1 = t2i , t
1
i , ti and let P2 be the path comprising two edges from tj

to t2j , that is, P2 = tj, t
1
j , t

2
j . Since P is a path in G, the paths P and P1 intersect exactly

in ti and the paths P and P2 intersect exactly in tj . Therefore, the path P1 +P +P2 is a

path from t2i to t2j in G′ \S ′. However, since the paths P1 and P2 are of length 2, the path

P1 + P + P2 is a path of the same parity as P from t2i to t2j in G′ \ S ′, a contradiction.

This completes the proof of the lemma.

Due to the above preprocessing rule, we assume without loss of generality that the given

instance of PMWC is such that each terminal has exactly 1 neighbor. Furthermore, we

also assume that the objective is to check if there is a pmwc for the given instance dis-

joint from the terminal set. Formally, we redefine the PMWC problem in the following

form.
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PARITY MULTIWAY CUT (PMWC) Parameter: k

Input: A graph G = (V,E), vertex subsets Te and To (T = Te ∪ To), integer k

Question: Is there a vertex set S of size at most k which is disjoint from T and

intersects

1. all odd paths from a vertex v ∈ To to every other vertex u ∈ T \ {v},

2. all even paths from a vertex v ∈ Te to every other vertex u ∈ T \ {v}?

Any set which hits all odd paths from a vertex v ∈ To to every other vertex u ∈ T \ {v}

and all even paths from a vertex v ∈ Te to every other vertex u ∈ T \ {v} is referred to

as a pmwc for the given instance. We also initially perform the following preprocessing

step on the given instance (G, T = Te ∪ To, k) of PMWC.

Preprocessing Rule 2. Given an instance (G, T = Te ∪ To, k) of PMWC, if there

is a vertex v which does not lie on a T -path, then return the instance (G \ {v}, T =

Te ∪ To, k).

It is clear that the above rule is correct and can be applied in polynomial time by testing

for every vertex if it lies on a T -path. Henceforth, we assume that Preprocessing Rule 2

is not applicable on the given input instance, which implies that every vertex lies on a

T -path.

7.2.2 Reducing even terminals

We first describe a way to reduce the given instance of PMWC to multiple (but a

bounded number of) instances, each with a bounded number of even terminals, such

that solving these instances will lead to a solution for the input instance. To do this, we
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begin by using the technique of iterative compression.

Given an instance (G = (V,E), T = Te ∪ To, k) of PMWC, where V = {v1, . . . , vn},

we define the graph Gi as Gi = G[Vi] where Vi = {v1, . . . , vi}. We iterate through the

instances (Gi, Ti = (Te ∩ Vi) ∪ (To ∩ Vi), k) starting from i = k + 1 and for the ith

instance, with the help of a known solution Si of size at most k + 1 we try to find a so-

lution Ŝi of size at most k. Formally, the compression problem we address is following.

PMWC COMPRESSION Parameter: k

Input: An instance (G, T = Te ∪ To, k) of PMWC, and a pmwc S of size at most

k + 1.

Question: Is there a pmwc for the instance (G, T = Te ∪ To, k) of size at most k?

We reduce the PMWC problem to n−k instances of the PMWC COMPRESSION prob-

lem as follows. Let Ii = (Gi, (Te ∩ Vi) ∪ (To ∩ Vi), Si, k) be the ith instance of PMWC

COMPRESSION. The set Vk+1 is clearly a pmwc of size at most k + 1 for the instance

Ik+1. It is also easy to see that if Ŝi−1 is a pmwc of size at most k for instance Ii−1,

then the set Ŝi−1 ∪ {vi} (or the set Ŝi−1 ∪N(vi) if vi is a terminal) is a pmwc of size at

most k + 1 for the instance Ii. We use these two observations to start off the iteration

with the instance (Gk+1, (Te ∩ Vk+1) ∪ (To ∩ Vk+1), k, Sk+1) where Sk+1 = Vk+1 and

check if there is a solution for this instance. If there is such a solution Ŝk+1, we set

Sk+2 = Ŝk+1 ∪{vk+2} (or Sk+2 = Ŝk+1 ∪N(vk+2) if vk+1 is a terminal) and try to com-

pute a pmwc of size at most k for the instance Ik+2 and so on. If, during any iteration,

the corresponding instance is found to be a NO instance then it implies that the original

instance is also a NO instance. Finally the solution for the original input instance is the

set Ŝn. Since there can be at most n such iterations, the total time taken is bounded by
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n times the time required to solve the PMWC COMPRESSION problem.

Observation 7.2.2. Let (G, T = Te ∪ To, k) be an instance of PMWC and let S be a

solution for this instance.

(a) Consider a connected component of G \ S which contains at least two terminals.

Such a component cannot contain terminals from both To and Te.

(b) Any connected component of G \ S contains at most 2 vertices from Te.

Proof. (a) Let C be a component of G \ S containing two terminals t1 and t2 such that

t1 ∈ To and t2 ∈ Te. Then, there is a path between t1 and t2 in G \S. If this path is odd,

then it contradicts the intersection of S with every odd t1-T \ {t1} path and if it is even,

then it contradicts the intersection of S with every even t2-T \ {t2} path.

(b) Let C be a component of G \ S containing a set T ′e ⊆ Te. Consider a tree spanning

the set T ′e in G \ S. Since T ′e lies in a connected component of G \ S, such a tree exists.

Since this tree is a connected bipartite graph, if |T ′e| > 2, there must be two vertices of

T ′e with an even path between them. But this is a contradiction since this even path is

disjoint from S.

We now show that if an instance (G, T, k, S) of PMWC COMPRESSION has a so-

lution disjoint from some pmwc S, then it must be the case that the number of even

terminals in this instance is bounded linearly in k. Formally,

Lemma 7.2.3. Consider an instance (G, T = Te ∪ To, k, S) of PMWC COMPRESSION

and suppose that this instance has a solution disjoint from the pmwc S. Then, |Te| ≤ 6k.

Proof. Let S ′ be the solution disjoint from S. We call a component ofG\S affected if it

contains a vertex of S ′ and unaffected otherwise. Clearly, there can be at most k affected

components in G \S. Now, consider the unaffected components of G \S which contain
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an even terminal. We claim that the number of such components does not exceed 2k.

If this were not the case, then there exist three unaffected components which contain

an even terminal each and a vertex v ∈ S such that the three unaffected components

are adjacent v. But this implies the presence of an even path between at least two of

these even terminals which is disjoint from the solution S ′, a contradiction. Hence, the

number of components of G \S which contain an even terminal is at most 3k (at most k

affected and at most 2k unaffected components). By Observation 7.2.2, any component

of G \ S can contain at most 2 even terminals. Since S is disjoint from Te, the number

of even terminals in the instance is bounded by 2 · 3k = 6k. This completes the proof of

the lemma.

We now describe a way to bound the number of even terminals in an instance of PMWC

COMPRESSION. Formally,

Lemma 7.2.4. There is an algorithm that, given an instance I = (G, T = Te ∪

To, k, S) of PMWC COMPRESSION, runs in time O∗(2O(k)) and returns 2k+1 instances

of PMWC {(Gi, Ti = Tei ∪ Toi, ki)}1≤i≤` where ` = 2k+1 such that

1. (G, T, k, S) is a YES instance of PMWC COMPRESSION if and only if there is an

1 ≤ i ≤ ` such that (Gi, Ti, ki) is a YES instance of PMWC.

2. For each 1 ≤ i ≤ `, ki ≤ k and |Tei| ≤ 6ki.

Proof. For every S ′ ⊆ S, we obtain an instance IS′ of PMWC COMPRESSION cor-

responding to S ′ by deleting S ′ from the instance I and applying Preprocessing Rule 2

exhaustively on the resulting instance. Thus, we obtain 2k+1 instances of PMWC COM-

PRESSION, each corresponding to a subset of S.

1. Suppose that (G, T, k, S) is a YES instance of PMWC COMPRESSION. We fix

a hypothetical solution Ŝ for this instance. Let Y = S ∩ Ŝ and consider the instance
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IY = (G \ Y, T \ Y, k − |Y |). Then, IY is a YES instance of PMWC and Ŝ \ Y is a

solution for this instance which is also disjoint from S \ Y .

Conversely, if (G, T, k, S) were a NO instance, then it follows that for every S ′ ⊆ S,

the corresponding instance IS′ = (G \ S ′, T \ S ′, k − |S ′|) of PMWC is also a NO

instance.

2. Observe that if (G, T, k, S) is a YES instance and Y = S ∩ Ŝ then the instance IY

has a solution disjoint from S \ Y and by Lemma 7.2.3, the number of even terminals

in this instance cannot exceed 6(k− |Y |). Therefore, if for any instance IS′ , the number

of even terminals in this instance exceeds 6(k − |S ′|), then we term the instance invalid

and reject it. Therefore, we may assume that at this juncture, we have at most 2k+1

instances of PMWC and the number of even terminals in each instance IS′ is bounded

by 6(k − |S ′|). The algorithm finally returns these instances. We have already shown

that these instances satisfy the properties in the statement of the lemma. Since each such

instance can be constructed in polynomial time and there are at most 2k+1 such instances,

the algorithm runs in time O∗(2O(k)). This completes the proof of the lemma.

Henceforth, we assume that the given PMWC instance is one returned by the algorithm

of Lemma 7.2.4.

7.3 Obtaining a bipartition instance

In this section, we give the first of our subroutines which imposes a certain structure on

the given graph. This will be described and proved formally in the rest of this section.
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7.3.1 Isolated and semi-isolated components

Definition 7.3.1. Consider an instance (G, T = Te ∪ To, k) of PMWC and let S be a

solution for this instance (see Fig. 7.1). A connected component of G \ S is called an

isolated component inG\S if it is disjoint from the set of terminals and a non-isolated

component (in G \ S) otherwise. Vertices in an isolated component are called isolated

vertices and those in a non-isolated component are called non-isolated vertices.

Definition 7.3.2. Consider an instance (G, T = Te ∪ To, k) of PMWC and let S be a

solution for this instance. Consider a non-isolated component C in G \ S which con-

tains at least 2 terminals. We define a main component of C as a maximal connected

subgraph ofG[C] such that every vertex in this subgraph lies on a T -path inG\S. Con-

sider a non-isolated component of C in G \ S which contains a single terminal t ∈ T .

We know that t has a single neighbor in G, say u. We define the main component of C

as the edge (u, t).

Observation 7.3.3. Consider an instance (G, T = Te∪To, k) of PMWC and let S be a

solution for this instance. Consider a non-isolated component C in G \ S. Then, there

is a unique main component of C.

Proof. If C contains a single terminal, it is clear that there is a unique main component

by definition. Therefore, we assume that C contains at least 2 terminals. Suppose

that there were two distinct main components of C, M1 and M2. Since each main

component is a maximal connected subgraph, the two main components must be disjoint

and non-adjacent. Furthermore, each main component contains a terminal. Since C is a

connected component of G \ S, there is a path P in G[C] from M1 to M2. Recall that

P is not an edge. Since both main components contain terminals, there is path from a

terminal inM1 to a terminal inM2 which contains P as a subpath. However, this implies
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that every vertex in P lies on a T -path in G\S, which contradicts the maximality of M1

and M2. Hence, we conclude that there is a unique main component of C.

Definition 7.3.4. Consider an instance (G, T = Te ∪ To, k) of PMWC and let S be a

solution for this instance. Consider a non-isolated component C in G \ S and let M

be the main component of C. Then, the connected components of the graph G[C \M ]

are called the semi-isolated components of C in G \ S. Vertices in a semi-isolated

component are called semi-isolated vertices.

Observation 7.3.5. Consider an instance (G, T = Te ∪ To, k) of PMWC and let S be

a solution for this instance. Consider a non-isolated component C in G \ S and let

M be the main component of C in G \ S. Every terminal in C is also present in M .

Furthermore, if C ′ is a semi-isolated component of C, then there is no T -path in G \ S

which intersects C ′.

Proof. Both statements are clearly true when C contains a single terminal. Therefore,

we assume that C contains at least 2 terminals. Now, let T ′ = T ∩ C and consider a

minimal tree, say H , in G[C] which spans the terminals in T ′. Since C is connected

component, such a tree exists. Since H is minimal, every vertex in H lies on a T -path

within H . Since the main component is unique, H is contained in the main component,

which implies that all the vertices in T ′ occur in the main component ofC. Furthermore,

if there is a semi-isolated component C ′ such that there is a T ′-path in C intersecting a

vertex in C ′ then we may simply add the vertices of this T ′-path to the main component

to get another connected subgraph with every vertex lying on a T -path inG\S. Since the

main component is strictly contained inside this subgraph, it contradicts the maximality

of the main component.
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Figure 7.1: An illustration of a solution S
where X is the isolated part of S, C3 is
a non-isolated component, C ′3 is the semi-
isolated part of C3 and C4

3 is a main compo-
nent.

Figure 7.2: An illustration of the two sub-
cases of case (b) in Lemma 7.3.6.

Lemma 7.3.6. Let (G, T = Te∪To, k) be an instance of PMWC and let S be a solution

for this instance. Then, any semi-isolated component has exactly 1 neighbor in the

adjacent main component.

Proof. Consider a semi-isolated component C ′ and let M be the main component adja-

cent to C ′. We will now show that C ′ cannot have more than one neighbor in M .

Suppose that this is not the case and let v1 and v2 be two distinct vertices inM which

are adjacent to vertices in C ′. We note that if v1 and v2 are terminals, then there is a path

between these two terminals which intersects the semi-isolated component C ′, which is

not possible by Observation 7.3.5. Now, consider the case when exactly one of the two

vertices, say v1, is a terminal. But, v2 lies on a path between two terminals, say w1 and

w2 where w1 or w2 could be v1. Consider this path and consider the two subpaths of this

path from v2 to w1 and from v2 to w2. At least one of these two subpaths is disjoint from

v1. Hence, this subpath, along with the edges from C ′ to v1 and v2 results in a T -path
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which intersects a semi-isolated component, a contradiction.

We now consider the remaining case where v1,v2 /∈ T . Let P be a T -path from t1 to

t2 which contains v1. We know that such a path exists since v1 lies in a main component.

Let P1 be the subpath of P from t1 to v1 and let P2 be the subpath of P from v1 to t2.

Let P3 be a path from v2 to t3 ∈ T (t3 can be the same as t1 or t2). We know that such a

path exists since v2 is in a main component. We now consider the following two cases.

(a) P3 does not intersect P2 or P1. Then clearly, there are paths from t1 to t3 and t2 to t3

which intersect the semi-isolated component C ′, and are disjoint from the solution,

which is a contradiction since no vertex in C ′ can lie on a T -path disjoint from the

solution.

(b) P3 intersects P2 or P1. Without loss of generality, suppose that P3 intersects P2

first (see Fig. 7.2) when traversing from v2 to t3 and let the vertex at which this

intersection occurs be u. Let P ′3 be the subpath of P3 from v2 to u and let P ′2 be the

subpath of P2 from u to t2. Additionally, let P be a path from v1 to v2 such that the

internal vertices of P lie in C ′. Since C ′ is a connected component, we know that

such a path exists. But now, P1 + P + P ′3 + P ′2 is a t1-t2 path disjoint from S and

intersecting C ′. This is a contradiction since no vertex in C ′ can lie on a T -path in

G \ S (by Observation 7.3.5).

This concludes the proof of the lemma.

Definition 7.3.7. Let (G, T = Te ∪ To, k) be an instance of PMWC and let S be a

solution for this instance. Let C be a non-isolated component of G \ S and let C ′ be

a semi-isolated component of C. We denote the unique neighbor of C ′ in the adjacent

main component by χ(C ′) and refer to this vertex as the pivot of C ′. For every vertex

v ∈ C ′, we define χ(v) = χ(C ′).
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Lemma 7.3.8. Let (G, T = Te∪To, k) be an instance of PMWC and let S be a solution

for this instance. Then, no vertex in T occurs as a pivot in G \ S.

Proof. Suppose that a terminal t ∈ T occurs as a pivot and let C be the component of

G\S containing t. Recall that by assumption, every terminal in this instance has a single

neighbor. Let u be the neighbor of t inG. Therefore, it must be case that u lies in a semi-

isolated component of C. However, if C contains 2 terminals, then the main component

of C is a connected subgraph containing both terminals (by Observation 7.3.5), which

implies that the vertex u is also in the main component of C, a contradiction. Therefore,

it must be the case that C does not contain a terminal other than t. But in this case, u

is in the main component by definition, a contradiction. This completes the proof of the

lemma.

7.3.2 Branching on isolated and semi-isolated vertices

In this subsection, we show that given a an isolated or semi-isolated vertex (Lemma 7.3.10

and Lemma 7.3.12) with respect to some solution, we can compute a set of bounded size

which intersects some solution for this instance.

Lemma 7.3.9. Consider an instance (G, T = Te∪To, k) of PMWC. Let S be a solution

for this instance and let v be an isolated vertex in G \ S. There is a solution for this

instance which intersects an important v-T separator of size at most k.

Proof. Due to Preprocessing Rule 2, v lies on a T -path in G. Since v is isolated in

G \S, it must be case that there is a non empty set K ⊆ S such that K is a minimal v-T

separator. If K is an important v-T separator, then S itself a solution of the required

kind. Suppose that K is not an important v-T separator and let J be an important v-T

separator dominating K. We claim that the set S ′ = (S \K) ∪ J is also a solution for
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Input : Instance (G, T = Te ∪ To, k) of PMWC and a vertex v such that v is
isolated with respect to some solution for the instance

Output: A setR of vertices which intersects some solution
1 X ← set of important v-T separators of size at most k
2 R ← ∪X∈XX
3 returnR
Algorithm 7.3.1: Algorithm BRANCH-ISO to compute a set of vertices intersect-
ing a solution when given a vertex isolated with respect to some solution.

the given instance. Clearly |S ′| ≤ |S|. Therefore, if S ′ were not a solution, then there

is a T -path of forbidden parity in the graph G \ S ′. Since S is a pmwc, this path must

intersect S \ S ′ = K \ J . This implies the existence of a path from K \ J to T in the

graph G \ S ′ which in turn implies the existence of a path from K \ J to T in the graph

G \ J since J ⊆ S ′.

However, since J dominates K (by Lemma 3.2.9), there is no path from K \ J to T

inG\J , a contradiction. Therefore, S ′ is a solution for the given instance intersecting an

important v-T separator of size at most k. This completes the proof of the lemma.

Lemma 7.3.10. Consider an instance (G, T = Te∪To, k) of PMWC. Let S be a solution

for this instance and let v be an isolated vertex in G \ S. Given v, in time O∗(4k), we

can find a set of at most 4kk vertices with a non-empty intersection with some solution

for this instance.

Proof. By Lemma 3.2.18 we know that the number of important v-T separators of size

at most k is at most 4k and these can be enumerated in time O∗(4k). Therefore, to

compute the required set intersecting a solution, we simply enumerate all important v-T

separators of size at most k and return the set obtained by taking the union of the vertices

in these separators . By Lemma 7.3.9, the returned set intersects some solution for the

given instance. This completes the proof of the lemma.
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We now prove an analogous lemma for semi-isolated vertices.

Lemma 7.3.11. Consider an instance (G, T = Te ∪ To, k) of PMWC. Let S be a

solution for this instance and let v be a semi-isolated vertex in G\S. There is a solution

intersecting an important v-T separator of size at most k + 1 in the graph G.

Proof. Due to Preprocessing Rule 2, v lies on a T -path in G. Since v is semi-isolated, it

must be case that there is a non-empty setK ⊆ S such thatK is a minimal v-T separator

in the graphG\{χ(v)}. IfK ′ = K∪{χ(v)} is an important v-T separator, then S itself

is a solution of the required kind. Suppose that K ′ is not an important v-T separator and

let J be an important v-T separator dominatingK ′. We now select a vertex u as follows.

If χ(v) ∈ J , then we set u = χ(v) and if χ(v) /∈ J , then we choose as u an arbitrary

vertex in J \K. We claim that the set S ′ = (S \K)∪ (J \ {u}) is also a solution for the

given instance. Clearly, |S ′| ≤ |S|. Therefore, if S ′ were not a solution, then there is a

T -path intersecting S \ S ′ = K \ J . This implies that there is a vertex z ∈ K \ J which

has two vertex disjoint paths to T in G \ (J \ {u}). However, since J dominates K ′,

J intersects all paths from z to T in G (by Lemma 3.2.9). Therefore, there cannot be 2

vertex disjoint paths from z to T in the graph G \ (J \ {u}), a contradiction. Hence, we

conclude that S ′ is a solution for the given instance which intersects an important v-T

separator of size at most k + 1. This completes the proof of the lemma.

Lemma 7.3.12. Consider an instance (G, T = Te∪To, k) of PMWC. Let S be a solution

for this instance and let v be a semi-isolated vertex with respect to S. Given v, in time

O∗(4k), we can find a set of at most 4k+1(k + 1) vertices with a non-empty intersection

with some solution for this instance.

Proof. By Lemma 3.2.18 we know that the number of important X-Y separators of size

at most k + 1 is at most 4k+1 and these can be enumerated in time O∗(4k). Therefore,
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Input : Instance (G, T = Te ∪ To, k) of PMWC and a vertex v such that v is
semi-isolated with respect to some solution for the instance

Output: A setR of vertices which intersects some solution
1 X ← set of important v-T separators of size at most k + 1
2 R ← ∪X∈XX
3 returnR
Algorithm 7.3.2: Algorithm BRANCH-SEMI-ISO to compute a set of vertices
intersecting a solution when given a vertex semi-isolated with respect to some
solution.

to compute the required set intersecting a solution, we simply enumerate all important

v-T separators of size at most k + 1 and return the set obtained by taking the union of

the vertices in these separators (see Algorithm 7.3.2). By Lemma 7.3.11, the returned

set intersects some solution for the given instance. This completes the proof of the

lemma.

Definition 7.3.13. Consider an instance (G = (V,E), T, k) of PMWC. We call J ⊆ V

an important component ifG[J ] is connected andN(J) is an important J-T separator

of size at most k + 1.

Lemma 7.3.14. Let (G, T = Te ∪ To, k) be a YES instance of PMWC. Then, there is

a solution S for this instance such that every every isolated or semi-isolated component

in G \ S is an important component.

Proof. Consider the set of solutions for this instance with minimum size and among

these let S be the solution which maximizes the number of vertices which are isolated

or semi-isolated in G \ S. We claim that S is a solution which satisfies the statement of

the lemma.

We first show that for any isolated or semi-isolated component C in G \ S, the

set N(C) is a minimal C-T separator. For this, it suffices to show that for any vertex
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v ∈ N(C), there is a C-T path in the graph G \ (N(C) \ {v}). Consider a vertex

v ∈ N(C). Suppose that C is a semi-isolated component and v = χ(C). There is a

path from v to T in G \ (N(C) \ {v}) since v lies in a main component of G \ S by

definition and N(C) \ {v} is contained in S. This implies the presence of a C-T path

in G \ (N(C) \ {v}) since C is adjacent to v. Therefore, we may assume that if C is

semi-isolated, then v 6= χ(C), which implies that v ∈ S. Now, since the solution S is

minimal, there is a T -path containing v in G \ (S \ {v}), which implies that there are 2

vertex disjoint paths from v to T in G \ (S \ {v}) and hence there is a path from v to

T in G \ (N(C) \ {v}). This implies the presence of a C-T path in G \ (N(C) \ {v})

since C is adjacent to v. Therefore, we conclude that N(C) is indeed a minimal C-T

separator.

For any isolated or semi-isolated component C, |N(C)| ≤ k + 1. Therefore, it

remains to show that the neighborhood of every isolated or semi-isolated component is

an important separator.

Case 1: isolated components. Consider an isolated component C such that the set

X = N(C) is not an important C-T separator. Let Y be an important C-T separator

dominating X . We claim that S ′ = (S \ X) ∪ Y is also a solution for the instance.

Clearly, |S ′| ≤ |S|. Therefore, if S ′ were not a solution, then there is a T -path intersect-

ing a vertex in S \ S ′ = X \ Y in the graph G \ S ′. This implies that there is a path

from a vertex in X \ Y to T in the graph G \ Y . But X \ Y is separated from T by Y

(by Lemma 3.2.9) leading to a contradiction. Therefore, S ′ is indeed a solution for this

instance. Observe that if |Y | < |X| or (Y \X) ∩ S 6= ∅, then S ′ is strictly smaller than

S, which contradicts our choice of S. Therefore, we may assume that |Y | = |X| and

(Y \X) ∩ S = ∅. Let y be an arbitrary vertex in Y \X . We claim that S ′′ = S ′ \ {y}

is also a solution for this instance. If this were not the case, then there is a T -path in-
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tersecting y in G \ S ′′. Since S is a solution, this path must intersect some vertex in

S \ S ′′. Since y /∈ S, it must be the case that this path intersects a vertex z ∈ X \ Y .

Therefore, we have that there is a vertex z ∈ X \ Y which has 2 vertex disjoint paths to

T in G \ S ′′ and hence z has 2 vertex disjoint paths to T in G \ (Y \ {y}). However, we

know that Y intersects all paths from z to T in G (by Lemma 3.2.9). Therefore, there

cannot be 2 vertex disjoint paths from z to T in G \ (Y \ {y}), a contradiction. Hence,

we conclude that S ′′ is also a solution for this instance. But S ′′ is strictly smaller than

S ′, which in turn is no larger than S. Therefore, we have that S ′′ is a solution strictly

smaller than S, which contradicts our choice of S. Hence, we conclude that N(C) is

indeed an important C-T separator.

Case 2: semi-isolated components. Consider a semi-isolated component C such that

the set X = N(C) is not an important C-T separator. Let Y be an important C-T

separator dominating X . We select a vertex u as follows. If χ(C) ∈ Y then u = χ(C)

and if χ(C) /∈ Y then choose an arbitrary vertex in Y \ X as u. We claim that S ′ =

(S \X)∪ (Y \ {u}) is also a solution for the instance. Clearly, |S ′| ≤ |S|. Therefore, if

S ′ were not a solution, then there is a T -path intersecting a vertex z in S \ S ′ = X \ Y ,

implying that there are 2 vertex disjoint paths from z to T in G\ (Y \{u}). But X \Y is

separated from T by Y (by Lemma 3.2.9). Therefore, there cannot be 2 vertex disjoint

paths from z to T in G \ (Y \ {u}), a contradiction. Therefore, S ′ is indeed a solution

for this instance. Observe that if |Y | < |X| or (Y \ (X ∪ {u})) ∩ S 6= ∅, then S ′ is

strictly smaller than S, which contradicts our choice of S. Therefore, we may assume

that |Y | = |X| and (Y \ (X ∪ {u})) ∩ S = ∅.

We now prove the following properties regarding the set Y defined above.
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Claim 6. (a) Every vertex in R(C, Y ) is isolated or semi-isolated in G \ S ′.

(b) For every vertex a ∈ NR(C, Y ) ∪ {u}, if a is isolated or semi-isolated in G \ S,

then a is isolated or semi-isolated in G \ S ′.

Proof. (a) Consider a vertex x in R(C, Y ) which lies in a main component of G \ S ′.

Then, x lies on a T -path in G\S ′ and hence there are 2 vertex disjoint paths from x to T

inG\S ′, which implies that there are 2 vertex disjoint paths from x to T inG\(Y \{u}).

However, Y is an x-T separator in G by definition and hence there cannot be 2 vertex

disjoint paths from x to T in G \ (Y \ {u}), a contradiction. Therefore, we conclude

that every vertex in R(C, Y ) is either isolated or semi-isolated in G \ S ′.

(b) Consider a vertex a ∈ NR(C, Y ) ∪ {u} such that a is isolated or semi-isolated in

G \ S, but lies in a main component of G \ S ′. Since a does not have 2 vertex disjoint

paths to T in G \ S, it must be the case that at least one of the two vertex disjoint

paths from a to T in G \ S ′ intersects the set S \ S ′. This implies that there is a vertex

z ∈ S \ S ′ which has 2 vertex disjoint paths to T in G \ S ′. However, this implies that

z ∈ X \Y , which is contained inR(C, Y ) by definition and we have already established

that every vertex in R(C, Y ) is isolated or semi-isolated in G \ S ′ (see (a)), which is a

contradiction. This completes the proof of the claim.

We now compare the number of isolated and semi-isolated vertices in G \ S against

those inG\S ′. The number of isolated and semi-isolated vertices from the setNR(C, Y )∪

{u} in G \ S ′ is at least that in G \ S (Claim 6 (b)). Similarly, the number of isolated

and semi-isolated vertices from the set R(C, Y ) \ X in G \ S ′ is also at least that in

G \ S (Claim 6 (a)). Therefore, it remains to compare the number of isolated and semi-

isolated vertices in G \ S which lie in Y \ (X ∪ {u}) and the number of isolated and

semi-isolated vertices in G \ S ′ which lie in X \ Y . Again, by Claim 6 (a), the number
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of isolated or semi-isolated vertices in G \ S ′ which lie in X \ Y is exactly |X \ Y |.

The number of isolated or semi-isolated vertices in G \ S which lie in Y \ (X ∪ {u}) is

at most |Y \X| − 1 since u is disjoint from X ∩ Y . Therefore, the number of isolated

or semi-isolated vertices in G \ S ′ is at least |X \ Y | − (|Y \ X| − 1) more than that

in G \ S. Since by our assumption, |Y | = |X|, we have that that |X \ Y | = |Y \ X|.

Therefore, we have a solution S ′ with strictly more isolated or semi-isolated vertices,

which contradicts our choice of S. This completes the proof of the lemma.

Lemma 7.3.15. Every vertex v ∈ V is contained in at most 4k+1 important components.

Furthermore, all important components in G can be enumerated in time O∗(4k).

Proof. Consider an important component J . Then, N(J) is an important v-T separator

for any v ∈ J (Lemma 3.2.17(1)). Since there are at most 4k+1 important v-T separators

of size k + 1, v can occur in at most 4k+1 important components. The set of important

components can be computed by computing the set of important v-T separators for every

vertex v in the graph. By Lemma 3.2.18, this requires time O∗(4k).

Lemma 7.3.16. Let G = (V,E) be a graph and T be a vertex set such that every vertex

in G lies on a T -path and every T -path in G has the same parity. Then G is a bipartite

graph.

Proof. Suppose that this is not the case and let C be an odd cycle in G. Consider a

vertex w in the cycle which lies on a t1-t2 path P where t1, t2 ∈ T . Clearly t1 and t2

cannot both lie on C, since it implies the presence of an odd T -path. Hence, at least one

of the vertices, say t1, is disjoint from C. Now, when traversing P from t1 to t2, let u be

the first vertex of P which is in C and let v be the last vertex of P which is in C. Note

that v and t2 need not be distinct. Since P intersects w, it intersects C and hence the

vertex u exists. Now, let P1 be the subpath of P from t1 to u and P2 be the subpath of
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P from v to t2. Suppose that u and v are distinct and let Po and Pe be the 2 subpaths of

C between u and v where Po is odd and Pe is even. Then, the two paths P1 + Po + P2

and P1 + Pe + P2 are T -paths with different parities, which is a contradiction. Hence,

it must be the case that u = v and that any T -path intersecting w intersects C only in

w. Now, let w′ be a vertex in C distinct from w and let P ′ be a t3-t4 path on which

w′ lies, where t3, t4 ∈ T . Note that t3 and t4 need not be distinct from t1 or t2. Let

P ′1 be the subpath of P ′ from t3 to w′ and let P ′2 be the subpath of P ′ from w′ to t4.

By our earlier arguments, it must be the case that P ′1 and P ′2 intersect C only in the

vertex w′. Now, if the paths P1, P2, P ′1 and P ′2 are all pairwise disjoint, then we have a

T -path passing containing w which intersects C in at least 2 vertices, a contradiction to

our earlier assumption that any T -path containing w does not intersect C in any other

vertex. Hence, we consider the case when P1 or P2 intersects P . We assume without

loss of generality that P ′1 intersects P . While traversing P ′1 from w′ to t3, let x be the

first vertex of P on P ′1 and suppose that x ∈ P1. Let the subpath of P ′1 from w′ to x be

P ′′1 and the subpath of P1 from t1 to x be P̃1. Then, the paths P̃1 +P ′′1 and P2 are disjoint

paths from distinct vertices of T to distinct vertices of C. This is a contradiction to our

assumption that any T -path intersects C in at most 1 vertex. This completes the proof

of the lemma.

Observation 7.3.17. Let (G, T = Te ∪ To, k) be an instance of PMWC and let S be

a solution for this instance. The main components of G \ S are bipartite and any odd

cycle in G \ S has at most 1 vertex in a main component.

Proof. Fix a main component in G\S and suppose that this component contains an odd

cycle. This implies that the main component contains at least 3 vertices and therefore,

there are at least 2 terminals in this main component. By Observation 7.2.2, the terminals

in this main component are either all even terminals or all odd terminals. Therefore, the
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T -paths which lie in this main component are all even or all odd. By Lemma 7.3.16, the

main component is bipartite.

Suppose that there is an odd cycle in G \ S which has two vertices in a main com-

ponent. Since we have already shown that the main components are bipartite, this cycle

must intersect a semi-isolated component as well. This implies that there is a semi-

isolated vertex v which has 2 vertex disjoint paths to 2 distinct vertices in the adjacent

main component, which is a contradiction to Lemma 7.3.6.

Lemma 7.3.18. Let (G, T = Te ∪ To, k) be an instance of PMWC and let S be a

solution for this instance of the kind described in Lemma 7.3.14 and suppose that G \ S

is non-bipartite. Then, there is an important component C such that C is disjoint from

S and G[C ∪N(C)] is non-bipartite.

Proof. Consider an odd cycle in G \ S. By Observation 7.3.17, at most one vertex of

this cycle lies in a main component. Therefore, there is an isolated or semi-isolated

component C such that this odd cycle lies in the graph G[C ∪ N(C)]. However, by

Lemma 7.3.14, every isolated and semi-isolated component in G \ S is an important

component and therefore, C is an important component disjoint from S such that G[C∪

N(C)] is non-bipartite. This completes the proof of the lemma.

We refer to any set which intersects all odd cycles in a graph as an oct of the graph. We

now describe the procedure to obtain an instance of PMWC with a solution that is also

an oct for the input graph. Formally, we have the following lemma.

Lemma 7.3.19. Let (G, T = Te∪To, k) be an instance of PMWC. If (G, T = Te∪To, k)

is a YES instance, then there is a solution for this instance which is also an oct of G or

there is a set Z of 2O(k) vertices which can be computed in time O∗(2O(k)) such that Z

intersects some solution for this instance.
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Proof. Suppose that (G, T = Te ∪ To, k) is a YES instance and there is no solution for

this instance which is also an oct of G. Let S be a solution for this instance such that ev-

ery isolated or semi-isolated component is an important component. By Lemma 7.3.14,

we know that such a solution exists. By our assumption, there is an odd cycle in G \ S.

Let H be the set of all important components in G. Let J be the set of all compo-

nents H ∈ H such that G[H ∪ N(H)] is non-bipartite. LetM be an arbitrary subset

of J of size 4k+1k + 1. If |J | < 4k+1k + 1, then setM = J . Let M1, . . . ,M` be the

components inM. We now define the set Z as follows. Initially set Z =
⋃`
i=1N(Mi).

For each Mi, select two vertices ui and vi in an arbitrary odd cycle in G[Mi ∪N(Mi)].

For each 1 ≤ i ≤ `, invoke the algorithms of Lemma 7.3.10 (Algorithm 7.3.1) and

Lemma 7.3.12 (Algorithm 7.3.2) on the vertices ui and vi and add the vertices returned

by each of these invocations to Z. Finally, return Z. We claim that Z intersects some

solution for this instance. Suppose that this is not the case.

We first show that for someM ∈M, any odd cycle inG[M ∪N(M)] is also present

in G \ S.

We first consider the case when |M| = 4k+1k + 1. Since at most 4k+1k impor-

tant components can intersect S, there is an M ∈ M such that M is disjoint from S.

Furthermore, by definition N(M) ⊆ Z and by our assumption, Z is disjoint from S.

Therefore, any odd cycle in the graph G[M ∪N(M)] is an odd cycle in G \ S.

We now consider the case when |M| ≤ 4k+1k. Recall that in this case,M = J . By

Lemma 7.3.18, there is at least one important component M such that G[M ∪ N(M)]

is non-bipartite. Since, every important component in G with the property that G[C ∪

N(C)] is non-bipartite is present in J , M is also present in M. Since by definition

N(M) ⊆ Z and by our assumption, Z is disjoint from S, we have that N(M) is disjoint

from S. Therefore, any odd cycle in the graph G[M ∪N(M)] is an odd cycle in G \ S.
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Without loss of generality, we assume that M = M1 ∈M.

Recall that since we have assumed that Z is disjoint from S and Z contains N(M1)

by definition, S is also disjoint fromN(M1). Consider the vertices u1 and v1 selected by

the algorithm from an odd cycle in G[M ∪N(M)]. By Observation 7.3.17, at least one

of these two vertices is either isolated or semi-isolated inG\S and by Lemma 7.3.10 and

Lemma 7.3.12, the sets returned by Algorithm 7.3.1 or Algorithm 7.3.2 indeed intersect

some solution for the given instance. However, this leads to a contradiction since Z

contains the vertices returned by these two invocations. Therefore, we conclude that Z

intersects some solution for the given instance. It remains to prove the bound on the size

of Z and the time required to compute Z.

The size of Z is bounded by |M|((k + 1) + 2 · 2O(k)) = 2O(k). The time required

to compute Z is bounded by the time required to compute the set of important com-

ponents in G and the time required to run Algorithm 7.3.1 and Algorithm 7.3.2 2|M|

times. Therefore, Z can be computed in time O∗(2O(k)). This completes the proof of

the lemma.

Lemma 7.3.20. Given an instance (G, T = Te∪To, k) of PMWC, there is an algorithm

which runs in time O∗(2O(k2)) and returns ` instances {(Gi, Ti, ki)}1≤i≤` of PMWC,

where ` = 2O(k
2) such that

1. If (G, T = Te ∪ To, k) is a YES instance, then for some 1 ≤ i ≤ `, the instance

(Gi, Ti, ki) is a YES instance of PMWC and has a solution which is also an oct

of Gi.

2. If (G, T = Te ∪ To, k) is a NO instance, then all the returned instances are NO

instances of PMWC.

Proof. The algorithm simply applies Lemma 7.3.19, constructs the set Z and branches
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on each vertex in this set. There is also an additional branch in which the current instance

is returned. The correctness of this algorithm follows from Lemma 7.3.19. We now

prove the stated bound on running time and the number of returned instances.

Since |Z| = 2O(k), at every step, the algorithm branches in 2O(k) ways. Out of these

branches, one is a leaf (where the current instance is returned) and in every other branch,

k decreases by 1 since we are adding a vertex to the solution. Hence, the number of

leaves in the recursion tree is bounded by 2O(k
2). The time taken at each step is the time

required to compute Z, which is O∗(2O(k)) by Lemma 7.3.19. Therefore, the algorithm

runs in time O∗(2O(k2)) and returns 2O(k
2) instances. This completes the proof of the

lemma.

We apply the Lemma 7.3.20 each of the instances returned by the algorithm of Lemma 7.2.4

and therefore, we may assume that from this point on, we are dealing with the following

problem.

BIPARTITION PARITY MULTIWAY CUT (BPMWC) Parameter: k

Input: An instance (G, T = Te ∪ To, k) of PMWC where |Te| ≤ 6k, with the

guarantee that if this instance is a YES instance, then there is a solution which is also

an oct of G.

Question: Is there a pmwc of size at most k disjoint from T ?

Before we move towards applying the important separator template to solve this

problem, we perform one final preprocessing on the instance.

Lemma 7.3.21. There is an algorithm that, given an instance I = (G, T = Te ∪ To, k)

of BPMWC, runs in time O∗(2O(k log k)) and returns 2k log k instances of BPMWC

{(Gi, T = Te ∪ To, k)}1≤i≤` where ` = 2k log k such that
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1. If (G, T = Te ∪ To, k) is a YES instance of BPMWC then there is an 1 ≤ i ≤ `

such that Ii = (Gi, T = Te ∪ To, k) is a YES instance of BPMWC and has an oct

solution Si such that if an even terminal is non-adjacent to the rest of the terminals, then

it occurs by itself in a connected component of Gi \ Si.

2. If (G, T = Te∪To, k) is a NO instance Ii = (Gi, T = Te∪To, k) is a NO instance

of BPMWC for every 1 ≤ i ≤ `.

Proof. Let P be the set of all partitions of the set Te with the property that no set in

any partition contains more than 2 vertices of Te. Since Te ≤ 6k, there are 2O(k log k)

such partitions. Let P = {P1, . . . , P`}. We construct ` instances of BPMWC each

corresponding to a partition in P as follows. Consider a partition Pi = (X1, . . . , Xr)

where each Xj contains at most 2 vertices of Te. Let Gi be the graph obtained from G

by adding an edge between every pair of even terminals which occur in the same set in

the partition Pi. Finally, the instances {(Gi, T = Te ∪ To, k)}1≤i≤` are returned. The

bound on the running time of the algorithm is clear.

1. Suppose that I is a YES instance and let S be a solution for this instance such that S

is also an oct for G. Let P = (X1, . . . , Xr) be the partition of Te among the connected

components of G \ S, that is, the vertices in each Xi occur in the same connected

component of G \S and the vertices of any Xi and Xj occur in different components of

G \ S for i 6= j. Without loss of generality, let P1 be this partition. We claim that the

instance I ′ = (G1, T = Te ∪ To, k) is a YES instance of BPMWC. In order to prove

this, we show that S is also a solution for the instance I ′ and S is an oct for the graph

G1.

If S were not a solution for the instance, then there is a T -path P of forbidden parity

in G1 \ S. Since S is a solution for G \ S, it must be the case that P contains an edge
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which is in G1 but not in G. Therefore, P contains an edge between two even terminals

t1 and t2. However, by assumption, t1 and t2 occur in the same component of G \S and

there is no other terminal in this component. Since we only added edges between ver-

tices in the same component ofG\S, t1 and t2 appear in the same connected component

of G1 \S and no other terminals occur in this component. Therefore, it must be the case

that P is a path between t1 and t2. Since we have already established that P contains an

edge between t1 and t2, P itself must be just the edge (t1, t2). But by assumption, P is

a path of even parity, which contradicts our conclusion that P has length 1. Clearly, any

even terminal in G1 which is non-adjacent to the rest of the terminals occurs by itself in

a connected component of G \ S and hence occurs by itself in a connected component

of G1 \ S.

2. In the converse direction, since adding edges to the graph G cannot create a smaller

pmwc, if I were a NO instance then (Gi, T = Te∪To, k) will be a NO instance for every

1 ≤ i ≤ `.

We assume that the instance of BPMWC we are given is one returned by the algorithm

of Lemma 7.3.21. Furthermore, observe that in order to prove Theorem 7.1.1, it suffices

to prove the following lemma.

Lemma 7.3.22. BPMWC can be solved in time O∗(2O(k3)).

In the rest of the chapter, we describe how to apply the important separator template

to prove this lemma.
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7.4 Phase 1 of the important separator template

The following lemma gives an algorithm for the case when the set of even terminals in

the given instance is empty.

Lemma 7.4.1. Let (G, T = Te ∪ To, k) be an instance of BPMWC where Te is empty.

Then, we can solve this problem in time O∗(2.3146k).

Proof. The proof is by a parameter preserving reduction to the variable version of AL-

MOST 2-SAT, called the ALMOST 2 SAT(V) problem, which can then be solved in

O∗(2.3146k) time (Corollary 6.5.2). The reduction is as follows. For every vertex u of

the graph, we have a variable xu. The variable xu is intended to represent the side of

the (fixed) bipartition of G \ S which contains u. The 2-CNF formula is constructed

as follows. For every edge (t, u) where t ∈ T , add a clause (u). For every edge (u, v)

in the graph, add two clauses (xu ∨ xv) and (x̄u ∨ x̄v) to the 2-CNF formula F . This

completes the construction of F . We remark that both these clauses will be satisfied if

and only if xu and xv are assigned different values. In addition, we also remark that

the subformula FP of F induced by the clauses corresponding to the edges of some odd

T -path P is unsatisfiable, that is, we cannot find a satisfying assignment for it unless we

delete at least 1 variable from this subformula. We claim that if (G, T = Te ∪ To, k) is

a YES instance of BPMWC, then (F, k) is a YES instance of ALMOST 2 SAT(V) and

if (F, k) is a YES instance of ALMOST 2 SAT(V), then (G, T, k) is also a YES instance

of BPMWC.

Suppose (G, T, k) has a solution S such that G \ S is bipartite. Let Sv be the set of

the variables corresponding to the vertices in S. We claim that the formula F ′ = F \ Sv
is satisfiable. Consider the following assignment for F ′. Fix a bipartition for G \ S

such that all the vertices in To occur in the same partition. Such a partition is possible
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since for each connected component of G \ S, the vertices in To occur in the same

partition of any bipartition. For every vertex u which lies in the same partition as To in

the fixed bipartition of G \ S, we assign xu = 1 and for all other vertices, we assign the

corresponding variable the value 0. This assignment clearly satisfies F ′.

Conversely, consider a solution Sv for the instance (F, k), let F ′ = F \ Sv, and let

S be the set of vertices corresponding to the variables in Sv. If a terminal occurs in S,

then we replace it with its neighboring vertex (recall that every odd terminal is adjacent

to a single vertex). We claim that S is a solution for the given instance of BPMWC.

Suppose that this is not the case, and consider an odd T -path P in the graph G \ S and

let FP be the subformula of F induced by the clauses corresponding to the edges in P .

Since none of the vertices intersecting the path P have been deleted, it must be the case

that none of the variables corresponding to the vertices along this path are in Sv. But

this implies that FP remains as a subformula of F ′ and since FP is not satisfiable, F ′ is

also not satisfiable, which is a contradiction.

Lemma 7.4.2. Let (G, T = Te ∪ To, k) be an instance of BPMWC where To is empty

and |Te| = 2. Then, we can solve this problem in time O∗(2.3146k).

Proof. Let Te = {t1, t2}. Let G′ be the graph obtained from G by subdividing the

edges incident on t1, let T ′e = ∅ and let T ′o = Te. It is easy to see that (G, T = Te ∪

To, k) is a YES instance of BPMWC if and only if (G′, T ′ = T ′e ∪ T ′o, k) is a YES

instance of BPMWC. Therefore, by Lemma 7.4.1, the problem can be solved in time

O∗(2.3146k).

Finally, the following lemma is a straightforward consequence of Lemma 7.3.21.

Lemma 7.4.3. Let (G, T = Te ∪ To, k) be an instance of BPMWC where |Te| ≥ 3 or

Te and To are both non-empty. Let T1 ⊆ Te such that either T1 consists of a single even
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terminal non-adjacent to the rest of the terminals or it consists of a pair of adjacent even

terminals. Then, there is an oct solution for the given instance containing a minimal T1-

(T \ T1) separator.

We have therefore, shown that either the problem can be solved straightaway in FPT

time by applying Lemma 7.4.1 or Lemma 7.4.2 or there is a solution which contains

a minimal T1-(T \ T1) separator. This completes Phase 1 of the important separator

template.

7.5 Phases 2 and 3

In this section, we describe the second and third phases of the template.

7.5.1 Tight separator sequences and a generalization of important

separators

In this subsection we define the notion of a tight separator sequence and use it in the

context of BPMWC to define a generalization of important separators with the proper-

ties we require. This serves as the dominating set described in the important separator

template.

Definition 7.5.1. Let G = (V,E) be a graph and let X, Y ⊆ V be disjoint vertex

sets. We define an important X-Y separator of order i, Si to be the unique smallest

important X-Si−1 separator in G, where S0 = Y .

Definition 7.5.2. Let G = (V,E) be a graph and let X, Y ⊆ V . Let l ≥ 1 be such that

there is no important X-Y separator of order l + 1. We define a tight X-Y separator

sequence I to be a set I = {Si|1 ≤ i ≤ l}, where Si is an important X-Y separator of

order i. (see Fig. 7.3).
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Input : (G, T1, T2, k)
Output: Tight sequence of T1-T2 separators if there is a T1-T2 separator of size at

most k and NO otherwise
1 Apply Lemma 3.2.15 to compute the unique smallest important T1-T2 separator Y
2 I = Y
3 if |Y | > k then return NO.
4 while there is an important T1-Y separator X of size at most |Y | do
5 I = I ∪ {X}
6 Y = X

7 end
8 return I
Algorithm 7.5.1: Algorithm COMPUTE-TIGHT-SEQUENCE to compute the
Tight Sequence of T1-T2 separators.

Observation 7.5.3. Let G = (V,E) be a graph and let X, Y ⊆ V . Given two X-Y

separators S1 and S2, we say that S1 � S2 if S2 covers S1 with respect to X . Then,

(I,�) forms a total order where I is a tight X-Y separator sequence.

Observation 7.5.3 is the reason we refer to the set I as a sequence.

Lemma 7.5.4. Let G = (V,E) be a graph and let X, Y ⊆ V . A tight X-Y separator

sequence is unique and can be computed in polynomial time.

Proof. We know that for any two disjoint vertex subsets A and B, there is a unique

smallest important A-B separator (by Lemma 3.2.13) and it can be computed in poly-

nomial time. Therefore, for every i, an importantX-Y separator of order i is unique and

can be computed in polynomial time. The algorithm to compute the tightX-Y separator

sequence is described in Algorithm 7.5.1.

Lemma 7.5.5. Let G = (V,E) be a graph, let X, Y ⊆ V and let I be the tight X-Y

separator sequence. Let P1 and P2 be two separators in I such that P1 � P2 and there

is no P3 in I such that P1 � P3 � P2. Then, the size of a minimum X-Y separator

which lies in the set NR(X,P1) ∩R(X,P2) is at least |P1|+ 1.
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Proof. If this were not the case, then there is a an X-Y separator S of size |P1| which

lies in the set NR(X,P1) ∩R(X,P2). Since P2 is a successor of P1 in I, it must be the

case that S /∈ I. Let i be such that P2 = Si−1 and P1 = Si, that is, P1 is the unique

smallest important X-P2 separator. However, since P1 � S � P2 and S lies in the set

NR(X,P1) ∩ R(X,P2) it implies that S is an X-P2 separator dominating P1, which

contradicts the fact that P1 is an important X-P2 separator.

The key consequence of the definition of the tight separator sequence is that it defines

a natural partition of the graph into slices with small boundaries. Using this, we may

restrict our search to local parts of the graph, in which case finding separators with

certain properties becomes easier. We will now describe how this concept is applied in

the context the BPMWC problem.

Definition 7.5.6. For a graph G = (V,E), we refer to a smallest odd cycle transversal

in the graph G as a minimum oct and denote the size of this set by oct(G).

Definition 7.5.7. Let G = (V,E) be a graph, let X, Y ⊆ V . Let S be a minimal

X-Y separator such that oct(G[R(X,S)]) = `. We say that a minimal X-Y separa-

tor S ′ well dominates S (with respect to X) if S ′ dominates S with respect to X and

oct(G[R(X,S ′)]) ≤ `.

Note that any X-Y separator well dominates itself. The above definition is motivated

by the following observation.

Observation 7.5.8. Let (G, T = Te∪To, k) be an instance of BPMWC and let T1 ⊆ Te

such that T1 = {t} where t is an even terminal non-adjacent to any other terminal or

T1 = {t1, t2} where t1 and t2 are adjacent in G. Let S be a solution for this instance

such that G \ S is a bipartite graph. Let S ′ be a minimal part of S which separates T1

from T \ T1 in G and let S ′′ = S ∩ (R(T1, S
′)). Then, S ′′ is an oct for G[R(T1, S

′)].
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Furthermore, if |T1| = 2, then any oct for G[R(T1, S
′)] intersects all even T1-paths in

G[R(T1, S
′)].

Lemma 7.5.9. Let I = (G, T = Te ∪ To, k) be an instance of BPMWC, let S be an oct

solution for this instance, and T1 be a subset of Te such that |T1| ≤ 2, and S is a T1-T2

separator where T2 = T \T1. Furthermore, suppose that if |T1| = 2, then the vertices in

T1 are adjacent. Let Ŝ be a minimal part of S separating T1 and T2. Let Ŝ1 be a T1-T2

separator which well dominates Ŝ. Then, there is also an oct solution for the instance

which contains Ŝ1.

Proof. Let K̂ ⊆ S be a minimum oct for the graph G[R(T1, Ŝ)] and let K̂1 be a mini-

mum oct for the graph G[R(T1, Ŝ1)]. Consider the set S ′ = (S \ (Ŝ ∪ K̂))∪ (Ŝ1 ∪ K̂1).

We claim that S ′ is also a solution for the given instance. It is clear that |S ′| ≤ |S|.

Hence, it remains to show that S ′ is indeed a pmwc for the given instance and an oct of

G.

Suppose that S ′ is not a pmwc for the given instance. Then, there are two terminals

ti and tj such that there is a path P of forbidden parity between ti and tj in the graph

G \ S ′. Since S is a solution, this path intersects S \ S ′ = Ŝ \ Ŝ1. That is, there is a

vertex v ∈ Ŝ \ Ŝ1 such that the path P intersects v. Suppose ti ∈ T2 or tj ∈ T2. Then,

the presence of P in G \ S ′ implies the presence of a path from v to T2 in G \ S ′. Since

Ŝ1 ⊆ S ′, there is a path from v to T2 in G \ Ŝ1. However, since Ŝ1 dominates Ŝ, there

is no path from Ŝ \ Ŝ1 to T2 in the graph G \ Ŝ1 (by Lemma 3.2.9), which contradicts

that there is a path from v ∈ Ŝ \ Ŝ1 to T2 in the graph G \ Ŝ1. Hence, we conclude that

ti, tj ∈ T1.

Since |T1| ≤ 2, T1 = {ti, tj}. Since T1 ⊆ Te, the path P is an even ti-tj path.

However, (ti, tj) is an edge (by our assumption). Therefore, by Observation 7.5.8, K̂1

intersects every even T1 path in G[R(T1, Ŝ1)] and since K̂1 ⊆ S ′, S ′ intersects every
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even T1-path, a contradiction. Hence, we conclude that S ′ is a pmwc for the given

instance. The same argument also shows that S ′ is an oct for G. This completes the

proof of the lemma.

The above lemma describes the dominating set for the set of minimal T1-T2 separators

and the following lemma shows that we can compute a bounded set of vertices intersect-

ing a solution in FPT time.

Lemma 7.5.10. Let (G, T = Te ∪ To, k) be an instance of BPMWC with a solution

S. Let T1 be a subset of Te such that |T1| ≤ 2, and S is a T1-T2 separator where

T2 = T \ T1. Furthermore, if |T1| = 2, then the vertices in T1 are adjacent. Then, there

is an algorithm which runs in time O∗(2O(k2)) and returns a set of 2O(k
2) vertices which

intersects some oct solution for the given instance.

Proof. Let X be a minimal part of S separating T1 from T2. For a given set of candi-

date vertices, the algorithm computes (if possible) a subset of the candidate set which

intersects a T1-T2 separator well dominating X . Initially, and also when the candidate

set is not explicitly given, we allow this set to be the entire vertex set of the graph, and

as we prune our search, we will redefine the candidate set accordingly. We first fix a

hypothetical minimum oct for the graph G[R(T1, X)], say K ⊆ S and guess the size

of this set, say `. Formally, given a tuple (G,Z, T1, T2, k, `), the algorithm returns a

set of vertices R, such that for any T1-T2 separator X of size at most k with an oct

of size ` in the graph G[R(T1, X)], there is a T1-T2 separator which well dominates

X and has a non-empty intersection with R. The algorithm is invoked on the input

(G, V \ (T1 ∪ T2), T1, T2, k′, `′) for every 1 ≤ k′ ≤ k and 1 ≤ `′ ≤ k.

Description of algorithm. We first check if there is a T1-T2 separator of size at most

k contained in the given subset Z (see Algorithm 7.5.2). If not, then we return NO.
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Figure 7.3: Illustration of a tight separator sequence

If there is no path from T1 to T2 in G, then we return ∅. Otherwise, we compute the

tight T1-T2 separator sequence I, comprising only the vertices in Z. We call a T1-T2

separator S ′ good if the size of the minimum oct in the graph G[R(T1, S
′)] is at most l

and we call it bad otherwise. The following observation plays a crucial role in allowing

us to ignore (potentially) large parts of the graph during our search.

Observation 7.5.11. If a T1-T2 separator S ′ is good, then all T1-T2 separators covered

by S ′ are also good and if S ′ is bad, then all T1-T2 separators which cover S ′ are bad.

For each T1-T2 separator Y ∈ I, we now determine whether Y is good or bad. For this

we only need check if there is an oct of size at most ` in the graph G[R(T1, Y )] and

hence this requires time O∗(2.3146`) (by Corollary 6.5.5).

Let P1 be the maximal element of I which is good and let P2 be the minimal element

of I, which is bad. That is, P1 is good and every separator in I \ {P1} which covers

P1 is bad, P2 is bad and every separator in I \ {P2} covered by P2 is good. If all the

separators in I are good, then P2 is defined as T2 and if all separators in I are bad, then

P1 is defined as T1. We now move on to the description of the rest of the algorithm.

– We add the vertices in P1 \ T1 and P2 \ T2 into the setR.

– We set Z ′ = Z ∩ (R(T1, P2)∩NR(T1, P1)) and add the vertices returned by the invo-

cation CWDS(G,Z ′, T1, T2, k, `) toR.
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Input : (G,Z, T1, T2, k, `)
Output: A subset of Z which, for every T1-T2 separator X , intersects a T1-T2

separator well dominating X or NO if no such separator exists
1 if k < 0 then return NO

2 Check if there is a T1-T2 separator of size at most k contained in Z
3 if there is no such separator then return NO

4 if there is no T1-T2 path in G then return ∅
5 I =TIGHT-SEPARATOR-SEQUENCE(G, T1, T2, k, `)
6 for each Y ∈ I do
7 OY ← oct(G[R(T1, Y )])
8 end
9 P1 ← maximal separator with OY ≤ `

10 P2 ← minimal separator with OY > `
11 R ← (P1 \ T1) ∪ (P2 \ T2)
12 Z ′ = Z ∩ (R(T1, P2) ∩NR(T1, P1))
13 R ← R∪ CWDS(G,Z ′, T1, T2, k, `)

14 for each ordered 4-partition J = (P nr
1 , P e

1 , K̃, P
o
1 ) of P1 do

15 R ← R⋃∪k′≤k−1,l′≤` CWDS(GJ , Z ∩GJ , T1, P
nr
1 , k′, `′)

16 end
17 for each ordered 4-partition J = (P nr

2 , P e
2 , K̃, P

o
2 ) of P2 do

18 R ← R⋃∪k′≤k−1,`′≤`CWDS(GJ , Z ∩GJ , T1, P
nr
2 , k′, `′)

19 end
20 return R

Algorithm 7.5.2: Algorithm COMPUTE-WELL-DOMINATING-SET (CWDS)

–For each ordered 4-partition of P1, J = (P nr
1 , P e

1 , K̃, P
o
1 ) we construct a graph GJ as

follows. Initially, we set GJ = G[R(T1, P1)∪ (P1 \ K̃)]. For every pair in P e
1 × P o

1 , we

add an edge between the vertices and for every pair in
(
P e
1
2

)
and

(
P o
1
2

)
we add a subdivided

edge between the vertices. This completes the construction of GJ .

Now, for each GJ , for each 1 ≤ k′ ≤ k − 1 and for each 0 ≤ `′ ≤ `, we recurse on

the instance (GJ , Z ∩GJ , T1, P
nr
1 , k′, `′) and add the vertices in the sets returned, toR.

–Similarly, we do the same for every ordered 4-partition of P2.
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– Finally, we return the setR.

This completes the description of the algorithm. We now prove the correctness of

the algorithm.

Correctness. For each tuple I = (G,Z, T1, T2, k, `) on which the algorithm is in-

voked, we define a measure µ(I) = 2k − λ where k is the upper bound on the size

of the T1-T2 separator we are searching for in I , and λ is the size of the smallest such

separator. We prove the correctness of the algorithm by induction on the measure µ(I).

In the base case, if λ > k, then algorithm returns NO, which is clearly correct.

Similarly, if λ = 0, then there is no path between T1 and T2 in the graph and hence

the algorithm simply returns ∅ as the separator, which is also correct. This completes

the correctness of the base cases and we now assume that the algorithm is correct on all

instances I with µ(I) < µ. Now, consider an instance I such that µ(I) = µ.

1. Suppose P1 covers the separator X or P1 = X . In this case, the algorithm is correct

on the instance I since P1 itself is a T1-T2 separator well dominating X and the set re-

turned by CWDS(I) contains P1.

2. The separator X covers P1, and X is covered by P2 . Let S̃1 be the intersection of

X with P1 and S̃2 be the intersection of X with P2. Suppose that S̃1 ∪ S̃2 is non-empty.

But S̃1 ∪ S̃2 is contained in P1 ∪ P2 and is disjoint from T1 ∪ T2. Therefore, since the

set returned by CWDS(I) contains (P1 \ T1)∪ (P2 \ T2), the algorithm is correct on the

instance I .
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Now, consider the case when both S̃1 and S̃2 are empty. Let I ′ be the instance on

which the algorithm is invoked in Step 13. By Lemma 7.5.5, any T1-T2 separator which

lies in the set NR(T1, P1) ∩ R(T1, P2) has size at least |P1| + 1. Hence, µ(I ′) ≤ µ− 1

and by the induction hypothesis, CWDS(I ′) returns a set intersecting a T1-T2 separator

of size at most k which well dominatesX , which proves the correctness of the algorithm

on the instance I as well.

3. The separator X is incomparable with P1 . Let S̃1 be the intersection of X with P1,

P r
1 be the intersection of P1 with RG(T1, X), K̃ = K ∩ P1 and P nr

1 = P1 \ (P r
1 ∪ K̃).

Also, let Xr be the intersection of X with RG(T1, P1) and let Xnr be the rest of X .

Since X is incomparable with P1, by Observation 3.2.8, P r
1 , Xr, P nr

1 and Xnr are non

empty. Let P e
1 and P o

1 be a bipartition of P r
1 \ K̃ such that the vertices in P e

1 and P o
1

appear in different partitions of some bipartition of G \ S (G \ S is bipartite since S is

an oct for G).

Since the set returned by CWDS(I) contains P1 \ T1, if S̃1 is non-empty then the

algorithm is correct on I . Now, consider the case when S̃1 is empty. Consider the graph

GJ corresponding to the partition (P nr
1 , P e

1 , K̃, P
o
1 ). Also, let Kr = K ∩R(T1, P1) and

let `′ = |Kr|. Let I ′ be the instance (GJ , Z ∩ GJ , T1, P
nr
1 , |Kr|, `′). Recall that the

set returned by the invocation CWDS(I) contains the vertices in the set returned by the

invocation CWDS(I ′) (Line 15 of the algorithm). We now prove the following claim

which will be used along with the induction hypothesis to prove the correctness of the

algorithm on I .

Claim 7. (a) The set Xr is a T1-P nr
1 separator in the graph GJ such that the subgraph

GJ [RGJ
(T1, X

r)] has an oct of size `′.

(b) Let X ′ be a T1-P nr
1 separator which well dominates Xr in the graph GJ . Then, the
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set X ′ ∪Xnr well dominates X in the graph G.

Proof. (a) In order to prove this statement, it is sufficient to show that Kr is an oct for

the graph G′ = GJ [RGJ
(T1, X

r)]. If this were not the case, then there is an odd cycle

C in the graph G′ \ Kr. Replace any edge (respectively subdivided edge) of C which

is present in GJ , but not present in G, with a corresponding path of the same parity in

G (recall that this corresponding path is also present in G \ S to obtain a closed walk

W . Observe that W only contains vertices which are disjoint from S. Therefore, it must

be the case that W is an odd walk in the graph G \ S. However, this contradicts our

assumption that S is an oct for G.

(b) Since X ′ well dominates Xr in GJ , X ′′ = X ′ ∪Xnr is a T1-T2 separator dom-

inating X since it separates T1 from P nr
1 and T2 from P r

1 and |X ′| ≤ |Xr| implies that

|X ′′| ≤ |X|. Therefore, it is sufficient to show that the graph G′ = G[R(T1, X
′′)] has

an oct of size at most `. We claim that the set K ′′ = K ′ ∪ (K \Kr) is indeed such an

oct for G′. It is clear that the size of K ′′ is at most that of K. Since |K| = `, |K ′′| ≤ `.

Therefore it remains to show that K ′′ is indeed an oct for G′.

If this were not the case, then there is an odd cycle C in the graph G′ \K ′′. Clearly,

C cannot intersect P nr
1 since X ′′ separates T1 from P nr

1 by definition. Suppose that C

lies in the set P r
1 ∪ NR(T1, P1). Then, C also lies in the set P r

1 ∪ NR(T1, P1) in the

graph G[R(T1, X)]. But K is an oct for G[R(T1, X)] and since Kr lies in R(T1, P1) it

must be the case that K \Kr intersects C. However, K \Kr is also contained in K ′′,

which implies that K ′′ intersects C, a contradiction. Therefore we may assume that C

intersects the set R(T1, P1).

Now, consider any subpath of C lying in P r
1 ∪NR(T1, P1) with only the endpoints

in P r
1 and the remaining vertices in NR(T1, P1). If this path is odd, then there is an

edge between these two vertices in GJ and if this path is even, then there is a subdivided
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edge between these two vertices in GJ (by definition of GJ ). Therefore, we can replace

all such sub-paths of C with the corresponding edge or subdivided edge in GJ to obtain

an odd cycle C ′ in the graph GJ [RGJ
(T1, X

′)] disjoint from the set K ′, which is a

contradiction. This completes the proof of the claim.

Now, let X ′ be a T1-P nr
1 separator which well dominates Xr in the graph G′. Then,

due to Claim 7, X ′ ∪Xnr is a T1-T2 separator which well dominates X in the graph G.

Therefore, a set intersecting a T1-P nr
1 separator which well dominates Xr in the graph

G′ also intersects a T1-T2 separator which well dominates X in the graph G. Therefore,

if the algorithm is correct on I ′, then it is also correct on I and hence it only remains to

prove that the algorithm is correct on I ′. Note that to prove that the algorithm is correct

on I ′, it is sufficient to prove that µ(I ′) < µ(I) = µ since the correctness then follows

from the induction hypothesis.

By Menger’s theorem, since P1 is a minimum size T1-T2 separator, we know that

there are P nr
1 vertex disjoint paths from T1 to P nr

1 , which is also a lower bound on the

size of the smallest T1-P nr
1 separator in GJ . Now, µ(I) = 2(|Xr| + |Xnr|) − (|P nr

1 | +

|P r
1 |) and µ(I ′) = 2|Xr| − |P nr

1 |, which implies that µ(I ′) = µ(I) − (2|Xnr| − |P r
1 |).

Since |Xnr| ≥ |P r
1 |, we have that µ(I) − µ(I ′) ≥ |Xnr|. Since Xnr is non empty, we

conclude that µ(I ′) < µ(I), which completes the proof of correctness of this case.

4. The separator X is incomparable with P2. This correctness of this case is analogous

to the correctness of the previous case.

We note that the separatorX is a good separator by definition and therefore cannot cover

P2 due to Observation 7.5.11. Therefore the case that X covers P2 need not be taken

into consideration and the cases we have considered are exhaustive. This completes the
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proof of correctness of the algorithm.

Running time. We show by induction on µ(I) that the number of vertices in the set

returned by CWDS(I), denoted by N(µ(I)), is bounded by 26µ(I)2 . In each of the base

cases of the algorithm, we either return a single vertex or say NO, and hence the bound

clearly holds. We assume that the claimed bound is true for all instances with µ(I) < µ.

Now, consider an instance I such that µ(I) = µ. Moreover, k > 1.

1. The number of vertices added in Step 11 is bounded by 2k.

2. The number of vertices added in Step 13 is bounded by 26(µ−1)2 by the induction

hypothesis.

3. Consider the vertices added in Step 15. There are at most 4k ordered 4-partitions of

P1, k choices for `′, and k choices for k′. For each of these choices, we return a set of

size at most N(µ − 1), which, by the induction hypothesis is at most 26(µ−1)2 . Hence,

the number of vertices added in this step is bounded by 4k · k2 · 26(µ−1)2 .

4. Similarly, the number of vertices added in Step 18 is bounded by 4k · k2 · 26(µ−1)2 .

Using the fact that k ≤ µ and k ≥ 1, we note that the total number of vertices

returned by CWDS(I) is at most 26(µ)2 , which yields the required bound. The number

of leaves of the recursion tree is clearly bounded by the size of the set returned by

the algorithm, which is 2O(k
2), which is also a bound on the number of internal nodes

of the recursion tree. Since the algorithm spends O∗(2O(k)) time at each node of the
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Phase 1.

(a) If Te = ∅ or |Te| = 2 and To = ∅, then the problem can be solved in time
O∗(2O(k)) (Lemma 7.4.2 and Lemma 7.4.1).

(b) If neither of the above cases are true, then there is a set T1 ⊆ Te such that |T1| ≤ 2
and the solution is a T1-T2 separator (Lemma 7.4.3).

Phase (2 + 3). There is a set R of 2O(k
2) vertices which can be computed in time

O∗(2O(k2)) such that there is an oct solution for the given instance intersecting R
(Lemma 7.5.10).

Phase 4. If either case of Phase 1 applies, then solve the problem by applying
Lemma 7.4.1 or Lemma 7.4.2. Otherwise, run the algorithm of Lemma 7.5.10 and
branch on the vertices returned by this algorithm.

Figure 7.4: Summary of the phases of the important separator template

search tree, the total time taken by the algorithm on the given input, for a fixed k and

` is O∗(2O(k)). Since we invoke the Algorithm CWDS for every 1 ≤ k′ ≤ k and

1 ≤ `′ ≤ k, the total number of vertices returned is 2O(k
2). This completes the proof of

the lemma.

The phases are summarized in Figure 7.4. It is easy to see that the running time of the

algorithm for BPMWC is O∗(2O(k3)). This completes the proof of Theorem 7.1.1.
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Part IV

Parameterized Approximations
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8
Important Separators and Approximation

8.1 FPT-approximation

Definition 8.1.1. (see, e.g.,([28])) An FPT-approximation algorithm with ratio ρ for a

minimization (maximization) problem P is an FPT algorithm that, given an instance x

of P and a positive integer l, either determines that there is no solution of size at most

l (respectively at least l) or computes a solution of cost at most kρ(k) (respectively at

least k/ρ(k)) where k is the parameter. We say that a problem is FPT-approximable if

it has an FPT-approximation algorithm for some function ρ.

Note that the approximation ratio ρ is a function of the parameter and not the input size.

In this chapter, we describe an important separator approach to obtain poly(k) factor

FPT-approximation algorithms for graph separation problems.
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8.2 The Template

The Important Separator Approximation Template

1. Show that either there is a solution which contains an X-Y separator of bounded size

for two sets X and Y or there is a branching or reduction which simplifies the problem,

or the problem is exactly solvable in FPT time.

2. Show that in FPT time, we can either conclude correctly that there is no X-Y separator

of the required size or compute an X-Y separator S such that the size of S is bounded

by a function of k and there is a solution for the given instance intersecting the set

R(X,S) ∪ S.

3. Show that the instance resulting from deleting the separator computed in the previous

phase has a strictly smaller solution.

4. Combine the phases to get a greedy approximation algorithm.

In the following section, we illustrate this approach by describing a polynomial time

approximation algorithm for the MULTIWAY CUT problem and in the next chapter, we

give an FPT-approximation algorithm using this template.

8.3 The template applied to MULTIWAY CUT

The best known polynomial time approximation for the MULTIWAY CUT problem has

an approximation factor of (2 − 2
l
) where l is the number of terminals in the input

instance [37]. However, this algorithm requires the solution of a relaxation of the Integer

Linear Program for the MULTIWAY CUT problem. In this section, we demonstrate how

to apply the template presented in the previous section to obtain a simple greedy factor-

OPT polynomial time approximation algorithm for MULTIWAY CUT where the super-
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linear dependence of the running time is restricted to be polynomially bounded by only

OPT , with the dependence on the input size remaining linear.

Recall that the problem we consider is defined as follows.

MULTIWAY CUT Parameter: k

Input: A graph G, vertex subset T , positive integer k

Question: Is there a set S of at most k vertices which intersects every T -path in G?

We also refer to the set S in the above definition as a mwc for the given instance.

Phase 1. For any terminal t1 ∈ T , if t1 is disconnected from the rest of the terminals

in T , then we can clearly simplify the instance further by removing the component con-

taining t1 from the graph. Otherwise, any solution must contain a minimal t1-T \ t1
separator.

Phase 2.

Lemma 8.3.1. Let (G = (V,E), T, k) be an instance of MULTIWAY CUT and let t1 ∈ T

be a terminal such that t1 lies in the same connected component of G as some vertex in

T \ t1. Then, there is an algorithm that runs in timeO(k3(m+n)) and either concludes

that there is no t1-T \ t1 separator of size at most k or computes a t1-T \ t1 separator S

of size at most k such that any solution for the given instance solution intersects the set

R(t1, S) ∪ S where n = |V | and m = |E|.

Proof. Consider an important t1-T \ t1 separator S of size at most k such that there is no

important t1-T \t1 separator S ′ of size at most k which covers S. Recall that S ′ covers S

if R(t1, S
′) ⊃ R(t1, S). Let X be a solution for the given instance of MULTIWAY CUT.

We claim that X intersects the set R(t1, S) ∪ S. Since we know that X is a t1-T \ t1
separator and there is a path in G from t1 to a vertex in T \ t1, there is a non-empty
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set X ′ ⊆ X such that X ′ is a minimal t1-T \ t1 separator of size at most k. By our

choice of S, it cannot be the case that X ′ covers S. Therefore, X ′ intersects the set

R(t1, S) ∪ S. Observe that S can be chosen as any t1-T \ t1 separator of size at most k

which is computed at a leaf of the search tree of algorithm which computes all important

t1-T \ t1 separators. Such a leaf can be reached in the claimed time by the following

algorithm. We first compute the unique minimum important t1-T \ t1 separator S and if

it has size less than k, check if there is a vertex v ∈ S such that there is anR(t1, S)∪{v}-

T \ t1 separator of size at most k and if so, select such a separator as S and continue.

Since each time we chose the unique minimum important separator, we cannot find more

than k such separators and the time taken in moving from one separator to the next is

bounded by the time taken for k applications of the algorithm of Lemma 3.2.15, which

is O(k(m+ n)), the running time follows. This completes the proof of the lemma.

Phase 3.

Lemma 8.3.2. Let (G, T, k) be a YES instance of MULTIWAY CUT and let t1 ∈ T be

a terminal such that t1 lies in the same connected component of G as some vertex in

T \ t1. Let S be a t1-T \ t1 separator S of size at most k such that any solution for the

given instance intersects the set R(t1, S)∪ S. Then, (G \ S, T, k− 1) is a YES instance

of MULTIWAY CUT.

Proof. Let X be a solution for the instance (G, T, k). Let X ′ = X ∩ (R(t1, S) ∪ S)

and let X ′′ = X \ X ′. Since X ′ is non-empty, |X ′′| ≤ k − 1. We claim that X ′′ is a

solution for the instance (G \ S, T, k). If this were not the case, then there is a ti-tj path

P in G \ (S ∪X ′′) where ti, tj ∈ T . Since S intersects all paths in G from t1 to T \ t1,

ti, tj 6= t1. Since X is a solution for the instance (G, T, k), the path P intersects a vertex

in X \ (X ′′∪S), which implies that P intersects a path in X ′ \S. However, observe that

X ′ \ S ⊆ RG(t1, S), which implies that P intersects a vertex in RG(t1, S) and a vertex
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in T , but is disjoint from S, which is a contradiction since S is a t1-T \ t1 separator. This

completes the proof of the lemma.

Phase 4. We combine the 3 phases and describe our approximation algorithm for MUL-

TIWAY CUT as follows. Given an instance (G, T, k), check if there is a component of G

containing at least 2 terminals in T . If there is no such component, then the empty set

is the solution. On the other hand, if there is such a component then select an arbitrary

terminal t1 from such a component and apply Lemma 8.3.1 to compute a t1-T \ t1 sep-

arator S of size at most k. Then, return the set obtained by the union of S and the result

of the recursion on the instance (G \ S, T, k − 1).

Analysis of the algorithm. The fact that this algorithm returns a set intersecting every

T -path follows from Lemma 8.3.1 and Lemma 8.3.2. The fact that this algorithm runs

in time O(k4(m + n)) follows from the fact that the algorithm of Lemma 8.3.1 runs in

time O(k3(m+ n)) and there are at most k applications of this algorithm.

Furthermore, since the number of recursions is bounded by k and each step of the re-

cursion adds a set of size at most k to the mwc we construct, the set returned is bounded

by k2. This completes the analysis of the algorithm and therefore we have the following

lemma.

Lemma 8.3.3. There is an algorithm that, given an instance (G = (V,E), T, k) of

MULTIWAY CUT, runs in time O(k4(m + n)) and either returns a mwc of size at most

k2 or concludes correctly that there is no mwc of size at most k where n = |V | and

m = |E|.

We conclude this chapter with the next lemma which is a straightforward consequence

of Lemma 8.3.3.
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Lemma 8.3.4. There is an algorithm for the optimization version of MULTIWAY CUT

that, on an instance (G = (V,E), T ) runs in timeO(OPT 5(m+n)) and returns a mwc

of size at most OPT 2, where OPT is the size of the smallest mwc for the given instance,

n = |V | and m = |E|.
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9
Backdoors to q-Horn

9.1 Introduction

SATISFIABILITY (SAT) is a well-known fundamental problem in Computer Science.

SAT and its various variants like its optimization version (finding the maximum num-

ber of clauses that can be satisfied by a truth assignment) and its generalizations (CON-

STRAINT SATISFACTION PROBLEM (CSP)) frequently occur in several practical ap-

plications [5, 71, 97, 61]. Many hard combinatorial problems can be encoded as SAT

instances in the broad sense mentioned above, including problems that arise in hard-

ware and software verification, Artificial Intelligence (AI) planning and scheduling, OR

resource allocation, etc. However, the problem is known to be NP-hard and thus we

cannot hope to find a solution to this ubiquitous problem in polynomial time. In spite of

this, over the last two decades, SAT-solvers have become amazingly successful in solv-

ing formulas with hundreds of thousands of variables that encode problems arising from

various application areas, see, e.g., [43]. But theoretical performance guarantees are far

from explaining this empirically observed efficiency. In fact, there is an enormous gap
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between theory and practice.

The discrepancy between theory and practice can be explained by the presence of

a certain “hidden structure” in real-world problem instances. One such “hidden struc-

ture” in real-world instances of SAT is the presence of small backdoor sets. Williams

et al. [99] introduced the notion of backdoor sets with respect to a tractable base class

to explain the surprisingly good performance of state of the art SAT solvers. There

are three variants of backdoor sets with respect to a particular base class C: strong C-

backdoor sets, where for each truth assignment to the backdoor variables, the reduced

formula belongs to C; deletion C-backdoor sets (or variable deletion control set [22]),

where deleting all backdoor variables and their negations from the formula moves the

formula into the base class C; and weak backdoor sets where, for at least one truth as-

signment to the backdoor variables, the reduced formula belongs to C and is satisfiable.

Given a backdoor set of a formula with respect to a particular tractable base class C, the

satisfiability of the formula can be decided by guessing an assignment to the variables

in the backdoor set and deciding the satisfiability of the reduced formula, which is guar-

anteed to be in C, using a sub-solver for C. This motivates the problem of computing the

smallest backdoor set of a given formula with respect to a fixed base class.

The parameterized complexity of the problem of finding small backdoor sets was

initiated by Nishimura et al. [86] who showed that for the base classes of Horn formulas

and 2CNF formulas, the detection of strong backdoor sets is fixed-parameter tractable.

Their algorithms exploit the fact that for these two base classes, strong and deletion

backdoor sets coincide, and that deletion backdoor sets with respect to Horn and 2CNF

can be characterized in terms of vertex covers and hitting sets of certain graphs and 3-

uniform hypergraphs associated with the input formula, respectively. For base classes

other than Horn and 2-CNF, strong backdoor sets can be much smaller than deletion
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backdoor sets, and their detection is more difficult. In particular, for the base classes of

renamable Horn and q-Horn, there are formulas that have a strong backdoor set of size

1 but require an arbitrarily large deletion backdoor set. In fact, Razgon and O’Sullivan

[90] showed that the detection of deletion backdoor sets with respect to the base class

renamable Horn is fixed-parameter tractable although the detection of strong backdoor

sets is W[2]-hard [39]. For more recent results, the reader is referred to a recent survey

on the parameterized complexity of backdoor sets [39].

In this chapter, we consider as our base class a class of CNF formula called q-Horn,

which was introduced by Boros, Crama and Hammer [8]. This class has favorable al-

gorithmic properties: both recognition as well as deciding satisfiability of q-Horn for-

mulas can be done in linear-time [8, 9]. Furthermore, this class properly contains the

fundamental classes of Horn and 2CNF formulas [93], and the class of renamable (or

disguised) Horn formulas [66, 3]:

q-Horn
(

(

renamable HornHorn (

2CNF

The fact that this class is so large serves as an additional motivation for choosing

it as our base class of interest. In this chapter, we study the problem of finding small

backdoor sets with respect to the class of q-Horn formulas and obtain algorithmic as

well as hardness results.

The main result of this chapter is the following theorem.

Theorem 9.1.1. There is an algorithm that, given an instance (F, k) of DELETION

q-Horn BACKDOOR SET DETECTION, runs in timeO(6kk`n) and either correctly con-

cludes that F has no deletion q-Horn backdoor set of size at most k or returns a deletion
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q-Horn backdoor set of F of size at most 2k2 + 2k, where ` is the length of F and n is

the number of variables in F .

A consequence of this theorem is the fixed-parameter tractability of CNF-SAT (or

SAT) with the size of the smallest q-Horn deletion backdoor set as the parameter, as we

can use this algorithm to reduce the satisfiability problem of a CNF formula F of dis-

tance k from being q-Horn to testing the satisfiability of 4(k2+k) many q-Horn formulas.

Overview of our algorithm. At the highest level, our algorithm works by finding

a bounded number of variables whose deletion results in an instance with an optimum

solution strictly smaller than that of the original instance. By repeatedly computing such

a set and deleting it, we obtain the approximate solution. The main technical part of the

paper is the algorithm to compute the bounded set of variables with the required proper-

ties. For this, we utilize a characterization of q-Horn formulas in terms of their quadratic

cover by Boros, Hammer, and Sun [9] which allows us to model the DELETION q-Horn

BACKDOOR SET DETECTION problem as a graph separation problem in an auxiliary

digraph related to the formula. Following this, we apply the approximation framework

described in the previous chapter to compute in polynomial time a set of variables whose

size is bounded by 2k such that (a) there is a minimal (though not necessarily optimum)

solution containing these variables and (b) deletion of these variables results in a for-

mula whose solution is strictly smaller than the solution for the formula we started with.

A standout feature of our algorithm is that at its core, it reduces to computing flows in a

directed graph whose size is linear in the input size. As a result, our algorithm is quite

efficient not only with respect to the dependence of the running time on the parameter,

but also with respect to the dependence on the input size, along with having only a small

hidden constant factor in the asymptotic running time. Finally, towards the end of the

chapter, we also provide parameterized complexity results regarding the detection of

188



weak and strong backdoor sets with respect to the class q-Horn.

9.2 Preliminaries

Here, we introduce the basic terminology for backdoors and the class of q-Horn formu-

las. For further information on backdoors and other tractable base classes of SATISFIA-

BILITY we refer the reader to [39].

Backdoors are defined with respect to a fixed class C of CNF formulas, the base

class (or target class, or more figuratively, island of tractability). From a base class we

require the following properties: (i) C can be recognized in polynomial time, (ii) the

satisfiability of formulas in C can be decided in polynomial time, and (iii) C is closed

under isomorphisms (i.e., if two formulas differ only in the names of their variables,

then either both or none belong to C). We say a class C of formulas is clause-induced if

it is closed under subsets, , if F ∈ C implies F ′ ∈ C for each F ′ ⊆ F .

A strong C-backdoor set of a CNF formula F is a setB of variables such that F [τ ] ∈

C for each τ ∈ 2B. A weak C-backdoor set of F is a set B of variables such that F [τ ] is

satisfiable and F [τ ] ∈ C holds for some τ ∈ 2B. A deletion C-backdoor set of F is a set

B of variables such that F \B ∈ C.

If we know a strong C-backdoor set of F of size k, we can reduce the satisfiability of

F to the satisfiability of 2k formulas in C. Thus SAT becomes fixed-parameter tractable

with k as the parameter. If we know a weak C-backdoor set of F , then F is clearly satis-

fiable, and we can verify it by trying for each τ ∈ 2k whether F [τ ] is in C and satisfiable.

If C is clause-induced, any deletion C-backdoor set of F is a strong C-backdoor set of F .

For several base classes, deletion backdoor sets are of interest because they are easier to

detect than strong backdoor sets. The challenging problem is to find a strong, weak, or
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deletion C-backdoor set of size at most k if it exists. For each class C of CNF formulas,

the various backdoor detection problems are defined as follows.

DELETION C-BACKDOOR SET DETECTION Parameter: k

Input: A CNF formula F and a positive integer k

Question: Does F have a deletion C-backdoor set of size at most k?
The problems STRONG C-BACKDOOR SET DETECTION and WEAK C-BACKDOOR

SET DETECTION are defined similarly.

In this chapter, we are mainly interested in the class of q-Horn formulas [8, 9]. A

CNF formula F is in this class if there is a certifying function β : var(F ) ∪ var(F ) →

{0, 1
2
, 1} with β(x) = 1− β(x̄) for every x ∈ var(F ) such that

∑
l∈C β(l) ≤ 1 for every

clause C of F . Note that the class of q-Horn formulas satisfies our requirements (i)–(iii)

on base classes for backdoor sets [8, 9].

In the following sense, strong q-Horn-backdoor sets are more general than deletion

q-Horn-backdoor sets: For every positive integer n there is a formula Fn such that Fn has

a strong q-Horn-backdoor set of size 1 but every deletion q-Horn-backdoor set of F has

size at least n. To see this, take for instance F =
⋃

1≤i≤n{{xi, yi, zi, a}, {x̄i, ȳi, z̄i, ā}}.

Evidently, {a} is a strong q-Horn backdoor set of F . However, every deletion q-Horn

backdoor set of F must contain at least one variable xi, yi, or zi for every 1 ≤ i ≤ n.

9.3 Quadratic covers, implication graphs and separa-

tors

In this section, we give some definitions regarding quadratic covers, implication graphs

and separators in implication graphs, which will be required for the description of our

algorithm.
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The following definition of the quadratic cover of a CNF formula was used to give a

linear time algorithm to recognize q-Horn formulas in [9].

Definition 9.3.1. Given a CNF formula F , the quadratic cover of F , is a 2-CNF for-

mula denoted by F2 and is defined as follows. Let x1, . . . , xn be the variables of F . For

every clause C, we have |C| − 1 new variables yC1 , . . . , y
C
|C|−1. We order the literals in

each clause according to their variables, that is a literal of xi will occur before a literal

of xj if i < j. Let lC1 , . . . , l
C
|C| be the literals of the clause C in this order. The quadratic

cover is defined as

F2 =
⋃
C∈F

⋃
1≤i≤|C|−1{{lCi , yCi }, {ȳCi , lCi+1}} ∪

⋃
C∈F

⋃
1≤i≤|C|−2{{ȳCi , yCi+1}}.

Definition 9.3.2. Given a CNF formula F , the implication graph of F2 is denoted by

D(F2) and defined as follows. The vertex set of the graph is the set of literals of F2 and

for every clause {l1, l2} in F2, we have arcs (l̄1, l2) and (l̄2, l1). We refer to the vertices

of the implication graph as literals since there is a one to one correspondence between

the two. Given a set of variables X ⊆ var(F ), we define the graph D(F2)\X as the

graph obtained from D(F2) by deleting lit(X).

The following observation stems from the definition of implication graphs.

Observation 9.3.3. Let F be a CNF formula of length `.

(a) If there is a path from l1 to l2 in D(F2), then there is also a path from l̄2 to l̄1 in D(F2).

(b) The number of arcs in D(F2) is O(`).

(c) Let C = {l1, . . . , lr} be a clause of F . Then, for any 1 ≤ i < j ≤ r, D(F2) contains

a path from l̄i to lj and from l̄j to li whose internal vertices are all disjoint from lit(F ).

(d) Let X ⊆ var(F ) and F ′ = F \X . Then, for any literal l ∈ lit(F ) \ lit(X), there is

a path from l to l̄ in D(F ′2) if and only if there is a path from l to l̄ in D(F2)\X .
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Proof. (a) This follows from the fact that for every arc (li, lj) in D(F2), there is also an

arc (l̄j, l̄i).

(b) Observe that a clause C ∈ F contributes at most 3|C| clauses to F2. Hence, the

number of clauses in F2 is bounded by 3`. Since each clause of F2 contributes 2 arcs to

D(F2), the number of arcs in D(F2) is bounded by 6`.

(c) From the definition of the formula F2 and the implication graph D(F2), we know

that D(F2) contains a directed path P1 = yC1 , y
C
2 , . . . , y

C
r−1. Furthermore, there are arcs

(l̄i, y
C
i ) and (yCj−1, lj) in D(F2). Along with the path P1, these arcs imply that there is a

path from l̄i to lj and by (a), a path from l̄j to li. Clearly, in both these paths, the internal

vertices are disjoint from lit(F ).

(d) In order to prove the statement it is sufficient to show that for any two literals l1

and l2 such that var(l1) 6= var(l2), there is a path from l1 to l2 in D(F ′2) if and only if

there is a path from l1 to l2 in D(F2)\X . Furthermore, in order to prove this statement,

it suffices to show that this statement is true for all paths where the internal vertices are

not in lit(F ). The statement will then follow by induction on the number of literals of F

along the paths.

Consider a path from l1 to l2 in D(F ′2) where the internal vertices are all disjoint from

lit(F ). We claim that l̄1 and l2 occur in a clause in F ′. This is so since the definition

of F ′2 and D(F ′2) implies that any literal not in lit(F ) corresponds to a single clause of

F ′ and has arcs only to or from other literals of this type which also correspond to this

clause or to a literal in lit(F ) which occurs positively in the same clause or from a literal

in lit(F ) which occurs negatively in the same clause. Therefore, l̄1 and l2 also occur in

a clause in F . This implies that there is a path from l1 to l2 in D(F2) where the internal

vertices are disjoint from lit(F ) (by (c)). Therefore, removing lit(X) from D(F2) does

not affect this path.
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Conversely, consider a path from l1 to l2 in D(F2)\X such that the internal vertices

are disjoint from lit(F ). Since this is also a path in D(F2), by our previous argument, it

implies that l̄1 and l2 occur in a clause in F and hence in F ′ and by (c), there is a path

from l1 to l2 in D(F ′2) where the internal vertices are disjoint from lit(F ).

Definition 9.3.4. Given a CNF formula F and a set L of literals of F , we denote by

N+
F (L) the set of literals in lit(F ) \ L which can be reached from L in D(F2) via a

path whose internal vertices are disjoint from lit(F ). We drop the subscript D(F2) if the

formula F is clear from the context.

Definition 9.3.5. ([9]) Given a CNF formulaF , define a canonical function β̂ : lit(F )→

{0, 1
2
, 1} as follows. Consider a topological ordering π of the strong components of

D(F2). For every literal l ∈ lit(F ) such that the strong component containing l appears

before the one containing l̄ in π, set β̂(l) = 1 and for every literal l such that the strong

component containing l also contains l̄, set β̂(l) = 1
2
.

Lemma 9.3.6. ([9]) A CNF formula F is q-Horn if and only if the function β̂ defined

above is a certifying function for F .

Definition 9.3.7. A clause C of a given CNF formula is called a violating clause if∑
l∈C β̂(l) > 1. Any three literals l1, l2, l3 of a violating clause such that

∑3
i=1 β̂(li) > 1

form a violating triple.

Lemma 9.3.8. Let F be a CNF formula of length ` and suppose that F is not a q-Horn

formula. Any violating clause of F has a violating triple lying entirely inside a strong

component of D(F2) and we can compute such a violating triple in time O(`).

Proof. Consider a violating clause C = {l1, . . . , lr}. We first show that for any li,

β̂(li) ≤ 1
2
. Suppose this is not the case and there is an li such that β̂(li) = 1. Since C is
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a violating clause, there is also a literal lj such that β̂(lj) > 0. It follows that lj and l̄j

either occur in the same strong component of D(F2) or the strong component containing

lj occurs before that containing l̄j . However, we already know that li is in a strong

component occurring before l̄i. But, there is an l̄i-lj path and an l̄j-li path in D(F2)

(Observation 10.2.1(c)), implying that l̄i is in a strong component occurring before the

strong component containing li, a contradiction. Therefore for any li, β̂(li) ≤ 1
2
.

Since C is a violating clause, there must be at least three literals li, lj, lm such that

β̂(li) = β̂(lj) = β̂(lm) = 1
2
. By the definition of β̂, each pair of complementary literals

appear in the same strong component of D(F2). However, there are paths from l̄i to lj and

lm and from l̄j and l̄m to li (Observation 10.2.1(c)). This implies that the literals li, lj, lm

and their complements all appear in the same strong component of D(F2). Observe that

to compute the violating triple, it is sufficient to construct D(F2) and compute a violating

clause, which can be done in time O(`) [9].

We now move on to some definitions on separators in implication graphs which will be

required in the description of our algorithm.

Definition 9.3.9. Let F be a CNF formula and L ⊆ lit(F ) be a consistent set of literals.

We say that a set J ⊆ lit(F ) is an L-L̄ separator if J is disjoint from L and L̄ and there

is no path from L to L̄ in the graph D(F2)\J . We say that J is a minimal L-L̄ separator

if no proper subset of J is an L-L̄ separator.

Definition 9.3.10. Let F be a CNF formula, L ⊆ lit(F ) be a consistent set of literals

and let X be a set of variables of F . We call X an L-L̄ variable separator if lit(X) is

an L-L̄ separator. We call X a minimal L-L̄ variable separator if no proper subset of

X is an L-L̄ variable separator. We drop the word variable if it is clear from the context

that the set we are dealing with is a set of variables.
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Definition 9.3.11. Let F be a CNF formula, L ⊆ lit(F ) be a consistent set of literals

and X be an L-L̄ variable separator. We denote by R(L,X) the set of literals of F that

can be reached from L via directed paths in D(F2)\X and we denote by R̄(L,X) the

set of literals of F which have a directed path to L in D(F2)\X .

The following observation is implicit in the proof of Observation 10.2.1(d). We state it

explicitly in the form in which it will be used as part of the description of our algorithm.

Observation 9.3.12. Let F be a CNF formula, L ⊆ lit(F ) be a consistent set of literals

and X be an L-L̄ variable separator. Then, the sets R(L,X) and R̄(L̄,X) are also

consistent and in fact complements of each other.

9.4 Phase 1

Lemma 9.4.1. Let (F, k) be an instance of DELETION q-Horn BACKDOOR SET DE-

TECTION. Let (l1, l2, l3) be a violating triple in a strong component of D(F2) and X

be an optimum solution for the given instance disjoint from {var(l1), var(l2), var(l3)}.

Then, for some 1 ≤ i ≤ 3, X is an li-l̄i separator in D(F2).

Proof. Let β̂′ be the canonical certifying function for F ′ = F \ X obtained from the

graph D(F ′2). We claim that there is an 1 ≤ i ≤ 3 such that β̂′(li) = 0. This is

true since F ′ contains a clause with all three literals l1, l2 and l3 and it cannot be the

case that any certifying function sets non zero values to all three. By definition of

β̂′, β̂′(li) = 0 implies that there is no path from li to l̄i in the graph D(F ′2). If X

were not an li-l̄i separator in D(F2), then D(F ′2) would also contain an li-l̄i path (by

Observation 10.2.1(d)), a contradiction. This completes the proof of the lemma.

Lemma 9.3.8 combined with Lemma 9.4.1 allows us to compute in linear time, a set

of three literals such that either one of the three corresponding variables is part of an
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optimum solution or for at least one of these literals, say l, there is a path from l to l̄ in

D(F2) and there is an optimum solution which is an l-l̄ variable separator in D(F2).

9.5 Phase 2

Lemma 9.5.1. Let F be a CNF formula of length `, with n variables. Given a literal

l of F and an integer k, there is an algorithm running in time O(k`n) which either

correctly concludes that there is no k-sized l-l̄ variable separator in D(F2) or returns

an l-l̄ variable separator X ′ of size at most 4k such that (X ′ ∪ var(R(l, X ′))) ∩ X is

non-empty where X is an l-l̄ variable separator of size at most k.

Proof. The algorithm computes an l-l̄ variable separator X ′ which essentially maxi-

mizes the set of literals of D(F2) reachable from l after removing X ′. We will then show

that such a separator indeed has the required properties.

The algorithm is called COMPUTE-SEPARATOR (Algorithm 9.5.1). If it returns

NO in Line 4, then D(F2) has no l-l̄ variable separator of size at most k. Let S be the

minimal separator in D(F2) which was computed in the penultimate iteration of the while

loop. We claim that X ′ = var(S) satisfies the conditions in the statement of the lemma.

Clearly, it must be the case that for some choice of a literal l′ in lit(var(S)) ∩ N+
F (L),

the next iteration of the loop could not find an L∪{l′}-L̄∪{l̄′} separator of size at most

2k.

Suppose that (X ′ ∪ var(R(l, X ′))) ∩ X is empty. Recall that when the procedure

stops, L = R(l, X ′). Furthermore, if there is at least one path from l to l̄ in D(F2) then

it must be the case that lit(var(S)) ∩ N+
F (L) is non-empty. Since X is an l-l̄ separator

and disjoint from L, X is also an L-L̄ separator. Since X is also disjoint from X ′, for

any l′ ∈ lit(var(S)) ∩ N+(L), X intersects all paths from L ∪ {l′} to L̄ ∪ {l̄′}. Hence,
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Input : A tuple (F, k, l) where F is a CNF formula, k a positive integer and l a
literal of F

Output: NO, provided that D(F2) has no l-l̄ variable separator of size at most k,
or an l-l̄ variable separator S of size at most 4k such that
(S ∪ var(R(l, S))) has a non-empty intersection with some minimum
deletion q-Horn backdoor set

1 if there is an l-l̄ separator of size at most 2k in D(F2) then
2 S ← such a separator
3 end
4 else return NO

5 L← R(l, var(S)) // L is consistent by Observation 10.2.5
6 while there is an L ∪ {l′}-L̄ ∪ {l̄′} separator of size at most 2k where
l′ ∈ (lit(var(S)) ∩N+

F (L)) is an arbitrarily chosen such literal do
7 S ← such a separator
8 L← R(L, var(S))

9 end
10 return var(S)

Algorithm 9.5.1: Algorithm COMPUTE-SEPARATOR

lit(X) is a set of size at most 2k which intersects all L ∪ {l′}-L̄ ∪ {l̄′} paths, which is

a contradiction. Therefore, the set (X ′ ∪ var(R(l, X ′))) ∩ X is non-empty for any l-l̄

variable separator X of size at most k.

To bound the running time, observe that in each iteration, we only need to test if

there is an L-L̄ separator of size at most 2k. Hence, it suffices for us to run the Ford-

Fulkerson algorithm [35] for at most 2k steps on the graph D(F2) and the number of

iterations is bounded by the number of variables in the formula since in each iteration,

we add a literal to L. Since the number of arcs in D(F2) isO(`) (Observation 10.2.1(b)),

the claimed time bound follows. This completes the proof of the lemma.
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9.6 Phase 3

Lemma 9.6.1. Let (F, k) be an instance of DELETION q-Horn BACKDOOR SET DE-

TECTION and X be an optimum solution such that it is disjoint from var(l) and is

an l-l̄ separator for some literal l ∈ lit(F ). Consider a minimal l-l̄ variable separa-

tor X ′. Let X ′′ be the set of variables of X with a literal in R(l, X ′). Then, the set

X̃ = (X \X ′′) ∪X ′ is also a solution for the given instance.

Proof. Let F ′ = F \ X and F̃ = F \ X̃ . If X̃ were not a solution, then there is a

violating clause in F̃ and by Lemma 9.3.8, there is a violating triple (l1, l2, l3) in a strong

component of D(F̃2). This implies the presence of a closed walk in D(F̃2) containing all

the literals of the violating triple and their complements (see the proof of Lemma 9.3.8).

Since X was a solution, this closed walk could not have survived in D(F ′2) and hence

must contain a literal of a variable in X \ X̃ . Recall that the only variables of X that

are not in X̃ are those in X ′′. Let p be a literal on this closed walk which corresponds

to such a variable, that is var(p) ∈ X ′′. On the other hand, by definition, the literals of

the variables in X ′′ can either reach l̄ or be reached from l in D(F̃2), that is they must

lie in R(l, X̃) or R̄(l, X̃). Combining this path along with the closed walk and the fact

that D(F̃2) is an implication graph implies the presence of a path from l to l̄ in D(F̃2).

However, by construction, X̃ is also an l-l̄ separator in D(F2). Observation 10.2.1(d)

implies that this is a contradiction. This completes the proof of the lemma.

Lemma 9.6.2. Let (F, k) be an instance of DELETION q-Horn BACKDOOR SET DE-

TECTION and let l be a literal of F disjoint from an optimum solution X and suppose

that X is an l-l̄ variable separator in D(F2). Consider a minimal l-l̄ variable separator

in D(F2), X ′, such that (X ′ ∪ var(R(l, X ′))) ∩ X is non-empty. Then the size of an

optimum solution for the instance F \X ′ is at most |X| − 1.
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Phase 1. Lemma 9.3.8 combined with Lemma 9.4.1 allows us to compute in linear
time, a set of three literals such that either one of the three corresponding variables
is part of an optimum solution or for at least one of these literals, say l, there is a
path from l to l̄ in D(F2) and there is an optimum solution which is an l-l̄ variable
separator in D(F2).

Phase 2 . Lemma 9.5.1 gives an algorithm which either correctly concludes that there
is no l-l̄ variable separator of size at most k or returns an l-l̄ variable separator of size
at most 4k.

Phase 3. Lemma 9.6.2 shows that deleting the separator returned by Lemma 9.5.1
results in an instance with a solution strictly smaller than that of the given instance.

Figure 9.1: Summary of the first 3 phases of the Important Separator Approximation
Template

Proof. By Lemma 9.6.1, we know that the set X̂ = (X \X ′′)∪X ′ is a deletion q-Horn

backdoor set. Hence, X \ X ′′ is indeed a solution for the instance F \ X ′. Since X ′′

is non-empty, the size of the optimum solution for F \ X ′ is at most |X| − 1. This

completes the proof of the lemma.

This completes Phase 3 and we now ready to combine the phases to give an algorithm

for DELETION q-Horn BACKDOOR SET DETECTION.

9.7 Phase 4

Description of the algorithm. The algorithm (Algorithm 9.7.1) checks if there is a

violating triple and if so, computes one and in the first 3 branches, it adds the variable

corresponding to each of the literals of the violating triple to the solution, deletes it from

the formula and recurses on the resulting instance with a budget of k − 1. In the next 3

branches, it guesses the literal of the violating triple which is assigned 0 by a certifying
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Input : A CNF formula F of length ` with n variables, integer k
Output: Either no solution of size at most k or a solution of size at most 2k2 + 2k

for the instance (F, k) of DELETION q-Horn BACKDOOR SET

DETECTION

1 if k < 0 then return NO

2 check for a violating clause by computing D(F2) and a topological ordering of
D(F2)

3 if there is no violating clause then return ∅
4 Compute a violating triple (l1, l2, l3)
5 for l = l1, l2, l3 do
6 S1 ← DELETION-QHORN-BDS(F \ {var(l)}, k − 1)
7 if S1 is not NO then return S1 ∪ {var(l)}
8 end
9 for l = l1, l2, l3 do

10 S ← COMPUTE-SEPARATOR(F, k, l)
11 if S is NO then return NO else
12 S1 ← DELETION-QHORN-BDS(F \ {S}, k − 1)
13 end
14 if S1 is not NO then return S1 ∪ {S}
15 end
16 return NO

Algorithm 9.7.1: Algorithm DELETION-QHORN-BDS for DELETION q-Horn
BACKDOOR SET DETECTION

function of F \ X where X is an optimum solution. We know that there must be at

least one such literal (see the proof of Lemma 9.4.1). This implies that there is a path

from l to l̄ in D(F2) and that X is an l-l̄ separator. Finally, Lemma 9.5.1 is used to

either conclude that there is no l-l̄ variable separator of size at most k in which case the

algorithm returns NO, or to compute an l-l̄ variable separator of size at most 4k with the

required properties. The variables in X ′ are added to our solution and deleted from the

formula, and the algorithm recurses on the resulting instance with a budget of k − 1.

Analysis. Since Steps 2, 4, and 10 at any node of the search tree take time O(k`n) and

we have a 6-way branching at each node of the search tree with the budget k dropping

by 1 in each branch, the algorithm clearly runs in the claimed time bound. Therefore,
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it only remains for us to prove the correctness of the algorithm. Let X be an optimum

solution for the given instance and let β be a certifying function for F \ X . We prove

the correctness of the algorithm by induction on k.

In the base case, when k = 0, the algorithm is correct by Lemma 9.3.6. We assume

as induction hypothesis that the algorithm is correct for all values of k up to some k′− 1

where k′ − 1 > 0. We now consider the case when k = k′.

In Lines 5-8, we consider the case whenX intersects the set {var(l1), var(l2), var(l3)}

and branch accordingly. Applying the induction hypothesis, the size of any returned so-

lution in a subsequent recursive call is at most 2(k − 1)2 + 2(k − 1). Hence, the size of

a solution returned here is bounded by 1 + 2(k − 1)2 + 2(k − 1) ≤ 2k2 + 2k.

In Lines 9-15, we consider the case when X is disjoint from the set of variables

corresponding to l1, l2 and l3. Since l1, l2, l3 lie in the same clause and none of their

corresponding variables are inX , by Lemma 9.4.1,X is an li-l̄i separator for at least one

of the literals li. Let us assume that this literal is l1. In Line 10, we apply Lemma 9.5.1

to compute an l1-l̄1 separator S of size at most 4k and add it to the solution we are

constructing. By Lemma 9.6.2, we know that the size of an optimum solution for the

instance F \ S is at most |X| − 1. Hence, by the induction hypothesis, we obtain a

solution of size at most 2(k − 1)2 + 2(k − 1) from the subsequent recursive call and

adding to it the set S of size at most 4k results in a solution of size at most 2k2 + 2k,

which proves the correctness of the algorithm, completing the proof of Theorem 9.1.1.

In order to test the satisfiability of a given CNF formula F , it suffices to first compute

a smallest deletion q-Horn backdoor set of F and for each assignment to this set, test

the satisfiability of the reduced formula which is q-Horn. Since testing satisfiability of a

q-Horn formula is linear time [8], Theorem 9.1.1 has the following corollary.

Corollary 9.7.1. There is an algorithm that, given a formula F of length ` with n vari-
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ables, runs in time 4(k2+k)`n and decides the satisfiability of F , where k is the size of

the smallest deletion q-Horn backdoor set of F .

9.8 Hardness

In this section, we show that there is no FPT algorithm for STRONG q-Horn-BACKDOOR

SET DETECTION or WEAK q-Horn-BACKDOOR SET DETECTION unless FPT=W[2].

In order to show this, we begin from the following problem, which is well-known to be

W[2]-complete [27].

HITTING SET Parameter: k

Input: A set E of elements, a family S of finite subsets of E, and an integer k > 0.

Question: Does S have a hitting set, i.e., a subset H of E such that H ∩ S 6= ∅ for

every S ∈ S, of size at most k?

Theorem 9.8.1. STRONG q-Horn-BACKDOOR SET DETECTION is W[2]-hard.

Proof. We prove the theorem via a parameterized reduction from HITTING SET. Let

(E,S, k) be an instance of HITTING SET. We construct a formula F that has a strong

q-Horn-backdoor set of size at most k if and only if S has a hitting set of size at most

k. The formula F has two clauses P i
S = S ∪ {xi, yi, zi} and N i

S = Ē ∪ {x̄i, ȳi, z̄i} for

every S ∈ S and 1 ≤ i ≤ k + 1. Note that var(F ) = E ∪ {xi, yi, zi : 1 ≤ i ≤ k + 1 }.

Furthermore, for any S and for any 1 ≤ i ≤ k + 1, the formula comprising the two

clauses P i
S and N i

S is clearly not q-Horn.

Let H be a hitting set of S of size at most k. We show that B = H is a strong

q-Horn-backdoor set for F . Let τ : B → {0, 1} be an assignment of the variables in B.

If τ sets at least one variable inB to 0 then F [τ ] contains only positive clauses and hence

F [τ ] is trivially q-Horn. On the other hand if τ sets all variables in B to 1 then because
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H is a hitting set of S the formula F [τ ] contains only negative clauses and hence F [τ ]

is again trivially q-Horn. Consequently, B is a strong q-Horn-backdoor set for F .

For the reverse direction suppose that B ⊆ var(F ) is a strong q-Horn-backdoor set

for F of size at most k. We show that H = B ∩ E is a hitting set of S of size at

most k. Suppose for a contradiction that H is not a hitting set for S and let S ∈ S be

such that H ∩ S = ∅. Furthermore, let τ be the assignment of the variables in B that

sets all variables to 1. It follows that F [τ ] contains two clauses P i
S and N i

S for some

1 ≤ i ≤ k+ 1 and hence F [τ ] is not q-Horn, a contradiction to the assumption that B is

a strong q-Horn-backdoor set for F .

Theorem 9.8.2. WEAK q-Horn-BACKDOOR SET DETECTION is W[2]-hard, even for

3-CNF formulas.

Proof. We prove the theorem via a parameterized reduction from HITTING SET. Let

(E,S, k) be an instance of HITTING SET. We construct a 3-CNF formula F that has a

weak q-Horn-backdoor set of size at most k if and only if S has a hitting set of size at

most k. For every S ∈ S with S = {s1, . . . , s|S|}, every 1 ≤ i ≤ |S|, and every 1 ≤

j ≤ k + 1 the formula F contains the clauses {zji (S), s̄i, z̄
j
i+1(S)}, {z̄j1(S), zj|S|+1(S)},

{z̄j1(S), z̄j|S|+1(S)}, {zj1(S), zj|S|+1(S)}, {zjs+1(S), aj(S), bj(S)}, and {āj(S), b̄j(S)}. Note

that var(F ) = E ∪ { zji (S) : S ∈ S and 1 ≤ i ≤ |S| + 1 and 1 ≤ j ≤ k + 1 } ∪

{ aj(S), bj(S) : S ∈ S and 1 ≤ j ≤ k+1 }. Note furthermore that F is satisfiable by the

assignment τSAT that sets the variables in { zj|S|+1(S), aj(S) : S ∈ S and 1 ≤ j ≤ k+1 }

to 1 and all other variables to 0.

Let H be a hitting set of S of size at most k. We show that B = H is a weak

q-Horn-backdoor set for F . Let τ be the assignment of the variables in B that sets

all variables to 0. Then F [τ ] is satisfiable because τ assigns the same values to the

variables in B as τSAT. To show that F [τ ] is q-Horn we define the certifying function
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β : lit(F [τ ])→ {0, 1
2
, 1} as follows. We set β(e) = 1 for every e ∈ E \H and for every

S ∈ S with S = {s1, . . . , s|S|}, every 1 ≤ j ≤ k + 1, and some 1 ≤ h ≤ |S| such

that sh ∈ S ∩ H , we set β(aj) = 1, β(bj) = 0, β(zji ) = 1 for every 1 ≤ i ≤ h, and

β(zji ) = 0 for every h < i ≤ |S| + 1. It is straightforward to check that β certifies that

F is q-Horn formula.

For the reverse direction suppose that B ⊆ var(F ) is a weak q-Horn-backdoor set

for F of size at most k and let τ be an assignment for the variables in B witness-

ing this. We show that H = B ∩ E is a hitting set of S of size at most k. Sup-

pose for a contradiction that H is not a hitting set for S and let S ∈ S be such that

H ∩ S = ∅. It follows that there is a 1 ≤ j ≤ k + 1 such that F [τ ] contains the

clauses {zji (S), s̄i, z̄
j
i+1(S)}, {z̄j1(S), zj|S|+1(S)}, {z̄j1(S), z̄j|S|+1(S)}, {zj1(S), zj|S|+1(S)},

{zjs+1(S), aj(S), bj(S)}, and {āj(S), b̄j(S)} for every 1 ≤ i ≤ |S|. It is straightforward

to verify that the subformula of F [τ ] induced on the above clauses, and hence also F [τ ],

is not a q-Horn formula, contradicting our assumption thatB is a weak q-Horn backdoor

set for F .

It remains an open problem whether STRONG q-Horn-BACKDOOR SET DETEC-

TION or WEAK q-Horn-BACKDOOR SET DETECTION are FPT-approximable. How-

ever we note that since the reductions used in the above theorems are parameter pre-

serving, an FPT-approximation algorithm for either of these problems would imply the

existence of an FPT-approximation algorithm for HITTING SET, which is an open prob-

lem [74].
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9.9 Conclusion

In this chapter we have developed an FPT-approximation algorithm for the detection

of deletion q-Horn-backdoor sets (Theorem 9.1.1). This renders CNF-SAT, parame-

terized by the deletion distance from the class of q-Horn-formulas (i.e., the size of a

smallest q-Horn-backdoor set) fixed-parameter tractable (Corollary 9.7.1). Our result

simultaneously generalizes the known fixed-parameter tractability results for CNF-SAT

parameterized by the deletion distance from the class of renamable Horn formulas [90]

and from the class of 2CNF formulas [86]. We would like to point out that our FPT-

approximation algorithm is quite efficient, and its asymptotic running time does not

include large hidden factors.

The deletion distance from q-Horn is incomparable with parameters for CNF-SAT

based on width measures (such as the branch-width of the formula’s hypergraph [2],

treewidth of the formula’s primal, dual, or incidence graph [32, 92], or the rank-width

of the formula’s signed incidence graph [36]). This can be easily verified, since one

can define q-Horn formulas where all of these width parameters are arbitrarily large.

Conversely, by adding to a formula variable-disjoint copies of itself, we can make the

deletion distance from q-Horn arbitrarily large, the width however does not increase.

There are several interesting research questions that arise from the work presented

in this chapter. It is an interesting question whether the W[2]-hardness of the detec-

tion of strong q-Horn-backdoor sets (Theorem 9.8.1) also holds if the input formula

is in 3-CNF. Furthermore, our hardness results contribute additional attention and sig-

nificance to the problem of whether the parameterized HITTING SET problem has an

FPT-approximation algorithm [74].
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Part V

Skew-Symmetric Multicuts
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10
Skew Symmetric Multicut

10.1 Introduction

A skew-symmetric graph is a digraphD = (V,A) along with an involution σ : V ∪A→

V ∪ A where for every x ∈ V ∪ A, σ(x) 6= x and σ(σ(x)) = x and for every x ∈ V

( x ∈ A), σ(x) ∈ V (respectively σ(x) ∈ A). Skew-symmetric graphs were intro-

duced under the name of antisymmetrical digraphs by Tutte [96] along with a notion

of self-conjugate flows as a generalization of maximum flows in networks and match-

ings in graphs and subsequently by Zelinka [102] and Zaslavsky [101]. Goldberg and

Karzanov [41, 42] revisited the work of Tutte and gave unified proofs for the analogues

of the flow-decomposition and max-flow min-cut theorems on these graphs.

In this chapter, we use skew-symmetric graphs and an appropriate notion of separa-

tors on them as a model to abstract out “cut properties” underlying several problems in

parameterized complexity.

We now introduce the main problem studied in this chapter – a variant of the MUL-

TICUT problem on skew-symmetric graphs.
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d-SKEW-SYMMETRIC MULTICUT Parameter: k

Input: A skew-symmetric graph D = ((V,A), σ), a family T of d-sets of vertices,

integer k.

Question: Is there a set S ⊆ A such that S = σ(S), |S| ≤ 2k, and for any d-

set {v1, . . . , vd} in T , there is a vertex vi such vi and σ(vi) lie in distinct strongly

connected components of D \ S?

The set S is the above definition is called a skew-symmetric multicut for the given in-

stance. Our main result is a FPT algorithm for the above problem where the dependence

of the running time of the algorithm on the input size is linear. Formally,

Theorem 10.1.1. There is an algorithm that, given an instance (D = (V,A, σ), T , k)

of d-SKEW-SYMMETRIC MULTICUT, runs in time O((4d)kk4(` + m + n)) and either

returns a skew-symmetric multicut of size at most 2k or correctly concludes that no such

set exists, where m = |A| and n = |V |, and `, the length of the family T , is defined as

d · |T |.

Overview of our algorithm. The main obstacle to applying existing digraph algo-

rithms on skew-symmetric graphs comes from the fact that standard arguments heavily

based on submodularity of cuts break down, allowing only approximations, (see for

example [78, 38]). Our first contribution is a reduction rule which overcomes this ob-

stacle by allowing us to essentially (and correctly) think of local parts of an irreducible

instance as a normal digraph. The reduction rule is essentially the following.

“Given two vertex sets X and Y which satisfy certain properties, if there is

a minimum X-Y separator which contains an arc a and its image σ(a), then

some arc (not necessarily a) in this separator is part of an optimal solution
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and therefore, we find this arc, delete it from the instance, reduce the budget

and continue.”

Though simple to state, the soundness of this reduction rule is far from obvious and

requires certain structural observations specific to separators in skew-symmetric graphs.

Observe that this is a parameter decreasing rule which ensures that the number of appli-

cations of this rule is bounded linearly in the parameter. We believe that this rule could

prove to be of independent interest for data reduction (or kernelization) for this as well

as other similar problems.

Given this reduction rule, the next obstacle we need to overcome is that of apply-

ing this rule in linear time. For this, we start from the Ford-Fulkerson algorithm for

computing maximum flows and by coupling it carefully with structural properties of

skew-symmetric graphs, show that in linear time, we can either apply the reduction rule

or locate a part of the graph which is already “reduced” for the next step of our algo-

rithm. In the final step of our algorithm, having found a reduced part of the graph, we

show that it is sufficient for us to consider arcs emanating from this part whose number is

linearly bounded in the parameter and move ahead by performing an exhaustive branch-

ing on this bounded set of arcs. Finally, by a combination of these three subroutines, we

obtain a linear time FPT algorithm for d-SKEW-SYMMETRIC MULTICUT.

An additional feature of the algorithm we present is that it does not require the

family T to be explicitly given as part of the input. It is sufficient for our algorithm to

have access to a linear time violation oracle for T , i.e, an algorithm which, in linear

time returns a violated set in T . This feature increases the utility of this algorithm

substantially and we demonstrate this in the case of DELETION q-Horn BACKDOOR SET

DETECTION where even though a direct reduction does not run in linear time, we can

use a linear time violation oracle to obtain a linear time FPT algorithm for DELETION
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q-Horn BACKDOOR SET DETECTION.

Applications. Here we provide the list of main applications (see Figure 10.1) that

can be derived from our algorithm (Theorem 10.1.1) together with a short overview of

previous work on each application.

ODD CYCLE TRANSVERSAL, ALMOST 2-SAT and related problems. Reed et

al. [91] showed that ODD CYCLE TRANSVERSAL (ODD CYCLE TRANSVERSAL) is

FPT by developing an algorithm for the problem running in time O(3kmn) and asked

whether there is an FPT algorithm for ODD CYCLE TRANSVERSAL with a linear de-

pendence on the input size. Fiorini et al. [31] showed that when the input is restricted to

planar graphs, there is an O(f(k)n) time algorithm– a linear time FPT algorithm, for

ODD CYCLE TRANSVERSAL. Continuing this line of research, recently, Kawarabayashi

and Reed [53] obtained an algorithm for ODD CYCLE TRANSVERSAL on general graphs

with an improved dependence on the input size. This algorithm uses tools from graph

minors and odd variants of graph minors and runs in timeO(f(k)m ·α(m,n)). Here the

function α(m,n) is the inverse of the Ackermann function (see by Tarjan [94]) and f(k)

is at least a triple exponential function. However, an algorithm on general graphs with a

linear dependence on the input size has so far proved elusive. The work we present in

this chapter has led to the first linear time algorithm for ODD CYCLE TRANSVERSAL

running in time O(4kk4(m+ n)).

Recall that in the edge version of ODD CYCLE TRANSVERSAL, namely EDGE BI-

PARTIZATION, the objective is to test if there is a set of at most k edges whose deletion

makes the input graph bipartite. Using a known linear time parameter preserving re-

duction from EDGE BIPARTIZATION to ODD CYCLE TRANSVERSAL, we also get a

similar result for EDGE BIPARTIZATION. In fact, both these problems have linear time

parameter preserving reductions to the more general problem of ALMOST 2-SAT. In
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Figure 10.1: Problems with a linear time parameter preserving reduction to d-SKEW-
SYMMETRIC MULTICUT

fact, our algorithms for EDGE BIPARTIZATION and ODD CYCLE TRANSVERSAL are

obtained via reductions to ALMOST 2-SAT, which in turn is solved using our algorithm

for d-SKEW-SYMMETRIC MULTICUT (Theorem 10.1.1).

The ALMOST 2-SAT problem is formally defined as follows.

ALMOST 2-SAT Parameter: k

Input: A 2CNF formula F , positive integer k

Question: Does there exist a set Sc of at most k clauses of F such that F \ Sc is

satisfiable?

The parameterized complexity status of ALMOST 2-SAT remained open until 2008

when Razgon and O’Sullivan [89] gave an algorithm running in timeO(15kkm3) on for-
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mulas with m clauses. More recently, there have been a series of improved algorithms

(O(9knO(1))[88], O(4knO(1))[24], O(2.618knO(1))[82]) with the current best algorithm

running in time O(2.32knO(1)) [67]. However, none of these algorithms have a linear

dependence on the input size. We show that ALMOST 2-SAT is a special case of 1-

SKEW-SYMMETRIC MULTICUT, resulting in an algorithm for ALMOST 2-SAT which

runs in time O(4kk4`) where k is the size of the solution and ` is the length of the input

formula.

As discussed earlier, ABOVE GUARANTEE VERTEX COVER (AGVC) is linear time

equivalent to ALMOST 2-SAT in a parameter preserving way and hence, our results im-

ply an algorithm for ABOVE GUARANTEE VERTEX COVER with running timeO(4k−|M |(k−

|M |)4(m + n)). However, the linear time reduction from ABOVE GUARANTEE VER-

TEX COVER to ALMOST 2-SAT crucially utilizes the fact that a maximum matching

of the graph is also part of the input. Therefore, a natural goal moving forward would

to obtain an algorithm running in time f(k − |M |)(m + n) for ABOVE GUARANTEE

VERTEX COVER even when a maximum matching is not given as part of the input.

DELETION q-Horn BACKDOOR SET DETECTION and related problems. Recall

that a strong C-backdoor set of a CNF formula F is a set B of variables such that

F [τ ] ∈ C for each assignment τ : B → {0, 1}, that is, for every instantiation of the

variables in B, the reduced formula is in the class C. A deletion C-backdoor set of F

is a set B of variables such that F − B ∈ C. Also recall that the DELETION q-Horn

BACKDOOR SET DETECTION problem is the following.

DELETION q-Horn BACKDOOR SET DETECTION Parameter: k

Input: A CNF formula F and a positive integer k

Question: Does F have a deletion q-Horn backdoor set of size at most k?

We show that DELETION q-Horn BACKDOOR SET DETECTION is a special case
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of 3-SKEW-SYMMETRIC MULTICUT, giving us an algorithm for DELETION q-Horn

BACKDOOR SET DETECTION which runs in time O(12kk5`) where k is the size of

the solution and ` is the length of the input formula. This improves upon the results

of the previous chapter and gives the first fixed-parameter tractable algorithm for this

problem. Using this result, we get an algorithm for SATISFIABILITY which runs in time

O(12kk5`) where k is the size of the smallest q-Horn deletion backdoor set, with ` being

the length of the input formula.

Organization of the chapter. In Section 10.2, we define the notions of separators in

skew-symmetric graphs, followed by structural results on separators in skew-symmetric

graphs and the notions of (L, k)-components whose computation is at the core of our

algorithm. In Section 10.3, we prove an observation regarding the structure of optimal

solutions, followed by a description and proof of correctness of our algorithm. In Sec-

tion 10.4, we give linear time parameterized algorithms for a number of problems using

our result.

10.2 Skew-symmetric graphs, separators and components

In this section we begin by giving some basic definitions and set up the notations for the

rest of the chapter. Following that, we prove some structural results properties regarding

separators in skew-symmetric graphs.

Skew-Symmetric Graphs. The notation is from [42]. A skew-symmetric graph is

a digraph D = (V,A) and an involution σ : V ∪ A→ V ∪ A such that:

1. for each x ∈ V ∪ A, σ(x) 6= x and σ(σ(x)) = s.

2. for each v ∈ V , σ(v) ∈ V
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3. for each a = (v, w) ∈ A, σ(a) = (σ(w), σ(v))

We call σ(x) symmetric to x and also refer to x and σ(x) as conjugates. For ease of

description, we let x′ denote the conjugate of an element x and we let S ′ denote the set

of conjugates of the elements in the set S. We say that a set S is regular if S ∩ S ′ = ∅

and irregular otherwise. A set S is called self-conjugate if S = S ′.

The following observation is a direct consequence of the definition of a skew-symmetric

graph.

Observation 10.2.1. Let D = ((V,A), σ) be a skew-symmetric graph and let u, v ∈ V .

There is a path from v to u in D if and only if there is a path from u′ to v′.

Definition 10.2.2. Let D = (V,A) be a directed graph and let X, Y be disjoint subsets

of V . A set S ⊆ A is an X-Y separator if there is no directed path from X to Y in the

graph D \ S. We say that S is a minimal X-Y separator if no proper subset of S is an

X-Y separator.

Definition 10.2.3. Let D = ((V,A), σ) be a skew-symmetric graph and let L be a

regular set of vertices. Let X ⊆ A be a self-conjugate set of arcs of D. We call X an

L-L′ self-conjugate separator if X is a (not necessarily minimal) L-L′ separator. We

callX a minimal L-L′ self-conjugate separator if there is no self-conjugate strict subset

of X which is also an L-L′ separator.

Definition 10.2.4. Let D = ((V,A), σ) be a skew-symmetric graph and let L be a reg-

ular set of vertices. Let X be an L-L′ self-conjugate separator. We denote by R(L,X)

the set of vertices of D that can be reached from L via directed paths in D \X , and we

denote by R̄(L,X) the set of vertices of D which have a directed path to can reach L in

D \X .
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Observation 10.2.5. Let D = ((V,A), σ) be a skew-symmetric graph and let L be

a regular set of vertices. Let X be an L-L′ self-conjugate separator. Then, the sets

R(L,X) and R̄(L′, X) are also regular and σ(R(L,X)) = R̄(L′, X).

Proof. Since deleting a self-conjugate set of arcs from a skew-symmetric graph results

in a skew-symmetric graph, we know that there is a path from u to v inD\X if and only

if there is a path from v′ to u′ in D \X . Therefore, if R(L,X) is irregular, then there is

a path from L to y and y′ for some vertex y, which is disjoint from X , which implies a

path from L to L′ in D \X , which is a contradiction. Therefore, R(L,X) and R̄(L′, X)

are regular and since D \X is a skew-symmetric graph, they are conjugates.

10.2.1 Minimum separators in skew-symmetric graphs

Lemma 10.2.6. Let D = ((V,A), σ) be a skew-symmetric graph, L be a regular set of

vertices.

1. Suppose that there is an L-L′ path in D and let X be a minimum L- L′ separator

and let Z = R(L,X ∪X ′). Then, δ+(Z) is also a minimum L-L′ separator.

2. An arc is part of a minimum L-L′ separator if and only if its conjugate is also part

of a minimum L-L′ separator.

Proof. Recall that Z is regular (Observation 10.2.5). Since L is in Z and L′ is disjoint

from Z, δ+(Z) is an L-L′ separator. It remains to show that it is a minimum such

separator. Clearly, δ+(Z) ⊆ X ∪X ′. Let A = δ+(Z) ∩X and B = δ+(Z) \X .

Since B is disjoint from X , it must be the case that B′ ⊆ X . We now claim that A

and B′ are disjoint. Suppose that this is not the case and let x ∈ B such that x′ ∈ A.

Since x′ ∈ δ+(Z), it must be the case that x ∈ δ−(Z ′). Since there is a path from Z to

Z ′ via x and X is disjoint from A[Z ∪ Z ′] ∪ {x}, there is a path from L to L′ disjoint
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from X , a contradiction. Therefore, we conclude that A ∩ B′ = ∅. We now have that

|δ+(Z)| = |A∪B| = |A|+ |B′| ≤ |X| where the last inequality used the fact that A and

B′ are disjoint. Therefore, we conclude that δ+(Z) is indeed a minimum L-L′ separator.

Consequently, δ−(Z) is also a minimum L-L′ separator. This concludes the proof of the

first part of the lemma.

We claim that if X is an L-L′ separator, then X ′ is an L-L′ separator as well. Sup-

pose that this is not the case and let there be a path v1, . . . , vr inD\X ′ where v1 = l and

vr = l′. However, this implies that X is disjoint from the path σ(vr), . . . , σ(v1), which

is a contradiction. This concludes the proof of the lemma.

Lemma 10.2.7. (Crossing-Uncrossing) LetD = ((V,A), σ) be a skew-symmetric graph

and letB ⊆ V . If δ+(B)∩δ+(B′) = ∅ then |δ+(B \B′)| = |δ+(B)| and |δ+(B \B′)| <

|δ+(B)| otherwise.

Proof. Let Q = B \B′. We partition δ+(Q) into the following sets (see Figure 10.2).

1. Qo
1 = δ+(Q)∩ δ−(V \ (B∪B′)), that is, those arcs with the tail in Q and the head

in V \ (B ∪B′).

2. Qo
2 = δ+(Q) ∩ δ−(B \ B′), that is, those arcs with the tail in Q and the head in

B′ \B.

3. Qo
3 = δ+(Q) ∩ δ−(B ∩ B′)), that is, those arcs with the tail in Q and the head in

B ∩B′.

Similarly, we partition δ+(B) as follows.

1. Bo
1 = (δ+(B \ B′) ∩ δ−(V \ (B ∪ B′)), that is, those arcs with the tail in B \ B′

and the head in V \ (B ∪B′).

2. Bo
2 = (δ+(B)∩ δ−(B′ \B), that is, those arcs with the tail in B \B′ and the head

in B′ \B.
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V \ (B [B0)
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3

Figure 10.2: An illustration of the partitions described in the proof of Lemma 10.2.7

3. Bo
3 = δ+(B)∩ δ+(B′ \B), that is, those arcs with the tail in B ∩B′ and the head

in B \B′.

4. Bo
4 = δ+(B) ∩ δ+(B′)

Observe that Qo
1 = Bo

1 , Qo
2 = Bo

2 and Qo
3 = (Bo

3)′. Therefore, |δ+(Q)| = |δ+(B)| if Bo
4

is empty and |δ+(Q)| < |δ+(B)| otherwise. This completes the proof of the lemma.

10.2.2 (L, k)-Components

Definition 10.2.8. Let D = ((V,A), σ) be a skew-symmetric graph and k ∈ N. Let

L ⊆ V be a regular set of vertices. A set of vertices Z ⊆ V is called an (L, k)-

component if it satisfies the following properties.

1. L ⊆ Z

2. Z is regular

3. Z is reachable from L in D[Z]
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4. The size of a minimum Z-Z ′ separator is equal to the size of a minimum L-L′

separator and this size is at most 2k.

5. Z is inclusion-wise maximal among the sets satisfying the above properties.

Lemma 10.2.10 gives an algorithm that in linear time either computes an (L, k)-component

or finds a minimum L-L′ separator of a particular kind, which we later show can be used

to reduce the instance. For this, we require the following lemma which we proved in

Chapter 3.

Lemma 10.2.9. Let s, t be two vertices in a digraph D = (V,A) such that the minimum

size of an s-t separator is ` > 0. Then, there is a collection X = {X1, . . . , Xq} of sets

where {s} ⊆ Xi ⊆ V \ {t} such that

1. X1 ⊂ X2 ⊂ · · · ⊂ Xq,

2. Xi is reachable from s in D[Xi],

3. |δ+(Xi)| = ` for every 1 ≤ i ≤ q and

4. every s-t separator of size ` is fully contained in
⋃q
i=1 δ

+(Xi).

Furthermore, there is anO(`(|V |+ |A|)) time algorithm that produces the setsX1, X2 \

X1, . . . , Xq \Xq−1 corresponding to such a collection X .

Using the above lemma, we prove the main lemma of this section, which is the

following.

Lemma 10.2.10. Let D = ((V,A), σ) be a skew-symmetric graph and k ∈ N. Let

L ⊆ V be a regular set of vertices such that there is an L-L′ path in D. There is an

algorithm which runs in time O(k3(m+ n)) and

• correctly concludes that no (L, k)-component exists or
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• returns an (L, k)-component or

• returns an irregular minimum L-L′ separator

where m = |A| and n = |V |.

Proof. The main idea of the algorithm is to start with the collection coming from Lemma 3.2.27

and then use this to either find an (L, k)-component or to return an irregular minimum

L-L′ separator. In what follows we describe possible situations that could arise and how

they could be handled. Finally, we use all this to describe the algorithm and prove its

correctness.

We can, in O(k(m + n)) time check if the size of the minimum L-L′ separator is

at most 2k by running 2k iterations of the Ford-Fulkerson algorithm [35]. If the size

of the minimum separator exceeds 2k, then we can conclude that no (L, k)-component

exists. Therefore, we assume in the rest of this proof that the size of the minimum L-

L′ separator is at most 2k. Let X = {X1, . . . , Xq} be a collection with the properties

mentioned in Lemma 3.2.27 where “L acts as s and L′ acts as t". We make this formal

when we describe the algorithm later.

We begin by showing that not all Xi’s can be irregular.

Claim 8. There is an index i ≥ 1 such that for all j ≤ i, the set Xj is regular.

Proof. We first show that X1 is regular. Suppose that this is not the case and there

are vertices y, y′ ∈ X1. Since no arc in A[X1] is part of a minimum L-L′ separator (by

property 4 of the collection), Lemma 10.2.6 implies that no arc inA[X1] is the conjugate

of an arc in S = δ+(X1). Therefore, there is a path from L to y and a path from L to

y′ disjoint from S ∪ S ′. However, this implies the presence of a path from L to L′ in

D \ (S ∪ S ′), which is a contradiction. Therefore, X1 is regular. Since every subset of a
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regular set is regular, there is an index i ≥ 1 such that for all j ≤ i, Xj is regular. This

completes the proof of the claim.

Given the above claim, we first consider the case when Xi is regular for every 1 ≤

i ≤ q. This brings us to the following claim.

Claim 9. If Xi is regular for every 1 ≤ i ≤ q then Xq itself is an (L, k)-component.

Proof. Observe that Xq satisfies the first four properties of an (L, k)-component and

thus it suffices to prove that Xq is inclusion-wise maximal with respect to these 4 prop-

erties. Suppose that Xq is not maximal with respect to these properties and let Z ⊃ Xq

have the required properties and let Y be a minimum Z-Z ′ separator. Clearly, Y is a

minimum L-L′ separator. Since Z ⊃ Xq, there is an arc y ∈ Y which is not in δ+(Xq).

Since Xq strictly contains all other Xi’s, y /∈ δ+(Xi) for any i, which contradicts prop-

erty 4 of the collection.

Claims 8 and 9 act like base cases of our algorithm that we describe later.

We now suppose that there exists i ≤ q such that Xi is irregular. Let a be the highest

index such that Xa is regular and Xa+1 is irregular. Let A = Xa and B = Xa+1. Since

δ+(B) is a minimumL-L′ separator, by the crossing-uncrossing lemma (Lemma 10.2.7),

we have that |δ+(B \ B′)| = |δ+(B)| and δ+(B) ∩ δ+(B′) = ∅. That is, there is no arc

which enters V \ (B ∪ B′) from B ∩ B′ and thus there is no arc which enters B ∩ B′

from V \ (B ∪ B′). Furthermore, if there is an arc x ∈ δ+(B \ B′) ∩ δ−(B′ \ B), then

x′ ∈ δ+(B \ B′), which implies that x, x′ are contained in a minimum L-L′ separator.

Therefore, from this point on, we may assume that there is no arc in δ+(B \ B′) ∩

δ−(B′ \ B). Before we go further we summarize the sets and the various intersections

they have. From now onwards the setsB andQ = B\B′ will always have the following

intersection properties.
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B \ B0 B0 \ B

V \ (B [B0)

B \B0

Qo (Qo)0

Figure 10.3: An illustration of the sets defined in Lemma 10.2.10. Observe that there
are no arcs between B \B′ and B′ \B and between B ∩B′ and V \ (B ∪B′)

1. Q = B \B′

2. |δ+(B \B′)| = |δ+(Q)| = |δ+(B)|

3. δ+(B) ∩ δ+(B′) = ∅

4. δ−(B) ∩ δ−(B′) = ∅

5. δ+(B\B′)∩δ−(B′\B) = δ+(Q)∩δ−(Q′) =

∅

The proof of the next observation follows from the fact that there is neither an arc en-

tering B ∩ B′ from V \ (B ∪ B′) nor an are leaving B ∩ B′ to V \ (B ∪ B′) (see

Figure 10.3).

Observation 10.2.11. Any path from Q to Q′ with the internal vertices disjoint from

Q ∪Q′ is contained entirely in either D \ (B ∩B′) or D[B ∪B′].

The next claim describes certain properties of paths exiting Q and entering B ∩ B′.

This will be used later in some of the arguments.
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Claim 10. LetB andQ be defined as above. Then for every q ∈ N+(Q)∩(B∩B′) there

is a path from q to N−(Q′) ∩ (B ∩B′) which completely lies in the graph D[B ∩B′].

Proof. Suppose this is not the case. That is, there exists an edge x = (p, q) ∈ δ+(Q)

such that q ∈ (B ∩ B′) and there is no path from q to N−(Q′) ∩ (B ∩ B′) which

completely lies in the graph D[B ∩ B′]. Consider the graph D1 = D \ (δ+(Q) \ {x}).

Since δ+(Q) is a minimum L-L′ separator, there is path from L to L′ in D1. Since

this path contains the arc x, there is a subpath, say W , from q to N−(Q′) that does not

intersect Q′. Furthermore, in D1 the only arc that emanates from Q is x and thus we

have that W is disjoint from Q as well. However, by Observation 10.2.11 every path

from Q to Q′ with the internal vertices disjoint from Q and Q′ is contained in D[B∪B′]

or D[V \ (B ∩ B′)]. Since q ∈ B ∩ B′, we conclude that there is a path from q to

N−(Q′) ∩ (B ∩ B′) in D[B ∩ B′]. This is a contradiction to our assumption and thus

concludes the proof.

We are now ready to describe the cases that occur when we have an irregular set. This

case is divided into following three exhaustive subcases.

Case I: A ∩B′ = ∅.

Case II: A ∩B′ 6= ∅ and A \B′ 6= ∅.

Case III: A ⊆ B ∩B′.

We now consider each case one by one and show how we will handle it algorithmically

(later).

Case I: A ∩B′ = ∅. We start by defining the set Qo = δ+(Q) ∩ δ−(B ∩B′).

The next claim proves an interesting structural property that is crucial to the correctness

of the algorithm.
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Claim 11. Either every (L, k)-component Z ⊇ Q is such that Qo ⊆ δ+(Z) or there is

an arc y ∈ Qo such that there is a minimum L-L′ separator containing y and y′.

Proof. Let Z ⊇ Q be an (L, k)-component and x ∈ Qo an arc such that x = (p, q) /∈

δ+(Z). Note that this implies that x ∈ A[Z]. By Claim 10, we have that there is a

path from q to N−(Q′) ∩ (B ∩ B′) which lies in the graph D[B ∩ B′]. Observe that

N−(Q′) ∩ (B ∩ B′) = Tail((Qo)′). Let r ∈ B ∩ B′ be such that q has a path in

D[B ∩ B′] from q to r, where (r, s) ∈ (Qo)′. We claim that there is a minimum L-L′

separator containing (r, s) and (s′, r′). Consider a minimum Z-Z ′ separator S. Since

every arc inA[B∩B′] has both endpoints insideB and both endpoints outsideA, none of

these arcs appear in the set
⋃q
i=1 δ

+(Xi), we conclude that S is disjoint from A[B ∩B′]

(by property 4 of the collection). Since S is disjoint fromA[B∩B′], we have that r ∈ Z.

Furthermore, since s ∈ Q, we have that s ∈ Z ′. Consequently, we have that r′ ∈ Z ′ and

s′ ∈ Z. Therefore, both the arcs (r, s) and (s′, r′) are in both the sets δ+(Z) and δ−(Z ′),

which implies that they are also present in S. Since S is also a minimum L-L′ separator,

this completes the proof of the claim.

The following claims allow our algorithm to use the above observations recursively in

the graph D \ (B ∩ B′) in the absence of y ∈ Qo such that there is no minimum L-L′

separator containing y and its conjugate y′.

Claim 12. Assume that every (L, k)-component Z ⊇ Q is such that Qo ⊆ δ+(Z).

(Recall Qo = δ+(Q) ∩ δ−(B ∩B′).)

1. If S is a minimum Q-Q′ separator in D1 = D[V \ (B ∩ B′)], then S ∪ Qo is a

minimum Q-Q′ separator in D.

2. IfZ is an (L, k)-component such thatQo ⊆ δ+(Z), thenZ is also an (L, k−|Qo|)-

component inD1 = D[V \(B∩B′)] and furthermore, any (L, k−|Qo|)-component
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in D1 is an (L, k)-component in D.

Proof. Recall that δ+(B) ∩ δ+(B′) = ∅ and δ−(B) ∩ δ−(B′) = ∅. Hence every Q-Q′

path in D is contained entirely in the graph D1 or D2 = D[B ∪ B′]. The last assertion

implies that the size of the minimum Q-Q′ separator in D is the sum of the sizes of the

minimum Q-Q′ separator in the graphs D1 and D2. Since δ+(Q) \ Qo is a minimum

Q-Q′ separator in D1, S is no larger than δ+(Q) \ Qo. Therefore, S ∪ Qo is no larger

than δ+(Q). Since S ∪Qo is clearly a Q-Q′ separator in D, this completes the proof of

this statement.

Now we show the second part of the claim. We first show that Z satisfies the first

4 properties of an (L, k − |Qo|)-component in D1. Recall that the size of a minimum

Q-Q′ separator in the graph D1 is |δ+(Q)| − |Qo|, which implies that Z indeed satisfies

the first 4 properties of an (L, k − |Qo|)-component in D1.

Therefore, if Z were not an (L, k − |Qo|)-component in D1, then there is a set

W ⊃ Z which satisfies these 4 properties and let S be a minimum W -W ′ separator in

D1. We claim that W also satisfies the first 4 properties of an (L, k)-component in D,

which contradicts our assumption of Z as an (L, k)-component. From the first part of

the claim, we have that S ∪ Qo is a minimum Q-Q′ separator in D, which implies that

W indeed satisfies the first 4 properties of an (L, k)-component in D.

In the converse direction, let Z be an (L, k − |Qo|)-component in D1. Since S ∪Qo

is a minimum Q-Q′ separator in D, we have that Z satisfies the first 4 properties of an

(L, k)-component in D. For contradiction assume that Z is not an (L, k)-component

in D. Then there exists W ⊃ Z that is a (L, k) component in D. Since every (L, k)-

component W is such that Qo ⊆ δ+(W ), we have that W ∩Head(Qo) = ∅. But then it

implies that W also satisfies the first 4 properties of an (L, k − |Qo|)-component in D1.

However this is a contradiction to our assumption that Z is an (L, k− |Qo|)-component
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in D1. This completes the proof of the claim.

This completes the study of the case when A ∩B′ = ∅.

Case II : A ∩B′ 6= ∅ and A \B′ 6= ∅.

Here, for a subcase we construct a new collection X ′ where this case is avoided. Let

Q = B \B′ and P = A ∪ (B \B′). We have already observed that |δ+(Q)| = |δ+(B)|

and that the set δ+(B) ∩ δ+(B′) is empty. We now show that |δ+(Q)| = |δ+(P )|. Let

P o
1 = δ+(P ) \ δ+(Q) and Qo

1 = δ+(Q) \ δ+(P ). We claim that |P o
1 | = |Qo

1|. But this

is true since |P o
1 | < |Qo

1| implies that |δ+(P )| < |δ+(Q)|, which is a contradiction since

δ+(P ) is an L-L′ separator smaller than the minimum one and |Qo
1| < |P o

1 | implies that

|δ+(A \ B′)| < |δ+(A)|, which is a contradiction since δ+(A \ B) is an L-L′ separator

smaller than the minimum one. Therefore, we conclude that |P o
1 | = |Qo

1| and hence

|δ+(Q)| = |δ+(P )|.

By combining this along with the crossing-uncrossing lemma (Lemma 10.2.7) ap-

plied on the set K = B \ A′, we have that |δ+(P )| = |δ+(K \ K ′)| = |δ+(K)|.

Furthermore, A ⊂ K ⊂ B, and A ∩K ′ = ∅.

If K is irregular, then consider the collection X ′ obtained by inserting the set K

betweenXa andXa+1 in the collectionX . Clearly, X ′ is also a collection which satisfies

the properties 1, 2, and 4 of Lemma 3.2.27. It also satisfies property 3 since δ+(K) is

a minimum L-L′ separator. However, if we consider the collection X ′, A would still be

the regular set with the highest index, while K would be the irregular set with the least

index. SinceA is disjoint fromK ′, we fall back into the previous case when we consider

this collection.

IfK is regular, then (B∩B′)\(A∪A′) = ∅. Observe thatN+(Q)∩(B∩B′) ⊆ A∩B′

and N−(Q′)∩ (B ∩B′) ⊆ A′ ∩B. Since A∩B′ 6= ∅ and every vertex in A is reachable
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from L, we have that N+(Q) ∩ (B ∩ B′) 6= ∅ and thus N−(Q′) ∩ (B ∩ B′) 6= ∅. This

together with Claim 10 implies that there is a path, say W , from A∩B′ to A′∩B which

lies in the graphD[B∩B′]. Let p be the last vertex onW fromA∩B′. SinceA∩B′ and

A′∩B partition B∩B′, either there is an arc (p, q) such that p ∈ A∩B′ and q ∈ A′∩B

or p ∈ A ∩ B′ and q ∈ B′. In either case this implies that there is an arc (q′, p′) where

q′ ∈ A∩B′ in the former case and q ∈ B′ in the latter case and p′ ∈ A′ ∩B. Since both

(p, q) and (q′, p′) are in δ+(K) ∩ δ−(K ′), and δ+(K) is a minimum L-L′ separator, we

have that δ+(K) is a minimum L-L′ separator containing arcs y and y′ where y = (p, q).

Case III: A ⊆ B ∩B′. This case is non-existent since L ⊆ A and L ∩B′ = ∅.

The Algorithm We begin by applying the Ford-Fulkerson algorithm to compute a

minimum L-L′ separator in the graph. If we require more than 2k iterations of the Ford-

Fulkerson algorithm, then we return that there is no (L, k)-component. We then apply

the algorithm of Lemma 3.2.27 to compute the collection X = {X1, . . . , Xq} which can

be computed in time O(k(m + n)). In order to apply Lemma 3.2.27, we need vertices

s and t. Therefore, we add vertices s and t to the graph, add 2k + 1 arcs from s to each

vertex in L and 2k + 1 arcs from each vertex in L to t. It is clear from this construction

that no s-t separator of size at most 2k will contain any of these newly added arcs and

therefore, the s-t separators of size at most 2k are in one to one correspondence with the

L-L′ separators of size at most 2k. This allows us to use Lemma 3.2.27 in the form it is

stated in.

We then simply need to examine each Xi+1 \Xi once to compute the index a such

that Xa is the highest regular set and Xa+1 is the least irregular set. After computing

the index a, in O(m) time, we can compute the case we are currently in by computing

the intersection of the sets A and B. If we are in case (b), in time O(k2m), we can
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compute K and either find an irregular minimum L-L′ separator by testing if there is a

minimum L-L′ separator containing y, y′ for some y ∈ δ+(K) or move to case (a) where

we already have computed the required sets– the regular set with the highest index A

and the irregular set with the least index K. Finally, if we are in case (a), in O(m) time,

we compute the set Q and iteratively compute a (Q, k′)-component in D \ (B ∩ B′)

(which we have already shown is an (L, k)-component) where k′ < k or an irregular

minimum Q-Q′ separator. In the latter case, we add Qo to this minimum separator to get

an irregular minimum Q-Q′ separator in D. The correctness of our algorithm follows

from the structural claims preceding the description. Furthermore, each time we iterate,

we attempt to compute an (L, k′)-component where k′ < k. Therefore, we can have

at most 2k such iterations and hence, the running time of our algorithm is bounded by

O(k3(m+ n)). This completes the proof of the lemma.

10.3 Algorithm for d-SKEW-SYMMETRIC MULTICUT

In this section we design our linear time parameterized algorithm for d-SKEW-SYMMETRIC

MULTICUT. We first give a lemma which allows us to find a solution that is disjoint from

some part of the solution. More formally we show the following.

Lemma 10.3.1. Let (D = (V,A), σ, T , k) be a YES instance of d-SKEW-SYMMETRIC

MULTICUT and let L be a regular set of vertices such that there is an L-L′ path in D.

If there is a solution for the given instance which is an L-L′ self-conjugate separator in

D, then the following hold.

1. An (L, k)-component exists.

2. Let Z ⊆ V be a regular set of vertices containing L such that the size of the

minimum Z-Z ′ separator is the same as the size of the minimum L-L′ separator.
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Z Z

L L

P

Y

Figure 10.4: An illustration of the sets Z, Y and P in the proof of Lemma 10.3.1.

Then, there is a solution for the given instance disjoint from A[Z].

Proof. For the first statement, observe that since there is a solution for the given instance

which is an L-L′ self-conjugate separator, the size of the minimum L-L′ separator is at

most 2k. Therefore the set L itself satisfies the first 4 properties of an (L, k)-component

and therefore an (L, k)-component exists. This completes the proof for the first state-

ment.

Now we prove the second part of the lemma. Let X be the solution defined above,

that is, X is an L-L′ self-conjugate separator. If X is disjoint from A[Z], then we are

done. Therefore, suppose that X intersects A[Z] and let Y be the set of arcs in A[Z]

such that Y ∪ Y ′ ⊆ X . Let P ⊆ δ+(Z) be such that Tail(P ) is not reachable from L in

D[Z]\Y . That is, Y is an L-Tail(P ) separator in the digraphD[Z]. It might be possible

that Tail(P ) = ∅. We now claim that the set X̂ = (X \ (Y ∪ Y ′)) ∪ (P ∪ P ′)) (see

Figure 10.4) is also a solution for the given instance.

Claim 13. X̂ = (X \ (Y ∪ Y ′)) ∪ (P ∪ P ′)) is a solution for the given instance and

|X̂| ≤ |X|.

Proof. We first show that |X̂| ≤ |X|. Since δ+(Z) is a minimum L-L′ separator, there

230



are |δ+(Z)| arc disjoint paths from L to Tail(δ+(Z)) in D[Z]. Therefore, |Y | ≥ |P |.

Clearly, X̂ is no larger thanX . Therefore, it remains to show that X̂ is a skew-symmetric

multicut for D. If this were not the case, then there is a closed walk in the graph D \ X̂

intersecting an arc y ∈ Y and containing vertices t and t′. Here t ∈ J where J ∈ T and

for every vertex vi ∈ J , vi and σ(vi) lie in the same strongly connected components of

D \ X̂ . That is, J is a violated constraint.

Since Tail(y) is reachable from L in the graph D \ X̂ , both t and t′ are reachable

from L in the graph D \ X̂ , which implies the presence of a path, say W , from L to L′

in D \ X̂ . Now using this path we construct another path W ′ from L to L′ in D \ X .

This will contradict our assumption that X is an L-L′ self-conjugate separator in D.

Observe that W must also intersect an arc in δ+(Z) since L ⊆ Z and L′ is disjoint

from Z. However, since P ∪P ′ ⊆ X̂ , this arc, say (p, z1), is in δ+(Z)\P . Furthermore,

this path also contains a subpath from a vertex z1 ∈ Head(δ+(Z) \ P ) to a vertex

z2 ∈ Tail(δ−(Z ′) \ P ′) whose arcs are disjoint from A[Z ∪ Z ′] ∪ δ+(Z) ∪ δ−(Z ′). We

call this path Wz1z2 . Let (z2, q) be an arc in δ−(Z ′)\P ′ such that the arc (z2, q) is on W .

Observe that p, q′ are in Z and there are paths from L to both p and q′ that avoids arcs of

Y . The last assertion follows from the fact that the vertices of δ+(Z) \ P are reachable

from L in D[Z] \ Y . Let these paths avoiding arcs of Y be called WLp and WLq′ . Then

observe that WLpWz1z2(WLq′)
′ forms a path in D \ X – a contradiction. Here, (WLq′)

′

is the path that is conjugate to WLq′ . This completes the proof of the claim.

The above claim completes the proof of the lemma.

From this point on, we assume that an instance of d-SKEW-SYMMETRIC MULTICUT is

of the form (D = (V,A), σ, T, k, L) where L is a regular set of vertices and the question

is to check if there is a solution for the given instance which is an L-L′ self-conjugate

separator. To solve the problem on the given input instance, we simply solve it on the
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instance (D = (V,A), σ, T , k, ∅).

Lemma 10.3.2. Let (D = (V,A), σ, T , k, L) be an instance of d-SKEW-SYMMETRIC

MULTICUT and let S be an irregular minimum L-L′ separator. Then, there are arcs

y, y′ such that y, y′ ∈ δ+(R(L, S ∪ S ′))) and there is a solution for the given instance

containing y, y′.

Proof. Let Z = R(L, S ∪ S ′). By Lemma 10.2.6, δ+(Z) is a minimum L-L′ separator

and hence |δ+(Z)| = |S|. Since S is irregular, S ∪S ′ contains arcs from at most |S| − 1

conjugate pairs. Thus there are arcs y, y′ ∈ δ+(Z).

LetX be a solution for the given instance. Since there is no path from L-L′ inD\X ,

it must be the case that D \X cannot contain paths from L to both Tail(y) and Tail(y′).

Therefore, it must be the case that X intersects A[Z] and intersects all paths from L to

Tail(y) or Tail(y′). However, by Lemma 10.3.1 we know that there exists a solution

that does not intersect A[Z]. This implies that there is also a solution containing the arcs

y, y′.

The above lemma gives us the following reduction rule.

Reduction Rule 1. Let (D = (V,A), σ, T, k, L) be an instance of d-SKEW-SYMMETRIC

MULTICUT and let S be an irregular minimumL-L′ separator. Let y, y′ be the arcs given

by Lemma 10.3.2. Then return the instance (D = (V,A \ {y, y′}), σ, T , k − 1).

Therefore, by combining this reduction rule with the algorithm of Lemma 10.2.10, we

can, in linear time either reduce the parameter or compute an (L, k)-component with a

regular neighborhood. We are now ready to prove Theorem 10.1.1 by giving an algo-

rithm for d-SKEW-SYMMETRIC MULTICUT.

Description of Algorithm. The input to our algorithm for d-SKEW-SYMMETRIC MUL-

TICUT is an instance (D = (V,A), σ, T = {J1, . . . , Jr}, k, L) where Ji = {vi1 , . . . , vid}
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and the algorithm either returns a skew-symmetric multicut of size at most 2k which is

an L-L′ self-conjugate separator in D or concludes correctly that no such set exists. In

order to solve the problem on the given instance of d-SKEW-SYMMETRIC MULTICUT,

the algorithm is invoked on the input (D = (V,A), σ, T , k, ∅).

1. If L = ∅ or if there is no path from L to L′ in D, then the algorithm checks if there is

a set Ji ∈ T such that for all 1 ≤ s ≤ d, vis and v′is lie in the same strongly connected

component in D, that is, a violated set. If there is no such set, then the algorithm returns

the emptyset. Otherwise, the algorithm picks such a set Ji, and branches in 2d ways. In

the first d branches, it recurses on the instances {(D = (V,A), σ, T , k, {vij})}1≤j≤d and

in the next d branches, it recurses on the instances {(D = (V,A), σ, T , k, {v′ij})}1≤j≤d.

2. Suppose L 6= ∅ and there is an L-L′ path inD. Then, the algorithm of Lemma 10.2.10

is first used on the instance (D = (V,A), σ, T , k, L) to either compute an (L, k)-

component (if it exists) or an irregular minimum L-L′ separator. If an (L, k)-component

does not exist, then we return NO. If an irregular minimum L-L′ separator is re-

turned, then we apply Reduction Rule 1. Suppose that an (L, k)-component Z is re-

turned. We check if Reduction Rule 1 applies on any arc in δ+(Z) and if it does,

apply the rule. Therefore, at this point, we may assume that an (L, k)-component

Z is returned and that the rule is not applicable on any arc in δ+(Z). Observe that

δ+(Z) 6= ∅ since there is an L-L′ path in D. The algorithm then picks an arc a ∈ δ+(Z)

and branches in 2 ways as follows. In the first branch, the algorithm deletes {a, a′}

and recurses on the resulting instances, that is, the algorithm recurses on the instance

(D = (V,A \ {a, a′}), σ, T , k − 1, L). In the next branch, the algorithm recurses on the

instance assuming that a is in A[R(L,X)] where X is the hypothetical solution, that is,

the algorithm recurses on the instance (D = (V,A), σ, T , k, L ∪ {Head(a)}).

Correctness. The correctness of the algorithm is proved by induction on a measure
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defined on the instance I . Let this measure be denoted by µ(I) = µ((D, k), L) =

2k − λ(L,L′) where λ(L,L′) is the size of the smallest L-L′ separator. In the base

case, if λ(L,L′) > 2k, then the algorithm of Lemma 10.2.10 returns NO on input (D =

(V,A), σ, k, L), and hence this algorithm returns NO as well, which is correct since the

solution we require contains an L-L′ separator of size at most 2k. Similarly, the case

when k < 0 is also clearly correct. We now assume as induction hypothesis that the

algorithm is correct on all instances I such that µ(I) ≤ µ − 1 and consider an instance

I = (D = (V,A), σ, T , k, L) such that µ(I) = µ and k ≥ 0.

We first show that an application of Reduction Rule 1 does not decrease this mea-

sure. Since deleting an arc and its conjugate from an irregular minimum L-L′ separator

reduces the size of the minimum size L-L′ separator by 2 and the budget k by 1, the

measure 2k − λ(L,L′) remains unchanged.

We now consider the branching rules. If L = ∅ or there is no L-L′ path in D, then

λ(L,L′) = 0. Consider an instance I ′ = (D = (V,A), σ, T , k, {v}) resulting from

a branch here. Although the parameter has not decreased here, since there is a path

from v to v′, λ(v, v′) > 0, which implies that µ(I ′) < µ(I). Therefore, by combining

the exhaustiveness of the branching along with the induction hypothesis, we obtain the

correctness of the algorithm on the instance I as well.

We now suppose that L 6= ∅ and there is an L-L′ path in D. The branching is ex-

haustive due to Lemma 10.3.1. We now show that for each of the resulting instances

I ′ from any of the branches, µ(I ′) ≤ µ − 1 in which case we can apply the induction

hypothesis on these instances, thus proving the correctness of the algorithm.

(a) We begin with the branch where we recurse on the instance I ′ = (D = (V,A), σ, T , k, Z∪

{Head(a)}). Since Z is an (L, k)-component, by definition, the size of the smallest sep-
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Figure 10.5: An illustration of the tighter analysis of the search tree in the algorithm.

arator from Z ∪ {Head(a)} to Z ′ ∪ {(Head(a))′} is strictly larger than λ(L,L′), which

implies that µ(I ′) < µ(I).

(b) We now consider the instance resulting from the other branch, that is the instance

I ′ = (D = (V,A\{a, a′}), σ, T , k−1, L) where a ∈ δ+(Z). In this case, the parameter

has decreased by 1. Since Reduction Rule 1 is not applicable on δ+(Z), removing {a, a′}

from the graph reduces λ(L,L′) by at most 1 and therefore, we have that µ(I ′) < µ. This

completes the proof of correctness of the algorithm.

Running time. We prove that on an instance I = (D = (V,A), σ, T , k, L), the algo-

rithm computes a search tree with at most (2
√
d)µ(I) leaves. We have already proved

that in each branch, the measure µ(I) decreases by at least 1 and since we only have 2d-

way branchings, the number of nodes of the search tree is clearly bounded by (2d)µ(I).

However, we analyze more closely a branch which occurs in a 2d-way branching where

µ(I) decreases by exactly 1. Suppose that J was the violating set computed in this step

and suppose v ∈ J be such that λ(v, v′) = 1. Consider the branch where we recurse
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on the instance (D = (V,A), σ, T , k, {v}). In this recursion, we first observe that the

reduction rule will not be applied. This is because the reduction rule requires a mini-

mum {v}-{v′} separator of size at least 2 while λ(v, v′) = 1. Therefore, the algorithm

of Lemma 10.2.10 will find a ({v}, k)-component Z.

Claim 14. |δ+(Z)| = 1.

Proof. Suppose not and let (a, b), (p, q) ∈ δ+(Z). Furthermore, let S be a minimum

Z-Z ′ separator. Then, since |S| = 1 by our assumption, either (a, b) /∈ S or (p, q) /∈ S.

Suppose that (a, b) /∈ S. Then, S is also a minimum Z ∪ {b}-Z ′ ∪ {b′} separator, which

contradicts the maximality of Z as a ({v}, k)-component.

Consider the branching performed on the single arc in δ+(Z). We have already shown

that the measure decreases by 1 in each of these branchings. Therefore, we combine

these 2 branches with the branch where we decided to recurse on the instance (D =

(V,A), σ, T , k, {v}). This leads to 2 branches where the measure decreases by 2 in

each. For each branch in the 2d-way branching where the measure decreases by 1, we

can do the same to obtain at most 4d branches in each of which the measure decreases by

2 (see Figure 10.5). Therefore, our worst case branching is a 4d-way branching, where

the measure drops by 2 in each branch. Thus, we obtain a bound of (2
√
d)µ(I) ≤ (4d)k

on the number of leaves of the search tree.

Since finding a violating set can be done in timeO(m+n+`), computing an (L, k)-

component or an irregular minimum L-L′ separator can be done in time O(k3(m+ n))

and there can be at most k applications of Reduction Rule 1 along any root to leaf path

of this search tree, we have the claimed bound ofO((4d)kk4(m+n+ `)) on the running

time, completing the proof of Theorem 10.1.1.

We observe here that ` occurs in the running time simply because the time taken to
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compute a violating set isO(`+m). However, in some cases, the set T may be given in

the form of a violation oracle, in which case, the running time bound remains the same

if violation oracle runs in time O(`). Therefore, the theorem below follows from the

proof of Theorem 10.1.1.

Theorem 10.3.3. There is an algorithm for d-SKEW-SYMMETRIC MULTICUT that,

given a tuple (D = (V,A), σ, k) along with a violation oracle for a family T , runs

in time O((4d)kk4(` + m + n) and either returns a skew-symmetric multicut of size at

most 2k or correctly concludes that no such set exists, where ` is the time required for

the violation oracle to compute a violated set in the family T , m = |A| and n = |V |.

10.4 Applications

In this section we use the algorithm developed for d-SKEW-SYMMETRIC MULTICUT to

obtain linear time parameterized algorithms for several other problems.

10.4.1 Linear time algorithm for ALMOST 2-SAT

It is known that the variable version of ALMOST 2-SAT, namely ALMOST 2 SAT(V)

can be reduced to the clause version ALMOST 2-SAT via a linear time reductions [79].

Therefore, it suffices for us to give a reduction from the clause version of ALMOST 2-

SAT to d-SKEW-SYMMETRIC MULTICUT. In order to give this reduction, we begin by

recalling the notion of implication graphs of a 2CNF formula.

Definition 10.4.1. Given a 2CNF formula F , the implication graph of F is denoted by

D(F ) and is defined as follows. The vertex set of the graph is the set of literals of F and

for every clause {l1, l2} in F , we have arcs (l̄1, l2) and (l̄2, l1).
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Clearly, implication graphs are skew-symmetric graphs where the involution σ is defined

as σ(l) = l̄ and σ(l1, l2) = (l̄2, l̄1).

Theorem 10.4.2. [3] A 2CNF formula F is satisfiable if and only if no literal and its

complement are contained in the same strongly connected component of D(F ).

Observation 10.4.3. Given a 2CNF formula F , let D be the implication graph of this

formula and let C be a subset of the clauses of F . Let CD be the corresponding set of

arcs in the graph D. Then, the implication graph of F − C is the same as the graph

D \ CD.

Lemma 10.4.4. Let F be a 2CNF formula on n variables x1, . . . , xn. Then, (F, k)

is a YES instance of ALMOST 2-SAT iff (D(F ), T = {{x1}, . . . , {xn}}, k) is a YES

instance of 1-SKEW-SYMMETRIC MULTICUT.

Proof. Suppose that C is a set of clauses such that |C| ≤ k and F −C is satisfiable and

let CD be the corresponding set of arcs in D. Then, by Theorem 10.4.2, no literal of F

appears in the same strongly connected component as its complement in the implication

graph of F − C. However, by Observation 10.4.3, we have that CD is a set of arcs

such that no vertex and its conjugate lie in the same strongly connected component of

D \ CD, which implies that CD is a solution for the instance of 1-SKEW-SYMMETRIC

MULTICUT.

Conversely, let CD be a self-conjugate set of arcs such that |CD| ≤ 2k and no vertex

in T lies in the same strongly connected component as its conjugate in D \ CD. Let C

be the set of clauses of F corresponding to CD. Since CD is self-conjugate, we have

that |C| ≤ k. Then, by Observation 10.4.3 and Theorem 10.4.2, the formula F − C

is satisfiable, which implies that C is indeed a solution for the instance of ALMOST

2-SAT. This completes the proof of the lemma.
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Since the graph D(F ) can be constructed in time O(|F |) and has O(|F |) arcs, we have

the following theorem.

Theorem 10.4.5. There is an algorithm that, given an instance (F, k) of ALMOST 2-

SAT (ALMOST 2 SAT(V)), runs in time O(4kk4`) and either returns an assignment

satisfying all but at most k clauses of F or correctly concludes that no such assignment

exists.

Furthermore, there are known linear time parameter preserving reductions from EDGE

BIPARTIZATION to ODD CYCLE TRANSVERSAL and from ODD CYCLE TRANSVER-

SAL to ALMOST 2-SAT (see [98, Page Number – 72 ] and [62]). The reduction from

EDGE BIPARTIZATION to ODD CYCLE TRANSVERSAL increases the the number of

edges and vertices in the graph by a factor of O(k) and the reduction from ODD CY-

CLE TRANSVERSAL to ALMOST 2-SAT is both parameter as well as size preserving.

Therefore, have the following corollaries.

Theorem 10.4.6. EDGE BIPARTIZATION and ODD CYCLE TRANSVERSAL can be

solved in time O(4kk5(m + n)) and O(4kk4(m + n)) respectively where m and n are

the number of edges and vertices in the input graph respectively.

10.4.2 Linear time algorithm for DELETION q-Horn BACKDOOR SET

DETECTION

Recall that a CNF formula F is q-Horn if there is a certifying function β : var(F ) ∪

var(F )→ {0, 1
2
, 1}with β(x) = 1−β(x̄) for every x ∈ var(F ) such that

∑
l∈C β(l) ≤ 1

for every clause C of F . In this subsection, we prove Theorem 10.4.10. We begin by

recalling the notion of a quadratic cover given by Boros et al. [9] which was also used

in the previous chapter.
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Definition 10.4.7. Given a CNF formula F , the quadratic cover of F , is a Krom for-

mula denoted by F2 and is defined as follows. Let x1, . . . , xn be the variables of F . For

every clause C, we have |C| − 1 new variables yC1 , . . . , y
C
|C|−1. We order the literals in

each clause according to their variables, that is, a literal of xi will occur before a literal

of xj if i < j. Let lC1 , . . . , l
C
|C| be the literals of the clause C in this order. The quadratic

cover is defined as.

F2 =
⋃
C∈F

⋃
1≤i≤|C|−1{{lCi , yCi }, {ȳCi , lCi+1}} ∪

⋃
C∈F

⋃
1≤i≤|C|−2{{ȳCi , yCi+1}}.

Observation 10.4.8. If F is a CNF formula of length `, then the number of arcs in D(F2)

is O(`).

We require the following characterization of q-Horn formulas.

Lemma 10.4.9 ([9]). A CNF formula F is q-Horn if and only if no clause of F has three

literals l1, l2, l3 such that each li and l̄i are in the same strongly connected component

of D(F2).

Recall that a deletion C-backdoor set of F is a setB of variables such that F−B ∈ C.

These characterizations allow us to give a linear time reduction from DELETION q-Horn

BACKDOOR SET DETECTION to 3-SKEW-SYMMETRIC MULTICUT.

Theorem 10.4.10. There is an algorithm that, given an instance (F, k) of DELETION

q-Horn BACKDOOR SET DETECTION, runs in time O(12kk5`) and either returns a

deletion q-Horn-backdoor set of F of size at most k or correctly concludes that no such

set exists, where ` is the length of F .

Proof. The proof is by a reduction to 3-SKEW-SYMMETRIC MULTICUT. We first con-

struct the graph D(F2). We now define a graph D1 which is a modification of D(F2) as

follows. For every vertex li in D(F2) corresponding to a positive literal in F , we have
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two vertices l+i and l−i and an arc (l−i , l
+
i ) and for every vertex li in D(F2) correspond-

ing to a negative literal we have two vertices l̄+i and l̄−i and an arc (l̄+i , l̄
−
i ). We say that

an arc (l−i , l
+
i ) corresponds to a (positive) literal li and an arc (l̄+i , l̄

−
i ) corresponds to a

(negative) literal li.

Now, for every vertex y in D(F2) which does not correspond to a literal of F , we

add vertices y1, . . . , yk+1 and for every arc (y, li) in D(F2), if li is a positive literal,

then we add arcs (y1, l
−
i ), . . . , (y2k+1, l

−
i ) and if li is a negative literal, then we add

arcs (y1, l̄
−
i ), . . . , (y2k+1, l̄

−
i ). For every arc (li, y) in D(F2), if li is a positive literal

then we add arcs (l+i , y1), . . . , (l
+
i , y2k+1) and if li is a negative literal then we add arcs

(l̄−i , y1), . . . , (l̄
−
i , y2k+1). This completes the construction of D1. Clearly, D1 is also

skew-symmetric. The purpose of modifying the graph D(F2) is simply to map literals

of the input formula to arcs in the skew-symmetric graph and conversely to ensure that

arcs which do not correspond to literals of the formula F are unlikely to participate in

skew-symmetric multicuts of size at most k. We note that {l+1 , l+2 } are contained in the

same strongly connected component ofD1 if and only if {l1, l2} are in the same strongly

connected component of D(F2).

We now claim that (F, k) is a YES instance of DELETION q-Horn BACKDOOR SET

DETECTION if and only if (D1, T , k, ∅) is a YES instance of 3-SKEW-SYMMETRIC

MULTICUT where T is the set of all triples of literals {l+1 , l+2 , l+3 } in F such that l1, l2, l3

occur in a clause in F .

Consider a solution S for the instance of DELETION q-Horn BACKDOOR SET DE-

TECTION and let SD be the set of those arcs in D1 which correspond to the literals of

the variables in S. Clearly, SD is self-conjugate and |SD| ≤ 2k. We claim that SD is

a skew-symmetric multicut for the given instance. If this were not the case, then there

is a clause C ∈ C(F ) and literals l1, l2, l3 ∈ C such that l+1 , l
+
2 , l

+
3 each lie in the same
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strongly connected component of D1 \ SD as their complements. Recall that by C(F )

we denote the set of clauses of a CNF formula F .

However, by Lemma 10.4.9, there is no violating triple in the graph D(F2) \ lit(S)

and therefore, there cannot be a violated set in the graph D1 \ SD.

Conversely, consider a solution SD for the instance of 3-SKEW-SYMMETRIC MUL-

TICUT. It is easy to see from the construction ofD1 that SD is disjoint from arcs incident

on any yCi . Therefore, the arcs in SD correspond to literals and hence variables in F .

Let S be the this set of variables. We claim that S is a q-Horn deletion backdoor set. If

this were not the case, then by Lemma 10.4.9, there is a clause C ∈ C(F ) and literals

l1, l2, l3 ∈ C such that l1, l2, l3 each lie in the same strongly connected component of

D(F2) \ lit(S) as their complements. However, this implies that l+1 , l
+
2 , l

+
3 each lie in

the same strongly connected component of D1 \ SD as their complements, which is a

contradiction. This completes the proof of correctness of the reduction.

Though this reduction is parameter preserving, it is not a linear time reduction since

the number of triples we need to give as input to the 3-SKEW-SYMMETRIC MULTICUT

instance could be super linear in the length of the formula. However, by using an algo-

rithm by Boros et al. [9] that runs in time O(`) and returns a violated triple, we can use

the above reduction which runs in timeO(k`) and returns a skew-symmetric graph with

O(k`) arcs, along with our algorithm for 3-SKEW-SYMMETRIC MULTICUT to get an

algorithm which runs in time O(12kk5`). This completes the proof of the theorem.

Since every deletion q-Horn backdoor set is also a strong q-Horn backdoor set, Theo-

rem 10.4.10 has the following corollary.

Corollary 10.4.11. There is an algorithm for SATISFIABILITY that runs in timeO(12kk5`),

where k is the size of the smallest q-Horn deletion backdoor set of the input formula.
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10.5 Conclusion

We introduced the d-SKEW-SYMMETRIC MULTICUT problem, a general graph separa-

tion problem which generalizes a large number of well-studied problems, and described

an FPT algorithm for this problem with a linear dependence on the input size and a

moderate dependence on the parameter. This result gives the first linear time FPT al-

gorithms for ODD CYCLE TRANSVERSAL, ALMOST 2-SAT and DELETION q-Horn

BACKDOOR SET DETECTION. We believe that there are more graph separation prob-

lems which can be reduced to d-SKEW-SYMMETRIC MULTICUT and that our algorithm

can be used as a “tool” to give (linear time) FPT algorithms for other problems which

have graph separation at their core. We would like to remark that, to keep our analysis

simple, we have not optimized the polynomial dependence of the running times on k.

We would also like to point out that the algorithms for variants of EDGE BIPARTI-

ZATION and ODD CYCLE TRANSVERSAL studied in the paper of Marx et al. [76] use

the almost linear time algorithm for ODD CYCLE TRANSVERSAL of Kawarabayashi

and Reed or the quadratic time algorithm of Reed et al. [91]. Therefore, using our algo-

rithm instead of these algorithms results in linear time FPT algorithms for these variants

studied by Marx et al.
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Part VI

Conclusion
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11
Conclusion

In this thesis, the main topic of study was generalizations of the problem of finding the

minimum set of vertices disconnecting two vertices in graph, also called graph sepa-

ration problems. These problems not only have independent applications, motivating

their study, but a variety of classical problems which are not graph separation prob-

lems or even graph problems in some cases, have been found to have a graph separation

problem at their core with examples including, but not restricted to VERTEX COVER,

ALMOST 2-SAT, DELETION q-Horn BACKDOOR SET DETECTION, and SATISFIABIL-

ITY. Since almost all natural graph separation problems turn out to be NP-complete, we

studied these problems in the framework of Parameterized Complexity and we designed

new techniques and frameworks to obtain new as well as improved FPT algorithms for

certain kinds of parameterized graph separation problems. We also give applications

of these techniques by showing certain problems which not graph separation problems

themselves to have some variant of graph separation at their core, to give new as well as

improved FPT algorithms. In particular,

• We introduced a generalization of important separators and show how to use it as
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a generic technique to design algorithms for problems which are not amenable to

the existing machinery.

• We gave a generic subroutine which can be used to impose certain structure on

a given graph which in turn leads to faster algorithms. In this thesis, we present

a version of this subroutine which is very useful for graph separation problems

which are parity based.

• We introduced a framework in which we can obtain greedy factor-OPT approxi-

mation algorithms for graph separation problems.

11.1 New FPT algorithms

• VERTEX COVER parameterized above the optimum value of the LP can be solved

in time O(2.3146knO(1)), where n is the number of vertices in the input graph

(Chapter 7).

• PARITY MULTIWAY CUT can be solved in time O(2O(k
3)nO(1)), where n is the

number of vertices in the input graph (Chapter 8).

• d-SKEW-SYMMETRIC MULTICUT can be solved in time O((4d)kk4(m + n))

where m and n are the number of edges and vertices in the input graph respec-

tively (Chapter 11).

• DELETION q-Horn BACKDOOR SET DETECTION can be solved in timeO(12kk5`)

where ` is the length of the input formula (Chapter 10).

• SATISFIABILITY can be solved in timeO(12kk5`) where k is the size of the small-

est q-Horn deletion backdoor set of the given formula and ` is the length of the

input formula (Chapter 10).
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11.2 FPT algorithms with improved dependence on the

parameter

• We obtainedO(2.3146knO(1)) algorithms for VERTEX COVER parameterized above

the size of the maximum matching and ODD CYCLE TRANSVERSAL where n is

the number of vertices in the input graph. This is the first improvement (with re-

spect to the parameter) for ODD CYCLE TRANSVERSAL after the first algorithm

of Reed et al. (2004) (Chapter 7).

• We obtained O(2.3146k`O(1)) algorithms for ALMOST 2-SAT where ` is the

length of the input formula (Chapter 7).

11.3 FPT algorithms with improved dependence on the

input size

• We obtained an algorithm for ODD CYCLE TRANSVERSAL which runs in time

O(4kk4(m + n)), which is the first linear time FPT algorithm for this problem

and answers a question asked by Reed et al. (2004) (Chapter 11).

• We obtained an algorithm for ALMOST 2-SAT which runs in time O(4kk4`) and

an algorithm for VERTEX COVER parameterized above the size of the maximum

matching running in timeO(4kk4(m+n)) given a graph with a matching (Chapter

11).
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11.4 Future Directions

The following are potential future directions which our work in this thesis points to-

wards.

• Consider the following parity based generalization of MULTICUT, namely PAR-

ITY MULTICUT where given a graph, integer k, vertex pairs (s1, t1), . . . , (sr, tr)

and a set of parities (p1, . . . , pr) one for each pair, the objective is to test if there

are k vertices which intersect all paths from si to ti of parity pi for every 1 ≤ i ≤ r.

This problem is also a clear generalization of PARITY MULTIWAY CUT. We re-

mark that the parameterized complexity of this problem parameterized by the so-

lution size k is not known and it could be an interesting direction to work towards

and might lead to newer techniques or a much better understanding of the existing

graph separation machinery.

• Recall that our algorithm for d-SKEW-SYMMETRIC MULTICUT does not have a

polynomial dependence on d. It would be interesting to study the parameterized

complexity of this problem for unbounded d. Since even for d = 1 and d = 3 this

problem generalizes a lot of well studied problems, an FPT result for unbounded

d could have significant consequences for a much larger number of problems.

On the other hand, if this problem turns out to be W[1]-hard, then it could be

interesting to classify the “boundary of hardness” with respect to d.

• Kratsch and Wahlström [64] studied the kernelization complexity of ABOVE GUAR-

ANTEE VERTEX COVER and obtained a randomized polynomial sized kernel for

this problem through matroid based techniques. This implied a randomized poly-

nomial kernel for all problems which have a parameter preserving polynomial
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time reduction to ABOVE GUARANTEE VERTEX COVER. However, for two main

problems studied in this thesis, namely PMWC and d-SKEW-SYMMETRIC MUL-

TICUT, the kernelization complexity is open. We believe that any result on the

kernelization complexity of these two very general problems will help to under-

stand and classify the structures in graph separation problems which may act as

obstacles to polynomial kernels.
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