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Abstract

We study Lusztig’s t-analogue of weight multiplicities associated to the irreducible inte-

grable highest weight modules of affine Kac-Moody algebras. First, for the level one represen-

tation of twisted affine Kac-Moody algebras, we obtain an explicit closed form expression for

the corresponding t-string function using constant term identities of Macdonald and Chered-

nik. The closed form involves the generalised exponents of the graded pieces of the twisted

affine algebra, considered as modules for the underlying finite dimensional simple Lie algebra.

This extends previous work on level 1 t-string functions for the untwisted simply-laced affine

Kac-Moody algebras. Next, for the Lie algebra A
(1)
1 , we give a basis for the weight spaces of its

basic representation, which is compatible with the affine Brylinski-Kostant filtration defined

by Slofstra. Using this basis we give an alternative derivation of the expression for the t-string

function of the basic representation. Finally, we obtain explicit formula for the t-string function

of irreducible integrable highest weight A
(1)
1 -modules of all levels. This is generalisation of a

theorem of a Kac and Peterson.
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Chapter 1

Introduction

1.1 Basic t-string function for twisted affine Kac-Moody alge-

bras

Let g be an affine Kac-Moody algebra of rank l+ 1 (l ≥ 1). Let g = h⊕ (
⊕

α∈∆+
(gα⊕g−α)) be

its root space decomposition, where ∆+ is the set of positive roots, and let multα:= dim(gα)

be the multiplicity of α. Let
◦
g denote its underlying finite dimensional simple Lie algebra of

rank l. For a dominant integral weight λ, let L(λ) denote the irreducible g-module of highest

weight λ.

In this thesis we will first consider the basic representation L(Λ0) of g. Here Λ0 denotes

the fundamental weight corresponding to the extended node of the Dynkin diagram of g. The

Kostant partition function of g is defined by

P(β) := [e[−β]]
∏
α∈∆+

1

(1− e[−α])mα

where [e[α]]f denotes the coefficient of e[α] appearing in the expression of f , where e[α] = eα

denote an element of the group algebra C[h∗] and β ∈ h∗. Note that P(β) is nothing but

the number of partitions of β in to sum of positive roots, where each root is counted with its

multiplicity. A t-analogue of the Kostant partition function is defined as

P(β; t) := [e[−β]]
∏
α∈∆+

1

(1− te[−α])mα
.

We recall that the Kostant partition function is used to calculate the dimension of the weight

spaces of the g-module L(λ) by the formula

dim(L(λ)µ) =
∑
w∈W

ε(w)P(w(λ+ ρ)− (µ+ ρ))

8



where W is the Weyl group of g and ε is its sign character . Using the t-Kostant partition

function we define a t-analogue of weight multiplicity :

Kλ
µ(t) :=

∑
w∈W

ε(w)P(w(λ+ ρ)− (µ+ ρ); t) .

Kλ
µ(t) is also called the affine Kostka-Foulkes polynomial.

To understand the structure of the module L(λ) one studies the string function

aλµ(q) :=
∑
k≥0

dim(L(λ)µ−kδ) q
k .

These are generating functions of weight multiplicities along δ-strings through dominant maxi-

mal weights µ, where δ is the null root of g. A t-analogue of string function or t-string function

is defined as

aλµ(t; q) :=
∑
k≥0

Kλ
µ−kδ(t)q

k

In [10], it was shown that the aλµ(t; q) are closely related to the constant term identities

arising in the theory of Macdonald polynomials. An explicit formula for aΛ0
Λ0

(t; q) of the basic

representation for the untwisted simply laced algebras is obtained in [39] by using Cherednik’s

Macdonald Mehta constant term identity .

Theorem 1.1.1 ([39]). Let g be one of the simply laced untwisted affine Lie algebras A
(1)
` , D

(1)
` , E

(1)
` .

Then

aΛ0
Λ0

(t; q) =
∏̀
i=1

∞∏
n=1

(1− tei+1qn)−1

where ei (1 ≤ i ≤ `) are the exponents of the underlying finite dimensional simple Lie algebra

(= A`, D`, E` respectively).

In chapter 3 of this thesis, we extend above result for the twisted affine Lie algebras [35]. We

recall the term generalised exponents, as it appears in the statement of our theorem. Let m be

a finite dimensional simple Lie algebra and V = V (λ) be the irreducible finite dimensional m-

module with highest weight λ. Fix a triangular decomposition m = N−⊕h⊕N+, and let E ∈ N+

be a principal nilpotent element i.e., E =
∑l

i=1 ciEi where ci ∈ C−{0} and E1, E2, ..., El are the

Chevally generators. Let V0 denote the zero weight space of V . Define the Brylinski-Kostant

filtration of V0 by F (0)(V0) ⊆ F (1)(V0) ⊆ F (2)(V0) ⊆ ..., where F (p)(V0) := ker (Ep+1) ∩ V0.

Then the generalised exponents of V are the elements of the multiset E(V) defined via the

following relation: ∑
p≥0

dim(F (p)(V0)/F (p−1)(V0)) tp =
∑

k∈E(V )

tk.
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The exponents of the finite dimensional simple Lie algebra m are nothing but the generalised

exponents of the adjoint representation of m.

Now, let g be a twisted affine Lie algebra of type X
(r)
N , where XN = AN , DN , EN and

r = 2 or 3. Let m denote the finite dimensional simple Lie algebra with Dynkin diagram XN .

Let σ be the diagram automorphism of m of order r. Let m =
⊕

j∈Z/rZmj be the eigenspace

decomposition of m with respect to σ. Then m0 is a finite dimensional simple Lie algebra

and mj for j 6= 0 are irreducible m0-modules. We let En denote the multiset of as generalised

exponents of the m0-module mn. The main theorem of chapter 3 is the following:

Theorem 1.1.2. Let g be a twisted affine Lie algebra. The t-string function of the basic

representation of g is given by

aΛ0
Λ0

(t; q) =

∞∏
n=1

∏
e∈En

(1− te+1qn)−1

The proof of this theorem for g 6= A
(2)
2l follows by using Cherednik’s computation of

Macdonald-Mehta type constant term, and a combinatorial characterisation of the generalised

exponents. For g = A
(2)
2l , we use the Macdonalds constant term identity for the non-reduced

affine root system of type (C∨n , Cn) to derive a Macdonald-Mehta identity for g.

1.2 Affine Brylinski-Kostant filtration on the basic representa-

tion of A
(1)
1

Consider the affine Lie algebra A
(1)
1 . Let us consider its basic representation L(Λ0). By theorem

1.1.1 we have

aΛ0
Λ0

(t; q) =
∑
n≥0

KΛ0
Λ0−nδ(t)q

n =
∞∏
k=1

(1− t2qk)−1

By comparing the coefficients of the above expression, we get the formula for the affine Kostka-

Foulkes polynomial which is,

KΛ0
Λ0−kδ(t) =

∑
π`k

t2 (#π)

where #π is the number of parts in the partition π of k.

Slofstra [37] showed that the affine Kostka-Foulkes polynomial Kλ
µ(t), where λ and µ are

dominant, is equal to the Poincaré series of the associated graded space of an affine version of

the Brylinski-Kostant filtration. By this, Slofstra extended Brylinski’s result (which is for the

finite dimensional simple Lie algebras) to affine Kac-Moody algebras.

For finite dimensional simple Lie algebras, the Brylinski-Kostant filtration uses a principal

nilpotent element. Slofstra shows that in the affine case, a principal nilpotent element is not

sufficient to define the filtration, but one has to use the positive part of a principal Heisenberg

algebra.
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In chapter 4 of this thesis, we give a basis for the space L(Λ0)Λ0−nδ for n ≥ 0, which is

compatible with respect to the affine Brylinski-Kostant filtration for g = A
(1)
1 . Using Slofstra’s

theorem this gives an alternative derivation for the expression of aΛ0
Λ0

(t; q). Let g = A
(1)
1 =

C[z, z−1]⊗sl2⊕CK⊕Cd, whereK is the central element and d is a derivation. Let g = n+⊕h⊕n−
be a triangular decomposition of g. Let e, f and h be the usual basis of sl2. For odd integers

j, define Bj := e⊗ z
j−1

2 + f ⊗ z
j+1

2 and for non-zero even integers j define Hj := h⊗ z
j
2 , and

H0 := h⊗ 1− 1
2K .

We recall that for a principal nilpotent element E′ of an affine Lie algebra, we have the

algebra sE′ := {x ∈ g : [x,E′] ∈ Z(g)}, called as a principal Heisenberg subalgebra of g. Recall

that the homogeneous Heisenberg subalgebra is defined as H :=
⊕

n∈Z
n6=0

zn ⊗ h ⊕ CK, where

h = Ch. Note that span of Bj (j odd) and K spans a principal Heisenberg subalgebra and

span of Hj (j even) is the homogeneous Heisenberg subalgebra for A
(1)
1 [22]. We denote them

by s and H respectively (where s = sE′ for E′ = e⊗ 1 + f ⊗ z). Let L(λ) be the highest weight

module of g corresponding to the dominant integral weight λ. The affine Brylinski-Kostant

filtration with respect to the principal Heisenberg algebra s is given by F j(L(λ)µ) = {v ∈
L(λ)µ : xj+1v = 0 ∀ x ∈ s∩n+} . Let P λµ (t) denote the Poincaré series of the associated graded

space of L(λ)µ i.e., P λµ (t) =
∑

i≥0 dim (F iL(λ)µ/F i−1L(λ)µ) ti. We now state the following

theorem due to Slofstra [37].

Theorem 1.2.1 (Slofstra). Let L(λ) be an integrable highest weight representation of an

affine Kac-Moody algebra g, where λ is dominant integral weight. If µ is a dominant weight of

L(λ), then

P λµ (t) = Kλ
µ(t) .

It is a well known fact that s acts irreducibly on L(Λ0). So by the standard representation

theory of the Heisenberg Lie algebra we have L(Λ0) = C[x1, x3, x5, ...] and for all odd j > 0

Bj acts as operator j
2
∂
∂xj

and B−j acts as 2xj . Using these facts, we see that F j(L(λ)µ) =

{p ∈ L(λ)µ : udeg(p) ≤ j}, where udeg(p) denotes usual degree of polynomial p. On the other

hand, the homogeneous Heisenberg algebra H does not act irreducibly on L(Λ0) and we have

U(H)vΛ0 =
⊕

n∈Z≥0
L(Λ0)Λ0−nδ =: V .

To state our theorem we need to recall the Sugawara operators. For g, they are given by

Tn =
∑
m∈Z

[
e(−m)f(m+ n) + f(−m)e(m+ n) + h(−m)

h

2
(m+ n)

]
∀n 6= 0

and

T0 = e(0)f(0) + f(0)e(0) +
h(0)2

2
+ 2

∞∑
n=1

[
e(−n)f(n) + f(−n)e(n) + h(−n)

h(n)

2

]
where x(m) denotes x ⊗ zn and (e, f, h) and (f, e, h2 ) are the dual bases of each other. These

operators lie in the restricted completion Uc(g
′) of the universal enveloping algebra U(g′), where

g′ = [g, g] [15].
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Now let L
◦
g
n := 1

6Tn, Similarly for the Lie algebra L̃(h), we define for n 6= 0

L
◦
h
n :=

1

2

∑
m∈Z

h(m)h(n−m)

and

L
◦
h
0 :=

h(0)2

4
+

∞∑
n=1

h(−n)
h(n)

2
.

Now consider the homogeneous Heisenberg algebra H generated by H2j =: H(j) for n 6= 0

and H0 := H(0) = h0 − 1
2K. Note that h(n) = H2n =: H(n) for n 6= 0. Define the Virasoro

operators with respect to H by

LHn :=
1

2

∑
m∈Z

H(n)
H(n−m)

2
for n 6= 0

LH0 :=
H(0)2

4
+
∞∑
n=1

H(−n)
H(n)

2

Let for a polynomial f ∈ F (j)L(Λ0)Λ0−sδ, f denote image of f in the quotient space

F (j)(L(Λ0)Λ0−sδ)/F (j−1)(L(Λ0)Λ0−sδ). Now we are in position to state the main theorem of

chapter 4 :

Theorem 1.2.2. Let g = A
(1)
1 . Let r > 0 and k ≥ 0. Then a basis for the quotient space

F (2k)(L(Λ0)Λ0−rδ)/F (2k−1)(L(Λ0)Λ0−rδ) is given by the set

{LHn1
LHn2

...LHnkvΛ0 : 0 > nk ≥ nk−1 ≥ · · · ≥ n1 and n1 + n2 + · · ·+ nk = −2r}

From the above theorem, we deduce that dim(F2k(L(Λ0)Λ0−rδ)/F2k−1(L(Λ0)Λ0−rδ)) =

P (r, k), the number of partitions of r in to k parts. We also note the following easy fact:

dimF (2k−1)(L(Λ0)Λ0−rδ)/F (2k−2)(L(Λ0)Λ0−rδ) = 0 .

Using this observation and Slofstra’s theorem, we have the following corollary to theorem 1.2.2:

Corollary 1.2.3. Let g = A
(1)
1 . Let L(Λ0) be its basic representation. Then

aΛ0
Λ0

(t; q) =

∞∏
n=1

(1− t2qn)−1 .

Proof of the theorem 1.2.2 uses the facts that L(Λ0) is the highest weight module for the

coset Virasoro operator L
◦
g,
◦
h

n = L
◦
g
n−L

◦
h
n and L

◦
g,
◦
h

n commutes with L̃(h). By these facts it follows

that L
◦
g
nvΛ0 = L

◦
h
nvΛ0 and L

◦
g
n = L

◦
h
n on V . Now it can be easily proved that L̃Hn is of usual degree

2 for all n < 0 and the result follows by induction.
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1.3 The t-string functions for A
(1)
1

Let g = A
(1)
1 = C[z, z−1]⊗ sl2⊕CK⊕Cd. Let L(Λ) be an irreducible highest weight module of

level m ≥ 1. Kac and Peterson [18], have proved that the string functions corresponding to the

g-module L(Λ) are related to the Hecke indefinite modular forms. In chapter 5 of this thesis

we give a t-analogue of this result, i.e, we give an explicit formula for all t-string functions of

the g-module L(Λ).

Let h be a Cartan subalgebra of g, let ∆ ⊆ h∗ be the root system of g. Let ∆+ be the set

of positive roots and {α0, α1} be the set of simple roots of g. Let Q and P denote the root and

weight lattices of g and let P+ be the set of dominant integral weights. Let
◦
g = sl2 and

◦
Q and

◦
P be the root and weight lattices of

◦
g. Let W be the Weyl group of g generated by reflections

rα0 and rα1 , which we denote by r0 and r1. Let
◦
W be the subgroup generated by r1. Recall

that W =
◦
W n

◦
Q.

Let P(β), P(β; t) denote the Kostant partition function and t-Kostant partition function of

g. Let Λ ∈ P+ be of level m ≥ 1. Let L(Λ) denote the corresponding irreducible highest weight

representation of g. Let λ be a maximal dominant weight of L(Λ). Define the string function

cΛ
λ (q) := qsΛ(λ)

∑
s≥0 multΛ(λ− sδ) qs , where q = e2πiτ , τ ∈ upper half plane and sΛ(λ) =

n0(Λ− λ) + |Λ̄+ρ̄|2
2(m+2) −

|λ̄|2
2m −

1
8 , where ᾱ denotes the image of α under the projection from h∗ to

◦
h
∗
, n0 is the function on Q defined by n0(a0α0 +a1α1) := a0 ∀ a0, a1 ∈ Z, and multΛ(·) denotes

the dimension of the corresponding weight space of L(Λ). Note that cΛ
λ (q) = qsΛ(λ)aΛ

λ (q).

Let ρ ∈ h∗ be a Weyl vector, which satisfies the relation (ρ, αi) = 1 for i = 0, 1. Let us

consider a shifted action of W on Q by w.α := w(α+ ρ)− ρ, which induces an action of W on

functions on Q by (w.f)(α) := f(w−1.α).

Let us briefly recall the term Hecke modular form. Let U be a two dimensional real vector

space. M be a full rank lattice in U and let B′ be an indefinite symmetric form on U such that

B′(ν, ν) is an even nonzero integer for all nonzero ν ∈ M . Let M∗ := {ν ′ ∈ U : B′(ν, ν ′) ∈
Z ∀ ν ∈ M}. Let G0 be the subgroup of the identity component of the orthogonal group of

(U,B′) preserving M and fixing M∗/M . Fix a factorisation B′(ν, ν) = l1(ν)l2(ν), where l1 and

l2 are real-linear, and set sign(ν) := sign l1(ν) for l1(ν) 6= 0. For µ ∈M∗, set

θM,µ :=
∑

ν∈M+µ
B′(ν,ν)>0
νmodG0

sign(ν)eπiτB
′(ν,ν) .

The θM,µ is called a Hecke indefinite modular form.

Let M := Zα1 ⊕ Zα1 and U := Rα1 ⊕ Rα1. We identify M with Z2 and U with R2,

and let B(x, y) := 2(m + 2)x2 − 2my2 be the quadratic form corresponding to an indefinite

symmetric bilinear form B′. Note that B 6= 0 on M − {0}. The dual lattice of M with respect

to B is M∗ = 1
2(m+2)Z ⊕

1
2mZ. Let a be the element of the identity component SO0(U) of

13



the orthogonal group of (U,B) given by a(x, y) = ((m + 1)x + my, (m + 2)x + (m + 1)y).

Then a generates the subgroup G′0 of SO0(U) preserving M, and a2 generates the subgroup

G0 of G′0 fixing M∗/M . Let us define an element J : R2 −→ R2 by J(x, y) := (−x, y); we

note that J normalises G0. Define the group G :=< J > nG0 and G′ :=< J > nG′0. Let

U+ := {u ∈ U : B(u) > 0}. Then it is easy to see that F0 := {(x, y) ∈ R2 : −|x| < y ≤ |x|}
is a fundamental domain for G′0 on U+, and F0

⋃
aF0 is a fundamental domain for G0 on U+.

Set F := {(x, y) ∈ R2 : 0 ≤ y ≤ x or 0 > y > x}. Then clearly F0 = F ∪ J(F ) and F is a

fundamental domain for G′ on U+. We now state Kac-Peterson’s theorem [18].

Theorem 1.3.1 (Kac-Peterson). Let g be of type A
(1)
1 . Let Λ ∈ P+, Λ(K) = m, and let

λ ∈ P+ be a maximal weight of L(Λ). Then η(τ)3 cΛ
λ (τ) = θM,(Ã;B̃) is a Hecke indefinite

modular form, where Ã := (m + 2)−1(Λ̄ + ρ̄) and B̃ := m−1λ̄, and η(τ) is the Dedekind eta

function.

Let us recall the constant term map ct(·), which defined on formal sums
∑

α∈Q cλe[λ] by

ct(
∑

α∈Q cλe[λ]) :=
∑

n∈Z cnδe[nδ]. We define ξt :=
1∏

n≥1 (1− tqn)(1− tqne[−α1])(1− tqne[α1])

and the Poisson kernel Pt :=
∑

n∈Z t
|n|e[nα1]. The following is our main theorem of chapter 5,

and gives an expression for all t-string functions of A
(1)
1 .

Theorem 1.3.2. Let g be of type A
(1)
1 . Let Λ ∈ P+, Λ(K) = m ≥ 1, and let λ ∈ P+ be a

maximal dominant weight of L(Λ). Then

cΛ
λ (t; q) = ct(ξt Pt q

1
8 t−2B̃Ht)

where

Ht =
∑

(x,y)≡(Ã,B̃) mod Z2

B(x,y)>0
(x,y) modZ2

sign(x) q
1
2
B(x,y) t2ȳ e[((m+ 2)x̄−mȳ − 1

2
)α1]

where (x̄, ȳ) is the unique element in F ∩G′(x, y) .

We note that the form of Ht resembles that of a theta function.

Proof of the theorem 1.3.2 closely follows that of theorem 1.3.1, by expressing P(β; t) in

terms of a simpler function P ′(β; t) := (1 + tr1).P(β; t).

14



Chapter 2

Kac-Moody algebras

Let us consider an n× n complex matrix A = (aij)
n
i,j=1. The matrix A is called a generalised

Cartan matrix if it satisfies the following conditions:

(C 1) aii = 2 for i = 1, ..., n;

(C 2) aij are nonpositive integers for i 6= j ;

(C 3) aij = 0 implies aji = 0 .

2.1 Realisation of a matrix

A realisation of an n× n complex matrix A is a triple (h,Π,Π∨), where h is a complex vector

space, Π = {α1, α2, · · · , αn} ⊂ h∗ and Π∨ = {α∨1 , α∨2 , · · · , α∨n} ⊂ h are indexed subsets in h∗

and h, respectively, satisfying the following conditions:

1. Both sets Π and Π∨ are linearly independent;

2. 〈α∨i , αj〉 = aij (i, j = 1, 2, · · · , n) ;

3. n− rank(A) = dim h− n.

Two realisations (h,Π,Π∨) and (h1,Π1,Π
∨
1 ) are called isomorphic if there exists a vector

space isomorphism φ : h→ h1 such that φ(Π∨) = Π∨1 and φ∗(Π1) = Π.

2.1.1 Auxiliary Lie algebras

Definition 2.1.1. Let A = (aij) be an n× n matrix over C, and let (h,Π,Π∨) be a realisation

of A. Define an auxiliary Lie algebra g̃(A) with generators ei, fi(i = 1, · · · , n) and h, and the
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following defining relations:

[ei, fj ] = δijα
∨
i (i, j = 1, · · · , n)

[h, h′] = 0 (h, h′ ∈ h),

[h, ei] = 〈αi, h〉ei
[h, fi] = −〈αi, h〉fi (i, j = 1, · · · , n;h ∈ h)


(2.1.1)

Denote by ñ+(resp.ñ−) the subalgebra of g̃(A) generated by e1, e2, · · · , en (resp.f1, · · · , fn).

Now we state the following result for g̃(A):

Theorem 2.1.2 ([15]). 1. g̃(A) = ñ+ ⊕ h⊕ ñ− (direct sum of vector spaces)

2. ñ+(resp. ñ−) is freely generated by e1, · · · , en(resp. f1, · · · , fn)

3. Among the ideals of g̃(A) intersecting h trivially, there exists a unique maximal ideal τ .

Furthermore,

τ = (τ ∩ ñ−)⊕ (τ ∩ ñ−) (direct sum of ideals)

2.1.2 Kac-Moody Lie algebras

For a given complex n × n matrix A, let g̃(A) be the Lie algebra on the generators ei, fi(i =

1, · · · , n) and h, and defining relations equation 2.1.1. By theorem 2.1.2 the natural map

h → g̃(A) is an imbedding. Let τ be the maximal ideal of g̃(A), which intersects h trivially.

Set

g(A) := g̃(A)/τ

The matrix A is called as the Cartan matrix of g(A), and n is called as the rank of g(A). Now

we are in a position to define Kac-Moody algebras.

Definition 2.1.3. The Lie algebra g(A) whose Cartan matrix is a generalised Cartan matrix

is called a Kac-Moody algebra.

2.1.3 Symmetrisable Kac-Moody algebra

A n × n matrix A = (aij) is called symmetrisable if there exists an invertible diagonal matrix

D = diag(ε1, ..., εn) and a symmetric matrix B = (bij) such that A = DB.

Definition 2.1.4. Let A = (aij) be a symmetrisable generalised Cartan matrix. Then the

Kac-Moody algebra associated with the matrix A is called a symmetrisable Kac-Moody algebra.

For a symmetrisable Kac-Moody algebra g(A) there exists a nondegenerate symmetric bilin-

ear C-valued form (., .) on g(A) which is invariant i.e., ([x, y], z) = (x, [y, z]) for all x, y, z ∈ g(A).
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2.1.4 Properties of Kac-Moody algebras

Theorem 2.1.5. Let g be a Kac-Moody algebra. Then,

1. g = n+ ⊕ h⊕ n−, where n+, n− are the Lie algebras generated by ei and fi (i = 1, · · · , n)

respectively.

2. h acts diagonalisably on g i.e.,

g =
⊕
α∈h∗

gα

where gα = {x ∈ g : [h, x] = α(h)x ∀h ∈ h}.

The subspace h is called the Cartan subalgebra and gα is said to be the root space of α. An

element α ∈ h∗ is called a root of g if α 6= 0 and gα 6= 0. Let mult α := dim gα; this is called

multiplicity of α. Let ∆ denote the set of all roots of g, then ∆ = ∆+ ∪∆−(a disjoint union),

where ∆+,∆− are the sets of positive roots and negative roots respectively. Let α1, α2, ..., αn

be the simple roots of g, α∨1 , α
∨
2 , ..., α

∨
n be the simple co-roots of g and Q :=

∑n
i=1 Zαi be the

root lattice of g. Let Q+ :=
∑n

i=1 Z+αi. Introduce a partial ordering ≤ on h∗ by setting µ ≤ λ
if λ−µ ∈ Q+. Let P := {λ ∈ h∗ : 〈λ, α∨i 〉 ∈ Z(i = 1, · · · , n)}; this is called the weight lattice of

g. Let P+ := {λ ∈ h∗ : 〈λ, α∨i 〉 ≥ 0(i = 1, · · · , n)} and are called dominant weight lattices of g .

2.1.5 Weyl group of Kac- Moody algebras

Now we introduce an important group associated with Kac-Moody algebras, called the Weyl

group. Let A be a n×n generalised Cartan matrix and let g(A) be the associated Kac-Moody

algebra. For each i = 1, 2, ..., n, define the fundamental reflection ri by

ri(λ) = λ− 〈λ, α∨i 〉αi

for λ ∈ h∗.

The subgroup W of GL(h∗) generated by all fundamental reflections is called the Weyl

group of g(A).

2.1.6 Classification of Kac-Moody algebras

The following theorem classifies the types of Kac-Moody algebra. For a real column vector

u = t(u1, · · · , un) we write u > 0 if all ui > 0, and u ≥ 0 if all ui ≥ 0.

Theorem 2.1.6 ([15]). Let A be a n × n generalised Cartan matrix. Then one and only one

of the following three possibilities hold for both A and tA:

1. (Finite type) There exists u > 0 such that Au > 0; Av ≥ 0 implies v > 0 or v = 0;
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2. (Affine type) There exists u > 0 such that Au = 0; Av ≥ 0 implies Av = 0;

3. (Indefinite type) there exists u > 0 such that Av < 0; Av ≥ 0, v ≥ 0 imply v = 0.

2.2 Affine Kac-Moody algebras

The Kac-Moody algebra is called as affine Kac-Moody algebra if for the corresponding gener-

alised Cartan matrix there exists u > 0 such that Au = 0; Av ≥ 0 implies Av = 0;.

The affine Kac-Moody algebras are categorised in two parts:

1) Untwisted affine Kac-Moody algebra

2) Twisted affine Kac-Moody algebra.

2.3 Untwisted affine Kac-Moody algebra

The untwisted affine Kac-Moody algebra can be realised as a central extension of a loop algebra

over a finite dimensional simple Lie algebra. Let m be a finite dimensional simple Lie algebra.

The corresponding affine Lie algebra is denoted by L̂(m) = C[z, z−1] ⊕ m ⊕ CK ⊕ C d, where

K is the center and d is a derivation [15].

The untwisted affine Lie algebra is of two types,

1) Simply laced

2) Non-simply laced .

Definition 2.3.1. An untwisted affine Lie algebra is called simply laced if all the simple roots

of the Lie algebra have same root length.

Definition 2.3.2. An untwisted affine Lie algebra is called non-simply laced if the simple roots

of the Lie algebra have more than one root length.

2.4 The twisted affine Kac-Moody algebras

Twisted affine Kac-Moody algebras are realised as fixed point subalgebras of untwisted affine

Lie algebras under finite groups of automorphisms. Let m be the finite dimensional simple

Lie algebra with Dynkin diagram XN where X = A,D,E [15], and let σ be the corresponding

Dynkin diagram automorphism of order r ∈ {2, 3}. Let L̂(m) := C[z, z−1]⊗m⊕CK⊕Cd, where

K is the central element and d is the degree derivation. We extend σ to an automorphism σ̃ of

L̂(m) by K 7→ K, d 7→ d and zj ⊗ x 7→ exp(−2πij
r )zj ⊗ σ(x) for j ∈ Z, x ∈ m. The fixed point

set of σ̃ is the affine Lie algebra g = g(X
(r)
N ).

The darkened node in the Dynkin diagrams of affine Kac-Moody algebras (figure 2.1 and

figure 2.2) denotes the zeroth node. We note that, if we remove that node from the diagram,
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Figure 2.1: Dynkin diagrams of untwisted affine Lie algebras.
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Figure 2.2: Dynkin diagrams of twisted affine Lie algebras.
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the resulting diagrams are the Dynkin diagram of a finite dimensional simple algebras. We

denote this finite dimensional simple Lie algebra by
◦
g(A).

2.5 Weyl group of affine Kac-Moody algebra

Let g(A) be an affine Kac-Moody algebra. Let W be the Weyl group of g(A) . Let
◦
W denote the

Weyl group of the finite dimensional algebra of
◦
g(A). Let

◦
h
∗

R denote a real Cartan subalgebra

of
◦
g(A). Let θ denote the highest root of the finite dimensional simple Lie algebra

◦
g(A) and

θ∨ be its co-root. Let us define an important lattice M ⊆
◦
h
∗

R defined by M := ν(Z(
◦
W.θ∨)),

where ν is map such that ν : h→ h∗, ν(h) = (h, ·). We define a faithful action of M on h∗ by

an endomorphism tα for each α ∈M as follows:

tα(λ) := λ+ 〈λ,K〉α− ((λ, α) +
1

2
|α|2〈λ,K〉)δ

where δ is the null root of g(A). The group generated by tα, α ∈M is an abelian group denoted

by T . Now, we are in position to state the proposition which gives the relation between W and
◦
W .

Proposition 2.5.1 ([15]). W =
◦
W n T

2.6 Representation theory of Kac-Moody algebra

A g(A)-module V is called h-diagonalisable if it admits a weight space decomposition V =

⊕λ∈h∗Vλ, where Vλ = {v ∈ V : h(v) = λ(h)v ∀ h ∈ h}. A nonzero vector of Vλ is called a

weight vector of weight λ. Let P (V ) := {λ ∈ h∗ : Vλ 6= 0} denote the set of all weights of V.

For λ ∈ h∗, denote D(λ) := {µ ∈ h∗ : µ ≤ λ}.
One studies mainly the representations of a Kac-Moody algebra from the category called

as category O. We define its objects as follows.

Definition 2.6.1. A g(A)-module V is said to be in category O if

1. It is h-diagonalisable with finite dimensional weight spaces.

2. There exists a finite number of elements λ1, λ2, ..., λm ∈ h∗ such that P (V ) ⊆ ∪mi=1D(λi)

The morphisms in O are homomorphisms of g(A)-modules.

2.6.1 Highest weight modules

Important examples of modules from the category O are highest weight modules.
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Definition 2.6.2. A g(A)-module V is called as a highest weight module with highest weight

Λ ∈ h∗ if there exists a nonzero vector vΛ such that

1. n+(vΛ) = 0 ; h(vΛ) = Λ(h)vΛ ∀h ∈ h ; and

2. U(g(A))(vΛ) = V , where U(g(A)) is the universal enveloping algebra of g(A).

Remark 2.6.3. We note that by the condition 1) in above definition, condition 2) can be

replaced by U(n−))(vΛ) = V . So we have V = ⊕λ≤ΛVλ ; VΛ = CvΛ; dim(Vλ) <∞. Therefore,

a highest weight module is an object of category O.

Now, we define an important class of highest weight modules called as Verma modules.

Definition 2.6.4. A g(A)-module M(Λ) with highest weight Λ is called a Verma module if

every g(A)-module with highest weight Λ is a quotient of M(Λ).

The following proposition justifies the importance of Verma modules.

Proposition 2.6.5 ([15]). 1. For every Λ ∈ h∗ there exists a unique up to isomorphism

Verma module M(Λ).

2. Viewed as a U(n−)-module, M(Λ) is a free module of rank 1 generated by the highest

weight vector.

3. M(Λ) contains a unique proper maximal submodule M ′(Λ).

It follows from 3) of above proposition that for Λ ∈ h∗, there is a unique irreducible module

of highest weight Λ which we denote by L(Λ) := M(Λ)/M ′(Λ). For Λ ∈ h∗, the g(A)-modules

L(Λ) exhaust all irreducible modules of the category O.

2.6.2 Integrable modules

Definition 2.6.6. A g(A)-module V is called as integrable if the following holds:

• It is h-diagonalisable with finite dimensional weight spaces.

• The Chevalley generators ei and fi i = 1, ..., n are locally nilpotent on V.

We will restrict our attention to the category of integrable modules in category O denoted

as Oint(g), where g is a Kac-Moody algebra. Let L(Λ) be the irreducible highest weight

module with highest weight Λ. Then one asks an obvious question, when is the g-module L(Λ)

integrable? The next proposition gives an answer to this question.

Proposition 2.6.7 ([15]). The g(A)-module L(Λ) is integrable if and only if Λ ∈ P+.
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2.7 Character of a representation

Consider the algebra E , whose elements are the series of the form
∑

λ∈h∗ cλe(λ), where cλ ∈ C
and cλ = 0 for λ outside the union of finite number of sets D(µ) and e(λ) are the elements of

group algebra C[h∗]. Now, we define character of a module V from the category O as follows.

Definition 2.7.1. Let V be a module from the category O and let V = ⊕λ∈h∗Vλ be its weight

space decomposition. We define formal character of V by

chV :=
∑
λ∈h∗

(dimVλ)e(λ)

By the definition it is clear that chV ∈ E .

Let ρ ∈ h∗ such that 〈ρ, α∨i 〉 = 1 for i = 1, · · · , n. Now we are in a position to state the

fundamental result of the representation theory of Kac-Moody algebras.

2.7.1 Weyl-Kac character formula

Theorem 2.7.2. Let g(A) be a symmetrisable Kac-Moody algebra, and let L(Λ) be the irre-

ducible g(A)-module with highest weight Λ ∈ P+. Then

chL(Λ) =

∑
w∈W ε(w)e(w(Λ + ρ)− ρ)∏
α∈∆+

(1− e(−α))mult α

Next, let us define the Kostant partition function, which will be used quite often in the

upcoming part of this thesis.

2.7.2 Kostant partition function

Definition 2.7.3. Let g be a Kac-Moody algebra. Let h, h∗, Q be its Cartan subalgebra, dual

of Cartan subalgebra and root lattice respectively. The Kostant partition function P defined on

h∗ by

P(β) := [e(−β)]
∏
α∈∆+

1

(1− e(−α))mult α

where [e(α)]f denotes the coefficient of e(α) in the expression for f .

Note that, P(β) = 0 unless β ∈ Q+. For β ∈ Q+, P(β) is nothing but the number of

partitions of β into a sum of positive roots, where each root is counted with its multiplicity.

The next proposition shows the importance of the Kostant partition function as it is used in

calculating the weight multiplicities of the g-module L(Λ).

Proposition. Consider an irreducible g-module L(Λ). Let L(Λ) =
⊕

µ≤Λ L(Λ)µ be its weight

space decomposition. Then

dim(L(Λ)µ) =
∑
w∈W

ε(w)P(w(Λ + ρ)− (µ+ ρ))
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2.8 String function for L(Λ)

Let g(A) be an affine Lie algebra. Recall from [15] that δ :=
∑n

i=0 aiαi called as the null root of

g(A), where the ai are the labels of Dynkin diagram of g(A). To study the weight system P (Λ)

of an integrable module L(Λ) of g(A) one classifies the weights which are sort of “maximal”.

Definition 2.8.1. A weight λ ∈ P (Λ) is called maximal if λ+ δ /∈ P (Λ).

Let max(Λ) denote the set of all maximal weights of L(Λ). Next proposition shows the

importance of the maximal weights.

Proposition. Let L(Λ) be an integrable module of positive level k over an affine Lie algebra.

Then

P (Λ) =
⊔

λ∈max(Λ)

{λ− nδ : n ∈ Z+}

Proof. See [15]. 2

To understand the structure of the module L(Λ), one studies the generating function

aΛ
λ (q) =

∞∑
n=0

dim(L(Λ)λ−nδ)q
n

where λ ∈ max(Λ). We will call this a string function (deviating mildly from the terminology

of [15]).
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Chapter 3

The t-analogue of the basic string

function for twisted affine Lie

algebras

The Kostant partition function can be used to determine the weight multiplicities associated to

irreducible representations of Kac-Moody algebras. Its t-analogue was used by Lusztig to define

a t-analogue of weight multiplicity. In this chapter we study Lusztig’s t-weight multiplicities

associated to the level one representation of twisted affine Kac-Moody algebras. We derive a

closed form expression for the corresponding t-string function using constant term identities of

Macdonald and Cherednik. We describe how generalised exponents of certain representations

of the underlying finite dimensional simple Lie algebra enter the picture.

The results of this chapter have appeared in [35]. Throughout this chapter, we will assume

that g(A) is an affine Kac-Moody algebra. The other notations are as in Chapter 2.

3.1 Basic representation of g(A)

Let λ ∈ P+ such that 〈λ,K〉 = 1. Then the g(A)-module L(λ) is called as a level one represen-

tation of g(A). Let us consider an element Λ0 ∈ h∗ defined by Λ0(α∨i ) = δio for i = 0, 1, 2, ..., l

and 〈Λ0, d〉 = 1. Note that for an affine Kac-Moody algebra g, Λ0 is nothing but a fundamental

weight corresponding to the zeroth node of its Dynkin diagram. The level one representa-

tion L(Λ0) is called as the basic representation of g(A). Among the irreducible modules in

Oint(g(A)), the basic representation L(Λ0) can be singled out for the unique and important

role it plays in the theory. It is the simplest non-trivial representation in Oint(g(A)), and has

many explicit realisations in terms of vertex operators [8, 16, 17]. If g is an untwisted simply-

laced affine Lie algebra, or g is twisted, i.e., g = X
(r)
N for XN = AN , DN , EN and r = 1, 2 or 3,

then all the level one simple modules of g in Oint(g(A)) can be obtained from L(Λ0) by the
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action of Dynkin diagram automorphisms of g, and tensoring with one dimensional g-modules.

One of the most important results for the basic representation was proved by Kac and

Peterson [18], where they gave a closed form expression for the string function aΛ0
Λ0

(q) of the

basic representation which we state in the following proposition.

Proposition 3.1.1 ([18]). Let g be an affine algebra of type X
(r)
N , where X= A,D or E and

r = 1, 2, 3, then

aΛ0
Λ0

(q) =

∞∏
n=1

(1− qn)−multnδ (3.1.1)

Now we are heading towards the definition of the t-string function for which we need to

define Lusztig’s t-weight multiplicity (or affine Kostka Foulkes polynomial), which we do in the

next section.

3.2 Lusztig’s t-analogue of weight multiplicity

Recall from chapter 1 that the Kostant partition function is defined by

P(β) := [e(−β)]
∏
α∈∆+

1

(1− e(−α))mult α

Recall again from chapter 1 that, using the Kostant partition function, the weight multiplicity

of the g(A)-module L(λ) is given by

dim(L(λ)µ) =
∑
w∈W

ε(w)P(w(λ+ ρ)− (µ+ ρ))

We define a t-analogue of the Kostant partition function by

P(β; t) := [e(−β)]
∏
α∈∆+

1

(1− te(−α))mult α

Note that P(β; 1) = P(β).

Lusztig’s t-analogue of weight multiplicity is defined as follows

Kλ
µ(t) :=

∑
w∈W

ε(w)P(w(λ+ ρ)− (µ+ ρ); t)

Now, using t-analogue of weight multiplicity we define a t-analogue of string function.

3.3 t-string function

As we have seen in the chapter 2 the string function for the g(A)- module L(λ) is given by

aλµ(q) =
∞∑
n=0

dim(L(λ)µ−nδ)q
n
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A t-analogue of a string function is obtained by replacing weight multiplicity by t-weight mul-

tiplicity as follows:

aλµ(t; q) :=
∞∑
n=0

Kλ
µ−nδ(t)q

n

We call these as the t-string functions. It was shown in [10] and [39] that the aλµ(t; q) are closely

related to the constant term identities arising in the theory of Macdonald polynomials. These

papers gives the explicit formula for aΛ0
Λ0

(t; q) of the basic representation for the untwisted

simply laced affine algebras using Cherednik’s Macdonald Mehta constant term identity. We

state the explicit formula in the following theorem.

Theorem 3.3.1 ([10],[39]). Let g be one of the simply laced untwisted affine Lie algebras

A
(1)
` , D

(1)
` , E

(1)
` . Then

aΛ0
Λ0

(t; q) =
∏̀
i=1

∞∏
n=1

(1− tei+1qn)−1 (3.3.2)

where ei (1 ≤ i ≤ `) are the exponents of the underlying finite dimensional simple Lie algebra

(= A`, D`, E` respectively).

3.4 Generalised exponents

Let m be the finite dimensional simple Lie algebra and V = V (λ) be the irreducible finite

dimensional m -module with highest weight λ. Fix a triangular decomposition N+ ⊕H ⊕N−,

and let E ∈ N+ be a principal nilpotent element i.e., E =
∑`

i=1 ciEi, where ci ∈ C− {0} and

E1, E2, ..., E` are the Chevalley generators. Let V0 denote the zero weight space. Define the

Brylinski-Kostant filtration of V0 F (−1)(V0) ⊆ F (0)(V0) ⊆ F (1)(V0) ⊆ · · · , where F (p)(V0) :=

ker (Ep+1) ∩ V0. Then the generalised exponents of V are the elements of the multiset E(V)

defined via the following relation:∑
p≥0

dim(F (p+1)(V0)/F (p)(V0)) tp =
∑

k∈E(V )

tk.

The exponents of a finite dimensional simple Lie algebra m are nothing but the generalised

exponents of the adjoint representation of m i.e., V = V (θ), where θ is the highest root of m.

As our result is about the twisted affine Lie algebras, we recall some facts about them. Let

g be a twisted affine algebra of type X
(r)
N ; here XN is a simply laced (A − D − E) Dynkin

diagram of finite type with a diagram automorphism σ of order r (r = 2 or 3). Let m denote

the finite dimensional simple Lie algebra with Dynkin diagram XN and let σ also denote the

corresponding automorphism of m. For each k ∈ Z, let mk ⊂ m be the eigenspace of σ for

the eigenvalue exp (2πki
r ) (so mk = mk+r). Since σ acts diagonalisably on m, we have a Z/rZ
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gradation:

m =
⊕

j∈Z/rZ

mj

If h is a Cartan subalgebra of m, let hj := h∩mj for all j ∈ Z. We collect together the important

facts about the above decomposition [15].

Proposition 3.4.1. With notation as above, we have

1. m0 is a simple Lie algebra and mj is an irreducible m0-module ∀ j.

2. m1
∼= m−1 as m0-modules.

3. h0 is Cartan subalgebra of m0 and its centraliser in m is h.

4. If g is not of type A
(2)
2l , then m0 and

◦
g are isomorphic. Further the highest weight of the

m0-module m1 is the dominant short root θs of m0.

5. If g is of type A
(2)
2l , then m0 is of type Bl, while

◦
g is of type Cl. Further, the highest

weight of m1 is 2θs, where θs is the dominant short root of m0.

Proof. See [[2],[15]]. 2

We denote l := rankm0, m := the number of short simple roots of m0 and let θl (resp.θs)

be the dominant long (resp. short) root of m0.

Proposition 3.4.2. Let g be a twisted affine algebra of type X
(r)
N 6= A

(2)
2l . Consider the action

of the cyclic group generated by the automorphism σ, on the nodes of the Dynkin diagram of

XN . This has the following properties.

1. Each orbit has cardinality 1 or r.

2. The number of orbits equals l.

3. The number of orbits of cardinality r is equal to m.

4. Thus, m = N−l
r−1 .

Proof. See [[2],[15]]. 2

We have a natural Z-grading g = ⊕j∈Z gj with g0 = m0 + CK + Cd and gj = zj ⊗ mj for

j 6= 0. We observe that for j 6= 0, gj ∼= mj is an irreducible m0-module and that gj ∼= gk when

j ≡ k (mod r), j, k 6= 0. Let En denote the multiset of generalised exponents of the m0-module

mn for n ∈ Z.

Now we are in position to state our main theorem of this chapter.

28



g E0 E1 = E−1

A
(2)
2l (l ≥ 1) 1, 3, 5, · · · , 2l − 1 2, 4, 6, · · · , 2l

A
(2)
2l−1 (l ≥ 3) 1, 3, 5, · · · , 2l − 1 2, 4, 6, · · · , 2l − 2

D
(2)
l+1 (l ≥ 2) 1, 3, 5, · · · , 2l − 1 l

E
(2)
6 1, 5, 7, 11 4, 8

D
(3)
4 1, 5 3

Table 3.1: En for the twisted affines g = X
(r)
N (En+r = En for all n).

Theorem 3.4.3. Let g be a twisted affine algebra. The t-string function of the basic represen-

tation of g is given by

aΛ0
Λ0

(t; q) =
∞∏
n=1

∏
e∈En

(1− te+1qn)−1

Remark 3.4.4. When g is an untwisted simply-laced affine, this result was proved in [39].

In this case, the m0-modules mj are all isomorphic to the adjoint representation of m0. Thus

En = E(m0), the set of exponents of m0 for all n, and we recover theorem 3.3.1.

Remark 3.4.5. The cardinality of En is the dimension of the zero weight space of gn. From

proposition 3.4.1, it follows that |En| = dim(zn ⊗ hn). Since zn ⊗ hn is the root space of g

corresponding to the imaginary root nδ, we deduce that |En| = mult(nδ). Thus, this expression

is a t-deformation of the expression for the basic string function 3.1.1.

Remark 3.4.6. From the explicit description of the Chevalley generators of m0 in terms of

those of m [15], it is clear that a principal nilpotent element of m0 is also a principal nilpotent of

m. This observation, together with proposition 3.4.1 implies the following equality of multisets:

E(m) =
r⊔
j=1

Ej

where the left hand side is the multiset of exponents of the Lie algebra m, i.e., the generalised

exponents of its adjoint representation. Further, since mr = m0, we have Er = E(m0). Thus,

the sets E(m) and E(m0) determine the En for all n; this is clear for r = 2, while for r = 3 it

follows from the further fact that E1 = E2. Table 3.1 lists the En for all twisted affine algebras.

3.4.1 Corollary of theorem 3.4.3

We derive an interesting corollary of theorem 3.4.3 . If g is an affine Kac-Moody algebra of rank

l+ 1, and ei, fi (i = 0, · · · , l) are the Chevalley generators, the principal Heisenberg subalgebra
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s of g is defined to be

s := {x ∈ g : [x,
l∑

i=0

ei] ∈ CK}

where K is the central element of g. The principal gradation of g induces a gradation s =

⊕j∈C sj . If g is an untwisted simply-laced or twisted affine algebra, the basic representation

L(Λ0), as an s-module, is irreducible. The exponents of the affine algebra g are the elements

of the (infinite) multiset E(g) of nonzero integers in which each j occurs dim sj times. Let

E+(g) := E(g) ∩ E>0 denote the positive exponents of g. The following lemma relates the

multisets E+(g) and En.

Lemma 3.4.7. Let g be a twisted affine algebra or an untwisted simply-laced affine algebra of

type X
(r)
N , with Coxeter number h. Then

E+(g) = {e+ hn : n ≥ 0, e ∈ En}

Proof. Follows easily from [[15], chapter. 14] and table 3.1. 2

We deduce the following nice formula for the specialisation of the t-string function aΛ0
Λ0

(t; q)

at t 7→ q, q 7→ qh.

Corollary 3.4.8. Let g be a twisted affine algebra or an untwisted simply-laced affine algebra,

with Coxeter number h. Let
◦
g be its underlying finite dimensional simple Lie algebra. Then

aΛ0
Λ0

(q; qh) =

∏
ē∈E(

◦
g)

(1− qē+1)

∏
e∈E+(g)

(1− qe+1)

where E(
◦
g) is the (finite) multiset of exponents of

◦
g.

Proof. Applying the specialisation t 7→ q, q 7→ qh to theorem 3.4.3, and using lemma 3.4.7, we

obtain the desired equation but with m0 in place of
◦
g. Proposition 3.4.1 implies that m0 and

◦
g

are either isomorphic or dual. Since dual algebras have the same exponents, the result follows

in all cases. 2

We will prove theorem 3.4.3 in two parts. In the first part we will prove the result for

g 6= A
(2)
2l . In the second we complete the result by proving it for g = A

(2)
2l . First, we need to

define some terms which are the crucial ingredients of the proof.

Given a Kac- Moody algebra g of finite or affine type, we let ∆(g), ∆+(g), ∆re(g), ∆im(g)

denote the sets of roots, positive roots, real and imaginary roots respectively. Let ∆re
+ (g) :=

∆re(g) ∩∆+(g) and ∆im
+ (g) := ∆im(g) ∩∆+(g).
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Definition 3.4.9. Let g be an affine Kac-Moody algebra. The Cherednik kernel µ̂ of g is the

product

µ̂ :=
∏

α∈∆re
+ (g)

1− e−α

1− te−α
(3.4.3)

If g is affine, the corresponding product over the imaginary positive roots denoted by

µ̂im :=
∏

α∈∆im
+ (g)

(
1− e−α

1− te−α

)(mult α)

=
∏
n≥1

(
1− qn

1− tqn

)(mult nδ)

(3.4.4)

where we let q := e−δ throughout.

Recall from the chapter 2 that the formal character of the representation L(λ), where λ is

a dominant integral weight is given by chL(λ) =
∑

ν dim(L(λ)ν) eν , we will denote this from

now on by χλ. We have the following proposition for the basic representation L(Λ0).

Proposition 3.4.10. Let g be a twisted affine algebra. Then the formal character of L(Λ0) is

:

e−Λ0χΛ0 = aΛ0
Λ0

(1; q)Θ

where Θ :=
∑

α∈M eαq
〈α,α〉

2 is the theta function of the lattice M (defined in chapter 2, § 2.5) .

Proof. See [15] 2

Definition 3.4.11. Given a formal sum ξ =
∑

α∈Q cαe
α, the constant term of ξ denoted by

ct(ξ) is defined as ct(ξ) :=
∑

n∈Z cnδe
nδ.

We will use the following simple fact from [39] to compute the t-string functions aλµ(t; q):

aλµ(t; q) = µ̂imct(e−µχλµ̂) (3.4.5)

where µ is a maximal dominant weight of L(λ). Putting the above facts together, we obtain

the following lemma.

Lemma 3.4.12. Let g be a twisted affine algebra. Then

1. The t-string function of the basic representation of g is given by

aΛ0
Λ0

(t; q) = aΛ0
Λ0

(1; q)µ̂imct(µ̂Θ)

2. Further we have

aΛ0
Λ0

(1; q)µ̂im =
∏
n≥1

(1− tqn)−mult (nδ)

Proof. Part 1 of lemma follows from proposition 3.4.10 and equation 3.4.5. Part 2 is clear from

proposition 3.1.1 and equation 3.4.4. 2

From the above lemma we see that we only need to calculate ct(µ̂Θ) to get an expression

for aΛ0
Λ0

(t; q).
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3.5 Proof of theorem 3.4.3 for g 6= A
(2)
2l

Throughout this section, we take g to be a twisted affine algebra, g 6= A
(2)
2l . Let 〈·, ·〉 denote

the normalised invariant form of g [15]. We then have 〈α, α〉 = 2 for all short real roots of g.

We recall that the height of a root α (written htα) is the sum of the coefficients obtained when

α is written as a linear combination of simple roots. The following result is a special case of

Cherednik’s difference Macdonald-Mehta constant term identity [6].

Proposition 3.5.1. Let g be a twisted affine algebra, g 6= A
(2)
2l . Let

◦
g be the underlying finite

dimensional simple Lie algebra and let 〈·, ·〉 denote the normalised invariant form of g. Then

we have

ct(µ̂Θ) =
∏

∆+(g)

∞∏
j=1

1− thtαq
〈α,α〉

2
j

1− thtα+1q
〈α,α〉

2
j

(3.5.6)

Proof. The positive real roots of g are given by ∆re
+ (g) = {β+ 〈β,β〉2 jδ : j ≥ 1, β ∈ ∆(

◦
g)}∪∆+(

◦
g).

Thus the Cherednik kernel of g becomes

µ̂ =
∏

β∈∆+(
◦
g)

∏
j≥0

(1− e−βqj〈β,β〉/2)(1− eβq(j+1)〈β,β〉/2)

(1− te−βqj〈β,β〉/2)(1− teβq(j+1)〈β,β〉/2)
(3.5.7)

Applying [6, theorem 5.3] with R chosen to be the coroot system of
◦
g yields equation 3.5.6. 2

To simplify notation, we let (a1, a2, · · · , ap;x)∞ :=
∏p
i=1

∏∞
n=0(1 − aix

n). Let us now

separate the contributions of long and short roots in equation 3.5.6 . Define

Ks(q) (resp. Kl(q)) :=
∏

α∈∆+(
◦
g)

α short
(resp. long)

(thtαq; q)∞
(thtα+1q; q)∞

Since 〈α, α〉/2 is 1 (resp. r) if α is short (resp. long), proposition 3.5.1 implies

ct(µ̂Θ) = Ks(q)Kl(q
r)

Now, for each k ≥ 1, let nk (resp. nk(s)) denote the number of positive roots (resp. short

positive roots) of
◦
g of height k. This gives

K(q) := Ks(q)Kl(q) =
(tq; q)l∞∏

p≥1(tp+1q; q)
np−np+1
∞

where l is the number of simple roots of
◦
g. Similarly,

Ks(q) =
(tq; q)m∏

p≥1(tp+1q; q)np(s)−np+1(s)
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where m is the number of short simple roots of
◦
g. We recall the following classical result (see,

for example, [12]) relating the nk and nk(s) to generalised exponents of certain representations

of
◦
g.

Proposition ([12]). With notation as above, np − np+1 is the number of times p occurs as an

exponent of
◦
g (i.e., as a generalised exponent of the adjoint representation V (θl)). Similarly,

np(s)−np+1(s) is the number of times p occurs as a generalised exponent of the representation

V (θs) of
◦
g.

Now, rewriting Ks(q)Kl(q
r) = K(qr) Ks(q)Ks(qr)

and using propositions 3.4.1 and 3.5, we get

ct(µ̂Θ) = (tqr; qr)l∞
(tq; q)m∞

(tqr; qr)m∞

∏
p∈E0

1

(tp+1qr; qr)∞

∏
p∈E1

(tp+1qr; qr)∞
(tp+1q; q)∞

We now observe that l = multjδ for j ≡ 0 (mod r) and m = N−l
r−1 = multjδ for j 6≡ 0 (mod r).

Thus, the above equation can be rewritten as :

ct(µ̂Θ) =
∏
n≥1

(1− tqn)mult(nδ)
∏
n≥1

∏
e∈En

1

1− te+1qn

Lemma 3.4.12 now completes the proof of theorem 3.4.3 for all twisted affine algebras g 6= A
(2)
2l .

3.6 g = A
(2)
2l

3.6.1 Proof of theorem 3.4.3 for g = A
(2)
2l

In this section, we consider the case g = A
(2)
2l . The underlying finite dimensional simple Lie

algebra is
◦
g = Cl. Let

◦
∆ be the set of roots of

◦
g. Letting 〈·, ·〉 denote the standard inner product

in Rl and εi (1 ≤ i ≤ l) be the standard orthonormal basis, we can take
◦
∆ = {±εi ± εj : 1 ≤

i < j ≤ l}∪{±2εi : 1 ≤ i ≤ l}. We observe that the coroot lattice M of
◦
g is just M = ⊕li=1Zεi.

The set of real roots of g is given by ∆re = S1∪S2∪S4 where S1 = {1
2(α+(2n−1)δ) : α ∈

◦
∆l},

S2 = {α + nδ : α ∈
◦
∆s} and S4 = {α + 2nδ : α ∈

◦
∆l}, where δ is the null root of

◦
g and

◦
∆l

(resp.
◦
∆s) denotes the set of long (resp. short) roots in

◦
∆. The elements of Sn have norm

n (n = 1, 2, 4), and each Sn is invariant under the Weyl group W of
◦
g. Let µ̂ denote the

Cherednik kernel of A
(2)
2l , given by equation 3.4.3 .

Now enlarge ∆re by defining:

Φ :=
5⋃
i=1

Φi where Φ1 := (1/2)S4, Φ2 := S4, Φ3 := S1, Φ4 := 2S1,Φ5 := S2

The set Φ is the non-reduced irreducible affine root system of type (C∨l , Cl) in the classifi-

cation of Macdonald [30]. Observe that Φ is W -invariant, with each Φi being a W -orbit.
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Following the notation of Macdonald [30], define R+
1 := {ε1, · · · , εl} and R+

2 := {εi ± εj : 1 ≤
i < j ≤ l}. We now let ki (1 ≤ i ≤ 5) be arbitrary parameters, and let (u1, u2, u3, u4) =

(qk1 ,−qk2 , qk3+ 1
2 ,−qk4+ 1

2 ) and (u′1, u
′
2, u
′
3, u
′
4) = (qu1, qu2, u3, u4). The Cherednik kernel ∆

(with parameters ki) for the non-reduced affine root system Φ then becomes ∆ := ∆(1)∆(2)

where

∆(1) =
∏
α∈R+

1

(e−2α, qe2α; q)∞∏4
i=1(uie−α; q)∞(u′ie

α; q)∞

∆(2) =
∏
α∈R+

2

(e−α, qeα; q)∞
(qk5e−α, qk5+1eα; q)∞

[30]. The following lemma relates the kernels ∆ and µ̂.

Lemma 3.6.1. Define t := qk5, and let the parameters ki satisfy the relations k3 = k5 = 2k1 =

2k2. We then have:

1. If k4 = 0, then ∆ = µ̂.

2. If k4 → ∞ (i.e., qk4 → 0), then ∆ → µ̂ΘM

(q; q)l
where M := ⊕li=1Zεi and ΘM :=∑

α∈M eαq〈α,α〉/2 is its theta function.

Proof. The first statement is easy; in fact one can recover the Cherednik kernels of all twisted

affines (and all non-reduced affine root systems) by appropriate specialisation of ∆ [30]. To

prove (2), we observe that for the given choice of parameters, one gets

∆ = µ̂
l∏

i=1

(−q1/2eεi ,−q1/2e−εi ; q)∞

Now, by the Jacobi triple product identity, we have

(−q1/2eεi ,−q1/2e−εi ; q)∞ = (q; q)−1
∑
n∈Z

qn
2/2enεi = (q; q)−1

∞ ΘZεi

Since the theta function ΘM of the rectangular lattice M = ⊕li=1Zεi is just the product∏l
i=1 ΘZεi , the result follows. 2

To obtain the explicit form of the Cherednik-Macdonald-Mehta constant term identity for

A
(2)
2l (i.e., an expression for ct(µ̂ΘM )) it thus only remains to specialise the well-known formula

for ct(∆) [[30], equation 5.8.20] at k3 = k5 = 2k1 = 2k2 and k4 →∞ (and letting qk5 =: t).
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Proposition 3.6.2. For
◦
g = A

(2)
2l , we have:

ct(µ̂ΘM ) =
(tq; q)l∞

(t2q2, t4q2, · · · , t2lq2; q2)∞(t3q, t5q, · · · , t2l+1q; q2)∞

Proof. We start with some notations (see [30]): tat2a
1
2 = qka for a ∈ Φ such that 2a ∈ Φ

and t
1
2
2a = qk2a , where ka = ki for a ∈ Φi for 1 ≤ i ≤ 5 and ta = 1 if a /∈ Φ. Let k′1 =

1
2(k1 +k2 +k3 +k4), k′2 = 1

2(k1 +k2−k3−k4), k′3 = 1
2(k1−k2 +k3−k4), k′4 = 1

2(k1−k2−k3 +k4).

B := {a ∈ Φ : a = b+ kδ; b ∈
◦
∆−}.

Now ct(∆) is given by the formula:

ct(∆) = (∆−s′,k′∆
−
s′,−k′)(−ρk′) by [30] [equation 5.8.20] (3.6.8)

where ∆−s′,k′ : =
∏
a∈Φ+

Da<0

∆a,k′ by [30] [equation 5.3.11] (3.6.9)

and ∆a,k′ :=
1− qk′2aea

1− qk′aea
[30] [equation 5.1.2] (3.6.10)

and ρ′k :=
l∑

i=1

(k′1 + (l − i)k5)εi [30] [§1.5] (3.6.11)

The set B = {−εi + nδ : n ≥ 1, 1 ≤ i ≤ l} ∪ {−2εi + 2nδ : n ≥ 1, 1 ≤ i ≤ l} ∪ {−εi + (n+ 1
2)δ :

n ≥ 0, 1 ≤ i ≤ l} ∪ {−2εi + (2n+ 1)δ : n ≥ 0, 1 ≤ i ≤ l} ∪ {−(εi + εj) + nδ : n ≥ 1, 1 ≤ i < j ≤
l} ∪ {−(εi − εj) + nδ : n ≥ 1, 1 ≤ i < j ≤ l}.

Now we calculate the right hand side of the equation 3.6.8:

Case 1): Let a = −εi + nδ ∈ B ∩ Φ+
1

then

∆a,k′∆2a,k′ =
1− e2a

(1− qk′(a)ea)(1 + qk′(2a)ea)
by [30] [equation 5.1.2]

Here k′(a) = k′1 since a ∈ Φ+
1 and k′(2a) = k′2 therefore

∆a,k′∆2a,k′(−ρk′) =
1− e2a

(1− qk′1ea)(1 + qk
′
2ea)

(
−

l∑
i=1

(k′1 + (l − i)k5)εi

)

Now e〈a,−ρk′ 〉 = qk
′
1+(l−i)k5qn

Since k′1 →∞ as k4 →∞, the term

(
1−e2a

1−qk
′
1ea

)
(−ρk′)→ 1 and(

1

1− qk′1ea

)
(−ρk′) =

1

1 + qk
′
2qk
′
1+(l−i)k5qn

But as k′1 + k′2 = k1 + k2 we get

∆a,k′∆2a,k′(−ρk′) =
1

1 + qk1+k2+(l−i)k5qn
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Case 2): Let a = −εi + nδ ∈ B ∩ Φ+
1

Then

∆a,−k′∆2a,−k′ =
1− e2a

(1− q−k′(a)ea)(1 + q−k′(2a)ea)

The numerator → to 1 as k′1 →∞.

The first term in denominator is

1− q−k′1e−〈a,−ρk′ 〉 = 1− q−k′1qk′1+(l−i)k5qn

= 1− q(l−i)k5qn.

Second term in denominator is

1 + q−k
′
2qk
′
1+(l−i)k5qn = 1 + q(k′1−k′2)q(l−i)k5qn

But k′2 = 1
2(k1 +k2−k3−k4). Therefore k′1−k′2 = k3 +k4 →∞. So second term of denominator

tends to 1. Therefore

(∆a,−k′∆2a,−k′)(−ρk′) =
1

(1− q(l−i)k5qn)

Case 3): Let a = −εi + (n+ 1
2)δ ∈ B ∩ Φ+

3 .

Then

∆a,k′∆2a,k′(−ρk′) =
1− e2a

(1− qk′3ea)(1 + qk
′
4ea)

(−ρk′)

Now since k′1 →∞ and k′3 + k′1 = k1 + k3 and k′4 + k′1 = k1 + k4 →∞, we get

∆a,k′∆2a,k′(−ρk′) =
1

1− qk1+k3+(l−i)k5qn+ 1
2

Case 4): Let a = −εi + (n+ 1
2)δ ∈ B ∩ Φ+

3 .

Then

∆a,−k′∆2a,−k′(−ρk′) =
1− e2a

(1− q−k3ea)(1 + q−k4ea)
(−ρk′)

Now using k′1 − k′3 = k2 + k4 →∞ and k′1 − k′4 = k2 + k3 we get,

∆a,k′∆2a,k′(−ρk′) =
1

1 + qk2+k3+(l−i)k5qn+ 1
2

Case 5): Let −(εi + εj) + nδ ∈ B ∈ Φ+
5

∆a,k′∆a,−k′(−ρk′) =
1− e2a

(1− qk5ea)(1 + q−k5ea)
(−ρk′)

As e〈a,−ρk′ 〉 = q2k′1+(l−i+l−j)k5+n → 0 and qk
′
5+2k′1 → 0, we get

∆a,k′∆a,−k′(−ρk′) = 1
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Case 6): Let −(εi − εj) + nδ ∈ B ∈ Φ+
5

Then

∆a,k′(−ρk′) =
1− ea

1− qk′5ea
(−ρk′)

=
1− qnq(j−i)k5

1− qnq(j−i+1)k5

similarly ∆a,−k′(−ρk′) =
1− qnq(j−i)k5

1− qnq(j−i−1)k5

So ∆a,k′∆a,−k′(−ρk′) =
(1− qnq(j−i)k5)2

(1− qnq(j−i+1)k5)(1− qnq(j−i−1)k5)

Now we write total contribution of every case.

Case 1: ∏
n≥1

l∏
i=1

1

1 + q(l−i+1)k5+n
=

1∏l
j=1(−qjk5+1; q)∞

Case 2: ∏
n≥1

l∏
i=1

1

1− q(l−i)k5+n
=

1∏l−1
j=1(qjk5+1; q)∞(q; q)∞

Cases 3 and 4:∏
n≥0

l∏
i=1

1

1− qk3+(l−i+ 1
2

)k5+n+ 1
2

·
∏
n≥0

l∏
i=1

1

1 + qk3+(l−i+ 1
2

)k5+n+ 1
2

 =
1∏2l−1

j=1
j odd

(q2k3+jk5+1; q2)∞

Case 5:

1

Case 6:∏
n≥1

∏
1≤i<j≤l

(1− qnq(j−i)k5)2

(1− qnq(j−i+1)k5)(1− qnq(j−i−1)k5)
=

∏
1≤i<j≤l

(q(j−i)k5+1; q)2
∞

(q(j−i+1)k5+1; q)∞(q(j−i−1)k5+1; q)∞

Consider the product in case 6. Denoting u = qk5 , since εi− εj , 1 ≤ i <≤ l are the positive

roots of Al−1, we can write this product as

∏
α∈∆+

re(Al−1)

(uht(α)q; q)2
∞

(uht(α)+1q + 1; q)∞(uht(α)−1q; q)∞

where ht(εij) = j − i. But for Al−1, by height configuration, the above equation becomes

(uq; q)l∞
(q; q)l−1

∞ (ulq; q)∞
=

(qk5+1; q)l∞
(q; q)l−1

∞ (ql(k5)+1; q)∞
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Therefore the expression for ct(∆) becomes

ct(∆) =
(qk5+1; q)l∞

(q; q)l∞

1∏l
j=1(q2j(k5)+2; q2)∞

2l−1∏
j=1
j odd

1

(q2k3+jk5+1; q2)∞
(3.6.12)

Now letting t = qk5 and t = qk3 in above equation and using lemma 3.6.1 (part 2) we get

ct(µ̂ΘM ) = (tq; q)l∞

2l∏
j=1
j even

1

(tjq2; q2)∞

∏
j=1
jodd

1

(tj+2q; q2)∞
(3.6.13)

which is the desired identity. 2

Now by lemma 3.4.12 we have

aΛ0
Λ0

(q; t) = ct(e−Λ0 µ̂ chL(Λ0))

= µ̂imaΛ0
Λ0

(q, 1)ct(µ̂ΘM )

so by lemma 3.4.12 part 2 we have

aΛ0
Λ0

(q; t) =
1

(tq; q)l∞
ct(ΘM ).

So using equation 3.6.13 we get

aΛ0
Λ0

(q; t) =

2l∏
j=1
j even

1

(tjq2; q2)∞

∏
j=1
jodd

1

(tj+2q; q2)∞

which completes proof of theorem 3.4.3 for A
(2)
2l case.

3.6.2 Two variable generalisation

One can prove a slightly more general, two-variable version of theorem 3.4.3 for g = A
(2)
2l . To

state this, let s, t be indeterminates, and define the two-variable Kostant partition function

P(β; s, t) to be the coefficient of eβ in the product
∏

α∈∆+(g)

(1− uα eα)−multα where uα := s if α

is a real root of norm 1 (=shortest root length) and uα := t for all other roots (i.e., imaginary

roots, and real roots of norms 2 and 4). For a dominant integral weight λ of A
(2)
2l , and a

maximal dominant weight µ of L(λ), define the two variable Kostka-Foulkes polynomial

Kλµ(s, t) :=
∑
w∈W

ε(w)P(w(λ+ ρ)− (µ+ ρ); s, t)

and let the corresponding (s, t)-string function for the basic representation be aΛ0
Λ0

(s, t, q) :=∑
p≥0

KΛ0,Λ0−pδ(s, t) q
p. The following is the two variable version of theorem 3.4.3.
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Proposition 3.6.3. For g = A
(2)
2l ,

aΛ0
Λ0

(s, t, q) =
2l∏
j=1
j even

(tjq2; q2)−1
∞

2l∏
j=1
j odd

(s2tjq; q2)−1
∞

Proof. The proof is along the exact same lines as that of proposition 3.6.2, but now with

parameters chosen differently. We choose k5 = 2k1 = 2k2, k4 → ∞, but leave k3 as a free

parameter. We then take t := qk5 and s := qk3 . The remaining details are easily checked. 2

Corollary 3.6.4. KΛ0,Λ0−pδ(s, t) ∈ Z≥0[s, t] for all p ≥ 0.

Finally, we remark that it would be of interest to find a more natural explanation for

the positivity result of the above corollary (or more generally, for Kλµ(s, t)) in terms of a

Brylinski-Kostant type filtration, as is known for the usual (one variable) affine Kostka-Foulkes

polynomials [37]. We also note that the two variable Kostka-Foulkes polynomials can be defined

for all twisted affines (in fact, for any affine root system with more than one root length) and

in more than one way (corresponding to different choices of the uα in the definition). But it

appears, from preliminary calculations, that only A
(2)
2l (with the given choice of uα) exhibits

the positivity property of corollary 3.6.4.
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Chapter 4

Affine Brylinski-Kostant filtration

on the basic representation of A
(1)
1

Consider the affine Lie algebra A
(1)
1 . Let us consider its basic representation L(Λ0). By theorem

3.3.1 we have

aΛ0
Λ0

(t; q) =
∑
n≥0

KΛ0
Λ0−nδ(t)q

n =

∞∏
k=1

(1− t2qk)−1

By comparing the coefficients of the above expression, we get a formula for the Kostka-Foulkes

polynomial which is,

KΛ0
Λ0−nδ(t) =

∑
π`n

t2 (#π)

where #π is the number of parts in the partition π of n.

Slofstra [37] shows that the affine Kostka-Foulkes polynomial Kλ
µ(t), where λ and µ are dom-

inant, is equal to the Poincaré series of the associated graded space of affine Brylinski-Kostant

filtration on L(λ)µ. This extends Brylinski’s result [1] (which is for the finite dimensional simple

Lie algebras) to the affine Kac-Moody algebras.

In this chapter, for g = A
(1)
1 , we give a basis for the space L(Λ0)Λ0−nδ for n ≥ 0, which is

compatible with the affine Brylinski-Kostant filtration. Using Slofstra’s theorem this gives an

alternative derivation of the expression for aΛ0
Λ0

(t; q).

4.1 Heisenberg algebra

Definition 4.1.1. The Heisenberg algebra is the complex Lie algebra with a basis {an, n ∈
Z} ∪ {~}, and commutation relations

[~, an] = 0 ∀n ∈ Z
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[an, am] = mδm,−n~ ∀m,n ∈ Z

4.1.1 Homogeneous and principal Heisenberg subalgebras of affine Kac-

Moody algebras

Let g be an affine Kac-Moody algebra. Let ei and fi for i = 0, 1, 2, ..., l be the Chevalley

generators. Let δ be its null root and h denote the Cartan subalgebra of g. Recall that gnδ

denotes the root space of g with corresponding to the root nδ for n 6= 0. Let K be the central

element of g.

The homogeneous Heisenberg algebra H of g is defined as

H = CK +
∑
s∈Z
s 6=0

gsδ

A principal nilpotent element of the affine Kac-Moody algebra is an element of the form∑l
i=0 ciei where ci ∈ C − {0}. For a principal nilpotent element E′ of g, the Lie subalgebra

defined by

sE′ = {x ∈ g : [x,E′] ∈ CK}

is the principal Heisenberg algebras of g.

4.2 The affine Brylinski-Kostant filtration

Let m be a finite dimensional simple Lie algebra and V = V (λ) be the irreducible finite dimen-

sional m -module with highest weight λ. Let m = N+⊕H ⊕N− be a triangular decomposition

and let E ∈ N+ be a principal nilpotent element of m. Let V (λ)µ be a weight space of V (λ).

Recall from chapter 3 § 3.4 that the Brylinski-Kostant filtration for V (λ)µ with respect to the

principal nilpotent element E is given by

F (−1)(V (λ)µ) ⊆ F (0)(V (λ)µ) ⊆ F (1)(V (λ)µ) ⊆ · · · , where F (p)(V (λ)µ) := ker (Ep+1) ∩
V (λ)µ. The Poincaré series (polynomial) of the associated graded space of this filtration is

defined as

P λµ (t) :=
∑
i≥0

dim (F (i)V (λ)µ/F (i−1)V (λ)µ) ti

where F (−1)V (λ)µ := 0.

Brylinski [1] proved that, for λ and µ dominant, P λµ (t) is equal to the Kostka-Foulkes

polynomial Kλ
µ(t). Slofstra [37] extends Brylinski’s result to the affine Kac-Moody algebras.

He shows that in the affine case, a principal nilpotent element is not sufficient to define the

filtration, but one has to use the positive part of a principal Heisenberg subalgebra.
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Let g be an affine Kac-Moody algebra. Let n+ ⊕ h ⊕ n− be its triangular decomposition.

Let L(λ) be a highest weight irreducible integrable g-module, and µ be a weight. Let s be

a principal Heisenberg subalgebra of g. Then the affine Brylinski-Kostant filtration for the

weight space L(λ)µ is defined as [37]

F (−1)(L(λ)µ) ⊆ F (0)(L(λ)µ) ⊆ F (1)((L(λ)µ) ⊆ · · ·

where

F (p)(L(λ)µ) := {v ∈ L(λ)µ : xp+1v = 0 ∀ x ∈ s ∩ n+}.

Now we are in a position to state Slofstra’s theorem.

Theorem 4.2.1 (Slofstra, [37]). Let L(λ) be an integrable highest weight representation of an

affine Kac-Moody algebra g, where λ is a dominant integral weight. If µ is a dominant weight

of L(λ), then

P λµ (t) = Kλ
µ(t) .

4.2.1 g = A
(1)
1

We now consider the affine Lie algebra A
(1)
1 . Let h, e, f be the usual basis of sl2. Let L(Λ0) be

its basic representation. Following Lepowsky-Wilson [22], for an odd integer j, define

Bj := e⊗ t
j−1

2 + f ⊗ t
j+1

2

and

Cj := −e⊗ t
j−1

2 + f ⊗ t
j+1

2 .

For non-zero even integers j define

Hj := h⊗ t
j
2

and

H0 := h⊗ 1− 1

2
K.

The Bj , Cj and Hj satisfy the following bracket relations [22]:

[Bj , Bk] = jδj,−kK (4.2.1)

[Cj , Ck] = −jδj,−kK (4.2.2)

[Hj , Hk] = jδj,−kK (4.2.3)

[Bj , Hk] = 2Cj+k (4.2.4)

[Cj , Hk] = 2Bj+k (4.2.5)

[Bj , Ck] = 2Hj+k (4.2.6)
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Let s := span({Bj : j odd} ∪ {K}) and H := span({Hj : j even} ∪ {K}). Then s and H are

the principal and homogeneous Heisenberg algebra of g respectively. Note that here s = sE′

for E′ = e⊗ 1 + f ⊗ t.
It is a well known fact that for the basic representation L(Λ0) of an affine Lie algebra, the

principal Heisenberg algebra acts irreducibly. On the other hand the homogeneous Heisenberg

algebra does not act irreducibly on L(Λ0) [15].

As s acts irreducibly on L(Λ0), by the standard theory of the Heisenberg algebra we have

L(Λ0) = C[x1, x3, x5, ...] and where for all odd j > 0 Bj acts as the operator j
2
∂
∂xj

and B−j

acts as 2Txj , where the operator Tx denotes left multiplication by x.

Now, s ∩ n+ = span of{Bj : j odd > 0}. So the affine Brylinski-Kostant filtration with

respect to the principal Heisenberg algebra s is given by F (p)(L(λ)µ) = {v ∈ L(λ)µ : xp+1v =

0 ∀ x ∈ s ∩ n+} or equivalently

F (p)(L(λ)µ) = {v ∈ L(λ)µ : Bi1Bi2 · · ·Bip+1v = 0 ∀ i1, i2, ..., ip+1(odd) > 0}.

Since for all odd j > 0, Bj acts as operator j
2
∂
∂xj

, we see that if f ∈ F (p)(L(λ)µ), then

Bi1Bi2 · · ·Bip+1f = 0 ∀ i1, i2, ..., ip+1 > 0. This implies that the usual degree of f in variables

x1, x3, x5, · · · is atmost p. Therefore we have

F (p)(L(λ)µ) = {f ∈ (L(λ)µ) : udeg(f) ≤ p}

where udeg(p) denotes the usual degree of polynomial p. Using this we see that the quotient

space

F (p)(L(λ)µ)/F (p−1)(L(λ)µ) = {f ∈ L(λ)µ : udeg(f) = p}.

To state our main theorem, we need to recall the Sugawara operators.

4.3 Sugawara operators

Let g be an affine Kac-Moody algebra. For simplicity, we assume that g is an untwisted affine

Lie algebra. Let
◦
g be its underlying finite dimensional simple Lie algebra. Let ui and ui be

dual bases of
◦
g with respect to Killing form i.e., (ui, u

j) = δij . Let u(n) denote tn ⊗ u where

n ∈ Z, u ∈ ◦g. The Sugawara operators Tn(n ∈ Z) of g is defined as

T0 =
∑
i

uiu
i + 2

∞∑
n=1

∑
i

u
(−n)
i ui(n)

Tn =
∑
m∈Z

∑
i

u
(−m)
i ui(m+n) for n 6= 0

Similarly for the algebra L̃(
◦
h) = C[z,−1 ]⊗

◦
h⊕CK, where

◦
h is Cartan subalgebra of

◦
g, we define

the Sugawara operators Tn (n ∈ Z) as follows. Let hi and hi be dual bases of
◦
h and as above
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h(n) denote tn ⊗ h for an integer n. Then

T0 =
∑
i

hih
i + 2

∞∑
n=1

∑
i

h
(−n)
i hi(n)

Tn =
∑
m∈Z

∑
i

h
(−m)
i hi(m+n) for n 6= 0

Let L(λ) be a highest weight representation with level of λ equal to k ∈ Z≥0. Define L
◦
g
n :=

1
2(k+h∨)Tn and c(k) := k(dim(

◦
g))

k+h∨ where Tn are Sugawara operators obtained from g and h∨ is

the dual Coxeter number of g. Similarly we define L
◦
h
n := 1

2kTn and
◦
c(
◦
k) := dim(

◦
h) where Tn

are Sugawara operators obtained from L̃(
◦
h).

We recall the term Virasoro algebra.

Definition 4.3.1. The Virasoro algebra is the complex vector space with basis {dn : n ∈ Z}∪{c}
and commutation relations

[dm, c] = 0,

[dm, dn] = (m− n)dm+n + δm,−n
m3 −m

12
c .

Let us define L
◦
g,
◦
h

n := L
◦
g
n − L

◦
h
n. We state the following proposition from [15]

Proposition 4.3.2. 1. L
◦
g,
◦
h

n commutes with L̃(
◦
h) as operators on L(λ).

2. The map dn → L
◦
g,
◦
h

n , c→ c(k)− ◦c(
◦
k) defines a representation of Virasoro algebra on L(λ).

The action of the operator L
◦
g,
◦
h

n on L(λ) is called the coset-Vir action and L(λ) is called

coset-Vir module with respect to this action.

Now consider the module L(Λ0). In the following proposition we recall some of the facts

from [15].

Proposition 4.3.3. 1. The coset Vir action is trivial on the highest weight vector vΛ0 of

L(Λ0), i.e., L
◦
g,
◦
h

n vΛ0 = (L
◦
g
n − L

◦
h
n)vΛ0 = 0. Therefore L

◦
g
nvΛ0 = L

◦
h
nvΛ0.

2. The coset Vir action on L(Λ0) commutes with the action of L̃(
◦
h). Therefore [L

◦
g
n−L

◦
h
n, x] =

0 ∀ x ∈ L̃(
◦
h)

3. Let V := ⊕n≥0L(Λ0)Λ0−nδ = U(L̃(
◦
h))vΛ0. By (1) and (2) above we see that the coset

Vir action is trivial on V , i.e., the Virasoro operators obtained from g and the Virasoro

operators obtained from L̃(
◦
h) act in the same way on V.
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4.3.1 Sugawara operators for A
(1)
1

Let g = A
(1)
1 , and let (e, f, h) and (f, e, h2 ) be dual bases for sl2. Then the Sugawara operators

for the A
(1)
1 -module L(Λ0) are given by

L
◦
g
n =

1

6

∑
m∈Z

[
e(−m)f(m+ n) + f(−m)e(m+ n) + h(−m)

h

2
(m+ n)

]
∀n 6= 0

and

L
◦
g
0 =

1

6

(
e(0)f(0) + f(0)e(0) +

h(0)2

2
+ 2

∞∑
n=1

[
e(−n)f(n) + f(−n)e(n) + h(−n)

h(n)

2

])

where x(m) denotes x⊗ tm. Similarly for the Lie algebra L̃(
◦
h), we have for n 6= 0

L
◦
h
n :=

1

2

∑
m∈Z

h(m)
h(n−m)

2

and

L
◦
h
0 :=

h(0)2

4
+
∞∑
n=1

h(−n)
h(n)

2

Now consider the homogeneous Heisenberg algebra H generated by H2j =: H(j) for n 6= 0

and H0 := H(0) = h0 − 1
2K. Note that h(n) = H2n =: H(n) for n 6= 0. Define the Virasoro

operators with respect to H by

LHn :=
1

2

∑
m∈Z

H(n)
H(n−m)

2
for n 6= 0

LH0 :=
H(0)2

4
+

∞∑
n=1

H(−n)
H(n)

2

Then we see that LHn = L
◦
h
n − h(n)

4 for n 6= 0. So define L̃
◦
g
n := L

◦
g
n − h(n)

4 for n 6= 0.

From proposition 4.3.3 part 3 we note that L̃
◦
g
n = LHn for n 6= 0 on V . Let for a polynomial

f ∈ F (j)L(Λ0)Λ0−sδ, f denote image of f in the quotient F (j)(L(Λ0)Λ0−sδ)/F (j−1)(L(Λ0)Λ0−sδ).

Now we are in a position to state our main theorem :

Theorem 4.3.4. Let g = A
(1)
1 . Let r > 0 and k ≥ 0. Then a basis for the quotient space

F (2k)(L(Λ0)Λ0−rδ)/F (2k−1)(L(Λ0)Λ0−rδ) is given by the set

{LHn1
LHn2

...LHnkvΛ0 : 0 > nk ≥ nk−1 ≥ · · · ≥ n1 and n1 + n2 + · · ·+ nk = −2r}

From above theorem, we deduce that

dimF (2k)(L(Λ0)Λ0−rδ)/F (2k−1)(L(Λ0)Λ0−rδ) = P (r, k)
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i.e., the number of partitions of r in k parts. We also note that

dimF (2k−1)(L(Λ0)Λ0−rδ)/F (2k−2)(L(Λ0)Λ0−rδ) = 0 . (4.3.7)

To see this let us define the depth for the weights of module L(Λ0).

Definition 4.3.5. Let g be a Kac -Moody algebra and let V be a highest weight module of g.

Let λ ∈ P (V ) be such that Λ− λ =
∑n

i=1 aiαi. Then depth of λ denoted as dep(λ) :=
∑n

i=1 ai.

By this we have a gradation L(Λ) = ⊕d∈ZL(Λ)d defined by L(Λ)d = ⊕dep(ν)=dL(Λ)ν . Now

consider the case where g = A
(1)
1 and L(λ) = L(Λ0). Then dep(Λ0− rδ) = 2r and we note that

Bj(L(Λ0)d) ⊂ L(Λ0)d−j for an odd integer j. To prove equation 4.3.7, we need to show that

there is no nonzero odd degree polynomial in (L(Λ0)Λ0−rδ.

Now assume contrary. Let there exist 0 6= f ∈ F (2k−1)(L(Λ0)Λ0−rδ)/F (2k−2)(L(Λ0)Λ0−rδ)

for some k, i.e., f has usual degree 2k−1. So there exists j1, · · · , j2k−1 such thatBj1 · · ·Bj2k−1
f =6=

0 ∈ C. So the nonzero element Bj1 · · ·Bj2k−1
f ∈ L(Λ0)Λ0 and Λ0 has depth 0. But the element

Bj1 · · ·Bj2k−1
f lies in the space which has depth 2r− (j1 + · · ·+ j2k−1) which is an odd integer

and we get the desired contradiction. Using this observation and Slofstra’s result, we have the

following corollary:

Corollary 4.3.6. Let g = A
(1)
1 . Let L(Λ0) be its basic representation. Then

aΛ0
Λ0

(t; q) =

∞∏
n=1

(1− t2qn)−1

Proof. As

dimF2k(L(Λ0)Λ0−rδ)/F2k−1(L(Λ0)Λ0−rδ) = P (−r, k)

So by theorem 4.2.1 and by equation 4.3.7, we have

KΛ0
Λ0−nδ(t) =

∑
π`n

t2 (#π)

where #π is the number of parts in the partition π of n and the result follows. 2

4.4 Proof of theorem 4.3.4

The first step to prove the theorem is to prove following proposition.

Proposition 4.4.1. Let g = A
(1)
1 . Then L̃

◦
g
n1L̃

◦
g
n2 ...L̃

◦
g
nkvΛ0 ∈ F (2k)(L(Λ0)Λ0−rδ) where ni < 0

for 1 ≤ i ≤ k and n1 + n2 + · · ·+ nk = −2r .
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Proof. The key step is to prove that for n < 0, L̃
◦
g
n(vΛ0) ∈ F (2)(L(Λ0)Λ0+nδ). As L̃

◦
g
n = LHn , it

is clear that L̃
◦
g
n(vΛ0) ∈ L(Λ0)Λ0+nδ . So for j odd, let us compute the bracket [Bj , L̃

◦
g
n]:

[Bj , L̃
◦
g
n] = [e⊗ t

j−1
2 , L

◦
g
n] + [f ⊗ t

j+1
2 , L

◦
g
n]− [Bj ,

h(n)

4
]

= (
j − 1

2
)(e⊗ t

j−1
2

+n) + (
j + 1

2
)(f ⊗ t

j+1
2

+n)− 1

2
Cj+2n by [15, § 12.8], , and by equation 4.2.4

=
j

2
Bj+2n +

1

2
Cj+2n −

1

2
Cj+2n

=
j

2
Bj+2n

Now consider for positive odd j

Bj · L̃
◦
g
n · vΛ0 = L̃

◦
g
n ·Bj · vΛ0 + [Bj , L̃

◦
g
n]vΛ0

As for j > 0, Bj · vΛ0 = 0, we see that Bj · L̃
◦
g
n · vΛ0 = [Bj , L̃

◦
g
n]vΛ0 from commutation

relations of Bj ’s, for positive odd j1 and j2, we have

Bj1Bj2L̃
◦
g
nvΛ0 = (

j2
2

)Bj1Bj1+2nvΛ0

So

Bj1Bj2L̃
◦
g
nvΛ0 = [Bj1 , Bj2+2n]vΛ0

Therefore for odd j1, j2, j3 > 0, we have Bj1Bj2Bj3L̃
◦
g
nvΛ0 = 0 or equivalently B3L̃

◦
g
nvΛ0 = 0

∀B ∈ s ∩ n+. This proves that for ∀ n < 0, L̃
◦
g
n ∈ F (2)(L(Λ0)Λ0+nδ).

Now consider

Bp(L̃
◦
g
n1
L̃
◦
g
n2
...L̃

◦
g
nk

)vΛ0 =
∑

p1+p2+...+pk=p

((
(adB)p1L̃

◦
g
n1

)(
(adB)p2L̃

◦
g
n2

)
· · ·
(

(adB)pk L̃
◦
g
nk

))
.vΛ0

We see that if p ≥ 2k+1 then at least one of pi’s should be greater than or equal to 3. Therefore

the above expression is zero and proof is complete. 2

Next step is to prove following proposition.

Proposition 4.4.2. Let g = A
(1)
1 . Then LHn1

LHn2
...LHnkvΛ0 ∈ F (2k)(L(Λ0)Λ0−rδ)/F (2k−1)(L(Λ0)Λ0−rδ)

is nonzero (i.e.,udeg(LHn1
LHn2

...LHnkvΛ0) = 2k) where n1, n2, · · · , nk ∈ Z<0 and n1 + n2 + · · · +
nk = −2r.

Proof. As

[Bj , L̃
◦
g
n] =

j

2
Bj+2n.

So we see that for n < 0

Bj1Bj2L̃
◦
g
nvΛ0 = (

j2
2

)Bj1Bj1+2nvΛ0
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Bj1Bj2L̃
◦
g
nvΛ0 = [Bj1 , Bj2+2n]vΛ0

⇒ Bj1Bj2L̃
◦
g
nvΛ0 6= 0 if j1 + j2 = −2n. (4.4.8)

As B3L̃
◦
g
nvΛ0 = 0,∀B ∈ s ∩ n+, the term Bj1Bj2 ...Bj2k−1

Bj2k L̃
◦
g
n1L̃

◦
g
n2 ...L̃

g
nkvΛ0 has the fol-

lowing expression ∑
σ∈S2k

[Bjσ(1)
, [Bjσ(2)

, L̃
◦
g
n1

]][Bjσ(3)
, [Bjσ(4)

, L̃
◦
g
n2

]]...[Bjσ(2k−1)
, [Bjσ(2k)

, L̃
◦
g
nk

]]

 vΛ0

where Sn denotes the permutation group on n letters. Therefore by the equation 4.4.8 we have

Bj1Bj2 ...Bj2k−1
Bj2k L̃

◦
g
n1L̃

◦
g
n2 ...L̃

◦
g
nkvΛ0 6= 0 iff ∃ a σ ∈ S2k such that jσ(1) + jσ(2) = −2n1, jσ(3) +

jσ(4) = −2n2, ..., jσ(2k−1) + jσ(2k) = −2nk. But for LHn1
LHn2

...LHnkvΛ0 with given condition on

ni’s clearly there is a choice of ji’s for which there exist a σ ∈ S2k, which satisfies the desired

condition. 2

Now as mentioned before we have L(Λ0) = C[x1, x3, x5, ...]. We embed the quotient

space F (2k)(L(Λ0)Λ0−rδ)/F (2k−1)(L(Λ0))Λ0−rδ into the space of homogeneous polynomials in

x1, x3, x5... of usual degree 2k.

Note that L̃
◦
g
n1L̃

◦
g
n2 ...L̃

◦
g
nkvΛ0 ∈ F (2k)(L(Λ0)Λ0−rδ)/F (2k−1)(L(Λ0)Λ0−rδ) is a linear combina-

tion of monomials xj1xj2 ...xj2k satisfying the property that ∃ a σ ∈ S2k such that jσ(1) +jσ(2) =

−2n1, jσ(3) + jσ(4) = −2n2, ..., jσ(2k−1) + jσ(2k) = −2nk.

Given a partition π := nk ≥ nk−1 ≥ · · · ≥ n1 of −r with negative parts define m(π) :=

x−2n1−1x−2n2−1 · · ·x−2nk−1x
k
1. Observe that m(π) = m(π′) implies π = π′. Let denote

L̃
◦
g
n1L̃

◦
g
n2 ...L̃

◦
g
nkvΛ0 =: L̃

◦
g
πvΛ0 and for a monomial f = xi1xi2xi3 ...xiq we define its dual by

Bf := Bi1Bi2Bi3 ...Biq ∈ U(s). Note that for a nonzero monomial f , Bf (f) = c(f) is a

nonzero element of C. Now, let us define the order ‘≺’ on the monomials. For i1 ≥ i2 ≥ · · · ≥ il
and j1 ≥ j2 ≥ · · · ≥ jl a monomial f = xi1xi2 · · ·xil ≺ g = xj1xj2 · · ·xjl iff there exists m where

1 ≤ m ≤ l such that ik = jk ∀k < m and im < jm. Let us state the following important lemma.

Lemma 4.4.3. L̃
◦
g
πvΛ0 = k(π)m(π) + a linear combination of monomials ξ of udeg 2k such

that ξ ≺ m(π) , further k(π) 6= 0.

We prove theorem 4.3.4 modulo the above lemma. Let P (−r, k) = m and π1, π2, ..., πm be

all the partitions of r into k parts such that πm ≺ πm−1 ≺ · · · ≺ π1. Assume that

c1L̃π1vΛ0 + c2L̃π2vΛ0 + · · ·+ cmL̃πmvΛ0 = 0

Then applying Bm(π1) to above equation, and using lemma 4.4.3 we have c1k(π1)c(m(π1)) = 0

where c(m(π1)) 6= 0 and k(π1) 6= 0. This implies that c1 = 0. Similarly applying Bm(π2) to the

equation

c2L̃π2vΛ0 + ...+ cmL̃πmvΛ0 = 0
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we get c2 = 0. Continuing in the same way we get ci = 0 for 1 ≤ i ≤ m. Now we prove the

lemma 4.4.3

The monomials appearing in L̃
◦
g
πvΛ0 are xi1xi2 ...xi2k such that iσ(1) + iσ(2) = −2n1, iσ(3) +

iσ(4) = −2n2, ..., iσ(2k−1) + iσ(2k) = −2nk. Let assume for contrary, let ξ = xj1xj2 ...xj2k where

j1 ≥ j2 ≥ ... ≥ j2k ≥ 1 such that m(π) ≺ ξ and ξ appears in L̃
◦
g
πvΛ0 . This implies that

j1 ≥ −2n1 − 1. If j1 > −2n1 − 1, then j1 + 1 > −2n1 which is not possible. So j1 = −2n1 − 1.

By continuing this way we get j2 = −2n2 − 1, ..., jk = −2nk − 1, jk+1 = 1, ..., j2k = 1. This is

the desired contradiction.
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Chapter 5

The t-string functions of A
(1)
1

Let g = A
(1)
1 = C[z, z−1] ⊗ sl2 ⊕ CK ⊕ Cd. Let Λ ∈ P+ be of level m ≥ 1 (i.e., 〈Λ,K〉 = m).

Let L(Λ) be the corresponding irreducible highest weight module. Kac and Peterson [18],

have explicitly computed the string functions corresponding to the g-module L(Λ), and shown

them to be related to the product of Dedekind eta function and the Hecke indefinite modular

forms. In this chapter, we give a t-analogue of this result, i.e., we give a formula for all t-string

functions of the g-module L(Λ).

For g = A
(1)
1 , let h be its Cartan subalgebra and let ∆ ⊆ h∗ be the set of roots. Let ∆+ be

the set of positive roots and {α0, α1} be the set of simple roots of g. Let Q = Zα0 ⊕ Zα1 and

P be the root and weight lattices of g. Let
◦
g = sl2 and

◦
Q = Zα1 and

◦
P = Z α1

2 be the root

and weight lattices of
◦
g. Let W be the Weyl group of g generated by reflections rα0 and rα1 ,

which we denote by r0 and r1. Let
◦
W be the subgroup generated by r1.

Let ρ ∈ h∗ be a Weyl vector, which satisfies the relation (ρ, αi) = 1 for i = 0, 1. Define

σ ∈ GL(h∗) such that σ(α0) = α1, σ(α1) = α0, σ(ρ) = ρ. Note that σ leaves Q and Q + ρ

invariant and normalises W, since σriσ
−1 = rσ(αi). Consider the group Wσ :=< σ > nW .

Note that ∆, Q,Q+ ρ are invariant under Wσ. Let us consider a shifted action of Wσ on Q by

w.α = w(α+ ρ)− ρ. This induces an action of Wσ on functions on Q by (w.f)(α) = f(w−1.α),

so an action of C[Wσ] on functions on Q. We note that Wσ '
◦
W n

◦
P , the extended affine Weyl

group.

Recall from chapter 2 that the Kostant partition function and t-Kostant partition function

P(β) and P(β; t) are given by

P(β) := [e−β]
∏
α∈∆+

1

(1− e−α)mα

and

P(β; t) := [e−β]
∏
α∈∆+

1

(1− te−α)mα
.
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We note that P(β),P(β; t) are elements of Et, the set of all series of the form
∑

λ∈h∗ Bλ(t) eλ

Bλ(t) ∈ C[[t]] and Bλ = 0 outside the union of a finite number of sets of the form D(µ), µ ∈ h∗.

Let Λ ∈ P+ be of level m ≥ 1. Let L(Λ) denote the corresponding irreducible highest weight

representation of g. For λ ∈ h∗, define the string function

cΛ
λ (q) := qsΛ(λ)

∑
s≥0

multΛ(λ− sδ) qs (5.0.1)

where

sΛ(λ) = n0(Λ− λ) +
|Λ̄ + ρ̄|2

2(m+ 2)
− |λ̄|

2

2m
− 1

8
. (5.0.2)

Here, ᾱ denotes the image of α under the projection from h∗ to
◦
h
∗

and n0 is the function on Q

defined by n0(a0α0 + a1α1) := a0 ∀ a0, a1 ∈ Z. Note that for λ ∈ max(Λ) (chapter 2 § 2.8)

cΛ
λ (q) = qsΛ(λ)aΛ

λ (q).

5.1 Weyl group of A
(1)
1

Recall from chapter 2 that for an affine Lie algebra g the Weyl group W is given by W =
◦
WnT ,

where T is the group consisting of the endomorphisms

tα(λ) = λ+ 〈λ,K〉α− ((λ, α) +
1

2
|α|2〈λ,K〉)δ (5.1.3)

where α ∈ M and M = ν(Z(
◦
W.θ∨)). For g = A

(1)
1 , M =

◦
Q and so T = {tnα1 : n ∈ Z} . So it

follows that W is generated by r1 and tα1 . Recall that the extended affine Weyl group is given

by Ŵ =
◦
WnT̂ , where T̂ is a group consisting of the endomorphisms tα where α ∈

◦
P . So Ŵ is a

group generated by r1 and tα1
2

. Let us denote τ := tα1
2

. Then we have Ŵ = {τn, r1τ
n : n ∈ Z}

and W = {τ 2n, r1τ
2n : n ∈ Z}. Now we make a useful observation: τ = σr1 . To prove this,

let α1, δ and ρ be a basis for h∗. We will show that τ and σr1 are equal on the chosen basis.

For

τ (α1) = tα1
2

(α1) = α1 − δ = −α0 = σr1(α1) by equation 5.1.3

and

τ (δ) = δ = σr1(δ)

and

τ (ρ) = ρ+ α1 − δ = ρ− α0

but

σr1(ρ) = σ(ρ− α1) = σ(ρ)− α0 = ρ− α0 .

Now we briefly recall the term Hecke modular form.
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5.2 Hecke indefinite modular form

We follow [18] closely. Let U be a two dimensional real vector space, M be a full rank lattice

in U and let B′ be an indefinite symmetric form on U such that B′(ν, ν) is an even nonzero

integer for all nonzero ν ∈ M . Let M∗ := {ν ′ ∈ U : B′(ν, ν ′) ∈ Z ∀ ν ∈ M}. Let G0 be the

subgroup of the identity component of the orthogonal group of (U,B′) preserving M and fixing

M∗/M pointwise. Fix a factorisation B′(ν, ν) = l1(ν)l2(ν), where l1 and l2 are real-linear, and

set sign(ν) := sign l1(ν) for l1(ν) 6= 0. For µ ∈M∗, set

θM,µ :=
∑

ν∈L+µ
B′(ν,ν)>0
νmodG0

sign(ν)q
1
2
B′(ν,ν).

The θM,µ is called a Hecke indefinite modular form. It is a cusp form of weight 1 (with q = e2πiτ ,

where τ ∈ upper half plane). For more details see [18].

Let U := Rα1⊕Rα1 and M := Zα1⊕Zα1. We identify M with Z2 and U with R2, let m ≥ 1

and define B(x, y) := 2(m + 2)x2 − 2my2 be a quadratic form on U . Let the corresponding

indefinite symmetric bilinear form be B′. Note that B 6= 0 on M − {0}. The dual lattice of

M with respect to B is M∗ = 1
2(m+2)Z⊕

1
2mZ. Let a be the element of the identity component

SO0(U) of the orthogonal group of (U,B) given by a(x, y) = ((m+1)x+my, (m+2)x+(m+1)y).

Then a generates the subgroup G′0 of SO0(U) preserving M, and a2 generates the subgroup

G0 of G′0 fixing M∗/M pointwise. Let us define an element J : U −→ U by J(x, y) := (−x, y);

we note that J normalises G0. Define the group G :=< J > nG0 and G′ :=< J > nG′0. Let

U+ := {u ∈ U : B(u) > 0}. Then it is easy to see that F0 := {(x, y) ∈ R2 : −|x| < y ≤ |x|}
is a fundamental domain for G′0 on U+, and F0

⋃
aF0 is a fundamental domain for G0 on U+.

Set F := {(x, y) ∈ R2 : 0 ≤ y ≤ x or 0 > y > x}. Then clearly F0 = F ∪ J(F ) and F is a

fundamental domain for G′ on U+.

Let Λ ∈ P+ and Λ(K) = m ≥ 1. Let L(Λ) denote the irreducible g-module with highest

weight Λ. Let λ be the maximal dominant weight of L(Λ) such that λ(α0
∨) = N0 and λ(α1

∨) =

N1. As λ is maximal dominant we have Λ − λ = lαi where i = 0 or 1 and l ∈ Z≥0. But it is

easy to see from definitions that cΛ
λ (q) = c

σ(Λ)
σ(λ) (q), so we assume without loss of generality that

Λ− λ = lα1. Now we state a theorem of Kac and Peterson.

Theorem 5.2.1 (Kac-Peterson). Let g be of type A
(1)
1 . Let Λ ∈ P+, Λ(K) = m, and let

λ ∈ P+ be a maximal weight of L(Λ). Then

η(q)3cΛ
λ (q) = θM,(Ã;B̃)

is a Hecke indefinite modular form, where Ãα1 = (m + 2)−1(Λ̄ + ρ̄) and B̃α1 = m−1λ̄, and η

is the Dedekind eta function.

52



5.3 P ′ and its t-analogue

Our aim in this chapter is to derive an expression for cΛ
λ (t; q). In the proof of the theorem 5.2.1

Kac and Peterson use a function P ′ defined on Q by P ′(β) := (1 + r1).P(β). The key fact

about P ′ is it is easier to calculate than P.

Definition 5.3.1. A t-analogue of function P ′ is defined by P ′(β; t) := (1 + tr1).P(β; t) i.e.,

P ′(β; t) = P(β; t) + tP(r1.β; t) for all β ∈ Q

Let us define

Pβ(t; q) :=
∑
n≥0

P(β + nδ)qn

and

P′β(t; q) :=
∑
n≥0

P ′(β + nδ)qn.

We recall the constant term map ct(·) from chapter 3, which is defined on the formal sums∑
α∈Q cλe

λ by ct(
∑

α∈Q cλe
λ) :=

∑
n∈Z cnδe

nδ. We will let q = e−δ throughout this chapter.

Recall the fact that ∆+ forA
(1)
1 is given by ∆+ = {nα0+nα1, nα0+(n− 1)α1, (n− 1)α0 + nα1 :

n ∈ Z>0}. As Q = Zα0 + Zα1 = {bα1 + nδ : b, n ∈ Z}, so Q+ ( {bα1 + nδ : b ∈ Z, n ∈ Z≥0};
for β ∈ Q we write β = b(β)α1 + d(β)δ, where b(β), d(β) ∈ Z. We also note that for β /∈ Q+

P(β; t) = 0. Using this, we make a useful observation: For β ∈ Q such that β = b(β)α1 +d(β)δ

and d(β) ≤ 0, we have

Pβ(t; q) = q−d(β) Pb(β)α1
(t; q). (5.3.4)

and

P′β(t; q) = q−d(β) P′b(β)α1
(t; q). (5.3.5)

Let us define

Γt :=
∏
α∈∆+

1

1− te−α
=
∑
β∈Q+

P(β; t)e−β

Note that Γt ∈ Et. Thus we can write

Γt =
ξt

(1− te−α1)

where

ξt =
1∏

n≥1 (1− tqn)(1− tqne−α1)(1− tqneα1)
.
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5.4 Expressions for Pbα1
and P′bα1

In this section we give an expression for Pbα1(t; q) and P′bα1
(t; q) in terms of the constant term

map. For ξ =
∑

λ∈h∗ cλ(t)eλ, define ξ̄ :=
∑

λ∈h∗ cλ(t)er1(λ). Note that ct(ξ) = ct(ξ̄)

By definition Γt =
∑

β∈Q+ P(β; t)e−β, as Q+ ( {bα1 + nδ : b ∈ Z, n ∈ Z≥0} we write

Γt =
∑

b∈Z,n∈Z≥0

P(bα1 + nδ; t)e−bα1e−nδ (5.4.6)

=
∑
b∈Z

e−bα1(
∑
n≥0

P(bα1 + nδ; t)qn) (5.4.7)

=
∑
b∈Z

e−bα1Pbα1(t; q) (5.4.8)

so ct(Γt) = P0(t; q) =
∑
j≥0

P(jδ; t)qj (5.4.9)

therefore ct(Γte
bα1) = Pbα1(t; q) . (5.4.10)

We write for β ∈ Q, Pβ = Pβ(t; q) and P′β = P′β(t; q). Now consider

P ′(β; t) = P(β; t) + tP(r1.β; t) (5.4.11)

Using equation 5.4.11 one gets

P′bα1
= Pbα1 + tP(−b−1)α1

(5.4.12)

= ct(Γt e
bα1) + t ct(Γt e

(−b−1)α1) (5.4.13)

= ct(Γt e
bα1) + t ct(Γt e

(b+1)α1) (5.4.14)

= ct

(
ξte

bα1

(
1

1− te−α1
+

teα1

1− teα1

))
(5.4.15)

= ct(ebα1ξtPt) (5.4.16)

where, Pt =
1

1− te−α1
+

teα1

1− teα1
=
∑
n∈Z

t|n|enα1 (5.4.17)

=
∑
n∈Z

t|n|enα1 (the classical Poisson kernel of the unit disc). (5.4.18)

We have proved the following lemma:

Lemma 5.4.1. For b ∈ Z, we have

1. Pbα1 = ct(ebα1 Γt)

2. P′bα1
= ct(ebα1ξtPt), where Pt =

∑
n∈Z t

|n|enα1
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5.4.1 An expression for P(β; t)

Recall that σ ∈ GL(h∗) is defined as σ(α0) = α1, σ(α1) = α0, σ(ρ) = ρ. Note that

P(β; t) = P(σ.β; t) (5.4.19)

hence P(β; t) = P ′(β; t)− tP(r1.β; t) (5.4.20)

P(r1.β; t) = P(σr1.β; t) = P ′(σr1.β; t)− tP(r1.σr1.β; t) (5.4.21)

⇒ P(σr1.β; t) = P ′(σr1.β; t)− tP((σr1)2.β; t) (5.4.22)

Continuing this procedure we get

P(β; t) =
∑
j≥0

(−1)j tjP ′(τ j · β; t), where τ = σr1 (5.4.23)

but

τ j · β = τ j(β + ρ)− ρ = β + sα1 − (
s

2
(β, α1) +

s(s+ 1)

2
)δ

as P(β; t) = 0 for β /∈ Q+, we note that the sum in equation 5.4.23 is actually a finite sum.

Similarly if we replace β by r1.β in the equation 5.4.20, we get

P(r1.β; t) = P ′(r1.β; t)− tP(β; t) (5.4.24)

⇒ P(β; t) =
1

t
[P ′(r1.β; t)− P(σr1.β; t)] . (5.4.25)

Using the same procedure as above we get an another expression for P(β; t) in terms of P ′(β; t):

P(β; t) =
∑
j≥0

(−1)j t−(j+1)P ′(r1 · τ j · β; t) (5.4.26)

by the same reasoning as before, we note that the sum in equation 5.4.26 is also a finite sum.

It is easy to see that r1τ
j = τ−jr1

−1. Using this in equation 5.4.26 we get

P(β; t) =
∑
j≥0

(−1)jt−(j+1)P ′(τ−j · r1
−1 · β; t) (5.4.27)

P(β; t) = P(σ.β; t) (5.4.28)

⇒ P(β; t) =
∑
j≥0

(−1)jt−(j+1)P ′(τ−j · r1
−1 · σ−1β; t) (5.4.29)

⇒ P(β; t) =
∑
j≥0

(−1)jt−(j+1)P ′(τ−(j+1)β; t) (5.4.30)

letting s = j + 1 we get (5.4.31)

P(β; t) = −
∑
s<0

(−1)s ts P ′(τ s · β; t) . (5.4.32)

We have proved the following lemma:
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Lemma 5.4.2. Let β ∈ Q then

1. P(β; t) =
∑
j≥0

(−1)j tjP ′(τ j · β; t)

2. P(β; t) = −
∑
j<0

(−1)jtjP ′(τ j · β; t) .

So we have P(β; t) =
∑
r≥0

(−1)r tr P ′(τ r · β; t) = −
∑
r<0

(−1)rtrP ′(τ r · β; t) . (5.4.33)

We have proved the following corollary:

Corollary 5.4.3. For β ∈ Q ∑
r∈Z

(−1)r trP ′(τ r · β; t) = 0

Lemma 5.4.2 and corollary 5.4.3 are t-version of [[18],Lemma 5.8].

5.5 An expression for Pbα1

In this section we give an expression for Pbα1(t; q) in terms of P′bα1
(t; q).

Consider Pβ(t; q) =
∑
n≥0

P(β + nδ)qn (5.5.34)

=
∑
n≥0

∑
s≥0

(−1)stsP ′(τ s.(β + nδ); t) (5.5.35)

but τ s · (β + nδ) = τ s(β + nδ + ρ)− ρ (5.5.36)

= τ s(β + ρ)− ρ+ nδ = τ s · β + nδ (5.5.37)

so for any β ∈ Q, Pβ =
∑
s≥0

(−1)s ts P′τ s·β = −
∑
s<0

(−1)s ts P′τ s·β (5.5.38)

but τ s(β + ρ)− ρ+ nδ = β + sα1 − (
s

2
(β, α1) +

s(s+ 1)

2
)δ + nδ (5.5.39)

so Pβ(t; q) =
∑
s≥0

(−1)s ts P′
β+sα1−( s

2
(β,α1)+

s(s+1)
2

)δ
(5.5.40)

for β = bα1, τ
s(bα1 + nδ) = (b+ s)α1 − (sb+

s(s+ 1)

2
)δ + nδ . (5.5.41)

We see that from equations 5.3.4 and 5.3.5, for r ∈ Z≥0 we have

Prα1(q; t) =
∑
s≥0

(−1)s ts P′(r+s)α1
qsr+

s(s+1)
2 =

∑
s≥0

(−1)stsP′b(τ s·(rα1))q
−d(τ s·rα1) (5.5.42)
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Similarly for r < 0 ∈ Z, we use the expression 5.4.32 of P(β; t) to get

Prα1(q; t) = −
∑
s<0

(−1)s ts P′(r+s)α1
qsr+

s(s+1)
2 = −

∑
s<0

(−1)stsP′b(τ s·(rα1))q
−d(τ s·rα1) (5.5.43)

We have proved the following lemma:

Lemma 5.5.1. 1. For b ≥ 0, we have

Pbα1(q; t) =
∑
s≥0

(−1)s ts qsb+
s(s+1)

2 P′(b+s)α1

2. For b < 0, we have

Pbα1(q; t) = −
∑
s<0

(−1)s ts qsb+
s(s+1)

2 P′(b+s)α1
.

Thus for any b ∈ Z, we have

Pbα1(q; t) =
∑
s∈Z

(−1)s I(b, s) ts qsb+
s(s+1)

2 P′(b+s)α1
(5.5.44)

where for b ≥ 0

I(b, j) =

{
1 j ≥ 0

0 j < 0

and for b < 0

I(b, j) =

{
0 j ≥ 0

−1 j < 0

5.6 An expression for cΛ
λ(t; q)

By the definition

cΛ
λ (q) := qsΛ(λ)

∑
j≥0

multΛ(λ− jδ) qj

we note that for λ ∈ max(Λ) we have

cΛ
λ (q) := qsΛ(λ)aΛ

λ (q) .

Definition 5.6.1. We define

cΛ
λ (t; q) := qsΛ(λ)aΛ

λ (t; q) = qsΛ(λ)
∑
n≥0

KΛ
λ−nδ(t) q

n
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So cΛ
λ (t; q) = qsΛ(λ)

∑
w∈W

∑
n≥0

(−1)l(w)P((w(Λ + ρ)− (λ− nδ + ρ)); t) (5.6.45)

= qsΛ(λ)
∑
w∈W

(−1)l(w)Pw(Λ+ρ)−(λ+ρ) (5.6.46)

We have for w = τ 2n

w(Λ + ρ)− (λ+ ρ) = Λ− λ+ (m+ 2)nα1 − [n(N1 + 1) + n2(m+ 2)]δ (5.6.47)

For w = τ 2nr1

w(Λ + ρ)− (λ+ ρ) = Λ− λ+ ((m+ 2)n− (N1 + 1))α1 − [n(N1 + 1) + n2(m+ 2)]δ (5.6.48)

Let us write w(Λ + ρ) − (λ + ρ) = b(w)α1 + d(w)δ, then in both cases we see that d(w) ≤ 0 ;

For n ≥ 0 it is trivial and for n < 0 it follows from the fact that N1 = 〈λ, α∨1 〉 ≤ m = 〈λ,K〉.
So by 5.3.4 we have

cΛ
λ (t; q) = qsΛ(λ)

∑
w∈W

(−1)l(w)Pb(w)α1
q−d(w) (5.6.49)

Now in order to use Lemma 5.5.1 we see that for w = τ 2n, b(w) ≥ 0 for n ≥ 0 and b(w) < 0

for n < 0, and w = τ 2nr1, b(w) > 0 for n > 0 and b(w) < 0 for n ≤ 0. So using Lemma 5.5.1

in 5.6.49 we get

cΛ
λ (t; q) = qsΛ(λ)

∑
(w,j)∈W×Z

(−1)l(w)(−1)j I(b(w), j) qjb(w)+
j(j+1)

2
−d(w) P ′b(w)+j (5.6.50)

Recall that the qudratic form B(x, y) := 2(m+ 2)x2 − 2my2 and the corresponding indefinite

symmetric bilinear form is B′. Now we state a generalised version of a lemma due to Kac-

Peterson [18]:

Lemma 5.6.2.

− n0(tν(w(Λ + ρ)− λ)− ρ) =
1

2
B

(
ν +

w(Λ + ρ)

m+ 2
, ν +

λ̄

m

)
−
(
|Λ + ρ|2

2(m+ 2)
− |λ̄|

2

2m

)
− n0(Λ− λ)

(5.6.51)

where ν ∈M and w ∈W .

Proof. Case 1 : Let w = tnα1 . We rewrite the left-hand side of equation 5.6.51 as

n0((Λ + ρ)− tν+nα1(Λ + ρ))− n0(λ− tν(λ))− n0(Λ− λ)

which is equal to

(Λ + ρ, ν + nα1) +
1

2
|ν + nα1|2〈Λ + ρ,K〉+ (λ, ν) +

1

2
|ν|2〈λ,K〉 − n0(Λ− λ) (5.6.52)
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On the other hand the right hand side of equation 5.6.51 equal to

1

2
B

(
ν + nα1 +

Λ + ρ

m+ 2
, ν +

λ̄

m

)
−
(
|Λ + ρ|2

2(m+ 2)
− |λ̄|

2

2m

)
− n0(Λ− λ)

which becomes by definition of B

1

2

[
(m+ 2)

(
ν + nα1 +

Λ + ρ

m+ 2
, ν + nα1 +

Λ + ρ

m+ 2

)
+m

(
ν +

λ̄

m
, ν +

λ̄

m

)]
−
(
|Λ + ρ|2

2(m+ 2)
− |λ̄|

2

2m

)
−n0(Λ−λ)

which is equal to

(Λ + ρ, ν + nα1) +
1

2
|ν + nα1|2〈Λ + ρ,K〉+ (λ, ν) +

1

2
|ν|2〈λ,K〉 − n0 . (5.6.53)

But as for ν ∈ Zα1 and for f ∈ h∗ we have 〈f, ν〉 = 〈f, ν〉 since f =
〈f,α∨1 〉

2 α1. So equations

5.6.52 and 5.6.53 are the same and we are done in this case.

Case 2: Proof for w = r1tnα1 follows similarly by using the fact that B(−ν, ν ′) = B(ν, ν ′). 2

But

− n0(t j
2
α1

(w(Λ + ρ)− λ)− ρ) = −d(w) + jb(w) +
j(j + 1)

2
∀ w ∈W (5.6.54)

Using 5.0.2, 5.6.51 and 5.6.54 in 5.6.49 we get

cΛ
λ (t; q) = q

1
8

∑
(w,j)∈W×Z

(−1)l(w)(−1)j I(b(w), j)P ′(b(w)+j)α1
q

1
2
B( j

2
α1+

w(Λ+ρ)
m+2

, j
2
α1+ λ̄

m
) . (5.6.55)

Now we define a map φ1 : W × Z −→ Rα1 ⊕ Rα1 as follows

(w, j) −→

(
j

2
α1 +

w(Λ + ρ)

m+ 2
,
j

2
α1 +

λ̄

m

)
Let Ã := (Λ+ρ,α1)

2(m+2) and B̃ := (λ,α1)
2m . We will identify Rα1 ⊕ Rα1 with R2 and Zα1 ⊕ Zα1 with

Z2. We state and prove some properties of φ1.

Proposition 5.6.3. 1. φ1 is 1-1.

2. Im(φ1) ⊂M∗.

3. Im(φ1) = q4
i=1Li where L1 = (Ã, B̃) +Z2, L2 = (Ã+ 1

2 , B̃ + 1
2) +Z2, L3 = (−Ã, B̃) +Z2

and L4 = (−Ã− 1
2 , B̃ + 1

2) + Z2 respectively.

Proof. For 1 assume contrary: φ1(w1, j1) = φ1(w2, j2) for some w1, w2 ∈W and j1, j2 ∈ Z. Let

us consider case 1) w1 = tnα1 and w2 = tsα1 . Then(
j1
2
α1 +

tnα1(Λ+ρ)

m+ 2
,
j1
2
α1 +

λ̄

m

)
=

(
j2
2
α1 +

tsα1(Λ+ρ)

m+ 2
,
j2
2
α1 +

λ̄

m

)
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This implies that j1 = j2 and
tnα1(Λ+ρ)

m+ 2
=
tmα1(Λ+ρ)

m+ 2

tnα1(Λ+ρ)

m+ 2
=

(Λ + ρ, α1)

2(m+ 2)
+ n =

(Λ + ρ, α1)

2(m+ 2)
+ s =

tsα1(Λ+ρ)

m+ 2

so s = n, therefore w1 = w2. Case 2 : w1 = tnα1r1 and w2 = tsα1r1 as in case 1) we get j1 = j2

and
tnα1r1(Λ + ρ)

m+ 2
=
tsα1r1(Λ + ρ)

m+ 2

So we get

tnα1r1(Λ + ρ)

m+ 2
= −(Λ + ρ, α1)

2(m+ 2)
+ n = −(Λ + ρ, α1)

2(m+ 2)
+ s =

tsα1s(Λ + ρ)

m+ 2

So we get s = n and w1 = w2.

Case 3 : w1 = tnα1r1 and w2 = tsα1 .

As in previous cases we get
tnα1s(Λ + ρ)

m+ 2
=
tsα1(Λ+ρ)

m+ 2

But

tnα1r1(Λ + ρ)

m+ 2
=
r1t−nα1(Λ + ρ)

m+ 2
= −(Λ + ρ, α1)

2(m+ 2)
− n =

(Λ + ρ, α1)

2(m+ 2)
+ s =

tsα1(Λ+ρ)

m+ 2

So we get

−2
(Λ + ρ, α1)

2(m+ 2)
= s− n

which is impossible.

2 follows from the definition of φ1 and M∗.

For 3, consider φ1(W×Z) = φ1(T×2Z)∪φ1(T×(2Z+1))∪φ1(Tr1×2Z)∪φ1(Tr1×(2Z+1)). Now

by the calculation in 1 we see that φ1(T ×2Z) = L1, φ1(T × (2Z+ 1)) = L2, φ1(Tr1×2Z) = L3

and φ1(Tr1 × (2Z + 1)) = L4. 2

Now we will be interested in the set of points of image φ1 for which I(b(w), j) 6= 0. As

Λ− λ = lα1, for l ≥ 0. If l > 0, we see that 1
2 > Ã ≥ B̃. For

Ã− B̃ =
〈Λ + ρ, α∨1 〉
2(m+ 2)

− 〈λ, α
∨
1 〉

2m

=
m(2l) +m− 2〈λ, α∨1 〉

2(m+ 2)(m)
> 0

Now for l = 0 we have Λ = λ then we have Ã < B̃ if Λ(α∨0 ) < Λ(α∨1 ). In this case we consider

Λ̃ := σ(Λ). So B̃ < Ã implies that A′ := σ(Λ)+ρ
(m+2) < B′ := σ(Λ)

m . But as cΛ
Λ(t; q) = c

σ(Λ)
σ(Λ)(t; q),

without loss of generality we will assume that 1
2 > Ã ≥ B̃.
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Recall that for b(w) ≥ 0

I(b(w), j) =

{
1 j ≥ 0

0 j < 0

and for b(w) < 0

I(b(w), j) =

{
0 j ≥ 0

−1 j < 0

For b(w) ≥ 0

case 1) w = τ 2n = tnα1 : As b(w) ≥ 0 we see that n ≥ 0. So

(x, y) := φ1(w, j) = (
j1
2
α1 +

tnα1(Λ + ρ)

m+ 2
,
j1
2
α1 +

λ̄

m
)

tnα1(Λ + ρ)

m+ 2
= n+ Ã

⇒ x, y ≥ 0, x− y =
tnα1(Λ + ρ)

m+ 2
− λ̄

m

⇒ x− y = Ã− B̃ + n ≥ 0.

Case 2) w = τ 2nr1 = tnα1r1 : In this case we have n > 0, so

(x, y) := φ1(w, j) = (
j1
2
α1 +

tnα1r1(Λ + ρ)

m+ 2
,
j1
2
α1 +

λ̄

m
)

tnα1r1(Λ + ρ)

m+ 2
= n− Ã > 0

⇒ x, y ≥ 0, x− y =
tnα1r1(Λ + ρ)

m+ 2
− λ̄

m

⇒ x− y = n− (Ã+ B̃) ≥ 0.

For b(w) < 0

case 1) w = τ 2n = tnα1 : For b(w) < 0, in this case n < 0. So

(x, y) := φ1(w, j) = (
j1
2
α1 +

tnα1(Λ + ρ)

m+ 2
,
j1
2
α1 +

λ̄

m
)

tnα1(Λ + ρ)

m+ 2
= n+ Ã

⇒ x, y < 0, x− y =
tnα1(Λ + ρ)

m+ 2
− λ̄

m

⇒ x− y = Ã− B̃ + n < 0.

Case 2) w = τ 2nr1 = tnα1r1 : In this case we have n ≤ 0, so

(x, y) := φ1(w, j) = (
j1
2
α1 +

tnα1r1(Λ + ρ)

m+ 2
,
j1
2
α1 +

λ̄

m
)

61



tnα1r1(Λ + ρ)

m+ 2
= n− Ã > 0

⇒ x, y < 0, x− y =
tnα1r1(Λ + ρ)

m+ 2
− λ̄

m

⇒ x− y = n− (Ã+ B̃) < 0.

We have proved the following lemma.

Lemma 5.6.4. Let D := {(w, j) ∈W × Z : I(b(w), j) 6= 0}, then

φ1(D) = F ∩ ∪4
i=1Li

We have by above lemma

φ1(D) = {(x, y) ∈ F : (x, y) ≡ (Ã, B̃) or ≡ (Ã+
1

2
, B̃+

1

2
) or ≡ (−Ã, B̃) or ≡ (−Ã−1

2
, B̃+

1

2
) modZ2}

which can be written as

{(x, y) ∈ F : (x, y) ≡ (Ã, B̃) or a(x, y) ≡ (Ã, B̃) or J(x, y) ≡ (Ã, B̃) or Ja(x, y) ≡ (Ã, B̃) modZ2}
(5.6.56)

As F is a fundamental domain for G′ on U+, we define a map φ2 : U+ � F by φ2(ξ) = ξ′

where ξ′ is the unique element in G′(ξ)∩ F . Recall that F0 ∪ aF0 is a fundamental domain for

G0 on U+, we see that the set in 5.6.56 is the image of the set

{(x, y) ∈ F0 : (x, y) ≡ (Ã, B̃) or a(x, y) ≡ (Ã, B̃)}

i.e.,

D
φ1−→ F

φ2←− (U+ ∩ (Ã, B̃) + Z2) mod G0

and

φ1(D) = φ2((U+ ∩ (Ã, B̃) + Z2) mod G0

Let for a function φ : V → R2, where V is a two dimensional vector space, signφ(x1, x2)

denote the sign of the first component of φ(x1, x2). Now we prove the following lemma.

Lemma 5.6.5. For (w, j) ∈ D,

I(b(w), j)(−1)jε(w) = sign(φ−1
2 φ1(w, j)) .

Here sign(φ−1
2 φ1(w, j)) is independent of the representive chosen in its G0 orbit.

Proof. We will prove the lemma case by case: Case 1) w = tnα1 . Let n ≥ 0. In this case we

note that I(w, j) = 1 if j ≥ 0 and 0 otherwise. So we have I(w, j)(−1)jε(w) = 1 if j is even

and -1 if j is odd. Now

φ1(x, y) = (
j1
2
α1 +

tnα1(Λ+ρ)

m+ 2
,
j1
2
α1 +

λ̄

m
)
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By calculation in above proposition we see that

φ1(w, j) = (
j

2
+

(Λ + ρ, α1)

2(m+ 2)
+ n,

j

2
+
λ̄

m
)

We note that in this case sign(φ1(w, j))is always positive So if j is even then φ1(w, j) ≡ (Ã, B̃).

In this case φ1(w, j) = φ2
−1φ1(w, j); so both sides are positive. If j is odd positive integer,

we have sign of φ1(w, j) is positive but φ1(w, j) ≡ (1
2 + Ã, 1

2 + B̃) so φ−1
2 φ1(w, j) = Jaφ1(w, j)

which has negative sign.

For n < 0, I(b(w), j) = −1 and j < 0 then as above we see that for even j, I(b(w), j)(−1)jε(w) =

−1 and signφ1(w, j) is negative. As φ1(w, j) = φ2
−1φ1(w, j) we are done in this case. For

j odd negative, I(b(w), j)(−1)jε(w) = 1, and signφ1(w, j) is negative. But as φ1(w, j) ≡
(1

2 + Ã, 1
2 + B̃), so φ−1

2 φ1(w, j) = Jaφ1(w, j) has a positive sign.

Case 2) w = tnα1r1: Let n > 0. In this case I(b(w), j) = 1 and j ≥ 0 and ε(w) = −1. So for

even j, I(b(w), j)(−1)jε(w) = −1 and

φ1(w, j) = (
j1
2
α1 +

tnα1r1(Λ+ρ)

m+ 2
,
j1
2
α1 +

λ̄

m
)

= (
j

2
+ n− Ã, j

2
+ B̃).

So we see that sign(φ1(w, j)) is positive but as φ1(w, j) ≡ (−Ã, B̃) modZ2 we have φ−1
2 φ1(w, j) =

Jφ1(w, j) which has negative sign. For positive odd integer j, I(b(w), j)(−1)jε(w) = 1 and

φ1(w, j) ≡ (1
2 − Ã,

1
2 + B̃) modZ2, so φ−1

2 φ1(w, j) = a−1φ1(w, j) and as a−1 does not change

the sign of φ1, we are through in this case.

Now let n ≤ 0, then I(b(w), j) = −1 and j < 0. Let j be even then I(b(w), j)(−1)jε(w) = 1.

Then signφ1(w, j) is negative and φ1(w, j) ≡ (−Ã, B̃) modZ2 we have φ−1
2 φ1(w, j) = Jφ1(w, j)

which has positive sign. Now let j be odd then I(b(w), j)(−1)jε(w) = −1. We have signφ1(w, j)

is negative and which is same as φ−1
2 φ1(w, j) = a−1φ1(w, j). 2

Now for (w, j) ∈W ×Z consider the term (b(w) + j)α1 and let (x, y) = φ1(w, j). We claim

that

(b(w) + j)α1 = (m+ 2)x−my − 1

2
α1 (5.6.57)

but

(m+ 2)x−my − 1

2
= (m+ 2)(

j

2
+

(Λ + ρ, α1)

2(m+ 2)
+ n,

j

2
)−m(λ, α1)

2m
− 1

2
α1

= j + n(m+ 2) +
Λ− λ

2
α1

= j + n(m+ 2) + Λ− λ = (b(w) + j)α1

the last equality follows by the equations 5.6.47 and 5.6.48.

Collecting all pieces together we have proved our main theorem:
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Theorem 5.6.6. Let g be of type A
(1)
1 . Let Λ ∈ P+, Λ(K) = m ≥ 1, and let λ ∈ P+ be a

maximal dominant weight of L(Λ). Then

cΛ
λ (t; q) = ct(ξt Pt q

1
8 t−2BHt)

where

Ht =
∑

(x,y)≡(Ã,B̃) mod Z2

B(x,y)>0
(x,y) modG0

sign(x) q
1
2
B(x,y) t2ȳ e((m+2)x̄−mȳ− 1

2
)α1

where (x̄, ȳ) is the unique element in F ∩G′(x, y) .
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