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Abstract

We study Lusztig’s t-analogue of weight multiplicities associated to the irreducible inte-
grable highest weight modules of affine Kac-Moody algebras. First, for the level one represen-
tation of twisted affine Kac-Moody algebras, we obtain an explicit closed form expression for
the corresponding t-string function using constant term identities of Macdonald and Chered-
nik. The closed form involves the generalised exponents of the graded pieces of the twisted
affine algebra, considered as modules for the underlying finite dimensional simple Lie algebra.
This extends previous work on level 1 ¢-string functions for the untwisted simply-laced affine
Kac-Moody algebras. Next, for the Lie algebra Agl), we give a basis for the weight spaces of its
basic representation, which is compatible with the affine Brylinski-Kostant filtration defined
by Slofstra. Using this basis we give an alternative derivation of the expression for the t-string
function of the basic representation. Finally, we obtain explicit formula for the ¢-string function
of irreducible integrable highest weight Agl)—modules of all levels. This is generalisation of a

theorem of a Kac and Peterson.
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Chapter 1

Introduction

1.1 Basic t-string function for twisted affine Kac-Moody alge-

bras

Let g be an affine Kac-Moody algebra of rank [+1 (1 > 1). Let g = h® (P ren, (8a D g-a)) be
its root space decomposition, where A is the set of positive roots, and let mult a:= dim(g,)
be the multiplicity of a.. Let E denote its underlying finite dimensional simple Lie algebra of
rank /. For a dominant integral weight A, let L()\) denote the irreducible g-module of highest
weight A.

In this thesis we will first consider the basic representation L(Ag) of g. Here Ay denotes
the fundamental weight corresponding to the extended node of the Dynkin diagram of g. The
Kostant partition function of g is defined by

PB) = el-A] ][ !

L a—emapm
where [e[a]]f denotes the coefficient of e[a] appearing in the expression of f, where e[a] = e®
denote an element of the group algebra C[h*] and S € h*. Note that P(S) is nothing but

the number of partitions of 8 in to sum of positive roots, where each root is counted with its

multiplicity. A t-analogue of the Kostant partition function is defined as

P(B;t) = [e[-B]] ]

A T=teapm

We recall that the Kostant partition function is used to calculate the dimension of the weight

spaces of the g-module L(\) by the formula

dim(L(V),) = Y e(w)P(w(A +p) = (1 + p))
weW



where W is the Weyl group of g and e is its sign character . Using the t-Kostant partition

function we define a t-analogue of weight multiplicity :

Kp(t) =Y e(w)PwA+p) = (u+p);1) -

weW

K ;\ (t) is also called the affine Kostka-Foulkes polynomial.

To understand the structure of the module L(\) one studies the string function
Z dim(L(A)u—ks) ¢"

These are generating functions of weight multiplicities along §-strings through dominant maxi-

mal weights 1, where ¢ is the null root of g. A t-analogue of string function or ¢-string function

=Y K 4s(t)g

k>0

is defined as

In [I0], it was shown that the a;\L(t; q) are closely related to the constant term identities
arising in the theory of Macdonald polynomials. An explicit formula for aﬁg (t;q) of the basic
representation for the untwisted simply laced algebras is obtained in [39] by using Cherednik’s

Macdonald Mehta constant term identity .

(1 ) ( ) g
Theorem 1.1.1 ([39]). Let g be one of the simply laced untwisted affine Lie algebras A, B

Then
VA

el—&-l n —1
ot =TI T

i=1n=1

where e; (1 < i < ) are the exponents of the underlying finite dimensional simple Lie algebra
(= Ay, Dy, Ey respectively).

In chapterof this thesis, we extend above result for the twisted affine Lie algebras [35]. We
recall the term generalised exponents, as it appears in the statement of our theorem. Let m be
a finite dimensional simple Lie algebra and V' = V(A) be the irreducible finite dimensional m-
module with highest weight . Fix a triangular decomposition m = N_@®hPN,, andlet £ € N
be a principal nilpotent element i.e., B = 22:1 ciF; where ¢; € C—{0} and E, Es, ..., Ey are the
Chevally generators. Let Vj denote the zero weight space of V. Define the Brylinski-Kostant
filtration of Vo by FO(Vp) € FM(Vp) € FA (V) C ..., where FP)(Vp) := ker (EP*1) N Vj.
Then the generalised exponents of V are the elements of the multiset E(V) defined via the

im(F 0) 2 0)
> dim(F@ (V) /FPD (1)) Z tk.

p>0 keE(V

following relation:



The exponents of the finite dimensional simple Lie algebra m are nothing but the generalised
exponents of the adjoint representation of m.

Now, let g be a twisted affine Lie algebra of type X(r), where Xy = An, Dy, En and
r = 2 or 3. Let m denote the finite dimensional simple Lie algebra with Dynkin diagram Xy .
Let o be the diagram automorphism of m of order r. Let m = jez/rz W be the eigenspace
decomposition of m with respect to ¢. Then mg is a finite dimensional simple Lie algebra
and m; for j # 0 are irreducible mg-modules. We let E,, denote the multiset of as generalised

exponents of the mg-module m,,. The main theorem of chapter [3]is the following:

Theorem 1.1.2. Let g be a twisted affine Lie algebra. The t-string function of the basic

representation of g is given by

aAo H H 7fe—&—l n -1

n=1 GE]EW,

The proof of this theorem for g # Ag) follows by using Cherednik’s computation of
Macdonald-Mehta type constant term, and a combinatorial characterisation of the generalised
(2)

exponents. For g = A;’, we use the Macdonalds constant term identity for the non-reduced

affine root system of type (C,/,C},) to derive a Macdonald-Mehta identity for g.

1.2 Affine Brylinski-Kostant filtration on the basic representa-
tion of Agl)

Consider the affine Lie algebra Agl). Let us consider its basic representation L(Ap). By theorem

[L.1.1l we have .
A _ 2 _ky—1

ZKAS ns(t —H(l—tQ)

n>0 k=1
By comparing the coefficients of the above expression, we get the formula for the affine Kostka-
Foulkes polynomial which is,

A 2
KA(?—M(t) — Zt (#m)
Tk

where # is the number of parts in the partition 7 of k.

Slofstra [37] showed that the affine Kostka-Foulkes polynomial K Ii‘(t), where \ and p are
dominant, is equal to the Poincaré series of the associated graded space of an affine version of
the Brylinski-Kostant filtration. By this, Slofstra extended Brylinski’s result (which is for the
finite dimensional simple Lie algebras) to affine Kac-Moody algebras.

For finite dimensional simple Lie algebras, the Brylinski-Kostant filtration uses a principal
nilpotent element. Slofstra shows that in the affine case, a principal nilpotent element is not
sufficient to define the filtration, but one has to use the positive part of a principal Heisenberg

algebra.

10



In chapter [4] of this thesis, we give a basis for the space L(Ag)p,—ns for n > 0, which is
compatible with respect to the affine Brylinski-Kostant filtration for g = Agl). Using Slofstra’s
theorem this gives an alternative derivation for the expression of aﬁg (t;q). Let g = Agl) =
Clz, 2~ Y®slb®CK@Cd, where K is the central element and d is a derivation. Let g = n, ©hdn_
be a triangular decomposition of g. Let e, f and h be the usual basis of sly. For odd integers
J, define B;j :=e® s +f® 2% and for non-zero even integers j define H; := h ® z%, and
Hy:=h®1-31K.

We recall that for a principal nilpotent element E’ of an affine Lie algebra, we have the
algebra s := {x € g: [z, E'] € Z(g)}, called as a principal Heisenberg subalgebra of g. Recall

that the homogeneous Heisenberg subalgebra is defined as H := @nez 2" @ h & CK, where
h = Ch. Note that span of B; (j odd) and K spans a principal Hgi;;(e)nberg subalgebra and
span of H; (j even) is the homogeneous Heisenberg subalgebra for Agl) [22]. We denote them
by s and H respectively (where s = sp for B = e® 1+ f ® 2). Let L(\) be the highest weight
module of g corresponding to the dominant integral weight A. The affine Brylinski-Kostant
filtration with respect to the principal Heisenberg algebra s is given by F/(L(\),) = {v €
L)y lv=0Vazesnn,}. Let Pﬁ\(t) denote the Poincaré series of the associated graded
space of L(\), i.e., Plf‘(t) = > ;> dim (FIL(N)u/F=LL(N),) t. We now state the following
theorem due to Slofstra [37].

Theorem 1.2.1 (Slofstra). Let L(\) be an integrable highest weight representation of an
affine Kac-Moody algebra g, where A is dominant integral weight. If p is a dominant weight of
L(X), then

P t)=K)(t).

It is a well known fact that s acts irreducibly on L(Ag). So by the standard representation
theory of the Heisenberg Lie algebra we have L(Ag) = Clzy,x3,s5,...] and for all odd j > 0
B; acts as operator %% and B_; acts as 2z;. Using these facts, we see that F7(L()\),) =
{p € L(\), : udeg(p) < j}, where udeg(p) denotes usual degree of polynomial p. On the other
hand, the homogeneous Heisenberg algebra H does not act irreducibly on L(Ag) and we have
U(H)vp, = @%ZZO L(Ao)rg—ns =: V.

To state our theorem we need to recall the Sugawara operators. For g, they are given by

T, = Z [e(—m)f(m +n)+ f(—m)e(m +n) + h(—m)g(m + n)] Vn#0

meZ
and
2 o0 "
T = e(0)F(0)+ £0)e(0) + "G+ 23" el 0) + (metr) + n(-n) "5
n=1

where z(m) denotes z ® z" and (e, f,h) and (f,e, %) are the dual bases of each other. These

operators lie in the restricted completion U, (g’) of the universal enveloping algebra U(g’), where
o' = [g.g] [15].

11



Now let L}, := %Tn, Similarly for the Lie algebra L(h), we define for n # 0

and

Now consider the homogeneous Heisenberg algebra #H generated by Ha; =: H(j) for n # 0
and Hy := H(0) = hg — 2 K. Note that h(n) = Ha, =: H(n) for n # 0. Define the Virasoro
operators with respect to H by

Lt :zle(n)H(n;m) forn #0

H 2
LZ]'[ = 0

Let for a polynomial f € F (j)L(AO) Ao—sé, | denote image of f in the quotient space
J:(j)(L(AO)AD,S(;)/}'U*U(L(AO)AO,S(;). Now we are in position to state the main theorem of
chapter [4] :

Theorem 1.2.2. Let g = Agl). Let r > 0 and kK > 0. Then a basis for the quotient space
FER(L(Ao)Ag—rs)/FEF=(L(Ao)py—rs) is given by the set

(LR LT Ll opg : 0> nge > mpy > --- > my and ng +ng + -+ +np = —2r}

nina-

From the above theorem, we deduce that dim(F2*(L(Ag)a,—rs)/F2F"1(L(Ao)ag—rs)) =

P(r, k), the number of partitions of r in to k parts. We also note the following easy fact:
dim FE*D(L(Ag) ag—rs)/FH 2 (L(Ao)ag—rs) = 0 .
Using this observation and Slofstra’s theorem, we have the following corollary to theorem [1.2.2

Corollary 1.2.3. Let g = Agl). Let L(Ao) be its basic representation. Then

o0
aAO H 1—t2"

Proof of the theorem uses the facts that L(Ag) is the highest weight module for the
coset Virasoro operator Lg L Lg Lb and L%h commutes with L(h). By these facts it follows

that L%vAO = L?L’UAO and L% = LZ on V. Now it can be easily proved that f/# is of usual degree
2 for all n < 0 and the result follows by induction.

12



1.3 The t-string functions for Aﬁ”

Let g = Agl) =Clz,271]®slb ® CK ®Cd. Let L(A) be an irreducible highest weight module of
level m > 1. Kac and Peterson [I8], have proved that the string functions corresponding to the
g-module L(A) are related to the Hecke indefinite modular forms. In chapter [5| of this thesis
we give a t-analogue of this result, i.e, we give an explicit formula for all ¢-string functions of
the g-module L(A).

Let h be a Cartan subalgebra of g, let A C h* be the root system of g. Let A be the set
of positive roots and {ag, @1} be the set of simple roots of g. Let @ and P denote the root and
weight lattices of g and let Py be the set of dominant integral weights. Let Ej = slp and 52 and
103 be the root and weight lattices of S Let W be the Weyl group of g generated by reflections
Tao and 7o, which we denote by rg and ;. Let V?/ be the subgroup generated by r;. Recall
that W = W x Q.

Let P(B), P(5;t) denote the Kostant partition function and ¢-Kostant partition function of
g. Let A € P be of level m > 1. Let L(A) denote the corresponding irreducible highest weight
representation of g. Let A be a maximal dominant weight of L(A). Define the string function

Aq) = W > s>o multp (A — s0) ¢° , where ¢ = e?™7 7 € upper half plane and sy ()\) =

= ,2
no(A—\)+ 2‘?7;'?'2) — % — %, where & denotes the image of o under the projection from h* to
*

b , no is the function on @ defined by ng(apao+ai1a1) := ag V ap, a1 € Z, and multy(-) denotes

May(q).

Let p € b* be a Weyl vector, which satisfies the relation (p,c;) = 1 for ¢ = 0,1. Let us

the dimension of the corresponding weight space of L(A). Note that c’)}(q) = ¢52 Vg
consider a shifted action of W on Q by w.a := w(a + p) — p, which induces an action of W on
functions on Q by (w.f)(a) := f(w™L.a).

Let us briefly recall the term Hecke modular form. Let U be a two dimensional real vector
space. M be a full rank lattice in U and let B’ be an indefinite symmetric form on U such that
B'(v,v) is an even nonzero integer for all nonzero v € M. Let M* := {/ € U : B'(v,//) €
Z ¥ v e M}. Let Gy be the subgroup of the identity component of the orthogonal group of
(U, B') preserving M and fixing M*/M. Fix a factorisation B'(v,v) = l1(v)l2(v), where l; and
I3 are real-linear, and set sign(v) := sign [y (v) for [;(v) # 0. For p € M*, set

. 1 !
Oty = Z sign(v)e™ B vv)
veM+p
B'(v,v)>0
vmod Gg

The 60y, is called a Hecke indefinite modular form.

Let M := Zay ® Zoy and U := Ray & Ray. We identify M with 72 and U with R2,
and let B(z,y) := 2(m + 2)z% — 2my? be the quadratic form corresponding to an indefinite
symmetric bilinear form B’. Note that B # 0 on M — {0}. The dual lattice of M with respect

to B is M* = WZ ® 5-7. Let a be the element of the identity component SOo(U) of

13



the orthogonal group of (U, B) given by a(x,y) = ((m + 1)z + my, (m + 2)z + (m + 1)y).
Then a generates the subgroup Gj, of SOg(U) preserving M, and a® generates the subgroup
Gy of G, fixing M*/M. Let us define an element J : R? — R? by J(z,y) := (—z,y); we
note that J normalises Gy. Define the group G :=< J > x Gy and G’ :=< J > x G|,. Let
Ut :={u €U : B(u) > 0}. Then it is easy to see that Iy := {(x,y) € R? : —|z| <y < |z|}
is a fundamental domain for G{, on U™, and Fy |JaFp is a fundamental domain for G on U™.
Set F:= {(z,y) € R2:0<y<zor0>y>ax} Thenclearly Fp = FUJ(F) and F is a

fundamental domain for G’ on UT. We now state Kac-Peterson’s theorem [I§].

Theorem 1.3.1 (Kac-Peterson). Let g be of type Agl). Let A € Py, A(K) = m, and let
A € Py be a mazimal weight of L(A). Then n(t)3cX(r) = 0, (A:B) s a Hecke indefinite
modular form, where A := (m + 2)"Y(A + p) and B := m~'\, and n(r) is the Dedekind eta

function.

Let us recall the constant term map ct(-), which defined on formal sums >, cre[A] by

ct(Q_necoerelA]) = >,y cnsend]. We define & :=
(2zncq ) = 2unes Cosclr) H M (L ) (1~ rel-on)) (1t
and the Poisson kernel P := 3 _, t"le[nay]. The following is our main theorem of chapter

and gives an expression for all ¢-string functions of Agl).

Theorem 1.3.2. Let g be of type Agl). Let A € Po, A(K) =m > 1, and let A\ € Py be a
maximal dominant weight of L(A). Then

L
A(t;q) = ct(& Prgs t28 Hy)

where

- 1
H, = Z sign(z) q%B(’”’y) t2el((m+2)% —my — 5)(11]
(z,9)=(A,B) mod Z2
B(z,y)>0
(z,y) mod Z?

where (Z,7) is the unique element in F NG (x,y) .

We note that the form of H; resembles that of a theta function.
Proof of the theorem closely follows that of theorem by expressing P(f;t) in
terms of a simpler function P’(8;t) := (1 + tr1).P(B; ).

14



Chapter 2

Kac-Moody algebras

n
i,j=1"

Cartan matrix if it satisfies the following conditions:
(Cl)ay=2fori=1,...,n;

(C 2) a;; are nonpositive integers for i # j ;

Let us consider an n x n complex matrix A = (a;;) The matrix A is called a generalised

(C 3) a;; = 0 implies aj; =0 .

2.1 Realisation of a matrix

A realisation of an n x n complex matrix A is a triple (b, II,IIV), where b is a complex vector
space, I = {ag, a9, -+ ,a,} C h* and IV = {af,ay, - ,a,} C b are indexed subsets in b*

and B, respectively, satisfying the following conditions:
1. Both sets IT and IIV are linearly independent;
2. (o) aj) = ajj (i,j=1,2,---,n);
3. n —rank(A) = dimbh — n.
Two realisations (b, II,IT1V) and (b1, 11, 11Y) are called isomorphic if there exists a vector

space isomorphism ¢ : h — b such that ¢(I1V) = ITy and ¢*(I1;) = II.

2.1.1 Auxiliary Lie algebras

Definition 2.1.1. Let A = (a;;) be an n x n matriz over C, and let (h,ILIIV) be a realisation

of A. Define an auzxiliary Lie algebra g(A) with generators e;, fi(i = 1,--- ,n) and b, and the

15



following defining relations:

e, fi] = dijo (i,j=1,--+,n)

B =0 (b1 €B), o1
[h,e;] = (i, h)e;

[h fz] <alv >fz (i,jzl,--~,n;h€f))

Denote by 14 (resp.n_) the subalgebra of g(A) generated by eq,ea,--- e, (vesp.fi, -+, fn).
Now we state the following result for g(A):

Theorem 2.1.2 ([15]). 1. g(A) =np @& hdn_ (direct sum of vector spaces)
2. ny(resp. n_) is freely generated by ey, -- ,en(resp. f1,--, fn)

3. Among the ideals of g(A) intersecting b trivially, there exists a unique mazximal ideal T.
Furthermore,

T=(rNn_)® (rNn_) (direct sum of ideals)

2.1.2 Kac-Moody Lie algebras

For a given complex n x n matrix A, let g(A) be the Lie algebra on the generators e;, f;(i =
1,---,n) and b, and defining relations equation By theorem the natural map
h — g(A) is an imbedding. Let 7 be the maximal ideal of g(A), which intersects b trivially.
Set

9(A) = a(A)/7

The matrix A is called as the Cartan matriz of g(A), and n is called as the rank of g(A). Now

we are in a position to define Kac-Moody algebras.

Definition 2.1.3. The Lie algebra g(A) whose Cartan matrix is a generalised Cartan matriz

1s called a Kac-Moody algebra.

2.1.3 Symmetrisable Kac-Moody algebra

A n x n matrix A = (a;;) is called symmetrisable if there exists an invertible diagonal matrix
D = diag(ey, ..., €,) and a symmetric matrix B = (b;;) such that A = DB.

Definition 2.1.4. Let A = (a;;) be a symmetrisable generalised Cartan matriz. Then the

Kac-Moody algebra associated with the matriz A is called a symmetrisable Kac-Moody algebra.

For a symmetrisable Kac-Moody algebra g(A) there exists a nondegenerate symmetric bilin-

ear C-valued form (.,.) on g(A) which is invariant i.e., ([x,y], z) = (z, [y, z]) for all z, y, z € g(A).

16



2.1.4 Properties of Kac-Moody algebras

Theorem 2.1.5. Let g be a Kac-Moody algebra. Then,

1. g=n . ®hdn_, where ny, n_ are the Lie algebras generated by e; and f; (i =1,---,n)

respectively.

2. b acts diagonalisably on g i.e.,

i=P e

ach*
where go = {x € g: [h,x] = a(h)x Vh € h}.

The subspace § is called the Cartan subalgebra and g, is said to be the root space of a. An
element a € h* is called a root of g if & # 0 and g, # 0. Let mult « := dim g,; this is called
multiplicity of a. Let A denote the set of all roots of g, then A = A, U A_(a disjoint union),
where Ay, A_ are the sets of positive roots and negative roots respectively. Let aq, ao, ..., ap
be the simple roots of g, oy, ay, ..., be the simple co-roots of g and Q := > | Za; be the
root lattice of g. Let Q4 := " | Z; . Introduce a partial ordering < on h* by setting p < A
fA—peQy. Let P:={Xeb*: (\af) €Z(i=1,---,n)}; this is called the weight lattice of
g. Let Py :={Aeb*: (\,a/) >0(=1,---,n)} and are called dominant weight lattices of g .

2.1.5 Weyl group of Kac- Moody algebras

Now we introduce an important group associated with Kac-Moody algebras, called the Weyl
group. Let A be a n x n generalised Cartan matrix and let g(A) be the associated Kac-Moody

algebra. For each i = 1,2, ..., n, define the fundamental reflection r; by
ri(A) = A = (A o )y

for A € bh*.
The subgroup W of GL(h*) generated by all fundamental reflections is called the Weyl
group of g(A).

2.1.6 Classification of Kac-Moody algebras

The following theorem classifies the types of Kac-Moody algebra. For a real column vector
u=t(uy, - ,u,) we write u > 0 if all u; > 0, and u > 0 if all u; > 0.

Theorem 2.1.6 ([15]). Let A be a n x n generalised Cartan matriz. Then one and only one
of the following three possibilities hold for both A and 'A:

1. (Finite type) There exists uw > 0 such that Au > 0; Av > 0 implies v >0 or v =0;
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2. (Affine type) There exists u > 0 such that Au = 0; Av > 0 implies Av = 0;

3. (Indefinite type) there exists u > 0 such that Av < 0; Av >0, v > 0 imply v = 0.

2.2 Affine Kac-Moody algebras

The Kac-Moody algebra is called as affine Kac-Moody algebra if for the corresponding gener-
alised Cartan matrix there exists u > 0 such that Au = 0; Av > 0 implies Av = 0;.

The affine Kac-Moody algebras are categorised in two parts:

1) Untwisted affine Kac-Moody algebra

2) Twisted affine Kac-Moody algebra.

2.3 Untwisted affine Kac-Moody algebra

The untwisted affine Kac-Moody algebra can be realised as a central extension of a loop algebra
over a finite dimensional simple Lie algebra. Let m be a finite dimensional simple Lie algebra.
The corresponding affine Lie algebra is denoted by £(m) = C[z,27 ] @ m & C K & Cd, where
K is the center and d is a derivation [15].
The untwisted affine Lie algebra is of two types,

1) Simply laced

2) Non-simply laced .

Definition 2.3.1. An untwisted affine Lie algebra is called simply laced if all the simple roots

of the Lie algebra have same root length.

Definition 2.3.2. An untwisted affine Lie algebra is called non-simply laced if the simple roots

of the Lie algebra have more than one root length.

2.4 The twisted affine Kac-Moody algebras

Twisted affine Kac-Moody algebras are realised as fixed point subalgebras of untwisted affine
Lie algebras under finite groups of automorphisms. Let m be the finite dimensional simple
Lie algebra with Dynkin diagram Xy where X = A, D, E [15], and let o be the corresponding
Dynkin diagram automorphism of order r € {2,3}. Let £(m) := C[z, 2~ ]@m@CK &Cd, where
K is the central element and d is the degree derivation. We extend ¢ to an automorphism & of
L(m)by K— K, d~—dand 2/ @z exp(@)zj ® o(z) for j € Z,z € m. The fixed point
set of & is the affine Lie algebra g = g(XJ(\;)).

The darkened node in the Dynkin diagrams of affine Kac-Moody algebras (figure and

figure [2.2]) denotes the zeroth node. We note that, if we remove that node from the diagram,
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Figure 2.1: Dynkin diagrams of untwisted affine Lie algebras.
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Figure 2.2: Dynkin diagrams of twisted affine Lie algebras.
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the resulting diagrams are the Dynkin diagram of a finite dimensional simple algebras. We

denote this finite dimensional simple Lie algebra by E;(A)

2.5 Weyl group of affine Kac-Moody algebra

Let g(A) be an affine Kac-Moody algebra. Let W be the Weyl group of g(A) . Let W denote the

Weyl group of the finite dimensional algebra of g(A) Let f)R denote a real Cartan subalgebra
of E(A) Let 6 denote the highest root of the finite d1mens1onal simple Lie algebra g(A) and

6V be its co-root. Let us define an important lattice M C [)]R defined by M := V(Z(W.HV)),
where v is map such that v : h — b*, v(h) = (h,-). We define a faithful action of M on h* by

an endomorphism %, for each oo € M as follows:
1
ta(A) = A+ (A K)a — (A o) + §|a|2</\,K>)5

where ¢ is the null root of g(A). The group generated by ¢4, & € M is an abelian group denoted

by T'. Now, we are in position to state the proposition which gives the relation between W and
o

w.

Proposition 2.5.1 ([I5]). W =W x T

2.6 Representation theory of Kac-Moody algebra

A g(A)-module V is called h-diagonalisable if it admits a weight space decomposition V' =
@rep+ Vi, where Vy = {v € V : h(v) = A(h)v V h € h}. A nonzero vector of V) is called a
weight vector of weight A\. Let P(V) := {\ € h* : V), # 0} denote the set of all weights of V.
For A € b*, denote D(\) :={p € h* : p < A}.

One studies mainly the representations of a Kac-Moody algebra from the category called

as category O. We define its objects as follows.
Definition 2.6.1. A g(A)-module V is said to be in category O if
1. It is h-diagonalisable with finite dimensional weight spaces.
2. There exists a finite number of elements A1, X2, ..., A, € b such that P(V)) C U™, D()\;)

The morphisms in @ are homomorphisms of g(A)-modules.

2.6.1 Highest weight modules

Important examples of modules from the category O are highest weight modules.

21



Definition 2.6.2. A g(A)-module V is called as a highest weight module with highest weight

A € b* if there exists a monzero vector vy such that
1. ny(vp) =0 ; h(va) = A(h)va Vh € b ; and
2. U(g(A))(vp) =V, where U(g(A)) is the universal enveloping algebra of g(A).

Remark 2.6.3. We note that by the condition 1) in above definition, condition 2) can be
replaced by U(n_))(va) = V. So we have V = @ <AV} ; Vo = Cup; dim(V)) < oo. Therefore,
a highest weight module is an object of category O.

Now, we define an important class of highest weight modules called as Verma modules.

Definition 2.6.4. A g(A)-module M(A) with highest weight A is called a Verma module if
every g(A)-module with highest weight A is a quotient of M(A).

The following proposition justifies the importance of Verma modules.

Proposition 2.6.5 ([15]). 1. For every A € b* there exists a unique up to isomorphism
Verma module M(A).

2. Viewed as a U(n_)-module, M (A) is a free module of rank 1 generated by the highest

weight vector.
3. M(A) contains a unique proper mazimal submodule M'(A).

It follows from 3) of above proposition that for A € h*, there is a unique irreducible module
of highest weight A which we denote by L(A) := M(A)/M’'(A). For A € b*, the g(A)-modules
L(A) exhaust all irreducible modules of the category O.

2.6.2 Integrable modules
Definition 2.6.6. A g(A)-module V is called as integrable if the following holds:
e [t is h-diagonalisable with finite dimensional weight spaces.

o The Chevalley generators e; and f; i = 1,...,n are locally nilpotent on V.

We will restrict our attention to the category of integrable modules in category © denoted
as OM'(g), where g is a Kac-Moody algebra. Let L(A) be the irreducible highest weight
module with highest weight A. Then one asks an obvious question, when is the g-module L(A)

integrable? The next proposition gives an answer to this question.

Proposition 2.6.7 ([15]). The g(A)-module L(A) is integrable if and only if A € Py.
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2.7 Character of a representation

Consider the algebra £, whose elements are the series of the form A€k cxe(N), where ¢y € C
and ¢y = 0 for A outside the union of finite number of sets D(u) and e(\) are the elements of

group algebra C[h*]. Now, we define character of a module V' from the category O as follows.

Definition 2.7.1. Let V be a module from the category O and let V = @xep= V) be its weight
space decomposition. We define formal character of V' by
chV =Y (dimVy)e())
Aeh*
By the definition it is clear that chV € &.
Let p € h* such that (p,a)) =1 for i = 1,--- ,n. Now we are in a position to state the

fundamental result of the representation theory of Kac-Moody algebras.

2.7.1 Weyl-Kac character formula

Theorem 2.7.2. Let g(A) be a symmetrisable Kac-Moody algebra, and let L(A) be the irre-
ducible g(A)-module with highest weight A € P,. Then
2wew E(w)e(w(A + p) — p)

[loea, (1 —e(—a))mite

Next, let us define the Kostant partition function, which will be used quite often in the

chL(A) =

upcoming part of this thesis.

2.7.2 Kostant partition function

Definition 2.7.3. Let g be a Kac-Moody algebra. Let ,b*,Q be its Cartan subalgebra, dual

of Cartan subalgebra and root lattice respectively. The Kostant partition function P defined on
b* by

1
(1 _ e(ia))mult «

PB) = le(-8)] []

a€A+

where [e(a)]f denotes the coefficient of e(a) in the expression for f.

Note that, P(8) = 0 unless 8 € Q4. For 8 € Q4+, P(B) is nothing but the number of
partitions of [ into a sum of positive roots, where each root is counted with its multiplicity.
The next proposition shows the importance of the Kostant partition function as it is used in

calculating the weight multiplicities of the g-module L(A).
Proposition. Consider an irreducible g-module L(A). Let L(A) = @, L(A), be its weight

space decomposition. Then

dim(L(A),) = 3 ew)P(w(A +p) — (1 + p))
weW
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2.8 String function for L(A)

Let g(A) be an affine Lie algebra. Recall from [15] that ¢ := > ; a;; called as the null root of
g(A), where the a; are the labels of Dynkin diagram of g(A). To study the weight system P(A)

of an integrable module L(A) of g(A) one classifies the weights which are sort of “maximal”.
Definition 2.8.1. A weight A € P(A) is called maximal if A+ ¢ P(A).

Let max(A) denote the set of all maximal weights of L(A). Next proposition shows the

importance of the maximal weights.

Proposition. Let L(A) be an integrable module of positive level k over an affine Lie algebra.
Then
PA)= || {r-né:nezy}
Proof. See [15]. 0
To understand the structure of the module L(A), one studies the generating function

ax(q) =Y dim(L(A)x—ns)q"
n=0

where A € max(A). We will call this a string function (deviating mildly from the terminology
of [15]).
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Chapter 3

The t-analogue of the basic string
function for twisted affine Lie

algebras

The Kostant partition function can be used to determine the weight multiplicities associated to
irreducible representations of Kac-Moody algebras. Its t-analogue was used by Lusztig to define
a t-analogue of weight multiplicity. In this chapter we study Lusztig’s t-weight multiplicities
associated to the level one representation of twisted affine Kac-Moody algebras. We derive a
closed form expression for the corresponding t-string function using constant term identities of
Macdonald and Cherednik. We describe how generalised exponents of certain representations
of the underlying finite dimensional simple Lie algebra enter the picture.

The results of this chapter have appeared in [35]. Throughout this chapter, we will assume
that g(A) is an affine Kac-Moody algebra. The other notations are as in Chapter

3.1 Basic representation of g(A)

Let A € Py such that (A, K) = 1. Then the g(A)-module L(\) is called as a level one represen-
tation of g(A). Let us consider an element Ay € h* defined by Ag()) = 8o for i =0,1,2,...,1
and (Ao, d) = 1. Note that for an affine Kac-Moody algebra g, Ay is nothing but a fundamental
weight corresponding to the zeroth node of its Dynkin diagram. The level one representa-
tion L(Ap) is called as the basic representation of g(A). Among the irreducible modules in
Ont(g(A)), the basic representation L(Ag) can be singled out for the unique and important
role it plays in the theory. It is the simplest non-trivial representation in O™(g(A)), and has
many explicit realisations in terms of vertex operators [8, [16, 17]. If g is an untwisted simply-
laced affine Lie algebra, or g is twisted, i.e., g = X](\;) for Xy = ANy, Dn,Ex and r = 1,2 or 3,
then all the level one simple modules of g in O™ (g(A)) can be obtained from L(Ag) by the

25



action of Dynkin diagram automorphisms of g, and tensoring with one dimensional g-modules.
One of the most important results for the basic representation was proved by Kac and
Peterson [I8], where they gave a closed form expression for the string function aﬁg(q) of the

basic representation which we state in the following proposition.

Proposition 3.1.1 ([I8]). Let g be an affine algebra of type X](\;), where X= A,D or E and
r=1,2,3, then

00
a/\o H —mult nd (311)

Now we are heading towards the definition of the ¢-string function for which we need to
define Lusztig’s t-weight multiplicity (or affine Kostka Foulkes polynomial), which we do in the

next section.

3.2 Lusztig’s t-analogue of weight multiplicity

Recall from chapter 1 that the Kostant partition function is defined by

PB) = le(-8)] ] !

—e(— It
aeh, (1 —e(-a))mite

Recall again from chapter 1 that, using the Kostant partition function, the weight multiplicity
of the g(A)-module L(\) is given by

dim(LN)) = 3 ew)Pw + p) — (1 + p)
weW
We define a t-analogue of the Kostant partition function by

P(/B;t) = [6(—&)} H (1 _ te(_la))multoz

a€A+

Note that P(8;1) = P(B).

Lusztig’s t-analogue of weight multiplicity is defined as follows

Ep(t) = ) e(w)P(w(A+p) = (n+p)it)

weWw

Now, using t-analogue of weight multiplicity we define a t-analogue of string function.

3.3 t-string function

As we have seen in the chapter [2] the string function for the g(A)- module L()) is given by

Z dim(L(N)p—ns)q"
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A t-analogue of a string function is obtained by replacing weight multiplicity by ¢t-weight mul-

o0
=> K,
n=0

We call these as the t-string functions. It was shown in [10] and [39] that the a;\L(t; q) are closely

tiplicity as follows:

related to the constant term identities arising in the theory of Macdonald polynomials. These
papers gives the explicit formula for aﬁg (t;q) of the basic representation for the untwisted
simply laced affine algebras using Cherednik’s Macdonald Mehta constant term identity. We

state the explicit formula in the following theorem.

Theorem 3.3.1 ([10],[39]). Let g be one of the simply laced untwisted affine Lie algebras
AN D EN . Then

{ oo
ap’(t Hl:[ —geitlgm) 1 (3.3.2)

i=1n
where e; (1 < i < {) are the exponents of the underlying finite dimensional simple Lie algebra
(= Ay, Dy, Ey respectively).

3.4 Generalised exponents

Let m be the finite dimensional simple Lie algebra and V' = V(A) be the irreducible finite
dimensional m -module with highest weight A. Fix a triangular decomposition N, & H & N_,
and let £ € N, be a principal nilpotent element i.e., E = Zle ¢; By, where ¢; € C — {0} and
FEn, Es, ..., By are the Chevalley generators. Let Vp denote the zero weight space. Define the
Brylinski-Kostant filtration of Vo FC1 (1) € FO (V) € FO(Vy) C -+, where FP)(1}) :=
ker (EPT1) N Vy. Then the generalised exponents of V are the elements of the multiset E(V)

defined via the following relation:

> dim(FE (V) FO Vo) = Y R,

p>0 keE(V)

The exponents of a finite dimensional simple Lie algebra m are nothing but the generalised
exponents of the adjoint representation of m i.e., V.= V(#), where 6 is the highest root of m.
As our result is about the twisted affine Lie algebras, we recall some facts about them. Let
g be a twisted affine algebra of type X](\q;); here Xy is a simply laced (A — D — E) Dynkin
diagram of finite type with a diagram automorphism o of order r (r = 2 or 3). Let m denote
the finite dimensional simple Lie algebra with Dynkin diagram Xy and let o also denote the
corresponding automorphism of m. For each k € Z, let m; C m be the eigenspace of o for

2mki ) (

the eigenvalue exp (<7*) (so my = my,). Since o acts diagonalisably on m, we have a Z/rZ
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gradation:

m = @mj

JELTL

If h is a Cartan subalgebra of m, let h; := hMm; for all j € Z. We collect together the important
facts about the above decomposition [15].

Proposition 3.4.1. With notation as above, we have
1. mg is a simple Lie algebra and m; is an irreducible mo-module V j.
2. m1 2 m_1 as mg-modules.
3. bo is Cartan subalgebra of mg and its centraliser in m is §.

4. If g is not of type Ag), then mg andsj are isomorphic. Further the highest weight of the
mg-module my is the dominant short root 05 of mg.

5. If g is of type Ag), then mg is of type By, while S is of type C;. Further, the highest
weight of my is 205, where O is the dominant short root of my.

Proof. See [[2],[15]]. 0

We denote [ := rankmg, m := the number of short simple roots of my and let 6; (resp.fy)
be the dominant long (resp. short) root of my.

Proposition 3.4.2. Let g be a twisted affine algebra of type X](\;) #* Ag). Consider the action

of the cyclic group generated by the automorphism o, on the nodes of the Dynkin diagram of

Xn. This has the following properties.
1. FEach orbit has cardinality 1 or r.
2. The number of orbits equals .

3. The number of orbits of cardinality r is equal to m.

N-I
4. Thus, m = 7= .

Proof. See [[2],[15]]. 0

We have a natural Z-grading g = @jcz g; with go = mg + CK + Cd and g; = 2/ ® m; for
J # 0. We observe that for j # 0, g; = m; is an irreducible mp-module and that g; = g, when

j =k (mod r), j,k # 0. Let E,, denote the multiset of generalised exponents of the my-module
m, for n € Z.

Now we are in position to state our main theorem of this chapter.
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g EO El — E—l

AP (1>1) | 1,35, ,20—1| 2,4,6,---,2

AP (1>3)1,3,5--,20—1]|24,6,---,21—2

D (1>2) | 1,35, 211 l
E® 1,5,7,11 4,8
D 1,5 3

Table 3.1: E,, for the twisted affines g = Xg) (Eptr = E, for all n).

Theorem 3.4.3. Let g be a twisted affine algebra. The t-string function of the basic represen-
tation of g is given by
aAo H H te—H n -1
n=1eck,
Remark 3.4.4. When g is an untwisted simply-laced affine, this result was proved in [39].
In this case, the mg-modules m; are all isomorphic to the adjoint representation of mg. Thus
E,, = E(myg), the set of exponents of mg for all n, and we recover theorem

Remark 3.4.5. The cardinality of [E,, is the dimension of the zero weight space of g,. From
proposition it follows that |E,| = dim(z" ® b,,). Since 2" ® b,, is the root space of g
corresponding to the imaginary root nd, we deduce that |E, | = mult(nd). Thus, this expression
is a t-deformation of the expression for the basic string function

Remark 3.4.6. From the explicit description of the Chevalley generators of mg in terms of
those of m [15], it is clear that a principal nilpotent element of my is also a principal nilpotent of

m. This observation, together with proposition implies the following equality of multisets:

m) = | | E;
j=1

where the left hand side is the multiset of exponents of the Lie algebra m, i.e., the generalised
exponents of its adjoint representation. Further, since m, = mg, we have E, = E(mg). Thus,
the sets E(m) and E(mg) determine the E,, for all n; this is clear for r = 2, while for r = 3 it
follows from the further fact that [£; = [Ey. Table lists the E,, for all twisted affine algebras.

3.4.1 Corollary of theorem [3.4.3|

We derive an interesting corollary of theorem . If g is an affine Kac-Moody algebra of rank
l+1,and e, f; (i =0,--- 1) are the Chevalley generators, the principal Heisenberg subalgebra
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s of g is defined to be
l

5= {a:eg:[a;,z e;] € CK}
i=0

where K is the central element of g. The principal gradation of g induces a gradation s =
®jec 5. If g is an untwisted simply-laced or twisted affine algebra, the basic representation
L(Ay), as an s-module, is irreducible. The exponents of the affine algebra g are the elements
of the (infinite) multiset E(g) of nonzero integers in which each j occurs dims; times. Let
E*(g) := E(g) N Es( denote the positive exponents of g. The following lemma relates the
multisets E*(g) and E,.

Lemma 3.4.7. Let g be a twisted affine algebra or an untwisted simply-laced affine algebra of

type X](\;), with Coxeter number h. Then

Ef(g) ={e+hn:n>0,e€E,}
Proof. Follows easily from [[15], chapter. 14] and table 0

We deduce the following nice formula for the specialisation of the ¢-string function aﬁg (t;q)

att»—>q,q»—>qh.

Corollary 3.4.8. Let g be a twisted affine algebra or an untwisted simply-laced affine algebra,

with Coxeter number h. Leta be its underlying finite dimensional simple Lie algebra. Then

H (1 _ qé—i-l)

ecE(g)

H (1 _ qe—i—l)

ecE*(g)

a)’(q;q") =

where E(E) is the (finite) multiset of exponents ofB.

Proof. Applying the specialisation t — ¢, ¢ — ¢" to theorem and using lemma we
obtain the desired equation but with my in place of E Proposition implies that mgy and E
are either isomorphic or dual. Since dual algebras have the same exponents, the result follows

in all cases. O

We will prove theorem [3.4.3] in two parts. In the first part we will prove the result for
g # Ag). In the second we complete the result by proving it for g = AS). First, we need to
define some terms which are the crucial ingredients of the proof.

Given a Kac- Moody algebra g of finite or affine type, we let A(g), Ay (g), A(g), A™(g)
denote the sets of roots, positive roots, real and imaginary roots respectively. Let A’¢(g) :=

A™(g) N A (g) and AT (g) := A" (g) N A (g).
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Definition 3.4.9. Let g be an affine Kac-Moody algebra. The Cherednik kernel fu of g is the
product

. 1 —e™@
a€A(g)

If g is affine, the corresponding product over the imaginary positive roots denoted by

—a \ (mult ) n \ (mult nd)
i 1—e 1—gq
m = — 3.4.4
# 11 (1—t€°‘> g(l—tqn> (349

aEAﬁrm(g)

where we let ¢ := e~9 throughout.
Recall from the chapter 2| that the formal character of the representation L(\), where A is
a dominant integral weight is given by ch L(\) = > dim(L()),) e”, we will denote this from

now on by x». We have the following proposition for the basic representation L(Ag).

Proposition 3.4.10. Let g be a twisted affine algebra. Then the formal character of L(Ag) is

e Mxa, = a}?(1;9)©

(a,a)

where © := 3" 1 €%q 2

is the theta function of the lattice M (defined in chapter@ § .
Proof. See [15] O

Definition 3.4.11. Given a formal sum & = ZaGQ ca€®, the constant term of €& denoted by
ct(€) is defined as ct(€) == >, 7 cnse™.
We will use the following simple fact from [39] to compute the ¢-string functions ai‘b(t; q):
ap(t;q) = M ct(e T xaf) (3.4.5)
where p is a maximal dominant weight of L(\). Putting the above facts together, we obtain
the following lemma.

Lemma 3.4.12. Let g be a twisted affine algebra. Then

1. The t-string function of the basic representation of g is given by
A A g N
ayo(t;q) = ayo (L q) " ct(O)

2. Further we have

ap (o)™ = [T =gy
n>1

Proof. Part 1 of lemma follows from proposition [3.4.10|and equation [3.4.5] Part 2 is clear from
proposition [3.1.1] and equation O

From the above lemma we see that we only need to calculate ct(f1©) to get an expression
A
for ay? (t; q).
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3.5 Proof of theorem (3.4.3| for g # Ag)

Throughout this section, we take g to be a twisted affine algebra, g # Ag). Let (-,-) denote
the normalised invariant form of g [I5]. We then have (o, o) = 2 for all short real roots of g.
We recall that the height of a root o (written ht «v) is the sum of the coefficients obtained when
« is written as a linear combination of simple roots. The following result is a special case of
Cherednik’s difference Macdonald-Mehta constant term identity [6].

Proposition 3.5.1. Let g be a twisted affine algebra, g # Ag). Leta be the underlying finite
dimensional simple Lie algebra and let (-,-) denote the normalised invariant form of g. Then

we have

(a7a>

l—thta 7

H H ey (3.5.6)

Proof. The positive real roots of g are given by A’¢(g) = {ﬁ—i— (8,8) ]5 j>1,8¢€ A( )}UA+( ).
Thus the Cherednik kernel of g becomes

H H ]_ — te‘ﬂq] (B.8)/2 )(1 — teﬁq(]+1)</3»5>/2)
BeAL () 7

(3.5.7)

Applying [6, theorem 5.3] with R chosen to be the coroot system of a yields equation O

To simplify notation, we let (ai,az, -+ ,ap; %) = [[1o; [I02 (1 — @iz™). Let us now

separate the contributions of long and short roots in equation |3.5.6| . Define

_ (t"*q; ¢) oo
Ki(q) (resp. Ki(q)):= ][] Thtat i o
° (t Q7 Q)OO
a€AL(g)
o short

(resp. long)
Since (o, ) /2 is 1 (resp. r) if « is short (resp. long), proposition implies
ct(10) = Ks(q)Ki(q")

Now, for each k > 1, let ny (resp. ng(s)) denote the number of positive roots (resp. short
positive roots) of E of height k. This gives

(tg;q)
[T,5: (7 g ol

K(q) = Ks(q)Ki(q) =

where [ is the number of simple roots of E; Similarly,

(tg; )™
[1,51 (tP1g; ) () mwea(®)

Ki(q) =

32



where m is the number of short simple roots of E; We recall the following classical result (see,
for example, [12]) relating the nj and ng(s) to generalised exponents of certain representations
of 5

Proposition ([12]). With notation as above, n, — nyi1 is the number of times p occurs as an
exponent ofE] (i.e., as a generalised exponent of the adjoint representation V(0;)). Similarly,

np(s) —np+1(s) is the number of times p occurs as a generalised exponent of the representation

V(0s) of 5.
Now, rewriting Ks(q)K;(¢") = K(¢") K:(9) 4 d using propositions [3.4.1| and we get

) (tg; q) (t"*q";¢") oo
ct(f1©) = (t¢"; 4" ) o !
( ) ( ’ tq q m H tp—l—lq q ) ];AE[1 (tp—l—lq; Q)oo

We now observe that [ = multjé for j =0 (mod r) and m = % = multjé for j=£ 0 (mod r).

Thus, the above equation can be rewritten as :

Ct(ﬂ@) _ H( n mult(n6 H H — te+1

n>1 n>1ecky,

Lemma[3.4.12{now completes the proof of theorem for all twisted affine algebras g # Ag).

3.6 g=A

3.6.1 Proof of theorem 3| for g = A(Z)

In this section, we consider the case g = Ag). The underlying finite dimensional simple Lie
algebra is E; = (). Let & be the set of roots of E; Letting (-, -) denote the standard inner product
in R! and ¢; (1 <4 < 1) be the standard orthonormal basis, we can take A= {xe;te 1<
i < j <1}U{£2¢ : 1 <i <I}. We observe that the coroot lattice M of g is just M = ®t_,Z¢;.
The set of real roots of g is given by A™ = S;US>U Sy where 51 = {3(a+(2n—1)8) 1 a € &l},
So={a+mnd:ac &3} and Sy = {a+2nd : a € &l}, where ¢ is the null root of g and &l
(resp. &S) denotes the set of long (resp. short) roots in A. The elements of S, have norm
n (n = 1,2,4), and each S, is invariant under the Weyl group W of E; Let 1 denote the

Cherednik kernel of Ag), given by equation .
Now enlarge A" by defining:

d .= Uq> where @) := (1/2)8y, &y := Sy, &3 := Sy, &y := 25;, 5 := Sy
i=1

The set @ is the non-reduced irreducible affine root system of type (C)’,C;) in the classifi-
cation of Macdonald [30]. Observe that & is W-invariant, with each ®; being a W-orbit.
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Following the notation of Macdonald [30], define R := {e1, -+, ¢} and Ry = {¢; £¢j: 1 <
i < j <I}. Wenow let k; (1 < i < 5) be arbitrary parameters, and let (u,us,us, ug) =
(qkl,—qu,qk3+%7—qk4+%) and (u},ub,us, uy) = (qui,qua,us,us). The Cherednik kernel A
(with parameters k;) for the non-reduced affine root system ® then becomes A := A A®?)

where

A _ H (e, ¢€**; @)oo

wcR} [Tiz (wie=®; @)oo (uje; @)oo

—Q .,
A(Q) — (6 ,q€ 7Q)oo
(XLL (g e, gk e q) o
2

[30]. The following lemma relates the kernels A and f.

Lemma 3.6.1. Define t := ¢*, and let the parameters k; satisfy the relations ks = ks = 2k; =
2ko. We then have:

1. Ifky =0, then A = fu.

1O

2. If ky — oo (ie, ¢* — 0), then A — @ q)
q;9q

where M = @ﬁzlzei and Oy =
Y aeM e®ql@® /2 s its theta function.
Proof. The first statement is easy; in fact one can recover the Cherednik kernels of all twisted

affines (and all non-reduced affine root systems) by appropriate specialisation of A [30]. To

prove (2), we observe that for the given choice of parameters, one gets

Now, by the Jacobi triple product identity, we have
. e _ 2 . _
(—q"%e%, —¢" e q)oo = (30) 7" D " ™ = (450) Oz,
nez
Since the theta function ©jp; of the rectangular lattice M = @ézlzei is just the product

1., ©z,, the result follows. O

To obtain the explicit form of the Cherednik-Macdonald-Mehta constant term identity for
Ag) (i.e., an expression for ct(ft ©)r)) it thus only remains to specialise the well-known formula
for ct(A) [[30], equation 5.8.20] at k3 = k5 = 2k; = 2ko and kg — oo (and letting ¢*> =: t).
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Proposition 3.6.2. Forﬁ = Ag), we have:

) (tg; q):
ct(On) = Cp
(t2¢%,t4q?, - - ,t%q%; %) oo (3¢, 10q, - - , 12 H1q; ¢?) o

Proof. We start with some notations (see [30]): tatsa? = g for a € ® such that 2a € ®
andtéa:qk2a,whereka:k,~f0ra€<I>Z'for1 <i<b5andt, =1ifa ¢ ®. Let k] =
(k1 +kot+ks+ka), Ky = 3(ki+ko—ks—ka), kb = 3(k1 —ko+ks—ka), Ky = 3 (k1 —ko— ks +ka).
B := {aetl):a:b—f-k‘é;beﬁ_}.

Now ct(A) is given by the formula:

ct(Q) = (A 1 Ay _)(—pw) by [30] [equation 5.8.20] (3.6.8)
where A_ = H Aqr by [B0] [equation 5.3.11] (3.6.9)
Bk
and A, = L gthet 130 [equation 5.1.2] (3.6.10)
oK =T 1. 6.
l
and pj, = (k) + (I —i)ks)e; [30] [§1.5] (3.6.11)
=1

Theset B={—¢+nd:n>1,1<i<}U{-2¢+2n0:n>1,1<i<}U{—€¢+ (n+3)5:
n>0,1<i<}U{-26+2n+1)0:n>0,1<i<}JU{—-(6+¢€)+nd:n>11<i<j<
BU{—(ei—€)+ndi:n>11<i<j<lI}

Now we calculate the right hand side of the equation [3.6.8}
Case 1): Let a = —¢; +nd € BN &

then
1— 62(1

(1 _ qk’(a)ea)(l + qk/(Za)ea)
Here k'(a) = K since a € ®] and k'(2a) = k% therefore

VAV A IS by [30] [equation 5.1.2]

1 —e2e ! , )
Ay Aga i (—prr) = (= qFen) (1 1 gbet) (— 3 (k) + (1 - z)k5)ei>

NOW e(a"*pk/) = qk/1+(lfi)k5qn

!
1qu1 e

Since k] — oo as k4 — 00, the term < 1™ > (—prr) = 1 and

1 ( ) 1
1— qk’l el Pk 14+ qkéqk/1+(l_i)k5qn
But as k| + kbl = k1 + k2 we get

1

Aa,k’ AQa,k/(_pk/) = 1+ qk1+k2+(l—i)k5qn
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Case 2): Let a = —¢; +nd € BN &

Then
1— 62(1

(1 _ qfk’(a)ea)(l + qfk’(Za)ea)

Aa,—k’ AQa,—k’ =

The numerator — to 1 as kj — oo.

The first term in denominator is

1 —_ qikl167<a77pk/> — 1 — qikllqkll+(l71)k5qn

-1— q(lfi)kg)qn‘
Second term in denominator is
14 qfkéqk’1+(lfi)k5qn 14 q(k’lfk’Q)q(lfi)kggqn

But k) = %(k‘l +ko—ks—k4). Therefore k} —kl, = ks + k4 — 00. So second term of denominator

tends to 1. Therefore .

(Aa,—k’ A2a,—k’)(_pk’) = m
Case 3): Let a = —¢; + (n+ 3)0 € BN ®F.

Then
1—e2a

(1= gMse?) (1 + gkie)

Now since k} — oo and kf + k] = k1 + k3 and kj + k| = k1 + k4 — oo, we get

At Aog e (—prr) = (—pwr)

1
1— qk1+k3+(l—z‘)k5qn+%

Aa,k/ A2a,k’(_pk’) =

Case 4): Let a = —¢; + (n+ 1) € BN ®F.

Then
1 — e2@

Aa,*k’ AZCL,*k/(_pk/) = (1 _ q—kgea)(l + q—k4ea

)(_pk/)
Now using k] — kf = ko + ka — oo and k] — kjy = ko + k3 we get,

1
1 4 ghathat(=iks gn+3

Aa,k’ AQa,k’(_pk’) =

Case 5): Let —(¢; +¢j) +nd € B € ®F

1— €2a
1 — gksea)(1 + g—Fse0
q q

As ela—pp) — q2k/1+(lfi+lfj)k5+n — 0 and qu+2k’1 — 0, we get

A Ag i (—pr) = (—prr)

Aa,k’ Aa,—k”(*pk”) =1
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Case 6): Let —(¢; —¢j) +nd € B € ®F

Then
1—e”
A 1\ — ! = ——\ — !
a,k( Pk) 1_qu ( pk)
1 f— q q(]_i)k5

1— qnq(jfz#l)ks
]_ — qnq(]_z)kf)
1— q”q(j—i—l)k?s
(1 — qnq(]fz)kf))Z
1 — qngU—i+Dks)(1 — gngli—i—Dhks)

similarly A, _p(—pr) =

SO Aa,k’ Aa,fk/(_Pk/) = (

Now we write total contribution of every case.
Case 1:

1
H H 1+ q(l —itDks+n Hl‘ (=g )

n>11i=1 J=
Case 2:

1
11 H =kt TN (7% 0) 0o (0 @)oo

n>1i= 1

Cases 3 and 4:

1 1
111 = (1 T | = e
k3+(l i+1)ks+n+i k3+(1—i+1)ks+n+3 szl (q2k3+]k5+1; q2)oo

nS0i=1 1 — nS0i=1 1+ 4a
jodd
Case 5:
1
Case 6:

H H 1_q q(j Z)195) B H (q(] l)k5+1,q)
1 —q q(g z+1)k5)(1 —q q(] i— 1)k5) - (q(j—i+1)k5+1;q)oo(q(j i— 1)k5+1;q)oo

n>1 1<l<]<l 1<i<j<l

Consider the product in case 6. Denoting u = ¢*5 , since ¢; — €;,1 <1 << [ are the positive

roots of A;_1, we can write this product as

I (u@g; g)2

EAE (A1) (uht@H+g + 15 q) oo (uP (¥ ~1g; ¢) oo
re -1

where ht(e;;) = j — 4. But for A;_;, by height configuration, the above equation becomes

(ug Q)b (¢" 1)L,

(@)% (g o (¢50)5% (¢FEDH; )
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Therefore the expression for ct(A) becomes

ks+1. .\
3.6.12)

(G0 TTE_ (q2k)+2;¢2) (qPhstikst1:q2)

ct(A) = (a

Now letting t = ¢* and t = ¢* in above equation and using lemma m (part 2) we get

2l

1 1
ct(2Ou) = (t: )b | s I (3.6.13)
o1 W% = (t7724;¢%) oo
jeven jo

which is the desired identity. a

Now by lemma [3.4.12] we have
ay°(g;t) = ct(e™™ frchL(Ao))
= @"ay0 (g, 1)et(A O)

so by lemma [3.4.12 part 2 we have
A
aAg(q;t) =

So using equation [3.6.13] we get
2
1 1
Ao(. 1) —
f) = . :
CLA() (q ) ]]1 (t]q2, qQ)OO H (t]+2q; q2)oo
jeven jodd

which completes proof of theorem for Ag) case.

3.6.2 Two variable generalisation

One can prove a slightly more general, two-variable version of theorem for g = Ag). To
state this, let s,¢ be indeterminates, and define the two-variable Kostant partition function

P(B; s,t) to be the coefficient of ¢” in the product H (1 — g e®) ™™ where u, := s if a

a€A4(g)
is a real root of norm 1 (=shortest root length) and u, := t for all other roots (i.e., imaginary

roots, and real roots of norms 2 and 4). For a dominant integral weight \ of Ag), and a

maximal dominant weight p of L()), define the two variable Kostka-Foulkes polynomial

Ku(s.t) = 3 e(w) Pw(h+p) = (u+ p); 5.t)
weW

and let the corresponding (s,?)-string function for the basic representation be aﬁg (s,t,q) ==

Z Ko Ao—ps(s,t) ¢°. The following is the two variable version of theorem [3.4.3|
p=0
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Proposition 3.6.3. For g = Aé?),

21

ay(s,t,q) = [[ Pd%a) H (s*t¢; %)
=1
j]even _]Odd

Proof. The proof is along the exact same lines as that of proposition but now with
parameters chosen differently. We choose k5 = 2k1 = 2ko, k4 — 00, but leave k3 as a free

ks

parameter. We then take t := ¢* and s := ¢*. The remaining details are easily checked. O

Corollary 3.6.4. KpjA,—ps(s,t) € Zx>o[s,t] for all p > 0.

Finally, we remark that it would be of interest to find a more natural explanation for
the positivity result of the above corollary (or more generally, for Ky,(s,t)) in terms of a
Brylinski-Kostant type filtration, as is known for the usual (one variable) affine Kostka-Foulkes
polynomials [37]. We also note that the two variable Kostka-Foulkes polynomials can be defined
for all twisted affines (in fact, for any affine root system with more than one root length) and
in more than one way (corresponding to different choices of the u, in the definition). But it
appears, from preliminary calculations, that only A( ) (with the given choice of u,) exhibits

the positivity property of corollary [3.6.4]
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Chapter 4

Affine Brylinski-Kostant filtration
(1)

on the basic representation of A;

Consider the affine Lie algebra Agl). Let us consider its basic representation L(Ap). By theorem

B.3.1] we have .
A 2 k
axg(t:a) = D Ko st H (117
n>0 k=1
By comparing the coefficients of the above expression, we get a formula for the Kostka-Foulkes

polynomial which is,
K//X\g n6 ) — ZtQ(#ﬂ')
THn
where #7 is the number of parts in the partition 7 of n.

Slofstra [37] shows that the affine Kostka-Foulkes polynomial K ;}(t), where A and p are dom-
inant, is equal to the Poincaré series of the associated graded space of affine Brylinski-Kostant
filtration on L(\),. This extends Brylinski’s result [I] (which is for the finite dimensional simple
Lie algebras) to the affine Kac-Moody algebras.

In this chapter, for g = Agl), we give a basis for the space L(Ag)a,—ns for n > 0, which is
compatible with the affine Brylinski-Kostant filtration. Using Slofstra’s theorem this gives an

alternative derivation of the expression for a°(t; ¢).
Ao

4.1 Heisenberg algebra

Definition 4.1.1. The Heisenberg algebra is the complex Lie algebra with a basis {an,n €

Z} U{h}, and commutation relations

[h,an] =0 Vn €7Z
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[an, am] = My, —nh Vm,n e€Z

4.1.1 Homogeneous and principal Heisenberg subalgebras of affine Kac-
Moody algebras

Let g be an affine Kac-Moody algebra. Let e; and f; for ¢ = 0,1,2,...,1 be the Chevalley
generators. Let § be its null root and b denote the Cartan subalgebra of g. Recall that g,s
denotes the root space of g with corresponding to the root nd for n # 0. Let K be the central
element of g.

The homogeneous Heisenberg algebra H of g is defined as

H=CK+ g 9s6
SEL
s#£0

A principal nilpotent element of the affine Kac-Moody algebra is an element of the form
Zﬁ:o cie; where ¢; € C — {0}. For a principal nilpotent element E’ of g, the Lie subalgebra
defined by

sp={reg:[z,F] € CK}

is the principal Heisenberg algebras of g.

4.2 The affine Brylinski-Kostant filtration

Let m be a finite dimensional simple Lie algebra and V' = V(\) be the irreducible finite dimen-
sional m -module with highest weight A. Let m = Ny & H & N_ be a triangular decomposition
and let £ € Ny be a principal nilpotent element of m. Let V(X), be a weight space of V()).
Recall from chapter 3| § that the Brylinski-Kostant filtration for V(\),, with respect to the
principal nilpotent element E is given by

FEVW ), € FOWV M), € FOWVA),) C -, where FP(V(A),) := ker (EP*1) N
V(A)u. The Poincaré series (polynomial) of the associated graded space of this filtration is
defined as

PXt) =Y dim (FOV(A),/FOHV ), ¢
i>0

where f(*l)V()\)u = 0.

Brylinski [I] proved that, for A and p dominant, Pl;\(t) is equal to the Kostka-Foulkes
polynomial K [}(t) Slofstra [37] extends Brylinski’s result to the affine Kac-Moody algebras.
He shows that in the affine case, a principal nilpotent element is not sufficient to define the

filtration, but one has to use the positive part of a principal Heisenberg subalgebra.
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Let g be an affine Kac-Moody algebra. Let ny @ h @ n_ be its triangular decomposition.
Let L(\) be a highest weight irreducible integrable g-module, and p be a weight. Let s be
a principal Heisenberg subalgebra of g. Then the affine Brylinski-Kostant filtration for the
weight space L()),, is defined as [37]

FEVNLAN) € FOULMNL) € FOULMNL) € -+
where
FO(LA),) :={ve L\, :a? v =0V zesnny}.
Now we are in a position to state Slofstra’s theorem.

Theorem 4.2.1 (Slofstra, [37]). Let L(\) be an integrable highest weight representation of an
affine Kac-Moody algebra g, where X is a dominant integral weight. If i is a dominant weight
of L(X), then
A T
Pi(t) = K, (t) .
421 g=AY
We now consider the affine Lie algebra Agl). Let h, e, f be the usual basis of sly. Let L(Ag) be
its basic representation. Following Lepowsky-Wilson [22], for an odd integer j, define
Bji=e®t'T +fRtT
and . .
Cji=—exts +fat's.

For non-zero even integers j define
Hj:=h®ts

and )

The Bj,C; and H; satisfy the following bracket relations [22]:

[Bj, B] = j6j, kK (4.2.1)
[Cj, Ch] = =61 K (42.2)
[H;, Hy) = jo; 1 K (4.2.3)
B;, Hy) = 2C; 4, (4.2.4)
[Cj, Hy] = 2B, (4.2.5)
[Bj, Ck] = 2H 1, (4.2.6)



Let s := span({B; : j odd} U {K}) and H := span({H; : j even} U {K}). Then s and H are
the principal and homogeneous Heisenberg algebra of g respectively. Note that here s = sp
for ' =e®1+ f®t.

It is a well known fact that for the basic representation L(Ag) of an affine Lie algebra, the
principal Heisenberg algebra acts irreducibly. On the other hand the homogeneous Heisenberg
algebra does not act irreducibly on L(Ag) [15].

As s acts irreducibly on L(Ap), by the standard theory of the Heisenberg algebra we have
L(Ag) = Clz1, 23,5, ...] and where for all odd j > 0 B; acts as the operator %% and B_;
acts as 27T, where the operator T); denotes left multiplication by .

Now, s N ny = span of{Bj : j odd > 0}. So the affine Brylinski-Kostant filtration with
respect to the principal Heisenberg algebra s is given by F®)(L(\),) = {v € L(\), : 2PTlv =
0V x €sNny} or equivalently

FPULA),) = {v € LA : ByBiy -+~ Bi,,v = 0VY 1,2, ..., ips1(0dd) > 0}.

tp+1

Since for all odd j > 0, B; acts as operator %%, we see that if f € F®)(L()\),), then

BiBiy -+ Bi,,, f =0V i1,i2,...,ip+1 > 0. This implies that the usual degree of f in variables

1,73, T5, - is atmost p. Therefore we have

FPLN),) = {f € (L(\),) : udeg(f) < p}

where udeg(p) denotes the usual degree of polynomial p. Using this we see that the quotient
space
FE(LNW)/FP(LAN,) = {f € L(V), : udeg(f) = p}.

To state our main theorem, we need to recall the Sugawara operators.

4.3 Sugawara operators

Let g be an affine Kac-Moody algebra. For simplicity, we assume that g is an untwisted affine
Lie algebra. Let E; be its underlying finite dimensional simple Lie algebra. Let u; and u’ be
dual bases of E with respect to Killing form i.e., (u;,u/) = &;;. Let u™ denote t" ® u where

nezr, uc B The Sugawara operators T,,(n € Z) of g is defined as

=Y w23 ul i

n=1 1

T, = Z Zug_m)ui(er”) for n #0

meZ 1

Similarly for the algebra f)(f]) = C[z,7 ! ]®h@®CK, where b is Cartan subalgebra of 5, we define

the Sugawara operators T}, (n € Z) as follows. Let h; and h’ be dual bases of h and as above
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h(™ denote t" @ h for an integer n. Then

To_Zh h’+2ZZh —) pi(n)

n=1 1

T, = Z Z hg_m)hi("”r”) for n #0
meZ i
Let L()\) be a highest weight representation with level of A equal to k € Z>(. Define Lj, :=

5 +hv)T and c(k) = % where T, are Sugawara operators obtained from g and h" is

the dual Coxeter number of g. Similarly we define Lh = 5-T;, and z(kz) := dim(h) where T,

_ o
are Sugawara operators obtained from L(h).

We recall the term Virasoro algebra.

Definition 4.3.1. The Virasoro algebra is the complex vector space with basis {d,, : n € Z}U{c}
and commutation relations
[dm, c] =0,
m3 —m

[dm, dn] = (m — n)dm+n + 6m’_nTC .

Let us define L&Y := L8 — LY. We state the following proposition from [I5]

o

Proposition 4.3.2. 1. L% commutes with L(h) as operators on L()).

o

2. The map d,, — Ln ,c — c(k) — c(k) defines a representation of Virasoro algebra on L()).

The action of the operator L%’h on L(A) is called the coset-Vir action and L(A) is called
coset-Vir module with respect to this action.

Now consider the module L(Ag). In the following proposition we recall some of the facts
from [15].

Proposition 4.3.3. 1. The coset Vir action is trivial on the highest weight vector va, of

L(Ag), i.e., L%’thO = (L} — L?l)’UAO = 0. Therefore Ljvp, = LZUAO.

2. The coset Vir action on L(Ag) commutes with the action of L(h). Therefore [LE—LY, x] =
0V z e L(h)

3. Let V := @®p>0L(Mo)ag—ns = U(L(h))va,. By (1) and (2) above we see that the coset
Vir action s trivial on V, i.e., the Virasoro operators obtained from g and the Virasoro

operators obtained from f/(b) act in the same way on V.
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1
4.3.1 Sugawara operators for Ag )

Let g = Agl), and let (e, f,h) and (f,e, %) be dual bases for slo. Then the Sugawara operators
for the Agl)—module L(Ag) are given by

L% = é Z [e(—m)f(m+n) + f(—=m)e(m + n) +h(—m)g(m+n)] Vn #0
meEZ
and
L%zé(()f()ﬂ”()( +2Z[ e ><n>+h<—n>h§)])

where z(m) denotes z ® t™. Similarly for the Lie algebra L(h), we have for n # 0

1h = LS o)

and
L) = 7(71
0 + Z h(= 2

Now consider the homogeneous Heisenberg algebra # generated by Ha; =: H(j) for n # 0
and Hy := H(0) = hg — K. Note that h(n) = Ha, =: H(n) for n # 0. Define the Virasoro
operators with respect to H by

ZH ) forn #0
meZ
2 X n
ry =110 +ZH(—n)H;>

n=1

Then we see that L# = L?L — %”) for n # 0. So define 8 = L% — # for n # 0.

From proposition 4.3.3 part 3 we note that LY = L¥ for n # 0 on V. Let for a polynomial
fe ]:(j)L(AO)AO_S(;, f denote image of f in the quotient F(j)(L(AO)AO_S(;)/F(j_l)(L(AO)AO_sg).

Now we are in a position to state our main theorem :

Theorem 4.3.4. Let g = A(ll). Let r > 0 and k > 0. Then a basis for the quotient space
f(2k)(L(AO)AO_N;)/}"(%_D(L(AO)AO_T(;) is given by the set

(LI LT Ll opg : 0> nge > gy > -+ 2> ng and ng +ng + -+ +np = —2r}

ni—n2°

From above theorem, we deduce that
dim F®¥ (L(Ao)ag—rs) /FE* D (L(A0) pg—rs) = P(r, k)

45



i.e., the number of partitions of r in k£ parts. We also note that
dim FE*D(L(Ag) ag—rs)/FH 2 (L(Ao)ag—rs) = 0 . (4.3.7)
To see this let us define the depth for the weights of module L(Ay).

Definition 4.3.5. Let g be a Kac -Moody algebra and let V' be a highest weight module of g.
Let X € P(V) be such that A — X =>"" | a;je;. Then depth of X denoted as dep(\) := Y " | a;.

By this we have a gradation L(A) = ©gezL(A)q defined by L(A)g = Ogep(r)—aL(A)y. Now
consider the case where g = Agl) and L(X) = L(Ag). Then dep(Ag —rd) = 2r and we note that
Bj;(L(Ag)a) € L(Ag)g—; for an odd integer j. To prove equation we need to show that
there is no nonzero odd degree polynomial in (L(Ag)p,—rs-

Now assume contrary. Let there exist 0 # f € FCF~D(L(Ag)ag—rs)/F "2 (L(Ao)rg—rs)
for some £, i.e., f has usual degree 2k—1. So there exists ji,- - - , jog—1 such that By, --- Bj,, | f =#
0 € C. So the nonzero element Bj, --- Bj,, ,f € L(Ag)a, and Ag has depth 0. But the element
B

J1° e ]2k 1

f lies in the space which has depth 27 — (ji + - - - 4 jor—1) which is an odd integer
and we get the desired contradiction. Using this observation and Slofstra’s result, we have the

following corollary:

Corollary 4.3.6. Let g = Agl). Let L(Ag) be its basic representation. Then

0
2 n
a/\o H —tq

Proof. As
dim F2 (L(80)g-rs)/ FE (L (R0)g-rs) = P(—1,K)

So by theorem and by equation [£.3.7 we have

A 2
Ky) s(t) = Zt (#)
=n
where #7 is the number of parts in the partition 7 of n and the result follows. O

4.4 Proof of theorem 4.3.4]

The first step to prove the theorem is to prove following proposition.

Proposition 4.4.1. Let g = Agl). Then LY, L3,...L8, vp, € FP¥)(L(Ag)p,—rs) where n; < 0
for1<i<kandni+ng+---+np=—2r.
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Proof. The key step is to prove that for n < 0, L% (va,) € F(L(Ao)agsns). As L = L it
is clear that L$(va,) € L(Ag)agtns - So for j odd, let us compute the bracket [B;, LY):

- -_ o ; o h
B, L8] = fe @ '3 L) + [ & 0% 1] - (8;, ")

I — 1 j— +1 j 1
= (et T+ (%)(f@m%ﬂ) — 5Cjian by [15,§12.8],, and by equationf1.2.4
] 1 1
= 5Biton + 5C5+2m — 5C542n
J
= 5 j+2n

Now consider for positive odd j

Bj - I:gl "UAo = i% " Bj - vp, + [Bj7LgL]UA0

As for j > 0, Bj-wva, = 0, we see that B, - LY - vz, = [Bj, L%]va, from commutation

relations of B;’s, for positive odd j; and j2, we have
B..B. ia — jﬁ B. B.:
1 Bj, Lhva, = ( 2) 71 Pj1+2nVAg
So
leBjQLgLUAO = [Bj1ij2+2n]vA0

Therefore for odd ji,j2,j3 > 0, we have leszBjSﬂ%UAO = 0 or equivalently B3I~J%UA0 =0
VB € s Nny. This proves that for Vn <0, LY € F? (L(Ao)Ag+ns)-

Now consider
BP(LS L8, L8 Jon, = S <<(ad3)p1i§1) ((adB)p2£§2> ((adB)p’“E%k>> VA,
p1+p2+...+pr=p

We see that if p > 2k+1 then at least one of p;’s should be greater than or equal to 3. Therefore

the above expression is zero and proof is complete. O

Next step is to prove following proposition.

Proposition 4.4.2. Letg = Agl). Then LI LT ... LT vy, € FR(L(Ao)ag—rs)/FP* D (L(Ao) rg—rs)

ny—ng-*
is nonzero (i.e.,udeg(L}t LIt ... L} vy,) = 2k) where ny,na, -+ ,np € Zeg and ny +ng + -+ +
ng = —2r.
Proof. As

o j
[Bja LgL] = §Bj+2n'
So we see that for n < 0

) ,]2
Bj, Bj, Lo, = (5) Bji Bji+2nva,
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leszLgLUAo = [leijerQn]UAo

= Bj,Bj,L8vp, # 0 if j1 + jo = —2n. (4.4.8)
As B3L{vp, = 0,YB € s Nny, the term Bj, Bj,...Bj,,_, Bj,, L%, LY,...L3, va, has the fol-
lowing expression
Z [Bja(1)7 [Bjo'(Q)’Lgbl]][Bjo(S)7 [Bja(4)7L%Q:I]"'[Bja@kfl)’ [Bja(2k)7Lglk:|] VAo

gESoy
where S,, denotes the permutation group on n letters. Therefore by the equation [£.4.8] we have

leng---Bj%_lBj2k£%1E%z-~-E%kvAo # 0 iff 3 a o € Sy such that jo‘(l) +jo-(2) = —2n1,j0(3) +

Jo(a) = —2n2, s Jo(2k—1) + Jo(2k) = —2nk. But for LY LI L} vy, with given condition on
n;’s clearly there is a choice of j;’s for which there exist a o € Sy, which satisfies the desired

condition. O

Now as mentioned before we have L(Ag) = Clz1,x3,5,...]. We embed the quotient
space F(2) (L(AO)AO,M)/]—"(%_I)(L(AO))AO_T(; into the space of homogeneous polynomials in
x1,x3,xs5... of usual degree 2k.

Note that L8, L8,..L8 va, € .7:(2’““)(L(AO)AO_M)/]—'(%_D(L(AO)AO_T(;) is a linear combina-
tion of monomials zj, zj,...z ,, satisfying the property that 3 a o € Sy such that j,(1)+Jjs(2) =

=2n1, Jo3) T Jo(4) = —2N2, s Jo(2k—1) T Jo(2k) = —2Nk-

Given a partition 7 := ng > ngp_1 > -+ > ny of —r with negative parts define m(n) :=
T 9py 1T —2py—1° " T—on,—17%. Observe that m(r) = m(n’) implies 7 = 7. Let denote
i%lig2...i%kUAo =: i?rUAO and for a monomial f = zjxi,i,...x;, we define its dual by

By := B Bi,By;...B;, € U(s). Note that for a nonzero monomial f, B¢(f) = c(f) is a
nonzero element of C. Now, let us define the order ‘<’ on the monomials. For i; > i9 > - > 4
and ji > jo > --- > jy amonomial f = x;, @i, - - - T, < g = Tj,Tj, - - - x;, iff there exists m where

1 < m < such that i = ji Yk < m and i,, < jn,. Let us state the following important lemma.

Lemma 4.4.3. L3vy, = k(m)m(w) + a linear combination of monomials & of udeg 2k such
that € < m(rm) , further k(m) # 0.

We prove theorem modulo the above lemma. Let P(—r,k) = m and 71,72, ..., Ty be

all the partitions of r into k parts such that m,, < mp,_1 < --+ < m. Assume that

c1Lrvpy + caLlp,vng + -+ + cpLg,, 00, =0

Then applying By, (r,) to above equation, and using lemma we have ¢1k(m)e(m(m)) =0
where c¢(m(my)) # 0 and k(1) # 0. This implies that ¢; = 0. Similarly applying B,,(r,) to the

equation

CQEWQUAO + ...+ cmflﬂmv/\o =0
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we get co = 0. Continuing in the same way we get ¢; = 0 for 1 < ¢ < m. Now we prove the
lemma [4.4.3]

The monomials appearing in f/,gvaO are Ty, Tiy...Tiy, such that i,y + ig2) = —2n1,is3) +

o

Go(4) = —2N2, .oy ig(2k—1) T lo(2k) = —2ng. Let assume for contrary, let § = x;, xj,...xj,, where
Jj1 > jo > ... > jop > 1 such that m(m) < & and £ appears in ﬂ%vAO. This implies that
j1 > —2n1 — 1. If j3 > —2ny — 1, then j; + 1 > —2n; which is not possible. So j; = —2n; — 1.
By continuing this way we get jo = —2no — 1, ..., 5k = —2nk — 1, jk41 = 1, ..., Jox = 1. This is

the desired contradiction.
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Chapter 5

The t-string functions of Agn

Let g = A\ = C[z,271] ® sy & CK & Cd. Let A € Py be of level m > 1 (ie., (A, K) = m).
Let L(A) be the corresponding irreducible highest weight module. Kac and Peterson [1§],
have explicitly computed the string functions corresponding to the g-module L(A), and shown
them to be related to the product of Dedekind eta function and the Hecke indefinite modular
forms. In this chapter, we give a t-analogue of this result, i.e., we give a formula for all t-string
functions of the g-module L(A).

For g = Agl), let b be its Cartan subalgebra and let A C h* be the set of roots. Let Ay be
the set of positive roots and {ag, a1} be the set of simple roots of g. Let Q = Zag ® Zay and
P be the root and weight lattices of g. Let B = sly and 52 = Zay and 1% = Z % be the root
and weight lattices of E; Let W be the Weyl group of g generated by reflections rq, and rq,,
which we denote by rg and r;. Let V(E/ be the subgroup generated by r;.

Let p € h* be a Weyl vector, which satisfies the relation (p,a;) = 1 for i = 0,1. Define
o € GL(b*) such that o(ag) = a1,0(a1) = ag,0(p) = p. Note that o leaves Q and Q + p
invariant and normalises W, since or;o™! = To(a;)- Consider the group W, :=< o > x W.
Note that A, @, Q + p are invariant under W,. Let us consider a shifted action of W, on Q by
w.ao = w(a + p) — p. This induces an action of W, on functions on Q by (w.f)(a) = f(w™'.a),
so an action of C[W,] on functions on Q. We note that W, ~ I/?/ X 103, the extended affine Weyl
group.

Recall from chapter 2 that the Kostant partition function and ¢-Kostant partition function
P(B) and P(f;t) are given by

P(B) = le™”] -
al;[+ (1 —e—@)ma
and .
,P(ﬁvt) - [675] H (1 _ te_a) -



We note that P(83), P(8;t) are elements of &, the set of all series of the form ) . B(t) e
B,\(t) € C[[t]] and By = 0 outside the union of a finite number of sets of the form D(u), p € b*.
Let A € Py beof level m > 1. Let L(A) denote the corresponding irreducible highest weight

representation of g. For A € h*, define the string function

A(g) = ¢V Z multy (A — s0) ¢° (5.0.1)
s>0
where ) L,
A+p2 A 1
sa(A) —nO(A—)\)+2’(m+|2) _‘277‘1_8 . (5.0.2)

Here, & denotes the image of o under the projection from h* to b and ng is the function on @
defined by ng(apag + a1aq) := ag Y ag,a1 € Z. Note that for A € max(A) (chapter [2| §
Aq) = ¢ Maj(g).

1
5.1 Weyl group of A(1 )

Recall from chapterthat for an affine Lie algebra g the Weyl group W is given by W = W x T,

where T is the group consisting of the endomorphisms

£N) = A+ O\, K)a — (L a) + é|0z|2<)\, K)o (5.1.3)

where o € M and M = V(Z(Vc[)/'ﬂv)). For g = Agl), M = é and so T = {tpa, :n € Z} . So it
follows that W is generated by 1 and ¢,, . Recall that the extended affine Weyl group is given
by W= W X T where T is a group consisting of the endomorphisms ¢, where o € P So W is a
group generated by r; and t%l. Let us denote 7 := t%. Then we have W = {t", 7" :ne€Z}
and W = {72, r172" : n € Z}. Now we make a useful observation: 7 = or; . To prove this,

let a1,60 and p be a basis for h*. We will show that 7 and or; are equal on the chosen basis.
For

T(1) =tay (1) = a1 —§ = —ag = ori(ay) by equation

2

and
7(8) =0 = or1(9)
and
T(p)=p+ar—0=p—ap
but

or1(p) = 7(p — u) = o(p) — a0 = p— ao -

Now we briefly recall the term Hecke modular form.
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5.2 Hecke indefinite modular form

We follow [18] closely. Let U be a two dimensional real vector space, M be a full rank lattice
in U and let B’ be an indefinite symmetric form on U such that B'(v,v) is an even nonzero
integer for all nonzero v € M. Let M* :={v € U : B'(v,V/)) € Z Y v € M}. Let Gy be the
subgroup of the identity component of the orthogonal group of (U, B’) preserving M and fixing
M* /M pointwise. Fix a factorisation B'(v,v) = l1(v)l2(v), where [ and [y are real-linear, and
set sign(v) :=sign l;(v) for [1(v) # 0. For u € M*, set

) 1

Orrpi= ), sign()g” ).
veL+p
B'(vv)>0
vmod Gy

The 0y, is called a Hecke indefinite modular form. It is a cusp form of weight 1 (with ¢ = e2miT

where 7 € upper half plane). For more details see [18].

Let U := Rag @Ray and M := Zay ©Zaq. We identify M with Z? and U with R?, let m > 1
and define B(z,y) := 2(m + 2)2% — 2my? be a quadratic form on U. Let the corresponding
indefinite symmetric bilinear form be B’. Note that B # 0 on M — {0}. The dual lattice of
M with respect to B is M* = mz <) ﬁZ. Let a be the element of the identity component
SOy (U) of the orthogonal group of (U, B) given by a(z,y) = ((m+1)z+my, (m+2)z+(m+1)y).
Then a generates the subgroup G} of SOy (U) preserving M, and a? generates the subgroup
Gy of G, fixing M* /M pointwise. Let us define an element J : U — U by J(z,y) := (—z,y);
we note that J normalises Gy. Define the group G :=< J > x G and G’ :=< J > x G{,. Let
Ut :={u €U : B(u) > 0}. Then it is easy to see that Fy := {(z,y) € R? : —|z| <y < ||}
is a fundamental domain for G, on U™, and FyJ aFp is a fundamental domain for Gp on U™.
Set F:= {(z,y) e R2:0<y <xor0>y >z} Then clearly Fj = FUJ(F) and F is a
fundamental domain for G’ on U™.

Let A € Py and A(K) = m > 1. Let L(A) denote the irreducible g-module with highest
weight A. Let A be the maximal dominant weight of L(A) such that A(agp") = No and A(a1") =
Nip. As X is maximal dominant we have A — A\ = loy; where i = 0 or 1 and [ € Z>o. But it is
easy to see from definitions that cﬁ} (q) = cggﬁ)) (q), so we assume without loss of generality that

A — X =lay. Now we state a theorem of Kac and Peterson.

Theorem 5.2.1 (Kac-Peterson). Let g be of type Agl). Let A € Py, A(K) = m, and let
A € Py be a mazimal weight of L(A). Then

n(@)° @) = Oy (45)

is a Hecke indefinite modular form, where Aoy = (m + 2)"Y(A + p) and Bay = m™ '\, and n
is the Dedekind eta function.
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5.3 P’ and its t-analogue

Our aim in this chapter is to derive an expression for cf\\(t; q). In the proof of the theorem
Kac and Peterson use a function P’ defined on @ by P’(8) := (1 + r1).P(8). The key fact

about P’ is it is easier to calculate than P.

Definition 5.3.1. A t-analogue of function P’ is defined by P'(B;t) := (1 4 tr1).P(B;t) i.e.,
P'(B;t) =P(B;t) + tP(r1.5;t) for all B € Q

Let us define
Ps(t;q) = Y P(B +nd)q"

n>0

and

Ps(t;q) =Y P'(B+nd)q".

n>0
We recall the constant term map ct(-) from chapter 3| which is defined on the formal sums
> ac0 cxe? by ct(Xneco exe) ==Y, .z cnse™. We will let ¢ = e~ throughout this chapter.
Recall the fact that A for Agl) is given by Ay = {nag+nai,nag+(n — 1)ag, (n — 1)ag + nag :

n € Zso}. As Q =Zag+ Zoy = {bag +nd :b,n € Z},s0Qy C {bay +nd:becZ,ne€ >}t
for p € Q we write 8 = b(8)a1 + d(B)d, where b(),d(5) € Z. We also note that for 8 ¢ Q4
P(B;t) = 0. Using this, we make a useful observation: For § € @ such that 5 = b(8)a; +d(5)d
and d(f) < 0, we have

Ps(tiq) = ¢ "9 Py, (t:9). (5.3.4)

and
Pi(tiq) = ¢ " Py, (5 0). (5.3.5)

Let us define

Iy := H ﬁz Z P(B;t)e "

a€Ay peQ+

Note that I'; € &. Thus we can write

&t

=
! (1 —te—)

where

1
anl (1 —tq")(1 —tgqre—1)(1 — tqre*)

& =
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5.4 Expressions for Py, and P},

In this section we give an expression for Py, (¢; ¢) and Py, (¢;¢) in terms of the constant term

map. For { =3 4. ea(t Ye?, define € := > aep- a(t)e "N, Note that ct(£) = ct(€)
By definition 'y = ZBGQ+ P(B;t)e P, as Q1 C {bay +nd : b€ Z,n € Z>q} we write

I, = Z P(bay + nd;t)e be™ (5.4.6)
bEZJLEZZO
=> e (> " P(bas + ndit)g") (5.4.7)
beZ n>0
= e " Py, (t;q) (5.4.8)
beZ
so ct(T'y) = Po(t;q) ZP joit)gq (5.4.9)
7>0
therefore ct([e?®) = Py, (£ q) - (5.4.10)

We write for 5 € Q, Pg = Pg(t;q) and P’ﬁ = P’ﬁ(t; q). Now consider

P'(B;t) = P(B;t) + tP(r1.5;t) (5.4.11)

Using equation [5.4.11] one gets
P;J()él = Ppo, + tP(—b—l)al (5.4.12)
= ct(T; € + t et (D el~0— Do) (5.4.13)
= ct(Ty ") + tct(Ty ebhon) (5.4.14)

1 te™

— ba
=t (gte ! (1 — T >> (5.4.15)
= ct(e?1&, P,) (5.4.16)

1 te™
_ _ [n| enal
where, P =+ =) 1 (5.4.17)
neZ

= Z t"lem@1 (the classical Poisson kernel of the unit disc). (5.4.18)

ne”L

We have proved the following lemma:
Lemma 5.4.1. For b € Z, we have
1. Py, = ct(eb™ Ty)

2. P’ba1 = Ct(ebo‘lﬁtpt), where P, = ZneZ ¢lnl gnaa
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5.4.1 An expression for P(;t)

Recall that 0 € GL(h*) is defined as o(ag) = a1, 0(a1) = ap,o(p) = p. Note that

P(B;t) =P(o.B;1) (5.4.19)
hence P(B;t) = P'(B;t) — t P(r1.5;1) (5.4.20)
P(Tl.ﬂ; t) = ’P(JTLIB; t) = P/(UTl.ﬁ; t) - t’P(?“l.U’I”l.ﬁ; t) (5.4.21)
= P(or1.B;t) = P'(or1.6;t) — tP((or1)2.58; 1) (5.4.22)
Continuing this procedure we get
P(B;t) = Z(—l)j P (17 - B;t), where T = ory (5.4.23)
j=0
but .
P B 184 p) — p= B+ sar — ((B.an) + D)5

as P(B;t) = 0 for f ¢ Q4+, we note that the sum in equation [5.4.23| is actually a finite sum.
Similarly if we replace 8 by r1.8 in the equation [5.4.20] we get

P(r1.B;t) = P'(r1.8;t) — t P(B;1) (5.4.24)
= P(Bit) = % [P'(r1.6;t) — P(or1.6;1)] (5.4.25)

Using the same procedure as above we get an another expression for P(;t) in terms of P'(8;t):

P(B;t) =D (=1) P (ry -7 i) (5.4.26)

7>0

by the same reasoning as before, we note that the sum in equation is also a finite sum.
It is easy to see that 77/ = 7=Jr; 1. Using this in equation [5.4.26 we get

P(Bit) =Y (1t GT0P (T 7 Bit) (5.4.27)

Jj=0
P(B;t) = P(a.B;t) (5.4.28)
= P(Bit) =Y _ (1)t 0P (r7T 7 0 Bi) (5.4.29)

Jj=0
= P(Bit) = S (1) P (U B ) (5.4.30)

j=>0
letting s =7+ 1 we get (5.4.31)
P(Bit) == (1) P'(r°- Bit) . (5.4.32)

s<0

We have proved the following lemma:
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Lemma 5.4.2. Let 8 € Q then

P(Bit) =Y (~1)/P(+7 - B;1)

320

P(B:t) = =3 (-1/EP(r7 - 3i1) .

3<0

So we have P(f;t) = Z(fl)r t" P (1" Bit) = — Z(il)rt'fp/(,rr Bit) .

r>0 r<0

We have proved the following corollary:

Corollary 5.4.3. For € Q
(1) EP(r - Bit) =0
reZ

Lemma and corollary are t-version of [[I8],Lemma 5.8].

5.5 An expression for Py,
In this section we give an expression for Py, (¢;¢) in terms of Pgal (t;q).

Consider Pg(t;q) 273 B+ nd)q

n>0

=> ) (-1 S.(B +nd);t)

n>0 >0
but 7% (8+nd) =1*(B+nd+p) —p
=7(B+p)—p+nd=7°"-F+nd
soforany f € Q, Pg= Z(—l)s Pl g = —Z (=1)*t" Pl g

s>0 s<0
1
but (84 p) — p+nd =B+ sar — (5(8,a1) + 5(5; )6 +ns
o) — _1\S +s P/
50 P’B(t’ 9 = Z( 1t P5+sa1*(%(3,0{1)+4‘9(s;1*))5

s>0

1
for g =bay, 7%(bay +nd) = (b+ s)ar — (sb+ S(S; ))(5 +nd .
We see that from equations and for r € Z>(¢ we have
S 15 sr4 2L 548 —d(T%ra
P, (g;t) = Z(_l) t P,(r—i-s)alq TR = Z (1)t PZ(TS‘(TOél))q « .

s>0 s>0
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Similarly for r < 0 € Z, we use the expression [5.4.32| of P(3;t) to get
s(s+1) o s,
PTOél (Q7 t) = - Z(_l)s t? Pl(r—l—s)al TR = — Z tSP/ ml))q d(r*-ran) (5543)
s<0 s<0

We have proved the following lemma:

Lemma 5.5.1. 1. For b >0, we have
Poo, (g:t) = Y (=1)°t° g Plyss)a,
5>0
2. For b <0, we have
Prog (a:t) = = > (=1 £ 5 Py,
5<0
Thus for any b € Z, we have

s(s+1)
P, (g:t) = > (1) I(b,5)t* ¢ 2 Pl o, (5.5.44)
SEZ

‘ 1 J=0

where for b > 0

and for b < 0

I&ﬁ={0 7=

-1 7 <0

5.6 An expression for c\(t;q)
By the definition

) Z multp (A — jo) ¢’

Jj=0

we note that for A € max(A) we have

Definition 5.6.1. We define

Atq) =g WNal(tq) = ¢V Y KLY 5t 0"
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So e (t; q) = ¢V Z Z(—l)l(w)P((w(A +p)— (A=nd+p));t) (5.6.45)

weW n>0
= ¢ NN (D Pyatp)— (i) (5.6.46)
weW
We have for w = 727
w(A+p) — (A +p) =A =X+ (m+2)nag — (N + 1) +n?(m + 2)]6 (5.6.47)
For w = 72",

wA+p) —A+p)=A =X+ ((m+2)n— (N1 +1))ag — [n(Ny + 1) +n?(m +2)]5 (5.6.48)

Let us write w(A + p) — (A + p) = b(w)a; + d(w)d, then in both cases we see that d(w) <0 ;
For n > 0 it is trivial and for n < 0 it follows from the fact that Ny = (\,a)) < m = (\,K).

So by we have

AAltig) = g™ Y (~1) I Pyya,0 " (5.6.49)
weW

Now in order to use Lemma we see that for w = 727, b(w) > 0 for n > 0 and b(w) < 0
for n < 0, and w = 72"r1, b(w) > 0 for n > 0 and b(w) < 0 for n < 0. So using Lemma m

in [5.6.49) we get

; N b))+ 29D g
Altig)=¢™™ > (=D (=1) I(b(w), 5) T AW P (5.6.50)
(w,j)EW XZ

Recall that the qudratic form B(z,y) := 2(m + 2)z? — 2my? and the corresponding indefinite
symmetric bilinear form is B’. Now we state a generalised version of a lemma due to Kac-
Peterson [1§]:

Lemma 5.6.2.
(A L o) \ 2 |2
<A+my+x>_<A+m A

—no(tu(w(A+p) —A) —p) = %B <V+ wm+2 T 2m+2) —2m> —ng(A =)
(5.6.51)

where v € M and w € W.
Proof. Case 1: Let w = tyo,. We rewrite the left-hand side of equation [5.6.51| as

10((A =+ p) = tygnar (A + p)) = n0(A = £, (X)) = no(A = A)

which is equal to
1 1
(A+p,v+nay) + §|V +noy XA+ p, K) + (\, v) + i\V\Q()\,K) —no(A—X) (5.6.52)
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On the other hand the right hand side of equation [5.6.51] equal to

A+p A A+p2 AP
(2T A A —
Y ) (2(m+ 2) 2m no(A =)

m+2’ m

1
§B <1/+na1 +

which becomes by definition of B

| XY ivr AU\ (EEA AP
2[(m+2)(”+”O‘1+m+2’”+”0‘1+m+2>+m<”+m’”+ )] <2(m—|—2) om ) (A=Y

which is equal to

1 — 1
(A+ p,v+nay) + 5\1/ +nog |2 (A + p, K) + (\,v) + 5\1/\2()\, K)—ng . (5.6.53)
But as for v € Za; and for f € b* we have (f,v) = (f,v) since f = %ﬁal. So equations
5.6.52] and [5.6.53] are the same and we are done in this case.
Case 2: Proof for w = r1t,4, follows similarly by using the fact that B(—v,v') = B(v,v). O

Y

But

—no(t;  (w(A+p)—X) —p) =—d(w) + jb(w) + VweW (5.6.54)

o
Using [5.0.2] [5.6.51] and [5.6.54] in [5.6.49] we get
w(Atp) j

1 ; . 1B(la ar+2
At =a5 Y. (=D (=1 I(b(w), §) Pl jpa, 220 20w (5.6.55)
(w,j)EW XZ

Now we define a map ¢1 : W x Z — Raj & Ra; as follows

. j w(A+p) j A
(w,j) — <2a1+m+2 ,2a1+m

(Aval)
2m

Let A := G*20 and B - . We will identify Ray @ Ray with R? and Zay @ Zay with

Z?. We state and prove some properties of ¢j.

Proposition 5.6.3. 1. ¢1 s 1-1.
2. Im(¢1) C M*.

3. Im(¢1) =} L; where Ly = (A, B)+ Z?, Ly = (A+ %, B+ 3)+ 7% L3 = (—A,B) + Z?
and Ly = (—A — 1, B+ 1) + Z? respectively.

Proof. For 1 assume contrary: ¢1(wi,j1) = ¢1(wa, jo) for some wy,we € W and j1, jo € Z. Let

us consider case 1) wy = tpq, and wy = tsq,. Then

Ao e 1 A (2 Beae) B2 A
<2o‘1+ mto oMt )Tt et
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This implies that j; = j2 and

bnay(Atp) _ tmas(A+p)

m + 2 m + 2
7fnal(A—l—p) _ (A + p7041) n — (A + P, al) 5 — tsal(A+p)
m+ 2 2(m +2) 2(m +2) m+ 2
so s = n, therefore w1 = wq. Case 2 : wy = tpa, 71 and wy = tso, 71 as in case 1) we get j1 = jo
and
tnoqu (A + ;0) _ tsal (&} (A + p)
m + 2 m+ 2

So we get

tnalrl(A+p) . (A+p7 041) o (A—l—p, al) _ tsals(A+p)

= — n———————- + § = —  ~ ~
m+ 2 2(m +2) 2(m +2) m+ 2

So we get s =n and w; = wo.
Case 3 : wy = tpq,r1 and wy = tsq, -

As in previous cases we get

tnaiS(A+p) _ lsar(a+p)

m+2  m+2
But
tnalrl(A+P) _ Tltfnog(A'f'p) _ _(A+p7a1) = (A+p, 041) 5 — tsal(A+p)
m+ 2 m+ 2 2(m+2) 2(m+2) m+ 2
So we get
(A+p7 Oél)
) DSt et
o(m+2) "

which is impossible.

2 follows from the definition of ¢; and M*.

For 3, consider ¢1 (W XZ) = ¢1(T'x2Z)Up1 (T % (2Z+1))Up1 (Tr1 x2Z)JIp1 (Tr1 X (2Z+1)). Now
by the calculation in 1 we see that ¢1(T x 2Z) = Ly, ¢1(T x (2Z+1)) = Lo, ¢1(T'r X 2Z) = Ls
and ¢1(Tr; X (2Z+ 1)) = Ly. O

Now we will be interested in the set of points of image ¢; for which I(b(w),j) # 0. As
A—)X=layg, forl >0. If [ > 0, Weseethat%>/~121§. For

> <A+p, a\1/> _ <>‘aa¥>

A-B=
2(m+2) 2m
~ m(2l) +m —2(\, o) >0
N 2(m+2)(m)
Now for [ = 0 we have A = \ then we have A < B if A(af) < A(aY). In this case we consider
A :=0o(A). So B < A implies that A’ := ‘Z%\J)r;)p < B = %A) But as ch(t;q) = cZEﬁ%(t; q)

without loss of generality we will assume that % > A> B.
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1 >0

Recall that for b(w) > 0
I(b(w),j) =
(b(w),5) {0 7 <0

and for b(w) < 0
. 0 >0
I(b(w),j) = -
(o)) {_1 T
For b(w) >0
case 1) w = T2 = t,4,: As b(w) > 0 we see that n > 0. So
tras (A j A
(A +p) Do+ 2
m

_ N
(:1:7y) .—¢1(w,j)—(2041+ m+2 72

2

Case 2) w = 7°"r] = tpq,r1 : In this case we have n > 0, so
A

— SN 371 tnanT1(A + p) ]71 A
('r7y) .—¢1(’w,j)—(2041+ m+ 2 72a1+m)
tnay"1(A + p) =n—A>0

m+ 2

t A
:>m,y20,x—y:”°‘1;112+p)
=z—y=n—(A+B)>0.

A
m

For b(w) < 0
case 1) w = 72" = t,,4,: For b(w) < 0, in this case n < 0. So
— Ny e (A tp) i A
(l’,y) .—¢1(’w,j)—(2061+ m+ 2 72a1+
tnai (A + p) —n+ A
m+ 2

=>z,y<0,xr—y= m T2
:>:U—y:/~1—é+n<0.

Case 2) w = T2 = tna,r1 ¢ In this case we have n <0, so
(2,9) 1= 61 (w,5) = (Lo + ,
2 m 4+ 2 2
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tnayT1(A + p)

=n—A>0
m+ 2
t A A

=z-y=n— (A4 B)<0.
We have proved the following lemma.

Lemma 5.6.4. Let D := {(w,j) € W x Z : I(b(w), j) # 0}, then
¢1(D) = FNUL, L;
We have by above lemma

¢1(D) = {(ﬂf,y) €F: (:Cay>
which can be written as

{(z,y) € F: (z,y) = (4,B) or a(z,y) = (A,B) or J(z,y) = (A, B) or Ja(z,y) = (A, B) modZ?}
(5.6.56)

As F is a fundamental domain for G’ on U™, we define a map ¢ : Ut — F by ¢o(€) = &

where &’ is the unique element in G'(§) N F. Recall that Fy U aFp is a fundamental domain for

Go on U™, we see that the set in is the image of the set

i.e.,

and
$1(D) = ¢ (Ut N (A, B) +7Z2) mod Gy

Let for a function ¢ : V — R2, where V is a two dimensional vector space, sign ¢(x1, )

denote the sign of the first component of ¢(x1,x2). Now we prove the following lemma.
Lemma 5.6.5. For (w,j) € D,

I(b(w), j)(—1) e(w) = sign(¢; ' ¢1(w, ) -
Here sign(qb;lgbl(w,j)) s independent of the representive chosen in its Gy orbit.

Proof. We will prove the lemma case by case: Case 1) w = t,q,. Let n > 0. In this case we
note that I(w,j) = 1if j > 0 and 0 otherwise. So we have I(w,j)(—1)7e(w) = 1 if j is even
and -1 if j is odd. Now

J1 bnay (A4p) J1 A

d1(z,y) = (5041 + m>5041 + E)
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By calculation in above proposition we see that

o1(w,j) = (5 + W T

We note that in this case sign(¢ (w, j))is always positive So if j is even then ¢y (w, j) = (A, B).
In this case ¢ (w,j) = ¢ 'p1(w,); so both sides are positive. If j is odd positive integer,
we have sign of ¢1(w, j) is positive but ¢1(w,j) = (5 + A, 3+ B) so ¢y p1(w, §) = Jagy(w, 5)
which has negative sign.

Forn < 0, I(b(w),j) = —1 and j < 0 then as above we see that for even j, I(b(w),7)(—1)/e(w) =
—1 and sign ¢1(w, j) is negative. As ¢1(w,j) = ¢ 'é1(w,j) we are done in this case. For
j odd negative, I(b(w),j)(—1)/e(w) = 1, and sign ¢y (w, j) is negative. But as ¢1(w,j) =
(% + A, % + B), s0 ¢5 ' p1(w, j) = Jagi(w, j) has a positive sign.
Case 2) w = tpq,r1: Let n > 0. In this case I(b(w),j) =1 and 7 > 0 and e(w) = —1. So for
even j, I(b(w),j)(—1)/e(w) = —1 and

N (Jlg, y an@en) B A
d1(w,j) = (Gon + LU Tay 4 2
j iz
=(Z+n-A4,%+D).
(3+n—A35+B)

So we see that sign(¢; (w, 7)) is positive but as ¢1 (w, j) = (—A, B) mod Z? we have ¢, ' ¢y (w, j) =
J¢1(w, j) which has negative sign. For positive odd integer j, I(b(w),j)(—1)7e(w) = 1 and
o1(w,j) = (% — A, % + B)mod Z2, so ¢2_1¢1(w,j) = a 1¢1(w,j) and as a~! does not change
the sign of ¢1, we are through in this case.

Now let n < 0, then I(b(w),j) = —1 and j < 0. Let j be even then I(b(w), j)(—1)e(w) = 1.
Then sign ¢ (w, 5) is negative and ¢1(w, j) = (—A, B) mod Z? we have ¢5 '¢1(w, j) = Jp1(w, )
which has positive sign. Now let j be odd then I(b(w), j)(—1)7¢(w) = —1. We have sign ¢ (w, j)
is negative and which is same as qb;lgbl (w,j) = a 'o1(w, 7). O

Now for (w,j) € W x Z consider the term (b(w) + j)a1 and let (z,y) = ¢1(w, j). We claim
that

1
(b(w) + j)ag = (m+ 2)x — my — ! (5.6.57)
but
1 j (A‘i‘ﬂ,(]l) j ()\,Oél) 1
NE —my — = = (L 4 = THA Jy -
(m+2)z —my 5 (m + )(2—|— 2m +2) +n,2) me 5

A —
=j+nim+2)+ aq

=j+nm+2)+A—-X=(bw)+j)a

the last equality follows by the equations [5.6.47] and [5.6.48]

Collecting all pieces together we have proved our main theorem:
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Theorem 5.6.6. Let g be of type Agl). Let A € Po, A(K) =m > 1, and let A € Py be a
mazimal dominant weight of L(A). Then

1
cr(t;q) = ct(& Prgs 728 Hy)

where
He = Z sign(z) q%B(x’y) #20 o((m+2)7—my—3)an
(z,y)=(A,B) mod 72

B(z,y)>0
(z,y) mod Go

where (Z,7) is the unique element in F NG (x,y) .
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