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SYNOPSIS

The theory of quantum groups has its roots in the work of G.I. Kac, in his attempt

to extend Pontryagin Duality to the case of non-commutative groups. However, it really

came to the fore in the 1980’s in the pathbreaking work of Drinfeld, Jimbo and Woronow-

icz, done independently, at roughly around the same time. While Drinfeld [32] and Jimbo

[46] constructed deformations of the universal enveloping algebra of simple lie algebras,

the approach of Woronowicz was different. Inspired by Gelfand Duality for commutative

C∗-algebras, Woronowicz, in a series of seminal papers [93][94][95], initiated the study of

what are now called compact quantum groups.

The point of view of Woronowicz of quantum groups has now evolved into the suc-

cesful theory of operator algebraic quantum groups, with connections to a wide range of

subjects. Quantum groups, being generalizations of groups, can be studied from a group

theoetic perspective, which includes, study of representation theory [6][8], the study of

subgroups[75][91], etc. On the other hand, quantum groups, being defined as certain

operator algebras with some additional properties, can hence be studied from an opera-

tor algebraic point of view (often in tandem with the group theoretic perspective). This

includes study of various operator algebraic properties and approximation properties like

Property T [34], Amenability [82][11], exactness[84], etc. At the same time, the existence

of the Haar state for compact quantum groups, which is always preserved under quan-

tum automorphisms (see definition 1.4.1), means a study of group actions on compact

quantum groups by quantum automorphisms, from the point of view of non-commutative

dynamical systems, is viable.

In this thesis, we make a study on three aspects of quantum groups. More precisely,

we make a study of certain group theoretic aspects of compact quantum groups, viz.

definition of inner automorphisms, relation with Wang’s notion of normal subgroups and

definition of center of a compact quantum group. We also study discrete group actions

on compact quantum groups by quantum automorphisms and obtain combinatorial con-

ditions for when such actions are ergodic, weak mixing, mixing, compact, topologically
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transitive, etc. We give a structure theorem for such actions for a special class of compact

quantum groups, showing the existence of maximal ergodic normal subgroup. Finally, we

make a thorough and comprehensive study of the representation theory and various ap-

proximation properties, viz. Haagerup property, Rapid Decay, Weak Amenability, etc of

(a class of) the bicrossed product quantum groups and crossed product quantum groups.

We also present the first non-trivial examples of discrete quantum groups with Property

T.

Let us now briefly explain the layout of this thesis.

This thesis comprises of five chapters, including the present one. The second chapter,

titled Preliminaries, gives a brief introduction to various aspects of operator algebraic

quantum groups that will be needed subsequently. We also give here accounts of various

approximation properties and a quick introduction to the notion of quantum automor-

phisms of compact quantum groups.

The third chapter, titled “Normal subgroups, center and inner automorphisms of

compact quantum groups”, deals with some group theoretic aspects of compact quantum

groups. In particular, we define and study inner automorphisms, obtain structure the-

orems for the group of inner automorphisms. We also study the relation of these inner

automorphisms to Wang’s notion of normal subgroups of compact quantum groups. In

the latter half of this chapter, we define and study the notion of centers of compact quan-

tum groups and compute it for several examples, using a result that shows that centers

of compact quantum groups with identical fusion rules are isomorphic. The original part

of this chapter is culled from the paper [72].

The fourth chapter, titled “Automorphisms of compact quantum groups”, deals with

the study of group actions on compact quantum groups by quantum automorphisms.

We present combinatorial conditions for various spectral properties like Ergodicity, Weak

Mixing, Compactness of such actions. We give several examples of such dynamical sys-

tems. This chapter is based on the paper [67].

The fifth, and final, chapter, deals with the bicrossed product and the crossed product
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quantum groups. We make an exhaustive study of special classes of the bicrossed product

quantum group and the crossed product quantum group, explaining their representation

theory and permanence properties of various approximation properties, like Haagerup

Property, Rapid Decay, etc. We provide a large number of examples, exhibiting various

approximation properties in these particular cases and also present an infinite family of

non-trivial discrete quantum groups possessing the Property T. This chapter is based on

the paper [35].

Each chapter starts with a brief introduction and outline of results.

Notations. In this thesis, the inner products of Hilbert spaces are assumed to be

linear in the first variable. The same symbol ⊗ will denote the tensor product of Hilbert

spaces, the minimal tensor product of C*-algebras and as well as the tensor product of

von Neumann algebras.

14



Chapter 1

Preliminaries
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In this section, we present a brief account of operator algebraic quantum groups and

various associated approximation properties, that will be needed in the subsequent chap-

ters. We also study the notion of quantum automorphisms of compact quantum groups

in various guises and prove results that will be crucial in the sequel.

1.1 Compact and Discrete Quantum Groups

Definition 1.1.1. A compact quantum group G = (A,∆) is a unital C∗-algebra A to-

gether with a comultiplication ∆ which is a coassociative ∗-homomorphism:

∆ : A→ A⊗ A

such that the sets (A⊗ 1)∆(A) and (1⊗ A)∆(A) are total in A⊗ A.

Now, let H be a finite dimensional hilbert space with an orthonormal basis given by

{e1, e2, . . . , en} and with eij the corresponding system of matrix units in B(H). A unitary

element u =
∑

i,j eij⊗uij in B(H)⊗A is said to be a finite dimensional representation for

the compact quantum group G = (A,∆) if ∆(uij) =
∑

k uik⊗ukj for all i, j ∈ {1, 2, ..., n}.

A finite dimensional representation is said to be irreducible if it has no invariant subspace,

see for example [62] and [96], and the book [81] for a detailed introduction to compact

quantum groups and their representation theory.

For two finite dimensional representations u and v of G, we denote by Mor(u, v) the

space of intertwiners from u to v and by u⊗v their tensor product representation, which is

simply the representation u13v23. Let us note that several authors use the notation ujv to

denote the tensor product representation. The trivial representation is denoted by 1. We

also denote by Irr(G) the set of equivalence classes of irreducible unitary representations

of G. For x ∈ Irr(G), we choose a representative ux ∈ B(Hx) ⊗ C(G), where ux is a

irreducible representation on the Hilbert space Hx. We denote by Pol(G) the linear span

of the coefficients of {ux : x ∈ Irr(G)}. This is a unital ∗-subalgebra of A, and it can
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be shown that this is dense subalgebra of A. Further, Pol(G) is equipped with a co-unit

εG : Pol(G)→ C, which is a ∗-homomorphism satisfying, for all a ∈ Pol(G),

(εG ⊗ id)∆(a) = (id⊗ εG)∆(a) = a

It also has an antipode, which is an anti-multiplicative map SG : Pol(G) → Pol(G)

satisfying for all a ∈ Pol(G)

m((SG ⊗ id)∆(a)) = m((id⊗ SG)∆(a)) = εG(a) · 1

where m : Pol(G)⊗ Pol(G)→ Pol(G) denotes the multiplication map, m(a⊗ b) = ab

It is well known that there is a natural involution x 7→ x such that ux is the unique (up

to equivalence) irreducible representation of G such that Mor(1, x⊗ x) 6= {0} 6=Mor(x⊗

x, 1). For any x ∈ Irr(G), take a non-zero element Ex ∈ Mor(1, x ⊗ x) and define an

anti-linear map Jx : Hx → Hx by letting ξ 7→ (ξ∗ ⊗ 1)Ex. Define Qx = JxJ
∗
x ∈ B(Hx).

We normalize Ex in such a way that Trx(Qx) = Trx(Q
−1
x ), where Trx is the unique trace

on B(Hx) such that Trx(1) = dim(x). This uniquely determines Qx and fixes Ex up to a

complex number of modulus 1. The number dimq(x) := Trx(Qx) = Trx(Q
−1
x ) is called the

quantum dimension of x. Let uxcc = (id⊗ S2
G)(ux), where SG denotes the antipode of G.

It can be shown that (see e.g. section 5 of [94]) that Qx is also uniquely determined by

the fact that Qx ∈ Mor(ux, uxcc) and that Qx is invertible and Trx(Qx) = Trx(Q
−1
x ) > 0.

Definition 1.1.2. A compact matrix quantum group G = (A,∆, u) is a triple such that

G = (A,∆) is a compact quantum group and u is a finite dimensional representation of

G such that any irreducible representation is a sub-representation of some tensor power

of u.

A very fundamental fact is the existence of the Haar state associated to a compact

quantum group G, which we denote as h or hG if the context is not clear. This is a unique
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state on the C∗-algebra A, which is left and right invariant, i.e. it satisfies the equations

(h⊗ id)∆(a) = (id⊗ h)∆(a) = h(a)1

for any a ∈ A. It is also well known that h is faithful on Pol(G).

Associated also to any compact quantum group G are the maximal C∗-algebra, which

we shall denote by Cm(G), which can be defined as the enveloping C∗-algebra of Pol(G).

Similarly, we have the reduced C∗-algebra, denoted as C(G), generated by the GNS

construction of h (i.e. as the image of the GNS representation of h). Hence we view

C(G) ⊂ B(L2(G)), where L2(G) is the GNS space of h. The von-Neumann algebra thus

generated by C(G) will be denoted as L∞(G). Let us note that the comultiplication is

well defined on all these algebras, and the reader is cautioned that it is always denoted

as ∆ (or as ∆G if the context is not clear) for all these algebras. Also, we denote by λ

(or λG) the canonical surjection from Cm(G) to C(G). Let us note that there can exist

“exotic” C∗-completions of Pol(G), which are not isomorphic with either Cm(G) or C(G).

Interesting examples of such completions are constructed in [57], where Property (T) of

the associated discrete quantum group is used crucially. Let us note that in this thesis

we construct the first non-trivial examples of Property (T) discrete quantum groups (see

Example 4.5.4 and Example 4.5.10).

Let us now turn to the case of discrete quantum groups. Associated to any compact

quantum group G, is a discrete quantum group Ĝ and the correspondence is one-to-one.

The associated operator algebras of the discrete dual Ĝ of G are denoted by

`∞(Ĝ) =
`∞⊕

x∈Irr(G)

B(Hx) and c0(Ĝ) =

c0⊕
x∈Irr(G)

B(Hx).

We denote by VG =
⊕

x∈Irr(G) u
x ∈ M(c0(Ĝ) ⊗ Cm(G)) the maximal multiplicative

unitary. Let px be the minimal central projection of `∞(Ĝ) corresponding to the block

B(Hx). We say that a ∈ `∞(Ĝ) has finite support if apx = 0 for all but finitely many
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x ∈ Irr(G). The set of finitely supported elements of `∞(Ĝ) is dense in c0(Ĝ) and the

latter is equal to the algebraic direct sum cc(Ĝ) =
⊕alg

x∈Irr(G) B(Hx).

The (left-invariant) Haar weight on Ĝ is the n.s.f. weight on `∞(Ĝ) defined by

hĜ(a) =
∑

x∈Irr(G)

Trx(Qx)Trx(Qxapx),

whenever the formula makes sense. It is known that the GNS representation of hĜ is of

the form (λ̂G,L
2(G),ΛĜ), where ΛĜ : cc(Ĝ)→ L2(G) is linear with dense range and λ̂G :

`∞(Ĝ)→ B(L2(G)) is a unital normal ∗-homomorphism such that ∆G(x) = WG(x⊗1)W ∗
G

for all x ∈ C(G), where WG = (λ̂G ⊗ λG)(VG). We call WG the reduced multiplicative

unitary.

1.2 Subgroups and Normal Subgroups

We now move to the notion of subgroups introduced by Podles [75] and normal subgroups

introduced by Wang [87][91]. We note that the term subgroup will mean quantum sub-

group and will be used interchangeably with it. We also refer to [30] for a comphrehensive

study of subgroups of locally compact quantum groups.

Definition 1.2.1. A compact quantum group H is said to be a quantum subgroup of G

if there exists a surjective ∗-homomorphism ρ : Cm(G)→ Cm(H) such that

(ρ⊗ ρ)∆G = ∆H ◦ ρ

This ρ will be called the corresponding surjection.

Associated with a quantum subgroup H of G are the left coset space and the right
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coset space given by:

Cm(G/H) := {a ∈ Cm(G) | (id⊗ ρ)∆G(a) = a⊗ 1}

Cm(H\G) := {a ∈ Cm(G) | (ρ⊗ id)∆G(a) = 1⊗ a}

respectively.

These spaces have natural conditional expectation onto them given by:

EG/H := (id⊗ hH ◦ ρ)∆G

and

EH\G := (hH ◦ ρ⊗ id)∆G

respectively.

Definition 1.2.2. A quantum subgroup H of G is said to be finite index subgroup if

Cm(G/H) is finite dimensional.

Definition 1.2.3. Let G = (A,∆) be a compact quantum group. We say then that A is

a Woronowicz C∗-algebra. If A0 ⊆ A is a sub-C∗-algebra such that the tuple (A0,∆|A0)

is compact quantum group, then we say that A0 is a Woronowicz sub-C∗-algebra of A.

Definition 1.2.4. Given a CQG G = (A,∆), with unitary dual Irr(G), we say that

a subset T ⊆ Irr(G) is a sub-object of Irr(G) if e ∈ T (e denotes the class of the

trivial representation), if β ∈ T then β ∈ T and if β1 and β2 ∈ T , then for any γ ⊂

β1 ⊗ β2, γ ∈ T . So, in other words, closure of the linear span of the matrix coefficients

of representatives of elements in T is a Woronowicz sub-C∗-algebra of A.

Definition 1.2.5. A quantum subgroup N of a compact quantum group G is said to be

normal if Cm(G/N) = Cm(N\G). In this case, G/N = (Cm(G/N),∆G/N) is a compact

quantum group itself.
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It is pertinent to note here that the notation used in the previous definition is in fact

consistent, in the sense of the following theorem, for which we refer to [2] for a proof.

Theorem 1.2.6. Let G be a compact quantum group. Let A0 ⊂ Cm(G) be a Woronowicz

sub-C∗-algebra of Cm(G), with the associated compact quantum group denoted by G0.

Then we have that Cm(G0) = A0.

In other words, the previous theorem says that, Woronowicz sub-C∗-algebras of Woronow-

icz C∗-algebra which are maximal C∗-algebras associated to some compact quantum

group, are themselves the maximal. This result is well known for group C∗-algebras

which corresponds to the cocommutative case (see for example Proposition 2.5.8 of [19]).

The following theorem is proved by Wang in [91].

Theorem 1.2.7. A quantum subgroup N of G is normal if and only if any of the following

equivalent conditions hold –

1. ∆G(Cm(G/N)) ⊆ Cm(G/N)⊗ Cm(G/N)

2. ∆G(Cm(N\G) ⊆ Cm(N\G)⊗ Cm(N\G)

3. The multiplicity of 1N , the trivial representation of N in u|N , where u is any irre-

ducible representation of G, is either 0 or du, the dimension of u.

1.3 Approximation properties

In this section we recall the definition of the Coamenability, Haagerup property, weak

amenability and Cowling-Haagerup constants for discrete quantum groups. We also show

some basic facts we could not find in the literature: for example, permanence of the (co)-

Haagerup property and (co)-weak amenability from a quantum subgroup of finite index

to the ambient compact quantum group.

Let G be a compact quantum group. We say G is coamenable if the haar state on

Cm(G) is faithful (equivalence of this with the original definition given in [11] follows

easily from Theorem 2.2 of [11]).
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Proposition 1.3.1. If G has a coamenable normal subgroup N such that G/N is coa-

menable, then G is coamenable.

Proof. Let ρ : Cm(G) → Cm(N) be the corresponding surjection. It follows from the

uniqueness of the co-unit εG that εG = εN ◦ ρ. Also note that the co-unit is norm

bounded on Pol(G).

To show that the Haar measure hG is faithful, we first note that the conditional

expectation onto N\G given by

EN\G = (hH ◦ ρ⊗ id)∆

is faithful since (ρ⊗ id)∆ is injective as

(εN ◦ ρ⊗ id)∆(a) = (εG ⊗ id)∆(a) = a

and hH is faithful. But then as EN\G is invariant under hG, it follows that hG is faithful.

Hence, by [11], we are done. 2

Proposition 1.3.2. Let G be a coamenable compact quantum group. Then, any subgroup

H of G is coamenable as well.

Proof. We use a little bit of machinery for this. It is shown in [56] that a compact

quantum group is coamenable if and only if its fusion algebra is amenable in the sense of

[43]. The proposition now follows from Proposition 7.4(2) of [43]. 2

Now, for G a compact quantum group and ω ∈ Cm(G)∗, define its Fourier transform

ω̂ = (id⊗ω)(V ) ∈M(c0(Ĝ)), where V =
⊕

x∈Irr(G) u
x ∈M(c0(Ĝ)⊗Cm(G)) is the maximal

multiplicative unitary. Observe that ω 7→ ω̂ is linear and ‖ω̂‖B(L2(G)) ≤ ‖ω‖Cm(G)∗ for all

ω ∈ Cm(G)∗.

When G is a classical compact group with Haar measure µ and ν is a complex Borel

measure onG, then the Fourier transform ν̂ ∈M(C∗r (G)) is the operator ν̂ =
∫
G
λgdν(g) ∈

M(C∗r (G)) ⊂ B(L2(G)).
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Following [29], we say that Ĝ has the Haagerup property if there exists a sequence of

states ωn ∈ Cm(G)∗ such that ωn → εG in the weak* topology and ω̂n ∈ c0(Ĝ) for all

n ∈ N.

For a ∈ `∞(Ĝ) with finite support, we define a finite rank map ma : C(G) → C(G)

by (id⊗ma)(u
x) = ux(apx ⊗ 1). We say that a sequence ai ∈ `∞(Ĝ) converges pointwise

to 1, if ‖aipx − px‖B(Hx) → 0 for all x ∈ Irr(G).

Recall that Ĝ is said to be weakly amenable if there exists a sequence of finitely

supported ai ∈ `∞(Ĝ) converging pointwise to 1 and such that C = supi ‖mai‖cb < ∞.

The infimum of those C, called the Haagerup constant of Ĝ, is denoted by Λcb(Ĝ) (and is,

by definition, infinite if Ĝ is not weakly amenable). Similarly, associated to any C∗-algebra

A and to any von-Neumann algebra M , we have a corresponding Haagerup constant,

which is denoted by Λcb(A) and Λcb(M) respectively (see Definition 12.3.9 of [19]). It was

proved in [55] that, when G is Kac, we have Λcb(Ĝ) = Λcb(C(G)) = Λcb(L
∞(G)).

Theorem 1.3.3. Let H be a finite index quantum subgroup of G. Then the following

holds.

1. If Ĥ has the Haagerup property, then Ĝ has the Haagerup property.

2. Λcb(Ĝ) ≤ Λcb(Ĥ).

Proof. We will need the following Claim.

Claim. If H is a finite index quantum subgroup of G with surjective morphism ρ :

Cm(G)→ Cm(H) then the set Nρ
y = {x ∈ Irr(G) : Mor(vy, (id⊗ ρ)(ux)) 6= {0}} is finite

for all y ∈ Irr(H), where {vy : y ∈ Irr(H)} is a complete set of representatives.

Proof of the Claim. We first show that Nρ
1 is finite. Let x ∈ Nρ

1 and ξ ∈ Hx be such

that ‖ξ‖ = 1 and (id ⊗ ρ)(ux)(ξ⊗)1 = ξ ⊗ 1. Choose an orthonormal basis (exk)k of Hx

such that ex1 = ξ. Observe that the coefficients of ux with respect to this orthonormal

basis satisfy ρ(ux11) = 1 and ρ(uxk1) = 0 for all k 6= 1. It follows that ux11 ∈ Cm(G/H).

Since the coefficients of non-equivalent representations are linearly independent and since

Cm(G/H) is finite dimensional, it follows that the set Nρ
1 is finite.
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Suppose that there exists y ∈ Irr(H) \ {1} such that Nρ
y is infinite and let (xn)n∈N∪{0}

be an infinite sequence of elements in Nρ
y . Since (id⊗ρ)(ux0⊗uxi) has a sub-representation

isomorphic to vy ⊗ vy, it contains the trivial representation. It follows that, for all i ≥ 1,

there exists zi ∈ Nρ
1 such that zi ⊂ x0⊗xi. Hence, by Proposition 3.2 of [76], xi ⊂ x0⊗zi

and the set {zi : i ≥ 1} is infinite, a contradiction.

(1). Let (µn)n∈N be a sequence of states on Cm(H) such that µ̂n ∈ c0(Ĥ) for all

n ∈ N and µn → εH in the weak* topology. Define ωn = µn ◦ ρ ∈ Cm(G)∗, where

ρ : Cm(G)→ Cm(H) is the subgroup surjection. Since εG = εH ◦ ρ, we have ωn → εG in

the weak* topology. Let n ∈ N and ε > 0. We need to show that the set Gn,ε = {x ∈

Irr(G) : ||(id ⊗ ωn)(ux)|| ≥ ε} is finite. Since µ̂n ∈ c0(Ĥ), the set Hn,ε = {y ∈ Irr(H) :

||(id⊗ µn)(vy)|| ≥ ε} is finite, and since Gn,ε = ∪y∈Hn,εNρ
y , by the previous claim we are

done.

(2). We may and will suppose that Ĥ is weakly amenable. Let ε > 0 and ai ∈ `∞(Ĥ)

be a sequence of finitely supported elements that converges to 1 pointwise and such that

supi‖mai‖cb ≤ Λcb(Ĥ) + ε.

We consider the dual morphism ρ̂ : c0(Ĥ) → M(c0(Ĝ)), which is the unique non-

degenerate ∗-homomorphism satisfying (id⊗ ρ)(VG) = (ρ̂⊗ id)(VH).

We first show that ρ̂(ai) ∈ `∞(Ĝ) is finitely supported for all i and the sequence

(ρ̂(ai))i converges to 1 pointwise. Consider the functional ωai ∈ Cm(H)∗ defined by

(id ⊗ ωai)(v
y) = aipy for all y ∈ Irr(H) so (id ⊗ ωai)(VH) = ai and, by definition of

the dual morphism ρ̂(ai) = (id ⊗ ωai ◦ ρ)(VG), we have ρ̂(ai)px = (id ⊗ ωai ◦ ρ)(ux) and

{x ∈ Irr(G) : ρ̂(ai)px 6= 0} = ∪y∈Irr(H),aipy 6=0N
ρ
y . Hence, ρ̂(ai) is finitely supported for all

i. Moreover, for all x ∈ Irr(G),

‖ρ̂(ai)px − px‖ = ‖(id⊗ ωai ◦ ρ)(ux)− px‖ = sup
y∈Irr(H) and x∈Nρ

y

‖(id⊗ ωai)(vy)− py‖

= sup
y∈Irr(H) and x∈Nρ

y

‖aipy − py‖ →i 0.

We now show that supi ‖mρ̂(ai)‖cb < Λcb(Ĥ) + ε. First let us note that, by Fell’s
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Absorption Principle, we have (WG)12(VG)13 = (VG)23(WG)12(VG)∗23. Thus, there exists a

∗-homomorphism ∆̃G : C(G) → C(G) ⊗ Cm(G) which extends the comultiplication ∆G

on Pol(G). We now define a unital ∗-homomorphism π : C(G) → C(G) ⊗ C(H) such

that

π(x) = (id⊗ λH ◦ ρ) ◦ ∆̃G

where λH : Cm(H)→ C(H) denotes the canonical surjection given by the GNS-representation

with respect to the Haar state of H. Clearly, π extends the map (id⊗ ρ) ◦∆G on Pol(G).

Now it not hard to see that the map π is a right quantum homomorphism (see section 1

of [65]); in other words π satisfies the equations -

(∆G ⊗ id) ◦ π = (id⊗ π) ◦∆G,

(id⊗∆H) ◦ π = (π ⊗ id) ◦ π.

Both of the above equations follow easily from the coassociativity condition of the co-

multiplication of G andH and from the fact that π = (id⊗ρ)◦∆G and (ρ⊗ρ)◦∆G = ∆H◦ρ

on Pol(G). This together with Theorem 5.3 of [65] implies that there exists a unitary

operator Vρ ∈ B(L2(G))⊗ C(H) such that

π(x) = Vρ(x⊗ 1)V ∗ρ .

Hence, it follows that, π is isometric.

It is now not hard to see that (id ⊗ mai)π = π ◦ mρ̂(ai) for all i. Indeed, since

mai(x) = (id⊗ωai)∆H(x) and mρ̂(ai)(x) = (id⊗ωai ◦ ρ)∆G(x) for all x ∈ Pol(G), we find

that for x ∈ Pol(G),

(id⊗mai)π(x) = (id⊗ id⊗ ωai)(id⊗∆H) ◦ π(x) = (id⊗ id⊗ ωai)(π ⊗ ρ) ◦∆G(x)

= π ((id⊗ ωai ◦ ρ)(∆G(x)) = π ◦mρ̂(ai)(x).
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Since π is isometric, we have ‖mρ̂(ai)‖cb ≤ ‖mai‖ ≤ Λcb(Ĥ) + ε for all i. Hence,

Λcb(Ĝ) ≤ Λcb(Ĥ) + ε. Since ε is arbitrary the proof is complete. 2

1.4 Automorphisms of Compact Quantum Groups

In this chapter, we study the notion of quantum automorphisms of compact quantum

groups.

Definition 1.4.1. Let G be a compact quantum group. A quantum automorphism is a

C∗-algebraic automorphism α : Cm(G)→ Cm(G) such that (α⊗ α)∆ = ∆ ◦ α.

We denote the group of all quantum automorphisms of G by Aut(G). It is not hard

to see that Aut(G) is a closed subgroup of Aut(Cm(G)), the group of all C∗-algebraic

automorphisms, given the pointwise norm topology. Hence, as Aut(Cm(G)) is a Polish

group, we have that Aut(G) is also Polish.

We record some properties of quantum automorphisms in the following proposition.

Proposition 1.4.2. Let α ∈ Aut(G). Then,

1. α(Pol(G)) =Pol(G);

2. εG ◦ α = εG;

3. SG ◦ α = α ◦ SG;

4. hG ◦ α = hG;

5. If ((uij)) ∈Mn(Cm(G)) is a finite dimensional irreducible representation of G, then

so is ((α(uij))) ∈Mn(Cm(G)).

Proof.

1. Let ((uij)) ∈ Mn(Cm(G)) be a unitary representation of G. Then, it is easy to

see that ((α(uij))) ∈ Mn(Cm(G)) is also a representation. It then follows that

α(Pol(G)) ⊆Pol(G). But, it is also easily checked that α−1 is an automorphism of

G and hence α(Pol(G)) ⊆Pol(G).
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2. Follows from the uniqueness of the counit εG under the condition that (εG⊗ id)∆ =

(id⊗ εG)∆ = id.

3. Follows from the uniqueness of the antipode under the condition that m(SG ⊗

id)∆(·) = m(id⊗ SG)∆(·) = εG(·)1.

4. Follows from the uniqueness of Haar measure hG under the condition that (hG ⊗

id)∆(a) = (id⊗ hG)∆(a) = hG(a)1

5. Let u = ((uij)) ∈ Mn(Cm(G)) be an finite dimensional representation. Then,

χu =
∑
uii is the character of the representation u. It is shown in [94] that u is

irreducible if and only if hG(χ∗uχu) = 1. The result now follows immediately from

part (4).

2

Observe that it follows from the last proposition that each α ∈ Aut(G) induces a

bijection α ∈ S(Irr(G)), the group of bijections of the set Irr(G). Indeed, for x ∈ Irr(G),

α(x) is the equivalence class of the irreducible unitary representation (id ⊗ α)(ux). By

construction, the map Aut(G)→ S(Irr(G)) is a group homomorphism.

Proposition 1.4.3. The map Aut(G)→ S(Irr(G)) is continuous.

Proof. We shall need the following well known lemma which is of independent interest.

We include a proof for the convenience of the reader.

Lemma 1.4.4. Let u, v ∈ B(H) ⊗ Cm(G) be two unitary representations of G on the

same finite dimensional Hilbert space H. If ‖u− v‖ < 1, then u and v are equivalent.

Proof. Define x = (id ⊗ h)(v∗u) ∈ B(H). Since u and v are unitary representations, h

being the Haar state forces (x⊗ 1)u = v(x⊗ 1). We have u∗(x∗x⊗ 1)u = x∗x⊗ 1. Hence,

u∗(|x| ⊗ 1)u = |x| ⊗ 1. Now observe that ‖1 − x‖ = ‖(id ⊗ h)(1 − v∗u)‖ ≤ ‖1 − v∗u‖ =

‖v − u‖ < 1. Hence x is invertible, and in the polar decomposition x = w|x|, the polar

part w is a unitary. Consequently, v∗(w|x|⊗1)u = v∗(w⊗1)u(|x|⊗1) = (w⊗1)(|x|⊗1).
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By uniqueness of the polar decomposition of x⊗ 1, we deduce that v∗(w ⊗ 1)u = w ⊗ 1.

Hence, u and v are equivalent. 2

We can now prove the proposition. Let (αn)n be a sequence in Aut(G) which converges

to α ∈ Aut(G). Let F ⊂ Irr(G) be a finite subset and let N ∈ N be such that for all

n ≥ N

‖(id⊗ αn)(ux)− (id⊗ α)(ux)‖ < 1

2
for all x ∈ F.

It follows from Lemma 1.4.4 that (id ⊗ αn)(ux) and (id ⊗ α)(ux) are equivalent for all

n ≥ N and for all x ∈ F . This means that αn(x) = α(x) for all x ∈ F whenever n ≥ N .

This establishes the continuity. 2

Remark 1.4.5. We can also define Autr(G) = {α ∈ Aut(C(G)) : ∆ ◦α = (α⊗α) ◦∆}

which is again a Polish group as it is a closed subgroup of the Polish group Aut(C(G)).

Since any α ∈ Aut(G) preserves the Haar state, it defines a unique element in Autr(G).

Hence, we have a canonical map Aut(G) → Autr(G) which is obviously a group homo-

morphism. Moreover, it is actually bijective. The inverse bijection is constructed in the

following way. Since any α ∈ Autr(G) restrict to an automorphism of Pol(G), it extends

uniquely by the universal property to an automorphism in Aut(G). It is also easy to check

that the map Aut(G)→ Autr(G) is continuous.

Also, since any automorphism of C(G) intertwining ∆ has a unique normal extension

to L∞(G), it induces a map Autr(G)→ Aut∞(G), where Aut∞(G) = {α ∈ Aut(L∞(G)) :

∆ ◦ α = (α ⊗ α) ◦ ∆}. As before, this map is a bijective group homomorphism and is

continuous (the topology on Aut(L∞(G)) being governed by the pointwise ‖ · ‖2,h conver-

gence).

1.5 Compact group action on countable sets

We end this chapter by recording some facts regarding actions of compact groups on

countable sets. This will be necessary in Chapter 4 where we will be studying the bicrossed
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product construction for compact matched pairs of groups.

Let X be a countable infinite set and let S(X) be the group of bijections of X.

It is a Polish group equipped with the topology of pointwise convergence which is the

topology generated by the sets Sx,y = {α ∈ S(X) : α(x) = y} for x, y ∈ X. Since

Scx,y = ∪z∈X\{y}Sx,z, these sets are clopen in S(X). Moreover, for any compact subset

K ⊂ S(X) and for any x ∈ X, the orbit K · x ⊂ X is finite. Indeed, from the open

cover K ⊂ ∪y∈XSx,y, we find y1, · · · , yn ∈ X such that K ⊂ ∪ni=1Sx,yi , which implies that

K · x ⊂ {y1, · · · , yn}.

Let β : G→ S(X) be a continuous right action of G on X. To simplify the notations,

we write x · g = βg(x) for g ∈ G and x ∈ X.

Observe that, since β is continuous and G is compact, every β-orbit in X is finite.

Fix r, s ∈ X and denote by Ar,s the set

Ar,s = {g ∈ G : r · g = s} = β−1(Sr,s).

Note that, since β is continuous, Ar,s is open and closed in G for all r, s ∈ X. Hence,

1Ar,s ∈ C(G). Moreover, 1Ar,s 6= 0 if and only if r and s are in the same orbit and we

have the following relations:

1. 1As,r1At,r = δt,s1As,r for all r, s, t ∈ X.

2. 1As,r1As,t = δr,t1As,r for all r, s, t ∈ X.

3.
∑

s∈X 1Ar,s =
∑

s∈r·G 1Ar,s = 1 for all r ∈ X.

4.
∑

r∈X 1Ar,s =
∑

r∈s·G 1Ar,s = 1 for all r ∈ X.

5. If r ·G = s ·G, then ∆G(1As,r) =
∑

t∈s.G 1As,t ⊗ 1At,r ,

where ∆G is the usual comultiplication on C(G). In other words, for every orbit x ·G, the

matrix (1Ar,s)r,s∈x·G ∈M|x·G|(C)⊗ C(G) is a magic unitary and a unitary representation

of G. We note also that formally, equality also holds in the case r ·G 6= s ·G, as is easily

checked.
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Chapter 2

Normal Subgroups, Center and

Inner automorphisms of Compact

Quantum Groups
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In this chapter, we define and study a notion of “inner“ automorphisms of compact quan-

tum groups and its relation to Wang’s notion of normal subgroups of compact quantum

groups. We also define the center of a compact quantum group and compute the center

for several examples.

2.1 Inner Automorphisms

In the classical case, when G is a compact group, a special class of automorphisms are

the inner automorphisms, the automorphisms of the form αs : G→ G where

αs(g) = sgs−1, s, g ∈ G

Let’s note that the inner automorphisms preserve the class of any unitary representation

of the compact group. In other words, the fixed point algebra of C(G) under the action of

G on it by inner automorphisms contains the characters of all irreducible representations

of the group, and in fact, it follows from Peter-Weyl theorem that the linear span of

characters of all irreducible representations is dense in this algebra.

Let’s consider the more general class of automorphisms that preserve the representa-

tion class of each irreducible representation. Denoting this subset of the automorphism

group by Autχ(G), it is easily seen that this gives a normal subgroup of the group Aut(G).

It is known for compact connected groups that Autχ(G) = Inn(G), where Inn(G) denotes

the inner automorphisms of G [64]. But there are several examples of finite groups for

which Inn(G) is a proper subgroup of Autχ(G) (for more on this we refer to the survey

[97] and to references therein).

Given a compact quantum group G, let Gchar denote the set of characters of irreducible

representations of G. We want to consider the group of automorphisms

Autχ(G) = {α ∈ Aut(G) | α(χua) = χua ∀ χua ∈ Gchar}
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It is straightforward to see, using Proposition 1.4.2, that Autχ(G) is a normal subgroup

of Aut(G).

We topologise Aut(G) by taking as neighbourhood of identity, sets of the form:

u(a1, . . . , an ∈ A | ε > 0) := {α ∈ Aut(G) | ‖ai − α(ai)‖ < ε ∀i ∈ {1, 2, . . . , n}}

Autχ(G) is easily seen to be a closed normal subgroup. For the next theorem, we assume

that G = (A,Φ, u) is compact matrix quantum group. Before proceeding further, let

us recall that a unital subspace of a C∗-algebra is said to be an operator system if it

is closed under the involution. One can then study completely positive maps between

operator systems, which is the appropriate morphism in the category of operator systems.

Another notion that we need is that of a multiplicative domain of a unital completely

positive (UCP) map. Given A,B C∗-algebras and a UCP T : A → B, we define the

multiplicative domain MT = {a ∈ A : T (a∗a) = T (a)∗T (a)andT (aa∗) = T (a)T (a)∗}. It

follows easily from the Cauchy-Schwarz inequality for CP maps that for any a ∈Mt and

b ∈ A, T (ab) = T (a)T (b) and T (ba) = T (b)T (a). We refer to the book [73] for more on

operator systems, CP maps and multiplicative domains.

Theorem 2.1.1. Autχ(G) is a compact group.

Proof. Viewing u as an element of Mn(Cm(G)) = Mn(C) ⊗ Cm(G), let u = ((uij)). Let

α ∈ Autχ(G), then we have: ∑
uii =

∑
α(uii)

so that there exists a uα ∈ U(n), the group of n×n unitary (scalar) matrices. such that:

(uα ⊗ 1)u(u∗α ⊗ 1) = α(u)

so, this gives us an anti-homomorphism,

γ : Autχ(G)→ U(n)
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α 7→ uα

where α(u) = (uα ⊗ 1)u(u∗α ⊗ 1). Clearly γ is injective.

To show Autχ(G) is compact, we want to show that the image of γ in U(n), denoted

by =(γ), is closed in U(n) and the map γ−1 : =(γ)→ Autχ(G) is continuous. We have a

lemma:

Lemma 2.1.2. Let {αi}i∈I be a net of automorphisms of a C∗-algebra A which is gen-

erated as a C∗-algebra by the set {s1, ..., sn}n∈N. If αi(sk) → sk for all k ∈ {1, . . . , n} in

norm, then, αi(a)→ a for all a ∈ A in norm.

Proof. This is straightforward. 2

It now follows from the previous lemma that γ−1 is continuous since Cm(G) is gener-

ated by uij’s, the matrix entries of the representation u = ((uij)).

To show that =(γ) is closed, we need the following lemma, a matrix version of a

lemma of Pisier [74].

Lemma 2.1.3. Let A be a unital C∗-algebra and u = ((uij)) ∈ Mn(A) be an unitary

element, such that A is generated as a C∗-algebra by uij, i, j ∈ {1, 2, ..., n} and suppose T :

A→ B is a unital completely positive map into some C∗-algebra B such that ((T (uij))) ∈

Mn(B) is also a unitary element. Then, T is a ∗-homomorphism.

Proof. The proof is by a multiplicative domain argument. We want to show that uij’s

are in the multiplication of domain of T from which the result will follow.

Let us take u11 ∈ A. Then, we know that

∑
u1ju

∗
1j = 1.

Now, by Cauchy-Schwarz inequality,

T (u11u
∗
11) > T (u11)T (u11)∗
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But, we also have,

T (u1ju
∗
1j) > T (u1j)T (u1j)

∗

⇒
n∑
j=2

T (u1ju
∗
1j) >

n∑
j=2

T (u1j)T (u1j)
∗

⇒ T (1− u11u
∗
11) > 1− T (u11)T (u∗11)

⇒ T (u11u
∗
11) = T (u11)T (u11)∗

Similarly, this can be proved for all uij’s. 2

We continue with the proof of the theorem. Let {ti}i∈I be a net of unitary matrices

in U(n) such that ti → t in U(n), with γ(αi) = ti ∀i ∈ I. Consider the finite dimen-

sional operator system S generated by {uij}, i, j ∈ {1, 2, ..., n}, the matrix entries of

u ∈Mn(Cm(G)). Since αi are automorphisms such that:

αi(u) = (ti ⊗ 1)u(t∗i ⊗ 1)

the map on S defined by

1 7→ 1

and

u 7→ (ti ⊗ 1)u(t∗i ⊗ 1)

gives us an unital completely positive map φi : S → S for all i ∈ I. Now, consider the

map φ : S → S given by

1 7→ 1

u 7→ (t⊗ 1)u(t⊗ 1)∗

Since ti → t in norm, it follows that φi → φ in point norm topology. This implies

‖φ‖cb = 1 and since φ is unital, we have that φ is unital completely positive.

But by Arvenson Extension theorem and the previous lemma, φ extends uniquely to
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an automorphism of the quantum group and so range of γ is closed and we are done. 2

We now revert back to our original assumption of G being a compact quantum group.

Theorem 2.1.4. The group Outχ(G) = Aut(G)/Autχ(G) is totally disconnected.

Proof. Let u be an irreducible representation of G and χu be its character, χu ∈ Cm(G).

Let

K[u] := {α ∈ Aut(G) | α(χu) = χu}

Then we have,

Autχ(G) =
⋂

[u]∈Irr(G)

K[u]

where [u] the equivalence class corresponding to the irreducible representation u of G. We

shall show that K[u] is an open subgroup of Aut(G) which will imply that Aut(G)/K[u]

is discrete and so it will follow that Aut(G)/Autχ(G) is totally disconnected.

To show that K[u] is open, consider the open neighbourhood:

u(χu, 1) := {α ∈ Aut(G) | ‖χu − α(χu)‖ < 1}

Now, h(χ∗uχu) = 1 and

h(α(χu)
∗χu) =


1, if χu = α(χu)

0, otherwise

So, for any α ∈ u(χu, 1), we have,

|h(χ∗uχu)− h(α(χu)
∗χu)| 6 ‖χu − α(χu)‖ < 1

and hence

|1− h(α(χu)
∗χu)| < 1⇒ α(χu) = χu ⇒ α ∈ K[u]
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Since u(χu, 1) is an open neighbourhood in K[u] we indeed have that K[u] is an open

subgroup of Aut(G). 2

In fact, much more is true for compact quantum groups which have fusion rules

identical to those of connected compact simple Lie Groups.

Proposition 2.1.5. Let G be a compact quantum group having fusion rules identical to

those of a connected compact Lie group. Then the group Outχ(G) = Aut(G)/Autχ(G)

has finite order. In particular, if G is a q−deformation of some simply connected simple

compact Lie group, then Outχ(G) has order 1, 2, 3 or 6.

Proof. Any automorphism α of G induces an order isomorphism of its representation

ring Z[Ĝ]. And clearly, if α ∈ Autχ(G), then α induces the trivial isomorphism of its

representation ring. So, Outχ(G) is easily seen to be a subgroup of the group of order

isomorphisms of the representation ring Z[Ĝ].

But, by results of Mcmullen [64] and Handelman [40], it follows that for connected

compact groups, the group of order isomorphisms of the representation ring of the group

and its outer automorphism group are isomorphic. The proposition now follows from the

facts that for connected compact Lie groups, the outer automorphism group is finite and

that for simple compact Lie groups, it can only have order 1, 2, or 6. 2

Definition 2.1.6. A compact group G is said to be Hopfian if every surjective homo-

morphism f : G → G is an isomorphism. In other words, there exists no proper normal

subgroup N of G such that G/N ∼= G.

Analogously, one can define Hopfian compact quantum groups.

Definition 2.1.7. A compact quantum group G = (A,Φ) is said to be Hopfian if every

injective quantum homomorphism φ : Cm(G)→ Cm(G) is also surjective.

Proposition 2.1.8. Let G be a compact quantum group which has fusion rules identical

to those of a compact connected group G. Suppose that G is a Hopfian compact group.

Then, G is Hopfian as well.
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Proof. Suppose not, then there exists a quantum homomorphism α : Cm(G) → Cm(G)

which is injective but not surjective. Then the induced map of the representation ring

α̂ : Z[Ĝ]→ Z[Ĝ] is injective and order preserving but not surjective.

However, Z[Ĝ] is also the representation ring of the compact connected group G. Now

the range of α̂ corresponds to a proper subobject of Ĝ, which by the Galois correspondence

between the subobjects and normal subgroups, corresponds to a proper normal subgroup

N of G and hence, the representation ring of G/N and G are order isomorphic, and so once

again by [64] and [40], it follows that G is isomorphic to G/N , which is a contradiction.

2

2.2 Inner Automorphisms and Normal Subgroups I

In the classical case of compact groups, subgroups are said to be normal if they are stable

under all automorphisms of the form αs(g) = sgs−1, s, g ∈ G, a compact group. So, for

a compact group G, a subgroup N is, by definition, normal if for every automorphism of

the form αs, s ∈ G, there exists an automorphism β : N → N such that:

G
αs // G

N
?�
i

OO

β // N
?�
i

OO

commutes.

In fact, more is true: if N is a normal subgroup of G, then it corresponds to a unique

subobject ΓN of Irr(G) where Irr(G) denotes the equivalence classes of all irreducible

representations of G [42]. So, it follows that N is always stable under any representation

class preserving automorphism (the converse of course is trivial as Inn(G) ⊆ Autχ(G)).

In this section, we show that this holds true in the quantum case as well, under certain

assumptions.

Essentially, we want to show that, given a compact quantum group G, α ∈ Autχ(G)

and N a normal subgroup, with ρ : Cm(G) → Cm(N) as the corresponding surjection,

there exists a quantum group automorphism β : Cm(N)→ Cm(N) such that:

37



Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(N)

β
// Cm(N)

commutes.

Lemma 2.2.1. Let G be a compact quantum group with H a subgroup of it and ρ :

Cm(G) → Cm(H) the corresponing surjection. Let α : Cm(G) → Cm(G) be an automor-

phism of G and β : Cm(H)→ Cm(H) be a C∗-algebraic automorphism such that

Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(H)

β // Cm(H)

commutes. Then β is also a quantum group automorphism.

Proof. We want to show that ∆H ◦ β = (β ⊗ β)∆H . Since ρ is surjective, given any

b ∈ Cm(H), there exists some a ∈ Cm(G) such that ρ(a) = b. Now,

(β ⊗ β)∆H(b) = (β ⊗ β)∆H(ρ(a))

= (β ◦ ρ⊗ β ◦ ρ)∆G(a)

= (ρ⊗ ρ)(α⊗ α)∆G(a)

= ∆H(ρ ◦ α(a))

= ∆H(β ◦ ρ(a)) = ∆H(β(b))

and so we are done. 2

Proposition 2.2.2. Let G be a compact quantum group and let H be a subgroup of G.

Let α be an automorphism of G and let β be an automorphism of H such that

Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(H)

β // Cm(H)

commutes. Then α : Cm(G/H)→ Cm(G/H) is a C∗-algebraic automorphism. Similarly,

α : Cm(H\G)→ Cm(H\G) is a C∗-algebraic automorphism.
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Proof. First we note that

ρ ◦ α = β ◦ ρ ⇐⇒ ρ ◦ α−1 = β−1 ◦ ρ

Now, we just have to show that

α(Cm(G/H)) ⊆ Cm(G/H)

This is clear as if a ∈ Cm(G/H), then by definition, (ρ⊗ id)∆G(a) = 1⊗ a. Now,

(ρ⊗ id)∆G(α(a)) = (ρ⊗ id)(α⊗ α)∆G(a)

= (β ◦ ρ⊗ α)∆G(a)

= (β ⊗ α)(1⊗ a)

= 1⊗ α(a)

and so α(a) ∈ Cm(G/H). One can similarly prove the proposition in the case of

Cm(H\G). 2

Proposition 2.2.3. Let G be a compact quantum group and let H be a subgroup of G.

Let α : Cm(G)→ Cm(G) be an automorphism of G, such that α : Cm(G/H)→ Cm(G/H)

is C∗-algebraic automorphism, then there exists β : Cm(H)→ Cm(H) such that β is also

an automorphism of H and such that

Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(H)

β // Cm(H)
commutes.

Proof. Consider Pol(G) and Pol(H). We have that ρ(Pol(G)) = Pol(H) and α(Pol(G)) =

Pol(G). Hence, we will be done if we can find a β0 : Pol(H) → Pol(H), a ∗-algebra

automorphism such that
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Pol(G)

ρ

��

α // Pol(G)

ρ

��
Pol(H)

β0 // Pol(H)

commutes. This is because it is then easy to show that β0 is actually a Hopf algebra

automorphism, and if we denote the natural extension of β0 to Cm(H) by β, then β is

a quantum group automorphism such that α ◦ ρ = ρ ◦ β. First let us note the following

straightforward

Lemma 2.2.4. Let A,A1, A2 be unital ∗-algebras and πk : A → Ak, for k = 1, 2 be

surjective ∗-algebraic morphisms, with kernels denoted by Ik, k = 1, 2. Then the following

are equivalent-

1. There is an ∗-algebraic surjective morphism α : A1 → A2 such that π2 = α ◦ π1.

2. I1 ⊆ I2

We also have that, in the previous case, α is an isomorphism if and only if I1 = I2

Thus, with C = Pol(G), C1 = C2 = Pol(H), π1 = ρ and π2 = ρ ◦ α, if we show that

ker(ρ) =ker(ρ ◦ α), then we will have a ∗-isomorphism β0 : Pol(H) → Pol(H) such that

β0 ◦ ρ = ρ ◦ α.

Let Pol(G)G/H := Pol(G) ∩ Cm(G/H). We have that α(Pol(G)G/H = Pol(G)G/H .

Let a ∈ Pol(G)G/H , then as ρ(a) = εG(a) · 1, we have that ρ(a) = 0 if and only if

εG(a) = 0. But since εG ◦ α = εG, we have that ρ(a) = 0 if and only if ρ(α(a)) = 0 for

any a ∈ Pol(G)G/H.

Suppose now that for some a ∈ Pol(G), a > 0, we have that ρ(a) = 0 but ρ(α(a)) > 0.

We then have that hh(ρ(α(a))) > 0. But then ρ(EG/H(α(a))) = (ρ ⊗ hH ◦ ρ)Φ(a) =

(id⊗ hH)Ψ(ρ(a)) = hH(ρ(a)) · 1 > 0.

Before proceeding further, we need the following

Lemma 2.2.5. Let C be a unital ∗-algebra and C0 ⊆ C be a unital ∗-subalgebra. Suppose

that φ is a faithful state on C. Then there can exist at most one linear projection map
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E0 : C → C0 such that E0(abc) = aE0(b)c for any a, c ∈ C0, b ∈ C, E0(a)∗ = E0(a∗),

E0(a)∗E0(a) ≤ E0(a∗a) and φ ◦ E0 = φ.

The proof of this lemma is very similar to the proof of the correspoding C∗-algebraic

statement, as can be found in Corollary II.6.10.8 of [16] and is left to the reader.

So, since EG/H(Pol(G)) = Pol(G)G/H , it is easily checked that the maps EG/H and

α−1 ◦EG/H ◦α both satisfy the hypothesis of the lemma with φ = hG, we have now by the

lemma that for any a ∈ Pol(G), EG/H(a) = α−1 ◦ EG/H ◦ α(a). Hence, ρ(α(EG/H(a))) =

ρ(EG/H(α(a))) > 0. But since ρ(a) = 0, we have that ρ(EG/H(a)) = 0 and as EG/H(a) ∈

Pol(G)G/H , we get a contradiction to the first part of the proof. Hence, we are done. 2

Theorem 2.2.6. Let G be a compact quantum group, α ∈ Autχ(G) and N be a normal

subgroup of it, with ρ : Cm(G)→ Cm(N) the corresponding surjection. Then there exists

a β ∈ Aut(N) such that

Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(N)

β // Cm(N)
commutes.

Proof. This follows from the previous proposition and from the fact that as α ∈ Autχ(G),

α : Cm(G/N)→ Cm(G/N) is a C∗-algebraic automorphism.

2

2.3 Inner Automorphisms and Normal Subgroups II

We start this section by giving a recipe to produce representation class preserving auto-

morphism.

Definition 2.3.1. For a locally compact group K, we denote the group of one dimensional

representations of K by Sp(K). It is not hard to see that Sp(K) is the Pontryagin dual

of the abelianisation K/[K,K] of K, where [K,K] denotes the commutator subgroup of
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K. Similarly, for a C∗-algebra A, we denote the set of one dimensional ∗-representations

by Sp(A).

Example 2.3.2. Let G be a compact quantum group and write χ(G) := Sp(Cm(G)). It

is a group with the product defined by gh = (g ⊗ h) ◦ ∆, for g, h ∈ χ(G). The unit of

χ(G) is the counit εG ∈ Cm(G)∗ and the inverse of g ∈ χ(G) is given by g ◦SG, where SG

is the antipode on Cm(G). Viewing χ(G) as a closed subset of the unit ball of Cm(G)∗,

one can consider the weak* topology on χ(G) which turns χ(G) to a compact group. It

is easy to see that χ(G) is in fact a subgroup of G, the surjective map is the obvious

evaluation map from Cm(G),

ρ : Cm(G)→ C(χ(G))

a 7→ ea

where ea(f) = f(a). It is also not hard to see that χ(G) is the maximal classical compact

subgroup of G.

Let Γ be a discrete group and C∗(Γ) be the full group C∗-algebra of Γ. Then for

this co-commutative compact quantum group, the maximal classical compact group is

C∗(Γ/[Γ,Γ]), i.e. the full group C∗-algebra of the abelianisation of Γ. In case of SUq(2)

with −1 < q < 1, the maximal classical compact group is S1, the circle group [75], while

in the case of Au(n), the maximal classical compact group is the unitary group U(n) [87].

Let G be a compact quantum group and define, for all g ∈ χ(G), the map αg = (g−1⊗

id ⊗ g) ◦∆(2). It defines a continuous group homomorphism χ(G) 3 g 7→ αg ∈ Aut(G).

It is not hard to see that the action of χ(G) on Irr(G) is trivial. Indeed, for g ∈ χ(G)

and x ∈ Irr(G) a straightforward computation gives (id⊗ αg)(ux) = (V ∗g ⊗ 1)ux(Vg ⊗ 1),

where Vg = (id⊗ g)(ux). This class of automorphisms were first defined by Wang in [88].

We now give two examples for compact quantum groups, for which there exist non-

normal subgroups stabilised by each representation class preserving automorphism:
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2.3.1 The SUq(2) case

We show that such is the case for SUq(2), −1 < q < 1, q 6= 0. We refer to the book [81]

for more details on the compact quantum group SUq(2). We note first that since SUq(2)

has a unique irreducible representation class for a given dimension, any quantum group

automorphism is in fact in Autχ(SUq(2)), i.e. Aut(SUq(2)) = Autχ(SUq(2)). For SUq(2),

the generating unitary representation, denoted by u, is the 2× 2 matrix

 α −qγ∗

γ α∗



Now, let τ : C(SUq(2)) → C(SUq(2)) be an automorphism of SUq(2). Then, since the

irreducible representations u and τ(u) are in the same representation class, we have for

some ((τij)) ∈ U(2)

τ(u) = (((τij))⊗ 1)u(((τji))⊗ 1)

which tells us that

α 7→ τ11τ11α− τ11τ12qγ
∗ + τ12τ11γ + τ12τ12α

∗

−qγ∗ 7→ τ11τ21α− τ11τ22qγ
∗ + τ12τ21γ + τ12τ22α

∗

γ 7→ τ21τ11α− τ21τ12qγ
∗ + τ22τ11γ + τ22τ12α

∗

α∗ 7→ τ21τ21α− τ21τ22qγ
∗ + τ22τ21γ + τ22τ22α

∗

Since τ is ∗-preserving and α, γ,−qγ∗, α∗ are linearly independent, we get,

|τ11|2 = |τ22|2

q2τ21τ12 = τ21τ12

43



But as 0 < q2 < 1, we have τ21 = τ12 = 0 and τ11, τ22 ∈ S1, the circle group. So,

α 7→ α

γ 7→ τ22τ11γ

But C(SUq(2)) is the universal C∗-algebra generated α, γ such that

α∗α + γ∗γ = 1, αα∗ + q2γγ∗ = 1

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ

We see that α and τ22τ11γ also satisfy these relations, which implies that indeed we have

an automorphism

τ : C(SUq(2))→ C(SUq(2))

α 7→ α

γ 7→ τ22τ 11γ

where τ11, τ22 ∈ S1, the circle group. It is easily checked that this automorphism is also

a quantum group automorphism by verifying the relation on the generators.

However, since τ22τ11 ∈ S1, there exists some κ ∈ S1 such that κ2 = τ22τ11 and so, by

[88], we get that the same automorphism is induced by the matrix

κ 0

0 κ


and this comes from the induced automorphism of the maximal compact group S1 of

SUq(2). But, for these automorphisms, as they are induced from the quantum subgroup

S1 of SUq(2), we then have the following:

Theorem 2.3.3. For any α ∈ Aut(SUq(2)) = Autχ(SUq(2)), with 0 < q2 < 1, we have
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the following commutative diagram-

C(SUq(2)) α //

ρ

��

C(SUq(2))

ρ

��
C(S1)

id
// C(S1)

2.3.2 The Au(n) case

We now consider the case of the compact quantum group Au(n). Let us first note that the

C∗-algebra Cm(Au(n)) is defined as the universal C∗-algebra generated uij, i, j ∈ 1, 2, ..., n

such that the matrices u = ((uij)) and ū = ((u∗ij)) are both unitary.

Now, in case of Au(n), we have a surjective homomorphism

φ : U(n)→ Autχ(Au(n))

t 7→ φt

where φt : Cm(Au(n))→ Cm(Au(n)) is defined by the property that

φt(u) = (t⊗ 1)u(t∗ ⊗ 1)

where u = ((uij)) ∈ Mn(Cm(Au(n))) is the fundamental unitary. This, by the universal

property of Cm(Au(n)), extends to an automorphism of Cm(Au(n)). Now, for any α ∈

Autχ(Au(n)), there exists some t ∈ U(n) such that α(u) = (t⊗1)u(t∗⊗1). Hence, α = φt,

which shows that the map φ is surjective.

Theorem 2.3.4. For any t ∈ U(n), the following diagram commutes-

Cm(Au(n))
φt //

ρ

��

Cm(Au(n))

ρ

��
C(U(n))

ψt
// C(U(n))

where ρ denotes the canonical surjection onto C(U(n)), the algebra of complex-valued

functions of the group U(n), which is the maximal compact subgroup of Au(n) and ψt
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denotes the automorphism of C(U(n)), induced by the inner automorphism

βt : U(n)→ U(n), s 7→ tst∗

Proof. This is easily shown by checking the relation on uij’s, the matrix entries of u, the

fundamental unitary of Au(n). 2

We have the following corollary, which follows easily as the diagram of the previous

proposition commutes.

Corollary 2.3.5. For the homomorphism φ : U(n)→ Autχ(Au(n)), we have

ker φ = Z(U(n)) = {λI : λ ∈ S1}

Also, each non-trivial φt is a C∗-algebraic outer automorphism of Cm(Au(n)).

We now want to show that U(n) is not normal in Au(n).

We first prove the following lemma, which should be well known to experts, but we

nonetheless sketch a quick proof.

Lemma 2.3.6. Let G = (A,∆) be a CQG and H = (B,Ψ) a quantum subgroup of G, with

ρ : A → B the associated subgroup surjection. Then given any irreducible represenation

vγ = ((vγij)) ∈ Mn(B) of H, there exists an irreducible representation uβ = ((uβkl)) ∈

Mm(A) of G, such that vγ is a subrepresentation of the representation ((ρ(uβkl))) (which

we denote by ρ(uβ)) of H.

Proof. Suppose not, i.e. suppose there exists vγ, an irreducible representation of H, such

that it is not a subrepresentation of ρ(uγ) for any irreducible representation uβ of G.

Then, it follows from [94] (see Equation 5.9), that

hH((vγij)
∗ρ(uβkl)) = 0
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for all i, j, k, l and for all β ∈ Irr(G). But as ρ(Pol(G)) is dense in B (Pol(G) denotes the

canonical dense hopf-∗-algebra of G), it is then easy to see that hH((vγij)
∗vγij) = 0, for all

i, j. But this is a contradiction as hH is faithful on B, the canonical dense hopf-∗-algebra

of H. Hence, we are done. 2

Lemma 2.3.7. Let G be a compact quantum group with subgroups N1 and N2. Suppose

that N2 is a subgroup of N1 and that N2 is normal in G. Then, N2 is normal in N1.

Proof. This follows easily from the previous lemma. 2

The following lemma generalises the well known Third Isomorphism theorem for

groups.

Lemma 2.3.8. Let G, N and H be compact quantum groups such that H is a subgroup

of N and N is a subgroup of G, so H is also a subgroup of G. Suppose further that N

and H are normal in G. Then the compact quantum group G/H has N/H as a normal

subgroup with the quotient being G/N .

Proof. It follows from the previous lemma that H is normal in N . We have the three

corresponding surjections

ρ0 : Cm(G)→ Cm(H)

ρ1 : Cm(G)→ Cm(N)

ρ2 : Cm(N)→ Cm(H)

such that ρ0 = ρ2 ◦ ρ1.

Now, ρ1(Cm(G/H)) = Cm(N/H) as if a ∈ Cm(G/H) then

(id⊗ ρ2)∆N(ρ1(a)) = (ρ1 ⊗ ρ2 ◦ ρ1)∆G(a)

= (ρ1 ⊗ id)(id⊗ ρ0)∆G(a)

= ρ1(a)⊗ 1
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and so ρ1(Cm(G/H)) ⊆ Cm(N/H). But then, if b ∈ Cm(N/H), and if x ∈ Cm(G) is such

that ρ1(x) = b, then for EG/H(x) = (id⊗ hH ◦ ρ0)∆G(a), we have

ρ1(EG/H(x)) = (id⊗ hH ◦ ρ2)(ρ1 ⊗ ρ1)∆G(x)

= (id⊗ hH ◦ ρ2)∆N(ρ1(x)) = b

So, we have that N/H is indeed a subgroup of G/H with the surjection being the map ρ1

restricted to Cm(G/H). As Cm(G/N) ⊆ Cm(G/H), it is easily seen that N/H is normal

in G/H, and that (G/H)/(N/H) = G/N . 2

Theorem 2.3.9. The subgroup U(n) is not normal in Au(n).

Proof. Observe that S1 is normal in U(n), and as shown in the proof of Proposition 4.5 of

[91], S1 is a normal subgroup of Au(n). If U(n) is normal in Au(n), then by the previous

lemma, U(n)/S1 is a normal subgroup of Au(n)/S1. But this contradicts Theorem 1 of

[24]. 2

Remark 2.3.10. The previous theorem is also easily shown by direct calculation.

We end this section by computing the group

Outχ(Au(n)) = Aut(Au(n))/Autχ(Au(n))

Proposition 2.3.11. Aut(Au(n))/Autχ(Au(n)) = Z2

Proof. Since Au(n) has exactly 2 irreducible representation of dimension n, and the au-

tomorphism γ defined by

u = (uij) 7→ u = (u∗ij)

is a quantum group automorphism, the proposition follows from the fact that any auto-

morphism not in Autχ(Au(n)) will map

u 7→ (t⊗ 1)u(t∗ ⊗ 1), t ∈ U(n)
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, which is composition of two quantum group automorphisms

u
γ−→ u

γt−→ tut∗

But γt is in Autχ(Au(n)) and hence the result follows. 2

2.4 Central Subgroup and Center

In case of compact groups, we have that Inn(G) = G/Z(G), where Z(G) denotes the

center of G. In this section, we try to identify the center of a given compact quantum

group (see also [25] for an alternative approach).

Definition 2.4.1 ([91]). A subgroup H of a compact quantum group G is said to be

central if (ρ⊗id)∆G = (ρ⊗id)σ∆G, where ρ : Cm(G)→ Cm(H) denotes the corresponding

surjection and σ the flip map on Cm(G)⊗ Cm(G).

Proposition 2.4.2. Let H be a central subgroup of compact quantum group G. Then H

is co-commutative.

Proof. We have that to show that ∆H(a) = σ∆H(a) for all a ∈ Cm(H).

Let s ∈ Cm(G) such that ρ(s) = a, then we have

∆H(ρ(s)) = (ρ⊗ ρ)∆G(s)

= (id⊗ ρ)(ρ⊗ id)∆G(s)

= (id⊗ ρ)(ρ⊗ id)σ∆G(s)

σ(ρ⊗ ρ)∆G(s) = σ∆H(ρ(s))

Hence, we are done. 2

It follows easily from the definitions that central subgroups of compact quantum

groups are always normal.
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Theorem 2.4.3. Let H be a subgroup of a compact quantum group G. Then H is a central

subgroup of G if and only if given any irreducible representation uτ of G, there exists a

unique 1-dimensional representation λn of H such that uτ restricted to H decomposes as

a direct sum of dτ copies of λn, where dτ denotes the dimension of uτ . In other words,

(uτ|H , λn) = dτ

Proof. (⇐) This is easily seen by a straightforward calculation as

(ρ⊗ id)∆G(uτij) = (ρ⊗ id)σ∆G(uτij)

for matrix elements of all irreducible representations.

(⇒) H is central, so by the previous lemma, H is co-commutative. But then any irre-

ducible representation (uτ ) when restricted to H decomposes as a sum of 1-dimensional

representations of H. By unitary equivalence, we may assume that ρ(uτij) = 0 if i 6= j

and ρ(uτ11) = λ1 and ρ(uτii) = λi for some i 6= 1. We want to show that λ1 = λi. Now,

(ρ⊗ id)∆G(uτ1i) = (ρ⊗ id)
∑
k

uτ1k ⊗ uτki

=
∑
k

ρ(uτ1k)⊗ uτki = λ1 ⊗ uτ1i

and

(ρ⊗ id)σ∆G(uτ1i) = (ρ⊗ id)
∑
k

uτki ⊗ uτ1k

=
∑
k

ρ(uτki)⊗ uτ1k = λi ⊗ uτ1i

and hence, λ1 = λi. 2

Corollary 2.4.4. Suppose G is a compact quantum group and H is a central subgroup

of it. Suppose α ∈ Autχ(G). Then,
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Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(H)

id
// Cm(H)

commutes.

Proof. Since α ∈ Autχ(G), for any irreducible representation uτ of G, with dimension dτ ,

α(uτ ) = (t⊗ 1)u(t∗ ⊗ 1)

for some t in U(dτ ). The result now follows by direct calculation, using the previous

theorem and assuming, by unitary equivalence, that given an irreducible representation

uτ :

ρ(uτij) =


0 if i 6= j

λτ if i = j

where λτ is a 1-dimensional representation of H. 2

Proposition 2.4.5. Let G be a compact quantum group and let χ(G) be its maximal

classical compact subgroup. Let X0 := {s ∈ χ(G) : αs = id on Cm(G)}, i.e. the

set of 1-dimensional ∗−representations of Cm(G) such that the associated induced inner

automorphisms of G is trivial. Then X0 is a closed subgroup of χ(G) and is a central

subgroup of G.

Proof. Its easy to check that X0 is a subgroup of χ(G).

Now since

αs = λsρs

⇒ αs = id⇔ λs−1 = ρs

⇒(s⊗ id)(ρ⊗ id)∆G = (id⊗ s)(id⊗ ρ)∆G, ∀s ∈ X0

⇒(s⊗ id)(ρ⊗ id)∆G = (s⊗ id)(ρ⊗ id)σ∆G

⇒ (ρ⊗ id)∆G = (ρ⊗ id)σ∆G
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and hence, X0 is central in G. 2

Let G be a compact quantum group, and consider the set Irr(G). Following [64], we

give the following

Definition 2.4.6. Let Σ ⊆ Irr(G) be a subobject. For a, b ∈ Irr(G), we define a ∼ b if

and only if a × b̄ ∩ Σ 6= φ. Here b̄ denotes the conjugate of b and a × b denotes the set

of all elements of Irr(G) representatives of which are subrepresentations of ua⊗ ub where

ua, ub are irreducible representations of G and [ua] = a and [ub] = b.

Using Propn 3.2 of [76], it is easy to check that this defines an equivalence relation.

We call the equivalence classes of this relation as Σ−cosets.

Given, two Σ−cosets, A and B, we define the product set A × B := {c ∈ Irr(G) :

c ⊂ a× b}. Obviously, we have that the set-wise product of two Σ− cosets is a union of

Σ−cosets.

Definition 2.4.7. We say a subobject Σ ⊆ Irr(G) is a central subobject if the Σ−cosets

form a group. In this case, the product of two Σ−cosets is itself a Σ−coset. Σ, which is

itself a Σ−coset, acts as the identity element. The group is denoted as Irr(G)/Σ.

Proposition 2.4.8. Let G be a compact quantum group and H a normal subgroup. Let

Σ denote the subobject of Irr(G) corresponding to equivalence classes of irreducible repre-

sentations of G that decompose as direct sum of trivial representation when restricted to

H. Then H is central if and only if Σ−cosets form a group.

Proof. (⇒) LetH be central. SinceH is cocommutative, we know that Irr(H) is a discrete

group. By Theorem 2.4.3, we know that for any irreducible representation uτ of G, there

exists a unique 1-dimensional representation φτ ∈ Irr(H) such that (uτ|H , φ
τ ) = dτ , where

dτ denotes the dimension of uτ . We consider the following map-

π : Irr(G) 7→ Irr(H)

[uτ ] 7→ φτ
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where [uτ ] denotes the equivalence class of uτ in Irr(G). The map π is then easily checked

to be multiplicative, in the sense that if we take two irreducible representations of G, uα

and uβ, then

σ ∈ [uα]× [uβ] 7→ φα · φβ

Now, Σ consists of [uτ ] such that π([uτ ]) = 1H , so this implies that

α ∼ β ⇔ π(uα) = π(uβ)

and hence, cosets correspond to preimages of elements of the group Irr(H) and since π

is multiplicative, we have that Irr(G)/Σ is indeed a group.

(⇐) Let H not be central, then by Theorem 2.4.3, there exists some irreducible represen-

tation uσ of G, with [uσ] ∈ Irr(G) denoting its equivalence class, such that uσ|H = ⊕ni=1ξi

upto equivalence, where either for some i, dim(ξi) > 1 or, in case all ξi have dimension

1, for some i 6= j, ξi 6= ξj, where ξi’s are irreducible representations of H. Then we have

that

uσ ⊗ ūσ |H = ⊕ni,j=1(ξi ⊗ ξ̄j)

upto equivalence. But then, in either of the aforementioned cases, 1H and some other

non-trivial representation appear in the decomposition of (uσ ⊗ ūσ)|H into irreducible

representations of H. And so if we let [σ] denote the Σ-coset corresponding to [uσ] and

[σ̄] the Σ-coset corresponding to [ūσ], [σ]× [σ̄] is a union of more than one coset, which

gives a contradiction. 2

Proposition 2.4.9. Let Z := {Σ ⊆ Irr(G) : Σ is a central subobject }. Let

Σ̃ := ∩Σ∈ZΣ

Then Σ̃ ∈ Z

Proof. Let [a] and [b] be two Σ̃−cosets, we want to show that [a]× [b] is also a Σ̃−coset.

53



This follows easily from the following two facts -:

(i) If a and a1 belong to the same Σ̃−coset, then they belong to the same Σ−coset for

all Σ ∈ Z, obvious as Σ̃ ⊆ Σ for all Σ ∈ Z.

(ii) If a and a1 belong to the same Σ−coset for every Σ ∈ Z then a and a1 belong to the

same Σ̃−coset. This is true because for Σ ∈ Z, the Σ−cosets form a group. Now, since

a and a1 belong to the same Σ−coset, we have that

a× ā1 ∩ Σ 6= φ

But then as Σ−cosets form a group, we have that [a] × [ā1] = Σ, where [a] denotes the

Σ-coset corresponding to a. This implies that for any σ ∈ a× ā1, σ ∈ Σ for all Σ ∈ Z, so

σ ∈ Σ̃ and hence, a and a1 are in the same Σ̃−coset. 2

We call Σ̃ ⊆ Irr(G) the center subobject of G. This corresponds to the center of

the compact quantum group G. The subalgebra in Cm(G) generated by Σ̃ gives us the

underlying C∗-algebra of the quotient quantum group G/Z(G).

Let G be a compact quantum group. Let Σ ⊆ Irr(G) be a central object and HΣ =

Irr(G)/Σ be the group of Σ-cosets. We then have:

Proposition 2.4.10. C∗(HΣ) is a central subgroup of G, with Σ being the subobject of

Irr(G) cosisting of equivalence classes of irreducible representations of G that decompose

as a sum of trivial representation when restricted to it, so its left and equivalently right,

coset space is generated by matrix entries of the representatives of elements of Σ as a

subalgebra of Cm(G).

Proof. We refer to [95] for definitions of unexplained terms.
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We have for the compact quantum group G, a triple

(RG, {Hα}α∈RG , {Mor(α, β)}α,β∈RG)

By Proposition 3.3 of [95] for any model , (M, {Vr}r∈RG), there exists a ∗-homomorphism

ϕM : Pol(G)→M

which extends to Cm(G) (using universal property of Cm(G)).

We want to give a model with M = C∗(HΣ). First, let us take a complete set of

irreducible representations {αk}k∈I of G. So, αk’s are representatives of elements of

Irr(G) and belong to RG. And, they are complete in the sense that, the map

κ : {αk}k∈I ⊆ RG → Irr(G)

αk 7→ [αk]

is one-one and onto.

For these αk ∈ RG such that αk ∈ B(Hk)⊗ Cm(G), we define

Vαk = 1µk ⊗ δk ∈ B(Hk)⊗ C∗(HΣ)

Here, δk is the element of the group HΣ corresponding to the Σ-coset that contains [αk].

Now, for any r ∈ RG, we know that there exists a finite set {αk1 , . . . , αkn} ⊆ {αk}k∈I

such that there exist Pki ∈ Mor(αki , r) with the properties that:

∑
Pk1P

∗
ki

= IHr

P ∗kiPki = IHk

and PkiP
∗
ki
PkjP

∗
kj

= 0 for all i 6= j ∈ {1, . . . , n}

55



We then define Vr ∈ B(Hr)⊗ C∗(HΣ) ,

Vr :=
∑
i

PkiP
∗
ki
⊗ δki .

It is then straightforward to check that:

Vr ⊗ Vs = Vrs

and

Vr(t⊗ 1) = (t⊗ 1)Vs

for all r, s ∈ RG, t ∈ Mor(s, r). So, we have a model for

{RG, {Hξ}ξ∈RG ,Mor(α, β)α,β∈RG}

and so a ∗-homomorphism:

ϕΣ : Cm(G)→ C∗(HΣ)

It follows easily that ϕΣ is a quantum group homomorphism and also that C∗(HΣ) is a

central subgroup of G with Σ ⊆ Irr(G) as the corresponding subobject. 2

So, associated to any central subobject Σ ⊆ Irr(G), there exists a central subgroup

of G, with the algebra generated by representatives of elements of Σ giving its left/right

coset space.

Remark 2.4.11. Let us note that for Σ̃, we have the group HΣ̃, which can be regarded as

the center of the compact quantum group G (more precisely, it is the dual of the center

of G, but we will continue with this slight abuse, since we often end up calculating HΣ̃).

Lemma 2.4.12. Suppose we have compact quantum groups G, N1, N2. Let N1 and N2

be normal subgroups of G such that ΣN1 ⊆ ΣN2 where ΣNi is the subobject of Irr(G) corre-

sponding to Ni (and hence, consisting of equivalence classes of irreducible representations
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of G that are direct sums of the trivial representation when restricted to Ni), i = 1, 2

. Then, N2 is a normal subgroup of N1. Further, if the corresponding surjections are

denoted

ρi : Cm(G)→ Cm(Ni), i = 1, 2

then, the surjection

ρ0 : Cm(N1)→ Cm(N2)

satisfies:

ρ2 = ρ0 ◦ ρ1

Proof. We have that ρ1|Pol(G) = Pol(N1) and ρ2|Pol(G) = Pol(N2). We define:

ρ0 : Pol(N1)→ Pol(N2)

by

ρ0(ρ1(a)) = ρ2(a) for a ∈ Pol(G)

This is well-defined, as ker(ρ1) ⊆ ker(ρ2), which follows from Lemma 4.4 of [91]. It is

then easy to check that ρ0 is a ∗-homomorphism, so can be extended to Cm(N1). It is

also surjective and is in fact a quantum group homomorphism. Normality follows from

Lemma 2.3.7. 2

So, it follows that any central subgroup of G is in fact a subgroup of the center of

that G.

Let now G be compact quantum group. We consider the set of discrete groups

Z̄(G) := {F : C∗(F ) is a central subgroup of G}

We say that F0 ≤ F1 if there exists a surjective map

ρ1
0 : F1 → F0
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such that the induced map ρ̃1
0 : C∗(F1)→ C∗(F0) has the property that

Cm(G)
ρ0

%%

ρ1 // C∗(F1)

ρ̃1
0
��

C∗(F0)
commutes.

This then gives us an inverse system of discrete groups. One can directly show this

without appealing to the previous proposition. It is easy to see that if we have F0 ≤ F1 ≤

F2, with respective maps,

ρ1
0 : F1 → F0

ρ2
1 : F2 → F1

and

ρ2
0 : F2 → F1

then

ρ2
0 = ρ1

0 ◦ ρ2
1

Now given F1 and F2 in Z̄(G), we want to show that there exists F0 in Z̄(G) such that

F1 ≤ F0 and F2 ≤ F0. We have surjections

ρ1 : Cm(G)→ C∗(F1)

ρ2 : Cm(G)→ C∗(F2)

We consider the following map

Cm(G)
∆̃G // Cm(G)⊗max Cm(G)

ρ1⊗maxρ2// C∗(F1)⊗max C
∗(F2) ∼= C∗(F1 × F2)

Here ∆̃G denotes the extension of the map

∆G : Pol(G) ⊆ Cm(G)→ Pol(G)⊗alg Pol(G) ⊆ Cm(G)⊗max Cm(G)
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We have to check that (ρ1⊗max ρ2)∆̃G is a quantum group homomorphism and that it is

central. This is easy to check as (F1, ρ1) and (F2, ρ2) are central subgroups, so it is easily

checked for matrix entries of irreducible representations of G.

However, the map need not be surjective. But we can consider its range, which is a

cocommutative quantum group. Let

Ran(ρ1 ⊗max ρ2) = C∗(F0)

We now wish to show that F0 ≥ F1 and F0 ≥ F2. Let us show that F0 ≥ F1. So, we want

to show that

Cm(G)
ρ1

%%

Ψ0 // C∗(F0)

π1

��
C∗(F1)

commutes. Here,

Ψ0 = (ρ1 ⊗max ρ2)∆̃G

and

π1 : C∗(F0)→ C∗(F1)

is the restriction to C∗(F0) of the map

π̃1 : C∗(F1 × F2)→ C∗(F1)

δg1 ⊗ δg2 7→ δg1

Let (uτkl) be matrix entries of some arbitrary irreducible representation of G such that

ρ2(uτkl) =


δg if k = l, g ∈ F2

0 if k 6= l
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This is possible as F2 is a central subgroup of G, invoking Theorem 2.4.3. Then we have

π1(ρ1 ⊗ ρ2)∆G(uτkl) = π1(ρ1 ⊗ ρ2)
∑
j

uτkj ⊗ uτjl = π1(ρ1(uτkl)⊗ δg)

But since

ρ1(uτkl) = λ · δg1

for some g1 ∈ F1 and λ ∈ C, we have that

π1(ρ1(uτkl)⊗ δg) = ρ1(uτkl)

and so we have F0 ≥ F1 and similarly, F0 ≥ F2.

So, we have an inverse directed system and taking inverse limit, we get a discrete

group F = lim←−Fi. This is of course the center of the compact quantum group G, as can

be seen using Proposition 2.4.10.

2.5 Center Calculations

We calculate the center of some compact quantum groups. The following theorem is

helpful in many cases:

Theorem 2.5.1. Compact quantum groups having identical fusion rules have isomorphic

center.

Proof. Let G1 and G2 be two compact quantum groups with Irr(G1) and Irr(G2), the

set of equivalence classes of irreducible representations respectively. Then, as G1 and G2

have identical fusion rules, hence, there exists a bijection:

p : Irr(G1)→ Irr(G2)
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such that for all v, s ∈ Irr(G1), we have,

p(v × s) = p(v)× p(s)

as subsets of Irr(G2). Thus, Σ ⊆ Irr(G1) is central if and only if p(Σ) ⊆ Irr(G2) is central,

as follows easily from Proposition 2.4.8. So, centers of G1 and G2 are isomorphic. 2

Thus, we have the following:

1. The center of SUq(2) is Z2 for −1 6 q 6 1 and q 6= 0.

2. SOq(3) has trivial center, −1 6 q 6 1, and q 6= 0.

3. C∗(Γ), for any discrete subgroup Γ, has as center Γ.

4. Bu(Q) has the same fusion rules as SU(2) [6] and so its center is Z2, where Q is a

n× n matrix with QQ = cI ′n.

5. For B a finite dimensional C∗-algebra with dim(B) ≥ 4 and τ the canonical trace on

it, the compact quantum group Aaut(B, τ) [89] has the same fusion rules as SO(3)

[8] and so has trivial center.

Proposition 2.5.2. Let G be a compact quantum matrix group with u being its funda-

mental representation. Assume that u is irreducible, then Z(G), the center of G, is either

Z/nZ for some n ∈ Z or Z.

Proof. By Theorem 2.4.3, and the fact that u is the fundamental representation and is

irreducible, it follows that if Z(G) = Γ, then, Γ is generated by δg where

ρ(u) = δg ⊕ · · · ⊕ δg︸ ︷︷ ︸
dim(u)-times

where ρ denotes the surjection from G onto its center. Hence, Γ is a quotient of Z. 2

Corollary 2.5.3. The compact quantum group Au(Q), Q ∈ GLn(C) has center Z.
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Proof. It is shown in [91] that Au(Q) has C(S1) = C∗(Z) as a central subgroup. The

result now follows from the previous lemma, as u, the fundamental representation of

Au(Q), is irreducible. 2

The notion of the chain group c(G) for a given compact group G was defined by

Baümgartel and Lledo [10] and was shown by Müger in [66] to be isomorphic to Ẑ(G),

the dual group of the center Z(G) of G. We prove that the same is true for compact

quantum groups.

Definition 2.5.4. Given a compact quantum group G, we define the chain group

c(G) := Irr(G)/ ∼1

to be the group of equivalence classes of the equivalence relation ∼1 defined for X, Y ∈

Irr(G) as follows :

X ∼1 Y

if and only if

∃n ∈ N and z1, . . . , zn ∈ Irr(G)

such that

X ∈ z1 × · · · × zn and Y ∈ z1 × · · · × zn

Let

E := {x ∈ Irr(G) : x ∼1 [1G]}

where [1G] ∈ Irr(G) denotes the equivalence class of 1G, the trivial representation of G.

It is then, straightforward to see that E is a subobject of Irr(G).

Proposition 2.5.5. E is a central suboject of Irr(G), and Irr(G)/E ∼= Irr(G)/ ∼1
∼= c(G).

Proof. This will follow if we can show that, for a, b ∈ Irr(G), a ∼ b in the sense of

Definition 2.4.7, with Σ = E if and only if a ∼1 b.
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(⇒) Let for a, b ∈ Irr(G), a ∼ b in the sense of Definition 2.4.7. Then we have a×b∩E 6= ∅,

so there exists z1, . . . , zn ∈ Irr(G) such that for some k ∈ a× b, we have

k ∈ z1 × · · · × zn

and

[1G] ∈ z1 × · · · × zn

This implies

[1G] ∈ z1 × · · · × zn × a× b

and

a× b ⊆ z1 × · · · × zn × a× b

So, a ∼1 b as a ∈ z1 × · · · × zn × a× b× b and b ∈ z1 × · · · × zn × a× b× b

(⇐) Let a ∼1 b for a, b ∈ Irr(G). Then a ∈ z1 × · · · × zn and y ∈ z1 × · · · × zn for

some z1, . . . , zn ∈ Irr(G). But then obviously,

1 ∈ z1 × · · · × zn × b

and

a× b ⊆ z1 × · · · × zn × b

So, we have that a ∼ b in the sense of Definition 2.4.7 with Σ = E . 2

Now to show that the chain group is indeed isomorphic to the center of the compact

quantum group G, we have to show

Σ̃ = E

as subsets of Irr(G), where Σ̃ denotes the center subobject of G. But by the previous

proposition we have Σ̃ ⊆ E . So, we want to show that E ⊆ Σ̃ which is true if and only
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if E ⊆ Σ for any central subobject Σ. This can be easily shown as if a ∈ E , then there

exist z1, ..., zn in Irr(G) such that

1 ∈ z1 × z2 × ...× zn

and

a ∈ z1 × z2 × ...× zn

But for any central subobject Σ, the Σ-cosets form a group, denoted by HΣ, by Proposi-

tion 2.4.8. Now consider the product

[z1][z2]...[zn]

in HΣ. This is the identity element of HΣ. But then a ∈ Σ. So, we indeed have that the

chain group of G is isomorphic to the center of G.
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Chapter 3

Group Actions on Compact

Quantum Groups
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In this chapter, we study group actions on compact quantum groups by quantum auto-

morphisms. We will give characterizations as to when this type of an action is ergodic,

weak mixing, mixing, etc. We also study constructions and examples of such group ac-

tions. We end this chapter by proving a structure theorem for a specific family of compact

quantum groups, by showing the existence of a maximal ergodic normal subgroup of the

compact quantum group on which a group is acting. Let us note that we often write CQG

for compact quantum group and also that we will be dealing with the reduced C∗-algebra

of compact quantum groups in this chapter, unless stated otherwise. In this context,

let us remind the reader of Remark 1.4.5, and hence that this is not an unreasonable

restriction.

3.1 CQG dynamical systems

This section is divided into three subsections. In these subsections, we study ergodic-

ity, weak mixing, mixing and compactness of quantum automorphisms on CQGs. All

throughout this chapter G will denote a CQG in its reduced avatar and Γ will denote a

discrete group acting on G by quantum automorphisms.

Definition 3.1.1. We say that the tuple (G,Γ) is a CQG dynamical system if Γ acts

on C(G) via quantum automorphims. In other words, there exists an homomorphism

α : Γ→ Aut(G).

Let (G,Γ) be a CQG dynamical system. Then, it follows from Prop. 1.4.2(5) that Γ

induces an action on Irr(G), the unitary dual of G. Let [u] ∈ Irr(G) denote the equivalence

class of an irreducible representation of G. We denote by Γ[u], the orbit of [u] under the

action of Γ and elements of the orbit by γ · [u], γ ∈ Γ.

Consider the GNS representation of C(G) with respect to the Haar state hG. Write

L2(G) = L2(C(G), hG) with distinguished cyclic vector ΩhG = 1̂. As a consequence of

Prop. 1.4.2, any automorphism α of G is implemented by the unitary operator Uα :

L2(G) → L2(G) by Uα(â) = α̂(a), a ∈ C(G); and this choice is unique on demanding
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that the vacuum vector be fixed. In the case of a CQG dynamical system, let Uγ, γ ∈ Γ,

denote the unique unitary in B((L2(C(G))) implementing the automorphism αγ. Also

note that the GNS representation is faithful as hG is faithful.

3.1.1 Ergodicity and Weak Mixing

We make the following definitions.

Definition 3.1.2. We say that the CQG dynamical system (G,Γ) has the infinite orbit

condition (i.o.c. in the sequel), if the orbit of every non-trivial element in Irr(G) under

the induced action of Γ on Irr(G) is infinite.

Definition 3.1.3. Let (G,Γ) be a CQG dynamical system.

1. Γ is a said to act ergodically on G, if ζ ∈ L2(G) and Uγζ = ζ for all γ ∈ Γ forces

that ζ = λΩh for some λ ∈ C.

2. The action is said to be topologically transitive, if given two nonzero elements a, b ∈

C(G), there exists γ ∈ Γ such that aαγ(b) 6= 0.

3. The action is said to be strongly topologically transitive, if given (ai, bi) ∈ C(G) ×

C(G), 1 ≤ i ≤ n, such that
∑n

i=1 ai ⊗ bi 6= 0, there exists γ ∈ Γ such that∑n
i=1 aiαγ(bi) 6= 0.

4. The associated action of Γ on L∞(G) is weakly mixing, if given ε > 0 and ai ∈

L∞(G), 1 ≤ i ≤ n, there exists γ ∈ Γ such that

|hG(αγ(ai)aj)− hG(ai)hG(aj)| < ε∀i, j.

5. A nonzero vector ζ ∈ L2(G) is weakly wandering for the action of Γ on G, if there

exists a sequence of elements {γi} ⊆ Γ such that 〈Uγiζ, ζ〉hG = 0 for all i. We
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refer to [54] for more on the notion of weakly wandering vectors in case of classical

dynamical systems.

It should be noted that i.o.c. is a combinatorial property analogous to the requirement

in von Neumann algebras of a group being of infinite conjugacy class. In fact, if G is a

countable discrete group then G acts on the co-commutative CQG C∗r (G) by the obvious

quantum automorphisms given by inner automorphims. Then the pair (C∗r (G), G) has

i.o.c. if and only if G is an i.c.c. group. Ergodicity and weak mixing are spectral

theoretic phenomena. On the other side, (strong) topological transitivity is a C∗-algebraic

phenomena. But as we show, when the underlying space is a CQG these notions coincide.

A result from [18] will be useful for our purpose. We state it here for convenience. We

have assumed a stronger definition of ergodicity than the usual requirement that the fixed

point algebra of the action is trivial, but the two notions are in fact equivalent.

Theorem 3.1.4. Let (A,Γ, α) be a C∗ dynamical system, where Γ is a countable discrete

group and α is the associated action. Suppose the system has a state ω, such that

(i) ω is α-invariant;

(ii) if (Hω, πω,Ωω) denote the associated GNS triple, then Ωω is the unique (modulo

scaling) fixed vector of the induced action of Γ on Hω.

Further, if πω is faithful and Ωω is separating for (πω(A))′′, then the action is strongly

topologically transitive.

The next theorem is a result about rigidity in Ergodic Hierarchy. The first result of

such kind was proved by Halmos [41], where it was proved that an ergodic automorphism

of a compact abelian group is mixing, in fact the spectral measure of the action is Lebesgue

and the spectral multiplicity is infinite. As far as we are aware, the second result of such

flavor was proved by Jaksic and Pillet [45], where they show that an ergodic action

of R on a von Neumann algebra is weakly mixing. It can be deduced from the main

result in [44] (also see [9] for an independent proof) that, an ergodic action of a locally

compact seperable group on a separably acting von Neumann algebra M preserving a
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prescribed faithful normal state ϕ is always weak mixing on M 	Mϕ, where Mϕ denotes

the centralizer of the state ϕ. Such class of results have value in Statistical Physics,

in order to recognize the region in the phase space where a dynamics implemented by

symmetries of the Hamiltonian is chaotic. Topological transitivity is a counterpart in C∗-

dynamics of the notion of ergodicity in W ∗-dynamics. This was first studied by Longo and

Peligrad in [61] in the non commutative case and then by Bratteli, Eliott and Robinson

in [18]; though in the classical case it was first studied by Berend [13]. We prove that in

the context of quantum automorphisms all these notions are equivalent to weak mixing.

The noncommutativity of the group forces us to compromise with weak mixing instead

of mixing as in [41]. When Γ is (torsion-free) more can be said, but for this we refer to

the paper [67] for a study of spectral properties of such actions.

Theorem 3.1.5. Let (G,Γ) be a CQG dynamical system. Then, the following are equiv-

alent:

(i) (G,Γ) satisfies i.o.c.;

(ii) Γ acts ergodically1;

(iii) L∞(G)Γ = {a ∈ L∞(G) : αγ(a) = a ∀γ ∈ Γ} = C1;

(iv) the action is topologically transitive;

(v) the action is strongly topologically transitive;

(vi) the associated action on L∞(G) is weak mixing;

(vii) the linear span of weakly wandering vectors of the representation γ 7→ Uγ, γ ∈ Γ are

dense in L2(G)	 CΩhG.

Proof. We will prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i), (ii) ⇒ (v), (iv) ⇒ (iii), (i) ⇒ (vi) and

(vii)⇒ (vi). Note that (v)⇒ (iv), (vi)⇒ (ii) and (i)⇒ (vii) are trivial.

Note that L2(G) = CΩhG ⊕ ⊕s∈IHs, where Hs = span {u(s)
i,j ΩhG} with u(s) = ((u

(s)
i,j )),

s ∈ I, being non trivial irreducible representations of G. Clearly, I is countable. For

γ ∈ Γ and s ∈ I, note that u(γ·s) = ((αγ(u
(s)
i,j ))) is a irreducible representation of G.

Consequently, Γ acts on I by bijections of I. Thus, Uγ : Hs → Hγ·s for all γ and s ∈ I.

1(ii) and (iii) are equivalent for any W ∗-dynamical system.
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(i) ⇒ (ii). Let ζ ∈ L2(G) be such that Uγζ = ζ for all γ ∈ Γ. Fix s ∈ I. Let Ps denote

the orthogonal projection from L2(G) onto Hs. Then PsUγζ = Psζ for all γ ∈ Γ. But

PsUγ = UγPγ−1·s for all γ ∈ Γ. Therefore,

‖Psζ‖hG = ‖PsUγζ‖hG = ‖UγPγ−1·sζ‖hG , for all γ ∈ Γ

Thus, the norm of Pγ·sζ remains constant on the orbit of s. Consequently, if the orbit

of every non trivial irreducible representation is infinite, then Psζ = 0 for each s ∈ I.

Thus, ζ = λ1̂ for some λ ∈ C.

(ii)⇒ (iii) is obvious.

(iii) ⇒ (i). Suppose to the contrary (G,Γ) does not satisfy i.o.c. Choose a non trivial

[u] ∈ Irr(G) such that Γ[u] is finite. Let Γ[u] = {γ1 · [u], · · · , γn · [u]}, where γi ∈ Γ

for 1 ≤ i ≤ n. Choose representatives γi · u, 1 ≤ i ≤ n from the equivalence classes.

Note that the character of each finite dimensional representation is independent of its

class representative. For 1 ≤ i ≤ n, let χγi·u denote the character of γi · u. Then,

x =
∑n

i=1 χγi·u ∈ A. As αγ(χγi·u) = χ(γγi)·u for all γ ∈ Γ, so αγ(x) = x for all γ ∈ Γ. But

L∞(G) = C1. So (G,Γ) must satisfy i.o.c.

(ii)⇒ (v). Suppose the action is ergodic. The Haar state hG is Γ-invariant by Prop. 1.4.2.

Clearly, (i) and (ii) of Thm. 3.1.4 is satisfied. By hypothesis the GNS representation of

(C(G), hG) is faithful. We now show that ΩhG is a separating vector for L∞(G). Recall

[62] that if Pol(G) denote the canonical dense Hopf ∗-algebra associated to A, then there

exists an (algebraic) automorphism σ : Pol(G) 7→ Pol(G) such that

hG(ab) = hG(bσ(a)), ∀a ∈ Pol(G), b ∈ C(G)

Let c ∈ L∞(G). Use Kaplansky density theorem to choose a net ci ∈ C(G) with ‖ci‖ ≤

‖c‖ such that ci → c in strong operator topology (s.o.t). Then for all a ∈ Pol(G), one

has hG(aci) = hG(ciσ(a)), for all i. The extension of hG to L∞(G) is a normal state of
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L∞(G), so

hG(ac) = hG(cσ(a)),∀ a ∈ Pol(G), c ∈ L∞(G).

Let x ∈ L∞(G) be such that xΩhG = 0. For y, z ∈ Pol(G), we have

0 = 〈xΩhG , yzΩhG〉hG

= 〈z∗y∗xΩhG ,ΩhG〉hG

= hG(z∗y∗x)

= hG(y∗xσ(z∗))

= 〈xσ(z∗)ΩhG , yΩhG〉hG .

Since the Pol(G) is dense in C(G), one concludes that x = 0. Then by Thm. 3.1.4 (v)

follows.

(iv)⇒ (iii). Suppose to the contrary let L∞(G)Γ is not trivial. We have already shown

that (iii) ⇔ (i). It then follows from the proof of (iii) ⇒ (i) that C(G)Γ is not trivial.

Then choose 0 6= a, b ∈ C(G)Γ such that ab = 0. This can be achieved using the Gelfand-

Naimark theorem and spectral theorem. Then aαγ(b) = 0 for all γ ∈ Γ, which is a

contradiction.

(v)⇒ (iv) follows from Defn. 3.1.3.

(vi)⇒ (ii) is well known classical fact.

(i) ⇒ (vi). Fix s ∈ I. If ai ∈ Hs, 1 ≤ i ≤ N , then h(ai) = 0 for all i, and by i.o.c.

there is γ ∈ Γ (actually infinitely many such elements) such the 〈αγ(ai), aj〉hG = 0 for all

1 ≤ i, j ≤ N .

Similarly one claims that, if s1, s2, · · · , st ∈ I then there is γ ∈ Γ such that Hγ·si ⊥

⊕ti=1Hsi for all 1 ≤ i ≤ t. Indeed, for s, t ∈ I write s ∼ t if and only if there exists γ ∈ Γ

such that γ · s = t. Clearly, ∼ defines a equivalence relation on I. Write J = {si : 1 ≤

i ≤ t}. Partition J as Jij , 1 ≤ j ≤ k, where Jij = J ∩ [sij ], [·] denotes the equivalence
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classe of ∼. If for any 1 ≤ j ≤ k, γ · sij ∈ Jij for all γ ∈ Γ, then i.o.c. would be violated

for the corresponding element of Irr(G). This establishes the claim.

Consequently, if ai ∈ ⊕ti=1Hsi , 1 ≤ i ≤ N with h(ai) = 0 for all i, then there exists

γ ∈ Γ such that 〈αγ(ai), aj〉hG = 0 for all 1 ≤ i, j ≤ N .

Finally, a standard approximation argument in the ‖·‖hG shows that the Γ-action is

weakly mixing.

(i)⇒ (vii). Follows directly from the defintion of i.o.c.

(vii) ⇒ (vi). By a standard result in ergodic theory (c.f. Theorem 1.23 [52]), L2(G)

admits a unique decomposition L2(G) = Hc⊕Hwm into invariant subspaces of the action

such that Γ 3 γ 7→ Vγ ∈ U(B(Hc)) is a compact represenation (i.e. it decomposes as a

direct sum of finite dimensional represenations) and Γ 3 γ 7→ Uγ ∈ U(B(Hwm)) is weakly

mixing. By definition, if 0 6= ζ ∈ L2(G) is a weakly wandering vector then ζ ∈ Hwm.

This completes the argument. 2

Let us recall that a unitary group representation π : Γ→ B(H) is said to be ergodic

if for any ξ ∈ H, π(g)ξ = ξ for all g ∈ Γ implies that ξ = 0. Then, in the discrete dual

case (i.e. the cocommutative case) we have the following:

Corollary 3.1.6. Let Γ be a countable non abelian group and let Γ0 be a countable abelian

subgroup of Γ. Let us denote the group von-Neumann algebra associated to Γ by L(Γ).

Consider the action of Γ0 on L(Γ) implemented by inner automorphisms of Γ. Then:

(i) the action extends to an ergodic representation of Γ0 on `2(Γ)	 `2(Γ0) if and only if

L(Γ0) is a maximal abelian subalgebra (masa) in L(Γ);

(ii) the action is ergodic if and only if L(Γ0)′ ∩ L(Γ) = C1.

Proof. (i) Note that since Γ0 ≤ Γ, so hgh−1 ∈ Γ \ Γ0 for all g ∈ Γ \ Γ0 and h ∈ Γ0.

Since the action of Γ0 on `2(Γ) 	 `2(Γ0) implemented by inner automorphisms arising

from Γ0 is ergodic, so the orbit Γ0g for each g ∈ Γ \ Γ0 is infinite. For otherwise, arguing

as in (iii) ⇒ (i) of Thm. 3.1.5 one can produce a fixed point of the action of the form∑
g∈F agδg, where F ⊆ Γ \ Γ0 is a finite set, 0 6= ag ∈ C for all g ∈ F and δg is the
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standard basis vector for g ∈ Γ. Thus, by ergodicity one has
∑

g∈F agδg = 0. By linear

independence, ag = 0 for all g ∈ F , which is a contradiciton. Finally, this is equivalent

to saying that L(Γ0) ⊆ L(Γ) is a masa (c.f. Lemma 3.3.1 [78]).

(ii) This follows easily from the equivalence (ii) ⇔ (iii) of Theorem 3.1.5. Also, note

that in this case, i.o.c. is exactly equivalent to the inclusion of L(Γ0) inside L(Γ) being

irreducible (see Lemma 5.1 [79]). 2

3.1.2 Compactness

In this section we study compact actions.

Definition 3.1.7. Let (G,Γ) be a CQG dynamical system. Let ‖·‖ denote the C∗-norm

on C(G).

1. We say that the action is almost periodic if given any a ∈ C(G), the set {αγ(a) :

γ ∈ Γ} is relatively compact in C(G) with respect to ‖·‖ [3].

2. We say that the action is compact if given any a ∈ C(G), the set {αγ(a)ΩhG : γ ∈ Γ}

is relatively compact in C(G) with respect to the ‖·‖hG.

We now prove that these two notions are equivalent in our case.

Theorem 3.1.8. Let (G,Γ) be a CQG dynamical system. The following are equivalent:

(i) The action is almost periodic;

(ii) the action is compact;

(iii) the orbit of any irreducible representation in Irr(G) is finite.

Proof. (i)⇒ (ii). This follows from the fact that convergence in ‖·‖ implies convergence

in ‖·‖hG .

(ii)⇒ (iii) Suppose to the contrary there exists [u] ∈ Irr(G) such that its orbit Γ[u], under

the Γ-action, is infinite. Choose an infinite enumerated subset Γ0 = {γ1, γ2, · · · , γn, · · · }
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of Γ such that

γi · [u] 6= γj · [u] for all i 6= j. (3.1.1)

Let us denote by χ[u] the character of [u]. Then χ[u]ΩhG ∈ L2(G). It follows from the

hypothesis that {αγ(χ[u])ΩhG : γ ∈ Γ} is relatively compact in L2(G). However, from Eq.

(3.1.1) it follows that the set {αγ(χ[u])ΩhG : γ ∈ Γ0} is orthonormal and hence, this gives

us a contradiction.

(iii)⇒ (i) It is easy to see that for any action of a group G on a C∗-algebra B, the set

Bc := {a ∈ B : G · a is relatively compact in B}

is a closed ∗-subalgebra of B.

Since in our case, the closed linear span of the matrix coefficients of irreducible rep-

resentations of G is C(G), we will be done if we show that Γ · uβij is relatively compact

(with respect to ‖·‖) for all β, i, j, where uβij denote a matrix coefficients of an irreducible

representation uβ. But this follows, as by hypothesis, the orbit of any uβ ∈ Irr(G) is

finite, which then implies that the set Γ · uβij is subset of a finite dimensional subspace of

C(G). Hence, we are done. 2

Remark 3.1.9. Theorems 3.1.5 and 3.1.8 show that it is not possible that a CQG dynam-

ical system is both compact and ergodic. More generally, this also shows that a separable

compact group, say K, cannot act ergodically on a CQG by CQG automorphisms. This

follows as let Γ be a countable group dense in K. Then by continuity of the action it

follows that the action of Γ is almost periodic and hence compact by Theorem 3.1.8. But

if the action of K were ergodic, then by density of Γ in K, the action of Γ is ergodic as

well. But this is a contradiction.
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3.1.3 Mixing

We now consider mixing actions. In this case also, there is a characterization of a CQG

dynamical system to be mixing in terms of the induced action on the unitary dual of the

CQG. The system (G,Γ) is mixing if hG(bαγ(a))→ hG(a)hG(b) as γ →∞ ∀ a, b ∈ C(G).

Equivalently, we say that the system (G,Γ) is mixing, if for any x, y ∈ L∞(G) such that

hG(x) = 0 = hG(y), we have that the function

τa,b : Γ 3 γ 7→ hG(y∗αγ(x))

is in c0(Γ).

Note that the next theorem generalizes Prop. 4.4 of [20].

Theorem 3.1.10. Let (G,Γ) be a CQG dynamical system. The following are equivalent:

(i) The action is mixing.

(ii) Let [u] ∈ Irr(G) be any non-trivial element. Then the stabilizer subgroup of [u]

Γ[u] := {γ ∈ Γ : γ · [u] = [u]}

is finite.

Proof. (i)⇒ (ii). Suppose to the contrary that there exists [u] ∈ Irr(G) such that Γ[u] is

infinite. Denoting χ[u] to be the character of [u], we first note that hG(χ[u]) = 0. Then we

have that the function Γ 3 γ 7→ hG(χ∗[u]αγ(χ[u])) does not belong to c0(Γ), as the function

takes constant value 1 on the infinite subgroup Γ[u]. This is a contradiction and hence,

we have proved (ii).

(ii) ⇒ (i). Let 1 6= [u] ∈ Irr(G) with u = ((uij)) a representative for [u]. Let us first

note that any x ∈ L∞(G) with hG(x) = 0 can be obtained as a weak limit of linear

combinations of such ui,j, as [u] varies in the set Irr(G) \ {1}. Now since the subgroup

Γ[u] is assumed to be finite, it follows that the function Γ 3 γ 7→ hG(u∗klαγ(uij)), is in

c0(Γ), as it takes non-zero values only on Γ[u]. But since [u] was arbitrary and hG is
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normal on L∞(G), so Γ 3 γ 7→ hG(y∗αγ(x)) is in c0(Γ) for all x, y ∈ L∞(G) such that

hG(x) = 0 = hG(y). The argument is then complete. 2

Corollary 3.1.11. Let (G,Γ) be a CQG dynamical system. Then the following are

equivalent:

(i) The action is mixing;

(ii) For any infinite subgroup Λ of Γ, the induced CQG system (G,Λ) is mixing;

(iii) For any infinite subgroup Λ of Γ, the induced CQG system (G,Λ) is ergodic.

Proof. (i)⇒ (ii). This follows from the definition of mixing actions.

(ii)⇒ (iii). This follows from the fact that every mixing action is ergodic.

(iii) ⇒ (i). Suppose the action were not mixing, then by Theorem 3.1.10, there exists

nontrivial [u] ∈ Ĝ such that the stabilizer group Γ[u] := {γ : γ · [u] = [u]} is infinite.

Consequently by Theorem 3.1.5, the system (G,Γ[u]) is not ergodic, since the orbit of [u]

under Γ[u] is {[u]}. This is contradiction to the hypothesis. Thus (i) holds. 2

In the case Γ = Zd, we have:

Corollary 3.1.12. TFAE:

(i) (G,Γ) is mixing.

(ii) For any t ∈ Γ of infinite order, the induced Z action is mixing.

(iii) For any t ∈ Γ of infinite order, the induced Z action is ergodic.

Proof. This follows easily from the Cor. 3.1.11 and the fact that any non-trivial subgroup

of Zd is torsion-free, and hence, generated by copies of Z. 2

3.2 Permanence Properties and Examples

In this section, we prove some permanence properties of CQG dynamical systems. These

can be used to construct examples of CQG dynamical systems with assigned properties.

We also give some standalone examples. It should be pointed that although some of

76



these properties follow from general theory, however, we prove them using the i.o.c., to

illustrate this property.

It was shown by Wang [87] that given two maximal CQGs G1 = (A1,Φ1) and G2 =

(A2,Φ2), a CQG structure can be given on the full free product A1 ∗ A2 (we refer to the

book [33] for more on free products of C∗-algebras). We shall denote the correspoding

CQG by G1 ∗ G2. Now suppose we are given a quantum automorphism α1 of G1 and

α2 of G2, it follows easily from the definition of the co-multiplication in this case (see

Theorem 3.4 of [87]) that the automorphism α1 ∗ α2 of the full free product A1 ∗ A2

(defined by the universal property for full free products) is a quantum automorphism

of G1 ∗ G2. Hence, given an action of a discrete group Γ on the CQGs G1 and G2 by

quantum automorphisms, we get, in a natural way, an action of Γ on G1 ∗G2 by quantum

automorphisms. Hence, we can construct the CQG dynamical system ((G1 ∗G2)red,Γ).

Proposition 3.2.1. Let G1 and G2 be maximal compact quantum groups and Γ be a

discrete group such that Γ acts on G1 and G2 by quantum automorphisms. Suppose

now that the CQG dynamical systems ((G1)red,Γ) and ((G2)red,Γ) are both ergodic (resp.

mixing, compact). Then the CQG dynamical system ((G1∗G2)red,Γ) is also ergodic (resp.

mixing, compact).

Proof. We only prove for the case when the actions are ergodic; the proofs for the cases

when the actions are mixing and compact are similar and follow from Thm. 3.1.10

and Thm. 3.1.8. As is shown in Theorem 3.10 of [87], if U = {uξ} and V = {vη}

denote, respectively, complete sets of ireducible representations of (G1)red and (G2)red,

upto equivalence, then a complete set of mutually inequivalent, irreducible representation

of G = (G1 ∗ G2)red is given by the set consisting of the trivial representation together

with the collection of interior tensor product representations of the form

wγ1 ⊗in wγ2 ⊗in · · · ⊗in wγn (3.2.1)

where wγi belongs either to U or to V and wγi and wγi+1 belong to different sets.
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Now let us take a non-trivial representation of the form (3.2.1). Then there exists

an i such that wγi , which without loss of generality we may assume belongs to U , is

non-trivial. But as the action of Γ on (G1)red is ergodic, so the orbit of wγi under Γ,

denoted by the set

W = {wt·γi : t ∈ Γ}

is infinite. But as the orbit of any irreducible representation of G of the form (3.2.1)

under Γ is

{wt·γ1 ⊗in wt·γ2 ⊗in ...⊗in wt·γn : t ∈ Γ}

it follows that this set must also be infinite. This is because it follows from Theorem

3.10 of [87] for any t1, t2 ∈ Γ for which wt1·γi and wt2·γi are inequivalent, the irreducible

representations of G given by wt1·γ1 ⊗in wt1·γ2 ⊗in ... ⊗in wt1·γn and wt2·γ1 ⊗in wt2·γ2 ⊗in

· · · ⊗in wt2·γn are also inequivalent. 2

For notational simplicity, we demonstrated the above result for a free product of two

CQG, but it is not hard to see that the same holds if we are given a sequence of CQGs

{Gn}n∈N. As should be clear, the above result can be used to construct non-trivial CQG

dynamical systems starting from classical dynamical systems, i.e. where a group is acting

on a compact group by group automorphisms.

Similarly, if Gi = (Ai,Φi), i = 1, 2, are two maximal CQGs, then as shown by Wang

[88], one can give a CQG structure on A1⊗max A2 (the model for G1⊗G2 on the spatial

tensor product is given in [4]). We denote the corresponding CQG as G1 ⊗ G2. Now,

suppose α1 is a quantum automorphism of G1 and α2 is a quantum automorphism of G2.

Then, as follows from the definition of the co-multiplication of G1⊗G2 (see Theorem 2.2

of [88]), the automorphism α1⊗max α2 of A1⊗max A2 (given by the universal property of

maximal tensor products) is in fact a quantum automorphism.
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Proposition 3.2.2. Let G1 and G2 be maximal CQGs such that ((G1)red,Γ1) and ((G2)red,Γ2)

be CQG dynamical systems which are both ergodic (resp. mixing, resp. compact). Then

the CQG dynamical system ((G1 ⊗ G2)red,Γ1 × Γ2) is ergodic (resp. mixing, resp. com-

pact).

Proof. Once again, we will only show the ergodic case, since the other two are similar.

It follows from Theorem 2.11 of [88] that if U = {uξ} and V = {vη} denote the sets

of mutually inequivalent irreducible representations of G1 and G2 respectively, complete

upto equivalence, then a complete set of mutually inequivalent irreducible representations

is given exterior tensor products of irreducible representations of G1 and G2 of the form

{uξi ⊗ex vηj} (3.2.2)

where uξi belongs to U and vηj belongs to V . Now the orbit of any irreducible

represention of G1⊗G2 of the form (3.2.2) under the action of Γ1×Γ2 is given by the set

{ut1·αi ⊗ex vt2·βj : (t1, t2) ∈ Γ1 × Γ2}

But then if we pick a nontrivial irreducible representation of G1 ⊗ G2 of the form

(3.2.2), then atleast one of uξi and vηj must be non-trivial. The result now follows from

Theorem 2.11 of [88] and a reasoning similar to one used in the proof of Theorem 3.2.1.

2

In this case too, the result holds for an arbitrary sequence of groups {Γn}n∈N and

CQGs {Gi}.

We now look at some examples.

Example 3.2.3. Let G = (A,∆) be any CQG. Then (see Example 4.4 of [88]) CQG

structures can be given on the C∗−algebras A1 = ∗∞i=−∞Ai and A2 = ⊗∞i=−∞Ai, where

Ai = A for all i ∈ Z. One can then show that the natural shift action of Z on A1 and

A2 gives us CQG dynamical systems. It is then easy to show that both these dynamical
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systems are actually ergodic, in fact mixing.

Example 3.2.4. In the last chapter (as also [72]), we studied a class of automorphisms of

CQGs which behave like “inner automorphisms” in the group theoretic sense. Following

[72], let Gchar denote the set of characters of irreducible representations of a CQG G.

The group

Autχ(G) := {α ∈ Aut(G) : α(χa) = χa,∀χa ∈ Gchar}

is a closed compact normal subgroup of Aut(G), the group of all CQG automorphisms

of G, where the topology is of pointwise norm convergence (as shown in Theorem 2.1.1

for compact matrix quantum groups). To give explicit examples of such automorphisms,

we refer to Example 2.3.2. However, for the convenience of the reader we recall the main

steps here. Denote by χ(G) the set of unital ∗-homomorphisms from Cm(G) to C. It

is a group with the product defined by gh = (g ⊗ h) ◦ ∆, for g, h ∈ χ(G). The unit of

χ(G) is the counit εG ∈ Cm(G)∗ and the inverse of g ∈ χ(G) is given by g ◦ S, where S

is the antipode on G. Viewing χ(G) as a closed subset of the unit ball of Cm(G)∗, one

can consider the weak* topology on χ(G) which make χ(G) a compact group. Define,

for all g ∈ χ(G), the map αg = (g−1 ⊗ id ⊗ g) ◦ ∆(2). It defines a continuous group

homomorphism χ(G) 3 g 7→ αg ∈ Autχ(G) ⊆ Aut(G) as it can be easily checked

these automorphisms are quantum automorphisms and that the action of χ(G) on Irr(G)

is trivial. Indeed, for g ∈ χ(G) and x ∈ Irr(G) a straightforward computation gives

(id⊗ αg)(ux) = (V ∗ ⊗ 1)ux(V ⊗ 1), where V = (id⊗ g)(ux).

Now if we have a CQG dynamical system (G,Γ) with the action defined by the

homomorphism

α : Γ→ Aut(G)

Suppose now that α(Γ) ⊆ Autχ(G), then it follows from Theorem 3.1.8 and from the

definition of Autχ(G) that this action must be compact, since the orbit of any irreducible
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representation of G under the Γ-action has one element (i.e. itself).

It is shown in [87] that for the free unitary quantum group Au(n), the maximal

compact subgroup is the unitary group U(n) and for the free orthogonal quantum group

Ao(n), the maximal compact subgroup is the orthogonal group O(n). Similarly, it follows

from [75] that the maximal compact subgroup of SUq(2) is the circle group T. In each

of these cases, taking Γ to be a countable discrete subgroup of χ(G), we get a compact

CQG dynamical system.

In the previous chapter, the group

Outχ(G) = Aut(G)/Autχ(G)

was also studied and e.g. it was shown that for CQG with fusion rules identical to those

of simple compact Lie groups, this group has order 1, 2, 3 or 6 (Proposition 2.1.5).

Proposition 3.2.5. Let G be a CQG such that |Outχ(G)| <∞. Then any CQG dynam-

ical system (G,Γ) is compact.

Proof. Suppose the action is not compact, then it follows from Theorem 3.1.8 that there

exists an α ∈ Irr(G) such that the orbit {Γα} is infinite. Let g1, g2, g3, ... be elements in

Γ such that

giα 6= gjαfori 6= j

By hypothesis, we can find infinitely many such elements. Now we have the homo-

morphism

γ : Γ→ Aut(G)

which encodes the action of Γ on G and let

γχ : Γ→ Outχ(G)
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be the obvious map into the outer automorphism group of G. But then, it follows from

the equation above that γχ(gi) 6= γχ(gj) if i 6= j. This gives us a contradiction since

Outχ(G) is finite.

2

So, it follows that for CQG dynamical system (G,Γ) where G has identical fusion

rules as simple compact lie groups, the action must be compact. Similarly, it was shown

in Proposition 2.3.11 that for the free quantum group Au(n), the outer automorphism

group is Z2, for any n ∈ N. So, by the previous proposition, we have that for any CQG

dynamical system (G,Γ) is compact, when G = Au(n).

In fact, for a large class of compact quantum groups, one can show that a compact

action by quantum group automorphisms is virtually ”inner”.

Theorem 3.2.6. Suppose for the CQG G Outχ(G) is discrete. Let (G,Γ) be a compact

CQG dynamical system. Then the subgroup

Γχ := {γ ∈ Γ : αγ ∈ Autχ(G)}

of Γ is of finite index.

Proof. Let us first recall that as is shown in Theorem 2.2 of [39], any C∗-dynamical system

(A,Γ, α) is almost periodic if and only if the closure of the image of Γ under α, in Aut(A),

is compact in the pointwise norm topology. Now, since (G,Γ) is compact, it follows that

H := Γ ⊆ Aut(G) ⊆ Aut(C(G)) is compact. But we have that Outχ(G) is discrete, so

equivalently, Autχ(G) is an open subgroup of Aut(G). So, Hχ = Autχ(G)∩H is open in

H. Since H is compact, we have that Hχ is finite index in H. This then implies that Γχ

is finite index subgroup of Γ and hence, we are done. 2

The question now arises as to for which CQG’s the above property holds, i.e. Outχ(G)

is discrete.
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Let us recall that given a compact quantum group G, its fusion ring, denoted by

Z(G), is defined to be the additive group of finitely supported functions from Gchar, the

set of characters of irreducible representations of G, into Z with the multiplication given

by the fusion rules of G.

The following was exhibited in the proof of the Theorem 2.1.4.

Lemma 3.2.7. Let β ∈ Irr(G). The subgroup of Aut(G) defined as

Kβ := {α ∈ Aut(G) : α(χβ) = χβ}

where χβ denotes the character corresponing to β, is an open subgroup of Aut(G).

Proposition 3.2.8. Suppose the fusion ring Z(G) of G is finitely generated as a ring.

Then Outχ(G) is discrete, or equivalently, that Autχ(G) is an open subgroup of Aut(G).

Proof. Let us denote the generators of Z(G) by λ1, λ2, ..., λn. Since characters of irre-

ducible representations of G form a basis of Z(G), we can define the set

N := {χβ : χβ appears in the linear decomposition of some λi, 1 ≤ i ≤ n}

N is then a finite subset of the set of characters of irreducible representations of G. Now,

we claim that α ∈ Aut(G) is an element of Autχ(G) if and only if α(χβ) = χβ for all

χβ ∈ N . Of course, by definition of Autχ(G), it is clear that α(χβ) = χβ if α ∈ Autχ(G).

For the other implication, we note that if α(χβ) = χβ for all χβ ∈ N , we also have that

α(λi) = λi for all 1 ≤ i ≤ n. But since λi generate Z(G), we have that α(a) = a for all

a ∈ Z(G) and hence, as characters of all irreducible representations of G are elements of

Z(G), we are done. Now, to compelete the proof of the proposition, let us once again

define

Kβ := {α ∈ Aut(G) : α(χβ) = χβ}
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and note that, in our case, we have that

Autχ(G) = ∩{χβ∈N}Kχβ

Since N is a finite set, the proof now follows from the previous lemma. 2

Remark 3.2.9. A large class of compact quantum groups have finitely generated repre-

sentation rings. For example, duals of finitely generated discrete groups, Au(n) [7], Ao(n)

(since it has same fusion ring as SU(2))[6]. In fact, it was shown by Segal in [77] that

the representation ring of any compact lie group is finitely generated, hence, any compact

quantum group with fusion rules isomorphic to that of a compact lie group will also have

finitely generated representation ring.

Remark 3.2.10. It is to be expected that the fusion ring of compact matrix quantum

groups should be finitely generated, since these correspond, in the classical case, to com-

pact lie groups. But the proof is unclear to us. In light of Lemma 3.2.7, a direct way

of showing that inner automorphism groups of compact matrix quantum groups is open

is showing that given an automorphism of a compact quantum group, the sub-category

of representations which under the action of this automorphism, get transformed to a

unitarily equivalent representation is in fact a full sub-category. But this is not true as

can be seen in the case of the compact group SU(3). In this case, the outer automor-

phism group is also of order 2 and in fact, modulo the inner automorphism group, this

outer automorphism is uniquely given by the complex conjugation automorphism, i.e. the

automorphism of SU(3) that sends any matrix to its complex conjugate. It can now be

checked that this automorphism fixes the adjoint representation of SU(3), which is irre-

ducible of dimension 8 (and in fact is the unique irreducible representation of dimension

8 for SU(3)). But tensoring the adjoint representation to itself, we get a 10 dimensional

irreducible representation of SU(3), which under the complex conjugation automorphism,

gets sent to its contragradient representation.

Example 3.2.11. Let Λ be a countable discrete group. Let A = C∗r (Λ) be the re-
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duced group C∗-algebra. We consider the standard CQG structure on A, which is co-

commutative, which we denote G. Let now α : Γ → Aut(Λ) be a homomorphism of Γ

into the automorphism group of Λ. This induces a CQG dynamical system (G,Γ). Let

us now consider the CQG dynamical system (G,Λ) which is induced from the action of

Λ on itself by inner automorphisms. It is not hard now to see that this action in ergodic

if and only if Λ is an ICC group. To see this, note that in this case all irreducible rep-

resentations of G are one-dimensional and are given by group unitaries λg, g ∈ Λ. Now,

the orbit of λg under the Λ-action, is given by

{λsgs−1|s ∈ Λ}

which is infinite for all g 6= e if and only if Λ is ICC. In general though, this action

need not be mixing. In fact, it follows from Theorem 3.1.10 that this action will be

mixing if and only if the centralizer subgroup of any given nontrivial element is finite.

So, in particular, ICC groups which have torsion free elements, like free groups, fail this

property. But, if Λ is a Tarski Monster [70], then it is known that centralizer of any

nontrivial element is indeed finite, and hence this action is mixing.

It can also be shown (assuming that Λ is finitely generated) that the Λ-action on G

by inner automorphisms is compact (i.e. all conjugacy classes are finite) if and only if the

center Z(Λ) has finite index in Λ. While the backwards implication is obvious, to see the

forward implication, we use Theorem 3.2.6. In this case, it follows from the definitions

that Autχ(G) is trivial and hence, Outχ(G) = Aut(Λ). But as Λ is finitely generated,

Aut(Λ) is discrete. Now invoking Theorem 3.2.6, we conclude that the center Z(Λ) is a

finite index subgroup of Λ.

Example 3.2.12. Let G be a compact quantum group and U(Cm(G)) denote the group

of unitaries in Cm(G). We then define the intrinsic group of G as

Int(G) = {u ∈ U(Cm(G)) : ∆(u) = u⊗ u}
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It is then easy to check that the automorphism Ad(u) : a 7→ uau∗ of Cm(G) is in fact a

quantum automorphism. Hence, for any countable discrete subgroup Γ of Int(G), we get

a CQG dynamical system (G,Γ) (by inducing this quantum automorphism to C(G)).

Let now G be a compact quantum group and let (G,Γ) be a CQG dynamical system.

It was then shown in Theorem 1.5 of [88] that the full crossed product Cm(G)oΓ can be

given a compact quantum group structure. Let G denote this compact quantum group,

with the comultiplication denoted by ∆G. It was then shown in [35] (Theorem 6.1(3))

(and as will be exhibited in the following chapter, see 4.4.1) that C(G) = C(G) or Γ. It

was also shown in [35](Proposition 6.5)(see also 4.4.5) that Int(G) =Int(G) o Γ. Hence,

for any subgroup Λ of Γ, we have the CQG dynamical system (G,Λ). We then have the

following

Theorem 3.2.13. The following holds-

1. Suppose the CQG dynamical system (G,Λ) is compact and suppose that for the

natural Λ-action on Γ by inner automophisms, the orbit of any element is finite.

Then the CQG dynamical system (G,Λ) is also compact.

2. Suppose the CQG dynamical system (G,Λ) is ergodic and suppose that for the nat-

ural Λ-action on Γ by inner automophisms, the orbit of any non-trivial element is

infinite. Then the CQG dynamical system (G,Λ) is ergodic.

Proof. 1. If we denote the natural embedding of C(G) in C(G) or Γ by α(C(G)) and

the group unitaries corresponding to Γ by uγ for any γ ∈ Γ (hence, C(G)orΓ is the

closed linear span of elements of the form α(a)uγ, with a ∈ C(G) and γ ∈ Γ), then

as shown in Theorem 6.1(2) of [35] (as also 4.4.1), the set {uxγ : γ ∈ Γ, x ∈ Irr(G)}

gives a complete set of irreducible representations of G, where, given x ∈Irr(G),

with a representative ux ∈ B(Hx) ⊗ A, we define uxγ = (1 ⊗ uγ)(id ⊗ α)(ux) ∈

B(Hx) ⊗ (A or Γ). Thus, any element of Irr(G) can be uniquely identified with a

tuple (x, γ), with x ∈Irr(G) and γ ∈ Γ, with uxγ as a representative.
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Now since the CQG dynamical system (G,Λ) is compact, we have from Theorem

3.1.8 that for any x ∈Irr(G), the set {γ ·x : γ ∈ Λ} is finite. Similarly, we have from

the hypothesis for any γ0 that the set {γγ0γ
−1 : γ ∈ Λ} is finite. It then follows

that the set {(γ · x, γγ0γ
−1) : γ ∈ Λ} for any x ∈Irr(G) and γ0 ∈ Γ (which is in fact

the orbit of (x, γ0) under the Λ-action on Irr(G)) is finite. Hence, it follows from

Theorem 3.1.8 that the CQG dynamical system (G,Λ) is compact.

2. We have from the hypothesis that for x ∈Irr(G), which doesnot correspond to

the trivial representation and for any γ0 6= e ∈ Γ, the sets {γ · x : γ ∈ Λ} and

{γγ0γ
−1 : γ ∈ Λ} are infinite. Then it follows easily that the set (γ · x, γγ0γ

−1) is

infinite, except when both x and γ0 are trivial. Hence, we have from Theorem 3.1.5

that the CQG dynamical system (G,Λ) is ergodic.

2

3.3 Maximal Ergodic Normal Subgroup

In this section, we study the structure theory of general actions of groups on CQGs by

quantum automorphisms and for a large class of CQGs, demonstrate the existence of

a maximal ergodic invariant normal subgroup. We will refer to 1.2 for the basics and

notations of subgroups and normal subgroups. In this section, given a compact quantum

group G, we will denote by Gred the compact quantum group (C(G),∆).

We first demonstrate a characterization of non-ergodic actions paralleling the classical

characterisation given in Lemma 2.2 of [53].

Theorem 3.3.1. Let the discrete group Γ act on a compact quantum group G = (A,∆) by

quantum automorphisms, with the action denoted by α. Then the following are equivalent-

1. The induced action of Γ on Gred is non-ergodic

2. There exists a non-trivial β ∈ Irr(G), with character denoted by χβ, such that the
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subgroup of Γ, defined as

Γβ := {g ∈ Γ : αg(χβ) = χβ}

is a finite index subgroup.

3. There exists a non-trivial Compact Matrix Quantum Group G0 = (A0,∆0) such

that A0 ⊆ A is a Woronowicz sub-C∗-algebra of A, and such that A0 is invariant

under the Γ-action and the induced action on (G0)red is compact.

Proof. First let us note that by Remark 1.4.2, the action of Γ on G induces an action of

Γ on Gred.

(1) ⇒ (2) Since the action of Γ on Gred is non-ergodic, by Theorem 3.1.5, we have that

there must exist β ∈ Irr(G) such that the orbit of β under the induced Γ action on Irr(G),

is finite. Γβ is in fact the stabilizer of β and the proof now follows from the orbit-stabilizer

theorem.

(2) ⇒ (3) Applying the orbit-stabilizer theorem again, we deduce that the orbit of β is

finite. Let T = Γ·β ⊆ Irr(G) denote the (finite) orbit of β. Let us denote the Woronowicz

sub-C∗-algebra generated by matrix coefficients of representatives of elements of T by

A0. This gives us a CMQG, which we denote by G0. First we show that A0 is invariant

under Γ-action. For this, it is enough to show that Irr(G0) ⊆ Irr(G) is invariant under

the induced Γ-action. So, let γ ∈Irr(G0). Since T is a generating set for Irr(G0), we have

that (abusing definitions slightly) γ must be a sub-representation of some representation

which is a tensor product of representations coming from T . Our task is to show that for

any g, the irreducible representation representated by g · γ is also a subrepresentation of

some representation which is a tensor product of representations coming from T . This is

easy to see, since if

γ ⊆ t1 ⊗ t2 ⊗ ...⊗ tn
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for t1, t2, ..., tn ∈ T , we have

g · γ ⊆ g · t1 ⊗ g · t2 ⊗ ...⊗ g · tn

. But of course, g · ti is in T for all 1 ≤ i ≤ n as T is the orbit of β and hence is

invariant under the Γ-action. Now, we show that the induced action of Γ on (G0)red is

compact. So, by Theorem 3.1.8, we have to show that for any γ ∈ Irr(G0), the orbit Γ · γ

is finite. Let γ ⊆ t1 ⊗ t2 ⊗ ... ⊗ tn for t1, t2, ..., tn ∈ T . Since all ti have finite orbits, so

upto equivalence, the set of representations of G0 represented by g · t1⊗ g · t2⊗ ...⊗ g · tn

for g ∈ Γ, is finite, and hence, upto equivalence, the set of (irreducible) representations

represented by g · γ, for g ∈ Γ, is also finite, since for all g ∈ Γ, we have

g · γ ⊆ g · t1 ⊗ g · t2 ⊗ ...⊗ g · tn

In other words, the orbit of γ under the Γ-action is finite. Hence, we are done.

(3) ⇒ (1) Since the induced action of Γ on (G0)red is compact, the orbit of any γ ∈

Irr(G0) is finite. Since Irr(G0) ⊆ Irr(G), taking any non-trivial γ ∈ Irr(G0) ⊆ Irr(G), we

see that the action is non-ergodic, as the orbit of γ is finite. 2

Remark 3.3.2. In case the CMQG is such that its fusion ring is finitely generated as a

ring, then it follows from Proposition 3.2.8 and Theorem 3.2.6 that the action is virtually

inner. This is of course the case for compact lie groups and this is exactly the statement

of Lemma 2.2 of [53].

Implicit in the proof of the previous theorem is the following

Proposition 3.3.3. Suppose Γ acts on G by quantum automorphisms. Suppose β1 and

β2 are elements of Irr(G), and suppose further that the orbits of β1 and β2 under the

Γ-action are finite. Then the following holds:

1. For any β ⊂ β1 ⊗ β2, the orbit of β is finite.

89



2. Orbit of β1 (as also β2) is finite

Proof. 1. For any g ∈ Γ, we have that for the induced action on Irr(G), g · β ⊂

g · β1 ⊗ g · β2. But as both β1 and β2 have finite orbits, this implies that upto

equivalence, the set of representations of G which are isomorphic to a representation

represented by g · β1 ⊗ g · β2 for some g ∈ Γ is finite, which forces that the set of

(irreducible) representations, represented by g·β for some g ∈ Γ, is upto equivalence,

finite. Hence, the orbit of β is finite.

2. This is easy as g · β = g · β for any β ∈ Irr(G).

2

Remark 3.3.4. In other words, the previous proposition says that the “compact part” of

any given action of a group Γ on a CQG G by quantum automorphisms, is a Woronowicz

sub-C∗-algebra of G, and so, is a CQG itself. The irreducible representations of this

quotient CQG are exactly the irreducible representations whose orbit under the Γ-action

is finite. We use this to construct the maximal invariant ergodic normal subgroup. This

is similar in spirit to Theorem 2.3 of [53].

The following class of CQG have been defined and studied by Wang in [91] and [92].

Definition 3.3.5. A compact quantum group G is said to have Property F if each

Woronowicz sub-C∗-algebra of Cm(G) is of the form Cm(G/H) for some normal subgroup

H of G.

It has been shown in [91] that all compact quantum groups obtained by deformation

of compact Lie groups, such as the compact real forms of Drinfeld-Jimbo quantum groups

and Rieffel’s deformation of compact Lie groups, and several universal quantum groups

like Ao(n) and AS(n) have Property F. It has also been shown by Wang in [92] that

Property F passes to quotients and to subgroups (under suitable conditions). So, there

is an abundance of examples of compact quantum groups having Property F.

Proposition 2.2.3 will be crucial for our construction of the maximal normal ergodic

subgroup, hence we recall the statement here.
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Proposition 3.3.6. Let G be a compact quantum group and let H be a subgroup of G.

Let α : Cm(G)→ Cm(G) be an automorphism of G, such that α : Cm(G/H)→ Cm(G/H)

is C∗-algebraic automorphism, then there exists β : Cm(H)→ Cm(H) such that β is also

an automorphism of H and such that

Cm(G)

ρ

��

α // Cm(G)

ρ

��
Cm(H)

β // Cm(H)
commutes.

The following lemma now follows easily.

Lemma 3.3.7. Suppose G is a compact quantum group, and suppose H is a normal

subgroup of G. Suppose now that a group Γ acts on G by quantum automorphisms, with

action denoted by α, and that for the set Irr(G/H) ⊆ Irr(G), for any g ∈ Γ, we have

that αg(Irr(G/H)) = Irr(G/H). Then, for each αg, there we can construct a quantum

automorphism γg such that the diagram

Cm(G)

ρ

��

αg // Cm(G)

ρ

��
Cm(H)

γg // Cm(H)

commutes. So, we have an action of Γ on H by quantum automorphisms. In other words,

H is an invariant subgroup of G under the Γ-action.

Proof. To invoke the previous proposition, we need to show that the Woronowicz sub-

C∗-algebra Cm(G/H) is invariant under the Γ-action. But Cm(G/H) is generated as a

C∗-algebra by matrix coefficients of irreducible representations of G/H. But since for any

g ∈ Γ, we have that g·Irr(G/H) =Irr(G/H), it follows that αg(Cm(G/H)) = Cm(G/H)

and hence, we are done. 2

For the next two lemmas, we need a preliminary result. The following lemma was

proved in [91], see Lemma 4.4.
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Lemma 3.3.8. Let H be a normal subgroup of G, with the subgroup surjection ρ. Let ρ̂

denote the associated surjection from Pol(G) to Pol(H). Then

ker(ρ̂) = Pol(G)+
G/HPol(G) = Pol(G)Pol(G)+

G/H = Pol(G)Pol(G)+
G/HPol(G)

Here, Pol(G)G/H denotes the dense Hopf-∗-algebra associated with the CQG G/H and

Pol(G)+
G/H denotes its augmentation ideal (i.e. kernel of its counit).

Lemma 3.3.9. Let G be a compact quantum group and H1 and H2 be normal subgroups of

G such that Cm(G/H1) = Cm(G/H2). There is a quantum automorphism α : Cm(H1)→

Cm(H2) such that ρ2 = α ◦ ρ1, where for k = 1, 2, ρk denotes the subgroup surjection

corresponding to Hk.

Proof. We follow the notation as explained in Lemma 3.3.8. Since Cm(G/H1) = Cm(G/H2),

we have that Pol(G)G/H1 = Pol(G)G/H2 and hence Pol(G)+
G/H1

= Pol(G)+
G/H2

. So, we have,

by Lemma 3.3.8, that ker(ρ̂1) =ker(ρ̂2). But then, it now follows from Lemma 2.2.4 that

there exists an isomorphism α̂ : Pol(H1) → Pol(H2) such that ρ̂2 = α̂ ◦ ρ̂1. We can now

extend α̂ to give us a C∗-algebraic isomorphism α : Cm(H1) → Cm(H2). It is now easy

to check that α is a quantum automorphism (see Lemma 2.2.1) and that ρ2 = α ◦ ρ1. 2

The following lemma is not hard to deduce by methods similar to the previous one.

Once again the notation is same as above.

Lemma 3.3.10. Let G be a compact quantum group and H1 and H2 be normal subgroups

of G. Then the following are equivalent-

1. There exists a quantum group surjective morphism ρ0 : Cm(H1) → Cm(H2) such

that the following diagram

Cm(G)
ρ2

%%

ρ1 // Cm(H1)

ρ0

��
Cm(H2)

commutes. Here ρk for k = 1, 2 denote the subgroup surjections corresponding to

Hk. So, in particular H2 is a (normal) subgroup of H1.
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2. Cm(G/H1) ⊆ Cm(G/H2)

Proof. (1)⇒ (2) This follows from the definitions of Cm(G/Hk), k = 1, 2.

(2) ⇒ (1) Since Cm(G/H1) ⊆ Cm(G/H2), so Pol(G)+
G/H1

⊆ Pol(G)+
G/H2

and hence, by

Lemma 3.3.8, we have that ker(ρ̂1) ⊆ker(ρ̂2). So, invoking Lemma 2.2.4, we get a surjec-

tive map ρ̂0 : Pol(H1) → Pol(H2), from which we can get the quantum group morphism

ρ0, by extending ρ̂0 to Cm(H1), which satisfies all the required properties.

2

We are now in a position to state and prove the main theorem of this section.

Theorem 3.3.11. Let G be a compact quantum group, possessing Property F. We further

assume that Cm(G) is separable. Suppose Γ acts on G by quantum automorphisms, with

action denoted by α. Then there exists a countable ordinal ω and a family of normal

subgroups of G, given by

{Hξ : ξ ≤ ω}

such that

1. Hξ1 is a subgroup of Hξ0 for ξ0 < ξ1, with H0 = G. In other words, we have a

decreasing family of subgroups.

2. For all ξ, Hξ is an invariant subgroup of G under the Γ-action and the induced

Γ-action on (Hξ)red is non-ergodic for all ξ < ω

3. Hω is the maximal unique normal subgroup of G which is invariant under the Γ-

action and such that the induced action on (Hω)red is ergodic.

Proof. To minimise notation, we make an abuse, a statement of the form “Γ-action on a

compact quantum group G is ergodic (resp. non-ergodic, compact, etc)” will mean that

the induced Γ-action on Gred is ergodic (resp. non-ergodic, compact, etc).

We proceed by transfinite induction (separability of Cm(G) ensures that Irr(G) is

countable, hence we are dealing with countable transfinite induction). Since we have
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assumed that G possesses Property F, so, we have to construct, inductively, an increasing

sequence of Woronowicz sub-C∗-algebras of Cm(G), which are invariant under the Γ-

action, so, by Lemma 3.3.7, the corresponding normal subgroup will be invariant as well.

But then it suffices to construct, inductively, subobjects of Irr(G) which are invariant

under the induced Γ-action. To this end, we construct the first subobject in the following

manner. If the action is ergodic, we have nothing more to do. Hence, let the action be

non-ergodic. We define the subobject of Irr(G)

T1 := {β ∈ Irr(G) : orbit of β is finite}

That it is a subobject follows from Proposition 3.3.3. We call it the compact sub-object

of G under the Γ-action. It is also straightforward to see that for any β ∈ T1 and any

g ∈ Γ, g · β ∈ T1. So, the corresponding normal subgroup H1 is an invariant subgroup

of G under the Γ-action. If the induced Γ-action on H1 is ergodic, we stop. Else, we

construct the subobject of Irr(G) in the following manner- Since the induced action of Γ

on H1 is non-ergodic, the compact subobject S1 ⊆ Irr(H1) under Γ-action is non-trivial.

Let now β ∈ Irr(G), with a representative uβ which is an irreducible representation of G.

We then have a representation of H1 given by vβ = (id ⊗ ρ1)(uβ), where ρ1 denotes the

subgroup surjection corresponding to H1. For γ ∈ Irr(H1), we write γ 4 vβ, if there exist

some representative vγ of γ, which is a subrepresentation of vβ. We then define

Sβ := {γ ∈ Irr(H1) : γ 4 vβ}

We then define the set T2 ⊂ Irr(G) as follows

T2 := {β ∈ Irr(G) : Sβ ∩ S1 6= ∅}

Since S1 is non-trivial, it now follows from Lemma 2.3.6 that T2 is also non-trivial. So,
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we now define

T2 := {subobject of Irr(G) generated by T1 and T2}

In other words, T2 is the smallest subobject of Irr(G) containing T1 and T2. Let us now

show that T2 is invariant under the induced Γ-action. We first note that, since S1 is

invariant under the induced Γ-action on Irr(H1), hence T2 is also invariant under the Γ-

action on Irr(G). We note also that T2 is closed under taking conjugates. Now, suppose

β ∈ T2 and

β ⊂ t1 ⊗ t2 ⊗ ...⊗ tn

where ti’s comes either from T1 or T2. Since for any g ∈ Γ we have

g · β ⊂ g · t1 ⊗ g · t2 ⊗ ...⊗ g · tn

and since both T1 and T2 are invariant under the Γ-action, we have that g · β ∈ T2 for

any g ∈ Γ. Hence, corresponding to T2, we have an normal subgroup H2 of G which

is invariant under the induced Γ-action. So, we proceed in this manner. If the ordinal

is of successor type, i.e. the ordinal is of the form ξ + 1 for an ordinal ξ, then having

constructed Hξ, normal subgroup of G invariant under the Γ-action, we construct Hξ+1

by constructing the subobject Tξ+1 of Irr(G) as the subobject generated by Tξ and the set

Tξ+1. If the ordinal, say ξ, is a limit ordinal, i.e. for any η0 < ξ, there exists an ordinal

η1 such that η0 < η1 < ξ, we define the subobject Tξ as the subobject generated by all

the subobjects Tη such that η < ξ. The smallest ordinal κ for which the induced action

on the normal subgroup Hκ is ergodic will be our ω. So, we have constructed our family

of normal subgroups

{Hξ : ξ ≤ ω}

The first two properties follow from the construction and from Lemma 3.3.10. It also

follows from the construction that the normal subgroup Hω is invariant under the Γ-action
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and the induced action is ergodic.

Now we exhibit maximality of Hω as the normal subgroup on which the induced

Γ-action is ergodic. In light of Lemma 3.3.10, it is enough to show that there exist

no Γ-invariant subobject T of Irr(G) (with associated normal subgroup denoted by H)

such that T ⊂ Tω. To this end, first note that for such a subobject T , one must have

Tξ ⊂ T ⊂ Tξ+1, with ξ+1 = ω, since we are assuming that the action of Γ on H is ergodic.

The inclusion Tξ ⊂ T is proper since the action of Γ on Hξ is non-ergodic. From the

inductive construction above, it follows that there exists [us] ∈ Tξ+1 such that us when

restricted to H, decomposes as a sum of irreducible representations of H, each of which

are non trivial. Since [us] ∈ Tξ+1, the restriction of us to Hξ has as a subrepresentation

an irreducible representation vt of Hξ whose orbit is finite under the Γ-action. Since,

H is a normal subgroup of Hξ, the restriction of vt to H decomposes as a sum of non

trivial irreducible representations of H, because this is the case for us. But, as the orbit

of vt is finite, it follows that the orbit of any irreducible representation of H which is a

subrepresentation of the restriction of vt to H, is also finite. This is a contradiction to

the ergodicity of the induced Γ-action on H.

To exhibit uniqueness, we will show that if H is a normal subgroup of G which

is invariant under the Γ-action and such that this induced Γ-action is ergodic, then the

subobject Irr(G/H) ⊆ Irr(G) contains Tω, i.e. Tω ⊆ Irr(G/H). Uniqueness (upto quantum

automorphism), will then follow from Lemma 3.3.9 and Lemma 3.3.10. To show this, we

first prove the following claim

Claim: Let G be a CQG and suppose Γ acts on G by quantum automorphisms. Suppose

K0,K1,K2 are Γ-invariant normal subgroups of G such that Cm(G/K1) ∩ Cm(G/K2) =

Cm(G/K0). Suppose further that the CQG dynamical systems (K1,Γ) and (K2,Γ) are

ergodic. Then the CQG dynamical system (K0,Γ) is also ergodic.

Proof of the Claim: Let us note first that by Lemma 3.3.10, K1 and K2 are normal

subgroups of K0. Consider now the CQG dynamical system (K0,Γ). Suppose there exists

t ∈ Irr(K0) such that {Γ · t} (i.e. the Γ-orbit of t) is finite. We want to show t is trivial.
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Note that Irr(G/K0) = Irr(G/K1)∩ Irr(G/K2). By Lemma 2.3.6, we can find β ∈ Irr(G)

such that t ∈ Sβ. We will be done if we show that β ∈ Irr(G/K0). To this end, we first

note that since Γ-orbit of t is finite and the induced action of Γ on K1 and K2 is ergodic,

we will have by Theorem 3.1.5 that, S1
t ⊂ Irr(K1) and S2

t ⊂ Irr(K2) are both trivial (i.e.

just consist of e, the element corresponding to the trivial representation), where

Skt := {γ ∈ Irr(Kk) : γ 4 vt}

for k = 1, 2. But then, since K1 and K2 are normal in G, it easily follows from Theorem

1.2.7 that β ∈ Irr(G/K1) and β ∈ Irr(G/K2), and hence, we have that β ∈ Irr(G/K0)

and so, we are done.

Now, uniqueness follows from the previous claim as suppose that there is a Γ-invariant

normal subgroup of G, H such that the Γ-action is ergodic. Now, since the subobjects

Irr(G/H) and Tω are Γ-invariant, so is the subobject S=Irr(G/H) ∩ Tω. By the previous

claim, the Γ-action on the normal subgroup corresponding to S is ergodic. But then this

contradicts maximality of Tω, and hence S = Tω. So, we have that Tω ⊆ Irr(G/H) and

we are done.

2

Remark 3.3.12. For a CQG G, its fusion ring Z(G) is said to be of Lie type if all

increasing sequences

A1 ⊆ A2 ⊆ · · · ⊆ An · · ·

of sub-fusion rings of Z(G) stabilize, i.e. Am = An for all m ≥ n for some n (see

definition 5.2 of [26]). So, if in addition to the hypothesis of the previous theorem, the

fusion ring is of Lie type, then we can get to the Maximal Normal Ergodic Subgroup in

finitely many steps.

Remark 3.3.13. Often, depending on the CQG dynamical system, we can compute the

maximal ergodic normal subgroup, without requiring that the compact quantum group have

Property F, as we shall see in the next example.
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Example 3.3.14. Given a Woronowicz C∗-algebra A, the notion of free wreath product

A ∗w C(As(n)) was defined and studied by Bichon in [15], which is also a Woronowicz

C∗-algebra. So given a compact quantum group G, we have an associated compact

quantum group G o∗ As(n) = (Cm(G) ∗w C(As(n)),∆∗). Now let Λ be a discrete group,

and G = (C∗(Λ),∆) be the associated compact quantum group. In this case, we denote

G o∗As(n) by Λ o∗As(n). This class of compact quantum groups were extensively studied

in [60]. Let e denote the neutral element of Λ and let n ≥ 4. Let An(Λ) denote the

universal C∗-algebra with generators aij(g) for 1 ≤ i, j ≤ n and g ∈ Λ together with the

relations:

aij(g)aik(h) = δjkaij(gh) ; aji(g)aki(h) = δjkaji(gh)

n∑
l=1

ail(e) = 1 =
n∑
l=1

ali(e)

with involution given by

aij(g)∗ = aij(g
−1)

Then GΛ,n = (An(Λ),∆) is a compact quantum group, where we have

∆(aij(g)) =
n∑
k=1

aik(g)⊗ akj(g)

In fact, we have that GΛ,n is isomorphic as a compact quantum group to Λ o∗ As(n) (see

Example 2.5 of [15]).

Let now Γ act on the group Λ by group automorphisms. We can now induce an action

of Γ on GΛ,n in the following way: given any γ ∈ Γ, it follows from the definition of An(Λ)

that the map

αγ(aij(g)) = aij(γ · g)

defines an automorphism of An(Λ). It is also easy to check that in fact this is a quantum

automorphim. So, we have a CQG dynamical system ((GΛ,n)red,Γ) with the action de-

noted by α. We now proceed to study some properties of this action, for which we first
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elucidate the representation theory of GΛ,n. It was shown in [60] that there is a family

of n-dimensional representations of GΛ,n, {a(g) : g ∈ Λ} satisfying (a(g))ij = aij(g) and

a(g) = a(g−1). For all g 6= e, the representation a(g) are irreducible while a(e) = 1⊕w(e),

where w(e) is an irreducible representation, and further, a(g) for all g 6= e and w(e) are

pairwise inequivalent. Let M = 〈Λ〉 denote the monoid formed by words over Λ endowed

with the following operations- Involution: (g1, ...., gk)
− = (g−1

k , ...., g−1
1 ), Concatenation:

(g1, ...., gk) ∗ (h1, ...hl) = (g1, ..., gk−1, gk, h1, ..., hl) and Fusion: (g1, ..., gk) · (h1, ..., hl) =

(g1, ..., gk−1, gkh1, h2, ..., hl). We then have the following theorem (see Theorem 2.25 of

[60])

Theorem 3.3.15. The irreducible representations of GΛ,n can be labelled by w(x) with

x ∈M and involution w(x) = w(x) and the fusion rules:

w(x)⊗ w(y) =
∑

x=u∗t,y=t∗v

w(u ∗ v)⊕
∑

x=u∗t,y=t∗v;u6=∅,v 6=∅

w(u · v)

Further, we have for all g ∈ Λ, w(g) = a(g)	 δg,e1

We can now prove the following

Theorem 3.3.16. Let Γ act on the group Λ by group automorphisms. Consider the CQG

dynamical system ((GΛ,n)red,Γ). The following then holds-

1. Suppose that Γ action on Λ is such that the orbit of any element is finite. Then the

CQG dynamical system ((GΛ,n)red,Γ) is compact.

2. Consider the map ρ : An(Λ) → C∗(Λ∗n), aij(g) 7→ δijλvi(g) for all 1 ≤ i, j ≤ n and

g ∈ Λ, where Λ∗n denotes the n-fold free product of Λ and vi denotes the canonical

homomorphism from Λ to Λ∗n, sending Λ to the ith copy of Λ in Λ∗n. We have that

ρ defines a ∗-surjection which makes the compact quantum group H = C∗(Λ∗n) into

a normal subgroup of G = GΛ,n. In this case, we have that the compact quantum

group G/H is isomorphic as quantum group to the compact quantum group As(n).
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3. Suppose that the Γ action on Λ is such that the orbit of any non-trivial element

is infinite. Then the invariant normal subgroup C∗(Λ∗n) is the maximal ergodic

normal subgroup of GΛ,n under the induced Γ-action.

Proof. 1. In view of Proposition 3.3.3 (and Remark 3.3.4), Theorem 3.1.8 and Theorem

3.3.15, we will be done if we can show that the orbit of the irreducible representation

a(g) of GΛ,n under the Γ-action is finite for all g ∈ Λ. But it follows from the

definition of the Γ-action α on GΛ,n that the orbit of a(g) is the set {a(γ ·g) : γ ∈ Γ}.

The result now follows from the hypothesis.

2. It follows from the universal property of An(Λ) that the map ρ is in fact a ∗-

surjection. It is also straightforward to show that ρ is in fact a subgroup surjection.

Hence, H is a quantum subgroup of GΛ,n. To show that it is normal, we first need

the following

Lemma 3.3.17. Let G0,H0 and N0 denote compact quantum groups such that H0

is a subgroup of G0, with the subgroup surjection denoted by ρ1 and N0 is a normal

subgroup of G with subgroup surjection denoted by ρ2. Suppose further that N0 is a

subgroup of H0 with subgroup surjection ρ such that ρ ◦ ρ1 = ρ2. We then have that

N0 is a normal subgroup of H0 and that ρ1(Cm(G0/N0)) = Cm(H0/N0).

The proof of this lemma is straightforward. Indeed, suppose N0 is not normal

subgroup of H0. Then, by Theorem 1.2.7 (3), we know that there exists some irre-

ducible representation ua of H0 such that 0 < [1N0 , u
a
|N0

] <dim(ua), where [1N0 , u
a
|N0

]

denotes the multiplicity of the trivial representation as a sub-represenation of ua|N0
.

But then since N0 is a normal subgroup of G0, using Lemma 2.3.6, it is easy to

derive a contradiction. Also, since Cm(H0/N0) is spanned by the matrix coefficients

of those irreducible representations ua of H0 for which [1N0 , u
a
|N0

] =dim(ua) and a

similar result holds for Cm(G0/N0), a simple application of Lemma 2.3.6 gives us

that ρ1(Cm(G0/N0)) = Cm(H0/N0). This proves the lemma.
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Let us now consider the free product compact quantum group H∗As(n), as defined

in [87]. It follows from Example 2.5 of [15] that that GΛ,n is a quantum subgroup

of H ∗ As(n), with the subgroup surjection ρs defined by ρs(λvi(g)xij) = aij(g),

where x = ((xij))1≤i,j≤n is the defining magic unitary of As(n). It also follows from

Theorem 3.4 of [87] that H is a normal subgroup of H ∗ As(n) with the subgroup

surjection ρ0 defined as ρ0(λvi(g)xij) = λvi(g) · εAs(n)(xij) = δijλvi(g). It is then easy

to see that ρ ◦ ρs = ρ0. It then follows from the previous lemma that H is normal

subgroup of GΛ,n.

We now define ps : An(Λ)→ Cm(As(n)), ps(aij(g)) = xij. It easily follows from the

universal property of An(Γ) that ps defines a ∗-surjection. It is then easy to check

that As(n) is quantum subgroup of GΛ,n with subgroup surjection ps. Further, we

have the ∗-embedding is : Cm(As(n))→ C∗(Λ∗n)∗Cm(As(n)). We then have ps◦ρ◦

is = id. Now since it follows from Theorem 3.4 of [87] that the compact quantum

group H ∗As(n)/H is isomorphic to As(n) with the isomorphism given by the map

is, and using the fact that is, ρ and ps are all quantum group homomorphisms, it

follows easily that the compact quantum group G/H is isomorphic as a quantum

group to As(n).

3. We consider the action of Γ on GΛ,n as defined above. We then have an in-

duced action of Γ on Irr(GΛ,n). For an irreducible representation labelled by

w(g1, g2, ..., gm), we have that for any γ ∈ Γ, γ · w(g1, ..., gm) = w(γ · g1, ..., γ · gm).

This follows easily from Theorem 3.3.15 using induction. Indeed, we have that

γ · w(g) = w(γ · g), now suppose it is true for any sequence of m elements of Λ,

g1, ..., gm that γ ·w(g1, ..., gm) = w(γ ·g1, ..., γ ·gm), we want to shown that the same

is true for any sequence of (m+ 1) elements of Λ, t1, ..., tm, tm+1. To do this, let us

first assume that tmtm+1 6= 1. In this case, we have that w(t1, ..., tm) ⊗ w(tm+1) =
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w(t1, ..., tm, tm+1)⊕ w(t1, ..., tmtm+1). Hence, for any γ ∈ Γ, we have that

γ · (w(t1, ..., tm)⊗ w(tm+1)) = γ · w(t1, ...tm, tm+1)⊕ γ · w(t1, ..., tmtm+1)

⇒ γ · w(t1, ..., tm)⊗ γ · w(tm+1) = γ · w(t1, ...tm, tm+1)⊕ γ · w(t1, ..., tmtm+1)

⇒ γ · w(t1, ..., tm)⊗ γ · w(tm+1) = γ · w(t1, ..., tm, tm+1)⊕ w(γt1, ..., γtmtm+1)

⇒ w(γ · t1, ..., γ · tm)⊗ w(γ · tm+1) = γ · w(t1, ..., tm, tm+1)⊕ w(γt1, ..., γtmtm+1)

⇒ w(γ · t1, ..., γ · tm, γ · tm+1)⊕ w(γ · t1, ..., γ · (tmtm+1))

= γ · w(t1, ..., tm, tm+1)⊕ w(γt1, ..., γtmtm+1)

⇒ w(γ · t1, ..., γ · tm, γ · tm+1) = γ · w(t1, ..., tm, tm+1)

The case when tmtm+1 = 1 can be proved similarly. Thus, it is now easy to see that

since the orbit of any non-trivial element in Λ under the Γ-action is infinite, we

have that an irreducible representation of GΛ,n labelled by w(g1, ...gk) has a finite

orbit under the induced Γ-action if and only if g1 = g2 = ... = gk = e. Consider now

the subgroup surjection ρ : An(Λ) → C∗(Λ∗n). Let G = GΛ,n and H = C∗(Λ∗n).

By induction method as above, it can be shown that an irreducible representation

labelled by w(g1, ..., gk) with g1 = g2 = ... = gk = e lies in the coset space G/H.

But, as is shown in the proof of Proposition 3.2 of [60], the closed subspace of As(Γ)

spanned by matrix coefficients of irreducible represenations labelled by w(g1, .., gk)

for any k ∈ N, with g1 = ... = gk = e, is isomorphic as a C∗-algebra to Cm(As(n)).

So, we have, using (2) of this Theorem, that the compact part (see Remark 3.3.4)

of the Γ-action on G is the compact quantum group G/H.

The action of Γ on Λ∗n, defined by γ · vi(g) = vi(γ · g) induces an action of Γ on

H. Since the action of Γ on Λ is such that any non-trivial element has an infinite

orbit, we have using Theorem 3.1.5 and Proposition 3.2.1, that the action of Γ on

Hred is ergodic. Also, since the compact part of the Γ-action on G is G/H, it can

be shown, as in the proof of Theorem 3.3.11, that H is the maximal ergodic normal
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subgroup of GΛ,n under the induced Γ-action and hence, we are done.

2
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Chapter 4

The Bicrossed Product and the

Crossed Product quantum group
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In this chapter, we study the bicrossed product and the crossed product compact quantum

groups. We study their representation theory and make a detailed study of various

approximation properties possessed by these quantum groups, under suitable conditions.

The first part of this chapter studies the bicrossed product quantum group of a specific

type while in the second part, we discuss the crossed product case. The last section of

this chapter is devoted to examples, and a study of approximation properties for these

specific examples. We also give examples of discrete quantum groups possessing Property

(T).

The theory of quantum groups finds its roots in the work of Kac [49, 50] in the early

sixties, and his notion of ring groups in modern terms are known as finite dimensional Kac

algebras. In the fundamental work [51] on extensions of finite groups, Kac introduced the

notion of matched pair of finite groups and developed the bicrossed product construction

giving the first examples of semisimple Hopf algebras that are neither commutative nor

cocommutative. It was later generalized by Baaj and Skandalis [4] in the context of Kac

algebras and then by Vaes and Vainerman [83] in the framework of locally compact 1 (l.c.

in the sequel) quantum groups; the latter was introduced by Kustermans and Vaes in [59].

In the classical case, i.e., in the ambience of groups, Baaj and Skandalis concentrated only

on the case of regular matched pairs of l.c. groups. In [83], the authors extended the

study to semi-regular matched pairs of l.c. groups. The case of a general matched pair

of locally compact groups was settled by Baaj, Skandalis and Vaes in [5].

As a standing assumption, all throughout this chapter, all Hilbert spaces and all C*-

algebras are separable, all von Neumann algebras have separable preduals, all discrete

groups are countable and all compact groups are Hausdorff and second countable.

1All l.c. spaces are assumed to be Hausdorff.
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4.1 Representation theory of bicrossed products

This section has two parts. In the first part, we discuss matched pair of groups of

which one is compact and show an automatic regularity property of such matched pairs

(Proposition 4.1.2). In the second part, we study bicrossed products of compact matched

pair of groups and study their representation theory and related concepts.

4.1.1 Matched pairs

Definition 4.1.1 ([5]). We say that a pair of l.c. groups (G1, G2) is matched if both

G1, G2 are closed subgroups of a l.c. group H satisfying G1 ∩G2 = {e} and such that the

complement of G1G2 in H has Haar measure zero.

From a matched pair (G1, G2) as above, one can construct a l.c. quantum group called

the bicrossed product and it follows from [83] that the bicrossed product is compact if

and only if G1 is discrete and G2 is compact. In the next proposition, we show some

regularity properties of matched pairs (G1, G2) with G2 being compact.

Proposition 4.1.2. Let (G1, G2) be a matched pair and suppose that G2 is compact. Then

G1G2 = H, and, for all (γ, g) ∈ G1 × G2 there exists unique (αγ(g), βg(γ)) ∈ G2 × G1

such that γg = αγ(g)βg(γ). Moreover,

1. For g, h ∈ G2 and r, s ∈ G1, we have

αr(gh) = αr(g)αβg(r)(h), βg(rs) = βαs(g)(r)βg(s) and αr(e) = e, βg(e) = e.

(4.1.1)

2. α is a continuous left action of G1 on the topological space G2. Moreover, the Haar

measure on G2 is α-invariant whenever G1 is discrete.

3. β is a continuous right action of G2 on the topological space G1.

4. α is trivial ⇔ G1 is normal in H. Also, β is trivial ⇔ G2 is normal in H.
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Proof. First observe that, since G2 is compact, H is Hausdorff and G1 is closed, the set

G1G2 is closed. Hence, the complement of G1G2 is open and has Haar measure zero. It

follows that G1G2 = H = H−1 = G−1
2 G−1

1 = G2G1. Since G1 ∩ G2 = {e}, the existence

and uniqueness of αγ(g) and βg(γ) for all γ ∈ G1 and g ∈ G2 are obvious. Then, the

relations in (1) and the facts that α (resp. β) is a left (resp. right) action as in the

statement easily follow from the aforementioned uniqueness.

Now let us check the continuity of these actions. Since the subgroup G1 is closed in

the l.c. group H, so H/G1 is a l.c. Hausdorff space equipped with the quotient topology

and the projection map π : H → H/G1 is continuous. Hence, π|G2
: G2 → H/G1 is

continuous and bijective since G1 ∩G2 = {e} and G1G2 = H. Since G2 is compact, π|G2

is an homeomorphism. Let ρ : H/G1 → G2 be the inverse of π|G2 and observe that the

map α : G1×G2 → G2, (γ, g) 7→ αγ(g) satisfies α = ρ◦π ◦ψ, where ψ : G1×G2 → H is

the continuous map given by ψ(γ, g) = γg, for γ ∈ G1, g ∈ G2. Consequently, the action

α is continuous. Since for all γ ∈ G1 and g ∈ G2, we have βg(γ) = αγ(g)−1γg, we deduce

the continuity of β : G1 × G2 → G1, (γ, g) 7→ βg(γ) from the continuity of α and the

continuity of the product and inverse operations in H.

Moreover, suppose that G1 is discrete. Then G1 is a co-compact lattice in H and it

follows from the general theory (see for example Section 2.6 of [37]) that H is unimod-

ular and hence there exists a unique H-invariant Borel probability measure ν on H/G1.

Consider the homeomorphism π|G2
: G2 → H/G1 and the Borel probability measure

µ = (π|G2
)∗(ν) on G2. Since, for all γ ∈ G1, the map π|G2

intertwines the homeomor-

phism αγ of G2 with the left translation by γ on H/G1 and since ν is invariant under the

left translation by γ, it follows that µ is invariant under αγ. Also, π|G2
intertwines the

left translation by h on G2 with the left translation by h on H/G1 for all h ∈ G2. Hence,

µ is invariant under the left translation by h for all h ∈ G2. It follows that µ is the Haar

measure.

Suppose that G1 is normal is H. Then for all γ ∈ G1, g ∈ G2, we have g−1γg =

g−1αγ(g)βg(γ) ∈ G1. Since g−1αγ(g) ∈ G2 and G1∩G2 = {1}, we deduce that g−1αγ(g) =
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1 for all γ ∈ G1, g ∈ G2. For the reverse implication in (4), suppose that α is trivial.

Then for all γ ∈ G1, g ∈ G2, we have γg = gβg(γ) ∈ G1. Hence, g−1G1g ⊂ G1 for all

g ∈ G2 and since we trivially have γ−1G1γ ⊂ G1 for all γ ∈ G1 and H = G1G2, we deduce

that G1 is normal in H. The proof of the last assertion of the Proposition is analogous.

2

In the next proposition, we discuss the well known Zappa-Szép product (also known

as the Zappa-Rédei-Szép product, general product or knit product). It is a converse of

Proposition 4.1.2. We include a proof for the convenience of the reader.

Proposition 4.1.3. Suppose that G1 and G2 are two l.c. groups with a continuous left

action α of G1 on the topological space G2 and a continuous right action β of G2 on the

topological space G1 satisfying the relations (4.1.1). Then there exists a l.c. group H

for which G1, G2 are closed subgroups satisfying G1 ∩ G2 = {e}, H = G1G2, and for all

γ ∈ G1, g ∈ G2, γg = αγ(g)βg(γ).

Proof. Consider the l.c. space H = G1 ×G2 and define a product on H by the formula:

(r, g)(s, h) = (βh(r)s, gαr(h)) for all r, s ∈ G1, g, h ∈ G2.

It is routine to check that this multiplication turns H into a l.c. group. Moreover, we

may identify G1 with a closed subgroup of H by the map G1 3 r 7→ (r, 1) ∈ G1 × G2

and G2 with a closed subgroup of H by the map G2 3 g 7→ (1, g) ∈ G1 × G2. After

these identifications, we have H = G1G2, G1 ∩ G2 = {e}, and for all γ ∈ G1, g ∈ G2,

γg = αγ(g)βg(γ). 2

4.1.2 Representation theory

We first construct the bicrossed product from a compact matched pair and then study its

representation theory. Along the way we prove some straightforward consequences e.g.,

amenability, K-amenability and Haagerup property of the dual of the bicrossed product.
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We also compute the intrinsic group and the spectrum of the maximal C*-algebra of the

bicrossed product.

Let (Γ, G) be a matched pair of a countable discrete group Γ and a compact group

G. Associated to the continuous action β of the compact group G on the countable

infinite set Γ, we have a magic unitary vγ·G = (vrs)r,s∈γ·G ∈ M|γ·G|(C) ⊗ C(G) for every

γ · G ∈ Γ/G, where vrs = 1Ar,s and Ar,s = {g ∈ G : βg(r) = s} (this is a continuous

function on G, as is explained in Section 1.5 of the first chapter).

We define the C*-algebra Am = Γ α,f n C(G) to be the full crossed product and the

C*-algebra A = Γα n C(G) to be the reduced crossed product. With abuse of notation,

we denote by α the canonical injective maps from C(G) to Am and from C(G) to A. We

also denote by uγ, γ ∈ Γ, the canonical unitaries viewed in either Am or A. Observe that

Am is the enveloping C*-algebra of the unital *-algebra

A = Span{uγα(uxij) : γ ∈ Γ, x ∈ Irr(G), 1 ≤ i, j ≤ dim(x)}.

Let λ : Am → A be the canonical surjection. Since the action α on (G, µ) is µ-

preserving and µ is a probability measure, so there exists a unique faithful trace τ on A

such that

τ(uγα(F )) = δγ,e

∫
Fdµ, γ ∈ Γ, F ∈ C(G).

Theorem 4.1.4. There exists a unique unital ∗-homomorphism ∆m : Am → Am ⊗ Am

such that

∆m ◦ α = (α⊗ α) ◦∆G and ∆m(uγ) =
∑
r∈γ·G

uγα(vγ,r)⊗ ur, ∀γ ∈ Γ.

Moreover, G = (Am,∆m) is a compact quantum group and we have:

1. The Haar state of G is h = τ ◦ λ, hence G is Kac.
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2. The set of unitary representations of G of the form V γ·G⊗ vx for some γ ·G ∈ Γ/G

and x ∈ Irr(G), where V γ·G =
∑

r,s∈γ·G er,s ⊗ urα(vr,s) ∈ M|γ·G|(C) ⊗ A and vx =

(id⊗ α)(ux), is a complete set of irreducible unitary representations of G.

3. We have Cm(G) = Am, C(G) = A, Pol(G) = A, λ is the canonical surjection and

L∞(G) is the von Neumann algebraic crossed product.

4. The counit εG : Cm(G) → C is the unique unital ∗-homomorphism such that

εG(α(F )) = F (e) for all F ∈ C(G) and εG(uγ) = 1 for all γ ∈ Γ.

The compact quantum group G associated to the compact matched pair (Γ, G) in

Theorem 4.1.4 is called the bicrossed product.

Proof. The uniqueness of ∆m is obvious. To show the existence, it suffices to check that

∆m satisfies the universal property of Am.

Let us check that γ 7→ ∆m(uγ) is a unitary representation of Γ. Let γ ∈ Γ. We first

check that ∆m(uγ) is unitary. Observe that, for all g ∈ G and γ ∈ Γ, we have

1 = βg(γ
−1γ) = βαγ(g)(γ

−1)βg(γ).

Hence, (βg(γ))−1 = βαγ(g)(γ
−1). From this relation it is easy to check that Γ−1 · G =

{r−1 : r ∈ γ ·G} and αγ(vγ,r−1) = vγ−1,r for all r ∈ Γ. It follows that

∆m(uγ)
∗ =

∑
r∈γ·G

α(vγ,r)uγ−1 ⊗ ur−1 =
∑
r∈γ·G

uγ−1α(αγ(vγ,r))⊗ ur−1

=
∑

r∈γ−1·G

uγ−1α(vγ−1,r)⊗ ur = ∆m(uγ−1).

Let γ1, γ2 ∈ Γ. We have

∆m(uγ1)∆m(uγ2) =
∑

r∈γ1·G,s∈γ2·G

uγ1α(vγ1,r)uγ2α(vγ2,s)⊗urs =
∑
r,s

uγ1γ2α
(
αγ−1

2
(vγ1,r)vγ2,s

)
⊗urs.

110



Observe that αγ−1
2

(vγ1,r)vγ2,s = 1Bγ1,γ2,r,s
, where

Bγ1,γ2,r,s = {g ∈ G : βαγ2 (g)(γ1) = r and βg(γ2) = s} ⊂ Aγ1γ2,rs = {g ∈ G : βg(γ1γ2) = rs},

since βαγ2 (g)(γ1)βg(γ2) = βg(γ1γ2). In particular, Bγ1,γ2,r,s = ∅ whenever rs /∈ γ1γ2 · G;

hence

∆m(uγ1)∆m(uγ2) =
∑

t∈γ1γ2·G,r∈γ1·G

uγ1γ2α
(

1Bγ1,γ2,r,r
−1t

)
⊗ ut =

∑
t∈γ1γ2·G

uγ1γ2α(Ft)⊗ ut,

where Ft =
∑

r 1Bγ1,γ2,r,r
−1t

= 1trBγ1,γ2,r,r
−1t

= 1Aγ1γ2,t
, and Aγ1γ2,t = {g ∈ G : γ1γ2·g = t}.

Consequently, 1Aγ1γ2,t
= vγ1γ2,t and ∆m(uγ1)∆m(uγ2) = ∆m(uγ1γ2). Since ∆m(ue) = 1, it

follows that γ 7→ ∆m(uγ) is a unitary representation of Γ.

Let us now check that the relations of the crossed product are satisfied. For γ ∈ Γ

and F ∈ Pol(G) we have:

∆m(uγ)∆m(α(F ))∆m(u∗γ) =
∑
r,s

(uγ ⊗ ur)(α⊗ α) ((vγ,r ⊗ 1)∆G(F )) (uγ−1α(vγ−1,s)⊗ us)

=
∑
r,s

(uγ ⊗ ur)(α⊗ α) ((vγ,rαγ−1(vγ−1,s)⊗ 1)∆G(F )) (uγ−1 ⊗ us)

=
∑
r,s

(α⊗ α) ((αγ(vγ,r)vγ−1,s ⊗ 1)(αγ ⊗ αr)(∆G(F ))) (1⊗ urs)

=
∑
r,t

(α⊗ α) ((αγ(vγ,r)vγ−1,r−1t ⊗ 1)(αγ ⊗ αr)(∆G(F ))) (1⊗ ut)

=
∑
t

(α⊗ α)(Ht)(1⊗ ut),

where Ht =
∑

r(αγ(vγ,r)vγ−1,r−1t ⊗ 1)(αγ ⊗ αr)(∆G(F )).

Observe that αγ(vγ,r)vγ−1,r−1t = 1Bγ,r,t , where

Bγ,r,t = {g ∈ G : βαγ−1 (g)(γ) = r and βg(γ
−1) = r−1t}.

Since βαγ−1 (g)(γ)βg(γ
−1) = βg(γγ

−1) = βg(e) = e, we deduce that Bγ,r,t = ∅ whenever

t 6= e, and it is easy to see that tr∈γ·GBγ,r,e = G. Hence, Ht = 0 for t 6= e. Again for
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g ∈ Bγ,r,e and h ∈ G, one has He(g, h) = F (αγ−1(g)αr−1(h)) = F (αγ−1(g)αβg(γ−1)(h)) =

F (αγ−1(gh)). It follows thatHe = ∆G(αγ(F )). Consequently, ∆m(uγ)∆m(α(F ))∆m(u∗γ) =

(α⊗ α)(He). This completes the proof of the existence of ∆m.

It is clear that vx (as defined in the statement) is unitary and since (α⊗α)∆G = ∆m◦α,

we have ∆m(vxij) =
∑

k v
x
ik⊗ vxkj. Observe that V γ·G = Dγ(id⊗α)(vγ·G) ∈M|γ·G|(C)⊗A,

where Dγ is the diagonal matrix with entries ur, r ∈ γ · G. Hence, V γ·G is unitary.

Moreover,

∆m(V γ·G
rs ) = ∆m(urα(vrs)) =

∑
t∈r·G=γ·G

(urα(vrt)⊗ ut)(α⊗ α)(∆G(vrs))

=
∑

t,z∈γ·G

urα(vrtvrz)⊗ utα(vzs) =
∑
t∈γ·G

urα(vrt)⊗ utα(vts) =
∑
t∈γ·G

V γ·G
rt ⊗ V

γ·G
ts .

It follows from [87, Definition 2.1’] that G is a compact quantum group and V γ·G, vx are

unitary representations of G for all γ ·G ∈ Γ/G and x ∈ Irr(G).

(1). Since
∑

s V
γ·G
rs = ur, the linear span of the coefficients of the representations

V γ·G ⊗ vx for γ ∈ Γ/G and x ∈ Irr(G) is equal to A. Hence, it suffices to check the

invariance of h on the coefficients of V γ·G ⊗ vx. We have

h(V γ·G
rs vxij)) = h(urα(vrsv

x
ij)) = δr,e

∫
G

vesv
x
ijdµ = δr,eδs,e

∫
G

vxijdµ = δr,eδs,eδx,1,

since ves = δs,e1 and vx is irreducible. Hence, if x 6= 1, we have

(id⊗h)∆m(V γ·G
rs vxij) =

∑
t,k

V γ·G
rt vxikh(V γ·G

ts vxkj) = 0 =
∑
t,k

h(V γ·G
rt vxik)V

γ·G
ts vxkj = (h⊗id)∆m(V γ·G

rs vxij).

And, if x = 1, we have (id ⊗ h)∆m(V γ·G
rs ) =

∑
t V

γ·G
rt h(V γ

ts) = δγ,e1 = (h ⊗ id)∆m(V γ·G
rs ).

It follows that h is the Haar state.

(2). To simplify the notations, we write γ ·G⊗x = V γ.G⊗ vx during this proof. For a

unitary representation u (of G or G), we denote by χ(u) =
∑

i uii its character. Observe

that χ(γ · G ⊗ x) = χ(V γ·G)α(χ(x)) =
∑

r∈γ·G urα(vrr)α(χ(x)). Hence, for all γ, γ′ ∈ Γ,
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and all x, y ∈ Irr(G), we have

χ(γ′ ·G⊗ y ⊗ γ ·G⊗ x) = χ(γ′ ·G⊗ y)∗χ(γ ·G⊗ x) =
∑

s∈γ′·G,r∈γ·G

α(χ(y)vss)us−1rα(vrrχ(x))

=
∑

s∈γ′·G,r∈γ·G

us−1rα(αr−1s(χ(y)vss)vrrχ(x)).

Hence,

h(χ(γ′ ·G⊗ y⊗γ·G⊗x)) = δγ′·G,γ·G
∑
s∈γ·G

∫
G

vssχ(y)χ(x)dµ = δγ′·G,γ·G

∫
G

χ(y⊗x)dµ = δγ′·G,γ·Gδx,y.

(4.1.2)

Taking γ′ = γ and y = x this shows that dim(Mor(γ ·G⊗ x, γ ·G⊗ x)) = 1. Hence,

such representations are irreducible. Since the linear span of the coefficients of γ ·G⊗ x

is equal to A and hence dense in Am, it follows that any irreducible representation of G

is equivalent to some γ ·G⊗ x.

It also follows from Equation (4.1.2) that γ · x ' γ′ · y if and only if γ ·G = γ′ ·G and

x = y.

(3). We have already shown that Pol(G) = A. It follows that Cm(G) = Am. Since λ is

surjective and τ is faithful on A, it follows that C(G) = A and L∞(G) is the bicommutant

of A in B(`2(Γ)⊗ L2(G)) i.e., it is the von Neumann algebraic crossed product. Finally,

since λ is the identity on A = Pol(G), it follows that λ is the canonical surjection.

(4). The fact that εG(α(F )) = F (e) for all F ∈ C(G) is obvious since α intertwines the

colmultiplication. Fix γ ∈ Γ. Since V γ·G is irreducible, we have that (id⊗ εG)(V γ·G) = 1.

Hence,

1 =
∑

r,s∈γ.G

er,sεG(ur)vr,s(e) =
∑
r∈γ.G

er,rεG(ur).

It follows that εG(uγ) = 1. 2

Remark 4.1.5. Let G be the bicrossed product coming from a compact matched pair

(Γ, G) as above. From the definition, it is easy to check that Cm(G) is commutative if

and only if the action α is trivial and Γ is abelian. Moreover, G is cocommutative if and
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only if the action β is trivial and G is abelian.

Remark 4.1.6. The following observation is well known. Let α : Γ y A be an action

of the countable group Γ on the unital C*-algebra A and let C be the full crossed product

which is generated by the unitaries uγ, γ ∈ Γ, and by the copy α(A) of the C*-algebra

A. If A has a character ε ∈ A∗ such that ε(αγ(a)) = ε(a) for all a ∈ A and γ ∈ Γ,

then the C*-subalgebra B ⊂ C generated by {uγ : γ ∈ Γ} is canonically isomorphic

to C∗(Γ). Indeed, it suffices to check that B satisfies the universal property of C∗(Γ).

Let v : Γ → U(H) be a unitary representation of Γ on H. Consider the unital ∗-

homomorphism π : A → B(H) given by π(a) = ε(a)idH , a ∈ A. We have vγπ(a)vγ−1 =

ε(a)idH = ε(αγ(a))idH = π(αγ(a)). Hence, we obtain a representation of C that we can

restrict to B to get the universal property.

Let (Γ, G) be a matched pair. Since the map ε : C(G) → C defined by F 7→ F (e) is

a α-invariant character, it follows from the preceding observation that the C*-subalgebra

of Am generated by uγ, γ ∈ Γ, is canonically isomorphic to C∗(Γ).

We now give some obvious consequences of the preceding result concerning amenabil-

ity, K-amenability and the Hagerup property. The first assertion of the following corollary

is already known [31] but we include an easy proof for the convenience of the reader. We

refer to [85] for the definition of K-amenability of discrete quantum groups.

Corollary 4.1.7. The following holds:

1. G is co-amenable if and only if Γ is amenable.

2. If Γ is K-amenable, then Ĝ is K-amenable.

3. If Ĝ has the Haagerup property, then Γ has the Haagerup property.

4. If the action of Γ on L∞(G) is compact and Γ has the Haagerup property, then Ĝ

has the Haagerup property.
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Proof. (1). If Γ is amenable, then we trivially have that λ is an isomorphism; hence, G

is co-amenable. Conversely, if G is co-amenable, then the Haar state h = τ ◦ λ is faithful

on Am. Since h(uγ) = δγ,e, γ ∈ Γ, we conclude from Remark 4.1.6, that the canonical

trace on C∗(Γ) has to be faithful. Hence, Γ is amenable.

(2). It is an immediate consequence of [28, Theorem 2.1 (c)].

(3). It follows from [29, Theorem 6.7], since L(Γ) is a von Neumann subalgebra of

L∞(G).

(4). This is a direct consequence of [47, Corollary 3.4] and [29, Theorem 6.7]. 2

Now we describe the fusion rules of a bicrossed product.

For r, s ∈ Γ, let Brs ⊂ G be the clopen set defined by Br,s = {g ∈ G : βαs(g)(r) =

r and βg(s) = s}. To reduce notation, we denote by γ ·G ∈ Irr(G) the equivalence class

of V γ·G for γ ·G ∈ Γ/G, and we view Irr(G) ⊂ Irr(G).

Theorem 4.1.8. The following holds:

1. The set of unitary representations of G of the form vx ⊗ V γ·G for γ · G ∈ Γ/G

and x ∈ Irr(G) is a complete set of irreducible unitary representations of G. In

particular, for all γ · G ∈ Γ/G and all x ∈ Irr(G), there exists a unique αγ·G(x) ∈

Irr(G) and a unique βx(γ ·G) ∈ Γ/G such that

γ ·G⊗ x ' αγ·G(x)⊗ βx(γ ·G).

Moreover, for all γ ·G ∈ Γ/G and all x ∈ Irr(G), the maps

αγ·G : Irr(G)→ Irr(G) and βx : Γ/G→ Γ/G

are bijections.
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2. For all r, s, γ ∈ Γ and x ∈ Irr(G) we have

dim(Mor(γ ·G⊗ x, r ·G⊗ s ·G)) =
∑

s′∈s·G,r′∈r·G

|{t ∈ γ ·G : t = r′s′}|
∫
Br′,s′

χ(x)dµ.

Proof. (1). The proof of (1) is exactly as the proof of assertion (2) in Theorem 4.1.4. The

second assertion is trivial, since the representations V γ·G ⊗ vx are irreducible. Finally,

the fact that the maps are bijective follows from uniqueness.

(2). For all γ, r, s ∈ Γ, we have

χ(γ ·G⊗ x⊗ r ·G⊗ s ·G) =
∑

γ′∈γ·G,r′∈r·G,s′∈s·G

α(χ(x)vγ′γ′)u(γ′)−1r′α(vr′r′)us′α(vs′s′)

=
∑

γ′∈γ·G,r′∈r·G,s′∈s·G

u(γ′)−1r′s′α(α(r′s′)−1γ′(χ(x)vγ′γ′)α(s′)−1(vr′r′)vs′s′).

It follows that

dim(Mor(γ ·G⊗ x, r ·G⊗ s ·G)) = h(χ(γ ·G⊗ x⊗ r ·G⊗ s ·G))

=
∑

γ′∈γ·G,r′∈r·G,s′∈s·G

δγ′,r′s′

∫
G

χ(x)vr′s′,r′s′α(s′)−1(vr′r′)vs′s′dµ

=
∑

s′∈s·G,r′∈r·G

|{t ∈ γ ·G : t = r′s′}|
∫
G

χ(x)vr′s′,r′s′α(s′)−1(vr′r′)vs′s′dµ.

Observe that vr′s′,r′s′α(s′)−1(vr′r′)vs′s′ = 1Dr′,s′ , where Dr′,s′ = {g ∈ G : βg(r
′s′) = r′s′} ∩

Br′,s′ . Since βg(r
′s′) = βαs′ (g)(r

′)βg(s
′), it follows that Br′,s′ ⊂ Dr′,s′ . Hence, Dr′,s′ =

Br′,s′ . 2

Before proceeding further, we remind the reader of the following

Definition 4.1.9. Let G be a compact quantum group. Then, Int(G) := {u ∈ U(Cm(G)) :

∆G(u) = u ⊗ u}, called the intrinsic group of G. It is the set of all 1-dimensional

irreducible unitary representations of G and it is countable when Cm(G) is assumed to be
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separable.

We end this section with a description of the Int(G) and χ(G), the maximal classical

compact subgroup of G, in terms of the matched pair (G,Γ). It will be used to distinguish

various explicit examples in Section 4.5.

Observe that the relations in Equation (4.1.1) imply that Γβ = {γ ∈ Γ : βg(γ) =

γ ∀g ∈ G} and Gα = {g ∈ G : αγ(g) = g ∀γ ∈ Γ} are respectively subgroups of Γ and

G. Moreover, since β is continuous, Gβ is closed, hence compact. Thus, when (Γ, G) is a

compact matched pair, the relations in Equation (4.1.1) imply that the associations

γ · ω = ω ◦ αγ and g · µ = µ ◦ βg, for all γ ∈ Γ, g ∈ G,ω ∈ Sp(G), µ ∈ Sp(Γ),

define two actions by group homomorphisms, namely: (i) right action of Γβ on Sp(G)

that we still denote by α, and (ii) left action of Gα on Sp(Γ) that we still denote by β.

Also, β is a continuous action by homeomorphisms.

Proposition 4.1.10. There are canonical group isomorphisms:

Int(G) ' Sp(G) oα Γβ and χ(G) ' Gα
β n Sp(Γ).

The second isomorphism is moreover a homeomorphism.

Proof. The irreducible representation V γ.G of G is of dimension 1⇔ |γ ·G| = 1⇔ γ ∈ Γβ.

By assertion (2) of Theorem 4.1.4, there is a bijective map

π : Sp(G) oα Γβ → Int(G) : (ω, γ) 7→ uγα(ω) ∈ Cm(G), ω ∈ Sp(G), γ ∈ Γβ.

The relations of the crossed product and the group law in the right semi-direct product

imply that π is a group homomorphism.

Let (g, µ) ∈ Gα× Sp(Γ). Since g ∈ Gα, the unital ∗-homomorphism C(G)→ C given

by F 7→ F (g) and the unitary representation µ : Γ→ S1 give a covariant representation.
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Hence, we get a unique ρ(g, µ) ∈ χ(G) such that ρ(g, µ)(uγα(F )) = µ(γ)F (g) for all

γ ∈ Γ, F ∈ C(G). It defines a map ρ : Gα
β n Sp(Γ) → χ(G) which is obviously

injective.

For all g, h ∈ Gα,γ ∈ Γ and F ∈ C(G), one has

(ρ(g, ω) · ρ(h, µ))(uγα(F )) = (ρ(g, ω)⊗ ρ(h, µ))(∆m(uγα(F ))) =
∑
r∈γ·G

ω(γ)vγ,r(g)µ(r)F (gh)

= ω(γ)µ(βg(γ))F (gh) = (ρ(gh, ω · µ ◦ βg))(uγα(F )).

Hence, ρ is a group homomorphism.

Let us check that ρ is surjective. Let χ ∈ χ(G), then χ ◦ α ∈ Sp(C(G)). Let g ∈ G

be such that χ(α(F )) = F (g) for all F ∈ C(G). Actually g ∈ Gα. Indeed, for all γ ∈ Γ

and all F ∈ C(G), one has

F (αγ−1(g)) = χ(α(αγ(F ))) = χ(uγα(F )u∗γ) = χ(α(F )) = F (g);

now use the fact that C(G) separates points of G to establish g ∈ Gα. Define ω = (γ 7→

χ(uγ)) ∈ Sp(Γ). Consequently, χ = ρ(g, ω) and ρ is surjective.

Finally, the map ρ−1 : χ(G)→ Gα
β n Sp(Γ) is continuous, since p1 ◦ ρ−1 : χ(G)→

Sp(C(G)) = G by χ 7→ χ ◦ α and p2 ◦ ρ−1 : χ(G) → Sp(Γ) by χ 7→ (γ 7→ χ(uγ)), are

obviously continuous, where p1 and p2 are the canonical projections. By compactness, ρ

is an homeomorphism. 2

4.2 Property T and bicrossed product

This section is dedicated to the relative co-property (T ) of the pair (G,G) and Kazhdan

property of the dual of the bicrossed product G constructed in Section 3. The results in

this section generalize classical results on relative property (T ) for inclusion of groups of

the form (H,Γ nH), where H and Γ are discrete groups and H is abelian [27].
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4.2.1 Relative property T for compact bicrossed product

Definition 4.2.1. Let G and G be two compact quantum groups with an injective unital

∗-homomorphism α : Cm(G) → Cm(G) such that ∆G ◦ α = (α ⊗ α) ◦ ∆G. We say

that the pair (G,G) has the relative co-property (T ), if for every representation π :

Cm(G) → B(H) we have εG ≺ π =⇒ εG ⊂ π ◦ α, where we use εG ≺ π to denote the

existence of a sequence of unit vectors ξn in H such that for any a ∈ Cm(G), we have

‖π(a)ξn − εG(a)ξn‖ → 0 as n→∞.

Observe that, by [58, Proposition 2.3], Ĝ has the property (T ) in the sense of [34] if

and only if the pair (G,G) has the relative co-property (T ) (with α = id). Also, if Λ,Γ

are countable discrete groups and Λ < Γ, then the pair (Λ̂, Γ̂) has the relative co-property

(T ) if and only if the pair (Λ,Γ) has the relative property (T ) in the classical sense.

Let (Γ, G) be a matched pair of a countable discrete group Γ and a compact group

G. Let G be the bicrossed product. In the following result, we characterize the relative

co-property (T ) of the pair (G,G) in terms of the action α of Γ on C(G). This is a

non-commutative version of [27, Theorem 1] and the proof is similar. We will use freely

the notations and results of Section 4.1.

Theorem 4.2.2. The following are equivalent:

1. The pair (G,G) does not have the relative co-property (T ).

2. There exists a sequence (µn)n∈N of Borel probability measures on G such that

(a) µn({e}) = 0 for all n ∈ N;

(b) µn → δe weak*;

(c) ‖αγ(µn)− µn‖ → 0 for all γ ∈ Γ.

Proof. For a representation π : Cm(G) → B(H), we have εG ⊂ π ◦ α if and only if

Kπ 6= {0}, where

Kπ = {ξ ∈ H : π ◦ α(F )ξ = F (e)ξ for all F ∈ C(G)}.
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Define ρ = π ◦ α : C(G) → B(H), and for all ξ, η ∈ H, let µξ,η be the unique complex

Borel measure on G such that
∫
G
Fdµξ,η = 〈ρ(F )ξ, η〉 for all F ∈ C(G). Let B(G) be the

collection of Borel subsets of G and E : B(G)→ B(H) be the projection-valued measure

associated to ρ i.e., for all B ∈ B(G), the projection E(B) ∈ B(H) is the unique operator

such that 〈E(B)ξ, η〉 = µξ,η(B) for all ξ, η ∈ H.

Observe that a vector ξ ∈ H satisfies ρ(F )ξ = F (e)ξ for all F ∈ C(G), if and only if

µξ,η = 〈ξ, η〉δe for all η ∈ H, which in turn is true if and only if 〈E({e})ξ, η〉 = 〈ξ, η〉 for

all η ∈ H. Hence, E({e}) is the orthogonal projection onto Kπ.

(1) =⇒ (2). Suppose that the pair (G,G) does not have the relative co-property (T ).

Let π : Cm(G) → B(H) be a representation such that εG ≺ π and Kπ = {0}. Hence,

µξ,η({e}) = 〈E({e})ξ, η〉 = 0 for all ξ, η ∈ H.

Since εG ≺ π, let (ξn)n∈N be a sequence of unit vectors in H such that ‖π(x)ξn −

εG(x)ξn‖ → 0 for all x ∈ Cm(G). Define µn = µξn,ξn . Then, we have µn({e}) = 0 for

all n ∈ N. Since µn is a probability measure, |µn(F ) − δe(F )| = |
∫
G

(F − F (e))dµn| ≤

‖F − F (e)‖L1(µn) ≤ ‖F − F (e)‖L2(µn), for all F ∈ C(G). Moreover,

‖F − F (e)‖2
L2(µn) = ‖ρ(F − F (e)1)ξn‖2 = ‖π(α(F ))ξn − εG(α(F ))ξn‖2 → 0.

Hence, µn → δe weak*. Finally, for all γ ∈ Γ and all F ∈ C(G), we have:

∫
G

Fdαγ(µn) =

∫
G

αγ−1(F )dµn = 〈ρ(αγ−1(F ))ξn, ξn〉 = 〈π(uγ)
∗ρ(F )π(uγ)ξn, ξn〉

= 〈ρ(F )π(uγ)ξn, π(uγ)ξn〉.

It follows that

∣∣∣∣∫
G

Fdαγ(µn)−
∫
G

Fdµn

∣∣∣∣ = |〈ρ(F )π(uγ)ξn, π(uγ)ξn〉 − 〈ρ(F )ξn, ξn〉|

≤ |〈ρ(F )(π(uγ)ξn − ξn), π(uγ)ξn〉|+ |〈ρ(F )ξn, π(uγ)ξn − ξn〉|

≤ 2‖F‖ ‖π(uγ)ξn − ξn‖, for all F ∈ C(G) and γ ∈ Γ.
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Hence, ‖αγ(µn) − µn‖ ≤ 2‖π(uγ)ξn − ξn‖ = 2‖π(uγ)ξn − εG(uγ)ξn‖ → 0 (see (4) of

Theorem 4.1.4).

(2) =⇒ (1). We first prove the following claim.

Claim. If (2) holds, then there exists a sequence (νn)n∈N of Borel probability measures

on G satifying (a), (b) and (c) and such that αγ(νn) ∼ νn for all γ ∈ Γ, n ∈ N.

Proof of the claim. Denote by `1(Γ)1,+ the set of positive `1 functions on Γ with

‖f‖1 = 1. For µ a Borel probability measure on G and f ∈ `1(Γ)1,+, define the Borel

probability measure f ∗ µ on G by the convex combination

f ∗ µ =
∑
γ∈Γ

f(γ)αγ(µ).

Observe that for all γ ∈ Γ, we have δγ ∗ µ = αγ(µ) and αγ(f ∗ µ) = fγ ∗ µ, where

fγ ∈ `1(Γ)1,+ is defined by fγ(r) = f(γ−1r), r ∈ Γ.

Moreover, if f ∈ `1(Γ)1,+ is such that f(γ) > 0 for all γ ∈ Γ, then since (f ∗ µ)(E) =∑
γ f(γ)µ(αγ−1(E)) (E is Borel subset of G), so we have that (f ∗ µ)(E) = 0 if and only

if µ(αγ(E)) = 0 for all γ ∈ Γ. This last condition does not depend on f . Hence, if

f ∈ `1(Γ)1,+ is such that f > 0, then since fγ(r) > 0 for all γ, r ∈ Γ, it follows that

f ∗µ ∼ αγ(f ∗µ) = fγ ∗µ for all γ ∈ Γ as they have the same null sets: the Borel subsets

E of G such that µ(αs(E)) = 0 for all s ∈ Γ.

Therefore, since αγ(e) = e for all γ ∈ Γ, so

(f ∗ µ)({e}) =
∑
γ

f(γ)µ(αγ−1({e})) =
∑
γ

f(γ)µ({e}) = µ({e}), for all f ∈ `1(Γ)1,+.

Let (µn)n∈N be a sequence of Borel probability on G satisfying (a), (b) and (c). For all

f ∈ `1(Γ)1,+ with finite support we have,

‖f ∗ µn − µn‖ ≤
∑
γ

f(γ)‖δγ ∗ µn − µn‖ =
∑
γ

f(γ)‖αγ(µn)− µn‖ → 0. (4.2.1)

Since such functions are dense in `1(Γ)1,+ (in the `1-norm), it follows that ‖f∗µn−µn‖ → 0
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for all f ∈ `1(Γ)1,+.

Let ξ ∈ `1(Γ)1,+ be any function such that ξ > 0 and define νn = ξ ∗ µn. By the

preceding discussion, we know that αγ(νn) ∼ νn for all γ ∈ Γ and νn({e}) = µn({e}) = 0

for all n ∈ N. Moreover, by Equation (4.2.1),

‖αγ(νn)− νn‖ = ‖ξγ ∗ µn − ξ ∗ µn‖ ≤ ‖ξγ ∗ µn − µn‖+ ‖µn − ξ ∗ µn‖ → 0, for all γ ∈ Γ.

Finally, since µn → δe weak* and αγ(e) = e, one has |µn(F ◦ αγ) − F (e)| → 0 for

all γ ∈ Γ and for all F ∈ C(G). Hence, for all F ∈ C(G), the dominated convergence

theorem implies that

|νn(F )− δe(F )| =

∣∣∣∣∣∑
γ

f(γ)(µn(F ◦ αγ)− F (e))

∣∣∣∣∣ ≤∑
γ

f(γ)|µn(F ◦ αγ)− F (e)| → 0.

It follows that νn → δe weak* and this finishes the proof of the claim. 2

We now finish the proof of the Theorem. Let (µn)n∈N be a sequence of Borel probability

measures on G as prescribed in the Claim. For n ∈ N and γ ∈ Γ, let hn(γ) = dαγ(µn)

dµn
;

then, by uniqueness of the Radon-Nikodym derivatives and since α is an action, we

have for all n ∈ N, hn(γ, g)hn(γ−1, αγ−1(g)) = 1, µn a.e. g ∈ G, and for all γ ∈ Γ.

Define Hn = L2(G, µn) and let un : Γ → U(Hn) be the unitary representations defined

by (un(γ)ξ)(g) = ξ(αγ−1(g))hn(γ, g)
1
2 for γ ∈ Γ, g ∈ G, ξ ∈ Hn. Also consider the

representations ρn : C(G) → B(Hn), defined by ρn(F )ξ(g) = F (g)ξ(g), for ξ ∈ Hn,

g ∈ G and F ∈ C(G). Observe that the projection valued measure associated to ρn

is given by (En(B)ξ)(g) = 1B(g)ξ(g) for all B ∈ B(G), ξ ∈ Hn and g ∈ G. Using

the identity hn(γ, ·)hn(γ−1, αγ−1(·)) = 1, we find un(γ)ρn(F )un(γ−1) = ρn(αγ(F )) for

all γ ∈ Γ, F ∈ C(G), g ∈ G. Therefore, by the universal property of Am, for each

n ∈ N there is a unital ∗-homomorphism πn : Am → B(Hn) such that πn(uγ) = un(γ)

and πn ◦ α = ρn for all n ∈ N. Since µn({e}) = 0, we have En({e}) = 0 for all

n ∈ N. Hence, Kπn = {0} for all n ∈ N. Consequently, on defining H = ⊕nHn and

π = ⊕nπn : Cm(G)→ B(H), it follows that Kπ = {0} as well. Hence, it suffices to show
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that εG ≺ π.

Define the unit vectors ξn = 1 ∈ L2(G, µn) ⊂ H, n ∈ N. Observe that (µn −

αγ(µn))(F ) =
∫
G
F (1 − hn(γ))dµn for all F ∈ C(G). Hence, ‖µn − αγ(µn)‖ = ‖1 −

hn(γ)‖L1(G,µn) → 0 for all γ ∈ Γ. Moreover, as 0 ≤ 1−
√
t ≤
√

1− t for all 0 ≤ t ≤ 1 and

for t > 1, we have
√
t− 1 ≤ 1, it follows that

‖π(uγ)ξn − ξn‖2
H = ‖un(γ)1− 1‖2

Hn =

∫
G

(1− hn(γ)
1
2 )2dµn

≤
∫
G

|1− hn(γ)|dµn = ‖1− hn(γ)‖L1(G,µn) → 0

for all γ ∈ Γ. Since µn → δe weak*, for all F ∈ C(G), we also have that,

‖π(α(F ))ξn − F (e)ξn‖2
H = ‖ρn(F )1− F (e)1‖2

Hn =

∫
G

|F (g)− F (e)|2dµn → 0.

Consequently, for all x = uγα(F ) ∈ Cm(G), we have

‖π(x)ξn − εG(x)ξn‖ = ‖π(uγ)π(α(F ))ξn − F (e)ξn‖

≤ ‖π(uγ)(π(α(F ))ξn − F (e)ξn)‖+ |F (e)| ‖π(uγ)ξn − ξn‖

≤ ‖π(α(F ))ξn − F (e)ξn‖+ |F (e)| ‖π(uγ)ξn − ξn‖ → 0.

By linearity and the triangle inequality, we have ‖π(x)ξn − εG(x)ξn‖ → 0 for all x ∈ A.

The proof is complete by density of A in Cm(G). 2

4.2.2 Property (T)

Now we discuss property (T ) of G. Let Gα be the set of fixed points in G under the

action α of Γ. It is a closed subset of G, and, by the relations in Equation (4.1.1) it is

also a subgroup of G.

Theorem 4.2.3. The following holds:
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1. If Ĝ has property (T ), then Γ has property (T ) and Gα is finite.

2. If Ĝ has property (T ) and α is compact2 then Γ has Property (T ) and G is finite.

3. If Γ has property (T ) and G is finite, then Ĝ has property (T ).

Proof. (1). Let ρ : C(G) → C∗(Γ) be the unital ∗-homomorphism defined by ρ(F ) =

F (e)1 and consider the canonical unitary representation of Γ given by Γ 3 γ 7→ Uγ ∈

C∗(Γ). For all γ ∈ Γ and F ∈ C(G), we have ρ(αγ(F )) = αγ(F )(e)1 = F (αγ−1(e))1 =

F (e)1 = Uγρ(F )U∗γ . Hence, there exists a unique unital ∗-homomorphism π : Cm(G)→

C∗(Γ) such that π ◦ α = ρ and π(uγ) = Uγ for all γ ∈ Γ. Observe that π is surjective

and, for all F ∈ C(G),

(π ⊗ π)∆G(α(F )) = (ρ⊗ ρ)(∆G(F )) = ∆G(F )(e, e)1⊗ 1 = F (e)1⊗ 1 = ∆Γ̂(π(α(F ))).

Moreover, since for all γ, r ∈ Γ one has 1Aγ,r(e) = δγ,r, we find, for all γ ∈ Γ,

(π⊗π)∆G(uγ) =
∑
r∈γ·G

π(uγα(vγγ,r))⊗π(ur) =
∑
r∈γ·G

Uγ1Aγ,r(e)⊗Ur = Uγ⊗Uγ = ∆Γ̂(π(uγ)).

So π intertwines the comultiplications and property (T ) for Γ follows from [34, Proposition

6].

To show that Gα is finite it suffices, since Gα is closed in G hence compact, to show

that Gα is discrete. Let (gn) be any sequence in Gα such that gn → e. Consider the

unital ∗-homomorphism ρ : C(G) → B(`2(N)) defined by (ρ(F )ξ)(n) = F (gn)ξ(n), for

all ξ ∈ `2(N), and the trivial representation of Γ on `2(N). Since gn ∈ Gα for all n ∈ N

this pair gives a covariant representation. Hence, there exists a unital ∗-homomorphism

π : Cm(G)→ B(`2(N)) such that π(uγα(F )) = ρ(F ) for all γ ∈ Γ and F ∈ C(G). Define

ξn = δn ∈ `2(N). One has ‖π(uγα(F ))ξn − εG(uγα(F ))ξn‖ = |F (gn) − F (e)| → 0 for all

F ∈ C(G). Hence, π has almost invariant vectors. By property (T ), π has a non-zero

2We only need to assume that the closure of the image of Γ in the group of homeomorphisms of G is
compact for some Hausdorff group topology for which the evaluation map at e is continuous.

124



invariant vector and for such a vector ξ ∈ `2(N) we have F (gn)ξ(n) = F (e)ξ(n) for all

F ∈ C(G) and all n ∈ N. Let n0 ∈ N for which ξ(n0) 6= 0. We have F (gn0) = F (e) for

all F ∈ C(G), which implies that gn0 = e and shows that Gα must be discrete.

(2). It suffices to show that G is finite. The proof is similar to (1). Let gn ∈ G be

any sequence such that gn → e. We view α as a group homomorphism α : Γ → H(G),

γ 7→ αγ, where H(G) is the group of homeomorphisms of G and we write K = α(Γ) ⊂

H(G). By assumptions, K is a compact group and we denote by ν the Haar probability

on K. Note that, since αγ(e) = e for all γ ∈ Γ, by continuity of the evaluation at e and

density, we also have x(e) = e for all x ∈ K. We define a covariant representation (ρ, v),

ρ : C(G)→ B(L2(K×N)) and v : Γ→ U(L2(K×N)) by (ρ(F )ξ)(x, n) = F (x(gn))ξ(x, n)

and (vγξ)(x, n) = ξ(αγ−1x, n). By the universal property of Cm(G), we get a unital ∗-

homomorphism π : Cm(G)→ B(L2(K×N)) such that π(uγα(F )) = vγρ(F ) for all γ ∈ Γ

and F ∈ C(G). Define, for k ∈ N, the vector ξk(x, n) = δk,n. Since ν is a probability it

follows that ξk is a unit vector in L2(K × N). Moreover, for all γ ∈ Γ and F ∈ C(G),

‖π(uγα(F ))ξk − εG(uγα(F ))ξk‖2 =

∫
K

|F (αγ−1x(gk))− F (e)|2dν(x)→ 0,

where the convergence follows from the dominated convergence Theorem since, by con-

tinuity, we have F (αγ−1)x(gk)) → F (e) for all γ ∈ Γ, x ∈ K and F ∈ C(G) and

the domination is obvious since ν is a probability. By property (T ), there exists a

non-zero ξ ∈ L2(K × N)) such that F (e)ξ = εG(α(F ))ξ = π(α(F ))ξ = ρ(F )ξ for

all F ∈ C(G). Define Y := {x ∈ K :
∑

n∈N |ξ(x, n)|2 > 0} and, for F ∈ C(G),

XF := {x ∈ K :
∑

n∈N |F (x(gn))ξ(x, n)− F (e)ξ(x, n)|2 6= 0}. The condition on ξ means

that ν(Y ) > 0 and, for all F ∈ C(G), ν(XF ) = 0. Let Fk ∈ C(G) be a dense sequence

and X = ∪k∈NXFk then ν(X) = 0 so ν(Y \X) > 0. Hence, Y \X 6= ∅. Let x ∈ Y \X,

we have
∑

n |ξ(x, n|2 > 0 and, for all k, n ∈ N, Fk(x(gn))ξ(x, n) = Fk(e)ξ(x, n). By

density and continuity, F (x(gn))ξ(x, n) = F (e)ξ(x, n) for all n ∈ N and F ∈ C(G).

Since
∑

n |ξ(x, n|2 > 0, there exists n0 ∈ N such that ξ(x, n0) 6= 0 which implies that
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F (x(gn0)) = F (e) for all F ∈ C(G). Hence, x(gn0) = e which implies that gn0 = e. Hence

G must be discrete and, by compactness, G is finite.

(3). Let π : Cm(G) = Γα,f n C(G)→ B(H) be a unital ∗-homomorphism and K be

the closed subspace H given by C(G)-invariant vectors i.e. K = {ξ ∈ H : π ◦ α(F )ξ =

F (e)ξ for all F ∈ C(G)}. Then P = π(α(δe)) is the orthogonal projection onto K which

is an invariant subspace of the unitary representation γ 7→ π(uγ) since π(uγ)Pπ(uγ)
∗ =

π(α(δαg(e))) = π(α(δe)) = P for all γ ∈ Γ. Let γ 7→ vγ be the unitary representation of Γ

on K obtained by restriction.

Suppose that εG ≺ π and let ξn ∈ H be a sequence of unit vectors such that ‖π(x)ξn−

εG(x)ξn‖ → 0 for all x ∈ Cm(G). Since G is finite (hence Ĝ has property (T )), so

K 6= {0}. Moreover, since | ‖Pξn‖ − 1| ≤ ‖Pξn − ξn‖, we have ‖Pξn‖ → 1 and hence

we may and will assume that Pξn 6= 0 for all n. Let ηn = Pξn
‖Pξn‖ ∈ K. We have

‖vγηn−ηn‖ = 1
‖Pξn‖‖P (vγξn−ξn)‖ ≤ ‖π(uγ)ξn−ξn‖

‖Pξn‖ → 0. Hence, γ 7→ vγ has almost invariant

vectors. Since Γ has property (T ), let ξ ∈ K be a non-zero invariant vector. Then, for

all x ∈ Cm(G) of the form x = uγα(F ), we have π(x)ξ = F (e)π(uγ)ξ = F (e)ξ = εG(x)ξ.

By linearity, continuity, and density of A in Cm(G), we have π(x)ξ = εG(x)ξ for all

x ∈ Cm(G). 2

We mention that the third assertion of the previous theorem appears in [23] when β

is supposed to be the trivial action.

Remark 4.2.4. The compactness assumption on α in assertion 2 of the preceding Corol-

lary can not be removed. Indeed, for n ≥ 3, the semi-direct product H = SLn(Z) n Zn

(for the linear action of SLn(Z) on Zn) has property (T ) and H may be viewed as the

dual of the bicrossed product associated to the matched pair (SLn(Z),Tn) with the non-

compact action α : SLn(Z) y Tn given by viewing Tn = Ẑn and dualizing the linear

action SLn(Z) y Zn and the action β being trivial. In this example, the compact group

G = Tn is infinite.
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4.3 Relative Haagerup property and bicrossed prod-

uct

In this section, we study the relative co-Haagerup property of the pair (G,G) constructed

in Section 3. The main result in this section also generalizes one direction of the char-

acterization of relative Haagerup property of the pair (H,Γ n H), where H and Γ are

discrete groups and H is abelian [27]. It is not clear to us as to how to show the other

direction of the equivalence. We refer to Section 1.3 for the definitions of the Fourier

transform and the Haagerup property.

Definition 4.3.1. Let G and G be two compact quantum groups with an injective unital

∗-homomorphism α : Cm(G) → Cm(G) such that ∆G ◦ α = (α ⊗ α) ◦∆G. We say that

the pair (G,G) has the relative co-Haagerup property, if there exists a sequence of states

ωn ∈ Cm(G)∗ such that ωn → εG in the weak* topology and ω̂n ◦ α ∈ c0(Ĝ) for all n ∈ N.

Observe that, for any compact quantum group G, the dual Ĝ has the Haagerup

property if and only if the pair (G,G) has the co-Haagerup property. Moreover, it is

clear that if Λ,Γ are discrete groups with Λ < Γ, then the pair (Λ̂, Γ̂) has the relative

co-Haagerup property if and only if the pair (Λ,Γ) has the relative Haagerup property

in the classical sense, where we denote the compact quantum group dual to the discrete

group Λ and Γ by Λ̂ and ∆̂ respectively.

Let (Γ, G) be a matched pair of a discrete group Γ and a compact group G. Let G

be the bicrossed product. In the following theorem, we give a necessary condition for

the relative co-Haagerup property of the pair (G,G) in terms of the action α of Γ on

C(G). This is a non commutative version (one direction of) of [27, Theorem 4] and the

proof is similar in spirit. However, one of the arguments of the classical case does not

work in our context since αγ is not a group homomorphism and substitutive ideas are

required. Actually, for a general automorphism π ∈ Aut(C(G)) and ν ∈Prob(G), there is

no guarantee that ν̂ ∈ C∗r (G)⇒ π̂(ν) ∈ C∗r (G). It is not clear to us, as to how to address

this issue. We will freely use the notations and results of Section 4.1.
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Theorem 4.3.2. Suppose that the pair (G,G) has the relative co-Haagerup property.

Then we have that there exists a sequence (µn)n∈N of Borel probability measures on G

such that

1. µ̂n ∈ C∗r (G) for all n ∈ N;

2. µn → δe weak*;

3. ‖αγ(µn)− µn‖ → 0 for all γ ∈ Γ.

Proof. Let ωn ∈ Cm(G)∗ be a sequence of states such that ωn → εG in the weak* topology

and ω̂n ◦ α ∈ C∗r (G). For each n view ωn◦α ∈ C(G)∗ as a Borel probability measure µn on

G. By hypothesis, µ̂n ∈ C∗r (G) for all n ∈ N and µn → δe in the weak* topology. Writing

(Hn, πn, ξn) the GNS construction of ωn and doing the same computation as in the proof of

(1) =⇒ (2) of Theorem 4.2.2, we find
∣∣∫
G
Fdαγ(µn)−

∫
G
Fdµn

∣∣ ≤ ‖F‖ ‖πn(uγ)ξn−ξn‖ =

‖F‖
√

2(1− Re(ωn(uγ)). Hence, ‖αγ(µn)−µn‖ ≤
√

2(1− Re(ωn(uγ))→
√

2(1− Re(εG(uγ)) =

0.

2

4.4 Crossed product quantum group

This section deals with a matched pair of a discrete group and a compact quantum group

that arises in a crossed product, where the discrete group acts on the compact quantum

group via quantum automorphisms. This section is longer and has four subsections.

First, we analyze the quantum group structure and the representation theory of such

crossed products which was initially studied by Wang in [88], but unlike Wang we do

not rely on free products which allows us to shorten the proofs. We also obtain some

obvious consequences related to amenability and K-amenability and the computation of

the intrinsic group and the spectrum of the full C*-algebra of a crossed product quantum

group. The subsections deal with weak amenability, rapid decay, (relative) property (T )

and (relative) Haagerup property.
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Let G be a compact quantum group, Γ a discrete group acting on G i.e., α : Γ y G

be an action by quantum automorphisms. We will denote by the same symbol α the

action of Γ on Cm(G) or C(G). Let Am = Γα,mnCm(G) be the full crossed product and

A = ΓαnC(G) be the reduced crossed product. By abuse of notation, we still denote by

α the canonical injective map from Cm(G) to Am and from C(G) to A. We also denote

by uγ, for γ ∈ Γ, the canonical unitaries viewed in either Am or A. This will be clear

from the context and cause no confusion.

By the universal property of the full crossed product, we have a unique surjective

unital ∗-homomorphism λ : Am → A such that λ(uγ) = uγ and λ(α(a)) = α(λG(a)) for

all γ ∈ Γ and for all a ∈ Cm(G). Finally, we denote by ω ∈ A∗, the dual state of hG i.e.,

ω is the unique (faithful) state such that

ω(uγα(a)) = δe,γhG(a) for all a ∈ C(G), γ ∈ Γ.

Again by the universal property of the full crossed product, there exists a unique unital

∗-homomorphism ∆m : Am → Am ⊗ Am such that ∆m(uγ) = uγ ⊗ uγ and ∆m ◦ α =

(α⊗ α) ◦∆G.

The following theorem is due to Wang [88]. We include a short proof.

Theorem 4.4.1. G = (Am,∆m) is a compact quantum group and the following holds.

1. The Haar state of G is h = ω ◦ λ, hence, G is Kac if and only if G is Kac.

2. For all γ ∈ Γ and all x ∈ Irr(G), uxγ = (1 ⊗ uγ)(id ⊗ α)(ux) ∈ B(Hx) ⊗ Am is an

irreducible representation of G and the set {uxγ : γ ∈ Γ, x ∈ Irr(G)} is a complete

set of irreducible representations of G.

3. One has Cm(G) = Am, C(G) = A, Pol(G) = Span{uγα(a) : γ ∈ Γ, a ∈ Pol(G)},

λ is the canonical surjection from Cm(G) to C(G) and L∞(G) is the von Neumann

algebraic crossed product.
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Proof. (1). Write A = Span{uγα(a) : γ ∈ Γ, a ∈ Pol(G)}. Since, by definition of Am, A

is dense in Am it suffices to show the invariance of h on A and one has

(id⊗ h)(∆m(uγα(uxij))) =
∑
k

uγα(uxik)h(uγα(uxkj)) = δγ,eδx,1

= h(uγα(uxij)) = (h⊗ id)(∆m(uγα(uxij))), γ ∈ Γ, x ∈ Irr(G).

(2). By the definition of ∆m, it is obvious that uxγ is a unitary representation of G

for all γ ∈ Γ and x ∈ Irr(G). The representations uxγ, for γ ∈ Γ and x ∈ Irr(G), are

irreducible and pairwise non-equivalent since

h(χ(uxr )
∗χ(uys)) = h(α(χ(x))ur−1sα(χ(y))) = h(ur−1sα(αr−1s(χ(x))χ(y))) = δr,shG(χ(x)χ(y))

= δr,sδx,y.

Finally, {uxγ : γ ∈ Γ, x ∈ Irr(G)} is a complete set of irreducibles since the linear span

of the coefficients of the uxγ is A, which is dense in Cm(G).

(3). We established in (2) that A = Pol(G). Since, by definition, Am is the enveloping

C*-algebra of A, we have Cm(G) = Am. Since λ : Am → A is surjective and ω is faithful

on A, we have C(G) = A. Moreover, since λ is identity on A = Pol(G), it follows that λ is

the canonical surjection. Finally, L∞(G) is, by definition, the bicommutant of C(G) = A

which is also the von Neumann algebraic crossed product. 2

Remark 4.4.2. Observe that the counit satisfies εG(uγα(a)) = εG(a) for any γ ∈ Γ and

a ∈ Pol(G). This follows from the uniqueness of the counit with respect to the equation

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆ and also the fact that εG ◦ αγ(a) = εG(a), for any γ ∈ Γ

and a ∈ Pol(G). Similarly, SG(uγα(a)) = uγ−1α(SG(αγ−1(a))). Hence, for any γ ∈ Γ, we

have αγ ◦ SG = SG ◦ αγ.

Remark 4.4.3. Notice that we have a group homomorphism Γ → S(Irr(G)), γ 7→ αγ,

where αγ(x), for x ∈ Irr(G), is the class of the irreducible representation (id ⊗ αγ)(ux).

Let γ · x ∈ Irr(G) be the class of uxγ. Observe that, we have γ ⊗ x ⊗ γ−1 = αγ(x) and
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γ · x = γ ⊗ x, by viewing Γ ⊂ Irr(G) and Irr(G) ⊂ Irr(G). Hence, the fusion rules of G

are described as follows:

r · x⊗ s · y = rs · αs−1(x)⊗ y =
⊕

t∈Irr(G)
t⊂α

s−1 (x)⊗y

rs · t, for all r, s ∈ Γ, x, y ∈ Irr(G).

Moreover, we have γ · x = γ−1 · αγ(x) for all γ ∈ Γ and x ∈ Irr(G).

Corollary 4.4.4. The following hold.

1. G is co-amenable if and only if G is co-amenable and Γ is amenable.

2. If G is co-amenable and Γ is K-amenable, then Ĝ is K-amenable.

Proof. (1). Let G be co-amenable and Γ be amenable. Then as Cm(G) = C(G) and since

the full and the reduced crossed products are the same for actions of amenable groups,

it follows from the previous theorem that G is co-amenable. Now, if G is co-amenable,

its Haar state is faithful on Am. In particular, h ◦ λ ◦ α = hG ◦ λG must be be faithful

on Cm(G) which implies that G is co-amenable. Since h(uγ) = δγ,e, γ ∈ Γ, we conclude,

from Remark 4.1.6 (since the counit εG is an α invariant character on Cm(G)), that

the canonical trace on C∗(Γ) has to be faithful. Hence, Γ is amenable. Note that this

direction can also be shown using the continuity of the co-unit on the reduced algebras.

(2). Follows from [28, Theorem 2.1 (c)] since Cm(G) = C(G). 2

Note that, from the action α : Γ y Cm(G) by quantum automorphisms, we have a

natural action, still denoted α, of Γ on χ(G) by group automorphisms and homeomor-

phisms. The set of fixed points χ(G)α = {χ ∈ χ(G), : χ ◦ αγ = χ for all γ ∈ Γ} is a

closed subgroup. Also note that we have a natural action by group automorphisms, still

denoted α, of Γ on Int(G).

Proposition 4.4.5. There are canonical group isomorphisms:

Int(G) ' Γ α n Int(G) and χ(G) ' χ(G)α × Sp(Γ).
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The second one is moreover a homeomorphism.

Proof. The proof is the same as the proof of Proposition 4.1.10. The dimension of the

irreducible representation (id ⊗ α)(ux)(1 ⊗ uγ) is equal to the dimension of x and such

representations, for x ∈ Irr(G) and γ ∈ Γ, form a complete set of irreducibles of G. Hence

we get a bijection

π : Γ α n Int(G)→ Int(G) : (γ, u) 7→ α(u)uγ ∈ Cm(G).

Moreover, the relations in the crossed product and the group law in the semi-direct

product imply that it is a group homomorphism.

Let (χ, µ) ∈ χ(G)α × Sp(Γ). Since χ ◦ αγ = χ for all γ ∈ Γ, the pair (χ, µ) gives

a covariant representation in C, hence a unique character ρ(χ, µ) ∈ χ(G) such that

ρ(χ, µ)(uγα(a)) = µ(γ)χ(a) for all γ ∈ Γ, a ∈ Cm(G). It defines a map ρ : χ(G)α ×

Sp(Γ)→ χ(G) which is obviously injective. A direct computation shows that ρ is a group

homomorphism. Let us show that ρ is surjective. Let ω ∈ χ(G), then χ := ω ◦ α ∈ χ(G)

and, for all a ∈ Cm(G), χ ◦ αγ(a) = ω(uγα(a)u∗γ) = ω(uγ)ω(α(a))ω(u∗γ) = χ(a). Hence,

χ ∈ χ(G)α and we have ω = ρ(χ, µ), where µ = (γ 7→ ω(uγ)). Moreover, as in the proof

of Proposition 4.1.10, it is easy to see that the map ρ−1 is continuous, hence ρ also, by

compactness.

2

4.4.1 Weak amenability

This subsection deals with weak amenability of Ĝ constructed in Section 4.4. We first

prove an intermediate technical result to construct finite rank u.c.p. maps from C(G)

to itself using compactness of the action and elements of `∞(Ĝ) of finite support. Using

this construction, we estimate the Cowling-Haagerup constant of C(G) and show that

C(G) is weakly amenable when both Γ and Ĝ are weakly amenable and when the action

is compact. This enables us to compute Cowling-Haagerup constants in some explicit
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examples given in Section 4.5. We freely use the notations and definitions of Section 1.3.

Lemma 4.4.6. Suppose that the action α : Γ y G is compact. Denote by H < Aut(G)

the compact group obtained by taking the closure of the image of Γ in Aut(G). If a ∈

`∞(Ĝ) has finite support, then the linear map Ψ : C(G) → C(G), defined by Ψ(z) =∫
H

(h−1 ◦ma ◦ h)(z)dh has finite rank and ‖Ψ‖cb ≤ ‖ma‖cb, where dh denotes integration

with respect to the normalized Haar measure on H.

Proof. First observe that Ψ is well defined since, for all z ∈ C(G), the map H 3 h 7→

(h−1 ◦ma ◦ h)(z) ∈ C(G) is continuous. Moreover, the linearity of Ψ is obvious. Since

a has finite support, the map ma is of the form ma(·) = ω1(·)y1 + · · · + ωn(·)yn, where

ωi ∈ C(G)∗ and yi ∈ Pol(G). Hence, to show that Ψ has finite rank, it suffices to show

that the map Ψ1(z) =
∫
H

(h−1 ◦ϕ ◦h)(z)dh, z ∈ C(G), has finite rank when ϕ(·) = ω(·)y,

with ω ∈ C(G)∗ and y ∈ Pol(G).

In this case, we have Ψ1(z) =
∫
H
ω(h(z))h−1(y)dh, z ∈ C(G). Write y as a finite

sum y =
∑N

i=1

∑
k,l λi,k,lu

xi
kl , where F = {x1, · · · , xN} ⊂ Irr(G). Since H is compact, the

action of H on Irr(G) has finite orbits. Writing h ·x for the action of h ∈ H on x ∈ Irr(G),

the set H · F = {h · x : h ∈ H, x ∈ F} ⊂ Irr(G) is finite and, for all h ∈ H, h−1(y) ∈ F ,

where F is the finite subspace of C(G) generated by the coefficients of the irreducible

representations x ∈ H · F . Hence, the map h 7→ ω(h(z))h−1(y) takes values in F , for all

z ∈ C(G). It follows that Ψ1(z) =
∫
H
ω(h(z))h−1(y)dh ∈ F for all z ∈ C(G). Hence, Ψ

has finite rank.

Now we proceed to show that ‖Ψ‖cb ≤ ‖ma‖cb. For n ∈ N, denote by Ψn the map

Ψn = id⊗Ψ : Mn(C)⊗ C(G)→Mn(C)⊗ C(G).

Observe that Ψn(X) =
∫
H

(id⊗ (h−1 ◦ma ◦ h))(X)dh for all X ∈Mn(C)⊗C(G). Hence,

for n ∈ N, one has

‖Ψn(X)‖ ≤
∫
H

‖(id⊗ (h−1 ◦ma ◦ h))(X)‖dh ≤ ‖X‖
∫
H

‖(h−1 ◦ma ◦ h)‖cbdh ≤ ‖X‖ ‖ma‖cb.
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It follows that ‖Ψ‖cb ≤ ‖ma‖cb. 2

Theorem 4.4.7. We have max(Λcb(Γ),Λcb(C(G))) ≤ Λcb(C(G)). Moreover, if the action

Γ y G is compact, then Λcb(C(G)) ≤ Λcb(Γ)Λcb(Ĝ).

Proof. The first inequality is obvious by the existence of conditional expectations from

C(G) to C∗r (Γ) and from C(G) to C(G). Let us prove the second inequality. We may

and will assume that Γ and Ĝ are weakly amenable. Fix ε > 0.

Let ai ∈ `∞(Ĝ) be a sequence of finitely supported elements such that sup
i
‖mai‖cb ≤

Λcb(Ĝ) + ε and mai converges pointwise in norm to identity. Consider the maps Ψi

associated to ai as in Lemma 4.4.6. Observe that the sequence Ψi converges pointwise in

norm to identity. Indeed, for x ∈ C(G),

‖Ψi(x)− x‖ = ‖
∫
H

((h−1 ◦mai ◦ h)(x)− x)dh‖ = ‖
∫
H

(h−1(mai(h(x))− h(x))dh‖

≤
∫
H

‖mai(h(x))− h(x)‖dh.

Now the right hand side of the above expression is converging to 0 for all x ∈ C(G) by

the dominated convergence theorem, since ‖mai(h(x))−h(x)‖ →i 0 for all x ∈ C(G) and

all h ∈ H, and

‖mai(h(x))− h(x)‖ ≤ (‖mai‖cb + 1)‖x‖ ≤ (Λcb(Ĝ) + ε+ 1)‖x‖ for all i and all x ∈ C(G).

By definition, the maps Ψi are Γ-equivariant i.e., Ψi ◦ αγ = αγ ◦ Ψi. Hence, for all i,

there is a unique linear extension Ψ̃i : C(G)→ C(G) such that Ψ̃i(uγα(x)) = uγα(Ψi(x))

for all x ∈ C(G) and all γ ∈ Γ. Moreover, ‖Ψ̃i‖cb ≤ ‖Ψi‖cb ≤ ‖mai‖cb ≤ Λcb(Ĝ) + ε.

Consider a sequence of finitely supported maps ψj : Γ → C going pointwise to 1

and such that sup ‖mψj‖cb ≤ (Λcb(Γ) + ε), and denote by ψ̃j : C(G)→ C(G) the unique

linear extension such that ψ̃j(uγα(x)) = ψj(γ)uγα(x). Then, we have ‖ψ̃j‖cb ≤ ‖mψj‖cb ≤

Λcb(Γ) + ε.

Define the maps ϕi,j = ψ̃j ◦ Ψ̃i : C(G) → C(G). Then for all i, j we have ‖ϕi,j‖cb ≤
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(Λcb(Γ) + ε)(Λcb(Ĝ) + ε). Since ϕi,j(uγα(x)) = ψj(γ)uγα(Ψi(x)), it is clear that ϕi,j has

finite rank, and (ϕi,j)i,j is going pointwise in norm to identity. Since ε was arbitrary, the

proof is complete. 2

4.4.2 Rapid Decay

In this subsection we study property (RD) for crossed products. We use the notion of

property (RD) developed in [14] and recall the definition below. Since for a discrete

quantum subgroup Ĝ < Ĝ, i.e. such that there exists a faithful unital ∗-homomorphism

Cm(G) → Cm(G) which intertwines the comultiplications, property (RD) for Ĝ implies

property (RD) for Ĝ and, since for a crossed product Ĝ coming from an action Γ y G of

a discrete group Γ on a compact quantum group G, both Γ and Ĝ are discrete quantum

subgroups of Ĝ, it follows that property (RD) for Ĝ implies property (RD) for Γ and Ĝ.

Hence, we will only concentrate on proving the converse.

For a compact quantum group G and a ∈ Cc(Ĝ) we define its Fourier transform (see

[76]) as:

FG(a) = (hĜ ⊗ 1)(V (a⊗ 1)) =
∑

x∈Irr(G)

dimq(x)(Trx ⊗ id)((Qx ⊗ 1)ux(apx ⊗ 1)) ∈ Pol(G),

and its “Sobolev 0-norm” by ‖a‖2
G,0 =

∑
x∈Irr(G)

dimq(x)2

dim(x)
Trx(Q

∗
x(a
∗a)pxQx).

Let α : Γ y G be an action by quantum automorphisms and denote by G the

crossed product. Recall that Irr(G) = {γ · x : γ ∈ Γ and x ∈ Irr(G)}, where γ · x is the

equivalence class of

uxγ = (1⊗ uγ)(id⊗ α)(ux) ∈ B(Hx)⊗ C(G).

Let Vγ·x : Hγ·x → Hx be the unique unitary such that uγ·x = (V ∗γ·x ⊗ 1)uxγ(Vγ·x ⊗ 1).

Lemma 4.4.8. For any γ ∈ Γ and x ∈ Irr(G), one has Qγ·x = V ∗γ·xQxVγ·x and dimq(γ ·

x) = dimq(x).

135



Proof. Since Vγ·x is unitary, it suffices to show the first assertion. Recall that Qγ·x is

uniquely determined by the properties that it is invertible, Trγ·x(Qγ·x) = Trγ·x(Q
−1
γ·x) >

0 and that Qγ·x ∈ Mor(uγ·x, uγ·xcc ), where uγ·xcc = (id ⊗ S2
G)(uγ·x). It is obvious that

Q := V ∗γ·xQxVγ·x is invertible and that Trγ·x(Q) = Trγ·x(Q
−1) > 0. Hence, we will be

done once we show that Q ∈ Mor(uγ·x, uγ·xcc ). To this end, we first note that we have,

by Remark 4.4.2, for any γ ∈ Γ and a ∈ Pol(G), S2
G(uγα(a)) = uγα(S2

G(a)). Thus,

(id ⊗ S2
G)(uxγ) = (1 ⊗ uγ)(id ⊗ α)((id ⊗ S2

G)(ux)). It follows that Qx ∈ Mor(uxγ, (u
x
γ)cc)

hence Q ∈ Mor(uγ·x, uγ·xcc ). 2

Lemma 4.4.9. Let a ∈ Cc(Ĝ) and write a =
∑

γ∈S,x∈T apγ·x, where S ⊂ Γ and T ⊂

Irr(G) are finite subsets. For γ ∈ S, define aγ ∈ Cc(Ĝ) by aγ =
∑

x∈T Vγ·xapγ·xV
∗
γ·xpx.

The following statements hold.

1. FG(a) =
∑

γ∈S uγα(FG(aγ)).

2. ‖a‖2
G,0 =

∑
γ∈S ‖aγ‖2

G,0.

Proof. Observe that, since Vγ·x is unitary, Trγ·x(V
∗
γ·xAVγ·xB) = Trx(AVγ·xBV

∗
γ·x) for all

γ ∈ Γ, all x ∈ Irr(G) and all A ∈ B(Hx), B ∈ B(Hγ·x). Hence,

FG(a) =
∑

γ∈S,x∈T

dimq(γ · x)(Trγ·x ⊗ id)((Qγ·x ⊗ 1)uγ·x(apγ·x ⊗ 1))

=
∑

γ∈S,x∈T

dimq(x)(Trγ·x ⊗ id)((V ∗γ·x ⊗ 1)(Qx ⊗ 1)(Vγ·x ⊗ 1)(V ∗γ·x ⊗ 1)uxγ(Vγ·x ⊗ 1)(apγ·x ⊗ 1))

=
∑

γ∈S,x∈T

dimq(x)(Trx ⊗ id)((Qx ⊗ 1)uxγ(Vγ·xapγ·xV
∗
γ·x ⊗ 1))

=
∑
γ∈S

uγα

(∑
x∈T

dimq(x)(Trx ⊗ id)((Qx ⊗ 1)ux(Vγ·xapγ·xV
∗
γ·x ⊗ 1))

)
=

∑
γ∈S

uγα(FG(aγ)).

This shows assertion 1. Assertion 2 follows from a similar computation using Lemma

4.4.8. 2
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A function l : Irr(G) → [0,∞) is called a length function on Irr(G) if l(1) = 0,

l(x) = l(x) and that l(x) ≤ l(y) + l(z) whenever x ⊂ y ⊗ z.

Lemma 4.4.10. Let α : Γ y G be an action of Γ on G by quantum automorphisms

and let l be a length function on Irr(G) which is α-invariant, i.e., l(x) = l(αγ(x)) for all

γ ∈ Γ and x ∈ Irr(G). Let lΓ be a length function on Γ. Let G be the crossed product.

The function l0 : Irr(G)→ [0,∞), defined by l0(γ · x) = lΓ(γ) + l(x) is a length function

on Irr(G).

Proof. We have l0(1) = lΓ(e) + l(1) = 0 and, by Remark 4.4.3,

l0(γ · x) = l0(γ−1 · αγ(x)) = lΓ(γ−1) + l(αγ(x)) = lΓ(γ) + l(x) = l0(γ · x).

Again, from Remark 4.4.3, γ · x ⊂ r · y ⊗ s · z if and only if γ = rs and x ⊂ αγ−1(y)⊗ z.

Hence,

l0(γ · x) = lΓ(γ) + l(x) ≤ lΓ(r) + lΓ(s) + l(αγ−1(y)) + l(z)

= lΓ(r) + l(y) + lΓ(s) + l(z) = l0(r · y) + l0(s · z).

2

Given a length function l : Irr(G)→ [0,∞), consider the element L =
∑

x∈Irr(G) l(x)px

which is affiliated to c0(Ĝ). Let qn denote the spectral projections of L associated to the

interval [n, n + 1). We say that (Ĝ, l) has property (RD), if there exists a polynomial

P ∈ R[X] such that for every k ∈ N and a ∈ qkcc(Ĝ), we have ‖F(a)‖C(G) ≤ P (k)‖a‖G,0.

Finally, Ĝ is said to have Property (RD) if there exists a length function l on Irr(G) such

that (Ĝ, l) has property (RD).

We prove property (RD) for the dual of a crossed product in the following Theorem.

In case the action of the group is trivial, i.e., when the crossed product reduces to a tensor

product, this result is proved in [21, Lemma 4.5]. For semi-direct products of classical

groups, this result is due to Jolissaint [48].
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Theorem 4.4.11. Let α : Γ y G be an action by quantum automorphisms. Let l be

a α-invariant length function on Irr(G). If (Ĝ, l) has property (RD) and Γ has property

(RD), then (Ĝ, l0) has property (RD), where G is the crossed product and l0 is as in

Lemma 4.4.10.

Proof. Let lΓ be any length function on Γ for which (Γ, lΓ) has property (RD) and let

l0 be the length function on Irr(G) defined by l0(γ · x) = lΓ(γ) + l(x), for γ ∈ Γ and

x ∈ Irr(G). Let L0 =
∑

γ∈Γ,x∈Irr(G) l0(γ · x)pγ·x =
∑

γ∈Γ,x∈Irr(G)(lΓ(γ) + l(x))pγ·x and

L =
∑

x∈Irr(G) l(x)px. Finally, let pn and qn be the spectral projections of respectively L0

and L associated to the interval [n, n + 1). Let a ∈ cc(Ĝ) and write a =
∑

γ∈S,x∈T apγ·x,

where S ⊂ Γ and T ⊂ Irr(G) are finite subsets. Now suppose that a ∈ pkcc(Ĝ). Since

pk =
∑

γ∈Γ,x∈Irr(G),k≤lΓ(γ)+l(x)<k+1

pγ·x

we must have

S ⊂ {γ ∈ Γ : lΓ(γ) < k + 1} and T ⊂ {x ∈ Irr(G) : l(x) < k + 1}.

It follows that, for all γ ∈ S, the element aγ defined in Lemma 4.4.9 is in qKcc(Ĝ), where

qK =
∑k

j=0 qj.

Let P1 and P2 be polynomials witnessing (RD) respectively for (Ĝ, l) and (Γ, lΓ). Let,

for i = 1, 2, Ci ∈ R+ and Ni ∈ N be such that Pi(k) ≤ Ci(k + 1)Ni for all k ∈ N. Then,

for all b ∈ qKcc(Ĝ),

‖FG(b)‖ ≤
∑
j≤k

‖FG(bqj)‖ ≤
∑
j≤k

P1(j)‖bqj‖G,0 ≤
∑
j≤k

C1(j + 1)N1‖bqj‖G,0

≤ C1(k + 1)N1

∑
j≤k

‖bqj‖G,0 = C1(k + 1)N1+1‖b‖G,0.

Similarly, ‖ψ ∗ φ‖`2(Γ) ≤ C2(k+ 1)N2+1‖ψ‖`2(Γ)‖φ‖`2(Γ) for all φ in `2(Γ) and all functions

ψ on Γ (finitely) supported on words of lΓ-length less than equal to k.
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Let y be a finite sum y =
∑

s usα(bs) ∈ Pol(G). We have ‖y‖2
2,hG

=
∑

s ‖bs‖2
2,hG

and,

by Lemma 4.4.9 and the preceding discussion,

‖FG(a)y‖2
2,hG

= ‖
∑
γ∈S,s

uγsα(αs−1(FG(aγ))bs)‖2
2,hG

= ‖
∑
γ∈S,t

utα(αt−1γ(FG(aγ))bγ−1t)‖2
2,hG

=
∑
t

‖
∑
γ∈S

αt−1γ(FG(aγ))bγ−1t‖2
2,hG
≤
∑
t

(∑
γ∈S

‖αt−1γ(FG(aγ))bγ−1t‖2,hG

)2

≤ C2
1(k + 1)2(N1+1)

∑
t

(∑
γ∈S

‖aγ‖G,0‖bγ−1t‖2,hG

)2

= C2
1(k + 1)2(N1+1)‖ψ ∗ φ‖2

l2(Γ),

where ψ, φ ∈ `2(Γ) are defined by ψ(γ) = ‖aγ‖G,0 and φ(s) = ‖bs‖2,hG where γ, s ∈ Γ.

We note that ‖ψ‖2
`2(Γ) =

∑
γ∈S ‖aγ‖2

G,0 = ‖a‖2
G,0 and ‖φ‖2

`2(Γ) =
∑

s ‖bs‖2
2,hG

= ‖y‖2
2,hG

.

But since ψ is supported on S i.e., on elements of Γ of length less than equal to k, we

have

‖FG(a)y‖2
2,hG
≤ (C1C2)2(k + 1)2(N1+N2+2)‖ψ‖2

l2(Γ)‖φ‖2
`2(Γ) = P (k)2‖a‖2

G,0‖y‖2
2,hG

,

where P (x) = C1C2(x+ 1)N1+N2+2. As y is arbitrary, the proof is complete. 2

Remark 4.4.12. There may not exist an α-invariant length function on Irr(G). However,

if Γ y G is compact, then the action α : Γ y Irr(G) has finite orbits. Hence, for any

length function l on Irr(G), the length function lα defined by lα(x) = supγ∈Γ l(αγ(x)), for

x ∈ Irr(G), is α-invariant. Hence, Ĝ has (RD) whenever Γ and Ĝ have (RD). We refer

to the last section and to [67] for several examples of compact group actions on compact

quantum groups.

4.4.3 Property (T)

We characterize relative co-property (T ) of the pair (G,G) in a similar way we did

characterize relative co-property (T ) for bicrossed product. We study the property (T )
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for Ĝ.

When π : A → B(H) is a unital ∗-homomorphism from a unital C*-algebra A, we

denote by π̃ : A∗∗ → B(H) its unique normal extension. Also, we view any state ω ∈ A∗

as a normal state on A∗∗. Observe that if (H, π, ξ) is the GNS construction for the state

ω on A, then (H, π̃, ξ) is the GNS construction for the normal state ω on A∗∗.

Let M = Cm(G)∗∗ and p0 ∈ M be the unique central projection such that p0xp0 =

ε̃G(x)p0 for all x ∈M .

In the following theorem, we characterize the relative co-property (T ) of the pair

(G,G) in terms of the action α of Γ on G. The proof is similar to the proof of Theorem

4.2.2 but technically more involved.

Theorem 4.4.13. The following are equivalent:

1. The pair (G,G) does not have the relative co-property (T ).

2. There exists a sequence (ωn)n∈N of states on Cm(G) such that

(a) ωn(p0) = 0 for all n ∈ N;

(b) ωn → εG weak*;

(c) ‖αγ(ωn)− ωn‖ → 0 for all γ ∈ Γ.

Proof. For a representation π : Cm(G) → B(H), we have εG ⊂ π ◦ α if and only if

Kπ 6= {0}, where

Kπ = {ξ ∈ H : π ◦ α(a)ξ = εG(a)ξ for all a ∈ Cm(G)}.

Let ρ = π ◦ α : Cm(G) → B(H) and observe that the orthogonal projection onto Kπ

is the projection ρ̃(p0). Indeed, for all ξ ∈ H, a ∈ Cm(G), we have π ◦ α(a)ρ̃(p0)ξ =

ρ̃(ap0)ξ = εG(a)ρ̃(p0)ξ, which implies that Im(ρ̃(p0)) ⊂ Kπ. Moreover, if ξ ∈ Kπ, we

have ρ̃(a)ξ = ε̃G(a)ξ for all a ∈ Cm(G). Since Cm(G) is σ-weakly dense in M and the

representations ρ̃ and ε̃G are normal, it follows that the equation ρ̃(a)ξ = ε̃G(a)ξ is valid
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for all a ∈M . Hence, for a = p0 we get ρ̃(p0)ξ = ε̃G(p0)ξ = ξ, which in turn implies that

Kπ ⊂ Im(ρ̃(p0)).

(1) =⇒ (2). Suppose that the pair (G,G) does not have the relative co-property (T ).

Let π : Cm(G) → B(H) be a representation such that εG ≺ π and Kπ = {0}. Denote

by ωξ,η ∈ Cm(G)∗ the functional given by ωξ,η(a) = 〈π ◦ α(a)ξ, η〉. Hence, ωξ,η(p0) =

〈ρ̃(p0)ξ, η〉 = 0 for all ξ, η ∈ H.

Since εG ≺ π, let (ξn)n∈N be a sequence of unit vectors in H such that ‖π(x)ξn −

εG(x)ξn‖ → 0 for all x ∈ Cm(G). Define ωn = ωξn,ξn . Then, we have ωn(p0) = 0 for

all n ∈ N. For all a ∈ Cm(G) we have, |ωn(a) − εG(a)| = |〈π(α(a))ξn − εG(a)ξn, ξn〉| ≤

‖π(α(a))ξn − εG(α(a))ξn‖ → 0. Moreover, exactly as in the proof of Theorem 4.2.2, we

find ‖αγ(ωn)− ωn‖ ≤ 2‖π(uγ)ξn − ξn‖ = ‖π(uγ)ξn − εG(uγ)ξn‖ → 0.

(2) =⇒ (1). For a state ω ∈ Cm(G)∗ = M∗ we denote by s(ω) ∈ M its support.

Recall that s(ω) ∈M is the unique projection in M such that Nω = M(1− s(ω)), where

Nω is the σ-weakly closed left ideal defined by Nω = {x ∈M : ω(x∗x) = 0} and note that

ω is faithful on s(ω)Ms(ω). In the sequel, we still denote by αγ the unique ∗-isomorphism

of M which extends αγ ∈ Aut(Cm(G)). We first prove the following claim.

Claim. If (2) holds, then there exists a sequence (ωn)n∈N of states on Cm(G) satifying

(a), (b) and (c) and such that αγ(s(ωn)) = s(ωn) for all γ ∈ Γ, n ∈ N.

Proof of the claim. Denote by `1(Γ)1,+ the set of positive `1 functions f on Γ with

‖f‖1 = 1. For a state ω ∈ Cm(G)∗ = M∗ and f ∈ `1(Γ)1,+, define the state f ∗ω ∈ Cm(G)∗

by the convex combination

f ∗ ω =
∑
γ∈Γ

f(γ)αγ(ω).

Observe that, for all γ ∈ Γ we have δγ ∗ ω = αγ(ω) and αγ(f ∗ ω) = fγ ∗ ω, where

fγ ∈ `1(Γ)1,+ is defined by fγ(r) = f(γ−1r), r ∈ Γ. Moreover, if f ∈ `1(Γ)1,+ is such that

f(γ) > 0 for all γ ∈ Γ, then since (f ∗ ω)(x∗x) =
∑

γ f(γ)ω(αγ−1(x∗x)), we have that
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(f ∗ ω)(x∗x) = 0 if and only if ω(αγ−1(x∗x)) = 0 for all γ ∈ Γ. It follows that

Nf∗ω = ∩γ∈Γαγ(Nω) = M (∧γ∈Γ(1− αγ(s(ω)))) .

Hence, s(f ∗ω) = 1−∧γ∈Γ(1−αγ(s(ω))) = ∨γ∈Γαγ(s(ω)). Hence, we have αγ(s(f ∗ω)) =

s(f ∗ ω) for all γ ∈ Γ. Finally, since εG ◦ αγ = εG, we deduce that, for all γ ∈ Γ, αγ(p0)

is a central projection of M satisfying aαγ(p0) = αγ(αγ−1(a)p0) = εG(αγ−1(a))αγ(p0) =

εG(a)αγ(p0), γ ∈ Γ. By uniqueness of such a projection, we find αγ(p0) = p0 for all γ ∈ Γ.

Hence, for all f ∈ `1(Γ)1,+,

(f ∗ ω)(p0) =
∑
γ

f(γ)ω(αγ−1(p0)) =
∑
γ

f(γ)ω(p0) = ω(p0).

Let (ωn)n∈N be a sequence of states on Cm(G) satisfying (a), (b) and (c). We have, for

all f ∈ `1(Γ)1,+ with finite support

‖f ∗ ωn − ωn‖ ≤
∑
γ

f(γ)‖δγ ∗ ωn − ωn‖ =
∑
γ

f(γ)‖αγ(ωn)− ωn‖ → 0. (4.4.1)

Since such functions f are dense in `1(Γ)1,+ (in the `1-norm), it follows that ‖f∗ωn−ωn‖ →

0 for all f ∈ `1(Γ)1,+.

Let ξ ∈ `1(Γ)1,+ be any function such that ξ > 0 and define νn = ξ ∗ ωn. By

the preceding discussion, we know that αγ(s(νn)) = s(νn) for all γ ∈ Γ and νn(p0) =

ωn(p0) = 0 for all n ∈ N. Moreover, by Equation (4.4.1), we have ‖αγ(νn) − νn‖ =

‖ξγ ∗ωn−ξ ∗ωn‖ ≤ ‖ξγ ∗ωn−ωn‖+‖ωn−ξ ∗ωn‖ → 0 for all γ ∈ Γ. Since ωn → εG in the

weak* topology and εG ◦ αγ = εG, we have, |ωn(αγ(a)) − εG(a)| → 0 for all a ∈ Cm(G)

and all γ ∈ Γ. Hence, the Lebesgue dominated convergence theorem implies that, for all

a ∈ Cm(G),

|νn(a)− εG(a)| =

∣∣∣∣∣∑
γ

f(γ)(ωn(αγ−1(a))− εG(a))

∣∣∣∣∣ ≤∑
γ

f(γ)|ωn(αγ−1(a))− εG(a))| → 0.
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It follows that νn → εG in the weak* topology and this completes the proof of the claim.

2

We can now finish the proof of the Theorem. Let (ωn)n∈N be a sequence of states on

Cm(G) as in the Claim. Let Mn = s(ωn)Ms(ωn) and, since ωn is faithful on Mn, view

Mn ⊂ B(Hn) where (Hn, ξn) is the GNS construction of the f.n.s. ωn on Mn. Define

ρn : Cm(G) ⊂ M → Mn ⊂ B(Hn) by a 7→ s(ωn)as(ωn). By definition, the unique

normal extension of ρn is the map ρ̃n : M → Mn, defined by x 7→ s(ωn)xs(ωn). Since

αγ(s(ωn)) = s(ωn), the action α restricts to an action, still denoted by α of Γ on Mn.

Since Mn ⊂ B(Hn) is in standard form, we may consider the standard implementation

(see Definition 1.6 of [80]) of the action of Γ on Mn to get a unitary representation

un : Γ→ U(Hn) such that αγ(x) = un(γ)xun(γ−1) for all x ∈Mn and γ ∈ Γ.

By the universal property ofAm, for n ∈ N there exists a unique unital ∗-homomorphism

πn : Am → B(Hn) such that πn(uγ) = un(γ) and πn ◦ α = ρn.

Since ωn(p0) = 0, we have s(ωn)p0s(ωn) = 0. Hence, ρ̃n(p0) = 0 and Kπn = {0} ∀n ∈ N.

It follows that, if we define H = ⊕nHn and π = ⊕nπn : Cm(G)→ B(H), then Kπ = {0}

as well. Hence, it suffices to show that εG ≺ π. Since ξn is in the self-dual cone of

ωn and un(γ) is the standard implementation of αγ, it follows from [80, Theorem 1.14]

that un(γ)ξn is also in the self-dual cone of ωn for all n ∈ N. Hence, we may apply [80,

Theorem 1.2] to get ‖un(γ)ξn − ξn‖2 ≤ ‖ωun(γ)ξn − ωξn‖ for all n ∈ N, γ ∈ Γ. Observe

that ωun(γ)ξn(x) = αγ(ωn)(x) and ωξn(x) = ωn(x) for all x ∈M . Hence,

‖un(γ)ξn − εG(uγ)ξn‖ = ‖un(γ)ξn − ξn‖ ≤ ‖αγ(ωn)− ωn‖
1
2 → 0.

Since ωn → εG in the weak* topology, it follows that for all x = uγα(a) ∈ Cm(G), we
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have

‖π(x)ξn − εG(x)ξn‖ = ‖π(uγ)π(α(a))ξn − εG(a)ξn‖

≤ ‖π(uγ)(π(α(a))ξn − εG(a)ξn)‖+ |εG(a)| ‖π(uγ)ξn − ξn‖

≤ ‖π(α(a))ξn − εG(a)ξn‖+ |εG(a)| ‖un(γ)ξn − ξn‖ → 0.

By linearity and the triangle inequality, we have ‖π(x)ξn − εG(x)ξn‖ → 0 for all x ∈ A.

We conclude the proof using the density of A in Cm(G). 2

We now turn to Property (T).

Theorem 4.4.14. The following holds:

1. If Ĝ has property (T), then Γ has property (T ) and χ(G)α is finite.

2. If Ĝ has property (T ) and α is compact then Ĝ have property (T ).

3. If Ĝ has property (T) and Γ has property (T), then Ĝ has property (T).

Proof. (1). This is the same proof as of assertion 1 of Theorem 4.2.3. First, we use

the counit on Cm(G) and the universal property of Cm(G) to construct a surjective ∗-

homomorphism Cm(G) → C∗(Γ) which intertwines the comultiplications. We then use

[34, Proposition 6] to conclude that Γ has property (T ). To end the proof of (1), we

show that χ(G)α is discrete. Let χn ∈ χ(G)α be any sequence such that χn → εG

weak* in Cm(G)∗. We define a unital ∗-homomorphism χ : Cm(G) → B(l2(N)) by

(χ(a)ξ)(n) = χn(a)ξ(n) for all a ∈ Cm(G) and ξ ∈ l2(N). Since χn ∈ Sp(Cm(G))α we

have χ ◦ αγ = χ for all γ ∈ Γ. Hence, considering the trivial representation of Γ on l2(N)

we obtain a covariant representation so there exists a unique unital ∗-homomorphism

π : Cm(G) → B(l2(N)) such that π(uγα(a)) = χ(a) for all a ∈ Cm(G) and all γ ∈ Γ.

Since χn → εG weak* the sequence of unit vectors defined by ξn = δn ∈ l2(N) is a sequence
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of almost invariant vectors. By property (T ) we have εG ⊂ π which easily implies that,

for some n ∈ N, χn = εG.

(2). We repeat again the proof of assertion 2 of Theorem 4.2.3. By (1), it suffices

to show that Ĝ has Property (T ). Let ρ : Cm(G) → B(H) with εG ≺ π and define

the compact group K = α(Γ) ⊂ Aut(G) with its Haar probability ν. Note that any x ∈

Aut(G), in particular any x ∈ K, satisfies εG◦x = εG. Define the covariant representation

(ρα, v), ρα : Cm(G) → B(L2(K,H)) and v : Γ → U(L2(K,H)) by (ρα(a)ξ)(x) =

ρ(x−1(a))ξ(x) and (vγξ)(x) = ξ(αγ−1x). By the universal property of Cm(G) we get a

unital ∗-homomorphism π : Cm(G)→ B(L2(K,H)) such that π(uγα(a)) = vγρα(a). Let

ξn ∈ H be a sequence of unit vectors such that ‖ρ(a)ξn− εG(a)ξn‖ → 0 for all a ∈ Cm(G)

and define the vectors ηn(x) = ξn for all x ∈ K, n ∈ N. Since ν is a probability, ηn is a

unit vector in L2(K,H) for all n ∈ N. Moreover, for all a ∈ Cm(G) and γ ∈ Γ,

‖π(uγα(a))ηn − εG(uγα(a))ξn‖2 =

∫
K

‖ρ(x−1(αγ(a)))ξn − εG(a)ξn‖2dν(x)→ 0,

where the convergence follows from the dominated convergence Theorem, since

‖ρ(x−1(αγ(a)))ξn − εG(a)ξn‖ = ‖ρ(x−1(αγ(a)))ξn − εG(x−1(αγ(a)))ξn‖ → 0,

for all a ∈ Cm(G), x ∈ K and γ ∈ Γ and the domination hypothesis is obvious since ν is a

probability. Hence, εG ≺ π and it follows from Property (T ) that there exists a non-zero

π-invariant vector ξ ∈ L2(G,H). In particular, for all a ∈ Cm(G), π(α(a)ξ = εG(a)ξ.

Hence, ν(Y ) > 0 where Y = {x ∈ K : ‖ξ(x)‖ > 0} and, for all a ∈ Cm(G), ν(Xa) = 0

where Xa = {x ∈ K : ρ(x−1(a))ξ(x) 6= εG(a)ξ(x)}. As in the proof of assertion 2 of

Theorem 4.2.3, we deduce from the separability of Cm(G) that there exists x ∈ K for

which ξ(x) 6= 0 and ρ(x−1(a))ξ(x) = εG(a)ξ(x) for all a ∈ Cm(G). It follows that the

vector η := ξ(x) ∈ H is a non-zero ρ-invariant vector.

(3). We use the notations introduced in the proof of Theorem 4.4.13. Let π :

Cm(G)→ B(H) be a representation and consider the representation ρ = π◦α : Cm(G)→
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B(H) and the unitary representation vγ = π(uγ) of Γ on H. Let Kπ = {ξ ∈ H : ρ(a)ξ =

εG(a)ξ for all a ∈ Cm(G)} and recall that the orthogonal projection onto Kπ is P = ρ̃(p0)

and that αγ(p0) = p0 for all γ ∈ Γ. Hence, vγPvγ−1 = ρ̃(αγ(p0)) = P for all γ ∈ Γ, and it

follows that Kπ is an invariant subspace of γ 7→ vγ. Suppose that εG ≺ π. By property

(T ) of Ĝ, the space Kπ is non-zero and we can argue exactly as in the proof of Theorem

4.2.3 to conclude the result. 2

Remark 4.4.15. It follows from the proof of the first assertion of the previous theorem

that C∗(Γ) is a compact quantum subgroup of the compact quantum group G. Now, an

irreducible representation of G of the form uxγ (with dimension say m), when restricted to

the subgroup C∗(Γ), decomposes as a direct sum of m copies of γ. It now follows from [72,

Theorem 6.3] that C∗(Γ) is a central subgroup (see [72, Definition 6.1]). Furthermore, Γ

induces an action on the chain group c(G) [72, Definition 7.4] of G and it follows from

Remark 4.4.3 that the chain group (and hence the center, see [72, Section 7]) of G is the

semidirect product group c(G) o Γ.

Remark 4.4.16. (Kazhdan Pair for G) Let (E1, δ1) be a Kazhdan pair for G and

(E2, δ2) be a Kazhdan Pair for Γ. Then it is not hard to show that E = (E1∪E2) ⊂ Irr(G)

and δ = min(δ1, δ2) is a Kazhdan pair for G. Indeed, let π : Cm(G) → B(H) be a ∗-

representation having a (E, δ)-invariant (unit) vector ξ. Then restricting to the subalgebra

Cm(G) (and denoting the corresponding representation by πG), we get an (E1, δ1) invari-

ant vector and hence, there is an invariant vector η ∈ H. We may assume ‖ξ − η‖ < 1

(this follows from a quantum group version of Proposition 1.1.9 of [12], which can be

proved in an exactly similar fashion). Now, by restricting π to Γ, denoting the correspond-

ing representation by u, we have that the closed linear u-invariant subspace generated by

uγη, γ ∈ Γ (which we denote by Hη), is a subspace of the space of πG-invariant vectors

(as uγπG(a)u−1
γ = πG(αγ(a))). Let PHη denote the orthogonal projection onto Hη. Now,

the vector PHηξ, which is non-zero, as ‖ξ− η‖ < 1, is an (E2, δ2)-invariant vector for the

representation u, restricted to Hη. So, there exists an u-invariant vector η0 ∈ Hη. This

vector is, of course then, π-invariant and hence, we are done.
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4.4.4 Haagerup property

In this section, we study the relative co-Haagerup property of the pair (G,G) given by

a crossed product and provide a characterization analogous to the bicrossed product

case. We also extend a result of Jolissaint on Haagerup property for finite von Neumann

algebra crossed product to a non-finite setting. Thus, we can decide whether L∞(G)

has the Haagerup property. Finally, we provide sufficient conditions for Ĝ to posses the

Haagerup property.

For the relative Haagerup property of crossed product, we obtain the following result

similar to Theorem 4.3.2. The proof is even simpler in the crossed product case, since α

is an action by quantum automorphisms.

Theorem 4.4.17. The following are equivalent:

1. The pair (G,G) has the relative co-Haagerup property.

2. There exists a sequence (ωn)n∈N of states on Cm(G) such that

(a) ω̂n ∈ c0(Ĝ) for all n ∈ N;

(b) ωn → εG weak*;

(c) ‖αγ(ωn)− ωn‖ → 0 for all γ ∈ Γ.

Proof. (1) ⇒ (2). The argument is exactly the same as the proof of (1) =⇒ (2) of

Theorem 4.3.2.

(2)⇒ (1). We first prove the following claim.

Claim. If (2) holds, then there exists a sequence (νn)n∈N of states on Cm(G) satifying

(a), (b) and (c) and such that αγ(s(νn)) = s(νn) for all γ ∈ Γ, n ∈ N.

Proof of the claim. By the proof of the claim in Theorem 4.4.13, it suffices to check

that, whenever ν is a state on Cm(G) and f ∈ `1(Γ), we have ν̂ ∈ c0(Ĝ)⇒ f̂ ∗ ν ∈ c0(Ĝ).

We first show that ν̂ ∈ c0(Ĝ) ⇒ α̂γ(ν) ∈ c0(Ĝ). Note that we still denote by α the

action of Γ on Irr(G) (see Remark 4.4.3). Now let ν be a state on Cm(G) such that ν̂ ∈
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c0(Ĝ) and let ε > 0. By assumptions, the set F = {x ∈ Irr(G) : ‖(id⊗ ν)(ux)‖B(Hx) ≥ ε}

is finite. Hence, the set

{x ∈ Irr(G) : ‖(id⊗ ν)(uαγ−1 (x))‖B(Hx) ≥ ε} = {x ∈ Irr(G) : αγ−1(x) ∈ F} = αγ(F )

is also finite. Since α̂γ(ν) =
(

(id⊗ ν)(uαγ−1 (x))
)
x∈Irr(G)

, it follows that α̂γ(ν) ∈ c0(Ĝ).

From this we can now conclude that for all f ∈ `1(Γ), we have ν̂ ∈ c0(Ĝ) ⇒ f̂ ∗ ν ∈

c0(Ĝ) as in the proof of the Claim in Theorem 4.3.2. 2

We can now finish the proof of the Theorem. Let (νn)n∈N be a sequence of states on

Cm(G)∗ as in the Claim. As in the proof of Theorem 4.4.13, we construct a representation

π : Cm(G) → B(H) with a sequence of unit vectors ξn ∈ H such that ‖π(x)ξn −

εG(x)ξn‖ → 0 for all x ∈ Cm(G) and νn = ωξn ◦π◦α. It follows that the sequence of states

ωn = ωξn ◦π ∈ Cm(G)∗, satisfies ωn → εG in the weak* topology and ω̂n ◦ α = ν̂n ∈ c0(Ĝ)

for all n ∈ N. 2

We now turn to the Haagerup property. We will need the following result which is of

independent interest. This is the non-tracial version of [47, Corollary 3.4] and the proof

is similar. We include a proof for the convenience of the reader. We refer to [22, 69] for

the Haagerup property for arbitrary von Neumann algebras. We will say that a UCP

map ψ : M →M is ν-dominated for a state ν of M if we have that ν ◦ ψ ≤ ν.

Proposition 4.4.18. Let (M, ν) be a von Neumann algebra with a f.n.s. ν and let

α : Γ y M be an action which leaves ν invariant. If α is compact, Γ and M have the

Haagerup property, then Γ nM has the Haagerup property.

Proof. Let H < Aut(M) be the closure of the image of Γ in Aut(M). By assumption H

is compact. Let L2(M) denote the GNS space of ν.

Let ψ : M → M be a ucp, normal and ν-dominated map and suppose that Tψ,

the L2 extension of ψ, is compact. Then it is easy to see that for all x ∈ M , the map

H 3 h 7→ h−1 ◦ ψ ◦ h(x) ∈ M is σ-weakly continuous. Hence, we can define Ψ(x) =
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∫
H
h−1 ◦ ψ ◦ h(x)dh, where dh is the normalized Haar measure on H. By construction,

the map Ψ : M → M is ucp, ν-dominated, Γ-equivariant and normal. Moreover, for all

ξ ∈ L2(M), the map H 3 h 7→ Th−1 ◦Tψ◦Thξ ∈ L2(M), where Th denotes the L2-extension

of h, is norm continuous. Consequently,
∫
H
Th−1 ◦Tψ ◦Thdh ∈ B(L2(M)) and by definition

of Ψ we have that the L2-extension of Ψ is given by TΨ =
∫
H
Th−1 ◦Tψ ◦Thdh ∈ B(L2(M)).

Let B denote the unit ball of L2(M). Consider the set A = {h 7→ Th−1 ◦ Tψ ◦ Thξ : ξ ∈

B} ⊂ C(H,B). It is easy to check that A is equicontinuous and, since Tψ is compact,

the set A(h) = {f(h) : f ∈ A} is precompact for all h ∈ H. By Ascoli’s Theorem, A is

precompact in C(H,B). Since the map H × C(H,B) → B, defined by (h, f) 7→ f(h) is

continuous, the image of H×A is compact and contains Bψ = {Th−1 ◦Tψ ◦Th(B), h ∈ H}.

Since the image of B under TΨ is contained in the closed convex hull of Bψ, it follows

that TΨ is compact.

We use the standard notations N = Γ oM = {uγx : γ ∈ Γ, x ∈ M}′′ ⊂ B(`2(Γ) ⊗

L2(M)). We write ν̃ for the dual state of ν on N . Let ψi be a sequence of normal, ucp,

ν-dominated and L2-compact maps on M which converge pointwise in ‖ · ‖2,ν to identity.

Consider the sequence of ν-dominated, ucp, normal, L2-compact and Γ-equivariant maps

Ψi given by Ψi(x) =
∫
H
h−1 ◦ψ ◦h(x)dh for all x ∈M . Note that (Ψi)i is still converging

pointwise in ‖ · ‖2,ν to identity since, by the dominated convergence Theorem we have,

‖Ψi(x)− x‖2,ν =

∥∥∥∥∫
H

h−1(ψi(h(x))− h(x))dh

∥∥∥∥
2,ν

≤
∫
H

‖ψi(h(x))− h(x)‖2,νdh→ 0.

By the Γ-equivariance, we can consider the normal ucp ν̃-dominated maps on N given by

Ψ̃i(uγx) = uγΨi(x). Observe that the sequence (Ψ̃i) is still converging pointwise in ‖.‖2,ν̃

to identity and the L2-extension of Ψ̃i is given by TΨ̃i
= 1⊗ TΨi ∈ B(`2(Γ)⊗ L2(M)).

Let φi be a sequence of positive definite and c0 functions on Γ converging to 1 pointwise

and consider the normal ucp ν̃-preserving maps on N given by φ̃i(uγx) = φi(γ)uγx.

Observe that the sequence (φ̃i) is converging pointwise in ‖ · ‖2,ν̃ to identity and the

L2-extension of φ̃i is given by Tφ̃i = Tφi ⊗ 1 ∈ B(`2(Γ)⊗L2(M)), where Tφi(δγ) = φi(γ)δγ
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is a compact operator on `2(Γ).

Hence, if we define the sequence of normal, ucp, ν̃-dominated maps on N by ϕi,j = φ̃j◦

Ψ̃i, we have ϕi,j(uγx) = φj(γ)uγΨi(x); the sequence (ϕi,j) is converging pointwise in ‖·‖2,ν̃

to identity and the L2-extension of ϕi,j is given by Tϕi,j = Tφj ⊗ TΨi ∈ B(`2(Γ)⊗ L2(M))

is compact. 2

Corollary 4.4.19. The following holds.

1. If L∞(G) has the Haagerup property, then L∞(G) and Γ both have the Haagerup

property.

2. If L∞(G) has the Haagerup property, α : Γ y L∞(G) is compact and Γ has the

Haagerup property, then L∞(G) has the Haagerup property. .

Proof. (1). Follows from the fact that there exist normal, faithful, Haar-state preserving

conditional expectations from L(G) to L(Γ) and to L∞(G). The former is given by

uγa 7→ hG(a)uγ and the latter is given by uγa 7→ δγ,ea, a ∈ L∞(G) and γ ∈ Γ.

(2). It is an immediate consequence of Proposition 4.4.18. 2

Theorem 4.4.20. Suppose Ĝ has the Haagerup property and Γ has the Haagerup prop-

erty, and further suppose that the action of Γ on G is compact. Then Ĝ has the Haagerup

property.

Proof. Since Ĝ has the Haagerup property, this assures the existence of states (µn)n∈N

on Cm(G) such that (1) µ̂n ∈ c0(Ĝ) for all n ∈ N and (2) µn → εG weak∗. Our first task

is to construct a sequence of α-invariant states on Cm(G) satisfying (1) and (2) above.

This is similar to our arguments before (while dealing with property (T) and Haagerup

property). Since the action of Γ is compact, the closure of Γ in Aut(G) is compact, and

we denote this subgroup by H. Letting dh denote the normalized Haar measure on H, we

define states νn ∈ Cm(G)∗ by νn(a) =
∫
H
µn(h−1(a))dh, for all a ∈ Cm(G). It is easily seen

that νn is invariant under the action of Γ for each n. Now, since the action is compact, all

orbits of the induced action on Irr(G) are finite. We need this to show that µn satisfy (1)
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above. So, let ε > 0. As µn satisfied (1), the set L = {x ∈ Irr(G) : ‖(id⊗ µn)(ux)‖ ≥ ε
2
}

is finite and the set K = H · L ⊂ Irr(G) is also finite, as all the orbits are finite. For

h ∈ H ⊂ Aut(G) and x ∈ Irr(G) write Vh,x ∈ B(Hx) to be the unique unitary such

that (id ⊗ h−1)(ux) = (V ∗h,x ⊗ 1)(id ⊗ uh−1(x))(Vh,x ⊗ 1). If x /∈ K then, for all h ∈ H,

h−1(x) /∈ L. Hence, ‖(id⊗ µn)(uh
−1(x))‖ < ε

2
for all h ∈ H and it follows that

‖(id⊗ νn)(ux)‖ =

∥∥∥∥∫
H

(id⊗ µn)((id⊗ h−1)(ux))dh

∥∥∥∥ ≤ ∫
H

‖V ∗h,x(id⊗ µn)(uh
−1(x))Vh,x‖dh

≤
∫
H

‖(id⊗ µn)(uh
−1(x))‖dh ≤ ε

2
< ε for all x /∈ K.

Hence, {x ∈ Irr(G) : ‖(id ⊗ νn)(ux)‖ ≥ ε} ⊂ K is a finite set and (1) holds for νn.

To show that (2) holds, we first note that given any a ∈ Cm(G), one has µn(h−1(a)) →

εG(h−1(a)) = εG(a) for all h ∈ H (since H acts on G by quantum automorphisms). By

the dominated convergence Theorem, we see that (2) holds for νn. Now, since Γ has the

Haagerup property, we can construct states τn on C∗(Γ) satisfying (1) and (2) above.

And since the states µn on Cm(G) are α-invariant, we can construct the crossed product

states φn = τn n µn on Cm(G) (see [88, Proposition and Definition 3.4] and also [19,

Exercise 4.1.4] for the case of c.c.p. maps). The straightforward computations that need

to be done to see that the sequence of states (φn)n∈N satisfy (1) and (2) above, are left

to the reader. This then shows that Ĝ has the Haagerup property. 2

Remark 4.4.21. We note that in case G is Kac, the above theorem already follows from

Corollary 4.4.19(2) and Theorem 6.7 of [29].

4.5 Examples

For coherent reading, we have dedicated this section only to examples arising from both

matched pairs and crossed products. It is to be noted that it is not hard to come up

with examples of compact matched pairs of groups for which only one of the actions α

or β is non-trivial which means that the other is an action by group homomorphisms.
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However, it is harder to come up with examples for which both α and β are non-trivial.

We called such matched pairs non-trivial. Starting out with a compact matched pair

for which either α or β is trivial, we describe a process to deform the original matched

pair by what we call a crossed homomorphism in such a way that we manufacture a new

compact matched pair for which both actions are non-trivial. For pedagogical reasons,

we have made two subsections dealing with matched pairs: the first one (Section 4.5.1.1),

in which we describe how to perturb β when it is trivial, followed by Section 4.5.1.2 in

which we construe how to perturb α when it is trivial. It has to be noted that it is

indeed possible to formalize our process of deformation in a unified way but, since such

a formulation would increase the technicalities and would not produce any new explicit

examples, we have chosen to separate the presentation in the two basic deformations

described above. Our deformations are chosen carefully so as to ensure that the geometric

group theoretic properties (that we have studied in detail throughout this chapter) passes

from the initial bicrossed product to the one obtained after the deformation very naturally.

Such deformations also allow us to keep track of the invariants χ(·) and Int(·) of the

associated compact quantum groups. These explicit constructions allow us to exhibit:

(i) a pair of non-isomorphic non-trivial compact bicrossed products each of which has

relative property (T ) but the duals do not have property (T ), (ii) an infinite family of

pairwise non-isomorphic non-trivial compact bicrossed products whose duals are non-

amenable with the Haagerup property, (iii) an infinite family of pairwise non-isomorphic

non-trivial compact bicrossed products whose duals have property (T ).

We also provide non-trivial examples of crossed products of a discrete group on a

non-trivial compact quantum group in Section 4.5.2. The action is coming from the

conjugation action of a countable subgroup of χ(G) on the compact quantum group G.

In this situation we completely understand weak amenability, (RD), Haagerup property

and property (T ) in terms of G and Γ and we also discuss explicit examples involving the

free orthogonal and free unitary quantum groups.
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4.5.1 Examples of bicrossed products

In this section, we focus on deformation of actions in matched pairs when one of them is

trivial. The analysis involved helps to construct non-trivial examples.

4.5.1.1 From matched pairs with trivial β

Let α be any action of a discrete group Γ on a compact group G by group homomorphisms.

Taking β to be the trivial action of G on Γ, the relations in Equation (4.1.1) are satisfied

and we get a compact matched pair. It is possible to upgrade this example in order to

obtain a new compact matched pair (Γ, G̃) for which the associated actions α̃ and β̃ are

both non-trivial.

Indeed, given an action α of the discrete group Γ on the compact group G and a

continuous map χ : G→ Γ, we define a continuous map

G×G→ G by (g, h) 7→ g ∗ h, where g ∗ h = gαχ(g)(h) for all g, h ∈ G.

Observe that e ∗ g = g ∗ e = g for all g ∈ G if and only if χ(e) ∈ Ker(α). More-

over, it is easy to check that the map (g, h) 7→ g ∗ h is associative if and only if

χ(gh)−1χ(g)χ(αχ(g)−1(h)) ∈ Ker(α) for all g, h ∈ G. Finally, under the preceding hy-

pothesis, the map (g, h) 7→ g ∗ h turns G into a compact group since the inverse of g ∈ G

exists and is given by αχ(g)−1(g−1) and this inversion is a continuous map from G to itself.

Hence it is natural to define a crossed homomorphism as a continuous map χ : G→ Γ

such that χ(e) = e and χ(gh) = χ(g)χ(αχ(g)−1(h)) for all g, h ∈ G. Observe that the

continuity of χ, the compactness of G and the discreteness of Γ all together imply that

the image of χ is finite. By the preceding discussion, any crossed homomorphism χ gives

rise to a new compact group structure on G. We denote this compact group by Gχ.

Observe that, since the Haar measure on G is invariant under α, so the Haar measure on

Gχ is equal to the Haar measure on G. Hence we have Gχ = G as probability spaces.

The group Gχ can also be defined as the graph of χ in the semi-direct product H =
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Γα n G. Indeed, it is easy to check that the graph Gr(χ) = {(χ(g), g) : g ∈ G} of a

continuous map χ : G→ Γ, which is a closed subset of H, is a subgroup of H if and only

if χ is a crossed homomorphism. Moreover, the map Gχ → Gr(χ), g 7→ (χ(g), g), g ∈ G,

is an isomorphism of compact groups.

Since Gχ = G as topological spaces, α still defines an action of Γ on the compact

space Gχ by homeomorphisms. However, α may not be an action by group homomor-

phisms anymore. Actually, for γ ∈ Γ, αγ is a group homomorphism of Gχ if and only

if χ(g)−1γ−1χ(αγ(g))γ ∈ Ker(α) for all g ∈ G which happens for example if χ satisfies

χ ◦ αγ = γχ(·)γ−1.

We define a continuous right action of Gχ on the discrete space Γ by βg(γ) =

χ(αγ(g))−1γχ(g) for all γ ∈ Γ, g ∈ G. It is an easy exercise to check that α and β

satisfy the relations in Equation (4.1.1), hence, by Proposition 4.1.3 we get a new com-

pact matched pair (Γ, Gχ) with possibly non-trivial actions α and β. To see that the

pair (Γ, Gχ) is matched without using Proposition 4.1.3, it suffices to view Γ and Gχ as

closed subgroups of H = Γα n G via the identification explained before and check that

ΓGχ = H and Γ ∩ Gχ = {e}. It is easy to check that the actions α and β obtained by

this explicit matching are the ones we did define.

Let Gχ denote the bicrossed product associated with the matched pair (Γ, Gχ).

Proposition 4.5.1. If the action α : Γ y Irr(G) has all orbits finite and the group Γ has

the Haagrup property, then Ĝχ has the Haagerup property for all crossed homomorphisms

χ : G→ Γ.

Proof. Recall that if α : Γ y G is an action by compact group automorphisms, then the

action α : Γ y L∞(G) is compact if and only if the image of Γ in Aut(G) is precompact

which in turn is equivalent to the associated action of Γ on Irr(G) to have all orbits finite.

Now let χ : G→ Γ be a crossed homomorphism. Since Gχ = G as compact spaces and

as probability spaces, the action α : Γ y L∞(G) is compact if and only if the action

Γ y L∞(Gχ) is compact and the former is equivalent to the action Γ y Irr(G) to have

all orbits finite. Hence, the proof follows from assertion 4 of Corollary 4.1.7. 2
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Observe that a continuous group homomorphism χ : G → Γ is a crossed homomor-

phism if and only if χ ◦ αγ = χ for all γ ∈ Im(χ).

Now we give a systematic way to construct explicit non-trivial examples of the situ-

ation considered in the first part of this section. So, consider a non-trivial action α of a

countable discrete group Γ on a compact group G by group homomorphisms and let Λ < Γ

be a finite subgroup. Define the action αΛ of Γ on GΛ = Λ×G by αΛ
γ (r, g) = (r, αγ(g)) and

the αΛ-invariant group homomorphism χ : GΛ → Γ by χ(r, g) = r, r ∈ Λ, g ∈ G, γ ∈ Γ.

Thus, we get a compact matched pair (Γ, GΛ
χ) where GΛ

χ = Λ × G as a compact space

and the group law is given by (r, g) · (s, h) = (r, g)αχ(r,g)(s, h) = (rs, gαr(h)), r, s ∈ Λ and

g, h ∈ G. Hence, GΛ
χ = Λ αnG as a compact group and the action β of GΛ

χ on Γ is given

by β(r,g)(γ) = r−1γr, r ∈ Λ, g ∈ G, γ ∈ Γ. Hence, β is non-trivial if and only if Λ is not

in the center of Γ.

One has
(
GΛ
χ

)α
= Λ×Gα and, since the action β of

(
GΛ
χ

)α
on Γ is by inner automor-

phisms, the associated action on Sp(Γ) is trivial. Hence, if we denote by GΛ the associated

bicrossed product, then Proposition 4.1.10 implies that χ(GΛ) ' Λ × Gα × Sp(Γ). We

claim that there is a canonical group isomorphism π : Sp(GΛ
χ)→ Sp(Λ)×SpΛ(G), where

SpΛ(G) = {ω ∈ Sp(G) : ω ◦αr = ω for all r ∈ Λ} is a subgroup of Sp(G). Indeed, denot-

ing by ιG : G→ GΛ
χ , g 7→ (1, g) and ιΛ : Λ→ GΛ

χ , r 7→ (r, 1) the two canonical injective

(and continuous) group homomorphisms, we may define π(ω) = (ω◦ ιΛ, ω◦ ιG). Using the

relations in the semi-direct product and the fact that ω is invariant on conjugacy classes,

we see that ω ◦ ιG ∈ SpΛ(G). Since GΛ
χ is generated by ιΛ(Λ) and ιG(G), so π is injective.

The surjectivity of π follows from the universal property of semi-direct products.

Observe that Γβ = CΓ(Λ) is the centralizer of Λ in Γ. Since, αγ(SpΛ(G)) = SpΛ(G)

for every γ ∈ CΓ(Λ), so α induces a right action of CΓ(Λ) on SpΛ(G) and we have, by

Proposition 4.1.10, Int(GΛ) ' Sp(Λ)× (SpΛ(G) oα CΓ(Λ)).

We will write G = G{1}. We have thus proved the first assertion of the following

theorem.

Theorem 4.5.2. Let Λ < Γ be any finite subgroup. Then the following holds.
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1. χ(GΛ) ' Λ×Gα × Sp(Γ) and Int(GΛ) ' Sp(Λ)× (SpΛ(G) oα CΓ(Λ)).

2. The following conditions are equivalent.

• (G,G) has the relative property (T ).

• (GΛ
χ ,GΛ) has the relative property (T ).

3. If the action Γ y Irr(G) has all orbits finite and Γ has the Haagerup property, then

ĜΛ has the Haagerup property.

4. If the action Γ y Irr(G) has all orbits finite and Γ is weakly amenable, then ĜΛ is

weakly amenable and Λcb(ĜΛ) ≤ Λcb(Γ).

Proof. (2). (⇓) Suppose that the pair (GΛ
χ ,GΛ) does not have the relative property

(T ). Let (µn) be a sequence of Borel probability measures on Λ × G satisfying the

conditions of assertion 2 of Theorem 4.2.2. Since {e} × G is open and closed in Λ × G,

we have 1{e}×G ∈ C(Λ×G), and since µn → δ(e,e) in the weak* topology we deduce that

µn({e} × G) → 1. Hence, we may and will assume that µn({e} × G) 6= 0 for all n ∈ N.

Define a sequence (νn) of Borel probability measures on G by νn(A) = µn({e}×A)
µn({e}×G)

, where

A ⊂ G is Borel. Then νn({e}) = µn({(e, e)}) = 0 for all n ∈ N and it is easy to check

that, for all F ∈ C(G), 1{e} ⊗ F ∈ C(Λ×G) and
∫
G
Fdνn = 1

µn({e}×G)

∫
Λ×G 1{e} ⊗ Fdµn.

It follows from this formula and the fact that µn → δ(e,e) in the weak* topology that we

also have νn → δe in the weak* topology. Finally, the previous formula also implies that,

for all F ∈ C(G),

|αγ(νn)(F )− νn(F )| =
1

µn({e} ×G)
|αΛ
γ (µn)(1{e} ⊗ F )− µn(1{e} ⊗ F )|

≤
‖1{e} ⊗ F‖
µn({e} ×G)

‖αΛ
γ (µn)− µn‖ ≤

‖F‖
µn({e} ×G)

‖αΛ
γ (µn)− µn‖.

Hence, ‖αγ(νn) − νn‖ ≤
‖αΛ
γ (µn)−µn‖
µn({e}×G)

→ 0 and thus (G,G) does not have the relative

property (T ).
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(⇑) Now suppose that the pair (G,G) does not have the relative property (T ). Let (µn)

be a sequence of Borel probability measures on G satisfying the conditions of assertion

2 of Theorem 4.2.2. For each n define the probability measure νn on GΛ
χ = Λ α n G by

νn = δe ⊗ µn. We have νn({e, e}) = µn({e}) = 0 and
∫
GΛ
χ
Fdνn =

∫
G
F (e, g)dµn(g) for all

F ∈ C(GΛ
χ). Hence νn → δe in the weak* topology. Moreover, since for all F ∈ C(GΛ

χ),

we have

|αΛ
γ (νn)(F )− νn(F )| =

∣∣∣∣∫
G

F (e, αγ(g))dµn(g)−
∫
G

F (e, g)dµn

∣∣∣∣ = |αγ(µn)(Fe)− µn(Fe)|

≤ ‖Fe‖ ‖αγ(µn)− µn‖ ≤ ‖F‖ ‖αγ(µn)− µn‖,

where Fe = F (e, ·) ∈ C(G), we have ‖αΛ
γ (νn)− νn‖ ≤ ‖αγ(µn)− µn‖ → 0.

2

(4). It is easy to check that, if α : Γ y G is compact then αΛ = id⊗α : Γ y Λ×G

is compact, for all finite group Λ. Hence, the proof follows from Proposition 4.5.1.

(5). Observe that, for a general compact matched pair (Γ, G) with associated actions

α and β, the continuity of β forces each stabilizer subgroup Gγ, for γ ∈ Γ, to be open,

hence finite index by compactness of G. Consider the closed normal subgroup G0 =

∩γ∈ΓGγ = Ker(β) < G. Equation 4.1.1 implies that G0 is globally invariant under α

and the α-action of Γ on G0 is by group automorphisms. Hence, we may consider the

crossed product quantum group G0, with Cm(G0) = Γα,f n C(G0), which is a quantum

subgroup (in fact normal subgroup in the sense of Wang [91]) of the bicrossed product

quantum group G with Cm(G) = Γα,f n C(G). This is because G0 is globally invariant

under the action α of Γ and hence, by the universal property, we have a surjective unital

∗-homomorphism ρ : Γα,f nC(G)→ Γα,f nC(G0) which is easily seen to intertwines the

comultiplications. Since ρ acts as identity on Cm(Γ), it follows using Theorem 4.1.4(2)

that Cm(G/G0) = α(Cm(G/G0)) (see Definition 1.2.2). Hence, if we assume that G0 is a

finite index subgroup of G, then G0 is a finite index subgroup of G. If we further assume

that Γ is weakly amenable and the action α of Γ on G is compact then the action α of Γ
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restricted to G0 is also compact and Theorem 4.4.7 (with the fact that G0 is Kac) implies

that Ĝ0 is weakly amenable with Λcb(Ĝ0) ≤ Λcb(Γ). Using part (2) of Theorem 1.3.3, we

conclude that Ĝ is weakly amenable and Λcb(Ĝ) ≤ Λcb(Γ). In our case, with G = GΛ
χ ,

the finiteness of Λ forces G0 to be always of finite index in G. Since, by assumption, the

action of Γ on Irr(G) has all orbits finite, we conclude, as in the proof of Proposition

4.5.1, that the action α is compact. 2

Before proceeding further, we prove a result which can be useful to get examples of a

pair having the relative Haagerup property.

Proposition 4.5.3. Let α : Λ y G be an action of a finite group Λ on a compact group

G by group automorphisms and define the compact group H = Λ α n G. The following

holds.

(a) Let µ be a Borel probability measure on G and define the Borel probability measure ν

on H by ν = δe ⊗ µ. If µ̂ ∈ C∗r (G) then ν̂ ∈ C∗r (H).

(b) Let µ be a Borel probability on H such that µ({e} × G) 6= 0 and define the Borel

probability ν on G by ν(A) = µ({e}×A)
µ({e}×G)

for all A ∈ B(G). If µ̂ ∈ C∗r (H) then ν̂ ∈

C∗r (G).

Proof. Let λG and λH denote the left regular representations of G and H respectively.

For F ∈ C(G) (resp. F ∈ C(H)), write λG(F ) (resp. λH(F )) the convolution operator

by F on L2(G, µG) (resp. L2(H,µH)), where µG (resp. µH), is the Haar probability on G

(resp. H). Observe that µH = m⊗ µG, where m is the normalized counting measure on

Λ.

(a). Recall that, for all F ∈ C(H),
∫
H
Fdν =

∫
G
F (e, g)dµ(g). Moreover, using the

definition of the group law in H, we find that λH(e,g) = 1⊗ λGg ∈ B(l2(Λ)⊗ L2(G)), for all

g ∈ G. It follows that

ν̂ =

∫
G

λH(e,g)dµ(g) =

∫
G

(1⊗ λGg )dµ(g) = 1⊗ µ̂ ∈M(C∗r (H)) ⊂ B(l2(Λ)⊗ L2(G)).
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Note that for all F ∈ C(G), 1{e} ⊗ F ∈ C(H), since Λ is finite. We claim that λH(1{e} ⊗

F ) = 1
|Λ|(1⊗ λ

G(F )). Indeed,

λH(1{e} ⊗ F ) =

∫
H

δr,eF (g)λH(e,g)dµH(r, g) =

∫
H

δr,eF (g)(1⊗ λGg )dµH(r, g)

=

∫
G

(
1

|Λ|
∑
r∈Λ

δr,eF (g)(1⊗ λGg )

)
dµG(g) =

1

|Λ|
(1⊗ λG(F )).

Suppose that µ̂ ∈ C∗r (G) and let Fn ∈ C(G) be a sequence such that ‖µ̂− λG(Fn)‖ → 0.

Hence, 1⊗ λG(Fn)→ ν̂. Since 1⊗ λG(Fn) = |Λ|λH(1{e} ⊗ Fn) ∈ C∗r (H) ∀n ∈ N, we have

ν̂ ∈ C∗r (H).

(b). Recall that, for all F ∈ C(G), 1{e} ⊗ F ∈ C(Λ × G) = C(H) and
∫
G
Fdν =

1
µ({e}×G)

∫
Λ×G 1{e}⊗Fdµ. Using the definition of the group law in H, an easy computation

shows that for all r ∈ Λ, ξ ∈ L2(G), λH(r,g)(δe ⊗ ξ) = δr ⊗ λGg (ξ ◦ αr−1). It follows that,

〈ν̂ξ, η〉 =

∫
G

〈λGg ξ, η〉dν(g) =
1

µ({e} ×G)

∫
Λ×G

δe,r〈λGg ξ, η〉dµ(r, g)

=
1

µ({e} ×G)

∫
Λ×G
〈λH(r,g)δe ⊗ ξ, δe ⊗ η〉dµ(r, g) for all ξ, η ∈ L2(G).

Hence, ν̂ = 1
µ({e}×G)

V ∗µ̂V , where V : L2(G) → l2(Λ) ⊗ L2(G) = L2(H) is the isometry

defined by V ξ = δe⊗ξ, ξ ∈ L2(G). To end the proof it suffices to show that V ∗C∗r (H)V ⊂

C∗r (G).

Let F ∈ C(H) and define Fe ∈ C(G) by Fe(g) = F (e, g), g ∈ G. We will actually

show that V ∗λH(F )V = 1
|Λ|λ

G(Fe) and this will finish the argument. For ξ, η ∈ L2(G),

we have

〈V ∗λH(F )V ξ, η〉 = 〈λH(F )δe ⊗ ξ, δe ⊗ η〉 =

∫
H

F (r, g)〈λH(r,g)δe ⊗ ξ, δe ⊗ η〉dµH(r, g)

=

∫
H

δr,eF (e, g)〈λGg ξ, η〉dµH(r, g) =

∫
G

1

|Λ|
∑
r∈Λ

δr,eF (e, g)〈λGg ξ, η〉dµG(g)

=
1

|Λ|

∫
G

F (e, g)〈λGg ξ, η〉dµG(g) =
1

|Λ|
〈λG(Fe)ξ, η〉.
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and hence, we are done. 2

Example 4.5.4. (Relative Property (T)) Take n ∈ N, n ≥ 2, Γ = SLn(Z), G = Tn

and α the canonical action of SLn(Z) on Tn = Sp(Zn) coming from the linear action

of SLn(Z) on Zn. Taking a finite subgroup Λ < SLn(Z), we manufacture a compact

bicrossed product GΛ with non-trivial actions α and β (described in the beginning of

this section) whenever Λ is a non-central subgroup. Note that (Tn)SLn(Z) = {e} hence

χ(GΛ) ' Λ× Sp(SLn(Z)).

Suppose n ≥ 3. In this case, D(SLn(Z)) = SLn(Z), where D(F ) denotes the derived

subgroup of a group F . Since every element of Sp(SLn(Z)) is trivial on commutators, we

have Sp(SLn(Z)) = {1}, for all n ≥ 3. It follows that χ(GΛ) ' Λ. Hence, for all n,m ≥ 3

and all finite subgroups Λ < SLn(Z), Λ′ < SLm(Z), we have GΛ ' GΛ′ implies Λ ' Λ′.

However, for n = 2, the group Sp(SL2(Z)) is non-trivial. Actually, we have

Sp(SL2(Z)) ' {(k, l) ∈ Z/4Z× Z/6Z : k ≡ l mod 2}, (4.5.1)

which is a finite group of order 12. Indeed, by the well known isomorphism SL2(Z) '

Z/4Z ∗
Z/2Z

Z/6Z, it suffices to compute the group of 1-dimensional unitary representations

of an amalgamated free product Γ1∗
Σ

Γ2. It is easy to check that the map ψ : Sp(Γ1∗
Σ

Γ2)→

T defined by ψ(ω) = (ω|Γ1 , ω|Γ2), where T is the subgroup of Sp(Γ1) × Sp(Γ2) defined

by T = {(ω, µ) ∈ Sp(Γ1) × Sp(Γ2) : ω|Σ = µ|Σ}, is an isomorphism of compact groups.

Hence, using the canonical identification Sp(Z/mZ) ' Z/mZ, we obtain the isomorphism

in Equation (4.5.1).

Since the pair (Z2, SL2(Z) n Z2) has the relative property (T ), we deduce from The-

orem 4.5.2 that, for any finite subgroup Λ < SL2(Z), the pair (GΛ
χ ,GΛ) has the relative

property (T ). Identifying SL2(Z) with Z/4Z ∗
Z/2Z

Z/6Z, one finds that every finite sub-

group is conjugated to {1} or Z/2Z or Z/4Z or Z/6Z. The only non-central subgroups

are conjugated to Λ1 = Z/4Z or Λ2 = Z/6Z. Hence, we get two non-trivial compact

bicrossed products GΛi , i = 1, 2, such that (GΛi
χ ,GΛi) has the relative property (T ) and
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ĜΛi does not have property (T ) since SL2(Z) has the Haagerup property. Moreover, GΛ1

and GΛ2 are not isomorphic since |Λ1| 6= |Λ2|.

Remark 4.5.5. (Haagerup Property and Weak Amenability) We depict here a

procedure to construct compact bicrossed products with the Haagerup property and Weak

Amenability. Suppose that Γ is a countable subgroup of a compact group G and consider

the action α : Γ y G by inner automorphisms i.e. αγ(g) = γgγ−1 for all γ ∈ Γ, g ∈ G.

Let Λ < Γ be any finite subgroup and consider the matched pair (Γ, GΛ
χ) introduced earlier

in this section. Let GΛ be the bicrossed product. Observe that, since the action α is inner,

the associated action on Irr(G) is trivial. Indeed, for any unitary representation π of G,

the unitary π(γ) is an intertwiner between αγ(π) and π for all γ ∈ Γ. Hence, if Γ has

the Haagerup property, then for any finite subgroup Λ < Γ the bicrossed product ĜΛ has

the Haagerup property. Similarly, if Γ is weakly amenable, then for any finite subgroup

Λ < Γ the bicrossed product ĜΛ is weakly amenable and Λcb(ĜΛ) ≤ Λcb(Γ).

4.5.1.2 From matched pair with trivial α

In this section, we consider the dual situation, i.e., starting with a matched pair with α

being trivial and modifying it to some non-trivial action for a different matched pair with

α non-trivial.

Let β be any continuous right action of the compact group G on the discrete group

Γ by group automorphisms. Taking α to be the trivial action of Γ on G, the relations in

Equation (4.1.1) are satisfied and we get a matched pair.

Remark 4.5.6. Note that if the group Γ is finitely generated then the right semi-direct

product group H = Γ oβ G is virtually a direct product. In other words, there is a finite

index subgroup of H which is a direct product of a subgroup of G (which acts trivially on

Γ) and Γ.

Indeed, since Γ is discrete and β is continuous, the stabilizer subgroup Gγ := {g ∈

G : γ · g = γ} is open in G for all γ ∈ Γ. Since G is compact, Gγ has finite index in G.
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Now consider the subgroup Gβ = ∩γ∈ΓGγ, which acts trivially on Γ. In case Γ is finitely

generated, it follows that Gβ is also finite index in G and thus the direct product Γ×Gβ

is a finite index subgroup of H.

However, if the discrete group is not finitely generated then this need not be the case.

For instance, let a compact group K act on a finite group F non-trivially. Let Kn = K

for n ∈ N. One can then induce, in the natural way, an action of the compact group

G =
∏

n∈NKn on the discrete group Γ = ⊕n∈NFn, where Fn = F for all n. In this case,

it is easy to see that the subgroup Gβ is not of finite index.

Getting back to the process of modifying α, we call a map χ : Γ → G a crossed

homomorphism if χ(e) = e and χ(rs) = χ(βχ(s)−1(r))χ(s) for all r, s ∈ Γ. Given a crossed

homomorphism, we define a new discrete group Γχ which is equal to Γ as a set and the

group multiplication is given by r ∗ s = βχ(s)(r)s for all r, s ∈ Γ. As before, Γχ is canoni-

cally isomorphic to the graph Gr(χ) = {(γ, χ(γ)) : γ ∈ Γ} of χ, which is a subgroup of

the right semi-direct product H = Γ oβ G (since χ is a crossed homomorphism).

Observe that β still defines a continuous right action of G on the countable set Γχ and

for g ∈ G, βg is a group homomorphism of Γχ if and only if g−1χ(γ)−1gχ(βg(γ)) ∈ Ker(βg)

for all γ ∈ Γ, which happens for example if χ ◦ βg = g−1χ(·)g. Moreover, the formula

αγ(g) = χ(γ)gχ(βg(γ))−1, for all γ ∈ Γ, g ∈ G, defines an action of Γχ on the compact

space G by homeomorphisms and in addition α and β satisfy the relations in Equation

(4.1.1). Consequently, we get a new matched pair (Γχ, G) with possibly non-trivial actions

α and β. As before, one can describe this new matched pair explicitly by viewing Γχ and

G as closed subgroups of the right semi-direct product H = Γ oβ G.

Observe that a group homomorphism χ : Γ → G is a crossed homomorphism if and

only if χ = χ ◦ βg for all g ∈ Im(χ).

Remark 4.5.7. Suppose that the crossed homomorphism satisfies χ ◦ βg = χ for all g ∈

Im(χ) and let χG be the associated bicrossed product. Then the following are equivalent.

1. Γ has the Haagerup property.
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2. χ̂G has the Haagerup property.

Indeed, by Corollary 4.1.7, it suffices to show that the action α of Γχ on G is compact

when viewed as an action of Γχ on L∞(G). Since αγ(g) = χ(γ)gχ(γ)−1 for g ∈ G and

γ ∈ Γχ, α is an action by inner automorphisms, thus it is always compact since it is

trivial on Irr(G). Indeed, for any unitary representation u of G, the unitary u(χ(γ)) is

an intertwiner between αγ(u) and u for γ ∈ Γχ.

A systematic way to construct explicit examples using the deformation above is to

consider any countable discrete group Γ0 which has a finite non-abelian quotient G and

take Γ = Γ0×G with the right action of G on Γ given by βg(γ, h) = (γ, g−1hg), g, h ∈ G

and γ ∈ Γ0. Since G is non-abelian, β is non-trivial. Let q : Γ0 → G be the quotient

map and define the morphism χ : Γ → G by χ(γ, h) = q(γ), γ ∈ Γ0, h ∈ G. Then, we

obviously have χ ◦ βg = χ for all g ∈ G . Therefore, χ is a crossed homomorphism and

the action α of Γχ on G is given by α(γ,h)(g) = q(γ)gq(γ−1), γ ∈ Γ0, h, g ∈ G, which is

also non-trivial since G is non-abelian. Thus (Γχ, G) is a compact matched pair. Let χG

denote the bicrossed product.

Proposition 4.5.8. We have χ(χG) ' Z(G)× Sp(Γ0)× Sp(G) and Int(χG) = Sp(G)×

Γ0 × Z(G).

Proof. Note that Γχ = Γ0 × G as a set and the group law is given by (r, g)(s, h) =

(rs, q(s)−1gq(s)h) for all r, s ∈ Γ0 and g, h ∈ G. Since the action β of G on Γχ is given by

βg(s, h) = (s, g−1hg), s ∈ Γ0, g, h ∈ G, we have Γβχ = Γ0 × Z(G) and the action of Z(G)

on Γχ is trivial. Since the action α of Γβχ on G is given by α(r,g)(h) = q(r)hq(r)−1, r ∈

Γ0, g, h ∈ G, we find Gα = Z(G). Again, since the action α is by inner automorphisms,

the associated action on Sp(G) is trivial. It follows from Proposition 4.1.10 that χ(χG) '

Z(G) × Sp(Γχ) and Int(χG) = Sp(G) × Γ0 × Z(G). Let ιΓ0 : Γ0 → Γχ, r 7→ (r, 1)

and ιG : G → Γχ, g 7→ (1, g). Observe that ιΓ0 and ιG are group homomorphisms.

To finish the proof, we claim that the map ψ : Sp(Γχ) → Sp(Γ0) × Sp(G), defined by

ω 7→ (ω ◦ ιΓ0 , ω ◦ ιG), ω ∈ Sp(Γχ), is a group isomorphism. Indeed, it is obviously a
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group homomorphism. Since Γχ is generated by ιΓ0(Γ0) and ιG(G), so ψ is injective. Let

ω1 ∈ Sp(Γ0) and ω2 ∈ Sp(G). Define the continuous map ω : Γχ → S1 by ω(r, g) =

ω1(r)ω2(g), r ∈ Γ0, g ∈ G. Then, for all r, s ∈ Γ0, g, h ∈ G,

ω((r, g) · (s, h)) = ω(rs, q(s)−1gq(s)h) = ω1(r)ω1(s)ω2(q(s)−1)ω2(g)ω2(q(s))ω2(h)

= ω1(r)ω2(g)ω1(s)ω2(h) = ω(r, g)ω(s, h).

Hence, ω ∈ Sp(Γχ) and ψ(ω) = (ω1, ω2), so ψ is surjective. 2

Example 4.5.9. (Haagerup Property) Observe that any finite non-abelian group G

provides an example with Γ0 = Fn, where n is bigger than the number of generators of

G, so that G is a quotient of Γ0 in the obvious way. All bicrossed products obtained in

this way are not co-amenable but their duals do have the Haagerup property by Remark

4.5.7.

To get explicit examples we take, for n ≥ 4, G = An the alternating group which is

simple, has only one irreducible representation of dimension 1 (the trivial representation)

so that Z(G) = {1} and Sp(G) = {1}. Moreover, viewing An generated by the n − 2

3-cycles, we have a surjection Γ0 = Fn−2 → An = G. Associated to this data, we get

a non-trivial compact bicrossed product Gn non co-amenable and whose dual has the

Haagerup property and such that χ(Gn) ' Sp(Fn−2) = Tn−2. In particular Gn and Gm

are not isomorphic for n 6= m. It shows the existence of an infinite family of pairwise

non-isomorphic non-trivial compact bicrossed product whose dual are non amenable with

the Haagerup property.

We now consider more explicit examples on property (T ).

Example 4.5.10. (Property (T )) Let n ≥ 3 be a natural number and p ≥ 3 be a prime

number. Let Fp denote the finite field of order p. Define Γ0 = SLn(Z), G = SLn(Fp) and

let q : SLn(Z)→ SLn(Fp) be the canonical quotient map. We get a matched pair (Γχ, G)

with both actions α and β non-trivial and we denote the bicrossed product by Gn,p. Since
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for n, p ≥ 3, we have D(SLn(Z)) = SLn(Z) and D(SLn(Fp)) = SLn(Fp), we deduce as in

Example 4.5.4 that Sp(SLn(Fp)) = {1} = Sp(SLn(Z)). It follows from Proposition 4.5.8

that

Int(Gn,p) ' SLn(Z)×Z(SLn(Fp)) ' SLn(Z)× Z/dZ and χ(Gn,p) = Z(SLn(Fp)) ' Z/dZ,

where d = gcd(n, p − 1). In particular, the quantum groups Gp = Gp,p for p prime and

p ≥ 3, are pairwise non-isomorphic. They are non-commutative and non-cocommutative

by Remark 4.1.5. Moreover, assertion 2 of Theorem 4.2.3 implies that Ĝp have property

(T ). We record this in the form of a theorem.

Theorem 4.5.11. There exists an infinite family of pairwise non isomorphic non-trivial

compact bicrossed products whose duals have property (T ).

These are the first explicit examples of non-trivial discrete quantum groups with

property (T ).

One can also consider a similar but easier family of examples with β being trivial. We

still take a natural number n ≥ 3 and a prime number p ≥ 3. But we consider Γ = SLn(Z)

and G = SLn(Fp) with the action α being given by αγ(g) = [γ]g[γ]−1, γ ∈ Γ, g ∈ G, and β

being the trivial action. Let Hn,p denote the bicrossed product associated to the matched

pair (Γ, G). One can check, as before, that Int(Hn,p) ' SLn(Z) and Sp(Cm(Hn,p)) '

Z/dZ, where d = gcd(n, p − 1). Hence, the quantum groups Hp = Hp,p for p prime and

p ≥ 3, are pairwise non-isomorphic. They arise from matched pairs for which the β action

is trivial but still they are non-commutative and non-cocommutative since Γ and G are

both non-abelian. Also, their duals have property (T ).

4.5.2 Examples of crossed products

In this section, we provide non-trivial examples of crossed products. Our examples are

of the type considered in [88]. Let G be a compact quantum group and define, for all

g ∈ χ(G), the map αg = (g−1⊗id⊗g)◦∆(2). It defines a continuous group homomorphism
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χ(G) 3 g 7→ αg ∈ Aut(G). Since χ(G) is compact, it follows that the action Γ y G

is always compact, for any countable subgroup Γ < χ(G). Actually, the action of χ(G)

on Irr(G) is trivial since, for g ∈ χ(G) and x ∈ Irr(G) a straightforward computation

gives (id ⊗ αg)(ux) = (V ∗g ⊗ 1)ux(Vg ⊗ 1), where Vg = (id ⊗ g)(ux). Let GΓ denote the

crossed product. For a subgroup Σ < H, we denote by CH(Σ) the centralizer of Σ in H.

Applying our results on crossed products to GΓ we get the following Corollary.

Corollary 4.5.12. The following holds.

1. Int(GΓ) ' Int(G)× Γ and χ(GΓ) ' Cχ(G)(Γ)× Sp(Γ).

2. max(Λcb(C(G)),Λcb(Γ)) ≤ Λcb(C(GΓ)) ≤ Λcb(Ĝ)Λcb(Γ).

3. Ĝ and Γ have (RD) if and only if ĜΓ has (RD).

4. ĜΓ has the Haagerup property if and only if Ĝ and Γ have the Haagerup property.

5. ĜΓ has property (T ) if and only if Ĝ and Γ have property (T ).

Proof. All the statements directly follow from the results of section 6 and the discussion

preceding the statement of the Corollary except assertion 1 for which there is something

to check: the action of χ(G) on Int(G) associated to the action α is trivial indeed, for all

unitary u ∈ Cm(G) for which ∆(u) = u⊗ u, one has αg(u) = g(u)ug(u∗) = u. Moreover,

the action of χ(G) on itself associated to the action α is, by definition, the action by

conjugation. Hence assertion 1 directly follows from Proposition 4.4.5. 2

Example 4.5.13. We consider examples with G = U+
N , the free unitary quantum group

or G = O+
N , the free orthogonal quantum group. It is well known that χ(U+

N ) = U(N)

and χ(O+
N) = O(N) and that Int(U+

N ) = Int(ON)+ = {1}. It is also known that the

Cowling-Haagerup constant for O+
N and U+

N are both 1 [38], and Ô+
N and Û+

N have (RD)

[86] and the Haagerup property [17]. Hence, for any N ≥ 2 and any subgroups Σ < O(N)

and Γ < U(N) the following holds.

• Int((O+
N)Σ) ' Σ and Int((U+

N )Γ) ' Γ.
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• χ((O+
N)Σ) ' CO(N)(Σ)× Sp(Σ) and χ((U+

N )Γ) ' CU(N)(Γ)× Sp(Γ).

• Λcb((̂O+
N)Σ) = Λcb(Σ) and Λcb((̂U+

N )Γ) = Λcb(Γ).

• (̂O+
N)Σ (resp. ((̂U+

N )Γ) has (RD) if and only if Σ (resp. Γ) has (RD).

• (̂O+
N)Σ (resp. ((̂U+

N )Γ) has the Haagerup property if and only if Σ (resp. Γ) has the

Haagerup property.

• (̂O+
N)Σ and ((̂U+

N )Γ do not have Property (T ).

Example 4.5.14. (Relative Haagerup Property) Since the action of χ(G) on Cm(G)

is given by (id⊗ αg)(ux) = (V ∗g ⊗ 1)ux(Vg ⊗ 1), where Vg = (id⊗ g)(ux), we have,

αg(ω)(uxij) =
∑
r,s

g(uxir)ω(uxrs)g((uxjs)
∗), for all ω ∈ Cm(G)∗. (4.5.2)

Define the sequence of dilated Chebyshev polynomials of second kind by the initial condi-

tions P0(X) = 1, P1(X) = X and the recursion relation XPk(X) = Pk+1(X) + Pk−1(X),

k ≥ 1. It is proved in [17] (see also [36]) that the net of states ωt ∈ Cm(O+
N)∗ defined

by ωt(u
k
ij) = Pk(t)

Pk(N)
δi,j, for k ∈ Irr(O+

N) = N and t ∈ (0, 1) realize the co-Haagerup

property for O+
N , i.e., ω̂t ∈ c0(Ô+

N) for t close to 1 and ωt → εO+
N

in the weak* topol-

ogy when t → 1. Now let g ∈ χ(O+
N). By Equation (4.5.2), we have αg(ωt)(u

k
ij) =

Pk(t)
Pk(N)

∑
r g(ukir)g((ukjr)

∗) = Pk(t)
Pk(N)

δi,j = ωt(u
k
ij). Hence, αg(ωt) = ωt for all g ∈ χ(G) and

all t ∈ (0, 1). It follows that for any N ≥ 2 and any subgroup Γ < O(N), the pair

(O+
N , (O

+
N)Γ) has the relative co-Haagerup property however, the dual of (O+

N)Γ) does not

have the Haagerup property whenever Γ does not have the Haagerup property.
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