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Abstract

We study the weighted version of the stochastic matching (under the probe-and-commit

model) as introduced by Chen et al. [CIK+09]. As input a random subgraph H of a

given edge-weighted graph (G = (V, E), {we}e) (where each edge e ∈ E is present in H

independently with probability pe) is revealed (on a probe-and-commit basis). Our goal

is to design an efficient adaptive algorithm that builds a matching by probing selectively

edges of E for their presence in H subject to obeying the following two constraints on

probing : (i) include an edge irrevocably in the matching if it is found to exist after it

is probed, (ii) the number of probes involving a vertex v cannot exceed a nonnegative

parameter tv known as v’s patience. All of G, {we}e, {pe}e and {tu}u is revealed to the

algorithm before its execution. The performance of the algorithm is measured by the

expected weight of the matching it produces. For approximation measures, it is compared

with the expected weight of an optimal adaptive algorithm for the input instance.

We analyze a natural greedy algorithm for this problem and obtain an upper bound of 2
p2

min

on the approximation factor of its performance. Here, pmin refers to mine∈E pe. No pre-

vious analysis of any greedy algorithm for the weighted stochastic matching (under the

probe-and-commit model) is known. We also analyze another greedy heuristic and estab-

lish that its approximation ratio can become arbitrarily large even if we restrict ourselves

to unweighted instances.

Bansal et al., [BGL+10] introduced an online variant of weighted bipartite stochastic

matching. They presented an LP-based algorithm with an approximation ratio of 7.92.
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We present a new algorithm (also LP-based) for the same problem which improves the

approximation ratio to 5.2.

We present approximation algorithms for the maximum independent set (MIS) problem

over the class of B1, B2-VPG graphs and also for the subclass, equilateral B1-VPG graphs.

We first show an approximation guarantee of O((log n)2) for the MIS problem of B1-VPG

graphs. Then we improve the approximation factor to O(log n) for the MIS problem of

B1-VPG graphs. For the equilateral B1-VPG graphs we show an approximation guarantee

of O(log d) where d denotes the ratio dmax/dmin and dmax and dmin denote respectively the

maximum and minimum length of of any arm in the input B1-VPG representation of the

graph. The NP-completeness of the decision version restricted to unit length equilateral

B1-VPG graphs is also established. For B2-VPG graphs we present an approximation

algorithm whose approximation guarantee is O((log n)2).
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Chapter 1

Introduction

Combinatorial optimization problems are ubiquitous in today’s society. But most of the

interesting combinatorial optimization problems are NP-hard. There are various ways to

deal with such hard problems. One way is to obtain an optimal solution by employing an

algorithm which is likely to require an exponential amount of time. Such algorithms fall

under the purview of exact algorithms. Another way is instead of designing an efficient

algorithm which produces a solution which is not optimal, we design an algorithm which

gives a solution that is not far from an optimal solution in terms of quality. This is roughly

the purview of approximation algorithms. In this thesis, we deal with such a type of algo-

rithms. Below, we present the following formal definition of an approximation algorithm

as provided in [WS11].

Definition 1. An α(n)-approximation algorithm for an optimization problem is a polynomial-

time algorithm that for all instances of the problem produces a solution whose value is

within a multiplicative factor of α(n) of the value of an optimal solution. n stands for the

size of the input.

The above definition captures the scenario in which the input is an arbitrary but a de-

terministic one. For the stochastic version, we provide a definition while presenting the

approximation algorithms.
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In this thesis, we present approximation algorithms for two combinatorial optimization

problems. They are stochastic matching and maximum independent set(MIS) for Bk-VPG

graphs.

1.1 Stochastic Matching:

Matching in a graph is a set of edges such that no two edges share a common vertex. The

matching problem is to produce, given a nonnegatively edge-weighted graph, a matching

of maximum total weight. This problem is well-known to be solvable in polynomial time.

For bipartite graphs, there are several polynomial time algorithms like Ford-Fulkerson

algorithm [FF56], Hopcroft-Karp algorithm [HK73] to name a few. For general graphs,

the Edmond’s algorithm [Edm65] solves the problem in polynomial time.

In the first part of the thesis, we study the stochastic version of the matching problem. We

study the stochastic matching problem in both offline and online settings. We introduce

them one by one below.

Offline Setting: As input, a random subgraph H of a graph G = (V, E) (where each

edge e ∈ E is present in H independently with probability pe) is revealed (on a probe-

and-commit basis) along with (i) a positive weight we for every e ∈ E and also (ii) a

nonnegative integer tv (for each v ∈ V) called the patience parameter of v. Our goal is

to design an efficient adaptive algorithm that builds a matching by probing selectively

edges of E for their presence in H subject to the following two constraints on probing:

(i) include an edge irrevocably in the matching if it is found to exist after it is probed,

(ii) the number of probes involving a vertex cannot exceed its patience. The performance

of the algorithm is measured by the expected weight of the matching it produces. For

approximation measures, it is compared with the expected weight of an optimal adaptive

algorithm for the input instance.

The work on approximation algorithms for the offline unweighted stochastic matching
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was initiated by Chen et al. [CIK+09]. Later on, Adamczyk [Ada11] proved that a greedy

algorithm considered in [CIK+09] is indeed a 2-approximate algorithm. Subsequently,

approximate algorithms were obtained by Bansal et al. [BGL+10] for the weighted case.

Gupta and Nagarajan [GN13] study a generic notion of stochastic probing problems which

also specializes to the stochastic matching problem. Adamczyk et al. [ASW13] extend

this work to also include submodular functions. The same problem is also studied for

special classes of graphs by Molinaro et al. [MR11], both theoretically and experimen-

tally. A sampling-based algorithm was proposed by Costello et al. [CTT12] for the offline

weighted version with unbounded patience parameters for vertices.

Online Setting: For the online version, we focus on bipartite graphs. Bansal et al.

[BGL+10] introduced this online version. In this version, the algorithm has constraints on

the choice and order of edges to be probed. In particular, there is a linear ordering on the

vertices (say, the arrival order) of one partite set and the algorithm has to make a decision

(on whether to probe or not) for every edge (if any) incident on a just arrived vertex before

it considers edges incident on future vertices. It models the sale of items from a set A to

buyers arriving in an online fashion. Each buyer has to be processed before we consider

the next arriving buyer. The processing of each buyer involves showing a select subset

of items in some order until the buyer likes an item (if it happens) in which case both

the item and the buyer are removed from the picture. To each buyer, we can associate a

type/profile and the type characterizes (i) the patience tb, (ii) probability pab that a buyer

of type b buys item a, and (iii) wab the revenue generated if it happens. The type of each

arriving buyer is independently and identically distributed over the set B of types. Here,

the buyers arrive online. The number of buyers that are going to arrive is known to the

algorithm. The goal is to design an efficient online algorithm which produces a match-

ing whose expected revenue is as large as possible. The performance of the algorithm is

compared with the expected revenue from the matching produced by an optimal strategy.

The study of the online stochastic matching problem started with the work of Feldman
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et al., [FMMM09] and led to further works like those of Bansal et al., [BGL+10]. Some

recent improvements have been obtained for the stochastic setting (without the probe-and-

commit and tolerance requirements) [BK10, MGS12]. The problem of online stochastic

matching considered here differs in the following aspect that the buyers can only see a

limited number of items and the buyer buys the first item it likes.

1.2 MIS for VPG-graphs

The problem of computing a maximum independent set (MIS) in an arbitrary graph is

notoriously hard, even if we aim only for a good approximation to an optimum solution.

It is known that, for every fixed ε > 0, MIS cannot be approximated within a multiplicative

factor of n1−ε for a general graph, unless NP = ZPP [Hås96]. Throughout, n stands for

the number of vertices in the input graph. Naturally, there have been algorithmic studies

of this problem on special classes of graphs like : (i) efficient and exact algorithms for

perfect graphs, (ii) linear time exact algorithms for chordal graphs and interval graphs, (iii)

O(n2) time exact algorithms for comparability and co-comparability graphs, (iv) PTAS’s

(polynomial time approximation schemes) for planar graphs [Bak94] and unit disk graphs

[HMR+98], and (v) efficient ( k
2 + ε)-approximation algorithms for (k + 1)claw-free graphs

[Hal95].

Geometric objects of various shapes form interesting classes of intersection graphs. These

are graph classes for which several algorithmic studies have been carried out for the MIS

problem. Approximation algorithms with good approximation guarantees have been ob-

tained. One such class of geometric intersection graphs are Bk-VPG graphs, for k > 1.

In this thesis, we focus on B1-VPG and B2-VPG classes. Before describing these classes,

we provide a brief introduction to the class of VPG graphs.

Vertex intersection graphs of Paths on Grid (or, in short, VPG graphs) was first introduced

by Golumbic et al. [ACG+12]. For a member of this class of graphs, its vertices represent
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paths joining grid-points on a rectangular planar grid which are a combination of alternate

vertical and horizontal segments and two such vertices are adjacent if and only if the

corresponding paths intersect. If paths on the grid have at most k bends (90° turns), then

the graph is called a Bk-VPG graph. Thus, B1-VPG (B2-VPG) graphs denote the class

of intersection graphs of paths on a grid where each path has at most one (two) bends.

Without loss of generality, B1-VPG graphs are intersection of the following shapes x, p, q

and y. B2-VPG graphs are intersection graphs of the following shapes shown in the figure

along with the shapes in B1-VPG graphs.

Z

⊔

c2

c1

c2c1

There are 8 possible shapes for B2-VPG. We have labelled what we consider the Z-shape

and ⊔ shape.

Figure 1.1: There are 8 possible shapes for B2-VPG graphs with exactly 2 bends. We have
labelled what we consider the Z-shape and U shape.

We often refer to a B1-VPG graph, representable with only paths of type x as a L-graph.

We call a L-shape equilateral if the horizontal and the vertical arms are of the same

length. The graph which is an intersection graph of equilateral L’s is called an equilateral

L-graph.

The study of MIS for Bk-VPG graphs is motivated from both an algorithmic point of

view as well as an application point of view. We first mention our motivations which

come from a theoretical point of view. It has been shown that every planar graph has a

B2-VPG representation [CU12] and that every triangle-free planar graph has a B1-VPG

representation [BD15]. In the case of planar graphs, it is already known that the decision

version of MIS is NP-complete [GJ77] and also that MIS admits a PTAS [Bak94]. This
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naturally motivates us to study the complexity of approximating MIS over B1-VPG graphs

and B2-VPG graphs because they are respectively the superclasses of triangle-free and

general planar graphs. Currently, the only known approximation results for MIS over

these classes of graphs are those for the larger and more general class of string graphs,

the best of which is an algorithm with an approximation factor of nε (for some fixed

ε > 0) [FP11]. String graphs are intersection graphs of simple, continuous curves in

the plane [ACG+12]. In this context, it would be interesting to know if MIS can be

approximated in a better way when restricted to subclasses like B1, B2-VPG graphs. The

practical motivation for Bk-VPG graphs is from VLSI circuit design. Since wires in a

VLSI circuit correspond to paths on a grid and since intersection between wires is to

be minimized, the MIS problem represents a finding a large collection of mutually non-

intersecting paths on the grid.

Assumption : Without loss of generality (in the context of approximating MIS) and for

the ease of describing the arguments, we assume that Bk-VPG graphs are intersection

graphs of paths with exactly k bends.

Relationships between other known graph classes and VPG graphs have been studied in

[ACG+12]. In [CU13], it has been shown that planar graphs form a subset of B2-VPG

graphs. Recently, this result has been further tightened by Therese Biedl and Martin

Derka. They have shown that planar graphs form a subset of 1-string B2-VPG graphs

[BD15] which is a subclass of B2-VPG graphs. In [FKMU14], authors have shown that

any full subdivision of any planar graph is a L-graph. By a full subdivision of a graph G,

we mean a graph H obtained by replacing every edge of G by a path of length two or more

with every newly added vertex being part of exactly one path. They have also shown that

every co-planar graph (complement of a planar graph) is a B19-VPG graph. A relationship

between poset dimension and VPG bend-number has also been obtained in [CGTW15].

Contact representation of L-graphs has been studied in [CKU13]. In this work, the authors

have studied the problems of characterizing and recognizing contact L-graphs and have
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also shown that every contact L-representation has an equivalent equilateral contact L-

representation. By a contact L-representation, we mean a more restricted intersection,

namely, that two vertices are adjacent if and only if the corresponding Ls just touch.

Recognizing VPG graphs is shown to be NP-complete in [CJKV12]. In the same work,

it is also shown that recognizing if a given Bk+1-VPG graph is a Bk-VPG graph is NP-

complete even if we are given a Bk+1-VPG representation of the input. The recognition

problem has also been looked at for some subclasses of B0-VPG graphs in [CCS11].

Apart from works mentioned in the previous sections, there has been quite a lot of work on

independent sets of geometric intersection graphs. For intersection of axis-parallel rectan-

gles, an O(log n)-approximation algorithm for MIS is presented in [AVKS98, BDMR01,

KMP98, Nie00]. There is an O(log log n)-approximation algorithm for MIS of unweighted

axis parallel rectangles obtained by Chalermsook and Chuzoy in [CC09] which is still

the best known for the unweighted case. For the weighted case, the best known one

was obtained by Chan and Har-Peled in [CHP12] which has an approximation factor of

O( log n
log log n ). QPTAS for MIS problems in axis-parallel rectangles was first proposed by

Adamaszek and Wiese in [AW13]. This was later generalized to QPTAS for MIS for

the case of general polygons in [AW14, HP14]. For segment graphs, there is an O(n
1
2 )-

approximation algorithm by Agarwal and Mustafa [AM04].

1.3 Thesis Outline

Chapter 2 deals with the analysis of the greedy (based on choosing the edge with maxi-

mum expected contribution) algorithm for the weighted stochastic matching problem. In

this chapter, we analyze the algorithm for its performance guarantee and obtain both an

upper bound as well as a lower bound on its worst-case value. We establish that its ap-

proximation ratio is at most 2
p2

min
, where pmin = min{pe : e ∈ E}. We also exhibit and

analyze an explicit and infinite family of weighted graphs where the approximation ratio
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can become as large as 2
pmin

. Since this variant selects edges for probing based on their

individual expected contribution, it can be thought of as being greedy edge-wise. We also

propose a simple variant of the greedy approach which can be thought of as being greedy

vertex-wise and also a generalization of both greedy algorithms (vertex-wise as well as

edge-wise).

In Chapter 3, we provide an analysis of online stochastic matching. We propose and

analyze a new LP-based algorithm and establish that it is 5.2-approximate. We adopt an

LP (Linear Programming) based approach along with dependent randomized rounding to

obtain the approximation guarantee.

In Chapter 4, we present an O((log2 n)2)-approximation algorithm for the MIS problem

over B1-VPG graphs. In the same chapter, we present an O(log2 2d)-approximation for

equilateral L-graphs where d denotes the ratio between the lengths of longest and shortest

horizontal arms of members of the given equilateral L-graph. If the lengths of the equi-

lateral L’s are all equal to 1 unit, then we call the corresponding intersection graph an

unit L-graph. We also establish that the decision version of the MIS problem over unit

L-graphs is NP-complete. For the design of approximation algorithms, we use some com-

binatorial observations and the divide and conquer approach to obtain the approximation

guarantees mentioned before.

In Chapter 5, we present an algorithm with an improved approximation ratio of O(log2 n)

for the MIS problem over B1-VPG graphs. This improvement is achieved by devising an

exact algorithm (for a special subclass of B1-VPG graphs) and combine it with a divide

and conquer approach.

Chapter 6 presents new approximation algorithms for the MIS problem over B2-VPG

graphs and an upper bound of O(log2 n)2 is established on its approximation ratio. This

improves the bound of nε (for some ε > 0) on the ratio of the previously best algorithm.

Our main ingredient in obtaining this improvement is again an exact algorithm for a spe-

cial subclass of B2-VPG graphs combined with an application of the divide and conquer

8



paradigm.

Finally, in Chapter 7, we conclude with some open problems.
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Chapter 2

Greedy Analysis of Stochastic Matching

2.1 Introduction

The Greedy heuristic being one of the simplest algorithmic approaches has a unique place

in combinatorial optimization. It is always worth looking at its performance and gather

to know its power and limitations. In particular, the performance of the Greedy algorithm

for computing a large matching under different settings has been studied both for arbitrary

graphs (for its worst case perfomance) (see [KH78], [GS62]) and as well as for random in-

stances (for its average case performance) (see [DF91], [DFP93], [AFP98], [FRS93]). In

this chapter, we study the performance of the greedy heuristics on the weighted stochastic

matching problem, a natural stochastic variant of the maximum matching problem.

A typical input instance of this problem is a 4-tuple (G = (V, E), {tu}u∈V , {pe}e∈E, {we}e∈E)

where G = (V, E) is an weighted graph, each tu is a nonnegative integer (known as the

patience of u). Consider a random spanning subgraph H where each e ∈ E is present in H

independently with probability pe and where H is revealed on a probe-and-find basis. Our

goal is to design an efficient algorithm (possibly adaptive, possibly randomized) to find a

matching in H and which works by probing selectively edges of E for their presence in H

subject to the following two constraints on probing : (i) commitment: include an edge ir-
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revocably in the matching if it is found to exist after it is probed, (ii) patience: the number

of probes involving a vertex cannot exceed its patience. The performance of the algorithm

is measured by the expected total weight of the matching it produces. For approximation

measures, it is compared with the expected weight of an optimal adaptive algorithm for

the input instance. An optimal strategy is one for which the expected weight of the so-

lution it produces its maximum over all adaptive strategies. We use interchangeably the

terms adaptive algorithm and strategy. Note that all edges of G need not be probed and

hence all edges of H may not be discovered by the algorithm.

The unweighted stochastic matching problem (with probing commitments) models some

practical optimization problems like maximizing the expected number of kidney trans-

plants in the kidney exchange program (see [CIK+09] for details). This problem was

introduced by Chen et al. [CIK+09] and they analyzed a greedy algorithm to solve it and

proved that the greedy algorithm produces a solution of expected size at least a quarter of

the expected size of an optimal strategy. This gives us a 4-approximate algorithm. It was

also conjectured that their greedy algorithm is a 2-approximate algorithm. This was later

affirmatively verified by Adamczyk [Ada11].

In this work, we study the offline, weighted version of the stochastic matching problem.

In the offline version, the algorithm, after processing the entire input information (G =

(V, E), {tu}u, {we}e and {pe}e) that is revealed before-hand, can choose any adaptive strategy

to probe the edges.

We analyze several variants of the greedy approach to solve this problem. In Section 2.3,

we propose and analyze a natural greedy variant which always probes an edge with the

highest expected weight it contributes (if probed) and establish that its approximation ra-

tio is at most 2
p2

min
, where pmin = min{pe : e ∈ E}. This affirmatively confirms a claim

presented in [CIK+09] (without details) that the approximation factor of the greedy algo-

rithm for the weighted version can be unbounded. It also follows that approximation ratio

is less than 4 on general weighted graphs if pmin >
1
√

2
. Since this variant selects edges
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for probing based on their individual expected contribution, it can be thought of as being

greedy edge-wise and denote it by GRD-EW . Our result is the first analysis of a greedy

heuristic for stochastic matching on weighted graphs. The precise statement of our result

is as follows.

Theorem 1. GRD-EW is a 2
p2

min
-approximate algorithm for the weighted stochastic match-

ing problem.

We also show that the inverse dependence on pmin cannot be completely eliminated by a

more careful analysis even if we allow every vertex to probe all edges incident at it (that

is tu > du for every u). Thus, we obtain a lower bound on the worst-case approximation

ratio of GRD-EW for the weighted case. This is stated in the following lemma whose

proof is provided in Section 2.3.

Lemma 1. There exists an infinite and explicit family {(Gn, tn)}n of weighted input in-

stances (with unlimited patience values) such that the expected weight of the solution

produced by GRD-EW is smaller than the expected weight of an optimal strategy by a

multiplicative factor of nearly 2
pmin

.

Since the algorithm works by probing edges, we model the execution of an algorithm as

a full binary decision tree as in [CIK+09, Ada11]. Adamcyzk [Ada11] presents a very

careful analysis of the decision tree to prove that the greedy algorithm is a 2-approximate

algorithm for the unweighted version. Our analysis is inspired by the analysis of [Ada11]

and we borrow some of the notions and notations from this work. However, ours is not

a straighforward generalization to the weighted version and some non-trivial issues (aris-

ing for the more general weighted case) have to be handled while analyzing the greedy

heuristic.

In Section 2.4, we propose a simple variant GRD-VW of the greedy approach which can

be thought of as being greedy vertex-wise. Here we define a notion of revenue mu associ-
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ated with a vertex u. For a given set S of l edges incident at a vertex u, an optimal ordering

of S is any linear ordering σ over S such that if members of S are probed consecutively as

per σ, then the expected contribution ES ,σ from these probings maximized. It can be ver-

ified that an optimal ordering is any ordering obtained by sorting the edges in decreasing

order of their weights. For a vertex u, let mu denote the expected contribution one obtains

by probing edges of S u in an optimal order. Here, S u is the set of tu edges incident at u

having the k largest expected contributions we pe. The GRD-VW proceeds by choosing

that vertex u for which the revenue mu is maximized and then probes edges in S u in an

optimal order and decreases the tolerances appropriately after each probe. We prove that

the worst-case approximation ratio of GRD-VW can be unbounded even if we restrict

ourselves to the unweigted instances (the case for which GRD-EW is a 2-approximation

algorithm). Formally stated, we have the following result which is proved in Section 2.4.

Lemma 2. There exists an infinite and explicit family {(Gn, tn)}n>1 of unweighted input

instances such that the expected size of the solution obtained by GRD-VW (Gn, tn) is

smaller than that of an optimal strategy by a multiplicative factor of nearly Ω
(

1
pmax

)
where

pmax = maxe pe.

The edge-wise and vertex-wise greedy heuristics GRD-EW and GRD-VW analyzed in

Sections 2.3 and 2.4 can both be thought of as special cases of a more generalized notion

of a greedy heuristic. Fix any function k : N → N satisfying k(n) 6 n for every n. We

define a variant for every fixed choice of k and denote the variant by GRDk(G,w, p, t) or

shortly GRDk(G, t) if w and p are clear from the context. GRDk(, ) is exactly the same as

the vertex-wise variant GRD-VW but differs only in the definition of mv, more precisely,

in that mv is the expected contribution one obtains by probing consecutively min{k(|V |), tv}

heaviest available edges incident at v, with the edges being probed in decreasing order of

their weights. When k(n) = n for every n, we obtain that GRDk() is the same as GRD-VW

. When k(n) = 1 for every n, we obtain that GRDk() is the same as GRD-EW described in

Section 2.3. The following lemma establishes that GRDk() also has unbounded worst-case
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approximation ratio for any fixed k = k(n) such that k → ∞ as n → ∞ even if restricted

to unweighted instances. The proof is presented in Section 2.5.

Lemma 3. For any k = k(n) such that (i) k 6 n, (ii) k divides n and (iii) k → ∞ and

for every sufficiently small ε > 0, there exists an infinite and explicit family {(Gn, tn)}n>1

of unweighted input instances such that the expected size of the solution obtained by

GRDk(Gn, tn) is smaller than that of an optimal strategy by a multiplicative factor which

is nearly Θ(k1−ε).

2.2 Preliminaries

Below, we present some conventions, assumptions and models we will be employing

for the rest of this work. Throughout, we consider an instance I = (G,w, p, t) where

G = (V, E) is an undirected graph, w : E → R+ is the weight function, t : V → N

is the patience function and p : E → [0, 1] is the edge probability function. For the

sake of simplicity, we often denote this collective input by the short notation (G, t) if the

additional inputs {pe}e, {we}e can be inferred from the context.

2.2.1 Convention : rationalization of patience values

We assume, without loss of generality, that tu 6 du for every u ∈ V , where du is the degree

of u in G. Higher values of tu are not going to lead to better solutions. Throughout the

chapter, we always enforce this assumption (wherever it becomes necessary), by invoking

a subroutine Rationalize(G, t) which, for any vertex u with tu > du, redefines tu to be du.

Enforcing this assumption helps us to simplify the description of some greedy variants

we will study in Sections 2.4 and 2.5.

Also, at any point, the current graph contains only those edges joining vertices with pos-

itive patience values. This can be ensured by removing edges incident at vertices whose
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patience has been exhausted.

2.2.2 Assumption : normalization of weights

Since multiplying each edge weight by a common factor c does not really change the

outcome (except multiplying its total weight by c) of any algorithm, we can normalize

all weights by replacing each we by we
wmax

, where wmax = maxe we. This normalization

simplifies some of the expressions arising in the analysis. In view of this, from now on,

we assume without loss of generality that we 6 1 for each e.

2.2.3 Modeling algorithms by decision trees

Our focus is on algorithms (possibly adaptive, possibly randomized) which are based on

probing edges (with a commitment to inclusion) and we analyze such algorithms using

the decision tree model employed in the works [CIK+09, Ada11]. The model is described

as follows. Any algorithm ALG can be represented by a (possibly) exponential sized full

binary tree also denoted by ALG. Each internal node represents either probing an edge or

tossing a (biased) coin. The coin tosses capture the randomness (possibly) employed by

the algorithm. For deterministic algorithms, each internal node will correspond to only

an edge probe. An internal node x probing an edge e will be labeled with e and wx = we.

An internal node x tossing a coin will be labeled by an empty string and wx = 0. Consider

an internal node x. If x involves probing an edge e and if the probe is successful, then the

algorithm will proceed further as per the strategy specified by the left subtree of x and if

it is unsuccessful, it will proceed as per the right subtree. Similarly, if x corresponds to a

coin toss, then the algorithm will proceed further as per the strategy specified by the left

(or the right) subtree of x depending on whether the toss is successful or not. However,

only internal nodes probing edges can make a positive contribution to the weight of the

solution found.
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We give a recursive definition of a decision tree: The decision tree ALG corresponding to

an algorithm ALG on an instance I = (G, t) (ignoring the specification of we’s and pe’s

which are not going to change through the execution) is a rooted full binary tree T (with

root r) where

1. r is labelled by the emptyset if G is an empty graph having no edges.

2. r probes an edge e = αβ if G has at least one edge or r tosses a coin with bias pr.

3. left edge out of r is labelled by pαβ if r probes αβ or is labelled by pr if r tosses a

coin.

4. right edge coming out of r is labelled by 1− pαβ or by 1− pr depending on the case.

5. the left subtree of r represents further execution of ALG on on the instance IL =

(G \ {α, β}, t) if r probes αβ. Otherwise, it represents further execution of ALG on I.

6. the right subtree of r represents further execution of ALG on the instance IR =

(G \ {αβ}, t
′

) where t
′

α = tα − 1, t
′

β = tβ − 1 and t
′

γ = tγ for all other vertices γ if r

probes αβ. Otherwise, it represents further execution of ALG on I.

Without loss of generality, we assume that the root r of an optimal tree OPT always

probes an edge.

We make use of the following notations. For any algorithm ALG and any node x in ALG,

let qx denote the probability of reaching x in an execution of ALG(G, t). Also, for a node

x representing an edge e, we use wx to denote the weight we. It can be verified that the

performance of ALG on (G, t) can be expressed as E[ALG] =
∑

x∈ALG qx pxwx where the

summation is over all internal nodes.
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2.3 Greedy heuristic for the weighted version

We focus on the offline version. This means that the input I consisting of the random

model (G = (V, E), {pe}e∈E) alongwith the additional inputs ({we}e∈E, t = {tu}u∈V) will be

revealed to the algorithm before its execution. After some preprocessing, the algorithm

can choose to select and probe the edges in any order of its choice. We analyze the

following greedy algorithm for the above problem. We use Gr to denote both the greedy

algorithm and the corresponding decision tree. Let αβ be the first edge probed by Gr(G, t).

This means that wαβpαβ maximizes we pe over all edges e. We also use OPT to denote any

optimal strategy for I and also the associated decision tree. It also denotes the weight of

the matching produced by OPT when executed on I.

Algorithm 1 Greedy Algorithm Gr(G, t):
1: E′ ← E. M ← ∅.
2: while E′ , ∅ do
3: Choose an arbitrary edge e = uv ∈ E′ which maximizes we pe.
4: Probe e and add e to M if e is found to be present.
5: If e ∈ M, then set each of tu and tv to be zero; else decrement tu and tv.
6: Remove e from E′.
7: Remove any edge in E′ incident at u (v) if tu (tv) equals zero.
8: Rationalize(G, t).
9: endwhile

10: Output M.

To analyze the performance of Gr(G, t), we study the following two algorithms ALGL and

ALGR introduced and defined as in [Ada11] to work on instances IL and IR respectively.

By an αβ-probe (α-probe or β-probe) of OPT (G, t), we mean probing edge αβ (probing

edge αγ for some γ , β or probing edge δγ for some δ , α).

The algorithm ALGL mimics the execution of OPT (G, t) except that it replaces each αβ-

probe, each α-probe and each β-probe by an appropriate coin toss. That is, whenever

there is such a probe (at a node x of OPT (G, t)) of an edge e incident at either α or β or

both, a coin with bias pe is tossed. With probability pe, ALGL mimics the left subtree of

x and with probability 1 − pe it mimics the right subtree at x. Obviously, ALGL is a valid
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strategy for the instance IL. If S L is the random variable denoting the total contribution of

the omitted probes in an execution, then it is easy to see that E[OPT (G, t)] = E[ALGL] +

E[S L]. Similarly we define ALGR. Here the algorithm ALGR mimics the execution of

OPT (G, t) by replacing each αβ-probe, each tth
α α-probe and each tth

β β-probe by flipping

a coin of suitable bias. As before it is easy to see that E[OPT (G, t)] = E[ALGR] + E[S R],

where S R is a random variable which denotes the total contribution of the probes omitted

by ALGR.

Before proceeding further, we introduce some definitions and notations. We use Wα to

denote the contribution that a α-probe (if any) makes to the weight of the solution that

OPT (G, t) produces. We use W tα
α to denote the contribution that a tth

α α-probe (if it hap-

pens) makes. Wβ and W tβ
β are similarly defined. We use Oαβ to denote the event that

OPT (G, t) probes αβ; and Oαβ to denote the complement of event Oαβ. We also use

OPT tα
αγ (γ , α) to denote the event that OPT (G, t) probes αγ in the tα-th α-probe. It

follows that

E[OPT ] = E[ALGR] + E[S R] (2.1)

= E[ALGR] + Pr(Oαβ)E[S R|Oαβ]

+ Pr(Oαβ)
(
E[W tα

α |Oαβ] + E[W tβ
β |Oαβ]

)

E[OPT ] = E[ALGL] + E[S L] (2.2)

= E[ALGL] + Pr(Oαβ)E[S L|Oαβ]

+ Pr(Oαβ)
(
E[Wα|Oαβ] + E[Wβ|Oαβ]

)
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Multiplying (2.1) by (1 − pαβ) and (2.2) by pαβ we get

E[OPT ]

= pαβE[ALGL] + (1 − pαβ)E[ALGR] + Pr(Oαβ)
(
pαβE[S L|Oαβ] + (1 − pαβ)pαβwαβ

)
+ Pr(Oαβ)

(
pαβE[Wα|Oαβ] + (1 − pαβ)E[W tα

α |Oαβ]
)

+ Pr(Oαβ)
(
pαβE[Wβ|Oαβ] + (1 − pαβ)E[W tβ

β |Oαβ]
)

(2.3)

Auxilliary Graph J: Recall our assumption that we 6 1 for each e. Now, for the sake

of the analysis, we define an auxiliary instance J which is the same as the original input

I except that edge weights are ze = 1 − xe where xe = pewe for each e. Define pmin =

mine∈E pe. The following observation plays a role in the lemmas that follow.

Observation 1. For any edge e ∈ E, we + ze
pmin
6 1

pmin
.

First, we obtain the following lemmas whose proofs are provided later.

Lemma 4.

(
1 − xαβ

xαβ

)
E(W tα

α (I)|Oαβ) 6
E(Wα(J)|Oαβ)

pmin

Lemma 5.

pαβE(Wα(I)|Oαβ) + (1 − pαβ)E(W tα
α (I)|Oαβ) 6

pαβ
pmin

(2.4)

An analogous inequality involving vertex β also holds.

pαβE(Wβ(I)|Oαβ) + (1 − pαβ)E(W tβ
β (I)|Oαβ) 6

pαβ
pmin

(2.5)

We observe that wαβpαβ > pmin. Also we have E(S L|Oαβ) 6 2 6 2wαβpαβ
pmin

.

Theorem 2. The greedy algorithm is a 2
p2

min
-approximation algorithm.
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Proof : We prove the theorem by induction on the number of edges in G. The base cases

of induction would be all those graphs G with µ(G) 6 1 where µ(G) is the maximum size

(= the number of edges) of any matching in G. It is easy to verify that for each of the base

cases, Gr(G, t) is itself an optimal strategy. Our inductive hypothesis is that the greedy

algorithm is a 2
p2

min
-approximation to the optimal strategy for all graphs on a lesser number

of edges. Using (5.3), (2.4) and (2.5), we have

E[OPT (I)] 6 pαβE[ALGL] + (1 − pαβ)E[ALGR]

+ Pr(Oαβ)
(
pαβE[S L|Oαβ] + (1 − pαβ)pαβwαβ

)
+ Pr(Oαβ)

2p2
αβwαβ

p2
min

6 pαβE[ALGL] + (1 − pαβ)E[ALGR]

+ Pr(Oαβ)

2p2
αβwαβ

p2
min

+
(1 − pαβ)pαβwαβ

p2
min

 + Pr(Oαβ)
2p2

αβwαβ

p2
min

6 pαβE[ALGL] + (1 − pαβ)E[ALGR] +
2p2

αβwαβ

p2
min

+
(1 − pαβ)pαβwαβ

p2
min

6 pαβE[ALGL] + (1 − pαβ)E[ALGR] +
2pαβwαβ

p2
min

Using the last inequality and applying the inductive hypothesis to the smaller graphs, it

follows that (with OPT (IL) (OPT (IR)) representing the weight of the matching produced

by an optimal strategy for IL (IR))

E[OPT (I)] 6 pαβE[OPT (IL)] + (1 − pαβ)E[OPT (IR)] +
2pαβwαβ

p2
min

6
2pαβ
p2

min

E[Gr(IL)] +
2(1 − pαβ)

p2
min

E[Gr(IR)] +
2pαβwαβ

p2
min

6
2

p2
min

[
pαβE[Gr(IL)] + (1 − pαβ)E[Gr(IR)] + pαβwαβ

]
=

2
p2

min

E[Gr(I)]

It now follows from the recursive definition of the performance of a strategy that the

greedy strategy is a 2
p2

min
approximation to the optimal strategy.

It only remains to prove Lemmas 4 and 5 and the proofs are presented below.
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2.3.1 Proof of Lemma 4

1 − xαβ
xαβ

E[W tα
α (I)|Oαβ] =

∑
γ,β

1 − xαβ
xαβ

wαγpαγPr(OPT tα
αγ|Oαβ)

6
∑
γ,β

1 − xαγ
xαγ

wαγpαγPr(OPT tα
αγ|Oαβ)

6
1

pmin

∑
γ,β

(1 − xαγ)pαγPr(OPT tα
αγ|Oαβ)

=
E[W tα

α (J)|Oαβ]
pmin

6
E[Wα(J)|Oαβ]

pmin

The first inequality follows since 1−x
x is a decreasing function of x in (0, 1] and xαβ is the

highest.

2.3.2 Proof of Lemma 5

For each γ , β, let Eαγ denote the event that αγ is probed and the outcome is successful.

We have pαβE[Wα(I)|Oαβ] + (1 − pαβ)E[W tα
α (I)|Oαβ]

6 pαβE[Wα(I)|Oαβ] + (1 − xαβ)E[W tα
α (I)|Oαβ]

6 pαβE[Wα(I)|Oαβ] +
xαβ
pmin
E[Wα(J)|Oαβ] from Lemma 4

6 pαβE[Wα(I)|Oαβ] +
pαβ
pmin
E[Wα(J)|Oαβ]

= pαβ

∑
γ,β

(
wαγ +

1 − xαγ
pmin

)
Pr

(
Eαγ|Oαβ

)
6 pαβ

∑
γ,β

Pr
(
Eαγ|Oαβ

)
pmin

 6 pαβ
pmin

The second last inequality follows from Observation 1.
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2.3.3 Proof of Observation 1

We have

we +
1 − xe

pmin
6

1 − xe + we pmin

pmin
6

1 + we pmin − we pe

pmin
6

1
pmin

The last inequality follows as pmin 6 pe.

2.3.4 Proof of Lemma 1

For each n, let Gn denote the graph G = (V, E) where V = {u, v, a1, . . . , an, b1, . . . , bn} and

E = {(u, v)} ∪ {(u, ai) : 1 6 i 6 n} ∪ {(v, bi) : 1 6 i 6 n}. Let wuv = W and puv = 1 − 1
n .

Let p = pmin = 1
√

n and define W ′ by W ′p = W(1 − 1/n)2. Let pe = p and we = W ′ for

every e , uv. Let u and v be both have a patience parameter of n + 1 and let each of ai’s

and bi’s have a patience parameter of 1. The expected weight of the solution produced

by the greedy algorithm can be shown to be at most W(1 − 1
n ) + 2W ′(1 − (1 − p)n)/n 6

W
(
1 − 1

n + 2
√

n

)
= W[1 + o(1)]. Now consider the strategy which first probes each of the n

edges (u, ai) and then probes each of the n edges (v, bi) and then probes uv. The expected

weight of the solution of this strategy is at least 2W ′ (1 − (1 − p)n) = 2W
√

n[1 − o(1)].

2.4 A vertex-wise greedy variant

GRD-VW is one variant that naturally comes to one’s mind and this also does not possess

a good approximation ratio. This variant tries to be greedy vertex-wise. That is, it first

computes for each vertex v a value mv which is computed as follows. Let σ = (e1, . . . , etv)

be an optimal ordering (sorted in decreasing weights we) of the tv heaviest (in terms of

expected individual contributions we pe one obtains if probed) edges incident and available

(for probing) at v. mv denotes the expected contribution one obtains by probing edges as
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per σ. It can be easily computed using the expression provided below. GRD − VW

then chooses a vertex u for which mu = maxv mv for probing incident edges. Here, tv

and dv are the current values of v’s patience and its degree. It can be verified that mv =∑
i6tv wi pi

(∏
j<i 1 − p j

)
. A formal description of the algorithm is presented below. As

before, the graph contains only edges joining vertices with positive patience values.

Algorithm 2 GRD-VW MGr(G, t):
1: E′ ← E. M ← ∅.
2: while E′ , ∅ do
3: Choose any vertex u which maximizes mv

4: Let σu = (e1, . . . , etu), e j = (uv j), denote an optimal order of edges available for
probing.

5: j← 1.
6: while j 6 tu and tu > 0 do
7: Probe e j and add e j to M if e j is found to be present.
8: If e j ∈ M, then set each of tu and tv j to be zero; else decrement tu and tv j .
9: Remove e j from E′. Increment j.

10: Remove any edge in E′ incident at u (v j) if tu (tv j) equals zero.
11: Rationalize(G, t).
12: endwhile
13: endwhile
14: Output M.

The following theorem establishes a lower bound on the worst-case approximation ratio

of the greedy variant MGr(G, t) thereby establishing that the approximation ratio can

become unbounded even if we restrict ourselves only to unweighted instances. This is

in contrast to the edge-wise greedy heuristic which was shown to have an approximation

ratio of 2 for unweighted instances.

Lemma 6. There exists an infinite and explicit family {(Gn, tn)}n>1 of unweighted input

instances such that the expected size of the solution obtained by MGr(Gn, tn) is smaller

than that of an optimal strategy by a multiplicative factor of nearly Ω
(

1
pmax

)
where pmax =

maxe pe.

Proof of Lemma 6 : For each n, let Gn denote the graph G = (V, E) where

V = {u, a1, . . . , an, b1, . . . , bn}; E = {(u, ai) : 1 6 i 6 n} ∪ {(ai, bi) : 1 6 i 6 n}.
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Let p = p(n) be any function such that p → 0 and p = ω( 1
n ). Define q = q(n) := 2p

n .

Also, let p(u,ai) = q for each i, and p(ai,bi) = p for each i. We note that pmax = p. Let u

have a patience parameter of n and let each of ai’s and bi’s have a patience parameter of 1.

Consider the strategy which probes each of the n edges (ai, bi) and outputs the resulting

matching. The expected size of the solution to this strategy is exactly np. Hence the

expected size of any optimal strategy is at least np.

We now analyze MGr(, ). Notice that

mu = 1 − (1 − q)n = nq − Θ((nq)2) = 2p − Θ(p2)

and mai = mbi = p for each i. Hence mu > mv for each v , u. Without loss of generality,

assume that MGr(, ) probes edges in the order (ua1, . . . , uan). Using MGr to denote the

size of the solution produced by MGr(G, t), we have

E[MGr] =

n−1∑
j=0

(1 − q) jq (1 + (n − j − 1)p)

= 1 − (1 − q)n +

n−1∑
j=0

(n − j − 1)(1 − q) j pq

= 1 − (1 − q)n + pq(1 − q)n−1

 n−1∑
j=0

j(1 − q)− j


= 1 − (1 − q)n + pq(1 − q)n−1

(
(1 − q)−1 − n(1 − q)−n + (n − 1)(1 − q)−n−1

q2(1 − q)−2

)
= 1 − (1 − q)n + p

(
(1 − q)n − n(1 − q) + (n − 1)

q

)
= 1 − (1 − q)n + p

(
1 − nq + Θ((nq)2) − n + nq + n − 1

q

)
= 2p − Θ(p2) +

n
2
· Θ(p2) = Θ(np2)

Hence the ratio E[OPT (G,t)]
E[MGr] = Ω(p−1) where p = pmax. This establishes the lemma.
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2.5 A generalized greedy variant

Proof of Lemma 3 : For each n, let Gn denote the graph defined in the proof of Lemma

6 with the same patience values and edge probabilities except that we redefine p and

q as follows. Define p = p(n) := kε
n . It follows that p → 0 and p = ω( 1

n ). Define

q = q(n) := 2p
k . It follows that nq→ 0. As shown before, the expected size of any optimal

strategy is at least np.

We now analyze Grk(, ). Recall our assumption that k divides n. Notice that

mu = 1 − (1 − q)k = kq − Θ((kq)2) = 2p − Θ(p2)

and mai = mbi = p for each i. Hence mu > mv for each v , u, as long as u has at least k

un-probed edges incident at it and hence Grk() will pick k of these edges and probe them

consecutively. Since k divides n, this means that Grk(, ) will probe all edges incident at

u and stop with that. Without loss of generality, assume that Grk(, ) probes edges in the

order (ua1, . . . , uan). Using Grk to denote the size of the solution produced by Grk(G, t),

we have (as shown before)

E[Grk] = 1 − (1 − q)n + p
(
(1 − q)n − n(1 − q) + (n − 1)

q

)
= 1 − (1 − q)n + p

(
1 − nq + Θ((nq)2) − n + nq + n − 1

q

)
= nq − Θ((nq)2) +

k
2
· Θ(k−2+2ε) = Θ(k−1+2ε)

Hence the ratio E[OPT (G,t)]
E[Grk] = Θ( np

k−1+2ε ) = Θ(k1−ε) → ∞ as n → ∞. This establishes the

lemma.
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2.6 Remarks

We analyzed some variants of greedy heuristic for both weighted and unweighted stochas-

tic matching instances. The following observations are relevant in this context and the last

question should be addressed to gather a better comprehension of greedy heuristics.

• For the greedy heuristic Gr(, ) applied to weighted instances, the upper and lower

bounds on the worst-case approximation ratio still differ by a multiplicative factor

of 1
pmin

. It would be interesting to reduce this gap and obtain a tight upper bound on

the worst-case ratio.

• The assumption that k divides n can be weakened to n (mod k) = 0 or n (mod k) >

( 1
2 + δ)k for some fixed δ > 0.

• The multiplicative factor Θ(k1−ε) in the statement of Lemma 3 can be improved to

Θ( k
ω

) where ω = ω(n) is any sufficiently slow-growing function satisfying ω = o(k).

• The assumption of k → ∞ in the statement of Lemma 3 can be removed with a

corresponding replacement of the term Θ(k1−ε) by a suitable function f (k) (where

f (k) → ∞ obviously if k → ∞). This establishes that Grk is worse than an optimal

strategy by a factor of at least f (k).

• Does there exist (for every fixed k(n)), a function g(k) such that Grk(, ) produces a

solution whose expected size is within a multiplicative factor of g(k) from that of

an optimal solution (for all instances). In particular, we conjecture that for every

c > 1, there exists a value g(c) such that Grc(, ) is a g(c)-approximation algorithm

for unweighted instances. We know that g(1) = 2 from the work of [Ada11].
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Chapter 3

Approximation algorithm for Online

Stochastic Matching

3.1 Introduction

Bansal et al. [BGL+10] introduced this online version. It models the sale of items from

a set A to buyers arriving in an online fashion. Each buyer has to be processed before

we consider the next arriving buyer. The processing of each buyer involves showing a

select subset of items in some order until the buyer likes an item (if it happens) in which

case both the item and the buyer are removed from the picture. To each buyer, we can

associate a type/profile and the type characterizes (i) the patience tb, (ii) probability pab

that a buyer of type b buys item a, and (iii) wab the revenue generated if it happens. The

type of each arriving buyer is independently and identically distributed over the set B

of types. Here, the buyers arrive online. The number of buyers that are going to arrive

is known to the algorithm. The goal is to design an efficient online algorithm which

produces a matching whose expected revenue is as large as possible. The performance of

the algorithm is compared with the expected revenue from the matching produced by an

optimal strategy. [BGL+10] presents a 7.92-approximate algorithm for this problem. We
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propose and analyze a 5.2-approximate algorithm for the same problem.

3.2 Preliminaries

We use a randomized rounding procedure in designing the approximation algorithm for

online stochastic matching. This randomized rounding procedure was introduced by

Gandhi et al. [GKPS06]. We call it GKPS rounding for short. We describe below the

main properties of GKPS rounding scheme. We denote by ∂(u) the set of edges incident

on vertex u.

GKPS Rounding Scheme: We list below the main properties of the dependent rounding

algorithm given by Gandhi et al [GKPS06] that will be useful for the present problem.

Theorem 3. [[GKPS06]] Let (A, B; E) be a bipartite graph and ze ∈ [0, 1] be fractional

values for each edge e ∈ E. The GKPS algorithm is a polynomial-time randomized

procedure that outputs values Ze ∈ {0, 1} for each edge e ∈ E such that the following

properties hold:

P1. Marginal Distribution: For every edge e, Pr[Ze = 1] = ze.

P2. Degree Preservation: For every vertex u ∈ A∪B,
∑

e∈∂(u) Ze ∈ {b
∑

e∈∂(u) zec, d
∑

e∈∂(u) zee}.

P3. Negative correlation: For any vertex u and any set of edges S ⊆ ∂(u) : Pr[
∧

e∈S (Ze =

1)] 6
∏

e∈S Pr[Ze = 1].

3.3 Approximation algorithm

The Online Stochastic Matching problem models the problem of maximizing the revenue

from the sales of a set of items to buyers coming in an online fashion. This problem

was introduced and studied by Bansal et al. in [BGL+10]. The problem is described

below. Let (G = (A, B, A×B), {pab}a∈A,b∈B, {eb}b∈B) be the random model underlying actual

online arrival of the buyers and their preferences. The additional input to the algorithm
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is ({wab}a∈A,b∈B, {tb}b∈B). A is a set of items with exactly one copy of each item and B is

a set of buyer types/profiles. For each buyer of type b ∈ B and item a, pab denotes the

probability that such a buyer buys the item a and wab denotes the revenue generated if a

is sold to this buyer. Each buyer of type b has a patience for at most tb probes, that is,

she will consider at most tb distinct items shown one by one. The buyer buys the first

item she likes or leaves without buying any item. There are n actual buyers who arrive

and the type of each buyer is identically and independently distributed over B with eb

denoting the expected number of buyers of type b and
∑

b eb = n. As in [BGL+10], by

duplicating buyer types, we assume without loss of generality that there are n different

buyer types and the expected number of buyers of each type is 1. Let the actual graph

that defines the input for a particular run of the algorithm be Ĝ = (A, B̂, A × B̂). In this

graph the probability associated with any edge (a, b̂) is pab and weight is wab provided b̂

belongs to type b. An optimal algorithm for this problem is an adaptive strategy (possibly

randomized) for probing the edges incident at arriving buyers, for which the expected

revenue is maximum. We denote this maximum by OPT (G), or shortly OPT .

To maximize the expected revenue from Ĝ we solve the LP written below for the expected

graph G as defined before. Then we use the LP solution to guide the choice (of items to

be shown) for the first buyer of each type and ignore the later arrivals of buyers of same

type.

maximize
∑

a∈A,b∈B

xab · wab subject to∑
a∈A

xab 6 1 ∀b ∈ B∑
b∈B

xab 6 1 ∀a ∈ A (3.1)∑
a∈A

yab 6 tb ∀b ∈ B

xab = pab · yab; yab ∈ [0, 1] ∀a ∈ A, ∀b ∈ B

Let LP(G) denote the optimal value of the above LP. The following bound was established

31



in [BGL+10].

Lemma 7. [Lemma 11, Lemma 13 of [BGL+10]] OPT (G) 6 LP(G).

We combine some of the salient features (like GKPS rounding) of the offline algorithm

with some salient features (like ignoring 2nd or later arrivals of any buyer type) of the

online algorithm of Bansal et al., [BGL+10] to get a new algorithm (see Algorithm 2) for

the online stochastic matching problem. This also required us to introduce a new ordering

which combines the random ordering of online arrivals with a chosen random ordering

of items. Analyzing the new algorithm, we obtain the following improved result. This

improves the approximation ratio from the previous one (from [BGL+10]) of 7.92.

Theorem 4. There exists an adaptive and randomized strategy for the online stochastic

matching problem which produces a matching whose expected cost is at least LP(G)/5.2.

Hence, we get a 5.2- approximation algorithm for this problem.

Algorithm 3
1: Choose uniformly a random ordering τ of the items in A.
2: (x, y)← optimal solution of the LP on the expected graph G.
3: ŷ← round y to an integral solution using GKPS rounding.
4: Ê ← {e|ŷe = 1}.
5: When any buyer b̂ (of type b) arrives do
6: if b̂ is the first arrival of type b then
7: One by one offer (as per τ) each item i ∈ {a|(a, b) ∈ Ê} that is still unsold

until either an item is bought by b̂ or its patience is exhausted.
8: else
9: Ignore b̂.

10: end if

Notations : Throughout this section, we employ the following notations (with the stated

meanings) for the sake of keeping the mathematical expressions simpler. Let A denote an

event, ω a random choice and Y a random variable. By EA(Y) we mean the conditional

expectation E[Y |A]. By Eω(Y), we mean the expectation of Y = Y(ω) with respect to the

choice ω.

First, we give an informal description of our algorithm. It combines ideas from the ap-

proximation algorithms (proposed by Bansal et al. in [BGL+10]) for both the offline and
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online stochastic matching problems. We initially choose uniformly randomly an order-

ing τ of all items. After solving the above stated LP, we apply the randomized GKPS

rounding procedure [GKPS06] (which is described below) to obtain an integral solution

(the set of edges which are likely to be probed). Let Ê denote this set of edges from E.

As in [BGL+10], we focus only on the first buyer of any type and ignore later buyers of

the same type. For each first arrival of a buyer of type b, we try to probe edges from Ê

that are incident at b as per the order τ of the corresponding items until either an item is

bought by the buyer or its patience is exhausted.

Let B′ ⊆ B denote the random subset of buyer types represented at least once in the actual

online arrivals of buyers. Conditioned on a given value of B′, the order η induced by

the first buyers of different types b ∈ B′ is uniform over B′. We combine η over (buyer

types) and τ (over items) to define a lexicographic order ν (first compare with buyer types

and then with items) over edges of Ê. ν will play a role in bounding (from below) the

expected revenue that the first arrival of a buyer of type b contributes. Note that τ and η

are independent of each other.

Given e = (i, b), B′ and Ê such that b ∈ B′ and e ∈ Ê, we use ∂Ê(b, e) to denote the set

of edges f ∈ Ê which are also incident at b. Similarly, we use ∂Ê(i, e) to denote the set

of edges f ∈ Ê involving types from B′ and which are also incident at i. We use ∂Ê(e)

to denote the union ∂Ê(b, e) ∪ ∂Ê(i, e). Let B(e, ν) ⊆ ∂Ê(e) denote the set of those edges

which precede e in the ordering ν. Also, let B(e, η) denote the set of those edges in B(e, ν)

which are incident at i. Similarly, we let B(e, τ) denote the set of edges from B(e, ν) which

are incident at b. For any particular type b, we denote by Ab the event that a buyer of type

b arrives at least once. We first obtain a lower bound on Pr[e is probed | e ∈ Ê, Ab] as

stated in the following lemma.

Lemma 8. For an arbitrary type b and an arbitrary edge e incident at b,

Pr
(
e is probed | e ∈ Ê, Ab

)
> Eb∈B′,e∈Ê

Eν
 ∏

f∈B(e,ν)

(1 − p f ) | B′, Ê


 .
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Proof. Given a choice of B′ and Ê such that b ∈ B′ and e ∈ Ê, e will be probed if, for

each f ∈ B(e, ν), f is absent (irrespective of whether f was probed or not). Therefore

Pr[e is probed | B′, Ê] > Eν[
∏

f∈B(e,ν)

(1 − p f ) | B′, Ê]. Now, considering expectation over

the random choices determining B′ and Ê, we obtain the desired inequality. �

Before analyzing the new ordering ν, we introduce some definitions and some useful facts

established in [BGL+10].

Definition 2. Let r and pmax be positive real values. Denote by η(r, pmax) the minimum

value of
∏t

i=1(1 − pi) subject to the constraints
∑t

i=1 pi 6 r and 0 6 pi 6 pmax for i =

1 . . . , t. Also, let ρ(r, pmax) be defined by ρ(r, pmax) =
1∫

0
η(xr, xpmax) dx.

Lemma 9. [Lemma 5, Lemma 7 of [BGL+10]] Let r and pmax be positive real values.

Then,

1. η(r, pmax) = (1 − pmax)b
r

pmax
c(1 − (r − b r

pmax
cpmax)) > (1 − pmax)( r

pmax
).

2. ρ(r, pmax) is convex and decreasing on r.

3. ρ(r, pmax) > 1
r+pmax

(1 − (1 − pmax)1+ r
pmax ) > 1

r+pmax
(1 − e−r).

The following lemma follows from the proof arguments of Lemma 6 of [BGL+10].

Lemma 10. For any edge e = (i, b) and for every given B′ and Ê such that b ∈ B′ and e ∈

Ê, let σ be a random ordering of edges in ∂Ê(b, e) (or ∂Ê(i, e)). Let pmax = max f∈E p f . Let

B(e, σ) denote the set of edges in ∂Ê(b, e) (or ∂Ê(i, e)) which precede e in σ. Let r be de-

fined by r =
∑

f∈∂Ê(b,e) p f (or r =
∑

f∈∂Ê(i,e) p f ). Then Eσ[
∏

f∈B(e,σ)

(1 − p f ) | B′, Ê] >

1∫
0

η(xr, xpmax) dx.

Using the above lemma, the following lemma analyzes and establishes a corresponding

lower bound on the expectation (with respect to the new ordering ν).

Lemma 11. For any edge e = (i, b) and for every given B′ and Ê such that b ∈ B′ and

e ∈ Ê, Eν
[∏

f∈B(e,ν)(1 − p f ) | B′, Ê
]
> ρ(r1, pmax)ρ(r2, pmax) where

r1 =
∑

f∈∂Ê(i,e) p f and r2 =
∑

f∈∂Ê(b,e) p f .
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Proof. We have

Eν

 ∏
f∈B(e,ν)

(1 − p f ) | B′, Ê

 = Eν


 ∏

f∈B(e,η)

(1 − p f )


 ∏

f∈B(e,τ)

(1 − p f )

 | B′, Ê


= Eη

 ∏
f∈B(e,η)

(1 − p f ) | B′, Ê

 · Eτ
 ∏

f∈B(e,τ)

(1 − p f ) | B′, Ê


> ρ(r1, pmax) · ρ(r2, pmax)

In the above derivation, the second equality follows from the observation that the random

orderings of edges of ∂Ê(i, e) and ∂Ê(b, e) are independent and depend respectively only

on the orderings η and τ. The inequality follows from applying Lemma 10 to the two

expectations in the previous line. �

We also need the following lemma.

Lemma 12. ρ(r1, pmax) · ρ(r2, pmax) is convex.

Proof. We know that the product of two nonincreasing convex functions on R is a convex

function on R [BV04]. We know from Lemma 9 that both ρ(r1, pmax) and ρ(r2, pmax) are

convex and decreasing. Hence ρ(r1, pmax) · ρ(r2, pmax) is convex. �

The following lemma is similar to Lemma 9 of [BGL+10] and plays a role in our analysis.

The asymptotics o(1) is with respect to n.

Lemma 13. For some ε = ε(n) = o(1), for every sufficiently large n, for every edge

e = (i, b) in the expected graph,

Eb∈B′,e∈Ê

 ∑
f∈∂Ê(i,e)

p f

 6
(
1 −

1
e

+ ε

)
(3.2)

Eb∈B′,e∈Ê

 ∑
f∈∂Ê(b,e)

p f

 6 1 (3.3)
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Proof. We only prove Inequality (3.2).

Eb∈B′,e∈Ê

 ∑
f∈∂Ê(i,e)

p f

 =
∑

f =(i,b′)

Pr(b′ ∈ B′ | b ∈ B′) · Pr[ŷ f = 1 | ŷe = 1] · p f

6

(
1 −

1
e

+ ε

)
·

 ∑
f =(i,b′)

Pr[ŷ f = 1] · p f

 by P3 of Theorem 3

=

(
1 −

1
e

+ ε

)
·

 ∑
f =(i,b′)

y f · p f

 by P1 of Theorem 3

6

(
1 −

1
e

+ ε

)
by Inequality (3.1)

Similarly Inequality (3.3) is proved. �

In the next lemma, we analyze the performance of Algorithm 2 with respect to the objec-

tive value of LP(G).

Lemma 14. For some ε = ε(n) = o(1), the expected revenue of Algorithm 2 is at least

(1 − 1
e ) · ρ(1 − 1

e + ε, pmax) · ρ(1, pmax) · LP(G).

Proof. We use some of the notations from [BGL+10]. For any type b, let Rb denote the

revenue generated by the first buyer (if any) of type b. The algorithm ignores later buyers

of this type and hence gets no revenue from these buyers. We have

E[Rb] = E[Rb | Ab] · Pr(Ab) >
(
1 −

1
e

)
E[Rb | Ab] (3.4)

E[Rb | Ab] =
∑
a∈A

wab · pab · Pr(ab is probed | Ab)

=
∑
a∈A

wab · pab · Pr(ab ∈ Ê | Ab) · Pr(ab is probed | Ab, ab ∈ Ê)

=
∑
a∈A

wab · pab · yab · Pr(ab is probed | Ab, ab ∈ Ê)

=
∑
a∈A

wab · xab · Pr(ab is probed | Ab, ab ∈ Ê) (3.5)
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where we have (by applying Lemma 8)

Pr
(
ab is probed | Ab, ab ∈ Ê

)
> Eb∈B′,ab∈Ê

Eν
 ∏

f∈B(e,ν)

(1 − p f ) | B′, Ê




> Eb∈B′,ab∈Ê
[
ρ(r1, pmax) · ρ(r2, pmax)

]
applying Lemma 11

> ρ
(
E

[
r1 | b ∈ B′, ab ∈ Ê

]
, pmax

)
·

ρ
(
E

[
r2 | b ∈ B′, ab ∈ Ê

]
, pmax

)
> ρ

(
1 −

1
e

+ ε, pmax

)
· ρ (1, pmax) (3.6)

In this derivation, we have applied multivariate Jensen’s inequality for convex functions

and also Statement (2) of Lemma 9. Combining equalities and inequalities 3.4, 3.5 3.6,

we obtain the following lower bound on the expected revenue produced by the algorithm.

∑
b∈B

E[Rb] >
(
1 −

1
e

)
· ρ

(
1 −

1
e

+ ε, pmax

)
· ρ (1, pmax) ·

 ∑
a∈A,b∈B

wab · xab


=

(
1 −

1
e

)
· ρ

(
1 −

1
e

+ ε, pmax

)
· ρ (1, pmax) · LP(G)

�

From Lemma 7 and Lemma 14, we get a (1 − 1
e ) · ρ(1 − 1

e + ε, pmax) · ρ(1, pmax)-factor

approximation for the online stochastic matching problem. We note here that the worst

case approximation ratio which occurs at pmax = 1 is at most 5.2 and this establishes

Theorem 4.
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Chapter 4

Approximation of MIS for B1-VPG

graphs

In this chapter, we present an efficient approximation MIS algorithm for B1-VPG graphs,

with an improved O((log n)2) approximation guarantee. It applies the divide-and-conquer

paradigm to reduce the given instance into three subinstances and recursively solves each

of them.

4.1 Preliminaries

The reason why we focus only on intersection graphs formed by geometric objects of

shape “L” is that the other three shapes can be obtained by rotating the plane by 90, 180

and 270 degrees in the clockwise direction. The four shapes are denoted by x, y, p, q.

Henceforth, we use l to denote a geometric object with one of these four shapes. Also, for

ease of further discussion, we specifically use L to denote a geometric object with shape

x.

In view of the rotational symmetries, any algorithm which solves MIS (exactly or ap-
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proximately) over L-graphs can also be suitably adapted to solve MIS (with the same

performance guarantee) over B1-VPG graphs. We get the following as a corollary :

Lemma 15. If there exists an efficient algorithm A for solving MIS over L-graphs with

a performance guarantee bounded by α(n), then there exists an efficient algorithm B for

solving MIS over B1-VPG graphs, with a performance guarantee at most 4α(n). Here, n

stands for the size of the input for both algorithms.

Proof. The algorithm B works as follows. Given a B1-VPG graph G = (V, E), we decom-

pose G into four induced subgraphs G1, . . . ,G4 formed by objects of each specific shape.

We apply algorithm A to G j to get an approximate MIS I j, for each j. Algorithm B then

outputs any Il such that |Il| = max j |I j|.

If I∗ denotes a MIS in G and I∗j denotes a MIS in G j (for each j), then it follows that

max j |I∗j | > max j |I∗ ∩ V(G j)| > |I∗|/4. If I j denotes the approximate solution obtained A

for G j, then |I j| > |I∗j |/α(n) and hence max j |I j| > |I∗|/(4α(n)). �

This lemma explains why it suffices to focus only on L-graphs. Henceforth, for the rest

of this chapter, we focus only on L-graphs.

The intersection point of the two sides of an L is defined as the corner of the L and is

denoted by cL, the tip of the horizontal arm is denoted by hL and that of the vertical arm

is denoted by vL. For an object L, we use (cx, cy, hx, vy) to denote respectively the x-

and y- coordinates of cL, the x- coordinate of hl and the y- coordinate of vl. This 4-tuple

completely describes L. The set of points constituting L is denoted by PL and is given by

PL = {(x, cy) : cx 6 x 6 hx} ∪ {(cx, y) : cy 6 y 6 vy}. We say that two distinct objects

L1 and L2 intersect if PL1 ∩ PL2 , ∅. L1 and L2 are said to be independent if and only if

they do not intersect. A set of L’s such that no two of them forms an intersecting pair is

said to be an independent set. Suppose two objects L1 and L2 are such that L1.cx < L2.cx

and L1.cy < L2.cy. Then we say that cL1 < cL2 .
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When the length of the vertical side of an L is equal to the horizontal side of an L we say

that it is equilateral. Since for equilateral L’s the length of the horizontal side is equal to

that of the vertical side, we simply use le(L) to denote the length of the horizontal side as

well as the vertical side. All logarithms used below are with respect to base 2. We denote

a set {1, 2, . . . , n} by [n].

4.2 MIS Approximation over L-Graphs

Maximum Independent Set in L-graphs

Input: A set S of L’s

Output: a set I ⊂ S such that I is independent and |I| is maximized.

The decision version of this problem is NP-complete (see Theorem 7). The decision ver-

sion corresponds to determining, given a L-graph G and an integer k > 1, if G has an

independent set of size k. Below, we present approximation algorithms for the optimiza-

tion version stated before.

Before proceeding further, for the sake of keeping the arguments simple, we introduce an

assumption which is stated in the following claim and which is formally justified in the

next chapter.

Claim 1. Without loss of generality, we can assume that

(i) L1.cx , L2.cx and L1.cy , L2.cy for any pair of distinct L1, L2 ∈ S;

Definition 3. For a sorted sequence x1 < x2 < . . . < xn of distinct reals, we define its

median to be the x n+1
2

if n is odd or the average of x n
2

and x n
2 +1 if n is even.

Our approach is broadly to divide and conquer. We sort the objects in S in increasing

order of their L.cx values. Define xmed to be the median of this sorted order. Then, we

compute the sets S 1, S 2 and S 12 defined as follows.
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S 1 := {L ∈ S : L.hx < xmed}.

S 2 := {L ∈ S : L.cx > xmed}.

S 12 := {L ∈ S : L.cx 6 xmed 6 L.hx}.

The sets S 1, S 2 and S 12 form a partition of S. Also, any pair of L1 ∈ S 1, L2 ∈ S 2 are

independent. The problem is solved by applying the recursive Algorithm IndS et1 pre-

sented below. This algorithm (on input S) computes the partition S = S 1 ∪ S 2 ∪ S 12.

Then, it recursively computes an approximately optimal solution for each of S 1 and S 2

and computes their disjoint union. This is one candidate approximate solution. Then, it

computes an approximate solution to the instance with S 12 as its input using Algorithm

IndS et2, which is also a recursive procedure. This is another candidate approximate so-

lution. IndS et1 then compares the two candidate solutions and outputs the one of larger

size.

Now we give an outline of how Algorithm IndS et2 works. Note that the input to IndS et2

is a set S 12 satisfying : for each L ∈ S 12, its horizontal arm intersects the vertical line

x = xmed. We refer to this class of graphs formed by such sets (with every member

intersecting a common vertical line) as vertical L-graphs (a formal definition is provided

in the next chapter also).

This algorithm (on input T forming a vertical L-graph) is essentially Algorithm IndS et1

except that we use L.cy and L.vy values in place of L.cx and L.hx values to sort the L’s,

compute the median ymed and also for computing the partition T = T1 ∪T2 ∪T12, in a way

similar to how IndS et1 computes S 1, S 2, S 12. Precisely, the sets T1,T2,T12 are defined as

follows.

T1 := {L ∈ T : L.vy < ymed}.

t2 := {L ∈ T : L.cy > ymed}.

T12 := {L ∈ T : L.cy 6 ymed 6 L.vy}.
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The set T12 is a set satisfying : the horizontal and vertical arm of each member intersects a

common vertical line x = xmed and a common horizontal line y = ymed respectively. It turns

out (as established below in Lemma 16) that intersection graphs of such sets is a subclass

of co-comparability graphs (complements of comparability graphs) and hence a MIS can

be computed exactly and efficiently over such graphs (see [Gol04]). This is one candidate

solution for G[T ]. Approximate independent sets are computed recursively for each of the

two sub-instances specified by T1 and T2 and their disjoint union is also computed which

forms another candidate solution. As before, we compare the two candidate solutions and

output the better one.

Algorithm 4 IndSet1
Require: A non-empty set S of L’s.

1: if |S | 6 3 then
2: return Compute and return a maximum independent set IS of S
3: else
4: Compute xmed and also the partition S = S 1 ∪ S 2 ∪ S 12.
5: Compute IndS et1(S 1) ∪ IndS et1(S 2) and also IndS et2(S 12).
6: Return IS defined as the larger of the two sets computed before.
7: end if

Algorithm 5 IndSet2
Require: A non-empty set T of Ls satisfying : for some vertical line x = a, each member

of T intersects x = a.
1: if |Y | 6 3 then
2: return Compute and return a maximum independent set IY of Y .
3: else
4: Compute ymed and also the partition Y = Y1 ∪ Y2 ∪ Y12.
5: Compute Junion = IndS et2(Y1) ∪ IndS et2(Y2) and also
6: Compute a maximum independent set J∗12 of Y12.
7: Return JY defined as the larger of the two sets computed before.
8: end if

The following lemma justifies how Step 6 of IndS et2 can be implemented efficiently.

Lemma 16. Suppose S ′ is a set of L’s. Suppose there exist a horizontal line y = b and

a vertical line x = a such that each L ∈ S ′ intersects both y = b and x = a. Then, the

intersection graph of members of S ′ is a co-comparability graph.

Proof. We begin with the following claim.
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Claim 2. A pair L1, L2 ∈ S ′ is independent if and only if cL1 < cL2 or vice versa.

Proof. (of Claim) It is easy to see that if either cL1 < cL2 or cL2 < cL1 , then L1 and L2

are independent. To prove the converse : Assume that L1 and L2 are independent. By

Claim 1, L1.cx , L2.cx and L1.cy , L2.cy. Suppose that neither cL1 < cL2 holds nor

cL2 < cL1 holds. As a consequence, we have one of the following two scenarios : (1)

L1.cx < L2.cx and L1.cy > L2.cy or (2) L1.cx > L2.cx and L1.cy < L2.cy. For Case (1),

we have (L2.cx, L1.cy) ∈ PL1 ∩ PL2 . For Case (2), we have (L1.cx, L2.cy) ∈ PL1 ∩ PL2 . In

both cases, we have used our assumption that both L1 and L2 intersect the lines y = b and

x = a. In either case, L1 and L2 intersect and hence are not independent, a contradiction

to our assumption. �

Consider the complement of the intersection graph G formed by members of S ′. Its

vertices are members of S ′ and there is an edge between two members if and only if they

do not intersect. We denote this graph by GC. We orient each edge (L1, L2) as follows

: it is oriented as ~L1, L2 if cL1 < cL2 and as ~L2, L1 otherwise. Let ~E be the resulting

orientation of E. Thus, to prove that G is a co-comparability graph, it suffices to show

that ∀Li, L j, Lk ∈ S ′, the following is true : ( ~Li, L j ∈ ~E∧ ~L j, Lk ∈ ~E)⇒ ( ~Li, Lk ∈ ~E). But by

the above claim ~Li, L j ⇒ cLi < cL j and ~L j, Lk ⇒ cL j < cLk . It then follows that cLi < cLk .

This implies that (Li, Lk) is oriented as ~Li, Lk by the above claim. This establishes the

transitivity of the orientation and hence G is a co-comparability graph. This completes

the proof of Lemma 16. �

4.3 Analysis of IndSet1 and IndSet2

Denote by I∗ any maximum independent set of S . Similarly, denote by I∗1, I
∗
2 and I∗12

any maximum independent set of S 1, S 2 and S 12 respectively. Denote by I, I1, I2 and I12

the independent set produced by IndS et1 when provided with S , S 1, S 2 and S 12 as input
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respectively.

Lemma 17. |I12| >
|I∗12 |

log |S 12 |
.

Proof. We use Y to denote the set S 12. Let |Y | = m. Let Y1,Y2,Y12 denote the partition of

Y computed in Step 4 of IndS et(S 12). It follows that |Y1| 6
m
2 , |Y2| 6

m
2 and |Y12| 6

m
2 by

our assumption stated in (i) of Claim 1. We prove the lemma by induction on m.

The base case is when |Y | 6 3 or when Y = Y12. For this case, we can solve the instance

optimally since |Y | is either small or its intersection graph is a co-comparability graph.

This takes care of the base case.

Let J∗1, J
∗
2 and , J∗12 denote respectively a maximum independent set of Y1,Y2 and Y12. Let

J1, J2 and J12 denote respectively the solutions returned by IndS et2 when the input is

Y1,Y2 and Y12. Since Y12 induces a co-comparability intersection graph, we have |J12| =

|J∗12|. Recall that I∗12 denote the maximum independent set of S 12. By induction, |J1| >

|J∗1 |
log(m/2) >

|I∗12∩Y1 |

log m−1 , |J2| >
|I∗12∩Y2 |

log m−1 . Thus,

I12 = max{|J12|, |J1| + |J2||}

> max{|I∗12 ∩ Y12|,
|I∗12 ∩ Y1| + |I∗12 ∩ Y2|

log m − 1
}

> max{|I∗12 ∩ Y12|,
|I∗12| − |I

∗
12 ∩ Y12|

log m − 1
}

If |I∗12 ∩ Y12| >
|I∗12 |

log |S 12 |
we are done. Otherwise,

|I∗12| − |I
∗
12 ∩ Y12|

log m − 1
>
|I∗12| − |I

∗
12|/ log m

log m − 1
=
|I∗12|

log |S 12|
.

This establishes the induction step, thereby completing the inductive proof. �

Recall that |S | = n.

Lemma 18. I > |I∗ |
log2 n

.
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Proof. Due to our assumption stated in (i) of Claim 1, we have

|S 1| 6
n
2
, |S 2| 6

n
2
, |S 12| 6

n
2
.

Again the proof is based on induction on n. We have the following.

I1 >
|I∗1 |

log2(n/2)
>
|I∗ ∩ S 1|

(log n − 1)2 (4.1)

I2 >
|I∗2 |

log2(n/2)
>
|I∗ ∩ S 2|

(log n − 1)2 (4.2)

From Lemma 17, we have

I12 >
I∗12

log |S 12|
>
|I∗ ∩ S 12|

log |S 12|
(4.3)

Also, |I| = max{|I12|, |I1| + |I2|} (4.4)

> max{
|I∗ ∩ S 12|

log |S 12|
,
|I∗| − |I∗ ∩ S 12|

(log n − 1)2 }

The last inequality follows from applying Inequalities (5.2), (5.3) and (5.3).

The base case corresponding to n 6 3 follows since we can find a maximum independent

set in constant time.

For an arbitrary n > 3, the inductive argument is as follows : If |I
∗∩S 12 |

log |S 12 |
> |I∗ |

log2 n
, the the

induction step is proved. Otherwise, we have |I∗ ∩ S 12| <
|I∗ | log |S 12 |

log2 n
. Thus,

|I∗| − |I∗ ∩ S 12|

(log n − 1)2 >
|I∗| − |I

∗ | log |S 12 |

log2 n

(log n − 1)2

>
|I∗| − |I∗ |

log n

(log n − 1)2

>
|I∗|

log2 n
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This proves the induction step for the case when |I
∗∩S 12 |

log |S 12 |
< |I∗ |

log2 n
. Hence the proof. �

Lemma 18 establishes an upper bound of (log n)2 on the approximation factor of IndS et1

over L-graphs. By combining this observation with Lemma 15, one deduces that MIS

over B1-VPG graphs can be approximated efficiently within an approximation ratio of

4(log n)2. We prove in the next subsection that IndS et1 runs in polynomial time. This

leads us to the following theorem on approximating a maximum independent set over

B1-VPG graphs.

Theorem 5. There exists polynomial time algorithm which, given a B1-VPG graph G =

(S, E) (S is a set of `’s), outputs an independent set of size at least |I∗ |
4(log n)2 where I∗ denotes

any MIS of G and n = |S|.

4.3.1 Analysis of running time

Let s(m) denote the running time of IndS et2(Y) on an input Y of size m. We have s(m) =

O(1) if m 6 3. If Y induces a co-comparability graph, then s(m) = O(m2). Otherwise,

s(m) 6 2s(m/2)+O(m2). Unravelling the recursion, we deduce that s(m) = O(m2(log m)).

Let t(n) denote the running time of IndS et1(S ) on an input S of size n. We have t(n) =

O(1) if n 6 3. Otherwise, t(n) 6 2t(n/2) + s(n/2) 6 2t(n/2) + O(n2(log n)). Unravel-

ling the recursion, we deduce that t(n) = O(n2(log n)2). Thus, IndS et1(S ) runs in time

O(n2(log n)2) on an input of size n.

4.4 Approximation for equilateral B1-VPG:

Maximum Independent Set in Equilateral B1-VPG

Input: A set S of equilateral L’s such that ∀L ∈ S .

Output: An independent set I ⊆ S such that |I| is maximized.
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Figure 4.1: The grid is for L’s of type 1 whose length varies within the range 2i to 2i+1

We call the above problem as MISL. We call an equilateral L a unit L if le(L) = 1. In

Theorem 7, we establish that the decision version of MISL restricted to unit L’s (and

denoted by MIS 1) is NP-Complete. As a consequence, it follows that the decision version

of MISL is also NP-complete. In the rest of this section, we present a new approximation

algorithm for MISL. Before that, we present a claim which can be justified easily. Let

lmin be the minimum length of any arm in the given set of equilateral L’s. Similarly, lmax

denotes the maximum length of any arm.

Claim 3. Without loss of generality, assume that the input to MISL satisfies lmin = 2.

Proof. We rescale the coordinates of x-axis and y-axis by stretching both of them by a

multiplicative factor of 2/lmin. This makes lmin = 2. �

In view of Lemma 15 and the assumption of Claim 3, it suffices to focus only on equilat-

eral L-graphs formed by a set S of equilateral L’s where lmin(S ) = 2. Define d = lmax/lmin.

The algorithm begins by dividing the input set S into disjoint sets S 1, S 2, . . . , S blog 2dc

where S i = {L ∈ S | 2i 6 le(L) < 2i+1}, ∀i ∈ [blog2 2dc]. This split is to exploit the fact

that lmax/lmin 6 2 when the input is restricted to only members of S i, for any i. Using

arguments similar to those employed in the proof of Lemma 15, one gets the following

claim.
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Lemma 19. Suppose A is an efficient algorithm for solving MIS over the class of equilat-

eral L-graphs satisfying lmax
lmin
6 2, with an approxition ratio at most α(n). Then, there exists

an efficient algorithm B which solves MIS over the class of equilateral L-graphs within a

ratio of α · (log2 2d), where d = lmax
lmin

for the input instance. It also follows that there exists

an efficient algorithm C which solves MIS over the class of equilateral B1-VPG graphs

within a ratio of 4α · (log2 2d). For each of the algorithms, n stands for the size of the

input.

Thus, it suffices to describe how to obtain efficiently a good approximation of MIS for

each i. Consider any fixed but arbitrary i and the corresponding Gi = G[S i]. One proceeds

as follows. We place a sufficiently large but finite grid structure on the plane covering all

members of S i. The grid is chosen in such a way so that grid-length in each of the x and y

directions is 2i. What we get is a rectangular array of square boxes of side length 2i each.

We number the rows of boxes from the bottom and the columns of boxes from left.

We label a box by (r′, c′) if it is in the intersection of r′th row and c′th column of boxes.

We say L is inside a box if its corner cl either lies in the interior of the box or lies on one

of the left vertical boundary edge or the bottom horizontal boundary edge. If L lies inside

a box (r′, c′) we denote it by L ∈ (r′, c′).

We introduce some notations which will be used in subsequent discussions.

Consider a partition of S i defined as follows : For every kr, kc ∈ [3], define

S i,kr ,kc = {L ∈ (r′, c′) | r′ = kr mod 3, c′ = kc mod 3}.

Here, for purposes of simplicity, we use 3 in place of 0 in (mod 3) arithmetic. As an

example S i,1,1 consist of those Ls which belong to boxes indexed by

{(1, 1), (1, 4), ..., (4, 1), (4, 4), ..., (7, 1), (7, 7), ...}.

Thus, we partition input S i into 9 subsets S i,kr ,kc . In Lemma 20, we establish that the
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intersection graph G[S i,1,1] induced by S i,1,1 is a co-comparability graph and hence, by

symmetry, each of the 9 induced subgraphs is a co-comparability graph. Thus, for each

of the 9 induced subgraphs, MIS can be solved exactly in polynomial time. We choose

the largest of these 9 independent sets and return it as the output for G[S i]. Assuming

Lemma 20 (which we prove below) and combining all previous observations, we obtain

the following Theorem 6.

Theorem 6. There is an efficient 36blog 2dc-approximation for MIS over the class of B1-

VPG graphs. Here, d = lmax(S )/lmin(S ) is the ratio (defined before) associated with the

instance.

For proving Lemma 20 we introduce some notations. We consider the set S i,1,1 and the

complement of the corresponding intersection graph. We draw an edge between L1, L2

if L1 and L2 intersect. We denote this graph by G(S i,1,1). Below we prove the following

lemma.

Lemma 20. G(S i,1,1)C is a comparability graph.

Proof. Note that all members of S i,1,1 lie in boxes which are in the intersection of rows

and columns both numbered from {1, 4, 7, . . .}. We prove the claim by showing that there

exist a transitive orientation of the edges of this graph. We describe the orientation in

two steps. First, we orient those edges which connect two L’s whose corner lies in the

same box. In the second step, we orient those edges which connect two L’s located in two

different boxes. For the first step, we employ the following claim which is an immediate

consequence of Lemma 16.

Claim 4. 5 Suppose L1 and L2 are two members such that |L1.cx − L2.cx| 6 2i and

|L1.cy − L2.cy| 6 2i. Then, L1, L2 are independent if and only if cL1 < cL2 or vice versa.

Orientation : Let L1 and L2 be two arbitrary members of S i,1,1 joined by an edge in

G(S i,1,1)C.
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(i) If L1 and L2 are lying in a common box, we employ Claim 4 and orient it from L1

to L2 if cL1 < cL2 and from L2 to L1 otherwise.

(ii) Suppose L1 and L2 lie in different boxes in the same row and let L1.cx < L2.cx

without loss of generality. We orient the edge from L1 to L2.

(iii) Suppose L1 and L2 lie in different rows and let L1.cy < L2.cy without loss of gener-

ality. We orient the edge from L1 to L2.

If the orientation of an edge (L1, L2) is from L1 to L2, we denote it by
−−−−−−→
(L1, L2).

We prove that this orientation is transitive. We prove it by performing a case analysis.

For an edge
−−−−−−→
(L1, L2), we call it h-oriented if vertices L1 and L2 lie in the same row and

we call it v-oriented if L1 lies in a row which is below the row in which L2 is present.

We denote by “case h,v”, the case of 3 vertices L1, L2, L3 such that (L1, L2) is h-oriented,

(L2, L3) is v-oriented. Then we prove that there exist an edge
−−−−−−→
(L1, L3). Similarly, the other

cases “h,h”, “v,v” and “v,h” are defined. We prove here the case "h,h". We handle the

other cases similarly.

Case h, h: In this case we have three sub-cases. They are (1) L1, L2, L3 are in the same

box, (2) Two of the three vertices are in the same box different from the box of the other,

(3) All three are in different boxes.

First, we handle the sub-case (1). L1, L2 are in the same box and they are independent. In

view of Claim 4, this implies that cL1 < cL2 . Similarly, we infer that cL2 < cL3 . Hence, it

follows that cL1 < cL3 and hence (L1, L3) is oriented from L1 to L3. Thus it is transitive.

Now, for the sub-case (2) : either L1, L2 will be in the same box or L2, L3 will be in the

same box. In both the cases L1, L3 will be in different boxes. Since any two points in

different boxes of the same row differ in their x-coordinates by at least 2i+1, the edge

(L1, L3) exists and is directed L1 to L3, thereby proving the required transitivity.

The sub-case (3) : Since L’s lie in different boxes in the same row, L3.cx − L1.cx > 2i+2
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and hence the edge (L1, L3) exists and is directed L1 to L3, thereby proving the required

transitivity. This completes the proof of Case h, h.

Case h, v: Since L1 and L3 are in different rows, we have L3.cy − L1.cy > 2i+1, the edge

(L1, L3) exists and is directed L1 to L3, thereby proving the required transitivity.

Case v, h: In this case L3 is in a box above that of L1 by our hypothesis. As before,

L3.cy − L1.cy > 2i+1 and hence the edge (L1, L3) exists and is directed L1 to L3, thereby

proving the required transitivity.

Case v, v: By our hypothesis L3 is in a box above that of L1. Hence, L3.cy − L1.cy > 2i+2

and transitivity is established. �

4.5 Hardness of MIS on unit L-graphs

b b b

b

b b

bb

b b

b

h

w

Figure 4.2: Planar graph with maximum degree four and its unit L VPG representation.

Theorem 7. The decision version of Maximum Independent Set (MIS1) on unit L-graphs

is NP-complete.

Proof. Let G = (V, E) be a planar graph with maximum degree four. It is known that

Maximum Independent Set on a planar graph with maximum degree four is NP-complete

[GJ79]. We construct an unit L-VPG representation of a planar graph with maximum

degree four (G′ = (V ′, E′)) such that a maximum independent set in G′ has a one to one

correspondence to a maximum independent set of G, thereby proving our claim. Our

proof is motivated by [KN90].
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It is known that every planar graph of degree at most four can be drawn on a grid of linear

size such that the vertices are mapped to points of the grid and the edges to piecewise

linear curves made up of horizontal and vertical line segments whose endpoints are also

points of the grid [Sch90]. It is reasonable to assume that a path between two vertices of

G, if exists, use horizontal and vertical segments which have length more than one on the

grid (otherwise it is possible to consider fine enough grid such that this property holds).

Let R(w, h) be the rectangular grid where the graph G has been drawn. We denote the

width and height of the grid by w and h respectively. Let us consider δ = 1/2h. Now for

each vertex of the graph G, draw an unit length L whose corner point has co-ordinates

(x − δy, y), where in the grid R(w, h) the vertex is positioned at (x, y). Let Pe be the path

on the grid corresponding to edge e. Also let |Pe| denote the number of intermediate grid

vertices on the path Pe. Now for every path Pe, where e = (u, v) ∈ E(G), if |Pe| is even

then for every intermediate grid vertex (x, y) on the path Pe draw a unit length L whose

corner lie on (x − δy, y). If |Pe| is odd then for every intermediate grid vertex (x, y) except

last one on the path Pe draw an unit length L whose corner lie on (x − δy, y). If the last

intermediate grid vertex (x, y) on the path is on a vertical segment of Pe then draw two L’s

as follows one L has corner point at (x − δy, y − ε) and other L has corner at (x − δy, y)

where ε > 0 is a small number. If the last intermediate grid vertex (x, y) on the path is on a

horizontal segment of Pe then draw two L’s as follows one L has corner point at (x−δy, y)

and other L has corner at (x − δy − ε, y) where ε > 0 is a small number. We denote this

graph as G′. From the construction, it is clear that it is an intersection graph of unit L’ s.

Clearly G′ is obtained from G by subdividing every edge e with even number of new

vertices (even subdivision). Let us denote the set of new vertices corresponding to an

edge by Ve. Clearly V ′ = V ∪e∈E(G) Ve.

Claim 5. Let H denote a graph and H′ be its even subdivision. There exists an indepen-

dent set of H of size k if and only if there exists an independent set of size k+
∑

e∈E(H) |Ve|/2

in H′.
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Proof. Backward implication is easy to observe. Now we prove the other direction. Let

us assume there exists an independent set I of k +
∑

e∈E(H) |Ve|/2 in H′. If |I − I ∩ V(H)| <∑
e∈E(H) |Ve|/2 remove all the subdivision vertices from the set. Otherwise |I − I ∩V(H)| >∑
e∈E(H) |Ve|/2. Notice that |Ve| is even for each of the edge e ∈ H. An independent set

of H′ contains at most half of the vertices of Ve. Hence |I − I ∩ V(H)| =
∑

e∈E(H) |Ve|/2.

Hence throw all the subdivision vertices as before. Hence the claim. �

Thus from the above claim we have α(G′) = α(G)+
∑

e∈E(G) |Ve|/2. Thus we have exhibited

a one to one relation between independent set of G′ and independent set of G. Hence the

proof. �
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Chapter 5

Improved Approximation of MIS for

B1-VPG graphs

In this chapter, we present improved approximation algorithms for MIS over B1-VPG

graphs. In view of Lemma 15, it suffices to focus only on L-graphs. The algorithm is

recursive and is essentially the one presented in Chapter 4 except that we design and

employ a new exact algorithm for MIS over vertical L-graphs (that is, for G[S 12]). The

previous algorithm of Chapter 4 employed a divide-and-conquer paradigm based recur-

sive algorithm for this purpose. This exact and efficient algorithm for vertical L-graphs

leads us to the improved approximation guarantee of O(log n) as against the previous one

of O((log n)2). Before we proceed further, we recall some definitions and assumptions.

5.0.1 Definitions and Assumptions

We state below some definitions and assumptions employed for the rest of this paper

(employed in the previous chapter also).

Definition 4. For a set S of (not necessarily distinct) real numbers, we define its median

to be (i) the n+1
2 -th smallest element if n is odd and (ii) the average of n

2 -th and ( n
2 + 1)-th
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smallest elements if n is even (with ties being resolved arbitrarily or as explained in the

specific application in sorting the numbers).

Assumption (1) : Without loss of generality. the following holds throughout. If L is a

set of L’s, then L1.cx , L2.cx and L1.cy , L2.cy, for any pair of distinct L1, L2 ∈ L. That

is, no two L’s from L lie on the same vertical or horizontal line.

A formal justification of this Assumption (1) is provided at the end of this chapter.

5.1 O(log n)-approximate algorithm for B1-VPG graphs

As mentioned in the beginning of this chapter, we focus only L-graphs. We establish

below that solving MIS approximately for L-graphs reduces to solving MIS exactly over

vertical L-graphs which are defined below.

Definition 5. A set L′ of L-shaped objects is said to form a vertical L-graph if there exists

a vertical line x = a intersecting every L ∈ L′.

Outline: The broad outline of the improved algorithm is divide and conquer and is similar

to the one employed in Chapter 4. We sort the objects in L in an increasing order of their

cx values. Define xmed to be the median of the sorted values. Then, we compute the sets

S 1, S 2 and S 12 defined as follows.

S 1 := {L ∈ L : L.hx < xmed}.

S 2 := {L ∈ L : L.cx > xmed}.

S 12 := {L ∈ L : L.cx 6 xmed 6 L.hx}.

The sets S 1, S 2 and S 12 form a partition of L. Also, any pair of L1 ∈ S 1, L2 ∈ S 2 are in-

dependent. In addition, members of S 12 induce a vertical L-graph. The problem is solved
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by applying the recursive Algorithm IndS et1. IndS et3(L) is an exact algorithm for MIS

applied when L induces a vertical L-graph. This algorithm (on input L) computes the

partition L = S 1 ∪ S 2 ∪ S 12. Then, it recursively computes an approximately optimal

solution for each of S 1 and S 2 and computes their disjoint union. This is one candidate

approximate solution. Then, IndS et3 computes exactly a MIS of G[S 12]. This is another

candidate approximate solution. IndS et1 then compares the two candidate solutions and

outputs the one of larger size. The following theorem establishes that designing an effi-

Algorithm 6 IndSet1
Require: A non-empty set L of L’s.

1: if |L| 6 3 then
2: return Compute and return a maximum independent set I(L) of L
3: else
4: Compute xmed and also the partition L = S 1 ∪ S 2 ∪ S 12.
5: Compute IndS et1(S 1) ∪ IndS et1(S 2) and also IndS et3(S 12).
6: Return I(L) defined as the larger of the two sets computed before.
7: end if

cient, α(n)-approximate algorithm for vertical L-graphs leads to the design of an efficient,

α(n)(log n)-approximate algorithm for L-graphs. In what follows, we use I∗(S ) to denote

a MIS of the graph induced by S .

Theorem 8. Let α(n) be an arbitrary non-decreasing function of n. Suppose IndS et3 is an

an efficient, α(n)-approximate MIS algorithm over vertical L-graphs. Then, IndS et1 is an

efficient, α(n)(log n)-approximate MIS algorithm over L-graphs. For both approximation

algorithms, n stands for the size of the input.

Proof. We have the following : |S 1| 6
n
2 , |S 2| 6

n
2 . We prove the above claim using

induction on n. For the base case of n 6 3, we can obtain a MIS in constant time. Now

consider the case when n > 3. Let I1 = IndS et1(S 1), I2 = IndS et1(S 2) and I12 =
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IndS et2(S 12). Let I∗1 = I∗(S 1), I∗2 = I∗(S 2) and I∗12 = I∗(S 12). By induction hypothesis,

|I1| >
|I∗1 |

α(n/2) log(n/2)
>

|I∗ ∩ S 1|

α(n/2) log(n/2)
, (5.1)

|I2| >
|I∗2 |

α(n/2) log(n/2)
>

|I∗ ∩ S 2|

α(n/2) log(n/2)
, (5.2)

|I12| >
|I∗ ∩ S 12|

α(n)
. (5.3)

Thus, IndS et1(L) outputs a solution I satisfying

|I| = max{|I12|, |I1| + |I2|} (5.4)

> max{
|I∗ ∩ S 12|

α(n)
,
|I∗ ∩ S 1| + |I∗ ∩ S 2|

α(n/2) log(n/2)
}

= max{
|I∗ ∩ S 12|

α(n)
,
|I∗| − |I∗ ∩ S 12|

α(n/2) log(n/2)
}.

If |I
∗∩S 12 |

α(n) >
|I∗ |

α(n) log n , we are done. Otherwise, we have

|I∗ ∩ S 12| 6
|I∗|

log n
(5.5)

It follows from Inequalities (5.4) and (5.5) that

|I∗| − |I∗ ∩ S 12|

α(n/2) log(n/2)
>

|I∗| − |I∗ |
log n

α(n/2) log(n/2)
=

|I∗|
α(n/2) log n

>
|I∗|

α(n) log n
(5.6)

The last inequality follows since α(n) is a non-decreasing function. �

In the next section, we present an efficient and exact algorithm for finding a MIS in vertical

L-graphs. As a consequence, we obtain the following conclusion.

Theorem 9. IndS et1 is an efficient, (log n)-approximate algorithm for MIS on L-graphs.

As a consequence, one gets an efficient 4(log n)-approximate MIS algorithm over B1-VPG

graphs.
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Proof. Follows from Theorem 8 (by setting α(n) = 1 for every n), since (as is shown in

the following subsection) MIS on vertical L-graphs can be solved exactly in polynomial

time. �

5.1.1 An exact algorithm for MIS on vertical L-graphs

Let S be a set of L’s inducing a vertical L-graph G. We present an exact algorithm for

finding a MIS in G. The algorithm is recursive and efficiency is achieved by implementing

it using the Dynamic Programming paradigm. It involves computing a MIS in each of a

polynomial number of smaller subproblems to get a MIS for the given input. The main

intuition behind the efficiency is an appropriate formulation of the recursion which helps

us to bound the number of subproblems that need to be solved eventually.

We assume that each subproblem S comes equipped with two L’s one on the top of all

members of S (and referred to as a cap) and the other one (referred to as a cushion) is

to the left and bottom of all members of S . Both cap and cushion are not members of

S . There are two advantages in introducing cap and cushion: it provides a brief and

concise description of the subproblems, it also helps to obtain a simple derivation of the

polynomial bound on the number of subproblems. The two notions and some others are

introduced below. They play a very useful role in obtaining a concise description of the

recursive computation of optimal solutions.

Definition 6. Let L, L′ be two arbitrary L’s. We say that L <x L′ if L.cx < L′.cx. We say

that L <y L′ if L.cy > L′.cy.

Definition 7. Let L, L′ be two arbitrary L’s. We say that L′ is entirely right and below of

L if (i) L <x L′, (ii) L <y L′ and (iii) L′.vy < L.cy. We say that L′ is entirely right and

above of L if cL < cL′ .

Definition 8. Let S be an arbitrary set of Ls such that each member intersects a common

vertical line x = a. A (cap, cushion) of S is any pair (L1, L2) of L’s each intersecting x = a

59



such that (i) each L′ ∈ S is entirely right and below of L1, (ii) each L′ ∈ S is entirely right

and above of L2, (iii) L2 is entirely right and below of L1.

Definition 9. Let S be an arbitrary set of Ls such that each member intersects a common

vertical line x = a. Let (L1, L2) be a pair of L’s also intersecting x = a such that L2

is entirely right and below of L1. We define the subset of S capped and cushioned by

(L1, L2) to be the set of those L ∈ S such that (i) L is entirely right and below L1 and (ii)

L is entirely right and above L2. We denote this set by SL1,L2 .

Definition 10. Given a S with a cap L and a L′′ ∈ S ∪ {L}, we use SL′′ to denote the

subset of those L′ ∈ S which are smaller or equal to L′′ with respect to <y ordering, that

is, the set {L′ ∈ S : L′ <y L′′ ∨ L′ = L′′}. In particular, we have S = SLs always where Ls

is the last element of S with respect to <y ordering. Also, SL = ∅ always.

Definition 11. For a set S capped and cushioned by (L, L′) with Ls being the last element

(with respect to <y ordering), let LA(S, Ls) denote the set of those L′′ ∈ S ∪ {L} such that

either (i) L′′ = L or (ii) L′′ ∈ S \ {Ls} and Ls is entirely right and below L′′.

Definition 12. For a set S inducing a vertical L-graph G, capped and cushioned by

(L, L′), we use Opt(S, L, L′) to denote any MIS in G.

Definition 13. For a finite sequence (A1, . . . , An) of finite sets, let max{A1, . . . , Am} denote

the first set of maximum size in the sequence.

Our algorithm is recursive and is based on the following recursion satisfied by Opt(S, L, L′).

The proof of the following lemma is provided in the appendix.

Lemma 21. Let S, L, L′ be as in the previous definition with Ls being the last memebr of

S with respect to <y ordering. Then, Opt(S, L, L′) equals (in size)

max
{

Opt(S \ {Ls}, L, L′), max
L′′∈LA(S,Ls)

{
{Ls} ∪ Opt(SL′′ , L, L′) ∪ Opt(SL′′,Ls , L

′′, Ls)
}}
,

provided |S| > 2. Otherwise, Opt(S, L, L′) = S.
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Proof. For each L′′ ∈ LA(S, Ls) (in the recursion given above), the set corresponding to

L′′ (in the max{.} expression) is an independent set in G[S]. Let I∗ be a fixed but arbitrary

MIS in G[S]. Consider the following three cases.

Case 1 Ls < I∗. Then, it should be the case that I∗ is a MIS in G[S \ {Ls}]. Also, (L, L′)

continue to cap-cushion S \ {Ls}. Hence I∗ = Opt(S \ {Ls}, L, L′).

Case 2 Ls ∈ I∗ and LA(S, Ls) ∩ I∗ = ∅. When L′′ = L, SL′′ = ∅ and it should also be that

I∗ \ Ls is a MIS in G[SL,Ls] where SL,Ls is capped and cushioned by (L, Ls).

Case 3 Ls ∈ I∗ and LA(S, Ls) ∩ I∗ , ∅. Then, it should be that LA(S, Ls) , {L}. Let L′′

be the last member of LA(S, Ls) ∩ I∗. In that case, I∗ is the disjoint union of {Ls},

I∗∩SL′′,Ls and I∗∩SL′′ . Also, I∗∩SL′′,Ls should be a MIS in G[SL′′,Ls] with (L′′, Ls)

as its cap-cushion. Similarly, I∗ ∩SL′′ should be a MIS in G[SL′′] with (L, L′) as its

cap-cushion.

This completes the proof. �

SupposeS is a set of n members inducing a vertical L-graph with x = a being the common

vertical line. Let (L1, L2, . . . , Ln) be the linear ordering of S defined by Li <y L j for every

i < j. Choose a cap and cushion (L0, Ln+1) for S. It is easy to see that one can always

compute such a pair in linear time. The correctness and the claim of polynomial time

bound are based on the following series of claims whose proofs are provided in the ap-

pendix. Let T denote the unique recursion tree capturing the recursion based computation

of Opt(S, L0, Ln+1).

Claim 6. The problem size (|S|) keeps decreasing along every path in T until it reaches

the base case |S| 6 1.

Proof. Each of the sets S \ {Ls},S
L′′ ,SL′′,Ls has a size which is less than that of S. �

Claim 7. Each of the sets S defining a subproblem is a subset of the original input

{L1, . . . , Ln}.
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Proof. The proof is based on the depth of recursion from the root of T . The claim is

obviously true for the root. Each of the sets S \ {Ls},S
L′′ ,SL′′,Ls is a subset of S which is

the input for the current subproblem. �

Claim 8. Every pair (L, L′) of (cap,cushion) that arises in any subproblem generated by

the above recursion is of the form (Li, L j) where 0 6 i < j 6 n + 1.

Claim 9. Each of the sets S′ defining a subproblem is a set of the form SLk
Li,L j

for some

0 6 i 6 k < j 6 n + 1 and S = {L1, . . . , Ln}.

As a consequence, we obtain the following corollary.

Claim 10. There are at most n3 distinct subproblems that are actually solved in the re-

cursion formulation.

Continuing further, we obtain the following theorem.

Theorem 10. There exists an O(n4) time exact algorithm for finding a MIS in vertical

L-graphs.

Proof. We employ the Dynamic Programming by first enumerating all possible subprob-

lems and then find solutions to these subproblems in a bottom-up approach starting with

the base cases. Computation of the sets SLk
Li,L j

and finding the sizes of optimum solu-

tions can be combined to yield an O(n4) time algorithm for solving MIS in vertical L-

graphs. �

5.2 Appendix 1: Proof of Assumption (1) :

Two sets L,L′′ of L’s are said to be equivalent if G[L] and G[L′′] are isomorphic. The

proof of Assumption (1) is achieved in two steps. First, given a set L = {L1, . . . , Ln}, we

prove that there exists an efficiently computable and equivalent (to L) L′ = {L′1, . . . , L
′
n}
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such that (i) L′i .cy = Li.cy for each i and (ii) L′i .cx , L′j.cx for every i , j. By symmetrical

arguments, it also follows that there exists an efficiently computable and equivalent (to

L′) L′′ = {L′′1 , . . . , L
′′
n } such that (i) L′′i .cx = L′i .cx for each i and (ii) L′′i .cy , L′′j .cy for

every i , j. L′′ is the required set of L’s. By symmetry, it suffices to prove only the

existence and efficient computation of L′. Existence and computation of L′′ (from L′) is

similar. Existence and efficient computation of L′ follows from the following two claims.

Claim 11. For every finite set L = {Li}i of L’s, there exists an efficiently computable and

equivalent La = {La
i }i such that (A) La

i .hx , La
j .cx for every i , j, (B) La

i .cy = Li.cy for

every i and (C) vertical and horizontal arms of La
i have the same respective lengths as

those of Li, for every i.

Proof. Let x1 < . . . < xm < ∞ = xm+1 be the sorted list of m distinct reals (after ignoring

multiple occurrences) that appear in {Li.cx}i. Define, for k > 2, αk = xk − xk−1 and

α = min{αk : k > 2}. For every i, define βi as follows : If xk < Li.hx < xk+1 for some

k 6 m, then define βi to be min{Li.hx− xk, xk+1 − Li.hx}. If Li.hx = xk for some 2 6 k 6 m,

define βi to be αk. Let β be the minimum of βi over all i. Define γ to be min{ α2n ,
β

2n } where

n = |L|. We have γ > 0.

For every i, define La
i as below : Let Li.cx = xk. La

i is the same as Li (with exactly same

length vertical and horizontal arms) except that its corner point is shifted in the negative x

direction by kγ distance. That is, La
i is characterized by (xk − kγ, Li.cy, Li.hx − kγ, Li.vy).

That La satisfies condition (A) can be established as follows : To have La
i .hx = La

j .cx for

some i , j, we should have Li.cx = xr < xt = L j.cx for some r < t. Otherwise, La
j .cx 6

L j.cx = xt 6 xr < La
i .hx. Suppose Li.hx < xt. Then, La

i .hx 6 Li.hx < La
j .cx. If Li.hx > xt,

then, La
j .cx 6 xt < La

i .hx. If Li.hx = L j.cx, then, La
j .cx = xt − tγ < xt − rγ = La

i .hx.

We establish that La and L are equivalent by establishing that for every i , j, La
i and La

j

are independent if and only if Li and L j are independent. Fix an arbitrary i , j. Without

loss of generality, assume that Li.cx 6 L j.cx.
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Suppose, Li.cx = L j.cx = xk. Then, La
i .cx = La

j .cx = xk − kγ. Clearly, La
i and La

j intersect

if and only if Li and L j intersect. Hence, from now onwards, assume that Li.cx < L j.cx.

Let L j.cx = xk where k > 2.

If Li.hx < L j.cx, then Li and L j are independent. Also, La
j .cx = L j.cx − kγ > L j.cx − β

2 >

Li.hx > La
i .hx and hence La

i and La
j are independent.

Suppose we have L j.cx 6 Li.hx. We have La
j .cx = xk−kγ > xk−

α
2 > xk−1 > Li.cx > La

i .cx.

If L j.cx < Li.hx, then La
i .hx > Li.hx − kγ > Li.hx − β

2 > L j.cx > La
j .cx. If L j.cx = Li.hx,

then La
i .hx > xk − (k−1)γ > xk − kγ = La

j .cx. In any case, we have La
i .cx < La

j .cx < La
i .hx.

Hence, La
i and La

j intersect if and only if La
j .cy 6 La

i .cy 6 La
j .vy. Similarly, Li and L j

intersect if and only if L j.cy 6 Li.cy 6 L j.vy. In other words, La
i and La

j intersect if and

only if Li and L j intersect. �

Claim 12. For every La mentioned before, there exists an efficiently computable and

equivalent L′ = {L′i}i such that (D) L′i .cx , L′j.cx for every i , j, (E) L′i .cy = La
i .cy for

every i and (F) vertical and horizontal arms of La
i have the same respective lengths as

those of L′i for every i.

Proof. Let (xk)k, (αk)k, (βi)i, α and β be defined as in the proof of Claim 11 with L = La.

For every i, define δi to be La
i .hx − La

i .cx and define δ to be mini δi. Redefine γ to be

min{ α2n ,
β

2n ,
δ

2n } where n = |L|. We have γ > 0.

Define L′ in terms of La as follows. Fix an arbitrary k and order all those L’s in La

having L.cx = xk as follows. If La
1, L

a
2 are two such members, then La

1 < La
2 (or vice

versa) if La
1.cy > La

2.cy. If La
1.cy = La

2.cy, then La
1 < La

2 (or vice versa) if La
1.hx < La

2.hx.

If La
1.cy = La

2.cy and La
1.hx = La

2.hx, then La
1 < La

2 (or vice versa) if La
1.vy < La

2.vy.

Surely, any pair of distinct L’s differ in at least one of the four values. Let (La
1, L

a
2, . . . , L

a
s)

be the resulting total ordering. For every i 6 s, define L′i as the L characterized by

(La
i .cx + (i − 1)γ, La

i .cy, La
i .hx + (i − 1)γ, La

i .vy). Note that L′i .cx − La
i .cx 6 (n − 1)γ 6

min{α2 ,
β

2 ,
δ
2 } for every i. Similarly, L′i .hx − La

i .hx 6 min{α2 ,
β

2 ,
δ
2 } for every i.
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That Condition (D) is satisfied by L′ can be seen as follows. Fix an arbitrary i , j

satisfying La
i .cx = xr 6 xt = La

j .cx. If xr < xt, then L′i .cx 6 xr + α
2 < xt 6 L′j.cx. If xr = xt,

let La
i < La

j (without loss of generality) with respect to the ordering associated with xr.

Then, it follows from the definition that L′i .cx < L′j.cx.

We only need to show that for every i , j, L′i and L′j are independent if and only if La
i

and La
j are independent. Fix an arbitrary i , j. Without loss of generality, assume that

La
i .cx 6 La

j .cx.

Suppose La
i .cx = La

j .cx = xk with La
i < La

j (without loss of generality) with respect to the

ordering associated with xk. There are two sub-cases.

(i) Suppose La
i .cy > La

j .cy. Then, La
i and La

j intersect if and only if La
j .cy 6 La

i .cy 6 La
j .vy.

Also, L′i and L′j intersect if and only if L′j.cy = La
j .cy 6 L′i .cy = La

i .cy 6 L′j.vy = La
j .vy,

since L′i .cx 6 L′j.cx 6 xk + δ
2 < La

i .hx 6 L′i .hx. Thus, La
i and La

j intersect if and only if L′i

and L′j intersect.

(ii) Suppose La
i .cx = La

j .cx = xk and La
i .cy = La

j .cy. Then, La
i and La

j intersect. Also,

L′i .cx 6 L′j.cx < L′i .hx. Hence, L′i and L′j also intersect.

Hence, from now on, assume that La
i .cx = xr < xt = La

j .cx. If La
i .hx < La

j .cx, then La
i

and La
j are independent. Also, L′i .hx 6 La

i .hx +
β

2 < La
j .cx 6 L′j.cx. Hence, L′i and L′j are

independent.

The only remaining case (follows from Assumption (A) satisfied by La) is that La
i .cx =

xr < xt = La
j .cx < La

i .hx. Then, La
i and La

j intersect if and only if La
j .cy = L′j.cy 6 La

i .cy =

L′i .cy 6 La
j .vy = L′j.vy. Also, L′i .cx 6 xr + α

2 < xt 6 L′j.cx 6 xt +
β

2 < La
i .hx 6 L′i .hx. Hence,

La
i and La

j intersect if and only if L′i and L′j intersect. This establishes that La is equivalent

to L′. �
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Chapter 6

Approximation of MIS for B2-VPG

graphs

In this chapter, we present approximation algorithms for MIS over B2-VPG graphs. Recall

(from Section 1.2) that each member of a set defining a B2-VPG graph is one of only

sixteen possible shapes with exactly 2 bends. In particular, recall that two specific shapes

of these are referred to as Z- and U-shapes. We refer to the class of graphs formed by a

collection of Z-shapes as Z-graphs. The class of U-graphs is similarly defined. Similarly,

one can define the class of vertical U graphs as the class of graphs formed by collections

of U-shapes each of which intersects a common vertical line x = a. The class of vertical

Z-graphs is similarly defined.

As we will see later, it suffices to focus only on designing efficient approximation algo-

rithms for U-graphs and Z-graphs. Each of these algorithms is recursive and is similar to

the one presented in Chapter 5 (with appropriate changes). It calls for the design of ap-

proximate algorithms for MIS over each of the vertical U-graphs, Z- graphs. We design

a 2-approximate algorithm for vertical U-graphs and also design a 2(log n)-approximate

algorithm for vertical Z-graphs. These efficient, approximate algorithms for vertical U-

, Z-graphs lead us to efficient algorithms respectively for U-, Z-graphs, with respective
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approximation guarantees of 2(log n) and 2(log n)2. Before we proceed further, we recall

some definitions and assumptions.

Recall the definition of the median introduced in the previous chapters. The following

assumption is used for the rest of this chapter. A formal justification of this Assumption

(2) is provided at the end of this chapter.

Assumption (2) : Without loss of generality. the following holds throughout. If U is a

set of U’s, then U1.cx , U2.cx and U1.cy , U2.cy, for any pair of distinct U1,U2 ∈ U.

That is, no two U’s fromU lie on the same horizontal line. Also, the left vertical arms of

no two U’s lie on the same vertical line.

6.1 Preliminaries

B2-VPG graphs are formed by the following 8 shapes shown in the figure. The first four

of these shapes are equivalent in the sense that one can obtain any of these shapes from

any other by either or both of a 90o-rotation and a reflection about X- and Y- axes, as

the case demands. Similarly, the last four are equivalent. For ease of description, we

intentionally refer to the fourth of the first four shapes as a Z shape. We refer to the last

of the last four shapes as a t shape. We focus only on Z and t shapes. Other six shapes

are treated similarly, in view of the symmetries between them. Both of these shapes

has only one horizontal arm and two vertical arms, one on the left side and the other on

right side. The intersection of the horizontal arms with the two vertical arms are called

the corner points and the left corner point is denoted by c1 and the right corner point is

denoted by c2. We use c1x, c1y, c2x, c2y to denote respectively the x, y-coordinates of the

corner points c1 and c2. The y-coordinates of the tips of the left and right vertical arms

of a t are denoted respectively by ly and ry. The y-coordinates of the tips of the top and

bottom vertical arms of a Z shape are denoted respectively by ty and dy. Any t object

is completely characterized by the six-tuple (c1x, c1y, c2x, c2y, ly, ry) and any Z object is
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completely characterized by (c1x, c1y, c2x, c2y, ty, dy).

Depending on the shape of objects, we introduce new classes of graphs.

Definition 14. A Z-graph is the intersection graph of Z-shaped geometric objects in the

plane.

Definition 15. A U-graph is the intersection graph of t-shaped geometric objects in the

plane.

6.2 Approximation algorithms for B2-VPG graphs

Using the symmetries between t- and Z-shaped objects and the other six objects (as

described in Section 6.1), one can obtain the following analogue of Lemma 15 for B2-

VPG graphs.

Lemma 22. If A and B are two efficient algorithms for solving MIS approximately over

U-graphs and Z-graphs respectively, each with a performance guarantee bounded by

α(n), then there exists an efficient algorithm C for solving MIS over B2-VPG graphs, with

a performance guarantee at most 8α(n). Here, n stands for the size of the input for both

algorithms.

Proof. The symmetries between U- and Z-shaped objects implies that for each of the eight

shapes that a path with two bends can take, MIS can be efficiently approximated within

a multiplicative factor of α(n) for the class of intersection graphs induced by objects of

that specific shape. By applying an appropriate approximation algorithm over each of the

eight induced subgraphs and choosing the best of the eight solutions, one can solve MIS

for any B2-VPG graph within a factor of 8α(n). �

In Section 6.3, it is shown that MIS can be efficiently approximated over U-graphs within

a multiplicative factor of 2(log n). In Section 6.4, it is shown that MIS can be efficiently
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approximated over Z-graphs within a multiplicative factor of 2(log n)2. Now, an applica-

tion of Lemma 22 leads us to the following conclusion.

Theorem 11. There exists an efficient, 16(log n)2-approximate algorithm for MIS over the

class of B2-VPG graphs.

6.3 Approximation algorithm for U-graphs

We use the phrase U-graphs to denote the class of all U-graphs. A subclass of U-graphs

is the vertical U-graphs.

Definition 16. A set U of t-shaped objects is said to form a vertical U-graph if there

exists a vertical line x = a intersecting every U ∈ U.

The approximate MIS algorithm IndS et1 designed for L-graphs also works for U-graphs.

The reason is a t-shape is the same as a L-shape except for the vertical arm added at the

tip of the horizontal arm of a L. The algorithm is the same. As for computing the median

and partitioning, the U.c1x and U.c2x values take respectively the roles of L.cx and L.hx

values. As before, we compute the median and partitionU intoU = S1∪· S2∪· S12 where

S1 := {U ∈ U : U.c2x < xmed}.

S2 := {U ∈ U : U.c1x > xmed}.

S12 := {U ∈ U : U.c1x 6 xmed 6 U.c2x} and

(i) the members of S12 induce a vertical U-graph, (ii) any U1 ∈ S1 and U2 ∈ S2 are

independent. We compute and combine approximate solutions of G[S1] and G[S2] to get

one candidate solution and compute a 2-approximate solution on G[S12] to get a 2(log n)-

approximate solution over G[U]. This hinges on the fact (which can be verified easily)

that Theorem 8 is also applicable to U-graphs. This is stated explicitly below.
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Theorem 12. Let α(n) be an arbitrary non-decreasing function of n. Suppose IndS et2(U)

is an an efficient, α(n)-approximate MIS algorithm over vertical U-graphs. Then, IndS et1(U)

is an efficient, α(n)(log n)-approximate MIS algorithm over U-graphs. For both approxi-

mation algorithms, n stands for the size of the input.

In the following subsection, we present an efficient and 2-approximate algorithm for ver-

tical U-graphs. As a consequence, we obtain the following conclusion.

Theorem 13. IndS et1(U) is an efficient, 2(log n)-approximate algorithm for MIS on U-

graphs.

Proof. Follows from Theorem 12 (by setting α(n) = 2 for every n), since (as is shown in

the following subsection) a 2-approximation of MIS on vertical U-graphs can be obtained

in polynomial time. �

6.3.1 2-approximation of MIS on vertical U-graphs

We begin with some definitions.

Definition 17. A setU of t-shaped objects is said to form a LU-graph (RU-graph) if the

left (right) vertical arm is as long as the right (left) vertical arm, for each U ∈ U.

Definition 18. A setU of t-shaped objects is said to form a vertical LU-graph if the in-

duced graph is both a vertical U-graph and a LU-graph. vertical RU-graphs are similarly

defined.

LetU induce a vertical U-graph. We decompose it intoU = Ul ∪ Ur whereUl (Ur) is

the set of those U ∈ U whose left (right) vertical arm is as long as its right (left) vertical

arm. Those Us for which the two vertical arms are of equal length are placed in both. We

let G = G[U], Gl = G[Ul] and Gr = G[Ur]. We also let I∗, I∗l and I∗r denote respectively

an arbitrary but fixed MIS in each of G, Gl and Gr.
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For each of the classes of vertical LU-graphs and vertical RU-graphs, we present an ef-

ficient and exact algorithm for finding a MIS in a given input from that class. Applying

this to each of G[Ul] and G[Ur], we deduce that one can efficiently find a MIS for each

of these graphs. We have either |I∗ ∩ Ul| > |I∗|/2 or |I∗ ∩ Ur| > |I∗|/2. We also have

|I∗l | > |I
∗ ∩Ul| and also |I∗r | > |I

∗ ∩Ur|. As a result, we have max{|I∗l |, |I
∗
r |} > |I

∗|/2. Thus,

computing a MIS in each of Gl and Gr and choosing the best of these two solutions, gets

us a 2-approximation to a MIS in G.

Since LU-graphs and RU-graphs are the same (since one can go from one representation

to the other one by a reflection about the y-axis), it suffices to present an exact MIS

algorithm for the class of vertical LU-graphs. This exact algorithm is based on Dynamic

Programming (as in the case of vertical L-graphs) and is similarly based on a recursive

computation of MIS. We have analogues of Definitions 5 through 11 and Lemma 21 for

the case of U’s inducing a vertical LU-graph. There are subtle differences in some of the

analogous definitions in order to take into account the presence of a vertical arm at the

right corner point.

Definition 19. Let U,U′ be two arbitrary t’s. We say that U <x U′ if U.c1x < U′.c1x.

We say that U <y U′ if U.c1y > U′.c1y.

Definition 20. Let U,U′ be two arbitrary t’s. We say that U′ is entirely right and below

of U if (i) U <x U′, (ii) U <y U′ and (iii) U′.ly < U.c2y. We say that U′ is entirely right

and above of U if (i) U <x U′, (ii) U′ <y U, (iii) either U′.c2x < U.c2x or U.ry < U′.c2y.

Definition 21. Let S be an arbitrary set of Us such that each member intersects a common

vertical line x = a. A (cap, cushion) of S is any pair (U1,U2) of t’s each intersecting

x = a such that (i) each U′ ∈ S is entirely right and below of U1, (ii) each U′ ∈ S is

entirely right and above of U2, (iii) U2 is entirely right and below of U1.

Definition 22. Let S be an arbitrary set of Us such that each member intersects a common

vertical line x = a. Let (U1,U2) be a pair of U’s also intersecting x = a such that U2

is entirely right and below of U1. We define the subset of S capped and cushioned by
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(U1,U2) to be the set of those U ∈ S such that (i) U is entirely right and below of U1 and

(ii) U is entirely right and above of U2. We denote this set by S U1,U2 .

Definition 23. Given a S and a cap U, and a U′′ ∈ S ∪ {U}, we use SU′′ to denote the

subset of those U′ ∈ S which are smaller or equal to U′′ with respect to <y ordering, that

is, the set {U′ ∈ S : U′ <y U′′ ∨ U′ = U′′}. In particular, we have S = SUs always where

Us is the last element of S with respect to <y ordering. Also, SU = ∅ always.

Definition 24. For a setS capped and cushioned by (U,U′) with Us being the last element

(with respect to <y ordering), let LA(S,Us) denote the set of those U′′ such that either (i)

U′′ = U or (ii) U′′ ∈ S \ {Us} and Us is entirely right and below U′′.

Definition 25. For a set S inducing a vertical LU-graph G, capped and cushioned by

(U,U′), we use Opt(S,U,U′) to denote any MIS in G.

Our algorithm is recursive and is based on the following recursion satisfied by Opt(S,U,U′).

The proof of this lemma is similar to that of Lemma 21 and is skipped.

Lemma 23. Let S,U,U′ be as in the previous definition with Us being the last memebr

of S with respect to <y ordering. Then, Opt(S,U,U′) equals (in size)

max
{

Opt(S \ {Us},U,U′), max
U′′∈LA(S,Us)

{
{Us} ∪ Opt(SU′′ ,U,U′) ∪ Opt(SU′′,Us ,U

′′,Us)
}}
,

provided |S| > 2. Otherwise, Opt(S,U,U′) = S.

Suppose S is a set of n members inducing a vertical LU-graph with x = a being the

common vertical line. Let (U1,U2, . . . ,Un) be the linear ordering of S defined by Ui <y

U j for every i < j. Choose a cap and cushion (U0,Un+1) for S. It is easy to see that

one can always compute such a pair in linear time. The correctness and the claim of

polynomial time bound are based on the series of Claims 2 − 6 presented in Subsection

5.1.1 . Let T denote the unique recursion tree capturing the recursion based computation

of Opt(S,U0,Un+1). Arguing as before (for the case of L-graphs), one can obtain the

following theorem.
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Theorem 14. There exists an O(n4) time exact algorithm for finding a MIS in vertical

LU-graphs.

6.4 Approximation algorithms for Z-graphs

Z-graphs are graphs induced by a set of Z-shapes. Z-shapes are similar to U-shapes

except that the right vertical arm of each Z is pointed down. This brings about a some

new complications which need to be taken care of. As in the case of U-graphs, we reduce

the problem of approximating a MIS over Z-graphs to the problem of approximating a

MIS over vertical Z-graphs.

Definition 26. A set Z of Z-shaped objects is said to form a vertical Z-graph if there

exists a vertical line x = a intersecting every Z ∈ Z.

Below, we present an algorithm which solves MIS over vertical Z-graphs within a multi-

plicative factor of 2(log n). This, in turn (based on arguments similar to those employed

for L- and U-graphs), leads to an algorithm for solving MIS over Z-graphs within a multi-

plicative factor of 2(log n)2. As for computing the median and partitioning, the Z.c1x and

Z.c2x values take respectively the roles of L.cx and L.hx values. As before, we compute a

median xmed and partitionZ intoZ = Z1 ∪· Z2 ∪· Z12 where

Z1 := {Z ∈ Z : Z.c2x < xmed}.

Z2 := {Z ∈ Z : Z.c1x > xmed}.

Z12 := {Z ∈ Z : Z.c1x 6 xmed 6 Z.c2x} and

(i) the members of Z12 induce a vertical Z-graph, (ii) any Z1 ∈ Z1 and Z2 ∈ Z2 are

independent. We compute and combine approximate solutions of G[Z1] and G[Z2] to

get one candidate solution and compute a 2(log n)-approximate solution on G[Z12] to
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get a 2(log n)2-approximate solution over G[Z]. This hinges on the fact (which can be

verified easily) that Theorem 8 is also applicable to Z-graphs. It now remains to present a

2(log n)-approximate algorithm for vertical Z-graphs.

6.4.1 2(log n)-approximation of MIS on vertical Z-graphs

Let G = (Z, E) be a vertical Z-graph intersecting a common vertical line x = a. We sort

the Z’s based on their Z.c1y values. Let ymed be a median of these values. PartitionZ into

Z =W1 ∪· W2 ∪· W12 whereW1 = {Z ∈ Z : Z.dy > ymed},W2 = {Z ∈ Z : Z.ty < ymed}

andW12 = {Z ∈ Z : Z.dy 6 ymed 6 Z.ty}. W12 is an example of vertical-horizontal (VH)

Z-graphs. We have |W1|, |W2| 6 n/2 where n = |Z|.

Definition 27. A class Z of Z-shapes is said to induce a VH Z-graph if there exists a

vertical line x = a and a horizontal line y = b such that each Z ∈ Z intersects both x = a

and y = b.

As for L-graphs, U-graphs and even general Z-graphs, one can establish that existence

of a α(n)-approximate algorithm for VH Z-graphs leads to the existence of a α(n)(log n)-

approximate algorithm for vertical Z-graphs. Thus, we prove that a 2(log n)-approximation

of MIS can be efficiently obtained for vertical Z-graphs by proving that a 2-approximate

solution of MIS for VH Z-graphs can be obtained efficiently.

To achieve a 2-approximation of MIS over VH Z-graphs, we decompose the input Z of

any such graph (with each Z ∈ Z intersecting both x = a and y = b) into Z = Zt ∪ Zd

where Zt is the set of those Z ∈ Z whose top vertical arm intersects y = b and Zd is the

set of those Z ∈ Z whose bottom vertical arm intersects y = b. When the horizontal arm

of a Z lies on y = b, such a Z is a member of Zt and Zd. We call the class of graphs

induced by Zts as vertical-t-horizontal (VtH) Z-graphs. Similarly, we call the class of

graphs induced byZds as vertical-d-horizontal (VdH) Z-graphs. Formally,
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Definition 28. A class Z of Z-shapes is said to induce a VtH (or VdH) Z-graph if there

exists a vertical line x = a and a horizontal line y = b such that for each Z ∈ Z, its top

(bottom) vertical arm intersects y = b and its horizontal arm intersects x = a.

In the next subsection, we show that for each of these two classes of graphs, an MIS can

be computed exactly and efficiently. We present the arguments only for the class of VtH

Z-graphs. The arguments are similar for the case of VdH Z-graphs. We solve MIS exactly

for each of the subgraphs induced byZt andZd and choose the best of the two solutions.

This gives us a 2-approximation of MIS in the subgraph induced byW12.

6.4.2 Exact computation of MIS over VtH Z-graphs

This exact algorithm is based on Dynamic Programming (as in the cases of vertical L, LU-

graphs) and is similarly based on a recursive computation of MIS. We have analogues of

Definitions 5 through 11 and Lemma 21 for the case of Z’s inducing a VtH Z-graph.

Definition 29. Let Z,Z′ be two arbitrary Z’s. We say that Z <x Z′ if Z.c1x < Z′.c1x. We

say that Z <y Z′ if either (i) Z.c1y > Z′.c1y or (ii) Z.c1y = Z′.c1y and Z.c1x > Z′.c1x.

Definition 30. Let Z,Z′ be two arbitrary Z’s. We say that Z is entirely left and below of

Z′ if (i) Z.c1 < Z′.c1 and (ii) either Z.c2 < Z′.c2 or Z′.dy > Z.c2y. We say that Z is entirely

right and above of Z′ if Z′ is entirely left and below of Z.

Definition 31. Let S be an arbitrary set of Zs such that each member intersects a common

vertical line x = a and also a common horizontal line y = b with its top vertical arm. A

(cap, cushion) of S is any pair (Z1,Z2) of Z’s each intersecting x = a and y = b (with

its top vertical arm) such that (i) each Z′ ∈ S is entirely left and below of Z1, (ii) Z2 is

entirely left and below of Z′ for each Z′ ∈ S . (iii) Z2 is entirely left and below of Z1.

Definition 32. Let S be an arbitrary set of Zs such that each member intersects a common

vertical line x = a and also a common horizontal line y = b with its top vertical arm. Let
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(Z1,Z2) be a pair of Z’s each intersecting x = a and y = b (with its top vertical arm) such

that Z2 is entirely left and below of Z1. We define the subset of S capped and cushioned

by (Z1,Z2) to be the set of those Z ∈ S such that (i) Z is entirely left and below of Z1 and

(ii) Z is entirely right and above of Z2. We denote this set by S Z1,Z2 .

Definition 33. Given a S and a cap Z, and a Z′′ ∈ S ∪ {Z}, we use SZ′′ to denote the

subset of those Z′ ∈ S which are smaller or equal to Z′′ with respect to <y ordering, that

is, the set {Z′ ∈ S : Z′ <y Z′′ ∨ Z′ = Z′′}. In particular, we have S = SZs always where Zs

is the last element of S with respect to <y ordering. Also, SZ = ∅ always.

Definition 34. For a set S capped and cushioned by (Z,Z′) with Zs being the last element

(with respect to <y ordering), let LA(S,Zs) denote the set of those Z′′ ∈ S ∪ {Z} such that

either (i) Z′′ = Z or (ii) Z′′ ∈ S \ {Zs} and Zs is entirely right and below Z′′.

Definition 35. For a set S inducing a VtH Z-graph G, capped and cushioned by (Z,Z′),

we use Opt(S,Z,Z′) to denote any MIS in G.

Our algorithm is recursive and is based on the following recursion satisfied by Opt(S,Z,Z′).

The proof of this lemma employs arguments similar to those of Lemma 21 and is skipped.

Lemma 24. Let S,Z,Z′ be as in the previous definition with Zs being the last memebr of

S with respect to <y ordering. Then, Opt(S,Z,Z′) equals (in size)

max
{
Opt(S \ {Zs},Z,Z′), {Zs} ∪ Opt(SZ,Zs ,Z,Zs)

}
,

provided |S| > 2. Otherwise, Opt(S,Z,Z′) = S.

Suppose S is a set of n members inducing a VtH Z-graph with x = a being the common

vertical line and y = b being the common horizontal line being intersected by every

member of Z. Let (Z1,Z2, . . . ,Zn) be the linear ordering of S defined by Zi <y Z j for

every i < j. Choose a cap and cushion (Z0,Zn+1) for S. It is easy to see that one can

always compute such a pair in linear time. The correctness and the claim of polynomial
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time bound are based on the series of following Claims (whose proofs are presented in

the appendix) and are analogous to Claims 1-5. Let T denote the unique recursion tree

capturing the recursion based computation of Opt(S,Z0,Zn+1).

Claim 13. The problem size (|S|) keeps decreasing along every path in T until it reaches

the base case |S| 6 1.

Proof. Each of the sets S \ {Zs},SZ,Zs has a size which is less than that of S. �

Claim 14. Each of the sets S defining a subproblem is a subset of the original input

{Z1, . . . ,Zn}.

Proof. The proof is based on the depth of recursion from the root of T . The claim is

obviously true for the root. Each of the sets S \ {Zs},SZ,Zs is a subset of S which is the

input for the current subproblem. �

Claim 15. Every pair (Z,Z′) of (cap,cushion) that arises in any subproblem generated by

the above recursion is of the form (Z0,Z j) where 0 < j 6 n + 1.

Proof. The proof is based on the depth of recursion from the root of T . The claim is obvi-

ously true for the root. Suppose it is true for some problem corresponding to a node in T .

If (Z,Z′) is the pair corresponding to this problem, then for each of its child subproblems,

the pair is either (Z,Z′) or (Z,Zs). This proves the claim. �

Claim 16. Each of the sets S′ defining a subproblem is a set of the form SZk
Z0,Z j

for some

0 < k < j 6 n + 1 and S = {Z1, . . . ,Zn}.

As a consequence, we obtain the following corollary.

Claim 17. There are at most n2 distinct subproblems that are actually solved in the re-

cursion formulation.

Arguing as before (for the case of L-graphs), one can obtain the following theorem.
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Theorem 15. There exists an O(n3) time exact algorithm for finding a MIS in VtH Z-

graphs.

6.5 Appendix 2: Proof of Assumption (2) :

The proof outline of Assumption (2) is similar to that of Assumption (1) given before but

there are some complications which arise and need to be taken care of, on account of the

presence of a vertical arm at the right tip of the horizontal arm. In particular, the U shapes

are not symmetrical with respect to the x and y-axes. Hence, one needs to work-out a

separate proof for ensuring that U.c1y , U′.c1y (for every U , U′).

As before, we say that two sets U,U′′ of U’s are equivalent if G[U] and G[U′′] are

isomorphic. We prove Assumption (2) in two steps as follows : First, we prove that there

exists an efficiently computable and equivalent (to U) U′ = {U′1, . . . ,U
′
n} such that (i)

U′i .c1y = Ui.c1y for each i and (ii) U′i .c1x , U′j.c1x for every i , j. Then, by separate

arguments, we also prove that there exists an efficiently computable and equivalent (toU′)

U′′ = {U′′1 , . . . ,U
′′
n } such that (i) U′′i .c1x = U′i .c1x for each i and (ii) U′′i .c1y , U′′j .c1y for

every i , j. U′′ is the required set of U’s. Recall that we assume that the left vertical arm

of each U ∈ U is as long as its right vertical arm.

6.5.1 Existence and computation ofU′

The existence and computation ofU′ follows from the following two claims.

Claim 18. For every finite setU = {Ui}i of U’s, there exists an efficiently computable and

equivalentUa = {Ua
i }i such that (A) Ua

i .c2x , Ua
j .c1x for every i , j, (B) Ua

i .c1y = Ui.c1y

for every i and (C) vertical and horizontal arms of Ua
i have the same respective lengths

as those of Ui, for every i.
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Proof. The proof is essentially that of Claim 11 with some subtle and important changes

to take care of the right vertical arm, with U.c1x and U.c2x taking respectively the roles of

L.cx and L.hx for every U. Let (xk)k, (αk)k, (βi)i, α, β and γ be defined as in the proof of

Claim 11 withL being the set of L’s one obtains by replacing each U by its corresponding

L.

For every i, define Ua
i as the result of shifting Ui in the negative x-direction by kγ distance,

where xk = Ui.c1x. That is, Ua
i is characterized by (xk−kγ,Ui.c1y,Ui.c2x−kγ,Ui.ly,Ui.ry).

ThatUa satisfies condition (A) has been established in the proof of Claim 11.

We establish thatUa andU are equivalent by establishing that for every i , j, Ua
i and Ua

j

are independent if and only if Ui and U j are independent. Fix an arbitrary i , j. Without

loss of generality, assume that Ui.c1x 6 U j.c1x.

Suppose, Ui.c1x = U j.c1x = xk. Then, Ua
i .c1x = Ua

j .c1x = xk − kγ. Clearly, Ua
i and

Ua
j intersect if and only if Ui and U j intersect. Hence, from now onwards, assume that

Ui.c1x < U j.c1x. Let U j.c1x = xk where k > 2.

If Ui.c2x < U j.c1x, then Ui and U j are independent. Also, Ua
j .c1x = U j.c1x − kγ >

U j.c1x − β

2 > Ui.c2x > Ua
i .c2x and hence Ua

i and Ua
j are independent.

Suppose we have U j.c1x 6 Ui.c2x. We have Ua
j .c1x = xk − kγ > xk −

α
2 > xk−1 > Ui.c1x >

Ua
i .c1x. If U j.c1x < Ui.c2x, then Ua

i .c2x > Ui.c2x − kγ > Ui.c2x − β

2 > U j.c1x > Ua
j .c1x.

If U j.c1x = Ui.c2x, then Ua
i .c2x > xk − (k − 1)γ > xk − kγ = Ua

j .c1x. In any case, we

have Ua
i .c1x 6 Ua

j .c1x 6 Ua
i .c2x. Now consider the following cases which exhaust all

possibilitites.

(i) U j.ly < Ui.c1y which happens if and only if Ua
j .ly < Ua

i .c1y. In that case, we have Ui

and U j are independent as also Ua
i and Ua

j .

(ii) U j.c1y 6 Ui.c1y 6 U j.ly which happens if and only if Ua
j .c1y 6 Ua

i .c1y 6 Ua
j .ly. In

that case, we have Ui and U j intersect as also Ua
i and Ua

j .
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(iii) Ui.c1y < U j.c1y which happens if and only if Ua
i .c1y < Ua

j .c1y. We have two further

subcases.

(iii)(a) U j.c2x < Ui.c2x. In this case, Ui and U j are independent. Also, Ua
j .c2x = U j.c2x−

kγ < U j.c2x − (k − 1)γ < Ui.c2x − (k − 1)γ 6 Ua
i .c2x. Hence, Ua

i and Ua
j are also

independent.

(iii)(b) Ui.c2x 6 U j.c2x. Hence, Ui and U j intersect if and only if Ui.ry > U j.c1y. Also,

if Ui.c2x > U j.c1x, then Ua
i .c2x > U j.c1x > Ua

j .c1x. Otherwise, if Ui.c2x = U j.c1x, then

Ua
i .c2x > Ui.c2x − (k − 1)γ > U j.c1x − kγ = Ua

j .c1x. Hence, Ua
i and Ua

j intersect if and

only if Ua
i .ry > Ua

j .c1y which happens if and only if Ui.ry > U j.c1y. �

Claim 19. For every Ua mentioned before, there exists an efficiently computable and

equivalentU′ = {U′i }i such that (D) U′i .c1x , U′j.c1x for every i , j, (E) U′i .c1y = Ua
i .c1y

for every i and (F) vertical and horizontal arms of Ua
i have the same respective lengths

as those of U′i for every i.

Proof. Let (xk)k, (αk)k, (βi)i, α and β be defined as in the proof of Claim 18 withU = Ua.

For every i, define δi to be Ua
i .c2x−Ua

i .c1x and define δ to be mini δi. In addition, let y1 <

y2 < . . . < yr < ∞ = yr+1 be the sorted list of Ua
i .c2x values. Define ε = mini6r{yi+1 − yi}.

Redefine γ to be min{ α2n ,
β

2n ,
δ

2n ,
ε

2n } where n = |U|. We have γ > 0.

Define U′ in terms of Ua as follows. Fix an arbitrary k and order all those U’s in Ua

having U.c1x = xk as follows. If Ua
1 ,U

a
2 are two such members, then Ua

1 < Ua
2 (or

vice versa) if Ua
1 .c1y > Ua

2 .c1y. If Ua
1 .c1y = Ua

2 .c1y, then Ua
1 < Ua

2 (or vice versa) if

Ua
1 .c2x < Ua

2 .c2x. If Ua
1 .c1y = Ua

2 .c1y and Ua
1 .c2x = Ua

2 .c2x, then Ua
1 < Ua

2 (or vice versa)

if Ua
1 .ly < Ua

2 .ly. If Ua
1 .c1y = Ua

2 .c1y, Ua
1 .c2x = Ua

2 .c2x and Ua
1 .ly = Ua

2 .ly, then Ua
1 < Ua

2

(or vice versa) if Ua
1 .ry < Ua

2 .ry. Surely, any pair of distinct U’s differ in at least one of

the five values. Let Ok be the resulting total ordering obtained. Now, concatenate all such

orderings obtained (one for each k) as O1,O2, . . . ,Om where m is the number of distinct

values of Ua.c1x (Ua ∈ Ua). Let (Ua
1 , . . . ,U

a
n) be the resulting total ordering ofUa.
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For every i 6 n, define U′i as the U characterized by (Ua
i .c1x + iγ,Ua

i .c1y,Ua
i .c2x +

iγ,Ua
i .c2y,Ua

i .ly,U
a
i .ry). Note that U′i .c1x − Ua

i .c1x 6 nγ 6 min{α2 ,
β

2 ,
δ
2 ,

ε
2 } for every i.

Similarly, U′i .c2x − Ua
i .c2x 6 nγ 6 min{α2 ,

β

2 ,
δ
2 ,

ε
2 } for every i.

That Condition (D) is satisfied by U′ can be seen as follows. Fix an arbitrary i < j

satisfying Ua
i .c1x = xr 6 xt = Ua

j .c1x. If xr < xt, then U′i .c1x 6 xr + α
2 < xt 6 U′j.c1x.

If xr = xt, it follows from the definition of the ordering associated with xr that U′i .c1x <

U′j.c1x.

We only need to show that for every i < j, U′i and U′j are independent if and only if Ua
i

and Ua
j are independent. Fix an arbitrary i < j. It follows that Ua

i .c1x 6 Ua
j .c1x.

Case 1 : Ua
i .c1x = Ua

j .c1x = xk. Then, U′i .c1x < U′j.c1x 6 xk + δ
2 < Ua

i .c2x 6 U′i .c2x.

There are two sub-cases.

(i) Suppose Ua
i .c1y > Ua

j .c1y. Then, Ua
i and Ua

j intersect if and only if Ua
i .c1y 6 Ua

j .ly.

Also, U′i and U′j intersect if and only if U′i .c1y = Ua
i .c1y 6 U′j.ly = Ua

j .ly, since U′i .c1x <

U′j.c1x < U′i .c2x. Thus, Ua
i and Ua

j intersect if and only if U′i and U′j intersect.

(ii) Suppose Ua
i .c1x = Ua

j .c1x = xk and Ua
i .c1y = Ua

j .c1y. Then, Ua
i and Ua

j intersect.

Also, U′i .c1x 6 U′j.c1x < U′i .c2x as shown before. Hence, U′i and U′j also intersect.

Case 2 : Suppose Ua
i .c1x = xr < xt = Ua

j .c1x. If Ua
i .c2x < Ua

j .c1x, then Ua
i and Ua

j

are independent. Also, U′i .c2x 6 Ua
i .c2x +

β

2 < Ua
j .c1x 6 U′j.c1x. Hence, U′i and U′j are

independent.

The only remaining case (follows from Assumption (A) satisfied byUa) is that (i) Ua
i .c1x =

xr < xt = Ua
j .c1x < Ua

i .c2x. In that case, (ii) U′i .c1x 6 xr + α
2 < xt 6 U′j.c1x 6 xt +

β

2 <

Ua
i .c2x 6 U′i .c2x.

In view of (i), Ua
i and Ua

j intersect if and only if either (a) Ua
j .c1y 6 Ua

i .c1y 6 Ua
j .ly or (b)

Ua
i .c1y < Ua

j .c1y and Ua
i .c2x 6 Ua

j .c2x and Ua
i .ry > Ua

j .c1y.

In view of (ii), U′i and U′j intersect if and only if either (a) U′j.c1y 6 U′i .c1y 6 U′j.ly or (b)
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U′i .c1y < U′j.c1y and U′i .c2x 6 U′j.c2x and U′i .ry > U′j.c1y.

In addition, if Ua
j .c2x < Ua

i .c2x, then U′j.c2x = Ua
j .c2x + ε

2 < Ua
i .c2x 6 U′i .c2x. If

Ua
i .c2x 6 Ua

j .c2x, then U′i .c2x = Ua
i .c2x + iγ < Ua

j .c2x + jγ = U′j.c2x. Thus, we notice

that Ua
i .c2x 6 Ua

j .c2x if and only if U′i .c2x 6 U′j.c2x.

Hence, (a) (or (b)) happens between Ua
i and Ua

j if and only if (a) (or (b)) happens between

U′i and U′j. Hence Ua
i and Ua

j intersect if and only if U′i and U′j intersect. This establishes

thatUa is equivalent toU′. �
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we studied two algorithmic problems. They are Stochastic Matching over

general graphs and Maximum Independent Set (MIS) over B1, B2-VPG graphs. We first

presented our results for the stochastic matching problem and then we presented our re-

sults for MIS problem over B1, B2-VPG graphs.

In Chapter 1, we analyzed the performance of the greedy algorithm for weighted stochas-

tic matching. We obtain an approximation guarantee of 2/p2
min. Here pmin is the minimum

probability associated with any edge in the input. Since pmin can become arbitrarily small

asymptotically, this implies that performance guarantee of the greedy algorithm can be-

come unbounded. We also presented an infinite and explicit family of weighted graphs for

which it is shown that the approximation ratio of the greedy algorithm is at least 2/pmin.

In Chapter 3, we presented an algorithm (based on an LP formulation and an application

of a randomized rounding procedure) for online stochastic matching. We analyzed this

algorithm and established that its approximation ratio is at most 5.2.

The latter part of the thesis presents results obtained for the MIS problem over B1, B2-
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VPG graphs. In Chapter 4, we present an (log n)2-approximate algorithm for the MIS

problem over B1-VPG graphs. For equilateral B1-VPG graphs, we obtained a 36(log 2d)-

approximate algorithm where d is the ratio of the maximum length to minimum lengths

of any arm of any member of the input. We also proved that the MIS problem on unit

L-graphs is NP-complete. Later, in Chapter 5, we present another algorithm (for MIS

over B1-VPG graphs) with an improved performance guarantee of O(log n). In Chap-

ter 6, we present an approximate MIS algorithm for B2-VPG graphs and prove that its

approximation ratio is O((log n)2).

7.2 Future Directions

In this section, we outline some potential future directions based on the work of the thesis.

For the greedy analysis of the weighted instance of stochastic matching, it would be in-

teresting to reduce the gap between lower and upper bounds.

Another interesting problem is to design a combinatorial algorithm for weighted stochas-

tic matching with a constant approximation factor.

A (1 + ε)-approximation algorithm with running time being at most 2poly(log n,1/ε) is said to

be a quasi polynomial time approximation scheme (QPTAS). Here n denotes the size of the

input instance. A (1 + ε)-approximation algorithm with running time being poly(n, 1/ε)

is said to be a polynomial time approximation scheme (PTAS).

For B1, B2-VPG graphs, that MIS problem has a QPTAS follows from the works of

Adamaszek et al and also from the works of Harpeled [AW14, HP14]. A related goal

would be to design a PTAS for B1, B2-VPG graphs. The best known algorithm for MIS

on string graphs has an approximation factor of nε for some ε > 0 [FP11]. Another in-

teresting direction is to explore the approximability of MIS on BkVPG graphs with an

approximation factor which is independent of k and is better than nε .
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