
On Structure and Lower Bounds in Restricted Models of
Arithmetic Computations

By
S. Raja

MATH10201004009

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

April, 2017

Homi Bhabha National Institute
Recommendations of the Viva Voce Board

As members of the Viva Voce Committee, we certify that we have read the dissertation
prepared by S. Raja entitled “On Structure and Lower Bounds in Restricted Models of
Arithmetic Computations" and recommend that it maybe accepted as fulfilling the disser-
tation requirement for the Degree of Doctor of Philosophy.

Date:

Chair - Prof. Meena Mahajan

Date:

Guide/Convener - Prof. V. Arvind

Date:

Member 1 - Prof. C. R. Subramanian

Date:

Member 2 - Prof. Venkatesh Raman

Date:

Examiner - Prof. Chandan Saha

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this thesis prepared under my direction and recom-
mend that it may be accepted as fulfilling the thesis requirement.

Date:

Place: Guide

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

S. Raja

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution / University.

S. Raja

List of Publications arising from the thesis

Journals

1. V. Arvind, S. Raja : Some Lower Bound Results for Set-Multilinear Arithmetic
Computations. Chicago J. Theor. Comput. Sci. 2016 (6)

2. V. Arvind, Pushkar S. Joglekar, S. Raja: Noncommutative Valiant’s Classes: Struc-
ture and Complete Problems. ACM Transactions on Computation Theory (ToCT)
9(1): 3:1-3:29 (2016)

Conference

1. V. Arvind, S. Raja, A. V. Sreejith: On lower bounds for multiplicative circuits and
linear circuits in noncommutative domains. In Proc. CSR 2014, LNCS 8476, pages
65–76. Springer, 2014.

S. Raja

ACKNOWLEDGEMENTS

I am deeply indebted to my advisor V. Arvind. I thank him for his advice and encour-

agement throughout my stay at IMSc. I have learnt a lot about research in general and I

admire him for his clarity in thinking and explaining new ideas. I thank him for all his

advice and help both academic or otherwise. I am very fortunate for having him as my

advisor.

I thank all my teachers: V. Arvind, Kamal Lodaya, Meena Mahajan, R. Ramanujam,

Saket Saurabh, C.R. Subramanian, Venkatesh Raman, Vikram Sharma, Prahladh Harsha

(TIFR) and Partha Mukhopadhyay (CMI) for their wonderful courses and encouragement.

I thank Meena Mahajan for organizing many seminar series. I thank Vikram Sharma for

many of his courses and I admire him for his teaching effort.

I thank my co-authors Pushkar Joglekar and A.V. Sreejith for fruitful discussions.

I thank all my friends at CMI, IIT-M and IMSc. I want to specially thank Anil Shukla,

Anup, Joydeep, Ramchandra and Srinivasan for all their help and time.

I want to thank all the people in the IMSc administration for all their help and support. I

want to thank both technical and non-technical staffs of IMSc (Canteen, Civil, Computer,

Drivers, Electrical, Gardners, House keeping, Hostel, Library and Securities) for making

IMSc a nice place.

Finally, I want to thank Amma, Ammayee, Mama and all my other relatives for their love

and support.

Contents

Synopsis v

1 Introduction to the thesis 1

1.1 Introduction . 1

1.2 Results and organization of the thesis . 12

1.2.1 Lower bounds results for set-multilinear arithmetic computations 12

1.2.2 Noncommutative Valiant’s classes: structure and complete prob-

lems . 16

1.2.3 Lower bounds for multiplicative and linear circuits over noncom-

mutative domains . 18

2 Some lower bound results for set-multilinear arithmetic computations 21

2.1 Introduction . 21

2.2 Preliminaries . 22

2.3 Summary of results . 22

2.4 Depth Reduction of Set-Multilinear Circuits 24

2.5 A Lower Bound Result for Set-Multilinear ABPs 29

i

2.5.1 Lower bounds for narrow set-multilinear ABPs 31

2.6 Summary and open problems . 34

3 Lower bounds for some restricted set multilinear circuits 37

3.1 Introduction . 37

3.2 Preliminaries . 38

3.3 Summary of results . 39

3.4 Interval multilinear circuits and ABPs 40

3.5 Parse tree restrictions on set-multilinear circuits 51

3.5.1 Set-multilinear circuits with few parse tree types 51

3.5.2 Unambiguous set-multilinear circuits 55

3.6 Summary and open problems . 59

4 Complete problems for the classes VPnc & VSKEWnc 61

4.1 Introduction . 61

4.1.1 Main results . 63

4.2 Preliminaries . 65

4.2.1 Polynomials . 65

4.3 The Reducibilities . 66

4.3.1 The projection reducibility . 66

4.3.2 The indexed-projection reducibility 67

4.3.3 The abp-reducibility . 67

ii

4.3.4 Comparing the reducibilities . 69

4.3.5 Matrix substitutions and 6abp reductions 71

4.4 Dyck Polynomials are VPnc-complete 74

4.5 Palindrome Polynomials are VSKEWnc-complete 82

4.6 Concluding remarks and open problems 88

5 Structure inside the classes VPnc and VNPnc 89

5.1 Introduction . 89

5.2 Summary of main results . 90

5.3 A Ladner’s Theorem analogue for VNPnc 91

5.3.1 A strict 6ipro j hierarchy in VNPnc 96

5.3.2 Discussion . 102

5.4 More on VNPnc-Completeness . 103

5.4.1 A generalized permanent . 105

5.5 Inside VPnc . 108

5.5.1 Dyck depth hierarchy inside VPnc 109

5.6 Concluding remarks and open problems 111

6 Linear circuits over noncommutative domains 113

6.1 Introduction . 113

6.2 Lower bounds for Multiplicative Circuits 114

6.2.1 Motivation and Our Results . 114

iii

6.2.2 Circuits over free monoids . 116

6.2.3 Circuits over matrix semigroups 119

6.2.4 Circuits over free groups . 120

6.2.5 Circuits over permutation groups 122

6.3 Lower bounds for Linear Circuits over Rings 124

6.3.1 Preliminaries . 124

6.3.2 Our Results . 125

6.3.3 Lower bounds for homogeneous linear circuits 126

6.3.4 Lower bounds for homogeneous depth 2 linear circuits 129

6.3.5 More Lower bounds for homogeneous linear circuits 130

6.4 Discussion . 132

Bibliography 133

iv

Synopsis

In this thesis, we study structure and lower bounds questions for restricted models of

arithmetic computations.

First, we study depth reduction and lower bounds questions for set-multilinear arithmetic

computations. For depth reduction, we observe that set-multilinear arithmetic circuits

of size s can be efficiently depth reduced, producing logarithmic depth set-multilinear

circuits of size O(s3) with multiplication gates of fanin 2 and unbounded fanin addition

gates, similar to depth reduction results of Valiant et al., [VSBR83] for general arith-

metic circuits and Raz-Yehudayoff [RY08] for syntactic multilinear arithmetic circuits.

For lower bound questions, we study restricted set-multilinear branching programs where

type-width of the branching program is restricted. The type-width of a set-multilinear

ABP at layer i is number of distinct sets labeling nodes at layer i. We show that k-narrow

set-multilinear ABPs computing the Permanent polynomial PERn (or determinant DETn)

require 2Ω(k) size. As a consequence, it follows that the sum of r read-once oblivious

ABPs computing PERn requires size 2Ω(n
r). We also consider other restrictions like re-

stricting total number of parse trees allowed in the circuit and requiring each monomial

is generated by unique parse tree type, and show exponential lower bounds for these re-

stricted set-multilinear circuits computing explicit polynomial families. We also show

that set-multilinear branching programs are exponentially more powerful than interval

multilinear circuits (where the index sets for each gate is restricted to be an interval w.r.t.

some ordering), assuming the sum-of-squares conjecture [Sha00, HWY10a]. This further

underlines the power of set-multilinear branching programs.

Next, we study the noncommutative analogues, VPnc and VNPnc, of Valiant’s algebraic

complexity classes, defined in [HWY10b]. We show that Dyck polynomials (defined from

the Dyck languages of formal language theory) are complete for the class VPnc under ≤abp

reductions. Likewise, it turns out that PAL (Palindrome polynomials defined from palin-

v

dromes) are complete for the class VSKEWnc (defined by polynomial-size skew circuits)

under ≤abp reductions. The proof of these results is obtained by suitably adapting the

classical Chomsky-Schützenberger theorem [CS63], which originally shows that Dyck

languages are the hardest CFLs. Next, assuming VPnc , VNPnc, we exhibit a strictly

infinite hierarchy of p-families, with respect to the projection reducibility, between the

complexity classes VPnc and VNPnc (analogous to Ladner’s theorem [Lad75]). We also

show that, inside the class VPnc there is a strict hierarchy of p-families (based on the

nesting depth of Dyck polynomials) with respect to the ≤abp-reducibility.

Finally, we study multiplicative and linear circuits over noncommutative domains. We

show strong lower bounds on the size of multiplicative circuits computing a multi-output

function over various noncommutative domains like free monoid over alphabet of size

> 2, finite matrix semigroup, free group generated by X = {x1, x2, x−1
1 , x

−1
2 } and permu-

tation groups. We then study size lower bound questions for linear circuits computing

Ay, where y = (y1, y2, · · · , yn)T and A is a matrix of dimension m × n with entries from a

noncommutative ring. We construct such an explicit matrix A ∈ Fn×n〈x0, x1〉 such that Ay

cannot be computed by any circuit C with size O(n) and depth O(log n). We prove this

by suitably generalizing Valiant’s matrix rigidity method [Val77], which is originally de-

fined for matrices over fields. We next consider homogeneous depth 2 linear circuits over

noncommutative rings. These are linear circuits of depth 2, in which each addition gate

can have unbounded fanin. We exhibit an explicit matrix A and show that computing Ay

by a depth 2 homogeneous linear circuit (with unbounded fanin + gates) requires Ω(n2

log n)

wires. In contrast, for depth 2 linear circuits over fields only Ω(n log2 n/ log log n) lower

bound is known for explicit matrices [Lok09, Pud94], although for random matrices the

lower bound is Ω(n2/ log n).

vi

Chapter 1

Introduction to the thesis

1.1 Introduction

In this chapter, we give an introduction to the thesis. In this section, we give a brief

introduction to our field of study: arithmetic circuit complexity theory and in Section 1.2,

we give an introduction to the main results of this thesis.

Arithmetic circuit complexity theory is a subfield of computational complexity theory. A

central question here is determining number of additions and multiplications required to

compute polynomials over set of indeterminates X = {x1, x2, · · · , xn} in the polynomial

ring F[X] where F is a field. Arithmetic circuits are a natural computational model for

computing and describing polynomials.

Definition 1.1.1 (Arithmetic circuits). An arithmetic circuit C computing a polynomial

f ∈ F[X], is a directed acyclic graph such that each in-degree 0 node of the graph is

labeled with an element from X∪F. Each internal node v of C is of indegree 2, and is either

a + gate or × gate. Each gate of the circuit inductively computes a polynomial in F[X]:

the polynomials computed at the input nodes are the labels; the polynomial computed at

a + gate (resp. × gate) is the sum (resp. product) of the polynomials computed at its

1

children. The output gate of C computes the polynomial f . The size of the circuit C is the

number of gates in it and its depth is the length of the longest path from an input gate to

the output gate of C.

Additionally, if every gate in a circuit C has outdegree bounded by 1 then C is an arith-

metic formula.

Before giving examples of polynomials, we need the following definition of polynomial

family (p-family).

Definition 1.1.2 (p-family). A polynomial family (p-family) f = (fn) is a sequence of

polynomials such that number of variables and degree in the n-th polynomial grows poly-

nomially.

We study circuit families C = (Cn) computing the polynomial family f = (fn) such that

the circuit Cn computes the polynomial fn.

Two important examples of polynomial family are the determinant DET = (DETn) and

permanent PER = (PERn) polynomial families, which we define now.

DETn =
∑
σ∈S n

sgn(σ)x1,σ(1)x2,σ(2) . . . xn,σ(n)

PERn =
∑
σ∈S n

x1,σ(1)x2,σ(2) . . . xn,σ(n)

where S n is the group of permutations on [n] and for σ ∈ S n, sgn(σ) denote the sign

of permutation σ. The determinant polynomial is ubiquitous in linear algebra and it can

be computed by polynomial sized arithmetic circuits (see e.g., [Ber84]). On the other

hand, the permanent of 0/1 matrices is #P-complete [Val79b], where #P corresponds

to the counting class in the world of Boolean complexity classes. Thus, it is believed

[Val79a, Bür00a] that, over fields of characteristic different from 2, the permanent PER =

(PERn) p-family cannot be computed by any polynomial sized circuit family.

A central open problem of the field is proving superpolynomial size lower bounds for

2

arithmetic circuits that compute the permanent polynomial PERn. Motivated by this prob-

lem, Valiant, in his seminal work [Val79a], defined the arithmetic analogues of P and NP:

namely VP and VNP. Informally, VP consists of multivariate (commutative) polynomials

that have polynomial size circuits, over the field of rationals. The class VNP (which cor-

responds to the counting class #P in the world of Boolean complexity classes) has a more

technical definition which we will give later. Valiant showed that PERn is VNP-complete

w.r.t. projection reductions. Thus, VP , VNP iff PERn requires arithmetic circuits of size

superpolynomial in n. Over any field F the classes VPF and VNPF are similarly defined.

Indeed, Valiant’s proof actually shows that PERn is complete for the class VNPF for any

field F of characteristic different from 2. We will drop the subscript and simply use VP

and VNP to denote the classes as the field F will either not matter or will be clear from

the context.

Another central question in arithmetic circuit complexity theory is to come up with an

explicit family of polynomials f = (fn) such that it cannot be computed by any polynomial

sized circuits family. There are many notions of explicit p-families [Bür00a]. We use

the following notion: a p-family f = (fn) is explicit if there is a deterministic Turing

machine which, when given as input n and a monic monomial xe1
1 xe2

2 · · · x
en
n , computes the

coefficient of this monomial in the polynomial fn in time poly(n). For example, DET =

(DETn) and PER = (PERn) are explicit p-families.

If we allow degree of the polynomial to be arbitrary then strong lower bounds can be

shown (as one can see that computing the polynomial xd requires at least log d gates).

Thus, if allow large degree d, for example: doubly exponential, then the polynomial

requires exponential sized arithmetic circuit to compute it. To exclude trivial solutions of

this form, we use the notion of p-family [Bür00a], as defined in Definition 1.1.2.

Over any field F, by a standard counting argument, there exists a polynomial f (in partic-

ular, with 0/1 coefficients) of degree d in n variables such that any circuit computing f has

size at least Ω(
√(

n+d
d

)
) (see e.g., [SY10]). But it is not known for any explicit p-family

3

which requires more than polynomial size arithmetic circuits to compute it.

We now give formal definitions of VP and VNP below.

Definition 1.1.3.

1. The class VP consists of p-families f = (fn) such that each fn has an arithmetic

circuit of size bounded by nb for some b > 0 depending on f .

2. A p-family f = (fn) is in the class VNP if there exists a p-family g = (gn) ∈ VP such

that for some polynomial p(n)

fn(x1, . . . , xq(n)) =
∑

y1,...,yr(n)∈{0,1}

gp(n)(x1, . . . , xm(n), y1, . . . , yr(n)).

where r(n) is polynomially bounded.

The determinant polynomial family DET is in VP (see e.g., [Ber84]) and the permanent

polynomial family PER is in VNP [Val79a]. Valiant also defined a notion of reduction,

called projections (where variables are substituted by a variable or a scalar), between

polynomial families and defined notion of complete problems for these classes under

projections. For example, over fields of characteristic different from 2, the permanent

polynomial family PER = (PERn) is VNP-complete under projection reductions [Val79a].

It is clear from definitions that VP ⊆ VNP. The central question in arithmetic complexity

theory is whether or not VP = VNP. In arithmetic complexity theory, Valiant’s hypothesis

is VP , VNP.

The arithmetic circuits considered above are commutative. The best known lower bounds

for arithmetic circuits for computing an explicit polynomial family of degree d in n vari-

ables, where depth is unbounded, is Ω(n log d) by Baur and Strassen [BS83]. Given the

limited progress in proving lower bounds for general arithmetic circuits, it is natural to

study other interesting classes of arithmetic circuits. Some of the classes of arithmetic

4

circuits considered are non-commutative arithmetic circuits, set-multilinear circuits etc

(see for example, survey by Shpilka and Yehudayoff [SY10]).

Noncommutative circuits

Nisan, in his 1990 paper [Nis91], explored the complexity of noncommutative arithmetic

computations, in particular the complexity of computing the permanent with noncom-

mutative computations. The noncommutative polynomial ring, denoted by F〈X〉, over

a field F in noncommuting variables X, consists of noncommuting polynomials in X.

These are just F-linear combinations of words (we call them monomials) over the alpha-

bet X = {x1, . . . , xn}.

Non-commutative arithmetic circuit families computes non-commutative polynomial fam-

ilies in a non-commutative polynomial ring F〈X〉, where multiplication is non-commutative

(i.e., for distinct x, y ∈ X, xy , yx). We now give formal definition of noncommutative

arithmetic circuits.

Definition 1.1.4 (Noncommutative arithmetic circuits). A noncommutative arithmetic cir-

cuit C over a field F is a directed acyclic graph such that each in-degree 0 node of the

graph is labeled with an element from X ∪ F, where X = {x1, x2, . . . , xn} is a set of non-

commuting variables. Each internal node has fanin two and is labeled by either (+) or

(×) – meaning a + or × gate, respectively. Furthermore, each × gate has a designated left

child and a designated right child. Each gate of the circuit inductively computes a polyno-

mial in F〈X〉: the polynomials computed at the input nodes are the labels; the polynomial

computed at a + gate (resp. × gate) is the sum (resp. product in left-to-right order) of

the polynomials computed at its children. The circuit C computes the polynomial at the

designated output node.

For example, by fixing row ordering in each monomial, we obtain a noncommutative per-

manent PER p-family. The first nontrivial lower bound for noncommutative arithmetic

5

computation was shown by Nisan [Nis91], who showed an exponential lower bound for

non-commutative arithmetic formulas (circuits where underlying undirected circuit graph

is a tree) computing the palindrome polynomial PALn =
∑

w∈{x0,x1}n
wwR ∈ F〈x0, x1〉. But

there is a linear sized non-commutative skew arithmetic circuits computing the polyno-

mial PALn [Nis91]. In fact, Nisan [Nis91] showed lower bound for non-commutative

algebraic branching programs which can simulate noncommutative arithmetic formulas

efficiently. We now define noncommutative skew arithmetic circuit.

Definition 1.1.5 (Noncommutative skew arithmetic circuits). A noncommutative arith-

metic circuit is said to be skew if for every multiplication gate one of its inputs is a scalar

or an indeterminate x ∈ X.

In Limaye et al., [LMS15], it is shown that the p-family PAL = (PALnPALn) requires ex-

ponential sized noncommutative skew circuits, but there is a linear sized noncommutative

circuit for it. Thus, this result separates noncommutative skew circuits from noncommu-

tative circuits.

For noncommutative circuits, we do not know any better lower bound than commuta-

tive arithmetic circuits [BS83]. Hrubes et al., [HWY10a] have related the well-known

sum-of-squares (in short, SOS) problem (also see [Sha00]), which is a problem about

commutative polynomials, to the lower bounds for noncommutative arithmetic circuits.

In Hrubes et al., [HWY10a], it is shown that assuming sum-of-squares (SOS) conjecture,

noncommutative circuits computing the permanent PER p-family requires exponential

size. Consider expressing the commutative biquadratic polynomial

SOSk(x1, . . . , xk, y1, . . . , yk) = (
∑
i∈[k]

x2
i)(

∑
i∈[k]

y2
i)

as a sum of squares (
∑

i∈[s] f 2
i), where fi are all homogeneous bilinear polynomials with

the minimum s. We refer to the problem of determining smallest s as the sum-of-squares

problem.

6

The SOS conjecture [Sha00, HWY10a] states that over complex numbers (or the algebraic

closure of any field of characteristic different from 2), for all k we have the lower bound

s = Ω(k1+ε) for some constant ε > 0 independent of k. Note that over F2, s = 1. Over

other fields, the trivial bounds are k 6 s 6 k2. Over Z and R, superlinear lower bound (in

k) is known for s [HWY10a].

Set-multilinear circuits and polynomials

An interesting class of polynomials in F[X] are set-multilinear polynomials.

Definition 1.1.6 (Set-multilinear polynomials). A set-multilinear polynomial in the dis-

joint variables X = td
i=1Xi, where Xi are set of variables, is a homogeneous polynomial f

of degree d such that each non-zero monomial in f has exactly one variable from each set

Xi where i ∈ [d].

Set-multilinear arithmetic circuits are a natural model for computing set-multilinear poly-

nomials.

Definition 1.1.7 (Set-multilinear arithmetic circuits). A set-multilinear arithmetic circuit

C computing f w.r.t. the above partition of X, is a directed acyclic graph such that each

in-degree 0 node of the graph is labeled with an element from X ∪ F. Each internal node

v of C is of indegree 2, and is either a + gate or × gate. With each gate v of we can

associate a subset of indices Iv ⊆ [d] and the polynomial Cv computed by the circuit at v

is set-multilinear over the variable partition ti∈Iv Xi. If v is a + gate then for each input

u of v Iu = Iv, and v is a × gate with inputs v1 and v2 then Iv = Iv1 t Iv2 . Clearly, in

a set-multilinear circuit every gate computes a set-multilinear polynomial (in a syntactic

sense). The output gate of C is labeled by [d] and computes the polynomial f . The size of

C is the number of gates in it and its depth is the length of the longest path from an input

gate to the output gate of C.

7

Set-multilinear circuits are introduced in the work of [NW95]. It is easy to see that

each set-multilinear polynomial can be computed by a set-multilinear arithmetic circuit.

Some of the well known polynomial families like PER,DET, are set-multilinear. For

set-multilinear formulas, super polynomial size lower bounds are known [Raz09].

Algebraic branching programs (ABP) are another computational model for computing

polynomials.

Definition 1.1.8 (Algebraic branching programs). An algebraic branching program ABP

is a layered directed acyclic graph (DAG) with one in-degree zero vertex s called the

source, and one out-degree zero vertex t, called the sink. The vertices of the DAG are

partitioned into layers 0, 1, . . . , d, and edges go only from level i to level i + 1 for each

i. The source is the only vertex at level 0 and the sink is the only vertex at level d. Each

edge is labeled with a linear form in the variables X. The size of the ABP is the number

of vertices.

For any s-to-t directed path γ = e1, e2, . . . , ed, where ei is the edge from level i− 1 to level

i, let `i denote the linear form labeling edge ei. Let fγ = `1 · `2 · · · `d be the product of

the linear forms in that order. Then the ABP computes the degree d polynomial f ∈ F[X]

defined as

f =
∑
γ∈P

fγ,

where P is the set of all directed paths from s to t.

For any node u in the ABP A, the polynomial computed at u is the polynomial computed

by the ABP, obtained from A, where start vertex is s and sink vertex is u. Set-multilinear

ABPs are ABPs where each node in the ABP computes a set-multilinear polynomial with

respect to some set S ⊆ [d]. Set-multilinear ABPs are a natural model for computing

set-multilinear polynomials.

Definition 1.1.9 (Set-multilinear algebraic branching programs). A set-multilinear alge-

8

braic branching program is a layered directed acyclic graph (DAG) with one in-degree

zero vertex s and one out-degree zero vertex t. The vertices of the graph are partitioned

into layers 0, 1, . . . , d, and edges go only from layer i to i + 1 for each i. The source is the

only vertex at level 0 and the sink is the only vertex at level d. We can associate an index

set Iv ⊆ [d] with each node v in the set multilinear ABP, and the polynomial computed at v

is set-multilinear w.r.t. the partition ti∈Iv Xi. For any edge (u, v) in the branching program

labeled by a homogeneous linear form `, we have Iv = Iu t {i} for some i ∈ [d], and ` is a

linear form over variables Xi. The size of the ABP is the number of vertices.

For any s-to-t directed path γ = e1, e2, . . . , ed, where ei is the edge from level i − 1 to

level i, let `i denote the linear form labeling edge ei. Let fγ = `1 · `2 · · · `d be the product

of the linear forms in that order. Then the ABP computes the set-multilinear degree d

polynomial:

f =
∑
γ∈P

fγ,

where P is the set of all directed paths from s to t.

Linear circuits over noncommutative rings

Linear circuits are algebraic circuits consisting only of gates, of fanin 2, that compute

linear combinations of their inputs. The size of a linear circuit L is defined to be the

number of gates in L. This is a natural model for computing linear transformations. The

problem is one of computing Ay for an n×n matrix over F and y = (y1, y2, · · · , yn)T . At the

expense of constant factors in size complexity, any arithmetic circuit computing a linear

transformations over C can be turned into a linear circuit (see e.g., [Lok09]). One can see

that Ay can be computed by a linear circuit of size O(n2) and depth O(log n)1. But there is

no superlinear lower bound is known for this problem. This problem has a rich literature

with many interesting developments. Morgenstern [Mor73] showed an Ω(n log n) lower

1By log n, throughout in this thesis we mean log2 n.

9

bound for the Hadamard matrix in the bounded coefficient model when F = C.

Valiant [Val77] developed matrix rigidity as a means to attack the problem in the case of

logarithmic depth linear circuits. In spite of many interesting results and developments,

superlinear size lower bounds remain elusive over any field F even for the special case of

log-depth circuits (Lokam’s monograph [Lok09] surveys most of the recent results).

Given the limited progress in proving lower bounds for linear circuits over commutative

domains, we study the problem proving lower bounds for the case when entries of the

matrix A comes from a noncommutative domain.

Now we introduce another kind of circuit called multiplicative circuits. Let (S , ◦) be a

semigroup, i.e., S is a set closed under the binary operation ◦ which is associative. A

natural multi-output computational model (called multiplicative circuit) is a circuit over

(S , ◦).

Definition 1.1.10 (Multiplicative circuits). The multiplicative circuit C over (S , ◦) is given

by a directed acyclic graph with input nodes labeled x1, ..., xn ∈ S of indegree 0 and

output nodes y1, ..., ym ∈ S of outdegree 0. The internal nodes of the circuit C is labeled

by semigroup operation ◦.

We assume that all gates have fanin 2. The size of the circuit is the number of nodes in it

and it computes a function f : S n → S m.

This provides a general setting to some well studied problems in circuit complexity. For

example:

1. If S = F2 and ◦ is addition in F2, the problem is one of computing Ay for an m × n

matrix over F2 and y = (y1, y2, · · · , yn)T . The problem of giving an explicit A such

that the size of any circuit for it is superlinear is a longstanding open problem. By

means of counting arguments, we know that there exist such matrices A [Val77].

2. When S = {0, 1} and ◦ is the boolean OR, this problem is also well studied and due

10

to its monotone nature it has explicit lower bounds of circuit size n2−o(1) (e.g. see

section 3.4 in [JS13]).

A more restricted form is S = (N,+) called SUM circuits also well studied e.g.

[JS13]. While for monotone settings (OR,SUM circuits) there are nontrivial lower

bounds, in the commutative case for S we do not have strong lower bounds results.

Now we define linear circuits over arbitrary ring R.

Definition 1.1.11 (Linear circuit over rings). Let (R,+, ·) be an arbitrary ring (possibly

noncommutative). A linear circuit over R takes n inputs y1, y2, . . . , yn labeling the indegree

0 nodes of a directed acyclic graph. The circuit has m output nodes (which have outdegree

0). Each edge of the graph is labeled by some element of the ring R. The indegree of each

non-input node is two. Each node of the circuit computes a linear form
∑n

i=1 αiyi for

αi ∈ R as follows: the input node labeled yi computes yi. Suppose g is a node with

incoming edges from nodes g1 and g2, and the edges (g1, g) and (g2, g) are labeled by α

and β respectively. If g1 and g2 computes the linear forms `1 and `2 respectively, then g

computes α`1 + β`2. Thus, for an m × n matrix A over the ring R, the circuit computes Ay

at the m output gates.

When R is a field we get the well-studied linear circuits model [Mor73, Val77, Lok09].

However, no explicit superlinear size lower bounds are known for this model over fields,

except for some special cases like the bounded coefficient model [Mor73] or in the can-

cellation free case [BF13].

Depth of a linear circuit C is defined to be length of the longest leaf to root path in the

directed acyclic graph of the circuit C. We now define depth 2 linear circuits.

Definition 1.1.12 (Depth-2 linear circuits). These are linear circuits of depth 2, where

each addition gate can have unbounded fanin. More precisely, if g is an addition gate

with inputs from g1, g2, . . . , gt then the gate g computes
∑t

i=1 αigi, where each edge (gi, g)

is labeled by αi ∈ F such that αi, 1 ≤ i ≤ t.

11

We again consider the problem of computing Ay for A ∈ Fn×n. The goal is to lower bound

the number of wires in the linear circuit. This problem is also well studied for linear

circuits over fields and only an explicit Ω(n log2 n/ log log n) lower bound is known for it

[Lok09, Pud94], although for random matrices the lower bound is Ω(n2/ log n).

1.2 Results and organization of the thesis

Now, we describe the main results in each part of the thesis in detail. The technical

contents of the thesis are organized in the following three parts.

1.2.1 Lower bounds results for set-multilinear arithmetic computa-

tions

We study depth reduction and lower bound questions for set-multilinear arithmetic com-

putational models and show the following results.

1. For depth reduction, we observe that commutative set-multilinear arithmetic circuit

can be efficiently depth reduced. Formally, we prove the following theorem in

Chapter 2.

Theorem 1.2.1 ([AR]). Let Φ be a set-multilinear arithmetic circuit of size s and

degree d over the field F and over the variable set X, partitioned as X = X1t ...tXd,

computing a polynomial f ∈ F[X]. Then we can efficiently compute from Φ a set-

multilinear arithmetic circuit Ψ, with multiplication gates of fanin 2 and unbounded

fanin + gates, which is of size O(s3) and depth O(log d) computing the polynomial

f .

The proof of this theorem is based on similar depth reduction theorems in [VSBR83,

RY08]. It follows that polynomial size set-multilinear circuits have quasi-polynomial

12

size set-multilinear branching programs. Note that any non-commutative circuit C

computing a non-commutative polynomial P can be efficiently converted into a set-

multilinear circuit C̃ computing a corresponding set-multilinearized polynomial P̃

(i.e., each monomial m =
∏

i x ji in the polynomial P with coefficient αm appears in

the polynomial P̃ as m̃ =
∏

i xi, ji with the same coefficient). Thus, proving strong

enough lower bounds for set-multilinear formulas or set-multilinear ABPs implies

super-polynomial lower bound for non-commutative circuits by the depth reduction

result discussed above. This is one motivation for studying set-multilinear compu-

tational models.

2. For lower bound questions, we study restricted set-multilinear ABPs. These results

are presented in Chapter 2.

The type width of the ABP at layer k is the number tw(k) of different types labeling

nodes at layer k of the ABP. The notion of type width is motivated by the fact that

read-once oblivious ABPs (ROABPs defined in [FS13]) have type width 1 at each

layer. It is well-known that Nisan’s rank argument [Nis91] (originally used for

lower bounding noncommutative ABP size) also yields exponential lower bounds

for any ROABP computing PERn. In particular, it implies an exponential lower

bound for set-multilinear ABPs of type-width 1. This suggests that a natural first

step to showing lower bounds for general set-multilinear ABPs/circuits is to first

deal with set-multilinear ABPs with restrictions on its type width.

A set-multilinear ABP computing a set-multilinear polynomial f of degree d is

called k-narrow for 1 6 k 6 d, if min{k × tw(k), (d − k) × tw(d − k)} 6 d/2. For

example, ROABPs are a subclass of set-multilinear ABPs that are k-narrow for

every k. As another example, we note that the sum of ` ROABPs is d
2` -narrow. We

prove the following theorem.

Theorem 1.2.2 ([AR]). Any k-narrow set-multilinear ABP computing the perma-

nent polynomial PERn(or determinant DETn) requires size 2k.

13

As a consequence, we show a lower bound for sum of ` read-once oblivious ABPs(ROABPs)

computing PERn.

Corollary 1.2.3. Let Pi, 1 ≤ i ≤ `, be ROABPs such that
∑`

i=1 Pi is the permanent

polynomial PERn (or the determinant polynomial DETn). Then at least one of the

Pi is of size 2Ω(n/`).

In contrast, for the polynomial identity testing problem for sum of ROABPs, where

one asks whether polynomial computed by a sum of c ROABPs is zero or not,

we know non-trivial algorithms (both white and black box algorithms) only when

c = O(1) [GKST15].

3. We also study restrictions on the parse trees of a set-multilinear arithmetic circuit.

These results are presented in Chapter 3. For an arithmetic circuit C, a parse tree for

a monomial m is a multiplicative subcircuit of C rooted at the output gate defined

by the following process starting from the output gate: at addition(+) gate retain

exactly one of its input gates and at the multiplication gate (×) retain both of its input

gates. Retain all inputs that are reached by this process. The resulting subcircuit

is multiplicative and computes the monomial m (with some coefficient). Let C be

a set-multilinear circuit computing f ∈ F[X] for variable partition X = td
i=1Xi. A

parse tree T for a monomial is, in fact, a binary tree with leaves labeled by variables

(ignoring the leaves labeled by constants) and internal nodes labeled by gate names

(the × gates of C occurring in the parse tree). By set-multilinearity, in each parse

tree there is exactly one variable from each subset Xi, and each variable occurs at

most once in a parse tree. With each parse tree T we can associate its parse tree

type T̂ which is a binary tree with d leaves. Each node v of T is labeled by an index

set Iv ⊆ [d]: The root is labeled by [d], each leaf is labeled by a distinct singleton

set [i], 1 ≤ i ≤ d, and if v has children v1 and v2 in the tree then Iv = Iv1 t Iv2 .

Thus, given a set-multilinear circuit C we can consider: (a) the set of parse tree

types of the entire circuit C, and (b) the set of parse tree types of a given monomial.

14

For set-multilinear ABPs computing a degree d polynomial, parse trees of mono-

mials are just simple paths of length d, and the corresponding parse tree types are

also simple paths of length d. Furthermore, every ROABP have a unique parse

tree type. As exponential lower bounds for ROABPs computing the permanent are

known [Nis91] using the partial derivative method, a natural question is whether

we can obtain lower bounds when more than one parse tree type is allowed in

the set-multilinear circuit. We consider (1) Set-multilinear circuits with few parse

tree types and, (2) Unambiguous set-multilinear circuits: i.e. circuits in which each

monomial has a unique parse tree type (but the number of different parse tree types

in the circuit is unbounded) and prove the following size lower bounds.

Theorem 1.2.4 ([AR]).

• Let C be a set-multilinear circuit computing the permanent polynomial PERn

(or determinant DETn) such that C has at most r distinct parse tree types.

Then the size of C is Ω(2
n

r log n).

• Let C be an unambiguous set-multilinear circuit with variable partition X =

tn
i=1Xi, where Xi = {Xi j | 1 ≤ j ≤ n}, such that C computes the permanent

polynomial PERn (or determinant DETn). Then C is of size 2Ω(n).

4. Finally we study interval set-multilinear ABPs and these results are presented in

Chapter 3. We first observe that a τ-interval set-multilinear circuit computing a

set-multilinear polynomial in F[X], X = td
i=1Xi, is essentially like a noncommuta-

tive circuit computing a noncommutative polynomial over the variables X, whose

monomials can be considered as words of the form xi1 xi2 . . . xid , where xi j ∈ Xτ(j) for

1 ≤ j ≤ d. In [HWY10a], Hrubes et al have related the well-known sum-of-squares

(in short, SOS) conjecture (also see [Sha00]) to lower bounds for noncommutative

arithmetic circuits. Our results are based on their work. We prove the following

theorem.

15

Theorem 1.2.5 ([AR]). There is a set-multilinear polynomial f ∈ F[X], where

X = tD
i=1Xi and Xi = {x0,i, x1,i}, 1 ≤ i ≤ D such that f has an O(D2) size monotone

set-multilinear ABP and, assuming the SOS conjecture, for any τ ∈ S D any τ-

interval multilinear circuit computing f has size 2Ω(D).

A new aspect is that the polynomial we construct is only partially explicit. We use

the probabilistic method to pick certain parameters that define the polynomial.

1.2.2 Noncommutative Valiant’s classes: structure and complete prob-

lems

For the non-commutative arithmetic circuits model, we study noncommutative analogues

of arithmetic complexity classes VP and VNP, called VPnc and VNPnc respectively. In

[HWY10b], it is shown that PERn is VNPnc-complete w.r.t projections (this is the p-

projection reducibility defined by Valiant [Val79a], which allows variables or scalars to

be substituted for variables). We study the structure of the classes VPnc and VNPnc and

its connections to formal language classes.

1. We prove that the Dyck polynomials (defined from the Dyck languages of formal

language theory) are complete for VPnc w.r.t 6abp reductions. The result can be

seen as an arithmetized version of the Chomsky-Schützenberger theorem [CS63]

showing that the Dyck languages are the hardest CFLs. We note here that 6abp re-

ducibility is a generalization of the standard projection reducibility wherein instead

of substitution by variables and scalars we allow substitutions by matrices (whose

entries are variables/scalars).

We define the polynomial Di,n over i different types of brackets Xi = {(1,)1, ..., (i,)i}

to be sum of all strings in X2n
i which are well-balanced. The Di,n are Dyck polyno-

mials of degree 2n over i different types of brackets. The corresponding p-family is

denoted Di = (Di,n). We prove the following theorem in Chapter 4.

16

Theorem 1.2.6 ([AJR16]). The p-family Dk = {Dk,d}d>0 is VPnc-complete under

6abp reductions for k ≥ 2.

The 6abp reducibility is implicitly used in the works of [AJS09, AS10], where in

[AJS09] it is used for polynomial identity testing of noncommutative ABPs and in

[AS10] it is shown that the noncommutative determinant polynomial cannot have

polynomial-size noncommutative circuits unless the noncommutative permanent

has such circuits. Essentially the result shown is that PERn is 6abp reducible to

the noncommutative determinant.

2. Let the class VSKEWnc consists of p-families f = (fn) such that each fn has a

noncommutative skew arithmetic circuit of size bounded by nb for some b > 0

depending on f . Let PALn =
∑

w∈{x0,x1}n
w.wR. We prove the following theorem, in

Chapter 4, by adapting the proof of the Chomsky-Schützenberger theorem.

Theorem 1.2.7 ([AJR16]). The p-family PAL = (PALn) is VSKEWnc-complete un-

der 6abp reductions.

3. We prove a transfer theorem, in Chapter 5, which essentially shows that if f is

a VNPnc-complete p-family under projections then an appropriately defined com-

mutative version f (c) of f is complete under projections for the commutative VNP

class.

4. Hrubes et al [HWY10a] have shown, assuming the sum-of-squares conjecture, that

the p-family ID = (IDn), where IDn =
∑

w∈{x0,x1}n
w.w is not in VPnc. Based on ID,

we define a p-family ID∗ and show in Chapter 5, assuming VPnc , VNPnc, that ID∗

is neither in VPnc nor VNPnc-complete.

This is analogous to Ladner’s well-known theorem [Lad75]. We note here that

Bürgisser [Bür99] has proven an analogue of Ladner’s theorem for commutative

Valiant classes VP and VNP. That result requires an additional assumption about

counting classes in the boolean setting. It also turns out that under VPnc , VNPnc

17

we have an infinite hierarchy w.r.t 6pro j reductions between VPnc and VNPnc and

also incomparable p-families. To the best of our knowledge, obtaining an infinite

hierarchy under the assumption that VP , VNP, is open in the commutative case.

5. We also consider other hypotheses, like VP , VNP and SOS conjecture [HWY10a],

and show that each one gives rise to VNPnc-intermediate problems under various re-

ductions between polynomial families, like 6linpro j-reductions where each variable

is substituted by a affine linear form. Based on these intermediate polynomial fami-

lies, we construct strict infinite hierarchy of polynomial families between VPnc and

VNPnc. These results are presented in Chapter 5.

6. Within VPnc we obtain a proper hierarchy w.r.t 6abp-reductions corresponding to

the Dyck polynomials of bounded nesting depth. This roughly corresponds to the

noncommutative VNC hierarchy within VPnc. These results are presented in Chap-

ter 5.

1.2.3 Lower bounds for multiplicative and linear circuits over non-

commutative domains

We study multiplicative and linear circuits over various noncommutative domains in Chap-

ter 6 and our results are the following:

1. Let (S , ◦) be a semigroup, i.e., S is a set closed under the binary operation ◦ which

is associative. A natural multi-output computational model is a circuit over (S , ◦).

The circuit is given by a directed acyclic graph with input nodes labeled x1, ..., xn

of indegree 0 and output nodes y1, ..., ym of outdegree 0. The gates of the circuit all

compute the monoid product. We assume that all gates have fanin 2. The size of

the circuit is the number of nodes in it and it computes a function f : S n → S m.

This provides a general setting to some well studied problems in circuit complexity.

18

For example, if S = F2 and ◦ is addition in F2, the problem is one of computing

Ax for an m × n matrix over F2. The problem of giving an explicit A such that the

size of any circuit for it is superlinear is a longstanding open problem. We study the

case when the entries of A comes from a noncommutative domain and prove strong

lower bounds for various semigroups.

We study the case when (S , ◦) is noncommutative and manage to prove strong lower

bounds in some cases. An interesting aspect is that the number of inputs can be

restricted to just two: x0, x1. The explicit functions yi, 1 6 i 6 m are defined as

words yi = yi1yi2...yin where yi j ∈ {x0, x1} and {y1, y2, ..., ym} are explicitly defined.

We show that any circuit C : {x0, x1} → {y1, y2, ..., ym} is of size Ω(mn
log2 n

) in the

following four settings:

(a) When (S , ◦) is the free monoid X∗ for X such that |X| > 2.

(b) When (S , ◦) is the finite matrix semigroup over the boolean ring and matrices

are of dimension nc × nc for some constant c > 0.

(c) When (S , ◦) is the free group GX generated by X = {x1, x2, x−1
1 , x

−1
2 }.

(d) When (S , ◦) is the permutation group where S = S N for N = nd for some

constant d > 0.

2. We study a generalization of the linear circuits model, where we allow the coeffi-

cients come from noncommutative rings. In principle, we can expect lower bounds

could be easier to prove in this model. The circuits are more constrained when co-

efficients come from a noncommutative ring as fewer cancellations can take place.

However, we succeed in showing only some limited lower bounds.

When the coefficients come from a noncommutative ring R, we prove lower bounds

for certain restricted linear circuits. Suppose the coefficient ring is R = F〈x0, x1〉

consisting of polynomials over the field F in noncommuting variables x0 and x1. Let

A ∈ Fn×n〈x0, x1〉 where x0, x1 are noncommuting variables and y = (y1, y2, . . . , yn)T

19

is a column vector of input variables. The first restriction we consider are homo-

geneous linear circuits over the ring F〈x0, x1〉 for computing Ay. The restriction is

that for every gate g in the circuit, if g has its two incoming edges from nodes g1

and g2, then the edges (g1, g) and (g2, g) are labeled by α and β respectively, where

α, β ∈ F〈x0, x1〉 are restricted to be homogeneous polynomials of same degree in the

variables x0 and x1. It follows, as a consequence of this restriction, that each gate

g of the circuit computes a linear form
∑n

i=1 αiyi, where the αi ∈ F〈x0, x1〉 are all

homogeneous polynomials of the same degree. We prove the following theorem.

Theorem 1.2.8 ([ARS14]). There exists an explicit matrix A ∈ Fn×n〈x0, x1〉, com-

puting Ay by any homogeneous linear circuit C over the coefficient ring F〈x0, x1〉

requires either size ω(n) or depth ω(log n).

We prove this by suitably generalizing Valiant’s matrix rigidity method [Val77].

3. We next consider homogeneous depth 2 linear circuits. These are linear circuits of

depth 2, where each addition gate can have unbounded fanin. More precisely, if g is

an addition gate with inputs from g1, g2, . . . , gt then the gate g computes
∑t

i=1 αigi,

where each edge (gi, g) is labeled by αi ∈ F〈x0, x1〉 such that αi, 1 ≤ i ≤ t are

all homogeneous polynomials of the same degree. We again consider the problem

of computing Ay for A ∈ Fn×n〈x0, x1〉. The goal is to lower bound the number

of wires in the linear circuit. This problem is also well studied for linear circuits

over fields and only an explicit Ω(n log2 n/ log log n) lower bound is known for it

[Lok09, Pud94], although for random matrices the lower bound is Ω(n2/ log n).

Theorem 1.2.9 ([ARS14]). There exists an explicit matrix A ∈ Fn×n〈x0, x1〉, com-

puting Ay by a depth 2 homogeneous linear circuit (with unbounded fanin) requires

Ω(n2

log n) wires.

In contrast, for depth 2 linear circuits over fields only an explicit Ω(n log2 n/ log log n)

lower bound is known [Lok09, Pud94], although for random matrices the lower

bound is Ω(n2/ log n).

20

Chapter 2

Some lower bound results for

set-multilinear arithmetic computations

2.1 Introduction

In this chapter, we present our results on set-multilinear arithmetic computations. We

study the structure of set-multilinear arithmetic circuits and set-multilinear branching pro-

grams with the aim of showing lower bound results. Superpolynomial lower bounds for

the general case is still out of reach. We define some natural restrictions of these models

for which we are able to show lower bound results. Some of our results extend exist-

ing lower bounds, while others are new and raise open questions. Specifically, our main

results are the following:

• We observe that set-multilinear arithmetic circuits can be transformed into shallow

set-multilinear circuits efficiently, following the work of Valiant et al., [VSBR83]

(also Raz-Yehudayoff [RY08]). As a consequence, polynomial size set-multilinear

circuits have quasi-polynomial size set-multilinear branching programs.

• We show that k-narrow set-multilinear ABPs computing the Permanent polynomial

21

PERn (or determinant DETn) require 2Ω(k) size. As a consequence, we show that

sum of r read-once oblivious ABPs computing PERn requires size 2Ω(n
r).

2.2 Preliminaries

Let F be a field and X = X1 t X2 t · · · t Xd be a partition of the variable set X.

Definition 2.2.1. (set-multilinear polynomial) A set-multilinear polynomial f ∈ F[X]

w.r.t. this partition is a homogeneous degree d multilinear polynomial such that every

nonzero monomial of f has exactly one variable from Xi, 1 ≤ i ≤ d.

Both the Permanent polynomial PERn and the Determinant polynomial DETn are set-

multilinear polynomials. The variable set is X = {xi j}1≤i, j≤n and the partition can be taken

as the row-wise partition of the variable set. I.e. Xi = {xi j | 1 ≤ j ≤ n} for 1 ≤ i ≤ n.

In this chapter we will consider set-multilinear circuits (see Definition 1.1.7) and set-

multilinear branching programs (see Definition 1.1.9) for computing set-multilinear poly-

nomials. The model of set-multilinear branching programs that we consider is more gen-

eral than related notions of branching programs recently studied in the literature, like the

read-once oblivious branching programs (ROABPs) [FS13].

Remark 2.2.1. Showing a superpolynomial lower bound for set-multilinear circuits and

even for set-multilinear ABPs for computing the Permanent polynomial is an open prob-

lem. In this chapter we discuss some restricted versions of set-multilinear branching

programs and show lower bounds.

2.3 Summary of results

To begin with we observe that any set-multilinear arithmetic circuit of size s can be effi-

ciently transformed into an O(log s) depth set-multilinear circuit with unbounded fanin +

22

gates and fanin 2 × gates of size polynomial in s. The proof exactly follows the depth-

reduction results of [VSBR83, RY08] for general commutative circuits. The only extra

point is our observation that set-multilinearity can be also preserved in the process. As a

result, size s set-multilinear circuits have sO(log s) size set-multilinear branching programs.

This is stated and proved in Section 2.4. Our proof is based on the result in [RY08], about

syntactic multilinear circuits. The proof in [RY08] follows general arithmetic circuits

depth reduction result of Valiant et al., [VSBR83].

In Section 2.5 we consider narrow set-multilinear branching programs: The typewidth of

a set-multilinear ABP at layer k is the number of distinct index types of the ABP in its kth

layer. Read-once oblivious ABPs (ROABPs) considered in [FS13] are the set-multilinear

ABPs of typewidth 1 in each layer. Thus, it is natural to investigate lower bounds for set-

multilinear ABPs of restricted typewidth in order to extend known lower bounds [Nis91]

for ROABPs. We say that a set-multilinear ABP computing a degree d polynomial is k-

narrow if either in layer d − k or layer k the typewidth is bounded by d
2k . We show that

k-narrow set-multilinear ABPs for PERn require 2Ω(k) size. The proof follows standard

techniques based on the rank of the partial derivative matrix. As a consequence, it follows

that the sum of r ROABPs computing PERn require size 2Ω(n
r). Similarly, it follows that a

set-multilinear ABP for PERn, whose typewidth in all layers is bounded by n1−ε , requires

size 2nε . While these observations generalize the lower bound for ROABPs, it appears

difficult to prove superpolynomial lower bounds for ABPs of larger typewidth (even O(n)).

A lower bound result for general set-multilinear ABPs would imply, for instance, that the

Permanent requires superpolynomial size noncommutative arithmetic circuits, which is

an open problem for over two decades. We present these observations in Section 2.5.

Our lower bound proofs are applications of the well-known partial derivative method.

23

2.4 Depth Reduction of Set-Multilinear Circuits

We follow the standard method of depth reduction of commutative arithmetic circuits

[VSBR83], and use the exposition from Shpilka and Yehudayoff’s survey article [SY10].

The general depth reduction was adapted to syntactic multilinear circuits by Raz and

Yehudayoff [RY08]. Our additional observation essentially is that the depth reduction

procedure can be carried out while preserving set-multilinearity as well.

Given a commutative set-multilinear circuit C of size s computing a set-multilinear poly-

nomial f of degree d in the input variable X = X1 t ...t Xd, we show that there is another

circuit C′ of size poly(s) and depth O(log d log s) computing f .

The proof of the following theorem follows the same steps as in the depth reduction results

in [VSBR83, RY08]. The only additional point we observe is that set-multilinearity is

preserved by the construction.

Theorem 2.4.1. Let Φ be a set-multilinear arithmetic circuit of size s and degree d over

the field F and over the variable set X, partitioned as X = X1 t ... t Xd, computing a

polynomial f ∈ F[X]. Then we can efficiently compute from Φ a set-multilinear arithmetic

circuit Ψ, with multiplication gates of fanin 2 and unbounded fanin + gates, which is of

size O(s3) and depth O(log d) computing the polynomial f .

Proof. By definition, Φ is a homogeneous arithmetic circuit. We assume that Φ is non-

redundant (i.e , for all gates v in Φ the polynomial fv computed at v is nonzero). Since Φ

is set-multilinear, at each gate v in Φ there is an associated index set Iv ⊆ [d] such that the

polynomial fv is set-multilinear of degree |Iv| over the variable set XIv , where

XIv = ti∈Iv Xi.

We denote the subcircuit rooted at the gate v by Φv.

24

Partial Derivative of fv by a gate w

Let v,w be any two gates in circuit Φ. Following the exposition in [SY10], let Φw=y denote

the circuit obtained by removing any incoming edges at w and labeling w with a new input

variable y and fv,w denote the polynomial (in X ∪ {y}) computed at gate v in circuit Φw=y.

Define

∂w fv = ∂y fv,w.

Note that fv,w is linear in y. Clearly, if w does not occur in Φv then ∂w fv = 0. If w occurs

in Φv, since Φ is set-multilinear the polynomial fv,w is linear in y and is of the form

fv,w = hv,wy + gv,w.

Therefore, ∂w fv = hv,w. We make the following immediate observations from the set-

multilinearity of Φ.

• Either ∂w fv = 0 or ∂w fv is a homogeneous set-multilinear polynomial of degree

deg(v) − deg(w) over variable set X \ XIw .

• If deg(v) < 2.deg(w) and v is a product gate with children v1, v2 such that deg(v1) >

deg(v2), then ∂w fv = fv2 .∂w fv1 .

For a positive integer m, let Gm denote the set of product gates t with inputs t1, t2 in Φ such

that m < deg(t) and deg(t1), deg(t2) 6 m. We observe the following claims (analogous to

[SY10]) which are easily proved.

Claim 2.4.1. Let Φ be a set-multilinear nonredundant arithmetic circuit over variable set

X = td
i=1Xi. Let v be a gate in Φ such that m < deg(v) 6 2m for a positive integer m. Then

fv =
∑

t∈Gm
ft.∂t fv.

Claim 2.4.2. Let Φ be a set-multilinear non-redundant arithmetic circuit over the field F

and over the set of variables X. Let v and w be gates in Φ such that 0 < deg(w) 6 m <

25

deg(v) < 2deg(w). Then ∂w fv =
∑

t∈Gm
∂w ft.∂t fv

Construction of Ψ:

We now explain the construction of the depth-reduced circuit Ψ. The construction is done

in stages. Suppose upto Stage i we have computed, for 1 ≤ j ≤ i the following:

• All polynomials fv for gates v such that 2 j−1 < deg(v) 6 2 j.

• All partial derivatives of the form ∂w fv for gates v and w such that 2 j−1 < deg(v) −

deg(w) 6 2 j and deg(v) < 2deg(w).

• Furthermore, inductively assume that the circuit computed so far is set-multilinear

of O(i) depth, such that all product gates are fanin 2, sum gates are of unbounded

fanin.

We now describe Stage i + 1 where we will compute all fv for gates v such that 2i <

deg(v) 6 2i+1 and also all partial derivatives of the form ∂w fv for gates v and w such that

2i < deg(v)−deg(w) 6 2i+1 and deg(v) < 2deg(w). Furthermore, we will do this by adding

a depth of O(1) to the circuit and poly(d, s) many new gates maintaining set-multilinearity.

Stage i+1: We describe the construction at this stage in two parts:

Computing fv

Let v be a gate in Φ such that 2i < deg(v) 6 2i+1 and let m = 2i. By Claim 2.4.1, we have

fv =
∑
t∈T

ft∂t fv =
∑
t∈T

ft1 ft2∂t fv,

where T is the set of gates t ∈ Gm, with children t1 and t2 such that t is in Φv. Note

that if t is not in Φv, then ∂t fv = 0. Let t ∈ T be a gate with inputs t1 and t2. Thus.

26

m < deg(t) 6 2m, deg(t1) 6 m, deg(t2) 6 m. Hence deg(v) − deg(t) 6 2i+1 − 2i = 2i

and deg(v) 6 2i+1 < 2.deg(t). Therefore, ft1 , ft2 and ∂t fv are already computed. Thus,

in order to compute fv we need O(s) many × gates and O(1) many + gates. Overall,

with O(s2) many new gates and O(1) increase in depth we can compute all fv such that

2i < deg(v) 6 2i+1. Furthermore, we note that ft1 , ft2 and ∂t fv are all set-multilinear poly-

nomials with disjoint index sets, and the union of their index sets is Iv for each t ∈ T .

Thus, the new gates introduced all preserve set-multilinearity.

Computing ∂w fv

Let v and w be gates in Φ such that 2i < deg(v) − deg(w) 6 2i+1 and deg(v) < 2deg(w).

Let m = 2i + deg(w). Thus, deg(w) 6 m < deg(v) < 2deg(w). Let T ′ denote the set of

gates in Φv that are contained in Gm. Note that ∂t fv = 0 if t < T ′. Hence by Claim 2.4.2

we can write

∂w fv =
∑
t∈T ′

∂w ft∂t fv,

For a gate t ∈ T ′, we have deg(t) ≤ deg(v) < 2deg(w). Suppose t1 and t2 are the gates

input to t in the circuit Φ, and deg(t1) ≥ deg(t2). Then we can write

∂w fv =
∑
t∈T ′

ft2∂w ft1∂t fv.

We claim that ft2 , ∂w ft1 , and ∂t fv are already computed.

• Since deg(v) 6 2i+1 + deg(w) ≤ 2i+1 + deg(t1) = 2i+1 + deg(t) − deg(t2), we have

deg(t2) 6 2i+1 + deg(t) − deg(v) 6 2i+1. Hence ft2 is already computed (in first part

of stage i + 1).

• Since deg(t1) − deg(w) ≤ 2i, the polynomial ∂w ft1 is already computed in an earlier

stage.

27

• Since deg(t) > m, we have deg(v) − deg(t) ≤ deg(v) − m ≤ 2i+1 − 2i = 2i.

• Thus, since deg(v) 6 2i+1 + deg(w) 6 2(2i + deg(w)) < 2deg(t), the polynomial ∂t fv

is already computed in an earlier stage.

As before, for each such pair of gates w and v, we can compute ∂w fv with O(s) new gates

(using the polynomials already computed in previous stages), and this increases the circuit

depth by O(1). Since we consider pairs of gates (w, v) such that 2i < deg(v)−deg(w) 6 2i+1

at the ith stage, the total number of pairs (w, v) considered over all the stages is bounded

by s2. Hence the number of new gates added over all the stages is O(s3). Thus the size

of the depth-reduced circuit obtained is O(s3) and its depth is O(log d). Furthermore, the

new gates included clearly also have the set-multilinearity property. This completes the

proof of the theorem. �

Remark 2.4.1. We note that the size of the depth-reduced circuit for general multilinear

circuits [RY08] turns out to be O(s3d6) because of the homogenization step, which is not

required for set-multilinear circuits.

Set-Multilinear Circuits to ABPs

Theorem 2.4.2. Given a set-multilinear arithmetic circuit of size s and degree d over the

field F and over the variable set X = td
i=1Xi, computing f ∈ F[X], we can transform it, in

time sO(log d), into a set-multilinear ABP of size (sd)O(log d) that computes f .

Proof. The proof of this theorem is fairly straightforward consequence of the depth reduc-

tion result (Theorem 2.4.1 in the previous section). By Theorem 2.4.1 we can assume to

have computed a set-multilinear circuit Ψ of size O(s3) and depth O(log d) for computing

f . By a standard bottom-up procedure we can transform the circuit Ψ into a formula F: at

a gate g with fanout t we make t copies of the circuit computed at g. The resulting circuit

is a formula of size (sd)O(log d), because at every level of the circuit there is a factor of s

28

increase in the size (as s bounds the fanout of all gates). The formula F thus constructed

from C is clearly also homogeneous, set-multilinear, and of depth O(log d). The formula

F is also semi-unbounded: the product gates are fanin 2 and plus gates have unbounded

fanin.

Formula F could have subformulas that computes scalars. We perform the following

transformation to remove such subformulas. Suppose g is a gate in F that evaluates to a

scalar α, and g is input to gate g′ in F. Then we remove the subformula at g and label the

outgoing edge of g′ by α. The transformed set-multilinear formula F′ has only variables

at the input gates and scalars labeling edges of the formula interpreted as follows: suppose

g is a gate with g′ as an input gate such that the edge from g′ to g is labeled by scalar α.

Then the contribution of gate g′ to g is the polynomial αP, where P is the polynomial

computed at g′.

Finally, we can apply a standard transformation (for e.g., see [Nis91]) to convert the

formula F′ into a homogeneous algebraic branching program (ABP). It is a bottom-up

construction of the ABP: at a + gate we can do a “parallel composition” of the input

ABPs to simulate the + gate. At a × gate it is a sequential composition of the two ABPs.

Since the formula F is set-multilinear, the resulting ABP is also easily seen to be a set-

multilinear ABP. �

2.5 A Lower Bound Result for Set-Multilinear ABPs

As we have shown in Theorem 2.4.1, we can simulate set-multilinear circuits of size s and

degree d using set-multilinear ABPs of size sO(log d). Thus, proving even a lower bound of

nω(log n) for set-multilinear ABPs computing the n × n Permanent polynomial PERn would

imply superpolynomial lower bounds for general set-multilinear circuits computing PERn

which is a long-standing open problem.

However, in this section we show a lower bound result for set-multilinear ABPs with

29

restricted type width, a notion that we now formally introduce.

Let P be a set-multilinear ABP computing a polynomial f ∈ F[X] of degree d with vari-

able set X = td
i=1Xi. By definition, the ABP P is a layered directed acyclic graph with

layers numbered 0, 1, . . . , d. Each node v in layer k of the ABP is labeled by an index set

Iv ⊆ [d], and a degree k set-multilinear polynomial fv over variables ti∈Iv Xi is computed

at v by the ABP. We refer to Iv as the type of node v. The type width of the ABP at layer k

is the number tw(k) of different types labeling nodes at layer k of the ABP.

The notion of type width is motivated by the fact that read-once oblivious ABPs (ROABPs

defined in [FS13]) have type width 1 (as noted in the following proposition).

Proposition 2.5.1. Suppose P is a set-multilinear ABP computing a polynomial f ∈ F[X]

of degree d with variable set X = td
i=1Xi such that the type-width of P is 1 at each layer.

Then P is in fact an ROABP which is defined by a suitable permutation on the index set

[d].

Proof. As each layer of P has type width one, the list of type I0 = ∅ ⊂ I1 ⊂ · · · ⊂ Id

gives an ordering of the index set, where the ith index in the ordering is Ii \ Ii−1. W.r.t. this

ordering clearly P is an ROABP. �

It is well-known that Nisan’s rank argument [Nis91] (originally used for lower bound-

ing noncommutative ABP size) also yields exponential lower bounds for any ROABP

computing PERn. In particular, it implies an exponential lower bound for set-multilinear

ABPs of type-width 1. This suggests that a natural first step to showing lower bounds

for general set-multilinear ABPs/circuits is to first deal with set-multilinear ABPs with

restrictions on its type width.

30

2.5.1 Lower bounds for narrow set-multilinear ABPs

Definition 2.5.2. A set-multilinear ABP computing a degree d polynomial in F[X] such

that X = td
i=1Xi is said to be k-narrow, for 1 ≤ k ≤ d, if

min{k.tw(k), (d − k).tw(k)} ≤ d/2.

For example, ROABPs are a subclass of set-multilinear ABPs that are k-narrow for every

k. As another example, we note that the sum of ` ROABPs is d
2` -narrow.

Theorem 2.5.3. Any k-narrow set-multilinear ABP computing the permanent polynomial

PERn requires size 2k.1

Proof. Let P be a k-narrow set-multilinear ABP computing PERn, and suppose k.tw(k) ≤

n/2 (we note that if (n − k).tw(k) ≤ n/2 the proof proceeds analogously by reversing the

roles of the source and sink nodes of the ABP). In the proof we shall assume that n is even

in order to avoid floors and ceils.

Let Vk denote the set of nodes in the kth layer of P. For each node v ∈ Vk let Iv denote its

index set. As |Iv| = k and P is k-narrow, we have

|
⋃
v∈Vk

Iv| ≤ k.tw(k) ≤ n/2.

We choose and fix a size n/2 subset A of [n] such that
⋃

v∈Vk
Iv ⊆ A.

For any set-multilinear polynomial f ∈ F[X] w.r.t. the partition X = tn
i=1Xi, where Xi =

{Xi j | 1 ≤ j ≤ n}, we can define the matrix M f whose rows are indexed by degree n/2

set-multilinear monomials m and columns by degree n/2 set-multilinear monomials m′

such that m is a monomial in variables ti∈AXi and m′ in variables ti<AXi and

1The same lower bound proof will work for the Determinant polynomial DETn.

31

M f (m,m′) = f (mm′), (2.1)

where f (mm′) denote the coefficient of monomial mm′ in polynomial f .

For each node v ∈ Vk let fv and gv denote the polynomials computed by P between start

node s and sink node v, and start node v and sink node t, respectively. Since P computes

PERn, it follows that

MPERn =
∑
v∈Vk

M fvgv .

Let A = {i1, i2, . . . , in/2} and A = { j1, j2, . . . , jn/2} be the indices listed in, say, increasing

order. We set some variables of PERn to zero: We rename the rows and columns of the

n × n matrix Xi j as i1, j1, i2, j2, . . . , in/2, jn/2. Along the principal diagonal we now have

n/2 many 2 × 2 matrices, where the rth such matrix is indexed by ir, jr in both rows and

columns. We retain only these 4r = 2n many variables in PERn and set all other variables

Xi j to 0. Let the resulting polynomial in these 2n variables be denoted ˆPERn. Notice that

ˆPERn is set-multilinear of degree n with each set X′i ⊂ Xi in partition having exactly two

variables in it. Furthermore, let f̂v and ĝv be polynomials obtained from fv and gv by the

same substitution for each v ∈ Vk. We clearly have

M ˆPERn
=

∑
v∈Vk

M f̂vĝv
.

Clearly,

rank(M ˆPERn
) ≤

∑
v∈Vk

rank(M f̂vĝv
). (2.2)

The following two claims immediately yield the claimed lower bound of 2k on the size of

the ABP P.

32

Claim 2.5.1. rank(M ˆPERn
) = 2n/2.

Proof of Claim. The degree n/2 monomials labeling the rows of matrix M ˆPERn
are of the

form m =
∏r

t=1 Xitat , where at ∈ {it, jt}. Likewise, the degree n/2 monomials labeling the

columns of matrix M ˆPERn
are of the form m′ =

∏r
t=1 X jtat , where at ∈ {it, jt}. Clearly, for

each such m there is a unique m′ such that their product mm′ is a nonzero monomial of

ˆPERn. Thus, the matrix M ˆPERn
is a permutation matrix and hence it has rank exactly 2n/2.

Claim 2.5.2. For each v ∈ Vk we have rank(M f̂vĝv
) ≤ 2n/2−k.

Proof of Claim. It suffices to show that we can write matrix M f̂vĝv
as a sum of 2n/2−k

rank 1 matrices. To this end, let m̂ be a set-multilinear monomial of degree n/2− k whose

variables come from ti∈A\Iv Xi (where we recall that Iv is the index set of node v in the

ABP). Let M(m̂) denote the 2n/2 × 2n/2 matrix obtained from M f̂vĝv
as follows: for each

degree k set-multilinear monomial m over ti∈Iv Xi, the row labeled mm̂ of M f̂vĝv
is the same

for M(m̂). All other rows of M(m̂) are zero. Clearly,

M f̂vĝv
=

∑
m̂

M(m̂).

Furthermore, the rank of Mm̂ is at most 1 because it can be expressed as the product of a

2n/2 × 1 matrix and a 1 × 2n/2 matrix (using the coefficient vectors of the polynomials f̂v

and ĝv).

Clearly, the above claims combined with Equation (2.2) imply that |Vk| ≥ 2k which implies

that the size of P is lower bounded by 2k. �

As a consequence of Theorem 2.5.3 we immediately obtain the following lower bound on

the size of a sum of r many ROABPs for computing the permanent.

Corollary 2.5.4.

33

• If P is a set-multilinear ABP computing PERn such that the type width of every layer

is bounded by r then the size of P is 2Ω(n/r). A special case is the next part.

• Let Pi, 1 ≤ i ≤ r, be ROABPs such that
∑r

i=1 Pi is the permanent polynomial PERn

(or the determinant polynomial DETn). Then at least one of the Pi is of size 2Ω(n/r).

Proof. The first part clearly implies that the type width at layer n
2r is bounded by r and we

can apply the above theorem. For the second part, it suffices to observe that the sum of r

many ROABPs is an smABP whose type width at each layer is bounded by r. �

Thus, if r = O(n
log2 n

), we get superpolynomial (nΩ(log n)) lower bound for sum of O(n
log2 n

)-

many ROABPs computing PERn or DETn.

Remark 2.5.1. We note that there is a polynomial-time (white-box) identity testing al-

gorithm for the sum of a constant number of ROABPs [GKST15]. Their black-box PIT

is quasi-polynomial time. It remains an interesting problem to prove a superpolynomial

lower bound for the sum of poly(n) many (or even O(n) many) ROABPs computing PERn.

We also note the recent work by Anderson et al [AFS+16] showing lower bounds for

read-k oblivious ABPs.

2.6 Summary and open problems

We investigated lower bound questions for certain set-multilinear arithmetic circuits and

ABPs. By imposing a restriction on the number of set types for set-multilinear ABPs,

we could prove nontrivial lower bounds for the Permanent. Some interesting open ques-

tions arise from our work: can we show lower bounds for f (n)-narrow set-multilinear

ABPs for f (n) = O(n)?. We believe that for set-multilinear ABPs/circuits the determinant

and permanent are equally hard (like for noncommutative circuits [AS10]). Given a set-

multilinear ABP for the determinant can we transform it into a set-multilinear ABP for

34

the permanent by somehow “removing” the signs of all the monomials?

35

36

Chapter 3

Lower bounds for some restricted set

multilinear circuits

3.1 Introduction

In this chapter also, we continue our study of set-multilinear arithmetic computations.

We study the structure of set-multilinear arithmetic circuits and set-multilinear branching

programs with the aim of showing lower bound and separation results. We define some

natural restrictions of these models for which we are able to show lower bound results.

Our main results are the following:

• We show that set-multilinear branching programs are exponentially more powerful

than interval multilinear circuits (where the index sets for each gate is restricted to

be an interval w.r.t. some ordering), assuming the sum-of-squares conjecture. This

further underlines the power of set-multilinear branching programs.

• Next, we examine a more semantic restriction. The semantic restriction we consider

are restrictions on the number of parse trees of monomials. We show exponential

lower bounds for set-multilinear circuits with restrictions on the number of parse

37

trees of monomials and prove exponential lower bounds results.

3.2 Preliminaries

For variable partition X = td
i=1Xi let f ∈ F[X] be a set-multilinear polynomial.

Definition 3.2.1 (σ-interval multilinear circuit). For a permutation σ ∈ S d, a σ-interval

multilinear circuit C for computing f is a special kind of set-multilinear arithmetic cir-

cuit: for every gate of the circuit the corresponding index set is a σ-interval {σ(i), σ(i +

1), . . . , σ(j)}, 1 ≤ i ≤ j ≤ d.

Definition 3.2.2 (σ-interval multilinear ABP). Similarly, a σ-interval multilinear ABP is

a set-multilinear ABP such that the index set associated to every node is some σ-interval.

Definition 3.2.3 (Parse Tree). For an arithmetic circuit C, a parse tree for a monomial

m is a multiplicative subcircuit of C rooted at the output gate defined by the following

process starting from the output gate:

• At each + gate retain exactly one of its input gates.

• At each × gate retain both its input gates.

• Retain all inputs that are reached by this process.

• The resulting subcircuit is multiplicative and computes the monomial m (with some

coefficient).

Definition 3.2.4 (Parse Tree Type). Let C be a set-multilinear circuit computing f ∈ F[X]

for variable partition X = td
i=1Xi.

• A parse tree T for a monomial is, in fact, a binary tree with leaves labeled by

variables (ignoring the leaves labeled by constants) and internal nodes labeled by

38

gate names (the × gates of C occurring in the parse tree). By set-multilinearity, in

each parse tree there is exactly one variable from each subset Xi, and each variable

occurs at most once in a parse tree.

• With each parse tree T we can associate its parse tree type T̂ which is a binary tree

with d leaves. Each node v of T is labeled by an index set Iv ⊆ [d]: The root is

labeled by [d], each leaf is labeled by a distinct singleton set [i], 1 ≤ i ≤ d, and if v

has children v1 and v2 in the tree then Iv = Iv1 t Iv2 .

3.3 Summary of results

In Section 3.4, we show that set-multilinear branching programs are exponentially more

powerful than interval multilinear circuits (where the index sets for each gate is restricted

to be an interval w.r.t. some ordering), assuming the sum-of-square conjecture [HWY10a].

This further underlines the power of general set-multilinear branching programs. A new

aspect of the polynomial family which we define is that the homogeneous polynomial

family { fn}n we construct is only partially explicit. We use the probabilistic method to pick

certain parameters that define the polynomial. We show that for any interval multilinear

circuits computing the polynomial family { fn}n, we can always pick a set of indices S such

that projecting the polynomial fn on to these locations results in a polynomial f ′n which is

hard to compute assuming the sum-of-square conjecture [HWY10a].

In Section 3.5 we investigate lower bounds for a different generalization of ROABPs

based on the structure of parse trees of monomials. We can define parse tree types for a

set-multilinear circuit which is a binary tree with index types labeling all its nodes. We

note in an ROABP all monomials have the same parse tree type (a single path of length

d). Thus, a natural generalization is to consider set-multilinear ABPs (and circuits) with

restrictions on parse trees of monomials. It turns out that if a set-multilinear circuit for

PERn has only r many parse tree types in all, then we can use the results of Section 2.5

39

to show a 2Ω(n
r log n) lower bound on its size. Another restriction are set-multilinear circuits

such that each monomial has at most one parse tree type (but the total number of parse

tree types in the circuit is unbounded). For such circuits too we can prove exponential

lower bounds. Our lower bound proofs are applications of well-known partial derivative

method.

3.4 Interval multilinear circuits and ABPs

The aim of the present section is to compare the computational power of interval multi-

linear circuits with general set-multilinear circuits. Clearly, σ-interval multilinear circuits

are restricted by the ordering. In essence, σ-interval multilinear circuits are restricted to

compute like noncommutative circuits (with respect to the ordering prescribed byσ). This

property needs to be exploited to prove the separations. We show the following result:

Assuming the sum-of-squares conjecture [HWY10a], we show that there are set-

multilinear polynomials f ∈ R[X] with monotone set-multilinear circuits (even

ABPs) of size linear in d, but require 2Ω(d) size σ-interval multilinear circuits for

every σ ∈ S d.

A new aspect is that the polynomial we construct is only partially explicit. We use the

probabilistic method to pick certain parameters that define the polynomial.

The polynomial construction

Let X = t2d
i=1Xi be the variable set, where

Xi = {x0,i, x1,i}, 1 ≤ i ≤ 2d.

40

For every binary string b ∈ {0, 1}d we define the monomials:

wb =

d∏
i=1

xbi,i and w′b =

d∏
i=1

xbi,d+i.

We define the set-multilinear polynomial

P =
∑

b∈{0,1}d

wbw′b.

For any permutation σ ∈ S 2d permuting the indices in [2d], we define monomials:

σ(wb) =

d∏
i=1

xbi,σ(i) and σ(w′b) =

d∏
i=1

xbi,σ(d+i),

and the corresponding polynomial σ(P)

σ(P) =
∑

b∈{0,1}d

σ(wb)σ(w′b).

Definition 3.4.1. In the polynomial σ(P) we refer to the indices σ(j) and σ(d + j) as a

matched pair of indices, since in the monomialσ(wb)σ(w′b) it is required that the variables

xb j,σ(j) and xb j,σ(d+ j) have the same first index b j.

For σ = id, the matched pairs are (j, d + j) for 1 ≤ j ≤ d.

Lemma 3.4.2.

• The set-multilinear polynomialσ(P) can be computed by a monotone set-multilinear

ABP of size O(d).

• For any σ1, σ2, . . . , σs ∈ S 2d the polynomial
∑s

j=1 σi(P) can be computed by a

monotone set-multilinear ABP of size O(sd).

41

Proof. As

σ(P) =

d∏
i=1

(x0,σ(i)x0,σ(d+i) + x1,σ(i)x1,σ(d+i)),

clearly σ(P) has an O(d) monotone set-multilinear formula. Hence, it has a monotone set-

multilinear ABP of size O(d). The second part of the lemma is an immediate consequence.

�

We will show that there exist a set of d permutations σ1, σ2, . . . , σd ∈ S 2d with the fol-

lowing property: for any permutation τ ∈ S 2d there is a σi from this set such that any

τ-interval multilinear circuit that computes σi(P) requires size 2Ω(d).

Note that, in contrast, given a σ(P) there is always a permutation τ ∈ S 2d such that

σ(P) can be computed by a small τ-interval multilinear circuit. Indeed, the ABP com-

puting σ(P) described in Lemma 3.4.2 is an interval-multilinear ABP w.r.t. the ordering

σ(1), σ(d + 1), σ(2), σ(d + 2), . . . , σ(d), σ(2d).

Interval multilinear circuits and noncommutative circuits

We first observe that a τ-interval multilinear circuit computing a set-multilinear poly-

nomial in F[X], X = td
i=1Xi, is essentially like a noncommutative circuit computing a

noncommutative polynomial over the variables X, whose monomials can be considered

as words of the form xi1 xi2 . . . xid , where xi j ∈ Xτ(j) for 1 ≤ j ≤ d.

In [HWY10a], Hrubes et al have related the well-known sum-of-squares (in short, SOS)

conjecture (also see [Sha00]) to lower bounds for noncommutative arithmetic circuits.

Our results in this section are based on their work. We recall the conjecture.

The sum-of-squares (SOS) conjecture: Consider the question of expressing the bi-

42

quadratic polynomial

S OS k(x1, . . . , xk, y1, . . . , xk) = (
∑
i∈[k]

x2
i)(

∑
i∈[k]

y2
i)

as a sum of squares (
∑

i∈[s] f 2
i) for the least possible s, where each fi is a homogeneous

bilinear polynomial. The conjecture states that s = Ω(k1+ε) over the field of complex

numbers C (or the algebraic closure of any field F such that char(F) , 2).

The following lower bound is shown in [HWY10a] assuming the SOS conjecture.

Theorem 3.4.3. [HWY10a] Assuming the SOS conjecture over field F, any noncommuta-

tive circuit computing the polynomial ID =
∑

w∈{x0,x1}d
ww in noncommuting variables x0

and x1 requires size 2Ω(d).

The above theorem implies the following conditional lower bound for interval multilinear

circuits.

Corollary 3.4.4. Assuming the SOS conjecture, for any σ ∈ S 2d a σ-interval multilinear

circuit computing the set-multilinear polynomial σ(P) requires size 2Ω(d).

Proof. Let C be a size s σ-interval multilinear circuit for σ(P). The SOS conjecture

combined with the following claim clearly yields the corollary.

Claim 3.4.1. From C we can obtain a size s homogeneous noncommutative circuit for the

noncommutative polynomial
∑

w∈{x0,x1}d
ww.

Proof of Claim. By definition, the index sets of every gate in circuit C is a σ-interval. We

construct a noncommutative circuit C′ of size s from C as explained below:

1. Replace variable Xb,σ(i) by xb for 1 6 i 6 2d and b ∈ {0, 1} at the inputs.

2. Interpret all × gates as noncommutative product gate with inputs ordered left to

right as per their respective interval locations.

43

By construction, each gate g in C′ has an interval Ig in [1 − (2d)] associated with it. In

particular, if a gate g of degree k in C has interval {σ(i), σ(i+1), · · · , σ(i+k−1)} for some

i 6 d − k, then the corresponding gate g in C′ has interval Ig = {i, i + 1, · · · , i + k − 1}. We

claim that the output gate of C′ computes the polynomial
∑

w∈{x0,x1}d
ww. We prove this by

an inductive argument on the circuit structure.

In particular, we show that gate g in C computes a monomial
∏

j xb j,σ(j) with coefficient

α ∈ F iff the corresponding gate g in C′ computes monomial
∏

j xb j with coefficient α ∈ F.

Let Coeffg(m′) denote the coefficient of monomial m′ in the polynomial computed by g

in C′. Similarly, let Coeffg(m) denote the coefficient of monomial m in the polynomial

computed by g in C.

• For the base case, suppose gate g in C′ is an input gate with label xbi and interval

[i], then clearly gate g in C is an input gate with variable xbi,σ(i).

• Suppose gate g in C′ is a + gate of degree k, where g = g1 + g2, and all three

gates have interval I = [i, i + 1, . . . , i + k − 1] labeling them. Further, suppose

m′ = xbi xbi+1 · · · xbi+k−1 is a monomial computed at gate g with coefficient αm′ ∈

F. Then αm′ = Coeffg1(m
′) + Coeffg2(m

′). By induction hypothesis, Coeffg1(m
′),

Coeffg2(m
′) in C′ equal Coeffg1(m), Coeffg2(m) in C respectively, where monomial

m =
∏i+k−1

j=i xb j,σ(j). Thus, Coeffg(m′) = Coeffg(m).

• Suppose g is a × gate in C′ of degree k. Let g = g1 × g2, and deg(g1) = k1.

Let I = I1] I2 be the intervals corresponding to gates g, g1, and g2, and I =

[i, i + 1, . . . , i + k − 1]. Let m′ =
∏i+k−1

j=i xb j be a monomial with coefficient αm′ ∈ F

computed at gate g′. Then we can write αm′ = Coeffg1(m
′
1) × Coeffg2(m

′
2). By

induction hypothesis, the coefficients Coeffg1(m
′
1) and Coeffg2(m

′
2) in C′ are the

same as the coefficients Coeffg1(m1), Coeffg2(m2) in C, respectively. Here, notice

that the monomials m1 and m2 are uniquely defined from m′1 and m′2 and the intervals

I1 and I2. It follows that Coeffg(m′) in C′ equals Coeffg(m) in C.

44

�

Remark 3.4.1. In [HWY10a], the connection between the SOS conjecture and lower

bounds for the noncommutative polynomial
∑

w∈{x0,x1}d
ww is made by considering first

writing it as
∑

w1,w2∈{x0,x1}d/2
w1w2w1w2. Then the noncommutative degree-d/2 monomials

w1 and w2 are treated as single commuting variables which allows the polynomial to be

written as a product of two quadratics (
∑

w2
1)(

∑
w2

2). Here w1 and w2 run over two sets

of 2d/2 distinct variables each.

Now, the SOS conjecture applied to this biquadratic polynomial implies that writing

(
∑

w2
1)(

∑
w2

2) as
∑t

i=1 f 2
i , for bilinear forms fi, implies t = Ω(2d/2(1+ε)) for a constant

ε > 0. In [HWY10a, Corollary 5.4] it is shown that any size s noncommutative circuit for∑
w∈{x0,x1}d

ww can be transformed into a sum of squares
∑t

i=1 f 2
i such that t = O(d3s2d/2)

which implies the lower bound of 2Ω(d) on the circuit size s.

Motivated by the connection described in the above remark we obtain the following easy

lemma.

Lemma 3.4.5. For even d, partition [2d] into four intervals of size d/2 each: I1 =

[1, 2, . . . , d/2], I2 = [d/2 + 1, . . . , d], I3 = [d + 1, . . . , 3d/2], and I4 = [3d/2 + 1 . . . 2d].

Let σ ∈ S 2d be any permutation such that σ(I j) = I j, 1 ≤ j ≤ 4. Then, assuming the SOS

conjecture, any id-interval multilinear circuit computing the polynomial σ(P) requires

size 2Ω(d).

Proof. By definition, σ(P) =
∑

b∈{0,1}d σ(wb)σ(w′b). Since σ stabilizes each I j, 1 ≤ j ≤ 4,

we can write σ(wb) = w1w2 and σ(w′b) = w′1w′2, where the matched pairs are between

w1 and w′1, and between w2 and w′2, respectively. Now, by substituting the same vari-

able for each matched pair, we obtain the polynomial (
∑

w2
1)(

∑
w2

2). As explained in

Remark 3.4.1, we can treat this as a biquadratic polynomial, where w1 and w2 are single

variables that run over variable sets of size 2d/2 each. The proof argument in [HWY10a]

45

can now be applied to yield that any id-interval circuit size computing σ(P) has size 2Ω(d),

assuming the SOS conjecture for the biquadratic polynomial (
∑

w2
1)(

∑
w2

2). �

We will use the probabilistic method to show the existence of the set of permutations

σi, 1 ≤ i ≤ d in S 2d, such that for each τ ∈ S 2d there is some σi(P), i ∈ [d] that re-

quires size 2Ω(d) τ-interval multilinear circuits. We will require the following concentra-

tion bound.

Lemma 3.4.6. [DP09, Theorem 5.3, page 68] Let X1, · · · , Xn be any n random variables

and let f be a function of X1, X2 . . . , Xn. Suppose for each i ∈ [n] there is ci ≥ 0 such that

|E[f |X1, · · · , Xi] − E[f |X1, · · · , Xi−1]| ≤ ci.

Then for any t > 0, we have the bound Prob[f < E[f]−t] ≤ exp(−2t2
c), where c =

∑
i∈[n] c2

i .

Lemma 3.4.7. Let σ ∈ S 2d be a permutation picked uniformly at random. For any τ ∈

S 2d, the probability that σ(P) is computable by a τ-interval multilinear circuit of size 2o(d)

is bounded by e−Ω(d), assuming the SOS conjecture.

Proof. In the polynomial P =
∑

b∈{0,1}d wbw′b the matched pairs, as defined earlier, are

the index pairs (i, d + i), 1 ≤ i ≤ d. As in Lemma 3.4.5, we partition the index set

[2d] into four consecutive d/2-size intervals I1 = [1, . . . , d/2], I2 = [d/2 + 1, . . . , d],

I3 = [d + 1, . . . , 3d/2], and I4 = [3d/2 + 1, . . . , 2d]. Note that d/2 of the matched pairs are

between I1 and I3 and the remaining d/2 are between I2 and I4. Consider the following

two subsets of matched pairs of size d/8 each:

E1 = {(i, d + i) | 1 ≤ i ≤ d/8}

E2 = {(d/2 + i, 3d/2 + i) | 1 ≤ i ≤ d/8}.

46

The pairs in E1 are between I1 and I3 and pairs in E2 are between I2 and I4. Let σ ∈ S 2d

be a permutation picked uniformly at random. We say (i, d + i) ∈ E1 is good if σ(i) ∈ I1

and σ(d + i) ∈ I3. Similarly, (d/2 + i, 3d/2 + i) ∈ E2 is called good if σ(d/2 + i) ∈ I2

and σ(3d/2 + i) ∈ I4. Let Xi, 1 ≤ i ≤ d/8, be indicator random variables which take the

value 1 iff the pair (i, d + i) ∈ E1 is good. Similarly, define indicator random variables X′i

corresponding to pairs ((d/2 + i, 3d/2 + i) ∈ E2, 1 ≤ i ≤ d/8.

For each i ∈ [d/8], Yi ∈ {Xi, X′i } we have

Probσ∈S 2d [Yi = 1] >
(
(d/2 − d/8)

2d

)2

= 9/256 > 1/64.

Let f =
∑d/8

i=1 Xi and f ′ =
∑d/8

i=1 X′i . Clearly, we have

E[f] ≥
d

8 × 64
=

d
512

.

Furthermore, we also have for each i : 1 ≤ i ≤ d/8

|E[f |X1, X2, . . . , Xi] − E[f |X1, X2, . . . , Xi−1]| ≤ 1

Applying Lemma 3.4.6, with t = d/1024 we deduce that

Probσ∈S 2d [f <
d

1024
] ≤ e−αd,

where α > 0 is some constant independent of d. Similarly, we also have

47

Probσ∈S 2d [f ′ <
d

1024
] ≤ e−αd,

Combining the two bounds yields

Probσ∈S 2d [f ≥
d

1024
and f ′ ≥

d
1024

] ≥ 1 − 2e−αd.

Thus, with probability 1 − 2e−αd there are d/1024 pairs (σ(i), σ(d + i)) such that σ(i) ∈ I1

and σ(d+i) ∈ I3, and there are d/1024 pairs (σ(d/2+i), σ(3d/2+i)) such that σ(d/2+i) ∈

I2 and σ(3d/2 + i) ∈ I4. If we set all other variables in the polynomial σ(P) to 1, we can

apply Lemma 3.4.5 to the resulting polynomial (with d replaced by d/1024 in the lemma)

which will yield the lower bound of 2Ω(d) for any id-interval multilinear circuit computing

σ(P), for a random σ with probability 1 − 2e−αd. For any τ-interval multilinear circuit

too the same lower bound applies because τσ is also a random permutation in S 2d with

uniform distribution.

�

We are now ready to state and prove the main result of this section.

Theorem 3.4.8. There is a set-multilinear polynomial f ∈ F[X], where X = t
log d+2d
i=1 Xi

and Xi = {x0,i, x1,i}, 1 ≤ i ≤ log d + 2d such that f has an O(d2) size monotone set-

multilinear ABP and, assuming the SOS conjecture, for any τ ∈ S log d+2d any σ-interval

multilinear circuit computing f has size 2Ω(d).

Proof. Suppose the SOS conjecture holds. Let σ ∈ S 2d be some permutation. By

Lemma 3.4.7, if we pick permutations σ1, σ2, . . . , σd ∈ S 2d independently and uniformly

at random, then the probability that each σi(P) can be computed by a fixed σ-interval

multilinear circuit is bounded by (2e−αd)d = e−Ω(d2). As |S 2d| = (2d)!, by the union bound

48

it follows that there exist permutations σ1, σ2, . . . , σd ∈ S 2d such that for any σ ∈ S 2d at

least one of the σi(P) requires 2Ω(d) size σ-interval multilinear circuits.

We fix such a set of permutations σ1, σ2, . . . , σd ∈ S 2d and define the polynomial f by

“interpolating” the σi(P). To this end, we need the fresh log d variable sets. For each

c : 1 ≤ c ≤ d, let its binary encoding also be denoted by c, where c ∈ {0, 1}log d. Let uc

denote the monomial

ui =

2d+log d∏
j=2d+1

xc j, j.

Hence the monomial uc can also be seen as an encoding of c : 1 ≤ c ≤ d. We define

f =
∑

c∈{0,1}log d

ucσc(P).

Clearly, f ∈ F[X] and for each 0-1 assignment c ∈ {0, 1}d to the variables in X j, 2d + 1 ≤

j ≤ 2d + log d, the polynomial f becomes σc(P).

Let τ ∈ S log d+2d be an arbitrary permutation. Let τ̂ ∈ S 2d denote the relative ordering of

the indices in [1, 2, . . . , d] induced by τ.

Suppose f has a 2o(d) size τ-interval multilinear circuit. Then, by different 0-1 assignments

c ∈ {0, 1}d to variables in X j, 2d + 1 ≤ j ≤ 2d + log d we will obtain a 2o(d) size τ̂-interval

multilinear circuit for each σc(P) which is a contradiction to the choice of the σi. �

Finally, we show for monotone circuits that the analogue of Theorem 3.4.8 holds uncon-

ditionally.

Theorem 3.4.9. There is a set-multilinear polynomial f ∈ F[X], where X = t
log d+2d
i=1 Xi

and Xi = {x0,i, x1,i}, 1 ≤ i ≤ log d + 2d such that for any τ ∈ S log d+2d any monotone

τ-interval multilinear circuit computing f has size 2Ω(d).

49

Proof. Let

f =
∑

c∈{0,1}log d

ucσc(P),

be the polynomial defined in Theorem 3.4.8. By Corollary 3.4.2, f has small monotone

set-multilinear ABPs. Let C be any monotone τ-interval multilinear circuit of size s

computing f .

The bilinear complexity of (
∑k

i=1 x2
i)(

∑k
j=1 y2

j) [HWY10a, Section 1.3] is the minimum t

such that (
∑k

i=1 x2
i)(

∑k
j=1 y2

j) equals
∑t

i=1 fi f ′i , for bilinear forms fi and f ′i (both fi and f ′i are

bilinear in the variable sets {x1, x2, . . . , xk} and {y1, y2, . . . , yk}). It is shown in [HWY10a,

Theorem 1.6] that a lower bound of Ω(k1+ε) for constant ε > 0 yields a 2Ω(d) size lower

bound for noncommutative circuits computing ID =
∑

w∈{x0,x1}d
ww (over F algebraically

closed such that char(F) , 2). The connection to the SOS conjecture comes (for fields of

characteristic different 2) because the bilinear complexity is related by a constant factor

to the minimum sum-of-squares expression.

When fi and f ′i are monotone bilinear forms we have the following.

Claim 3.4.2. If (
∑k

i=1 x2
i)(

∑k
j=1 y2

j) equals
∑t

i=1 fi f ′i , for monotone bilinear forms fi and f ′i

then t ≥ k2.

Proof of Claim. By assumption, the fi and f ′i are all monotone bilinear in variable sets

{x1, x2, . . . , xk} and {y1, y2, . . . , yk}. For each i ∈ [t], all nonzero terms in the product fi f ′i

must be of the form x2
jy

2
` because there are no cancellations. Therefore, if fi has a nonzero

term of the form x jy` then f ′i can have only x jy` as a nonzero term and no other terms,

because the coefficients are nonnegative in fi and f ′i and there are no cancellations. Thus,

each product fi f ′i involves precisely one pair (x j, y`) for some j, ` ∈ [k]. This forces t ≥ k2.

It follows from the proof of [HWY10a, Corollary 5.4] and the above claim that any mono-

tone noncommutative circuit for ID =
∑

w∈{x0,x1}d
ww is of size 2Ω(d). We observe that

Corollary 3.4.4, Lemma 3.4.5, Lemma 3.4.7, and Theorem 3.4.8 all hold for monotone

50

interval multilinear circuits unconditionally, because the SOS conjecture is true in the

monotone case by the above claim. This completes the proof. �

3.5 Parse tree restrictions on set-multilinear circuits

In this section we investigate lower bounds for set-multilinear circuits computing the Per-

manent that satisfy some “semantic” restrictions on the parse trees of monomials.

Thus, given a set-multilinear circuit C we can consider: (a) the set of parse tree types of

the entire circuit C, and (b) the set of parse tree types of a given monomial.

For set-multilinear ABPs computing a degree d polynomial, parse trees of monomials are

just simple paths of length d, and the corresponding parse tree types are also simple paths

of length d. Furthermore, every ROABP have a unique parse tree type. As exponential

lower bounds for ROABPs computing the permanent are known [Nis91] using the partial

derivative method, a natural question is whether we can obtain lower bounds when more

than one parse tree type is allowed in the set-multilinear circuit. We consider the following

two restrictions and prove lower bounds.

1. Set-multilinear circuits with few parse tree types.

2. Unambiguous set-multilinear circuits: i.e. circuits in which each monomial has a

unique parse tree type (but the number of different parse tree types in the circuit is

unbounded).

3.5.1 Set-multilinear circuits with few parse tree types

Let C be a set-multilinear circuit computing a degree-n polynomial f ∈ F[X] for variable

partition X = tn
i=1Xi such that the total number of parse tree types in the circuit is bounded,

say, by a polynomial in n. Can we prove superpolynomial lower bounds for such circuits?

51

We are able to show non-trivial lower bounds when the number of parse trees are small

enough. More precisely, suppose C is a set-multilinear circuit that computes PERn and

C has at most r parse tree types. Then we show that C is of size 2Ω(n
r log n). Here is a brief

outline of the proof: We decompose C into a sum of r many set-multilinear formulas

Ci, 1 ≤ i ≤ r, such that each Ci has a unique proof tree type. Next, we convert each

such Ci into an ROABP Ai. Thus, the sum of these ROABPs Ai, 1 ≤ i ≤ r computes the

permanent PERn and we can apply Corollary 2.5.4 to the sum of these Ai’s and obtain the

claimed lower bound. We now present the details.

Lemma 3.5.1. Let C be a set-multilinear circuit of size s computing a degree-d polyno-

mial P ∈ F[X]. If all parse trees in C have the same parse tree type T , then C can be

efficiently transformed into a set-multilinear formula C′ of size sO(log d) such that in C′ too

all parse trees have the same parse tree type T ′, where T ′ depends only on T (and not on

the circuit C).

Proof. The proof is a standard depth reduction argument as, for example Hyafil’s result

[Hya79]. The only extra work we need to do is argue about the parse tree type.

We prove the lemma by induction on the size of the index set of the output gate of C

(i.e., degree of P). At the input gates, where index set is a singleton set, it clearly holds.

Suppose the index set of the output gate is of size at least 2. Let TC denote the unique parse

tree type for all parse trees in C. Each node v of TC is labeled by its index set Iv ⊆ [d]. As

TC is a binary tree, there is a vertex u such that d
3 6 |Iu| 6

2d
3 . Let S u = {v ∈ C | Iv = Iu}.

Let Ĉv denote the set-multilinear circuit obtained from C by (i) setting to zero all the gates

in S u \ {v}, and (ii) replacing the gate v by the constant 1. Let Qv denote the polynomial

computed at the output gate of Ĉv. Its index set is [d] \ Iv. Let Pv denote the polynomial

computed at a gate v of C. Then we can clearly write

P =
∑
v∈S u

PvQv.

52

Let Cv denote the subcircuit of C with output gate v. Note that

d
3
6 deg(Pv), deg(Qv) 6

2d
3
.

Thus, for each v ∈ S u both Pv and Qv are set-multilinear polynomials computed by set-

multilinear circuits (Cv and Ĉv, respectively) of size at most s. Furthermore, these circuits

also have the property that all parse trees has the same parse tree type (otherwise, C would

not have the property).

By induction hypothesis, for each v ∈ S u we have set-multilinear formulas Fv and F̂v such

that:

• Fv and F̂v compute Pv and Qv, respectively.

• The size of Fv as well as F̂v is bounded by sO(log 2d
3).

• All parse trees in Fv have a unique parse tree type. All parse trees in F̂v have a

unique parse tree type.

Furthermore, the circuit C has the following stronger property: suppose v and v′ are two

gates with the same index set Iv = Iv′ . Then the unique parse tree type associated with

subcircuit Cv is the same as the unique parse tree type for subcircuit Cv′ . Otherwise, the

circuit C would not have a unique parse tree type associated with it.

Since each subcircuit Cv, v ∈ S u has the same index set and, thus, the same parse tree type

associated to it, it follows by induction hypothesis that all the formulas Fv, v ∈ S u also

have the same unique parse tree type. The same property holds for Ĉv, v ∈ S u and hence

F̂v, v ∈ S u.

Therefore, each of the product polynomials PvQv, v ∈ S u, computed by the formulas

Fv×F̂v, v ∈ S u, with a × output gate, all have the same parse tree type. Thus, since |S u| 6 s

the polynomial P =
∑

v∈S u
PvQv has a set multilinear formula C′ of size 6 s(2sO(log 2d

3)) 6

53

sO(log d) and all the parse trees of C′ have the same parse tree type T ′. Furthermore, it is

clear that T ′ depends only on TC. This completes the proof of the lemma. �

Lemma 3.5.2. Let C be a set-multilinear formula of size s computing a degree d poly-

nomial P, such that C has a unique parse tree type T . Then C can be transformed into

a set-multilinear ABP that has a unique parse tree type T ′ which depends only on T and

not on the formula C.

Proof. We proof the lemma by induction on the size of formula C. Suppose the output

gate of C is a + gate. Let C1 and C2 be the two subformulas. Since C has a unique parse

tree type T , both subcircuits C1 and C2 have the same unique tree type T . By induction

hypothesis the two subformulas C1 and C2 of C with same parse tree T can be converted

into set-multilinear ABPs A1 and A2, respectively, such that both A1 and A2 have the same

unique parse tree type T ′. The set-multilinear ABP A for their sum is obtained by “parallel

composition” of the two ABPs A1 and A2. Clearly, A has the same unique parse tree type

T ′.

Next, suppose output gate of formula C is a × gate. Since C has unique proof tree type

T , the subcircuits C1 and C2 of C have unique parse tree types T1 and T2, respectively.

Let T1 be the left subtree of T and T2 be the right subtree. By induction hypothesis both

C1 and C2 have ABPs A1 and A2 with unique parse tree types T1 and T2 respectively. In

order to compute their product, we can take the “series composition” of A1 and A2, which

yields the desired set-multilinear ABP with unique parse tree type. �

Lemma 3.5.3. Let C be a set-multilinear circuit of size s computing polynomial P ∈ F[X]

of degree d such that C has r distinct parse tree types. Then from C we can construct

set-multilinear circuits Ci, 1 ≤ i ≤ r such that
∑

i∈[r] Ci computes polynomial P, each Ci is

of size bounded by s, and each Ci has a unique parse tree type.

Proof. Let the parse tree types of C be T1,T2, · · · ,Tr. We describe the construction of

circuit Ci from C corresponding to parse tree type Ti. In Ci, we label 0 for all the outgoing

54

edges of gates v in C whose index set Iv ⊆ [n] is not equal to any of the index sets of

parse tree Ti. Clearly, the parse trees of Ci are precisely all parse trees of parse tree

type Ti present in circuit C and with the same coefficients. Therefore,
∑r

i=1 Ci computes

polynomial P. This completes the proof. �

As a consequence of the above lemmas we obtain the following.

Theorem 3.5.4. Let C be a set-multilinear circuit computing the permanent polynomial

PERn (or determinant DETn) such that C has at most r distinct parse tree types. Then the

size of C is Ω(2
n

r log n).

Proof. Let C be of size s. The idea is to convert C into a narrow set multilinear ABPs

and apply the lower bound for narrow set multilinear ABPs (Corollary 2.5.4). First, by

Lemma 3.5.3 we compute set-multilinear circuits Ci, 1 ≤ i ≤ r, of size s each, such that

Ci has unique parse tree type Ti. Next, by Lemma 3.5.1, each Ci can be converted into

a set-multilinear formula C′i of size sO(log n), also of unique parse tree type. Finally, by

Lemma 3.5.2 C′i can be transformed into a homogeneous d-layer set-multilinear ABP Ai

of size sO(log n) which has unique parse tree type. Their sum,
∑r

i=1 Ai, obtained by “parallel

composition”, is a set-multilinear ABP A with at most r many parse tree types. Clearly,

it follows that at each layer i ∈ [n] of the ABP A, the typewidth is bounded by r.

By Lemma 3.5.1, the size of ABP A is bounded by rsO(log n). As A computes PERn (or

DETn), by Corollary 2.5.4 the size of A is lower bounded by Ω(2
n
r). Thus, rsO(log n) =

Ω(2
n
r), which implies that s = Ω(2

n
r log n). �

3.5.2 Unambiguous set-multilinear circuits

Definition 3.5.5. A set-multilinear circuit C computing a degree d polynomial f ∈ F[X],

with variable partition X = td
i=1Xi, is said to be unambiguous if for every monomial

m ∈ Xd has a unique parse tree type in circuit C.

55

In unambiguous circuits different monomials are allowed to have different parse tree

types. Furthermore, each monomial can have many parse trees, only the parse tree types

have to be all identical. Unambiguous boolean circuits and unambiguous computation in

general are well-studied in complexity theory.

Clearly, ROABPs are a special case of unambiguous set-multilinear ABPs. Also, unam-

biguous set-multilinear circuits can have many parse tree types, unlike what we consid-

ered in Section 3.5.1.

Theorem 3.5.6. Let C be an unambiguous set-multilinear circuit with variable partition

X = tn
i=1Xi, where Xi = {Xi j | 1 ≤ j ≤ n}, such that C computes the permanent polynomial

PERn. Then C is of size 2Ω(n).1

Proof. Suppose C is an unambiguous size set-multilinear circuit of size s computing the

permanent polynomial PERn. Let Gn/3 denote the set of all product gates g in C such that

deg(g) > n/3 and deg(g1) ≤ n/3 and deg(g2) ≤ n/3, where g1 and g2 are the gates that

are input to g. It follows that n/3 < deg(g) ≤ 2n/3. Furthermore, every parse tree of the

circuit C has at least one gate from Gn/3 and at most two gates from Gn/3.

Since C is unambiguous, every monomial of PERn has a unique parse tree type. Conse-

quently, by the pigeon-hole principle there is an index set I ⊆ [n] of size n/3 < |I| ≤ 2n/3

with the following property: for at least n!/s many monomials m of PERn, every parse

tree of m has a gate in Gn/3 of index set I. Let

Ĝ = {g ∈ Gn/3 | index set of g is I}.

We will lower bound |Ĝ|. For g ∈ Ĝ let Cg be the subcircuit of C rooted at the gate g.

Let ∂gC denote the partial derivative of the output gate of C w.r.t. gate g as defined in

Section 2.4. A circuit for ∂gC can be obtained from C as follows:

1The same lower bound result holds for DETn.

56

• For each gate h ∈ Ĝ such that h , g, label by 0 all outgoing edges from h.

• Replace gate g with constant 1.

• For all gates h ∈ Gn/3 such that Ih ∩ I , ∅ label by 0 all outgoing edges of h.

Now, consider the circuit

C′ =
∑
g∈Ĝ

Cg∂gC. (3.1)

Since Cg and ∂gC are both set-multilinear circuits of size at most s, clearly the size of the

set-multilinear circuit C′ is bounded by 2s2.

Let M denote the set of monomials m of PERn such that every parse tree of m has a gate

in Ĝ. By choice of I

|M| ≥
n!
s
.

Claim 3.5.1. Let f ∈ F[X] denote the polynomial computed by C′. Then

• The coefficient of every monomial M in f is 1.

• The coefficient of any monomial not in M is 0 in f .

Proof of Claim. Let m ∈ Xn be any monomial. Since C is an unambiguous circuit, if

some parse tree of m in C has a gate in Ĝ then every parse tree of m has a gate in C.

Hence every parse tree of such a monomial m is accounted for in the circuit C′. Thus the

net contribution of any such monomial m is the coefficient of m in PERn. In particular,

monomials in M have coefficient 1 and all other monomial in Xn have coefficient 0.

Similar to Equation 2.1, for the set-multilinear polynomial f ∈ F[X] with variable par-

tition X = tn
i=1Xi, where Xi = {Xi j | 1 ≤ j ≤ n}, we define matrix M f whose rows

57

are indexed by degree |I| set-multilinear monomials m1 and columns by degree n − |I|

set-multilinear monomials m2 such that m1 is a monomial in variables ti∈IXi and m2 in

variables ti<IXi and

M f (m1,m2) = f (m1m2).

For any degree n set-multilinear monomial m ∈ Xn we can uniquely write it as m = m1m2,

where m1 is a monomial in variables ti∈IXi and m2 in variables ti<IXi. By the above claim

M f (m1,m2) =


1, if m1m2 ∈ M,

0, otherwise.

Furthermore, notice that for any other factorization m = m′1m′2 of m, the entry M f (m′1,m
′
2) =

0, because the circuit C is unambiguous.

Claim 3.5.2. s ≥ rank(M f) ≥
(n

n/3)
s .

Proof of Claim. To see that s ≥ rank(M f) it suffices to note from Equation 3.1 that

M f =
∑
g∈Ĝ

MCg∂gC,

where each MCg∂gC is a rank 1 matrix. Thus, s ≥ |Ĝ| ≥ rank(M f).

Now we show the other inequality in the claim. For each subset S ∈
(

[n]
|I|

)
we group

together the rows of matrix M f indexed by monomials m1 = Xi1 j1 Xi2 j2 . . . Xik jk , where

I = {i1, i2, . . . , ik} and S = { j1, j2, . . . , jk}. Likewise, for each subset T ∈
(

[n]
n−|I|

)
we group

together the columns indexed by monomials m2 = Xi1 j1 Xi2 j2 . . . Xi` j` , where [n] \ I =

{i1, i2, . . . , i`} and T = { j1, j2, . . . , j`}.

The matrix M f consists of different (S ,T) blocks, corresponding to subsets S ∈
(

[n]
|I|

)
and T ∈

(
[n]

n−|I|

)
. For each such S , only the (S , [n] \ S) block has nonzero entries. All

other blocks in the row corresponding to S or the columns corresponding to [n] \ S are

58

zero. Furthermore, we note that the number of entries in each (S , [n] \ S) block is clearly

bounded by (|I|!)(n − |I|)!. Therefore, as there are n!/s many 1’s in matrix M f , there are

at least
n!

s(n − |I|)!|I|!
=

(
n
|I|

)
s

many nonzero (S , [n] \ S) blocks, each of which contributes at least 1 to the rank of M f .

Hence,

rank(M f) ≥

(
n
|I|

)
s
.

As
(

n
|I|

)
≥

(
n

n/3

)
= 2Ω(n), it follows that s = 2Ω(n), which completes the lower bound proof.

�

Remark 3.5.1. It suffices to assume that the “top half” of the parse tree types are unam-

biguous for each monomial. More precisely, a truncated parse tree type is obtained from

a parse tree type by deleting all nodes v such that |Iv| ≤ d/3. Let C be a set-multilinear

circuit computing PERn such that C has the following property: each monomial m ∈ Xn

has at most one truncated parse tree type. The above proof yields the same lower bounds

on the size of C.

3.6 Summary and open problems

In this chapter we investigated lower bound questions for certain set-multilinear arith-

metic circuits and ABPs. By imposing a restriction on the number of parse trees in set-

multilinear circuits, we could prove nontrivial lower bounds for the Permanent. We also

showed a separation between set-multilinear circuits and interval multilinear circuits, as-

suming the SOS conjecture. An open problem is to show the separation unconditionally.

Another interesting open question is proving lower bounds for set-multilinear circuits

with polynomially (or even O(n)) many parse trees computing PERn.

59

60

Chapter 4

Complete problems for the classes VPnc

& VSKEWnc

4.1 Introduction

In this chapter we explore the noncommutative analogues, VPnc and VNPnc, of Valiant’s

algebraic complexity classes and show some striking connections to classical formal lan-

guage theory. Our main results are the following:

• We show that Dyck polynomials (defined from the Dyck languages of formal lan-

guage theory) are complete for the class VPnc under ≤abp reductions. To the best of

our knowledge, these are the first natural polynomial families shown to be VPnc-

complete.

• Likewise, it turns out that PAL (Palindrome polynomials defined from palindromes)

are complete for the class VSKEWnc (defined by polynomial-size skew circuits)

under ≤abp reductions. The proof of these results is by suitably adapting the classical

Chomsky-Schützenberger theorem showing that Dyck languages are the hardest

CFLs.

61

The field of arithmetic complexity has a rich history, starting with the work of Strassen

on matrix multiplication [Str69]. A central open problem of the field is proving super-

polynomial size lower bounds for arithmetic circuits that compute the permanent poly-

nomial PERn. Motivated by this problem, Valiant, in his seminal work [Val79a], defined

the arithmetic analogues of P and NP: namely VP and VNP. Informally, VP consists of

multivariate (commutative) polynomials that have polynomial size circuits, over the field

of rationals. The class VNP (which corresponds to the counting class #P in the world

of Boolean complexity classes) has a more technical definition which we will give later.

Valiant showed that PERn is VNP-complete w.r.t. projection reductions. Thus, VP , VNP

if and only if PERn requires arithmetic circuits of size superpolynomial in n. Over any

field F the classes VPF and VNPF are similarly defined. Indeed, Valiant’s proof actually

shows that PERn is complete for the class VNPF for any field F of characteristic different

from 2. (Note: In this chapter, we will drop the subscript and simply use VP and VNP to

denote the classes as the field F will either not matter or will be clear from the context.)

Nisan, in his 1990 paper [Nis91], explored the complexity of noncommutative arithmetic

computations, in particular the complexity of computing the permanent with noncom-

mutative computations. The noncommutative polynomial ring F〈x1, . . . , xn〉 over a field

F in noncommuting variables x1, x2, . . . , xn, consists of noncommuting polynomials in

x1, x2, . . . , xn. These are just F-linear combinations of words (we call them monomials)

over the alphabet X = {x1, . . . , xn}.

Analogous to commutative arithmetic circuits, we can define noncommutative arithmetic

circuits for computing polynomials in F〈X〉. The only difference is that in noncommuta-

tive circuits inputs to multiplication gates are ordered from left to right. A natural defini-

tion of the noncommutative permanent polynomial PERn, over X = {xi j}16i, j6n, is

PERn =
∑
σ∈S n

x1,σ(1)x2,σ(2) . . . xn,σ(n).

62

Can we show that PERn requires superpolynomial size noncommutative arithmetic cir-

cuits? One would expect this problem to be easier than in the commutative setting. In-

deed, for the model of noncommutative algebraic branching programs (ABPs), Nisan

[Nis91] showed exponential lower bounds for PERn (and even the determinant polyno-

mial DETn). Unlike in the commutative world, where ABPs are nearly as powerful as

arithmetic circuits, Nisan [Nis91] could show an exponential separation between non-

commutative circuits and noncommutative ABPs. However, showing that PERn requires

superpolynomial size noncommutative arithmetic circuits remains an open problem.

Analogous to VP and VNP, the classes VPnc and VNPnc can be defined, as has been done

by Hrubes et al [HWY10b]. In [HWY10b] it is shown that PERn is VNPnc-complete w.r.t

projections (this is the p-projection reducibility defined by Valiant [Val79a], which allows

variables or scalars to be substituted for variables).

4.1.1 Main results

We begin with some formal definitions needed to state and explain the main results.

Definition 4.1.1. A sequence f = (fn) of noncommutative multivariate polynomials over

a field F is called a polynomial family (abbreviated as p-family henceforth) if both the

number of variables in fn and the degree of fn are bounded by nc for some constant c > 0.

Definition 4.1.2.

1. The class VBPnc consists of p-families f = (fn) such that each fn has an algebraic

branching program (ABP) of size bounded by nb for some b > 0 depending on f .

2. The class VPnc consists of p-families f = (fn) such that each fn has an arithmetic

circuit of size bounded by nb for some b > 0 depending on f .

3. A p-family f = (fn) is in the class VNPnc if there exists a p-family g = (gn) ∈ VPnc

63

such that for some polynomial p(n)

fn(x1, . . . , xq(n)) =
∑

y1,...,yr(n)∈{0,1}

gp(n)(x1, . . . , xm(n), y1, . . . , yr(n)).

where r(n) is polynomially bounded.

4. The class VSKEWnc consists of p-families f = (fn) such that each fn has a skew

arithmetic circuit of size bounded by nb for some b > 0 depending on f .

We note that the class VBPnc is defined through algebraic branching programs (ABPs)

which intuitively correspond to acyclic finite automata. In fact noncommutative ABPs

are also studied in the literature as multiplicity automata [BBB+00], and Nisan’s rank

lower bound argument [Nis91] is related to the rank of Hankel matrices in formal lan-

guage theory [BR11]. Similarly, arithmetic circuits correspond to acyclic context-free

grammars.

It turns out, as we will see in this chapter as well as in the next chapter, that this analogy

goes further and shows up in the internal structure of VNPnc and VPnc. Our main results

of this chapter are the following:

1. In Section 4.4, we prove that the Dyck polynomials are complete for VPnc w.r.t

6abp reductions. The result can be seen as an arithmetized version of the Chomsky-

Schützenberger theorem [CS63] showing that the Dyck languages are the hardest

CFLs. We note here that 6abp reducibility is a generalization of the standard projec-

tion reducibility wherein instead of substitution by variables and scalars we allow

substitutions by matrices (whose entries are variables/scalars). Section 4.3 has the

formal definitions and a discussion on this reducibility.

2. On the same lines, in Section 4.5, we show that the Palindrome polynomials PALn =∑
w∈{x0,x1}n

w.wR are complete for VSKEWnc under 6abp reducibility, again by adapt-

ing the proof of the Chomsky-Schützenberger theorem.

64

The following table summarizes the main results in this chapter.

P-family Complexity Result Remarks
Dk, k > 2 - VPnc-Complete (Theorem 4.4.2)

- VSKEWnc-hard
w.r.t ≤abp-reductions

PALd VSKEWnc-Complete (Theorem 4.5.1) w.r.t. ≤abp-reductions

Table 4.1: Summary of Results

4.2 Preliminaries

4.2.1 Polynomials

We define some p-families that are important for this chapter.

Palindrome Polynomials:

The p-family PAL = (PALn) corresponds to the context-free language of even length

palindromes.

PALn =
∑

w∈{x0,x1}n

wwR,

where wR denotes the string obtained by reversing the string w.

Dyck Polynomials:

Let Xi = {(1,)1, ..., (i,)i} for a fixed i ∈ N denote the set of i different types of matching left

and right bracket pairs. The set of all well-balanced strings over alphabet Xi is inductively

defined as below.

The empty string ε is well-balanced.

65

For each well-balanced string v over Xi, the strings (jv) j are well-balanced for j ∈

{1, 2, . . . , i}.

For any two well-balanced strings v1, v2, their concatenation v1v2 is well-balanced.

We define the polynomial Di,n over the variable set Xi to be sum of all strings in X2n
i which

are well-balanced. The Di,n are Dyck polynomials of degree 2n over i different types of

brackets. The corresponding p-family is denoted Di = (Di,n).

4.3 The Reducibilities

In this Chapter as well as in the Chapter 5, we consider mainly three different notions

of reducibility for our completeness results and for exploring the structure of the classes

VNPnc,VPnc and VSKEWnc.

4.3.1 The projection reducibility

The projection is basically Valiant’s classical notion of reductions between p-families

using which he showed VNP-completeness for PERn and other p-families in his seminal

work [Val79a]. Let f = (fn) and g = (gn) be two noncommutative p-families over a field

F, where ∀n fn ∈ F〈Xn〉 and gn ∈ F〈Yn〉. We say f 6pro j g if there are a polynomial p(n)

and a substitution map φ : Yp(n) → Xn ∪ F such that ∀n

f (Xn) = g(φ(Yp(n))).

As shown in [HWY10b], based on Valiant’s original proof, the noncommutative PERn

p-family is VNPnc-complete for 6pro j-reducibility.

66

4.3.2 The indexed-projection reducibility

Let [n] = {1, 2, · · · , n}. The indexed-projection is specific to the noncommutative setting.

We say f 6ipro j g for p-families f = (fn) and g = (gn), where deg(fn) = dn, deg(gn) = d′n,

fn ∈ F〈Xn〉, and gn ∈ F〈Yn〉, if there are a polynomial p(n) and indexed projection map

φ : [d′p(n)] × Yp(n) → Xn ∪ F,

such that on substituting φ(i, y) for variable y ∈ Yp(n) occurring in the ith position in mono-

mials of gp(n) we get polynomial fn.

Clearly, 6ipro j is more powerful than 6pro j and we will show separations in this section.

4.3.3 The abp-reducibility

The 6abp reducibility is the most general notion that we will consider. The 6abp reduction

essentially amounts to matrix substitutions for variables, where the matrices have scalar

or variable entries (we can even allow constant-degree monomial entries). Formally, let

fn ∈ F〈Xn〉 and gn ∈ F〈Yn〉 as before. We say f 6abp g if there are polynomials p(n), q(n)

and the substitution map φ : Yp(n) → Mq(n)(Xn∪F) where Mq(n)(Xn∪F) stands for q(n)×q(n)

matrices with entries from Xn ∪ F, with the property that f (Xn) is the (1, q(n))-th entry of

g(φ(Yp(n))).

The 6abp reducibility is implicitly used in [AS10], where it is shown that the noncom-

mutative determinant polynomial cannot have polynomial-size noncommutative circuits

unless the noncommutative permanent has such circuits. Essentially the result shown is

that PERn is 6abp reducible to the noncommutative determinant.

We note that 6abp is transitive.

Proposition 4.3.1. Let f , g, h ∈ F〈X〉 such that f 6abp g and g 6abp h then f 6abp h.

67

Proof. Let Xn,Yn,Zn denote the variable sets of fn, gn, hn respectively. Let φ : Yp(n) →

Mq(n)(Xn ∪ F) and φ′ : Zp′(n) → M′
q′(n)(Yp(n) ∪ F) be the substitution maps corresponding to

reductions fn 6abp gp(n) and gp(n) 6abp hp′(n) respectively. The substitution map ψ for the

abp-reduction from f to h is defined in the following way. For z ∈ Zp′(n), let ψ(z) denotes

a r(n)× r(n) matrix (r(n) = q(n) · q′(n)) obtained from φ′(z) by substituting every scalar α

in φ′(z) by α · Iq(n) where Iq(n) is q(n)× q(n) identity matrix and every variable y appearing

in φ′(z) by q(n) × q(n) matrix φ(y). It is easy to see that if we substitute matrices ψ(z) for

variables z in hp′(n) we obtain polynomial f at (1, r(n))th entry of the resulting matrix. �

Proposition 4.3.2. Let f , g ∈ F〈X〉 and suppose f 6abp g. Then

g ∈ VBPnc implies f ∈ VBPnc.

g ∈ VPnc implies f ∈ VPnc.

g ∈ VSKEWnc implies f ∈ VSKEWnc.

Proof. As f 6abp g, for every variable y of g we have polynomial sized matrix φ(y) such

that on substituting φ(y) for variables y in g the top right corner entry of the resulting

matrix is f .

Suppose g has a polynomial sized algebraic branching program P. W.l.o.g. assume that

edges in P are labeled either with scalars or variable y ∈ Var(g) where Var(g) is set of

variables of the polynomial g. To get polynomial sized ABP P′ for f , we replace each

edge of P with non-scalar label y by a small ABP with two layers, each layer containing k

nodes where k is the size of matrix φ(y). An edge from ith node in first layer to jth node in

the second layer is labeled with φ(y)(i, j). Clearly P′ will compute f and has polynomial

size.

Now suppose g has a polynomial sized arithmetic circuit C. The polynomial sized circuit

C′ for f is obtained simply by replacing + and × gates of C by small sub-circuits comput-

ing sum and product of two polynomial sized matrices respectively. If C is a skew circuit

68

so is C′. �

Remark 4.3.1. We could as well have called abp-reductions as matrix-reductions, since

the reductions are a generalization of projections with matrix substitutions instead of only

scalars and variables. However, abp-reducibility seems to us a more appropriate name

because the matrix-valued variable substitutions really captures the power of noncom-

mutative ABPs. To see this, let g = (gn) be a p-family where gn = y1y2 . . . yn consists

of a single degree-n monomial for each n. Now, a p-family f is in VBPnc if and only if

f ≤abp g.

Another point about the definition of 6abp is that the choice of the (1, q(n))-th entry of

g(φ(Yp(n))) is arbitrary. We could have chosen any specific entry of the matrix g(φ(Yp(n)))

or its trace or the sum of all entries. These would all yield equivalent definitions.

Remark 4.3.2. An arithmetic circuit is weakly skew if for every multiplication gate g,

there is at least one input f to g such that, either f is an input gate or removing the

edge from f to g makes the underlying undirected graph disconnected. That is, the entire

subcircuit rooted at f is used only to compute g; none of the gates in this subcircuit are

reused elsewhere.

Suppose f 6abp g and g has polynomial-size weakly-skew circuits then we do not know

if f has polynomial-size weakly skew circuits. In the noncommutative case we note that

weakly-skew circuits are strictly more powerful than skew circuits. The polynomial family

PALnPALn has polynomial-size weakly skew circuits but skew-circuits require exponential

size [LMS15]. In contrast, for the commutative case polynomial-size weakly-skew circuits

are equivalent to polynomial-size skew circuits [Tod92].

4.3.4 Comparing the reducibilities

From the definition of the reducibilities it immediately follows that the 6abp reduction

is more powerful than 6ipro j reduction which is more powerful than 6pro j reduction. In

69

fact, it is not difficult to show that the 6abp and the 6ipro j reductions are strictly more

powerful than the 6ipro j and the 6pro j reductions respectively. We summarize these simple

observations below.

Proposition 4.3.3. There exist p-families f = (fn) and g = (gn) such that:

1. f 6ipro j g but f �pro j g.

2. f 6abp g but f �ipro j g.

Proof. For the first part define p-families fn ∈ F〈x1, x2, . . . , xn, y1, . . . , yn〉 and gn ∈ F〈z0, z1〉

as fn =
∏

i∈[n](xi + yi) and gn =
∏

i∈[n](z0 + z1). Clearly, f 6ipro j g where the indexed pro-

jection will substitute xi for z0 and yi for z1 in the i-th linear factor (z0 + z1) of g. However

f �pro j g as the usual 6pro j reduction cannot increase the number of variables.

For the second part define p-families fn, gn ∈ F〈x, y〉 as fn = x + y and gn = xy for every n.

Clearly f is not 6ipro j-reducible to g as indexed projections cannot increase the number of

monomials in g. To see that f 6abp g we define 2 × 2 substitution matrices: Mx =

1 x

0 0


and My =

0 y

0 1

. Clearly, the (1, 2)th entry of g(Mx,My) = MxMy is x + y. Hence,

f 6abp g. �

Remark 4.3.3. A natural generalization of the projection reducibilities (6pro j and 6ipro j)

is to consider indexed linear projections, denoted 6linpro j. Namely, we allow for each

variable occurring in a given position, substitution by either a scalar or a linear form.

It is easy to see that 6linpro j is strictly more powerful than 6ipro j. For example, in Propo-

sition 4.3.3 we saw that x + y is not 6ipro j-reducible to xy. However, x + y is trivially

reducible by a linear projection: in the polynomial xy we can substitute 1 for y and x + y

for x.

We can also show that there are p-families f and g such that f 6abp g but f �linpro j g. To

see this, define p-family fn ∈ F〈x, y, z,w〉 and gn ∈ F〈w, x〉 as fn = wx + yz and gn = wx

70

for every n. Since fn is irreducible for each n and gn is reducible for each n, clearly f

is not 6linpro j-reducible to g. To see that f 6abp g we define 2 × 2 substitution matrices:

Mw =

w y

0 0

 and Mx =

0 x

0 z

. Clearly, the (1, 2)th entry of g(Mw,Mx) = MwMx is

wx + yz. Hence, f 6abp g.

It turns out that the proofs of some of our results shown for projections carry over to

indexed linear projections but other results do not. We will return to this point at the end

of Section 5.3.

4.3.5 Matrix substitutions and 6abp reductions

We describe ideas from [AJS09] that are useful in connection with showing 6abp reduc-

tions between p-families. Consider an ABP P computing a noncommutative polynomial

g ∈ F〈X〉. Suppose the ABP P has q nodes with source s and and sink t.

For each variable x ∈ X we define a q × q matrix Mx, whose (i, j)th entry Mx(i, j) is the

coefficient of variable x in the linear form labeling the directed edge (i, j) in the ABP P.1

Consider a degree d polynomial f ∈ F〈X〉, where X = {x1, · · · , xn}. For each monomial

w = x j1 · · · x jk we define the corresponding matrix product Mw = Mx j1
· · ·Mx jk

. When each

indeterminate x ∈ X is substituted by the corresponding matrix Mx then the polynomial

f ∈ F〈X〉 evaluates to the matrix ∑
f (w),0

f (w)Mw,

where f (w) is the coefficient of monomial w in the polynomial f .

Theorem 4.3.4. [AJS09] Let C be a noncommutative arithmetic circuit computing a poly-

nomial f ∈ F〈x1, x2, . . . , xn〉. Let P be an ABP (with q nodes, source node s and sink node

t) computing a polynomial g ∈ F〈x1, x2, . . . , xn〉. Then the (s, t)th entry of the matrix

1If (i, j) is not an edge in the ABP then the coefficient of x is taken as 0.

71

f (Mx1 ,Mx2 , . . . ,Mxn) is the polynomial

∑
w

f (w)g(w)w.

where f (w), g(w) are coefficients of monomial w in f and g respectively. Hence there is a

circuit of size polynomial in n, size of C and size of P that computes the noncommutative

polynomial
∑

w f (w)g(w)w.

Acyclic Automata and ABPs

Let P be a deterministic finite automaton with q states that accepts a finite language W ⊆

Xd. There is an equivalent automaton P′ with O(qd) states with the following properties:

it has a start state labeled s and a unique final state labeled t. The state transition graph

for P′ is a layered directed acyclic graph with d layers, and each transition edge in P′ is

labeled by a variable from X.

Clearly, we can also interpret P′ as an ABP, and the polynomial g that it computes is the

sum of all monomials that are accepted by P. I.e.

g =
∑
w∈W

w.

Corollary 4.3.5. Suppose f ∈ F〈X〉 is a homogeneous degree d polynomial computed by

a noncommutative circuit C and W ⊆ Xd has a finite automaton P. Then the polynomial∑
w∈W f (w)w can be computed by a noncommutative circuit whose size is polynomially

bounded in d, size of C and the size of the automaton P.

The above corollary follows directly from Theorem 4.3.4.

It is useful to combine the construction described in the previous remark with substitution

maps. For this purpose we consider substitution automata. A finite substitution automa-

ton is a finite automaton P along with a substitution map ψ : Q × X → Q × Y ∪ F, where

72

Q is the set of states of P, and Y is a set of (noncommuting) variables. If ψ(i, x) = (j, u) it

means that when the automaton P in state i reads variable x it replaces x by u ∈ Y ∪ F and

makes a transition to state j ∈ Q.

Now, for each x ∈ X we can define the matrix M′
x as follows:

M′
x(i, j) = u, 1 ≤ i, j ≤ q, where ψ(i, x) = (j, u).

For every monomial w = x j1 x j2 . . . x jd accepted by P, there is a unique s-to-t path γ =

(s, i1), (i1, i2), . . . , (id−1, t) along which it accepts. This defines the substitution map ψ ex-

tended to monomials accepted by P as

ψ(w) = ψs,i1(x j1)ψi1,i2(x j2) . . . ψid−1,t(x jd),

so that ψ(w) ∈ Y∗. It follows that the (s, t)th entry of matrix f (M′
x1
,M′

x2
, . . . ,M′

xn
) is the

polynomial ∑
w∈W

f (w)ψ(w).

Corollary 4.3.6. Suppose f = (fn) is a p-family computed by a circuit family (Cn)n>0,

where fn ∈ F〈Xn〉 is a homogeneous degree d(n) polynomial for each n. Suppose Pn

is a polynomial (in n) size substitution automaton accepting a subset Wn ⊆ Xd(n)
n with

substitution map ψn for each n. Then the polynomial family g = (gn), where

gn =
∑
w∈Wn

fn(w)ψn(w),

is 6abp reducible to f . In particular, it follows that gn has a noncommutative circuit whose

size is polynomial in d(n) and the sizes of Cn and Pn.

The above corollary follows directly from the definition of a substitution automaton, The-

orem 4.3.4 and Corollary 4.3.5).

73

4.4 Dyck Polynomials are VPnc-complete

In this section we exhibit a natural p-family which is complete for the complexity class

VPnc under 6abp reductions. We show that the p-family Dk (defined in Section 4.2.1),

consisting of Dyck polynomials over k different types of brackets, is VPnc-complete under

6abp reductions. This result can be understood as an arithmetic analogue of the Chomsky-

Schützenberger representation theorem [CS63] (also see [DSW94, pg. 306]), which says

that every context-free language is a homomorphic image of intersection of a language of

balanced parenthesis strings over suitable number of different types of parentheses and a

regular language.

The overall idea is as follows: Given a VPnc p-family f , in order to show f 6abp Dk we

first construct a deterministic finite automaton which filters out suitable monomials from

monomials of Dk. Then we do appropriate scalar substitutions for certain suitably chosen

variables in Dk in order to obtain the polynomial f . These two steps together can be seen

as doing matrix substitutions for variables in Dk. Here the matrices are polynomial-sized,

and are defined using the required scalar substitutions and the transition function of the

automaton, as explained in Section 4.3.5.

Theorem 4.4.1 (Chomsky-Schützenberger). A language L over alphabet Σ is context free

iff there exist

1. a matched alphabet P ∪ P (P is set of k different types of opening parentheses

P = {(1, (2, . . . , (k} and P is the corresponding set of matched closing parentheses

P = {)1,)2, . . . ,)k}),

2. a regular language R over P ∪ P,

3. and a homomorphism h : (P ∪ P)∗ 7→ Σ∗

such that L = h(D∩R), where D is the set of all balanced parentheses strings over P∪ P.

74

Recall that the p-family Dk = {Dk,d}d>0 is defined over 2k distinct variables Xk = {(i,)i|1 6

i 6 k}, where (i and)i are matching parenthesis pairs.

Dk,d =
∑

m∈Wk,d

m,

where Wk,d is all degree-d well-balanced parenthesis strings over Xk (defined in Sec-

tion 4.2.1).

Theorem 4.4.2. The p-family Dk = {Dk,d}d>0 is VPnc-complete under 6abp reductions for

k ≥ 2.

Proof. Let f = (fn)n>0 be a p-family in VPnc and {Cn}n>0 be a circuit family such that Cn

computes polynomial fn ∈ F〈Xn〉 for each n. Let s(n) and d(n) be polynomials bounding

the size and syntactic degree of circuit Cn, respectively. We do the following preprocess-

ing on Cn.

• Suppose g is a gate in Cn with input gates g1 and g2. If the subcircuit rooted at either

g1 or g2 consists only of scalars at the input level then we replace this subcircuit by

the actual scalar value computed by the subcircuit. We perform this preprocessing

for the entire circuit.

We can assume without loss of generality that the above preprocessing is already done

on Cn for each n. For each n we will construct a collection of 2t(n) many matrices

M1,M′
1, . . . ,Mt(n),M′

t(n) whose entries are either field elements or monomials in variables

{x1, . . . , xn} for a suitably chosen polynomial bound t(n). These matrices will have the

following property: consider the Dyck polynomial Dt(n),q(n), where q(n) is a polynomial

to be suitably chosen later in the proof. When we substitute Mi for variable (i and M′
i for

variable)i in Dt(n),q(n), it will evaluate to a matrix M = Dt,q(M1,M′
1, . . . ,Mt(n),M′

t(n)) whose

top right corner entry is precisely the polynomial fn computed by Cn.

75

The idea underlying the construction is from the proof of the Chomsky-Schützenberger

theorem. Our proof is essentially an arithmetic version. We need to additionally take care

of coefficients of monomials and polynomial size bounds. The matrices M1,M′
1, . . . ,Mt,M′

t

correspond to the transitions of a deterministic finite state substitution automaton, in the

sense explained in Section 4.3.5. The substitution automaton will be designed to trans-

form monomials of Dt(n),q(n) into monomials of Cn so that M’s top right entry (correspond-

ing to the accept state of the automaton) contains the polynomial Cn. We now give a

structured description of the reduction.

1. Firstly, we do not directly work with the circuit Cn because we need to introduce a

parsing structure to the monomials of Cn. We also need to make the circuit initially

constant-free by introducing new variables. We will substitute back the constants

for the new variables in the matrices. To this end, we will carry out the following

modifications to the circuit Cn:

(a) For each product gate f = gh in the circuit, we convert it to the product gate

computing f = (f g) f h, where (f and) f are new variables.

(b) We replace each input constant a of the circuit Cn by a degree-3 monomial

(aza)a, where (a,)a, za are new variables.

Let C′n denote the resulting arithmetic circuit after the above transformations applied

to the gates. The new circuit C′n computes a polynomial in the ring F〈X′n〉, where

X′n = Xn ∪ {(g,)g | g is a × gate in Cn}

∪ {(a,)a | a is a constant in Cn}

∪ {za | a is a constant in Cn}.

We make a further substitution: we replace every variable y ∈ Xn by the degree-2

76

monomial [y]y and every variable za for constants a appearing in Cn by [za]za . Let

the resulting arithmetic circuit be C′′n and the expanded variable set be denoted X′′n .

It is clear that the resulting family of circuits (C′′n)n>0 computes a p-family f ′′ =

(f ′′n)n>0, where f ′′n ∈ F〈X
′′
n 〉 is the polynomial computed by C′′n . Furthermore, by

construction, C′′n is a polynomial whose monomials are certain properly balanced

parenthesis strings over the parentheses set defined above. The circuit C′′n is not

homogeneous. Clearly, its degree is bounded by a polynomial in (s(n) + d(n)). A

multiplicative subcircuit of C′′n is defined by the following procedure starting at the

output gate of C′′n : At each + gate retain exactly one of its input gates. At each ×

gate retain both input gates. In general, each multiplicative subcircuit computes a

monomial with some coefficient. In the case of C′′n notice that distinct multiplica-

tive subcircuits compute distinct monomials (guaranteed because of the new gate

variables introduced). Furthermore, as C′′n is constant-free, the coefficients of all

monomials is 1. We have the following simple claim.

Claim 4.4.1. f 6pro j f ′′.

The above claim follows because we can recover the circuit Cn from C′′n by substi-

tuting 1 for the parenthesis variables (g,)g occurring in C′′n for each gate g of Cn.

Then substituting variable y for the term [y]y in C′′n , and substituting the scalar a for

[za]za in C′′n .

f ′′ is 6abp reducible to Dk

This is the main part of the proof. We describe the reduction in two steps. We

first show that f ′′ is 6abp reducible to the p-family D̂ = (Dt(n),q(n))n>0. Here t(n) is a

polynomial bounding the number of parenthesis types used in C′′n along with some

additional parentheses types. The polynomial bound q(n) will be specified below.

We then show that D̂ 6abp Dk for any k ≥ 2.

77

Let the syntactic degree of polynomial C′′n be 2r. By construction, all nonzero

monomials in the polynomial computed by C′′n are of even degree bounded by 2r.

We introduce r + 1 new parenthesis types { j, } j, 0 6 j 6 r (to be used as prefix

padding in order to get homogeneity). Now, consider the polynomial Dt(n),q(n) where

q(n) = 2r + 2 and t(n) = (r + 1) + pn, where pn is the number of parenthesis types

occurring in C′′n .

The reduction will map all degree 2 j monomials in C′′n to prefix-padded monomials

in Dt,q of the form m′ = {1}1{2}2 . . . {r− j}r− j{0}0m, where m is a degree 2 j monomial

over the parentheses types of C′′n . As a consequence m′ is of degree 2r + 2 for all

choices of j.

Now the matrices of the automaton have to effect substitutions in order to convert

these m′ into a monomial of C′′n of degree 2 j. The strings accepted by this automa-

ton is of the form uv, where u = {1}1{2}2 . . . {i−1}i−1{0}0, 0 6 i 6 r + 1 and v is a well-

balanced string over remaining parentheses types. This automaton is essentially

based on the one defined in the proof of the Chomsky-Schützenberger theorem. We

give its description below. The automaton runs only on monomials of Dt(n),q(n) and

hence can be seen as a layered acyclic DAG (as explained in Section 4.3.5) with

exactly q(n) layers.

(a) The start state of the automaton is (ŝ, 0). The automaton first looks for prefix

{1}1{2}2 . . . {r− j}r− j{0}0.

As it reads these variables, one by one, it steps through states (ŝ, i), substitutes

1 for each of them, and reaches state (s, 2(r − j + 1)) when it reads }0, where

s is the name of the output gate of circuit C′′n . If any of the variables {l, }l,

l ∈ [r] ∪ {0} occur later they are substituted by 0 (to kill such monomials).

(b) The automaton will substitute the substring [x]x by variable x. If [x is not

immediately followed by]x then it substitutes 0 for variable [x (to kill such

78

monomials). Similarly, the automaton substitutes [a]a by a (if [a is not imme-

diately followed by]a then it substitutes 0 for [a).

(c) Now, we describe the crucial transitions of the automaton continuing from

state (s, 2(r − j + 1)), where s is the output gate of circuit C′′n . The transitions

are defined using the structure of the circuit C′′n . At this point the automaton

is looking for a degree 2 j monomial. Let ` < 2r + 2.

In order to simplify our notation, we describe the transitions of the automa-

ton on reading certain (short) monomials rather than symbol by symbol. The

transition denoted

(h, `)→ m(g, ` + |m|)

means that the automaton in state (h, `) reads the monomial m and goes from

state (h, `) to state (g, ` + |m|), where |m| is the degree of the monomial m.

The automaton is defined by the following transitions:

i. (ŝ, 2 j)→ { j+1} j+1(ŝ, 2(j + 1)), for 0 6 j < r.

ii. (ŝ, 2(r − j)) → {0}0(s, 2(r − j + 1)), for 0 6 j 6 r, where s is the output

gate in the circuit C′′n .

iii. (g, `)→ (g(gl, `+ 1), where g is an internal product gate in circuit C′′n and

gl is its left child.

iv. Include the transition (g, `) → (h(hl, ` + 1), if g is an internal + gate in

circuit C′′n , h is an internal product gate such that there is a directed path

of + gates from h to g. As before, hl denotes the left child of h.

v. For each input variable, say z, in the circuit C′′n and for each product

gate g in the circuit C′′n , the automaton includes the transition (h, `) →

[z]z)g(gr, `+ 3), if `+ 3 < 2r + 2, where gr is the right child of the internal

product gate g, and h stands for any internal gate in C′′n . If ` + 3 = 2r + 2

then the automaton instead includes the transition (h, `)→ [z]z)g(t, 2r+2),

where (t, 2r + 2) is the unique accepting state of the automaton.

79

This completes the definition of the automaton. The important property about monomials

accepted by the automaton is summarized in the following claim.

Claim 4.4.2. The above automaton accepts only strings from (X′′n)q(n), where q(n) =

2r(n)+2. Furthermore, if the input to the automaton is a monomial m′ of Dt(n),q(n) then the

automaton accepts m′ iff m′ = {1}1{2}2 . . . {r− j}r− j{0}0m for some j, where m is a nonzero

degree 2 j monomial of f ′′n .

The claim follows directly from the automaton’s construction. Notice that the automaton

could accept some arbitrary monomials in (X′′n)q(n) which are not monomials of Dt(n),q(n).

However, that is not a problem for our reduction.

Now that we have specified the transitions of the automaton, we can define the substitution

automaton, by describing the matrices that we substitute for each parenthesis. We define

U as the following subset of X′′n :

U = {[z| z is a variable in C′′n }⋃
{(g,)g | g ∈ G}⋃
{{ j, } j | j ∈ [r] ∪ {0}}

where G denotes the set of all product gates in the circuit Cn. Let Mv be the matrix we

substitute for variable v ∈ U. The rows and columns of matrix Mv are labeled by the states

of the automaton. Matrix Mv is defined as follows:

mi, j = Mv[i, j] =


1 if v ∈ U and (i, j) is a transition labeled v

z if p =]z and (i, j) is a transition labeled v

where z denotes a variable in the circuit C′′n .

80

From the above construction and by Corollary 4.3.6, it follows that upon substituting

these matrices for the variables in the polynomial Dt(n),q(n) the top right corner entry of the

resulting matrix is the polynomial computed by the circuit C′′n . Therefore, f ′′ 6abp D̂.

We now complete the proof by showing that D̂ 6abp Dk for any k ≥ 2.

Claim 4.4.3. The p-family D̂ is 6abp-reducible to D2.

Proof of Claim. Let 2p(n)−1 < t(n) 6 2p(n) for some p(n) ∈ O(log n). Consider the p-family

D̂′ = (D2p(n),q(n))n>0. Clearly, D̂ 6pro j D̂′, where the projection reduction will substitute 1

for variables (j,) j when t(n) < j ≤ 2p(n). Thus, it suffices to show D̂′ is 6abp reducible to

D2.

Let {[0, [1, . . . , [2p(n)−1} ∪ {]0,]1, . . . ,]2p(n)−1} be the variable set for D2p(n),q(n). For 0 6 i 6

2p(n) − 1 we will encode [i,]i by strings (b0(b1 . . . (bp(n)−1 and)b0)b1 . . .)bp(n)−1 respectively,

where the tuple 〈b0, . . . , bp(n)−1〉 is the binary encoding of index i. We can easily design a

finite automaton which on input a degree p(n)q(n) monomial m of D2,p(n)q(n), checks if m

is a valid encoding of some monomial of D2p(n),q(n). So by using the transition function of

this automaton we can define appropriate matrix substitutions for the variables of D2,p(n)q(n)

(namely the four variables (0, (1,)0,)1), so that the top right corner entry of the resulting

matrix obtained after this substitution in D2,p(n)q(n) is the polynomial D2p(n),q(n). This proves

the claim.

Clearly every Dyck polynomial can be computed by a polynomial-size non-commutative

arithmetic circuit so from Claim 4.4.3, it follows that D2 is VPnc-complete. As for any

r > 2 we have D2 6abp Dr. Thus the Dyck polynomials Dr for all r > 2 are VPnc-complete.

This proves the theorem. �

Remark 4.4.1. In the commutative setting, Valiant has shown [Val79a] that the deter-

minant DET is VP-complete, but only under quasipolynomial projections. The problem

of finding natural VP-complete p-families that are complete under p-projections is not

yet satisfactorily settled in the commutative case. Perhaps one needs to consider a more

81

flexible reducibility than projections. However, the 6abp reducibility does not make sense

for VP. The commutative ABP model is very powerful: DET itself has polynomial-size

commutative ABPs [Tod92].

Remark 4.4.2. We note that D1 is not VPnc-complete. Indeed, it is easy to see that each

D1,n has a polynomial in n size ABP. Therefore, D1 ∈ VBPnc. In fact, notice that D1 6abp

PAL 6abp D2 and D2 �abp PAL �abp D1. As PAL is not in VBPnc [Nis91], it follows that

PAL 6≤abp D1. Since PAL2 = (PALnPALn) is in VPnc and does not have polynomial-size

skew circuits [LMS15], it follows that D2 is not 6abp-reducible to PAL.

4.5 Palindrome Polynomials are VSKEWnc-complete

In this section we show that the p-family PAL, consisting of palindrome polynomials

(defined in Section 4.2.1), is complete for the class VSKEWnc w.r.t. 6abp reductions. The

proof is broadly similar to that of Theorem 4.4.2.

Theorem 4.5.1. The p-family PAL is VSKEWnc-complete under 6abp reductions.

Proof. We show that any p-family in VSKEWnc is 6abp-reducible to PAL.

Let f = (fn)n>0 be a p-family in VSKEWnc and {Cn}n>0 be a skew circuit family computing

f . Suppose fn ∈ F〈Xn〉 for each n. Let s(n) and d(n) be polynomials bounding the size

and syntactic degree of Cn, respectively.

We need to construct matrices corresponding to the transitions of a substitution automaton

which will transform monomials of PALt(n), for a suitably large polynomial t(n), into

monomials of Cn. More precisely, after substitutions, the top right entry of the resulting

matrix contains the polynomial fn.

We will modify circuit Cn in order to introduce a parsing structure to the monomials it

computes. We apply the following transformations to Cn:

82

1. For each left-skew product gate g = xh in the circuit Cn where x is an input variable

and h a gate in the circuit, let (h, g) be the directed edge in the circuit Cn from gate

g to gate h. We convert the gate into the two skew gates

g′ = hx(h,g,R)

g′′ = x(h,g,L)g′,

where x(h,g,L) and x(h,g,R) are fresh variables. Right-skew gates g = hx are trans-

formed analogously using fresh variables x(r)
(h,g,L) and x(r)

(h,g,R). Here we use super-

scripts ` and r for the variables to keep track of whether the original × gate was left

skew or right skew.

2. For each product gate g = ah in the circuit Cn, for some scalar a ∈ F we convert it

to two skew gates

g′ = ha(h,g,R)

g′′ = a(h,g,L)g′

where a(h,g,L) and a(h,g,R) are again fresh variables.

Let C′n denote the resulting skew circuit after transformation. It computes a polynomial f ′n

in F〈X′n〉 where the variable set X′n is the collection of all the a(h,g,L), a(h,g,R), x(h,g,L), x(h,g,R),

x(r)
h,g,L, and x(r)

h,g,R defined above.

The transformation ensures that distinct multiplicative subcircuits of C′n compute dis-

tinct monomials because all the new variables introduced carry the gate names. As C′n

is constant-free, the coefficients of all nonzero monomials in f ′n is 1.

83

Furthermore, the nonzero monomials in f ′n are all palindrome monomials in the variable

set X′n: in a monomial m of degree 2d occurring in f ′n , for all i ∈ [d], variable x(h,g,L)

occurs at position i if and only if at position 2d − i + 1 we have the matching variable

x(h,g,R). Similarly, for the variable pairs ah,g,L and ah,g,R, as well as x(r)
h,g,L and x(r)

h,g,R. This

property is easy to check inductively by the transformation at all × gates in C′n.

Clearly, f 6pro j f ′ because we can recover fn from f ′n by the following substitutions:

• Variable x for xh,g,L and 1 for xh,g,R.

• Variable x for x(r)
h,g,R and 1 for x(r)

h,g,L.

• Scalar a for variable ah,g,L and 1 for ah,g,R.

Clearly, the number of variables and degree of f ′n are polynomially bounded in n.

Let the degree of polynomial f ′n be 2r(n). The nonzero monomials computed by C′n are

of even degree bounded by 2r(n). We introduce r(n) + 1 new variable pairs y j,L, y j,R,

0 6 j 6 r(n) (to be used as prefix and suffix padding in order to get homogeneity). For a

degree 2 j monomial m in f ′n define the palindrome monomial

m′ = (y1,Ly2,L . . . yr− j,Ly0,L)m(y0,Ryr− j,R . . . y2,Ry1,R).

Now, m′ is of degree 2r(n) + 2 for all choices of j. Let C′′n denote a new circuit ob-

tained from C′n as follows: From C′n we find skew circuits for each of its homogeneous

components. For the degree 2 j homogeneous component we apply the appropriate pre-

fix/suffix padding (of length 2r(n)+2− j) as described above. We add the resulting circuits

for the different homogeneous components to obtain C′′n . Let f ′′n denote the polynomial

computed by C′′n and f ′′ = (f ′′n)n>0 the corresponding p-family. Clearly, f ′′n computes

84

a homogeneous degree 2r(n) + 2 polynomial. All the monomials of f ′′n are palindrome

monomials over the variable pairs in the set X′′n = {y j,L, y j,R | 0 ≤ j ≤ r(n) + 1} ∪ X′n.

Let ˆPAL = (ˆPALn)n>0 denote the p-family, where ˆPALn consists of all degree 2r(n) + 2

palindrome monomials over the variable set X′′n .

In the next steps, we will show that f ′′ 6abp ˆPAL and ˆPAL 6abp PAL. As f 6pro j f ′ 6pro j

f ′′, it will follow that f 6abp PAL, completing the proof.

f ′′ is 6abp-reducible to ˆPAL

The 6abp reduction is effected by a substitution automaton which accepts precisely those

palindrome monomials wwR such that the first half w is “compatible” with the circuit

structure of C′′n (although it also accepts many non-palindrome monomials). The transi-

tion matrices of the automaton, when substituted for variables in ˆPALn, ensure that only

monomials of C′′n survive in the final polynomial obtained as the top right entry of the

resulting matrix. The automaton is a layered DAG with exactly 2r + 2 layers.

1. The start state of the automaton is (ŝ, 0). The automaton first looks for a prefix

(y1,Ly2,L . . . yr− j,Ly0,L). These transitions can be described as (ŝ, i)→ y(i+1,L)(ŝ, i+1)),

for 0 6 i < r. As the automaton reads these variables it steps through states (ŝ, i),

substitutes 1 for each of them, and reaches state (s, (r − j + 1)) when it reads y0,L,

where s is the name of the output gate of circuit C′′n . If any of yl,L, l ∈ [r]∪{0} occur

later the automaton will substitute 0 for it (in order to kill that monomial).

2. Now we describe the transitions of the automaton continuing from state (s, (r − j +

1)). The automaton will use the circuit C′′n . At this point the automaton is looking

for a degree 2 j monomial. Let ` < 2r + 2. The automaton has the following

transitions:

(a) (ŝ, j) → y(0,L)(s, j + 1), where 0 6 j 6 r and s is the output gate in the circuit

85

C′′n .

(b) In state (s, j + 1) if the automaton reads variable xh,g,L (or x(r)
h,g,L or ae,g,L) it

moves to state (g, j + 2) if the gate g is a left-skew multiplication occurring in

the circuit C′′n , and the directed path from g to s in the circuit has only + gates

or right-skew multiplication gates in it. Formally, the transitions made are:

(s, j + 1) → x(h,g,L)(g, j + 2),

(s, j + 1) → x(r)
(h,g,L)(g, j + 2),

(s, j + 1) → a(h,g,L)(g, j + 2).

(c) In general, when the automaton is in state (g, `) for a left-skew multiplication

gate g in the circuit and it reads variable xg1,g2,L (x(r)
g1,g2,L

or ag1,g2,L) then it moves

to state (g2, ` + 1) if the gate g2 is left-skew occurring in the circuit, and the

directed path from g2 to g has only + gates or right-skew multiplication gates

in it. The transitions are:

(g, `) → x(g1,g2,L)(g2, ` + 1),

(g, `) → x(r)
(g1,g2,L)(g2, ` + 1),

(g, `) → a(g1,g2,L)(g2, ` + 1).

(d) After the automaton reaches a state (g, r +1) for some left-skew multiplication

gate g it makes only transitions of the form:

(g, `) → z(t, ` + 1),

(t, `) → z(t, ` + 1),

86

for all choices of z ∈ {a(h,g,R), x(h,g,R), x
(r)
h,g,R | g and h gates in Cn}, and for r+1 ≤

` < 2r + 2. The state (t, 2r + 2) is the unique accepting state of the automaton.

Transitions (a)-(d) ensures that the automaton accepts a monomial ww′ ∈ (X′′n)2r(n)+2,

where |w| = r(n) + 1, if and only if wwR is a nonzero monomial in the polynomial

f ′′n computed by C′′n . Thus, the transitions in (a)-(d) ensure the following claim.

Claim 4.5.1. The automaton defined above accepts a palindrome monomial wwR ∈

(X′′n)2r(n)+2 iff wwR is a nonzero monomial in f ′′n .

Note that there may be many other monomials ww′ also accepted by the automaton.

However, that does not affect the reduction.

We can now apply Corollary 4.3.6. Let W ⊂ (X′′n)2r(n)+2 denote the set of strings accepted

by the above automaton, and ψ denote its substitution map (which replaces the variables

y j,L and y j,R by 1 and leaves other variables unchanged). Then Corollary 4.3.6 implies that

f ′′ 6abp ˆPAL.

ˆPAL is 6abp-reducible to PAL

Finally, we note that ˆPAL is 6abp-reducible to PAL. The polynomial ˆPALn consists of

palindromes over a large (polynomial size) variable set X′′n . We can transform each such

palindrome into a palindrome over two variables {x0, x1} with simple encoding: we can

substitute y j,L and y j,R by x0x j
1x0 for each j. Similarly, for xh,g,L and xh,g,R we use a distinct

integer k and encode them both as x0xk
1x0. Likewise, we encode each variable pair x(r)

h,g,L

and x(r)
h,g,R, or ah,g,L and ah,g,R as x0xk

1x0 for distinct choices of integer k. We will need

only integers k 6 |X′′n | which is polynomially bounded. Furthermore, this encoding is

invertible and can be implemented by a polynomial-size substitution automaton. It now

follows from Corollary 4.3.6 that ˆPAL 6abp PAL. �

87

4.6 Concluding remarks and open problems

We have shown that Dyck polynomials are VPnc-complete under 6abp reductions. Finding

natural VPnc-complete p-families under 6ipro j reductions appears to be a challenging prob-

lem, given that finding natural VP-complete p-families under projections does not have a

satisfactory answer yet. In the commutative case, it would be nice to show that DET is

VP-complete under a more general reducibility (projections are probably too restricted).

88

Chapter 5

Structure inside the classes VPnc and

VNPnc

5.1 Introduction

In this chapter we continue our study of the noncommutative analogues, VPnc and VNPnc,

of Valiant’s algebraic complexity classes. Our main results are the following:

• Assuming VPnc , VNPnc, we exhibit a strictly infinite hierarchy of p-families,

with respect to the projection reducibility, between the complexity classes VPnc and

VNPnc This is analogous to the well-known Ladner’s theorem [Lad75] that shows,

assuming P , NP, that there is an infinite hierarchy of polynomial-time many-

one degrees between P and NP-complete. For commutative Valiant’s classes, the

existence of VNP-intermediate p-families is investigated by Bürgisser [Bür99].

• Inside VPnc too we show there is a strict hierarchy of p-families (based on the

nesting depth of Dyck polynomials) with respect to the ≤abp-reducibility (defined

in the Chapter 4).

89

5.2 Summary of main results

In this chapter, we study the structure of the classes VPnc and VNPnc. Our main results

show that there is a rich structure within the classes VNPnc and VPnc.

To state our results, we need the following definition. We define the p-family ID = (IDn)

which corresponds to the familiar context-sensitive language {ww | w ∈ Σ∗}.

IDn =
∑

w∈{x0,x1}n

ww.

We call the polynomial IDn as identity polynomial.

Now we state our main results of this chapter.

1. We prove a transfer theorem which essentially shows that if f is a VNPnc-complete

p-family under projections then an appropriately defined commutative version f (c)

of f is complete under projections for the commutative VNP class. This is in Sec-

tion 5.3.

2. Hrubes et al [HWY10a] have shown, assuming the sum-of-squares conjecture, that

the p-family ID = (IDn), where IDn =
∑

w∈{x0,x1}n
w.w is not in VPnc. Based on the

p-family ID, we define a p-family ID∗ and show, assuming VPnc , VNPnc, that

ID∗ is neither in VPnc nor VNPnc-complete under projections. This is analogous to

Ladner’s well-known theorem [Lad75]. Such an analogue of Ladner’s theorem for

commutative Valiant classes VP and VNP is already shown by Bürgisser [Bür99].

These results are also in Section 5.3.

3. Within VPnc we obtain a proper hierarchy w.r.t 6abp-reductions corresponding to

the Dyck polynomials of bounded nesting depth. This roughly corresponds to the

noncommutative VNC hierarchy within VPnc. These results are in Section 5.5.

The following table summarizes the results in this chapter.

90

P-family Complexity Result Remarks
IDd -not VNPnc-Complete (Theorem 5.3.6)

-not in VPnc [HWY10a]
6pro j,6ipro j-reductions
assuming S OS k conjecture

f (i+1), i > 1 VNPnc-intermediate (Theorem 5.3.12) 6pro j,6ipro j-reductions
- not reducible to f (i)

assuming VPnc , VNPnc

PER∗,χ VNPnc-Complete (Theorem 5.4.3) w.r.t. ≤abp-reductions
ID∗n VNPnc-Complete (Theorem 5.3.7) w.r.t. ≤abp-reductions

Table 5.1: Summary of Results

5.3 A Ladner’s Theorem analogue for VNPnc

In this section we explore the class VNPnc assuming VPnc , VNPnc. We exhibit an

explicit p-family in VNPnc \VPnc that is not VNPnc-complete. Based on this p-family we

construct strictly infinite hierarchy of p-families under indexed projections between VPnc

and VNPnc. This is similar in spirit to the well-known Ladner’s Theorem [Lad75] that

shows, assuming P , NP, that there is an infinite hierarchy of polynomial-time many-one

degrees between P and NP-complete. For commutative Valiant’s classes, the existence of

VNP-intermediate p-families is investigated by Bürgisser [Bür99].

Bürgisser [Bür99] has shown, under Valiant’s hypothesis, that any countable poset can

be embedded inside the poset of p-families in VNP \ VP under c-reductions (a notion

of reduction between p-families defined there). We call a p-family f is a c-reduction of

p-family g, denoted by f 6c g, iff the map Lgt(n)(fn) is polynomial bounded where t(n) is

polynomial bounded function and Lgt(n)(fn) is, called oracle complexity of fn with respect

to the oracle polynomial gt(n), the minimum number of arithmetic operations (+,×) and

evaluations of gt(n) (at previously computed values) that are sufficient to compute fn from

the input variables and constants from a field.

In particular, Bürgisser [Bür99] result implies the existence of an infinite hierarchy of

91

VNP-intermediate p-families w.r.t. c-reductions. We note that these VNP-intermediate

families in [Bür99] are constructed using diagonalization. Bürgisser also shows a natural

and explicit VNP-intermediate p-family, but the proof of intermediateness for that family

requires an additional hardness assumption about counting classes in the boolean set-

ting. In the noncommutative setting, we give an infinite hierarchy of explicit and natural

VNPnc-intermediate p-families assuming VNPnc , VPnc.

Definition 5.3.1 (VNPnc-intermediate). We say that a noncommutative p-family f = (fn)n>0

is VNPnc-intermediate if f < VPnc and f is not VNPnc-complete w.r.t. 6ipro j reductions.

For any set of noncommuting variables X with |X| ≥ 2, we define the p-family ID = (IDn),

where IDn =
∑

w∈Xn ww. As the monomials of IDn can be recognized and their coefficients

computed in polynomial time the p-family ID is in VNPnc [HWY10b].

We first show that ID is not VNPnc-complete under 6ipro j reductions. We prove it uncondi-

tionally using a simple "transfer" theorem, which allows us to transfer a VNPnc-complete

p-family w.r.t 6ipro j reductions to a commutative VNP-complete p-family w.r.t 6pro j re-

ductions.

Definition 5.3.2. Let f = (fn) be a p-family in VNPnc, where each fn is a polynomial

of degree d(n). We define the commutative version f (c) = (f (c)
n) as follows: Suppose

fn ∈ F〈Xn〉. Let Yn =
⋃

16i6d(n) Xn,i be a new variable set, where Xn,i = {x ji|∀x j ∈ Xn} is

a copy of the variable set Xn for the ith position. If the polynomial fn =
∑
αmm where

αm ∈ F and m ∈ X≤d(n)
n is a monomial, the polynomial f (c)

n is defined as f (c)
n =

∑
αmm′,

where if m = x j1 x j2 . . . x jq then m′ = x j1,1x j2,2 . . . x jq,q.

Clearly, f (c)
n ∈ F[X] and is a polynomial of degree d(n).

Lemma 5.3.3. For any p-families f and g (in F〈X〉), if f 6ipro j g then f (c) 6pro j g(c).

Proof. Since f 6ipro j g, for every n there is a polynomial p(n) and an indexed projection

φn : [dp(n)] × Xp(n) → (Yi j)16i, j6n s.t. fn(Yn) = g(φn(Xp(n))) where dp(n) is the degree of the

92

polynomial gp(n). Define φ′n :
⋃

i∈[d(n)] Xp(n),i → Yn as φ′n(x ji) = φn(i, x j) for 1 6 i, j 6 n.

Clearly, f (c) is reducible to g(c) via this projection reduction. This completes the proof. �

The following observation is an easy consequence of Lemma 5.3.3.

Theorem 5.3.4 (Transfer theorem). Let f = (fn) ∈ VNPnc be a p-family that is VNPnc-

complete under 6ipro j-reductions. Then f (c) is VNP-complete under 6pro j-reductions.

Proof. Since f is VNPnc-complete and PER ∈ VNPnc we have PER 6ipro j f . It follows

from Lemma 5.3.3 that PER(c)
d 6pro j f (c), which means that f (c) is VNP-complete under

6pro j-reductions. �

Corollary 5.3.5. If VP , VNP then the noncommutative determinant DET = (DETn) is

VNPnc-intermediate.

Proof. If the noncommutative determinant DET = (DETn) is VNPnc-complete under

6ipro j reductions then, by Theorem 5.3.4, DET is VNP-complete under 6pro j-reductions.

However, DET is in VP, which contradicts VP , VNP. �

Remark 5.3.1. We note here that VP , VNP is a stronger assumption as it implies VPnc ,

VNPnc. However, in this section we show existence of VNPnc-intermediate polynomials

under the weaker assumption that VPnc , VNPnc.

We first note that the p-family ID is not VNPnc-complete under 6ipro j reductions.

Theorem 5.3.6. The p-family ID is not VNPnc-complete under 6ipro j-reductions.

Proof. Consider ID = (IDn) with IDn defined over variable set X = {x1, x2, . . . , xm(n)}.

Then then commutative polynomial ID(c)
n is

ID(c)
n =

n∏
j=1

(
m(n)∑
i=1

xi, jxi,n+ j).

93

All irreducible factors of ID(c)
n have degree 2. If g is a p-family such that g 6ipro j ID, then

by Lemma 5.3.3 we have g(c) 6pro j ID(c). As g(c) is obtained by projection from ID(c)
n (for

some n), it follows that all irreducible factors of g(c) also have degree at most 2. Now,

define the p-family g = (gn), where gn = x1x2x3 + x4x5x6 for all n. Clearly, g ∈ VNPnc

and g(c)
n is irreducible of degree 3. Therefore, g is not 6ipro j-reducible to ID. �

Thus, the p-family ID is not VNPnc-complete w.r.t. ≤ipro j reductions unconditionally. As

ID is not known to be in VPnc, that makes it a candidate for being VNPnc-intermediate.

If we could show that ID is VNPnc-complete w.r.t. ≤abp reductions it would follow that

ID is not in VPnc assuming VPnc , VNPnc. Motivated by this observation, we consider a

generalized version of ID which we call ID∗ which turns out to be VNPnc-complete under

6abp reductions but not VNPnc-complete under 6ipro j reductions.

For each positive integer n, let Xn be a variable set such that |Xn| = n2. Let Wn denote the

set of all degree n monomials over Xn and define the polynomial

ID∗n =
∑
w∈Wn

ww . . .w︸ ︷︷ ︸
n2−times

.

Clearly, the p-family ID∗ = (ID∗n) is in VNPnc as we can recognize the monomials of ID∗n

in time polynomial in n for each n. We show the following completeness result for ID∗.

Theorem 5.3.7. The p-family ID∗ is VNPnc-complete under 6abp reductions.

Proof. Consider the permanent polynomial PERn and the ID∗n polynomials, both defined

on the variable set Vn = {xi j | 1 ≤ i, j ≤ n}.

We design a deterministic finite state automaton A with the following properties:

1. The automaton A takes as input strings of length n3 over alphabet Vn. We can write

each such string as w1w2 . . .wn2 , where each wi is of length n.

94

2. It checks that each wi is a monomial of the form w = X1i1 . . . Xnin . I.e. the automaton

checks that the first index of the variables in monomial wi is strictly increasing from

1 to n.

3. For the ith block wi, since 1 ≤ i ≤ n2, we can consider the index i as a pair (j, k), 1 ≤

j, k ≤ n. While reading the ith block wi = X1i1 . . . Xnin the automaton checks that

i j , ik if j , k.

The automaton A can be easily realized as a DAG with n3 layers. The first layer has the

start state s and the last layer has one accepting state t and one rejecting state t′. The

transitions of automaton A are only between adjacent layers of this DAG. We group the

adjacent layers of this DAG into blocks of size n. Let these layer blocks be denoted

B1, B2, . . . , Bn2 . In block Bi, the transitions of the automaton will check if i j , ik holds in

wi assuming j , k, where i = (j, k) and the entire input is w1,w2 . . .wn2 . The automaton

will have the indices j and k hardwired in the states corresponding to block Bi and can

easily check this condition. If for any block Bi, the indices i j = ik then the automaton

stores this information in its state and in the end makes a transition to the rejecting state

t′.

Finally, the matrices of the automaton have to effect substitutions in order to convert

monomials of IDn into monomials of PERn. The matrices will replace xi j by the same

variable xi j in the first block B1 and by 1 in all subsequent blocks. The polynomial ID∗n

when evaluated on these matrices will have the permanent polynomial PERn in the (s, t)th

entry of the resulting matrix. This completes the proof of the theorem. �

Theorem 5.3.8. Assuming VPnc , VNPnc, the p-family ID∗ is VNPnc-intermediate under

6ipro j projections.

Proof. If ID∗ is VNPnc-complete under 6ipro j reductions, then PER 6ipro j ID∗ where

95

d 6 p(n) for a polynomial p. By Theorem 5.3.4 it follows that PER(c) 6pro j ID∗(c). Now,

ID∗(c)
d =

d2∏
i=1

d2∑
j=1

d2∏
k=1

x j,d(k−1)+i

Thus, each irreducible factor of ID∗(c)
d is of degree d2 and has d2 monomials. On the other

hand, for each n PER(c)
n is irreducible with n! monomials. Thus, PER(c)

n can be obtained

as a projection of ID∗(c)
d only if d2 = Ω(n!), which contradicts PER(c) 6pro j ID∗(c).

Finally, note that ID∗ is not in VPnc under the assumption VPnc , VNPnc, as ID∗ is

VNPnc-complete under 6abp reductions by Theorem 5.3.7. �

5.3.1 A strict 6ipro j hierarchy in VNPnc

We give an infinite hierarchy of p-families under 6ipro j reductions between VPnc and

VNPnc using the p-families ID∗ and D2.

We define p-families f (i) in VNPnc \VPnc such that f (i) 6ipro j f (i+1) but f (i+1) �ipro j f (i), for

each positive integer i ∈ N. Let ID∗ = (IDn) where ID∗n are degree n3, and D2 = (D2,n)n>0

where D2,n are degree 2n. Each f (i) = (f (i)
n), where

f (1)
n = ID∗n,

f (2)
n = D2,nID∗n,

f (i)
n = f (i−1)

n D2,nID∗n,

for each i, n ∈ N. It is easy to verify that f (i) ∈ VNPnc for all i. The degree of f (i)
n is

i(n3 + 2n).

Proposition 5.3.9. For every i, f (i) 6ipro j f (i+1), where the f (i) are the p-families defined

96

above.

Proof. The indexed projection that gives a reduction from f (i)
n to f (i+1)

n will simply sub-

stitute 1 for the variables (occurring in positions 1 ≤ i ≤ n, and 1 for the variables)

occurring in positions n + 1 ≤ i ≤ 2n. For all other occurrences of the variables of D2,n in

the positions 1 ≤ j ≤ 2n, the indexed projection substitutes 0. This substitution picks out

the following unique degree-2n monomial in the first copy of D2,n

(((· · · ((︸ ︷︷ ︸
n−times

)) · · ·)))︸ ︷︷ ︸
n−times

in the polynomial D2,n and gives it the value 1, and it zeros out the remaining monomials

of D2,n.

For positions 2n + 1 ≤ j ≤ n3 + 2n, the indexed projection will substitute 1 for variable x1

and 0 for all other variables, which will pick out the unique monomial xn3

1 from ID∗n and

give it value 1 and zero out all other monomials in the first copy of ID∗n.

Finally, the indexed projection substitutes x for x, for each variable x occurring in posi-

tions after 2n + n3. �

It remains to show that f (i+1) �ipro j f (i) assuming VPnc , VNPnc. First, we observe that

ID∗ and D2 are incomparable under 6ipro j reductions, assuming VPnc , VNPnc. In order

to show this we need to show that D(c)
2,n is irreducible.

Lemma 5.3.10. The polynomial D(c)
2,n is irreducible for each n.

Proof. Suppose D(c)
2,n = g.h is a nontrivial factorization. Notice that D(c)

2,n is set-multilinear

of degree 2n since the i-th location is allowed only one variable from the set {(i,)i, [i,]i}.

It follows that g and h are both homogeneous and multilinear, and their variable sets are

disjoint.

Thus, every nonzero monomial m of f has a unique factorization m = m1m2, where m1

97

occurs in g and m2 in h. There are no cancellations of terms in the product gh. Hence,

it also follows that both g and h are set-multilinear, where the set of locations [2n] is

partitioned as S for g and [2n] \ S for h. The monomials of g are over variables in

{(i,)i, [i,]i | i ∈ S } and monomials of h are over variables in {(i,)i, [i,]i | i ∈ [2n] \ S }.

Now, there are monomials m occurring in D(c)
2,n such that the projection of m onto positions

in S does not give a string of matched brackets. Let m′ be any such monomial. Then we

have the factorization m′ = m′1.m
′
2, where m′1 and m′2 are monomials that occur in g and h

respectively. Let the monomial m′′ be obtained from m′ by swapping (i with [i and)i with

]i. Notice that m′′ occurs in D(c)
2,n. Let m′′ = m′′1 m′′2 , where m′′1 and m′′2 occur in g and h,

respectively. Now, since there are no cancellations in the product gh, the monomial m′1m′′2

(which is not a properly matched bracket string) must also occur in gh and hence in D(c)
2,n,

which is a contradiction. This completes the proof. �

Lemma 5.3.11. 1. If VPnc , VNPnc then ID∗ �ipro j D2.

2. D2 �ipro j ID∗.

Proof. The first part follows from the VNPnc-completeness of ID∗ shown in Theorem

5.3.7. For the second part, if D2 6ipro j ID∗ then by Lemma 5.3.3 it follows that D(c)
2 6pro j

ID∗(c). By Lemma 5.3.10 D(c)
2,n is irreducible for each n. Moreover, the number of mono-

mials of D(c)
2,n is 2Ω(n). On the other hand, each irreducible factor of ID∗(c)

d has only d2

monomials. Hence, D(c)
2 �pro j ID∗(c). �

We now show that f (i) form a strictly infinite hierarchy under 6ipro j reductions in VNPnc \

VPnc.

Theorem 5.3.12. If VPnc , VNPnc then for each i f (i+1) �ipro j f (i).

Proof. Suppose f (i+1) 6ipro j f (i). Then there are a polynomial p(n) and indexed projec-

tion map φn s.t. f (i)
p(n)(φn(X(i)

p(n))) = f (i+1)
n (X(i+1)

n), where X(i)
p(n) = Var(f (i)

p(n)) and X(i+1)
n =

Var(f (i+1)
n). By definition we have

98

• f (i)
p(n) = D2,p(n)ID∗p(n) . . .D2,p(n)ID∗p(n)︸ ︷︷ ︸

i−times

• f (i+1)
n = D2,nID∗n . . .D2,nID∗n︸ ︷︷ ︸

(i+1)−times

By Lemma 5.3.11, ID∗n �ipro j D2,n and D2,n �ipro j ID∗n. Therefore, D2,nID∗n �ipro j D2,p(n)

and D2,nID∗n �ipro j ID∗2,p(n). Hence D2,nID∗n must get mapped by the projection φn to the

product D2,p(n)ID∗p(n) or ID∗p(n)D2,p(n), overlapping both factors. But f (i+1)
n has (i + 1) such

factors D2,nID∗n. Hence, at least one of these factors D2,nID∗n must map wholly to ID∗p(n)

or D2,p(n) by the indexed projection φn, which is a contradiction to Lemma 5.3.11. Hence

f (i+1) �ipro j f (i). This proves the theorem. �

In Theorem 5.3.12 we have shown that there is infinite hierarchy of explicit p-families

between VPnc and VNPnc. Next we prove that for each k we can construct k explicit

p-families in VNPnc \ VPnc that are incomparable w.r.t. 6ipro j reductions.

Definition 5.3.13. Let k be a positive integer. For each i ∈ [k] define the product polyno-

mial

g(i)
k,n = P1,i,nP2,i,n · · · Pk,i,n

where Pi,i,n = ID∗n and for j , i P j,i,n = D2,n.

Theorem 5.3.14. The p-families defined as g(i)
k = (g(i)

k,n)n, for 1 ≤ i ≤ k, are pairwise

incomparable w.r.t. 6ipro j reductions.

Proof. Suppose to the contrary that g(i)
k 6ipro j g(i′)

k for i , i′. Then for each n there are a

polynomial p(n) and indexed projection map φn s.t. g(i′)
k,p(n)(φn(X(i′)

p(n))) = g(i)
k,n(X(i)

n), where

X(i′)
p(n) = Var(g(i′)

k,p(n)) and X(i)
n = Var(g(i)

k,n). By definition

g(i′)
k,p(n) = P1,i′,p(n)P2,i′,p(n) · · · Pk,i′,p(n).

For 1 ≤ j ≤ k, let f j denote the polynomial obtained from P j,i′,p(n) after applying the

99

substitution map φn. Hence we have

P1,i,nP2,i,n · · · Pk,i,n = f1 · f2 . . . fk.

These are two factorizations of the same noncommutative polynomial. Notice that each

P j,i,n is a homogeneous polynomial. Hence their product (which is the left hand side of

the equality) is also a homogeneous polynomial. Since that homogeneous polynomial has

also the product of f j’s as its factorization, given by the right hand side, it forces that each

f j, 1 ≤ j ≤ k is homogeneous. Furthermore, both D2,n and ID∗n are irreducible polyno-

mials. Consequently, the left hand side of the above equality has exactly k irreducible

factors. Now, homogeneous noncommutative polynomials have unique factorization into

irreducible factors, upto scalar multiples (e.g. see [AJR16]). Therefore, it follows that

P j,i,n and f j are equal upto scalar multiplication for 1 ≤ j ≤ k.

In particular, for j = i it follows that the index projection is a reduction that maps Pi,i,n =

ID∗n to a scalar multiple of fi = φn(Pi,i′,p(n)) = D2,p(n). This implies ID∗ is 6ipro j reducible

to (a scalar multiple of) D2. More precisely, if we define the p-family (zD2,n)n, where

z is a new variable, then ID∗ is 6ipro j reducible to (zD2,n)n, where the variable z can be

substituted by a suitable scalar to cancel the scalar multiple introduced above. Since

(zD2,n)n is clearly in VPnc, it is a contradiction to Lemma 5.3.11. This proves the theorem.

�

Finally, we exhibit an infinite collection of p-families in VNPnc \ VPnc that consist of

explicit polynomials and these p-families are incomparable under 6pro j reductions.

For this purpose we consider a variant of ID∗ (which we still denote by ID∗). For each

positive integer n, let Xn = {x0, x1}. Let Wn denote the set of all degree n monomials over

100

Xn and define the polynomial

ID∗n =
∑
w∈Wn

ww . . .w︸ ︷︷ ︸
n2−times

.

Clearly, under this modified definition too the p-family ID∗ = (ID∗n) is in VNPnc. More-

over, this modified ID∗ remains VNPnc-complete under 6abp reductions by making small

changes to the proof of Theorem 5.3.7. Following the proof of Theorem 5.3.8, we can

see that this modified ID∗ is also VNPnc-intermediate p-family w.r.t. 6ipro j, assuming

VPnc , VNPnc.

Theorem 5.3.15. The p-families fi = (ID∗nxi)n for i = 1, 2, 3, . . . are pairwise incompara-

ble under 6pro j reductions.

Proof. Suppose to the contrary that fi 6pro j f j for i , j. Now, for each n, ID∗n is a polyno-

mial defined over variables x0, x1. The reduction is defined by a substitution map φn and

polynomial p(n) such that on substituting x0, x1, x in ID∗p(n)x
j by φn(x0), φn(x1), φn(x), re-

spectively, we obtain the polynomial ID∗nxi. Notice that φn(x) cannot be a scalar. Because

the polynomial ID∗nxi has three variables, and with φn(x) set to a scalar, the polynomial

φn(ID∗p(n)) has at most two variables which is impossible. As the rightmost factor of ID∗nxi

is x, we must have φn(x) = x.

Clearly, i < j is not possible, because the substitution φn cannot get rid of x j−i in ID∗p(n)x
j

by any substitutions to x0 and x1. If i > j then we want to obtain the polynomial ID∗nxi− j

(defined over three variables) from the polynomial ID∗p(n) (defined over 2 variables) using

projections which is again impossible. �

Remark 5.3.2. Theorem 5.3.15 exhibits the weakness of 6pro j reductions when applied to

noncommutative polynomials with a constant number of variables. Specifically, for the p-

family ID∗ that is defined as above in two variables x0 and x1, although we cannot reduce

ID∗xi to ID∗ under projections, with minor modifications to the proof of Theorem 5.3.7

we can show that it remains complete for VNPnc under 6abp reductions. In contrast, by

101

exploiting the occurrence of many distinct variables, projections are strong enough to

prove the VNPnc-completeness of the noncommutative Permanent [HWY10b].

5.3.2 Discussion

Proving the existence of VNPnc-intermediate p-families under 6abp reductions, assum-

ing VPnc , VNPnc, remains open. At present we do not see an approach. However, in

Section 4.3.4 we briefly discussed 6linpro j, which we termed linear indexed reducibility.

Unfortunately, our proof that PER �ipro j ID∗ (see Theorem 5.3.8) does not generalize

to 6linpro j. Specifically, our proof is based on counting the number of monomials in the

irreducible factors of ID∗(c)
n and PERn, which does not carry over to linear indexed pro-

jections. Indeed, it is easy to note that 6linpro j does not, in general, preserve the number

of monomials in irreducible factors.

However, a plausible stronger assumption than VPnc , VNPnc implies the existence of

VNPnc-intermediate p-families under 6 linpro j reductions.

Conjecture 5.3.16 (S OS k Conjecture). Consider expressing the biquadratic polynomial

S OS k(x1, . . . , xk, y1, . . . , yk) = (
∑
i∈[k]

x2
i)(

∑
i∈[k]

y2
i)

as a sum of squares (
∑

i∈[s] f 2
i), where fi are all homogeneous bilinear polynomials with

the minimum s.

The S OS k conjecture states that over complex numbers (or the algebraic closure of any

field of characteristic different from 2), for all k we have the lower bound s = Ω(k1+ε) for

some constant ε > 0 independent of k.

In [HWY10a], it is shown that the S OS k-conjecture implies that the p-family ID is not

in VPnc. In fact, they prove exponential circuit size lower bounds for IDd assuming the

conjecture.

102

It is easy to see that unconditionally PER �linpro j ID. We can apply the argument of

counting monomials in the irreducible factors of IDd, which is also used in the proof of

Theorem 5.3.8. The reason is that the irreducible factors of IDd are of degree 2 and even

with linear substitutions the number of monomials in each factor remains polynomially

bounded. As PERn is irreducible with exponentially many monomials it follows that

PER �linpro j ID.

Now, since the S OS k conjecture implies that ID < VPnc, it follows that ID is a VNPnc-

intermediate p-family assuming the S OS k conjecture.

Finally, exactly as in Section 5.3.1, we can combine ID and D2 to define an infinite hier-

archy of p-families g(i)q within VNPnc \VPnc under 6linpro j reductions. We omit the proof

details. The p-families g(i) are defined as:

g(1)
n = IDn, g(2)

n = D2,nIDn, g(i)
n = g(i−1)

n D2,nIDn.

Theorem 5.3.17. Assuming S OS k conjecture we have for every i:

1. g(i) 6linpro j g(i+1).

2. g(i+1) �linpro j g(i).

5.4 More on VNPnc-Completeness

By the transfer theorem (Theorem 5.3.4) we know that if f is a VNPnc-complete p-family

under 6ipro j reductions, then in the commutative setting f (c) is VNP-complete under 6pro j-

reductions.

For the reverse direction, suppose f is a commutative p-family which is VNP-complete

under 6pro j-reductions. There are several examples starting with the permanent, the p-

family HC (corresponding to Hamiltonian circuits) and so on [Val79a]. Is there an asso-

ciated noncommutative p-family that is VNPnc-complete under 6ipro j reductions? In this

103

section we formulate an answer to this question and make some related observations.

Suppose f = (fn) is a commutative p-family that is VNP-complete. Since f is VNP-

complete, suppose PERn 6pro j fr(n) for each n, where r(n) is polynomially bounded.

Suppose the polynomial fr(n) ∈ F[Xn] is of degree d(n). Let Xn = {x1, x2, . . . , xq(n) ordered

by increasing indices. The monomials of fr(n) are of the form m = xe1
1 xe2

2 . . . xeq(n)
q(n) , where

the sum of the exponents ei is at most d(n). Letting βm denote the coefficient of monomial

m in fr(n), we can write

fr(n) =
∑

m

βmm.

Now, consider the noncommutative p-family f ∗ = (f ∗n) where

f ∗n =
∑

m

βm mm . . .m︸ ︷︷ ︸
n−times

.

Note that f ∗n ∈ F〈Xn〉 for each n.

Proposition 5.4.1. If f is VNP-complete under6pro j reductions then f ∗ is VNPnc-complete

under 6ipro j reductions.

Proof. Denote PERn’s variables by X jk, 1 ≤ j, k ≤ n. Let i ∈ [q(n)]. Suppose the 6pro j

reduction from PERn to fr(n) does the substitution

xi ← X jk,

then in the noncommutative case the 6ipro j reduction from PERn to f ∗n substitutes X jk for

the xi in the ((j − 1)n + k)th copy of m and substitutes 1 for xi in all other copies of m. If

the reduction does the substitution

xi ← α,

for a scalar α, then in the noncommutative case the 6ipro j reduction substitutes α for xi in

the 1st copy of m and substitutes 1 for xi in all other copies of m. It is easy to verify that

104

this trick of repeated copies ensures that the projection transforms f ∗n to PERn, where all

the monomials of PERn are ordered as X1i1 X2i2 . . . Xnin as per its definition. This completes

the proof. �

5.4.1 A generalized permanent

We next address a different question regarding the permanent polynomial. Let χ : S n →

F \ {0} be any polynomial-time computable function assigning nonzero values to each

permutation in S n. We define a generalized permanent polynomial

PERχ
n =

∑
σ∈S n

χ(σ)x1σ(1)x2σ(2) . . . xnσ(n).

Clearly PERχ = (PERχ
n) is a p-family that is in VNPnc. For which functions χ is PERχ

a VNPnc-complete p-family? In other words, does the hardness of the noncommutative

permanent depend only on the nonzero monomial set (and the coefficients are not impor-

tant)?

In the commutative setting, a related well-studied question is the complexity of imma-

nents. For each Young diagram λ the immanent polynomial is defined as

Immλ(X) =
∑
π∈S n

χλ(π)
n∏

i=1

Xiπ(i).

The λ are basically (ordered) partitions of n, and we can draw a staircase like diagram

(known as the Ferrers diagram) to represent them. The two extreme cases are when the

diagram is a single column (then the immanent is the determinant) and a single row (the

immanent is the permanent in this case). Intermediate cases are algorithmically well

studied with many interesting results [Bür00b, Bar90, B0̈0, Har85, MM13]. Notably, the

immanent polynomial is efficiently solvable when the Ferrers diagram is concentrated on

the leftmost column (but for a constant number of entries) [Bür00b, Bar90]. Furthermore,

105

the character χλ itself is known to be #P-hard to compute for arbitrary partitions λ [Hep94,

].

In the noncommutative setting, as already shown in [AS10], PER 6abp DET. Thus, it

is quite plausible that Immλ is a hard polynomial for each partition λ, although we have

not been able to answer this question. The main technical difficulty is the complexity of

computing χλ.

However, to the question regarding the complexity of PERχ, defined above, for arbitrary

but easily computable functions χ, we are able to give a partial answer. Define

PER∗ =
∑
σ∈S n

XσXσ . . . Xσ︸ ︷︷ ︸
n−times

, where Xσ is the monomial x1σ(1) . . . xnσ(n).

Proposition 5.4.2. PER∗ is VNPnc-complete.

The above proposition is easy to prove: PER∗ is in VNPnc because the coefficient of any

given monomial is polynomial-time computable. Furthermore, PER is ≤ipro j-reducible to

PER∗ by substituting 1 for all except the first n variables in every monomial.

Now, consider the polynomial

PER∗,χ =
∑
σ∈S n

χ(σ) XσXσ . . . Xσ︸ ︷︷ ︸
n−times

.

We prove the following theorem about PERχ and PER∗,χ under assumptions about the

function χ.

Theorem 5.4.3. Suppose the function χ is such that |χ(S n)| ≤ p(n) for some polynomial

p(n) and each n. Then

• If χ is computable by a 1-way logspace Turing machine then PER 6abp PERχ.

106

• If χ is computable by a logspace Turing machine then PER 6abp PER∗,χ.

Proof. We explain the second part of the theorem. The first part follows from the proof of

the second. The idea is to construct an automaton from the given logspace machine such

that for a given σ ∈ S n, the automaton computes 1
χ(σ) in the field F.

Let T be a logspace Turing machine which uses space s = O(log n), computing χ. Thus,

total running time of T is bounded by P(n), where P(n) is some fixed polynomial in n.

Since the range of χ is p(n) bounded in size, we can encode in a state of the automaton

the following:

• Input head position,

• Content of working tape, and

• Content of output tape.

The number of states is bounded by a polynomial in n. We can convert this log-space ma-

chine T on input σ into a one-way log-space machine T ′ on a modified input as follows:

• The input to T ′ is the concatenation of P(n) copies of σ. Thus the input to T ′ is of

the form σσ . . . σ, with P(n) many σ.

• At a step i, T ′ reads from the ith copy.

The difference between machine T ′ and T is that T ′ is a 1-way logspace machine whose

input head moves always to the right. For σ ∈ S n, we can convert T ′ into a determin-

istic automaton with poly(n) many states as follows: there are only polynomially many

instantaneous descriptions of T ′. This consists of the input head position, the work tape

contents and head position, and the current output string (which is a prefix of some ele-

ment in the range χ(S n)). When this automaton completes reading the input, suppose the

107

state q contains the output element α = χ(σ). The automaton has a transition from q to

the unique final state t labeled by scalar 1/χ(σ).

Finally, we can modify this automaton to work on the monomials XσXσ . . . Xσ, where it

replaces all but the first block of variables by 1.

When the polynomial PER∗,χ is evaluated on the matrices corresponding to the above

automaton (with the substitutions), the (s, t)th entry of the output matrix will be the per-

manent polynomial PERn. �

Remark 5.4.1. We note that the sign of a permutation can be computed by a logspace

Turing machine, which implies that DET∗ (which is PER∗,χ where χ(π) is the sign of

π) is VNPnc-complete under 6abp reductions. As the above theorem is for any logspace

computable χ, it is not strong enough to imply the hardness of DET. The hardness proof

of DET shown in [AS10] uses a different strategy.

5.5 Inside VPnc

In the boolean complexity setting, the sub-classes of P are the parallel complexity classes

NCi defined by boolean circuits with bounded fanin gates of polynomial size and login

depth for length n inputs. On the other hand, we have no such hierarchy of algebraic

complexity classes inside the commutative Valiant class VP because VP coincides with

VNC2. The reason for it is that commutative arithmetic circuits of polynomial degree can

be transformed to logarithmic depth with only a polynomial increase in size.

In this section we briefly examine the structure within VPnc. It follows easily from Nisan’s

rank argument [Nis91] that the corresponding VNCnc classes form a strict infinite hier-

archy within VPnc. Furthermore, by considering Dyck polynomials with logi n nesting

depth we obtain a strict hierarchy under 6abp reductions which roughly corresponds to the

VNCnc hierarchy.

108

Definition 5.5.1. A p-family f = (fn) is in VNCi
nc if there is a family of circuits (Cn) for

f such that each Cn is of polynomial size and degree, and is of logi n depth. The class

VNCnc is the union ∪iVNCi
nc.

The classes VNCi
nc, i = 1, 2, . . . are clearly contained in VPnc. Furthermore, Nisan’s rank

argument directly implies that VNCi
nc, i = 1, 2, . . . form a strict hierarchy. Specifically, for

each i, palindromes of length logi+1 n over variables {x0, x1} have circuits of depth logi+1 n

and size O(logi+1 n). However, circuits of depth logi n for it require superpolynomial size.

5.5.1 Dyck depth hierarchy inside VPnc

We now show that the nesting depth of Dyck polynomials yields a strict hierarchy of

p-families within VPnc. This hierarchy roughly corresponds to the VNCnc hierarchy.

Definition 5.5.2 (Nesting depth). The nesting depth of a string in D2 is defined as follows:

• () and [] have depth 1.

• If u1 has depth d1 and u2 has depth d2, u1u2 has depth max{x1, d2} and (u1), [u1]

have depth d1 + 1.

Let W (k)
2,n denote the set of all monomials in D2,n of depth at most k and degree 2n. We

define the polynomial D(k)
2,n =

∑
u∈W(k)

2,n
u and denote the corresponding p-family as D(k)

2 . In

this definition we allow k to be a growing function k(n) of n, where D(k)
2 = (D(k)

2,n)n>0.

We next observe that the Dyck polynomial of nesting depth logi+1 n lies strictly between

VNCi
nc and VNCi+2

nc . We need following definition.

Definition 5.5.3. A p-family f = (fn) is in VACi
nc if there is a family (Cn) of circuits with

unbounded fanin gates such that each Cn is of polynomial size and degree, and logi n

depth. The class VACnc is the union
⋃

i VACi
nc.

109

We note that VNCi
nc ⊆ VACi

nc ⊆ VNCi+1
nc , because we can simulate an unbounded fanin

with a subcircuit of O(log n) depth and polynomial in n size, with fanin two gates.

Theorem 5.5.4. For any i > 0, the Dyck polynomial of depth logi+1 n satisfy the following:

1. D(logi+1 n)
2 is hard for VNCi

nc for 6abp reductions.

2. D(logi+1 n)
2 ∈ VACi+1

nc \ VNCi
nc.

3. D(logi+1 n)
2 is not hard for VACi+1

nc for 6abp reductions.

Proof. It follows from inspection of the proof of the Theorem 4.4.2 that it scales down

and yields part (1) of the theorem.

We now show part (2). Assume that D(logi+1 n)
2 ∈ VNCi

nc. Then D(logi+1 n)
2 has an algebraic

branching program of size 2O(logi n) · poly(n). The 6abp reduction from PAL to D2 can be

easily modified to show that PALlogi+1 n 6abp D(logi+1 n)
2,n . It follows that PALlogi+1 n too has

an ABP of size 2O(logi n) · poly(n), which contradicts Nisan’s result [Nis91] that PALlogi+1 n

requires ABPs of size 2Ω(logi+1 n). Hence, D(logi+1 n)
2 < VNCi

nc.

Now we show that D(logi+1 n)
2 ∈ VACi

nc. More generally, consider the polynomial D̂k(n)
l(n),d(n) =∑k(n)

p=1 Dp
l(n),d(n) where l(n), d(n) and k(n) are polynomial functions in n. Clearly,

D̂k
l,d =

l∑
i=1

(iD̂k−1
l,d−2)i +

∑
i, j∈[l]

d−4∑
p=0

(iD̂k−1
l,p)i(jD̂k−1

l,d−4−p) j.

Using the above recursive description, we can construct an unbounded fanin polynomial

size arithmetic circuit of depth O(k(n)) for D̂k(n)
l(n),d(n) recursively. Clearly, the resulting

circuit will have depth O(k(n)). From this we can obtain a polynomial size arithmetic

circuit of depth O(k(n)) for the largest degree homogeneous part which will be D̂k(n)
l(n),d(n).

Applying this for l = 2 yields an unbounded fanin polynomial size circuit for D(logi+1 n)
2 of

depth O(logi+1 n). Hence, D(logi+1 n)
2 ∈ VACi

nc.

110

In order to prove (3), we exhibit a polynomial f in VACi+1
nc such that f �abp D(logi+1 n)

2 .

Let f = D(logi+1 n)
logi+1 n

. We know that f ∈ VACi+1
nc from the above recursive description. Now,

if f 6abp D(logi+1 n)
2 then f has an algebraic branching program of size 2O(logi+1 n) · poly(n).

Applying Nisan’s rank argument to the polynomial f , we can see that any ABP for f

must have size at least (logi+1 n)! in the logi+1 nth layer of the ABP. Hence any algebraic

branching program for f is of size 2ω(logi+1 n) which is a contradiction. �

5.6 Concluding remarks and open problems

Several open questions arise from the results in this chapter. We list the important ones

below:

- Assuming VPnc , VNPnc, analogous to Ladner’s theorem, we have given an infinite

hierarchy within VNPnc under 6ipro j reductions. Likewise, we have shown infinitely

many p-families that are incomparable under 6pro j reductions and arbitrarily many

under 6ipro j reductions. Similar results for the more powerful 6abp reducibility will

require substantially new techniques. It is also interesting to further compare the

strengths of the three hypotheses considered in this chapter: VPnc , VNPnc, VP ,

VNP, and the S OS k conjecture. As explained in Section 5.3.2, the first hypothesis

is the weakest of the three. Does the S OS k conjecture imply VP , VNP?

- Suppose f = (fn) is a p-family such that fn has the same nonzero monomial set as

PERn for each n. When the coefficients of fn are 1-way logspace computable from

their corresponding monomials, we have shown f is VNPnc-complete under 6abp

reductions. Can we prove any hardness result for f in general?

- We have seen that ID �ipro j D2. Showing that ID �abp D2 would imply superpoly-

nomial circuit size lower bounds for ID. It would be interesting to show this in the

special case when the 6abp reductions are allowed only 2 × 2 matrix substitutions.

111

- The complexity of the noncommutative immanent discussed in Section 5.4 remains

open for different Young diagrams.

112

Chapter 6

Linear circuits over noncommutative

domains

6.1 Introduction

In this chapter, we present our results on lower bounds for multiplicative circuits and

linear circuits over noncommutative domains. We start by summarizing results in this

chapter and then formally define multiplicative and linear circuits over noncommutative

domains. The main results are the following.

• Let (S , ◦) be a semigroup. We show that there exists a list of elements y1, y2, ..., ym ∈

S , which can be generated using two elements x0, x1 ∈ S by semigroup operation

◦. Let the explicit functions yi, 1 6 i 6 m are defined as words yi = yi1yi2...yin where

yi j ∈ {x0, x1} and {y1, y2, ..., ym} are explicitly defined. We show that the size, the

number of semigroup operations ◦ required for computing y1, y2, ..., ym ∈ S using

x0, x1 as input, of any circuit C : {x0, x1} → {y1, y2, ..., ym} computing y1, y2, ..., ym ∈

S is Ω(mn
log2 n

) in the following four noncommutative domains.

1. When (S , ◦) is the free monoid X∗ for X such that |X| > 2.

113

2. When (S , ◦) is the finite matrix semigroup over the boolean ring and matrices

are of dimension nc × nc for some constant c > 0.

3. When (S , ◦) is the free group GX generated by X = {x1, x2, x−1
1 , x

−1
2 }.

4. When (S , ◦) is the permutation group where S = S N for N = nd for some

constant d > 0.

The complexity measure we use is the number of distinct substrings of certain

length of a given string. If number of distinct substrings are large then we show

that circuit size is also large.

• We study a generalization of the linear circuits model (see e.g., [Lok09]), where we

allow the coefficients come from noncommutative rings. We show that there exists

an explicit matrix A ∈ Fn×n〈x0, x1〉 such that computing Ay by any homogeneous

linear circuit C over the coefficient ring F〈x0, x1〉 requires either size ω(n) or depth

ω(log n). We prove this by suitably generalizing Valiant’s matrix rigidity method

[Val77].

• We next consider homogeneous depth 2 linear circuits. These are linear circuits

of depth 2, where each addition gate can have unbounded fanin. We show that

there exists an explicit matrix A ∈ Fn×n〈x0, x1〉 such that computing Ay by a depth 2

homogeneous linear circuit (with unbounded fanin) requires Ω(n2

log n) wires.

6.2 Lower bounds for Multiplicative Circuits

6.2.1 Motivation and Our Results

To state our results, we need the following definition. Let (S , ◦) be a semigroup, i.e., S

is a set closed under the binary operation ◦ which is associative. A natural multi-output

computational model is a circuit over (S , ◦).

114

Definition 6.2.1 (Multiplicative Circuit). The multiplicative circuit C over (S , ◦) is given

by a directed acyclic graph with input nodes labeled x1, ..., xn ∈ S of indegree 0 and

output nodes y1, ..., ym ∈ S of outdegree 0. The internal nodes of the circuit C is labeled

by semigroup operation ◦.

The gates of the circuit all compute the monoid product. We assume that all gates have

fanin 2. The size of the circuit is the number of nodes in it and it computes a function

f : S n → S m.

This multi-output multiplicative circuit provides a general setting to some well studied

problems in circuit complexity. For example,

1. If S = F2 and ◦ is addition in F2, the problem is one of computing Ax for an m × n

matrix over F2. The problem of giving an explicit A such that size of any circuit for

it is superlinear is a longstanding open problem. By means of counting arguments,

we know that there exist such matrices A [Val77].

This problem has a rich literature with many interesting developments. Morgenstern

[Mor73] showed an Ω(n log n) lower bound for the Hadamard matrix in the bounded

coefficient model when F = C. Valiant [Val77] developed matrix rigidity as a means

to attack the problem in the case of logarithmic depth circuits. In spite of many

interesting results and developments, superlinear size lower bounds remain elusive

over any field F even for the special case of log-depth circuits (Lokam’s monograph

[Lok09] contains most of the recent results).

2. When S = {0, 1} and ◦ is the boolean OR, this problem is also well studied and due

to its monotone nature it has explicit lower bounds of circuit size n2−o(1) (e.g., see

section 3.4 in [JS13]).

A more restricted form is S = (N,+) called SUM circuits also well studied e.g.,

[JS13]. While for monotone settings (OR,SUM) there are nontrivial lower bounds,

in the commutative case for S we do not have strong lower bounds results.

115

We explored the case when (S , ◦) is noncommutative. In principle, we can expect lower

bounds could be easier to prove in this model. The circuits are more constrained when

computing an element in S as fewer ways to compute an element in S . An interesting

aspect is that the number of inputs can be restricted to just two: x0, x1.

Our Results

Let the explicit functions yi, 1 6 i 6 m are defined as words yi = yi1yi2...yin where yi j ∈

{x0, x1} and {y1, y2, ..., ym} are explicitly defined. We show that any circuit C : {x0, x1} →

{y1, y2, ..., ym} is of size Ω(mn
log2 n

) in the following four settings:

1. When (S , ◦) is the free monoid X∗ for X such that |X| > 2.

2. When (S , ◦) is the finite matrix semigroup over the boolean ring and matrices are

of dimension nc × nc for some constant c > 0.

3. When (S , ◦) is the free group GX generated by X = {x1, x2, x−1
1 , x

−1
2 }.

4. When (S , ◦) is the permutation group where S = S N for N = nd for some constant

d > 0.

6.2.2 Circuits over free monoids

We consider the free monoid X∗ where X is a finite alphabet and the monoid operation is

concatenation with the empty string ε as identity.

Notice that when X is a singleton set X = {1} then (1∗, ◦) is essentially the semigroup

(N,+). We consider the simplest noncommutative setting with X = {0, 1}. In the prob-

lem, we consider circuits that take the "generating set" X as input and the m outputs

y1, y2, ..., ym ∈ Xn (where n is the "input" parameter).

116

Since each yi is of length n, clearly n gates are sufficient to compute each yi and hence

O(mn) is an obvious upper bound for the circuit size. We will give an explicit set y1, y2, ..., ym ∈

{0, 1}n so that Ω(mn
log2 n

) is the circuit size lower bound. We will let m = n in the construction

and it can be suitably generalized to larger values of m. We now explain the construction

of the set S = {y1, y2, ..., ym} ⊆ {0, 1}n.

Construction of S

Consider the set [n2] of the first n2 natural numbers. Each i ∈ [n2] requires 2 log n bits to

represent in binary. Let D = [n2].

for i = 1, ..., n do

pick the first n
2 log n numbers from current D, concatenate their binary

representation to obtain yi and remove these numbers from D.

end for

This defines the set S = {y1, y2, ..., yn}. Each yi constructed has the property that yi has

> n
2 log n distinct substrings of length 2 log n. We show the following two result about these

strings:

• For each yi ∈ S any concatenation circuit that generates yi from input X = {0, 1}

requires size Ω(n
log2 n

).

• Any concatenation circuit that takes X = {0, 1} as input and outputs S = {y1, y2, ..., yn}

at n output gates requires size Ω(n2

log2 n
).

Lemma 6.2.2. Let s ∈ Xn be any string where |X| > 2, such that the number of distinct

substrings of s of length l is N. Then any concatenation circuit for s will require Ω(N
l)

117

gates.

Proof. Note the case not covered by the lemma: |X| = 1. In that case we know that every

string of length n (for every n) has a concatenation circuit of size 6 2 log n and the circuit

exploits the fact that for each length l there is a unique string. Now we prove the lemma.

Let C be any circuit that computes the string s. Now each gate g of C computes some

string sg. Suppose g = g1 ◦ g2 is a gate whose inputs are gates g1, g2.

Suppose sg1 has k1 distinct substrings of length l and sg2 has k2 distinct substrings of length

l. Now, in sg notice that the new substrings of length l (not occurring in sg1 or sg2) could

only arise as a concatenation of some suffix of sg1 and prefix of sg2 such that neither of

them is the empty string. The number of such substrings is at most l.

Hence, sg can have at most k1 + k2 + l distinct substrings of length l. Thus, each new gate

of C can generate at most l new substrings of length l. Since the output string s has N

distinct length l substrings, it follows that number of gates in C is Ω(N
l). �

Now we show that any concatenation circuit that takes X = {0, 1} as input and outputs

S = {y1, y2, ..., yn} at n output gates requires size Ω(n2

log2 n
).

Theorem 6.2.3. Let S ⊆ {0, 1}n be the explicit set of n strings defined above. Any con-

catenation circuit that takes X = {0, 1} as input and outputs S at its n output gates will

require size Ω(n2

log2 n
).

Proof. Let S = {y1, y2, ..., yn} as defined above and let C be any concatenation circuit that

takes X = {0, 1} as inputs and at its n output gates generates y1, y2, ..., yn respectively. Let

C
′

be a concatenation circuit obtained from C by adding n − 1 new gates such that C
′

outputs the concatenation y = y1y2...yn. By construction size(C
′

) = size(C) + n − 1. The

number of distinct length 2 log n strings in the string y is, by construction, > n2

2 log n . This

is because each yi has > n
2 log n distinct substrings and these are disjoint for different yi.

Hence by Lemma 6.2.2, size(C
′

) = Ω(n2

log2 n
) which implies size(C) = Ω(n2

log2 n
). �

118

6.2.3 Circuits over matrix semigroups

The setting now is that of a finite monoid (M, ◦) where M consisting of p(n)×p(n) matrices

whose entries come from the boolean semiring {0, 1,∨,∧}. We will modify the lower

bound of the previous section to make it work over (M, ◦) which is a finite monoid.

Recall we constructed S = {y1, y2, ..., yn} ⊆ {0, 1}n. Let Dl be the set of all length l

substrings of each yi ∈ S . Let D =
⋃n

l=0 Dl. Clearly |D| =
∑n

l=0 |Dl| 6 n3. The matrices

in M are |D| × |D|. We now define two functions f0, f1 : D → D corresponding to the

generating set X = {0, 1} of the free monoid. For b ∈ {0, 1}, define

fb(s) =


s ◦ b s ◦ b ∈ D

ε otherwise

These give rise to two matrices Mb, b ∈ {0, 1}. The rows and columns of Mb are indexed

by elements of D and Mb(s, s ◦ b) = 1 if s ◦ b ∈ D and Mb(s, s
′

) = 0 if s ◦ b , s
′

. If

s ◦ b < D then Mb(s, ε) = 1 and ∀s
′

, ε, Mb(s, s
′

) = 0.

Thus, we have defined a morphism, Φ : (X∗, ◦) → (M, ◦) which maps b → Mb, b ∈

{0, 1} and by natural extension maps a string s ∈ X∗ to Ms. In particular, the set S =

{y1, y2, ..., yn} defined in section 6.2.2 is mapped to Ŝ = {My1 ,My2 , ...,Myn}.

Theorem 6.2.4. Any circuit over (M, ◦) that takes M0,M1 as input and computes {Myi |yi ∈

S } at its n output gates is of size Ω(n2

log2 n
).

Proof. Let C be a circuit over (M, ◦) computing Myi , 1 6 i 6 n at the n output gates

and input M0,M1. Consider the corresponding circuit C
′

over the free monoid X∗ with

input X = {0, 1}. Let gi be the output gate of C computing Myi , 1 6 i 6 n. In C
′

let

wi ∈ X∗ be the word computed at gi. We know that Mwi = Myi for 1 6 i 6 n. That means

Mwi(ε, yi) = 1. By definition of the matrices Mb, the only way this can happen is when

wi = yi ◦ zi for some zi ∈ X∗ for each i. Now, let C
′′

be a new circuit obtained from C
′

that

119

outputs the concatenation of w1,w2, ...,wn in that order. Then size(C
′′

) 6 size(C
′

) + n − 1.

The output string by C
′′

is of the form y1 ◦ z1 ◦ y2 ◦ z2 ◦ ... ◦ yn ◦ zn. Since the number

of distinct substrings of length 2 log n in {y1, y2, ..., yn} we know is > n2

log2 n
, it follows by

Lemma 6.2.2 that size(C
′′

) = Ω(n2

log2 n
). Consequently, size(C) = size(C

′

) = Ω(n2

log2 n
). This

completes the proof. �

6.2.4 Circuits over free groups

We consider the free group GX generated by the set X = {x1, x2, x−1
1 , x

−1
2 } consisting of

x1, x2 and their inverses. The group operation is concatenation with the empty string ε

as identity and the only cancellation rules we can repeatedly use are xix−1
i = x−1

i xi = ε

for i ∈ {1, 2}. Given a word w ∈ X∗ we can repeatedly apply these rules and obtain a

normal form w′ ∈ GX from it which cannot be simplified further. This normal form, by

Church-Rosser property, is unique and independent of how we apply the rules.

Recall the set of binary strings we constructed in Section 6.2.2. Replacing 0 by x1 and

1 by x2 we obtain S = {y1, y2, ..., yn} ⊆ {x1, x2}
n ⊆ GX. Each word yi constructed has the

property that yi has > n
2 log n distinct subwords of length 2 log n. These words are already

in their normal forms.

Lemma 6.2.5. Let w ∈ GX be any word where X = {x1, x2, x−1
1 , x

−1
2 }, such that the number

of distinct subwords of length l in its normal form w′ is N. Then any concatenation circuit

for w will require size Ω(N
l) gates.

Proof. Let C be any circuit that computes the word w. Now each gate g of C computes

some word wg and, as above, w
′

g denotes its normal form.

Suppose g = g1 ◦ g2 is a gate whose inputs are gates g1, g2. Then, by the Church-Rosser

property of cancellations, the normal form for wg satisfies

w′g = (w′g1
◦ w′g2

)′.

120

Suppose w
′

g1
has k1 distinct subwords of length l and w

′

g2
has k2 distinct subwords of length

l. Now, in w
′

g notice that the new subwords of length l (not occurring in w
′

g1
or w

′

g2
) could

only arise as a concatenation of some suffix of word w
′

g1
and prefix of word w

′

g2
such that

neither of them is the empty string. The number of such new subwords is at most l. Hence,

w′g can have at most k1 + k2 + l distinct subwords of length l.

Now, since the normal form w′ for the output word w has N distinct length l subwords, it

follows that number of gates in C is Ω(N
l). �

Now we show that computing S ⊆ {x1, x2}
n ⊆ GX, defined as above, by any concatenation

circuit that takes X as input and outputs S at its output gates will require size Ω(n2

log2 n
).

Theorem 6.2.6. Let S ⊆ {x1, x2}
n ⊆ GX be the explicit set of n words defined above. Any

concatenation circuit that takes X = {x1, x2, x−1
1 , x

−1
2 } as input and outputs S at its n output

gates will require size Ω(n2

log2 n
).

Proof. Let S = {y1, y2, ..., yn} as defined above and let C be any concatenation circuit

that takes X = {x1, x2, x−1
1 , x

−1
2 } as inputs and at its n output gates generates y1, y2, ..., yn

respectively. Let C
′

be a concatenation circuit obtained from C by adding n− 1 new gates

such that C
′

outputs the concatenation y = y1y2...yn. By construction size(C
′

) = size(C) +

n − 1. The number of distinct length 2 log n words in the words y is, by construction,

> n2

2 log n . This is because each yi has > n
2 log n distinct subwords and these are disjoint

for different yi. Hence by Lemma 6.2.5, size(C
′

) = Ω(n2

log2 n
) which implies size(C) =

Ω(n2

log2 n
). �

Remark 6.2.1. Let M0 =

 1 2

0 1

, M1 =

 1 0

2 1

 be 2×2 matrices. Consider the infinite

group G generated by these elements and their inverses over the field of rationals Q. It

is well known (e.g. see [LZ77] for a nice complexity theoretic application) that the group

G is isomorphic to the free group GX, where the isomorphism is defined by x1 → M0 and

x2 → M1. It follows that Theorem 6.2.6 also applies to the group G by setting x1 = M0

121

and x2 = M1.

6.2.5 Circuits over permutation groups

We now present a lower bound in the setting of groups. We will transform our free monoid

construction to this setting. Recall the set of binary strings S we constructed in Sec-

tion 6.2.2. To this end, we will define two permutations π0, π1 ∈ S N (where N = poly(n)

will be defined later). These permutations correspond to X = {0, 1} and by multiplication

the target output permutations are defined:

GS = {πyi = Πn
j=1πyi[j]|yi ∈ S }, where yi[j] is the j-th bit of string yi.

Definition of π0, π1:

We pick r primes p1, p2, ..., pr where r = n2 such that n < p1 < p2 < ... < pr < n4. The

permutation π0 is defined as the product of r + 1 disjoint cycles, π0 = C0.C1...Cr where

C0,C1 are of length p1 and for i > 2, Ci is of length pi. Similarly, π1 = C
′

0.C
′

1...C
′

r is

a product of r + 1 disjoint cycles with C
′

0 and C
′

1 of length p1 and for i > 2, C
′

i is of

length pi. Let supp(C) denote the set of points moved by C for a cycle C (i.e., if we write

C = (i1i2...ip) it means C maps i1 to i2 and so on ip to i1 and moves no other element

of the domain. Hence, supp(C) = {i1, i2, ..., ip}). In the construction above we pick the

cycles Ci and C
′

i , 0 6 i 6 r such that supp(C0) ∩ supp(C
′

0) = {1} and ∀(i, j) , (0, 0)

supp(C0) ∩ supp(C
′

0) = φ. The domain [N] on which these permutations are defined is⋃r
i=0(supp(Ci) ∪ supp(C

′

i)). Note that N 6 4p1 + 2
∑r

i=2 pi = O(n6). Thus, the problem we

consider is that of designing a circuit over S N that takes as input x0, x1 and outputs at the

n output gates πyi = Πn
j=1xyi[j] where yi[j] is the j-th bit of string yi for each yi ∈ S .

Theorem 6.2.7. Any circuit over the group (S N , ◦) that takes as input π0, π1 and computes

GS = {πyi |yi ∈ S } as output is of size Ω(n2

log2 n
).

122

Proof. Let C be the circuit that solves this problem of computing GS from x0, x1. We fix

the input as x0 = π0 and x1 = π1. Now, consider the corresponding concatenation circuit

C
′

with input x0, x1 ∈ X. At each output gate gi, 1 6 i 6 m, circuit C
′

computes some

word wi ∈ X∗ such that ∀i, πwi = πyi where πwi is the permutation in S N obtained by putting

x0 = π0 and x1 = π1 in wi. If wi = yi for all i then, in fact C
′

as a concatenation circuit

computes the set S at its output gates. This implies by Theorem 6.2.3 that size(C
′

) =

Ω(n2

log2 n
) and size(C) = Ω(n2

log2 n
).

Suppose wi , yi at some output gate gi. We can write wi = u◦b2◦s and yi = v◦b1◦s where

b1 , b2. Assume, without loss of generality, that b1 = 0 and b2 = 1. Since πwi = πyi ,

we know πuπb2πs = πvπb1πs (i.e., πuπ1πs = πvπ0πs). Let α ∈ [N] such that πs(α) = 1. In

πyi = πvπ0πs, the permutation π0 will map 1 to β ∈ C0\{1}, whereas in πwi = πuπ1πs the

permutation π1 maps 1 to γ ∈ C
′

0\{1}. Since |v| < n the point β cannot be moved back

to 1 and subsequently to C
′

0\{1}. This is because p1 > n and length of cycle C
′

0 is p1.

Therefore by πyi the point α is mapped to some point in C0\{1}. Since πwi must map α

to the same point and π1πs has mapped α to a point in γ ∈ C
′

0\{1}, πu must have at least

p1 > n occurrences of π1 in it to move γ to 1 and subsequently to the final point in C0\{1}

(using some π0 applications). We will now argue that this forces wi to be a long string.

Pick any tuple of points (α1, α2, ..., αr) where αi ∈ C
′

i , 1 6 i 6 r. Notice that only π1

moves this tuple because αi, 1 6 i 6 r do not belong to supp(π0). Since p1, ..., pr are

distinct primes, the permutation π1 maps (α1, α2, ..., αr) to a set of Πr
i=1 pi − 1 distinct r-

tuples before returning to (α1, α2, ..., αr). Suppose there are l occurrences of π1 in πyi ,

l < n. Thus, if πyi(α1, α2, ..., αr) = (β1, β2, ..., βr) then πl
1(α1, α2, ..., αr) = (β1, β2, ..., βr).

Then πwi(α1, α2, ..., αr) = (β1, β2, ..., βr). However we know number of occurrences of π1

in πwi is some k > n2 which means πwi(α1, α2, ..., αr) = (β1, β2, ..., βr) = πk
1(α1, α2, ..., αr).

It follows that πk−l
1 (α1, α2, ..., αr) = (α1, α2, ..., αr) which implies k − l is a multiple of

Πr
i=1 pi. Hence |wi| > Πr

i=1 pi. This implies that the circuit needs at least log Πr
i=1 pi multi-

plication gates to compute wi. This gives, size(C) > log Πr
i=1 pi > log 2n2

= n2.

123

Putting it together size(C) = Ω(n2

log2 n
) in any case. This completes the proof. �

6.3 Lower bounds for Linear Circuits over Rings

In this section we consider a generalization of the linear circuits model. In this general-

ization we allow the coefficients to come from noncommutative rings. In principle, we

can expect lower bounds could be easier to prove in this model. The circuits are more

constrained when coefficients come from a noncommutative ring as fewer cancellations

can take place. This is in the same spirit as Nisan’s [Nis91] work on lower bounds for

noncommutative algebraic branching programs. However, we succeed in showing only

some limited lower bounds. We leave open problems that might be more accessible than

the notorious problems for linear circuits over fields.

6.3.1 Preliminaries

We start with the definition of linear circuits over arbitrary ring R.

Definition 6.3.1. Let (R,+, ·) be an arbitrary ring (possibly noncommutative). A linear

circuit over R takes n inputs y1, y2, . . . , yn labeling the indegree 0 nodes of a directed

acyclic graph. The circuit has m output nodes (which have outdegree 0). Each edge of the

graph is labeled by some element of the ring R. The indegree of each non-input node is

two. Each node of the circuit computes a linear form
∑n

i=1 αiyi for αi ∈ R as follows: the

input node labeled yi computes yi. Suppose g is a node with incoming edges from nodes

g1 and g2, and the edges (g1, g) and (g2, g) are labeled by α and β respectively. If g1 and

g2 computes the linear forms `1 and `2 respectively, then g computes α`1 + β`2. Thus, for

an m × n matrix A over the ring R, the circuit computes Ay at the m output gates.

When R is a field we get the well-studied linear circuits model [Mor73, Val77, Lok09].

However, no explicit superlinear size lower bounds are known for this model over fields

124

(except for some special cases like the bounded coefficient model [Mor73] or in the can-

cellation free case [BF13]).

6.3.2 Our Results

When the coefficients to come from a noncommutative ring R we prove lower bounds for

certain restricted linear circuits. Suppose the coefficient ring is R = F〈x0, x1〉 consisting

of polynomials over the field F in noncommuting variables x0 and x1.

Let M ∈ Fn×n〈x0, x1〉 where x0, x1 are noncommuting variables and Y = (y1, y2, . . . , yn)T is

a column vector of input variables. We show the following results.

1. There is a M ∈ Fn×n〈x0, x1〉 such that any homogeneous linear circuit C over the

coefficient ring F〈x0, x1〉 computing MY requires either size ω(n) or depth ω(log n).

We prove this by suitably generalizing Valiant’s matrix rigidity method [Val77] as

explained below.

2. We next consider homogeneous depth 2 linear circuits. We show that for the explicit

matrix M as defined above, computing MY by a depth 2 homogeneous linear circuit

(with unbounded fanin) requires Ω(n2

log n) wires.

3. We show that any linear circuit over F〈x0, x1〉 computing MY , where edge labels

are restricted to be constant-degree polynomials, requires size Ω(n2

log n).

4. We show that any linear circuit, whose edge labels are restricted to be either a

homogeneous degree 4 log n polynomial or a scalar, computing MY requires Ω(n2)

size, where M is the palindrome matrix.

125

6.3.3 Lower bounds for homogeneous linear circuits

The first restriction we consider are homogeneous linear circuits over the ring F〈x0, x1〉

for computing MY . The restriction is that for every gate g in the circuit, if g has its two

incoming edges from nodes g1 and g2, then the edges (g1, g) and (g2, g) are labeled by α

and β respectively, where α, β ∈ F〈x0, x1〉 are restricted to be homogeneous polynomials

of same degree in the variables x0 and x1. It follows, as a consequence of this restriction,

that each gate g of the circuit computes a linear form
∑n

i=1 αiyi, where the αi ∈ F〈x0, x1〉

are all homogeneous polynomials of the same degree. Our goal is to construct an explicit

matrix M ∈ Fn×n〈x0, x1〉 such that MY can not be computed by any circuit C with size

O(n) and depth O(log n). We prove this by suitably generalizing Valiant’s matrix rigidity

method [Val77] as explained below.

Consider n × n matrices Fn×n over field F. The support of a matrix A ∈ Fn×n is the set of

locations supp(A) = {(i, j) | Ai j , 0}.

Definition 6.3.2. Let F be any field. The rigidity ρr(A) of a deck of matrices A =

{A1, A2, . . . , AN} ⊆ F
n×n is the smallest number t for which there are a set of t positions

S ⊆ [n]× [n] and a deck of matrices B = {B1, B2, . . . , BN} such that for all i: supp(Bi) ⊆ S

and the rank of Ai + Bi is bounded by r. A collection A = {A1, A2, . . . , AN} ⊆ F
n×n is a

rigid deck if ρε·n(A) = Ω(n2−o(1)).

Notice that for N = 1 this is precisely the notion of rigid matrices. We are interested

in constructing explicit rigid decks: I.e. a deck A such that for each k ∈ [N] and each

1 ≤ i, j ≤ n there is a polynomial (in n) time algorithm that outputs the (i, j)th entry of

Ak. We describe an explicit deck of size N = 2n2
over any field F and use it to prove our

first lower bound result. It is convenient write the deck as A = {Am | m ∈ {x0, x1}
n2
} with

matrices Am indexed by monomials m of degree n2 in the noncommuting variables x0 and

x1. The matrix Am is defined as follows:

126

Am[i, j] =


1 if mi j = x1

0 if mi j = x0

Note that all the matrices Am in the deckA are in Fn×n. Clearly,A is an explicit deck. We

prove that it is a rigid deck.

Lemma 6.3.3. The deckA = {Am | m ∈ {x0, x1}
n2
} is an explicit rigid deck for any field F.

Proof. Valiant [Val77] showed that almost all n × n 0-1 matrices over any field F have

rigidity Ω((n−r)2

log n) for target rank r. In particular, for r = ε · n, over any field F, there is a

0-1 matrix R for which we have ρr(R) ≥ δ·n2

log n for some constant δ > 0 depending on ε.

We claim that for the deck A we have ρεn(A) ≥ δ·n2

log n . To see this, suppose let E = {Em ∈

Fn×n|m ∈ {x0, x1}
n2
} be any collection of matrices such that |supp(Em)| 6 δn2

log n for each m.

Since the deck A contains all 0-1 matrices, in particular R ∈ A and R = Am for some

monomial m. From the rigidity of R we know that the rank of R + Em is at least εn. This

proves the claim and the lemma follows. �

We now turn to the lower bound result for homogeneous linear circuits where the coeffi-

cient ring is F〈x0, x1〉. We define an explicit n × n matrix M, whose (i, j)-th entry Mi j is

the polynomial,

Mi j = (x0 + x1)(i−1)n+ j−1 · x1 · (x0 + x1)n2−((i−1)n+ j). (6.1)

It is easy to see that we can express the matrix M as M =
∑

m∈{x0,x1}n
2 Amm, where A =

{Am | m ∈ {x0, x1}
n2
} is the deck defined above.

Theorem 6.3.4. Any homogeneous linear circuit C over the coefficient ring F〈x0, x1〉 com-

puting MY, for M defined above, requires either size ω(n) or depth ω(log n).

Proof. Assume to the contrary that C is a homogeneous linear circuit of size O(n) and

127

depth O(log n) computing MY . We know that by Valiant’s graph-theoretic argument (see

e.g. [Lok09]) that in the circuit C there is a set of gates V of cardinality s = c1n
log log n = o(n)

such that at least n2 − n1+δ, for δ < 1, input-output pairs have all their paths going through

V . Thus, we can write M = B1B2 + E where B1 ∈ F
n×s〈x0, x1〉 and B2 ∈ F

s×n〈x0, x1〉

and E ∈ Fn×n〈x0, x1〉, and |supp(E)| ≤ n1+δ. By collecting the matrix coefficient of each

monomial we can express M and E as

M =
∑

m∈{x0,x1}n
2

Amm, and E =
∑

m∈{x0,x1}n
2

Emm,

where Am are already defined and | ∪m∈{x0,x1}n
2 supp(Em)| ≤ n1+δ. Now consider the

matrix B1B2. By collecting matrix coefficients of monomials we can write B1B2 =∑
m∈{x0,x1}n

2 Bmm.

We now analyze the matrices Bm. Crucially, by the homogeneity condition on the circuit

C, we can partition V = V1 ∪ V2 ∪ . . .V`, where each gate g in Vi computes a linear form∑n
j=1 γ jy j and γ j ∈ F〈x0, x1〉 is a homogeneous degree di polynomial. Let si = |Vi|, 1 ≤ i ≤

`. Then we have s = s1 + s2 + . . . s`. Every monomial m has a unique prefix of length di for

each degree di associated with the gates in V . Thus, we can write Bm =
∑`

j=1 Bm, j,1Bm, j,2,

where Bm, j,1 is the n × s j matrix corresponding to the d j-prefix of m and Bm, j,2 is the

s j × n matrix corresponding to the n2 − d j-suffix of m. It follows that for each monomial

m the rank of Bm is bounded by s. Putting it together, for each monomial m we have

Am = Bm + Em, where Bm is rank s and | ∪m∈{x0,x1}n
2 supp(Em)| ≤ n1+δ. This contradicts the

fact thatA is a rigid deck. �

Remark 6.3.1. For the matrix M = (Mi j), as defined above, it does not seem that Shoup-

Smolensky dimension method [SS96] can be used to prove a similar lower bound. To

see this, suppose ΓM(n) is the set of all monomials of degree n in {mi j} and let DM(n) be

the dimension of the vector space over F spanned by the set ΓM(n). The upper bound

for DM(n) that we can show for a depth d and size O(n) linear circuit over the ring

F〈x0, x1〉 is as large as (O(n)
d)dn. This bound, unfortunately, is much larger than the bounds

128

obtainable for the commutative case [SS96]. On the other hand, the lower bound for

DM(n) is only nΘ(n). Thus, we do not get a superlinear size lower bound for the size using

Shoup-Smolensky dimensions when the coefficient ring is F〈x0, x1〉.

6.3.4 Lower bounds for homogeneous depth 2 linear circuits

We next consider homogeneous depth 2 linear circuits. These are linear circuits of depth

2, where each addition gate can have unbounded fanin. More precisely, if g is an addi-

tion gate with inputs from g1, g2, . . . , gt then the gate g computes
∑t

i=1 αigi, where each

edge (gi, g) is labeled by αi ∈ F〈x0, x1〉 such that αi, 1 ≤ i ≤ t are all homogeneous

polynomials of the same degree. We again consider the problem of computing MY for

M ∈ Fn×n〈x0, x1〉. The goal is to lower bound the number of wires in the linear cir-

cuit. This problem is also well studied for linear circuits over fields and only an explicit

Ω(n log2 n/ log log n) lower bound is known for it [Lok09, Pud94], although for random

matrices the lower bound is Ω(n2/ log n).

We show that for the explicit matrix M as defined above, computing MY by a depth 2

homogeneous linear circuit (with unbounded fanin) requires Ω(n2

log n) wires.

Theorem 6.3.5. Let M ∈ Fn×n
2 〈x0, x1〉 as defined in Equation 6.1. Any homogeneous linear

circuit C of depth 2 computing MY requires Ω(n2

log n) wires.

Proof. Let C be a homogeneous linear circuit of depth 2 computing MY . Let w(C) denote

the number of wires in C. Let s be the number of gates in the middle layer of C. We can

assume without loss of generality that, all input to output paths in C are of length 2 and

hence pass through the middle layer. A level 1 edge connects an input gate to a middle-

layer gate and a level 2 edge is from middle layer to output. Thus, we can factorize

M = M
′

∗ M
′′

where the matrix M
′

is in Fn×s〈x0, x1〉 and M
′′

is in Fs×n〈x0, x1〉, and the

complexity of C is equivalent to total number of nonzero entries in M
′

and M
′′

. As before,

write M =
∑

m∈{x0,x1}n
2 Amm.

129

Given Am for m ∈ {x0, x1}
n2

, we show how to extract from C a depth-2 linear circuit over

the field F, call it C(m), that computes Am such that the number of wires in C(m) is at most

the number of wires in C. Indeed, we do not add any new gate or wires in obtaining C(m)

from C.

For each gate g in the middle layer, there are at most n incoming edges and n outgo-

ing edges. As C is a homogeneous linear circuit we can associate a degree dg to gate g.

Each edge (i, g) to g is labeled by a homogeneous degree-dg polynomial αi,g in F〈x0, x1〉.

Likewise, each edge (g, j) from g to the output layer is labeled by a degree-n2 − dg ho-

mogeneous polynomial βg, j. Let m = m1m2, where m1 is of degree dg and m2 of degree

n2 − dg. For each incoming edge (i, g) to g we keep as label the coefficient of the mono-

mial m1 in αi,g and for outgoing edge (g, j) from g we keep as label the coefficient of the

monomial m2 in βg, j. We do this transformation for each gate g in the middle layer of

C. This completes the description of the depth-2 circuit C(m). By construction it is clear

that C(m) computes Am and the number of wires w(C(m)) in C(m) is bounded by w(C) for

each monomial m ∈ {x0, x1}
n2

. However, {Am | m ∈ {x0, x1}
n2
} is the set of all 0-1 matrices

over F and it is known that there are n × n 0-1 matrices Am such that any depth-2 linear

circuit for it requires Ω(n2

log n) wires (e.g. see [Lok09]). Hence, the number of wires in C is

Ω(n2

log n). �

6.3.5 More Lower bounds for homogeneous linear circuits

If we restrict the edge labels in the linear circuit computing MY to only constant-degree

polynomials then we can obtain much stronger lower bounds using Nisan’s [Nis91] lower

bound technique for noncommutative algebraic branching programs. We can define the

matrix M as follows. Let Mi j = wi jwR
i j, where wi j ∈ {x0, x1}

2 log n and 1 6 i, j 6 n are all

distinct monomials of degree 2 log n. We refer to M as a palindrome matrix. All entries

of M are distinct and note that each entry of MY can be computed using O(n log n) gates.

Theorem 6.3.6. Any linear circuit over F〈x0, x1〉 computing MY, where edge labels are

130

restricted to be constant-degree polynomials, requires size Ω(n2

log n).

Proof. Let C be such a linear circuit computing MY . Since edges can be labeled by

constant-degree polynomials, we can first obtain a linear circuit C′ computing MY such

that each edge is labeled by a homogeneous linear form. The size size(C′) = O(size(C) log n).

From C′, we can obtain a noncommutative algebraic branching program Ĉ that computes

the palindrome polynomial
∑

w∈{x0,x1}2 log n wwR such that size(Ĉ) = O(size(C′)). By Nisan’s

lower bound [Nis91] size(Ĉ) = Ω(n2), which implies size(C) = Ω(n2

log n). �

If we restrict edge labels to either homogeneous degree 4 log n polynomial or a scalar then

we can show the following lower bound.

Theorem 6.3.7. Any linear circuit, whose edge labels are restricted to be either a homo-

geneous degree 4 log n polynomial or a scalar, computing MY requires Ω(n2) size, where

M is the palindrome matrix. Moreover, there is a matching upper bound.

Proof. Let C be any linear circuit computing MY . Each entry mi j of the matrix M can be

written as sum of products of polynomials mi j =
∑
ρi j

∏
e∈ρi j

l(e) where ρi j is a path from

input y j to output gate i in C and l(e) is the label of edge e in C. Let S be set of all edge

labels in C with degree 4 log n polynomial. Thus, each mi j is a linear combinations of

elements in the set S over F. This implies that mi j ∈ S pan(S) where i 6 i, j 6 n. Since

all mi j are distinct, |S | > n2. Since fan in is 2, size(C) > n2

2 = Ω(n2).

For upper bound, we use n2 edges (n edges starting from each input yi) each labeled by a

corresponding monomial in M (of degree 4 log n) and then we add relevant edges to get

the output gates. Thus, upper bound is O(n2) for computing MY . �

Note that, since we have not used noncommutativity in the proof, Theorem 6.3.7 also

holds in the commutative settings (we require all the entries of M to be distinct).

131

6.4 Discussion

For multiplicative circuits we could prove lower bounds only for large monoids and large

groups. The main question here is whether we can prove lower bounds for an explicit

function f : S n → S m, for some constant size nonabelian group or monoid S .

We introduced the notion of rigidity for decks of matrices, but the only explicit example

we gave was the trivial one with a deck of size 2n2
. A natural question is to give explicit

constructions for smaller rigid decks of n × n matrices, say of size n! or less. Or is

the construction of rigid decks of smaller size equivalent to the original matrix rigidity

problem?

132

Bibliography

[AFS+16] Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Sh-

pilka, and Ben Lee Volk. Identity testing and lower bounds for read-k obliv-

ious algebraic branching programs. In 31st Conference on Computational

Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 30:1–

30:25, 2016.

[AJR16] Vikraman Arvind, Pushkar S. Joglekar, and S. Raja. Noncommutative

valiant’s classes: Structure and complete problems. ACM Transactions on

Computation Theory (ToCT), 9(1):3:1–3:29, 2016.

[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic

circuits and the hadamard product of polynomials. In IARCS Annual Con-

ference on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, pages

25–36, 2009.

[AR] Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear

arithmetic computations. Chicago Journal of Theoretical Computer Science,

2016(6).

[ARS14] Vikraman Arvind, S. Raja, and A. V. Sreejith. On lower bounds for multi-

plicative circuits and linear circuits in noncommutative domains. In Com-

puter Science - Theory and Applications - 9th International Computer Sci-

133

ence Symposium in Russia, CSR 2014, Moscow, Russia, June 7-11, 2014.

Proceedings, pages 65–76, 2014.

[AS10] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncom-

mutative determinant. In Proceedings of the 42nd ACM Symposium on The-

ory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June

2010, pages 677–686, 2010.

[B0̈0] Peter Bürgisser. The computational complexity of immanants. 30(3):1023–

1040, 2000. Preliminary version in FPSAC’98.

[Bar90] Alexander I. Barvinok. Computational complexity of immanents and repre-

sentations of the full linear group. Functional Analysis and its Applications,

24(2):144–145, 1990.

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz,

and Stefano Varricchio. Learning functions represented as multiplicity au-

tomata. Journal of the ACM, 47(3):506–530, 2000.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time

using a small number of processors. Inf. Process. Lett., 18(3):147–150, 1984.

[BF13] Joan Boyar and Magnus Gausdal Find. Cancellation-free circuits in un-

bounded and bounded depth. In FCT, pages 159–170, 2013.

[BR11] J. Berstel and C. Reutenauer. Noncommutative Rational Series with Appli-

cations. Encyclopedia of Mathematics and its Applications. Cambridge Uni-

versity Press, 2011.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives.

Theor. Comput. Sci., 22:317–330, 1983.

[Bür99] Peter Bürgisser. On the structure of valiant’s complexity classes. Discrete

Mathematics & Theoretical Computer Science, 3(3):73–94, 1999.

134

http://www.fpsac.org/FPSAC98/articles.html

[Bür00a] Peter Bürgisser. Completeness and reduction in algebraic complexity theory.

Algorithms and computation in mathematics. Springer, Berlin, New York,

2000.

[Bür00b] Peter Bürgisser. The computational complexity to evaluate representations

of general linear groups. 30(3):1010–1022, 2000. Preliminary version in

FPSAC’98.

[CS63] Noam Chomsky and Marcel Paul Schützenberger. The Algebraic Theory of

Context-Free Languages. In P. Braffort and D. Hirshberg, editors, Computer

Programming and Formal Systems, Studies in Logic, pages 118–161. North-

Holland Publishing, 1963.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure

for the Analysis of Randomized Algorithms. Cambridge University Press,

2009.

[DSW94] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Com-

plexity, and Languages (2Nd Ed.): Fundamentals of Theoretical Computer

Science. Academic Press Professional, Inc., San Diego, CA, USA, 1994.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity test-

ing of non-commutative and read-once oblivious algebraic branching pro-

grams. In 54th Annual IEEE Symposium on Foundations of Computer Sci-

ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 243–252,

2013.

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deter-

ministic identity testing for sum of read-once oblivious arithmetic branching

programs. In 30th Conference on Computational Complexity, CCC 2015,

June 17-19, 2015, Portland, Oregon, USA, pages 323–346, 2015.

135

http://www.fpsac.org/FPSAC98/articles.html

[Har85] Werner Hartmann. On the complexity of immanants. Linear and Multilinear

Algebra, 18(2):127–140, 1985.

[Hep94] Charles Thomas Hepler. The complexity of computing characters of a finite

group. 1994.

[HWY10a] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative cir-

cuits and the sum-of-squares problem. In Proceedings of the 42nd ACM Sym-

posium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,

USA, 5-8 June 2010, pages 667–676, 2010.

[HWY10b] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Relationless complete-

ness and separations. In Proceedings of the 25th Annual IEEE Conference

on Computational Complexity, CCC 2010, Cambridge, Massachusetts, June

9-12, 2010, pages 280–290, 2010.

[Hya79] Laurent Hyafil. On the parallel evaluation of multivariate polynomials. SIAM

J. Comput., 8(2):120–123, 1979.

[JS13] Stasys Jukna and Igor Sergeev. Complexity of linear boolean operators.

Foundations and Trends in Theoretical Computer Science, 9(1):1–123, 2013.

[Lad75] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM,

22(1):155–171, 1975.

[LMS15] Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for

non-commutative skew circuits. Electronic Colloquium on Computational

Complexity (ECCC), 22:22, 2015.

[Lok09] Satyanarayana V Lokam. Complexity lower bounds using linear algebra.

Foundations and Trends in Theoretical Computer Science, 4(1-2):1–155,

2009.

136

[LZ77] Richard J Lipton and Yechezkel Zalcstein. Word problems solvable in

logspace. Journal of the ACM (JACM), 24(3):522–526, 1977.

[MM13] Stephan Mertens and Cristopher Moore. The complexity of the fermionant

and immanants of constant width [note]. Theory of Computing, 9:273–282,

2013.

[Mor73] Jacques Morgenstern. Note on a lower bound on the linear complexity of the

fast fourier transform. Journal of the ACM (JACM), 20(2):305–306, 1973.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended

abstract). In STOC, pages 410–418, 1991.

[NW95] Noam Nisan and Avi Wigderson. Lower bounds for arithmetic circuits via

partial serivatives (preliminary version). In 36th Annual Symposium on Foun-

dations of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995,

pages 16–25, 1995.

[Pud94] P Pudlak. Large communication in constant depth circuits. Combinatorica,

14(2):203–216, 1994.

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. J. ACM, 56(2), 2009.

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arith-

metic circuits. Computational Complexity, 17(4):515–535, 2008.

[Sha00] D. B. Shapiro. Composition of Quadratic Forms. W. de Gruyter Verlag,

2000.

[SS96] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evalua-

tion and interpolation problems. Computational Complexity, 6(4):301–311,

1996.

137

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-

matik, 13(4):354–356, 1969.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent

results and open questions. Foundations and Trends in Theoretical Computer

Science, 5(3-4):207–388, 2010.

[Tod92] Seinosuke Toda. Classes of arithmetic circuits capturing the compl exity

of computing the determinant. In IEICE Transactions on Informations and

Systems,E75-D , 116âĂŞ124, 1992, pages 116–124, 1992.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In

MFCS. Springer, 1977.

[Val79a] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the

11h Annual ACM Symposium on Theory of Computing, April 30 - May 2,

1979, Atlanta, Georgia, USA, pages 249–261, 1979.

[Val79b] Leslie G. Valiant. The complexity of computing the permanent. Theor. Com-

put. Sci., 8:189–201, 1979.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast

parallel computation of polynomials using few processors. SIAM J. Comput.,

12(4):641–644, 1983.

138

	Synopsis
	Introduction to the thesis
	Introduction
	Results and organization of the thesis
	Lower bounds results for set-multilinear arithmetic computations
	Noncommutative Valiant's classes: structure and complete problems
	Lower bounds for multiplicative and linear circuits over noncommutative domains

	Some lower bound results for set-multilinear arithmetic computations
	Introduction
	Preliminaries
	Summary of results
	Depth Reduction of Set-Multilinear Circuits
	A Lower Bound Result for Set-Multilinear ABPs
	Lower bounds for narrow set-multilinear ABPs

	Summary and open problems

	Lower bounds for some restricted set multilinear circuits
	Introduction
	Preliminaries
	Summary of results
	Interval multilinear circuits and ABPs
	Parse tree restrictions on set-multilinear circuits
	Set-multilinear circuits with few parse tree types
	Unambiguous set-multilinear circuits

	Summary and open problems

	Complete problems for the classes VPnc & VSKEWnc
	Introduction
	Main results

	Preliminaries
	Polynomials

	The Reducibilities
	The projection reducibility
	The indexed-projection reducibility
	The abp-reducibility
	Comparing the reducibilities
	Matrix substitutions and abp reductions

	Dyck Polynomials are VPnc-complete
	Palindrome Polynomials are VSKEWnc-complete
	Concluding remarks and open problems

	Structure inside the classes VPnc and VNPnc
	Introduction
	Summary of main results
	A Ladner's Theorem analogue for VNPnc
	A strict iproj hierarchy in VNPnc
	Discussion

	More on VNPnc-Completeness
	A generalized permanent

	Inside VPnc
	Dyck depth hierarchy inside VPnc

	Concluding remarks and open problems

	Linear circuits over noncommutative domains
	Introduction
	Lower bounds for Multiplicative Circuits
	Motivation and Our Results
	Circuits over free monoids
	Circuits over matrix semigroups
	Circuits over free groups
	Circuits over permutation groups

	Lower bounds for Linear Circuits over Rings
	Preliminaries
	Our Results
	Lower bounds for homogeneous linear circuits
	Lower bounds for homogeneous depth 2 linear circuits
	More Lower bounds for homogeneous linear circuits

	Discussion

	Bibliography

