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Synopsis

This thesis studies fluctuation of error terms that appears in various asymptotic formulas

and size of the sets where these fluctuations occur. As a consequence, this approach

replaces Landau’s criterion on oscillation of error terms.

General Theory

Consider a sequence of real numbers {an}∞n=1 having Dirichlet series

D(s) =

∞∑
n=1

an

ns
,

which is convergent in some half-plane. As in Perron summation formula [37, II.2.1], we

write
∗∑

n≤x

an =M(x) + ∆(x),

whereM(x) is the main term, ∆(x) is the error term and
∑∗ is defined as

∗∑
n≤x

an =


∑

n≤x an if x < N,∑
n<x an + 1

2ax if x ∈ N.

In this thesis, we obtain Ω and Ω± estimates for ∆(x). We shall use the Mellin transform

of ∆(x) (defined below) to obtain such estimates.
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Definition. The Mellin transform of ∆(x) be A(s), defined as

A(s) =

∫ ∞

1

∆(x)
xs+1 dx .

In this direction, under some natural assumptions and for a suitably defined contour

C , we shall show that

A(s) =
1

2πi

∫
C

D(η)
η(s − η)

dη.

In the above formula, the poles of D(s) that lie left to C are all the poles that contributes

to the main termM(x). Landau [26] used the meromorphic continuation of A(s) to obtain

Ω± results for ∆(x). He proved that if A(s) has a pole at σ0 + it0 for some t0 , 0 and has

no real pole for s ≥ σ0, then

∆(x) = Ω±(xσ0).

We shall show a quantitative version of Landau’s theorem, which also generalizes a the-

orem of Bhowmik, Ramaré and Schlage-Puchta [6]. Below we state this theorem in a

simplified way. We introduce the following notations to state these theorems.

Definition. Let

A+
T (xσ0) := {T ≤ x ≤ 2T : ∆(x) > λxσ0 },

A−T (xσ0) := {T ≤ x ≤ 2T : ∆(x) < −λxσ0 },

AT (xσ0) := A+
T (xσ0) ∪ A−T (xσ0),

for some λ, σ0 > 0.

Theorem. Let σ0 > 0, and let the following conditions hold:

(1) A(s) has no real pole for<(s) ≥ σ0,
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(2) there is a complex pole s0 = σ0 + it0, t0 , 0, of A(s), and

(3) for positive functions h±(x) such that h ± (x)→ ∞ as x → ∞, we have

∫
A±

T
(xσ0 )

∆2(x)
x2σ0+1 dx � h±(T ).

Then

µ(A±T (xσ0)) = Ω

(
T

h±(T )

)
,

where µ denotes the Lebesgue measure.

In the above theorem, Condition 2 is a very strong criterion. In the following theorem,

we replace Condition 2 by an Ω-bound of µ(AT (xσ0)) and obtain an Ω±-result from the

given Ω-bound.

Theorem. Let σ0 > 0, and let the following conditions hold:

(1) A(s) has no real pole for<(s) ≥ σ0, and

(2) µ(AT (xσ0)) = Ω(T 1−δ) for 0 < δ < σ0.

Then

∆(x) = Ω±(Tσ0−δ
′

)

for any δ′ such that 0 < δ′ < δ.

The above two theorems are applicable to a wide class of arithmetic functions. Now

we mention some results obtained by applying these theorems.

A Twisted Divisor Function

14



Given θ , 0, define

τ(n, θ) =
∑
d |n

diθ .

The Dirichlet series of |τ(n, θ)|2 can be expressed in terms of Riemann zeta function as

D(s) =

∞∑
n=1

|τ(n, θ)|2

ns
=
ζ2(s)ζ (s + iθ)ζ (s − iθ)

ζ (2s)
for <(s) > 1.

In [14, Theorem 33], Hall and Tenenbaum proved that

∗∑
n≤x

|τ(n, θ)|2 = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x + ∆(x),

where ωi(θ)s are explicit constants depending only on θ. They also showed that

∆(x) = Oθ(x1/2 log6 x).

Here the main term comes from the residues of D(s) at s = 1, 1 ± iθ. All other poles of

D(s) come from zeros of ζ (2s). Using a pole on the line <(s) = 1/4, Landau’s method

gives

∆(x) = Ω±(x1/4).

We prove the following bounds for a computable λ(θ) > 0 and for any ε > 0:

µ
(
{T ≤ x ≤ 2T : ∆(x) > (λ(θ) − ε )x1/4}

)
= Ω

(
T 1/2(logT )−12

)
,

µ
(
{T ≤ x ≤ 2T : ∆(x) < (−λ(θ) + ε )x1/4}

)
= Ω

(
T 1/2(logT )−12

)
.

For a constant c > 0, define

α(T ) =
3
8
−

c

(logT )1/8 .
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Applying a method due to Balasubramanian, Ramachandra and Subbarao [5], we prove

∆(T ) = Ω
(
Tα(T )

)
.

In fact, this method gives Ω-estimate for the measure of the sets involved:

µ(A ∩ [T , 2T ]) = Ω
(
T 2α(T )

)
,

where

A = {x : |∆(x)| ≥ Mxα(x)}

and M > 0 is a positive constant. We also show that

either ∆(x) = Ω
(
xα(x)+δ/2

)
or ∆(x) = Ω±

(
x3/8−δ′

)
,

for 0 < δ < δ′ < 1/8. For any ε > 0, this result and the conjecture

∆(x) = O(x3/8+ε )

proves that

∆(x) = Ω±(x3/8−ε ).

Prime Number Theorem Error

Let an be the von Mandoldt function Λ(n):

Λ(n) :=


log p if n = pr , r ≥ 1, p prime ,

0 otherwise.
.
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Let
∗∑

n≤x

Λn = x + ∆(x).

From the Vinogradov’s zero free region for Riemann zeta function, one gets [23, Theo-

rem 12.2]

∆(x) = O
(
x exp

(
−c(log x)3/5(log log x)−1/5

))
for some constant c > 0.

Hardy and Littlewood [16] proved that

∆(x) = Ω±

(
x1/2 log log log x

)
.

But this result does not say about the measure of the sets, where the above Ω± bounds are

attained by ∆(x). We obtain the following weaker result, but with an Ω-estimates for the

measure of the corresponding sets.

Let λ1 > 0 denotes a computable constant. For a fixed ε , 0 < ε < λ1, we write

A1 :=
{
x : ∆(x) > (λ1 − ε )x1/2

}
,

A2 :=
{
x : ∆(x) < (−λ1 + ε )x1/2

}
.

Then

µ([T , 2T ] ∩ A j) = Ω
(
T 1−ε

)
, for j = 1, 2 and for any ε > 0.

17



Under Riemann Hypothesis, we have

µ([T , 2T ] ∩ A j) = Ω

(
T

(logT )4

)
for j = 1, 2.

We also show the following unconditional Ω-bounds for the second moment of ∆:

∫
[T ,2T ]∩A j

∆
2(x)dx = Ω(T 2) for j = 1, 2.

Non-isomorphic Abelian Groups

Let an denote the number of non-isomorphic abelian groups of order n. We write

∗∑
n≤x

an =

6∑
k=1

bk x
1/k + ∆(x).

In the above formula, we define bk as

bk :=
∞∏

j=1, j,k

ζ ( j/k).

It is an open problem to show that

∆(x) � x1/6+δ for any δ > 0. (1)

The best result on upper bound of ∆(x) is due to O. Robert and P. Sargos [33], which gives

∆(x) � x1/4+ε for any ε > 0.

18



Also Balasubramanian and Ramachandra [4] proved that

∆(x) = Ω
(
x1/6

√
log x

)
.

From this result, we may obtain

µ
(
{T ≤ x ≤ 2T : |∆(x)| ≥ λ2x

1/6(log x)1/2}
)

= Ω(T 5/6−ε ),

for some λ2 > 0 and for any ε > 0. Sankaranarayanan and Srinivas [35] proved that

∆(x) = Ω±

(
x1/10 exp

(
c
√

log x
))

for some constant c > 0, while it has been conjectured that

∆(x) = Ω±(x1/6−δ),

for any δ > 0. We shall show that either

∫ 2T

T

∆
4(x)dx = Ω(T 5/3+δ) or ∆(x) = Ω±(x1/6−δ),

for any 0 < δ < 1/42. The conjectured upper bound (1) of ∆(x) gives

∫ 2T

T

∆
4(x)dx � T 5/3+δ .

This along with our result implies that

∆(x) = Ω±(x1/6−δ) for any 0 < δ < 1/42.
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Notations

We denote the set of natural numbers byN, the set of integers by Z, the set of real numbers

by R, the set of positive real numbers by R+, and the set of complex numbers by C.

The notaion i stands for
√
−1, the square root of −1 that belongs to the upper half plane

in C.

We denote the Lebesgue mesure on the real line R by µ.

For z = σ + it ∈ C, we denote σ by<(z) and t by =(z).

Let f (x) be a complex valued function and g(x) be a positive real valued function on R+.

As x → ∞, we write:

f (x) = O(g(x)), if limx→∞

∣∣∣∣ f (x)
g(x)

∣∣∣∣ < ∞;

f (x) = o(g(x)), if limx→∞

∣∣∣∣ f (x)
g(x)

∣∣∣∣ = 0;

f (x) � g(x), if f (x) = O(g(x));

f (x) � g(x), if g(x) = O( f (x));

f (x) ∼ g(x), if limx→∞
f (x)
g(x) = 1;

f (x) � g(x), if 0 < limx→∞

∣∣∣∣ f (x)
g(x)

∣∣∣∣ < ∞.
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Let f (x) be a complex valued function on R+, and let g(x) be a positive monotonic func-

tion on R+. As x → ∞, we write

f (x) = Ω(g(x)), if lim supx→∞
| f (x)|
g(x) > 0;

f (x) = Ω+(g(x)), if lim supx→∞
f (x)
g(x) > 0;

f (x) = Ω−(g(x)), if lim infx→∞
f (x)
g(x) < 0;

f (x) = Ω±(g(x)), if f (x) = Ω+(g(x)) and f (x) = Ω−(g(x)).
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[ I ] Introduction

In 1896, Jacques Hadamard and Charles Jean de la Vallée-Poussin proved that the number

of primes upto x is asymptotic to x/ log x. This result is well known as the Prime Number

Theorem (PNT). Below we state a version of this theorem (PNT*) in terms of the von-

Mangoldt function.

Definition I.1. For n ∈ N, the von-Mangoldt function Λ(n) is defined as

Λ(n) =


log p if n = pr , r ∈ N and p prime,

0 otherwise .

Theorem (PNT*). For a constant c1 > 0, we have

∗∑
n≤x

Λ(n) = x +O
(
x exp

(
−c1(log x)3/5(log log x)−1/5

))
,

where

∗∑
n≤x

Λ(n) =


∑

n≤x Λ(n) if x < N,∑
n≤x Λ(n) − Λ(x)/2 otherwise .

For a proof of the above theorem see [23, Theorem 12.2]. Proof of PNT* uses analytic
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continuation of the function

ζ (s) =

∞∑
n=1

1
ns
,

defined for <(s) > 1. The function ζ (s) is called the ‘Riemann zeta function’, named

after the famous German mathematician Bernhard Riemann. In 1859, Riemann showed

that this has a meromorphic continuation to the whole complex plane. He also showed

PNT by assuming that the meromorphic continuation of ζ (s) does not have zeros for

<(s) > 1
2 . This conjecture of Riemann is popularly known as the ‘Riemann Hypothesis’

(RH), and is an unsolved problem. Under RH, the upper bound for ∆(x) in PNT* can be

improved as in the following theorem:

Theorem (PNT**). Let ∆(x) be defined as in PNT*. Further, if we assume RH, then

∆(x) = O

(
x

1
2 log2 x

)
.

Proof. See [40]. �

In fact, we shall see in Theorem III.3 that PNT** is equivalent to RH. At this point, it is

natural to ask the following questions:

- Can we obtain a bound for ∆(x), better than the bound in PNT**?

- Is ∆(x) an increasing or a decreasing function?

- Can ∆(x) be both positive and negative depending on x?

- How large are positive and negative values of ∆(x)?

We shall make an attempt to answer these question by obtaining Ω and Ω± results. The
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following result was obtained by Hardy and Littlewood [16] in the year 1916:

∆(x) = Ω±

(
x

1
2 log log log x

)
. (I.1)

The above Ω± bound on ∆(x) gives some answer to our earlier questions. It says that we

can not have an upper bound for ∆(x) which is smaller than x
1
2 log log log x. It also

says that ∆(x) often takes both positive and negative values with magnitude of order

x
1
2 log log log x. This suggests, it is important to obtain Ω and Ω± bounds for various

other error terms. In this direction, Landau’s theorem [26] (see Theorem III.3 below)

gives an elegant tool to obtain Ω± results. Applying this theorem, we have

∆(x) = Ω±

(
x

1
2

)
.

The advantage of Landau’s method as compared to Hardy and Littlewood’s method is

in its applicability to a wide class of error terms of various summatory functions. In

Landau’s method, the existence of a complex pole with real part 1
2 serves as a criterion for

the existence of above limits. In this thesis, we shall investigate on a quantitative version

of Landau’s result by obtaining the Lebesgue measure of the sets where ∆(x) > λx1/2 and

∆(x) < −λx
1
2 , for some λ > 0. We shall show that the large Lebesgue measure of the set

where |∆(x)| > λx
1
2 , for some λ > 0 replaces the criterion of existence of a complex pole

in Landau’s method. This approach has the advantage of getting Ω± results even when

no such complex pole exists. This is evident from some applications which we discuss in

this thesis.

26



I.1 Framework

In this thesis, we consider a sequence of real numbers {an}∞n=1 having Dirichlet series

D(s) =

∞∑
n=1

an

ns

that converges in some half-plane. The Perron summation formula (see Theorem II.1)

uses analytic properties of D(s) to give

∗∑
n≤x

an =M(x) + ∆(x),

where M(x) is the main term, ∆(x) is the error term ( which would be specified later )

and
∑∗ is defined as

∗∑
n≤x

an =


∑

n≤x an if x < N∑
n≤x an −

1
2ax if x ∈ N.

We may define the Mellin transform of ∆(x) as follows (which is different from the

standard definition of the Mellin transform).

Definition I.2. For a complex variable s, the Mellin transform A(s) of ∆(x) is defined by

A(s) =

∫ ∞

1

∆(x)
xs+1 dx .

In general, A(s) is holomorphic in some half plane. We shall discuss a method to obtain

a meromorphic continuation of A(s) from the meromorphic continuation of D(s). In
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particular, we shall prove in Theorem II.3 that under some natural assumptions

A(s) =
1

2πi

∫
C

D(η)
η(s − η)

dη,

where the contour C is as in Definition II.1 and s lies to the right of C . Later, this result

will complement Theorem III.6 and Theorem III.8 in their applications.

In Chapter III, we revisit Landau’s method and obtain measure theoretic results. Also

we generalize a theorem of Kaczorowski and Szydło [24] and a theorem of Bhowmik,

Ramaré and Schlage-Puchta [6] in Theorem III.8.

Let

A(α,T ) := {x : x ∈ [T , 2T ], |∆(x)| > xα},

and let µ denotes the Lebesgue measure on R. In Chapter IV, we establish a connection

between µ(A(α,T )) and fluctuations of ∆(x). In Proposition IV.1, we see that

µ(A(α,T )) � T 1−δ implies ∆(x) = Ω(xα+δ/2).

However, Theorem IV.3 gives that

µ(A(α,T )) = Ω(T 1−δ) implies ∆(x) = Ω±(xα−δ),

provided A(s) does not have a real pole for <(s) ≥ α − δ. In particular, this says that

either we can improve on the Ω result or we can obtain a tight Ω± result for ∆(x).

In Chapter V we study a twisted divisor function defined as follows:

τ(n, θ) =
∑
d |n

diθ for θ , 0. (I.2)
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This function is used in [14, Chapter 4] to measure the clustering of divisors. We give a

brief note on some applications of τ(n, θ) in Section V.V.1. In [14, Theorem 33], Hall and

Tenenbaum proved that

∗∑
n≤x

|τ(n, θ)|2 = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x + ∆(x), (I.3)

where ωi(θ)s are explicit constants depending only on θ. They also showed that

∆(x) = Oθ(x1/2 log6 x). (I.4)

We give a proof of this formula in Theorem V.1. In Theorem V.2, we obtain an Ω bound

for the second moment of ∆(x) by adopting a technique due to Balasubramanian, Ra-

machandra and Subbarao [5]. Also we derive conditional Ω± bounds for ∆(x) in Theo-

rem V.4 using techniques from the previous chapters.

The main theorems of this thesis, except Theorem III.8, are from [28], which is a joint

work of the author with A. Mukhopadhyay.

I.2 Applications

We conclude the introduction by mentioning a few applications of the methods given in

this thesis.
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I.2.1 Twisted Divisors

Consider the twisted divisor function τ(n, θ) defined in the previous section. The Dirichlet

series of |τ(n, θ)|2 can be expressed in terms of the Riemann zeta function as:

D(s) =

∞∑
n=1

|τ(n, θ)|2

ns
=
ζ2(s)ζ (s + iθ)ζ (s − iθ)

ζ (2s)
for <(s) > 1. (I.5)

In Theorem V.1, we shall show

∗∑
n≤x

|τ(n, θ)|2 = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x + ∆(x),

where ωi(θ)s are explicit constants depending only on θ and

∆(x) = Oθ(x1/2 log6 x).

The Dirichlet series D(s) has poles at s = 1, 1 ± iθ and at the zeros of ζ (2s). Using a

complex pole on the line<(s) = 1/4, Landau’s method gives

∆(x) = Ω±(x1/4).

In order to apply the method of Bhowmik, Ramaré and Schlage-Puchta [6], we need

∫ 2T

T

∆
2(x)dx � T 2σ0+1+ε
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for any ε > 0 and σ0 = 1/4; such an estimate is not possible due to Corollary V.1.

Generalization of this method in Theorem III.6 can be applied to get

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1/2(logT )−12

)
for j = 1, 2,

and here A js’ for ∆(x) are defined as

A1 =
{
x : ∆(x) > (λ(θ) − ε )x1/4

}
and A2 =

{
x : ∆(x) < (−λ(θ) + ε )x1/4

}
,

for any ε > 0 and λ(θ) > 0 as in (V.3). But under Riemann Hypothesis, we show in (V.5)

that the above Ω bounds can be improved to

µ
(
A j

)
= Ω

(
T 3/4−ε

)
, for j = 1, 2 and for any ε > 0.

Fix a constant c2 > 0 and define

α(T ) =
3
8
−

c2

(logT )1/8 .

In Corollary V.2, we prove that

∆(T ) = Ω
(
Tα(T )

)
.

In Proposition V.3, we give anΩ estimate for the measure of the sets involved in the above

bound:

µ(A ∩ [T , 2T ]) = Ω
(
T 2α(T )

)
,
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where

A =
{
x : |∆(x)| ≥ Mxα(x)

}
for a positive constant M > 0. In Theorem V.4, we show that

either ∆(x) = Ω
(
xα(x)+δ/2

)
or ∆(x) = Ω±

(
x3/8−δ′

)
,

for 0 < δ < δ′ < 1/8. We may conjecture that

∆(x) = O(x3/8+ε ) for any ε > 0.

Theorem V.4 and this conjecture imply that

∆(x) = Ω±(x3/8−ε ) for any ε > 0.

I.2.2 Square Free Divisors

Let ∆(x) be the error term in the asymptotic formula for partial sums of the square free

divisors:

∆(x) =

∗∑
n≤x

2ω(n) −
x log x

ζ (2)
+

(
−

2ζ ′(2)
ζ2(2)

+
2γ − 1
ζ (2)

)
x ,

where ω(n) denotes the number of distinct prime divisors of n. It is known that ∆(x) �

x1/2 (see [12]). Let λ1 > 0 and the sets A j for j = 1, 2 be defined as in Section III.4.1:

A1 =
{
x : ∆(x) > (λ1 − ε )x1/4

}
, and A2 =

{
x : ∆(x) < (−λ1 + ε )x1/4

}
.
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In (III.14), we show that

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1/2

)
for j = 1, 2.

But under Riemann Hypothesis, we prove the following Ω bounds in (III.15):

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1−ε

)
, for j = 1, 2 and for any ε > 0.

I.2.3 Divisors

Let d(n) denotes the number of divisors of n:

d(n) =
∑
d |n

1.

Dirichlet [18, Theorem 320] showed that

∗∑
n≤x

d(n) = x log x + (2γ − 1)x + ∆(x),

where γ is the Euler constant and

∆(x) = O(
√
x).

Latest result on ∆(x) is due to Huxley [20], which is

∆(x) = O(x131/416).
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On the other hand, Hardy [15] showed that

∆(x) = Ω+((x log x)1/4 log log x),

= Ω−(x1/4).

There are many improvements on Hardy’s result due to K. Corrádi and I. Kátai [7], J.

L. Hafner [13] and K. Sounderarajan [36]. As a consequence of Theorem IV.3, we shall

show in Chapter IV that for all sufficiently large T and for a constant c3 > 0, there exist

x1, x2 ∈ [T , 2T ] such that

∆(x1) > c3x1 and ∆(x2) < −c3x2.

In particular, we get

∆(x) = Ω±(x1/4).

I.2.4 Error Term in the Prime Number Theorem

Let ∆(x) be the error term in the Prime Number Theorem:

∆(x) =

∗∑
n≤x

Λ(n) − x .

We know from Landau’s theorem [26] that

∆(x) = Ω±

(
x1/2

)
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and from the theorem of Hardy and Littlewood [16] that

∆(x) = Ω±

(
x1/2 log log x

)
.

We define

A1 =
{
x : ∆(x) > (λ2 − ε )x1/2

}
and A2 =

{
x : ∆(x) < (−λ2 + ε )x1/2

}
,

where λ2 > 0 be as in Section III.4.2. If we assume Riemann Hypothesis, then the

theorem of Bhowmik, Ramaré and Schlage-Puchta ( see Theorem III.5 below ) along

with PNT** gives

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T

log4 T

)
for j = 1, 2.

However, as an application of Corollary III.1 of Theorem III.6, we prove the following

weaker bound unconditionally:

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1−ε

)
, for j = 1, 2 and for any ε > 0.

I.2.5 Non-isomorphic Abelian Groups

Let an be the number of non-isomorphic abelian groups of order n, and the corresponding

Dirichlet series is given by

∞∑
n=1

a(n)
ns

=

∞∏
k=1

ζ (ks) for<(s) > 1.
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Let ∆(x) be defined as

∆(x) =

∗∑
n≤x

an −

6∑
k=1

(∏
j,k

ζ ( j/k)
)
x1/k .

It is an open problem to show that

∆(x) � x1/6+ε for any ε > 0. (I.6)

The best result on upper bound of ∆(x) is due to O. Robert and P. Sargos [33], which gives

∆(x) � x1/4+ε for any ε > 0.

Balasubramanian and Ramachandra [4] proved that

∫ 2T

T

∆
2(x)dx = Ω(T 4/3 logT ).

Following the proof of Proposition V.3, we get

µ
(
{T ≤ x ≤ 2T : |∆(x)| ≥ λ3x

1/6(log x)1/2}
)

= Ω(T 5/6−ε ),

for some λ2 > 0 and for any ε > 0. Sankaranarayanan and Srinivas [35] proved that

∆(x) = Ω±

(
x1/10 exp

(
c
√

log x
))

for some constant c > 0. It has been conjectured that

∆(x) = Ω±(x1/6−δ) for any δ > 0.
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In Theorem IV.1, we prove that either

∫ 2T

T

∆
4(x)dx = Ω(T 5/3+δ) or ∆(x) = Ω±(x1/6−δ),

for any 0 < δ < 1/42. The conjectured upper bound (I.6) of ∆(x) gives

∫ 2T

T

∆
4(x)dx � T 5/3+δ .

This along with Theorem IV.1 implies that

∆(x) = Ω±(x1/6−δ) for any 0 < δ < 1/42.
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[ II ] AnalyticContinuationOfTheMellinTrans-

form

In this chapter, we express the error term ∆(x) as a contour integral using the Perron’s

formula. This allows us to obtain a meromorphic continuation of A(s) (see Definition I.2)

in terms of the meromorphic continuation of D(s), which is the main theorem of this

chapter ( Theorem II.3 ). This theorem will be used in the next chapter to obtain Ω±

results for ∆(x).

II.1 Perron’s Formula

Recall that we have a sequence of real numbers {an}∞n=1, with its Dirichlet series D(s).

The Perron summation formula approximates the partial sums of an by expressing it as a

contour integral involving D(s).

Theorem II.1 (Perron’s Formula, Theorem II.2.1 [37]). Let D(s) be absolutely convergent

for<(s) > σc , and let κ > max(0, σc). Then for x ≥ 1, we have

∗∑
n≤x

an =
1

2πi

∫ κ+i∞

κ−i∞

D(s)xs

s
ds.

But in practice, we use the following effective version of the Perron’s formula.
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Theorem II.2 (Effective Perron’s Formula, Theorem II.2.1 [37]). Let {an}∞n=1, D(s) and

κ be defined as in Theorem II.1. Then for T ≥ 1 and x ≥ 1, we have

∗∑
n≤x

an =
1

2πi

∫ κ+iT

κ−iT

D(s)xs

s
ds +O

xκ ∞∑
n=1

|an |

nκ(1 + T | log(x/n)|)

 .
The above formulas are used by shifting the line of integration, and thus by collecting the

residues of D(s)xs/s at its poles lying to the right of the shifted contour. The residues

contribute to the main term M(x), leaving an expression for ∆(x) as a contour integral.

So we write
∗∑

n≤x

an =M(x) + ∆(x),

whereM(x) is the main term and ∆(x) is the error term. We make the following natural

assumptions on D(s),M(x) and ∆(x).

Assumptions II.1. Suppose there exist real numbers T0, σ1, σ2 satisfying 0 < σ1 < σ2,

and T0 > 0 such that

(i) D(s) is absolutely convergent for<(s) > σ2.

(ii) D(s) can be meromorphically continued to the half plane<(s) > σ1 and is analytic

on the following line segments

{σ + it : σ1 ≤ σ ≤ σ2, t = ±T0}

{σ + it : σ = σ1, −T0 ≤ t ≤ T0}.

(iii) For P define as

P = {σ + it : σ + it is a pole of D(s), σ > σ1, |t | < T0},
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the main termM(x) is sum of residues of D(s)x s
s

at poles in P:

M(x) =
∑
ρ∈P

Ress=ρ

(
D(s)xs

s

)
.

We may note that P is a finite set.

The above assumptions also imply:

Note II.1. We may also observe:

(i) For any ε > 0, we have

|an |, |M(x)|, |∆(x)|,

∣∣∣∣∣∣∣∑
n≤x

an

∣∣∣∣∣∣∣ � xσ2+ε .

(ii) The main termM(x) is a polynomial in x, and log x:

M(x) =
∑
j∈J

ν1, jx
ν2, j (log x)ν3, j ,

where ν1, j are complex numbers, ν2, j are real numbers with σ1 < ν2, j ≤ σ2, ν3, j

are positive integers, and J is a finite index set.

To express ∆(x) in terms of a contour integration, we define the following contour.

Definition II.1. Let σ1, σ2 be as defined in Assumptions II.1. Choose a positive real

number σ3 such that σ3 > σ2. We define the contour C , as in Figure II.1, as the union of

the following five line segments:

C = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5,
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T0

0

−T0

σ1 σ2 σ3

C

Figure II.1: Contour C

where

L1 ={σ3 + iv : T0 ≤ v < ∞}, L2 = {u + iT0 : σ1 ≤ u ≤ σ3},

L3 ={σ1 + iv : −T0 ≤ v ≤ T0}, L4 = {u − iT0 : σ1 ≤ u ≤ σ3},

L5 ={σ3 + iv : −∞ < v ≤ −T0}.

Now, we write ∆(x) as an integration over C in the following lemma.

Lemma II.1. Under Assumptions II.1, the error term ∆(x) can be expressed as:

∆(x) =
1

2πi

∫
C

D(η)xη

η
dη.

Proof. Follows from Theorem II.1. �
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II.2 Analytic continuation of A(s)

Now, we shall discuss a method to obtain a meromorphic continuation of A(s), which will

serve as an important tool to obtain Ω± results for ∆(x) in the following chapter.

Below we present the main theorem of this chapter.

Theorem II.3. Under Assumptions-II.1, we have

A(s) =
1

2πi

∫
C

D(η)
η(s − η)

dη,

when s lies on the right-hand side of the contour C (Figure II.1).

II.2.1 Preparatory Lemmas

We shall need the following preparatory lemmas to prove the above theorem.

From Lemma II.1, we have:

A(s) =
1

2πi

∫ ∞

1

∫
C

D(η)xη

η
dη

dx
xs+1 . (II.1)

To prove Theorem II.3, we need to justify the interchange of the integrals of η and x in

(II.1).

Definition II.2. Define the following complex valued function B(s):

B(s) :=
1

2πi

∫
C

D(η)
η

∫ ∞

1

dx
xs−η+1 dη

=
1

2πi

∫
C

D(η)dη
(s − η)η

for<(s) > <(η).
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The integral defining B(s) being absolutely convergent, we have B(s) is well defined

and analytic.

Definition II.3. For a positive integer N , define the contour C (N ) as:

C (N ) = {η ∈ C : |=(η)| ≤ N }.

Definition II.4. Integrating the integrals of η and x, define BN (s) as:

BN (s) =
1

2πi

∫
C (N )

D(η)dη
η

∫ ∞

1

dx
xs−η+1

=
1

2πi

∫
C (N )

D(η)dη
(s − η)η

for<(s) > <(η).

With above definitions we prove:

Lemma II.2. The functions B and BN satisfy the following identities:

B(s) = lim
N→∞

BN (s) (II.2)

= lim
N→∞

1
2πi

∫ ∞

1

∫
C (N )

D(η)xη

η
dη

dx
xs+1 . (II.3)

Proof. Assume N > T0. To show (II.2), note:

|B(s) − BN (s)| ≤

∣∣∣∣∣∣ 1
2πi

∫
C −C (N )

D(η)dη
(s − η)η

∣∣∣∣∣∣
�

∣∣∣∣∣∣
∫ σ3+i∞

σ3+iN

D(η)dη
(s − η)η

+

∫ σ3−iN

σ3−i∞

D(η)dη
(s − η)η

∣∣∣∣∣∣
�

∫ ∞

N

dv
v2 �

1
N
. ( substituting η = σ3 + iv)

This completes proof of (II.2).
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We shall prove (II.3) using a theorem of Fubini and Tonelli [8, Theorem B.3.1, (b)].

To show that the integrals commute, we need to show that one of the iterated integrals in

(II.3) converges absolutely. We note:

∫
C (N )

∫ ∞

1

∣∣∣∣∣∣ D(η)
ηxs−η+1

∣∣∣∣∣∣ dx |dη |
�

∫
C (N )

∣∣∣∣∣ D(η)
η(<(s) − <(η))

∣∣∣∣∣ |dη | < ∞.
This implies (II.3). �

Let

B′N (s) :=
1

2πi

∫ ∞

1

∫
C (N )

D(η)xη

η
dη

dx
xs+1 . (II.4)

We re-write (II.3) of Lemma II.2 as:

lim
N→∞

B′N (s) = B(s).

Observe that A(s) = B(s), if

lim
N→∞

∫ ∞

1

∫
C −C (N )

D(η)xη

η
dη

dx
xs+1 = 0;

can be shown by interchanging the integral of x with the limit. For this, we need the

uniform convergence of the integrand, which we do not have. It is easy to see from

Theorem II.2 that the problem arises when x is an integer. To handle this problem, we

shall divide the integral in two parts, with one part having neighborhoods of integers.

Definition II.5. For δ = 1√
N

( where N ≥ 2 ), we construct the following set as a neigh-

44



borhood of integers:

S(δ) := [1, 1 + δ] ∪ (∪m≥2[m − δ,m + δ]).

Write

A(s) − B′N (s) =
1

2πi
(J1,N (s) + J2,N (s) − J3,N (s)), (II.5)

where

J1,N (s) =

∫
S(δ)c

∫
C −CN

D(η)xη

η
dη

dx
xs+1 ,

J2,N (s) =

∫
S(δ)

∫ σ3+i∞

σ3−i∞

D(η)xη

η
dη

dx
xs+1 ,

J3,N (s) =

∫
S(δ)

∫ σ3+iN

σ3−iN

D(η)xη

η
dη

dx
xs+1 .

In the next three lemmas, we shall show that each of Ji ,N (s)→ 0 as N → ∞.

Lemma II.3. For<(s) = σ > σ3 + 1, we have the limit

lim
N→∞

J1,N (s) = 0.

Proof. Using Theorem II.2 with x ∈ S(δ)c , we have

∣∣∣∣∣∣
∫

C −CN

D(η)xη

η
dη

∣∣∣∣∣∣ � xσ3

∞∑
n=1

|an |

nσ3(1 + N | log(x/n)|)

�
xσ3

N

∞∑
n=1

|an |

nσ3
+

1
N

∑
x/2≤n≤2x

x |an |

|x − n |

(
x

n

)σ3
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�
xσ3

N
+
xσ3+1+ε

δN
�

xσ3+1+ε

√
N

( as δ = N−
1
2 ).

From the above calculation, we see that

|J1,N | �
1
√
N

∫ ∞

1
xσ3−σ+εdx �

1
√
N

for σ = <(s) > σ3 + 1 + ε . This proves our required result. �

Lemma II.4. For<(s) = σ > σ3,

lim
N→∞

J2,N (s) = 0.

Proof. Recall that

∗∑
n≤x

an =


∑

n<x an + ax/2 if x ∈ N,∑
n≤x an if x < N.

By Note II.1,
∗∑

n≤x

an � xσ3 .

Using this bound, we calculate an upper bound for J2,N as follows:

∣∣∣∣∣∣
∫
S(δ)

∫ σ3+i∞

σ3−i∞

D(η)xη

η
dη

dx
xs+1

∣∣∣∣∣∣ ≤
∫
S(δ)

∣∣∣∑∗n≤x an∣∣∣
xσ+1 dx

�

∫
S(δ)

xσ3−σ−1dx �
∫ 1+δ

1
xσ3−σ−1 +

∞∑
m=2

∫ m+δ

m−δ
xσ3−σ−1dx .

This gives

|J2,N (s)| � δ +
∑
m≥2

(
1

(m − δ)σ−σ3
−

1
(m + δ)σ−σ3

)
.

Using the mean value theorem, for all m ≥ 2 there exists a real number m ∈ [m−δ,m+δ]
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such that

|J2,N (s)| � δ +
∑
m≥2

δ

mσ−σ3+1 � δ =
1
√
N

by choosing σ > σ3.

This implies that J2,N → 0 as N → ∞. �

Lemma II.5. For σ > σ3, we have

lim
N→∞

J3,N (s) = 0.

Proof. Consider

J3,N (s) =

∫
S(δ)

∫ σ3+iN

σ3−iN

D(η)xη

η
dη

dx
xs+1 .

This double integral is absolutely convergent for<(s) > σ3. Using the Theorem of Fubini

and Tonelli [8, Theorem B.3.1, (b)], we can interchange the integrals:

J3,N (s) =

∫ σ3+iN

σ3−iN

D(η)
η

∫
S(δ)

xη−s−1dx dη

=

∫ σ3+iN

σ3−iN

D(η)
η


∫ 1+δ

1

xη

xs+1 dx +
∑
m≥2

∫ m+δ

m−δ

xη

xs+1 dx

 dη.

For any θ1, θ2 such that 0 < θ1 < θ2 < ∞, we have

∫ θ2

θ1

xη−s−1dx =
1

s − η

 1
θ
s−η
1

−
1

θ
s−η
2

 =
θ2 − θ1

θ
s−η+1 ,

47



for some θ ∈ [θ1, θ2]. Applying the above formula to J3,N (s), we get

J3,N (s) =

∫ σ3+iN

σ3−iN

D(η)
η

∑
m≥1

2δ

ms−η+1 dη = 2δ
∑
m≥1

∫ σ3+iN

σ3−iN

D(η)

ms−η+1η
dη,

where 1/2 ∈ [1, 1 +δ] and m ∈ [m−δ,m+δ] for all integers m ≥ 2. In the above calcula-

tion, we can interchange the series and the integral as the series is absolutely convergent.

So we have

J3,N (s) � δ
∑
m≥1

∫ N

−N

1

(1 + |v |)mσ−σ3+1 dv ( substituting η = σ3 + iv )

� δ log N
∑
m≥1

1

mσ−σ3+1 �
log N
√
N

.

Here we used the fact that for σ > σ3, the series

∑
m≥1

1

ms−η+1

is absolutely convergent. This proves our required result. �

II.2.2 Proof of Theorem II.3

Proof. From equation (II.5) and Lemma II.3, II.4 and II.5, we get

A(s) = lim
N→∞

B′N (s)

for<(s) > σ3 + 1, and where B′
N

(s) is defined by (II.4). From Lemma II.2, we have

B(s) = lim
N→∞

B′N (s).
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This gives A(s) and B(s) are equal for<(s) > σ3 + 1. By analytic continuation, A(s) and

B(s) are equal for any s that lies right to C . �

In this chapter, we shall use the meromorphic continuation of A(s) derived in Theo-

rem II.3 to obtain mesure theoretic Ω± results for ∆(x).

II.3 Alternative Approches

Theorem II.3 gives a way for meromorphic continuation of A(s) by formulating it as a

contour integral. This theorem has its significance in terms of elegance and generality.

However, there are alternative and easier ways in many cases. Below we give an example.

Note that
∞∑
n=1

an

ns
= −

∫ ∞

1

(∑
n≤x

an
)
dx−s for<(s) > σ2.

This gives
D(s)
s

=

∫ ∞

1

(∑
n≤x

an
)
x−s−1dx for<(s) > σ2.

So we can express A(s) as

A(s) =
D(s)
s
−

∫ ∞

1
M(x)x−s−1dx for<(s) > σ2. (II.6)

The above formula reduces the problem of meromorphically continuing A(s) to that

of ∫ ∞

1
M(x)x−s−1dx .

To demonstrate this method, we consider the case when D(η) has a pole at η = 1 and

residue at this pole gives the main termM(x), i.e P = {1}. The following meromorphic
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functions may serve as examples of D(η) in this situation:

ζ (s)
ζ (2s)

, ζ2(s),
ζ2(s)
ζ (2s)

, −
ζ ′(s)
ζ (s)

, . . . .

For a small positive real number r , we can writeM(x) as

M(x) =
1

2πi

∫
|η−1|=r

D(η)xη

η
dη.

Thus

∫ ∞

1

M(x)
xs+1 dx =

∫ ∞

1

1
2πi

∫
|η−1|=r

D(η)xη

η
dη

dx
xs+1

=
1

2πi

∫
|η−1|=r

D(η)
η

(∫ ∞

1

dx
xs−η+1

)
dη

( using [8, Theorem B.3.1, (b)] )

=
1

2πi

∫
|η−1|=r

D(η)
η(s − η)

dη. (II.7)

Let the Laurent series expansion of D(η) at η = 1 be

D(η)
η

=
∑
n≤N

bn

(η − 1)n
+ H(η),

where H(η) is holomorphic for<(η) > σ1. Plugging in this expression for D(η) in (II.7),

we get ∫ ∞

1

M(x)
xs+1 dx =

∑
n≤N

bn
1

2πi

∫
|η−1|=r

dη
(η − 1)n(s − η)

. (II.8)

Let<(s) ≥ 1 + 2r , then
|η − 1|
|s − 1|

≤
1
2

for |η − 1| = r .
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This gives
1

s − η
=

∞∑
n=0

(η − 1)n

(s − 1)n+1

is an absolutely convergent series. Using the above expansion of (s − η)−1 in (II.8), we

have

∫ ∞

1

M(x)
xs+1 dx =

∑
n≤N

bn
1

2πi

∫
|η−1|=r

 ∞∑
m=0

(η − 1)m

(s − 1)m+1

 dη
(η − 1)n

=
∑
n≤N

bn

(s − 1)n
( by [34, Theorem 6.1])

=
D(s)
s
− H(s).

Thus we got

A(s) = H(s) for <(s) ≥ 1 + 2r .

But the right hand side is holomorphic for <(s) > σ1 hence the formula gives analytic

continuation of A(s) in the half plane<(s) > σ1.

Similar calculations can be done when the main termM(x) is more complicated.
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[ III ] Landau’s Oscillation Theorem

In this chapter, we revisit a result due to Landau and obtain Ω± results for ∆(x) using

certain singularities of D(s). Also we shall measure the fluctuations of ∆(x) in terms of

Ω bounds, which generalizes a result of Kaczorowski and Szydło [24], and a result of

Bhowmik, Ramaré and Schlage-Puchta [6].

III.1 Landau’s Criterion for Sign Change

We begin with a result on real valued functions that do not change sign. This appears in a

paper of Landau [26], attributed to Phragmén and stated without a proof. Here we present

a proof of this result following [37, II.1.3, Theorem 6].

Theorem III.1 (Phragmén-Landau). Let f (x) be a real valued piecewise continuous func-

tion defined for x ≥ 1. Let F(s) be its Mellin transform:

F(s) =

∫ ∞

1

f (x)
xs+1 dx ,

converging absolutely in some complex right half plane. Also assume that f (x) does not

change sign for x ≥ x0, for some x0 ≥ 1. If F(s) diverges for some real s, then there exist

a real number σ0 satisfying the following properties:
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(1) the integral defining F(s) is divergent for s < σ0 and convergent for s > σ0,

(2) s = σ0 is a singularity of F(s),

(3) and F(s) is analytic for<(s) > σ0.

Proof. Let σ0 be:

σ0 = inf{σ ∈ R : F(σ) converges}.

We shall show that σ0 satisfies the properties given in the theorem.

As f (x) does not change sign for x ≥ x0, convergence of F(σ) implies the absolute

convergence of F(s) for<(s) ≥ σ. This proves (1) and (3). To prove (2), we proceed by

method of contradiction. Assume that s = σ0 is not a singularity of F(s). Then there exist

σ′0 > σ0 and r > σ′0 − σ0 such that F(s) has the following Taylor series expansion:

F(s) =

∞∑
k=0

1
k!
F(k)(σ′0)(s − σ′0)k ,

for all s satisfying |s − σ′0 | < r .

Claim (1). For σ′0 as above, we have

F(s) =

∞∑
k=0

1
k!

(s − σ′0)k
∫ ∞

1
(− log x)k

f (x)

xσ
′
0+1

dx .

Proof of Claim (1). By Cauchy’s integral formula, we can write

F(k)(σ′0) =
k!

2πi

∫
C

F(z)
(z − σ′0)k+1 dz ,
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where C is a circle with a small enough radius having its center at σ′0. So we have

F(s) =

∞∑
k=0

(s − σ′0)k

2πi

∫
C

1
(z − σ′0)k+1

∫ ∞

1

f (x)
xz+1 dx dz.

Suppose we can exchange the integrals of x and z, then

F(s) =

∞∑
k=0

(s − σ′0)k

k!

∫ ∞

1

f (x)
x

k!
2πi

∫
C

x−zdz
(z − σ′0)k+1 dx

=

∞∑
k=0

1
k!

(s − σ′0)k
∫ ∞

1
(− log x)k

f (x)

xσ
′
0+1

dx ,

which proves Claim 1 conditionally. The only thing remains is to show that we can

exchange integrals of x and z. If we choose C with a small enough radius, then

∫ ∞

1

f (x)
x<(z)+1

dx

is absolutely convergent and so is the double integral

∫
C

1
(z − σ′0)k+1

∫ ∞

1

f (x)
xz+1 dx dz.

By the theorem of Fubinni and Tonelli [8, Theorem B.3.1, (b)], we can exchange these

two iterated integrals. This completes the proof of Claim 1.

Claim (2). For |s − σ′0 | < r , the integral

F(s) =

∫ ∞

1

f (x)
xs+1 dx

converges.
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Proof of Claim (2). We shall simplify F(s) using Claim 1. We write

F(s) =

∞∑
k=0

(σ′0 − s)k

k!

∫ ∞

1

(log x)k f (x)

xσ
′
0+1

dx .

In the above identity, we can exchange the series and the integral as the series is absolutely

convergent. So we have

∫ ∞

1

f (x)

xσ
′
0+1

 ∞∑
k=0

(σ′0 − s)k

k!
(log x)k

 dx

=

∫ ∞

1

f (x)

xσ
′
0+1

exp((σ′0 − s) log x)dx =

∫ ∞

1

f (x)
xs+1 dx .

This completes the proof of Claim 2.

But Claim 2 implies that we have a real number smaller than σ0, say σ′′0 , such that

the integral of F(σ′′0 ) converges. This is a contradiction to the definition of σ0. So σ0 is a

singularity of F(s), which proves (2). �

The following theorem appears in [1, Section 2] without a proof and is attributed to

Landau. We shall prove this theorem using Theorem III.1.

Theorem III.2 (Phragmén-Landau-Anderson-Stark ). Let f (x) be a real valued piecewise

continuous function defined on [1,∞), and does not change sign when x > x0 for some

1 < x0 < ∞. Define

F(s) :=
∫ ∞

1

f (x)
xs+1 dx ,

and assume that the above integral is absolutely convergent in some half plane. Further,

assume that we have an analytic continuation of F(s) in a region containing a part of the

real line

l(σ0,∞) := {σ + i0 : σ > σ0}.
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Then the integral representing F(s) is absolutely convergent for <(s) > σ0, and hence

F(s) is an analytic function in this region.

Proof. By Theorem III.1, if ∫ ∞

1

f (x)
xσ
′+1 dx

diverges for some σ′ > σ0, then there exist a real number σ′0 ≥ σ
′ > σ0 such that F is

not analytic at σ′0. But this contradicts our assumption that F is analytic on l(σ0,∞). So

the integral ∫ ∞

1

f (x)
xσ
′+1 dx converges ∀ σ′ > σ0,

and since f does not change sign for x ≥ x0, F(s) converges absolutely for <(s) > σ0.

This also gives that F(s) is analytic for<(s) > σ0. �

The above two theorems give some criteria when a function does not change sign. In

the next section we will use these results to show the sign changes of ∆(x).

III.2 Ω± Results

Consider the Mellin transform A(s) of ∆(x). We need the following assumptions to apply

Theorem III.2.

Assumptions III.1. Suppose there exists a real number σ0, 0 < σ0 < σ1, such that A(s)

has the following properties.

(i) There exists t0 , 0 such that

λ := lim sup
σ↘σ0

(σ − σ0)|A(σ + it0)| > 0.
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(ii) We have

ls := lim sup
σ↘σ0

(σ − σ0)A(σ) < ∞,

li := lim inf
σ↘σ0

(σ − σ0)A(σ) > −∞.

(iii) The limits li , ls and λ satisfy

li + λ > 0 and ls − λ < 0.

(iv) We can analytically continue A(s) in a region containing the real line l(σ0,∞).

Remark III.1. Assumptions III.1 (i) implies that σ0 + it0 is a singularity of A(s).

Now we construct the following sets for further use.

Definition III.1. With ls , li and λ as in Assumptions III.1, and for an ε such that 0 < ε <

min(li + λ, λ − ls), define

A1 := {x : x ∈ [1,∞),∆(x) > (li + λ − ε )xσ0 }

and A2 := {x : x ∈ [1,∞),∆(x) < (ls − λ + ε )xσ0 }.

Under Assumptions III.1 and using methods from [24], we can derive the following

measure theoretic theorem.

Theorem III.3. Let the conditions in Assumptions III.1 hold. Then for any real number

M > 1, we have

µ(A1 ∩ [M ,∞]) > 0,
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and µ(A2 ∩ [M ,∞]) > 0.

This implies

∆(x) = Ω±(xσ0).

Proof. We prove the theorem only for A1 as the other part is similar.

Now define the following integrals whenever they are absolutely convergent:

g(x) := ∆(x) − (li + λ − ε )xσ0 , G(s) :=
∫ ∞

1

g(x)
xs+1 dx;

g+(x) := max(g(x), 0), G+(s) :=
∫ ∞

1

g+(x)
xs+1 dx;

g−(x) := max(−g(x), 0), G−(s) :=
∫ ∞

1

g−(x)
xs+1 dx .

With the above notations, we have

g(x) = g+(x) − g−(x)

and G(s) = G+(s) − G−(s).

Note that

G(s) = A(s) −
∫ ∞

1
(li + λ − ε )xσ0−s−1dx

= A(s) +
li + λ − ε

σ0 − s
for<(s) > σ0,

where ε is fixed as in definition III.1. So G(s) is analytic wherever A(s) is, except possibly
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for a pole at σ0. This gives

lim sup
σ↘σ0

(σ − σ0)|G(σ + it0)| = lim sup
σ↘σ0

(σ − σ0)|A(σ + it0)| = λ. (III.1)

We shall use the above limit to prove our theorem. We proceed by method of contradic-

tion. Assume that there exists an M > 1 such that

µ(A1 ∩ [M ,∞)) = 0.

This implies

G+(s) =

∫ ∞

1

g+(x)
xs+1 dx =

∫ M

1

g+(x)
xs+1 dx

is bounded for any s, and so is an entire function. By Assumptions III.1, A(s) andG(s) can

be analytically continued on the line l(σ0,∞). AsG(s) andG+(s) are analytic on l(σ0,∞),

G−(s) is also analytic on l(σ0,∞). The integral for G−(s) is absolutely convergent for

<(s) > σ3 + 1, and g−(x) is a piecewise continuous function. This suggests that we can

apply Theorem III.2 to G−(s), and conclude that

G−(s) =

∫ ∞

1

g−(x)
xs+1 dx

is absolutely convergent for<(s) > σ0.

From the above discussion, we summarize that the Mellin transforms of g, g+ and g−

converge absolutely for <(s) > σ0. As a consequence, we see that G(σ),G+(σ) and

G−(σ) are finite real numbers for σ > σ0. We note that for any t ∈ R

|G+(σ + it)| ≤
∫ M

1

g+(x)
xσ+1 dx = O(1).
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Thus

(σ − σ0)|G+(σ + it)| −→ 0 as σ −→ σ0 + .

Observe that

(σ − σ0)|G(σ + it0)| ≤ (σ − σ0)G+(σ) + (σ − σ0)G−(σ)

≤ 2(σ − σ0)G+(σ) − (σ − σ0)G(σ)

≤ 2(σ − σ0)G+(σ) − (σ − σ0)A(σ) + li + λ − ε .

So we have

lim sup
σ↘σ0

(σ − σ0)|G(σ + it0)| ≤ − lim inf
σ↘σ0

(σ − σ0)A(σ) + li + λ − ε = λ − ε .

This contradicts (III.1). Thus µ(A1 ∩ [M ,∞)) > 0 for any M > 1, which completes the

proof. �

III.3 Measure Theoretic Ω± Results

Now we know that A1 and A2 are unbounded. But we do not know how the size of

these sets grow. An answer to this question was given by Kaczorowski and Szydło in [24,

Theorem 4].

Theorem III.4 (Kaczorowski and Szydło [24]). Let the conditions in Assumptions III.1

hold. Also assume that for a non-decreasing positive continuous function h satisfying

h(x) � xε ,
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we have ∫ 2T

T

∆
2(x)dx � T 2σ0+1h(T ). (III.2)

Then as T → ∞,

µ
(
A j ∩ [1,T ]

)
= Ω

( T

h(T )

)
for j = 1, 2.

In [24], Kaczorowski and Szydło applied this theorem to the error term appearing in

the asymptotic formula for the fourth power moment of Riemann zeta function. We write

this error term as E2(x):

∫ x

0

∣∣∣∣∣∣ζ
(
1
2

+ it

)∣∣∣∣∣∣4 dt = xP(log x) + E2(x),

where P is a polynomial of degree 4. Motohashi [31] proved that

E2(x) � x2/3+ε ,

and further in [32] he showed that

E2(x) = Ω±(
√
x).

Theorem of Kaczorowski and Szydło ( Theorem III.5 ) gives that there exist λ0, ν > 0

such that

µ{1 ≤ x ≤ T : E2(x) > λ0
√
x} = Ω(T/(logT )ν)

and

µ{1 ≤ x ≤ T : E2(x) < −λ0
√
x} = Ω(T/(logT )ν)

as T → ∞. These results not only prove Ω±-results, but also give quantitative estimates
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for the occurrences of such fluctuations. The above theorem of Kaczorowski and Szydło

has been generalized by Bhowmik, Ramaré and Schlage-Puchta by localizing the fluctu-

ations of ∆(x) to [T , 2T ]. Proof of this theorem follows from [6, Theorem 2] (also see

Theorem III.7 below).

Theorem III.5 (Bhowmik, Ramaré and Schlage-Puchta [6]). Let the assumptions in The-

orem III.4 hold. Then as T → ∞,

µ
(
A j ∩ [T , 2T ]

)
= Ω

( T

h(T )

)
for j = 1, 2.

An application of the above theorem to Goldbach’s problem is given in [6]. Let

∑
n≤x

Gk(n) =
xk

k!
− k

∑
ρ

xk−1+ρ

ρ(1 + ρ) · · · (k − 1 + ρ)
+ ∆k(x),

where the Goldbach numbers Gk(n) are defined as

Gk(n) =
∑

n1 ,...nk
n1+···+nk=n

Λ(n1) · · ·Λ(nk),

and ρ runs over nontrivial zeros of the Riemann zeta function ζ (s). Bhowmik, Ramaré

and Schlage-Puchta proved that under Riemann Hypothesis

µ{T ≤ x ≤ 2T : ∆k(x) > (ck + c′k)xk−1} = Ω(T/(logT )6)

and µ{T ≤ x ≤ 2T : ∆k(x) < (ck − c′k)xk−1} = Ω(T/(logT )6) as T → ∞,

where k ≥ 2 and ck , c′k are well defined real number depending on k with c′
k
> 0.

Note that Theorem III.4 implies Theorem III.5, but both the theorems are applicable
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to the same set of examples. The main obstacle in applicability of these theorems is the

condition (III.2). For example, if ∆(x) is the error term in approximating
∑

n≤x |τ(n, θ)|2,

we can not apply Theorem III.4 and Theorem III.5. However, the following theorem due

to the author and A. Mukhopadhyay [28, Theorem 3] overcomes this obstacle by replacing

the condition (III.2).

Theorem III.6. Let the conditions in Assumptions III.1 hold. Assume that there is an

analytic continuation of A(s) in a region containing the real line l(σ0,∞). Let h1 and h2

be two positive monotonic functions with polynomial growth 1 such that

∫
[T ,2T ]∩A j

∆2(x)
x2σ0+1 dx � h j(T ) for j = 1, 2. (III.3)

Then as T −→ ∞,

µ(A j ∩ [T , 2T ]) = Ω
( T

h j(T )

)
for j = 1, 2. (III.4)

Below we state an integral version of Theorem III.5 as in [6].

Theorem III.7 (Bhowmik, Ramaré and Schlage-Puchta [6]). Suppose the conditions in

Assumptions III.1 hold, and let h(x) be as in Theorem III.5. Then as δ → 0+,

∫ ∞

1

µ(A j ∩ [x , 2x])h(4x)
x2+δ

dx = Ω
(1
δ

)
, for j = 1, 2.

The following lemma shows that Theorem III.7 implies Theorem III.5 and Theo-

rem III.8 (below) implies Theorem III.6.

1h±1
1 (x), h±1

2 (x) � xk for some k ∈ N.
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Lemma III.1. Let f be a real valued function defined on R≥1 such that f is bounded and

measurable on [1, x] for all x > 1, and f (x)→ 0 as x → ∞. Then as δ → 0, we have

∫ ∞

1

f (x)
xδ+1 dx = o

(
1
δ

)
.

Proof. As f (x)→ 0 when x → ∞, for any ε > 0 there exists x0 ≥ 1 such that

| f (x)| < ε for all x ≥ x0.

Also f (x) is bounded by some positive constant c:

| f (x)| < c for x ≥ 1.

So, we may write

∫ x0

1

f (x)
x1+δ

dx ≤
∫ x0

1

| f (x)|
x

dx ≤ c log x0 ≤ M(ε ),

where we can choose M(ε ) as a positive monotonic function of ε mapping 0 < ε < 1 onto

R≥1, and

M(ε )→ ∞⇔ ε → 0.

From the above inequalities we get

∫ ∞

1

f (x)
x1+δ

dx ≤
∫ x0

1

| f (x)|
x1+δ

dx +

∫ ∞

x0

| f (x)|
x1+δ

dx ≤ M(ε ) +
ε

δTδ
.
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We choose M(ε ) = δ−
1
2 . Then as δ → 0, M(ε )→ ∞, and so ε → 0. Thus

lim
δ→0

δ

∫ ∞

1

f (x)
x1+δ

dx = 0.

�

In our next theorem, we generalize Theorem III.4, III.5, III.6 and III.7.

Theorem III.8. Let the conditions in Theorem III.6 hold. Then as δ → 0+,

∫ ∞

1

µ(A j ∩ [x , 2x])h j(x)
x2+δ

dx = Ω
(1
δ

)
for j = 1, 2. (III.5)

Proof. We shall prove the theorem for j = 1; the proof is similar for j = 2. We define

g, g+, g− ,G,G+ and G−, as in Theorem III.3. Let

m#(x) := h1(x)µ(A1 ∩ [x , 2x])x−1.

First, we shall show:

Claim. As δ → 0, ∑
k≥0

m#(2k)
2kδ

= Ω

(
1
δ

)
.

Assume that ∑
k≥0

m#(2k)
2kδ

= o

(
1
δ

)
. (III.6)

From the above assumption, we may obtain an upper bound for G+(σ) as follows:

∫
A1

g+(x)dx
xσ+1 ≤

∑
k≥0

∫
A1∩[2k ,2k+1]

∆(x)dx
xσ+1 (as ∆(x) > g(x) on A1)
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≤
∑
k≥0

(∫
A1∩[2k ,2k+1]

∆2(x)dx
x2σ0+1

) 1
2
(
µ(A1 ∩ [2k , 2k+1])

2k(2δ+1)

) 1
2

(where σ − σ0 = δ > 0)

≤ c3

∑
k≥0

(
h1(2k)µ(A1 ∩ [2k , 2k+1])

2k(2δ+1)

) 1
2

≤ c3

∑
k≥0

(
m#(2k)

22kδ

) 1
2

.

From the above inequality, we get

δG+(σ) � δ

∑
k≥0

1
2kδ


1
2
∑
k≥0

m#(2k)
2k(σ−σ0)


1
2

= o(1) (III.7)

as δ → 0+. In particular, G+(σ) is bounded for every σ > σ0. Therefore

G+(s) =

∫ ∞

1

g+(x)dx
xs+1

is absolutely convergent for<(s) > σ0, and so it is analytic in this region. But

G−(s) = G(s) − G+(s),

and G is analytic on l(σ0,∞). So G− is also analytic on l(σ0,∞). Using Theorem III.2,

we get

G−(s) =

∫ ∞

1

g−(x)dx
xs+1

is absolutely convergent for <(s) > σ0. As a consequence, we get G(σ),G+(σ), and

G−(σ) are finite real numbers for σ > σ0.

Now observe that

(σ − σ0)|G(σ + it0)| ≤ 2(σ − σ0)G+(σ) − (σ − σ0)G(σ)

≤ 2(σ − σ0)G+(σ) − (σ − σ0)A(σ) + li + λ − ε .
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Using (III.7), we get

lim sup
σ↘σ0

(σ − σ0)|G(σ + it0)| ≤ − lim inf
σ↘σ0

(σ − σ0)A(σ) + li + λ − ε = λ − ε .

This is a contradiction to (III.1), and so (III.6) is wrong. This proves our Claim.

Now we are ready to prove the theorem. For k ≥ 1, observe that

∫ k

k−1

m#(2x)
2δx

dx =

∫ k

k−1

h1(2x)µ(A1 ∩ [2x , 2x+1])
2x(δ+1) dx =

∫ k

k−1

∫ 2x+1

2x

h1(2x)
2δx+x

χA1(t)dtdx

(where χA1(t) is the indicator function of A1)

=

∫ k

k−1

∫ 2k

2x

h1(2x)
2δx+x

χA1(t)dtdx +

∫ k

k−1

∫ 2x+1

2k

h1(2x)
2δx+x

χA1(t)dtdx

=

∫ 2k

2k−1

∫ log t

log 2

k−1

h1(2x)
2x(1+δ) χA1(t)dxdt +

∫ 2k+1

2k

∫ k

log t

log 2−1

h1(2x)
2x(1+δ) χA1(t)dxdt .

From the above identity, we have

∫ k

k−1

m#(2x)
2δx

dx ≥
∫ 2k+1

2k

∫ k

log t

log 2−1

h1(2x)
2x(1+δ) χA1(t)dxdt

and ∫ k+1

k

m#(2x)
2δx

dx ≥
∫ 2k+1

2k

∫ log t

log 2

k

h1(2x)
2x(1+δ) χA1(t)dxdt .

So we get

∫ k+1

k−1

m#(2x)
2δx

dx ≥
∫ 2k+1

2k

∫ k

log t

log 2−1

h1(2x)
2x(1+δ) χA1(t)dxdt +

∫ 2k+1

2k

∫ log t

log 2

k

h1(2x)
2x(1+δ) χA1(t)dxdt

=

∫ 2k+1

2k

∫ log t

log 2

log t

log 2−1

h1(2x)
2x(1+δ) χA1(t)dxdt .

Now, we may use the fact that h1 is a monotonic function having polynomial growth, and
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simplify the above calculation as follows:

∫ k+1

k−1

m#(2x)
2δx

dx � h1(2k)
∫ 2k+1

2k

∫ log t

log 2

log t

log 2−1

dx
2x(1+δ) χA1(t)dt

=
h1(2k)
log 2

∫ 2k+1

2k

(
2−

( log t

log 2−1
)
(1+δ)

− 2−
log t

log 2 (1+δ)
)
χA1(t)dt

=
h1(2k)
log 2

∫ 2k+1

2k

21+δ − 1
t1+δ

χA1(t)dt ≥
h1(2k)

2(k+1)(δ+1) µ(A1 ∩ [2k , 2k+1]) ≥
1
4
m#(2k)

2kδ
. (III.8)

Now using the Claim and (III.8), we get

∫ ∞

0

m#(2x)
2δx

dx �
∞∑
k=1

m#(2k)
2kδ

= Ω

(
1
δ

)
.

Changing the variable x to u = 2x in the above inequality gives

1
log 2

∫ ∞

1

m#(u)
u1+δ

du = Ω

(
1
δ

)
,

or
∫ ∞

1

µ(A j ∩ [u, 2u])h j(u)
u2+δ

du = Ω

(
1
δ

)
.

This proves the theorem. �

Corollary III.1. Let the conditions given in Theorem III.6 hold. Suppose we have a

monotonically increasing positive function h such that

∆(x) = O(h(x)), (III.9)

then

µ(A j ∩ [T , 2T ]) = Ω

(
T 1+2σ0

h2(T )

)
for j = 1, 2. (III.10)

Corollary III.2. Similar to Corollary III.1, we assume that the conditions in Theorem III.6
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hold. Then we have

∫
[T ,2T ]∩A j

∆
2(x)dx = Ω(T 2σ0+1) for j = 1, 2. (III.11)

Proof. This Corollary follows from the proof of Theorem III.8. We shall prove this Corol-

lary for A1, and the proof for A2 is similar. Note that in the proof of Theorem III.8, we

showed that the integral for G+(s) is absolutely convergent for <(s) > σ0 by assuming

(III.6). Then we got a contradiction which proves Claim (1) of Theorem III.8. Now we

proceed in a similar manner by assuming (III.11) is false. So we have

∫
[T ,2T ]∩A1

∆
2(x)dx = o(T 2σ0+1).

So for an arbitrarily small constant ε, we have

|G+(s)| ≤
∫
A1

g+(x)dx
xσ+1 ≤

∑
k≥0

∫
A1∩[2k ,2k+1]

∆(x)dx
xσ+1

≤
∑
k≥0

1
2k(σ−σ0)

(∫
A1∩[2k ,2k+1]

∆2(x)dx
x2σ0+1

)1/2

≤ c4(ε) + ε
∑

k≥k(ε)

1
2k(σ−σ0) ,

where c4(ε) is a positive constant depending on ε. From this we obtain that G+(s) is

absolutely convergent for <(s) > σ0. Now onwards the proof is same as that of Theo-

rem III.8. �
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III.4 Applications

Now we demonstrate applications of our theorems in the previous section to error terms

appearing in two well known asymptotic formulas.

III.4.1 Square Free Divisors

Let an = 2ω(n), whereω(n) denotes the number of distinct prime factors of n; equivalently,

an denotes the number of square free divisors of n. We write

∗∑
n≤x

2ω(n) =M(x) + ∆(x),

where

M(x) =
x log x

ζ (2)
+

(
−

2ζ ′(2)
ζ2(2)

+
2γ − 1
ζ (2)

)
x ,

and by a theorem of Gioia and Vaidya [12]

∆(x) � x1/2. (III.12)

Under Riemann Hypothesis, Baker [2] has improved the above upper bound to

∆(x) � x4/11.

It is easy to see that the Dirichlet series D(s) has the following form:

D(s) =

∞∑
n=1

2ω(n)

ns
=
ζ2(s)
ζ (2s)

.
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Figure III.1: Contours for square-free divisors.

Let A(s) be the Mellin transform of ∆(x) at s, and let s0 be the zero of ζ (2s) with least

positive imaginary part:

2s0 =
1
2

+ i14.134 . . . . (III.13)

We define a contour C (1) as union of the following five lines:

C (1) :=
(
5
4
− i∞,

5
4
− i2

]
∪

[
5
4
− i2,

3
4
− i2

]
∪

[
3
4
− i2,

3
4

+ i2
]

∪

[
3
4

+ i2,
5
4

+ i2
]
∪

[
5
4

+ i2,
5
4

+ i∞

)

The contour C (1) is represented by ‘dashed’ lines in Figure III.1. By Theorem II.3, we

have

A(s) =

∫ ∞

1

∆(x)
xs+1 dx =

1
2πi

∫
C (1)

D(η)
η(s − η)

dη.
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Now, we shift the contour C (1) to form a new contour C (2), so that

1, s0, l

(
1
4
,∞

)

lie to the right of C (2) and no other pole of D(s) lie to the right of this contour. We have

represented the contour C (2) by dotted lines in Figure III.1.

Since s0 is a pole of D(s) and is on the right side of C (1), we have

A(s) =
1

2πi

∫
C (2)

D(η)
η(s − η)

dη + Res
η=s0

(
D(η)

η(s − η)

)
.

From the above formula, we may compute the following limits:

λ1 := lim
σ↘0

σ |A(σ + s0)| = |s0 |
−1

∣∣∣∣∣Res
η=s0

D(η)
∣∣∣∣∣ > 0

and

lim
σ↘0

σA(σ + 1/4) = 0.

For a fixed ε0 > 0,

A1 =
{
x : ∆(x) > (λ1 − ε0)x1/4

}
and A2 =

{
x : ∆(x) < (−λ1 + ε0)x1/4

}
.

Using Corollary III.1 and (III.12), we get

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1/2

)
for j = 1, 2. (III.14)
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Under Riemann Hypothesis, we may argue similarly as in Proposition V.4 and show that

∫ 2T

T

∆
2(x) � T 3/2+ε for any ε > 0.

The above upper bound and Theorem III.6 give

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1−ε

)
, for j = 1, 2 and for any ε > 0. (III.15)

III.4.2 The Prime Number Theorem Error

Consider the error term in the Prime Number Theorem:

∆(x) =

∗∑
n≤x

Λ(n) − x .

Let

λ2 = |2s0 |
−1,

where 2s0 is the first nontrivial zero of ζ (s) as in (III.13). We shall apply Corollary III.1

to prove the following proposition.

Theorem III.9. We write

A1 =
{
x : ∆(x) > (λ2 − ε0)x1/2

}
and A2 =

{
x : ∆(x) < (−λ2 + ε0)x1/2

}
,

for a fixed ε0 such that 0 < ε0 < λ2. Then

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1−ε

)
, for j = 1, 2 and for any ε > 0.
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Proof. Here we apply Corollary III.1 in a similar way as in the previous application, so

we shall skip the details.

The Riemann Hypothesis, Theorem III.5 and Theorem PNT** give

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T

log4 T

)
for j = 1, 2;

this implies the proposition. But if the Riemann Hypothesis is false, then there exists a

constant a, with 1/2 < a ≤ 1, such that

a = sup{σ : ζ (σ + it) = 0}.

Using Perron summation formula, we may show that

∆(x) � xa+ε ,

for any ε > 0. Also for any arbitrarily small δ, we have a − δ < σ′ < a such that

ζ (σ′ + it′) = 0 for some real number t′. If λ′′ := |σ′ + it′|−1, then by Corollary III.1 we

get

µ
({
x ∈ [T , 2T ] : ∆(x) > (λ′′/2)xσ

′
})

= Ω
(
T 1−2δ−2ε

)
and µ

({
x ∈ [T , 2T ] : ∆(x) < −(λ′′/2)xσ

′
})

= Ω
(
T 1−2δ−2ε

)
.

As δ and ε are arbitrarily small and σ′ > 1/2, the above Ω bounds imply the proposition.

�

Remark III.2. Results similar to Theorem III.9 can be obtained for error terms in asymp-

totic formulas for partial sums of Mobius function and for partial sums of the indicator
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function of square-free numbers.

Remark III.3. In Section III.4.1 and III.4.2, we saw that µ(A j) are large. Now suppose

that µ(A1 ∪ A2) is large, then what can we say about the individual sizes of A j? We

may guess that µ(A1) and µ(A2) are both large and almost equal. But this may be very

difficult to prove. In the next chapter, we shall show that if µ(A1 ∪A2) is large, then both

A1 and A2 are nonempty.
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[ IV ] Influence OfMeasure

In this chapter, we study the influence of measure of the set where Ω-result holds, on

its possible improvements. The following proposition is an interesting application of the

main theorem (Theorem IV.3) of this chapter.

Let ∆(x) denotes the error term appearing in the assymptotic formula for average order

of non-isomorphic abelian groups:

∆(x) =

∗∑
n≤x

an −

6∑
k=1

(∏
j,k

ζ ( j/k)
)
x1/k , (IV.1)

where an denotes the number of non-isomophic abelian groups of order n. One would

expect that

∆(x) = O
(
x1/6+ε

)
for any ε > 0

(see Section IV.3.2 for more details), so an analogus Ω± bound for ∆(x) is also expected.

The proposition below gives a sufficient condition to obtain such an Ω± bound.

Theorem IV.1. Let δ be such that 0 < δ < 1/42, and ∆(x) be as in (IV.1). Then either

∫ 2T

T

∆
4(x)dx = Ω(T 5/3+δ),
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or

∆(x) = Ω±(x1/6−δ).

It may be conjectured that

∫ 2T

T

∆
4(x)dx = O(T 5/3+ε )

for any ε > 0. By the above proposition, this conjecture implies

∆(x) = Ω±(x1/6−ε ) for any ε > 0.

We begin by assuming the conditions and notations given in Assumptions II.1. Further

we have the following notations for this chapter.

Notations. For a real valued and non-negative function f , we denote

A( f (x)) := {x ≥ 1 : |∆(x)| > f (x)}.

IV.1 Refining Omega Result from Measure

We define an X-Set as follows:

Definition IV.1. An infinite discrete subset S of non-negative real numbers is called an

X-Set.

Now we hypothesize a situation when there is a lower bound estimate for the second

moment of the error term.
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Assumptions IV.1. Let S be an X-Set and let α(T ) be a real valued positive bounded

function such that

0 ≤ α(T ) < M < ∞

for some constant M . We shall denote α(T ) by α throughout this section. Let h0 be a

positive monotonic function. For a fixed T and for a fixed constant c5 > 0, we write

AT := [T/2,T ] ∩ A
(
c5x

α) .
For all T ∈ S and for constants c6, c7 > 0, we assume that the following three

conditions hold:

(i) ∫
AT

∆2(x)
x2α+1 dx > c6,

(ii)

µ(AT ) < c7h0(T ), and

(iii) the function

xα+1/2h
−1/2
0 (x)

is monotonically increasing for x ∈ [T/2,T ].

Note that the first assumption indicates an Ω-estimate. The next two assumptions

indicate that the measure of the set on which the Ω estimate holds is not ‘too big’.

Proposition IV.1. Suppose there exists an X-Set S having properties as described in
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Assumptions IV.1. Let the constant c8 be given by

c8 :=
√

c6

22M+1c7
.

Then there exists a T0 such that for all T > T0 and T ∈ S, we have

|∆(x)| > c8x
α+1/2h

−1/2
0 (x)

for some x ∈ [T/2,T ].

In particular

∆(x) = Ω(xα+1/2h
−1/2
0 (x)).

Proof. If the statement of the above proposition is not true, then for all x ∈ [T/2,T ] we

have

∆(x) ≤ c8x
α+1/2h

−1/2
0 (x).

From this, we may derive an upper bound for second moment of ∆(x):

∫
AT

∆2(x)
x2α+1 dx ≤

c2
8T

2α+1µ(AT )

h0(T )(T/2)2α+1 ≤ c2
822M+1c7 ≤ c6.

This bound contradicts (i) of Assumptions IV.1, which proves the proposition. �

The above proposition will be used in the next chapter to obtain a result on the error

term appearing in the asymptotic formula for
∑∗

n≤x |τ(n, θ)|2.
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IV.2 Omega Plus-Minus Result from Measure

In this section, we prove an Ω± result for ∆(x) when µ(AT ) is big. We formalize the

conditions in the following assumptions.

Assumptions IV.2. Suppose Assumptions II.1 holds. Let l be an integer such that

l > max(σ2, 1),

and let α1(u) be a monotonic function satisfying

0 < α1(u) ≤ σ1.

We also assume that D(s) has no pole for<(s) ≥ σ1 except for the poles in P.

Let S be an X-Set such that for all T ∈ S

D(σ + it) is holomorphic for α1(T ) ≤ σ ≤ σ1 and |t | ≤ T 2l and there exists a constant

constant c9 > 0 such that

|D(σ + it)| ≤ c9(|t | + 1)l−1.

Assumptions IV.3. Suppose Assumptions II.1 holds. Let α1 and l be as in Assump-

tions IV.2, and D(s) has no pole for <(s) ≥ σ1 except for the poles in P. Let S be

an X-Set such that there exist constants c10, ε > 0, 0 < ε < α1(T ) for all T ∈ S, such that

the following conditional statement holds.

For all T ∈ S, if D(σ + it) has no pole for α1(T ) − ε < σ ≤ σ1 and |t | ≤ 2T 2l , then

|D(σ + it)| ≤ c10(|t | + 1)l−1
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when α1(T ) ≤ σ ≤ σ1 and |t | ≤ T 2l .

Assumptions IV.3 says that if D(s) does not have pole in α1(T ) − ε < σ ≤ σ1, then it

has polynomial growth in a certain region.

Lemma IV.1. Under the conditions in Assumptions IV.2, we have

∆(x) =
1

2πi

∫ α1+iT 2l

α1−iT 2l

D(η)xη

η
dη +O(T−1)

for all x ∈ [T/2, 5T/2].

Proof. Follows from Theorem II.2. �

Lemma IV.2 (Balasubramanian and Ramachandra [4]). Let T ≥ 1, δ0 > 0 and f (x) be a

real-valued integrable function such that

f (x) ≥ 0 for x ∈ [T − δ0T , 2T + δ0T ].

Then for any δ > 0 and for a positive integer l satisfying δl ≤ δ0, we have

∫ 2T

T

f (x)dx ≤
1

(δT )l

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

f (x)dx dy1 . . . dyl .

Proof. For 0 ≤ yi ≤ δT , i = 1, 2, ..., l

∫ 2T

T

f (x)dx ≤
∫ 2T+

∑l
1 yi

T−
∑l

1 yi

f (x)dx ,

as f (x) ≥ 0 in T − l∑
1

yi , 2T +

l∑
1

yi

 ⊆ [T − δ0T , 2T + δ0T ].
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This gives

1
(δT )l

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

f (x)dx dy1 . . . dyl

≥
1

(δT )l

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T

T

f (x)dx dy1 . . . dyl =

∫ 2T

T

f (x)dx .

�

The next theorem shows that if ∆(x) does not change sign then the set on which Ω-

estimate holds can not be ‘too big’.

Theorem IV.2. Let S be an X-Set for which Assumptions IV.2 holds. Let h1(u) be a

monotonically increasing function such that h1(u)→ ∞. Let α2(u) be a bounded positive

monotonic function such that

0 < α1(u) < α2(u) ≤ σ1.

Then there exists a T0 such that for T ∈ S and T ≥ T0, if ∆(x) does not change sign on

A(h1(x)) ∩ [T/2, 5T/2], then

µ(A(xα2) ∩ [T , 2T ]) ≤ 4h1(5T/2)T 1−α2 +O(1 + T 1−α2+α1),

where α1 and α2 denote α1(T ) and α2(T ) respectively.

Proof. We may easily verify that

µ(A(xα2) ∩ [T , 2T ]) ≤
∫ 2T

T

|∆(x)|
xα2

dx .
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Using Lemma IV.2 on the above inequality, we get

µ(A(xα2) ∩ [T , 2T ]) ≤
1

(δT )l

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

|∆(x)|
xα2

dx dy1 . . . dyl ,

where δ = 1
2l .

Let χ denote the characteristic function of the complement of A(h1(x)):

χ(x) =


1 if x < A(h1(x)),

0 if x ∈ A(h1(x)).

For T ≥ 2T0, ∆(x) does not change sign on

T − l∑
1

yi , 2T +

l∑
1

yi

 ∩ A(h1(x)),

as 0 ≤ yi ≤ δT for all i = 1, ..., l. So we can write the above inequality as

µ(A(xα2) ∩ [T , 2T ]) ≤
2

(δT )l

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

|∆(x)|
xα2

χ(x)dx dy1 . . . dyl

+
1

(δT )l

∣∣∣∣∣∣∣∣∣
∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

∆(x)
xα2

dx dy1 . . . dyl

∣∣∣∣∣∣∣∣∣ . (IV.2)

Since x < A(h1(x)) implies |∆(x)| ≤ h1(x), we get

2
(δT )l

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

|∆(x)|
xα2

χ(x)dx dy1 . . . dyl

≤ 4h1(5T/2)T 1−α2 . (IV.3)
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We use the integral expression for ∆(x) as given in Lemma IV.1, and get

1
(δT )l

∣∣∣∣∣∣∣∣∣
∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

∆(x)
xα2

dx dy1 . . . dyl

∣∣∣∣∣∣∣∣∣
≤

1
(δT )l

∣∣∣∣∣∣∣∣∣
∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

∫ α1+iT 2l

α1−iT 2l

D(η)xη−α2

η
dη dx dy1 . . . dyl

∣∣∣∣∣∣∣∣∣ +O(1)

� 1 +
1

(δT )l

∣∣∣∣∣∣∣∣∣
∫ α1+iT 2l

α1−iT 2l

D(η)
η

∫ δT

0
· · ·

∫ δT

0
l times

∫ 2T+
∑l

1 yi

T−
∑l

1 yi

xη−α2dx dy1 . . . dyl dη

∣∣∣∣∣∣∣∣∣
� 1 +

1
(δT )l

∣∣∣∣∣∣∣
∫ α1+iT 2l

α1−iT 2l

D(η)(2T + lδT )η−α2+l+1

η
∏l+1

j=1(η − α2 + j)
dη

∣∣∣∣∣∣∣
� 1 +

Tα1−α2+l+1

(δT )l

∫ T 2l

−T 2l

(1 + |t |)l−1

(1 + |t |)l+2 dt � 1 + T 1−α2+α1 .

(IV.4)

The theorem follows from (IV.2), (IV.3) and (IV.4). �

Theorem IV.3. Let Assumptions II.1 holds. Let α1(u), α2(u), σ1, h1(u) be as in Theo-

rem IV.2, and

ν := lim
u→∞

α1(u).

We also have
h1(u)
uα1(u) → ∞ as u → ∞.

Further, if there exists an X-Set S such that for all T ∈ S

µ(A(xα2) ∩ [T , 2T ]) > 5h1(5T/2)T 1−α2 ,

where α2 = α2(T ), then the following statements hold.
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(i) Suppose S satisfy Assumptions IV.2. Then there exists a T0 > 0 such that ∆(x)

changes sign in [T/2, 5T/2] ∩ A(h1(x)) for all T ∈ S and T ≥ T0. In particular,

∆(x) = Ω±(h1(x)).

(ii) Suppose S satisfy Assumptions IV.3 and let ε be as in that Assumptions. We also

assume that D(s) does not have a real pole in [α1(T ) − ε ,∞) − P for all T ∈ S and

P be as in Assumptions II.1. Then for any ε ′ > ε , we have

∆(x) = Ω±(xν−ε
′

).

Proof. If S satisfy Assumptions IV.2, then (i) follows from Theorem IV.2. So let As-

sumptions IV.3 holds for S.

If D(σ + it) has no pole when α1(T ) − ε < σ ≤ σ1, |t | ≤ 2T 2l except for finitely

many T ∈ S, then we may reconstruct our X-Set by removing those finitely many T and

apply Theorem IV.2 to get the required result. Otherwise, there are infinitely many T ∈ S

such that D(σ + it) has a pole σT + itT with α1(T ) − ε < σT ≤ σ1, |tT | ≤ 2T 2l . By our

assumptions in (ii), σT + itT is not a real pole. So Theorem III.3 gives

∆(x) = Ω±

(
xα1(T )−ε

)
for T in an X-Set. This in particular implies

∆(x) = Ω±(xν−ε
′

) for any ε ′ > ε .

�
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IV.3 Applications

Now we shall see two examples demonstrating applications of Theorem IV.3.

IV.3.1 Divisors

Let d(n) denote the number of divisors of n:

d(n) =
∑
d |n

1.

Dirichlet [18, Theorem 320] showed that

∗∑
n≤x

τ(n) = x log(x) + (2γ − 1)x + ∆(x),

where γ is the Euler constant and

∆(x) = O(
√
x).

Latest result on ∆(x) is due to Huxley [20], which is

∆(x) = O(x131/416).

On the other hand, Hardy [15] showed that

∆(x) = Ω+((x log x)1/4 log log x),

= Ω−(x1/4).
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There are many improvements of Hardy’s result. Some notable results are due to K.

Corrádi and I. Kátai [7], J. L. Hafner [13], and K. Sounderarajan [36]. Below, we shall

show that ∆(x) is Ω±(x1/4) as a consequence of Theorem IV.3 and results of Ivić and

Tsang ( see below ). Moreover, we shall how that such fluctuations occur in [T , 2T ] for

every sufficiently large T .

Ivić [21] proved that for a positive constant c11,

∫ 2T

T

∆
2(x)dx ∼ c11T

3/2.

A similar result for fourth moment of ∆(x) was proved by Tsang [39]:

∫ 2T

T

∆
4(x)dx ∼ c12T

2,

for a positive constant c12. Let A denote the following set:

A :=
{
x : |∆(x)| >

c11x
1/4

6

}
.

For sufficiently large T , using the result of Ivić [21], we get

∫
[T ,2T ]∩A

∆2(x)
x3/2 dx =

∫ 2T

T

∆(x)2

x3/2 dx −
∫

[T ,2T ]∩Ac

∆2(x)
x3/2 dx

≥
1

4T 3/2

∫ 2T

T

∆
2(x)dx −

c11

6

≥
c11

5
−
c11

6
≥

c11

30
.
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Using Cauchy-Schwarz inequality and the result due to Tsang [39] we get

∫
[T ,2T ]∩A

∆2(x)
x3/2 dx ≤

(∫
[T ,2T ]∩A

∆4(x)
x2 dx

)1/2 (∫
[T ,2T ]∩A

1
x

dx
)1/2

≤

(
c12µ([T , 2T ] ∩ A)

T

)1/2

.

The above lower and upper bounds on second moment of ∆ gives the following lower

bound for measure of A:

µ([T , 2T ] ∩ A) >
c2

11

901c12
T ,

for some T ≥ T0. Now, Theorem IV.3 applies with the following choices:

α1(T ) = 1/5, α2(T ) = 1/4, h1(T ) =
c2

11

9000c12
T 1/4.

Finally using Theorem IV.3, we get that for all T ≥ T0 there exists x1, x2 ∈ [T , 2T ] such

that

∆(x1) > h1(x1) and ∆(x2) < −h1(x2).

In particular we get

∆(x) = Ω±(x1/4).
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IV.3.2 Average order of Non-Isomorphic abelian Groups

Let an denote the number of non-isomorphic abelian groups of order n. The Dirichlet

series D(s) is given by

D(s) =

∞∑
n=1

an

ns
=

∞∏
k=1

ζ (ks), <(s) > 1.

The meromorphic continuation of D(s) has poles at 1/k , for all positive integer k ≥ 1.

Let the main termM(x) be

M(x) =

6∑
k=1

(∏
j,k

ζ ( j/k)
)
x1/k ,

and the error term ∆(x) be
∗∑

n≤x

an −M(x).

Balasubramanian and Ramachandra [4] proved that

∫ 2T

T

∆
2(x)dx = Ω(T 4/3 logT ), and ∆(x) = Ω±(x92/1221).

Sankaranarayanan and Srinivas [35] improved the Ω± bound to

∆(x) = Ω±

(
x1/10 exp

(
c
√

log x
))

for some constant c > 0. An upper bound for the second moment of ∆(x) was first given

by Ivić [22], and then improved by Heath-Brown [19] to

∫ 2T

T

∆
2(x)dx � T 4/3(logT )89.
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This bound of Heath-Brown is best possible in terms of power of T . But for the fourth

moment, the similar statement

∫ 2T

T

∆
4(x)dx � T 5/3(logT )C ,

which is best possible in terms of power of T , is an open problem. Another open problem

is to show that

∆(x) = Ω±(x1/6−δ) for any δ > 0.

For 0 < δ < 1/42, we have stated in Theorem IV.1 that either

∫ 2T

T

∆
4(x)dx = Ω(T 5/3+δ) or ∆(x) = Ω±(x1/6−δ).

Below, we present a proof of this proposition.

Proof of Theorem IV.1. If the first statement is false, then we have

∫ 2T

T

∆
4(x)dx ≤ c13T

5/3+δ ,

for some constant c13 depending on δ and for all T ≥ T0. Let A be defined by:

A = {x : |∆(x)| > c14x
1/6}, c14 > 0.

By the result of Balasubramanian and Ramachandra [4], we have an X-Set S, such that

∫
[T ,2T ]∩A

∆
2(x)dx ≥ c15T

4/3(logT )
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for T ∈ S. Using Cauchy-Schwartz inequality, we get

c15T
4/3(logT ) ≤

∫
[T ,2T ]∩A

∆
2(x)dx ≤

(∫ 2T

T

∆
4(x)dx

)1/2

(µ(A ∩ [T , 2T ]))1/2

≤ c
1/2
13 T 5/6+δ/2(µ(A ∩ [T , 2T ]))1/2.

This gives, for a suitable positive constant c16,

µ(A ∩ [T , 2T ]) ≥ c16T
1−δ(logT )2.

Now we use Theorem IV.3, (i), with

α2 =
1
6
, α1 =

13
84
−
δ

2
, and h1(T ) = T 1/6−δ .

So we get

∆(x) = Ω±(x1/6−δ).

This completes the proof. �
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[ V ] The Twisted Divisor Function

Recall that in Chapter I, we have defined the twisted divisor function τ(n, θ) as follows:

τ(n, θ) =
∑
d |n

diθ , for θ ∈ R − {0}, n ∈ N.

We also have stated the following asymptotic formula:

∗∑
n≤x

|τ(n, θ)|2 = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x + ∆(x),

where ωi(θ)s are explicit constants depending only on θ and

∆(x) = Oθ(x1/2 log6 x).

In this chapter, we give a proof of this formula (see Section V.2, Theorem V.1). In Sec-

tion V.3, we use Theorem III.6 to obtain some measure theoretic Ω± results. Further, we

obtain an Ω bound for the second moment of ∆(x) in Section V.4 by adopting a technique

due to Balasubramanian, Ramachandra and Subbarao [5]. In the final section, we prove

that if the Ω bound obtained in the previous section can not be improved, then

∆(x) = Ω(x3/8−ε ) for any ε > 0.
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Now we motivate with a brief note on few applications of τ(n, θ).

V.1 Applications of τ(n, θ)

The function τ(n, θ) can be used to study various properties related to the distribution of

divisors of an integer:

∗∑
d |n

a≤log d≤b

1 =
1

2π

∫ ∞

−∞

τ(n, θ)
e−ibθ − e−iaθ

−iθ
dθ,

here
∑∗ means that the corresponding contribution to the sum is 1

2 if ea |n or eb |n. Below

we present two applications.

V.1.1 Clustering of Divisors

The following function measures the clustering of divisors of an integer:

W (n, f ) :=
∑
d,d′ |n

f (log(d/d′)),

for some constant c > 0 and for a function f ∈ L1(R). We assume that f has a Fourier

transformation, say f̂ , and f̂ ∈ L1(R).

Proposition V.1. With the above notations:

∑
n≤x

W (n, f ) =
1

2π

∫ ∞

−∞

f̂ (θ)
∑
n≤x

|τ(n, θ)|2dθ.
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Proof. Note that by the Fourier inversion formula, we get

W (n, f ) =
∑
d,d′ |n

f (log(d/d′)) =
1

2π

∑
d,d′ |n

∫ ∞

−∞

f̂ (θ)
(
d

d′

) iθ
dθ

=
1

2π

∫ ∞

−∞

f̂ (θ)

 ∑
d,d′ |n

(
d

d′

) iθ dθ =
1

2π

∫ ∞

−∞

f̂ (θ)|τ(n, θ)|2dθ.

This implies the proposition. �

Using Proposition V.1 and the formula in (I.3), we may write

∑
n≤x

W (n, f ) =
x log x

2π

∫ ∞

−∞

f̂ (θ)ω1(θ)dθ +
x

2π

∫ ∞

−∞

f̂ (θ)
(
ω2(θ) cos(θ log x) +ω3(θ)

)
dθ

+
x

2π

∫ ∞

−∞

f̂ (θ)∆(x , θ)dθ.

(In the above identity, we denoted ∆(x) by ∆(x , θ).)

This gives that the function
∑

n≤x W (n, f ) behaves like x log x. Further, if we want to

obtain more information on
∑

n≤x W (n, f ), we may analyzing other terms in the above

formula. But now, we skip the details and refer to [14, Chapter 4].

V.1.2 The Multiplication Table Problem

The multiplication table problem asks for an estimate on the order of the growth of

|Mul(N )| as N → ∞, where

Mul(N ) := {1 ≤ m ≤ N2 : m = ab, a, b ∈ Z and 1 ≤ a, b ≤ N }.
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The initial attempts in this direction are due to Erdős [9]. He used a result of Hardy and

Ramanujan [17] (also see [27]) to show

|Mul(N )| �
N2

(log N )ν0
√

log log N
as N → ∞,

and here

ν0 = 1 −
1 + log log 2

log 2
.

Intuitively, the theorem of Hardy and Ramanujan says that most of the positive integers

less than x have around log log x prime factors; more precisely,

#
{
n ≤ x : |ω(n) − log log n | < (log log n)

1
2 +ε

}
∼ x

as x → ∞ and for any ε > 0. This gives that most of the positive integers less than N2

have around log log N prime factors, whereas most of the integers in the multiplication

table have around 2ω(n) ≈ 2 log log N prime factors. This huristic can be refined to show

|Mul(N )| = o(N2). Erdős has used this idea to obtain the given upper bound for |Mul(N )|.

The best known bound on the asymptotic growth of |Mul(N )| is due to Ford [10]:

|Mul(N )| �
N2

(log N )ν0(log log N )3/2 as N → ∞.

To obtain the expected lower bound for |Mul(N )|, Ford first proved that

|Mul(N )| �
N2

(log N )2

∑
n≤N1/8

L(n)
n

, where L(n) := µ
(
∪d |n[log(d/2), log d]

)
.
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We may also observe that

∑
n≤N1/8

L(n)
n
≥

(∑
n≤N1/8

d(n)
n

)2

6
∑

n≤N1/8
W (n)
n

.

Rest of the part in Ford’s argument deals with the above sums involving the divisor func-

tion d(n) and W (n) := W

(
n, 1[ 1

2 ,2]

)
, where 1[ 1

2 ,2] is the indicator function of the interval

[1
2 , 2]. We skip the details and refer to [11].

V.2 Asymptotic Formula for
∑∗

n≤x |τ(n, θ)|2

In this section, we shall prove the following asymptotic formula for
∑∗

n≤x |τ(n, θ)|2.

Theorem V.1 (Theorem 33, [14]). Let θ , 0 be a fixed real number. Then for x ≥ 1, we

have

∗∑
n≤x

|τ(n, θ)|2 = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x +Oθ(x1/2 log6 x)

where ωi(θ)s are explicit constants depending only on θ.

Proof. Recall that the corresponding Dirichlet series D(s) has the following meromorphic

continuation:

D(s) =

∞∑
1

|τ(n, θ)|2

ns
=
ζ2(s)ζ (s + iθ)ζ (s − iθ)

ζ (2s)
, for s > 1.

For x ≥ 2, we denote κ = 1 + 1
log x

and T = x + |θ | + 1. By Perron’s formula

∗∑
n≤x

|τ(n, θ)|2 =
1

2πi

∫ κ+iT

κ−iT
D(s)xs

ds
s

+O(xε ).
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After shifting the line of integration to<(s) = 1
2 , we may estimate the contributions from

horizontal lines as follows:

T−1
∫ 1

1
2

|D(σ ± iT )|xσdσ � T−1
∫ 1

1
2

T 1−σ+ε xσdσ � xε .

To obtain an asymptotic formula for
∑∗

n≤x |τ(n, θ)|2, we add up the residues from the poles

1, 1 ± iθ after shifting the line of integration to<(s) = 1
2 :

∗∑
n≤x

|τ(n, θ)|2 =M(x) +O

xε + x
1
2

∫ T

−T

∣∣∣∣∣∣∣ζ
2(1

2 + it)ζ (1
2 + i(t + θ))ζ (1

2 + i(t − θ))

ζ (1 + 2it)(1
2 + it)

∣∣∣∣∣∣∣ dt
 ,

where

M(x) = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x .

If we write

J (a,T ) :=
∫ T

−T

ζ4(1
2 + i(a + t))√
t2 + 1

4

dt for a,T ∈ R and T ≥ 1 ,

then we have [23, Theorem 5.1]

J (a,T ) �a log5 T . (V.1)

To express ∆(x) in terms of J (a,T ), observe that

∆(x) =

∗∑
n≤x

|τ(n, θ)|2 −M(x)

� xε + x
1
2

∫ T

−T

∣∣∣∣∣∣∣ζ
2(1

2 + it)ζ (1
2 + i(t + θ))ζ (1

2 + i(t − θ))

ζ (1 + i2t)(1
2 + it)

∣∣∣∣∣∣∣ dt
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� xε + x
1
2 log x

∫ T

−T

|ζ2(
1
2

+ it)ζ (
1
2

+ i(t + θ))ζ (
1
2

+ i(t − θ))|
dt

| 12 + it |
.

From (V.1) and using the Cauchy-Schwartz inequality twice, we get

∆(x) � xε + x
1
2 log xJ

1
2 (0, x)J

1
4 (θ, x)J

1
4 (−θ, x) �θ x

1
2 log6 x ,

which gives the required result. �

In the following sections, we shall obtain various Ω and Ω± bounds for ∆(x).

V.3 Oscillations of the Error Term

Here we shall apply results in Chapter III to ∆(x) and obtain some measure theoretic Ω±

results. We begin by defining a contour C as given in Figure V.1:

C =

(
5
4
− i∞,

5
4
− i(θ + 1)

]
∪

[
5
4
− i(θ + 1),

3
4
− i(θ + 1)

]
∪

[
3
4
− i(θ + 1),

3
4

+ i(θ + 1)
]
∪

[
3
4

+ i(θ + 1),
5
4

+ i(θ + 1)
]

∪

[
5
4

+ i(θ + 1),
5
4

+ i∞

)
.

From Theorem II.1, we have

∆(x) =
1

2πi

∫
C

D(η)xη

η
dη.
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The above identity expresses the Mellin transform A(s) of ∆(x) as a contour integral

involving D(s). Using Theorem II.3, we write

A(s) =

∫ ∞

1

∆(x)
xs+1 dx =

1
2πi

∫
C

D(η)
η(s − η)

dη,

when s lies right to the contour C . Denote the first nontrivial zero of ζ (s) with least

positive imaginary part by 2s0. An approximate value of this point is

2s0 =
1
2

+ i14.134 . . . .

Define the contour C (s0), as in Figure V.2, such that s0 and any real number s ≥ 1/4 lie

in the right side of this contour. A meromorphic continuation of A(s) to all s that lies right

side of C (s0) is given by

A(s) =
1

2πi

∫
C (s0)

D(η)xη

η
dη +

Res
η=s0

D(η)

s0(s − s0)
. (V.2)

From (V.2), we calculate the following two limits:

λ(θ) := lim
σ↘0

σ |A(σ + s0)| = |s0 |
−1

∣∣∣∣∣Res
η=s0

D(η)
∣∣∣∣∣ > 0 (V.3)

and

lim
σ↘0

σA(σ + 1/4) = 0.
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0 1

1 + iθ

1 − iθ

3
4

C

Figure V.1: Contour C , for D(s) =
∑∞

n=1
|τ(n,θ)|2

ns
.

0 1

1 + iθ

1 − iθ

1
4

s0

C (s0)

Figure V.2: Contour C (s0)
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For a fixed small enough ε > 0, define

A1 =
{
x : ∆(x) > (λ(θ) − ε )x1/4

}
,

A2 =
{
x : ∆(x) < (−λ(θ) + ε )x1/4

}
.

Corollary III.1 and Theorem V.1 give

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 1/2(logT )−12

)
for j = 1, 2. (V.4)

Under Riemann Hypothesis, Theorem III.6 and Proposition V.4 give

µ
(
A j ∩ [T , 2T ]

)
= Ω

(
T 3/4−ε

)
for j = 1, 2. (V.5)

Note that the above statements in particular show that

∆(x) = Ω±(x1/4).

From Corollary III.2 of Chapter III, we get

∫
A j∩[T ,2T ]

∆
2(x)dx = Ω

(
T 3/2

)
for j = 1, 2. (V.6)

V.4 An Omega Theorem

Recall that (see Theorem V.1)

∑
n≤x

|τ(n, θ)|2 =M(x) + ∆(x),
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where the main term

M(x) = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x

comes from the poles of D(s) at s = 1, 1 + iθ and s = 1 − iθ. We may observe from

Corollary III.2 that if D(s) has a complex pole at s0 = σ0 + it0, other than 1 + iθ and

1 − iθ, then ∫ 2T

T

∆(x)dx = Ω(x2σ0+1).

By Riemann Hypothesis, the only positive value forσ0 is 1
4 , which is same as (V.6). In this

section, we shall use a technique due to Balasubramanian, Ramachandra and Subbarao [5]

to improve this omega bound further. Now we state the main theorem of this section.

Theorem V.2. For any c > 0, there exists K (c) > 0 and T (c) > 0 such that for all

T ≥ T (c), we get

∫ ∞

T

|∆(x)|2

x2α+1 e−2x/ydx ≥ K (c) exp
(
c(logT )7/8

)
, (V.7)

where

α = α(T ) =
3
8
−

c

(logT )1/8 and y = T b for b ≥ 80.

In particular, this implies

∆(x) = Ω(x3/8 exp(−c(log x)7/8),

for some suitable c > 0.

In order to prove the theorem, we need several lemmas, which form the content of this

section. We begin with a fixed δ0 ∈ (0, 1/16] for which we would choose a numerical
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value at the end of this section.

Definition V.1. For T > 1, let Z(T ) be the set of all γ such that

1. T ≤ γ ≤ 2T ,

2. either ζ (β1 + iγ) = 0 for some β1 ≥
1
2 + δ0

or ζ (β2 + i2γ) = 0 for some β2 ≥
1
2 + δ0.

Let

Iγ,k = {T ≤ t ≤ 2T : |t − γ | ≤ k log2 T } for k = 1, 2.

We finally define

Jk(T ) = [T , 2T ] \ ∪γ∈Z(T )Iγ,k .

Lemma V.1. With the above definition, we have for k = 1, 2

µ(Jk(T )) = T +O
(
T 1−δ0/4 log3 T

)
.

Proof. We shall use an estimate on the function N (σ,T ), which is defined as

N (σ,T ) :=
∣∣∣{σ′ + it : σ′ ≥ σ, 0 < t ≤ T , ζ (σ′ + it) = 0}

∣∣∣ .
Selberg [38, Page 237] proved that

N (σ,T ) � T 1− 1
4 (σ− 1

2 ) logT , for σ > 1/2.

Now the lemma follows from the above upper bound on N (σ, t), and the observation that

µ
(
∪γ∈Z(T )Iγ,k

)
� N

(
1
2

+ δ0,T

)
log2 T .
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�

The next lemma closely follows Theorem 14.2 of [38], but does not depend on Rie-

mann Hypothesis.

Lemma V.2. For t ∈ J1(T ) and σ = 1/2 + δ with δ0 < δ < 1/4 − δ0/2, we have

|ζ (σ + it)|±1 � exp

log log t
(
log t
δ0

) 1−2δ
1−2δ0


and

|ζ (σ + 2it)|±1 � exp

log log t
(
log t
δ0

) 1−2δ
1−2δ0

 .
Proof. We provide a proof of the first statement, and the second statement can be similarly

proved.

Let 1 < σ′ ≤ log t. We consider two concentric circles centered at σ′+ it, with radius

σ′ − 1/2 − δ0/2 and σ′ − 1/2 − δ0. Since t ∈ J1(T ) and the radius of the circle is� log t,

we conclude that

ζ (z) , 0 for |z − σ′ − it | ≤ σ′ −
1
2
−
δ0

2

and also ζ (z) has polynomial growth in this region. Thus on the larger circle, log |ζ (z)| ≤

c17 log t, for some constant c17 > 0. By Borel-Carathéodory theorem,

|z − σ′ − it | ≤ σ′ −
1
2
− δ0 implies | log ζ (z)| ≤

c18σ
′

δ0
log t ,

for some c18 > 0. Let 1/2 + δ0 < σ < 1, and ξ > 0 be such that 1 + ξ < σ′. We consider

three concentric circles centered at σ′ + it with radius r1 = σ′ − 1 − ξ , r2 = σ′ − σ and
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r3 = σ′ − 1/2 − δ0, and call them C1, C2 and C3 respectively. Let

Mi = sup
z∈Ci

| log ζ (z)|.

From the above bound on | log ζ (z)|, we get

M3 ≤
c18σ

′

δ0
log t .

Suitably enlarging c18, we see that

M1 ≤
c18

ξ
.

Hence we can apply the Hadamard’s three circle theorem to conclude that

M2 ≤ M1−ν
1 Mν

3 , for ν =
log(r2/r1)
log(r3/r1)

.

Thus

M2 ≤

(
c18

ξ

)1−ν (
c18σ

′ log t
δ0

)ν
.

It is easy to see that

ν = 2 − 2σ +
4δ0(1 − σ)

1 + 2ξ − 2δ0
+O(ξ) +O

(
1
σ′

)
.

Now we put

ξ =
1
σ′

=
1

log log t
.
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Hence

M2 ≤
c18 logν t log log t

δν0
=

c19 log log t
δν0

(log t)2−2σ+
4δ0(1−σ)
1+2ξ−2δ0 ,

for some c19 > 0. We observe that

2 − 2σ +
4δ0(1 − σ)

1 + 2ξ − 2δ0
< 2 − 2σ +

4δ0(1 − σ)
1 − 2δ0

=
1 − 2δ
1 − 2δ0

.

So we get

| log ζ (σ + it)| ≤ c19 log log t
(
log t
δ0

) 1−2δ
1−2δ0

,

and hence the lemma. �

We put y = T b, for a constant b ≥ 80. Now suppose that

∫ ∞

T

|∆(u)|2

u2α+1 e−u/ydu ≥ log2 T ,

for sufficiently large T . Then clearly

∆(u) = Ω(uα).

Our next result explores the situation when such an inequality does not hold.

Proposition V.2. Let δ0 < δ <
1
4 −

δ0
2 . For 1/4 + δ < α < 1/2, suppose that

∫ ∞

T

|∆(u)|2

u2α+1 e−u/ydu ≤ log2 T (V.8)
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for any sufficiently large T . Then we have

∫
Re(s)=α
t∈J2(T )

|D(s)|2

|s |2
� 1 +

∫ ∞

T

|∆(u)|2

u2α+1 e−2u/ydu.

Before embarking on a proof, we need the following technical lemmas.

Lemma V.3. For 0 ≤ <(z) ≤ 1 and |Im(z)| ≥ log2 T , we have

∫ ∞

T

e−u/yu−zdu =
T 1−z

1 − z
+O(T−b

′

) (V.9)

and ∫ ∞

T

e−u/yu−z log u du =
T 1−z

1 − z
logT +O(T−b

′

), (V.10)

where b′ > 0 depends only on b.

Proof. By changing variable by v = u/y, we get

∫ ∞

T

e−u/y

uz
du = y1−z

∫ ∞

T/y
e−vv−zdv.

Integrating the right hand side by parts

∫ ∞

T/y
e−vv−zdv =

e−T/y

1 − z

(
T

y

)1−z

+
1

1 − z

∫ ∞

T/y
e−vv1−zdv

It is easy to see that

∫ ∞

T/y
e−vv1−zdv = Γ(2 − z) +O

(T
y

)2−Re(z) .
Hence (V.9) follows using e−T/y = 1 + O(T/y) and Stirling’s formula along with the

assumption that |Im(z)| ≥ log2 T .
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Proof of (V.10) proceeds in the same line and uses the fact that

∫ ∞

T/y
e−vv1−z log v dv = Γ

′(2 − z) +O

(T
y

)2−Re(z)

logT

 .
Then we apply Stirling’s formula for Γ′(s) instead of Γ(s). �

Lemma V.4. Under the assumption (V.8), there exists T0 with T ≤ T0 ≤ 2T such that

∆(T0)e−T0/y

Tα0
� log2 T ,

and
1
y

∫ ∞

T0

∆(u)e−u/y

uα
du � logT .

Proof. The assumption (V.8) implies that

log2 T ≥

∫ 2T

T

|∆(u)|2

u2α+1 e−u/ydu

=

∫ 2T

T

|∆(u)|2

u2α e−2u/y e
u/y

u
du

≥ min
T≤u≤2T

(
|∆(u)|
uα

e−u/y
)2

,

which proves the first assertion. To prove the second assertion, we use the previous asser-

tion and Cauchy- Schwartz inequality along with assumption (V.8) to get

(∫ ∞

T0

∆(u)
uα

e−u/ydu

)2

≤

(∫ ∞

T0

|∆(u)|2

u2α+1 e−u/ydu

) (∫ ∞

T0

ue−u/ydu

)
� y2 log2 T .

This completes the proof of this lemma. �

We now recall a mean value theorem due to Montgomery and Vaughan [30].
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Notation. For a real number θ, let ‖θ‖ := minn∈Z |θ − n |.

Theorem V.3 (Montgomery and Vaughan [30]). Let a1, · · · , aN be arbitrary complex

numbers, and let λ1, · · · , λN be distinct real numbers such that

δ = min
m,n
‖λm − λn‖ > 0.

Then ∫ T

0

∣∣∣∣∣∣∣∑
n≤N

an exp(iλnt)

∣∣∣∣∣∣∣
2

dt =

(
T +O

(
1
δ

)) ∑
n≤N

|an |
2.

Lemma V.5. For T ≤ T0 ≤ 2T and<(s) = α, we have

∫ 2T

T

∣∣∣∣∣∣∣∣
∑
n≤T0

|τ(n, θ)|2

ns
e−n/y

∣∣∣∣∣∣∣∣
2

t−2dt � 1.

Proof. Using theorem V.3, we get

∫ 2T

T

∣∣∣∣∣∣∣∣
∑
n≤T0

|τ(n, θ)|2

ns
e−n/y

∣∣∣∣∣∣∣∣
2

t−2dt ≤
1
T 2

T ∑
n≤T0

|b(n)|2 +O

∑
n≤T0

n |b(n)|2

 ,

where b(n) =
|τ(n, θ)|2

nα
e−n/y .

Thus

∑
n≤T0

|b(n)|2 ≤
∑
n≤T0

d(n)4

n2α � T 1−2α+ε
0 and

∑
n≤T0

n |b(n)|2 ≤
∑
n≤T0

d(n)4

n2α−1 � T 2−2α+ε
0

for any ε > 0, since the divisor function d(n) � nε . As we have α > 0, this completes

the proof. �
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Lemma V.6. For<(s) = α and T ≤ T0 ≤ 2T , we have

∫ 2T

T

∣∣∣∣∣∣∣∑
n≥0

∫ 1

0

∆(n + x + T0)e−(n+x+T0)/y

(n + x + T0)s+1 dx

∣∣∣∣∣∣∣
2

dt �
∫ ∞

T

|∆(x)|2

x2α+1 e−2x/ydx .

Proof. Using Cauchy- Schwarz inequality, we get

∣∣∣∣∣∣∣∑
n≥0

∫ 1

0

∆(n + x + T0)
(n + x + T0)s+1 e

−(n+x+T0)/ydx

∣∣∣∣∣∣∣
2

≤

∫ 1

0

∣∣∣∣∣∣∣∑
n≥0

∆(n + x + T0)
(n + x + T0)s+1 e

−(n+x+T0)/y

∣∣∣∣∣∣∣
2

dx .

Hence

∫ 2T

T

∣∣∣∣∣∣∣
∫ 1

0

∑
n≥0

∆(n + x + T0)e−(n+x+T0)/y

(n + x + T0)s+1 dx

∣∣∣∣∣∣∣
2

dt

≤

∫ 2T

T

∫ 1

0

∣∣∣∣∣∣∣∑
n≥0

∆(n + x + T0)
(n + x + T0)s+1 e

−(n+x+T0)/y

∣∣∣∣∣∣∣
2

dxdt

=

∫ 1

0

∫ 2T

T

∣∣∣∣∣∣∣∑
n≥0

∆(n + x + T0)
(n + x + T0)s+1 e

−(n+x+T0)/y

∣∣∣∣∣∣∣
2

dtdx .

From Theorem V.3, we can get

∫ 2T

T

∣∣∣∣∣∣∣∑
n≥0

∆(n + x + T0)
(n + x + T0)s+1 e

−(n+x+T0)/y

∣∣∣∣∣∣∣
2

dt

= T
∑
n≥0

|∆(n + x + T0)|2

(n + x + T0)2α+2 e
−2(n+x+T0)/y +O

∑
n≥0

|∆(n + x + T0)|2

(n + x + T0)2α+1 e
−2(n+x+T0)/y


�

∑
n≥0

|∆(n + x + T0)|2

(n + x + T0)2α+1 e
−2(n+x+T0)/y .
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Hence

∫ 2T

T

∣∣∣∣∣∣∣∑
n≥0

∫ 1

0

∆(n + x + T0)e−(n+x+T0)/T

(n + x + T0)s+1 dx

∣∣∣∣∣∣∣
2

dt

�

∫ 1

0

∑
n≥0

|∆(n + x + T0)|2

(n + x + T0)2α+1 e
−2(n+x+T0)/ydx �

∫ ∞

T

|∆(x)|2

x2α+1 e−2x/ydx ,

completing the proof. �

Proof of Proposition V.2. For s = α + it with 1/4 + δ < α < 1/2 and t ∈ J2(T ), we have

∞∑
n=1

|τ(n, θ)|2

ns
e−n/y =

1
2πi

∫ 2+i∞

2−i∞
D(s + w)Γ(w)ywdw

=
1

2πi

∫ 2+i log2 T

2−i log2 T

+O

(
y2

∫ ∞

log2 T

|D(s + 2 + iv)| |Γ(2 + iv)|dv
)
.

The above error term is estimated to be o(1). We move the integral to

[
1
4

+
δ

2
− α − i log2 T ,

1
4

+
δ

2
− α + i log2 T

]
.

Let δ′ = 1/4 + δ/2 − α. In the region to the right side of this line,<(2s + 2w) ≥ 1/2 + δ.

Writing w = u + iv we observe that t + v ∈ J1(T ) since t ∈ J2(T ). So we can apply

Lemma V.2 to conclude that

ζ (2s + 2w) � T−1.

On the above line, we have<(s + w) = 1/4 + δ/2, Thus

ζ2(s + w)ζ (s + w + iθ)ζ (s + w − iθ) � T 3/2−δ log4 T

where we use the fact that ζ (z) � =(z)(1−<(z))/2 log(=(z)) if 0 ≤ <(z) ≤ 1. Hence by
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convexity, we see that ζ2(s + w)ζ (s + w + iθ)ζ (s + w − iθ) has polynomial growth on the

horizontal lines of integration. Therefore the horizontal integrals are o(1) by exponential

decay of Γ-function. Since the only pole inside this contour is at w = 0, we get

∞∑
n=1

|τ(n, θ)|2

ns
e−n/y = D(s) +

1
2πi

∫ δ′+i log2 T

δ′−i log2 T

D(s + w)Γ(w)ywdw + o(1).

For the integral on the right hand side, we have

D(s + w)yw � T 5/2−δ(b/2+1)

where the exponent of T is negative by our choice of b and δ. Therefore this integral is

also o(1).

Using T0 as in Lemma V.4, we now divide the sum into two parts:

D(s) =
∑
n≤T0

|τ(n, θ)|2

ns
e−n/y +

∑
n>T0

|τ(n, θ)|2

ns
e−n/y + o(1).

To estimate the second sum, we write

∑
n>T0

|τ(n, θ)|2

ns
e−n/y =

∫ ∞

T0

e−x/y

xs
d

∑
n≤x

|τ(n, θ)|2


=

∫ ∞

T0

e−x/y

xs
d(M(x) + ∆(x))

=

∫ ∞

T0

e−x/y

xs
M′(x)dx +

∫ ∞

T0

e−x/y

xs
d(∆(x)).

Recall that

M(x) = ω1(θ)x log x +ω2(θ)x cos(θ log x) +ω3(θ)x ,
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thus

M′(x) = ω1(θ) log x +ω2(θ) cos(θ log x) − θω2(θ) sin(θ log x) +ω1(θ) +ω3(θ).

Observe that

∫ ∞

T0

e−x/y

xs
cos(θ log x)dx =

1
2

∫ ∞

T0

e−x/y

xs+iθ
dx +

1
2

∫ ∞

T0

e−x/y

xs−iθ
dx .

Applying Lemma V.3, we conclude that

∫ ∞

T0

e−x/y

xs
M′(x)dx = o(1).

Integrating the second integral by parts:

∫ ∞

T0

e−x/y

xs
d(∆(x)) =

e−T0/y∆(T0)
T s

0

+
1
y

∫ ∞

T0

e−x/y

xs
∆(x)dx − s

∫ ∞

T0

e−x/y

xs+1 ∆(x)dx .

Applying Lemma V.4, we get

∑
n>T0

|τ(n, θ)|2

ns
e−n/y = s

∫ ∞

T0

∆(x)e−x/y

xs+1 dx +O(logT )

= s
∑
n≥0

∫ 1

0

∆(n + x + T0)e−(n+x+T0)/y

(n + x + T0)s+1 dx +O(logT ).

Hence we have

D(s) =
∑
n≤T0

|τ(n, θ)|2

ns
e−n/y + s

∑
n≥0

∫ 1

0

∆(n + x + T0)e−(n+x+T0)/y

(n + x + T0)s+1 dx +O(logT ).
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Squaring both sides, and then integrating on J2(T ), we get

∫
J2(T )

|D(α + it)|2

|α + it |2
dt �

∫ 2T

T

∣∣∣∣∣∣∣∣
∑
n≤T0

|τ(n, θ)|2

ns
e−n/y

∣∣∣∣∣∣∣∣
2

dt
t2

+

∫ 2T

T

∣∣∣∣∣∣∣∑
n≥0

∫ 1

0

∆(n + x + T0)e−(n+x+T0)/y

(n + x + T0)s+1 dx

∣∣∣∣∣∣∣
2

dt .

The proposition now follows using Lemma V.5 and Lemma V.6. �

We are now ready to prove our main theorem of this section.

Proof of Theorem V.2. We prove by contradiction. Suppose that (V.7) does not hold.

Then there exists a constant c > 0 such that given any N0 > 1, there exists T > N0 for

which ∫ ∞

T

|∆(x)|2

x2α+1 e−2x/ydx � exp
(
c(logT )7/8

)
,

for all c > 0. Note that the above statement is weaker than the contrapositive of the

statement of theorem. This gives

∫ ∞

T

|∆(x)|2

x2β+1 e−2x/ydx � 1,

where

β =
3
8
−

c

2(logT )1/8 .

We apply Proposition V.2 to get

∫
J2(T )

|D(β + it)|2

|β + it |2
dt � 1. (V.11)

Now we compute a lower bound for the last integral over J2(T ). Write the functional
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equation for ζ (s) as

ζ (s) = π1/2−s Γ((1 − s)/2)
Γ(s/2)

ζ (1 − s).

Using the Stirling’s formula for Γ function, we get

|ζ (s)| = π1/2−σt1/2−σ |ζ (1 − s)|
(
1 +O

(
1
T

))
,

for s = σ + it. This implies

|D(β + it)| = t2−4β |ζ (1 − β + it)2ζ (1 − β − it − iθ)ζ (1 − β − it + iθ)|
|ζ (2β + i2t)|

.

Let δ0 = 1/16, and

β =
3
8
−

c

2(logT )1/8 =
1
2
− δ

with

δ =
1
8

+
c

2(logT )1/8 .

Then using Lemma V.2, we get

|ζ (1 − β + it)| =

∣∣∣∣∣∣ζ
(
1
2

+ δ + it

)∣∣∣∣∣∣ � exp

log log t
(
log t
δ0

) 1−2δ
1−2δ0

 .
For t ∈ J2(T ) we observe that t±θ ∈ J1(T ), and so the same bounds hold for ζ (1−β+it+iθ)

and ζ (1 − β + it − iθ). Further

|ζ (2β + i2t)| =

∣∣∣∣∣∣ζ
(
1
2

+

(
1
2
− 2δ

)
+ i2t

)∣∣∣∣∣∣ � exp

log log t
(
log t
δ0

) 4δ
1−2δ0

 .
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Combining these bounds, we get

|D(β + it)| � t2−4β exp

−5 log log t
(
log t
δ0

) 1−2δ
1−2δ0

 .
Therefore

∫
J2(T )
|D(β + it)|2dt � T 4−8β exp

−10 log logT
(
logT
δ0

) 1−2δ
1−2δ0

 µ(J2(T ))

� T 5−8β exp

−10 log logT
(
logT
δ0

) 1−2δ
1−2δ0

 ,
where we use Lemma V.1 to show that µ(J2(T )) � T . Now putting the values of δ and δ0

as chosen above, we get

∫
J2(T )

|D(β + it)|2

|β + it |2
dt � exp

(
3c(logT )7/8

)
,

since 1−2δ
1−2δ0

< 7/8. This contradicts (V.11), and hence the theorem follows. �

The following two corollaries are immediate.

Corollary V.1. For any c > 0 and for all sufficiently large T depending on c, there exists

an

X ∈

[
T ,

T b

2
log2 T

]
for which we have

∫ 2X

X

|∆(x)|2

x2α+1 dx ≥ exp
(
(c − ε )(log X)7/8

)
,

with α as in Theorem V.2 and for any ε > 0.

116



Corollary V.2. For any c > 0 and for all sufficiently large T depending on c, there exists

an

x ∈

[
T ,

T b

2
log2 T

]
for which we have

∆(x) ≥ x3/8 exp
(
−c(log x)7/8

)
.

We can now prove a "measure version" of the above result.

Proposition V.3. For any c > 0, let

α(x) =
3
8
−

c

(log x)1/8

and A = {x : |∆(x)| � xα(x)}. Then for every sufficiently large X depending on c, we

have

µ(A ∩ [X , 2X]) = Ω(X2α(X)).

Proof. Suppose that the conclusion does not hold, hence

µ(A ∩ [X , 2X]) � X2α(X).

Thus for every sufficiently large X , we get

∫
A∩[X ,2X]

|∆(x)|2

x2α+1 dx � X2α M(X)
X2α+1 =

M(X)
X

,

where α = α(X) and M(X) = supX≤x≤2X |∆(x)|2. Using dyadic partition, we can prove

∫
A∩[T ,y]

|∆(x)|2

x2α+1 dx �
M0(T )
T

logT , where M0(T ) = sup
T≤x≤y

|∆(x)|2
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and y = T b for some b > 0 and T sufficiently large. This gives

∫ ∞

T

|∆(x)|2

x2α+1 e−2x/ydx �
M0(T )
T

logT .

Along with (V.7), this implies

M0(T ) � T exp
(
c

2
(logT )7/8

)
.

Thus

|∆(x)| � x
1
2 exp

(
c

4
(log x)7/8

)
,

for some x ∈ [T , y]. This contradicts the fact that |∆(x)| � x
1
2 (log x)6. �

V.4.1 Optimality of the Omega Bound

The following proposition shows the optimality of the omega bound in Corollary V.1.

Proposition V.4. Under Riemann Hypothesis (RH), we have

∫ 2X

X

∆
2(x)dx � X7/4+ε ,

for any ε > 0.

Proof. Theorem II.2 (Perron’s formula) gives

∆(x) =
1

2πi

∫ T

−T

D(3/8 + it)x3/8+it

3/8 + it
dt +O(xε ),

for any ε > 0 and for T = X2 with x ∈ [X , 2X]. Using this expression for ∆(x), we write
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its second moment as

∫ 2X

X

∆
2(x)dx =

1
(2π)2

∫ 2X

X

∫ T

−T

∫ T

−T

D(3/8 + it1)D(3/8 − it2)
(3/8 + it1)(3/8 − it2)

x3/4+i(t1−t2)dx dt1dt2

+O
(
X1+ε (1 + |∆(x)|)

)
� X7/4

∫ T

−T

∫ T

−T

∣∣∣∣∣ D(3/8 + it1)D(3/8 − it2)
(3/8 + it1)(3/8 − it2)(7/4 + i(t1 − t2))

∣∣∣∣∣ dt1dt2 +O(X3/2+ε ).

In the above calculation, we have used the fact that ∆(x) � x
1
2 +ε as in (I.4). Also note

that for complex numbers a, b, we have |ab | ≤ 1
2 (|a |2 + |b |2). We use this inequality with

a =
|D(3/8 + it1)|

|3/8 + it1 |
√
|7/4 + i(t1 − t2)|

and b =
|D(3/8 − it2)|

|3/8 − it2 |
√
|7/4 + i(t1 − t2)|

,

to get

∫ 2X

X

∆
2(x)dx � X7/4

∫ T

−T

∫ T

−T

∣∣∣∣∣D(3/8 − it2)
(3/8 − it2)

∣∣∣∣∣2 dt1
|7/4 + i(t1 − t2)|

dt2 +O(X3/2+ε )

� X7/4 log X

∫ T

−T

∣∣∣∣∣D(3/8 − it2)
(3/8 − it2)

∣∣∣∣∣2 dt2 +O(X3/2+ε ).

Under RH, convexity bound gives ζ (σ + it) � t1/2−σ for 0 ≤ σ ≤ 1/2, hence |D(3/8 −

it2)| � |t2 |
1
2 +ε . So we have

∫ 2X

X

∆
2(x)dx � X7/4+ε for any ε > 0.

�

Note. The method we have used in Theorem V.2 has its origin from the Plancherel’s
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formula in Fourier analysis. For instance, we may observe from Theorem II.1 that under

Riemann Hypothesis and other suitable conditions

∆(eu)
euσ

=
1

2π

∫ ∞

−∞

D(σ + it)eiut

σ + it
dt for

1
4
< σ ≤

1
2
.

So ∆(eu )
euσ

is the Fourier transform of D(σ+it)
σ+it

. By Plancherel’s formula

∫ ∞

−∞

|∆(eu)|2

e2uσ du =
1

4π2

∫ ∞

−∞

∣∣∣∣∣D(σ + it)
σ + it

∣∣∣∣∣2 dt .

Now we change the variable u to log x and use the functional equation for ζ (s) to get

∫ ∞

1

∆2(x)
x2σ+1 dx �

∫ ∞

1

∣∣∣∣∣D(σ + it)
σ + it

∣∣∣∣∣2 dt �
∫ ∞

1
t2−8σ−10εdt

for any ε > 0 where the last inequality uses Riemann Hypothesis. Now we chooseσ = 3
8−

2ε , then the above integral on the right hand side diverges. Now suppose ∆(x) � x
3
8−3ε ,

then the integral in the left hand side converges. This contradiction shows

∆(x) = Ω(x
3
8−3ε ).

In [3] and [4], Balasubramanian and Ramachandra used this insight to obtain Ω bounds

for the error terms in asymptotic formulas for partial sums of square-free divisors and

counting function for non-isomorphic abelian groups. This method requires the Riemann

Hypothesis to be assumed in certain cases. Later Balasubramanian, Ramachandra and

Subbarao [5] modified this technique to apply on error term in the asymptotic formula

for the counting function of k-full numbers without assuming Riemann Hypothesis. This

method has been used by several authors including [25] and [35].
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V.5 Influence of Measure on Ω± Results

In this section, we shall show that for any ε > 0,

if ∆(x) � x3/8+ε , then ∆(x) = Ω±

(
x3/8−ε

)
.

This conditionally improves our earlier result, which says that ∆(x) is Ω±
(
x1/4

)
. Now,

we state the main theorem of this section.

Theorem V.4. Let ∆(x) be the error term of the summatory function of the twisted divisor

function as in Theorem V.1. For c > 0, let

α(x) =
3
8
−

c

(log x)1/8 .

Let δ and δ′ be such that

0 < δ < δ′ <
1
8
.

Then either

∆(x) = Ω
(
xα(x)+ δ

2
)

or ∆(x) = Ω±

(
x

3
8−δ

′
)
.

To prove the above theorem, we estimate the growth of the Dirichlet series D(σ + it) by

assuming that it does not have poles in a certain region.

Lemma V.7. Let δ and σ be such that

0 < δ <
1
8
, and

3
8
− δ ≤ σ <

1
2
.
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If D(σ + it) does not have a pole in the above mentioned range of σ, then for

3
8
− δ +

δ

2(1 + log log(3 + |t |))
< σ <

1
2
,

we have

D(σ + it) �δ,θ |t |
2−2σ+ε

for any positive constant ε .

Proof. Let s = σ + it with 3/8 − δ ≤ σ < 1/2. Recall that

D(s) =
ζ2(s)ζ (s + iθ)ζ (s − iθ)

ζ (2s)
.

Using functional equation, we write

D(s) = X(s)
ζ2(1 − s)ζ (1 − s − iθ)ζ (1 − s + iθ)

ζ (2s)
, (V.12)

where

X(s) = π4s−2
Γ2

(
1−s

2

)
Γ

(
1−s−iθ

2

)
Γ

(
1−s+iθ

2

)
Γ2

(
s
2

)
Γ

(
s+iθ

2

)
Γ

(
s−iθ

2

) .

From Stirling’s formula for Γ, we get

X(σ + it) � t2−4σ . (V.13)

Using Stirling’s formula and Phragmén-Lindelöf principle, we get

|ζ (1 − s)| � |t |σ/2 log t .
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So we get

|ζ2(1 − s)ζ (1 − s − iθ)ζ (1 − s + iθ)| � t2σ(log t)4. (V.14)

Now we shall compute an upper bound for |ζ (2s)|−1. This can be obtained in a similar

way as in Lemma V.2. We choose t ≥ 100. Similar computation can be done when t is

negative.

Consider two concentric circles C1,1 and C1,2, centered at 2 + it with radii

5
4

+ 2δ and
5
4

+ 2δ −
δ

1 + log log(|t | + 3)
.

The circle C1,1 passes through 3/4 − 2δ + i2t and C1,2 passes through 3/4 − 2δ + δ(1 +

log log(|t | + 3))−1 + i2t. By our assumption, ζ (z) does not have any zero for |z − 2 − it | ≤

5/4 + 2δ. This implies log ζ (z) is a holomorphic function in this region. It is easy to see

that on the larger circle C1,1, we have log |ζ (z)| < σ′ log t for some positive constant σ′.

We apply Borel-Carathéodory theorem to get an upper bound for log ζ (z) on C1,2 :

| log ζ (z)| ≤ 3δ−1(1 + log log(t + 3))
(
σ′ log t + | log ζ (2 + it)|

)
≤ 10δ−1σ′(log log t) log t for z ∈ C1,2.

We may also note that if <(z − 3/4 − 2δ) > δ(log log t)−1 and =(z) ≤ t/2, then similar

arguments give

| log ζ (z)| < δ−1σ′(log log t) log t ,

for some positive constant σ′ that has changed appropriately.

Now we consider three concentric circles C2,1, C2,2, C2,3, centered atσ′′+ i2t and with
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radii r1 = σ′′ − 1 − η, r2 = σ′′ − 2σ and r3 = σ′′ − δ0 respectively. Here

δ0 =
3
4
− 2δ +

δ

1 + log log(t + 3)
.

We shall choose σ′′ = η−1 = log log t. Let M1,M2,M3 denote the supremums of

| log ζ (z)| on C2,1, C2,2, C2,3 respectively. We have already calculated that

M3 ≤ δ
−1σ′(log log t) log t .

It is easy to show that

M1 ≤ σ
′ log log t ,

where σ′ is again appropriately adjusted. Applying the three circle theorem we conclude

M2 ≤ σ
′(log log t)δ−a loga t ,

where

a =
log(r2/r1)
log(r3/r1)

=
1 − 2σ + η

1 − δ0 + η
+O

(
1
σ′′

)
=

4(1 − 2σ)
1 + 8δ

+Oδ

(
1

log log t

)
.

This gives

|ζ (2s)|−1 � exp
(
c(log log t)(log t)

4(1−2σ)
1+8δ

)
, (V.15)

for a suitable constant c > 0 depending on δ. The bound in the lemma follows from

(V.12), (V.13), (V.14) and (V.15). �
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Now we complete the proof of Theorem V.4.

Proof of Theorem V.4. Let M be any large positive constant, and define

A := A(Mxα(x)).

Then from Corollary V.1, we have

∫
[T ,2T ]∩A

∆2(x)
x2α(T ) + 1

dx � exp
(
c(logT )7/8

)
.

Assuming

µ([T , 2T ] ∩ A) ≤ T 1−δ for T > T0, (V.16)

Proposition IV.1 gives

∆(x) = Ω(xα(x)+δ/2)

as h0(T ) = T 1−δ, which is the first part of the theorem. But if (V.16) does not hold, then

we have

µ([T , 2T ] ∩ A) > T 1−δ

for T in an X-Set . We choose

h1(T ) = T
3
8−

2c
(logT )1/8 −δ , α1(T ) =

3
8
−

3c
(logT )1/8 − δ, α2(T ) = α(T ).

Let δ′′ be such that δ < δ′′ < δ′. If D(σ + it) does not have pole for σ > 3/8 − δ′′ then by

Lemma V.7, D(α1(T ) + it) has polynomial growth. So Assumptions IV.3 is valid. Since

T 1−δ > 5h1(5T/2)T 1−α2(T ),
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by case (ii) of Theorem IV.3 we have

∆(T ) = Ω±

(
T

3
8−δ

′′
)
.

�
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