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Synopsis

Introduction

Our object of study has been the topology of locally symmetric spaces of non-

compact type. Let us fix some notations. Let X be a (globally) symmetric space of

non-compact type. Let G be the identity component of its isometry group. Then G

is a connected semisimple Lie group with trivial centre and no compact factors. G

acts transitively on X. Fix a point o in X. Let K be the isotropy subgroup at o.

Then K is a maximal compact subgroup of G and X = G/K. Let Γ be a torsion

free lattice in G. Then Γ\X = Γ\G/K is a locally symmetric space. We denote the

Lie algebra of G by g0. One has the Cartan decomposition g0 = k0 + p0, where k0 is

the Lie algebra of K. Let g denote the complexification of g0 and p that of p0. We

can identify p with the complexified tangent space of X at o. If X is a Hermitian

symmetric space then p breaks up into a direct sum p = p+ + p−, where p+ is the

holomorphic part and p− is the anti-holomorphic part.

The thesis consists of two parts. The first part addresses homotopy classification of

maps between higher rank irreducible locally symmetric spaces including possible

degrees in terms of the lattices involved. In particular we have addressed the question

of when the degree can be negative.

The second part involves construction of cohomology classes of a family of compact

17



locally symmetric spaces associated to SO∗(2n). These classes are Poincaré duals

of certain totally geodesic submanifolds. Using this, we detect occurrence of certain

irreducible unitary representations associated to θ-stable parabolic subalgebras of g,

in the direct Hilbert sum decomposition of L2(Γ\SO∗(2n)).

We now outline the main results of the thesis in more detail.

Degrees of maps between locally symmetric spaces

It is important in topology to know when there exist maps of non-zero degree be-

tween two members of a class of connected manifolds of same dimension. We consider

here the class of higher rank irreducible locally symmetric spaces.

Theorem 0.0.1. Let G,H be connected semisimple Lie groups with trivial centre

and without compact factors and let K,L be maximal compact subgroups of G and

H respectively. Suppose that the (real) rank of G is at least 2 and that dimG/K ≥

dimH/L. Let Γ be an irreducible torsion-free lattice in G and let Λ be any torsion-

free lattice in H. Then there exists a non-negative integer δ = δ(Γ,Λ) such that the

following hold: Any continuous map f : Γ\G/K → Λ\H/L is either null-homotopic

or is homotopic to a proper map g such that deg(g) = ±δ.

Straightforward arguments using Margulis’ normal subgroup theorem, Mostow-Margulis-

Prasad rigidity theorem and a result of Prasad in [27] show that if a non null homo-

topic map f does exist then essentially G = H and Γ < Λ. Using a result in [11],

we show that the number δ(Γ,Λ) is independent of the continuous map f .

As a consequence of the above theorem we get the following result.

Theorem 0.0.2. Let X = Γ\G/K, Y = Λ\H/L where G,H,Γ,Λ satisfy the hy-

potheses of Theorem 0.0.1. Then the set [X, Y ] of all (free) homotopy classes of

maps from X to Y is finite.

18



Assuming there exist orientation preserving maps of positive degree, we obtain infor-

mation about when the degree can also be negative. This is related to the question

whether or not a globally symmetric space of non-compact type admits an orienta-

tion reversing isometry. For irreducible symmetric spaces of type IV we have the

following result.

Theorem 0.0.3. An irreducible globally symmetric space G/K of type IV admits

an orientation reversing isometry if and only if either dimCG = dimK is odd, or,

K is locally isomorphic to one of the groups SU(4n+3), n ≥ 0, and SO(4m),m ≥ 1.

Aiding our analysis is the observation that a symmetric space of non-compact type

admits an orientation reversing isometry if and only if its compact dual does. We

have completely settled the question of existence of orientation reversing isometry

for all irreducible symmetric spaces of type I (which are compact duals of those of

type III) associated to the classical groups as well as some exceptional groups, by

either showing that some Pontrjagin number is non-zero or explicitly producing an

orientation reversing isometry. Table 1 summarizes our results. There OR indi-

cates the existence of an orientation reversing isometry and OP indicates that every

isometry is orientation preserving.

We contrast the situation in Theorem 0.0.2 with that of cardinality of free homotopy

classes of maps from a locally symmetric space rank 1 to any locally symmetric space,

by showing that in many cases it is infinite. In fact we prove

Proposition 0.0.4. Let X be any connected CW complex with positive first Betti

number. Let Y be an Eilenberg-MacLane complex K(Λ, 1) where Λ is any group

that has infinitely many conjugacy classes. Then the set [X, Y ] of (free) homotopy

classes of maps from X to Y is infinite.

It has been proved in many cases that a locally symmetric space of rank one must

have non-vanishing first Betti number. Thus taking X to be a locally symmetric

19



Type U/K parameter OP/OR
A I SU(n)/SO(n) n ≡ 0, 2, 3 mod 4 OR

n ≡ 1 mod 4 OP
A II SU(2n)/Sp(n) 2|n OR

2|(n− 1) OP
A III CGp+q,p 2|pq OP

pq ≡ 1 mod 2 OR

BD I G̃p+q,p 2|p, 2|q, 8|pq OP
otherwise OR

D III SO(2n)/U(n) n ≡ 2, 3 mod 4 OR
n ≡ 0, 1 mod 4 OP

C I Sp(n)/U(n) n ≡ 1, 2 mod 4 OR
n ≡ 0, 3 mod 4 OP

C II HGp,q 2|pq or p 6= q OP
p = q ≡ 1 mod 2 OR

E III E6

Spin(10)×U(1)
– OP

E VII E7

E6×U(1)
– OR

F II F4/SO(9) – OP
G G2/SO(4) – OP

Table 1: Results for irreducible symmetric spaces of Type III.

space with non-vanishing first Betti number and Y to be any locally symmetric

space, in Proposition 0.0.4, we see that [X, Y ] is infinite.

These results have been published in [23].

Cohomology of cocompact lattices in SO∗(2n)

In [22], Millson and Raghunathan construct pairs of complementary dimensional

submanifolds of certain locally symmetric spaces associated to the Lie groups G =

SO0(p, q), SU(p, q) and Sp(p, q). They show that the cup product of the Poincaré

duals of these pairs of submanifolds are non-zero and hence they represent non zero

classes in cohomology. The G-invariant forms are obvious non-trivial cohomology

classes. They show that every locally symmetric space for which this construction

of non-trivial geometric cycles have been made, admits a finite cover such that the

20



Poincaré duals of the corresponding cycles in the cover are not G-invariant. The

theoretical framework for construction of such special cycles has been put in place

in [29] and has been applied to the case G = SU∗(2n) by Schwermer and Waldner

in [34], the case where G is the non-compact real form of the exceptional group G2

by Waldner and the case where G = SL(n,R) and SL(n,C) by Schimpf.

We investigate the case of locally symmetric spaces associated to the group G =

SO∗(2n), which is the real simple Lie group of type DIII. This group can be described

in terms of quaternions as SO∗(2n) ∼= SO(n,H) := {g ∈ SL(n,H) : τr(g)>g = Id},

where τr : H → H takes p + iq + jr + ks to p + iq − jr + ks and on a matrix it

acts entry-wise. Since SO(n,H) is of higher rank, all lattices in it are arithmetic.

Let F be a totally real number field. Except when n = 4, any F -structure of

SO(n,H) is of the form SU(A, τr,Hα,β
F ) := {g ∈ SL(n,Hα,β

F ) : τr(g)>Ag = A},

where α, β < 0 and A ∈ GL(n,Hα,β
F ) is τr-Hermitian, that is, it satisfies τr(A)> =

A. See [25, Section18.5]. When n = 4, where there are more F -structures due

to triality. We ignore these exotic F -structures. Without loss of generality we

assume that A is diagonal, since all τr-Hermitian matrices are diagonalizable. The

numbers α, β and entries of the matrix A can be chosen such that an application of

restriction of scalars to the F -group SU(A, τr,Hα,β
F ) will result in a Q-group whose R

points is a product of simple real Lie groups, where only one factor is isomorphic to

SO(n,H) and the rest are compact groups. Corresponding to such an F -structure,

we get a commensurability class of lattices in SO(n,H). If F 6= Q, such lattices

are automatically cocompact. If F = Q, then such lattices are cocompact if and

only if the τr-Hermitian form corresponding to A, is Hα,β
Q -anisotropic. All these well

behaved F -structures SU(A, τr,Hα,β
F ), resulting in uniform lattices, will be said to

be of type DIIIu.

Proposition 0.0.5 below yeilds a class of F -structures of type DIIIu which admit an

F -rational involution which is a Cartan involution when seen as an automorphism
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of the R-points. We call such an involution an F -rational Cartan involution.

Proposition 0.0.5. Consider the F -group SU(A, τr,Hα,β
F ) of type DIIIu, where

A is diagonal. If the reduced norm of each diagonal element of A belongs to the

same class in F×/(F×)2, then there exists an F -rational Cartan involution given by

conjugation by a diagonal matrix Y ∈ GL(n,Hα,β
F ).

We fix this Cartan involution and denote it by θ. Let K denote the maximal compact

subgroup of the R-points that is fixed by θ.

Our method of construction of special cycles is same as in [34]. First we produce

some F -rational involutions that commute with θ. Any such involution will fix K.

Conjugation by any matrix D which satisfies the following two conditions is an

F -rational involution.

D2 = −λIn, for some λ ∈ F× (1)

τr(D)>AD = µA, for some µ ∈ F×. (2)

It turns out we must have λ = ±µ. Such an involution will be called sign involution

if λ < 0, an involution of even type if λ > 0 and λ = µ, and an involution of odd

type if λ > 0 and λ = −µ. Each of these involutions commute with θ. Let σ denote

any of these involutions. If σ is a sign involution then θσ is an involution of even

type and vice versa. If σ is an involution of odd type then θσ is again an involution

of odd type.

There exists a lattice Γ in the commensurability class corresponding to each F -

structure which is fixed by σ and θσ. Thus they induce a pair of involution of

the corresponding locally symmetric space Γ\G/K. By Theorem 4.11 in [29], there

exists a finite index subgroup Γ′ < Γ such that the fixed point submanifolds of

the pairs of involutive isometries of Γ′\G/K induced by σ and θσ have non zero

intersection numbers, provided a certain orientability condition ‘Or’ is satisfied. It
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is always satisfied if σ is a sign involution or an involution of even type. If σ is an

involution of odd type then Or is satisfied if n is odd. In summary our first main

result is as follows.

Theorem 0.0.6. Let Λ be a torsion free lattice in a commensurability class corre-

sponding to an F -structure of class DIIIu satisfying the condition given in Propo-

sition 0.0.5. Then there exists a cofinal family of finite index subgroups Γ ⊂ Λ such

that the following holds. There exists cohomology classes of Γ\SO∗(2n)/SU(n),

which are not G-invariant, in dimensions 2k(n−k) and n(n−1)−2k(n−k), where

k varies between 1 and [n
2
], and in the dimension 1

2
n(n− 1) if n is odd.

Remark 0.0.7. 1. Any locally symmetric space associated to SO∗(2n) is Kähler.

Hence its cohomology can be decomposed into Hodge types. A natural question is

what is the type decomposition of the cohomology classes that we construct. The

classes in dimension 2k(n − k) and n(n − 1) − 2k(n − k) are Poincaré duals of

complex analytic submanifolds. Hence they must be of pure type (p, p). See [9,

p. 162-163]. This fact will be crucially used in the following.

2. Another consequence of the Kähler property is the following. In dimensions

2k(n − k) and n(n − 1) − 2k(n − k), we not only detect non-G-invariant classes

in the cohomology of a cofinal family of finite index subgroups Γ ⊂ Λ, but in fact

for every torsion free lattice in the commensurability class of Λ. This is because a

complex analytic submanifold in a finite index cover projects down to an analytic

subvariety and such subvarieties always represent non-trivial homology cycle in the

Kähler manifold. See [9, p. 110].

A major motivation for construction of geometric cycles is detection of occurrence

of irreducible unitary representations of G with non-zero cohomology in L2(Γ\G).

By [36], these are representations whose Harish-Chandra modules are isomorphic to

one of the (g, K)-modules Aq, where Aq is the representation of g obtained by coho-

mological induction on the trivial representation of a θ-stable parabolic subalgebra
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q of g. Let Q := {Aq : q a θ-stable parabolic}/ ', where ' is the unitary equiv-

alence relation. The possibility of such a detection comes from the Matsushima’s

isomorphism which can be stated as

H∗(Γ\G/K;C) ∼=
∏
Aq∈Q

m(Aq,Γ) H∗(g, K,Aq) (3)

where Aq is understood to represent its unitary equivalence class and m(Aq,Γ) is

the multiplicity with which the G-representation with Harish Chandra module Aq

occurs in L2(Γ\G). Let u be the nilpotent radical of q. Then the cohomology

group Hj(g, K,Aq) is non-trivial only if R(q) ≤ j ≤ dim(G/K) − R(q), where

R(q) = dimC(u ∩ p).

If G/K is a Hermitian symmetric space then we have an additional structure on both

sides of (3), in the form of Hodge bi-grading for cohomology of Kähler manifolds on

the left and a similar bi-grading on the right arising from a bi-gradation of its cochain

complex HomK(∧kp, Aq) ∼= ⊕p+q=kHomK(∧pp+⊗∧qp−, Aq). These two bi-gradations

are compatible. For any k, there is exactly one pair (p, q) for which p + q = k and

Hp,q(g, K,Aq) is non-zero. This pair is the one that satisfies p− q = R(q)+−R(q)−,

where R(q)+ = dim(u ∩ p+) and R(q)− = dim(u ∩ p−). See [36, Proposition 6.19].

In our case of G = SO∗(2n), we obtain a parametrization of the set Q by associating

a certain combinatorial diagram to each member of the set. The numbers R(q)+ and

R(q)− can be read off directly from these diagrams. Using this data and Remark 1,

we isolate an Aq which is detected by the special cycle we constructed in dimension

2n− 2.

Theorem 0.0.8. Let Γ be any torsion-free lattice in the commensurability class

corresponding to an F -structure of class DIIIu on SO∗(2n) satisfying the condition

given in Proposition 0.0.5. Assume n > 8. Then:

(i) There exists a unique Aq up to unitary equivalence satisfying R(q)+ = R(q)− =
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n− 2, such that m(Aq,Γ) > 0.

(ii) There are cohomology classes in H∗(Γ\SO∗(2n)/U(n);C) not G-invariant in all

even dimensions between 2n− 4 and n(n− 1)− (2n− 4).

Remark 0.0.9. The question of which Aq’s occur in L2(Γ\SO∗(2n)), where Γ is

a torsion free cocompact lattice in SO∗(2n), has been investigated by others, for

example, by Li in [18]. The Aq that we detect for the restricted family of lattices, as

stated in Theorem 0.0.8, does not seem to have been detected earlier.

***

Layout of thesis: Chapter 1 contains our results on degrees of maps between lo-

cally symmetric spaces and (non-) existence of orientation reversing isometries of

symmetric spaces. In particular, Theorems 0.0.1 and 0.0.2 of the Synopsis appear

as Theorems 1.2.1 and 1.2.2 respectively. Chapter 2 is about construction of spe-

cial cycles for a certain family of locally symmetric spaces associated to the group

SO∗(2n) ∼= SO(n,H). Theorem 0.0.6 of the Synopsis is restated with more details as

Theorem 2.5.1. Chapter 3 is about irreducible unitary representations of SO(n,H),

with non-zero cohomology, that may occur in L2(Γ\SO(n,H)), where Γ is a uni-

form lattice in SO(n,H). The contents of Theorem 0.0.8 are stated more precisely

in Theorem 3.5.1 and Corollary 3.5.2.

Chapters 2 and 3 can be read independently of Chapter 1.

Throughout this thesis by a locally symmetric space we always mean a locally sym-

metric space of non-compact type.
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Chapter 1

Degrees of maps between locally

symmetric spaces

Let X be a locally symmetric space Γ\G/K where G is a connected non-compact

semisimple real Lie group with trivial centre, K is a maximal compact subgroup of

G, and Γ ⊂ G is a torsion-free irreducible lattice in G. Let Y = Λ\H/L be another

such space having the same dimension as X. Suppose that real rank of G is at

least 2. In this chapter we show that any f : X → Y is either null-homotopic or is

homotopic to a covering projection of degree an integer that depends only on Γ and

Λ. As a corollary we obtain that the set [X, Y ] of homotopy classes of maps from X

to Y is finite. We also obtain results on the (non-) existence of orientation reversing

diffeomorphisms on X. The chapter is organised as follows: In §1.1 we introduce the

notions of F -co-Hopficity and minimal index. The main results, Theorems 1.2.1 and

1.2.2 are stated and proved in §1.2. In §1.3 we consider the problem of classifying

locally symmetric spaces which admit an orientation reversing isometry. In §1.4 we

consider the case of rank-1 locally symmetric spaces.
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1.1 F-Co-Hopficity and minimal index

Recall that a group Γ is said to be residually finite if, given any γ ∈ Γ, γ 6= 1,

there exists a finite index subgroup Λ such that γ /∈ Λ. A group Γ is called Hopfian

(resp. co-Hopfian) if any surjective (resp. injective) homomorphism Γ → Γ is an

automorphism. Any finitely generated subgroup of a general linear group over a field

is residually finite, and, any finitely generated residually finite group is Hopfian. The

latter result is due to Mal’cev. See [19]. In particular, any lattice in a connected

semisimple linear Lie group G, being finitely generated, is residually finite and hence

Hopfian.

Lemma 1.1.1. Let Γ be an infinite torsion-free group.

(i) Suppose that any non-trivial normal subgroup of Γ has finite index in Γ. Let

φ : Γ → Λ be any surjective homomorphism where Λ is infinite. Then φ is an

isomorphism. If Γ is also co-Hopfian, then any non-trivial endomorphism of Γ is

an isomorphism.

(ii) (Cf. Hirshon [11]) Let φ : Γ → Γ be an endomorphism where Im(φ) ⊂ Γ has

finite index in Γ. If Γ is finitely generated, residually finite and co-Hopfian, then φ

is an automorphism.

Proof. (i) Note that ker(φ) has infinite index in Γ since Λ is infinite. By our hy-

pothesis on Γ, it follows that ker(φ) is trivial and so φ is an isomorphism.

Let Γ be co-Hopfian. If φ : Γ → Γ is a non-trivial endomorphism, then φ(Γ) is

infinite as Γ is torsion-free. It follows from what has been shown already that φ is

a monomorphism. Since Γ is co-Hopfian, we must have φ is onto and so φ is an

automorphism.

(ii) This is essentially due to Hirshon [11, Corollary 3] who showed, without the

hypothesis of co-Hopficity property, that φ is a monomorphism. The co-Hopficity
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of Γ implies that φ is an automorphism.

Definition Let Γ,Λ be any two infinite groups. Let δ(Γ,Λ) be defined as

δ(Γ,Λ) := min[Λ : Λ′]

where the infimum is taken over all finite index subgroups Λ′ of Λ which are iso-

morphic to Γ. If there is no such subgroup, we set δ(Γ,Λ) := 0. We call δ(Γ,Λ) the

minimal index of Γ in Λ.

Let X be a finite CW complex which is a K(Λ, 1)-space. Note that if Λ′ is any

finite index subgroup of Λ, then the coving space X ′ of X corresponding to the

subgroup Λ′ is also a finite CW complex which is a K(Λ′, 1)-space. Also the Euler

characteristic χ(Λ) := χ(X) is non-zero if and only if χ(Λ′) is non-zero and χ(Λ)[Λ :

Λ′] = χ(Λ′). It follows that in case χ(Λ) 6= 0, then the minimal index equals the

index: δ(Λ′,Λ) = [Λ : Λ′].

Definition We say that Λ is F-co-Hopfian if [Λ : Λ1] = [Λ : Λ2] for any two finite

index subgroups Λ1,Λ2 ⊂ Λ such that Λ1
∼= Λ2.

The group Z is not F -co-Hopfian. A non-abelian free group of finite rank is F -co-

Hopfian but not co-Hopfian. More generally, we see from the discussion preceding

the above definition that if there exists a K(Λ, 1)-space where X is a finite CW

complex with χ(X) 6= 0, then Λ is F -co-Hopfian. Also if Λ admits no non-trivial

finite quotients, then Λ is vacuously F -co-Hopfian.

We recall now a natural metric on a locally symmetric space. Let Θ : G → G be

an involutive automorphism with fixed group a maximal compact subgroup K. Let

θ : g → g be its differential where g := Lie(G) and let g = k ⊕ p be the Cartan
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decomposition where k = {V ∈ g | θ(V ) = V } = Lie(K), p = {V ∈ g | θ(V ) =

−V }. The Killing form of g restricted to p is positive definite. Since the tangent

bundle of G/K is obtained as G×K p→ G/K (where K acts on p via the adjoint),

this yields a G-invariant Riemannian metric on G/K with respect to which it is a

globally symmetric space. The canonical Riemannian metric on Γ\G/K is obtained

by requiring the covering projection G/K → Γ\G/K = X to be a local isometry.

We refer to volume of X with respect to this metric the canonical volume and denote

it by Vol(X). By the strong rigidity theorem of Mostow-Margulis-Prasad ([7]) the

canonical volume of X is a homotopy invariant. We have the following observation.

Lemma 1.1.2. Let Λ be an infinite torsion-free group. Suppose that any one of the

following holds: (i) there exists a finite K(Λ, 1) complex and χ(Λ) 6= 0; (ii) Λ is

an irreducible lattice in a semisimple Lie group H with trivial centre and having no

(non-trivial) compact factors. Then Λ is F-co-Hopfian.

Proof. By the above discussion, it only remains to consider case (ii). As remarked al-

ready, the Mostow-Margulis-Prasad rigidity theorem implies that the canonical vol-

ume of a locally symmetric space is a homotopy invariant. Let pj : Mj →M be the

covering of M such that π1(Mj) =: Λj, j = 1, 2. Then Vol(Mj) = deg(pj).Vol(M).

Since Λ1
∼= Λ2, we have Vol(M1) = Vol(M2) and so [Λ : Λ1] = deg(p1) = deg(p2) =

[Λ : Λ2].

Lemma 1.1.3. Let φ : Γ→ Λ be a homomorphism such that [Λ : φ(Γ)] <∞ where

Γ is an infinite group in which every proper normal subgroup has finite index in Γ

and Λ is an infinite torsion-free F-co-Hopfian group. Then δ(Γ,Λ) = [Λ : φ(Λ)].

Proof. Since Λ is torsion free, the image of φ is infinite. Hence ker(φ) has infinite

index and hence, by our hypothesis on Γ, φ is a monomorphism. If Λ1 is any finite

index subgroup of Λ, such that Λ1
∼= Γ, then Λ1

∼= φ(Γ). By the F -co-Hopf property
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of Λ, we have [Λ : Λ1] = [Λ : φ(Γ)]. The lemma is now immediate from the definition

of δ(Γ,Λ).

1.2 Main results

Our first main result is the following. Recall that a lattice Γ ⊂ G in a connected

semisimple real Lie group G is called irreducible if its image in G/N under the

projection G→ G/N is dense for any non-compact normal subgroup N of G.

Let f : M → N be any continuous map between two oriented connected manifolds

of the same dimension n. Recall that if M and N are compact, the deg(f) ∈ Z is

defined by f∗(µM) = deg(f).µN where f∗ : Hn(M ;Z) = ZµM → ZµN = Hn(N ;Z)

and µM , µN are the fundamental classes of M and N respectively. If M and N are

non-compact and if f is proper, then deg(f) ∈ Z is defined in an analogous manner

using compactly supported cohomology.

Theorem 1.2.1. Let G,H be connected semisimple Lie groups with trivial centre

and without compact factors and let K,L be maximal compact subgroups of G and

H respectively. Suppose that the (real) rank of G is at least 2 and that dimG/K ≥

dimH/L. Let Γ be an irreducible torsionless lattice in G and let Λ be any torsionless

lattice in H. There exists a non-negative integer δ = δ(Γ,Λ) such that the following

hold: Any continuous map f : Γ\G/K → Λ\H/L is either null-homotopic or is

homotopic to a proper map g such that deg(g) = ±δ.

Proof. Without loss of generality we assume that f preserves the base points, which

are taken to be the identity double-cosets. Thus π1(X) = Γ, π1(Y ) = Λ (suppressing

the base point in the notation).

Suppose that f is not null-homotopic. Then f∗ : π1(X) = Γ → Λ = π1(Y ) is non-

trivial. Note that Γ and Λ are torsion-free since X and Y are aspherical manifolds.
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Since rank(G) ≥ 2 and Γ is an irreducible lattice, by Margulis’ normal subgroup

theorem ([38, Chapter 8]) ker(f∗) is finite or Im(f∗) is finite. As Γ and Λ are

torsionless and f∗ is non-trivial, we must have ker(f∗) is trivial. Hence f∗ is an

isomorphism of Γ onto a subgroup of Λ1 ⊂ Λ. Since Λ1 ⊂ H is discrete, by the main

result of Prasad [27] we see that dimH/L ≥ dimG/K. Since dimX ≥ dimY by

hypothesis, we must have equality and, again by the same theorem, Λ1 is a lattice

in H. Since Λ is a lattice of H, we conclude that Λ1 ⊂ Λ must have finite index in

Λ. It follows that f : X → Y factors as p ◦ f1 where f1 : X → Y1, and p : Y1 → Y is

a finite covering projection, where Y1 := Λ1\H/L. Since f1 induces isomorphism in

fundamental groups, it is a homotopy equivalence as X, Y1 are aspherical manifolds.

By the Mostow-Margulis rigidity theorem, it follows that f1 is homotopic to an

isometry h. We let g := p ◦ h.

It remains to show that deg(g) = ± deg(p) = ±[Λ : Λ1] equals ±δ(Γ,Λ), where

the sign is positive if f1 is orientation preserving and is negative otherwise. By

Lemma 1.1.2, Λ is F -co-Hopfian. Since rank(G) ≥ 2, in view of Margulis’ normal

subgroup theorem, we see that the hypotheses of Lemma 1.1.3 hold and we have

δ(Γ,Λ) = [Λ : Λ1]. This completes the proof.

We obtain the following result as a corollary of Theorem 1.2.1.

Theorem 1.2.2. Let X = Γ\G/K, Y = Λ\H/L where G,H,Γ,Λ satisfy the hy-

potheses Theorem 1.2.1. Then the set [X, Y ] of all (free) homotopy classes of maps

from X to Y is finite.

Proof. First note that there are only finitely many subgroups of Λ having index

δ(Γ,Λ). Corresponding to any such group Γ ∼= Λ1 ⊂ Λ, the deck transformation

group of the covering projection p : Y1 → Y is finite; here Y1 corresponds to the

subgroup Λ1. Identifying Y1 with X, the set of homotopy self-equivalences of X

equals the group Out(Γ) of all outer automorphisms of Γ = π1(X). It is a well-known
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fact that this latter group is finite. For example, using the Mostow-Margulis-Prasad

rigidity theorem, one has a natural homomorphism Out(Γ)→ Aut(G)/G with kernel

NΓ/Γ where NΓ denotes the normalizer of Γ in G. Since Aut(G) has only finitely

many components, Aut(G)/G is finite. Also NΓ is a lattice in G by a result of Borel

[30, Chapter V]. Hence Out(Γ) is finite. It follows that [X, Y ] is finite.

1.3 Existence of orientation reversing isometries

In this section we investigate the possibility of existence of a negative degree map

between locally symmetric spaces satisfying the hypotheses of Theorem 1.2.1, given

a map of positive degree already exists. Let f be this given positive degree map.

The proof of Theorem 1.2.1 in fact shows that f is homotopic to a local isometry

from X to Y . So we may assume that G = H and Γ ⊂ Λ. The following lemma

gives a description of all such local isometries.

Lemma 1.3.1. Let X̃ be a symmetric space of non-compact type. Let X and Y

be two locally symmetric spaces having same universal cover X̃, corresponding to

the torsionless lattices Γ and Λ respectively. Assume Γ ⊂ Λ. Then the set of local

isometries from X to Y is in one to one correspondence with Λ\N(Γ,Λ), where

N(Γ,Λ) := {g ∈ Iso(X̃) : gΓg−1 ⊂ Λ} and Λ acts on it via left multiplication. Here

Iso(X̃) is the full isometry group of X̃.

Proof. The above statement is a generalization of the statement that the set of

isometries of X is in bijective correspondence with Γ\N(Γ), where N(Γ) denote the

normalizer of Γ in Iso(X̃). See [5, Proposition 8.6, chapter I.8]. The proof is also

a straightforward generalization of the proof given in [5] in that case. We sketch

the main arguments here. Given an element g ∈ N(Γ,Λ) the induced map from

X to Y is well defined. Suppose we are given a local isometry µ : X → Y . It
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can be lifted to an isometry µ̃ of X̃. Now one can to show that for any γ ∈ Γ,

µ̃γµ̃−1 is a deck transformation of the covering X̃ → Y . Hence µ̃γµ̃−1 ∈ Λ and

therefore µ̃ ∈ N(Γ,Λ). Thus we get a surjective map from N(Γ,Λ) to the set of

local isometries from X to Y . This map factors through Λ\N(Γ,Λ) and we get our

required one to one correspondence.

We immediately get the following result as corollary, which gives a theoretical answer

to the question of existence of negative degree maps.

Corollary 1.3.2. Let X and Y be as in Lemma 1.3.1. A negative degree map from

X to Y exists if and only if N(Γ,Λ) intersects one of the components of Iso(X̃) that

act in an orientation reversing manner on X̃.

So the next question we address is: does X̃ = G/K admit an orientation reversing

isometry? We first show that we can transfer the question to the realm of symmetric

spaces of compact type. See Proposition 1.3.3 for a precise statement.

Let U/K be the simply connected compact dual of G/K. Suppose that σu : U/K →

U/K is an isometry which we assume, without loss of generality, fixes the identity

coset o. As U/Z(U) is covered by the identity component of the group of isometries of

U/K, σu induces an automorphism, again denoted σu, of the Lie algebra Lie(U) =:

u = k ⊕ ip that stabilizes k and hence p∗ := ip as well. (Recall that Lie(G) =

g = k ⊕ p.) Let σ be the complex linear extension of σu to u ⊗ C =: gC. Then

σ(g) = g and so σ0 := σ|g is an autmorphism of g. We denote by the same symbol

σ0 the automorphism of G/K induced by σ0 ∈ Aut(g). Conversely, starting with an

isometry σ0 of G/K that fixes the identity coset of G/K, which is again denoted o,

we obtain an isometry of U/K that fixes o ∈ U/K (using the assumption that U/K

is simply connected).

We have the natural isomorphism of tangent spaces ToU/K = u/k ∼= p∗ and

ToG/K = g/k ∼= p. Note that dσu : ToU/K = p∗ → p∗ = ToU/K and dσo : ToG/K =
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p→ p = T0G/K are restrictions of the same complex linear map σ : gC → gC. Hence

σu is orientation preserving if and only if σ0 is orientation preserving.

Proposition 1.3.3. Suppose that U/K is the simply connected compact dual of

G/K. The space G/K admits an orientation reversing isometry if and only if U/K

admits an orientation reversing isometry. In particular, if U/K does not admit

any orientation reversing isometry, neither does X = Γ\G/K for any torsionless

discrete subgroup Γ ⊂ G. �

In view of the above proposition, we need only consider simply connected symmetric

spaces U/K of compact type to decide whether G/K admits an orientation reversing

isometry. We shall assume that G is simple and settle this question completely for

all symmetric spaces G/K where G is of classical type or G is a complex Lie group.

We shall also address a few cases where G is exceptional.

Recall that if a smooth compact manifold admits an orientation reversing diffeomor-

phism, then the manifold represents either the trivial element or an element of order

2 in the oriented cobordism ring Ω∗ and hence all its Pontrjagin numbers are zero.

See [21, p. 186]. Suppose that some Pontrjagin number of U/K is non-zero, then

it does not admit any orientation reversing diffeomorphism and the same is true of

X = Γ\G/K as well for any torsionless discrete subgroup Γ. In the case when Γ

is a cocompact lattice, by the Hirzebruch proportionality principle ([12], [15]) the

corresponding Pontrjagin number of X is non-zero and X represents an element of

infinite (additive) order in Ω∗.

1.3.1 Symmetric spaces of type IV

When G is a simply connected complex simple Lie group, we have U = K × K,

G/K is of type IV, and U/K ∼= K is of type II. Let φ be an automorphism of

g = k+ik =: kC which preserves k. Then either φ is the C-linear extension θ := ψ⊗C
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of an automorphism ψ of k or is of the form σ0◦θ where σ0 is the complex conjugation.

Since σ0 restricted to p = ik equals −id, G/K admits an orientation reversing

isometry if dimC g = dim k is odd. If φ = θ, then φ|ik is orientation reversing if

and only if ψ is. Suppose that t ⊂ k is the Lie algebra of a maximal torus T ⊂ K.

By composing with an inner automorphism of k if necessary, we may assume that

ψ stabilizes t. Let ∆ be the set of roots of g with respect to tC and let Σ be the

set of simple roots for a positive system of roots ∆+. Then ∆ is also the set of

roots of k with respect to t. We may further assume, by composing with an inner

automorphism of g representing a suitable element of the Weyl group of (k, t), that

ψ preserves ∆+. See [10, Theorem 3.29, Ch. X]. Then ψ induces an automorphism

of the Dynkin diagram of (k, t). We claim that ψ is orientation preserving if and

only if it induces an even permutation of the set of nodes of the Dynkin diagram,

namely, Σ. To see this, for any complex linear form γ on tC, let Hγ ∈ tC be

the unique element tC such that B(H,Hγ) = γ(H),∀H ∈ tC. (Here B(., .) is the

Killing form.) Then iHα ∈ t for all α ∈ ∆. Let Xα, α ∈ ∆, be a Weyl basis (in the

sense of [10, Definition, p.421]). Then, for any β ∈ ∆+, Xβ − X−β, i(Xβ + X−β)

form an R-basis for the real vector space k ∩ (gβ + g−β) =: kβ. The kβ, β ∈ ∆+,

are the non-trivial irreducible T -submodules of k and we have ψ(kβ) = kγ where

γ = ψ∗(β) = β ◦ ψ ∈ ∆+. In fact, the assumption that ψ(∆+) = ∆+ implies that

the matrix of ψ : kβ → kγ with respect to the ordered bases of kβ, kγ as above is

of the form
( xβ −yβ
yβ xβ

)
with x2

β + y2
β = 1 (see [10, §5, Ch. IX]). It follows that the

ψ : k→ k is orientation preserving if and only if ψ|t is orientation preserving. Since

the basis iHα, α ∈ Σ, of t is permuted by ψ, ψ|t is orientation preserving if and only

if ψ∗ : Σ → Σ is an even permutation. This proves our claim. An inspection of

the Dynkin diagrams reveals that an orientation reversing automorphism of k exists

precisely when k = su(n), n ≡ 0, 3 mod 4, or k = so(2n), n ≥ 4. We have proved

Theorem 1.3.4. An irreducible globally symmetric space G/K of type IV admits

an orientation reversing isometry if and only if either dimCG = dimK is odd, or,

40



K is locally isomorphic to one of the groups SU(4n+3), n ≥ 0, and SO(4m),m ≥ 1.

From now on, till the end of §4, we assume that G is a connected real simple Lie

group which is not a complex Lie group. Thus G/K is of type III and U is simple.

The results are tabulated in Table 1.1.

1.3.2 Hermitian symmetric spaces

Let U/K be simply connected compact irreducible Hermitian symmetric space U/K,

where U is simply connected and simple. There are six families of such spaces: AIII,

DIII, BDI(rank 2), CI, EIII, and EVII, using the standard notations (as in [10]).

There are exactly two invariant complex structures C and C ′ which are conjugate

to one another in the sense that the complex structure on p∗ = ToU/K induced by

C and C ′ are complex conjugate of each other. These two complex structures are

related by an automorphism σu of U that stabilizes K thereby inducing the complex

conjugation on p∗ (with respect to C, say). In particular, the isometry σu of U/K

is orientation reversing if and only if dimC U/K is odd. See [3, Remark 2, §13]. In

particular, E7/U(1) × E6, which has dimension 27 (over C), admits an orientation

reversing isometry.

When dimC U/K = d is even, we shall show that an appropriate Pontrjagin number

of U/K is non-zero.

The signature of a compact irreducible Hermitian symmetric space are known; see

[13, p. 163]. In the case of the complex Grassmann manifold (Type AIII), CGp+q,p =

SU(p+q)/S(U(p)×U(q)), the signature equals
(b(p+q)/2c
bp/2c

)
when d = pq is even. (Cf.

Shanahan [35, p. 489].) The signature equals 4bp/2c for the complex quadric (Type

BD I, rank 2), SO(2 + p)/(SO(2)×SO(p)), p > 2. In the case of type E III, namely

E6/(Spin(10) × U(1)), the signature equals 3. We shall presently show that when
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dimC SO(2p)/U(p) = p(p− 1)/2 = d (resp. dimC Sp(n)/U(n) = n(n + 1)/2 = d) is

even, p
d/2
1 6= 0 where p1 is the first Pontrjagin class.

We shall now compute p1 := p1(SO(2p)/U(p)). For this purpose we shall use the

notation and the formula for the total Chern class of SO(2p)/U(p) given in [3,

§16.3] with respect to an SO(2p)-invariant complex structure compatible with the

usual differentiable structure on SO(2p)/U(p). Let σj = σj(x1, . . . , xp) denote the

jth symmetric polynomial in the indeterminates x1, . . . , xp. We set deg(xj) = 2

and consider the graded polynomial algebra K[σ1, . . . , σp]. If K is any field of

characteristic other than 2, the cohomology algebra H∗(SO(2p)/U(p);K) is iso-

morphic to K[σ1, . . . , σp]/I where I is the ideal generated by the elements λj :=

σj(x
2
1, x

2
2, . . . , x

2
p), 1 ≤ j < p and σp. We take K to be Q.

We have c(SO(2n)/U(n)) =
∏

1≤i<j≤p(1+xi+xj) from which we obtain the following

formula for the total Pontrjagin class:

1− p1 + p2 − · · · =
∏

1≤i<j≤p

(1 + xi + xj)
∏

1≤i<j≤p

(1− xi − xj),

equivalently,

p(SO(2n)/U(n)) =
∏

1≤i<j≤p

(1 + (xi + xj)
2).

Therefore p1 =
∑

1≤i<j≤p(xi+xj)
2 = (p−1)

∑
1≤i≤p x

2
i+2

∑
1≤i<j≤p xixj = (n−1)λ1+

2σ2 = 2σ2 = σ2
1, since λ1 ∈ I and σ2

1 = λ1 + 2σ2. Since SO(2n)/U(n) is Kähler, and

since H2(SO(2n)/U(n);Q) = Qσ1, we have σd1 6= 0 where d = dimC SO(2p)/U(p) =

p(p− 1)/2. Thus we see that p
d/2
1 [SO(2p)/U(p)] 6= 0 when d is even.

An entirely analogous computation shows that p
d/2
1 [Sp(p)/U(p)] 6= 0 when dimC Sp(p)/U(p)

= n(n+ 1)/2 =: d is even, using the formula for the total Chern class of Sp(p)/U(p)

as given in [3, §16.4]. In fact, in this case the computations can be carried out in

the integral cohomology ring.
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To summarise we have proved, in view of Proposition 1.3.3, the following.

Theorem 1.3.5. An irreducible hermitian symmetric domain G/K (or its simply

connected compact dual U/K) admits an orientation reversing isometry if and only

if its complex dimension is odd. �

1.3.3 Oriented Grassmann manifolds

The oriented Grassmann manifold G̃m+n,n = SO(m+n)/SO(m) ×SO(n) is dual to

SO0(m,n)/SO(m)×SO(n). We leave out the well-known case of sphere, min{m,n} =

1, and also G̃4,2
∼= S2 × S2, by assuming m,n > 1 and m + n > 4. When the di-

mension mn is odd, the symmetric space G̃m+n,n admits an orientation reversing

isometry. So assume that mn is even.

Shanahan [35] has shown that the signature of G̃m+n,n equals
(b(m+n)/4c
bn/4c

)
when both

m,n are even, mn ≡ 0 mod 8, and is zero otherwise. When m ≡ n ≡ 2 mod 4

and m 6= n, it was shown that p
mn/4
1 [G̃m+n,n] 6= 0 in the proof of [33, Theorem 3.2].

Consequently, G̃m+n,n does not admit an orientation reversing diffeomorphism in

these cases.

It remains to consider the cases G̃m+n,n = U/K, U = SO(m + n), K = SO(m) ×

SO(n) where at least one of the numbers m,n is odd, or, m = n ≡ 2 mod 4.

Suppose that m is odd (the case n odd being analogous). Consider the isome-

try σu : G̃m+n,n → G̃m+n,n defined as σu(xK) = D−1xDK where D := Dm+n =

diag(1, . . . , 1,−1) ∈ O(m + n). Note that D−1KD = K. Also the differential of

σu at o ∈ U/K is the linear map of p∗ = {
(

0 B
−B> 0

)
| B ∈ Mm×n(R)} ∼= Mm×n(R)

defined by B 7→ BDn. Since m is odd, we conclude that σu is orientation reversing.

Finally, let n ≡ 2 mod 4 and consider σu : G̃2n,n → G̃2n,n defined as uK 7→

J−1uJK = JuJK is an isometry where J ∈ SO(2n) the matrix J :=
(

0 In
In 0

)
.
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Note that J−1KJ = K.

Then the differential of σu at o ∈ U/K is the linear isomorphism of p∗ ∼= Mn(R)

given by B 7→ −B>, which is orientation reversing if and only if
(
n
2

)
is odd. Since

n ≡ 2 mod 4, we conclude that σu is orientation reversing. (Cf. [33, Lemma 3.5].)

1.3.4 Quaternionic Grassmann manifolds

Next consider the quaternionic Grassmann manifold HGp+q,p = Sp(p + q)/Sp(p)×

Sp(q). S. Mong [24] has shown that the signature of HGp+q,p is zero if and only

if both p, q are odd. We claim that the Pontrjagin number ppq1 [HGp+q,p] 6= 0 when

p 6= q. When p = 1 < q, HGq+1,1
∼= HP q, the quaternionic projective space and the

result is due to Borel and Hirzebruch [3, §15.5]. The general case can be reduced

the case of quaternionic projective space. To see this, we assume, without loss

of generality, that q > p > 1 and use the natural ‘inclusion’ of the quaternionic

projective space j : HP q−p−1 ⊂ HGp+q,p induced by the obvious inclusion of H :=(
Ip−1 0 0

0 Sp(q−p+2) 0
0 0 Ip−1

)
∼= Sp(q − p+ 2) into Sp(p+ q) so that H ∩ (Sp(p)× Sp(q)) =

Sp(1) × Sp(q − p + 1) ⊂ Sp(q − p + 2). If we view HGp+q,p as the space of all q-

dimensional left H-vector spaces in Hp+q and HP q−p+1 = HGq−p+2,1 as the space of 1-

dimensional H-vector spaces in Hep+· · ·+Heq+1 then j(L) = L+He1+· · ·+Hep−1 for

L ∈ HP q−p+1. (As usual, H stands for the skew field of quaternions and e1, . . . , ep+q,

the standard basis for Hp+q.) Then the normal bundle to the imbedding j is trivial,

by using, for example, the description of the tangent bundle of HGp+q,p due to Lam

[16]. So j∗(p1(HGp+q,p)) = p1(HP q−p+1) 6= 0 since q − p + 1 ≥ 2. This shows

that p1(HGp+q,p) 6= 0. Observing that the integral cohomology rings of CGp+q,q

and HGp+q,p are isomorphic by an isomorphism that doubles the degree and using

the fact that cpq1 6= 0 where c1 ∈ H2(CGp+q,p;Z) ∼= Z is a generator, we see that

ppq1 6= 0 in H4pq(HGp+q,p;Z). Thus the Pontrjagin number ppq1 [HGp+q,p] 6= 0. (See
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also [33, Theorems 3.2(iii) and 3.3(ii)].) Hence when p 6= q, HGp+q,p does not admit

an orientation reversing diffeomorphism.

It remains to consider the case p = q ≡ 1 mod 2. In this case HG2p,p admits an

orientation reversing isometry as we shall now show. For this purpose, we shall

use the description sp(2p) = {
(

A Z
−>Z̄ B

)
| Z =

(
Z1 Z2

−Z̄2 Z̄1

)
, Z1, Z2 ∈ Mp(C), A,B ∈

sp(p)}, where sp(p) = {
(
X Y
−Ȳ X̄

)
| X ∈ u(p), >Y = Y ∈ Mp(C)}. Thus p∗ consists

of all matrices of the form
(

0 Z
−>Z̄ 0

)
∈ sp(2p). Conjugation by J = ( 0 I

I 0 ) is an

automorphism of sp(2p) which maps
(

A Z
−>Z̄ B

)
to
(
B −>Z̄
Z A

)
. Evidently it stabilizes

k = sp(p)× sp(p) and, since p is odd, reverses the orientation on p∗.

1.3.5 Other symmetric spaces of classical type

Consider the space SU(n)/SO(n), n > 2 (type AI). Note that p∗ = iSym0
n(R),

consisting of trace 0 symmetric matrices with purely imaginary entries. Thus p∗ ∼=

Sym0(R). Conjugation by D := diag(1, . . . , 1,−1) yields an isometry σu defined

as xK 7→ DxDK which induces on p∗ the map X 7→ DXD. It is readily seen

to be orientation reversing if and only if n is even. When dimSU(n)/SO(n) =

(n + 2)(n − 1)/2 is odd, i.e., when n ≡ 0, 3 mod 4, the involutive isometry gK →
>g−1K is orientation reversing. It remains to consider the case n ≡ 1 mod 4. When

n ≡ 1 mod 2, the outer automorphism group of SL(n,R) is generated by the Cartan

involution X → >X−1; see [26, p. 132-133]. It follows that SL(n,R)/SO(n) and

SU(n)/SO(n) does not admit any orientation reversing isometry if n ≡ 1 mod 4.

Next consider the symmetric space SU(2n)/Sp(n) (type AII), which is dual to

SU∗(2n)/Sp(n) where SU∗(2n) ⊂ SL(2n,C) consists of matrices Z which com-

mute with the transformation >(z1, . . . , z2n) = >(z̄n+1, . . . , z̄2n,−z̄1, . . . ,−z̄n), z 7→
>(z1, . . . , z2n) ∈ C2n. Again the outer automorphism group of SU∗(2n) is generated

by the Cartan involution X → >X−1 by the work of Murakami [26, p. 131-132].
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Hence SU∗(2n)/Sp(n) (equivalently SU(2n)/Sp(n)) admits an orientation reversing

isometry if and only if its dimension (n− 1)(2n+ 1) is odd, that is, if and only if n

is even.

1.3.6 Symmetric spaces of types G and F II

Borel and Hirzebruch [3, §18,19] have computed the Pontrjagin numbers ofG2/SO(4)

(type G) and of the Cayley plane F4/Spin(9) (type F II). In particular they showed

that p2[G2/SO(4)] 6= 0 and p4[F4/Spin(9)] 6= 0. Hence neither G2/SO(4) nor

F4/Spin(9) admit any orientation reversing diffeomorphism. Also, by the formula

of G. Hirsch, the Poincaré polynomials of G2/SO(4) and F4/Spin(9) are 1 + t4 + t8

and 1 + t8 + t16, it follows that their signatures are 1 (with suitable orientations).

We summarise the above results for type III symmetric spaces in Table 1.1. Here

OR indicates the existence of an orientation reversing isometry and OP indicates

that every isometry is orientation preserving.

1.4 Maps from rank 1 locally symmetric spaces

We will show that the restriction on rank of G in Theorem 1.2.1 cannot be weakened.

We do this by proving Proposition 1.4.1 below. It has been conjectured that any

locally symmetric space X = Γ\G/K, where G is a connected semisimple (non-

compact) linear Lie group of real rank 1, admits a finite cover whose first Betti

number is non-zero. In group theoretic terms, it translates into the assertion that

the lattice Γ admits a finite index subgroup Γ0 whose abelianization is infinite.

Although this conjecture seems to be as yet unresolved, it is known to be true in

most cases when Γ is arithmetic. See [20], [2] and [31].
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Type U/K parameter OP/OR
A I SU(n)/SO(n) n ≡ 0, 2, 3 mod 4 OR

n ≡ 1 mod 4 OP
A II SU(2n)/Sp(n) 2|n OR

2|(n− 1) OP
A III CGp+q,p 2|pq OP

pq ≡ 1 mod 2 OR

BD I G̃p+q,p 2|p, 2|q, 8|pq OP
otherwise OR

D III SO(2n)/U(n) n ≡ 2, 3 mod 4 OR
n ≡ 0, 1 mod 4 OP

C I Sp(n)/U(n) n ≡ 1, 2 mod 4 OR
n ≡ 0, 3 mod 4 OP

C II HGp,q 2|pq or p 6= q OP
p = q ≡ 1 mod 2 OR

E III E6

Spin(10)×U(1)
– OP

E VII E7

E6×U(1)
– OR

F II F4/SO(9) – OP
G G2/SO(4) – OP

Table 1.1: Results for irreducible symmetric spaces of Type III.

We want to show that if Y = Λ\H/L is any locally symmetric space where Λ

is torsionless and H is any connected semisimple linear Lie group and X is any

manifold with positive first Betti number, then the set [X, Y ] is infinite. It is easily

seen that, when H is regarded as a subgroup of GL(N,R) for some N , there exists a

λ in Λ not all of whose eigenvalues are on the unit circle. It follows that λm and λn

are not conjugates in GL(N,R) if |m| 6= |n|. Hence Λ has infinitely many distinct

conjugacy classes. In fact, it follows from the work of Brauer [6] (cf. [28]) that any

infinite, residually finite group has infinitely many conjugacy classes. In particular,

any finitely generated infinite subgroup of GL(N,R) has infinitely many conjugacy

classes. The following very general result shows that [X, Y ] is infinite.

Proposition 1.4.1. Let X be any connected CW complex with positive first Betti

number. Let Y be an Eilenberg-MacLane complex K(Λ, 1) where Λ is any group

that has infinitely many conjugacy classes. Then the set [X, Y ] of (free) homotopy

classes of maps from X to Y is infinite.

47



Proof. Let Γ = π1(X). Since the spaces involved are CW complexes, and since

Y is a K(Λ, 1)-space, any homomorphism Γ → Λ is induced by a continuous map

X → Y . If two maps f, g : X → Y are (freely) homotopic, then there exist inner-

automorphisms ιa ∈ Aut(Γ) and ιb ∈ Aut(Λ) such that g∗ = ιb ◦ f∗ ◦ ιa : Γ→ Λ. Let

α : Γ→ Z be a non-zero element of H1(X;Z). We may assume that α is surjective;

choose a γ0 ∈ Γ such that α(γ0) = 1. For any λ ∈ Λ, let fλ : X → Y be any

continuous map which induces the homomorphism θλ := ελ ◦ α where ελ : Z→ Λ is

defined by 1 7→ λ. Suppose that fλ and fµ are (freely) homotopic. Then there exist

a ∈ Γ and b ∈ Λ, such that θµ = ιb ◦ θλ ◦ ιa. Evaluating both sides at γ0, we obtain

µ = bλb−1; thus λ and µ are conjugates in Λ. Since Λ has infinitely many conjugacy

classes it follows that [X, Y ] is infinite.
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Chapter 2

F -structures on SO(n,H) and

construction of special cycles

The notations in the rest of the thesis are different from those in Chapter 1.

In this chapter we will construct submanifolds of certain compact locally symmetric

spaces associated to the group G = SO(n,H), whose Poincaré duals cannot be

represented by G-invariant forms on X = SO(n,H)/U(n). In §2.1 we describe all

uniform lattices in SO(n,H) (except certain exotic ones occurring when n = 4 due

to triality). All the results here follow from known facts, but may not be readily

available in literature in the form we require them. In §2.2 we will discuss how

to construct these submanifolds. This is standard material. These submanifolds

occur as fixed points of certain involutive isometries which are induced by involutive

automorphisms of G. We construct such involutive automorphisms in §2.3. The

results in this section are new. §2.4 recalls certain properties of a compact Kähler

manifold and infers how they strengthen our results. In §2.5 we state and prove our

main result, Theorem 2.5.1.
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2.1 Uniform lattices in SO(n,H)

In this section we describe uniform lattices in SO(n,H). Since SO(n,H) is of higher

rank, all lattices in it are arithmetic. In the following we first describe all F -

structures of SO(n,H), where F is a number field. Applying restriction of scalars on

these F -structures will yield Q-groups whose R-points will be product of simple Lie

groups. We deduce which simple Lie groups may occur in this product. We then de-

scribe the F -structures for which this product has exactly one non-compact factor.

For F 6= Q, each such F -structure produces a family of uniform lattices. Finally

we give a necessary and sufficient condition on a Q-structure for the corresponding

arithmetic subgroups to be cocompact.

2.1.1 F -structure of SO(n,H)

Let D be a division ring. We will define certain subgroups of the group GL(n,D).

First we define the special linear group over D. Let F be the centre of D. It is a

field. There always exists a field extension L of F , for which there is an L-algebra

isomorphism φ : D⊗F L→M(d, L). We say that D splits over L. The restriction of

φ to D⊗ 1 gives an algebra embedding of D in M(d, L). This embedding induces an

F -algebra embedding of M(n,D) in M(n,M(d, L)) ∼= M(nd, L) by replacing each

entry of a matrix in M(n,D) by a d× d block matrix with entries in L. By abuse of

notation we denote this embedding M(n,D) ↪→ M(nd, L) again by φ. Given such

an embedding φ, we can define the subgroup SL(n,D) of GL(n,D) as follows.

SL(n,D) := {g ∈ GL(n,D) : det(φ(g)) = 1}

This definition is independent of the choice of the map φ.

Now we will define analogs of the special unitary group in the context of a division
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ring D that admits an anti-involution τ . By anti-involution we mean an F -anti-

isomorphism of order 2. We begin by defining the analog of a Hermitian form on a

right D-module E.

Definition 2.1.1. A τ-Hermitian form on E is an F -bilinear map h : E×E → D

which satisfies the following conditions

• h(v1a1 + v2a2, w) = τ(a1)h(v1, w) + τ(a2)h(v2, w)

• h(v, w1a1 + w2a2) = h(v, w1)a1 + h(v, w2)a2

• h(w, v) = τ(h(v, w))

for all a1, a2 ∈ D.

Definition 2.1.2. A τ -Hermitian form h is called non-degenerate if for each

v ∈ E, there exists w ∈ E, such that h(v, w) 6= 0.

Definition 2.1.3. A matrix A ∈M(n,D) is called τ-Hermitian, if τ(A)> = A.

Given a D-basis {ei : 1 ≤ i ≤ n} of E, there is a one-to-one correspondence between

τ -Hermitian forms on E and τ -Hermitian matrices. On one side the map is given

by h going to the Gram matrix (h(ei, ej))i,j. On the other side the map is given by

sending A to the map (v, w) 7→ τ(v)>Aw, where v and w also denote the column

vector representations with respect to the chosen basis. A τ -Hermitian form is

non-degenerate if and only if its Gram matrix is invertible.

Now we define the subgroup of SL(n,D) which preserves such a τ -Hermitian form

induced from an invertible τ -Hermitian matrix A.

SU(A, τ,D) := {g ∈ SL(n,D) : τ(g)>Ag = A}.

We know for a Hermitian matrix A over C, there always exists P ∈ GL(n,C), such

that P ∗AP = D, where D is a diagonal. A similar statement holds for τ -Hermitian
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matrices which we state below. The proof is via standard arguments and we omit

it.

Proposition 2.1.4. Given a τ -Hermitian matrix A, there exists P ∈ GL(n,D),

such that τ(P )>AP is diagonal.

This shows that for each invertible τ -Hermitian matrix A, the group SU(A, τ,D) is

conjugate to a group SU(B, τ,D), where B is diagonal.

Now we introduce a special class of division algebras that we will be particularly

interested in.

Definition 2.1.5. Let F be a field and fix α, β ∈ F \{0}. The quaternion algebra

Hα,β
F over F is the algebra which is generated as a vector space over F by the four

elements 1, i, j and k, with the following relations:

i2 = α, j2 = β, ij = k = −ji

These relations determine the multiplication.

When F = R and α = −1 = β, we get the usual quaternion algebra H.

Any quaternion algebra Hα,β
F admits two anti-involutions τc and τr. The anti-

involution τc takes a general element p + iq + jr + ks ∈ H to p − iq − jr − ks

and τr takes p+ iq+ jr+ks to p+ iq− jr+ks. The two anti-involutions are related

as jτr(x)j−1 = τc(x) for all x ∈ Hα,β
F .

If α, β < 0, then for the quaternion algebra Hα,β
R over R, we have a refinement of

Proposition 2.1.4.

Proposition 2.1.6. Let α, β < 0. Given an invertible τr-Hermitian matrix A, there

exists P ∈ GL(n,Hα,β
R ), such that τr(P )>AP = In.
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Proof. By Proposition 2.1.4, we already have an orthogonal basis for h, the τr-

Hermitian form induced by A. All we need to show is that this basis can be further

orthonormalized. For that it is enough to show that if h(v, v) 6= 0, for some v ∈ Hn,

then there exists λ ∈ H, such that h(vλ, vλ) = τr(λ)h(v, v)λ = 1. Notice that

τr(h(v, v)) = h(v, v), by the third condition in the definition of a τ -Hermitian form.

Hence h(v, v) is of the form a + ib + kd, for some a, b, d ∈ R. Thus it is enough to

solve for x = p+ iq + jr + ks in the equation

τr(x)x = a+ ib+ kd (2.1)

and take this as value of λ−1. Expanding the LHS of (2.1) and equating the coeffi-

cients of 1, i and k from both sides, we get

p2 + αq2 − βr2 − αβs2 = a

2pq + 2βrs = b

2ps+ 2qr = d

Let us assign p = 0, then we have s = b
2βr

and q = d
2r

from the second and third

equations. Substituting these values in the first equation we get −βr2− αb2

4βr2
+ αd2

4r2
=

a. If we vary r from 0 to ∞, the LHS varies from −∞ to ∞. Thus there exists a

solution for r.

Proposition 2.1.6 shows that for each τr-Hermitian matrix A ∈ GL(n,Hα,β
R ), the

group SU(A, τr,Hα,β
R ) is conjugate to the group SU(In, τr,Hα,β

R ). Note that SO(n,H)

= SU(In, τr,H). By [25, Section 18.5], all F -structures of SO(n,H), except when

n = 4, are of the form SU(A, τr,Hα,β
F ), where A is an invertible τr-Hermitian. In fact

by Proposition 2.1.4, without loss of generality, we may assume that A is diagonal.

For n = 4, there are more F -structures arising from triality. We will ignore these

exotic F -structures.
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2.1.2 R-points of the group SU(A, τr,Hα,β
F )

As mentioned in §2.1.1, given a finite dimensional central division algebra D over F

there exists a field extension L of F , for which there is an isomorphism φ : D⊗F L→

M(d, L). All division algebras split over F , the algebraic closure of F . For us, F

will always be a number field which is a subfield of R. Since F = Q ⊂ C, therefore

all division algebras of the form Hα,β
F split over C. Depending upon choice of α and

β, Hα,β
F may also split over R. This is the subject of the following lemma.

Lemma 2.1.7. If either α or β is positive then Hα,β
F splits over R.

Proof. First note that without loss of generality we may assume that α > 0. This

is because we have an isomorphism from Hα,β
F to Hβ,α

F by interchanging i and j. We

may also assume that β < 0. This is because we have an isomorphism from Hα,β
F to

Hα,−β/α
F by sending i to i and j to k/α. For Hα,β

F , with α > 0 and β < 0, we have an

R-algebra homomorphism φ : Hα,β
R → M(2,R), that sends i to

√α 0

0 −
√
α

 and

j to

 0
√
|β|

−
√
|β| 0

. It can be checked that φ is a well defined isomorphism.

Lemma 2.1.8. If α and β are both negative then Hα,β
R
∼= H.

This follows from a more general result.

Lemma 2.1.9. For any non zero u, v ∈ F , Hu2α,v2β
F

∼= Hα,β
F

Proof. The map sending i to ui and j to vj gives an R-algebra isomorphism.

Now we describe the R-points of the group SU(A, τr,Hα,β
F ).
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Proposition 2.1.10. If A is a τr-Hermitian matrix in GL(n,Hα,β
F ), then

SU(A, τr,Hα,β
F ⊗ R) ∼=


SO(p, 2n− p) if Hα,β

R
∼= M(2,R)

SO(n,H) if Hα,β
R
∼= H

,

for a suitable 0 ≤ p ≤ 2n.

Proof. When Hα,β
R
∼= H, we have SU(A, τr,Hα,β

R ) ∼= SU(A, τr,H) ∼= SO(n,H), using

Proposition 2.1.6. For the case where Hα,β
F splits over R, we have an explicit R-

algebra isomorphism φ : Hα,β
R →M(2,R) as described in the proof of Lemma 2.1.7.

(As before we assume without loss of generality that α > 0 and β < 0). The map φ

induces an R-algebra isomorphism from M(n,Hα,β
R ) to M(n,M(2,R)) ∼= M(2n,R)

which we again denote by φ. We wish to understand the image of SU(A, τr,Hα,β
R )

in M(2n,R) under φ. For any X ∈ M(n,Hα,β
R ), a simple calculation shows that

φ(τr(X)>) = φ(X)>. Thus g ∈ SL(n,H) satisfies τr(g)>Ag = A if and only if

φ(g) ∈ SL(2n,R) satisfies φ(g)>φ(A)φ(g) = φ(A). Let the signature of the sym-

metric matrix φ(A) be (p, 2n− p). Then the group SU(A, τr,Hα,β
R ) is isomorphic to

SO(p, 2n− p).

2.1.3 Restriction of scalars for SU(A, τr,Hα,β
F )

Let F be a real number field and let V∞ denote the Archimedean places of F . Then

each s ∈ V∞, induces an isomorphism of division rings Hα,β
F → Hs(α),s(β)

s(F ) which

in turn induces a ring isomorphism M(n,Hα,β
F ) → M(n,Hs(α),s(β)

s(F ) ). By abuse of

notation we will again denote each of these isomorphisms by s.

Let V R
∞ denote the real places and V C

∞ denote the pairs of conjugate complex places.
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Let ι ∈ V R
∞ denote the inclusion of F in R. Then

ResF/Q(SU(A, τr,Hα,β
F ))(R) =

∏
s∈V R
∞

SU(s(A), τr,Hs(α),s(β)
R )

×
∏
s∈V C
∞

SU(s(A), τr,Hs(α),s(β)
C ).

We wish to find the conditions on the elements α, β ∈ F and the matrix A, such

that all the factors in the above product, except the one corresponding to s = ι, are

compact, and the one corresponding to s = ι is isomorphic to SO(n,H). To begin

with none of the places of F can be complex, since the factors corresponding to

complex places are complex linear Lie groups and such groups cannot be compact

unless they are trivial. So from now on we will assume that F is totally real.

By Proposition 2.1.10, for ι to be the only place where SU(s(A), τr,Hs(α),s(β)
R ) ∼=

SO(n,H), it is necessary and sufficient that both α and β be negative and at least

one of s(α) and s(β) is positive for all places s 6= ι.

One way to achieve this is the following. By primitive element theorem there exists

an irreducible polynomial f ∈ Q[x], such that F ∼= Q[x]/(f). All the embeddings

of F in C are obtained by substituting some root of f for x in Q[x]/(f). Since F is

totally real, we must have that the roots are all real. Let the roots be a0 < · · · < ak

and assume that F = Q[a0]. Now choose b ∈ Q between a0 and a1, and consider the

element β = a0 − b ∈ F . Note that β < 0, but s(β) > 0 for all ι 6= s ∈ V∞.

Since Proposition 2.1.4 says that SU(A, τr,Hα,β
F ) is conjugate to a group of the

form SU(A′, τr,Hα,β
F ), where A′ is diagonal, we will assume from now on that A is

diagonal. We will also assume that α, β has been chosen so that Hs(α),s(β)
R

∼= M(2,R),

for each s 6= ι. Then by Proposition 2.1.10, for each s 6= ι, SU(s(A), τr,Hs(α),s(β)
R ) ∼=

SO(p, 2n− p) for some 0 ≤ p ≤ 2n. For SO(p, 2n− p) to be compact we must have

either p = 0 or p = 2n. Now (p, 2n − p) is the signature of the symmetric matrix

φ(s(A)), where φ is as defined in the proof of Proposition 2.1.10. Since A is diagonal
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φ(s(A)) is a 2 × 2 block diagonal matrix. The signature of φ(s(A)) is the sum of

signatures of the 2 × 2 symmetric matrices φ(s(ai)), where A = diag(a1, · · · , an).

The following lemma tells us what these signatures will be. Cf. [25, Exercise 6.4.9].

Lemma 2.1.11. Let α > 0, β < 0. Let Nα,β denote the reduced norm in Hα,β
F . Let

φ : Hα,β
R →M(2,R) be any R-algebra isomorphism. Let x = p+ iq+ jr+ ks ∈ Hα,β

R

be an invertible element (equivalently Nα,β(x) 6= 0) such that τr(x) = x. Then the

number of positive eigenvalues of φ(x) is

εα,β(x) =


1 if Nα,β(x) < 0

2 if Nα,β(x) > 0 and p > 0

0 otherwise

Proof. Note that τr(x) = x implies x is in fact equal to p+iq+ks. By Skolem-Noether

theorem, the trace and determinant of φ(x) are independent of the choice of φ. In this

case the trace is 2p and the determinant is Nα,β. Hence the characteristic polynomial

of φ(x) is t2 − 2pt + Nα,β(x). The roots of this polynomial are p ±
√
p2 −Nα,β(x).

Now the statement of the lemma becomes clear.

If either α or β is positive, then Hα,β
F splits over R. We have done all our calculations

assuming α > 0, β < 0. A parallel body of calculations could have been done

assuming α < 0, β > 0 or α, β > 0. Cf. [25, Exercises 6.4.7 and 6.4.10]. In any case

let εα,β(x) denote the number of positive eigenvalues of the relevant 2× 2 matrices

that block-diagonally make up the symmetric matrix which is preserved by elements

of φ(SU(A, τr,Hα,β
R )).

Proposition 2.1.12. Let ι : F ↪→ R be the inclusion of a totally real number field

F 6= Q. Let α, β ∈ F such that α, β < 0 and for each place ι 6= s ∈ V∞, at least

one of s(α) and s(β) is positive. Let a1, · · · , an ∈ Hα,β
F \ {0} be chosen so that for

all i, τr(ai) = ai and for each place ι 6= s ∈ V∞,
∑n

i=1 εs(α),s(β)(s(ai)) ∈ {0, 2n}.

57



Let A be the diagonal τr-Hermitian matrix whose diagonal entries are a1, · · · , an.

Then there is a Lie group homomorphism ResF/Q(SU(A, τr,Hα,β
F ))(R)→ SO(n,H),

which has compact kernel. Any arithmetic subgroup of SO(n,H) corresponding to

this Q-structure is cocompact.

2.1.4 Cocompactness criterion when F = Q

Recall that Godement’s compactness criterion says that an arithmetic lattice is

cocompact if and only if it has no non-trivial unipotent element. Let Γ be an

arithmetic lattice with respect to a Q-structure SU(τr, A,Hα,β
Q ) of SU(τr, A,Hα,β

R ).

Let φ be an embedding of SU(τr, A,Hα,β
Q ) in the space of rational valued matrices.

Let γ ∈ Γ be such that φ(γ) is a non-trivial unipotent matrix. This implies that there

exists an integer m ≥ 2, such that as Q-linear transformations (φ(γ)− id)m = 0 and

(φ(γ) − id)m−1 6= 0. Since φ is an injective group homomorphism, therefore this is

same as saying (γ−id)m = 0 and (γ−id)m−1 6= 0. This implies 0 6= Im(γ−id)m−1 ⊂

Ker(γ − id). Let 0 6= v ∈ Im(γ − id)m−1. That is, there exists a w′ ∈ (Hα,β
Q )n, such

that v = (γ − id)m−1(w′). Define w := (γ − id)m−2(w′). Then v = (γ − id)w. In

short we found two non-zero vectors v and w in (Hα,β
Q )n, such that γv = v and

γw = v + w. Now suppose we denote the τr-Hermitian form corresponding to the

τr-Hermitian matix A by 〈 , 〉. Then

〈v, w〉 = 〈γv, γw〉

= 〈v, v + w〉

= 〈v, v〉+ 〈v, w〉

This implies 〈v, v〉 = 0. Thus 〈 , 〉 is not anisotropic over Q. On the other hand

suppose 〈 , 〉 is not anisotropic over Q, that is, there exists 0 6= v1 ∈ Hα,β
Q , such

that 〈v1, v1〉 = 0. (v1) is a linearly independent set, complete it to form a basis of
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(Hα,β
Q )n. As seen in the proof of Proposition 2.1.4, this basis can be orthogonalized

to construct a basis (v1, · · · , vn). Define u : (Hα,β
Q )n → (Hα,β

Q )n to be the linear

transformation that takes v1 to v1 and vi to vi + v1, for all i ≥ 2. Note that

u ∈ SU(τr, A,Hα,β
Q ) and φ(u) is unipotent. There exists an arithmetic lattice with

respect to the Q-structure SU(τr, A,Hα,β
Q ) which contains the unipotent element

u. Hence by Godement’s criterion any lattice in this commensurability class is not

cocompact. The following result summarises the above discussion.

Proposition 2.1.13. The arithmetic lattices in SU(τr, A,Hα,β
R ) corresponding to

the Q-structure SU(τr, A,Hα,β
Q ) are cocompact if and only if the τr-Hermitian form

corresponding to A is Q-anisotropic.

Definition 2.1.14. The F -groups described in Propositions 2.1.12 and 2.1.13 will

be said to be of type DIIIu.

2.2 Construction of special cycles

We are interested in constructing cohomology classes of compact locally symmetric

spaces associated to the group SO(n,H). For any compact locally symmetric space

associated to a semisimple Lie group G, the G-invariant forms on G/K represent

non-zero cohomology classes. We wish to construct cohomology classes that are

not G-invariant. These classes will be Poincaré duals of certain homology classes

represented by submanifolds that we will construct. We remark here that since any

compact locally symmetric spaces associated to SO(n,H) is a compact Kähler man-

ifold, any complex analytic submanifold will represent a non-zero class in homology.

But the Poincaré dual of the complex analytic submanifold may be G-invariant. So

we follow the method of Millson and Raghunathan, who in [22], construct pairs of

complementary dimensional totally geodesic submanifolds of certain arithmetic lo-

cally symmetric spaces, whose intersection numbers are non-zero. This proves that
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these submanifolds represent non-zero classes in homology. Moreover in [22, The-

orem 2.1], it is proved that these submanifolds can be lifted to a finite cover such

that their Poincaré duals are not G-invariant. We will make this statement more

precise below. In this section we describe the general framework for construction of

such geometric cycles following the work of Rohlfs and Schwermer in [29].

Let G be a semisimple algebraic group over Q. Let its real points be G = G(R),

which is a simply connected Lie group. Let Λ be any torsion free arithmetic sub-

group of G with respect to this Q structure. Let σ and τ be two finite order Q-

automorphisms of G which commute, so that the group Θ = 〈σ, τ〉 generated by the

two remains finite order. We shall denote by the same symbols σ and τ the induced

automorphisms of G. We assume that Θ takes a maximal compact subgroup K of

G to itself. Thus we get an induced pair of commuting isometries of X := G/K

again denoted by σ and τ . Let G(Q) denote the Q-points of G. Since Θ consists

of Q-automorphisms, therefore G(Q) is taken to itself. Hence there exists a finite

index torsion free subgroup Γ of Λ, which is taken to itself. Thus we get an induced

finite order group of isometries of Γ\X. Let G(σ),Γ(σ) and G(τ),Γ(τ) denote the

fixed point sets in the appropriate groups under the action of σ and τ respectively.

Let X(σ) and X(τ) denote the fixed point sets in X under the actions of σ and τ

respectively. Then X(σ) and X(τ) are isometric to the symmetric spaces associated

to the linear reductive Lie groups G(σ) and G(τ) respectively. Let C(σ,Γ) and

C(τ,Γ) denote the connected components of the fixed point submanifolds of σ and

τ respectively which are images of Γ(σ)\X(σ) and Γ(τ)\X(τ) under the natural

inclusions. These are called special cycles. In this setting Rohlfs and Schwermer

proves a result ([29, Theorem 4.11]) which we paraphrase below.

Theorem 2.2.1. (Rohlfs and Schwermer) With the above notations suppose

1. the real Lie groups G, G(σ) and G(τ) act in an orientation preserving manner

on their respective spaces X, X(σ) and X(τ),
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2. the spaces X(σ) and X(τ) intersect at exactly one point with positive intersec-

tion number,

3. dimX(σ) + dimX(τ) = dimX.

Then there exists a 〈σ, τ〉-stable normal subgroup Γ′ ⊂ Γ of finite index such that

the intersection number of C(σ,Γ′) and C(τ,Γ′) is not equal to zero.

With this notation the non-G-invariance statement ([22, Theorem 2.1]) of Millson

and Raghunathan can be stated as below.

Theorem 2.2.2. (Millson and Raghunathan) There exists a finite index sub-

group Γ′′ of Γ′ such that the Poincaré duals of C(σ,Γ′′) and C(τ,Γ′′) cannot be

represented by G-invariant forms on X.

Let us provide certain conditions under which the criteria of Theorem 2.2.1 are met.

First we give a sufficient condition for an automorphism to take a given maximal

compact subgroup K to itself.

Lemma 2.2.3. Suppose σ is an automorphism of G and θ is a global Cartan invo-

lution such that σ ◦ θ = θ ◦ σ. Let K be the maximal compact subgroup that is point

wise fixed by θ. Then σ keeps K invariant.

The proof follows from standard arguments and we omit it.

If we can find an automorphism σ as in the above lemma, which is of finite order, then

immediately σ ◦ θ presents itself as another candidate satisfying the same condition

and commuting with σ. The next lemma shows that they satisfy condition 2. of

Theorem 2.2.1. The proof is elementary and we omit it.

Lemma 2.2.4. Let σ be an automorphism of G which commutes with a global Cartan

involution θ. Let o ∈ X = G/K denote the trivial left coset of K in G. Then the
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fixed point submanifolds X(σ) and X(σ ◦ θ) of the actions of σ and σ ◦ θ on X,

intersect exactly at the point o.

Lastly let us prove that X(σ) and X(σ ◦ θ) satisfy condition 3.

Lemma 2.2.5. Suppose σ is an involution of G that commutes with a global Cartan

involution θ. Then dim(X(σ)) + dim(X(σ ◦ θ)) = dimX.

Proof. It is enough to show that ToX = To(X(σ))⊕ To(X(σ ◦ θ)). But this follows

from the observations that

ToX = (+1 eigenspace of dσo)⊕ (−1 eigenspace of dσo)

and that the −1 eigenspace of dσo is the +1 eigenspace of d(σ ◦ θ)o, since dθo acts

as −Id on ToX.

Remark 2.2.6. Condition 1. of Theorem 2.2.1 is called the Or condition. It has

to be checked case by case.

2.3 F -rational involutions

In §2.2 we described a way to produce non-G-invariant cohomology classes of arith-

metic locally symmetric spaces by taking Poincaré duals of submanifolds which are

fixed point subsets of isometries induced by Q-involutions of G. In particular we

considered pairs of Q-involutions (σ, θσ), where θ is a global Cartan involution and

σ commutes with θ. If the Q-structure is obtained by restriction of scalars applied

to an F -group G, then any F -morphism of G induces a Q-morphism of ResF/Q(G).

In §2.1.1 we have described all F -structures (except the exotic ones for n = 4) of

SO(n,H). In what follows we first produce some F -involutions σ for a restricted
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family of these F -structures. Note that σθ is also an F -involution implies that θ it-

self must be F -rational. So next we show that for this restricted family an F -rational

Cartan involution does exist. Finally we calculate the fixed point subgroups of the

involutions we constructed and check whether they satisfy the condition Or. (See

Remark 2.2.6 for definition of the Or condition.)

2.3.1 A fairly general way to create involutions

Let F be a subfield of R. (We will only be concerned with the cases where F is either

a totally real number field or F = R.) Let α and β be two elements of F which are

negative. We are given the F -group SU(A, τr,Hα,β
F ), where A is a non-singular τr-

Hermitian diagonal matrix. We will produce some F -involutions of SU(A, τr,Hα,β
F ).

These involutions will be conjugation by some diagonal matrices D ∈ GL(n,Hα,β
F ).

Conjugation by such a matrix D will be an involutive automorphism if it satisfies

the following two criteria:

(1) D2 = −λIn, for some λ ∈ F×,

(2) τr(D)>AD = µA, for some µ ∈ F×.

Note that D satisfies (1), if its elements satisfy either of the following conditions:

(a) All the diagonal elements of D are in F and their norms are all equal.

(b) All the diagonal elements of D are of the form iq + jr + ks, such that their

norms are all equal.

In case (a), −λ is the norm of all the diagonal elements in D, and, in case (b), λ is

so. Suppose D is as in (a). Then clearly it also satisfies criterion 1 for µ = −λ. Up
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to multiplication by an element of F , all such D are of the form diag(ε1, · · · , εn),

where εl = ±1 for all l. Conjugation by such a D will be called a sign involution.

Now suppose D is as in case (b). Let the lth diagonal element of D be denoted by

xl, and that of A be denoted by al. We have N(xl) = λ for all l. Applying the

norm function to each diagonal element on both sides of the matrix equation (2),

and noting that N(τr(z)) = N(z) for all z ∈ Hα,β
F , we get,

N(τr(xl)alxl) = µ2N(al)

=⇒ N(xl)
2 = µ2

=⇒ N(xl) = λ = ±µ for all l.

Noting that τr(z) = j−1τc(z)j for all z ∈ Hα,β
F , (2) implies that, for each l,

τr(xl)alxl = ±N(xl)al

=⇒ τc(xl)(jal)xl = ±N(xl)(jal)

=⇒ (jal)xl = ±xl(jal),

where the the sign is + if λ = µ and is − if λ = −µ. Thus each xl either commutes or

anti-commutes with jal. In the first case xl must be in the F -span of jal and in the

second case xl must be perpendicular to jal in the vector space iF+jF+kF equipped

with the inner product corresponding to the quadratic form given by the restriction

of the norm on Hα,β
F to this subspace. If the diagonal matrix D ∈ GL(n,Hα,β

F ) satisfy

either of these conditions along with the condition that all its diagonal elements have

the same norm, then conjugation by D is an involution. In the first case we will call

this an involution of even type and in the second case an involution of odd type.

Lemma 2.3.1. An involution of even type exists if and only if the norms of all the

diagonal elements of A, belong to the same class in F×/(F×)2.
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Proof. Suppose N(a1), · · · , N(an) are in the same class in F×/(F×)2. Then so are

N(ja1), · · · , N(jan). So there exists t1, · · · , tn ∈ F such that t21N(ja1) = · · · =

t2nN(jan). Then conjugation by the diagonal matrix D, whose lth diagonal element

is tljal, is an involution of even type.

Conversely, suppose conjugation by a diagonal matrix D is an involution of even

type. Then the lth diagonal element of D is of the form tljal, where tl ∈ F . Since

the norms of all the diagonal elements of A are same, therefore N(j)t2lN(al) = · · · =

N(j)t2nN(an). Hence N(a1), · · · , N(an) all belong to the same class in F×/(F×)2.

The necessary and sufficient condition for existence of an involution of even type is

also a sufficient condition for existence of involutions of odd type.

Lemma 2.3.2. Suppose the diagonal entries of A all belong to the same class in

F×/(F×)2, then there exist involutions of odd type.

Proof. Consider the vector space iF + jF + kF equipped with the inner product

corresponding to the quadratic form given by the restriction of the norm on Hα,β
F

to this subspace. Then the fact that N(ja1), · · · , N(jan) all belong to the same

class in F×/(F×)2 implies that the one dimensional subspaces spanned by each

jal are isometric. Now Witt Cancellation theorem ([17, Chapter XV, Section 10])

tells us that the two dimensional subspaces perpendicular to each of them are also

isometric. Thus it is possible to pick an element xl from the lth of these perpendicular

subspaces such that N(x1) = · · · = N(xn). Then conjugation by the matrix D =

diag(x1, · · · , xn) is an involution of odd type.

Remark 2.3.3. Sign involutions and involutions of odd and even type commute

with involutions of even type.
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2.3.2 The F -rational Cartan involution

A Cartan involution for the group SU(In, τr,Hα,β
R ), where both α and β are negative,

is given by g 7→ (τc(g)>)−1. Since τr(g)>g = In for each g ∈ SO(n,H) and τr(z) =

jτc(z)j−1 for all z ∈ H, we have that (τc(g)>)−1 = (jIn)g(jIn)−1. That is, the

Cartan involution is just conjugation by jIn. Now consider the group SU(A, τr,Hα,β
R )

where A ∈ GL(n,Hα,β
R ) is a diagonal τr-Hermitian matrix. We have an isomorphism

SU(In, τr,Hα,β
R ) → SU(A, τr,Hα,β

R ), given by g 7→ PgP−1, where τr(P )>AP = In.

Note since A is diagonal, P can be (and will be) chosen to be diagonal too. A Cartan

involution θA for SU(A, τr,Hα,β
R ) can be described as one that makes the following

diagram commute, where conjugation by any element X, is denoted by ιX .

SU(A, τr,Hα,β
R ) SU(A, τr,Hα,β

R )

SU(In, τr,Hα,β
R )SU(In, τr,Hα,β

R )

θA

ιP ιP
ι(jIn)

Thus θA = ιPjP−1 . Let pl and al denote the lth diagonal elements of P and A

respectively, then the matrix equation τr(P )>AP = In is equivalent to saying that

for all l, τr(pl)alpl = 1. Then the lth diagonal element of PjP−1 can be simplified

as follows,

pljp
−1
l = (p−1

l )−1jp−1
l

=
1

N(p−1
l )

τc(p
−1
l )jp−1

l

=
j

N(p−1
l )

τr(p
−1
l )p−1

l

=
jal

N(p−1
l )

θA is an R-involution for the R-group SU(A, τr,Hα,β
R ). We had discussed certain

types of involutions in §2.3.1. From the above calculation it is clear that θA is
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an involution of even type. Now suppose α, β are negative elements of a totally

real field F and A ∈ GL(n,Hα,β
F ). Then Lemma 2.3.1 implies that if the norms of

the diagonal elements of A belong to the same class in F×/(F×)2, then θA is an

F -rational Cartan involution.

Definition 2.3.4. Let F be a totally real number field. Let α, β ∈ F such that

α, β < 0. Let A ∈ GL(n,Hα,β
F ) be a τr-Hermitian diagonal matrix such that the

norms of the diagonal elements of A belong to the same class in F×/(F×)2. Then

we say that the F -group SU(A, τr,Hα,β
F ) admits an F -rational Cartan involution of

diagonal type.

Let SU(A, τr,Hα,β
F ) be an F -group that admits an F -rational Cartan involution of

diagonal type. Then θA as described above is an F -rational involution of even type.

Let σA be a sign involution or an involution of even or odd type. Then by Remark

2.3.3, σA commutes with θA. Hence θAσA is an F -involution. Note that if σA is a

sign involution then θAσA is an involution of even type and vice versa, whereas if

σA is an involution of odd type then so is θAσA.

2.3.3 Fixed point subgroups of involutions

We wish to calculate the subgroups of SU(A, τr,Hα,β
R ), with α, β < 0, which are

point-wise fixed by the involutions described in §2.3.1. We will not do so directly

but rather we will show that these fixed point subgroups are isomorphic to familiar

Lie groups. As a first step we will transfer all the calculations to the setting of the

group SO(n,H), using the isomorphism

SU(A, τr,Hα,β
R ) SU(In, τr,Hα,β

R ) SO(n,H)
ιP Ψ

where ιP is as defined in §2.3.2 and Ψ is the R-algebra isomorphism induced by the

isomorphism ψ : Hα,β
R → H that sends i to i

√
|α| and j to j

√
|β|. Let us call the
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composition η. Given an involution σA of SU(A, τr,Hα,β
R ), it induces an involution

σ of SO(n,H) which makes the following diagram commute.

SU(A, τr,Hα,β
R ) SU(A, τr,Hα,β

R )

SO(n,H)SO(n,H)

σA

η η

σ

Now, it is clear that the fixed point subgroup of SU(A, τr,Hα,β
R ) under σA is isomor-

phic to that of SO(n,H) under σ via restriction of the isomorphism η. As a general

strategy to simplify calculations, we will conjugate an involution σ by some auto-

morphism of SO(n,H), so that the the fixed point subgroup of the new involution

is isomorphic to that of σ. For a specific type of involution, SO(n,H) may not be

best behaved group in terms of the fixed point subgroup being a familiar Lie group.

In particular for involutions of even type we will work with a distinct isomorphic

copy of SO(n,H).

Note that if σA is a sign involution or an involution of even or odd type, then so is σ,

respectively. This follows from the following general observations. Conjugation by

any non-zero element in the division algebra Hα,β
R is an isometry of the real vector

space Hα,β
R equipped with the inner product induced by the quadratic form coming

from the reduced norm, and so is ψ. Now we do a case by case analysis.

We first consider a sign involution σ which is conjugation by a matrix of the form

D = diag(ε1, · · · , εn), where εi = ±1. We can conjugate D by a permutation matrix

to get a matrix of the form Il,n−l :=

Il
−In−l

. Note that conjugation by any

permutation matrix is an automorphism of SO(n,H). Hence it is enough to consider

the case when D = Il,n−l. An element of SO(n,H) is fixed by σ if and only if it is

block diagonal

X
Y

, where X ∈ SO(l,H), Y ∈ SO(n − l,H). Thus the fixed
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point subgroup ofG = SO(n,H) under action of σ isG(σ) ∼= SO(l,H)×SO(n−l,H).

Next we turn to involutions of even type. An involution of even type is conjugation

by a diagonal matrix D whose diagonal entries are real multiples of j and all having

the same reduced norm. So we may assume D = diag(ε1j, · · · , εnj). By the same

argument that we used in the case of signed involutions, it is enough to consider the

case when D = jIl,n−l. Consider the group G′ := {g ∈ SL(n,H) : τr(g)>Il,n−lg =

Il,n−l}. We have an isomorphism SO(n,H)→ G′ given by conjugation by the matrix

Q :=

Il
iIn−l

. The corresponding involution σ′ for G′ is conjugation by the

matrix QDQ−1 = jIn. Now the fixed point subalgebra of M(n,H) under conjugation

by jIn is M(n,R + jR). Hence the fixed point subgroup of G′ under the action of

σ′ is G′(σ′) := {g ∈ SL(n,R + jR) : τr(g)>Il,n−lg = Il,n−l}. The determinant

map on M(n,R + jR) is restriction of that on M(n,H) and by SL(n,R + jR)

we mean matrices whose determinants are 1, with this definition of determinant.

Note that R + jR is isomorphic to C as a ring and the operation τr restricted to

R + jR corresponds to complex conjugation on C. Also note that with the above

definition of determinant, matrices g ∈M(n,R+jR) satisfying τr(g)>Il,n−lg = Il,n−l

automatically belong to SL(n,R + jR). Hence we have G′(σ′) ∼= U(l, n− l).

Now we consider an involution σ of odd type, which is conjugation by a matrix of the

form D = diag(d1, · · · , dn), where dl ∈ iR+kR and without loss of generality we may

assume N(dl) = 1 for all l. We will simplify the calculation by constructing a matrix

T ∈ GL(n,H) such that conjugation by T , denoted by ιT , is an automorphism of

SO(n,H) and TDT−1 = iIn. We construct T as follows. Note that i · d−1
l ∈ R+ jR.

Since R+ jR is a copy of C sitting inside H, therefore all non-constant polynomials

with coefficients in R + jR, have a root in R + jR. Let tl be a solution of the

polynomial equation x2 = i · d−1
l . Since N(dl) = 1 for all l, therefore N(tl) = 1

and so t−1
l = τc(tl) = τr(tl). Hence we have tldlt

−1
l = tldlτc(tl) = t2l dl = i. Define
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T to be diag(t1, · · · , tn). Then from the above calculations it is immediate that

TDT−1 = iIn. Also note that τr(T )>T = In and hence ιT is an automorphism of

SO(n,H). Thus it is enough to consider the case when σ is conjugation by the

matrix iIn. The fixed point subalgebra of M(n,H) under conjugation by iIn is

M(n,R + iR). Hence the fixed point subgroup of G := SO(n,H) under the action

of σ is G(σ) := {g ∈ SL(n,R + iR) : τr(g)>g = In}, where SL(n,R + iR) has

a similar meaning as that of SL(n,R + jR) above. Note that τr acts trivially on

R + iR. Now by a similar argument as in the case of involutions of even type, we

have G(σ) ∼= O(n,C).

Now we will check whether G(σ) acts in an orientation preserving manner on X(σ),

that is, whether the Or condition is satisfied for the various involutions σ. When σ

is a sign involution or an involution of even type then note that the fixed point sub-

groups are connected, hence they obviously satisfy the Or condition. For involutions

of odd type we have the following lemma.

Lemma 2.3.5. The action of the group G(σ) ∼= O(n,C) on X(σ) ∼= O(n,C)/O(n)

preserves the orientation if and only if n is odd. Thus involutions of odd type satisfy

condition Or precisely when n is odd.

Proof. The Lie group O(n,C) has exactly two components. The identity component

must act in an orientation preserving manner. For the other component it is enough

to check whether one particular element in it is orientation preserving. Note that S =

diag(−1, 1 . . . , 1) is an element of the non-identity component. It is enough to check

whether the determinant of the action of S on the tangent space of SO(n,C)/SO(n)

at the identity coset is positive or negative. The tangent space is isomorphic to the

space of real skew symmetric matrices and the action is given by conjugation. The

−1 eigenspace for the action of S has dimension n− 1. Now the lemma follows.

The dimensions of the symmetric spaces X(σ) associated to G(σ) can be read off
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from [10, Chapter X, Tables IV and V]. The results of this subsection are summarized

in the Table 2.1. The parameter l varies between 1 and [n/2].

Type of G(σ) is dimX(σ) Or condition
involution σ isomorphic to

sign SO(l,H)× SO(n− l,H) n(n− 1)− 2l(n− l) satisfied
even U(l, n− l) 2l(n− l) satisfied
odd O(n,C) 1

2
n(n− 1) satisfied if and

only if n is odd

Table 2.1: Summary of results of §2.3.3

2.4 Consequences of the Kähler property

As noted earlier any compact locally symmetric space associated to the group

SO(n,H) is a compact Kähler manifold. In this section we will recall some facts

about compact Kähler manifolds and the consequences of these facts for complex

analytic special cycles in cocompact Hermitian locally symmetric spaces.

For any complex analytic subvariety V ↪→M of a compact Kähler manifold M , one

has the notion of a fundamental homology class µV ∈ H∗(M ;R), although V is not

assumed to be smooth.

Fact: [9, p. 110] Let M be a compact Kähler manifold and let V ⊂M be an analytic

subvariety. Then the fundamental class µV of V is non-zero.

Let us apply this fact in our context. Suppose that the symmetric space X associated

to a simply connected semisimple Lie group G is Hermitian symmetric. Let Λ be a

torsion free cocompact arithmetic subgroup associated to a certain Q-structure of G.

Recall from §2.2, if we are given a pair of commuting finite order Q-automorphisms

σ and τ of G satisfying the hypotheses of Theorem 2.2.1, then there exists a finite

index subgroup Γ′′ of Λ, such that the Poincaré duals of the special cycles C(σ,Γ′′)
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and C(τ,Γ′′) are non-G-invariant cohomology classes of Γ′′\X. Now suppose σ and

τ induce holomorphic automorphisms of X. (Equivalently dσo : ToX → ToX is C-

linear.) Then Λ(σ)\X(σ) and Λ(τ)\X(τ) are analytic subvarieties of Λ\X. Hence

by the above fact, they represent non-zero homology classes of Λ\X. Moreover by

naturality of Poincaré duality, the Poincaré duals of the submanifolds Λ(σ)\X(σ)

and Λ(σ)\X(σ) are pull backs of those of C(σ,Γ′′) and C(τ,Γ′′). Note that pull back

classes represented by G-invariant forms of X are again of the same form. Thus if

Poincaré duals of Λ(σ)\X(σ) and Λ(τ)\X(τ) are represented by G-invariant forms

on X then so are C(σ,Γ′′) and C(τ,Γ′′). This is a contradiction, hence we have the

following corollary of the Theorem 2.2.1 and Theorem 2.2.2.

Corollary 2.4.1. Let G be a linear algebraic group defined over Q such that its set

of R-points is a semisimple simply connected Lie group G. Let the symmetric space

X associated to G be Hermitian symmetric. Let σ and τ be Q-involutions of G such

that the induced actions of σ and τ on X are holomorphic, satisfying

1. the real Lie groups G, G(σ) and G(τ) act in an orientation preserving manner

on their respective spaces X, X(σ) and X(τ),

2. the spaces X(σ) and X(τ) intersect at exactly one point with positive intersec-

tion number,

3. dimX(σ) + dimX(τ) = dimX.

Let Λ be a torsion free cocompact arithmetic subgroup associated to this Q-group.

Then the Poincaré duals of the fundamental classes of the analytic subvarieties

Λ(σ)\X(σ) and Λ(τ)\X(τ) cannot be represented by G-invariant forms on X.

The next fact is related to the Hodge decomposition of the cohomology of a com-

pact Kähler manifold. A natural question is what is the type decomposition of the
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Poincaré duals of the special cycles in the cohomology of a compact Hermitian lo-

cally symmetric space. We know that the Poincaré dual of the fundamental class of

an analytic subvariety is always of pure type (p, p). See [9, p. 162-163].

Lemma 2.4.2. The Poincaré dual of a complex analytic special cycle in a compact

Hermitian locally symmetric space, is of pure type (p, p).

2.5 Main result

The main result of this chapter is the following.

Theorem 2.5.1. Let F be a totally real number field. Consider the family of lattices

in G = SO(n,H) corresponding to an F -structure of class DIIIu which admit an

F -rational Cartan involution of diagonal type. Then:

(i) For each torsion free lattice in the above family there exist cohomology classes

of the associated locally symmetric spaces, that are not representable by G-

invariant forms of X = SO(n,H)/U(n), in dimensions

2l(n− l), n(n− 1)− 2l(n− l), where 1 ≤ l ≤ [n/2]

.

(ii) If n is odd, there exists a cofinal family of torsion free lattices in the above

family such that, in the middle dimension

1

2
n(n− 1),

there exists a cohomology class of the associated locally symmetric spaces, that

is not representable by G-invariant forms of X = SO(n,H)/U(n).
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Proof. The proof of (ii) is an application of Theorem 2.2.1 and Theorem 2.2.2. The

proof of (i) is an application of Corollary 2.4.1, noting that the sign involutions and

the involutions of even type induce holomorphic automorphisms of the Hermitian

symmetric space X = SO(n,H)/U(n). (See §3.2 for the explicit complex structure.)

We take σ to be a sign involution or an involution of odd or even type and τ := θσ,

with θ being the F -rational Cartan involution of diagonal type. Cf. §2.3.2. That

the pair (σ, θσ) satisfies conditions 2. and 3. of Theorem 2.2.1 follows from Lemma

2.2.4 and Lemma 2.2.5. That condition 1. or the Or condition is also satisfied has

been proved in §2.3.3. The dimensions at which the special cycles occur and hence

the dimensions at which their Poincaré duals occur, have been listed in Table 2.1 at

the end of §2.3.3.

Remark 2.5.2. The statement (i) of Theorem 2.5.1 will be strengthened in Corollary

3.5.2, whereby the list of given dimensions will be replaced by all even dimensions

between 2n− 4 and n(n− 1)− 2n− 4. For this we will make crucial use of Lemma

2.4.2.
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Chapter 3

Special cycles and multiplicities of

Aq in L2(Γ\SO(n,H))

In this chapter we will use the results of the Chapter 2 to detect the occurrence of a

certain irreducible unitary representation in the decomposition of L2(Γ\SO(n,H)),

where Γ is any uniform lattice corresponding to an F -structure of type DIIIu which

admits an F -rational Cartan involution of diagonal type. See Theorem 3.5.1. This

result also has non-trivial consequence for the cohomology of locally symmetric

spaces associated to these lattices. See Corollary 3.5.2. The main tool that enables

us to do this is the Matsushima’s isomorphism, which we describe in §3.1. This

is standard material. The irreducible unitary representations that can possibly be

detected this way are associated to θ-stable parabolic subalgebras of g0 = so(n,H).

In §3.2 we describe a root space decomposition of g = so(2n,C), which is the com-

plexification of so(n,H). This will aid in the classification of θ-stable parabolic

subalgebras of so(n,H). We also fix a complex structure of SO(n,H)/U(n) in this

section. These are also known facts, but written in a way so that they are read-

ily applicable to our problem. §3.3 is devoted to a description of the set of θ-stable

parabolic subalgebras of so(n,H), up to an equivalence relation that mirrors the uni-
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tary equivalence in the set of irreducible unitary representations that are associated

to these subalgebras. We do this by associating a certain combinatorial diagram,

called decorated staircase diagram, to each equivalence class. This is new material.

In §3.4 we describe the Hodge polynomials of relative Lie algebra cohomologies of

(so(2n,C), U(n)) with coefficients in the Harish-Chandra modules of the irreducible

unitary representations associated to the θ-stable parabolic subalgebras. This fol-

lows from standard results but may not be directly available in literature. Finally in

§3.5 we identify the irreducible unitary representation that is detected via the Mat-

sushima isomorphism by construction of one of the complex analytic special cycles

in Theorem 2.5.1. The consequence for cohomology of relevant locally symmetric

spaces is also stated here. These are all new results.

3.1 Matsushima’s isomorphism

Let G be a linear reductive group with finitely many components and let K be a

maximal compact subgroup in it. Let g0, k0 denote the Lie algebras of G and K

respectively. Let θ be the Cartan involution fixing k0. Let g0 = k0 + p0 be the

Cartan decomposition. Let g, k and p denote the complexifications of g0, k0 and p0

respectively. Let (π,Hπ) denote any irreducible unitary representation of G. Let

H∞π,K denote the Harish-Chandra module of π. Consider the measure space Γ\G,

where Γ is a torsion free uniform lattice in G and the measure is the G-invariant

measure associated to a Haar measure on G. Right translation by elements of

G makes L2(Γ\G) a unitary representation of G. By a theorem of Gelfand and

Piatetsky-Shapiro, it is known that L2(Γ\G) can be decomposed into a Hilbert direct

sum of irreducible unitary representations, each occurring with finite multiplicities.

See [8, Chapter 1, Section 2.3].

L2(Γ\G) =
⊕̂

π∈Ĝ
m(π,Γ)Hπ
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where Ĝ denotes the unitary dual of G and m(π,Γ) is the multiplicity with which

π occurs in L2(Γ\G).

Then Matsushima’s isomorphism (see [4, Chapter VII, Theorem 3.2]) states

H∗(Γ\G/K;C) ∼=
⊕
π∈Ĝ

m(π,Γ)H∗(g, K;H∞π,K)

where H∗(g, K,H∞π,K) is the relative Lie algebra cohomology with coefficients in the

(g, K)-module H∞π,K . The only representations π, for which the (g, K)-cohomology

do not vanish are those whose infinitesimal characters equal that of the trivial rep-

resentation. By [36], their Harish-Chandra modules are isomorphic to one of the

(g, K)-modules Aq, where Aq is the representation of g obtained by cohomological

induction on the trivial representation of a θ-stable parabolic subalgebra q of g.

The cohomology groups H∗(g, K;Aq) can be explicitly computed, as we describe

now. Let l be the Levi factor and let u be the nilpotent radical of q. Since q is

θ-stable (see Definition 3.3.1 below), l0 := l ∩ g0 is a real form of l. Let L be the

connected Lie subgroup of G, whose Lie algebra is l0. Let R(q) := dimC(p ∩ u).

Then we have an isomorphism

Hk(g, K;Aq) ∼= Hk−R(q)(l, L ∩K;C)

where C is the trivial (l, L ∩ K)-module. The coboundary maps for the cochain

complex C∗(l, L ∩K;C) := HomL∩K(∧∗(l ∩ p),C) are all 0, hence the cohomology

groups equal the groups in the cochain complex. Now HomL∩K(∧∗(l ∩ p),C) is the

space of L-invariant forms on L/(L∩K). Hence it is isomorphic to the cohomology

group of the compact dual of L/(L∩K), which we will denote by Yq. Thus we have

Hk(g, K;Aq) ∼= Hk−R(q)(Yq;C). (3.1)
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The cohomology groups of symmetric spaces of compact types are well known.

From now on we will assume that G is semisimple with no compact factors and K

has non-discrete centre. This implies that G/K is a Hermitian symmetric space.

The Hodge decomposition of the cohomology of the Kähler manifold Γ\G/K gives

a bigrading on the LHS of Matsushima’s isomorphism. On the RHS we have a

compatible bigradation for each Lie algebra cohomology, which we describe now. Let

us fix an Ad K invariant complex structure J on p0. Then we have a decomposition

of K-modules, p = p+ + p−, into i and −i eigenspaces p+ and p− of J , respectively.

Hence we have a decomposition of K-modules:

∧kp ∼=
⊕
p+q=k

∧pp+ ⊗ ∧qp−.

For any (g, K)-module V , this induces a bigrading of the cohomology groups:

Hk(g, K;V ) ∼=
⊕
p+q=k

Hp,q(g, K;V ).

With this additional structure Matsushima’s isomorphism tells us

Hp,q(Γ\G/K;C) ∼=
⊕
π∈Ĝ

m(π,Γ)Hp,q(g, K;H∞π,K).

The (g, K)-module of interest to us is Aq. In equation (3.1) we had related the

Lie algebra cohomology with coefficients in Aq with the cohomology of a symmetric

space of compact type Yq. If G/K is Hermitian symmetric space, then so are all the

Yq. The Hodge polynomials Pu,v(Aq) and Pu,v(Yq) of H∗(g, K;Aq) and H∗(Yq;C),

respectively, are related as follows. (See [36, Proposition 6.19]). Define R+(q) =

dim(u ∩ p+) and R−(q) = dim(u ∩ p−). Then

Pu,v(Aq) = uR
+(q)vR

−(q)Pu,v(Yq).
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3.2 Roots and complex structure when g0 = so(n,H)

Recall that the group SO(n,H) was defined as {g ∈ SL(n,H) : τr(g)>g = In},

where τr is an anti-involution on H that takes p + iq + jc + kd to p + iq − jc + kd

and on a matrix it acts entry-wise. Recall too the other anti-involution τc on H that

takes p + iq + jc + kd to p− iq − jc− kd. Then the Lie algebra of G := SO(n,H)

is g0 := {X ∈ M(n,H) : τr(X) + X = 0} and the Cartan involution on g0 is

given by X 7→ −τc(X)>. The corresponding Cartan decomposition is given by

g0 = k0 +p0, where k0 consists of matrices in M(n,R+jR) which are skew Hermitian

as R+ jR ∼= C, and p0 consists of skew symmetric matrices with entries in iR+ kR.

Define an R-algebra embedding φ : H→M2(C) given by sending p+ iq+ jr+ ks to p+ iq r + is

−r + is p− iq

. This induces an embedding φ : M(n,H) → M(n,M(2,C)) ∼=

M(2n,C), that replaces each entry of the n×n matrix by its image under φ. Apply

this embedding to g0 and complexify it to get the complex simple Lie algebra g =

so(2n,C). Let k and p denote the complexifications of φ(k0) and φ(p0) respectively.

Since so(n,H) is equirank, the complexification of a maximal abelian subalgebra

of φ(k0) is a Cartan subalgebra for so(2n,C). Following [14, Chapter II, Section

1, Examples 3 and 4], we describe a maximal abelian subalgebra of φ(k0) and the

roots and root spaces of so(2n,C) with respect to its complexification. Let t0 ⊂

φ(k0) be the subalgebra consisting of diagonal matrices in M(n,M(2,C)) whose

diagonal elements are of the form

 0 d

−d 0

, with d ∈ R . It is a maximal abelian

subalgebra of φ(k0). The roots of so(2n,C) with respect to its complexification t

are real on the real form it0. The roots can be described as follows. First let us

denote an element of it0, whose lth diagonal entry is

 0 ixl

−ixl 0

, by a sequence

of real numbers x = (x1, · · · , xn). Let el be the functional that takes the x to xl.

Then Φ := {±ei ± ej : 1 ≤ i 6= j ≤ n} is the set of roots for g = so(2n,C) with
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respect to the Cartan subalgebra t. If γ ∈ Φ, then the corresponding root space gγ

is spanned by the vector Eγ, where Eγ is as follows. For i < j and γ = ±ei± ej, Eγ

is a matrix in M(n,M(2,C)), all whose entries except the (i, j)th and (j, i)th ones

are zero. The (i, j)th and (j, i)th entries of Eγ are Xγ and −X>γ , respectively, where

Xei−ej =

 1 i

−i 1

, Xei+ej =

 1 −i

−i −1

, X−ei+ej =

1 −i

i 1

 and X−ei−ej =

1 i

i −1

. The set of roots for the pair (k, t) is the subset Φc = {ei − ej : i 6= j} of

Φ. These are the compact roots. The set Φn = {±(ei + ej) : i 6= j} consists of roots

which are also the weights for the k-module p. These are the non-compact roots. We

fix Φ+
c = {ei − ej : i < j} to be the set of positive roots for the pair (k, t).

We remark here that for any root γ, we have gγ = g−γ, where ¯ is the complex

conjugation with respect to the real form g0. Thus the sum of root spaces gγ + g−γ

is a complexification of (gγ + g−γ) ∩ φ(g0). For each root γ, we will identify the

subspace Vγ of g0, such that φ(Vγ) = (gγ + g−γ) ∩ φ(g0). We need this information

in §3.4. Let Mi,j(n,H) denote the subspace of M(n,H) consisting of matrices all

whose entries, except (i, j)th and (j, i)th ones, are zero. Then Vei−ej = Mi,j(n,H)∩k0

and Vei+ej = Mi,j(n,H) ∩ p0.

Now we define an Ad K invariant complex structure on p0. The complex structure

J will in fact be Ad z, for some z in the centre Z(K) of K. Here K = SO(n,H) ∩

M(n,R + jR) ∼= U(n). The centre consists of all scalar matrices in K. Take

z = ((1− j)/
√

2)In and define J = Ad z. The i eigenspace of J is p+ :=
⊕

i<j gei+ej

and the −i eigenspace is p− :=
⊕

i<j g−ei−ej .
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3.3 θ-stable parabolic subalgebras of so(n,H)

Let g0 be any real semisimple Lie algebra and let θ be a Cartan involution of g0.

Let g be the complexification of g0. Our main interest is when g0 = so(n,H), but

first we set up the general framework.

3.3.1 Description of θ-stable parabolic subalgebras

We begin by formally defining a θ-stable parabolic subalgebra of g0.

Definition 3.3.1. A parabolic subalgebra q of g is called a θ-stable parabolic

subalgebra of g0 if the following conditions hold.

1. θ(q) = q,

2. q ∩ q = l,

where l is the Levi factor of the parabolic subalgebra q and ¯: g→ g is the complex

conjugation with respect to the real form g0.

All θ-stable parabolic subalgebras can be constructed in the following way. Start

with a maximal toral subalgebra t0 of k0. Its complexification t is a Cartan subal-

gbera for the reductive complex Lie algebra k. The real form of t, on which all the

roots are real, is it0 . Let Φc be the set of roots for (k, t). Thus we have

k = t +
∑
α∈Φc

kα

Note that p is a k-module, therefore we have a set of weights Φn of t on p. Thus we

have

p = a +
∑
β∈Φn

pβ

81



where a = Zp(t). a is the complexification of a0 = Zp0(t0). Note that h := t + a is

a Cartan subalgebra for g and h0 := it0 + a0 is its real form on which the roots are

real. Let Φ = Φc ∪ Φn. For γ ∈ Φ, define gγ to be kγ if γ ∈ Φc or pγ if γ ∈ Φc. Now

choose a positive system Φ+
c for Φc. Let x ∈ it0 be dominant with respect to Φ+

c .

Then we define the θ-stable parabolic subalgebra associated to x as

qx := h +
∑
γ∈Φ
γ(x)≥0

gγ. (3.2)

To see that qx is indeed a parabolic subalgebra, consider the restriction map h∗0 → it∗0.

We have fixed a notion of positivity on it0. Put a notion of positivity on h0 such

that positive elements are taken to non-negative elements under the restriction map.

This shows that qx contains all positive root spaces of g with respect to this notion

of positivity. Hence qx is indeed a parabolic subalgebra. This discussion also shows

that the Levi factor of qx is given by

lx := h +
∑
γ∈Φ
γ(x)=0

gγ

and the nilpotent radical is given by

ux :=
∑
γ∈Φ
γ(x)>0

gγ.

Recall that Aq is the representation of g obtained by cohomological induction on the

trivial representation of a θ-stable parabolic subalgebra q of g. Consider the family

{Aq : q a θ-stable parabolic subalgebra}. The maximal compact subgroup K of G

acts on the set of θ-stable parabolic subalgebras via the adjoint action. If q and

q′ belong to the same orbit under this action then Aq and Aq′ are infinitesimally

equivalent. Fix a maximal toral subalgebra t0 and a positive system for Φc and let

82



Q denote the set of θ-stable parabolic subalgebras of the form (3.2), where x ∈ it0

is dominant with respect to the fixed positive system.1 Then each orbit in the set

of θ-stable parabolic subalgebras under the K action has a representative in Q. Let

q, q′ ∈ Q, we say q ∼ q′ if u ∩ p = u′ ∩ p. This is an equivalence relation. By [32,

Proposition 4.5], for q, q′ ∈ Q, Aq is infintesimally equivalent to Aq′ if and only if

q ∼ q′. Thus we have a bijection

{Aq : q a θ-stable parabolic subalgebra}/ ' ←→ Q/∼

where ' is infinitesimal equivalence relation.

From now on g0 = so(n,H). We retain all notations of §3.2. We had fixed a maximal

toral subalgebra t0 in the maximal compact subalgebra k0 = so(n,H)∩M(n,R+jR)

of g0 and a positive system Φ+
c = {ei−ej : 1 ≤ i < j ≤ n} for (k, t). Observe that h =

t here. With this choice made, define the set Q as above. Let x ∈ it0 be dominant

with respect to Φ+
c . This is equivalent to saying that the tuple x = (x1, · · · , xn)

satisfies x1 ≥ · · · ≥ xn. Given such a decreasing sequence sequence x, we wish to

determine the set of non-compact roots γ which satisfy γ(x) ≥ 0. Table 3.1 gives

this set.

xi + xj weight of qx

> 0 ei + ej
< 0 −ei − ej
= 0 ei + ej,−ei − ej

Table 3.1: Weights of qx

Given a decreasing sequence x, the data whether xi+xj is positive, negative or zero,

for pairs (i, j) with 1 ≤ j < i ≤ n, can be expressed by a combinatorial diagram

called decorated staircase diagram, which we will define below. It will turn out that

the set of these diagrams is in bijective correspondence with Q/∼.

1The notation Q was used to denote a different set only in the Synopsis.
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3.3.2 Decorated staircase diagrams

We begin by defining a preliminary combinatorial object, which is illustrated in

Figure 3.1, and setting up some terminology.

2
3
4
5
6
7
·
·
·
·
·
n

1 2 3 4 5 6 · · · · · n− 1

Figure 3.1: A staircase diagram

A staircase diagram S of height n is an arrangement of
(
n
2

)
“boxes”, which are

identical squares, arranged in n − 1 rows and columns, so that there are k boxes

in the kth row. The arrangement is left justified and bottom justified. The boxes

are labelled by ordered pairs (i, j) where i, j denote the row and column indices

respectively, 1 ≤ j < i ≤ n. The vertices and edges of the boxes form a grid, which

has the structure of a graph. They are also referred to as the vertices and edges of

the staircase diagram.

The boundary of the staircase diagram is the boundary of the union of all the squares

forming the staircase (thought of as subset of R2) and is a union of the vertical, the

horizontal, and the jagged boundaries. The vertex at the intersection of the hori-

zontal and the vertical boundary will be called the origin of the staircase diagram.

We say that two vertices p, q of a staircase diagram are opposed to each other if one

of them is to the north and east of the other; we allow the possibility that they are

on the same vertical or horizontal. We say that q is above p if q is to the north and

east of p. In this case we also say that p is below q.

84



Any pair of distinct vertices p and q which are opposed to each other determine a

rectangular region of the staircase diagram of which p, q are end points of a diagonal.

In the degenerate case the rectangle has empty interior, when p, q are on the same

vertical or horizontal.

A path (in the grid) joining p and q, which are opposed to each other, is said to be

monotone if it is of shortest length, here the length refers to the number of edges

in the path. A degenerate path consisting of a single vertex will also be said to be

monotone.

Any vertex p of the staircase diagram determines a sub staircase diagram which

consists of the collection of all boxes whose vertices are all to the north and east of

p. It is empty if and only if p is on the jagged boundary.

We say that the (i, j)th box is labelled by the vertex p, if it contains p as its south

west vertex.

To each decreasing sequence x1 ≥ · · · ≥ xn we associate a staircase diagram of

height n which is decorated as follows. For i > j, if xi + xj < 0 then colour (i, j)th

box black, if xi + xj > 0 colour it white and if xi + xj = 0 colour it grey. (In the

illustrations we will use shading in place of the colour black.) The grey boxes will

have a pattern which we first illustrate by an example. Arrange the terms of the

sequence x as illustrated in Figure 3.2.

a a a 0 0 0 −a −a

Figure 3.2: A typical decreasing sequence

Assume that all the other elements in the above diagram, other than the marked

ones, have distinct modulus values, none of which is equal to a. Then the grey regions

in the corresponding staircase diagram will have a pattern as shown in Figure 3.3.
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Figure 3.3: Pattern of grey regions

In general we may have several grey rectangles, where each will be positioned to the

south west of the bottom left vertex of the previous one, if we see them from right

to left. If there are k zeros in x, with k ≥ 2, then the rightmost grey region will be

a sub staircase diagram of height k − 1.

Since the sequence x is decreasing we have the following two rules:

If k > l and xk + xl ≤ 0, then xi + xj ≤ 0, for all i ≥ k and j ≥ l. (3.3)

If k > l and xk + xl ≥ 0, then xi + xj ≥ 0, for all i ≤ k and j ≤ l. (3.4)

For the decoration this translates to the following pattern. The boxes which are to

the left and above of any grey region must be white. The boxes to the right and

below of any grey region must be black. Where there is no grey region to separate

the black and white boxes, they are separated by monotone paths joining two grey

areas or a grey area and the boundary. See Figure 3.4 for an illustration of such a

decoration.

If two grey regions intersect at a point, we regard the point of intersection as a

degenerate monotone path. Let p1, · · · , pk, be the vertices of all such monotone

paths arranged in an order so that pi+1 is below pi, for each i. We note that these

vertices completely determine the colouring. The grey boxes are those contained in

the rectangles determined by two consecutive vertices or the sub staircase diagram
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Figure 3.4: A decorated staircase diagram

diagram determined by p1 (whenever these are not degenerate). The white boxes

are the ones which are above or to the left of these rectangles. The black boxes are

the ones which are below or to the right of them.

The point pk must lie in the vertical or the horizontal boundary. It seems more

natural to extend the monotone path with end point pk, along the boundary, up to

the origin. It makes no difference to the above discussion.

With this understanding we now give a formal definition.

Definition 3.3.2. A decorated staircase diagram of height n, or DS in short, con-

sists of a non-empty collection of distinct marked vertices p1, · · · , pk in a staircase

diagram of height n, satisfying the following rules.

(i) For all i, pi+1 is below of pi.

(ii) The vertex p2 is not on the jagged boundary.

(iii) The vertex pk is the origin of the staircase diagram.

(iv) If the rectangle determined by pi and pi+1 is degenerate, then the distance

between pi and pi+1 is 1.

Given a DS we can colour its boxes the way explained above. We will always think

of a DS with the colouring.
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Given a vertex p in a DS S, consider the sub staircase diagram determined by p,

with colouring inherited from S. It is again a DS with the marked points determined

by the colouring. We say it is the sub-DS determined by p and denote it by Sp.

Given a decreasing sequence x, it is clear from the two rules (3.3) and (3.4), that

the decoration of a staircase diagram according to the sign of xi+xj produces a DS.

Now given a DS S we will explain an algorithm to construct a decreasing sequence

x, such that the DS associated to x is S.

An algorithm to associate a decreasing sequence to a DS: Let S be a DS with

marked vertices p1, · · · , pk. Note that Spi is a sub-DS of Spi+1
. We will inductively

find sequences compatible with Spi , for all i, by concatenating to the left, right or

both sides of the part that has already been constructed. At each step we add as

many terms as the distance between pi and pi+1 in the grid. As a visual aid, the

reader may imagine one more layer of boxes on top of the jagged boundary, which

are to be filled up by numbers in the sequence. See Figure 3.5 for an illustrative

example.

In the following we will consider boxes labelled by the vertices pi. Recall that we

say the (l,m)th box in the staircase diagram is labelled by the vertex p, if it contains

p as its south west vertex. But in our situation, the vertex p1 may be on the jagged

boundary and in that case there is no box in the staircase diagram labelled by it.

Nevertheless we may speak of the (l,m)th box labelled by p1, where l and m are the

appropriate numbers.

If the (l,m)th box is labelled by p1, then we put xj = 0 for all m ≤ j ≤ l. (There may

be no such j, but this can only happen if there is a rectangular grey region abutting

the jagged boundary. This case is covered in the discussion below.) Suppose we have

a compatible sequence for Spk . Let the box labelled by pk be the (l1,m1)th one. Then

we have already assigned values for xj, where m1 ≤ j ≤ l1. Let the box labelled by
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Figure 3.5: Algorithm for associating a decreasing sequence

pk+1 be the (l2,m2)th one. If it is white then l1 = l2 and m2 = m1 − 1. Choose xm2

to be a number which is greater than −xl2 , which has already been chosen. If it is

black then l2 = l1 + 1 and m1 = m2. Choose xl2 to be a number which is less than

−xm2 , which has already been chosen. If it is coloured grey then choose a number

c which is greater than the modulus value of all the xj, m1 ≤ j ≤ l1. Then put

xj = c for all m2 ≤ j < m1 and xi = −c for all l1 < i ≤ l2. Note that this yields a

compatible sequence for Spk+1
and finishes the induction step.

Remark 3.3.3. In the above algorithm we may have consecutive marked vertices,

such that the boxes labelled by them are white (or black). In this case the terms

concatenated to the sequence corresponding to these two vertices may be taken to

be the same. For instance in the example in Figure 3.5 we could have chosen the

first number of the sequence to be 4 instead of 5. But we can avoid this situation by

always choosing unequal numbers in such a case.

Proposition 3.3.4. For g0 = so(n,H), the set Q/∼ is in one to one correspon-

dence with the set of DS.

Proof. By the above discussion we have a surjective map from Q to the set of DS.

Now we show that this map factors through Q/∼. Suppose we have two sequences

x and x′ such that ux∩p = ux′ ∩p. The LHS is a sum of root spaces where the roots

are {ei + ej : xi + xj > 0} ∪ {−ei − ej : xi + xj < 0} and the RHS is a sum of root
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spaces where the roots are {ei + ej : x′i + x′j > 0} ∪ {−ei − ej : x′i + x′j < 0}. Thus

these two set of roots must be equal. This means xi + xj is positive or negative if

and only if x′i + x′j is positive or negative respectively. Also for the remaining pairs

(i, j), xi + xj = 0 = x′i + x′j. Thus the two DS associated to qx and qx′ must be

same.

On the other hand a DS determines whether xi + xj is positive, negative or zero for

any pair (i, j). Hence qx ∼ qx′ if and only if the corresponding DS are same. Hence

we have a bijective map from Q/∼ to the set of all DS.

Remark 3.3.5. Let S be the DS corresponding to a class represented by a θ-stable

parabolic subalgebra q. By the discussions in §3.2, R+(q) equals the number of white

boxes in S and R−(q) equals the number of black boxes. Hence R(q) equals the

number of white and black boxes. In the sequel the notations R+(S), R−(S) and

R(S) will stand for the number of white boxes, the number of black boxes and the

number of white and black boxes in S, respectively.

3.4 Calculation of H∗(g, K;Aq) for g0 = so(n,H)

Recall from §3.1 that Hk(g, K;Aq) ∼= Hk−R(q)(Yq;C). For each unitary equivalence

class in {Aq : q a θ-stable parabolic}, we will determine Yq (which is independent

of the choice of representative) and state its Hodge polynomial. The space Yq is

the simply connected compact dual of the symmetric space associated to the non-

compact semisimple Lie algebra [l0, l0], where l0 := l∩ g0. So first we will determine

[l0, l0].

With notations as in §3.2 and §3.3, any θ-stable parabolic subalgebra in Q is of the

form qx, where x = (x1, · · · , xn) is a decreasing sequence. Consider the equivalence

relation p ∼ q if |xp| = |xq| on the set {1 ≤ j ≤ n}. If xp = 0 we denote the
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corresponding equivalence class [p] by Nx. If xp 6= 0, we define two subsets I[p] =:

{i ∈ [p] | xi < 0}, J[p] = {j ∈ [p] | xj > 0} of [p]. We denote the cardinalities of

these sets by |Nx|, |I[p]| and |J[p]|, respectively. Note that I[p], J[p] are disjoint sets of

consecutive integers, at least one of which is non-empty and I[p] ∪ J[p] = [p] . The

sets Nx, I[p], J[p], 1 ≤ p ≤ n, xp 6= 0, form a partition of the integers 1 up to n. If S is

the DS associated to qx, then the (i, j)th box is grey if either both i and j belong to

Nx (these boxes constitute the grey region of S which is a sub staircase diagram),

or if i ∈ I[p] and j ∈ J[p] (these boxes constitute one of the grey rectangles). By

Remark 3.3.3, we may work with an x, such that whenever I[p] (respectively J[p]) is

not singleton, we have J[p] 6= ∅ (respectively I[p] 6= ∅). The advantage of working

with such an x is that the members of Φ(lx) can be read off directly from S, where

Φ(lx) denotes the set of roots of (lx, t). More precisely, S already determines the

non-compact roots contained in Φ(lx), namely the roots ±(ei + ej) such that the

(i, j)th box in the DS is grey. If moreover x is as above, then it also determines the

compact roots contained in Φ(lx). The roots ±(ei − ej) ∈ Φ(lx) if and only if either

there exist k and l, such that the (i, k)th and (j, l)th boxes are in the same connected

grey region or there exist k and l, such that the (k, i)th and (l, j)th boxes are in the

same connected grey region. Henceforth it will always be assumed that x satisfies

the property that, |I[p]| > 1 implies J[p] 6= ∅ and vice versa.

Now we will look at two special cases, which will enable us to understand the general

case. The first case is where the sequence x is such that Nx contains atmost one

element and there is only one equivalence class of [p], with xp 6= 0, such that I[p]

and J[p] are both nonempty. That is, the DS corresponding to qx is of a form

as shown in the left side diagram in the Figure 3.6. The right side diagram in

Figure 3.6 should be thought of as an n × n matrix, where the boxes represent

the positions of its entries. By the discussion in §3.2, lx,0 ∩ p0 consists of matrices

in p0 whose only non-zero entries are at the positions (I[p] × J[p]) ∪ (J[p] × I[p]). In

Figure 3.6, the corresponding positions in the matrix have been marked by a pattern
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Figure 3.6: lx,0 corresponding to a grey region

of vertical lines. Similarly lx,0 ∩ k0 consists of matrices in k0 whose only non-zero

entries are at the positions (I[p] × I[p]) ∪ (J[p] × J[p]) ∪ {(k, k) : 1 ≤ k ≤ n}. In

Figure 3.6, the corresponding positions have been marked by a pattern of horizontal

lines. From Figure 3.6, we observe that lx,0 is a Lie algebra direct sum of some one

dimensional subalgebras and its intersection with the set of matrices whose only

non-zero entries are at the positions [p] × [p]. This last summand is isomorphic to

the fixed point set of so(|I[p]| + |J[p]|,H) under conjugation by jI|I[p]|,|J[p]|. Recall

from §2.3.3 that conjugation by jI|I[p]|,|J[p]| is an involution of even type and we have

already seen that the fixed point set in this case is isomorphic to u(|I[p]|, |J[p]|). Hence

[lx,0, lx,0] = su(|I[p]|, |J[p]|).

Now we consider the next special case. This time assume that for all equivalence

classes of the form [p], with xp 6= 0, either I[p] = ∅ or J[p] = ∅. Also assume |Nx| > 1.

That is, the DS corresponding to qx is of a form as shown in the left side diagram

in Figure 3.7. This time lx,0 ∩ p0 consists of matrices in p0 whose only non-zero

entries are the positions (i, j), with i 6= j and (i, j) ∈ Nx × Nx. On the other

hand, lx,0∩ k0 consists of matrices in k0 whose only non-zero entries are the positions

(Nx × Nx) ∪ {(k, k) : 1 ≤ k ≤ n}. As before the corresponding entries have been

marked by a pattern of vertical and horizontal lines respectively. We observe that lx,0

is a Lie algebra direct sum of some one dimensional subalgebras and its intersection
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Figure 3.7: lx,0 corresponding to a grey region

with the set of matrices whose only non-zero entries are at the positions Nx × Nx.

This last summand is isomorphic to so(|Nx|,H). Hence [lx,0, lx,0] = so(|Nx|,H).

The above arguments may be used to handle the general case. The crucial point here

is that I[p], J[p] and Nx form a partition of {1, · · · , n}. This makes the subalgebras

corresponding to each [p] an ideal and any two distinct such ideals are linearly

disjoint. We state the general result below.

Proposition 3.4.1. The derived algebra [lx,0, lx,0] is a direct sum, over the parts of

the partition {[p]} omitting singletons, of the following simple Lie algebras:

(i) su(|I[p]|, |J[p]|) if both I[p], J[p] are non-empty,

(ii) so(|Nx|,H).

Also,

R(qx) = dimC(u ∩ p) = n(n− 1)/2− |Nx|(|Nx| − 1)/2−
∑

[p],xp 6=0

|I[p]|.|J[p]|.

From Proposition 3.4.1 it follows that

Yq = (
∏

[p],xp 6=0

CG|[p]|,|I[p]|)× SO(2|Nx|)/U(|Nx|),
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where CGk,l denotes the complex Grassmann manifold of l-planes in Ck. It is un-

derstood that U(0) is trivial and that the last factor in Yq is present only if |Nx| ≥ 2.

The Poincaré polynomial Pt(X) of a homogeneous manifold of the form X = M/H

where M is a compact connected Lie group and H is a connected subgroup having

the same rank as M is given by the “formula of Hirsch”. This is applicable to

the complex Grassmann manifold CGk+l,k and to SO(2k)/U(k). See [21] and [1,

Theorem 26.1]. From this and the observation that these manifolds are algebraic,

the Hodge polynomials, with z := uv, are

Pu,v(CGk+l,k) =
(1− zl+1) · · · (1− zk+l)

(1− z) · · · (1− zk)
,

Pu,v(SO(2k)/U(k)) = (1 + z)(1 + z2) · · · (1 + zk−1).

Recall from §3.1, that the Hodge polynomials of H∗(g, K;Aq) and H∗(Yq;C) are

related as Pu,v(Aq) = uR
+(q)vR

−(q)Pu,v(Yq), where R+(q) = dim(u∩p+) and R−(q) =

dim(u ∩ p−). Thus we have:

Proposition 3.4.2. We keep the notations as above and set q := qx. The Hodge

polynomial Pu,v(q) of H∗(g, K;Aq) is given by

Pu,v(Aq) = uR
+(q)vR

−(q)(
∏

[p],xp 6=0

Pu,v(CG|[p]|,|I[p]|))× Pu,v(SO(2|Nx|)/U(|Nx|)).

3.5 The main result

In this section we first state the main theorem and its corollary. The proof of the

theorem depends on a technical lemma which we prove at the end. Before that we

prove the theorem and its corollary, assuming the statement of this lemma.

Theorem 3.5.1. For n ≥ 9, up to unitary equivalence there is a unique irre-

ducible unitary representation of SO(n,H), with Harish-Chandra module Aq, such
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that R+(q) = R−(q) = n− 2. This representation occurs with non zero multiplicity

in the decomposition of L2(Γ\SO(n,H)), where Γ is any torsion free uniform lattice

corresponding to an F -structure of type DIIIu which admits an F -rational Cartan

involution of diagonal type.

Before stating the corollary let us define a partial order on the set Z[u, v] of two vari-

able polynomials with integer coefficients. Let P (u, v) =
∑

i,j pi,ju
ivj and Q(u, v) =∑

i,j qi,ju
ivj be two polynomials in Z[u, v]. We say P (u, v) ≥ Q(u, v) if pi,j ≥ qi,j,

for all pairs (i, j).

Corollary 3.5.2. Let n ≥ 9. For each torsion free uniform lattice Γ, corresponding

to an F -structure of type DIIIu which admits an F -rational Cartan involution of

diagonal type, we have the following inequality of Hodge polynomials.

Pu,v(Γ\SO(n,H)/U(n)) ≥ un−2vn−2(Pu,v(CP 1)× Pu,v(SO(2n− 4)/U(n− 2)))

+ Pu,v(SO(2n)/U(n)).

In particular there are cohomology classes of (p, p) type, which cannot be represented

by SO(n,H)-invariant forms on SO(n,H)/U(n), in each even dimension between

2n− 4 and n(n− 1)− (2n− 4).

The first statement in Corollary 3.5.2 immediately follows from Proposition 3.4.2

applied to Aq = Ag and Aq equal to the one described in Theorem 3.5.1. The second

statement follows from noting that CP 1×SO(2n− 4)/U(n− 2) had non-zero Betti

numbers in all even dimensions.

Proof. of Theorem 3.5.1. We begin by discussing a general strategy for detection of

unitary representations of a semisimple Lie group G whose Harish-Chandra module

is one of the Aq. We will also assume that G/K is Hermitian symmetric. Then the
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results of §3.1 and §3.3 imply

Hp,q(Γ\G/K;C) ∼=
∏

q∈Q/∼

m(Aq,Γ) Hp−R+(q),q−R−(q)(Yq,C), (3.5)

where q is understood to represent its equivalence class in Q/∼. When q = g, we

have R(g) = 0, m(Γ,Ag) = 1 and the image of H∗(Yg;C) under the Matshushima

isomorphism consists of cohomology classes that are represented by G-invariant

forms on G/K. The construction of special cycles produce cohomology classes on

the LHS of (3.5) that cannot be represented by G-invariant forms on G/K. Fix an

integer c and consider the part of the cohomology that consists of (p, q) types where

p − q = c. Suppose there exists a unique q1 ∈ Q/∼ such that R(q1) is the least

value in the set {R(q) : g 6= q ∈ Q/∼, R+(q) − R−(q) = c}. Also suppose that a

special cycle has been constructed whose Poincaré dual is of type (p1, q1), such that

p1−q1 = c, p1+q1 = d and {R(q) ≤ d : g 6= q ∈ Q/∼, R+(q)−R−(q) = c} = {R(q1)}.

Then it follows that m(Γ, Aq1) 6= 0.

In our case where G = SO(n,H), K = U(n) and Γ is as in the statement of the

theorem, we will take c = 0, that is, we will concentrate on cohomology classes of

type (p, p). From Theorem 2.5.1, we know that there exists a cohomology class of

Γ\SO(n,H)/U(n) of type (n − 1, n − 1) arising from a special cycle. Lemma 3.5.4

below implies the existence of a unique q ∈ Q/∼, which is not equal to g, satisfying

R+(q) = R−(q) ≤ n − 1, under the assumption that n ≥ 9. This completes the

proof.

It remains to prove Lemma 3.5.4. We require a preliminary lemma first.

Lemma 3.5.3. Suppose S is a DS of height n, all whose boxes are either grey or

black. Then either there exists 1 ≤ l ≤ n− 1, such that the first l rows of S consist

of grey boxes and the remaining of black boxes, or there exists 1 ≤ l ≤ n − 1 such

that all boxes except the top l boxes of the first column are black.
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Proof. Recall from definition of DS that grey regions are either rectangular or in

the shape of a sub staircase diagram. Observe that if p is the bottom left vertex of

a grey region in the shape of a sub staircase diagram or the top right vertex of a

rectangular grey region, then all boxes in the north west of p must be white. Let S

be a DS satisfying the hypothesis of the lemma. If S has no rectangular grey region

then there can only be a grey region in the shape of a sub staircase diagram. Now

the above observation forces its bottom left vertex to be on the vertical boundary.

Hence S must be of the first type described in the statement. On the other hand, if

S has a rectangular grey region then the above observation forces it to be a subset

of the first column. This also implies that it is the unique grey region in S. Hence

S is of the second type described in the statement.

Let S0 be the DS which is decorated as follows. The box at the intersection of the

first column and the last row is grey, rest of the boxes in the first column are white,

rest of the boxes in the last row are black, and the remaining are grey. See Figure

3.8 for an illustration.

Figure 3.8: The DS S0.

Lemma 3.5.4. When n ≥ 9, the only DS S of height n with R+(S) = R−(S) ≤ n−1

is S0.

Proof. Let S be a DS of height n with R+(S) = R−(S) ≤ n − 1. Suppose the

(n, 1)th box is not grey. Then it is either white or black. If it is white then all

97



the boxes in the first column are white. Let p be the right bottom vertex of the

(n, 1)th box. Then Sp is a DS as in Lemma 3.5.3. Suppose Sp is of the first type,

then there cannot be more than one black row, since otherwise R−(S) = R−(Sp) ≥

2n − 3 > n − 1 for n ≥ 9. On the other hand if Sp has only one black row, then

R−(S) = n − 2 < n − 1 = R+(S). This is a contradiction. If Sp is of the second

type, then R−(S) = R−(Sp) ≥ 1
2
(n− 2)(n− 3) which is greater than n− 1 if n ≥ 9.

So again we have a contradiction. An entirely analogous argument can be given to

prove that the (n, 1)th box cannot be black. Thus the (n, 1)th box of S must be grey.

Suppose the grey rectangle containing the (n, 1)th box is of dimension a×b. Suppose

a = 1 = b. The DS S0 satisfies this condition. If S 6= S0, let q be the top right

vertex of the (n, 1)th box. The conditions on S will force that Sq contains exactly

one white box and exactly one black box. This configuration is not possible unless

the height of Sq is 3 which will imply n = 5, a contradiction. Now suppose one of a, b

is greater than 2. Counting the number of white boxes above this grey region and

the number of black boxed to its right, we obtain, using R+(S) = R−(S) ≤ n − 1,

that

n− 1 ≥
(
a

2

)
+ a(n− a− b),

(
b

2

)
+ b(n− a− b). (3.6)

If a ≥ 2, then counting the number of white boxes in the first two columns we obtain

2n− 2b− 3 ≤ R+ ≤ n− 1. Hence b ≥ d(n− 2)/2e. In particular b ≥ 2, since n ≥ 9.

Thus there was no loss in generality in assuming a ≥ 2. Also counting number of

black boxes in the last two rows we get, a ≥ d(n− 2)/2e. Since a+ b ≤ n, we get

d(n− 2)/2e ≤ a, b ≤ b(n+ 2)/2c. (3.7)

If n = 2m is even, equation (3.7) simplifies as

m− 1 ≤ a, b ≤ m+ 1 (3.8)
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Combining with equation (3.6) we get 2m−1 ≥ (m−1)(m−2)/2, which is equivalent

to m2−7m+4 ≤ 0. Thus m ≤ 6. Since n ≥ 9, the only possibilities are m = 5, 6. If

m = 5, then equation (3.8) implies, 4 ≤ a, b ≤ 6. Since
(

6
2

)
,
(

5
2

)
> 9, equation (3.6)

yields a contradiction to either a or b being equal to 5 or 6. Hence we must have

a = 4 = b, but again equation (3.6) gives a contradiction. Similarly we can show

that the case m = 6 cannot occur.

The case n = 2m+ 1 is odd can be handled in a similar way.
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