
Analysis of Algebraic Complexity Classes and Boolean
Functions

By
Nitin Saurabh

MATH10201005003

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

(Theoretical Computer Science)

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

December, 2016

Homi Bhabha National Institute
Recommendations of the Viva Voce Committee

As members of the Viva Voce Committee, we certify that we have read the disserta-
tion prepared by Nitin Saurabh entitled “Analysis of Algebraic Complexity Classes and
Boolean Functions” and recommend that it may be accepted as fulfilling the thesis re-
quirement for the award of Degree of Doctor of Philosophy.

Date:

Chair - V. Arvind

Date:

Guide/Convener - Meena Mahajan

Date:

Examiner - Arkadev Chattopadhyay

Date:

Member 1 - Saket Saurabh

Final approval and acceptance of this thesis is contingent upon the candidate’s sub-
mission of the final copies of the thesis to HBNI.

I hereby certify that I have read this thesis prepared under my direction and recom-
mend that it may be accepted as fulfilling the thesis requirement.

Date:

Place: Guide

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgment of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Nitin Saurabh

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution / University.

Nitin Saurabh

List of Publications arising from the thesis

Journal

1. Some Complete and Intermediate Polynomials in Algebraic Complexity Theory.
Meena Mahajan and Nitin Saurabh. To appear in Theory of Computing Systems –
the special issue of CSR 2016.

2. VNP=VP in the multilinear world. Meena Mahajan, Nitin Saurabh, and Sébastien
Tavenas. Information Processing Letters, 2016, 116(2), pp 179-182.

3. Upper Bounds on Fourier Entropy. Sourav Chakraborty, Raghav Kulkarni, Satya-
narayana V. Lokam, and Nitin Saurabh. Theoretical Computer Science, 2016,
vol. 654, pp 92-112 – the special issue of COCOON 2015.

4. Homomorphism Polynomials Complete for VP. Arnaud Durand, Meena Mahajan,
Guillaume Malod, Nicolas de Rugy-Altherre, and Nitin Saurabh. Chicago Journal
of Theoretical Computer Science, 2016, 2016(3).

Conferences

1. Some Complete and Intermediate Polynomials in Algebraic Complexity Theory.
Meena Mahajan and Nitin Saurabh. In Proceedings of the 11th International Com-
puter Science Symposium in Russia (CSR), June 2016, St. Petersburg, Russia.

2. Upper Bounds on Fourier Entropy. Sourav Chakraborty, Raghav Kulkarni, Satya-
narayana V. Lokam, and Nitin Saurabh. In Proceedings of the 21st International
Computing and Combinatorics Conference (COCOON), August 2015, Beijing, China.

3. Homomorphism Polynomials Complete for VP. Arnaud Durand, Meena Mahajan,
Guillaume Malod, Nicolas de Rugy-Altherre, and Nitin Saurabh. In Proceedings
of the 34th International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), December 2014, New Delhi, India.

Nitin Saurabh

To my parents.

ACKNOWLEDGEMENTS

First of all I would like to thank my advisor Meena Mahajan wholeheartedly. She has

been a constant source of inspiration. I will forever be grateful to her for her invaluable

guidance and understanding since my undergraduate days. Over the years I have benefited

immensely from discussions with her − technical or otherwise. Her thoughts and ideas

have helped me shape my thought process as a researcher as well as grow as an individual.

In short, I have been very fortunate to have her as my advisor.

I would also like to thank all the faculty members at IMSc, especially V. Arvind, Ka-

mal Lodaya, Venkatesh Raman, R. Ramanujam, Saket Saurabh, Vikram Sharma and

C. R. Subramanian, all of whom I have learnt a great deal from. I would especially like

to thank them for their collective effort to provide an encouraging and fertile environment

to learn and grow as a researcher and an individual. It has been an immensely satisfying

learning process, and I am eternally grateful to have had them as mentors.

I also wish to thank all my collaborators. A special thanks to Satya Lokam, Valentine

Kabanets, and Sourav Chakraborty. Discussions with them have taught me a great deal

about many aspects of research. As a student I have had the good fortune to visit other

academic institutes. In particular, I would like to thank Satya for sponsoring many visits

to MSR Bangalore, Valentine for a visit to SFU Burnaby, and Kristoffer Hansen for a visit

to Aarhus University.

I further take this opportunity to thank the faculty members at CMI. None of this would

have started if not for the nurture that they provided during the formative years of my

undergraduation.

I would like to thank my parents and my family members for their unwavering support

that has allowed me to follow my dreams with freedom.

I also owe many thanks to all my friends. I have been fortunate to have a very diverse

peer group who made sure that there never was a moment that lacked excitement.

Finally, I wish to thank IMSc administration for being helpful and providing excellent

facilities to make life at IMSc very comfortable.

Contents

Synopsis v

List of Figures vii

1 Introduction 1

1.1 Algebraic Complexity Theory . 2

1.2 Analysis of Boolean functions . 14

1.3 Organisation of the thesis . 18

I Algebraic Complexity Theory 19

2 Structure of algebraic complexity classes 21

2.1 Introduction . 21

2.2 Preliminaries . 22

2.3 Reductions . 30

2.4 Computation with symmetric matrices 33

2.5 Monotone projection and lower bounds 39

i

2.5.1 Preliminaries . 41

2.5.2 The Clique polynomial . 42

2.5.3 Other polynomials . 44

2.6 Closure properties . 46

2.7 Conclusion . 52

3 Homomorphism polynomials and Arithmetic classes 55

3.1 Introduction . 55

3.2 Preliminaries . 57

3.3 Upper Bounds . 64

3.4 Completeness : VP . 67

3.4.1 Homomorphism with weights 68

3.4.2 The unweighted homomorphism polynomial 75

3.5 Completeness : VBP . 79

3.6 Completeness : VNP . 85

3.7 Rigid and Incomparable graphs . 90

3.8 Conclusion . 94

4 Polynomials with intermediate complexity 95

4.1 Introduction . 95

4.2 Preliminaries . 96

4.3 Intermediate polynomials . 97

ii

4.4 Conclusion . 105

II Boolean Function Analysis 107

5 Boolean function analysis 109

5.1 Introduction . 109

5.2 Preliminaries . 112

5.3 Upper bounds via Complexity measures 117

5.4 Polynomial Threshold functions . 126

5.5 Read-Once Formulas . 131

5.6 Real-valued functions . 139

5.7 Examples . 144

5.8 Conclusion . 146

6 Conclusion 149

Bibliography 153

iii

iv

Synopsis

The thesis is divided into two parts, viz. Algebraic complexity theory and Boolean func-

tion analysis.

The first part deals with algebraic complexity theory, specifically with algebraic classes.

First we study different kinds of reductions and prove lower bounds against them. In

particular, we show that sym-Perm is VNP-complete over fields of characteristic other

than 2. Then we prove that Clique
√

n is not a monotone p-projection of Perm. We also

show that multilinear algebraic classes are closed under exponential sums.

Next, we define and study polynomial families based on graph homomorphisms. Using

these families we characterise the algebraic classes VBP, VP and VNP. We establish the

first instance of natural families of polynomials that are defined independent of the circuit

model, and are VP-complete. We further show the utility of homomorphism polynomials

by exhibiting explicit polynomial families that are complete for VBP and VNP. Finally,

we end the first part with a study of families of polynomials that are of intermediate

complexity, that is, in VNP, but neither VNP-hard nor in VP unless PH collapses to the

second level. Specifically, we exhibit a list of new natural VNP-intermediate families of

polynomials that are defined using basic NP-complete problems.

In the second part of this thesis, we study the Fourier Entropy-Influence (FEI) Conjec-

ture, made by Friedgut and Kalai in 1996. We start with establishing upper bounds on

Fourier entropy of a Boolean function. These upper bounds are the combinatorial mea-

sures associated with a Boolean function that are known to be larger than the influence.

v

These complexity measures include, among others, the logarithm of the number of leaves

and the average depth of a parity decision tree. We then show that for the class of Linear

Threshold Functions (LTF), the Fourier Entropy is O(
√

n). It is known that the average

sensitivity for the class of LTF is Θ(
√

n). We also establish a bound of Od(n1− 1
4d+6) for

general degree-d polynomial threshold functions. Next we proceed to show that the FEI

Conjecture holds for read-once formulas that use AND, OR, XOR, and NOT gates. Fi-

nally, we give a general bound involving the first and second moments of sensitivities

of a function (average sensitivity being the first moment), which holds for real-valued

functions as well.

vi

List of Figures

2.1 xor-gadget between parallel edges . 36

3.1 Graph Jn with vertex and edge labels . 70

3.2 The graph Gm. 76

3.3 The graph Gk. 80

3.4 The Graph Gn. 86

3.5 H(3, 1), H(3, 2), H(3, 3): three rigid pairwise-incomparable graphs. 91

5.1 Relationship among complexity measures. 117

vii

viii

Chapter 1

Introduction

Complexity theory aims to understand the power and limitations of “efficient” compu-

tation. In other words, a simple goal is to quantify the computational resources − time,

space, queries, randomness, etc. − required to solve a given task. The progress in our un-

derstanding of computation, in particular “efficient” computation, led to the discovery of

numerous natural problems that were inherently computational in nature. Some of them

turned out to have an “easy” solution, and some resisted all attempts to be solved “easily”.

This resulted in a formalized notion of computational efficiency, giving rise to the famous

P vs NP problem.

Despite decades of effort, we found ourselves in a difficult situation where we had many

questions of fundamental importance, but very few answers (and still remains unan-

swered). However, we made significant progress in our understanding of restricted model

of computation, in particular restricted classes of Boolean circuits. Inspired from the

progress in restricted setting, Valiant [Val92] wondered about pursuing different approaches

that might contribute to progress on the unrestricted model. In particular, he argued, “If

P , NP then any circuit-theoretic proof of this would have to be preceded by analogous

results for the more constrained arithmetic model.”

The purpose of this thesis is two fold. First, to make progress in our understanding of

1

“efficient” computation in the algebraic model of computation, and second, to further our

understanding of Boolean functions using tools from Fourier analysis.

In particular, the thesis is divided into two parts. The first part deals with Algebraic

Complexity theory. Here we study different kinds of reductions and prove lower bounds

against them. We further define and study homomorphism polynomials and use them to

characterise the algebraic classes VBP,VP, and VNP. In particular, we define natural

polynomials that are VP-complete under the strictest notion of reduction. The importance

of these polynomials stems from the fact that they are the first such polynomials, that are

defined independent of the circuit model, and shown to be VP-complete. We end the first

part with a study of polynomial families that are of intermediate complexity, i.e., in VNP,

but, under certain complexity theoretic assumption, neither VNP-hard, nor in VP.

The second part of the thesis is an attempt to solve the Fourier Entropy-Influence Conjec-

ture, made by Friedgut and Kalai [FK96] in 1996. Resolving the conjecture is one of the

most important open problems in the Fourier analysis of Boolean functions [Kal]. Here

we establish the conjecture for Read-Once formulas over AND, OR, XOR, and NOT gates.

Furthermore we provide (various) upper bounds on Fourier entropy of general Boolean

functions and polynomial threshold functions, that may be viewed as progress towards

the Fourier Entropy-Influence conjecture.

Below we state these problems in detail with some background and motivation, and men-

tion our contribution.

1.1 Algebraic Complexity Theory

Algebraic Complexity theory is the study of computation of families of polynomials using

the underlying field (or, ring) operations. In this thesis, we will only be concerned with

polynomial families (fn) such that both, the number of variables and the degree of fn,

are bounded by polynomial functions in n. Further we use the notion of projections to

2

compare two families of polynomials.

A polynomial f is a projection of a polynomial g if for some σi ∈ F ∪ {x1, . . . , xn},

f (x1, . . . , xn) = g(σ1, . . . , σm). Further, a sequence of polynomials (fn) is a p-projection

of the family (gn) if fn is a projection of gt(n) for some polynomial function t(·). (If t(n)

grows like 2poly(log n), then we call it a qp-projection.) So essentially projection is a way to

represent one polynomial using another. A motivation to study such a restrictive kind of

reduction is that it easily transfers computational hardness among polynomial families.

Reductions and Lower bounds

The representation of polynomials using the determinant is a classical subject [Gra55,

Sch81, Dic21, CT79]. A natural restriction in the study of the representation of poly-

nomials is to condition the matrix to be symmetric. That is, a symmetric matrix A with

entries in F∪ {x1, . . . , xn} such that f = det(A). Due to the widespread applications of the

determinant, there has been a long line of work, from as early as the nineteenth century, on

symmetric determinantal representations of polynomials [Hes55, Cay69, Dix02, Dic21,

Cat81, Bea00, HMV06, HV07, Brä11, GKKP11, PSV11, NT12, Qua12, NPT13, Brä13,

GMT13]. In recent years, the study of representations using symmetric determinant has

received impetus due to its importance in convex optimization.

We study the representation of polynomials by the permanent of a symmetric matrix. That

is, we will represent polynomials as the permanent of an undirected simple graph.

Formally, let Xn = [xi, j]16i, j6n be an n × n symmetric symbolic matrix, that is xi, j = x j,i.

Then, sym-Perm = (sym-Permn) is a family of polynomials where sym-Permn is the

permanent of the matrix Xn.

We study the following question: Over fields of characteristic not equal to 2, is every

family in VNP a p-projection of sym-Perm ?

In other words, is sym-Perm VNP-hard over fields of characteristic different than 2, with

3

respect to p-projections?

From the works on factorization of polynomials [Kal86, Kal87, Kal89, KT90], it fol-

lows (see [Bür00a]), that over fields of char 0, sym-Perm is VNP-hard with respect to

c-reductions. c-reductions are the algebraic analogue of oracle reductions (see Defini-

tion 2.3.4). Moreover, using the recent results of Oliveira [Oli15], on factoring polyno-

mials with low individual degree, the reduction above can be improved to constant-depth

c-reductions (see Definition 2.3.5).

A further restriction of constant-depth c-reductions is the linear p-projection, where each

fn is a linear combination
∑

k λkgik of polynomially many p-projections of g (see Defini-

tion 2.3.1).

In Chapter 2, we show that Permn can be written as a difference of two projections of

sym-Perm10n. Hence we get the following result.

Result 1. Over fields of characteristic not equal to 2, sym-Perm is VNP-complete with

respect to linear p-projections. Furthermore, there are only two summands in the linear

p-projection.

It remains open whether sym-Perm is VNP-hard with respect to p-projections. Observe

that bringing down the number of summands from 2 to 1, in Result 1, will establish

hardness under p-projections.

In Chapter 2, we also prove lower bounds against monotone projections. When the un-

derlying field is an ordered field, such as Q and R, or, more generally, any totally ordered

semi-ring, such as Boolean {∧,∨}-semi-ring, a projection is called monotone if and only

if all constants appearing in the substitution are non-negative.

Razborov [Raz85a] proved that computing the permanent, over the Boolean {∧,∨}-semi-

ring, requires monotone circuits of size at least nΩ(log n). Till date, this is the best lower

bound known over the Boolean {∧,∨}-semi-ring. Jukna [Juk14] observed that if the fam-

ily of the Hamiltonian cycle polynomial is a monotone p-projection of the permanent

4

family, over the Boolean {∧,∨}-semi-ring, then, via the Alon-Boppana lower bound for

clique [AB87], one would get a lower bound of 2nΩ(1)
for monotone circuits computing

Permn, thus improving on [Raz85a]. It is also worthwhile to note that such a monotone

p-projection, over R, would give an alternate proof of the fact that computing permanent

by monotone circuits over reals requires size at least 2nΩ(1)
. (A stronger version of this fact

was proved by [JS82].)

Grochow, in [Gro15], made progress on Jukna’s observation by establishing a formal

connection between monotone projections and extended formulations of linear programs.

Using this he showed that the Hamiltonian cycle polynomial is not a monotone sub-

exponential-size projection of the permanent. Though it answered Jukna’s specific ques-

tion about the Hamiltonian cycle in its entirety, the underlying motivating question still

remains unanswered : Whether clique is a monotone p-projection of the permanent?

May be not via the Hamiltonian cycle polynomial, but perhaps via something else, say,

via the satisfiability polynomial [Val79]. It is known (see Section 5 [AB87]) that clique is

a monotone projection of the satisfiability polynomial. Thus it still left open the possibil-

ity of transferring monotone circuit lower bounds for clique to the permanent.

Here we answer the main motivating question of Jukna by directly proving that the

Clique
√

n = (Clique
√

n
n) family is not a monotone (affine) polynomial-size projection of

Perm. By Clique
√

n
n we mean the polynomial which enumerates

√
n-sized cliques in an

n-vertex graph.

Result 2. Over the reals (or any totally ordered semi-ring), the Clique
√

n family is not

a monotone (affine) p-projection of the Perm family. In fact, if Clique
√

n
n is a monotone

(affine) projection of Permt(n), then t(n) > 2Ω(
√

n).

Thus this possibility of transferring monotone circuit lower bounds for clique to perma-

nent cannot work. Our proof strategy is similar to [Gro15], that is, it uses the connec-

tion between monotone projections and extended formulations. We further establish that

certain non-negative polynomials (i.e., polynomials with non-negative coefficients), such

5

as Satq and Clowq, are not monotone p-projections of Perm. We will describe these

polynomials later, in more detail, when we study polynomial families with intermediate

complexity.

Closure under exponential sums

A sequence of polynomials (fn) belongs to VNP if and only if there exist polynomials p

and q, and a sequence (gn) ∈ VP such that for all n,

fn(x1, . . . , xq(n)) =
∑

ȳ∈{0,1}p(n)

gn(x1, . . . , xq(n), y1, . . . , yp(n)).

So, in other words, one can think of VNP as exponential sums of polynomial sized cir-

cuits; VNP =
∑
·VP. Hence the VP versus VNP question can also be thought of as

understanding the power of exponential sums. In the foundational paper [Val82], Valiant

observed that exponential sums of polynomial sized formulas (
∑
·VF) exactly capture ex-

ponential sums of polynomial sized circuits (
∑
·VP). He used this observation crucially

to show that the permanent family Perm is VNP-hard. Hence from Valiant’s observation,

it follows that
∑
·VF =

∑
·VP = VNP.

Valiant’s observation raises a natural question to study: How powerful are exponential

sums of restricted circuit classes?

A natural restriction on arithmetic circuits is multilinearity. A polynomial is called mul-

tilinear if each variable in the polynomial has degree at most 1. An arithmetic circuit

is called multilinear if every gate in it computes a multilinear polynomial. Furthermore,

if for every product gate, the sub-circuits rooted at the left and right child are variable-

disjoint, then the circuit is called syntactic multilinear.

The exponential summation under the restriction of syntactic multilinearity was studied

by Jansen et al. [MR08, JR09, JMR13]. They showed that syntactic multilinear classes

6

are closed under exponential sums. Contrast this with the case of general formulas, where

it captures VNP. Exponential summations of polynomials were also studied by Juma et

al. [JKRS09]. Their motivation was to obtain query algorithms for #SAT that are better

than brute-force. They proved that over fields of characteristic different from 2, multilin-

ear polynomials are closed under exponential sums.

We end Chapter 2 with a study of the exponential summation under the restriction of

multilinearity (not necessarily syntactic). Using techniques different from those used

in [JMR13, JKRS09], we extend their results by showing that, over any field, exponential

summation does not add power to multilinear circuit classes.

Result 3. Let f (x1, . . . , xN , y1, . . . , ym) be a polynomial that is multilinear in the Y =

{y1, . . . , ym} variables. Let h(X) be the exponential sum polynomial

h(X) =
∑

e∈{0,1}m
f (X, e1, . . . , em).

If f has an efficient computation, so does h. The following table gives upper bounds on

the complexity measures of h in terms of the corresponding measures of f .

Char , 2
Char = 2

infinite fields finite fields

Circuit (size,width)
f s,w s,w s,w

h s + 1,w 3s(m + 1),w + 1 s(m + 1)2,w(m + 1)

ABP (size,width)
f s,w s,w s,w

h s + 1,w 3s(m + 1),w + 2 s(m + 1),w(m + 1)

Formula size
f s s s

h s + 1 O(s) [JMR13] O(s) [JMR13]

Furthermore, if the circuit/ABP1/formula for f is multilinear, then so is the circuit/ABP/formula

for h.

1ABP stands for Algebraic Branching Program. For a definition, see Definition 2.2.2.

7

Essentially, the above result says, an exponential summation over multilinear variables is

as good as evaluating the polynomial at one or a small number of points. As a corollary

we obtain the closure property for numerous multilinear classes (Corollary 2.6.4). In

particular, a corollary of our result is that VNP = VP in the multilinear setting, whereas

we do not believe that a similar thing holds in non-multilinear setting. Indeed, our result,

along with the fact VF is strictly weaker than VBP2 ([Raz06, DMPY12]), implies that in

the multilinear world we do not have an analogue of the collapse
∑
·VF =

∑
·VBP =∑

·VP that holds in the general world. Thus our result highlights essential differences

between the general and multilinear worlds, and indicates that separations/collapses in

the restricted multilinear world may have no bearing on the true state of affairs in the

general world.

The results described here are either unpublished or appear in [MS16, MST16].

Completeness

Valiant [Val79, Val82] developed the theory of completeness in the algebraic model of

computation. He showed the permanent family Perm to be complete for the class VNP

(over char, 2), and the determinant family Det to be complete for VP under qp-projections.

Hence, the VP vs VNP problem became synonymous with Perm vs Det problem. In

other words, can the permanent of a matrix be written down as the determinant of a

matrix of not too large a dimension? This reformulation became significant for two rea-

sons: one, the Perm vs Det question is a purely algebraic statement devoid of any model

of computation, and two, combinatorialists have long been fascinated by this problem

[Pol13, Sze13, MM60, MM61, Min78].

However, the reformulation left a puzzling scenario. While we know that Perm is VNP-

complete under p-projections, it is not known whether Det is VP-complete under p-

2VBP is the class of polynomial families computable by polynomial size ABPs. Also, see Defini-
tion 2.2.5.

8

projections. In fact, with respect to p-projections, the determinant family is complete

for the possibly smaller class VBP of polynomial-sized algebraic branching programs

(ABPs).

This raises an important and interesting question: Are there ‘natural’ VP-complete poly-

nomial families?

The very first polynomial shown to be VP-complete, in [vzG87], was motivated by the

definition of VP. Indeed the polynomials were so constructed that every polynomial of

degree at most n over n variables is a projection of the n-th polynomial in the family.

von zur Gathen [vzG87] explicitly stated the question of finding “natural” families that

are VP-complete. Then, in [Bür00a], Bürgisser showed that a generic polynomial family

constructed recursively while controlling the degree is complete for VP. The construction

directly follows a topological sort of a generic VP circuit. In [Raz10] (see also [SY10]),

Raz used the depth-reduction of [VSBR83] to show that a family of “universal circuits”

is VP-complete; any VP computation can be embedded into it by appropriately setting

the variables. All three of these VP-complete families are thus directly obtained using the

circuit definition / characterization of VP.

In Chapter 3, we define and study homomorphism polynomials. Using homomorphism

polynomials, we establish the first instance of natural families of polynomials that (1) are

defined independently of the circuit definition of VP, and (2) are VP-complete.

We first set up some notation. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two

graphs. Let α : V(G) → N be a labeling of vertices of G by non-negative integers.

Consider the set of variables X := {Xu | u ∈ V(H)} and Y := {Y(u,v) | (u, v) ∈ E(H)}. The

weighted homomorphism polynomial f αG,H in the variable set X ∪ Y is defined as follows:

f αG,H =
∑
φ∈Hom

 ∏
u∈V(G)

Xα(u)
φ(u)


 ∏

(u,v)∈E(G)

Y(φ(u),φ(v))

 ,
where Hom is the set of all homomorphisms from G to H (adjacencies preserving maps

9

from V(G) to V(H)). Moreover, for our purposes, {0, 1}-valued weights suffices, i.e.,

α : V(G) → {0, 1}. Such {0, 1}-valued weights are commonly used in the literature, see,

e.g., [BCL+06]. To obtain families of polynomials from the homomorphism polynomial

we consider sequences of graphs (Gm) and (Hm).

Result 4. Over fields of characteristic 0, the family of homomorphism polynomials (fm),

with fm(X,Y) = f αGm,Hm
(X,Y), where

• Gm := Tm, where Tm denotes the complete (perfect) binary tree with m leaves.

• Hm is an undirected complete graph on poly(m), say m6, nodes.

• Define α : Tm → {0, 1} such that,

α(u) =


0 u = root

1 if u is the right child of its parent

0 otherwise

is complete for VP with respect to linear p-projections.

We further improve on our Result 4 by establishing VP-completeness (1) for a much

simpler polynomial, and (2) with respect to p-projections. Consider the following homo-

morphism polynomial defined only over the variable set Y:

fG,H =
∑
φ∈Hom

 ∏
(u,v)∈E(G)

Y(φ(u),φ(v))

 .

We construct a sequence (Gm) of bounded tree-width graphs such that (fGm,Hm(Y)) is com-

plete for VP under p-projections. We use rigid and mutually incomparable graphs in the

construction of Gm. A graph is called rigid if it has no homomorphism to itself other than

the identity map. Two graphs G and H are called incomparable if there are no homomor-

phisms from G → H as well as H → G.

10

Result 5. Over any field, the family of homomorphism polynomials (fm), with fm(Y) =

fGm,Hm(Y), where

• Gm is obtained from Tm by “replacing” nodes with rigid and mutually incomparable

graphs and “stretching” edges (of the tree) into long paths, and

• Hm is an undirected complete graph on poly(m), say m6, vertices,

is complete for VP under p-projections.

Moreover, based on homomorphism polynomials, we obtain a characterisation of VP,

VBP, and VNP. A sequence (Gm) of graphs is called a p-family if the number of vertices

in Gm is bounded by a polynomial function of m.

Result 6. Let (Gm) and (Hm) be p-families of graphs. Consider the family of homomor-

phism polynomials f = (fm), where fm(Y) = fGm,Hm(Y). Then,

• f ∈ VNP. Furthermore, there exists an explicit p-family (Gn) of graphs where Gn

has tree-width Θ(n), and Hn is a complete graph onO(n4) vertices, such that (fGn,Hn)

is VNP-hard, over any field, with respect to p-projections.

• If the sequence (Gm) has bounded tree-width, f ∈ VP. Furthermore, there exists an

explicit p-family (Gn) of bounded tree-width graphs, and Hn is a complete graph

on O(n6) vertices, such that (fGn,Hn) is VP-hard, over any field, with respect to p-

projections.

• If the sequence (Gm) has bounded path-width, f ∈ VBP. Furthermore, there exists

an explicit p-family (Gn) of bounded path-width graphs, and Hn is a complete graph

on O(n2) vertices, such that (fGn,Hn) is VBP-hard, over any field, with respect to p-

projections.

Our upper bounds, in particular of VP and VBP, are obtained in an uniform way. The

construction is inspired from dynamic programming on nice tree decomposition of graphs.

11

It also gives an alternate proof of the fact that every polynomial family in VP has skew

circuits of size 2O(log2 n) (see also [MP08]).

The hardness results are established by showing that parse trees (or, s-t-paths) in the uni-

versal circuit in a normal form (or, a generic ABP) can be captured by homomorphisms

from a “tree”-like (or, a “path”-like) structure Gn. We use projections to obtain the generic

circuit (or, ABP) from the graph Hn. The rigid and mutually incomparable graphs ensure

that there is a bijection between surviving homomorphisms and parse trees. Since parse

trees (or, s-t-paths) account for all monomials generated by the circuit (or, ABP), we

obtain a generic VP (or, VBP) polynomial as a projection of our homomorphism polyno-

mials.

In the context of Result 6, a very natural question falls out: What is the complexity of

a family of homormophism polynomials, where the sequence (Gn) is such that Gn has

tree-width o(n), say poly(log n)?

Consider the family Cliquek
n, where

Cliquek
n :=

∑
S⊆[n]
|S |=k

∏
i, j∈S
i< j

xi, j.

It enumerates k-sized cliques in an n-vertex graph. Set k = log n. From our upper bound,

it follows that Cliquelog n
n is computable by an arithmetic circuit of size nO(log n). Conse-

quently, if Cliquelog n is VNP-complete then all families in VNP will have nO(log n)-sized

circuits computing them. This contradicts Valiant’s extended hypothesis VNP , VQP .

Such observations motivated us to look at polynomials that have intermediate complexity.

The results described here appear in [DMM+16, MS16].

12

Intermediate complexity

Let us call a polynomial family VNP-intermediate if it is (1) in VNP, (2) not VNP-

complete, and (3) not in VP.

Inspired from classical results in structural complexity theory, in particular [Lad75], Bür-

gisser [Bür99] proved that if Valiant’s hypothesis (i.e. VP , VNP) is true, then, over any

field there is a p-family in VNP which is neither in VP nor VNP-complete with respect to

c-reductions. Further, Bürgisser [Bür99] showed that over finite fields, a specific family

of polynomials is VNP-intermediate, provided the polynomial hierarchy PH does not col-

lapse to the second level. Informally, these polynomials enumerate cuts in a graph. This

is a remarkable result, when compared with the classical P-NP setting or the BSS-model.

Though the existence of problems with intermediate complexity has been established in

the latter settings, due to the involved “diagonalization” arguments used to construct them,

these problems seem highly unnatural. That is, their definitions are not motivated by an

underlying combinatorial problem but guided by the necessities of the proof. The ques-

tion of whether there are other naturally-defined VNP-intermediate polynomials was left

open by Bürgisser [Bür00a]. We remark that until this work the cut enumerator polyno-

mial from [Bür99] was the only known example of a natural polynomial family that is

VNP-intermediate.

In Chapter 4, we provide a list of new natural VNP-intermediate polynomial families,

based on basic (combinatorial) NP-complete problems.

For a fixed finite field Fq of size q and char p, consider the following families.

(1) The satisfiability polynomial Satq = (Satqn) : For each n, let Cln denote the set of all

possible clauses of size 3 over 2n literals. There are n variables X̃ = {Xi}
n
i=1, and also 8n3

clause-variables Ỹ = {Yc}c∈Cln , one for each 3-clause c.

Satqn :=
∑

a∈{0,1}n

 ∏
i∈[n]:ai=1

Xq−1
i

 ∏
c ∈Cln

a satisfies c

Yq−1
c .

13

(2) The clow polynomial Clowq = (Clowq
n) : For each n, let Gn denote the complete graph

on n nodes. A clow in an n-vertex graph is a closed walk of length exactly n, where the

minimum numbered vertex (called the head) appears exactly once. The set of variables

are X̃ = {Xe}e∈En and Ỹ = {Yv}v∈Vn .

Clowq
n :=

∑
w: clow of length n

 ∏
e: edges in w

Xq−1
e




∏
v: vertices in w

(counted only once)

Yq−1
v

 .
Similarly, we define polynomials based on other combinatorial problems, e.g., vertex

cover polynomial VCq, clique/independent set polynomial CISq, and 3D-matching poly-

nomial 3DMq. We show that under the plausible hypothesis ModpP * P/poly, all five

polynomials mentioned above are VNP-intermediate.

Result 7. Over a finite field Fq of characteristic p, the polynomial families Satq, VCq,

CISq, Clowq, and 3DMq, are in VNP. Further, if ModpP * P/poly, then they are all

VNP-intermediate; that is, neither in VP nor VNP-hard with respect to c-reductions.

The results described here appear in [MS16].

1.2 Analysis of Boolean functions

Boolean functions are one of the most fundamental object of study in computer science.

Within theoretical computer science, Fourier analysis of Boolean functions evolved into

one of the most useful and versatile tools to study such functions (see [dW08, O’D14]).

The set of all real functions on {0, 1}n is a 2n-dimensional real vector space with an in-

ner product defined by 〈 f , g〉 = 2−n ∑
x∈{0,1}n f (x)g(x). The character functions χS (x) :=

(−1)
∑

i∈S xi for S ⊆ [n] form an orthonormal basis for this space of functions with respect

to the above inner product. Thus, every function f : {0, 1}n → R has the unique Fourier

expansion: f (x) =
∑

S⊆[n] f̂ (S)χS (x).

14

For a Boolean function f : {0, 1}n → {+1,−1}, we have
∑

S⊆[n] f̂ (S)2 = 1. Hence we can

define the (Shannon) entropy of the distribution given by f̂ (S)2:

H(f) :=
∑
S⊆[n]

f̂ (S)2 log
1

f̂ (S)2
.

The influence of f in the i-th direction Infi(f) is the fraction of inputs at which the value

of f gets flipped if we flip only the i-th bit. Then the (total) influence Inf(f) of f is∑n
i=1 Infi(f).

The Fourier Entropy-Influence (FEI) Conjecture, made by Friedgut and Kalai [FK96],

states that for every Boolean function, its Fourier entropy is bounded above by its total

influence.

Fourier Entropy-Influence Conjecture: There exists a universal constant C such that

for all f : {0, 1}n → {+1,−1}, H(f) 6 C · Inf(f).

The original motivation for the conjecture stems from a study of threshold phenomena in

random graphs. Friedgut and Kalai [FK96] asked : How large can the threshold interval

be for a monotone graph property?

Consider f : {0, 1}n → {0, 1} representing a monotone graph property. Define A f (p) :=

Pr[f (X1, X2, . . . , Xn) = 1], where Xi’s are independent random variables, and each Xi

is 1 with probability p and 0 with probability 1 − p. Let δ > 0 be a small number.

By threshold interval we mean the length of the interval [p, q] such that A f (p) = δ, but

A f (q) = 1 − δ. Then, the length of the threshold interval is inversely proportional to

the derivative of A f (p), and by Russo’s formula [Rus81, Mar74], the derivative of A f (p)

equals the total influence of f (under the product measure). Hence, the graph property

has a small threshold interval around p, that is, sharp threshold, if and only if it has large

influence (under the product measure). Therefore, Friedgut and Kalai [FK96] asked for

generic conditions that would force the influence to be large. They conjectured that a

spread-out Fourier spectrum, i.e. large Fourier entropy, might be one such condition.

15

The first progress on the FEI conjecture was made by Klivans et al. [KLW10] showing

that the conjecture holds for random DNFs. O’Donnell et al. [OWZ11] proved that the

conjecture holds for symmetric functions and, more generally, for any d-part symmetric

functions for constant d. They also established the conjecture for functions computable by

read-once decision trees. Keller et al. [KMS12] studied a generalization of the conjecture

to biased product measures on the Boolean cube and proved a variant of the conjecture for

functions with extremely low Fourier weight on high levels. O’Donnell and Tan [OT13]

verified the conjecture for read-once formulas using a composition theorem for the FEI

conjecture. Wan et al. [WWW14] studied the conjecture from the point of view of ex-

istence of efficient prefix-free codes for the random variable, X ∼ f̂ 2, that is distributed

according to f̂ 2. Using this interpretation, they verified the conjecture for bounded-read

decision trees.

In Chapter 5, we study the Fourier Entropy-Influence (FEI) conjecture, and report var-

ious upper bounds on the Fourier entropy of Boolean functions and general real-valued

functions. Further, we prove the conjecture for Read-Once formulas.

The Inf(f) of a Boolean function f lower bounds a number of complexity parameters of

f such as average depth of a decision tree that computes f (see Fig. 5.1). Hence a natural

weakening of the FEI conjecture is to prove upper bounds on the Fourier entropy in terms

of such complexity measures of Boolean functions.

It is easy to observe H(f) = O(log L1(f)), and thus several easier bounds from Fig. 5.1

follows. In particular, it implies H(f) = O(log L(f)), where L(f) denotes the minimum

number of leaves in a decision tree that computes f . If DNF(f) denotes the minimum

size of a DNF for the function f , note that DNF(f) 6 L(f). It follows that improving

the aforementioned upper bound on entropy to O(log DNF(f)) would resolve Mansour’s

conjecture – a long-standing open question about sparse Fourier approximations to DNF

formulas motivated by applications to learning theory – and a special case of the FEI

conjecture for DNF’s. We prove the following upper bound of average depth.

16

Result 8. For every Boolean function f , H(f) 6 2 · ⊕-d̄(f), where ⊕-d̄(f) denotes the

minimum average depth of a parity decision tree computing f . Moreover, the constant 2

in the bound is optimal.

We next study the FEI conjecture for special classes of Boolean functions, namely thresh-

old functions and Read-Once formulas.

It is known that the influence for the class of linear threshold functions is Θ(
√

n), and

for degree-d polynomial threshold functions is Od(n1−(1/4d+6)) [HKM14, DRST14]. This

suggests a natural and important weakening of the FEI conjecture: Is Fourier Entropy

of polynomial threshold functions bounded by a similar function of n as their influence?

We study the derivative of noise sensitivity, and prove a technical lemma that bounds the

derivative in terms of a noise parameter. Using this bound, we answer the above question

positively.

Result 9. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,

• If f is a linear threshold function, H(f) 6 C ·
√

n, where C is a universal constant.

• If f is a degree-d polynomial threshold function, H(f) 6 C · 2O(d) · n1− 1
4d+6 , where C

is a universal constant.

We further prove that the FEI conjecture holds for Read-Once formulas over AND, OR,

NOT, and XOR gates. Our result is independent of a concurrent result by O’Donnell and

Tan [OT13] that proves the FEI conjecture holds for read-once formulas that allow arbi-

trary gates of bounded fan-in. Prior to these results, O’Donnell et al. [OWZ11] proved

that the FEI conjecture holds for read-once decision trees. Our result for read-once formu-

las is a strict generalization of their result. For instance, the tribes function is computable

by read-once formulas but not by read-once decision trees.

Result 10. If f is computed by a read-once formula using AND, OR, XOR, and NOT

gates, then H(f) 6 10 Inf(f).

17

We end Chapter 5 with a study of real-valued functions. We prove an upper bound on

the entropy of real-valued functions, and present some examples that throw light on how

Boolean-ness is important for the veracity of the Fourier entropy-influence conjecture.

In particular, motivated by the following equivalent restatement of the FEI conjecture, we

establish Result 11.

Fourier Entropy-Influence conjecture (equivalent): There is an absolute constant C such

that for all Boolean function f , H(f) 6 C ·
∑

S |S | f̂ (S)2.

Result 11. If f =
∑

S⊆[n] f̂ (S)χS is a real-valued function on the domain {0, 1}n such that∑
S f̂ (S)2 = 1, then, for any δ ∈ (0, 1],

H(f) ,
∑
S⊆[n]

f̂ (S)2 log
 1

f̂ (S)2

 6 ∑
S⊆[n]

|S |1+δ f̂ (S)2 + (log n)O(1/δ).

The results described here appear in [CKLS15].

1.3 Organisation of the thesis

The rest of the thesis is divided into two parts and five chapters. The first part of the thesis

deals with the algebraic complexity theory (Chapter 2, 3, and 4). The second part deals

with the analysis of Boolean function (Chapter 5).

In the second chapter, we study the sym-Perm polynomial family, lower bounds against

monotone projections, and closure under exponential sums. The third chapter is devoted

to the VP-completeness and characterisation of the algebraic complexity classes. Next,

in the fourth chapter, we study families of intermediate complexity, and establish VNP-

intermediate families.

We study the Fourier Entropy-Influence conjecture in the fifth chapter. Finally we con-

clude the thesis in the sixth chapter.

18

Part I

Algebraic Complexity Theory

19

Chapter 2

Structure of algebraic complexity

classes

2.1 Introduction

The theory of NP-completeness is of fundamental significance in computational complex-

ity. Valiant [Val79, Val82] developed analogous concept in the framework of algebraic

complexity theory, and argued [Val92] that corresponding concepts in this setting must be

understood, before we can give a satisfactory answer in Boolean setting. In [Val79], he

proposed a theory of P vs NP in the algebraic setting. Analogously he defined and studied

two classes of polynomial families, namely p-computable and p-definable. They are now

known as VP and VNP, respectively. Further, to facilitate reductions among problems in

the algebraic setting he studied projections. It is the strictest notion of reduction whereby

one polynomial is obtained from another by simple substitutions. Roughly, families in

VNP can be thought as sums of a family in VP over all possible Boolean substitutions of

a (fixed) subset of variables [Val82]. We call such sums over all possible Boolean instan-

tiations exponential sums. He also proved that the permanent family is VNP-complete

under projections. Further, in [Val82], he studied closure properties of algebraic classes,

21

and proved VNP to be closed under many natural operations such as substitution, coeffi-

cient extraction, differentiation, integration, etc.

In this chapter we try to understand different notions of reductions and aim to estab-

lish VNP-completeness of the family of the permanent of symmetric symbolic matrices.

Valiant’s [Val79] proof of the completeness of permanent crucially uses (non-symmetric)

directed graphs. We further study the closure property of algebraic classes under expo-

nential sums.

We give basic definitions about algebraic complexity classes and set up the general back-

ground in Section 2.2 and Section 2.3. We then study VNP-completeness of the symmet-

ric permanent family under different kinds of reductions in Section 2.4. In Section 2.5,

we prove lower bounds against monotone projections. Further, in Section 2.6, we study

(exponential) sums of restricted algebraic classes under (partial) Boolean substitutions.

2.2 Preliminaries

We start with formal definitions in the setting of algebraic complexity. Let F be any

field, and let F[x1, . . . , xn] be the ring of polynomials over indeterminates x1, . . . , xn with

coefficients from F. We call a function t : N → N p-bounded if and only if there exists

some c > 0 such that t(n) 6 nc + c for all n. It is called qp-bounded when t(n) 6 2c·logc n

for all n.

The objects of our study will be families of polynomials (fn)n>1 such that fn ∈ F[x1, . . . , xν(n)]

for some function ν : N → N. Furthermore, if both the degree of fn, and the number of

variables ν : N → N are p-bounded functions of n, we say (fn) is a p-family. In this

thesis, we will only concern ourselves with p-families of sequence of polynomials. The

complexity measure of our interest would be the number of ring operations, additions and

multiplications, needed to compute a polynomial symbolically.

22

Definition 2.2.1. An arithmetic circuit C over a field F and the variable set X = {x1, . . . , xn}

is a directed acyclic graph where each node is either a source node (indegree 0), or has

indegree 2. The source nodes are labeled from the set F∪X , whereas the rest of the nodes

are labeled + or ×. There is a designated sink node (outdegree 0) called output gate.

The source nodes are also called input gates. A circuit C computes a polynomial in a

natural way. The input gates are labeled by either variables, or constants. Therefore, an

input gate labeled by ` naturally computes the polynomial `. A gate labeled by + com-

putes the sum of the polynomials computed by its children. A gate labeled by × computes

the product of the polynomials computed by its children. The polynomial computed by

C is the polynomial computed by the designated output gate. The size of an arithmetic

circuit, denoted size(C), is the number of non-source nodes in the circuit. Sometimes the

number of edges in the circuit is also considered as a measure of size, but note that the

two measures are polynomially related. The depth of a circuit is the maximum length of

a directed path from an input gate to the output gate. Sometimes it is useful to layer the

vertices in C such that all edges in the underlying directed acyclic graph go from some

layer i to i + 1. In such a case, we define the width of a circuit to be the maximum number

of vertices in a layer.

If we restrict the general arithmetic circuit such that the outdegree of every node in the

circuit is at most 1, we obtain a restricted model of arithmetic circuits called formulas. It

is easy to observe that the graph underlying a formula is, in fact, a tree.

In the case of general arithmetic circuits, or formulas, the children of a × gate are unre-

stricted. We will study another model of algebraic computation, called skew circuits, in

which multiplication gates are restricted such that at most one of the two children is a

non-input gate. We now give an equivalent definition, but in terms of weighted graphs.

Definition 2.2.2. An algebraic branching program (ABP) is a directed acyclic graph with

two distinguished vertices, a designated source node s and a designated target node t. The

edges are labeled by the elements in the field F or the set of variables X = {x1, . . . , xn}.

23

For any directed path ρ from s to t, the weight of ρ is the product of the labels of the edges

on ρ. The polynomial computed by an ABP is the sum of weights of all paths from s to t.

The size of an algebraic branching program, denoted size, is the number of vertices in

it. We will assume, without loss of generality, that algebraic branching programs are

layered. That is, the vertices are partitioned into layers. The first layer contains only one

vertex, the source node s. Similarly the last layer contains a single vertex, the target node

t. Furthermore, all edges of the graph go from some layer i to i + 1. Again, analogous

to circuits, the width of an algebraic branching program is defined to be the maximum

number of vertices in a layer.

We say that a sequence of polynomials (fn) is computable by a sequence of arithmetic

circuits (or, branching programs) (Cn) if and only if Cn computes fn for all n. Correspond-

ing to two notions of computation we have two complexity measures, namely sizec and

sizebp. If f = (fn) is computable by a sequence of circuits (resp. branching programs) Cn,

then sizec(f) 6 size(Cn) (resp. sizebp(f) 6 size(Cn)). We now formalize the notion of

feasible (easy to compute) families of polynomials.

Definition 2.2.3. A sequence of polynomials (fn) over F belongs to the class VPF if and

only if (fn) is a p-family, and is computable by a sequence of arithmetic circuits (Cn) over

F such that size(Cn) is a p-bounded function of n.

Definition 2.2.4. A sequence of polynomials (fn) over F belongs to the class VFF if and

only if (fn) is a p-family, and is computable by a sequence of formulas (Cn) over F such

that size(Cn) is a p-bounded function of n.

Definition 2.2.5. A sequence of polynomials (fn) over F belongs to the class VBPF if and

only if (fn) is a p-family, and is computable by a sequence of branching programs (Bn)

over F such that size(Bn) is a p-bounded function of n.

The following proposition is easy to show and well known (see, for instance, [MP08,

Mah14]).

24

Proposition 2.2.6. A sequence of polynomials (fn) belongs to the class VBP iff it is com-

putable by a sequence of skew circuits (Cn) such that size(Cn) is polynomially bounded.

It is but natural to wonder : why not allow division gates in arithmetic circuits. However,

over infinite fields, Strassen [Str73] showed that circuits with division gates can be sim-

ulated by circuits without division gates with only polynomial blow-up in size. (Hrubeš

and Yehudayoff [HY11] extended this result to finite fields.)

We now introduce two polynomials of great significance in algebraic complexity theory,

the determinant polynomial and the permanent polynomial. The family of determinant

polynomials Det = (Detn) is such that the n-th polynomial is given by the determinant of

an n × n symbolic matrix. We assume the entries are {xi j | 1 6 i 6 n, 1 6 j 6 n}. Then

Detn :=
∑
σ∈S n

(−1)sign(σ)
n∏

i=1

xiσ(i) ,

where S n is the group of permutations over n elements. Using Gaussian elimination we

can construct a poly(n) sized arithmetic circuit using division gates that computes Detn.

Hence, from the discussion above, it follows that Det ∈ VPF for all field F. Det is also

known to be in VBPF for all F (see [MV97] for a very elegant combinatorial proof.).

The permanent family Perm = (Permn) of polynomials is a sequence where the n-th

polynomial is the permanent of an n × n symbolic matrix. That is,

Permn :=
∑
σ∈S n

n∏
i=1

xi,σ(i) .

Perm is not known to be in VP. In fact, it is not believed to be so. Valiant [Val79] defined

an algebraic analog of the class NP and showed the permanent family to be complete for

that class. VP can be thought of as an algebraic analog of the class P.

Definition 2.2.7. A sequence of polynomials (fn) over F belongs to the class VNPF if and

25

only if there exists a polynomial p, and a sequence (gn) ∈ VPF , such that for all n,

fn(x̃) =
∑

ỹ∈{0,1}p(n)

gn(x̃, ỹ) .

The permanent family Perm is the canonical example of a family in VNP. There are many

ways to see this. We will consider the definition of the permanent. It follows,

Permn =
∑

Y∈{0,1}n×n

Y is a permutation matrix

n∏
i=1

 n∑
j=1

Yi jxi j

 .
Now if we can write a small polynomial (i.e. in VP) that checks whether a given Boolean

matrix is a permutation matrix or not, we would establish that Perm is in VNP. Recall that

a permutation matrix is a {0, 1}-matrix such that each row and column contains exactly

one 1. We construct indicator polynomials for the events, each row contains at most one

1, each column contains at most one 1, and each row contains at least one 1. The three

events together implies that each row and column contains exactly one 1. So we get the

following polynomial that, when evaluated on Boolean inputs, outputs 1 if the input is a

permutation matrix, and 0 otherwise.

hn(Y) =

n∏
i=1


∏
j,k∈[n]

j,k

(1 − Yi jYik)

 ·
n∏

j=1


∏

i,k∈[n]
i,k

(1 − Yi jYk j)

 ·
n∏

i=1

 n∑
j=1

Yi j

 .
The first (resp. second) term in the product checks whether each row (resp. column) has

at most one 1, and the third term checks whether each row has at least one 1. Therefore,

Permn =
∑

Y∈{0,1}n
hn(Y)

n∏
i=1

 n∑
j=1

Yi jxi j

 .
Clearly, hn(Y)

∏n
i=1

(∑n
j=1 Yi jxi j

)
∈ VP. Hence, Perm ∈ VNP.

It follow from definitions that VBP ⊆ VP ⊆ VNP. It is not known whether either of the

26

containment is proper. Valiant’s hypothesis says that the second containment is strict, that

is, VP ⊂ VNP. In fact, Valiant gave evidence for his hypothesis. He described complete

families of polynomials for these classes. These are families that in some sense capture

the complexity of the class. Before we can talk about completeness, we must be able to

compare two problems. Valiant [Val79] proposed a strict, but natural, notion of reduction

between families of polynomials.

Definition 2.2.8. A polynomial f ∈ F[x1, . . . , xn] is a projection of a polynomial g ∈

F[y1, . . . , ym] if there exists a substitution map σ : {y1, . . . , ym} → F∪{x1, . . . , xn} such that

f (x1, . . . , xn) = g(σ(y1), . . . , σ(ym)).

Further, a sequence of polynomials (fn) is a p-projection (or, qp-projection) of the family

(gn) if there exists a p-bounded (or, qp-bounded) function t : N → N, such that for every

n, fn is a projection of gt(n).

It is easily seen that all the classes VBP,VP and VNP are closed under p-projection. We

can now formally define the notion of completeness.

Definition 2.2.9. For an algebraic class C, a family of polynomials f = (fn) is said to

be C-hard with respect to p-projections (or, qp-projection), if every family in C is a p-

projection (or, qp-projection) of f . Furthermore, if f ∈ C, it is said to be C-complete with

respect to p-projections (or, qp-projections).

For convenience, we will drop the explicit mention of the reduction if hardness is estab-

lished under p-projections.

Valiant showed the permanent family Perm to be VNP-complete, and the determinant

family Det to be VP-complete with respect to qp-projections.

Theorem 2.2.10 ([Val79]). Over fields of characteristic other than 2, (Permn) is VNP-

complete.

27

Theorem 2.2.11 ([Val79]). Over any field, the determinant family (Detn) is VP-complete

with respect to qp-projections.

Note that the VP-hardness of Det is established with respect to qp-projections. It is

not known whether Det is VP-hard with respect to p-projections. However, it is known

since [Val79] that Det is VBP-hard with respect to p-projections. Later, it was also shown

to be in VBP [Dam91, Tod92, Vin91, MV97]. Thus, the determinant family is complete

for a possibly smaller class. No other natural family was known to be VP-complete with

respect to p-projections. This lack of complete families of polynomials for the class VP

will be the central theme to be explored in Chapter 3.

We end this section with a useful criterion, due to Valiant [Val79], to verify whether a

polynomial family belongs to the class VNP. (See, also, [HWY10], or Section 2.3 in

[Bür00a].)

Proposition 2.2.12 (Valiant’s criterion, [Val79]). Let (fn) be a p-family of polynomials

over any field. Suppose there exists a #P/poly algorithm which, given n and a monomial

m as inputs, compute the coefficient of m in fn. Then, (fn) ∈ VNP.

Proof. Let fn(X1, . . . , Xt) be a polynomial of degree D(n) over t(n) variables, with coeffi-

cients expressible as 1 + 1 + . . . + 1 over the underlying field. Note that D(n) and t(n) are

p-bounded in n. That is,

fn =
∑

D̃=(D1,...,Dt)∈Nt∑
j D j=D

c(D̃)

 t∏
i=1

XDi
i

 ,

where c(D̃) is the coefficient of the monomial given by the degree sequence D̃.

We give a short proof of the proposition following the arguments in [Bür00a]. For ease of

presentation we will consider the case when algorithm computing the coefficients is in #P

rather than #P/poly. Essentially the same argument goes through in the latter case too.

28

Fix d := dlog De. Let φ : {0, 1}∗ → N, in #P, be an algorithm that compute the coefficients

of fn given the degree sequence and n. We will denote a degree sequence by a {0, 1}-matrix

of size t × d, where rows represent the individual degrees in binary. Then,

fn =
∑

E∈{0,1}t×d

φ(E)

 t∏
i=1

Xbin(Ei)
i

 , (2.1)

where Ei is the i-th row of the matrix E, and bin(Ei) denotes the natural number given by

the binary string Ei.

Since #3-SAT is #P-complete via parsimonious reductions, for every n ∈ N, there exists a

3-CNF Φn with poly(n) clauses over the variable matrix E and some additional variables

Y1, . . . ,Ym(n), such that m(n) is p-bounded in n, and for all E ∈ {0, 1}t×d,

φ(E) = #{Y ∈ {0, 1}m(n)
| Φn(E,Y) is true}.

We now arithmetize Φn, in an obvious way (see, for example, [Bür00a]), to obtain a

polynomial pn such that for all E ∈ {0, 1}t×d,

φ(E) =
∑

Y∈{0,1}m(n)

pn(E,Y). (2.2)

Observe that by construction (pn) is in VP. We now define another polynomial hn as

follows:

hn(X, E,Y) := pn(E,Y)
t∏

i=1

 d∏
j=1

(
Ei, jX2 j

i + 1 − Ei, j

) .
From the definition of hn, it is easily seen that (hn) ∈ VP. Furthermore, using Eq. (2.2),

we have

φ(E)

 t∏
i=1

Xbin(Ei)
i

 =
∑

Y∈{0,1}m(n)

pn(E,Y)
t∏

i=1

 d∏
j=1

(
Ei, jX2 j

i + 1 − Ei, j

) .

29

Thus, from Eq. (2.1), it now follows that

fn =
∑

E∈{0,1}t×d

∑
Y∈{0,1}m(n)

pn(E,Y)
t∏

i=1

 d∏
j=1

(
Ei, jX2 j

i + 1 − Ei, j

) =
∑

E∈{0,1}t×d

∑
Y∈{0,1}m(n)

hn(X, E,Y).

Since (hn) ∈ VP, we have therefore shown that (fn) ∈ VNP. �

2.3 Reductions

In this section, we will study the different kinds of reductions among families of polyno-

mials. We have already seen projections (Definition 2.2.8) in the last section. It is a very

strict notion of reduction, where a polynomial f is said to be a projection of g if f can be

obtained from g by simply fixing some variables to constants and substituting the others

with variables of f .

For example, let g = y1y2 + y3y4, then x2
1 + x2

2, x1 + x2, x1x2 + 1 and, 0 are some of the

projections of g. But x3
1, x2

1 − x2
2 and x1 + x2 + 1 are not projections of g.

A motivation to study such a restrictive kind of reduction is that it easily preserves/transfers

computational hardness among problems. Indeed, if f is a projection of g, it is readily

seen that g is at least as hard as f . In other words, an arithmetic circuit (or, ABP) for f

can be obtained from a circuit (or, ABP) for g, via the substitution given by the projection

with no increase in size. It also follows that projection is transitive. That is, if f is a

projection of g and g is a projection of h, then f is a projection of h.

These properties also carry over to p-projections, and allow us to study a completeness

theory for the algebraic classes. As noted earlier, the classes VBP, VP and VNP are closed

under p-projections.

Furthermore, if the variables of g are allowed to be substituted by linear polynomials

in the variables of f , such a projection is called affine projection. For instance, in the

30

example above, we observed that x2
1 − x2

2 and x1 + x2 + 1 are not projections of y1y2 + y3y4.

But they are projections when the substitutions are allowed to be affine linear functions of

x1 and x2. However, x3
1 is not a projection even when affine linear functions are allowed.

Bürgisser [Bür00a] observed that sometimes it is easier to establish that a polynomial f is

a linear combination of polynomially many projections of g. This would be the case, for

instance, if f is obtained via interpolation using g. Formally, he defined the reduction as

follows.

Definition 2.3.1. A family of polynomials (fn) is a linear p-projection of a family (gn)

over F if there exists a p-bounded function t : N→ N, such that for all n, there are indices

i1 6 i2 6 . . . 6 it(n) 6 t(n) and constants λk ∈ F such that fn is a projection of the linear

combination
∑t(n)

k=1 λkgik . The sets of variables of gik , for distinct k, are considered to be

disjoint.

Again it easily follows that the relation linear p-projection is transitive, and the classes

VBP,VP, and VNP are closed under it. In general, it is not clear whether the linear com-

bination
∑t(n)

k=1 λkgik is itself a projection of some gm(n), where m is a p-bounded function

of n.

Definition 2.3.2. A sequence of polynomials (fn) is called linearly closed if and only if

any linear combination
∑t

k=1 λk fik is a projection of some fm, where m is a p-bounded

function of the number of terms t and maximum index maxk ik.

From VBP-completeness of the determinant, it follows that Det is linearly closed. Bür-

gisser [Bür00a] proved that the two notions of VNP-completeness, with respect to p-

projections and linear p-projections, are in fact the same.

Proposition 2.3.3 ([Bür00a]). Let f = (fn) ∈ VNP. Then f is VNP-complete with respect

to p-projections if and only if (i) f is linearly closed, and (ii) f is VNP-complete with

respect to linear p-projections.

31

Over ordered fields, such as Q and R, or, more generally, any totally ordered semi-ring,

such as subring of R, Boolean {∧,∨}-semi-ring, or tropical semi-ring of real numbers

under min and addition, we say that a projection is monotone if and only if all constants

appearing in the substitution are non-negative.

Bürgisser [Bür99] introduced and studied the concept of oracle computations. He defined

a reduction analogous to Turing reduction in the classical setting.

Definition 2.3.4. We say that a sequence of polynomials f = (fn) is c-reducible to g = (gn)

if there exists a circuit family (Cn) over the gates +, × and evaluations of g at previously

computed values such that Cn computes fn, and sizec(Cn) is a p-bounded function of n.

Observe that, in c-reduction, evaluations of g are evaluations of some elements of the

sequence g such that their indices are p-bounded in n. As before, we observe that c-

reduction is transitive, and that the class VP is closed under c-reduction. The class VNP is

also known to be closed under c-reduction, though it is not easy to establish (see [Poi08]

for a proof).

The c-reduction is at least as powerful as p-projection, that is, if f is p-projection of g,

then f c-reduces to g. In particular, the following implication always holds, f p-projection

of g⇒ f linear p-projection of g⇒ f c-reduces to g. Moreover, the constant polynomial 0

is VP-complete with respect to c-reduction. Hence, c-reduction does not isolate algebraic

classes lower than VP. To overcome this pitfall, we study a weaker variant of c-reduction.

It can be regarded as an analogue of AC0-Turing reductions in the Boolean world.

Definition 2.3.5. We say that a sequence of polynomials f = (fn) is constant-depth c-

reducible to g = (gn) if there exists a constant-depth circuit family (Cn) over the gates

+, × and evaluations of g at previously computed values such that Cn computes fn, and

sizec(Cn) is a p-bounded function of n.

32

2.4 Computation with symmetric matrices

Let f ∈ F[x1, . . . , xn] be a polynomial in n variables. A natural restriction in the study

of the representation of polynomials by the determinant (or, permanent) of a matrix is

to condition the matrix to be symmetric. That is, construct a symmetric matrix A with

entries in F ∪ {x1, . . . , xn} such that f = det(A) (or, f = perm(A)). Formally, we consider

the following symmetric variants of the determinant and the permanent families. Let

Xn = [xi, j]16i, j6n be an n×n symmetric symbolic matrix, i.e., xi, j = x j,i. Then, sym-Perm =

(sym-Permn) is a family of polynomials where sym-Permn is the permanent of the matrix

Xn. Similarly, we define the symmetric determinant family sym-Det = (sym-Detn).

Due to the preponderance of applications of the determinant, there has been a long line of

work, from as early as the nineteenth century, on symmetric determinantal representations

of polynomials [Hes55, Cay69, Dix02, Dic21, Cat81, Bea00, HMV06, HV07, Brä11,

GKKP11, PSV11, NT12, Qua12, NPT13, Brä13, GMT13]. Some of these works, in fact,

study symmetric determinantal representation with a further constraint that when all the

variables are set to zero the matrix is positive semi-definite. Such representation is of

significance in convex optimization.

In this section we study the representation of polynomials by the permanent of a sym-

metric matrix from the algebraic complexity point of view. Analogous question for the

determinant was studied by Grenet et al. [GKKP11]. In particular, they showed Det is a

p-projection of sym-Det over fields of char , 2. Thus, sym-Det is VBP-complete. Here

we investigate sym-Perm from a similar viewpoint.

We start with some observations that easily follows from earlier work, for example,

see [GKKP11]. For the remaining of this section we will fix the characteristic of the un-

derlying field to be different from 2. Indeed, over fields of char 2, Grenet et al. [GMT13]

showed that the polynomial xy + z cannot be represented as the permanent of a symmetric

matrix.

33

Proposition 2.4.1 (Universality). Let f ∈ F[x1, . . . , xn] be a polynomial computed by

an algebraic branching program of size s, and number of edges e. Then there exists an

undirected graph G, with weights on edges from F∪ {x1, . . . , xn}, such that f = perm(AG)

where AG is the weighted adjacency matrix of G. Moreover, the number of vertices in G

is at most (2(s − 1) + 1), and the number of edges is (e + s).

Proof. The proof follows from the proof of Theorem 5 in [GKKP11] along with an ad-

ditional observation. It is easy to observe that the construction of the undirected graph

given therein is such that the determinant and the permanent of the weighted adjacency

matrix are equal. �

Clearly, sym-Perm ∈ VNP. Also, it follows from Proposition 2.4.1 that every polynomial

family in VNP is a projection of sym-Perm. But it is not clear whether this projection is

a p-projection. We will now discuss this in detail, so let us state the question formally.

Question 2.4.1. Over fields of characteristic different from 2, is sym-Perm = (sym-Permn)

VNP-hard with respect to p-projections?

Given an n × n symbolic matrix X, consider the symmetric matrix B :=

 0 X

Xt 0

 where

Xt is the transpose of the matrix X. It immediately follows that perm(B) = perm(X)2 =

Perm2
n. However, Permn is an irreducible polynomial. This suggests an approach to

compute Permn using factorization [Kal86, Kal87, Kal89, KT90] given oracle access to

permanents of symmetric matrices.

Theorem 2.4.2 ([Bür00a]). Let f ∈ F[x1, . . . , xn], where F is a field of characteristic 0, be

a polynomial of degree d. Then, there exists an arithmetic circuit which computes all the

irreducible factors of f with (d+1)2 evaluations of f and poly(n, d) arithmetic operations.

Using the above theorem, it is easily seen that Permn c-reduces to sym-Perm2n. Hence,

we obtain the following corollary.

34

Corollary 2.4.3. Over fields of characteristic 0, sym-Perm is VNP-hard with respect to

c-reductions.

The reduction in the above hardness result can be improved to constant-depth c-reduction

using the results of Oliveira [Oli15] on factoring of polynomials when the polynomial

has low degree in each variable. For instance, here perm(B) has degree at most 2 in each

variable.

In fact, if one goes through the proof of [Oli15] and, also, uses the fact perm(M)perm(N) =

perm

M 0

0 N

 , then Corollary 2.4.3 can be further improved to the following.

Corollary 2.4.4. Over fields of characteristic 0, sym-Perm is VNP-hard with respect to

linear p-projections.

We now show a very neat and simple way to show that Permn can be written as a difference

of two projections of sym-Perm10n. Furthermore, this way only requires char , 2.

Consider the polynomials Permn ± γ, where γ is a new and distinct variable that does not

appear in the n × n symbolic matrix Xn.

Lemma 2.4.5. There exists a 5n× 5n matrix Yn with entries from Xn∪{0, 1,−1,−1/2, 1/2, γ}

such that perm(Yn) = Permn + γ. Similarly, there exists a matrix Zn such that perm(Zn) =

Permn − γ. In fact, the two matrices Yn and Zn differ in exactly one entry.

Before we see the proof of Lemma 2.4.5, let us complete the argument that Permn is a

projection of a linear combination of sym-Perm10n, with two summands.

Consider the following symmetric matrices,

Bn(γ) :=

 0 Yn

Y t
n 0

 and, B′n(γ) :=

 0 Zn

Zt
n 0

 .
35

v v′

g3

g1 g2

w(〈v, v′〉)

−1/2

w(〈v′, v〉)

−1

−1/2
1/2

Figure 2.1: xor-gadget between parallel edges

Now using the algebraic identity, (a + b)2 − (a − b)2 = 4ab, it follows that 4 · γ · Permn =

perm(Bn(γ)) − perm(B′n(γ)). Thus, Permn = perm(Bn(4−1)) − perm(B′n(4−1)). From the

proof we see that we need 2−1 and 4−1 to exist. Hence, we obtain that, over fields of

characteristic different from 2, Permn can be written as a difference of two projections of

sym-Perm10n.

Theorem 2.4.6. Over fields of characteristic not equal to 2, sym-Perm is VNP-complete

with respect to linear p-projections. Furthermore, there are only two summands in the

linear p-projections.

Observe that bringing down the number of summands from 2 to 1 will solve the Ques-

tion 2.4.1 in its entirety. We now proceed to give a proof of Lemma 2.4.5. For the ease

of presentation we will identify matrices as directed edge-weighted graphs, and we will

present the proof in a graph theoretic language.

Proof of Lemma 2.4.5. Let Gn be the complete directed edge-weighted graph on ver-

tices {v1, v2, . . . , vn} such that its weighted adjacency matrix is given by Xn. By perm(Gn)

we will mean the permanent of the weighted adjacency matrix of Gn. Thus, perm(Gn) =

Permn. A cycle cover of Gn is a set of edges such that together they form a disjoint union

36

of simple cycles covering all the vertices of Gn. It is well known and easy to show that

perm(Gn) =
∑

C ∈ CC(Gn)

∏
e∈C

w(e),

where CC(Gn) is the set of all cycle covers of Gn, and w(e) is the weight of the edge e.

To establish the Lemma it suffices to construct a graph Hn on 5n vertices such that

perm(Hn) = perm(Gn) + γ. (The construction for Permn − γ is similar.)

Consider a directed (simple) cycle v′1 → v′2 → · · · → v′n → v′1 on n vertices. Only the

edges present in the cycle have non-zero weight and they are all equal to 1. We will

denote it by Cn. Now consider the disjoint union of Gn and Cn. To this graph we add the

following directed edges {〈vi, v′i〉, 〈v
′
i , vi〉 | 1 6 i 6 n}. The weights are given as follows:

w(〈v1, v′1〉) = γ, w(〈v′1, v1〉) = 1, and for all i , 1, w(〈vi, v′i〉) = w(〈v′i , vi〉) = 1. Further add

an xor-gadget between each pair of parallel edges {〈vi, v′i〉, 〈v
′
i , vi〉}, with three new vertices

gi1, gi2, and gi3, as shown in Fig. 2.1. (The present edges, with unspecified weights, have

weights equal to 1.) We call this graph Hn. Clearly, Hn has 5n vertices.

An xor-gadget [vzG87, Bür00a] is the complete directed graph on 3 vertices such that the

weights on the edges are given by the matrix K (cf. Fig. 2.1),

K :=


1 1 −1

2

1 −1 1
2

1 1 −1
2

 .

Let Ti :=
{
〈vi, gi3〉, 〈gi3, v′i〉, 〈v

′
i , gi2〉, 〈gi1, vi〉

}
, and T :=

⋃n
i=1 Ti. The significance of the

xor-gadget follows from the next claim.

Claim 2.4.1. Fix an i ∈ [n]. Then, the permanent of Hn equals the sum of the weights of

all cycle covers of Hn that either contain all the edges in Ti, or none.

Proof. For a set S ⊆ Ti, we define CCHn(S) to be the set of all cycle covers of Hn that,

37

among the edges in Ti, contain exactly the edges in S . From inspection, it follows that the

following sets are the only possibilities for non-empty CCHn(S):

∅,Ti,
{
〈vi, gi3〉, 〈gi3, v′i〉

}
,
{
〈v′i , gi2〉, 〈gi1, vi〉

}
, {〈vi, gi3〉, 〈gi1, vi〉} ,

{
〈v′i , gi2〉, 〈gi3, v′i〉

}
.

The set of all cycle covers of Hn is partitioned into the six sets based on which subset of

Ti they contain. The claim follows if we show that for S < {∅,Ti}, the sum of the weights

of all cycle covers in CCHn(S) is zero. Let K[R | C] denote the minor of K obtained after

removing rows in R and columns in C.

• If S =
{
〈vi, gi3〉, 〈gi3, v′i〉

}
, the contribution of CCHn(S) to the permanent of Hn is 0

because perm(K[3 | 3]) = 0.

• If S =
{
〈v′i , gi2〉, 〈gi1, vi〉

}
, the contribution is 0 because perm(K[1 | 2]) = 0.

• If S = {〈vi, gi3〉, 〈gi1, vi〉} , the contribution is 0 because perm(K[1 | 3]) = 0.

• If S =
{
〈v′i , gi2〉, 〈gi3, v′i〉

}
, the contribution is 0 because perm(K[3 | 2]) = 0.

�

Furthermore, if a cycle cover of Hn contains some Ti, then for the possibility of it con-

tributing positively to the permanent of Hn, it must contain all of T . It follows by using

Claim 2.4.1 with a further observation that the set of vertices v′j, such that T j is disjoint

from the cycle cover, must be covered among themselves by a cycle using edges of Cn.

But this is an impossibility since for some i, v′i is covered by the edges from Ti. Therefore,

there are two types of cycle covers of Hn : (i) a disjoint union of a cycle cover of Gn, a

cycle cover of xor-gadgets, and Cn, and (ii) made up of “parallel” edges (i.e., contains all

of T). The contribution of cycle covers from Case (i) is perm(Gn), since perm(K) = 1

and weight of Cn equals 1. In Case (ii), since there is a unique cycle cover that contains

T , we get a contribution of γ. Thus, we obtain perm(Hn) = perm(Gn) + γ = Permn + γ.

38

�

2.5 Monotone projection and lower bounds

In this section, we will prove lower bounds with respect to monotone projections. Recall

that the definition of monotone projection is valid only over totally ordered semi-rings.

In general, our endeavour to prove non-trivial lower bounds have met with failure. Nev-

ertheless, we have made considerable progress in restricted settings, such as unconditional

lower bounds against monotone computations [SS77, SS80, Raz85b, Raz85a, AB87, JS82,

TT94]. In particular, Razborov [Raz85a] proved that computing the permanent, over the

Boolean {∧,∨}-semi-ring, requires monotone circuits of size at least nΩ(log n). Till date,

this is the best lower bound known over the Boolean {∧,∨}-semi-ring. Jukna [Juk14] ob-

served that if the Hamiltonian cycle polynomial family is a monotone p-projection of the

permanent family, over the Boolean {∧,∨}-semi-ring, then one would get a lower bound

of 2nΩ(1)
for monotone circuits computing the permanent, thus improving on [Raz85a].

Let us pause for a moment to recall the definitions of the polynomials of our interest.

Given an n × n symbolic matrix, we have,

Permn :=
∑
σ∈S n

n∏
i=1

xi,σ(i), HCn :=
∑
σ∈S n

σ is a n-cycle

n∏
i=1

xi,σ(i), and Cliquek
n :=

∑
S⊆[n]
|S |=k

∏
i, j∈S
i< j

xi, j.

Observe that Cliquek
n is defined over the complete undirected graph on n vertices, whereas

Permn and HCn are defined over the complete directed graph on n vertices. We fix k =
√

n

to obtain a specific family of clique polynomials Clique
√

n = (Clique
√

n
n). The Hamilto-

nian cycle family is given by HC = (HCn).

It is known [Val79] that Clique
√

n is a monotone p-projection of HC. In fact, Clique
√

n
n is

a monotone projection of HC25n2 [AB87]. Now if it were the case that HC is a monotone

39

p-projection of Perm, then by transitivity, Clique
√

n would be a monotone p-projection of

Perm. Then, using the 2nΩ(1)
lower bound of Alon and Boppana [AB87] for Clique

√
n

n , we

would get a lower bound of 2nΩ(1)
for Permn.

The importance of Jukna’s observation is also highlighted by the fact that such a monotone

p-projection, over the reals, would give an alternate proof of the fact that computing

permanent by monotone circuits over R requires size at least 2nΩ(1)
. Jerrum and Snir [JS82]

proved that the permanent requires monotone circuits of size 2Ω(n) over R and tropical

semi-ring.

Grochow, in [Gro15], resolved the question, whether HC is a monotone p-projection of

Perm, in negative. By establishing a connection between monotone projections and ex-

tended formulations of linear programs, he showed that the Hamiltonian cycle polynomial

is not a monotone sub-exponential-size projection of the permanent.

This answered Jukna’s specific question about the Hamiltonian cycle in its entirety, but

the underlying motivation still remains unanswered. That is, Is Clique
√

n a monotone

p-projection of Perm? May be not via the Hamiltonian cycle polynomial, but, say, via

the satisfiability polynomial [Val79]. It is known (see Section 5 [AB87]) that Clique
√

n
n

is a monotone projection of the satisfiability polynomial over O(n4) variables. Here we

answer the main motivation by proving that Clique
√

n is not a monotone p-projection of

Perm. In fact, if Clique
√

n
n is a monotone projection of Permt(n), then t(n) must be at

least 2Ω(
√

n). Our proof technique is the same as Grochow [Gro15]. We further use the

proof idea to establish that some explicit non-negative polynomials (i.e. coefficients are

non-negative) are not monotone p-projection of Perm.

Before proceeding further, we set up the tools required for the proof.

40

2.5.1 Preliminaries

For a set of vectors S = {v1, . . . , vm} ⊆ R
n, we denote the convex hull of the set S by

conv S . In other words,

conv S :=

 m∑
i=1

αivi | αi > 0, 1 6 i 6 m, and
m∑

i=1

αi = 1

 .
For any polynomial p in n variables, let Newt(p) denote the polytope in Rn that is convex

hull of the vectors of exponents of monomials of p. For example, consider g(y1, y2, y3, y4) =

y1y2 + y3y4, then Newt(g) = conv {(1 1 0 0)t , (0 0 1 1)t
}.

The correlation polytope COR(n) is defined as the convex hull of n × n binary symmetric

matrices of rank 1. That is, COR(n) := conv {vvt | v ∈ {0, 1}n}. For any Boolean formula

φ on n variables, let p-SAT(φ) denote the polytope in Rn that is the convex hull of all

satisfying assignments of φ, i.e. conv {x ∈ {0, 1}n | φ(x) = 1} . Let Kn = (Vn, En) denote

the n-vertex complete graph. The travelling salesperson (TSP) polytope is defined as the

convex hull of the characteristic vectors of all subsets of En that define a Hamiltonian

cycle in Kn.

For a polytope P, let c(P) denote the minimal number of linear inequalities needed to

define P. A polytope Q ⊆ Rm is an extension of P ⊆ Rn if there is a linear map π : Rm →

Rn such that π(Q) = P. The extension complexity of P, denoted xc(P), is the minimum

size c(Q) of any extension Q (of any dimension) of P.

The following are straightforward, see for instance [Gro15, FMP+15].

Fact 2.5.1. 1. c(Newt(Permn)) 6 2n.

2. If polytope Q is an extension of polytope P, then xc(P) 6 xc(Q).

We use the following recent results.

Lemma 2.5.2 ([Gro15]). Let f (x1, . . . , xn) and g(y1, . . . , ym) be polynomials over a totally

41

ordered semi-ring R, with non-negative coefficients. If f is a monotone projection of g,

then the intersection of Newt(g) with some linear subspace is an extension of Newt(f). In

particular, xc(Newt(f)) 6 m + c(Newt(g)).

Theorem 2.5.3 ([FMP+15]). There exists some constant C > 0 such that for all n,

xc(COR(n)) > 2Cn.

Theorem 2.5.4 ([AT13]). For every n, there exists a 3SAT formula φ with O(n) variables

and O(n) clauses such that xc(p-SAT(φ)) > 2Ω(
√

n).

Theorem 2.5.5 ([Rot14]). The extension complexity of the TSP polytope is 2Ω(n).

2.5.2 The Clique polynomial

In this subsection, we will show that Clique
√

n is not a monotone p-projection of Perm. To

establish this we will consider a different polynomial Clique∗ = (Clique∗n) that counts all

cliques in a graph. Recall, Clique
√

n
n enumerates only

√
n-sized cliques. More formally,

Clique∗n :=
∑
S⊆[n]

∏
i∈S

xi,i

∏
i, j∈S
i< j

xi, j.

We first show that proving monotone projection lower bound against Clique∗ suffices to

establish lower bound against Clique
√

n. The proof is basically the VNP-completeness

proof of Cliquen/2
n (see [Hru15]).

Lemma 2.5.6. The family Clique∗ is a monotone p-projection of the family Clique
√

n. In

particular, Clique∗n is a monotone projection of Cliquen+1
(n+1)2 .

Proof. In fact, we will show that Clique∗n is a monotone projection of Cliquen+1
2n+1. Then

we add dummy vertices to establish the lemma.

Let Gn be a complete undirected graph on n vertices {v1, . . . , vn} with edge weights xi, j on

the edge (vi, v j). Let G′n be a complete undirected graph on the vertex set {v′1, . . . , v
′
n} with

42

every edge having weight 1. We also add the following set {(vi, v′j) | i , j} of cross edges

between Gn and G′n. The edges in this set also have weight 1. To this graph we add a new

vertex u such that it is adjacent to every vertex in Gn ∪G′n. The edges adjacent to vertices

in G′n have weight 1. For the vertices in Gn the weight of the edge (u, vi) is xi,i. We call

this graph, on 2n + 1 vertices, Hn. We claim that there is a one-to-one correspondence

between cliques in Gn (of all sizes) and (n + 1)-sized cliques in Hn. Let S ⊆ {v1, . . . , vn}

be a subset of vertices such that they form a clique in Gn. Consider the following map

which is easily seen to be bijective. Map S to the clique on the following set of vertices

in Hn : S ∪ {v′j | j < S } ∪ {u}. Thus, Hn gives a projection of Cliquen+1
2n+1 that equals

Clique∗n. Since 0 and 1 are the only constants used in the projection, it is also a monotone

projection.

To obtain the lemma we add n2 isolated vertices to Hn. �

Theorem 2.5.7. Over the reals (or any totally ordered semi-ring), the family Clique∗

is not a monotone p-projection of the Perm family. In fact, if Clique∗n is a monotone

projection of Permt(n), then t(n) > 2Ω(n).

Proof. Let Q be the Newton polytope of Clique∗n. It resides in N :=
(

n
2

)
+ n dimensions.

Furthermore, it is the convex hull of vectors of the form 〈ã, b̃〉 where ã ∈ {0, 1}(
n
2) is the

characteristic vector of the set of edges of the clique over the set of vertices given by

b̃ ∈ {0, 1}n, in the complete undirected graph Kn. We will index a vector in N dimensions

by pairs (i, j) such that 1 6 i 6 j 6 n.

Let us now consider the linear map ` : RN → Rn×n, defined as `(A) := B, where for

1 6 i 6 j 6 n, Bi, j = B j,i = A(i, j). We now claim that under the map `, Q is mapped to

the correlation polytope COR(n). It suffices to show that vertices of Q under the map ` are

mapped into COR(n), and every vertex of COR(n) has a pre-image in Q under `. Indeed `

maps the vertices of Q to the vertices of COR(n) bijectively. It follows from the map that

a vertex 〈ã, b̃〉 of Q is mapped to the vertex b̃b̃t of COR(n). Furthermore, the pre-image

of a vertex b̃b̃t of COR(n) is the clique given by the upper-triangular and diagonal entries

43

of b̃b̃t. Thus Q is an extension of COR(n), so by Fact 2.5.1 (2), xc(COR(n)) 6 xc(Q).

Suppose Clique∗n is a monotone projection of Permt(n). By Fact 2.5.1 (1) and Lemma 2.5.2,

xc(Newt(Clique∗n)) = xc(Q) 6 t(n)2 + c(Permt(n)) 6 O(t(n)2). From the preceding discus-

sion and Theorem 2.5.3, we get 2Ω(n) 6 xc(COR(n)) 6 xc(Q) 6 O(t(n)2). Therefore, it

follows that t(n) is at least 2Ω(n). �

Theorem 2.5.8. Over the reals (or any totally ordered semi-ring), the family Clique
√

n

is not a monotone p-projection of the Perm family. In fact, if Clique
√

n
n is a monotone

projection of Permt(n), then t(n) > 2Ω(
√

n).

Proof. Suppose Clique
√

n
n is a monotone projection of Permt(n). From Lemma 2.5.6, it

follows that Clique∗n is a monotone projection of Permt((n+1)2). Hence, from Theorem 2.5.7

we get t(n2) > 2Ω(n). Thus, t(n) > 2Ω(
√

n). �

Remark 2.5.1. It is easily seen that if a polynomial f over n-variables is an affine pro-

jection of Permm, then f is a (simple) projection of Permm(n+1). Hence, Theorem 2.5.7

and Theorem 2.5.8 holds even when we consider monotone affine projections of the per-

manent.

2.5.3 Other polynomials

We now consider the intermediate polynomial families, Satq = (Satqn) and Clowq =

(Clowq
n). Recall from Section 1.1, the above two polynomials are shown to be VNP-

intermediate, in Chapter 4, when considered over the field Fq. In this subsection, we

consider these non-negative polynomials over R (or, any totally ordered semi-ring), and

show lower bounds against monotone projections from the Perm to Satq and Clowq. We

recall the definitions first.

The satisfiability polynomial Satq = (Satqn): For each n, let Cln denote the set of all

possible clauses of size 3 over 2n literals. There are n variables X̃ = {Xi}
n
i=1, and also 8n3

44

clause-variables Ỹ = {Yc}c∈Cln , one for each 3-clause c.

Satqn :=
∑

a∈{0,1}n

 n∏
i=1

Xai(q−1)
i




∏
c ∈Cln

a satisfies c

Yq−1
c

 .

The clow polynomial Clowq = (Clowq
n): A clow in an n-vertex graph is a closed walk

of length exactly n, in which the minimum numbered vertex (called the head) appears

exactly once.

Clowq
n :=

∑
w: clow of length n

 ∏
e: edges in w

Xq−1
e




∏
v: vertices in w

(counted only once)

Yq−1
v

 .
(If an edge e is used k times in a clow, it contributes Xk(q−1)

e to the monomial.)

Theorem 2.5.9. Over the reals (or any totally ordered semi-ring), for any integer q > 2,

the families Satq and Clowq are not monotone affine p-projections of the Perm family. In

particular, if Satqn (resp. Clowq
n) is a monotone affine projection of Permt(n), then t(n) is

at least 2Ω(
√

n) (resp. 2Ω(n)).

Proof. Let φ be a 3SAT formula with n variables and m clauses as given by Theorem 2.5.4.

For the polytope P = p-SAT(φ), xc(P) is high.

Let Q be the Newton polytope of Satqn. It resides in N dimensions, where N = n + |Cln| =

n + 8n3, and is the convex hull of vectors of the form (q − 1)〈ãb̃〉 where ã ∈ {0, 1}n,

b̃ ∈ {0, 1}N−n, and for all c ∈ Cln, ã satisfies c iff bc = 1. For each ã ∈ {0, 1}n, there is a

unique b̃ ∈ {0, 1}N−n such that (q − 1)〈ãb̃〉 is in Q.

Define the polytope R, also in N dimensions, to be the convex hull of vectors that are

vertices of Q and also satisfy the constraint
∑

c∈φ bc > m. This constraint discards vertices

of Q where ã does not satisfy φ. Thus R is an extension of P (projecting the first n

coordinates of points in R gives a (q − 1)-scaled version of P), so by Fact 2.5.1 (2),

45

xc(P) 6 xc(R). Further, we can obtain an extension of R from any extension of Q by

adding just one inequality; hence xc(R) 6 1 + xc(Q).

Suppose Satqn is a monotone affine projection of Permt(n). By Fact 2.5.1 (1) and Lemma 2.5.2,

xc(Newt(Satq)) = xc(Q) 6 t(n) + c(Permt(n)) 6 O(t(n)). From the preceding discussion

and By Theorem 2.5.4, we get 2Ω(
√

n) 6 xc(P) 6 xc(R) 6 1 + xc(Q) 6 O(t(n)). It follows

that t(n) is at least 2Ω(
√

n).

For the Clowq polynomial, let P be the TSP polytope and Q be Newt(Clowq). The vertices

of Q are of the form (q−1)ãb̃ where ã ∈ {0, 1}(
n
2) picks a subset of edges, b̃ ∈ {0, 1}n picks a

subset of vertices, and the picked edges form a length-n clow touching exactly the picked

vertices. Define polytope R by discarding vertices of Q where
∑

i∈[n] bi < n. Now, using

Theorem 2.5.5, the same argument as above works. �

2.6 Closure properties

We begin by recalling the definition (Definition 2.2.7) of VNP. A polynomial family (fn)

is said to be in VNP if and only if there exist a family (gn) ∈ VP such that for all n,

fn(x1, . . . , xq(n)) =
∑

ȳ∈{0,1}p(n)

gn(x1, . . . , xq(n), y1, . . . , yp(n)), (2.3)

for some polynomial functions p(n) and q(n). We define exponential sum of a polyno-

mial g with respect to a variable set S to be the sum of all 2|S | projections of g, where a

projection is obtained by setting the variables in S to {0, 1}-value (cf. Eq. (2.3)). Hence,

alternatively, one can think of VNP as exponential sums of polynomial sized circuits, de-

noted VNP =
∑
·VP. Consequently the VP versus VNP question can be reformulated as

understanding the power of exponential sums.

In the foundational paper [Val82], Valiant observed that exponential sums of polynomial

sized formulas (
∑
·VF) or (

∑
·VPe) exactly capture exponential sums of polynomial sized

46

circuits (
∑
·VP). That is, VNPe = VNP (see also [MP08]). He used this observation

crucially to show that the permanent polynomial is VNP-hard. Therefore, from Valiant’s

observation, it follows that
∑
·VF =

∑
·VBP =

∑
·VP = VNP.

Valiant’s observation raises a natural question to study: How powerful are exponential

sums of restricted circuit classes?

A natural restriction on arithmetic circuits is multilinearity. A polynomial is called mul-

tilinear if each variable in the polynomial has degree at most 1. An arithmetic circuit

is called multilinear if every gate in it computes a multilinear polynomial. Furthermore,

if for every product gate, the sub-circuits rooted at the left and right child are variable-

disjoint, then the circuit is called syntactic multilinear.

The exponential summation under the restriction of syntactic multilinearity was studied

by Jansen et al. [MR08, JR09, JMR13]. They showed that syntactic multilinear classes

are closed under exponential sums. In particular, exponential summation does not add any

power to syntactic multilinear formulas. Contrast this with the case of general formulas,

where it become as powerful as VNP. Exponential summations of polynomials were

also studied by Juma et al. [JKRS09]. Their motivation was to obtain query algorithms

for #SAT that are better than brute-force. They proved that over fields of characteristic

different from 2, multilinear polynomials are closed under exponential sums (Observation

1.3, [JKRS09]).

Here we study the exponential summation under the restriction of multilinearity (not nec-

essarily syntactic). Using techniques different from those used in [JMR13, JKRS09], we

extend their results by showing that over any field, exponential summation does not add

power to multilinear circuit classes. We obtain our result (Theorem 2.6.1) by considering

summations of general polynomials, but the summation is over variables that have degree

at most 1 in the polynomial. It is shown that such a summation over multilinear variables

is as good as evaluating the polynomial at one or a small number of points.

47

Theorem 2.6.1. Let f (x1, . . . , xN , y1, . . . , ym) be a polynomial that is multilinear in the

Y = {y1, . . . , ym} variables. Let h(X) be the exponential sum polynomial

h(X) =
∑

e∈{0,1}m
f (X, e1, . . . , em).

If f has an efficient computation, so does h. The following table gives upper bounds on

the complexity measures of h in terms of the corresponding measures of f .

Char , 2
Char = 2

infinite fields finite fields

Circuit (size,width)
f s,w s,w s,w

h s + 1,w 3s(m + 1),w + 1 s(m + 1)2,w(m + 1)

ABP (size,width)
f s,w s,w s,w

h s + 1,w 3s(m + 1),w + 2 s(m + 1),w(m + 1)

Formula size
f s s s

h s + 1 O(s) [JMR13] O(s) [JMR13]

Furthermore, if the circuit/ABP/formula for f is multilinear, then so is the circuit/ABP/formula

for h.

Proof. Let f (x1, . . . , xN , y1, . . . , ym) be some polynomial that is multilinear in the Y =

{y1, . . . , ym} variables. Then there are polynomials fS (X) in the variables X = {x1, . . . , xN},

one for each S ⊆ [m], such that we can express f in terms of them:

f (X,Y) =
∑

S⊆[m]

fS (X)
∏
i∈S

yi.

Now consider the exponential Boolean sum

h(X) =
∑

e∈{0,1}m
f (X, e) =

∑
e∈{0,1}m

∑
S⊆[m]

fS (X)
∏
i∈S

ei

=
∑

e∈{0,1}m

∑
S⊆[m]:i∈S⇒ei=1

fS (X)

48

=
∑

S⊆[m]

fS (X)
∑

e∈{0,1}m:i∈S⇒ei=1

1

=
∑

S⊆[m]

fS (X)2m−|S |.

Char , 2 If the field has characteristic other than 2, then

h(X) = 2m
∑

S⊆[m]

fS (X)2−|S | = 2m f (x1, . . . , xN , 1/2, . . . , 1/2).

Since f (x1, . . . , xN , 1/2, . . . , 1/2) is a projection of f (X,Y), we see that if f is computed

by a multilinear circuit C, then C′ obtained by setting all the yi variables to 1/2 is also

multilinear (the polynomials at each node are projections of the respective polynomials in

C). Multiplying the output of C′ with 2m gives a circuit for h. This observation was also

made in [JKRS09]. Note that the same thing can be done for ABPs or formulas, again

with just one extra node, and no increase in width.

Char = 2 If the field F has characteristic 2, then a little more work is needed to compute

h(X). We see that for |S | < m , the contribution from fS to h vanishes due to characteristic

2, and we are left with

h(X) =
∑

S⊆[m]

fS (X)2m−|S | = f[m](x1, . . . , xN).

So we need to compute f[m](X). The polynomial

g(X, y) , f (x1, . . . , xn, y, y, . . . , y)

may be viewed as a univariate polynomial g′(y) in G[y], where G is the ring F[X]. Then

f[m](X) is just the coefficient of ym in g′. (Note that g′(y) has degree at most m, since f is

multilinear in Y .)

If a circuit C of size s computes f , then setting each yi ∈ Y to y gives circuit C′, also of

49

size s, computing g′. Now there are two cases to consider.

Infinite fields. This is the easier case, and we give a construction that even preserves

width, using the standard interpolation trick. Let g′(y) =
∑m

i=0 ciyi where ci ∈ F[X].

Pick m + 1 distinct values α j from F and consider the system of equations
∑m

i=0 ciα
i
j =

g′(α j); 0 6 j 6 m. More succinctly, V[c0, . . . , cm]t = [g′(αo), g′(α1), . . . , g′(αm)]t, where

V is a Vandermonde matrix and is hence invertible. Hence cm is a linear combination of the

polynomials g′(αo), g′(α1), . . . , g′(αm) computed by distinct copies of C′. By increasing

the depth/length, this linear combination can be computed in a way that increases the

width of a circuit only by 1 and of an ABP only by 2.

It follows easily that if f is computed by a multilinear circuit, then the circuit obtained

above is also multilinear.

Finite fields. Using the standard procedure of homogenization (see [SY10, Mah14]), we

can obtain circuits C0,C1, . . . ,Cm for the homogeneous components of g′. The circuit

D(X) = Cm(X, 1), is the desired circuit for h. The size is bounded by s(m + 1)2, and width

by w(m + 1).

It remains to see why D is multilinear when C is multilinear. For this, we need to look

at the structure of the homogeneous circuit obtained by the homogenization procedure.

For every gate u in C, we introduce m + 1 gates in the homogeneous circuit. We refer

to these m + 1 copies as the major gates. Each major gate computes a homogeneous part

of the polynomial computed at u in C. Therefore, a major gate corresponds to a gate

u in C, and a degree i ∈ {0, 1, . . . ,m}; we refer to this gate as [u, i]. Hence the output

gate of the circuit D(X) is the gate [r,m], where r is the output gate of C. The edge

connections in the homogeneous circuit D are defined inductively. For the input gates we

label the copies appropriately. If u = v + z, we make the connections based on the rule

[u, i] = [v, i] + [z, i] for all i. Otherwise if u = v × z, the connections are based on the rule

[u, i] =
∑i

k=0[v, k]× [z, i− k]. In this last case, we refer to the intermediate (multiplication)

gates used at each major gate to accumulate the homogeneous parts as the minor gates.

50

Let pC(X,Y) and pD(X) be the polynomials computed at u in C and at [u, i] in D re-

spectively. We know that pC(X,Y) is multilinear in X and Y . Hence in the expres-

sion pC(X, y, y, . . . , y) =
∑m

j=0 pC, j(X)y j, each pC, j(X) is multilinear. By construction,

pD(X) = pC,i(X); hence it is multilinear.

Now consider the minor gates. It seems possible that two minor gates compute non-

multilinear terms that cancel out when accumulated in the major gate. We need to show

that this does not happen, and that the minor gates also compute multilinear polynomials.

Lemma 2.6.2. Let α, β and γ be three gates in C such that α = β × γ. If the three gates

are multilinear, then the variables appearing in the polynomials computed by β and γ are

disjoint.

Proof. With slight abuse of notation, let α, β, γ also denote the polynomials computed by

the respective gates. Suppose there exists a variable v which is in β and in γ. Consider the

total order on the variables: x1 < . . . < xn < y1 < . . . < ym and the derived lexicographic

order on the monomials. Let mβ and mγ be the maximal monomials in β and γ which

contain v. We show that the monomial mβmγ is in α. If it is not, it is cancelled by some

other monomial nβnγ. But, mβmγ contains v2, so nβ and nγ must both contain v. By

assumption, nβ 6 mβ and nγ 6 mγ. So, nβnγ 6 mβmγ and the equality holds only if

mβ = nβ and mγ = nγ. Thus the monomial mβmγ does not get cancelled and appears in α.

Hence α is not multilinear, a contradiction. �

Lemma 2.6.3. If [u, i] is a major gate in D, then every variable appearing in the polyno-

mial computed at [u, i] also appears in the polynomial computed at the gate u in C.

Proof. As before, let pD(X) and pC(X,Y) be the polynomials computed at the gates [u, i]

and u. Then, pD(X) is the coefficient of yi in the polynomial pC(x1, . . . , xn, y, . . . , y). Con-

sequently, the variables of pD(X) are included in the variables of pC(x1, . . . , xn, y, . . . , y).

Moreover, as pC(x1, . . . , xn, y, . . . , y) is a projection of the polynomial pC(X,Y), the vari-

ables of pC(x1, . . . , xn, y, . . . , y) are included in the variables in pC(X,Y). �

51

A minor gate in D feeding into gate [u, i] corresponds to some k ∈ {0, 1, . . . , i} and com-

putes [v, k] × [z, i − k]. We have already seen that the polynomials computed at the major

gates [v, k] and [z, i − k] are multilinear. Furthermore, by Lemma 2.6.3, the variables of

[v, k] (respectively [z, i − k]) are a subset of the variables of v (respectively z). As v and

z share no variables (Lemma 2.6.2), the same holds for [v, k] and [z, i − k] as well. Thus

their product is also multilinear.

This completes the proof for circuits. The same homogenization trick works for ABPs

as well, taking size s and width w to size s(m + 1) and width w(m + 1). However for

formulas, it could result in a huge blowup in size. But recall that multilinear formulas can

be made syntactic multilinear without any increase in size [Raz06]. Hence the result for

multilinear formulas follows directly from [JMR13]. �

From Theorem 2.6.1 we obtain the closure property of multilinear classes.

Corollary 2.6.4. The following circuit classes are closed under exponential sums:

• multilinear poly-size bounded-width branching programs (m-VBWBP),

• multilinear poly-size formulas (m-VF),

• multilinear poly-size branching programs (m-VBP), and

• multilinear poly-size circuits (m-VP).

In particular, we have m-VP = m-VNP.

2.7 Conclusion

In this chapter, we studied reductions in the algebraic setting and proved lower bounds

against them. We also studied the closure property of (multilinear) algebraic classes under

the exponential summation.

52

An obvious open question falls from the proof of VNP-hardness of sym-Perm :

• Can we bring down the number of summands, in Theorem 2.4.6, from 2 to 1?

This is equivalent to asking whether a linear combination of permanent of symmetric

matrices can be written as the permanent of a symmetric matrix, that is not too large in

dimensions. The corresponding statement for the permanent of arbitrary matrices follows

from VNP-completeness of Perm (with respect to p-projections).

The study of monotone projections raises many interesting questions on monotone pro-

jections and Newton polytope (see [Gro15]). In particular, it raises questions about com-

pleteness under monotone projections. Formally,

• Is every non-negative polynomial (i.e. coefficients are non-negative) in VNP a

monotone projection of the Hamiltonian cycle family HCn? Is there any family

of polynomials with such a property?

Also, the main open question of improving the lower bound for computing the Permn

over the Boolean {∧,∨}-semi-ring remains.

53

54

Chapter 3

Homomorphism polynomials and

Arithmetic classes

3.1 Introduction

One of the most important open questions in algebraic complexity theory is to decide

whether the classes VP and VNP are distinct. The significance also comes from the fact

that separating them is essential for separating P from NP (at least non-uniformly and

assuming the generalised Riemann Hypothesis, over the field C). For details, see Sec-

tion 4.2 in [Bür00a]. This leading open question of VP versus VNP is often phrased as

the permanent versus the determinant problem, since the determinant family is complete

for VP. However, as mentioned in Theorem 2.2.11, the hardness of the determinant for

VP is only under the more powerful quasi-polynomial-size projections. Under polyno-

mial projections, the determinant is complete for the possibly smaller class VBP. This

naturally raises the question of finding polynomials which are complete for VP under

polynomial-size projections. Ad hoc families of generic polynomials can be constructed

that are VP-complete, but, surprisingly, there are no known natural polynomial families

that are VP-complete. Since complete problems characterise complexity classes, the ex-

55

istence of natural complete problems lends added legitimacy to the study of a class. It

also shows the robustness (of the definition) of the class by offering an alternative point of

view on it that is independent of the choice of a machine model. The determinant and the

permanent make the classes VBP, VNP interesting; analogously, what characterises VP?

Unfortunately, very little is known about VP-completeness. The very first polynomial

shown to be VP-complete, in [vzG87], was motivated by the definition of VP. (They at-

tributed the result to Fich et al. [FvzGR86].) Indeed the polynomials were so constructed

that every polynomial of degree at most n over n variables is a projection of the n-th

polynomial in the family. von zur Gathen [vzG87] explicitly stated the question of find-

ing “natural families” that are VP-complete. Then, in [Bür00a], Bürgisser showed that a

generic polynomial family constructed recursively while controlling the degree is com-

plete for VP. The construction directly follows a topological sort of a generic VP circuit.

In fact, he showed something even more general. He established complete polynomials

for each relativised class VPh, where h is a p-family. (see Section 5.6 in [Bür00a].) In

[Raz10] (see also [SY10]), Raz used the depth-reduction of [VSBR83] to show that a

family of “universal circuits” is VP-complete; any VP computation can be embedded into

it by appropriately setting the variables. All three of these VP-complete families are thus

directly obtained using the circuit definition / characterization of VP. In [Men11], Mengel

described a way of associating polynomials with constraint satisfaction programs CSPs,

and showed that for CSPs where all constraints are binary and the underlying constraint

graph is a tree, these polynomials are in VP. Further, for each polynomial in VP, there

is such a CSP giving rise to the same polynomial. This means that for the CSP corre-

sponding to the generic VP polynomial or universal circuit, the associated polynomial is

VP-complete. The unsatisfactory element here is that to describe the complete polyno-

mial, one again has to fall back to the circuit definition of VP. Similarly, in [CDM13], it

is shown that tensor formulas can be computed in VP and can compute all polynomials

in VP. Again, to put our hands on a specific VP-complete tensor formula, we need to fall

back to the circuit characterisation of VP.

56

In this chapter, we provide a host of natural families of polynomials that (1) are defined

independently of the circuit definition of VP, and (2) are VP-complete. All these families

are instances of homomorphism polynomials, defined in Definition 3.2.2. We further show

that homomorphism polynomials are rich enough to characterise VBP and VNP as well.

We give the basic definitions in Section 3.2. We then discuss upper bounds on their

algebraic complexity in Section 3.3. In Section 3.4, Section 3.5, and Section 3.6 we

establish hardness for VP, VBP, and VNP respectively.

3.2 Preliminaries

We use (u, v) to denote an undirected edge between u and v, and 〈u, v〉 to denote a directed

edge from u to v. We start with the notion of homomorphisms.

Definition 3.2.1 (Graph Homomorphisms). Let G = (V(G), E(G)) and H = (V(H), E(H))

be two undirected graphs. A homomorphism from G to H is a mapping φ : V(G)→ V(H)

such that the image of an edge is an edge, i.e., for all (u, v) ∈ E(G), (φ(u), φ(v)) ∈ E(H).

If G,H are directed graphs, then a homomorphism only needs to satisfy for all 〈u, v〉 ∈

E(G), at least one of 〈φ(u), φ(v)〉, 〈φ(v), φ(u)〉 is in E(H). But a directed homomorphism

must satisfy for all 〈u, v〉 ∈ E(G), 〈φ(u), φ(v)〉 ∈ E(H).

If cG, cH are functions assigning colours to V(G) and V(H), then a coloured homomor-

phism must also satisfy, for all u ∈ V(G), cG(u) = cH(φ(u)).

The polynomials we consider are defined formally as follows.

Definition 3.2.2. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. Consider

the set of variables Z := {Zu,a | u ∈ V(G) and a ∈ V(H)} and Y := {Y(u,v) | (u, v) ∈ E(H)}.

LetH be a set of homomorphisms from G to H. The homomorphism polynomial fG,H,H in

the variable set Y, and the generalised homomorphism polynomial f̂G,H,H in the variable

57

set Z ∪ Y, are defined as follows:

fG,H,H =
∑
φ∈H

 ∏
(u,v)∈E(G)

Y(φ(u),φ(v))

 .
f̂G,H,H =

∑
φ∈H

 ∏
u∈V(G)

Zu,φ(u)


 ∏

(u,v)∈E(G)

Y(φ(u),φ(v))

 .
Let Hom denote the set of all homomorphisms from G to H. If H equals Hom, then we

drop it from the subscript and write fG,H or f̂G,H.

We take a moment to emphasise that when we consider directed graphs, Y is the set of

variables associated with directed edges, and the product in the definition of the polyno-

mials runs over all directed edges of G.

To obtain families of polynomials from the homomorphism polynomial we consider two

sequences of graphs (Gm) and (Hm). Then the families are defined to be either (fGm,Hm,H),

or (f̂Gm,Hm,H). A sequence (Gm) of graphs is called a p-family if the number of vertices in

Gm is p-bounded in m.

Remark 3.2.1. For every G,H,H , fG,H,H (Y) equals f̂G,H,H (Z,Y) |Z=1. Thus upper bounds

for f̂ give upper bounds for f , while lower bounds for f give lower bounds for f̂ .

We consider the pathwidth and treewidth parameters for a graph. We will work with a

“canonical” form of decompositions which is generally useful in dynamic-programming

algorithms. For a detailed treatment of dynamic-programming on tree (path) decomposi-

tion see [CFK+15].

Definition 3.2.3. A (nice) path decomposition of a graph G is a sequence of bags P =

〈B1, B2, . . . , B`〉, where for all i ∈ [`] Bi ⊆ V(G), such that the following conditions hold:

1. |B1| = 1, B` = ∅, and ∪i∈[`]Bi = V(G). That is, every vertex of G is contained in at

least one bag.

2. For every (u, v) ∈ E(G), there exists i ∈ [`] such that {u, v} ⊆ Bi.

58

3. For every u ∈ V(G), if u ∈ Bi ∩ Bk, then u ∈ B j for all i 6 j 6 k.

4. For every i ∈ [2, `], Bi is one of the following types:

• Introduce node: Bi = Bi−1 ∪ {v} for some vertex v < Bi−1. We say that v is

introduced at i.

• Forget node: Bi = Bi−1 \ {w} for some vertex w ∈ Bi−1. We say that w is

forgotten at i.

The width of a path decomposition P is one less than the size of the largest bag; that is,

maxi∈[`] |Bi| − 1. The path-width of a graph G is the minimum possible width of a path

decomposition of G, and is denoted pw(G). From the definition of nice path decomposi-

tion, it follows that every vertex of G gets introduced and becomes forgotten exactly once,

hence the total number of bags in the sequence P is exactly 2|V(G)|. We now define tree

decomposition which is a generalisation of a path decomposition.

Definition 3.2.4. A (nice) tree decomposition of a graph G is a pair T = (T, {Bt}t∈V(T)),

where T is a tree, rooted at Br, whose every node t is assigned a set Bt ⊆ V(G), such that

the following conditions hold:

1. Br = ∅, |B`| = 1 for every leaf ` of T , and ∪t∈V(T)Bt = V(G).

That is, the root contain the empty bag, the leaves contain singleton sets, and every

vertex of G is in at least one bag.

2. For every (u, v) ∈ E(G), there exists a node t of T such that {u, v} ⊆ Bt.

3. For every u ∈ V(G), the set Tu = {t ∈ V(T) | u ∈ Bt} induces a connected subtree of

T .

4. Every non-leaf node t of T is of one of the following three types:

• Introduce node: t has exactly once child t′, and Bt = Bt′ ∪ {v} for some vertex

v < Bt′ . We say that v is introduced at t.

59

• Forget node: t has exactly one child t′, and Bt = Bt′ \ {w} for some vertex

w ∈ Bt′ . We say that w is forgotten at t.

• Join node: t has two children t1, t2, and Bt = Bt1 = Bt2 .

The width of a tree decomposition T is one less than the size of the largest bag; that is,

maxt∈V(T) |Bt| − 1. The tree-width of a graph G, denoted tw(G), is the minimum possible

width of a tree decomposition of G. It can be shown (see Lemma 7.4 in [CFK+15]) that

for any G, there exists a nice tree decomposition that has at most O(tw(G)|V(G)|) nodes

in the tree. Furthermore, observe that a path decomposition can be thought of as a tree

decomposition with no join nodes. It is known that pw(G) = O(log n · tw(G)) [KS93].

A sequence (Gm) of graphs is said to have bounded tree(path)-width if for some abso-

lute constant c independent of m, the tree(path)-width of each graph in the sequence is

bounded by c.

We now mention some structural properties of arithmetic circuits that would be useful

in establishing hardness of certain polynomials. In the context of arithmetic circuits, the

notion of parse trees is used to certify that a particular monomial is generated during the

computation. Parse trees have been studied under different names [AJMV98, JS82, VT89,

Ven92, MVW04, MP08]. We will work with the following definition from [MP08].

Definition 3.2.5 (Parse trees). The set of parse trees of a circuit C is defined inductively:

• If C is of size 1, it has only one parse tree, itself.

• If the output gate of C is a × gate whose children are the gates α and β, the parse

trees of C are obtained by taking a parse tree of the subtree rooted at α, a parse

tree of a disjoint copy of the subtree rooted at β and the edges from α and β to the

output gate.

• If the output of C is a + gate, the parse trees of C are obtained by taking a parse

tree of a subcircuit rooted at one of the children and the edge from the (chosen)

60

child to the output gate.

Each parse tree T is associated with a monomial mon(T), which is obtained by comput-

ing the product of the labels of the input gates that appear in T . The following lemma

establishes a formal connection between the polynomial computed and the parse trees of

the circuit. A proof is easily seen via induction.

Lemma 3.2.6 ([MP08]). Let f (x̄) be a polynomial computed by a circuit C. Then, f (x̄) =∑
T mon(T), where the sum is over the set of parse trees T of C.

A circuit is said to be multiplicatively disjoint circuit if for any multiplication gate in

the circuit, the subcircuits rooted at its children are disjoint, i.e., they do not share any

vertex. The next proposition states a particularly useful property of multiplicative disjoint

circuits.

Proposition 3.2.7 ([MP08]). A circuit C is multiplicatively disjoint if and only if any

parse tree of C is a subgraph of C. Furthermore, a subgraph T of C is a parse tree if the

following conditions are met:

• T contains the output gate of C.

• If α is a multiplication gate in T having gates β and γ as children in C, then the

edges 〈β, α〉 and 〈γ, α〉 also appear in T .

• If α is an addition gate in T , it has only one child in T .

• Only edges and gates obtained in this way belong to T .

Moreover, it is known that if we are dealing with arithmetic circuits such that their size

and degree are polynomially bounded, then, without loss of generality, we can assume the

circuit to be depth reduced and multiplicatively disjoint.

Proposition 3.2.8 ([VSBR83, MP08]). If (fn) is in VP, then fn can be computed by a

polynomial-size circuit of depth O(log n) where + gates are allowed to have unbounded

61

fan-in, but each × gate has fan-in at most 2. Furthermore, the circuit is multiplicatively

disjoint.

Raz [Raz10] studied a family (Dn) of universal circuits computing a polynomial family

(pn), see also [SY10]. These circuits are universal in the sense that every polynomial

fn(x1, . . . , xn) of degree d, computed by a circuit of size s, can be computed by a circuit Ψ

such that the underlying graph of Ψ is the same as the graph of Dm, for m ∈ poly(n, s, d).

(In fact, fn can be obtained as a projection of pm.) With minor modifications to (Dn) (sim-

ple padding with dummy gates, followed by the multiplicative disjointness transformation

from [MP08]), we can show that there is a universal circuit family (Un) in the normal form

described below:

Definition 3.2.9 (Normal Form Universal Circuits). A universal circuit (Un) in normal

form is a circuit with the following structure:

• It is a layered and semi-unbounded circuit, where × gates have fan-in 2, whereas +

gates are unbounded.

• Gates are alternating, namely every child of a × gate is a + gate and vice versa.

Without loss of generality, the root is a × gate.

• All the input gates have fan-out 1 and they are at the same level, i.e., all paths from

the root of the circuit to an input gate have the same length.

• Un is a multiplicatively disjoint circuit.

• Input gates are labeled by distinct variables. In particular, there are no input gates

labeled by a constant.

• Depth of Un = 2k(n) = 2cdlog ne, number of variables (x̄) = vn, and size of Un = sn.

Both vn and sn are p-bounded functions of n.

• The degree of the polynomial computed by the universal circuit is n.

62

Let (fUn(x̄))n be the polynomial family computed by the universal circuit family in normal

form. We will identify the directed graph of the circuit, where each edge is labeled by a

distinct variable, by the circuit itself.

The following well-known technical lemma allows us to use interpolation to extract the

coefficient of a particular monomial of a polynomial. We say that a multivariate polyno-

mial f (x̄) has degree d in xi iff xi has degree at most d in every monomial of f (x̄).

Lemma 3.2.10 (folklore). Suppose F is a field with characteristic 0. Let f (x̄, y1, . . . , y`)

be a polynomial in F[x̄, y1, . . . , y`]. Further, assume f has degree Di in yi , for i ∈ [`].

Let
∑

d̃=(d1,...,d`) fd̃(x̄)
∏`

i=1 ydi
i be the representation of f when viewed as a polynomial in

F[x̄][y1, . . . , y`]. Then, for any d̃, fd̃(x̄) can be written as a linear combination of
∏`

i=1(Di+

1) many projections of f .

Proof. The proof easily follows by induction on `. We only sketch the proof here. The

essence of the proof is in the base case ` = 1, which we now illustrate.

Fix ` = 1. Let the degree of y in f (x̄, y) be D, that is, f (x̄, y) =
∑D

i=0 fi(x̄)yi. Let α0, . . . , αD

be any D + 1 non-zero distinct points in F. We consider the following system of linear

equations in the coefficient fi(x̄) :



1 α0 α2
0 · · · αD

0

1 α1 α2
1 · · · αD

1

...
...

...
. . .

...

1 αD α2
D · · · αD

D





f0(x̄)

f1(x̄)
...

fD(x̄)


=



f (x̄, α0)

f (x̄, α1)
...

f (x̄, αD)


.

The (D + 1) × (D + 1) matrix on the left side of the aforementioned system of linear

equations is called a Vandermonde matrix. We denote it by V(ᾱ). It is known that

det(V(ᾱ)) =
∏

06i< j6D(αi − α j), and since αi’s are distinct, this determinant is non-zero.

63

Thus, the above system of linear equations has a unique solution given by,



f0(x̄)

f1(x̄)
...

fD(x̄)


= V(ᾱ)−1



f (x̄, α0)

f (x̄, α1)
...

f (x̄, αD)


.

Therefore, it follows that each fi(x̄) can be written as a linear combination of D + 1

projections of f (x̄, y), where each projection is f (x̄, y)|y=Di for 0 6 i 6 D. �

3.3 Upper Bounds

In this section, we show that for any p-family (Hn), and any bounded tree-width (path-

width, respectively) p-family (Gn), the polynomial family (fn) where fn = f̂Gn,Hn is in VP

(VBP, respectively). Following Remark 3.2.1 it suffices to consider upper bounds for the

generalised homomorphism polynomial f̂G,H. Moreover, for the ease of presentation we

will consider H = Hom. If we want to consider a restricted set H of homomorphisms,

such as directed homomorphisms, all we need is that homomorphisms in H can be ob-

tained from independent parts with a local stitching-together operator. That is, φ ∈ H can

be verified locally edge-by-edge and/or vertex-by-vertex, so that this can be built into the

inductive construction.

We start with an easy observation that says homomorphism polynomials are explicit, that

is they belong to the class VNP.

Proposition 3.3.1. Let (Gn) and (Hn) be p-families of graphs. Consider the family of

homomorphism polynomial (fn), where fn = f̂Gn,Hn(Z,Y). Then, (fn) ∈ VNP.

Proof. It follows straightforwardly from Valiant’s criterion, Proposition 2.2.12. �

We now state and prove the main algorithm of this section.

64

Lemma 3.3.2. Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. Then the

generalised homomorphism polynomial f̂G,H is computable by an arithmetic circuit of size

O
(
tw(G) · |V(G)| · |V(H)|tw(G)+1(|V(H)| + |E(H)|)

)
, where tw(G) is the tree-width of G.

Proof. Let T = (T, {Bt}t∈V(T)) be a nice tree decomposition of G of width τ. For each

t ∈ V(T), let Mt = {φ | φ : Bt → V(H)} be the set of all mappings from Bt to V(H). Since

|Bt| 6 τ + 1, we have |Mt| 6 |V(H)|τ+1. For each node t ∈ V(T), let Tt be the subtree of T

rooted at node t, Vt :=
⋃

t′∈V(Tt) Bt′ , and Gt := G[Vt] be the subgraph of G induced on Vt.

Note that Gr = G.

We will build the circuit inductively. For each t ∈ V(T) and φ ∈ Mt, we have a gate 〈t, φ〉

in the circuit. Such a gate will compute the homomorphism polynomial fGt ,H,H from Gt

to H such thatH is the set of those homomorphisms which agree with φ on Bt. For each

such gate 〈t, φ〉 we introduce another gate 〈t, φ〉′ which computes the “partial derivative”

(or, quotient) of the polynomial computed at 〈t, φ〉 with respect to the monomial given by

φ. As we mentioned before, the construction is inductive, starting at the leaf nodes and

proceeding towards the root.

Base case (Leaf nodes): Let ` ∈ V(T) be a leaf node. Then, B` = {u} for some u ∈ V(G).

Note that any φ ∈ M` is just a mapping of u to some node in V(H). Hence, the set M`

can be identified with V(H). Therefore, for all h ∈ V(H), we label the gate 〈`, h〉 by the

variable Zu,h. The derivative gate 〈`, h〉′ in this case is set to 1.

Introduce nodes: Let t ∈ V(T) be an introduce node, and t′ be its unique child. Then,

Bt \ Bt′ = {u} for some u ∈ V(G). Let N(u) := {v|v ∈ Bt′ and (v, u) ∈ E(Gt)}. Note that

there is a one-to-one correspondence between φ ∈ Mt and pairs (φ′, h) ∈ Mt′ × V(H).

65

Therefore, for all φ(= (φ′, h)) ∈ Mt if ∀v ∈ N(u), (φ′(v), h) ∈ E(H), then we set

〈t, φ〉 := Zu,h ·

 ∏
v∈N(u)

Y(φ′(v),h)

 · 〈t′, φ′〉 and,

〈t, φ〉′ := 〈t′, φ′〉′,

otherwise we set 〈t, φ〉 = 〈t, φ〉′ := 0.

Forget nodes: Let t ∈ V(T) be a forget node and t′ be its unique child. Then, Bt′ \ Bt =

{u} for some u ∈ V(G). Again note that there is a one-to-one correspondence between

pairs (φ, h) ∈ Mt × V(H) and φ′ ∈ Mt′ . Let N(u) := {v|v ∈ Bt and (v, u) ∈ E(Gt′)}.

Therefore, for all φ ∈ Mt, we set

〈t, φ〉 :=
∑

h∈V(H)

〈t′, (φ, h)〉 and,

〈t, φ〉′ :=
∑

h∈V(H) such that
∀v∈N(u), (φ(v),h)∈E(H)

Zu,h ·

 ∏
v∈N(u)

Y(φ(v),h)

 · 〈t′, (φ, h)〉′.

Join nodes: Let t ∈ V(T) be a join node, and t1 and t2 be its two children; we have

Bt = Bt1 = Bt2 . Then, for all φ ∈ Mt, we set

〈t, φ〉 := 〈t1, φ〉 · 〈t2, φ〉
′ (= 〈t1, φ〉

′ · 〈t2, φ〉
)

〈t, φ〉′ := 〈t1, φ〉
′ · 〈t2, φ〉

′.

The output gate of the circuit is 〈r,∅〉. The correctness of the algorithm is readily seen via

induction in a similar way. The bound on the size follows, since |V(T)| = O(tw(G)|V(G)|),

|Mt| 6 |V(H)|τ+1, and implementing each node may need O(|V(H)| + |E(H)|) extra gates.

�

Remark 3.3.1. We note that the circuit constructed is a constant-free circuit, i.e., it only

use constants from the set {0, 1}. Further, if we start with a path decomposition, we obtain

66

a skew circuit, since the join nodes are absent.

From Lemma 3.3.2 and the remark above, we obtain the following theorem which im-

proves upon the obvious bound of Proposition 3.3.1, when tree decompositions of G are

of special kind.

Theorem 3.3.3. Consider the family of homomorphism polynomials (fn), where fn =

f̂Gn,Hn(Z,Y), and (Hn) is a p-family of complete graphs.

• If (Gn) is a p-family of graphs of bounded tree-width, then (fn) ∈ VP.

• If (Gn) is a p-family of graphs of bounded path-width, then (fn) ∈ VBP.

3.4 Completeness : VP

In this section we will characterise the algebraic class VP using homomorphism poly-

nomials. In particular, we will establish that there exists a p-family (Gn) of graphs of

bounded tree-width such that the polynomial fGn,Km (cf. Definition 3.2.2), for m ∈ poly(n),

is complete for VP with respect to p-projections. The membership in VP follows directly

from Theorem 3.3.3. Thus, henceforth, our main objective is to establish hardness.

Let us consider the universal circuit Un in normal form (Definition 3.2.9). From inspection

it follows that the parse trees of Un are isomorphic to the following graph: a directed

balanced alternately-binary-unary tree with depth 2k(n). Vertices on an odd layer have

exactly two incoming edges whereas vertices on an even layer have exactly one incoming

edge. The first layer has only one vertex called root, and the edges are directed from

leaves towards the root. Furthermore, because of multiplicative disjointness, we know

parse trees are subgraphs of Un.

Hence, the observation suggests a way to capture monomial computations of the universal

circuit via homomorphisms from the directed balanced alternately-binary-unary tree into

67

Un. In fact, we will go a step further and consider homomorphisms from undirected

complete binary trees.

3.4.1 Homomorphism with weights

For m a power of 2, let Tm denote a complete (perfect) binary tree with m leaves. We

recall the depth of Un = 2k(n) = 2cdlog ne, for some c > 0, and size(Un) = sn where sn is

p-bounded in n.

We will consider homomorphisms from complete binary trees. Therefore, we first need

to compact parse trees and get rid of the unary nodes (corresponding to + gates). We

construct from the universal circuit Un a graph Jn that allows us to get rid of the alternat-

ing binary-unary parse tree structure while maintaining the property that the compacted

“parse trees” are subgraphs of Jn. The graph Jn has two copies gL and gR of each × gate

and input gate of Cn. It also has two children attached to each leaf node. The edges of Jn

essentially shortcut the + edges of Cn.

More precisely, we obtain a sequence of graphs (Jn) from the undirected graphs underly-

ing (Un). To make the presentation clearer, we first construct an intermediate graph J′n as

follows. Retain the multiplication and input gates of Un. Let us make two copies of each.

For each retained gate, g, in Un; let gL and gR be the two copies of g in J′n (see Figure 3.1).

The two copies, gL and gR, will be used to connect to a grandparent from left and right,

respectively. We now define the edge connections in J′n. Assume g is a × gate retained in

J′n. Let α and β be two + gates feeding into g in Un. Let {α1, . . . , αi} and {β1, . . . , β j} be

the gates feeding into α and β, respectively. Assume without loss of generality that α and

β feed into g from left and right, respectively. Now we add the following sets of edges to

68

J′n :

{(α1L, gL), . . . , (αiL, gL)} ∪ {(β1R, gL), . . . , (β jR, gL)},

and {(α1L, gR), . . . , (αiL, gR)} ∪ {(β1R, gR), . . . , (β jR, gR)}.

We now would like to keep a single copy of Un in these sets of edges. So we remove the

vertex rootR and we remove the remaining spurious edges in following way. If we assume

that all edges are directed from root towards leaves, then we keep only edges induced by

the vertices reachable from rootL in this directed graph.

We now transform J′n as follows to get Jn (cf. Figure 3.1): for each gate g′ in J′n which

corresponds to an input gate in Un, we add two new distinct vertices and connect them to

g′. Note that there are two type of vertices in Jn; one that corresponds to a gate in Un and

others are degree 1 vertices hanging from gates that correspond to input gates in Un.

Observation 3.4.1. There is a one-to-one correspondence between parse trees of Un and

subgraph of Jn that are rooted at rootL and isomorphic to T2k(n)+1 .

Based on the observation we would like to capture the parse trees of Un via homomor-

phisms from T2k(n)+1 into Un. But we need to be careful because there are far more ho-

momorphisms than parse trees. So we consider the following weighted variant of the

homomorphism polynomials.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. Let α : V(G) → N be a

labeling of vertices of G by non-negative integers. Consider the set of variables X := {Xu |

u ∈ V(H)} and Y := {Y(u,v) | (u, v) ∈ E(H)}. The weighted homomorphism polynomial

f αG,H in the variable set X ∪ Y is defined as follows:

f αG,H =
∑
φ∈Hom

 ∏
u∈V(G)

Xα(u)
φ(u)


 ∏

(u,v)∈E(G)

Y(φ(u),φ(v))

 .
However, for our purposes, {0, 1}-valued weights suffices, i.e., α : V(G) → {0, 1}. Such

69

g1L g1R g2R g3L g4L g4Rg3Rg2L

g5L

g5R

g7R

g8L

g9R g10R

g6L

rootL

0

1

1

z

0
1

1

1 1

0 0

z

0 0

0
1 1

1 1

1

1

z

z

0

1
1

w
w

B

A

depth = k+1

c` xi

0 y

c` x j

0 y

cr xk

0 y

cr xl

0 y

Figure 3.1: Graph Jn with vertex and edge labels

{0, 1}-valued weights are commonly used in the literature, see, e.g., [BCL+06]. Thus, in

our setting, fG,H is a projection of f αG,H (set all variables in X to 1) which, in turn, is a

projection of f̂G,H (set Zu,a to Xa if α(u) = 1, and 1 if α(u) = 0). Indeed, the hardness for

fG,H, which we promised in the introduction (and will show later), establishes the hardness

for f αG,H. But our purpose here is to draw the motivation for the harder case of fG,H. For

{0, 1}-valued weights α, f αG,H equals

∑
φ∈Hom


∏

u∈V(G)
α(u)=1

Xφ(u)


 ∏

(u,v)∈E(G)

Y(φ(u),φ(v))

 .
We now state and prove the main theorem of this subsection.

Theorem 3.4.1. Over fields of characteristic 0, the family of homomorphism polynomials

(fm), with fm(X,Y) = f αGm,Hm
(X,Y), where

• Gm := Tm.

70

• Hm is an undirected complete graph on poly(m), say m6, nodes.

• Define α : Tm → {0, 1} such that,

α(u) =


0 u = root

1 if u is the right child of it’s parent

0 otherwise

is complete for VP with respect to linear p-projections.

Since the proof is long with several case analysis, we would like to discuss the proof

outline before presenting the proof.

We use Y variables to pick out Jn from Hm. We assign special variables w on edges from

the root to a node gR, and z on edges going from a non-root non-input node u to some

right copy node gR (see Fig. 3.1). For an input node g in the “left sub-graph” of Jn, the

new left and right edges are assigned c` and x respectively, where x is the corresponding

input label of g in Un, and the node at the end of the x edge is assigned a special variable

y. Similarly, in the right sub-graph variables cr, x and y are used with cr replacing c`.

We show that homomorphisms whose monomials have degree 1 in w, 2k−2 in z, 2k−1 each

in c` and cr, and 2k in y are in bijection with compacted parse trees in Jn. The argument

proceeds in stages: first show that the homomorphism is well-rooted (using the degree

constraint on w, c`, cr and the 0-1 weights in G), then show that it preserves layers (does

not fold back) (using the degree constraint on c`, cr and y), then show that it is injective

within layers (using the degree constraint in z and the 0-1 weights on Gm).

Proof. As mentioned before, the membership in VP follows from Theorem 3.3.3 and the

fact that f αG,H is a projection of f̂G,H. We now present the hardness proof. Before starting

the proof, we set up the notation.

Let us set m := 2k(n)+1. The choice of poly(m) is such that 4sn 6 poly(m), where sn is the

71

size of Un. (In particular, there exist universal circuits such that sn = O(n6). Hence, the

choice of poly(m) could be roughly m6.) The Y variables are set to {0, 1,w, z, c`, cr, x̄} such

that the edges set to non-zero together form the graph Jn. The X variables take values in

{0, 1, y}. The variables on nodes corresponding to the left copies of gates in Un are set to

0, whereas those on the right copies are set to 1. The X variables for degree 1 vertices

hanging from input gates are set to 0 or ‘y’ depending on whether they are left or right

child, respectively.

For every edge (rootL, gR), we set Y(rootL,gR) := w. For all u ∈ V(Jn), except rootL, with

degree of u not equal to 1, if the edge (u, gR) exist then we set Y(u,gR) := z.

Let v be a gate, in Jn, corresponding to an input gate g in Un and v lies in A part (see

Figure 3.1). Let v1 and v2 be the left and right leaf attached to v, then we set Yvv1 := c` and

Yvv2 := the x̄-label of g in Un.

For v a gate, in Jn, corresponding to an input gate g in Un and lying in B part (see Fig-

ure 3.1), let v1 and v2 be the left and right leaf attached to v. Then we set Yvv1 := cr and

Yvv2 := the x̄-label of g in Un.

All other remaining edge variables that are not set to 0, are set to 1.

Recall for a parse tree T , by mon(T) we mean the monomial associated with T . Similarly,

for a homomorphism φ, mon(φ) denotes the monomial
(∏

u∈V(G) Xα(u)
φ(u)

) (∏
(u,v)∈E(G) Y(φ(u),φ(v))

)
.

By Observation 3.4.1 we easily deduce that for each parse tree T of Un there exist a homo-

morphism φ from T2k(n)+1 to Jn such that mon(φ) is equal to mon(T)×
(
wz(2k−2)c2(k−1)

` c2(k−1)

r y2k
)
,

where k = k(n).

We claim that for a homomorphism φ, if mon(φ) has degree 1 in w, (2k − 2) in z, 2k−1 in

c`, 2k−1 in cr and 2k in y, then the homomorphic image φ(T2k(n)+1) is isomorphic to T2k(n)+1

rooted at rootL.

We will prove the claim in two parts. First we prove that if any node other than the root

72

of T2k(n)+1 is mapped to rootL then the corresponding monomial does not have right degree

in w, c` or cr. We then consider the case where the root of the complete binary tree is the

only node mapped to rootL under φ, and we argue that if φ has the required degrees then

it must be a complete binary tree with 2k(n)+1 leaves rooted at rootL.

Case 1: φ−1(rootL) = ∅. Clearly mon(φ) has degree zero in w.

Case 2: φ−1(rootL) contains a degree 3 vertex, say v. Let v1 and v2 be the left and right

child of v, respectively. Let v3 be the parent of v in Tm. Note that v must be labeled 0 for

the monomial to survive, since XrootL has been set to 0. Also, at least one of v1, v2, and v3

is labeled 1.

Case 2a: Suppose two of the vi’s are labeled 1. Hence for the mon(φ) to survive these

vi’s must be mapped to the right of rootL. But then mon(φ) has degree at least 2 in w.

Case 2b: Exactly one of the vi is labeled 1. It must be the right child v2, for the monomial

to survive it should be mapped to the right of rootL. Now if v1 or v3 is also mapped to

the right of rootL, mon(φ) will have degree at least 2 in w. Otherwise, both v1 and v3 are

mapped to the left of rootL. Since v1 is an internal vertex of Tm, the subtree rooted at v2

and v1 has depth at most k − 1 in Tm. In the first case mon(φ) does not have sufficient

degree in c` , whereas in the second case it does not have sufficient degree in cr.

Case 3: φ−1(rootL) contains the root of Tm and at least one degree 1 vertex, say v. Also,

no degree 3 vertices are mapped to rootL. As before, the left child of the root of Tm is

mapped to the left of rootL and the right child is mapped to the right of rootL, else either

the monomial evaluates to zero or has degree at least 2 in w.

Case 3a: For some leaf node v mapped to rootL, its neighbour is mapped to the right of

rootL. In this case if the monomial is not zero, we will have at least degree 2 in w.

Case 3b: For all leaf node v mapped to rootL, their neighbour is mapped to the left of

rootL. But now mon(φ) will not have sufficient degree in c`.

73

Case 4: φ−1(rootL) contains only degree 1 vertices. But then the homomorphic image is

confined only to the left side or right side of rootL. Hence the monomial will not have

sufficient degree in either cr or c`.

Therefore, we have shown that to get the appropriate degrees as claimed, φ−1(rootL) must

contain the root of Tm and nothing else. Now to complete the proof we will show that if

mon(φ) has correct degrees in w, z, c`, cr and y, then φ is injective and preserves left-right

labelling of nodes of Tm. Note that for the monomial to survive and have degree 1 in w, it

must be the case that the right child of the root of Tm is mapped to the right of rootL and

the left child is mapped to the left of rootL.

We claim that the homomorphism φ can not ‘fold back’ layers, that is, map a descendant

to the node where its ancestor is mapped. This is because otherwise the monomial will

not have sufficient degree in either c`, cr, or y (if folding happens at depth k+1).

We also claim that the homomorphism φ can not ‘squish’ a layer, that is, map two siblings

to the same node. If the two are mapped to a vertex labeled 0, the monomial evaluates to

zero. In the other case, they are mapped to a vertex labeled 1 but then the two siblings

together, either contribute degree 2 in z or miss out at least degree 1 in c’s which cannot

be compensated later if the monomial is non-zero.

Therefore we have shown that homomorphisms that are injective, whose image is iso-

morphic to Tm and rooted at rootL, and which preserve left-right labels are in one-to-one

correspondence with parse trees of Un.

Thus to compute the universal polynomial fUn(x̄) we interpolate (Lemma 3.2.10) the oracle

polynomial f αTm,Hm
(x̄,w, z, c`, cr, y) to extract the coefficient of wz(2k−2)c2(k−1)

` c2(k−1)

r y2k
. Since

we are interpolating over 5 variables and the degree in each is polynomially bounded,

Lemma 3.2.10 implies that the universal polynomial is a linear combination of polynomi-

ally many projections of the weighted homomorphism polynomial.

�

74

We now proceed to improve upon the above theorem by establishing hardness under p-

projections while removing both the restrictions : weights α and variables on vertices X,

i.e., hardness of fG,H rather than f αG,H. The price we pay for such a neat form is our source

graph Gm gets slightly more non-trivial compared to the simple Tm in Theorem 3.4.1.

3.4.2 The unweighted homomorphism polynomial

In this subsection, we establish the VP-hardness of the homomorphism polynomials. We

need to show that there exists a p-family (Gm) of bounded tree-width graphs such that

(fGm,Hm(Y)) is hard for VP under p-projections.

We use rigid and mutually incomparable graphs in the construction of Gm. A graph is

called rigid if it has no homomorphism to itself other than the identity map. Two graphs

G and H are called incomparable if there are no homomorphisms from G → H as well as

H → G. It is known that asymptotically almost all graphs are rigid, and almost all pairs

of nonisomorphic graphs are also incomparable. For the purposes of this paper, we only

need a collection of three rigid and mutually incomparable graphs. For more details, we

refer to [HN04].

Let I := {I0, I1, I2} be a fixed set of three connected, rigid and mutually incompara-

ble graphs. (Later we will describe an explicit set of rigid and mutually incomparable

graphs.) Note that they are necessarily non-bipartite. Let cIi = |V(Ii)|. Choose an integer

cmax > max{cI0 , cI1 , cI2}. Identify two distinct vertices {v0
` , v

0
r } in I0, three distinct vertices

{v1
` , v

1
r , v

1
p} in I1, and three distinct vertices {v2

` , v
2
r , v

2
p} in I2.

Recall for every m, a power of 2, Tm denotes a complete (perfect) binary tree with m

leaves. We construct a sequence of graphs Gm (Fig. 3.2) from Tm as follows: first replace

the root by the graph I0, then all the nodes on a particular level are replaced by either I1 or

I2 alternately (cf. Fig. 3.2). Now we add edges; suppose we are at a ‘node’ which is labeled

Ii and the left child and right child are labeled I j, we add an edge between vi
` and v j

p in the

75

I0

I1 I1

I2 I2 I2 I2

I1 I1 I1 I1 I1 I1 I1 I1

path with cmax vertices

Figure 3.2: The graph Gm.

left child, and an edge between vi
r and v j

p in the right child. Finally, to obtain Gm we expand

each added edge into a simple path with cmax vertices on it (cf. Fig. 3.2). That is, a left-

edge (or, right-edge) connection between two incomparable graphs in the tree looks like,

Ii(vi
`) − path with cmax vertices − (v j

p)I j (or, Ii(vi
r) − path with cmax vertices − (v j

p)I j).

Theorem 3.4.2. Over any field, the family of homomorphism polynomials (fm), with

fm(Y) = fGm,Hm(Y), where

• Gm is defined as above (see Fig. 3.2), and

• Hm is an undirected complete graph on poly(m), say m13, vertices,

is complete for VP under p-projections.

Proof. Membership in VP follows from Theorem 3.3.3.

We proceed with the hardness proof. The idea, as before, is to obtain the VP-complete

universal polynomial fUn as a projection of fm. Our starting point is the graph J′n in Sub-

section 3.4.1. The graph J′n is constructed in such a way that the parse trees of Un are now

in bijection with complete binary trees (Observation 3.4.1).

We transform J′n using the set I = {I0, I1, I2}. This is similar to the transformation we did

to the balanced binary tree Tm. We replace each vertex by a graph in I; rootL gets I0 and

the rest of the layers get I1 or I2 alternately (as in Fig. 3.2). Edge connections are made

76

so that a left/right child is connected to its parent via the edge (v j
p, vi

`)/(v
j
p, vi

r). Finally we

replace each edge connection by a path with cmax vertices on it (as in Fig. 3.2), to obtain

the graph Rn. All edges of Rn are labeled 1, with the following exceptions: Every input

node contains the same rigid graph Ii. It has a vertex vi
p. Each path connection to other

nodes has this vertex as its end point. Label such path edges that are incident on vi
p by the

label of the input gate.

Let m := 2k(n). The choice of poly(m) is such that O(cmax · s2
n) 6 poly(m), where sn is

the size of Un. Hence, m13 suffices for the choice of poly(m). As before, the Y variables

are set to {0, 1, x̄} such that the non-zero variables pick out the graph Rn. From the Ob-

servation 3.4.1 it follows that for each parse tree T of Un, there exists a homomorphism

φ : G2k(n) → Rn such that mon(φ) is exactly equal to mon(T). Recall mon(·) denotes the

monomial associated with an object. We claim that these are the only valid homomor-

phisms from G2k(n) → Rn. We observe the following properties of homomorphisms from

G2k(n) → Rn, from which the claim follows. In the following by a rigid-node-subgraph we

mean a graph in {I0, I1, I2} that replaces a vertex.

(i) Any homomorphic image of a rigid-node-subgraph of G2k(n) in Rn, cannot split

across two mutually incomparable rigid-node-subgraphs in Rn. That is, there cannot

be two vertices in a rigid subgraph of G2k(n) such that one of them is mapped into a

rigid subgraph say n1, and the other one is mapped into another rigid subgraph say

n2. This follows because homomorphisms do not increase distance.

(ii) Because of (i), with each homomorphic image of a rigid node gi ∈ G2k(n) , we can

associate at most one rigid node of Rn, say ni, such that the homomorphic image

of gi is a subgraph of ni and the paths (corresponding to incident edges) emanating

from it. But such a subgraph has a homomorphism to ni itself: fold each hanging

path into an edge and then map this edge into an edge within ni. (For instance,

let ρ be a path hanging off ni and attached to ni at u, and let v be any neighbour

of u within ni. Mapping vertices of ρ to u and v alternately preserves all edges

77

and hence is a homomorphism.) Therefore, we note that in such a case we have

a homomorphism from gi → ni. By rigidity and mutual incomparability, gi must

be the same as ni, and this folded-path homomorphism must be the identity map.

The other scenario, where we cannot associate any ni because gi is mapped entirely

within connecting paths, is not possible since it contradicts non-bipartiteness of

mutually-incomparable graphs.

Root must be mapped to the root: The rigidity of I0 and Property (ii) implies that

I0 ∈ G2k(n) is mapped identically to I0 in Rn.

Every level must be mapped within the same level: The children of I0 in G2k(n) are

mapped to the children of the root while respecting left-right behaviour. Firstly, the left

child cannot be mapped to the root because of incomparability of the graphs I1 and I0.

Secondly, the left child cannot be mapped to the right child (or vice versa) even though

they are the same graphs, because the minimum distance between the vertex in I0 where

the left path emanates and the right child is cmax + 1 whereas the distance between the

vertex in I0 where the left path emanates and the left child is cmax. So some vertex from

the left child must be mapped into the path leading to the right child and hence the rest of

the left child must be mapped into a proper subgraph of right child. But this contradicts

rigidity of I1. Continuing like this, we can show that every level must map within the

same level and that the mapping within a level is correct.

This completes the proof of VP-completeness. �

Thus from the VP-completeness and the upper bound of Theorem 3.3.3 we obtain the

following characterisation of VP.

Corollary 3.4.3. Let (Gn) and (Hn) be p-families of graphs. Consider the family of ho-

momorphism polynomials f = (fn), where fn(Y) = fGn,Hn(Y). Then,

• If the sequence (Gn) has bounded tree-width, f ∈ VP.

78

• Moreover, there exists an explicit p-family (Gm) of bounded tree-width graphs, and

Hm is a complete graph on O(m13) vertices, such that (fGm,Hm) is VP-hard, over any

field, with respect to p-projections.

We observe that our algorithm for circuit construction from Lemma 3.3.2, along with the

above characterisation, gives a way to construct skew circuits of size 2O(log2 n) for every

family (hn) in VP (see also [MP08]). Consider the VP-hard family (fGm,Hm) given by

Corollary 3.4.3. Since (hn) ∈ VP, hn is a projection of fGm,Hm where m is p-bounded in

n. Thus an arithmetic circuit computing hn can be obtained from the circuit of fGm,Hm via

the projection. But, from Lemma 3.3.2, we know that fGm,Hm has a skew circuit of size

mO(pw(Gm)). Now using the fact that pw(Gm) 6 O(tw(Gm) · log m), and m is poly(n), we have

a skew circuit of size nO(log n) computing hn.

3.5 Completeness : VBP

We now turn our attention to showing that homomorphism polynomials are also rich

enough to characterize computation by algebraic branching programs. Indeed, there are

many natural polynomials that are known to be complete for VBP, most notably the de-

terminant family Detn, iterated matrix multiplication IMM, and matrix powering, etc. (see

[Bür00a, Blä01, MP08].) It is believed that VBP characterises “efficient” computation in

linear algebra. In this section, we establish that there exists a p-family (Gk) of undirected

bounded path-width graphs such that the family (fGk ,Hk(Y)) is VBP-complete with respect

to p-projections.

As before, we use rigid and mutually incomparable graphs in the construction of Gk. Let

I = {I1, I2} be a set of two connected, non-bipartite, rigid and mutually incomparable

graphs. Arbitrarily pick vertices u ∈ V(I1) and v ∈ V(I2). Let cIi = |V(Ii)|, and cmax =

max{cI1 , cI2}. Consider the sequence of graphs Gk (Fig. 3.3); for every k, there is a simple

path with (k − 1) + 2cmax edges between a copy of I1 and I2. The path is between the

79

I1(u) a b (v)I2

cmax edges k − 1 edges cmax edges

Figure 3.3: The graph Gk.

vertices u ∈ V(I1) and v ∈ V(I2). The path between vertices a and b in Gk contains (k − 1)

edges.

In other words, connect I1 and I2 by stringing together a path with cmax edges between u

and a, a path with (k − 1) edges between a and b, and a path with cmax edges between b

and v.

Theorem 3.5.1. Over any field, the family of homomorphism polynomials (fk), where

• Gk is defined as above (see Fig. 3.3),

• Hk is the undirected complete graph on O(k2) vertices,

• fk(Y) = fGk ,Hk(Y),

is complete for VBP with respect to p-projections.

Proof. Membership: It follows from Theorem 3.3.3.

Hardness: Let (gn) ∈ VBP. Without loss of generality, we can assume that gn is com-

putable by a layered branching program of polynomial size such that the number of layers,

`, is more than the width of the algebraic branching program. We will show that gn can

be obtained as a projection of f`.

Let B′n be the undirected graph underlying the layered branching program An for gn. Let

Bn be the following graph: I1(u) − (s)B′n(t) − (v)I2, that is, u ∈ I1 is connected to s ∈ B′n

via a path with cmax edges and t ∈ B′n is connected to v ∈ I2 via a path with cmax edges

(cf. Fig. 3.3). The edges in B′n inherits the weight from An, and the rest of the edges in Bn

have weight 1.

80

Let us now consider f` when the variables on the edges of H` are instantiated to values in

{0, 1} or variables of gn so that we obtain Bn as a subgraph of H`. We claim that a valid

homomorphism from G` → Bn must satisfy the following properties:

(P1) I1 in G` must be mapped to I1 in Bn using the identity homomorphism,

(P2) I2 in G` must be mapped to I2 in Bn using the identity homomorphism.

Assuming the claim, it follows that homomorphisms from G` → Bn are in one-to-one

correspondence with s-t paths in An. In particular, the vertex a ∈ G` is mapped to the

vertex s in Bn, and the vertex b ∈ G` is mapped to the vertex t in Bn. Also, the monomial

associated with a homomorphism and its corresponding path are the same. Therefore, we

have,

fG`,Bn = gn.

Since ` is polynomially bounded, we obtain VBP-completeness of (fk) over any field.

Let us now prove the claim. We first prove that a valid homomorphism from G` → Bn

must satisfy the property (P1). There are three cases to consider.

• Case 1: Some vertex of V(I1) ⊆ V(G`) is mapped to u in Bn. Since homomorphisms

cannot increase distances between two vertices, we conclude that V(I1) must be

mapped within the subgraph I1(u) − (a). Suppose further that some vertex on the

(u)− (a) path other than u is also in the homomorphic image of V(I1). Some neigh-

bour of u in V(I1) ⊆ V(Bn), say u′, must also be in the homomorphic image, since

otherwise we have a homomorphism from the non-bipartite I1 to a path, a contra-

diction. But note that I1(u) − (a) has a homomorphism to I1: fold the (u) − (a) path

onto the edge u − u′ in I1. Hence, composing the two homomorphisms we obtain a

homomorphism from I1 to I1 which is not surjective. This contradicts the rigidity of

I1. So in fact the homomorphism must map V(I1) from G` entirely within I1 from

Bn, and by rigidity of I1, this must be the identity map.

81

• Case 2: Some vertex of V(I1) ⊆ V(G`) is mapped to v in Bn. Since homomorphisms

cannot increase distances between two vertices, we conclude that V(I1) must be

mapped within the subgraph (b) − (v)I2. But note that (b) − (v)I2 has a homomor-

phism to I2 (fold the (b) − (v) path onto any edge incident on v within I2). Hence,

composing the two homomorphisms, we obtain a homomorphism from I1 to I2.

This is a contradiction, since I1 and I2 were incomparable graphs to start with.

• Case 3: No vertex of V(I1) ⊆ V(G`) is mapped to u or v in Bn. Then V(I1) ⊆

V(G`) must be mapped entirely within one of the following disjoint regions of Bn :

(i) I1 \ {u}, (ii) bipartite graph between vertices u and v, and (iii) I2 \ {v}. But then

we contradict rigidity of I1 in the first case, non-bipartiteness of I1 in the second

case, and incomparability of I1 and I2 in the last.

In a similar way, we could also prove that a valid homomorphism from G` → Bn must

satisfy the property (P2). �

In the above proof, we crucially used incomparability of I1 and I2 to rule out flipping an

undirected path. It turns out that over fields of characteristic not equal to 2, this is not

crucial, since we can divide by 2. We show that if the characteristic of the underlying

field is not equal to 2, then the sequence (Gk) in the preceding theorem can be replaced by

a sequence of simple undirected cycles of appropriate length. In particular, we establish

the following result.

Theorem 3.5.2. Over fields of characteristic , 2, the family of homomorphism polyno-

mials (fk), fk = fGk ,Hk , where

• Gk is a simple undirected cycle of length 2k + 1 and,

• Hk is an undirected complete graph on (2k + 1)2 vertices,

is complete for VBP under p-projections.

82

Proof. Membership: As before, it follows from Theorem 3.3.3.

Hardness: Let (gn) ∈ VBP. Without loss of generality, we can assume that gn is com-

putable by a layered branching program of polynomial size satisfying the following prop-

erties:

• The number of layers, ` > 3, is odd; say ` = 2m + 1. So every path from s to t in

the branching program has exactly 2m edges.

• The number of layers is more than the width of the algebraic branching program,

Let us consider fm when the variables on the edges of Hm have been set to 0, 1, or variables

of gn so that we obtain the undirected graph underlying the layered branching program An

for gn as a subgraph of Hm. Now change the weight of the (s, t) edge from 0 to weight

y, where y is a new variable distinct from all the other variables of gn. Call this modified

graph Bm. Note that without the new edge, Bm would be bipartite, but with this edge it is

not.

Let us understand the homomorphisms from Gm to Bm. Homomorphisms from a simple

cycle C to a graph G are in one-to-one correspondence with closed walks of the same

length in G. Moreover, if the cycle C is of odd length, the closed walk must contain a

simple odd cycle of at most the same length. Therefore, the only valid homomorphism

from Gm to Bm are walks of length ` = 2m + 1, and they all contain the edge (s, t) with

weight y. But the cycles of length ` in Bm are in one-to-one correspondence with s-t paths

in An. Each cycle contributes 2` walks: we can start the walk at any of the ` vertices, and

we can follow the directions from An or go against those directions. Thus we have,

fGm,Bm = (2(2m + 1)) · y · gn = (2`) · y · gn.

Let p be the characteristic of the underlying field. If p = 0, we substitute y = (2`)−1 to

obtain gn. If p > 2, then 2` has an inverse if and only if ` has an inverse. Since ` > 3 is

83

an odd number, either p does not divide ` or it does not divide ` + 2. Hence, at least one

of `, ` + 2 has an inverse. Thus gn is a projection of fm or fm+1 depending on whether ` or

` + 2 has an inverse in characteristic p.

Since ` = 2m + 1 is p-bounded in n, we have therefore shown that (fk) is VBP-complete

with respect to p-projections over any field of characteristic other than 2. �

We also consider the directed variants of the homomorphism polynomial. Let DirHom

denote the set of all directed homomorphisms between two directed graphs. We recall

that directed homomorphisms preserve edges as well as their direction.

Theorem 3.5.3. Over any field, the family of homomorphism polynomials (fk), where

• Gk is a simple directed path k + 1 nodes 〈u1, u2, . . . , uk+1〉,

• Hk is the complete directed graph on k(k + 1) nodes,

• fk(Y) = fGk ,Hk ,DirHom(Y),

is complete for VBP with respect to p-projections.

Proof. The membership follows from Theorem 3.3.3.

Hardness: We reduce the iterated matrix multiplication family (IMMn) to (fk). IMMn is

the polynomial computed by an ABP with (1) a source node s, n−1 layers of n nodes each,

and a target node t, (2) complete bipartite graphs between layers, and (3) distinct variables

x̄ on all edges. We will denote this ABP by Bn. (IMMn) is known to be VBP-complete

with respect to p-projections.

Let us consider fn when the variables on the edges of Hn have been set to 0 or x̄ so that

we obtain the layered branching program Bn for IMMn as a subgraph of Hn.

For every s-t path ρ in Bn, there is a homomorphism φ from Gn to Bn such that mon(φ) =

mon(ρ). Conversely, for any homomorphism φ from Gn to Bn, φ must map Gn to a proper

84

path between s and t. This follows from two facts : (i) directed homomorphisms from a

directed path are in one-to-one correspondence with directed walks of the same length in

the target graph, and (ii) acyclicity of Bn (which forces that paths of length n in Bn exist

only between s and t). So mon(φ) is in fact mon(ρ) for some s-t path ρ. Hence IMMn is

the projection of fn. �

Theorem 3.5.4. Over any field, the family of homomorphism polynomials (fk), where

• Gk is a simple directed cycle on k nodes 〈u1, u2, . . . , uk, u1〉,

• Hk is the complete directed graph on k nodes,

• fk(Y) = fGk ,Hk ,DirHom(Y),

is complete for VBP with respect to p-projections.

Proof. Again the membership follows from Theorem 3.3.3. We only sketch the hardness

proof here.

Consider the family of polynomials (Fn) such that Fn = Tr (Xn), where X is an n × n

symbolic matrix, and Tr denotes the trace of a matrix. It is known that the family (Fn) is

VBP-complete with respect to p-projections [MP08].

We claim that Fn is a projection of fn. The claim easily follows from the observation that

directed homomorphisms from a directed cycle are in one-to-one correspondence with

directed closed walks of the same length in the target graph. �

3.6 Completeness : VNP

In this section, we present a homomorphism polynomial that is complete for VNP with

respect to p-projections. For each n ∈ N, let In := {In1, In2, . . . , Inn} be a set of n rigid and

mutually incomparable graphs. If the subscript n is clear from the context, we will drop

85

I1

I2

I jI j+1

In

path with 3n + 7 vertices

path with 3n + 7 vertices

path with 3n + 7 vertices

Figure 3.4: The Graph Gn.

it and write I = {I1, I2, . . . , In}. We can further assume that for all j ∈ [n], I j is defined on

Θ(n) vertices, in fact 3n + 7 vertices, and its tree-width is also Θ(n) (see Section 3.7). For

each I j, we mark two distinct vertices t j and s j in its vertex set. Consider the sequence

of graphs Gn (see Fig. 3.4). In words, place I1 to In on an n-cycle, connect the big nodes

with the edges from the set C :=
{
(s j, t j+1) | j ∈ [n − 1]

}
∪ {(sn, t1)}, and finally, to obtain

the graph Gn, stretch each edge in C into a path with 3n + 7 vertices on it.

Theorem 3.6.1. Over any field, the family of homomorphism polynomials (fn), where

• Gn is defined as above (see Fig. 3.4),

• Hn is the undirected complete graph on O(n4) vertices,

• fn(Y) = fGn,Hn(Y),

is complete for VNP with respect to p-projections.

Proof. Membership in VNP follows from Proposition 3.3.1. To establish hardness we

will show that the Hamiltonian cycle family (HCn) is a p-projection of (fn). Recall that

HCn is defined as in Section 2.5. We now construct a graph UKn on O(n4) vertices such

that fGn,UKn = HCn. A suitable projection can then restrict Hn to UKn, showing that HCn

is a projection of fn.

86

Consider a copy of I1, and for each j ∈ {2, . . . , n}, n − 1 copies of I j, denoted Ii
j for

i ∈ {2, . . . , n}. Let Kn denote a complete directed graph on n vertices {vi | i ∈ [n]}.

We will modify Kn to obtain UKn. We first replace the vertices of Kn as follows: replace

v1 with I1, and for i ∈ {2, . . . , n}, replace vi with the set {Ii
j | 2 6 j 6 n}. Intuitively by

such a replacement we isolate the vertex v1, and thus make it always the first vertex in a

Hamiltonian cycle. This further helps in counting each Hamiltonian cycle exactly once.

Now we add the connector edges as follows.

For each edge 〈v1, vi〉 such that i , 1, we add the edge (s1, ti
2) with weight X1,i , where s1

is the marked vertex in I1, and ti
2 is the marked vertex in Ii

2. Intuitively, using this edge in

homomorphisms correspond to using the edge 〈v1, vi〉 in a Hamiltonian cycle.

For each edge 〈vi, v1〉 such that i , 1, add (si
n, t1) with weight Xi,1 , where si

n is the marked

vertex in Ii
n , and t1 is the marked vertex in I1. As before, using this edge in homomor-

phisms correspond to using the edge 〈vi, v1〉 in a Hamiltonian cycle.

For each edge 〈vi, v j〉 such that i , j and 1 < {i, j}, add the following edges {(si
k, t

j
k+1) | k ∈

{2, . . . , n − 1}}. Moreover, they all have the same weight Xi, j. As before, si
k is the marked

vertex in Ii
k and t j

k+1 is the marked vertex in I j
k+1. Intuitively, using the edge (si

k, t
j
k+1) in

homomorphisms correspond to using the edge 〈vi, v j〉 in a Hamiltonian cycle such that the

vertex vi is in the k-th position and v j is in the (k + 1)-th position.

Now we stretch the connector edges into a path with 3n + 7 vertices on it. Put the label of

the connector edge onto the middle edge of this path. Rest of the edges in the path have

weight 1. We denote this graph with UKn. Clearly UKn is defined on O(n4) vertices.

We now prove our claim that HCn = fGn,UKn . To prove the claim it suffices to show that

homomorphisms from Gn to UKn are in one-to-one correspondence with the Hamiltonian

cycles in Kn. It easily follows that every Hamiltonian cycle gives a homomorphic mapping

of Gn into UKn by following the cycle (based on the intuition described before). For

example, if 〈v1, vk1 , . . . vkn−1〉 is a Hamiltonian cycle in Kn, then the homomorphic map of

87

Gn into UKn is given as follows: I1 in Gn maps to I1 in UKn using identity mapping,

then I2 in Gn is mapped to Ik1
2 in UKn using identity mapping, and, in general, Ii in Gn is

mapped to Iki−1
i in UKn using identity mapping. For the reverse direction, we use (i) the

rigidity and incomparability of the set I, and (ii) the fact that homomorphisms cannot

increase distance. Using these two facts we first argue that each rigid node in Gn (from

the set I) must map identically to one of its copy in UKn. We can further argue that no

two rigid nodes in Gn can be mapped into the set associated with a single vertex in UKn.

That is, distinct Ii and I j in Gn can not be mapped simultaneously to Ik
i and Ik

j for any

k ∈ {2, . . . , n}. Thus we have shown that a homomorphism from Gn to UKn necessarily

picks out a n-cycle in Kn. Now by the fact there is only one copy of I1 in UKn it follows

that I1 in Gn must be mapped to I1 in UKn using the identity mapping. This uniquely

defines the direction of the n-cycle, and hence each cycle is counted exactly once. �

Based on the discussion, so far, we can say that VNP is characterised by the homomor-

phism polynomials where the p-family of graphs (Gn) is such that tree-width of Gn is

Θ(n). VP is characterised by the homomorphism polynomials where the family (Gn) have

bounded tree-width (independent of n). Furthermore, VBP is characterised by the homo-

morphism polynomials where the sequence (Gn) have bounded path-width. This raises an

interesting question.

What is the complexity of homomorphism polynomials that are defined on a

family Gn such that Gn has tree-width o(n)?

In [HY11], it was shown that most polynomials in n variables and degree n with zero-one

coefficients require circuits of size at least Ω(2n). With such an evidence, it wouldn’t be

far fetched to conjecture that complete families are the one that require exponential com-

plexity. More precisely, consider the following hypothesis which is stronger than Valiant’s

hypothesis VP , VNP.

88

(H) For any VNP-complete family (fn), there exist an ε ∈ (0, 1
2] such that sizec(fn) >

2n(1/2)+ε
for infinitely many n.

Recall the family Cliquek defined in Section 2.5, where

Cliquek
n :=

∑
S⊆[n]
|S |=k

∏
i, j∈S
i< j

xi, j.

It enumerates k-sized cliques in an n-vertex graph.

Set k = log n. By definition, it follows that Cliquelog n
n is computable by an arithmetic

circuit of size nO(log n). Consequently, if Cliquelog n is VNP-complete then all families in

VNP will have nO(log n)-sized circuits computing them. This contradicts the hypothesis

(H).

Similarly, if Cliquelog n
n is in VP, then using Lemma 1 from [FK97], it follows that Cliquek

n

has a circuit of size nO(
√

k) for any k. (Feige and Kilian [FK97] reduced the decision

version of Cliquek to the decision version of Cliquelog n in nO(
√

k) time assuming that the

decision version of Cliquelog n is solvable in P.) In particular, Cliquen/2
n is computable

by circuits of size 2O(
√

n log n). But Cliquen/2 is VNP-complete, and hence we reach a

contradiction to the hypothesis (H).

From these observations, we obtain the following proposition.

Proposition 3.6.2. Under the hypothesis (H), over any field, Cliquelog n is neither in VP,

nor VNP-hard.

We call such polynomial families that belong to VNP, but are not in VP and not VNP-

hard, VNP-intermediate. Although the above intermediate result Proposition 3.6.2 is es-

tablished under too strict a hypothesis, the purpose is to motivate the study of “natural”

VNP-intermediate families. We will continue our discussion on VNP-intermediate fam-

ilies in Chapter 4. We now end this chapter with a description of an explicit family of

89

rigid and mutually incomparable graphs. These can be used in the hardness proofs in

Section 3.4.2, Section 3.5, and Section 3.6

3.7 Rigid and Incomparable graphs

We describe a sequence of set of rigid and mutually incomparable graphs given by Hell

and Nešetřil (Exercise 6, Chapter 4, [HN04]).

Let 1 6 ` 6 n. Consider the following graph H(n, `): the vertex set is {1, 2, . . . , 3n + 7},

and the edges are (1, 3n + 7), (1, n + 4 + `) and all (i, j) with 1 6 |i − j| 6 n + 1.

Lemma 3.7.1. The graph H(n, `) as defined above satisfy the following properties:

• Each H(n, `) is rigid.

• There is no homomorphism H(n, `)→ H(n, `′) for ` , `′.

We illustrate the proof of Lemma 3.7.1 by showing that the graphs H(3, 1),H(3, 2), and

H(3, 3) (see Fig. 3.5) are rigid and pairwise-incomparable. For the purpose of proof we

will partition the vertices into three classes, namely Red, Blue, and Green (cf. Fig. 3.5).

The vertices of H(3, i), for 1 6 i 6 3, are partitioned as follows: the vertex (7 + i) is in

the Red set, the vertices 1 and 16 are in the Blue set, and the rest of the vertices are in the

Green set.

A graph H is asymmetric if the only automorphism (isomorphism from H to itself) is

the identity. A graph H is a core if every endomorphism (homomorphism from H to

itself) is an isomorphism (and hence an automorphism). A graph H is rigid if the only

endomorphism is the identity. H is rigid if and only if it is an asymmetric core.

Let χH denote the chromatic number of H, that is, the least k such that some map from

V(H) to the set of colours [k] gives all adjacent vertices distinct colours. If there is a

homomorphism from G to H, then the definition of homomorphism implies that χ(G) 6

90

H(3, ∗)

2

3

4

5

6

7
8 9

10

11

12

13

14

15
1 16

H(3, 1)

2

3

4

5

6

7
9

10

11

12

13

14

15
1 16

8

H(3, 2)

2

3

4

5

6

7
8

10

11

12

13

14

15
1 16

9

H(3, 3)

2

3

4

5

6

7
8 9

11

12

13

14

15
1 16

10

Figure 3.5: H(3, 1), H(3, 2), H(3, 3): three rigid pairwise-incomparable graphs.

91

χ(H). Hence, if we define vertex-criticality saying that that H is vertex-critical if for every

u ∈ V(H), χH\{v} < χH, then it follows that every vertex-critical graph is a core.

Claim 3.7.1. Each graph in {H(3, ∗),H(3, 1),H(3, 2),H(3, 3)} is a core.

Claim 3.7.2. Each graph in {H(3, 1),H(3, 2),H(3, 3)} is asymmetric.

Hence, each H(3, i) for i ∈ [3] is rigid.

Claim 3.7.3. The graphs in {H(3, 1),H(3, 2),H(3, 3)} are pairwise incomparable; for

i , j, there is no homomorphism from H(3, i) to H(3, j).

Proof of Claim 3.7.1. We show that H(G, ∗) (and hence also each H(3, i)) is not 5-

colourable, while for every u ∈ [16], each H(3, i) \ {u} is 5-colourable. Hence all 4 graphs

are 6-chromatic vertex-critical.

Non-5-colourability: The vertices 1 to 5 form a clique and must get distinct colours, say 1

to 5. Now there is a unique way of extending the colouring sequentially to 6,7,8, But

this assigns colour 1 to 16, and 1 and 16 are neighbours. So no 5-colouring is possible.

5-colourability: Consider H(3, i) \ {u}. Colour node j with colour j mod 5 if j < u, with

colour j − 1 mod 5 if j > u. This satisfies all edge constraints: For a black edge (j, k),

1 6 | j − k| 6 4, so if both j and k are present, then their colours are distinct even if

j < u < k. If the blue-red edge is present, note that the red vertex gets colour 2,3,4,or 5,

while vertex 1 always gets colour 1.

�

Proof of Claim 3.7.2. Since isomorphisms must preserve degrees vertex-wise, consider

the degrees of vertices in the graphs. First, group the vertices of H(3, ∗) by degree.

degree 5: {1, 2, 15, 16}

degree 6: {3, 14}

degree 7: {4, 13}

degree 8: {5, 6, 7, 8, 9, 10, 11, 12}.

92

Similarly, group the vertices of H(3, i) by degree.

degree 5: {2, 15, 16}

degree 6: {1, 3, 14}

degree 7: {4, 13}

degree 8: {5, 6, 7, 8, 9, 10, 11, 12} \ {the red node 7+i}

degree 9: the red node 7 + i

Consider an automorphism f on H(3, 1). Since only vertex 8 has degree 9, f must map 8

to 8. Vertex 1 is the only neighbour of 8 with degree 6, so f must map 1 to 1. Vertex 1

has two degree-5 neighbours, 2 and 16, but 16 has another degree-5 neighbour 15 while 2

does not have any degree-5 neighbour, so f cannot swap these degree-5 neighbours of 1.

So f maps 2 to 2 and 16 to 16. Proceeding this way based on degree, we see that f must

in fact fix every vertex.

An identical argument works for H(3, 2). For H(3, 3), one additional twist: the red vertex

10 gets mapped to 10. Now 10 has two degree-6 neighbours, 1 and 14. Can f map 1 to

14? But 1 has a degree-6 neighbour 3, while 14 has no degree-6 neighbour. So f cannot

swap 1 and 14.

�

Proof of Claim 3.7.3. Suppose to the contrary that f : V1 → V2 is a homomor-

phism from H(3, 1) to H(3, 2) (the argument is similar for other pairs). If f is not surjec-

tive, then by vertex-criticality, H(3, 1) has a homomorphism to a 5-colourable graph, but

χ(H(3, 1)) = 6, a contradiction. So f must be surjective.

Furthermore, f must induce a bijection between the edges of H(3, 1) and H(3, 2). If it

didn’t, then two edges of H(3, 1) are mapped to the same edge of H(3, 2). This implies

that two vertices of H(3, 1) are mapped to the same vertex of H(3, 2), violating surjectivity.

Thus the vertex degrees must be preserved exactly: for each u ∈ V1, the degree of u in

H(3, 1) is the same as the degree of f (u) in H(3, 2).

93

Since the red vertices are the only vertices with degree 9, f must map the red vertex of

H(3, 1), vertex 8, to the red vertex of H(3, 2), vertex 9. Now use the argument as used in

Claim 3.7.2 to extend this mapping. f must map 1 to 1, 2 to 2, and so on. We thus reach

the conclusion that f must map 8 to 8, contradicting f (8) = 9. Hence no such map f is

possible.

�

3.8 Conclusion

In this chapter, we studied families of polynomials defined using graph homomorphisms,

and characterised the algebraic classes VBP, VP, and VNP. We also provide a first in-

stance of natural families of polynomials that are VP-complete with respect to p-projections.

Our work raises further interesting questions on the complexity of the homomorphism

polynomials. In particular,

• What is the complexity of homomorphism polynomials that are defined on a family

Gn such that Gn has tree-width o(n)? (Also, see the discussion around Proposi-

tion 3.6.2.)

• A striking aspect of Perm being VNP-complete is that the underlying decision prob-

lem, in fact even the search problem, is in P. This helped in establishing VNP-

completeness of a host of other polynomials by reduction from the Perm family.

Can we use the homomorphism polynomials to unearth new natural families that

are VP-complete?

• Consider the partial order over p-families, under the relation p-projection. Can

we characterise the degrees of p-families, in the aforementioned poset, using the

homomorphism polynomials?

94

Chapter 4

Polynomials with intermediate

complexity

4.1 Introduction

A plethora of natural problems are either known to be NP-complete or are in P (see, for

example, [GJ79]). This raised a speculation about the possibility that all problems are

either NP-complete or in P. This view was quickly proven wrong by Ladner [Lad75]. He

showed that assuming P , NP, there exists a language L in NP \ P such that L is not

NP-complete (even under oracle reductions).

Inspired from such classical results, Bürgisser [Bür99] proved, among other things, that

over any field, if Valiant’s hypothesis (i.e. VP , VNP) is true, then there is a p-family in

VNP which is neither in VP nor VNP-complete with respect to c-reductions. We call such

a polynomial family VNP-intermediate, that is, it is (1) in VNP, (2) not VNP-complete,

and (3) not in VP. Bürgisser [Bür99] further showed that, over finite fields of character-

istic p, a specific family of polynomials is VNP-intermediate provided ModpP * P/poly.

He also showed that the condition ModpP * P/poly is met if the polynomial hierarchy

95

PH does not collapse to the second level. Hence a very reasonable assumption.

At an intuitive level, Bürgisser’s intermediate polynomial family enumerates cuts in a

graph. This is a remarkable result, when compared with the classical P-NP setting or

the BSS-model. The existence of problems with intermediate complexity has been es-

tablished in the latter settings. But these problems seem highly unnatural owing to the

involved “diagonalization” arguments that are used in their construction. In other words,

their definitions are not motivated by an underlying combinatorial problem but guided

by the needs of the proof and, hence, seem artificial. The question of whether there are

other naturally-defined VNP-intermediate polynomial families, recently highlighted again

in [Gro15], was left open by Bürgisser [Bür00a].

In this chapter we establish a list of new natural VNP-intermediate polynomial families.

The definitions of these families are motivated by basic (combinatorial) NP-complete

problems that are complete under parsimonious reductions.

We mention some basics in Section 4.2. We then define the new polynomial families in

Section 4.3, and also establish their intermediate complexity.

4.2 Preliminaries

Let P/poly denote the class of languages decidable by polynomial-sized Boolean circuit

families. A function φ : {0, 1}∗ → N is in #P if there exists a polynomial p and a

polynomial time deterministic Turing machine M such that for all x ∈ {0, 1}∗, φ(x) =

|{y ∈ {0, 1}p(|x|) | M(x, y) = 1}|. For a prime p, define

#pP = {ψ : {0, 1}∗ → Fp | ψ(x) = φ(x) mod p for some φ ∈ #P},

ModpP = {L ⊆ {0, 1}∗ | for some φ ∈ #P, x ∈ L ⇐⇒ φ(x) ≡ 1 mod p}

96

It is easy to see that if φ : {0, 1}∗ → N is #P-complete with respect to parsimonious

reductions (that is, for every ψ ∈ #P, there is a polynomial-time computable function

f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗, ψ(x) = φ(f (x))), then the language

L = {x | φ(x) ≡ 1 mod p} is ModpP-complete with respect to many-one reductions.

4.3 Intermediate polynomials

From Bürgisser’s proof [Bür99] that the cut enumerator family is VNP-intermediate, we

can abstract out the following strategy to establish VNP-intermediate families.

Find an explicit polynomial family h = (hn) satisfying the following properties.

M: Membership. The family is in VNP.

E: Ease. Over a field Fq of size q and characteristic p, h can be evaluated in P. Thus if h

is VNP-hard, then we can efficiently compute #P-hard functions, modulo p.

H: Hardness. The monomials of h encode solutions to a problem that is #P-hard via

parsimonious reductions. Thus if h is in VP, then the number of solutions, modulo

p, can be extracted using coefficient computation.

Then, unless ModpP ⊆ P/poly (which in turn implies that PH collapses to the second

level, [Bür00a, KL82]), h is VNP-intermediate.

We will demonstrate the above proof strategy on the families of polynomials that we

define. As hinted in the introduction, these families are based on basic NP-complete

problems that are complete under parsimonious reductions. We now describe them in

detail. Two of these, Satq and Clowq, were defined earlier in Section 2.5.3. However for

ease of reading we repeat the definitions here.

(1) The satisfiability polynomial Satq = (Satqn): For each n, let Cln denote the set of all

possible clauses of size 3 over 2n literals. There are n variables X̃ = {Xi}
n
i=1, and also 8n3

97

clause-variables Ỹ = {Yc}c∈Cln , one for each 3-clause c.

Satqn :=
∑

a∈{0,1}n

 ∏
i∈[n]:ai=1

Xq−1
i




∏
c ∈Cln

a satisfies c

Yq−1
c

 .

For the next three polynomials, we consider the complete graph Gn on n nodes, and we

have the set of variables X̃ = {Xe}e∈En and Ỹ = {Yv}v∈Vn .

(2) The vertex cover polynomial VCq = (VCq
n):

VCq
n :=

∑
S⊆Vn

 ∏
e∈En : e is incident on S

Xq−1
e


∏

v∈S

Yq−1
v

 .
(3) The clique/independent set polynomial CISq = (CISq

n):

CISq
n :=

∑
T⊆En

∏
e∈T

Xq−1
e

  ∏
v incident on T

Yq−1
v

 .
(4) The clow polynomial Clowq = (Clowq

n): A clow in an n-vertex graph is a closed walk

of length exactly n, in which the minimum numbered vertex (called the head) appears

exactly once.

Clowq
n :=

∑
w: clow of length n

 ∏
e: edges in w

Xq−1
e




∏
v: vertices in w

(counted only once)

Yq−1
v

 .
If an edge e is used k times in a clow, it contributes Xk(q−1)

e to the monomial. But a vertex

v contributes only Yq−1
v even if it appears more than once. More precisely,

Clowq
n :=

∑
w=〈v0,v1,...,vn−1〉:
∀ j>0, v0<v j

∏
i∈[n]

Xq−1
(vi−1,vi mod n)


 ∏

v∈{v0,v1,...,vn−1}

Yq−1
v

 .

(5) The 3D-matching polynomial 3DMq = (3DMq
n): Consider the complete tripartite

98

hyper-graph, where each part in the partition (An, Bn,Cn) contain n nodes, and each hy-

peredge has exactly one node from each part. We have variables Xe for hyperedge e and

Yv for node v.

3DMq
n :=

∑
M⊆An×Bn×Cn

∏
e∈M

Xq−1
e




∏
v∈M

(counted only once)

Yq−1
v

 .

We show that if ModpP * P/poly, then all five polynomials defined above are VNP-

intermediate.

Observe that in the polynomials above, the combinatorial object of interest is encoded in

a somewhat non-standard way. For instance, the clique-independent set polynomial CISq

has monomials where the Xe variables correspond to any subset of edges, not just subsets

arising from cliques. The idea is that padding a polynomial with “useless monomials”

can make it easier to compute, hence avoiding VNP-completeness. At the same time, the

padding is carefully chosen so that the interesting objects can still be retrieved with some

overhead. For instance, the Yu variables in the monomials of CISq allow us to distinguish

between useful and useless monomials. Hence the polynomial does not become so easy

to compute that it lies in VP. Thus the major obstacle in establishing VNP-intermediate

families is in identifying the right amount of padding to achieve both these goals.

Theorem 4.3.1. Over a finite field Fq of characteristic p, the polynomial families Satq,

VCq, CISq, Clowq, and 3DMq, are in VNP. Further, if ModpP * P/poly, then they are all

VNP-intermediate; that is, neither in VP nor VNP-hard with respect to c-reductions.

Proof. (M) An easy way to see membership in VNP is to use Valiant’s criterion (Propo-

sition 2.2.12), that is, the coefficient of any monomial can be computed efficiently, hence

the polynomial is in VNP. This establishes membership for all families.

We first illustrate the rest of the proof by showing that the polynomial Satq satisfies the

properties (H), (E).

99

(H) Assume (Satqn) is in VP, via polynomial-sized circuit family {Cn}n>1. We will use

Cn to give a P/poly upper bound for computing the number of satisfying assignments of

a 3-CNF formula, modulo p. Since this question is complete for ModpP, the upper bound

implies ModpP is in P/poly.

Given an instance φ of 3-SAT, with n variables and m clauses, consider the projection of

Satqn obtained by setting all Yc for c ∈ φ to t, and all other variables to 1. This gives the

polynomial Satqφ(t) =
∑m

j=1 d jt j(q−1) where d j is the number of assignments (modulo p)

that satisfy exactly j clauses in φ. Our goal is to compute dm.

We convert the circuit C into a circuit D that compute elements of Fq[t] by explicitly

giving their coefficient vectors, so that we can pull out the desired coefficient. (Note that

after the projection described above, C works over the polynomial ring Fq[t].) Since the

polynomial computed by C is of degree m(q − 1), we need to compute the coefficients of

all intermediate polynomials too only upto degree m(q − 1). Replacing + by gates per-

forming coordinate-wise addition, × by a sub-circuit performing (truncated) convolution,

and supplying appropriate coefficient vectors at the leaves gives the desired circuit. Since

the number of clauses, m, is polynomial in n, the circuit D is also of polynomial size.

Given the description of C as advice, the circuit D can be evaluated in P, giving a P/poly

algorithm for computing #3-SAT(φ) mod p. Hence ModpP ⊆ P/poly.

(E) Consider an assignment to X̃ and Ỹ variables in Fq. Since all exponents are mul-

tiples of (q − 1), it suffices to consider 0/1 assignments to X̃ and Ỹ . Each assign-

ment a contributes 0 or 1 to the final value; call it a contributing assignment if it con-

tributes 1. So we just need to count the number of contributing assignments. An as-

signment a is contributing exactly when ∀i ∈ [n], Xi = 0 =⇒ ai = 0, and ∀c ∈ Cln,

Yc = 0 =⇒ a does not satisfy c. These two conditions, together with the values of the X

and Y variables, constrain many bits of a contributing assignment; an inspection reveals

how many (and which) bits are so constrained. If any bit is constrained in conflicting

ways (for example, Xi = 0, and Yc = 0 for some clause c containing the literal x̄i), then no

100

assignment is contributing (either ai = 1 and the X part becomes zero due to Xai
i , or ai = 0

and the Y part becomes zero due to Yc). Otherwise, some bits of a potentially contributing

assignment are constrained by X and Y , and the remaining bits can be set in any way.

Hence the total sum is precisely 2(# unconstrained bits) mod p.

Now assume Satq is VNP-hard. Let L be any language in ModpP, witnessed via #P-

function f . (That is, x ∈ L ⇐⇒ f (x) ≡ 1 mod p.) By the results of [Bür00b] (see also

[Bür00a]), there exists a p-family r = (rn) ∈ VNPFp such that ∀n, ∀x ∈ {0, 1}n, rn(x) =

f (x) mod p. By assumption, there is a c-reduction from r to Satq. We use the oracle

circuits from this reduction to decide instances of L. On input x, the advice is the circuit

C of appropriate size reducing r to Satq. We evaluate this circuit bottom-up. At the leaves,

the values are known. At + and × gates, we perform these operations in Fq. At an oracle

gate, the paragraph above tells us how to evaluate the gate. So the circuit can be evaluated

in polynomial time, showing that L is in P/poly. Thus ModpP ⊆ P/poly.

For the other four families, it suffices to show the following, since the rest is identical as

for Satq.

H′. The monomials of h encode solutions to a problem that is #P-hard via parsimonious

reductions.

E′. Over Fq, h can be evaluated in P.

We describe this for the polynomial families one by one.

The vertex cover polynomial VCq = (VCq
n):

VCq
n :=

∑
S⊆Vn

 ∏
e∈En : e is incident on S

Xq−1
e


∏

v∈S

Yq−1
v

 .
(H′) Given an instance of vertex cover A = (V(A), E(A)) such that |V(A)| = n and |E(A)| =

m, we show how VCq
n encodes the number of solutions of instance A. Consider the

101

following projection of VCq
n. Set Yv = t, for v ∈ V(A). For e ∈ E(A), set Xe = z;

otherwise e < E(A) and set Xe = 1. Thus, we have

VCq
n(z, t) =

∑
S⊆Vn

z(# edges incident on S)(q−1)t|S |(q−1).

Hence, it follows that the number of vertex cover of size k, modulo p, is the coefficient of

zm(q−1)tk(q−1) in VCq
n(z, t).

(E′) Consider the weighted graph given by the values of X̃ and Ỹ variables. Each subset

S ⊆ Vn contributes 0 or 1 to the total. A subset S ⊆ Vn contributes 1 to VCq
n if and only

if every vertex in S has non-zero weight, and every edge incident on each vertex in S has

non-zero weight. That is, S is a subset of full-degree vertices. Therefore, the total sum is

2(# full-degree vertices) mod p.

The clique/independent set polynomial CISq = (CISq
n):

CISq
n :=

∑
T⊆En

∏
e∈T

Xq−1
e

  ∏
v incident on T

Yq−1
v

 .
(H′) Given an instance of clique A = (V(A), E(A)) such that |V(A)| = n and |E(A)| =

m, we show how CISq
n encodes the number of solutions of instance A. Consider the

following projection of CISq
n. Set Yv = t, for v ∈ V(A). For e ∈ E(A), set Xe = z;

otherwise e < E(A) and set Xe = 1. (This is the same projection as used for vertex cover.)

Thus, we have

CISq
n(z, t) =

∑
T⊆En

z|T∩E(A)|(q−1)t(# vertices incident on T)(q−1).

Now it follows easily that the number of cliques of size k, modulo p, is the coefficient of

z(k
2)(q−1)tk(q−1) in CISq

n(z, t).

(E′) Consider the weighted graph given by the values of X̃ and Ỹ variables. Each subset

102

T ⊆ En contributes 0 or 1 to the sum. A subset T ⊆ En contributes 1 to the sum if and

only if all edges in T have non-zero weight, and every vertex incident on T must have non-

zero weight. Therefore, we consider the graph induced on vertices with non-zero weights.

Any subset of edges in this induced graph contributes 1 to the total sum; all other subsets

contribute 0. Let ` be the number of edges in the induced graph with non-zero weights.

Thus, the total sum is 2` mod p.

The clow polynomial Clowq = (Clowq
n):

A clow in an n-vertex graph is a closed walk of length exactly n, in which the minimum

numbered vertex (called the head) appears exactly once.

Clowq
n :=

∑
w: clow of length n

 ∏
e: edges in w

Xq−1
e




∏
v: vertices in w

(counted only once)

Yq−1
v

 .
(If an edge e is used k times in a clow, it contributes Xk(q−1)

e to the monomial.)

(H′) Given an instance A = (V(A), E(A)) of the Hamiltonian cycle problem with |V(A)| =

n and |E(A)| = m, we show how Clowq
n encodes the number of Hamiltonian cycles in A.

Consider the following projection of Clowq
n. Set Yv = t, for v ∈ V(A). For e ∈ E(A), set

Xe = z; otherwise e < E(A) and set Xe = 1. (The same projection was used for VCq and

CISq.) Thus, we have

Clowq
n(z, t) =

∑
w: clow of length n

 ∏
e: edges in w∩E(A)

zq−1




∏
v: vertices in w

(counted only once)

tq−1

 .
From the definition, it now follows that number of Hamiltonian cycles in A, modulo p, is

the coefficient of zn(q−1)tn(q−1).

(E′) To evaluate Clowq
n on instantiations of X̃ and Ỹ variables, we consider the weighted

graph given by the values to the variables. We modify the edge weights as follows: if

103

an edge is incident on a node with zero weight, we make its weight 0 irrespective of the

value of the corresponding X variable. Thus, all zero weight vertices are isolated in the

modified graph G. Hence, the total sum is equal to the number of closed walks of length n,

modulo p, in this modified graph. This can be computed in polynomial time using matrix

powering as follows: Let Gi denote the induced subgraph of G with vertices {i, . . . , n},

and let Ai be its adjacency matrix. We represent Ai as an n × n matrix with the first i − 1

rows and columns having only zeroes. Now the number of clows with head i is given by

the [i, i] entry of AiAn−2
i+1 Ai.

The 3D-matching polynomial 3DMq = (3DMq
n):

Consider the complete tripartite hyper-graph, where each partition contain n nodes, and

each hyperedge has exactly one node from each part. As before, there are variables Xe for

hyperedge e and Yv for node v.

3DMq
n :=

∑
M⊆An×Bn×Cn

∏
e∈M

Xq−1
e




∏
v∈M

(counted only once)

Yq−1
v

 .

(H′) Given an instance of 3D-Matching H , we consider the usual projection. The vari-

ables corresponding to the vertices are all set to t. The edges present inH are all set to z,

and the ones not present are set to 1. Then the number of 3D-matchings inH , modulo p,

is equal to the coefficient of zn(q−1)t3n(q−1) in 3DMq
n(z, t).

(E′) To evaluate 3DMq
n over Fq, consider the hypergraph obtained after removing the ver-

tices with zero weight, edges with zero weight, and edges that contain a vertex with zero

weight (even if the edges themselves have non-zero weight). Every subset of hyperedges

in this modified hypergraph contributes 1 to the total sum, and all other subsets contribute

0. Hence, the evaluation equals 2(# edges in the modified hypergraph) mod p.

�

104

Remark 4.3.1. The above proof technique is specific to finite fields. Indeed the cut enu-

merator polynomial ∑
S⊆[n]

∏
i∈S , j∈S

xi, j

where xi, j = x j,i, shown to be VNP-intermediate over F2 [Bür99], is VNP-complete over

the rationals Q [dRA12].

4.4 Conclusion

For every finite field Fq, we have shown a list of intermediate polynomials (Theorem 4.3.1)

such that their definitions depend on the size q of the field. Motivated by the success of

finding several natural intermediate families of polynomials, we believe the following

open questions are of immediate importance :

• Can we find families of polynomials, with integer coefficients, that are VNP-intermediate

(under some natural complexity assumption of course) over all fields of character-

istic p?

• Can we find families of polynomials, with integer coefficients, that are VNP-intermediate

over all finite fields?, or fields with non-zero characteristic?

• Can we find an explicit family of polynomials, that is VNP-intermediate in charac-

teristic zero?

• Is the family of polynomials Cliquelog n
n VNP-intermediate, under some widely be-

lieved complexity assumption?

• Is there a family of polynomials that is “VP-intermediate”? That is, it is in VP, but,

under some plausible complexity assumption, neither in VBP nor VP-hard.

105

106

Part II

Boolean Function Analysis

107

Chapter 5

Boolean function analysis

5.1 Introduction

Fourier transforms are extensively used in a number of fields such as engineering, math-

ematics, and computer science. Within theoretical computer science, Fourier analysis

of Boolean functions has evolved into one of the most useful and versatile tools. In

particular, it has played an important role in establishing several results in complexity

theory, learning theory, social choice, inapproximability, metric spaces, etc. See the

book [O’D14] for a comprehensive survey of this area. (See de Wolf [dW08] for a short

and nice introduction to Fourier analysis.)

Let f̂ denote the Fourier transform of a Boolean function f : {0, 1}n → {+1,−1}. Then∑
S⊆[n] f̂ (S)2 = 1 and hence we can define the (Shannon) entropy of the distribution given

by f̂ (S)2 :

H(f) :=
∑
S⊆[n]

f̂ (S)2 log
1

f̂ (S)2
. (5.1)

Since entropy can not be more than the logarithm of the support size of the distribution,

we have 0 6 H(f) 6 n.

109

The notion of influence was studied by Ben-or and Linial [BL85] in the context of sharing

an unbiased common random bit in the distributed setting. For a set S ⊆ [n], the influence

of S on f , InfS (f), is the probability that f is not constant upon setting all the variables

not in S uniformly at random. In particular, when S is a singleton set, say S = {i}, then

Infi(f) is the fraction of inputs at which the value of f gets flipped if we flip the i-th bit.

The total influence of f , Inf(f), is defined as
∑

S : |S |=1 InfS (f). Hence, intuitively, the total

influence may be viewed as the expected number of coordinates of a random input which,

when flipped, will cause the value of f to be changed.

For example, the Parity function on n variables has total influence n. That is, the parity

function is never constant even when all but one of the variables are set. In particular, ev-

ery variable has maximum possible influence of 1. Fourier expansion of Parity function

is (−1)
∑

i∈[n] xi . Thus, it is easily seen that H(Parity) equals 0. Consider a dictator function

f (x1, . . . , xi, . . . , xn) = (−1)xi . It follows that the influence of the i-th variable is 1, whereas

the rest of the variables have 0 influence. Thus, exactly one variable has high influence.

Again, from the Fourier expansion, it follows H(dictator) = 0. Another interesting ex-

ample is the Majority function, where each variable has low influence Θ(1/
√

n), and,

therefore, the total influence is Θ(
√

n). It can also be shown that H(Majority) = Θ(
√

n)

(see, for instance, Section 5.3 in [O’D14]).

The Fourier Entropy-Influence (FEI) Conjecture, made by Friedgut and Kalai [FK96] in

1996, states that for every Boolean function, its Fourier entropy is bounded above by its

total influence.

Fourier Entropy-Influence Conjecture: There exists a universal constant C such that

for all f : {0, 1}n → {+1,−1},

H(f) 6 C · Inf(f). (5.2)

The conjecture intuitively asserts that if the Fourier coefficients of a Boolean function

110

are “smeared out,” then its influence must be large, i.e., at a typical input, the value of f

changes in several different directions. The original motivation for the conjecture stems

from a study of threshold phenomena in random graphs. The existence of sharp thresholds

for various graph properties is one of the significant discoveries in the theory of random

graphs [ER60]. Friedgut and Kalai [FK96] asked how large can the threshold interval be

for a monotone graph property?

Consider f : {0, 1}n → {0, 1} representing a monotone graph property. Define A f (p) :=

Pr[f (X1, X2, . . . , Xn) = 1], where each Xi is an independent random variable that is 1 with

probability p and 0 with probability 1 − p. Let δ > 0 be a small number. By threshold

interval we mean the length of the interval [p, q] such that A f (p) is δ, but A f (q) is 1 − δ.

Then, the length of the threshold interval is inversely proportional to the derivative of

A f (p), and by Russo’s formula [Rus81, Mar74], the derivative of A f (p) equals the total

influence of f (under the product measure where each bit is 1 with probability p and

0 otherwise). Hence, the graph property has a small threshold interval around p, that is,

sharp threshold, if and only if it has large influence. Therefore, Friedgut and Kalai [FK96]

asked for generic conditions that would force the influence to be large. Motivated by the

Fourier-analytic formulae of the entropy and influence, they conjectured that a spread-out

Fourier spectrum, i.e. large Fourier entropy, might be one such condition.

The FEI conjecture also has numerous applications [Kal]. In particular, it implies that

for any n-vertex monotone graph property, the influence is at least c(log n)2. In other

words, following the discussion in preceding paragraph it implies that for a monotone

graph property on n vertices any threshold interval is of length at most c′(log n)−2. The

best known upper bound, by Bourgain and Kalai [BK97], is Cε(log n)−2+ε , for any ε > 0.

That is, a lower bound of Ω((log n)2−ε) on the influence of any n-vertex monotone graph

property.

It also implies the existence of sparse real polynomial that approximates a Boolean func-

tion in L2 norm. That is, there exists a polynomial p : Rn → R with at most 2O(Inf(f)/ε)

111

monomials such that E[(f (x) − p(x))2] 6 ε. It is worth noting that Friedgut’s junta the-

orem [Fri98] implies the existence of such sparse L2-approximators, but with a weaker

bound 2O(Inf(f)2/ε2).

It further implies a variant of Mansour’s Conjecture [Man95] stating that for a Boolean

function computable by a DNF formula with m terms, most of its Fourier mass is con-

centrated on poly(m)-many coefficients. A proof of Mansour’s conjecture would imply

a polynomial time agnostic learning algorithm for DNF’s [GKK08] answering a major

open question in computational learning theory.

In this chapter, we study the Fourier-Entropy Influence (FEI) conjecture, and prove vari-

ous upper bounds on Fourier entropy of Boolean functions as well as general real-valued

functions.

We give the basic definitions in Section 5.2. We then discuss upper bounds on entropy

in terms of complexity measures larger than Influence in Section 5.3. Next in section 5.4

we establish a specific bound on Fourier entropy of polynomial threshold functions. We

further prove the FEI conjecture for Read-Once formulas in Section 5.5. In section 5.6

we study entropy of real-valued functions.

5.2 Preliminaries

The objects of our study are functions defined on the Boolean hypercube {0, 1}n. They

might be Boolean-valued, that is, f : {0, 1}n → {+1,−1}, or real-valued f : {0, 1}n →

R. For most of the part, we will be concerned with Boolean-valued functions, and we

will simply call them Boolean functions. We now recall some basic facts from query

complexity and Fourier analysis. For a detailed treatment on query complexity please

refer to [BdW02], while for Fourier analysis see [dW08, O’D14].

The set of all real functions on {0, 1}n is a 2n-dimensional real vector space with an in-

112

ner product defined by 〈 f , g〉 = 2−n
∑

x∈{0,1}n
f (x)g(x) = E[f (x)g(x)], where the expectation

is taken uniformly over all x ∈ {0, 1}n. The character functions χS (x) := (−1)
∑

i∈S xi for

S ⊆ [n] form an orthonormal basis for this space of functions with respect to the above

inner product. Thus, every function f : {0, 1}n → R has the unique Fourier expansion:

f (x) =
∑

S⊆[n] f̂ (S)χS (x). The vector f̂ = (f̂ (S))S⊆[n] is called the Fourier transform of the

function f . The Fourier coefficient f̂ (S) of f at S is then given by f̂ (S) = E[f (x)χS (x)].

The degree deg(f) of f is max{|S | | f̂ (S) , 0}. The norm of a function f is de-

fined to be ‖ f ‖ =
√
〈 f , f 〉. Then orthonormality of {χS } implies Parseval’s identity :

‖ f ‖2 =
∑

S f̂ (S)2. In particular, for a Boolean function f : {0, 1}n → {+1,−1}, we have∑
S⊆[n] f̂ (S)2 = 1. Then the Fourier entropy H(f) of f is given by Equation 5.1. The

spectral norm (or, L1-norm), denoted L1(f), is given by
∑

S | f̂ (S)|.

We recall that the influence of f in the i-th direction, denoted Infi(f), equals

|{x ∈ {0, 1}n : f (x) , f (x ⊕ ei)}|
2n ,

where x ⊕ ei is obtained from x by flipping the i-th bit of x. It is known that Infi(f) =∑
S3i f̂ (S)2 [KKL88]. Thus, we have a formula for the influence of f : Inf(f) =

∑n
i=1 Infi(f) =∑

S⊆[n] |S | f̂ (S)2.

For x ∈ {0, 1}n, the sensitivity s f (x) of f at x is #{i ∈ [n] : f (x) , f (x ⊕ ei)}, i.e., the

number of coordinates of x, which when flipped, will flip the value of f . The (maximum)

sensitivity s(f) of the function f is the largest sensitivity of f at x over all x ∈ {0, 1}n,

that is, s(f) := max{s f (x) : x ∈ {0, 1}n}. The average sensitivity as(f) of f is defined

to be 2−n ∑
x∈{0,1}n s f (x). It is easy to see that Inf(f) = as(f) and hence we also have

as(f) =
∑

S⊆[n] |S | f̂ (S)2.

The block sensitivity bs f (x) of f on an input x is the maximum number of disjoint subsets

B1, . . . , Bt of [n] such that for all j ∈ [t], f (x) , f (x ⊕ eB j), where eB j is the characteristic

vector of the set B j. The block sensitivity bs(f) is maxx bs f (x).

113

The certificate complexity C(f) measures how many of the variables have to be given a

value in order to fix the value of f . More precisely, an f -certificate of an input x is a

subset S of [n] with an assignment α ∈ {0, 1}|S | such that x|S = α, and for all input y such

that y|S = x|S , f (x) = f (y). The size of a certificate is the cardinality of the subset S .

The certificate complexity C f (x) on an input x is the size of a smallest f -certificate for x.

The certificate complexity C(f) of a function is maxx C f (x), and the average certificate

complexity of f is defined to be 2−n ∑
x∈{0,1}n C f (x).

For an ε ∈ [0, 1], the noise sensitivity NSε(f) of f at ε is given by Prx,y∼ε x
[
f (x) , f (y)

]
,

where x is chosen uniformly at random, and y ∼ε x denotes that y is obtained by flipping

each bit of x independently with probability ε. From the relationship between Fourier

coefficients and noise sensitivity (see, for instance, [BKS99]), it follows that

NSε(f) =
1
2
−

1
2

∑
S⊆[n]

(1 − 2ε)|S | f̂ (S)2.

Thus the derivative of NSε(f) with respect to ε equals
∑

S,∅ |S |(1−2ε)|S |−1 f̂ (S)2. We shall

denote the derivative by NS′ε(f).

A decision tree for a Boolean function f is a rooted binary tree in which each internal node

is labeled with a variable xi, and has two outgoing edges, labeled 0 and 1. Furthermore,

each leaf is labeled with +1 or −1. On an input x ∈ {0, 1}n, the algorithm queries the

tree in the following way to compute f (x). It starts at the root. The root is labelled

with some variable xi. Based on the value of xi in x, it either follows the 0-edge or the

1-edge. The algorithm proceeds recursively querying the subtree rooted at 0-edge or 1-

edge, until it reaches a leaf. The output of the algorithm (or, tree) on x is the label of the

leaf that is reached. We say that a decision tree computes f iff its output equals f (x) for

all x. The complexity of a decision tree is its depth, i.e., the number of queries made on

the worst-case input. The decision tree complexity of f , denoted D(f), is the depth of a

minimal-depth decision tree that computes f . The average depth of a decision tree is the

expected number of queries on a uniformly chosen random input, i.e., average length of a

114

root to leaf path under the uniform distribution on inputs. Let d̄(f) denote the minimum

average depth of a decision tree computing f . The size of a decision tree is the number of

leaves in it. The leaf complexity of f , denoted L(f), is the size of a minimal-sized decision

tree that computes f .

In more generalised decision trees, each node is allowed to query some (possibly compli-

cated) function of some input bits. A particular case where each node is labeled by the

parity of a subset of variables is called parity decision tree. Various complexity measures

associated with decision trees can be generalised analogously to parity decision trees. In

particular, the concept of average depth generalises as is, and hence we denote the mini-

mum average depth of a parity decision tree computing f by ⊕-d̄(f).

A subcube C of the cube {0, 1}n is given by a mapping (partial assignment) α : [n] →

{0, 1, ∗} and is defined to be the set of all vectors in {0, 1}n that agree with α on coordinates

fixed, i.e., assigned a non-∗ value, by α. In other words, C := Cα := {x ∈ {0, 1}n : ∀i ∈

[n], α(i) , ∗ =⇒ xi = α(i)}. We use A := {i ∈ [n] : α(i) , ∗} to denote the set of fixed

coordinates of α and denote the cube C also by the pair (A, α). The cardinality of the set

A is called the co-dimension of C, since |C| = 2n−|A|.

For a function f : {0, 1}n → {+1,−1}, a partition C = {C1, . . . ,Cm} of {0, 1}n into subcubes

Ci such that f is constant on each Ci is called a (monochromatic) subcube partition with

respect to f . If C is a subcube partition monochromatic with respect to f , we also say

C computes f . The number of subcubes in a partition C is called its size. We define the

co-dimension of a subcube partition C as, maxi co-dimension(Ci). We denote by Lc(f) the

minimum number of subcubes in a subcube partition that computes f . Let us consider the

following probability distribution over C where each Ci is chosen with probability |Ci|/2n.

If Ai denotes the set of coordinates fixed by Ci, then the probability mass associated with

each Ci equals 1/2|Ai |. We define the subcube-partition entropy of C to be the (Shannon)

entropy of the aforementioned distribution, that is, it equals
∑m

i=1
|Ai |

2|Ai |
.

We call a function f on n variables non-degenerate if it depends on all its variables, i.e.,

115

Infi(f) , 0,∀i ∈ [n]. It can be shown that any subcube partition C computing a non-

degenerate function f on n variables must have size at least n + 1. We will need the

following theorem from [LLTY15].

Theorem 5.2.1 ([LLTY15]). Suppose f : {0, 1}n → {+1,−1} is non-degenerate. Then

there must exists an index i ∈ [n] such that at least one of the restrictions f�xi=0 or f�xi=1

must be non-degenerate, i.e., depend on all the remaining variables in [n] \ {i}.

Lemma 5.2.2. Suppose f : {0, 1}n → {+1,−1} is non-degenerate. Then any subcube

partition that computes f must have size at least n + 1.

Proof. We can now prove the lemma by induction on n. For n = 1, the claim is trivial

since if the function depends on a variable, the variable and its complement must be in

different (single point) subcubes. For n > 1, we note that since the function is non-

degenerate, for every variable x j, there must be at least one subcube fixing x j = 0 and at

least one subcube fixing x j = 1. Now, let xi be a variable given by the Theorem 5.2.1

such that, say, f�xi=0 depends on all its n − 1 variables. By induction, we must have at

least n subcubes in the restricted partition computing f�xi=0, where the restricted partition

is obtained by restricting each of the subcubes in the original partition computing f to

xi = 0 half-cube. In the xi = 1 half-cube, we must have at least one subcube, namely the

one that restricts xi = 1 in the original partition. All the n subcubes previously counted are

disjoint from this since they either restricted xi = 0 in the original partition or they didn’t

restrict xi at all. So, all together we must have n + 1 subcubes in the original partition

computing f . �

We say that a Boolean function f : {0, 1}n → {+1,−1} is a degree-d threshold function

if there exists a degree-d (multilinear) polynomial p(x1, . . . , xn) over R such that f (x) =

sgn(p(x)) for all x ∈ {0, 1}n, where sgn(θ) = +1 if θ > 0, and −1 if θ 6 0. Furthermore,

there exists no degree d − 1 polynomial that sign represents f .

116

s(f) bs(f) C(f)

log L1(f) deg(f) co-dimension of
subcube partitions

Inf(f)
avg.

certificate
complexity

subcube
partition
entropy

log Lc(f) log L(f) D(f)

⊕-d̄(f) d̄(f)

[DLM+07]

[BOH90]

Figure 5.1: Relationship among complexity measures.

5.3 Upper bounds via Complexity measures

The Inf(f) of a Boolean function f is used to derive lower bounds on a number of com-

plexity parameters of f such as the number of leaves, or the average depth of a decision

tree computing f . For a detailed relationship among some complexity measures, see

Fig. 5.1. An arrow from A → B implies A = O(B). The unlabeled arrows follows from

the definitions. The definitions of these measures are given in Section 5.2. Hence a nat-

ural weakening of the FEI conjecture is to prove upper bounds on the Fourier entropy in

terms of such complexity measures.

In this section, we prove upper bounds on Fourier entropy in terms of some complexity

parameters associated to decision trees and subcube partitions.

We begin with an easy-to-observe lemma; thus it can be considered folklore.

Lemma 5.3.1 (folklore). Let f : {0, 1}n → R be such that
∑

S f̂ (S)2 = 1. Then, H(f) =

O(log L1(f)), where L1(f) is the L1-norm of f .

Proof. Let L := L1(f) =
∑

S | f̂ (S)|. Since
∑

S f̂ (S)2 = 1, we have L > 1. We prove the

117

lemma in two cases : L = 1 and L > 1.

(i) L = 1: Using the fact 0 6 | f̂ (S)| 6 1, it can be shown that there is only one non-zero

f̂ (S) with absolute value 1. Therefore, H(f) = 0 = log L.

(ii) L > 1: Let us define θ := 1/(16L2), and G := {S : | f̂ (S)| > θ}. Note that for x > 16,

log x 6
√

x. We thus have log 1
| f̂ (S)|
6 1√

| f̂ (S)|
, for S < G. Therefore,

H(f) =
∑

S

f̂ (S)2 log
1

f̂ (S)2
=

∑
S∈G

f̂ (S)2 log
1

f̂ (S)2
+ 2

∑
S<G

f̂ (S)2 log
1

| f̂ (S)|

6
∑
S∈G

f̂ (S)2 log
1

f̂ (S)2
+ 2

∑
S<G

f̂ (S)2 1√
| f̂ (S)|

6

(
log

1
θ2

) ∑
S∈G

f̂ (S)2

 + 2
(
max
S<G

√
| f̂ (S)|

) ∑
S<G

| f̂ (S)|


6 log(256L4) + 2 ·

1
4L
· L = 4 log L + 8.5.

Thus the lemma follows. �

Using the above lemma, we easily verify many easy-to-prove combinatorial bounds on

Fourier entropy. In particular, we immediately have

H(f) = O(log L(f)), H(f) = O(D(f)), and H(f) = O(deg(f)). (5.3)

We note that while Lemma 5.3.1 holds for real-valued functions as well, the inequalities

in Eq. (5.3) hold only for Boolean-valued functions. We will give examples in Section 5.7

to show that these bounds fail for non-Boolean functions.

We now proceed to prove the main theorem of this section, Fourier entropy is bounded

by ⊕-d̄(f) (cf. Fig. 5.1). We will first establish a bound of d̄(f), and then build on it to

improve the bound to ⊕-d̄(f).

Let T be a decision tree computing f : {0, 1}n → {+1,−1} on variable set X = {x1, . . . , xn}.

If A1, . . . , AL are the sets (with repetitions) of variables queried along the root-to-leaf paths

118

in the tree T , then recall the average depth (w.r.t. the uniform distribution on inputs) of T

is given by d̄ :=
∑L

i=1 |Ai|2−|Ai |. Observe that the average depth of a decision tree is also a

kind of entropy: if each leaf λi is chosen with the probability pi = 2−|Ai | that a uniformly

chosen random input reaches it, then the entropy of the distribution induced on the λi is

H(λi) = −
∑

i pi log pi =
∑

i |Ai|2−|Ai |. Here, we will show that the Fourier entropy of f is

at most twice the leaf entropy of a decision tree computing f .

Without loss of generality, let x1 be the variable queried by the root node of T and let T1

and T2 be the subtrees reached by the branches x1 = 0 and x1 = 1 respectively and let

g1 and g2 be the corresponding functions computed on variable set Y = X \ {x1}. Let d̄

be the average depth of T and d̄1 and d̄2 be the average depths of T1 and T2 respectively.

We first observe a fairly straightforward lemma relating Fourier coefficients of f to the

Fourier coefficients of restrictions of f .

Lemma 5.3.2. Let S ⊆ {2, . . . , n}.

(i) f̂ (S) = (ĝ1(S) + ĝ2(S))/2.

(ii) f̂ (S ∪ {1}) = (ĝ1(S) − ĝ2(S))/2.

(iii) d̄ = (d̄1 + d̄2)/2 + 1.

Proof. We observe the Fourier transform of f in terms of g1 and g2. It easily follows,

f (x1, x2, . . . , xn) = f (x1, y) =
(1 + (−1)x1)

2
g1(y) +

(1 − (−1)x1)
2

g2(y)

=
g1(y) + g2(y)

2
+ (−1)x1

g1(y) − g2(y)
2

.

(i) and (ii) now follow by linearity of the Fourier transform.

To establish (iii), we observe that while traversing the tree T on a uniformly random input,

we traverse the left subtree or the right subtree with equal probabilities. It thus follows

that d̄ = 1 + (d̄1 + d̄2)/2.

119

�

Remark 5.3.1. Note that g1 and g2 differ on an input y if and only if f is sensitive to x1 at

(x1, y). In particular, it is easy to see 1
4‖g1 − g2‖

2 = Inf1(f) and 1
4‖g1 + g2‖

2 = 1 − Inf1(f).

Remark 5.3.2. We further remark that the proof of Lemma 5.3.2 (iii) easily extends to the

setting of parity decision trees. This will be of relevance later.

We now recall a useful property of the function −x log x.

Definition 5.3.3. A function h : R → R is said to be concave over an interval [a, b] if for

every p1, p2 ∈ [a, b] and 0 6 λ 6 1, h(λp1 + (1 − λ)p2) > λ · h(p1) + (1 − λ) · h(p2).

Fact 5.3.4. The function −x log x is concave over [0, 1]. A particularly useful version is

the following: for x, y ∈ [0, 1],

x log
1
x

+ y log
1
y
6 (x + y) log

2
x + y

.

Using Lemma 5.3.2 and Fact 5.3.4 we establish the following technical lemma, which

relates the entropy of f to entropies of restrictions of f .

Lemma 5.3.5. Let g1 and g2 be defined as before in Lemma 5.3.2. Then,

H(f) 6
1
2
H(g1) +

1
2
H(g2) + 2. (5.4)

Proof. For simplicity of notation below, let N′ := {2, . . . , n}.

H(f) =
∑
T⊆[n]

f̂ (T)2 log
1

f̂ (T)2

=
∑
S⊆N′

 f̂ (S)2 log
1

f̂ (S)2
+ f̂ (S ∪ {1})2 log

1

f̂ (S ∪ {1})2


6

∑
S⊆N′

(f̂ (S)2 + f̂ (S ∪ {1})2) log
2

f̂ (S)2 + f̂ (S ∪ {1})2
(by Fact 5.3.4)

=
∑
S⊆N′

ĝ1(S)2 + ĝ2(S)2

2
log

4
ĝ1(S)2 + ĝ2(S)2 (by Lemma 5.3.2 (i) and (ii))

120

=
1
2

∑
S⊆N′

ĝ1(S)2 log
1

ĝ1(S)2 + ĝ2(S)2 +
1
2

∑
S⊆N′

ĝ2(S)2 log
1

ĝ1(S)2 + ĝ2(S)2

+
∑
S⊆N′

{
ĝ1(S)2 + ĝ2(S)2

}
6

1
2

∑
S⊆N′

ĝ1(S)2 log
1

ĝ1(S)2 +
1
2

∑
S⊆N′

ĝ2(S)2 log
1

ĝ2(S)2 + 2.

The last inequality follows from the monotonicity of Logarithm, and Parseval’s identitiy,

i.e.,
∑

S⊆N′ ĝ1(S)2 =
∑

S⊆N′ ĝ2(S)2 = 1. �

Recall d̄(f) denotes the minimum average depth of a decision tree computing f . As a

consequence of Lemma 5.3.5 we obtain the following theorem.

Theorem 5.3.6. For every Boolean function f , H(f) 6 2 · d̄(f).

Proof. The proof is by induction on the number of variables of f .

Base case : n = 1. Then d̄(f) = 0, or 1. But in either case H(f) = 0.

Induction Step :

H(f) 6
1
2
H(g1) +

1
2
H(g2) + 2 (by Lemma 5.3.5)

6 d̄1 + d̄2 + 2 (by induction, H(gi) 6 2d̄i for i = 1, 2)

= 2d̄ (by Lemma 5.3.2 (iii)).

�

Further we observe that the constant 2 in the bound of Theorem 5.3.6 cannot be replaced

by 1. Indeed, let f (x, y) = x1y1+· · ·+xn/2yn/2(mod 2) be the inner product mod 2 function.

Then because f̂ (S)2 = 2−n for all S ⊆ [n], H(f) = n. On the other hand, it can be shown

that d̄(f) = 3
4n − o(n). Hence, the constant must be at least 4/3.

We now discuss the case of parity decision trees. The improved bound of parity decision

trees (Theorem 5.3.8) and the discussion following it, also implies that the above proof

121

technique cannot yield a constant factor better than 2 in Theorem 5.3.6.

For a linear transformation L and a Boolean function f , we define another Boolean func-

tion L f as follows: L f (x) := f (Lx), for all x ∈ {0, 1}n. We begin with a useful observation.

Proposition 5.3.7 (folklore). Let f : {0, 1}n → {+1,−1} be a Boolean function. For an

invertible linear transformation L ∈ GLn(F2), H(f) = H(L f).

Proof. The proposition follows if we show that L permutes the Fourier-spectrum of f .

Let us consider the Fourier coefficients of L f . Let a row vector y ∈ {0, 1}n denote a subset

S ⊆ [n], that is, yi = 1 iff i ∈ S . Then,

L̂ f (y) =
∑

x∈{0,1}n
L f (x) · (−1)〈y,x〉 =

∑
x∈{0,1}n

f (Lx) · (−1)〈yL−1,Lx〉

=
∑

z∈{0,1}n
f (z) · (−1)〈yL−1,z〉 = f̂ (yL−1).

�

Let T be a parity decision tree computing f : {0, 1}n → {+1,−1} on variable set X =

{x1, . . . , xn}. Also, let L be an invertible linear transformation. Note that a parity decision

tree computing f also computes L f and vice versa. This implies that, after applying a

linear transformation, we can always assume that a variable is queried at the root node of

T . Let us denote the new variable set, after applying the linear transformation, by Y =

{y1, . . . , yn}. Without loss of generality, let y1 be the variable queried at the root. Let T1 and

T2 be the subtrees reached by the branches y1 = 0 and y1 = 1 respectively, and let g1 and g2

be the corresponding functions computed on variable set Y \{y1}. Using Proposition 5.3.7,

we see that the proofs of Lemma 5.3.2 (i), (ii), and Lemma 5.3.5 go through in the setting

of parity decision trees too. We also remarked before that Lemma 5.3.2 (iii) holds. Hence,

we get the following strengthening of Theorem 5.3.6.

Theorem 5.3.8. For every Boolean function f , H(f) 6 2 · ⊕-d̄(f).

122

The constant 2 in the bound of Theorem 5.3.8 is optimal, that is, it cannot be replaced by

a smaller number. As before, we consider the inner product mod 2 function. Its Fourier

entropy is n, but
(

n
2 + 1

)
> ⊕-d̄(f).

We now move on to discuss subcube partitions (see Section 5.2). The most natural sub-

cube partitions with respect to a function f are the ones induced by decision trees com-

puting f : the set of all inputs reaching a leaf of the decision tree is given by a subcube Cα,

where α denotes the partial assignment defined by the path from the root to that leaf. But

the subcube partition model allow any partitions, not only the one induced by a decision

tree.

Suppose f : {0, 1}n → {−1, 0, 1} is computed by a subcube partition C = {C1, . . . ,CL},

where Ci = (Ai, αi). (C only needs to cover the non-zero inputs.) Let φi : {0, 1}n → {0, 1}

be the characteristic function of the subcube Ci : φi(x) = 1 if x ∈ Ci and φi(x) = 0

otherwise. Let βi ∈ {−1, 0, 1} be the value of f on Ci. Then, clearly

f (x) =

L∑
i=1

βiφi(x). (5.5)

Using linearity of the Fourier transform, we also have the following relationship between

Fourier coefficients and subcube partitions.

Proposition 5.3.9. With f and C as defined above, f̂ (S) =
∑

i : S⊆Ai

2−|Ai | · βi · χS (αi).

Proof. From Eq. 5.5, using linearity, it follows that f̂ (S) =
∑L

i=1 βiφ̂i(S).

Now a simple calculation shows that, for the characteristic function φ of a subcube C =

(A, α), the Fourier transform is given by

φ̂(S) =


2−|A|χS (α) if S ⊆ A,

0 otherwise.

123

Therefore, it follows that f̂ (S) =
∑

i : S⊆Ai
2−|Ai | · βiχS (αi). In particular, f̂ (S) , 0 =⇒

∃ i : S ⊆ Ai. �

The following lemma directly follows from the above discussions.

Lemma 5.3.10 ([BOH90]). Let f : {0, 1}n → {−1, 0, 1} be computed by the subcube par-

tition C = {C1, . . . ,CL}, where Ci = (Ai, αi). Then,

(i)
∑

S

| f̂ (S)| 6 L. Hence, L1(f) 6 Lc(f).

(ii) For any integer t > 0,
∑
|S |>t

f̂ (S)2 6
∑
|Ai |>t

2−|Ai |.

We reproduce a proof of (ii), since the proof technique will be of relevance in the proof

of the next theorem, Theorem 5.3.11.

Proof. (of Lemma 5.3.10 (ii)): By Proposition 5.3.9, if |S | > t, the contribution to f̂ (S)

comes from only the Ci such that |Ai| > t. Let g ≡
∑
|Ai |>t βiφi be the restriction of f to

subcubes with co-dimension > t. It is then clear that

∑
|S |>t

f̂ (S)2 =
∑
|S |>t

ĝ(S)2 6
∑

S

ĝ(S)2 = 2−n
∑
|Ai |>t

|Ci| =
∑
|Ai |>t

2−|Ai |.

The second equality follows from Parseval’s identity. This proves (ii). �

Combining Lemma 5.3.10 (i) and Lemma 5.3.1 (see also Fig. 5.1), it immediately follows

that H(f) = O(log Lc(f)). However, we give here a different approach to prove the same

result. We believe this approach is more “natural” when compared to Lemma 5.3.1. It uses

the concentration property of the Fourier transform and illustrates a general, potentially

powerful, technique.

Theorem 5.3.11. Let f : {0, 1}n → {+1,−1} be computed by a subcube partition C of size

L. Then,

H(f) 6 2 log L + 2 log n + 2.

124

Proof. To bound entropy via concentration, we use the following simple idea. For a

subset of coefficients B, let H(B) denote the Fourier entropy restricted to that set B, but

appropriately normalized. That is,

H(B) =
∑
S∈B

f̂ (S)2(∑
T∈B f̂ (S)2

) log

(∑
T∈B f̂ (S)2

)
f̂ (S)2

.

Now if we suppose E is a subset of Fourier coefficients of a Boolean function f such that∑
S∈E f̂ (S)2 = ε. Then a simple manipulation shows

∑
S

f̂ (S)2 log
1

f̂ (S)2
= (1 − ε)H(E) + ε H(E) + H(ε), (5.6)

where H(p) := p log 1
p + (1 − p) log 1

1−p is the binary entropy function.

Now, letBt := {S : ∃i|Ai| 6 t such that S ⊆ Ai}.Note that if S < Bt, then every set Ai that

contains S must have size larger than t. Hence, using Proposition 5.3.9, only sets of size

larger than t contribute to such f̂ (S). We now argue as in the proof of Lemma 5.3.10 (ii).

Let g ≡
∑
|Ai |>t βiφi be the restriction of f to subcubes with co-dimension > t. It is then

clear that

∑
S<Bt

f̂ (S)2 =
∑
S<Bt

ĝ(S)2 6
∑

S

ĝ(S)2 = 2−n
∑
|Ai |>t

|Ci| =
∑
|Ai |>t

2−|Ai | < 2−tL. (5.7)

Since
∑

i 2−|Ai | = 1, we have that |{i : |Ai| 6 t}| 6 2t. Since every S ∈ Bt is a subset of

some Ai with |Ai| 6 t, it follows

|Bt| 6
∑
|Ai |6t

2|Ai | 6 2t · |{i : |Ai| 6 t}| 6 22t. (5.8)

125

Fix t := log(Ln). We can now estimate the Fourier entropy of a subcube partition:

H(f) =
∑

S

f̂ 2(S) log
1

f̂ 2(S)

6 (1 − 1/n)H(f̂ 2(S) : S ∈ Bt) + (1/n)H(f̂ 2(S) : S < Bt) + H(1/n)

6 (1 − 1/n) log |Bt| + 1/n · n + H(1/n)

6 2t + 1 + H(1/n)

6 2 log L + 2 log n + 2.

The second equality follows from using Eq. (5.6) and Eq. (5.7), and the next inequality

follows from Eq. (5.8). �

Using Theorem 5.3.11 along with Lemma 5.2.2, we obtain the following corollary.

Corollary 5.3.12. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then, H(f) =

O(log Lc(f)), where Lc(f) is the minimum number of subcubes in a subcube partition that

computes f .

5.4 Polynomial Threshold functions

In this section, we establish a better upper bound on the Fourier entropy of polynomial

threshold functions. We show that the Fourier entropy of a linear threshold function is

O(
√

n), and we also show that for a degree-d threshold function it is Od(n1− 1
4d+6).

It is well known [O’N71, AZ90, GL94] that the average sensitivity of a linear threshold

function on n variables is O(
√

n). Moreover, majority over n bits Majn is a linear threshold

function such that both Inf(Majn) and H(Majn) are Ω(
√

n). Hence, solely as a function of

n, the bound of the entropy cannot be improved. Also our upper bound on the Fourier

entropy of degree-d threshold functions is of the same order of magnitude as the best

known upper bound on their average sensitivity [HKM14, DRST14].

126

We note the facts discussed in the preceding paragraph to be used later.

Fact 5.4.1. Let f : {0, 1}n → {+1,−1} be a Boolean function.

(i) [O’N71, AZ90, GL94] If f is a linear threshold function, Inf(f) 6 O(
√

n).

(ii) [HKM14] If f is a degree-d threshold function, Inf(f) 6 2O(d) · (n1− 1
4d+6).

(See also [DRST14].)

For f : {0, 1}n → {+1,−1}, let Wk[f] :=
∑
|S |=k f̂ (S)2 and W>k[f] :=

∑
|S |>k f̂ (S)2. We first

note a simple inequality, for a proof see, e.g., [O’D03], relating W>1/ε[f] and the noise

sensitivity of f at ε (for definition, see Section 5.2).

Proposition 5.4.2. For any f : {0, 1}n → {+1,−1}, ε ∈ (0, 1
2],

W>(1/ε)[f] ≡
∑

S :|S |>1/ε

f̂ (S)2 6
2

1 − e−2 NSε(f),

where NSε(f) is the noise sensitivity of f at ε.

Thus the above proposition suggests that upper bounds on noise sensitivity imply upper

bounds on the tails of Fourier spectrum. Based on this intuition we prove our main tech-

nical lemma which translates a bound on noise sensitivity to a bound on the derivative

(with respect to ε) of noise sensitivity.

Lemma 5.4.3. Let f : {0, 1}n → {+1,−1} be such that NSε(f) 6 α · ε β, where α is

independent of ε and β < 1. Then,

NS′ε(f) 6
5

1 − e−2 ·
α

1 − β
· (1/ε)1−β.

Proof. We start with the formula for the derivative of noise sensitivity in terms of the

Fourier weights.

NS′ε(f) =

n∑
k=1

Wk[f] · k · (1 − 2ε)k−1

127

=

t∑
k=1

Wk[f] · k · (1 − 2ε)k−1 +

n∑
k=t+1

Wk[f] · k · (1 − 2ε)k−1, (t = b1/εc)

6
t∑

k=1

Wk[f] · k +

n∑
k=t

Wk[f] · k · (1 − 2ε)k−1. (5.9)

Let T1 :=
∑t

k=1 Wk[f] · k, and T2 :=
∑n

k=t Wk[f] · k · (1− 2ε)k−1. We will bound these sums

individually using Proposition 5.4.2. We start with T1.

T1 =

t∑
k=1

Wk[f] · k 6
t∑

k=1

W>k[f] 6
2

1 − e−2

t∑
k=1

NS 1
k
(f)

6
2

1 − e−2

t∑
k=1

α · k−β '
2

1 − e−2 · α ·
t1−β

1 − β

6
2

1 − e−2 ·
α

1 − β
· (1/ε)1−β. (5.10)

We now bound T2.

T2 =

n∑
k=t

Wk[f] · k · (1 − 2ε)k−1

6 t ·W>t[f] · (1 − 2ε)t−1 +
∑

k>t+1

(1 − 2ε)k−1W>k[f]

6
2

1 − e−2

t · NS 1
t
(f) +

∑
k>t+1

(1 − 2ε)k−1NS 1
k
(f)


6

2
1 − e−2

t · α · t−β +
∑

k>t+1

(1 − 2ε)k−1 · α · k−β


6
2

1 − e−2

α · t1−β + α · (t + 1)−β
∑

k>t+1

(1 − 2ε)k−1


6

2
1 − e−2

[
α · t1−β + α · (t + 1)−β ·

(1 − 2ε)t

2ε

]
6

3
1 − e−2 · α · (1/ε)

1−β. (5.11)

Using Eq. (5.10) and Eq. (5.11), in Eq. (5.9), we obtain the claimed bound in the lemma.

128

�

From [OWZ11] we have the following bound on entropy.

Lemma 5.4.4. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,

H(f) 6 (3 + log2 e) · Inf(f) + log2 e ·
n∑

k=1

Wk[f]k ln
n
k
.

This lemma suggests that one way to prove a non-trivial upper bound on Fourier entropy

is to bound the second summand on the right in a general way. Using Lemma 5.4.3, we

prove another technical lemma that provides a bound on
∑n

k=1 Wk[f]k ln n
k .

Lemma 5.4.5. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,

n∑
k=1

Wk[f]k ln
n
k
6 exp(1/2) ·

5
1 − e−2 ·

α

(1 − β)2 · (4n)1−β,

where α and β are as defined in Lemma 5.4.3.

Proof. The first few steps of inequalities below are the same as in [OWZ11].

n∑
k=1

Wk[f]k ln
n
k
6

n∑
k=1

Wk[f]k ·
n∑

j=k

1
j
6

n∑
j=1

1
j

j∑
k=1

Wk[f]k

6
n∑

j=1

1
j

j∑
k=1

Wk[f]k · exp(1/2)(1 −
1
2 j

)k−1,

[
since exp(1/2)(1 − 1

2 j)
m > 1,∀m 6 (j − 1)

]
6

n∑
j=1

1
j
· exp(1/2) · NS′1

4j
(f)

6 exp(1/2) ·
5

1 − e−2 ·
α

1 − β
·

n∑
j=1

1
j
· (4 j)1−β

6 exp(1/2) ·
5

1 − e−2 ·
α

1 − β
· 41−β ·

n∑
j=1

j−β

6 exp(1/2) ·
5

1 − e−2 ·
α

(1 − β)2 · 4
1−β · n1−β. (5.12)

129

�

Using Lemma 5.4.5 and Lemma 5.4.4, we obtain the following theorem which bounds

the Fourier entropy of a Boolean function.

Theorem 5.4.6. Let f : {0, 1}n → {+1,−1} be a Boolean function such that NSε(f) 6

α · ε β. Then

H(f) 6 C ·
(
Inf(f) +

α

(1 − β)2 · (4n)1−β
)
,

where C is a universal constant.

In particular, for polynomial threshold functions, there exist non-trivial bounds on their

noise sensitivity.

Theorem 5.4.7 (Peres’s Theorem [O’D03]). Let f : {0, 1}n → {+1,−1} be a linear thresh-

old function. Then NSε(f) 6 O(
√
ε).

Theorem 5.4.8 ([HKM14]). For any degree-d polynomial threshold function f : {0, 1}n →

{+1,−1} and 0 < ε < 1, NSε(f) 6 2O(d) · ε1/(4d+6).

As corollaries of Theorem 5.4.6, using Fact 5.4.1 with Theorem 5.4.7 and Theorem 5.4.8,

we obtain the following bounds on the Fourier entropy of polynomial threshold functions.

Corollary 5.4.9. Let f : {0, 1}n → {+1,−1} be a linear threshold function. Then, H(f) 6

C ·
√

n, where C is a universal constant.

Proof. It follows from Theorem 5.4.7 that we can choose β = 1/2, and α a universal

constant in Theorem 5.4.6. Now using Fact 5.4.1 (i) we obtain the corollary. �

Similarly, we establish the following bound for general polynomial threshold functions.

Corollary 5.4.10. Let f : {0, 1}n → {+1,−1} be a degree-d polynomial threshold function.

Then, H(f) 6 C · 2O(d) · n1− 1
4d+6 , where C is a universal constant.

130

5.5 Read-Once Formulas

In this section, we will prove the Fourier Entropy-Influence conjecture for read-once for-

mulas using AND, OR, XOR, and NOT gates. We mention that our result is subsumed by a

concurrent and independent work of O’Donnell and Tan [OT13]. Using a completely dif-

ferent technique, they proved the conjecture for read-once formulas with arbitrary gates

of bounded fan-in.

It is well-known that both Fourier entropy and average sensitivity add up when two func-

tions on disjoint sets of variables are added modulo 2.

Fact 5.5.1. Let f = g1 ⊕ g2 for gi : {0, 1}Vi → {−1,+1}, where V1 ∩ V2 = ∅. Then,

1. H(f) = H(g1) + H(g2)

2. as(f) = as(g1) + as(g2).

We will show that somewhat analogous “tensorizability" properties hold when composing

functions on disjoint sets of variables using AND and OR operations.

For f : {0, 1}n → {+1,−1}, let fB denote its 0-1 counterpart : fB ≡
1− f

2 . Let us define the

following 0-1 variant of H :

H(fB) :=
∑

S

f̂B(S)2 log
1

f̂B(S)2
. (5.13)

Note that H(fB) is not exactly an entropy. An easy relation enables translation between

H(f) and H(fB):

Lemma 5.5.2. Let p := Pr[fB = 1] = f̂B(∅) =
∑

S f̂B(S)2 and q := 1 − p. Then,

H(f) = 4 ·H(fB) + ϕ(p), where (5.14)

ϕ(p) := H(4pq) − 4p(H(p) − log p). (5.15)

131

H(p) is the binary entropy function which also equals p log 1
p + (1 − p) log 1

1−p .

Now, let f = AND(g1, g2) for gi : {0, 1}Vi → {−1,+1},where V1∩V2 = ∅. Let V = V1∪V2.

Let giB ≡
1−gi

2 and pi = ĝiB(∅). It is then obvious that fB ≡ g1B · g2B.

Lemma 5.5.3. With the above notations, the following identities hold:

1. For all S ⊆ V, f̂B(S) = ĝ1B(S ∩ V1) · ĝ2B(S ∩ V2)

2. H(fB) = p2 ·H(g1B) + p1 ·H(g2B)

3. as(f) = p2 · as(g1) + p1 · as(g2).

Proof. Proof of this lemma follows by direct computation and hence omitted. �

For 0 6 p 6 1, we define: ψ(p) := p2 log
1
p2 − 2 H(p), and q := 1 − p. (5.16)

Before going on, we pause to give some intuition about the choice of the function ψ and

the function κ below in Eq. (5.19). In the FEI conjecture (Eq. (5.2)), the right hand side,

Inf(f), does not depend on whether we take the range of f to be {−1,+1} or {0, 1}. In

contrast, the left hand side, H(f), depends on the range being {−1,+1}. Just as the usual

entropy-influence inequality composes with respect to the parity operation (Fact 5.5.1)

with {−1,+1} range, we expect a corresponding composition with {0, 1} range to hold for

the AND operation (and by symmetry for the OR operation). However, Lemma 5.5.2

shows the translation to {0, 1}-valued functions results in the annoying additive “error”

term ϕ(p). Such additive terms that depend on p create technical difficulties in the induc-

tive proofs below and we need to choose the appropriate functions of p carefully.

For example, we know 4 H(fB) + ϕ(p) = H(f) = 4 H(1 − fB) + ϕ(q) from Lemma 5.5.2.

If the conjectured inequality for the {0, 1}-valued entropy-influence inequality has an ad-

ditive error term ψ(p) (see Eq. (5.17) below), then we must have H(fB) − H(1 − fB) =

132

ψ(p) − ψ(q) = (ϕ(q) − ϕ(p))/4 = p2 log 1
p2 − q2 log 1

q2 , using Eq. (5.15). Hence, we may

conjecture that ψ(p) = p2 log 1
p2 + (an additive term symmetric with respect to p and q).

Given this and the other required properties, e.g., Lemma 5.5.4 below, for the composition

to go through, we are led to the definition of ψ in Eq. (5.16). Similar considerations with

respect to composition by parity operation (in addition to those by AND, OR, and NOT)

leads us to the definition of κ in Eq. (5.19).

Let us define the FEI01 Inequality (the 0-1 version of FEI) as follows:

H(fB) 6 c · as(f) + ψ(p), (5.17)

where p = f̂B(∅) = Prx[fB(x) = 1] and c is a constant to be fixed later.

The following technical lemma gives us the crucial property of ψ:

Lemma 5.5.4. For ψ as in Eq. (5.16) and p1, p2 ∈ [0, 1], p1ψ(p2) + p2ψ(p1) 6 ψ(p1 p2).

Since the proof of the lemma is somewhat technical, we move the proof to the end of this

section. Given this lemma, an inductive proof shows that the Fourier entropy-influence

conjecture holds for read-once formulas over the complete basis of {AND,OR,NOT}. We

now complete the steps of the inductive proof.

Lemma 5.5.5. Suppose fB = AND(g1B, g2B), where the gi’s depend on disjoint sets of

variables. If each of the gi satisfies the FEI01 Inequality (5.17), then so does f .

Proof.

H(fB) = p2 H(g1B) + p1 H(g2B) by Lemma 5.5.3 (2)

6 p2(c · as(g1) + ψ(p1)) + p1(c · as(g2) + ψ(p2)) since gi satisfy Eq. (5.17)

= c · (p2as(g1) + p1as(g2)) + (p2ψ(p1) + p1ψ(p2)

6 c · as(f) + ψ(p) by Lemma 5.5.3 (3) and Lemma 5.5.4

133

�

Lemma 5.5.6. If f satisfies FEI01 inequality (5.17), then so does its negation, i.e., 1 − f .

Proof. Note that H(1 − f) = H(f) − p2 log 1
p2 + q2 log 1

q2 and because H(p) = H(q),

ψ(p) − ψ(q) = p2 log 1
p2 − q2 log 1

q2 . �

Corollary 5.5.7. Suppose fB = OR(g1B, g2B), where the gi depend on disjoint sets of

variables. If each of the gi satisfies the FEI01 Inequality (5.17), then so does f .

Proof. Note that 1 − fB = (1 − g1B) · (1 − g2B) and apply lemmas, Lemma 5.5.5 and

Lemma 5.5.6. �

Theorem 5.5.8. The FEI01 inequality (5.17) holds for all read-once Boolean formulas

using AND, OR, and NOT gates, with constant c = 5/2.

Proof. Let f be computed by a read-once Boolean formula. We assume without loss of

generality that negations only appear at the bottom with leaves. We proceed by induction

on the underlying tree. At the leaves f is a literal associated with a single variable, say x1.

Then, since fB(∅) = 1/2 and fB({1}) = −1/2, we calculate H(fB) = 1
4 log 4 + 1

4 log 4 = 1,

as(f) = 1, p = 1/2, and ψ(1/2) = −3/2. Thus with c = 5/2, Eq. (5.17) is satisfied.

Now, Lemma 5.5.5 and Corollary 5.5.7 imply that at every AND gate and OR gate, the

inequality (5.17) is preserved, i.e., if it holds at both the inputs, it also holds at the output.

�

We now proceed to show that the above result can be extended to read-once formulas

that include XOR gates as well. To switch to the usual FEI inequality (in the {−1,+1}

notation), we combine Eq. (5.17) and Eq. (5.14) to obtain

H(f) 6 10 · as(f) + κ(p), where (5.18)

κ(p) := 4ψ(p) + ϕ(p) = −8 H(p) − 8pq − (1 − 4pq) log(1 − 4pq). (5.19)

134

Since it uses the {−1,+1} range, we expect that Eq. (5.18) should be preserved by parity

composition of functions. The only technical detail is to show that the function κ also

behaves well with respect to parity composition. We show that this indeed happens. Con-

sider f ≡ g1⊕g2. Since parity is a simple product over {−1,+1} range we have f = g1 ·g2,

and therefore, p = p1q2 + p2q1. Thus we only need to show the following lemma.

Lemma 5.5.9. For κ as defined by Eq. (5.19), κ(p1) + κ(p2) 6 κ(p1q2 + p2q1).

Again, due to the technical nature of the proof, we move it to the end of the section. We

can now prove the following composition lemma which leads us to the main theorem of

this section.

Lemma 5.5.10. Suppose f = g1 · g2, where the gi depend on disjoint sets of variables. If

each of the gi satisfies the entropy-influence inequality (5.18), then so does f .

Proof.

H(f) = H(g1) + H(g2) by Fact 5.5.1 (i)

6 10 · as(g1) + κ(p1) + 10 · as(g2) + κ(g2) since gi satisfy Eq. (5.18)

= 10 · as(f) + κ(p1) + κ(p2) by Fact 5.5.1 (ii)

6 10 · as(f) + κ(p) by Lemma 5.5.9.

�

Theorem 5.5.11. If f is computed by a read-once formula using AND, OR, XOR, and

NOT gates, then H(f) 6 10 Inf(f) + κ(p).

Proof. We use induction on the tree given by the formula computing f to prove Eq. (5.18).

Without loss of generality we assume that negations are only at the bottom with leaves. So

the leaves are input variables or their negations and the claim that they satisfy Eq. (5.18)

can be verified by direct calculation. At any internal node, its two inputs are given by

135

subformulas depending on disjoint sets of variables by the read-once property of the for-

mula. When the internal node is an AND or OR gate, the claim follows from Eq. (5.14),

Lemma 5.5.5, Corollary 5.5.7, and Eq. (5.19). When the internal node is an XOR gate,

the claim follows from Lemma 5.5.10. Thus Eq. (5.18) holds at the root of the tree and

hence for f . �

Observe that the parity function on n variables shows that the bound in Theorem 5.5.11

is tight. But, it is not tight without the additive term κ(p). Further it is easy to verify

that −10 6 κ(p) 6 0 for p ∈ [0, 1]. Hence the theorem implies H(f) 6 10 Inf(f) for all

read-once formulas f using AND, OR, XOR, and NOT gates.

We now give the proofs of the two technical lemmas, Lemma 5.5.4 and Lemma 5.5.9.

Lemma 5.5.4 restated: For ψ as defined by Eq. (5.16) and p1, p2 ∈ [0, 1],

p1 · ψ(p2) + p2 · ψ(p1) 6 ψ(p1 p2).

Proof. We need to prove that p1ψ(p2) + p2ψ(p1)−ψ(p1 p2) 6 0. Let us define q1 := 1− p1

and q2 := 1 − p2. We begin by manipulating the left hand side :

p1ψ(p2) + p2ψ(p1) − ψ(p1 p2)

= p1

(
p2

2 log
1
p2

2

− 2 H(p2)
)

+ p2

(
p2

1 log
1
p2

1

− 2 H(p1)
)
− (p1 p2)2 log

1
(p1 p2)2 + 2 H(p1 p2)

= 2p1 p2
(
−p2 log p2 − p1 log p1 + p1 p2 log p2 + p1 p2 log p1

)
+ 2 (H(p1 p2) − p2 H(p1) − p1 H(p2))

= 2p1 p2
(
−p2q1 log p2 − p1q2 log p1

)
+ 2

(
−(1 − p1 p2) log(1 − p1 p2) + p2q1 log q1 + p1q2 log q2

)
= 2p1q2

(
−p1 p2 log p1 + log q2

)
+ 2p2q1

(
−p1 p2 log p2 + log q1

)
− 2(1 − p1 p2) log(1 − p1 p2)

6 2(1 − p1 p2)
(
−p1 p2 log(p1 p2) + log

q1q2

1 − p1 p2

)
since p1q2, p2q1 6 (1 − p1 p2)

6 2(1 − p1 p2)
(
−p1 p2 log(p1 p2) + log

(1 −
√

p1 p2)2

(1 − p1 p2)

)
since q1q2 = (1 − p1)(1 − p2) 6 (1 −

√
p1 p2)2,

e.g., by the AM-GM inequality p1 + p2 > 2
√

p1 p2.

136

Since p1 p2 ∈ [0, 1], it suffices to show the (univariate) inequality τ(x) := −x ln x +

ln (1−
√

x)2

1−x 6 0 for x ∈ [0, 1]. Since the boundary cases are easy to verify, it suffices to

prove the that τ(x) 6 0 for x ∈ (0, 1). Note that τ(0) = 0 and hence it suffices to prove that

τ′(x) < 0 for x ∈ (0, 1). But

τ′(x) = −1 + ln
1
x
−

1
√

x(1 − x)

6 −1 +

√
1
x
−

1
√

x(1 − x)
since ln y 6

√
y

= −1 −
√

x
1 − x

< 0 for x ∈ (0, 1).

�

Lemma 5.5.9 restated: For κ as defined by Eq. (5.19) and p1, p2 ∈ [0, 1],

κ(p1) + κ(p2) 6 κ(p1q2 + p2q1),

where q1 = 1 − p1, and q2 = 1 − p2.

Proof. In the following, we will let p = p1q2 + p2q1, and q = 1 − p = p1 p2 + q1q2.

To begin with, we observe that (1 − 4pq) = (p − q)2 and that (p − q) = (p1 − q1)(p2 − q2),

i.e., parity operation on independent Boolean variables results in multiplying their biases,

and hence (1 − 4pq) = (1 − 4p1q1)(1 − 4p2q2). Using this, we relate the third terms on

either side of the inequality to be proved.

(1 − 4pq) log(1 − 4pq) = (1 − 4p1q1)(1 − 4p2q2) log((1 − 4p1q1)(1 − 4p2q2))

= (1 − 4p2q2)
(
(1 − 4p1q1) log(1 − 4p1q1)

)
+ (1 − 4p1q1)

(
(1 − 4p2q2) log(1 − 4p2q2)

)
6 (1 − 4p1q1) log(1 − 4p1q1) + (1 − 4p2q2) log(1 − 4p2q2)

137

+ 64p1q1 p2q2,

The last inequality follows from the fact −(1− 4piqi) log(1− 4piqi) 6 8piqi, which in turn

follows from the inequality x log 1
x 6

1 2(1 − x) for x ∈ [0, 1]. Thus, we have

−(1 − 4p1q1) log(1 − 4p1q1) − (1 − 4p2q2) log(1 − 4p2q2)

+ (1 − 4pq) log(1 − 4pq) 6 64p1q1 p2q2. (5.20)

Next, we simplify the second terms:

pq = (p1q2 + p2q1)(p1 p2 + q1q2) = p1q1(p2
2 + q2

2) + p2q2(p2
1 + q2

1)

= p1q1(1 − 2p2q2) + p2q2(1 − 2p1q1)

= p1q1 + p2q2 − 4p1q1 p2q2.

Hence, we have

−8p1q1 − 8p2q2 + 8pq = −32p1q1 p2q2. (5.21)

Finally, the first terms:

H(p) = H(p1q2 + p2q1)

= (p1q2 + p2q1) log
1

(p1q2 + p2q1)
+ (p1 p2 + q1q2) log

1
(p1 p2 + q1q2)

= p1q2 log
1

p1q2
+ p1q2 log

p1q2

(p1q2 + p2q1)
+ p2q1 log

1
p2q1

+ p2q1 log
p2q1

(p1q2 + p2q1)

+ similar terms for the second summand

= q2(−p1 log p1) + p1(−q2 log q2) + p2(−q1 log q1) + q1(−p2 log p2)

+ p1q2 log
p1q2

(p1q2 + p2q1)
+ p2q1 log

p2q1

(p1q2 + p2q1)

1Any constant c > 1
ln 2 can be used instead of 2.

138

+ similar terms from the second half

= −p1 log p1(q2 + p2) − q1 log q1(p2 + q2) − p2 log p2(q1 + p1) − q2 log q2(p1 + q1)

+ p1q2 log
p1q2

(p1q2 + p2q1)
+ p2q1 log

p2q1

(p1q2 + p2q1)
+ p1 p2 log

p1 p2

(p1 p2 + q1q2)

+ q1q2 log
q1q2

(p1 p2 + q1q2)

= H(p1) + H(p2) − (p1q2 + p2q1) H
(

p1q2

(p1q2 + p2q1)

)
− (p1 p2 + q1q2) H

(
p1 p2

(p1 p2 + q1q2)

)
6 H(p1) + H(p2) − 2 min{p1q2, p2q1} − 2 min{p1 p2, q1, q2} using H(p) > 2 min{p, q}

6 H(p1) + H(p2) − 2p1q2 p2q1 − 2p1 p2q1q2 since min{p, q} > pq for 0 6 p, q 6 1

= H(p1) + H(p2) − 4p1q1 p2q2.

Hence, we have

−8 H(p1) − 8 H(p2) + 8 H(p) 6 −32p1q1 p2q2. (5.22)

Combing Eq. (5.20), Eq. (5.21), Eq. (5.22), and the definition of κ Eq. (5.19), we obtain

κ(p1) + κ(p2) − κ(p) 6 0

and this concludes the proof. �

5.6 Real-valued functions

Using the Fourier analytic formulae for Influence we can equivalently state the Fourier

Entropy-Influence conjecture as: there exists a universal constant C such that for all

f : {0, 1}n → {+1,−1},

H(f) 6 C ·
∑
S⊆[n]

|S | f̂ (S)2.

139

In this section, we relax the Boolean-ness condition on f , and consider real-valued func-

tions f : {0, 1}n → R defined over Boolean hypercube. The notion of entropy is not

defined as is on real-valued functions, but to facilitate the discussion, without loss of

generality, we will assume
∑

S f̂ (S)2 = 1.

Here we will establish that for all f such that
∑

S f̂ (S)2 = 1, and for all δ ∈ (0, 1],

H(f) 6
∑

S

|S |1+δ f̂ (S)2 + (log n)O(1
δ).

We note a useful observation.

Lemma 5.6.1. For any t, let T ⊆ {S | | f̂ (S)| 6 1/t}. Suppose |T | 6 t. Then,

∑
S∈T

f̂ (S)2 log
 1

f̂ (S)2

 6 2.

Furthermore, for any k,

∑
S :|S |6k

f̂ (S)2 log
 1

f̂ (S)2

 6 2 + 2k log n.

Proof. We will prove the second part of the lemma since that includes proof of the first

part. First note that the number of summands in the second part is at most nk. Let S k :=

{S | | f̂ (S)| < 1/nk}, then

∑
S∈S k

f̂ (S)2 log
 1

f̂ (S)2

 6 2
nk

∑
S∈S k

| f̂ (S)| log
 1

| f̂ (S)|

 6 2,

where the last inequality follows from the fact that | f̂ (S)| log(1/| f̂ (S)|) < 1, since x log(1/x) <

1, for all 0 6 x 6 1.

Now for all S such that |S | 6 k and S < S k, log(1/| f̂ (S)|) 6 k log n. Hence,

∑
S :|S |6k and S<S k

f̂ (S)2 log
 1

f̂ (S)2

 6 2k log n.

140

�

Theorem 5.6.2. If f =
∑

S⊆[n] f̂ (S)χS is a real-valued function on the domain {0, 1}n such

that
∑

S f̂ (S)2 = 1, then, for any δ ∈ (0, 1],

∑
S⊆[n]

f̂ (S)2 log
 1

f̂ (S)2

 6 ∑
S⊆[n]

|S |1+δ f̂ (S)2 + 2(2 log n)
1+δ
δ + O(log log n/ log(1 + δ)).

Proof. Since the proof consists of careful counting, we highlight our proof strategy first.

We partition the Fourier coefficients into suitable parts and then upper bound each part.

We start with suitably chosen sets A0, B0 ⊆ 2[n] and then inductively construct the sets

A1, B1, . . . , Ak, Bk. The Ai’s represent the new Fourier coefficients whose total entropy we

are able to upper bound. The Bi’s represent the Fourier coefficients that are not yet ac-

counted for. Our construction yields that as k increases Bk only consists of those f̂ (S) for

which |S | < ψ(k, n, δ), where ψ is a suitable function of k, n and δ. Finally an appropriate

choice of k gives us the desired inequality.

Following this strategy, we start by describing the sets Ai and Bi.

Let A0 be the set of all S ⊆ [n] for which |S |1+δ is at least log
(

1
f̂ (S)2

)
. That is,

A0 := {S | f̂ (S)2 > 1/2|S |
1+δ

}.

Clearly,

∑
S∈A0

f̂ (S)2 log
 1

f̂ (S)2

 6 ∑
S∈A0

|S |1+δ f̂ (S)2.

Now, let A1 be all the S ⊆ [n] for which | f̂ (S)| < 2−n. Since |A1| is clearly at most 2n,

Lemma 5.6.1 above applies and we conclude that

∑
S∈A1

f̂ (S)2 log
 1

f̂ (S)2

 6 2.

141

Further let B1 = {0, 1}n \ (A0 ∪ A1). By the definition of A0 and A1,

B1 ⊆

{
S |

1
22n 6 f̂ (S)2 6

1
2|S |1+δ

}
.

It follows that B1 ⊆ {S | |S | 6 (2n)1/(1+δ)}. Let r1 := (2n)1/(1+δ). Thus, |B1| 6
∑r1

i=0

(
n
i

)
< nr1 .

Next, let A2 := {S ∈ B1 : | f̂ (S)| 6 1/nr1} and B2 := B1 \ A2.

First, note that, since A2 ⊆ B1 and |B1| 6 nr1 , Lemma 5.6.1 can be applied to A2 and hence

the contribution of coefficients from A2 is at most 2.

We also have,

B2 ⊆

{
S |

1
n2r1
6 f̂ (S)2 6

1
2|S |1+δ

}
.

Let r2 = (log(n2r1))1/(1+δ) = (2r1 log n)1/(1+δ). It is then clear that for S ∈ B2, we must have

|S | 6 r2 and thus |B2| 6 nr2 .

Continuing this way, we define

rk+1 := (2rk log n)1/(1+δ),

Ak+1 := {S ∈ Bk | | f̂ (S)| 6 1/nrk}, and

Bk+1 := Bk \ Ak+1.

In general, then,

Bk+1 ⊆

{
S |

1
n2rk
6 f̂ (S)2 6

1
2|S |1+δ

}
.

Thus Bk+1 ⊆ {S | |S | 6 rk+1}, and so, |Bk+1| 6 nrk+1 . Since Ak+1 ⊆ Bk, |Ak+1| 6 nrk and

Lemma 5.6.1 can be applied to Ak+1.

It is easy to see by induction that for k > 1,

rk = (2 log n)
1
δ (1−(1+δ)−k+1) · (2n)(1+δ)−k

.

142

Thus, rk 6 (2 log n)
1
δ · (2n)(1+δ)−k

.

By taking k∗ := log log 2n/ log(1 + δ), we get rk∗ 6 2(2 log n)
1
δ .

We repeat the above process up to k∗ times. For each k 6 k∗, the coefficients from Ak

contribute at most 2 to the entropy by the first part of the lemma. Note that for all sets

S ∈ Bk∗ , |S | 6 rk∗ . For k = k∗, we apply the second part of proof of Lemma 5.6.1

and conclude that coefficients from Bk∗ contribute at most 2rk∗ log n 6 2 · (2 log n)1+ 1
δ .

Moreover, note that A0 ∪ A1 ∪ · · · ∪ Ak∗ ∪ Bk∗ is a cover of 2[n]. Hence, we accounted for

contributions to the entropy from all coefficients.

Altogether, we get the total entropy to be at most

∑
S⊆[n]

f̂ (S)2 log
 1

f̂ (S)2

 6 ∑
S⊆[n]

|S |1+δ f̂ (S)2 + 2 log log 2n/ log(1 + δ) + 2(2 log n)1+ 1
δ .

�

A corollary of Theorem 5.6.2 is an upper bound on the Fourier Entropy of a real-valued

function in terms of the first and second moments of the sensitivities of the function.

Corollary 5.6.3. If f =
∑

S⊆[n] f̂ (S)χS is a real-valued function on the domain {0, 1}n such

that
∑

S f̂ (S)2 = 1, then, for any δ ∈ (0, 1],

∑
S⊆[n]

f̂ (S)2 log
 1

f̂ (S)2

 = as(f)1−δas2(f)δ + 2(2 log n)
1+δ
δ + O(log log n/ log(1 + δ)),

where as2(f) :=
∑

S |S |2 f̂ (S)2.

Note that in the above statements as(f) is defined via its Fourier expansion, that is,

as(f) :=
∑

S |S | f̂ (S)2. Similarly, as2(f), in spite of having a combinatorial definition

(see Proposition 5.6.4), is defined to be
∑

S |S |2 f̂ (S)2.

The proof of Corollary 5.6.3 is straightforward from the following lemma. For the proof

of the lemma we need the following proposition which is well-known; see for instance [GPS10,

143

Eq. 2.11] or [O’D14, Ex. 2.20].

Proposition 5.6.4 ([GPS10]). For f : {0, 1}n → {+1,−1},

1
2n

∑
x

s f (x)2 =
∑
S⊆[n]

|S |2 f̂ (S)2 = as2(f).

Lemma 5.6.5. Let f : {0, 1}n → R, and 0 6 δ 6 1. Then,

∑
S⊆[n]

|S |1+δ f̂ (S)2 6 as(f)1−δas2(f)δ.

Proof. For δ = 0, this is the Fourier expression for average sensitivity. For δ = 1, this

is Proposition 5.6.4. We next prove it for δ = 1/2. We treat f̂ (S)2 as the probability

associated to the set S and use the following version of the Cauchy-Schwartz inequality:

for any two random variables X,Y : Ω→ R,we have E(XY) 6
√
E(X2)

√
E(Y2). Choosing

X(S) =
√
|S | and Y(S) = |S | immediately yields the desired inequality for the value of

δ = 1
2 in light of Proposition 5.6.4.

In general, we can show the following: if the desired inequality holds for δ = α and

δ = β then the inequality must also hold for δ =
α+β

2 . To show this, one may apply the

Cauchy-Schwartz inequality with X(S) = |S |(1+α)/2 and Y(S) = |S |(1+β)/2.

Hence, by continuity, the desired inequality holds for any δ ∈ [0, 1]. �

5.7 Examples

In this section we give examples of non-Boolean functions with large Fourier entropy.

A decision tree for a non-Boolean, say R-valued, function f can be defined by a natural

generalisation of the definition for a Boolean-valued function. It queries the (Boolean)

input variables as in the usual decision tree, but produces a value in R at each leaf. It must

guarantee that on all inputs that reach a leaf the function value must be constant and equal

144

to the value produced at that leaf.

The first example shows that (in contrast to Inequality (5.3) for Boolean functions) the

Fourier entropy cannot be upper bounded by log(#leaves) for non-Boolean f . In fact,

there is an exponential gap:

Lemma 5.7.1. There exists a function f : {0, 1}n → R satisfying
∑

S f̂ (S)2 = 1 such that

∑
S⊆[n]

f̂ (S)2 log
 1

f̂ (S)2

 = Ω(n), but log L(f) = O(log n).

Proof. Consider the following function:

f (x) =

√
2d(x)

n + 2
,

where d(x) = n + 1, if x = 0n, else it is the first index in x that is 1. Note that this function

has a decision tree same as the OR function and thus have only n + 1 leaves. Now to see

that
∑

S⊆[n] f̂ (S)2 = 1 consider the following:

∑
x

f (x)2 =
∑

i∈[n+1]

∑
x:d(x)=i

f (x)2 =
∑
i∈[n]

2n−i 2i

n + 2
+

2n+1

n + 2
= 2n,

and thus from Parseval’s identity we have
∑

S⊆[n] f̂ (S)2 = 1.

It is easy to check that for any set S ⊆ [n] if k is the largest index in S then

| f̂ (S)| =
1
2n

2n−k

√
2k

n + 2
−

n∑
i=k+1

2n−i

√
2i

n + 2
−

√
2n+1

n + 2

 ≈ 1
√

n2k
.

And from this it follows that the entropy for the Fourier coefficient squares is around

n/2 + log n whereas log(L(f)) = log(n). �

The next example shows that (in contrast to Inequality (5.3) for Boolean functions) Fourier

entropy can be logarithmically larger than the degree for non-Boolean functions. It also

shows a logarithmic gap between influence and Fourier entropy.

145

Lemma 5.7.2. There exists a function f : {0, 1}n → R of degree d satisfying
∑

S f̂ (S)2 = 1

such that ∑
S⊆[n]

f̂ (S)2 log
 1

f̂ (S)2

 = Ω(d log n).

Proof. Consider the following function f =
∑

S⊆[n] f̂ (S)χS , where f̂ (S) = 1/
√(

n
2

)
if

|S | = 2, and f̂ (S) = 0 otherwise. It is easy to see that the H(f) = log
(

n
2

)
, whereas

Inf(f) =
∑

S⊆[n]
|S | f̂ (S)2 = 2.

So now if we put uniform weights on k-sized sets, that is, f̂ (S) = 1/
√(

n
k

)
if |S | = k, and

f̂ (S) = 0 if |S | , k, we will get Inf(f) = k and H(f) = log
(

n
k

)
> k log n − k log k.

Choosing k =
√

n, we will have H(f) = Ω(
√

n log n) and Inf(f) =
√

n. Since the degree

of the function is d =
√

n, we get H(f) = Ω(d · log n). Also, H(f) = Ω(Inf(f) · log n) �

5.8 Conclusion

In this chapter, we studied a particular problem called the Fourier Entropy-Influence Con-

jecture. Like many other problems (e.g. sensitivity vs block-sensitivity [NS94]) in Fourier

analysis of Boolean functions, the FEI conjecture also remains wide open. There are

plenty of questions that remain open, we mention a few here :

• Can we upper bound the Fourier-entropy of a Boolean function by the combinato-

rial measures that bound the influence (see Fig. 5.1), like sensitivity, block sensi-

tivity, certificate complexity, average certificate complexity, etc.? Recently, in an

ongoing work with Michal Koucký, we have been able to establish that the Fourier

entropy of f is at most the subcube partition entropy of a partition that computes f .

This improves on Theorem 5.3.11.

• Proving the FEI conjecture for special classes of Boolean functions has turned out

to be a non-trivial task. The proofs, for the classes where we know the conjecture

146

is true, have used varied techniques. Specifically, Can we prove the conjecture for

linear threshold functions, or monotone functions?

• Can we prove the following seemingly weaker-looking version of the conjecture :

Does there exists a universal constant C such that for all f : {0, 1}n → {+1,−1},

min
S⊆[n]

log
1

f̂ (S)2
6 C · Inf(f) ?

• It is known that strong enough Fourier-concentration is sufficient to yield the FEI

conjecture (Bourgain-Kalai, see [KMS12, Theorem 3.4]). Can we go in the reverse

direction? That is, assuming the FEI conjecture holds for a class of functions,

can we obtain concentration inequality (for the distribution given by the Fourier

spectrum) for this class of functions?

147

148

Chapter 6

Conclusion

As we mentioned in the Introduction, this thesis has two parts, namely Algebraic com-

plexity theory and Boolean function analysis.

Part I

In the first part our aim has been to understand the landscape around VP in the hope that

this will shed some light on the difficult problem of proving general lower bounds, i.e.,

separating algebraic classes unconditionally.

In Chapter 2, we studied different kinds of reductions in the algebraic setting while es-

tablishing that every family in VNP can be written as a difference of two projections

of sym-Perm. In other words, we showed that sym-Perm is VNP-complete with re-

spect to linear p-projections over fields of characteristic not equal to 2. It remains open

whether sym-Perm is VNP-complete with respect to p-projections? We, then, proved

lower bounds against monotone projections. In particular, we showed that Clique
√

n is

not a monotone p-projection of Perm. This rules out a technique that aims to prove better

lower bounds for Permn by transferring lower bound from Clique to Perm via projections.

We also studied the closure property of (multilinear) algebraic classes under exponential

149

sums.

Further, in Chapter 3, we defined and studied homomorphism polynomials. Using ho-

momorphism polynomials we characterised the algebraic classes VBP, VP, and VNP. In

particular, we established the first instance of natural families of polynomials that are

VP-complete. Motivated by the characterisation of circuit classes by restrictions on tree-

width of the homomorphism polynomials, we were naturally led to the study of families

of polynomials with intermediate complexity.

We discussed families of polynomials with intermediate complexity in Chapter 4. Here

we established a list of new VNP-intermediate polynomial families. Moreover, the defini-

tions of the intermediate families are based on basic (combinatorial) NP-complete prob-

lems.

Several interesting questions remain open. We note a few here. (They are also mentioned

at the end of Chapters 2, 3, and 4.)

• What is the complexity of homomorphism polynomials that are defined on a family

Gn such that Gn has tree-width o(n)?

• Find new natural families that are VP-complete.

• Can we find families of polynomials, with integer coefficients, that are VNP-intermediate

over all finite fields?, or fields with non-zero characteristic?, or characteristic zero?

• Are there polynomial families of intermediate complexity between VBP and VP?

Part II

In the second part, we moved to Fourier analysis of Boolean functions. Here our aim has

been to try and prove a longstanding open problem called the Fourier Entropy-Influence

Conjecture for restricted classes of Boolean functions, or study (weaker) variants of the

150

conjecture in the hope that this sheds some light on how to tackle the conjecture in full

generality.

In Chapter 5, we first established upper bounds on Fourier entropy of a Boolean func-

tion in terms of combinatorial measures, like average depth of a decision tree, etc., that

are known to bound the influence of a function from above (see Fig. 5.1). We then

showed that the Fourier entropy of a linear threshold function on n-variables is O(
√

n).

We further generalise the proof technique to obtain similar bounds on the Fourier en-

tropy of a degree-d polynomial threshold function. (The upper bound matches the best

known bound on the influence of polynomial threshold functions [HKM14, DRST14].)

Next, using “tensorizability” properties of Fourier entropy and Influence, we proved the

Fourier Entropy-Influence conjecture for Read-Once formulas over AND, OR, NOT, and

XOR gates. Finally we established an upper bound, resembling the Fourier-analytic for-

mulae for average sensitivity, on entropy of real-valued functions.

The Fourier Entropy-Influence conjecture itself remains wide open. We state a few inter-

esting open questions here that may help us make progress towards the general conjecture.

(They are also mentioned at the end of Chapter 5.)

• Can we prove the conjecture for special classes of Boolean functions, for example,

linear threshold functions, or monotone functions? It seems this case itself presents

us with non-trivial obstacles to overcome, because the FEI conjecture implies the

famed KKL Theorem [KKL88] (see [OWZ11]) for which we know no proof that

avoids hypercontractivity, or log-Sobolev inequality.

• Can we upper bound the Fourier-entropy of a Boolean function by the combinato-

rial measures that bounds the influence, like sensitivity, block sensitivity, certificate

complexity, average certificate complexity, etc.?

• Does there exists a universal constant C such that for all f : {0, 1}n → {+1,−1},

min
S⊆[n]

log
1

f̂ (S)2
6 C · Inf(f) ?

151

152

Bibliography

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of

Boolean functions. Combinatorica, 7(1):1–22, 1987.

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative

Arithmetic Circuits: Depth Reduction and Size Lower Bounds. Theoretical

Computer Science, 209(1-2):47–86, 1998.

[AT13] David Avis and Hans Raj Tiwary. On the Extension Complexity of Com-

binatorial Polytopes. In Automata, Languages, and Programming - 40th

International Colloquium, ICALP Part I, pages 57–68, 2013.

[AZ90] R. Ahlswede and Z. Zhang. An Identity in Combinatorial Extremal Theory.

Advances in Mathematics, 80(2):137 – 151, 1990.

[BCL+06] Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin

Vesztergombi. Counting Graph Homomorphisms. In Topics in Discrete

Mathematics, volume 26 of Algorithms and Combinatorics, pages 315–371.

Springer Berlin Heidelberg, 2006.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity Measures and Decision

Tree Complexity: A Survey. Theoretical Computer Science, 288(1):21–43,

2002.

[Bea00] Arnaud Beauville. Determinantal Hypersurfaces. The Michigan Mathemati-

cal Journal, 48(1):39–64, 2000.

153

[BK97] Jean Bourgain and Gil Kalai. Influences of Variables and Threshold Inter-

vals under Group Symmetries. Geometric and Functional Analysis (GAFA),

7(3):438–461, 1997.

[BKS99] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise Sensitivity of Boolean

Functions and Applications to Percolation. Publications Mathematiques de

l’Institut des Hautes Etudes Scientifiques, 90(1):5–43, 1999.

[BL85] Michael Ben-Or and Nathan Linial. Collective Coin Flipping, Robust Voting

Schemes and Minima of Banzhaf Values. In Proceedings of the 26th Annual

Symposium on Foundations of Computer Science, pages 408–416, 1985.

[Blä01] Markus Bläser. Complete Problems for Valiant’s Class of qp-Computable

Families of Polynomials. In Computing and Combinatorics, 7th Annual In-

ternational Conference, COCOON 2001, Guilin, China, August 20-23, 2001,

Proceedings, pages 1–10, 2001.

[BOH90] Yigal Brandman, Alon Orlitsky, and John Hennessy. A Spectral Lower

Bound Technique for the Size of Decision Trees and Two-Level AND/OR

Circuits. IEEE Transactions of Computers, 39(2):282–287, 1990.

[Brä11] Petter Brändén. Obstructions to determinantal representability. Advances in

Mathematics, 226(2):1202–1212, 2011.

[Brä13] Petter Brändén. Hyperbolicity cones of Elementary Symmetric Polynomials

are spectrahedral. Optimization Letters, 8(5):1773–1782, 2013.

[Bür99] Peter Bürgisser. On the Structure of Valiant’s Complexity Classes. Discrete

Mathematics & Theoretical Computer Science, 3(3):73–94, 1999.

[Bür00a] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity The-

ory, volume 7 of Algorithms and Computation in Mathematics. Springer,

2000.

154

[Bür00b] Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical Computer

Science, 235(1):71–88, 2000.

[Cat81] F. Catanese. Babbage’s conjecture, contact of surfaces, symmetric determi-

nantal varieties and applications. Inventiones mathematicae, 63(3):433–465,

1981.

[Cay69] A. Cayley. A Memoir on Quartic Surfaces. Proceedings of the London

Mathematical Society, s1-3(1):19–69, 1869.

[CDM13] Florent Capelli, Arnaud Durand, and Stefan Mengel. The Arithmetic Com-

plexity of Tensor Contractions. In Symposium on Theoretical Aspects of

Computer Science STACS, volume 20 of LIPIcs, pages 365–376, 2013.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel

Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-

ized Algorithms. Springer, 2015.

[CKLS15] Sourav Chakraborty, Raghav Kulkarni, Satyanarayana V. Lokam, and Nitin

Saurabh. Upper Bounds on Fourier Entropy, pages 771–782. Springer In-

ternational Publishing, 2015.

[CT79] R. J. Cook and A. D. Thomas. Line Bundles and Homogeneous Matrices.

The Quarterly Journal of Mathematics, 30(4):423–429, 1979.

[Dam91] Carsten Damm. DET=L(#L). Technical Report Informatik-Preprint 8, Fach-

bereich Informatik der Humboldt–Universität zu Berlin, 1991.

[Dic21] Leonard E. Dickson. Determination of all general homogeneous polyno-

mials expressible as determinants with linear elements. Transactions of the

Americal Mathematical Society, 22:167–179, 1921.

[Dix02] A. C. Dixon. Note on the reduction of a ternary quantic to a symmetrical

determinant. Proc. Cambridge Philos. Soc., 11:350–351, 1902.

155

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt

Rubinfeld, Rocco A. Servedio, and Andrew Wan. Testing for concise rep-

resentations. In 48th Annual IEEE Symposium on Foundations of Computer

Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceed-

ings, pages 549–558, 2007.

[DMM+16] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-

Altherre, and Nitin Saurabh. Homomorphism Polynomials Complete for VP.

Chicago Journal of Theoretical Computer Science, 2016(3), March 2016.

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Sepa-

rating Multilinear Branching Programs and Formulas. In Proceedings of the

Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,

pages 615–624. ACM, 2012.

[dRA12] Nicolas de Rugy-Altherre. A Dichotomy Theorem for Homomorphism Poly-

nomials. In Mathematical Foundations of Computer Science 2012, volume

7464 of LNCS, pages 308–322. Springer Berlin Heidelberg, 2012.

[DRST14] Ilias Diakonikolas, Prasad Raghavendra, Rocco Servedio, and Li-Yang Tan.

Average Sensitivity and Noise Sensitivity of Polynomial Threshold Func-

tions. SIAM Journal on Computing, 43(1):231–253, 2014.

[dW08] Ronald de Wolf. A Brief Introduction to Fourier Analysis on the Boolean

Cube. Theory of Computing, Graduate Surveys, 1:1–20, 2008.

[ER60] Paul Erdös and Alfréd Rényi. On the Evolution of Random Graphs. Publ.

Math. Inst. Hung. Acad. Sci., 5:17–61, 1960.

[FK96] Ehud Friedgut and Gil Kalai. Every Monotone Graph Property has a

Sharp Threshold. Proceedings of the American Mathematical Society,

124(10):2993–3002, 1996.

156

[FK97] Uriel Feige and Joe Kilian. On Limited versus Polynomial Nondeterminism.

Chicago Journal of Theoretical Computer Science, 1997(1), March 1997.

[FMP+15] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and

Ronald de Wolf. Exponential Lower Bounds for Polytopes in Combinato-

rial Optimization. Journal of the ACM, 62(2):17, 2015.

[Fri98] Ehud Friedgut. Boolean Functions with Low Average Sensitivity Depend on

Few Coordinates. Combinatorica, 18(1):27–35, 1998.

[FvzGR86] F. Fich, J. von zur Gathen, and C. Rackoff. Complete Families of Polynomi-

als. Manuscript, 1986.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GKK08] Parikshit Gopalan, Adam Tauman Kalai, and Adam Klivans. Agnostically

Learning Decision Trees. In Proceedings of the 40th annual ACM symposium

on Theory of computing, STOC ’08, pages 527–536, 2008.

[GKKP11] Bruno Grenet, Erich L Kaltofen, Pascal Koiran, and Natacha Portier.

Symmetric determinantal representation of formulas and weakly skew cir-

cuits. Randomization, Relaxation, and Complexity in Polynomial Equa-

tion Solving, 556 of Contemporary Mathematics - American Mathematical

Society:61–96, 2011.

[GL94] Craig Gotsman and Nathan Linial. Spectral Properties of Threshold Func-

tions. Combinatorica, 14(1):35–50, 1994.

[GMT13] Bruno Grenet, Thierry Monteil, and Stéphan Thomassé. Symmetric Deter-

minantal Representations in characteristic 2. Linear Algebra and its Appli-

cations, 439(5):1364–1381, 2013.

157

[GPS10] Christophe Garban, Gabor Pete, and Oded Schramm. The Fourier Spectrum

of Critical Percolation. Acta Mathematica, 205:19–104, 2010.

[Gra55] H. Grassmann. Die stereometrischen Gleichungen dritten Grades, und die

dadurch erzeugten Oberflächen. Journal für die reine und angewandte Math-

ematik, 1855:47–65, 1855.

[Gro15] Joshua A. Grochow. Monotone projection lower bounds from Ex-

tended Formulation lower bounds. ECCC Tech. Report TR15-171 and

arXiv:1510.08417 [cs.CC], 2015.

[Hes55] Otto Hesse. Über Determinanten und ihre Anwendung in der Geometrie,

insbesondere auf Curven vierter Ordnung. Journal für die reine und ange-

wandte Mathematik, 1855:243–264, 1855.

[HKM14] Prahladh Harsha, Adam Klivans, and Raghu Meka. Bounding the Sensitiv-

ity of Polynomial Threshold Functions. Theory of Computing, 10(1):1–26,

2014.

[HMV06] J. William Helton, Scott A. McCullough, and Victor Vinnikov. Noncommu-

tative convexity arises from linear matrix inequalities. Journal of Functional

Analysis, 240(1):105–191, 2006.

[HN04] Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford

lecture series in mathematics and its applications. Oxford University Press,

2004.

[Hru15] Pavel Hrubeš. On Hardness of Multilinearization, and VNP Completeness in

Characteristics Two. Electronic Colloquium on Computational Complexity

(ECCC), 22:67, 2015.

158

[HV07] J. William Helton and Victor Vinnikov. Linear Matrix Inequality Representa-

tion of Sets. Communications on Pure and Applied Mathematics, 60(5):654–

674, 2007.

[HWY10] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Relationless Complete-

ness and Separations. In Proceedings of the 25th Annual IEEE Conference

on Computational Complexity, CCC 2010, pages 280–290, 2010.

[HY11] Pavel Hrubeš and Amir Yehudayoff. Arithmetic Complexity in Ring Exten-

sions. Theory of Computing, 7(1):119–129, 2011.

[JKRS09] Ali Juma, Valentine Kabanets, Charles Rackoff, and Amir Shpilka. The

Black-Box Query Complexity of Polynomial Summation. Computational

Complexity, 18(1):59–79, 2009.

[JMR13] Maurice Jansen, Meena Mahajan, and B.V.Raghavendra Rao. Resource

Trade-offs in Syntactically Multilinear Arithmetic Circuits. Computational

Complexity, 22(3):517–564, 2013.

[JR09] Maurice Jansen and B.V. Raghavendra Rao. Simulation of Arithmetical Cir-

cuits by Branching Programs with Preservation of Constant Width and Syn-

tactic Multilinearity. In Computer Science - Theory and Applications, vol-

ume 5675 of Lecture Notes in Computer Science, pages 179–190. Springer

Berlin Heidelberg, 2009.

[JS82] Mark Jerrum and Marc Snir. Some Exact Complexity Results for Straight-

Line Computations over Semirings. Journal of the ACM, 29(3):874–897,

1982.

[Juk14] Stasys Jukna. Why is Hamilton Cycle so different from Per-

manent? http://cstheory.stackexchange.com/questions/27496/why-is-

hamiltonian-cycle-so-different-from-permanent, 2014.

159

[Kal] Gill Kalai. The Entropy/Influence Conjecture. Terence Tao’s blog.

[Kal86] Erich Kaltofen. Uniform Closure Properties of P-computable Functions. In

Proceedings of the Eighteenth Annual ACM Symposium on Theory of Com-

puting, pages 330–337, 1986.

[Kal87] Erich Kaltofen. Single-factor Hensel Lifting and Its Application to the

Straight-Line Complexity of Certain Polynomials. In Proceedings of the

Nineteenth Annual ACM Symposium on Theory of Computing, pages 443–

452, 1987.

[Kal89] Erich Kaltofen. Factorization of Polynomials Given by Straight-Line Pro-

grams. In Randomness and Computation, volume 5 of the Advances in Com-

puting Research series, pages 375–412. JAI Press Inc., Greenwich CT, 1989.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The Influence of Variables on

Boolean Functions. In Proceedings of the 29th Annual IEEE Symposium

on Foundations of Computer Science, pages 68–80, 1988.

[KL82] Richard M Karp and Richard Lipton. Turing machines that take advice.

Ląŕenseignement mathématique, 28(2):191–209, 1982.

[KLW10] Adam Klivans, Homin Lee, and Andrew Wan. Mansour’s Conjecture is

True for Random DNF Formulas. In Proceedings of the 23rd Conference

on Learning Theory, pages 368–380, 2010.

[KMS12] Nathan Keller, Elchanan Mossel, and Tomer Schlank. A note on the En-

tropy/Influence conjecture. Discrete Mathematics, 312(22):3364 – 3372,

2012.

[KS93] Ephraim Korach and Nir Solel. Tree-width, Path-width, and Cutwidth. Dis-

crete Applied Mathematics, 43(1):97–101, 1993.

160

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given by

black boxes for their evaluations: Greatest common divisors, factorization,

separation of numerators and denominators. Journal of Symbolic Computa-

tion, 9(3):301–320, 1990.

[Lad75] Richard E. Ladner. On the Structure of Polynomial Time Reducibility. Jour-

nal of the ACM, 22(1):155–171, 1975.

[LLTY15] Chia-Jung Lee, Satyanarayana V. Lokam, Shi-Chun Tsai, and Ming-Chuan

Yang. Restrictions of Nondegenerate Boolean Functions and Degree Lower

Bounds over different Rings. In IEEE International Symposium on Informa-

tion Theory, ISIT 2015, Hong Kong, China, June 14-19, 2015, pages 501–

505, 2015.

[Mah14] Meena Mahajan. Algebraic complexity classes. In Perspectives in Computa-

tional Complexity, volume 26 of Progress in Computer Science and Applied

Logic, pages 51–75. Springer International Publishing, 2014.

[Man95] Yishay Mansour. An O(nlog log n) Learning Algorithm for DNF under the Uni-

form Distribution. Journal of Computer and System Sciences, 50(3):543–

550, 1995.

[Mar74] Grigorii Aleksandrovich Margulis. Probabilistic Characteristics of Graphs

with Large Connectivity. Probl. Peredachi Inf., 10:101–108, 1974.

[Men11] Stefan Mengel. Characterizing Arithmetic Circuit Classes by Constraint Sat-

isfaction Problems. In Automata, Languages and Programming, volume

6755 of LNCS, pages 700–711. Springer Berlin Heidelberg, 2011.

[Min78] Henryk Minc. Permanents. Encyclopedia of Mathematics and its Applica-

tions. Addison-Wesley Publishing Company, 1978.

161

[MM60] T. Muir and W.H. Metzler. A Treatise on the Theory of Determinants. Dover

Publications, 1960.

[MM61] Marvin Marcus and Henryk Minc. On the relation between the determinant

and the permanent. Illinois Journal of Mathematics, 5(3):376–381, 1961.

[MP08] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic

complexity classes. Journal of Complexity, 24(1):16–38, 2008.

[MR08] Meena Mahajan and B.V. Raghavendra Rao. Arithmetic Circuits, Syntac-

tic Multilinearity, and the Limitations of Skew Formulae. In Mathematical

Foundations of Computer Science 2008, volume 5162 of Lecture Notes in

Computer Science, pages 455–466. Springer Berlin Heidelberg, 2008.

[MS16] Meena Mahajan and Nitin Saurabh. Some Complete and Intermediate poly-

nomials in Algebraic Complexity Theory. In Proceedings of the 11th Com-

puter Science Symposium in Russia (CSR), 2016, 2016.

[MST16] Meena Mahajan, Nitin Saurabh, and Sébastien Tavenas. VNP=VP in the

multilinear world. Information Processing Letters, 116(2):179–182, 2016.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms, and

Complexity. Chicago Journal of Theoretical Computer Science, 1997(5),

1997.

[MVW04] Pierre McKenzie, Heribert Vollmer, and Klaus W. Wagner. Arithmetic Cir-

cuits and Polynomial Replacement Systems. SIAM Journal on Computing,

33(6):1513–1531, 2004.

[NPT13] Tim Netzer, Daniel Plaumann, and Andreas Thom. Determinantal repre-

sentations and the Hermite matrix. The Michigan Mathematical Journal,

62(2):407–420, 2013.

162

[NS94] Noam Nisan and Mario Szegedy. On the Degree of Boolean Functions as

Real Polynomials. Computational Complexity, 4:301–313, 1994.

[NT12] Tim Netzer and Andreas Thom. Polynomials with and without determinantal

representations. Linear Algebra and its Applications, 437(7):1579 – 1595,

2012.

[O’D03] Ryan O’Donnell. Computational Applications of Noise Sensitivity. PhD

thesis, MIT, 2003.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University

Press, 2014.

[Oli15] Rafael Oliveira. Factors of Low Individual Degree Polynomials. In 30th

Conference on Computational Complexity, CCC 2015, Portland, Oregon,

USA, volume 33 of LIPIcs, pages 198–216, 2015.

[O’N71] Patrick E. O’Neil. Hyperplane Cuts of an n-Cube. Discrete Mathematics,

1(2):193 – 195, 1971.

[OT13] Ryan O’Donnell and Li-Yang Tan. A Composition Theorem for the Fourier

Entropy-Influence Conjecture. In Proceedings of Automata, Languages and

Programming - 40th International Colloquium, pages 780–791, 2013.

[OWZ11] Ryan O’Donnell, John Wright, and Yuan Zhou. The Fourier Entropy-

Influence Conjecture for certain classes of Boolean Functions. In Proceed-

ings of Automata, Languages and Programming - 38th International Collo-

quium, pages 330–341, 2011.

[Poi08] Bruno Poizat. À la recherche de la définition de la complexité d’espace pour

le calcul des polynômes à la manière de Valiant. Journal of Symbolic Logic,

73(4):1179–1201, 2008.

163

[Pol13] G. Polya. Aufgabe 424. Archiv der Mathematik und Physik (3), 20:271,

1913.

[PSV11] Daniel Plaumann, Bernd Sturmfels, and Cynthia Vinzant. Quartic curves and

their bitangents. Journal of Symbolic Computation, 46(6):712–733, 2011.

[Qua12] Ronan Quarez. Symmetric Determinantal Representation of Polynomials.

Linear Algebra and its Applications, 436(9):3642–3660, 2012.

[Raz85a] A. A. Razborov. Lower bounds on monotone complexity of the logical

Permanent. Mathematical notes of the Academy of Sciences of the USSR,

37(6):485–493, 1985.

[Raz85b] A. A. Razborov. Lower bounds on the monotone complexity of some

Boolean functions. Dokl. Akad. Nauk SSSR, 281(4):798–801, 1985.

[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of

Computing, 2(6):121–135, 2006.

[Raz10] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. The-

ory of Computing, 6:135–177, 2010.

[Rot14] Thomas Rothvoß. The Matching Polytope has exponential Extension Com-

plexity. In Symposium on Theory of Computing (STOC), 2014, pages 263–

272, 2014.

[Rus81] Lucio Russo. On the Critical Percolation Probabilities. Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 56(2):229–237, 1981.

[Sch81] Friedrich Schur. Ueber die durch collineare Grundgebilde erzeugten Curven

und flächen. Mathematische Annalen, 18(1):1–32, 1881.

[SS77] Eli Shamir and Marc Snir. Lower bounds on the number of multiplications

and the number of additions in the monotone computations. Technical Report

Technical Report IBM RC 6757, IBM, 1977.

164

[SS80] Eli Shamir and Marc Snir. On the Depth Complexity of Formulas. Mathe-

matical Systems Theory, 13(1):301–322, 1980.

[Str73] Volker Strassen. Vermeidung von Divisionen. Journal für die reine und

angewandte Mathematik, 264:184–202, 1973.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent

results and open questions. Foundations and Trends in Theoretical Computer

Science, 5(3-4):207–388, 2010.

[Sze13] G. Szegö. Losung zu 424. Archiv der Mathematik und Physik (3), 21:291–

292, 1913.

[Tod92] Seinosuke Toda. Classes of Arithmetic Circuits capturing the Complexity of

computing the Determinant. IEICE Transactions on Information and Sys-

tems, E75-D:116–124, 1992.

[TT94] Prasoon Tiwari and Martin Tompa. A Direct Version of Shamir and Snir’s

Lower Bounds on Monotone Circuit Depth. Information Processing Letters,

49(5):243–248, 1994.

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of

the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,

pages 249–261, 1979.

[Val82] Leslie G. Valiant. Reducibility by algebraic Projections. In Logic and Al-

gorithmic: International Symposium in honour of Ernst Specker, volume 30,

pages 365–380. Monograph. de l’Enseign. Math., 1982.

[Val92] Leslie G. Valiant. Why is Boolean Complexity Theory Difficult? In Proceed-

ings of the London Mathematical Society Symposium on Boolean Function

Complexity, pages 84–94, 1992.

165

[Ven92] H. Venkateswaran. Circuit Definitions of Nondeterministic Complexity

Classes. SIAM Journal on Computing, 21(4):655–670, 1992.

[Vin91] V. Vinay. Counting Auxiliary Pushdown Automata and Semi-Unbounded

Arithmetic Circuits. In Proceedings of the 6th Structure in Complexity The-

ory Conference, volume 223 of Lecture Notes in Computer Science, pages

270–284. Springer, 1991.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast

Parallel Computation of Polynomials Using Few Processors. SIAM Journal

on Computing, 12(4):641–644, 1983.

[VT89] H. Venkateswaran and Martin Tompa. A New Pebble Game that Character-

izes Parallel Complexity Classes. SIAM Journal on Computing, 18(3):533–

549, 1989.

[vzG87] Joachim von zur Gathen. Feasible arithmetic computations: Valiant’s hy-

pothesis. Journal of Symbolic Computation, 4(2):137–172, 1987.

[WWW14] Andrew Wan, John Wright, and Chenggang Wu. Decision Trees, Protocols

and the Entropy-Influence Conjecture. In Innovations in Theoretical Com-

puter Science, ITCS’14, pages 67–80, 2014.

166

	Synopsis
	List of Figures
	Introduction
	Algebraic Complexity Theory
	Analysis of Boolean functions
	Organisation of the thesis

	I Algebraic Complexity Theory
	Structure of algebraic complexity classes
	Introduction
	Preliminaries
	Reductions
	Computation with symmetric matrices
	Monotone projection and lower bounds
	Preliminaries
	The Clique polynomial
	Other polynomials

	Closure properties
	Conclusion

	Homomorphism polynomials and Arithmetic classes
	Introduction
	Preliminaries
	Upper Bounds
	Completeness : VP
	Homomorphism with weights
	The unweighted homomorphism polynomial

	Completeness : VBP
	Completeness : VNP
	Rigid and Incomparable graphs
	Conclusion

	Polynomials with intermediate complexity
	Introduction
	Preliminaries
	Intermediate polynomials
	Conclusion

	II Boolean Function Analysis
	Boolean function analysis
	Introduction
	Preliminaries
	Upper bounds via Complexity measures
	Polynomial Threshold functions
	Read-Once Formulas
	Real-valued functions
	Examples
	Conclusion

	Conclusion
	Bibliography

