
Some Geometrical and Vertex-Partitioning Techniques
for Graph Isomorphism

By
Gaurav Rattan

MATH10201005005

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

July, 2016

Homi Bhabha National Institute
Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation prepared
by Gaurav Rattan entitled “Some Geometrical and Vertex-Partitioning Techniques for
Graph Isomorphism” and recommend that it maybe accepted as fulfilling the dissertation
requirement for the Degree of Doctor of Philosophy.

Date:

Chair - Meena Mahajan

Date:

Guide/Convener - V. Arvind

Date:

Member 1 - Saket Saurabh

Date:

Member 2 - Venkatesh Raman

Date:

Examiner - Shashank K. Mehta

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: V. Arvind

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permisiion, provided

that accurate acknowledgement of source is made. Requests for permisiion for extended

quotation from or reproduction of this manuscriptin whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Gaurav Rattan

DECLARATION

I, hereby declare that the investigtion presented in the thesis has been carried out by me.

The work is original and has notbeen submitted eralier as a whole or in part for a degree /

diploma at this or any other Institution / University.

Gaurav Rattan

ACKNOWLEDGEMENTS

Firstly, I wish to thank my advisor V. Arvind for his constant encouragement and guid-

ance. I am always inspired by his passion and enthusiasm for research. He introduced me

to many exciting topics in mathematics and computation. Thanks to him, I have realized

the importance of clarity and coherence in my research and writing. I have been very

fortunate to be advised by him for the past five years.

I also wish to thank my collaborators for my formative research experiences. I would

like to sincerely thank Johannes Köbler for hosting my stays at the Humboldt University,

Berlin. I enjoyed many interesting discussions with him regarding the Graph Isomorphism

problem. I would also like to thank Oleg Verbitsky, Sebastian Kuhnert, Pushkar Joglekar,

Yadu Vasudev and Frank Fuhlbrück for our successful collaborative efforts.

I would like to thank the CS group at IMSc for creating a wonderful learning environment.

I sincerely thank the faculty members for their patience and encouragement during my

coursework. The group seminars and discussions opened up a lot of new directions in

research. I would also like to thank the administrative staff at IMSc for their unrelenting

support.

Thanks to my friends and colleagues, my stay at IMSc was truly memorable. Thanks

to them, I re-discovered the joys of outdoors and cuisine. The cheerful presence of my

friends has been a constant source of happiness and satisfaction.

Finally, I wish to thank my parents and my sister Anisha for their unwavering support and

presence. They always give me the courage and freedom to pursue my dreams and goals.

Contents

Synopsis v

List of Figures vii

1 Introduction 1

1.1 Thesis Outline . 6

1.2 Results and Thesis Organization . 8

1.2.1 Geometric Graph Isomorphism 8

1.2.2 Geometric Graph Canonization 9

1.2.3 On the Power of Color Refinement 10

1.2.4 On Tinhofer’s LP Approach to GI 12

2 Geometric Graph Isomorphism 15

2.1 Preliminaries . 16

2.1.1 Linear Algebra . 16

2.1.2 Integer Lattices . 19

2.2 XP algorithm for GEOM-GI . 20

i

2.3 Lattice-based FPT algorithm for GEOM-GI 26

2.4 Discussion . 30

3 Geometric Graph Canonization 33

3.1 Preliminaries . 34

3.2 FPT algorithm for GEOM-GC . 35

3.2.1 Proof of Theorem 18 . 37

3.3 Geometric Isomorphism in other lp metrics 40

3.4 Discussion . 44

4 The Power of Color-Refinement 47

4.1 Preliminaries . 49

4.2 Local Structure of Amenable Graphs . 52

4.3 Global Structure of Amenable Graphs 55

4.4 Proof of Theorem 20 . 60

4.5 Examples and Applications . 64

5 The Power of LP Approach to Graph Isomorphism 69

5.1 Preliminaries . 72

5.2 Proof of Theorem 23 . 75

5.3 A Color-Refinement Based Hierarchy of Graphs 81

5.3.1 Johnson Graph J(n, 2) is Tinhofer 83

5.3.2 The Petersen Graph is in Godsil 87

ii

5.4 P-Hardness Results . 95

5.5 Discussion . 97

Bibliography 99

iii

iv

Synopsis

The Graph Isomorphism Problem consists of the following natural question: given two

graphs, are they isomorphic? In other words, does there exist an adjacency-preserving

bijection between the vertex sets of the two graphs? A multitude of theoretical ideas

and techniques have found application to the Graph Isomorphism Problem. Many of

these seemingly disparate techniques have been found to be connected with each other in

interesting ways, and often equivalent in their power and scope. These techniques include

group theory, descriptive complexity, convex optimization and geometry. In this thesis,

we explore some non-group-theoretic approaches to Graph Isomorphism. We evaluate the

power and limitations of these approaches towards isomorphism testing.

Given two sets A and B of n points in a k-dimensional Euclidean space, does there exist a

distance-preserving bijection between them? Formally called Geometric Graph Isomor-

phism (GEOM-GI), this problem is a geometric analogue of Graph Isomorphism (GI). In

our study, we consider point-sets with rational entries. Using techniques from geome-

try and lattices, we obtain a Õ(2O(k2)) time FPT algorithm for this problem (the Õ notation

hides factors which are polynomial in input size). Here, the dimension k of the underlying

space is the parameter of interest.

We then consider the problem of computing canonical forms for geometric point-sets in

Qk. We obtain a Õ(kO(k)) time procedure for geometric graph canonization. The canon-

ization procedure immediately implies a faster Õ(kO(k)) running time FPT algorithm for

GEOM-GI. We also briefly consider the isomorphism problem for other lp metrics (the

case p = 2 is Euclidean).

The one-dimensional version of the Weisfeiler-Leman algorithm is commonly known as

Color-Refinement, or naive vertex-classification. Color-Refinement is a classical proce-

dure used to distinguish non-isomorphic graphs. Although it works incorrectly on certain

v

input instances, it works well in practice. This motivates the following natural question:

what is the exact scope of applicability of color-refinement? We call a graph G amenable

if color-refinement successfully distinguishes G from any other non-isomorphic graph

H. Therefore, the graph class Amenable represents the limits of applicability of color-

refinement. In our work, we give a structural characterization for this class. Consequently,

we obtain a polynomial time algorithm for testing whether a given graph is amenable. In

fact, we show that this problem is complete for the complexity class P, under logspace

reductions.

Continuing this theme, we examine the power and limitations of convex optimization

techniques for GI. In this context, there exists a very natural class of graphs called compact

graphs. The compactness property is based on the properties of the convex polytope

arising from Tinhofer’s linear program. The isomorphism problem for compact graphs

can be efficiently solved using linear programming methods. Therefore, compact graphs

represent the limits of applicability of Tinhofer’s LP approach to GI. In this context, we

revisit the following question: can we give a characterization for the class of compact

graphs? In our work, we show that the class of compact graphs contains the class of

amenable graphs. In other words, the range of applicability of Tinhofer’s LP approach is

at least as large as color-refinement. Exploring this connection further, we study a strict

hierarchy of graph classes based on structural, group-theoretic and algorithmic properties

of graphs with respect to isomorphism testing.

vi

List of Figures

2.1 Algorithm 2.2 . 26

2.2 Algorithm 2.3 . 28

3.1 Algorithm 3.2.1 . 38

3.2 Algorithm 3.3 . 42

4.1 Conditions (C)-(F) on the cells (homogeneous and heterogeneous)

and the anisotropic edges . 56

4.2 Conducting and non-conducting anisotropic paths 57

5.1 The CFI(Pi, P j, Pk)- and Imp(Pi, Pk)-gadgets and a graph G separating

Refinable from Tinhofer . 84

5.2 The case δ = 2. 91

5.3 The case δ = 1. 92

vii

viii

Chapter 1

Introduction

The Graph Isomorphism Problem consists of the following natural question: given two

graphs, are they isomorphic? In other words, does there exist an adjacency-preserving

bijection between the vertex sets of the two graphs? Apart from being a fundamental

algorithmic question of interest, this problem possesses a unique status in the world of

computational complexity in the following sense. The problem has resisted attempts to

show that it is polynomial-time solvable, yet there is substantial evidence that this problem

is not NP-complete. The other notable feature of this problem is the diverse range of

theoretical perspectives which have been found to be useful. In the remainder of this

section, we will briefly overview these approaches and their remarkable connections. This

overview will establish the setting for describing the main results of this thesis.

Let X = (V, E) be a simple undirected graph on a vertex set V of size n. The set of all auto-

morphisms of X forms a group, denoted by Aut(X). We can view Aut(X) as a permutation

group acting on the vertex set V . For computational purposes, a permutation group is

usually represented by a generating set. In particular, a permutation group acting on a set

of size n can always be represented by a generating set of size at most n2. The framework

of computational group theory addresses various algorithmic questions regarding permu-

tation groups (see e.g. [29] for a comprehensive treatment). Indeed, this framework turns

1

out to be very useful for graph isomorphism due to the following fact. Given a graph X,

let Graph-Aut denote the problem of computing a generating set for Aut(X).

Theorem 1. The search problem Graph-Aut is polynomial-time equivalent to the Graph

Isomorphism problem.

The first successful application of this framework was the polynomial-time algorithm

for testing isomorphism of bounded color-class-size graphs, due to Babai [8]. A break-

through result in this direction was the polynomial-time algorithm for testing isomor-

phism of bounded degree graphs, due to Luks [24]. For graphs of degree at most d, this

algorithm runs in time nO(d) and heavily relies on permutation group-theoretic machinery.

Augmented by a combinatorial partitioning technique of Zemlyachenko (e.g. [35]), this

algorithm yielded a exp(
√

n log n) running-time procedure for Graph Isomorphism. Re-

cently, in Nov. 2015, Babai gave a breakthrough exp((log n)O(1)) running-time algorithm

for general Graph Isomorphism.

Theorem 2 ([7], Corollary 1.1.2). The Graph Isomorphism Problem can be solved in

quasipolynomial time.

This algorithm builds on the previous work, using new combinatorial partitioning and

group-theoretic tools to achieve the improved time complexity. Currently, group iso-

morphism presents the next barrier to an improved algorithm for Graph Isomorphism:

although a nO(log n) running-time algorithm exists for this problem, any substantial im-

provements (in the exponent) have remained elusive over the decades.

On the other hand, it is natural to ask whether there exists a simple combinatorial algo-

rithm for this problem, which avoids the sophisticated group-theoretic machinery. The

k-dimensional Weisfeiler-Leman procedure, denoted by k-WL, is one of the earliest at-

tempts in this direction. The initial objective behind this procedure was to associate a

unique object with a graph, called a cellular algebra (the survey [34] contains a compre-

hensive treatment). The one-dimensional version of this procedure is commonly known

2

as color-refinement (cr). Given a graph G, CR iteratively colors the vertices as follows.

Initial Step: Every vertex u gets the same color: C0(u) := 1.

Iterative Step: Let u and v be vertices of the same color. If u and v have a different

number of neighbors of some color, then give different colors to u and v:

Ci+1(u) =
(
Ci(u),

{{
Ci(a) : a ∈ N(u)

}})
.

After each round, sort the colors and replace them by integers.

Termination: If no color class gets further refined, the procedure stops and outputs

the coloring.

Color-refinement is a classical tool, used for distinguishing non-isomorphic graphs. Al-

though it fails on certain input instances, it works very well in practice [9]. When color-

refinement (k-WL) fails to distinguish two graphs, we call them 1-WL-indistinguishable

(k-WL-indistinguishable).

The Weisfeiler-Leman procedure assumed a greater theoretical significance due to the

seminal work of Immerman and Lander [21]. They used the descriptive complexity

paradigm to study the isomorphism and canonization problem for graphs. The usual

first-order language of graph theory is built up from the variables x1, x2, . . . , the rela-

tions symbols E and =, the logical connectives ∧,∨,∼, and the quantifiers, ∀ and ∃. In

their paper, they proposed two modifications to this language. First, we are allowed to

use only a bounded number of variables, say k. Secondly, we add the ability to count

using counting quantifiers of the form (∃ix). For example, the meaning of ∃5x ϕ(x) is:

there exist at least 5 vertices in the graph which satisfy ϕ(x). We use Ck to denote the

new language obtained in this fashion. In general, two graphs G and H are said to be Ck-

equivalent if they agree on the same set of sentences in Ck. In this context, the following

theorem of Immerman and Lander connects the k-WL procedure and the Ck language.

3

Theorem 3 ([21], restated). Two graphs G and H are k-WL-indistinguishable if and only

if they are Ck+1-equivalent.

Indeed, it was conjectured that k-WL method with a slowly growing value of k (e.g.

k = O(log n) or even k = O(1)) would solve the Graph Isomorphism problem. However,

this conjecture was disproved in a paper of Cai, Furer and Immerman [13].

Theorem 4 ([13], restated). There exists a sequence of pairs of graphs {Gn,Hn}, n ∈ N

on O(n) vertices such that Gn and Hn are non-isomorphic, but Cn-equivalent.

Nevertheless, the k-WL method has been shown to efficiently solve Graph Isomorphism

for many interesting graph classes (e.g. planar graphs [16], graphs of bounded genus [18]

and graphs with excluded minors [17]).

Convex optimization is a fundamental tool for designing new algorithms for hard prob-

lems. In a very interesting paper [32], Tinhofer developed this approach by proposing

an integer linear program for GI. The integral solutions to this program are permutation

matrices, corresponding to isomorphisms between graphs. The fractional solutions to this

linear program are doubly-stochastic matrices, and are called fractional isomorphisms.

We call two graphs to be fractionally isomorphic if there exists a fractional isomorphism

between them. A surprising result of Ramana, Scheinerman and Ullman showed the fol-

lowing connection between color-refinement and linear programming.

Theorem 5 ([28], restated). Two graphs are fractionally isomorphic if and only if they

are 1-WL-indistinguishable.

Therefore, Tinhofer’s convex optimization approach is equivalent to the color-refinement

approach. It is natural to ask whether we can strengthen Tinhofer’s linear program-

ming framework for isomorphism testing. A systematic method for adding additional

constraints to a linear program is the standard ‘lift-and-project’ LP hierarchies, such as

Lovasz-Schrijver hierarchy [23] and the Sherali-Adams LP relaxation hierarchy [30]. In

4

particular, Asterias and Maneva studied the Sherali-Adams relaxation hierarchy for Tin-

hofer’s linear program [6]. They showed that the levels of Sherali-Adams hierarchy inter-

leave in power with the levels (i.e. dimensions) of Weisfeiler-Leman algorithm.

Nevertheless, it remains an interesting research direction to further develop the convex

optimization approach to Graph Isomorphism. The possibility of obtaining a non-group

theoretic algorithm for Graph Isomorphism, which is better than the trivial n!, perhaps

lies there.

Another non-group-theoretic approach to Graph Isomorphism which has proved to be

useful is to analyze the spectrum of the adjacency matrices of graphs. An important

parameter of interest is the eigenvalue multiplicity of a graph, defined as the maximum

dimension of an eigenspace of its adjacency matrix. Babai, Grigoriev and Mount [10]

showed a polynomial-time algorithm for isomorphism testing of graphs with bounded

eigenvalue multiplicity. Their algorithm runs in time O(nO(b)) where b is the bound on

the eigenvalue multiplicity. Subsequently, Evdokimov and Ponomarenko [15] presented a

FPT algorithm for this problem, where b is the parameter of interest. The algorithm runs

in time Õ(bO(b)) (where Õ hides factors polynomial in input size).

Roughly, the idea behind these algorithms is to project the problem onto each eigenspace,

solve for each eigenspace independently, and finally merge the partial solutions to ob-

tain a valid isomorphism. The sub-problem obtained for an eigenspace turns out to be

an instance of an isomorphism problem, known as the Geometric Graph Isomorphism

(GEOM-GI). A geometric analogue of GI, this problem asks whether there is a distance-

preserving bijection between two sets of points in a Euclidean vector-space. The dimen-

sion k of the underlying space is an important parameter of interest. Evdokimov and

Ponomarenko have shown a Õ(2O(k4)) running time FPT algorithm for this problem [14].

In general, the spectral and geometric methods constitute a promising set of tools for

studying Graph Isomorphism.

The structural complexity of Graph Isomorphism has been a subject of active research,

5

considering its unique complexity-theoretic status. In particular, it is known to be in

the complexity class co-AM, a randomized analogue of co-NP. As a consequence, GI is

unlikely to be NP-hard, as evident from the following theorem.

Theorem 6 ([11], restated). GI is not NP-complete, unless the polynomial hierarchy col-

lapses to its second level.

Hence, there is reasonable complexity-theoretic evidence that GI is not NP-complete.

This belief was further strengthened using the counting properties of Graph Isomorphism,

in a series of work culminating in [5]. The reader is refered to the survey of Köbler et

al. [22] for a concise exposition of the research in this direction. On the other end, the

P-hardness of GI remains open. Currently, the best known hardness result for GI is due

to Toran [33]: GI is hard under AC0 many-one reductions for the complexity class NL,

logspace counting classes ModkL for all k ≥ 2, and the class DET of problems NC0

reducible to the determinant.

Summarizing, a multitude of theoretical ideas and techniques have found application to

the Graph Isomorphism Problem. Many of these seemingly disparate techniques have

been found to be connected with each other in interesting ways, and often equivalent in

their power and scope. In the next two sections, we describe the contents of this thesis

and their relevance to these results.

1.1 Thesis Outline

In this thesis, we explore some non-group-theoretic approaches to Graph Isomorphism.

Our objective will be to evaluate the power and limitations of these approaches towards

isomorphism testing. In this section, we briefly introduce the main results of the thesis. In

the next section, we elaborate on these results and describe the organization of the thesis

in detail.

6

Given two sets A and B of n points in a k-dimensional Euclidean space, does there exist a

distance-preserving bijection between them? Formally called Geometric Graph Isomor-

phism (GEOM-GI), this problem is a geometric analogue of GI. In our study, we consider

point-sets with rational entries. Using techniques from geometry and lattices, we obtain

a Õ(2O(k4)) time FPT algorithm for this problem. Here, the dimension k of the underlying

space is the parameter of interest.

We then consider the problem of computing canonical forms for geometric point-sets in

Qk. We obtain a Õ(kO(k)) time procedure for geometric graph canonization. The canon-

ization procedure immediately implies a faster Õ(kO(k)) running time FPT algorithm for

GEOM-GI. We also briefly consider the isomorphism problem for other lp metrics (the

case p = 2 is Euclidean).

The one-dimensional version of the Weisfeiler-Leman algorithm is commonly known as

Color-Refinement, or naive vertex-classification. Color-Refinement is a classical proce-

dure used to distinguish non-isomorphic graphs. Although it works incorrectly on certain

input instances, it works well in practice. This motivates the following natural question:

what is the exact scope of applicability of color-refinement? We call a graph G amenable

if color-refinement successfully distinguishes G from any other non-isomorphic graph

H. Therefore, the graph class Amenable represents the limits of applicability of color-

refinement. In our work, we give a structural characterization for this class. Consequently,

we obtain a polynomial time algorithm for testing whether a given graph is amenable. We

also show a matching P-hardness for amenability testing.

Continuing this theme, we examine the power and limitations of convex optimization

techniques for GI. In this context, Tinhofer [31] defined a very natural class of graphs

called compact graphs. The compactness property is based on the properties of the convex

polytope arising from Tinhofer’s linear program. The isomorphism problem for compact

graphs can be efficiently solved using linear programming methods. Therefore, com-

pact graphs represent the limits of applicability of Tinhofer’s LP approach to GI. In this

7

context, we revisit the following question: can we give a characterization for the class of

compact graphs? In our work, we show that the class of compact graphs contains the class

of amenable graphs. In other words, the range of applicability of Tinhofer’s LP approach

is at least as large as color-refinement. Exploring this connection further, we study a strict

hierarchy of graph classes based on structural, group-theoretic and algorithmic properties

of graphs with respect to isomorphism testing.

1.2 Results and Thesis Organization

In this section, we describe the main results of each of the chapters of the thesis in detail.

The technical contents of the thesis are organized in the following four chapters.

1.2.1 Geometric Graph Isomorphism

In general, the isomorphism problem has been studied for a variety of discrete mathemat-

ical structures other than graphs, e.g. groups [26], semigroups [12], rings [12], lattices

[20] etc. The particular structure of these objects can either yield faster algorithms for

isomorphism testing, or could be sufficient to encode Graph Isomorphism already.

Given two point-sets A and B of size n in a k-dimensional Euclidean space, does there

exist a distance-preserving bijection between them? This problem is formally known

as the Geometric Graph Isomorphism (GEOM-GI) problem. This problem is, in fact,

computationally equivalent to GI for unbounded k. Indeed, it is possible to encode a

graph with n vertices and m edges as a set of n + m points in Rn with the following

property. Two graphs G and H are isomorphic if and only if the corresponding point-sets

are geometrically isomorphic.

Since the problem is GI-hard in the regime k = O(n), it is interesting to ask whether

there are efficient algorithms for this problem when the dimension k of the underlying

8

space is small. Indeed, for bounded dimension, there is a straight-forward polynomial-

time algorithm for this problem. The algorithm runs in time nO(k) and its correctness can

be proved using elementary linear algebra. Therefore, we can ask: is there a fast fixed-

parameter tractable algorithm for this problem, with the dimension k as a parameter?

Indeed, the problem is known to be fixed-parameter tractable with the dimension k as a

parameter [14]. Given two point sets with real coordinates, the FPT algorithm runs in

time Õ(2O(k4)), where Õ notation hides factors which are polynomial in the input size.

In our work, we consider point-sets with rational coordinates. We show a faster FPT

algorithm for GEOM-GI, where the dimension k of the underlying space is the parameter.

Formally, we show the following

Theorem 7. There is a deterministic algorithm for GEOM-GI which runs in time 2O(k2).

Here, the Õ notation hides factors which are polynomial in the input size.

The proof of the main theorem has three main ingredients. First, we show that any

distance-preserving bijection naturally extends to a linear isometry of the underlying

space. Second, we appeal to the lattices generated by the two point-sets and compute

the set of shortest vectors for each point-set. Since the dimension of the underlying space

is bounded, these sets must be small. Finally, we reconstruct the linear isometry, and

hence the distance-preserving bijection, using these shortest vector sets. Putting these

three steps together, we obtain our FPT algorithm. The results of this chapter are reported

in [1].

1.2.2 Geometric Graph Canonization

Continuing our study of geometrical point-sets, we consider the problem of computing

canonical forms for point-sets. I.e., given a point-set A, the algorithm should compute

a point-set f (A) with the following properties: (a) f (A) is isomorphic to A, and (b) if a

point set B is isomorphic to A, then f (B) = f (A).

9

We obtain a fast canonization procedure for point-sets, which runs in time Õ(kO(k)). As a

consequence, the GEOM-GI problem for point sets in Qk has a deterministic Õ(kO(k)) time

algorithm.

Theorem 8 ([1]). Given a finite point set A ⊂ Qk of size n as input, there is a deterministic

Õ(kO(k)) time algorithm that computes a canonizing function f (A).

Our procedure is similar to the FPT algorithm of the previous section. To obtain a faster

running time of Õ(kO(k)), the procedure uses a recent result of [20] regarding shortest

vector sets in integer lattices.

We also briefly study the isomorphism problem for non-Euclidean metrics. This case is

considerably harder because of the lack of linear-algebraic structure present in the Eu-

clidean case. Even a nO(k)-time algorithm for this case is not clear for a general lp metric,

p , 2. However, we show a polynomial time algorithm for the two-dimensional case

using color-refinement and geometrical considerations.

Theorem 9 ([1]). Given point-sets A and B in Q2 as input, for any lp metric, there is a

deterministic polynomial-time algorithm for checking whether A and B are isomorphic.

The results of this chapter are reported in [1].

1.2.3 On the Power of Color Refinement

The well-known color-refinement procedure underlies a simple yet fundamental approach

to the problem of distinguisuhing two non-isomorphic graphs. Given a graph G, this

procedure computes a colored partition of the vertex-set as follows. Initially, we assign a

uniform color to every vertex of G. Iteratively, we classify the vertices according to their

degrees into each color-class. Finally, we terminate the procedure if the vertex coloring

cannot be refined further. Since this procedure can run for at most n steps, it terminates

in a finite number of steps. The resulting partition of the vertex-set is known as the stable

10

color partition of the graph. Each color-class in the stable color partition is called a cell

of the graph. A graph is called discrete if the stable color partition consists of singleton

cells.

This procedure can be used to create a simple isomorphism test as follows. Given graphs

G and H, we run color-refinement on their disjoint union G ∪ H. We declare G and H

to be isomorphic if they contribute the same number of vertices to each cell of G ∪ H.

Otherwise, we declare them to be non-isomorphic.

In general, this algorithm can be incorrect on certain pairs of graphs. The standard ex-

ample is that of a pair of regular non-isomorphic graphs of same degree. But in practice,

this algorithm is correct for almost all graphs [9]. We call a graph amenable if color-

refinement correctly distinguishes it from any other non-isomorphic graph. This leads

us to a natural question: can we characterize amenable graphs? Such a characterization

would establish the exact scope of the applicability of color-refinement. Computation-

ally, we ask for an efficient algorithm for the following problem. Given a graph G, is G

amenable?

In our work, we give a polynomial time algorithm for testing whether a graph is amenable.

The algorithm is based on our structural characterization for the class Amenable. In fact,

we show the following result.

Theorem 10 ([3]). The class of amenable graphs is recognizable in time O((n+m) log n),

where n and m denote the number of vertices and edges of the input graph.

We also show P-hardness for this problem. This establishes a complete complexity clas-

sification for the problem of amenability recognition. As noted in the introduction, a

graph is amenable if and only if it is definable in the counting logic C2. As an immediate

corollary of our result, the problem of recognizing graphs which are definable in C2 is

P-complete. As an application, we give an alternative proof for the amenability of trees

and forests.

11

Our characterization is based on the analysis of the stable color partition of the graph. We

propose a series of necessary conditions on the cells of an amenable graph, which are of

two types. The local conditions specify the kind of graphs which can be induced on each

cell, and between a pair of cells. The global conditions, roughly speaking, forbid connec-

tions among a set of cells. Together, these conditions imply a ‘tree-like’ decomposition

for an amenable graph. We then show that these conditions are also sufficient, which gives

us the desired characterization. We show that these conditions can be efficiently checked,

which shows the P-membership of the amenability recognition problem. The results of

this chapter are reported in [3].

1.2.4 On Tinhofer’s LP Approach to GI

It is possible to formulate Graph Isomorphism as an integer linear program (ILP) using

the following observation [32]. If two graphs G and H are isomorphic via a permutation

π, then the respective adjacency matrices A and B must satisfy the linear equations AX =

XB. Here, X is the permutation matrix corresponding to the permutation π. Since a

permutation matrix can be characterized as a 0-1 matrix with every row-sum and column-

sum equal to 1, we immediately obtain an integer linear program for GI.

The linear programming relaxation relaxes the condition Xi j ∈ {0, 1} to Xi j ∈ [0, 1]. A

feasible solution to the relaxed LP is called a fractional isomorphism between G and H.

In the special case G = H, it is called a fractional automorphism. It is easy to check

that a feasible solution to the LP is indeed a doubly-stochastic matrix. As mentioned

in the introduction, we have the following remarkable theorem [28]: two graphs have a

fractional isomorphism if and only if they are indistinguishable by color-refinement.

In this context, Tinhofer defined an interesting class of graphs as follows. Call a graph

G compact if the convex polytope of fractional automorphisms of G has only integral

extreme points [31]. In other words, every fractional automorphism is a convex combi-

12

nation of the automorphisms. Given a compact graph G and a graph H, it is possible

to efficiently decide whether they are isomorphic using Tinhofer’s linear program. Since

compact graphs represent the known limits of Tinhofer’s LP approach, it is natural to ask

whether we can characterize and recognize compact graphs.

In our main theorem, we show that the class of compact graphs strictly contains the class

of amenable graphs. Therefore, the applicability of Tinhofer’s LP approach is at least as

large as that of color-refinement.

Theorem 11 ([4]). All amenable graphs are compact.

In general, Tinhofer’s approach is strictly more powerful than color refinement because it

is known that the class of compact graphs contains many regular graphs (for example, all

cycles [32]) which are not amenable.

We look at the relationship between the concepts of compactness and color refinement

also from the other side. Let us call a graph G refinable if the color partition produced

by color refinement coincides with the orbit partition of the automorphism group of G.

It is known that compact graphs are refinable [32]. Taking a finer look at the inclusion

Compact ⊂ Refinable, we discuss algorithmic and algebraic graph properties that were

introduced by Tinhofer [31] and Godsil [19]. We note that, along with the other graph

classes under consideration, the corresponding classes Tinhofer and Godsil form a hier-

archy under inclusion:

Discrete ⊂ Amenable ⊂ Compact ⊂ Godsil ⊂ Tinhofer ⊂ Refinable.

We also show the following results on these graph classes.

Theorem 12 ([4]). The above hierarchy is strict. Moreover, testing membership in any of

these graph classes is P-hard.

The results in this section are reported in [4].

13

14

Chapter 2

Geometric Graph Isomorphism

Given two finite n-point sets A and B in a metric space (X, d), we say A and B are iso-

morphic if there is a distance-preserving bijection between A and B. The Geometric

Graph Isomorphism problem for this metric space is to decide if A and B are isomorphic.

A well-studied version of this general problem is the standard k-dimensional euclidean

space (Rk, l2) equipped with the l2 metric, where R denotes the set of real numbers. We

denote this version of the problem by GEOM-GI. This problem is also known as the Point

Set Congruence problem in the computational geometry literature [37, 38, 39]. It is called

“Geometric Graph Isomorphism” by Evdokimov and Ponomarenko in [36], which we find

more suitable as the problem is closely related to Graph Isomorphism.

When k is constant, there is an easy polynomial-time algorithm for the problem [39].

When k = n, Papadimitriou and Safra [40] note that the problem is polynomial-time

equivalent to the standard Graph Isomorphism problem. The interesting case is when

the dimension k is much smaller than n. In the computational geometry literature, a

randomized algorithm running in time O(n
k−1

2 ·log n) was given in [37]. This was improved

to an O(nd
k
3 e · log n) algorithm in [38]. We note that both these results are for a random

access model of computation, used in computational geometry, which allows for arbitrary

precision real arithmetic.

15

For point sets A, B with real coordinates, when the dimension k treated as a fixed parame-

ter, an FPT algorithm for the GEOM-GI problem, running in time (2k4
nM)O(1), was given

by Evdokimov and Ponomarenko [36], where M upper bounds the binary encodings of

the rational numbers in the input point sets. Their algorithm uses concepts from cellular

algebras and is technically nontrivial.

Our Results

In this chapter, we describe an FPT algorithm for GEOM-GI, when the input point sets

have rational co-ordinates. Here, the parameter of interest is the dimension k of the

underlying space. Our algorithm follows a novel approach using integer lattices for this

problem. In Section 2.1, we introduce necessary definitions and some well-known results

to set the context for presenting our results. In Section 2.2, we describe a XP algorithm

for this problem. Here, XP denotes the class of parameterized problems that can be solved

in time n f (k) for some computable function f . This simple algorithm serves as a template

for faster algorithms. In Section 2.3, we describe our FPT algorithm for this problem.

Theorem 16 is the main result of this chapter. The algorithm uses ideas from geometry and

lattices to obtain a better running time complexity. We conclude with a brief discussion

in Section 2.4.

2.1 Preliminaries

2.1.1 Linear Algebra

We assume familiarity with the basic notions of vector spaces, linear transformations and

matrices. We recall some important concepts from linear algebra. Every vector space

contains the zero vector, denoted by 0. A set of vectors {u1, . . . , un} is linearly dependent

if there exist corresponding scalars α1, . . . , αn, not all of them zero, such that the linear

16

combination
n∑

i=1

αixi = 0.

Otherwise, the set is linearly independent. Given a set of vectors S , the vector space

spanned by the set S , denoted by Span(S), is the set of all linear combinations of vectors

in S . If the field of scalars associated with the vector space is F, it is also called the

F-linear span of S . A vector space V is spanned by a set S of vectors if V = Span(S).

A basis of a vector space V is a linearly independent set of vectors which spans V . The

dimension of a vector space is the cardinality of a basis of a vector space. A subspace of a

vector space is a subset which is closed under vector space operations. A linear functional

` on a vector space V over a field F is a function from V to F which respects linearity. I.e.,

for any vectors u, v ∈ V and scalars α, β ∈ F,

`(αu + βv) = α`(u) + β`(v).

The set of all linear functionals on a vector space V is itself a vector space over F, and is

called the dual space of V . We denote the dual space of V by V ′.

The external direct sum of two vector spaces U and V , denoted by U ⊕ V , is the set

U × V where the vector space operations are defined in a component-wise manner. Given

a vector space W with subspaces U and V , we call W to be the internal direct sum of U

and V if U ∩ V = {0̄} and U ∪ V spans W. These definitions are known to be equivalent

by the following well-known characterization.

Theorem 13. The following are equivalent.

• W is the external direct sum of U and V.

• W is the internal direct sum of U and V.

• Every vector w ∈ W can be uniquely decomposed as a sum w = u + v where u ∈ U

and v ∈ V.

17

Given a subspace U of a vector space W, there exists a subspace Ũ such that W = U ⊕ Ũ.

The above theorem ensures that every vector w ∈ W can be uniquely decomposed as u + ũ

where u ∈ U and ũ ∈ Ũ. Given a vector w ∈ W, the vector u is the projection of w onto

the subspace U, denoted by pr(w,U).

We now turn our attention to the special case of real vector spaces. The dot product of

two vectors u and v in Rk is defined to be

u · v =

k∑
i=0

uivi.

Two vectors are said to be orthogonal if u · v = 0. The Euclidean norm of a vector v,

denoted by ‖v‖, is
√

v · v. The distance between two vectors u and v is ‖u − v‖.

In general, for p ≥ 1, the p-norm of a vector x = (x1, . . . , xk) is ‖x‖p = (|x1|
p+· · ·+|xk|

p)1/p,

and the∞-norm ‖x‖∞ is max {|x1|, . . . , |xk|}. The Euclidean norm is the 2-norm.

Given real vector spaces U,V , a linear isometry is a bijective linear map T : U 7→ W

which is distance-preserving. I.e., ‖u − v‖ = ‖T (u) − T (v)‖ for every u, v ∈ U.

We focus our attention to the k-dimensional rational vector space, denoted by Qk. Given a

vector v ∈ Qk and a basis J = {u1, . . . , ul} of a l-dimensional subspace U, we can compute

the projection Pr(v,U) as follows. Let the projection Pr(v,U) be a linear combination

α1u1+· · ·+αlul for some unknown coefficients α1, . . . , αl ∈ Q. Observe that (v−Pr(v,U))·

u j is zero for all u j ∈ J. Simplifying, we obtain a linear equation α1u1 · u j + α2u2 · u j +

· · · + αlul · u j = v · u j for every u j ∈ J. Using matrix notation, we can rewrite this system

as Gx = c where G is a l × l matrix with entries Gi j = ui · u j, x is a l-dimensional vector

of unknowns [α1 . . . αl]T and c is a l-dimensional vector [v · u1 . . . v · ul]T . Solving this

system of linear equations, we obtain the coefficients α1, . . . , αl and hence, the projection

Pr(v,U). We summarize the above discussion as the following claim.

Claim 1. Given a vector v ∈ Qk and a basis J = {u1, . . . , ul} of a l-dimensional subspace

U, let the projection Pr(v,U) be the linear combination α1u1 + · · ·+αlul. Then, the vector

18

x = [α1 . . . αl]T can be obtained as the solution to the system of linear equations of the

form Gx = c as defined above.

2.1.2 Integer Lattices

We now recall some definitions and properties of integer lattices [45]. Given a set of

vectors B = {b1, . . . , bm}, an integer linear combination of B is a vector of the form α1b1 +

· · · + αmbm for some α1, . . . , αm ∈ Z.

Definition 1 (Integer Lattices). A lattice is a discrete additive subgroup of Rn. I.e., it is a

set L with the following two properties.

• L is closed under addition and subtraction

• L is discrete, i.e. there exists an ε > 0 such that any two lattice points x, y are at

distance at least ε from each other.

An equivalent definition of a lattice is the following.

Definition 2 (Integer Lattices). Let B be a set of k linearly independent vectors in Rn. The

lattice generated by set B, denoted by LB, is the set of all integer linear combinations of

B. The number n is called the dimension of the lattice.

Examples of lattices include (a) Zn and (b) set of all integer linear combinations of a set

B of vectors in Qk. In general, if a set B is linearly dependent and has irrational entries,

it is possible that the set of all integer linear combinations of B may not form a discrete

lattice. For example, the set {1,
√

2} does not generate a lattice for the following reason.

For every ε > 0, we can find integers l,m such that |l +
√

2m| ≤ ε. The existence of such

integers can be deduced from the fact that there exists a sufficiently large n for which the

number (
√

2 − 1)n < ε.

19

Regarding the vector set B, we will assume that the vectors bi have rational entries with

standard binary encodings (bounded by M). Then, we can compute a linearly independent

basis of r ≤ k vectors for the lattice in time polynomial in k,M and m [45]. The number r

is the rank of the lattice LB.

A fundamental quantity for a lattice L is the length λ1(L) of a shortest vector in it. Com-

puting shortest vectors in lattices is an important algorithmic problem known to be NP-

hard. There are several algorithms for exactly computing shortest vectors and for approx-

imating them in the literature [45]. We recall an important and relatively recent result

due to Micciancio and Voulgaris [41] for enumerating all the shortest vectors in a given

lattice.

Theorem 14 ([41], Corollary 5.8). There is a deterministic algorithm that takes as input

a basis of some lattice Λ ⊂ Qk, a target vector t ∈ Qk, and an integer p ≥ 2, and in time

Õ((4p)k) · poly(M) it outputs all vectors in Λ within distance pλ1(Λ) from t. (The Õ(·)

notation suppresses polylogarithmic factors). Here, M is the bound on the representation

size of the input vectors.

An immediate corollary of the above theorem is the following result.

Corollary 1. There is a deterministic algorithm that takes as input a basis of some lattice

Λ ⊂ Qk, and in time Õ(4k) · poly(M), it outputs all shortest vectors in Λ.

We also recall a well-known bound on the number of short vectors in a lattice (see [41]).

Lemma 1. In a lattice L of rank k, the number of vectors of length at most pλ1(L) is

bounded by (2p + 1)k.

2.2 XP algorithm for GEOM-GI

In this section, we describe an XP algorithm for GEOM-GI, parameterized by dimension

k. This algorithm will serve as a template for faster GEOM-GI algorithms, which run in

20

FPT time.

We first define the problem GEOM-GI. Given two point sets A and B of size n in Qk, does

there exist a bijection π : A → B such that for all x, y ∈ A, ‖x − y‖ = ‖π(x) − π(y)‖? We

study the fixed-parameter tractability of this problem and prove the following

Theorem 15. There is an XP algorithm for GEOM-GI, parameterized by dimension k,

which runs in time nO(k).

The crux of the algorithm is the following lemma about isomorphic point sets. Let A and

B be two point sets in Qk. Assume without loss of generality that the centroids of A and

B are located at origin (we will shortly justify this assumption).

Lemma 2. Two point sets A and B are geometrically isomorphic if and only if there exists

a linear isometry between vector spaces Span(A) and Span(B), which in addition, maps

A to B. Here, Span(A) (and Span(B)) refers to the Q-linear span of the set A (and set B).

In other words, a geometric isomorphism between two point sets A and B in Qk naturally

extends to a linear isometry between vector spaces Span(A) and Span(B). We briefly

justify our assumption above regarding the centroids of point sets. Given two point sets in

Qk, we can always translate them such that their centroids are located at origin. Since the

centroid of a point-set in Qk has rational coordinates, the translated point-set has rational

coordinates as well.

In the remainder of this section, we build towards Theorem 15, proving Lemma 2 in the

process. We reiterate our assumption that the point sets A and B have origin as their

centroid. Let π : A 7→ B be a geometric isomorphism between A and B. The image of a

point u ∈ A under the mapping π is denoted uπ. We remark that the points in these sets

are vectors in Qk and we will use these notions interchangeably in what follows.

We first claim that the mapping π : A 7→ B preserves lengths.

Claim 2. ‖u‖ = ‖uπ‖ for all u ∈ A.

21

Proof. Since the centroid of set A is origin,

‖u‖2 = ‖u − 0‖2

= ‖u −
1
n

n∑
j=1

u j‖
2

=
1
n2 ‖

n∑
j=1

(u − u j)‖2

=
1
n2

n∑
j=1

n∑
k=1

(u − u j) · (u − uk)

=
1
n2

n∑
j=1

n∑
k=1

1
2

(‖u − u j‖
2 + ‖u − uk‖

2 − ‖u j − uk‖
2)

=
1

2n2

n
 n∑

j=1

‖u − u j‖
2

 + n

 n∑
k=1

‖u − uk‖
2

 −
 ∑

i∈[n], j∈[n]

‖u j − uk‖
2


 .

Similarly, for v = uπ in set B,

‖v‖2 =
1

2n2

n
 n∑

j=1

‖v − v j‖
2

 + n

 n∑
k=1

‖v − vk‖
2

 −
 ∑

j∈[n],k∈[n]

‖v j − vk‖
2


 .

Since π is a geometric isomorphism which maps u to v, we can rewrite

‖v‖2 =
1

2n2

n
 n∑

j=1

‖u − u j‖
2

 + n

 n∑
k=1

‖u − uk‖
2

 +

 ∑
j∈[n],k∈[n]

‖u j − uk‖
2




= ‖u‖2

which proves the claim. �

We claim that the mapping π : A 7→ B preserves dot products.

Claim 3. ui · u j = uπi · u
π
j for all ui, u j ∈ A.

22

Proof. The dot product ui · u j can be rewritten using Claim 2 as follows.

ui · u j =
1
2

(
‖ui‖

2 + ‖u j‖
2 − ‖ui − u j‖

2
)

=
1
2

(
‖uπi ‖

2 + ‖uπj‖
2 − ‖uπi − uπj‖

2
)

= uπi · u
π
j

which proves the claim. �

We claim that the mapping π : A 7→ B respects linear dependencies. Let U = {u1, . . . , um}

be a subset of A, and α1, . . . , αm be corresponding scalar elements.

Claim 4. α1u1 + · · · + αmum = 0 if and only if α1uπ1 + · · · + αmuπm = 0.

Proof. We show the forward direction (the reverse direction follows by symmetry). Sup-

pose α1u1 + · · · + αmum = 0. Let v = α1uπ1 + · · · + αmuπm. We will show that v = 0.

Let v j be a vector in B. Then, there exists an index j′ such that π(u j′) = v j, for some

u j′ ∈ A. The dot product v · v j can be rewritten using Claim 3 as follows.

v · v j = (α1uπ1 + · · · + αmuπm) · v j

= (α1uπ1 + · · · + αmuπm) · uπj′

= (α1u1 + · · · + αmum) · u j′

= 0.

Hence, v ·v j is zero for every v j ∈ B. Since v ∈ Span(B), v = 0. This proves the claim. �

We state a useful corollary of the above claim. Let U be a subset of A, and Uπ be the

image of U under the mapping π : A 7→ B.

Corollary 2. The following holds.

(a) U is linearly independent if and only if Uπ is linearly independent.

23

(b) A vector u ∈ A is a linear combination of vectors in U if and only if the vector

uπ ∈ B is a linear combination of vectors in Uπ.

Proof. (a) Follows from Claim 4.

(b) If u = α1u1 + · · ·+αmum, then the linear combination α1u1 + · · ·+αmum + (−1)u = 0.

Claim 4 implies that α1uπ1 + · · · + αmuπm + (−1)uπ = 0. Therefore, uπ = α1uπ1 + · · · +

αmuπm.

�

The following claim summarizes the above series of claims. Let U be a subset of A.

Claim 5. U is a basis for Span(A) if and only if Uπ is a basis for Span(B).

Proof. We show the forward direction (the reverse direction follows by symmetry). Let

U be a basis for Span(A). Since U is linearly independent, Uπ is also linear independent

(by Corollary 2 (a)). Since U spans the vector space Span(A), every u ∈ A can be

expressed as a linear combination of vectors in U. By Corollary 2 (b), every v ∈ B must

be expressible as a linear combination of vectors in Uπ. Consequently, Uπ spans the vector

space Span(B). Therefore, Uπ is a basis for the vector space Span(B). �

We are ready to associate a linear map µ : Span(A) 7→ Span(B) with the geometric

isomorphism π : A 7→ B.

Lemma 3. Suppose π is a geometric isomorphism between A and B. There exists a linear

isometry µ : Span(A) → Span(B) such that µ agrees with π on A. Consequently, the

point-sets A and B are geometrically isomorphic if and only if there exists an orthonormal

transformation O such that B = O · A.

Proof. Let J = {u1, . . . , um} be a subset of A such that J is a basis for Span(A). By Claim

5, Jπ is a basis for Span(B). Define the linear transformation µ : Span(A) 7→ Span(B)

24

as follows. The map µ maps the basis J of Span(A) to the basis Jπ of Span(B) (in the

correct order according to π). The action of µ on Span(A) is then defined by linearity,

since J is a basis.

It remains to show that (a) µ is bijective, (b) µ(x) = xπ for all vectors x ∈ A, and (c) µ is

isometric.

To show that µ is bijective, it suffices to observe that Jπ is a basis for Span(B).

To show that µ(x) = π(x) for all vectors x ∈ A, consider a vector x ∈ A. Since x =

α1u1 + · · · + αmum for some scalars α1, . . . , αm, Corollary 2 (b) implies that xπ = α1uπ1 +

· · · + αmuπm. By linearity of µ, µ(x) = α1µ(u1) + · · · + αkµ(uk). Since µ agrees with π on J,

µ(x) = α1uπ1 + · · · + αkuπk . Hence, π(x) = µ(x) for every x ∈ A.

To show that µ is an isometry, it suffices to show that µ preserves dot products. I.e., for

every x, y ∈ Span(A), x · y = µ(x) · µ(y). By Claim 3, it follows that π preserves dot

products among vectors in J. Since µ agrees with π on the set J, µ also preserves dot

products among vectors in J. By bilinearity of dot product, µ preserves dot products

among vectors in Span(A) as well and hence, µ is an isometry. �

The proof of Lemma 2 immediately follows from the above lemma. We end with the

proof of Theorem 15.

Proof. Algorithm 2.2 describes the XP algorithm for GEOM-GI. We first show the cor-

rectness of the algorithm. It suffices to show that if the input point sets are geometrically

isomorphic, the algorithm accepts. Let π : A 7→ B be a geometric isomorphism. By

Lemma 2, there is a natural isometry µ associated with π, which extends π. On one of the

branches of computation in Step 2, we will discover the linear transformation µ. Hence,

the algorithm will accept the input.

We show that the running time cost of the algorithm is indeed bounded by nO(k). The

size of set J in Step 1 is bounded by k. The branching factor in Step 2 is bounded by nk

25

Input: Two point sets A and B in Qk, each of size n.

1. Pick a maximal linearly independent (ordered) set J in A.

2. For every (ordered) subset J′ of B of size |J|,

• Let T be the linear transformation defined by mapping J to J′ (in an or-
dered manner).

• Let TA be the restriction of T to the set A.

• Check if TA maps A to B, in a distance-preserving manner. If yes, accept.
Otherwise, try the next subset J′.

3. If none of the above branches accept, reject.

Figure 2.1. Algorithm 2.2

(since we pick an ordered image of the basis J). Other steps are routine polynomial time

procedures. Therefore, the overall running time is bounded by nO(k). �

2.3 Lattice-based FPT algorithm for GEOM-GI

In the previous section, we mentioned that the XP algorithm for GEOM-GI serves as a

template for faster FPT algorithms for GEOM-GI. In this section, we describe such an al-

gorithm for GEOM-GI. In the following result, the usual Õ(·) notation hides multiplicative

factors which are polynomial in input size.

Theorem 16. Given two sets A, B in Qk, there is an FPT algorithm, parameterized by

dimension k, which correctly decides whether they are geometrically isomorphic. The

algorithm has running time complexity Õ(2O(k2)).

Our FPT algorithm employs a novel use of integer lattices for this problem. Before

proceeding with the proof of Theorem 16, we give a brief overview of the algorithm.

Given two point sets A and B, consider the integer lattices LA and LB generated by them.

Let S A and S B be the sets of shortest vectors in LA and LB respectively. Suppose the

sets A and B are geometrically isomorphic. By Lemma 2, there exists a linear isometry

26

µ : Span(A) 7→ Span(B), which in addition, sends A to B. By linearity, µ also maps LA

to LB. Since µ is distance-preserving, µ maps the set S A to S B. This observation facili-

tates the use of sets S A and S B (instead of A and B) for discovering the isometry µ. The

improvement in running time stems from the fact that the sets S A and S B are bounded in

size by 3k. Hence, the branching factor in Step 2 of Algorithm 2.2 can be reduced from

nk to
(

3k

k

)
k!. This is the crux behind our FPT algorithm.

However, there is a caveat: the subspace Span(S A) can be a proper subspace of Span(A).

In this case, the algorithm has only discovered the restriction of µ to the subspace Span(S A),

denoted by µ1 : Span(S A) 7→ Span(S B). To discover µ entirely, the algorithm employs

a project-and-recurse approach as follows. We project out the point sets A and B onto

the perpendicular subspaces Span(S A)⊥ and Span(S B)⊥ respectively. Thus, we obtain

point sets A′ and B′ in spaces of strictly lower dimension. Recursively, we compute the

restriction of µ to the subspace Span(S A)⊥ using sets A′ and B′. Therefore, we recover

the isometry µ : Span(A) 7→ Span(B) entirely. We are ready to proceed with the formal

proof of Theorem 16.

Proof. Algorithm 2.3 describes the steps of our FPT algorithm. We first prove the cor-

rectness of the algorithm.

Claim 6. Algorithm 2.3 accepts if and only if point sets A and B are geometrically iso-

morphic.

Proof. It suffices to show that if there exists a geometric isomorphism π between A and

B, the algorithm accepts. In this case, Lemma 2 implies that there exists a linear isometry

µ : Span(A) 7→ Span(B) which extends π : A 7→ B. The algorithm discovers this

isometry µ, and hence the isomorphism π, as follows.

Firstly, the isometry µ maps the set S ⊆ S A fixed in Step 2 to some set S ′ such that

S ′ ⊆ S B. Therefore, there exists a branch of computation in Step 2 such that the linear

map µ1 agrees with µ on S and hence, on Span(S) by linearity. Secondly, we claim that

27

Input: Two point sets A and B in Qk, each of size n.

1. Compute the shortest vector sets S A and S B of both LA and LB respectively.

2. Fix a maximal linearly independent set of shortest vectors S inside the set S A.
Let |S | be k′. Branch on all ordered subsets S ′ of S B of size k′. If S ′ is not a
maximal linearly independent set in S B, reject. Otherwise, let µ1 denote the
linear mapping which sends the set S to S ′ and therefore, extends to Span(S)
by linearity.

3. Next, on each branch the algorithm projects the set A to the orthogonal comple-
ment Span(S)⊥ of the subspace spanned by S and projects B to the orthogonal
complement Span(S ′)⊥ of the subspace spanned by S ′.

4. Recursively continue to compute a linear map µ2 using the above projected
point sets that are in subspaces of strictly smaller dimension. Let µ2 be the
linear map thus obtained which maps Span(S)⊥ to Span(S ′)⊥.

5. Let µ : Span(A) → Span(B) be the map which acts on Span(S) as µ1 and on
Span(S)⊥ as µ2, and extends to Span(A) by linearity. Check if µ maps A to
B in a distance-preserving manner. If this is the case, accept; otherwise reject
this branch. If all branches reject, reject.

Figure 2.2. Algorithm 2.3

µ maps the set A′ (obtained by projecting A onto Span(S)⊥) to the set B′ (obtained by

projecting B onto Span(S ′)⊥). To see this, let u ∈ A be a point which is mapped by µ

to a point v ∈ B. Since µ respects projections, µ(Pr(a,Span(S))) = Pr(b,Span(S ′)) and

µ(Pr(a,Span(S)⊥)) = Pr(b,Span(S ′)⊥). Therefore, µ must map A′ to B′.

As a result, we have point sets A′ and B′ which lie in subspaces Span(S)⊥ and Span(S ′)⊥

of strictly smaller dimension. Moreover, the restriction µ2 : Span(S)⊥ 7→ Span(S ′)⊥ of

the isometry µ sends A′ to B′. The algorithm will discover the restriction µ2 recursively

in Step 4. Since the isometry µ is completely described by the restrictions µ1 and µ2,

we will discover µ in Step 5. Therefore, the algorithm discovers the isomorphism π and

accepts. �

It remains to bound the running time required by the algorithm.

Claim 7. The running time complexity of Algorithm 2.3 is bounded by Õ(2O(k2)).

28

Proof. Observe that Step 2 of the algorithm involves branching on all subsets S ′ of S B.

We proceed by bounding the recursive branching that occurs during the execution of the

algorithm. Assume that the given point sets A and B span subspaces of dimension p. We

claim that the overall branching during the execution of the algorithm on A, B is bounded

by 2O(k)·p. Given any input point sets A and B in Qk, the overall branching during the

execution of the algorithm therefore must be bounded by 2O(k2) (since p ≤ k).

We prove the above claim by induction. Since any lattice in Qk has at most 2O(k) many

shortest vectors (by Lemma 1), the initial branching in Step 2 is bounded by
(
2O(k)

)k′
.

Here, k′ is the number of linearly independent vectors inside set S A. In Step 3, we

project the point set A (and point set B) onto the orthogonal subspace Span(S)⊥ (and

Span((S ′)⊥)) of dimension p− k′. Hence, the input point sets to the recursive call in Step

4 lie in subspaces of dimension p−k′. By our inductive assumption, the recursive branch-

ing incurred in Step 4 must be bounded by 2O(k)·(p−k′). Therefore, the overall branching

during the execution of the algorithm is bounded by
(
2O(k)

)k′
·
(
2O(k)·(p−k′)

)
, which is at most

2O(k)·p.

We have shown that the overall branching during the execution of the algorithm must

be bounded by 2O(k2). It remains to show that the computation along any branch of the

algorithm takes at most Õ(2O(k2)) time. The computation of shortest vectors in Step 1

takes Õ(kO(k)) time by Corollary 1. Claim 1 shows that projection operations in Step 3 are

routine linear-algebraic procedures and can therefore be performed in polynomial time

in input size. It remains to prove that the increase in the bit-complexity of entries in

vectors of sets A and B is bounded by a suitable multiplicative factor after each projection

operation of Claim 1. Claim 8 below shows that the bit-size can increase by at most a

multiplicative factor of O(k3). Since we can do the projection operation at most k times,

this implies a tolerable upper bound of O(k3k) on bit-complexity of entries. �

Claim 8. Let A ∈ Qk×k, b ∈ Qk be such that each entry in A and b is represented by at most

M bits. Suppose the system of linear equations Ax = b has a unique solution x0 ∈ Q
k.

29

Then, any entry in x0 can be represented by at most O(k3)M bits.

Proof. Since the entries in A and b are rational numbers with bit-size of numerator and

denominator bounded by M, we can clear all the denominators in A and b to obtain A′ and

b′ with integral entries. In the worst case, the cost of this operation will be a multiplicative

factor of O(k2) in bit complexity (since we have O(k2) entries in A and b). Let M′ =

O(k2)M denote the bit complexity of the integral entries in A and b after this step. Given

the system A′x = b′, we note that any entry in x is a ratio of determinants of sutiable

matrices, given by Cramer’s rule. For a k × k matrix Q with entries of size 2M′ , we have

the upper bound Det(Q) ≤ k!(2M′)k. Hence, we need O(k log k) + kM′ bits to represent the

entries in x. Simplifying, we obtain a bound of O(k3)M on the bit complexity of entries

in x0. �

This finishes the proof of Theorem 16. �

2.4 Discussion

We showed that a lattice approach to GEOM-GI yields faster FPT algorithms for this

problem. Can we further improve our FPT algorithm? We observe that these algorithms

are sub-optimal in the following sense. In the branching step of either algorithm, we fix a

set J and try every possible subset J′ of size |J| as its image under the isometry µ. Since

µ preserves the geometry of J, it will be more efficient to try the subsets J′ with the same

geometry as the basis J. For example, if the set J is orthogonal, we need to try only

orthogonal sets J′ as the images.

In this next chapter, we employ a recent result of [20] which defines a certain class of

bases, called chain bases. These bases have very useful properties in the following sense:

(a) they always exist, (b) they are small in number, at most Õ(kO(k)) and (c) they are

30

efficiently computable. Using these bases, we obtain a faster FPT algorithm for GEOM-

GI, which runs in time Õ(kO(k)).

31

32

Chapter 3

Geometric Graph Canonization

Computing canonical forms for structures is a fundamental algorithmic problem. Graph

Canonization, which is the problem of computing canonical forms for graphs, is closely

connected to Graph Isomorphism. For a class K of graphs, a mapping f : K → K is a

canonizing function if f (X) is isomorphic to X for each graph X in K , and for any other

graph X′ in the class, f (X) = f (X′) if and only if X and X′ are isomorphic. We say that

f (X) is the canonical form assigned by f to the isomorphism class containing X. For

example, f (X) can be defined as the lex-first graph in K isomorphic to X. This canon-

izing function is known to be NP-hard to compute for general graphs. Whether there is

some polynomial-time computable canonizing function for graphs is open. It is also open

whether graph canonization is polynomial-time equivalent to graph isomorphism. Graph

classes with efficient isomorphism tests are often known to have canonization algorithms

[43] of comparable complexity.

Analogously, corresponding to geometric isomorphism, we can define canonical forms

and the canonization problem for an n-point sets A ⊂ Qk. Given A ⊂ Qk as input, a

canonizing function f : A 7→ f (A) outputs an isomorphic point set f (A) such that f (A) =

f (B) if and only if A and B are isomorphic point sets.

33

Our Results

In this chapter, we describe an FPT algorithm for GEOM-GC, when the input sets have

rational coordinates. Here, the parameter of interest is the dimension k of the underlying

space. In Section 3.1, we introduce necessary definitions and some results to set the

context for presenting our algorithm. In Section 3.2, we describe our FPT algorithm

for this problem. In Section 3.3, we consider the GEOM-GI problem in non-Euclidean

metrics and present our results. We finally conclude this chapter with a brief discussion

in Section 3.4. In all the results here, we crucially use that A, B are rational point sets.

3.1 Preliminaries

In this section, we restate some important concepts and results regarding integer lattices.

Haviv and Regev, in [42], study the lattice isomorphism problem under orthogonal trans-

formations. In the process, they develop a general Isolation Lemma which they apply to

the lattice isomorphism problem, and give a Õ(kO(k)) time algorithm for checking whether

two rank-k lattices are isomorphic under orthogonal transformations. They introduce the

notion of a linearly independent chain in a given set of vectors. We recall the definition

as we will require it to describe our canonical forms algorithm for point sets in Qk.

Definition 3. [42] For a finite set of vectors A ⊆ Qk and a vector v ∈ Qk, we say that

v uniquely defines a linearly independent chain of length m in A if there are m vectors

x1, . . . , xm ∈ A such that for every 1 ≤ j ≤ m, the minimum inner product of v with vectors

in A\Span(x1, . . . , x j−1) is uniquely achieved by x j.

Given a lattice L, its dual lattice L∗ is defined as the set of vectors in Span(L) that have

an integer inner product with every vector in L. More precisely,

L∗ = {u ∈ Span(L) | (u) · (v) ∈ Z for all v ∈ L}.

34

The following theorem of Haviv and Regev [42] shows for any given lattice L that there

exists a suitably short vector v in the dual lattice L∗, which uniquely defines a linearly

independent chain in the set of shortest vectors of the given lattice L.

Theorem 17 ([42], Theorem 4.2). Let L be a lattice of rank k. Let S be the set of shortest

vectors in L. If the dimension of Span(S) is k, there exists a vector v ∈ L∗ that uniquely

defines a linearly independent chain of length k in S and satisfies ‖v‖ ≤ 5k17/2 · λ1(L∗).

3.2 FPT algorithm for GEOM-GC

In this section, we prove the main result of this chapter.

Theorem 18. Given a finite point set A ⊂ Qk of size n as input, there is a deterministic

Õ(kO(k)) time algorithm that computes a canonizing function f (A). As a consequence, the

GEOM-GI problem for point sets in Qk has a deterministic Õ(kO(k)) time algorithm.

We begin with an overview of our algorithm. Given a point set A ⊂ Qk, we first compute

the shortest vector set SA of the lattice LA. For the overview description, we assume

for simplicity that SA spans Span(A). When that is not the case, the actual algorithm

proceeds by projecting Span(A) to the orthogonal complement of Span(SA), similar to

the Algorithm 2.3 of previous chapter. For a given point set A ⊂ Qk let shortA denote the

following set of short vectors in the dual lattice L∗A:

shortA = {v ∈ L∗A | ‖v‖ ≤ 5k17/2 · λ1(L∗A)}.

Then, we proceed as follows.

1. We apply the Haviv-Regev algorithm [42] (Theorem 17) to pick the set shortA of

short vectors in the dual latticeL∗A which yield a unique linearly independent chain,

of length k, in the set of shortest vectors SA of LA. As shown in [42] such vectors

35

in the dual lattice exist and by Theorem 14 and Lemma 1 the set shortA is of size

bounded by kO(k) and can be listed in Õ(kO(k)) time.

2. Corresponding to each v ∈ shortA the linearly independent chain of length k in SA,

given by Theorem 17, yields a basis for Span(A). In all we obtain kO(k) such bases

for Span(A).

3. For each such basis J we generate a description of the set A as follows: We first

compute the Gram matrix G(J) for J. Then for each vector ui ∈ A, we compute the

k-tuple Γi of the coordinates of ui in basis J. The description of A obtained from

basis J is the tuple (G(J),Γ1, . . . ,Γn).

We now briefly explain how these descriptions can be used to compute a canonical form

for the point set A.

Suppose A and B are isomorphic point sets in Qk and µ : Span(A) → Span(B) is the

corresponding linear isometry. Then µ is an isometric map between the lattices LA and

LB as also between the dual lattices L∗A and L∗B. Furthermore, µ maps shortA to shortB.

More precisely, if v ∈ shortA gives rise to a unique linearly independent chain J in SA

then µ(v) ∈ shortB gives rise to a unique linearly independent chain in SB (which is in fact

µ(J)).

Now, crucially, we note that the description for A (G(J),Γ1, . . . ,Γn) generated using the

chain J is identical to the description for B generated for µ(J). This is because the Gram

matrices G(J) and G(µ(J)) are equal.

This suggests that the lexicographically least description is a canonical representation for

the input point set A, and can be used to generate a canonical form for it. I.e. for each v ∈

shortA satisfying the condition of Theorem 17, compute the description (G(J),Γ1, . . . ,Γn)

using the corresponding linearly independent chain J. Among these descriptions pick

the lexicographically least one (G(J),Γ1, . . . ,Γn) from which we will recover a canonical

form for A.

36

3.2.1 Proof of Theorem 18

In this subsection, we give a proof of our main theorem. Algorithm 3.2.1 is a formal

description of our canonization algorithm. We first prove two lemmas which show that

the algorithm indeed outputs a canonical form CA for a given point set A in Qk.

Lemma 4. The point sets A and CA are geometrically isomorphic.

Proof. The lexicographically least description string σ0 = (G, (Γ1, . . . ,Γn)) used to con-

struct CA is generated using a certain basis J = {r1, . . . , rl}. By construction, a vector

ui ∈ A is a Γi-linear-combination of J. Similarly, a vector vi ∈ CA is Γi-linear-combination

of the set J0 = {l1, . . . , lk}, the rows of the unique matrix L obtained in Step 4 (a). Since

the sets J0 and J have the same Gram matrix, there exists an orthogonal matrix O such

that ri = O(li) for all i ∈ [k]. By linearity, vector ui = O(vi) for each i ∈ [n]. Therefore,

the set A can be obtained from set CA by an orthogonal transformation. This shows that

the two sets are isomorphic. �

Lemma 5. Two point sets A and B in Qk are geometrically isomorphic if and only if

CA = CB.

Proof. Suppose the point sets A and B are isomorphic via a permutation π. It will suffice

to show that the sets of all strings generated for A and B, denoted by ΣA and ΣB, are equal.

The reason is that the lexicographically least description string will be equal for both sets,

and the output sets CA and CB depend only on the string used to generate them. It further

suffices to show that ΣA ⊆ ΣB since the other containment is symmetric. We continue

with the proof. Lemma 2 implies that there exists an orthogonal map O : Span(A) →

Span(B) which agrees with π on A. Let (w1, . . . ,wl) be a tuple processed in Step 2 in the

computation of the canonical form of A and J1 be the basis discovered in Step 2(a). We

claim that (O(w1), . . . ,O(wl)) will be processed in the computation of the canonical form

of B. This is true for O(w1) because (a) LB = OLA and therefore, (b) for any v ∈ LB,

(O(w1)) · v = (O(w1)) · (O(u)) ∈ Z for some u in LA. Also ‖w1‖ = ‖O(w1)‖. Therefore,

37

Input: A set of vectors A ⊂ Qk s.t. |A| = n and 0̄ ∈ A.
Output: A canonical set of vectors CA.

1. While dim(Span(A)) , 0

(a) Compute the set S A of shortest vectors in LA using Theorem 14.

(b) Define the lattice Λ1 = LA ∩ Span(S A).

(c) Compute the set of vectors W in the dual lattice Λ∗1 which are of length at
most 5k17/2 · λ1(Λ∗1) using Theorem 14 and 17.

(d) For each vector w in W, check whether it defines a linearly independent
chain in S A. If yes, compute the chain. Otherwise, discard w from W.

(e) Update set A to its component orthogonal to Span(S A). I.e. replace every
u ∈ A by u − uS A .

2. Let W1, . . . ,Wl be the sets computed during the l iterations of Step 1(c)-(d). For
every tuple (w1, . . . ,wl) ∈ W1 × · · · ×Wl,

(a) Let Ci = (si
1, . . . , s

i
ki

) be the ordered chain of vectors corresponding to
vector wi. Here, the length of chain Ci is denoted by ki.

(b) Define an ordered basis J to be the set of the vectors si
f , i ∈ [l], f ∈ [ki], or-

dered lexicographically by the tuple (i, f). We represent J as (r1, . . . , rk).

(c) Compute the Gram matrix G(J) for the ordered set J.

(d) For each ui in the input set A, compute the tuple Γi = (γ1, . . . , γk) such

that ui =

k∑
j=1

γ jr j.

(e) Lexicographically order the set {Γ1, . . . ,Γn} to obtain the string
lex({Γ1, . . . ,Γn}).

(f) Define the string σ for the tuple (w1, . . . ,wl) to be (G(J), lex({Γ1, . . . ,Γn})

3. Let Σ be the set of all strings generated in the previous step. Determine the
lexicographically least string σ0 in Σ.

4. Given the string σ0 = (G, (Γ1, . . . ,Γn)),

(a) Let G = LLT be the unique Cholesky decomposition of the postive semi-
definite matrix G. Here, L is a lower triangular matrix.

(b) Let J0 be the set of rows of L.

(c) Compute the set CA of vectors {u1, . . . , un} where ui is the Γi-linear-
combination of J0.

5. Output CA as the canonical form for the set A.

Figure 3.1. Algorithm 3.2.1

38

O(w1) is a vector in the dual lattice L∗B and is short enough to be discovered. Moreover,

for any r j in the chain generated by w1, w1 · r j = (O(w1)) · (O(r j)) which implies that O(r j)

is in the chain generated by O(w1). Hence, by uniqueness, the chain for set B is exactly

the chain for set A transformed by the map O. In the next iteration, the computation for

sets A and B proceeds by projecting the point sets A and B out of the subspaces spanned

by shortest vectors. Since O maps Span(S A) to Span(S B) and preserves inner products,

it must map the updated lattice LA to the updated lattice LB. Inductively, we can argue

that (O(w1), . . . ,O(wl)) will be discovered in the computation for set B. Moreover, the

basis JB obtained for this tuple must be OJA. Therefore, the Gram matrices will be equal.

Since O agrees with the isomorphism π, the linear combinations generated will also be

equal. I.e. if ui ∈ A is equal to Γi-linear-combination of JA, then O(ui) ∈ B must be the

Γi-linear-combination of JB = OJA as well. Therefore, the signatures generated in these

computations will be equal. Therefore, ΣA ⊆ ΣB.

Conversely, let CA = CB. Then, there exist bases B1 and B2 such that the strings generated

using them for set A and set B respectively are equal. Since this implies that B1 and B2

have the same Gram matrix, there must be an orthogonal map O such that B1 = OB2.

Since the strings are equal, the points in A and B are identical linear combinations of

vectors in B1 and B2 respectively. This implies that the set A = OB, and therefore A and

B are isomorphic. �

We are now ready to finish the proof of Theorem 18.

Proof of Theorem 18. It follows from Lemma 4 and Lemma 5 that Algorithm 3.2.1 cor-

rectly computes a canonical form for any input point set A ⊂ Qk. It remains to prove the

running time bound. We first bound the time taken in Step 1 which can execute for at most

k iterations. Computing sets S A and W takes time O∗(kO(k)) · poly(M), as a consequence

of Theorem 14 and Theorem 17. Updating set S in Step 1(e) requires projection opera-

tions. We already know from the analysis of Algorithm 2.3 that projection operations can

39

be performed by usual polynomial-time linear-algebraic procedures. Moreover, Claim 8

shows that this can blow-up the bit-complexity of the entries by a multiplicative factor of

at most O(k3). Since there can be at most k iterations of Step 1, the bit-complexity can

increase at most by a tolerable multiplicative factor of O(k3k).

Next, we bound the running time of Step 2. Recall that the set Wi computed in the ith

iteration of Step 1 is the set of all vectors in the dual lattice Λ∗1, such that their length is

bounded by 5k17/2 · λ1(Λ∗1). In the ith iteration of Step 1, let ki be the rank of the lattice Λ1

obtained in Step 1 (b). Since vectors in Wi are lattice vectors of bounded length, we can

use Lemma 1 to show that |Wi| is at most (2 · 5k17/2
i + 1)ki = ki

O(ki). The number of tuples

thus examined is at most |W1| · · · · · |Wl| which is bounded by kO(k1)
1 · · · · ·kO(kl)

l ≤ kO(k). Other

operations in Step 2 are polynomial-time computations. Hence, Step 2 takes Õ(kO(k)) time.

Steps 3, 4, and 5 all take time bounded by a polynomial in the input size. This completes

the running time analysis. �

Remark 1. An Õ(kO(k)) time FPT algorithm for the isomorphism problem GEOM-GI

follows from the above theorem: we compute the canonical forms for the input point sets

A and B, and accept if and only if CA = CB.

3.3 Geometric Isomorphism in other lp metrics

In this section, we examine the GEOM-GI problem for other lp metrics. It is important to

observe that non-Euclidean metrics are not amenable to the usual linear-algebraic tools.

For example, we do not have an analog of Lemma 2 for a general lp metric. As a result,

even a simple XP algorithm is not known for this problem, where the dimension k of the

underlying space is our parameter of interest.

We make partial progress towards this problem by considering restricted dimensions. For

the case k = 2, we show the following

40

Theorem 19. Given subsets A and B of Q2 as input, for any lp metric, there is a deter-

ministic polynomial-time algorithm for checking whether A and B are isomorphic in that

metric.

Algorithm 3.3 is a formal description of our algorithm. We give a brief overview of our

algorithm. Given two point sets A and B of size n, we fix three points in set A and branch

on their possible images in B under an isomorphism. Using these points, we will construct

two colored graphs G and H such that (a) each graph has color class size at most two and

(b) the point sets A and B are isomorphic if and only if the graphs G and H are isomorphic

via a color-preserving isomorphism. This computation can be performed in polynomial

time. The isomorphism problem for color class size two graphs, denoted by BCGI2 is in

polynomial time [44] which yields the result.

In the remainder of this section, we give a formal proof of Theorem 19.

Proof. We will describe the algorithm for the l∞ case and indicate how it can be easily

adapted for other lp metrics.

It is easy to verify that the algorithm works correctly for the case when the point sets

are collinear. Therefore, we concentrate on the general case. If the above algorithm

accepts, clearly the sets are isomorphic. Conversely, suppose there is a isomorphism π

from A and B. In Step 2, one of the branches for the image of {a, b, c} will coincide with

(π(a), π(b), π(c)). Furthermore, π must respect the color classes defined by the algorithm

based on the distance triples in Step 3. It also respects the color refinements in Step 4 due

to the following fact which can be easily verified by induction. A color class of collinear

points must map to another class of collinear points in a manner that preserves the order of

vertices (therefore, in at most two possible ways). Hence, π respects the colors assigned

by the algorithm.

Next, we verify the bound on the color class sizes. The set of points S r,x at l∞-distance

r from a point x is easily seen to be a square in Q2 centered at x. It has sides of length

41

Input: Point sets A and B of size n in Q2 (the l∞ case).
Output: Accept if A and B are isomorphic, and reject otherwise.

1. Decide whether sets A and B are collinear by iterating over all triples and check-
ing whether the three points are collinear. If they are not collinear: pick the first
three non-collinear points {a, b, c}. Otherwise,

• Construct two colored graphs G and H: The graph G is (A, ∅). The color
of vertex ui is the unordered pair {d1, d2} of the distances of ui from the
two extreme points in the set A. Similarly define H for set B.

• Return accept iff G and H are isomorphic. The isomorphism can be de-
cided using the algorithm of [44].

2. Otherwise, w.l.o.g we have a, b, c ∈ A (the other case is symmetric). Branch on
all possible images of {a, b, c} in B, denoted by {a′, b′, c′}.

3. First, we compute a coloring of sets A and B. For A, we color a point u ∈ A by
the ordered triple (du,a, du,b, du,c) of its distances from a, b, c.

4. Second, we can refine these colorings and ensure that each color class is of size
two as follows:

• If some set of vertices form a color class of size more than two, they
will lie on a line segment parallel to x-axis or y-axis (proof of correctness
explains). Each such color class has two extreme points.

• For each vertex u ∈ A, B, decide whether it lies in a color class of size
more than two. If yes, update the color of u, say C, with the color
(C, {d1, d2}) where d1, d2 are the distances of u from the extreme points
in the color class.

5. Third, we construct weighted colored graphs G′ and H′ over vertex sets A and B
respectively. The graphs G′ and H′ are complete graphs, and have color classes
of size at most two. The coloring of the vertices have been already computed in
Step 4. Every edge {u, v} in G′ or H′ is labeled with the weight duv, the distance
between points u and v.

6. Using standard gadgets (details are given in the proof), we can remove the
distance edge-labels introduced in Step 5. As a result, we obtain vertex-colored
graphs G and H with color class size two, with unlabeled edges.

7. Test whether G is isomorphic to H using the algorithm of [44]. If the answer
is yes accept, else move to the next branch in Step 2. If all branches are ex-
hausted, return reject.

Figure 3.2. Algorithm 3.3

42

2r parallel to the coordinate axes. Consider the squares S α,a and S β,b. Their intersection

is one of the following: (a) empty, or (b) at most two points, or (c) a common edge, or

(d) two common incident edges. If we consider the third square S γ,c, its intersection with

S α,a ∩ S β,b is therefore one of these cases: (a) empty or (b) at most two points or (c) a

common edge. The last case is ruled our since three squares with non-collinear centres

cannot have more than two edges common. Therefore, every color class is bounded by

two unless the points in the color class lie on a common edge of three squares. Such a

class is refined in Step 4 to have size at most two. Therefore, π must be an isomorphism

between the weighted graphs G′ and H′ since it preserves mutual distances.

It remains to show that using standard constructions, we can transform graphs G′ and H′

into graphs G and H such that (a) we preserve isomorphisms and (b) G,H are vertex-

colored graphs with color class size two and unlabeled edges. Then, the algorithm will

clearly accept the input in Step 7. To see the construction, notice that any pair of color

classes Ci,C j (in G′ or H′) have at most 4 edges between them (since |Ci|, |C j| ≤ 2). If

all of them share the same distance label, it suffices to remove this label. If any three of

them share the same distance label D1 and the fourth edge has the distance label D2, we

remove the label D1 and add a path of length 1 in place of the edge labeled D2. We color

the vertex on this path by a new color (D2, i, j). The only remaining case is when at most

two edges can share a common distance label. In this case, we replace each labeled edge

by a path of length 1. The vertex on the path is given a new color (D, i, j) where D was

the corresponding edge label. It is easy to verify that in all these cases, we obtain graphs

with color class size at most two, with unlabeled edges. This suffices to finish the proof.

Other lp metrics. We now briefly explain how the above algorithm can be adapted to

solve the 2-dimensional GEOM-GI problem for other lp-metrics.

The set S r,x is a lp-metric circle of radius r centered at the point x. For p = 1, such circles

are squares of side 2r centered at x which have been rotated by π/4. The intersection of

such squares is similar to the l∞ case above. Hence, the above algorithm adapts to this

43

case. For the case p ∈ (1,∞), it is known that lp balls are strictly convex sets I.e., for any

two distinct points u, v on the boundary of such a set, any convex combination θu+(1−θ)v

for 0 < θ < 1 is in the interior of the set. For Q2, this implies that any two lp circles can

intersect in at most two points ([46], Theorem 1). Therefore, any color class can be of

size two and therefore, a similar algorithm which reduces the problem to BCGI2 works

and we can apply the algorithm of [44]. �

3.4 Discussion

In this chapter, we gave an Õ(kO(k)) time FPT algorithm for Geometric Graph Canon-

ization in the l2 metric, which is asymptotically faster than previous algorithms for this

problem. A natural open question is to improve the running time. From the point of

view of the general Graph Isomorphism problem it would be very interesting to obtain a

“geometric” algorithm of running time Õ(2O(k)), since the well-known algorithms for this

problem are group-theoretic.

As observed in the introduction, Graph Isomorphism (for n-vertex graphs) is polynomial-

time reducible to GEOM-GI, where, in the reduced instance, the output point sets are

contained in Qn. We note a similar reduction even for hypergraph isomorphism. There

is a standard reduction that reduces hypergraph isomorphism for n-vertex and m-edge

hypergraphs to bipartite graph isomorphism on n + m vertices. However, the point sets

thus obtained will be in Qn+m and m could be much larger than n. The aim is to obtain

point sets in as low a dimension as possible. More precisely, given a pair of hypergraphs

(X1, X2) on n vertices the reduction outputs a pair of point sets (A, B), where A, B ⊂ Q5n,

such that X1 and X2 are isomorphic if and only if A and B are isomorphic.

The current best algorithm for Hypergraph Isomorphism [47] crucially uses a group-

theoretic algorithm (for Coset-Intersection of permutation groups) and has running time

O∗(2O(n)) for n-vertex hypergraphs. However, the only known algorithm for computing

44

canonical forms of hypergraphs is the trivial O∗(n!) time algorithm which picks the lexico-

graphically least hypergraph isomorphic to the input hypergraph. Obtaining an O∗(2O(k))

algorithm for computing canonical forms of point sets inQk would imply an O∗(2O(n)) time

(non-group-theoretic) canonization algorithm for hypergraphs, which is a long standing

open problem.

Finally, we note that the complexity of GEOM-GI for point sets inQk in other lp metrics is

open. We do not know if the problem is FPT with k as parameter. One approach to solving

GEOM-GI for a metric space (X, d) is to try and efficiently embed the given points sets

A and B isometrically into a different metric space (X′, d′) for which we already know an

efficient algorithm. For instance, known results about embedding metric spaces imply that

there is a reduction from lk
1-GEOM-GI to l2k

∞-GEOM-GI in time 2k · poly(k, n,M), where

lk
p denotes the lp metric on Qk. We do not know of a reduction that avoids the blow-up

from k to 2k in dimension.

45

46

Chapter 4

The Power of Color-Refinement

The well-known color refinement (also known as naive vertex classification) procedure for

Graph Isomorphism works as follows: it begins with a uniform coloring of the vertices

of two graphs G and H and refines the vertex coloring step by step. In a refinement

step, if two vertices have identical colors but differently colored neighborhoods (with

the multiplicities of colors counted), then these vertices get new different colors. The

procedure terminates when no further refinement of the vertex color classes is possible.

Upon termination, if the multisets of vertex colors in G and H are different, we can cor-

rectly conclude that they are not isomorphic. However, color refinement sometimes fails

to distinguish non-isomorphic graphs. The simplest example is given by any two non-

isomorphic regular graphs of the same degree with the same number of vertices. Never-

theless, color refinement turns out to be a useful tool not only in isomorphism testing but

also in a number of other areas; see [67, 71, 80] and references there.

For which pairs of graphs G and H does the color refinement procedure succeed in solv-

ing Graph Isomorphism? We say that color refinement succeeds on a graph G if it distin-

guishes G from any non-isomorphic H. A graph on which color refinement succeeds is

called amenable. There are interesting classes of amenable graphs:

47

1. An obvious class of amenable graphs is formed by unigraphs. Unigraphs are graphs

that are determined up to isomorphism by their degree sequences.

2. Trees are known to be amenable (Edmonds [58, 86]).

3. It is easy to see that all graphs for which the color refinement procedure terminates

with singleton color classes (i.e. with the discrete partition of the vertex set) are

amenable. We call such graphs discrete. Babai, Erdös, and Selkow [52] have shown

that a random graph Gn,1/2 is discrete with high probability (moreover, the discrete

partition of Gn,1/2 is reached within at most two refinement steps). Thus, almost all

graphs are amenable, which makes graph isomorphism efficiently solvable in the

average case (see also [53]).

Which graphs are amenable? In this chapter, our aim is to determine the exact range

of applicability of color refinement. We find an efficient characterization of the entire

class of amenable graphs, which allows for a quasilinear-time test whether or not color

refinement succeeds on a given graph. Formally, the main result of this chapter is the

following

Theorem 20. The class of amenable graphs is recognizable in time O((n + m) log n),

where n and m denote the number of vertices and edges of the input graph.

We note that a weak a priori upper bound for the complexity of recognizing amenable

graphs is coNPGI[1], where the superscript means the one-query access to an oracle solving

the Graph Isomorphism problem. To the best of our knowledge, no better upper bound

was known before.

We also state the logical aspects of our result. A counting quantifier ∃m opens a sentence

saying that there are at least m elements satisfying some property. Immerman and Lander

[69] discovered an intimate connection between color refinement and 2-variable first-

order logic with counting quantifiers. This connection implies that amenability of a graph

48

is equivalent to its definability in this logic, yielding the following corollary of Theorem

20.

Corollary 3. The class of graphs definable in 2-variable first-order logic with counting

quantifiers can be recognized in polynomial time.

This chapter is organized as follows. In Section 4.1, we introduce necessary notation and

definitions. In Sections 4.2 and 4.3, we develop a set of necessary conditions for a graph

to be amenable. In Section 4.4, we show that these conditions are indeed sufficient for

a graph to be amenable. This gives us a characterization of graphs which are amenable.

In Section 4.5, we complete the proof of Theorem 20. We also mention some important

consequences of our result.

Related work. A characterization of amenable graphs similar to that in the present

chapter has been suggested independently by Kiefer, Schweitzer, and Selman [72]. More-

over, they obtain a generalization of this result to arbitrary relational structures (which

includes, in particular, directed graphs, while our treatment is focused on undirected

graphs).

4.1 Preliminaries

The vertex set of a graph G is denoted by V(G). The vertices adjacent to a vertex u ∈ V(G)

form its neighborhood N(u). A set of vertices X ⊆ V(G) induces a subgraph of G, that is

denoted by G[X]. For two disjoint subsets of V(G), X and Y , G[X,Y] denotes the bipartite

subgraphs of G on vertex sets X and Y where edge set is {{x, y} ∈ E(G) | x ∈ X, y ∈ Y}.

The vertex-disjoint union of graphs G and H will be denoted by G + H. Furthermore, we

write mG for the disjoint union of m copies of G. Recall that the complement of a graph

G has the same vertex set and exactly those edges that are absent in G. The bipartite

complement of a bipartite graph G with vertex classes X and Y is the bipartite graph G′

49

with the same vertex classes such that {x, y} with x ∈ X and y ∈ Y is an edge in G′ if and

only if it is not an edge in G. We use the standard notation Kn for the complete graph on

n vertices, Ks,t for the complete bipartite graph whose vertex classes have s and t vertices,

and Cn for the cycle on n vertices.

For technical convenience, we will consider graphs to be vertex-colored. A vertex-colored

graph is an undirected simple graph G endowed with a vertex coloring c : V(G) →

{1, . . . , k}. Automorphisms of a vertex-colored graph and isomorphisms between vertex-

colored graphs are required to preserve vertex colors.

Given a graph G, the color-refinement algorithm (to be abbreviated as CR) iteratively

computes a sequence of colorings Ci of V(G). The initial coloring C0 is the vertex coloring

of G, i.e., C0(u) = c(u). Then,

Ci+1(u) =
(
Ci(u),

{{
Ci(a) : a ∈ N(u)

}})
, (4.1)

where {{. . .}} denotes a multiset.

The partition Pi+1 of V(G) into the color classes of Ci+1 is a refinement of the partition Pi

corresponding to Ci. It follows that, eventually, Ps+1 = Ps for some s; hence, Pi = Ps for

all i ≥ s. The partition Ps is called the stable partition of G and denoted by PG.

Given a partition P of the vertex set of a graph G, we call its elements cells. We call P

equitable if:

(i) Each cell X ∈ P is monochromatic, i.e., all vertices u, v ∈ X have the same color

c(u) = c(v).

(ii) For any cell X ∈ P the graph G[X] induced by X is regular, that is, all vertices in

G[X] have equal degrees.

(iii) For any two cells X,Y ∈ P the bipartite graph G[X,Y] induced by X and Y is

biregular, that is, all vertices in X have equally many neighbors in Y and vice versa.

50

It is easy to see that the stable partition of G is equitable; our analysis in the next section

will make use of this fact.

A straightforward inductive argument shows that the colorings Ci are preserved under

isomorphisms.

Lemma 6. If φ is an isomorphism from G to H, then Ci(u) = Ci(φ(u)) for any vertex u

of G.

Lemma 6 readily implies that, if graphs G and H are isomorphic, then

{{
Ci(u) : u ∈ V(G)

}}
=

{{
Ci(v) : v ∈ V(H)

}}
(4.2)

for all i ≥ 0.

When used for isomorphism testing, the CR algorithm accepts two graphs G and H as

isomorphic exactly when the above condition is met on input G + H. Note that this

condition is actually finitary: If Equality (4.2) is false for some i, it must be false for some

i < 2n, where n denotes the number of vertices in each of the graphs. This follows from

the observation that the partition P2n−1 induced by the coloring C2n−1 must be the stable

partition of the disjoint union of G and H. In fact, Equality (4.2) holds true for all i if it is

true for i = n; see, e.g., [75]. Thus, it is enough that CR verifies (4.2) for i = n.

Note that computing the vertex colors literally according to (4.1) would lead to an expo-

nential growth of the lengths of color names. This can be avoided by renaming the colors

after each refinement step. Then CR never needs more than n color names (appearance of

more than n colors is an indication that the graphs are non-isomorphic).

Definition 4. We call a graph G amenable if for every graph H, procedure CR works

correctly on the input pair G and H. That is, Equality (4.2) is false for i = n whenever

H � G.

51

4.2 Local Structure of Amenable Graphs

In this section, we state and prove certain necessary conditions for a graph to be amenable.

These conditions will unravel the local structure of an amenable graph in the following

sense. Consider the stable partition PG of an amenable graph G. Our conditions will

restrict the possible regular and biregular graphs that can occur, respectively, as G[X] and

G[X,Y] for cells X,Y of PG. Formally, the local conditions are stated in the following

Lemma 7. The stable partition PG of an amenable graph G fulfills the following proper-

ties:

(A) For any cell X ∈ PG, G[X] is an empty graph, a complete graph, a matching graph

mK2, the complement of a matching graph, or the 5-cycle;

(B) For any two cells X,Y ∈ PG, G[X,Y] is an empty graph, a complete bipartite graph,

a disjoint union of |X| = s stars K1,t where the s centers constitute X and st leaves

constitute Y, or the bipartite complement of the last graph.

The proof of Lemma 7 is based on the following facts. We will require the following

definition. Graphs which are determined by their degree sequence are called unigraphs.

Lemma 8 (Johnson [70]). A regular graph of degree d with n vertices is a unigraph if

and only if d ∈ {0, 1, n − 2, n − 1} or d = 2 and n = 5.1

Lemma 9 (Koren [74]). A bipartite graph is determined up to isomorphism by the condi-

tions that each of the m vertices in one part has degree c and each of the n vertices in the

other part has degree d if and only if c ∈ {0, 1, n − 1, n} or d ∈ {0, 1,m − 1,m}.

If G contains a subgraph G[X] or G[X,Y] that is induced by some X,Y ∈ PG but not

listed in Lemma 7, then Lemmas 8 and 9 imply that this subgraph can be replaced by a

non-isomorphic regular or biregular graph with the same parameters. Hence, in order to
1The last case, in which the graph is the 5-cycle, is missing from the statement of this result in [70,

Theorem 2.12]. The proof in [70] tacitly considers only graphs with at least 6 vertices.

52

prove Lemma 7 it suffices to show that the resulting graph H is indistinguishable from G

by color refinement. The graphs G and H in the following lemma have the same vertex

set. Given a vertex u, we distinguish its neighborhoods NG(u) and NH(u) and its colors

Ci
G(u) and Ci

H(u) in the two graphs.

Lemma 10. Let X and Y be cells of the stable partition of a graph G.

(i) If H is obtained from G by replacing the edges of the subgraph G[X] with the edges of

an arbitrary regular graph of the same degree on the same vertex set X, then Ci
G(u) =

Ci
H(u) for any u ∈ V(G) and any i.

(ii) If H is obtained from G by replacing the edges of the subgraph G[X,Y] with the edges

of an arbitrary biregular graph with the same vertex partition such that the vertex

degrees remain unchanged, then Ci
G(u) = Ci

H(u) for any u ∈ V(G) and any i.

Proof. We proceed by induction on i. In the base case of i = 0 the claim is trivially true.

Assume that Ci
G(a) = Ci

H(a) for all a ∈ V(G). We consider an arbitrary vertex u and prove

that

Ci+1
G (u) = Ci+1

H (u). (4.3)

From now on we treat Parts (i) and (ii) separately.

(i) Suppose first that u < X. Since the transformation of G into H does not affect the

edges emanating from u, we have NG(u) = NH(u). Looking at the definition (4.1), we

immediately derive (4.3) from the induction assumption.

If u ∈ X, we only have the equality NG(u) \ X = NH(u) \ X, implying that

{{
Ci

G(a) : a ∈ NG(u) \ X
}}

=
{{
Ci

H(a) : a ∈ NH(u) \ X
}}
. (4.4)

The equality NG(u)∩X = NH(u)∩X is not necessarily true. However, u has equally many

neighbors from X in G and in H. Furthermore, for any two vertices a and a′ in X we have

Ci
G(a) = Ci

G(a′) because X is a cell of G, and Ci
H(a) = Ci

G(a) = Ci
G(a′) = Ci

H(a′) by the

53

induction assumption. That is, all vertices in X have the same Ci-color both in G and in

H. It follows that

{{
Ci

G(a) : a ∈ NG(u) ∩ X
}}

=
{{
Ci

H(a) : a ∈ NH(u) ∩ X
}}
. (4.5)

Combining (4.4) and (4.5), we conclude that (4.3) holds in any case.

(ii) If u < X ∪ Y , we have NG(u) = NH(u) and Equality (4.3) readily follows from the

induction assumption.

Suppose that u ∈ Y . In this case we still have (4.4) and, exactly as in Part (i), we also

derive (4.5). Equality (4.3) follows. The case of u ∈ X is symmetric. �

We are now ready to finish the proof of Lemma 7.

Proof of Lemma 7. (A) If G[X] is a graph not from the list, by Lemma 8, it is not a

unigraph. Hence, we can modify G locally on X by replacing G[X] with a non-isomorphic

regular graph with the same parameters. Part (i) of Lemma 10 implies that the resulting

graph H satisfies Equality (4.2) for any i, implying that CR does not distinguish between

G and H. The graphs G and H are non-isomorphic because, by Part (i) of Lemma 10 and

by Lemma 6, an isomorphism from G to H would induce an isomorphism from G[X] to

H[X]. This shows that G is not amenable.

(B) This condition follows, similarly to Condition A, from Lemma 9 and Part (ii) of

Lemma 10.

�

54

4.3 Global Structure of Amenable Graphs

In this section, we continue to state and prove certain necessary conditions for a graph to

be amenable. These conditions will unravel the global structure of an amenable graph in

the following sense. From the previous section, we already have certain local conditions

on the cell graph of an amenable graph. Let us proceed with a formal description of our

conditions.

Consider the stable partition PG of an amenable graph G. Recall that PG is the stable

partition of the vertex set of a graph G, and that elements of PG are called cells. We define

the auxiliary cell graph C(G) of G to be the complete graph on the vertex set PG with the

following labeling of vertices and edges. A vertex X of C(G) is designated homogeneous

if the graph G[X] is complete or empty and heterogeneous otherwise. An edge {X,Y} of

C(G) is designated isotropic if the bipartite graph G[X,Y] is either complete or empty

and anisotropic otherwise. A path X1X2 . . . Xl in C(G) where every edge {Xi, Xi+1} is

anisotropic will be referred to as an anisotropic path. If also {Xl, X1} is an anisotropic

edge, we speak of an anisotropic cycle. In the case that |X1| = |X2| = . . . = |Xl|, such a

path (or cycle) is called uniform.

For graphs fulfilling Conditions A and B of Lemma 7 we refine the labeling of the ver-

tices and edges of C(G) as follows. A heterogeneous cell X ∈ PG is called matching,

co-matching, or pentagonal depending on the type of G[X]. Note that a matching or co-

matching cell X always consists of at least 4 vertices. Further, an anisotropic edge {X,Y}

is called constellation if G[X,Y] is a disjoint union of stars, and co-constellation other-

wise (in the latter case, the bipartite complement of G[X,Y] is a disjoint union of stars).

Likewise, homogeneous cells X (and isotropic edges {X,Y}) are called empty if the graph

G[X] (resp. G[X,Y]) is empty, and complete otherwise.

Note that if an edge {X,Y} of a uniform path or cycle is a constellation, then G[X,Y] is a

matching graph.

55

The following lemma states some necessary conditions on the cell graph of an amenable

graph. Figure 4.1 gives a schematic illustration of these necessary conditions.

Lemma 11. The cell graph C(G) of an amenable graph G has the following properties:

(C) C(G) contains no uniform anisotropic path connecting two heterogeneous cells;

(D) C(G) contains no uniform anisotropic cycle;

(E) C(G) contains neither an anisotropic path XY1 . . . YlZ such that |X| < |Y1| = . . . =

|Yl| > |Z| nor an anisotropic cycle XY1 . . . YlX such that |X| < |Y1| = . . . = |Yl|;

(F) C(G) contains no anisotropic path XY1 . . . Yl such that |X| < |Y1| = . . . = |Yl| and the

cell Yl is heterogeneous.

Condition (C)

Condition (D)

Condition (E)

Condition (F)

Figure 4.1. Conditions (C)-(F) on the cells (homogeneous and heterogeneous) and
the anisotropic edges .

Proof. (C) Figure 4.2 gives a graphical description of this condition. Suppose that P

is a uniform anisotropic path in C(G) connecting two heterogeneous cells X and Y . Let

k = |X| = |Y |. Complementing G[A, B] for each co-constellation edge {A, B} of P, in G

we obtain k vertex-disjoint paths connecting X and Y . These paths determine a one-to-

one correspondence between X and Y . Given v ∈ X, denote its mate in Y by v∗. Call P

56

conducting if this correspondence is an isomorphism between G[X] and G[Y], that is, two

vertices u and v in X are adjacent exactly when their mates u∗ and v∗ are adjacent. We

also call P conducting if one of X and Y is a matching and the other is a co-matching, and

additionally the correspondence is an isomorphism between G[X] and the complement

of G[Y].

We construct a non-isomorphic graph H such that CR does not distinguish between G

and H. Since X and Y are heterogeneous, we can replace the edges of the subgraph G[X]

with the edges of an isomorphic but different graph on the same vertex set X such that

P is a conducting path in the resulting graph H if and only if P is a non-conducting path

in G. Now, Part (i) of Lemma 10 implies that CR computes the same coloring for G and

H and does not distinguish between them. On the other hand, Lemma 6 implies that any

isomorphism φ between G and H must map each cell to itself. Since φ(v∗) = φ(v)∗, φ must

also preserve the conducting property along the path P. It follows that G and H are not

isomorphic. Hence, G is not amenable.

(D) Suppose that C(G) contains a uniform anisotropic cycle Q of length m. All cells

in Q have the same cardinality, say k. Complementing G[A, B] for each co-constellation

edge {A, B} of Q, in G we obtain the vertex-disjoint union of cycles whose lengths are

multiples of m. As two extreme cases, we can have k cycles of length m each or we can

have a single cycle of length km. Denote the isomorphism type of this union of cycles

by τ(Q). Note that this type is isomorphism invariant: For an isomorphism φ from G to

Cell X Cell Y

anisotropic

path P

1 2
3 4
5 6

3∗ 4∗
5∗ 6∗

1∗ 2∗

Conducting case

Cell X Cell Y

anisotropic

path P

1 2
3 4
5 6

3∗ 4∗
5∗ 6∗

1∗ 2∗

Non-conducting case

Figure 4.2. Conducting and non-conducting anisotropic paths

57

another graph H, τ(φ′(Q)) = τ(Q) for the induced isomorphism φ′ from C(G) to C(H).

Let X and Y be two consecutive cells in Q. We can replace the subgraph G[X,Y] with an

isomorphic but different bipartite graph so that in the resulting graph H, τ(Q) becomes

either kCm or Ckm, whatever we wish. In particular, we can replace the subgraph G[X,Y]

in such a way that τ(Q) is changed.

Similarly as for Condition C, we use Part (ii) of Lemma 10 to argue that CR does not

distinguish between G and H. Furthermore, G � H because the types τ(Q) in G and H

are different. Therefore, G is not amenable.

(E) Suppose that C(G) contains an anisotropic path P = XY1 . . . YlZ such that |X| <

|Y1| = . . . = |Yl| > |Z| (for the case of a cycle, where Z = X, the argument is virtually

the same). Let G[X,Y1] = sK1,t and G[Z,Yl] = aK1,b, where s, a, t, b ≥ 2 (if any of these

subgraphs is a co-constellation, we consider its complement). Thus, |X| = s, |Z| = a, and

|Y1| = |Yl| = st = ab.

Like in the proof of Condition C, the uniform anisotropic path Y1 . . . Yl determines a

one-to-one correspondence between the cells Y1 and Yl that can be used to make the

identification Y1 = Yl = {1, 2, . . . , st} = Y . For each x ∈ X, let Yx denote the set of vertices

in Y adjacent to x. The set Yz is defined similarly for each z ∈ Z. Note that for any x , x′

in X and z , z′ in Z,

|Yx| = t, |Yz| = b, Yx ∩ Yx′ = ∅, and Yz ∩ Yz′ = ∅.

We regard YG = {Yx }x∈X ∪ {Yz }z∈Z as a hypergraph on the vertex set Y . Note that YG

has multiple hyperedges if Yx = Yz for some x and z. Without loss of generality, we

can assume that the hyperedges Yz, z ∈ Z, form consecutive intervals in Y . We call the

anisotropic path P flat, if there exists no pair (x, z) ∈ X × Z such that one of the two

hyperedges Yx and Yz is contained in the other.

We construct a non-isomorphic graph H such that CR does not distinguish between G

58

and H. If P is flat in G, we replace the edges of the subgraph G[X,Y1] by the edges of

an isomorphic but different biregular graph such that P becomes non-flat in the resulting

graph H. More precisely, we replace the edges in such a way that all hyperedges of YH

form consecutive intervals in Y by letting YH = {Yi }i∈[s] ∪ {Yz }z∈Z, where Yi = {(i − 1)t +

1, . . . , it}. Likewise, if P is non-flat in G, we replace the edges of G[X,Y1] such that P

becomes flat in H by letting Yi = {i, i + s, . . . , i + (t − 1)s}.

Now, Part (i) of Lemma 10 implies that CR computes the same coloring for G and H

and does not distinguish between them. On the other hand, Lemma 6 implies that any

isomorphism φ between G and H must map each cell to itself. As φ must also preserve

the flatness property of the path P, it follows that G and H are not isomorphic. Hence, G

is not amenable.

(F) Suppose that C(G) contains an anisotropic path XY1 . . . Yl where |X| < |Y1| = . . . = |Yl|

and Yl is heterogeneous. Let G[X,Y1] = sK1,t (in the case of a co-constellation, we

consider the complement). Since s, t ≥ 2 and |Y1| = st, the cell Yl cannot be pentagonal.

Considering the complement if needed, we can assume without loss of generality that

Yl is matching. Like in the proof of Condition E, the uniform anisotropic path Y1 . . . Yl

determines a one-to-one correspondence between the cells Y1 and Yl that can be used to

make the identification Y1 = Yl = {1, 2, . . . , st} = Y . Consider the hypergraph YG =

{Yx }x∈X ∪ E, where Yx = N(x) ∩ Y1 and E consists of the pairs of adjacent vertices in

G[Yl]. Now, exactly as in the proof of Condition E, we can change the isomorphism type

of YG by replacing the edges of the subgraph G[X,Y1] by the edges of an isomorphic

biregular graph. This yields a non-isomorphic graph H that is indistinguishable from G

by CR. �

59

4.4 Proof of Theorem 20

In this section, we finish the proof of Theorem 20. First, we establish that Conditions A–F

are not only necessary for amenability (as shown in Lemmas 7 and 11) but also sufficient.

Second, we use this characterization to obtain an efficient algorithm for amenability test-

ing.

As a preparation we first prove the following Lemma 12 that reveals a tree-like structure

of amenable graphs. By an anisotropic component of the cell graph C(G) we mean a

maximal connected subgraph of C(G) whose edges are all anisotropic. Note that if a

vertex of C(G) has no incident anisotropic edges, it forms a single-vertex anisotropic

component.

Lemma 12. Suppose that a graph G satisfies Conditions A–F. The following conditions

hold.

(G) For any anisotropic component A of C(G), A is a tree with the following monotonicity

property. Let R be a cell in A of minimum cardinality and let AR be the rooted directed

tree obtained from A by rooting A at R. Then |X| ≤ |Y | for any directed edge (X,Y)

of AR.

(H) For any anisotropic component A of C(G), A contains at most one heterogeneous

vertex. If R is such a vertex, it has minimum cardinality among the cells of A.

Proof. (G) A cannot contain any uniform cycle by Condition D and any other cycle by

Condition E. The monotonicity property follows from Condition E.

(H) Assume that A contains more than one heterogeneous cell. Consider two such cells

S and T . Let S = Z1,Z2, . . . ,Zl = T be the path from S to T in A. The monotonicity

property stated in Condition G implies that there is j (possibly j = 1, l) such that |Z1| ≥

. . . ≥ |Z j| ≤ . . . ≤ |Zl|. Since the path cannot be uniform by Condition C, at least one of

the inequalities is strict. However, this contradicts Condition F.

60

Suppose that R is a heterogeneous cell in A. Consider now a path R = Z1,Z2, . . . ,Zl = S

in A where S is a cell with the smallest cardinality. By the monotonicity property and

Condition F, this path must be uniform, proving that |R| = |S |. �

In combination with Conditions A and B, Conditions G and H on anisotropic components

give a very stringent characterization of amenability.

Theorem 21. For a graph G the following conditions are equivalent:

(i) G is amenable.

(ii) G satisfies Conditions A–F.

(iii) G satisfies Conditions A, B, G and H.

Proof. It only remains to show that any graph G fulfilling the Conditions A, B, G and H

is amenable. Let H be a graph indistinguishable from G by CR. Then we have to show

that G and H are isomorphic.

Consider the coloring C s corresponding to the stable partition Ps of the disjoint union

G + H. Since G and H satisfy Equality (4.2) for i = s, there is a bijection f : PG → PH

matching each cell X of the stable partition of G to the cell f (X) ∈ PH such that the

vertices in X and f (X) have the same C s-color. Moreover, Equality (4.2) implies that

|X| = | f (X)|. We claim that for any cells X and Y of G,

(a) G[X] � H[f (X)] and

(b) G[X,Y] � H[f (X), f (Y)],

implying that f is an isomorphism from C(G) to C(H).

Indeed, since X and f (X) are cells of the stable partitions PG and PH, both G[X] and

H[f (X)] are regular. Since X ∪ f (X) is a cell of the stable partition Ps of G + H, the

61

graphs G[X] and H[f (X)] have the same degree. By Condition A, G[X] is a unigraph,

implying Property (a). Property (b) follows from Condition B by a similar argument.

We now construct an isomorphism φ from G to H. By Lemma 6, we should have φ(X) =

f (X) for each cell X. Therefore, we have to define the map φ : X → f (X) on each X.

By Condition H, an anisotropic component A of the cell graph C(G) contains at most one

heterogeneous cell. Denote it by RA if it exists. Otherwise fix RA to be an arbitrary cell of

the minimum cardinality in A.

For each A, define φ on R = RA to be an arbitrary isomorphism from G[R] to H[f (R)],

which exists according to (a). After this, propagate φ to any other cell in A as follows. By

Condition G, A is a tree. Let AR be the directed rooted tree obtained from A by rooting it at

R. Suppose that φ is already defined on X and (X,Y) is an edge in A. By the monotonicity

property in Condition G and our choice of R, we can assume that |X| ≤ |Y |. Then φ can

be extended to Y so that this is an isomorphism from G[X,Y] to H[f (X), f (Y)]. This is

possible by (b) due to the fact that all vertices in Y have degree 1 in G[X,Y] or its bipartite

complement (and the same holds for all vertices in f (Y) in the graph H[f (X), f (Y)]).

It remains to argue that the map φ obtained in this way is indeed an isomorphism from G

to H. It suffices to show that φ is an isomorphism between G[X] and H[f (X)] for each

cell X of G and between G[X,Y] and H[f (X), f (Y)] for each pair of cells X and Y .

If X is homogeneous, f (X) is homogeneous of the same type, complete or empty, ac-

cording to (a). In this case, any φ is an isomorphism from G[X] to H[f (X)]. If X is

heterogeneous, the assumption of the lemma says that it belongs to a unique anisotropic

component A (and X = RA). Then φ is an isomorphism from G[X] to H[f (X)] by con-

struction.

If {X,Y} is an isotropic edge of C(G), then (b) implies that { f (X), f (Y)} is an isotropic

edge of C(H) of the same type, complete or empty. In this case, φ is an isomorphism from

G[X,Y] to H[f (X), f (Y)], no matter how it is defined. If {X,Y} is anisotropic, it belongs to

62

some anisotropic component A, and φ is an isomorphism from G[X,Y] to H[f (X), f (Y)]

by construction. �

We are now ready to finish the proof of Theorem 20. Our characterization of amenable

graphs via Conditions A, B, G and H leads to an efficient test for amenability of a given

graph, that has the same time complexity as CR. It is known (Cardon and Crochemore

[60]; see also [54]) that the stable partition of a given graph G can be computed in time

O((n + m) log n). It is supposed that G is presented by its adjacency list.

Proof of Theorem 20. Using known algorithms, we first compute the stable partition

PG = {X1, . . . , Xk} of the input graph G. Let C∗(G) be the version of the cell graph C(G)

where all isotropic edges are removed. We check if the graph G satisfies Conditions A,B,

G and H as follows.

• Condition A, B: Using the representations of G and PG, compute the adjacency list

representation of C∗(G) as follows.

– Given a vertex Xi of C∗(G), pick a vertex u ∈ Xi of G.

– Traverse the adjacency list of u and list all the cells X j such that there is a

vertex v ∈ X j adjacent to u. Also, count the number di j of vertices in X j which

occur in the adjacency list of u.

Knowing the numbers |Xi| and di j for every edge of C∗(G), we can check Condi-

tions A and B of Lemma 7.

• Condition G,H: Do a BFS on C∗(G).

– if there are cycles in C∗(G), output non-amenable.

– Otherwise, for each acyclic component of C∗(G), find the number NA of het-

erogeneous cells.

∗ If NA > 1, output the graph to be non-amenable.

63

∗ If NA = 1, check if it has minimum cardinality. If not, output non-

amenable. Otherwise, restart the BFS search in C∗(G) from this cell.

Check if the monotonicity property of Condition G is fulfilled for each

forward edge of the resulting search tree.

∗ If NA = 0, restart the BFS search in C∗(G) from an arbitrary cell in A

having minimum cardinality. Check if the monotonicity property of Con-

dition G is fulfilled for each forward edge of the resulting search tree.

This clearly suffices to check Conditions G, H.

�

4.5 Examples and Applications

Theorem 21 is a convenient tool for verifying amenability. For example, amenability of

discrete graphs is a well-known fact. Recall that those are graphs whose stable parti-

tions consist of singletons. Since the cell graph has no anisotropic edge in this case, any

anisotropic component of a discrete graph consists of a single cell. Hence, Conditions A

and B as well as Conditions G and H on anisotropic components are fulfilled by trivial

reasons.

Checking these four conditions, we can also reprove the amenability of trees. Moreover,

our argument extends to the class of forests. The amenability of forests follows also

from [78, Theorem 2.5]; here we give an alternative proof to illustrate applicability of

our criterion. Note that the extension to forests is not a straightforward fact because the

class of amenable graphs is not closed under disjoint unions (for example, C3 + C4 is

indistinguishable by CR from C7 and, hence, is not amenable).

Corollary 4. All forests are amenable.

64

Proof. A regular acyclic graph is either an empty or a matching graph. This implies

Condition A. Condition B follows from the observation that biregular acyclic graphs are

either empty or disjoint unions of stars.

Let C∗(G) be the version of the cell graph C(G) where all empty edges are removed. If

C∗(G) contains a cycle, G must contain a cycle as well. Therefore, if G is acyclic, then

C∗(G) is acyclic too, and any anisotropic component of C(G) must be a tree. To prove

the monotonicity property in Condition G, it suffices to show that C(G) cannot contain an

anisotropic path XY1 . . . YlZ with |X| < |Y1| = · · · = |Yl| > |Z|. But this easily follows since

in this case each vertex of the induced subgraph G[X ∪ Y1 ∪ . . . ∪ Yl ∪ Z] has degree at

least 2 in G, contradicting the acyclicity of G.

To prove Condition H, suppose that C(G) contains an anisotropic path X0, X1, . . . , Xl con-

necting two heterogeneous cells X0 and Xl. Then each vertex of the induced subgraph

G[X0 ∪ X1 ∪ . . . ∪ Xl−1 ∪ Xl] has degree at least 2 in G, a contradiction. The same con-

tradiction arises if such a path connects a heterogeneous cell X0 with an arbitrary cell Xl,

where |Xl| < |Xl−1|. Hence, X0 must have minimum cardinality among all cells belonging

to the same anisotropic component. �

The closure properties of amenable graphs under disjoint unions admit a combinatorial

characterization in terms of covering graphs. The relationship of the last concept to CR

was first noticed by Angluin in [48], where it was used in the area of distributed compu-

tations. A surjective homomorphism from a graph K to a graph G is a covering map if

its restriction to the neighborhood of each vertex in K is bijective. If there is a covering

map from K to G (in other terms, K covers G), then K is called a covering graph of G.

Restricting these notions to connected graphs, we say that a graph U is a universal cover

of a graph G if U covers every covering graph of G. A universal cover U = UG of G is

unique up to isomorphism. Alternatively, UG can be defined as a tree that covers G. If G

is itself a tree, then UG � G; otherwise the tree UG is infinite. Two graphs G and H have

a common covering graph if and only if UG � UH.

65

A straightforward inductive argument shows that a covering map α from K to G preserves

the coloring produced by CR, that is, Ci(u) = Ci(α(u)) for all i, where Ci is defined by

(4.1). This generalizes Lemma 6. It follows that, if G and H have a common covering

graph, then {
Ci(u) : u ∈ V(G)

}
=

{
Ci(v) : v ∈ V(H)

}
for all i. (4.6)

On the other hand, Equality (4.6) is false for all i ≥ n if G and H have no common cover

and each of the graphs has at most n vertices. This justifies the use of CR by Angluin

[48] for deciding if two given graphs have a common cover. Moreover, in the last case we

have (see [75]) {
C2n(u) : u ∈ V(G)

}
∩

{
C2n(v) : v ∈ V(H)

}
= ∅. (4.7)

Corollary 5. (i) Suppose that G and H are connected amenable graphs. Then G + H is

amenable if and only if G is a tree or UG � UH.

(ii) Suppose, in addition, that G and H have an equal number of vertices. Then G + H is

amenable if and only if G is a tree or G � H.

Proof. (i) We split the proof into two cases depending on whether or not UG � UH, that

is, whether or not G and H have a common covering graph.

Suppose first that UG � UH. Equality (4.7) implies that PG+H = PG ∪ PH, that is, the

stable partition of G + H consists of the cells of the stable partitions of G and H. Since

G and H are amenable, their cells fulfil Condition A. Therefore, Condition A holds true

also for G + H. Since the cell graph C(G + H) is obtained from C(G) and C(H) by joining

each cell of G with each cell of H by an anisotropic (empty) edge, also Condition B is

fulfilled for G + H. Moreover, every anisotropic component of C(G + H) is an anisotropic

component either of C(G) or of C(H). It follows that G + H also satisfies Conditions G

and H and, therefore, G + H is amenable by Theorem 21.

Consider now the case that UG � UH. If G is a tree, then H � G, and G + H is amenable

by Corollary 4. Suppose that G is not a tree. We have to show that G + H is not amenable.

66

Equality (4.6) implies that there is a one-to-one correspondence between the cells in PG

andPH such that the vertices in the corresponding cells always have the same colors in the

course of the CR procedure. It follows that PG+H = {X ∪ X′ : X ∈ PG}, where X′ ∈ PH

denotes the counterpart of a cell X ∈ PG.

Using the existence of a cycle in G, we show that G + H is not amenable by constructing a

graph F such that F is connected (hence, non-isomorphic to G + H) and indistinguishable

from G + H by CR. Our construction of F is based on two pairs of vertices u, v ∈ V(G)

and u′, v′ ∈ V(H) satisfying the following conditions:

(a) u and v are adjacent in G, and u′ and v′ are adjacent in H.

(b) The edge {u, v} belongs to a cycle C in G.

(c) Let X and Y be the cells of PG containing the vertices u and v respectively, and let

X′ and Y ′ be their counterparts in PH. Then u′ ∈ X′ and v′ ∈ Y ′.

We obtain F from G + H by switching the edges {u, v} and {u′, v′} to {u, v′} and {u′, v}.

By Condition (b), the connectivity of the original connected component G is not broken.

Any path in H via the missing edge {u′, v′} can be rerouted via new edges and a part of the

cycle C. Since the two components become connected by new edges, the whole graph F

is connected.

If X = Y , then u, v, u′, and v′ are in the same cell X∪X′ ofPG+H, and F is indistinguishable

from G + H by Part (i) of Lemma 10 (applied to the regular subgraph of G + H induced by

the cell X ∪ X′). If X , Y , then u and u′ are in the cell X ∪ X′, and v and v′ are in the cell

Y ∪ Y ′ of PG+H. In this case, F is indistinguishable from G + H by Part (ii) of Lemma 10

(applied to the biregular bipartite subgraph of G + H induced by the cells X ∪ X′ and

Y ∪ Y ′).

To complete the proof, we have to secure u, v, u′, and v′ with the properties (a)–(c) above.

Choose an edge {u, v} of an arbitrary cycle in G. Let K be a common covering graph of G

67

and H, α be a covering map from K to G, and β be a covering map from K to H. Choose

u′′ to be an arbitrary vertex of K such that α(u′′) = u. Let v′′ be the vertex determined

by the conditions that v′′ ∈ N(u′′) and α(v′′) = v. Finally, set u′ = β(u′′) and v′ = β(v′′).

These vertices are adjacent because they are images of adjacent vertices u′′ and v′′ under

a homomorphism. Since covering maps α and β preserve the colorings produced by CR,

we have Ci(u) = Ci(u′′) = Ci(u′) and Ci(v) = Ci(v′′) = Ci(v′) for any i. This implies

Condition (c).

(ii) We split the proof into two cases depending on whether or not G � H. Suppose

first that G � H. Since G and H are amenable, they are distinguishable by CR. We

use the following fact [76]: Two graphs G and H with the same number of vertices are

distinguishable by CR if and only if they have no common covering graph, i.e., UG � UH.

Now, the amenability of G + H readily follows from Part (i).

If G � H, then UG � UH. It follows directly from Part (i) that G + H is amenable if G is

a tree and not amenable otherwise. �

Corollary 5 easily extends to disjoint unions of any number of connected amenable graphs

G1, . . . ,Gk. If there are two non-tree graphs Gi and G j sharing a common cover, Part (i)

readily implies that G1 + · · · + Gk is not amenable. If there is no such pair Gi,G j, then the

argument for Part (i) shows that G1 + · · ·+Gk is amenable (here we also need the fact that,

by Corollary 4, the forest part of G1 + · · · + Gk is amenable).

68

Chapter 5

The Power of LP Approach to Graph

Isomorphism

A well-known approach to tackling intractable optimization problems is to consider an

appropriate linear programming relaxation. Consider a natural linear algebra formulation

of Graph Isomorphism. Let G and H be two graphs on n vertices with adjacency matrices

A and B, respectively. Then G and H are isomorphic if and only if there is an n × n

permutation matrix X such that AX = XB.

A linear programming relaxation of this system of equations is to allow X to be a doubly

stochastic matrix. If such an X exists, it is called a fractional isomorphism from G to H,

and these graphs are said to be fractionally isomorphic. The following theorem of Ra-

mana, Scheinerman and Ullman [78] shows surprisingly that this approach is equivalent

to color-refinement approach.

Theorem 22 ([78]). Two graphs are indistinguishable by color refinement if and only if

they are fractionally isomorphic.

The concept of a fractional isomorphism was used by Tinhofer in [83] as a basis for yet

another linear-programming approach to isomorphism testing. Tinhofer calls a graph G

69

compact if the polytope of all its fractional automorphisms is integral; more precisely, if A

is the adjacency matrix of G, then the polytope in Rn2
consisting of the doubly stochastic

matrices X such that AX = XA has only integral extreme points (i.e. all coordinates of

these points are integers).

If a compact graph G is isomorphic to another graph H, then the polytope of fractional

isomorphisms from G to H is also integral. If G is not isomorphic to H, then this polytope

has no integral extreme point (and in fact no integral point at all). Thus, isomorphism

testing for a compact graph G and an arbitrary graph H can be done in polynomial time

by using linear programming to compute an extreme point of the polytope and testing if

it is integral. Before testing isomorphism in this way, we need to know that G is compact.

Unfortunately, no efficient characterization of compact graphs is currently known.

In this context, the main result of this chapter is the following

Theorem 23. All amenable graphs are compact.

In other words, amenbility is a sufficient condition for compactness. Moreover, this im-

plies that Tinhofer’s approach to Graph Isomorphism [83] has at least as large an ap-

plicability range as color refinement. More precisely, whenever the restriction of Graph

Isomorphism to input graphs G and H such that G belongs to a class C is solvable by the

latter approach, then it is also solvable by the former approach. In general, Tinhofer’s

approach is even more powerful than color refinement because it is known that the class

of compact graphs contains many regular graphs (for example, all cycles [81]), for which

color refinement cannot refine even the initial coloring.

In the second part of this chapter, we take a closer look at the relationship between the

concepts of compactness and color refinement. Let us call a graph G refinable if the

color partition produced by color refinement coincides with the orbit partition of the au-

tomorphism group of G. It is interesting to note that the color refinement procedure gives

an efficient algorithm to check if a given refinable graph has a nontrivial automorphism.

70

It follows from the results in [83] that all compact graphs are refinable. The inclusion

Amenable ⊂ Compact, therefore, implies that all amenable graphs are refinable as well.

The last result is independently obtained in [72] by a different argument.

Taking a finer look at the inclusion Compact ⊂ Refinable, we discuss algorithmic and

algebraic graph properties that were introduced by Tinhofer [83] and Godsil [64]. Along

with the other graph classes under consideration, we show that the corresponding classes

Tinhofer and Godsil form a hierarchy under inclusion. This is the second main result of

this chapter.

Theorem 24. The classes of graphs under consideration form the inclusion chain

Discrete ⊂ Amenable ⊂ Compact ⊂ Godsil ⊂ Tinhofer ⊂ Refinable. (5.1)

Moreover, all of the inclusions are strict.

Finally, we show that testing membership in each of the classes in the color-refinement

hierarchy is P-hard.

Theorem 25. The recognition problem of each of the classes in the hierarchy (5.1) is

P-hard under uniform AC0 many-one reductions.

We prove the hardness of membership testing by giving a suitable uniform AC0 many-one

reduction from the P-complete monotone boolean circuit-value problem MCVP. More

precisely, for a given MCVP instance (C, x) our reduction outputs a graph GC,x such that

if C(x) = 1 then GC,x is discrete and if C(x) = 0 then GC,x is not refinable. In par-

ticular, the graph classes Discrete and Amenable are P-complete. We note that Grohe

[66] established, for each k ≥ 2, the P-completeness of the equivalence problem for

first-order k-variable logic with counting quantifiers; according to [69], this implies the

P-completeness of indistinguishability of two input graphs by color refinement. We adapt

the gadget construction in [66], that goes back to Cai, Fürer, and Immerman [59], to show

our P-hardness results.

71

This chapter is organized as follows. Section 5.1 contains the necessary definitions and

results relevant to this chapter. In Section 5.2, we give a proof of Theorem 23. In Section

5.3, we give a proof of Theorem 24. In Section 5.4, we give a proof of Theorem 25. We

conclude with a brief discussion about further directions in Section 5.5.

5.1 Preliminaries

An n × n real matrix X is doubly stochastic if its elements are nonnegative and all its

rows and columns sum up to 1. Doubly stochastic matrices are closed under products and

convex combinations. The set of all n × n doubly stochastic matrices forms the Birkhoff

polytope Bn ⊂ Rn2
. Permutation matrices are exactly 0-1 doubly stochastic matrices.

By Birkhoff’s Theorem (see, e.g. [57]), the n! permutation matrices form precisely the

set of all extreme points of Bn. Equivalently, every doubly stochastic matrix is a convex

combination of permutation matrices.

Let G and H be graphs with vertex set {1, . . . , n}. An isomorphism π from G to H can

be represented by the permutation matrix Pπ = (pi j) such that pi j = 1 if and only if

π(i) = j. Denote the set of matrices Pπ for all isomorphisms π by Iso(G,H), and let

Aut(G) = Iso(G,G).

Let A and B be the adjacency matrices of graphs G and H respectively. If the graphs

are uncolored, a permutation matrix X is in Iso(G,H) if and only if AX = XB. For

vertex-colored graphs, X must additionally satisfy the condition X[u, v] = 0 for all pairs

of differently colored u and v, i.e., this matrix must be block-diagonal with respect to the

color classes. We say that (vertex-colored) graphs G and H are fractionally isomorphic if

AX = XB for a doubly stochastic matrix X, where X[u, v] = 0 if u and v are of different

colors. The matrix X is called a fractional isomorphism.

Denote the set of all fractional isomorphisms from G to H by S (G,H) and note that it

forms a polytope in Rn2
. The set of isomorphisms Iso(G,H) is contained in Ext(S (G,H)),

72

where Ext(Z) denotes the set of all extreme points of a set Z. Indeed, Iso(G,H) is the set

of integral extreme points of S (G,H).

The set S (G) = S (G,G) is the polytope of fractional automorphisms of G.

Definition 5 ([81]). A graph G is called compact if S (G) has no other extreme points

than Aut(G), i.e., Ext(S (G)) = Aut(G).

Compactness of G can equivalently be defined by any of the following two conditions:

• The polytope S (G) is integral;

• Every fractional automorphism of G is a convex combination of automorphisms of

G, i.e., S (G) = 〈Aut(G)〉, where 〈Z〉 denotes the convex hull of a set Z.

We recall some well-known examples of compact graphs. Complete graphs are compact.

This can be seen as an immediate consequence of Birkhoff’s theorem. The compactness

of trees and cycles is established in [81]. Matching graphs mK2 are also compact. This is

a particular instance of a much more general result by Tinhofer [83]: If a connected graph

G is compact, then mG is compact for any m. Tinhofer [83] also observes that compact

graphs are closed under complement.

For a negative example, note that the graph C3 + C4 is not compact. This follows from a

general result in [83]: All regular compact graphs must be vertex-transitive (and C3 + C4

is not).

We will need a known fact on the structure of fractional automorphisms. For a partition

V1, . . . ,Vm of {1, . . . , n} let X1, . . . , Xm be matrices, where the rows and columns of Xi

are indexed by elements of Vi. Then we denote the block-diagonal matrix with blocks

X1, . . . , Xm by X1⊕· · ·⊕Xm. The following result shows that the fractional automorphisms

“respect ” the stable color-partition.

73

Lemma 13 (Ramana et al. [78]). Let G be a (vertex-colored) graph on vertex set {1, . . . , n}

and assume that the elements V1, . . . ,Vm of the stable partition PG of G are intervals

of consecutive integers. Then any fractional automorphism X of G has the form X =

X1 ⊕ · · · ⊕ Xm.

Note that the assumption of the lemma can be ensured for any graph by appropriately

renaming its vertices. An immediate consequence of Lemma 13 is that a graph G is

compact if and only if it is compact with respect to its stable coloring.

The following definitions and results will be useful in Section 5.3 and Section 5.4. Let

u ∈ V(G) and v ∈ V(H) be vertices of two graphs G and H. By individualization of u and

v we mean assigning the same new color to u and v, which makes them distinguished from

the remaining vertices of G and H. Tinhofer [83] has shown that, if G is compact, then

the following polynomial-time algorithm correctly decides if G and H are isomorphic.

1. Run CR on G and H until the coloring of V(G) ∪ V(H) stabilizes.

2. If the multisets of colors in G and H are different, then output “non-isomorphic”

and stop. Otherwise,

(a) if all color classes are singletons in G and H, then if the map u 7→ v matching

each vertex u ∈ V(G) to the vertex v ∈ V(H) of the same color is an iso-

morphism, output “isomorphic” and stop. Else output “non-isomorphic” and

stop.

(b) pick any color class with at least two vertices in both G and H, select an

arbitrary u ∈ V(G) and v ∈ V(H) in this color class and individualize them.

Goto Step 1.

If G and H are any two non-isomorphic graphs, then Tinhofer’s algorithm will always

output “non-isomorphic”. However, it can fail for isomorphic input graphs, in general.

We call G a Tinhofer graph if the algorithm works correctly on G and every H for all

74

choices of vertex pairs to be individualized (as specified in Step 2(b)). Thus, the result of

[83] can be stated as the inclusion Compact ⊆ Tinhofer.

Let A be a subgroup of the automorphism group Aut(G) of a graph G. Then the partition

of V(G) into the A-orbits is called an orbit partition of G. Any orbit partition of G is

equitable, but the converse is not true, in general. However, Godsil [64, Corollary 1.3]

has shown that the converse holds for compact graphs. We define Godsil graphs as the

graphs for which the two notions of an equitable and an orbit partition coincide, that is,

every equitable partition is the orbit partition of some subgroup A of Aut(G). Thus, the

result of [64] can be stated as the inclusion Compact ⊆ Godsil.

5.2 Proof of Theorem 23

In this section, we prove Theorem 23. Given an amenable graph G and a fractional auto-

morphism X of G, we have to express X as a convex combination of permutation matrices

in Aut(G). Our proof strategy consists in exploiting the structure of amenable graphs as

described by Theorem 21. Given an anisotropic component A of the cell graph C(G), we

define the anisotropic component GA of G as the subgraph of G induced by the union of all

cells belonging to A. Our overall idea is to prove the claim separately for each anisotropic

component GA, applying an inductive argument on the number of cells in A. A key role

will be played by the fact that, according to Theorem 21, A is a tree with at most one

heterogeneous cell.

We can assume that G is colored by the stable coloring because, by Lemma 13, the colored

version has the same polytope of fractional automorphisms. We first consider the case

when G consists of a single anisotropic component A. By Theorem 21, the corresponding

cell graph C(G) has at most one heterogeneous vertex, and A forms a spanning tree of

C(G). Without loss of generality, we can number the cells V1, . . . ,Vm of G so that V1

is the unique heterogeneous cell if it exists; otherwise V1 is chosen among the cells of

75

minimum cardinality. Moreover, we can suppose that, for each i ≤ m, the cells V1, . . . ,Vi

induce a connected subgraph in the tree A.

We will prove by induction on i = 1, . . . ,m that the graphs Gi = G[V1 ∪ · · · ∪ Vi] are

compact. In the base case of i = 1, the graph G1 = G[V1] is one of the graphs listed

in Condition A of Theorem 21. All of them are known to be compact; see [81, 83]. As

induction hypothesis, assume that the graph Gi−1 is compact. For the induction step, we

have to show that also Gi is compact.

Denote D = Vi. Since G has no more than one heterogeneous cell, G[D] is complete or

empty. It will be instructive to think of D as a “leaf” cell having a unique anisotropic link

to the remaining part Gi−1 of Gi. Let C ∈ {V1, . . . ,Vi−1} be the unique cell such that {C,D}

is an anisotropic edge of C(Gi). To be specific, suppose that G[C,D] � sK1,t. If G[C,D]

is the bipartite complement of sK1,t, we can consider the complement of Gi, using the fact

that the polytope of fractional automorphisms is the same for a graph and its complement.

By the monotonicity property stated in Condition C of Theorem 21, |C| = s and |D| = st.

Let C = {c1, c2, . . . , cs} and, for each j, N(c j) ⊆ D be the neighborhood of c j in G[C,D].

Thus, D =
⋃s

j=1 N(c j).

Let X be a fractional automorphism of Gi. It is convenient to break it up into three blocks

X = X′ ⊕ Y ⊕ Z, where Y and Z correspond to C and D respectively, and X′ is the rest. By

induction hypothesis we have the convex combination

X′ ⊕ Y =
∑

P′⊕P∈Aut(Gi−1)

αP′,P P′ ⊕ P, (5.2)

where P′ ⊕ P are permutation matrices corresponding to automorphisms π of the graph

Gi−1, such that the permutation matrix block P denotes the action of π on the color class

C and P′ the action on the remaining color classes of Gi−1.

We need to show that X is a convex combination of automorphisms of Gi. Let A denote

the adjacency matrix of Gi, and AS ,T denote the submatrix of A row-indexed by S ⊂ V(Gi)

76

and column-indexed by T ⊂ V(Gi). Since X is a fractional automorphism of Gi, we have

XA = AX. Recall that Y and Z are blocks of X corresponding to color classes C and D.

Looking at the corner fragments of the matrices XA and AX, we get

 Y 0

0 Z


 AC,C AC,D

AD,C AD,D

 =

 AC,C AC,D

AD,C AD,D


 Y 0

0 Z

 ,
which implies

YAC,D = AC,D Z, (5.3)

AD,C Y = Z AD,C. (5.4)

Consider Z as an st × st matrix whose rows and columns are indexed by the elements of

sets N(c1),N(c2), . . . ,N(cr) in that order. We can thus think of Z as an s×s block matrix of

t × t matrix blocks Z(k,`), 1 ≤ k, ` ≤ s. The next claim is a consequence of Equations (5.3)

and (5.4).

Claim 9. Each block Z(k,`) in Z is of the form

Z(k,`) = yk,`W (k,`), (5.5)

where yk,` is the (k, `)th entry of Y, and W (k,`) is a doubly stochastic matrix.

Proof. We first note from Equation (5.3) that the (k, j)th entry of the s× st matrix YAC,D =

AC,DZ can be computed in two different ways. In the left hand side matrix, it is yk,` for

each j ∈ N(c`). On the other hand, the right hand side matrix implies that the same (k, j)th

entry is also the sum of the jth column of the N(ck) × N(c`) block Z(k,`) of the matrix Z.

We conclude, for 1 ≤ k, ` ≤ s, that each column in Z(k,`) adds up to yk,`. By a similar

argument, applied to Equation (5.4) this time, it follows, for each 1 ≤ k, ` ≤ s, that each

row of any block Z(k,`) of Z adds up to yk,`.

77

We conclude that, if yk,` , 0, then the matrix W (k,`) = 1
yk,`

Z(k,`) is doubly stochastic. If

yk,` = 0, then (5.5) is true for any choice of W (k,`). �

Since each W (k,`) is a doubly stochastic matrix, by Birkhoff’s theorem we can write it as

a convex combination of t × t permutation matrices Q j,k,`, whose rows are indexed by

elements of N(ck) and columns by elements of N(c`):

W (k,`) =

t!∑
j=1

β j,k,` Q j,k,`. (5.6)

For every P = (pk`) appearing in an automorphism P′⊕P of Gi−1 (see Equation (5.2)), we

define the st × st doubly stochastic matrix WP by its t × t blocks indexed by 1 ≤ k, ` ≤ s

as follows:

W (k,`)
P =


W (k,`) if pk` = 1,

0 if pk` = 0.
(5.7)

Substituting Equation (5.6) in Equation (5.7), we can express WP as a convex combina-

tion of permutation matrices WP =
∑

Q δQ,P Q where Q runs over all st × st permutation

matrices indexed by the vertices in color class D. Notice that the permutation matrices Q

participating in this decomposition satisfy

Q(k,`) =


Q j,k,` if pk` = 1,

0 if pk` = 0.
(5.8)

for some j ∈ [t!].

We claim that for each such Q, the (s + st) × (s + st) permutation matrix P ⊕ Q is an

automorphism of the subgraph Gi[C,D] = sK1,t. This holds because Q maps N(ck) to

N(c`) whenever P maps ck to c`, according to Equation (5.8). Since P ∈ Aut(Gi[C]) and

D is a homogeneous set in Gi, we conclude that, P⊕Q is an automorphism of the subgraph

Gi[C ∪ D].

78

Equations (5.2) and (5.5) imply that

X = X′ ⊕ Y ⊕ Z =
∑

P′⊕P∈Aut(Gi−1)

αP′,P P′ ⊕ P ⊕WP. (5.9)

In order to see this, on the left hand side consider the (k, `)th block Z(k,`) of Z. On the

right hand side, note that the corresponding block in each P′ ⊕P⊕WP is the matrix W (k,`).

Clearly, the overall coefficient for this block equals the sum of αP′,P over all P′ and P such

that pk,` = 1, which is precisely yk,` by Equation (5.2).

Now, if we plug the expression of WP as a convex combination WP =
∑

Q δQ,P Q in Equa-

tion (5.9), we will finally obtain the desired convex combination

X =
∑

P′,P,Q

γP′,P,Q P′ ⊕ P ⊕ Q.

It remains to argue that every P′ ⊕ P ⊕ Q occurring in this sum is an automorphism of

Gi. Recall that a pair P′, P can appear here only if P′ ⊕ P ∈ Aut(Gi−1). Moreover, if

such a pair is extended to a matrix P′ ⊕ P ⊕ Q, then P ⊕ Q ∈ Aut(Gi[C ∪ D]) as argued

before. Since Gi[B,D] is isotropic for every color class B , D of Gi, we conclude that

P′ ⊕P⊕Q ∈ Aut(Gi). This completes the induction step and finishes the case when G has

one anisotropic component.

Next, we consider the case when C(G) has several anisotropic components T1, . . . ,Tk,

k ≥ 2. Let G1, . . . ,Gk, where Gi = G[
⋃

U∈V(Ti) U], be the corresponding anisotropic

components of G. By the proof of the previous case we already know that Gi is compact

for each i.

Claim 10. The automorphism group Aut(G) of G is the product of the automorphism

groups Aut(Gi), 1 ≤ i ≤ k.

Proof. Recall that any automorphism of G must map each color class of G, which is a

cell of the underlying amenable graph, onto itself. Thus, any automorphism π of G is

79

of the form (π1, . . . , πk), where πi is an automorphism of the subgraph Gi. Now, for any

two subgraphs Gi and G j, we examine the edges between V(Gi) and V(G j). For any

color classes U ⊆ V(Gi) and U′ ⊆ V(G j), the edge {U,U′} is isotropic because it is not

contained in any anisotropic component of C(G). Therefore, the bipartite graph G[U,U′]

is either complete or empty. It follows that for any automorphisms πi of Gi, 1 ≤ i ≤ k, the

permutation π = (π1, . . . , πk) is an automorphism of the graph G. �

As follows from Lemma 13, any fractional automorphism X of G is of the form X =

X1 ⊕ · · · ⊕ Xk, where Xi is a fractional automorphism of Gi for each i. As each Gi is

compact we can write each Xi as a convex combination

Xi =
∑

π∈Aut(Gi)

αi,π Pπ.

This implies

I ⊕ · · · ⊕ I ⊕ Xi ⊕ I ⊕ · · · ⊕ I =
∑

π∈Aut(Gi)

αi,π I ⊕ · · · ⊕ I ⊕ Pπ ⊕ I ⊕ · · · ⊕ I, (5.10)

where block diagonal matrices in the above expression have Xi and Pπ respectively in the

ith block (indexed by elements of V(Gi)) and identity matrices as the remaining blocks.

We now decompose the fractional automorphism X as a matrix product of fractional au-

tomorphisms of G

X = X1 ⊕ · · · ⊕ Xk = (X1 ⊕ I ⊕ · · · ⊕ I) · (I ⊕ X2 ⊕ · · · ⊕ I) · · · · · (I ⊕ · · · ⊕ I ⊕ Xk).

Substituting for I⊕· · ·⊕ I⊕Xi⊕ I⊕· · ·⊕ I from Equation (5.10) in the above expression and

writing the product of sums as a sum of products, we see that X is a convex combination

of permutation matrices of the form Pπ1 ⊕ · · · ⊕ Pπk where πi ∈ Aut(Gi) for each i. By

Claim 10, all the terms Pπ1 ⊕ · · · ⊕ Pπk correspond to automorphisms of G. Hence, G is

compact, completing the proof of Theorem 23.

80

5.3 A Color-Refinement Based Hierarchy of Graphs

In this section, we prove Theorem 24. We proceed with the following lemmata.

Lemma 14. Any Godsil graph is a Tinhofer graph.

Proof. Assume that G is a Godsil graph. It suffices to show that Tinhofer’s algorithm

is correct whenever G and H are isomorphic. Let φ be an isomorphism from G to H.

We will prove that, after the i-th refinement step made by the algorithm, there exists

an isomorphism φi from G to H that preserves colors of the vertices. If this is true for

each i, the algorithm terminates only if the discrete partition (i.e., the finest partition into

singletons) is reached. Suppose that this happens in the k-th step. Then φk ensures that

the algorithm decides isomorphism.

We prove the claim by induction on i. At the beginning, φ1 = φ. Assume that an iso-

morphism φi exists and the partition is still not discrete. Suppose that now the algorithm

individualizes u ∈ V(G) and v ∈ V(H). If v = φi(u), then φi+1 = φi. Otherwise, consider

the vertices u and φ−1
i (v), which are in the same monochromatic class of G. Note that the

partition of G produced in each refinement step is equitable. Since G is Godsil, there is

an automorphism α preserving the partition such that α(u) = φ−1
i (v). We can, therefore,

take φi+1 = φi ◦ α. �

The orbit partition of G with respect to Aut(G) is always a refinement of the stable partition

PG of G. We call G refinable if PG is exactly the orbit partition of Aut(G). Any Godsil

graph is refinable by definition. It is easy to show that Tinhofer graphs are also refinable.

Lemma 15. Any Tinhofer graph is refinable.

Proof. Suppose that G is not refinable. Then G has vertices u and v that are in different

orbits but not separated by the stable partition PG. This means that individualization of

u and v in isomorphic copies G′ and G′′ of G gives non-isomorphic results. Therefore, if

81

Tinhofer’s algorithm is run on G′ and G′′ and individualizes u and v, it eventually decides

that G′ and G′′ are non-isomorphic. �

We are now ready to prove Theorem 24.

Proof. Summarizing Theorem 23, Lemmas 14 and 15, and [64, Corollary 1.3], we obtain

the inclusion hierarchy. It remains to show that the inclusions are strict.

Separation of Discrete and Amenable: For n ≥ 2, the complete graph Kn is amenable

but not discrete.

Separation of Amenable and Compact: For n ≥ 6, the cycles Cn are not amenable,

while they are known to be compact graphs [81, Theorem 2]. For another family of sep-

arating examples, consider the disjoint union 2G of two copies of an arbitrary connected

amenable graph G that is not a tree. By Part (ii) of Corollary 5, 2G is not amenable. On

the other hand, G is compact by Theorem 23, and 2G is compact as well by the closure

property of compact graphs established in [83].

Separation of Compact and Godsil: These classes are separated by the Petersen graph.

Evdokimov, Karpinski, and Ponomarenko [62, Corollary 5.4] prove that the Petersen

graph is not compact. It remains to show that the Petersen graph belongs to the class

Godsil. This problem is solvable by modern computer algebra tools; see [89] where eq-

uitable and orbit partitions are counted for various strongly regular graphs, including the

Petersen graph. We give a non-computer-assisted proof in Subsection 5.3.2.

Separation of Godsil and Tinhofer: These classes are separated by the Johnson graphs

J(n, 2) for n ≥ 7. The Johnson graph J(n, k) has the k-element subsets of [n] = {1, . . . , n}

as vertices; any two of them are adjacent if their intersection consists of k − 1 elements.

Note that J(n, 1) = Kn. Furthermore, the graph J(n, 2) is the line graph of Kn: It has all

2-element subsets of [n] as vertices and any two of them are adjacent if their intersection

is non-empty. It is noticed in [61] that J(n, 2) is not Godsil for n ≥ 7. For establishing the

82

separation, we prove that J(n, 2) is indeed Tinhofer. The proof of Theorem 26 is contained

in Subsection 5.3.1 below.

Separation of Tinhofer and Refinable: Consider the gadget CFI(P1, P2, P3) depicted in

Figure 5.1, with two input pairs P1 and P2 and one output pair P3. This gadget [59] has

the property that any automorphism of it must flip an even number of the three pairs P1,

P2, and P3. We can combine CFI(P1, P2, P3) with a second gadget CFI(P1, P2, P4) with

the same input pairs and a fresh output pair P4. We assume that the four pairs P1, P2, P3,

and P4 and the intermediate sets of four connecting vertices, are all different color classes.

This defines a refinable graph G, also depicted in Figure 5.1, with four color classes P1,

P2, P3, and P4 of size 2, and two color classes F and F′ of size 4 corresponding to the

orbit partition of G. The graph G has the property that any automorphism of it must flip

either both pairs P3 and P4 or none of them. Now, if we run the Tinhofer procedure on two

identical copies G′ and G′′ of G, it might individualize color class P3 in the first round

and color class P4 in the second round in such a way that the resulting graphs are not

isomorphic, since the partial isomorphism flips exactly one of the two color classes.

Note that the vertex colors of G can be removed if we connect the four vertices in F by

six edges and the two vertices in P1 by one edge. �

5.3.1 Johnson Graph J(n, 2) is Tinhofer

In this subsection, we give the proof of the following

Theorem 26. J(n, 2) is a Tinhofer graph for all n.

This concludes the proof of the separation between the classes Godsil and Tinhofer.

Proof. We begin with some necessary definitions. Let G be a graph and denote the auto-

morphism group of G by A. For v ∈ V(G), by Av we denote the stabilizer subgroup of A

83

Pi P j

Pk

Fk

CFI(Pi, P j, Pk)

P′i P′′i

Pi

Pk

Fik

Imp(Pi, Pk)

P1 P2

P3 P4

F′F

G

Figure 5.1. The CFI(Pi, P j, Pk)- and Imp(Pi, Pk)-gadgets and a graph G separating
Refinable from Tinhofer

that fixes the vertex v. Furthermore, for a subset F ⊂ V(G), let AF =
⋂

v∈F Av. Let PF

denote the stable partition of the colored version of G where each vertex in F is individ-

ualized. Then the orbit partition of AF is a subpartition of PF . Note that G is Tinhofer if

and only if, for every F, the orbit partition of AF coincides with PF .

One way to prove that the two partitions coincide is to show that each orbit O of AF is

definable in terms of F in two-variable first-order logic. Here, “in terms of F” means

that a defining formula ΦO(x) can use constant symbols (names) for each vertex in F.

Furthermore, ΦO(x) contains occurrences of only two variables, x and y. At least one

occurrence of x is free. ΦO(x) uses two binary relation symbols ∼ and = for adjacency

and equality of vertices. This formula is true on G for x = v exactly when v ∈ O.

Once ΦO(x) is found for each O, the equality of the partitions follows by a similar ar-

gument as in [69, Theorem 1.8.1] or directly from the definitions of orbits, as those will

imply that any two orbits are separated by color refinement starting from the individual-

ization of F. The number of refinement steps sufficient to separate O from any other orbit

can be only one greater than the quantifier depth of ΦO(x).

In order to implement this scenario for G = J(n, 2), it will be convenient to assume that

V(G) =
(

[n]
2

)
(note, however, that the formulas ΦO(x) do not involve variables over [n]).

Given α ∈ S n, by `(α) we denote the corresponding permutation of
(

[n]
2

)
. Obviously, every

`(α) is an automorphism of G, and the automorphism group A contains nothing else by

84

the Whitney theorem [88].

Before designing the definitions ΦO(x), we will need to make two preliminary steps: De-

scribe AF and, then, describe the orbits of AF (first irrespectively of any logical formalism;

expressing these descriptions in two-variable first-order logic will be the next task).

We now proceed to the detailed proof. Note that J(2, 2) = K1, J(3, 2) = K3, and J(4, 2) is

the octahedral graph, whose complement is K(4, 2) = 3K2. Thus, these three graphs are

amenable and, hence, Tinhofer. We can, therefore, assume that n ≥ 5.

Call a fixed vertex p ∈ F isolated if F contains no vertex adjacent to p. Let F = F1 ∪ F2

be the partition of F into non-isolated and isolated vertices. Furthermore, we define the

partition

[n] = W1 ∪W2 ∪W3

as follows: W1 is the union of all non-isolated pairs p (i.e., all p in F1), and W2 is the

union of all isolated pairs p (i.e., all p in F2). Thus, W3 consists of the points of [n] that

are not included in any fixed pair.

Note now that `(α) ∈ AF if and only if α either fixes or transposes the two points in each

fixed pair. It follows that `(α) ∈ AF exactly when

• α(w) = w for every w ∈ W1 and

• α(p) = p for every p ∈ F2.

Given a vertex u = {a, b} of G, let O(u) denote its orbit with respect to AF . There are

six kinds of orbits. Below we describe all of them along with providing suitable formal

definitions ΦO(u)(x).

Case 1: {a, b} ⊆ W1. Then O(u) = {u}. Formal definition: x = u.

Case 2: {a, b} ⊆ W2. Here we have two subcases. If u ∈ F2, then O(u) = {u} again.

85

Otherwise, F2 contains two pairs p1 = {a, a′} and p2 = {b, b′}. In this subcase,

O(u) = {{a, b}, {a′, b}, {a, b′}, {a′, b′}},

which is exactly the common neighborhood of p1 and p2. Formal definition: x ∼ p1∧ x ∼

p2.

Case 3: {a, b} ⊆ W3. Now O(u) =
(

W3
2

)
, which are exactly the non-fixed vertices with no

neighbor in F. Formal definition:
∧

p∈F(x , p ∧ x / p).

Case 4: a ∈ W1, b ∈ W2. Let p = {b, b′} be the pair in F2 containing b. Then,

O(u) = {{a, b}, {a, b′}}.

To give a formal definition of O(u), we consider two subcases.

(i) a belongs to two adjacent vertices q1 = {a, a1} and q2 = {a, a2} in F1.

Formal definition: x ∼ p ∧ x ∼ q1 ∧ x ∼ q2. Indeed, the condition x ∼ p forces x to

contain either b or b′. This excludes the possibility that x = {a1, a2} and, therefore, x is

forced to contain a by the adjacency to q1 and q2.

(ii) a belongs to a single vertex q1 = {a, a′} in F1. By definition, F1 contains also a vertex

q2 = {a′, a′′}. Formal definition: x ∼ p ∧ x ∼ q1 ∧ x / q2.

Case 5: a ∈ W1, b ∈ W3. Then

O(u) = { {a, b′} : b′ ∈ W3} .

Similarly to the preceding case, we distinguish two subcases.

(i) a belongs to two adjacent vertices q1 = {a, a1} and q2 = {a, a2} in F1.

Formal definition: First of all, we say that x ∼ q1 ∧ x ∼ q2. It remains to exclude the

possibility that x ⊆ W1 ∪W2 (in particular, this will exclude x = {a1, a2} and force x to

86

contain a). We do this by adding the following expression

∧
p∈F

x , p ∧
∧

p,q∈F,p/q

¬(x ∼ p ∧ x ∼ q)

∧
∧

p,q∈F1,p∼q

(x ∼ p ∧ x ∼ q→ ∃y (y ∼ x ∧ y ∼ p ∧ y ∼ q)). (5.11)

The first conjunctive term prevents x to be one of the pairs in F. The second term

excludes the case that x is covered by two disjoint pairs p and q in F. The third term

excludes the case that x is covered by two intersecting pairs p and q in F or, equiva-

lently, the case where x, p, and q form a triangle. It would be not enough just to forbid

x, p, and q from forming a clique because this could also exclude a permissible case

where x, p, and q form a star (which is captured by the subformula beginning with ∃y).

Note, that we need the assumption n ≥ 5 in this place.

(ii) a belongs to a single vertex q1 = {a, a′} in F1, and q2 = {a′, a′′} is another vertex

in F1. Formal definition: x ∼ q1 ∧ x / q2 ∧ x * W1 ∪W2, the last being expressed by

the formula (5.11).

Case 6: a ∈ W2, b ∈ W3. In this case, F2 contains a pair p = {a, a′} and

O(u) = { {a, b′} : b′ ∈ W3} ∪ { {a′, b′} : b′ ∈ W3} .

Formal definition: x ∼ p ∧ x * W1 ∪W2, the latter being expressed by (5.11).

The proof is complete. �

5.3.2 The Petersen Graph is in Godsil

In this subsection, we prove that the Petersen Graph is in the class Godsil. This concludes

the proof of the separation of the classes Compact and Godsil. We proceed with the

proof.

87

It is well-known that the Petersen graph, denoted by P, is isomorphic to the Kneser graph

K(5, 2). The Kneser graph K(n, k) has the k-element subsets of [n] = {1, . . . , n} as vertices

and any two of them are adjacent if they are disjoint. An important fact about K(5, 2) is

that its automorphism group is isomorphic to the symmetric group S 5 acting on the set

{1, . . . , 5}. In fact, any automorphism of K(5, 2) can be realized by extending the action

of a permutation π ∈ S 5 to the vertex set of K(5, 2) [88].

First, we state some useful facts about the Petersen graph.

Lemma 16. The Petersen graph has the following properties:

(i) There are no cycles of length 3, 4 or 7.

(ii) There are no independent sets of size greater than 4.

(iii) Any two adjacent vertices have no common neighbors and any two non-adjacent

vertices have a unique common neighbor.

We will need some definitions regarding partitions of the vertex set of a graph G = (V, E).

Given a partition Σ = {S 1, . . . , S k} of V , we refer to the sets S 1, . . . , S k as the cells of Σ.

If the size of a cell is k, we call it a k-cell. Two cells S and S ′ are said to be compatible

if the induced bipartite graph P[S , S ′] is biregular (it can be empty). Otherwise, we say

they are incompatible. Recall that any cell S of an equitable partition induces a regular

graph G[S]. Moreover, in that case, any two cells S , S ′ are compatible and the number of

edges in the biregular graph G[S , S ′] is a common multiple of |S | and |S ′|.

Now we are ready to prove the following theorem.

Theorem 27. The Petersen graph P is a Godsil graph.

Proof. To prove the theorem, we will enumerate all equitable partitions of P. For each

such partition Σ, we describe a subgroup of Aut(P) such that its orbit partition coin-

cides with Σ. We represent the vertices of P by the two-element subsets of the set

88

Ω = {a, b, c, d, e}, where two vertices are adjacent if they are disjoint. This represen-

tation allows us to describe any subgroup of Aut(P) as a subgroup of the permutation

group S Ω on Ω.

The two trivial partitions of V(P) into one set and into ten singleton sets are clearly orbit

partitions, since the Petersen graph is vertex-transitive. For our case analysis, we classify

the remaining non-trivial equitable partitions of P by the minimum size δ of the cells in

the partition. Clearly, δ ≤ 5. In the following claims we show for each k ∈ {1, 2, 3, 4, 5}

that any equitable partition of P with δ = k is an orbit partition of P.

Claim 11. P does not have any equitable partition with δ = 3.

Proof. Suppose that there is an equitable partition Σ with δ = 3 and let S be a 3-cell

in it. Then Σ either has the form Σ = {S ,T }, where |T | = 7, or the form Σ = {S ,U,V}

where |U | = 3 and |V | = 4. The first case is ruled out since P[T] can never be regular (P

has neither independent sets of size 7 nor cycles of size 7). Suppose the second case is

possible. Then P[S] and P[U] must be empty (since P has no triangles). Furthermore, the

bipartite graphs P[S ,V] and P[U,V] must be both biregular. The graph P[S ,V] (likewise,

P[U,V]) is empty or it has 12 edges. It is not possible that P[S ,V] has 12 edges because

then P[V] has only 3 edges and cannot be regular. If both P[S ,V] and P[U,V] are empty

then V is disconnected from the rest of the graph, which is a contradiction. �

Claim 12. All equitable partitions of P with δ = 4 are orbit partitions.

Proof. We first show that any equitable partition Σ with δ = 4 has one 4-cell S and one 6-

cell T , where P[S] is empty and P[T] is a 3-matching (a matching with 3 edges). Clearly,

Σ must be of the form {S ,T }, where |S | = 4 and |T | = 6. Moreover, P[S] must be empty

(0-regular) or 2-matching (1-regular) since it cannot be a 4-cycle (2-regular). In fact, the

case of 2-matching can also be ruled out by counting the number of edges as follows.

For S and T to be compatible, there must be 12 edges in the graph P[S ,T]. Then there

is exactly one edge left in the induced graph P[T] which is impossible. Therefore, P[S]

89

must be empty. This also implies that the graph P[S ,T] has 4 × 3 = 12 edges. Hence,

P[T] must be a 3-matching.

Now observe that any independent set S of size 4 in P must be of the kind S = {ab, ac, ad, ae}

(up to automorphisms), implying that T = {bc, bd, be, cd, ce, de}. The partition {S ,T }

can be easily verified to be equitable and that it is the orbit partition of the subgroup

S {b,c,d,e}. �

Claim 13. All equitable partitions of P with δ = 5 are orbit partitions.

Proof. In this case Σ must have the form Σ = {S ,T } where |S | = |T | = 5. Moreover, since

P does not have independent sets of size 5, P[S] and P[T] must be 5-cycles. Clearly, such

partitions exist, and any such partition has a matching between sets S and T .

It remains to show that Σ = {S ,T } is indeed an orbit partition of some subgroup of Aut(P).

Denote the 5-cycle in S by 1-2-3-4-5. Let 1′ be the matching partner of 1 in T and so

on. Now, 1′ and 2′ cannot be adjacent, else there is a 4-cycle in P. The unique common

neighbor of 1′ and 2′ must be 4′, otherwise it is easy to verify that we will have a 4-cycle

in P. The partners 3′ and 5′ can also be uniquely determined in T . The permutation

π = (12345)(1′2′3′4′5′) can be verified to be an automorphism of P and the orbits of the

subgroup generated by π are precisely {S ,T }. �

Claim 14. All equitable partitions of P with δ = 2 are orbit partitions.

Proof. Let Σ be an equitable partition of P with δ = 2 and let S = {u, v} be a 2-cell in it.

We first show that uv must be an edge. This holds because any two non-adjacent vertices

have a unique common neighbor x. The cell containing x can only be a singleton set,

which contradicts δ = 2.

Next we show that the neighborhood N(S) =
⋃

x∈S N(x) \ S of S is also a cell of Σ (see

Figure 5.2). Since uv is an edge, there are no common neighbors of u and v. Therefore,

|N(S)| = 4. Moreover, N(S) is an independent set since any edge among vertices in N(S)

90

ab

cd

ae

be

ce

de

ac bd

ad bc

S

N(S) R

Figure 5.2. The case δ = 2.

can be used to construct a cycle of length 3 or 4 passing through the edge uv. This is not

possible by Lemma 16. Now let R = V(P)\(S ∪ N(S)) be the set of the four remaining

vertices as shown in Figure 5.2. Observe that no cell can contain vertices from both N(S)

and R, since then it would be incompatible with S . Since N(S) is an independent set,

there cannot be a 2-cell inside N(S). Clearly, there cannot be 1-cells and hence 3-cells

inside N(S). Therefore, N(S) must indeed be a cell.

By accounting for edges of S and N(S), it is easy to verify that R has exactly two edges,

and hence P[R] must be a 2-matching. Since δ = 2, R does not contain any 1-cell and

hence, any 3-cells. This leaves us with only two cases.

Case 1: R is a cell. We characterize all such partitions by naming a typical case. W.l.o.g,

let S = {ab, cd} since S is an edge. Then N(S) must be {ae, be, ce, de} and R must

be {ac, ad, bc, bd}. The partition {ab, cd}, {ae, be, ce, de}, {ac, ad, bc, bd} can be easily

verified to be equitable. Moreover, it is easy to check that it is the orbit partition of the

subgroup of all permutations in S Ω which preserve the Ω-partition {ab}, {cd}, {e}. This is

also the subgroup generated by the automorphisms (ab), (cd), (ac)(bd).

Case 2: Σ partitions R in two sets A and B where |A| = |B| = 2. Since each 2-cell has

to be an edge (see above), the sets A and B must be {ac, bd} and {bc, ad}. The partition

{ab, cd}, {ae, be, ce, de}, {ac, bd}, {ad, bc} can be easily verified to be equitable. More-

over, it is easy to check that it is the orbit partition of the subgroup of all permuta-

tions in S Ω which preserve the Ω-partition {ab}, {cd}, {e} and additionally, stabilize the

sets {ac, bd} and {ad, bc}. This is also the subgroup generated by the automorphisms

91

(ac)(bd), (ad)(bc), (ab)(cd).

The proof of Claim 14 is complete. �

Claim 15. All equitable partitions of P with δ = 1 are orbit partitions.

Proof. Let S be a singleton set in such an equitable partition. Similar to a previous argu-

ment, a cell cannot have vertices from both N(S) and V\N(S). Therefore, any equitable

partition refines the partition S ,N(S),R (see Figure 5.3). Observe that N(S) must be an

independent set (otherwise there is a 3-cycle). Moreover, if we assume that S = {ab},

N(S) must be {ce, de, cd} and therefore, R = {ae, be, ac, bc, ad, bd} forms a 6-cycle, as

shown in the figure. We proceed by further classifying equitable partitions on the basis

of the partition induced by them inside N(S). Since |N(S)| = 3, we have three possible

cases. Either N(S) is a cell, or it contains three 1-cells, or it contains one singleton and

one 2-cell.

Case 1: N(S) is a cell. We further classify the equitable partitions in this case on the basis

of the partition induced on the set R. First, we examine the possible cells X in R which

are compatible with N(S). X cannot be of size 1 or 2, otherwise P[N(S), X] has at most

two edges. Also, X cannot be of size 4 or 5 since this would imply a cell of size 1 or 2 in

R. Therefore, either R is a cell, or there are two 3-cells in R.

(a) R is a cell. The partition {ab}, {de, cd, ce}, {ac, ad, ae, bc, bd, be} can be verified to be

an equitable partition. Moreover, it is easy to check that it is the orbit partition of the

subgroup S {c,d,e} × S {a,b}.

ab

ce

de

cd

ae

be

bc

acad

bd

S
N(S)

R

Figure 5.3. The case δ = 1.

92

(b) The partition induced on R is of the form {A, B}, where |A| = |B| = 3. Because

of regularity, the only possible 3-cells in R are the independent sets {ad, ac, ae} and

{bc, bd, be}. The partition {ab}, {de, cd, ce}, {ad, ac, ae}, {bc, bd, be} is clearly equitable.

Moreover, it is easy to check that this partition is the orbit partition of the subgroup

S {c,d,e}.

Case 2: N(S) contains three 1-cells. Again, we classify the equitable partitions on the

basis of the partition induced on the set R. We can check that a cell of size more than

two in R will have at least one edge to some singleton in N(S), and will be incompatible

with that singleton. Therefore, cells in R must have size at most 2. Moreover, any 2-cell

must be of the form {ax, bx} for some x ∈ {d, c, e} since all other 2-cells can be seen to be

incompatible with some singleton cell in N(S). Finally, it can be seen that every possible

1-cell is incompatible with these three 2-cells. Hence, R must consist of three cells of

size 2, namely {ad, bd}, {ac, bc}, {ae, be}. The partition {ab}, {cd}, {ce}, {de}, {ad, bd},

{ac, bc}, {ae, be} can be easily seen to be equitable. Moreover, it is easy to check that it is

the orbit partition of the subgroup S {a,b}.

Case 3: N(S) contains a 2-cell U = {ce, de} and a 1-cell V = {cd}. Again, we need to

classify the equitable partitions on the basis of the partition induced on the set R. First,

we examine the possible cells X in R which are compatible with U and V . Clearly,

X cannot be a 5-cell since P[X] cannot be regular. It cannot be a 3-cell as well since

the two candidate 3-cells are the independent sets {ad, ac, ae} and {bc, bd, be}. Neither

of them can be compatible with the singleton set V . Also, R cannot be a cell since

it is incompatible with the singleton set V . Moreover, the only possible 4-cell is the

neighborhood of the set U, i.e. {ac, bd, ad, bc}. Any other 4-cell is incompatible with U.

Overall, we have no cells of size 3, 5, or 6 in R. Therefore, we have only the following

four remaining subcases.

(a) R consists of one 4-cell and two 1-cells. This case is not possible since a 1-cell cannot

be compatible with a 4-cell.

93

(b) R consists of one 4-cell and one 2-cell. The cells are {ac, bd, ad, bc} and {ae, be}. The

partition {ab}, {cd}, {ce, de}, {ae, be}, {ac, bd, ad, bc} can be verified to be an equitable

partition. Moreover, it is easy to check that it is the orbit partition of the subgroup

S {a,b} × S {c,d}

(c) R consists of three 2-cells. First, ae and be must be in the same 2-cell, otherwise the

cell containing any of them would be incompatible with V . For the remaining vertices

ac, ad, bc, bd, we can pair them up in three ways: (i) ac, ad and bc, bd, (ii) ac, bc and

ad, bd, or (iii) ac, bd and ad, bc The first case is not possible since {ae, be} and {ac, ad}

are not compatible. The second case is not possible because {ac, bc} and U = {ce, de}

are not compatible. The third case gives an equitable partition {ab}, {cd}, {ce, de},

{ae, be}, {ac, bd}, {ad, bc}. Moreover, it is easy to check that it is the orbit partition of

the subgroup generated by (ab)(cd).

(d) R consists of a bunch of 1-cells and 2-cells. Clearly, the vertices ac, ad, bc, bd cannot

form a singleton cell, since such a 1-cell will not be compatible with U. Therefore, {ae}

and {be} are the only possible singleton cells. Neither of them can pair up with one of

ac, ad, bc, bd since that cell would be incompatible with V . Therefore, they are forced

to be singleton cells. It remains to partition ac, ad, bc, bd into two 2-cells. The vertex

ac cannot be paired up with bd or bc since it will be incompatible with be. Therefore,

the only possible case is to have 2-cells {ac, ad} and {bc, bd}. The partition {ab}, {cd},

{ce, de}, {ae}, {be}, {ac, ad}, {bc, bd} can be verified to be equitable. Moreover, it is easy

to check that it is the orbit partition of the subgroup S {c,d}. (This case is identical to

Case 2).

The proof of Claim 15 is complete. �

�

94

5.4 P-Hardness Results

In this section, we prove Theorem 25.

Proof. We show a uniform AC0 many-one reduction from the monotone circuit-value

problem (MCVP), whose P-completeness is established in [65]. An instance of MCVP

consists of a monotone boolean circuit C with and- and or-gates and constant input gates,

and one has to decide if C evaluates to 1. Given such a circuit C, we construct a graph G

as follows:

• For each gate gk of C, G contains a pair Pk = {ak, bk} of vertices.

• If gk is a constant input gate with value 1, then ak and bk get different colors (i.e.,

they form singleton color classes); otherwise ak and bk both get the same color (i.e.,

they form a color class of size 2).

• For each and-gate gk with input gates gi and g j, G additionally contains a color class

Fk of size 4 that together with the two input pairs Pi and P j as well as the output

pair Pk forms a CFI(Pi, P j, Pk)-gadget; see Figure 5.1.

• For each or-gate gk with input gates gi and g j, G additionally contains two color

classes Fik and F jk of size four, and four color classes P′i , P′′i , P′j, P′′j of size 2. The

color classes P′i , P′′i , Pk and Fik form a CFI(P′i , P
′′
i , Pk)-gadget and each of the pairs

P′i and P′′i is linked to Pi by two parallel edges. Henceforth, we denote this gadget

by Imp(Pi, Pk); see Figure 5.1. Likewise, the color classes P′j, P′′j and F jk are used

to form an Imp(P j, Pk)-gadget.

A straightforward induction on the height of the and- and or-gates in C shows that CR on

input G refines a color class Pk if and only if the corresponding gate gk outputs value 1.

This follows from the following observations.

95

• If gk is an and-gate with input gates gi and g j, then the vertices in Pk get different

Cr+2 colors if and only if the vertices in Pi as well as the vertices in P j have different

Cr colors.

• If gk is an or-gate with input gates gi and g j, then the vertices in Pk get different

Cr+3 colors if and only if either the vertices in Pi or the vertices in P j have different

Cr colors.

Now let G′ be the graph that results from G by connecting the vertex pair Pl corresponding

to the output gate gl by two parallel edges with each pair Pk corresponding to a constant

0 input gate gk. Then C evaluates to 1 if and only if G′ is discrete (i.e., CR on input G′

individualizes all vertices of G′).

Moreover, if we connect the output pair Pl via an additional Imp(Pl, Pl+1)-gadget to a new

vertex pair Pl+1, then the resulting graph G′′ is not even refinable if C evaluates to 0. The

reason is that no automorphism of G′′ flips the pair Pl+1, but CR only refines the color

class Pl+1 if C evaluates to 1.

Hence, the mapping C 7→ G′′ simultaneously reduces MCVP to each of the graph classes

in the hierarchy (5.1). �

We observe that the graph G′′ used in the proof of the hardness results can be easily

replaced by an uncolored graph. In fact, the vertex colors can be substituted by suitable

graph gadgets in such a way that the automorphism group as well as the stable partition

remain essentially unchanged (up to the addition of several singleton cells). Hence, the

hardness results are also valid for the restricted versions of the classes in the hierarchy

(5.1) where we consider only uncolored graphs.

96

5.5 Discussion

Theorem 23 unifies and extends several earlier results providing examples of compact

graphs. In particular, it gives another proof of the fact that almost all graphs are compact,

which also follows from a result of Godsil [64, Corollary 1.6]. This follows since Babai,

Erdös, and Selkow [52] proved that almost all graphs are discrete, and hence amenable.

Furthermore, Theorem 23 subsumes Tinhofer’s result that trees are compact. We note that

the proof of Theorem 23 uses only compactness of complete graphs, matching graphs,

and the 5-cycle. By Corollary 4, we can extend this result to forests. This extension

is not straightforward as compact graphs are not closed under disjoint union. In [82],

Tinhofer proves compactness for the class of strong tree-cographs, which includes forests

only with pairwise non-isomorphic connected components. To the best of our knowledge,

compactness of unigraphs, which also follows from Theorem 23, has not been observed

earlier. Summarizing, we note the following result.

Corollary 6. Discrete graphs, forests, and unigraphs are compact.

Our Theorem 21 gives an efficiently checkable criterion for a graph G that ensures the

correctness of the CR algorithm on (G,H) for any graph H. Theorem 23 implies that

Tinhofer’s approach to isomorphism testing based on the compactness concept has strictly

larger potential of applicability. The most important question, that still remains open, is

whether the applicability range of this approach admits an efficient characteriation (like

in the case of CR). In other terms, what is the complexity of recognizing compact graphs?

We proved in Theorem 25 that this problem is P-hard. The only known complexity upper

bound, noted in [83], is coNP, because testing if every vertex of a given polytope is

integral is in coNP.

Another intriguing problem is the complexity of recognizing refinable graphs. Using an

AND-function for Graph Isomorphism (see, e.g., [73]), it is easy to show that this recog-

nition problem is polynomial-time many-one reducible to Graph Isomorphism. On the

97

other hand, recognition of Refinable is at least as hard as recognition of vertex-transitive

graphs (which, in its turn, is at least as hard as testing isomorphism of two vertex-transitive

graphs).

Applicability of Tinhofer’s isomorphism algorithm described in Section 5.1 seems to be a

subtle issue. Recall that it works correctly on an input pair (G,H) whenever G is compact

[83]. By our Theorem 24, the applicability range of this algorithm is even larger. It would

be interesting to analyze the correctness of the algorithm on various classes of vertex-

transitive graphs, for example, on classes of Cayley graphs. Note that compactness of

Cayley graphs is studied in [79, 87].

The CR procedure can be regarded as the one-dimensional version of the more general

k-dimensional Weisfeiler-Leman (k-WL) algorithm. It would, therefore, be natural to try

to obtain k-dimensional analogs of our results. More specifically, let us fix the parameter

k ≥ 2 and consider the class of graphs distinguishable from any non-isomorphic graph by

the k-WL algorithm. Equivalently, this is the class of graphs definable in (k + 1)-variable

first-order logic with counting quantifiers. Is it recognizable in polynomial time? Note

that an affirmative answer for k = 2 would imply a possibility to efficiently decide if a

set of parameters determines a strongly regular graph uniquely up to isomorphism (as

2-WL fails to distinguish non-isomorphic strongly regular graphs with the same param-

eters). Note also that, as it is shown in [72], the 2-dimensional analog of the inclusion

Amenable ⊆ Refinable is false.

98

Bibliography

[1] V. Arvind, G. Rattan. The parameterized complexity of Geometric Graph Isomor-

phism. Algorithmica, 75:2, 258–276, 2016.

[2] V. Arvind, G. Rattan. The parameterized complexity of Geometric Graph Isomor-

phism. In Proceedings of 9th International Symposium on Parameterized and Exact

Computation, (IPEC 2014), pp. 51–62, 2014.

[3] V. Arvind, J. Köbler, G. Rattan, O. Verbitsky. On the power of color refinement. In

Proceedings of the 20th International Symposium on Fundamentals of Computation

Theory (FCT), pp. 339–350, 2015.

[4] V. Arvind, J. Köbler, G. Rattan, O. Verbitsky. On Tinhofer’s linear programming ap-

proach to isomorphism testing. In Proceedings of the 40th International Symposium

on Mathematical Foundations of Computer Science (MFCS), pp. 26–37, 2015.

[5] V. Arvind, P. Kurur. Graph Isomorphism is in SPP. In Proceedings of the Annual

Symposium of Foundations of Computer Science, pp. 743–750, 2002.

[6] A. Asterias, E. Maneva. Graph Isomorphism, Sherali-Adams relaxations and in-

distinguishability in counting logics. SIAM Journal on Computing, 42(1):112–137,

2013.

[7] L. Babai. Graph Isomorphism in quasipolynomial time. Accepted to the STOC,

2016.

99

[8] L. Babai. Monte Carlo algorithms in Graph Isomorphism testing. Tech. Rep. 79-10,

Dep. Math. et Stat., Universite de Montreal, 1979.

[9] L. Babai, P. Erdős, S. M. Selkow. Random Graph Isomorphism. SIAM Journal on

Computing, 9(3):628–635, 1980.

[10] L. Babai, D. Grigoryev, D. Mount. Isomorphism of graphs with bounded eigenvalue

multiplicity. In Proceedigns of the ACM STOC Conference, pp.310–324, 1982.

[11] R. Bopanna, J. Hastad, S. Zachos. Does co-NP have short interactive proofs? Infor-

mation Processing Letters, 25(2):127–132, 1987.

[12] K. Booth. Isomorphism testing for graphs,semigroups and finite automata are poly-

nomially equivalent problems. SIAM Journal on Computing, 7:273–279, 1978.

[13] J.-Y. Cai, M. Fürer, N. Immerman. An optimal lower bound on the number of

variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[14] S. Evdokimov, I. Ponomarenko. On the geometric Graph Isomorphism problem.

Pure and Applied Algebra, 117-118:253–276, 1997.

[15] S. Evdokimov, I. Ponomarenko. Isomorphism of coloured graphs with slowly in-

creasing multiplicity of Jordan blocks. In Combinatorica, 19(3): 44th, 321–333,

1999.

[16] M. Grohe. Fixed-point logics on planar graphs. In Proceedings of the IEEE Sympo-

sium on Logic in Computer Science (LICS), pp. 6–15, 1998.

[17] M. Grohe. Fixed-point definability and polynomial time of graphs with excluded

minors. In Proceedings of the IEEE Symposium on Logic in Computer Science

(LICS), pp. 179–188, 2010.

[18] M. Grohe. Isomorphism testing for embeddable graphs through definability. In

Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 63–72,

2000.

100

[19] C. Godsil. Compact graphs and equitable partitions. Linear Algebra Appl.,

255(1–3):259 – 266, 1997.

[20] I. Haviv, O. Regev. On the Lattice Isomorphism Problem. In Proceedings of the

25th Annual Symposium on Discrete Algorithms (SODA), pp.391–404, 2014.

[21] N. Immerman, E. Lander. Describing graphs: A first-order approach to graph can-

onization. In Complexity Theory Retrospective, pp. 59–81. Springer, 1990.

[22] J. Kobler, U. Schoning, J. Toran. The Graph Isomorphism Problem: Its Structural

Complexity. Prog. Theoret. Comput. Sci., Birkhauser, 1993.

[23] L. Lovasz, A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.

SIAM Journal on Optimization, 1(2):166–190, 1991.

[24] E. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial

time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[25] E. Luks. Permutation groups and polynomial-time computation. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 11:139–175, 1993.

[26] G. Miller. Graph Isomorphism, general remarks. Journal of Computer and System

Sciences, 18:128–142, 1979.

[27] C. Papadimitrou, S. Safra. The complexity of low-distortion embeddings between

point sets. In Proceedings of the 16th Annual Symposium on Discrete Algorithms,

pp. 112-–118, 2005

[28] M. V. Ramana, E. R. Scheinerman, D. Ullman. Fractional isomorphism of graphs.

Discrete Mathematics, 132(1-3):247–265, 1994.

[29] A. Seress. Permutation Group Algorithms. Cambridge Univ. Press, 2003.

101

[30] H. Sherali, W. Adams. A hierarchy of relaxations between the continuous and con-

vex hull representations for zero-one programming problems. SIAM Journal on

Discrete Mathematics, 3(3):411-430, 1990.

[31] G. Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2-

3):253–264, 1991.

[32] G. Tinhofer. Graph Isomorphism and theorems of Birkhoff type. Computing,

36:285–300, 1986.

[33] J. Toran. On the hardness of Graph Isomorphism. SIAM Journal on Computing,

33(5):1093–1108, 2004.

[34] B. Weisfeiler. On construction and identification of graphs. Springer-Verlag, 1977.

[35] V. Zemlyachenko, N. Korneenko, R. Tyshkevich. Graph Isomorphism Problem.

Zapiski Nauchnykh Seminarov LOMI, 118:83–158, 1982.

[36] S.A. Evdokimov and I.N. Ponomarenko. On the geometric graph isomorphism prob-

lem. Pure and Applied Algebra, 117-118:253–276, 1997.

[37] Tatsuya Akutsu. On determining the congruence of point sets in d dimensions.

Computational Geometry, 9(4):247–256, 1998.

[38] Peter Braß and Christian Knauer. Testing the congruence of d-dimensional point

sets. International Journal of Computational Geometry and Applications, 12:115–

124, 2002.

[39] H. Alt, K. Mehlhorn, H. Wagener, E. Welzl. Congruence, similarity, and symmetries

of geometric objects. Discrete Computational Geometry, 3(1):237–256, 1988.

[40] Christos H. Papadimitriou and Shmuel Safra. The complexity of low-distortion em-

beddings between point sets. In Proceedings of the 16th Annual Symposium on

Discrete Algorithms, 112–118, 2005.

102

[41] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential

time algorithm for most lattice problems based on Voronoi cell computations. So-

ciety for Industrial and Applied Mathematics Journal of Computing, 42(3):1364–

1391, 2013.

[42] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Proceedings

of the 25th Annual Symposium on Discrete Algorithms, 391–404, 2014.

[43] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of

the 15th Annual Symposium on Theory of Computing, 171–183, 1983.

[44] Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algo-

rithms for permutation groups. In Proceedings of the 21st Annual Symposium on

Foundations of Computer Science Conference, 36–41, 1980.

[45] Alexander Schrijver. Theory of integer and linear programming. Wiley-Interscience

series in discrete mathematics and optimization, 1998.

[46] A. G. Corbalan, Marisa Mazon, and Tomas Recio. About Voronoi Diagrams for

Strictly Convex Distances. In Proceedings of the 9th European Workshop on Com-

putational Geometry, 17–22, 1993.

[47] Eugene M. Luks, Hypergraph Isomorphism and Structural Equivalence of Boolean

Functions. In Proceedings of the 31st Annual Symposium on Theory of Computing,

652–658, 1999.

[48] D. Angluin. Local and global properties in networks of processors. In Proceedings

of the 12th Annual ACM Symposium on Theory of Computing, pages 82–93. ACM,

1980.

[49] V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. On the power of color refinement.

In Proceedings of the 20th International Symposium on Fundamentals of Computa-

103

tion Theory (FCT), Lecture Notes in Computer Science, vol. 9210, pages 339–350.

Springer, 2015.

[50] V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. On Tinhofer’s linear programming

approach to isomorphism testing. In Proceedings of the 40th International Sympo-

sium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in

Computer Science, vol. 9235, pages 26–37. Springer, 2015.

[51] A. Atserias and E. N. Maneva. Sherali-Adams relaxations and indistinguishability

in counting logics. SIAM J. Comput., 42(1):112–137, 2013.

[52] L. Babai, P. Erdős, and S. M. Selkow. Random graph isomorphism. SIAM J. Com-

put., 9(3):628–635, 1980.

[53] L. Babai and L. Kučera. Canonical labelling of graphs in linear average time. In

Proceedings of the 20th Annual Symposium on Foundations of Computer Science,

pages 39–46, 1979.

[54] C. Berkholz, P. Bonsma, and M. Grohe. Tight lower and upper bounds for the com-

plexity of canonical colour refinement. In Proceedings of 21st Annual European

Symposium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer Sci-

ence, pages 145–156. Springer, 2013.

[55] A. Borri, T. Calamoneri, and R. Petreschi. Recognition of unigraphs through super-

position of graphs. J. Graph Algorithms Appl., 15(3):323–343, 2011.

[56] R. A. Brualdi. Some applications of doubly stochastic matrices. Linear Algebra

Appl., 107:77–100, 1988.

[57] R. A. Brualdi. Combinatorial matrix classes. Cambridge University Press, 2006.

[58] R. Busacker and T. Saaty. Finite graphs and networks: an introduction with appli-

cations. International Series in Pure and Applied Mathematics. McGraw-Hill Book

Company, New York etc., 1965.

104

[59] J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of

variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[60] A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V |). Theor. Com-

put. Sci., 19:85–98, 1982.

[61] A. Chan and C. D. Godsil. Symmetry and eigenvectors. In Graph symmetry, volume

497, pages 75–106. Kluwer Acad. Publ., Dordrecht, 1997.

[62] S. Evdokimov, M. Karpinski, and I. N. Ponomarenko. Compact cellular algebras

and permutation groups. Discrete Mathematics, 197-198:247–267, 1999.

[63] S. Evdokimov, I. N. Ponomarenko, and G. Tinhofer. Forestal algebras and algebraic

forests (on a new class of weakly compact graphs). Discrete Mathematics, 225(1-

3):149–172, 2000.

[64] C. Godsil. Compact graphs and equitable partitions. Linear Algebra Appl.,

255(1–3):259 – 266, 1997.

[65] L. M. Goldschlager. The monotone and planar circuit value problems are log space

complete for P. SIGACT News, 9:25–29, 1977.

[66] M. Grohe. Equivalence in finite-variable logics is complete for polynomial time.

Combinatorica, 19(4):507–532, 1999.

[67] M. Grohe, K. Kersting, M. Mladenov, and E. Selman. Dimension reduction via

colour refinement. In Proceeding of 22th Annual European Symposium on Algo-

rithms (ESA), volume 8737 of Lecture Notes in Computer Science, pages 505–516.

Springer, 2014.

[68] M. Grohe and M. Otto. Pebble games and linear equations. In Computer Science

Logic (CSL’12), volume 16 of LIPIcs, pages 289–304, 2012. A full version is avail-

able as an e-print http://arxiv.org/abs/1204.1990.

105

http://arxiv.org/abs/1204.1990

[69] N. Immerman and E. Lander. Describing graphs: A first-order approach to graph

canonization. In Complexity Theory Retrospective, pages 59–81. Springer, 1990.

[70] R. Johnson. Simple separable graphs. Pac. J. Math., 56:143–158, 1975.

[71] K. Kersting, M. Mladenov, R. Garnett, and M. Grohe. Power iterated color refine-

ment. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-

gence, pages 1904–1910. AAAI Press, 2014.

[72] S. Kiefer, P. Schweitzer, and E. Selman. Graphs identified by logics with counting.

In Proceedings of the 40th International Symposium on Mathematical Foundations

of Computer Science (MFCS), Lecture Notes in Computer Science, vol. 9235, pages

319–330. Springer, 2015. A full version is available as an e-print http://arxiv.

org/abs/1503.08792.

[73] J. Köbler, U. Schöning, and J. Torán. The graph isomorphism problem: its structural

complexity. Boston, MA: Birkhäuser, 1993.

[74] M. Koren. Pairs of sequences with a unique realization by bipartite graphs. Journal

of Combinatorial Theory, Series B, 21(3):224 – 234, 1976.

[75] A. Krebs and O. Verbitsky. Universal covers, color refinement, and two-variable

logic with counting quantifiers: Lower bounds for the depth. In Proceedings of the

30-th ACM/IEEE Annual Symposium on Logic in Computer Science (LICS), pages

689–700. IEEE Computer Society, 2015.

[76] F. T. Leighton. Finite common coverings of graphs. J. Comb. Theory, Ser. B,

33(3):231–238, 1982.

[77] P. N. Malkin. Sherali-adams relaxations of graph isomorphism polytopes. Discrete

Optimization, 12:73–97, 2014.

[78] M. V. Ramana, E. R. Scheinerman, and D. Ullman. Fractional isomorphism of

graphs. Discrete Mathematics, 132(1-3):247–265, 1994.

106

http://arxiv.org/abs/1503.08792
http://arxiv.org/abs/1503.08792

[79] H. Schreck and G. Tinhofer. A note on certain subpolytopes of the assignment poly-

tope associated with circulant graphs. Linear Algebra Appl., 111:125–134, 1988.

[80] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borg-

wardt. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research,

12:2539–2561, 2011.

[81] G. Tinhofer. Graph isomorphism and theorems of Birkhoff type. Computing,

36:285–300, 1986.

[82] G. Tinhofer. Strong tree-cographs are Birkhoff graphs. Discrete Applied Mathemat-

ics, 22(3):275–288, 1989.

[83] G. Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2-

3):253–264, 1991.

[84] G. Tinhofer and M. Klin. Algebraic combinatorics in mathematical chemistry. Meth-

ods and algorithms III. Graph invariants and stabilization methods. Technical Report

TUM-M9902, Technische Universität München, 1999.

[85] R. Tyshkevich. Decomposition of graphical sequences and unigraphs. Discrete

Mathematics, 220(1-3):201–238, 2000.

[86] G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

[87] P. Wang and J. S. Li. On compact graphs. Acta Mathematica Sinica, 21(5):1087–

1092, 2005.

[88] H. Whitney. Congruent graphs and connectivity of graphs. Amer. J. Math., 54:150–

168, 1932.

[89] M. Ziv-Av. Results of computer algebra calculations for triangle free strongly reg-

ular graphs. E-print, http:/www.math.bgu.ac.il/~zivav/math/eqpart.pdf,

2013.

107

http:/www.math.bgu.ac.il/~zivav/math/eqpart.pdf

	Synopsis
	List of Figures
	Introduction
	Thesis Outline
	Results and Thesis Organization
	Geometric Graph Isomorphism
	Geometric Graph Canonization
	On the Power of Color Refinement
	On Tinhofer's LP Approach to GI

	Geometric Graph Isomorphism
	Preliminaries
	Linear Algebra
	Integer Lattices

	XP algorithm for GEOM-GI
	Lattice-based FPT algorithm for GEOM-GI
	Discussion

	Geometric Graph Canonization
	Preliminaries
	FPT algorithm for GEOM-GC
	Proof of Theorem 18

	Geometric Isomorphism in other lp metrics
	Discussion

	The Power of Color-Refinement
	Preliminaries
	Local Structure of Amenable Graphs
	Global Structure of Amenable Graphs
	Proof of Theorem 20
	Examples and Applications

	The Power of LP Approach to Graph Isomorphism
	Preliminaries
	Proof of Theorem 23
	A Color-Refinement Based Hierarchy of Graphs
	Johnson Graph J(n,2) is Tinhofer
	The Petersen Graph is in Godsil

	P-Hardness Results
	Discussion

	Bibliography

