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Abstract

This thesis investigates some graph modification problems from Parameterized Complexity

point of view. A typical graph modification problem, for a fixed graph class Π, asks us to

modify the input graph using small number of operations such that the resulting graph

belongs to Π. Typical operations studied in the field are vertex and edge deletions. There

are two choices of parameters for graph modification problems, one is the size of the graph

we are looking for, the other is the editing distance.

The first part of the thesis deals with the former kind of parameterization and has results

concerning many choices of the graph class Π. The first result establishes no polynomial

kernelization under standard complexity theory assumptions for finding induced hereditary

subgraphs for many choices of Π, including cographs, chordal, interval, split, perfect, and

cluster graphs. In the other result, the class Π is the set of q-colorable graphs. We give

efficient FPT algorithms for finding induced q-colorable subgraphs on graphs where either

all maximal independent sets can be enumerated in polynomial time or where the maximum

independent set can be found in polynomial time.

The second part of the thesis deals with the more conventional parameter choice, which

is the edit distance, more commonly called the solution size. We first give efficient FPT

algorithms for Split Vertex Deletion and Split Edge Deletion when parameterized

by the solution size. We also give polynomial kernels for both the problems. Then

we consider the problem of deleting both vertices and edges to get a forest, which is a

generalization of classic Feedback Vertex Set problem, and show that it is FPT.

Then we propose another parameterization for graph editing problems where after deleting

vii



a small number of vertices, we want every connected component of the resulting graph

to be close to a well understood graph class Π, where the measure of closeness is the

minimum number of edges to be deleted from that connected component to reach the

graph class. We argue how this parameterization is more powerful than the standard

parameterizations for graph editing problems, and show this version to be FPT for two

choices of Π, forests and bipartite graphs. While showing the latter, we also develop an

algorithm for a generalization of the classic Min-Cut problem, called Mixed Cut, where

we are allowed to delete both vertices and edges to disconnect the given terminals. We

also show that Mixed Cut is NP–complete.
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Chapter 1

Introduction

Graph modification problems have been a central area of study in the field of algorithms.

Many of the classical problems, including Vertex Cover, Feedback Vertex Set,

Clustering and many others, can be looked as instances of a generic problem, where we are

asked to modify the input graph G using small number of operations such that the resulting

graph G′ satisfies certain properties (or, in other words, belongs to a graph class Π). Most

of these problems are NP–complete due to a general result of Lewis and Yannakakis [LY80],

and hence have been approached from different paradigms designed to deal with NP-

completeness, such as approximation algorithms and parameterized algorithms. In rest of

the section, we define the abstract graph editing problem and mention the relevant results,

which will stablish the foundation for describing the main results in the thesis.

In the field of parameterized complexity, graph editing problems feature prominently. The

Vertex Cover problem, where we want to delete minimum number of vertices to get

an independent set, has been one of the most researched problems in this field. Another

graph editing problem which contributed to the advancement of the field in recent times

is the Feedback Vertex Set problem, where we want to delete minimum number of

vertices to get an acyclic graph. Both of these problems are known to be FPT and admit

polynomial kernels. In this thesis, we concern ourselves with graph problems where we are

only allowed to delete vertices or edges (or both) to get a graph with certain properties. In

parameterized complexity, these deletion problems can be broadly classified into two types
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depending on the choice of the parameter. Now we describe the two classifications along

with some relevant results.

1. Size of the graph G′. In this view, the parameter is the size of the graph we are

looking for. It can also be looked at as the problem of finding induced subgraphs. We call

the problem Π-Induced Subgraph and define it formally as follows.

Π-Induced Subgraph Parameter(s): k

Input: A graph G and an integer k.

Question: Does there exist an induced subgraph of G on k vertices that belongs to Π?

Khot and Raman [KR02] proved the following result about Π-Induced Subgraph.

Theorem 1.1 ([KR02]). If a nontrivial and hereditary graph class Π does not contain

all independent sets and cliques, Π-Induced Subgraph becomes W[1]-hard, and is FPT

otherwise.

The kernelization complexity of Π-Induced Subgraph had remained largely unex-

plored until recently. After the development of theory of lower bounds on kernelization,

Kratsch [Kra12] showed that Π-Induced Subgraph does not admit polynomial kernels

unless NP ⊆ coNP/poly, where the class Π is the class of all independent sets and cliques.

2. The editing distance. In this view, the parameter is the editing distance. This can

be the number of vertices, or edges, or both. We define the problem formally as follows.

F-Deletion Parameter(s): k1, k2

Input: An undirected graph G and non-negative integers k1 and k2.

Question: Does there exist S1 ⊆ V (G), and S2 ⊆ E(G) such that |S1| ≤ k1, |S2| ≤ k2

and G− S1 − S2 is in F?

Here G−S1−S2 is the graph obtained by deleting S1 and S2 from G. We call the problem

F-Vertex Deletion and F-Edge Deletion in the special cases where the values of k2

and k1 respectively are zero. In a general result about F-Vertex Deletion, Cai [Cai96]

showed the following.

Theorem 1.2 ([Cai96]). F-Vertex Deletion is FPT for all hereditary graph classes F

4



which can be characterized by a finite forbidden set of graphs as induced subgraphs.

The theorem shows that F-Vertex Deletion is FPT for a wide class of choices of F ,

including Independent Set, Triangle-free graphs, Split Graphs, Cographs etc. The FPT

algorithm essentially finds a forbidden induced subgraph and branches on it. We can get a

similar result for edge-deletion version of the problems by branching on the edges instead.

Also, all these problems admit polynomial kernelization by reduction to the Hitting Set

problem, where the size of the kernel depends on the size of the largest forbidden induced

subgraph.

There are many other graph families, which are hereditary but forbid an infinite set

of graphs as induced subgraphs. A few examples of such families are Bipartite graphs,

Chordal graphs, Interval graphs, Perfect graphs etc. For such families, finding out whether

F-Vertex Deletion is FPT requires a lot more work and it has been an active area of

research in the field of parameterized complexity.

In the next couple of sections, we describe the contents of the thesis and the relevance of

those results in the general framework of graph editing problems.

1.1 Thesis Outline

In this thesis, we explore the parameterized complexity of various problems from both

point of views as described in the previous section. In addition to that, we give a new way

of parameterizing graph editing problems and explore the complexity of some problems

under that particular view. In this section, we briefly mention the results in the thesis.

In the next section, we discuss the results in more detail and give an organization of the

thesis.

We show that Π-Induced Subgraph does not admit polynomial kernelization unless

NP ⊆ coNP/poly for two choices of graph class Π, which cover many well known graph

classes including Cographs, Chordal graphs, Perfect graphs, Interval graphs, Cluster graphs

etc.
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Then we give two algorithms for Π-Induced Subgraph, where the class Π is the set

of q-colorable graphs. These algorithms run in FPT time for graph classes where (i) the

number of maximal independent sets is polynomial in the size of the graph, or (ii) the

maximum independent set can be found in polynomial time. We also show that the problem

does not admit polynomial kernel on perfect graphs unless NP ⊆ coNP/poly.

We look at the F-Vertex Deletion and F-Edge Deletion problems for the case

when the F is the set of Split graphs, and give fast parameterized algorithms for both the

problems. We also give better polynomial kernels for both problems.

Then we look at the general F-Deletion problem for where the graph class F is the set

of forests. We show that the problem is FPT and give polynomial kernel for the problem.

We also give subexponential parameterized algorithm for the problem on planar graphs

using bidimensionality.

We also introduce the notion of Strong F-Deletion problem, where we want to delete

at most k vertices such that every connected component of the resulting graph is at most

` edges away from being in F . We show that Strong F-Deletion deletion problem is

FPT for the choices of F being forests and bipartite graphs.

1.2 Results and thesis organization

In this section, we describe the results in the chapters of the thesis in more detail. The

technical content of the thesis is organized in the chapters which are divided into two parts

as described in the subsections below.

1.2.1 Finding Induced Subgraphs

Kernel lower bounds for finding induced hereditary subgraphs

We first give an overview of the existing lower bound techniques for kernelization which

will be used in the subsequent chapters.
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Given the characterization in Theorem 1.1, we explore the existence of polynomial ker-

nelizations for Π-Induced Subgraph, when Π is restricted to contain all independent

sets and cliques. Regarding Π-Induced Subgraph, we show that for most natural graph

classes Π, including cographs, chordal, interval, split, perfect, and cluster graphs, there is

no polynomial kernelization unless NP ⊆ coNP/poly. This is shown by lower bounds for

two choices for Π which are established by a co-nondeterministic cross-composition and a

parameterized reduction from Ramsey respectively.

As one of the tools for our compositions we establish a nice trick for allowing easier source

problems, which is of independent interest for other lower bounds. We show that for

two general classes of problems, modeled after monotone and anti-monotone optimization

problems, it suffices to start from improvement versions, where each instance comes with a

guaranteed solution which is only off by one from the target value.

The results in this chapter are reported in [KPRR14].

Finding max q-colorable induced subgraph

We define the p-Max Colorable Induced Subgraph (p-mcis) problem formally as

follows.

p-Max Colorable Induced Subgraph (p-mcis) Parameter(s): `

Input: An undirected graph G = (V,E) and positive integers q and `.

Question: Does there exist Z ⊆ V , |Z| ≥ `, such that G[Z] is q-colorable?

Theorem 1.1 implies that p-mcis is W[1]-hard parameterized by the solution size on

general graphs. Observe that Independent Set is essentially p-mcis with q = 1. There

has been also some study of parameterized complexity of Independent Set on special

graph classes [DLMR10, RS08]. Yannakakis and Gavril [YG87] showed that p-mcis is

NP–complete on split graphs and Addario-Berry et al. [ABKK+10] showed that the problem

is NP–complete on perfect graphs for every fixed q ≥ 2.

Our main contributions are two randomized FPT algorithms for p-mcis and a complementary

lower bound, which establishes the non-existence of a polynomial kernel under standard

7



complexity-theoretic assumptions.

Our first algorithm runs in time (2e)`(n + #α(G))O(1) where #α(G) is the number of

maximal independent sets of the input graph and the second algorithm runs in time

O(6.75`+o(`)nO(1)) on graph classes where the maximum independent set of an induced

subgraph can be found in polynomial time. The first algorithm is efficient when the input

graph contains only polynomially many maximal independent sets; for example on split

graphs and co-chordal graphs. The second algorithm is efficient for a larger class of graphs,

for example perfect graphs, because it only relies on an efficient procedure for finding a

maximum independent set (although this comes at the cost of slightly larger base of the

exponent).

We also describe derandomization procedures. While the derandomization technique

for the first algorithm is standard, to derandomize the second algorithm we used the

idea of (n, p, q)-separating families, introduced in [FLS14]. Further, we show that unless

NP ⊆ coNP/poly, the problem does not admit polynomial kernel even on split graphs.

Also, on perfect graphs, we show that the problem does not admit a polynomial kernel

even for fixed q ≥ 2, unless NP ⊆ coNP/poly.

The results in this chapter are reported in [MPR+13].

1.2.2 Graph Editing Problems

Deletion to Split graphs

We look at Split Vertex Deletion and Split Edge Deletion problems where we are

allowed to delete at most k vertices and edges respectively to get to a split graph. The

formal problems are defined as follows.

Split Vertex Deletion (SVD) Parameter(s): k

Input: Graph G = (V,E), integer k

Question: Does there exist a set of vertices of size at most k whose deletion from G

results in a split graph?

8



Split Edge Deletion (SED) Parameter(s): k

Input: Graph G = (V,E), integer k

Question: Does there exist a set of edges of size at most k whose deletion from G

results in a split graph?

As the forbidden set (as induced subgraphs) for split graphs is finite ({C4, C5, 2K2}), these

problems become fixed-parameter tractable due to a Theorem 1.2, when parameterized

by k. One can also observe from the finite forbidden (induced) subgraph characterization

of split graphs, a fairly straightforward branching algorithm for both SVD and SED

with O∗(5k) running time1. In [LNR+14], the authors obtained an O∗(2.32k) algorithm

for SVD by reducing the problem to the Above Guarantee Vertex Cover problem

and using the fixed-parameter algorithm for it. We improve this bound to O∗(2k) by the

combination of a bound on the number of split partitions of a split graph, and the well

known technique of iterative compression. We also obtain an O(k3) vertex kernel for the

problem. Note that, this kernel is smaller than the kernel with O(k4) vertices, which can

be obtained by an approach similar to d-Hitting Set [AK10]. We also prove that under

certain complexity theoretic assumptions, we cannot obtain a subexponential algorithm for

this problem.

For SED, we design a subexponential algorithm running in time O∗(2O(
√
k log k)) by combin-

ing the color and conquer approach [ALS09], with the bound on the number of partitions of

a split graph. This was probably the second problem (see [FV12]) having a subexponential

algorithm on general graphs which does not use bidimensionality theory. We also revisit

the kernelization algorithm for this problem given by Guo [Guo07], and by using only

a subset of the rules presented there, we prove a bound of O(k2) vertices improving on

Guo’s bound of O(k4). Furthermore, the Split Completion problem of adding at most

k edges to a given graph to make it split, is equivalent to deleting at most k edges from

the complement of the graph to make it split. Hence, the bound on the kernel and the

subexponential algorithm which we prove for SED also holds for Split Completion. Later

the algorithms for SVD and SED were improved to O∗(1.2738kkO(log k)) and O∗(2O(
√
k))

respectively [CP13, CFK+15].

1Here the O∗ notation hides the polynomial factors
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The results of this chapter are reported in [GKK+15].

Almost Forest Deletion

We look at the F-Deletion problem where the family F is set of forests. We call a graph

an `-forest if we can delete at most ` edges from it to get to a forest. The problem is

formally defined as follows.

Almost Forest Deletion Parameter(s): k, `

Input: A graph G, integers ` and k.

Question: Does there exist X ⊆ V (G) such that |X| ≤ k and G−X is an `-forest?

We show that Almost Forest Deletion can be solved in O∗(5.0024(k+`)) time. We arrive

at the result using the iterative compression technique which was introduced in [RSV04]

and a non-trivial measure which helps us in getting the desired running time. Then we

explore the kernelization complexity of the problem, and show that Almost Forest

Deletion admits a polynomial kernel with O(k`(k + `)) edges. For arriving at the result,

we first make use of Expansion Lemma and Gallai’s Theorem for reducing the maximum

degree of the graph, and then we bound the size of the graph. It is easy to see that

for Yes instances of Almost Forest Deletion, the treewidth of the input graph is

bounded by k+ `. Since we have an algorithm with running time of the form O∗(c(k+`)) on

general graphs, the question of finding an algorithm with running time O∗(c(tw)) becomes

interesting, where tw is the treewidth of the input graph. We answer this question

affirmatively by giving a O∗(17tw) algorithm for graphs with a tree decomposition of width

tw. This algorithm, along with the notion of bidimensionality, gives rise to a subexponential

algorithm for Almost Forest Deletion on planar graphs.

The results of this chapter appear in [RS15].

`-Pseudoforest Deletion

We study the problem of deleting at most k vertices such that in the resulting graph, every

connected component is at most ` edges away from being acyclic. It can also be looked at
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as deleting at most k vertices to get to the graph class F , which is set of graphs where

every connected component is at most ` edges away from being a forest. We define the

problem formally as follows.

`-pseudoforest Deletion Parameter(s): k, `

Input: A graph G, integers ` and k.

Question: Does there exist X ⊆ V (G) such that G−X is an `-pseudoforest?

Here `-pseudoforest represents the graph class where we can delete at most ` edges from

each connected component to get to a forest. In our work, we first apply the techniques

used in [FLMS12] to get an FPT algorithm for `-pseudoforest Deletion. To that end,

we have to show that `-pseudoforest Deletion has a protrusion replacer, which we

do by showing that the property of being an `-pseudoforest is strongly monotone and

minor-closed. We arrive at the running time of O∗(ck` ) for `-pseudoforest Deletion

where c` is a function of ` alone. If we try to apply the machinery of [FLMS12] to get a

kernelization algorithm for `-pseudoforest Deletion, it only gives a kernel of size kc

where the constant c depends on `. We use the similarity of this problem with Feedback

Vertex set and applied Gallai’s theorem and Expansion Lemma to decrease the maximum

degree of the graph. This, when combined with techniques used in [FLMS12], gives us

a kernel of size ck2, where the constant c depends on `. These kind of kernels are more

desired as it gives O(k2) kernel for every fixed `, while the non-uniform kernelization does

give a polynomial kernel for every fixed `, but the exponent’s dependency on ` makes the

size of the kernel grow very quickly when compared to uniform-kernelization case.

We also look at a special case of `-pseudoforest Deletion, namely Pseudoforest

Deletion, where we ask whether we can delete at most k vertices to get to a pseudoforest.

A pseudoforest is special case of `-pseudoforest for ` = 1, i.e., in a pseudoforest, each

connected component is just one edge away from being a tree. In other words, it is a

class of graphs where every connected component has at most one cycle. We applied the

well known technique of iterative compression along with a non-trivial measure and an

interesting base case to arrive at an O∗(7.5618k) algorithm for this problem. We also gave

an explicit kernel with O(k2) vertices for the problem.

11



The results of this chapter are reported in [PRS15].

Pseudobipartite Deletion

Let F be a polynomial-time recognizable family of graphs; that is, given a graph G, in

polynomial time we can decide whether G belongs to F . For a fixed integer `, let F + `e

denote the class of graphs that can be obtained by adding (or deleting) at most ` edges to

a graph in F . We introduce the notion of Strong F-Deletion as follows.

Strong F-Deletion Parameter(s): k1, k2

Input: An undirected graph G and non-negative integers k1 and k2.

Question: Does there exist S1 ⊆ V (G) such that |S1| ≤ k1 and every connected

component of G− S1 belongs to F + k2e?

We first argue that this is an interesting and stronger parameterization for graph deletion

problems as compared to F-Deletion. In this chapter, we look at an instantiation of

Strong F-Deletion where the class F is the class of bipartite graphs. Formally, we look

at the following problem.

Pseudobipartite Deletion Parameter(s): k, `

Input: A graph G, integers k and ` and a set U ⊆ V (G).

Question: Does there exist X ⊆ (V (G) \T ) such that |X| ≤ k, X ∩U = ∅ and G−X

is `-pseudobipartite?

Here, an `-pseudobipartite graph is defined analogous to `-pseudoforests, that is, a graph is

`-pseudobipartite if we can delete at most ` edges from each of its connected components

such that every connected component of the resulting graph is bipartite. In our work, we

show that Pseudobipartite Deletion is FPT. The first big obstacle that needed to be

overcome was the fact that the input graph can have a minimum odd cycle transversal of

unbounded size. The first part of our algorithm is devoted to overcoming this obstacle.

We utilise the recursive understanding technique introduced by Chitnis et al. [CCH+12] to

first find a small separator in the graph which separates the graph into two parts, each

of sufficiently large size and then recursively solve a ‘border’ version of the same problem
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on one of the two sides. The border version of the problem is a generalization which also

incorporates a special bounded set of vertices, called terminals. During the course of our

algorithm, we attempt to solve the border problem on various subgraphs of the input graph.

The objective in the border problem is to find a bounded set of vertices contained within a

particular subgraph such that any vertex in this subgraph not in the computed set is not

required in any solution for the given instance irrespective of the vertices chosen outside

this subgraph.

Given the output of the border problem, the standard approach is to either delete the

remaining vertices or simply ‘bypass’ these vertices. In our case such a reduction was not

possible and no simple reduction seemed likely. However, we show that if we blow up

the size of the computed set by a function of the parameter then we can use a ‘parity

preserving’ bypassing to get rid of the remaining vertices.

This leaves us with the base case of the recursion, that is when we are unable to find a

separator of the required kind. At this stage, we argued that if the instance is a yes-instance

then it must in fact have an odd cycle transversal (oct) whose size is bounded by a function

of the parameter. Interestingly, even this seemingly significant structural information

regarding the input was not enough to guarantee an algorithm. Instead, we computed

an approximate oct solution and designed a branching rule that has as its base case, the

case when the approximate oct is not separated by the solution. Here, we rephrased this

problem as a cut problem, namely MMCU, which we show to be FPT in the next chapter.

The results in this chapter are reported in [RR16].

Mixed Multiway Cut-Uncut

Given a graph, a typical cut problem asks for finding a set of vertices or edges such that

their removal from the graph makes the graph satisfy some separation property. The most

fundamental version of cut problems is Minimum Cut, where given a graph and two

vertices, called terminals, we are asked to find the minimum sized subset of vertices (or

edges) of the graph such that deleting them separates the terminals. While Minimum Cut

is polynomial time solvable; even a slight generalization becomes NP-hard. Two of the
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most studied generalizations of Minimum Cut problem which are NP-hard are Multiway

Cut and Multicut. In the Multiway Cut problem, we are given a set of terminals, and

we are asked to delete minimum number of vertices (or edges) to separate the terminals

from each other. This problem is known to be NP-hard even when the number of terminals

is at least three. In the Multicut problem, given pairs of terminals, we are asked to delete

minimum number of vertices (or edges) so that it separates all the given terminal pairs.

The Multicut problem is known to be NP-hard when the number of pairs of terminals

is at least three. The mixed version of the problem, where we are allowed to delete both

edges and vertices, namely Mixed Cut, is also NP-hard.

In the Mixed Cut problem we are given an undirected graph G, vertices s and t, positive

integers k and ` and the objective is to test whether there exist a k sized vertex set S ⊆ V (G)

and an ` sized edge set F ⊆ E(G) such that deletion of S and F from G disconnects

s from t. In this work, we study the problem called Mixed Multiway Cut-Uncut

(MMCU), which is generalization of Mixed Cut, where given a graph G, T ⊆ V (G), and

an equivalence relation R on T and integers k and `, we are asked whether there exist

X ⊆ (V (G) \ T ) and F ⊆ E(G) such that |X| ≤ k, |F | ≤ ` and for all u, v ∈ T , u and v

belong to the same connected component of G− (X,F ) if and only if (u, v) ∈ R, where

G − (X,F ) is the graph that we obtain by deleting X and F from G. It is easy to see

that this problem generalizes both, the Multiway Cut and Mixed Cut problems. The

formal definition is given as below.

Mixed Multiway Cut-Uncut (MMCU) Parameter(s): k, `

Input: A multigraph G, a set of terminals T ⊆ V (G), an equivalence relation R on

the set T and integers k and `.

Question: Does there exist X ⊆ (V (G)\T ) and F ⊆ E(G) such that |X| ≤ k, |F | ≤ `

and for all u, v ∈ T , u and v belong to the same connected component of G− (X,F ) if

and only if (u, v) ∈ R?

Even though the vertex and edge versions of Minimum Cut problem are polynomial time

solvable, we show that allowing deletion of both, the vertices and the edges, makes the

Mixed Cut problem NP-hard. To show that, we use a simple reduction from the Bipartite
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Partial Vertex Cover problem which was recently shown to be NP-hard [AS14, JV12].

Then we show that MMCU is FPT when parameterized by k + l using the technique of

recursive understanding introduced by Grohe et al. [GKMW11] (also see [CCH+12]).

The results of this chapter are reported in [RRS16].
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Chapter 2

Preliminaries

2.1 Sets and numbers

We use N to denote the set of natural numbers. For any n ∈ N, [n] denotes the set

{1, 2, . . . , n}. For a set U and k ∈ N, we use 2U and
(
U
k

)
to denote the set of all subsets of

U and set of all subsets of size k of U , respectively. A partition of a positive integer x is

a multiset P = {x1, x2, . . . , xt} such that t ≤ x,
∑

i∈[t] xi = x and xi ∈ Z+. The positive

integer xi ∈ P is called part of the partition.

2.2 Growth of Functions

We mainly use the big-Oh (O) notation (see [CSRL01]) and the big-Oh-star (O∗) notation

introduced in [Woe01]. Let f : N → N and g : N → N be two functions. We say that

f(n) = O(g(n)) if there exist constants c and n0 such that for all n ≥ n0, f(n) ≤ cg(n).

The notation O∗ is essentially the O notation which hides the polynomial factors and

used only for running times of exponential time algorithms. We use O∗(f(n)) to denote

O(f(n)nc) where c is some constant. In this thesis, we use the O∗ notation to hide factors

which are polynomial in the input size in order to focus on the function of the parameter.
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2.3 Graphs

A graph G is a pair (V,E) where V is a set of elements called vertices, and E is a collection

of pairs of vertices called the edges. The two vertices of an edge are called the endpoints of

the edge and, the edge is said to be incident on the two vertices. For a graph G we use

V (G) and E(G) to denote the vertex set and the edge sets respectively. When the graph

G is clear from the context, we use n and m to represent |V (G)| and |E(G)| respectively.

For a graph G = (V,E), and a set A ⊆ E of edges, we denote by V (A) the set of endpoints

of the edges in A. A simple graph is a graph where every edge is distinct and further the

two endpoints of any edge are distinct vertices. A multigraph is a graph where we allow

multiple copies of the same edge in the edge set (parallel edges) and further, we allow

an edge to have the same vertex as both it’s endpoints (loops). A subdivision of an edge

e = (u, v) of G yields a new digraph, G′, containing one new vertex w, and with an edge

set replacing e by two new edges, (u,w) and (w, v). That is, V (G′) = V (G) ∪ {w} and

E(G′) = (E(G) \ {(u, v)}) ∪ {(u,w), (w, v)}. Unless specified otherwise, the graphs in this

thesis are simple.

For X ⊆ V (G), G[X] denotes the induced subgraph on X of G, which has vertex set X,

and the edge contains all edges in G whose both endpoints lie in X. Similarly, the subgraph

of G induced by an edge set A ⊆ E is defined as the subgraph of G with edge set A and

vertex set V (A) and is denoted by G[A]. Similarly, the subgraph of G induced by an edge

set A ⊆ E is defined as the subgraph of G with edge set A and vertex set V (A) and is

denoted by G[A]. All vertices adjacent to a vertex v are called neighbors of v and the set

of all such vertices is called the neighborhood of v. Similarly, a non-adjacent vertex of v is

called a non-neighbor and the set of all non-neighbors of v is called the non-neighborhood

of v. The neighborhood of v is denoted by N(v). We say that v is global to a set Z if v is

adjacent to all vertices of Z and we say that v is non-adjacent (or non-neighbor) to a set

Z if v is not adjacent to any vertex of Z. For two sets X and Y , we say that X is global to

Y if every vertex in X is global to Y and that X is non-adjacent to Y if every vertex in X

is non-adjacent to Y . Given a graph or digraph G and a subset X of V (G) (or E(G)), by

G−X we denote the graph obtained by deleting X from V (G) (or from E(G)). When X
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contains just a single vertex v (or a single edge e), we often write G− v (and G− e) to

denote G \ {v} (and G \ {e}).

The union of graphs G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and edge set

E(G1)∪E(G2) A graph G1 is said to be a subgraph of another graph G2 is V (G1) ⊆ V (G2)

and E(G1) ⊆ E(G2). A walk W in a graph G consists of a sequence of vertices and edges

{v0, e1, v1, e2, . . . , e`, v`} ⊆ E(G), such that the edge ei is incident on vi−1 and vi. We say

that a walk W visits the vertices and the edges in W . The vertices v0 and v` are called

the start and the end vertex, respectively, of the walk. All other vertices visited by W

are called internal vertices. A walk is a closed walk if it’s start vertex and end vertex

are the same. A path P is a walk which visits any vertex at most once, i.e. there are at

most two arcs in P which are incident on any vertex visited by W . A cycle is a closed

walk which visits all the internal vertices exactly once and the start/end vertex exactly

twice. Observe that any edge or vertex occurs at most once in a path P which induces

an ordering of these edges, and we say that P visits these edges in that order. Similarly,

for the collection of vertices which are present in P , P induces ordering of these vertices

and we say that P visits them in that order. Let P be a path which visits a vertex u and

then visits a vertex v. We write P [u, v] to denote the sub-path of P which starts from

u and ends at v. For two path P and Q such that the end vertex of P is same as the

start vertex of Q, we write P + Q to denote the walk from the start vertex of P to the

end vertex of Q. A cycle is a graph with vertex set V (P ) = {v1, v2, . . . , v`} and edge set

E(P ) = {(vi, vi+1) | 1 ≤ i ≤ `− 1} ∪ {(v`, v1)}, i.e. it is a path plus an edge from the last

to the first vertex. A acyclic graph, as the name implies, contains no cycles. A connected

acyclic graph is called a tree. An acyclic graph is a union of trees, and it is called a forest.

A clique or a complete graph is a simple graph where every pair of vertices form an edge.

A clique on n vertices is denoted by Kn. An independent set is a graph with an empty

edge set.

A graph G is called perfect, if for all U ⊆ V (G), w(G[U ]) = χ(G[U ]). A graph G is called

chordal if every simple cycle of with more than three vertices has an edge connecting

two non-consecutive vertices on the cycle. The complements of chordal graphs are called

co-chordal graphs. All chordal graphs and co-chordal graphs are perfect graphs. A split
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graph is a graph whose vertex set can be partitioned into two subsets I and Q such that I

is an independent set and Q is a clique. Split graphs are closed under complementation.

2.4 Parameterized Complexity

In the parameterized complexity setting, an instance comes with an integer parameter k

— formally, a parameterized problem Q is a subset of Σ∗ × N for some finite alphabet Σ.

We say that the problem is fixed-parameter tractable (FPT) if there exists an algorithm

solving any instance (x, k) in time f(k)poly(|x|) for some (usually exponential or worse)

computable function f . Fixed-parameter tractability can equivalently be defined via the

notion of kernelization: a kernelization algorithm for a problem Q takes any instance (x, k)

and in time polynomial in |x|+ k produces an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q

iff (x′, k′) ∈ Q) such that |x′|+ k′ ≤ g(k) for some computable function g. The function g

gives an upper bound on the size of the kernel, and if it is polynomial, we say that Q

admits a polynomial kernel.

Theorem 2.1 (Folklore). A parameterized problem is FPT if and only if it admits a

kernelization algorithm.

In view of Theorem 2.1, every parameterized problem has a kernel, but the kernels obtained

in this way turn out to be exponential. Hence, for problems already known to be FPT the

question of having a polynomial kernelization becomes relevant, and has led to a lot of

research in the field. Over time, many problems are shown to admit polynomial kernels,

and using some recent techniques, some are ruled out to have one. In the later chapters,

we will explore the lower bound techniques for kernelization in detail and will also see some

examples of polynomial kernelizations.

If we do not demand the output of a kernelization to be an instance of the same problem but

allow any (unparameterized) target language (accordingly only the output size is bounded

by g(k)) then we obtain the notion of a (polynomial) compression. The significance of the

latter is that almost all lower bound techniques in fact give lower bounds for this more

general notion and, furthermore, lower bounds for compressions transfer more cleanly via
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reductions (and immediately also rule out kernels of the same size).

2.5 Treewidth

Let G be a graph. A tree-decomposition of a graph G is a pair (T,X = {Xt}t∈V (T)) such

that

• ∪t∈V (T)Xt = V (G),

• for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and

• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is

connected.

The width of a tree decomposition is maxt∈V (T)|Xt| − 1 and the treewidth of G is the

minimum width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X ) is called a nice tree decomposition if T is a tree rooted at some

node r where Xr = ∅, each node of T has at most two children, and each node is of one of

the following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| =

|Xt′ |+ 1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ |−1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

4. Base node: a node t that is a leaf of T, is different than the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget node or a

join node. It is well known that any tree decomposition of G can be transformed into a

nice tree decomposition maintaining the same width in linear time [Klo94]. We use Gt to

denote the graph induced by the vertex set ∪t′Xt′ , where t′ ranges over all descendants of

t, including t. By E(Xt) we denote the edges present in G[Xt]. For clarity of presentation

we use the term nodes to refer to the vertices of the tree T.

21



22



Part II

Algorithms and Kernelization

Lower Bounds and for Induced

Subgraph Problems
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Chapter 3

Lower Bounds for Kernelization:

The basics

3.1 Introduction

In chapter 2, we have seen the definition of kernelization and how the notion of kernelization

is related to that of Fixed Parameter Tractability. The theory of kernelization has developed

recently to establish some strong connections with classical complexity, which has led to a

framework for ruling out polynomial kernels under some complexity theoretic assumptions.

Almost all kernelization lower bound results and tools are, directly or indirectly, based on

a framework due to Bodlaender et al. [BDFH09] and Fortnow and Santhanam [FS11]. On

a high level the framework centers around the fact that NP-hard problems cannot have

both a polynomial kernelization and a so-called or-composition algorithm (see Section 3.2

for basic definitions) unless NP ⊆ coNP/poly (known to cause a collapse of the polynomial

hierarchy).

In this chapter, we will broadly overview the results and the techniques which will be used

in the next few chapters to arrive at lower bounds for kernelization.
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3.2 The Framework

The two main ways of showing kernelization and compression lower bounds are to either

give some variant of composition or to transfer a lower bound from another problem to the

target problem by an appropriate reduction. Next we provide the essential definitions for

both strategies, starting with or-cross-compositions.

Definition 3.1 (polynomial equivalence relation [BJK14]). Let Σ be a finite alphabet. An

equivalence relation R ⊆ Σ∗×Σ∗ is called a polynomial equivalence relation if the following

two conditions hold.

1. There is an algorithm that given two strings x, y ∈ Σ∗ takes time polynomial in |x|+|y|

and correctly answers whether they are equivalent under R, i.e., whether (x, y) ∈ R.

2. For any finite set S ⊆ Σ∗ the number of R-equivalence classes in S is bounded

polynomially in the size of the largest string in S.

The idea behind polynomial equivalence relations is that it suffices to give or-cross-

compositions that work for any single equivalence class. We are now ready to give the

definition of or-cross composition.

Definition 3.2 (OR-cross-composition [BJK14]). Let L ⊆ Σ∗ be a language and let Q ⊆

Σ∗ × N be a parameterized problem. We say that L has a or-cross-composition of cost

f(t) into Q (where f(t) is some computable function) if there is a polynomial equiva-

lence relation R ⊆ Σ∗ × Σ∗ and a deterministic algorithm C that, on input of t in-

stances x1, . . . , xt ∈ Σ∗ of L that are equivalent under R, takes time polynomial in
∑

i |xi|

and outputs on each computation path an instance (y, k) ∈ Σ∗ × N such that the following

three conditions hold.

“PB” The parameter value k is bounded by f(t)(maxi|xi|)c on each computation path, for

some constant c independent of t.

“OR:Yes” If at least one instance xi is Yes for L then C(x1, . . . , xt) returns an in-

stance (y, k) that is Yes for Q.
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“OR:No” If all instances xi are No for L then C(x1, . . . , xt) returns an instance (y, k)

that is No for Q.

We then call C a or-cross-composition from L into Q with respect to R.

We define the notion of the unparameterized version of a parameterized problem Π. The

mapping of parameterized problems to unparameterized problems is done by mapping (x, k)

to the string x#1k , where # ∈ Σ denotes the blank letter and 1 is an arbitrary letter in Σ.

In this way, the unparameterized version of a parameterized problem Π is the language

Π̃ = {x#1k|(x, k) ∈ Π}. If we use the Π̃ as the source problem in or-cross-composition to

get to an instance of Π, that is if we have a or-cross-composition from Π̃ to Π then we

simply call it or-composition instead of or-cross-composition.

Now, we introduce co-nondeterministic or-cross-compositions; note that, apart from

the co-nondeterministic behavior, these follow the same style of definition as standard

or-cross-composition, which is defined above.

Definition 3.3 (co-nondeterministic OR-cross-composition [Kra12]). Let L ⊆ Σ∗ be a

language and let Q ⊆ Σ∗ × N be a parameterized problem. We say that L has a co-

nondeterministic or-cross-composition of cost f(t) into Q (where f(t) is some computable

function) if there is a polynomial equivalence relation R ⊆ Σ∗ ×Σ∗ and a nondeterministic

algorithm C that, on input of t instances x1, . . . , xt ∈ Σ∗ of L that are equivalent under R,

takes time polynomial in
∑

i |xi| and outputs on each computation path an instance (y, k) ∈

Σ∗ × N such that the following three conditions hold.

“PB” The parameter value k is bounded by f(t)(maxi|xi|)c on each computation path, for

some constant c independent of t.

“OR:Yes” If at least one instance xi is Yes for L then each computation path of C(x1, . . . , xt)

returns an instance (y, k) that is Yes for Q.

“OR:No” If all instances xi are No for L then at least one computation path of C(x1, . . . , xt)

returns an instance (y, k) that is No for Q.
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We then call C a co-nondeterministic or-cross-composition from L (or coNP-or-cross-

composition) into Q with respect to R.

The following theorem establishes the desired lower bound consequences of having a coNP-

or-cross-composition (or an or-cross-composition) of low cost into some target problem

Q, i.e., ruling out polynomial kernels and compressions for Q unless NP * coNP/poly.

The key fact is that a coNP-or-cross-composition (or an or-cross-composition) of some

language L into a parameterized problem Q combined with a (possibly co-nondeterministic)

polynomial kernelization for Q would give a co-nondeterministic weak or-distillation for L.

As observed by Chen and Müller the proof technique of Fortnow and Santhanam [FS11] still

applies for co-nondeterministic or-distillations and implies L ∈ coNP/poly (cf. [HN10]).

Theorem 3.4 ([Kra12]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a parameterized

problem, and let R ⊆ Σ∗ × Σ∗ be a polynomial equivalence relation. If L has a co-NP-or-

cross-composition with respect to R with cost f(t) = to(1) (for t instances) and Q has a

co-nondeterministic polynomial compression, then L ∈ coNP/poly. If L is NP-hard then

NP ⊆ coNP/poly and the polynomial hierarchy collapses to its third level.

The second lower bound strategy, instead of a direct proof via compositions, is to provide

a polynomial parameter transformation from a problem with an established lower bound.

Definition 3.5 ([BTY11]). Let P,Q ⊆ Σ∗ × N be parameterized problems. We say that

a polynomially computable function f : Σ∗ × N → Σ∗ × N is a polynomial parameter

transformation (PPT) from P to Q if for all (x, k) ∈ Σ∗×N the following holds: (x, k) ∈ P

if and only if (x′, k′) = f(x, k) ∈ Q and k′ ≤ kO(1).

Coupled with a Karp reduction (i.e., standard polynomial many-one reduction) from Q to

P, a polynomial parameter transformation from P to Q transfers any polynomial kernel

result from Q to P [BTY11]. For our purposes of transferring lower bounds it suffices

that a PPT from P to Q alone already transfers polynomial compressions (combined

with the fact that almost all lower bounds rule out polynomial kernels and polynomial

compressions). Thus, if P has no polynomial compression, e.g., under the assumption that

NP * coNP/poly, then neither has Q.
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Theorem 3.6. Let P and Q be parameterized problems and assume that there is a poly-

nomial parameter transformation from P to Q. If Q admits a polynomial kernel or

compression, then P admits a polynomial compression. (Hence if P admits no polynomial

compression under some assumption then neither does Q.)
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Chapter 4

Kernel lower bounds for finding

induced hereditary subgraphs

4.1 Introduction

The study of polynomial kernelization and, in particular, techniques for ruling out polyno-

mial kernelizations has turned into one of the most well-studied directions in parameterized

complexity [BDFH09, BJK14, DM12, DvM10, DLS09, FS11, HW12, Kra12]. In Chapter 3,

we have already seen the techniques used to rule out polynomial kernels. The aim of this

chapter is to explore the use of co-nondeterminism for the purpose of showing lower bounds

for kernelization.

The only lower bound result based on a co-nondeterministic composition prior to this work

was given by Kratsch [Kra12]. It is shown that the problem of finding an independent set or

a clique of size at least k in a given graph does not admit a polynomial kernel with respect

to k; we call the problem Ramsey for its relation to Ramsey’s theorem. The composition

used in the lower bound proof [Kra12] relies on embedding instances of an improvement

version of Ramsey into a so-called host graph; intuitively, co-nondeterminism is used to

find such a graph.

Ramsey is a special case of the Π-Induced Subgraph problem (defined below) whose
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parameterized complexity was determined by Khot and Raman [KR02]. This chapter seeks

to develop kernelization lower bounds for Π-Induced Subgraph (when parameterized

by the solution size k), hoping to find further applications of co-nondeterminism for

kernelization lower bounds.

Finding induced Π-subgraphs. For a hereditary (i.e., closed under taking induced

subgraphs) graph property Π, the Π-Induced Subgraph problem asks for the largest

induced subgraph in the given graph G that belongs to the class Π. A classical result

by Lewis and Yannakakis [LY80] asserts that Π-Induced Subgraph is NP-hard for any

non-trivial (i.e., both Π and its complement are infinite) hereditary property Π.

Π-Induced Subgraph Parameter(s): k.

Input: A graph G and an integer k.

Question: Does there exist an induced subgraph of G on k vertices that belongs to Π?

Note that if Π contains all independent sets and all cliques, Π-Induced Subgraph is

fixed-parameter tractable and admits a kernel of exponential size: By Ramsey’s theorem,

if G is too large, it contains a clique or an independent set of size k. If Π excludes both

cliques and independent sets of a certain size then, by Ramsey’s theorem, Π is finite and

the problem is trivial. Khot and Raman [KR02] proved that for all other graph classes Π,

Π-Induced Subgraph becomes W[1]-hard. Given this characterization, and the fact

that any kernel would also imply fixed-parameter tractability, we study the existence of

polynomial kernelizations when Π is restricted to contain all independent sets and cliques.

Our work. Regarding Π-Induced Subgraph we show that for most natural graph

classes Π, including cographs, chordal, interval, split, perfect, and cluster graphs, there

is no polynomial kernelization unless NP ⊆ coNP/poly; see Table 4.1 for an overview of

some covered graph classes. This is proved by lower bounds for two classes of choices for Π

which are established by a co-nondeterministic or-cross-composition and a parameterized

reduction from Ramsey respectively.

As one tool for our compositions we establish a nice trick for allowing easier source problems
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graph class
closed under
embedding

has E-H
property

forbids
biclique

covered by
Theorem

perfect, weakly chordal,
cographs, comparability

Yes Yes No 5

chordal, interval, cluster,
proper interval

No Yes Yes, K2,2 6 and 7

split No Yes Yes, K2,2 7

claw-free No Yes Yes, K3,3 6 and 7

AT-free Yes open No
5 (assuming

E-H conjecture)

Table 4.1: A partial catalogue of graph classes covered by our results; all except split
graphs are closed under disjoint union.

which should be of independent interest for other lower bounds. We show that for two

general classes of problems, modeled after monotone and anti-monotone optimization

problems, it suffices to start from improvement versions, where each instance comes with a

guaranteed solution which is only off by one from the target value. For example, we define

Improvement Π-Induced Subgraph as follows.

Improvement Π-Induced Subgraph

Input: A graph G, an integer k and a set X ⊆ V (G) of size k− 1 such that G[X] ∈ Π.

Question: Does there exist an induced subgraph of G on k vertices that belongs to Π?

Since the breakthrough paper of Bodlaender et al. [BDFH09] it has been known that

improvement versions are useful source problems for deriving compositions. Unfortunately,

this comes at a price: The framework requires to show NP-hardness of the improvement

version; this may be straightforward, but it can also be “a tough nut” or outright impos-

sible. By introducing co-nondeterminism also into this part of the picture we are able

to show NP-hardness under co-nondeterministic many-one reductions (see Section 4.3

for a precise definition) and establish that this is sufficient for all existing variants of

or-(cross-)compositions. More accurately, it suffices for lower bound frameworks that show

L ∈ coNP/poly for some NP-hard L and hence get NP ⊆ coNP/poly.

The Erdős-Hajnal conjecture. Surprisingly, the question of kernelizations for Π-In-

duced Subgraph turns out to be related to the well-known Erdős-Hajnal conjecture

about Ramsey bounds in hereditary graph classes. For an undirected graph G, let hom(G)
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denote the largest size of any clique or independent set of G. The well-known Ramsey’s

theorem asserts that hom(G) ≥ 1
2 log |V (G)| [ES35], and with high probability hom(G) =

O(log |V (G)|) for random graphs G(n, 1
2) [Erd47]. Clearly the randomized argument for

the upper bound fails if we assume that G belongs to some fixed non-trivial hereditary

property Π. Erdős and Hajnal conjectured in 1989 that indeed forbidding a fixed induced

subgraph may change the behavior of hom(G) dramatically.

Conjecture 4.1 ([EH89]). For every graph H there exists a constant ε(H) > 0 such that

if G does not contain H as an induced subgraph, then hom(G) ≥ |V (G)|ε(H).

On the one hand, a proof of this conjecture would give polynomial bounds for Ramsey

numbers when restricted to any hereditary class Π of graphs. On the other hand, it

implies exponential lower bounds for the minimum number of vertices required to force the

existence of a Π subgraph of a certain size in general graphs.1 The latter aspect is the one

used in all of our results.

Related work. An alternative way of parameterizing Π-Induced Subgraph is to

use the complement parameter, i.e., the number of vertices to be deleted to result in a

graph in Π. Cai [Cai96] has shown that this problem is fixed-parameter tractable and

admits a polynomial sized kernel when Π forbids a finite set of induced subgraphs. A

complete characterization is open for hereditary Π with an infinite forbidden set, though

parameterized results are known for specific properties, e.g., [Mar10, MS12, vBKMN10,

FSV13, vtHV13].

Organization. In Section 4.3 we give a first example of how NP-hardness under co-

nondeterministic many-one reductions suffices for or-cross-compositions, using the example

of Improvement Π-Induced Subgraph. In Section 4.4 we give two co-nondeterministic

or-cross-compositions that together rule out polynomial kernels for Π-Induced Subgraph

for a wide selection of properties Π. In Section 4.5 we give a direct transformation from

Ramsey to Π-Induced Subgraph, for certain further choices of Π. In Section 4.6 we

1In other words, one could define “Ramsey numbers” with respect to the class Π instead of the class of
all independent sets and cliques, and, using the fact that Π-subgraphs contain “large” independent sets or
cliques, show bounds very similar to those of the classical Ramsey theory.
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generalize the result of Section 4.3 to any monotone or anti-monotone problem. We

conclude in Section 4.7.

4.2 Preliminaries

Graphs and the Erdős-Hajnal property. We use standard graph notation, see

e.g. [Die05]. We refer to [Gol80] for the definitions of some of the graph classes.

Definition 4.2. A hereditary graph class Π has the Erdős-Hajnal property if there ex-

ists ε(Π) > 0 such that every G ∈ Π has hom(G) ≥ |V (G)|ε(Π). I.e., every graph in Π has

a clique or an independent set of size at least |V (G)|ε(Π).

Lemma 4.1 (folklore). The class of perfect graphs, as well as any of its hereditary

subclasses, has the Erdős-Hajnal property.

Proof. For a perfect graph G the chromatic number χ(G) equals size of the largest induced

clique ω(G). Either χ(G) = ω(G) ≥ |V (G)|1/2, or the largest color class is an independent

set of size at least |V (G)|/ω(G) > |V (G)|1/2.

Although Conjecture 4.1 is open, its statement is proven for many graphs H. One of the

most important partial results is one due to Alon et al. [APS01].

Definition 4.3. Let G be a graph and (Hx)x∈V (G) be a family of graphs, one for each

vertex of G. We define the graph Embed(G; (Hx)x∈V (G)) as the graph obtained from G by

replacing each vertex x with the graph Hx. Formally,

V (Embed(G; (Hx)x∈V (G))) = {v(x, u) : x ∈ V (G), u ∈ V (Hx)},

E(Embed(G; (Hx)x∈V (G))) = {v(x, u)v(x,w) : x ∈ V (G), uw ∈ E(Hx)}

∪{v(x, u)v(y, w) : xy ∈ E(G), u ∈ V (Hx), w ∈ V (Hy)}

We say that Embed(G; (Hx)x∈V (G)) is obtained by embedding (Hx)x∈V (G) into G. We say

that a graph class Π is closed under embedding if for all G ∈ Π and Hx ∈ Π, for x ∈ V (G),

the graph Embed(G; (Hx)x∈V (G)) belongs to Π.
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Theorem 4.4 ([APS01]). Let G be a graph and (Hx)x∈V (G) be a family of graphs. If the

classes of G-free graphs and Hx-free graphs, for all x ∈ V (G), satisfy the Erdős-Hajnal

property, then the class of Embed(G; (Hx)x∈V (G))-free graphs also satisfies the Erdős-Hajnal

property.

Corollary 4.2. Let Π be a hereditary property that forbids K`,` for some integer `. Then

Π satisfies the Erdős-Hajnal property.

Proof. First we show that K`-free graphs, for any ` ≥ 1, satisfy the Erdős-Hajnal property,

by induction on `. The case when ` = 1 is trivial. For ` = 2, the K`-free graphs are precisely

cliques and they trivially satisfy the property. At the induction step, we use Theorem 4.4.

We apply the theorem to Embed(G; (Hx, Hy)), where G = K2 on vertices x and y and

with Hx = K1 and Hy = K`−1. It follows that K`-free graphs satisfy the Erdős-Hajnal

property.

It is easy to see that K2-free graphs satisfy the Erdős-Hajnal property because they are

exactly the independent sets. Thus, using K`,` = Embed(K2; (K`,K`)) and Theorem 4.4,

we get that K`,`-free graphs satisfy the Erdős-Hajnal property.

Many well-known graph classes are closed under embedding (see, e.g., [Lov83]).

Proposition 4.3. Cographs, perfect graphs, permutation graphs, weakly chordal graphs,

and AT-free graphs are closed under embedding.

4.3 Co-nondeterminism and improvement versions

In this section we give a first example of how co-nondeterminism can also help relax the

need for NP-hard source problems in cross-compositions (recall that this means hardness

under standard Karp reductions). We show, using NP-hardness under polynomial-time

co-nondeterministic many-one reductions, that, e.g., natural improvement versions of

standard NP-hard problems can be used too (despite the fact that there are sometimes no

NP-hardness proofs for those). We include here a proof for special case of Improvement Π-

Induced Subgraph which suffices for our lower bounds for Π-Induced Subgraph; a
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more general result is given in Section 4.6.

Definition 4.5. Let L,L′ ⊆ Σ∗ be two languages. We say that a nondeterministic

polynomial time algorithm A is a co-nondeterministic many-one reduction from L to L′ if

the following holds:

1. if x ∈ L, then on all computation paths A(x) ∈ L′;

2. if x /∈ L, then there exists a computation path with A(x) /∈ L′.

We need the following easy fact.

Proposition 4.4. Let L and L′ be languages with L′ ∈ coNP/poly. If there is a co-

nondeterministic many-one reduction from L to L′ then L ∈ coNP/poly.

Proof. As L′ ∈ coNP/poly there exists a co-nondeterministic polynomial-time machine M

with polynomial advice for deciding membership in L′. We construct a coNP/poly-machine

with polynomial advice for deciding L. The machine will first perform the reduction to L′

and on each ensuing computation path it will continue with a simulation of M applied to

the output of the reduction.

It remains to describe the used advice string. Since the reduction can incur at most a

polynomial blow-up of the initial input size n, we need only simulate M on inputs of

size at most p(n) where p is some fixed polynomial. The new machine gets as advice the

concatenation of all advice strings for M for inputs of length up to p(n) which too is

polynomially bounded in n.

Observation 4.5. Proposition 4.4 can be extended in the obvious way to co-nondetermi-

nistic reductions which are allowed polynomial advice of their own.

Now we can give a general co-nondeterministic many-one reduction from Π-Induced

Subgraph to Improvement Π-Induced Subgraph that works for any hereditary class

Π with efficient membership test.

Lemma 4.6. Let Π be a hereditary graph class for which membership can be tested in

deterministic polynomial time. Then there exists a (polynomial-time) co-nondeterministic
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many-one reduction from Π-Induced Subgraph to Improvement Π-Induced Sub-

graph.

Proof. Let (G, k) be an instance of Π-Induced Subgraph. The reduction will guess an

integer k′ ∈ {1, . . . , k} and a set X of k′ − 1 vertices. Then it checks in deterministic

polynomial time whether the subgraph induced by X is contained in Π, i.e., if G[X] ∈ Π. If

this is not the case then a dummy Yes-instance of Improvement Π-Induced Subgraph

is returned. Otherwise, the instance (G,X, k′) is returned. This completes the description

of the reduction.

Now, if (G, k) is a Yes-instance, then it is easy to see that each path returns a Yes-instance

of Improvement Π-Induced Subgraph: The guessed set X is returned only (as part

of (G,X, k′)) if it induces a Π-graph in G. In all other cases a dummy Yes-instance is

returned.

If (G, k) is a No-instance then consider the minimum value k′ ∈ {1, . . . , k} such that (G, k′)

is a No-instance too; this value is guessed in one branch of the computation. Clearly G

contains a Π-subgraph on k′− 1 vertices. Hence, one of the computation paths successfully

guesses a subset X of k′−1 vertices such that G[X] ∈ Π. On this path the instance (G,X, k′)

is returned which can be easily seen to be a No-instance of Improvement Π-Induced

Subgraph.

Theorem 4.6. Let Π be a non-trivial hereditary graph class for which membership can

be tested in deterministic polynomial time. If there is a coNP-or-cross-composition from

Improvement Π-Induced Subgraph to Π-Induced Subgraph and Π-Induced Sub-

graph has a polynomial kernel or compression then Π-Induced Subgraph ∈ coNP/poly

and NP ⊆ coNP/poly.

Proof. It follows from Theorem 3.4 that the existence of both a coNP-or-cross-composition

from Improvement Π-Induced Subgraph to Π-Induced Subgraph and a polynomial

kernelization for Π-Induced Subgraph implies that Improvement Π-Induced Sub-

graph ∈ coNP/poly. By Proposition 4.4 and Lemma 4.6, we have Π-Induced Subgraph ∈

coNP/poly and, by NP-hardness of Π-Induced Subgraph, that NP ⊆ coNP/poly.
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4.4 Kernelization hardness by coNP-or-cross-compositions

In this section we give two co-nondeterministic or-cross-compositions that apply for Π-

Induced Subgraph for various choices of classes Π. We make use of our result from

the previous section which permits us to use Improvement Π-Induced Subgraph as a

source problem without proving (or requiring) NP-hardness; the (Karp) NP-hardness of

Π-Induced Subgraph for nontrivial Π [LY80] suffices. Our first composition gives the

following theorem.

Theorem 4.7. Unless NP ⊆ coNP/poly, there is no polynomial kernelization or com-

pression for Π-Induced Subgraph for any non-trivial hereditary graph class Π that

is polynomially recognizable, contains all independent sets and cliques, is closed under

embedding, and has the Erdős-Hajnal property.

This theorem, for example, covers perfect graphs, and permutation graphs as these classes

are closed under embedding due to Proposition 4.3; recall from Lemma 4.1 that all

subclasses of the perfect graphs have the Erdős-Hajnal property. However, split graphs and

chordal graphs are not covered by this theorem as they are not closed under embedding.

See Table 4.1 in Section 4.1 for a partial catalogue of graph classes covered by our results.

By Theorem 4.6, it suffices to establish the following lemma to prove Theorem 4.7.

Lemma 4.7. If Π is a hereditary graph class that is polynomially recognizable, contains

all cliques and independent sets, is closed under embedding, and satisfies the Erdős-Hajnal

property, then there exists a coNP-or-cross-composition algorithm from Improvement Π-

Induced Subgraph into Π-Induced Subgraph.

We now proceed to the description of the coNP-or-cross-composition algorithm for Im-

provement Π-Induced Subgraph towards proving Lemma 4.7. We start by preparing

a host graph, similar to the case of the Ramsey problem [Kra12]. Fix a graph class Π

satisfying the assumptions of Lemma 4.7 and let ε > 0 such that any G ∈ Π satis-

fies hom(G) ≥ |V (G)|ε.

Recall that the classical Ramsey number R(`) is defined as the smallest integer such that
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any graph on R(`) vertices contains an independent set or a clique of size `. The following

lemma has been shown in [Kra12].

Lemma 4.8 (Lemma 5.1 in [Kra12]). For every integer t > 3 there exists an integer

` ∈ {1, 2, . . . , d8 log te} such that R(`+ 1) > R(`) + t.

We define Π-Ramsey numbers as follows: for a positive integer `, let RΠ(`) be the smallest

integer such that any graph on at least RΠ(`) vertices contains an induced subgraph from Π

of size `. Note that this is well-defined, as all cliques and independent sets belong to Π,

and RΠ(`) ≤ R(`). We show the following counterpart of Lemma 4.8.

Lemma 4.9. There exists a constant δ(Π) that depends on the class Π only, such that for

any integer t > δ(Π), there exists a positive integer ` ∈ {1, 2, . . . , d(8 log t + 1)1/εe} such

that RΠ(`+ 1) > RΠ(`) + t.

Proof. As Π satisfies the Erdős-Hajnal property with the exponent ε we have RΠ(`) ≥ R(`ε):

any graph that contains an induced subgraph from Π of size ` contains a clique or an

independent set of size `ε. Recall the classical Erdős bound R(`) ≥ 2(`−1)/2; therefore

RΠ(`) ≥ t4 for ` = d(8 log t+ 1)1/εe. Now, let us assume that RΠ(`+ 1) ≤ RΠ(`) + t for all

` ∈ {1, 2, . . . , d(8 log t+1)1/εe}. Then RΠ(d(8 log t+1)1/εe) ≤ t(d(8 log t+1)1/εe−1)+RΠ(1).

Combining the two inequalities with the fact that RΠ(1) = 1, we get the following.

t4 ≤ t(d(8 log t+ 1)1/εe − 1) + 1

The above inequality is false for large enough values of t depending on ε, which in turn

depends on the property Π. Hence, there exists a constant δ(Π) that depends on the

class Π only, such that for any integer t > δ(Π), the above inequality does not hold, which

gives us the desired contradiction.

Now we describe the co-nondeterministic construction of a host graph, which will later be

extended to a coNP-or-cross-composition.

Lemma 4.10. There exists a nondeterministic algorithm that, given an integer t > δ(Π),

in time polynomial in t either answers FAIL or outputs the following
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• an integer ` = O(log1/ε t),

• a graph H and a family of sets (Ax)x∈V (H), Ax ⊆ V (H), such that: |V (H)| = t+ o(t)

and the graph H satisfies the following covering property: for each x ∈ V (H) the

set Ax ⊆ V (H) is of size `, x ∈ Ax, and H[Ax] ∈ Π.

Furthermore, there exists a computation path where the H outputted above satisfies an

additional property that H does not contain an induced subgraph of size `+ 1 that belongs

to Π.

Proof. We make a nondeterministic guess of a positive integer ` ∈ {1, 2, . . . , d(8 log t+1)1/εe}

and a graph H0 on at most t(d(8 log t+ 1)1/εe) + 1 vertices. Observe that ` = O(log1/ε t)

and |V (H0)| = tO(1). By Lemma 4.9 there is an ` ∈ {1, 2, . . . , d(8 log t + 1)1/εe} such

that RΠ(`+ 1) > RΠ(`) + t. It can be easily verified that for the smallest such choice of `

we have RΠ(`) + t ≤ t(d(8 log t+ 1)1/εe) + 1. Hence, in at least one computation path, H0

is a graph on RΠ(`) + t < RΠ(`+ 1) vertices which does not contain any induced subgraph

from Π of size `+ 1 (by the definition of RΠ(`+ 1)).

Then we cut the graph H from H0: start with S = ∅ and, while |S| < t, repeatedly guess a

set A ⊆ V (H0 \S) such that H0[A] ∈ Π and |A| = ` and take S := S ∪A. At each step, we

verify whether H0[A] ∈ Π: if not, we terminate and output FAIL. Note that if H0 has (at

least) RΠ(`) + t vertices then, as long as |S| < t, we have |V (H0 \ S)| ≥ RΠ(`) and there

exists at least one set A of size ` such that H0[A] ∈ Π. This guarantees that feasible sets A

are found on at least one computation path. Finally, when |S| ≥ t we take H = H0[S];

note that t ≤ |S| < t+ ` = t+ o(t).

Proof of Lemma 4.7. Let I1, . . . , It be t instances of Improvement Π-Induced Subgraph

of maximum size N . It is straightforward to efficiently partition such instances into NO(1)

equivalence classes: a) malformed instances, b) instances which are trivially No since k

exceeds the number of vertices (which is bounded by N), c) remaining instances with equal

value of k. Note that all triples (G,X, k) with G[X] /∈ Π are treated as malformed instances

and can be sorted into the first equivalence class since Π is polynomially recognizable.

Hence we may assume well-formed instances of the form Ij = (Gj , Xj , k), with k ≤ N and
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Gj [Xj ] ∈ Π, since compositions for classes a) and b) are trivial. By possibly duplicating

some instances, we may assume that t is larger than the constant δ(Π) given by Lemma 4.9

for the class Π.

We start by invoking the algorithm from Lemma 4.10 for the class Π and integer t, but

modify its outputs appropriately. If the algorithm would return FAIL, we output a trivial

Yes-instance of Π-Induced Subgraph instead.

Otherwise, we use the graph H and the integer ` to construct a graph G′ by embedding one

graph Gi into each vertex of H; as |V (H)| = t+ o(t), each graph Gi is embedded at least

once. More formally, we take an arbitrary surjective function σ : V (H)→ {1, 2, . . . , t} and

let G′ = Embed(H; (Gσ(x))x∈V (H)). Set k′ = `(k − 1) + 1. We return the instance (G′, k′)

of Π-Induced Subgraph. Clearly, as ` = O(log1/ε t), we have k′ ≤ (N + log t)O(1) and

the algorithm runs in nondeterministic polynomial time. We now verify its correctness.

Assume first that (Gi, Xi, k) is a Yes-instance to Improvement Π-Induced Subgraph

for some 1 ≤ i ≤ t: let Y ⊆ V (Gi), |Y | = k, Gi[Y ] ∈ Π. Recall that in this case the coNP-

or-cross-composition algorithm should output a Yes-instance in every computation path;

this is clearly true if the algorithm of Lemma 4.10 fails to construct a graph H. Otherwise,

let x ∈ V (H) be such that σ(x) = i; recall that x ∈ Ax ⊆ V (H), |Ax| = `, and H[Ax] ∈ Π.

Let Yx = Y and Yy = Xσ(y) for y ∈ Ax \ {x}. Then Y ′ = {v(y, u) : y ∈ Ax, u ∈ Yy} is a set

of size k′ = `(k−1)+1 that induces in G′ a graph isomorphic to Embed(H[Ax]; (G[Yy])y∈Ax).

As H[Ax] ∈ Π and Gσ(y)[Yy] ∈ Π for y ∈ Ax, we infer that G′[Y ′] ∈ Π (since Π is closed

under embedding) and (G′, k′) is a Yes-instance for Π-Induced Subgraph.

For the second case, assume that no graph Gi contains an induced subgraph of size k that

belongs to Π. Let us focus on a computation path where a graph H and integer ` are

generated such that H does not contain an induced subgraph from Π of size ` + 1. We

claim that in this computation path the generated instance (G′, k′) is a No-instance for

Π-Induced Subgraph. Assume the contrary: let Y ′ ⊆ V (G′), |Y ′| = k′, and G′[Y ′] ∈ Π.

Let A = {x ∈ V (H) : ∃u : v(x, u) ∈ Y ′}. Note that H[A] is an induced subgraph of G′[Y ′],

thus H[A] ∈ Π. Since H does not contain an induced subgraph from Π of size ` + 1,

|A| ≤ `. As |Y ′| = k′ = `(k − 1) + 1, by Pigeonhole Principle, there exists x ∈ A such that
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Y = {u ∈ V (Gσ(x)) : v(x, u) ∈ Y ′} is of size at least k. Moreover, Gσ(x)[Y ] is an induced

subgraph of G′[Y ′] ∈ Π, thus Y induces a subgraph in Gσ(x) of size at least k that belongs

to Π, a contradiction.

By a similar but slightly more technical coNP-or-cross-composition we can prove a similar

result for graph classes that are not necessarily closed under embedding, but instead exclude

a certain biclique Ks,s; e.g., chordal graphs, which exclude C4 = K2,2.

Theorem 4.8. Unless NP ⊆ coNP/poly, there does not exist a kernelization algorithm

with polynomial guarantee on the output size for Π-Induced Subgraph for any non-trivial

hereditary graph class Π that is polynomially recognizable, closed under disjoint union and

excludes a certain biclique.

The proof of Theorem 4.8 inspired the slightly more general lower bound result captured

by Theorem 4.9 which is obtained by giving a polynomial parameter reduction from the

Ramsey problem to Π-Induced Subgraph; this is showed in the following section, and

Theorem 4.9 covers both split and chordal graphs as these classes forbid induced cycles of

length 4 (i.e. K2,2).

Nevertheless, we give the proof here since (apart from inspiring the mentioned PPT) it

also introduces a few new tweaks to the co-nondeterministic approach that is a driving

motivation behind this work. As a first step we need to improve slightly the host graph

construction used for Ramsey [Kra12]. The difference is that we can guarantee a cover by

independent sets (as opposed to independent sets and cliques).

Lemma 4.11. There is a (co-)nondeterministic algorithm such that, on input of any

integer t > 1, the algorithm takes time polynomial in t and each computation path returns

either FAIL or a graph H and an integer ` = O(log t) such that:

1. the vertices of H can be covered by independent sets of size `;

2. t ≤ |V (H)| ≤ t+O(log t);

3. on at least one computation path, H does not contain an independent set or a clique

of size larger than `.
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Proof. We follow the procedure used in Lemma 5.2 of [Kra12] to nondeterministically

construct host graphs H, but we use the target size of t′ := 2t instead of t. That is, we first

guess integers ` ∈ {1, 2, . . . , d8 log t′e} and T ∈ {1, 2, . . . , (d8 log t′e} + 1)t′} and a graph

H0 on T vertices. Second, we guess t′ sets Ai ⊆ V (H0), 1 ≤ i ≤ t′, each of size exactly

`. If there exists a set Ai that does not induce a clique nor an independent set in H0, or

if
⋃t′

i=1Ai has less than t′ vertices, then we return FAIL. Otherwise, let AI and AC be

the family of these sets Ai that induce an independent set or a clique in H0, respectively.

Observe that, since
⋃t′

i=1Ai has at least t′ = 2t vertices, either
⋃AI or

⋃AC is of size at

least t. In the first case, pick any minimal subfamily A′ ⊆ AI such that
⋃A′ is of size at

least t, and return H := H0[
⋃A′]. Otherwise, pick any minimal subfamily A′ ⊆ AC such

that
⋃A′ is of size at least t, and return H being the complement of H0[

⋃A′].
Clearly, ` = O(log t) and t ≤ |V (H)| ≤ t + ` = t + O(log t). Moreover, the family A′

witnesses that the vertices of H can be covered by independent sets of size `. Hence, it

remains to argue about the last property promised in the lemma statement.

To this end, observe that, by Lemma 4.8, on one computation path we guess the integer `

with the following property: ` is the smallest positive integer such that R(`+ 1) > R(`) + t′.

Furthermore, if this is the case, then we have R(`) ≤ (`−1)t′+R(1) and in one computation

path T = R(`) + t′ < R(` + 1). Consequently, there exists a further computation path

where the guessed graph H0 does not contain any clique nor independent set of size `+ 1.

Let us focus on the computation path where `, T and H0 has been guessed as above.

Let A be the family of all sets A ⊆ V (H0) of size ` that induce a clique or an independent

set in H0. Observe that H0 \
⋃A does not contain any clique or independent set on

` vertices. By the definition of R(`), |V (H0)| − |⋃A| < R(`) and, hence, |⋃A| > t′.

Consequently, there exists a choice of t′ sets Ai ∈ A, 1 ≤ i ≤ t′, such that |⋃t′

i=1Ai| ≥ t′

and such a choice is made in at least one computation path. In this particular path, a graph

H is returned. Since H is an induced subgraph of H0, it does not contain any independent

set nor clique of size larger than `. This concludes the proof of the lemma.

Similarly as in the previous case, to prove Theorem 4.8 it suffices to show the following.

Lemma 4.12. If Π is a non-trivial hereditary graph class that is polynomially recognizable,
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closed under disjoint union and excludes a certain biclique, then there exists a coNP-or-

cross-composition algorithm from Improvement Π-Induced Subgraph into Π-Induced

Subgraph.

Proof. Note that by being non-trivial and closed under disjoint union, the class Π must

contain all independent sets. Moreover, by Corollary 4.2, the class Π fulfills the Erdős-

Hajnal property. Let ε be the corresponding exponent, i.e., each G ∈ Π contains an

independent set or a clique of size |V (G)|ε. Let Ks,s be a biclique that is not in Π.

Let I1, . . . , It be t instances of Improvement Π-Induced Subgraph. By use of an

appropriate polynomial equivalence relation, it suffices to give a coNP-or-cross-composition

for the case where all instances are well-formed Improvement Π-Induced Subgraph

instances of the form Ij = (Gj , Xj , k), where Gj is a graph on n vertices. Recall that a

triple (G,X, k) is not a well-formed instance if G[X] /∈ Π; note that we assume that Π is

polynomially recognizable. Furthermore, without loss of generality assume t > 1 (otherwise,

duplicate the single input instance). We will describe a coNP-or-cross-composition into

one instance (G′, X ′, k′) of Π-Induced Subgraph. Let G′i denote the graph consisting

of c copies of Gi. The constant c will be fixed to be polynomially bounded in n and log t

later.

The algorithm from Lemma 4.11 is extended to produce the desired reduction. We let it

run on input t and modify the output. If the algorithm reports FAIL then we return a

dummy Yes-instance of Π-Induced Subgraph. Otherwise, if it creates a host graph H on

at least t vertices and an integer ` then we generate a graph G′ by embedding a graph G′i

into each vertex of H (we copy instances if H has more than t vertices). We return the

instance (G′, k′) of Π-Induced Subgraph, where k′ := c(k − 1)`+ c. This completes the

or-cross-composition. It is easy to check that if c is polynomially bounded in n and log t,

the parameter value k′ can be bounded polynomially in n and log t, since ` = O(log t) by

Lemma 4.11.

To show correctness let us first assume that at least one instance (Gi, Xi, k) is Yes. Thus Gi

contains a Π-subgraph on k vertices. Hence, G′i contains a Π-subgraph on ck vertices

since Π is closed under disjoint union. Note that all other graphs Gj , for j 6= i, contain Π
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subgraphs of size at least k − 1, and G′j graphs contain Π-subgraphs of size c(k − 1).

Consider an independent set I of H of size `, containing the vertex that we embedded G′i

into during the construction. It is easy to see that the Π-subgraphs of the corresponding

graphs G′j (those embedded into the vertices of I to get G′) can be combined into one.

Thus G′ contains a Π-subgraph on at least ck + (`− 1) · c(k − 1) = k′ vertices.

Now, we check the case where all of the instances (Gi, Xi, k) are No. Consider a host

graph H and integer ` such that H has a covering by independent sets of size ` but does not

contain independent sets or cliques on more than ` vertices. Such a graph is guaranteed to

be generated by the algorithm according to Lemma 4.11. It follows that H cannot contain

an induced Π-subgraph of size larger than `1/ε since such a subgraph would contain an

independent set or a clique larger than `.

We assume for contradiction that the output instance is Yes andG′ contains a Π-subgraph P

with at least k′ vertices. Clearly, P contains vertices from at most `1/ε graphs G′i (in G′),

since the corresponding vertices of H must form a Π-subgraph too (these vertices form an

induced subgraph of P ∈ Π).

Consider the graphs G′i such that P contains vertices from at least s copies of the graph Gi

(recall that each G′i consists of c disjoint copies of Gi). We observe that the vertices of H

corresponding to those graphs G′i must form an independent set: Otherwise, P would

contain a Ks,s, subgraph, which is forbidden for Π. Hence, by the bound on independent

sets in H, there are at most ` graphs G′i from which P contains vertices from at least s

copies of Gi.

Since, by assumption, no graph Gi contains a Π-subgraph on at least k vertices, it follows

that the number of vertices of P is bounded by ` · c(k − 1) +
(
`1/ε − `

)
(s− 1)(k − 1). The

first term refers to the at most ` graphs G′i from which P may contain vertices in all copies

of Gi; the size of those subsets is limited to k − 1 vertices per copy, under our assumption

that all input instances are No. The second term refers to all other graphs G′i in which

at most (s− 1) copies of Gi can contribute at most k − 1 vertices each. Now we fix the
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constant c = dsk`1/εe, so that

` · c(k − 1) +
(
`1/ε − `

)
(s− 1)(k − 1) < ` · c(k − 1) + c = k′.

Hence, the considered computation path returns a No-instance and c is polynomially

bounded in n and log t for any fixed Π, as required. This completes the proof.

Corollary 4.13. Let Π be a non-trivial hereditary class of graphs with the properties

as assumed in Theorem 4.8. Π-Induced Subgraph and Improvement Π-Induced

Subgraph do not admit polynomial kernelizations or compressions with respect to the

solution size k unless NP ⊆ coNP/poly.

4.5 Kernelization hardness by transformation from RAM-

SEY

In this section we establish the following theorem which rules out polynomial kernelizations

for Π-Induced Subgraph when Π excludes some biclique Ks,s.

Theorem 4.9. Unless NP ⊆ coNP/poly, there does not exist a kernelization algorithm

with polynomial guarantee on the output size for Π-Induced Subgraph for any non-trivial

hereditary graph class Π that is polynomially recognizable, contains all independent sets,

but excludes a certain biclique.

We note that Theorem 4.9 is more general than Theorem 4.8, e.g., by including split graphs,

but still does not cover all the cases of Theorem 4.7, e.g., the classes of perfect graphs and

cographs are closed under embedding, but contain all bicliques.

We prove the theorem by a polynomial parameter transformation from the Ramsey

problem. Let us recall the problem definition.

Ramsey Parameter(s): k.

Input: A graph G and an integer k.

Question: Does G contain an independent set or a clique of size k?
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The following lemma, together with Theorem 3.6 and kernelization/compression hardness

of Ramsey [Kra12], proves Theorem 4.9.

Lemma 4.14. For any graph class Π that is polynomially recognizable, contains all indepen-

dent sets, but excludes some biclique, there exists a polynomial parameter transformation

that, given an instance (G, k) of Ramsey, outputs an equivalent instance (G′, k′) of

Π-Induced Subgraph.

Proof. Let Ks,s be a biclique that is not in Π. Let G2 be the join of G and its complement G;

that is, V (G2) = V (G) ] V (G) and E(G2) = E(G) ∪ E(G) ∪ {uw : u ∈ V (G), w ∈ V (G)}.

We define the graph G′ as a graph obtained from G2 by embedding an independent set

of size c into each vertex, where c is a parameter, polynomially bounded in k, that will

be chosen later. In other words, G′ = Embed(G2; (Kc)x∈V (G2)). Let k′ = ck. We claim

that, if c is sufficiently large, the Ramsey instance (G, k) is equivalent to the Π-Induced

Subgraph instance (G′, k′).

In one direction, let (G, k) be a Yes-instance to Ramsey. Then G2 contains an independent

set of size k, say X ⊆ V (G2). Then X ′ = {v(w, i) : w ∈ X, 1 ≤ i ≤ c} is an independent

set of size k′ = kc in G′, and (G′, k′) is a Yes-instance to Π-Induced Subgraph.

In the other direction, let X ′ ⊆ V (G′) be a set of size k′ such that G′[X ′] ∈ Π. Let Y =

{w ∈ V (G2) : ∃iv(w, i) ∈ X ′} and Z = {w ∈ Y : |{1 ≤ i ≤ c : v(w, i) ∈ X ′}| ≥ s}.

The key observation is that since G′[X ′] does not contain the biclique Ks,s as an induced

subgraph, Z is an independent set in G2. Indeed, if u,w ∈ Z and uw ∈ E(G2) then any s

vertices of the form v(w, i) together with any s vertices of the form v(u, j) induce Ks,s

in G′. As G2 is a join of G and G, we infer that Z is wholly contained in V (G) or wholly

contained in V (G).

If |Z| ≥ k, we are done, as Z induces an independent set in G or in G. Otherwise,

as |Z| < k but |X ′| = k′, we infer that |Y \Z| > c/s. So, either |(Y \Z)∩V (G)| > c/(2s) or

|(Y \Z)∩V (G)| > c/(2s). We know by Lemma 4.2, there exists a constant ε = ε(Ks,s) > 0,

such that for any Ks,s-free graph H (in particular, for any H ∈ Π), hom(H) ≥ |V (H)|ε,

and hence Π satisfies the Erdős-Hajnal property with the exponent ε. Choosing c = 2sk1/ε,

we get either |(Y \ Z) ∩ V (G)| > k1/ε or |(Y \ Z) ∩ V (G)| > k1/ε. Note that for any
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fixed Π, c and k′ are polynomially bounded in k.

Now, G[Y \ Z], G[Y \ Z] ∈ Π, as both of them are isomorphic to an induced subgraph

of G′[X ′]. We also know that either G[Y \ Z] or G[Y \ Z] has more than k1/ε vertices and

hence contains a set X of size k that induces a clique or an independent set in either G or

G. Hence the Ramsey instance (G, k) is a Yes-instance.

4.6 Generalizing Theorem 4.6 to monotone and anti-monotone

problems

This section provides a generalization of Theorem 4.6 to further problems of similar

structure, namely to problems that are monotone or anti-monotone. We define a general

notion of improvement versions for such problems. Here we make use of the fact that

membership in NP-languages is equivalent to the existence of a polynomially bounded

certificate which can be efficiently verified. Furthermore, it is crucial that there is some

way of obtaining a trivial starting solution in order to benefit from (anti-)monotonicity;

intuitively, one should think of examples like having a trivial vertex cover using all vertices

of the graph, or a trivial independent set containing no vertices (or just one). Let us

point out, that this section should also be seen as a recipe for proving NP-hardness under

co-nondeterministic many-one reductions for other types of problems.

The following definition of monotone and anti-monotone languages is motivated by similar

notions for optimization problems. The decision versions of such problems will be special

cases of our result. However, it is only required that the behavior on the second component

is monotone or anti-monotone; there is no assumption about how to get certificates (or

solutions) for larger, respectively smaller, values of k. Additionally, for technical reasons it

is required that monotone languages can be efficiently decided when the second component

exceeds a certain threshold (this would correspond to a trivial solution of high cost for a

minimization problem, e.g., a vertex cover containing all vertices of the graph).

Definition 4.10 (monotone, anti-monotone). Let L ⊆ Σ∗ × N. We say that L is anti-

monotone if (x, k) ∈ L implies (x, k′) ∈ L for all k′ ∈ {0, . . . , k} and there is a deterministic
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polynomial-time computable predicate Ψ0(x) for deciding membership of instances (x, 0) ∈

Σ∗ × N.

We say that L is monotone if (x, k) ∈ L implies (x, k′) ∈ L for all k′ ≥ k and there exist a

polynomial p : N → N and a deterministic polynomial-time computable predicate Ψ(x, k)

for deciding membership of instances (x, k) ∈ Σ∗ × N with k > p(|(x, k)|).

Definition 4.11 (improvement version). Let L ⊆ Σ∗ ×N be a language in NPand let Φ ⊆

Σ∗ × Σ∗ × N be a polynomial-time computable predicate such that (x, k) ∈ L if and only if

there exists a polynomially bounded witness y such that Φ(x, y, k) is true, formally:

∀(x, k) ∈ Σ∗ × N : (x, k) ∈ L⇔ ∃y : |y| = |(x, k)|O(1) ∧ Φ(x, y, k).

1. If L is anti-monotone then we define L− := L−(L,Ψ0,Φ) by

L− := {(x, y, k) | |y| = |(x, k)|O(1) ∧ (x, k) ∈ L ∧ ((k = 0 ∧Ψ0(x)) ∨ Φ(x, y, k − 1))},

where Ψ0 is chosen according to Definition 4.10.

2. If L is monotone then we define L+ := L+(L, p,Ψ,Φ) by

L+ :={(x, y, k) | |y| = |(x, k)|O(1) ∧ (x, k) ∈ L ∧ ((k > p(|(x, k)|) ∧Ψ(x, k)) ∨ Φ(x, y, k + 1))},

where p : N→ N and Ψ are chosen according to Definition 4.10.

Intuitively, the improvement versions L+ and L− come with a certificate y which guarantees

that (x, k+1) or (x, k−1) is contained in L respectively. For decision versions of optimization

problems this corresponds to providing a solution which is only off by one (too large or too

small) with respect to the solution value k that is asked for.

The following theorem, the main result of this section, establishes that these improvement

versions can be used for composition-based lower bounds without being NP-hard. The

crucial piece is their NP-hardness under co-nondeterministic many-one reductions (which

we show); it is not hard to see that this is sufficient to apply any kernelization lower bound

technique which aims to prove NP ⊆ coNP/poly by showing L ∈ coNP/poly: Indeed, since
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every language L′ in NPreduces to L by a co-nondeterministic many-one reduction, we get

L′ ∈ coNP/poly by applying Proposition 4.4; this directly implies NP ⊆ coNP/poly.

Theorem 4.12. Let L ⊆ Σ∗ × N be an NP-complete language.

1. If L is monotone and there is a coNP-or-cross-composition of L+ into a param-

eterized problem Q then Q admits no polynomial kernel or compression unless

NP ⊆ coNP/poly.

2. If L is anti-monotone and there is a coNP-or-cross-composition of L− into a pa-

rameterized problem Q then Q admits no polynomial kernel or compression unless

NP ⊆ coNP/poly.

Proof. We first show Part 2 of the theorem. Assume that L− has a coNP-or-cross-

composition into Q. If Q has a polynomial kernel or compression then, by Theorem 3.4, it

follows that L− is contained in coNP/poly. Note that the consequence NP ⊆ coNP/poly

does not follow directly since L− is not assumed to be NP-hard. Instead we show a

co-nondeterministic many-one reduction of L to L− which, by Proposition 4.4, implies

that L ∈ coNP/poly and, hence, that NP ⊆ coNP/poly.

Let (x, k) ∈ Σ∗ × N. If k = 0 then (x, k) ∈ L if and only if Ψ0(x) holds, which can be

checked in polynomial time. Then we correspondingly return a dummy Yes- or No-instance

of L−. (In fact, for the anti-monotone case we could simply return (x, ε, 0), where ε is the

empty string.)

Otherwise, if k ≥ 1, we proceed as follows. First, we check in deterministic polyno-

mial time whether Ψ0(x) holds; if it does not then we return a No-instance, otherwise

we continue. Next, we guess an integer k′ ∈ {1, . . . , k}. Then, we guess a string y of

length at most |(x, k)|O(1) and check in deterministic polynomial time whether the pred-

icate Φ(x, y, k′ − 1) holds. If it does not hold then we return a dummy Yes-instance.

Otherwise, we return the instance (x, y, k′).

Let us check correctness. If (x, k) ∈ L, then (x, k′) ∈ L for all k′ ∈ {0, . . . , k}. In particular

we have (x, 0) ∈ L and, thus, Ψ0(x) holds and we do not output a No-instance. Hence, the

output depends on the guessed string y and the outcome of Φ(x, y, k′ − 1). If the latter
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does not hold then the reduction outputs a dummy Yes-instance. Otherwise it returns an

instance (x, y, k′) such that Φ(x, y, k′ − 1) holds. In that case, it follows from (x, k′) ∈ L

that (x, y, k′) ∈ L− too.

Now, let us consider the case that (x, k) /∈ L. In this case, it follows from anti-monotonicity

of L that there is a minimum integer value k′ such that (x, k′) /∈ L but (x, k̂) ∈ L for all

non-negative integers k̂ < k′. If k′ = 0, then (x, 0) /∈ L and our check of Ψ0(x) will lead to

the output of a No-instance. Let us consider the more interesting case that k′ > 0. We

know that (x, k′− 1) ∈ L and consequently the reduction will correctly guess a certificate y

such that Φ(x, y, k′−1) holds on at least one computation path. On that path the returned

instance (x, y, k′) can be easily seen not to be contained in L−.

Thus our reduction correctly reduces L to L− and it is easy to see that it can be performed

in (nondeterministic) polynomial time. Thus, by Proposition 4.4, we have L ∈ coNP/poly

and NP ⊆ coNP/poly. This completes Part 2.

The proof for Part 1 essentially works along the same lines. We will only sketch the

small differences: Instead of (x, 0), the trivial instances are all those instances (x, k)

where k > p(|(x, k)|). For those instances the reduction can determine the correct answer

by computing Ψ(x, k) followed by the output of a dummy Yes- or No-instance. All

other instances have k ≤ p(|(x, k)|). For such an instance to be Yes, it is necessary

that (x, p(|(x, k)|) + 1) is Yes. The latter can be checked efficiently via Ψ, and we

return a dummy No-instance if it does not hold. Afterwards, it suffices to guess k′

from {k, . . . , p(|(x, k)|)} and to proceed analogously to the anti-monotone case.

4.7 Conclusion

We have studied further applications of co-nondeterminism for obtaining lower bounds for

kernelizations, using Π-Induced Subgraph as our target problem. Our results are twofold.

First, we have obtained two co-nondeterministic cross-compositions for Π-Induced Sub-

graph for certain properties Π, which are in style of those for the Ramsey problem [Kra12].

Additionally, a direct polynomial parameter transformation from Ramsey to Π-Induced
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Subgraph (for certain Π) covers further cases; see Table 4.1 for an overview. Note that

if the kernelization hardness result holds for a class Π, then it also holds for the class

that contains the complement of each of the graphs in Π. It would be interesting to know

whether there are any non-trivial hereditary properties Π for which Π-Induced Subgraph

has a polynomial sized kernel. We conjecture that there are none.

Second, motivated by the necessity of proving NP-hardness of Improvement Π-Induced

Subgraph as our source problem, we came up with a way of avoiding that issue entirely:

We showed in general how to use such improvement versions of NP-hard problems without

requiring the problems themselves to be NP-hard. Instead, it can be showed that all

such problems are NP-hard under co-nondeterministic many-one reductions and that this

suffices for all applications of or-(cross-)compositions. More generally, it applies for any

lower bound strategy that tries to prove NP ⊆ coNP/poly by proving L ∈ coNP/poly for

some NP-hard language L. Furthermore, this is not limited to improvement versions, but

applies whenever we have only co-nondeterministic (rather than Karp) NP-hardness. We

believe that this may simplify future lower bound proofs in the same way as it helped our

kernelization hardness results for Π-Induced Subgraph.

53



54



Chapter 5

Parameterized Algorithms for

Max Colorable Induced Subgraph

problem on Perfect Graphs

5.1 Introduction

The focus of this chapter is the Max q-Colorable Induced Subgraph problem, with a

special focus on co-chordal graphs and perfect graphs. The problem can be looked as an

instance of Π-Induced Subgraph where the class Π is the set of q-colorable graphs. Our

results are of parameterized flavor, involving both FPT algorithms and lower bounds for

polynomial kernels.

Before we can describe our results, we establish some basic notions. A graph G = (V,E)

is called q-colorable if there is a coloring function f : V → [q] such that f(u) 6= f(v) for

any (u, v) ∈ E. Equivalently, a graph is q-colorable if its vertex set can be partitioned into

q independent sets. The Max q-Colorable Induced Subgraph problem asks for a

maximum induced subgraph that is q-colorable, and the decision version, p-mcis, may be

stated as follows:
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p-Max q-Colorable Induced Subgraph (p-mcis) Parameters: `

Input: An undirected graph G = (V,E) and positive integers ` and q.

Question: Does there exist Z ⊆ V , |Z| ≥ `, such that G[Z] is q-colorable?

We will sometimes be concerned with the problem above for fixed values of q, and to

distinguish this from the case when q is a part of the input, we use p-q-mcis to refer to the

version where q is fixed. The problem is clearly NP-complete on general graphs as for q = 1

this corresponds to Independent Set problem. Yannakakis and Gavril [YG87] showed

that this problem is NP-complete even on split graphs (which is a proper subset of perfect

graphs, chordal graphs and co-chordal graphs). However, they showed that p-q-mcis is

solvable in time nO(q) on chordal graphs. A natural question, therefore, is whether the

problem admits an algorithm with running time f(q) · nO(1) on chordal graphs, or even

on split graphs. This question was our main motivation for looking at p-mcis on special

graph classes like co-chordal and perfect graphs.

Our results and related work. Most of the “induced subgraph problems” are known

to be W[1]-hard parameterized by the solution size on general graphs by a generic result

of Khot and Raman [KR02]. In particular this also implies that p-mcis is W[1]-hard

parameterized by the solution size on general graphs. Observe that Independent Set

is essentially p-mcis with q = 1. There has been also some study of parameterized

complexity of Independent Set on special graph classes [DLMR10, RS08]. Yannakakis

and Gavril [YG87] showed that p-mcis is NP-complete on split graphs and Addario-Berry

et al. [ABKK+10] showed that the problem is NP-complete on perfect graphs for every

fixed q ≥ 2.

We observe in passing that the known NP-completeness reduction given in [YG87] implies

that p-mcis when parameterized by q alone is W[2]-hard even on split graphs. The main

results in this chapter are two randomized FPT algorithms for p-mcis and a complementary

lower bound, which establishes the non-existence of a polynomial kernel under standard

complexity-theoretic assumptions.

Our first algorithm runs in time (2e)`(n + #α(G))O(1) where #α(G) is the number of

maximal independent sets of the input graph and the second algorithm runs in time
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O(6.75`+o(`)nO(1)) on graph classes where the maximum independent set of an induced

subgraph can be found in polynomial time. The first algorithm is efficient when the input

graph contains only polynomially many maximal independent sets; for example on split

graphs and co-chordal graphs. The second algorithm is efficient for a larger class of graphs,

for example perfect graphs, because it only relies on an efficient procedure for finding a

maximum independent set (although this comes at the cost of slightly larger base of the

exponent).

We also describe de-randomization procedures for our algorithms. While the derandomiza-

tion technique for the first algorithm is standard, to derandomize the second algorithm

we use the idea of (n, p, q)-separating families, introduced in [FLS14]. Further, we show

that unless NP ⊆ coNP/poly, the problem does not admit polynomial kernel even on split

graphs. Also, on perfect graphs, we show that the problem does not admit a polynomial

kernel even for fixed q ≥ 2, unless NP ⊆ coNP/poly.

5.2 Preliminaries and Definitions

We first recall the definition of embedding of a graph into another from the previous

chapter.

Definition 5.1. Let G = (V,E) and Hx = (Vx, Ex) for x ∈ V be graphs. We define the

graph G′ = Embed(G; (Hx)x∈V ) as the graph obtained from G by replacing each vertex x

with the graph Hx . Formally, V (G′) = {ux|x ∈ V, u ∈ Vx} and E(G′) = {(ux, vx)|x ∈

V, (u, v) ∈ Ex} ∪ {(ux, vy)|(x, y) ∈ E, u ∈ Vx, v ∈ Vy}.

We say that the graph Embed(G; (Hx)x∈V ) is obtained by embedding (Hx)x∈V into G.

We say that a graph class Π is closed under embedding if whenever G ∈ Π and Hx ∈ Π

for all x ∈ V (G), then the graph Embed(G; (Hx)x∈V (G)) belongs to Π. It is known that

perfect graphs are closed under embedding [Lov83].

Definition 5.2. Let G be a graph and E′ ⊆ E(G). We define the graph Triangular(G; E′)

as adding vertices xe and edges (xe, u), (xe, v) for all (u, v) = e ∈ E′ to the graph G.
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If G = (V,E) is a perfect graph and E′ ⊆ E, then Triangular(G; E′) is also a perfect

graph (the proof of this statement is implicit in the proof of Theorem 5.9).

A Steiner Tree for a set T ⊆ V (G) is a connected subgraph of G contaning T . We will be

using the known algorithm for Steiner Tree problem defined as follows.

Steiner Tree Parameter(s): |T |
Input: An undirected graph G, set T ⊆ V (G) and an integer k.

Question: Does there exist a connected subgraph of G containing T with at most k

additional vertices?

5.2.1 Derandomization Techniques

In this subsection, we will mention some derandomization techniques, namely families of

perfect hash functions, (a, b)-separating families and (n, p, q)-separating collections.

Definition 5.3 ([NSS95]). A family H of functions from [n] to [l] is called an (n, k, l)-

family of perfect hash functions if for all S ∈
([n]
k

)
, there is an h ∈ H which is one-to-one

on S.

We need the following result regarding (n, k, k)-family of perfect hash functions.

Theorem 5.4 ([NSS95]). There is a deterministic algorithm with running time O(ekkO(log k)n log n)

that constructs an (n, k, k)-family of perfect hash functions F such that |F| = ekkO(log k) log n.

Definition 5.5 ([FLS14]). An (n, x, y)-separating family over a universe U of size n is a

family of sets F over U such that for all A ∈
(
U
x

)
and B ∈

(
U\A
y

)
, there exists F ∈ F such

that A ⊆ F and B ∩ F = ∅.

Theorem 5.6 ([FLS14]). There is a deterministic algorithm with running time
(
x+y
x

)
2o(x+y)n log n

that constructs an (n, x, y)-separating family F such that |F| =
(
x+y
x

)
2o(x+y) log n.
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5.3 FPT Algorithms

In this section we design two randomized algorithms for p-mcis. The first algorithm

requires a subroutine that enumerates all maximal independent sets (MIS) in the input

graph and this algorithm is useful when the input graph has polynomially many maximal

independent sets. We can derandomize this algorithm using a (n, `, `)-family of perfect

hash functions.

The second algorithm requires a subroutine which computes a maximum independent set

(or an independent set of particular size `′ ≤ `) of any induced subgraph of the input graph.

Thus, this algorithm is FPT on all graph classes for which Independent Set is either

polynomial time solvable or FPT parameterized by the solution size. We derandomize this

algorithm using the (n, p, q)-separating falimies.

Notice that the second algorithm is less demanding than the first: we only need to find

a largest independent set, rather than enumerating all maximal ones. Thus the second

algorithm solves the problem for a larger class of graphs than the first, however, as we

will see, the running time is compromised in the sense that the base of the exponent is

slightly increased. In particular, this is why the second algorithm doesn’t render the first

obsolete. The first can be thought of as a more efficient algorithm when the class of graphs

was restricted further.

5.3.1 Algorithm based on enumerating Maximal Indepenent Sets

Let #α(G) denote the number of maximal independent sets of G. In this section we

give a randomized algorithm with one sided error for p-mcis that uses all the maximal

independent sets in the graph, runs in time 2`(|V (G)|+ #α(G))O(1), and gives the correct

answer with probability at least e−`. The error is one-sided: if the input instance is

No instance, then the algorithm will output No always. We first state the result about

enumerating all maximal independent sets of a graph.

Lemma 5.1 ([TIAS77]). There exists an algorithm for generating all maximal independent

sets of an n-vertex m-edge graph G in time O(mn ·#α(G)), where #α(G) is the number
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Input: A graph G = (V,E) and positive integers `, q
Output: Yes, if there exists S ⊆ V , |S| = ` and G[S] is q-colorable, No otherwise.

1 Using the algorithm of Lemma 5.1, enumerate all maximal independent sets in G.
Let M = {m1,m2, . . . ,mt} be the set of all maximal independent sets.

2 Construct a split graph G′ = (V ]M,E′ = {(v,mi)| mi ∈M, v ∈ V ∩mi}), where
G′[M ] is a clique.

3 Color each vertex in V with a color from an `-sized set of colors uniformly at random.
4 Merge all vertices in each color class into a single vertex. Formally, replace each color

class Ci by a single vertex ci, and let N(ci) = {u | ∃v ∈ Ci, (u, v) ∈ E′}. Let the
graph after contraction be G∗ = (C ]M,E∗).

5 If there is a set of q vertices in M which dominates C, then output Yes, otherwise
output No.

Algorithm 1: An Algorithm for p-mcis based on enumerating MIS.

of maximal independent sets in the graph G.

Now we are ready to prove the main lemma of this subsection.

Lemma 5.2. If (G, `, q) is a Yes instance of p-mcis, then Algorithm 1 will output Yes

with probability at least e−l, otherwise Algorithm 1 will output No with probability 1.

Furthermore, on input (G, `, q), Algorithm 1 runs in time 2`(|V (G)|+ #α(G))O(1).

Proof. We first show the correctness of the algorithm whenever the output Yes. Suppose

Algorithm 1 outputs Yes. Then there exist q vertices in M that dominates all vertices

in C which implies at least one vertex in each color class that is dominated by one or

more of these q vertices. In particular, there exists a subset T ⊆ V with ` vertices and a

subset S ⊆M with q vertices, such that S dominates T . We argue that G[T ] is the desired

q-colorable subgraph. Let T := {v1, v2, . . . , v`}. For each vi, let c(vi) be the smallest j

for which vi is dominated by mj . Notice that c defines a partition of T into q sets. For

all 1 ≤ j ≤ q, it is clear that c−1(j) is a subset of some maximal independent set, and

hence the proposed partition is a proper coloring. Therefore, (G, `, q) is a Yes instance of

p-mcis.

We now argue the probability that the algorithm finds a solution given that the input is a

Yes instance. Let (G, `, q) be a Yes instance of p-mcis, and let T ⊆ V with |T | = `, be a

solution. When we randomly color the vertices, each vertex in T will get different colors

with probability `!
``
≥ e−`. If T gets different colors then there exist q sets in M which
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dominate C because there exists a maximal independent set that contains each color class

in G[T ] (since G[T ] is q-colorable). Hence Algorithm 1 will output Yes with probability at

least e−l.

Now we argue the running time bound of the algorithm. Let n = |V (G)| and m =

|E(G)|. Step 1 takes time O(mn ·#α(G)) due to Lemma 5.1 and steps 2—4 takes time

O((#α(G))2 ·n). To find a q sized set from M to dominate C in Step 5, we run a Steiner

Tree algorithm on the graph G∗ with C given as the set of terminals. We claim that

there is a q sized set in M which dominates C exists if and only if there exists a Steiner

Tree using at most q additional vertices to connect the terminal set C. If there is a Steiner

tree for C with at most q additional vertices {s1, . . . , sq} from M , then notice that the

non-terminal vertices in the Steiner Tree form a dominating set for C. On the other hand, if

there is a set M ′ ⊆M, |M ′| ≤ q such that M ′ dominates C, then G[M ′ ∪C] form a Steiner

tree for C. Since finding the optimal Steiner Tree in an N -vertex graph with k terminals

can be done in 2kNO(1) time [BHKK07], we have that the last step of the algorithm runs

in time 2`(n+ #α(G))O(1). Hence the claimed running time follows.

We can boost the success probability to a constant by executing Algorithm 1 e` times, in

which case the success probability will be at least (1− e−`)e` ≥ 1
e . This, when combined

with Lemma 5.1 gives us the following theorem.

Theorem 5.7. We can solve p-mcis with constant success probability in (2e)`nO(1) time

on an n-vertex graph class where the number of maximal independent sets is bounded by a

polynomial in n.

It is easy to see that we can derandomize the algorithm using a (n, `, `)-family of perfect

hash functions (see Theorem 5.4) to obtain a deterministic algorithm with running time

(2e)``O(log `)nO(1) for p-mcis on graph classes for which the number of maximal independent

sets is bounded by a polynomial in n. Since the number of maximal cliques in chordal

graphs with n vertices is bounded by n, the number of independent sets in co-chordal

graphs are bounded by n. We also know that complement of split graphs are split and

hence co-chordal. We therefore have the following corollary:
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Corollary 5.3. p-mcis can be solved in time (2e)` ·`O(log `)|V (G)|O(1) on co-chordal graphs

and split graphs.

5.3.2 Algorithm based on finding a Maximum Independent Set

In Algorithm 2, we describe a randomized FPT algorithm which succeeds with probability

greater than 1/4 on graph classes where Maximum Independent Set can be solved in

polynomial time. Let S ⊆ V (G) be such that G[S] is an induced subgraph of G of size

` that is q-colorable. Let S = {S1, S2, . . . , Sq′} be the set of color classes of G[S] where

q′ ≤ q. We say that G[S] is compatible with a partition P = {`1, `2, . . . , `q′} of ` into q′

parts if for each Si, there exists an injection f from S to P such that f(Si) = |Si|.

Input: A graph G = (V,E) and positive integers `, q
Output: Yes, if there exists S ⊆ V , |S| = l and G[S] is q-colorable, No otherwise.

1 Algorithm q-Colorable(G, `, q)
2 Generate the set P of all the partitions of ` having most q parts
3 for each P ∈ P do
4 if Partition-q-colorable(G, `, q, P) returns YES then
5 return Yes
6 end

7 end
8 return No

Algorithm 2: An Algorithm for p-mcis based on finding maximum IS.

Lemma 5.4. If (G, `, q) is a Yes instance of p-mcis, then Algorithm 2 will output Yes

with probability greater than 1/4, otherwise Algorithm 2 will output No with probability 1.

Algorithm 2 runs in time O(8`2
√
`nO(1)) on graph classes where Maximum Independent

Set can be solved in polynomial time.

Proof. We first show that if Algorithm 2 outputs Yes for (G, `, q), then (G, `, q) is indeed a

Yes instance. Since Algorithm 2 outputs Yes only when the procedure Partition q-colorable

outputs Yes, it is sufficient to show that if Partition q-colorable outputs Yes for an instance

(G, `, q, P ), then (G, `, q) is a Yes instance of p-mcis as well.

We do so by doing an induction on q. The base case is when q = 1, and then P = {`}. In

this case, the procedure Partition q-colorable outputs Yes in step 5 when the maximum

independent set in G has size at least ` and hence (G, `, q) is a Yes instance. Now, for q ≥ 2,
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Input: A graph G = (V,E), positive integers `, q and a partition P of ` into at
most q parts

Output: Yes, if there exists S ⊆ V , |S| = `, G[S] is q-colorable and G[S] is
compatible with P , No otherwise.

1 Procedure Partition-q-colorable(G, `, q, P)
2 Let P = {`1, `2, . . . , `t} where

∑
i∈t `i = ` and t ≤ q.

3 if q = 1 then
4 if the maximum independent set of G has size at least ` then
5 return Yes
6 else
7 return No
8 end

9 end
10 if there exists i such that `i ≥ `/2 then
11 Let P1 = {`i}, P2 = P \ {`i}
12 for 3 · 2l times do
13 Choose some V ′ ∈ 2V with uniform probability.
14 G1 := G[V ′] and G2 = G[V \ V ′]
15 Find the maximum sized independent set, say S, in G1

16 if |S| ≥ `i and Partition-q-colorable(G2, `− `i, q − 1, P2) returns Yes
then

17 return Yes
18 end

19 end

20 else
21 Divide P into two parts P1 and P2 such that

`/3 ≤ (
∑

`i∈P1
`i), (

∑
`i∈P2

`i) ≤ 2`/3

22 Let `′ := (
∑

`i∈P1
`i)

23 for 3 · 2l times do
24 Choose some V ′ ∈ 2V with uniform probability.
25 G1 := G[V ′] and G2 = G[V \ V ′].
26 if Partition-q-colorable(G1, `

′, |P1|, P1) returns Yes and
Partition-q-colorable(G2, `− `′, |P2|, P2) returns Yes then

27 return Yes
28 end

29 end

30 end

Algorithm 3: A procedure for p-mcis based on finding maximum IS.
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the procedure Partition q-colorable outputs Yes either in Step 18 or in Step 27. If it outputs

Yes in Step 18, then the recursive call Partition-q-colorable(G2, ` − |S|, q − 1, P2)

must have returned Yes. Hence, because of the induction hypothesis, G2 has a q − 1

colorable subgraph of size `− |S|. This subgraph, when combined with the set S gives us

an ` sized q-colorable subgraph of G and hence (G, q, `) is a Yes instance of p-mcis. The

other case can be shown similarly.

Now, to prove the statement of the lemma, it suffices to show if (G, `, q) is a Yes instance,

then the algorithm outputs Yes with probability greater than 1/4, since we have already

shown that when Algorithm 2 outputs Yes, then (G, `, q) is indeed a Yes instance. Let

(G, `, q) be a Yes instance of p-mcis, S ⊆ V, |S| = ` be the solution set and f : S → [q]

be a fixed proper coloring of G[S]. Let the color classes in q-coloring of S be S1, S2, . . . St,

where t ≤ q. Since we generate the set P of all the partitions of ` into at most q parts,

it is easy to see that there exists P ∈ P such that G[S] is compatible with P . Hence,

the algorithm makes an error if and only if the procedure Partition q-colorable makes an

error. Note that we are only looking for proving this claim when the procedure Partition

q-colorable makes an error for a Yes instance. That is, we will only be looking at a Yes

instances of p-mcis where the the q-colorable subgraph G[S] of size ` is compatible with

the partition P provided to the the procedure.

Let p` be the probability that procedure Partition q-colorable gives wrong answer for a Yes

instance (G, `, q, P ). Using induction we will show that p` ≤ 1/4. The base case is when `

is 1, and there the procedure returns Yes with probability 1. Now to proceed through

the induction, we assume that for all `′ < `, p`′ < 1/4. Now we do a case analysis on the

partition P = {`1, `2, . . . , `t}, where
∑

i∈t `i = ` and t ≤ q.

Case 1. There exists i such that `i ≥ `/2. Let Sj be the color class in G[S] such

that |Sj | = `i. Such a color class exists because G[S] is compatible with P . We call the

two-partitioning of the graph in steps 13 and 14 of the algorithm good if Sj ⊆ V ′ and

(S \ Sj) ⊆ (V \ V ′). Such a partition is achieved with probability 2−`. After that, the

procedure finds the maximum independent set of G1 (the part which contains Sj) with

probability one. After a good partitioning, the only way the procedure Partition q-colorable
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can make an error is the case when the recursive call makes an error. We claim that the

error probability, p`, is bounded by the following.

(1− 2−` + 2−`pb`/2c)
3·2`

This is because with probability 1 − 2−` the partitioning is not good, and 2−`pb`/2c is

upper bound for the probability when the partitioning is good, but the recursive call makes

an error. This gives us, by applying induction hypothesis, p` ≤ (1 − 2−` + 2−`/4)3·2` <

(1− 2−` + 2−(`+1))3·2` = (1− 2−(`+1))
3
2

2`+1 ≤ e−3/2 < 1/4.

Case 2. There does not exist i such that `i ≥ `/2. In this case, we can divide the

`i’s into two parts such that sum of the `i’s in both parts is between `/3 and 2`/3. We call

those partitions P1 and P2. Now, we call a two-partition of the graph in steps 24 and 25

good if all the Si’s corresponding to the `i’s in P1 are in the same partition, and all the

remaining Si’s are in the other partition. Clearly, this happens with probability 2−`+1.

Now, the procedure can make an error if either the partitioning is not good, or if one of

the recursive calls makes an error. Hence, the error probability, p`, is bounded by

(1− 2−`+1 + 2−`+1 · 2pb2`/3c)3·2`

because with probability 1− 2−` the partitioning is not good, and 2−`+1 · 2pb2`/3c is upper

bound for the probability when the partitioning is good, but one of the recursive call

makes an error. By induction, p` ≤ (1− 2−`+1 + 2 · 2−`+1/4)3·2` = (1− 2−`+1 + 2−`)3·2` =

(1− 2−`)3·2` ≤ e−3 < 1/4.

For the running time analysis, we know from a famous result of Hardy and Ramanu-

jan [HR18] that there are O(2
√
`) partitions of any given number `. Also, it is easy to see

that all the partitions of a number ` with size (number of parts) at most q can be generated

in time p(`, q)`O(1), where p(`, q) is the number of such partitions. For each partition of `,

we get the following recurrence for the running time of the procedure Partition q-colorable.

T (`, n) ≤ 3 · 2`max{T (`/2, n), 2T (2`/3, n)}+ nO(1)
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The above running time is upper bounded by 8`nO(1) in the worst case. Hence, the

running time of Algorithm 2 is bounded by O(8`2
√
`nO(1)) on graphs where Maximum

Independent Set can be solved in polynomial time.

We can derandomize the procedure Partition q-colorable using (n, `, `′) separating families

instead of doing random partition many times in Steps 13 and 24. Further, we get an

improved running time while derandomizing using separating families. This is because,

when `′ varies from `/2 to 2`/3, the cardinality of separating family decreases even though

the running time of the recursive call in Step 26 increases.

To derandomize steps 13 and 14, we can use an (n, x, y)-separating family F as defined

in Definition 5.5 where we put x = `i and y = `− `i. Now, instead of getting a random

partition 3 · 2` times, for each A ∈ F , we put G1 = G[A] and G2 = G[V (G) \A]. We know

that x ≥ `/2, and hence the running time for the procedure Partition q-colorable in this

case is bounded by the following, using the running time given by Theorem 5.6.

T (`, n) ≤ 2o(`)n log nmax1/2≤α≤1

{(
`

α`

)
+

(
`

α`

)
T ((1− α)`, n)

}
+ nO(1)

Now, to derandomize steps 24 and 25, we look for an (n, `′, ` − `′)-separating family F

where `/3 ≤ `′ ≤ 2`/3. Now, like in the earlier case, instead of getting a random partition

3 · 2` times, for each A ∈ F , we put G1 = G[A] and G2 = G[V (G)\A]. We know that there

exists an (n, `′, `− `′)-separating collection of size
(
`
`′

)
2o(`) log n, which can be constructed

in time
(
`
`′

)
2o(`)n log n [FLS14]. Hence, in this case, the running time of the procedure

procedure Partition q-colorable is bounded by the following.

T (`, n) ≤ 2o(`)n log nmax1/3≤α≤2/3

{(
`

α`

)
,

(
`

α`

)
T (α`, n) +

(
`

(1− α)`

)
T ((1− α)`, n)

}
+nO(1)

Using the above mentioned numbers numbers, we get the following recurrence for the

running time of the procedure Partition q-colorable on graph classes where Maximum
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Independent Set can be solved in polynomial time.

T (`, n) ≤2o(`)n log nmax

{
max1/2≤α≤1

{(
`

α`

)
+

(
`

α`

)
T ((1− α)`, n)

}
,

max1/3≤α≤2/3

{(
`

α`

)
+

(
`

α`

)
T (α`, n) +

(
`

(1− α)`

)
T ((1− α)`, n)

}}
+ nO(1)

The above running time is bounded by O(6.75`2o(`)nO(1)) in the worst case, and hence we

get the following corollary.

Corollary 5.5. The problem of finding a `-sized q-colorable subgraph on perfect graphs

can be solved deterministically in time O(6.75`+o(`)nO(1)).

5.4 Kernelization Lower Bounds

In this section we show that Max Induced Bipartite Subgraph (i.e, q=2 in p-mcis)

on perfect graphs and p-mcis on split graphs do not admit polynomial kernels unless

NP ⊆ coNP/poly. In Chapter 3, we have already seen the machinery to rule out polynomial

kernels.

5.4.1 Max Induced Bipartite Subgraph on Perfect Graphs

The Max Induced Bipartite Subgraph problem is formally given as follows:

p-Max Induced Bipartite Subgraph (p-mibs) Parameter(s): k

Input: A graph G and a positive integer k.

Question: Does there exist S ⊆ V such that |S| = k and G[S] is a bipartite graph?

Here, we show that unless NP ⊆ coNP/poly, p-mibs does not have a polynomial kernel

when restricted to perfect graphs. We note that we are dealing here with the case of finding

a maximum induced bipartite subgraph in the interest of exposition; a more general result
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that shows the hardness of finding a maximum induced q-colorable subgraph for any fixed

q ≥ 2 on the class of perfect graphs is described in the next subsection.

Our result here is established by demonstrating an or-composition to p-mibs from unpa-

rameterized version of the same problem. We define the polynomial equivalence relation

to be such that (G1#1k1) and (G2#1k2) are in the same equivalence class if and only if

k1 = k2. Let (G0#1k), (G1#1k), . . . , (Gt−1#1k) be t instances of p-mibs from the same

equivalence class of the polynomial equivalence relation, where every Gi is a perfect graph.

In slight abuse of notation, we will be referring to (Gi#1k) as (Gi, k) for the sake of

simplicity.

We assume that t = 2z (note that we assume equality without loss of generality, since

whenever t is not a power of 2, the set of instances can be padded with trivial No instances).

We construct a composed instance (G, k∗) as follows. To begin with, let G be the disjoint

union of all Gi, 0 ≤ i ≤ t − 1. For all i 6= j add all possible edges between Gi and

Gj . Now add 2k log t identity gadgets, named Hij for 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t. The

gadget Hij consists of eight vertices {xij , yij , wij , zij , aij , bij , cij , dij}, where the vertices

{xij , yij , wij , zij} form a clique, and the vertex aij is adjacent to xij and wij ; bij is adjacent

to xij and zij ; cij is adjacent to wij and yij and dij is adjacent to yij and zij (see Fig. 5.1).

For all 0 ≤ l ≤ t− 1, if the jth bit of the log t-bit binary representation of l is 0, then add

edges from all vertices in Gl to xij and yij . Otherwise add edges from all vertices in Gl to

wij and zij . This completes the description of the composed graph; we let k∗ = k+12k log t.

Hence, we have shown that k∗ = to(1)(maxi|xi|)c, since |xi| ≥ k for all i ∈ {0, . . . , t − 1}.

We first show that this is indeed a valid or-composition, and then demonstrate that G, as

described, is a perfect graph.

Lemma 5.6. The instance (G, k + 12k log t) is a Yes instance of p-mibs if, and only if,

(G`, k) is a Yes instance of p-mibs for some 0 ≤ ` ≤ (t− 1).

Proof. (⇒) Assume (G, k + 12k log t) is a Yes instance of p-mibs and let S ⊆ V (G) be a

solution. We first claim that S will not contain vertices from more than two input instances.

Let us assume for the sake of contradiction that this is not the case. Then for i1 6= i2 6= i3,

let vi1 ∈ S ∩ V (Gi1), vi2 ∈ S ∩ V (Gi3) and vi3 ∈ S ∩ V (Gi3). Note that vi1 , vi2 , vi3 will
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Figure 5.1: Identity gadget Hij

induce a triangle and contradict the fact that G[S] is bipartite. So now we can assume

that S contains vertices from two input graphs Gp and Gq. If one of them has at least k

vertices in S, then we are done. Otherwise, |S ∩ V (Gp)|+ |S ∩ V (Gq)| < 2k. Hence,

2k∑
i=1

log t∑
j=1

|S ∩ V (Hij)| > k + 12k log t− 2k ≥ 12k log t− k (5.1)

Therefore there exists an i′ such that
∑log t

j=1 |S ∩ V (Hi′j)| ≥ 6 log t. Since vertices

xij , yij , wij , zij from Hij form a complete graph, S can contain at most 2 vertices from

{xij , yij , wij , zij}. So |S ∩ V (Hij)| ≤ 6 and if |S ∩ V (Hij)| = 6 then either S ∩ V (Hij) =

{aij , bij , cij , dij , xij , yij} or S ∩ V (Hij) = {aij , bij , cij , dij , wij , zij}. We know that to meet

the budget, it must be the case that for all j, |S ∩ V (Hi′j)| = 6.

Since p 6= q there exists a j′ such that j′th bit of binary representation of p and q are different

(say 0 and 1, respectively). Hence, all the vertices from Gp are connected to xi′j′ , yi′j′

and all the vertices from Gq are connected to wi′j′ , zi′j′ . Hence there exists a triangle

in G[S ∩ (V (Gp) ∪ V (Gq) ∪ V (Hi′j′))]. This contradicts the fact that G[S] is bipartite,

showing that the case |S ∩ V (Gp)|+ |S ∩ V (Gq)| < 2k is infeasible. The remaining case is

when S contains vertices from at most one input graph (say Gp). Since |S ∩ V (Hij)| ≤ 6,

S will contain at least k vertices from V (Gp). Hence S ∩ V (Gp) is a solution of (Gp, k).

(⇐) Let (Gp, k) be a Yes instance of p-mibs, and let S ⊆ V (Gp) be the solution. Let
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b1b2 . . . blog t be the binary representation of p. Now consider the vertex set

T := {xij , yi,j | 1 ≤ i ≤ 2k ∧ bj = 1} ∪ {wij , zi,j | 1 ≤ i ≤ 2k ∧ bj = 0}

∪{aij , bij , cij , dij |1 ≤ i ≤ 2k ∧ 1 ≤ j ≤ log t}. (5.2)

It is easy to see that T involves exactly six vertices from each of the 2k log t gadgets, and

the vertices are chosen such that G[T ] induces a bipartite graph. Further, the vertices

are chosen to ensure that there are no edges between vertices in S and vertices in T , and

therefore, it is clear that G[S ∪ T ] induces a bipartite subgraph of G of the desired size.

Hence (G, k + 12k log t) is a Yes instance of p-mibs.

Lemma 5.7. The graph G constructed as the output of the or-composition is a perfect

graph.

Proof. We begin by describing an auxiliary graph G′, and show that G′ is perfect. This

graph is designed to be a graph from which G can be obtained by a series of operations

that preserve perfectness, and this will lead us to establishing that G is perfect. The graph

G′ contains a clique on t vertices, Kt. We let V (Kt) := {v0, v1, . . . vt−1}. G′ also contains

2k log t small graphs, each of which consist of two vertices with an edge between them (i.e,

each small graph is an edge). Let {nij , pij} for all 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t be the vertices

of small graphs. For all 0 ≤ l ≤ t− 1, if the jth bit of the log t-bit binary representation of

l is 0, then add edges from vl to nij for all i. Otherwise add edges from vl to pij for all i.

We claim the G′ is perfect. Let H be an induced subgraph of G′. If |V (H) ∩ V (Kt)| ≤ 1,

then H is a forest and so in this case ω(H) = χ(H). Otherwise r = |V (H) ∩ V (Kt)| ≥ 2.

Since the neighborhoods of nij and pij do not intersect, and there are no edges between

small graphs in G′, at most one vertex from the entire set of small graphs can be part of

the largest clique in H containing V (H) ∩ V (Kt) (note that there exists a largest clique

that contains all the vertices in V (H) ∩ V (Kt)). So ω(H) ≤ r + 1. Let us denote by H∗

the subgraph H[V (H) ∩ {nij , pij | 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t}].

If ω(H) = r+ 1, then we define the following coloring. Color all r vertices in V (H)∩V (Kt)

with colors 1, 2, . . . , r. For all x ∈ V (H∗) such that x is adjacent to all vertices in
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V (H)∩V (Kt), we give a color r+1 (note that these vertices are independent by construction).

If an x ∈ V (H∗) is not adjacent to all vertices in V (H)∩V (Kt), then we can color it with a

color that is already used on one of its non adjacent vertices in V (H)∩V (Kt). If ω(H) = r,

then there is no vertex in V (H∗) which is adjacent to V (H) ∩ V (Kt). So we can color

vertices in V (H) ∩ V (Kt) with r colors and for a vertex x ∈ V (H∗) we can color x with a

color same as (one of) its non adjacent vertex in V (H) ∩ V (Kt).Hence ω(H) = χ(H).

Let G∗ be a graph obtained by embedding Gi on vi ∈ V (G′) for all 0 ≤ i ≤ t − 1 and

embedding an edge on each vertex in {nij , pij | 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t}. It can be

observed that G∗ is isomorphic to

G \
⋃

1≤i≤2k,1≤j≤log t

{aij , bij , cij , dij}.

It follows that G∗ is perfect. Finally, observe that the graph G is Triangular(G∗; E′) for

a suitable choice of E′ ⊆ E(G∗), and it follows that G is perfect.

Lemmas 5.6, 5.7 and Theorem 3.4 give us the following result.

Theorem 5.8. p-Max Induced Bipartite Subgraph on perfect graphs does not admit

a polynomial kernel unless NP ⊆ coNP/poly.

5.4.2 p-q-mcis on Perfect Graphs

We now show the hardness of finding a maximum induced q-colorable subgraph for any

fixed q ≥ 2 on the class of perfect graphs.

Theorem 5.9. p-q-mcis for a fixed q on perfect graphs does not admit polynomial kernel

unless NP ⊆ coNP/poly.

Proof. We prove the theorem using or-composition. As in the case of p-mibs, we show

an or-composition from the unparameterized version of the same problem and denote

the instances of it by (Gi, k). Also, we define the polynomial equivalence relation to be

such that two instances (G1, k1) and (G2, k2) lie in the same equivalence class if and only

if k1 = k2. Let the input instances of the same equivalence class for the or-composition
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algorithm be (G0, k), (G1, k), . . . , (Gt−1, k). Now we construct an instance (G, k) as

follows. For all i 6= j add all possible edges between Gi and Gj . Now add 2qk log t identity

gadgets, named Hij for 1 ≤ i ≤ 2qk, 1 ≤ j ≤ log t, as follows. Each Hij contain two cliques

K0
ij and K1

ij of size q each. We add all possible edges between K0
ij and K1

ij . Let

Iij = {(C0, C1) | C0 ⊆ V (K0
ij), C1 ⊆ V (K1

ij), |C0|+ |C1| = q, 0 < |C0|, |C1| < q}

Now for each (X,Y ) ∈ Iij we add a vertex vX,Y to Hij and add edges {(vX,Y , u) |

(X,Y ) ∈ Iij , u ∈ X ∨ u ∈ Y }. Let Vij = {vX,Y | (X,Y ) ∈ Iij} and p = |Iij | = |Vij |. Note

that p is a function of q only. For all 0 ≤ ` ≤ t − 1, if the jth bit of the log t-bit binary

representation of ` is 0, then add edges from all vertices in G` to all vertices in K0
ij for

all i. Otherwise add edges from all vertices in Gl to all vertices in K1
ij for all i. The

graph G, so far constructed along with parameter k + 2qk(p+ q) log t is the output of the

or-composition algorithm.

Now we show that (G, k + 2qk(p+ q) log t) is a Yes instance of p-mcis if and only if there

exists ` such that (G`, k) is a Yes instance of p-mcis.

(⇐) Let (Gl, k) be a Yes instance of p-mcis. Let S ⊆ V (G`) be the solution. Let

b1b2 . . . blog t be the binary representation of `. Now consider the vertex set

T =
⋃
ij

(
V
(
K

1−bj
ij

)
∪ Vij

)
.

It is easy to see that |T | = 2qk(p+ q) log t. We claim that G[T ] is q-colorable. For that it

is enough to show that G[T ∩ V (Hij)] is q-colorable because there are no edges between

identity gadgets. Consider G[T ∩V (Hij)] for any fixed i, j. Let {k1, k2, . . . , kq} = V (K
1−bj
ij ).

We keep each kr in color class r. Since for each vX,Y ∈ Vij , there exists ks ∈ V (K
1−bj
ij )

such that (ks, vX,Y ) /∈ E(G), we can keep vX,Y in color class s. Also note that Vij form an

independent set. Hence G[T ∩ V (Hij)] is q-colorable. Since there is no edges between S

and T , G[S ∪ T ] is a q-colorable induced subgraph of G, of size k + 2qk(p+ q) log t.

(⇒) Assume (G, k + 2qk(p + q) log t) is a Yes instance of q-mcis. Let S ⊆ V (G) be

the solution set. We claim S will not contain vertices from more than q input instances.

Suppose not, then S will contain a q + 1 clique, which contradicts the fact that G[S] is
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q-colorable. So assume that S contain vertices from at most q input graphs Gi1 , . . . , Gih

where h ≤ q. If one of them has at least k vertices in S, then we are done. Otherwise∑h
j=1 |S ∩ V (Gij )| < qk. Hence

∑
i,j

|S ∩ V (Hij)| ≥ k + 2qk(p+ q) log t− qk (5.3)

≥ 2qk(p+ q) log t− (q − 1)k (5.4)

Therefore, there exists i′ such that
∑log t

j=1 |S ∩ V (Hi′j)| ≥ (p+ q) log t. Since G[V (K0
ij) ∪

V (K1
ij)] is a complete graph, S can contain at most q vertices from V (K0

ij) ∪ V (K1
ij). So

|S ∩ V (Hij)| ≤ (p+ q). If |S ∩ V (Hij)| = (p+ q) then either S ∩ V (Hij) = V (K0
ij) ∪ Vij or

S ∩ V (Hij) = V (K1
ij) ∪ Vij because if S contain q1(> 0) vertices from V (K0

ij) and q2(> 0)

vertices from V (K1
ij), then there exist a vertex in Vij that can not be part of S. Hence for

all j, |S ∩V (Hi′j)| = (p+ q) and for all j, V (K0
ij) ⊆ S ∩V (Hi′j) or V (K1

ij) ⊆ S ∩V (Hi′j),

but not both. Since i1 6= i2 there exists a j′ such that j′th bit of binary representation of i1

and i2 are different (say it is 0 and 1 resp.). Hence all the vertices from Gi1 is connected

to V (K0
ij) and all the vertices from Gi2 is connected to V (K0

ij). Hence there exist a q + 1

sized clique in G[S ∩ (V (Gi1) ∪ V (Gi2) ∪ V (Hi′j′))]. It contradicts the fact that G[S] is

q-colorable. Therefore S contain vertices from one input graph (say G`) only and since

|S ∩ V (Hij)| ≤ (p+ q), S will contain at least k vertices from V (G`). Hence S ∩ V (Gl) is

a solution of (G`, k).

Now we show that G is a perfect graph. Consider the following graph G′. G′ contains a

clique on t vertices, Kt. Let the vertices of Kt are named v0, v1, . . . vt−1. G′ also contains

2qk log t small graphs, on two vertices and one edge each (i.e each small graph is an edge).

Let nij , pij for all 1 ≤ i ≤ 2qk, 1 ≤ j ≤ log t be the vertices of small graphs. For all

0 ≤ ` ≤ t− 1, if the jth bit of the log t-bit binary representation of ` is 0, then add edges

from vl to nij for all i. Otherwise add edges from vl to pij for all i. Using similar arguments

in the proof of lemma 5.7 we can show that G′ is a perfect graph. Let be G′′ be a graph

obtained by embedding Gi on vi ∈ V (G′) for all 0 ≤ i ≤ t− 1 and embedding a clique of

size q on each vertex in {nij , pij : for all i, j}. So G′′ is a perfect graph. It can be observed

that G′′ is isomorphic to G \⋃ij Vij . We claim that if G′′ = (V,E) is perfect graph and
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X ⊆ V such that G[X] is a clique, then the graph G∗ = (V ∪ {u}, E ∪ {(u, x) | x ∈ X}) is

a perfect graph. Let H be an induced subgraph of G∗. If u /∈ V (H), then w(H) = χ(H)

because H is an induced subgraph of a perfect graph G′′. Now consider the case u ∈ V (H).

We know that w(H \{u}) = χ(H \{u}). Let d = w(H \{u}) = χ(H \{u}). Since G[NH(u)]

is a clique, d ≥ NH(u). If d > NH(u), the largest clique size in H will be d and we can

color H with d colors by giving color to u which is not the color of any of its neighbors. So

w(H) = χ(H). If d = NH(u), the largest clique size in H is d+ 1 (G[u ∪NH(u)]) and we

can color H using d+ 1 colors by giving a new color to u. Hence G∗ is a perfect graph.

Note that we can get the graph G (we constructed for or-composition) by repeatedly

applying the above operation on G′′ using vertices from
⋃
ij Vij . Therefore G is a perfect

graph.

5.4.3 p-mcis on Split Graphs

We now show that p-mcis does not admit polynomial kernel unless NP ⊆ coNP/poly by

showing a PPT reduction from Small Universe Set Cover.

Small Universe Set Cover Parameter(s): n

Input: A set U = {u1, . . . , un}, a family F of subsets of X and an integer k.

Question: Does there exist a subfamily F ′ ∈
(F
k

)
such that

⋃
S∈F ′ S = U?

We have the following theorem due to Dom et al [DLS09].

Theorem 5.10 ([DLS09]). Small Universe Set Cover does not admit polynomial

kernel unless NP ⊆ coNP/poly.

In fact Dom et al [DLS09] showed that Small Universe Set Cover parameterized by

n and k does not admit polynomial kernel unless NP ⊆ coNP/poly. Since k ≤ n for all

non-trivial cases, we have Theorem 5.10.

Lemma 5.8. There is a polynomial parameter transformation from Small Universe

Set Cover to p-mcis on split graphs.

Proof. The reduction we give here is along the lines of the NP-completeness reduction for
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p-mcis by Yannakakis and Gavril [YG87]. Given an instance (U,F , k) of Small Universe

Set Cover, we construct an instance (G, `, q) of p-mcis as follows. The split graph G has

vertex set (X ∪ F) with X being the independent set, and F inducing the clique. For any

u ∈ X and S ∈ F we add an edge (u, S) if and only if u /∈ S. We set ` = n+ k and q = k.

Since k ≤ n, ` ≤ 2n.

We claim that (U,F , k) is a Yes instance of Small Universe Set Cover if and only

if (G, `, q) is a Yes instance of p-mcis. Suppose (U,F , k) is a Yes instance of Small

Universe Set Cover and let S1, S2, . . . , Sk be a solution. The graph induced on

X ∪ {S1, S2, . . . , Sk} is k colorable because the vertex Si with its non-neighbors in X (they

are exactly the elements in the set Si) form an independent set. Suppose, on the other

hand, that (G, `, q) is a Yes instance of p-mcis. Let H be a q-colorable subgraph of G.

Since vertices in F form a clique, |V (H) ∩ F| = k and so let {S1, . . . , Sk} = V (H) ∩ F .

Hence X ⊆ V (H). Let V1, . . . , Vk be the q color classes in H. Since S1, . . . , Sk form a

clique, for all i 6= j, Si and Sj will be in two different color classes. Now it is easy to see

that corresponding sets S1, . . . , Sk cover U , because for each u ∈ U , u is covered by Si

where u, Si ∈ Vj for some j.

Using Theorem 3.6, Theorem 5.10 and Lemma 5.8, we get the following

Theorem 5.11. p-mcis on split graphs does not admit a polynomial kernel unless NP ⊆

coNP/poly.

5.5 Conclusion

In this chapter we studied the parameterized complexity of p-mcis on perfect graphs and

showed that the problem is FPT when parameterized by the solution size. We also studied

its kernelization complexity and showed that the problem does not admit polynomial kernel

under certain complexity theory assumptions. An interesting direction of research that

this chapter opens up is the study of parameterized complexity of Induced Subgraph

Isomorphism on special graph classes. As a first step it would be interesting to study the

parameterized complexity of Induced Tree Isomorphism parameterized by the size of
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the tree on perfect graphs.

76



Part III

Algorithms for Graph

Modification Problems

77





Chapter 6

Parameterized Algorithms for

deletion to Split Graphs

6.1 Introduction

The problem of editing (adding/deleting vertices/edges) to ensure that a graph has some

property is a well studied problem in theory and applications of graph algorithms. When we

want the resulting graph to be in a non-trivial hereditary graph class Π, the optimization

versions of the corresponding vertex deletion problems are known to be NP–complete

by a classical result of Lewis and Yannakakis [LY80]. Many edge deletion problems

(including deletion to split graphs) are known to be NP–complete by results of Natanzon

et al. [NSS01]. This problem has also been studied in generality under paradigms like

approximation [Fuj98, LY94] and parameterized complexity [Cai96, Guo07]. When Π is a

specific hereditary class like chordal or planar graphs, extensive work has been done to

explore tight bounds [FV12, MS12, Mar10, HvtHJ+11].

In this chapter, we do a study of these problems from the point of view of parameterized

complexity when Π is the class of all split graphs, which is also a non-trivial hereditary

graph class. An undirected graph G = (V,E) is said to be split if its vertex set V can be

partitioned into two sets such that the induced subgraph on one of them is a complete

graph and the induced subgraph on the other is an independent set. Split graphs were
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first studied by Földes and Hammer [FH77], and independently introduced by Tyshkevich

and Chernyak [TC90]. In [FH77], the authors provided the following finite forbidden

subgraph characterization of split graphs which gives an easy polynomial time algorithm

for recognizing split graphs.

Lemma 6.1. ([FH77]) A graph is a split graph if and only if it contains no induced

subgraph isomorphic to 2K2, C4, or C5. Here, K2 is the complete graph on two vertices,

Ci is a cycle on i vertices.

In this chapter, we study the following two problems.

Split Vertex Deletion (SVD) Parameter(s): k

Input: Graph G = (V,E), integer k

Question: Does there exist a set of vertices of size at most k whose deletion from G

results in a split graph?

Split Edge Deletion (SED) Parameter(s): k

Input: Graph G = (V,E), integer k

Question: Does there exist a set of edges of size at most k whose deletion from G

results in a split graph?

As the size of the forbidden set is finite, these problems become fixed-parameter tractable

(see Section 6.2) due to a general result of Cai [Cai96], when parameterized by k. One can

also observe from Lemma 6.1, a fairly straightforward branching algorithm for both SVD

and SED with running time O∗(5k).

In [LNR+14], the authors obtained an O∗(2.32)k algorithm for SVD by reducing the

problem to the Above Guarantee Vertex Cover problem and using the fixed-parameter

algorithm for it. In this chapter, we obtain an O∗(2k) algorithm by the combination of a

bound on the number of split partitions of a split graph, and the well known technique of

iterative compression. We also obtain an O(k3) vertex kernel for the problem. Note that,

this kernel is smaller than the kernel with O(k4) vertices, which can be obtained by an

approach similar to d-Hitting Set [AK10]. We also prove that under certain complexity
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theoretic assumptions, we cannot obtain a subexponential algorithm for this problem.

For SED, we design a subexponential algorithm running in time O∗(2O(
√
k log k)) by combin-

ing the color and conquer approach [ALS09], with the bound on the number of partitions

of a split graph. This is one of the very few problems (see [FV12, FKP+11] for other

problems) for which we know a subexponential parameterized algorithm on general graphs

which does not use bidimensionality theory. We also revisit the kernelization algorithm for

this problem given by Guo [Guo07], and by using only a subset of the rules presented there,

we prove a bound of O(k2) vertices improving on Guo’s bound of O(k4). Furthermore, the

Split Completion problem of adding at most k edges to a given graph to make it split,

is equivalent to deleting at most k edges from the complement of the graph to make it

split. Hence, the bound on the kernel and the subexponential algorithm which we prove

for SED also holds for Split Completion.

Related Work. We also note that though computing a minimum split completion set

is NP-complete, there is a linear time algorithm to compute a minimal split completion

set [HM09]. Also, our algorithm for SVD was improved by Cygan and Pilipczuk [CP13]

using a different method. Their algorithm runs in time O∗(1.2738kkO(log k)).

Organization of the chapter. In Section 6.3, we first present and analyze our algorithm

for Split Vertex Deletion. Following that, we design a set of reduction rules for

the problem which allow us to reduce the number of vertices in the graph to O(k3). In

Section 6.4, we present the subexponential algorithm for Split Edge Deletion, which is

followed by an improved bound on a kernel for the same problem.

6.2 Preliminaries

Given a function col : V → C from the vertices of the graph G to a set of colors, C, we

say that an edge (u, v) ∈ E is monochromatic if col(u) = col(v) and non-monochromatic

otherwise.
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A graph G is called a split graph if the vertex set V can be partitioned into two sets V1

and V2 such that G[V1] is a complete graph and G[V2] is an independent set. We call a

set S ⊆ V a split vertex deletion (svd) set if the graph G[V \ S] is a split graph and a set

A ⊆ E is called a split edge deletion (sed) set if the graph G[E \A] is a split graph.

Definition 6.1. Given a split graph G = (V,E), a partition (C ] I) of the vertex set into

sets C and I is called a split partition of this split graph if G[C] is a clique and G[I] is an

independent set.

Given a split partition (C0 ] I0) of a subgraph G′ of a split graph G, we say that a split

partition (C ] I) of G is consistent with the partition (C0 ] I0) if C0 ⊆ C and I0 ⊆ I. We

refer to an induced subgraph isomorphic to 2K2, or C4 or C5 as a forbidden structure.

6.3 Split Vertex Deletion

In this section, we first present an O∗(2k) parameterized algorithm for SVD by combining

the technique of iterative compression along with a linear bound on the number of split

partitions of split graphs. This bound has been improved by Cygan and Pilipczuk [CP13],

but we give this algorithm for completeness. Later, we give a cubic kernel for SVD.

6.3.1 An O∗(2k) algorithm for Split Vertex Deletion

We start by stating a lemma, that is implied by Theorem 6.2, [Gol80].

Lemma 6.2. (Theorem 6.2, [Gol80]) A split graph on n vertices can have at most

n+ 1 split partitions.

We will now describe the application of the iterative compression technique to the SVD

problem.

Iterative Compression for Split Vertex Deletion. Given an instance (G =

(V,E), k) of SVD, we let V = {v1, . . . , vn} and define vertex sets Vi = {v1, . . . , vi},
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and let the graph Gi = G[Vi]. We iterate through the instances (Gi, k) starting from

i = k + 3. For the ith instance, we try to find a solution Ŝi of size at most k, with the

help of a known solution Si of size at most k + 1. Formally, the compression problem we

address is the following.

Split Vertex Deletion Compression (SVD Compression) Parameter(s): k

Input: Graph G = (V,E), an svd set S ⊆ V of size at most k + 1, integer k

Question: Does there exist an svd set of size at most k?

We reduce the SVD problem to n− k− 2 instances of the SVD Compression problem as

follows. Let Ii = (Gi, Si, k) be the ith instance. Clearly, the set Vk+1 is a solution of size

at most k + 1 for the instance Ik+3. It is also easy to see that if Ŝi−1 is a solution of size

at most k for instance Ii−1, then the set Ŝi−1 ∪ {vi} is a solution of size at most k + 1 for

the instance Ii. We use these two observations to start off the iteration with the instance

(Gk+3, Sk+3 = Vk+1, k) and look for a solution of size at most k for this instance. If there

is such a solution Ŝk+3, we set Sk+4 = Ŝk+3 ∪ {vk+4} and ask for a solution of size at most

k for the instance Ik+4 and so on. If, during any iteration, the corresponding instance does

not have a solution of the required size, it implies that the original instance is also a No

instance. This follows from the fact that if a graph G has a split vertex deletion set of

size k, then any vertex induced subgraph of G also has a split vertex deletion set of size k.

Finally, the solution for the original input instance will be Ŝn. Since there can be at most

n iterations, the total time taken to solve the original instance is bounded by n times the

time required to solve the SVD Compression problem.

Our algorithm for SVD Compression is as follows. Let the input instance be I = (G =

(V,E), S, k). We guess a subset Y ⊆ S with the intention of picking these vertices in our

hypothetical solution for this instance and ignoring the rest of the vertices in S. We delete

the set Y from the graph and decrease k appropriately. We then check if the graph G[S \Y ]

is a split graph and if it is not, then reject this guess of Y as a spurious guess. Suppose

that G[S \ Y ] is indeed a split graph. We now guess and fix a split partition (C0 ] I0) for

this graph. By Lemma 6.2, we know that there are at most k + 2 such split partitions.

The split partition we fix corresponds to the split partition induced by the hypothetical
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solution on the graph G[S \ Y ]. Hence, it now remains to check if there is an SVD set of

the appropriate size which is disjoint from S \ Y , and results in a split graph with a split

partition consistent with (C0 ] I0). More formally, we have an instance of the following

problem.

SVD Compression* Parameter(s): k

Input: Graph G = (V,E), an svd set S ⊂ V such that G[S] is a split graph, a split

partition (C0 ] I0) for the graph G[S], integer k

Question: Does there exist an svd set X of size at most k, disjoint from S such that

G \X has a split partition consistent with (C0 ] I0)?

The following lemma gives a polynomial time algorithm for the above problem.

Lemma 6.3. SVD Compression* can be solved in O(n3) time.

Proof. Let S′ be a potential solution, and let (C ′ ] I ′) be a fixed split partition for the

graph G \ S′ consistent with the split partition (C0 ] I0). Let (C1 ] I1) be a split partition

of the graph G \ S.

Since we cannot delete edges, at most one vertex of C1 can lie in I ′ and at most one vertex

of I1 can lie in C ′. Hence, we initially guess these two vertices (either guess could be

empty) vc and vi where vc = C1 ∩ I ′ and vi = I1 ∩C ′. We move vc to I1 and vi to C1. For

the sake of convenience we refer to the modified sets C1 and I1 also as C1 and I1. Now,

let Î = I0 ∪ I1 and Ĉ = C0 ∪ C1. It is clear that any vertex in Î which is neighbor to a

vertex in I0 ∪{vc} needs to be deleted and any vertex in Ĉ which is not global to C0 ∪{vi}

needs to be deleted. Let X be the set of these vertices, that need to be deleted. Now,

if X is not disjoint from S, we return No. On the other hand, we observe that if X is

disjoint from S, then deleting X gives us the required kind of split graph. To show that,

we look at the partition (Ĉ \X) ] (Î \X) of G \X. The set Ĉ \X is a clique because

C0 ∪ {vi} is a clique (otherwise we would have returned No earlier), C1 \X is a clique,

and all the edges between C0 ∪ {vi} and C1 \X are present. Similarly, the set Î \X is an

independent set because I0 ∪{vc} is an independent set (otherwise we would have returned

No earlier), I1 \X is an independent set, and no edges between I0 ∪ {vc} and I1 \X are
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present. Hence, if |X| ≤ k, then we return that it is indeed a Yes instance and return No

otherwise. Guessing the vertices takes O(n2) time and in each iteration we spend at most

linear time, hence the algorithm takes O(n3) time.

Given Lemma 6.3, our algorithm for SVD Compression has a running time ofO(Σk
i=0

(
k+1
i

)
·

k ·nO(1)) = O∗(2k), where the factor of k is due to the number of split partitions of G[S \Y ]

and nO(1) is due to the time required to execute our algorithm for SVD Compression*.

Finally, since we solve at most n instances of SVD Compression, our algorithm for SVD

runs in time O∗(2k), giving us the following theorem.

Theorem 6.2. Split Vertex Deletion can be solved in O∗(2k) time.

We now show that with respect to the asymptotic dependence on k, the above algorithm

for Split Vertex Deletion is essentially the best we can hope for.

Theorem 6.3. Split Vertex Deletion cannot be solved in time O∗(2o(k)) time unless

ETH fails.

Proof. It is known that Vertex Cover does not admit a subexponential algorithm unless

the Exponential Time Hypothesis (ETH) fails [CJ03]. We prove the analogous statement

for Split Vertex Deletion by a reduction from Vertex Cover.

Consider an instane (G, k) of Vertex Cover and let G′ be the graph constructed from G

by adding a disjoint clique of size k+ 2. Now, G has a vertex cover of size at most k if and

only if G′ has a svd set of size at most k. This concludes the proof.

6.3.2 A cubic kernel for Split Vertex Deletion

In this subsection, we use the structural claim made in the algorithm for SVD to design a

vertex kernel of size O(k3) for SVD. We design the kernel by introducing reduction rules

which can be applied in polynomial time to reduce the instance. The reduction rules we

present here are applied exhaustively and in the order in which they are presented.
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We say that a reduction rule that is applied on an instance (G, k) to produce an instance

(G′, k′) is correct if (G, k) is a YES instance if and only if (G′, k′) is a YES instance.

Reduction Rule 1. Compute an inclusion wise maximal set of vertex disjoint forbidden

structures greedily, and let the set of vertices involved in this set of forbidden structures be

D. If |D| exceeds 5k, then return a trivial No instance.

Moving forward, we assume that |D| ≤ 5k. Note that G \ D is a split graph, and let

(C∗ ] I∗) be a split partition of this graph. Before we present the next reduction rule, we

need the following definition.

Definition 6.4. We say that a vertex v of G has a high clique non-neighborhood if

|C∗ \N(v)| ≥ k + 2. Similarly, v is said to have a high independent set neighborhood if

|I∗ ∩N(v)| ≥ k + 2.

Let Hi = {x ∈ V : |C∗ \N(v)| ≥ k + 2}, and let Hc = {x ∈ V : |I∗ ∩N(v)| ≥ k + 2}.

Lemma 6.4. The vertices in Hi will either end up in the independent partition of the

resulting split graph, or will get deleted and hence will be in the solution. Similarly for

vertices in Hc, will either end up in the clique partition of the resulting split graph, or will

get deleted and hence will be in the solution.

Proof. The vertices in Hi have at least k + 2 non-neighbors in the clique partition. So, if a

vertex of Hi is moved to clique partition, out of k + 2 non-neighbors, at most k can be

deleted, and at most one could be moved to the independent partition, which leads to a

contradiction to the fact that there exists a set S of size k, such that G \ S is a split graph.

Similarly, the vertices in Hc will either end up in the clique partition of the remaining split

graph or will get deleted and hence will be in the solution.

The previous lemma justifies the correctness of the next reduction rule.

Reduction Rule 2. If there is a vertex v ∈ Hi ∩Hc, then delete v and decrease k by 1.

Lemma 6.5. Reduction Rule 2 is correct.
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Proof. Let Z1 be a clique non-adjacent to v and Z2 be an independent set adjacent to v,

such that |Z1| ≥ (k + 2) and |Z2| ≥ (k + 2). It is sufficient to show that v is part of every

solution of size at most k. Suppose that v is not in some solution S of size at most k. Let

(C ] I) be a split partition of G \ S. We first consider the case when v ∈ C. Then, the set

Z1 \ S, which contains at least two elements, lies in I, which is not possible. Now, consider

the case when v ∈ I. In this case, the set Z2 \ S, which contains at least two elements, lies

in C, which is also a contradiction.

We now partition the vertex set of the resulting graph G as follows (see Figure 6.1 for a

schematic diagram).

• Let C1 = Hc ∩ C∗ be the set of vertices of C∗ which have high independent set

neighborhood, and let I1 = Hi ∩ I∗, is the set of vertices of I∗ which have high clique

non-neighborhood.

• Similarly Co = Hc ∩D, is the set of vertices of D which have high independent set

neighborhood, and Io = Hi ∩D, is the set of vertices of D which have high clique

non-neighborhood.

• Let C∗1 = C∗ \ C1, and I∗1 = I∗ \ I1.

• Let Y1 ⊆ C∗1 and Y2 ⊆ C1 be sets of vertices which have a non-neighbor in (D\Io)∪I∗1 .

Let Cr1 = C∗1 \ Y1 and Cr2 = C1 \ Y2 (i.e. Cr1 and Cr2 are global to (D \ Io) ∪ I∗1 ).

• Let X1 ⊆ I∗1 and X2 ⊆ I1 be sets of vertices which have a neighbor in (D \ Co) ∪ C∗1 .

Let Ir1 = I∗1 \ X1 and Ir2 = I1 \ X2 (i.e. Ir1 and Ir2 do not have any edges to

(D \ Co) ∪ C∗1 ).

Before giving further reduction rules, we prove the following lemmas.

Lemma 6.6. Let X ⊆ C∗, such that |X| > k + 2 be global to I∗1 ∪ (D \ Io). Let G′ be the

graph obtained by deleting all but k + 2 vertices of X and deleting all the edges between

X and I1 ∪ Io. Then, (G, k) is a Yes instance of SVD if and only if (G′, k) is a Yes

instance of SVD.
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Figure 6.1: Partitions of G.

Proof. Let X̄ be the truncated clique. Suppose that (G, k) is a Yes instance and let S be

a solution to this instance. We claim that there is a solution S1 for the instance (G, k),

disjoint from X. If S itself is disjoint from X, then we are done. Suppose that S contained

some vertex v of X. We simply remove this vertex from S and add it to the clique of the

split partition of G \ S. Since the only vertices v is non-adjacent to, are the vertices of

I1 ∪ Io and these do not lie in the clique partition of G \ S anyway (by lemma 6.4), the

resulting partition is also a split partition. Hence, we may assume that the solution S is

disjoint from X. Now, we know that at most one vertex of X can lie in the independent

partition of G \ S. Since this vertex does not have any non-neighbor in the clique partition

of G \ S, we may move this vertex to the clique partition as well. Now, we claim that

S is also a solution for the reduced instance (G′, k). We have proved that there exists a

split partition of G \ S such that all the vertices of X lie in the clique. Also, since S is

disjoint from X, after truncating X, the clique partition of G \ S remains clique (we delete

edges only to I1 ∪ Io, which can not be in the clique side), while the independent set side

is unaffected. Hence, S is also a solution for (G′, k).

For the converse direction, suppose (G′, k) has a solution S′. Since the vertices of I1 ∪ Io
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have high clique non-neighborhood in G′, they are either in S′, or in the final independent

partition (by lemma 6.4). Analogous to the argument in the above paragraph, we can argue

that X̄ is disjoint from S′ and lies in the clique partition. Now, observe that replacing

X̄ with X results in a split partition of the graph G \ S′, implying that (G, k) is a Yes

instance. This concludes the proof of correctness of this reduction rule.

The above lemma has an analogous counterpart in the case when X ⊆ I∗, |X| > k + 2

and X does not have any edges to C∗1 ∪ (D \ Co). The proof is identical, except we now

consider independent sets where we considered cliques and we consider neighbors where we

considered non-neighbors. We simply state the lemma without proof.

Lemma 6.7. Let X ⊆ I∗ be such that |X| > k + 2 and X does not have any edges to

C∗1 ∪ (D \ Co). Let G′ be the graph obtained by deleting all but k + 2 vertices of X and

adding all the edges between X and C1 ∪ Co. Then, (G, k) is a Yes instance of SVD if

and only if (G′, k) is a Yes instance of SVD.

Now,we are ready to give the reduction rules, which will help us bound the size of C∗ and

I∗.

Reduction Rule 3. If |Cr1 | > k + 2, then delete all edges between Cr1 and I1 ∪ Io and

delete all but k + 2 vertices of Cr1 .

Reduction Rule 4. If |Cr2 | > k + 2, then delete all edges between Cr2 and I1 ∪ Io and

delete all but k + 2 vertices of Cr2 .

Since Cr1 and Cr2 are global to (D \ Io)∪ I∗1 ), the correctness of these reduction rules follows

immediately from lemma 6.6. Analogous to reduction rules 3 and 4, we get the following

rules for the independent set side.

Reduction Rule 5. If |Ir1 | > k+ 2, then add all edges between Ir1 and C1 ∪Co and delete

all but k + 2 vertices of Ir1 .

Reduction Rule 6. If |Ir2 | > k + 2, then add all edges between Ir2 to C1 ∪ Co and delete

all but k + 2 vertices of Ir2 .
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The correctness of these reduction rules follows from lemma 6.7. Now, towards bounding

the size of the sets, we first show that the size of at least one of the sets, C∗1 and I∗1 is

bounded by a linear function of k.

Lemma 6.8. When none of the reduction rules apply, |C∗1 | ≤ 2k + 2 or |I∗1 | ≤ 2k + 2.

Proof. As no vertex in C∗1 has high independent set neighborhood, the number of edges

between the sets I∗1 and C∗1 is at most |C∗1 |(k + 1). Also, since no vertex in I∗1 has high

clique non-neighborhood, the number of edges between the sets I∗1 and C∗1 is at least

|I∗1 |(|C∗1 | − (k + 1)). This implies that (|C∗1 | + |I∗1 |)(k + 1) ≥ |C∗1 | · |I∗1 |. Substituting

|C∗1 | = 2k + c1 and |I∗1 | = 2k + c2, where c1, c2 > 2, we get the following.

(2k + c1 + 2k + c2)(k + 1) ≥ (2k + c1)(2k + c2)

⇒ 4k2 + 4k + (c1 + c2)k + c1 + c2 ≥ 4k2 + 2k(c1 + c2) + c1c2

⇒ (c1 + c2 − c1c2) + (4k − (c1 + c2)k) ≥ 0

which can not be true, since for c1, c2 > 2, (c1 + c2) < c1c2 and 4k < (c1 + c2)k and hence

we get a contradiction.

Lemma 6.9. When none of the reduction rules apply, the number of vertices in C∗1 ∪ I∗1
is O(k2).

Proof. Case 1: When |I∗
1 | ≤ 2k+2. We observe that the size of Cr1 is already bounded

by reduction rule 3, so to bound the size of C∗1 ∪ I∗1 , we only need to bound the size of Y1.

All the vertices in Y1 have at least one non-neighbor in (D \ Io) ∪ I∗1 . Also, we know that

(D \ Io) ∪ I∗1 has O(k) vertices and each such vertex has at most O(k) non-neighbors in

C∗. Hence, the number of vertices in Y1 is O(k2). This gives a total bound of O(k2) on

size of C∗1 ∪ I∗1 .

Case 2: When |C∗
1 | ≤ 2k + 2. We observe that the size of Ir1 is already bounded by

reduction rule 5, so to bound the size of C∗1 ∪ I∗1 , we only need to bound the size of X1.

All the vertices in X1 have at least one neighbor in (D \ Co) ∪ C∗1 . Also, we know that
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(D \ Co) ∪ C∗1 has O(k) vertices and each such vertex has at most O(k) neighbors in I∗.

Hence, the number of vertices in X1 is O(k2). This gives a total bound of O(k2) on size of

C∗1 ∪ I∗1 .

We observe that the only unbounded sets at this point in C∗ and I∗ are X2 and Y2

respectively. All the other sets are bounded by O(k2). In the next lemma, we bound the

sizes of C∗ and I∗.

Lemma 6.10. When none of the reduction rules apply, the sets C∗ and I∗ contain O(k3)

vertices.

Proof. As stated earlier, bounding the size of X2 and Y2 by O(k3) will give us the desired

result, as all the other sets in C∗ and I∗ are already bounded by O(k2). Notice that all the

vertices in Y2 have a non-neighbor in (D \ Io) ∪ I∗1 , which has O(k2) vertices. Also, any

vertex in (D \ Io) ∪ I∗1 has O(k) non-neighbors in C∗ and Y2 ⊆ C∗. This gives a bound of

O(k3) on size of Y2.

Similarly, all the vertices in X2 have a neighbor in (D \Co)∪C∗1 , which has O(k2) vertices.

Also, any vertex in (D \ Co) ∪ C∗1 has O(k) neighbors in I∗ and X2 ⊆ I∗. This gives a

bound of O(k3) on size of X2.

Summing up the bounds we have obtained, leads to the following theorem.

Theorem 6.5. There is a vertex kernel for SVD with O(k3) vertices.

6.4 Split Edge Deletion

In this section, we present a subexponential algorithm for SED using the Color and

Conquer approach introduced by Alon, Lokshtanov and Saurabh [ALS09]. We first design a

randomized subexponential algorithm for this problem which succeeds with high probability.

We then describe a way of derandomizing this algorithm to obtain a deterministic algorithm.
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6.4.1 A randomized subexponential algorithm for SED

This algorithm consists of three steps. In the first step, we reduce the instance (G, k) to an

equivalent instance (G′, k′) with O(k2) vertices. In the second step, we color the vertices

of the graph uniformly at random and we prove that with a sufficiently high probability,

all the edges of some k-sized solution (if one exists) are non-monochromatic. Finally, we

give an algorithm to check if a colored instance of SED has a non-monochromatic split

edge deletion set of size at most k.

Kernelization. We first apply the kernelization algorithm (see Section 6.4.3) which,

given an instance (G, k) of SED, in polynomial time, returns an equivalent instance (G′, k′)

of SED such that the number of vertices in G′ is O(k2) and k′ ≤ k. In the rest of this

section, we will assume that the given instance is an instance of this kind.

Probability of a Good Coloring. We now color the vertices of G independently and

uniformly at random with
√

8k colors and let Ac be the set of non-monochromatic edges.

Suppose that (G = (V,E), k) is a Yes instance and let S ⊆ E be a solution to this instance.

We now show that the probability of S being contained in Ac is at least 2−O(
√
k). We

begin by estimating the probability of obtaining a proper coloring (making all the edges

non-monochromatic) when applying the above random experiment on a graph with k edges.

Lemma 6.11. ([ALS09]) If the vertices of a graph on q edges are colored independently

and uniformly at random with
√

8q colors then the probability that G is properly colored is

at least (2e)−
√
q/8.

Now, since we colored each vertex of the graph G independently, the graph induced on the

set S, of size at most k, will be properly colored with probability at least 2−O(
√
k), which

gives us the following lemma.

Lemma 6.12. Let (G = (V,E), k) be a Yes instance of SED which is colored by the

random process described above, and let S ⊂ E be a solution for this instance. The

probability that no edge in S is monochromatic is at least 2−O(
√
k).

92



Solving a Colored Instance. We now present an algorithm to test if there is a colorful

(all edges non-monochromatic) split edge deletion set in a given colored instance of SED.

In the colored instance, every vertex is colored with one of
√

8k colors. We start with the

following simple observation.

Observation 6.13. Let G = (V1 ∪ V2 ∪ ... ∪ Vt, E) be a t-colored graph with color classes

V1, . . . , Vt. If there exists a colorful split edge deletion set S in G, then G[Vi] is a split

graph for every Vi.

We now proceed to the description of the algorithm. Suppose the given instance had a

colorful split edge deletion set S. Observation 6.13 implies that G[Vi] is a split graph

and it remains a split graph in G \ S. Hence, we use Lemma 6.2 to enumerate the split

partitions of G[Vi] for each i. Fixing a split partition for each G[Vi] results in a combined

split partition for the vertices in V . There are O(k2) split partitions for each Vi and O(
√
k)

such sets. Hence, there are kO(
√
k) combined split partitions. Now, it simply remains

to check if there is a combined split partition (C ] I) such that the number of edges in

the graph G[I] is at most k and return Yes if and only if there is such a combined split

partition. Hence, we have the following lemma.

Lemma 6.14. Given a colored instance (G, k) of SED of size O(k2), we can test if there

is a colorful SED set of size at most k in time 2O(
√
k log k).

Combining Lemmas 6.12 and 6.14, we get the following theorem.

Theorem 6.6. There is a randomized FPT algorithm for SED running in time 2O(
√
k log k)+

nO(1) with a success probability of at least 2−O(
√
k).

6.4.2 Derandomization with Universal Coloring Families

For integers m, k and r, a family F of functions from [m] to [r] is called a universal

(m, k, r)-coloring family if, for any graph G on the set of vertices [m] with at most k edges,

there exists a function f ∈ F which gives a proper vertex coloring of G. Suppose the kernel

we obtain has size bounded by ck2, then an explicit construction of a (ck2, k,
√

8k)-coloring

family is known to exist.
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Theorem 6.7. ([ALS09]) There exists an explicit universal (ck2, k,
√

8k)-coloring family

F of size at most 2O(
√
k log k).

Instead of the randomized coloring step of our algorithm, we can try each function in the

universal coloring family given by Theorem 6.7. Hence, we have the following theorem.

Theorem 6.8. There is an algorithm which solves SED in time 2O(
√
k log k) + nO(1).

6.4.3 Improved Kernel for SED

In this subsection, we use a subset of the reduction rules for SED given in [Guo07] to

show the existence of a kernel with a quadratic number of vertices. The following are the

reduction rules which we will apply on the given instance.

Reduction Rule 1. ([Guo07]) Delete vertices from G which are not part of an induced

subgraph isomorphic to 2K2, C4 or C5.

From this point on, we refer to an induced subgraph isomorphic to 2K2, C4 or C5, as

an induced 2K2, C4 or C5 respectively. When Reduction Rule 1 no longer applies, every

vertex in G is part of some induced 2K2, C4 or C5.

Reduction Rule 2. ([Guo07]) If two adjacent edges (u, v) and (u,w) occur together in

more than k induced C4s, then delete (u, v) and (u,w) from G and add two edges (a, v)

and (b, w), where a and b are two new vertices of degree 1.

Reduction Rule 3. ([Guo07]) If an edge e occurs in more than k induced 2K2’s, then

delete e from G and reduce k by one.

We refer to [Guo07] for the correctness of these reduction rules. We apply the above

reduction rules exhaustively, in the order in which they are presented, and obtain a reduced

instance (G′, k′). For the sake of notational convenience, we denote the reduced instance

by (G, k). In the rest of this discussion, we will assume that the reduced instance is a Yes

instance and prove a bound on the size of the instance with this assumption. Let S be a

minimal solution with at most k edges and let (C ] I) be a split partition of the graph
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G \ S. We call a vertex of G affected if some edge in S is incident on it, and unaffected

otherwise. Observe that there are at most 2k affected vertices in G. We now make the

following important observation.

Observation 6.15. All the affected vertices lie in the independent set I.

Proof. Suppose there was an affected vertex in the clique partition C. Then, adding back

the edges in S which are incident on this affected vertex in the clique partition also results

in a split partition, which contradicts the minimality of S.

Lemma 6.16. Every induced C4 in G intersects S in exactly one edge, or in exactly two

adjacent edges of C4 or in all the four edges.

Proof. We prove the lemma by considering an induced C4, {v1, v2, v3, v4} and the set of

affected vertices of this C4. Since at least one edge of the C4 has to be deleted, at least 2

vertices are affected. If exactly 2 vertices are affected, then it must be the case that exactly

one edge of the C4 is present in S. If exactly 3 vertices, say v1, v2 and v3 are affected, then

by Observation 6.15, these vertices lie in the independent partition and hence the edges

(v1, v2) and (v2, v3) are contained in S. Since v4 is unaffected, no other edge of this C4 is

in S. Finally, in the case when all four vertices are affected, since they all must lie in the

independent partition, S contains all 4 edges of this C4. This completes the proof of the

lemma.

Lemma 6.17. Every induced C5 in G intersects S in exactly two adjacent edges of C5 or

in exactly three adjacent edges of C5 or in all the five edges.

Proof. We fix a C5, say {v1, v2, v3, v4, v5}, and prove this lemma in the same way as the

previous one. If only one edge, say (v1, v2) of the C5 is in the solution, then the edges (v2, v3)

and (v5, v1) form an induced 2K2, disjoint from S, which is not possible. Hence, at least

two edges of the C5 are in the solution, and at least three vertices are affected. If exactly

three vertices are affected, then exactly two adjacent edges of the C5 are in S, because we

have to delete two edges from the cycle affecting only these three vertices, and this is the

only possible way. Suppose exactly 4 vertices are affected. Then, by Observation 6.15, the
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edges between these vertices must lie in S and hence exactly 3 adjacent edges are in S.

Finally, when all the vertices are affected then all the edges of the C5 lie in S.

We now give a bound on the number of vertices in the set I, using the following lemmas.

Lemma 6.18. There are O(k2) vertices which are part of an induced 2K2 in G.

Proof. Every edge in the graph is contained in at most k induced 2K2’s in G (otherwise

Reduction Rule 3 will be applicable). Since there is a solution of size at most k, these

edges can together be contained in at most O(k2) many 2K2’s and hence the number of

vertices of G involved in an induced 2K2 is bounded by O(k2). This completes the proof

of the lemma.

Lemma 6.19. If v ∈ I is an unaffected vertex, then v is not part of an induced C4 or C5

in G.

Proof. Suppose that v is unaffected and v is part of a C4. Since at least two vertices of

the C4 are affected, at least one neighbor of v on the C4 is affected. Since this neighbor

also lies in I (see Observation 6.15), the edge between these two vertices is contained in S,

contradicting that v was unaffected.

Now, suppose that v is unaffected and v is part of a C5. By Lemma 6.17), we know that

at least two edges of the C5 lie in the solution, which means at least three vertices are

affected. Hence, some neighbor of v is affected, implying that v is affected as well. This

completes the proof of the lemma.

Since we have bounded the number of both affected and unaffected vertices in I, we have

the following lemma.

Lemma 6.20. There are O(k2) vertices in the independent set I.

We now proceed to bound the number of vertices inside the clique C. To do so, we introduce

the notion of a sliced vertex. For every edge (p, q) ∈ S, and a vertex v ∈ C, we say that

the edge (p, q) slices v if v is adjacent to p but not to q or vice versa. We say that a vertex
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v ∈ C is sliced if some edge in S slices it and unsliced otherwise. Observe that the sets of

sliced and unsliced vertices form a partition of C.

Lemma 6.21. If v ∈ C is not sliced by any edge in S, then v is not part of an induced C4

or C5 in G.

Proof. Suppose v was part of a C4, {v1, v2, v3, v4} where v = v1. Since v is in the clique, it

is unaffected (by observation 6.15) and (v1, v2), (v4, v1) are not in S. Since at least one edge

from C4 has to be in the solution, the edge (v2, v3) or (v3, v4) must be in S. But now, either

of these two edges slices v, a contradiction. Suppose v was part of a C5, {v1, v2, v3, v4, v5}

where v = v1. By Lemma 6.17, at least 2 edges of the C5 are in S, implying that at least

one of them will slice v, a contradiction.

Since every unsliced vertex must be part of an induced 2K2, by Lemma 6.18 the number of

unsliced vertices in the set C is bounded by O(k2). To bound the number of sliced vertices

in C, we argue that each edge in S can slice O(k) vertices of C, resulting in the following

lemma.

Lemma 6.22. There are O(k2) sliced vertices in C.

Proof. Let e = (p, q) be an edge in S. By Observation 6.15, p and q are in the independent

set I. Let X(e) be the set of vertices in C sliced by e, X(p) = X(e) ∩N(p) and X(q) =

X(e) ∩N(q). Then X(e) = X(p) ]X(q). We will count the vertices of X(e) as follows.

We first consider the following case.

Case 1: The sets X(p) and X(q) are both non-empty. We claim that in this case,

|X(p)|, |X(q)| ≤ k. Fix a vertex w ∈ X(q). Then, for every vertex v ∈ X(p), the vertices

{p, q, w, v} induce a C4 in G. Hence, if there are more than k vertices in X(p), then there

are more than k induced C4’s in G which pairwise have the edges (p, q) and (q, w) in

common. But this implies that Reduction Rule 2 applies, contradicting the irreducibility

of G. Hence, we conclude that X(p) must have at most k vertices. Analogously, we can

bound the size of the set X(q) by k.
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Case 2: One of the two sets, say X(q) is empty and X(p) is non-empty, and suppose that

there is an edge (q, r) ∈ S such that (p, r) /∈ E.

Since r is affected, we know that r ∈ I. Let X1 = X(p) ∩ N(r) and X2 = X(p) \ X1.

Observe that, for any vertex v ∈ X1, the vertices {p, q, r, v} form an induced C4 in G.

Hence, if there were more than k vertices in X1, then there would be more than k induced

C4’s in G which pairwise have only the edges (p, q) and (q, r) in common. But then

Reduction Rule 2 applies, which contradicts the irreducibility of the instance. We now

move on to bounding the size of the set X2. Let u and v be two vertices in X2 (if there

are no two vertices in X2, we already have the required bound). Since u, v /∈ N(q) ∪N(r)

the edges (u, v) and (q, r) form an induced 2K2 in G. Hence, if the number of vertices in

X2 exceeds 2
√
k + 1, then there would be more than k induced 2K2’s in G which have the

edge (q, r) in common. But in this case, Reduction Rule 3 applies, a contradiction. Hence,

the set X(e) contains at most 2k vertices.

Now, we first try to associate every sliced vertex of C to some edge satisfying the premise

of Case 1 or 2. We have already argued that there are O(k2) such vertices.

Now we bound the remaining sliced vertices by showing that they cannot be part of any

induced C4 or C5 of G, and hence can only be part of 2K2s, and hence they add up to

O(k2) in number.

Consider a vertex v sliced by an edge (p, q) ∈ S, v ∈ X(p) and has not been associated

with an edge satisfying Case 1 or Case 2. Suppose that v was part of a C4 {v1, v2, v3, v4}

where v = v1. Suppose that the edge (v2, v3) is in S. Now, if the vertex v4 is in C, then v1

and v4 are sliced by the edge (v2, v3), and hence we will be in the case (Case 1) when X(p)

and X(q) are non-empty where (p, q) = (v2, v3). Similarly, if v4 is in I, then we will be in

the case (Case 2) when even if X(p) or X(q) is empty, there is an edge (q, r) = (v3, v4) in

G, such that there is no edge (p, r) = (v2, v4).

Similarly, we can show that v cannot be part of an induced C5. Hence, it must be the case

that v is part of an induced 2K2. Recall that we have already bounded the number of such

vertices by O(k2).
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We have thus bounded the number of vertices in C and I, and hence bounded the number

of vertices of the graph G, leading to the following theorem.

Theorem 6.9. There is a kernel for SED with O(k2) vertices.

6.5 Conclusion

In this chapter we studied the parameterized complexity of deleting k edges/vertices to get

to the class of split graphs. We obtained faster parameterized algorithms as well as smaller

sized kernels for these problems. Cygan and Pilipczuk [CP13] have subsequently improved

one of the four results presented in this chapter. That is, SVD can be solved in time

O∗(1.2738kkO(log k)). Finally, an interesting project could be to systematically identify

other parameterized problems that admit subexponential parameterized algorithms on

general graphs.
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Chapter 7

Parameterized Algorithms for

Almost Forest Deletion

7.1 Introduction

The Feedback Vertex Set (FVS) problem has been widely studied in the field of

parameterized algorithms. A series of results have improved the running times to O∗(3.619k)

in deterministic setting [KP14] and O∗(3k) in randomized setting [CNP+11]. In this chapter,

we look at a generalization of the FVS where we are allowed to delete both vertices and

edges. Here, we want to delete at most k vertices and ` edges from the input graph to

get to a forest. The problem can also be looked at as an instance of the vertex deletion

problem where we want to delete at most k vertices such that the resulting graph is at most

` edges away from being a forest. We call such graphs `-forests and the problem is called

Almost Forest Deletion. The aim of this chapter is to generalize the techniques used

for FVS to get FPT algorithms and polynomial kernels for Almost Forest Deletion,

when parameterized by both k and `.

Our results. We show that Almost Forest Deletion can be solved in timeO∗(5.0024(k+`)).

We arrive at the result using the iterative compression technique which was introduced

in [RSV04] and a non-trivial measure which helps us in getting the desired running time.

Then we explore the kernelization complexity of the problem, and show that Almost
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Forest Deletion admits a polynomial kernel with O(k`(k + `)) edges. For arriving at

the result, we first make use of Expansion Lemma and Gallai’s theorem for reducing the

maximum degree of the graph, and then we bound the size of the graph. It is easy to see

that for a Yes instances (G, k, `) of Almost Forest Deletion, the treewidth of G is

bounded by k + `. Since we have an algorithm of the form O∗(c(k+`)) on general graphs,

the question of finding an O∗(ctw) algorithm becomes interesting for bounded treewidth

graphs. We answer this question affirmatively by giving an O∗(17tw) algorithm for graphs

which come with a tree decomposition of width tw. This algorithm, along with the notion

of bidimensionality gives rise to an algorithm for Almost Forest Deletion on planar

graphs running in time 2O(
√
`+k)nO(1). Our methods are based on the known methods to

solve the Feedback Vertex Set problem.

7.2 Preliminaries

A k-flower in a graph is a set of k cycles which are vertex disjoint except for one vertex v,

which is shared by all the cycles in the set. The vertex v is called center of the flower and

the cycles are called the petals of the flower. An `-forest is a graph which is at most ` edges

away from being a forest, i.e. the graph can be transformed into a forest by deleting at most

` edges. For a connected component C of a graph, we call the quantity |E(G[C])| − |C|+ 1

the excess of C and denote it by ex(C). It can also be equivalently defined as the minimum

number of edges we need to delete from the connected component to get to a tree. For a

graph G, let C be the set of its connected components. We define the excess of the graph,

ex(G) as follows.

ex(G) =
∑
C∈C

ex(C)

As in the case of components, this measure can be equivalently defined as the minimum

number of edges we need to delete from G to to get to a forest. It is easy to see that a

graph G is an `-forest if and only if ex(G) ≤ `. For X ⊆ V (G) such that G − X is an

`-forest, we call X an `-forest deletion set of G. We define the Almost Forest Deletion

problem as follows.
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Almost Forest Deletion Parameter(s): `, k

Input: A graph G, integers k and `.

Question: Does there exist X ⊆ V (G) such that |X| ≤ k and G−X is an `-forest?

Observation 7.1. Let G′ be a subgraph of G. If G is an `-forest, then so is G′.

Observation 7.2. If G is an `-forest, it has at most V (G)− 1 + ` edges.

Lemma 7.3. Let G be a graph. If there exists a vertex v such that v is not part of any

cycle in G, then ex(G − {v}) = ex(G). Furthermore, if v is part of a cycle in G, then

ex(G− {v}) ≤ ex(G)− 1.

Proof. Let G′ = G− {v}. Let C be the set of connected components of G and let C be the

connected component of G containing v. Let us first look at the case when v is not part of

any cycle in G. Then all the edges incident to v are to different connected components

of G′. Hence, G′ has exactly d components, in which some vertex was adjacent to v in

G, where d is degree of v. Let this set of connected components be {C1, C2, . . . , Cd}. We

observe the following.

ex(C) = |E(G[C])| − |C|+ 1

=

∑
i∈[d]

|E(G[Ci])|

+ d−

∑
i∈[d]

|Ci|

− 1 + 1

=
∑
i∈[d]

(|E(G[Ci])| − |Ci|+ 1)

=
∑
i∈[d]

ex(Ci)

For all the other components, the excess remains the same, and hence the excess of G

remains same as that of G′. On the other hand, if v is part of a cycle, then it has at least

two edges to a component of G′. Hence, the number of connected components in G′ in

which some vertex was adjacent to v is strictly less than the degree of v. Let these set of
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connected components be {C1, C2, . . . , Cd′}, where d′ < d. We observe the following.

ex(C) = |E(G[C])| − |C|+ 1

=

∑
i∈[d′]

|E(G[Ci])|

+ d−

∑
i∈[d′]

|Ci|

− 1 + 1

≥

∑
i∈[d′]

(|E(G[Ci])| − |Ci|+ 1)

+ 1 (since d′ ≤ d− 1)

≥

∑
i∈[d′]

ex(Ci)

+ 1

Since all other connected components remain the same, the excess of G decreases by at least

1 by deleting a vertex which is part of a cycle. This concludes the proof of the lemma.

Lemma 7.4. Let X ⊆ V (G) be a set of vertices of G which do not belong to any cycle.

Then, G is an `-forest if and only if G−X is an `-forest.

Proof. We can apply Lemma 7.3 iteratively to prove this lemma. We can delete vertices

of X one by one, and the excess of the graph remains the same. We continue till all

the vertices of X are deleted. By application of Lemma 7.3 at every step, we have that

ex(G) = ex(G − X ′), where X ′ is set of vertices deleted till that step. Hence, G is an

`-forest if and only if G−X is.

Lemma 7.5. Any `-forest can have at most ` edge disjoint cycles.

Proof. Let the graph G have `′ edge disjoint cycle such that `′ > `. To get a forest as a

subgraph of G, we must delete at least one edge from every cycle. Since the cycles are edge

disjoint, we need to delete at least `′ > ` edges from G to get to a forest. This shows that

G is not an `-forest.

For this chapter, we also need to generalize the notion of kernelization for when we have

multiple parameters.

Kernelization. A kernelization algorithm for a parameterized language L is a polyno-

mial time procedure which takes as input an instance (x, k1, . . . , kl), where ki’s are the
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parameters and returns an instance (x′, k′1, . . . , k
′
l) such that (x, k1, . . . , kl) ∈ L if and only

if (x′, k′1, . . . , k
′
l) ∈ L and |x′| ≤ h(k1, . . . , kl) and k′i ≤ g(k1, . . . , kl) for all i ∈ [l], for some

computable functions h, g. The returned instance is said to be a kernel for L and the

function h is said to be the size of the kernel.

7.3 An O∗(c(k+`)) algorithm for Almost Forest Deletion

In this section we will present a c(`+k)nO(1) algorithm for Almost Forest Deletion.

We use the well known technique of iterative compression and arrive at the desired running

time after defining a non-trivial measure.

Given an instance (G, k, `) of Almost Forest Deletion, let V (G) = {v1, . . . , vn} and

define vertex sets Vi = {v1, . . . , vi}, and let the graph Gi = G[Vi]. We iterate through the

instances (Gi, k, `) starting from i = k + 1. For the ith instance, we try to find an `-forest

deletion set Ŝi of size at most k, with the help of a known `-forest deletion set Si of size at

most k + 1. Formally, the compression problem we address is the following.

Almost Forest Deletion Compression Parameter(s): k, `

Input: A graph G, and `-forest deletion set of G of size at most k+ 1, integers k and `.

Question: Does there exist an `-forest deletion set S for G of size at most k?

Lemma 7.6. If Almost Forest Deletion Compression can be solved in f(k, `)nc

time, then Almost Forest Deletion can be solved in f(k, `)nc+1 time.

Proof. We solve the Almost Forest Deletion problem by iteratively solving at most

n− k instances of the Almost Forest Deletion Compression problem as follows. Let

Ii = (Gi, Si, k, `) be the ith instance. Clearly, the set Vk+1 is an `-forest deletion set of size

at most k+ 1 for the instance Ik+1. It is also easy to see that if Ŝi−1 is an `-forest deletion

set of size at most k for instance Ii−1, then the set Ŝi−1 ∪ {vi} is an `-forest deletion set

of size at most k + 1 for the instance Ii. We use these two observations to start of the

iteration with the instance (Gk+1, Sk+1 = Vk+1, k, `) and look for an `-forest deletion set

of size at most k for this instance. If there is such an `-forest deletion set Ŝk+1, we set
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Sk+2 = Ŝk+1 ∪ {vk+2} and ask for an `-forest deletion set of size at most k for the instance

Ik+2 and so on. It is easy to verify that if, during any iteration, the corresponding instance

does not have an `-forest deletion set of the required size, it implies that the original

instance is also a No instance. This follows from the fact that if a graph G has an `-forest

deletion set of size at most k, then any vertex induced subgraph of G also has a `-forest

deletion set of size at most k. Finally, the solution for the original input instance will

be Ŝn. Since there can be at most n iterations, the total time taken to solve the original

instance is bounded by n times the time required to solve the Almost Forest Deletion

Compression problem.

For designing an algorithm for Almost Forest Deletion Compression, let the input

instance be (G,S, k, `). We guess a subset Y ⊆ S with the intention of picking these

vertices in our hypothetical solution for this instance and not picking the rest of the vertices

in S in the solution. We delete the set Y from the graph and decrease k by |Y |. We then

check if the graph G[S \ Y ] is an `-forest and if it is not, then reject this guess of Y as

a spurious guess. Suppose that G[S \ Y ] is indeed an `-forest. Hence, it now remains to

check if there is an `-forest deletion set S′ of the size k′ = k − |Y | which is disjoint from

S \ Y , and G − (Y ∪ S′) is an `-forest. More precisely, we have an instance of Almost

Forest Deletion Disjoint Compression (AFDDC), which is defined as follows.

AFDDC Parameter(s): k, `

Input: A graph G, an `-forest deletion set S of G, integers k and `

Question: Does there exist an `-forest deletion set of G disjoint from S of size at most

k?

To solve the problem, we first design a set of reduction rules, and prove some lemmata

about their correctness.

Reduction Rule 1. If there exists a vertex v of degree at most one in the graph, delete

it. x

Reduction Rule 2. If there exists v ∈ V (G) \ S such that G[S ∪ {v}] is not an `-forest,

delete v and decrease k by 1.
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Reduction Rule 3. If there exists a vertex v ∈ V (G) \ S of degree two, such that at

least one of its neighbours are in V (G) \ S, then delete v and put a new edge between its

neighbours (even if they were already adjacent). If both of v’s edges are to the same vertex,

delete v and put a new self loop on the adjacent vertex (even if it has self loop(s) already).

Now we proceed towards proving the correctness of these reduction rules. Let (G,S, k, `)

be the instance on which the reduction rule is being applied and let (G′, S′, k′, `′) be the

instance after the application of the reduction rule. We say that a reduction rule is correct

if (G,S, k, `) is a Yes instance of AFDDC if and only if (G′, S′, k′, `′) is a Yes instance.

The correctness of Reduction Rule 1 is obvious from Lemma 7.3.

Lemma 7.7. Reduction Rule 2 is correct.

Proof. For showing correctness of this reduction rule, we just need to show that v is part

of every `-forest deletion set of G of size at most k, which is disjoint from S. This is indeed

true, because if not so, then we know that G[S ∪ {v}] is not an `-forest. Hence for any set

X of size at most k disjoint from S which does not contain v, G−X, being a supergraph

of G[S ∪ {v}], is not an `-forest as well.

Lemma 7.8. Reduction Rule 3 is correct.

Proof. Let (G,S, k, `) be a Yes instance of AFDDC, and let X be an `-forest deletion

set of G of size at most k, which is disjoint from S. Let v be the vertex of degree 2 being

deleted from the graph. Let us first examine the case where v has two distinct neighbours

x and y. Without loss of generality, let x ∈ V (G) \ S. If X ∩ {v, x, y} 6= ∅, then we put

X ′ = (X \ {v}) ∪ {x} if v ∈ X or X ′ = X if v /∈ X. It is easy to see that |X ′| ≤ k and

G′ −X ′ is a subgraph of G−X in both the cases and hence G′ −X ′ is an `-forest. On

the other hand, if none of v, x or y are in X, then we look at the connected component of

G′ −X containing x and y. This is the only connected component for which the excess

could have possibly changed. But this connected component loses one vertex and two

edges, while gains one new edge. So, the excess for this component also remains the same,

and hence G′ −X is an `-forest. The case when both of v’s edges are to the same vertex is

similar.
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For the converse, let (G′, S, k, `) be a Yes instance of AFDDC which we get after applying

Reduction Rule 3 and let X be an `-forest deletion set of G′ of size at most k, which is

disjoint from S. If X contains any neighbour of v, then in G−X, v has degree at most

1 and hence the edge incident on it (if it survives) does not contribute to excess of any

connected component. So, G −X remains to be an `-forest. In the case where none of

v’s neighbours belong to X, only the connected component including the neighbours can

possibly gain from introducing v back into the graph. But in this case, since we delete the

edge between the neighbours (or the self loop) to get to G, the component gains exactly

one vertex and one edge, and hence even in this case G−X is an `-forest. So, (G,S, k, `)

is a Yes instance of AFDDC. This concludes the proof of the lemma.

It is easy to see that after the exhaustive applications of the reduction rules, if there exists

a vertex of degree at most one in G− S, then it has at least two neighbours in S.

Now we are ready to describe our algorithm for AFDDC. Given an input instance (G,S, k, `)

of AFDDC, we first apply the reduction rules 1-3 exhaustively. If k < 0, then we return

that the given instance is a No instance.

Now, we look for a vertex v of degree at most one in G − S and we branch by either

including v in our solution or excluding it. More precisely, we call the algorithm recursively

on (G−{v}, S, k− 1, `) and (G,S ∪ {v}, k, `). If one of the recursive call returns Yes then

we say that the instance was a Yes instance. If there does not exist a vertex of degree

at most 1 in G− S, then there must be a vertex v which is part of a cycle. In this case

we branch on this vertex, and call the algorithm recursively on (G− {v}, S, k − 1, `) and

(G,S ∪ {v}, k, `) as we did in the previous case. This concludes the description of the

algorithm. The correctness of the algorithm follows from the correctness of reduction rules

and the fact that the branching is exhaustive.

To analyze the running time of the algorithm, we define a measure φ(I) for the input

instance I = (G,S, k, `) as follows.

φ(I) = αk + βcc(S) + γ(`− ex(G[S])) + δ(ex(G− S))
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Here, cc(S) denotes the number of connected components of G[S], α, β, γ and δ are positive

constants such that δ > β. We will assume these properties for now, and will fix the values

of these constants later.

Lemma 7.9. None of the reduction rules 1-3 increase the measure φ(I).

Proof. Reduction Rule 1 deletes a vertex of degree at most one from the graph, and by

Lemma 7.3, it can not affect ex(G[S]) or ex(G − S). It might decrease the number of

connected components in G[S], but the measure φ(I) does not increase. Reduction Rule 2

deletes a vertex v for which G[S ∪ {v}] is not an `-forest, and decreases k by one. So, it

does not change cc(S) or ex(G[S]) while it might decrease ex(G− S). Hence, the measure

drops by at least α. For Reduction Rule 3, k, cc(S) and ex(G[S]) remain the same. To see

that ex(G− S) also remains the same, we observe that the connected component which

contained v can only possibly increase its excess. But it loses exactly one vertex and

one edge, hence the excess of the connected component and ex(G− S) remain same after

application of the reduction rule. So, we have that none of the reduction rules increases

the measure.

Lemma 7.10. AFDDC can be solved in time O∗((4.0024)k(5.0018)`).

Proof. We first look at the branching steps to analyse the running time of the algorithm.

1. Branching on a vertex v of degree at most 1 in G−S. In one branch, we call the

algorithm on (G−{v}, S, k− 1, `). It is easy to see that in this branch cc(S), ex(G[S]) and

ex(G− S) remain the same while k decreases by 1, and hence the measure drops by α. In

the other branch, we call the algorithm recursively on (G,S ∪ {v}, k, `). Let S′ = S ∪ {v}.

Since G − S′ is a subgraph of G − S, ex(G − S′) ≤ ex(G − S). We know that v has at

least 2 neighbours in S. If at least 2 of them belong to different components of G[S], then

cc(S′) ≤ cc(S)− 1 (in this case ex(G[S]) might also increase, which is good) and hence the

measure drops by at least β. Otherwise, they all belong to the same connected component,

and hence cc(S′) = cc(S), but then by Lemma 7.3, ex(G[S′]) ≥ ex(G[S]) + 1. Hence the

measure drops by at least γ. Also, ex(G[S′]) does not exceed `, because then we would

have applied Reduction Rule 14. Hence, in this case, in one branch the measure drops by
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α, while in other it drops by β or γ, but remains non-negative. This gives us two possible

branching factors (α, β) and (α, γ).

2. Branching on a vertex v which is part of a cycle in G−S. In one branch, we call

the algorithm on (G−{v}, S, k−1, `). So k decreases by 1 while ex(G[S]) and cc(S) remain

the same. But since v is part of a cycle in G− S, ex(G− (S ∪ {v})) ≤ ex(G− S)− 1 by

Lemma 7.3. Hence, in this branch, the measure decreases by α+ δ. In the other branch, we

call the algorithm on (G,S ∪{v}, k, `). So k remains the same while ex(G[S]) may increase

(but won’t become more than `), which is good. Also, ex(G− (S ∪ {v})) ≤ ex(G− S)− 1

by Lemma 7.3. Now, the problematic thing is that cc(G[S]) may increase by 1. Hence, we

get a net decrease of δ − β. But since we have assumed δ > β, this decrease is positive.

Hence, the measure drops in every branch and remains non-negative. In this case, we get a

branching factor of (α+ δ, δ − β).

We know that |S| ≤ k and hence the number of connected components of G[S] is bounded

by k. We also know that 0 ≤ ex(G[S]) ≤ ` initially, otherwise we would have discarded

the set S as an spurious set. Also, since S is an `-forest deletion set of G, ex(G− S) ≤ `.

This proves that 0 ≤ φ(I) ≤ (α+ β)k + (γ + δ)` initially. Also, we have seen that none of

the reduction rules increase the measure. It is easy to see that the reduction rules can be

applied in polynomial time.

For the branching part, we have three branching factors, (α, β), (α, γ) and (α+ δ, δ − β).

We ran a numerical program to to find values of α, β, γ and δ, which optimize the running

time of the algorithm. Putting α = 1.45, β = 1.35, γ = 1.35 and δ = 1.9 gives us the

branching factors of (1.45, 1.35), (1.45, 1.35) and (3.35, 0.55), out of which (1.45, 1.35) is

the worst and gives us running time of (4.0024)k(5.0018)`nO(1).

Given Lemma 7.10, the algorithm for Almost Forest Deletion Compression runs

in time O(
∑k

i=0

(
k+1
i

)
· (4.0024)i(5.0018)l · nO(1)) = O∗(5.0024(k+`)). Here, the factor of(

k+1
i

)
is for the guesses we make for the set S. Finally applying Lemma 7.6, we get the

following theorem.

Theorem 7.1. Almost Forest Deletion can be solved in O∗(5.0024(k+`)) time.
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7.4 O(k`(k + `)) kernel for Almost Forest Deletion

In this section, we give the kernelization algorithm for Almost Forest Deletion. First

we give a set of reduction rules and then prove the lemmata which help us bound the size

of the output instance. Throughout the section, we apply the reduction rules in order, that

is, while applying a reduction rule we assume that all the reduction rules stated previously

in the section have been applied exhaustively.

Reduction Rule 4. If there exists a vertex v of degree at most one in the graph, delete it.

Reduction Rule 5. If there exists a vertex v ∈ V (G) of degree two then delete v and put

a new edge between its neighbours (even if they were already adjacent). If both of v’s edges

are to the same vertex, delete v and put a new self loop on the adjacent vertex (even if it

has self loop(s) already).

Reduction Rule 6. If any edge has multiplicity more that `+ 2, then delete all but `+ 2

copies of that edge.

Notice that reduction rules 4-6 leave the parameters k and ` unchanged. Let (G, k, `) be

the instance before one of the reduction rules 4-6 is applied and let (G′, k, `) be the output

instance after application of the reduction rule. Correctness of Reduction Rule 4 follows

from Lemma 7.4 and proof of correctness of Reduction Rule 5 is very similar to proof of

correctness of Reduction Rule 3. We just do not need to care about the set S in the proof,

and everything else remains the same. We prove the correctness of the Reduction Rule 6.

Lemma 7.11. Reduction Rule 6 is correct.

Proof. Let (u, v) be the edge with multiplicity more than `+2 in G. Since G′ is a subgraph

for G, any solution X for G of size at most k will also be a solution for G′. So, if (G, k, `)

is a Yes instance, then so is (G′, k, `). For the converse, let (G′, k, `) be a Yes instance.

Any `-forest deletion set X for G′ must contain either u or v, otherwise we have that

G[{u, v}] is not an `-forest, which is a subgraph of G−X, and hence G−X is also not an

`-forest. Since we have only altered edges between u and v and X contains at least one of

them, G −X is identical to G′ −X. Hence, G −X is an `-forest and (G, k, `) is a Yes

instance.
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Given an instance (G, k, `) of Almost Forest Deletion, we apply reduction rules 4-6

exhaustively. Observe that after the application of these reduction rules, the graph has

degree at least 3, as all the vertices of degrees 1 and 2 are taken care of by Reduction Rule

4 and Reduction Rule 5 respectively.

We prove the following lemma which talks about `-forest deletion sets of graphs of bounded

degree with minimum degree 3.

Lemma 7.12. If a graph G has minimum degree at least 3, maximum degree at most d,

and an `-forest deletion set of size at most k, then it has less than 2`+ k(d+ 1) vertices

and less than 2kd+ 3` edges.

Proof. Let X be an `-forest deletion set of G of size at most k. Let Y = V (G) \X. We

first observe the following by summing up the degrees of vertices of Y .

3|Y | ≤ 2(|E(G[Y ])|+ |E(X,Y )|

But we know that |E(G[Y ])| ≤ |Y |+ `− 1 and |E(X,Y )| ≤ kd. Putting these in the above

inequality, we get the following.

3|Y | ≤ 2(|Y |+ `− 1) + kd

|Y | < 2`+ kd

For bounding |V (G)|, we have the following.

|V (G)| ≤ |X|+ |Y |

|V (G)| < 2`+ k(d+ 1)

For bounding the number of edges, since |Y | < 2` + kd, we know that |E(G[Y ])| <
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2`+ kd+ ` = kd+ 3`. Now we can bound |E[G]| as following.

|E[G]| ≤ |E(G[X])|+ |E(X,Y )|+ |E(G[Y ])|

< kd+ kd+ 3`

= 2kd+ 3`

This concludes the proof of the lemma.

Lemma 7.12 gives rise to the following reduction rule immediately.

Reduction Rule 7. After the application of reduction rules 4, 5 and 6 exhaustively, if

either |V (G)| ≥ 2`+ k(d+ 1) or |E(G)| ≥ 2kd+ 3`, where d is the maximum degree of the

graph, return that the given instance is a No instance.

After this, all that is left is to reduce the maximum degree of the graph. If after the

exhaustive application of reduction rules 4, 5 and 6, the maximum degree of the graph

is already bounded by (k + `)(3` + 8) then we already have a kernel with O(k`(k + `))

vertices and O(k`(k + `)) edges. Hence we assume, for the rest of the section, that there

exists a vertex with degree greater than (k + `)(3`+ 8). We need one more reduction rule

before we proceed further.

Reduction Rule 8. If there is a vertex v with more than ` self loops, delete v and decrease

k by 1.

Correctness of the reduction rule follows immediately from Lemma 7.5. We now try to

reduce the high degree vertices. The idea is that either a high degree vertex participates in

many cycles (and contributes many excess edges) and hence should be part of the solution,

or only a small part of its neighbourhood is relevant for the solution. We formalize these

notions by use of Gallai’s theorem to find flowers and applying a set of reduction rules.

Given a set T ⊆ V (G), by T -path we mean a path of positive length with both endpoints

in T .

Theorem 7.2 (Gallai, [Gal64]). Given a simple graph G, a set T ⊆ V (G) and an integer

s, one can in polynomial time find either
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• a family of s+ 1 pairwise vertex-disjoint T -paths, or

• a set B of at most 2s vertices, such that in G−B no connected component contains

more than one vertex of T .

We would want to have the neighborhood of a high degree vertex as the set T for applying

Gallai’s theorem and for detecting flowers. But we need to be careful, as the graph in its

current form contains multiple edges and self loops. Let v be a vertex with high degree.

The vertices in N(v) which have at least two parallel edges to v can be greedily picked to

form a petal of the flower. Let L be the set of vertices in N(v) which have at least two

parallel edges to v.

Reduction Rule 9. If |L| > k + `, delete v and decrease k by 1.

Lemma 7.13. Reduction Rule 9 is correct.

Proof. The correctness of the reduction rule follows from the fact that any `-forest deletion

set of size at most k must delete v. This is true because otherwise, we have at least `+k+1

petals which form edge disjoint cycles, and hence after deleting any of the k vertices from

N(v), we will be left with at least `+ 1 edge disjoint cycles. So, by Lemma 7.5, the graph

will not be an `-forest.

Let Ĝ be the graph G− L with all parallel edges replaced with single edges, and all self

loops removed. Now we apply Gallai’s theorem on Ĝ with T = N(v) and s = k + `− |L|.

If the theorem returns a collection of vertex disjoint T -paths, then it is easy to see that

they are in one to one correspondence with cycles including v, and hence can be considered

petals of the flower centered at v.

Reduction Rule 10. If the application of Gallai’s theorem returns a flower with more

than s petals, then delete v and decrease k by 1.

Lemma 7.14. Reduction Rule 10 is correct.

Proof. Let us assume that the application of Gallai’s theorem on Ĝ returns a flower centered

at v with at least k + `+ 1− |L| petals. Since Ĝ does not contain L, we can add a pair of
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parallel edges of the form (x, v) for all x ∈ L to form a flower centered at v with at least

k + `+ 1 petals in G. This forces v to be part of any `-forest deletion set of G of size at

most k.

We now deal with the case when the application of Gallai’s theorem returns a set B of at

most 2(k + `− |L|) vertices, such that in Ĝ−B no connected component contains more

than one vertex of T . Let Z = B ∪ L. Clearly, |Z| ≤ 2(k + `)− |L|. Now we look at the

set of connected components of Ĝ− (Z ∪ {v}). Let us call this set C. We first prove that

if too many connected components in C have a cycle, then we can say that the instance is

a No instance.

Reduction Rule 11. If more than k + ` components of C contain a cycle, then return

that the instance is a No instance.

Lemma 7.15. Reduction rule 11 is correct.

Proof. All the cycles in different connected components are vertex disjoint. Deleting any

set X of size at most k leave at least `+ 1 cycles in the graph which are vertex disjoint

and hence edge disjoint. By Lemma 7.5, we know that G−X is not an `-forest for any set

X of size at most k, and hence (G, k, `) is a No instance.

Lemma 7.16. After applying reduction rules 4− 11 exhaustively, there are at least 2(`+

2)(k + `) components in C which are trees and connected to v with exactly one edge.

Proof. The number of self loops on v is bounded by ` due to Reduction Rule 8. Number

of edges from v to Z is bounded by |B| + (` + 2)|L| ≤ 2(k + ` − |L|) + (` + 2)|L| =

2(k + `) + l|L| ≤ (k + `)(` + 2). As degree of v is greater than (k + `)(3` + 8), at least

(k+ `)(3`+ 8)− (k+ `)(`+ 2)− ` ≥ (k+ `)(2`+ 5) connected components in C have exactly

one vertex which is is neighbour of v. Out of these, the number of connected components

containing cycles is bounded by k+ ` by Reduction Rule 11. Hence, at least 2(`+ 2)(k+ `)

connected components are trees and are connected to v by exactly one edge.

Before we proceed further, we state the Expansion Lemma. Let G be a bipartite graph

with vertex bipartition (A,B). For a positive integer q, a set of edges M ⊆ E(G) is called
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a q-expansion of A into B if every vertex of A is incident with exactly q edges of M , and

exactly q|A| vertices in B are incident to M .

Lemma 7.17 (Expansion Lemma, [FLM+11]). Let q ≥ 1 be a positive integer and G be a

bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A| and there are no isolated

vertices in B. Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that there is a

q-expansion of X into Y and no vertex in Y has a neighbor outside X, that is, N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G.

Let D the set of connected components of C which are trees and connected to v with

exactly one edge. We have shown that |D| ≥ 2(`+ 2)(k+ `). Now we construct an auxiliary

bipartite graph H as follows. In one partition of H, we have a vertex for every connected

component in D, and the other partition is Z. We put an edge between A ∈ D and v ∈ Z

if some vertex of A is adjacent to v. Since every connected component in D is a tree

and has only one edge to v, some vertex in it has to have a neighbour in Z, otherwise

Reduction Rule 1 would apply. Since we have that |Z| ≤ 2(k + `) and every vertex in D is

adjacent to some vertex in Z, we may apply Expansion Lemma with q = `+ 2. This means,

that in polynomial time, we can compute a nonempty set Ẑ ⊆ Z and a set of connected

components D̂ ⊆ D such that:

1. NG(
⋃
D∈D̂D) = Ẑ ∪ {v}, and

2. Each z ∈ Ẑ will have `+ 2 private components A1
z, A

2
z, . . . A

`+2
z ∈ D̂ such that z ∈

NG(Aiz) for all i ∈ [`+ 2]. By private we mean that the components A1
z, A

2
z, . . . A

`+2
z

are all different for different z ∈ Ẑ.

Lemma 7.18. For any `-forest deletion set X of G that does not contain v, there exists

an `-forest deletion set X ′ in G such that |X ′| ≤ |X|, X ′ ∩ (
⋃
A∈D̂ A) = ∅ and Ẑ ⊆ X ′.

Proof. Let X be an `-forest deletion set of G. We take X ′ = (X \⋃
A∈D̂ A) ∪ Ẑ. First we

prove that |X ′| ≤ |X|. By definition of X ′ we just need to show that |X ∩ (Ẑ ∪⋃
A∈D̂ A)| ≥

|Ẑ|. For each z ∈ Ẑ, let us look at the graph induced on Yz = (
⋃
i∈[`+2]A

i
z) ∪ {v, z}. Since

each of the connected components Aiz are trees for all i ∈ [`+ 2], there exists a unique path

from v to z through each Aiz. Hence, there are `+ 2 vertex disjoint paths from v to z in
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G[Yz]. This means that for any edge set F of size at most `, deleting F will not result in a

forest (as two vertex disjoint paths will still remain, which would form a cycle) and hence

G[Yz] is not an `-forest. Let Y =
⋃
z∈Ẑ Yz. In G[Y ], we have |Ẑ| graphs which are not `

forests and are vertex disjoint except for the vertex v. But we have assumed that v /∈ X,

so all these |Ẑ| graphs contribute at least 1 to X. Hence X contains at least |Ẑ| vertices

from Ẑ ∪⋃
A∈D̂ A.

To show that X ′ is an `-forest deletion set for G, let F =
⋃
A∈D̂ A. We look at the graph

G− (X ′ ∪ F ) and call it G′. Since G′ is a subgraph of G−X, it is an `-forest. Observe

that G′ is same as (G−X ′)− F . Since G[F ] is a forest and each of the trees in G[F ] is

connected to G−X ′ via a single edge (to v), there is no cycle passing through any vertex

of F in G−X ′. Hence, by Lemma 7.4, (G−X ′) is an `-forest and X ′ is an `-forest deletion

set for G.

Now we are ready to give the final reduction rule.

Reduction Rule 12. Delete all edges between v and
⋃
A∈D̂ A and put `+ 2 parallel edges

between v and z for all z ∈ Ẑ.

Lemma 7.19. Reduction Rule 12 is correct.

Proof. Let (G, k, `) be a Yes instance of Almost Forest Deletion and let X be an

`-forest deletion set of size at most k for G. If v ∈ X, then X is an `-forest deletion set

for G′ also because G− {v} is same as G′ − {v}. Now, if v /∈ X, then we can assume by

Lemma 8.30, that Ẑ ∈ X, but then again, G′ − Ẑ is a subgraph of G− Ẑ and X remains

to be an `-forest deletion set.

For the converse, let (G′, k, `) be a Yes instance and X be an `-forest deletion set of size

at most k for G′. Again, if v ∈ X, then G−X is same as G′ −X, and hence G is a Yes

instance. Now, if v /∈ X, then we know that z ∈ X for all z ∈ Ẑ, because we have added

`+ 2 parallel edges between v and z. So we have that Ẑ ∈ X. Let F =
⋃
A∈D̂ A. Looking

at (G− (X ∪F )), we know that it is a subgraph of (G′−X) and hence is an `-forest. Also,

we observe that vertices of F do not take part in any cycle in G−X and (G− (X ∪ F ))

is same as ((G−X)− F ). But we know that (G− (X ∪ F )) is an `-forest and hence by
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lemma 7.4, (G − X) is also an `-forest. So we have that (G, k, `) is a Yes instance of

Almost Forest Deletion.

Theorem 7.3. Almost Forest Deletion admits a kernel with O(k`(k + `)) vertices

and O(k`(k + `)) edges.

Proof. Let us first see that we have a kernel when none of the reduction rules apply. If the

maximum degree of the graph is at most (k+`)(3`+8), and none of reduction rules 4-6 apply,

then by Lemma 8.33 and Reduction Rule 7, we have a kernel with O(k`(k + `)) vertices

and O(k`(k+ `)) edges. Otherwise (if the maximum degree is greater than (k+ `)(3`+ 8)),

one of reduction rules 8-12 applies.

Now we have to show that these reduction rules can be applied only polynomially many

times. For that, we use the measure approach. We define a measure for the input graph

which satisfies the following three properties.

1. It is polynomial in size of the graph initially.

2. It is always non-negative.

3. It decreases by a non-zero constant after application of each reduction rule, if the

reduction rule does not terminate the algorithm.

Let E≤`+2 ⊆ E(G) denote the set of edges of G with multiplicity at most `+ 2. We define

the measure for the graph G to be the following.

φ(G) = 2|V (G)|+ |E≤`+2|

Clearly, the measure is polynomial in the size of the graph G initially and remains non

negative throughout. Reduction rules 4, 8, 9 and 10 delete some vertex from the graph, and

hence decrease |V (G)| while not increasing |E≤`+2|. Reduction Rule 6, when applicable,

reduces |E≤`+2| by at least 1 while not changing |V (G)|. Reduction rules 7 and 11

terminate the algorithm when applicable. Hence, the only reduction rules which remain to

be examined are 5 and 12. In Reduction Rule 5, if the degree two vertex being deleted has
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two distinct neighbours, then we decrease |V (G)| and |E≤`+2| by at least 1, as we lose 2

edges and gain at most 1. Now, if both the edges are adjacent to one vertex, then we might

be increasing |E≤`+2| by 1: by putting a loop on a vertex which did not have any loop.

But because of a multiplicative factor of 2 for |V (G)|, the measure φ(G) drops by at least

1. While applying Reduction Rule 12, we delete a nonzero number of edges of multiplicity

1, and hence |E≤`+2| and φ(G) decrease by at least 1. This concludes the proof of the

theorem.

7.5 An O∗(ctw) algorithm for Almost Forest Deletion

In this section, we first design an algorithm, which given an instance (G, k, `) of Almost

Forest Deletion along with a tree decomposition of G of width at most tw, solves it in

time O∗(ctw). Then, using that algorithm, we give a subexponential algorithm for Almost

Forest Deletion on planar graphs.

Before describing the algorithm, we will need the notions of Matroids and their representa-

tive families. For a broader overview on Matroids we refer to [Oxl10].

7.5.1 Matroids and Representative Family

Definition 7.4. A pair M = (E, I), where E is a ground set and I is a family of subsets

(called independent sets) of E, is a matroid if it satisfies the following conditions:

(I1) φ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

(I3) If A,B ∈ I and |A| < |B|, then ∃ e ∈ (B \A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only

(I2) is called hereditary family. An inclusion wise maximal set of I is called a basis of

the matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have the

same size. This size is called the rank of the matroid M , and is denoted by rank(M). The
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uniform matroids are among the simplest examples of matroids. A pair M = (E, I) over

an n-element ground set E, is called a uniform matroid if the family of independent sets is

given by I = {A ⊆ E | |A| ≤ k}, where k is some constant. This matroid is also denoted

as Un,k.

7.5.2 Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. Given A

we define the matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I)

if the corresponding columns are linearly independent over F. The matroids that can be

defined by such a construction are called linear matroids, and if a matroid can be defined

by a matrix A over a field F, then we say that the matroid is representable over F. That is,

a matroid M = (E, I) of rank d is representable over a field F if there exist vectors in Fd

correspond to the elements such that linearly independent sets of vectors correspond to

independent sets of the matroid. A matroid M = (E, I) is called representable or linear if

it is representable over some field F.

7.5.3 Graphic Matroids

Given a graph G, a graphic matroid M = (E, I) is defined by taking elements as edges of

G (that is E = E(G)) and F ⊆ E(G) is in I if it forms a spanning forest in the graph G.

The graphic matroid is representable over any field of size at least 2. Consider the matrix

AM with a row for each vertex i ∈ V (G) and a column for each edge e = ij ∈ E(G). In

the column corresponding to e = ij, all entries are 0, except for a 1 in i or j (arbitrarily)

and a −1 in the other. This is a representation over reals. To obtain a representation over

a field F, one simply needs to take the representation given above over reals and simply

replace all −1 by the additive inverse of 1 .

Proposition 7.20 ([Oxl10]). Graphic matroids are representable over any field of size at

least 2.
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7.5.4 Representative Family

In this section we define q-representative family of a given family and state Theorems [FLS14]

regarding its computation.

Definition 7.5 (q-Representative Family [FLS14]). Given a matroid M = (E, I) and

a family S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the

following holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from

Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is

q-representative for S we write Ŝ ⊆qrep S.

In other words if some independent set in S can be extended to a larger independent set

by q new elements, then there is a set in Ŝ that can be extended by the same q elements.

A weighted variant of q-representative families is defined as follows. It is useful for solving

problems where we are looking for objects of maximum or minimum weight.

Definition 7.6 (Max q-Representative Family [FLS14]). Given a matroid M = (E, I),

a family S of subsets of E and a non-negative weight function w : S → N we say that a

subfamily Ŝ ⊆ S is max q-representative for S if the following holds: for every set Y ⊆ E

of size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a

set X̂ ∈ Ŝ disjoint from Y with

1. X̂ ∪ Y ∈ I; and

2. w(X̂) ≥ w(X).

We use Ŝ ⊆qmaxrep S to denote a max q-representative family for S.

We say that a family S = {S1, . . . , St} of independent sets is a p-family if each set in S

is of size p. We state three lemmata providing basic results about representative family.

These lemmata works for weighted variant representative family.

Lemma 7.21 ([FLS14]). Let M = (E, I) be a matroid and S be a family of subsets of E.

If S ′ ⊆qrep S and Ŝ ⊆qrep S ′, then Ŝ ⊆qrep S.
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Lemma 7.22 ([FLS14]). Let M = (E, I) be a matroid and S be a family of subsets of E.

If S = S1 ∪ · · · ∪ S` and Ŝi ⊆qrep Si, then ∪`i=1Ŝi ⊆qrep S.

Theorem 7.7 ([FLS14]). Let M = (E, I) be a linear matroid of rank p + q = k,

S = {S1, . . . , St} be a p-family of independent sets and w : S → N be a non-negative

weight function. Then there exists Ŝ ⊆qmaxrep S of size
(
p+q
p

)
. Moreover, given a rep-

resentation AM of M over a field F, we can find Ŝ ⊆qmaxrep S of size at most
(
p+q
p

)
in

O
((

p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

operations over F, where ω denotes the matrix multiplication

exponent.

Now we are ready to present the O∗(ctw) algorithm for Almost Forest Deletion.

Instead of looking for an `-forest deletion set of minimum size, we will look for an `-forest

of maximum size. That is, instead of saying an `-forest deletion set Y to be the solution, in

this section, we will say that G− Y is a solution. We call V ′ ⊆ V (G) an optimal solution

if V ′ is a solution (an `-forest) with maximum number of vertices. Let S be the set of

vertex subsets such that for all L ∈ S , L corresponds to an optimal solution. Let (T , f)

be a tree decomposition of G with width tw. For each tree node t, an integer `′ ∈ [`]∪ {0}

and Z ⊆ Xt, we define a family of partial solutions, St[`
′, Z] as follows.

St[`
′, Z] = {U ⊆ V (Gt) | U ∩Xt = Z and ex(Gt[U ]) = `′}

We take St[Z] = ∪``′=0St[`
′, Z]. We denote by Kt a complete graph on the vertex set

Xt. Let G∗ be subgraph of G. Let C ′1, . . . , C
′
` be the connected components of G∗ that

have nonempty intersection with Xt. Let Ci = C ′i ∩Xt. By F (G∗) we denote the forest

{Q1, . . . , Q`} where each Qi is an arbitrary spanning tree of Kt[Ci].

For two family of vertex subsets P and Q of a graph G, we denote

P ⊗Q = {U1 ∪ U2 | U1 ∈ P, U2 ∈ Q and Gt[U1 ∪ U2] is an `-forest }.

For every node t of T , and Z ⊆ Xt, we store a family Ŝt[Z] of subsets of vertices of Gt

satisfying the following.
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Correctness Invariant: For every L ∈ S we have the following. Let Lt =

V (Gt) ∩ L, LR = L \ Lt and L ∩Xt = Z. Then there exists L̂t ∈ Ŝt[Z] such

that L̂ = L̂t ∪ LR is an optimal solution, i.e G[L̂t ∪ LR] is an `-forest with

|L̂t| ≥ |Lt|. Thus we have that L̂ ∈ S .

We do dynamic programming on the tree decomposition in the bottom up manner, ensuring

that the correctness invariant mentioned above is satisfied. To get the desired running

time, we make use of representative sets. By using that, we will obtain Ŝ ′t[Z] ⊆ Ŝt[Z] of

small size. By small here, we mean that for a node t in the tree and for all Z ⊆ Xt, the

size of Ŝ ′t[Z] is bounded by ` · 2|Z|. We state the size requirements more precisely in the

size invariant below.

Size Invariant: After node t of T is processed by the algorithm, we have that

|Ŝt[`′, Z, i]| ≤
(|Z|
i

)
, where Ŝt[`′, Z, i] is the set of partial solutions in Ŝt[`′, Z]

that have i connected components with nonempty intersection with Xt.

Lemma 7.23. Let t be a join node of T with children t1 and t2. Let Z ⊆ Xt be a set

of size k. Let Ŝt1 [Z] and Ŝt2 [Z] be two families of vertex subsets of V (Gt1) and V (Gt2)

satisfying the size and correctness invariants. Furthermore, let Ŝt[Z] = Ŝt1 [Z]⊗ Ŝt2 [Z] be

the family of vertex subsets of V (Gt) satisfying the correctness invariant. Then in time

16knO(1) we can compute Ŝ ′t[Z] ⊆ Ŝt[Z] satisfying correctness and size invariants.

Proof. We start by associating a matroid with node t and the set Z ⊆ Xt as follows.

We consider a graphic matroid M = (E, I) on Kt[Z]. Here, the element set E of the

matroid is the edge set E(Kt[Z]) and the family of independent sets I consists of spanning

forests of Kt[Z]. Here our objective is to find a small subfamily of Ŝt[Z] = Ŝt1 [Z]⊗ Ŝt2 [Z]

satisfying correctness and size invariants using efficient computation of representative

family in the graphic matroid M . For a set U ∈ Ŝt[Z], it is natural to associate F (G[U ])

as the corresponding independent set in the graphic matroid.

Given Ŝt1 [Z] and Ŝt2 [Z], we first compute the set Ŝt[Z] = Ŝt1 [Z] ⊗ Ŝt2 [Z]. Since Ŝt1 [Z]

and Ŝt2 [Z] satisfy the size invariant, we have that |Ŝt[Z]| ≤ `24k. Then we partition Ŝt[Z]

into sets Ŝt[`′, Z] for all `′ ∈ [`]∪ {0} by ensuring that if for A ∈ Ŝt[Z], ex(G[A]) = `′, then
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A ∈ Ŝt[`′, Z]. Let Ŝt[`′, Z] = {A1, . . . , Ap} for some `′. Let L = {F (G[A1]), . . . , F (G[Ap])}

be the set of forests in Kt[Z] corresponding to the vertex subsets in Ŝt[`′, Z]. For each

F (G[Ai]) ∈ L we set w(F (G[Ai])) = |Ai|. For i ∈ {0, . . . , k − 1}, let Li be the family of

forests in L with i edges. Now we apply Theorem 7.7 and compute L̂i,j ⊆k−1−i−j
maxrep Li for all

j such that i+ j ≤ k − 1, each of size
(
k−1
i

)
in time O(`24k

(
k
i

)w−1
) (because |Li| ≤ `2 · 4k).

Now we take L̂i = ∪jL̂i,j . We have that |L̂i| ≤ k
(
k−1
i

)
≤
(
k
i

)
, and computing it takes

O(k`24k
(
k
i

)w−1
) time. Let Ŝ ′t[`′, Z, k − i] ⊆ Ŝt[`′, Z, k − i] be such that for every A ∈ L̂i,

we choose exactly one U ∈ Ŝt[`′, Z, k − i] to be in Ŝ ′t[`′, Z, k − i] for which we have that

F (G[U ]) = A. Also, we know that |L̂i| ≤
(
k
i

)
and hence |Ŝ ′t[`′, Z, k − i]| ≤

(
k
i

)
=
(
k
k−i
)

as well. Hence, Ŝ ′t[Z] maintains the size invariant. To compute Ŝt[Z] and partitioning

it into Ŝt[`′, Z], it takes O(`2 · 4k) time. To find L̂j it takes time O(k`24k
(
k
j

)w−1
) for

all j ∈ [k]. The total time to compute all the L̂j ’s, and hence all the Ŝ ′t[`′, Z, i]’s, is∑k−1
j=0 O(`24k

(
k
j

)w−1
) ≤ 16knO(1). Hence, Ŝ ′t[Z] can be computed in desired time and it

satisfies the size invariant.

Now we show that the Ŝ ′t[Z] maintains the correctness invariant. Let L ∈ S and let

Lt = V (Gt) ∩ L, LR = L \ Lt and Z = L ∩Xt. Since Ŝt[Z] satisfies correctness invariant,

there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≥ w(Lt), L̂ = L̂t ∪ LR is an optimal solution and

L̂ ∩Xt = Z. Let J be a spanning forest of G[L̂t] and H be a spanning forest of G[L̂] such

that J ⊆ H. Let H1 = H[L̂t] and H2 = H[L̂R ∪Z]. We associate F (H1) and F (H2 \E(Z))

corresponding to H1 and H2 respectively in the graphic matroid M of E(Kt[Z]). For two

forests U1 ⊆ Gt and U2 ⊆ G[(V \ V (Gt) ∪ Z] such that V (U1) ∩Xt = V (U2) ∩Xt = Z, it

is not hard to see that U1 ∪ U2 is a forest in G if and only if F (U1) ∪ F (U2 \ E(Z)) is a

forest in Kt[Z].

Let ex(G[L̂t]) = `′, |F (H1)| = p and |F (H2 \ E(Z))| = q. Since H1 ∪H2 forms a forest,

so does F (H1) ∪ F (H2 \ E(Z)) and hence p + q ≤ k − 1. Let Li be the set of forests in

Kt[Z] having i edges corresponding to partial solutions whose excess is exactly `′. We

know that F (H1) ∈ Lp. Since we have computed L̂i,j ⊆k−1−i−j
maxrep Li for all i, j such that

i+ j ≤ k− 1, we know that there exists Y ∈ L̂p,q such that w(Y ) ≥ w(F (H1)) and Y ∪H2

forms a forest. So, there exists L̂′t ∈ Ŝ ′t[`′, Z] such that F (G[L̂′t]) = Y , ex(G[L̂′t]) = `′ and

|L̂′t| ≥ L̂t. Let J ′ be a spanning forest of G[L̂′t]. Clearly, F (J ′) = F (G[L̂′t]) = Y . Hence,
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J ′ ∪H2 is a forest on vertex set L̂′t ∪LR. Let us call this vertex set L̂′. Since |L̂′| ≥ |L̂|, all

we need to show is that G[L̂′] is an `-forest. Since H is a spanning forest of G[L̂], every

edge in G[LR ∪ Z] which is not in H2 contributes at least 1 to ex(G[L̂′]). Let the number

of such edges be c. Hence, we have have that ex(G[L̂]) = `′ + c, but since we also have

that L̂ is an `-forest, this gives `′ + c ≤ `. Since J ′ ∪H2 is a forest on vertex set L̂′ and

|E(G[L̂′])| ≤ E(J ′ ∪H2) + `′ + c, we have that G[L̂′] is an `-forest as well. This completes

the proof of the lemma.

Theorem 7.8. Given an instance (G, k) of Almost Forest Deletion along with its

tree decomposition of width at most tw, it can be solved in O∗(ctw) time.

Proof. We first explain the dynamic programming algorithm over the tree-decomposition

(T,X ) of G and prove that it maintains the correctness invariant. We assume that (T,X ) is

a nice tree-decomposition of G. By Ŝt we denote ∪Z⊆Xt Ŝt[Z] (also called a representative

family of partial solutions). We show how Ŝt is obtained by doing dynamic programming

from base node to the root node.

Base node t. Here the graph Gt is empty and thus we take Ŝt = ∅.

Introduce node t with child t′. Here, we know that Xt ⊃ Xt′ and |Xt| = |Xt′ |+ 1. Let

v be the vertex in Xt \ Xt′ . The graph Gt = Gt′ \ {v}. So each partial solution in Gt′

is a partial solution in Gt or it differs at vertex v from a partial solution in Gt, i.e, for

i ∈ [`] ∪ {0},

Ŝt[i, Z] =

 Ŝt
′ [Z] if v /∈ Z{
U ∪ {v} | U ∈ Ŝt′ [Z \ {v}] and ex(G[U ∪ {v}]) = i

}
if v ∈ Z

When v /∈ Z, Ŝt[Z] satisfies correctness and size invariant. When v ∈ Z, |Ŝt[Z, i]| ≤ 2k and

we can apply Theorem 7.7 by associating a family of independent sets in Kt[Z] (like in

Lemma 7.23) and find Ŝ ′t[i, Z, j] ⊆ Ŝt[i, Z, j] satisfying correctness and size invariant in

time O(2k
(
k
i

)w−1
).

Forget node t with child t′. Here we know Xt ⊂ Xt′ , |Xt| = |Xt′ | − 1 and Gt = Gt′ .

Let X ′t \ Xt = {v}. So for any Z ⊆ Xt we have Ŝt[Z] = Ŝt′ [Z] ∪ Ŝt′ [Z ∪ {v}]. The
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number of elements in Ŝt[Z] with i number of connected components intersecting with Xt

is upper bounded by
(
k+1
i

)
+
(
k+1
i+1

)
≤
(
k+2
i

)
. Again by applying Theorem 7.7 we can find

Ŝ ′t[i, Z, j] ⊆ Ŝt[i, Z, j] satisfying correctness and size invariant in time O(
(
k+2
i

)(
k
i

)w−1
).

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . The

natural way to get a family of partial solutions for Xt is the union of vertex sets of two

families stored at node t1 and t2 which form an `-forest, i.e,

Ŝt[Z] = {U1 ∪ U2 | U1 ∈ Ŝt1 [Z], U2 ∈ Ŝt2 [Z], G[U1 ∪ U2] is an `-forest}

= Ŝt1 [Z]⊗ Ŝt2 [Z]

Now we show that Ŝt maintains the correctness invariant. Let L ∈ S . Let Lt =

V (Gt) ∩ L,Lt1 = V (Gt1) ∩ L,Lt2 = V (Gt2) ∩ L and LR = L \ Lt. Let Z = L ∩Xt Now

observe that

L ∈ S ⇐⇒ Lt1 ∪ Lt2 ∪ LR ∈ S

⇐⇒ L̂t1 ∪ Lt2 ∪ LR ∈ S (by the property of Ŝt1 we have L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 ∪ L̂t2 ∪ LR ∈ S (by the property of Ŝt2 we have L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt[Z]. The

above inequalities also show that L̂ = L̂t ∪ LR ∈ S . Note that (L̂t ∪ LR) ∩Xt = Z This

concludes the proof of correctness invariant.

We apply Lemma 7.23 and find Ŝ ′t[Z] ⊆ Ŝt[Z] satisfying correctness and size invariant in

16knO(1) time where k = |Z|.

Root node r. Here, Xr = ∅. Let (G, x, `) was the input instance for Almost Forest

Deletion. We go through all the solutions in Ŝr[∅] and output Yes if there exists L ∈ Ŝr[∅]

such that |L| ≥ |V (G| − x, No otherwise.

In worst case, in every tree node t, for all subset Z ⊆ Xt such that |Z| = k, we apply

Lemma 7.23 which takes 16knO(1) time. Let |Xt| = t. Then, total time taken by the

algoritm to compute Ŝt[Z] for all Z ⊆ Xt is
∑|t|

i=0

(
t
i

)
16inO(1) = 17tnO(1). Since the given
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tree decomposition (T,X ) is of depth at most tw, we have that t ≤ tw + 1 for all tree

nodes t. Hence, for each tree node t, computing Ŝt[Z] for all Z ⊆ Xt takes time 17twnO(1).

Hence, we have 17twnO(1) as the final running time of the algorithm as the number of tree

nodes in a nice tree decomposition are bounded by O(n).

Now we state the following result. Here �t denotes a grid of dimension t× t.

Theorem 7.9 (Planar Extended Grid Theorem [GT12, RST94]). Let t be a nonnegative

integer. Then every planar graph G of treewidth at least 9
2 t contains �t as a minor.

Furthermore, for every ε > 0 there exists an O(n2) algorithm that, for a given n-vertex

planar graph G and integer t, either outputs a tree decomposition of G of width at most

(9
2 + ε)t, or returns that �t is a minor of G.

Now we show the following lemma, which related the size of the grid with size of its `-forest

deletion set.

Lemma 7.24. Let X be an `-forest deletion set of �t of size at most k, then t ≤
√
`+ 3k+1.

Proof. Let G = �t. It has t2 vertices and 2t(t−1) edges. Hence, ex(G) = t2−2t+1 = (t−1)2.

Also, since G−X is an `-forest, ex(G−X) ≤ `. We also know that degree of every vertex

in G is at most 4, hence deleting it can decrease the excess by at most 3 (since the graph

loses 1 vertex and at most 4 edges). So we get ex(G −X) ≥ ex(G) − 3|X|. Putting the

inequalities together, we get ` ≥ (t− 1)2 + 3k or t ≤
√
`+ 3k + 1, as desired.

It is easy to see that the size of the `-forest deletion set does not increase while performing

any of the minor operations. Given an instance (G, k, `) of Almost Forest Deletion,

we invoke Theorem 7.9 on it with t = d
√
`+ 3ke+ 1. If the algorithm returns that �t is a

minor of G then we can return that the instance is a No instance. Otherwise we get a tree

decomposition of G of width at most O(
√
`+ k). Then we apply Theorem 7.8 to solve the

problem in 2O(
√
`+k)nO(1) time and get the following. x

Theorem 7.10. Almost Forest Deletion can be solved in 2O(
√
`+k)nO(1) time on

planar graphs.
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7.6 Conclusions

In this chapter we studied Almost Forest Deletion and obtained a polynomial kernel

as well as a single exponential time algorithm for the problem. It would be interesting to

study other classical problems from this view-point of distance from tractability using a

suitable measure of distance.
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Chapter 8

Parameterized Algorithm and

Uniform Kernel for Pseudoforest

Deletion

8.1 Introduction

The main goal of this chapter is to study the following interesting problem: How can

we generalize the family of forests such that the nice structural properties of forests and

the interesting algorithmic properties of FVS can be extended to problems on this class?

There are two ways of quantitatively generalizing forests: given a positive integer ` we

define graph classes G` and F`. The graph class G` is defined as those graphs that can be

transformed into a forest by deleting at most ` edges. On the other hand the graph class,

F` contains all graphs where each connected component can be transformed into a forest

by deleting at most ` edges. Graphs in G` are called almost `-forest (see Chapter 7). The

class F1 is known as pseudoforest in the literature and we call F` as `-pseudoforest. In

this chapter we study the problem of deleting k-vertices to get into F`, `-pseudoforest

Deletion, in the realm of parameterized complexity.

In chapter 7, we looked at a generalization of FVS in terms of G`. In particular we
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studied the problem of deleting k-vertices to get into G`, which we called Almost Forest

Deletion, parameterized by k and ` and obtained an algorithm with with running time

2O(k+`)nO(1) and a kernel of size O(k`(k + `)). One property of almost-`-forests which

is crucial in the design of FPT and kernelization algorithms of the previous chapter was

that any almost-`-forests on n vertices can have at most n+ `− 1 edges. The same can

not be said about `-pseudoforests and they can turn out to be significantly more dense.

So while the techniques used for arriving at FPT and kernelization results for FVS give

similar results for Almost Forest Deletion, they break down when applied directly to

`-pseudoforest Deletion. So we had to get into the theory of protrusions. Protrusions

of a graph are subgraphs which have small boundary and a small treewidth. A protrusion

replacer is an algorithm which identifies large protrusions and replaces them with smaller

ones. Fomin et al. [FLMS12] use protrusion-replacer to arrive at FPT and kernelization

results for Planar-F Deletion.

We first apply the techniques used in [FLMS12] to get an FPT algorithm for `-pseudoforest

Deletion. To that end, we have to show that `-pseudoforest Deletion has a protrusion

replacer, which we do by showing that the property of being an `-pseudoforest is strongly

monotone and minor-closed. We arrive at a running time of O∗(ck` ) for `-pseudoforest

Deletion where c` is a function of ` alone. If we try to apply the machinery of [FLMS12]

to get a kernelization algorithm for `-pseudoforest Deletion, it only gives a kernel

of size kc where the constant c depends on `. We use the similarity of `-pseudoforest

Deletion with FVS and apply Gallai’s theorem and Expansion Lemma to decrease the

maximum degree of the graph. This, when combined with techniques used in [FLMS12],

gives us a kernel of size ck2, where the constant c depends on `. These kind of kernels are

more desired as it gives O(k2) kernel for every fixed `, while the non-uniform kernelization

does give a polynomial kernel for every fixed `, but the exponent’s dependency on ` makes

the size of the kernel grow very quickly when compared to uniform-kernelization case. This

result is one of the main results of the chapter and should be viewed as another result

similar to the one about hitting forbidden minors obtained recently by Giannopoulou et

al. [GJLS15].

We also look at a special case for of `-pseudoforest Deletion, namely Pseudoforest
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Deletion, where we ask whether we can delete at most k vertices to get to a pseudoforest.

A pseudoforest is special case of `-pseudoforest for ` = 1, i.e. in a pseudoforest, each

connected component is just one edge away from being a tree. In other words, it is the

class of graphs where every connected component has at most one cycle. We apply the

well known technique of iterative compression along with a non-trivial measure and an

interesting base case to arrive at an O∗(7.5618k) algorithm for this problem. We also give

an explicit kernel with O(k2) vertices for the problem.

8.2 Preliminaries

In this section, we first give the notations and definitions which are used in this chapter.

Then we state some basic properties about `-pseudoforests and some known results which

will be used.

Notations and Definitions: For 0 < α ≤ 1, we say that a vertex subset S ⊆ V (G) is

an α-cover of G, if the sum of vertex degrees
∑

v∈S d(v) is at least 2α|E(G)|. A forest

is a graph which does not contain any cycles. An `-pseudoforest is a graph which every

component is at most ` edges away from being a tree, i.e. the graph can be transformed

into a forest by deleting at most ` edges from each of its connected components. When ` is

equal to 1, we call the graph a pseudoforest instead of a 1-pseudoforest. For a connected

component C of a graph, we call the quantity |E(G[C])| − |C| + 1 the excess of C and

denote it by ex(C). It can also be equivalently defined as the minimum number of edges

we need to delete from a connected component to get to a tree. For a graph G, let C be

the set of its connected components. We define the excess of a graph G, denoted by ex(G)

as follows.

ex(G) = maxC∈Cex(C)

It is easy to see that a graph G is an `-pseudoforest if and only if ex(G) ≤ `. We denote by

{1, . . . , n} by [n]. We define the `-pseudoforest Deletion problem as follows.
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`-pseudoforest Deletion Parameter(s): k

Input: A graph G, integers ` and k.

Question: Does there exist X ⊆ V (G) such that G−X is an `-pseudoforest?

The set X is called an `-pseudoforest deletion set of G. Similarly we can define Pseudo-

forest Deletion to be the problem where we ask whether we can delete S ⊆ V (G) such

that |S| ≤ k and G− S is a pseudoforest.

Minors. Given an edge e = (x, y) of a graph G, the graph G/e is obtained from G by

contracting the edge e, that is, the endpoints x and y are replaced by a new vertex vxy

which is adjacent to the old neighbors of x and y (except from x and y). A graph H

obtained by a sequence of edge-contractions is said to be a contraction of G. We denote it

by H ≤c G. A graph H is a minor of a graph G if H is the contraction of some subgraph of

G and we denote it by H ≤m G. We say that a graph G is H-minor-free when it does not

contain H as a minor. We also say that a graph class G is H-minor-free (or, excludes H as a

minor) when all its members are H-minor-free. We say that a graph class G is minor closed

if for all G ∈ G, if H ≤m G, then H ∈ G. We say that a graph class G is characterized by

H as forbidden minors if for all graphs G, G ∈ G if and only if for all H ∈ H, H �m G. If

|H| is finite, then we say that G has finite forbidden minor characterization.

t-Boundaried graphs and Gluing. A t-boundaried graph is a graph G and a set

B ⊆ V (G) of size at most t with each vertex v ∈ B having a label lG(v) ∈ {1, . . . , t}. Each

vertex in B has a unique label. We refer to B as the boundary of G. For a t-boundaried

G the function δ(G) returns the boundary of G. Observe that a t-boundaried graph may

have no boundary at all.

Two t-boundaried graphs G1 and G2 can be glued together to form a graph G = G1 ⊕G2.

The gluing operation takes the disjoint union of G1 and G2 and identifies the vertices of

δ(G1) and δ(G2) with the same label. If there are vertices u1, v1 ∈ δ(G1) and u2, v2 ∈ δ(G2)

such that lG1(u1) = lG2(u2) and lG1(v1) = lG2(v2) then G has vertices u formed by unifying

u1 and u2 and v formed by unifying v1 and v2. The new vertices u and v are adjacent if

(u1, v1) ∈ E(G1) or (u2, v2) ∈ E(G2).
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Counting Monadic Second Order Logic (CMSO). The syntax of Monadic Second

Order Logic (MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇒, ⇔, variables for

vertices, edges, sets of vertices, sets of edges, the quantifiers ∀, ∃ that can be applied to

these variables, and the following five binary relations.

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u and v

are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of monadic second-order logic, if we have atomic sentences

testing whether the cardinality of a set is equal to q modulo r, where q and r are integers

such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called the counting

monadic second-order logic. Thus CMSO is MSO with the following atomic sentence for a

set S:

cardq,r(S) = true if and only if |S| ≡ q mod r.

We now define a class of parameterized problems, called p-min-CMSO[ψ] problems, with

one problem for each CMSO sentence ψ on graphs, where ψ has a free vertex set variable S.

The p-min-CMSO[ψ] problem defined by ψ is denoted by p-min-CMSO[ψ] and defined as

follows.

p-min-CMSO[ψ] Parameter(s): k

Input: A graph G and an integer k

Question: Is there a subset S ⊆ V (G) such that |S| ≤ k and (G,S) |= ψ?

In other words, p-min-CMSO[ψ] is a subset Π of Σ∗ × N where for every (x, k) ∈ Σ∗ × N,

(x, k) ∈ Π if and only if there exists a set S ⊆ V (G) where |S| ≤ k such that the graph G
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encoded by x together with S satisfy ψ, i.e., (G,S) |= ψ. In this case, we say that Π is

definable by the sentence ψ and that Π is a p-min-CMSO[ψ].

Strong Monotonicity. By UI we denote the set of all tuples (G,S) such that G is a

boundaried graph having label set I and S ⊆ V (G).

Let Π be a p-min-CMSO[ψ] problem definable by some sentence ψ. We say that a tuple

(G′, S′) ∈ UI is ψ-feasible for some boundaried graph G with label set I if there exist some

S ⊆ V (G) such that (G⊕G′, S ∪ S′) |= ψ. For a boundaried graph G with label set I, we

define the function ζG : UI → Z+ ∪ {∞} as follows. For a structure α = (G′, S′) ∈ UI we

set

ζG(α) =


min{|S| | S ⊆ V (G) ∧ (G⊕G′, S ∪ S′) |= ψ}, if α is ψ-feasible for G,

∞ otherwise.

A p-min-CMSO[ψ] problem Π is strongly monotone if there exists a function f : Z+ → Z+

such that the following condition is satisfied. For every boundaried graph G with label set

I, there exists a subset W ⊆ V (G) such that for every (G′, S′) ∈ UI such that ζG(G′, S′) is

finite, it holds that (G⊕G′,W ∪ S′) |= ψ and |W | ≤ ζG(G′, S′) + f(|I|).

Protrusions and Protrusion Replacement. For a graph G and S ⊆ V (G), we define

∂G(S) as the set of vertices in S that have a neighbour in V (G) \ S. An r-protrusion in a

graph G is a set X ⊆ V (G) such that |∂(X)| ≤ r and tw(G[X]) ≤ r. Let G be a graph

containing an r-protrusion X and let X ′ be an r-boundaried graph. Let X̂ = X \ ∂(X).

Then the act of replacing X by X ′ means replacing G by Ĝ⊕X ′, where Ĝ is the boundaried

graph G − X̂ with boundary ∂(X) where each vertex in ∂(X) is assigned an arbitrary

unique label from {1, . . . , r}.

A protrusion replacer for a parameterized graph problem Π is a family of algorithms, with

one algorithm for every constant r. The rth algorithm has the following specifications.

There exists a constant r′ (which depends on r) such that given an instance (G, k) and an

r-protrusion X in G of size at least r′, the algorithm runs in time O(|X|) and outputs an
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instance (G′, k′) such that (G′, k′) ∈ Π if and only if (G, k) ∈ Π, k′ ≤ k and G′ is obtained

from G by replacing X by an r-boundaried graph X ′ with less than r′ vertices. Observe

that since X has at least r′ vertices and X ′ has less than r′ vertices this implies that

|V (G′)| < |V (G)|.

Protrusion Decomposition. A graph G has an (α, β)-protrusion decomposition if V (G)

has a partition P = R0, R1, . . . , Rt where

• max{t, |R0|} ≤ α,

• each NG[Ri] for i ∈ [t] is a β-protrusion of G, and

• for all i ≥ 1, N(Ri) ⊆ R0.

We call the sets Ri = NG[Ri] for all i ∈ [t] protrusions of P .

8.2.1 Preliminary results

In this subsection, we present some basic properties of `-pseudoforests as well as some

known results which will be used in other sections the chapter.

Observation 8.1. Let G′ be a subgraph of G. If G is an `-pseudoforest, then so is G′.

Observation 8.2. Let G be an `-pseudoforest and C be one of the connected components

of G. Then G[C] has at most |C| − 1 + ` edges.

Lemma 8.3. Let G be a graph and let S ⊆ V (G) be such that for all v ∈ S, dG(v) ≤ 1.

Then (G, k) is a Yes instance of `-pseudoforest Deletion if and only if (G− S, k) is

a Yes instance.

Proof. Let v be a vertex of degree at most 1 in G. It is sufficient to show that (G− {v}, k)

is a Yes instance of `-pseudoforest Deletion if and only if (G, k) is a Yes instance.

Then we can apply this iteratively to delete all the vertices in S to prove the lemma.

When d(v) = 0, then it easy to see that ex(G) = ex(G′). So, let us assume that d(v) = 1.

Let G′ = (G − {v}) and let C be the connected component of G which contains v. All
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the connected components of G except C remain unaffected by deletion of v and hence

they are also connected components of G′ and their excess remains the same. The only

component for which excess could have changed is C. But C loses exactly one vertex and

one edge and hence its excess also remains the same. So we have that ex(G) = ex(G′).

This completes the proof of the lemma.

Lemma 8.4. Treewidth of an `-pseudoforest is at most `+ 1.

Before we prove the lemma, we state two well known results about treewidth.

Lemma 8.5 (Folklore). Treewidth of a forest is 1.

Lemma 8.6 (Folklore). Let G′ = G−S for some S ⊆ V (G). Then tw(G) ≤ tw(G′) + |S|.

Now we are ready to give proof of Lemma 8.4.

of Lemma 8.4. It easy to see that treewidth of the graph is maximum treewidth over all

its components. Now we show that if G is an `-pseudoforest, each connected component of

G has treewidth at most `+ 1. Let C be any connected component of G, which is also an

`-pseudoforest. Let X ⊆ E(G[C]) be the set of edges such that (C,E(G[C]) \X) is a forest

and |X| ≤ `. Let S = ∅ initially. For each edge e ∈ X, we pick an endpoint of e arbitrarily

and include it in S. Clearly |S| ≤ ` and G[C \ S], being subgraph of (C,E(G[C]) \X), is a

forest. Hence, by lemmas 8.5 and 8.6, we have that tw(C) ≤ `+ 1.

Theorem 8.1. `-pseudoforest Deletion has a protrusion replacer.

For proving the theorem, we would like to make use of the following lemma.

Lemma 8.7 ([BFL+09]). Every strongly monotone p-min-CMSO[ψ] problem has a pro-

trusion replacer.

We show that `-pseudoforest Deletion is a p-min-CMSO[ψ] and is strongly monotone

through a series of lemmata, which, when combined with Lemma 8.7, will give rise to

proof of Theorem 8.1. Before we start that, we state a classical result by Robertson and

Seymour.
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Theorem 8.2 (Robertson and Seymour [RS04]). If a graph class G is minor closed then

it has finite forbidden minor characterization.

Lemma 8.8. The class of `-pseudoforests has finite forbidden minor characterization.

Proof. It is sufficient to show that the class of `-pseudoforests is minor closed. We have

already observed that subgraph of an `-pseudoforest is also an `-pseudoforest. So we

just need to show that the edge contraction preserves the property of the graph being an

`-pseudoforest. Let G be an `-pseudoforest and let G′ = G/e. Let C be the connected

component of G containing e and C ′ be corresponding connected component of G′. Since

G − C is same as G′ − C ′, we just need to show that ex(C) ≤ ex(C). It is indeed true

because |C ′| = |C| − 1 while |E(G′[C ′])| ≤ |E(G[C])| − 1. This completes the proof of the

lemma.

Lemma 8.9. There exists a CMSO statement ηH for a fixed graph H, which when

instantiated with a graph G, evaluates to true if and only if G contains H as a minor.

Proof. Given a graph H such that V (H) = {h1, h2, . . . , hc}, we define ηH to be following.

ηH :=∃X1, X2, . . . Xc ⊆ V (G)
[∧
i 6=j

(Xi ∩Xj = ∅) ∧
∧

1≤i≤c
Conn(G,Xi)∧

∧
(hi,hj)∈E(H)

∃x ∈ Xi ∧ y ∈ Xj [(x, y) ∈ E(G)]
]

Where Conn(G,X) is instantiation of the standard CMSO connectivity statement ς with

(G,X), which is such that (H,Y ) |= ς if and only if H[Y ] is connected. The statement ηH

says that there exist vertex disjoint connected subgraphs G[X1], G[X2], . . . G[Xc] of G such

that whenever (hi, hj) ∈ E(H), there exists at least one edge in G with endpoints in Xi and

Xj . Clearly, the graph obtained by contracting all the edges inside the connected subgraphs

G[X1], G[X2], . . . G[Xc] contains H as its subgraph. Hence we have that H ≤m G. It is

also easy to see from the definitions of minor, that if H ≤m G then G |= ηH .

Lemma 8.10. `-pseudoforest Deletion is a p-min-CMSO[ψ].
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Proof. To show that `-pseudoforest Deletion is a p-min-CMSO[ψ], we need to show

that there exists a CMSO sentence ψ such that for a graph G and S ⊆ V (G), (G,S) |= ψ if

and only if S is an `-pseudoforest deletion set of G. Suppose we can write the property of

a graph being an `-pseudoforest as a CMSO sentence φ, then we write the CMSO sentence

ψ as following.

ψ(G,S) = φ(G− S)

Where φ(G − S) is instantiation of φ with the graph G − S. To write φ, we know from

Lemma 8.8 that the class of `-pseudoforests has finite forbidden minor characterization.

Let H = {H1, H2, . . . Hp} be the set which characterizes the set of all `-pseudoforests as

forbidden minors. This means that a graph G is an `-pseudoforest if and only if it does

not contain any H ∈ H as a minor. We also know from Lemma 8.9, that for a fixed graph

H, there exists a CMSO statement ηH , which when instantiated with a graph G, evaluates

to true if and only if G contains H as a minor. So, we write φ as following.

φ = (¬ηH1) ∧ (¬ηH2) ∧ . . . ∧ (¬ηHp)

which completes the description of desired sentence ψ.

Lemma 8.11. `-pseudoforest Deletion is strongly monotone.

Proof. For a given boundaried graph G with boundary I, let W ∗ be the `-pseudoforest

deletion set of G of minimum size. We show that `-pseudoforest Deletion satisfies the

criterion for being strongly monotone by putting f(x) = 2x and the setting W = W ∗ ∪ I.

Now, it is sufficient to show that for every (G′, S′) ∈ UI such that ζG(G′, S′) is finite, it

holds that (G⊕G′,W ∪ S′) |= ψ and |W | ≤ ζG(G′, S′) + 2|I|. Let (G′, S′) ∈ UI , and let

S be the set of smallest cardinality such that S ⊆ V (G) and (G⊕G′, S ∪ S′) |= ψ. Since

ζG(G′, S′) is finite, such a set exists. Also, by definition of S, ζG(G′, S′) = |S|. So now we

just need to show that (G⊕G′,W ∪ S′) |= ψ and |W | ≤ |S|+ 2|I|.

Let G∗ = G⊕G′ and X = W ∪ S′. To show that (G⊕G′,W ∪ S′) |= ψ, we need to show

that X is an `-pseudoforest deletions set of G∗. Since V (G) ∩ V (G′) = I and I ⊆ X, no

connected component of G∗−X contains vertices from both G and G′. Hence, G∗−X is a
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subgraph of disjoint unions of G−W and G′ − (S′ ∪ I), where G−W is an `-pseudoforest

because it is a subgraph of G−W ∗. For G′ − (S′ ∪ I), it is a subgraph of G∗ − (S ∪ S′)

and since (G⊕G′, S ∪ S′) |= ψ, it is also an `-pseudoforest.

To show that |W | ≤ |S|+2|I|, observe that since (G⊕G′, S∪S′) |= ψ and V (G)∩V (G′) = I,

we have that (S∪I) is an `-pseudoforest deletion set of G. Hence, we have that |S∪I| ≥ |W ∗|

or |S|+ |I| ≥ |W | − |I| or |W | ≤ |S|+ 2|I|.

Lemmas 8.10 and 8.11, when combined with Lemma 8.7, complete the proof of Theorem 8.1.

Now we state the final result in the section.

Lemma 8.12 ([FLMS12]). If an n-vertex graph G has a vertex subset X such that

tw(G−X) ≤ b, then G admits a ((4|N [X]|)(b+ 1), 2(b+ 1))-protrusion decomposition.

8.3 A ck`n
O(1) algorithm for `-pseudoforest Deletion

In this section we will present a ck`n
O(1) algorithm for `-pseudoforest Deletion, where

the constant c` depends only on `. By Theorem 8.1, we know that `-pseudoforest

Deletion has a protrusion replacer. We first state the following theorem which will be

used while designing the FPT algorithm as well as in the kernelization algorithm.

Theorem 8.3 (Linear Time Protrusion Replacement Theorem, [FLM+15]). Let Π be a

problem that has a protrusion replacer which replaces r protrusions of size at least r′ for

some fixed r. Let s and β be constants such that s ≥ r′ · 2r and r ≥ 3(β + 1). Given an

instance (G, k) as input, there is an algorithm that runs in time O(m+n) and produces an

equivalent instance (G′, k′) with |V (G′)| ≤ |V (G)| and k′ ≤ k. If additionally G has a (α, β)-

protrusion decomposition such that α ≤ n
244s , then we have that |V (G′)| ≤ (1− δ)|V (G)|

for some constant δ > 0.

We call the algorithm in Theorem 8.3 Linear Time Protrusion Replacer (LPR). We show

that given an instance (G, k) of `-pseudoforest Deletion, there exists a constant ρ such

that LPR can be used to get to an equivalent instance (G′, k′) where any `-pseudoforest

deletion set of G′ is also an ρ-cover of G′.
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Lemma 8.13. There exist constants ρ, r, s and c < 1 such that if we run LPR with

parameters r, s on an instance (G, k) of `-pseudoforest Deletion such that G has

an `-pseudoforest deletion set S which is not a ρ-cover, then the output instance (G′, k′)

satisfies |V (G)| − |V (G′)| ≥ c|V (G)|.

Proof. Let S′ be the `-pseudoforest deletion set of G which is not a ρ cover. Let S ⊆ S′ be

a minimal subset of S′ which is an `-pseudoforest deletion set.

By lemma 8.4, we know that tw(G − S) ≤ (` + 1), and hence by lemma 8.12, G has a

(4(`+ 2)|N [S]|, 2(`+ 2))-protrusion decomposition. We set β = 2(`+ 2), r = 3(β + 1) and

r′ be the smallest such number for which the protrusion replacer for `-pseudoforest

Deletion replaces r protrusions of size at least r′. We fix s = r′ · 2r. Now, we have a

(4(`+2)|N [S]|, β)-protrusion decomposition of G. By Theorem 8.3, if 4(`+2)|N [S]| ≤ n
244s ,

then there exists a constant δ such that |V (G)| − |V (G′)| ≥ δ|V (G)|. We set c = δ and

show that there exists a constant ρ < 1/3 such that if S is not a ρ-cover of G, then

|N [S]| ≤ n
1000(`+2)s .

Since tw(G − S) ≤ (` + 1), we have that G − S is (` + 2)-degenerate. So, we have that

m ≤ n(`+ 2) +
∑

v∈S d(v). But we know that S is not a ρ cover, and also that it does not

contain any isolated vertices since it is minimal. So we have that |N [S]| ≤ 2
∑

v∈S d(v) ≤

4ρm. Putting the inequalities together and rearranging, we have that m ≤ n(`+2)
1−2ρ . This

gives |N [S]| ≤ 4ρm ≤ 4ρn(`+2)
1−2ρ . Since we will fix ρ < 1/3, we have |N [S]| ≤ 12nρ(`+ 2).

Choosing ρ = 1
12000s(`+2)2

, we get |N [S]| ≤ n
1000(`+2)s . Hence, there exist constants ρ and c

depending only on ` such that if S is not a ρ-cover of G then the output instance (G′, k) of

LPR satisfies |V (G)| − |V (G′)| ≥ c|V (G)|.

Lemma 8.14. There is an algorithm that given an instance (G, k) of `-pseudoforest

Deletion, takes O((n+m) log n) time and outputs an equivalent instance (G′, k′) such

that |V (G′)| ≤ |V (G)| and k′ ≤ k. Furthermore there exists a constant 0 < ρ < 1 such that

every `-pseudoforest deletion set S of G′ is a ρ-cover of G′.

Proof. By Lemma 8.13 there exist constants ρ, r, s and c < 1 such that if we run the LPR

with parameters r, s on an instance (G, k) such that G has an `-pseudoforest deletion set S
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which is not a ρ-cover, then the output instance (G′, k′) satisfies |V (G)|−|V (G′)| ≥ c|V (G)|.

We set these constants as guaranteed by Lemma 8.13.

The algorithm sets (G0, k0) := (G, k), i := 0 and enters a loop that proceeds as follows.

The algorithm runs the LPR on (Gi, ki) with parameters r and s, let the output of the

LPR be (Gi+1, ki+1). If |V (Gi)| − |V (Gi+1)| < c|V (Gi)| the algorithm halts and outputs

(Gi, ki). Otherwise, the algorithm increments i and returns to the beginning of the loop.

One iteration of the loop takes time O(|V (Gi)|+ |E(Gi)|). Furthermore, every iteration of

the loop reduces the number of vertices by a linear fraction. Hence, the total running time

is bounded by O((m+ n) log n). Let (G′, k′) be the instance the algorithm outputs. By

Lemma 8.13 we have that every `-pseudoforest deletion set S of G′ is a ρ-cover of G′.

Now we define the notion of Buckets which will be used by the algorithm crucially. Given

graph G, we make a partition P = {B1, B2, . . . , Bdlogne} of V (G) as follows.

Bi =
{
v ∈ V (G) | n

2i
< d(v) ≤ n

2i−1

}
for all i ∈ [dlog ne]

We call the sets Bi buckets. We call an instance (G, k) of `-pseudoforest Deletion ir-

reducible if applying the algorithm of Lemma 8.14 returns (G, k) itself, in which case, every

`-pseudoforest deletion set S of G is a ρ-cover of G. Let (G, k) be an irreducible instance

of `-pseudoforest Deletion and let X be an `-pseudoforest deletion set of G of size at

most k. A bucket Bi is said to be good if |Bi ∩X| ≥ d|Bi| and big if |Bi| > iλ, where d

and λ are constants such that (2d+ 2λ) < ρ.

Lemma 8.15. Let (G, k) be an irreducible Yes instance of `-pseudoforest Deletion.

Then G has a bucket that is both big and good.

Proof. Since (G, k) is irreducible, every `-pseudoforest deletion set X is a ρ-cover of G.

∑
v∈X

d(v) ≥ 2mρ

For contradiction, let us assume that G does not have a bucket which is both big and good.
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Input: A graph G = (V,E) and positive integer k
Output: Yes, if G has an `-pseudoforest deletion set of size at most k, No

otherwise.
1 If G is an `-pseudoforest then return Yes. Else if k ≤ 0 then return No.
2 Apply Lemma 8.14 on (G, k) to obtain an irreducible instance (G′, k′).
3 Let Bb = {Bi | Biis big} be set of big buckets for G′. For every B ∈ Bb and for every

subset S ⊆ B of size at least d|B|, check whether
Algorithm-`-Pseudoforest-Modulator(G′ − S, k′ − |S|) returns Yes. If any of
the calls returns Yes, then return Yes, otherwise return No.

Algorithm 4: Algorithm-`-Pseudoforest-Modulator(G, k)

Then we have the following.

∑
v∈X

d(v) =

dlogne∑
i=1

∑
v∈Bi∩X

d(v)

≤
∑

{i|Bi is not good}

∑
v∈Bi∩X

d(v) +
∑

{i|Bi is not big}

∑
v∈Bi∩X

d(v)

≤ d · 4m+
∑

{i|Bi is not big}

iλ
n

2i−1

≤ d · 4m+ 4λn

≤ 2m(2d+ 2λ)

We have chosen the values of d and λ such that (2d+ 2λ) < ρ, so we get
∑

v∈X d(v) < 2mρ

which is a contradiction.

Theorem 8.4. `-pseudoforest Deletion can be solved in time O(ck` (m+ n) log n) for

an instance (G, k) where the constant c` depends only on `.

Proof. We use Algorithm 4 for solving the problem. The algorithm first applies Lemma

8.14 to get to an irreducible graph G′ and then branches on all possible big subsets of the

big buckets. The correctness follows from Lemma 8.15. Now we analyze the running time

of the algorithm. We first look at the case where all buckets are big. Let ai be the size of

the bucket i. Then we have the following recurrence relation.

T (k) ≤
dlogne∑
i=1

2aiT (k − dai)
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Assuming T (k) = xk and by substituting we get the following.

T (k) ≤
dlogne∑
i=1

2aixk−dai

≤ xk
dlogne∑
i=1

( 2

xd

)ai
Now, if 2

xd
< 1, then the summation is maximized when the exponent of 2

xd
is minimized.

Since the buckets chosen are big, we have that ai ≥ λi. Hence, for values of x such that

2
xd
< 1, we get the following.

T (k) ≤ xk
dlogne∑
i=1

( 2

xd

)λi

The sum
∑dlogne

i=1

(
2
xd

)λi
is a geometric series, which converges to 1 for some x = c`, where

the constant c` is suitably large and depends only upon d and λ. But we know that d and

λ depend only on ρ which in turn depends only on `. So this bounds the running time of

the algorithm by ck` , where the constant c` depends only on `.

In the case where not all buckets are big, algorithm goes through only the big buckets and

the summation is done only for the big buckets. Hence, even in this case, the running time

is bounded by the same function.

8.4 A cknO(1) algorithm for Pseudoforest Deletion

In this section we will present a cknO(1) algorithm for Pseudoforest Deletion. We use

the well known technique of iterative compression, and arrive at the desired running time

after defining a non-trivial measure.

Given an instance (G, k) of Pseudoforest Deletion, let V (G) = {v1, . . . , vn} and

define vertex sets Vi = {v1, . . . , vi}, and let the graph Gi = G[Vi]. We iterate through the

instances (Gi, k) starting from i = k+ 1. For the ith instance, we try to find a pseudoforest

deletion set Ŝi of size at most k, with the help of a known pseudoforest deletion set Si of

size at most k + 1. Formally, the compression problem we address is the following.
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Pseudoforest Deletion Compression Parameter(s): k

Input: A graph G, and pseudoforest deletion set of G of size at most k + 1, integer k.

Question: Does there exist a pseudoforest deletion set for G of size k?

Lemma 8.16. If Pseudoforest Deletion Compression can be solved in f(k)nc time,

then Pseudoforest Deletion can be solved in f(k)nc+1 time.

Proof. We solve the Pseudoforest Deletion problem by iteratively solving at most

n− k instances of the Pseudoforest Deletion Compression problem as follows. Let

Ii = (Gi, Si, k) be the ith instance. Clearly, the set Vk+1 is a pseudoforest deletion set of

size at most k + 1 for the instance Ik+1. It is also easy to see that if Ŝi−1 is a pseudoforest

deletion set of size at most k for instance Ii−1, then the set Ŝi−1 ∪ {vi} is a pseudoforest

deletion set of size at most k + 1 for the instance Ii. We use these two observations to

start off the iteration with the instance (Gk+1, Sk+1 = Vk+1, k) and look for a pseudoforest

deletion set of size at most k for this instance. If there is such a pseudoforest deletion

set Ŝk+1, we set Sk+2 = Ŝk+1 ∪ {vk+2} and ask for a pseudoforest deletion set of size

at most k for the instance Ik+2 and so on. If, during any iteration, the corresponding

instance does not have a pseudoforest deletion set of the required size, it implies that the

original instance is also a No instance. This follows from the fact that if a graph G has a

pseudoforest deletion set of size at most k, then any vertex induced subgraph of G also has

a pseudoforest deletion set of size at most k. Finally, the solution for the original input

instance will be Ŝn. Since there can be at most n iterations, the total time taken to solve

the original instance is bounded by n times the time required to solve the Pseudoforest

Deletion Compression problem.

For designing an algorithm for Pseudoforest Deletion Compression, let the input

instance be (G,S, k). We guess a subset Y ⊆ S with the intention of picking these vertices

in our hypothetical solution for this instance and not picking the rest of the vertices in

S in the solution. We delete the set Y from the graph and decrease k by |Y |. We then

check if the graph G[S \ Y ] is a pseudoforest and if it is not, then reject this guess of Y as

a spurious guess. Suppose that G[S \ Y ] is indeed a pseudoforest. Hence, it now remains

to check if there is a pseudoforest deletion set S′ of size k′ = k − |Y | which is disjoint
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from S \ Y , and G − (Y ∪ S′) is a pseudoforest. More precisely, we have an instance of

Pseudoforest Deletion Disjoint Compression, which is defined as follows.

Pseudoforest Deletion Disjoint Compression Parameter(s): k

Input: A graph G, a pseudoforest deletion set S of G, integer k

Question: Does there exist a pseudoforest deletion set of G disjoint from S of size at

most k?

To solve the problem, we first design a set of reduction rules, and prove some lemmata

about their correctness.

Reduction Rule 13. If there exists a vertex v of degree at most 1 in the graph, delete it.

Reduction Rule 14. If there exists v ∈ V (G)\S such that G[S∪{v}] is not a pseudoforest,

delete v and decrease k by 1.

Reduction Rule 15. If there exists a vertex v ∈ V (G)\S of degree two in G, such that at

least one of its neighbours are in V (G) \S, delete v, and put an edge between its neighbours

(even if they were already adjacent). If both of its edges are to the same vertex, delete v

and put a self loop on the adjacent vertex (even if it has self loop(s) already).

Now we proceed towards proving the correctness of these reduction rules. Let (G,S, k)

be the instance on which the reduction rule is being applied and let (G′, S′, k′) be the

instance after the application of the reduction rule. We say that a reduction rule is correct

if (G,S, k) is a Yes instance of Pseudoforest Deletion Disjoint Compression if

and only if (G′, S′, k′) is a Yes instance. The correctness of Reduction Rule 13 is obvious

from Lemma 8.3.

Lemma 8.17. Reduction Rule 14 is correct.

Proof. For showing correctness of this reduction rule, we just need to show that v is part

of every pseudoforest deletion set of G of size at most k, which is disjoint from S. This is

indeed true, because if not so, then we know that G[S ∪ {v}] is not a pseudoforest. Hence

for any set X of size at most k disjoint from S which does not contain v, G−X, being a

supergraph of G[S ∪ {v}], is not a pseudoforest as well.
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Lemma 8.18. Reduction Rule 15 is correct.

Proof. Let (G,S, k) be a Yes instance of Pseudoforest Deletion Disjoint Compres-

sion, and let X be a pseudoforest deletion set of G of size at most k, which is disjoint

from S. Let v be the vertex of degree 2 being deleted from the graph. Let us first examine

the case where v has two distinct neighbours x and y. If X ∩ {v, x, y} 6= ∅, then we put

X ′ = (X \ {v}) ∪ {x} if v ∈ X or X ′ = X if v /∈ X. It is easy to see that |X ′| ≤ k and

G′ −X ′ is a subgraph of G−X in both the cases and hence G′ −X ′ is a pseudoforest. On

the other hand, if none of v, x or y are in X, then we look at the connected component of

G′ −X containing x and y. This is the only connected component for which the excess

could have possibly changed. But this connected component loses one vertex and two

edges, while gaining one new edge. So, the excess for this component also remains the

same, and hence G′ −X is a pseudoforest. The case when both of v’s edges are to the

same vertex is similar.

For the converse, let (G′, S, k) be a Yes instance of Pseudoforest Deletion Disjoint

Compression which we get after applying Reduction Rule 15 and let X be a pseudoforest

deletion set of G′ of size at most k, which is disjoint from S. If X contains any neighbour

of v, then in G−X, v has degree at most 1 and hence the edge incident on it (if it survives)

does not contribute to excess of any connected component. So, G −X remains to be a

pseudoforest. In the case where none of v’s neighbours belong to X, only the connected

component including the neighbours can possibly gain from introducing v back into the

graph. But in this case, since we delete the edge between the neighbours (or the self loop)

to get to G, the component gains exactly one vertex and one edge, and hence even in this

case G−X is a pseudoforest. So, (G,S, k) is a Yes instance of Pseudoforest Deletion

Disjoint Compression. This concludes the proof of the lemma.

We say that an instance (G,S, k) of Pseudoforest Deletion Disjoint Compression

is a good instance if G− S is a disjoint union of cycles such that for all v ∈ V (G) \ S, v

has exactly one neighbour in S and G[S] has no connected components which are trees i.e.

all the connected components of G[S] have a cycle. We first show that Pseudoforest

Deletion Disjoint Compression is polynomial time solvable on good instances.
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Lemma 8.19. Pseudoforest Deletion Disjoint Compression can be solved in

polynomial time on good instances.

Proof. Let (G,S, k) be a good instance of Pseudoforest Deletion Disjoint Com-

pression. Then we want to show that (G,S, k) is a Yes instance if and only if G− S has

a vertex cover of size at most k.

For the forward direction, let X be a pseudoforest deletion set of G disjoint from S of size

at most k. We claim that X is a vertex cover for G− S. For the sake of contradiction we

assume it is not, then there exist u, v ∈ V (G) \ S such that (u, v) ∈ E(G) and u, v /∈ X.

But we also know that u and v both have a neighbour in S. Let x and y be the neighbours

of u and v and let S1 and S2 be the connected components of G[S] containing x and

y respectively (it is possible that x = y or S1 = S2). Let S′ = S1 ∪ S2 ∪ {u, v}. Since

S ∩X = ∅, G[S′] is a connected subgraph of G−X and E(G[S′]) = |S′ + 1| > |S′|. Hence,

G[S′] is not a pseudoforest, and neither is G−X, which contradicts our assumption.

For the converse, let X be a vertex cover for G− S. Let S′ = (V (G) \ (S ∪X)). Then we

have that G[S′] is an independent set. Since every vertex v ∈ S′ has exactly one neighbour

in S, this means that all the vertices v ∈ S′ have degree exactly one in G[S ∪S′]. We know

that G[S] is a pseudoforest (otherwise we would have rejected the instance as a spurious

one) and hence G[S ∪ S′] is also a pseudoforest by Lemma 8.3 and X is a pseudoforest

deletion set of G disjoint from S of size at most k.

Finally, the minimum vertex cover of G− S can be found in polynomial time since G− S

is a disjoint union of cycles.

Lemma 8.20. After the exhaustive application of Reduction Rules 13, 14 and 15, either

there exists v ∈ V (G) \S such that v has at least two neighbours in S or G−S is a disjoint

union of cycles.

Proof. We know that G− S is a pseudoforest. If G− S is not a disjoint union of cycles,

then there exists v ∈ V (G) \ S such that dG−S(v) ≤ 1. If dG−S(v) = 0, then we know that

v has at least two neighbours in S, as otherwise Reduction Rule 13 would have applied.
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Input: A graph G = (V,E), S ⊆ V and positive integer k
Output: Yes, if H has a pseudoforest deletion set of size at most k disjoint from S,

No otherwise.
1 If G[S] or G− S is not a pseudoforest, return No.
2 If G is a pseudoforest then return Yes. Else if k ≤ 0 then return No.
3 Apply Reduction Rule 13 or 14 or 15, whichever applicable, to get an instance

(G′, S′, k′). Return PFD(G′, S′, k′).
4 If (G, k) is a good instance, then solve the problem in polynomial time.
5 If G− S has a vertex v which has at least two neighbours in S, return

PFD(G− {v}, S, k − 1)∨ PFD(G,S ∪ {v}, k).
6 Else pick any vertex v ∈ V (G) \ S
7 Case 1. v has a self loop, return PFD(G− {v}, S, k − 1)∨ PFD(G,S ∪ {v}, k).
8 Case 2. v is part of a cycle of length 2, return PFD(G− {v}, S, k − 1)∨

PFD(G− {u}, S ∪ {v}, k − 1)∨ PFD(G,S ∪ {u, v}, k), where u is the other vertex in
the cycle.

9 Case 3. v is part of a cycle of length ≥ 3, return PFD(G− {v}, S, k − 1)∨
PFD(G− {u,w}, S ∪ {v}, k − 2)∨ PFD(G− {w}, S ∪ {u, v}, k − 1)∨
PFD(G− {u}, S ∪ {v, w}, k − 1)∨ PFD(G,S ∪ {u, v, w}, k), where u and w are v’s
neighbours in the cycle.

Algorithm 5: PFD(G,S, k)

If dG−S(v) = 1, then again we have that v has at least two neighbours in S, as otherwise

Reduction Rule 13 or 15 would have applied.

Now we are ready to describe our algorithm for Pseudoforest Deletion Disjoint

Compression. A pseudocode of the same can be found as Algorithm 5. If G[S] or G−S is

not a pseudoforest, then we reject the instance as a spurious one. If k < 0, then we return

that the given instance is a No instance. Otherwise, we first apply the reduction rules 13,

14 and 15 exhaustively. If the input instance (G,S, k) is a good instance of Pseudoforest

Deletion Disjoint Compression, then we solve it by computing a vertex cover of G−S,

which can be done in polynomial time. Now we look at two possible cases.

1. There exists a vertex v ∈ V (G) \ S which has at least two neighbours in S.

We branch by either including v in our solution or excluding it. More precisely, we call

the algorithm recursively on (G− {v}, S, k − 1) and (G,S ∪ {v}, k). If at least one of the

recursive call returns Yes, then we say that the instance was a Yes instance.

2. There does not exist a vertex v ∈ V (G)\S which has at least two neighbours

in S. In this case, we know by Lemma 8.20 that G− S is a disjoint union of cycles. We
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also have that for all v ∈ V (G) \ S, v has exactly one neighbour in S, because otherwise

Reduction Rule 15 would have applied. Let T be the set of connected components of

G[S] which are trees, and let C be the set of remaining connected components (which

have a cycle). Since the instance is not a good instance, G[S] has at least one connected

component T ∈ T . Since Reduction Rule 13 does not apply, there must exist v ∈ V (G) \ S

such that v has a neighbour in T . We look at the three possible cases depending upon

length of the cycle v is part of, and describe the branching for each of them.

1. v has a self loop. In this case, we branch on v by including it in our solution or

excluding it. That is, we call the algorithm recursively on (G − {v}, S, k − 1) and

(G,S ∪ {v}, k).

2. v is part of cycle of length 2. In this case, we do a three-way branching. The

first branch deals with the case when we v is part of the solution. Let u be the other

vertex in the cycle v is part of. In the other case, where v is not part of the solution,

we divide it into two more branches depending upon whether u is part of the solution.

We denote these branches by (v) (v̄, u), (v̄, ū), were (v) denotes the branch where v is

part of the solution, (v̄, u) denotes the branch where v is not part of the solution but

u is, and (v̄, ū) denotes the solution where v and u both are not part of the solution.

The detailed description of the branches is as following.

(a) (v): We call the algorithm recursively on (G− {v}, S, k − 1).

(b) (v̄,u): We call the algorithm recursively on (G− {u}, S ∪ {v}, k − 1)

(c) (v̄, ū): We call the algorithm recursively on (G,S ∪ {u, v}, k)

3. v is part of a cycle of length at least 3. In this case we do a five-way branching.

Let u and w be the vertices which are adjacent to v in the cycle which contains v

in G − S. The first branch corresponds to the case when v is part of the solution.

In the other case, where v is not part of the solution, we divide it into four more

branches depending upon whether u are w are part of the solution. We denote these

branches by (v), (v̄, u, w), (v̄, ū, w), (v̄, u, w̄) and (v̄, ū, w̄), using the same notation

as in the previous case. The detailed description of the branches is as following.
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(a) (v): We call the algorithm recursively on (G− {v}, S, k − 1).

(b) (v̄,u,w): We call the algorithm recursively on (G− {u,w}, S ∪ {v}, k − 2).

(c) (v̄, ū,w): We call the algorithm recursively on (G− {w}, S ∪ {u, v}, k − 1)

(d) (v̄,u, w̄): We call the algorithm recursively on (G− {u}, S ∪ {v, w}, k − 1)

(e) (v̄, ū, w̄): We call the algorithm recursively on (G,S ∪ {u, v, w}, k)

This concludes the description of the algorithm. The correctness of the algorithm follows

from the correctness of reduction rules and the fact that the branching is exhaustive.

To analyze the running time of the algorithm, we define a measure φ(I) for the input

instance I = (G,S, k) as follows.

φ(I) = k + tc(S)

Where tc(S) denotes the number of connected components of G[S] which are trees.

Lemma 8.21. None of the reduction rules increase the measure φ(I).

Proof. Reduction Rule 13 deletes a vertex of degree at most 1 from the graph. It does

not affect k and it might decrease the number of connected components in G[S], but the

measure φ(I) does not increase. Reduction Rule 14 deletes a vertex v for which G[S ∪ {v}]

is not a pseudoforest, and decreases k by 1. It does not modify the set S and hence does

not change tc(S). So, the measure drops by at least 1. For Reduction Rule 15, k and tc(S)

remain the same. So, we have that none of the reduction rules increases the measure.

Now, we look at the branching steps to analyze the running time of the algorithm. We

look at all possible cases.

1. Branching on a vertex v which has at least two neighbours in S. In one

branch, we call the algorithm on (G− {v}, S, k − 1). It is easy to see that in this branch

tc(S) remains the same while k decreases by 1, and hence the measure drops by 1. In

the other branch, we call the algorithm recursively on (G,S ∪ {v}, k) and hence k does

not change. Let S′ = S ∪ {v}. Since v has at least two neighbour in S, let us call any

150



two of them x and y which belong to connected components C1 and C2 respectively. If

C1, C2 ∈ C, then Reduction Rule 14 would have applied. Hence, at least one of C1 and

C2 is a tree. After adding v to the set S, C1 ∪ C2 ∪ {v} is part of the same connected

component. Hence, it is easy to see that tc(S ∪ {v}) ≤ tc(S)− 1 and the measure drops by

at least 1. So, in the worst case, we get a branching factor of (1, 1).

2. Branching on a vertex v which is part of a cycle and has exactly one

neighbour in S. Let T be the set of connected components of G[S] which are trees, and

let C be the set of remaining connected components (which have a cycle). Let T be a

connected component of G[S] such that v has a neighbour in T , then from the description

of the algorithm, we know that T ∈ T . As we did earlier, we divide this case into three

sub-cases on the basis of the size of the cycle v is part of.

1. v has a self loop. In the first branch, we call the algorithm on (G− {v}, S, k − 1).

In this branch k drops by 1 while tc(S) remains the same and hence the measure

drops by 1. Let C be connected component of S in which v has a neighbour and

let S′ = S ∪ {v}. Clearly, C /∈ C because then Reduction Rule 14 would apply.

Hence, we have that C ∈ T . All the connected components of S′ are the same

except the one which was a tree in S but now contains v and hence the loop. Hence,

tc(S′) = tc(S)− 1 and the measure drops by 1. We get a branching factor of (1, 1).

2. v is part of a cycle of length 2. This case results in a three way branching. We

analyze the measure drop in all of them one by one.

(a) (v): We call the algorithm recursively on (G− {v}, S, k − 1). So k drops by 1

and tc(S) remains the same and hence the measure decreases by 1.

(b) (v̄,u): We call the algorithm recursively on (G− {u}, S ∪ {v}, k − 1), hence k

decreases by 1. Let S′ = S ∪ {v}. Since v has at exactly one neighbour in S,

tc(S ∪ {v}) = tc(S) and hence the measure drops by 1.

(c) (v̄, ū): We call the algorithm recursively on (G,S ∪ {u, v}, k). Observe that

if u has a neighbour in a connected component C of G[S] where C = T or

C ∈ C, then G[C ∪ {u, v}] has |C|+ 3 edges and recursive call returns No in

polynomial time. Otherwise, u has neighbour in some T ′ ∈ T such that T ′ 6= T .
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Let S′ = S ∪ {u, v}, then G[T ∪ T ′ ∪ {u, v}] is a connected component with a

cycle (the parallel edge between u and v) in G[S′]. All other tree components

of G[S] remain the same and we have tc(S′) = tc(S)− 2. Hence, the measure

drops by 2 in this branch.

Hence, we get a branching factor of (1, 1, 2) in the worst case when v is part of a

cycle of length 2.

3. v is part of a cycle of length at least 3. This case results in a five way branching.

We look at all of them one by one to analyze the measure drop.

(a) (v): In this case, the algorithm gets called on (G− {v}, S, k − 1), so k drops by

1 while tc(S) remains the same, and hence the measure drops by 1.

(b) (v̄,u,w). The algorithm is called recursively on (G − {u,w}, S ∪ {v}, k − 2),

so k drops by 2. Let S′ = S ∪ {v}. Since v has at exactly one neighbour in S,

tc(S ∪ {v}) = tc(S) and hence the measure drops by 2.

(c) (v̄, ū,w). The algorithm is called recursively on (G − {w}, S ∪ {u, v}, k − 1)

and hence k decreases by 1. Let S′ = S ∪ {v, u}. Since v has a neighbour in

some T ∈ T , due to the edge (v, u) getting pushed to S this tree component

in G[S] is either not a tree component in G[S′] or gets connected to a different

connected component of G[S] depending on whether u has a neighbour in T or

not. In any case, we have that tc(S′) = tc(S)− 1 and hence the measure drops

by 2.

(d) (v̄,u, w̄). This case is symmetric to the previous one and hence we get a drop

of 2 in the measure.

(e) (v̄, ū, w̄). In this case, the algorithm gets called recursively on (G,S∪{u, v, w}, k)

and hence k remains the same. Let S′ = S ∪{v, u, w}. We observe that if u and

w have a neighbour in C1 and C2 respectively such that C1, C2 ∈ C (note that

it is possible that C1 = C2), then the recursive call returns No in polynomial

time. This is because then G[S′] will not be a pseudoforest. Otherwise, without

loss of generality, let u have a neighbour in connected component T ′ ∈ T . If

T = T ′, then if w has a neighbour in a connected component C ∈ C ∪ {T}, then
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the recursive call returns No, because then G[S′] is not a pseudoforest. If w has

a neighbour in some other tree component, then we see that tc(S′) = tc(S)− 2,

because both the tree components become part of one component which has

a cycle. Hence we have a measure drop of 2. The remaining case is where

T 6= T ′. Now, if w has a neighbour in either T or T ′, then T and T ′ are part

of a single component in G[S′] which is not a tree. Hence tc(S′) = tc(S) − 2.

On the other hand, if w has a neighbour in T2 such that T2 6= T and T2 6= T1,

then in G[S′], we have a single component which contains T , T1 and T2 and

hence tc(S′) = tc(S)− 2. So in any case we have a drop of 2 in tc(S′) and in

the measure as well.

So, we get a branching factor of (1, 2, 2, 2, 2) in the case when v is part of a cycle of

length at least 3.

Lemma 8.22. Pseudoforest Deletion Disjoint Compression can be solved in

O∗(6.5618k) time.

Proof. We know that initially |S| ≤ k + 1 and hence 0 ≤ tc(S) ≤ k + 1. This proves that

0 ≤ φ(I) ≤ 2k + 2 initially. Also, if φ(I) ≤ 0 during the course of the algorithm, then

we conclude that k ≤ 0 and solve the problem trivially. We have seen that none of the

reduction rules increase the measure. It is easy to see that the reduction rules can be

applied in polynomial time.

For the branching part, we have three branching factors, (1, 1), (1, 1, 2) and (1, 2, 2, 2, 2).

Also, we have shown that at each branching step, in polynomial time either solves the

problem, or makes a recursive call. Hence, the time spent at each branching step is

polynomial. Out of the three branching factors, (1, 2, 2, 2, 2) is the worst and gives a

running time of (6.5618)knO(1).

Given Lemma 8.22, the algorithm for Pseudoforest Deletion Compression has

a running time of O(
∑k

i=0

(
k+1
i

)
· (6.5618)k · nO(1)) = O∗(7.5618k). Here, the factor of(

k+1
i

)
is for the guesses we make for the set S. After this, applying Lemma 8.16 gives the

following theorem.
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Theorem 8.5. Pseudoforest Deletion can be solved in O∗(7.5618k) time.

8.5 Kernels

In this section, we give kernelization algorithm for `-pseudoforest Deletion. First, we

give a procedure to reduce the maximum degree of the graph. Then we arrive at a kernel

by exploiting the small maximum degree using protrusions. In the end, we give an explicit

kernel for Pseudoforest Deletion.

8.5.1 Degree Reduction

For bounding the maximumum degree of the graph, we give a set of reduction rules which

apply in polynomial time. If the maximum degree of the graph is already bounded by

(k + `)(3` + 8), then we have nothing to do. Hence, for the rest of this subsection, we

assume that there exists a vertex with degree greater than (k + `)(3`+ 8).

Reduction Rule 16. If there exists a vertex v of degree at most 1 in the graph, delete it.

Correctness of Reduction Rule 16 follows from Lemma 8.3.

Reduction Rule 17. If any edge has multiplicity more that `+ 2, then delete all but `+ 2

copies of that edge.

Lemma 8.23. Reduction Rule 17 is correct.

Proof. Let (u, v) be the edge with multiplicity more than `+2 in G. Since G′ is a subgraph

for G, any solution X for G of size at most k will also be a solution for G′. So, if (G, k) is

a Yes instance, then so is (G′, k). For the converse, let (G′, k) be a Yes instance. Any

`-pseudoforest deletion set X for G′ must contain either u or v, otherwise we have that

G[{u, v}] is not an `-pseudoforest, which is a subgraph of G−X, and hence G−X is also

not an `-pseudoforest. Since we have only altered edges between u and v and X contains

at least one of them, G−X is identical to G′ −X. Hence, G−X is an `-pseudoforest and

(G, k) is a Yes instance.
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Lemma 8.24. Any connected component in an `-pseudoforest can have at most ` edge

disjoint cycles.

Proof. Let the connected component C of the graph G have `′ edge disjoint cycle such

that `′ > `. To get a forest as a subgraph of G, we must delete at least one edge from

every cycle. Since the cycles are edge disjoint, we need to delete at least `′ > ` edges from

C to get to a forest. This shows that ex(C) > ` and hence G is not an `-pseudoforest.

We need one more reduction rule before we proceed further.

Reduction Rule 18. If there is a vertex v with more than ` self loops, delete v and

decrease k by one.

Correctness of the reduction rule follows immediately from lemma 8.24.

We now look at a vertex which, after application of reduction rules 16-18, still has high

degree. The idea is that either a high degree vertex participates in many cycles (and

contributes many excess edges) and hence should be part of the solution, or only a small

part of its neighbourhood is relevant for the solution. We formalize these notions as similar

to the case of FVS and Almost Forest Deletionand use them to find flowers using

Gallai’s theorem and apply a set of reduction rules. Given a set T ⊆ V (G), by T -path we

mean set of paths of positive length with both endpoints in T . Let us recall the statement

of Gallai’s theorem once more.

Theorem 8.6 (Gallai, [Gal64]). Given a simple graph G, a set T ⊆ V (G) and an integer

s, one can in polynomial time find either

• a family of s+ 1 pairwise vertex-disjoint T -paths, or

• a set B of at most 2s vertices, such that in G−B no connected component contains

more than one vertex of T .

As in the previous chapter, we would want to have the neighborhood of a high degree

vertex as the set T for applying Gallai’s theorem and for detecting flowers. We first take

care of multiple edges and self loops. Let v be a vertex with high degree. The vertices in
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N(v) which have at least two parallel edges to v can be greedily picked to form a petal of

the flower. Let L be the set of vertices in N(v) which have at least two parallel edges to v.

Reduction Rule 19. If |L| > k + `, delete v and decrease k by 1.

Lemma 8.25. Reduction Rule 19 is correct.

Proof. The correctness of the reduction rule follows from the fact that any `-pseudoforest

deletion set of size at most k must delete v. This is true because otherwise, we have at

least `+ k + 1 petals which form edge disjoint cycles, and hence after deleting any of the k

vertices from N(v), we will be left with at least `+ 1 edge disjoint cycles in a connected

component of G. So, by Lemma 8.24, the graph will not be an `-pseudoforest.

Let Ĝ be the graph G− L with all parallel edges replaced with single edges, and all self

loops removed. Now we apply Gallai’s theorem on Ĝ with T = N(v) and s = k + `− |L|.

If the theorem returns a collection of vertex disjoint T -paths, then it is easy to see that

they are in one to one correspondence with cycles including v, and hence can be considered

petals of the flower centered at v.

Reduction Rule 20. If the application of Gallai’s theorem returns a flower with more

than s petals, then delete v and decrease k by 1.

Lemma 8.26. Reduction Rule 20 is correct.

Proof. Let us assume that the application of Gallai’s theorem on Ĝ returns a flower centered

at v with at least k + `+ 1− |L| petals. Since Ĝ does not contain L, we can add a pair of

parallel edges of the form (x, v) for all x ∈ L to form a flower centered at v with at least

k + `+ 1 petals in G. This forces v to be part of any `-pseudoforest deletion set of G of

size at most k.

Now, we deal with the case when the application of Gallai’s theorem returns a set B of at

most 2(k + `− |L|) vertices, such that in G−B, no connected component contains more

than one vertex of T . Let Z = B ∪L. Clearly, |Z| ≤ 2(k+ `)− |L|. Now we look at the set

of connected components of G− (Z ∪ {v}). Let us call this set C. We first show that if too
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many connected components in C have a cycle, then v has to be part of any `-pseudoforest

deletion set of G of size at most k.

Reduction Rule 21. If more than k + ` components of C contain a cycle, then delete v

and reduce k by one.

Lemma 8.27. Reduction rule 21 is correct.

Proof. For proving the correctness of the reduction rule, we just need to show that if more

than k + ` components of C contain a cycle then v is part of any `-pseudoforest deletion

set of G of size at most k. Let X be an `-pseudoforest deletion set of G of size at most

k and v /∈ X. Now, we know that all the cycles in different connected components of C

are vertex disjoint. Deleting any set X of size at most k leave at least `+ 1 cycles in the

graph which are vertex disjoint and hence edge disjoint. Also, all these `+ 1 connected

components of C containing a cycle are connected to v and we get a connected component

in G−X with more than ` edge disjoint cycles. By Lemma 8.24, we know that G−X is

not an `-pseudoforest, which is a contradiction.

Lemma 8.28. After applying reduction rules 16-21 exhaustively, there are at least 2(`+

2)(k + `) components in C which are trees and are connected to v with exactly one edge.

Proof. The number of self loops on v is bounded by ` due to Reduction Rule 18. Number

of edges from v to Z is bounded by |B| + (` + 2)|L| ≤ 2(k + ` − |L|) + (` + 2)|L| =

2(k + `) + `|L| ≤ (k + `)(` + 2). As degree of v is greater than (k + `)(3` + 8), at least

(k+ `)(3`+ 8)− (k+ `)(`+ 2)− ` ≥ (k+ `)(2`+ 5) connected components in C have exactly

one vertex which is is neighbour of v. Out of these, the number of connected components

containing cycles is bounded by k+ ` by Reduction Rule 21. Hence, at least 2(`+ 2)(k+ `)

connected components are trees and are connected to v by exactly one edge.

Before we proceed further, we state the Expansion Lemma. Let G be a bipartite graph

with vertex bipartition (A,B). For a positive integer q, a set of edges M ⊆ E(G) is called

a q-expansion of A into B if every vertex of A is incident with exactly q edges of M , and

exactly q|A| vertices in B are incident to M .
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Lemma 8.29 (Expansion Lemma, [FLM+11]). Let q ≥ 1 be a positive integer and G be a

bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A| and there are no isolated

vertices in B. Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that there is a

q-expansion of X into Y and no vertex in Y has a neighbor outside X, that is, N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G.

Let D the set of connected components which are trees and connected to v with exactly

one edge. We have shown that |D| ≥ 2(` + 2)(k + `). Now we construct an auxiliary

bipartite graph H as follows. In one partition of H, we have a vertex for every connected

component in D, and the other partition is Z. We put an edge between A ∈ D and v ∈ Z

if some vertex of A is adjacent to v. Since every connected component in D is a tree

and has only one edge to v, some vertex in it has to have a neighbour in Z, otherwise

Reduction Rule 16 would apply. Now we have that |Z| ≤ 2(k + `) and every vertex in D

is adjacent to some vertex in Z, we may apply q-expansion lemma with q = `+ 2. This

means, that in polynomial time, we can compute a nonempty set Ẑ ⊆ Z and a set of

connected components D̂ ⊆ D such that:

1. NG(
⋃
D∈D̂D) = Ẑ ∪ {v}, and

2. Each z ∈ Ẑ will have `+ 2 private components A1
z, A

2
z, . . . A

`+2
z ∈ D̂ such that z ∈

NG(Aiz) for all i ∈ [`+ 2]. By private we mean that the components A1
z, A

2
z, . . . A

`+2
z

are all different for different z ∈ Ẑ.

Lemma 8.30. For any `-pseudoforest deletion set of G that does not contain v, there

exists an `-pseudoforest deletion set X ′ in G such that |X ′| ≤ |X|, X ′ ∩ (
⋃
A∈D̂ A) = ∅ and

Ẑ ⊆ X ′.

Proof. Let X be an `-pseudoforest deletion set of G. We take X ′ = (X \⋃
A∈D̂ A)∪Ẑ. First

we prove that |X ′| ≤ |X|. By definition ofX ′ we just need to show that |X∩(Ẑ∪⋃
A∈D̂ A)| ≥

|Ẑ|. For each z ∈ Ẑ, let us look at the graph induced on Yz = (
⋃
i∈[`+2]A

i
z) ∪ {v, z}. Since

each of the connected components Aiz are trees for all i ∈ [`+ 2], there exists a unique path

from v to z through each Aiz. Hence, there are `+ 2 vertex disjoint paths from v to z in

G[Yz]. This means that for any edge set F of size at most `, deleting F will not make the
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connected component a tree (as two vertex disjoint paths will still remain, which would

form a cycle) and hence G[Yz] is not an `-pseudoforest. Let Y =
⋃
z∈Ẑ Yz. In G[Y ], we

have |Ẑ| graphs which are not `-pseudoforests and are vertex disjoint except for the vertex

v. But we have assumed that v /∈ X, so all these |Ẑ| graphs contribute at least 1 to X.

Hence X contains at least |Ẑ| vertices from Ẑ ∪⋃
A∈D̂ A.

To show that X ′ is an `-pseudoforest deletion set for G, let F =
⋃
A∈D̂ A. We look at the

graph G− (X ′ ∪F ) and call it G′. Since G′ is a subgraph of G−X, it is an `-pseudoforest.

Observe that G′ is same as (G−X ′)− F . (G−X ′)[F ] is a forest and each of the trees in

(G−X ′)[F ] is connected to G′ via a single edge (to v). So, we can keep applying Reduction

Rule 16 on G−X ′ to delete vertices of F to eventually get G′, which is an `-pseudoforest.

Since we have preserved equivalence at each step of applying the reduction rule, (G−X ′)

is an `-pseudoforest and X ′ is an `-pseudoforest deletion set for G.

Now we are ready to give the final reduction rule.

Reduction Rule 22. Delete all edges between v and
⋃
A∈D̂ A and put `+ 2 parallel edges

between v and z for all z ∈ Ẑ.

Lemma 8.31. Reduction Rule 22 is correct.

Proof. Let (G, k) be a Yes instance of `-pseudoforest Deletion and let X be an

`-pseudoforest deletion set of size at most k for G. If v ∈ X, then X is an `-pseudoforest

deletion set for G′ also because G− {v} is same as G′ − {v}. Now, if v /∈ X, then we can

assume by Lemma 8.30 that Ẑ ∈ X, but then again, G − Ẑ is same as G′ − Ẑ and X

remains to be an `-pseudoforest deletion set.

For the converse, let (G′, k) be a Yes instance and X be an `-pseudoforest deletion set of

size at most k for G′. Again, if v ∈ X, then G−X is same as G′−X, and hence G is a Yes

instance. Now, if v /∈ X, then we know that z ∈ X for all z ∈ Ẑ, because we have added

`+ 2 parallel edges between v and z. So we have that Ẑ ∈ X. Let F =
⋃
A∈D̂ A. Looking

at (G− (X ∪F )), we know that it is a subgraph of (G′−X) and hence is an `-pseudoforest.

We see that G− (X ∪ F ) is same as (G−X)− F . We also observe that (G−X)[F ] is a

forest such that every tree in it is connected to v via exactly one edge. So, we can keep
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applying Reduction Rule 16 on G−X to delete vertices of F to eventually get (G−X)−F ,

which is an `-pseudoforest. Since we have preserved equivalence at each step of applying

the reduction rule, G−X is also an `-pseudoforest and X is an `-pseudoforest deletion set

for G. So we have that (G, k) is a Yes instance of `-pseudoforest Deletion.

Now we are ready to prove the final theorem of the section.

Theorem 8.7. Given an instance (G, k) of `-pseudoforest Deletion, in polynomial

time, we can get an equivalent instance (G′, k′) such that k′ ≤ k, |V (G′)| ≤ |V (G)| and

maximum degrees of G′ is at most (k + `)(3`+ 8).

Proof. If the maximum degree of the graph is at most (k + `)(3`+ 8), then we are already

done. Otherwise (if the maximum degree is greater than (k + `)(3`+ 8)), one of reduction

rules 16-22 applies. It can be easily seen that none of the reduction rules increases k or

|V (G)|.

Now we have to show that these reduction rules can be applied only polynomially many

times. For that, we use the measure approach. We define a measure for the input graph

which satisfies the following three properties.

1. It is polynomial in size of the graph initially.

2. It is always non-negative.

3. It decreases by a non-zero constant after application of each reduction rule if the

reduction rule does not terminate the algorithm.

Let E≤`+2 ⊆ E(G) denote the set of edges of G with multiplicity at most `+ 2. We define

the measure for the graph G to be the following.

φ(G) = 2|V (G)|+ |E≤`+2|

Clearly, the measure is polynomial in the size of the graph G initially and remains non-

negative throughout. Reduction rules 16, 18, 19 and 20 delete some vertex from the

graph, and hence decrease |V (G)| while not increasing |E≤`+2|. Reduction Rule 17, when
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applicable, reduces |E≤`+2| by at least 1 while not changing |V (G)|. Reduction Rule 21

terminates the algorithm when applicable. Hence, the only reduction rule which remains

to be examined is 22. While applying Reduction Rule 22, we delete a nonzero number of

edges of multiplicity 1, and hence |E≤`+2| and φ(G) decrease by at least 1. This concludes

the proof of the theorem.

8.5.2 Kernels through Protrusions

In this section, we show that `-pseudoforest Deletion admits polynomial kernels using

the concept of protrusions once again. Now, we first prove the following lemma.

Lemma 8.32. If (G, k) is a Yes instance for `-pseudoforest Deletion and the

maximum degree of a vertex in G is bounded by d, then G has a (4kd(` + 2), 2(` + 2))-

protrusion decomposition.

Proof. Let X be the `-pseudoforest deletion set of G of size at most k. Let G′ = G−X.

Since G′ is an `-pseudoforest, by Lemma 8.4 the treewidth of G′ is bounded by `+ 1. Since

maximum degree of any vertex in G is bounded by d, we have that |N [X]| ≤ kd. Hence, by

Lemma 8.12, we have that G admits a (4kd(`+ 2), 2(`+ 2))-protrusion decomposition.

Theorem 8.8. `-pseudoforest Deletion admits a kernel with c`k
2 vertices, where the

constant c` is a function of ` alone.

Proof. By Theorem 8.7, we know that given an instance (G, k) of `-pseudoforest

Deletion, in polynomial time, we can get an equivalent instance (G′, k′) such that k′ ≤ k,

|V (G′)| ≤ |V (G)| and maximum degrees of G′ is at most (k + `)(3` + 8). Hence, by

Lemma 8.32, we have that G′ admits an (f(k, `), 2(`+ 2))-protrusion decomposition where

f(k, `) = 4k(` + 2)(k + `)(3` + 8) = O(k`2(k + `)). Now, we put r = 3(2` + 5). By

Theorem 8.1 We know that `-pseudoforest Deletion has a protrusion replacer which

replaces r-protrusions of size at least r′. Let s = r′ · 2r. Note that r′, r and s depend only

on ` and hence are a constant for any instance of `-pseudoforest Deletion.

Applying Theorem 8.3 on (G′, k′) with the above mentioned value of r, s and α = f(k, `)
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and β = 2(` + 2), we know that there is an algorithm that runs in time O(m + n) and

produces an equivalent instance (G′′, k′′) with |V (G′′)| ≤ |V (G′)| and k′′ ≤ k′. Also, since

G′ has a (f(k, `), 2(`+ 2))-protrusion decomposition, if |V (G)| ≥ α · 244s, then we have

that |V (G′′)| ≤ (1− δ)|V (G′)| for some constant δ. This means that |V (G′′)| < |V (G′)|.

Given an instance (G, k), the kernelization algorithm for `-pseudoforest Deletion first

applies Theorem 8.7 to bound the maximum degree and then apply LPR with above

mentioned parameters. As shown above, the process either results in a an equivalent

instance (G′, k′) with |V (G′)| < |V (G)| or we have that |V (G)| < f(k, `) · 244s. If we end

up getting an instance (G′, k′) such that |V (G′)| < |V (G)|, then we call the kernelization

algorithm recursively on (G′, k′), otherwise (if |V (G′)| = |V (G)|) we output (G, k) as the

kernel. Since each iteration of the algorithm decreases the number of the vertices the graph

by at least 1, the number of recursive calls are bounded by V (G). Also, since each call

takes polynomial time, the total time taken by the kernelization algorithm is polynomial.

For the output graph G, we have that |V (G)| < f(k, `) · 244s ≤ c`k2, where c` is a constant

entirely depending on `, we have that `-pseudoforest Deletion admits a kernel with

c`k
2 vertices.

8.5.3 An explicit kernel for Pseudoforest Deletion

To arrive at an explicit kernel for Pseudoforest Deletion, in addition to bounding the

maximum degree of the graph from above, we also need to show that the minimum degree

of the graph is at least 3. We have already stated Reduction Rule 16 which takes care of

vertices of degree at most 1. So we only need to take care of vertices of degree 2. To that

end, we make use of the following reduction rule.

Reduction Rule 23. If there exists a vertex v ∈ V (G) of degree two then delete v and

put a new edge between its neighbours (even if they were already adjacent). If both of v’s

edges are to the same vertex, delete v and put a new self loop on the adjacent vertex (even

if it has self loop(s) already).

The proof of correctness of Reduction Rule 23 is very similar to proof of correctness of

Reduction Rule 15. Just that in this case, we do not worry about the set S. Also, it

162



is easy to see that after the application of Reduction Rules 16 and 23 exhaustively, the

minimum degree of the graph is at least 3. We prove the following lemma which talks

about pseudoforest deletion sets of graphs of bounded degree with minimum degree 3.

Lemma 8.33. If a graph G has minimum degree at least 3, maximum degree at most d,

and pseudoforest deletion set of size at most k, then it has at most k(d+ 1) vertices and at

most 2kd edges.

Proof. Let X be a pseudoforest deletion set of G of size at most k. Let Y = V (G) \X.

We first observe the following by summing up the degrees of vertices of Y .

3|Y | ≤ 2(|E(G[Y ])|+ |E(X,Y )|

But we know that |E(G[Y ])| ≤ |Y | and |E(X,Y )| ≤ kd. Putting these in the above

inequality, we get the following.

3|Y | ≤ 2|Y |+ kd

|Y | ≤ kd

For bounding |V (G)|, we have the following.

|V (G)| ≤ |X|+ |Y |

|V (G)| ≤ k(d+ 1)

For bounding the number of edges, since |Y | ≤ kd, we know that |E(G[Y ])| ≤ kd. Now we

can bound |E[G]| as following.

|E[G]| ≤ |E(G[X])|+ |E(X,Y )|+ |E(G[Y ])|

≤ kd+ kd

= 2kd

This concludes the proof of the lemma.
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Theorem 8.9. Pseudoforest Deletion admits a kernel with O(k2) edges and O(k2)

vertices.

Proof. We know from Theorem 8.7 that given an instance (G, k) of Pseudoforest

Deletion, in polynomial time, we can get an equivalent instance (G′, k′) such that k′ ≤ k,

|V (G′)| ≤ |V (G)| and maximum degree of G is at most 11(k+1). Then we apply Reduction

Rules 16 and 23 exhaustively. These reduction rules do not change the value of k and it is

easy to see that they do not increase degree of any vertex. Also, since both of the reduction

rules delete a vertex from the graph, they can only be applied |V (G)| times. Hence, we

have a polynomial time algorithm at the end of which the minimum degree of the graph

is at least 3 while the maximum degree is at most 11(k + 1). By Lemma 8.33, if G′ has

more than k(11k + 12) vertices or more than 22k(k + 1) edges, then we can safely say No.

Otherwise we have a kernel with O(k2) edges and O(k2) vertices.

8.6 Conclusions

In this chapter we studied the problem of deleting vertices to get to a graph where each

component is ` edges away from being a tree. We obtained uniform kernels as well as an

FPT algorithm for the problem when parameterized by the solution size. We believe that

it would be interesting to study more problems under this view of parameterization. In

fact, in the next chapter, we study one such generalization of the well known Odd Cycle

Transversal problem.
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Chapter 9

Strong Graph Deletion: Bipartite

Graphs

9.1 Introduction

Graph-modification by either deleting vertices or deleting edges or adding edges such

that the resulting graph satisfies certain properties or becomes a member of some well-

understood graph class is one of the basic problems in graph theory and graph algorithms.

However, most of these problems are NP–complete [Yan78, LY80] and thus they are

subjected to intensive study in algorithmic paradigms that are meant for coping with

NP-completeness [Fuj98, LY94, FLMS12, MOR13]. These paradigms among others include

applying restrictions on inputs, approximation algorithms and parameterized complexity.

In the earlier chapters, we have seen some examples of such graph editing problems and

algorithms for the same. The goal of this chapter is to introduce a ‘stronger’ notion of

graph deletion in the realm of parameterized complexity and illustrate the difficulties that

arise when considering the family of bipartite graphs and provide an approach to obtain

fixed-parameter tractability by overcoming these difficulties.

A typical instance of parameterized graph deletion is of the following form. Let F be a

family of graphs – such as edgeless graphs, forests, cluster graphs, chordal graphs, interval

graphs, bipartite graphs, split graphs or planar graphs. The deletion problem corresponding
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to F is formally stated as follows.

F-Vertex (Edge) Deletion Parameter(s): k

Input: An undirected graph G and a non-negative integer k.

Question: Does there exist S ⊆ V (G) (or S ⊆ E(G)), such that |S| ≤ k and G− S is

in F?

In other words, given a graph G, can we delete at most k vertices or k edges such that

the resulting graph belongs to F? An algorithm for F-Vertex (Edge) Deletion that

runs in time f(k) · |V (G)|O(1) is called fixed-parameter tractable (FPT) algorithm and the

problem itself is said to be FPT.

The study of parameterized graph deletion problems together with their various restric-

tions and generalizations has been an extremely active sub-area over the last few years.

In fact, just over the course of the last couple of years there have been results on pa-

rameterized algorithms for Chordal Editing [CM14], Unit Vertex (Edge) Dele-

tion [Cao15], Interval Vertex (Edge) Deletion [CM15, Cao16], Planar F Dele-

tion [FLMS12, KLP+13], Planar Vertex Deletion [JLS14], Block Graph Dele-

tion [KK15] and Simultaneous Feedback Vertex Set [ALMS16]. Several known

parameterized algorithms for F-Edge Deletion or the version where the objective is

to delete k1 vertices and k2 edges utilize the fact that given a Yes-instance (G, k) or

(G, k1, k2) to the problem, there exists a vertex set S∗ of V (G) of size k = k1 +k2 such that

G− S∗ belongs to F . Clearly, this is true for any hereditary family of graphs; that is, if

G ∈ F then all its induced subgraphs belong to F . Thus, if the corresponding F-Vertex

Deletion is FPT then we can apply this algorithm and find a vertex subset S∗ of size at

most k such that G− S∗ ∈ F . Having the set S∗ allows one to infer numerous structural

properties of the input which can then be utilized in non-trivial ways to solve the original

F-Vertex (Edge) Deletion problem. However, the existence of such a set is no longer

guaranteed in the proposed stronger version of this problem.

Let F be a polynomial-time recognizable family of graphs; that is, given a graph G, in

polynomial time we can decide whether G belongs to F . For a fixed integer `, let F + `e

denote the class of graphs that can be obtained by adding ` edges to a graph in F [Cai03].
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Figure 9.1: An example showing the strength of the new parameter for editing problems.

Furthermore, suppose that F-Edge Deletion is FPT with running time O(g(`) · nc).

Here, n = |V (G)| and c is a fixed constant. That is, for any fixed integer `, F + `e can be

recognized in time O(nc). The Strong F-Deletion problem is defined as follows.

Strong F-Deletion Parameter(s): k1, k2

Input: An undirected graph G and non-negative integers k1 and k2.

Question: Does there exist S1 ⊆ V (G) such that |S1| ≤ k1 and every connected

component of G− S1 belongs to F + k2e?

A close inspection easily shows that Strong F-Deletion is much stronger than F-

Deletion. For example, let F be the family of bipartite graphs and consider the graph

G depicted in Figure 9.1. The graph G has n−1
3 vertex disjoint triangles and the vertex

v is adjacent to two vertices from each of the triangles. Clearly, after deleting v every

connected component can be made bipartite by deleting exactly one edge. Thus, in the

traditional sense this is a yes-instance of Bipartite Deletion with parameters (1, n−1
3 );

however this is already a yes-instance of Strong Bipartite Deletion with parameters

(1, 1). Thus, these problems seem much harder than traditional editing problems as the

parameters are much smaller.

An alternate viewpoint is that when G has a vertex set S of size at most k1 such that

every connected component of G− S is in F + k2e then S can be considered a modulator

into the graph class where every connected component of the graph belongs to F + k2e.

While modulators to various polynomial-time recognizable graph classes have been studied

in a very systematic way [FJR13, FLMS12, Jan13], the same is not true of modulators to

NP-complete graph classes. Studying the Strong F-Deletion problem on the other
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hand allows us to do precisely this. In fact, it is not even necessary that the class F is a

conventional graph class and instead can be the ‘composition’ of various graph classes. For

instance F could be defined as the set of all graphs where each connected component is

either chordal or a bipartite graph. The computation of such modulators is a problem with

several algorithmic applications. For instance, in a recent work, Ganian et al. [GRS16] used

a similar notion in order to design algorithms for the classic Constraint Satisfaction

Problem.

In this chapter we study the Strong F-Deletion, when F is the family of bipartite

graphs. Henceforth, F denotes the family of bipartite graphs. We call a graph G, t-

pseudobipartite, if every connected component of G belongs to F + te. The problem we

study is as follows.

Strong Bipartite Deletion Parameter(s): k, `

Input: An undirected graph G and non-negative integers k and `.

Question: Does there exist S ⊆ V (G) such that |S| ≤ k and every connected

component of G− S belongs to F + `e?

We refer to the set S as the solution for this instance. The primary reason behind the

selection of the family of bipartite graphs for our study is that the problems where we

are required to delete vertices and/or edges to obtain a bipartite graph are some of the

most basic and well studied problems in parameterized complexity and studying these

problems has led to the discovery of several new techniques and tools. These problems

are called Odd Cycle Transversal and Edge Bipartization in literature and the

algorithms with best dependence on the parameter have running time O(2.3146knO(1))

and O(1.977knO(1)), respectively [LNR+14, PPW15].

In Chapter 8, we studied the problem of deleting k vertices to get to an `-pseudoforest.

Even though `-pseudoforest Deletion and Strong Bipartite Deletion look very

similar in nature, we would like to draw the attention of the reader towards the key

differences between the two problems. The algorithm in Chapter 8 for `-pseudoforest

Deletion runs in time ck`n
O(1) for every fixed `, which is FPT time when parameterized

by k alone for that fixed value of `. If we make ` to be part of the input and a parameter,
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the we would need different protrusion replacers for different values of ` and it would not

give a uniform algorithm for `-pseudoforest Deletion. On the other hand, in Strong

Bipartite Deletion, we take both k and ` to be parts of the input and as parameters for

the FPT algorithm, and give uniform FPT algorithms for the problem. Hence, the nature

of results in this chapter is more general than that of the ones in Chapter 8.

Our Result and Methodology. Our main result is the following theorem.

Theorem 9.1. Strong Bipartite Deletion is FPT.

The first big obstacle that needs to be overcome is the fact that the input graph can have

a minimum odd cycle transversal of unbounded size. The first part of our algorithm is

devoted to overcoming this obstacle. We utilise the technique of iterative compression to

reduce it to a bounded number of equivalent instances each having an odd cycle transversal

of size poly(k, `). Then we use the recursive understanding technique introduced by Grohe

et al. [GKMW11] (also see [CCH+12]) to first find a small separator in the graph which

separates the graph into two parts, each of sufficiently large size and then recursively solve

a ‘border’ version of the same problem on one of the two sides. The subroutines that

we use to compute the separators are those of Chitnis et al.[CCH+12] who built upon

the work of Kawarabayashi and Thorup [KT11]. The border version of the problem is a

generalization which also incorporates a special bounded set of vertices, called terminals.

During the course of our algorithm, we will attempt to solve the border problem on various

subgraphs of the input graph. The objective in the border problem is to find a bounded set

of vertices contained within a particular subgraph such that any vertex in this subgraph

not in the computed set is not required in any solution for the given instance irrespective

of the vertices chosen outside this subgraph.

Given the output of the border problem, the standard approach is to either delete the

remaining vertices or simply ‘bypass’ these vertices. In our case, no such simple reduction

seems likely. However, we show that by blowing up the size of the computed set by a

function of the parameter, we can use a ‘parity preserving’ bypassing operation to get rid

of the remaining vertices.

This leaves us with the base case of the recursion, that is when we are unable to find
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a small separator. At this stage, we know that the graph has a bounded sized odd

cycle transversal and has a highly connected structure. Interestingly, even this seemingly

significant structural information regarding the input does not seem enough to imply a

straightforward algorithm. Instead, we compute an approximate oct solution and design

a branching rule that has as its base case, the case when the approximate oct is not

separated by the solution. Here, we rephrase this problem as a cut problem, namely Mixed

Multiway Cut-Uncut (MMCU), which we study in detail in the next chapter. In

the MMCU problem, the input is a multigraph G, integers k and `, a set of terminals

T ⊆ V (G), and equivalence relation R on the set T . The objective is to output a solution

X = (X,F ) such that X ⊆ (V (G) \ T ), F ⊆ E(G), |X| ≤ k, |F | ≤ ` and for all u, v ∈ T , u

and v belong to the same connected component of G−X if and only if (u, v) ∈ R and ⊥ if

no such solution exists, , where G−X is the graph resulting from deleting X and F from

G. The FPT algorithm for MMCU, which we defer to the next chapter, allows us to get

our final result.

9.2 Preliminaries

In this section, we first give the notations and definitions which are used in this chapter.

Then we state some known results which will be used later in the chapter.

Notations and Definitions: An oct of a graph G, is a set X ⊆ V (G) such that G−X is

bipartite. Similarly, an edge-oct of a graph G is set F ⊆ E(G) such that the graph G− F

is bipartite. We call a graph `-pseudobipartite, if each of the connected components of G

has an edge-oct of size at most `. An `-pseudobipartite deletion set of a graph G is a set

X ⊆ V (G) such that G−X is `-pseudobipartite.

Now we state the definitions of good node separations and flower separations from [CCH+12].

Then we state the lemmas that talk about the running time to find such separations and

the properties of the graph if such separations do not exist.

Definition 9.2 (C.1 in [CCH+12]). Let G be a connected graph and V∞ ⊆ V (G) a set

of undeletable vertices. A triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-good node

170



separation, if |Z| ≤ k, Z ∩ V∞ = ∅, V1 and V2 are vertex sets of two different connected

components of G− Z and |V1 \ V∞|, |V2 \ V∞| > q.

Definition 9.3 (C.2 in [CCH+12]). Let G be a connected graph, V∞ ⊆ V (G) a set of

undeletable vertices, and Tb ⊆ V (G) a set of border terminals in G. A pair (Z, (Vi)
r
i=1) is

called a (q, k)-flower separation in G (with regard to border terminals Tb), if the following

holds:

• 1 ≤ |Z| ≤ k and Z∩V∞ = ∅; the set Z is the core of the flower separation (Z, (Vi)
r
i=1);

• Vi are vertex sets of pairwise different connected components of G−Z, each set Vi is

a petal of the flower separation (Z, (Vi)
r
i=1);

• V (G) \ (Z ∪⋃r
i=1 Vi), called a stalk, contains more than q vertices of V \ V∞;

• for each petal Vi we have Vi ∩ Tb = ∅, |Vi \ V∞| ≤ q and NG(Vi) = Z;

• |(⋃r
i=1 Vi) \ V∞| > q.

Lemma 9.1 (C.3 in [CCH+12]). Given a connected graph G with undeletable vertices

V∞ ⊆ V (G) and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n) time a

(q, k)-good node separation of G, or correctly conclude that no such separation exists.

Lemma 9.2 (C.4 in [CCH+12]). Given a connected graph G with undeletable vertices

V∞ ⊆ V (G) and border terminals Tb ⊆ V (G) and integers q and k, one may find a

(q, k)-flower separation in G w.r.t. Tb in O(2O(min(q,k) log(q+k))n3 log n) time, or correctly

conclude that no such flower separation exists.

Lemma 9.3 (C.5 in [CCH+12]). If a connected graph G with undeletable vertices V∞ ⊆

V (G) and border terminals Tb ⊆ V (G) does not contain a (q, k)-good node separation or

a (q, k)-flower separation w.r.t. Tb then, for any Z ⊆ V (G) \ V∞ of size at most k, the

graph G− Z contains at most (2q + 2)(2k − 1) + |Tb|+ 1 connected components containing

a vertex of V (G) \ V∞, out of which at most one has more than q vertices not in V∞.

Other notation and definitions.

Definition 9.4. Let G be a graph and A,B, S be a partition of V (G). We say that (A,S,B)

is a separation in G if N(A), N(B) ⊆ S.
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Definition 9.5. Let G be a graph, X and Y be vertex sets. Let (X1, X2) and (Y1, Y2) be

bipartitions of X and Y respectively. We say that (X1, X2) and (Y1, Y2) are compatible if

the bipartition of X ∩ Y induced by both bipartitions are the same. If Y ⊆ X, we say that

(X1, X2) extends (Y1, Y2) if Y1 ⊆ X1 and Y2 ⊆ X2.

Definition 9.6. Let G be a graph and S ⊆ V (G). For every v ∈ V (G) \ S, we denote by

CCG−S(v) the connected component of G− S containing v. If X is a set of vertices in the

same component of G− S then we denote this component by CCG−S(X).

9.3 Overview of the algorithm

To solve Strong Bipartite Deletion, we first reduce it to a slightly more general

problem where we also have a set U of undeletable vertices and we are not allowed to select

vertices in our potential solution from U . In particular the problem we will study is as

follows.

Pseudobipartite Deletion Parameter(s): k, `

Input: A graph G, integers k and ` and a set U ⊆ V (G).

Question: Does there exist X ⊆ V (G) such that |X| ≤ k, X ∩ U = ∅ and G−X is

`-pseudobipartite?

Observe that when we set U = ∅ in Pseudobipartite Deletion, we get the Strong

Bipartite Deletion problem. In rest of the chapter, we design an algorithm for Pseudobi-

partite Deletion using the method of iterative compression and recursive understanding

technique introduced by Chitnis et al [CCH+12]. We describe the iterative compression

phase of algorithm in Section 9.4.1, recursive phase of the algorithm in Section 10.5.3 and

the high connectivity phase of the algorithm in Section 10.5.4. We start off by deleting

the connected components from the graph which are already `-pseudobipartite. Then

using the technique of iterative compression, in Lemma 9.6, we reduce an instance of

Pseudobipartite Deletion to 2O(k) many instances of the same problem such that the

original instance is a Yes instance if and only if at least one of the new instances is a

Yes instance. In addition to this, we also show that all the new instances have an oct of
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size bounded by a polynomial in k and `. Then we take care of the case when the graph

has more than one connected component. This can be easily done by solving the problem

optimally on each connected component. Then we define the border problem, where we

are additionally provided with some border terminals, say T .

Bordered-Pseudobipartite Deletion (B-PBD) Parameter(s): k,`

Input: A Pseudobipartite Deletion instance I = (G, k, `, U) with G being

connected and a set T ⊆ V (G) such that |T | ≤ 2k; denoted by Ib = (G, k, `, U, T ).

Output: For each P ∈ P(Ib), output solP = XP which is a minimum solution to

(Ib,P), or find a special vertex v such that for each P ∈ P(Ib), there is a minimum

solution sol∗P which contains v, otherwise output solP = ⊥.

Here, the set P(Ib) denotes the set of ‘interactions’ of the border terminals of instance Ib
with a solution and the objective is to find a solution that corresponds to each possible

interaction or to find a special vertex which is part of a solution for each possible interactions.

It can be easily seen that for a Pseudobipartite Deletion instance I = (G, k, `.U),

solving the B-PBD instance (G, k, `.U, ∅) either gives a solution to the instance I or

outputs a vertex which is part of a minimum solution for the instance I, so in any case we

make progress.

As is the case in algorithms based on the recursive understanding approach, to solve the

border problem, we proceed to check whether a good separator T ′ exists in the graph. We

use the notions of good node separations and good flower separations defined by Chitnis

et al.[CCH+12] and look for good (q, k) node separation or (q, k) flower separation. The

definitions are given in the preliminaries section. The running times required to compute

such separations (if they exist) are argued by Lemmas 10.3 and 10.4. If we succeed in

finding such a separation, then we see that we have divided the graph into two large parts

using a small number of vertices. The definitions of node separations and flower separation

help us argue that one of the parts (which contains at most half of the border terminals) is

connected. We call the smaller graph H.

Now we update the set of terminals to include the separator, and solve the border problem

I ′b recursively on the smaller graph. That is, for every behavior P ∈ P(I ′b) of the new
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border terminals, we get an optimum solution. Let Z denote the set
⋃
P∈P(I′b) solP where

solP is the solution for the smaller graph for behavior P of the border terminals. Then in

Lemma 10.14, we argue that there exists a solution for the instance Ib, which intersects

with the smaller graph only in Z. At this time, we apply certain operations on the graph,

such that the total number of the vertices in the graph G reduces by a sufficient amount.

The approach of simply bypassing all the vertices not required by a solution does not quite

work, as it could conceivably create spurious odd cycles which could lead to a Yes-instance

turning into a No-instance. Hence, we make use of a ‘parity preserving’ bypassing operation

to reduce the vertices of the graph, and show in Lemma 9.12 that this operation results in

an equivalent instance.

Since the size of the set P(Ib) can be bounded by some function of k and `, and for each of

them we need to keep some bounded number of vertices, we can guarantee that after the

application of the recursive step (Step 8 in the algorithm) the number of vertices in the

graph decreases by a sufficiently large number.

We then describe the algorithm for the problem in the case when there is no good-

separation to recurse upon. This is done in Section 10.5.4. Here, we need to solve the

Border-Pseudobipartite Deletion instance (G, k, `, U, T ) in the case that Step 8 is not

applicable on the graph. For this, for each P ∈ P(I ′b), we solve the instance (GP , k, `, U
′)

as described in Section 10.5.3, where the graph GP encoded the interaction, P, of the

border terminals T . We argue that in the absence of a good node separation or a flower

separation of size at most k in the graph G, Lemma 10.5 guarantees an appropriate type of

high connectivity in the graph G. In Lemma 9.14, we exploit this property to get a similar

high connectivity property for the graph GP . Since the graph G has an oct of bounded

size because of Lemma 9.6, we can show a similar bound on oct of the graph GP also.

Once we are at this stage, we use the algorithm for finding oct given in [LNR+14] to find

an oct of bounded size and get an instance of the following problem.
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OCT-PBD Parameter(s): k,`

Input: An instance (G, k, `, U) of Pseudobipartite Deletion along with an oct O

of G of size at most g(k, `) such that for any Z ⊆ (V (G) \ U) of size at most k, in the

graph G− Z, at most one connected component containing a vertex of V (G) \ U has

more than h(k, `) vertices not in U .

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ U = ∅. Output ⊥ if such a set does not exist.

Then we guess the intersection of the oct with the solution. This lets us assume that the

solution is disjoint from the oct. Formally, we branch into 2|O| instances of the following

problem.

OCT-PBD(I) Parameter(s): k,`

Input: An instance (G, k, `, U,O) of OCT-PBD.

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

To solve an instance of OCT-PBD(I), we guess which vertices of the oct are going to be

in the same connected component after deleting the solution. This gives us g(k, `)g(k,`)

instances of following problem.

OCT-PBD(II) Parameter(s): k, `

Input: An instance (G, k, `, U,O) of OCT-PBD(I) and an equivalence relation § on

O with the guarantee that there exists a minimum sized `-pseudobipartite deletion

set X ⊆ V (G) \ (U ∪O) of G such that for all u, v ∈ O, u and v belong to the same

connected component of G−X if and only if (u, v) ∈ §.

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

In Lemma 9.15 we argue the correctness of this branching step. To solve an instance

(G, k, `, U,O, §) of OCT-PBD(II), we look at the number of equivalence classes in §. If

it is more than one, then either we solve the problem via brute force on some connected

component (of size at most h(k, `)) or we give a branching step where we solve at most
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h(k, `) + 1 instances OCT-PBD(II), where the size of the solution we are looking for has

decreased by at least one. In the other case, that is when there is only one equivalence class

in S, which means that all the vertices of oct are going to be part of a single connected

component resulting by deleting a solution, we also guess how the oct vertices themselves

will be bipartitioned eventually upon deleting the k vertices in the solution and an arbitrary

but fixed set of at most ` edges which make the connected component containing these

vertices, bipartite. So for each instance of OCT-PBD(II) , we get 2|O| instances of

following problem.

OCT-PBD(III) Parameter(s): k,`

Input: An instance (G, k, `, U,O, §) of OCT-PBD(II) such that for all u, v ∈ O,

(u, v) ∈ § and a bipartition (O1 ] O2) of O with the guarantee that there exists a

minimum sized `-pseudobipartite deletion set X ′ ⊆ V (G) \ (U ∪O) of G such that all

vertices of O belong to the same connected component C of G−X ′ and there exists

an edge-oct F of G[C] of size at most ` and a bipartition (C1 ] C2) of C such that

G[C1]− F and G[C2]− F are independent sets and O1 ⊆ C1 and O2 ⊆ C2.

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

In Lemma 9.16, we argue that this branching is correct. Finally, to solve an instance I

of OCT-PBD(III), we reduce it to an instance of MMCU∗ – a special case of mixed

multiway cut-uncut (which we study in the next chapter) with some undeletable vertices.

MMCU∗ Parameter(s): k,`

Input: A graph G, integers k and `, T ⊆ V (G), an equivalence relation R on T

having at most two equivalence classes, and set of undeletable vertices U ⊆ V (G).

Output: Output a minimal solution X = (X,F ) to MMCU instance (G,T,R, k, `)

such that X ∩ U = ∅ and ⊥ if no such solution exists.

Lemmas 9.17 and 9.18 argue the correctness of this reduction. Then in Theorem ??, we

state the the running time of MMCU∗ (the proof of this theorem is deferred to the next

chapter), which allows us to show the desired FPT running time for Pseudobipartite

Deletion.
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9.4 An algorithm for Pseudobipartite Deletion

In this section, we describe the FPT algorithm for Pseudobipartite Deletion. We first

prove the following lemma.

Lemma 9.4. Given a connected graph G, we can recognize whether it is `-pseudobipartite

in 1.977`nO(1) time.

Proof. For a connected graph, the property of being `-pseudobipartite is same as the

property of the graph having an edge-oct of size at most `, which can be checked in

1.977`nO(1) time using algorithm in [PPW15].

Now we give first step of the algorithm, where we get rid of connected components of the

graph which are already `-pseudobipartite.

Step 1. Let (G, k, `, U) be an instance of Pseudobipartite Deletion. Let C be the

set of connected components of G. For each C ∈ C, find if G[C] is `-pseudobipartite.

Let C′ = {C | C ∈ C and G[C] is `-pseudobipartite} and let C ′ =
⋃
C∈C′ C. Pass the

Pseudobipartite Deletion instance (G− C ′, k, `, U \ C ′) to the next step.

The correctness of the step follows from the fact that none of the vertices of any of the

connected component deleted will be required by any solution of minimum size.

9.4.1 Preprocessing and bound on the size of an oct

In this section, with the help of the technique of iterative compression, given an instance of

Pseudobipartite Deletion, we will reduce it to a bounded number of instances, such

that they have an oct of bounded size and solving all of them also gives us a solution for

the original instance.

Given an instance (G, k, `, U) of Pseudobipartite Deletion, let V (G) := {v1, v2, . . . , vn},

Vi := {v1, . . . , vi} and the graph Gi := G[Vi]. We iterate through the instances (Gi, k, `, U ∩

Vi) starting from i = k+ 1 and for the ith instance, with the help of a known solution Si of
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size at most k+ 1 we try to find a solution S∗i of size at most k. Formally, the compression

problem we address is following.

PBD Compression (PBD-C) Parameters: k, `

Input: A Pseudobipartite Deletion instance (G, k, `, U) and an `-pseudobipartite

deletion set S of G of size at most k + 1.

Question: Is there an `-pseudobipartite deletion set of G of size at most k disjoint

from U?

We solve the Pseudobipartite Deletion problem by generating and solving n − k

instances of the PBD-C problem as follows. Let Ii = (Gi, k, `, U ∩ Vi) be the ith instance

of PBD-C. The set Vk+1 is clearly an `-pseudobipartite deletion set of size at most k + 1

for Gk+1. It is also easy to see that if S∗i−1 is an `-pseudobipartite deletion set of size at

most k for the graph Gi−1, then the set S∗i−1 ∪ {vi} is an `-pseudobipartite deletion set of

size at most k+ 1 for the graph Gi. We use these two observations to start off the iteration

with the instance (Gk+1, k, `, U, Sk+1) of PBD-C where Sk+1 = Vk+1 and check if Gk+1

has an `-pseudobipartite deletion set of size at most k disjoint from U . If there is such

a solution S∗k+1, we set Sk+2 := S∗k+1 ∪ {vk+2} and try to compute an `-pseudobipartite

deletion set of size at most k for the instance Ik+2 and so on. If, during any iteration,

the corresponding instance is found to be a No instance then it implies that the original

instance is also a No instance. Finally the solution for the original input instance is the

set S∗n. Since there can be at most n such iterations, the total time taken is bounded by n

times the time required to solve PBD-C.

Lemma 9.5. Let (G, k, `, U, S) be an instance of PBD-C such that none of the connected

components of G are `-pseudobipartite. If G has an `-pseudobipartite deletion set disjoint

from S of size at most k, then it has an oct of size at most g′(k, `) := 2k + k`2 + 1.

Proof. Let Z be an `-pseudobipartite deletion set of G of size at most k disjoint from

S. We know that every connected component of G − Z is `-pseudobipartite. We claim

that there are at most k + k` + 1 many connected components of G − Z which are not

bipartite. To show this, let us observe that since none of the connected components of

G is already `-pseudobipartite, every connected component of G− Z has a neighbour in
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Z. Now, let assume for the sake of contradiction that there are more than k + k` + 1

connected components in G− Z which are not bipartite. Out of these, there are at most

k + 1 components such that they contain at least one vertex of S. So, there are more than

k` connected components disjoint from S which are not bipartite and have a neighbour in

Z. By Pigeon Hole Principle, there exists v ∈ Z, such that v has a neighbour in at least

`+ 1 of these connected components. But then the graph induced on v along with these

connected components is an induced subgraph of G− S, which is not `-pseudobipartite.

This is a contradiction to the fact that S was an `-pseudobipartite deletion set of G.

Now to show an oct of bounded size, let E1, E2, . . . , Er denote minimum sized edge-octs

of connected components of G− Z which are not bipartite and which do not contain any

vertex of S. Let E′ = ∪1≤i≤rEi, and let VE′ be the set formed by picking one endpoint for

each edge in E′ arbitrarily. Let the set O be defined as O = S ∪ Z ∪ VE′ . It is easy to see

that O is an oct of GY . Since we know that r ≤ k`, and |Ei| ≤ ` for each 1 ≤ i ≤ r, we

have that |VE′ | ≤ k`2 and hence we have |O| ≤ 2k + k`2 + 1.

Now we prove the key lemma of the section which gives us a bound on the size of the oct

of the graph.

Lemma 9.6. There is an algorithm, which given an instance (G, k, `, U, S) of PBD-C,

runs in time 2O(k`2)nO(1) and returns at most 2k+1 instances {I1, I2, . . . , Iq} of Pseu-

dobipartite Deletion, where Ii = (Gi, ki, `, U) and q ≤ 2k+1 such that the following

holds.

• (G, k, `, U, S) is a Yes instance of PBD-C if and only if there is an 1 ≤ i ≤ q such

that (Gi, ki, `, U) is a Yes instance of Pseudobipartite Deletion.

• For or each 1 ≤ i ≤ q, ki ≤ k and Gi has an oct of size at most 2k + k`2 + 1.

Proof. Given an instance (G, k, `, U, S) of PBD-C, for each S′ ⊆ (S \ U), we obtain an

instance IS′ := (GS′ , kS′ , `, US′) by deleting S′ from the graph G and, and applying Step

1 on the instance (G − S′, k − |S′|, `, U). Thus, we obtain at most 2k+1 instances of

Pseudobipartite Deletion, each corresponding to a subset S′ of S \ U .
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• Let (G, k, `, U, S) be a Yes instance of PBD-C and let S∗ be an `-pseudobipartite

deletion set of G disjoint from U of size at most k. Let Y := S∗ ∩ S. Let us now

consider the Pseudobipartite Deletion instance (G − Y, k − |Y |, `, U). This

instance is a Yes instance of Pseudobipartite Deletion, because G − Y has

a k − |Y | sized `-pseudobipartite deletion set, namely S∗ \ Y . Then we apply

Step 1 on this instance exhaustively, and the correctness of Step 1 implies that

IY = (GY , kY , `, UY ) is a Yes instance of Pseudobipartite Deletion. We also

observe that GY has an `-pseudobipartite deletion set of size at most kY that is

disjoint from S also, in addition to being disjoint from U .

For the converse, it is easy to see that if IS′ is a Yes instance for Pseudobipartite

Deletion, then its solution when combined with the set S′ gives a solution of size

at most k for (G, k, `, U, S), making it a Yes instance as well.

• Clearly, for every 1 ≤ i ≤ q, we have that ki ≤ k. Now, to see the bound on the

size of an oct, we observe the following. If (G, k, `, U, S) is a Yes instance because

of a solution Ŝ of size at most k and let Y := S ∩ Ŝ. So, as argued earlier, the

instance (G− Y, k − |Y |, `, U) has a solution which is disjoint from S \ Y . Since we

only delete `-pseudobipartite components of G−Y to get to GY , (GY , kY , `, UY ) also

has a solution disjoint from S \ Y . Hence, by Lemma 9.5, we know that G has an

oct of size at most g′(k, `). So, we can discard all the instances which do not have an

oct of size at most g′(k, `). The algorithm returns only the instances which have an

oct of size at most g′(k, `) and returns No if no such instance exists.

To show the running time of the algorithm, we first observe that for each Y ⊆ (S \ U),

(G − Y, k − |Y |, `, U) can be generated in polynomial time, and there are 2O(k) such

instances. Now, for each of these instances, deleting the `-pseudobipartite components

using Lemma 9.4 can be done in 1.977`nO(1) time and we get the instance IY . Then for

each instance IY , we use the algorithm of [LNR+14] to check if the graph GY has an oct

of size at most g′(k, `) and discard it if it does not. Since g′(k, `) = O(k`2), this algorithm

runs in time 2.3146O(k`2)nO(1). Hence the running time of the whole algorithm is bounded

by 2O(k`2)nO(1). This completes the proof of the lemma.
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Henceforth, we will assume that the given Pseudobipartite Deletion instance is

returned by algorithm of Lemma 9.6 and hence has an oct of bounded size.

9.4.2 Borders and Recursive Understanding

After applying Lemma 9.6, we still need to solve 2O(k) Pseudobipartite Deletion

instances. In the this section and the next, we give an algorithm to solve instances which

are given by Lemma 9.6. In fact, we will give an algorithm, which in addition to giving a

Yes/No answer for these instances, also gives a minimum sized solution. In this section,

we define the border problem and describe the recursive phase of the algorithm. We first

state the step which will help us assume that the input graph is connected.

Step 2. Let (G, k, `, U) be an instance of Pseudobipartite Deletion. If G has more

than k connected components which are not `-pseudobipartite, then return No. Otherwise,

solve the problem on each of the connected components individually to find the minimum set

of vertices to be deleted to make them `-pseudobipartite. If the summation of the sizes of

individual solutions is larger than k, say No. Otherwise return the union of the solutions.

The correctness follows from the fact that deletion of any k vertices will leave a connected

component which is not `-pseudobipartite untouched. Hence, now onwards, we will assume

the graphs to be connected and to have an oct of size at most 2k + k`2 + 1. Now we

describe the border problem.

Let I = (G, k, `, U) be a Pseudobipartite Deletion instance. The input to the border

problem consists of an instance I = (G, k, `, U) of Pseudobipartite Deletion along

with a set T of at most 2k vertices of G disjoint from U . The output to the border problem

either consists of several solutions, one for each relevant ‘behaviour’ defined on the set of

terminals, or it consists of a single special vertex, which is part of some minimum solution

for every behaviour. In what follows, we will formalize this statement.

Let I = (G, k, `, U) be an instance of Pseudobipartite Deletion and T ⊆ V (G). We let

P(Ib) denote the set of all tuples P = (XT ,R,B, L), such that XT ⊆ T , R is an equivalence

relation on T \XT , B is a bipartition of T \XT and L = {(R1, `1), (R2, `2, ) . . . (Rq, `q)} is
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a set of pairs which associates an integer `i ≤ ` with each equivalence class Ri in R. For a

tuple P = (XT ,R,B, L) with the equivalence classes of R being R1, . . . , Rs, the bipartition

induced on the class Ri by B is denoted by (Ri1 , Ri2).

For each P ∈ P(Ib), we define a super-graph GP of G with the following additional vertices

and edges.

• For each equivalence class Ri of R, we add sets of vertices R′i1 and R′i2 such that

|R′i1 | = |R′i2 | = `+ 1. Then we add all the edges between vertices u and v such that

u ∈ Ri1∪R′i1 and v ∈ Ri2∪R′i2 . If (Ri, `i) ∈ L, then we pick an arbitrary vertex ui ∈ Ri
and add `i-many edge disjoint triangles which only intersect in ui. That is, we add

2`i new vertices ui,a1 , . . . , ui,a`i , u
i,b
1 , . . . , u

i,b
`i

and edges {(ui, ui,aj ), (ui, ui,bj ), (ui,aj , u
i,b
j )}

for each 1 ≤ j ≤ `i.

• For each vertex u ∈ XT , we add `+1-many edge disjoint triangles which only intersect

in u. That is, we add 2(`+ 1) new vertices ua1, . . . , u
a
r , u

b
1, . . . , u

b
r where r = `+ 1 and

edges {(u, uaj ), (u, ubj), (uaj , ubj)} for each 1 ≤ j ≤ r.

This completes the description of the graph GP . It can be seen that |V (GP) \ V (G)| ≤

2k(4`+ 1) and |E(GP) \E(G)| ≤ 4k(2k+ 3)(`+ 1). The intuition behind the newly added

vertices and edges is the following. Consider an instance of Pseudobipartite Deletion

and suppose that G is a subgraph of the input instance with the terminal set T separating

this subgraph from the rest of the input graph. The tuple P = (XT ,R,B, L) essentially

captures the interaction of the terminal set with the solution and the rest of the graph.

That is, XT denotes the intersection of the solution with T . The partition R denotes the

way the remaining vertices of T are partitioned as connected components after deleting a

solution. The bipartition B denotes the bipartition of T induced by an arbitrary bipartition

of the graph obtained from the input graph by deleting the k vertices in the solution and

then a minimum edge-oct in the rest of the graph. Finally, for each R ∈ R, if (R, x) ∈ L,

it means that after deleting the k vertices in a solution, there is a set of at most x edges in

the connected component containing R such that they are part of a minimum edge-oct of

this component and they lie outside G. The newly added vertices essentially simulate this

interaction of the terminals with the vertices in the solution. This will be proved formally
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in Lemma 9.8.

We denote by UP the union of the set U with the vertices in V (GP) \ V (G). Also,

for P = (XT ,R,B, L), for each Ri ∈ R, we denote by HG
P(Ri) the set of vertices in

V (GP) \ V (G) which are adjacent to a vertex of Ri. We drop the reference to G if it is

clear from the context.

We say that a set X ⊆ V (G) \ U is a solution to (Ib,P) where P = (XT ,R,B, L) ∈ P(Ib)

if X is a solution to the Pseudobipartite Deletion instance (GP , k, `, U
′
P) where U ′P =

UP ∪ (T \XT ). Recall that when we say that a set S is a solution to a Pseudobipartite

Deletion instance (G, k, `, U), we mean that |S| ≤ k, S ∩ U = ∅ and G − S is `-

pseudobipartite. We are now ready to restate the formal definition of the border problem.

Bordered-Pseudobipartite Deletion (B-PBD) Parameter(s): k,`

Input: A Pseudobipartite Deletion instance I = (G, k, `, U) with G being

connected and a set T ⊆ V (G) such that |T | ≤ 2k; denoted by Ib = (G, k, `, U, T ).

Output: For each P ∈ P(Ib), output solP = XP which is a minimum solution to

(Ib,P), or find a special vertex v such that for each P ∈ P(Ib), there is a minimum

solution sol∗P which contains v, otherwise output solP = ⊥.

Now we state a simple observation which tells us how to use the algorithm for Border-

Pseudobipartite Deletion to solve an instance of Pseudobipartite Deletion.

Observation 9.7. Let I = (G, k, `, U) be a Pseudobipartite Deletion instance with

G being connected. Then the correct solution for the B-PBD instance Ib := (G, k, `, U, ∅)

corresponding to P ∈ P(Ib) where P = (∅, ∅, ∅, (∅, 0)) is a minimum sized solution for I.

Also, if the algorithm for B-PBD instance Ib returns a special vertex v, then there exists a

minimum solution for the instance I containing v.

In what follows we will show that given a correct output for an instance of B-PBD, there is

an FPT algorithm which either computes an equivalent instance whose size is bounded by

a function of k and ` or it outputs a special vertex as described in the problem definition.

We begin with the following lemma which describes the interaction of the solution with

the new vertices added during the construction of the graph GP .
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Lemma 9.8. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let P = (XT ,R,B, L) ∈

P(Ib) and let X be an arbitrary solution for (Ib,P). Then, the following properties hold.

1. X is disjoint from T \XT .

2. X ⊇ XT

3. For each Ri ∈ R, the vertices in Ri are in the same connected component of GP −X,

denoted by Ci.

4. For each Ri ∈ R, any minimum edge-oct for the component Ci contains exactly one

edge from the set {(ui, ui,aj ), (ui, ui,bj ), (ui,aj , u
i,b
j )} for each 1 ≤ j ≤ `i.

Proof. For the first statement, since X is a solution for the Pseudobipartite Deletion

instance (GP , k, `, U
′
P), by definition it must be disjoint from T \XT .

For the second statement, suppose that there is a vertex u ∈ XT \ X. Recall that GP

contains `+ 1 edge-disjoint triangles one for each 1 ≤ j ≤ `+ 1, formed by the edge set

{(u, uaj ), (u, ubj), (uaj , ubj)}. Since u /∈ X and all the triangle vertices are in U ′P , there is a

connected component of GP − X which contains all of these triangles. Since any such

component is not `-pseudobipartite, we obtain a contradiction to our assumption that X

is a solution for (Ib,P).

The third statement simply follows from the fact that X is disjoint from T \XT (as we

have already argued) and it is also disjoint from the vertices in R′i1 ∪R′i2 since these are

contained in U ′P .

Part of the argument for the final statement is analogous to that for the second state-

ment. That is, since the vertex ui is not contained in X, any edge-oct for the con-

nected component containing ui contains at least one edge from each of the triangles

{(ui, ui,aj ), (u, ui,bj ), (ui,aj , u
i,b
j )} where 1 ≤ j ≤ `i. The fact that a minimum edge-oct con-

tains exactly one edge from each of these triangles follows from the fact that picking an

arbitary edge from each of these triangles is indeed sufficient to make the graph induced

on ui along with these vertices, bipartite. This completes the proof of the lemma.
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Next we give an observation and a lemma that allows us to merge the solution after doing

the recursive step of our algorithm.

Observation 9.9. Let G be a graph and (A,S,B) be a separation in G. Let (S1, S2) be a

bipartition of S such that G[A ∪ S] is bipartite with a bipartition extending (S1, S2) and

G[B ∪ S] is bipartite with a bipartition extending (S1, S2). Then, G is bipartite with a

bipartition extending (S1, S2).

Lemma 9.10. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let T ′ ⊆ V (G) \ U and

let C be a connected component of G − T ′ such that N(C) = T ′. Let H = G[C ∪ T ′]

and let Q = T ′ ∪ (C ∩ T ) and suppose that |Q| ≤ 2k. Let I ′b denote the B-PBD instance

(H, k, `, (U ∩ V (H)), Q). Let Z denote the set
⋃
P∈P(I′b) solP . Then, for each P ∈ P(Ib),

if there is a solution for (Ib,P), then there is one whose intersection with C is in Z.

Moreover, if there exists a vertex v such that v ∈ solP ′ for all P ′ ∈ P(Ib), then for all

P ∈ P(I ′b), there exists a minimum solution to (Ib,P) which contains v.

Proof. Fix a tuple P = (XT ,R,B, L) ∈ P(Ib) and a solution XP for (Ib,P). Let Y1 denote

the set XP ∩ V (H). If Y1 ⊆ Z, then we are done. Suppose that this is not the case. We

now define a tuple P̂ = (X̂T , R̂, B̂, L̂) ∈ P(I ′b) as follows.

1. X̂T = XP ∩Q

2. R̂ = {R|R ⊆ (Q \ X̂T ) such that ∀u, v ∈ R,CCGP−XP (u) = CCGP−XP (v)}. That is,

the equivalence classes in R̂ are precisely those subsets of Q \ X̂T which lie in the

same connected component of GP −XP .

3. B̂ = (Q1, Q2) where Q1 ] Q2 = Q \ X̂T , (Q1, Q2) is compatible with B and for

some minimum edge-oct EP for GP −XP , there is a valid bipartition of the graph

GP −XP − EP which extends (Q1, Q2). For each R̂i ∈ R̂, we denote by (R̂i1 , R̂i2)

the bipartition of R̂i induced by B̂.

4. For each R̂i ∈ R̂ such that R̂i ⊆ C, it must be the case that R̂i ⊆ T \ T ′ and

R̂i = Rj ∈ R for some j. Therefore, L contains the pair (R̂j , x) for some x ≤ `.
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Hence, for each R̂i ∈ R̂ such that R̂i ⊆ C, we add to L̂ the pair (Ri, x).

Now, consider R̂i ∈ R̂ such that R̂i ∩ T = ∅ (that is, R̂i ⊆ T ′ \ T ). Observe that by

definition of R̂, the vertices in R̂i are contained in the same connected component

of GP − XP and this component, denoted by CCGP−XP (R̂i) is disjoint from any

vertex of T (by our assumption that R̂i ∩ T = ∅). Now, by the definition of B̂, we

have a bipartition of R̂i, say (R̂i1 , R̂i2) which can be extended by some bipartition of

CCGP−XP (R̂i)− E′ where E′ is an edge-oct of CCGP−XP (R̂i) of size at most `. Let

x denote the number of edges in E′ with at least one endpoint in V (G) \ V (H). We

add to L̂ the pair (R̂i, x).

Finally, for every other R̂i ∈ R̂, there must be an Rj ∈ R such that R̂i ⊇ (Rj ∩V (H))

(by definition of R̂). Consider the connected component C ′ = CCGP−XP (R̂i). By

definition of B and B̂, there is a set E′ of at most ` edges in C ′ such that C ′ − E′

is a bipartite graph with a bipartition simultaneously extending both (Rj1 , Rj2) and

(R̂i1 , R̂i2). Let y be the number of edges of E′ with both endpoints in the set V (H).

We set x = `− y and add to L̂ the pair (R̂i, x).

This completes the description of the tuple P̂. Let ŝolP̂ denote a solution to (I ′b, P̂). It

follows from the definition of P̂ that XP ∩ V (H) is in fact a solution to (I ′b, P̂) and hence

ŝolP̂ exists. However, we now claim that YP = (XP \ V (H)) ∪ ŝolP̂ is also solution for

(Ib,P).

Observe that since ŝolP̂ is a minimum solution, the set YP is no larger than XP . Therefore,

it suffices to prove that GP − YP is `-pseudobipartite. If this were not the case, then there

is a connected component J in GP − YP which does not have an edge-oct of size at most `.

If J is disjoint from XP , then there is a connected component of GP−XP which contains J .

Since GP −XP is `-pseudobipartite, we contradict our assumption that the graph induced

on J is not. Hence, we conclude that J must intersect XP . Similarly, if J is disjoint from

V (H) (but intersects XP \ V (H) which is contained in YP), then J cannot be disjoint

from YP , a contradiction. Henceforth, we assume that J intersects XP ∩ V (H). However,
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observe that if J is disjoint from Q, then it is also present in HP̂ − ŝolP̂ , contradicting our

assumption that ŝolP̂ is an `- pseudobipartite deletion set for HP̂ . Hence, it must be the

case that J intersects Q. We now consider the following 3 cases.

Case 1: J ∩ Q ⊆ T \ T ′. By the definition of R̂, there is exactly one equivalence class

R̂i ∈ R̂ which intersects J , R̂i = J ∩ Q = J1 and moreover, there is an index j

such that R̂i = Rj ∈ R. Also, the bipartition (R̂i1 , R̂i2) is same as the bipartition

(Rj1 , Rj2).

Let x be such that (Rj , x) ∈ L. Recall that by the definition of L̂, the pair (R̂i, x) ∈

L̂. Furthermore, since ŝolP̂ is a solution for (I ′b, P̂), the connected component

CCHP̂−ŝolP̂
(R̂i) has an edge-oct of size at most ` out of which exactly x edges have at

least one endpoint in HP̂ (R̂i) (Lemma 9.8). Therefore, there is a set of at most `− x

edges in H− ŝolP̂ whose deletion from the graph induced on J−HP̂(R̂i) = J−HP(Rj)

results in (R̂i1 , R̂i2) being a valid bipartition. Combining these edges with the exactly

x edges with an endpoint in HP(Rj) given by Lemma 9.8, we obtain an edge-oct of

size at most ` for the connected component J , a contradiction. This completes the

argument for the first case.

Case 2: J ∩ Q ⊆ T ′ \ T . Let (A,S,B) be a separation of J where A = J ∩ C, S = R̂i,

and B = J \ V (H). By definition of B̂ and L̂, there is a set of x edges with at

least one endpoint in B such that deleting these from B makes the graph induced

on B ∪ S bipartite with a bipartition extending (R̂i1 , R̂i2). Since B̂ by definition

extends this bipartition, the fact that ŝolP̂ is a solution to (I ′b, P̂) implies that

there is a set of at most ` − x edges with both endpoints in V (H) which makes

the components of H − ŝolP̂ intersecting R̂i bipartite with a bipartition extending

(R̂i1 , R̂i2). Applying Observation 9.9, we conclude that J contains an edge-oct of size

at most `, a contradiction. This completes the argument for the second case and we

now move on to the final case.

Case 3: J ∩ T ′ 6= ∅ and J ∩ T 6= ∅. First of all, observe that there is a R̂i ∈ R̂ and an

Rj ∈ R such that J ∩ Q = R̂i and Rj ⊇ (R̂i ∩ T ). Furthermore, the bipartition

(Rj1 , Rj2) induced by B is compatible with the bipartition (R̂i1 , R̂i2) induced by B̂.

187



We partition the set J ′ = J \ (T ∪ T ′) into the following 3 sets.

• J1= the vertices in J ′ ∩ V (H).

• J2= the vertices in J ′ ∩HG
P(Rj).

• J3= the vertices in J ′ \ V (H).

Since J3 is disjoint from YP and YP contains the vertices in XP \ V (H), we conclude

that J3 is disjoint from XP . Since the vertices in J2 are undeletable, the set XP is

by definition disjoint from J2. Therefore, vertices in J3 and J2 appear in the same

connected component of GP −XP and there is a set E′ of y ≤ ` edges in the graph

K = GP [J2 ∪ J3 ∪ R̂i ∪ (Rj \ V (H))] whose deletion from K makes the resulting

graph bipartite with a bipartition respecting (R̂i1 , R̂i2) and (Rj1 , Rj2). Since there

are no edges between J2 and J3, each edge in E′ with an endpoint in J2 ∪ J3 has an

endpoint in either J2 or J3 but never both. Let y1 and y2 be such that E′ contains

y1 edges with an endpoint in J2 and y2 edges with an endpoint in J3. By definition

of P̂ , we have that L̂ contains the pair (R̂i, y). Since ŝolP̂ is a solution for (I ′b, P̂), we

have that there is a set of at most `− y edges with both endpoints in H such that

deleting these makes the connected components of H − ŝolP̂ intersecting R̂i, bipartite

with a bipartition extending (R̂i1 , R̂i2). Combining these edges along with the y1

edges guaranteed by Lemma 9.8 and the aforementioned y2 edges with an endpoint

in J2, we obtain a set of at most ` edges which makes the component J in GP − YP ,

bipartite. This completes the argument for the final case and hence we conclude that

YP is indeed a solution for (Ib,P).

Since YP by definition has the property that YP ∩ C ⊆ Z, we have completed the proof of

first part of the lemma. For the second part, we observe that if there exists v such that

v ∈ solP ′ for all P ′ ∈ P(I ′b), then v ∈ YP and hence v is part of a minimum sized solution

for (Ib,P) for all P ∈ P(Ib). This completes the proof of the lemma.

Before we state our next lemma, we need to recall the notion of parity-torso (see for

example [LR12]).
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Definition 9.7. Let G be a graph and S ⊆ V (G). We denote by PT (G,S) the graph

obtained from G− S as follows. For every pair of vertices u, v in V (G) \ S, if there is an

odd u-v path whose internal vertices all lie in S then we add an edge (u, v) and if there is

an even u-v path whose internal vertices all lie in S then we add a subdivided edge (path

of length 2) between u and v.

The utility of this operation follows from the observation below.

Observation 9.11. Let G be a graph, S and X be disjoint vertex sets. Let A be an edge

set with both endpoints of every edge disjoint from S. Suppose that for every connected

component K in G[S], for every v ∈ N(K), the graph G[K∪{v}] is bipartite. Then, for any

v ∈ V (G) \S, there is an odd cycle in the connected component of v in PT (G,S)− (X ∪A)

if and only if there is an odd cycle in the connected component of v in G− (X ∪A).

Proof. Since no edge in A is incident on S, it follows that PT (G,S)− (X ∪A) = PT (G−

(X ∪A), S). Therefore, it suffices to prove that for any Z ⊆ V (G) with the property that

every connected component of G[Z] along with any single neighbor induces a bipartite

graph, for any v /∈ Z, there is an odd cycle in the connected component of v in G if and

only if there is an odd cycle in the connected component of v in PT (G,Z). It is clear from

the definition of the parity torso that u and v are in the same connected component of

PT (G,Z) if and only if they are in the same connected component of G.

In the forward direction, let C be an odd cycle in G in the connected component containing

v. By the premise of the lemma, this cycle contains at least 2 vertices of V (G) \ Z. Let

P be any subpath of C between vertices u1, u2 ∈ V (G) \ Z with all internal vertices in Z.

Then, the definition of PT (G,Z) implies either an edge (if |P1| is odd) or a subdivided edge

(if |P1| is even) between u1 and u2 in PT (G,Z). Thus, we can replace every such subpath

with the corresponding edge or subdivided edge to obtain an odd cycle in PT (G,Z). Note

that the property regarding the bipartiteness of any connected component of G[Z] along

with a single neighbor is critical since otherwise the statement clearly fails.

We now argue the converse direction. Let C be an odd cycle in PT (G,Z) in the same

component as v. If C is also in G then we are done. Therefore, there is at least one edge
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in C that is not in G. Let P1, . . . , Pr be all the subpaths of C which correspond to either

edges or subdivided edges added in the construction of PT (G,Z). We can replace each Pi

with the corresponding path in G to obtain a closed odd walk in G in the same connected

component as v, implying an odd cycle in this component.

We are now ready to state our next crucial lemma which essentially gives a way to get rid

of vertices which we know will never be required in our solution.

Lemma 9.12. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let T ′ ⊆ V (G) \ U and

let C be a connected component of G − T ′ such that N(C) = T ′. Let H = G[C ∪ T ′]

and let Q = T ′ ∪ (C ∩ T ) and suppose that |Q| ≤ 2k. Let I ′b denote the B-PBD instance

(H, k, `, (U ∩ V (H), Q). Suppose that for every v ∈ V (H), there is a P ∈ P(I ′b) such that

v /∈ solP . Let Z denote the set
⋃
P∈P(I′b) solP . Then,

• |Z| = 2O(k log(k+`)) and

• there are functions τ, α and an algorithm that, given Ib and Z, runs in time

(τ(k, `)nO(1)) and computes a set W ⊆ V (H) such that W ⊇ Q and has size at

most α(k, `) such that the instance Ib is equivalent to the instance I1
b = (G′, k, `, U, T )

where the graph G′ is defined as PT (G,V (H) \W ). Here, α(k, `) and τ(k, `) are

both 2O(k log(k+`)).

Proof. For the first statement, we observe the following.

|P(Ib)| ≤ (`+ 1)|T |+1(1 + 2(|T |+ 1))|T |

≤ (`+ 1)2k+1(1 + 2(2k + 1))2k

= 2O(k log(k+`))

This is true because R has at most |T |+ 1 equivalence classes, B has at most 2 equivalence

classes, each v ∈ T can either go to Xb or choose an equivalence class in R and B, and L

has (`+ 1)|T |+1 possible values.

We now prove the second statement. For each P ∈ P(I ′b) such that solP exists, we define a

set WP as follows. Let J denote the set of connected components of HP − solP . For each
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connected component J ∈ J , we let EJP denote a set of at most ` edges whose deletion

makes J bipartite (such a set exists since solP is an `-pseudobipartite deletion set for HP).

We let V J
P denote those endpoints of these edges which are contained in V (H). We define

WP to be the the set
⋃
J∈J :J∩(Z∪Q)6=∅ V

J
P . Finally, we define W to be the union of the sets

Q, Z and
⋃
P∈(P(I′b))WP .

Before we go ahead and define the instance I1
b , we prove the following claim which is

necessary to invoke Observation 9.11 at various points in our argument.

Claim 1. Let K be a connected component in G[V (H) \W ]. Then, for any v ∈ N(K),

the graph G[K ∪ {v}] is bipartite.

Proof. Suppose that this is not the case and there is a v ∈ N(K) such that the graph

G[K ∪ {v}] and hence the graph H[K ∪ {v}] is non-bipartite. By the premise of the

lemma, we know that for some P ∈ P(I ′b), v /∈ solP . This implies that K ∪ {v} is part of

a connected component of HP − solP . We now consider 2 cases: v ∈ Z or v /∈ Z. In the

first case, observe that by definition, we have added both endpoints of some edge-oct of

the graph G[K ∪ {v}] to WP , a contradiction to the graph G[K ∪ {v}] being non-bipartite.

In the second case, the reason v is added to W is because there is a P ′ ∈ P(I ′b) such

that v is one of the endpoints of the edge set of a minimum edge-oct of the component

containing v in HP ′ − solP ′ . Again, since K ∪ {v} is part of such a component and W

contains both endpoints of an edge-oct of this graph, it cannot be the case that G[K ∪ {v}]

is non-bipartite. This completes the proof of the claim.

We now prove that the instance Ib is equivalent to the instance I1
b = (G′, k, `, U, T ) where

G′ = PT (G,V (H) \W ). That is, for every P ∈ P(Ib), there is a solution for (Ib,P) if and

only if there is a solution for (I1
b ,P).

In the forward direction, suppose that for some P ∈ P(Ib), there is a solution XP for

(Ib,P). By Lemma 10.14, we may assume without loss of generality that XP ∩ V (H) ⊆ Z

and furthermore, there is a P̂ ∈ P(I ′b) such that XP ∩ V (H) = ŝolP̂ . Hence, XP ⊆ V (G′).

We claim that XP itself is a solution for (I1
b ,P). If this were not the case then there is

a component J in G′P −XP which has no edge-oct of size at most `. Observe that if J
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is disjoint from W by Observation 9.11, then it is also part of a connected component in

GP −XP which has no edge-oct of size at most `, a contradiction. Therefore, J intersects

W . Now, if J is disjoint from Q, then Observation 9.11 implies that it is part of a connected

component of HP̂ − ŝolP̂ (see proof of Lemma 10.14 for definition of P̂), with no edge-oct

of size at most ` a contradiction to ŝolP̂ being a solution for (I ′b, P̂). Thus we conclude that

J must intersect Q and is contained in a connected component of HP̂ − ŝolP̂ . Let J ′ ⊇ J

be the connected component of HP̂ − ŝolP̂ which contains the vertices of J . By definition,

W contains both endpoints of some edge-oct of size at most ` for the component J ′. By

Observation 9.11, it follows that J also has an edge-oct of size at most `, a contradiction.

This completes the argument in the forward direction.

The converse direction follows directly from Observation 9.11. Observe that the size of W

is bounded by 2` times the size of Z. Furthermore, given Z, we need to perform at most

|Z| · |P(I ′b)|-many edge-oct computations with each edge-oct being bounded by `. For this,

we can use the algorithm in [GGH+06] and hence the size and running time bounds follow,

completing the proof of the lemma.

Now we describe the recursive step of the algorithm.

Step 3. Assume we are given a B-PBD instance Ib = (G, k, `, U, T ) and let q := α(k, `) +(
α(k,`)

2

)
+ 1. Invoke first the algorithm of Lemma 10.3 in a search for (q, k)-good node

separation (with V∞ = U). If it returns a good node separation (Z, V1, V2), let j ∈ {1, 2}

be such that |Vj ∩ T | ≤ k and denote T ′ = N(Vj) ⊆ Z, C = Vj . Otherwise, if it returns

that no such good node separation exists in G, invoke the algorithm of Lemma 10.4 in a

search for (q, k)-flower separation w.r.t. Tb (with V∞ = U again). If it returns that no

such flower separation exists in G, pass the instance Ib to the next step (high connectivity

phase). Otherwise, if it returns a flower separation (Z, (Vi)
r
i=1), denote C =

⋃r
i=1 Vi and

T ′ = N(C) ⊆ Z. Let H = G[C ∪ T ′]. In the case we have obtained T ′ and C (either from

Lemma 10.3 or Lemma 10.4), invoke the algorithm recursively for the B-PBD instance I ′b
defined as in the statement of Lemma 10.14 for sets T ′ and set C, obtaining an output

solP for each P ∈ P(I ′b). If there exists v ∈ V (H) such that v ∈ solP for every P ∈ P(I ′b),

we return v as the special vertex. Otherwise, compute the set Z =
⋃
P∈P(I′b) solP . Use
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the algorithm of Lemma 9.12 on I ′b and Z to compute the set W . Generate the graph

G′ = PT (G,V (H) \W ). Let I1
b = (G′, k, `, (U ∩ V (H)),Q), where Q = T ′ ∪ (C ∩ T ).

Restart this step on instance I1
b . If it returns a special vertex v, then return v as a special

vertex for the instance Ib. Otherwise, obtain a family of solutions (sol′P)P∈P and return

this family as output to the instance Ib.

We first show that application of Lemma 10.14 and Lemma 9.12 is justified in Step 8. By

definitions of good node separations and good flower separations and by choice of C and T ′,

we have that V (H) ∩ T ≤ k and that H is connected. Also, the recursive calls are applied

to strictly smaller graphs, as in case of finding a good node separation, V2 is deleted when

we make the recursive call, and in the case of finding a flower separation, we have that

Z ∪⋃r
i=1 Vi is a strict subset of V (G). Now we state the following lemma which argues the

correctness of Step 8.

Lemma 9.13. Assume that we are given a B-PBD instance Ib = (G, k, `, U, T ) on which

Step 8 is applied, and let I ′b be an instance after Step 8 is applied. Then any correct output

(either a special vertex or a set of solutions) to the instance I ′b is a correct output to the

instance Ib as well. Moreover, if Step 8 outputs ⊥ for all P ∈ P(I ′b), then this is a correct

output to Ib.

The proof of the lemma follows from Lemma 10.14 and Lemma 9.12. Now we do a running

time analysis for Step 8. Since q = O(2O(k log(k+`))), finding a good (q, k)-node separation

or flower separation takes time O(2O(min(q,k) log(q+k))n3 log n) = O(2O(k2 log(k+`))n3 log n).

Let |V (H)| = n′, and hence by definitions of good node separation and flower separation

we have that q + 1 ≤ n′ ≤ n− q − 1. The first recursive call is applied to an instance on n′

vertices. While taking the torso operation, we have that |W | = α(k, `) = 2O(k log(k+`)) and

finding the set W takes τ(k, `)nO(1) = 2O(k log(k+`))nO(1) time.

Let H ′ = G− V (H). We know that T ′ separates H ′ from rest of the graph and T ′ ⊆W .

So, for any u, v ∈ V (G) such that u ∈ V (H ′), we do not have any path from u to v having

its internal vertices entirely in V (H) \W . So if a new vertex z is added because of an

even length path from u to v, we have that u, v ∈ V (H). As G− (V (H) \W ) has at most
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n− n′ + α(k, `) vertices and none of the vertices in H ′ contribute to the torso operation,

we have that |V (G′)| ≤ n−n′+α(k, `) +
(
α(k,`)

2

)
< |V (G)|. The base case for the recursive

calls is the high connectivity phase, which we will argue takes time 2O((k+`)3(log k+`))nO(1).

Hence, we get the following recurrence for running time of Step 8.

T (n) ≤ maxq+1≤n′≤n−q−1

(
O(2O(k2 log(k+`))n3 log n) + T (n′) + 2O(k log(k+`))nO(1)+

T (min(n− 1, n− n′ + q)) + 2O((k+`)3 log(k+`))nO(1)
)

Solving the recurrence gives T (n) = 2O((k+`)3 log(k+`))nO(1) in the worst case, which is the

running time for Step 8. We remark that we never actually introduce any new undeletable

vertices in the graph in this step.

9.4.3 High Connectivity phase

In this section we describe the high connectivity phase of the algorithm. Assume we have

a B-PBD instance Ib = (G, k, `, U, T ) where Step 8 is not applicable. Let us fix P =

(XT ,R,B, L) ∈ P(Ib) and let U ′ := U∪((T \XT )∪Rnew), where Rnew = V (GP)\V (G). We

iterate through all possible values of P and try to find a minimum solution to (GP , k, `, U
′).

Since |P(Ib)| = 2O(k log(k+`)), this results in a factor of 2O(k log(k+`)) in the running time.

Thus, from now onwards we focus on one such P. Furthermore, here we only solve the

instances where |U ′| ≤ O(k`), which is sufficient for our purpose as we will argue later. We

first prove the following lemma.

Lemma 9.14. Let Ib = (G, k, `, U, T ) be an instance of B-PBD where Step 8 is not

applicable. Let U ′ := U ∪ ((T \XT )∪Rnew), where Rnew = V (GP) \ V (G). Then for every

P ∈ P(Ib), the graph GP satisfies the following.

• for any Z ⊆ (V (GP) \ U ′) of size at most k, the graph GP − Z contains at most

f(k, `) = (2q + 2)(2k − 1) + 2k + 1 connected components containing a vertex of

V (G) \ U ′, out of which at most one has more than h(k, `) vertices not in U ′ where

h(k, `) := q(4k(2k + 3)(`+ 1) + 1), and
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• GP has an oct of size at most g(k, `) := 2k + k`2 + 1 + |U ′|.

Proof. For any Z ⊆ (V (GP) \ U ′), since V (GP) \ V (G) ⊆ U ′, we have that Z ⊆ V (G) \ U .

Since Step 8 is not applicable on (G, k, `, U, T ), from Lemma 10.5 we know that G does

not have a (q, k)-good node separation or (q, k)-flower separation. This gives us that the

graph G− Z contains at most (2q + 2)(2k − 1) + |T |+ 1 connected components containing

a vertex of V (G) \ U , out of which at most one has more than h(k, `) vertices not in U .

Let C0, C1, . . . , Cs be the connected components of G− Z. Since by construction of the

graph GP , all the vertices in V (GP) \ V (G) are either adjacent to one of the vertices

in T or adjacent to some other vertex in V (GP) \ V (G) which is adjacent to a vertex

in T and Z ∩ (V (GP) \ V (G)) = ∅, we have that the number of connected components

of GP − Z is not larger than that of G − Z. This shows that GP − Z contains at most

(2q + 2)(2k − 1) + |T |+ 1 connected components containing a vertex of V (GP) \ U ′. Now,

let C ′0, C
′
1, . . . , C

′
t be the connected components of GP − Z. Since G is a subgraph of GP ,

for all i ∈ {0, 1, . . . , s}, there exists j ∈ {0, 1, . . . , t} such that Ci ⊆ C ′j . Without loss of

generality, let us assume that if G− Z contains a connected component with more than

q vertices not in U , then it is contained inside C ′0. Now we argue that for all i ∈ [t],

|C ′i \U ′| ≤ h(k, `). Since Rnew ⊆ U ′, only the vertices in V (G) can contribute to the size of

Ci \ U ′. We know by construction of GP that |E(GP) \ E(G)| ≤ 4k(2k + 3)(`+ 1), so any

connected component in GP −Z can be formed by combining at most 4k(2k+ 3)(`+ 1) + 1

connected components of G − Z. Also, we know that for all i ∈ [t], all the connected

components of G−Z contained in C ′i have at most q vertices from the set V (GP) \U , and

hence we have |C ′i \ U ′| ≤ q(4k(2k + 3)(`+ 1) + 1). This concludes the proof of the first

part the lemma.

The second part of the lemma follows from the fact that V (GP) \ V (G) ⊆ U ′ and that

because of Lemma 9.6, G has an oct of size at most 2k + k`2 + 1.

So, now we can generate an instance of Pseudobipartite Deletion where an oct is

also given and we have a bound on number of vertices from V (G) \ U in all connected

components after deleting a solution except one. We recall the formal problem definition.
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OCT-PBD Parameter(s): k,`

Input: An instance (G, k, `, U) of Pseudobipartite Deletion along with an oct O

of G of size at most g(k, `) such that for any Z ⊆ (V (G) \ U) of size at most k, in the

graph G− Z, at most one connected component containing a vertex of V (G) \ U has

more than h(k, `) vertices not in U .

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ U = ∅. Output ⊥ if such a set does not exist.

Step 4. Find an oct O of GP of size g(k, `) using algorithm in [LNR+14]. Return an

instance (G, k, `, U,O) of OCT-PBD.

The correctness of Step 4 is immediate from Lemma 9.14. Now, we branch into the

possibilities for the intersection of the set O with the solution of the Pseudobipartite

Deletion instance (GP , k, `, U
′). Recall that we get the following problem.

OCT-PBD(I) Parameter(s): k,`

Input: An instance (G, k, `, U,O) of OCT-PBD.

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

Now, to solve an OCT-PBD instance we do the following. For each XO ⊆ O \ U of size

at most k, we solve the OCT-PBD(I) instance (G−XO, k, `, U,O \XO). Let P (XO) be

the solution returned for the choice XO. Then we output the set of the form XO ∪ P (XO)

which has the minimum size such that |XO ∪ P (XO)| ≤ k and output ⊥ if such a set does

not exist. We need to perform this sanity check as in the recursive call we are still looking

for minimum solutions of size at most k and the call might return a minimum solution for

the graph with more than k − |OX | vertices.

This way, we branch into
∑

0≤i≤k
(|O|
i

)
cases and it results into a factor of

∑
0≤i≤k

(|O|
i

)
in

the running time. The correctness of this step can be seen by looking at the intersection of

the solution to OCT-PBD instance (G, k, `, U,O) with the set O. Observe that O \OX
still remains to be an oct for the graph G−OX and the graph G−OX , being a subgraph

of G, still satisfies the high connectivity requirements in the definition of OCT-PBD.
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Now we need to solve OCT-PBD(I). To that end, we guess which vertices of the oct are

going to be in the same connected component after deleting the solution. We first prove

the following lemma.

Lemma 9.15. Let (G, k, `, U,O) be an instance of OCT-PBD(I). Let S be the set of all

equivalence relations on O. Then, there exists § ∈ S and X ′ ⊆ V (G) \ (U ∪O) such that

X ′ is also a minimum sized `-pseudobipartite deletion set of G and for any u, v ∈ O, u

and v belong to the same connected component of G−X ′ if and only if (u, v) ∈ §.

Proof. Let X ⊆ V (G) \ (U ∪ O) be a minimum sized `-pseudobipartite deletion set of

G. We define an equivalence relation §′ on O as following. For any u, v ∈ O, we say

that (u, v) ∈ §′ if and only if u and v belong to the same connected component of G−X.

Clearly, §′ ∈ S and there exists an X ′ = X ⊆ V (G) \ (U ∪O) which is a minimum sized

`-pseudobipartite deletion set of G and partitions the vertices of O in the desired way.

So, to solve an OCT-PBD(I) instance (G, k, `, U,O), for each § ∈ S, we try to solve the

instance with the guarantee that there exists a solution after deleting which the vertices of

the oct are in the same connected component if and only if they are in the same equivalence

class of §. More formally, for each § ∈ S, we get an instance of the following problem.

OCT-PBD(II) Parameter(s): k, `

Input: An instance (G, k, `, U,O) of OCT-PBD(I) and an equivalence relation § on

O with the guarantee that there exists a minimum sized `-pseudobipartite deletion

set X ⊆ V (G) \ (U ∪O) of G such that for all u, v ∈ O, u and v belong to the same

connected component of G−X if and only if (u, v) ∈ §.

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

Now, to solve an OCT-PBD(I) instance (G, k, `, U,O), for each § ∈ S, we solve an instance

(G, k, `, U,O, §) of OCT-PBD(II) and return the solution to the instance which outputs

solution of minimum size. The correctness of this step follows from Lemma 9.15. Since

the number of equivalence relations on O is bounded by g(k, `)g(k,`), we get a factor of

g(k, `)g(k,`) in the running time.
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Now to solve OCT-PBD(II). We return No if k < 0. We first look at the case when the

equivalence relation § has more than one equivalence class. In this case, we know that

there exists a solution X after deleting which, at least one of the equivalence classes of § is

in a connected component containing at most h(k, `) vertices not from U .

We proceed by guessing this equivalence class Si in §. Then we arbitrarily pick a vertex v

in Si and look at a connected subgraph H of G containing v which has h(k, `) + 1 vertices

not from U . We know that at least one of the vertices in V (H) has to be part of the

solution X, because after deleting X, the connected component containing v has at most

h(k, `) vertices not from U . Then we pick a vertex of V (H) and branch on it. Since each

branching call decreases solution size we are looking for by at least one, the depth of the

recursion tree is bounded by k.

If such a subgraph H does not exist, we have that the connected component C containing

v has at most h(k, `) vertices not in U , and then we solve the problem on G[C] using brute

force, which takes time h(k, `)knO(1).

Now we deal with the case when § has only one equivalence class. That is, we know that

there exists a solution X ⊆ V (G) \ (U ∪O) such that G−X is `-pseudobipartite and for

all (u, v) ∈ O, u and v belong to the same connected component of G−X. In other words,

there exists a solution X of minimum size such that all the vertices of O lie in the same

connected component C of G−X. To solve this problem, we first prove the following.

Lemma 9.16. Let (G, k, `, U,O, §) be an OCT-PBD(II) instance such that for all u, v ∈ O,

(u, v) ∈ §. Then there exists a bipartition (O1 ]O2) and X ′ ⊆ V (G) \ (U ∪O) such that X ′

is a minimum sized `-pseudobipartite deletion set of G, all vertices of O belong to the same

connected component C of G−X ′ and there exists an edge-oct F of G[C] of size at most `

and a bipartition (C1 ] C2) of C such that G[C1]− F and G[C2]− F = ∅ are independent

sets and O1 ⊆ C1 and O2 ⊆ C2.

Proof. Since for all u, v ∈ O, (u, v) ∈ §, we know by the definition of OCT-PBD(II) that

there exists a minimum sized `-pseudobipartite deletion set X∗ ⊆ V (G) \ (U ∪ O) of G

such that all the vertices of O belong to the same connected component of G −X. Let

F ∗ be the edge-oct of size at most ` of C. Then we know that G[C] − F ∗ is bipartite.
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Hence, there exists a bipartition (C∗1 ] C∗2) of C such that G[C∗1 ] − F = G[C∗2 ] − F = ∅.

Let (O∗1 ]O∗2) be the bipartition induced on O by (C∗1 ]C∗2 ). Then (O1 ]O2) = (O∗1 ]O∗2),

X ′ = X∗, F = F ∗ and (C1 ] C2) = (C∗1 ] C∗2 ) satisfy the conditions of the lemma.

This lemma helps us reduce an instance of OCT-PBD(II) into 2|O| instances of following

problem, defined in the overview section.

OCT-PBD(III) Parameter(s): k,`

Input: An instance (G, k, `, U,O, §) of OCT-PBD(II) such that for all u, v ∈ O,

(u, v) ∈ § and a bipartition (O1 ] O2) of O with the guarantee that there exists a

minimum sized `-pseudobipartite deletion set X ⊆ V (G) \ (U ∪O) of G such that all

vertices of O belong to the same connected component C of G−X and there exists

an edge-oct F of G[C] of size at most ` and a bipartition (C1 ] C2) of C such that

G[C1]− F and G[C2]− F are independent sets and O1 ⊆ C1 and O2 ⊆ C2.

Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k

such that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

Now, to solve an instance (G, k, `, U,O, §) of OCT-PBD(II), for each bipartition (O1]O2)

of O, we solve the OCT-PBD(III) instance (G, k, `, U,O, §, (O1, O2)) and return the

solution to the instance which outputs solution of the minimum size. The correctness

of this step follows from Lemma 9.16. Since there are 2|O| bipartitions of O, this step

branches into 2|O| instances of OCT-PBD(III) for each instance of OCT-PBD(II).

Now, to solve an instance I := (G, k, `, U,O, §, (O1 ]O2)) of OCT-PBD(III), we define

a graph GI as follows. Let (A ] B) be an arbitrary bipartition of V (G) \ O such that

E((V (G)− O)[A]) = E((V (G)− O)[B]) = ∅ and let `′ = |E(G[O1]) ∪ E(G[O2])|. To get

the graph GI , we first make two copies of vertex set O, namely OA and OB. Now, we

define the vertex set of V (GI) to be the set (V (G) \O)∪OA ∪OB. We represent copy of a

vertex v ∈ O in OA by vA and the copy in OB by vB . Then we make every vertex vA ∈ OA
adjacent to a vertex w ∈ A if and only if v and w are adjacent in G. Similarly, we make

every vertex in vB ∈ OB adjacent to a vertex w ∈ B if and only if v and w are adjacent

in G. We copy the edges of G − O as it is to GI − (OA ∪ OB). Let OiA = {vA| v ∈ Oi}
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and OiB = {vB| v ∈ Oi} for i ∈ {1, 2}. Finally, let S∗ := O1
A ∪ O2

B, T ∗ := O2
A ∪ O1

B and

O∗ := S∗ ∪ T ∗. We make the induced subgraphs GI [S
∗] and GI [T

∗] into cliques. This

finishes the construction of the graph GI . We define the equivalence relation RI on the set

O∗ as follows. For u, v ∈ O∗, (u, v) ∈ RI if and only if u, v ∈ S∗ or u, v ∈ T ∗.

Observe that there exists a natural one to one correspondence between E(G) \ E(G[O])

and E(GI) \ E(G[S∗ ∪ T ∗]). That is, we have made exactly one copy of each of the edges

which do no have both endpoints in O. Let us first recall the definition of MMCU∗

from Section 9.3 and state the theorem about the running time of the algorithm to solve

MMCU∗ (which we prove independently in the next chapter).

MMCU∗ Parameter(s): k,`

Input: A graph G, integers k and `, T ⊆ V (G), an equivalence relation R on T

having at most two equivalence classes, and set of undeletable vertices U ⊆ V (G).

Output: Output a minimal solution X = (X,F ) to MMCU instance (G,T,R, k, `)

such that X ∩ U = ∅ and ⊥ if no such solution exists.

Theorem 9.8 (Threorem 10.10 in Chapter 10). MMCU∗ can be solved in time (|U | +

2)|U |O(2O((k+`)3 log(k+`))n4 log n).

Now we prove the following two lemmas.

Lemma 9.17. Let X be a solution of OCT-PBD(III) instance I := (G, k, `, U,O, §, (O1]

O2)) of size k′ ≤ k. Then the algorithm for MMCU∗ instance (GI , k
′, ` − `′, O∗,RI , U)

outputs a solution.

Proof. We look at the graph G′ := G− (X,F ). Since O is an oct of G and F is an edge-oct

of connected component containing O, we have that G′ is bipartite as well. We look at the

bipartition (C1 ] C2) of connected component C of G−X as guaranteed by the definition

of OCT-PBD(III). Let V ′ = V (G′). Since all the other connected components are already

bipartite, there exists a bipartition (V1 ] V2) of V ′ such that E(G′[V1]) = E(G′[V2]) = ∅

and Oi ⊆ Vi for i ∈ {1, 2}. So, in G′, any path from a vertex to Oi to a vertex in Oi has

even length for i ∈ {1, 2} and any path from O1 to O2 has odd length.
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Let F ′ := F ∩ E(G−O). As F must contain E(G[O1]) ∪ E(G[O2]), |F ′| ≤ `− `′ and all

the edges in F ′ have at least one end point in V (G) \O. It suffices to show that (X,F ′)

is a solution to MMCU∗ instance (GI , k
′, ` − `′, O∗,RI , U). Since F ′ does not contain

any edges from the cliques GI [S
∗] and GI [T

∗] we have that any u, v ∈ S∗ remains in the

same connected component of (GI −X)− F ′ and any u, v ∈ T ∗ also remain in the same

connected component of GI − (X,F ′). Now we need to show that for any u ∈ S∗ and

v ∈ T ∗, there does not exist a path from u to v in GI − (X,F ′).

For the sake of contradiction, let us assume that such a path does exist. We look at such a

path such that all the internal vertices are disjoint from S∗ ∪ T ∗. Since these paths only

contain edges such that they have at least one endpoint in V (GI) \O∗, we can talk about

their corresponding paths in G as well. Let x and y be the first and last vertices for such a

path. Since S∗ = O1
A ∪O2

B and T ∗ = O1
B ∪O2

A, there are four possibilities for such a path.

Let us look at the case when x ∈ O1
A and y ∈ O1

B. As GI − O∗ is bipartite, it is easy to

see that this path has odd length. But as we have taken F ′ := F ∩ E(G−O), the path

corresponding to this in G is also present in G′, and is a path from a vertex of O1 to a

vertex of O1 having odd length, which is a contradiction. Similarly, we can argue for the

cases when x ∈ O1
A and y ∈ O2

A, x ∈ O2
B and y ∈ O1

B and x ∈ O2
B and y ∈ O2

A and arrive

at a contradiction. This proves that (X,F ′) is indeed a solution for MMCU∗ instance

(GI , k
′, `− `′, U,O∗,RI) and concludes the proof of the lemma.

Our final lemma helps us in binding all the things together.

Lemma 9.18. Let I := (G, k, `, U,O, §, (O1 ] O2)) be a OCT-PBD(III) instance and

k′ ≤ k be the minimum number for which the algorithm for MMCU∗ outputs a solution

(X,F ) for the instance (GI , k
′, `− `′, U,O∗,RI), then X is a correct solution to I as well.

Proof. Let I := (G, k, `, U,O, §, (O1 ]O2)) be a OCT-PBD(III) instance and let X∗ be a

minimum sized `-pseudobipartite deletion set of G such that |X∗| = k′. Now we need to

show that if running the algorithm for MMCU∗ instance (GI , k
′, `− `′, U,O∗,RI) outputs

(X,F ) then X is a an `-pseudobipartite deletion set of G.

In fact, we argue that G−X has an edge-oct of size at most `. It is easy to see that if the
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solution is minimal, then the set F is disjoint from E(G[S∗ ∪ T ∗]), and hence we will be

talking about the set F in G as well as in G′. Let G′ = G−X, then we claim that G′ has an

edge-oct of size at most `. To show that, it suffices to prove that F ′ := F ∪G[O1] ∪G[O2]

is an edge-oct of size at most ` of G. That is, we need to show that the graph (G−X)−F ′

does not have an odd cycle.

First we look at a path from a vertex in O1 to a vertex in O1 in (G−X)−F ′ such that all

the internal vertices are in O. Since G[O1] ∪G[O2] ⊆ F ′, we have that this path has even

length. Similarly we can show that in (G−X)− F ′, any path completely contained in O

from a vertex in O2 to a vertex in O2 has even length and any path completely contained

in O from a vertex in O1 to a vertex in O2 has odd length. Then we look at any path from

any vertex in O1 to any vertex in O1 in (G −X) − F ′ such that all its internal vertices

are disjoint from O and look at its corresponding path in GI . Since (X,F ) kills all paths

between O1
A and O1

B and F ⊆ F ′, this has to be a path either from a vertex in O1
A to a

vertex in O1
A or from a vertex in O1

B to a vertex in O1
B. Since GI −O∗ is bipartite, it is

easy to see that all these paths are of even length. Similarly, we can argue that all paths

from a vertex in O2 to a vertex in O2 such that all internal vertices are not in O are of

even length. Now we look at all paths from O1 to O2 in (G−X)−F ′ such that all internal

vertices are not from O and look at it’s corresponding path in GI . Since (X,F ) kills all

paths from O1
A to O2

A and paths from O1
B to O2

B, the only paths left from a vertex in O1 to

a vertex in O2 are either from O1
A to O2

B or from O1
B to O2

A. Again, as GI −O∗ is bipartite

and F ⊆ F ′, it is easy to see that all these paths have odd length.

Let C be a cycle in G− (X,F ′). If V (C) ∩O = ∅, then C is a cycle of even length. Let

v1, v2, . . . , vt be the vertices of C ∩ O in their order of appearance along C. Let v0 = vt,

then we have that |E(C)| = ∑t−1
i=0 dC(vi, vi+i). But then |E(C)| must be even since the

number of indices i such that vi ∈ O1 and vi+1 ∈ O2 is equal to the number of indices j

such that vj ∈ O2 and vj+1O2. Hence, any cycle in (G−X)− F ′ is of even length, and X

is an `-pseudobipartite deletion set of G.

Now we are ready to give the final step of the algorithm. To solve an OCT-PBD(III)

instance I := (G, k, l, U,O, §, (O1 ]O2)), for each k′ ∈ {0, 1, . . . , k}, we solve the MMCU∗
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instance (GI , k
′, ` − `′, U,O∗,RI), where GI , `

′, O∗ and RI are as described above. Let

k∗ ∈ {0, 1, . . . , k} be the minimum such number for which the algorithm for MMCU∗

instance (GI , k
∗, `− `′, U,O∗,RI) returns a solution. Let this solution be (X∗, F ∗). Return

X∗. The correctness of this step follows from Lemma 9.17 and Lemma 9.18.

Now we do the running time analysis of the high connectivity phase assuming the size

of the undeletable vertices is bounded by O(k`). First we find an oct of size g(k, `) to

get an instance of OCT-PBD, which takes time 2O(k2`4)nO(1) using the algorithm in

[LNR+14] since g(k, `) = O(k`2). Then we branch into solving at most 2g(k,`) = 2O(k`2)

instances of OCT-PBD(I). For solving each instance of OCT-PBD(I), we branch into

g(k, `)g(k,`) instances of OCT-BPD(II). Since g(k, `) = O(k`2), we have that g(k, `)g(k,`) =

2O(k`2 log(k`)). Hence, the total running time of high connectivity phase for an instance

(G, k, `, U) is nO(1) + 2O(k`2 log(k`)) + β(k, `), where β(k, `) is the time to solve an OCT-

PBT(II) instance.

Now for analyzing running time for solving an instance I = (G, k, `, U,O, §) of OCT-

PBD(II), we first look at the case when § has only one equivalence class. In this case,

we branch into at most 2|O| = 2O(k`2(log k+log `)) instances of OCT-PBD(III). After that,

we make the graph GI and solve the MMCU∗ instance at most k times. It is easy to see

that the graph GI can be constructed in polynomial time. Also, from Theorem 9.8, the

running time for MMCU∗ instance is (|U |+ 2)|U |O(2O((k+`)3 log(k+`))n4 log n). Hence, the

total running time for OCT-PBD(II) is bounded by 2O((k+`)3 log(k+`))nO(1) in the case

when § has only one equivalence class. Now, when the equivalence relation § has more

than one equivalence class, then we either solve the problem on the connected component

containing v by brute force or we branch into g(k, `) cases, by guessing the equivalence

class which belongs to a component which has bounded number of vertices from V (G) \ U .

Picking a vertex v and finding a connected subgraph containing v having h(k, `) + 1

undeletable vertices can be done in polynomial time. Then we either decrease the number

of connected components of the graph in h(k, `)knO(1) time or we branch into h(k, `) + 1

cases, where in each of them the solution size we are looking for drops by one. The base

case is when the solution size we are looking for becomes negative and we can say No or

when the instance has only one equivalence class, in which case we know how to solve it in
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(|U |+ 2)|U |2O((k+`)3 log(k+`))n4 log n time. Hence, the total running time for OCT-PBD(II)

is bounded by 2O((k+`)3 log(k+`))nO(1) as we have that the number of undeletable vertices is

bounded by O(k`).

This gives that the total running time for high connectivity phase is 2O((k+`)3 log(k+`))nO(1)

as we solve at most 2O(k log(k+`)) instances of Pseudobipartite Deletion. This finishes

the description of the algorithm. Now we are ready to prove the final theorem.

Proof. (of Theorem 9.1) For solving an instance (G∗, k, `) of Strong Bipartite Dele-

tion we first reduce it to an instance (G∗, k, `, U∗) of Pseudobipartite Deletion by

putting U∗ = ∅. Then we use the preprocessing rules described in Section 9.4.1 to get 2O(k)

many instances of Pseudobipartite Deletion, such that the graph in each instance has

a bounded sized oct. As argued earlier, this takes time 2O(k`2)nO(1).

Then we apply Step 2 and solve the problem on connected components of the graph. This

results in at most k many instances and can be applied in 1.977`nO(1) time, Now, let

(G, k, `, U) be an instance of Pseudobipartite Deletion after application of Step 2.

Then we know that G is connected, so we generate an instance (G, k, `, U, ∅) of B-PBD

and solve it. If we find a special vertex, then by Observation 9.7, we know that this

vertex is part of some minimum solution for the Pseudobipartite Deletion instance

(G, k, `, U). Hence we can safely delete this vertex from the graph and apply the algorithm

on (G− {v}, k − 1, `, U) starting from Step 2. Observe that the oct bound on the graph

still holds. Since each time we find a special vertex, the budget decreases by one, we do this

process at most k many times. We have already given the description and the correctness

of the algorithm for B-PBD. We observe that the set of undeletable vertices is initially

empty, and the only time we actually add undeletable vertices to a graph is while solving

the high connectivity phase, in which case, we add at most 2k(4`+ 1) = O(k`) vertices

to the undeletable set. Hence, the running time argued for the high connectivity phase is

valid, which takes 2O((k+`)3 log(k+`))nO(1) time. This finishes the proof of the theorem.
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Chapter 10

Parameterized Algorithm for

Mixed Cut

10.1 Introduction

Given a graph, a typical cut problem asks for finding a set of vertices or edges such that

their removal from the graph makes the graph satisfy some separation property. The

most fundamental version of the cut problems is Minimum Cut, where given a graph and

two vertices, called terminals, we are asked to find the minimum sized subset of vertices

(or edges) of the graph such that deleting them separates the terminals. The Minimum

Cut problem is known to be polynomial time solvable for both edge and vertex versions

and both in undirected and directed graphs. The core of the polynomial time solvability

of the Minimum Cut problem is one of the classical min-max results in graph theory –

the Menger’s theorem. The classical Menger’s theorem states that in any undirected (or

directed) graph G, given a pair of vertices s and t, the maximum number of vertex (edge)

disjoint paths is equal to the minimum number of vertices (edges) needed to disconnect

from s and t.

While Minimum Cut is polynomial time solvable; even a slight generlization becomes

NP-hard. Two of the most studied generalizations of Minimum Cut problem which are

NP-hard are Multiway Cut and Multicut. In the Multiway Cut problem, we are
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given a set of terminals, and we are asked to delete minimum number of vertices (or edges)

to separate the terminals from each other. This problem is known to be NP-hard even

when the number of terminals is at least three. In the Multicut problem, given pairs

of terminals, we are asked to delete minimum number of vertices (or edges) so that it

separates all the given terminal pairs. The Multicut problem is known to be NP-hard

when the number of pairs of terminals is at least three. The mixed version of the problem,

which is the central topic of this paper, namely Mixed Cut is also NP-hard. In this

problem we are given an undirected graph G, vertices s and t, positive integers k and `

and the objective is to test whether there exist a k sized vertex set S ⊆ V (G) and an `

sized edge set F ⊆ E(G) such that deletion of S and F from G disconnects from s and t.

In this chapter we study Mixed Cut, in fact a stronger generlization of it in the realm of

parameterized complexity. In this chapter we mainly study the following problem.

Mixed Multiway Cut-Uncut (MMCU) Parameter(s): k, `

Input: A multigraph G, a set of terminals T ⊆ V (G), an equivalence relation R on

the set T and integers k and `.

Question: Does there exist X ⊆ (V (G)\T ) and F ⊆ E(G) such that |X| ≤ k, |F | ≤ `

and for all u, v ∈ T , u and v belong to the same connected component of G− (X,F ) if

and only if (u, v) ∈ R?

We start by giving a brief overview of related work and then give our results and methods.

Related Works. Cut problems were looked at under the realm of Parameterized Com-

plexity by Marx [Mar06] for the first time, who showed that Multiway Cut is FPT when

parameterized by the solution size and Multicut is FPT when parameterized by the

solution size plus the number of terminals. Subsequently, a lot of work has been done on

cut problems in the field of parameterized complexity [BDT11, CLL09, CHM13, KT11,

KPPW12, MOR13, MR14]. Recently, Chitnis et al. [CCH+12] introduced the technique of

randomized contractions and used that to solve the Unique Label Cover problem. They

also show that the same techniques can be applied to solve a generalization of Multiway

Cut problem, namely Multiway Cut-Uncut, where an equivalence relation R is also

supplied along with the set of terminals and we are to delete minimum number of vertices
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(or edges) such that the terminals lie in the same connected of the resulting graph if and

only if they lie in the same equivalence class of R. It is easy to see that MMCU not

only generalized Mixed Cut and Mixed Multiway Cut, but also both edge and vertex

versions of Multiway Cut and Multiway Cut-Uncut problems. Mixed Cut is studied

and mentioned in the books [BW13, Fra12] and is also a useful subroutine in parameterized

graph editing problems. Cao and Marx [CM14] studied this problem during their study

on Chordal Editing problem and gave an algorithm with running time 2O(k+`)nO(1) on

chordal graphs. Algorithms for cut-problems can be applied to several problems, which

at first do not look like cut problems. Examples include well studied problems such as

Feedback Vertex Set [CLL+08] and Odd Cycle Transversal [RSV04]. We have

already seen in Chapter 9 that algorithm for a special version of the MMCU problem

with undeletable vertices is used as a subroutine in the algorithm for Pseudobipartite

Deletion. Hence, it is natural and timely to obtain a parameterized algorithms for

MMCU.

Our Results and Methods. Even though the vertex and edge versions of Minimum

Cut problem are polynomial time solvable, we show that allowing deletion of both, the

vertices and the edges, makes the Mixed Cut problem NP-hard. To show that, we use

a simple reduction from the Bipartite Partial Vertex Cover problem which was

recently shown to be NP-hard [AS14, JV12]. Then we show that MMCU is FPT. In

particular we prove the following theorem.

Theorem 10.1. MMCU is FPTwith an algorithm running in time 2(k+`)O(1) · nO(1).

There are two ways to approach our problem – one is via treewidth reduction technique of

Marx et al. [MOR13] and the second is via the method of recursive understanding introduced

by Chitnis et al. [CCH+12]. Applying both these methods have its own obstacles that we

need to tackle. However, the method of treewidth reduction technique would lead to an

algorithm for MMCU that has double exponential dependence on k + ` and thus we do

not pursue this method. As we did in the last chapter, we use recursive understanding

introduced by Chitnis et al. [CCH+12] to solve the problem. The main observation is

that if there is a small vertex separation which divides the graph into big parts, then we
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can recursively reduce the size of one of the big parts. Otherwise, the graph is highly

connected, and the structure of the graph can be exploited to obtain a solution for MMCU.

We follow the framework given in [CCH+12] and design our algorithm. In particular we

utilise the recursive understanding technique to first find a small separator in the graph

which separates the graph into two parts, each of sufficiently large size and then recursively

solve a ‘border’ version of the same problem on one of the two sides. The border version of

the problem is a generalization which also incorporates a special bounded set of vertices,

called terminals. During the course of our algorithm, we will attempt to solve the border

problem on various subgraphs of the input graph. The objective in the border problem is

to find a bounded set of vertices containing within a particular subgraph such that any

vertex in this subgraph not in the computed set is not required in any solution for the

given instance irrespective of the vertices chosen outside this subgraph. The algorithm in

[CCH+12] returns the minimum solutions in the recursive steps. Since we allow both edge

and vertex deletion, there is no clear ordering on the solutions, and hence we need to look

for solutions of all possible sizes while making the recursive call.

This leaves us with the base case of the recursion, that is when we are unable to find a

separator of the required kind. This is called high connectivity phase and this is the place

where one needs problem specific algorithm in the framework given in [CCH+12]. Since

the solution we are looking for contains both edges and vertices, we need some additional

work, as the good node separation framework gives bound only for vertices that can be

part of the solution. Once we have done that, the frameworks lends itself for our use, and

we can use a separating set family to get to the solution.

In the end, we solve a special version of MMCU with undeletable vertices, namely MMCU∗,

which completes the picture for our algorithm for Pseudoforest Deletion.

10.2 Preliminaries

In this section, we first give the notations and definitions which are used in the chapter.

Then we state some basic properties of mixed-cuts and some known results which will be

used later in the chapter.
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We define the Mixed Cut and Mixed Multiway Cut-Uncut problems as follows.

Mixed Cut Parameter(s): k, `

Input: A multigraph G, vertices s, t ∈ V (G), integers k and `.

Question: Does there exist X ⊆ V (G) and F ⊆ E(G) such that |X| ≤ k, |F | ≤ ` and

s and t are in different connected components of G− (X,F )?

Mixed Multiway Cut-Uncut (MMCU) Parameter(s): k, `

Input: A multigraph G, a set of terminals T ⊆ V (G), an equivalence relation R on

the set T and integers k and `.

Question: Does there exist X ⊆ (V (G)\T ) and F ⊆ E(G) such that |X| ≤ k, |F | ≤ `

and for all u, v ∈ T , u and v belong to the same connected component of G− (X,F ) if

and only if (u, v) ∈ R?

We say that a tuple X = (X,F ), where X ⊆ V (G) \ T and F ⊆ E(G), is a solution to

a MMCU instance I = (G,T,R, k, `) if |X| ≤ k, |F | ≤ ` and for all u, v ∈ T , u and v

belong to the same connected component of G − (X,F ) if and only if (u, v) ∈ R. We

define a partial order on the solutions of the instance I. For two solutions X = (X,F ) and

X ′ = (X ′, F ′) of a MMCU instance I, we say that X ′ ≤ X if X ′ ⊆ X and F ′ ⊆ F . We

say that a solution X to an MMCU instance I is minimal if there does not exist another

solution X ′ to I such that X ′ 6= X and X ′ ≤ X . For a solution X = (X,F ) of an MMCU

instance I = (G,T,R, k, `) and v ⊆ V (G), we say that X affects v if either v ∈ X or there

exists u ∈ V (G) such that uv ∈ F .

Observation 10.1. If X = (X,F ) is a minimal solution to a MMCU instance I =

(G,T,R, k, `), then none of the edges in F are incident to X.

Now we recall the definitions of good node separations and flower separations from [CCH+12]

given in Chapter 9. Then we state the lemmas that state the running time to find such

separations and the properties of the graph if such separations do not exist.

Lemma 10.2 ([CCH+12]). Given a set U of size n together with integers 0 ≤ a, b ≤ n, one

can in O(2O(min(a,b) log(a+b))n log n) time construct a family F of at most O(2O(min(a,b) log(a+b)) log n)
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subsets of U , such that the following holds: for any sets A,B ⊆ U , A ∩ B = ∅, |A| ≤ a,

|B| ≤ b, there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅.

Definition 10.2 ([CCH+12]). Let G be a connected graph and V∞ ⊆ V (G) a set of

undeletable vertices. A triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-good node

separation, if |Z| ≤ k, Z ∩ V∞ = ∅, V1 and V2 are vertex sets of two different connected

components of G− Z and |V 1 \ V∞|, |V2 \ V∞| > q.

Definition 10.3 ([CCH+12]). Let G be a connected graph, V∞ ⊆ V (G) a set of undeletable

vertices, and Tb ⊆ V (G) a set of border terminals in G. A pair (Z, (Vi)
r
i=1) is called a

(q, k)-flower separation in G (with regard to border terminals Tb), if the following holds:

• 1 ≤ |Z| ≤ k and Z∩V∞ = ∅; the set Z is the core of the flower separation (Z, (Vi)
r
i=1);

• Vi are vertex sets of pairwise different connected components of G−Z, each set Vi is

a petal of the flower separation (Z, (Vi)
r
i=1);

• V (G) \ (Z ∪⋃r
i=1 Vi), called a stalk, contains more than q vertices of V \ V∞;

• for each petal Vi we have Vi ∩ Tb = ∅, |V i \ V∞| ≤ q and NG(Vi) = Z;

• |(⋃r
i=1 Vi) \ V∞| > q.

Lemma 10.3 ([CCH+12]). Given a connected graph G with undeletable vertices V∞ ⊆

V (G) and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n) time a (q, k)-good

node separation of G, or correctly conclude that no such separation exists.

Lemma 10.4 ([CCH+12]). Given a connected graph G with undeletable vertices V∞ ⊆

V (G) and border terminals Tb ⊆ V (G) and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n)

time a (q, k)-flower separation in G w.r.t. Tb, or correctly conclude that no such flower

separation exists.

Lemma 10.5 ([CCH+12]). If a connected graph G with undeletable vertices V∞ ⊆ V (G)

and border terminals Tb ⊆ V (G) does not contain a (q, k)-good node separation or a (q, k)-

flower separation w.r.t. Tb then, for any Z ⊆ V (G) \ V∞ of size at most k, the graph

G − Z contains at most (2q + 2)(2k − 1) + |Tb| + 1 connected components containing a

vertex of V (G) \ V∞, out of which at most one has more than q vertices not in V∞.
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10.3 NP-completeness of Mixed Cut

We prove that Mixed Cut in NP-complete by giving a reduction from the Bipartite

Partial Vertex Cover problem which is defines as follows.

Bipartite Partial Vertex Cover (BPVC)

Input: A bipartite graph G = (X ] Y,E), integers p and q

Output: Does there exist S ⊆ V (G) such that |S| ≤ p and at least q edges in E

are incident on X?

Theorem 10.4 ([AS14, JV12]). BPVC is NP-complete.

For an instance of BPVC, we assume that the given bipartite graph does not have any

isolated vertices, as a reduction rule can be applied in polynomial time which takes care of

isolated vertices and produces an equivalent instance. Given an instance (G, p, q) of BPVC

where G = (X ] Y,E) is a bipartite graph, we get an instance (G′, s, t, k, `) of Mixed

Cut as follows. To get the graph G′, we introduce two new vertices s and t and add all

edges from s to X and t to Y . More formally, G′ = (V ′, E′) where V ′ = V (G) ∪ {s, t} and

E′ = E ∪ {sx | x ∈ X} ∪ {ty | y ∈ Y }. Then we put k = p and ` = m− q, where m = |E|.

It is easy to see that (G, p, q) is a Yes instance of BPVC if and only if (G′, s, t, k, `) is a

Yes instance of Mixed Cut, and hence we get the following theorem.

Theorem 10.5. Mixed Cut is NP-complete even on bipartite graphs.

10.4 An overview of the algorithm

In this section we present an overview of the algorithm for MMCU. We use the idea of

Recursive Understanding introduced by Chitnis et al. [CCH+12]. We describe the recursive

phase of the algorithm in Section 10.5.3 and the high connectivity phase of the algorithm

in Section 10.5.4.

We first perform a few operations on the graph which let us assume that the graph is

connected and that the terminals in each of the connected components are divided into
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bounded number of equivalence classes. For that, we first observe in Lemma 10.6, that

if a vertex has paths to terminals in more than k + `+ 1 equivalence classes, then it has

to be part of a solution. Then we describe in Lemma 10.7 how to find such a vertex,

and then in Lemma 10.8 that if no such vertex exists, then the number of equivalence

classes of terminals in a connected component is bounded. In steps 5 and 6, we define the

corresponding operations. This part is a direct adaptation of equivalence class reduction

techniques from [CCH+12]. Then in Step 7, we show how to take care of the case when

the graph is disconnected. Basically, we ask for minimal solutions of all sizes for all the

connected components, and combine them in all possible ways to see if a solution exists to

original problem.

Now we need to solve the problem on a connected graph where the number of equivalence

classes of terminals is bounded. For that, we define a border problem, B-MMCU, where

we are additionally provided with a set of border terminals. We can reduce an instance of

MMCU to an instance of B-MMCU by just putting this additional set of terminals as

the empty set.

Border-Mixed Multiway Cut-Uncut(B-MMCU) Parameter(s): k, `

Input: An MMCU instance I = (G,T,R, k, `) with G being connected and a set

Tb ⊆ V (G) \ T such that |Tb| ≤ 2(k + `); denote Ib = (G,T,R, k, `, Tb).

Output: For each P = (Xb, Eb,Rb, k′, `′) ∈ P(Ib), output a solP = XP being a

minimal solution to (Ib,P), or solP = ⊥ if no solution exists.

Here, the set P(Ib) denotes the set of ‘interactions’ of the border terminals of instance Ib
with a solution and the objective is to find a solution that corresponds for each possible

interaction. Since we are looking for a solution for each possible interaction, we would

want the set of interactions, P(Ib), to have size bounded by some function of k and `. For

that, we make use of the guarantee that the number of equivalence classes is bounded.

As is the case in algorithms based on the recursive understanding approach, to solve the

border problem, we proceed to check whether a good separator Z exists in the graph.

We use the notions of good node separations and good flower separations defined by

Chitnis et al.[CCH+12] and look for good (q, k + `) node separation or (q, k + `) flower
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separation, where q is sufficiently large to guarantee sufficient reduction of vertices (but

is still bounded by a function of k and `). The definitions are given in the preliminaries

section. The running times required to compute such separations (if they exist) are given

by Lemmas 10.3 and 10.4. If we succeed in finding such a separation, then we see that

we have divided the graph into two large parts using a small number of vertices. The

definitions of node separations and flower separation help us argue that one of the parts

(which contains at most half of the border terminals) is connected. We call the smaller

graph G∗.

Now we update the set of terminals to include the separator, and solve the border problem

I∗b recursively on the smaller graph G∗. That is, for every behavior P ∈ P(I∗b ) of the new

border terminals, we get an optimum solution. Let U(I∗b ) denote the set such that each

vertex in it is either in a solution returned by the recursive call to certain behavior of the

border terminals, or has an edge incident on it which is in the solution returned by the

the recursive call. Then in Lemma 10.14, we show that a solution exists which intersects

with the smaller graph only in the vertices of U(I∗b ). Then we use the bypassing operation

defined in Definition 10.6 to get rid of all vertices in smaller graph except the ones in

U(I∗b ). Lemma 10.9 justifies the bypassing operation.

Now, to argue that we have reduced the number of vertices by a significant amount, we

also need to argue that the number of terminals in the small graph are bounded. For

that, we observe in Lemmas 10.10 and 10.11 that we can apply some operations when two

terminals are adjacent. Note that the identifying operation in Lemma 10.11 can introduce

new parallel edges, and is the reason that we need multigraphs. After application of these

operations, we know that any terminal has neighborhood only in the in the non-terminal

vertices. In this case, in Lemma 10.12 we argue that not many of them can have the

same neighborhood, and hence we can bound the number of terminals as well and get the

significant reduction in number of vertices we were aiming for. In Lemma 10.15, we argue

that applying the above mentioned steps actually preserves the solutions.

Since the size of the set P(Ib) can be bounded by some function of k and `, and for each of

them we need to keep some bounded number of vertices, we can guarantee that after the
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application of the recursive step (Step 8 in the algorithm) the number of vertices in the

graph decreases by a sufficiently large number.

We then describe the algorithm for the problem in the case when there is no good-separation

to recurse upon. This is done in Section 10.5.4. Here, we need to solve the B-MMCU

instance Ib = (G,T,R, k, `, Tb) in the case that Step 8 is not applicable on the graph G.

In this case, we try to find a minimal solution to each P ∈ P(Ib). Since size of P(Ib) is

bounded by a function of k and `, this results in the same factor in the running time of

the high-connectivity step.

Now we would want to exploit the high connectivity structure of the graph to solve the

problem. We know because of Lemma 10.5, that after deleting the solution in the graph

G, the number of connected components having a non-terminal is bounded, and also the

number of non-terminals in all such connected components except one. The idea is to

try to use the sets provided by Lemma 10.2 to highlight the solution. But for that, we

need to bound the number of vertices and edges of the connected components (except one).

We already know that the number of non-terminals is bounded. Now, to get a bound on

number of edges, first we use Lemmas 10.10, 10.11 and 10.12 to get a bound on number of

terminals in these connected components. Then we use Lemma 10.13 to finally bound the

number of edges in these connected components. Then we prove Lemma 10.16 to argue

that there exists a set family of bounded size provided by Lemma 10.2 which highlights

the solution.

Finally, in Lemma 10.17, we argue that these set families can be used to get to a solution

of the instance (Ib,P). Essentially, we show that it is enough to look at the neighborhood

of the small connected components of the graph G after deleting the solution. Then we

argue the running time of the high connectivity phase, and show that it is bounded by a

function of k and ` times some polynomial function in n.
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10.5 An algorithm for MMCU

In this section, we describe the FPT algorithm for MMCU. In fact, we will give an algorithm,

which when provided with an instance (G,T,R, k, `) of MMCU, not only decides whether

there exists a solution (X,F ) such that |X| ≤ k and |F | ≤ `, but also outputs such a

solution that is also minimal. To that end, we first describe how we can bound the number

of equivalence classes in a connected component of the given graph.

10.5.1 Reduction of Equivalence Classes

We first show that if there exists a vertex which has a large number of vertex disjoint paths

to terminals which are in different equivalence classes, then that vertex has to be part of

the solution.

Lemma 10.6. Let I = (G,T,R, k, `) be a MMCU instance and let v ∈ V (G)\T . Assume

that there exist k + `+ 2 paths P1, P2, . . . , Pk+`+2 in G, such that:

• for each 1 ≤ i ≤ k + `+ 2, the path Pi is a simple path that starts at v and ends at

vi ∈ T ;

• any two paths Pi and Pj, i 6= j, are vertex disjoint except for the vertex v.

• for any i 6= j, (vi, vj) /∈ R.

Then for any solution (X,F ) of I we have v ∈ X.

Proof. For a contradiction assume that v /∈ X. Since for i 6= j, any two paths Pi and Pj

are vertex disjoint except for the vertex v, we have that after we delete vertices of X and

edges of F there are still two paths remaining among the given collection, say Pa and

Pb. But then we get a path from some va ∈ T to some vertex vb ∈ T in G − (X,F ) by

concatenating Pa and Pb such that (va, vb) /∈ R. This contradicts the fact that (X,F ) is a

solution to I.

Lemma 10.7. Let I = (G,T,R, k, `) be a MMCU instance. For any v ∈ V (G), we can

verify of v satisfies conditions of Lemma 10.6 in O((k + `)n2) time.
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Proof. To verify whether a vertex v ∈ V (G) satisfies the conditions of Lemma 10.6 we do

the following. Given a graph G we transform it into a directed network D as follows. For

every edge uv ∈ E(G) we have two directed arcs (u, v) and (v, u) in E(D) and for every

equivalence class Z ∈ R we make a new vertex tz and give a directed arc from z ∈ Z to tz

(that is we add (z, tz)). Finally, we add a super-sink t and give directed arc (tz, t) for every

Z ∈ R. Furthermore, give every arc unit capacity. Now to check whether v satisfies the

conditions of Lemma 10.6 all we need to check whether there is a flow of size k + ` + 2

in D from v to t. This can be done by running k + `+ 2 rounds of augmenting path and

thus the running time is upper bounded by O((k + `+ 2) · (|E(D)|+ |V (D)|)). Thus the

claimed running time follows.

Step 5. For each v ∈ V (G), if v satisfies the conditions of Lemma 10.6, delete v from the

graph and decrease k by one; if k becomes negative by this operation, return No. Then

restart the algorithm.

Using the algorithm described in Lemma 10.7, each application of Step 5 takes O((k+ `)n3)

time. As Step 5 can not be applied more than k times, all applications of the step take

O(k(k + `)n3) time. Now we show how application of Step 5 gives a bound on number of

equivalence classes.

Lemma 10.8. Let I = (G,T,R, k, `) be the instance of MMCU which we get after the

exhaustive application of Step 5. If there exists a connected component in G containing

terminals from more than (k + `)(k + ` + 1) equivalence classes of R, then I is a No

instance of MMCU.

Proof. For a contradiction assume that I is a Yes instance of MMCU. We will show that

if this is the case then there exists an opportunity to apply Step 5. Let (X,F ) be a solution

to I and X ′ be a set of vertices containing all of X and exactly one vertex from each of

the edges in F . Clearly, the size of X ′ is at most k + `. Let C1, . . . , Cs be the connected

components of G − X ′ that contains at least one terminal vertices. Since G contains

terminals from more than (k + `)(k + `+ 1) equivalence classes of R and each connected

component of G−X ′ contains vertices from at most one equivalence class we have that

s > (k + `)(k + `+ 1). Thus by Pigeon Hole Principle there exists a vertex v ∈ X ′ that
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has neighbors in at least k + `+ 2 connected components. These connected components

together with v imply that we could apply Step 5. This contradicts our assumption that

on I Step 5 is no longer applicable. Thus indeed I is a No instance of MMCU.

Step 6. If there exist u, v ∈ T such that u and v lie in different connected components of

G or there exists a connected component of G with terminals of more than (k+ `)(k+ `+ 1)

equivalence classes or R, return No.

Correctness of Step 6 follows from Lemma 10.8 and it can be applied in O(n2) time. In

the next step, we take care of disconnected graphs which helps us assume that the input

graph is connected.

Step 7. Let C1, C2, . . . Ct be the vertices corresponding to the connected components of the

graph G in the input instance I = (G,T,R, k, `). For each Ci and for every k′ ∈ {0, 1, . . . , k}

and `′ ∈ {0, 1, . . . , `} we pass the instance Iik′,`′ = (G,T ∩ Ci,R|T∩Ci , k
′, `′) to the next

step. If for every i ∈ {1, . . . , t} there exists Iik′i,`′i such that the subroutine returns (Xi, Fi)

for Iik′i,`′i and
∑

i∈{1,...,t} k
′
i ≤ k,

∑
i∈{1,...,t} `

′
i ≤ `, then return (

⋃
i∈{1,...,t}Xi,

⋃
i∈{1,...,t} Fi),

otherwise return No.

The correctness of this step is easy to see, as after the application of Step 6, each equivalence

class is confined to at most one connected component of the graph. The step can be applied

in O(n2) time and gives rise to O(kln) subproblems. After application of Step 7, we can

assume that G is connected and that the number of equivalence classes in G are bounded

by (k + `)(k + `+ 1).

10.5.2 Operations on the Graph

Definition 10.6. Let I = (G,T,R, k, `) be a MMCU instance and let v ∈ V (G) \ T . By

bypassing a vertex v we mean the following operation: we delete the vertex v from the graph

and, for any u1, u2 ∈ NG(v), we add an edge (u1, u2) if it is not already present in G.

Definition 10.7. Let I = (G,T,R, k, `) be an MMCU instance and let u, v ∈ T . By

identifying vertices u and v in T , we mean the following operation: we make a new set
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T ′ = (T \ {u, v})∪ {xuv} and for each edge of the form uw ∈ E(G) or vw ∈ E(G), we add

an edge xuvw to E(G). Observe that the operation might add parallel edges.

Lemma 10.9. Let I = (G,T,R, k, `) be a MMCU instance, let v ∈ V (G) \ T and let

I ′ = (G′, T,R, k, `) be the instance I with v bypassed. Then:

• if X = (X,F ) is a solution to I ′, then X is a solution to I as well;

• if X = (X,F ) is a solution to I and v /∈ X and for all u ∈ N(v) vu /∈ F then X is a

solution to I ′ as well.

Proof. We first prove the first item in the lemma. Suppose X = (X,F ) is a solution to I ′

but it is not a solution to I. This implies that either there exists (x, y) ∈ R and x and

y belong to two different connected components of G− X or (x, y) /∈ R and they are in

the same connected component of G−X . In the first case we know that x and y belong

to the same connected component of G′ − X and thus we know that the two connected

components of G−X which contain x and y have neighbors of v. This contradicts that x

and y belong to two different connected components of G−X . For the later case if there is

a path containing x and y then it must contain v but then in G′ we have an edge between

the neighbors of v on this path, which in turn would imply a path between x and y in

G′ −X . One can prove the second statement along the similar lines.

Lemma 10.10. Let I = (G,T,R, k, `) be a MMCU instance and let u, v ∈ T be two

different terminals with (u, v) /∈ R, such that uv ∈ E(G), then for any solution X = (X,F )

of I, we have uv ∈ F .

The proof of the Lemma 10.10 follows from the fact that any solution must delete the edge

uv to disconnect u from v. The proof of the next lemma follows by simple observation

that u and v have at least k + `+ 1 internally vertex disjoint paths or from the fact that

(u, v) ∈ R and thus after deleting the solution they must belong to the same connected

component and thus every minimal solution does not use the edge uv ∈ E(G).

Lemma 10.11. Let I = (G,T,R, k, `) be a MMCU instance and let u, v ∈ T be two

different terminals with (u, v) ∈ R, such that uv ∈ E(G) or |NG(u) ∩NG(v)| > k + `. Let
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I ′ be instance I with terminals u and v identified. Then set of minimal solutions of I and

I ′ is the same.

Lemma 10.12. Let I = (G,T,R, k, `) be a MMCU instance and let U = {v1, v2, . . . , vt} ⊆

T be different terminals of the same equivalence class of R, pairwise nonadjacent and such

that NG(u1) = NG(u2) = · · · = NG(ut) ⊆ V (G) \ T and t > `+ 2. Let I ′ be obtained from

I by deleting all but `+ 2 terminals in U (and all pairs that contain the deleted terminals

in R). Then the set of minimal solutions to I and I ′ are equal.

Proof. Without loss of generality, let the set deleted terminals be U ′ := {u`+3, . . . , ut} and

let N := NG(u1) = NG(u2) = · · · = NG(ut). Let u, v ∈ V (G) \ U ′. We claim that for

any minimal solution X = (X,F ) of I, u and v are in the same connected component of

G−X if and only if they are in the same connected component of G′ −X . The backward

direction is trivial as G′ −X is a subgraph of G−X . To show the forward direction, we

just need to show that F does not contain any edges incident on U , because then if a path

visits a vertex in U ′, then we can redirect it via one of ui’s which remain in the graph. For

v ∈ X ∩N , by Observation 10.1, we have that F does not contain any edges incident on v.

For v ∈ N \X, there are ua, ub ∈ U \ U ′ which are adjacent to v in G−X . This gives us

that v lies in the same connected component of G−X as U , and hence a minimal solution

does not contain any of the edges between x and U . This shows that X is a solution for I ′

as well.

For the converse, let X be a minimal solution to I ′. We just need to show that if u, v ∈ T

such that v ∈ T \ U ′ and u ∈ U ′, they lie in same connected component of G−X if and

only if (u, v) ∈ R. Since l ≥ 0, we have that |U \U ′| ≥ 2. Now it is easy to see that N ( X

because otherwise the vertices of U \ U ′ will not be in the same connected component of

G′ − X . Hence, there exists x ∈ N \X. Since |NG′(x) ∩ U ′| = `+ 2, x is adjacent to at

least 2 vertices of U ′ in G′−X . Without loss of generality, let u1, u2 ∈ U \U ′ be these two

vertices. Now let v ∈ T \ U ′ and u ∈ U ′. If (v, u1) ∈ R, then v and x belong to the same

connected component of G′−X and hence v and u belong to same connected component of

G−X . Similarly if (v, u1) /∈ R, then v and x belong to the different connected components

of G′ − X and hence v and u belong to different connected components of G− X . This
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concludes the proof of the lemma.

Lemma 10.13. Let I = (G,T,R, k, `) be an MMCU instance and let uv ∈ E(G) be an

edge with multiplicity more than `+ 1. Then for any minimal solution X = (X,F ) of I, F

does not contain any copies of uv.

Proof. If {u, v} ∩ X 6= ∅, then by Observation 10.1, we have that none of the copies of

uv are in F . Otherwise, F contains at most ` copies of edge uv. Let X ′ = (X,F \ {uv}).

Then we have that for any two x, y ∈ V (G), x and y are adjacent in G−X if and only if

they are adjacent in G−X ′, contradicting the minimality of X .

10.5.3 Borders and Recursive Understanding

In this section, we define the bordered problem and describe the recursive phase of the

algorithm. Let I = (G,T,R, k, `) be an MMCU instance and let Tb ⊆ V (G) \ T be a set

of border terminals, where |Tb| ≤ 2(k + `). Define Ib = (G,T,R, k, `, Tb) to be an instance

of the bordered problem. By P(Ib) we define the set of all tuples P = (Xb, Eb,Rb, k′, `′),

such that Xb ⊆ Tb, Eb is an equivalence relation on Tb \Xb, Rb is an equivalence relation

on T ∪ (Tb \ Xb) such that Eb ⊆ Rb and Rb|T = R, k′ ≤ k and `′ ≤ `. For a tuple

P = (Xb, Eb,Rb, k′, `′), by GP we denote the graph G ∪ Eb, that is the graph G with

additional edges Eb.

The intuition behind defining the tuple P is as following. The set Xb denotes the intersection

of the solution with the border terminals. The equivalence relation Eb tells which of the

border terminals can be connected from outside the graph considered. This can be looked

at as analogous to torso operation on the graph. The equivalence relation Rb tells how

the terminals and border terminals are going to get partitioned in different connected

components after deleting the solution. Since deletion of any solution respects the relation

R, we have that Rb|T = R. The numbers k′ and `′ are guesses for how much the smaller

graph is going to contribute to the solution.

We say that a tuple X = (X,F ) is a solution to (Ib,P) where P = (Xb, Eb,Rb, k′, `′) if

|X| ≤ k′, |F | ≤ `′ and for all u, v ∈ T ∪ (Tb \Xb), u and v belong to the same connected
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component of GP − (X,F ) if and only if (u, v) ∈ Rb. We also say that X is a solution to

Ib = (G,T,R, k, `, Tb) whenever X is a solution to I = (G,T,R, k, `). Now we define the

bordered problem as follows.

Border-Mixed Multiway Cut-Uncut(B-MMCU) Parameter(s): k, `

Input: An MMCU instance I = (G,T,R, k, `) with G being connected and a set

Tb ⊆ V (G) \ T such that |Tb| ≤ 2(k + `); denote Ib = (G,T,R, k, `, Tb).

Output: For each P = (Xb, Eb,Rb, k′, `′) ∈ P(Ib), output a solP = XP being a

minimal solution to (Ib,P), or solP = ⊥ if no solution exists.

It is easy to see that MMCU reduces to B-MMCU, by putting Tb = ∅. Also, in this case,

any answer to B-MMCU for P = (∅, ∅,R, k, `) returns a solution for MMCU instance.

To bound the size of the solutions returned for an instance of B-MMCU we observe the

following.

|P(Ib)| ≤ (k + 1)(`+ 1)(1 + |Tb|(|Tb|+ (k + `)(k + `+ 1)))|Tb|

≤ (k + 1)(`+ 1)(1 + 2(k + `)2(k + `+ 3))2(k+`)

= 2O((k+`) log(k+`))

This is true because Rb has at most (k + `)(k + `+ 1) + |Tb| equivalence classes, Eb has

at most Tb equivalence classes, each v ∈ Tb can either go to Xb or choose an equivalence

class in Rb and Eb, and k′ and `′ have k + 1 and ` + 1 possible values respectively. Let

q = (k + 2`)(k + 1)(`+ 1)(1 + 2(k + `)2(k + `+ 3))2(k+`) + k + `, then all output solutions

to a B-MMCU instance Ib affect at most q − (k + `) vertices in total. Now we are ready

to prove the lemma which is central for the recursive understanding step.

Lemma 10.14. Assume we are given a B-MMCU instance Ib = (G,T,R, k, `, Tb) and two

disjoint sets of vertices Z, V ∗ ⊆ V (G), such that |Z| ≤ k+`, Z∩T = ∅, ZW := NG(V ∗) ⊆ Z,

|V ∗ ∩ Tb| ≤ k + ` and the subgraph of G induced by W := V ∗ ∪ ZW is connected. Denote

G∗ = G[W ], T ∗b = (Tb∪ZW )∩W , T ∗ = T∩W , R∗ = R|T∩W and I∗ = (G∗, T ∗, R∗, k, `, T ∗b ).

Then I∗ is a proper B-MMCU instance. Moreover, if we denote by (sol∗P∗)P∗∈P(I∗b ) an
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arbitrary output to the B-MMCU instance I∗b and

U(I∗b ) = T ∗b ∪ {v ∈ V (G) | P∗ ∈ P(I∗b ), sol∗P∗ = X ∗P∗ 6= ⊥ and X ∗P∗ affects v},

then there exists a correct output (solP)P∈P(Ib) to the B-MMCU instance Ib such that

whenever solP = XP 6= ⊥ and XP is a minimal solution to (Ib,P) then V (XP)∩V ∗ ⊆ U(I∗b ).

Proof. To see that I∗b is a proper B-MMCU instance, we observe that G∗ = G[W ] is

connected, |ZW | ≤ |Z| ≤ k + ` and |V ∗ ∩ Tb| ≤ k + `, and hence |T ∗b | ≤ 2(k + `).

To show the second part of the lemma, let us assume P = (Xb, Eb,Rb, k′, `′) ∈ P(Ib).

Let XP = (X,F ) be a solution to (Ib,P). We show that there exists another solution

X ′P = (X ′, F ′) to (Ib,P) such that |X ′| ≤ |X|, |F ′| ≤ |F | and V (X ′P) ∩ V ∗ ⊆ U(I∗b ). To

that end, we define a tuple P∗ = (X∗b , E
∗
b ,R∗b , k∗, `∗) as follows. Let F ′′ := F \ E(G[W ]),

X ′′ := X \ V ∗ and X ′′P = (X ′′, F ′′). Let G′P be the graph such that V (G′P) = V (G) \W

and E(G′P) = E(GP − V ∗) \ E(GP [ZW ]). Observe that V (G∗) ∩ V (G′P) = ZW and

E(G∗) ∩ E(G′P) = ∅.

• X∗b = X ∩ T ∗b .

• E∗b is an equivalence relation on T ∗b \X∗b such that (u, v) ∈ E∗b if and only if u and v

are in the same connected component of G′P −X ′′P .

• R∗b is an equivalence relation on T ∗ ∪ (T ∗b \X∗b ) such that (u, v) ∈ R∗b if and only if u

and v are in the same connected component of GP −XP .

• k∗ := |X ∩W | and `∗ := |F ∩ E(G[W ])|.

Since |X| ≤ k′ ≤ k and |F | ≤ `′ ≤ `, we have that k∗ ≤ k and `∗ ≤ `. Also, E∗b ⊆ R∗b
because they are both corresponding to relation of being in the same connected component,

but the graph considered for defining E∗b is a subgraph of the one considered for defining

R∗b . Hence we have that P∗ ∈ P(I∗b ). We claim that (X ∩ W,F ∩ E[(G[W ])) is a

solution to (I∗b ,P∗). By definition, we have that |X ∩W | ≤ k∗ and |F ∩ E[(G[W ])| ≤ `∗.

Also, by definition of X∗b , we have that X ∩W ∩ T ∗b = X∗b . Now look at two vertices

222



u, v ∈ T ∗ ∪ (T ∗b \X∗b ). By definition, we have that (u, v) ∈ R∗b if and only if there exists

a path P connecting u and v in GP − XP . We claim that such a path P exists if and

only if there exists a path P ∗ connecting u and v in G∗P∗ − (X ∩W,F ∩ E(G[W ])). It

is indeed so, because subpath of P with internal vertices in V (G) \W corresponds to

an edge in E∗b and vice versa. Thus, u and v are in the same connected component of

G∗P∗ − (X ∩W,F ∩E[(G[W ])) if and only if (u, v) ∈ R∗b and hence (X ∩W,F ∩E[(G[W ]))

is a solution to (I∗b ,P∗).

So we get that sol∗P∗ = X ∗P∗ =: (X∗, F ∗) 6= ⊥ and |X∗| ≤ k∗ and |F ∗| ≤ `∗. Let

X ′P = (X ′, F ′), where X ′ = (X \W ) ∪X∗ and F ′ = (F \ E(G[W ])) ∪ F ∗. We claim that

X ′P is a solution for (Ib,P). As |X∗| ≤ |X ∩W | and |F ∗| ≤ |F ∩ E(G[W ])|, we have that

|X ′| ≤ |X| ≤ k′ and |F ′| ≤ |F | ≤ `′. Also, since X∗b = X ∩ T ∗b by definition of X∗b and by

properties of X ∗P∗ , we have that X∗b = X∗ ∩ T ∗b . Hence, X ∩ T ∗b = X∗ ∩ T ∗b and (X,F ) is a

solution for (Ib,P) which gives X ′ ∩ Tb = Xb.

Now let us look at two vertices u, v ∈ T ∪ (Tb \Xb). We need to show that u and v lie in

the same connected component of GP −X ′P if and only if they lie in the same connected

component of GP −XP . This will conclude the proof of the lemma.

Let u, v ∈ T ∪ (Tb \ Xb) lie in the same connected component of GP − XP . Let D :=

T ∪ (Tb \ Xb) ∪ ZW . Let P be a path connecting u and v in GP − XP and let u =

v0, v1, v2, . . . , vr = v be the sequence of vertices that lie on P in that order such that vi ∈ D

for all i ∈ {0, 1, . . . , r}. Since X \ V ∗ = X ′ \ V ∗ and X ∩D = X ′ ∩D = Xb ∪X∗b , we have

vi /∈ X ′ for all i ∈ {0, 1, 2, . . . , r}. Now, to finish this direction of the proof, we need to

show that the vertices vi and vi+1 lie in same connected component of GP − X ′P for all

i ∈ {0, 1, . . . , r − 1}.

Let Pi be the subpath of P between vi and vi+1. As ZW ⊆ D, Pi is either a path in G′P

or a path in GP [W ]. For the first case, we know that X \ V ∗ = X ′ \ V ∗ and also we

have that F \ F ∗ = F ′ \ F ∗, and hence the path is also present on G′P −XP and hence in

GP −X ′P . In the second case, we have that (vi, vi+1) ∈ R∗b . As (X ′ ∩W,F ′ ∩E(G[W ])) =

(X∗, F ∗) is a solution to (I∗b ,P∗), we infer that vi and vi+1 are connected via a path P ∗i

in G∗P∗ − (X ′ ∩W,F ′ ∩ E(G[W ])). Hence, u and v are connected in GP −X ′P if the path
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P ∗ does not use any edge w1w2 ∈ E∗b . By definition of E∗b , w1w2 ∈ E∗b if and only if

w1 and w2 lie in the same connected component of G′P − (X ′′, F ′′). But we know that

X ′′ = X \ V ∗ = X ′ \ V ∗ and F ′′ = F \E(G[W ]) = F ′ \E(G[W ]) and hence w1 and w2 are

also connected in G′P − X ′′P and hence in GP − X ′P . This completes one direction of the

proof.

For the other direction, the proof is completely symmetrical and we omit the details. This

completes the proof of the lemma.

Now we describe the recursive step of the algorithm.

Step 8. Assume we are given a B-MMCU instance Ib = (G,T,R, k, `, Tb). Invoke first

the algorithm of Lemma 10.3 in a search for (q, k+ `)-good node separation (with V∞ = T ).

If it returns a good node separation (Z, V1, V2), let j ∈ {1, 2} be such that |Vj ∩ Tb| ≤ k + `

and denote Z∗ = Z, V ∗ = Vj. Otherwise, if it returns that no such good node separation

exists in G, invoke the algorithm of Lemma 10.4 in a search for (q, k+ `)-flower separation

w.r.t. Tb (with V∞ = T again). If it returns that no such flower separation exists in G, pass

the instance Ib to the next step. Otherwise, if it returns a flower separation (Z, (Vi)
r
i=1),

denote Z∗ = Z and V ∗ =
⋃r
i=1 Vi.

In the case we have obtained Z∗ and V ∗ (either from Lemma 10.3 or Lemma 10.4), invoke

the algorithm recursively for the B-MMCU instance I∗b defined as in the statement of

Lemma 10.14 for separator Z∗ and set V ∗, obtaining an output (sol∗P∗)P∗ ∈ P(I∗b ). Compute

the set U(I∗b ). Bypass (in an arbitrary order) all vertices of V ∗ \ (T ∪ U(I∗b )). Recall that

T ∗b ⊆ U(I∗b ), so no border terminal gets bypassed. After all vertices of V ∗ \ U(I∗b ) are

bypassed, perform the following operations on terminals of V ∗ ∩ T :

1. As long as there exist two different u, v ∈ V ∗∩T such that (u, v) /∈ R, and uv ∈ E(G),

then delete the edge uv and decrease ` by 1; if ` becomes negative by this operation,

return ⊥ for all P ∈ P(Ib).

2. As long as there exist two different u, v ∈ V ∗ ∩ T such that (u, v) ∈ R and either

uv ∈ E(G) or |NG(u) ∩NG(v)| > k + `, identify u and v.
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3. If the above two rules are not applicable, then, as long as there exist three pairwise

distinct terminals u1, u2, . . . , ut ∈ T of the same equivalence class of R that have the

same neighborhood and t > `+ 2, delete ui for i > `+ 2 from the graph (and delete

all pairs containing ui from R).

Let I ′b be the outcome instance.

Finally, restart this step on the new instance I ′b and obtain a family of solutions (solP)P∈P(I′b)

and return this family as an output to the instance Ib.

We first verify that the application of Lemma 10.14 is justified in Step 8. By definitions

of good node separations and flower separations and by choice of V ∗, we have that

|V ∗ ∩ Tb| ≤ k + ` and G[V ∗ ∪NG(V ∗)] is connected. Also, the recursive calls are applied

to strictly smaller graphs because in good node separation, V2 is deleted in the recursive

call while in the other case, by definition of flower separation, we have that Z ∪⋃r
i=1 Vi is

a proper subset of V (G).

After the bypassing operations, we have that V ∗ contains at most q vertices that are not

terminals (at most k + ` border terminals and at most q − (k + `) vertices which are

neither terminals nor border terminals). Let us now bound the number of terminal vertices

once Step 8 is applied. Note that, after Step 8 is applied, for any v ∈ T ∩ V ∗, we have

NG(v) ⊆ (V ∗ \ T )∪Z and |(V ∗ \ T )∪Z| ≤ (q+ k+ `). Due to the first and second rule in

Step 8, for any set A ⊆ (V ∗ \ T ) ∪ Z of size k + `+ 1, at most one terminal of T ∩ V ∗ is

adjacent to all vertices of A. Due to the third rule in Step 8, for any set B ⊆ (V ∗ \ T ) ∪ Z

of size at most k + ` and for each equivalence class of R, there are at most `+ 2 terminals

of this equivalence class with neighborhood exactly B. Let q′ := |T ∪ V ∗|, then we have

the following.

q′ ≤ (q + k + `)k+`+1 + (`+ 2)(k + `)(k + `+ 1)

k+∑̀
i=1

(q + k + `)i = 2O((k+`)2 log(k+`))

Lemma 10.15. Assume that we are given a B-MMCU instance Ib = (G,T,R, k, `, Tb)

on which Step 8 is applied, and let I ′b be an instance after Step 8 is applied. Then any
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correct output to the instance I ′b is a correct output to the instance Ib as well. Moreover, if

Step 8 outputs ⊥ for all P ∈ P(I ′b), then this is a correct output to Ib.

Proof. We first note that by Lemma 10.14, for all P ∈ P(Ib), for all the vertices v /∈ U(I∗b ),

there exists a minimal solution to (Ib,P) that does not affect v, hence by Lemma 10.9, the

bypassing operation is justified. The second and third rules are justified by Lemma 10.11

and Lemma 10.12 respectively. The first rule is justified by Lemma 10.10, and if application

of this rule makes ` negative then for any P ∈ P(Ib), there is no solution to (Ib,P).

Now we do a running time analysis for Step 8. The applications of Lemma 10.3 and

Lemma 10.4 take time O(2O(min(q,k+`) log(q+k+`))n3 log n) = O(2O((k+`)2 log(k+`))n3 log n).

Let n′ = |V ∗|; the recursive step is applied to a graph with at most n′+k vertices and, after

bypassing, there are at most min(n−1, n−n′+q+q′) vertices left. Moreover, each bypassing

operation takes O(n2) time, the computation of U(I∗b ) takes O(2O((k+`) log(k+`))n) time.

Each application of Lemma 10.10 takes O(n2) time and it can be applied at most ` times.

So all applications of Lemma 10.10 take O(`n2) time. Application of Lemma 10.11 takes

O((k + `)n2) time per operation, which can be implemented by having a counter for each

pair of terminals and increasing those counters accordingly by considering every pair of

terminals of NG(x), for each x ∈ V (G)\T . Since when a counter reaches value k+ `+ 1 for

vertices u, v, we know that |NG(u) ∩NG(v)| > k + `, the total time consumed is bounded

by O((k + `)n2). Application of Lemma 10.12 takes O(n2 log n) time per operation, since

we can sort terminals from one equivalence class according to their sets of neighbours.

Since both Lemma 10.11 and Lemma 10.12 decrease the number of terminals by at least 1,

when applied, they can be applied at most n times. Hence, all applications of Lemma 10.11

and Lemma 10.12 takes total O(n3(k + `+ log n)) time. We also note that values of k and

` do not change during the recursive calls. So, we get the following recurrence relation for

the running time of Step 8 as a function of vertices of the graph G.

T (n) ≤ maxq+1≤n′≤n−q−1

(
O(2O((k+`)2 log(k+`))n3 log n)+T (n′+k+`)+T (min(n−1, n−n′+q+q′))

)
226



The base case for the recursive calls is the high connectivity phase, which takes time

O(2O((k+`)3 log(k+`))n3 log n) as we will argue later. Solving the recurrence for the worst

case gives T (n) = O(2O((k+`)3 log(k+`))n4 log n), which is the desired upper bound for the

running time of the algorithm.

10.5.4 High Connectivity phase

In this section we describe the high connectivity phase for the algorithm. Assume we

have a B-MMCU instance Ib = (G,T,R, k′, `′, Tb) where Step 8 is not applicable. Let

us fix P = (Xb, Eb,Rb, k, `) ∈ P(Ib). We iterate through all possible values of P and

try to find a minimal solution to (Ib,P). Since |P(Ib)| = 2O((k+`) log(k+`)) it results in a

factor of 2O((k+`) log(k+`)) in the running time. For a graph G, by L(G) we denote the set

V (G) ∪ E(G). Similarly, for a tuple X = (X,F ), by L(X ) we denote the set X ∪ F . We

once again need to use lemmas 10.10-10.12 to bound number of terminals. We also need to

apply Lemma 10.13 to bound the number of edges.

Step 9. Apply Lemma 10.10, Lemma 10.11 and Lemma 10.12 exhaustively on the set T

of terminals in the graph (as done in rules 1-3 of Step 8, but doing it for all of T instead

of just T ∩ V ∗). Apply Lemma 10.13 to reduce multiplicity of all edges in the graph to at

most `+ 1.

The running time analysis of applying lemmas 10.10-10.12 in this step is exactly the same

as the one done in Step 8. Also, Lemma 10.13 can be applied in O(`n2) time. Hence,

the step takes O(n3(k + ` + log n)) time. After applying Step 9 exhaustively, we know

that no two terminals are adjacent, and hence for any solution X = (X,F ), we have that

F ∩ E(G[T ]) = ∅.

Now we look at what can happen after deleting a set X = (X,F ) from the graph G

such that X ⊆ V (G) \ T , F ⊆ E(G), |X| ≤ k and |F | ≤ `. Since we have assumed

that Step 8 is not applicable, for any X = (X,F ) where X ⊆ V (G) \ T , F ⊆ E(G),

|X| ≤ k and |F | ≤ `, Lemma 10.5 implies that the graph G − X contains at most

t := (2q + 2)(2(k + `)− 1) + 2(k + `) + 1 connected components containing a non-terminal

out of which at most one can contain more than q vertices outside T . Let us denote its
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vertex set by big(X ) (observe that this can possibly be the empty set, in case such a

component does not exist).

Now we define the notion of interrogating a solution, which will help us in highlighting the

solution.

Definition 10.8. Let Z = (Z,F ′) where Z ⊆ V (G) \ T , F ′ ⊆ E(G) \ E(G[T ]), |Z| ≤ k

and |F ′| ≤ ` and let S ⊆ L(G) \ T . We say that S interrogates Z if the following holds:

• S ∩ L(Z) = ∅;

• for any connected component C of G − Z with at most q vertices outside T , all

vertices and edges of C belong to S ∪ T .

Lemma 10.16. Let q′′ = (qt+ k + `)k+`+1 + (`+ 2)(k + `)(k + `+ 1)
∑k+`

i=1 (qt+ k + `)i.

Let F be a family obtained by the algorithm of Lemma 10.5 for universe U = L(G) \ T

and constants a = qt + (` + 1)
(
q′′+qt

2

)
and b = k + `, Then, for any Z = (Z,F ′) where

Z ⊆ V (G) \ T , F ′ ⊆ E(G) \ E(G[T ]), |Z| ≤ k and |F ′| ≤ `, there exists a set S ∈ F that

interrogates Z.

Proof. Let Z = (Z,F ′) where Z ⊆ V (G) \ T , F ′ ⊆ E(G) \ E(G[T ]), |Z| ≤ k and |F ′| ≤ `.

Let A be the union of vertex sets of all connected components of G−Z that have at most

q vertices outside T and let B be the set of edges of these connected components. By

Lemma 10.5, |A \ T | ≤ qt. Also, since we have applied Step 9 exhaustively, we have that

no two terminals are adjacent in the graph. Let C = {u |uv ∈ E(G) ∩ F ′, v ∈ A ∩ T}.

Clearly, C ∩ T = ∅, |C| ≤ ` and for any v ∈ A, N(v) ⊆ (A \ T ) ∪ Z ∪ C which gives

|N(A ∩ T )| ≤ |(A \ T ) ∪ Z ∪ C| ≤ qt + k + `. Now doing the same analysis as in Step 8

gives us |A ∩ T | ≤ q′′. Since the multiplicity of all the edges is bounded by `+ 1, we have

that |(A \ T )∪B| ≤ qt+ (`+ 1)
(
q′′+qt

2

)
and |L(Z)| ≤ k+ `. So, by Lemma 10.2, there is a

set S ∈ F that is disjoint with L(Z) and contains (A \ T ) ∪B. By construction of A and

B, S interrogates Z. This completes the proof of the lemma.

Step 10. Compute the family F from Lemma 10.16 and branch into |F| subcases, indexed

by sets S ∈ F . In a branch S we seek for a minimal solution XP to (Ib,P), which is

interrogated by S.
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Note that since we have q′′ = 2O((k+`)2 log(k+`)) and q, t = 2O((k+`) log(k+`)), the family F of

Lemma 10.2 is of sizeO(2O((k+`)3 log(k+`)) log n) and can be computed inO(2O((k+`)3 log(k+`))n log n)

time. The correctness of Step 10 is obvious from Lemma 10.16. As discussed, it can be

applied in O(2O((k+`)3 log(k+`))n log n) time and gives rise to O(2O((k+`)3 log(k+`)) log n) sub-

cases.

Lemma 10.17. Let XP = (X,F ) be a solution to (Ib,P) interrogated by S. Then there

exists a set T big ⊆ T ∪ (Tb \ Xb) that is empty or contains all vertices of exactly one

equivalence class of Rb, such that X ⊆ (Xb ∪NG(S(T big)) and F = AG,X(S(T big)), where

S(T big) is the union of vertex sets of all connected components of G(S ∪ T ∪ (Tb \Xb)) that

contain a vertex of (T ∪ (Tb \Xb)) \T big and AG,X(S(T big)) is set of edges in G which have

at least one end point in S(T big) but do not belong to any of the connected components of

G[S(T big)] and are not incident on X.

Proof. Let XP = (X,F ). Consider the graph GP −XP and let bigP(XP) be the vertex set

of the connected component of GP −XP that contains big(XP) (recall that GP is the graph

G with additional edges Eb ; thus bigP(XP) may be significantly larger than big(XP)). If

big(XP) = ∅, then we take bigP(XP) to be the empty set as well. As XP is a solution to

(Ib,P), we have X ∩Tb = Xb. Define T big = (T ∪ (Tb \Xb))∩ bigP(XP); as XP is a solution

to (Ib,P), T big is empty or contains vertices of exactly one equivalence class of Rb.

Now let C be the vertex set of a connected component of G−XP that contains a vertex

v ∈ (T ∪ (Tb \Xb)) \T big. Clearly, v /∈ bigP(XP). As S interrogates XP , bigP(XP) contains

big(XP) and X ∩ (T ∪ Tb) = Xb ⊆ Tb, we infer that C is the vertex set of a connected

component of G(S ∪ T ∪ (Tb \ Xb)) as well. As v ∈ C, C is a connected component of

G[S(T big)]. Let X ′ = Xb ∪ (X ∩NG(S(T big))) and let F ′ = AG,X′(S(T big)) ∩ F . We claim

that X ′ = (X ′, F ′) is a solution to (Ib,P).

As Xb ⊆ X, we have that X ′ ⊆ X and hence |X ′| ≤ k. Also, since F ′ ⊆ F , we have

that |F ′| ≤ `. Moreover, as X ′ ⊆ X, F ′ ⊆ F and XP = (X,F ) is a solution to (Ib,P),

if (u, v) ∈ Rb then u and v are in the same connected component of GP − X ′P . We now

show that for any (u, v) /∈ Rb the vertices u and v are in different connected components

of GP −X ′P . For the sake of contradiction, let u, v ∈ T ∪ (Tb \Xb) such that (u, v) /∈ Rb, u
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and v lie in the same connected component of GP −X ′P and distance between u and v is

minimum possible. Let P be the shortest path between u and v in GP −X ′P .

As XP = (X,F ) is a solution to (Ib,P), u and v lie in different connected components of

GP −XP . Without loss of generality, let v /∈ T big and let C be the connected component of

G−XP that contains v. Since (u, v) /∈ Rb and G−XP is a subgraph of GP −XP , we have

that u /∈ C. Since for every edge xy in G such that x ∈ C and y /∈ C, we have that either

y ∈ X ′ or xy ∈ F ′, the path P contains an edge v1u1 ∈ Eb such that v1 ∈ C and u1 /∈ C.

So in that case we have that v1, u1 ∈ Tb and hence (v1, u1) ∈ Rb. Also, since v1 ∈ C,

(v, v1) ∈ Rb and since Rb is an equivalence relation, we have that (v, u1) ∈ Rb. But by our

assumption, (u, v) /∈ Rb, which gives that (u1, u) /∈ Rb. Hence u1, u ∈ T ∪ (Tb \Xb) such

that (u1, u) /∈ Rb and they are connected by a proper subpath of P in GP − X ′P , which

contradicts our choice of u, v and P . This completes the proof of the lemma.

Now we are ready to give the final step of the algorithm. The correctness of the step

follows from Lemma 10.17 and the fact that if S interrogates a solution X to (Ib,P), then

|NG(S(T big))| ≤ k + `.

Step 11. For each branch, where S is the corresponding guess, we do the following. For

each set T big that is empty or contains all vertices of one equivalence class of Rb, if

|NG(S(T big))| ≤ k + `, then for each X ⊆ Xb ∪ NG(S(T big)) such that |X| ≤ k, and

F = AG,X(S(T big)), check whether (X,F ) is a solution to (Ib,P) interrogated by S. For

each P, output a minimal solution to (Ib,P) that is interrogated by S. Output ⊥ if no

solution is found for any choice of S, T big and X.

Note that R has at most (k + `)(k + ` + 1) equivalence classes. As |Tb| ≤ 2(k + `), we

have Rb has at most (k + `)(k + `+ 3) equivalence classes, and hence there are at most

(k + `)(k + `+ 3) + 1 choices of the set T big. For each T big, computing NG(S(T big)) and

checking whether |NG(S(T big))| ≤ k + ` takes O(n2) time. Since Xb ≤ k, there are at

most (k+ 1)(2k+ `)k choices for X, and then computing F = AG,X(S(T big)) and checking

whether (X,F ) is a solution to (Ib,P) interrogated by S take O(n2) time each. Finally,

checking whether the solution is minimal or not and computing a minimal solution takes

additional O((k + `)n2) time. Therefore Step 11 takes O(2O((k+`)3 log(k+`))n2 log n) time
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for all subcases.

This finishes the description of fixed-parameter algorithm for MMCU and we get the

following theorem.

Theorem 10.9. MMCU can be solved in O(2O((k+`)3 log(k+`))n4 log n) time.

10.6 Algorithm for MMCU with undeletable vertices

In this section, we describe an algorithm for MMCU∗. To solve this problem, we will use

the algorithm to solve MMCU which outputs a minmial solution. Let us first recall the

definition of MMCU∗ from Chapter 9.

MMCU∗ Parameter(s): k,`

Input: A graph G, integers k and `, T ⊆ V (G), an equivalence relation R on T

having at most two equivalence classes, and set of undeletable vertices U ⊆ V (G).

Output: Output a minimal solution X = (X,F ) to MMCU instance (G,T,R, k, `)

such that X ∩ U = ∅ and ⊥ if no such solution exists.

The definitions of a solution and minimal solutions to an MMCU∗instance are exactly the

same as in the case of MMCU. Observe that MMCU∗ is essentially an instance of MMCU,

where in addition to an instance (G, k, `, T,R) of MMCU, we are also provided with a set

of undeletable vertices U ⊆ V (G), and we require the vertices in the solution to be disjoint

from U . We describe the algorithm for the case when number of equivalence classes in

R is at most two, as that is what we needed for our application to Pseudobipartite

Deletion. But we remark that the reduction can be made to work for unbounded number

of equivalence classes as well, because after applying some preprocessing, as explained in

[RRS16], the number of equivalence classes for any connected component can be bounded.

Now, we show how to reduce an instance of MMCU∗ to bounded number of instance of

MMCU. For that, we basically guess how the solution is going to partition the vertices of

U . We first prove the following lemma.

Lemma 10.18. Let (G, k, `, T,R, U) be an instance of MMCU∗ and let R be the set of
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equivalence relations RU on T ∪ U such that RU |T = R. Then there exists R∗U ∈ R such

that the solution to MMCU instance (G, k, `, T ∪U,R∗U ) is a solution to MMCU∗ instance

(G, k, `, T,R, U) as well.

Proof. First we observe that for any RU ∈ R, since RU |T = R, for any solution X ′ to

MMCU instance (G, k, `, T ∪U,RU ), u, v ∈ T belong to the same connected component of

G−X ′ if and only if (u, v ∈ R). Let X be a solution to MMCU∗ instance (G, k, `, T,R, U).

Now we just need to show that there exists R∗U ∈ R such that for the solution X ′ to the

MMCU instance (G, k, `, T ∪U,R∗U ), we have that X ′ ≤ X . We show that X itself is such

a solution. We define R∗U as the equivalence relation on T ∪ U such that (u, v) ∈ R∗U if

and only if u and v lie in the same connected component of G−X . As X was a solution

to MMCU∗ instance (G, k, `, T,R, U), we have that R∗U |T = R. Also, by definition of R∗U ,

for all u, v ∈ T ∪ U , u and v belong to the same connected component of G − X if and

only if (u, v) ∈ R∗U . Hence, X is a solution to MMCU instance (G, k, `, T ∪ U, R∗U ).

Now, to solve an instance (G, k, `, T,R, U) of MMCU∗, for all equivalence relations RU on

T ∪ U such that RU |T = R, we solve the MMCU instance (G, k, `, T ∪ U,RU ). Let XRU

be the solution for the MMCU instance (G, k, `, T ∪ U,RU ). We return the solution XR∗U
such that for any XRU

such that R∗U 6= RU , we have that XR∗U ≤ XRU
. The correctness

of the algorithm follows from Lemma 10.18. Since the number of equivalence classes in

R is at most two, the number of equivalence classes in any equivalence relation RU on

T ∪U such that RU |T = R is at most |U |+ 2. So, the number of such equivalence relations

is bounded by (|U | + 2)|U |. Hence, we can solve an instance of MMCU∗ by making at

most (|U |+ 2)|U | calls to the algorithm for MMCU given in Theorem 10.9. which takes

O(2O((k+`)3 log(k+`))n4 log n) time. Hence we get the following theorem.

Theorem 10.10. MMCU∗ can be solved in (|U |+ 2)|U |O(2O((k+`)3 log(k+`))n4 log n) time.
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Part IV

Conclusion
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Chapter 11

Conclusion and Future Directions

The aim of this thesis was to study graph editing problems from various aspects. Many of

the graph editing problems including, but not limited to Vertex Cover, Clustering,

Feedback Vertex Set, are not only important from the algorithmic and applications

point of view, but also the research on them has led to deep insights into the theoretical

world. As most of these problems turn out to be NP–complete, parameterized complexity

is one of the natural ways to get tractable algorithms for them. In this thesis, we studied

many variations of graph editing problems and obtained FPT algorithms and kernels for

the same. We also give kernelization lower bounds for some induced subgraph problems

showing that they are not likely to have polynomial kernels. The results in the thesis are

summarized in the next section, and in the final section, we discuss some future directions

of research.

11.1 Results in the thesis

We first mention the directions of research pursued in the thesis.

• We looked for applications of conondeterminism in composition for proving lower

bounds for kernelization. This was one of very few lower bound results which used

the aspect of conondeterminism allowed by the framework.
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• We introduced the notion of coNP reductions, which can be useful in proving many

lower bounds on kernelization, as it does away with the requirement of proving

imrovement versions to be NP-hard for most problems.

• We initiated study of finding induced subgraph problems on restricted graph classes

which are W[1] hard on general graphs.

• We looked at generalizations of Feedback Vertex Set and Odd Cycle Transver-

sal problems and obtained FPT and kernelization results for the same.

• We generalized the classic Minimum Cut problem to include both vertices and edges,

showed it to be NP–complete and arrived at FPT results.

Now we summarize the results in the thesis.

• Π-Induced Subgraph does not admit a polynomial kernel unless NP ⊆ coNP/poly

for Π being any of the following classes of graphs: Perfect graphs, Chordal graphs,

Interval graphs, Cluster graphs, Weakly Chordal graphs, Cographs, Comparability

graphs, Proper Interval graphs, Split graphs and Claw-free graphs (Chapter 4).

• p-Max q-Colorable Induced Subgraph is FPT on Perfect graphs and Co-chordal

graphs. Also, on perfect graphs, the problem does not admit any polynomial kernel

for any fixed q ≥ 2 (Chapter 5).

• Split Vertex Deletion can be solved in time O∗(2k) and admits a kernel of size

O(k3). Split Edge Deletion can be solved in time O∗(2
√
k log k) time and admits

a kernel of size O(k2) (Chapter 6).

• Almost Forest Deletion is FPT and can be solved in time O∗(5.0024(k+ `)) and

admits a kernel of size O(k`(k + `)). Moreover, it can be solved on planar graphs in

O∗(c
√
k+`) time (Chapter 7).

• `-pseudoforest Deletionis FPT and can be solved in time O∗(ck` ) time where

the constant c` depends only on `. It also admits a kernel of size c′`k
2, where c′` is

another constant depending only on ` and hence a uniform kernel of size k2 for every
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fixed `. Pseudoforest Deletioncan be solved in time O∗(7.5618k) and admits a

kernel of size O(k2) (Chapter 8).

• Strong Bipartite Deletion is FPT(Chapter 9).

• Mixed Multiway Cut-Uncut is FPT(Chapter 10).

11.2 Future Directions

Now we mention some potential areas of research this thesis points towards.

• The result of Khot and Raman [KR02] characterizes the fixed parameter tractability

of Π-Induced Subgraph where Π is any non-trivial hereditary graph class. Even

though our results resolve the question of polynomial for most well known graph

classes, getting a similar result which characterizes kernelization complexity of Π-In-

duced Subgraph for all non-trivial hereditary graph classes remains elusive and

would be very interesting.

• We initiated study of Π-Induced Subgraph on restricted classes of graphs in this

thesis. It would be interesting to catalogue other problems which are W-hard on

general graphs but become FPT on some restricted class.

• We saw that the combination of iterative compression technique and recursive

understanding technique introduced by Chitnis et al. [CCH+12] can be useful in

solving graph modification problems. We believe that the technique is very general

and that full power of it is yet to be utilized.

• The Strong F Deletion problem introduced in the thesis opens many new inter-

esting areas. As we have seen, these problems are significantly harder than normal

graph deletion problems, but in the case of F being bipartite graphs, we were able

to arrive at FPT results. It is an interesting question to ask whether there are any

other graph classes F for which we can show the Strong F Deletion problem to

be FPT.
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[Erd47] Paul Erdős. Some remarks on the theory of graphs. Bulletin of the American

Mathematical Society, 53:292–294, 1947. 34
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