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SYNOPSIS

Propositional proof complexity–a sub-branch of computational complexity–is an ex-

tensively studied area, with a number of lower bound techniques for various propo-

sitional proof systems (for example Resolution, and Cutting Planes). The purpose of

this thesis is to assess whether similar techniques are applicable for proof systems

for quantified Boolean formulas (QBFs). The major contributions of this work are

as follows:

1. We show that level-ordered Q-resolution and tree-like Q-resolution, two re-

strictions of Q-resolution system, are incomparable.

2. We establish the feasible interpolation technique, first introduced by Kraj́ıček

for Resolution [62], to all CDCL-based QBF Resolution calculi. This provides

the first general lower bound method for CDCL-based QBF calculi and also

extends the scope of the feasible interpolation technique.

3. We introduce a cutting planes system CP+∀red for QBFs and analyse the

proof-theoretical strength of this new calculus. We also establish the strategy

extraction technique and feasible interpolation technique for the new calculi.

4. We show that both the size-width relation, established by Ben-Sasson and

Wigderson in [9], and space-width relation, established by Atserias and Dal-

mau in [3], for the Resolution proof system drastically fail in Q-resolution, even

in its weaker tree-like version.
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Chapter 1

Introduction

1.1 Proof Complexity

Proof complexity is a sub-branch of computational complexity, in which the main

focus is to prove non-trivial lower bounds for complete and sound proof systems (Def-

inition 2.1). To be precise, the problem is to find some hard theorems (resp. false

statements), proving (resp. refuting) which in a particular proof system requires

exponentially many steps with respect to the size of the theorem. Even more im-

portant is to establish techniques for proving lower bounds. Apart from having fun,

proving lower bounds are closely related to the main open problem of complexity

theory: NP vs coNP, in case of propositional proofs, and NP vs PSPACE in case

of proof complexity for quantified Boolean formulas (QBFs). Cook and Reckhow

in [36], proved that NP6= coNP iff for every propositional proof system, there is a

polynomial-size family of tautologies that requires superpolynomial size proofs with

respect to the size of the tautology. Since finding such family of tautologies are

quite hard, the theory of proof complexity breaks this problem into smaller prob-

lems of proving such lower bounds for specific proof systems. Several propositional

proof systems have been introduced in the literature, for example Resolution (Section
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2.3.1), Cutting Planes (Section 2.3.2), and Frege proof systems (Section 2.3.3).

Another importance of proving lower bounds comes from the field of automated the-

orem provers. It is known that SAT solvers based on conflict-driven clause learning

(CDCL) implicitly generate resolution proofs for unsatisfiable instances [74]. There-

fore lower bounds for resolution proofs directly translate to the lower bounds for the

running time of CDCL-based SAT solvers.

Since modern SAT solvers are so important, as it solves several hard industrial

instances very efficiently, and Resolution is closely related to them, great efforts have

been given for proving lower bounds for Resolution. As a result several lower bound

techniques have been developed for Resolution. For example, feasible interpolation

technique, first introduced by Kraj́ıček in [62], is a very successful technique, which

transfers circuit lower bounds to proof size lower bounds. It also applies to Cutting

Planes proof system [67]. Another important lower bound technique for Resolution

is the size-width relation, introduced by Ben-Sasson and Wigderson in [9]. Here size

of a proof denotes the number of clauses in it, and width of a proof is the length of

the biggest clause in it. The size-width relation allows us to prove size lower bounds

via width lower bounds.

Yet another lower bound technique in propositional proof complexity is the game

theoretic methods and the combinatorial characterizations of the hardness measures.

For example, Pudlák in [68] characterizes the size of resolution proofs as games.

Recently Pudlák’s game have been used in [23] for improving size and width lower

bounds. Atserias and Dalmau in [3], gave a combinatorial characterization of res-

olution width, and used it to show that even space is lower bounded by width in

Resolution. Informally, the space complexity for refuting a formula in Resolution is

the minimum number of clauses that must be kept in memory to refute the formula.

Game theoretic methods are also useful for obtaining optimal bounds in tree-like

resolution [18]. However we will not consider game theoretic methods in this thesis.

2



Interested readers are referred to Bonacina’s PhD dissertation [23].

In Chapter 2, we revisit some important propositional proof systems, along with

their lower bound techniques, which are relevant for the thesis.

The picture is more complex for proof systems for quantified Boolean formulas

(QBFs), as there exist two different approaches for QBF solving based on Resolution:

CDCL-based and expansion-based solving. A number of QBF proof systems have

been designed to capture these approaches. The core CDCL-based QBF Resolution

system is Q-resolution (Q-Res), introduced in [60]. This has been augmented to

capture ideas from CDCL solving, leading to long-distance resolution (LD-Q-Res)

[4], universal resolution (QU-Res) [78], or its combinations like LQU+-Res [6]. The

core expansion-based proof system is ∀Exp+Res, introduced in [56]. Recently more

powerful expansion-based proof systems have been developed in the form of IR-calc,

and IRM-calc [12]. In Chapter 2, we present the simulation order (Definition 2.3)

among these proof systems from [13]. Also, QBF proof systems based on Frege,

introduced recently by Beyersdorff et al. in [11], will be presented.

Since QBF proof complexity is a relatively young field, very few lower bound tech-

niques are known for it. Recently a lower bound for tree-like Q-resolution was

obtained via a game theoretic characterization of proof size [17]. However, the most

important lower bound technique developed for QBF systems is the strategy ex-

traction technique (Section 2.5). We say that a QBF proof system P has strategy

extraction if given a refutation π of a false QBF F , it is possible to extract effi-

ciently from π the winning strategy of the universal player for F . Beyersdorff et

al. in [13], were the first to use strategy extraction as a lower bound technique for

QBF proof systems QU-Res (and therefore Q-Res). Based on the fact that strategy

extraction for QU-Res is possible in AC0 ( [4]), they constructed a hard formula

QParityn, such that the only winning strategy for the formula is the parity func-

tion. Since the parity function is known to be hard for AC0 circuits [50], QParityn

3



must require exponential size proofs in QU-Res. Recently, Beyersdorff et al. in [11],

used strategy extraction technique for proving lower bounds in QBF proof systems

based on restricted Frege. We come back to the strategy extraction technique in

Section 2.5. We dedicate Chapter 2 of the thesis for literature survey.

1.2 Our Contributions

The purpose of this thesis is to understand which lower bound techniques of propo-

sitional proof systems are effective for QBF proof systems. The main contributions

of the thesis in the field of QBF proof complexity are as follows:

1.2.1 Incomparability Results

In Chapter 3, we show that level-ordered Q-resolution and tree-like Q-resolution,

two restrictions of Q-resolution are incomparable (Theorem 3.1). That is neither

can simulate (Definition 2.3) the other.

For showing that tree-like Q-resolution cannot simulate level-ordered Q-resolution,

we use the family of false formulas, which we denote as φn, defined by Janota and

Marques-Silva in [56]. In [56], they showed that φn is hard for ∀Exp+Res, and since

∀Exp+Res p-simulates tree-like Q-resolution, φn is hard for tree-like Q-resolution

as well. On the other side, φn was shown to be easy for Q-resolution [56], and

we observe that the same proof is indeed level-oredered and hence φn is easy for

level-ordered Q-resolution.

For proving that level-ordered Q-resolution cannot simulate tree-like Q-resolution,

we use the family of false QBFs CRn, defined again by Janota and Marques-Silva

in [56]. They showed that CRn is hard for level-ordered Q-resolution, but here we

show that CRn is in fact easy for tree-like Q-resolution. We prove this by giving a

4



short tree-like Q-resolution refutation of CRn (Section 3.3).

This work was done jointly with Meena Mahajan. It has been published in the

Journal; ‘Information Processing Letters’, 2016 [65].

1.2.2 Introduction of a New QBF Proof System based on

Cutting Planes

In propositional case, Cutting Planes proof system, which works with linear inequali-

ties, has been developed in [37]. It is well known that Cutting Planes proof system is

in between Resolution and Frege, that is, it is exponentially stronger than Resolution,

however is exponentially weaker than Frege (see Section 2.3.2). For QBFs a similar

Cutting Planes system based on integer linear programming has been missing. In

Chapter 4, we define a natural Cutting Planes system for QBFs and give a compre-

hensive analysis of its proof complexity. To be precise, we prove the following results

in Chapter 4:

1. Cutting Planes for QBFs. We introduce a complete and sound QBF proof

system CP+∀red for false QBFs, that works with quantified set of linear inequalities,

where each variable is either quantified existentially or universally in a quantifier

prefix. The lines in the CP+∀red proof systems are linear inequalities. The system

CP+∀red extends the classical Cutting Planes system with one single ∀-reduction

rule allowing manipulation of universally quantified variables. The definition of

the system thus naturally aligns with the QBF Resolution systems Q-Res [60] and

QU-Res [78] and the stronger QBF Frege systems [11] that likewise add universal

reduction to their classical base systems.

Inspired by the recent work on semantic Cutting Planes [47] we also define a stronger

system semCP+∀red where in addition to universal reduction all semantically valid

inferences between inequalities are allowed (Section 4.4).

5



2. Relations to Other QBF Proof Systems. We compare our new system

CP+∀red with previous QBF Resolution and Frege systems. In contrast to the clas-

sical setting, the emerging picture is somewhat more complex: while CP+∀red is

strong enough to simulate the core CDCL QBF Resolution systems Q-Res and QU-

Res and indeed is exponentially stronger than these systems (Theorem 4.8), CP+∀red

is incomparable (under a natural circuit complexity assumption) to even the base

system ∀Exp+Res of the expansion Resolution systems (Theorem 4.14).

On the other hand, CP+∀red turns out to be simulated by QBF Frege (Theorem 4.15)

and QBF Frege is exponentially more powerful than CP+∀red (Corollary 4.16).

While this separation could be achieved by lifting the classical separation [67] to

QBF by considering purely existentially quantified formulas, we highlight that our

separation also holds for natural QBFs expressing the clique-co-clique principle,

which is not known to admit a succinct propositional representation.

3. Lower Bound Techniques for CP+∀red. Technically, our separations rely

on two lower bound methods that we establish for CP+∀red: strategy extraction

(Section 4.3) and feasible interpolation (Chapter 5, Section 5.2).

Strategy extraction as a lower bound technique was first devised for Q-Res, and QU-

Res [13], and subsequently extended to QBF Frege systems [11, 20]. The technique

applies to calculi that allow to efficiently extract winning strategies for the univer-

sal player from a refutation (or alternatively Skolem functions for the existential

variables from a proof of a true QBF). Here we show that CP+∀red admits strat-

egy extraction in TC0, thus establishing an appealing link between CP+∀red proofs

(which can count) and the counting circuit class TC0 (Theorem 4.18). For each func-

tion f ∈ P/poly we construct false QBFs Q-fn where each winning strategy forces

the universal player to compute f . Thus assuming the existence of f ∈ P/poly \TC0

we obtain lower bounds for Q-fn in CP+∀red (Theorem 4.14) and even semCP+∀red

(Corollary 4.20), whereas however the same formulas are easy in ∀Exp+Res.

6



We establish feasible interpolation technique for CP+∀red in Chapter 5 and thereby

obtain an unconditional lower bound result for the system CP+∀red.

This work was done jointly with Olaf Beyersdorff, Leroy Chew, and Meena Maha-

jan. It has been published in the proceeding of 36th IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science (FSTTCS),

2016 [16].

1.2.3 Establishing Feasible Interpolation for QBF Proof Sys-

tems

For propositional proof systems, a number of lower bound techniques have been

developed. One of the most successful techniques is the feasible interpolation tech-

nique first developed by Kraj́ıček for Resolution [62]. The technique also applies to

Cutting Planes [67]. The technique transfers circuit lower bounds to proof size lower

bounds. In chapter 5, we establish feasible interpolation technique for all CDCL-

based QBF Resolution proof systems. We do this by establishing the technique for

the most powerful CDCL-based QBF proof system LQU+-Res (Section 5.1.2). As

discussed above, we also establish this technique for CP+∀red (Section 5.2) and also

for the stronger semCP+∀red (Section 5.3). This largely extends the scope of feasible

interpolation technique.

As a consequence, we prove an unconditional exponential lower bound for the clique-

co-clique formulas Φn,k for the systems LQU+-Res, CP+∀red and semCP+∀red proof

systems (Sections 5.1.4, 5.2, and 5.3 respectively). The formulas Φn,k encode the

obviously false statement that a given graph on n vertices both has and does not

have a k-clique (for definition of Φn,k, see Section 4.2.3).

This work was done jointly with Olaf Beyersdorff, Leroy Chew, and Meena Maha-

jan. It has been published in the proceeding of 42nd International Colloquium on

7



Automata, Languages, and Programming (ICALP), 2015 [14]. Results from Section

5.2, and 5.3 appear in [16].

1.2.4 Negative Results: Size-width and Space-width Rela-

tion of Resolution fails in Q-resolution

In their paper [9] ‘Short proofs are narrow – resolution made simple’, Ben-Sasson

and Wigderson introduces the size-width relation, which is one of the important

lower bound techniques for Resolution. It allows us to prove size lower bounds via

width lower bounds. Also Atserias and Dalmau in [3] show that lower bounds for

space in Resolution again can be obtained via lower bounds for width.

In chapter 6, we assess whether similar techniques are effective for Resolution calculi

for quantified Boolean formulas (QBFs). We concentrate only on the following three

QBF Resolution systems: Q-Res, ∀Exp+Res, and IR-calc. This choice is motivated by

the fact that Q-Res and ∀Exp+Res form the base systems for CDCL and expansion-

based solving, respectively, and IR-calc unifies both approaches in a natural way, as

it simulates both Q-Res and ∀Exp+Res [12].

Though space and width have not been considered in QBF before, these notions

straightforwardly apply to QBF Resolution systems. However, due to the ∀-reduction

rule in Q-Res handling universal variables, it is relatively easy to enforce that uni-

versal literals accumulate in clauses of Q-Res proofs, thus always leading to large

width, irrespective of size and space requirements (Lemma 6.4). This prompts us to

consider existential width — counting only existential literals — as an appropriate

width measure in QBF. This definition aligns both with Q-Res, resolving only on

existential variables, as well as with ∀Exp+Res and IR-calc, which like all expansion-

based systems only operate on existential literals. We show the following:

1. Negative Results. Our main results show that the size-width relation of [9] as
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well as the space-width relation of [3] dramatically fail for Q-Res, even when con-

sidering the tighter existential width. We first notice that the proof establishing the

size-width result in [9] almost fully goes through, except for some very inconspicuous

step that fails in QBF (Proposition 6.5). But it is not only the particular technique

that fails: we prove that Tseitin transformations (see Section 2.1) of formulas ex-

pressing a natural completion principle from [56] have small size and space, but

require large existential width in tree-like Q-Res (Theorem 6.6), thus refuting the

size-width relation for tree-like Q-Res as well as the space-width relation for general

dag-like Q-Res.

As the formulas for the completion principle have O(n2) variables, they do not rule

out size-width relations in general Q-Res. However, we show that different formulas,

hard for tree-like Q-Res [56], provide counterexamples for size-width relations in full

Q-Res (Theorem 6.8).

Technically, our main contributions are width lower bounds for the above formulas,

which we show by careful counting arguments. We complement these results by

existential width lower bounds for parity-formulas QParityn from [13], providing

an optimal width separation between Q-Res and ∀Exp+Res (Theorem 6.18).

2. Positive Results and Width-space-preserving Simulations. Though the

negative picture above prevails, we prove some positive results for size-width-space

relations for tree-like versions of the expansion-based Resolution systems ∀Exp+Res

and IR-calc. Proofs in ∀Exp+Res can be decomposed into two clearly separated

parts: an expansion phase followed by a classical resolution phase. This makes

it easy to transfer almost the full spectrum of the classical relations to ∀Exp+Res

(Theorem 6.19).

To lift these results to IR-calc (Theorem 6.20), we show a series of careful space and

width-preserving simulations between tree-like Q-Res, ∀Exp+Res, and IR-calc. In

particular, we show the surprising result that tree-like ∀Exp+Res and tree-like IR-
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calc are equivalent with respect to simulation (Lemma 6.15), thus providing a rare

example of two proof systems that coincide in the tree-like, but are separated in the

dag-like model [13]. The only other such example that we are aware of is regular-

resolution vs. Resolution (although this is perhaps slightly less natural as regular-

resolution is just a sub-system of Resolution). In addition, our simulations provide

a simpler proof for the simulation of tree-like Q-Res by ∀Exp+Res (Corollary 6.17),

shown in [56] via a more involved argument.

Our last positive result is a size-space relation in tree-like Q-Res (Theorem 6.20),

which we show by a pebbling game analogous to the classical relation in [46]. Not

surprisingly, this only positive result for Q-Res avoids any reference to the notion of

width.

This work was done jointly with Olaf Beyersdorff, Leroy Chew, and Meena Maha-

jan. It has been published in the proceeding of 33rd International Symposium on

Theoretical Aspects of Computer Science (STACS), 2016 [15].
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Chapter 2

Literature Survey

2.1 Quantified Boolean Formulas

A literal is a Boolean variable or its negation. For any variable x, we say the literal

x is complementary to the literal ¬x (x̄) and vice versa. A clause is a disjunction

(∨) of literals and a term is a conjunction (∧) of literals. We say a clause C is a

tautological clause if there exists a variable x such that both the literals x and ¬x

belongs to C. Otherwise the clause is non-tautological. We denote the empty clause

by �. A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses.

A DNF is a disjunction of terms. For convenience the clause C is written simply

as a set of literals and any CNF formula as a set of clauses. If a clause has at most

k-literals, we call it a k-clause. A k-CNF formula is a set of k-clauses. Let SAT be

the language of all satisfiable propositional Boolean formulas, and UNSAT be the

set of all unsatisfiable propositional CNF formulas. For a literal l = x or l = ¬x, we

write var(l) for x and extend this notation to var(C) for a clause C.

Let α be any partial assignment. For a clause C, we write C|α for the clause obtained

after applying the partial assignment α to C. For example, applying α : x1 ← 0 on

the clause C ≡ (x1∨x2∨x3) yields C|α ≡ (x2∨x3), and on applying α : x1 ← 1 on
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the same clause gives C|α ≡ 1. Let F be a CNF formula, and x is a variable in F .

Then F |x=1 is a CNF formula obtained from F by removing all clauses containing

positive x, and removing all occurrences of negative x. Let A1, . . . , Ak and B be

some propositional formulas. Then we say that A1, . . . , Ak |= B is valid, if any

assignment α which satisfies A1 ∧ · · · ∧ Ak also satisfies B.

Quantified Boolean Formulas (QBFs) extend propositional logic with Boolean quan-

tifiers with the standard semantics that ∀x.F is satisfied by the same truth assign-

ments as F |x=0 ∧ F |x=1 and ∃x.F as F |x=0 ∨ F |x=1. We assume that QBFs are in

closed prenex form with a CNF matrix, i.e, we consider the form Q1x1 · · · Qnxn .φ

where each Qi is either ∃ or ∀, and φ is a quantifier-free CNF formula in the vari-

ables x1, . . . , xn. Any QBF can be efficiently converted to an equivalent QBF in this

form, but note that restricting formulas to prenex form is not a restriction from a

logical point of view. However, there is no unique prenex form, for a non-prenex

formula, and the chosen prenex form may strongly influence the length of proofs.

Such formulas are succinctly denoted as Q .φ, where φ is called the matrix, and Q is

its quantifier prefix. The index ind(y) of a variable y is its position in the prefix Q;

for each i ∈ [n], ind(xi) = i. If ind(x) < ind(y), we say that x occurs before y, or to

the left of y. Following scoping rules, the rightmost variable in Q is also called the

innermost variable. The quantification level lv(y) of a variable y in Q .φ is the num-

ber of alternations of quantifiers y has on its left in the quantifier prefix of Q .φ. For

instance, in a QBF ∃x1∀x2∀x3∃x4φ, lv(x1) = 1, lv(x2) = lv(x3) = 2, and lv(x4) = 3.

Let F = Q1x1 · · · Qnxn .φ be a QBF, then Q1x1 · · · Qnxn .φ|xi=1 is a QBF with the

CNF matrix φ|xi=1 obtained from φ by removing all clauses containing positive xi,

and removing all occurrences of negative xi. We denote this formula by F|xi=1.

A QBF Q1x1 · · · Qkxk .φ can be seen as a game between two players: universal (∀)

and existential (∃). In the ith step of the game, the player Qi assigns a value to

the variable xi. The existential player wins if φ evaluates to 1 under the assign-
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ment constructed in the game. The universal player wins if φ evaluates to 0. A

strategy for xi is a function from all variables of index < i to {0, 1}. A strategy for

the universal player is a collection of strategies, one for each universally quantified

variable. Similarly, a strategy for the existential player is a collection of strategies,

one for each existentially quantified variable. A strategy for the universal player is

a winning strategy if using this strategy to assign values to variables, the universal

player wins any possible game, irrespective of the strategy used by the existential

player. Winning strategies for the existential player are similarly defined. For any

QBF, exactly one of the two players has a winning strategy. A QBF is false if and

only if there exists a winning strategy for the universal player ( [52], [2, Section

4.2.2], [66, Chapter 19]).

Tseitin (Tseytin) Transformations [76] Given a Boolean formula F (~x), the

Tseitin transformation converts it into 3-CNF formula F ′(~x, ~y) such that F (~x) is

satisfiable if and only if F ′(~x, ~y) is satisfiable. The size of F ′(~x, ~y) is polynomially

related to the size of F (~x). Not just a formula, in fact, given any Boolean circuit,

the Tseitin transformation converts it into a 3-CNF formula such that the size of the

formula is linear in the size of the circuit. Moreover, the assignments which make

the circuit evaluates to 1 are in 1-to-1 correspondence with the assignments that

satisfy the 3-CNF formula. Briefly this is achieved by introducing a new variable

for each gate, representing the value of the gate, and adding clauses to enforce that

the gate values are correctly computed (for details see [38, Chapter 34]).

We also use the Tseitin transformations for the formulas with quantifier prefix. The

newly introduced Tseitin variables are existential. We extend the original quan-

tifier prefix in the following ways: if a Tseitin variable t abbreviates a formula

f(x1, . . . , xn) then ∃t will occur somewhere right of Qixi ( for all 1 ≤ i ≤ n) in the

quantifier prefix. It should be noted that the concrete placement of ∃t may have a

severe impact on the size of proofs.

13



2.2 Proof Systems

The concept of proof system was first defined by Cook and Reckhow in [36]. Consider

the language SAT of all satisfiable Boolean formulas. Trivially SAT is in NP as

there always exists a short proof (satisfying truth assignment) for formulas in SAT.

However for formulas not in SAT how short proofs could be is not clear. This

requires the definition of a proof system.

Definition 2.1. [36] A proof system for a non-empty language L ⊆ {0, 1}∗ is a

polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that Range(f) = L.

For string x ∈ L, we say a string w ∈ {0, 1}∗ is an f -proof of x if f(w) = x. We say

a proof system for L is polynomially bounded if there exists a polynomial p(x) ∈ N[x]

such that each x ∈ L has an f -proof ‘w’ of size |w| ≤ p(|x|).

Definition 2.2 (Completeness and soundness of a proof system [36]). We say that

a proof system f : {0, 1}∗ → {0, 1}∗ for a language L is complete if f({0, 1}∗) ⊇ L

(i.e, for every x ∈ L, there exists an f -proof w), and is sound if f({0, 1}∗) ⊆ L (i.e,

if there exists an f -proof w for x, then x ∈ L).

Definition 2.3 (Simulations [36]). Given two proof systems f1 and f2 for the same

language L, we say that f1 simulates f2, if there exists a function g and a polynomial

p such that f1(g(w)) = f2(w) and |g(w)| ≤ p(|w|) for all w. Thus g translates a proof

w of x ∈ L in the system f2 into a proof g(w) of x ∈ L in the system f1, with at most

polynomial blow-up in proof-size. If there is such a g that is also polynomial-time

computable, then we say that f1 p-simulates f2.

2.3 Propositional Proof Systems

A proof system for the language UNSAT is called propositional proof system

(pps). Note that pps can also be defined for the languages of true propositional DNF
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formulas (TAUT), however here we consider pps for unsatisfiable formulas only.

From Definition 2.1, it is clear that NP is precisely the set of languages that have

polynomially bounded proof systems. In fact, Cook and Reckhow proved in [36] that

if one can find a polynomial-size family of tautologies that does not have polynomial

size proofs then this will separate NP from coNP and thus separate P from NP. Since

finding such family of tautologies is quite hard, the theory of proof complexity breaks

this problem into smaller problems of proving such lower bounds for specific proof

systems. We briefly discuss three important pps: Resolution, Cutting Planes, and

Frege proof systems.

2.3.1 Resolution Proof System

Resolution (Res) is well studied propositional proof system introduced by Blake in [22]

and proposed by Robinson in [73] as automated theorem proving. The lines in the

resolution proofs are clauses. Given a CNF formula F , Resolution can infer new

clauses according to the following inference (resolution) rule :

C ∨ x D ∨ ¬x
C ∨D

,

where C and D are clauses and x is a variable being resolved, called as pivot variable.

Let F be an unsatisfiable CNF formula. A resolution proof (refutation) π of F is

a sequence of clauses D1, . . . , Dl with Dl = � and each clause in the sequence is

either from F or is derived from previous clauses in the sequence using the above

resolution rule.

We can also view π as a directed acyclic graph Gπ, where the source nodes are

the clauses from F , internal nodes are the derived clauses and the empty node is

the unique sink. Edges in Gπ are from the hypotheses to the conclusion for each

resolution step. In Gπ, we say that a clause C is descendant to a clause D if there
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is a directed path from C to D. If Gπ is a tree, we call π a tree-like resolution

proof (ResT) of F . In other words, in tree-like resolution proofs one cannot reuse

the derived clauses. We call π a regular resolution proof if on any directed path in

Gπ no variable appears twice in any resolution rule as the pivot variable.

Complexity Measures for Resolution

For a CNF formula F , |F | is the number of clauses in it, and w(F ) denotes the

maximum number of literals in any clause of F . Let π Res F (resp. π ResT
F ) denote

that π is a resolution proof (tree-like resolution proof, respectively) of the formula

F .

The most important complexity measure for Resolution is the size. The size |π|

of a refutation π is defined as the number of clauses in π. The size complexity

S( Res F ) (resp. S( ResT
F )) of refuting an unsatisfiable CNF formula F in Reso-

lution (resp. in tree-like resolution) is defined as min {|π| : π Res F} (repectively

min {|π| : π ResT
F}).

The width of a clause C is the number of literals in C, denoted by w(C). The width

w(F ) of a CNF formula F , is the maximum width of a clause in F . The width w(π)

of a proof π is the maximum width of any clause appearing in π. The width w( Res F )

(resp. w( ResT
F )) of refuting an unsatisfiable CNF formula F in Resolution (resp.

tree-like resolution) is defined as min{w(π) : π Res F} (resp. min{w(π) : π ResT
F}).

The third complexity measure for Resolution is space, first defined in [46]. In lit-

erature it is also called clause space, to distinguish it from variable space or total

space, see for example, [8]. We consider only clause space in this thesis, and so we

call it just space. Informally, it is the minimal number of clauses that must be kept

simultaneously in memory to refute a formula. Instead of viewing a proof as a DAG,

we view it as a sequence of CNF formulas F0, F1, . . . , Fs, where F0 = ∅, � ∈ Fs, and

each Fi+1 is obtained from Fi by either erasing some clause, downloading an axiom,

or adding a clause derived by resolution rule from clauses in Fi. In the latter case,
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one of the premises of the inference rule may also simultaneously be deleted. For

such a proof σ, CSpace(σ) is the maximum number of clauses in any Fi, i ∈ [s].

The space to refute F , denoted CSpace( Res F ), is the minimum CSpace(σ) over all

resolution refutations σ for F .

If we modify the inference step so that the clause(s) used to obtain the inference

are erased in the same step, then any derived clause can be used at most once and

we obtain a tree-like space-oriented resolution proof. Correspondingly we define

CSpace( ResT
F ) as the minimum space used by any tree-like proof sequence refuting

F .

We come back to these complexity measures in Chapter 6.

The main objective is to prove size lower bounds for Resolution. To be precise,

come-up with a hard family of CNF formulas Fn such that S( Res Fn) is exponential

in the size of Fn. Apart from theoretical interests such lower bounds are useful for

practical purposes as well: Resolution is at the core of most of the SAT solvers since

the introduction of the DPLL algorithm [41, 42] and its improvements to Conflict

Driven Clause Learning (CDCL) algorithms, therefore size lower bounds on Resolu-

tion translate to time lower bounds for these algorithms. To be precise, a run of a

SAT solver on some unsatisfiable formula, provides a proof of unsatisfiability of the

input formula, and these proofs of unsatisfiability are closely related to resolution

proofs. Interested readers are referred to Ashish Sabharwal’s Ph.D dissertation [74].

Lower Bound Techniques for Resolution

The first exponential size lower bound for Resolution has been proved by Haken in

1985 [53]. He considered the pigeonhole principle for his proof. The pigeonhole prin-

ciple says that if we put m pigeons into n holes, where m > n, then at least one hole

must contain more than one pigeon. (We discuss pigeonhole principle with precise

Theorem statement proved in [53] in Section 2.3.2). Then Urquhart in 1987 [77],

showed that refuting Tseitin contradictions, which captures the fact that for every
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graph, the sum of degrees of all vertices is even, requires exponential steps in Resolu-

tion. For the precise definition of Tseitin contradictions, see [9, Definition 4.1]. Then

Chvátal and Szemerédi in their outstanding paper [35], showed that for k ≥ 3, with

high probability a random k-CNF formula is unsatisfiable and requires an exponen-

tial size refutation in Resolution. These lower bounds were achieved by ingenious

counting and random restriction techniques. However, Ben-Sasson and Wigderson

in [9] showed that all these exponential lower bounds can be achieved by showing

the width lower bounds for resolution proofs. They actually introduced a new lower

bound technique, commonly known as ‘size-width’ technique for Resolution.

The Size-Width Relationship

In their pioneering paper [9], Ben-Sasson and Wigderson showed that resolution size

lower bounds can be elegantly obtained by showing lower bounds to the width of

resolution proofs. In particular, they prove the following Theorem:

Theorem 2.4 ( [9]). For all unsatisfiable CNFs F in n variables the following holds:

S( ResT
F ) ≥ 2

w
(

Res F
)
−w(F )

, and

S( Res F ) = exp

(
Ω

(
(w ( Res F )− w(F ))

2

n

))
.

Using Theorem 2.4, Ben-Sasson and Wigderson gave simple and unified proofs for

almost all known exponential lower bounds on size of resolution proofs. In addition

they also gave some new lower bound results. Inspired from the size-width relation-

ship, one natural question arises: do similar relations exist among other complexity

measures in Resolution? The literature contains some positive answers. In their

fundamental work, Atserias and Dalmau in [3] showed that lower bounds for space

again can be obtained via lower bounds for width. In Chapter 6, we discuss these re-

lations and also assess whether similar techniques are effective for Resolution calculi

for quantified Boolean formulas (QBFs).
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Feasible Interpolation for Resolution

Using Craig’s interpolation theorem [39,40], Kraj́ıček in [62], has established a new

lower bound technique for Resolution commonly known as feasible interpolation tech-

nique. The technique reduces the problem of proving size lower bounds on Resolution

to proving lower bounds on the circuit size for explicit Boolean functions.

To be precise, let F ≡ A(~p, ~q) ∧ B(~p, ~r) be an unsatisfiable CNF formula, where

~p, ~q, and ~r are disjoint set of variables. A(~p, ~q) is the set of clauses over variables

~p and ~q and B(~p, ~r) is the set of clauses over variables ~p and ~r. Thus ~p are the

common variables among them. Let ~a be the assignment for ~p variables. Then

Kraj́ıček showed that from any resolution proof π of F , one can extract a Boolean

interpolating circuit C(~p) of size polynomially related to |π|, such that C(~a) =

0 =⇒ A(~a, ~q) is false and C(~a) = 1 =⇒ B(~a, ~r) is false. He further showed

that, if ~p variables appears only positively in A(~p, ~q) or only negatively in B(~p, ~r),

then one can in fact extract a monotone interpolating circuit from π with similar

properties. Thus the technique translates the lower bound problem for Resolution

to lower bound problem on monotone circuits. Since clique functions are hard for

monotone circuits [1], it turns out that a nice encoding of clique functions as CNF

formulas (clique-colour formulas) is hard for Resolution proof system as well. We

discuss feasible interpolation in Chapter 5.

2.3.2 Cutting Planes Proof System

After Resolution, Cutting Planes is one of the best known complete and sound proof

systems for unsatisfiable CNF formulas. Cutting Planes was first proposed as a proof

system in [37], and is designed to show that a given set of linear inequalities has no

0, 1-solutions. Each proof line in Cutting Planes is of the form

∑
k

ckxk ≥ C,
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where ck, C are integers. The variables xi’s can take only integer values. However

we restrict the variables to take only 0, 1-values. We do this by adding additional

inequalities (called Boolean axioms) xk ≥ 0 and −xk ≥ −1 for each variable xk.

The inference rules are as follows:

Add: from
∑
k

ckxk ≥ C and
∑
k

dkxk ≥ D derive
∑
k

(ck + dk)xk ≥ C +D.

Multiply: from
∑
k

ckxk ≥ C derive
∑
k

dckxk ≥ dC, where d ∈ Z+.

Divide: from
∑
k

ckxk ≥ C derive
∑
k

ck
d
xk ≥

⌈
C

d

⌉
, where d ∈ Z+ divides each ck.

Definition 2.5 (Cutting Planes proofs). Let I be a set of inequalities. A Cutting

Planes proof of an inequality I from I is a sequence of inequalities I1, . . . , Il such

that Il = I and for every j ∈ {1, . . . , l},

• Ij ∈ I, or,

• Ij is a Boolean axiom, or,

• Ij is derived from earlier inequalities in the sequence via one of the inference

rules: add, multiply, or divide.

A Cutting Planes refutation π of an inconsistent set of inequalities I is a proof deriv-

ing 0 ≥ C for some positive integer C. The length of π (denoted |π|) is the number

of lines in it, and the size of π (denoted size(π)) is the bit-size of a representation of

the proof (this depends on the number of lines and the binary length of the numbers

in the proof).

Definition 2.6 (Encoding CNFs as inequalities). We encode a CNF formula φ

over variables x1, . . . , xn as a set of linear inequalities as follows: define R(x) = x,

R(x̄) = 1 − x. A clause C ≡ (l1 ∨ · · · ∨ lk) is translated into the linear inequality

R(C) ≡
∑k

i=1R(li) ≥ 1. A CNF formula φ = C1∧ · · · ∧Cm is represented as the set
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of inequalities Fφ = {R(C1), R(C2), . . . , R(Cm)} ∪B, where B is the set of Boolean

axioms x ≥ 0,−x ≥ −1 for each variable x. We call this the standard encoding.

We say that a 0, 1-assignment α satisfies the inequality I ≡
∑n

i=1 aixi ≥ b (i.e,

I|α = 1), if
∑n

i=1 aiαi ≥ b, where αi is the value given to the variable xi by α.

Observe that for any clause C, an assignment satisfies C if and only if it satisfies

R(C). Hence CNF formula φ is satisifable iff Fφ is satisfiable.

After defining standard encoding one can talk about refuting unsatisfiable CNF

formulas in Cutting Planes. It is not hard to see that Cutting Planes is at least as

powerful as Resolution.

Theorem 2.7 ( [37], also see [7]). Cutting Planes p-simulates Resolution.

Proof. We only need to simulate resolution rule. Let (A∨C∨x) (B∨C∨x̄)
(A∨B∨C)

be a resolution

step, where the literals in A and B are disjoint. By induction we have the inequalities

R(A ∨C ∨ x) and R(B ∨C ∨ x̄). Add the two inequalities together with inequality

y ≥ 0 for each positive literal y in A or B and 1 − y ≥ 0 for each negative literal

ȳ in A or B. This results in an inequality in which the conversion of each literal in

(A∨B ∨C) appears with the coefficient 2 and applying the division rule with d = 2

gives the inequality R(A ∨B ∨ C).

As promised before, we now encode pigeonhole principle, with m pigeons and n

holes, as a CNF formula PHPmn , state Haken’s result and revisit the short Cutting

Planes refutation of PHPmn (m > n), from [37].

Pigeonhole principle can be easily encoded as an unsatisfiable CNF formula PHPmn

over variables xi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, which are supposed to be assigned TRUE

if pigeon i is put into hole j. PHPmn contains the following clauses:

• (xi,1∨. . . ,∨xi,n), for i ∈ [m]. This clause ensures that the ith pigeon is assigned

to at least one hole.
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• x̄i,j ∨ x̄k,j, for i, k ∈ [m], i 6= k, j ∈ [n]. This clause ensures that the jth hole

does not get both the ith and the kth pigeons.

Haken proves the following Theorem:

Theorem 2.8. [53] For any n ≥ 2, every resolution refutation of PHP n
n−1 has size

at least 2n/20. That is S( Res PHP n
n−1) ≥ 2n/20.

Short Cutting Planes Proof for Pigeonhole Principle [37, Proposition 7]

We have the following inequalities corresponding to the clauses in PHPmn :

• xi,1 + · · ·+ xi,n ≥ 1, for i ∈ [m].

• xi,j + xk,j ≤ 1(≡ −xi,j − xk,j ≥ −1), for i, k ∈ [m], i 6= k, j ∈ [n].

• xi,j ≥ 0, xi,j ≤ 1(≡ −xi,j ≥ −1), for i ∈ [m], j ∈ [n].

By induction on k from 2 to m, we derive x1,j +x2,j + · · ·+xk,j ≤ 1, for each j ∈ [n].

Note that the required inequalities for k = 2 is already present in the set of initial

inequalities. This takes care of the base case.

Suppose one has derived x1,j + x2,j + · · ·+ x(k−1),j ≤ 1. We do the following:

1. Add (k−2) copies of x1,j+x2,j+· · ·+x(k−1),j ≤ 1 and one each of xi,j+xk,j ≤ 1,

with 1 ≤ i ≤ (k−1), to get (k−1)x1,j +(k−1)x2,j + · · ·+(k−1)xk,j ≤ 2k−3.

2. Apply division rule to get x1,j + x2,j + · · ·+ xk,j ≤ b2k−3
k−1
c = 1.

Summing these inequalities for all j gives that the sum of all xi,j’s is at most n.

Moreover, summing up the first set of inequalities gives us that the sum of all xi,j’s

is at least m. Thus when m > n, we have a contradiction.

This along with Theorem 2.8, shows that Cutting Planes is exponentially more pow-

erful than Resolution.
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Lower Bound Technique for Cutting Planes

Feasible interpolation is the only known lower bound technique for Cutting Planes.

Pudlák in [67] generalises Kraj́ıček’s feasible interpolation technique for Resolution

[62] to Cutting Planes, and proves the first exponential lower bound results for Cutting

Planes. In Chapter 5, we discuss this technique in detail.

Now we define Frege proof systems, which are known to be exponentially more

stronger than Cutting Planes [51, 67].

2.3.3 Frege Proof Systems

A Frege proof system is not just a single proof system, but it usually refers to a

class of proof systems. A typical Frege proof system G has a finite set of axiom

schemes and inference rules. For example (P ∧ Q) → P might be an axiom. Here

P and Q are not just single formulas, but they are meta-symbols that can stand for

any propositional formulas. The lines in a Frege proof are propositional formulas

built over propositional variables xi and some finite set of functionally complete

connectives. A Frege proof is a sequence of formulas where each formula is an

(instance of an) axiom, or is inferred from previous formulas by a valid inference

rule. We call such systems Frege systems, after Frege [49]. Apart from being sound

and complete, Frege systems are also required to be implicationally complete. That

is, for formulas A1, . . . , Ak, and B, if A1, . . . , Ak |= B then there exists a Frege

proof of B from A1, . . . , Ak (i.e, A1, . . . , Ak Frege B). The exact choice of the axiom

schemes and rules does not matter as any two Frege systems can p-simulate each

other [36]. Therefore in this thesis, we assume that G has only one inference rule:

modus ponens,

A A→ B

B

With this rule the system is sound and implicationally complete [61].
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Usually Frege systems are defined as proof systems where the last formula is the

proven formula. However, in this thesis we use the equivalent setting of refutational

Frege systems where we start with the negation of the formula that we want to

prove (that is, include the negation of the formula as an axiom) and derive the

contradiction ⊥.

Note: We know that Resolution proof system is sound and complete, but it is not

implicationally complete: since we have A |= A∨B but we cannot derive A∨B from

A in Resolution. However, adding the weakening rule A
A∨B makes it implicationally

complete while retaining soundness.

Circuit Clases

We recall the definitions of standard circuit classes used in this thesis (cf. [79]).

For every n ∈ N a Boolean circuit Cn with n inputs is a directed acyclic graph.

It contains n input nodes of in-degree 0 (no incoming edges) and a unique output

node of outdegree 0 (no outgoing edges). All other nodes are called gates and are

labeled with one of ¬,∨, or ∧. Fan-in of a gate is the number of incoming edges,

and fan-out is the number of outgoing edges. The size of a circuit is the number of

nodes in it, and its depth is the maximal length of a path from an input node to

the output node. The circuit is called a Boolean formula if each node has at most

one outgoing edge. It is easy to see that a Boolean circuit implements a function

fn : {0, 1}n → {0, 1}. We say that a language L ⊆ {0, 1}∗ is decidable by a circuit

familiy {Cn}n∈N, if for all x ∈ {0, 1}n, x ∈ L ⇐⇒ Cn(x) = 1.

AC0 is the class of languages decidable by circuit families {Cn}n∈N of constant depth,

polynomial size with respect to the input size n, and whose gates have unbounded

fan-in. And when we restrict the depth by a constant d we call the circuit class as

AC0
d. AC

0[p] circuits are AC0 circuits augmented with MODp gates, which determines

whether the sum of the inputs is 0 modulo p. And TC0 circuits are AC0 circuits

augmented with threshold gates, which determines whether the sum of the inputs
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is at least some threshold k. NC1 circuits are of polynomial size with respect to the

input size n, logarithmic depth (O(log n)) and with bounded fan-in. Finally P/poly

is the class of languages that are decidable by circuit families of polynomial size

with respect to the input size. We use non-uniform circuit classes in this thesis.

Interested readers are referred the book [2].

C-Frege Proof systems

In literature, several restricted versions of Frege proof systems have been studied.

We know that Frege proofs consists of sequence of formulas. If we restrict that every

formula in the proof must come from some circuit class C, then such Frege proofs

are called as C-Frege proofs, and the proof systems, where only C-Frege proofs are

allowed are called as C-Frege proof systems.

Extended Frege (EF) Proof Systems

Let G be any Frege proof system. An extended Frege proof (EF), is a sequence of

formulas A1, . . . , An such that for all i, either Ai is derived from earlier formulas

using some inference rule of G, or Ai is an axiom instance of G, or else Ai is an

extension formula of the form ri ≡ ϕ, where ϕ is any formula and ri is a fresh

extension variable, (i.e, ri occurs neither in ϕ nor in any of A1, . . . , Ai−1 nor in the

last formula in the proof). The last formula An are not allowed to contain any of

the extension variables. Thus EF proof sytems are Frege systems with an extension

rule.

Like Frege proof systems, it is known that any two EF systems p-simulate each

other [36]. There are two important open problems regarding Frege systems:

1. Can Frege proof systems p-simulates EF systems?

2. Are EF proof systems polynomially bounded?

In 1979 [36], Cook and Reckhow gave polynomially sized EF proof of PHP n
n−1 and

claimed that refuting PHP n
n−1 in Frege needs exponential size. However, Buss in
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1987 [30] first showed that pigeonhole principle is easy for Frege as well and gave

a polynomial size Frege proof of PHP n
n−1. However both proofs were very differ-

ent, Cook and Reckhow use the inductive methods whereas Buss uses the counting

method. Since both the techniques were so different it was believed that Frege can

not simulate the inductive proof of PHP n
n−1 in polynomial steps. Moreover this was

also taken as evidence that Frege cannot simulate EF. However recently in 2015,

Buss gave a quasipolynomial sized inductive proof of PHP n
n−1 [29]. He showed how

to mimic the inductive proof of EF (refuting PHP n
n−1) in Frege systems in quasipoly-

nomial time, a major step towards problem 1 (above).

Lower Bound Techniques for Frege Proof Systems

Unfortunately there exists no known lower bounds for Frege proof systems. In fact

one of the biggest open problem in the field of proof complexity is: are Frege proof

systems polynomially bounded?

Comments: All hard formulas that we have seen so far for Resolution and Cutting

Planes, are known to be easy for Frege. Regarding simulations, we know that the

resolution rule is a special case of modus ponens:

p→ q p

q
≡ p̄ ∨ q p

q
,

and it has been shown in [51] that Frege p-simulates Cutting Planes. It has also

been shown that the feasible interpolation technique which is known to be effec-

tive for Resolution and Cutting Planes, fails for Frege proof systems under plausible

cryptographic and number-theoretic assumptions [24,27,63].
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2.4 Proof Systems for QBFs

Proof systems for the language of false quantified Boolean formulas (QBFs) are

called QBF proof systems. Equivalently, QBF proof systems can be defined for true

QBFs as well. Since (using PSPACE-completeness of QBF) any QBF Q .φ can be

converted in polynomial time to another QBF Q′ .φ′ such that exactly one of Q .φ

and Q′ .φ′ is true, it suffices to consider only QBF proof systems for false QBFs.

Proof complexity for QBFs is a relatively young field, studying proof systems for

quantified Boolean logic. However during the last decade there has been great

interest for this. Again there are two reasons: first is its tight relation to the

separation of complexity classes NP vs PSPACE and the second reason to study the

lower bounds for proofs is the analysis of QBF solvers. We first revisit QBF proof

systems based on Resolution.

2.4.1 QBF Resolution Calculi

QBF proof systems which are based on Resolution are called QBF Resolution calculi.

There exists two main solving approaches utilizing CDCL solving and expansion-

based solving. We first describe known QBF Resolution calculi from the literature.

We start by describing the proof systems modelling CDCL-based QBF solving :

CDCL-based QBF Resolution Calculi

In this section we give a brief overview of CDCL-based Resolution calculi. We first

define Q-Res which is the base system for CDCL solving, and a simple generalisation

to QU-Res. We then define several extensions of Q-Res: long-distance Q-resolution

(LD-Q-Res) and LQU+-Res.

Q-resolution (Q-Res), introduced by Kleine Büning et al. in [60], is a resolution-like

calculus that operates on QBFs in prenex form where the matrix is a CNF. The
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lines in a Q-Res proof are clauses. It uses the resolution rule (Res) with the side

condition that the pivot variable is existential and provided that the resolvent clause

is not a tautology (i.e, contains a positive and negative literal at the same time).

In addition Q-Res has a universal reduction rule which allows dropping a universal

variable literal from a clause provided the clause has no existential variable to the

right of the reduced variable. Note that we also forbid tautological clauses in the

input. This is to preserve the soundness of the system: for example, consider a true

formula ∀x. (x ∨ ¬x). The ∀-Red rule on the formula derives the empty clause,

which is unsound. The inference rules of Q-Res are given in Figure 2.1. Similar

to tree-like resolution we have tree-like Q-Res (i.e, Q-ResT). To be precise, if the

underlying proof graph of Q-Res proof is a tree (that is, no derived clause is used

more than once), then we have a Q-ResT proof.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈
C is existential, then lv(x) <
lv(u).

Figure 2.1: The rules of Q-Res [60]

QU -resolution (QU-Res) [78] removes the restriction from Q-Res that the resolved

variable must be existential variable and allows resolution on universal variables as

well. Thus QU-Res is classical Resolution augmented with a ∀-Red rule.

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang and

Malik in [80] and was formalized into a calculus by Balabanov and Jiang in [4].

Observe that in Resolution proof system deriving a tautological clause containing a

literal and its complement is redundant. One can easily ignore such resolution steps

from the proof [70]. But in Q-Res such steps are prohibited, as it makes the system

unsound (for an easy example see [56, Remark 1]). In other words, resolution step
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in Q-Res is allowed between the clauses with distance 1 (i.e, other than resolved

existential variable, the clauses does not contain any other complementary literals).

To be precise, two non-tautological clauses C and D are at distance 1 if there exists a

variable x (either existentially or universally quantified) such that x ∈ C and ¬x ∈ D

or vice versa. In general two non-tautological clauses are at distance k if there are k

variables {x1, . . . , xk} appearing in both the clauses but as a complementary literals.

Modern search-based QBF solvers perform resolution in essence. In such solvers

a tautological clause containing both positive and negative literals of a (universal)

variable may result from a resolution step [80]. Since resolution is performed between

two clauses with distance greater than 1, it is referred to as long-distance resolution.

Balabanov and Jiang introduced a new sound and complete QBF proof system (LD-

Q-Res) corresponding to such solvers [4]. To make long-distance resolution step a

sound rule, LD-Q-Res merges the complementary literals of a universal variable u

into a special literal u∗. In particular, different literals of a universal variable u may

be merged only if lv(x) < lv(u), where x is the resolved (pivot) variable. The rules

are given in Figure 2.2.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗.
U1, U2 contain only universal literals with var(U1) = var(U2). For each u ∈ var(U1) we
require lv(x) < lv(u). If for w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2,
w1 = u∗ or w2 = u∗. U is defined as {u∗ | u ∈ var(U1)}.

Figure 2.2: The rules of LD-Q-Res [4]

LQU+-Res [6] extends LD-Q-Res by allowing short and long distance resolution piv-

ots to be universal; however, the pivot is never a merged literal z∗, and the level
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restriction now must become an index restriction, to differentiate between universal

variables on the same level. The rules are given in Figure 2.3.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2 contain only
universal literals with var(U1) = var(U2). For each u ∈ var(U1) we require ind(x) <
ind(u), as variable x could be at the same level as u. If for w1 ∈ U1, w2 ∈ U2, var(w1) =
var(w2) = u then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is defined as {u∗ | u ∈ var(U1)}.

Figure 2.3: The rules of LQU+-Res [6]

Expansion-based QBF Resolution Calculi

Another main approach to QBF-solving is through expansion of quantifiers [10,

21, 55]. One approach will be to expand both existential and universal variables.

However, Janota and Marques-Silva in [56] observed that this creates two main

obstacles to developing a proof system using both expansion and resolution (apart

from exponential growth). The first obstacle is that the result of the expansion is

not in prenex form, but this can be overcome by prenexing the expansion. The

second obstacle is that expanding existential quantifier does not yield a CNF. So

they focussed only on the expansion of universal quantifiers, and came up with a

sound and complete proof system ∀Exp+Res.

Expansion of universal quantifiers certainly decreases the number of quantifica-

tions but at the cost of increasing the size. Also for maintaining prenex nor-

mal form, one has to include fresh variables. For instance, consider the follow-

ing QBF formula: ∃x∀y∃z.φ. We can expand the universal variable y and get

∃x.(∃z.φ[y/0]) ∧ (∃z.φ[y/1]). Observe that z may depend on the universal variable

y. Therefore we introduce fresh variables of z for both the subformulas and get an
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equivalent formula ∃x∃z0/y∃z1/y.φ[y/0, z/z0/y] ∧ φ[y/1, z/z1/y].

Inspired from the above discussions several calculi based on instantiation of uni-

versal variables were introduced: ∀Exp+Res [56], IR-calc, and IRM-calc [12]. All

these calculi operate on clauses that comprise only existential variables from the

original QBF, which are additionally annotated by a substitution to some univer-

sal variables, e.g. ¬x0/u1,1/u2 . For any annotated literal lσ, the substitution σ must

not make assignments to variables at a higher quantification level than l, i.e. if

u ∈ dom(σ), then u is universal and lv(u) < lv(l). To preserve this invariant, we

use the auxiliary notation l[σ], which for an existential literal l and an assignment

σ to the universal variables filters out all assignments that are not permitted, i.e.

l[σ] = l{c/u∈σ | lv(u)<lv(l)}. We say that an assignment is complete if its domain is the

set of all universal variables. Likewise, we say that a literal xτ is fully annotated if

all universal variables u with lv(u) < lv(x) in the QBF are in dom(τ), and a clause

is fully annotated if all its literals are fully annotated.

The simplest expansion-based calculi is the calculus ∀Exp+Res. The calculus ∀Exp+Res

works with fully annotated clauses on which resolution is performed. The rules are

given in figure 2.4. Similar to other tree-like proofs, we have tree-like ∀Exp+Res

proofs (denoted ∀Exp+ResT).

(Axiom)
{l[τ ] | l ∈ C, l is existential} ∪ {τ(l) | l ∈ C, l is universal}

C is a clause from the matrix. τ is an assignment to all universal variables.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(Res)

C1 ∪ C2

Figure 2.4: The rules of ∀Exp+Res [56]

We illustrate the axiom download step in ∀Exp+Res with an example: consider the
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following QBF formula with just one clause (for simplicity)

∃e1∀u1∃e2∀u2∃e3∀u3. (e1 ∨ ē2 ∨ u1 ∨ e3 ∨ ū3).

Let τ = u1 ← 0, u2 ← 1, u3 ← 1 and σ = u1 ← 1, u2 ← 1, u3 ← 1 be two assignments

to all universal variables. Then in ∀Exp+Res the clauses (e1∨ ē0/u1

2 ∨0∨e0/u1,1/u2

3 ∨0),

and (e1 ∨ ē1/u1

2 ∨ 1 ∨ e1/u1,1/u2

3 ∨ 0) ≡ 1 can be downloaded with respect to τ and σ

respectively.

The calculus IR-calc [12] extends ∀Exp+Res by enabling partial assignments in an-

notations. The system IR-calc is more flexible in the sense that it uses ‘delayed’

expansion and can mix instantiation with resolution steps. Formally, IR-calc works

with partial assignments on which we use auxiliary operations of completion and in-

stantiation. For assignments τ and µ, we write τ Y µ for the assignment σ defined

as σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = µ(x) if x ∈ dom(µ). The operation

τ Y µ is called completion as µ provides values for variables not defined in τ . For an

assignment τ and an annotated clause C, the function inst(τ, C) returns the anno-

tated clause
{
l[σ Y τ ] | lσ ∈ C

}
. The rules of IR-calc are given in Figure 2.5. Similarly

we have tree-like IR-calc proofs (denoted IRT-calc), where derived clauses cannot be

reused. Unlike ∀Exp+Res, in IR-calc the assignment τ set values only to those uni-

(Axiom)
{x[τ ] | x ∈ C, x is existential}

C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where
the notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

{xτ} ∪ C1 {¬xτ} ∪ C2
(Resolution)

C1 ∪ C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables.

Figure 2.5: The rules of IR-calc [12]

versal variables which belongs to the clause (being downloaded) and in such a way
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that the clause restricted to τ contains no universal variable. For example consider

the same QBF formula with the single clause. For τ = u1 ← 0, u3 ← 1, IR-calc

downloads the following clause: (e1 ∨ ē0/u1

2 ∨ e0/u1

3 ). Note that the universal variable

u2 does not belongs to the domain of τ . Also for this example the assignments which

sets u1 ← 1 are not allowed in IR-calc.

Our last expansion-based QBF Resolution calculi is the calculus IRM-calc [12]. We

will not consider IRM-calc in this thesis, however we present it here for complete-

ness. The calculi IRM-calc extends IR-calc by enabling annotations containing an

assignment to the special symbol ∗. The symbol ∗ may be introduced by the merge

rule, e.g. by collapsing x0/u ∨ x1/u into x∗/u. The rules of the calculus IRM-calc are

presented in Fig. 2.6.

Axiom and instantiation rules as in IR in Figure 2.5.

{xτ∪ξ} ∪ C1 {¬xτ∪σ} ∪ C2
(Resolution)

inst(σ,C1) ∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∪ {bµ} ∪ {bσ}
(Merging)

C ∪ {bξ}

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ} ∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}

Figure 2.6: The rules of IRM-calc [12]

Before presenting the QBF proof systems based on Frege, we briefly discuss the

simulation orders among QBF Resolution calculi.

The Simulation Order of QBF Resolution Systems

As we know that in QBF solving there exists two very different paradigms: CDCL-

based and expansion-based solving. We first concentrate on just CDCL-based calculi

and revist their simulation order. For simulation results in CDCL-based solvers, we

need the family of false QBF formulas KBKF(t) introduced by Kleine Büning et al.

in [60].
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Definition 2.9 (Kleine Büning, Karpinski and Flögel [60]).

KBKF(t) ≡ ∃c0∃a1b1∀x1∃a2b2∀x2 . . . ∃atbt∀xt∃d1 . . . dt.

¬c0 ∧ (c0 ∨ ¬a1 ∨ ¬b1) ∧

(a1 ∨ x1 ∨ ¬a2 ∨ ¬b2) ∧ (b1 ∨ ¬x1 ∨ ¬a2 ∨ ¬b2) ∧

(a2 ∨ x2 ∨ ¬a3 ∨ ¬b3) ∧ (b2 ∨ ¬x2 ∨ ¬a3 ∨ ¬b3) ∧

. . .

(at−1 ∨ xt−1 ∨ ¬at ∨ ¬bt) ∧ (bt−1 ∨ ¬xt−1 ∨ ¬at ∨ ¬bt) ∧

(at ∨ xt ∨ ¬d1 ∨ . . .¬dt) ∧ (bt ∨ ¬xt ∨ ¬d1 ∨ . . .¬dt) ∧

(xi ∨ di) ∧ (¬xi ∨ di) for i ∈ [t]

It is easy to verify that KBKF(t) is indeed a false QBF formula. It was shown

in [13], that KBKF(t) is hard for IR-calc and so is hard for Q-Res as well, since IR-

calc p-simulates Q-Res [12]. But next we observe that KBKF(t) has short refutation

in QU-Res.

Proposition 2.10 ( [78]). KBKF(t) has short refutation in QU-Res.

Proof. Let us suppose that we have already derived both a1 and b1. Then we resolve

(c0 ∨ ¬a1 ∨ ¬b1) and a1 to get (c0 ∨ ¬b1). Then resolve it with b1 and derive c0.

Finally resolve it with the axiom clause ¬c0 and derive the empty clause �.

Next we show how to derive ai and bi from ai+1, bi+1 and the initial clauses in QU-Res.

See Figure 2.7 for the derivations.

(ai ∨ xi ∨ ¬ai+1 ∨ ¬bi+1) (ai+1)
ai+1

(ai ∨ xi ∨ ¬bi+1) (bi+1)
bi+1

(ai ∨ xi) ∀-red
(ai)

(bi ∨ ¬xi ∨ ¬ai+1 ∨ ¬bi+1) (ai+1)
ai+1

(bi ∨ ¬xi ∨ ¬bi+1) (bi+1)
bi+1

(bi ∨ ¬xi) ∀-red
(bi)

Figure 2.7: Deriving ai and bi from ai+1, bi+1, and the initial clauses
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Observe that if we can derive at, bt from the initial clauses, then we are done. For

this we first derive di, for all i ∈ [t]. We do this by resolving the clauses (xi∨di) and

(¬xi ∨ di) with xi as universal pivot variable. Recall that in QU-Res we can resolve

on universal variables as well. Now we proceed as in Figure 2.8.

(at ∨ xt ∨ ¬d1 ∨ · · · ∨ ¬dt) (dt)
dt

(at ∨ xt ∨ ¬d1 ∨ · · · ∨ ¬dt−1) (dt−1)
dt−1

(at ∨ xt ∨ ¬d1 ∨ · · · ∨ ¬dt−2) (dt−2)
dt−2......

d1
(at ∨ xt) ∀-red

(at)

(bt ∨ ¬xt ∨ ¬d1 ∨ · · · ∨ ¬dt) (dt)
dt

(bt ∨ ¬xt ∨ ¬d1 ∨ · · · ∨ ¬dt−1) (dt−1)
dt−1

(bt ∨ ¬xt ∨ ¬d1 ∨ · · · ∨ ¬dt−2) (dt−2)
dt−2......

d1
(bt ∨ ¬xt) ∀-red

(bt)

Figure 2.8: Deriving at and bt using di’s and the initial clauses.

The length of the proof is O(t).

Thus we conclude that Q-Res cannot simulate QU-Res. Also it was shown in [45,

Proposition 1], that KBKF(t) has an LD-Q-Res refutation of size polynomial in t

for t ≥ 1. Therefore we also conclude that: Q-Res cannot simulate LD-Q-Res.

In [6, Section 3.1], incomparability results between LD-Q-Res and QU-Res were estab-

lished. To establish this, Balabanov et al. considered the modification of KBKF(t)

formulas. By adding fresh variables in the clauses of KBKF(t) they constructed a

new family of false formulas which they call KBKF-qu(t), and showed that KBKF-

qu(t) are hard for QU-Res but are still easy for LD-Q-Res. In a similar manner they

again modified KBKF(t) and constructed another family of false formulas which

they call KBKF-lu(t). They showed that KBKF-lu(t) are hard for LD-Q-Res but are

easy for QU-Res.

From the definition of LQU+-Res, we know that LQU+-Res p-simulates both LD-

Q-Res and QU-Res, and since both proof systems are incomparable, we conclude

that LQU+-Res is exponentially stronger than both LD-Q-Res and QU-Res. This

completes the entire simulation picture of CDCL-based solvers, except the simulation

order of Q-ResT with respect to other calculi, which we present after introducing an
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important family of false QBFs φn (see below).

Now let us start considering expansion-based proof systems as well. In [56], it has

been shown that ∀Exp+Res p-simulates Q-ResT. However it turns out that ∀Exp+Res

cannot simulate Q-Res. And also later it had been proved that even Q-Res cannot

simulate ∀Exp+Res. We now discuss these incomparibility results in detail.

We start from the following results: ∀Exp+Res cannot simulate Q-Res. This result

was established by Janota and Marques-Silva in [56, Theorem 4]. For this they

constructed the following family of false formulas, which we denote as φn:

φn ≡ ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.∧
i∈[n]

(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)∧ ∨
i∈[2n]

¬ci


They proved that φn is hard for ∀Exp+Res:

Proposition 2.11. [56, Proposition 3] Any ∀Exp+Res refutation of φn is exponen-

tial in n.

At the same time they gave a polynomial sized Q-Res proof for φn.

Proposition 2.12. [56, Proposition 2] φn has a Q-Res refutation of size polynomial

in n.

Proof. For k ∈ [n], let us denote D2k ≡ (
∨
i∈[2k] ¬ci). Let D0 be the empty clause.

Starting from D2n we will derive D0 in n steps. In each step we derive D2k−2 from

D2k as shown in Figure 2.9.

As promised, we now immediately present the missing relation “Q-ResT cannot
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Figure 2.9: Proof of Proposition 2.12. Dashed line represents ∀-red steps. D2k−2 =
¬c1 ∨ · · · ∨ ¬c2k−2.

simulate Q-Res”: from Proposition 2.11, and the fact that ∀Exp+Res p-simulates

Q-ResT [56], we conclude that φn is hard for Q-ResT, but it is easy for Q-Res (Propo-

sition 2.12).

Further in [13], Beyersdorff et al. established that even Q-Res can not simulate

∀Exp+Res. For this they showed that a formulation QParityn of the parity function

⊕n is hard for Q-Res [13, Section 4] but has a polynomial size proof in ∀Exp+Res [13,

Lemma 15]. We will describe the formulation QParityn and its lower bound proof

in Q-Res in Section 2.5.

In [12, Theorem 6, 7], it has been shown that IR-calc p-simulates both Q-Res and

∀Exp+Res. And since Q-Res and ∀Exp+Res are incomparable, we immediately con-

clude that IR-calc is exponentially stronger than both Q-Res and ∀Exp+Res.

In their paper [13], Beyersdorff et al. established an incomparability result be-

tween IR-calc and LD-Q-Res. For one direction they established hardness result

of KBKF(t) formulas in IR-calc. They showed that KBKF(t) is hard for IR-calc,

but it was known to be easy for LD-Q-Res [45]. So they showed that IR-calc can

simulate neither LD-Q-Res nor QU-Res [13, Corollary 8]. Before discussing the other
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direction we point out that, in [12, Theorem 8], it has been shown that IRM-calc can

p-simulate LD-Q-Res, and hence KBKF(t) is also easy for IRM-calc. Thus IR-calc

cannot simulate IRM-calc. (This also completes the entire simulation order within

the expansion-based proof systems). For the other direction, i.e, for showing that

LD-Q-Res cannot simulate IR-calc, they consider the variant of the parity function

LQParityn. They showed that LQParityn is hard for LD-Q-Res [13, Theorem

22], but easy for ∀Exp+Res [13, Proposition 18] and thus also easy for IR-calc. They

further extend the lower bounds to the powerful LQU+-Res. For this, they con-

structed a new family of formulas QUParityn from LQParityn by using the

tricks from [6]. They showed that QUParityn requires exponential size refutations

in LQU+-Res [13, Theorem 23]. However, QUParityn remains easy for ∀Exp+Res.

Thus we have: LQU+-Res cannot simulate ∀Exp+Res, IR-calc, and IRM-calc. This

completes the entire simulation results among QBF Resolution calculi. See Fig-

ure 2.10.

Figure 2.10: The simulation order of QBF Resolution calculi [13]
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2.4.2 QBF Proof Systems Based on Frege

Recently Beyersdorff et al. in [11], introduced a new class of Frege systems for

quantified Boolean formulas and showed strong lower bounds for restricted versions

of these systems. After that Beyersdorff and Pich [20] gave a detailed analysis of

the extended Frege systems for QBFs from [11], denoted EF+∀red. We next define

QBF Frege from [11]. Let C be some circuit class.

Definition 2.13 (C-Frege+∀red [11]). A C-Frege+∀red refutation of a false QBF

Q .φ is a sequence of lines L1, . . . , L` where all lines are from the circuit class C

and the last line is the contradiction ⊥. Each Li in the proof is either an axiom

instance, or is derived from some previous lines in the sequence using the inference

rule of C-Frege, or is derived using the ∀-red rule

Lj
Lj[u/B]

where u is the innermost (highest index) variable among the variables of Lj, B is

a formula containing only variables left of u, and Lj[u/B] is the formula obtained

from Lj by replacing each occurrence of u in Lj by B. Most importantly Lj[u/B]

belongs to the circuit class C.

It has been shown that C-Frege+∀red is a complete and sound QBF proof system.

2.5 A Lower Bound Technique for QBFs: Strat-

egy Extraction

Recall from Section 2.1 that a QBF Q1x1 · · · Qkxk .φ can be seen as a game between

two players: universal (∀) and existential (∃). Given a universal variable u with

index i, a strategy for u is a function from all variables of index < i to {0, 1}. A
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QBF is false if and only if there exists a winning strategy for the universal player.

Strategy extraction is an important paradigm in QBF [5, 12, 45, 52], which is highly

desirable in practice. Winning strategies for the universal player can be very com-

plex. But, we say that a QBF proof system has the strategy extraction property for

a circuit class C if we can efficiently extract, from every refutation π of a false QBF

F , ∀-player winning strategies in C for all universal variables.

Beyersdorff et al. in [13] were the first to use strategy extraction as a lower bound

technique for the proof system Q-Res and QU-Res. Before we present the proofs

from [13], we need the following definition:

Definition 2.14 (Decision lists [72]). A decision list is a list L of pairs

(t1, v1), . . . , (tr, vr),

where each ti is a term (conjunction of literals) and vi is a value in {0, 1}, and

the last term tr is the constant term true (i.e, the empty term). A decision list L

defines a Boolean function as follows: for any assignment α, L(α) equals vj where

j is the least index such that tj|α = 1. (Such an item always exists, since the last

term evaluates to 1). We may think of a decision list as an extended “if - then -

elseif - . . . else” rule.

Observe that, if a function f can be represented as a decision list L of polynomial

size, then f ∈ AC0 [13, Lemma 13]. In [11], Definition 2.14 has been generalised to

C-decision lists (for some circuit class C), where instead of terms one can use circuits

from C. A C-decision list of length ` can be converted to a circuit by noting that

f(x) equals
∨r
i=1

(
vi ∧ Ci(x) ∧

∧
j<i ¬Cj(x)

)
. In particular, for C ∈ {AC0,TC0,NC1}

a polynomial-sized C-decision list yields a circuit in C.

A Lower Bound for Q-Res Proof System via Strategy Extraction [13]

We begin by stating the fact that a winning strategy of the universal player can be
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extracted from a Q-Res proof in the form of decision lists very efficiently:

Theorem 2.15 ( [4]). Given a false QBF Q .φ, with n variables, and a Q-Res proof

π of Q .φ of size |π|, it is possible to extract from π a winning strategy σu for each

universal variable u ∈ φ, such that each σu can be expressed as a decision list whose

size is polynomial in |π|.

In particular, if Q .φ can be refuted in Q-Res in nO(1) size, then the winning strategies

can be computed in AC0 (from above discussion).

The general idea of the lower bound technique is as follows: come up with a family

of false QBFs ϕf , such that ϕf contains a universal variable, say z, with a unique

winning strategy fz /∈ AC0. Now if ϕf has a polynomial sized Q-Res proof, then

from Theorem 2.15, fz ∈ AC0. A contradiction.

We know that the parity function Parity(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn, cannot be

computable in AC0.

Theorem 2.16 (Furst, Saxe, Sipser [50]). Parity /∈ AC0.

By keeping Theorem 2.16 in mind, in [13], Beyersdorff et al. constructed the required

family of false QBFs ϕf : consider the family of sentences expressing the following:

∃x1 . . . xn∀z.Parity(~x) 6= z. If we want to encode this sentence in QBF form with

CNF matrix, we need to use some extra existential variables, as Parity /∈ AC0. Let

(x ≡ y⊕z) be the set of clauses which encodes that x is equal to y⊕z. In particular,

it consists of the following set of clauses: {(¬x ∨ ¬y ∨ ¬z), (¬x ∨ y ∨ z), (x ∨ ¬y ∨

z), (x ∨ y ∨ ¬z)}

They define the parity formula QPARITYn as follows:

∃x1 . . . xn∀z∃t2 . . . tn. (t2 ≡ x1 ⊕ x2) ∧
n∧
i=3

(ti ≡ xi ⊕ ti−1) ∧ (tn 6= z)

Notice that without the (tn 6= z) clauses, the sentence is true, and each ti in a
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satisfying assignment must be x1 ⊕ · · · ⊕ xi. Also note that the formula itself is

of size θ(n). Clearly the only winning strategy for the universal variable z is the

function Parity(~x) /∈ AC0. Thus if QParityn has a polynomial sized Q-Res proof,

then Parity ∈ AC0 from Theorem 2.15. A contradiction. So we have:

Theorem 2.17 ( [13]). Any Q-Res refutation of QParityn is of exponential size

in n.

A Lower Bound for C-Frege+∀red Proof Systems via Strategy Extraction

Fix some circuit class C. In [11], Beyersdorff et al. defined QBF proof systems

based on restricted Frege; denoted C-Frege+∀red, proved that C-Frege+∀red admits

strategy extraction in the circuit class C, and thereby transform circuit lower bounds

to proof size lower bounds for these proof systems. We first state the strategy

extraction theorem for C-Frege+∀red.

Theorem 2.18 ( [11]). Given a false QBF Q .φ and a C-Frege+∀red refutation

π of Q .φ, it is possible to extract from |π| a collection of C-decision lists of sizes

polynomial in |π|, which computes a winning strategy of the universal variables of φ.

In particular if |π| = `, then each of the C-decision list can be converted into a circuit

C ∈ C of size O(`).

For proving lower bounds, they come up with a family of false QBFs Q-Cn based on

some circuit Cn computing a function f(~x), such that Q-Cn has a universal variable

u with a unique winning strategy u ← Cn(~x). Now from Theorem 2.18, we know

that if Q-Cn has a C-Frege+∀red proof of size bounded by a function q(n), then for

every n, Cn is actually equivalent to a circuit C ′n of size O(q(n)) that uses the gates

and depth allowed in C. They proved something stronger for such QBFs. They

showed that if (Cn)n∈N is a polynomial size circuit family from C then Q-Cn have

polynomial size refutation in C-Frege+∀red [11].

In particular (by combining the above two statements) they showed that a Boolean

42



function f is computable by a polynomial size C circuit iff Q-Cn have polynomial

size C-Frege+∀red refutations for each choice of Boolean circuits (Cn)n∈N computing

f . Before using this fact to prove lower bound results we explicitly define the Q-Cn

formulas from [11].

Definition 2.19 ( [11]). Let Cn be a circuit with inputs x1, . . . , xn. We define

Q-Cn ≡ ∃x1 · · ·xn∀u∃t1 · · · tl.(tl 6= u)∧
l∧

i=1

(ti is consistent with the inputs to gate i).

The inner formula can be written as an O(l)-sized CNF. For example, if we have a

gate gi = gj ∧ gk in the circuit, then the clauses equivalent to ti ≡ tj ∧ tk are added

to Q-Cn, where each ti gets the value of the gate gi in the circuit Cn on input ~x.

Observe that this is just a Tseitin transformation (see Section 2.1).

Informally Q-Cn expresses the false sentence that there exists an input ~x such that

C(~x) evaluates to both 1 and 0. Obviously the unique winning strategy for u is

C(~x).

We now present an important result from [11], which uses strategy extraction and

proves an exponential lower bound for AC0[p]-Frege+∀red.

Corollary 2.20 ( [11]). Let Cn be a family of polynomial-size circuits computing

Parity(x1, . . . , xn). For each odd prime p the QBFs Q-Cn require proofs of expo-

nential size in AC0[p]-Frege+∀red.

Proof. If Q-Cn has polynomial size proofs in AC0[p]-Frege+∀red, then from Theorem

2.18, and the discussions above, Cn is equivalent to some circuit C ′n ∈ AC0[p] com-

puting Parity. However this is impossible, because it has been shown that circuits

belonging to AC0[p] class cannot compute parity. To be precise, it has been proved

that for each odd prime p any family of bounded-depth circuits with MODp gates

computing Parity must be of exponential size [71, 75].
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For further applications of strategy extraction, interested readers are referred to

[11,20]. We end this Chapter with the following Comment:

Comment: In propositional case, proving exponential lower bounds for AC0[p]-

Frege is an open problem. Thus Corollary 2.20 is an important result which trans-

lates circuit lower bounds for parity [71,75] to QBF proof complexity lower bounds

for AC0[p]-Frege+∀red. Such transfer of lower bound results are missing for stronger

systems in the propositional case.
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Chapter 3

Level-ordered Q-Res and Tree-like

Q-Res are Incomparable

In this Chapter, we prove that level-ordered Q-resolution and tree-like Q-resolution

(Q-ResT), two restrictions of the Q-resolution system (Q-Res) for proving false QBFs

false, are incomparable. While the ∀Exp+Res system is known to p-simulate tree-

like Q-resolution [56], we observe that it cannot simulate level-ordered Q-resolution.

On the other hand, it is well known that level-ordered Q-resolution cannot simu-

late ∀Exp+Res. Therefore we conclude that even ∀Exp+Res and level-ordered Q-

resolution are incomparable.

We highlight that apart from theoretical interests the incomparability result has

practical significance as well. To be precise, the result shows that the expansion-

based QBF solvers, for example RAReQS [55], and the CDCL-based QBF solvers,

for example Evaluate, introduced in [31] (also see [32]), are indeed orthogonal

paradigms.
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3.1 Introduction

As discussed in Chapter 2, Q-Res, the core CDCL-based proof system, and ∀Exp+Res,

the core expansion-based proof system are incomparable. Looking at how incom-

parability were established, we see that two sub-classes of Q-resolution (Q-Res) are

significant: tree-like proofs, where the graph underlying the resolution structure is

a tree, and level-ordered proofs (see Section 3.2), where at each resolution step,

the variable on which resolution is performed is at the rightmost level (quantifier

block) among all existential variables in the clauses involved. The known results

were established in the following chronological order.

1. ∀Exp+Res proof system cannot simulate Q-Res. As already mentioned in

Chapter 2, this was established by Janota and Marques-Silva in 2013 [57]

(also see [56]). The family of false QBFs witnessing this is φn (See Section

2.4.1).

2. Level-ordered Q-resolution cannot simulate ∀Exp+Res.

This too was shown by Janota and Marques-Silva in [56]. They define a

false QBF sentence CRn (Section 3.2) and proved that CRn is hard for level-

ordered Q-resolution [56, Proposition 5] but has a polynomial size proof in

∀Exp+Res [56, Proposition 4].

3. Q-Res cannot simulate ∀Exp+Res.

This was shown by Beyersdorff et al. in [13]. As seen in chapter 2, the family

of false QBFs witnessing this is QParityn (Section 2.5).

4. ∀Exp+Res can p-simulate tree-like Q-resolution.

This was shown by Janota and Marques-Silva in 2013 [58, Section 3] (also

see [56]). The converse direction is ruled out by the QParityn formulas. As

already discussed, since φn is hard for ∀Exp+Res, it follows that φn is hard for

tree-like Q-resolution as well.
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Now we prove the main Theorem of this Chapter.

Theorem 3.1. Tree-like Q-resolution and level-ordered Q-resolution are incompa-

rable.

If we consider sentences with only existential quantifiers, then a Q-Res proof is

just a proof in propositional Resolution. In fact, every resolution proof is level-

ordered, since all variables are at the same level. Also note that for sentences

with only existential quantifiers, ∀Exp+Res also becomes propositional Resolution.

Results from propositional Resolution thus imply that there are sentences (with only

existential quantifiers) where ∀Exp+Res, Q-Res and level-ordered Q-resolution are

exponentially more powerful than tree-like Q-resolution [25]. However, for QBFs

(i.e, not just with existential variables) the simulation order among the QBF proof

systems becomes more interesting. Another refinement of propositional resolution

proofs is ordered resolution, where the variables are resolved in a specified order.

This is known to be incomparable with tree-like resolution [59] (see also [25,28]). In

the context of QBFs, level-ordered is a weaker restriction than ordered, since no order

is imposed on variables in the same quantifier block. We note that Theorem 3.1 has

practical importance as well: it underlines the fact that QBF solvers limit themselves

greatly by assigning variables in the prefix order.

One direction of Theorem 3.1 is obtained as follows: observe that the known poly-

nomial size Q-Res proof of φn (Proposition 2.12, also mentioned in item (1) of the

chronological order above) is also in fact level-ordered. Therefore φn has a short

level-ordered Q-resolution proof. Since φn is hard for tree-like Q-resolution (item (4)

above), and ∀Exp+Res (item (1) above), we conclude that tree-like Q-resolution

cannot simulate level-ordered Q-resolution. Furthermore, we conclude that even

∀Exp+Res cannot simulate level-ordered Q-resolution.

For the other direction, we show in the rest of this Chapter that the sentences

CRn (item (2) above) have polynomial size tree-like Q-resolution proofs (Section
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3.3). As CRn is hard for level-ordered Q-resolution, we conclude that level-ordered

Q-resolution cannot simulate tree-like Q-resolution.

This completes the entire picture of relations among the above mentioned proof

systems. See Figure 3.1.

Figure 3.1: Relationships among some QBF Resolution systems

3.2 Definitions

We briefly describe level-ordered Q-resolution, and the sentence CRn.

Definition 3.2 (Level-ordered Q-resolution). Any Q-Res proof π is said to be level-

ordered iff for every resolution step (x∨C) (¬x∨D)
C∨D in π the following holds: lv(y) ≤

lv(x), for any existential variable y ∈ var(C ∨D).
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Completion Principle and the Sentence CRn ( [56]) :

Consider two sets A = {a1, . . . , an} and B = {b1, . . . , bn}, and depict their cross

product A×B as in Table 3.1. The following two-player game is played on Table 3.1.

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn

Table 3.1: Completion Principle.

In the first round, player 1 deletes exactly one cell from each column. In the second

round, player 2 chooses one of the two rows. Player 2 wins if the chosen row contains

either the complete set A or the set B; otherwise player 1 wins. It is well known that

player 2 has a winning strategy: suppose, after player 1 plays, some ai is missing in

the top row. Then the entire set B below the ai chunk is present in the bottom row

and so player 2 chooses the bottom row to win. Otherwise, no ai is missing in the

top row, so player 2 can win by choosing the top row. This fact (that player 2 can

always win) is called the completion principle.

Based on the completion principle, the false sentence CRn is formulated to express

the notion that player 1 has a winning strategy. For each column

ai
bj

 of the

Table 3.1 (denote this the (i, j)th column), there is a boolean variable xi,j. Let

xi,j = 0 denote that player 1 ‘deletes bj’ (i.e, keeps ai) from the (i, j)th column, and

xi,j = 1 denotes that player 1 keeps bj in the (i, j)th column. There is a variable z to

denote the choice of player 2: z = 0 means ’choose top row’. The Boolean variables

ai, bj, for i, j ∈ [n] encode that for the chosen values of all the xk,`, and the row

chosen via z, at least one copy of the element ai and bj respectively is kept. (eg.

(xi,j∧z)⇒ bj). Let x̃, ã and b̃ stands for the vector of variables {x1,1, x1,2, . . . , xn,n},

{a1, . . . , an}, and {b1, . . . , bn} respectively. Now CRn can be framed as follows:

∃x̃i,j ∀z ∃ã∃b̃

(
(ã,b̃ consistent with x̃, z) ∧

∨
i

āi ∧
∨
j

b̄j

)
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The inner formula can be expressed as the conjunction of the following clauses:

For i, j ∈ [n], Ci,j : (xi,j ∨ z ∨ ai) (3.1)

For i, j ∈ [n], Di,j : (x̄i,j ∨ z̄ ∨ bj) (3.2)∨
i∈[n]

āi (3.3)

∨
i∈[n]

b̄i (3.4)

3.3 Tree-like Q-resolution Proof for CRn

Observe that to begin we cannot apply the ∀-Red rule because the only universal

variable z has been blocked, in all clauses where it appears, by existential variables

from ã and b̃. We also cannot resolve any Ci,j and Di,j on variable xi,j because the

resolvent is a tautology, which is not allowed in Q-resolution. We are thus forced to

resolve on ã and b̃ variables initially.

We proceed as follows: We derive z̄, and then apply a ∀-Red to derive �. To derive

z̄, we first derive each of the clauses Wj = z̄ ∨ bj in a distinct tree Tj. Then we

can put together these trees with the clause from (3.4), and in n resolution steps,

obtain z̄, as follows: let C1 denote the clause (3.4). For ` ∈ [n], resolve C` and W`

(on variable b`) to get C`+1. Note that for ` > 1, C` has the form z̄ ∨
∨
k≥` b̄k. So

Cn+1 is z̄ as desired.

Now we describe the trees Tj that derive Wj = z̄ ∨ bj. We first derive the clause

x1,j∨x2,j∨ . . .∨xn,j∨z in a tree T ′j described later. Now the ∀-Red rule is applicable,

since all the x̃ variables are quantified before z. Thus we can obtain the clause

Y1,j = x1,j ∨ x2,j ∨ . . . ∨ xn,j. Now for ` ∈ [n], resolve Y`,j with the clause D`,j

from (3.2) (on variable x`,j ) to get Y`+1,j. Note that for ` > 1, Y`,j has the form

z̄ ∨ bj ∨
∨
k≥` xk,j. So Yn+1,j is z̄ ∨ bj as desired.
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It remains to describe tree T ′j deriving x1,j∨x2,j∨ . . .∨xn,j∨z. This is similar to the

above step, using clause 3.3 which we shall denote Z1,j along with the clauses C`,j

from 3.1. For ` ∈ [n], resolve Z`,j and C`,j on variable (a`) to get Z`+1,j. For ` > 1,

Z`,j has the form z ∨
∨
k<` xk,j ∨

∨
k≥` āk. So Zn+1,j is z ∨

∨
k∈[n] xk,j as desired.

Size of the Refutation: Each T ′j has n resolution steps. Each Tj has T ′j , one

∀-reduction, and then n more resolution steps. Once all Tj’s are constructed, we

use another n resolutions steps followed by one last ∀-reduction. Overall, there are

n(2n+ 1) resolution steps and n+ 1 ∀-reductions. Thus the total refutation size is

O(n2).
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Chapter 4

A New QBF Proof System Based

on Cutting Planes

In this Chapter, we introduce a complete and sound QBF proof system CP+∀red

that works with quantified set of linear inequalities, where each variable is either

quantified existentially or universally in a quantifier prefix. The lines in CP+∀red

proof are linear inequalities. The system CP+∀red extends the classical Cutting

Planes system with one single ∀-reduction rule allowing manipulation of universally

quantified variables.

Inspired by the recent work on semantic Cutting Planes [47] we also define a stronger

system semCP+∀red where in addition to universal reduction all semantically valid

inferences between inequalities are allowed (Section 4.4).

We compare our new system CP+∀red with previous QBF Resolution and Frege

systems. We also establish strategy extraction technique for both CP+∀red and

semCP+∀red. We establish the feasible interpolation technique for these systems in

Chapter 5.

We start by defining our new proof system CP+∀red.
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4.1 The CP+∀red Proof System

In this section we define a QBF analogue of the classical Cutting Planes proof system

by augmenting it with a reduction rule for universal variables. We denote this system

by CP+∀red. Consider a false quantified set of inequalities

ϕ ≡ Q1x1 . . .Qnxn. F,

where F is a set of linear inequalities of the form
∑
xiai ≥ A for integers ai and A,

and F includes the set of inequalities B = {xi ≥ 0,−xi ≥ −1 | i ∈ [n]}. The in-

equalities in B are called the Boolean axioms, because they force any integer-valued

assignment ā to the variables to take only 0, 1-values if it is to satisfy all inequalities

in F . We point out that classical Cutting Planes proof systems (only existential vari-

ables) can refute any inconsistent set of linear inequalities over integers. However,

once universal quantification is allowed, dealing with an unbounded domain is more

messy. Since our primary goal in defining this proof system is to refute false QBFs,

and since QBFs have only Boolean variables, we only consider sets of inequalities

that contain B.

Definition 4.1 (CP+∀red proofs for inequalities). Consider a set of quantified in-

equalities ϕ ≡ Q1x1 . . .Qnxn. F , where F also contains the Boolean axioms. A

CP+∀red refutation π of ϕ is a quantified sequence of linear inequalities

Q1x1 . . .Qnxn.[I1, I2, . . . , Il]

where the quantifier prefix is the same as in ϕ, Il is an inequality of the form 0 ≥ C

for some positive integer C, and for every j ∈ {1, . . . , l},

• Ij ∈ F , or

• Ij is derived from earlier inequalities in the sequence (for example, Ik1 , Ik2 ,
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with k1, k2 < j) via one of the following inference rules:

1. Addition: From
∑
k

ckxk ≥ C and
∑
k

dkxk ≥ D derive
∑
k

(ck+dk)xk ≥

C +D.

2. Multiplication: From
∑
k

ckxk ≥ C derive
∑
k

dckxk ≥ dC, where d ∈

Z+.

3. Division: From
∑
k

ckxk ≥ C derive
∑
k

ck
d
xk ≥

⌈
C

d

⌉
, where d ∈ Z+

divides each ck.

4. ∀-red: From
∑

k∈[n]\{i}

ckxk+hxi ≥ C derive


∑

k∈[n]\{i}

ckxk ≥ C if h > 0;

∑
k∈[n]\{i}

ckxk ≥ C − h if h < 0.

This rule can be used provided variable xi is universal, and provided all

existential variables y with nonzero coefficients in the hypothesis have

ind(y) < ind(xi). (That is, if xj is existential and cj 6= 0, then j < i.

Observe that when h > 0, we are replacing xi by 0, and when h < 0,

we are replacing xi by 1. We say that the universal variable xi has been

reduced.

Each inequality Ij is a line in the proof π. Note that proof lines are always of the

form
∑

k ckxk ≥ C for integer-valued ck, C. The length of π (denoted |π|) is equal to

the number of lines in it, and the size of π (denoted size(π)) is equal to the bit-size

of a representation of the proof (this depends on the number of lines and the binary

length of the numbers in the proof).

In order to use CP+∀red as a refutational system for QBFs in prenex form with

CNF matrix, we must translates QBFs into quantified set of inequalities.

Definition 4.2 (Encoding QBFs as inequalities). In Definition 2.6 we showed how

to encode a CNF formula φ as a set of inequalities Fφ. Recall we defined R(x) = x,

R(x̄) = 1 − x. A clause C ≡ (l1 ∨ · · · ∨ lk) is translated into the linear inequality
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R(C) ≡
∑k

i=1 R(li) ≥ 1. A CNF formula φ = C1 ∧ · · · ∧ Cm is represented as

the set of inequalities Fφ = {R(C1), R(C2), . . . , R(Cm)} ∪ B, where B is the set of

Boolean axioms x ≥ 0,−x ≥ −1 for each variable x. Recall the encoding is called the

standard encoding. For a QBF Q1x1 . . .Qnxn. φ with a CNF matrix φ, the encoding

is the quantified set of linear inequalities Q1x1 . . .Qnxn. Fφ.

We say that a 0, 1-assignment α satisfies the inequality I ≡
∑n

i=1 aixi ≥ b (i.e,

I|α = 1), if
∑n

i=1 aiαi ≥ b, where αi is the value given to the variable xi by α.

Observe that for any clause C, an assignment satisfies C if and only if it satisfies

R(C). This observation along with the fact that the encoding includes all Boolean

axioms immediately yields the following:

Proposition 4.3. Let Q .φ be a QBF in closed prenex CNF form, and let ϕ = Q .Fφ

be its encoding as a quantified set of linear inequalities. Then Q .φ is false if and

only if ϕ is false.

Analogous to QBFs, we can also play the 2-player game on the encoding ϕ of a

QBF. Players choose 0-1 values for their variables in the order defined in the prefix.

The ∀ player wins if the assignment so constructed violates some inequality in F .

As before, the universal player has a winning strategy exactly when ϕ is false, and

otherwise the existential player has a winning strategy.

Definition 4.4 (CP+∀red proofs for QBFs). Let Q .φ = Q1x1 · · · Qnxn .φ be a

false QBF in prenex CNF form, and let ϕ be its encoding as a quantified set of

linear inequalities. A CP+∀red (refutation) proof of Q .φ is a CP+∀red proof of ϕ

as defined in Definition 4.1.

It is worth noting that CP+∀red for inequalities, as defined in Definition 4.1, can

start with encodings of QBFs, but can also start with quantified sets of inequalities

that contain the Boolean axioms but do not correspond to any QBF, since the initial

non-Boolean inequalities can have arbitrary integer coefficients.
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Now we show that CP+∀red is a complete and sound proof system for false QBFs.

That is, we show that if F is a false QBF, then there exists a CP+∀red refutation

of F (completeness) and if there exists a CP+∀red refutation of F , then F is false

(soundness).

To show completeness, we first compare CP+∀red to the known QBF calculus QU-

Res.

Lemma 4.5. CP+∀red p-simulates QU-Res.

Proof. We know that the rules of the propositional cutting planes system can p-

simulate the resolution rule [37]. That is, if C can be derived from φ in Res, then

R(C) can be derived from Fφ in Cutting Planes. Observe that the same simulation

works independent of the quantifier prefix or the nature of the pivot variable. Now

we show how CP+∀red simulates the ∀-red rule of QU-Res proof system. Consider

a ∀-red step in QU-Res of the form C∨u
C

, where u is universal and all existential

variables in the clause C come before u in the prefix. By induction we have derived

the inequality R(C∨u) for the clause C∨u. Reducing u from this inequality is valid.

Clearly, the coefficient of u in the inequality R(C ∨ u) is +1. Hence in the CP+∀red

proof, using the ∀-red rule assigns u = 0 and hence derives R(C). Similarly, for

C∨ū
C

, the coefficient of u in the inequality R(C ∨ ū) is −1 (the variable u contributes

(1− u) to R(C ∨ ū)), hence the ∀-red rule in CP+∀red sets u = 1 and again derives

R(C).

Since QU-Res is known to be complete, we obtain completeness for CP+∀red for false

QBFs.

Before proving the soundness of CP+∀red, we first show a normal form for proofs;

this makes establishing soundness cleaner. Observe that in the ∀-red step of CP+∀red,

if u is the universal variable being reduced, then u need not be the rightmost vari-

able with a non-zero coefficient. There may be universal variables to the right of u
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with non-zero coefficients. This is as allowed in QU-Res = Res + ∀-Red. Inspired

by the ∀-red step defined for the Frege+∀red proof system in [11], let us consider

a reduction step where we allow only the innermost (rightmost) universal variable

to be reduced from any inequality. That is, reduce a universal variable xi from an

inequality I only if no variable to the right of xi, existential or universal, has non-

zero coefficient in I. We call a proof where the ∀-red steps are applied only to the

innermost universal variables with non-zero coefficients a normal-form CP+∀red

proof. We show below that any CP+∀red proof can be efficiently converted to one

in normal form. In later sections we will often assume this normal form.

Lemma 4.6. Any CP+∀red proof π can be converted into a normal-form CP+∀red

proof π′ in polynomial time.

Proof. Let π be any CP+∀red proof of a false QBF F . We efficiently convert π into

a normal-form proof π′ using the Boolean axioms. Let inequality I ′ be derived in

π from I by a ∀-reduction step on w. If w is the innermost universal variable in I,

then nothing needs to be done. Otherwise, in any case, no existential variable right

of w can have non-zero coefficient in I. Let (w =)w0, w1, . . . , wk be the universal

variables right of (including) w with non-zero coefficients h0, h1, . . . , hk in I. We

obtain I ′ from I via the following (3k + 1) steps:

For j = k down to 0, reduce wj.

For j = 1 up to k, if hj > 0 then add hj(wj ≥ 0), else add (−hj)(−wj ≥ −1).

Observe that this proof fragment is in normal-form.

Note that when using CP+∀red to simulate QU-Res as in Lemma 4.5, this proof

fragment corresponds to a sequence of k + 1 ∀-reductions followed by a sequence of

k weakenings (recall in the Resolution proof system using weakening rules one can

include any number of positive or negative literals on the given clause, similarly here

after k + 1 ∀-reductions steps we are adding back the universal variables with the

same coefficients as before to the given inequality).
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Now we prove the soundness of CP+∀red.

Lemma 4.7. CP+∀red is a sound proof system for false QBFs.

Proof. Let Q .φ = Q1x1 · · · Qnxn .φ be a QBF in closed prenex CNF form, and let

ϕ = Q. F be its encoding as inequalities. Recall that F also includes Boolean axioms.

Let π = Q1x1 . . .Qnxn.[I1, I2, . . . , Il] be any CP+∀red refutation (see Definition 4.1)

of ϕ. We can assume (using Lemma 4.6) that π is in normal form.

To prove soundness, we need to show that Q .φ is false. From Proposition 4.3, it

suffices to show that ϕ is false. We do this by showing that the following is valid for

each j ∈ [l]:

Q1x1 . . .Qnxn. [F ∧ I1 ∧ · · · ∧ Ij−1] =⇒ Q1x1 . . .Qnxn. [F ∧ I1 ∧ · · · ∧ Ij−1 ∧ Ij],

where Ij is derived from some inequalities before it via an inference rule of CP+∀red.

Observe that the cases when Ij is derived via Addition, Multiplication, or Division

rules are straightforward, since every Boolean assignment satisfying F ∧I1∧· · ·∧Ij−1

also satisfies Ij. We now concentrate on the ∀-red step.

Say Ij is derived from Ik, k < j, via the ∀-red rule. Let u = xr be the universal

variable reduced, and let Ik be
∑

s csxs ≥ C for some integers c1, . . . , cn, C. Since π

is in normal form, for all s > r, cs = 0.

Suppose the claimed statement is not valid. That is, ϕj−1 = Q .F ∧ I1 ∧ · · · ∧ Ij−1

is true but ϕj = Q .F ∧ I1 ∧ · · · ∧ Ij is false. The existential player has a winning

strategy σ∃ for ϕj−1, while the universal player has a winning strategy σ∀ for ϕj.

Let α be the assignment constructed when the players use these strategies for their

variables. Then α satisfies F ∧ I1 ∧ · · · ∧ Ij−1, and in particular, Ik, but does not

satisfy Ij. Define a new strategy σ′∀ for the universal player; it uses the same strategy

as σ∀ for variables other than xr, but flips the strategy of σ∀ for variable xr. Let β be
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the assignment constructed by strategies σ∃ and σ′∀. Then βs = αs for all s < r, and

βr 6= αr. These are the only values that matter for evaluating Ik. An examination

of the ∀-red rule shows that it derives the tighter of the two inequalities Ik|xr=0 and

Ik|xr=1 as Ij, and hence Ik(β) equals Ij(α) and is false. Thus the existential player

using strategy σ∃ does not win against the universal player using strategy σ′∀, and

hence is not a winning strategy for ϕj−1, a contradiction.

Now let us assume that ϕ is true, then we conclude that Q1x1 . . .Qnxn.[I1, I2, . . . , Il]

is also true. A contradiction, as the last inequality Il ≡ 0 ≥ C is always false.

Comments: We have seen that the new QBF proof system CP+∀red is sound

and complete for the language of false QBFs. We point out that CP+∀red is also

sound and complete for the language of false quantified set of linear inqualities that

contains the Boolean axiom, but do not corresponds to any QBF. Interested readers

are referred to [34].

4.2 Relative Power of CP+∀red with Respect to

Other QBF Proof Systems

In this section we relate the power of CP+∀red with other well known QBF proof

systems.

4.2.1 CP+∀red is Exponentially Stronger than Q-Res and

QU-Res

By Lemma 4.5, CP+∀red p-simulates QU-Res (and hence Q-Res). Now we show that

in fact CP+∀red is exponentially stronger than both these systems. In other words;

Theorem 4.8. Q-Res and QU-Res cannot simulate CP+∀red.
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Proof. From classical proof complexity we know that false CNF formulas based on

the pigeonhole principle (PHP) are easy for Cutting Planes proof system [37] but are

hard for Resolution [53]. Therefore CP+∀red is exponentially more powerful than

any QBF proof system based on Resolution (example, Q-Res, QU-Res, etc).

Note that the separating QBFs have only existential quantification, and this is not

the effect one wants to study in QBF proof complexity (also see [33] for a discussion).

We now consider an explicit family of false QBFs with universal quantifiers for which

CP+∀red is exponentially more powerful that Q-Res. In [13] it has been shown that

the false QBFs KBKF(t), introduced in [60], are hard for Q-Res. However, they are

known to have a polynomial-size proofs in QU-Res (see Proposition 2.10), and by

Lemma 4.5 in CP+∀red as well. Therefore Q-Res cannot simulate CP+∀red.

Now we consider yet another family of false QBFs from [43], which we denote as

Q-PHPn. The formula is based on the pigeonhole principle, and is shown in [43] to

be hard for Q-Res. We observe that it is also hard for QU-Res, but easy for CP+∀red,

hence showing that QU-Res cannot simulate CP+∀red. The formula Q-PHPn is de-

fine as follows: let CPHPXn
n be the false CNF formula encoding pigeon hole principle

on n+ 1 pigeon and n holes, and over the variables in Xn = {x1, . . . , xn}, as defined

in Section 2.3.2. That is,

CPHPXn
n =

(
n+1∧
i=1

(
n∨
j=1

xi,j)

)
∧

(
n∧
j=1

∧
1≤i1<i2≤n+1

(¬xi1,j ∨ ¬xi2,j)

)

Now define

DPHPXn
n = ¬CPHPXn

n

Clearly DPHPXn
n ∈ TAUT and is in DNF if the negation sign is propagated to the

leaves in the formula tree. Consider the following formula:

∃Xn∀Yn.DPHPYn
n ∧ CPHPXn

n
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with Yn ∩Xn = ∅. This is a false QBF because CPHPXn
n is unsatisfiable. However

the matrix of the formula is not in CNF. We define Q-PHPn to be the equivalent

of the above formula where the matrix is in CNF form. In [43], the DNF formula

DPHPYn
n is encoded into an equivalent CNF formula TPHPYn,Z

n using additional

variables Z, disjoint from Xn and Yn. To be precise,

Q-PHPn = ∃Xn∀Yn∃Z.TPHPYn,Z
n ∧ CPHPXn

n

with DPHPYn
n ≡ ∃Z.TPHPYn,Z

n and TPHPYn,Z
n is in CNF (for detailed encoding,

refer to [43], also see [44, Section 6]).

Q-PHPn is hard for Q-Res and QU-Res [43], but easy for CP+∀red: In QU-

Res no resolution step is possible between the clauses from TPHPYn,Z
n and CPHPXn

n ,

as the variable sets are disjoint. Also the refutation is possible only from the clauses

of CPHPXn
n , as ∀Yn∃ZnTPHPYn,Z

n is true. Since all the variables inXn are existential,

the claim follows directly from the hardness result of the pigeon hole principle for

Resolution [53], and the fact that the pigeon hole principle is easy for the Cutting-

plane proof system [37, Proposition 7].

In fact, recently it has been shown in [44, Corollary 3 and Proposition 6], that

Q-PHPn needs exponential sized proofs in all QBF Resolution calculi, whether CDCL-

based or expansion-based.

4.2.2 CP+∀red and ∀Exp+Res are Incomparable Unless P/poly =

TC0

Theorem 4.8 compares CP+∀red to CDCL-based QBF Resolution proof systems.

Now we relate CP+∀red with the most basic expansion-based proof system ∀Exp+Res.

One direction is unconditional.
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Proposition 4.9. ∀Exp+Res cannot simulate CP+∀red.

Proof. In [56], Janota and Marques-Silva show that there exists a family of false

QBFs (φn, see Section 2.4.1) which are hard for ∀Exp+Res but easy to refute in

Q-Res. As CP+∀red p-simulates Q-Res (Lemma 4.5), we conclude that ∀Exp+Res

cannot simulate CP+∀red.

By applying [44, Proposition 6], which shows that the Q-PHPn formula from [43]

requires exponential sized proofs in IRM-calc, and using the fact that Q-PHPn has

a short CP+∀red proof, one can strengthen Proposition 4.9 to the following:

Proposition 4.10. IRM-calc cannot simulate CP+∀red.

Next we show that if P/poly 6⊆ TC0, then CP+∀red cannot simulate ∀Exp+Res. We

follow the method first introduced in [13, Section 4], which we briefly describe below

(also in Section 2.5).

For any Boolean function family fn computed by a circuit family Cn of size l(n),

consider the family of sentences expressing the following: ∃x1 · · ·xn∀z.f(~x) 6= z. We

want to state this sentence as a QBF. To express f(~x), we use the circuit C = Cn.

Let this circuit be of size l = l(n). We use Tseitin transformation (Section 2.1).

Associate a variable ti with each gate of C, and let tl be the variable associated with

the output gate. Now the false sentence can be expressed as follows:

Q-fn ≡ ∃x1 · · ·xn∀z∃t1 · · · tl.(tl 6= z)∧
l∧

i=1

(ti is consistent with the inputs to gate i).

The inner formula can be written as an O(l)-sized CNF (see Section 2.5).

We now show that if fn ∈ P/poly \TC0, then Q-fn cannot be refuted in CP+∀red in

size polynomial in n. (To be very precise, L is a language in P/poly \ TC0, and fn

is the characteristic function of its nth slice.) We prove the contrapositive:
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Lemma 4.11. For fn ∈ P/poly, if Q-fn has a polynomial-size CP+∀red proof, then

fn ∈ TC0.

To prove Lemma 4.11, we need the following definition which will also be used later.

Definition 4.12. Let Q. φ be a false QBF, encoded as quantified inequalities Q. F

as per Definition 4.2. Let π = Q. [I1, . . . , Il] be any CP+∀red proof of Q. φ and

Q. F . Define πl = ∅, and for 0 ≤ j < l define πj = Q. [Ij+1, . . . , Il]. Further, define

F0 = F , and for j > 0, Fj = F ∪{I1, . . . , Ij} ( treat Fj as sequences of inequalities).

Proof of Lemma 4.11. Let Q. F be the encoding of Q-fn as inequalities, as per

Definition 4.2. Recall that F includes the Boolean axioms. Consider any CP+∀red

refutation proof π = Q. [I1, . . . , Il] of Q. F . Let the size of the proof be m. By

assumption, l and even m are polynomially bounded in n.

By downward induction on j, from πj we show how to compute, in TC0, a Boolean

function σj(~x) such that for every assignment ~a to the ~x variables, if z is set to the

value σj(~a), then the statement ∃~t. Fj |~x←~a,z←σj(~a) is false. (In other words, σj(~x) is

a winning strategy for the universal player in the 2-player game played on Q. Fj.)

Observe that the only such choice for σ0(~x) is f(~x), since only by setting z to f(~x)

does φ |z=f(~x) become unsatisfiable. Instead of giving the TC0 circuits directly, we

provide polynomial-size TC0-decision lists. To be precise we show the following:

Claim 4.13. For every j ∈ [l], from πj, one can extract a winning strategy for the

universal player σj(~x) in the two player game played on Q. Fj, such that σj(~x) can

be computed by a TC0-decision lists of length O(l − j).

As already mentioned, we prove Claim 4.13 by downward induction on j. Observe

that the initial axioms F are already included on Fj, therefore we can avoid the

axiom download steps of the CP+∀red proofs.
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Base case: When j = l, define σl(~x) ≡ 0. Indeed σl(~x) can take any Boolean value

as Fl contains Il which is the contradiction 0 ≥ 1.

Induction hypothesis: Assume that the Claim 4.13 is true at the jth step.

Induction step: We define σj−1(~x) from σj(~x). Thus for every assignment ~a to ~x

and ~b to ~t, if z is assigned σj(~a), then some inequality in Fj is not satisfied.

1. If the inequality Ij is derived using the addition, multiplication or division rule,

then define σj−1(~x) ≡ σj(~x). Observe that if an assignment (~a, σj(~a),~b) does

not falsify Ij, then it must falsify an Ik ∈ Fj with k < j, that is, an Ik ∈ Fj−1.

Otherwise, since it falsifies Ij and since the inference rules are sound, it also

falsifies at least one of the hypotheses Ik, k < j.

2. If Ij is derived using a ∀-reduction step (see Definition 4.1), then Ij = Ik|z=bj

for some k < j (here bj ∈ {0, 1}, depending on the coefficient of the universal

variable z in Ik), and in Ik all the ~t variables have coefficient 0. So Ij is

an inequality involving only the ~x variables. We define σj−1(~x) as follows:

If Ik|z=bj(~a) is false, then σj−1(~a) = bj, else σj−1(~a) = σj(~a). Using the

inductive hypothesis, we see that any assignment α = (~a, σj−1(~a),~b) falsifies

some inequality in Fj−1.

The decision list Dj−1(~x) for σj−1(~x) is constructed as follows: If ¬(Ik|z=bj(~x))

then Dj−1(~x) = bj else Dj−1(~x) = Dj(~x). Observe that Dj−1(~x) has just one

more condition than Dj(~x). By assumption, the bit-size of Ik is polynomially

bounded in n, and hence one can check the if condition in TC0.

The decision listD0(~x) has length O(l) and each condition is checkable by a constant-

depth threshold circuit of size polynomial in m. Hence σ0(~x) = f(~x) can be com-

puted in TC0.

On the other hand, from [13, Proposition 28], we know that the formula Q-fn can
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be refuted in ∀Exp+Res in O(n+ l) steps. This, along with Lemma 4.11, yields the

following desired separation:

Theorem 4.14. If P/poly 6⊆ TC0 then CP+∀red cannot simulate ∀Exp+Res.

Note that the function σ0(~x) in the proof of Lemma 4.11 is actually a strategy

extraction for (the only) universal variable z in the formula Q-fn. Thus the obvious

next question is whether we can lift this technique of strategy extraction for any

false QBF F . In Section 4.3 we answer this question positively.

4.2.3 Frege+∀red p-simulates CP+∀red

In this section we show that the Frege+∀red proof system defined in [11] p-simulates

the CP+∀red proof system. That is:

Theorem 4.15. Frege+∀red p-simulates CP+∀red.

In classical (propositional) proof systems, Cook, Coullard and Turán [37] first showed

that EF p-simulates Cutting Planes. Then Goerdt [51] showed that even Frege p-

simulates Cutting Planes. Here we show that the same simulation goes through

with minor modifications. We use the techniques from [30], [37], and [51] to prove

Theorem 4.15.

Proof of Theorem 4.15. Let F be a false formula F = Qx0 · · · QxN−1. [C1 ∧ · · · ∧

Cp], and let ϕ denote its standard encoding as described in Definition 4.2. Fix

any CP+∀red proof π = Qx0 · · · QxN−1. [I1, I2, . . . , Im] of ϕ. By Lemma 4.6, we

can assume that π is in normal form. We need to represent each inequality I as

a propositional formula Rep(I), such that on each assignment α to the Boolean

variables, Rep(I)(α) is 1 if and only if I|α is 1. We do this almost exactly as in [51].

We know that integer arithmetic is in NC1. Thus, for a string of (n + 1)L Boolean

variables ỹ representing the bits of n + 1 signed integers a1, a2, . . . , an, b with bit
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length L each, and n Boolean variables x1, . . . , xn, there is a formula F (ỹ, ~x) of size

polynomial in n+ L (and depth logarithmic in nL) with the following properties:

• For every assignments β to the ỹ variables, F (β, ~x) represents the inequality∑
i aixi ≥ b.

• For every assignments α to the ~x variables, we have F (β, α) is true iff
∑

i aiαi ≥

b is true.

Now to represent a specific inequality I :
∑

i aixi ≥ b, we append to the leaves of F

labeled from ỹ subformulas of the form x∨x̄ or x∧x̄ depending on the bits of the ai’s

and b. The resulting formula has the variables x1, . . . , xn and is the representation

Rep(I).

Our simulating Frege+∀red proof will have the structure

π1,Rep(I1), π2,Rep(I2), . . . , πm,Rep(Im), πm+1, false

where each πi is a sequence of formulas. That is, the simulating Frege+∀red proof

is a sequence of formulas containing the subsequence

Rep(I1),Rep(I2), . . . ,Rep(Im), false

For each axiom clause C, we need to derive the formula Rep(R(C)) by a short

(polynomial in n) Frege+∀red proof. Furthermore, inside Rep(R(C)), there will be

explicit sub-formulas representing the bits of each coefficient, aij and bj for i ∈ [n],

j ∈ [L]. (To handle carry overflows, we pad each coefficient with 0s to length θ(L)

as in [51].) There will also be explicit sub-formulas for each aij ∧ xi.

We also need to derive each Rep(It) from Rep(Ij), j < t, via short (polynomial in

the size of proof π) Frege+∀red proofs.
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The addition rule, multiplication rule, and the division rule can be simulated as in

the classical case [51]: since integer arithmetic is in NC1, we have small formulas G

expressing the coefficients of the resulting inequality I from the used inequalities I ′

and I ′′. A Frege style proof can describe how values from the subformulas in Rep(I ′)

and Rep(I ′′) propagate through G to bits equivalent to the corresponding input bits

of Rep(I).

Now we show the ∀-red step simulation.

Suppose the inequality Ik is obtained from Ij for some j < k by applying the ∀-red

rule, reducing universal variable u. Clearly, u is the rightmost variable in Ij with

nonzero coefficient hu. Inductively, we have already derived Rep(Ij). Let bu = 0

if hu > 0, otherwise bu = 1. We need to instantiate u in Rep(Ij) with bu. But u

is not the rightmost variable in Rep(Ij). However, for each variable v to the right

of u, we know that the coefficient av of v in Ij is 0, and hence the sub-formulas

evaluating to the bits avj, as well as the sub-formulas evaluating avj ∧v, are all 0. In

Frege+∀red, we can transform the pair of sub-formulas, avj ∧ v, and avj ≡ 0, to the

subformula avj ∧ 0, and thus eliminate v (note that v does not figure anywhere else

in the formula). Once this is done for all variables right of u, we have the formula

R in which the ∀-reduction step is valid in Frege+∀red. Performing this reduction

gives the formula R′ = R |u=bu . Now, a short Frege proof can allow us to derive

Rep(Ij |u=bu) = Rep(Ik). To see why such a proof exists, consider the case bu = 0.

Inside R′ we have subformulas for the bits huj of the coefficient hu of u, and bits

for huj ∧ u, and at u we have attached a subformula evaluating to 0. What we

want is subformulas where u is still free, but the bits of the new coefficient of u

are all 0. That is, from huj ∧ u and u ≡ 0, we want to derive 0 ∧ u (the reverse of

what we did before the reduction for later variables v). This is easy in Frege+∀red.

The case when bu = 1 is similar, with the added task of subtracting hu from the

right-hand-side. This too can be tracked using an NC1 formula for subtraction.
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Since Frege is exponentially more powerful than Cutting Planes over propositional

formulas (as witnessed by the clique-colour formulas [67]), the converse simulation

fails, and CP+∀red and Frege+∀red are exponentially separated.

We now obtain an exponential separation between CP+∀red and Frege+∀red for

QBF formulas with universal quantifiers as well (Corollary 4.16). We construct a

family of false QBFs Φn,k which encode that a graph on n vertices both has and

does not have a k-clique, and are of size polynomial in n. We call them the clique-

co-clique formulas: fix positive integers n (indicating the number of vertices of the

graph) and k ≤ n (indicating the size of the clique queried) and let ~p be the set of

variables {puv | 1 ≤ u < v ≤ n}. An assignment to ~p picks a set of edges, and thus

an n-vertex graph. Let ~q be the set of variables {qiu | i ∈ [k], u ∈ [n]}. We use the

following clauses.

Ci = qi1 ∨ · · · ∨ qin for i ∈ [k]

Di,j,u = ¬qiu ∨ ¬qju for i, j ∈ [k], i < j and u ∈ [n]

Ei,u,v = ¬qiu ∨ ¬qiv for i ∈ [k] and u, v ∈ [n], u < v

Fi,j,u,v = ¬qiu ∨ ¬qjv ∨ puv for i, j ∈ [k], i < j and u 6= v ∈ [n].

We can now express Clique(n, k) as a polynomial-size QBF ∃~q.An,k(~p, ~q), where

An,k(~p, ~q) =
∧
i∈[k]

Ci ∧
∧

i,j∈[k],i<j,u∈[n]

Di,j,u ∧
∧

i∈[k],u<v

Ei,u,v ∧
∧

i,j∈[k],i<j,u6=v

Fi,j,u,v.

Here the edge variables ~p appear only positively in An,k(~p, ~q).

Likewise co-Clique(n, k) can be written as a QBF ∀~r∃~t.Bn,k(~p, ~r,~t) of polynomial

size. We describe here one particular encoding. This encoding is convenient for us

because it allows us to obtain a short Frege+∀red proof (Theorem 4.17 below). For

~r, we have a variable riu for every variable qiu and we let the set of variables of ~t be

{tK | K ∈ An,k} ∪ {t}. For each clause K in An,k(~p, ~q), we include an equivalence
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tK ↔ K[riu/qiu] in Bn,k(~p, ~r,~t), which we represent as a set of clauses. We also

introduce clauses for t↔
∧
K∈An,k

tK , i.e., t indicates whether the ~r variables encode

a clique. Because we want to represent the co-clique formula we also include ¬t in

Bn,k(~p, ~r,~t), which yields the CNF formula co-Clique(n, k) = ∀~r∃~t.Bn,k(~p, ~r,~t).

The clique-co-clique formulas Φn,k are ∃~p∃~q∀~r∃~t.An,k(~p, ~q)∧Bn,k(~p, ~r,~t). These for-

mulas encode the obviously false statement that a given graph on n vertices both

has and does not have a k-clique, and are of size polynomial in n as promised.

In Chapter 5, we will show via feasible interpolation technique, that the formula

Φn,k (for some k) needs exponential many steps to refute in CP+∀red (Corollary

5.12).

We now show that the formula Φn,k are in fact easy for Frege+∀red (Theorem 4.17)

and thereby obtain the following Corollary:

Corollary 4.16. CP+∀red does not simulate Frege+∀red.

Theorem 4.17. The clique-co-clique formulas Φn,k have short proofs in Frege+∀red.

Proof. We use a result from [20, Theorem 8.1] which shows that a Frege+∀red super-

polynomial lower bound must either come from a circuit lower bound or a classical

Frege lower bound. More precisely, if false QBFs Φn do not admit polynomial-

size Frege+∀red proofs, then either the universal player does not have NC1 winning

strategies for the universal variables, or if small NC1 winning strategies exist, then

the propositional formulas obtained by substituting the NC1 circuits for universal

variables in Φn are hard for classical Frege.

In the case of the clique co-clique formulas Φn,k there exist short winning strategies

for the universal player, namely ~r = ~q. To see this, we just need to consider the

case where the existential player chooses a graph ~p that contains a k-clique exhib-

ited in the ~q-variables, because otherwise the universal player immediately wins on
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An,k(~p, ~q). In this case, choosing ~r = ~q ensures that Bn,k(~p, ~r,~t) fails as ~r indeed is

a k-clique.

Substituting these winning strategies into Φn,k, we obtain the false propositional

formulas An,k(~p, ~q) ∧Bn,k(~p, ~q,~t), which admit short Frege refutations.

Using this intuition we can refute Φn,k in Frege+∀red with short proofs. For this

we first derive the tautology ¬(An,k(~p, ~q) ∧ Bn,k(~p, ~q,~t)) by demonstrating a way

to find a contradiction in An,k(~p, ~q) ∧ Bn,k(~p, ~q,~t). To do this we observe that for

any clause K ∈ An,k(~p, ~q), we have the equivalences (tK ↔ K) ∈ Bn(~p, ~q,~t), so

we derive all tK . Then, because (t ↔
∧
K∈An,k

tK) ∈ Bn,k(~p, ~q,~t), we obtain t. This

means that with ¬t ∈ Bn,k(~p, ~q,~t) we have a contradiction, thus proving the negation

¬(An,k(~p, ~q) ∧Bn,k(~p, ~q,~t)).

Moving forward to the next step, we derive in (polynomially many) Frege steps the

implication
∧
i∈[k],j∈[(n

2)](qi,j ↔ ri,j)→ ¬(An,k(~p, ~q)∧Bn(~p, ~r,~t)), from which together

with the axiom An(~p, ~q)∧Bn(~p, ~r,~t) we derive the disjunction
∨
i∈[k],j∈[(n

2)](ri,j 6= qi,j).

Now we perform ∀-reduction, starting with the rightmost universal variable ri1,j1

and instantiating it with both 0 and 1. Thus we obtain two lines:

(0 6= qi1,j1) ∨
∨

i∈[k],i 6=i1,j∈[(n
2)],j 6=j1

(ri,j 6= qi,j)

(1 6= qi1,j1) ∨
∨

i∈[k],i 6=i1,j∈[(n
2)],j 6=j1

(ri,j 6= qi,j)

We then use the tautology (qi1,j1 ↔ 0) ∨ (qi1,j1 ↔ 1) and the two instantiations to

remove the disjunct (ri1,j1 6= qi1,j1) from the disjunction. Continuing this iteratively,

we remove all disjuncts and are left with the empty disjunct, hence refuting Φn,k in

polynomial size.

Note that if we changed the quantification and used formula ∃~p∀~r∃~t∃~q.An,k(~p, ~q) ∧
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Bn,k(~p, ~r,~t) we would still be describing the same contradiction between clique and

co-clique. However the above argument would not work for finding short Frege+∀red

proofs. This is because the strategies of the universal player cannot refer to the

choices of ~q (since the universal player is restricted to using variables that appear

left of the variable in question) but instead has to describe a k-clique expressed as the

~r variables as soon as the existential player plays in the graph variables. However the

strategies that determine these clique are restricted to the ~p graph variable. Since

cliques can be checked easily when found, this means that the universal strategies

compute the NP-complete Clique(n, k) problem. So strategies are conjectured to

be hard unless NP ⊆ NC1. Because of the strategy extraction theorem from [11]

NP ⊆ NC1 will be a necessary condition for these modified formulas to have short

proofs in Frege+∀red.

4.3 Strategy extraction for CP+∀red

Recall that a QBF Q1x1 · · · Qkxk .φ can be seen as a game between two players:

universal (∀) and existential (∃). Given a universal variable u with index i, a strategy

for u is a function from all variables of index < i to {0, 1}. A QBF is false if and

only if there exists a winning strategy for the universal player.

Recall from Section 2.5 that, a QBF proof system has the strategy extraction prop-

erty for a particular class of circuits C whenever we can efficiently extract, from

every refutation π of a QBF φ, universal player strategies in circuit class C for all

universal variables.

In the proof of Lemma 4.11 we saw how to extract, from a refutation of Q-fn in

CP+∀red, a winning strategy for the sole universal variable z. We now consider

the more general version; for formulas with multiple universal variables, quantified

anywhere in the prefix, we show how to extract winning strategies for the universal
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player from a refutation in CP+∀red.

Theorem 4.18 (Strategy Extraction Theorem). Given a false QBF F = Q. φ,

with n variables, and a CP+∀red refutation π of F (to be precise,the refutation of

the standard encoding ϕ = Q. F of F , see Definition 4.2) of size m, it is possible

to extract from π a winning strategy σu for each universal variable u ∈ ϕ, such that

each σu can be computed by Boolean circuits of (m+n)O(1) size, constant depth, with

unbounded fanin AND, OR, NOT gates as well as threshold gates.

In particular, if ϕ can be refuted in CP+∀red in nO(1) size, then the winning strategies

can be computed in TC0.

Proof. We adapt the technique from [11]. Let π = Q. [I1, . . . , Il] be a normal-form

CP+∀red proof of the standard encoding Q. F of Q. φ, of length l and size m ≥ l.

For j ∈ {0, 1, . . . , l}, πj and Fj are as defined in Definition 4.12; πj = Q. [Ij+1, . . . , Il]

and Fj = F ∪ {I1, . . . , Ij} (note that πl = ∅ and F0 = F ). By downward induction

on j, from πj we show how to compute, for each universal variable u, a Boolean

function σju that maps each assignment to the variables quantified before u to a

bit {0, 1}. These functions satisfy the property that in a 2-player game played on

the formula Q. Fj, if the universal player chooses values for each universal variable

u according to σju, then finally some inequality in Fj is falsified. We describe the

functions σju by decision lists of size O(l − j), where each condition is checkable by

a constant depth threshold circuit of size polynomial in m. Again we can skip the

axiom download steps.

The strategy is as follows: σlu = 0 for all u. For j ≤ l, if Ij is obtained by a classical

rule, then σj−1
u = σju for every universal variable u. If Ij is derived using a ∀-red

rule; that is Ij = Ik|u=bj for some k < j, then for all u′ 6= u, σj−1
u′ = σju′ . For u, if

Ik|u=bj(~a) = 0, then σj−1
u (~a) = bj, else σj−1

u (~a) = σju(~a). (The value Ik|u=bj(~a) can

be determined since variables to the right of u have zero coefficient in Ik.) It is easy

to see that these functions so defined have the desired property.
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Lemma 4.11 yields a conditional lower bound for CP+∀red: If P/poly 6⊆ TC0, then

there is a family of false QBFs with no polynomial size proof in CP+∀red. Using

Theorem 4.18, we can obtain a similar lower bound from a weaker assumption;

namely,

Corollary 4.19. If PSPACE/poly 6⊆ TC0, then there exists a family of false QBFs

Qqbf-fn that requires super-polynomial size proofs in CP+∀red.

Proof. Let fn ∈ PSPACE/poly \ TC0. Consider the false sentence based on fn:

∃x1 . . . xn∀z.
[
f(~x) 6= z

]
.

Since fn is in PSPACE/poly and QBF is PSPACE-complete, the value of fn can be

compactly expressed by a QBF. That is, fn(~x) ≡ Q1y1 . . .Qryr.ψn(~x, ~y) where r is

polynomial in n and ψn(~x, ~y) is in P/poly. Thus we have the false sentence

∃x1 . . . xn∀z.
[
(

fn(~x)︷ ︸︸ ︷
Q1y1 . . .Qryr.ψn(~x, ~y))↔ ¬z

]
.

We now choose circuits Cn computing ψn and use additional variables ~s and ~t to

represent the gate values in the P/poly circuits Cn and ¬Cn, respectively. We obtain

the QBF

∃x1 . . . xn∀zQ1y1 . . .QryrQ̄1w1 . . . Q̄rwr∃~s,~t.
[
(Cn(~x, ~y, ~s) ∨ z) ∧

(
¬Cn(~x, ~w,~t) ∨ ¬z

)]
where Q̄ = ∃ if Q = ∀ and vice versa. We call this formula Qqbf -fn and remark

that it is a false prenex QBF with CNF matrix. (Cn can be expressed as a CNF

by applying Tseitin transformation to the circuit; then adding the literal z to each

clause expresses Cn ∨ z. Similarly for ¬Cn ∨ ¬z.)

As in Lemma 4.11, observe that in the two-player game on Qqbf -fn or on its encoding
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as inequalities, the only winning strategy for the universal variable z is the function

fn(~x) itself. Therefore if there exists a polynomial size CP+∀red proof for Qqbf -fn

(or equivalently for its standard encoding), then from Theorem 4.18, fn ∈ TC0, a

contradiction.

4.4 Semantic cutting planes for QBFs

The classical cutting planes proof system Cutting Planes can be extended to the

semantic Cutting Planes proof system by allowing the following semantic inference

rule: from inequalities I ′, I ′′, we can infer I in one step if every Boolean assignment

satisfying both I ′ and I ′′ also satisfies I. In [47], it is shown that semantic Cutting

Planes is exponentially more powerful than Cutting Planes. We now augment the

system semantic Cutting Planes with the ∀-reduction rule as defined for CP+∀red, to

obtain a QBF version denoted semCP+∀red. In fact, in this system we need only

two rules, semantic inference and ∀-reduction, since the addition, multiplication and

division rules of Cutting Planes are also semantic inferences, and the Boolean axioms

can be semantically inferred from any inequality.

It is clear that semCP+∀red is sound and complete for false QBFs. However it is

not possible to verify the semantic rule efficiently (unless P= NP).

As in CP+∀red, we call a semCP+∀red proof π a normal-form proof if ∀-red is

applied only to the innermost universal variable. Since one can use Boolean axioms

in semCP+∀red; Lemma 4.6 is valid in semCP+∀red as well. That is one can convert

any semCP+∀red proof π into a normal form in polynomial time.

Clearly, SemCP+∀red is at least as powerful as CP+∀red. From classical proof

complexity we known that semantic Cutting Planes is exponentially more powerful

than Cutting Planes [47]. That is, in [47, Theorem 2], it has been shown that for

every n, there exists a CNF formula Fn which has a short semantic Cutting Planes
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refutation but needs 2n
Ω(1)

lines to refute in Cutting Planes. Thus semCP+∀red

is also exponentially more powerful that CP+∀red, as witnessed by these purely

existentially quantified formulas.

In Lemma 4.11 and Theorem 4.18, we established strategy extraction from CP+∀red

proofs. These results hold for semCP+∀red proofs as well; if Ij is obtained by

semantic inference, we do not change the strategy functions and let σj−1
u = σju

for every universal variable u. Thus all the conditional lower bounds on CP+∀red

continue to hold:

Corollary 4.20. 1. If P/poly 6⊆ TC0, then semCP+∀red cannot p-simulate ∀Exp+Res.

For any fn ∈ P/poly \ TC0, the false QBF formula Q-fn requires super-

polynomial size proofs in semCP+∀red.

2. If PSPACE 6⊆ TC0, then for any fn ∈ PSPACE \ TC0, the false QBF Qqbf-fn

requires super-polynomial size proofs in semCP+∀red.

As already mentioned, in Chapter 5, we establish feasible interpolation for semCP+∀red

and prove an exponential lower bound for the formula Φn,k in semCP+∀red proof

system (Corollary 5.14).
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Chapter 5

Feasible Interpolation for QBF

Proof Systems

Recall from Section 2.3.1, feasible interpolation, first introduced by Kraj́ıček in [62],

is a particular successful paradigm that transfers circuit lower bounds to proof size

lower bounds. The technique has been shown to be effective for Resolution [62],

Cutting Planes [67] and even strong Frege systems for modal and intuitionistic logics

[54]. However, feasible interpolation fails for strong propositional systems such as

Frege systems under plausible cryptographic and number-theoretic assumptions [24,

27,63].

The following question naturally arises: does the feasible interpolation technique ap-

ply to QBF Resolution systems? In this Chapter, we answer the question positively,

that is, we show that feasible interpolation applies to all CDCL-based QBF Resolu-

tion calculi. We do this by establishing the technique for the most powerful CDCL-

based QBF proof system; LQU+-Res (Section 5.1.2). In fact, it has been shown

in [14] (also see PhD dissertation of Leroy Chew [34]), that the technique works

even for all expansion-based QBF Resolution calculi. We also establish the tech-

nique for our new QBF proof systems from Chapter 4; CP+∀red, and semCP+∀red
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(Section 5.2 and 5.3).

As a consequence, we show that the clique-co-clique formulas Φn,k (see Section 4.2.3),

are hard for the proof systems LQU+-Res (Section 5.1.4), CP+∀red (Section 5.2) and

semCP+∀red (Section 5.3).

We start by establishing feasible interpolation technique for the CDCL-based QBF

Resolution calculi.

5.1 Feasible Interpolation for CDCL-based QBF

Resolution Calculi

In this section we establish the feasible interpolation technique for all known CDCL-

based QBF proof systems. After describing the required setting, we first revisit the

feasible interpolation theorem established for Resolution by Kraj́ıček in [62] and

Pudlák in [67] in Section 5.1.1. We also show how to generalize the technique to

Q-Res proof systems. Then in Section 5.1.2 we establish the feasible interpolation

theorem for the most powerful CDCL-based proof system LQU+-Res. We further

establish monotone feasible interpolation for the system LQU+-Res in Section 5.1.3,

using which we show an exponential lower bounds for LQU+-Res (Section 5.1.4).

5.1.1 The Setting

Consider a false QBF F of the form

∃~pQ~qQ~r.
[
A(~p, ~q) ∧B(~p, ~r)

]
,

where, ~p, ~q, and ~r are mutually disjoint sets of propositional variables, A(~p, ~q) is

a CNF formula on variables ~p and ~q, and B(~p, ~r) is a CNF formula on variables
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~p and ~r. Thus ~p are the common variables between them. The ~q and ~r variables

can be quantified arbitrarily, with any number of quantification levels. The QBF is

equivalent to the following, not in prenex form

∃~p
[
Q~q.A(~p, ~q) ∧Q~r.B(~p, ~r)

]
.

Definition 5.1. Let F be a false QBF of the form ∃~pQ~qQ~r. [A(~p, ~q) ∧B(~p, ~r)]. An

interpolation circuit for F is a boolean circuit C such that on every 0, 1 assignment

~a for ~p we have

C(~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and

C(~a) = 1 =⇒ Q~r.B(~a, ~r) is false.

We say that a QBF proof system S has feasible interpolation if for any S-proof π

of a QBF F of the form above, we can extract from π an interpolation circuit for F

of size polynomial in the size of π.

We say that a QBF proof system S has monotone feasible interpolation if the fol-

lowing holds: in the same setting as above, if ~p appears only positively in A(~p, ~q),

then we can extract from π a monotone interpolation circuit for F .

As our main results in this Section, we show that LQU+-Res has monotone feasible

interpolation.

Before proving the interpolation theorems, we first outline the general idea for es-

tablishing feasible interpolation for any CDCL-based QBF Resolution calculus.

Proof idea.

Fix a proof system S ∈ {Q-Res, QU-Res, LD-Q-Res, LQU+-Res} and an S-proof π of

F . Consider the following definition of a ~q-clause and an ~r-clause.
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Definition 5.2 ( [67]). We call a clause C in π a ~q-clause (resp. ~r-clause), if C

contains only variables ~p, ~q (resp. ~p, ~r). We also call C a ~q-clause (resp. ~r-clause),

if C contains only ~p variables, but all its descendant clauses in the proof π (all

clauses with a directed path to C in π) are ~q (resp. ~r)-clauses. An initial clause C

containing only ~p variables is call a ~q-clause (resp. ~r-clause) if it belongs to A(~p, ~q)

(resp. B(~p, ~r)) part.

Note that if we have not given an explicit partition of the initial clauses then we

partition the clauses as follows: put the clauses containing ~p and ~q variables in

A(~p, ~q) part, clauses containing ~p and ~r variables in B(~p, ~r) part, and we are free to

put the clauses containing only ~p variables in either of the parts.

From π we construct a circuit Cπ with the ~p-variables as inputs: For each node

u with clause Cu in the proof π, associate a gate gu (or a constant-size circuit) in

the circuit Cπ. We then construct, for any assignment ~a to the ~p variables, another

proof-like structure π′(~a). For each node u with clause Cu in the proof π, associate a

clause C ′u,~a in the structure π′(~a). Finally, we obtain π′′(~a) from the structure π′(~a)

by instantiating ~p variables to the assignment ~a and doing some pruning, and show

that π′′(~a) is a valid proof in S. We then find that if Cπ(~a) = 0, then π′′(~a) uses

only ~q-clauses and thus is a refutation of Q~q.A(~a, ~q), and if Cπ(~a) = 1, then π′′(~a)

uses only ~r-clauses and thus is a refutation of Q~r.B(~a, ~r). Thus Cπ is the desired

interpolant circuit.

To explain the idea more precisely, we need the following Definition:

Definition 5.3. For clauses C,D we write C � D if for any literal l ∈ C we have

l ∈ D or l∗ ∈ D and for any l∗ ∈ C we have l∗ ∈ D (recall that l∗ is a merger

literal, see the Definition of LD-Q-Res proof system, Figure 2.2). Note that, in proof

systems, where special literals of the form u∗ are not present (ex. Q-Res), � is just

the ⊆ relation.
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More precisely the idea is to show (by induction on the height of u in π) that:

1. C ′u,~a � Cu.

2. gu(~a) = 0 =⇒ C ′′u,~a is a ~q-clause and can be obtained from the clauses of

A(~a, ~q) alone using the rules of S.

3. gu(~a) = 1 =⇒ C ′′u,~a is an ~r-clause and can be obtained from the clauses of

B(~a, ~r) alone using the rules of S.

From above, we have the following conclusion. Let r be the root of π. Then on any

assignment ~a to the ~p variables we have:

(1) C ′r,~a � Cr = �, so C ′r,~a = �. Therefore, C ′′r,~a = C ′r,~a|~a = �.

(2) gr(~a) = 0 =⇒ � is a ~q-clause and can be obtained from the clauses of A(~a, ~q)

alone using the rules of system S. Hence by soundness of S, Q~q.A(~a, ~q) is

false.

(3) gr(~a) = 1 =⇒ � is an ~r-clause and can be obtained from the clauses of B(~a, ~r)

alone using the rules of system S. Hence by soundness of S, Q~q.B(~a, ~r) is

false.

Thus gr, the output gate of the circuit, computes an interpolant.

Interpolants from Resolution Proofs [62,67]

Observe that when F has only existential quantification, π is a classical resolution

proof, and this is exactly the interpolant computed by Pudlák’s method in [67]. For

completeness we present his method from [67].

As mentioned in the proof idea, for a Resolution proof π of F , we first describe the

circuit Cπ with input ~p.
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Construction of the Circuit Cπ. The DAG underlying the circuit is exactly the

same as the DAG underlying the proof π. For each node u with clause Cu in π we

associate a gate gu as follows:

u is a Leaf Node: If Cu ∈ A(~p, ~q) then gu is a constant 0 gate. If Cu ∈ B(~p, ~r)

then gu is a constant 1 gate.

u is an Internal Node: We distinguish three cases.

(1) u corresponds to a resolution step with an existential variable x ∈ ~p as pivot.

Nodes v and w are its two children, i.e.

node v︷ ︸︸ ︷
C1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ ¬x

C1 ∨ C2︸ ︷︷ ︸
node u

In this case, put a selector gate sel(x, gv, gw) for gu. Here, sel(x, a, b) = a, when

x = 0, and sel(x, a, b) = b, when x = 1. That is, sel(x, a, b) = (¬x∧a)∨ (x∧b).

(2) u corresponds to a resolution step with x ∈ ~q as pivot. Put an OR gate for gu.

(3) u corresponds to a resolution step with x ∈ ~r as pivot. Put an AND gate for

gu.

This completes the description of the circuit Cπ.

Construction of π′ and π′′. Following our proof idea, we now construct a proof-

like structure π′(~a). For each node u in π with clause Cu, we associate a clause C ′u,~a

in π′(~a).

At Leaf Level: Let node u be a leaf in π. Then C ′u,~a = Cu; that is, we copy

the clause as it is. Trivially, we have C ′u,~a ⊆ Cu (for Resolution, � is just ⊆). By

construction of Cπ, the conditions concerning gu(~a) and C ′′u,~a are satisfied.
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At an internal node we distinguish three cases based on the rule that was applied.

At an Internal Node with ~p-resolution: Let node u in the proof π correspond

to a resolution step with pivot x ∈ ~p. We have

Cv =

node v︷ ︸︸ ︷
C1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ ¬x = Cw

Cu = C1 ∨ C2︸ ︷︷ ︸
node u

.

In the assignment ~a, if x = 0, then define C ′u,~a = C ′v,~a \ {x} and if x = 1 then

define C ′u,~a = C ′w,~a \ {¬x}. By induction, we have C ′v,~a ⊆ Cv and C ′w,~a ⊆ Cw.

So, if x = 0, we have C ′u,~a = C ′v,~a \ {x} ⊆ Cv \ {x} ⊆ Cu. If x = 1, we have

C ′u,~a ⊆ C ′w,~a \ {¬x} ⊆ Cw \ {¬x} ⊆ Cu.

In this case gu is a selector gate. If x = 0 in the assignment ~a, then gu(~a) = gv(~a)

and C ′′u,~a = C ′′v,~a. Since the conditions concerning gv(~a) and C ′′v,~a are satisfied by

induction, the conditions concerning gu(~a) and C ′′u,~a are satisfied as well. Similarly,

if x = 1, then gu(~a) = gw(~a) and C ′′u,~a = C ′′w,~a, and the statements that are inductively

true at w hold at u as well.

At an Internal Node with ~q-resolution: Let node u in the proof π correspond

to a resolution step with pivot x ∈ ~q. We have

Cv =

node v︷ ︸︸ ︷
C1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ ¬x = Cw

Cu = C1 ∨ C2︸ ︷︷ ︸
node u

, x ∈ ~q.

If gv(~a) = 1 then define C ′u,~a = C ′v,~a. By induction, we know that C ′′u,~a = C ′′v,~a is an

~r-clause. Since x is a ~q-variable and is not instantiated by ~a, it must be the case

that x 6∈ C ′v,~a. Thus C ′u,~a = C ′v,~a ⊆ Cv \ {x} ⊆ Cu.

Else if gw(~a) = 1, define C ′u,~a = C ′w,~a. By a similar analysis as above, C ′u,~a = C ′w,~a ⊆

Cw \ {¬x} ⊆ Cu.
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If gv(~a) = gw(~a) = 0, and if x /∈ C ′v,~a, define C ′u,~a = C ′v,~a. Otherwise, if ¬x /∈ C ′w,~a,

define C ′u,~a = C ′w,~a. It follows from induction that C ′u,~a ⊆ Cu.

Else, define C ′u,~a to be the resolvent of C ′v,~a and C ′w,~a on x. By induction, we know

that C ′v,~a \ {x} ⊆ C1 and C ′w,~a \ {¬x} ⊆ C2. Hence C ′u,~a ⊆ C1 ∨ C2 = Cu.

We need to verify the conditions on gu(~a) and C ′′u,~a. The case when gu(~a) = 1 is

immediate, since C ′′u,~a copies a clause known by induction to be an ~r-clause. So now

consider the case when gu(~a) = 0. By induction, we know that both C ′′v,~a = C ′v,~a|~a

and C ′′w,~a = C ′w,~a|~a are ~q-clauses and can be derived using A(~a, ~q) alone in Resolution.

We have three cases. If C ′u,~a = C ′v,~a or C ′u,~a = C ′w,~a, then by induction we are done.

Otherwise, C ′u,~a is obtained from C ′v,~a and C ′w,~a via a resolution step on pivot x.

Since ~a is an assignment to the ~p variables and x /∈ ~p, C ′′u,~a can be derived from C ′′v,~a

and C ′′w,~a via the same ~q-resolution step.

At an Internal Node with ~r-resolution: Let node u in π correspond to a

resolution step with pivot x ∈ ~r. This is dual to the case above.

This gives the interpolant from resolution proof and shows that Resolution admits

feasible interpolation.

Interpolants from Q-Res Proofs

Now we show how to lift Pudlák’s method of finding interpolating circuit from

resolution proofs to all CDCL-based QBF proofs. We first show how with some

minute modifications the method can be easily extended for Q-Res. Let F has

universal variables as well. However as already mentioned, the common ~p variables

are purely existential and are before all other variables. Let π be a Q-Res proof

of F . We need to extract the interpolating circuit from π. We again follow the

above mentioned proof idea. The circuit Cπ is constructed as follows: if node u of π

corresponds to the universal reduction step, put a no-operation gate for gu and for

all other cases, define Cπ exactly as for resolution proofs. Similarly, all other cases,
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in the construction of π′ and π′′, that is resolution steps on pivot variables x ∈ ~p,

or x ∈ ~q, or x ∈ ~r, are handled as before. Note that now ~q and ~r variables can

be either existential or universal, but that does not makes any difference. We only

need to handle the ∀-Red step.

At an Internal Node with Universal Reduction: Let node u be an internal

node in π corresponding to a universal reduction step on some universal variable x.

Let node v be its only child. We have

Cv =

node v︷ ︸︸ ︷
Dv ∨ x

Cu = Dv︸︷︷︸
node u

, x is a universal variable, if l ∈ Dv is existential, lv(l) < lv(x).

In this case, define C ′u,~a = C ′v,~a \ {x,¬x}. By induction, C ′v,~a ⊆ Cv = Dv ∨ x.

Therefore, C ′u,~a = C ′v,~a \ {x,¬x} ⊆ Dv = Cu.

If gu(~a) = 0, then we know that gv(~a) = 0 as gu(~a) = gv(~a). By the induction

hypothesis, we know that C ′′v,~a = C ′v,~a|~a is a ~q-clause and can be derived using

A(~a, ~q) alone via Q-Res. Recall that C ′u,~a = C ′v,~a \ {x,¬x} in this case. Since ~a is

an assignment to the ~p variables and x /∈ ~p, C ′u,~a|~a = C ′′u,~a is a ~q-clause and can be

derived using A(~a, ~q) alone via Q-Res. (Either C ′′u,~a already equals C ′′v,~a, or x needs

to be dropped. In the latter case, the condition on lv(x) is satisfied at C ′′u,~a because

it is satisfied at Cv in π and C ′′v,~a ⊆ Cv. So we can drop x from C ′′v,~a to get C ′′u,~a.)

The situation is dual for the case when gu(~a) = 1; we get ~r-clauses.

This gives the interpolating circuit from Q-Res proofs. As promised, we now show

that the above methods can be extended to the most powerful CDCL-based QBF

proof system LQU+-Res, and hence to all CDCL-based proof systems.
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5.1.2 Interpolants from LQU+-Res Proofs

As mentioned in the proof idea, for an LQU+-Res proof π of F , we construct a circuit

Cπ with input ~p, and proof-like structure π′ and proof π′′.

Construction of the Circuit Cπ: The circuit Cπ is defined exactly as for Q-Res

proofs.

Construction of π′ and π′′: Following our proof idea, we now construct a proof-

like structure π′(~a), which depends on the assignment ~a to the ~p variables, the proof

π of F , and the circuit Cπ. For each node u in π with clause Cu, we associate

a clause C ′u,~a in π′(~a). We do this almost exactly as above, however note that in

LQU+-Res we need to handle the special literals u∗ as well.

As already mentioned, from the structure π′(~a), we get another structure π′′(~a) by

instantiating ~p variables by the assignment ~a in each clause of π′(~a), cutting away

any edge out of a node where the clause evaluates to 1, and deleting nodes which

now have no path to the root node. That is, for each survived node u in π′′(~a), the

associated clause C ′′u,~a is equal to C ′u,~a|~a.

We show (by induction on the height of u in π) that:

1. C ′u,~a � Cu.

2. gu(~a) = 0 =⇒ C ′′u,~a is a ~q-clause and can be obtained from the clauses of

A(~a, ~q) alone using the rules of system LQU+-Res.

3. gu(~a) = 1 =⇒ C ′′u,~a is a ~r-clause and can be obtained from the clauses of

B(~a, ~r) alone using the rules of system LQU+-Res.

As described in the proof outline, this suffices to conclude that Cπ computes an

interpolant. We now present the construction details.

86



At Leaf Level: Let node u be a leaf in π. Then C ′u,~a = Cu; that is, we copy the

clause as it is. Trivially, we have C ′u,~a � Cu. By construction of Cπ, the conditions

concerning gu(~a) and C ′′u,~a are satisfied.

At an internal node we distinguish four cases based on the rule that was applied.

At an Internal Node with Universal Reduction: Let node u be an internal

node in π corresponding to a universal reduction step on some universal variable

x or x∗. Let node v be its only child. Here we consider only the case where the

universal literal is x. The case of x∗ is identical. We have

Cv =

node v︷ ︸︸ ︷
Dv ∨ x

Cu = Dv︸︷︷︸
node u

, x is a universal variable, ∀l ∈ Dv, lv(l) ≤ lv(x).

In this case, define C ′u,~a = C ′v,~a \ {x,¬x, x∗}. By induction, C ′v,~a � Cv = Dv ∨ x.

Therefore, C ′u,~a = C ′v,~a \ {x,¬x, x∗} � Dv = Cu.

If gu(~a) = 0, then we know that gv(~a) = 0 as gu(~a) = gv(~a). By the induction

hypothesis, we know that C ′′v,~a = C ′v,~a|~a is a ~q-clause and can be derived using

A(~a, ~q) alone via LQU+-Res. Recall that C ′u,~a = C ′v,~a \ {x,¬x, x∗} in this case. Since

~a is an assignment to the ~p variables and x /∈ ~p, C ′u,~a|~a = C ′′u,~a is a ~q-clause and can

be derived using A(~a, ~q) alone via LQU+-Res. (Either C ′′u,~a already equals C ′′v,~a, or x

needs to be dropped. In the latter case, the condition on lv(x) is satisfied at C ′′u,~a

because it is satisfied at Cv in π and C ′′v,~a � Cv. So we can drop x from C ′′v,~a to get

C ′′u,~a.)

The situation is dual for the case when gu(~a) = 1; we get ~r-clauses.

At an Internal Node with ~p-resolution: Let node u in the proof π correspond

to a resolution step with pivot x ∈ ~p. Note that x is existential, as ~p variables occur
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only existentially in F . We have

Cv =

node v︷ ︸︸ ︷
C1 ∨ U1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ U2 ∨ ¬x = Cw

Cu = C1 ∨ C2 ∨ U︸ ︷︷ ︸
node u

.

In the assignment ~a, if x = 0, then define C ′u,~a = C ′v,~a \ {x} and if x = 1 then

define C ′u,~a = C ′w,~a \ {¬x}. By induction, we have C ′v,~a � Cv and C ′w,~a � Cw.

So, if x = 0, we have C ′u,~a = C ′v,~a \ {x} � C1 ∨ U1 � Cu. If x = 1, we have

C ′u,~a � C ′w,~a \ {¬x} � C2 ∨ U2 � Cu.

In this case gu is a selector gate. If x = 0 in the assignment ~a, then gu(~a) = gv(~a)

and C ′′u,~a = C ′′
v,~(a)

. Since the conditions concerning gv(~a) and C ′′v,~a are satisfied by

induction, the conditions concerning gu(~a) and C ′′u,~a are satisfied as well. Similarly, if

x = 1, then gu(~a) = gw(~a) and C ′′u,~a = C ′′w,~a, and the statements that are inductively

true at w hold at u as well.

At an Internal Node with ~q-resolution: Let node u in the proof π correspond

to a resolution step with pivot x ∈ ~q. Note that x may be existential or universal.

We have

Cv =

node v︷ ︸︸ ︷
C1 ∨ U1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ U2 ∨ ¬x = Cw

Cu = C1 ∨ C2 ∨ U︸ ︷︷ ︸
node u

, x ∈ ~q.

In this case, we use the value of gate gu in circuit Cπ on input ~a.

If gv(~a) = 1 then define C ′u,~a = C ′v,~a. By induction, we know that C ′′u,~a = C ′′v,~a is an

~r-clause. Since x is a ~q-variable and is not instantiated by ~a, it must be the case

that x 6∈ C ′v,~a. Thus C ′u,~a = C ′v,~a � Cv \ {x} � Cu.

Else if gw(~a) = 1, define C ′u,~a = C ′w,~a. By a similar analysis as above, C ′u,~a = C ′w,~a �

Cw \ {¬x} � Cu.

If gv(~a) = gw(~a) = 0, and if x /∈ C ′v,~a, define C ′u,~a = C ′v,~a. Otherwise, if ¬x /∈ C ′w,~a,
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define C ′u,~a = C ′w,~a. It follows from induction that C ′u,~a � Cu.

Else, define C ′u,~a to be the resolvent of C ′v,~a and C ′w,~a on x. (see below the ‘note’,

why (LD)-resolution is valid here in π′(~a)). By induction, we know that C ′v,~a \{x} �

C1 ∨ U1 and C ′w,~a \ {¬x} � C2 ∨ U2. Hence C ′u,~a � C1 ∨ C2 ∨ U = Cu.

We need to verify the conditions on gu(~a) and C ′′u,~a. The case when gu(~a) = 1 is

immediate, since C ′′u,~a copies a clause known by induction to be an ~r-clause. So now

consider the case when gu(~a) = 0. By induction, we know that both C ′′v,~a = C ′v,~a|~a

and C ′′w,~a = C ′w,~a|~a are ~q-clauses and can be derived using A(~a, ~q) alone via LQU+-

Res.

We have three cases. If C ′u,~a = C ′v,~a or C ′u,~a = C ′w,~a, then by induction we are done.

Otherwise, C ′u,~a is obtained from C ′v,~a and C ′w,~a via a resolution step on pivot x.

Since ~a is an assignment to the ~p variables and x /∈ ~p, C ′′u,~a can be derived from C ′′v,~a

and C ′′w,~a via the same (LD)-resolution step.

Note: A simple observation is that C ′u,~a is always a subset of Cu with only one

exception, which is that some special symbol u∗ in Cu may be converted into u in

C ′u,~a. This leads us to define the relation �. Also, the resolution step in π′′(~a) is

applicable in LQU+-Res because

1. Every mergable universal variable in C ′′v,~a and C ′′w,~a was also mergable earlier

in Cv and Cw in π.

2. Every common existential variable in C ′′v,~a and C ′′w,~a was also an existential

variable in Cv and Cw. Note that existential variables are not mergable.

3. Every non-mergable universal variable in C ′′v,~a and C ′′w,~a was also a non-mergable

universal pair in Cv and Cw.

4. The operations do not disturb the levels of variables, therefore if variable x

satisfies the level condition in π it satisfies it in π′′(~a) as well.
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At an Internal Node with ~r-resolution: Let node u in π correspond to a

resolution step with pivot x ∈ ~r. This is dual to the case above.

5.1.3 Monotone Interpolation for LQU+-Res

To transfer known circuit lower bounds into size of proof bounds, we need a mono-

tone version of the previous interpolation theorems, which we prove next.

Theorem 5.4. LQU+-Res, and therefore all CDCL-based QBF Resolution systems,

have monotone feasible interpolation.

Proof. In previous sections, we have shown that the circuit Cπ(~p) is a correct inter-

polant for the QBF sentence F . That is, if Cπ(~p) = 0 then Q~q.A(~a, ~q) is false, and

if Cπ(~p) = 1 then Q~r.B(~a, ~r) is false.

However, if ~p occurs only positively in A(~p, ~q) then we construct a monotone circuit

Cmon
π (~p) such that, on every 0, 1 assignment ~a to ~p we have

Cmon
π (~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and

Cmon
π (~a) = 1 =⇒ Q~r.B(~a, ~r) is false.

We obtain Cmon
π (~p) from Cπ(~p) by replacing all selector gates gu = sel(x, gv, gw) by

the following monotone ternary connective: gu = (x ∨ gv) ∧ gw where nodes v and

w are the children of u in π. We also change the proof-like structure π′(~a); the

construction is the same as before except that at ~p-resolution nodes, the rule for

fixing C ′u,~a is also changed to reflect the monotone function used instead.

More precisely, the functions sel(x, gv, gw) and gu = (x ∨ gv) ∧ gw differ only when

x = 0, gv(~a) = 1, and gw(~a) = 0. We set C ′u,~a to C ′w,~a \ {¬x} if x = 1 or if x = 0,

gv(~a) = 1 and gw(~a) = 0, and to C ′v,~a \ {x} otherwise.
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We need to show that at the differing setting, the inductive statements relating the

modified C ′u,~a, gu(~a) and C ′′u,~a continue to hold. The relation C ′′u,~a � Cu holds by

induction. Now consider the gate values.

We know by induction that gv(~a) = 1 means that C ′′v,~a is an ~r-clause and can be

derived from B(~a, ~r) alone. When x = 0, C ′u,~a = C ′v,~a and the original selector

gate would have output the value of gv(~a) which is a 1. Hence C ′′u,~a is an ~r-clause.

However, observe that at this setting, gw(~a) = 0, which means by induction that

C ′′w,~a is a ~q-clause and can be derived using A(~a, ~q) clauses alone via the appropriate

proof system. Thus by our assumption about ~p variables appearing only positively

in A, the clause C ′w,~a does not contain ¬x. Thus we can safely assign C ′u,~a = C ′w,~a.

This completes the proof.

5.1.4 Exponential Lower Bounds for LQU+-Res

Consider the false clique-co-clique formulas Φn,k from Section 4.2.3. Recall that

the formulas Φn,k ≡ ∃~p∃~q∀~r∃~t. [An,k(~p, ~q) ∧ Bn,k(~p, ~r,~t)] encode the obviously false

statement that a given graph on n vertices (encoded by ~p variables) both has and

does not have a k-clique.

The lower bounds for the formulas Φn,k in the proof system LQU+-Res will be di-

rectly transferred from the following monotone circuit lower bound for the problem

Clique(n, k), asking whether a given graph with n nodes has a clique of size k.

Theorem 5.5 (Alon, Boppana 87 [1]). All monotone circuits that compute Clique(n, n/2)

are of exponential size.

Observe that the formula Φn,n/2 has the unique interpolant Clique(n, n/2)(~p). But

since all monotone circuits for this are of exponential size by Theorem 5.5 and

monotone circuits of size polynomial in LQU+-Res proof size can be extracted by

Theorem 5.4, all such proofs must be of exponential size, yielding:
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Theorem 5.6. The QBFs Φn,n/2 require exponential-size proofs in LQU+-Res.

5.2 Feasible (Monotone) Interpolation for CP+∀red

and Unconditional Lower Bounds

Pudlák in [67] established the feasible interpolation technique for Cutting Planes

proof system and hence prove the first exponential lower bounds for Cutting Planes.

In [67], he initially described the technique first established by Kraj́ıček [62] for the

Resolution proof system, and then extend it to the Cutting Planes proof system. In

this section we show that our new QBF proof system CP+∀red (see Chapter 4) also

admits feasible monotone interpolation, and as a consequence prove unconditional

lower bounds for CP+∀red. We adapt the technique used by Pudlák in [67].

As in Section 5.1.1, consider a false QBF of the form

F = ∃~pQ~qQ~r.
[
A′(~p, ~q) ∧B′(~p, ~r)

]
where ~p, ~q, and ~r are mutually disjoint sets of propositional variables, A′(~p, ~q) is a set

of clauses using only the ~p and ~q variables, and B′(~p, ~r) is a set of clauses using only

the ~p and ~r variables. Thus ~p are the common variables between them. The ~q and

~r variables can be quantified arbitrarily, with any number of quantification levels.

Since F is false, on any assignment ~a to the variables in ~p, either F~a,0 = Q~q. A′(~a, ~q)

or F~a,1 = Q~r. B′(~a, ~r) (or both) must be false. An interpolant for F is a Boolean

function that, given ~a, indicates which of F~a,0, F~a,1 is false.

Recall the definition of interpolating circuit for CDCL-based QBF Resolution calculi

(Definition 5.1). Obviously it is a Boolean circuit. However, dealing with CP+∀red

naturally gives rise to arithmetic rather than Boolean circuits, as was done in the

classical case in [67]. Generalising this to the case of QBFs, we have the following
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definitions.

Definition 5.7. [67] A monotone real circuit is a circuit which computes with real

numbers and uses arbitrary non-decreasing real unary and binary functions as gates.

We say that a monotone real circuit computes a Boolean function (uniquely deter-

mined by the circuit), if for all inputs of 0’s and 1’s the circuit outputs 0 or 1.

Definition 5.8. A QBF proof system S admits monotone real feasible interpolation

if for any false QBF F of the form ∃~pQ~qQ~r.
[
A′(~p, ~q)∧B′(~p, ~r)

]
where the ~p variables

occur only positively in A′ or only negatively in the clauses of B′, and for any S-

proof π of F , we can extract from π a monotone real circuit C of size polynomial

in the length of π and the number n of ~p variables, such that C computes a Boolean

function, and on every 0, 1 assignment ~a for ~p,

C(~a) = 0 =⇒ Q~q.A′(~a, ~q) is false, and

C(~a) = 1 =⇒ Q~r.B′(~a, ~r) is false.

Such a C is called a monotone real interpolating circuit for F .

Note that if S admits monotone feasible interpolation then it also admits monotone

real feasible interpolation. The converse may not be true: arbitrary non-decreasing

real functions are allowed in monotone real feasible interpolation, but their conver-

sions to Boolean functions may be non-monotone in the bit representation.

We prove that the CP+∀red proof system for false QBFs has this property:

Theorem 5.9. CP+∀red for false QBFs admits monotone real feasible interpolation.

To prove this, we will actually prove a stronger theorem, about interpolants for all

false quantified sets of inequalities (not just those arising from false QBFs). That

is, we prove the following theorem:
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Theorem 5.10. CP+∀red for inequalities (from Definition 4.1) admits monotone

real feasible interpolation. That is, let ϕ be any false quantified set of inequalities of

the form ∃~pQ~qQ~r.
[
A(~p, ~q)∧B(~p, ~r)

]
where A∪B also includes all Boolean axioms,

and where the coefficients of ~p, are either all non-negative in A or are all non-

positive in B. If ϕ has a CP+∀red-proof π, of length l, then we can extract from π

a monotone real circuit C of size polynomial in l and the number n of ~p variables in

ϕ, such that C computes a Boolean function, and on every 0, 1 assignment ~a for ~p,

C(~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and

C(~a) = 1 =⇒ Q~r.B(~a, ~r) is false.

Such a C is called a monotone real interpolating circuit for ϕ.

Before proving this theorem, let us see why it implies Theorem 5.9

Proof. (of Theorem 5.9.) Let F be the given false QBF of the form described above,

that is,

F = ∃~pQ~qQ~r.
[
A′(~p, ~q) ∧B′(~p, ~r)

]
Encoding it as a quantified set of inequalities as per Definition 4.2, we get a quantified

set of linear inequalities ϕ = Q. F , of the form

ϕ = ∃~pQ~qQ~r.
[
A(~p, ~q) ∪B(~p, ~r)

]
Here, A(~p, ~q) contains inequalities R(C) for all clauses C ∈ A′; these are of the form∑
k

ekpk +
∑
i

fiqi ≥ b. Similarly, B(~p, ~r) contains inequalities R(C) for all C ∈ B′;

these are of the form:
∑
k

ekpk +
∑
j

gjrj ≥ b. The Boolean axioms corresponding to

the ~q variables are included in A, those corresponding to the ~r variables are included

in B. The Boolean axioms corresponding to the ~p variables also have to be included

in A ∪ B. They have both positive and negative coefficicents. If ~p occurs only
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positively in A′, we include these in B, otherwise we include them in A.

Since F is false, so is ϕ. On any assignment ~a to the variables in ~p, either ϕ~a,0 =

Q~q. A(~a, ~q) or ϕ~a,1 = Q~r. B(~a, ~r) (or both) must be false. Furthermore, for b ∈

{0, 1}, ϕ~a,b is false exactly when F~a,b is false. Thus a monotone real interpolating

circuit for ϕ is also a monotone real interpolating circuit for F .

Note that if ~p occurs only positively in A′, then the coefficients ek in all the inequal-

ities in A are non-negative. Similarly, if ~p occurs only negatively in B′, then the

coefficients ek in all the inequalities in B are non-positive. Hence, invoking Theo-

rem 5.10 on ϕ, we obtain the desired monotone real interpolating circuit for F and

for ϕ.

Now we get back to constructing interpolants for CP+∀red with inequalities.

Proof. (of Theorem 5.10.) Let π = ∃~pQ~qQ~r. [I ′1, . . . , I
′
l ] be a CP+∀red refutation of

ϕ. The idea, as in [67], is to associate with each inequality

I ≡
∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D

in π, two inequalities

I0 ≡
∑
i

fiqi ≥ D0, I1 ≡
∑
j

gjrj ≥ D1

depending on the Boolean assignment ~a to the ~p variables, in such a way that

• I0 and I1 together imply I|~a. (It suffices to ensure D0 +D1 ≥ D −
∑
k

ekak.)

• I0 can be derived solely from the Q~q.A(~a, ~q) part in CP+∀red.

• I1 can be derived solely from the Q~r.B(~a, ~r) part in CP+∀red.

95



Then the inequalities corresponding to the last step of the proof, I ′l , are 0 ≥ D0

and 0 ≥ D1, with D0 + D1 ≥ 1. Hence D0 > 0 =⇒ ~Q~q.A(~a, ~q) is false, and

D0 ≤ 0 =⇒ D1 > 0 =⇒ ~Q~r.B(~a, ~r) is false. Note that we only need to compute

one of the values D0, D1 to identify a false part of ϕ. Furthermore, we will show

that if all the coefficients ek in B(~p, ~r) are non-positive, then D1 can be computed

by a real monotone circuit of size O(nl). If all the coefficients ek in A(~p, ~q) are non-

negative, then we will show that −D0 can be computed by a real monotone circuit

of size O(nl). (The inputs to the circuit are an assignment ~a to the ~p variables.)

Applying the unary non-decreasing threshold function D1 > 0? or −D0 ≥ 0? to its

output will then give a monotone real interpolating circuit for ϕ.

We first describe the computation of D0 and D1 at each inequality. These are

computed by two circuits, both of which have exactly the structure of π.

Consider the case when all ek in B(~p, ~r) are non-positive; the other case is analogous.

All axioms are considered as either A-axioms or as B-axioms. The Boolean axioms

concerning ~p variables are treated as A-axioms in this case.

The computation of D0 and D1 proceeds bottom-up as described in Table 5.1.

As in the proof argument from [67], a straightforward induction shows that with

these computations, at each proof line I, the inequalities I0 and I1 together imply

I |~a, and that each I0 can be derived from the A-axioms alone and each I1 can be

derived from the B-axioms alone.

All the operations required for the arithmetic and reduction steps compute non-

decreasing functions. At the axioms, note that the dependence of the D1 values on

the assignment values ~a is always with non-negative coefficients −ek; hence these

functions are also non-decreasing. Thus we obtain a monotone real circuit for D1,

of size O(nl).

Using our monotone interpolation theorem (Theorem 5.9), we now prove an uncon-
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Table 5.1: Computation of D0 and D1 in the proof of Theorem 5.10

How inequality I is obtained D0 D1

Axioms:
pk ≥ 0 −ak 0
−pk ≥ −1 ak − 1 0
−qi ≥ −1 −1 0
−rj ≥ −1 0 −1
qj ≥ 0 or rj ≥ 0 0 0∑

k ekpk +
∑
fiqi ≥ D D −

∑
ekak 0∑

k ekpk +
∑
gjrj ≥ D 0 D −

∑
ekak

Arithmetic:
Addition I = I ′ + I ′′ D′0 +D′′0 D′1 +D′′1
Multiplication I = hI ′, h > 0 h×D′0 h×D′1
Division I = I ′/c, c > 0

⌈
D′

0

c

⌉ ⌈
D′

1

c

⌉
Reduction: I = I ′ |u=b; coefficient of u in I ′ is h.
h > 0 D′0 D′1
h < 0 and u is a ~q variable D′0 − h D′1
h < 0 and u is an ~r variable D′0 D′1 − h

ditional lower bound for the CP+∀red proof system.

Again consider the false clique-co-clique formulas Φn,k from Section 4.2.3. As al-

ready mentioned, the formulas Φn,k ≡ ∃~p∃~q∀~r∃~t.An,k(~p, ~q)∧Bn,k(~p, ~r,~t) encodes the

obviously false statement that a given graph on n vertices (encoded by ~p variables)

both has and does not have a k-clique.

Now suppose Φn,k has a CP+∀red proof of length l. From Theorem 5.9, we obtain

a monotone real circuit C of size O(l + n2) computing a Boolean function, such

that for every 0, 1 input vector ~p of length
(
n
2

)
encoding a graph Gn on n vertices,

C(~p) = 1 ⇐⇒ Gn has a k clique.

In [67], Pudlák showed the following exponential lower bound on the size of real

monotone circuits interpolating the famous “clique-color” encodings.

Theorem 5.11 ( [67]). Suppose that the inputs for a monotone real circuit C are

0, 1 vectors of length
(
n
2

)
encoding in the natural way graphs on an n-element set.

Suppose that C outputs 1 on all cliques of size k and outputs 0 on all complete
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(k − 1)-partite graphs, where k = b1
8
(n/ log n)2/3c. Then the size of the circuit is at

least 2Ω((n/ logn)1/3).

In some earlier literature, clique-color has been referred to as clique-co-clique. How-

ever, this is misleading because the clique-color encoding is weaker than Φn,k in the

following sense. The clique-color encoding says that there exists a graph which has

a k-clique and is complete (k − 1)-partite (maximal (k − 1)-colorable). A graph

may neither have a k-clique nor be complete (k − 1)-partite, so both parts of the

clique-color formula may be false. Our clique-co-clique formula, on the other hand,

expresses that there exists a graph which has a k-clique and which does not have a

k-clique. For every graph, exactly one part of the clique-co-clique formula is false.

Since complete (k−1)-partite graphs have no k-clique, the real monotone interpolat-

ing circuit C we obtain from a proof of Φn,k also satisfies the premise of Theorem 5.11.

Hence, C must be of exponential size. But C is polynomially related to the length

of the CP+∀red proof of Φk,n. We have thus obtained the following:

Corollary 5.12. For k = b1
8
(n/ log n)2/3c, the false QBFs Φn,k require exponential-

length proofs in the CP+∀red proof system.

5.3 Feasible (Monotone) Interpolation for semCP+∀red

and Unconditional Lower Bounds

In this section, we establish feasible monotone interpolation for semCP+∀red (for the

definition, see Section 4.4). We adapt the corresponding proof technique used in the

classical case from [47]. Using their technique for the semantic inference rule, and

handling axioms and ∀-reduction rules as described in the proof of Theorem 5.10,

everything goes through as desired.
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Theorem 5.13. SemCP+∀red admits monotone real feasible interpolation for false

QBFs.

Proof. Let F = ∃~pQ~qQ~r(A′(~p, ~q)∧B′(~p, ~r)) be a false QBF formula. Without loss of

generality, the ~p variables appear only negatively in B′(~p, ~r). Consider the standard

encoding ϕ = ∃~pQ~qQ~r(A(~p, ~q) ∧ B(~p, ~r)) of F (see Definition 4.2). Clearly the

coefficient of ~p variables in B are non-positive. As discussed before it is sufficient to

extract a monotone real feasible interpolation for ϕ. Let π be any semCP+∀red proof

of ϕ, and as in the proof of Theorem 5.10, we construct a real monotone interpolating

C to detect whether D1 > 0. Axioms and the ∀-reduction rule are handled exactly as

in Theorem 5.10. Now suppose that the inequality I ≡
∑
k

ekpk+
∑
i

fiqi+
∑
j

gjrj ≥ D

is semantically inferred from I ′ and I ′′. We define I0, I1 by defining D0 and D1.

D0 = min

{∑
i

fiqi|γ : γ ∈ {0, 1}|~q|, γ satisfies I ′0, I
′′
0

}

D1 = min

{∑
j

gjrj|τ : τ ∈ {0, 1}|~r|, τ satisfies I ′1, I
′′
1

}

It suffices to show that D0 +D1 ≥ D−
∑
k

ekak. For D0, let the minimum be achieved

at assignment γ0, and for D1, let the minimum be achieved at assignment τ1. Let ρ

be the assignment to the ~q and ~r variables setting ~q as in γ0 and ~r as in τ1. Then ρ

satisfies I ′0, I ′′0 , I ′1, I ′′1 (at ~p = ~a). Hence by induction, ρ satisfies I ′ and I ′′. Since I

is inferred semantically from I ′ and I ′′, ρ satisfies I as well. Hence

D0 +D1 =
∑
i

fiqi|γ0 +
∑
j

gjrj|τ1

=

(∑
i

fiqi +
∑
j

gjrj

)
|ρ

≥ D −
∑
k

ekak, as required.

Since ~p appears only negatively in B(~p, ~r), D1 is a non-decreasing function of D′1
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and D′′1 . (As the values of D′1 and D′′1 increase, the set of assignments τ over which

we take the minimum shrinks, and so the minimum value can only increase or stay

the same.)

Now we can use our monotone feasible interpolation theorem for achieving an un-

conditional exponential lower bound for semCP+∀red. Similarly to Corollary 5.12,

we have the following:

Corollary 5.14. For k = b1
8
(n/ log n)2/3c, the false QBFs Φn,k require exponential-

length proofs in the semCP+∀red proof system.
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Chapter 6

Are Short Proofs Narrow in QBF

Resolution Calculi?

As discussed in Chapter 2, a number of ingenious techniques have been designed

to show lower bounds for the size of resolution proofs, among them are feasible

interpolation, established by Kraj́ıček in [62], and the size-width relation, established

by Ben-Sasson and Wigderson, in their paper ‘Short proofs are narrow – resolution

made simple’ [9]. Another important measure for Resolution is space [46]. As already

mentioned, Atserias and Dalmau in [3] demonstrated that also space is tightly related

to width. Indeed, showing lower bounds for width serves again as the primary

method to obtain space lower bounds.

In Chapter 5, we have seen that the feasible interpolation technique applies to all

CDCL-based QBF proof systems (in fact it also applies to all expansion-based proof

systems [14]). We also showed that the feasible interpolation technique also applies

to our new QBF proof systems based on Cutting Planes: CP+∀red and semCP+∀red.

In this Chapter, we address the question whether lower bound techniques via width,

which have revolutionised propositional proof complexity, are also effective for QBF

Resolution systems? We concentrate only on the following QBF systems: Q-Res,
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∀Exp+Res, and IR-calc; even here the picture is rather complex.

As already mentioned, though space and width have not been considered in QBF

before, these notions straightforwardly apply to QBF Resolution systems. However,

due to the ∀-reduction rule in Q-Res handling universal variables, it is relatively easy

to enforce that universal literals accumulate in clauses of Q-Res proofs, thus always

leading to large width, irrespective of size and space requirements (Lemma 6.4).

This prompts us to consider existential width — counting only existential literals —

as an appropriate width measure in QBF. We had already discussed our findings in

Chapter 1, however for ease of reference, we briefly mention it once again:

1. Negative Results. Our main results show that the size-width relation of [9]

as well as the space-width relation of [3] dramatically fail for Q-Res, even when

considering the tighter existential width. To be precise, we prove that Tseitin trans-

formations (see Section 2.1) of formulas CRn from [56] (see Section 3.2) have small

size and space, but require large existential width in tree-like Q-Res (Theorem 6.6),

thus refuting the size-width relation for tree-like Q-Res as well as the space-width

relation for general dag-like Q-Res.

As the formulas CRn have O(n2) variables, they do not rule out size-width relations

in general Q-Res. However, we show that different formulas, hard for tree-like Q-Res

[56], provide counterexamples for size-width relations in full Q-Res (Theorem 6.8).

2. Positive Results and Width-space-preserving Simulations. After negative

results, we prove some positive results for size-width-space relations for tree-like

versions of the expansion-based Resolution systems ∀Exp+Res and IR-calc. We lift

all the relations from tree-like resolution to ∀Exp+ResT (Theorem 6.19).

To lift these results to IRT-calc (Theorem 6.20), we show a series of careful space

and width-preserving simulations between tree-like Q-Res, ∀Exp+Res, and IR-calc.

In particular, we show the surprising result that tree-like ∀Exp+Res and tree-like
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IR-calc are equivalent (Lemma 6.15), thus providing a rare example of two proof

systems that coincide in the tree-like, but are separated in the dag-like model [13].

In addition, our simulations provide a simpler proof for the simulation of tree-like

Q-Res by ∀Exp+Res (Corollary 6.17), shown in [56] via a more involved argument.

Our last positive result is a size-space relation in tree-like Q-Res (Theorem 6.20),

which we show by a pebbling game analogous to the classical relation in [46].

We start by defining size, width, and space for QBF Resolution calculi.

6.1 Size, Width and Space in Resolution Calculi

Recall from Chapter 2, the definition of complexity measures size, width, and space

for Resolution. In this section, we state their relations in Resolution, and also explain

how to apply these measures to QBF Resolution systems. While this is straightfor-

ward for size and space, we need a more elaborate discussion on what constitutes a

good notion of width for QBF Resolution systems.

6.1.1 Defining Size, Width, and Space for QBF Resolution

Calculi

For ease of reference, we again define the complexity measures size, width, and space

for Resolution. For a CNF formula F , |F | denotes the number of clauses in it, and

w(F ) denotes the maximum number of literals in any clause of F , and we extend

the same notation to QBFs with a CNF matrix.

For P one of the calculi Resolution (Res), Q-Res, ∀Exp+Res, IR-calc, let π P F (resp.

π PT
F ) denote that π is a P -proof (tree-like P -proof, respectively), of the formula

F . For a proof π of F in system P , its size |π| is defined as the number of clauses in
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π. The size complexity S( P F ) of deriving F in P is defined as min {|π| : π P F}.

The tree-like size complexity, denoted S( PT
F ), is min {|π| : π PT

F}.

Note that in Chapter 4, the size of the CP+∀red proof denotes the bit-size represen-

tation of the proof, and not the number of lines in the proof. Length of a CP+∀red

proof actually denotes the number of lines in the proof. However here the size of

any QBF Resolution calculi denotes the number of clauses in the proof.

A second complexity measure is the minimal width. The width of a clause C is the

number of literals in C, denoted w(C). The width of a CNF formula F , denoted

w(F ), is the maximum width of a clause in F ; w(F ) = max{w(C) : C ∈ F}. The

width w(π) of a proof π is defined as the maximum width of any clause appearing

in π, i.e, w(π) = max{w(C) : C ∈ π}. The width w( P F ) of refuting a CNF

formula F in P is defined as min{w(π) : π P F}. Again the same notation extends

to QBFs with CNF matrix.

Note that for width in any calculus, whether the proof is tree-like or not is imma-

terial, since a proof can always be made tree-like by duplication without increasing

the width. We therefore drop the T subscript when talking about proof width.

The third complexity measure for Resolution calculi is space. Recall the definition

of space from Section 2.3.1. We can directly adapt this definition to QBF Resolution

calculi.

Definition 6.1 (Space-oriented proof sequences). A false QBF sentence F can be

refuted in system P within space k if there is a sequence σ of QBFs F0,F1, . . . ,Fs, all

having the same quantifier prefix as F , and with matrix F0, F1, . . . , Fs, respectively,

such that F0 = ∅, F1 contains a subset of clauses obtained from the corresponding

axiom download in the proof system P , Fs = {�} (the empty clause), each Fi has at

most k clauses, and for each i < s, Fi+1 is obtained from Fi by one of the following

rules:
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1. Erase: Fi+1 = Fi \ {C} for some clause C ∈ Fi.

2. Inference: Fi+1 ⊆ Fi ∪ {C} for C obtained by applying any inference rule of

the proof system P . In this step, one of the hypotheses used in the inference

rule may be erased.

3. Axiom Download: Fi+1 = Fi ∪ {C} for some clause C obtained by applying

the axiom download rule of the proof system P .

For a proof written as a sequence σ as above, the clause space of σ, denoted by

CSpace(σ), is maxi∈[s]{|Fi|}. The clause space needed to refute a QBF F in the

P -proof system, denoted by CSpace( P F), is the minimum CSpace(σ) over all se-

quences σ refuting F .

If we modify the inference step above so that the clause(s) used to obtain the in-

ference are erased in the same step, then any clause D can be used at most once

and we obtain a tree-like space-oriented P-proof. Correspondingly we can define

CSpace( PT
F) as the minimum space used by any tree-like proof sequence refuting

F .

6.1.2 Relations in Classical Resolution

In this section, we state some of the main relations between size, width, and space

for Resolution. In Chapter 2, we have stated the size-width relation (Theorem 2.4)

established by Ben-Sasson and Wigderson in [9]. Here for ease of reference we state

it once again.

Theorem 2.4 [9]. For all unsatisfiable CNFs F in n variables the following holds:

S( ResT
F ) ≥ 2

w
(

Res F
)
−w(F )

, and

S( Res F ) = exp

(
Ω

(
(w ( Res F )− w(F ))

2

n

))
.
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Space complexity was introduced by Esteban and Torán in [46] and relations between

space, size and width are explored (cf. also [19, 64]).

Theorem 6.2 ( [46]). For all unsatisfiable CNFs F the following relation holds:

S( ResT
F ) ≥ 2

CSpace
(

ResT
F
)
− 1.

The fundamental relation between space and width was obtained by Atserias and

Dalmau in [3]; a more direct proof was given recently in [48].

Theorem 6.3 ( [3]). For all unsatisfiable CNFs F the following relation holds:

w( Res F ) ≤ CSpace( Res F ) + w(F )− 1.

6.1.3 Existential Width: What is the Right Width Notion

for QBFs?

We wish to explore the possibility of a similar approach as used in [9] to prove an

analogue of Theorem 2.4 when dealing with QBFs. The following simple example

shows that the relationships in Theorem 2.4 and Theorem 6.3 do not carry over for

the system Q-Res.

Consider the following false QBF Fn over 2n+ 1 variables:

Fn =∀u1 . . . un∃e0∃e1 . . . en.

C0 : (e0) ∧

For i ∈ [n], Di : (ēi−1 ∨ ui ∨ ei) ∧

Dn+1 : (ēn)

Lemma 6.4. S( Q-ResT
Fn) ∈ O(n) and CSpace( Q-ResT

Fn) ∈ O(1), but w( Q-Res Fn) ∈

Ω(n).

Proof. For the upper bounds consider the following proof. For i ∈ [n], let Ci =
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(u1 ∨ · · · ∨ ui ∨ ei). For i ∈ [n] in sequence, resolving Ci−1 and Di on variable ei+1

gives Ci. Resolving Cn and Dn+1 on variable en gives the clause U = (u1∨ · · · ∨un).

Finally, applying ∀-Red on the clause U yields the empty clause in n more steps.

This is a tree-like proof of size O(n). Further, each resolution step involves an axiom

clause, so at each step we need to hold just two clauses, and so the space requirement

is O(1).

Concerning the width lower bound, by the order of quantification in Fn, every

existential literal in Fn blocks any ∀-reduction. Therefore, in any refutation, when

a ∀-reduction is first used, the clause C has only universal variables. At this point,

the empty clause is derivable from C by a series of ∀ reductions. Note that if

any clause is dropped from Fn, the resulting sentence is no longer false. Thus any

refutation must use all clauses. Hence C must have all universal variables in it; it

must be (u1 ∨ · · · ∨ un) as all ui variables have been accumulated, without being

reduced. Then clause C has width n.

Noting that w(Fn) = 3, Lemma 6.4 implies that the relationships from Theorem 2.4

and Theorem 6.3 do not hold for Q-Res and Q-ResT.

As the above example illustrates, it is easy to enforce that universal variables are

accumulated in a clause, thus leading to large width. Hence the following question

naturally arises: can we obtain size-width or space-width relations by using the

tighter measure of only counting existential variables?

This aligns with the situation in the expansion systems ∀Exp+Res and IR-calc, where

clauses contain only existential variables. In this respect, it is worth noting that the

above example indeed does not demonstrate the failure of the size-width relationship

in expansion-based calculi. For instance, in ∀Exp+Res, a tree-like refutation could

download the existential variables of axioms annotated with ui/0 for i ∈ [n], and

generate the empty clause in O(n) steps with width just 2 at the leaves and 1 at the
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internal nodes.

Thus, to get a consistent and interesting width measure for QBF calculi, we consider

the notion of existential width that just counts the number of existential literals.

This approach is justified also for Q-Res as the calculus can only resolve on existential

variables, and rules out the easy counterexamples above. Formally, we define the

existential width of a clause C to be the number of existential literals in C, and

denote it by w∃(C). Using w∃ instead of w everywhere, we obtain the existential

width of a formula w∃(F ), of a proof w∃(π), and of refuting a false sentence w∃( S F).

For the expansion systems ∀Exp+Res and IR-calc the notions of existential width and

width coincide. (In particular, distinct annotations of the same existential variable

in a single clause are counted as distinct literals.) Hence we can drop the ∃ subscript

in width of proofs in these systems. For the width of the sentence itself, there is still

a difference between w and w∃.

6.2 Negative Results: Size-width and Space-width

Relations Fail in Q-Res

In this section we show that in the Q-Res proof system, even replacing width by ex-

istential width, the relations to size or space as in classical Resolution (Theorems 2.4

and 6.3) no longer hold for both tree-like and general proofs.

Firstly, we point out where the technique of [9] fails. A crucial ingredient of their

proof is the following statement: if a clause A can be derived from F |x=1 in width

w, then the clause A ∨ ¬x can be derived from F in width w + 1 (possibly using a

weakening rule at the end). We show that the statement no longer holds in Q-Res.
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Proposition 6.5. There are false sentences ψn of the form ~Q~w∃b. Fn, with an

existential literal b quantified at the innermost level, such that the sentence ψn|b=1 ≡

~Q~w. Fn|b=1 is false and has a small existential-width proof, but ψn itself needs large

existential width to refute in Q-Res.

Proof. The sentence ψn is constructed by taking the conjunction of two sentences

with distinct variables. The first sentence is a very simple one: ∃a∀u∃b (a ∨ u ∨

b̄) ∧ (ā). It is a true sentence, but if b is set to 1, it becomes false. The second

sentence is a false sentence of the form ∃~xGn(~x), where Gn is any unsatisfiable CNF

formula over the ~x variables, such that Gn needs large width in classical Resolution.

One such example is the CNF formula described by Bonet and Galesi [26], that we

denote as BGn. BGn is an unsatisfiable 3-CNF formula over O(n2) variables with

w( Res BGn) = Ω(n). Now define ψn as:

∃~x∃a∀u∃b (a ∨ u ∨ b̄) ∧ (ā) ∧BGn(~x).

Note that the clauses (a ∨ u ∨ b̄) ∧ (ā) contain a contradiction if and only if b = 1.

Thus ψn|b=1 can be refuted with existential width 1 using just these two clauses: a

∀-Red on (a∨u) yields a which can be resolved with ā. On the other hand, to refute

ψn, the contradiction in BGn must be exposed. Since all the variables involved are

existential, Q-Res degenerates to classical Resolution, requiring (existential) width

Ω(n).

The example in the proof of Proposition 6.5 can be made ‘less degenerate’ by inter-

leaving more existential and universal variables disjoint from ~x and putting them in

the first sentence. All we need is that b is quantified existentially at the end, the

first sentence is true as a whole but false if b = 1, and this latter sentence can be

refuted in Q-Res with small existential width.
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We now show that it is not just the technique of [9] that fails for Q-Res. No other

technique will work either, because the relation from Theorem 2.4 between size and

existential width itself fails to hold. The same example also shows that the relation

from Theorem 6.3 between space and existential width also fails to hold. We first

give an example where the relation for tree-like proofs fails.

Theorem 6.6. There is a family of false QBF sentences CR′n over O(n2) variables,

such that S( Q-ResT
CR′n) = nO(1), w∃(CR′n) = 3, CSpace( Q-ResT

CR′n) = O(1), and

w∃( Q-ResT
CR′n) = Ω(n).

Proof. Consider the formulas CRn, introduced by Janota and Marques-Silva in [56].

Recall that we used the same formula in Chapter 3, for showing that level-ordered

Q-resolution cannot simulate tree-like Q-resolution. We now define it once again for

ease of reference.

CRn = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn.

(Ci,j) (xi,j ∨ z ∨ ai), i, j ∈ [n]

(Di,j) (x̄i,j ∨ z̄ ∨ bj), i, j ∈ [n]

(A)
∨
i∈[n]

āi

(B)
∨
i∈[n]

b̄i.

We know from Chapter 3, that CRn has short proof in Q-ResT. However CRn has

large existential width, and in order to prove Theorem 6.6, we need a formula with

constant initial existential width. To achieve this we proceed similarly as in the

Tseitin transformations, i.e., we introduce 2n+ 2 new existential variables (i.e, ~y, ~p)

at the innermost level in CRn, and replace the two large clauses in CRn by any CNF
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formula which preserves their satisfiability. Let CR′n denote the modified formula

CR′n = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn∃y0 . . . yn∃p0 . . . pn.

(Ci,j) (xi,j ∨ z ∨ ai), i, j ∈ [n] (6.1)

(Di,j) (x̄i,j ∨ z̄ ∨ bj), i, j ∈ [n] (6.2)

ȳ0 ∧
∧
i∈[n]

(yi−1 ∨ āi ∨ ȳi) ∧ yn (6.3)

p̄0 ∧
∧
i∈[n]

(pi−1 ∨ b̄i ∨ p̄i) ∧ pn. (6.4)

Note that w∃(CR′n) = 3.

It is clear that from type-(6.3) clauses of CR′n, we can derive the large clause
∧
i∈[n] āi

of CRn in n+ 1 resolution steps. Similarly we can derive the large clause
∧
i∈[n] b̄i of

CRn from the type-(6.4) clauses in n + 1 steps. The proof refuting CRn uses each

of these large clauses n times ; see below. Thus S( Q-ResT
CR′n) ≤ S( Q-ResT

CRn) +

O(n2) = O(n2).

We briefly sketch the refutation of CRn from Chapter 3, to analyse its space require-

ment. The fragment Wj starts with clause A, successively resolves it with clauses

from C∗,j to get z∨x1,j ∨ . . .∨xn,j, eliminates z through a ∀-reduction, then succes-

sively resolves it with clauses from D∗,j to get Wj = z̄∨bj. It is easy to see that O(1)

space suffices to construct this fragment. The overall proof starts with the clause

B, successively resolves it with W1,W2, . . . ,Wn (reusing the space to construct suc-

cessive Wj’s), and finally gets z̄ which is eliminated through a ∀-reduction. Again

O(1) space suffices.

Finally, we show that CR′n needs large existential width.

Let π be a proof in Q-Res, π Q-Res CR′n. List the clauses of π in sequence, π =

{D0, D1, . . . , Ds = �}, where each clause in the sequence is either a clause from

CR′n, or is derived from clause(s) preceding it in the sequence using resolution or
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∀-Red. There must be at least one universal reduction step in π, since all the initial

clauses are necessary for refuting CR′n, some of them contain universal variables,

and the only way to remove a universal variable in Q-Res is by ∀-Red. Let t be the

least index such that in the clause Dt, a ∀-Red step has been performed on the only

universal variable. Without loss of generality, let the universal literal be the positive

literal z; the argument for z̄ is identical. As the existential variables, ~a,~b, ~y, and ~p

all block the universal variable z, none of them is present in the clause Dt. We use

this fact to show that w∃(Dt) = Ω(n). Our strategy is to associate some set with

each clause in π in a specific way, and use the set size to bound existential width.

We associate the following sets with the literals of CR′n and the clauses of π.

σ(z) = ∅ = σ(z̄)

∀i ∈ [n] σ(ai) = [n] \ {i} = {1, . . . , n} \ {i}

∀i ∈ [n] σ(xi,j) = σ(āi) = {i}

∀i ∈ [n] σ(ȳi) = [n] \ [i] = {i+ 1, . . . , n}

∀i ∈ [n] σ(yi) = [i] = {1, . . . , i}

∀j ∈ [n] σ(bj) = [n] \ {j} = {1, . . . , n} \ {j}

∀j ∈ [n] σ(x̄i,j) = σ(b̄j) = {j}

∀j ∈ [n] σ(p̄j) = [n] \ [j] = {j + 1, . . . , n}

∀j ∈ [n] σ(pj) = [j] = {1, . . . , j}

∀D ∈ π σ(D) =
⋃
l∈D

σ(l).

Note that for variables v in ~a, ~b, ~p, ~y, the sets σ(v) and σ(v̄) form a partition of [n].

For D ∈ π, let πD be the sub-DAG of π, rooted at D. Consider the sub-DAG πDt

of π. We have the following observations:

Observation 1. πDt contains at least one type-(6.1) clause as a source; this is

because z ∈ Dt, and the only initial clauses containing z are the type-(6.1)
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clauses.

Observation 2. πDt does not contain any clause of type-(6.2) : as z ∈ Dt, we know

that z̄ /∈ Dt. Therefore if some type-(6.2) clause is present in this sub-DAG,

the only way to remove z̄ is via ∀-Red. This reduction will take place before

the reduction on Dt, contradicting our choice of index t. We also conclude

that the literal z̄ cannot appear anywhere in πDt .

Observation 3. πDt does not contain any type-(6.4) clause: we know that Dt does

not contain ~p and ~b variables (because they block z). Any use of type-(6.4)

clauses introduces ~p variables and possibly b̄ literals. Removing ~p variables

introduces b̄ literals. But b̄ can be removed only by resolving with b, which

is only in type-(6.2) clauses. We have already seen that type-(6.2) clauses are

not present in πDt .

Observation 4. No clause in πDt contains a literal x̄i,j, since x̄i,j are introduced

only in type-(6.2) clauses which were already ruled out.

Observation 5. For any clause C derived solely from type-(6.3) clauses, σ(C) =

[n]. This is true for type-(6.3) clauses by definition of σ. Using only these

clauses, the only resolution step possible is with a y variable as pivot. The

claim can be verified by induction on depth: since σ(yi) and σ(ȳi) partition

[n], [n] \ σ(yi) and [n] \ σ(ȳi) also partition [n].

We show that all clauses in πDt that are descendants of some type-(6.1) clause, (i.e,

all clauses in πDt with a directed path to some type-(6.1) clause), have large sets

associated with them. In particular, we show:

Claim 6.7. Every clause D in πDt such that πD contains a type-(6.1) clause has

σ(D) = [n].

Deferring the proof briefly, we continue with our argument. From the Claim we
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conclude that σ(Dt) = [n]. Recall that the variables ~a,~b, ~y, ~p and the literals x̄i,j’s

are not present in Dt. The only literals left are positive xi,j’s. These literals are

associated with singleton sets, and the variables xi,j for different values of j give

the same singleton set. So we conclude that for each i ∈ [n], there must be some

xi,j ∈ Dt. Hence w∃(Dt) = Ω(n).

It remains to establish the claimed set size.

Proof of claim 6.7. We proceed by induction on the depth of descendants of type-

(6.1) clauses in πDt . The base case is a type-(6.1) clause itself and follows from the

definition of σ.

For the inductive step, let D be obtained by resolving (E ∨ r) and (F ∨ r̄). There

are two cases to consider: both are descendants of some type-(6.1) clauses, or only

one of them, say (E ∨ r), is a descendant of a type-(6.1) clause. In the former case,

by the induction hypothesis, σ(E ∨ r) = [n] and σ(F ∨ r̄) = [n]. In the latter case,

σ(E ∨ r) = [n] by induction hypothesis, and σ(F ∨ r̄) = [n] from the observations

above. ((F ∨ r̄) is not a descendant of any type-(6.1) clause. But it belongs to πDt

which has only type-(6.1) and type-(6.3) clauses. So it must be a descendant of only

type-(6.3) clauses, and hence has [n] associated with it.)

Thus in both cases, we have σ(E∨r) = σ(F ∨ r̄) = [n]. So we have σ(E) ⊇ [n]\σ(r)

and σ(F ) ⊇ [n] \ σ(r̄). Observe that the pivot variable r can only be either an ~a or

a ~y variable. Thus σ(r) and σ(r̄) are disjoint, and hence σ(E) ∪ σ(F ) = [n]. Thus

σ(D) = σ(E) ∪ σ(F ) = [n] as claimed.

This completes the proof of the Theorem.
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Since tree-like space is at least as large as space (from definition), Theorem 6.6

also rules out the space-width relation for general dag-like Q-Res proofs. However,

observe that Theorem 6.6 cannot be used to show that the size-existential-width

relationship for general dag-like proofs fails in Q-Res, because the sentences CR′n

have O(n2) variables. However, we show via another example that the relation fails

to hold in Q-Res as well. This example cannot be used for proving Theorem 6.6

because it is known to be hard for Q-ResT [56]. (In [56] the hardness for ∀Exp+Res

is shown, which implies hardness for Q-ResT, as ∀Exp+Res p-simulates Q-ResT.)

Theorem 6.8. There is a family of false QBFs φ′n in O(n) variables such that

S( Q-Res φ
′
n) = nO(1), w∃(φ

′
n) = 3, and w∃( Q-Res φ

′
n) = Ω(n).

Proof. Consider the formulas φn, described in Chapter 2 (Proposition 2.12, 2.11).

Recall that the formula φn has been used in [56] to show that ∀Exp+Res cannot

simulate Q-Res. As discussed in Chapter 2, φn has a short Q-Res proof (Proposition

2.12), but are hard for ∀Exp+Res (Proposition 2.11). We now use the same formula

to prove Theorem 6.8. For ease of reference we present the formula once again.

φn = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.∧
i∈[n]

(
(ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧

( ∨
i∈[2n]

c̄i
)
.

Observe that φn has large initial existential width, However, in order to prove Theo-

rem 6.8, we need a formula with constant initial width. To achieve this we consider

quantified Tseitin transformations of φn, i.e. we introduce 2n + 1 new existential

variables xi at the innermost quantification level in φn, and replace the only large

clause in φn by any CNF formula that preserves satisfiability. Let φ′n denote the
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modified formula:

φ′n = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n∃x0 . . . x2n.∧
i∈[n]

(
(ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧ (6.5)

x̄0 ∧
∧
i∈[2n]

(xi−1 ∨ c̄i ∨ x̄i) ∧ x2n. (6.6)

Note that w∃(φ
′
n) = 3.

We refer to the clauses in (6.6) as x-clauses. It is clear that from the x-clauses, we

can derive the large clause of φn in 2n + 1 resolution steps and get back φn. Thus

S( Q-Res φ
′
n) ≤ S( Q-Res φn) + 2n+ 1 ∈ nO(1).

We now show that φ′n needs large existential width. We follow the same strategy

used in proving Theorem 6.6.

Let π be a proof in Q-Res, π Q-Res φ
′
n. List the clauses of π in sequence, π =

{D0, D1, . . . , Ds = �}, where each clause in the sequence is either a clause from

φ′n, or is derived from clause(s) preceding it in the sequence using resolution or ∀-

Red. There must be at least one universal reduction step in π, since all the initial

clauses are necessary for refuting φ′n, some of them contain universal variables, and

the only way to remove a universal variable in Q-Res is by ∀-Red. Let i be the least

index such that the clause Di is obtained by ∀-Red on Dj for some 0 < i. Since all

x variables block all u variables, Dj and Di cannot contain any x variables. We use

this fact to show that w∃(Di) = Ω(n). Our strategy is to associate some set with

each clause in π in a specific way, and use the set size to bound existential width.
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We associate the following sets with the literals of φ′n and the clauses of π.

σ(x0) = ∅

∀i ∈ [2n] σ(xi) = [i] = {1, 2, . . . , i}

σ(x̄0) = [2n]

∀i ∈ [2n] σ(x̄i) = [2n] \ [i] = {i+ 1, . . . , 2n}

∀i ∈ [n] σ(ei) = σ(ui) = σ(c̄2i) = σ(c2i−1) = {2i}

∀i ∈ [n] σ(ēi) = σ(ūi) = σ(c̄2i−1) = σ(c2i) = {2i− 1}

∀D ∈ π σ(D) =
⋃
l∈D

σ(l).

Note that for any literal `, σ(`) and σ(¯̀) are disjoint.

For D ∈ π, let πD be the sub-DAG of π, rooted at D.

Claim 6.9. πDi
contains at least one x-clause (axiom clause of type (6.6)).

Proof. The child Dj of node Di contains a universal variable which is then removed

through ∀-Red to get Di. The universal variables appear only in clauses of type (6.5),

but are blocked by the c-variables in every clause where they appear. Thus, before

a reduction is permitted, a c variable must be eliminated by resolution. Since all c

variables appear only positively in type (6.5) clauses, some x-clause must be used

in the resolution.

We show that all clauses in πDi
that are descendants of some x-clause have large

sets associated with them. In particular, we show:

Claim 6.10. Every clause D in πDi
such that πD contains an x-clause has σ(D) =

[2n].

Deferring the proof briefly, we continue with our argument. From the Claim we

conclude that σ(Di) = [2n]. Recall that none of the x variables belongs to Di. All

other literals are associated with singleton sets, so Di must contains at least 2n
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literals in order to be associated with the complete set [2n]. Since Q-Res proofs

prohibit a variable and its negation in the same clause, at most n of the literals

in Di can be universal variables. Thus Di has at least n existential literals, hence

w∃(Di) = Ω(n).

It remains to establish the claimed set size.

Proof of claim 6.10. We proceed by induction on the depth of descendants of x-

clauses in πDi
. The base case is an x-clause itself and follows from the definition of

σ.

For the inductive step, let D be obtained by resolving (E ∨ z) and (F ∨ z̄). There

are two cases to consider:

Case 1: Both (E∨z) and (F ∨ z̄) are descendants of x-clauses (not necessarily the

same x-clause). Then by induction, σ(E∨z) = σ(F∨z̄) = [2n]. So σ(E) ⊇ [2n]\σ(z)

and σ(F ) ⊇ [2n] \ σ(z̄). Since σ(z) and σ(z̄) are disjoint, σ(E)∪ σ(F ) = [2n]. Thus

σ(D) = σ(E) ∪ σ(F ) = [2n] as claimed.

Case 2: Exactly one of (E∨z) and (F ∨ z̄) is a descendant of an x-clause. Without

loss of generality, let F ∨ z̄ be the descendant. Then E ∨ z is either a type-(6.5)

clause or is derived solely from type-(6.5) clauses using resolution. However, observe

that the only clauses derivable solely from type-(6.5) clauses via resolution, without

creating tautologies as mandated in Q-Res, are of the form (c2i−1 ∨ c2i) for some i.

It follows that z is not an x variable. Hence σ(z) and σ(z̄) are distinct singleton

sets. Further, z cannot be a u variable either, since resolution on universal variables

is not permitted in Q-Res.

Now note that for any type-(6.5) clause C, σ(C) = {2i− 1, 2i} for the appropriate

i. Similarly, σ(c2i−1 ∨ c2i) = {2i − 1, 2i}. So if E ∨ z is one of these clauses, then

σ(E ∨ z) = σ(z) ∪ σ(z̄) and σ(E) = σ(z̄). Further, as in Case 1, by induction we

know that σ(F ∨ z̄) = [2n] and σ(F ) ⊇ [2n] \ σ(z̄). Hence, σ(E ∨ F ) = [2n] as
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claimed.

This completes the proof of the theorem.

The above counterexamples are provided by formulas that require small size, but

large existential width. We will now illustrate via another example that also large

size and large width can occur. Consider the formulas QParityn defined in Section

2.5. As already mentioned in Theorem 2.17, these formulas are hard for Q-Res. We

now complement the exponential size lower bound from [13] by a width lower bound.

Theorem 6.11. w∃( Q-Res QParityn) ≥ n.

Proof. Consider the formula QParityn from Section 2.5. Observe that in QParityn,

the contradiction occurs semantically because of the clauses z∨tn, ¬z∨¬tn asserting

z 6= tn (along with the fact that the values of x variables uniquely determine the

values of all t variables, in particular, tn). Thus, at least one of these clauses must

be used in any proof, necessitating a ∀-reduction. In Q-Res we cannot reduce z while

any of the t variables are present; and due to the restrictions in Q-Res we cannot

resolve any descendants of z ∨ tn with any descendants of ¬z ∨ ¬tn until there is at

least one ∀-reduction.

Consider a smallest Q-Res proof, and assume without loss of generality that a first

(lowest) ∀ reduction happens on the positive literal z. Therefore before this ∀-

reduction step we have essentially a resolution derivation π from Γ = (t2 ≡ x1 ⊕

x2) ∪
⋃n
i=3(ti ≡ xi ⊕ ti−1) ∪ {tn ∨ z}. The clause D that occurs in π immediately

before the ∀-reduction must only contain variables from {x1, . . . , xn} apart from the

literal z, else the reduction is blocked.

We now use the following observation.

Claim 6.12. Suppose x1 ⊕ · · · ⊕ xn � C for some clause C. Then C is either a

tautology or C contains all variables x1, . . . , xn.
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Assuming Claim 6.12, we continue with our argument. Any assignment to the x

variables satisfying x1 ⊕ · · · ⊕ xn has a unique extension to z and the t variables

satisfying all clauses of the formula QParityn. This extension necessarily has

tn = x1 ⊕ · · · ⊕ xn = 1 and z = 0. Since it satisfies all axioms, by soundness of

resolution, it also satisfies D.

This, along with Claim 6.12, implies that D is either a tautology or has all x vari-

ables. Since it cannot be a tautology (it appears in the proof, and besides, at the

very least it has the variable z), it must have all x variables, and hence has existential

width n.

It remains to prove the Claim.

Proof of Claim 6.12. Suppose the clause C is not a tautology, but the variables xi,

i ∈ I 6= ∅, do not appear in C. Since C is a non-tautological clause, there is

exactly one partial assignment α falsifying C. By setting the variables xi, i ∈ I,

appropriately, we can increase α to an assignment satisfying x1 ⊕ · · · ⊕ xn, but still

falsifying C. Hence x1 ⊕ · · · ⊕ xn 2 C.

This completes the proof of the Theorem.

6.3 Simulations: Preserving Size, Width, and Space

Across Calculi

After these strong negative results, ruling out size-width and space-width relations

in Q-Res and Q-ResT, we aim to determine whether any positive results hold in the

expansion systems ∀Exp+Res and IR-calc. Before we can do this we need to relate

the measures of size, width, and space across the three calculi Q-Res, ∀Exp+Res, IR-

calc. Of course, such a comparison in terms of refined simulations is also interesting

120



in its own as it determines the relative strength of the different proof systems. As

size corresponds to running time, and space to memory consumption of QBF solvers,

such a comparison yields interesting insights into the power of QBF solvers using

CDCL vs. expansion techniques.

It is known that IR-calc p-simulates ∀Exp+Res and Q-Res [12], and that ∀Exp+Res

p-simulates Q-ResT [56]. We revisit these proofs, with special attention to the width

parameter, and also obtain simulating proofs that are tree-like if the original proof

is tree-like. The relationships we establish are stated in the following theorem:

Theorem 6.13. For all false QBFs F , the following relations hold:

1. 1
2
S( IRT-calc

F) ≤ S( ∀Exp+ResT
F) ≤ S( IRT-calc

F) ≤ 3S( Q-ResT
F).

2. w( IR-calc F) = w( ∀Exp+Res F) ≤ w∃( Q-Res F).

3. CSpace( ∀Exp+ResT
F) = CSpace( IRT-calc

F) ≤ CSpace( Q-ResT
F).

These results follow from Proposition 6.14 and Lemmas 6.15, 6.16 that are stated

and established below.

Proposition 6.14 ( [12]). Any proof in ∀Exp+Res of size S, width W , and space

C can be efficiently converted into a proof in IR-calc of size at most 2S, width W ,

and space C. If the proof in ∀Exp+Res is tree-like, so is the resulting IR-calc proof.

Proof. In IR-calc, when an axiom is downloaded, the existential literals in it are

annotated partially. However in ∀Exp+Res, the annotations are complete; all uni-

versal variables at a lower level than a literal appear in its annotation. To convert

a proof π in ∀Exp+Res to one in IR-calc, all that is needed is to follow up each

axiom-download with an instantiation that completes the annotations as in π. This

introduces at most one extra step per leaf but does not increase width. Also observe

that the space required has not changed: to instantiate a clause we can reuse the

same space.
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Lemma 6.15. ∀Exp+ResT p-simulates IRT-calc while preserving its width, size, and

space.

Proof. Recall the main reason why IRT-calc proofs differ from those in ∀Exp+ResT:

axioms are downloaded with partial rather than complete annotations, and annota-

tions can be extended at any stage by the inst operation.

The idea is to systematically transform an IRT-calc proof, proceeding downwards

from the top where we have the empty clause, and modifying annotations as we

go down, so that when all leaves have been modified the resulting proof is in fact

an ∀Exp+ResT proof. This crucially requires that we start with a tree-like proof; if

the underlying graph is not a tree, we cannot always find a way of modifying the

annotations that will work for all descendants.

Let π be an IRT-calc proof of a false QBF F . Without loss of generality, we can

assume that every resolution node has, as parent, an instantiation node. (If it does

not, we introduce the dummy inst(∅, ∗) node between it and its parent.) Since

the proof is tree-like, we can also collapse contiguous instantiation nodes into a

single instantiation node. Thus, as we move down a path from the root, nodes are

alternately instantiation and resolution nodes. We consider each resolution node

and its parent instantiation node to be at the same level.

Starting from the top, which we call level zero, we transform π to another proof π′

in IRT-calc maintaining the following invariants: after the ith step, all the instanti-

ated clauses up to level i are fully annotated and the instantiating assignments are

complete. Thus the instantiation steps become redundant. This further implies that

after the last level (when we reach the axiom farthest from the top), the resulting

proof is in fact a ∀Exp+ResT proof.

• At Level 0: The node at this level must be a resolution producing the empty

clause, followed by a dummy instantiation with the empty assignment. Thus
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the clauses at this level are already fully annotated, but the instantiating

assignment is far from complete. Pick an arbitrary complete assignment, say

σ, and instantiate the empty clause with σ. Clearly the invariants hold now.

• Assume that the invariants holds after processing all nodes at level i− 1.

• At Level i: Let D be an instantiated clause at level i − 1, obtained by

instantiating some clause C by an assignment σ. That is, D = inst(C, σ). By

the induction hypothesis, D is fully annotated and σ is complete. Let C be

obtained by resolving E = (G ∨ xτ ) and F = (H ∨ ¬xτ ). We need to make E

and F fully annotated. Let E = inst(I, β1) and F = inst(J, β2) in π. Replace

E by E ′ = inst(I, β1 Yσ) and F by F ′ = inst(J, β2 Yσ). As σ is complete, both

β1 Yσ and β2 Yσ are complete, and hence both E ′ and F ′ are fully annotated.

The resolution step is now performed on xτ
′
, where τ ′ = τ Y σ is the resulting

annotation on x. It is easy to see that the resolvent of E ′ and F ′ is D, so the

intermediate instantiation step going from C to D becomes redundant.

It is clear that the simulation preserves width. It also does not increase size: we may

introduce dummy instantiation nodes to make the proof ‘alternating’, but after the

transformation, all instantiations — dummy and actual — are eliminated completely.

It is also clear that the simulation preserves the space needed, since the structure of

the proof is preserved.

The simulation in Lemma 6.15 exhibits an interesting phenomenon: while it shows

that the tree-like versions of ∀Exp+Res and IR-calc are p-equivalent, it was shown

in [13] that in the dag-like versions, IR-calc is exponentially stronger than ∀Exp+Res.

Thus ∀Exp+Res and IR-calc provide a rare example in proof complexity of two sys-

tems that coincide in the tree-like model, but are separated in the dag-like model.

Lemma 6.16. IRT-calc p-simulates Q-ResT while preserving space and existential
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width exactly and size upto a factor of 3. That is,

S( IRT-calc
F) ≤ 3S( Q-ResT

F),

CSpace( IRT-calc
F) ≤ CSpace( Q-ResT

F), and

w( IR-calc F) ≤ w∃( Q-Res F)

Proof. We use the same simulation as given in [12]. This simulation was originally

for dag-like proof systems, but here we check that it also works for tree-like systems,

and we observe that space and existential width are preserved.

Let C1, . . . , Ck be a Q-ResT proof. We translate the clauses into clauses D1, . . . , Dk,

which will form the skeleton of a proof in IR-calc.

• For an axiom Ci in Q-ResT we introduce the same clause Di by the axiom rule

of IR-calc, i.e., we remove all universal variables and add annotations.

• If Ci is obtained via ∀-reduction from Cj, then Di = Dj; we make no change.

• Consider now the case that Ci is derived by resolving Cj and Ck with pivot

variable x. Then Dj = xτ ∨ Kj and Dk = x̄σ ∨ Kk. It is shown in [12]

that the annotations τ and σ are not contradictory; in fact, no annotations

in the two clauses are contradictory. So if we define D′j = inst(σ,Dj) and

D′k = inst(τ,Dk), then the annotations of x in D′j and x̄ in D′k match, and we

can resolve on this literal. Define D′i as the resolvent of D′j and D′k. We can

perform a further instantiation to obtain Di = inst(η,Di), where η is the set

of all assignments to universal variables appearing anywhere in D′i. Di has no

more literals than Ci. For details, see [12].

Note that to complete this skeleton into a proof, we only add instantiation rules.

Thus, if the original proof was tree-like, so is the new proof. If the original proof

has size S, the new proof has size at most 4S, since each resolution may now be
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preceded by two instantiations and followed by one instantiation. However, this is

an overcount, since we are counting two instantiations per edge, one from the par-

ent and one from the child, and contiguous instantiations can be collapsed. That is,

every instantiation following a resolution step can be merged with the instantiation

preceding the next resolution and need not be counted separately. The only excep-

tion is at the root, where there is nothing to collapse it with. However, at the root,

the instantiation itself is redundant and can be discarded. Thus we obtain a new

proof of size at most 3S.

Further, if the original proof had existential width w, then the new proof has width

w since each Di has at most (annotated versions of) the existential literals of Ci.

Regarding space, observe that simulating axiom download and ∀-Red do not require

additional space. At the resolution step, the simulation first performs additional

instantiations. But instantiation does not need additional space. So the space

bound remains the same.

As a by-product, these simulations enable us to give an easy and elementary proof of

the simulation of Q-ResT by ∀Exp+Res, shown in [56] via a more involved argument.

Corollary 6.17 (Janota, Marques-Silva [56]). ∀Exp+ResT p-simulates Q-ResT.

Proof. By Lemma 6.15, ∀Exp+ResT p-simulates IRT-calc, which in turn p-simulates

Q-ResT by Lemma 6.16.

Using again the width lower bound for QParityn (Theorem 6.11) we can show

that item 2 of Theorem 6.13 cannot be improved, i.e. we obtain an optimal width

separation between Q-Res and ∀Exp+Res.
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Theorem 6.18. There exist false QBFs ψn with w∃( Q-Res ψn) = Ω(n), but w( ∀Exp+Res ψn) =

O(1).

Proof. We use the QParityn formulas, which by Theorem 6.11 require existential

width n in Q-Res. To get the separation it remains to show w( ∀Exp+Res QParityn) =

O(1). For this we use the following ∀Exp+Res proofs of QParityn from [13]: the

formulas QParityn have exactly one universal variable z, which we expand in both

polarities 0 and 1. This does not affect the xi variables, but creates different copies

t
z/0
i and t

z/1
i of the existential variables right of z. Using the clauses of ti ≡ xi⊕ ti−1,

we can inductively derive clauses representing t
z/0
i = t

z/1
i . This lets us derive a

contradiction using the clauses t
z/0
n and ¬tz/1n .

Clearly, this proof only contains clauses of constant width, giving the result.

6.4 Positive Results: Size, Width, and Space in

Tree-like QBF Calculi

We are now in a position to show some positive results on size-width and size-space

relations for QBF Resolution calculi. However, most of these results only apply to

the rather weak tree-like proof systems.

6.4.1 Relations in the Expansion Calculi ∀Exp+Res and IR-

calc

We first observe that for ∀Exp+Res almost the full spectrum of relations from clas-

sical Resolution remains valid.
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Theorem 6.19. For all false QBFs F , the following relations hold:

1. S( ∀Exp+ResT
F) ≥ 2(w( ∀Exp+Res F))−w∃(F)).

2. S( ∀Exp+ResT
F) ≥ 2

CSpace( ∀Exp+ResT
F) − 1.

3. CSpace( ∀Exp+ResT
F) ≥ CSpace( ∀Exp+Res F) ≥ w( ∀Exp+Res F)− w∃(F) + 1.

Proof. This theorem follows from the analogous statements for classical Resolution.

We just describe how to apply those results to ∀Exp+Res.

We know that in ∀Exp+ResT proofs, leaves corresponds to the expanded clauses

from F . The expanded clauses contain only existential (annotated) literals and

no universal literals. Let G be the QBF obtained after expanding F based on

all possible assignments of universal variables. Clearly, G contains no universal

variables and hence can be treated as a propositional CNF formula (all variables

are only existentially quantified). That is, if G is the matrix of clauses in G, then G

asserts that G is satisfiable. Also, w(G) = w(G) = w∃(F).

Refutations of F in ∀Exp+Res (respectively, ∀Exp+ResT) are precisely refutations

(resp. tree-like refutations) of G in classical resolution; the size, space and width are

exactly the same, by definition. That is, S( ResT
G) = S( ∀Exp+ResT

F), w( Res G) =

w( ∀Exp+Res F), CSpace( Res G) = CSpace( ∀Exp+Res F), and CSpace( ResT
G) =

CSpace( ∀Exp+ResT
F). Now the Theorem follows by applying Theorems 2.4, 6.2,

and 6.3, on G.

By the equivalence of ∀Exp+ResT and IRT-calc with respect to all the three measures

size, width, and space (Theorem 6.13) we can immediately transfer all results from

Theorem 6.19 to IRT-calc.

Theorem 6.20. For all false QBFs F , the following relations hold:

1. S( IRT-calc
F) ≥ 2(w( IR-calc F))−w∃(F)).
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2. S( IRT-calc
F) ≥ 2CSpace( IRT-calc

F) − 1.

3. CSpace( IRT-calc
F) ≥ w( IR-calc F)− w∃(F) + 1.

6.4.2 The Size-space Relation in Tree-like Q-resolution (Q-

ResT)

We finally return to Q-Res. Most relations were already ruled out in Section 6.2

for both Q-Res and Q-ResT. The only relation that we can still show to hold is the

classical size-space relation (Theorem 6.2), which we transfer from ResT to Q-ResT.

In Resolution, this relationship was obtained using pebbling games [46]. We observe

that the same holds for Q-ResT as well, giving the analogous relationship. That is,

we show:

Theorem 6.21. For a false QBF sentence F ,

S( Q-ResT
F) ≥ 2

CSpace
(

Q-ResT
F
)
− 1.

Before getting into the proof, we describe the pebbling game.

Definition 6.22. (Pebbling Game) Let G = (V,E) be a connected directed acyclic

graph with a unique sink s, where every vertex of G has fan-in at most 2. The aim

of the game is to put a pebble on the sink of the graph following this set of rules:

1. A pebble can be placed on any source vertex, that is, on a vertex with no

predecessors.

2. A pebble can be removed from any vertex.

3. A pebble can be placed on an internal vertex provided all of its children are

pebbled. In this case, instead of placing a new pebble on it, one can shift a

pebble from a child to the vertex.

128



The minimum number of pebbles needed to pebble the unique sink following the above

rules is said to be the pebbling number of G.

Consider the proof graph Gπ corresponding to a Q-Res proof π of a false QBF F .

In Gπ clauses are the vertices and edges go from the hypotheses to the conclusion

of inference rules (i.e, ∀-Red, resolution steps). Clearly Gπ is a DAG with initial

clauses as sources and the empty clause as the unique sink. Also the in-degree of

each vertex in Gπ is at most 2. Hence the pebbling game is well defined in Gπ.

We now show that the space required to refute a false QBF sentence F (as per

Definition 6.1) coincides with the minimum number of pebbles needed to play the

pebble game on the graph of a Q-Res proof of F . The relation holds for tree-like

proofs as well.

Lemma 6.23. Let F be a false QBF in prenex form. Then the following holds:

1. CSpace( Q-Res F) = min

{
k :
∃ Q-Res proof π of F , Gπ can be pebbled with k

pebbles

}
;

2. CSpace( Q-ResT
F) = min

{
k :
∃ Q-ResT proof π of F , Gπ can be pebbled with k

pebbles

}
.

Proof Sketch. The proof is exactly the same as in classical Resolution.

Let π be a Q-Res proof whose proof graph Gπ can be pebbled with k pebbles. (If π

is treelike, then Gπ is a tree.) Note that the vertices of Gπ are clauses in the proof.

The space-oriented Q-Res (respectively Q-ResT) proof sequence with clause space k

is constructed by maintaining at each stage exactly the pebbled clauses. By the

rules of the pebbling game, adding a clause to the current set is valid because the

added clause is either at a source node and hence an axiom, or it has all predecessors

pebbled and hence can be inferred. Further, if π is tree-like, then it can be shown

that there is a k-pebble sequence where no node is pebbled more than once (once a

node is pebbled, no predecessor of the node need be pebbled again). So the above

construction will yield a tree-like space-k proof sequence.
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In the other direction, given a space-k proof as a sequence σ, we can construct

a corresponding DAG G with nodes for each clause appearing anywhere in σ, and

edges reflecting how the clauses are used for inference in σ. Thus we obtain a proof π

with Gπ = G (it is the same proof as σ, just represented differently). We can pebble

G with k pebbles by maintaining the invariant that at each stage, pebbles are placed

on exactly the clauses present in the corresponding formula in the sequence σ. If σ is

a tree-like space-k proof, we construct a corresponding tree with a distinct node for

every copy of a clause introduced at some stage in σ, and then pebble it as above.

We omit the details.

We can now prove Theorem 6.21.

Proof of Theorem 6.21. This proof too is almost identical to the proof for classical

Resolution [46]. We give a brief sketch.

Let S( Q-ResT
F) = s. Consider a tree-like Q-Res (Q-ResT) proof π of F (i.e, π Q-ResT

F),

of size s, and let T be the underlying proof-tree.

In contrast to classical Resolution, a proof graph in Q-Res may have unary nodes

corresponding to ∀-reductions. In particular, for a proof in Q-ResT, there may be

paths corresponding to series of ∀-reductions. Once the lower end of such a path

is pebbled, the same pebble can be slid up to the top of the path; no additional

pebbles are needed. So without loss of generality we work with the tree T ′ obtained

by shortcutting all paths containing unary nodes.

Let dc(T ) be the depth of the biggest complete binary tree that can be embedded

in T ′ or in T . (We say that a graph G1 is embeddable in a graph G2 if a graph iso-

morphic to G2 can be obtained from G1 by adding vertices and edges or subdividing

edges of G1.) Clearly, 2dc(T )+1 − 1 ≤ s.

By induction on |T ′|, we can show that dc(T )+1 pebbles suffice to pebble T ′. Hence,
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by the argument given above, dc(T ) + 1 pebbles suffice to pebble T as well. Now,

using Lemma 6.23, we obtain CSpace( Q-ResT
F) ≤ dc(T ) + 1. Hence

2CSpace( Q-ResT
F) − 1 ≤ 2dc(T )+1 − 1 ≤ s = S( Q-ResT

F)

as claimed.
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Chapter 7

Conclusions and Open Problems

Beyersdorff et al. in [11], introduce a general method of transforming a proposi-

tional proof system P into a QBF proof system P+∀red. In [11] they concentrate

on exploring QBF proof systems C-Frege+∀red based on restricted versions of Frege

proof systems. Then Beyersdorff and Pich in [20] explore EF+∀red proof systems

and prove some interesting results. In this thesis, we have introduced a new com-

plete and sound QBF proof system CP+∀red based on Cutting Planes proof system

(Section 4.1), and gave a comprehensive analysis of its proof complexity. As already

stated, such proof systems have not been explored before. We point here that still,

QBF proof systems based on algebraic propositional proof systems (for example,

Hilbert’s Nullstellensatz, Polynomial Calculus-PC, Polynomial Calculus with Resolution-

PCR etc. are missing. (For their definitions, we recommend the survey [7]). It will

be nice to introduce such QBF proof systems and give a detailed analysis of their

proof complexities.

In Chapter 5, we have established feasible interpolation technique for all CDCL-

based QBF Resolution calculi. In fact it has been shown in [14], that the technique

also applies to all expansion-based QBF proof systems. Using the ideas from [67], we

also established the technique for our new proof systems CP+∀red and semCP+∀red.
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In propositional case, it is known that the feasible interpolation technique applies

to some algebraic proof systems as well, for example Nullstellensatz, and PC [69]. It

would be nice to lift the technique for QBF proof systems based on these systems

(once introduced).

In Chapter 6, we show that the success story of width in Resolution needs to be

rethought when moving to QBF. Indeed, the question arises: is width a central

parameter in QBF Resolution? Is there another parameter that plays a similar role

as classical width for understanding size and space for QBF Resolution ?

Our findings almost completely uncover the picture for size, space, and width for the

most basic and arguably most important QBF Resolution systems Q-Res, ∀Exp+Res,

and IR-calc. The most immediate open question arising from our investigation is

whether size-width relations hold for general dag-like ∀Exp+Res or IR-calc proofs.

The issue here is that in the classical size-width relation of [9] the number of variables

enters the formula in a crucial way. For the instantiation calculi it is not clear

what should qualify as the right count for this as different annotations of the same

existential variable are formally treated as distinct variables (which is also clearly

justified by the semantic meaning of expansions).

For further research it will also be interesting to settle whether size-width or space-

width relations apply to any of the stronger QBF Resolution systems QU-Res [78],

LD-Q-Res [4], or IRM-calc [12]. However, we conjecture that the negative picture

also prevails for these systems.
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