
Parameterized Complexity of
Graph Partitioning and Geometric Covering

By

Sudeshna Kolay

MATH10201105002

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

May, 2016

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation pre-
pared by Sudeshna Kolay entitled “Parameterized Complexity of Graph Partitioning and
Geometric Covering“ and recommend that it maybe accepted as fulfilling the dissertation
requirement for the Degree of Doctor of Philosophy.

Date:

Chair - Prof. Venkatesh Raman

Date:

Guide/Convener - Prof. Saket Saurabh

Date:

Member 1 - Prof. Meena Mahajan

Date:

Member 2 - Prof. V. Arvind

Date:

Member 3 - Prof. Rajiv Raman

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: Guide

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced
degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be
made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgement of source is made. Requests for permission for extended
quotation from or reproduction of this manuscripting whole or in part may be granted by
the Competent Authority of HBNI when in his or her judgement the proposed use of the
material is in the interests of scholarship. In all other instances, however, permission must
be obtained from the author.

Sudeshna Kolay

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.
The work is original and has not been submitted earlier as a whole or in part for a degree
/ diploma at this or any other Institution / University.

Sudeshna Kolay

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Journal
1. Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan,
Ashutosh Rai, M. S. Ramanujan: Faster Parameterized Algorithms for Deletion to Split
Graphs. Algorithmica 71(4):989-1006(2015).

Conferences
1. Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, Saket Saurabh. Parameterized
Algorithms on Perfect graphs for deletion to (r, `)-graphs. MFCS 2016: 75:1-75:13.

2. Fedor V. Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh.
Subexponential Algorithms for rectilinear Steiner tree and arborescence problems. SOCG
2016: 39:1-39:15.

3. Pradeesha Ashok, Sudeshna Kolay, Saket Saurabh. Parameterized Complexity of Red
Blue Set Cover for lines. LATIN 2016:96-109.

4. Sudeshna Kolay, Fahad Panolan. Parameterized Algorithms for Deletion to (r, `)-
graphs. FSTTCS 2015:420-433.

5. Pradeesha Ashok, Aditi Dudeja, Sudeshna Kolay. Exact and FPT Algorithms for Max-
Conflict Free Coloring in Hypergraphs. ISAAC 2015:271-282.

6. Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh. Quick but Odd
Growth of Cacti. Invited to submit to a special issue of Algorithmica.
The conference version was published in the proceedings of IPEC 2015:258-269.

7. Pradeesha Ashok, Sudeshna Kolay, Neeldhara Misra, Saket Saurabh. Unique Covering
Problems with Geometric Sets. COCOON 2015:548-558.

Others
1. Sudeshna Kolay, Fahad Panolan, Saket Saurabh. Communication Complexity of Pairs
of Graph Families with Applications. Manuscript.

Sudeshna Kolay

ACKNOWLEDGEMENTS

I would like to thank Professor Saket Saurabh for his guidance of my thesis. I am im-
mensely grateful to him for the numerous insightful discussions, and for the work ethic he
tries to instill in his students through example.

I am very grateful to all my coauthors, especially Pradeesha Ashok and Fahad Panolan.
It was a wonderful learning experience, working with Pradeesha and Fahad.

I am thankful to all my Professors V. Raman, V. Arvind, Kamal Lodaya, Meena Mahajan,
R. Ramanujam, Vikram Sharma, and C. R. Subramaniam, and every other teacher who
has taught me, for all that they have taught me.

I would also like to thank my friends and colleagues, without whom my time in IMSc
would have been very dull.

Last, but not the least, I would like to thank my parents for the support that they have
given me throughout my life.

Contents

List of Figures . 8

List of Algorithms . 9

List of Tables . 11

List of Symbols . 14

1 Introduction 15

1.1 Preamble . 15

1.2 Preliminaries . 15

1.3 Graph Partitioning in Parameterized Complexity 20

1.4 Parameterized Complexity and Computational Geometry 24

1.5 Scope of this thesis . 26

I Graph Partitioning 29

2 Parameterized Algorithms for Deletion to (r, `)-graphs 33

2.1 Introduction . 33

2.2 Preliminaries . 35

2.3 Vertex Deletion to (r, `)-graphs . 36

2.4 Approximation algorithm for
Vertex (r, `)-Partization . 38

2.5 Turing Kernels for Vertex Deletion
to (r, `)-graphs . 42

2.6 Edge Deletion to (r, `)-graphs . 45

2.6.1 Edge (2, 1)-Partization . 46

2.6.2 Edge (1, 2)-Partization . 47

2.7 Chapter Summary . 49

3 Parameterized Algorithms on Perfect Graphs for deletion to (r, `)-graphs 51

3.1 Introduction . 51

3.2 Preliminaries . 52

1

3.3 FPT algorithm for Vertex Partization 53

3.4 Kernel lower bound . 56

3.5 Polynomial kernel when r and ` are constants 59

3.6 Chapter Summary . 60

4 Communication Complexity of Separating Families with Applications 61

4.1 Introduction . 61

4.2 Preliminaries . 65

4.3 Communication protocols for pairs of Hereditary graph families 67

4.3.1 Communication Protocol for Families of Sparse and Dense graphs . 67

4.3.2 Characterization for Hereditary graph families 71

4.3.3 A Parameterized approach to designing protocols 73

4.3.4 Parameterizing by degeneracy . 75

4.4 Separating families . 77

4.4.1 Separating families for Sparse and Dense graphs 77

4.4.2 Separating families and parameterization 81

4.4.3 Separating families when parameterized
by degeneracy . 82

4.5 Applications in Parameterized and Exact Algorithms 85

4.5.1 Combinatorial bounds and Exact Algorithms 85

4.5.2 Parameterized Algorithms . 88

4.6 Chapter Summary . 90

5 Quick but Odd Growth of Cacti 91

5.1 Introduction . 91

5.2 Preliminaries . 93

5.3 Counting Lemma . 94

5.4 Algorithm for Even Cycle Transversal 99

5.5 Algorithm for Diamond Hitting Set . 106

5.6 Chapter Summary . 106

2

II Geometric Covering 107

6 Multivariate Analysis of Geometric RBSC 111

6.1 Introduction . 111

6.1.1 Problems Studied, Context and Framework 111

6.1.2 Our Contributions . 113

6.1.3 Our methods and an overview of main algorithmic results 115

6.2 Preliminaries . 116

6.3 Parameterizing by kr and r . 117

6.4 Parameterizing by ` . 117

6.5 Parameterizing by k`, b and k` + b . 120

6.5.1 Parameter k` + b . 120

6.5.2 Special case under the parameter k` 122

6.6 Parameterizing by kr + k` and b+ kr . 123

6.6.1 Kernelization for Gen-RBSC-lines parameterized by k` + kr and
b+ kr . 127

6.7 Hyperplanes: parameterized by k` + kr . 128

6.8 Multivariate complexity of Gen-RBSC-lines: Proof of Theorem 6.1 129

6.9 Parameterized Landscape for Red Blue Set Cover with lines 130

6.9.1 RBSC-lines parameterized by r . 130

6.9.2 RBSC-lines parameterized by kr 130

6.9.3 Proof of Theorem 6.2 . 132

6.10 Generalised Red Blue Set Cover . 132

6.10.1 Gen-RBSC parameterized by k` + kr and k` + r 133

6.10.2 A special case of Gen-RBSC parameterized by k` 134

6.11 Chapter Summary . 141

7 Unique Covering problems with Geometric Sets 143

7.1 Introduction . 143

7.2 Preliminaries . 145

7.3 Exact Cover . 146

7.4 Unique Cover . 151

3

7.5 Unique Set Cover . 152

7.6 Chapter Summary . 158

8 Exact and FPT Algorithms for Max-Conflict Free Colouring in Hyper-
graphs 159

8.1 Introduction . 159

8.2 Preliminaries . 161

8.3 FPT Algorithm for p-CFC . 162

8.4 FPT Algorithm for p-UMC . 170

8.5 Exact Algorithm for Max-Conflict Free Colouring 174

8.6 Exact Algorithm for Unique maximum Colouring 176

8.7 Chapter Summary . 177

9 Subexponential algorithms for rectilinear Steiner tree and arborescence
problems 179

9.1 Introduction . 179

9.2 Preliminaries . 182

9.2.1 Planar graph embeddings and minors 183

9.2.2 Properties of shortest paths in the Hanan grid 187

9.3 Subexponential algorithm for Rectilinear Steiner Tree 188

9.3.1 Shortest Path RST and its properties 188

9.3.2 Supergraph of an optimal RST with bounded treewidth 189

9.3.3 Dynamic Programming Algorithm for Rectilinear Steiner Tree 195

9.4 Subexponential Algorithm for Rectilinear Steiner Arborescence . . . 201

9.4.1 Shortest path RSA and its properties 201

9.4.2 Supergraph of an optimal RSA with bounded treewidth 202

9.4.3 Dynamic Programming Algorithm for Rectilinear Steiner Ar-
borescence . 204

9.5 Chapter Summary . 213

III Conclusion and References 215

10 Conclusion and Future Directions 217

4

10.1 Related potential projects . 218

Bibliography 231

5

6

List of Figures

3.1 An illustration of the construction of the graph G in Theorem 3.2 for the
formula φ = (x1 ∨ x2) ∧ (x1). Here C1 = (x1 ∨ x2) and C2 = (x1). 57

5.1 Left: a graph G with blocks B1, B2, B3, B4 and B5. The cut vertices in G
are c1, c2, c3 and c4; Middle: the block-cut vertex tree H of G; Right: a
block decomposition tree T of G constructed from H rooted at B1. 94

5.2 A schematic diagram, when a block X of size at most 2 has only one child
which is a super block composed of Y1 and Y2. Here the red dotted edges
belong to E(S, V (G) \ S). 97

5.3 A schematic diagram, when a block X of size at most 2 has only one child
Y such that size(Y) ≤ 2 and dT (tY) = 2. Here the red dotted edges belong
to E(S, V (G) \ S). 98

5.4 A tight example of Lemma 5.2. Here S = {s}. 99

5.5 Reduction Rule 5.2. Here, w((x, z)) = (w((x, y)) + w((y, z)) mod 2. 101

5.6 Reduction Rule 5.3. 102

5.7 Reduction Rule 5.4. 103

6.1 Illustration of our results described in Theorem 6.1 and hierarchy of param-
eters. 114

6.2 Illustration of our results for Red Blue Set Cover with lines under
various parameters. 114

6.3 Illustration of our reduction to Sub-Iso. The instance shown above is
obtained after applying the reduction to the instance R = {r1, r2}, B =
{b1, b2, b3, b4, b5, b6, b7}, F = {S1 = {r1, b1, b2}, S2 = {r1, b1, b2, b3}, S3 =
{r1, b2, b4}, S4 = {r2, b3, b5}, S5 = {r2, b4, b5}, S6 = {b5, b6, b7}}. The right
hand side is one pattern graph when k` = 5 and kr = 2. It is also an
example of a (2, 4, 5)-pattern and a (1, 1, 2) pattern. 135

7.1 Arrangement of points in a reduced instance. 148

7.2 Sets in a reduced instance. 148

9.1 The solid edges define a subgrid of a grid. 184

9.2 Derived embedding: the edge uv is contracted to the vertex u. 185

9.3 The red and blue paths are the two monotone u · · · v paths, and the green
path is the single monotone a · · · b path. 187

9.4 The subgrid G′. 194

7

8

List of Algorithms

1 SepEnumeration(G) . 78

2 SepEnumeration(G) . 80

3 SepEnum(G, j) . 83

9

10

List of Tables

2.1 Summary of known and new results for the family of Vertex (r, `)-Partization
problems. New results are highlighted in green (last row). 34

2.2 Summary of known and new results for the family of Edge (r, `)-Partization
problems. New results are highlighted in green. 34

4.1 Updated summary of known and new results for the family of Vertex
(r, `)-Partization problems. New results are highlighted in green (last row). 65

7.1 A summary of our results. 144

11

12

List of Symbols

(U,F) a set system

(u, v) the edge between vertices u and v in a multigraph G

[e1, . . . , et] a path in a multigraph, formed by the sequence of edges e1, . . . , et

[n] the set {1, . . . , n}

[u, . . . , v] a path between vertices u and v in a multigraph G

[v1, . . . , vt, v1] a cycle in a multigraph G

α(G) size of a maximum independent set in graph G

χ(G) chromatic number of graph G

log logarithm function with base 2

Q the set of rational numbers

Q≥0 the set of positive rational numbers

F|U ′ the family obtained when each hyperedge of F is restricted to elements
of U ′ ⊆ U

G + ke graphs with a set of k edges whose deletion creates a graph in G

G + kv graphs with a set of k vertices whose deletion creates a graph in G

ω(G) size of a clique in graph G

dG(v) non-degree of v in G

G complement of a graph G

Kn stable graph on n vertices

NG(v) non-neighbourhood of v in G

dG(v) degree of v in G

E(G) edge set of a graph G

E(v, V2) number of edges between the vertex v and its neighbours in V2

E(V1, V2) number of edges between the vertex subsets V1 and V2

f−1 the inverse map of the function f

G− E′ subgraph of G where the edge set E′ is deleted

G− V ′ subgraph of G induced by V (G) \ V ′

G′ ≤m G G′ is a minor of G

G′ ≤s G G′ is a subgraph of G

G[V ′] subgraph of G, induced by a subset V ′ ⊆ V (G)

13

G1 ∩G2 subgraph induced by V (G1) ∩ V (G2) where G1 and G2 are two induced
subgraphs of G

G1 ∪G2 subgraph induced by V (G1) ∪ V (G2) where G1 and G2 are two induced
subgraphs of G

G1]G2 disjoint union of two graphs G1 and G2

H = (U,F) a hypergraph H

Kn complete graph on n vertices

N(v) neighbourhood of a vertex v when the context of the graph is clear

N [v] closed neighbourhood of v when the context of the graph is clear

NG(v) neighbourhood of a vertex v in a graph G

NG[v] closed neighbourhood of v in a graph G

R(r, `) Ramsey number for r and `

U(F ′) the elements of the universe U present in the family F ′

u · · · v a path between vertices u and v

uPv the subpath of P that is between vertices u and v

uv the edge between vertices u and v of a graph G

V (G) vertex set of a graph G

N the set of non-negative integers {1, 2, 3, . . .}

degH(v) the number of hyperedges of H that v belongs to

NbdH(v) the family of hyperedges that contain v

14

Chapter 1

Introduction

1.1 Preamble

In this thesis, we consider problems in graph partitioning and geometric covering in the
realm of Parameterized complexity. Several algorithmic paradigms have been developed
in order to cope with the hard problems of classical complexity. However, any algorithmic
paradigm meant to cope with the hard problems and to run in polynomial time, such as
approximation algorithms or randomized algorithms, must give in to inaccuracy. Parame-
terized complexity is a fairly new branch of theoretical computer science, with yet another
measure of efficiency in terms of running time but where there in no compromise on accu-
racy. A parameterized problem associates with each input instance, of a classical problem,
a parameter, which is usually a positive integer. The aim is to contain the exponential
explosion in the running time of algorithms such that the dependence of the exponential
function in the running time is only on the parameter associated with the input instance.
When carefully chosen, the parameter tends to be much smaller than the input instance.
Therefore, we expect parameterized problems to have more efficient algorithms, in terms
of running time, than their counterparts in the classical complexity setting.

In this chapter, we first describe the classes and concepts of Parameterized complexity.
This is followed by surveys on problems in graph partitioning and geometric covering,
studied in Parameterized complexity. The results obtained for graph partitioning problems
are described in Part I, while those for geometric covering are described in Part II. In the
last section of this chapter, a description of the scope of this thesis and an outline of the
organisation of the thesis is given.

1.2 Preliminaries

We begin with a few notations, definitions and concepts that have been used in this thesis.

Notations. We use [n] to denote {1, . . . , n}. Similarly, N = {1, 2, . . .} denotes the set
of non-negative integers. The set of rational numbers is denoted by Q, while the set of
positive rational numbers is denoted by Q≥0. In this thesis, the function log is used to
denote the logarithm function with base 2. For a function f : D → R and y ∈ R, we use
f−1(y) to denote the set {x ∈ D | f(x) = y}.

We use standard notations from graph theory [Diestel 2012]. The vertex set and edge
set of a graph are denoted as V (G) and E(G) respectively. An edge between two vertices
u, v ∈ V (G) is denoted by uv. Such a pair of vertices are said to be adjacent to one another.
The complement of the graphG, denoted byG, has V (G) as its vertex set and

(
V (G)

2

)
\E(G)

as its edge set. Here,
(
V (G)

2

)
denotes the family of two sized subsets of V (G). The

15

neighbourhood of a vertex v, or the set of vertices adjacent to v, is represented as NG(v),
or, when the context of the graph is clear, simply as N(v). The closed neighbourhood of a
vertex v, denoted by N [v], is the subset N(v) ∪ {v}. The non-neighbourhood of a vertex
v, or the set of vertices that are not adjacent to v, is denoted by NG(v). The degree of a
vertex v, or the number of neighbours of v, is denoted by dG(v). Similarly, the non-degree
of v, or the number of non-neighbours of v, is denoted by dG(v). An induced subgraph
of G on the vertex set V ′ ⊆ V (G) is written as G[V ′]. For a vertex subset V ′ ⊆ V (G),
G[V (G) \ V ′] is also denoted as G − V ′. Similarly, for an edge set E′ ⊆ E(G), G − E′
denotes the subgraph G′ with V (G′) = V (G) and E(G′) = E(G) \ E′. Given two subsets
V1, V2 ⊆ V (G), E(V1, V2) denotes the set of edges in E(G) that have one end point in V1

and the other in V2. For a vertex v ∈ V (G) and subset V ′ ⊆ V (G) \ {v}, we use E(v, V ′)
to denote the edge set E({v}, V ′). A path in G, with u and v as endpoints is written as a
u · · · v path. Given a path P , a subpath between vertices u, v ∈ V (P) is denoted by uPv.
A partition of G is a tuple (V1, V2, . . . , Vt) of subsets of V (G) such that the disjoint union
V1] V2] . . .] Vt = V (G). Such a partition is denoted by the tuple (V1, V2 . . . Vt) or by
V1] . . .] Vt. Each Vi is called a part. The subdivision of an edge e = uv of a graph G
results in a graph G′, with V (G′) = V (G) ∪ {w} and E(G′) = (E(G) \ {e}) ∪ {uw,wv},
where w is a new vertex. A graph Ĝ is a subdivision of a graph G if there is a sequence
of graphs {G1, G2, . . . , Gt}, with G1 = G and Gt = Ĝ, where for each 1 < i ≤ t, Gi is
obtained by the subdivision of an edge of Gi−1.

For a graph G, we say a vertex v ∈ V (G) is a cut vertex if G − {v} has more connected
components than G. A connected graph G′ is called a biconnected graph if the graph
G′ does not contain any cut vertex. A vertex separator of a connected graph G is a
set S ⊆ V (G) such that G − S has at least two connected components. For subsets
A,B ⊆ V (G), a minimum (A,B)-vertex separator is the minimum number of vertices to
be deleted from G such that A and B belong to different connected components. Similarly,
an edge separator of a connected graph G is a set F ⊆ E(G) such that G−F has at least
two connected components. For subsets A,B ⊆ V (G), a minimum (A,B)-edge separator
is the minimum number of edges to be deleted from G such that A and B belong to
different connected components.

We denote by ω(G) the size of a maximum clique in G. Similarly, α(G) denotes the size of
a maximum independent set in G. The chromatic number of G, denoted by χ(G), is the
minimum number of colours required for V (G) such that no two adjacent vertices get the
same colour. A subgraph G′ of G is denoted as G′ ≤s G. Given two induced subgraphs
G1, G2 ≤s G, G1 ∩ G2 is the induced subgraph G[V (G1) ∩ V (G2)]. Similarly, G1 ∪ G2

denoted the induced subgraph G[V (G1) ∪ V (G2)]. Given two graphs G1, G2, G1] G2

denotes the graph G, with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪E(G2). For any
positive integers r, `, we use R(r, `) to denote the Ramsey number. That is, any graph on
at least R(r, `) vertices has either a clique of size r or an independent set of size `.

We denote the hypergraph as H = (U,F), where U is a universe of n vertices and F is a
family of m subsets of U . We refer to the objects in the universe U by either vertices or
elements, and each subset of F as a hyperedge. For any subfamily F ′ ⊆ F , we denote the
elements present in the subfamily as U(F ′). Similarly, for a subset U ′ ⊆ U , F|U ′ denotes
the family of hyperedges obtained when we restrict each hyperedge of F to the subset
U ′. Furthermore, for a vertex v ∈ U , by degH(v) we denote the number of hyperedges
the vertex v is part of. The neighbourhood of a vertex v ∈ U , denoted by NbdH(v), is
the subfamily of hyperedges in F that contain v. The tuple (U,F) is also often referred

16

to as a set system. In this thesis as well, we have often used the term set system, when
the problem is a direct variant of the Set Cover problem. In other instances, the term
hypergraph has been used, when the problem is easier to visualize in the graphic setting.

Tree decompositions and treewidth.

Definition 1.1 (Tree Decomposition [Robertson 1984]). A tree decomposition of a (undi-
rected or directed) graph G, with V (G) as its set of vertices and E(G) as its set of edges,
is a tree T in which each vertex x ∈ T has an assigned set of vertices Bx ⊆ V (G) (called
a bag) such that (T, {Bx}x∈T) has the following properties:

•
⋃
x∈TBx = V (G)

• For any uv ∈ E(G), there exists an x ∈ T such that u, v ∈ Bx.

• If v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the path from x to y in T.

In short, we denote (T, {Bx}x∈T) as T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T minus
one. A graph may have several distinct tree decompositions. The treewidth tw(G) of a
graph G is defined as the minimum of treewidths over all possible tree decompositions of
G.

Graph classes. A complete graph on n vertices is a graph G with edge set
(
V (G)

2

)
, and is

denoted by Kn. A stable graph on n vertices is a graph G with edge set ∅, and is denoted
by Kn. An empty graph is a graph which does not have any vertices, and therefore no edges
as well. A d-degenerate graph is an undirected graph in which every induced subgraph has
a vertex of degree at most d. A graph G is a d-regular graph if for each vertex v ∈ V (G),
dG(v) ≤ d. A graph G is a perfect graph if, for every induced subgraph H, χ(H) = ω(H).

A family F of graphs is said to be hereditary, or closed under induced subgraphs if for any
graph G ∈ F , every induced subgraph of G is also contained in F . For a family G of
graphs, G + kv contains all graphs G such that there is a vertex set S ⊆ V (G), of size at
most k, with the property that the graph G−S ∈ G. Similarly, G+ ke contains all graphs
G such that there is an edge set S ⊆ E(G), of size at most k, with the property that the
graph G− S ∈ G.

Algorithm running time bounds. For a given function g : N → R, O(g(n)) denotes
the set of functions f : N→ R for which there exist positive constants c, n0 such that for
all n ≥ n0, 0 ≤ f(n) ≤ cg(n). Similarly, Ω(g(n)) denotes the set of functions f : N → R
for which there exist positive constants c, n0 such that for all n ≥ n0, 0 ≤ cg(n) ≤ f(n).
For more details on asymptotic bounds on functions please refer to [Cormen 2009].

Parameterized Complexity. The goal of parameterized complexity is to find ways of
solving NP-hard problems more efficiently than brute force: here the aim is to restrict the
combinatorial explosion to a parameter that is hopefully much smaller than the input size.
Formally, a parameterization of a classical problem is assigning a positive integer parameter
k to each input instance. This new bi-variate language is called a parameterized problem.
We say that a parameterized problem is fixed-parameter tractable (FPT) if there is an
algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size of the input
and f is an arbitrary computable function depending only on the parameter k. If the

17

problem has a set Γ of positive integers as parameters, then the problem is called FPT
if there is an algorithm solving the problem in f(Γ) · |I|O(1), where |I| is the size of the
input and f is an arbitrary computable function depending only on the parameters in Γ.
Equivalently, the problem can be considered to be parameterized by k =

∑
q∈Γ q. Such

an algorithm is called an FPT algorithm and such a running time is called FPT running
time. This class of problems is also called the FPT class.

Parameterized complexity has a well developed sub-field on compression algorithms, called
kernelization.

Definition 1.2. A kernelization for a parameterized problem Π ⊆ Γ∗×N is an algorithm
which takes (x, k) ∈ Γ∗×N as input, runs in time polynomial in |x|+k, and outputs a pair
(x′, k′) ∈ Γ∗ ×N such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k),
where g is some computable function. The output instance x′ is called the kernel, and the
function g is referred to as the size of the kernel. If g(k) = kO(1) (O(k)) then we say that
Π has a polynomial (linear) kernel.

Informally, a kernel for an input instance of Π is an equivalent instance which is small in
size. In some cases we may not be able to get a kernelization algorithm. In order to handle
this, the concept of a t-oracle and Turing kernelization was defined [Binkele-Raible 2012].

Definition 1.3. Given a parameterized problem Π, a t-oracle for Π takes an instance
(x, k) of Π and decides in constant time whether it is a YES instance.

Definition 1.4. For a parameterized problem Π ⊆ Γ∗ × N and a computable function
g, a g(k)-Turing kernelization for Π is an algorithm which takes (x, k) ∈ Γ∗ × N and a
g(k)-oracle for Π as input, runs in time polynomial in |x|+ k, and decides whether (x, k)
is a YES instance of Π. If g(k) = kO(1) (O(k)) then we say that Π is said to have a
polynomial (linear) Turing kernel.

Sometimes, it might be possible to get an algorithm which outputs polynomially many
instances of size bounded by a function of the parameter. These size bounded instances
ideally can be solved faster than a large input instance. If at least one of these output in-
stances is equivalent to the input instance, we have a faster algorithm for solving the input
instance. Such a kernelization algorithm, which is a special case of a Turing kernelization,
is called a one-many kernelization.

Definition 1.5. A one-many kernelization for a parameterized problem Π ⊆ Γ∗×N is an
algorithm which takes (x, k) ∈ Γ∗ × N as input, runs in time polynomial in |x| + k, and
output pairs (x1, k1), . . . , (xr, kr) ∈ Γ∗ × N, where r ∈ |x|O(1), such that (a) (x, k) ∈ Π if
and only if there exists i ∈ [r], (xi, ki) ∈ Π, and (b) For any i ∈ [r], |xi|, ki ≤ g(k), where g
is some computable function. If g(k) = kO(1) (O(k)) then we say that Π has a polynomial
(linear) one-many kernel.

It can be shown that a problem is FPT if and only if it has a kernel [Flum 2006]. Depending
on the existence of a polynomial kernel for a problem, the FPT class is further refined.
Kernelization are also enriched with lower bound theories.

Lower bounds in Kernelization. In recent years, several techniques have been de-
veloped to show that certain parameterized problems can not have any polynomial sized
kernel unless some classical complexity assumptions are violated. One such technique is
the polynomial parameter transformation.

18

Definition 1.6. Let Π,Π′ be two parameterized problems. A polynomial time algorithm
A is called a polynomial parameter transformation (or ppt) from Π to Π′ if , given an
instance (x, k) of Π, A outputs in polynomial time an instance (x′, k′) of Π′ such that
(x, k) ∈ Π if and only if (x′, k′) ∈ Π′ and k′ ≤ kO(1).

We use the following theorem together with ppt reductions to rule out polynomial kernels.

Proposition 1.1 ([Bodlaender 2011]). Let Π,Π′ be two parameterized problems such that
Π is NP-hard, Π ∈ NP and there exists a polynomial parameter transformation from Π
to Π′. Then, if Π does not admit a polynomial kernel neither does Π′.

As an example, CNF-SAT, parameterized by the number of variables, is considered. Here
the input is a CNF formula and the problem is to determine whether there is a satisfying
assignment for this input formula.

Proposition 1.2 ([Fortnow 2011]). CNF-SAT is FPT parameterized by the number of
variables; however, it does not admit a polynomial kernel unless NP ⊆ CoNP/poly.

Parameterized Intractability. Similar to the Cook-Levin reductions of classical com-
plexity, there is a notion of parameterized reductions that define a hierarchy on parame-
terized problems.

Definition 1.7. Given two parameterized problems Π,Π′, a parameterized reduction from
Π to Π′ is an FPT algorithm that takes an instance (x, k) of Π and outputs an instance
(x′, k′) of Π′ such that (x, k) is a YES instance of Π if and only if (x′, k′) is a YES
instance of Π′, and k′ ≤ g(k) for a computable function g.

This leads to an accompanying theory of parameterized intractability using which one can
identify parameterized problems that are unlikely to admit FPT algorithms.

Similar to classical complexity, parameterized complexity also has a notion of a hierarchy
of intractable problems – called the W hierarchy. The W hierarchy is a collection of
complexity classes. These classes are named W [1],W [2], · · · and is believed to form a
hierarchy FPT⊂ W [1] ⊂ W [2] ⊂ · · · , where each class is closed under parameterized
reductions. For the purpose of this thesis, it is enough to be familiar with a few hard
problems in W[1] and W[2]. One can show that a problem is W[1]-hard (W[2]-hard) by
presenting a parameterized reduction from a known W[1]-hard problem (W[2]-hard) such
as Clique (Set Cover) [Downey 2012] to it.

A parameterized problem is said to be in the class para-NP if it has a nondetermin-
istic algorithm with FPT running time. Notice that if a problem Π is in NP, then
any parameterization of Π is a language that belongs to para-NP. It is believed that
FPT⊂W [1] ⊂W [2] ⊂ · · · ⊂ para-NP. To show that a problem is para-NP-hard, we need
to show that the problem is NP-hard when the parameter takes a value from a finite set
of positive integers. As an example, 3-Colouring is para-NP-hard parameterized by the
number of colours.

For a detailed overview of parameterized complexity, the reader is referred to mono-
graphs [Flum 2006, Cygan 2015].

19

1.3 Graph Partitioning in Parameterized Complexity

Colouring problems have been extensively studied in theoretical computer science. One of
the most famous colouring problems is the Planar Colouring problem, where the input
graph is a planar graph and the question is to determine the minimum number of colours
required for the vertex set such that no two adjacent vertices get the same colour. We can
easily determine whether a graph is 2-colourable or not, since it must be a bipartite graph.
While we have an upper bound of 4 colours for this problem [Appel 1977], it is NP-hard
to determine whether a planar graph is 3-colourable or not [Dailey 1980]. Similarly, the
Proper Colouring problem takes a graph G and a positive integer k, and asks whether
V (G) can be coloured with k colours such that no adjacent vertices get the same colour.
This problem is known to be NP-hard even for k = 3 [Garey 2002]. The Subcolouring
problem takes as input a graph G and a positive integer k, and asks whether V (G) can
be coloured with k colours such that each subset of V (G) that gets the same colour, also
known as a colour class, induces a disjoint union of cliques. This problem is NP-hard even
when k = 2 [Broersma 2002]. The Achromatic Number problem takes as input a graph
G and a positive integer k, and asks for a colouring of at least k colours such that V (G)
has a proper colouring and for any pair of colour classes Ci, Cj , E(Ci, Cj) 6= ∅. This is
known to be NP-hard even on trees [Cairnie 1998]. The b-Chromatic Number problem
is related to Achromatic Number. On top of the conditions required for Achromatic
Number, this problem requires every colour class to have at least one vertex that has a
neighbour in each of the other colour classes. This problem was introduced in [Appel 1977].

In general, a colouring problem can also be thought of as partitioning an input graph while
satisfying certain properties. For example, the Proper Colouring problem, with input
instance (G, k), is essentially asking whether there is a partitioning of V (G) into k parts,
such that each part is an independent set. Some partitioning problems are polynomial
time solvable. For example, suppose we want to determine whether an input graph G
has a vertex bi-partition (V1, V2) such that G[V1] is a clique and G[V2] is an independent,
then such graphs can be recognised in linear time [Golumbic 2004]. This problem is called
Split Graph Recognition and a graph G with such a bipartition is called a split graph.
Let us focus on a superclass of the class of split graphs. A graph G is an (r, `)-graph if
its vertex set can be partitioned into r independent sets and ` cliques. Recognising an
(r, `)-graph is also known as the Cochromatic Number problem. For r, ` ∈ {0, 1, 2},
recognising an (r, `)-graph requires polynomial time [Feder 2003]. However, when either
r or ` is at least 3, then the problem becomes NP-hard [Feder 2003]. Another interesting
partition, called a Stable Cutset partition of a graph G, is a 3-partition (V1, V2, V3) of
V (G) such that V1 is an independent set and E(V2, V3) = ∅. The problem of recognising
the class of graphs that have a stable cutset partition is NP-hard [Klein 1996]. Similarly,
a Clique Cutset partition, of a graph G, is a 3-partition (V1, V2, V3) of V (G) such that
V1 is a clique and E(V2, V3) = ∅. However, such a partition can be found in polynomial
time [Tarjan 1985]. There are various other vertex partition problems, with conditions not
only on the parts but also on pairs of parts, which have been studied in terms of recognition
or hardness of recognition [de Figueiredo 2000, MacGillivray 1999, Vikas 2004].

Another variation of a vertex partitioning problem is to describe a homomorphism between
the given graph G and a specific graph H. A homomorphism is a function h : V (G) →
V (H) such that for any uv ∈ E(G), h(u)h(v) ∈ E(H). Thus, the vertices of V (H)
define a partition of V (G). Each part is an independent set of G, and the adjacencies
between two parts correspond to the adjacencies between vertices in the graph H. For

20

example, the Proper colouring problem, on an input instance (G, k), asks whether
there is a homomorphism from G to the complete graph Kk. In [Cygan 2016], it was
shown that, under standard complexity theoretic assumptions, the best algorithm for
finding a homomorphism from an input graph G of n vertices to another graph H is the
trivial 2O(n logn)nO(1) algorithm of enumerating all possible ordered partitions of V (G) and
checking if the partition corresponds to a homomorphism to V (H). This means that not
only are the partition problems hard, but there are problems with instances where we do
not even expect exact algorithms of the form c|I| for instances I and some fixed constant
c.

A natural step to resolving the issue of inefficient algorithms for so many partition-
ing problems is to study them in the parameterized complexity setting. For example,
the Cochromatic Number problem is NP-hard even for perfect graphs [Wagner 1984].
In [Heggernes 2013], an FPT algorithm is given for Cochromatic number on perfect
graphs. The decision version of Achromatic Number is FPT, parameterized by k, fol-
lowing from [Hell 1976]. On the other hand, b-Chromatic Number, parameterized by
k, is W[1]-hard [Panolan 2015]. Another direction of research with respect to partitioning
problems is to allow a certain number of vertex, or edge, deletions from the input graph
such that the resultant graph has the required partition. More formally, let GΦ be the set
of all graphs that have at least one partition satisfying a property Φ. Also, suppose there
is a polynomial time recognition algorithm for this graph class. Then, it is interesting to
ask of the complexity of the recognition problem for the class GΦ +kv or the class GΦ +ke.

There is a comprehensive literature on these problems. This genre of problems include
some of the most well studied problems in parameterized complexity, such as Vertex
Cover, Odd Cycle Transversal (OCT), Edge Bipartization, Split Vertex
Deletion (SVD) and Split Edge Deletion (SED). Vertex Cover, in particu-
lar, has been extensively studied in the parameterized complexity, and the current fastest
algorithm runs in time 1.2738knO(1) and has a kernel with 2k vertices [Chen 2010]. The
parameterized complexity of OCT was a well known open problem for a long time. In
2003, in a breakthrough paper, Reed et al. [Reed 2004] showed that OCT is FPT by
developing an algorithm for the problem running in time O(3kmn). In fact, this was
the first time that the iterative compression technique was used. However, the algo-
rithm for OCT had seen no further improvements in the last 9 years, though several
reinterpretations of the algorithm have been published [Hüffner 2009, Lokshtanov 2009].
Only recently, Lokshtanov et al. [Lokshtanov 2014] obtained a faster algorithm for the
problem running in time 2.3146knO(1) using a branching algorithm based on linear pro-
gramming. Guo et al. [Guo 2006] designed an algorithm for Edge Bipartization run-
ning in time 2knO(1). Recently, this has been improved to O(1.977knm) [Pilipczuk 2015].
There is another theme of research in parameterized complexity, where the objective is
to minimize the dependence of n at the cost of a slow growing function of k. A well
known open problem, in the area, was whether OCT admits a linear time parameter-
ized algorithms. Only recently, the first linear time FPT algorithms for OCT on general
graphs were obtained, both of which run in time O(4kkO(1)(m + n)) [Ramanujan 2014,
Iwata 2014]. Kratsch and Wahlström [Kratsch 2014b] obtained a randomized polyno-
mial kernel for OCT and Edge Bipartization. Ghosh et al. [Ghosh 2015] studied

SVD and SED and designed algorithms with running time 2knO(1) and 2O(
√
k log k)nO(1).

They also gave the best known polynomial kernels for these problems. Later, Cygan and
Pilipczuk [Cygan 2013] designed an algorithm for SVD running in time 1.2738k+o(k)nO(1).
Krithika and Narayanaswamy [Krithika 2013] studied Vertex (r, `)-Partization prob-

21

lems on perfect graphs, and among several results they obtain (r+ 1)knO(1) algorithm for
Vertex (r, 0)-Partization on perfect graphs.

As an example of how tools from parameterized complexity are used to design algorithms,
we exhibit the algorithm for SVD from [Ghosh 2015] using the famed iterative compression
technique [Reed 2004]

FPT algorithm for SVD

A graph G is called a split graph if V (G) has a bipartition (V1, V2) such that G[V1] is an
induced clique while G[V2] is an induced independent set. In this case, (G[V1], G[V2]) is
called a split partition of G. Any split graph does not contain a 4-cycle (C4), a 5-cycle (C5)
or the complement of a 4-cycle (2K2) as an induced subgraph. The finite set of graphs
{C4, C5, 2K2} is said to be a finite forbidden set for the class of split graphs. Each graph
in the finite forbidden set is referred to as a forbidden structure.

We start by stating a lemma, that is implied by Theorem 6.2, [Golumbic 2004].

Lemma 1.1. (Theorem 6.2, [Golumbic 2004]) A split graph on n vertices can have
at most n+ 1 split partitions.

We will now describe the application of the iterative compression technique to the SVD
problem.

Iterative Compression for Split Vertex Deletion. Given an instance (G, k) of
SVD, we let V (G) = {v1, . . . , vn}. We define vertex sets Vi = {v1, . . . , vi}, and let the
graph Gi = G[Vi]. We iterate through the instances (Gi, k) starting from i = k + 3. For
the ith instance, we try to find a solution Ŝi of size at most k, with the help of a known
solution Si of size at most k + 1. Formally, the compression problem we address is the
following.

SVD Compression Parameter: k
Input: Graph G, an SVD set S ⊆ V of size at most k + 1, integer k
Question: Does there exist an SVD set of size at most k?

We reduce the SVD problem to n−k−2 instances of the SVD Compression problem as
follows. Let Ii = (Gi, Si, k) be the ith instance. Clearly, the set Vk+1 is a solution of size
at most k + 1 for the instance Ik+3. It is also easy to see that if Ŝi−1 is a solution of size
at most k for instance Ii−1, then the set Ŝi−1 ∪ {vi} is a solution of size at most k + 1 for
the instance Ii. We use these two observations to start off the iteration with the instance
(Gk+3, Sk+3 = Vk+1, k) and search for a solution of size at most k for this instance. If there
is such a solution Ŝk+3, we set Sk+4 = Ŝk+3∪{vk+4} and ask for a solution of size at most
k for the instance Ik+4 and so on. If, during any iteration, the corresponding instance
does not have a solution of the required size, it implies that the original instance is also
a NO instance. This follows from the fact that if a graph G has a split vertex deletion
set of size k, then any vertex induced subgraph of G also has a split vertex deletion set of
size k. Finally, the solution for the original input instance will be Ŝn. Since there can be
at most n iterations, the total time taken to solve the original instance is bounded by n
times the time required to solve the SVD Compression problem.

22

Our algorithm for SVD Compression is as follows. Let the input instance be I =
(G,S, k). We guess a subset Y ⊆ S with the intention of picking these vertices in our
hypothetical solution for this instance and ignoring the rest of the vertices in S. We delete
the set Y from the graph and decrease k appropriately. We then check if the graph G[S\Y]
is a split graph and if it is not, then reject this guess of Y as a spurious guess. Suppose
that G[S \ Y] is indeed a split graph. We now guess and fix a split partition (C0, I0) for
this graph. By Lemma 1.1, we know that there are at most k + 2 such split partitions.
The split partition we fix corresponds to the split partition induced by the hypothetical
solution on the graph G[S \ Y]. Hence, it now remains to check if there is an SVD set of
the appropriate size which is disjoint from S \ Y , and results in a split graph with a split
partition consistent with (C0, I0). More formally, we have an instance of the following
problem.

SVD Compression* Parameter: k
Input: Graph G, an SVD set S ⊂ V such that G[S] is a split graph, a split partition
(C0, I0) for the graph G[S], integer k
Question: Does there exist an SVD set X of size at most k, disjoint from S such
that G−X has a split partition consistent with (C0, I0)?

The following lemma gives a polynomial time algorithm for the above problem.

Lemma 1.2. SVD Compression* can be solved in O(n3) time.

Proof. Let S′ be a potential solution, and let (C ′, I ′) be a fixed split partition for the
graph G− S′ consistent with the split partition (C0, I0). Let (C1, I1) be a split partition
of the graph G− S.

Since we cannot delete edges, at most one vertex of V (C1) can be contained in V (I ′)
and at most one vertex of V (I1) can be contained in V (C ′). Hence, we initially guess
these two vertices (either guess could be empty) vc and vi where vc = V (C1) ∩ V (I ′) and
vi = V (I1) ∩ V (C ′). We move vc to I1 and vi to C1. For the sake of convenience we refer
to the modified graphs C1 and I1 also as C1 and I1. Now, let Î = I0∪ I1 and Ĉ = C0∪C1.
It is clear that any vertex in V (Î) which is neighbour to a vertex in V (I0)∪ {vc} needs to
be deleted, and any vertex in V (Ĉ) which is not adjacent to all vertices in V (C0) ∪ {vi}
needs to be deleted. Let X be the set of these vertices, that need to be deleted. Now,
if X is not disjoint from S, we return NO. On the other hand, we observe that if X is
disjoint from S, then deleting X gives us the required kind of split graph. To show that,
we consider the partition ((Ĉ−X), (Î−X)) of G−X. The graph Ĉ−X is a clique because
G[V (C0) ∪ {vi}] is a clique (otherwise we would have returned NO earlier), C1 −X is a
clique, and all the edges between V (C0) ∪ {vi} and V (C1) \X are present. Similarly, the
graph Î−X is an independent set because G[V (I0)∪{vc}] is an independent set (otherwise
we would have returned NO earlier), I1 −X is an independent set, and no edges between
V (I0)∪{vc} and V (I1)\X are present. Hence, if |X| ≤ k, then we return that it is indeed
a YES instance, and return NO otherwise. Guessing the vertices takes O(n2) time and in
each iteration we spend at most linear time. Hence, the algorithm takes O(n3) time.

Given Lemma 1.2, our algorithm for SVD Compression has a running time ofO(Σk
i=0

(
k+1
i

)
·

k ·nO(1)) = O∗(2k), where the factor of k is due to the number of split partitions of G[S\Y]
and nO(1) is due to the time required to execute our algorithm for SVD Compression*.

23

Finally, since we solve at most n instances of SVD Compression, our algorithm for SVD
runs in time O∗(2k), giving us the following theorem.

Theorem 1.1. Split Vertex Deletion can be solved in time O∗(2k) time.

The iterative compression technique has been used several times, in various forms, for
designing algorithms in this thesis. We will see more application of this technique in Part
I.

1.4 Parameterized Complexity and Computational Geome-
try

Although computational geometric problems have been studied since long, there has been
very little study in the field of parameterized complexity. Very recently, parameterized
questions in computational goemetry have started to draw interest. Most likely, one of
the first usage of FPT tools in computational geometry was made in [Chambers 2008]. It
was shown that the Shortest Splitting Cycle problem on a combinatorial surface,
which is NP-hard, is FPT when parameterized by the genus of the surface. However, from
the start, parameters have been important in the study of computational geometry. For
example, given a set of n points on the 2-dimensional plane R2, it is possible to find the
convex hull of the point set in time O(n log n) [Graham 1972]. Despite tight examples for
the running time, input-sensitive algorithms for computing the convex hull were sought.
In [Kirkpatrick 1986] a O(n log h) algorithm was obtain, where h is the number of vertices
on the convex hull. Although this is a polynomial time algorithm, h can be thought of as
a parameter. Another example is Megiddo’s algorithm [Megiddo 1984] for solving a linear
programme with d variables and n constraints. The feasible set of such a linear programme
can be thought of as a polytope in Rd. Megiddo’s algorithm runs in time O(22dn). Later,
a dO(d) algorithm was given in [Dyer , Chazelle 1996]. A randomized algorithm of running

time O(d2n+eO(
√
dlnd)) was also designed in [Matoušek]. In 2016, Chan [Chan 2016] gave

a deterministic d(1/2+o(1))dn time algorithm for the problem. All these algorithms are FPT
algorithms with d, the number of variables, as the parameter.

The power of parameterized complexity lies in the fact that one is free to choose any
aspect of the input as a parameter for the problem. A natural parameter is one which is
directly related to the given problem. Otherwise, problems have been studied in param-
eterized complexity for various non-obvious, or structural parameters [Bodlaender 2014,
Jansen 2013, Bodlaender 2013]. In computational geometry, some of the structural param-
eters that have been used are genus of the embedding surface, combinatorial dimension,
distance from triviality, etc. Let us look a little closer to parameterizing by distance from
triviality. There are several optimization problems on planar point sets where instances
with all points lying on the convex hull can be solved very efficiently. Thus, for such
problems, it makes sense to ask how many points are completely inside the convex hull.
The number of these points is called the distance from triviality. The Minimum Weight
Triangulation problem takes as input a set of points in the plane, and asks for a tri-
angulation with the minimum total length of edges. In [Mulzer 2008], the problem was
shown to be NP-hard. When k is the number of points strictly inside the convex hull of

the input points, a (2kkn3 +n3) was given in [Spillner 2005]. Recently, a O(2c
√
k log kk2n3)

algorithm was given in [Knauer 2006]. The problem of Euclidean TSP takes as in-

24

put n points, and the number k of points strictly inside the convex hull, and ask for a
minimum-length network that connects the n given points. In [Deineko 2004], a O(k!kn)
algorithm, using O(k) space was given. Since these problems are of immense importance
in applications, algorithms are designed to optimize the time-space trade-off. The same
paper [Deineko 2004] also gives an algorithm running in time O(2kk2n) and requiring
space 2kkn.

A persistent bottleneck in many problems on geometric objects on a surface is that, al-
though for surfaces with fixed dimensions the problem has a polynomial time algorithm,
the dimension d appears as an exponent in the polynomial. Hence, for surfaces of higher
dimensions, the running time is very bad. Many problems such as analysing data sets in
areas such as optimization, machine learning, or statistics, have input instances that are
embedded in spaces of dimensionality in the order of millions. In such cases, a polynomial
time algorithm becomes inefficient. A glimpse of hope lies in finding FPT algorithms
parameterized by the dimension of the embedding space. The Red Blue Separation
problem takes as input a bipartite universe U = R] B, where R is a set of n red points
and B is a set of n blue points. The aim is to decide whether there are two hyperplanes
such that for any pair of a red and a blue point, the segment between them is intersected
by one of the hyperplanes. It was shown in [Giannopoulos 2009] that not only is this
problem W[1]-hard when parameterized by d, but under standard complexity theoretic

assumptions, this problem cannot have an algorithm running in time nΩ(
√

(d)). The Ham-
sandwich Cuts problem in two dimension takes as input a set of n red points and n blue
points in R2, and asks if there is a line that bisects both sets simultaneously. In two dimen-
sion, this problem is linear time solvable [Edelsbrunner 1986]. In [Knauer 2011], it was
shown that in higher dimension, the problem is NP-hard, W[1]-hard when parameterized
by d, and under standard assumptions requires at least nΩ(d) running time. Similar results
hold for the problem of finding Carotheodory sets, Helly sets among many examples.

Many of the geometric problems are covering problems. For example, given a set of disks
one could ask if there are at least k unit disks that do not pair-wise intersect. This can
be modelled as a graph, called the intersection graph, where each vertex corresponds to a
disk and an edge corresponds to a pair of disks that intersect. Then this problem becomes
equivalent to finding an independent set of size at least k in this intersection graph. This
problem, parameterized by k, was shown to have a linear kernel in [Alber 2004] when the
input disks are such that no disk has too small a radius and no two disks are too close to
each other. On the other hand, asking the same parameterized problem for the intersection
graphs of unit disks and axis-parallel unit squares is W[1]-hard [Marx 2005]. Similarly,
consider the intersection graph of a set of directed segments. Finding an independent set of
size k in this intersection graph is FPT parameterized by the number of different directions
of the input segments [Marx 2006, Kára 2006]. In fact, in [Kára 2006], the algorithm only
works on the intersection graph and does not require a layout of the segments. However,
under the standard parameter k, the problem is W[1]-hard [Marx 2006]. The Dominating
Set problem has also been shown to be W[1]-hard in the intersection graphs of axis-parallel
unit squares, axis-parallel line segments and unit disks on the plane [Marx 2006].

Another type of problems considered in computational geometry are the geometric cover-
ing problems. The general aim is to cover a set of n points in a geometric space with the
help of at most k specified geometric objects. Many versions of this problem were studied
in [Langerman 2005]. The most basic problem was to cover n given points in R2 with the
help of at most k lines. This problem was shown to have a kernel with O(k2) points and

25

therefore to be FPT, when parameterized by k. There are several abstract generalisations
given in [Langerman 2005]. A few concrete generalisations are covering points with hy-
perplanes or with the surface of spheres. These are FPT, parameterized by the number
of covering objects. However, when we allow points inside a sphere to be covered by the
sphere, then the parameterized problem becomes W[1]-hard [Marx 2005]. Similarly, cov-
ering points with at most k unit squares, parameterized by k, is W[1]-hard [Marx 2005].
The dual of this problem is to find a set of at most k points such that a given set of n unit
squares are hit, or stabbed, by these points. This problem is also shown to be W[1]-hard,
mainly using the duality.

In this thesis, we mainly concern ourselves with covering problems. It is to be noticed that
most of the parameterized problems studied till now yield hardness results. Our studies
too have a fair share of negative results. This only goes to show the difficulty of the age-old
geometric problems and the handicap of the parameters studied thus far.

1.5 Scope of this thesis

This thesis is divided into two main technical parts. The first part comprises results in
graph partitioning and the next part comprises results in geometric covering.

Graph Partitioning One graph partitioning problem that is looked at in this thesis
is (r, `)-Partitioning. For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph
if the vertex set V (G) can be partitioned into r independent sets and ` cliques. Such a
graph is also said to have cochromatic number r+`. The class of (r, `) graphs generalises r-
colourable graphs (when ` = 0). Hence, it is not surprising that recognition of (r, `)-graphs
is NP-hard, even when either r ≥ 3 or ` ≥ 3 [Garey 2002].

With r and ` as part of the input, the recognition problem is NP-hard even if the in-
put graph is a perfect graph (where the Chromatic Number problem is solvable in
polynomial time) [Wagner 1984]. However, it is known to be fixed-parameter tractable
(FPT) on perfect graphs when parameterized by r and `. In other words, there is an
f(r+ `) ·nO(1) time recognition algorithm for (r, `)-Partitioning on perfect graphs with
n vertices, where f is a function of r and ` [Heggernes 2013]. Observe that such an al-
gorithm is unlikely on general graphs as the problem is NP-hard even for constant r and
`.

This brings us to the following set of natural parameterized questions: Vertex (r, `)-
Partization and Edge (r, `)-Partization. An input to these problems consists of a
graph G and a positive integer k and the objective is to decide whether there exists a set
S ⊆ V (G) (S ⊆ E(G)) such that the deletion of S from G results in an (r, `)-graph. These
problems generalise well studied problems such as Odd Cycle Transversal, Edge
Odd Cycle Transversal, Split Vertex Deletion and Split Edge Deletion.
Chapters 2 and 3 look into Vertex (r, `)-Partization and Edge (r, `)-Partization,
parameterized by the number k of allowed deletions.

In fact, given two hereditary graph families F1 and F2, a natural question to ask is whether
the vertex set of an input graph G can be bipartitioned into (V1, V2) such that G[V1] ∈ F1

while G[V2] ∈ F2. Notice that when F1 is the family of r-colourable graphs and F2 is
the family of all graphs that are complements of `-colourable graphs, then we are asking

26

for a recognition algorithm for (r, `)-graphs. Similarly, we try to recognise a larger family
of graphs, where we can delete at most k vertices to obtain a graph with a required
bipartition, with respect to a given pair (F1,F2). Chapter 4 deals with this generalised
version of Vertex (r, `)-Partization.

We deviate a little in Chapter 5. Here, for an input graph G, we are interested in finding
a vertex subset that contains at least one vertex from each cycle of even length. This is
the Even Cycle Transversal problem. This is not a partitioning problem. In fact,
this is a variant of the Hitting Set problem, which is the dual of the Set Cover prob-
lem. Therefore, it is closer to a covering problem than a partitioning problem. However,
this problem can also be thought of as the complement of the Odd Cycle Transver-
sal problem: while Odd Cycle Transversal asks for a vertex subset S of size at
most k, that intersects with (or hits) all odd cycles of the input graph, in Even Cycle
Transversal we are looking for a vertex subset S of size at most k that hits all even
cycles. Observe that OCT is same as Vertex (2, 0)-Partization. While OCT is a very
well studied problem, Even Cycle Transversal is lesser known. The relation with
OCT motivated the study of Even Cycle Transversal, and hence the deviation.

Geometric Covering The widely studied Set Cover problem takes as input, a uni-
verse U of n elements and a family F of subsets of U . The problem is to determine
whether there is a subfamily F ′ of at most k subsets such that each element belongs to at
least one subset in F ′. In other words, the subfamily F ′ covers all elements of U . Many
practical problems can be viewed as the Set Cover problem. In fact, many problems
can be viewed as variants of this problem. All the problems of Part II are related to some
form of covering.

Almost all variants of Set Cover are hard both in classical complexity as well as pa-
rameterized complexity. The motivation of the study conducted in this part is to see if
the problems become easier if geometric restrictions are introduced to the set families. In
Chapter 6 and 7, we look at direct variants of Set Cover, with the restrictions that the
input set systems are those of lines, or hyperplanes, sometimes squares or even sets of
bounded intersection.

Chapter 8 looks into Conflict Free Colouring. This is a well-studied vertex colouring
problem. The aim is to colour the vertices of an input graph in such a way that for
each vertex, there is a neighbour which is uniquely coloured in the neighbourhood. This
particular problem arose due to a geometric motivation [Pach 2009]. In this thesis, we look
at a variant of the colouring problem, namely the problem of finding a maximum sized
subgraph that can be given a conflict-free colouring for a specified number of colours.
We show an FPT algorithm for any input graph. This implies algorithms for the special
geometric cases.

In Chapter 9, we look at Rectilinear Steiner Tree. The Steiner Tree problem
takes as input a graph G and a set of terminals T , and determines whether there is a
subgraph of size at most k that covers all the terminals of T . This problem is a special
case of the Steiner Tree problem. We give the first subexponential time exact algorithm
for this problem. It is worth pointing out that an exact algorithm is also a parameterized
algorithm, the number of terminals being the parameter.

27

28

Part I

Graph Partitioning

29

In this part, we describe the results obtained in the problems related to graph partitioning.
A graph G is called an (r, `)-graph if the vertex set V (G) can be partitioned into r+` parts,
r of which are induced cliques and ` of which are induced independent sets. Chapter 2
deals with the recognition of graphs which become (r, `)-graphs after deletion of at most k
vertices. This problem is called Vertex (r, `)-Partization. We show that this problem
has an FPT algorithm, parameterized by k, when r, ` ≤ 2. When r or ` becomes strictly
more than 2, the problem is not expected to have an FPT algorithm, under standard
complexity theoretic assumptions. We also address the problem of recognising graphs
that become (r, `)-graphs after deletion of at most k edges. We almost complete the
dichotomy of this problem, with respect to the constants r, `.

Chapter 3 studies Vertex (r, `)-Partization when the input graphs are restricted to
the class of perfect graphs. This is a special case of the problem dealt with in Chapter 2
and we give a FPT algorithm, parameterized by k, r, `.

The results of Chapter 4 lead to a more efficient algorithm of Vertex (r, `)-Partization.
However, this is not the focal point of this work. We manage to draw a relation between
the two party model of communication complexity and parameterized complexity. As a
result of this, we obtain a framework for enumeration algorithms and FPT algorithms for
graph partitioning problems of a particular nature, Vertex (r, `)-Partization being one
such example.

We deviate a little in Chapter 5. Here, we consider the Even Cycle Transversal
problem. Here, for an input graph G, the aim is to determine if there is a set S ⊆ V (G)
of size at most k such that G− S does not have any even-length cycle. This is a packing
problem, more than a covering or a partitioning problem. On the other hand, it is related
to Odd Cycle Transversal, where we have to determine if there is a set S ⊆ V (G) of
size at most k such that G− S does not have any odd-length cycles.

31

32

Chapter 2

Parameterized Algorithms for
Deletion to (r, `)-graphs

2.1 Introduction

As mentioned in Section 1.3, for fixed integers r, ` ≥ 0, a graph G is called an (r, `)-
graph if the vertex set V (G) can be partitioned into r independent sets and ` cliques.
Although the problem has an abstract setting, some special cases are well known graph
classes, and have been widely studied. For example, (2, 0)- and (1, 1)-graphs correspond
to bipartite graphs and split graphs respectively. A (3, 0)-graph is a 3-colourable graph.
Already, we get a hint of an interesting dichotomy for this graph class, even with respect
to recognition algorithms. Throughout the chapter we will use m and n to denote the
number of edges and the number of vertices, respectively, in the input graph G. It is well
known that we can recognise (2, 0)- and (1, 1)-graphs in O(m+ n) time. In fact, one can
show that recognising whether a graph G is an (r, `)-graph, when r, ` ≤ 2, can be done in
polynomial time [Brandstdt 1998, Feder 2003]. On the other hand, when either r ≥ 3 or
` ≥ 3, the recognition problem is as hard as the celebrated 3-colouring problem, which is
NP-complete [Garey 2002]. These problems are also studied when the input is restricted
to be a chordal graph, in which case we can get polynomial time recognition algorithms
for every r and ` [Feder 2011].

The topic of this chapter is to design recognition algorithms for almost (r, `)-graphs in
the realm of parameterized algorithms. In particular, we study the following natural
parameterized questions on (r, `)-graphs: Vertex (r, `)-Partization and Edge (r, `)-
Partization.

Vertex (r, `)-Partization Parameter: k
Input: A graph G and a positive integer k
Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G− S is an
(r, `)-graph?

Edge (r, `)-Partization Parameter: k
Input: A graph G and a positive integer k
Question: Is there an edge subset F ⊆ E(G) of size at most k such that G− F is an
(r, `)-graph?

These problems generalise some of the most well studied problems in parameterized com-
plexity, such as Vertex Cover, Odd Cycle Transversal (OCT), Edge Biparti-
zation, Split Vertex Deletion (SVD) and Split Edge Deletion (SED). As we
saw in Section 1.3, all these problem have a long history in the fields of algorithm design.

33

Table 2.1: Summary of known and new results for the family of Vertex (r, `)-
Partization problems. New results are highlighted in green (last row).

r, ` Problem Name FPT Kernel

(1, 0) Vertex Cover 1.2738k Poly

(0, 1) Vertex Cover on G 1.2738k Poly

(1, 1) SVD 1.2738k+o(k) Poly

(2, 0) OCT 2.3146k Randomized Poly

(0, 2) OCT on G 2.3146k Randomized Poly

(2, 1), (1, 2),
(2, 2)

Vertex (2, 1)-partization
Vertex (1, 2)-partization
Vertex (2, 2)-partization

3.3146k
Randomized
Turing Poly

Table 2.2: Summary of known and new results for the family of Edge (r, `)-Partization
problems. New results are highlighted in green.

r, ` Problem Name FPT Kernel

(1, 0) Recognisable in polynomial time.

(0, 1) Recognisable in polynomial time.

(1, 1) SED 2O(
√
k log k) Poly

(2, 0) Edge Bipartization 2k Randomized Poly

(0, 2) Recognisable in polynomial time.

(2, 1) Edge (2, 1)-partization 2k+o(k) Open

(1, 2) Edge (1, 2)-partization FPT Open

(2, 2) Edge (2, 2)-partization Open

Our Results. The results in this chapter are taken from [Kolay 2015b]. We do not hope
to get FPT algorithms for either Vertex (r, `)-Partization or Edge (r, `)-Partization,
when either r or ` is at least 3, as the recognition problem itself is NP-complete. This leaves
the case of r, ` ∈ {0, 1, 2}. We almost complete the parameterized complexity dichotomy
for these problems by either obtaining new results or using the existing results. We refer to
Tables 2.1 and 2.2 for a summary of new and old results. It is worth mentioning that one
of our results, namely, 3.3146knO(1) time FPT algorithm for Vertex (2, 2)-Partization
(and hence for Vertex (1, 2)-Partization and Vertex (2, 1)-Partization) were inde-
pendently and simultaneously obtained by Baste et al. [Baste 2015].

For both Vertex (r, `)-Partization and Edge (r, `)-Partization, the only new cases
for which we need to design new parameterized algorithms to complete the dichotomy is
when (r, `) ∈ {(1, 2), (2, 1), (2, 2)}. Apart from the algorithmic results indicated in the Ta-
bles 2.1 and 2.2, we also obtain the following results. When (r, `) ∈ {(1, 2), (2, 1), (2, 2)},
we obtain an O(

√
log n)-approximation for these special cases. Finally, we obtain random-

ized Turing kernels for Vertex (r, `)-Partization using this approximation algorithms.
In other words, we give a polynomial time algorithm that produces polynomially many
instances, nO(1) of Vertex (r, `)-Partization of size kO(1) such that with very high
probability (G, k) is a YES instance of Vertex (r, `)-Partization if and only if one of
the polynomially many instances of Vertex (r, `)-Partization of size kO(1) is a YES
instance. The question of existence of polynomial kernels for these special cases as well
as for Edge (r, `)-Partization is open. Even the parameterized complexity of Edge
(2, 2)-Partization remains open.

34

Our methods. Most of the FPT algorithms are based on the iterative compression
technique, and use an algorithm for either OCT or Edge Bipartization as a subroutine.
One of the algorithms also uses methods developed in [Marx 2013]. To arrive at the
approximation algorithm, we need to take a detour. We start by looking at a slightly
larger class of graphs called (r, `)-split graphs. A graph G is an (r, `)-split graph if its
vertex set can be partitioned into V1 and V2 such that the size of a largest clique in G[V1]
is bounded by r and the size of the largest independent set in G[V2] is bounded by `. Such a
bipartition for the graph G is called as (r, `)-split partition. The notion of (r, `)-split graphs
was introduced in [Gyárfás 1998]. For any fixed r and `, there is a finite forbidden set Fr,`
for (r, `)-split graphs [Gyárfás 1998]. That is, a graph G is a (r, `)-split graph if and only
if G does not contain any graph H ∈ Fr,` as an induced subgraph. The size of the largest
forbidden graph is bounded by f(r, `), f being a function given in [Gyárfás 1998]. Since the
class (r, `)-graphs is a sub class of (r, `)-split graphs, each graph in Fr,` will not appear as an
induced subgraph in any (r, `)-graph. For our approximation algorithm, we first make the
given graph an (r, `)-split graph by removing the induced subgraphs that are isomorphic to
some graph in Fr,`. Once we have an (r, `)-split graph, we generate an (r, `)-split partition
(V1, V2) of G. Then we observe that for r, ` ∈ {1, 2}, the problem reduces to finding
an approximate solution to Odd Cycle Transversal in G[V1] and G[V2]. Finally,
we use the known O(

√
log n)-approximation algorithm for Odd Cycle Transversal

[Agarwal 2005], to obtain a O(
√

log n)-approximation algorithm for our problems. The
Turing kernel for Vertex (r, `)-Partization, when (r, `) ∈ {(1, 2), (2, 1), (2, 2)}, uses the
approximation algorithm and depends on the randomized kernelization algorithm for Odd
Cycle Transversal [Kratsch 2014b].

2.2 Preliminaries

We have already seen what (r, `)-graphs are. Below, is a formal definition of the graph
class as well as some related definitions.

Definition 2.1. A graph G is an (r, `)-graph if its vertex set can be partitioned into r
independent sets and ` cliques. We call such a partition of V (G) an (r, `)-partition. An
IC-partition, of an (r, `)-graph G, is a partition (V1, V2) of V (G) such that G[V1] can be
partitioned into r independent sets and G[V2] can be partitioned into ` cliques.

For fixed r, ` ≥ 0, the class of (r, `)-graphs is closed under induced subgraphs. The
following observation is useful in the understanding of the algorithms presented in the
paper. For a graph G, we say S ⊆ V (G) is an (r, `)-vertex deletion set, if G − S is an
(r, `)-graph.

Observation 2.1. Let P = (PI , PC) and P ′ = (P ′I , P
′
C) be two IC-partitions of an (r, `)-

graph G. Then |PI ∩ P ′C | ≤ r` and |P ′I ∩ PC | ≤ r`.

Proof. Consider an independent set I ∈ PI and a clique C ∈ P ′C . At most 1 vertex of C
can also be contained in I. There are at most r independent sets in PI , so PI can contain
at most r vertices from C. There are at most ` cliques in P ′C , each of which can have an
intersection of at most r vertices with PI . Hence, |PI ∩ P ′C | ≤ r`. Similarly, we can prove
that |P ′I ∩ PC | ≤ r`.

35

2.3 Vertex Deletion to (r, `)-graphs

In this section, we first show that Vertex (2, 2)-Partization is in FPT, using iter-
ative compression. Then, we explain how to reduce Vertex (2, 1)-Partization and
Vertex (1, 2)-Partization to Vertex (2, 2)-Partization. Our algorithm for Ver-
tex (2, 2)-Partization combines the iterative compression technique with a polynomial
bound on the number of IC-partitions of a (2, 2)-graph. The following Lemma tells about
an algorithm to recognise whether a graph is a (2, 2)-graph, and also about an algo-
rithm to compute all such IC-partitions. These results were shown in several papers
[Brandstdt 1998, Feder 2003].

Lemma 2.1. Given a graph G on n vertices and m edges we can recognise whether G is
a (2, 2)-graph in O((n+m)2) time. Also, a (2, 2)-graph can have at most n8 IC-partitions
and all the IC-partitions can be enumerated in O(n8) time.

For a graph G, we say S ⊆ V (G) is a (2, 2)-vertex deletion set, if G− S is a (2, 2)-graph.
Now we describe the iterative compression technique and its application to the Vertex
(2, 2)-Partization problem.

Iterative Compression for Vertex (2, 2)-Partization. Let (G, k) be an input in-
stance of Vertex (2, 2)-Partization and let V (G) = {v1, . . . , vn}. We define, for every
i ∈ [n], the vertex set Vi = {v1, . . . , vi}. Denote G[Vi] as Gi. We iterate through the
instances (Gi, k) starting from i = k+5. Given the ith instances and a known (2, 2)-vertex
deletion set S′i of size at most k + 1, our objective is to obtain a (2, 2)-vertex deletion set
Si of size at most k. The formal definition of this compression problem is as follows.

Vertex (2, 2)-Partization Compression Parameter: k
Input: A graph G and a k + 1 sized vertex subset S′ ⊆ V (G) such that G − S′ is a
(2, 2)-graph
Output: A vertex subset S ⊆ V (G) of size at most k such that G−S is a (2, 2)-graph

We reduce the Vertex (2, 2)-Partization problem to n−k−4 instances of the Vertex
(2, 2)-Partization Compression problem in the following manner. When i = k + 5,
the set Vk+1 is a (2, 2)-vertex deletion set of size at most k + 1 for Gk+5. Let Ii =
(Gi, S

′
i, k) be the ith instance of Vertex (2, 2)-Partization Compression. If Si−1 is

a k-sized solution for Ii, then Si−1 ∪ {vi} is a (k + 1)-sized (2, 2)-vertex deletion set for
Gi. Hence, we start the iteration with the instance Ik+5 = (Gk+5, Vk+1, k) and try to
obtain a (2, 2)-vertex deletion set of size at most k. If such a solution Sk+5 exists, we set
S′k+5 = Sk+5 ∪ {vk+6} and ask of a k-sized solution for the instance Ik+6, and so on. If,
during any iteration, the corresponding instance does not have a (2, 2)-vertex deletion set
of size at most k, it implies that the original instance (G, k) is a NO instance for Vertex
(2, 2)-Partization. If the input instance (G, k) is a YES instance, then Sn is a k-sized
(2, 2)-vertex deletion set for G, where n = |V (G)|. Since there are at most n iterations, the
total time taken by the algorithm to solve Vertex (2, 2)-Partization is at most n times
the time taken to solve Vertex (2, 2)-Partization Compression. The above explained
template for doing iterative compression will be used for approximation algorithms as well
as for parameterized algorithms for edge versions of these problems. This template is very
similar to that given in Section 1.3, for solving Split Vertex Deletion. Only the base
case differs from the previous example.

36

The following lemma shows that Vertex (2, 2)-Partization Compression is in FPT.
The arguments above imply that Vertex (2, 2)-Partization is also in FPT.

Lemma 2.2. Vertex (2, 2)-Partization Compression can be solved deterministically
in time 3.3146k|V (G)|O(1).

Proof. We design an algorithm for Vertex (2, 2)-Partization Compression. Let (G,S′)
be the instance of the problem and let (P ′I , P

′
C) be an IC-partition of G− S′. Let S be a

hypothetical solution of size k for the problem, which the algorithm is supposed to com-
pute. Let (PI , PC) be an IC-partition of G − S. The algorithm first guesses a partition
(Y,N) of S′ such that Y = S′ ∩ S and N = S′ \ S. After this guess, the objective
is to compute a set Z of size at most k′ = k − |Y | such that G − (Z ∪ Y) is a (2, 2)-
graph. Since N is not a part of the solution S, G[N] is a (2, 2)-graph. Consider the two
IC-partitions (PI \ (S ∪ S′), PC \ (S ∪ S′)) and (P ′I \ (S ∪ S′), P ′C \ (S ∪ S′)) of the (2, 2)-
graph G− (S ∪ S′). By Observation 2.1, we know that the cardinality of each of the sets
(PI ∩ P ′C) \ (S ∪ S′) and (PC ∩ P ′I) \ (S ∪ S′) are bounded by 4. So, the algorithm guesses
the sets VI = (PI ∩P ′C)\(S∪S′) and VC = (PC ∩P ′I)\(S∪S′), each of them having size at
most 4. After the guess of VI and VC , any vertex in P ′C \VI either belongs to PC or belongs
to the hypothetical solution S. Similarly, any vertex in P ′I \ VC either belongs to PI or
belongs to the hypothetical solution S. By Lemma 2.1, we know that the number of IC-
partitions of G[N] is at most O(k8) and these partitions can be enumerated in time O(k8)
. The algorithm now guesses an IC-partition (NI , NC) of G[N] such that NI ⊆ PI and
NC ⊆ PC . Now consider the partition (A,B) = ((P ′I∪NI∪VI)\VC , (P ′C∪NC∪VC)\VI) of
V (G)\Y . Any vertex v ∈ A either belongs to PI or belongs to the hypothetical solution S,
and any vertex v ∈ B either belongs to PC or belongs to the solution S. So the objective
is to find two sets U ⊆ A and W ⊆ B such that G[A \ U] is a bipartite graph, G[B \W]
is the complement of a bipartite graph and |U | + |W | ≤ k′. As a consequence, the algo-
rithm guesses the sizes k1 of U and k2 of W . Then the problem reduces to finding an odd
cycle transversal (OCT) of size k1 for G[A], and an OCT of size k2 for the complement of
the graph G[B]. Hence, our algorithm runs the current best algorithm for Odd Cycle
Transversal, presented in [Lokshtanov 2014], for finding an OCT U of size k1 in G[A],
and for finding an OCT W of size k2 in the complement of G[B]. This completes the
algorithm.

Let n = |V (G)|. The algorithm guesses the set Y = S∩S′. First, we fix a set Y of size k−i
and compute the running time for the algorithm on this particular guess. The algorithm
guesses VC and VI , each of size at most 4. The number of such guesses is bounded by
O(n8). Our algorithm also guesses a partition (NI , NC) of S′ \ Y . By Lemma 2.1, the
number of such guesses are bounded by k8. At the end, the algorithm guesses k1 and k2

such that k1 + k2 = k − |Y | = i. Then our algorithm executes algorithm for Odd Cycle
Transversal on two instances, running in time 2.3146k1nO(1) and 2.3146k2nO(1). Thus
the running time, for a particular guess Y , is bounded by 2.3146inO(1). The number of
guesses for Y , of size i, is exactly

(
k+1
i

)
. Since

∑k+1
i=0

(
k+1
i

)
2.3146inO(1) = 3.3146knO(1),

the total running time is bounded by 3.3146knO(1).

Lemma 2.2 and the discussions preceding it imply the following theorem.

Theorem 2.1. Vertex (2, 2)-Partization can be solved in time 3.3146k|V (G)|O(1).

Vertex (2, 1)-Partization: There is a simple reduction from Vertex (2, 1)-Partization
to the Vertex (2, 2)-Partization problem. Suppose we are given a graph G, where

37

|V (G)| = n. We construct a graph G′ = G] Ĉ, where Ĉ is a clique on n+ 3 new vertices.
That is, G′ is the disjoint union of G and Ĉ. The next lemma relates the graphs G and
G′.

Lemma 2.3. For any integer t ≤ n, (G, t) is a YES instance of Vertex (2, 1)-Partization
if and only if (G′, t) is a YES instance of Vertex (2, 2)-Partization. Here G′ = G] Ĉ
such that Ĉ is a clique on n+ 3 new vertices that are independent from G.

Proof. Suppose (G, t) is a YES instance of Vertex (2, 1)-Partization. Then there is
a subset S ⊆ V (G), of size at most t, the deletion of which results in a (2, 1)-graph G∗.
Let G∗ have a (2, 1)-partition I1 ∪ I2 ∪ C1. Then, I1 ∪ I2 ∪ C1 ∪ Ĉ is a (2, 2)-partition for
G′ − S. Hence, (G′, t) is a YES instance of Vertex (2, 2)-Partization.

Conversely, suppose (G′, t) is a YES instance of Vertex (2, 2)-Partization. Let S ⊆
V (G′) be a (2, 2)-vertex deletion set of size at most t. The deletion of S from G′ results
in a (2, 2)-graph G̃. Let G̃ have a (2, 2)-partition (I1, I2, C1, C2), where I1, I2 induce
independent sets and C1, C2 induce cliques in G̃. Since t ≤ n, and since any independent
set I of G′ can have at most 1 vertex from V (Ĉ), |V (Ĉ) \ (S ∪ I1 ∪ I2)| ≥ n + 1 − t.
As Ĉ is disjoint from G, it is only possible that either C1 ⊆ V (Ĉ) and C2 ∩ V (Ĉ) = ∅
or C2 ⊆ V (Ĉ) and C1 ∩ V (Ĉ) = ∅. Without loss of generality, suppose C1 ⊆ V (Ĉ)
and C2 ∩ V (Ĉ) = ∅. Then S′ = S \ V (Ĉ) is of size at most t, and G − S′ has a (2, 1)-
partition (I1−V (Ĉ), I2−V (Ĉ), C2), where I1−V (Ĉ), I2−V (Ĉ) induce independent sets
and C2 induces a clique in G − S′. Thus, (G, t) is a YES instance of Vertex (2, 1)-
Partization.

Now if we are given an instance (G, k) of Vertex (2, 1)-Partization, Lemma 2.3 tells us
that it is enough to solve Vertex (2, 2)-Partization on (G′, k). Notice that solving the
Vertex (1, 2)-Partization problem on an input instance (G, k) is equivalent to finding
a Vertex (2, 1)-Partization on (G, k), where G is the complement graph of G. Thus,
we get the following as a corollary of Theorem 2.1.

Corollary 2.1. Vertex (1, 2)-Partization and Vertex (2, 1)-Partization have FPT
algorithms that run in 3.3146knO(1) time.

2.4 Approximation algorithm for
Vertex (r, `)-Partization

In this section, we give a polynomial time approximation algorithm for the optimization
version of Vertex (2, 2)-Partization, where the aim is to determine the minimum num-
ber of vertices that need to be deleted in order to make the input graph G a (2, 2)-graph.
This approximation algorithm has approximation factorO(

√
log n). In fact, the main focus

of this section is on the design an algorithm for Vertex (2, 2)-Partization, which takes
an instance (G, k), runs in polynomial time and outputs either a solution of size O(k3/2)
or concludes that (G, k) is a NO instance. This algorithm is useful for obtaining Tur-
ing kernels for Vertex (r, `)-Partization, when r, ` ∈ { 1, 2}. Since the reduction from
Vertex (2, 1)-Partization to Vertex (2, 2)-Partization, in Lemma 2.3, is an approx-
imation preserving reduction, we can get similar approximation algorithms for Vertex
(2, 1)-Partization. Similarly, since Vertex (1, 2)-Partization on a graph is equivalent

38

to Vertex (2, 1)-Partization in the complement graph, we can obtain approximation
algorithms for Vertex (1, 2)-Partization.

We know that (r, `)-graphs is a subclass of (r, `)-split graphs (See Introduction of this
Chapter for definition). Now we give a polynomial time algorithm which takes a graph G
as input, and outputs an (r, `)-split partition if G is an (r, `)-split graph. We design such
an algorithm using iterative compression. Essentially, we show that the following problem,
(r, `)-split partition Compression, can be solved in polynomial time.

(r, `)-split partition Compression
Input: A graph G with V (G) = V ∪ {v} and an (r, `)-split partition (A,B) of G[V]
Output: An (r, `)-split partition of G, if G is an (r, `)-split graph, and NO otherwise

Like in the case of the FPT algorithm for Vertex (2, 2)-Partization, given in Section 2.3,
we can show that by running the algorithm for (r, `)-split partition Compression at
most n − 2 times, we can get an algorithm which outputs an (r, `)-split partition of a
given (r, `)-split graph. Our algorithm for (r, `)-split partition Compression uses the
following simple lemma.

Lemma 2.4. Let G be an (r, `)-split graph. Let (A,B) and (A′, B′) be two (r, `)-split
partitions of G. Then |A ∩ B′| ≤ R(` + 1, r + 1) − 1 and |A′ ∩ B| ≤ R(` + 1, r + 1) − 1,
where the function R() denotes the Ramsey number function.

Proof. Suppose |A∩B′| ≥ R(`+ 1, r+ 1). By Ramsey’s theorem, we know that G[A∩B′]
either contains an independent set of size ` + 1 or a clique of size r + 1. If G[A ∩ B′]
contains an independent set of size `+ 1, then G[B′] has an independent set of size `+ 1.
This contradicts our assumption that (A′, B′) is an (r, `)-split partition of G. Similarly, if
G[A∩B′] contains a clique of size r+ 1, then it contradicts our assumption that (A,B) is
an (r, `)-split partition of G. This implies that |A ∩ B′| ≤ R(`+ 1, r + 1)− 1. By similar
arguments we can show that |A′ ∩B| ≤ R(`+ 1, r + 1)− 1.

Using Lemma 2.4, we show that (r, `)-split partition Compression can be solved in
polynomial time for any fixed positive constants r and `.

Lemma 2.5. For any fixed positive constants r and `, (r, `)-split partition Compres-
sion can be solved in polynomial time.

Proof. Let (G, (A,B)) be the given instance of (r, `)-split partition Compression,
where V (G) = V ∪ {v} and (A,B) is a (r, `)-split partition of G[V]. Let n = |V (G)|.
Let (A′, B′) be a hypothetical solution for the problem. Since G[V] is a subgraph of G,
(A′ \ {v}, B′ \ {v}) is an (r, `)-split partition of G[V]. Thus, by Lemma 2.4, we know
that |A ∩ B′| ≤ R(` + 1, r + 1) − 1 and |A′ ∩ B| ≤ R(` + 1, r + 1) − 1. So our algorithm
guesses the sets U = A ∩ B′ and W = A′ ∩ B, each of size at most R(` + 1, r + 1). The
total number of possible choices for U and W is clearly bounded by n2R(`+1,r+1). For the
correct guess of U and W , A′ \ {v} = (A ∪W) \ U and B′ \ {v} = (B ∪ U) \W . Let
X = (A ∪W) \ U and Y = (B ∪ U) \W . Thus, it is enough to check whether one of
(X ∪ {v}, Y) or (X,Y ∪ {v}) is a valid (r, `)-split partition of the graph G, and output
the result. This can be tested in time nr+` time. Since there are n2R(`+1,r+1) choices
for the guess U and W , the total running time is bounded by O(n2R(`+1,r+1)+r+`). This
completes the proof of the lemma.

39

By applying Lemma 2.5, at most n− 2 times, we can get the following lemma.

Lemma 2.6. For any fixed constants r and `, there is an algorithm which takes a graph
G as input, runs in polynomial time, and decides whether G is an (r, `)-split graph. Fur-
thermore, if G is an (r, `)-split graph then the algorithm outputs an (r, `)-split partition
(V1, V2) of G.

We know that any (r, `)-graph is also an (r, `)-split graph. The following lemma gives a
relation between an (r, `)-split partition and an IC-partition of a (r, `)-graph.

Lemma 2.7. Let G be an (r, `)-graph. Let (A,B) be an IC-partition of G and (A′, B′) be
an (r, `)-split partition of G. Then |A ∩B′| ≤ r` and |A′ ∩B| ≤ r`.

Proof. Suppose |A∩B′| ≥ r`+ 1. Since (A,B) is an IC-partition of an (r, `)-graph G, we
know that A can be partitioned into r independent sets. Also, since |A ∩B′| ≥ r`+ 1, by
Pigeonhole Principle, there is an independent set I in A such that |I ∩ B′| ≥ `+ 1. This
implies that the size of the largest independent set in B′ is at least ` + 1, contradicting
our assumption that (A′, B′) is an (r, `)-split partition of G. Hence we have shown that
|A ∩B′| ≤ r`. By similar arguments we can show that |A′ ∩B| ≤ r`.

Before giving an approximation algorithm for Vertex (r, `)-Partization, we need to
mention about a polynomial time approximation algorithm for Odd Cycle Transver-
sal and a finite forbidden characterization of (r, `)-graphs. Using the FPT algorithm for
OCT [Kratsch 2014b], and anO(

√
log n)-approximation algorithm for OCT [Agarwal 2005],

one can prove the following proposition.

Proposition 2.1 ([Kratsch 2014b]). There is a polynomial time algorithm which takes
a graph G and an integer k as input and outputs either an OCT, of G, of size at most
O(k3/2) or concludes that there is no OCT of size k for G.

For any fixed r and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [Gyárfás 1998].
That is, a graph G is an (r, `)-split graph if and only if G does not contain any graph
H ∈ Fr,` as an induced subgraph. The size of the largest forbidden graph is bounded by
f(r, `), f being a function given in [Gyárfás 1998]. Since f(2, 2) is a constant, it is possible
to compute the forbidden set Fr,` in polynomial time: the forbidden graphs are of size at
most f(2, 2). Since the class of (r, `)-graphs is a sub class of (r, `)-split graphs, each graph
in Fr,` will not appear as an induced subgraph in any (r, `)-graph. Now we are ready to
design a polynomial time approximation algorithm for Vertex (2, 2)-Partization.

Theorem 2.2. There is an algorithm which takes a graph G and an integer k as input,
runs in polynomial time and outputs either a set S of size O(k3/2) such that G − S is a
(2, 2)-graph, or concludes that (G, k) is a NO instance of Vertex (2, 2)-Partization.

Proof. The algorithm first finds a maximal set T of vertex disjoint subgraphs of G, such
that each subgraph in T is isomorphic to a graph in F2,2. If |T | > k, then clearly (G, k)
is a NO instance of Vertex (2, 2)-Partization. So the algorithm will output NO if
|T | > k. Now consider the graph G′ = G− V (T). Here, V (T) denotes the set of vertices
appearing in graphs in T . Since T is a maximal set of vertex disjoint subgraphs in G
which are isomorphic to graphs in F2,2, G′ must be a (2, 2)-split graph.

40

Next, our algorithm finds a set S ⊆ V (G′) of size bounded by O(k3/2), such that G′−S is
a (2, 2)-graph. Since G′ is a subgraph of G, if (G, k) is a YES instance of Vertex (2, 2)-
Partization, then (G′, k) is also a YES instance. Let S∗ be an hypothetical solution of
the instance (G′, k) of Vertex (2, 2)-Partization, and let (A,B) be an IC-partition of
G′ − S∗. Now our algorithm applies Lemma 2.6 on graph G′ and computes a (2, 2)-split
partition (A′, B′) of G′ in polynomial time. By Lemma 2.7, we know that |A∩B′| ≤ 4 and
|A′∩B| ≤ 4. So the algorithm will guess the set U = A∩B′ and W = A′∩B. The number
of possible guesses for U and W is bounded by n8. For the correct guess of U and W , we
know that A = (A′ ∪ U) \ (W ∪ S∗) and B = (B′ ∪W) \ (U ∪ S∗). Consider the partition
(V1, V2) of V (G′), where V1 = (A′∪U)\W and V2 = (B′∪W)\U . For the correct guess of
U and W , we know that each vertex in V1 either belongs to A or belongs to S∗ and each
vertex in V2 either belongs to B or belongs to S∗. Now to compute a solution for (G′, k),
it is enough to find an OCT S1 in G[V1], and an OCT S2 in the complement graph of
G′[V2], such that |S1|+ |S2| = k. Our algorithm applies Proposition 2.1 on G′[V1], and on
the complement graph of G′[V2]. If these algorithms output an OCT S1 and an OCT S2

for graphs G′[V1] and G′[V2], then S1∪S2 is of size bounded by O(k3/2) and G′− (S1∪S2)
is a (2, 2)-graph. Since G′ = G− V (T) and G′ − (S1 ∪ S2) is a (2, 2)-graph, we know that
G− (S1 ∪ S2 ∪ V (T)) is a (2, 2)-graph. So, our algorithm outputs S1 ∪ S2 ∪ V (T) as the
required output. Since |V (T)| ≤ k · f(2, 2), it is true that |S1 ∪ S2 ∪ V (T)| = O(k3/2).
If the algorithm mentioned in Proposition 2.1 returns NO for all possible guesses of U
and W , then our algorithm outputs NO. It is easy to see that the number of steps in our
algorithm is bounded by a polynomial in |V (G)|.

Using the arguments of Theorem 2.2, we can also design an approximation algorithm for
finding a minimum (2, 2)-vertex deletion set of a graph G. Let S be an optimum (2, 2)-
vertex deletion set, and (A,B) be the corresponding IC-partition of G′ = G−S. Let T be
a maximal set of vertex disjoint subgraphs of G, that are each isomorphic to a graph in
F2,2. The number of subgraphs in T is at most |S| and the number of vertices involved in
these forbidden subgraphs is at most f(2, 2)|S|. The remaining graph G′ is a (2, 2)-split
graph. Using Lemma 2.6, we can find a (2, 2)-split partition (A′, B′) of G′. Let (Â, B̂) be
the restriction of (A,B) to G′. As argued above, at most 4 vertices from A′ could be part
of B̂. Let this set of 4 vertices be called U . The rest of the vertices of A′ either belong to Â
or to S. The set U ∪ (S ∩A′) is an OCT for A′, of size at most 4 + |S ∩A′|. The algorithm
of [Agarwal 2005] returns an O(

√
log n)-approximate Odd Cycle Transversal solution

S1 for G[A′], which has to be of size at most (4 + |S ∩A′|) · O(
√

log n). There is a similar
property on the vertices of B′. Applying the algorithm of [Agarwal 2005], on G′[B′],
returns an O(

√
log n)-approximate Odd Cycle Transversal solution S2, which has to

be of size at most (4+ |S∩B′|) ·O(
√

log n). Thus, V (T)∪S1∪S2 is a (2, 2)-vertex deletion
set of G, with size at most (f(2, 2) +O(

√
log n))|S|. This, together with Lemma 2.3 and

the discussion after that, lead to the following theorem.

Theorem 2.3. Vertex (2, 1)-Partization, Vertex (1, 2)-Partization, and Vertex
(2, 2)-Partization admit polynomial time approximation algorithms with factor O(

√
log n).

41

2.5 Turing Kernels for Vertex Deletion
to (r, `)-graphs

In this section, we give a randomized Turing kernel for the problem Vertex (2, 2)-
Partization. The equivalence in Lemma 2.3 ensures that there is a randomized Tur-
ing kernel for Vertex (2, 1)-Partization. Since, Vertex (1, 2)-Partization on (G, k)
is equivalent to Vertex (2, 1)-Partization on (G, k), a randomized Turing kernel for
Vertex (1, 2)-Partization follows.

We have seen in Section 2.3 that eventually, the algorithm for Vertex (2, 2)-Partization
runs two instances of OCT. In this section, we explain that we can use the kernelization
of OCT to get a one-many kernel for Vertex (2, 2)-Partization. This also gives us a
Turing kernel for Vertex (2, 2)-Partization. A randomized polynomial kernel for OCT
was shown by Kratsch and Wahlström [Kratsch 2012], using the concept of representative
family. They showed that it is possible to find a set of kO(1) “relevant” vertices, of the
input graph, which contains an optimum solution. This leads to a randomized kernel for
OCT. In fact, the following lemma follows from the work of Kratsch and Wahlström.

Lemma 2.8. Let G be a graph and X be an OCT of G. There is a randomized polynomial
time algorithm which computes a set Z ⊆ V (G) of size O(|X|3) such that for any Y ⊆ X,
a minimum sized OCT of G− Y is fully contained in Z.

Proof. We give an outline of the proof of this Lemma. The results in [Reed 2004] show that
the Odd Cycle Transversal problem is equivalent to many instances of the problem
of find a minimum vertex separator in an auxiliary graph of the input graph. This is the
main idea used to show that Odd Cycle Transversal is in FPT. Let G be a graph
and X is an OCT of G. Note that G−X is a bipartite graph. Without loss of generality
we may assume that X is independent, otherwise we can subdivide any edge within X
and still maintain X as an OCT of G. Let S1] S2 be a bipartition of G − X. The
auxiliary graph G′ of G, constructed in [Reed 2004], is as follows. We define V (G′) to be
(V (G) \ X) ∪ {x1, x2|x ∈ X}. For a set U ⊆ X, X ′(U) = {x1, x2|x ∈ U}. The edge set
E(G′) is defined as follows: E(G−X) is contained in E(G′). Additionally, we add edges
between x1 and neighbours of x in S2, and between x2 and neighbours of x in S1.

Given U ⊆ X, a valid partition of X ′(U) is pair (S, T) which satisfies the following
properties.

1. S] T = X ′(U);

2. For every x ∈ U , |{x1, x2} ∩ S| = |{x1, x2} ∩ T | = 1;

Note that for a subset U ⊆ X and a valid partition (S, T) of X ′(U), δ(G′−X ′(X \U), S, T)
denotes the size of a minimum (S, T)-separator in G′ −X ′(X \ U). The following lemma
is derived from the results of Reed et al. [Reed 2004].

Lemma 2.9. Let G be a graph and X be an OCT of G. Let Y ⊆ X and (S, T) be a valid
partition of X ′(Y). Let W ′ be a minimum (S, T)-separator in G′−X ′(X\Y). It is also true
that |X \Y |+|W ′| = min{|X \U |+δ(G′−X ′(X \U), S′, T ′)}, where U ⊆ X, and (S′, T ′) is
a valid partition of X ′(U). Then, the set (X \Y)∪(W ′ \X)∪{x|x ∈ X, {x1, x2}∩W ′ 6= ∅}
is a minimum OCT for G.

42

The following cut covering lemma is proved in [Kratsch 2012].

Lemma 2.10. Let G be a graph, and X ⊆ V (G) be a set of terminals. We can identify,
in randomized polynomial time, a set Z of O(|X|3) vertices such that for any S, T,R ⊆ X,
a minimum (S, T)-vertex separator in G−R is contained in Z.

Now the proof of the Lemma follows directly from Lemma 2.9 and Lemma 2.10.

Now, we explain our Turing kernel for Vertex (2, 2)-Partization using Lemma 2.8.
Given an instance (G, k) of Vertex (2, 2)-Partization, first we construct |V (G)|O(1)

many instances of a problem which is in NP, and each instance has size bounded by a
polynomial in k. Then, by using the Cook-Levin theorem [Cook 1971], we can reduce
each of these instances to instances of Vertex (2, 2)-Partization, and thus arrive at
a one-many kernelization for Vertex (2, 2)-Partization. This also implies that we
have a Turing kernel for the problem. We first run the polynomial time approximation
algorithm described in Theorem 2.2. If the approximation algorithm outputs NO, then
the algorithm will output a trivial NO instance of the problem. Otherwise, let X be the
solution returned by the approximation algorithm on input (G, k). We know that the
cardinality of X is bounded by O(k3/2). Now we fix an IC-partition (PI , PC) of G −X.
Let S be a hypothetical solution of size at most k and (QI , QC) be an IC-partition of G−S.
It follows from Observation 2.1 that |PI ∩ QC | ≤ 4 and |QI ∩ PC | ≤ 4. This observation
leads to the following lemma.

Lemma 2.11. (G, k) is a YES instance of Vertex (2, 2)-Partization if and only if
there exist VC ⊆ PI and VI ⊆ PC , each of cardinality at most 4, such that X ′ = X∪VC∪VI
can be partitioned into (X ′I , X

′
D, X

′
C), with the following properties:

1. There is a set ZI ⊆ (PI \VC)∪X ′I such that ZI ∪X ′D∪X ′C is an OCT for G[PI ∪X ′].
In other words, ZI is an OCT for G[PI ∪X ′I].

2. There is a set ZC ⊆ (PC \VI)∪X ′C such that ZC∪X ′D∪X ′I is an OCT for G[PC∪X ′].
In other words, ZC is an OCT for G[PC ∪X ′C].

3. |ZI ∪ ZC ∪X ′D| ≤ k.

Proof. Suppose (G, k) is a YES instance of Vertex (2, 2)-Partization. Then there is
a k-sized solution Z such that G − Z is a (2, 2)-graph. Let (QI , QC) be an IC-partition
of G − Z. Let VC = PI ∩ QC and VI = PC ∩ QI . It follows from Observation 2.1 that
|VI | ≤ 4 and |VC | ≤ 4. Notice that any vertex in PI \ VC either belongs to QI or to Z.
Similarly, any vertex in PC \ VI either belongs to QC or to Z. Let X ′ = X ∪ VI ∪ VC .
Now we define X ′I = X ′ ∩ QI , X ′C = X ′ ∩ QC and X ′D = X ′ ∩ Z. Let ZI = Z ∩ PI and
ZC = Z ∩PC . Note that ZI ∩ VC = ∅ and ZC ∩ VI = ∅. From the definition of X ′, VI and
VC , it is clear that VI ⊆ X ′I and VC ⊆ X ′C . Since VC ⊆ X ′I and VC ⊆ X ′C , it is true that
(PI ∪X ′) \ (ZI ∪X ′D ∪X ′C) = QI . Also since, G[QI] is a bipartite graph, it must be the
case that (ZI ∪X ′D ∪X ′C) is an OCT of G[PI ∪X ′]. By similar arguments, we can show
that (ZC ∪X ′D ∪X ′I) is an OCT of G[PC ∪X ′]. Since ZI ∪ ZC ∪X ′D = Z and |Z| = k,
the set ZI ∪ ZC ∪X ′D satisfies condition 3 in the lemma. This completes the proof of the
forward direction.

Conversely, suppose there are sets VC ⊆ PI and VI ⊆ PC , each of size at most 4, such that
X ′ = X ∪ VI ∪ VC has a 3-partition (X ′I , X

′
D, X

′
C) with the properties mentioned in the

43

lemma. That is, there is an OCT ZI for the graph G[PI∪X ′I] and an OCT ZC for the graph
G[PC∪X ′C] such that |ZI∪ZC∪X ′D| ≤ k. Then we claim that Z = ZI∪ZC∪X ′D is a (2, 2)-
vertex deletion set ofG. Consider the setsQI = (PI∪X ′I)\ZI andQC = (PC∪X ′C)\ZC . By
our assumption G[QI] and G[QC] are bipartite graphs. Also note that QI]QC]Z = V (G).
Hence Z is a (2, 2)-vertex deletion set of G and (QI , QC) is an IC-partition of G−Z.

The Lemma 2.11 allows us to reduce an instance of Vertex (2, 2)-Partization to poly-
nomially many instances of a problem which is in NP. Consider the following problem.

Twin Odd Cycle Transversal (TOCT) Parameter: k
Input: Two graphs G1 and G2, terminals X ⊆ V (G1), Y ⊆ V (G2), a bijection Φ
between X and Y , and an integer k
Question: Is there a partition of X into three parts (X1, XD, X2) such that there
is an OCT Z1 ⊆ V (G1) \ (XD ∪ X2) for the graph G1 − (XD ∪ X2), an OCT Z2 ⊆
V (G2)\(Φ(XD)∪Φ(X1)) for the graph G2−(Φ(XD)∪Φ(X1)), and |Z1∪XD∪Z2| ≤ k?

Clearly the problem TOCT is in NP. Because of Lemma 2.11, for each VC ⊆ PI and
VI ⊆ PC of cardinality at most 4, we construct an instance of TOCT, of size bounded
by a polynomial in k, using Lemma 2.8. For a fixed pair VC ⊆ PI and VI ⊆ PC , each
of cardinality at most 4, we describe the corresponding instance of TOCT. Let X ′ =
X ∪ VI ∪ VC . Recall that X is the approximate solution of size bounded by O(k3/2), and
(PI , PC) is the IC-partition of G−X that we fixed. Note that X ′ is a (2, 2)-vertex deletion
set of G and (PI \ VC , PC \ VI) is an IC-partition of G−X ′. The following observation is
derived from the fact that (PI \VC , PC \VI) is an IC-partition of G−X ′ and VI ∪VC ⊆ X ′.

Observation 2.2. The set X ′ is an OCT of G[PI ∪X ′] and also an OCT of G[PC ∪X ′].

For a particular choice of VC ⊆ PI and VI ⊆ PC of cardinality at most 4, we construct
an instance of TOCT as follows. Let X ′ = X ∪ VI ∪ VC . Let G1 = G[PI ∪ X ′] and
G2 = G[PC ∪ X ′]. By Observation 2.2, X ′ is an OCT in graphs G1 and G2. We apply
Lemma 2.8 and get a set of relevant vertices Z1 ⊆ V (G1) of size bounded by O(k9/2).
Next, we construct a graph G∗1 as follows: delete all the vertices V (G1) \ (X ′ ∪ Z1) from
G1. Add two length (three length) path between two vertices in V (G∗1), if there is an even
length (odd length) path between the corresponding vertices in G1 using only vertices
from V (G) \ (X ′ ∪ Z1). Similarly, we construct a graph G∗2 from G2. We output H =
(G1, G2, X

′, X ′, k) as the reduced instance of TOCT, with the bijection between X ′ and
X ′ being the natural identity map. Since there are O(n4) choices for selecting VC and VI ,
our algorithm will output instances H1, H2, . . . Ht, where t = O(n4) and the size of each
Hi is bounded by O(k9).

Using Lemmata 2.8 and 2.11, we can prove that the above one-many reduction is correct.

Lemma 2.12. (G, k) is a YES instance of Vertex (2, 2)-Partization if and only if
there exists i such that Hi is a YES instance of TOCT.

Proof. Let (G, k) be a YES instance. Recall that X is an approximate solution and
(PI , PC) is an IC-partition of G−X.

By Lemma 2.11, we know that there exists VC ⊆ PI and VI ⊆ PC such that the set
X ′ = X ∪ VI ∪ VC can be partitioned into (X ′I , X

′
D, X

′
C) with the following properties.

44

• there is set ZI ⊆ PI \ VC such that ZI is an OCT of G[PI ∪X ′I].

• there is set ZC ⊆ PC \ VI such that ZC is an OCT of G[PC ∪X ′C].

• |ZI ∪ ZC ∪X ′D| ≤ k

In our reduction, we have constructed an instance Hi corresponding to the sets VC and
VI . That is, Hi is constructed from the graphs G1 = G[PI ∪ X ′] and G2 = G[PC ∪ X ′].
In the construction of Hi, we first constructed G∗1 from G1 and G∗2 from G2, by finding
relevant vertices Y1 and Y2 in graph G1 and G2 respectively, using Lemma 2.8. Finally we
consider the graph Hi = (G∗1, G

∗
2, X

′, X ′, k).

From the construction of G∗1 and using Lemma 2.8, we know that G∗1− (X ′D ∪X ′C) has an
OCT Z∗I of size at most |ZI |, because ZI is an OCT in G1 − (X ′D ∪X ′C). Similarly G∗2 −
(X ′D∪X ′I) has an OCT Z∗C of size at most |ZC |, because ZC is an OCT in G2−(X ′D∪X ′I).
This implies that |Z∗I ∪ Z∗C ∪X ′D| ≤ k. Thus, Hi is a YES instance of TOCT.

In the converse direction, suppose there is an i such that the instance Hi is a YES instance
of TOCT. Note that Hi is constructed for a particular VC ⊆ PI and VI ⊆ PC , each of
cardinality at most 4. Let X ′ = X ∪VC ∪VI . That is the instance Hi = (G∗1, G

∗
2, X

′, X ′, k)
where G∗1 is constructed from G1 = G[X ′∪PI] and G∗2 is constructed from G2 = G[PC∪X ′].
By our assumption Hi is a YES instance of TOCT. This implies that there is a partition
of X ′ into (X ′1, X

′
D, X

′
2), and that there exists an OCT Z∗I of G∗1− (X ′D∪X ′2) and an OCT

Z∗C of G2 ∗ −(X ′D ∪ X ′1) such that |Z∗I ∪ Z∗C ∪ X ′D| ≤ k. By Lemma 2.8, there exists an
OCT ZI of G1 − (X ′D ∪X ′2) of size at most |Z∗I | and an OCT ZC of G2 − (X ′D ∪X ′1) of
size at most |Z∗C |. Thus, |ZI ∪ ZC ∪X ′D| ≤ k and the conditions in the Lemma 2.11 are
met by the partition of X ′ in to (X ′1, X

′
D, X

′
2). This implies that (G, k) is a YES instance

of Vertex (2, 2)-Partization.

The problem TOCT is in NP and Vertex (2, 2)-Partization is NP-complete. Therefore,
by Cook-Levin theorem each instance Hi of TOCT can be reduced to an an instance of
Vertex (2, 2)-Partization in polynomial time. Also, the size of each instance Hi is
bounded by O(k9/2). Thus, we obtain the following theorem.

Theorem 2.4. There is a randomized polynomial Turing kernel for Vertex (2, 2)-Partization.

Since there is a parameter preserving reduction from Vertex (2, 1)-Partization and
Vertex (1, 2)-Partization to Vertex (2, 2)-Partization, the following corollary is
derived from Theorem 2.4.

Corollary 2.2. There is a randomized polynomial Turing kernel for Vertex (2, 1)-
Partization and Vertex (1, 2)-Partization.

2.6 Edge Deletion to (r, `)-graphs

In this section, we show that Edge (2, 1)-Partization and Edge (1, 2)-Partization
are in FPT.

45

2.6.1 Edge (2, 1)-Partization

In this subsection, we show that Edge (2, 1)-Partization is in FPT, using iterative
compression. The iteration step is again similar to that in Section 2.3. For Edge (2, 1)-
Partization, the corresponding compression problem is defined as follows.

Edge (2, 1)-Partization Compression Parameter: k
Input: A graph G with V (G) = V ∪{v}, an integer k and an edge set S′ ⊆ E(G−{v}),
of size at most k, such that G[V]− S′ is a (2, 1)-graph
Output: A subset S ⊆ E of size at most k such that G− S is a (2, 1)-graph

As in the case of Vertex (2, 2)-Partization, we can show that Edge (2, 1)-Partization
can be solved, by running Edge (2, 1)-Partization Compression at most |V (G)| times,
for an input instance (G, k). The following lemma is useful for our purpose.

Lemma 2.13. Let G be a graph on n vertices, v ∈ V (G) and |E(G − {v})| ≤ k. Then

the number of cliques in G is bounded by 2O(
√
k)n and these cliques can be enumerated in

time 2O(
√
k)n.

Proof. First, we bound the size of a maximum clique in G by O(
√
k). Let ` be the size of

a maximum clique in G−{v}. Since the number of edges in G−{v} is at most k, we know
that

(
`
2

)
≤ k. This implies that ` is bounded above by

√
8k− 1. Since the size of a largest

clique in G is at most one more than the largest clique in G−{v}, the size of a maximum
clique in G is bounded by

√
8k. It is well known that a graph H on k edges is

√
2k-

degenerate. This implies that G is
√

2k+1 degenerate (Lemma 5.10, [Cygan 2015]). Now,

we know from [Eppstein 2010] that G has at most n3
√

2k+1 maximal cliques in G and can

be enumerated in time O(
√
kn3

√
2k). Since every clique in G has size at most

√
8k, given

a maximal clique C of G, we can generate all the cliques contained in C (by enumerating

all subsets of C) in time proportional to 2O(
√
k). This implies that the number of cliques

in G is upper bounded by 2O(
√
k)n and it can be enumerated in time 2O(

√
k)n.

Next we show that Edge (2, 1)-Partization Compression is in FPT.

Lemma 2.14. Edge (2, 1)-Partization Compression can be solved in time 2k+o(k)nO(1).

Proof. Let (G, k, S′) be the input instance and |V (G)| = n. If G − S′ is a (2, 1)-graph,
then we return S′. Otherwise we do the following. Let S be a hypothetical solution for the
problem and let (PI , PC) be an IC-partition of G − S, which the algorithm is supposed
to compute. Let G′ = G[V] − S′. Since G′ is a (2, 1)-graph, the vertex set V can be
partitioned to I1, I2 and C such that G′[I1] and G′[I2] are graphs with no edges, and
G′[C] is a complete graph.

Since G′ = G[V] − S′, and I1 ⊆ V and I2 ⊆ V induce independent sets in G′, we have
E(G[I1]) ⊆ S′ and E(G[I2]) ⊆ S′. Also, since |S′| ≤ k, we have |E(G[I1])| ≤ k and
|E(G[I2])| ≤ k. Consider the partition of the vertex set of G, V ∪ {v}, into three parts
(I1 ∪ {v}, I2, C). Recall that (PI , PC) is an IC-partition of our hypothetical solution S.
Our algorithm guesses the sets of vertices A = (I1 ∪{v})∩PC and B = I2 ∩PC . Since the
partition PC should induce a clique, A ∪ B should also induce a clique. Thus, guessing
the vertex sets A and B from I1 ∪ {v} and I2 respectively is equal to guessing two cliques

46

from G[I1 ∪ {v}] and G[I2] such that together they form a clique in G. By Lemma 2.13,

the number of cliques in G[I1 ∪ {v}] and G[I2] is bounded by 2O(
√
k)n and these cliques

can be enumerated in time 2O(
√
k)n.

After guessing A and B, we know that in our hypothetical IC-partition (PI , PC), A∪B ⊆
PC and (I1 ∪ I2 ∪ {v}) \ (A ∪B) ⊆ PI . Let C ′ = {u ∈ C | A ∪B ⊆ N(u)}. The following
claim implies that we can set PC = A ∪B ∪ C ′.

Claim 2.1. If there is a subset S1 ⊆ E(G) and a partition (P ′I , P
′
C) of V (G) such that

(i) G−S1 is a (2, 1)-graph, (ii) (P ′I , P
′
C) is an IC-partition of G−S1, (iii) (I1∪ I2∪{v})\

(A ∪ B) ⊆ P ′I and (iv) A ∪ B ⊆ P ′C , then there is a subset S2 ⊆ E(G) and a partition
(P ′′I , P

′′
C) of V (G) such that (a) |S2| ≤ |S1|, (b) G−S2 is a (2, 1)-graph, (c) (P ′′I , P

′′
C) is an

IC-partition of G− S2, (d) (I1 ∪ I2 ∪ {v}) \ (A ∪B) ⊆ P ′′I and (e) A ∪B ∪ C ′ = P ′′C .

Proof. Suppose we are given a set S1 and an IC-partition (P ′I , P
′
C) of G − S1 with the

properties mentioned in the statement of the claim. Since (P ′I , P
′
C) is an IC-partition

of G − S1, S1 is an Edge Odd Cycle Transversal set of G[P ′I]. Since (I1 ∪ I2 ∪
{v}) \ (A ∪ B) ⊆ P ′I , we know that P ′C \ (A ∪ B) ⊆ C. Also since P ′C is a clique and
A ∪B ⊆ P ′C , we know that P ′C − (A ∪B) ⊆ C ′. Consider the partition (P ′′I , P

′′
C) of V (G),

where P ′′C = A∪B ∪C ′ and P ′′I = V (G) \P ′′C . Note that P ′′C is a clique and P ′′I ⊆ P ′I . This
implies that the edge set S2 = S1 ∩ E(G[P ′′I]) is an Edge Odd Cycle Transversal
set of G[P ′′I]. Hence the set S2 and the partition (P ′′I , P

′′
C) are the required set and the

partition, respectively, in the claim.

Claim 2.1 implies that for the correct guess of A and B, we can set PC = A ∪ B ∪ C ′.
This in turn implies that the problem is now reduced to that of deleting the minimum
number of edges to make the graph G−(A∪B∪C ′) bipartite.This is the Edge Odd Cycle
Transversal problem on (G−(A∪B∪C ′), k). The problem Edge Odd Cycle Transversal
can be solved in time 2knO(1), where n is the number of vertices in the input graph [Guo 2006].

Since there are 2O(
√
k)n2 choices for guessing A and B, the total running time of the al-

gorithm is bounded by 2k+o(k)nO(1).

Thus, by using Lemma 2.14, we prove the following theorem.

Theorem 2.5. Edge (2, 1)-Partization can be solved in time 2k+o(k)nO(1).

2.6.2 Edge (1, 2)-Partization

In this subsection, we show that Edge (1, 2)-Partization is in FPT. Again we use
the iterative compression technique to solve the problem. For our algorithm, we need an
algorithm for the following version of Odd Cycle Transversal. Let G be an hereditary
graph class such that G is decidable. Then the problem G-Weighted Bipartition is
defined as follows.

G-Weighted Bipartition Parameter: k +W
Input: A graph G, w : V (G)→ N+ and integers k and W
Output: An OCT O of G, of size at most k such that w(O) ≤W and G[O] ∈ G

47

Here, the weight function w can be extended over subsets of V (G) in a natural way:
for a subset V ′ ⊆ V (G), w(V ′) = Σv∈V ′w(v). Marx et al. [Marx 2013] showed that the
unweighted version of the problem, named, G-Bipartition can be solved in FPT time.
The proof by Marx et al., constructs an “equivalent graph” with treewidth bounded by
a function of k. The problem is then solved in the equivalent graph, using Courcelle’s
theorem [Courcelle 1990], by expressing the problem as an MSO predicate. Since we can
express whether the weight of a subset of vertices is at most W using an MSO predicate
of length bounded by a function of W , the following theorem follows from the results of
Marx et al. [Marx 2013].

Theorem 2.6. If G is hereditary and decidable, then G-Weighted Bipartition is in
FPT.

Now we are ready to define the compression version of the problem Edge (1, 2)-Partization
and prove that it is in FPT. This implies that Edge (1, 2)-Partization is in FPT.

Edge (1, 2)-Partization Compression Parameter: k
Input: A Graph G with V (G) = V ∪{v}, an integer k and an edge set S′ ⊆ E(G−v),
of size at most k, such that G[V]− S′ is a (1, 2)-graph
Output: A subset S ⊆ E of size at most k such that G− S is a (1, 2)-graph

Lemma 2.15. Edge (1, 2)-Partization Compression is in FPT.

Proof. Let (G, k, S′) be the input instance and |V (G)| = n. If G − S′ is a (1, 2)-graph,
then we return S′ as the output. Otherwise we do the following. Let S be a hypothetical
solution for the problem and let (PI , PC) be an IC-partition of G−S. Let G′ = G[V]−S′.
Since G′ is a (1, 2)-graph, the vertex set V can be partitioned into I, C1 and C2 such
that (i) G′[I] is a graph with no edges, and (ii) G′[C1] and G′[C2] are cliques. Since
G′ = G[V]− S′ and I ⊆ V is a independent set in G′, we know that E(G[I]) ⊆ S′. Also,
since |S′| ≤ k, we know that |E(G[I])| ≤ k. Consider the partition of the vertex set of G,
V (G), into three parts I, C1 ∪ {v} and C2. Recall that (PI , PC) is an IC-partition of our
hypothetical solution S. Our algorithm guesses the set of vertices A = I ∩ PC . Since PC
should be a complement of a bipartite graph, A should also be a complement of a bipartite
graph. Hence, our algorithm guesses two cliques K1 and K2 from G[I] and assumes that
A = K1∪K2 will be part of PC . By Lemma 2.13, the number of cliques in G[I] is bounded

by 2O(
√
k)n and these cliques can be enumerated in time 2O(

√
k)n. After guessing A, we

know that in our hypothetical IC-partition (PI , PC), I \ A ⊆ PI and A ⊆ PC . Now,
consider the partition (P ′I , P

′
C) of V (G), where P ′I = I \A and P ′C = A ∪ C1 ∪ C2 ∪ {v}.

To solve the problem it is enough to find out a subset U ⊆ C1 ∪ C2 ∪ {v} such that U is
an OCT of the complement graph of G[P ′C] and |E(G[P ′I ∪U])| ≤ k. This can be encoded
as a G-Weighted Bipartition problem. Since U ⊆ C1 ∪ C2 ∪ {v} and C1 and C2 are
cliques, the cardinality of the set U will be bounded by O(

√
k). The edges that contribute

to E(G[P ′I ∪ U]) are of three types–(i) edges within G[P ′I], (ii) edges in G[U] and (iii)
edges between U and P ′I in G. Let k1 = |E(G[P ′I])|. To encode the edges between U and
P ′I we introduce a weight function w on P ′C . For each u ∈ P ′C , w(u) = |NG(u)∩P ′I |. Since
we have fixed P ′I to be a subset of PI , we need to include the set of edges in E(G[P ′I])
(type (i)) in the solution of the problem. The rest of the edges in the solution come from
type (ii) or type (iii). Let k1 = |E(G[P ′I])|, k2 = E(G[U]) and k3 be the number edges

48

between U and P ′I . So U is an OCT in the complement of G[P ′C], of weight at most k3

and number of edges in G[U] is bounded by k2.

So, our algorithm guesses the number of edges of type (ii) to be k2, and type (iii) to
be k3. Let Gk2 be the class of graphs such that the number of edges in it is bounded
by k2. The class Gk2 is hereditary. To solve our problem it is enough to solve Gk2-
Weighted Bipartition on the complement of the graph G[P ′C] with weight function w.
This completes the proof of the lemma.

Thus by using Lemma 2.15, we get the following theorem.

Theorem 2.7. Edge (1, 2)-Partization is in FPT.

2.7 Chapter Summary

In this chapter, we explored the parameterized complexity of a family of partition prob-
lems, namely Vertex (r, `)-Partization and Edge (r, `)-Partization. Except for
Edge (2, 2)-Partization, we concluded that Vertex (r, `)-Partization and Edge
(r, `)-Partization is FPTwhen r or ` is at most 2. Whether there exists a polynomial ker-
nel for the FPT problems remains an interesting open problem. Also, the parameterized
complexity of Edge (2, 2)-Partization remains unresolved.

49

50

Chapter 3

Parameterized Algorithms on
Perfect Graphs for deletion to

(r, `)-graphs

3.1 Introduction

As mentioned earlier, many special subclasses of the (r, `)-graph class, such as bipartite,
chordal, interval, split and permutation, are well studied in various areas of algorithm
design and intractability. Since a (3, 0)-graph is a 3-colourable graph, the recognition of
an (r, `)-graph, when either r ≥ 3 or ` ≥ 3, is NP-complete [Garey 2002]. Thus, the
following generalisation of Vertex (r, `)-Partization is NP-hard when r or ` is at least
3:

Partization Recognition
Input: A graph G and positive integers r, `
Question: Is G an (r, `)-graph?

Partization Recognition has also been studied when the input is restricted to be a
chordal graph. This restricted problem has a polynomial time algorithm [Feder 2011].
On the other hand, when the input graphs are restricted to perfect graphs, Partization
Recognition is NP-complete [Wagner 1984]. It was shown in [Heggernes 2013], that
the problem, when parameterized by r + `, has an FPT algorithm. A natural extension
to Partization Recognition is the Vertex Partization problem. The problem is
formally stated below:

Vertex Partization Parameter: r, `, k
Input: A graph G and positive integers r, `, k
Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G− S is an
(r, `)-graph?

As in the case of Partization Recognition, the Vertex Partization problem has
also been studied when the input graph is restricted to a non-trivial graph class. By a
result in [Addario-Berry 2010], this problem is NP-complete even when restricted to the
perfect graph class. In fact, Odd Cycle Transversal (OCT) restricted to perfect
graphs is NP-hard, because of this result. Thus, we can not expect an FPT algorithm
for Vertex Partization parameterized by r + `, unless P = NP. Moreover, because
of the NP-hardness of Partization Recognition on perfect graphs, we do not expect
Vertex Partization on perfect graphs to be FPT when parameterized by k alone,
again under the assumption that P 6= NP. Krithika and Narayanaswamy [Krithika 2013]

51

studied Vertex Partization problems on perfect graphs, and among several results,
they obtain an (r+1)knO(1) algorithm for Vertex (r, 0)-Partization on perfect graphs.
In this chapter, we generalise this for all values of r and `. In other words, we show that
Vertex Partization on perfect graphs, parameterized by k + r + `, is FPT.

Our Results and Methods. For Vertex Partization on perfect graphs, parameter-
ized by k + r + `, we give an FPT algorithm using the method of iterative compression.
This algorithm is inspired by the FPT algorithm for Cochromatic Number on Per-
fect Graphs, given in [Heggernes 2013].

Then, we obtain a negative result for kernelization for Vertex Partization on perfect
graphs. We show that Vertex Partization can not have a polynomial kernel unless
NP ⊆ coNP/poly. This is shown by exhibiting a polynomial parameter transformation
from CNF-SAT. In fact, our result holds even when k = 0 and either r or ` is one.
Thus, we show that Partization Recognition, parameterized by r, ` (also known as
the Cochromatic Number problem [Heggernes 2013]), does not admit a polynomial
kernel on perfect graphs unless NP ⊆ coNP/poly. See Section 1.2 for the definition of
polynomial parameter transformation and kernelization.

Finally, we consider the Vertex (r, `)-Partization problem on perfect graphs. Recall
that Vertex (r, `)-Partization takes as input a graph G and a positive integer k, where
k is the parameter. The aim is to determine whether there is a vertex subset S ⊆ V (G) of
size at most k, such that G− S is an (r, `)-graph. For each pair of constants r and `, we
give a polynomial kernelization algorithm for the above parameterized problem. To arrive
at the kernelization algorithm, we again take help of the slightly larger class of (r, `)-split
graphs. Recall that a graph G is an (r, `)-split graph if its vertex set can be partitioned
into V1 and V2, such that the size of a largest clique in G[V1] is bounded by r and the
size of a largest independent set in G[V2] is bounded by ` [Gyárfás 1998]. For any fixed r
and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [Gyárfás 1998]. That is, a
graph G is an (r, `)-split graph if and only if G does not contain any graph H ∈ Fr,` as
an induced subgraph. In fact, since the input graph now is a perfect graph, we only need
to consider forbidden perfect graphs. The size of the largest forbidden perfect graph is
bounded by g(r, `), for some function g depending only on r and ` [Kzdy 1996]. We use
this to design the kernelization algorithm.

3.2 Preliminaries

A graph G is a perfect graph if, for every induced subgraph H, χ(H) = ω(H). We also
need the following characterization of perfect graphs – also known as strong perfect graph
theorem.

Proposition 3.1 ([Chudnovsky 2006]). A graph G is perfect if and only if G does not
have, as an induced subgraph, an odd cycle of length at least 5 or its complement.

This tells us that perfect graphs are closed under complementation. However, this was
proved earlier and was called weak perfect graph theorem.

Lemma 3.1 ([Lovász 1972]). G is a perfect graph if and only if G is a perfect graph.

Moreover, this class is well known for its tractability for several NP-hard problems.

52

Proposition 3.2. ([Heggernes 2013, Lemma 3]). Given a perfect graph G and an
integer `, there is a polynomial time algorithm to output

(a) either a partition of V (G) into at most ` independent sets or a clique of size `+ 1,
and

(b) either a partition of V (G) into at most ` cliques or an independent set of size `+ 1.

3.3 FPT algorithm for Vertex Partization

In this section, we show that Vertex Partization on perfect graphs is FPT, using the
iterative compression technique. Let (G, r, `, k) be an input instance of Vertex Parti-
zation on perfect graphs, and let V (G) = {v1, . . . , vn}. We define, for every 1 ≤ i ≤ n,
the vertex set Vi = {v1, . . . , vi}. Let Gi denote G[Vi]. Let i0 = r + ` + k + 1. We iterate
through the instances (Gi, r, `, k) starting from i = i0. Given the ith instance and a known
(r, `)-vertex deletion set S′i of size at most k+ 1, our objective is to obtain an (r, `)-vertex
deletion set Si of size at most k. The formal definition of this compression problem is as
follows.

Vertex Partization Compression Parameter: r, `, k
Input: A perfect graph G, non-negative integers r, `, k and a k+ 1-sized vertex subset
S′ such that G− S′ is an (r, `)-graph, along with an IC-partition (Q1, Q2) of G− S′.
Output: A vertex subset S ⊆ V (G) of size at most k such that G−S is an (r, `)-graph,
and an IC-partition (P1, P2) of G− S.

Before we solve Vertex Partization Compression, we explain how to reduce the Ver-
tex Partization problem to n−(r+`+k+1)+1 instances of the Vertex Partization
Compression problem on Gi, from i = i0 to i = n. For the graph Gi0 , the set Vk+1 is a
(r, `)-vertex deletion set, S′i, of size k + 1. The graph Gi0 − Vk+1 has r + ` vertices. We
set Qi01 to be a set of any r vertices of Vi0 − Vk+1 and Qi02 to be the remaining set of `
vertices; that is, Qi02 = Vi0 − Vk+1 −Qi01 . Now, let Ii = (Gi, r, `, k, S

′
i, (Q

i
1, Q

i
2)) be the ith

instance of Vertex Partization Compression. If Si−1 is a k-sized solution for Ii−1,
then Si−1 ∪ {vi} is a (k+ 1)-sized (r, `)-vertex deletion set for Gi. So, the iteration begins
with the instance Ii0 = (Gi0 , r, `, k, Vk+1, (Q

i0
1 , Q

i0
2)) and we try to obtain an (r, `)-vertex

deletion set of size at most k. If such a solution Si0 exists, we set S′i0+1 = Si0 ∪{vi0+1} and
ask for a k-sized solution for the instance Ii0+1. We continue in this manner. If, during
any iteration, the corresponding instance does not have an (r, `)-vertex deletion set of size
at most k, then this implies that the original instance (G, r, `, k) is a NO instance for
Vertex Partization. If Sn is a k-sized (r, `)-vertex deletion set for Gn, where Gn = G,
then clearly (G, r, `, k) is YES instance of Vertex Partization. Since there are at most
n− (r + `+ k + 1) + 1 iterations, the total time taken by the algorithm to solve Vertex
Partization is at most n − (r + ` + k + 1) + 1 times the time taken to solve Vertex
Partization Compression. Thus, if Vertex Partization Compression is FPT, it
follows that Vertex Partization is FPT.

We can also view the input graph G of an instance of Vertex Partization Compres-
sion as an (r + k + 1, `)-graph with IC-partition (Q1 ∪ S′, Q2). Equivalently, Vertex
Partization Compression has as input positive integers r, `, k and a graph G that is

53

an (r+k+ 1, `)-graph. The objective is to decide whether there is a k-sized set S ⊆ V (G)
such that G− S is an (r, `)-graph. This view point allows us to design an FPT algorithm
for Vertex Partization Compression. First, we define some useful notations. Let
G be a graph and V (G) = {v1, . . . , vn}. For partition P = (A,B) of V (G) we define an
n-length bit vector BG

P corresponding to P as follows. We set the ith bit to 0 if vi ∈ A, and
to 1 otherwise. For two n-length bit vectors a = a1 . . . an and b = b1 . . . bn, the hamming
distance between a and b, denoted by H(a, b), is the number of indices on which a and b
are mismatched. That is, H(a, b) = |{(ai, bi) |ai 6= bi, i ∈ [n] }|. The Hamming distance
for the bit vectors corresponding to two IC-partitions, of a graph, is bounded, as described
by the following proposition.

Proposition 3.3 ([Heggernes 2013]). Let G be a graph. Let Q be an IC-partition of G
that realizes G as an (r′, `′)-graph and P is an IC-partition of G that realizes G as an
(r, `)-graph. Then H(BG

Q , B
G
P) ≤ r′`+ r`′.

The following lemma follows from Proposition 3.3.

Lemma 3.2. Let G be a perfect graph and (Q1, Q2) be an IC-partition that realizes G
as an (r′, `′)-graph. Let S be a (r, `)-vertex deletion set for G such that P is an IC-
partition of G that realizes G − S as an (r, `)-graph and let Q = (Q1 \ S,Q2 \ S). Then
H(BG−S

Q , BG−S
P) ≤ r′`+ r`′.

Lemma 3.2 implies that to solve Vertex Partization Compression it is enough to
solve the following problem.

Short Vertex Partization Parameter: r, `, k, ρ
Input: A perfect graph G, positive integers r, `, k, ρ, and a partition Q = (Q1, Q2) of
V (G).
Output: A vertex subset S ⊆ V (G) of size at most k such that G − S is a (r, `)-
graph, and an IC-partition (P1, P2) of G − S such that H(BG−S

P , BG−S
Q′) ≤ ρ where

Q′ = (Q1 \ S,Q2 \ S).

Lemma 3.3. Short Vertex Partization is FPT.

Proof. We design a recursive algorithm A for Short Vertex Partization which takes
a tuple (G, r, `, k, ρ,Q = (Q1, Q2)) as input, where G is a graph, Q is a partition of V (G)
and r, `, k, ρ are integers. Suppose there exists a k-sized (r, `)-vertex deletion set for the
instance. Then A computes a k-sized (r, `)-vertex deletion set S of G. Moreover, let P
be an IC-partition that realizes G− S as an (r, `)-graph, such that H(BG−S

P , BG−S
Q′) ≤ ρ,

where Q′ = (Q1 \S,Q2 \S). If P exists, then A returns the IC-partition P along with the
set S. Otherwise, the algorithm returns NO. The following are the steps of the recursive
algorithm A on input (G, r, `, k,Q = (Q1, Q2), ρ).

1. If k < 0 or ρ < 0 then output NO.

2. If G[Q1] is r-colourable and G[Q2] is `-colourable, then return (∅, Q).

3. If G[Q1] is not r-colourable, then there is an r+ 1-sized clique in G[Q1]. By Propo-
sition 3.2, we can find such a r + 1-sized clique C in polynomial time. Make the
following recursive calls to A:

54

(a) For every vertex v ∈ V (C), do a recursive call A(G − v, r, `, k − 1, ρ, (Q1 \
{v}, Q2 \{v})) and if the recursive call returns (S′, P) then return (S′∪{v}, P)
as output.

(b) For every vertex v ∈ C, do a recursive call A(G, r, `, k, ρ−1, (Q1\{v}, Q2∪{v}))
and if the recursive call returns (S′, P) then return (S′, P) as output.

If all the recursive calls in Step 3 return NO, then return NO.

4 If G[Q2] is not `-colourable, then there is clique of size `+ 1 in G[Q2]. Thus, using
Proposition 3.2, we can find an ` + 1-sized independent set I in G[Q2]. Make the
following recursive calls of the algorithm:

(a) For every vertex v ∈ I, do a recursive call A(G− v, r, `, k− 1, ρ, (Q1 \ {v}, Q2 \
{v})) and if the recursive call returns (S′, P) then return (S′∪{v}, P) as output.

(b) For every vertex v ∈ I, do a recursive call A(G, r, `, k, ρ−1, (Q1∪{v}, Q2\{v}))
and if the recursive call returns (S′, P) then return (S′, P) as output.

If all the recursive calls in Step 4 return NO, then return NO.

Correctness. We prove that the recursive algorithm A is correct. We show that if
(G, r, `, k, ρ, (Q1, Q2)) is a YES instance of Short Vertex Partization, then the algo-
rithm A will output the correct solution. We prove this by induction on k + ρ.

Base case: k = 0 and ρ = 0. Since (G, r, `, k, ρ, (Q1, Q2)) is a YES instance, (Q1, Q2)
is an IC-partition which realizes that G is an (r, `)-graph. In Step 2 of the algorithm, A
correctly outputs (∅, (Q1, Q2)).

Induction. By induction hypothesis, we assume that A outputs the correct answer when
k+ ρ < γ, where γ ≥ 0. Now we show that A outputs the correct answer when k+ ρ = γ.
Let (G, r, `, k, ρ,Q = (Q1, Q2)) be the input of A such that k + ρ = γ. Let (S, (P1, P2))
be a solution of Short Vertex Partization. If S = ∅ and (P1, P2) = (Q1, Q2) then
in Step 2, algorithm A will output (∅, Q). Otherwise either G[Q1] is not r-colourable or
G[Q2] is not `-colourable.

Case 1: Suppose G[Q1] is not r-colourable. Then there is a clique C of size r + 1 in
G[Q1]. In this case at least one vertex v from C either belongs to S or does not belong
to P1. If v ∈ S, then consider the recursive call A(G− v, r, `, k− 1, ρ, (Q1 \ {v}, Q2 \ {v}).
By induction hypothesis A(G− v, r, `, k−1, ρ, (Q1 \{v}, Q2 \{v}) will return (S′, P ′) such
that S′ is a k − 1 sized (r, `)-vertex deletion set of G − {v} and H(BG−S′

P ′ , BG−S′
Q′) ≤ ρ,

where Q′ = (Q1 \ (S′ ∪ {v}), Q2 \ (S′ ∪ {v})). Hence in Step 3(a), algorithm A will
output (S′ ∪ {v}, P) and this is a solution for Short Vertex Partization on input
(G, r, `, k, ρ, (Q1, Q2)).

If v /∈ S, then v /∈ P1 as well. Consider the recursive call A(G, r, `, k, ρ− 1, (Q1 \ {v}, Q2 ∪
{v}). By induction hypothesis, A(G, r, `, k, ρ− 1, (Q1 \ {v}, Q2 ∪ {v}) will return (S′′, P ′′)
such that S′′ is a k sized (r, `)-vertex deletion set of G and H(BG−S′′

P ′′ , BG−S′′
Q′) ≤ ρ − 1,

where Q′ = ((Q1 \ {v}) \ S′′, (Q2 ∪ {v}) \ S′′). Hence in Step 3(b), algorithm A will
output (S′′, P ′′). Clearly S′′ is a k sized (r, `)-vertex deletion set of G′′. Now we show that
H(BG−S′′

P ′′ , BG−S′′
Q′′) ≤ ρ, where Q′′ = (Q1 \S′′, Q2 \S′′). Note that H(BG−S′′

Q′ , BG−S′′
Q′′) ≤ 1.

Since H(BG−S′′
P ′′ , BG−S′′

Q′) ≤ ρ− 1 and H(BG−S′′
Q′ , BG−S′′

Q′′) ≤ 1, it is only possible that

H(BG−S′′
P ′′ , BG−S′′

Q′′) ≤ ρ

55

Case 2 : G[Q2] is not `-colourable. This case is symmetric to Case 1.

In the reverse direction, we show that if the algorithm A returns YES then indeed the
given instance is a YES instance. The proof of the reverse direction is similar to the proof
of forward direction. Again, we induct on k + ρ. The algorithm returns a bipartition as
evidence of a YES instance. We show that this bipartition is the required IC-partition.
Such a bipartition is returned in Steps 2, 3(a), (b) and 4(a), (b). By description of the
algorithm, both integers k, ρ ≥ 0 whenever the algorithm returns YES. In the base case,
k = ρ = 0. Here, it must be the case that Step 2 is executed and the output bipartition
is Q itself, while the output vertex deletion set is ∅. In this case, by definition Q is an
IC-partition. Hence, Q is evidence that the input graph G is already an (r, `)-graph and
does not require any vertex to be deleted. Thus, in the base case, we correctly determine
that the given input instance is a YES instance.

By induction hypothesis, we assume that A outputs the correct answer when k + ρ < γ,
where γ ≥ 0. We show that if A outputs a bipartition P and a vertex set S when k+ρ = γ,
then the vertex set S is an (r, `)-vertex deletion set of G, while the bipartition is an IC-
partition of G − S. If the bipartition is output in Step 2, then by definition the input
graph is already an (r, `)-graph. Otherwise, a recursive call is made to an instance where
k + ρ is strictly lesser. By induction hypothesis, the recursive call returns an (r, `)-vertex
deletion set S′ and a witnessing IC-partition of G−S′. It follows that the vertex set S and
the bipartition output by the algorithm, on the current input instance, is an (r, `)-vertex
deletion set of size at most k, and an IC-partition respectively for the input instance. This
completes the proof of correctness of the algorithm.

Running Time. Note that when k < 0 or ρ < 0, then the algorithm will stop in a single
step. Each recursive call either decreases k by 1 or ρ by 1. Hence the depth of the recursion
tree is bounded by k+ ρ+ 1. Note that in Step 3 we make at most 2(r+ 1) recursive calls
and in Step 4 we make at most 2(` + 1) recursive calls. Hence the total running time of
the algorithm A is bounded by O(max{(2(r + 1))k+ρ+1nO(1), (2(`+ 1))k+ρ+1nO(1)}).

Vertex Partization Compression is a special case of Short Vertex Partization
when ρ = (r + k + 1)`+ r`. Therefore, we have the following theorem.

Theorem 3.1. Vertex Partization on perfect graphs has an FPT algorithm with run-
ning time 2O((k+r)` log(r+`))nO(1).

3.4 Kernel lower bound

In this section, we show that Vertex Partization on perfect graphs does not have an
polynomial kernel. In fact, we show that Partization Recognition on perfect graphs
can not have a polynomial kernel, when parameterized by r+ `, unless NP ⊆ coNP/poly.
Partization Recognition on perfect graphs, when parameterized by r + `, was shown
to be FPT in [Heggernes 2013].

Theorem 3.2. Partization Recognition on perfect graphs, when parameterized by
r + `, does not have a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove the theorem by giving a polynomial parameter transformation from CNF-
SAT parameterized by the number of variables. From Proposition 1.2, we know that

56

vx1 vx̄1 vx2 vx̄2

wC1
1
wC2

1
wC1

2
wC2

2

Figure 3.1: An illustration of the construction of the graph G in Theorem 3.2 for the
formula φ = (x1 ∨ x2) ∧ (x1). Here C1 = (x1 ∨ x2) and C2 = (x1).

CNF-SAT, parameterized by the number of variables, does not have a polynomial kernel
unless NP ⊆ coNP/poly [Fortnow 2011]. Then the proof of the theorem follows from
Proposition 1.1. We start with an instance (φ, n) of CNF-SAT, where φ is a CNF formula
with m clauses and n variables. Without loss of generality, we assume that there is no
clause where both literals of a variable appear together: such a clause will be satisfied by
any assignment and can be removed. The polynomial parameter transformation produces
an instance (G,n, 1) of Partization Recognition, where G is a perfect graph, such
that (φ, n) is a YES instance of CNF-SAT if and only if (G,n, 1) is a YES instance
of Partization Recognition. Let C = {C1, . . . , Cm}, X = {x1, . . . , xn} and L =
{x1, x̄1, . . . , xn, x̄n} be the set of clauses, variables and literals of φ respectively. The
construction of the graph G from the formula φ is as follows (illustrated in Figure 3.1):

1. For each variable x, we create two vertices vx, vx̄ which represent the literals x, x̄.
We call them the literal vertices. More specifically, we call vx the positive literal
vertex and vx̄ the negative literal vertex.

2. For each clause C, we create two vertices w1
C , w

2
C . We call these the clause vertices

corresponding to the clause C.

3. For each pair of variables x, y, we add the edges vxvy, vx̄vy, vxvȳ, and vx̄vȳ. Notice
that vxvx̄ and vyvȳ are non-edges.

4. For each clause C and each literal q ∈ L, if q /∈ C, we add edges xqw
1
C and xqw

2
C . In

other words if a literal q′ belongs to a clause C, then q′w1
C , q

′w2
C /∈ E(G) So, there

is a complete bipartite graph between L \ C and {w1
C , w

2
C}.

In short, the vertex set and edge set of G is defined as follows (note that for a literal x, if
x = ȳ, then y = x̄).

V (G) = {vx, vx̄ | x ∈ X} ∪ {w1
C , w

2
C | C ∈ C}

E(G) = {vxvy | x, y ∈ L, x 6= ȳ} ∪ {w1
Cvx, w

2
Cvx | x ∈ L, x /∈ C,C ∈ C}

Let VX = {vx, vx̄ | x ∈ X} and VC = {w1
C , w

2
C | C ∈ C}. Note that the set of vertices VC ,

corresponding to the clauses, forms an independent set in G. First, we show that G is a
perfect graph.

Claim 3.1. The graph G does not contain an induced odd cycle of length ≥ 5.

57

Proof. We first prove that there is no path of length 2 (path on 3 vertices) in G]VX]. Note
that E(G[VX]) = {vxvx̄ | x ∈ X}. This implies that the degree of each vertex in the graph
G[VX] is exactly equal to 1. Hence, there is no path of length 2 in G[VX]. Also, since VC
forms a clique in G, any induced cycle of length at least 5 in G will either contain a vertex
or an edge from VC .

Let C ′ be an induced odd cycle of length at least 5 in G. There are at most two vertices
from VC which are part of C ′.Also, these vertices appear consecutively in C ′. This implies
that C ′ contains a path of length at least 2 using only vertices from VX in G, which is a
contradiction.

Claim 3.2. The graph G does not contain an induced odd cycle of length ≥ 5.

Proof. We first show that any induced odd cycle of length at least 5 can contain at most
3 vertices from VX . Suppose not. Let C ′ be an induced odd cycle of length at least 5,
such that |V (C ′) ∩ VX | ≥ 4. Let vw, vx, vy, vz be four distinct vertices from V (C ′) ∩ VX ,
appearing in that order if we go around the cycle in a clockwise manner. That is, there
are paths vw · · · vx, vx · · · vy, vy · · · vz in C ′. Since C ′ is an induced cycle, there is no edge
vwvy in E(G). This implies that y = w̄. By similar arguments, we can show that x = z̄.
This implies that vwvxvyvzvw form a cycle of length 4 in G, contradicting the fact that
C ′ is an induced odd cycle containing vw, vx, vy and vz. Hence, any induced odd cycle of
length at least 5 can contain at most 3 vertices from VX .

Since VC is an independent set in G, no two vertices from VC can occur as consecutive
vertices in any cycle. Let C ′ be an induced odd cycle of length at least 5 in G. Since
|V (C ′)∩VX | ≤ 3 and no two vertices from VC appear as consecutive vertices in C ′, it must
be the case that |V (C ′) ∩ VC | ≤ 2. This implies that the length of C ′ is exactly equal to
5 and C ′ is of the form vxw

i
C1
vyw

j
C2
vzvx, where i, j ∈ {1, 2}. Since C ′ is an induced cycle

vxvy, vyvz /∈ E(G). This implies that y = x̄ = z and hence vy = vz. This contradicts the
fact that C ′ is a cycle. This completes the proof of the claim.

Proposition 3.1 and Claims 3.1 and 3.2 imply that G is a perfect graph. We now show
that (φ, n) is a YES instance of CNF-SAT if and only if (G,n, 1) is a YES instance of
Partization Recognition.

First, suppose that (φ, n) is a YES instance of CNF-SAT. Then, there is an assignment
τ , such that every clause has at least one literal set to 1. Let f : C → X be a map
that arbitrarily maps one such satisfying literal to each clause. Note that for a clause
C, w1

Cvf(C), w
2
Cvf(C) /∈ E(G), because f(C) ∈ C. We construct n independent sets as

follows. For each literal y, if τ(y) = 1, let Iy = {w1
C , w

2
C | f(C) = y} ∪ {vy}. Since VC is

an independent set Iy \ {vy} is an independent set. Note that for all wiC ∈ Iy, i ∈ {1, 2}
we have that wiCvy /∈ E(G), because f(C) = y and y ∈ C. This implies that Iy is an
independent set. Since τ is an assignment, exactly one of the literals of each variable is
assigned 1 by τ . Thus, in this way we form n independent sets. Since τ is a satisfying
assignment for φ, the function f maps each clause C to a literal which is assigned 1 by τ .
This implies that all vertices in VC are covered by the independent sets constructed above.
The vertices in the graph G, which are not covered by the independent sets constructed,
correspond to the literals that have been set to 0 by τ . By construction of G and by the
definition of an assignment τ , these vertices form a clique. Hence, (G,n, 1) is an YES
instance of Partization Recognition.

58

Conversely, suppose (G,n, 1) is a YES instance of Partization Recognition. Then
there is an (r, `)-partition P of G. Let I1, . . . , In be n independent sets and K be a clique
in the (r, `)-partition P. It is not possible, by construction of G, that there is a variable
x such that both vx and vx̄ belong to the clique K, because vxvx̄ /∈ E(G). As there is
only one clique in P, at most one literal of each variable can be contained in the clique
K of P. Hence, for each variable x, either vx or vx̄ is part of an independent set in P.
Furthermore, since for two literals p and q with p 6= q̄, vpvq ∈ E(G), any independent set
I in P can not contain both vp and vq. This implies that each of the n independent sets
can be identified by a variable x ∈ X. Since there are only n independent sets in P, there
can not be a variable x such that both vx and vx̄ are part of distinct independent sets in
P. Thus, the construction of G forces only two possibilities for each variable:

(a) there is exactly one literal vertex that is part of an independent set while the other
one belongs to the clique K, or

(b) both literals together form an independent set, which has no other vertices of G. This
is because of the assumption that for each variable x there is no clause containing
both x and x̄.

We construct an assignment τ and show that τ is a satisfying assignment for φ. For a
literal z, if vz ∈ K, then we set τ(z) = 0. If for a variable x, both vertices vx and vx̄ do
not belong to K then we set τ(x) = 1. We show that τ is a satisfying assignment for φ.
Let C be a clause in the formula φ. Since w1

Cw
2
C /∈ E(G), at least one of w1

C or w2
C belongs

to an independent set I in P. Let wiC ∈ I, where i ∈ {1, 2}. We have shown that each
independent set contains at least one vertex corresponding to a literal y. Since vy and wiC
belong to I, it must be that vyw

i
C /∈ E(G). This implies that y ∈ C. Furthermore, this

implies that vȳ /∈ I as no clause contains both y and ȳ. Hence, vȳ is in K and τ(ȳ) = 0.
This implies that y is set to 1 and hence the clause C is satisfied. This proves that τ is a
satisfying assignment for φ.

Partization Recognition is same as Vertex Partization, when k = 0. Hence we
get the following corollary.

Corollary 3.1. Vertex Partization parameterized by k+ r+ ` on perfect graphs does
not have a polynomial kernel unless NP ⊆ coNP/poly.

3.5 Polynomial kernel when r and ` are constants

We saw that there is no polynomial kernel for Vertex Partization, unless NP ⊆
coNP/poly. The parameter for this problem is k + r + `, where the size of the dele-
tion set is at most k and the final graph is an (r, `)-graph. In this section, we consider the
Vertex (r, `) Partization problem on perfect graphs, which is a special case of Vertex
Partization on perfect graphs. Here, for a given pair of fixed positive constants (r, `),
we take a perfect graph G and a positive integer k as input and decide whether there
is a vertex set S of size at most k the deletion of which results in an (r, `)-graph. This
simplified problem has a polynomial kernel, as shown below.

59

We first observe that when perfect graphs are (r, `)-graphs, this class coincides with an-
other graph class, namely the class of perfect graphs that are (r, `)-split graphs. From the
definition of the graph classes, it is true that any (r, `)-graph is also an (r, `)-split graph.

Lemma 3.4. Let G be a perfect graph. If G is an (r, `)-split graph, then G is also an
(r, `)-graph.

Proof. Since G is a perfect graph, for any induced subgraph G′ of G, the chromatic number
of G′ (χ(G′)) is equal to the maximum size of a clique of G′ (ω(G′)). We know that G
is an (r, `)-split graph. Let (P1, P2) be an (r, `)-split partition with ω(G[P1]) ≤ r and
α(G[P2]) ≤ ` Now we show that (P1, P2) is indeed an (r, `)-partition of G. Since G is a
perfect graph, the graphs G[P1] and G[P2] are perfect graphs. Since G[P1] is a perfect
graph and w(G[P1]) ≤ r, χ(G[P1]) ≤ r. This implies that P1 can be partitioned into r
independent sets. Since G[P2] is a perfect graph and α(G[P2]) ≤ `, w(G[P2]) ≤ ` and
hence χ(G[P2]) ≤ `. This implies that P2 can be partitioned into ` sets such that each set
is independent in G[P2]. Hence P2 can be partitioned into ` cliques in G[P2]. So (P1, P2)
is an (r, `)-partition of G. This completes the proof of the lemma.

For any fixed r and `, there is a finite forbidden set F ′r,` of perfect graphs for (r, `)-split
graphs [Kzdy 1996]. In other words, a perfect graph G is an (r, `)-split graph if and only
if G does not contain any graph H ∈ Fr,` as an induced subgraph. The size of the largest
forbidden graph is bounded by g(r, `) ≤ 2(` + 1)(R(r(` + 1), (r(s + 1))2 + r(s + 1) +
3) + 1) [Kzdy 1996]. Since g(r, `) is a constant for constant r, `, it is possible to compute
the forbidden set F ′r,` in polynomial time. Thus, the class of perfect (r, `)-graphs also
has a finite forbidden characterization. This implies that Vertex (r, `) Partization on
perfect graphs reduces to the d-Hitting Set problem, where d is the constant g(r, `).
In an equivalent d-Hitting Set instance, the universe will be the set of vertices of the
input graph G, while the family of sets will be the vertex sets of induced subgraphs of G
that are isomorphic to a forbidden graph. The set sizes are bounded by g(r, `). Hence,
by [Abu-Khzam 2010], this problem has a polynomial kernel. This gives us the following
theorem.

Theorem 3.3. Vertex (r, `) Partization on perfect graphs admits a kernel of size kO(d)

and has an algorithm with running time dknO(d). Here, d = g(r, `).

3.6 Chapter Summary

In this chapter, we studied the Vertex Partization problem on perfect graphs, and
showed that it is FPT but does not admit a polynomial kernel. Furthermore, we observed
that Vertex (r, `) Partization has an induced finite forbidden characterization and
utilized that to give a polynomial kernel for the problem. However, this preprocessing
takes nO(d) time, where d depends on the size of a largest graph in the finite forbidden
set. It would be interesting to replace the factor nO(d) by τ(d) · nO(1).

60

Chapter 4

Communication Complexity of
Separating Families with

Applications

4.1 Introduction

The two party communication complexity, introduced by Yao [Yao 1979], is an impor-
tant research area in theoretical computer science with many applications. This notion of
complexity is particularly useful for proving lower bounds for VLSI computation, parallel
computation, data structures as well as circuit lower bounds. In this model of communi-
cation, there are two players, Alice and Bob, holding inputs x ∈ X and y ∈ Y respectively,
and they want to compute a given function f : X × Y → {0, 1}, by communicating as
few bits as possible. The minimum number of bits communicated, for any pair of inputs
(x, y), to compute the function f , is called the (deterministic) communication complexity
of f , denoted by D(f). One such communication complexity problem, which has garnered
a lot of attention, is the Clique vs Independent Set problem, introduced by Yan-
nakakis [Yannakakis 1991]. For an n-vertex graph G, the Clique vs Independent Set
problem is defined as follows. Alice gets a clique C in G and Bob gets an independent set
I in G. Here both Alice and Bob know the graph G and their goal is to decide whether the
clique and the independent set intersect at any vertex, by exchanging as few bits as possi-
ble. In other words, define the function CISG(C, I) as the cardinality of V (C)∩V (I) (note
that |V (C) ∩ V (I)| ∈ {0, 1}) and, Alice and Bob want to compute CISG(C, I). It can be
shown that D(CISG) = O(log2 n). One can also show that D(CISG) = Ω(logn), using the
fooling set technique, a method to show communication lower bounds. Closing the gap be-
tween the upper and lower bound of CISG is a long standing open problem. Very recently,
in 2015, Göös et al. [Göös 2015c] showed a near optimal lower bound of Ω̃(log2 n) for the
problem, where Ω̃(m) hides factors poly-logarithmic in m. Later, Göös et al. [Göös 2015b]
showed that the same lower bound holds even for randomized communication complex-
ity of the problem. Other versions of two party communication protocols deal with the
concepts of nondeterministic and co-nondeterministic protocols. There are many works
which study the cost of co-nondeterministic communication protocols of the Clique vs
Independent Set problem [Huang 2012, Amano 2014, Shigeta 2015, Göös 2015a]. For
more details on nondeterministic, co-nondeterministic and randomized communication
complexities, please refer to [Lovász 1990].

In this chapter, we study the communication complexity of graph properties that generalise
the function CISG. Let F1 and F2 be two hereditary graph properties. That is, F1 and F2

are two families of graphs such that if G ∈ Fi, i ∈ {1, 2}, then all induced subgraphs of G
are also in Fi. We define a (F1,F2) communication problem as follows. For any fixed n-

61

vertex graph G, Alice gets an induced subgraph G1 of G and Bob gets an induced subgraph
G2 of G, such that Gi ∈ Fi, i ∈ {1, 2}, and their objective is to check whether V (G1) and
V (G2) intersect, by communicating as few bits as possible. In other words, we define a
function GDISJG,F1,F2 as GDISJG,F1,F2(G1, G2) = 1 if V (G1) and V (G2) do not intersect
and 0 otherwise, where G1 and G2 are induced subgraphs of G and Gi ∈ Fi, i ∈ {1, 2}.
Alice and Bob want to find the value of the function GDISJG,F1,F2 on (G1, G2). Notice
that, when F1 is the family of cliques and F2 is the family of independent sets, then
GDISJG,F1,F2(C, I) = 1 if and only if CISG(C, I) = 0. A trivial protocol for computing
GDISJG,F1,F2 is as follows: Alice sends a bit vector of V (G1) to Bob and Bob checks
whether it intersects with the vertex set V (G2); the number of bits communicated in this
protocol is n. One of our main theorems characterizes pairs of graph families for which
the trivial protocol is the best one.

Theorem 4.1. For any two hereditary families of graphs F1 and F2, for any integer n > 0,
there is an n-vertex graph G such that D(GDISG,F1,F2) = Ω(n) if and only if F1 ∩ F2 is
an infinite family.

We give a sketch of the proof for this Theorem. We observe that when a pair of hereditary
graph families have finitely many graphs in their intersection, they have the following
property: In one family, all graphs have their independence number (the maximum size of
an independent set) bounded by a constant, while in the other family, all graphs have their
clique number (the maximum size of a clique) bounded by some other constant. Thus, we
consider the communication complexity for computing GDISJG,F1,F2 when F1 and F2 are
specific families. Let Cr be the family of graphs such that the independence number is at
most r, and I` be the family of graphs such that the clique number is at most `. Such pairs
of families were considered in the study made in [Feder 1999]. We are able to show that
D(GDISJG,Cr,I`) = O(logr+` n) and, therefore, conclude the hypothesis of Theorem 4.1.

One of our main motivation, to carry out this study, was to introduce ideas from parame-
terized complexity in the study of communication complexity. Parameterized complexity
theory is a framework for a refined analysis of primarily hard (NP-hard) problems. Here,
every input instance I of a problem Π is accompanied with an integer parameter k, and
the running time is measured in terms of the associated parameter k and the input size.
The main idea of parameterized algorithms is to measure the running time in terms of
both input size as well as a parameter that captures structural properties of the input
instance. Using ideas from parameterized complexity, we obtain the following nuanced
upper bounds on the communication complexity of the function GDISJG,F1,F2 . A pair
(F1,F2) of hereditary graph families where F1∩F2 is a finite, will be referred to as a good
pair of graph families.

Theorem 4.2. Let G be an n-vertex graph and (F1,F2) be a good pair of graph families.
Let optGF1,F2

be the size of a minimum set S of vertices such that V (G)\S has a bipartition
(V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Then there is a protocol for GDISJG,F1,F2 that
has O(logc(optGF1,F2

) + log n) communication complexity. Here, c is a constant depending
only on the two graph families.

For the special case of Clique vs Independent Set problem we get a protocol that
has O(log2(optGC1,I1) + log n) communication complexity. We also study communication
complexity in terms of the degeneracy of graphs in the given family. In particular, we
consider the pair of families (C1,D`), where D` is the set of all `-degenerate graphs and

62

C1 is the set of all complete graphs. As mentioned in Chapter 1.2, an `-degenerate graph
is an undirected graph where every induced subgraph has a vertex with degree at most `.
Note that D0 is the family of independent sets. Hence, this is still a generalisation of the
Clique vs Independent Set problem. We prove the following theorem regarding the
communication complexity of GDISJG,C1,D`

.

Theorem 4.3. For any constant ` ∈ N, D(GDISJG,C1,D`
) = O(` log2 n), where n = |V (G)|.

Separating Families. The main motivation for Yannakakis to introduce the Clique
vs Independent Set problem was to study the number of constraints in the linear
programming of a vertex packing polytope. As a spin-off of this study, he provided rela-
tions between the Clique vs Independent set problem and a CI-separating family (Clique-
Independent set separating family): for a graph G, a family F , of subsets of V (G), is called
a CI-separating family if for any disjoint clique C and independent set I in G, there is a set
F ∈ F such that C ⊆ F and I ∩ F = ∅. He showed that the co-nondeterministic commu-
nication complexity of CISG is log q(G), where q(G) is the cardinality of a CI-separating
family of G. Yannakakis also provided a polynomial sized CI-separating family on compa-
rability graphs and their complements, chordal graphs and their complements, and asked
whether there is a polynomial sized family on general graphs, or even on perfect graphs.
Lovász [Lovász 1994] extended the work of Yannakakis to t-perfect graphs and gave a poly-
nomial sized CI-separating family on t-perfect graphs. Bousquet et al. [Bousquet 2014]
proved the existence of polynomial sized CI-separating families for the following class
of graphs: random graphs, split-free graphs (here the graph does not have a fixed split
graph as an induced subgraph), graphs with no induced path Pk on k vertices nor its
complement (here k is a constant), and graphs with no induced P5. But, a result of
Göös [Göös 2015a], that shows that the co-nondeterministic communication complexity
of CISG is Ω(log1.128 n), implies that the cardinality of CI-separating family on general
graphs is super polynomial in the number of vertices.

The communication complexity of CISG, D(CISG) = O(log2 n) implies that there exists a
CI-separating family of cardinality nO(logn) (See [Lovász 1990]). We would like to remark
that the existence of a CI-separating family does not imply that such a family can be
enumerated in time polynomial in the size of the family. The best known bound on

the cardinality of a enumerable CI-separating family on general graphs is O(n
logn
2), by

Hajnal (unpublished, cited in [Lovász 1994]). Cygan et. al. [Cygan 2013] also enumerated
a CI-separating family, of cardinality nO(logn), in time nO(logn). In the special case of
finding a CI-separting family, one can use the communication protocol of CISG, given
in [Lovász 1994], to enumerate such a family in time nO(logn). To generalise from the
definition of CI-separating families, for a graph G, and a pair of families F1 and F2, a
notion of (F1,F2)-separating family was introduced. A family P of vertex subsets of V (G)
is called a (F1,F2)-separating family if for any two disjoint vertex subsets V1 and V2 with
G[V1] ∈ F1 and G[V2] ∈ F2, there is a set A ∈ P such that V1 ⊆ A and V2 ∩A = ∅.

From an observation made in [Lovász 1990], it is implied that a non-deterministic pro-
tocol for GDISJG,F1,F2 corresponds to a (F1,F2)-separating family. This means that if
GDISJG,F1,F2 has deterministic communication complexity c, then there exists a (F1,F2)-
separating family of size 2c. Similar to the case of CI-separating families, describing an
enumeration algorithm to find the best separating family is a problem of wide interest.
We show that a (Cr, I`)-separating family of size 2O(logr+` n) can be enumerated in time

2O(logr+` n). This, in turn, implies the following theorem.

63

Theorem 4.4. For any two hereditary families of graphs F1 and F2, for each integer
n > 0, there is an n-vertex graph G such that any (F1,F2)-separating family must be of
size 2Ω(n) if and only if F1 ∩ F2 is an infinite family.

We get the following theorem as a “separating family” analogue of Theorem 4.2. This
theorem is extremely useful in designing parameterized algorithms.

Theorem 4.5. Let (F1,F2) be a good pair of graph families. Given an n-vertex graph
G, let S be a minimum sized vertex set such that V (G) \ S has a bipartition (V1, V2) with
G[V1] ∈ F1 and G[V2] ∈ F2. Let |S| = optGF1,F2

. Then a (F1,F2)-separating family, for G,

of cardinality 2
O(logc optGF1,F2

)
nO(1) can be enumerated in time 2

O(logc optGF1,F2
)
nO(1), where

c is a constant.

Another pair of graph properties (families of graphs) we consider is the family of complete
graphs, C1 and that of `-degenerate graphs, D`. By Theorem 4.3, we already know that
the communication complexity of computing GDISG,C1,D`

is O(` log2 n). We also give an
algorithm to enumerate a (C1,D`)-separating family for an n-vertex graph, of cardinality
nO(` logn), in time nO(` logn).

Applications. In 2013, Cygan et al. [Cygan 2013] drew a very interesting relation be-
tween the field of enumerating separating families and designing algorithms. As mentioned
earlier, a CI-separating family of cardinality nO(logn) is enumerated in time nO(logn), and
this family is used to design fast exact and parameterized algorithms. They showed that
Split Vertex Deletion, where we want to delete at most k vertices from a given n-
vertex graph to get a split graph, can be solved in time O(1.2738kkO(log k) +n3). They also
showed that all induced split subgraphs of a given n-vertex graph can be listed in time
O(3n/3nO(logn)) time. This work motivated the last part of our study: designing exact
and FPT algorithms. Not only are the enumeration algorithms for separating families in-
teresting combinatorial questions in their own right, but they also help to design fast FPT
and exact exponential time algorithms for a class of problems. A generic class of problems
for which a separating family based approach works is as follows. Let G be a family of
graphs. Then G + kv contains all graphs G such that there is a vertex set S ⊆ V (G), of
size at most k, with the property that the graph G \ S ∈ G. Given two graph families
F1,F2, we consider the following problem.

(F1,F2)-p-Partition Parameter: k
Input: A graph G, a non-negative integer k
Question: Is there a vertex set S ⊆ V (G), of size at most k, such that there is a
partition V1] V2 of V (G) \ S and G[Vi] ∈ Fi, i ∈ {1, 2}?

The optimization version of (F1,F2)-p-Partition is denoted by (F1,F2)-Partition.
Here, the aim is to find the minimum size of a vertex set S such that V (G) \ S has a
bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Let F1 and F2 be a good pair of
graph families. For any positive integer k, let the families F1 + kv and F2 + kv have FPT
recognition algorithms. That is, there are algorithms which take as input a graph G and
an integer k, decide whether G ∈ Fi + kv, i ∈ {1, 2} and run in time f(k)|V (G)|O(1). For
ease of notation, if F1 and F2 be a good pair of graph families, and the families F1 + kv
and F2 + kv have FPT recognition algorithms, then we call (F1,F2) an FPT-good pair of
families.

64

Theorem 4.6. Let (F1,F2) be an FPT-good pair of families. Also, let A1 and A2 be
the best recognition algorithms for F1 + kv and F2 + kv respectively. For an n-vertex
input graph and non-negative integer k, let the running time of Ai, i ∈ {1, 2}, be Ti(n, k).
Then, (F1,F2)-p-Partition, on an instance (G, k), can be solved in time 2O(logc k)nO(1) ·
max{T1(n, k), T2(n, k)}.

One could obtain a result analogous to Theorem 4.6 for (F1,F2)-Partition. A few of the
problems for which we obtain faster FPT and exact algorithms are (Clique,Planar)-p-
Partition, (Clique,Triangle-free)-p-Partition,
(Clique,Forest)-p-Partition and (Clique, Treewidth-t)-p-Partition. We also
obtain an improved algorithm for Vertex (r, `)-Partization, when 1 ≤ r, ` ≤ 2. In
Chapter 2, we gave an FPT algorithm running in 3.3146k|V (G)|O(1) time, where (G, k)
was the input instance (Theorem 2.1 and Corollary 2.1). In this chapter, we obtain an
algorithm running in time 2.3146k|V (G)|O(1), which is as good an algorithm as the best
known algorithm for OCT. This means that the results of Table 2.1 now stand as given in
Table 4.1.

Table 4.1: Updated summary of known and new results for the family of Vertex (r, `)-
Partization problems. New results are highlighted in green (last row).

r, ` Problem Name FPT Kernel

(1, 0) Vertex Cover 1.2738k Poly

(0, 1) Vertex Cover on G 1.2738k Poly

(1, 1) SVD 1.2738k+o(k) Poly

(2, 0) OCT 2.3146k Randomized Poly

(0, 2) OCT on G 2.3146k Randomized Poly

(2, 1), (1, 2),
(2, 2)

Vertex (2, 1)-partization
Vertex (1, 2)-partization
Vertex (2, 2)-partization

2.3146k
Randomized
Turing Poly

4.2 Preliminaries

We give a formal definition of a communication protocol.

Definition 4.1 ([Kushilevitz 1997]). A protocol Π over a domain X × Y with range Z is
a binary tree where each internal node v is labelled either by a function av : X → {0, 1}
or by a function bv : Y → {0, 1}, and each leaf is labelled with an element z ∈ Z. The
value of the protocol Π on an input (x, y) is the label of the leaf reached by starting at the
root, and walking along a path in the tree. At each internal node v labelled by av, the walk
takes left if av(x) = 0 and right if av(x) = 1, and at each internal node labelled by bv, the
walk takes left if bv(y) = 0 and right if bv(y) = 1. The cost of the protocol Π on an input
(x, y) is the length of the path taken on the input (x, y). The cost of the protocol Π is the
height of the binary tree.

Informally, a protocol can be thought of as a communication between two players, Alice
and Bob. They have decided on some function f and wish to evaluate f(x, y), for some
input x ∈ X and y ∈ Y . The catch is that x is only known to Alice and y is only known
to Bob. Thus, they fix a protocol of communication, such that at the end f(x, y) is known

65

to both of them. Therefore, for each internal node v of the binary protocol tree, the label
is av or bv according to which player is communicating at that point of the protocol. The
value av(x) is the bit that Alice sends to Bob. Similarly, bv corresponds to the bit sent by
Bob to Alice.

Definition 4.2 ([Kushilevitz 1997]). For a function f : X × Y → Z, the deterministic
communication complexity of f is the minimum cost of Π, over all protocols Π that compute
f . We denote the deterministic communication complexity of f by D(f).

For further reading on Communication Complexity, including the concepts of non-deterministic
and co-nondeterministic communication complexity of a function, we refer the reader to
[Kushilevitz 1997, Lovász 1990]. One of the first functions, whose communication com-
plexity was studied, is the Disjointness function. For any x, y ∈ {0, 1}n, the function is
defined as,

DISJn(x, y) =

{
0 if there exists i ∈ [n], x[i] = y[i] = 1
1 otherwise

It is proved that the trivial protocol for DISJn, where Alice sends her input x to Bob, is
the best we can do for this problem.

Proposition 4.1 ([Kushilevitz 1997]). D(DISJn) ≥ n

We study a variant of the DISJn function, called the Graphic Disjointness function.
Let G be a graph on n vertices and m edges. Let F1 and F2 be two hereditary graph
families. The following function is defined for the graph G, and the families F1,F2 as
follows. For any two vertex subsets V1 and V2 such that G[V1] ∈ F1 and G[V2] ∈ F2,

GDISJG,F1,F2(V1, V2) =

{
1 if V1 ∩ V2 = ∅
0 otherwise

A problem, related to that of computing GDISJG,F1,F2 , is the problem of enumerating
separating families for two graph families.

Definition 4.3. Let G be a graph on n vertices, F1 and F2 be two graph families. Suppose
F is a family of subsets of V (G) with the following property: If we take any two vertex
disjoint induced subgraphs G1, G2 ≤s G, such that G1 ∈ F1 and G2 ∈ F2, there is a set
F ∈ F such that V (G1) ⊆ F and V (G2)∩F = ∅. Then F is called an (F1,F2)-separating
family in G. Such a set F is called a separating set for G1 and G2.

We have the following Observation about a separating set.

Observation 4.1. Let G be an n-vertex graph. Let G1, G2 be induced subgraphs of G.
Suppose for each vertex v ∈ V (G1), dG(v) < n/2. Also, for each vertex w ∈ V (G2),
dG(v) < n/2. Then, V (G1) ∩ V (G2) = ∅ and S = {v | v ∈ V (G), dG(v) < n/2} is a
separating set for G1 and G2.

Proof. By definition, any vertex v ∈ V (G1) has dG(v) < n/2. Next, we show that for
any vertex w ∈ V (G2), dG(w) ≥ n/2. In the graph, any vertex v satisfies the condition
dG(v) + dG(v) = n− 1. For a vertex w with dG(v) < n/2, n/2 + dG(w) > n− 1. In other
words, dG(w) > n/2−1. This implies that dG(w) ≥ n/2. Thus, any vertex v of V (G1) has
dG(v) < n/2, while any vertex w of V (G2) has dG(w) ≥ n/2. Then, V (G1) ∩ V (G2) = ∅.
By definition of S, every vertex of V (G1) belongs to S while no vertex of V (G2) belongs
to S. By definition of a separating set, S is a separating set for G1 and G2.

66

4.3 Communication protocols for pairs of Hereditary graph
families

One of our main results is Theorem 4.1. To prove Theorem 4.1, we first need to prove a sub-
linear communication complexity bound for a specific pair of graph families. More formally,
in this section we consider a pair of hereditary families of graphs, Cr = {H | α(H) ≤ r}
and I` = {H | ω(H) ≤ `}. Here, r and ` are two positive integers. In this section, we
consider the communication complexity of GDISJG,Cr,I` . Using this, we complete the proof
of Theorem 4.1. In the later half of this Section, we give upper bounds on the communi-
cation complexity of the function GDISJG,F1,F2 , in terms of a structural parameter of the
graph G. We consider two such structural parameters and design protocols with the help
of this additional parameter.

4.3.1 Communication Protocol for Families of Sparse and Dense graphs

We will describe a communication protocol for GDISJG,Cr,I` , with complexity o(n), for
any positive constants r, `. Here, Alice receives an induced subgraph G1 of G such that
G1 ∈ Cr, and Bob receives an induced subgraph G2 of G such that G2 ∈ I`. They have to
determine whether the vertex sets of these two subgraphs of G are disjoint or not. Note
that both Alice and Bob receive the graph G. The following simple observation is useful
for making a protocol for GDISJG,Cr,I` .

Observation 4.2. Let G1, G2 be two graphs such that α(G1) ≤ r and ω(G2) ≤ `. Then,

1. for any vertex v ∈ V (G1), NG1(v) induces a subgraph G′1 of G1 where α(G′1) ≤ r−1,
and

2. for any vertex v ∈ V (G2), NG2(v) induces a subgraph G′2 of G2 where ω(G′2) ≤ `−1.

First, we give a protocol Π1,2 for GDISJG,C1,I2 , with a cost of O(log3 n). This proto-
col uses a protocol Π1,1, for GDISJG,C1,I1 , as a sub-protocol. As mentioned earlier, for
any pair of induced subgraphs C, I ∈ G, with C ∈ C1, I ∈ I1, GDISJG,C1,I1(C, I) = 1
if and only if CISG(C, I) = 0. The function CISG has a deterministic protocol of cost
O(log2 n) [Yannakakis 1991]. Therefore, there is a protocol Π1,1 of cost O(log2 n) for
GDISJG,C1,I1 . The protocol for the general case GDISJG,Cr,I` can be designed in a recursive
manner that uses protocols of GDISJG,Cr,I`−1

and GDISJG,Cr−1,I` as subprotocols.

Lemma 4.1. D(GDISJG,C1,I2) = O(log3 n), where n = |V (G)|.

Proof. Let Alice get the induced subgraph G1 and Bob get the induced subgraph G2. The
following is a protocol Π1,2 that Alice and Bob will execute. Alice and Bob continue with
the protocol till either they detect a vertex in the intersection of V (G1) and V (G2), or one
of G, G1 and G2 becomes an empty graph. The protocol is executed in top down fashion,
i.e., the two players resort to a step only if the previous steps are not applicable.

67

1. If either G1 or G2 is an empty graph, then the players declare that the graphs are
disjoint and stop.

2. Alice looks for a vertex v ∈ V (G1) with dG(v) ≥ n/2. She sends the vertex v to Bob.
If v ∈ V (G2), then Bob lets Alice know and they terminate the protocol. Otherwise,
both players delete the vertices of NG(v)∪{v} from the graph G to obtain graph G′ =
G− (NG(v)∪ {v}). Alice defines G′1 = G1 − {v} while Bob defines G′2 = G2 −NG(v).
Then, they continue the protocol for determining whether V (G′1) ∩ V (G′2) = ∅ in G′.

3. Suppose Alice cannot find such a vertex v. Then Bob looks for a vertex v ∈ V (G2)
with dG(v) ≥ n/2. Bob sends the vertex v to Alice. If v ∈ V (G1), then Alice lets Bob
know and they terminate the protocol. Otherwise, both players use the protocol Π1,1

to compute GDISJG[NG(v)],C1,I1(G[NG(v) ∩ V (G1)], G[NG(v) ∩ V (G2)]). If the output
is 0, then they declare that V (G1) ∩ V (G2) 6= ∅ and stop. Otherwise, they delete
the vertices of NG[v] from G to get G′ = G − NG[v]. Alice defines G′1 = G1 − NG[v]
while Bob defines G′2 = G2−NG[v]. Then, they continue the protocol for determining
whether V (G′1) ∩ V (G′2) = ∅ in G′.

4. Suppose all the above steps fail, then, both players declare that V (G1) ∩ V (G2) = ∅
and stop.

First, we show the correctness of the protocol by induction on the size of V (G). In the base
case, G is an empty graph, and the protocol correctly returns that there is no intersection
between V (G1) and V (G2). Suppose that the protocol correctly computes GDISJG′,C1,I2 ,
for all G′ such that |V (G′)| < n. Now, consider a graph G on n vertices. Let G1 ∈ C1 and
G2 ∈ I2 be the respective subgraphs of G given to Alice and Bob. If one of G1 or G2 is
an empty graph, then clearly V (G1) ∩ V (G2) = ∅ and the players correctly declare it in
step 1.

1. Suppose there is a vertex v ∈ V (G1) with dG(v) ≥ n/2. According to the protocol,
Alice will send the vertex v to Bob. If v ∈ V (G2), then Bob lets Alice know and they
terminate the protocol. Otherwise, both players know that V (G1) ⊆ N [v]. Thus,
it is enough to check whether there is a vertex w that belongs to both V (G1) \ {v}
and V (G2)\NG(v). This is equivalent to deleting the vertices NG(v)∪{v} from the
graph G and running the protocol for the new graph G′, that has strictly less number
of vertices. In this protocol, Alice gets the graph G′1 = G1 − {v} and Bob gets the
graph G′2 = G2 − NG(v). Since C1 and I2 are hereditary families, G′1 ∈ C1 and
G′2 ∈ I2. By induction hypothesis, the protocol correctly computes GDISJG′,C1,I2 .
This implies that the protocol computes GDISJG,C1,I2 in this case.

2. Suppose G1 does not have any vertex with non-degree at least n/2. Let there
be a vertex v ∈ V (G2) with dG(v) ≥ n/2. Bob sends the vertex v to Alice. If
v ∈ V (G1), then Alice lets Bob know and they terminate the protocol. Otherwise,
by Observation 4.2, both players know that ω(G[NG(v)] ∩ G2) ≤ 1. It is also true
that α(G[NG(v)] ∩G1) ≤ 1. Thus, Alice and Bob use the protocol Π1,1 to solve the
problem GDISJG[NG(v)],C1,I1(G[NG(v) ∩ V (G1)], G[NG(v) ∩ V (G2)]). If the output
is 0, then they know that (NG(v) ∩ V (G1)) ∩ (NG(v) ∩ V (G2)) 6= ∅, which also
implies that V (G1)∩V (G2) 6= ∅. Otherwise, since v is also not in the intersection of
V (G1)∩V (G2), the players only need to determine an intersection in G1−NG[v] and
G2−NG[v]. This is equivalent to deleting the vertices of NG[v] from G to obtain the

68

graph G′, which has strictly less number of vertices, and running the protocol for
G′. In this protocol, Alice gets the graph G′1 = G1 −NG[v] and Bob gets the graph
G′2 = G2−NG[v]. Since C1 and I2 are hereditary families, G′1 ∈ C1 and G′2 ∈ I2. By
induction hypothesis, the protocol correctly computes GDISJG′,C1,I2 . This implies
that the protocol computes GDISJG,C1,I2 in this case.

3. Suppose the above two cases do not hold. Then every vertex v ∈ V (G1) has dG(v) <
n/2, while every vertex w ∈ V (G2) has dG(w) < n/2. Therefore, by Observation 4.1,
V (G1) ∩ V (G2) = ∅ and the protocol gives the correct answer in step 4.

This proves the correctness of the protocol. At each round of the protocol, in the worst
case, Π1,1 is used as a sub-protocol. Since in every round we reduce the vertex set of G by
at least half, there can be at most log n rounds before G becomes an empty graph. Thus,
the cost of the protocol is O(log3 n). This completes the proof.

Corollary 4.1. D(GDISJG,C2,I1) = O(log3 n), where n = |V (G)|.

Proof. Suppose Alice gets the induced subgraph G1 and Bob gets the induced subgraph
G2. Notice that in the graph G, the induced subgraph G2 belongs to C2. Also, the induced
subgraph G1 belongs to I1. Thus, the protocol Π1,2, that computes GDISJG,C2,I1(G2, G1),
can also be used to compute GDISJG,C2,I1(G1, G2).

We can give a protocol Πr,`, for the problem GDISJG,Cr,I` , of cost O(logr+` n), using a
protocol for Πr,`−1 or Πr−1,`. We use similar arguments as in the protocol Π1,2, to design
the protocol Πr,`. Thus, we can prove the following theorem using induction on r + `.

Lemma 4.2. For any r, ` ∈ N, D(GDISJG,Cr,I`) = O(logr+` n), where n = |V (G)|.

Proof. Notice that r, ` > 0. We prove the theorem by induction on r+ `. When r+ ` = 2,
it must be the case that r = ` = 1 and the protocol Π1,1 has complexity O(log2 n). When
r + ` = 3, then either r = 1 and ` = 2, or r = 2 and ` = 1. In this case Lemma 4.1 and
Corollary 4.1 give protocols that have complexity O(log3 n). Thus, in the base cases, this
hypothesis holds.

Suppose, the hypothesis is true for all pairs (r′, `′) when r′+ `′ < m, for a positive integer
m. Let (r, `) be a pair of positive integers such that r+ ` = m. We design a protocol Πr,`

for computing GDISJG,Cr,I` . Let Alice get an induced subgraph G1 of G, and Bob get an
induced subgraph G2 of G. The protocol is as follows. Alice and Bob continue with the
protocol till either they detect a vertex in the intersection of V (G1) and V (G2), or one of
G, G1 and G2 becomes an empty graph. The protocol is executed in top down fashion,
i.e., the two players resort to a step only if the previous steps are not applicable.

69

1. If either G1 or G2 is an empty graph, then the players declare that the graphs are
disjoint and stop.

2. Alice looks for a vertex v ∈ V (G1) with dG(v) ≥ n/2. Alice sends the vertex v to Bob. If
v ∈ V (G2), then Bob lets Alice know and they terminate the protocol. Otherwise, both
players use the protocol Πr−1,` to solve the problem GDISJG[NG(v)],Cr−1,I`(G[NG(v) ∩
V (G1)], G[NG(v)∩V (G2)]). If the output is 0, then they declare that V (G1)∩V (G2) 6=
∅. Otherwise, they delete the vertices of NG(v) ∪ {v} from G to obtain graph G′ =
G− (NG(v)∪ {v}). Alice defines G′1 = G1 − {v} while Bob defines G′2 = G2 −NG(v).
Then, they continue with the protocol for determining whether V (G′1)∩ V (G′2) = ∅ in
G′.

3. Suppose Alice cannot find such a vertex v. Then Bob looks for a vertex v ∈ V (G2)
with dG(v) ≥ n/2. Bob sends the vertex v to Alice. If v ∈ V (G1), then Alice lets Bob
know and they terminate the protocol. Otherwise, both players use the protocol Πr,`−1

to solve the problem GDISJG[NG(v)],Cr,I`−1
(G[NG(v) ∩ V (G1)], G[NG(v) ∩ V (G2)]). If

the output is 0, then they declare that V (G1)∩V (G2) 6= ∅. Otherwise, they delete the
vertices of NG[v] from G to get G′ = G−NG[v]. Alice defines G′1 = G1 −NG[v] while
Bob defines G′2 = G2 −NG[v]. Then, they continue with the protocol for determining
whether V (G′1) ∩ V (G′2) = ∅ in G′.

4. Suppose all the above cases do not hold, then, both players declare that there can be
no intersection between V (G1) and V (G2).

We argue the correctness of the protocol, under the induction hypothesis that the desired
protocols exist corresponding to all pairs (r′, `′) when r′+`′ < m. We show the correctness
of the protocol by induction on the size of V (G). In the base case, G is an empty graph,
and the protocol correctly returns that there is no intersection between V (G1) and V (G2).
Now, suppose that the protocol correctly computes GDISJG′,Cr,I` , for all G′ such that
|V (G′)| < n. Now, consider a graph G on n vertices. Let G1 ∈ C1 and G2 ∈ I2 be the
respective subgraphs of G given to Alice and Bob repectively.

If one of G1 or G2 is an empty graph, then clearly V (G1)∩ V (G2) = ∅ and they correctly
declare it in step 1.

1. Suppose there is a vertex v ∈ V (G1) with dG(v) ≥ n/2. Alice sends the vertex v
to Bob. If v ∈ V (G2), then Bob lets Alice know and they terminate the protocol.
Otherwise, by Observation 4.2, both players know that α(G[NG(v)] ∩ G1) ≤ r − 1
while ω(G[NG(v)]∩G2) ≤ `. Thus, Alice and Bob use the protocol Πr−1,` to solve the
problem GDISJG[NG(v)],Cr−1,I`(G[NG(v)∩ V (G1)], G[NG(v)∩ V (G2)]). If the output

is 0, then they know that (NG(v) ∩ V (G1)) ∩ (NG(v) ∩ V (G2)) 6= ∅, which also
implies that V (G1) ∩ V (G2) 6= ∅. Otherwise, they only need to determine a vertex
intersection in G1 − (NG(v) ∪ {v}) and G2 −NG(v). This is equivalent to deleting
the vertices of NG(v) ∪ {v} from G, thereby obtaining a graph G′ where the size of
the vertex set is at most half of that of G. The players run the protocol on G′. In
this protocol, Alice gets the graph G′1 = G1− (NG(v)∪{v}) and Bob gets the graph
G′2 = G2 − (NG(v) ∪ {v}). By definition of the families Cr and I`, G′1 ∈ Cr and
G′2 ∈ I`. By induction hypothesis, the protocol correctly computes GDISJG′,Cr,I` .
This implies that the protocol computes GDISJG,Cr,I` in this case.

2. Suppose G1 does not have a vertex with non-degree at least n/2. Let v ∈ V (G2) have

70

dG(v) ≥ n/2. Bob sends the vertex v to Alice. If v ∈ V (G1), then Alice lets Bob
know and they terminate the protocol. Otherwise, by Observation 4.2, both players
know that ω(G[NG(v)∩V (G2)]) ≤ `−1 while α(G[NG(v)∩V (G1)]) ≤ r. Thus, Alice
and Bob use the protocol Πr,`−1 to solve the problem GDISJNG(v),Cr,I`−1

(G[NG(v) ∩
V (G1)], G[NG(v)∩V (G2)]). If the output is 0, then they know that (NG(v)∩V (G1))∩
(NG(v) ∩ V (G2)) 6= ∅, which also implies that V (G1) ∩ V (G2) 6= ∅. Otherwise, they
only need to determine a vertex intersection in G1 − NG[v] and G2 − NG[v]. This
is equivalent to deleting the vertices of NG[v] from G, thereby obtaining a graph G′

where the size of the vertex set is at most half of that of G. The players run the
protocol on the new graph G′. In this protocol, Alice gets the graph G′1 = G1−NG[v]
and Bob gets the graph G′2 = G2 − NG[v]. By definition of the families Cr and I`,
G′1 ∈ Cr and G′2 ∈ I`. By induction hypothesis, the protocol correctly computes
GDISJG′,Cr,I` . This implies that the protocol computes GDISJG,Cr,I` in this case.

3. Suppose the above cases do not hold. Then every vertex v of V (G1) has dG(v) < n/2,
while every vertex w ∈ V (G2) has dG(w) < n/2. Therefore, by Observation 4.1, there
can be no intersection between V (G1) and V (G2) and the protocol gives the correct
answer due to step 4.

This proves the correctness of the protocol. At each round of the protocol, in the worst
case, Πr−1,` or Πr,`−1 is used as a sub-protocol. Since in every round we reduce the vertex
set of G by half, there can be at most log n rounds before G becomes an empty graph. By
induction hypothesis, both Πr−1,` and Πr,`−1 have complexity O(logr+`−1 n). It follows
that the complexity of the protocol Πr,` is O(logr+` n).

4.3.2 Characterization for Hereditary graph families

We are ready to prove Theorem 4.1. That is, we try to determine D(GDISJG,F1,F2) for any
given pair of hereditary families F1,F2. If one of F1 or F2 is finite, then the number of ver-
tices of each graph in one of the families is bounded by a constant. Thus, a trivial protocol
would be for the player, who receives the bounded-sized subgraph, to send the full subgraph
over to the other player, using O(log n) bits. This implies, D(GDISJG,F1,F2) = O(log n).
So, the interesting case is when both F1 and F2 are infinite. Now we prove Theorem 4.1.

Theorem 4.1. For any two hereditary families of graphs F1 and F2, for any integer
n > 0, there is an n-vertex graph G such that D(GDISG,F1,F2) = Ω(n) if and only if
F1 ∩ F2 is an infinite family.

Proof. Without loss of generality we can assume that both F1 and F2 are infinite. Suppose
the intersection family is finite. This means that there is a constant r such that a complete
graph Kr, on r vertices, does not belong to the intersection family, because of finiteness.
Since Kr does not belong to F1∩F2, it must not belong to at least one of the families. Let
this be F1. Since F1 is hereditary, no graph in F1 has Kr as an induced subgraph. This
implies that for any graph G in F1, ω(G) ≤ r − 1. Now we show that for any graph G in
F2, α(G) ≤ ` − 1 for some constant `. Towards that, we first claim that F1 contains all
stable graphs. Otherwise, since F1 is a hereditary family, if F1 does not contain a stable
graph on `′ vertices, all graphs in F1 neither have a r-sized clique as an induced subgraph
nor an `′-sized independent set as an induced subgraph. However, by Ramsey’s theorem,

71

each graph in F1 has at most R(r, `′) vertices, thus contradicting the infiniteness of F1.
So far we know that, F1 ∩F2 is finite and F1 contains all stable graphs. This implies that
F2 does not contain all stable graphs. Let ` be an integer such that K` /∈ F2. By the
hereditary property of F2, no graph in F2 contains K` as an induced subgraph. That is,
for all graph G in F2, α(G) ≤ ` − 1. Thus, Lemma 4.2 gives us a deterministic protocol
for GDISJG,F1,F2 , with o(n) communication complexity.

For the reverse direction, suppose the intersection family F1 ∩F2 is an infinite family. To
prove D(GDISJG,F1,F2) = Ω(n) we give a simple reduction from DISJn. As F1 ∩ F2 has
infinitely many graphs, there are infinitely many integers n > 0 such that an n-vertex
graph belongs to F1 ∩F2. Consider any integer n0 > 0. There must be an integer n > n0

such that an n-vertex graph G belongs to F1∩F2. Since F1 and F2 are hereditary families,
F1 ∩ F2 is also a hereditary graph family. Hence, any n0-vertex induced subgraph of G
belongs to F1 ∩ F2. To summarise, we know that (i) for any integer n > 0, there is an
n-vertex graph G in the intersection family F1∩F2 and (ii) F1∩F2 is a hereditary family.
Therefore, for such a graph G, any subgraph H is in the family F1 as well as in the family
F2.

Now our reduction works as follows. In DISJn, Alice is given x ∈ {0, 1}n and Bob is
given y ∈ {0, 1}n and they want to check whether there is an i ∈ [n] such that x[i] =
y[i] = 1. Now we create an instance of GDISJG,F1,F2 as follows. We fix an n-vertex graph
G ∈ F1 ∩ F2, with V (G) = {v1, . . . , vn}. Let Vx = {vi ∈ V (G) | i ∈ [n], x[i] = 1} and
Vy = {vi ∈ V (G) | i ∈ [n], y[i] = 1}. Since G ∈ F1 ∩ F2, G[Vx] ∈ F1 and G[Vy] ∈ F2.
In the GDISJG,F1,F2 problem, Alice gets G[Vx] and Bob gets G[Vy]. Clearly Vx ∩ Vy 6= ∅
if and only if there is an i ∈ [n] such that x[i] = y[i] = 1. Hence, by Proposition 4.1,
D(GDISJG,F1,F2) = Ω(n). This concludes the proof.

For the rest of this chapter, a pair (F1,F2) of hereditary graph families where F1 ∩ F2

is a finite graph family, will be referred to as a good pair of graph families. The proof of
Theorem 4.1 also gives us the following folklore corollary.

Corollary 4.2. Let F1 and F2 be a good pair of graph families. Then, there are constants
r and `, such that for any graph G1 ∈ F1 and G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `.

Corollary 4.2 and Ramsey theorem leads us to another useful corollary.

Corollary 4.3. Let G be a graph. Let F1 and F2 be a good pair of graph families. Then
there are constants r and ` (same as the constants mentioned in Corollary 4.2) such
that, for any pair (G1, G2) of induced subgraphs of G, if G1 ∈ F1 and G2 ∈ F2, then
|V (G1) ∩ V (G2)| < R(r + 1, `+ 1).

Proof. From Corollary 4.2, there are constants r, `, such that for any graph G1 ∈ F1 and
G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `. Then, the subgraph G1 ∩ G2 is a graph where
ω(G[V (G1) ∩ V (G2)]) ≤ r and α(G[V (G1) ∩ V (G2)]) ≤ `. This implies that |V (G1) ∩
V (G2)| < R(r+ 1, `+ 1), where R(·) is the Ramsey function. Thus, the required property
holds for this good pair of families.

72

4.3.3 A Parameterized approach to designing protocols

In Section 4.3.1, for each pair of constants r, `, we saw a protocol for GDISJG,Cr,I` with
sublinear communication complexity. We also showed that any good pair (F1,F2) of graph
families must be such that there are constants r, ` with F1 ⊆ Cr,F2 ⊆ I`. In this section,
we give an alternate protocol that uses the structure of the input graph G, to obtain a more
refined upper bound on the communication complexity of GDISJG,F1,F2 . For an n-vertex
graph, let optGF1,F2

denote the size of a minimum set S of vertices such that V (G)\S has a
bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. In this section, for an n-vertex graph
G and a good pair of graph families (F1,F2), we give a protocol for GDISJG,F1,F2 that has
O(logc(optGF1,F2

) + log n) communication complexity. Here, c is a constant depending only
on the two graph families.

Theorem 4.2. Let G be an n-vertex graph and (F1,F2) be a good pair of graph families.
Also, let r and ` be the constants such that F1 ⊆ Cr and F2 ⊆ I`. Let optGF1,F2

be
the size of a minimum set S of vertices such that V (G) \ S has a bipartition (V1, V2)
with G[V1] ∈ F1 and G[V2] ∈ F2. Then there is a protocol for GDISJG,F1,F2 that has
O(logr+`(optGF1,F2

) + log n) communication complexity.

Proof. We can assume that Alice and Bob both have an optimum vertex set S such that
V (G) \ S has a bipartition (V1, V2) with G[V1] ∈ F1 and G[V2] ∈ F2. Thus |S| = optGF1,F2

.
The players also have a bipartition (V1, V2) of V (G)\S, such that G[V1] ∈ F1 and G[V2] ∈
F2.

Now let Alice receive the induced subgraph G1 ∈ F1 and Bob receive the induced subgraph
G2 ∈ F2. The following is a protocol Π that Alice and Bob will execute. The protocol
is executed in top down fashion, i.e., the two players resort to a step only if the previous
steps are not applicable.

1. If either G1 or G2 is an empty graph, then they declare that the graphs are disjoint
and stop.

2. Alice and Bob run the protocol Πr,` to compute GDISJG[S],Cr,I`(G1[S], G2[S]). If there
is a vertex intersection between G1[S] and G2[S], then they declare that the graphs G1

and G2 intersect and stop the protocol.

3. Suppose there is no vertex intersection between G1[S] and G2[S]. Alice sends the
vertices of the subgraph G1∩G[V2] to Bob. If Bob finds that V (G2)∩V (G1∩G[V2]) 6= ∅,
then Bob lets Alice know and they terminate the protocol.

4. Suppose Bob does not find any vertex common to both V (G1 ∩ G[V2]) and V (G2).
Then Bob sends the vertices of the subgraph G2 ∩ G[V1] to Alice. If Alice finds that
V (G1)∩V (G2∩G[V2]) 6= ∅, then Alice lets Bob know and they terminate the protocol.
Otherwise, they declare that the two graphs G1 and G2 do not intersect on any vertex
and stop.

First, we show the correctness of the protocol. If one of G1 or G2 is an empty graph,
there can be no vertex intersection and this is detected in step 1. By the definition of
hereditary graph families, G1[S] ∈ F1 and G2[S] ∈ F2. By definition of the two families,
this also means that G1[S] ∈ Cr and G2[S] ∈ I`. If V (G1[S]) ∩ V (G2[S]) 6= ∅, then the

73

subprotocol Πr,` correctly detects the intersection in step 2. Otherwise, V (G1) and V (G2)
can intersect either in V1 or in V2. If they intersect in V2, then the intersection is detected
in step 3. Otherwise, the intersection is detected in step 4. If neither of the above cases
happen, then V (G1)∩V (G2) = ∅. This is detected at the end of step 4. Thus, the protocol
is correct in computing GDISJG,F1,F2 .

Next, we show the bound on the communication complexity. Running the subprotocol
Πr,` to compute GDISJG[S],Cr,I`(G1[S], G2[S]) takes O(logr+` optGF1,F2

) bits. By definition,
G1 ∈ F1 and G[V2] ∈ F2. Then, by Corollary 4.3, |V (G1) ∩ V (G[V2])| < R(r + 1, ` + 1).
Thus, in step 3, Alice sends at most R(r + 1, ` + 1) log n bits to Bob. By a similar
argument, in step 4, Bob sends at most R(r + 1, `+ 1) log n bits to Alice. Therefore, the
communication complexity of Π is O(logr+`(optGF1,F2

) + log n).

In fact, as a corollary, this gives us a more nuanced bound on the communication com-
plexity of the CISG function.

Corollary 4.4. Let G be an n-vertex graph. Let optGC1,I1 be the size of a minimum set S
of vertices such that V (G) \ S has a bipartition (V1, V2) where G[V1] is a clique and G[V2]
is an independent set. Then there is a protocol for CISG that has O(log2(optGC1,I1) + log n)
communication complexity.

Suppose (F1,F2) is a pair of hereditary graph families that are not good. By Theorem 4.1,
for an n-vertex graph G, any protocol for GDISJG,F1,F2 must have communication com-
plexity Ω(n). This gives us the following corollary for our new notion of communication
protocols.

Corollary 4.5. Let (F1,F2) be a pair of hereditary graph families that have infinitely
many graphs in their intersection. Then, for each integer n > 0, there is a graph G such
that for any computable function f , there cannot be a protocol for GDISJG,F1,F2, that has
communication complexity f(optGF1,F2

) + o(n).

Proof. We give a proof by contradiction. Let Π be a protocol for GDISJG,F1,F2 , on any
n-vertex graph G, that has communication complexity f(optGF1,F2

) + o(n), for some com-
putable function f .

Let G = {G | G ∈ F1∩F2}. By the definition of hereditary graph families, every subgraph
of G belongs to G. This means that V (G) can always be bipartitioned into V1] V2 such
that G[V1] ∈ F1 and G[V2] ∈ F2. Then, for any graph G ∈ G, optGF1,F2

= 0. Since, by
definition, G is an infinite graph family, there are infinitely many non-negative integers n,
such that an n-vertex graph G belongs to G. Consider any integer n0 > 0. There must
be an integer n > n0 such that an n-vertex graph G belongs to F1 ∩F2. Since F1 and F2

are hereditary families, F1 ∩ F2 is also a hereditary graph family. Hence, any n0-vertex
induced subgraph of G belongs to F1 ∩ F2. Therefore, (i) for any integer n > 0, there is
an n-vertex graph G in the intersection family F1 ∩ F2 and (ii) F1 ∩ F2 is a hereditary
family. This means, for such a graph G, any subgraph H is in the family F1 as well as in
the family F2. We prove that D(GDISJG,F1,F2) = Ω(n) by giving a simple reduction from
DISJn. In DISJn, Alice is given x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n and they want to
check whether there is an i ∈ [n] such that x[i] = y[i] = 1. Now we create an instance of
GDISJG,F1,F2 as follows. We fix an n-vertex graph G ∈ F1∩F2, with V (G) = {v1, . . . , vn}.
Let Vx = {vi ∈ V (G) | i ∈ [n], x[i] = 1} and Vy = {vi ∈ V (G) | i ∈ [n], y[i] = 1}.

74

Since G ∈ F1 ∩ F2, G[Vx] ∈ F1 and G[Vy] ∈ F2. In the GDISJG,F1,F2 problem, Alice gets
G[Vx] and Bob gets G[Vy]. Clearly Vx ∩ Vy 6= ∅ if and only if there is an i ∈ [n] such
that x[i] = y[i] = 1. Hence, by Proposition 4.1, D(GDISJG,F1,F2) = Ω(n). However, the
protocol Π computes GDISJG,F1,F2 using f(0) + o(n) = o(n) bits, which is a contradiction.
Therefore, no such protocol Π exists.

4.3.4 Parameterizing by degeneracy

In Section 4.3.1, we considered a pair of graph families (Cr, I`) and gave a communication
protocol for GDISJG,Cr,I` of cost O(logr+` n). In this section, we exhibit a special case
of sparse and dense graphs, where there is a protocol, for the disjointness problem, with
communication complexity O(log2 n). A d-degenerate graph is an undirected graph in
which every induced subgraph has a vertex of degree at most d. We consider the pair
of families (C1,D`), where D` is the set of all `-degenerate graphs and C1 is the set of
all complete graphs. Note that D0 is the family of independent sets. Hence, this is
still a generalisation of the Clique vs Independent Set problem. The following two
observations are useful for our protocol.

Observation 4.3. Let H be a d-degenerate graph. Then, ω(H) ≤ d.

Observation 4.4. Let H be a d-degenerate n-vertex graph. For i ∈ {0, 1, . . . , 2d}, let
Vi = {v ∈ V (H) | dH(v) = i}. Let V≤4d =

⋃
0≤i≤4d Vi. Let V>4d = {v ∈ V (H) | dH(v) ≥

4d+ 1}. Then |V≤4d| ≥ n/2.

Proof. It is well known that in a d-degenerate graph there are at most dn edges. By
the Handshaking Lemma, Σv∈V≤4d

dG(v) + Σv∈V>4d
dG(v) ≤ 2dn. Suppose, for the sake

of contradiction, that n/2 > |V≤4d|. This implies that |V>4d| ≥ n/2. We know that
Σv∈V>4d

dG(v) ≥ (4d+ 1)|V>4d| ≥ (4d+ 1)n2 . This means that Σv∈V>4d
dG(v) ≥ 2dn+ 1

2n >
2dn. However, this is a contradiction to the fact that Σv∈V≤4d

dG(v)+Σv∈V>4d
dG(v) ≤ 2dn.

Hence, it must be the case that |V≤4d| ≥ n/2.

Now we are ready to prove the following theorem regarding the communication complexity
of GDISJG,C1,D`

.

Theorem 4.3. For any constant ` ∈ N, D(GDISJG,C1,D`
) = O(` log2 n), where n = |V (G)|.

Proof. We design a protocol for GDISJG,C1,D`
with the required cost. Here G is a fixed

graph known to both Alice and Bob. Alice gets an induced subgraph G1 of G and Bob
gets an induced subgraph G2 of G such that G1 is a clique and G2 is `-degenerate. The
following is the protocol that Alice and Bob will execute. Alice and Bob continue with the
protocol till either they detect a vertex in the intersection of V (G1) and V (G2), or one of
G, G1 and G2 becomes an empty graph. The two players choose to execute a step only if
the previous steps are not applicable.

75

1. If G1 or G2 is an empty graph, then they declare that V (G1) ∩ V (G2) = ∅ and stop.

2. Alice looks for a vertex v ∈ V (G1) with dG(v) ≥ n/2. Alice sends the vertex v to Bob.
If v ∈ V (G2), then Bob lets Alice know and they terminate the protocol. Otherwise,
both players delete the vertices of NG(v)∪{v} from the graph G to obtain graph G′ =
G− (NG(v)∪ {v}). Alice defines G′1 = G1 − {v} while Bob defines G′2 = G2 −NG(v).
Then, they continue the protocol for determining whether V (G′1) ∩ V (G′2) = ∅ in G′.

3. Suppose Alice cannot find such a vertex v. Then Bob looks for a vertex v ∈ V (G2)
with dG2(v) ≤ 4` and dG(v) ≥ n/2. Bob sends NG2 [v] to Alice. If NG2 [v]∩V (G1) 6= ∅,
then Alice lets Bob know and they terminate the protocol. Otherwise, both players
modify the graph G by deleting the vertices of NG[v]. They also modify their respective
graphs G1 and G2 by deleting the vertices of NG[v] from them. Then, they run the
protocol with the new graphs.

4. Suppose neither player is successful. Let A′ = {w ∈ V (G2) | dG2(w) ≤ 4`}. Alice
and Bob run this protocol, as a subprotocol, to determine whether there is any vertex
intersection for G1−A′ and G2. If they find any vertex intersection, then they declare
that there is a vertex intersection in V (G1) and V (G2). Otherwise, they declare that
V (G1) ∩ V (G2) = ∅ and stop.

We show the correctness of the protocol by induction on |V (G)| + |V (G2)|. In the base
case when |V (G)|+ |V (G2)| = 0, the graph G is an empty graph, and the protocol returns
the correct answer in step 1. Suppose that the protocol correctly solves GDISJG′,C1,D`

, for
all G′ such that |V (G′)| < n. Now, consider a graph G on n vertices. Let G1 ∈ C1 and
G2 ∈ D` be the respective induced subgraphs of G given to Alice and Bob. If G1 or G2 is
an empty graph, then the protocol gives the correct answer in step 1. Otherwise, we have
the following cases.

1. Let there be a vertex v ∈ V (G1) with dG(v) ≥ n/2. Alice sends the vertex v
to Bob. If v is also contained in V (G2), then protocol gives the correct answer
in step 2. Otherwise, it is true that V (G1) ∩ NG(v) = ∅. This also means that
(V (G1)∩V (G2))∩ (NG(v)∪{v}) = ∅. Thus, now it is enough to determine whether
there is a vertex in NG(v) that belongs to both V (G1) and V (G2). This is equivalent
to running the protocol on G′ = G − (NG(v) ∪ {v}) for the induced subgraphs
G′1 = G1 − (NG(v) ∪ {v}) and G′2 = G2 − (NG(v) ∪ {v}). Notice that, since C1 and
D` are hereditary families, G′1 ∈ C1 and G′2 ∈ D`. Thus by induction hypothesis, the
protocol gives correct answer in step 2.

2. Suppose the first case does not hold. Also, let there be a vertex v ∈ V (G2) with
dG2(v) ≤ 4` and dG(v) ≥ n/2. Bob sends NG2 [v] to Alice. If NG2 [v] ∩ V (G1) 6= ∅,
then the protocol gives correct answer in step 3. Otherwise, (V (G1) ∩ V (G2)) ∩
(NG[v]) = ∅. So, now it is enough to determine whether there is a vertex in NG(v)
that belongs to both V (G1) and V (G2). This is equivalent to running the protocol
on G′ = G−NG[v] for the induced subgraphs G′1 = G1−NG[v] and G′2 = G2−NG[v].
Thus by induction hypothesis, the protocol gives correct answer in step 3.

3. Suppose the first two cases do not hold. Every vertex v ∈ V (G1) has dG(v) < n/2.
Also, let A′ = {w ∈ V (G2) | dG2(w) ≤ 4`}. Then every vertex w ∈ A′ has dG(w) <
n/2. By Observation 4.1, it is true that V (G1) ∩ A′ = ∅. Hence, it is enough to

76

determine whether V (G1) and V (G2) \ A′ intersect. We determine whether V (G1)
and V (G2) \ A′ intersect by running the protocol on G for the induced subgraphs
G1 and G2 − A′. Since G2 is an `-degenerate graph, A′ 6= ∅. Hence, by induction
hypothesis, the protocol gives the correct answer in step 4.

Now we prove the cost of the protocol. In step 2 Alice sends log n bits and in step 3
Bob sends 4` log n bits. In step 2 and 3, the cardinality of the new graph reduces by 1/2
fraction of the original number of vertices in the graph. In step 4, by Observation 4.4,
the number of vertices in G2 − A′ is at most 1

2 |V (G2)|. Thus after O(log n + log |G2|)
rounds, either the graph G becomes an empty graph or one of the induced subgraphs held
by Alice of Bob becomes an empty graph. This implies that the cost of the protocol is
O(` log2 n)

4.4 Separating families

In this section, we design enumeration algorithms for separating families for a good pair
of graph families. It was stated in [Lovász 1990] that a non-deterministic protocol for
GDISJG,F1,F2 corresponds to a (F1,F2)-separating family. This means that if GDISJG,F1,F2

has non-deterministic, and hence deterministic, complexity c, then there exists a (F1,F2)-
separating family of size 2c. From Corollary 4.2 and Lemma 4.2, this means that, for
an n-vertex graph, there exists a (F1,F2)-separating family of size 2O(logr+` n), for some
constants r, `. However, this does not mean that there is an enumeration algorithm that
finds such a separating family in time 2O(logr+` n)nO(1)

. First, for an n-vertex graph G,
we see an algorithm to enumerate a (Cr, I`)-separating family of size 2O(logr+` n), in time

2O(logr+` n)nO(1). Then, for a good pair (F1,F2) of graph families, we utilize the structure
of the input graph G, to give a different approach to designing enumeration algorithms for
(F1,F2)-separating families. Finally, we revisit the pair of graph families studied in Sec-

tion 4.3.4. We find a (D0,D`))-separating family of size 2O(` log2 n) in time 2O(` log2 n)nO(1).

4.4.1 Separating families for Sparse and Dense graphs

In this subsection, we give, for an n-vertex graph, an algorithm of running time 2O(log3 n),
which enumerates a (C1, I2)-separating family of cardinality 2O(log3 n). In fact, the algo-
rithm follows the steps of the protocol Π1,2. It is known that we can enumerate a (C1, I1)-

separating family F1,1 of cardinality 2(log2 n)/2 in time 2(log2 n)/2nO(1) (see [Lovász 1990]
and [Cygan 2013]). An enumeration algorithm for a (Cr, I`)-separating family can be ob-
tained by a direct generalisation of our algorithm for enumerating a (C1, I2)-separating
family.

Lemma 4.3. Every graph with n vertices has a (C1, I2)-separating family F1,2 of 2O(log3 n)

sets. Moreover, such a family can be found in time 2O(log3 n).

Proof. For an n-vertex graph H, we use F1,1(H) to denote a (C1, I1)-separating family

for H, of cardinality 2(log2 n)/2, enumerated in time 2(log2 n)/2nO(1). We give a recursive
algorithm to enumerate a (C1, I2)-separating family. Let G be the input graph on n

77

vertices. The steps are described in Algorithm 1. First, the set of all vertices with non-
degree strictly less than n/2 is included as a set in our (C1, I2)-separating family F . Then,
if there is a vertex v in G1 with non-degree at least n/2, then a (C1, I2)-separating family
Sv is recursively found for G − NG(v). This separating family is included in F . On the
other hand, if there is a vertex in G2 with degree at least n/2, then a (C1, I1)-separating
family, F1,1(G[NG(v)]), is found for G[NG(v)]. Also, a (C1, I2)-separating family Sv is
recursively found for G − NG(v). In F , we include all possible of unions, of a set taken
from Sv and a set taken from F1,1(G[NG(v)]). In the end, we return the family F as the
potential separating family.

Algorithm 1: SepEnumeration(G)

Input: G
Output: A family F of vertex subsets
S := {v | dG(v) < n/2}
F := {S}
for each vertex v ∈ V (G) with dG(v) ≥ n/2 do

Sv := SepEnumeration(G−NG(v))
F := F ∪ {A | A ∈ Sv}

end
for each vertex v ∈ V (G) with dG(v) ≥ n/2 do

Compute F1,1(G[NG(v)])
Sv := SepEnumeration(G−NG(v))
F := F ∪ {A ∪B | A ∈ Sv, B ∈ F1,1(G[NG(v)])}

end
return F .

We need to show that the family F is the required separating family. Suppose we are
given a pair (G1, G2) with V (G1) ∩ V (G2) = ∅. We prove that there is a separating set
A ∈ F such that V (G1) ⊆ A and V (G2) ∩ A = ∅. We show this by induction on |V (G)|.
In the base case, suppose that the graph G is an empty graph. It is trivially true that
V (G1) ∩ V (G2) = ∅ and ∅ is a separating set. In this case, F = {∅} (because of Step 1).
Now, assume that the algorithm is correct for any graph G with |V (G)| < n. Consider
the case where |V (G)| = n. The following cases can occur:

1. Suppose there is a vertex v ∈ V (G1) with dG(v) ≥ n/2. We know that V (G1) ∩
NG(v) = ∅. Thus, in the graph G′ = G[NG(v)], {∅} is a separating set for G1 ∩G′
and G2 ∩ G′. Then, for any separating set A for G′1 = G1 − NG(v) = G1 and
G′2 = G2 − NG(v) in the graph G′′ = G − NG(v), A is a separating set for G1

and G2. The graph G′′ has strictly less number of vertices than G. By induction
hypothesis, the family Sv, computed in Step 1, contains a separating set A for G′1
and G′2. Then, A, included in F in Step 1, is the desired separating set for G1 and
G2.

2. Suppose there is a vertex v ∈ V (G2) with dG(v) ≥ n/2. If B is a separating set
for G[NG(v)] ∩ G1 and G[NG(v)] ∩ G2 in G[NG(v)], and A is a separating set for
G1 − NG(v) and G2 − NG(v) in G − NG(v), then A ∪ B is a separating set for G1

and G2 in G. By Observation 4.2, ω(G[NG(v)] ∩ G2) ≤ 1. We also know that
α(G[NG(v)] ∩ G1) ≤ 1. Hence, F1,1(G[NG(v)]) contains a separating set B for
G[NG(v)] ∩G1 and G[NG(v)] ∩G2. Let G′ = G−NG(v). The graph G′ has strictly
less number of vertices than G. By induction hypothesis, the family Sv contains a

78

separating set A for G1 −NG(v) and G2 −NG(v). Then, A∪B, included in Step 1,
is the desired separating set for G1 and G2.

3. Suppose neither of the above conditions hold. Then every vertex v ∈ V (G1) has
dG(v) < n/2, while every vertex w ∈ V (G2) has dG(w) < n/2. Then by Observa-
tion 4.1, the set S := {v | dG(v) < n/2} is a separating set for G1 and G2, which is
included in F in Step 1.

Thus, we have proved the correctness of the algorithm. Notice that, whenever we make
a recursive call, we reduce the vertex set of G to at most half. Let S(n) be the size of

the family F that is output. Then the recurrence formula S(n) ≤ n2(log2 n)/2 · S(n/2) + 1

holds. The recurrence for S(n) solves to 2O(log3 n). A similar recurrence for the running
time gives us the required running time bound.

Corollary 4.6. Every graph G with n vertices has a (C2, I1)-separating family of cardi-

nality 2O(log3 n). Such a family can be enumerated in 2O(log3 n) time.

Proof. For each F ∈ F1,2 we take V (G)−F into F2,1. Consider induced subgraphs G1, G2

of G, such that G1 ∈ C2 and G2 ∈ I1. Then in G, G2 ∈ C1 and G1 ∈ I2. If F is a
separating set for G2 and G1, then V (G2) ⊆ F and V (G1) ∩ F = ∅. This implies that
V (G1) ⊆ V (G) − F while V (G2) ∩ (V (G) − F) = ∅. Thus, V (G) − F is a separating set
for G1 and G2. Thus, we have constructed a (C2, I1)-separating family.

We can enumerate a (Cr, I`)-separating family of size 2O(logr+` n) using (Cr−1, I`)- and
(Cr, I`−1)-separating families, by generalising the above enumeration algorithm for the
(C1, I2)-separating family. Thus, we get the following theorem.

Lemma 4.4. For any r, ` ∈ N, every graph with n vertices has a (Cr, I`)-separating family

of cardinality 2O(logr+` n). Moreover, such a family can be enumerated in time 2O(logr+` n).

Proof. We prove the Theorem by induction on r + `. Both r, ` > 0. When r + ` = 2,
then r = ` = 1 and, from [Cygan 2013], we get our desired separating family F1,1. When
r + ` = 3, either r = 1, ` = 2 or r = 2, ` = 1. From Lemma 4.3 and Corollary 4.6, we get
the desired separating families.

We assume that we have the desired separating families when r+ ` < m, for some positive
integer m. Now suppose we are given the pair r, ` such that r + ` = m.

For an n-vertex graph H, and positive constants r′, `′ such that r′+`′ < m, we use Fr′,`′(H)

to denote a (Cr′ , I`′)-separating family for H, of cardinality 2O(logr′+`′ n), enumerated in

time 2O(logr′+`′ n)nO(1). By induction hypothesis, such a separating family can be found.

We give a recursive algorithm to enumerate a (Cr, I`)-separating family. Let G be the
input graph on n vertices. Our steps are described in Algorithm 2. First, the set of
all vertices with non-degree strictly less than n/2 is included as a set in our (Cr, I`)-
separating family F . Then, if there is a vertex v in G1 with non-degree at least n/2, then
a (Cr−1, I`)-separating family, Fr−1,`(G[NG(v)]), is found for G[NG(v)]. Also, a (Cr, I`)-
separating family Sv is recursively found for G − NG(v). In F , we include all possible
of unions, of a set taken from Sv and a set taken from Fr−1,`(G[NG(v)]). On the other
hand, if there is a vertex in G2 with degree at least n/2, then a (Cr, I`−1)-separating

79

Algorithm 2: SepEnumeration(G)

Input: G
Output: A family F of vertex subsets
S := {v | dG(v) < n/2}
F := {S}
for each vertex v ∈ V (G) with dG(v) ≥ n/2 do

Compute Fr−1,`(G[NG(v)])
Sv := SepEnumeration(G−NG(v))
F := F ∪ {A ∪B | A ∈ Sv, B ∈ Fr−1,`(G[NG(v)])}

end
for each vertex v ∈ V (G) with dG(v) ≥ n/2 do

Compute Fr,`−1(G[NG(v)])
Sv := SepEnumeration(G−NG(v))
F := F ∪ {A ∪B | A ∈ Sv, B ∈ Fr,`−1(G[NG(v)])}

end
return F .

family, Fr,`−1(G[NG(v)]), is found for G[NG(v)]. Also, a (Cr, I`)-separating family Sv is
recursively found for G − NG(v). In F , we include all possible of unions, of a set taken
from Sv and a set taken from Fr,`−1(G[NG(v)]). In the end, we return the family F as the
potential separating family.

We need to show that the family F is the required separating family. Suppose we are
given a pair (G1, G2) with V (G1) ∩ V (G2) = ∅. We prove that there is a separating set
A ∈ F such that V (G1) ⊆ A and V (G2) ∩ A = ∅. We show this by induction on |V (G)|.
In the base case, suppose that the graph G is an empty graph. It is trivially true that
V (G1)∩V (G2) = ∅ and ∅ is a separating set, and F = {∅} in this case (because of Step 2).
Now, assume that the algorithm is correct for any graph G with |V (G)| < n. Consider
the case where |V (G)| = n. The following cases can occur:

1. Suppose there is a vertex v ∈ V (G1) with dG(v) ≥ n/2. If B is a separating set
for G[NG(v)] ∩ G1 and G[NG(v)] ∩ G2 in G[NG(v)], and A is a separating set for
G1 −NG(v) and G2 −NG(v) in G −NG(v), then A ∪ B is a separating set for G1

and G2 in G. By Observation 4.2, α(G[NG(v)] ∩ G1) ≤ r − 1. We also know that
ω(G[NG(v)] ∩ G2) ≤ `. Hence, Fr−1,`(G[NG(v)]) contains a separating set B for
G[NG(v)]∩G1 and G[NG(v)]∩G2. Let G′ = G−NG(v). The graph G′ has strictly
less number of vertices than G. By induction hypothesis, the family Sv contains a
separating set A for G1−NG(v) and G2−NG(v). Then, A∪B is included in Step 2.
This is the desired separating set for G1 and G2.

2. Suppose there be a vertex v ∈ V (G2) with dG(v) ≥ n/2. If B is a separating set
for G[NG(v)] ∩ G1 and G[NG(v)] ∩ G2 in G[NG(v)], and A is a separating set for
G1 − NG[v] and G2 − NG[v] in G − NG[v], then A ∪ B is a separating set for G1

and G2 in G. By Observation 4.2, ω(G[NG(v)] ∩ G2) ≤ ` − 1. We also know that
α(G[NG(v)] ∩ G1) ≤ r. Hence, Fr,`−1(G[NG(v)]) contains a separating set B for
G[NG(v)] ∩G1 and G[NG(v)] ∩G2. Let G′ = G−NG[v]. The graph G′ has strictly
less number of vertices than G. By induction hypothesis, the family Sv contains a
separating set A for G1−NG[v] and G2−NG[v]. Then, A∪B is included in Step 2.
This is the desired separating set for G1 and G2.

80

3. Suppose neither of the above conditions hold. Then every vertex v ∈ V (G1) has
dG(v) < n/2, while every vertex w ∈ G2 has dG(w) < n/2. Then, by Observation 4.1,
the set S := {v | dG(v) < n/2} is a separating set for G1 and G2. This set is included
in F in Step 2.

Thus, we have proved the correctness of the algorithm.

Notice that, whenever we make a recursive call, we reduce the vertex set of G to at least
half. Let S(n) be the size of the family F that is output. Then the recurrence formula

S(n) ≤ n2c(logr+`−1 n) · S(n/2) + 1 holds, where c is a constant. The recurrence for S(n)

solves to 2O(logr+` n). A similar recurrence for the running time gives us the required upper
bound on the running time of the algorithm.

Lemma 4.4 and Corollary 4.2 gives us the following Corollary.

Corollary 4.7. Let F1 and F2 be a good pair of graph families. Then, there are constants
r and `, such that every n-vertex graph has a (F1,F2)-separating family of cardinality

2O(logr+` n) and it can be enumerated in time 2O(logr+` n).

In fact, we obtain Theorem 4.4 from Lemma 4.4 and Corollary 4.2.

4.4.2 Separating families and parameterization

We give the proof of Theorem 4.5. We show that the upper bound obtained due to
Corollary 4.7 can be improved if we use ideas from Parameterized Complexity, as we did
for Theorem 4.2. This is extremely useful for designing FPT algorithms. To show this,
we first prove the following lemma.

Lemma 4.5. Let (F1,F2) be a good pair of graph families. Given, as input, G,S ⊆ V (G)
and partition V1] V2 of V (G) \ S such that G[V1] ∈ F1 and G[V2] ∈ F2, there is an
algorithm to enumerate (F1,F2)-separating family S for G of cardinality 2O(logc(|S|))nO(1)

in time 2O(logc(|S|))nO(1), where c is a constant.

Proof. The proof of this Lemma follows the idea of the protocol built in Theorem 4.2. We
know that G[V1] ∈ F1 and G[V2] ∈ F2. Since (F1,F2) is a good pair of graph families,
by Corollary 4.2, we know that there are constants r, `, such that for any G1 ∈ F1 and
G2 ∈ F2, ω(G1) ≤ r and α(G2) ≤ `. Let us define c = r + `. By Lemma 4.4, the graph

G[S] has a (F1,F2)-separating family S ′ of cardinality 2O(logr+` |S|). Moreover, such a

family can be enumerated in time 2O(logr+`(|S|)). Now consider the following family.

S =
{
A ∪ (V1 \ S1) ∪ S2 | A ∈ S ′,∀i ∈ {1, 2} : Si ⊆ Vi, |Si| < R(r + 1, `+ 1)

}
The cardinality of S is bounded by 2O(logc(|S|))nO(2R(r+1,`+1)) and it can be enumerated
in time 2O(logc(|S|))nO(2R(r+1,`+1)). We show that S is indeed a (F1,F2)-separating family
for G. Consider any disjoint vertex subsets U1 and U2 of V (G) such that G[U1] ∈ F1 and
G[U2] ∈ F2. We need to show that there is a set T ∈ S such that U1 ⊆ T and T ∩U2 = ∅.
Since the two families F1 and F2 are hereditary, G[U1∩S] ∈ F1 and G[U2∩S] ∈ F2. Since
S ′ is a (F1,F2)-separating family for G[S] there is a set A ∈ S ′ such that S ∩ U1 ⊆ A

81

and (S ∩ U2) ∩ A = ∅. Since G[U1], G[V1] ∈ F1 and G[U2], G[V2] ∈ F2, by Corollary 4.3,
we know that |U1 ∩ V2| < R(r + 1, ` + 1) and |U2 ∩ V1| < R(r + 1, ` + 1). Now consider
the set T = A ∪ (V1 \ (U2 ∩ V1)) ∪ (U1 ∩ V2). Since |U1 ∩ V2| < R(r + 1, ` + 1) and
|U2 ∩ V1| < R(r + 1, ` + 1), by the definition of S, T ∈ S. Notice that U1 ⊆ T and
U2 ∩ T = ∅. Hence, S is a (F1,F2)-separating family for G.

Lemma 4.5 gives us Theorem 4.5. Suppose there was an approximation algorithm A for
(F1,F2)-Partition, where the approximation factor is defined by a computable function
f depending only on the size of an optimal solution, and let the running time of A be
T (n) on an n-vertex input graph. Then, a (F1,F2)-seperating family, for G, of cardinality

2
O(logc f(optGF1,F2

))
nO(1) can be enumerated in time 2O(logc f(opt))nO(1), where c is the same

constant as in Theorem 4.5. We would like to remark that the constant c in Theorem 4.5
is at most r + `.

4.4.3 Separating families when parameterized
by degeneracy

In this subsection we consider the pair of graph families (C1,D`), where C1 is the family of
complete graphs. The protocol described in Section 4.3.4 shows that D(GDISJG,C1,D`

) =

O(` log2 n). In this section, we give an enumeration algorithm for a 2O(` log2 n)-sized

(C1,D`)-separating family in time 2O(` log2 n)nO(1). The enumeration algorithm is described
below.

Lemma 4.6. For any constant ` ∈ N, there is an algorithm to enumerate a (C1,D`)-
separating family for an n-vertex graph, of cardinality nO(` logn), in time nO(` logn).

Proof. We give a recursive algorithm. Let G be a graph on n vertices. We describe the
steps in Algorithm 3.

The algorithm runs for a recursion depth of at most j, for an input graph G. It recursively
builds a family F of vertex subsets. First, we include ∅ in F . Next, if there is a vertex
v with non-degree at least n/2, then the algorithm recursively finds a family Sv of vertex
sets of G − NG(v), within a recursion depth of j − 1. All sets in Sv are included in F .
On the other hand, suppose there is a vertex v with degree at least n/2. The family Fv,
of all 4`-sized subsets of NG[v], is computed. Based on this, the family F ′v, containing all
possible sets NG[v]−F where F ∈ Fv, is computed. Then, the algorithm recursively finds
a family Sv of vertex sets of G − NG[v], within a recursion depth of j − 1. For any set
from Sv and any set from F ′v, we put the union of the pair of sets into F . Finally, let V ′

be the set of vertices in G that have non-degree strictly greater than n/2. The algorithm
recursively finds a family of vertex sets of G−V ′, within a recursion depth of j−1. All sets
of this family is included in F . With this, the computation of the family F is complete.

We show that the family F , given as output in step 3 of SepEnum(G, 2dlog |V (G)|e), is
the required separating family. In the proof, we have also used SepEnum(G, j) to denote
the output family of the same problem instance.

First, we show the following Claim.

Claim 4.1. Let G be a graph, and j be a positive integer. Then, SepEnum(G, j − 1) ⊆
SepEnum(G, j).

82

Algorithm 3: SepEnum(G, j)

Input: G, j
Output: A family F of vertex subsets
F = {∅}
if j = 0 then

return F
end

for each vertex v ∈ V (G) with dG(v) ≥ n/2 do

Sv = SepEnum(G−NG(v), j − 1)
F = F ∪ {A | A ∈ Sv}

end
for each vertex v ∈ V (G), dG(v) ≥ n/2 do
Fv = {F | F ⊆ NG[v], v ∈ F, |F | ≤ 4`,G[F] ∈ D`}
F ′v = {NG[v] \ F | F ∈ Fv}
Sv = SepEnum(G−NG[v], j − 1)
F = F ∪ {A ∪B | A ∈ Sv, B ∈ F ′v}

end

V ′ = {v|dG(v) ≥ n/2}
F = F ∪ SepEmuneration(G− V ′, j − 1)
return F

Proof. We prove this by induction on j. In the base case, j = 1. We know that when
j = 0, SepEnum(G, 0) = {∅}. By definition, ∅ ∈ SepEnum(G, 1). Therefore, the base case
is true. By induction hypothesis, for all 1 ≤ i < j, let it be true that for any graph G,
SepEnum(G, i− 1) ⊆ SepEnum(G, i).

Now, we deal with the case for j. Take a graph G, and a set A ∈ SepEnum(G, j − 1). We
show by case analysis, that A must also belong to SepEnum(G, j).

1. Let A = ∅. Then, by step 3, A ∈ SepEnum(G, j).

2. Let A be added to SepEnum(G, j − 1) in step 3. By definition, there is a vertex
v ∈ V (G) with dG(v) ≥ n/2 and G′ = G−NG(v) such that A ∈ SepEnum(G′, j−2).
By induction hypothesis, A ∈ SepEnum(G′, j−1). Then, in step 3 of SepEnum(G, j),
A is included.

3. Let A be added to SepEnum(G, j − 1) in step 3. By definition, there is a vertex v ∈
V (G), dG(v) ≥ n/2, a set B′ ∈ F ′v (step 3), and a set A′ ∈ SepEnum(G−NG[v], j−2)
such that A = A′ ∪ B′. By induction hypothesis, A′ ∈ SepEnum(G −NG[v], j − 1).
Then, in step 3 of SepEnum(G, j), A is included.

4. Let A be added to SepEnum(G, j − 1) in step 3. Then, A belongs to SepEnum(G−
V ′, j− 2). By induction hypothesis, A ∈ SepEnum(G−V ′, j− 1). Then, in step 3 of
SepEnum(G, j), A is included.

Thus, we have proved the claim.

Next, we show that for any graph G on n vertices, and a pair of induced subgraphs G1, G2

with V (G1)∩ V (G2) = ∅, SepEnum(G, dlog |V (G)|e+ dlog |V (G2)|e) contains a separating

83

set for G1, G2. We show this by double induction on |V (G)| and |V (G2)|. In the base
case, suppose that either the graph G is an empty graph or the graph G2 is an empty
graph. Then, it is trivially true that V (G1)∩ V (G2) = ∅ and ∅ is a separating set. As the
separating family F contains ∅, because of step 3, the induction hypothesis is trivially true.
Now, assume that the algorithm is correct for |V (G)| < n, |V (G2)| < m ≤ n. Consider
the cases where |V (G)| = n or |V (G2)| = m. The following cases can occur:

1. If there is a vertex v ∈ V (C) such that dG(v) ≥ n/2, we know that NG(v)∩V (G1) =
∅. Therefore, there is no vertex intersection of G[NG(v)]∩G1 and G[NG(v)]∩G2. It
remains to separate G′1 = G1 and G′2 = G2 −NG(v) in the graph G′ = G−NG(v).
G′ has a strictly smaller vertex set than G. Hence, by the induction hypothesis, it
must be true that SepEnum(G′, dlog |V (G′)|e+ dlog |V (G′2)|e) contains a separating
set A for G′1, G

′
2. Then, A is a separating set for G1, G2. This set is included in

F due to step 3. The number of recursive steps to obtain this separating set is
at most 1 + dlog |V (G′)|e + dlog |V (G′2)|e. Since, the number of vertices is V (G′)
is at most half of the number of vertices in V (G), the number of recursive steps
to obtain this separating set is at most 1 + (dlog |V (G)|e − 1) + dlog |V (G2)|e ≤
dlog |V (G)|e+ dlog |V (G2)|e. Thus, we have proved the induction hypothesis in this
case.

2. Suppose, there is a vertex v ∈ V (G2) such that dG2(v) ≤ 4` and dG(v) ≥ n/2. By
definition of `-degenerate graphs G[NG2 [v]] is also an `-degenerate graph. By step 3,
NG2 [v] ∈ Fv and NG[v] \ NG2 [v] belongs to F ′v. We know that NG[v] \ NG2 [v] is a
separating set for G[NG[v]] ∩ G1 and G[NG[v]] ∩ G2. What remains is to separate
G′1 = G1 − NG[v] and G′2 = G2 − NG[v] in the graph G′ = G − NG[v]. G′ has
a strictly smaller vertex set than G. Hence, by the induction hypothesis, it must
be true that SepEnum(G′, dlog |V (G′)|e+ dlog |V (G′2)|e) contains a separating set A
for G′1, G

′
2. Then, A ∪ (NG[v] \ NG2 [v]) is a separating set for G1, G2. This set is

included in F in step 3. The number of recursive steps to obtain this separating
set is at most 1 + dlog |V (G′)|e + dlog |V (G′2)|e. Since, the number of vertices in
V (G′) is at most half of the number of vertices in V (G), the number of recursive
steps to obtain this separating set is at most 1 +(dlog |V (G)|e−1) + dlog |V (G2)|e ≤
dlog |V (G)|e+ dlog |V (G2)|e. Thus, we have proved the induction hypothesis in this
case.

3. Suppose neither of the above conditions hold. This means that each vertex v ∈
V (G1) has dG(v) < n/2. Thus, a vertex w of V (G1)∪V (G2), that satisfies dG(w) ≥
n/2, must come from V (G2). Now, a vertex u of degree at most 4` in V (G2), satisfies
dG(u) < n/2. By Observation 4.1 and the definition in step 3, such a vertex u belongs
to the vertex set V ′, while no vertex v ∈ V (G1) belongs to V ′. If we want to find a
separating set of G1, G2 of G, it is enough to find the separating set of G′1 = G1−V ′ =
G1 and G′2 = G2 − V ′ in G′ = G − V ′. G′ has a strictly smaller vertex set than
G. Hence, by the induction hypothesis, SepEnum(G′, dlog |V (G′)|e + dlog |V (G′2)|e)
contains a separating set A for G′1, G

′
2. Then, A is a separating set for G1, G2. Such

a separating set is included in F in step 3. The number of recursive steps to obtain
this separating set is at most 1 + dlog |V (G′)|e+ dlog |V (G′2)|e. By Observation 4.4,
the number of vertices in V (G′2) is at most 1

2 |V (G2)|. Thus, the number of recursive
steps to obtain this separating set is at most 1 + dlog |V (G)|e+ (dlog |V (G2)|e−1) ≤
dlog |V (G)|e+ dlog |V (G2)|e.
Thus, we have proved the induction hypothesis in this case.

84

Thus, the induction hypothesis is correct.

Claim 4.2. For any graph G, SepEnum(G, 2dlog |V (G)|e) is a (C1,D`)-separating family.

Proof. Given a graph G, for induced subgraphs G1 ∈ C1 and G2 ∈ D`, we showed that the
family SepEnum(G, dlog |V (G)|e + dlog |V (G2)|e) is a family of vertex subsets that con-
tains a separating set of G1 and G2. As G2 is an induced subgraph of G, dlog |V (G)|e +
dlog |V (G2)|e ≤ 2dlog |V (G)|e. From Claim 4.1, it is true that SepEnum(G, dlog |V (G)|e+
dlog |V (G2)|e) ⊆ SepEnum(G, 2dlog |V (G)|e). Thus, for any pair of induced subgraphs
G1 ∈ C1 and G2 ∈ D`, there must be a separating set of G1 and G2 in the fam-
ily SepEnum(G, 2dlog |V (G)|e). Thus, SepEnum(G, 2dlog |V (G)|e) is a (C1,D`)-separating
family.

This proves the correctness of the algorithm.

Notice that, whenever we make a recursive call, we reduce the vertex set of G to at
least half. Also, the recursion tree for this subproblem is allowed of depth strictly less
than that of the parent problem. Let S(n, j) be the size of the family F that is output
for SepEmuneration(G, j). Then the recurrence formula S(n, j) ≤ n`S(n/2, j − 1) holds.
In the base cases, S(1, j) = 1 and S(n, 0) = 1. The recurrence for S(n, j) solves to
2O(`j logn). Since we solve for SepEmuneration(G, 2dlog |V (G)|e), the size of the output

family is 2O(` log2 n). A similar recurrence for the running time gives us the required upper
bound on the running time of the algorithm.

4.5 Applications in Parameterized and Exact Algorithms

In this section we relate the results obtained in previous sections to exact and FPT algo-
rithms. The main result of this section is to show that the (F1,F2)-p-Partition problem
is FPT. In fact, we propose an algorithm strategy that might result in faster running
times than that of the best known algorithms for certain pairs (F1,F2).

4.5.1 Combinatorial bounds and Exact Algorithms

In this part, we provide combinatorial bounds on the number of maximal induced sub-
graphs that have a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2. We also
give a strategy to design an enumeration algorithm for all such maximal induced sub-
graphs. Similarly, we can find the maximum(minimum) size of such an induced subgraph.

Theorem 4.7. Let F1 and F2 be a good pair of graph families.

1. For a graph G on n vertices, let cni , i ∈ {1, 2}, be the size of the set of all maximal
induced subgraphs that belong to Fi. Then the size of the set of maximal induced
subgraphs that have a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2, is
at most 2o(n) max{c1, c2}n.

2. Let Ai, i ∈ {1, 2}, be an algorithm that takes in a graph G, of n vertices and m
edges, and enumerates the set of all maximal induced subgraphs that belong to Fi.
Let the running time of Ai, on a graph with n vertices and m edges, be ti(n + m).

85

Then, given an n-vertex graph G, in time 2o(n) max{t1(n + m), t2(n + m)}, we can
enumerate the set of maximal induced subgraphs that have a vertex bipartition (A,B),
where G[A] ∈ F1 and G[B] ∈ F2.

3. Let Ai, i ∈ {1, 2}, be an algorithm that takes in a graph G, of n vertices and m edges,
and finds the maximum(minimum)-sized induced subgraphs that belongs to Fi. Let
the running time of Ai, on a graph with n vertices and m edges, be ti(n+m). Then,
given an n-vertex graph G, in time 2o(n) max{t1(n+m), t2(n+m)}, we can obtain
a maximum(minimum)-sized induced subgraph that has a vertex bipartition (A,B),
where G[A] ∈ F1 and G[B] ∈ F2.

Proof. First, we prove the combinatorial bound of (1). From Corollary 4.7, there is a
(F1,F2)-separating family F for G, which is of size 2o(n) and which can be found in time
2o(n)nO(1). Consider a maximal induced subgraph H that has a vertex bipartition (A,B),
where G[A] ∈ F1 and G[B] ∈ F2. By definition of G[A] and G[B], there is a separating
set for these two graphs in F . Such a separating set, say F , contains all vertices of A,
and no vertices of B. Since A and B are disjoint, and H is a maximal induced subgraph,
it must be the case that G[A] is a maximal induced subgraph, belonging to F1, in G[F].
Similarly, G[B] must be a maximal induced subgraph, belonging to F2, in G[F]. Thus,
to obtain an upper bound, it is enough to count the number of induced subgraphs of G,
which have a vertex partition (A,B) such that G[A] ∈ F1, G[B] ∈ F2. Moreover, there
is a set F ∈ F which contains all vertices of A and none of the vertices of B. For each
F ∈ F , there are c

|F |
1 maximal induced subgraphs of G[F], that belong to F1. Similarly,

there are c
|V (G)−F |
2 maximal induced subgraphs of G − F , that belong to F2. Thus, for

this particular set F , there are max{c1, c2}n induced subgraphs of G, that have a vertex
bipartition (A,B), where G[A] ∈ F1, G[B] ∈ F2, A ⊆ F and B ⊆ V (G) \ F . Going over
all such sets, there are at most 2o(n) max{c1, c2}n such induced subgraphs of G. Thus,
there are at most 2o(n) max{c1, c2}n required maximal induced subgraphs in G.

Next, we give a proof for (2). First, we enumerate a (F1,F2)-separating family F for G,
using Corollary 4.7. For each set F in the separating family, we run A1 on G[F] and A2

on G[F]. Let Gi be the set of maximal induced subgraphs returned by the two algorithms.
Then, we build a family GF = {G1 ∪ G2 | G1 ∈ G1, G2 ∈ G2}. Let G =

⋃
F∈F GF . The

graphs in G are all graphs that have a vertex bipartition (A,B), where G[A] ∈ F1 and
G[B] ∈ F2. We show that this family contains all such maximal graphs.

Consider any maximal induced subgraph H that has a vertex bipartition (A,B), where
G[A] ∈ F1 and G[B] ∈ F2. By definition of G[A] and G[B], there is a separating set for
these two graphs in F . Such a separating set, say F , contains all vertices of A, and no
vertices of B. Since A and B are disjoint, and H is a maximal induced subgraph, it must
be the case that G[A] is a maximal induced subgraph, belonging to F1, in G[F]. Similarly,
G[B] must be a maximal induced subgraph, belonging to F2, in G[F]. By definition, the
union of the two subgraphs must be contained in GF , and therefore, in G.

Finally, we prune the collection G, by removing any graph G whose vertex set in completely
contained in the vertex set of a graph H ∈ G. By definition of maximality, no maximal
graph will be removed in this way. Since, all graphs in G had the desired vertex bipartition,
it is only possible that after the pruning, only the maximal graphs remain. Thus, we are
done.

Since the separating family is subexponential in size, the algorithm runs in time at most

86

2o(n) max{t1(n+m), t2(n+m)}.

Finally, we prove (3). First, we enumerate a (F1,F2)-separating family F for G, using
Corollary 4.7. For each set F in the separating family, we run A1 on G[F] and A2 on
G[F]. Let GFi be the maximum(minimum)-sized induced subgraphs returned by the two
algorithms. Then, we build a family G = {GF1 ∪ GF2 | F ∈ F}. The graphs in G are all
graphs that have a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2. We show
that a maximum(minimum)-sized graph in G, is a maximum(minimum)-sized induced
subgraph that has a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2.

On one hand, we show that there is a maximum(minimum)-sized induced subgraph, with
the required vertex bipartization, in G. Consider any maximum(minimum)-sized induced
subgraph H that has a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2. By
definition of G[A] and G[B], there is a separating set for these two graphs in F . Such
a separating set, say F , contains all vertices of A, and no vertices of B. Since A and B
are disjoint, and H is a maximum(minimum)-sized induced subgraph, it must be the case
that G[A] is a maximum(minimum)-sized induced subgraph, belonging to F1, in G[F].
Similarly, G[B] must be a maximum(minimum)-sized induced subgraph, belonging to F2,
in G[F]. By definition, there is a graph GF1 ∪GF2 ∈ G of size |G[A]|+ |G[B]|.

On the other hand, we show that a maximum(minimum)-sized induced subgraph in G has
the required vertex bipartition. Let G′ be a maximum(minimum)-sized graph in G. By
definition of the family, there is a family F ∈ F such that G′ = GF1 ∪GF2 . This graph has
a vertex bipartition (V (GF1), V (GF2)), where GF1 ∈ F1 and GF2 ∈ F2.

Thus, a maximum(minimum)-sized graph in G, is a maximum(minimum)-sized induced
subgraph that has a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2.

Since the separating family is subexponential in size, the algorithm runs in time at most
2o(n) max{t1(n+m), t2(n+m)}.

Some concrete examples are given below.

Corollary 4.8. Let F2 be the set of cliques. Let F2 be the set of all d-degenerate graphs, for
a constant d. Then, given an n-vertex graph G, in time (2−εd)O(n), we can enumerate the
set of maximal induced subgraphs that have a vertex bipartition (A,B), where G[A] ∈ F1

and G[B] ∈ F2. Here εd is a positive constant that depends only on d.

Proof. Given an n-vertex graph, all maximal induced cliques can be enumerated in time
3O(n/3) [Moon]. Similarly, all maximal induced d-degenerate graphs can be enumerated
in time (2− εd)O(n) [Pilipczuk 2012]. From Theorem 4.7, we get the desired result.

Corollary 4.9. Let F1 be the set of the complements of bipartite graphs, and F2 be the
set of bipartite graphs. Then, given an n-vertex graph G, in time 1.7724O(n), we can
enumerate the set of maximal induced subgraphs that have a vertex bipartition (A,B),
where G[A] ∈ F1 and G[B] ∈ F2. We can also find the maximum-sized induced subgraph
that has a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2.

Proof. Given an n-vertex graph, all maximal induced bipartite graphs can be enumerated
in time 1.7724O(n) [Byskov 2004]. Our result follows from Theorem 4.7.

87

Corollary 4.10. Let F1 be the set of all cliques and let F2 be the set of all r-regular graphs,
for a constant r. Then, when r ≥ 5, given an n-vertex graph G, we can enumerate in time
2O(1− 1

2r
), the set of maximal induced subgraphs that have a vertex bipartition (A,B), where

G[A] ∈ F1 and G[B] ∈ F2. When r ≤ 4, the running time of the enumeration algorithm
is 1.7635O(n).

Proof. It was shown in [Gupta 2012] that, for an n-vertex graph, when r ≤ 4, all maximal
induced r-regular graphs can be enumerated in time 1.7635O(n). On the other hand,
when r ≥ 5, all maximal induced r-regular graphs can be enumerated in time 2O(1− 1

2r
).

This, along with the result of [Moon] and Theorem 4.7, gives us the desired enumeration
algorithm.

Corollary 4.11. Let F1 be the set of the cliques, and F2 be the set of forests. Then, given
an n-vertex graph G, in time 1.8638O(n), we can enumerate the set of maximal induced
subgraphs that have a vertex bipartition (A,B), where G[A] ∈ F1 and G[B] ∈ F2.

Proof. By a result of [Fomin 2008], in an n-vertex graph, all maximal induced forests can
be enumerated in time 1.8638O(n). This result, together with the result of [Moon] and
4.7, gives us the desired enumeration algorithm.

4.5.2 Parameterized Algorithms

The question of what is the maximum size of an induced subgraph, that has a vertex
bipartition (A,B) with G[A] ∈ F1 and G[B] ∈ F2, brings us to the question of how ‘far’ a
graph is from becoming a graph with the desired bipartition. The (F1,F2)-p-Partition
problem addresses this question. In this part, we look at this problem and a technique to
solve this problem, when the pair of families are a good pair of families. The technique
we use is an adaptation of the popular iterative compression technique.

First, we make an Observation.

Observation 4.5. If an instance (G, k) is a YES instance of (F1,F2)-p-Partition,
then for any induced subgraph G′ ≤s G, (G′, k) is also a YES instance of (F1,F2)-p-
Partition.

Let F1 and F2 be a good pair of graph families, and for any positive integer k, the families
F1 +kv and F2 +kv have FPT recognition algorithms, that is, there are algorithms which
take as input a graph G and an integer k, decides whether G ∈ Fi + kv, i ∈ {1, 2} and
runs in time f(k)|V (G)|O(1). For ease of notation, if F1 and F2 be a good pair of graph
families, and the families F1 + kv and F2 + kv have FPT recognition algorithms, then we
call (F1,F2) an FPT-good pair of families.

We obtain a fast FPT algorithm for (F1,F2)-p-Partition by incorporating the iterative
compression technique. For more details about the algorithmic technique of iterative
compression we refer to the book (chapter 4 [Cygan 2015]).

Theorem 4.6. Let (F1,F2) be an FPT-good pair of families. Also, let A1 and A2 be
the best recognition algorithms for F1 + kv and F2 + kv respectively. For an n-vertex
input graph and non-negative integer k, let the running time of Ai, i ∈ {1, 2}, be Ti(n, k).

88

Then (F1,F2)-p-Partition on an instance (G, k) can be solved in time 2O(logc k)nO(1) ·
max{T1(n, k), T2(n, k)}.

Proof. Let (G, k) be an input instance. The algorithm is based on the iterative compression
technique. Due to Observation 4.5, the iterative compression technique is meaningful for
this problem. The iteration step is exactly as described in [Cygan 2015](chapter 4). This
step has also been demonstrated in previous chapters of this thesis. The description of
the compression problem and an algorithm to solve the same is given below.

The input of the compression problem is a graph G′ and a vertex set S ⊆ V (G′), of size at
most k + 1. The set S satisfies the property that there is a partition V1] V2 of V (G) \ S
such that G[V1] ∈ F1 and G[V2] ∈ F2. The compression problem outputs YES if there is
a vertex set S′ of size at most k such that there is a partition V ′1] V ′2 of V (G) \ S′ with
G[V ′1] ∈ F1 and G[V ′2] ∈ F2. Otherwise, the output is NO. Lemma 4.5 can be used to
solve the compression problem in time 2O(logc k)nO(1) · 2kmax{T1(n, k), T2(n, k)}.

By Lemma 4.5, we know that there is an enumeration algorithm which outputs a (F1,F2)-
separating family S of cardinality 2O(logc |S|)nO(1) in time 2O(logc |S|)nO(1). Now for each
S ∈ S and each pair of non-negative integers k1, k2 such that k1 + k2 ≤ k, we run A1

on (G[S], k1) and A2 on (G − S, k2). We output YES if both A1 and A2 output YES.
Otherwise our algorithm will output NO.

We show the correctness of the algorithm for the compression problem. Suppose the input
instance is a YES instance. Let S′ be a vertex set of size at most k such that there is a
partition V ′1]V ′2 of V (G)\S′ with G[V ′1] ∈ F1 and G[V ′2] ∈ F2. Let F ∈ S be a separating
set for the graphs G[V ′1] and G[V ′2]. Also, let |F ∩ S| = k1 with |(V (G) − F) ∩ S| = k1.
Since S is of size at most k, it must be the case that k1 + k2 = |S| ≤ k. When we run
A∞ on (G[F], k1) and A2 on (G−F, k2), we output YES for both the subproblems. This
means that we correctly detect that the input instance is a YES instance.

On the other hand, suppose there is a vertex set F ∈ S and a pair of integers k1, k2, with
k1 + k2 ≤ k, such that A1 on (G[F], k1) returns YES, and A2 on (G− F, k2) also returns
YES. Then there is a k1-sized vertex set S1 in G[F], such that G[F]−S1 ∈ F1. Also, there
is a k2-sized vertex set S2 in G−F such that (G−F)−S2 ∈ F2. This implies that there is
a vertex set of size at most k whole deletion results in a graph G′ with a vertex bipartition
V ′1] V ′2 = V (G′) such that G′[V ′1] ∈ F1 and G[V ′2] ∈ F2. Thus, the input instance was a
YES instance. Hence, the algorithm for the compression problem is correct.

The running time of the algorithm is bounded by 2O(logc |S|)nO(1)·max{T1(n, k), T2(n, k)} =
2O(logc k)nO(1) · 2kmax{T1(n, k), T2(n, k)}. Therefore, (F1,F2)-p-Partition, by iterative
compression, can be solved in 2O(logc k)nO(1) ·max{T1(n, k), T2(n, k)} time.

We obtain several corollaries from Theorem 4.6. The Vertex (2, 2) Partization prob-
lem [Kolay 2015b, Baste 2015] is exactly (F1,F2)-p-Partition, when F1 is the set of
bipartite graphs and F2 is the set of complements of bipartite graphs. The previous best
running time for the problem is 3.3146k|V (G)|O(1) [Kolay 2015b, Baste 2015] and has been
described in Chapter 2.

Corollary 4.12. Vertex (2, 2) Partization can be solved in time 2.3146k|V (G)|O(1).

Proof. Let F1 be the family of bipartite graphs and F2 be the family of complement

89

graphs of bipartite graphs. The pair (F1,F2) is a good pair of families. By definition of
the problem, recognition algorithms for F1 + kv and F2 + kv are equivalent to the Odd
cycle transversal problem. The best known algorithm for Odd cycle transversal
is 2.3146k|V (G)|O(1) [Lokshtanov 2014]. Then, by Theorem 4.6, we have an algorithm for
Vertex (2, 2) Partization, running in time 2.3146k|V (G)|O(1).

Corollary 4.13. Consider (F1,F2)-p-Partition where F1 is the set of cliques, and F2

is the set of planar graphs. This problem can be solved in time 2O(k log k)|V (G)|O(1).

Proof. The pair (F1,F2) is a good pair of families. A recognition algorithm for F1 + kv is
equivalent to solving Vertex Cover in the complement graph. A recognition algorithm
for F2 + kv is equivalent to the Planar Vertex Deletion problem. The best known
algorithm for Vertex Cover is 1.2738k|V (G)|O(1) [Chen 2010], while that for Planar
Vertex Deletion is 2O(k log k)|V (G)|O(1) [Jansen 2014]. Then, by Theorem 4.6, we have
an algorithm for the given problem, running in time 2O(k log k)|V (G)|O(1).

Corollary 4.14. Consider (F1,F2)-p-Partition where F1 is the set of cliques, and F2

is the set of triangle-free graphs. This problem can be solved in time 2.270k|V (G)|O(1).

Proof. The pair (F1,F2) is a good pair of families. A recognition algorithm for F1 + kv
is equivalent to solving Vertex Cover in the complement graph. A recognition algo-
rithm for F2 + kv is equivalent to the Triangle-free Vertex Deletion problem. The
best known algorithm for Vertex Cover is 1.2738k|V (G)|O(1) [Chen 2010], while that
for Triangle-free Vertex Deletion is 2.270k|V (G)|O(1) [Niedermeier 2003]. Then, by
Theorem 4.6, we have an algorithm for the given problem, running in time 2.270k|V (G)|O(1).

Corollary 4.15. Consider (F1,F2)-p-Partition where F1 is the set of cliques, and F2

is the set of forests. This problem can be solved in time 3.6181k|V (G)|O(1).

Proof. The pair (F1,F2) is a good pair of families. A recognition algorithm for F1 + kv is
equivalent to solving Vertex Cover in the complement graph. A recognition algorithm
for F2 + kv is equivalent to the Feedback Vertex Set problem. The best known
algorithm for Vertex Cover is 1.2738k|V (G)|O(1) [Chen 2010], while that for Feedback
Vertex Set is 3.619k|V (G)|O(1) [Kociumaka 2014]. Then, by Theorem 4.6, we have an
algorithm for the given problem, running in time 3.619k|V (G)|O(1).

4.6 Chapter Summary

In this chapter, we studied the communication complexity of the function GDISJG,F1,F2 ,
which is a generalisation of CISG. We also introduced ideas from parameterized complexity
in the computation of upper bounds for the communication complexity of GDISJG,F1,F2 .
Finally, we obtained separating families for good pairs of families, and used them to give
combinatorial bounds, exact algorithms and FPT algorithms. An important question here
is to see if the lower bounds for CISG can be used to obtain non-trivial lower bounds for
GDISJG,F1,F2 , when (F1,F2) is a good pair of graph families. Also, it would be interesting
to study the upper bounds for the communication complexity of these functions in terms
of other relevant parameters of the input.

90

Chapter 5

Quick but Odd Growth of Cacti

5.1 Introduction

In the field of parameterized graph algorithms, vertex (edge) deletion (addition, editing)
problems constitute a considerable fraction. In particular, let F be a family of graphs.
Given an input graph G and a positive integer k, testing whether G has a k-sized subset
of vertices (edges) S, such that G− S belongs to F , is a prototype vertex (edge) deletion
problem. Many well known problems in parameterized complexity can be phrased in
this language. For example, if F is a family of edgeless graphs, or forests or bipartite
graphs, then the vertex deletion problems to convert the input graph into a graph in F are
Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal, respectively.
Most of these problems are NP-complete due to a classic result by Lewis and Yannakakis
[Lewis 1980], and naturally a candidate for parameterized study (with respect to solution
size). Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are
some of the most well studied problems in the domain of parameterized complexity. These
problems have led to identification of several new techniques and ideas in the field.

Recent years have seen a plethora of results around vertex and edge deletion problems, in
the domain of parameterized complexity [Cao 2015a, Cao 2015b, Fomin 2012, Fomin 2013,
Giannopoulou 2015, Joret 2014, Kim 2015]. All the problems dealt with in the previous
chapters, of Part I, are vertex or edge deletion problems. In this chapter, we continue
this line of research and study two vertex deletion problems. In particular, we study the
problem of deleting vertices to get a cactus or an odd cactus graph. A graph H is called
a cactus graph if H is connected and every pair of cycles in H intersect on at most one
vertex. Furthermore, a cactus graph H is called an odd cactus graph, if every cycle of H
is of odd length. A graph is called a forest of cacti if every component of the graph is a
cactus graph. Let us denote by C and Codd, the families of forests of cacti and forests of odd
cacti, respectively. The vertex deletion problems corresponding to C and Codd are called
Diamond Hitting Set and Even Cycle Transversal, respectively. It is important
to note that the name of the problem, of deleting vertices to get into Codd, is Even Cycle
Transversal, because it is equivalent to deleting a k-sized subset S such that G − S
does not have any cycle of even length. More precisely, we study the following problems
in the realm of parameterized complexity.

Even Cycle Transversal Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a vertex subset S of size at most k such that G−S ∈ Codd?

91

Diamond Hitting Set Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a vertex subset S of size at most k such that G− S ∈ C?

In this chapter, we work on multigraphs, which are graphs where two vertices may have
parallel edges between them. For ease of notation, we refer to multigraphs as graphs.
While Odd Cycle Transversal is one of the most well studied problem in the realm of
parameterized complexity, there is only one article about Even Cycle Transversal in
the literature. The structure of the graph without even cycles, or without cycles of length
0 modulo some positive integer p, is simple. Thomassen showed that such graphs have
treewidth at most f(p) [Thomassen 1988]. Misra et al. [Misra 2012] used the structural
properties of an odd-cactus graph to design an algorithm for Even Cycle Transversal
with running time 50knO(1). They also give an O(k2) kernel for the problem. On the
other hand, the family C of forests of cacti can be characterized by a single excluded
minor. In particular, let Θ be a graph on two vertices that have three parallel edges, then
a graph H belongs to C if and only if H does not contain Θ as a minor. Since Θ is a
connected planar graph we obtain a cknO(1) time algorithm as a corollary to the main
results in [Fomin 2012, Joret 2014, Kim 2015]. However, we are not aware of exact value
of c as all these algorithms use a protrusion subroutine [Bodlaender 2009]. The problem
also has O(k2) kernel [Fomin 2011]. In this chapter, we give the following algorithm for
these problems.

Theorem 5.1. There are randomized algorithms for Diamond Hitting Set and Even
Cycle Transversal with worst case running time 12knO(1), where n and m are the
number of vertices and edges in the input graph, respectively. The algorithm outputs NO
if the input is a NO instance and for a YES instance, with probablity at least 1− 1

e returns
a solution.

Our Methods. Our algorithms use the same methodology that is used for the 4knO(1)

time algorithm for Feedback Vertex Set [Becker 2000], and its generalisation to Pla-
nar F Deletion [Fomin 2012]. In both our algorithms, we start by applying some
reduction rules to the given instance. After this, we show that the number of edges inci-
dent to any solution S of our problems, is a constant fraction to the total number of edges
in the graph. This counting lemma is our main technical contribution. We also observe
that the analysis for the counting lemma is tight for an infinite family of graphs, and thus
the analysis of our randomized algorithms can not be improved. It is in the same spirit as
finding an infinite family of instances for which an approximation algorithm achieves its
approximation ratio.

To apply our reduction rules in a way that the ratio between the number of edges incident
with a particular solution S of the problem and the total number of edges in the input graph
is as small as possible, we study a more general problem than Even Cycle Transversal,
which we call Parity Even Cycle Transversal. In this problem we are given a graph
G and a weight function w : E(G) → {0, 1}. The objective is to delete a subset S of
vertices of size at most k such that in G− S there is no cycle whose weight sum is even.
Observe that if w assigns one to every edge then it is same as Even Cycle Transversal.

We conclude the introduction by noting that Diamond Hitting Set and Even Cycle
Transversal admit approximation algorithms with factor 9 and 10 respectively [Fiorini 2010,
Misra 2012]. The results of this chapter are from [Kolay 2015a].

92

5.2 Preliminaries

In this chapter, we use multigraphs, where two vertices can have more than one edge
between them. The vertex set and edge set of a multigraph G, are denoted by V (G)
and E(G) respectively. An edge, of the multigraph, between two vertices u, v ∈ V (G) is
denoted by (u, v), while a path between u, v is denoted by [u, v]. If a sequence of vertices
v1, . . . , vt or edges e1, . . . et form a path, then too we denote this path by [v1, . . . , vt]
and [e1, . . . et] respectively. Similarly, a cycle on vertices {v1, v2, . . . , vt} is denoted as
[v1, v2, . . . , vt, v1]. For ease of notation, we will be referring to a multigraph as a graph.
The notation used for edges and paths in a multigraph is restricted to this chapter only.
A few other operations and functions on edges of a multigraph are given below. Given
two subsets V1, V2 ⊆ V (G), E(V1, V2) denotes the set of edges in E(G) that have one end
point in V1 and the other in V2. For a vertex v ∈ V (G) and subset V ′ ⊆ V (G) \ {v} we
use E(v, V ′) to denote the edge set E({v}, V ′). The subdivision of an edge e = (u, v) of
a graph G results in a graph G′, which contains a new vertex w, and where the edge e is
replaced by two new edges (u,w) and (w, v). A graph Ĝ is a subdivision of a graph G if
there is a sequence of graphs {G1, G2, . . . , Gt}, with G1 = G and Gt = Ĝ, where for each
1 < i ≤ t, Gi is obtained by the subdivision of an edge of Gi−1.

A block of a graph G is a maximal biconnected subgraph of G.

Definition 5.1 (Block-Cut Vertex Tree). Let G be a connected graph, C be the set of cut
vertices of G and B be the set of blocks of G. The block-cut vertex tree H of G has vertex
set C ∪ B and E(H) = {(c,B) | c ∈ C,B ∈ B, c ∈ V (B)}.

In fact we can show that block-cut vertex tree of a graph is indeed a tree [Diestel 2012].
Now we explain how to construct a block decomposition tree of a connected graph. Let H
be a block-cut vertex tree of a connected graph G. Let C be the set of cut vertices of G
and B be the set of blocks of G. We arbitrarily root the tree H at a vertex Br, where
Br ∈ B. Now, a block decomposition tree T of G has vertex set B, and (B1, B2) ∈ E(T)
if V (B1) ∩ V (B2) 6= ∅ (in other words B1 and B2 share a cut vertex of G) and B1 is an
ancestor of B2 in H. In other words, T is obtained from H by contracting the set of edges
{(c,B) | c ∈ C,B ∈ B, B is the parent of c in H}. Thus, T must be a tree. See Figure 5.1
for an illustration of block decomposition tree of a graph. A block decomposition tree of
a graph can be built in polynomial time.

Lemma 5.1. Let T be a tree. Let V1 = {v ∈ V (T) | dT (v) = 1}, V2 = {v ∈ V (T) | dT (v) =
2} and V3 = {v ∈ V (T) | dT (v) ≥ 3}. Then

∑
v∈V3 dT (v) ≤ 3|V1|.

Proof. We know that |V (T)| = |V1| + |V2| + |V3|. Also, Σv∈V (T)dT (v) = 2|E(T)| =
2(|V (T)| − 1). Now, Σv∈V (T)dT (v) = Σv∈V1dT (v) + Σv∈V2dT (v) + Σv∈V3dT (v) ≥ |V1| +
2|V2|+ 3|V3|. Using the two equations we get that |V3| ≤ |V1| − 2 ≤ |V1|. This also means,
Σv∈V3dT (v) = 2(|V1|+ |V2|+ |V3| − 1)− (|V1|+ 2|V2|) ≤ |V1|+ 2|V3|. Using the bound of
|V3|, Σv∈V3dT (v) ≤ 3|V1|.

Definition 5.2. A cactus graph is a connected graph where any two cycles have at most
one vertex in common. Equivalently, every edge of the graph belongs to at most one cycle.
Another equivalent definition is that any block of a cactus graph can be either a cycle or
an edge. A graph where every component is a cactus graph is called a forest of cacti.

93

•

•

•

•

• •

• •
•

• •

B1

B2

B3

B4

B5

c1

c3

c2

c4

B1

c1

B2

c2

B4

c4

B5

c3

B3

B1

B2

B4

B3

B5

Figure 5.1: Left: a graph G with blocks B1, B2, B3, B4 and B5. The cut vertices in G are
c1, c2, c3 and c4; Middle: the block-cut vertex tree H of G; Right: a block decomposition
tree T of G constructed from H rooted at B1.

Definition 5.3. Let Θ be a graph on a pair of vertices {u, v} that have 3 parallel edges be-
tween them. A graph is called a diamond graph if it is obtained by a number of subdivisions
of Θ.

The following Proposition characterizes the class of forests of cacti.

Proposition 5.1. A graph is a forest of cacti if and only if it does not have a diamond
as a subgraph.

The definition of diamond graphs and the characterization of forests of cacti have been
taken from [Fiorini 2010]. We deviate a little from [Diestel 2012] on the notations for
multigraphs.

5.3 Counting Lemma

In this section, we consider a graph G which has a set S, the deletion of which results
in a cactus graph. Moreover, each vertex of the cactus graph G − S has at least three
distinct neighbours in G or shares at least two edges with S. Then, it is possible to bound
the number of edges in E(G − S) by the number of edges in E(S, V (G) \ S). In fact, we
exhibit a family of graphs where this bound is tight, up to a constant difference.

Lemma 5.2. Let G be a graph and S ⊆ V (G) such that G− S is a cactus graph and for
all v ∈ V (G) \ S one of the following two conditions holds:

1. v has at least 3 distinct neighbours in G, or

2. there are at least two edges in E(v, S)

94

Then |E(G− S)| ≤ 5|E(S, V (G) \ S)|.

Proof. Let G′ = G − S. We know that G′ is a cactus graph. Let T be the block de-
composition tree of G′ rooted at a vertex of degree one. Throughout the proof, for a
block X of G′, we represent the corresponding vertex in T as tX . Let B = E(G′) and
C = E(S, V (G) \ S). We need to show that |B| ≤ 5|C|.

We first define some notations. Let X be a block of size at most 2 (an edge or a cycle of
length 2) in G′ such that tX has only one child tY , which is a leaf node in T . Then we
say that the blocks X and Y together form a super block. If blocks X and Y form a super
block Z, where tY is a leaf node, then by parent of the super block Z, we mean the parent
of tX in T . All other blocks, which are not part of any super block, are called normal
blocks. By size of a (super/normal) block Z, denoted by size(Z), we mean the number of
edges in the block Z. To bound the number of edges in G′, it is enough to bound the total
number of edges in super blocks and normal blocks. Let B` be the set containing all super
blocks and normal blocks which correspond to leaves in T . Let Bn be the set of normal
blocks which are not part of B`. We define B` as the set of edges in the (normal/super)
blocks which are part of B`, and Bn as the set of edges in the normal blocks which are
part of Bn. To bound the cardinality of B, it is enough to bound the cardinality of B`
and Bn, individually. We partition the edges in C as follows. We say an edge e ∈ C is
incident to a (super/normal) block Z if it is incident to a vertex u in Z, which is not the
cut vertex shared with the parent of Z. We use EZ to denote the set of edges in C, which
are incident to the (super/normal) block Z. Let C` be the set of edges in C which are
incident to (super/normal) blocks in B`. Similarly, let Cn be the set of edges in C which

are incident to blocks in Bn. Let ri be the number of blocks of size i in B`. Let B
(i)
` be the

set of edges in blocks of size i in B`. Let C
(i)
` be the set of edges in C` which are incident

to blocks of size i in B`. Notice that B` =
⊎
iB

(i)
` and C` =

⊎
iC

(i)
` .

Claim 5.1. ri ≤
|C(i)

` |
2 for i ≤ 4 and ri ≤

|C(i)
` |
i−3 for i ≥ 5.

Proof. Bound on r1. Let X be a block of size one in B`. That is, the block X is a single
edge (x, y) and there is a vertex in {x, y} which has degree one in G′. Let x be the degree

one vertex. By our assumption at least 2 edges in C
(1)
` are incident on x. This implies

that |EX | ≥ 2. Thus, |C(1)
` | =

∑
{X:size(X)=1} |EX | ≥ 2r1. Hence r1 ≤

|C(1)
` |
2 .

Bound on r2. Let X be a block of size two in B`. If X is a normal block, then the block
X is a cycle [y, x, y] of length 2. Since X is leaf block, there is a vertex in X which is
not a cut vertex in G′. Let x be the vertex in X such that x is not a cut vertex. This
implies that NG′(x) = {y}. Thus, by our assumption, either |E(x, S)| ≥ 2 or x has two
neighbours in S. In either case, |E(x, S)| ≥ 2. That is, |EX | ≥ 2. If X is a super block,
then X consists of two blocks Y and Z of size 1 each, such that tY has only one child tZ
and tZ is a leaf node in T . Let Z = (x, y) be such that x has degree one in G′. Thus, by
our assumption, we can conclude that |E(x, S)| ≥ 2. That is, |EX | ≥ 2. Thus, we know

that |C(2)
` | =

∑
{X:size(X)=2} |EX | ≥ 2r2. Hence, r2 ≤

|C(2)
` |
2 .

Bound on r3. Let X be a (super/normal) block of size three in B`. That is, either the
block X is a cycle [x, y, z, x] of length 3, or it is a super block consisting of two blocks,
where one of them is a cycle of length 2 and the other is an edge. If X is a cycle [x, y, z, x],

95

then tX is a leaf in T . Let z be the only cut vertex in {x, y, z}. This implies that the
degrees of x and y are exactly 2 in G′. Thus, by our assumption, |E(x, S)| ≥ 1 and
|E(y, S)| ≥ 1. This implies that |EX | ≥ 2.

Suppose X is a super block. Then X consists of a cycle [x, y, x] and an edge (y, z). In
this case, only one vertex, either x or z, will be shared with the parent of X and all other
vertices will not have a neighbour in G′ − X. Suppose x is the shared vertex with the
parent of the block X. Then the number of distinct neighbours of y and z are exactly 2
and 1 respectively in G′. This implies that |E(y, S)| ≥ 1 and |E(z, S)| ≥ 2. Consequently,
|EX | ≥ 3. By a similar argument, we can show that if z is the shared vertex of the super

block X with its parent, then |EX | ≥ 3. Thus, |C(3)
` | =

∑
{X:size(X)=3} |EX | ≥ 2r3. Hence,

r3 ≤
|C(3)

` |
2 .

Bound on r4. Let X be a (super/normal) block of size four in B`. That is, either the
block X is a cycle of length 4 or it is a super block consisting of two blocks. If X is a
cycle of length 4, then tX is a leaf in T . This implies that the degree of every vertex in X,
except the cut vertex shared with the parent block, is exactly 2 in G′. This implies that
|EX | ≥ 3.

Suppose X is a super block consisting of two blocks Y and Z, where the size of Y is at most
2 and tZ is a leaf node in T . If size(Y) = 1, then Z is a cycle of length 3. This implies that
at least two vertices in Z have degree exactly 2 in G′. Thus, by our assumption, |EZ | ≥ 2
and this implies that |EX | ≥ 2.

If size(Y) = 2, then both Y and Z are cycles of length 2. Let x, y, x be the block Y and
y, z, y be the block Z. Thus, the number of distinct neighbours of y and z in G′ is 2
and 1 respectively. By our assumption, this implies that |E(y, S)| ≥ 1 and |E(z, S)| ≥ 2.

Thus, |EX | ≥ 3. Hence, we conclude that |C(4)
` | =

∑
{X:size(X)=4} |EX | ≥ 2r4. This means,

r4 ≤
|C(4)

` |
2 .

Bound of ri for i ≥ 5. Let X be a (super/normal) block of size at least five in B`. That
is, either the block X is a cycle of length i, or it is a super block consisting of two blocks
Y and Z such that Z is a cycle of length at least i − 2 and tZ is a leaf in T . In either
case, X contains at least i − 3 vertices (excluding the cut vertex shared with the parent
block) having exactly 2 distinct neighbours in G′. This implies that |EX | ≥ i− 3. Hence,

it must be true that |C(i)
` | =

∑
{X:size(X)=i} |EX | ≥ (i− 3)ri. Thus, ri ≤

|C(i)
` |
i−3 .

Now we can bound the cardinality of B`. Let C(≤4)

` =
⋃
i≤4C

(i)
` and C(≥5)

` =
⋃
i≥5C

(i)
` .

|B`| =
∑
i

|B(i)
` | =

∑
i

i · ri (5.1)

≤ 2|C(≤4)

` |+
∑
i≥5

i

i− 3
|C(i)
` | (By Claim 5.1)

≤ 2|C(≤4)

` |+ 5

2
|C(≥5)

` | (5.2)

What remains is to bound the cardinality of Bn. Let B(≥3)
n be the set of blocks in Bn such

96

•

•

•

X

Y1

Y2

•

•

•

X

Y1

Y2

•

•

•

X

Y1

Y2

•

•

•

X

Y1

Y2

Figure 5.2: A schematic diagram, when a block X of size at most 2 has only one child
which is a super block composed of Y1 and Y2. Here the red dotted edges belong to
E(S, V (G) \ S).

that the corresponding nodes in T have degree at least 3. That is,

B(≥3)
n = {X ∈ Bn | dT (tX) ≥ 3}.

Let B(≥3)
n be the set of edges present in the blocks in B(≥3)

n . We first bound the cardinality
of B(≥3)

n and then the cardinality of Bn \ B(≥3)
n . For a set X ⊆ V (G′), let numcutX and

numnoncutX denote the number of cut vertices and non-cut vertices in X, respectively.

|B(≥3)
n | ≤

∑
X∈B(≥3)

n

|X|

=
∑

X∈B(≥3)
n

numcutX + numnoncutX (5.3)

The first inequality follows from the fact that the number of edges in a block of a cactus
graph is at most the number of vertices in the block. The quantity

∑
X∈B(≥3)

n
numcutX , is

at most
∑

X∈B(≥3)
n

dT (tX). This is bounded by three times the number of leaves in T (by

Lemma 5.1). Thus by Claim 5.1,∑
X∈B(≥3)

n

numcutX ≤ 3

2
|C(≤4)

` |+ 3

2
|C(≥5)

` | (5.4)

Let C≥3
n be the set of edges in Cn which are incident to blocks in B(≥3)

n , and C≤2
n be the

set of edges in Cn which are incident to blocks in Bn \ B(≥3)
n . For each non-cut vertex x

in the block X ∈ B(≥3)
n , there is at least one edge from C(≥3)

n which is incident on x. This
implies that ∑

X∈B(≥3)
n

numnoncutX ≤ |C(≥3)
n | (5.5)

Applying Equations 5.4 and 5.5 in Equation 5.3, we get that

|B(≥3)
n | ≤ 3

2
|C(≤4)

` |+ 3

2
|C(≥5)

` |+ |C(≥3)
n | (5.6)

We bound the cardinality of Bn \B(≥3)
n . First, we bound the number of edges in the blocks

in Bn \ B(≥3)
n which are not incident to any edge in Cn. Let X be a block in Bn \ B(≥3)

n ,
such that there is no edge from Cn incident on it. Since tX has degree 2 in T , the number
of cut vertices in X is 2. We claim that size(X) ≤ 2. Suppose not. Then there is a vertex

97

•

•

•

X

Y

Z

•

•

•

X

Y

Z

•

•

•

X

Y

Z

•

•

•

X

Y

Z

Figure 5.3: A schematic diagram, when a block X of size at most 2 has only one child Y
such that size(Y) ≤ 2 and dT (tY) = 2. Here the red dotted edges belong to E(S, V (G)\S).

x in X such that the degree of x in G′ is two. Thus, by our assumption, x is incident to
an edge from Cn. This contradicts the fact that there is no edge from Cn that is incident
on X. Since X is a block in Bn \ B(≥3)

n , we know that tX has only one child. Let the child
of tX be tY . Now we have the following claim.

Claim 5.2. Either dT (tY) ≥ 3 or Y ∈ Bn \ B(≤3)
n such that there is an edge from C(≤2)

n

incident on Y .

Proof. We first show that Y /∈ B`. Suppose not. If Y is a normal block in B`, then X
and Y together will form a super block and it contradicts the fact that X ∈ Bn \ B(≥3)

n .
Suppose Y is a super block in B`. Let Y be the block consisting of blocks Y1 and Y2 where
tY2 is a leaf in T (See Figure 5.2). Consider the shared vertex x by the blocks X and Y1.
The number of neighbours of x in G′ is 2. Thus, by our assumption, x is incident with
a vertex in Cn. This contradicts the fact that X be a block in Bn \ B(≥3)

n which is not
incident to any edge in Cn. To prove the claim, the only case remaining is Y ∈ Bn \ B(≥3)

n ,
but dT (tY) = 2 and there is no edge from C(≤2)

n incident on Y (See Figure 5.3). Then, the
size of Y is at most 2. Consider the vertex x shared by the blocks X and Y . The number
of neighbours of x in G′ is 2. Thus, by our assumption, x is incident with a vertex in Cn.
This contradicts the fact that X be a block in Bn \B(≥3)

n which is not incident to any edge
in Cn. This proves the claim.

Using the above claim we can show that the total number of edges in the blocks in Bn\B(≥3)
n

which are not incident to any edge in Cn is bounded by

2

|C(≤2)
n |+

∑
{t∈V (T):
dT (t)≥3}

1

 ≤ 2|C(≤2)
n |+ 2

∑
i

ri

≤ 2|C(≤2)
n |+ |C(≤4)

` |+ |C(≥5)

` | (By Claim 5.1) (5.7)

Next, we bound the number of edges in the blocks in Bn \B(≥3)
n which are incident to some

edges in Cn. Let X be a such a block. If the size of X is at most two, then there is at
least one edge from C(≤2)

n which is incident on X. If the size of X is at least i ≥ 3, then
there are i− 2 vertices in X such that each of these vertices will have only two neighbours
in G′. By our assumption, this implies that there are at least i− 2 edges from C(≤2)

n which
are incident on X. Thus, the total number of edges, in the blocks in Bn \ B(≥3)

n , which are
incident to some edges in Cn, is bounded by 3|C(≤2)

n |. Hence,

|Bn \B(≥3)
n | = 5|C(≤2)

n |+ |C(≤4)

` |+ |C(≥5)

` | (5.8)

98

•
•
• •

•
• • •

•
• •

•

. . .

e1 e2

e3

s

Figure 5.4: A tight example of Lemma 5.2. Here S = {s}.

Hence,

|B| = |B`|+ |B(≥3)
n |+ |Bn \B(≥3)

n |

=
9

2
|C(≤4)

` |+ 5|C(≥5)

` |+ 5|C(≤2)
n |+ |C(≥3)

n | (By Equations 5.2,5.6 and 5.8)

≤ 5|C|

This completes the proof of the Lemma.

The bound given in Lemma 5.2 is in fact tight. Given a graph G and a set S ⊆ V (G)
such that the assumptions of Lemma 5.2 holdm consider the edge sets B = E(G−S) and
C = E(S, V (G) \S). Figure 5.4 represents a family of tight instances where for every pair
of consecutively occurring triangle and double parallel edges in the cactus, there is an edge
in C. On the other hand, except for 3 edges in C, each of the other edges are incident to
one vertex of a distinct triangle. Thus, |B| = 5(|C| − 3). Hence, this is a family of tight
instances.

5.4 Algorithm for Even Cycle Transversal

In this section, we give a randomized FPT algorithm for Even Cycle Transversal.
This problem is a special case of the following problem.

Parity Even Cycle Transversal Parameter: k
Input: A graph G, a weight function w : E(G)→ {0, 1} and positive integer k
Question: Is there a set S ⊆ V (G) of size at most k such that G−S does not contain
any cycle C with Σe∈E(C)w(e) = 0 mod 2?

We call a cycle C an even-parity (odd-parity) cycle if Σe∈E(C)w(e) = 0 mod 2 (Σe∈E(Cw(e) =

1 mod 2). For compactness of notation, we define the function parity : 2E(G) → {0, 1},
where for an edge set E′ ∈ E(G), parity(E′) = Σe∈E′w(e) mod 2. In other words, for an
even-parity (odd-parity) cycle C, parity(E(C)) = 0 (parity(E(C)) = 1). This should not
be confused with cycles of even (odd) length, since we will refer to these cycles simply as
even and odd cycles.

In what follows, we give a randomized FPT algorithm for Parity Even Cycle Transver-
sal, that runs in 12knO(1) time. Our algorithm will compute a vertex subset X of size
at most k and return it as a solution if it is indeed a solution and otherwise return NO.
First, we apply some reduction rules the input graph. A reduction rule reduces an instance
(I1, k) of a problem Π to another instance (I2, k

′) of Π. The reduction rule is safe when

99

(I1, k) is a YES instance if and only if (I2, k
′) is a YES instance. Applying a reduction

rule on an input graph is also termed as reducing the graph, and the resultant graph is
termed as the reduced graph.

Let G be the input graph. Our algorithm will set X := ∅ initially. After the reduction
rules have been exhaustively applied on the input graph G, we show that for every solution
at least 1

6 fraction of edges is incident with the vertices of the solution. Let G′ be the
reduced graph. Then our algorithm picks an edge and its endpoint (say v) at random,
puts the vertex into X. Then again we apply reduction rules exhaustively on G′ − {v}
such that in the reduced graph for every solution at least 1

6 fraction of edges is incident
with the vertices of the solution. Again our algorithm picks an edge and its endpoint at
random, puts the vertex into X. The algorithm continues the above process (i.e, applying
reduction rules on the graph, randomly picking an edge and choosing one of its end points)
k times, or until the reduced graph is empty. If there is a solution of size at most k in G,
then this procedure outputs a solution (that is, X is indeed a solution) with probability
at least 12−k. Then by repeating this procedure 12k times, we obtain constant success
probability.

We describe the reduction rules below and prove their safeness.

Reduction Rule 5.1. If there is a vertex v in G which is not part of any even-parity
cycle, then delete v from G.

Lemma 5.3. Reduction Rule 5.1 is safe.

Proof. Suppose we delete v from G. If C is an even-parity cycle of G, it is still an even-
parity cycle of G − {v}. Similarly, if there is an even-parity cycle C ′ in G − {v}, then
C ′ is also a cycle in G. Now, Suppose (G, k) is a YES instance of Parity Even Cycle
Transversal. Let S be a solution of size k for G. Since G− {v} is a subgraph G and S
is a solution for G, we have that S \{v} is a solution for the reduced graph G−{v} as well.
Therefore, (G− {v}, k) is also a YES instance of Parity Even Cycle Transversal.

On the other hand, suppose the reduced instance is a YES instance. Suppose S′ is a
solution for G− {v}. Then, S′ hits all even-parity cycles of G− {v}. This means, that S′

also hits all even-parity cycles of G, and therefore S′ is a solution in G. Thus, (G, k) is a
YES instance of Parity Even Cycle Transversal.

In the following Lemma, we show that, on a graph where all edges have weight 1, testing
whether a vertex is contained in an even cycle can be done in polynomial time.

Lemma 5.4. There is a polynomial time algorithm that, given a graph G, where every
edge has weight 1, and a vertex v ∈ V (G), runs in polynomial time and checks whether
there is an even cycle containing v.

Proof. For each u ∈ NG(v), we check whether there is an even cycle containing the edge
(u, v). This is equivalent to checking whether there is an odd path P between v and w in
the graph G′ = G− (u, v). In [Lokshtanov 2012], the Parity Multiway Cut (PMWC)
problem was posed: If we are given a graph with a set of terminal vertices To] Te, does
there exist a set S of at most k vertices such that G − S does not have any even path
between vertices of Te and odd paths between vertices of To. It was shown that this
problem has an FPT algorithm, when parameterized by the size k of the deletion set S.

100

x y z x z

Figure 5.5: Reduction Rule 5.2. Here, w((x, z)) = (w((x, y)) + w((y, z)) mod 2.

The running time of the algorithm is 22O(k)
nO(1). We observe that our problem is a special

case of the above problem. In our case, To = {u, v}, Te = ∅ and k = 0. In other words, we

wish to check whether there are any odd paths between u, v in G′. Since 22O(k)
= O(1),

the algorithm for PMWC enables us to check in polynomial time, whether there are no
odd paths between u and v in G′. If the algorithm returns YES, then we know that there
are no even cycles in G containing the edge (u, v). Otherwise, we conclude that there is an
even cycle in G containing v. If, for every edge e ∈ E(G) adjacent to v, there is no even
cycle containing the edge e, then we conclude that there is no even cycle in G containing
v.

This also gives us a polynomial time algorithm to check whether a vertex of a (0, 1) edge-
weighted graph is contained in an even-parity cycle.

Lemma 5.5. There is a polynomial time algorithm that, given a graph G, where every
edge has weight 0 or 1, and a vertex v ∈ V (G), checks whether there is an even-parity
cycle containing v.

Proof. We construct, from the given graph G with an edge-weight function w, a graph
Ĝ where each edge has weight 1. This is done by subdividing every edge of weight 0,
and giving each of the two new edges weight 1. We mark the original vertices of G,
to distinguish them from the newly introduced vertices. By this reduction, any original
vertex belongs to an even-parity cycle in G if and only if it belongs to an even cycle in Ĝ.
Thus it is enough to check if v ∈ V (G) belongs to an even cycle in Ĝ. This can be done
in polynomial time by Lemma 5.4.

Reduction Rule 5.2. Let [x, y, z] be a path in G and degree of y is exactly 2. Then
delete y from G and add a new edge e1 = (x, z) with weight w(e1) = w((x, y)) + w((y, z))
mod 2. (See Figure 5.5).

Lemma 5.6. Reduction Rule 5.2 is safe.

Proof. Suppose C is a cycle of parity p in G, which contains the vertex y. Then, since
dG(y) = 2, C must contain the path [x, y, z]. In the reduced graph G′, C is reduced to
a cycle C ′ which contains the edge e1 = (x, z). By definition of w(e1), the parity of the
reduced cycle is still p. On the other hand, if C ′ is a cycle of parity p in the reduced graph
G′, and C ′ does not contain the new edge e1, then C ′ is a cycle of the original graph G.
Otherwise, there is a corresponding cycle C in G, which contains the path [x, y, z] instead
of the newly added edge e1. Again, by definition of w(e1), the parity of C ′ and C are the
same.

Now, suppose (G, k) is a YES instance for Parity Even Cycle Transversal. Let S
be a solution set in G. Then S hits all even-parity cycles of G. We have argued that any
cycle in G that contains y also contains x and z. Thus, if y was contained in S, then
(S ∪ {x}) \ y is also a solution that hits all even-parity cycles of G. Since the parity of

101

x y z
0

1
x z

0

1

Figure 5.6: Reduction Rule 5.3.

cycles is preserved by this reduction, it implies that (S ∪ {x}) \ y is a solution that hits
all even-parity cycles of the reduced graph, and that the reduced instance is also a YES
instance.

On the other hand, suppose the reduced instance is a YES instance. let S′ be a solution
set of G′. We will show that S′ is also a solution for G. Suppose there is an even-parity
cycle C in G, that is not hit by S′, then this cycle must have the vertex y. This implies
that the cycle must have the path [x, y, z]. Let P = C−{y}. Look at the cycle C ′ = P ∪e1

in G′. This is also an even-parity cycle which is not hit by S′. This contradicts the fact
that S′ is a solution set of G′. Thus, (G, k) must be a YES instance of Parity Even
Cycle Transversal.

Reduction Rule 5.3. Let x, y be two vertices with two parallel edges e1 and e2. Let
w(e1) = 1, w(e2) = 0. Further, e3 = (y, z) is an edge in G, with z 6= x, and dG(y) = 3.
Then delete y from the graph G and add two new edges f1, f0 = (x, z). Define w(f1) = 1
and w(f0) = 0 (See Figure 5.6).

Lemma 5.7. Reduction Rule 5.3 is safe.

Proof. Let G′ be the reduced graph. By degree constraints on y, any even-parity cycle C
containing y must also contain a path [x, y, z]. We give a bijective mapping Γ between
the even-parity cycles of G and the even-parity cycles of G′. If C does not contain y, then
this cycle exists in G′ as well and Γ(C) = C to itself. Otherwise, C contains either the
path [e1, e3] or the path [e2, e3]. Without loss of generality let the path be [e1, e3] and let
parity(e1, e3) = p. Let P = C−{y}. Then G′ has a cycle C ′ = P ∪(fp). Then, Γ(C) = C ′ .
This mapping is parity preserving. In the reverse direction, consider an even-parity cycle
C ′ of G′. If it does not contain one of the two edges f1, f0, then C ′ is a cycle in G and
Γ−1(C ′) = C ′. Otherwise, without loss of generality, let f1 ∈ E(C). Let P ′ = C ′− f1. Let
ei, i ∈ {1, 2} be the edge such that w(ei) + w(e3) = 1. Define C = P ′ ∪ {ei, e3}. This is
the only even-parity cycle in Γ−1(C ′). Thus Γ is bijective.

Now, suppose (G, k) is a YES instance. Let S be a solution set in G. If S contains y, then
the set (S ∪{x}) \ {y} is also a solution set in G. So, we assume that the solution set of G
does not contain y. Suppose C ′ is an even-parity cycle in G′ that is not hit by S. Then,
it must be the case that Γ−1(C ′) contains y, and therefore a path [ei, (y, z)], i ∈ {1, 2}.
Since we assume S to not contain y, S does not hit Γ−1(C ′) as well. This contradicts the
fact that S was a solution set in G. Thus, the reduced instance (G′, k) must be a YES
instance as well.

Similarly, suppose (G′, k) is a YES instance. Let S′ be a solution set of G′. We will show
that S′ is also a solution for G. If C is an even-parity cycle of G that is not hit by S′, then
C must contain y. Then it must be the case that C had a path [ei, (y, z)], i ∈ {1, 2}, and
C ′ = Γ(C) has a corresponding newly added edge fw(ei)+w((y,z) mod 2. If C is not hit by

102

x1 y x2

0

1

0

1

x1 x2

0

1

Figure 5.7: Reduction Rule 5.4.

S′, then C ′ is also not hit. This is a contradiction that S′ is a solution set for G′. Thus,
the original instance must be a YES instance.

Reduction Rule 5.4. Let {x1, y} be a pair of vertices that have two parallel edges e1

and e2, with w(e1) = 1, w(e2) = 0. Let there be another vertex x2 6= x1 such that {x2, y}
have two parallel edges e3 and e4. It also holds that w(e3) = 1, w(e4) = 0. Let dG(y) = 4.
Then delete y from G and add two new parallel edges f1, f0 between x1 and x2. We define
w(f1) = 1 and w(f0) = 0. (See Figure 5.7).

Lemma 5.8. Reduction Rule 5.4 is safe.

Proof. Let G′ be the reduced graph. By the degree constraint on y, any even-parity cycle C
containing y must also contain a path [ei, ej], i ∈ {1, 2} and j ∈ {3, 4}. We give a surjective
mapping Γ between the even-parity cycles of G and the even-parity cycles of G′. If C does
not contain y, then this cycle exists in G′ as well and Γ(C) = C to itself. Otherwise, C
contains a path [ei, ej], i ∈ {1, 2} and j ∈ {3, 4}. Let P = C−{y}, and let w(ei)+w(ej) = p
mod 2. Then G′ has a cycle C ′ = P ∪fp mod 2. Then, Γ(C) = C ′ . This mapping is parity
preserving. Moreover, consider an even-parity cycle C ′ of G′. If it does not contain one of
the two edges f1, f0, then C ′ is a cycle in G and Γ−1(C ′) = C ′. Otherwise, without loss of
generality, let f1 ∈ E(C). Let P ′ = C ′ − f1. Let ei, ej , i ∈ {1, 2}, j ∈ {3, 4}, be edges such
that w(ei) +w(ej) = 1. Define C = P ′ ∪ {ei, ej}. This is an even-parity cycle in Γ−1(C ′).
Thus Γ is surjective.

Now, suppose (G, k) is a YES instance. Let S be a solution set in G. If S contains y,
then the set (S ∪ {x}) \ {y} is also a solution set in G. So, we assume that the solution
set of G does not contain y. Suppose C ′ is an even-parity cycle in G′ that is not hit by
S. Then the cycle C ′ must contain the vertices x1, x2. Then, it must be the case that any
cycle in Γ−1(C ′) contains y, and therefore a path [ei, ej], i ∈ {1, 2} and j ∈ {3, 4}. Since
we assume S to not contain y, S does not hit cycles in Γ−1(C ′) as well. This contradicts
the fact that S was a solution set in G. Thus, (G′, k) must be a YES instance.

Similarly, suppose (G′, k) is a YES instance. Let S′ be a solution set of G′. We will show
that S′ is also a solution for G. If C is an even-parity cycle of G that is not hit by S′,
it must contain y. Then it must be the case that C had a path [ei, ej], i ∈ {1, 2} and
j ∈ {3, 4}, and C ′ = Γ(C) has at least one of the newly added edges f1, f2. If C is not hit
by S′, then C ′ is also not hit. This is a contradiction that S′ is a solution set for G′. This
means that the original instance must be a YES instance.

We give the definition of an odd-parity (even-parity) cactus graph and relate it to Parity
Even Cycle Transversal.

Definition 5.4. A cactus graph, where the edges have weights from {0, 1}, is an odd-
parity (even-parity) cactus graph when every block of the graph is either an odd-parity
(even-parity) cycle or an edge.

103

Lemma 5.9. Let G be a connected graph and w : E(G)→ {0, 1} be a weight function on
the edges. The graph G does not contain any cycle C with w(C) = 0 mod 2 if and only
if G is an odd-parity cactus graph.

Proof. Suppose G does not contain any even-parity cycle. Then every cycle in G must
be of odd-parity. Thus, if G was a cactus graph then it must be an odd-parity cactus
graph. Suppose G is not a cactus graph. Then, by Proposition 5.1, there is a diamond
D in G. Let the diamond be defined at the vertex pair {u, v} by the three disjoint paths
P1, P2, P3. Let parity(P1) = p1, parity(P2) = p2, parity(P3) = p3. By Pigeonhole Principle,
at least two among P1, P2 and P3 must have the same parity. Without loss of generality,
let P1 and P2 have the same parity. Then the cycle [v, P1, u, P2, v] is of even parity, which
is a contradiction. Hence, G must be an odd-parity cactus graph.

On the other hand, suppose G is an odd-parity cactus graph. Then there is a block de-
composition of G where every block is either an odd-parity cycle or an edge. By definition
of a block, any cycle C of G must be contained completely inside a block. This implies
that there are no even-parity cycles in G.

Given a graph G, let S be a set of vertices that hits all even-parity cycles. Then each
component of G−S does not contain an even-parity cycle. By Lemma 5.9, it follows that
G− S is a forest of odd-parity cacti.

Observation 5.1. Let G be a reduced graph for Parity Even Cycle Transversal and
S be a solution for Parity Even Cycle Transversal in G. Then, for each connected
component C of G− S, G[V (C) ∪ S] and S satisfy the conditions of Lemma 5.2.

Proof. Let v ∈ C be a vertex that does not have at least three distinct neighbours in G.
Suppose there is at most one edge in E(v, S). Also note that v cannot have one neighbour
in V (C) with at least two parallel edges of the same parity: this would mean that two
parallel edges of the same parity form an even-parity cycle. Also, notice that if v has one
neighbour with at least three parallel edges, then by pigeonhole principle, at least two of
the parallel edges are of the same parity. Since Reduction Rule 5.1 does not apply any
more, v must have exactly two distinct neighbours. Since Reduction Rules 5.2, 5.3 and
5.4 are no longer applicable, a vertex with exactly two distinct neighbours does not exist
in the reduced graph. This is a contradiction. Thus, in the reduced instance, every vertex
in C satisfies the conditions of Lemma 5.2.

Now, we are ready to describe the algorithm for Parity Even Cycle Transversal.
Informally, the algorithm runs for 12k rounds. In each round, a vertex subset of size at
most k is obtained. We show that, given a YES instance, with high probability there is
at least one round where the constructed vertex subset is a solution set for Parity Even
Cycle Transversal. A NO instance is always detected correctly by the algorithm.

Theorem 5.2. Parity Even Cycle Transversal has a randomized algorithm with
worst case running time 12knO(1), where n and m are the number of vertices and edges in
the input graph, respectively. The algorithm outputs NOif the input is a NOinstance and
for a YESinstance, with probability 1− 1

e , returns a solution.

Proof. Let (G, k) be the input instance. Our algorithm runs a procedure (call it procedure
Q) 12k times. The procedure Q has at most k iterative steps and is as follows: We set

104

S := ∅ and G′ := G to start with. We apply Reduction Rules 5.1, 5.2, 5.3 and 5.4 to
the graph G′ as long as we can. If the reduced graph G′′ is non-empty, we pick an edge
e = (u, v) ∈ E(G′′) uniformly at random and then, with equal probability, we pick one
of the two endpoints (say the vertex picked is v). In other words, we pick a vertex with
probability proportional to its degree. Now we set S := S ∪ {v} and G′ := G′′ − {v}. We
do this for at most k steps, stopping whenever the graph becomes empty. Notice that
the algorithm could stop if the graph becomes empty after applying the reduction rules
exhaustively. Then we check if the constructed set S is a solution set of Parity Even
Cycle Transversal for the input graph G. Note that recognizing a forest of odd-parity
cacti is equivalent to building a block-decomposition and checking if each block is a odd-
parity cycle or an edge. If all the 12k executions of procedure Q fail to find out a solution,
then the algorithm will output NO.

Now we analyse the success probability of the algorithm. For any i ∈ {0, . . . , k}, let
Si be the set of vertices obtained at the end of step i. Consider the step i + 1, where
i ∈ {0, . . . , k − 1}. Let Gi+1 be the reduced graph in step i + 1. By the correctness of
the reduction rules, if D is solution of cardinality at most k − i for (Gi+1, k − i), then
Si ∪ D is a solution for (G, k). Suppose there is a solution S∗k−i of size at most k − i
in Gi+1. By Observation 5.1, for each component C of Gi+1 − S∗k−i, Gi+1[V (C) ∪ S∗k−i]
and S∗k−i satisfy the conditions of Lemma 5.2. By the conditions of Lemma 5.2, for

each component C of Gi+1 − S∗k−i, |E(C)| ≤ 5
6 |E(Gi+1[V (C) ∪ S∗k−i])|. This implies that

|E(Gi+1 − S∗k−i)| ≤
5
6 |E(Gi+1)|. The algorithm chooses a vertex in step i + 1 using a

random process. We say that the vertex chosen by the algorithm in step i + 1 is good
if the algorithm chooses a vertex from S∗k−i. Since |E(Gi+1 − S∗k−i)| ≤

5
6 |E(Gi+1)|, the

probability that an edge incident with a vertex from S∗k−i, is picked uniformly at random

in step i+ 1, is at least 1
6 . Once we have picked this edge, the probability that we choose

an end point of the edge that belongs to S∗k−i is at least 1
2 . Therefore, the probability

that a good vertex is chosen in step i + 1 is at least 1
2 ·

1
6 = 1

12 . We succeed in finding a
solution set S for Parity Even Cycle Transversal if every step picks a good vertex
in that step. Thus, the probability of failure in the k-step procedure is at most 1− (1

12)k.
We repeat the procedure Q 12k times. The probability of failure of this many-round
procedure is the probability that procedure Q fails in all the 12k executions, which is at
most (1− (1

12)k)12k ≤ 1
e .

Now we prove the claimed running time. By Lemma 5.5 we can identify and apply Re-
duction Rule 5.1 in polynomial time. Notice that checking whether any of Reduction
Rules 5.2, 5.3 and 5.4, is applicable, takes polynomial time and these reduction rules can
be applied in constant time. Since each application of a reduction rule reduces the number
of vertices by at least one, the total number of times these reduction rules are applicable
in the procedure Q is at most n. Thus, the total time spent for applying Reduction Rules
in the procedure Q is polynomial. Moreover, in each iteration of procedure Q, we pick
an edge and one of its endpoints in O(m) time. Therefore, over k iterations, we spend
O(km) time picking edges and a corresponding endpoint. This means that one execution
of procedure Q takes polynomial time. There are 12k executions which makes the total
running time to be 12knO(1).

Corollary 5.1. Even Cycle Transversal has a randomized algorithm with worst case
running time 12knO(1), where n and m are the number of vertices and edges in the input
graph, respectively. The algorithm outputs NOif the input is a NOinstance and for a
YESinstance, with probability 1− 1

e , returns a solution.

105

5.5 Algorithm for Diamond Hitting Set

In this section, we give a randomized FPT algorithm for Diamond Hitting Set. It was
shown in [Fiorini 2010] that there is a set of safe reduction rules that can be applied to
reduce the input graph to a graph with certain properties.

Proposition 5.2 ([Fiorini 2010]). There are polynomial time reduction rules, on applica-
tion of which, the input instance of Diamond Hitting Set is reduced to an equivalent
instance where every vertex either has at least three distinct neighbours or three parallel
edges.

Observation 5.2. Let G be a reduced graph for Diamond Hitting Set and S be a
solution in G. Then, for each connected component C in G − S, G[V (C) ∪ S] and S
satisfy the conditions of Lemma 5.2.

Proof. Let G be the reduced instance. Given a diamond-hitting set S, Proposition 5.1
shows that G− S must be a forest of cacti. Thus, for each component C of G− S, C is a
cactus graph. Let v ∈ C be a vertex that does not have at least three distinct neighbours.
Then, v must have at least three parallel edges with a neighbour u. Since there are no
diamonds in C, it must be the case that u ∈ S and therefore, there are at least two edges
in E(v, S). Thus, in the reduced instance, every vertex in C satisfies the conditions of
Lemma 5.2.

Now, we can design an algorithm for Diamond Hitting Set, that is very similar to the
algorithm for Parity Even Cycle Transversal.

Theorem 5.3. Diamond Hitting Set has a randomized algorithm with worst case
running time 12knO(1), where n is the number of vertices in the input graph. The algorithm
outputs NOif the input is a NOinstance and for a YESinstance, with probability 1 − 1

e ,
returns a solution.

Proof. The algorithm is similar in description to the algorithm mentioned in the proof
of Theorem 5.2. In this algorithm, instead of applying Reduction Rules 5.1, 5.2, 5.3 and
5.4, we exhaustively apply the reduction algorithm mentioned in Proposition 5.2 and check
whether the constructed set is a diamond hitting set of G. The correctness of the algorithm
follows from arguments similar to those given in the proof of Theorem 5.2; in the arguments
we use property (iv) of Proposition 5.2 and replace Observation 5.1 with Observation 5.2.
The claimed bound on the running time can be proved by using arguments similar to that
used in the proof of Theorem 5.2.

5.6 Chapter Summary

In this chapter, we saw a fast but randomized algorithm for the Even Cycle Transver-
sal and Diamond Hitting Set problems. It would be interesting to find deterministic
algorithms for these problems, without bowing up the running times by too much. Also,
we showed that our running time analysis is tight. That is, there are instances where the
given algorithms cannot do better. However, lower bounds on running time of algorithms
for these problems are still open.

106

Part II

Geometric Covering

107

In this part, we study problems in geometric covering in the framework of parameterized
complexity. In Chapter 6, we study the Gen-RBSC problem, which is a generalisation of
the Set Cover problem. In particular, we study the Gen-RBSC-lines problem, under
several natural parameterizations.

In Chapter 7, we continue with the study of variants of Set Cover in the geometric
setting. We study the parameterized complexity of the problems Exact Cover, Unique
Cover and Unique Set Cover for different geometric set systems.

Chapter 8 is on a colouring problem, called Conflict Free Colouring. The input
instance is a hypergraph H = (U,F) and a positive integer r, and the question is to
determine if there is an r-colouring of U such that in each set of F there is an element
that is uniquely coloured. We study a parameterized version of this problem. The main
motivation for the study of the classical problem was due to applications in geometry.
However, we manage to design FPT algorithms for finding a maximum sized subfamily
F ′ ⊆ F such that the hypergraph H ′ = (U,F ′) is r conflict-free colourable.

In Chapter 9, we consider the Rectilinear Steiner Tree problem, which has important
and wide-ranged applications. We give the first deterministic subexponential exact algo-
rithm for this problem. We are also able to obtain a subexponential time exact algorithm
for the related problem of Rectilinear Steiner Arborescence.

109

110

Chapter 6

Multivariate Analysis of
Geometric RBSC

6.1 Introduction

A set system consists of a universe U of n elements and a family F of m subsets of U .
An input to a covering problem consists of a set system (U,F) and a positive integer k,
and the objective is to check whether there exists a subfamily F ′ ⊆ F of size at most k
satisfying some desired properties. If F ′ is required to contain all the elements of U , then
it corresponds to the classical Set Cover problem. The Set Cover problem is part of
Karp’s 21 NP-complete problems [Karp 1972]. This, together with its numerous variants,
is one of the most well-studied problems in the area of algorithms and complexity. It is one
of the central problems in all the paradigms that have been established to cope with NP-
hardness, including approximation algorithms, randomized algorithms and parameterized
complexity.

6.1.1 Problems Studied, Context and Framework

The goal of this paper is to study a generalisation of a variant of Set Cover, namely,
the Red Blue Set Cover problem.

Red Blue Set Cover (RBSC)
Input: A universe U = (R,B) where R is a set of r red elements and B is a set of b
blue elements, a family F of ` subsets of U , and a positive integer kr.
Question: Is there a subfamily F ′ of sets that covers all blue elements but at most
kr red elements?

Red Blue Set Cover was introduced in 2000 by Carr et al. [Carr 2000]. This prob-
lem is closely related to several combinatorial optimization problems such as the Group
Steiner, Minimum Label Path, Minimum Monotone Satisfying Assignment and
Symmetric Label Cover problems. This has also found applications in areas like
fraud/anomaly detection, information retrieval and the classification problem. Red Blue
Set Cover is NP-complete, following from an easy reduction from Set Cover itself.

We study the parameterized complexity, under various parameters, of a common general-
isation of both Set Cover and Red Blue Set Cover, in a geometric setting.

111

Generalised Red Blue Set Cover (Gen-RBSC)
Input: A universe U = (R,B) where R is a set of r red elements and B is a set of b
blue elements, a family F of ` subsets of U , and positive integers k`, kr.
Question: Is there a subfamily F ′ ⊆ F of size at most k` that covers all blue elements
but at most kr red elements?

It is easy to see that when k` = |F| then the problem instance is a Red Blue Set Cover
instance, while it is a Set Cover instance when k` = k,R = ∅, kr = 0.

In the parameterized setting, Set Cover, parameterized by k, is W[2]-hard [Downey 2012]
and it is not expected to have an FPT algorithm. The NP-hardness reduction from
Set Cover to Red Blue Set Cover implies that Red Blue Set Cover is W[2]-
hard parameterized by the size k` of a solution subfamily. However, the hardness result
was not the end of the story for the Set Cover problem in parameterized complex-
ity. In literature, various special cases of Set Cover have been studied. A few exam-
ples are instances with sets of bounded size [Fellows 2008], sets with bounded intersec-
tion [Langerman 2005, Raman 2008], and instances where the bipartite incidence graph
corresponding to the set family has bounded treewidth or excludes some graph H as a mi-
nor [Demaine 2005, Fomin 2009]. Apart from these results, there has also been extended
study on different parameterizations of Set Cover. A special case of Set Cover which
is central to the topic of this paper is the one where the sets in the family correspond to
some geometric object. In the simplest geometric variant of Set Cover, called Point
Line Cover, the elements of U are points in R2 and each set contains a maximal number
of collinear points. This version of the problem is FPT and in fact has a polynomial kernel
[Langerman 2005]. Moreover, the size of these kernels have been proved to be tight, under
standard assumptions, in [Kratsch 2014a]. When we take the sets to be the space bounded
by unit squares, Set Cover is W[1]-hard [Marx 2005]. On the other hand when surfaces
of hyperspheres are sets then the problem is FPT [Langerman 2005]. There are several
other geometric variants of Set Cover that have been studied in parameterized com-
plexity, under the parameter k, the size of the solution subfamily. These geometric results
motivate a systematic study of the parameterized complexity of geometric Gen-RBSC
problems.

There is an array of natural parameters in hand for the Gen-RBSC problem. Hence,
the problem promises an interesting dichotomy in parameterized complexity, under the
various parameters. In this chapter, we concentrate on the Generalised Red Blue Set
Cover with lines problem, parameterized under combinations of natural parameters.

Generalised Red Blue Set Cover with lines (Gen-RBSC-lines)
Input: A universe U = (R,B) where R is a set of r red points and B is a set of b blue
points, a family F of ` sets of U such that each set contains a maximal set of collinear
points of U , and positive integers k`, kr.
Question: Is there a subfamily F ′ ⊆ F of size at most k` that covers all blue points
but at most kr red points?

It is safe to assume that r ≥ kr, and ` ≥ k`. Since it is enough to find a minimal solution
family F ′, we can also assume that b ≥ k`.

We finish this section with some related results. As mentioned earlier, the Red Blue
Set Cover problem in classical complexity is NP-complete. Interestingly, if the inci-

112

dence matrix, built over the sets and elements, has the consecutive ones property then
the problem is in P [Dom 2008]. The problem has been studied in approximation al-
gorithms as well [Carr 2000, Peleg 2007]. Specially, the geometric variant, where every
set is the space bounded by a unit square, has a polynomial time approximation scheme
(PTAS) [Chan 2015].

6.1.2 Our Contributions

Some of the results of this chapter are based on the works in [Ashok 2016]. In this chapter,
we first show a complete dichotomy of the parameterized complexity of Gen-RBSC-lines.
For a list of parameters, namely, k`, kr, r, b, and `, and all possible combinations of them,
we show hardness or an FPT algorithm. Further, for parameterizations where an FPT
algorithm exists, we either show that the problem admits a polynomial kernel or that it
does not contain a polynomial kernel unless CoNP ⊆ NP/poly.

To describe our results we first state a few definitions. For a set S ⊆ U , we denote by
2S the family of all the subsets of S, and by US the family of all the subsets of U that
contain S (that is, all supersets of S in U). For a collection F of sets over a universe U ,
by DownClosure(F) and UpClosure(F) we mean the families

⋃
S∈F 2S and

⋃
S∈F U

S respec-
tively. Our first contribution is the following parameterized and kernelization dichotomy
result for Gen-RBSC-lines.

Theorem 6.1. Let Γ = {`, r, b, k`, kr}. Then Gen-RBSC-lines is FPT parameter-
ized by Γ′ ⊆ Γ if and only if Γ′ /∈ DownClosure({{k`, b}, {r}}). Furthermore, Gen-
RBSC-lines admits a polynomial kernel parameterized by Γ′ ⊆ Γ if and only if Γ′ ∈
UpClosure({{`}, {k`, r}, {b, r}}).

Essentially, the theorem says that if Gen-RBSC-lines is FPT parameterized by Γ′ ⊆
Γ then there exists an algorithm for Gen-RBSC-lines running in time f(Γ′) · (|U | +
|F|)O(1). That is, the running time of the algorithm can depend in an arbitrary manner
on the parameters present in Γ′. Equivalently, we have an algorithm running in time
f(τ) · (|U | + |F|)O(1), where τ =

∑
q∈Γ′ q. Similarly, if the problem admits a polynomial

kernel parameterized by Γ′ then in polynomial time we get an equivalent instance of
the problem of size τO(1). On the other hand when we say that the problem does not
admit polynomial kernel parameterized by Γ′ then it means that there is no kernelization
algorithm outputting a kernel of size τO(1) unless CoNP ⊆ NP/poly. A schematic diagram
explaining the results proved in Theorem 6.1 can be seen in Figure 6.1. Results for a
Γ′ ⊆ Γ which is not depicted in Figure 6.1 can be derived by checking whether Γ′ is in
DownClosure({{k`, b}, {r}}).

Next we consider the RBSC-lines problem. Here we do not have any constraint on how
many sets we pick in the solution family but we are allowed to cover at most kr red
points. This brings two main changes in Figure 6.1. For Gen-RBSC-lines we show that
the problem is NP-hard even when there is a constant number of red points. However,
RBSC-lines becomes FPT parameterized by r. In contrast, RBSC-lines is W[1]-hard
parameterized by kr. This leads to the following dichotomy theorem for RBSC-lines.

Theorem 6.2. Let Γ = {`, r, b, kr}. Then RBSC-lines is FPT parameterized by Γ′ ⊆ Γ
if and only if Γ′ /∈ {{b}, {kr}}). Furthermore, RBSC-lines admits polynomial kernel
parameterized by Γ′ ⊆ Γ if and only if Γ′ ∈ UpClosure({{`}, {b, r}}).

113

krb

r

k�

k� + kr

k� + b

�

b + kr

W-hard

FPT

para-NP-hard

b + r
k� + r

Kernel

No-Kernel

Figure 6.1: Illustration of our results described in Theorem 6.1 and hierarchy of parame-
ters.

krb

r

�

b + kr

W-hard

FPT
No-Kernel

Kernel

b + r

Figure 6.2: Illustration of our results for Red Blue Set Cover with lines under various
parameters.

A schematic diagram explaining the results proved in Theorem 6.2 is given in Figure 6.2.

A quick look at Figure 6.1 will show that the Gen-RBSC-lines problem is FPT param-
eterized by k` + kr or b+ kr. A natural question to ask is whether Gen-RBSC itself (the
problem where sets in the input family are arbitrary and do not correspond to lines) is
FPT when parameterized by b+ kr. Regarding this, we show the following results:

1. Gen-RBSC is W[1]-hard parameterized by k` + kr (or b + kr) when every set has
size at most three and contains at least two red points.

2. Gen-RBSC is W[2]-hard parameterized by k` + r when every set contains at most
one red point.

The first result essentially shows that Gen-RBSC is W[1]-hard even when the sets in the
family have size bounded by three. This is in sharp contrast to Set Cover, which is known
to be FPT parameterized by k` and d. Here, d is the size of the maximum cardinality

set in F . In fact, Set Cover admits a kernel of size k
O(d)
` . This leads to the following

question:

Does the hardness of Gen-RBSC in item one arise from the presence of two

114

red points in the instance? Would the complexity change if we assume that
each set contains at most one red point?

In fact, even if we assume that each set contains at most one red point, we must take d,
the size of the maximum cardinality set in F , as a parameter. Else, this would correspond
to the hardness result presented in item two. As a final algorithmic result we show that
Gen-RBSC admits an algorithm with running time 2O(dk`) · (|U |+ |F|)O(1), when every
set has at most one red point. Observe that in this setting kr can always be assumed to
be less than k`. Thus, this is also a FPT algorithm parameterized by k` +kr, when sets in
the input family are bounded. However, we show that Gen-RBSC (in fact Gen-RBSC-
lines) does not admit a polynomial kernel parameterized by k` + kr even when each set
in the input family corresponds to a line and has size two and contains at most one red
point.

6.1.3 Our methods and an overview of main algorithmic results

Let Γ = {`, r, b, k`, kr}. Most of our W-hardness results for a Gen-RBSC variant param-
eterized by Γ′ ⊆ Γ are obtained by giving a polynomial time reduction, from Set Cover
or Multicoloured Clique that makes every q ∈ Γ′ at most kO(1) (in fact most of the
time O(k)). This allows us to transfer the known hardness results about Set Cover and
Multicoloured Clique to our problem. Since in most cases the parameters are linear
in the input parameter, in fact we can rule out an algorithm of form (|U |+ |F|)o(τ), where
τ =

∑
q∈Γ′ q, under Exponential Time Hypothesis (ETH) [Impagliazzo 2001]. Similarly,

hardness results for kernels are derived from giving an appropriate polynomial time re-
duction from parameterized variants of the Set Cover problem that only allows each
parameter q ∈ Γ′ to grow polynomially in the input parameter.

Our main algorithmic highlights are parameterized algorithms for

(a) Gen-RBSC-lines running in time 2O(k` log k`+kr log kr) ·(|U |+|F|)O(1) (showing Gen-
RBSC-lines is FPT parameterized by k` + kr); and

(b) Gen-RBSC with running time 2O(dk`) · (|U |+ |F|)O(1), when every set is of size at
most d and has at most one red point.

Observe that the first algorithm generalises the known algorithm for Point Line Cover
which runs in time 2O(k` log k`) · (|U |+ |F|)O(1) [Langerman 2005].

The parameterized algorithm for Gen-RBSC-lines mentioned in (a) starts by bounding
the number of blue vertices by k2

` and guessing the lines that contain at least two blue
points. The number of lines containing at least two blue points can be shown to be at
most k4

` . These guesses lead to an equivalent instance where each line contains exactly
one blue point and there are no lines that only contain red points (as these lines can be
deleted). However, we can not bound the number of red points at this stage. We introduce
a notion of ”solution subfamily” and connected components of the solution subfamilies.
Interestingly, this equivalent instance has sufficient geometric structure on the connected
components. We exploit the structure of these components, gotten mainly from simple
properties of lines on a plane, to show that knowing one of the lines in each component
can, in FPT time, lead to finding the component itself! Thus, to find a component all we

115

need to do is to guess one of the lines in it. However, here we face our second difficulty:
the number of connected components can be as bad as O(k`) and thus if we guess one line
for each connected component then it would lead to a factor of |F|O(k`) in the running
time of the algorithm. However, our equivalent instances are such that we are allowed to
process each component independent of other components. This brings the total running
time of guessing the first line of each component down to k` · |F|. The algorithmic ideas
used here can be viewed as some sort of “geometry preserving subgraph isomorphism”,
which could be useful in other contexts also. This completes an overview of the FPT result
for Gen-RBSC-lines parameterized by k` + kr.

The algorithm for Gen-RBSC running in time 2O(dk`) · (|U | + |F|)O(1), where every set
is of size at most d and has at most one red point is purely based on a novel reduction
to Subgraph Isomorphism where the subgraph we are looking for has size O(k`d) and
treewidth 3. The host graph, where we are looking for a solution subgraph, is obtained by
starting with the bipartite incidence graph and making modifications to it. The bipartite
incidence graph we start with has in one side vertices for sets and in the other side vertices
corresponding to blue and red points and there is an edge between vertices corresponding
to a set and a blue (red) point if this blue (red) point is contained in the set. Our
main observation is that a solution subfamily can be captured by a subgraph of size
O(k`d) and treewidth 3. Thus, for our algorithm we enumerate all such subgraphs in
time 2O(dk`) · (|U | + |F|)O(1) and for each such subgraph we check whether it exists in
the host graph using known algorithms for Subgraph Isomorphism. This concludes the
description of this algorithm.

6.2 Preliminaries

Generalised Red Blue Set Cover. A set S in a Generalised Red Blue Set Cover
instance (U,F) is said to cover a point p ∈ U if p ∈ S. A solution family for the instance is
a family of sets of size at most k` that covers all the blue points and at most kr red points.
In case of Red Blue Set Cover, the solution family is simply a family of sets that covers
all the blue points but at most kr red points. Such a family will also be referred to as a
valid family. A minimal family of sets is a family of sets such that every set contains a
unique blue point. In other words, deleting any set from the family implies that a strictly
smaller set of blue points is covered by the remaining sets. The sets of Generalised Red
Blue Set Cover with lines are also called lines. We also mention a key observation
about lines in this section. This observation is crucial in many arguments in this paper.

Observation 6.1. Given a set of points S, let F be the set of lines such that each line
contains at least 2 points from S. Then |F| ≤

(|S|
2

)
.

Gen-RBSC with hyperplanes of Rd, for a fixed positive integer d, is a special case for the
problem. Here, the input universe U is a set of n points in Rd. A hyperplane in Rd is the
affine hull of a set of d + 1 affinely independent points [Langerman 2005]. In our special
case each set is a maximal set of points that lie on a hyperplane of Rd.

Definition 6.1. An intersection graph GF for an instance (U,F) of Generalised Red
Blue Set Cover is a graph with vertices in V (GF) corresponding to the sets in F . We
give an edge between two vertices if the corresponding sets have non-empty intersection.

116

The following proposition is a collection of results on the Set Cover problem, that will
be repeatedly used in the paper. The results are from [Dom 2014, Downey 2012]

Proposition 6.1. The Set Cover problem is:

1. W[2]-hard when parameterized by the solution family size k.

2. FPT when parameterized by the universe size n, but does not admit polynomial
kernels unless CoNP ⊆ NP/poly.

3. FPT when parameterized by the number of sets m in the instance, but does not admit
polynomial kernels unless CoNP ⊆ NP/poly.

6.3 Parameterizing by kr and r

In this section, we first show that Gen-RBSC-lines parameterized by r is para-NP-
complete. Since kr ≤ r, it follows that Gen-RBSC-lines parameterized by kr is also
para-NP-complete.

Theorem 6.3. Gen-RBSC-lines is para-NP-complete parameterized by either r or kr.

Proof. If we are given a solution family for an instance of Gen-RBSC-lines we can
check in polynomial time if it is valid. Hence, Gen-RBSC-lines has a nondeterminis-
tic algorithm with FPT running time (in fact polynomial) and thus Gen-RBSC-lines
parameterized by r is in para-NP.

For completeness, there is an easy polynomial-time many-one reduction from the Point
Line Cover problem, which is NP-complete. An instance ((U,F)) of Point Line Cover
parameterized by k, the size of the solution family, is reduced to an instance ((R∪B,F))
of Gen-RBSC-lines parameterized by r or kr with the following properties:

• B = U

• The family of sets remains the same in both instances.

• R consists of 1 red vertex that does not belong to any of the lines of F .

• k` = k and kr = 0.

It is easy to see that ((U,F)) is a YES instance of Point Line Cover if and only if
(R∪B,F) is a YES instance of Gen-RBSC-lines. Since the reduced instances belong to
Gen-RBSC-lines parameterized by r = 1 or kr = 0, this proves that Gen-RBSC-lines
parameterized by r or kr is para-NP-complete.

6.4 Parameterizing by `

In this section, we design a parameterized algorithm as well as a kernel for Gen-RBSC-
lines when parameterized by the size ` of the family. The algorithm for this is simple.

117

We enumerate all possible k`-sized subsets of input lines and for each subset, we check in
polynomial time whether it covers all blue points and at most kr red points. The algorithm
runs in time O(2` · (|U |+ |F|). The main result of this section is a polynomial kernel for
Gen-RBSC-lines when parameterized by `.

We start by a few reduction rules which will be used not only in the kernelization algorithm
given below but also in other parameterized and kernelization algorithms in subsequent
sections.

Reduction Rule 6.1. If there is a set S ∈ F with only red points then delete S from F .

Lemma 6.1. Reduction Rule 6.1 is safe.

Proof. Let F ′ be a family of at most k` lines of the given instance that cover all blue
points and at most kr red points. If F ′ contains S, then F ′ \ {S} is also a family of at
most k` lines that cover all blue points and at most kr red points. Hence, we can safely
delete S. This shows that Reduction Rule 6.1 is safe.

Reduction Rule 6.2. If there is a set S ∈ F with more than kr red points in it then
delete S from F .

Lemma 6.2. Reduction Rule 6.2 is safe.

Proof. If S has more than kr red points then S alone exceeds the budget given for the
permissible number of covered red points. Hence, S cannot be part of any solution family
and can be safely deleted from the instance. This shows that Reduction Rule 6.2 is
safe.

Our final rule is as follows. A similar Reduction Rule was used in [Langerman 2005], for
the Point Line Cover problem.

Reduction Rule 6.3. If there is a set S ∈ F with at least k` + 1 blue points then reduce
the budget of k` by 1 and the budget of kr by |R ∩ S|. The new instance is (U \ S, F̃),
where F̃ = {F \ S | F ∈ F and F 6= S}.

Lemma 6.3. Reduction Rule 6.3 is safe.

Proof. If S is not part of the solution family then we need at least k` + 1 lines in the
solution family to cover the blue points in S, which is not possible. Hence any solution
family must contain S.

Suppose the reduced instance has a solution family F ′ covering B \ S blue points and at
most kr − |R ∩ S| red points from R \ S. Then F ′ ∪ {S} is a solution for the original
instance. On the other hand, suppose the original instance has a solution family F̂ . As
argued above, S ∈ F̂ . F̂ \ S covers all blue points of B \ S and at most kr − |R ∩ S|
red points from R \ S, and is a candidate solution family for the reduced instance. Thus,
Reduction Rule 6.3 is safe.

The following simple observation can be made after exhaustive application of Reduction
Rule 6.3.

118

Observation 6.2. If the budget for the subfamily F ′ to cover all blue and at most kr red
points is k` then after exhaustive applications of Reduction Rule 6.3 there can be at most
b ≤ k2

` blue points remaining in a YES instance. If there are more than k2
` blue points

remaining to be covered then we correctly say NO.

It is worth mentioning that even if we had weights on the red points in R and asked for a
solution family of size at most k` that covered all blue points but red points of weight at
most kr, then this weighted version, called Weighted Gen-RBSC-lines parameterized
by ` is FPT. The Weighted Gen-RBSC-lines problem will be useful in the theorem
below. Finally, we get the following result.

Theorem 6.4. There is an algorithm for Gen-RBSC-lines running in time O(2` ·(|U |+
|F|)). In fact, Gen-RBSC-lines admits a polynomial kernel parameterized by `.

Proof. We have already described the enumeration based algorithm at the beginning of
this section. Here, we only give the polynomial kernel. Given an instance of Gen-RBSC-
lines we exhaustively apply Reduction Rules 6.1, 6.2 and 6.3 to obtain an equivalent
instance. By Observation 6.2 and the fact that k` ≤ `, the current instance must have at
most `2 blue points, or we can safely say NO. Also, the number of red points that belong
to 2 or more lines is bounded by the number of intersection points of the ` lines, i.e.,
`2. Any remaining red points belong to exactly 1 line. We reduce our Gen-RBSC-lines
instance to a Weighted Gen-RBSC-lines instance as follows:

• The family of lines and the set of blue points remain the same in the reduced instance.
The red points appearing in the intersection of two lines also remain the same. Give
a weight of 1 to these red points.

• For each line L, let c(L) indicate the number of red points that belong exclusively
to L. Remove all but one of these red points and give weight c(L) to the remaining
exclusive red point.

In the Weighted Gen-RBSC-lines instance, there are ` lines, at most `2 blue points
and at most `2 + ` red points. For each line L, the value of c(L) is at most kr, after
Reduction Rule 6.2. Suppose kr > 2`. Then r > 2` and the parameterized algorithm for
Gen-RBSC-lines running in time O(2` · (|U |+ |F|)) runs in polynomial time. Thus we
can assume that kr ≤ 2`. Then we can represent kr and therefore the weights c(L) by at
most ` bits. Thus, the reduced instance has size bounded by O(`2).

Observe that we got an instance of Weighted Gen-RBSC-lines and not of Gen-RBSC-
lines which is the requirement for the kernelization procedure. All this shows is that the
reduction is a “compression” from Gen-RBSC-lines parameterized by ` to Weighted
Gen-RBSC-lines parameterized by `. This is rectified as follows. Since both the prob-
lems belong to NP, there is a polynomial time many-one reduction from Weighted
Gen-RBSC-lines to Gen-RBSC-lines. Finally, using this polynomial time reduction,
we obtain a polynomial size kernel for Gen-RBSC-lines parameterized by `.

Observe that the algorithm referred to in Theorem 6.4 does not use the fact that sets
are lines and thus it also works for Gen-RBSC parameterized by `. However, since Set
Cover is a special case of Gen-RBSC, when there are no input red vertices, it follows
from Proposition 6.1(iii) that Gen-RBSC parameterized by ` does not admit a polynomial
kernel.

119

6.5 Parameterizing by k`, b and k` + b

In this section, we look at Gen-RBSC-lines parameterized by k`, b, and k` + b. There
is an interesting connection between b and k`. As we are looking for minimal solution
families, we can alway assume that b ≥ k`. On the other hand, Reduction Rule 6.3 showed
us that for all practical purposes b ≤ k2

` . Thus, in the realm of parameterized complexity
k`, b and k`+b are the same parameters. That is, Gen-RBSC-lines is FPT parameterized
by k` if and only if it is FPT parameterized by b if and only if it is FPT parameterized
by k` + b. The same holds in the context of kernelization complexity. First, we show that
Gen-RBSC-lines parameterized by k` or b is W[1]-hard. Then we look at some special
cases that turn out to be FPT.

6.5.1 Parameter k` + b

We look at Gen-RBSC-lines parameterized by k` + b. This problem is not expected
to have a FPT algorithm as it is W[1]-hard. We give a reduction to this problem from
the Multicoloured Clique problem, which is known to be W[1] hard even on regular
graphs [Mathieson 2008].

Multicoloured Clique Parameter: k
Input: A graph G where V (G) = V1] V2] . . .] Vk with Vi being an independent set
for all 1 ≤ i ≤ k, and an integer k.
Question: Is there a clique C ≤s G of size k such that ∀1 ≤ i ≤ k, V (C) ∩ Vi 6= ∅.

The clique containing one vertex from each part is called a multicoloured clique.

Theorem 6.5. Gen-RBSC-lines parameterized by k` or b or k` + b is W[1]-hard.

Proof. We will give a reduction from Multicoloured Clique on regular graphs. Let
(G, k) be an instance of Multicoloured Clique, where G is a d-regular graph. We
construct an instance of Gen-RBSC-lines (R∪B,F), as follows. Let V (G) = V1] V2]
. . .] Vk.

1. For each vertex class Vi, 1 ≤ i ≤ k, add two blue points bi at (0, i) and b′i at (i, 0).

2. Informally, for each vertex class Vi, 1 ≤ i ≤ k we do as follows. Let Lk be the line
that is parallel to y axis and passes through the point (k, 0). Suppose there are ni
vertices in Vi. We select ni distinct points, say P, in R2 on the line L, such that
if (ai, a2) ∈ P then ai = k (as these are points on Lk) and a2 lies in the interval
(i− 1, i− 1

2). Now for every point p ∈ P we draw the unique line between (0, i) and
the point p. Finally, we assign each line to a unique vertex in Vi. Formally, we do as
follows. For each vertex class Vi, 1 ≤ i ≤ k and each vertex u ∈ Vi, we choose a point
p1
u ∈ R2 with coordinates (k, yu), i− 1 < yu < i− 1

2 . Also, for each pair u 6= v ∈ Vi,
yu 6= yv. For each u ∈ Vi, we add the line l1u, defined by bi and p1

u, to F . We call
these near-horizontal lines. Observe that all the near-horizontal lines corresponding
to vertices in Vi intersect at bi. Furthermore, for any two vertices u ∈ Vi and v ∈ Vj ,
with i 6= j, the lines l1u and l1v do not intersect on a point with x-coordinate from the
closed interval [0, k].

120

3. Similarly, for each vertex class Vi, 1 ≤ i ≤ k and each vertex u ∈ Vi, we choose a
point p2

u ∈ R2 with coordinates (xu, k), i − 1 < xu < i − 1
2 . Again, for each pair

u 6= v ∈ Vi, yu 6= yv. For each u ∈ Vi, we add the line l2u, defined by bi and p2
u, to

F . Notice that for any u, v ∈ V , l1u and l2v have a non-empty intersection. We call
these near-vertical lines. Observe that all the near-vertical lines corresponding to
vertices in Vi intersect at b′i. Furthermore, for any two vertices u ∈ Vi and v ∈ Vj ,
with i 6= j, the lines l2u and l2v do not intersect on a point with y-coordinate from
the closed interval [0, k]. However, a near-horizontal line and a near-vertical line will
intersect at a point with both x and y-coordinate from the closed interval [0, k]. The
construction ensures that no 3 lines in F have a common intersection.

4. For each edge e = uv ∈ E(G), add two red points, ruv at the intersection of lines l1u
and l2v, and rvu at the intersection of lines l1v and l2u.

5. For each vertex v ∈ V (G), add a red point at the intersection of the lines l1v and l2v.

This concludes the description of the reduced instance. Thus we have an instance (R ∪
B,F) of Gen-RBSC-lines with 2n lines, 2k blue points and 2m+ n red points.

Claim 6.1. G has a multicoloured clique of size k if and only if (R∪B,F) has a solution
family of 2k lines, covering the 2k blue points and at most 2(d+ 1)k − k2 red points.

Proof. Assume there exists a multicoloured clique C of size k in G. Select the 2k lines
corresponding to the vertices in the clique. That is, select the subset of lines F ′ = {lju | 1 ≤
j ≤ 2, u ∈ V (C)} in the Gen-RBSC-lines instance. Since the clique is multicoloured,
these lines cover all the blue points. Each line (near-horizontal or near-vertical) has
exactly d + 1 red points. Thus, the number of red points covered by F ′ is at most
(d + 1)2k. However, each red point corresponding to vertices in V (C) and the two red
points corresponding to each edge in E(C) are counted twice. Thus, the number of red
points covered by F ′ is at most (d+ 1)2k− k− 2

(
k
2

)
= 2(d+ 1)k− k2. This completes the

proof in the forward direction.

Now, assume there is a minimal solution family of size at most 2k, containing at most
2(d+1)k−k2 red points. As no two blue points are on the same line and there are 2k blue
points, there exists a unique line covering each blue point. Let L1 and L2 represent the
sets of near-horizontal and near-vertical lines respectively in the solution family. Observe
that L1 covers {b1, . . . , bk} and L2 covers {b′1, . . . , b′k}. Let V (C) = {v1, . . . , vk} be the set
of vertices in G corresponding to the lines in L1. We claim that C forms a multicoloured
k-clique in G. Since bi can only be covered by lines corresponding to the vertices in Vi
and L1 covers {b1, . . . , bk}, we know that V (C)∩Vi 6= ∅. It remains to show that for every
pair of vertices in V (C) there exists an edge between them in G. Let vi denote the vertex
in V (C) ∩ Vi.

Consider all the lines in L1. Each of these lines are near-horizontal and have exactly d+ 1
red points. Furthermore, no two of them intersect at a red point. Since the total number
of red points covered by L1 ∪ L2 is at most 2(d+ 1)k − k2, we have that the k lines in L2

can only cover at most k(d + 1) − k2 red points that are not covered by the lines in L1.
That is, the k lines in L2 contribute at most k(d+ 1)− k2 new red points to the solution.
Thus, the number of red points that are covered by both L1 and L2 is k2. Therefore, any
two lines l1 and l2 such that l1 ∈ L1 and l2 ∈ L2 must intersect at a red point. This implies
that either l1 and l2 correspond to the same vertex in V or there exists an edge between

121

the vertices corresponding to them. Let V (C ′) = {w1, . . . , wk} be the set of vertices in G
corresponding to the lines in L2. Since b′i can only be covered by lines corresponding to
the vertices in Vi and L2 covers {b′1, . . . , b′k}, we know that V (C ′)∩ Vi 6= ∅. Let wi denote
the vertex in Vi such that l2wi

∈ L2 covers b′i. We know that l1vi and l2wi
must intersect

on a red point. However, by construction no two distinct vertices vi and wi belonging
to the same vertex class Vi intersect at red point. Thus vi = wi. This means C = C ′.
This, together with the fact that two lines l1 and l2 such that l1 ∈ L1 and l2 ∈ L2 (now
lines corresponding to C) must intersect at a red point, implies that C is a multicoloured
k-clique in G.

Since b = k` = 2k, Gen-RBSC-lines is W[1]-hard parameterized by k` or b or k` + b.
This concludes the proof.

A closer look at the reduction shows that every set contains exactly one blue point. A
natural question to ask is whether the complexity would change if we take the complement
of this scenario, that is, each set contains either no blue points or at least two blue points.
Shortly, we will see that this implies that the problem becomes FPT. Also, notice that
each set in the reduction contains unbounded number of red elements. What about the
parameterized complexity if every set in the input contained at most a bounded number,
say d, of red elements. Even then the complexity would change but for this we need
an algorithm for Gen-RBSC-lines parameterized by k` + kr that will be presented in
Section 6.6.

6.5.2 Special case under the parameter k`

In this section, we look at the special case when every line in the Gen-RBSC-lines
instance contains at least 2 blue points or no blue points at all. We show that in this
restricted case, Gen-RBSC-lines is FPT.

Theorem 6.6. Gen-RBSC-lines parameterized by k`, where input instances have each
set containing either at least 2 blue points or no blue points, has a polynomial kernel.
There is also an FPT algorithm running in O(k4k`

` · (|U |+ |F|)O(1)) time.

Proof. We exhaustively apply Reduction Rules 6.1, 6.2 and 6.3 to our input instance.
In the end, we obtain an equivalent instance that has at least 1 blue point per line.
The equivalent instance also has each line containing at least 2 blue points or no blue
points. The instance has at most b = k2

` blue points, or else we can correctly say NO. By

Observation 6.1 and the assumption on the instance, we can bound ` by
(
b
2

)
≤ k4

` . Now
from Theorem 6.4 we get a polynomial kernel for this special case of Gen-RBSC-lines
parameterized by k`.

Regarding the FPT algorithm, we are allowed to choose at most k` solution lines from a
total of ` ≤ k4

` lines in the instance (of course after we have applied Reduction Rules 6.1, 6.2
and 6.3 exhaustively). For every possible k`-sized set of lines we check whether the set
covers all blue vertices and at most kr red vertices. If the instance is a YES instance, one

such k`-sized set is a solution family. This algorithm runs in O(
(k4`
k`

)
· (|U | + |F|)O(1)) =

O(k4k`
` · (|U |+ |F|)O(1)) time.

122

6.6 Parameterizing by kr + k` and b+ kr

In the previous sections, we saw that Gen-RBSC-lines parameterized by r is para-NP-
complete and is W[1]-hard parameterized by k`. So there is no hope of an FPT algorithm
unless P = NP or FPT =W[1], when parameterized by r and k` respectively. As a
consequence, we consider combining different natural parameters with r to see if this
helps to find FPT algorithms. In fact, in this section, we describe a FPT algorithm for
Gen-RBSC-lines parameterized by k`+kr. Since kr ≤ r, this implies that Gen-RBSC-
lines parameterized by k` + r is FPT. This is one of our main technical/algorithmic
contribution. Also, since k` ≤ b for any minimal solution family of an instance, it follows
that Gen-RBSC-lines parameterized by b + kr belongs to FPT. It is natural to ask
whether the Gen-RBSC problem, that is, where sets in the family are arbitrary subsets
of the universe and need not correspond to lines, is FPT parameterized by k`+kr. In fact,
Theorem 6.15 states that the problem is W[1]-hard even when each set is of size three
and contains at least two red points. This shows that indeed restricting ourselves to sets
corresponding to lines makes the problem tractable.

We start by considering a simpler case, where the input instance is such that every line
contains exactly 1 blue point. Later we will show how we can reduce our main problem
to such instances. By the restrictions assumed on the input, no two blue points can be
covered by the same line and any solution family must contain at least b lines. Thus, b ≤ k`
or else, it is a NO instance. Also, a minimal solution family will contain at most b ≤ k`
lines. Hence, from now on we are only interested in the existence of minimal solution
families. In fact, inferring from the above observations, a minimal solution family, in this
special case, contains exactly b lines. Let GF ′ be the intersection graph that corresponds
to a minimal solution F ′. Recall, that in GF ′ vertices correspond to lines in F ′ and there
is an edge between two vertices in GF ′ if the corresponding lines intersect either at a blue
point or a red point. Next, we define notions of good tuple and conformity which will
be useful in designing the FPT algorithm for the special case. Essentially, a good tuple
provides a numerical representation of connected components of GF ′ .

Definition 6.2. Given an instance (R,B,F) of Gen-RBSC-lines we call a tuple(
b, p, s, P, {I ′1, . . . , I ′s}, (k1

r , k
2
r , . . . , k

s
r)
)

good if the following hold.

1. Integers p ≤ kr and s ≤ b ≤ k`; Here b is the number of blue vertices in the instance.

2. P = P1 ∪ · · · ∪ Ps is an s-partition of B;

3. For each 1 ≤ i ≤ s, I ′i is an ordering for the blue points in part Pi;

4. Integers kir, 1 ≤ i ≤ s, are such that Σ1≤i≤sk
i
r = p.

Below, we define the relevance of good tuples in the context of our problem.

Definition 6.3. We say that the minimal solution family F ′ conforms with a good tuple(
b, p, s, P, {I ′1, . . . , I ′s}, (k1

r , k
2
r , . . . , k

s
r)
)

if the following properties hold:

1. The components C1, . . . , Cs of GF ′ give the partition P = P1, . . . , Ps on the blue
points.

123

2. For each component Ci, 1 ≤ i ≤ s, let ti = |Pi|. Let I ′i = bi1, . . . , b
i
ti be an ordering of

blue points in Pi. Furthermore assume that Lij ∈ F ′ covers the blue point bij. I
′
i has

the property that, for all j ≤ ti, GF ′ [{Li1, . . . , Lij}] is connected. In other words, for

all j ≤ ti, L
i
j intersects with at least one of the lines from the set {Li1, . . . , Lij−1}.

Notice that, by minimality of F ′, the point of intersection for such a pair of lines is
a red point.

3. F ′ covers p ≤ kr red points.

4. In each component Ci, k
i
r is the number of red points covered by the lines in that

component. It follows that Σ1≤i≤sk
i
r = p. In other words, the integers kir form a

combination of p.

The next lemma says that the existence of a minimal solution subfamily F ′ results in a
conforming good tuple.

Lemma 6.4. Let (U,F) be an input to Gen-RBSC-lines parameterized by k` + kr, such
that every line contains exactly 1 blue point. If there exists a solution subfamily F ′ then
there is a conforming good tuple.

Proof. Let F ′ be a minimal solution family of size b ≤ k` that covers p ≤ kr red points.
Let GF ′ have s components viz. C1, C2, · · · , Cs, where s ≤ k`. For each i ≤ s, let FCi

denote the set of lines corresponding to the vertices of V (Ci). Pi = B ∩FCi , ti = |Pi| and
kir = |R∩FCi |. In this special case and by minimality of F ′, |FCi | = ti. As Ci is connected,
there is a sequence {Li1, Li2, . . . Liti} for the lines in FCi such that for all j ≤ ti we have that
GF ′ [{Li1, . . . , Lij}] is connected. This means that, for all j ≤ ti, Lij intersects with at least

one of the lines from the set {Li1, . . . , Lij−1}. By minimality of F ′, the point of intersection

for such a pair of lines is a red point. For all j ≤ ti, let Lij cover the blue point bij . Let

I ′i = bi1, b
i
2, . . . , b

i
ti . The tuple

(
b, p, s, P = P1 ∪ P2 . . . ∪ Ps, {I ′1, . . . , I ′s}, (k1

r , k
2
r , . . . , k

s
r)
)

is

a good tuple and it also conforms with F ′. This completes the proof.

The idea of the algorithm is to generate all good tuples and then check whether there is
a solution subfamily F ′ that conforms to it. The next lemma states we can check for a
conforming minimal solution family when we are given a good tuple.

Lemma 6.5. For a good tuple (b, p, s, P, {I ′1, . . . , I ′s}, (k1
r , k

2
r , . . . , k

s
r)), we can verify in

O(b`pb) time whether there is a minimal solution family F ′ that conforms with this tuple.

Proof. The algorithm essentially builds a search tree for each partition Pi, 1 ≤ i ≤ s. For
each part Pi, we define a set of points R′i which is initially an empty set.

For each 1 ≤ i ≤ s, let ti = |Pi| and let I ′i = bi1, . . . , b
i
ti be the ordering of blue points

in Pi. Our objective is to check whether there is a subfamily F ′i ⊆ F such that it covers
bi1, . . . , b

i
ti , and at most kir red points. At any stage of the algorithm, we have a subfamily

F ′i covering bi1, . . . , b
i
j and at most kir red points. In the next step we try to enlarge F ′i in

such a way that it also covers bij+1, but still covers at most kir red points. In some sense
we follow the ordering given by I ′i to build F ′i .

Initially, F ′i = ∅. At any point of the recursive algorithm we represent the problem to be
solved by the following tuple: (F ′i , R′i, (bij , . . . , b

i
ti), k

i
r − |R′i|). We start the process by

124

guessing the line in F that covers bi1, say Li1. That is, for every L ∈ F such that bi1 is
contained in L we recursively check whether there is a solution to the tuple (F ′i := F ′i∪{L},
R′i := R′i ∪ (R∩L), (bi2, . . . , b

i
ti),k

i
r := kir − |R′i|). If any tuple returns YES then we return

that there is a subset F ′i ⊆ F which covers bi1, . . . , b
i
ti , and at most kir red points.

Now suppose we are at an intermediate stage of the algorithm and the tuple we have is (F ′i ,
R′i, (bij , . . . , b

i
ti), k

i
r). Let L be the set of lines such that it contains bij and a red point from

R′i. Clearly, |L| ≤ |R′i| ≤ kir. For every line L ∈ L, we recursively check whether there is a
solution to the tuple (F ′i := F ′i ∪ {L}, R′i := R′i ∪ (R ∩ L), (bij+1, . . . , b

i
ti),k

i
r := kir − |R′i|).

If any tuple returns YES then we return that there is a subset F ′i ⊆ F which covers
bi1, . . . , b

i
ti , and at most kir red points.

Let µ = ti. At each stage µ drops by one and, except for the first step, the algorithm
recursively solves at most kir subproblems. This implies that the algorithm takes at most
O(|F|ktir) = O(`ktir) time.

Notice that the lines in the input instance are partitioned according to the blue points
contained in it. Hence, the search corresponding to each part Pi is independent of those in
other parts. In effect, we are searching for the components for GF ′ in the input instance,
in parallel. If for each Pi we are successful in finding a minimal set of lines covering exactly
the blue points of Pi while covering at most kir red points, we conclude that a solution
family F ′ that conforms to the given tuple exists and hence the input instance is a YES
instance.

The time taken for the described procedure in each part is at most O(`ktir). Hence, the
total time taken to check if there is a conforming minimal solution family F ′ is at most

O(` ·
s∑
i=1

ktir) = O(s`pb) = O(b`pb).

This concludes the proof.

We are ready to describe our FPT algorithm for this special case of Gen-RBSC-lines
parameterized by k` + kr.

Lemma 6.6. Let (U,F , k`, kr) be an input to Gen-RBSC-lines such that every line
contains exactly 1 blue point. Then we can check whether there is a solution subfamily F ′

to this instance in time k
O(k`)
` · kO(kr)

r · (|U |+ |F|)O(1) time.

Proof. Lemma 6.4 implies that for the algorithm all we need to do is to enumerate all pos-
sible good tuples (b, p, s, P, {I ′1, . . . , I ′s}, (k1

r , k
2
r , . . . , k

s
r)), and for each tuple, check whether

there is a conforming minimal solution family. Later, we use the algorithm described in
Lemma 6.5. We first give an upper bound on the number of tuples and how to enumerate
them.

1. There are k` choices for s and kr choices for p.

2. There can be at most bk` choices for P which can be enumerated in O(bk` · k`) time.

3. For each j ≤ s, I ′j is ordering for blue points in Pi. Thus, if |Pi| = ti, then the

number of ordering tuples {I ′1, . . . , I ′s} is upper bounded by
∏s
i=1 ti! ≤

∏s
i=1 t

ti
i ≤∏s

i=1 b
ti = bb. Such orderings can be enumerated in O(bb) time.

125

4. For a fixed p ≤ kr, s ≤ k`, there are at most
(
p+s−1
s−1

)
solutions for k1

r+k2
r+. . .+ksr = p

and this set of solutions can be enumerated in O(
(
p+s−1
s−1

)
· ps) time. Notice that if

p ≥ s then the time required for enumeration is O((2p)p ·ps). Otherwise, the required
time is O((2s)s · ps). As p ≤ kr and s ≤ k`, the time required to enumerate the set

of solutions is O(k
O(k`)
` k

O(kr)
r · k`kr).

Thus we can generate the set of tuples in time k
O(k`)
` · kO(kr)

r .Using Lemma 6.5, for each
tuple we check in at most O(kk`r ·k``) time whether there is a conforming solution family or
not. If there is no tuple with a conforming solution family, we know that the input instance

is a NO instance. The total time for this algorithm is k
O(k`)
` k

O(kr)
r k

O(k`)
r · (|U |+ |F|)O(1).

Again, if kr ≤ kl then k
O(k`)
r = k

O(k`)
` . Otherwise, k

O(k`)
r = k

O(kr)
r . Either way, it is

always true that k
O(k`)
r = k

O(k`)
` k

O(kr)
r . Thus, we can simply state the running time to be

k
O(k`)
` · kO(kr)

r · (|U |+ |F|)O(1).

We return to the general problem of Gen-RBSC-lines parameterized by k`+kr. Instances
in this problem may have lines containing 2 or more blue points. We use the results
and observations described above to arrive at an FPT algorithm for Gen-RBSC-lines
parameterized by k` + kr.

Theorem 6.7. Gen-RBSC-lines parameterized by k` + kr is FPT, with an algorithm

that runs in k
O(k`)
` · kO(kr)

r · (|U |+ |F|)O(1) time.

Proof. Given an input (U,F , k`, kr) for Gen-RBSC-lines parameterized by k` + kr, we
do some preprocessing to make the instance simpler. We exhaustively apply Reduction
Rules 6.1, 6.2 and 6.3. After this, by Observation 6.2, the reduced equivalent instance has
at most

(
k`
2

)
blue points if it is a YES instance.

A minimal solution family can be broken down into two parts: the set of lines containing
at least 2 blue points, and the remaining set of lines which contain exactly 1 blue point.
Let us call these sets F2 and F1 respectively. We start with the following observation.

Observation 6.3. Let F ′′ ⊆ F be the set of lines that contain at least 2 blue points. There

are at most
(k4`
k`

)
ways in which a solution family can intersect with F ′′.

Proof. Since b ≤
(
k`
2

)
, it follows from Observation 6.1 that |F ′′| ≤ k4

` . For any solution
family, there can be at most k` lines containing at least 2 blue points. Since the number
of subsets of F ′′ of size at most k` is bounded by k4k`

` , the observation is true.

From Observation 6.3, there are k4k`
` choices for the set of lines in F2. We branch on

all these choices of F2. On each branch, we reduce the budget of k` by the number of
lines in F2 and the budget of kr by |R ∩ F2|. Also, we make some modifications on the
input instance: we delete all other lines containing at least 2 blue points from the input
instance. We delete all points of U covered by F2 and all lines passing through blue points
covered by F2. Our modified input instance in this branch now satisfies the assumption

of Lemma 6.6 and we can find out in k
O(k`)
` k

O(kr)
r · (|U |+ |F|)O(1) time whether there is a

minimal solution family F1 for this reduced instance. If there is, then F2∪F1 is a minimal
solution for our original input instance and we correctly say YES. Thus the total running

time of this algorithm is k
O(k`)
` · kO(kr)

r · (|U |+ |F|)O(1).

126

It may be noted here that for a special case where we can use any line in the plane as part
of the solution, the second part of the algorithm becomes considerably simpler. Here for
each blue point b, we can use an arbitrary line containing only b and no red point.

Corollary 6.1. Gen-RBSC-lines parameterized by k` + d, where every line contains at
most d red points, is FPT. The running time of the FPT algorithm is (dk`)

O(dk`) · (|U |+
|F|)O(1). The problem remains FPT for all parameter sets Γ′ that contain {k`, d} or {b, d}.

Proof. In this special case, any solution family can contain at most dk` red points. Hence
we can safely assume that kr ≤ dk` and apply Theorem 6.7.

6.6.1 Kernelization for Gen-RBSC-lines parameterized by k` + kr and
b+ kr

We give a polynomial parameter transformation from Set Cover parameterized by uni-
verse size n, to Gen-RBSC-lines parameterized by k`+kr+b. Proposition 6.1(ii) implies
that on parameterizing by any subset of the parameters {k`, kr, b}, we will also obtain a
negative result for polynomial kernels.

Theorem 6.8. Gen-RBSC-lines parameterized by k`+kr+b does not allow a polynomial
kernel unless CoNP ⊆ NP/poly.

Proof. Let (U,S) be a given instance of Set Cover. Let |U | = n, |S| = m. We construct
an instance (R ∪ B,F) of Gen-RBSC-lines as follows. We assign a blue point bu ∈ B
for each element u ∈ U and a red point rS ∈ R for each set S ∈ S. The red and blue
points are placed such that no three points are collinear. We add a line between bu and
rS if u ∈ S in the Set Cover instance. Thus the Gen-RBSC-lines instance (R∪B,F)
that we have constructed has b = n, r = m and ` =

∑
S∈S |S|. We set kr = k and k` = n.

Claim 6.2. All the elements in (U,S) can be covered by k sets if and only if there exist n
lines in (R ∪B,F) that contain all blue points but only k red points.

Proof. Suppose (U,S) has a solution of size k, say {S1, S2, · · ·Sk}. The red points in the so-
lution family for Gen-RBSC-lines are {rS1 , rS2 , · · · rSk

} corresponding to {S1, S2, · · ·Sk}.
For each element u ∈ U , we arbitrarily assign a covering set Su from {S1, S2, · · ·Sk}. The
solution family is the set of lines defined by the pairs {(bu, rSu) | u ∈ U}. This covers all
blue points.

Conversely, if (R ∪ B,F) has a solution family F ′ covering k red points and using at
most n lines, the sets in S corresponding to the red points in F ′ cover all the elements in
(U,S).

If k > n, then the Set Cover instance is a trivial YES instance. Hence, we can always
assume that k ≤ n. This completes the proof that Gen-RBSC-lines parameterized by
k` + kr + b cannot have a polynomial sized kernel unless CoNP ⊆ NP/poly.

127

6.7 Hyperplanes: parameterized by k` + kr

Theorem 6.9. Gen-RBSC for hyperplanes in Rd, for a fixed positive integer d, is W[1]-
hard when parameterized by k` + kr.

Proof. The proof of hardness follows from a reduction from k-CLIQUE problem. The
proof follows a framework given in [Marx 2006].

Let (G, k) be an instance of k-CLIQUE problem. Our construction consists of a k×k matrix
of gadgets Gij , 1 ≤ i, j,≤ k. Consecutive gadgets in a row are connected by horizontal
connectors and consecutive gadgets in a column are connected by vertical connectors. Let
us denote the horizontal connector connecting the gadgets Gij and Gih as Hi(jh) and the
vertical connector connecting the gadgets Gij and Ghj as V(ih)j , 1 ≤ i, j, h ≤ k.
Gadgets: The gadget Gij contains a blue point bij and a set Rij of d− 2 red points. In
addition there are n2 sets R′ij(a, b), 1 ≤ a, b ≤ n, each having two red points each.
Connectors: The horizontal connector Hi(jh) has a blue point bi(jh) and a set Ri(jh) of
d−2 red points. Similarly, the vertical connector V(ih)j a blue point b(ih)j) and a set R(ih)j

of d− 2 red points.

The points are arranged in general position i.e., no set of d + 2 points lie on the same d-
dimensional hyperplane. In other words, any set of d+1 points define a distinct hyperplane.
Hyperplanes: Assume 1 ≤ i, j, h ≤ k and 1 ≤ a, b, c ≤ n. Let Pij(a, b) be the hyperplane
defined by the d + 1 points of bij ∪ Rij ∪ R′ij(a, b). Let P hi(jh)(a, b, c) be the hyperplane

defined by d + 1 points of bi(jh) ∪ Ri(jh) ∪ r1 ∪ r2 where r1 ∈ R′ij(a, b) and r2 ∈ R′ih(a, c).
Let P v(ij)h(a, b, c) be the hyperplane defined by d+1 points of b(ij)h)∪R(ij)h∪r1∪r2 where

r1 ∈ R′ih(a, c) and r2 ∈ R′jh(b, c).
For each edge ab ∈ E(G), we add k(k − 1) hyperplanes of the type Pij(a, b), i 6= j.
Further, for all 1 ≤ a ≤ n, we add k hyperplanes of the type Pii(a, a), 1 ≤ i ≤ k. The
hyperplane P hi(jh)(a, b, c) containing the blue point bi(jh) in a horizontal connector, is added

to the construction if Pij(a, b) and Pih(a, c) are present in the construction. Similarly, the
hyperplane P v(ij)h(a, b, c) containing the blue point b(ij)h in a vertical connector, is added

to the construction if Pih(a, c) and Pjh(b, c) are present in the construction.

Thus our construction has k2 + 2k(k− 1) blue points, (k2 + 2k(k− 1))(d− 2) + 2n2k2 red
points and O((m2k2)) hyperplanes.

Claim 6.3. G has a k-clique if and only if all the blue points in the constructed instance
can be covered by k2 + 2k(k − 1) hyperplanes covering at most k2d+ 2k(k − 1)(d− 2) red
points.

Proof. Assume G has a clique of size k and let {a1, a2, · · · , ak} be the vertices of the clique.
Now we show a set cover of desired size exists. Choose k hyperplanes, Pii(ai, ai), 1 ≤ i ≤ k,
to cover the diagonal gadgets. To cover other gadgets,Gij , choose the hyperplanes Pij(aiaj)
and to cover the connectors, Hi(jh) and V(ih)j , choose the hyperplanes P hi(jh)(ai, aj , ah)

and P v(ij)h(ai, aj , ah). The fact that {a1, a2, · · · , ak} forms a clique implies that these
hyperplanes do exist in the construction.

Now assume a set cover of given size exists. To cover the blue point bij in the gadget
Gij , any hyperplane adds d red points. Also to cover the blue point in each connector, we
need to add d − 2 extra red points. Since each hyperplane contains d red points and we

128

have already used up our budget of red points, each hyperplane covering the connector
points should reuse two red points that have been used in covering gadgets. By construc-
tion, this is possible only when all gadgets in a row(column) are covered by hyperplanes
corresponding to edges incident on the same vertex viz. the vertex corresponding to the
hyperplane covering the diagonal gadget in the row(column). This implies that G has a
required clique.

This completes the proof.

6.8 Multivariate complexity of Gen-RBSC-lines: Proof of
Theorem 6.1

The first part of Theorem 6.1 (parameterized complexity dichotomy) follows from Theo-
rems 6.3, 6.4, 6.5 and 6.7. Recall that Γ = {`, r, b, k`, kr}. To show the kernelization
dichotomy of the parameterizations of Gen-RBSC-lines that admit FPT kernels we do
as follows:

• Show that the problem admits a polynomial kernel parameterized by ` (Theo-
rem 6.4). This implies that for all Γ′ that contains `, the parameterization admits a
polynomial kernel.

• Show that the problem does not admit a polynomial kernel when parameterized
by k` + kr + b (Theorem 6.8). This implies that for all subsets of {k`, kr, b}, the
parameterization does not allow a polynomial kernel.

• The remaining FPT variants of Gen-RBSC-lines correspond to parameter sets Γ′

that contain either r or {r, b} together. Recall that, kr ≤ r and k` ≤ b. The two
smallest combined parameters for which we can not infer the kernelization complexity
from Theorem 6.8 are r + k` and r + b. We show below (Theorem 6.10) that Gen-
RBSC admits a quadratic kernel parameterized by r + k`. Since in any minimal
solution family k` ≤ b, this also implies a quadratic kernel for the parameterization
r+ b. Thus, if parameterization by a set Γ′, which contains either r or {r, b}, allows
an FPT algorithm then it also allows a polynomial kernel.

Theorem 6.10. Gen-RBSC-lines parameterized by k` + r admits a polynomial kernel.

Proof. Given an instance of Gen-RBSC-lines we first exhaustively apply Reduction
Rules 6.1, 6.2 and 6.3 and obtain an equivalent instance. By Observation 6.2, the reduced
instance has at most b ≤ k2

` blue points. By Observation 6.1, the number of lines containing

at least two points is
(
r+b

2

)
. After applying Reduction Rule 6.1, there are no lines with

only one red point. Also, for a blue point bi, if there are many lines that contain only bi,
then we can delete all but one of those lines. Therefore, the number of lines that contain

exactly one point is bounded by b. Thus, we get a kernel of k2
` blue points,

(r+k2`
2

)
+ k2

`

lines and r red points. This concludes the proof.

Combining Theorems 6.4, 6.8 and 6.10 and the discussion above we prove the second part
of the Theorem 6.1 (kernelization dichotomy).

129

6.9 Parameterized Landscape for Red Blue Set Cover with
lines

Until now our main focus was the Gen-RBSC-lines problem. In this section, we study
the original RBSC-lines problem. Recall that the original RBSC-lines problem differs
from the Gen-RBSC-lines problem in the following way – here our objective is only
to minimize the number of red points that are contained in a solution subfamily, and
not the size of the subfamily itself. That is, k` = |F|. This change results in a slightly
different landscape for RBSC-lines compared to Gen-RBSC-lines. As before let Γ =
{`, r, b, k`, kr}. We first observe that for all those Γ′ ⊆ Γ that do not contain k` as a
parameter and Gen-RBSC-lines is FPT parameterized by Γ′, RBSC-lines is also FPT
parameterized by Γ′. Next we list out the subsets of parameters for which the results do
not follow from the result on Gen-RBSC-lines.

• RBSC-lines becomes FPT parameterized by r.

• W[2]-hard parameterized by kr.

6.9.1 RBSC-lines parameterized by r

Theorem 6.11. RBSC-lines parameterized by r is FPT. Furthermore, RBSC-lines
parameterized by r does not allow a polynomial kernel unless CoNP ⊆ NP/poly.

Proof. We proceed by enumerating all possible kr-sized subsets of R. For each subset, we
can check in polynomial time whether the lines spanned by exactly those points cover all
blue points. This is our FPT algorithm, which runs in O(2r · (|U |+ |F|)O(1)).

Using Proposition 6.1, it is enough to show a polynomial parameter transformation from
Set Cover parameterized by size m of the set family, to RBSC-lines parameterized by
r. The reduction is exactly the same as the one given in the proof of Theorem 6.8. This
gives the desired second part of the theorem.

6.9.2 RBSC-lines parameterized by kr

Here, we study parameterization by kr and some special cases which lead to FPT algo-
rithm. We prove that RBSC-lines parameterized by kr is W[2]-hard. From Proposi-
tion 6.1, Set Cover parameterized by solution family size k is W[2]-hard. The W[2]-
hardness of RBSC-lines parameterized by kr can be proved by a many-one reduction
from Set Cover parameterized by k. The reduction is exactly the one that is given in
Theorem 6.8.

Theorem 6.12. RBSC-lines parameterized by kr is W[2]-hard.

FPT result under special assumptions

In this section, we consider a special case, where in the given instance every line contains
either no red points or at least 2 red points. There are two reasons motivating the study

130

of this special case. Firstly, in the W[2]-hardness proof we crucially used the fact that the
constructed RBSC-lines instance has a set of lines with exactly 1 red point. Thus, it is
necessary to check if this is the reason leading to the hardness of the problem. Secondly, if
we look at RBSC (sets in the family can be arbitrary) parameterized by kr and assumed
that in the given instance every line contains either no red points or at least 2 red points,
then too the problem is W[1]-hard (see Theorem 6.15). However, when we consider RBSC-
lines parameterized by kr and where in the given instance every set contains either no
red points or at least 2 red points, the problem is FPT.

For our algorithm we also need the following new reduction rule.

Reduction Rule 6.4. If there is a set S ∈ F with only blue points then delete that set
from F and include the set in the solution.

Lemma 6.7. Reduction Rule 6.4 is safe.

Proof. Since the parameter is kr, there is no size restriction on the number of lines in
the solution subfamily F ′. If F ′ is a solution subfamily and S ∈ F then under this
parameterization, F ′ ∪ {S} is also a solution family covering all blue points and at most
kr red points. This shows that Reduction Rule 6.4 is valid.

Theorem 6.13. RBSC-lines parameterized by kr, where the input instance has every
set containing at least 2 red points or no red points at all, has an algorithm with running

time k
O(k2r)
r · (|U |+ |F|)O(1).

Proof. Given an instance of RBSC-lines, we first exhaustively apply Reduction Rules 6.1,
6.2 and 6.4 and obtain an equivalent instance. At the end of these reductions we obtain
an equivalent instance where every line has at least 1 blue point and at least 2 red points,
but at most kr red points.

Suppose F ′ is a solution family. Since a line with a red point has at least 2 red points, by
Observation 6.1, the total number of sets that can contain the red points covered by F ′
is at most

(
kr
2

)
. This means that, if the input instance is a YES instance, there exists a

solution family with at most k` =
(
kr
2

)
lines. Now we can apply the algorithm for Gen-

RBSC-lines parameterized by k` + kr described in Theorem 6.7 to obtain an algorithm
for RBSC-lines parameterized by kr.

Theorem 6.13 gives an FPT algorithm for RBSC-lines parameterized by kr. In what
follows we show that the same parameterization does not yield a polynomial kernel for this
special case of RBSC-lines. Towards this we give a polynomial parameter transformation
from Set Cover parameterized by universe size n, to RBSC-lines parameterized by kr
and under the assumption that all sets in the input instance have at least 2 red points.

Theorem 6.14. RBSC-lines parameterized by kr, and under the assumption that all
lines in the input have at least 2 red points, does not allow a polynomial kernel unless
CoNP ⊆ NP/poly.

Proof. Let (U,S) be a given instance of the Set Cover problem. We construct an instance
(R ∪ B,F) of RBSC-lines as follows. We assign a blue point bu ∈ B for each element
u ∈ U and a red point rS ∈ R for each set S ∈ S. The red and blue points are placed

131

such that no three points are collinear. We add a line between bu and rS if u ∈ S in the
Set Cover instance. To every line L, defined by a blue point bu and a red points rS ,
we add a unique red point rL ∈ R. Thus the RBSC-lines instance (R ∪ B,F) that we
have constructed has n blue points,

∑
s∈S |S| lines and m +

∑
s∈S |S| red points. We set

kr = k + n.

Claim 6.4. All the elements in (U,S) can be covered by k sets if and only if there exist
lines in (R ∪B,F) that contain all blue points but only k + n red points.

Proof. Suppose (U,S) has a solution of size k, say {S1, S2, · · ·Sk}. To each element u ∈ U ,
we arbitrarily associate a covering set Su from {S1, S2, · · ·Sk}. Our solution family F ′ of
lines are the lines defined by the pairs of points {(bu, rSu) | u ∈ U}. These lines cover
all blue points. The number of red points contained in these lines are the k red points
{rS1 , rS2 , · · · rSk

} associated with {S1, S2, · · ·Sk}, and the n red points {rL | L ∈ F ′}.
Therefore, in total there are k + n red points in the solution.

Conversely, suppose (R∪B,F) has a family F ′ covering all blue points and at most k+n
red points. The construction ensures that at least n lines are required to cover the n
blue points. This also implies that the unique red points belonging to each of these lines
add to the number of red points contained in the solution family. The remaining k red
points, that are contained in the solution family, correspond to sets in S that cover all the
elements in (U,S).

If k > n, then the Set Cover instance is a trivial YES instance. Hence, we can always
assume that k ≤ n. This completes the proof that RBSC-lines parameterized by kr,
and under the assumption that every line in the input instance has at least 2 red points,
cannot have a polynomial sized kernel unless CoNP ⊆ NP/poly.

6.9.3 Proof of Theorem 6.2

The proof of Theorem 6.2 follows from Theorems 6.1, 6.11 and 6.12.

6.10 Generalised Red Blue Set Cover

In this section, we show that for several parameterizations, under which Gen-RBSC-
lines is FPT, the Gen-RBSC problem is not. In this section we give the following three
results which complement the corresponding results in the geometric setting.

1. Gen-RBSC is W[1]-hard parameterized by k` + kr when every set has size at most
three and contains at least two red elements.

2. Gen-RBSC is W[2]-hard parameterized by k` + r when every set contains at most
one red element.

3. Gen-RBSC is FPT, parameterized by k` and d, when every set has at most one red
element. Here, d is the size of the maximum cardinality set in F .

132

6.10.1 Gen-RBSC parameterized by k` + kr and k` + r

Theorem 6.15. Gen-RBSC is W-hard in the following cases:

1. When every set contains at least two red elements but at most three elements, and
the parameters are {k`, kr}, the problem is W[1]-hard.

2. When every set contains at most one red element and the parameters are {k`, r},
then the problem is W[2]-hard.

Proof. We start by proving the first result. From an instance (G, k) of Multicoloured
Clique parameterized by k, we construct an instance (U = (R,B),F) of Gen-RBSC
parameterized by k` +kr with the restriction that the size of each set is at most three and
there are at least 2 red elements. The construction is as follows.

• Let the given vertex set be V (G) = V1] V2] . . .] Vk. For every pair (i, j), 1 ≤ i <
j ≤ k, we introduce a new blue element bij ∈ B. Thus we have

(
k
2

)
blue elements.

• For each vertex v ∈ V (G) we introduce a new red element rv ∈ R.

• U = R]B.

• For each e = uv ∈ E(G) such that u ∈ Vi, v ∈ Vj and i < j, we define a set Se ∈ F
which contains the elements {bij , ru, rv}.

• We set kr = k and k` =
(
k
2

)
.

This completes our construction. Notice that every set in F has at least 2 red elements
and has size exactly three.

First, assume that (G, k) is a YES instance. Then there is a k-sized multicoloured clique
C in G. Let E(C) denote the set of edges of C. Pick the subfamily F ′ = {Se | e ∈ E(C)}
of size

(
k
2

)
. Since C is a multicoloured clique, for all (i, j), 1 ≤ i < j ≤ k there is an edge

eij ∈ E(C) whose endpoints belong to Vi and Vj . Consequently, there is a set Seij ∈ F ′
that contains bij . The total number of red elements contained in F ′ is equal to the size
|V (C)| = k. This shows that (U,F , k) is a YES instance of Gen-RBSC.

Conversely, suppose (U,F) is a YES instance of Gen-RBSC. Let F ′ be a minimal sub-
family of at most

(
k
2

)
sets that covers at most k red elements. Let V (C) be the vertices in

G corresponding to the red elements in F ′. Notice that there are
(
k
2

)
blue elements, no two

of which can be covered by the same set. Thus, for all (i, j), 1 ≤ i < j ≤ k, F ′ must con-
tain exactly one set Se = {bij , rij1 , r

ij
2 }. This implies that for every i, 1 ≤ i ≤ k the sets in

F ′ must contain a red element corresponding to a vertex in Vi. Hence, for all i, 1 ≤ i ≤ k,
C ∩ Vi 6= ∅. Also, C forms a clique since the set Se = {bij , rij1 , r

ij
2 } corresponds to the

edge between the vertices selected from Vi and Vj . Therefore, (G, k) is a YES instance
of Multicoloured Clique. This proves that Gen-RBSC, parameterized by k` + kr, is
W[1]-hard under the said assumption.

For the second part of the statement, observe that Set Cover is a special case of this
problem and therefore, the problem is W[2]-hard.

133

6.10.2 A special case of Gen-RBSC parameterized by k`

In this section, we restrict the input instances to those where every set has at most 1 red
element and at most d blue elements. We design an FPT algorithm for this special case
of Gen-RBSC parameterized by k` + d. It is reasonable to assume that there is no set
in the given instance with only red elements, since Reduction Rule 6.1 can be applied to
obtain an equivalent instance of Gen-RBSC, under the parameters of {k`, d}.

We were able to show that this problem has an FPT algorithm. However, it was pointed
out to us by an anonymous reviewer that there is a simple algorithm based on Dynamic
Programming technique. Thus, in the following two subsections, we present the two
algorithms.

An algorithm based on Subgraph Isomorphism

We obtain the desired algorithm by making 2O(dk`) instances of the Subgraph Isomor-
phism (Sub-Iso) problem where the pattern graph has size O(dk`) and treewidth 2, and
the given instance is a YES instance if and only if one of the constructed instances is a
YES instance of the Sub-Iso problem. To solve Sub-Iso we use known algorithms. We
need the following definitions to describe our algorithm.

Definition 6.4. Two graphs G1 and G2 are said to be isomorphic if there is a function
f : V (G1)→ V (G2) that satisfies the following properties:

1. f is a bijective function, i.e., f−1 is a function from V (G2) to V (G1);

2. for all e = uv ∈ E(G1), f(u)f(v) ∈ E(G2).

The function f is called an isomorphism function. This function can be extended to sets
of vertices analogously. That is, for all V ′1 ⊆ V (G1), f(V ′1) = {f(v) | v ∈ V ′1} ⊆ V (G2).
We denote the two isomorphic graphs as G1 ' G2.

The Subgraph Isomorphism problem is formally defined as follows.

Subgraph Isomorphism (Sub-Iso) Parameter: |H|
Input: A host graph G and a pattern graph H
Question: Is there a subgraph G′ ⊆ G such that H ' G′?

For our reduction to Sub-Iso given an input instance (U = (R,B),F) we form the host
graph G as follows.

• Add an independent set VF = {vS | S ∈ F} to V (G).

• Add independent sets VB = {vb′ | b′ ∈ B} and VR = {vr′ | r′ ∈ B} to V (G).

• For a pair of vertices vS ∈ VF and vb′ ∈ VB, add an edge between them if b′ ∈ S.

• For a pair of vertices vS ∈ VF and vr′ ∈ VR, add an edge between them if r′ ∈
S. However, we will say this slightly differently to make some arguments in the

134

v2

v3 v4

vR vN

vr1 vr2 vsp

vS1

v1

vb6
vb7

vb3 vb5vb1

a) Host graph b) Pattern Graphs

Figure 6.3: Illustration of our reduction to Sub-Iso. The instance shown above is obtained
after applying the reduction to the instance R = {r1, r2}, B = {b1, b2, b3, b4, b5, b6, b7},
F = {S1 = {r1, b1, b2}, S2 = {r1, b1, b2, b3}, S3 = {r1, b2, b4}, S4 = {r2, b3, b5}, S5 =
{r2, b4, b5}, S6 = {b5, b6, b7}}. The right hand side is one pattern graph when k` = 5
and kr = 2. It is also an example of a (2, 4, 5)-pattern and a (1, 1, 2) pattern.

upcoming proofs simpler. For the collection of sets that contain the same red element
r′, we add a common neighbour vr′ to the corresponding vertices in VF . Also, for the
collection of sets that do not contain any red elements, we add a common neighbour
vsp to the corresponding vertices in VF .

• We add a vertex vR, which is a common neighbour to the vertices of VR.

• We add a vertex vN and an edge between vN and vsp.

• We add new vertices v1, v2, v3, v4 and add edges such that {v1, v2, vR} form a triangle
and {v3, v4, vN} form a triangle.

This completes the construction of the host graph G. Notice that only the vertices of
{vR, v1, v2, v3, v4, vN} participate in a triangle. See Figure 6.3 for an illustration of con-
struction of the host graph.

Now we give some definitions that will be useful in describing the pattern graph of constant
treewidth.

Definition 6.5. An (a1, a2, a3)-forest, a1 ≤ a2 ≤ a3, is a forest with the following prop-
erties:

1. there are a1 components;

2. each component i is rooted at a vertex ui. The distance between ui and any connected
leaf is exactly 2. Let Ũ = {ui | 1 ≤ i ≤ a1};

3. Σ1≤i≤a1 |N(ui)| = a2;

4. Σ1≤i≤a1 |(N(N(ui))\{ui})| = a3 (that is, the total number of leaves in the (a1, a2, a3)
forest is a3).

135

We will always think of an (a1, a2, a3)-forest as a forest where each component (tree) is
rooted at some vertex in Ũ .

For a forest H, we denote the set Ũ of root vertices as ŨH . From item 2 of the definition
of (a1, a2, a3)-forests, if two (a1, a2, a3)-forests H1 and H2 are isomorphic, there is an
isomorphism function f such that f(ŨH1) = ŨH2 . Let Z be the set of non-isomorphic
(a1, a2, a3)-forests. The next lemma gives an upper bound on |Z| and also shows how this
set of forests can be enumerated efficiently.

Lemma 6.8. For a tuple (a1, a2, a3), there can be at most 22(a2+a3) (a1, a2, a3)-forests.
That is, |Z| ≤ 22(a2+a3). This set can be enumerated in O(22(a2+a3) · (a1a2 + a2a3)) time.

Proof. Informally, we can give an upper bound as follows. For 1 ≤ i ≤ a1, let xi denote a
the number of possible children of ui in an (a1, a2, a3)-forest. Then clearly,

∑a1
i=1 xi = a2.

Hence, the number a2 can be thought of as a non-negative integer solution to the the above
equation. In other words, the number a2 can be thought of as a combination of a1 integers.
There are at most

(
a2+a1−1
a1−1

)
≤ 22a2 such combinations that add up to a2. Similarly, the

definition of the number a3 suggests that a3 can be thought of as a combination of a2

integers. There are at most
(
a3+a2−1
a2−1

)
≤ 22a3 such combinations that add up to a3. For

positive integers x and y, let Cxy denote the tuples of combinations of y into x parts. Let
C = Ca1a2 × C

a2
a3 .

We give a one-to-one function φ from Z to C. Since, |C| ≤ 22(a2+a3), the bound on |Z|
follows.

Given an (a1, a2, a3)-forest H, C1 = (|N(u1)|, |N(u2)|, . . . , |N(ua1 |) is a combination of a1

integers that add to a2. Let hi = |N(ui)|. For each i, we give an ordering Oi on the
neighbours, say v1, . . . , vhi , of ui such that |N(v1)| ≤ |N(v2)| ≤ · · · ≤ |N(vh)|. Finally,
we obtain an ordering O on the vertices of

⋃
1≤i≤a1 N(ui) with O = O1 < O2 < . . . <

Oa1 = (w1, w2, . . . , wa2). That is, we order the vertices of N(u1) identical to O1 and
then the vertices of N(u2) identical to O2 and so on. Let C2 = (|N(w1) \ ŨH |, |N(w2) \
ŨH |, . . . , |N(wa2) \ ŨH |) be a combination of a2 integers that add to a3. The function φ
takes the (a1, a2, a3)-forest to the pair (C1, C2).

Suppose there is another (a1, a2, a3)-forest H ′ which is mapped to (C1, C2). Then, from
the definition of φ, H ′ ' H and hence at most one of H and H ′ can be part of the set of
non-isomorphic (a1, a2, a3)-forests.

Thus, the size of the set of non-isomorphic (a1, a2, a3)-forests is upper bounded by 22(a2+a3).

We look at how to enumerate these (a1, a2, a3)-forests. In fact, it is enough to enumerate
all the combinations of a1 integers that add to a2 and a2 integers that add to a3. One can
easily enumerate all combinations of k integers that add to n in O(

(
n+k−1
k−1

)
·nk) time. For

completeness we describe an algorithm.

Claim 6.5. The enumeration of all combinations of k integers that add to n can be done
in O(

(
n+k−1
k−1

)
· nk) time.

Proof. A combination of k integers that add to n is same as putting n balls into k distinct
boxes. This in turn is equivalent to putting (k− 1) 1’s in an (n+ k− 1)-bit vector. So the
enumeration problem is equivalent to enumerating the set V of all (n+ k − 1)-bit vectors
that have exactly (k − 1) 1’s. There can be at most

(
n+k−1
k−1

)
vectors in V.

136

We start from the (n + k − 1)-bit vector that has 1 in the first k − 1 positions. For a
fixed (n+ k− 1)-bit vector with (k− 1) 1’s, let p(i) denote the position of the ith 1 in this
vector. If p(k − 1) < n, we generate the next vector by making p(k − 1) = p(k − 1) + 1
and keeping all other positions the same. Otherwise, let j < k − 1 be the largest integer
such that p(j+ 1)−p(j) > 1 . We generate the next vector by making p(j) = p(j) + 1 and
for all i > j, p(i) = p(i) + 1. Generating a new vector takes k steps. Any two vectors that
are generated differ on atleast 1 bit and every vector of V is generated by the algorithm.
The algorithm stops with the vector where the last k − 1 positions have 1’s. The running
time of the algorithm is

(
n+k−1
k−1

)
· k

Given an (n + k − 1)-bit vector with exactly (k − 1) 1’s, we generate a combination of k
integers c1, c2, . . . ck that add to n by setting c1 = p(1) − 1, ck = n − p(k − 1) and for all
other i, ci = p(i+ 1)− p(i)− 1. Thus generating all combinations of k integers that add
up to n takes O(

(
n+k−1
k−1

)
· nk).

This shows that the total number of (a1, a2, a3)-forests are at most 22(a2+a3) and enumer-
ation of this set takes at most O(22(a2+a3) · (a1a2 + a2a3)) time.

Definition 6.6. An (a1, a2, a3)-pattern is constructed from an (a1, a2, a3)-forest by adding
a common neighbour u to each ui, and two more vertices {u1, u2} such that {u, u1, u2} form
a triangle. No other edges are added. See Figure 6.3 for an illustration of (2, 4, 5)-pattern.

Observation 6.4. The definition implies that there are at most 22(a2+a3) (a1, a2, a3)-
patterns, which can be enumerated in O(22(a2+a3) · (a1a2 + a2a3)) time.

Observation 6.5. An (a1, a2, a3)-pattern without the vertices u1, u2 is a tree. Thus the
treewidth of an (a1, a2, a3)-pattern is at most 2.

The next lemma establishes the desired connection between Gen-RBSC and Sub-Iso.

Lemma 6.9. Let (U = (R,B),F) be an input instance to Gen-RBSC parameterized by
k` + d, where each set contains at most one red element and at most d blue elements.

Then the input instance is a YES instance if and only if there exist integers p̂, q̂, r̂, ŝ, t̂
such that p̂ ≤ kr, q̂ + ŝ ≤ k`, r̂ + t̂ = b, H1 is a (p̂, q̂, r̂) pattern, H2 is a (1, ŝ, t̂) pattern
and (G,H = H1]H2) is a YES instance of Sub-Iso.

Proof. We first show the forward direction. Since (U = (R,B),F) is a YES instance,
there exists a solution subfamily F ′ of size at most k` that covers all blue elements and
at most kr red elements. Let Fsp ⊆ F ′ be such that for all F ∈ Fsp, F ∩ R = ∅ and let
F ′′ = F ′ \ Fsp. Let q̂ = |F ′′|, ŝ = |Fsp| and let p̂ ≤ kr denote the number of red elements
covered by F ′′. Also, let r̂ ≤ b be the number of blue points covered by F ′′ and t̂ ≤ b be
b− r̂. We show that there exists H = H1]H2 such that H1 is a (p̂, q̂, r̂) pattern and H2

is a (1, ŝ, t̂) pattern and (G,H) is a YES instance of Sub-Iso.

• We define an arbitrary ordering IR = {r1, r2, . . . rp̂} on the red elements covered by
F ′. Let F ′i denote the family of subsets of F ′ that contains the red element ri.

For, 1 ≤ i ≤ p̂, let |F ′i | = p1
i . This gives us a p̂ partition P 1 = (p1

1, p
1
2, . . . , p

1
p̂) of q̂.

137

• For every i ≤ p̂, we give an arbitrary ordering Ii to the sets in F ′i .
Finally, we consider the ordering I = I1 < I2 < . . . < Ip̂ = (S1, S2, . . . , Sq̂) to the
sets in F ′. That is, we first order the vertices of F ′1 identical to I1 and then the
vertices of F ′2 identical to I2 and so on.

• We pick each set in F ′ in the order given by I. We assign to that set the number
of blue elements, contained in the set, that are not contained in sets of smaller
index. In particular, let B(Si) denote the set of blue elements contained in Si and
not contained in any Sj with j < i. Then to each set Si we assign an integer
p2
Si

= |B(Si)|.
This gives us a q̂-partition P 2 = (p2

S1
, p2
S2
, . . . , p2

Sq̂
) of r̂.

• We create p̂ components where, for component i, ui corresponds to the subfamily
of sets F ′i . In fact, for i < p̂, ui corresponds to the red element ri. For each ui we
create p1

i neighbours, say, wi1, . . . , w
i
p1i

. Clearly, Σ1≤i≤p̂|N(ui)| = q̂.

• We identify the vertex wis with a set in F ′i . In particular, we assign wis to St where
t = s+ Σ1≤j≤i−1p

1
j . For each vertex wis we add p2

St
number of children. Clearly, by

construction Σ1≤i≤p̂|N(N(ui)) \ {ui}| = r̂.

We have constructed a (p̂, q̂, r̂)-forest now. Similarly we construct a (1, ŝ, t̂)-forest with

up̂+1 corresponding to the sets in F ′′. up̂+1 has ŝ neighbours, wp̂+1
1 , . . . , wp̂+1

ŝ , correspond-

ing to ŝ sets in F ′′ and for each such set Si, the corresponding wp̂+1
i has p2

Si
= |B(Si)|

children.

Now, we construct the corresponding pattern graphs H1 and H2 from these forests by
introducing some new vertices(By Definition 6.6). All the vertices u1, . . . , up̂ are connected
to a new vertex u which forms a triangle with u1 and u2. Similarly, up̂+1 is connected to
a new vertex u′ which forms a triangle with u3 and u4. Finally, we show that (G,H) is
a YES instance of Sub-Iso. Towards this we define an isomorphism function f in the
following way.

1. f(u) = vR, f(u1) = v1, f(u2) = v2. f(u′) = vN , f(u3) = v3, f(u4) = v4

2. For all 1 ≤ i ≤ p̂, f(ui) = vri and f(up̂+1) = vsp.

3. For all 1 ≤ i ≤ p̂+ 1 and 1 ≤ s ≤ p1
i , we map f(wis) = vSt where t = s+ Σ1≤j≤i−1p

1
j .

4. Recall that for each vertex wis we added p2
St

number of children. To these children
we arbitrarily assign a unique blue element contained in B(St).

It is easy to see that f defines a graph isomorphism from H to a subgraph of G. Thus,
(G,H) is a YES instance of Sub-Iso.

Now assume there is a H such that H = H1]H2 where H1 is a (p̂, q̂, r̂) pattern and H2

is a (1, ŝ, t̂) pattern. From the definition of pattern graphs and the construction of G, it
follows that f maps the vertices u, u1, u2 in H1 (resp. u′, u3, u4 in H2) to vR, v1, v2 (resp.
vN , v3, v4) respectively.

This implies that, f({u1, . . . , up̂}) ⊆ VR, f(up̂+1) = vsp, f
(⋃

1≤i≤(p̂+1)N(ui)
)
⊆ VF and

f
(⋃

1≤i≤(p̂+1)(N(N(ui)) \ {ui})
)
⊆ VB. This means that the family of sets corresponding

138

to the vertex set f(
⋃

1≤i≤(p̂+1)N(ui)) covers at most kr red elements and all blue elements.
Hence, the input instance is a YES instance. This completes the proof.

For our main algorithm we also need the following known algorithm for Sub-Iso.

Proposition 6.2 ([Fomin 2014a, Fomin 2014b]). Let G and H be two graphs on n and
q vertices respectively and the treewidth of H is at most t. Then, there is a deterministic
algorithm for Sub-Iso that runs in time 2.619q(nt)t+O(1).

Using all the above details, we arrive at an FPT algorithm for this case of Gen-RBSC.

Theorem 6.16. The Gen-RBSC problem parameterized by k` + d, where each set in the
input instance contains at most 1 red element and at most d blue elements, is FPT. The
running time of the FPT algorithm is 2O(dk`) · (|U |+ |F|)O(1).

Proof. By assumption, every set can have at most d blue elements and at most 1 red
element. Thus, a YES instance has b ≤ dk`. Also, by the assumption on the input
instance, the solution sets can contain at most k` red elements. If kr ≤ k`, then a solution
family will have at most kr red elements, otherwise it will have at most k` red elements
by definition of the problem. So, it is safe to assume that kr ≤ k`.

Given an input of Gen-RBSC we create the host graph G as described above. Lemma 6.9
gives us a characterization for the YES instances, in terms of this host graph and (a1, a2, a3)-
pattern graphs. That is, the input instance is a YES instance if and only if there exist
integers p̂, q̂, r̂, ŝ, t̂ such that p̂ ≤ kr, q̂ + ŝ ≤ k`, r̂ + t̂ = b and H1 is a (p̂, q̂, r̂) pattern
and H2 is a (1, ŝ, t̂) pattern and (G,H = H1] H2) is a YES instance of Sub-Iso. We
use this characterization to obtain our algorithm. We enumerate all patterns with the
given conditions true, using Lemmata 6.8 and Observation 6.4. Using bounds on binomial
expansions and geometric series sums, the number of such patterns, is 2O(dk`).

Since removing one vertex each from H1 and H2 makes H a forest, the tree width of
H is 2. For each such pattern H̃ we check whether (G, H̃) is a YES instance of Sub-
Iso using Proposition 6.2. If, for any pattern H̃, (G, H̃) is a YES instance of Sub-Iso
then we return YES. Otherwise, we return NO. The correctness of this step follows from
Lemma 6.9. The running time of this algorithm is 2O(dk`) · (|U |+ |F|)O(1). This concludes
the proof.

A Dynamic Programming Algorithm

We give a Dynamic Programming algorithm to solve Gen-RBSC parameterized by kl+d,
for the case when all sets contain at most 1 red element and at most d blue elements. Our
algorithm guesses the red point that can be added to the solution one by one and also
guesses the sets that can cover it and covers the remaining blue points optimally.

Lemma 6.10. There exists a FPT algorithm that solves Gen-RBSC when each set in the
input instance contains at most 1 red element and at most d blue elements. The running
time of this algorithm is O(22dkl(|U |+ |F|)O(1)).

Proof. Let B′ ⊆ B, r′ ∈ R ∪ nil, j ∈ N. Let W [B′, r′] represent the minimum cardinality
of a family F ′ ⊆ F that covers all elements in B′ and does not cover any red element

139

except r′ (no red element if r′ is nil). The value of W [B′, r′] is +∞ if no such F ′ ⊆ F
exists. Let T [B′, j] represent the minimum cardinality of a family F ′ ⊆ F that covers all
elements in B′ and covers at most j red elements. Clearly the instance is a YES instance
if and only if T [B, kr] ≤ kl.

We can compute the value of T [B, kr] using the following recurrence.
T [B′, 0] = W [B′, nil]
T [B′, j] = minr′∈(R ∪ nil) minB′′⊆B′(W [B′′, r′] + T [B′ \B′′, j − 1])

Similarly we can compute the value of W [B′, r′] using the following recurrence.
W [∅, r′] = 0
W [B′, r′] = 1 + minS∈F ,S∩R=∅ or S∩R={r′},S∩B′ 6=∅W [B′ \ S, r′]
Let us first show that the recurrence for W is correct. The proof is by induction on |B|.
When |B| = 0 the recurrence correctly returns zero. When |B| > 0, W [B′ \ S, r′] returns
the minimum cardinality of a family F ′ ⊆ F that covers all elements in B′ \ F and does
not cover any red element except r′ (by induction hypothesis). Therefore, S ∪ F ′ covers
all elements in B′ and does not cover any red element except r′. Since we are doing this
for every S ∈ F and take the minimum value, the recurrence indeed returns the minimum
cardinality of a family F ′ ⊆ F that covers all elements in B′ and does not cover any red
element except r′.

Now we show that the recurrence for T is correct by induction on j. When j = 0, the
recurrence returns the value of W [B,nil] which returns the minimum cardinality of a
family F ′ ⊆ F that covers all elements in B′ and does not cover any red element. When
j > 0, we consider a number of sets containing the same red element r′, paying for the blue
elements B′′ ⊆ B′ they cover, and cover the remaining blue elements B′ \B′′ optimally by
induction hypothesis. Since we do this for all red points and return the minimum value,
the recurrence is correct.

Running time: To compute the value of T [B, kr] using the above recurrence, we have to
compute at most 2|B||U | values of W and T , which is at most 2dkl |U | in YES-instances.
Every value of W can be computed in O(|U |) time using previously computed values. To
compute a value of T , we take the minimum over all choices of r′ in R, over at most
2|B| ≤ 2dkl choices of B′′, and look up earlier values. Thus the running time is bounded
by O(22dkl(|U |+ |F|)O(1)).

When it comes to kernelization for this special case, we show that even for Gen-RBSC-
lines parameterized by k` + d there cannot be a polynomial kernel unless CoNP ⊆
NP/poly. For this we will give a polynomial parameter transformation from Set Cover
parameterized by universe size n. The ppt reduction is exactly the one given in Theo-
rem 6.8.

Theorem 6.17. Gen-RBSC-lines parameterized by k` + d, and where every line has at
most 1 red element and at most d blue elements, does not allow a polynomial kernel unless
CoNP ⊆ NP/poly.

140

6.11 Chapter Summary

In this chapter, we provided a complete parameterized and kernelization dichotomy of the
Gen-RBSC-lines problem, under all possible combinations of its natural parameters.
We also studied RBSC-lines and Gen-RBSC under different parameterizations. The
next natural step seems to be a study of the Gen-RBSC problem, when the sets are
hyperplanes. Another interesting variant is when the set system has bounded intersection.

We believe that the running time of the FPT algorithm for Gen-RBSC-lines parame-
terized by k`, kr is tight, up to the constants appearing in the exponents. It would be
interesting to show that the problems cannot have algorithms with running time depen-

dence on parameters as k
o(k`)
` ·kO(kr)

r or k
O(k`)
` ·ko(kr)

r , under standard complexity theoretic
assumptions (like the Exponential Time Hypothesis).

141

142

Chapter 7

Unique Covering problems with
Geometric Sets

7.1 Introduction

In this chapter, we continue to study the parameterized complexity of variants of Set
Cover. The classic Set Cover problem is the following: For a set system (U,F) where
U is a finite universe of n elements and F is a family of subsets of U , is there a sub family
of at most k sets in F whose union is U? We say that an element x in U is covered by a
set S from F if the set S contains the element x.

For several applications, it turns out that we would like to not only cover elements of U
using sets in F , but also cover them uniquely. A common motivation involves problems
where covering elements by more than one set leads to noise (for example, wireless net-
works), so we would like to ensure that an element is covered, but by only one of the sets.
This desired refinement manifests itself in the following three natural variations of the Set
Cover problem.

• All elements must be covered uniquely by at most k sets. (Exact Cover)

• All elements must be covered, and at least k elements must be covered uniquely.
(Unique Set Cover)

• At least k elements are covered uniquely. (Unique Cover)

In the first two variants, we are looking for a set cover with additional properties. Note
that in the last setting, a valid solution may not be a set cover.

The Exact Cover problem was one of the twenty-one problems shown to be NP-complete
by Karp [Karp 1972]. The Unique Cover problem was introduced by Demaine et al
in [Demaine 2008], and it may be considered a natural “maximization” variant of Set
Cover, and also a generalisation of the Max Cut problem. The Unique Set Cover
problem combines elements of both these variants, and is NP-complete as well.

The Geometric Setting. Geometric settings are among the most promising contexts
for developing improved algorithms when faced with hardness in a general setting. The
geometric nature of the problem opens up several algorithmic possibilities, and this is
amply evidenced in the context of approximation algorithms. Many geometric problems
are known to admit good approximation algorithms, even PTASes. In particular, the
classical set cover and hitting set problems have been very well-explored in the context

143

Exact Cover Unique Cover Unique Set Cover

Parameter Size of solution Number of elements uniquely covered

Abstract Sets
W[1]-hard FPT W[1]-hard

Quadratic Element Kernel

Lines
FPT

V
C

-D
im

en
si

on FPT FPT
Quadratic Kernel Quadratic Kernel Poly Kernel

Hyperplanes Rd kO(d2)

kernel

kO(d) Instance Kernel
(Quadratic Element Kernel)

kO(d2)

kernel
Unit Squares W[1]-hard Poly Kernel Open

Table 7.1: A summary of our results.

of geometric objects [Hochbaum 1987, Mustafa 2009]. In this situation, the universe is
a point set in d-dimensional Euclidean space, and the sets are defined by intersection of
geometric objects with the point set. An object covers a point if it contains it. We study
the unique coverage variants for several geometric objects, including lines, hyperplanes,
squares, and rectangles.

Our Approach. We focus on the parameterized complexity of these problems, both
in the abstract setting and in carefully considered special cases. Studying the parame-
terized complexity of geometric problems has interesting implications. On the one hand,
a tractability result demonstrates the utility of the geometric structure in contrast with
the abstract setting. On the other, a hardness result often has consequences for hard-
ness of approximation; usually it establishes evidence for the non-existence of the EPTAS.
This has motivated several studies of geometric problems from a parameterized perspec-
tive [Marx 2005].

Our Results. This work is based on the results obtained in [Ashok 2015b]. We establish
the following results, summarised also in Table 7.1.

Exact Cover We show that Exact Cover is W[1]-hard even in the restricted setting
where all the objects are unit squares (Lemma 7.1). On the positive side, we show
that Exact Cover is FPT for lines (Lemma 7.2). Further, if the objects are
hyperplanes in a d-dimensional Euclidean space, the Exact Cover continues to be
FPT parameterized by k and d (Lemma 7.3).

Unique Cover For Unique Cover, a simple argument shows that the number of ele-
ments in the universe can be bounded by O(k2) (Lemma 7.4). This shows that the
problem is FPT. It turns out that this also implies a polynomial kernel for various
geometric objects (Corollary 7.2), using the fact that these objects have bounded
VC Dimension.

Unique Set Cover We show that Unique Set Cover is W[1]-hard in the general set-
ting (Lemma 7.5) and NP-complete when restricted to lines (Lemma 7.6). On the
positive side, we show that the problem is FPT for families of bounded intersection
(Lemma 7.7) and hyperplanes in d dimensions (Lemma 7.8).

144

7.2 Preliminaries

Problem Definitions A set system is a pair (U,F), where U is a universe of n elements
and F is a family of m subsets of U . Given a set system (U,F), a set S is said to cover
an element p ∈ U if p ∈ S. An element p is said to be covered uniquely by a subfamily
F ′ ⊆ F if there is exactly one set in F ′ which contains p. The Set Cover problem asks
for a smallest collection of subsets whose union covers every element in the universe. We
are now ready to define some of the variations of this problem that we consider in our
work.

Exact Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer k.
Question: Is there a subfamily F ′ ⊆ F of size at most k that covers every element of
U such that each element is contained in exactly one set in F ′?

Unique Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer k.
Question: Is there a subfamily F ′ ⊆ F such that, among the set of elements covered
by F ′, there is a subset S ⊂ U , |S| ≥ k with each element of S being contained in
exactly one set in F ′?

Unique Set Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer k.
Question: Is there a subfamily F ′ ⊆ F that covers every element of U such that there
is a subset S ⊆ U , |S| ≥ k where each element of S is contained in exactly one set in
F ′?

We consider some notions that will be useful in defining special set systems that we will
encounter during our study of these problems. A set system (U,F) is said to have bounded
intersection when there is a universal constant c such that for any pair of sets F1, F2 ∈ F ,
|F1 ∩ F2| ≤ c. A set system (U,F) is said to be a set system of squares (lines) if U is a
subset of n points in R2 and each set F ∈ F is the maximal set of points of U that are
contained in a square(line) defined on R2. Similarly, a set system (U,F) is said to be a
set system of hyperplanes if U is a set of n points in Rd, for a fixed positive integer d,
and each set F ∈ F is the maximal set of points of U that are contained in a hyperplane
defined on Rd.

Given a set system (U,F) of n elements and m sets, for every subset A ⊆ U we define the
family of sets FA = {S ∩A|S ∈ F}.

Definition 7.1 (VC Dimension). Let (U,F) represent a set system. A subset A ⊆ U is
said to be shattered if for every B ⊆ A, there exists F ∈ F such that F ∩ A = B. The
Vapnik-Chervonenkis dimension(or VC dimension) of (U,F) is the supremum of the sizes
of all shattered subsets of U .

Therefore, in general, the VC dimension of a set system could be infinite. However, set
systems of several geometric objects are known to have bounded VC dimension. We refer
the reader to [Matoušek 2002] for further details on VC Dimension. The following result
is known from [Vapnik 1971] about set systems of finite VC dimension.

145

Proposition 7.1. Let (U,F) be a set system with |U | = n and VC dimension d. Then
|F| ≤

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
Hyperplanes An i-flat in Rd is the affine hull of i + 1 affinely independent points. The
dimension of a (possibly infinite) set of points P , denoted as dim(P), is the minimum i
such that the entire set P is contained in an i-flat of Rd [Langerman 2005].

Observation 7.1 ([Langerman 2005]). For a pair of i-flat H1 and j-flat H2 , 1 ≤ j, i ≤
d− 1, if H1 6⊂ H2 and H2 6⊂ H1, then dim(H1 ∩H2) < min{i, j}.

We refer to (d− 1)-flats of Rd as hyperplanes.

7.3 Exact Cover

In this section, we consider the Exact Cover problem, parameterized by the number k
of sets in a solution family. Since this problem is known to be W[1]-hard, it is natural to
introduce properties on the input set family and see whether the added structure makes
the problem easier in these special cases. Here, we restrict ourselves to geometric versions,
where the universe is a set of points in a real space Rd, for an appropriate integer d, while
the set family is such that every set satisfies a particular geometric property.

The W[1]-hardness of Exact Cover was shown in [Misra 2013]. We give an alternative
proof for this W[1]-hardness. This proof, with a little bit of modification, shows that
Exact Cover on set systems of unit squares is also W[1]-hard.

Proposition 7.2. Exact Cover is W[1]-hard.

Proof. We give a polynomial time reduction from the Clique problem, which is known
to be W[1]-hard when parameterized by the size k of the solution clique [Downey 2012].
We begin by giving a reduction from the Exact Cover in the abstract setting. Given
an instance (G, k) of the Clique problem, we construct the following instance (U,F , k′)
of Exact Cover. For the ease of description, we will assume that if a set [a, b] is such
that a > b then this set is equivalent to the empty set. In particular, a set [n+ 1, n] is an
empty set. The construction is as below:

• We add k2 new elements U ′ = {ea,b|1 ≤ a, b ≤ k}.

• We create k(k − 1) copies of V (G) = {1, 2, . . . , n} denoted as Ha,b, a ≤ k, b ≤ k − 1.
We also create k(k − 1) copies of V (G) denoted as Va,b, a ≤ k − 1, b ≤ k. U =
U ′ ∪

⋃
a,b(Ha,b ∪ Va,b).

• For each i ∈ V (G), we construct a set S1,1
i,i = H1,1[1, . . . , i] ∪ V1,1[1, . . . , i] ∪ {e1,1}

and a set Sk,ki,i = Hk,k−1[i+ 1, . . . , n] ∪ Vk−1,k[i+ 1, . . . , n] ∪ {ek,k}.

• For every edge ij ∈ E(G), we construct a set Sk,1i,j = Hk,1[1, . . . , i] ∪ Vk−1,1[j +

1, . . . , n] ∪ {ek,1} and a set S1,k
i,j = H1,k−1[i+ 1, . . . , n] ∪ V1,k[1, . . . , j] ∪ {e1,k}.

• For each 1 < a < k, and every vertex i ∈ V (G), we construct a set Sa,ai,i = Ha,a−1[i+
1, . . . , n] ∪Ha,a[1, . . . , i] ∪ Va−1,a[i+ 1, . . . , n] ∪ Va,a[1, . . . , i] ∪ {ea,a}.

146

• For each 1 < a < k, and every edge ij ∈ E(G), we construct a set Sa,1i,j =

Ha,1[1, . . . , i]∪Va−1,1[j+ 1, . . . , n]∪Va,1[1, . . . , j]∪{ea,1} and a set Sa,ki,j = Ha,k−1[i+
1, . . . , n] ∪ Va−1,k[j + 1, . . . , n] ∪ Va,k[1, . . . , j] ∪ {ea,k}.

• For each 1 < b < k, and every edge ij ∈ E(G), we construct a set S1,b
i,j = H1,b−1[i+

1, . . . , n]∪H1,b[1, . . . , i]∪ V1,b[1, . . . , j]∪{e1,b} and a set Sk,bi,j = Hk,b−1[i+ 1, . . . , n]∪
Hk,b[1, . . . , i] ∪ Vk−1,b[1, . . . , j] ∪ {ek,b}.

• For each 1 < a 6= b < k, and every edge ij ∈ E(G), we construct a set Sa,bi,j =
Ha,b−1[i+ 1, . . . , n] ∪Ha,b[1, . . . , i] ∪ Va−1,b[j + 1, . . . , n] ∪ Va,b[1, . . . , j] ∪ {ea,b}.

• F = {Sa,ai,i |i ∈ V (G), 1 ≤ a ≤ k} ∪ {Sa,bi,j |ij ∈ E(G), 1 ≤ a 6= b ≤ k}.

• k′ = k2.

In the construction, for an element ea,a, 1 ≤ a ≤ k, we ensure that each set containing ea,a
encodes a distinct vertex of the graph G. On the other hand, for an element ea,b, 1 ≤ a 6=
b ≤ k, each set containing ea,b encodes a distinct edge of G.

Claim 7.1. The constructed Exact Cover instance, (U,F , k′), has a solution of size
k′ = k2 if and only if there is a clique of size k in G.

Proof. Assume there is a clique C of size k in G. Let V (C) = {i1 > i2 > . . . > ik}. Then

the sets {Sj,jij ,ij |1 ≤ j ≤ k} ∪ {Sj,lij ,il |1 ≤ j 6= l ≤ k} form a solution for the above Exact
Cover instance.

Conversely, let S be a solution for the Exact Cover instance. For any (a, b), 1 ≤ a, b ≤ k,

two sets Sa,bi1,j1 and Sa,bi2,j2 will have the point ea,b in their intersection. Therefore, for a pair

(a, b) atmost one set Sa,bi,j can be picked in any solution. In fact, the point ea,b can only

be covered by a set Sa,bi,j , 1 ≤ i, j ≤ n. This implies that for every pair (a, b), exactly one

set Sa,bi,j belongs to S. Let {i1, i2, . . . , ik} be indices such that {Sj,jij ,ij |1 ≤ j ≤ k} ⊆ S. The
construction ensures that any other set picked in S corresponds to an edge of G. For a
pair (a, b), if a set Sa,bi,j is picked with i < n, then to cover the element Ha,b[i + 1] while

maintaining exact coverage, we must pick a set Sa,b+1
i,l , for some 1 ≤ l ≤ k. When i = n,

then to cover the element ea,b+1 while maintaining unique coverage, we must pick a set

Sa,b+1
i,l , for some 1 ≤ l ≤ k. By similar arguments, if for a pair (a, b), a set Sa,bi,j is picked,

we must pick a set Sa+1,b
l,j where 1 ≤ l ≤ k . This implies that for a pair 1 ≤ a 6= b ≤ k,

the set chosen in S must be Sa,bia,ib , where Sa,aia,ia and Sb,bib,ib have been chosen respectively to
cover ea,a and eb,b. Then, by construction, ia 6= ib and iaib ∈ E(G) in the graph G. Thus,
the set {i1, i2, . . . , ik} corresponds to a set of k distinct vertices in G, which are pairwise
adjacent. This tells us that the induced subgraph G[i1, . . . , ik] is a clique in G.

This proves W[1]-hardness for Exact Cover.

We can also show the hardness of Exact Cover on set systems of unit squares.

Lemma 7.1. Exact Cover on set systems of unit squares is W[1]-hard.

147

Proof. We will show that the above reduction in the general case can in fact be made to
work for the special case, when each set is a unit square. This will complete the proof of
this lemma. We need the following specifications for the reduction to go through for this
case (See Figure 7.3 and Figure 7.3):

• The element ea,b ∈ U ′ is the point (b, a).

• The element Ha,b[i], 1 ≤ i ≤ n, is the point (b+ i
n+1 , a).

• The element Va,b[i], 1 ≤ i ≤ n, is the point (b, a+ i
n+1).

• The set Sa,bi,j , 1 ≤ i, j ≤ n, 1 ≤ a, b ≤ k, is the unit square defined by the 4 lines

x = (b − 1) + i
n+1 + 1

2(n+1) , x = b + i
n+1 + 1

2(n+1) , y = (a − 1) + j
n+1 + 1

2(n+1) , y =

a+ j
n+1 + 1

2(n+1) .

Other than this, the construction of the instance of Exact Cover from an instance
(G, k) of the Clique problem is the same as in Proposition 7.2. The argument for the
correctness of the reduction is also the same as above. This proves that Exact Cover
for unit squares is W[1]-hard.

3

4

5

2

1 2 3 4 5

e11 e12 e13 e14 e15

V41

V31

V21

V11

Figure 7.1: Arrangement of points in a reduced instance.

S11

S22

S33

S44

S14

S23

eaa

eab

Figure 7.2: Sets in a reduced instance.

Kernels for Exact Cover with Lines and Hyperplanes. In contrast with the hard-
ness results that we have seen so far, we now turn to some algorithmic results. First, when
we consider our input universe to be a set of n points in R2 and our sets to be maximal
sets of collinear points, we obtain a quadratic kernel using a “high degree” reduction rule.

148

This version of Exact Cover is also NP-complete, and the proof for NP-hardness is very
similar to the proof of Lemma 7.6.

Let (P,L) be the input set system. In our discussion, we use the terms sets and lines
interchangeably. The input family could contain sets containing single points. Our first
reduction rule is taken directly from [Langerman 2005]. We remove all lines (but for one)
that pass through exactly one point.

Reduction Rule 7.1. For any input point p, from the set Lp = {L|L ∈ L and L ∩ P =
{p}}, delete all lines but one (say Lp).

Proposition 7.3. Reduction Rule 7.1 is sound.

Proof. Suppose L′ is a solution for the given Exact Cover instance. Clearly, atmost
one set L from the set Lp can belong to L′. If L′ does not contain any lines from Lp,
or contains Lp, there is nothing to prove. Otherwise, let L ∈ Lp belong to L′. Observe
that (L′ \ L) ∪ Lp is also a valid exact cover of the same size at L′, and this proves the
correctness of the reduction rule.

Reduction Rule 7.2. In an instance (P,L, k), if there is a line L that contains at least
k+ 1 input points then delete L and all lines intersecting with points on L and decrease k
by one. All points contained in L are deleted from the universe U . Formally, the reduced
instance is (P \ L,L \ {T | L ∩ T 6= ∅}, k − 1).

A similar reduction was given in [Langerman 2005] to exhibit a polynomial kernel for
Point Line Cover. We show the correctness of this reduction in this case.

Claim 7.2. Reduction Rule 7.2 is sound.

Proof. Suppose there is a solution, L′, for (P,L, k) which does not contain L. Since L′ is
a set cover of size atmost k that excludes L, it includes at least (k+ 1) other lines to cover
the points on L, as two lines intersect at atmost one point. This contradicts that L′ is a
solution of the instance (P,L, k). Note that this argument shows that any valid solution
of the instance (P,L, k) must contain L. Now, consider the subfamily of L comprising of
lines that contain points belonging to L:

L′′ := {T ∈ L | T 6= L, T ∩ L 6= ∅}.

Clearly, any solution that contains L does not contain any element of L′′, therefore, it
is safe to remove these sets from the instance, establishing the correctness of Reduction
Rule 7.2.

The reduction is very robust, in the sense that a line as described above will belong to
any solution of the Exact Cover instance. On exhaustive application of this reduction,
a YES instance can have atmost k2 remaining input points, since k lines can only cover
k2 points when each line has atmost k points.

Therefore, if our reduced instance has more than k2 points, we correctly return NO.
Otherwise, due to Reduction Rule 7.1 and by the property of lines, we can also bound the
number of lines in the reduced instance to atmost k4. Thus, we have shown the following.

149

Lemma 7.2. Exact Cover on set systems of lines is FPT, with a polynomial kernel.

A natural question is to consider input instances of Exact Cover which are set systems
of hyperplanes in Rd. We parameterize the Exact Cover problem in this case by k+ d.
The following Lemma is obtained by extending the reduction rules in [Langerman 2005].
In particular, it is shown in [Langerman 2005] that for any 1 ≤ i ≤ d−1, if an i-flat covers
more than ki + 1 points, then these points can be replaced with one representative. The
crux of the argument is that all of these points are covered “together” by a single hyper-
plane in any valid solution. In our argument, we further this reduction rule by deleting
all hyperplanes that contain a strict subset of these points, because such hyperplanes are
automatically forbidden from being a part of any valid solution of Exact Cover.

Lemma 7.3. Exact Cover on set systems of hyperplanes in Rd is FPT parameterized
by k + d.

Proof. First, we try to reduce the number of elements per hyperplane.

Reduction Rule 7.3. Repeat for i = 1 to d− 2:
If there exists P ′ ⊂ P such that |P ′| ≥ ki + 1 and all points in P ′ lie on a i-flat, then
delete all but one points from P ′. We denote the single point that remains behind as p′.
Also, delete all hyperplanes in F which intersect with a proper subset of P ′.

The correctness of replacing each set P ′ by a point p is similar to what is shown in
[Langerman 2005]. By deleting all hyperplanes in F , that intersect partially with P ′, we
ensure that a hyperplane covers P ′ of the original instance if and only if it covers p′ of the
reduced instance. It is easy to see that an Exact Cover solution for the original instance
is also an Exact Cover solution for the reduced instance. On the other hand, in the
original instance, if there is a set cover of size atmost k, then all the points of P ′ must be
covered together. This is represented by the point p′ ∈ P ′. This ensures that an Exact
Cover solution for the reduced instance is an Exact Cover solution for the original
instance. After exhaustive application of this Reduction Rule, [Langerman 2005] showed
that any hyperplane H with at least k(d−1) + 1 points must be contained in any set cover
of size atmost k. In particular, H must be covered in any Exact Cover solution of size
atmost k. Also, any hyperplane intersecting with H cannot be included in any solution
of Exact Cover, to maintain unique coverage of each point of U . Thus, all hyperplanes
intersecting with H can be deleted from our instance. Also, the points covered by H will
not be covered again and hence can be deleted from our instance. A formal argument is
very similar to the proof of 7.2. The Reduction Rule, stated formally, is given below:

Reduction Rule 7.4. Let H be a hyperplane that contained at least kd−1 +1 points of U .
Then this hyperplane must be included in any Exact Cover solution. All hyperplanes
intersecting with H, along with H itself are deleted. The points contained in H are deleted.
The budget k is reduced by 1.

After exhaustive application of this Reduction Rule, each hyperplane can contain atmost
kd−1 points. Since an Exact Cover solution is also a set cover of size atmost k, there
can be atmost kd points in the reduced instance. The VC dimension of a hyperplane in
Rd is d. From Proposition 7.1, for a set system of VC Dimension d, the number of distinct
sets is bounded by O(nd). Hence, the number of sets in F is bounded by O(kd

2
). Thus

we can design an algorithm similar to that described in Lemma 7.2.

150

7.4 Unique Cover

The Unique Cover problem was studied in [Misra 2013] and was found to be FPT.
However, the problem does not have a polynomial kernel unless NP ⊆ CoNP/poly, as
shown in [Dom 2014]. In this section, we exhibit polynomial sized kernels for several
geometric versions, exploiting the geometric property satisfied by each set of the input set
system.

Recall that the Unique Cover problem is parameterized by the number of elements that
we desire to cover uniquely. To begin with, in the abstract setting, we show that the
number of elements in the universe can be bounded by k2. Note that it is straightforward
to bound the sizes of the individual sets in an instance of Unique Cover, with the
following observation.

Observation 7.2. If there exists Fi ∈ F such that |Fi| ≥ k, then the given instance is a
YES instance, with {Fi} serving as a valid solution.

We now turn to an argument for bounding the size of the universe in an instance of
Unique Cover. A tighter bound has been given in [Misra 2013].

Lemma 7.4. Unique Cover admits a quadratic element kernel.

Proof. By Observation 7.2, we may assume that every set contains at most (k−1) elements.
Let S ⊆ F be a maximal subfamily of disjoint sets. Let U1 =

⋃
S∈S S. Because of

disjointness, every set in S uniquely covers the elements it contains. Therefore, if |U1| ≥ k,
it is a YES instance.

If |U1| < k, then we proceed as follows. By the maximality of S, U1 =
⋃
S∈S S is a hitting

set. We delete U1 from our input instance, reducing the number of elements in the universe
by at most k − 1. The resulting instance does not contain any set from S, and the size of
each set in F \ S is strictly reduced by the removal of U1.

We repeat the procedure of finding a maximal subfamily of disjoint sets till we either are
at a stage where the number of elements covered by the current maximal subfamily is at
least k, in which case we correctly output YES, or when every element has been deleted.
Since we started with an instance where every set had at most k−1 elements, the number
of times this procedure is repeated is at most k−1. The number of elements in the original
input instance is equal to the number of elements removed in the whole algorithm. In each
step we delete at most k − 1 elements.

Thus, either we have resolved the instance during the course of the procedure described
above, or the number of elements in the original input instance can be at most (k − 1)2,
thus we have a polynomial element kernel as desired.

The following result regarding sets of bounded VC Dimension are now implied by Propo-
sition 7.1 and Lemma 7.4.

Corollary 7.1. Unique Cover on set systems of VC Dimension bounded by a constant
d admits a polynomial kernel.

151

Proof. From Lemma 7.4, we know that Unique Cover is FPT with an element kernel of
O(k2). By Proposition 7.1, the family F can have at most O((k2)d) sets. Thus, we have
a kernel for this version of Unique Cover.

As an immediate consequence, we get the existence of polynomial kernels in special geo-
metric cases, since these geometric set families have constant VC Dimension.

Corollary 7.2. Unique Cover admits a polynomial kernel for set systems of lines,
hyperplanes, axis-parallel rectangles and disks.

Proof. The proof follows from the fact that these geometric set families have constant VC
Dimension. Following from Proposition 7.1, for a family of sets of VC Dimension d, the
number of distinct sets is bounded by O(nd). In particular, we have the following based
on Lemma 7.4.

1. Since the VC Dimension of lines is two, Unique Cover admits a kernel with O(k2)
points and O(k4) lines.

2. Since the VC Dimension of hyperplanes in Rd is d + 1, Unique Cover admits a
kernel with O(k2) points and O(k(2d+1)) hyperplanes.

3. Since the VC Dimension of axis-parallel rectangles is four, Unique Cover admits
a kernel with O(k2) points and O(k8) axis-parallel rectangles.

4. Since the VC Dimension of disks is three, Unique Cover admits a kernel with
O(k2) points and O(k6) disks.

It may be noted that kernels of smaller size are known for lines. Using the fact that
two lines intersect in at most one point and Theorem 3 in [Misra 2013], we can see that
Unique Cover with lines admits a kernel with O(k2) lines.

7.5 Unique Set Cover

We show that Unique Set Cover is W[1]-hard. However, as with the other problems,
assuming geometric properties on the set family provides positive algorithmic results.

Lemma 7.5. Unique Set Cover is W[1]-hard.

Proof. We give a reduction from the Multicoloured Clique problem, which is known
to be W[1]-hard when parameterized by the size k of the solution clique [Fellows 2009]. An
instance of the Multicoloured Clique problem consists of a graph G and a partition
of its vertex set into k parts, and the question is if there exists a clique involving exactly
one vertex from each part. For an instance (G, k) of Multicoloured Clique, where
V (G) = V1] . . .] Vk, we construct the following instance for Unique Set Cover:

152

• We create a set of elements corresponding to the vertices of G, denoted by A =
{ev|v ∈ V (G)}. Note that there is a natural partition of A = A1] A2] . . .] Ak
based on the given partition of V (G).

• We add a set of elements B = {bij |1 ≤ i, j ≤ k}, and a set of elements C = {ci|1 ≤
i ≤ k}.

• Let U = A ∪B ∪ C.

• For each 1 ≤ i ≤ k we add a set Si = {ci} ∪ {ev|v ∈ Vi} to our set family F .

• For each edge uv ∈ E(G), where u ∈ Vi and v ∈ Vj 6=i, we add the following set to F :

Su,v = {bij} ∪ {ew|w ∈ (Vi \ u) ∪ (Vj \ v)}

• We assume, without loss of generality, that k > 2 (if not, the problem is solved in
constant time and we define an appropriate trivial reduced instance).

• Finally, we set l =
(
k
2

)
+ 2k. This completes the description of the reduced instance.

In the forward direction, suppose X = {v1, v2, . . . , vk} is a multi-coloured clique in G. The
family of sets {Si|1 ≤ i ≤ k} ∪ {Svi,vj |vi, vj ∈ X} is a set cover where the l elements in
{evi |vi ∈ X} ∪ B ∪ C are uniquely covered. Thus, this is a solution family for Unique
Set Cover.

In the backward direction, since a solution must be a set cover, we must cover ci for
all 1 ≤ i ≤ k. Each element of C belongs to a unique set. Hence the subfamily of sets
{S1, . . . , Sk} must be present in any set cover and the k elements of C are uniquely covered
by any set cover.

For a fixed 1 ≤ i ≤ k, consider the collection of elements Bi = {bij |1 ≤ j 6= i ≤ k}.
Each bij must be covered by at least one set Suj ,vj , where ujvj ∈ E(G) and uj ∈ Vi while
vj ∈ Vj . Assuming k > 2, if each uj , 1 ≤ j 6= i ≤ k is the same vertex u ∈ Vi then the
set cover considered so far covers eu uniquely, since all sets Su,vj do not contain eu. On
the other hand, suppose up = ep and uq = eq for 1 ≤ p 6= q ≤ k. Then Sup,vp covers
all elements of A except for up and Suq ,vq covers all elements of A except for uq. Since
up 6= uq, both up and uq are covered at least once by Sup,vp ∪ Suq ,vq . Recall that these
elements are already covered by Si, and therefore we cannot cover any of the elements of
Ai uniquely. This is true for all 1 ≤ i ≤ k. Thus, we can only hope to uniquely cover at
most k elements from the set A.

The remaining elements are from B, add to
(
k
2

)
and must all be uniquely covered in a

solution. Let the set chosen to uniquely cover the element of bij ∈ B be Suij ,vij . This
set corresponds to an edge uijvij ∈ E(G) such that uij ∈ Vi and vij ∈ Vj for some
1 ≤ i 6= j ≤ k.

To meet the given budget, a solution for Unique Set Cover must cover exactly k
elements of A uniquely. From the above argument, this can only happen if we cover
exactly one element eui from each partition Ai. Also, for this to happen, for each i, and
each pair 1 ≤ j 6= j′ ≤ k such that j 6= i and j′ 6= i, it must be true that uij = uij′ = ui.

Now consider the set of vertices X = {ui|1 ≤ i ≤ k} ⊆ V (G). This is a set of k vertices
where no two vertices are from the same partition of V (G). For any pair 1 ≤ i 6= j ≤ k,

153

the set Sui,uj chosen to cover the element bij ensures that there is an edge uiuj ∈ E(G).
Hence, G[X] is a multicoloured clique in G.

This proves the W[1]-hardness of Unique Set Cover.

The reduction also shows that Unique Set Cover is NP-hard. In fact, even when we
consider the special case when the universe U is a set of n points in R2 and each set is a
line, the Unique Set Cover problem turns out to be NP-hard, as we show in our next
lemma.

Lemma 7.6. Unique Set Cover on set systems of lines is NP-complete.

This NP-hardness reduction is very similar to the NP-hardness reduction for Point Line
Cover [Megiddo 1982]. Unlike [Megiddo 1982], we reduce the problem from 1-IN-3-
SAT, instead of 3-SAT.

Proof. Given a boolean formula F in conjunctive normal form where each clause has three
literals, 1-IN-3-SAT asks whether there is a truth assignment to the variables of F such
that each clause of F has exactly one true literal. Let φ be an instance of 1-IN-3-SAT,
with n variables {v1, v2, . . . , vn} and m clauses {C1, . . . Cm}. We construct an instance
(U,F , k) for Unique Set Cover with lines in the following manner:

• For each clause Ci, 1 ≤ i ≤ m, we create a point Pi.

• For each variable vj , 1 ≤ j ≤ n, we create a grid of m2 points pjab, 1 ≤ a, b ≤ m.

• For a fixed 1 ≤ j ≤ n and a fixed 1 ≤ a ≤ m, the set of points {pjqa|1 ≤ q ≤ m} are
contained in a line Lja and the set of points {pjaq|1 ≤ q ≤ m} are contained in a line
L̄ja.

• For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, if the literal vj is in Ci, then the point Pi is
contained in Lji. If the literal v̄j is in Ci then the point Pi is contained in L̄ji.

• The above description gives the exact points that can lie on each line.

• U = {Pi|1 ≤ i ≤ m} ∪
⋃

1≤j≤n{p
j
ab|1 ≤ a, b ≤ m}. |U | = nm2 +m.

• F = {Ljb|1 ≤ j ≤ n, 1 ≤ b ≤ m} ∪ {L̄jb|1 ≤ j ≤ n, 1 ≤ b ≤ m}.

• We set k = nm2 +m.

Suppose φ is a YES instance for 1-IN-3-SAT and let Γ be a truth assignment. If Γ(vj) = 1
we pick the lines {Ljb|1 ≤ b ≤ m}. If Γ(vj) = 0 we pick the lines {L̄jb|1 ≤ b ≤ m}. By

construction, all points pjab, 1 ≤ j ≤ n, 1 ≤ a, b ≤ m, are covered uniquely. Since, Γ is a
satisfying assigment for 1-IN-3-SAT, the points Pi, 1 ≤ i ≤ m, are also covered uniquely.
Thus, our constructed instance is a YES instance for Unique Set Cover with lines.

Conversely, suppose (U,F , k) has a solution family F ′ for Unique Set Cover. By
the value of k, each element in the instance has to be covered uniquely. Each point Pi
is contained in exactly 3 lines, by our construction. Suppose the line Lji, 1 ≤ j ≤ n
covers the point Pi uniquely in F ′. Then it is only possible to cover the m2 points

154

pjab, 1 ≤ a, b ≤ m uniquely by the subfamily {Ljq|1 ≤ q ≤ m}. Hence, all these lines must
belong to F ′. Suppose the line L̄ji, 1 ≤ j ≤ n covers the point Pi uniquely in F ′. Then, by
a similar argument, the subfamily {L̄jq|1 ≤ q ≤ m} must belong to F ′. Suppose the line
Lji, 1 ≤ j ≤ n is not picked to cover the point Pi uniquely in F ′. Then it is only possible

to cover the m2 points pjab, 1 ≤ a, b ≤ m uniquely by the subfamily {L̄jq|1 ≤ q ≤ m}, and
all these lines must belong to F ′. Suppose the line L̄ji, 1 ≤ j ≤ n is not picked to cover
the point Pi uniquely in F ′. Then, by a similar argument, the subfamily {Ljq|1 ≤ q ≤ m}
must belong to F ′. From this, we construct a satisfying assignment Γ for φ. If the
family {Ljb|1 ≤ b ≤ m} is used to cover the points {pjab|1 ≤ a, b ≤ m}, then Γ(vj) = 1.
Otherwise, Γ(vj) = 0. Under this assignment, any clause Ci is satisfied only by the literal
corresponding to the line uniquely covering Pi. Thus Unique Set Cover with lines is
NP-hard.

This implies that Unique Set Cover on set systems with bounded intersection and
Unique Set Cover on set systems of hyperplanes are also NP-hard. In the parameterized
context, although the problem is W[1]-hard in the general setting, we look at some special
cases where this problem can be solved in FPT time. First, we make a few observations.

Observation 7.3. Let F ′ be a solution for Unique Set Cover. Then any minimal set
cover contained in F ′ is also a solution for Unique Set Cover.

Thus, it is enough to find a minimal set cover that covers at least k elements uniquely.

Observation 7.4. Any minimal set cover of size at least k is a Unique Set Cover
solution for a given instance. In particular, if the minimum set cover of the given instance
is of size at least k then it is a YES instance for the Unique Set Cover problem.

Now, we turn to algorithmic results for special cases of Unique Set Cover.

Sets of Bounded Intersection. First, we consider set systems (U,F) where F has the
property that for any pair of sets F1, F2 ∈ F , |F1 ∩ F2| ≤ c.
Lemma 7.7. Unique Set Cover for sets of bounded intersection c is FPT when pa-
rameterized by c+ k.

Proof. Construct a minimal set cover S for the instance. If the size of S is at least k, then
it is a solution for Unique Set Cover, by Observation 7.4. Similarly, if there is a set
S ∈ S that contains at least k private elements, then too S is a solution for Unique Set
Cover. Suppose there are at most k− 1 sets in S and each set has at most k− 1 private
elements. By pigeonhole principle, there must be a set S ∈ S which contains at least
n/(k−1) elements of U . The number of elements in S that can belong to other sets of S is
at most c(k− 2), because of the bounded intersection property. If n

k−1 − c(k− 2) ≥ k then
the given instance is a YES instance. Otherwise, n

k−1 − c(k − 2) ≤ k − 1, which implies

that n ≤ (1 + c)(k − 1)2.

Since the sets have bounded pairwise intersection of at most c, any subset of c+1 elements
can appear together in at most one set. Therefore, the number of sets are bounded by
nc+1 ≤ ((1 + c)(k − 1)2)c+1. We can now guess the uniquely covered elements, and the
distribution of the uniquely covered elements in a Unique Set Cover solution. Finally,
we can check whether there are sets in F to validate the guess in polynomial time. As the
number of guesses is an FPT function, the running time of this algorithm is FPT.

155

Hyperplanes in Rd. Next, we consider a geometric set system (U,F) where U is a set
of n points in Rd and sets in F are defined by hyperplanes in Rd. When d = 2, these are
lines and this is a special case of sets with bounded intersection. For d > 2, hyperplanes
do not have this property. Nonetheless, we obtain an FPT algorithm for hyperplanes, by
reducing the given instance to an instance of Unique Set Cover for sets with bounded
intersection.

Lemma 7.8. Unique Set Cover on set systems of hyperplanes in Rd is FPT, where d
is a fixed constant.

Proof. Let U be the universe of n elements and F be the family of m hyperplanes in Rd.
The following Reduction Rule aims at reducing the number of points, while maintaining
the Unique Set Cover solution if there exists one.

Reduction Rule 7.5. for i from 1 to d− 1:
Suppose P ⊆ U is a set of at least ki points such that dim(P) = i, and P is contained in
at least one hyperplane of F . Suppose FP ⊆ F is the set of all hyperplanes that contain
P . If F \ FP is a set cover for U , then we say YES for our input instance and exit.
Otherwise, we delete all but ki points of P from the universe. If a hyperplane becomes
empty, we delete that hyperplane from F .

We prove the correctness of this reduction rule by induction on i. When i = 1, P is a line
with more than k points. We abuse notation and also use P to refer to this collection of
points. Suppose F\FP is a set cover for the instance, let G be a minimal set cover obtained
from F \FP . Then, by Observation 7.1, any set in G can contain at most one point of P .
To cover all elements of P , there must be at least k + 1 sets in G. By Observation 7.4,
we correctly say YES. If no such set cover exists, then we know that any set cover for
the input instance must contain at least one hyperplane from FP . Let P ′ ⊂ P be the set
of all but k points that are deleted by the Reduction Rule and P ′′ = P \ P ′. Also, let
F ′ be the family of hyperplanes that became empty and got deleted from F . Suppose
G = {H1, . . . ,Hl} is a minimal solution for (U,F , k). Since P is a line with more than k
points, there must be at least one Hi that contains all of P . Now, the following cases can
occur:

1. Suppose there are two planes Hi, Hj , 1 ≤ i 6= j ≤ l, both of which contain the set
P . Then none of the points in P are uniquely covered by this solution. The points
which are uniquely covered are not deleted as a result of this Reduction Rule. Also,
by definition of minimality, no hyperplane of G could have become empty after this
Reduction Rule was applied. Hence, G remains a solution for Unique Set Cover
in (U \ P ′,F \ F ′, k).

2. Suppose l > k. Since we have dealt with the case when P is covered by at least
2 hyperplanes of G, we can assume that there is exactly one hyperplane in G that
contains P . There are at least k remaining hyperplanes in G. Since, G is a minimal
solution for Unique Set Cover, each of these remaining hyperplanes cover a point
uniquely, and none of these uniquely covered points belong to P . Hence, G remains
a solution for (U \ P ′,F \ F ′, k).

3. Finally, suppose l ≤ k, and as before, let H ∈ G be the hyperplane that contains
all points in P . Then at most l − 1 points of P are not uniquely covered. All other
points of P must be uniquely covered. In particular, at most l − 1 points of P \ P ′

156

are not uniquely covered , which implies that at least k − l + 1 points in P \ P ′ are
uniquely covered by G. By minimality, for each hyperplane H ′ in G \ {H} there is
a point pH′ that is uniquely covered by H ′. Thus, at least k − l + 1 points from
P \P ′ and l− 1 points from G \ {H} are covered uniquely. Again, by minimality, no
hyperplane of G could have become empty because of application of the Reduction
Rule. Hence, G is a solution in (U \ P ′,F \ F ′, k).

On the other hand, let G′ be a minimal solution for (U \ P ′,F \ F ′, k). Assume G′ is not
a solution for (U,F , k). Then each point in P ′′ is covered by a different set in G′. Let this
subfamily of G′, with at least k hyperplanes, be H′.Let G ∈ FP . Consider G′ ∪ G, which
is clearly a set cover for (U,F). Let S ⊂ G′ ∪ G be a minimal set cover of (U,F). Let
P1 ⊆ (U \ P ′) be a set of k points, such that for each hyperplane H in H′ there is a point
in P1 that it uniquely covers with respect to G′. Let P2 ⊆ P1 be uniquely covered by S.
Each point in P1 \ P2 has exactly one hyperplane in S, other than G, containing it. By
the minimality of S, this hyperplane has a point that is uniquely covered by it. Therefore,
for all of the points in P2 \P1, either that point is uniquely covered by G or a hyperplane
(other than G) in S containing it is uniquely covering another point. Therefore, S still
covers at least k points uniquely and is a solution for (U,F , k).

Now, assume i > 1 and the Induction Hypothesis is true for all j < i. Suppose P is a set
of at least ki points such that dim(P) = i, and P is contained in at least 1 hyperplane.
Suppose there is a set cover G for the instance, contained in F \ FP . Then any set in G
can intersect P at a subset Q ⊆ P such that dim(Q) < i (Observation 7.1). By Induction
Hypothesis, |Q| ≤ ki−1. Thus, G must have at least k + 1 hyperplanes to cover all points
of P . By Observation 7.4, we correctly output YES. Otherwise, every set cover of the
input instance must contain at least one hyperplane from FP . Let P ′ ⊂ P be the set of
all but ki points that are deleted by the Reduction Rule. Also, let F ′ be the family of
hyperplanes that became empty and got deleted from F . Suppose G = {H1, . . . ,Hl} be a
minimal solution for (U,F , k). The following cases can occur:

1. Suppose there are 2 planes Hi, Hj , 1 ≤ i 6= j ≤ l, both of which contain the set P .
Then none of the points in P are uniquely covered by this solution. The points which
are uniquely covered cannot be deleted as a result of this Reduction Rule. Also, by
definition of minimality, no hyperplane of G could have become empty after this
Reduction Rule was applied. Hence, G remains a solution for Unique Set Cover
in U \ P ′,F \ F ′, k).

2. Suppose l > k. Since we have dealt with the case when P is covered by at least
2 hyperplanes of G, we can assume that there is exactly one hyperplane in G that
contains P . There are at least k remaining hyperplanes in G. Since, G is a minimal
solution for Unique Set Cover, each of these remaining hyperplanes cover a point
uniquely, and none of these uniquely covered points belong to P . Hence, G remains
a solution for U \ P ′,F \ F ′, k).

3. Lastly, suppose P is covered by at most one hyperplane, say H1 of G, and l ≤ k.
For each 2 ≤ i ≤ l, the intersection set Q = Hi ∩ P can have at most ki−1 points,
by Observation 7.1 and induction hypothesis. Then at most (l − 1) · ki−1 points of
P are not uniquely covered. All other points of P must be uniquely covered. In
particular, at most (l − 1) · ki−1 points of P \ P ′ are not uniquely covered , which
implies that at least k − l + 1 points in P \ P ′ are uniquely covered by G. By

157

minimality, for each hyperplane H ′ in G \ {H1} there is a point pH′ that is uniquely
covered by H ′. Thus, at least k − l + 1 points from P \ P ′ and l − 1 points from
G \ {H} are covered uniquely. Again, by minimality, no hyperplane of G could have
become empty because of application of the Reduction Rule. Hence, G is a solution
in U \ P ′,F \ F ′, k).

On the other hand, let G′ be a minimal solution for U \ P ′,F \ F ′, k). Assume G′ is not
a solution for (U,F , k). By Induction Hypothesis, all the ki points in P ′′ are covered by
a subfamily of at least k different hyperplanes, say H′, in G′. Let P1 ⊆ (U \ P ′) be a set
of k points, such that for each hyperplane H in H′ there is a point in P1 that it uniquely
covers with respect to G′. Let G ∈ FP . Let F̄ ⊂ G′ ∪G be a minimal set cover of (U,F).
Let P2 ⊆ P1 be the set of points that are uniquely covered by F̄ . By an argument similar
to the base case, for every point in P1 \ P2, either it is uniquely covered by G or it is
contained in a hyperplane in F̄ that uniquely covering at least one other point. Therefore
F̄ still covers at least k points uniquely and is a solution for (U,F , k).

We exhaustively apply this Reduction Rule. At the end, any hyperplane contains at most
kd−1 points. Let G be a minimal set cover for the instance. If there are at least k + 1
hyperplanes in G, then due to Observation 7.4, we correctly say YES. Otherwise, there
are at most k hyperplanes in the set cover G, which implies that |U | ≤ k(d−1) · k. The
number of hyperplanes that can contain these points is at most (kd)d. Thus, we have a
kernel for the problem. For the algorithm, we guess k points P ⊆ U that are uniquely
covered by a solution and the family G of at most k hyperplanes that are responsible for
this unique coverage. Let FP = {H|H ∈ F \ G,∃p ∈ P s.t p ∈ H}. We check whether the
family F \FP is a set cover or not. There are at most O(kkd

2
) possible pairs (P,G). Thus

the problem is FPT.

7.6 Chapter Summary

In this chapter, we looked at several variants of Set Cover, and considered the problems
in different geometric settings. For the geometric settings that we considered, we were
able to settle the question of which class in the W-hierarchy the problem belongs to. For
most of the problems that are in FPT, we could provide polynomial kernels. It would be
interesting to ask for the parameterized complexity of Exact Cover for disks, or even
unit disks. The parameterized complexity of Unique Set Cover for a set system of unit
disks, or of unit squares is also open.

158

Chapter 8

Exact and FPT Algorithms for
Max-Conflict Free Colouring in

Hypergraphs

8.1 Introduction

As mentioned earlier, a hypergraph is another name for a set system. A hypergraph H
is denoted by a pair (U,F), where U is a set of n vertices and F contains m subsets of
U . We call these subsets hyperedges. Thus a general graph is a hypergraph where every
hyperedge contains exactly two vertices. A k-vertex-colouring of H, for k ∈ N is a function
c : U → {1, 2, . . . , k}. A colouring is called a proper colouring if none of the hyperedges
are monochromatic, i.e. all the vertices of the hyperedge are not of the same colour. We
look at a stricter version of colouring called conflict-free colouring.

Definition 8.1. A vertex colouring c : U → {1, 2, . . . , k} of a hypergraph H = (U,F)
is said to be conflict-free, if for every F ∈ F , ∃v ∈ F such that ∀u ∈ F , u 6= v implies
c(u) 6= c(v). In other words, every hyperedge has a uniquely coloured vertex.

The minimum number of colours required to conflict-free colour the vertices of a hyper-
graph H is called the conflict-free chromatic number of H and is represented as χcf (H).
For a given hypergraph H, the minimum conflict-free colouring problem refers to comput-
ing the value of χcf (H).

The concept of conflict-free colouring was introduced for hypergraphs induced by geometric
regions, motivated by the frequency allocation problem in cellular networks [Even 2002].
This problem also found applications in areas like Radio Frequency Identification and
Robotics. Conflict-free colouring question has been extensively studied for hypergraphs
induced by various geometric regions [Ajwani 2012, Har-Peled 2005, Smorodinsky 2007].

Pach and Tardos [Pach 2009] initiated the study of conflict-free colouring for general hy-
pergraphs and gave an upper bound of O(

√
m) on the conflict-free chromatic number.

On the algorithmic side, the minimum conflict-free colouring problem for a general hy-
pergraph is NP-hard by results shown in [Even 2002, Gargano 2015]. [Pach 2009] also
studied the conflict-free colouring of hypergraphs induced by graph neighbourhoods. Here
the vertex set of the hypergraph corresponds to vertex set of a general graph G = (V,E)
and the hyperedges are defined by the neighbourhoods (open or closed) of the vertices
in G. [Pach 2009] showed an upperbound of O(log2 n) and a lower bound of Ω(log n) for
this problem. Gargano and Rescigno [Gargano 2015] studied the minimum conflict-free
colouring of hypergraphs induced by graph neighbourhoods (both open and closed) and

159

showed NP- completeness. [Gargano 2015] also showed that the minimum conflict-free
colouring problem for these graphs becomes tractable when parameterized by the vertex
cover or the neighbourhood diversity number of the graph. Specifically, they gave an al-
gorithm that decides whether a hypergraph induced by neighbourhoods of a graph G can
be conflict-free coloured using k colours. This algorithm runs in time 2O(kt log k) where
t represents the neighbourhood diversity number of G. Note that this also implies an
algorithm to solve the minimum conflict-free colouring problem in hypergraphs induced
by graph neighbourhoods, which runs in O(nn) time.

In [Ashok 2015a], we initiate a study of a maximization version of the Minimum Conflict-
Free Colouring problem.

Maximum Conflict-free Colouring(Max-CFC)
Input: A hypergraph (U,F) on n vertices and m hyperedges, and an integer r ≥ 2.
Output: A maximum-sized subfamily of hyperedges that can be conflict-free coloured
with r colours.

The NP-hardness of this problem follows from the NP-hardness reductions shown in
[Gargano 2015]. We give an exact algorithm for this problem that runs in O(2m+n) ·nO(1)

time. As a corollary, we obtain an exact algorithm, of running time O(4n) · nO(1), for
hypergraphs induced by neighbourhoods in graphs. We also define a stronger variant of
conflict-free colouring namely, unique-maximum colouring [Cheilaris 2011].

Definition 8.2. A vertex colouring c : U → {1, 2, . . . , k} is said to be unique-maximum,
if for every F ∈ F ,∃v ∈ F such that ∀u ∈ F , u 6= v implies c(u) < c(v). In other words,
the maximum colour occurring in a hyperedge occurs uniquely. The minimum number of
colours required to unique-maximum colour H is called the unique-maximum chromatic
number of H.

A vertex of a hyperedge h ∈ F is said to be unique-maximum coloured if it is the unique
vertex that is coloured with the maximum colour occurring in the the hyperedge h. For a
given hypergraph H, the minimum unique-maximum colouring problem refers to comput-
ing the minimum number of colours required to unique-maximum colour H.

Similar to the definition of Max-CFC, we can define Maximum Unique-Maximum
Colouring (Max-UMC) to take as input a hypergraph H and a positive integer r ≥ 2,
and output the largest subfamily of hyperedges that has a unique-maximum colouring
with r colours. Our algorithms for Max-CFC, with some modification, also works for
Max-UMC.

In the parameterized setting, we study Max-CFC parameterized by the solution size.

p-CFC Parameter: k
Input: A hypergraph (U,F) on n vertices and m hyperedges, and positive integers
r ≥ 2 and k.
Question: Is there a subfamily of at least k hyperedges that can be conflict-free
coloured using r colours?

We also study this problem when we restrict the input hypergraph to that induced by the
closed/open neighbourhood of a graph G. Similarly, p-UMC is defined and studied.

Our Results and Methods. The results of this chapter are from [Ashok 2015a]. In the

160

realm of parameterized algorithms, we obtain the following result.

1. We show that the problem is FPT by designing a kernel with at most 4k vertices
and O(k log k) hyperedges. The kernel is obtained by finding a novel connection
to Unique Coverage problem [Misra 2013]. We use this one way connection to
either say that the given instance for p-CFC is a YES instance or conclude that the
number of hyperedges is upper bounded byO(k log k). Finally, using extremal results
on set-family we bound the number of vertices (elements) to 4k. Moreover, when we
restrict the input hypergraph to that induced by the closed/open neighbourhood of
a graph G, then the above imply polynomial kernels for these variants.

2. A direct consequence of our kernel is an r4k(n + m)O(1) algorithm for p-CFC. We
exploit the fact that the number of hyperedges is at most O(k log k) in the reduced
instance to design an FPT algorithm with running time 2O(k log log k+k log r)(n+m)O(1).
We arrive at the required algorithm by combining the fact that we have small number
of hyperedges and using the technique of colour coding introduced in [Alon 1995] in
a non-trivial manner.

3. All the above results, with minor modifications, hold for p-UMC.

Finally, we design an exact algorithm that solves the Max-CFC problem for general
hypergraphs. This algorithm exploits structural properties of a YES instance for Max-
CFC. Our algorithm runs in O(2m+n) time. The algorithm also works for the Minimum
Conflict-Free colouring problem. In particular, for hypergraphs induced by graph
neighbourhoods, our algorithm runs in time O(4n) which is a non-trivial improvement over
the best known exact algorithm that runs in O(nn) time [Gargano 2015]. The algorithm
is based on dynamic programming combined with an application of subset-convolution.
We refer to [Fomin 2010] for a more detailed introduction to exact algorithms. Some
minor modifications to our algorithm give an exact algorithm for Unique Maximum
Colouring.

8.2 Preliminaries

Fast Subset Convolution Computation. Suppose we are given a universe U with n
elements. The subset convolution of two functions f, g : 2U → Z is a function (f ∗ g) :
2U → Z such that for every Y ⊆ U , (f ∗ g)(Y) = ΣX⊆Y f(X)g(Y −X). It is equivalent to
saying that (f ∗ g)(Y) = ΣA]B=Y f(A)g(B).

Proposition 8.1. . For two functions f, g : 2U → Z, given all the 2n values of f and g
in the input, all the 2n values of the subset convolution f ∗ g can be computed in O(2n ·n3)
arithmetic operations.

In fact, the result can be extended to subset convolution of functions that map to any ring,
instead of (Z,+,×). Consider the set Z∪{∞}, with the added relation that ∀z ∈ Z, {∞} >
z. The min operator takes two elements from this set and outputs the minimum of the
two elements. Notice that Z ∪ {∞}, along with min as an additive operator and + as a
multiplicative operator, forms a semi-ring. We will call this semi-ring the integer min-sum
semi-ring. The subset convolution of two functions f, g : 2U → Z∪ {∞}, with min and +
as the additive and multiplicative operators, becomes (f ∗g)(Y) = minA]B=Y f(A)+g(B).

161

Proposition 8.2. Given two functions f, g : 2U → {−M, . . . ,M}, all the 2n values of f
and g in the input, and all the 2n values of the subset convolution (f ∗ g) over the integer
min-sum semiring can be computed in time 2nnO(1) · O(M logM log logM).

For more details about subset convolutions and fast calculations of subset convolutions,
please refer to [Fomin 2010].

8.3 FPT Algorithm for p-CFC

We are given a hypergraph H = (U,F) as input and two positive integers, k and r. In
this section, we give an FPT algorithm for p-CFC on hypergraphs, parameterized by k.
In other words, we wish to find out if k hyperedges can be conflict-free coloured using
r colours. For simplicity, throughout this section, we assume that we are given a simple
hypergraph, that is no hyperedges are repeated. We first give a kernel and then use this
kernel to get the desired FPT algorithm.

Kernel for p-CFC. We begin with a simple observation that if r > k, then we can
conflict-free colour any subfamily of k edges with r colours. Thus, for the remaining
section, we assume that r ≤ k.

We can also preprocess the input instance to detect simple YES instances of the problem,
by applying the following reductions to the instance.

Reduction Rule 8.1. If there is a vertex v ∈ U such that degH(v) is at least k, say
YES.

Lemma 8.1. Reduction Rule 8.1 is safe.

Proof. Reduction Rule 8.1 is safe since we can obtain a 2 conflict-free colouring for at least
k hyperedges in the following way: assigning the first colour to v and the second colour
to all the other vertices gives us at least k conflict-free coloured hyperedges.

Next, we draw a connection between p-CFC and the Unique Hitting Set (UHS)
problem. In UHS, we take a hypergraph H and a positive integer k as input. The
question is to decide whether there is a set S of vertices and a subfamily F ′ of at least
k hyperedges such that each hyperedge in F ′ contains exactly 1 vertex from S. In other
words, each hyperedge of F ′ needs to be uniquely hit by S.

Observation 8.1. Given a hypergraph H and a positive integer k, if (H, k) is a YES
instance for UHS, then (H, k, r = 2) is a YES instance for p-CFC.

Proof. Let S be a solution for (H, k) as an instance for UHS, and let F ′ be a set of at least
k hyperedges that are uniquely hit by S. We colour the vertices of S with the first colour
and the vertices of U \ S with the second colour. This colouring function conflict-free
colours all hyperedges of F ′. Thus, (H, k, 2) is a YES instance for p-CFC.

The UHS problem, in turn, is related to the Unique Coverage (UC) problem. In UC,
we take a hypergraph H and a positive integer k as input. The question is to decide

162

whether there is a subfamily F ′ of hyperedges and a set S of at least k vertices such that
each vertex in S belongs to exactly 1 hyperedge of F ′. In other words, each vertex of S
needs to be uniquely covered by F ′.

Lemma 8.2. An instance (H = (U,F), k) of UHS has an equivalent instance (H ′ =
(Û , F̂), k) of UC, where the parameter remains the same, and |U | = |F̂ |, |Û | = |F|.

Proof. Given the instance (H, k) of UHS, we construct the equivalent instance (H ′ =
(Û , F̂), k) of UC in the following manner:

• For every hyperedge h ∈ F , we create a new vertex uh. Û = {uh | h ∈ F}. |Û | = |F|.

• For each vertex v ∈ U , let Fv = {h | h ∈ F , v ∈ h}. Define Tv = {uh | h ∈ Fv}.
F̂ = {Tv | v ∈ U}. Thus each hyperedge in H ′ corresponds to a vertex of H and
|U | = |F̂ |

Suppose S was a solution of UHS for (H, k) and let F ′ be the set of at least k hyperedges
that are uniquely hit by S. Then, consider the subset ÛF ′ ⊆ Û , where ÛF ′ = {uh | h ∈
F ′}, and the subfamily F̂S ⊆ F̂ , where F̂S = {Tv | v ∈ S}. By the property of S and F ′,
every vertex of ÛF ′ , which is of size at least k, is contained in exactly one hyperedge of
F̂S and therefore (H ′, k) is a YES instance of UC.

Similarly, let F̂ ′ be a solution of UC for (H ′, k) and let Ŝ be the set of at least k vertices
that are uniquely covered by F̂ ′. Then, consider the subfamily FŜ ⊆ F , where FŜ =

{h | uh ∈ Ŝ}, and the subset UF̂ ′ ⊆ U , where UF̂ ′ = {v | Tv ∈ F̂ ′}. By the property of Ŝ

and F̂ ′, the vertex set UF̂ ′ uniquely hits FŜ , which is of size at least k. Therefore (H, k)
is a YES instance of UHS.

The UC problem has been studied in the field of parameterized complexity. When k, the
number of vertices to be uniquely covered, is the parameter, the problem was shown to
be in FPT in [Misra 2013]. The following Proposition was proved in [Misra 2013], and we
will shortly show how this is useful to us.

Proposition 8.3. [Misra 2013, Lemma 17] Let (H = (U,F), k) be an instance of UC
such that every hyperedge has size at most k−1. Then there exists a constant αuc such that
if |U | ≥ αuck log k then (H = (U,F), k) is a YES instance and furthermore in polynomial
time, it is possible to find a subfamily covering at least k elements uniquely.

We use Proposition 8.3 to bound the universe size for p-CFC.

Lemma 8.3. Let (H = (U,F), k, r) be an instance of p-CFC. Then in polynomial time,
either we can conclude that (H, k, r) is a YES instance of p-CFC or |F| ≤ αuck log k.

Proof. Let (H = (U,F), k, r) be an instance of p-CFC. We first check whether Reduc-
tion 8.1 applies. If it does not apply then we know each element of U appears in at most
k− 1 sets. Now we consider (H, k) as an instance for UHC and apply the reduction given
in Lemma 8.2 to obtain an equivalent instance (H ′ = (Û , F̂), k) of UC. Observe that since
each element of U appears in at most k − 1 sets, we have that every hyperedge in F̂ has
size k− 1. Furthermore, since H is a simple hypergraph no elements in Û repeat. Now we

163

apply Proposition 8.3 on (H ′ = (Û , F̂), k). This tells us that either |Û | = |F| ≤ αuck log k
or (H ′ = (Û , F̂), k) is a YES instance of UC. In the latter case, combining Lemma 8.2
and Observation 8.1 we have that (H = (U,F), k, r) is a YES instance of p-CFC.

Thus, from now onwards, we assume our instance to have at most O(k log k) hyperedges.
Using an extremal result on set systems [Jukna 2011], we obtain the following.

Theorem 8.1. p-CFC has a kernel with at most 4k vertices and O(k log k) sets.

For the proof of Theorem 8.1, we use the following result. The following definition is
required for our purpose. Given a family of sets F = {F1, ..., Fm}, an m-tuple (x1, ..., xm)
is said to be a strong system of distinct representatives if all the elements xi are distinct
and xi ∈ Fi for all i = 1, 2, ...,m. and xi /∈ Fj for all i 6= j. We use the following result
from [Jukna 2011, Theorem 8.12].

Proposition 8.4. In any family of more than
(
r+s
s

)
sets of cardinality at most r, at least

s+ 2 of its members have a strong system of distinct representatives.

Proof of Theorem 8.1. Given a hypergraph H = (U,F), we consider a family of sets F ′:
For each vertex in u ∈ U , we define the set Fu = {F ∈ F | u ∈ F} in F ′. Clearly, F ′
has n sets, one for each vertex. Since the degree of every vertex u ∈ U is bounded by
k, the size of Fu is also bounded by k. Suppose there exists a strong system of distinct
representatives for k members of F ′ i.e, there exists k hyperedges in F such that each of
them has a vertex that does not appear in any other hyperedge. Then, by colouring these
vertices by colour 1 and giving everything else a different colour, we can 2 conflict-free
colour these k hyperedges. Now by substituting r = k− 1 and s = k− 2 in the statement
of Proposition 8.4, we know that if F ′ has more than

(
2k
k

)
≤ 22k sets i.e., if U has more

than 22k vertices, we can say YES. Thus, combining this and Lemma 8.3, we get our
result.

We also get the following corollary.

Corollary 8.1. p-CFC for hypergraphs induced by graph neighbourhoods admits polyno-
mial kernels.

Corollary 8.1 follows from Lemma 8.3 and the fact that the number of hyperedges are
same as the number of vertices in hypergraphs induced by graph neighbourhoods.

Theorem 8.1 immediately implies that p-CFC is FPT. Given an instance (H = (U,F), k, r)
of p-CFC, by using Theorem 8.1, we either conclude that (H = (U,F), k, r) is a YES
instance of p-CFC or we have that |U | ≤ 4k. Now we look at every r-partition of U and
check whether there are k hyperedges that are conflict-free coloured. If we succeed for any
partition then we return YES, else we conclude that the given instance is a NO instance.
The running time of this algorithm is upper bounded by r4k(|U |+ |F|)O(1).

Faster FPT algorithm for p-CFC. Let N = |U |+ |F|. In this section, we give the full
description of an FPT algorithm for p-CFC that runs in 2O(k log log k+k log r) ·NO(1) time.
We will assume that our input instance contains at most O(k log k) hyperedges and 4k

vertices.

164

We first define some related concepts. Given a set S ⊆ U , a subfamily F ′, and a colouring
Γ : U → [r], we say that S is a cfc-solution if each hyperedge h in F ′ is conflict-free
coloured and a uniquely coloured vertex of h belongs to S. Furthermore, given such a
set S and a hyperedge h, let unicoleltS(h) denote the uniquely coloured vertex of h that
belongs to S. In what follows, we define an auxiliary problem and give an FPT algorithm
for this problem. Finally, we reduce our problem to this one with some guesses and by
using the colour coding technique, introduced by Alon et. al. in [Alon 1995], to obtain
the desired algorithm for p-CFC.

Partitioned p-CFC Parameter: r + p+ |F|
Input: A hypergraph (U = U1] U2 · · ·Up,F), a function Ψfamily : F → [r],
Ψparts : [p] → [r], a subset U ′ ⊆ U and a colouring function Γ′ : U ′ → [r], for ev-
ery v ∈ U \ U ′, a list Lv ⊆ [r]
Question: Does there exist a colouring function Γ : U → [r] such that: Each hyper-
edge is conflict-free coloured, Γ(U ′) = Γ′(U ′). For each v ∈ U \ U ′,Γ(v) ∈ Lv. Also,
there exists a cfc-solution set S of size exactly p, for all i ∈ [p], |S ∩ Ui| = 1 and for
every h ∈ F , unicoleltS(h) ∈

⋃
j∈Ψ−1

parts(Ψfamily(h)) Uj?

In simple words, the problem definition can be explained as follows. We are given a
partitioning of the universe U into p-parts and a partial colouring function Γ′ on a subset
U ′. We are looking for a colouring Γ : U → [r] which extends Γ′. Each vertex v in
U \ U ′ has a list of admissible colours, and Γ must choose a colour from Lv. Also, due
to Γ, each hyperedge is conflict-free coloured and there exists a cfc-solution set S such
that it contains exactly one vertex from each part. Suppose the hypothetical set S is
{x1, x2, . . . , xp} (think of xi as a variable) where xi ∈ Ui. The function Ψparts is used to
guess the colour of xi in Γ. The function Ψfamily divides the family F into r chunks (not
to be confused with parts and colouring). The idea is that the uniquely coloured vertex
of h ∈ F , say xj , has been assigned the same colour by Γ as h has been assigned to the
chunk number by Ψfamily, i.e, Γ(xj) = Ψfamily(h). Next we show how we can solve the
Partitioned p-CFC problem.

Given an instance ((U = U1]U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U \U ′}) of

Partitioned p-CFC, we first do a polynomial time preprocessing of the instance. For
all v ∈ U ′, we must set Γ(v) = Γ′(v). In the following Reduction Rules, we show that the
input functions Ψfamily and Ψparts allow us to prune the list of some of the vertices. The
first reduction rule deals with hyperedges h where |Γ′−1(Ψfamily(h)) ∩ h| = 1

Reduction Rule 8.2. Suppose there is a hyperedge h containing a unique w ∈ U ′ such
that Ψfamily(h) = Γ′(w). Then, for every v ∈ h \ {w} we delete Ψfamily(h) from Lv. We
delete h from F .

Lemma 8.4. Reduction Rule 8.2 is safe.

Proof. Suppose S is a potential cfc-solution for the given instance. Let unicoleltS(h) = x.
This means that no other vertex of h should be assigned the colour Γ(x). Since x ∈⋃
j∈Ψ−1

parts(Ψfamily(h)) Uj , it implies Γ(x) = Ψfamily(h). As Ψfamily(h) = Γ′(w), any satisfying

assignment Γ must have Γ(x) = Γ′(w), and it must be the case that x = w. Then, all
other vertices v ∈ U \ U ′ of h must get a colour different from Γ(w) = Ψfamily(h). Thus,
we have identified the vertex that will determine conflict-free colouring of h and ensured

165

that no other vertex of h can destroy the uniqueness of w. Thus, in the reduced instance,
we can delete h and for every v ∈ h \ {w}, we remove Ψfamily(h) from Lv.

On the other hand, suppose the reduced instance has a satisfying colouring Γ. For each
v ∈ U \ U ′, the list of admissible colours of the original instance is a superset of the list
of admissible colours from the reduced instance. Since w ∈ U ′ in the reduced instance,
Γ(w) = Γ′(w). But in the original instance, the function Γ′ was the same as in the
reduced instance. Therefore, Ψfamily(h) of the original instance is same as Γ(w) of the
reduced instance. Also, in the reduced instance, no other vertex that belonged to h
contains the colour Γ(w) in its list. Hence, in the original instance, the same assignment
Γ will conflict-free colour h as well, and is a satisfying assignment of the original instance.
Thus, Reduction Rule 8.2 is safe.

We can further reduce the size of the lists by the following Reduction.

Reduction Rule 8.3. If there is a vertex v ∈ Ui, i ∈ [p], and h ∈ F , such that v ∈ h,
Ψfamily(h) 6= Ψparts(i), then we remove the colour Ψfamily(h) from the list of v.

Lemma 8.5. Reduction Rule 8.3 is safe.

Proof. Suppose, in a potential cfc-solution S, the uniquely coloured vertex of h was xj .
By definition, xj ∈

⋃
i∈Ψ−1

parts(Ψfamily(h)) Ui. In other words, xj belongs to a part Ui such

that Ψparts(i) = Ψfamily(h) and Γ(xj) = Ψfamily(h). However, for the given vertex v and
hyperedge h, Ψfamily(h) 6= Ψparts(i) and hence, v /∈

⋃
i∈Ψ−1

parts(Ψfamily(h)) Ui. Thus, v 6= xj .

Since xj is uniquely coloured in h, Γ(v) 6= Γ(xj). Therefore, Γ(v) 6= Ψfamily(h) and we
can safely delete Ψfamily(h) from Lv in the reduced instance. On the other hand, the
reduced instance has admissible colour lists which are subsets of the admissible colour
lists of the original instance. Suppose the reduced instance had a colouring Γ such that
each hyperedge is conflict-free coloured, and there exists a cfc-solution set S of size exactly
p, for all i ∈ [p], |S ∩ Ui| = 1 and for every h ∈ F , unicoleltS(h) ∈

⋃
j∈Ψ−1

parts(Ψfamily(h)) Uj .

This Γ is satisfying colouring for the original instance as well. Thus, Reduction Rule 8.3
is safe.

The next rule deals with hyperedges h where |Γ′−1(Ψfamily(h)) ∩ h| ≥ 2.

Reduction Rule 8.4. If there are two vertices v, w ∈ U ′ and a hyperedge h ∈ F , such
that Ψfamily(h) = Γ′(v) = Γ′(w), then we say NO.

Lemma 8.6. Reduction Rule 8.4 is safe.

Proof. Suppose, in a potential cfc-solution S, the uniquely coloured vertex of h was x. By
definition, Γ(x) = Ψfamily(h). Also, by uniqueness of x, no other vertex of h should be
assigned the colour Γ(x). However, in our instance, there are already two vertices v, w of h
which have been assigned Ψfamily(h) by Γ′. This means that there h cannot be conflict-free
coloured by any satisfying assignment Γ. Thus, we correctly say NO.

Reduction Rule 8.5. Suppose there is a vertex w ∈ U \ U ′ with Lw = {c}, then we put
w in U ′ and set Γ′(w) = c. If there is a vertex v where Lv = ∅, then we say NO.

Lemma 8.7. Reduction Rule 8.5 is safe.

166

Proof. Γ must assign a colour to every vertex. If there is a vertex w with Lw = {c}, then
we must set Γ(w) = c for any satisfying assignment Γ. Thus, in the reduced instance, we
fix the colouring of w by putting it in U ′ and setting Γ′(w) = c. In the reduced instance,
U ′ is a superset of the U ′ in the original instance. Hence, a satisfying assignment Γ of the
reduced instance is also a satisfying assignment of the original instance.

Similarly, by the correctness of the other Reduction Rules, if there is a vertex v where
Lv = ∅, the current instance must be a NO instance. Thus we correctly say NO. Therefore,
this Reduction Rule is safe.

Given an instance ((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U \ U ′})

of Partitioned p-CFC, we apply Reduction Rules 8.2, 8.3, 8.4, 8.5 exhaustively. If in
the process we infer that the given instance is a NO instance then we return the same. It
could also happen that we get F = ∅. In this case for every vertex v ∈ U \ U ′, Γ assigns
to v an element of L(v) arbitrarily. Thus, from now onwards we assume that we neither
conclude that the given instance is a NO instance nor obtain F = ∅. We call an instance
of Partitioned p-CFC reduced if Reduction Rules 8.2, 8.3, 8.4, 8.5 are not applicable.
For simplicity, let ((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′,Γ′, {Lv ⊆ [r]|v ∈ U \ U ′})
denote the reduced instance of Partitioned p-CFC. Observe that the reduced instance
has the following properties:

1. For every vertex v, |Lv| ≥ 2.

2. For every hyperedge h, |Γ′−1(Ψfamily(h)) ∩ h| = 0.

We define the set Vi ⊆ U \ U ′ as the set of vertices that have i in their list of admissible
colours. Then there are two kinds of vertices in Vi: It could be that the vertex v has
i ∈ Lv and ∃h ∈ F , v ∈ Uj ∩h such that Ψfamily(h) = i,Ψparts(j) = i. Or, the vertex v has
i ∈ Lv. Also, for any h with Ψfamily(h) = i, v /∈ h.

To solve the reduced instance of Partitioned p-CFC, we will solve some r instances of
an even more specialized problem that we define now. Let Partitioned UHS be the
problem of determining, for a given partition U1] . . .] Uq of the universe and a family
F , whether there is a set S of vertices that uniquely hits all hyperedges of the input
hypergraph (that is, for all h ∈ F , |h ∩ S| = 1) and where ∀i ∈ [q], |Ui ∩ S| = 1. Now we
define some sets based on Vi ⊆ U :

1. For every j ∈ [r], and x ∈ Ψ−1
parts(j) let Zxj = Ux ∩ Vj and Zj =

⋃
x∈Ψ−1

parts(j)
Zxj .

2. For every j ∈ [r], and h ∈ Ψ−1
family(j) let hj = h ∩ Vj and Fj = {hj | h ∈ Ψ−1

family(j)}.

Next we relate the instance of Partitioned p-CFC to Partitioned UHS.

Lemma 8.8. Let ((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U \ U ′})

denote the reduced instance of Partitioned p-CFC. Then it is a YES instance of Par-
titioned p-CFC if and only if for all j ∈ [r], (]x∈Ψ−1

parts(j)
Zxj ,Fj) is a YES instance of

Partitioned UHS.

Proof. First, suppose that ((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U \U ′}) is a YES instance of Partitioned p-CFC. Then there is a satisfying assignment

167

Γ such that each hyperedge is conflict-free coloured, Γ′(U ′) = Γ(U ′). For each v ∈ U \
U ′,Γ(v) ∈ Lv. Also, there exists a cfc-solution set S = {v1, . . . , vp} such that for all
i ∈ [p], |S ∩ Ui| = 1. In the reduced instance, for all h, |Γ′−1(Ψfamily(h)) ∩ h| = 0. Thus,
S ∩ U ′ = ∅. For each i ∈ [r], we look at S ∩ Vi. By definition of Zi, every vertex in
S ∩ Vi must belong to a part in Zi. In particular, every vertex of S ∩ Γ−1(i) must belong
to a part in Zi. Also, since every vertex of S belongs to a unique part of U1] U2 · · ·Up,
there is exactly one vertex in S ∩ Zxi , for each Zxi ∈ Zi. Also, we know that for every
h ∈ F , if unicoleltS(h) = vj , then Γ(vj) = Ψfamily(h). Thus, for each hyperedge h ∈ Fi,
unicoleltS(h) ∈ S ∩ Γ−1(i). F or every other vertex u ∈ h \ unicoleltS(h), Γ(u) 6= i and
therefore u /∈ S ∩ Γ−1(i). Thus, for every i ∈ [r], Si = S ∩ Γ−1(i) is a unique hitting set
of Fj with the property that ∀x ∈ Ψ−1

parts(i), |Zxi ∩ Si| = 1. Thus, (]x∈Ψ−1
parts(j)

Zxj ,Fj) is a

YES instance of Partitioned UHS.

In the reverse direction, suppose (]x∈Ψ−1
parts(j)

Zxj ,Fj) is a YES instance of Partitioned

UHS. Then a solution set Si is a unique hitting set of Fj with the property that ∀x ∈
Ψ−1

parts(i), |Zxi ∩Si| = 1. By definition, Si ⊆ Zi ⊆ Vi. First, for each vertex v ∈ Si, we assign
Γ(v) = i. For each w ∈ U ′, we must set Γ(w) = Γ′(w). Now, we look at a vertex w ∈ Vi\Si.
Look at the colours in Lw \{i}. In the reduced instance, it must be the case that, for any h
with Ψfamily(h) 6= i, w /∈ h. For a vertex w ∈ (U \U ′)\

⋃
j∈[r] Si, we arbitrarily pick a colour

c ∈ Lw\{i} and set Γ(w) = c. Every hyperedge h has exactly one vertex in the colour class
Ψfamily(h), namely the vertex in SΨfamily(h) ∩ h that uniquely hits h. Thus, Γ is a satisfying
assignment and ((U = U1]U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′,Γ′, {Lv subseteq[r]|v ∈ U \U ′})
is a YES instance of Partitioned p-CFC.

Lemma 8.8 allows us to reduce an instance of the Partitioned p-CFC problem to r
instances of Partitioned UHS. Next, we design an algorithm for Partitioned UHS.

Lemma 8.9. Partitioned UHS, where the number of hyperedges is m, the universe size
is n and a q ≤ m partitioning of the universe is given, is FPT parameterized by m. The
running time of the algorithm is 4m · (n+m)O(1).

Proof. We are given as input a hypergraph H = (U,F) and a q-partition U = (U1, . . . , Uq)
of the universe. We define a function A that takes as input a pair (E , C), where E ⊆ F
and C ⊆ [q]. The function outputs 1 if the subfamily E can be uniquely hit by a set S,
where ∀i ∈ C, |Ui ∩ S| = 1}, and 0 otherwise. Define for each vertex v that belongs to a
part Ui, i ∈ C, a subfamily Ev = {h | v ∈ h}. We define the function A using the following
recurrence relation:

A(E , C) =


max

c∈C,v∈Uc

A(E \ Ev, C \ {c}), if E 6= ∅

1, if E = ∅ and C = ∅
0, if E = ∅
0, if C = ∅

We prove the correctness of this recurrence by induction on the size of the set C ⊆ [q].
In the base case, when E = ∅, C = ∅, then trivially this family has been uniquely hit and
therefore A(E , C) = 1. When C = ∅, then no subfamily can be uniquely hit and therefore
A(E , C) = 0 for any subfamily E . When E = ∅, but C 6= ∅, then the family cannot have a
unique hitting set S with the property ∀i ∈ C, |Ui ∩ S| = 1}. Therefore, A(E , C) = 0 for

168

any set C 6= ∅. Now, let |C| ≥ 1. Suppose we have correctly calculated A(E ′, C ′) for all
pairs (E ′, C ′) where |C ′| < |C| and E ′ ⊆ F . There can be two cases:

1. Suppose A(E , C) = 1. Then there is a solution set S such that ∀i ∈ C, |Ui∩S| = 1}.
Take one i ∈ C and let vi ∈ S ∩ Ui. Then S − {vi} uniquely hits E \ Evi and
∀j ∈ C \ {i}, |Uj ∩ S| = 1}. Then, by induction hypothesis, A(E \ Evi , C \ {i}) = 1.
Hence, we correctly calculate A(E , C).

2. On the other hand, suppose A(E , C) = 0. Then, there was no such unique hitting
set S such that ∀i ∈ C, |Ui ∩ S| = 1}. If there is a vertex v ∈ Uj , j ∈ C such that
A(E \ Ev, C \ {j}) = 1, then, by induction hypothesis, there is a solution set S′ for
E \ Ev such that ∀i ∈ C \ {j}, |Ui ∩ S| = 1}. But then S ∪ {v} is a solution set for E
such that ∀i ∈ C, |Ui ∩ S| = 1}. This is a contradiction.

Thus the recurrence is correct.

It is enough to solve this recurrence for every pair (E , C). The given instance is a YES
instance of Partitioned UHS if A(F , [q]) = 1. We look up the value of one subproblem
in order to calculate the function A(E , C) and there are 4m such pairs (E , C). Thus, the
running time for solving the recurrence is 4m(n+m)O(1).

Lemmata 8.8, 8.9 and safeness of the Reduction Rules 8.2, 8.3, 8.4, 8.5 together result in
the following algorithm for Partitioned p-CFC.

Lemma 8.10. Partitioned p-CFC can be solved in time 2p+|F| ·NO(1).

Next, using Lemma 8.10 and the method of colour coding technique of [Alon 1995] we
give an algorithm for p-CFC. Towards this we need the following notion of a Perfect
Hash Family. A Perfect Hash Family is a family of functions, whose domain is a universe
U of n elements and range is a set of k elements, and with the following property: for
every k-sized subset S ⊆ U , there is a function ζ in the family that maps S to the range
injectively. That is, every element of S maps to a different number in [k]. The following
Proposition shows that such families are constructive [Naor 1995].

Proposition 8.5. For any n and k ≤ n, a (n, k)-Perfect Hash Family of size ekkO(log k) log n
can be deterministically computed in time ekkO(log k)n log n.

Our main theorem is the following.

Theorem 8.2. p-CFC can be solved in time 2O(k log log k+k log r) ·NO(1).

Proof. Let ((U,F), k, r) be an instance of p-CFC. Recall that |U | = n, |F| = m and
N = n+m. Given an instance we first apply Theorem 8.1 and obtain an equivalent instance
with at most 4k vertices and O(k log k) hyperedges. We run through all p ≤ k. Since the
number of hyperedges in the input instance is αuck log k, the number of subfamilies of size

k is
(
αuck log k

k

)
≤ (αuck log ke)

k

k
≤ (αuc log k)k. We guess a subfamily F ′ of hyperedges that

will be conflict-free coloured. That is, we are trying to find a colouring Γ : U → [r] such
that each hyperedge h in F ′ is conflict-free coloured. Let S be a hypothetical cfc-solution
corresponding to it. In other words, for each hyperedge h in F ′, a uniquely coloured vertex
of h (with respect to Γ) belongs to S. We guess the size of |S|, say p ≤ k. For a fixed p, let

169

F be the family of (n, p)-Perfect Hash Family of size eppO(log p) log n. By the property of F,
we know that there exists a function ζ ∈ F that maps S to [p] injectively. Let U1, . . . , Up
denote the partition of U given by ζ. Observe that after this we will be seeking for a
cfc-solution S such that |S ∩ Ui| = 1 for all i ∈ [p].

Next for each hyperedge h in F ′, we guess the colour of a vertex in h that is uniquely
coloured by Γ. There are rk such guesses. Thus, after this guess, we define a function
Ψfamily : F ′ → [r] such that h is assigned the colour of the vertex in h that will be uniquely
coloured by Γ. Finally, for the potential solution set S we guess the colour of each vertex
given by Γ. Since we are looking for a cfc-solution set S, such that ∀i ∈ [p], |Ui∩S| = 1} it
is equivalent to say that we guess an r partitioning of the p parts in U = (U1, . . . , Up). That
is, the vertex of S ∈ Ui will be assigned to each colour by Γ. To express this guess, we define
another function Ψparts : [p]→ [r] such that Ψparts(j) = i if the vertex x in S∩Uj will have
Γ(x) = i. Thus, there are rp guesses for the colouring of the potential solution set S by Γ.
At the end of this sequence of guesses, we have fixed a choice of hyperedges that are to be r
conflict-free coloured, a colouring of the potential solution set S (without actually knowing
the vertices of S, this essentially means a partitioning of the parts of U) and a partitioning
of the hyperedges according to which colour of Γ will determine that the hyperedge is
conflict-free coloured. This results in the following instance of Partitioned p-CFC:
((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′ = ∅, (∀v ∈ U : Lv = [r])). By Lemma 8.10 we
know that we can solve this in time 2p+k · NO(1) ≤ 4k · NO(1). Thus the overall running
time for p-CFC is upper bounded by the number of guesses and the running time of an
algorithm for Partitioned p-CFC. Thus, the running time of the algorithm is upper
bounded by:

(
αuck log k

k

)
× k × |F| × rk × rk × 4k ·NO(1) = 2O(k log log k+k log r) ·NO(1).

This concludes the proof.

8.4 FPT Algorithm for p-UMC

In this section, we give the full description of an FPT algorithm for p-UMC that runs in
2O(k log log k+k log r) ·NO(1) time. Here, N = |U |+ |F|. The algorithm is very similar to that
given for p-CFC.

The results of Lemma 8.3 and Theorem 8.1 can be modified for p-UMC.

Theorem 8.3. p-UMC has a kernel with at most 4k vertices and O(k log k) sets.

Therefore, we assume that our input instance for sc p-UMC contains at most O(k log k)
hyperedges and 4k vertices.

Given a set S ⊆ U , a subfamily F ′, and a colouring Γ : U → [r], we say that S is a
um-solution if each hyperedge h in F ′ is unique-maximum coloured and the vertex, which
is unique-maximum coloured in h, belongs to S. Furthermore, given such a set S and
a hyperedge h, let unicoleltS(h) denote the unique-maximum coloured vertex of h, that
belongs to S. Our strategy for the FPT algorithm is same as in the case of p-CFC.
We define an auxiliary problem and give an FPT algorithm for this problem. Finally, we
reduce our problem to this one with some guesses and by using the colour coding technique,

170

introduced by Alon et. al. in [Alon 1995]. Thus we obtain the desired algorithm for p-
UMC.

Partitioned p-UMC Parameter: r + p+ |F|
Input: A hypergraph (U = U1] U2 · · ·Up,F), a function Ψfamily : F → [r],
Ψparts : [p] → [r], a subset U ′ ⊆ U and a colouring function Γ′ : U ′ → [r], for ev-
ery v ∈ U \ U ′, a list Lv ⊆ [r]
Question: Does there exist a colouring function Γ : U → [r] such that: Each hyper-
edge is unique-maximum coloured, Γ(U ′) = Γ′(U ′). For each v ∈ U \ U ′,Γ(v) ∈ Lv.
Also, the um-solution set S, defined by Γ , is of size exactly p. For all i ∈ [p], |S∩Ui| = 1
and for every h ∈ F , unicoleltS(h) ∈

⋃
j∈Ψ−1

parts(Ψfamily(h)) Uj?

In simple words, the problem definition can be explained as follows. We are given a
partitioning of the universe U into p-parts and a partial colouring function Γ′ on a subset
U ′. We are looking for a colouring Γ : U → [r] which extends Γ′. Each vertex v in U \ U ′
has a list of admissible colours, and Γ must choose a colour from Lv. Also, due to Γ,
each hyperedge is unique-maximum coloured and the um-solution set S, due to Γ, is such
that it contains exactly one vertex from each part. Suppose the hypothetical set S is
{x1, x2, . . . , xp} (think of xi as a variable) where xi ∈ Ui. The function Ψparts is used to
guess the colour of xi in Γ. The function Ψfamily divides the family F into r chunks (not
to be confused with parts and colouring). The idea is that the unique-maximum coloured
vertex of h ∈ F , say xj , has been assigned the same colour by Γ as h has been assigned
to the chunk number by Ψfamily, i.e, Γ(xj) = Ψfamily(h). Next we show how we can solve
the Partitioned p-UMC problem.

Given an instance ((U = U1]U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U \U ′}) of

Partitioned p-UMC, we first do a polynomial time preprocessing of the instance. For
all v ∈ U ′, we must set Γ(v) = Γ′(v). In the following Reduction Rules, we show that
the input functions Ψfamily and Ψparts allow us to prune the list of some of the vertices.
The first reduction rule is necessary for a unique-maximum colouring that supports the
function Ψfamily.

Reduction Rule 8.6. For each hyperedge h, and each vertex v ∈ h, remove the colours
r ≤ i > Ψfamily(h) from L(v).

Lemma 8.11. Reduction Rule 8.6 is safe.

Proof. The required unique-maximum colouring Γ should be such that for each hyperedge
h, the unique-maximum coloured vertex of h must receive the same colour as Ψfamily(h).
Therefore, no vertex of h can be given a colour which is higher in order than Ψfamily(h).
This implies that the Reduction Rule is safe.

The next rule also ensures the properties of unique-maximum colouring.

Reduction Rule 8.7. Given a hyperedge h, if there is a vertex w ∈ h ∩ U ′ such that
Γ′(w) > Ψfamily(h), then we say NO.

Lemma 8.12. Reduction Rule 8.7 is safe.

Proof. The definition of the problem requires Γ to be an extension of Γ′. It also requires
the unique-maximum coloured vertex of each hyperedge h to be coloured by Ψfamily(h).

171

By definition of unique-maximum colouring, all other vertices of h must receive a colour
of lower order than Ψfamily(h). Therefore, for a YES instance, it must be the case that for
each vertex w in h∩U ′, Γ′(w) ≤ Ψfamily(h). This implies the correctness of the Reduction
Rule.

The next few reduction rules are similar to the rules described for the FPT algorithm of
p-UMC.

Reduction Rule 8.8. Suppose there is a hyperedge h containing a unique vertex w ∈ U ′
such that Ψfamily(h) = Γ′(w). Then, for every v ∈ h \ {w} we delete Ψfamily(h) from Lv.
We delete h from F .

The proof of correctness for this rule is very similar to that of Reduction Rule 8.2.

Reduction Rule 8.9. If there is a vertex v ∈ Ui, i ∈ [p], and h ∈ F , such that v ∈ h,
Ψfamily(h) 6= Ψparts(i), then we remove the colour Ψfamily(h) from the list of v.

This proof of correctness is similar to that of Reduction Rule 8.3.

Reduction Rule 8.10. If there are two vertices v, w ∈ U ′ and a hyperedge h ∈ F , such
that Ψfamily(h) = Γ′(v) = Γ′(w), then we say NO.

The proof of correctness for this Reduction Rule is similar to Reduction Rule 8.4.

Reduction Rule 8.11. Suppose there is a vertex w ∈ U \U ′ with Lw = {c}, then we put
w in U ′ and set Γ′(w) = c. If there is a vertex v where Lv = ∅, then we say NO.

This follows from the safeness of Reduction Rule 8.5.

Given an instance ((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U \ U ′})

of Partitioned p-UMC, we apply the above Reduction Rules exhaustively. If in the
process we infer that the given instance is a NO instance then we return the same. It
could also happen that we get F = ∅. In this case, for every vertex v ∈ U \ U ′, Γ assigns
to v an element of L(v) arbitrarily. Thus, from now onwards we assume that we neither
conclude that the given instance is a NO instance nor obtain F = ∅. We call an instance
of Partitioned p-UMC reduced if the above Reduction Rules are not applicable. For
simplicity, let ((U = U1]U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′,Γ′, {Lv ⊆ [r]|v ∈ U \U ′}) denote
the reduced instance of Partitioned p-UMC. Observe that the reduced instance has the
following properties:

1. For every vertex v, |Lv| ≥ 2.

2. For every hyperedge h, |Γ′−1(Ψfamily(h)) ∩ h| = 0.

3. For every hyperedge h, and each vertex v ∈ h, L(v) contains colours that are of
order at most Ψfamily(h).

We define the set Vi ⊆ U \ U ′ as the set of vertices that have i in their list of admissible
colours. Then there are two kinds of vertices in Vi: It could be that the vertex v has
i ∈ Lv and ∃h ∈ F , v ∈ Uj ∩h such that Ψfamily(h) = i,Ψparts(j) = i. Or, the vertex v has

172

i ∈ Lv. Moreover, for any h with Ψfamily(h) = i, v /∈ h. Also, for each h that contains v,
Ψfamily(h) > i.

To solve the reduced instance of Partitioned p-UMC, we will again solve r instances of
Partitioned UHS. We define some sets based on Vi ⊆ U :

1. For every j ∈ [r], and x ∈ Ψ−1
parts(j) let Zxj = Ux ∩ Vj and Zj =

⋃
x∈Ψ−1

parts(j)
Zxj .

2. For every j ∈ [r], and h ∈ Ψ−1
family(j) let hj = h ∩ Vj and Fj = {hj | h ∈ Ψ−1

family(j)}.

Next we relate the instance of Partitioned p-CFC to Partitioned UHS.

Lemma 8.13. Let ((U = U1] U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈ U \ U ′})

denote the reduced instance of Partitioned p-UMC. Then it is a YES instance of Par-
titioned p-UMC if and only if for all j ∈ [r], (]x∈Ψ−1

parts(j)
Zxj ,Fj) is a YES instance of

Partitioned UHS.

This proof is very similar to the proof of Lemma 8.8. Lemmata 8.13 and 8.9 together
result in the following algorithm for Partitioned p-CFC.

Lemma 8.14. Partitioned p-UMC can be solved in time 2p+|F| ·NO(1).

Next, using Lemma 8.14 and the method of colour coding technique of [Alon 1995] we give
an algorithm for p-UMC.

Theorem 8.4. p-UMC can be solved in time 2O(k log log k+k log r) ·NO(1).

Proof. Let ((U,F), k, r) be an instance of p-UMC. Recall that |U | = n, |F| = m and
N = n+m. Given an instance we first apply Theorem 8.3 and obtain an equivalent instance
with at most 4k vertices and O(k log k) hyperedges. We run through all p ≤ k. Since the
number of hyperedges in the input instance is αuck log k, the number of subfamilies of size

k is
(
αuck log k

k

)
≤ (αuck log ke)

k

k
≤ (αuc log k)k. We guess a subfamily F ′ of hyperedges that

will be unique-maximum coloured. That is, we are trying to find a colouring Γ : U → [r]
such that each hyperedge h in F ′ is unique-maximum coloured. Let S be the hypothetical
um-solution corresponding to it. In other words, for each hyperedge h in F ′, the unique-
maximum coloured vertex of h (with respect to Γ) belongs to S. We guess the size of
|S|, say p ≤ k. For a fixed p, let F be the family of (n, p)-Perfect Hash Family of size
eppO(log p) log n. By the property of F, we know that there exists a function ζ ∈ F that
maps S to [p] injectively. Let U1, . . . , Up denote the partition of U given by ζ. Observe
that after this we will be seeking for the um-solution S with the property that |S∩Ui| = 1
for all i ∈ [p].

Next for each hyperedge h in F ′, we guess the colour of the vertex in h that is unique-
maximum coloured by Γ. There are rk such guesses. Thus, after this guess, we define
a function Ψfamily : F ′ → [r] such that h is assigned the colour of the vertex in h that
will be unique-maximum coloured by Γ. Finally, for the potential solution set S we guess
the colour of each vertex given by Γ. Since we are looking for a um-solution set S, such
that ∀i ∈ [p], |Ui ∩ S| = 1} it is equivalent to say that we guess an r partitioning of
the p parts in U = (U1, . . . , Up). That is, the vertex of S ∈ Ui will be assigned a colour
by Γ. To express this guess, we define another function Ψparts : [p] → [r] such that

173

Ψparts(j) = i if the vertex x in S ∩ Uj will have Γ(x) = i. Thus, there are rp guesses
for the colouring of the potential solution set S by Γ. At the end of this sequence of
guesses, we have fixed a choice of hyperedges that are to be r unique-maximum coloured,
a colouring of the potential solution set S (without actually knowing the vertices of S, this
essentially means a partitioning of the parts of U) and a partitioning of the hyperedges
according to which colour of Γ will determine that the hyperedge is unique-maximum
coloured. This results in the following instance of Partitioned p-UMC: ((U = U1]
U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′ = ∅, (∀v ∈ U : Lv = [r])). By Lemma 8.14 we know that
we can solve this in time 2p+k · NO(1) ≤ 4k · NO(1). Thus the overall running time for
p-UMC is upper bounded by the number of guesses and the running time of an algorithm
for Partitioned p-UMC. Thus, the running time of the algorithm is upper bounded by:

(
αuck log k

k

)
× k × |F| × rk × rk × 4k ·NO(1) = 2O(k log log k+k log r) ·NO(1).

This concludes the proof.

8.5 Exact Algorithm for Max-Conflict Free Colouring

In this section, we give an exact algorithm for solving Max-CFC for hypergraphs. We
give a recurrence on subproblems, using which we can give a dynamic programming algo-
rithm to solve the problem. However, a much faster algorithm can be designed using the
technique of subset convolutions on functions.

Theorem 8.5. Max-CFC for hypergraphs can be solved by an exact algorithm that runs
in O(2(m+n)) time.

Proof. Let H = (U,F) be the input hypergraph. Suppose, for a given hypergraph, there
is a procedure to decide whether there exists an r-colouring that is conflict-free. Then,
we can generate all subsets F ′ of F , such that there exists an r-colouring of vertices of
(U(F ′),F ′) that is conflict-free, by running this procedure for all subsets . Then solving
the Max-CFC problem reduces to picking the maximum sized subsets among those.

We now give a procedure to find the minimum number of colours required to conflict-free
colour a given hypergraph, (U ′,F ′). Let χ′ be a r-colouring on U ′ and let F ′ be conflict-
free coloured by χ′. Then χ′ partitions U ′ into r partitions, U1, U2, . . . , Ur, such that the
following property is true.

∀F ∈ F ′,∃i ∈ [r] such that |F ∩ Ui| = 1.

Let F1 be the set of hyperedges such that ∀F ∈ F1, |F ∩ U1| = 1. In other words, all the
hyperedges in F1 have a unique vertex coloured by colour 1. Then, if we correctly guessed
U1 then solving whether F ′ has an r conflict-free colouring in U is equivalent to solving
the subproblem of whether F ′ \ F1 has an r − 1 conflict-free colouring in U \ U1.

Let C(X, E) be the minimum number of colours needed to conflict-free colour the hyper-
graph (X, E). We give the following recurrence relation to find C(X, E).

C(X, E) =

{
minX′⊆X:∃h∈E,|h∩X′|=1{1 + C(X \X ′, E \ E ′)}, if X 6= φ

0, if X = φ
(8.1)

174

where E ′ = {h ∈ E||h ∩X ′| = 1}.

We prove the correctness of the recurrence by induction on the size of X. When |X| = 0,
the recurrence correctly returns 0.

Now assume |X| > 0. Assume X ′ ⊆ X is a colour class of a conflict-free colouring that uses
χcf ((X, E|X)) colours. Then X ′ uniquely colours all hyperedges that contain exactly one
element from X ′. E ′ represents the family of this hyperedges. The remaining hyperedges
E \ E ′ need to be uniquely covered by colour classes in X \X ′. By induction hypothesis,
C(X \ X ′, E \ E ′) = χcf ((X \ X ′, E \ E ′|X\X′)). Hence, C(X \ X ′, E \ E ′) + 1 returns the
the value of χcf ((X, E|X)). Since the recurrence considers all possible subsets of X, one
of them is the correct guess for X ′ and returns the minimum value.

We can compute the function C in time O(2m · Σ0≤i≤n
(
n
i

)
2i) = O(3n2m). Once this is

done, finding a largest subfamily F ′ ⊆ F , such that (U(F ′),F ′) can be r conflict-free
coloured, can be done in O(2m) time. Hence, we could solve the Max-CFC problem in
O(3n · 2m) time. However, we can improve the running time by quite a bit.

Let us relax the definition of C to be the function which takes a pair (U ′,F ′), where
U ′ ⊆ U,F ′ ⊆ F , and, when χcf ((U ′,F ′|U ′)) ≤ r, correctly maps it to χcf ((U ′,F ′|U ′)).
Otherwise, it could map (U ′,F ′) to some value between n+1 and r(n+1), thereby clearly
indicating that (U ′,F ′|U ′) is not r conflict-free colourable. Then, too we can identify
subfamilies F ′ such that C((U(F ′),F ′)) ≤ r and pick one subfamily which has that largest
size. From now on, by C, we will refer to this new definition of C.

To facilitate the calculation of this newly defined C, we define another function f which
takes as input a pair (X ⊆ U, E ⊆ F). When X = ∅, for any subfamily E we define the
function f(X, {E}) = 0. For each nonempty X ⊆ U and E ⊆ F , f(X, E) = 1 if for each
H ∈ E , |H ∩X| = 1. Otherwise, f(X,F ′) = n+ 1. Notice that it takes O(2(n+m)) · nO(1)

time to calculate the function f . Using this function f , we are ready to define the function
C(X, E) as follows:

C(X, E) = min
X1]X2]...]Xr=X;E1]...]Er=E

f(X1, E1) + . . . f(Xr, Er) (8.2)

Finally, we identify a subfamily F ′ of F , of largest size, such that C(U(F ′),F ′) is r conflict-
free colourable.

Correctness

The correctness for the procedure described above is similar to the previous arguments.
First, we show that, when X is nonempty, the function C(X, E) determines whether
(X, E|X) can be r conflict-free coloured or not. Also, when the tuple is r conflict-free
colourable, the function returns the minimum number of colours required. We prove the
correctness by case analysis of X. When |X| = 1, then for any subfamily F ′, f(X,F ′) = 1
if and only if every hyperedge in F ′ contains the vertex of X. Thus, the hypothesis is true
for the base case.

Now assume |X| > 1. First, suppose χcf ((X, E|X)) ≤ r. Assume (X1]X2] . . .]Xr) is a
conflict-free colouring that realizes χcf ((X, E|X)) ≤ r. Some of the Xi’s could be emptysets
if χcf ((X, E|X)) < r. Each nonempty Xi uniquely colours all hyperedges that contain ex-
actly one element fromXi. Without loss of generality, we may assume thatX1 is nonempty.

175

Let E1 ⊆ E represent the subfamily of hyperedges that contain exactly one element from
X1. For i > 1, if Xi is empty, then Ei = ∅. When Xi is nonempty, let Ei ⊆ E−

⋃
1≤j≤i−1 Ej

be the subfamily of hyperedges that contain exactly one element from Xi. Notice that for
all 1 ≤ i ≤ r, when Xi is nonempty, f(Xi, Ei) = 1. When Xi = ∅, from the definition of
f , f(Xi, Ei) = 0. Hence, C(X, E) = minX1]X2]...]Xr=X;E1]...]Er=E f(X1, E1) + . . . f(Xr, Er)
returns the minimum number of colours required to conflict-free colour (X, E|X).

On the other hand, if C > r, then for any r-partition (X1]X2] . . .]Xr) of X, and r-
partition E1]. . .]Er of E , there will be at least one tuple (Xi, Ei) such that f(Xi, Ei) = n+1.
Therefore, we correctly calculate that C(X, E) > r. Notice that (n + 1) ≤ C(X, E) ≤
r(n+ 1).

A subfamily F ′ which is r conflict-free colourable and of largest size should have C(U(F ′),F ′) ≤
r. Thus, we go through all such tuples corresponding to subfamilies, and determine a
largest subfamily that is r conflict-free colourable.

Running Time

The first step of the algorithm is to compute the function C : 2U × 2F → Z ∪ {∞} for
all subsets of U and all subfamilies of F . As stated earlier, it takes O(2(n+m)) time to
calculate the function f : 2U × 2F → Z ∪ {∞}. The definition of C involves taking the
minimum over the sum of r values from the range of f . The range of f is bounded
between 0 and n+ 1, which makes the range of C bounded between 0 and r(n+ 1). Using
Proposition 8.2, computing the function C is equivalent to computing a sequence of log r
subset convolutions over the integer min-sum semi-ring in the following way: We first
calculate the subset convolution f ∗ f and obtain a function g1 : 2U ×2F → Z∪{∞}, then
we compute the subset convolution g1∗g1 to obtain a function g2 : 2U×2F → Z∪{∞} and
so on for log r steps. Hence, the algorithm for computing the function C runs in O(2n+m)
time.

Finally, the algorithm runs through all subfamilies F ′ and finds out the largest sized
subfamily such that (U(F ′),F ′) is r conflict-free coloured. Thus the total running time of
the algorithm is O(2n+m).

It is to be noted that by setting r = n, C(U,F) returns the minimum number of colours
required to conflict-free colour the given hypergraph.

Corollary 8.2. given a hypergraph H, χcf (H) can be found in O(2n2m) time.

Corollary 8.3. The Max-CFC problem on hypergraphs induced by neighbourhoods of
graphs can be solved in O(4n) time.

8.6 Exact Algorithm for Unique maximum Colouring

We now give an exact algorithm for solving Max-UMC on hypergraphs. It can be seen
that the dynamic algorithm that we gave in Section 8.5, with minor changes, can be used
to solve this problem.

Lemma 8.15. There exists an exact algorithm to solve Max-UMC with running time
O(3n.2m).

176

Proof. Consider the vertex partitions given by the colouring. Observe that these partitions
have the following property.

∀F ∈ F ,∃i ∈ [(H)] such that |F ∩ Ui| = 1 and ∀j > i, F ∩ Uj = ∅

This is similar to partitions given by a conflict-free colouring except for the last part. Let
U be the function that takes a tuple (X ⊆ U, E ⊆ F) and maps it to the minimum number
of colours required for unique-maximum colouring (X, E|X). We give a recurrence very
similar to that in the previous section.

U(X, E) =

{
minX′⊆X,∀E∈E,|E∩X′|=0∨|E∩X′|=1{1 + U(X \X ′, E \ E ′)}, if X 6= φ

0, if X = φ
(8.3)

The correctness of this recurrence can be seen in a similar way. Assume X ′ is the maximum
colour class in U . Then X ′ uniquely colours all hyperedges that contains exactly one
element from X ′. The remaining hyperedges can be optimally coloured by U(X\X ′, E\E ′).
Since we are considering all subsets of X, we get an optimal solution.

8.7 Chapter Summary

We studied the Max-CFC and the Max-UMC problems and gave exact algorithms for
the two problems. We also looked at p-CFC and p-UMC and gave an FPT algorithm
that runs in time 2O(k log log k+k log r) ·NO(1). Here, k is the number of hyperedges that are
r-conflict-free coloured, and N is the size of the input instance. It would be interesting
to show lower bounds for FPT algorithms for p-CFC and p-UMC. We also obtain an
exponential vertex kernel for the problem, and it is open whether a polynomial kernel for
the problem exists or not.

177

178

Chapter 9

Subexponential algorithms for
rectilinear Steiner tree and

arborescence problems

9.1 Introduction

In the Steiner Tree problem we are given as input a connected graph G, a non-negative
weight function w : E(G)→ {1, 2, . . . ,W}, and a set of terminal vertices T ⊆ V (G). The
task is to find a minimum-weight connected subgraph of G, which is a tree, containing
all terminal nodes T . Steiner Tree is one of the central and best-studied problems in
Computer Science, we refer to the books of Hwang, Richards, and Winter [Hwang 1992]
and Prömel and Steger [Prömel 2002] for thorough introductions to the problem.

In this chapter, we give the first subexponential algorithm for an important geometric
variant of Steiner Tree, namely Rectilinear Steiner Tree. Here, for a given set of
terminal points T in the Euclidean plane with `1-norm, the goal is to construct a network,
of minimum length, connecting all points in T . This variant of the problem is extremely
well studied, see Chapter 3 of the recent book of Brazil and Zachariasen [Brazil 2015] for
an extensive overview of various applications of Rectilinear Steiner Tree.

Alternatively, it is convenient to define Rectilinear Steiner Tree as the Steiner
Tree problem on a special class of graphs called Hanan grids. Recall that, for two points
p1 = (x1, y1) and p2 = (x2, y2) in the Euclidean plane R2, the rectilinear (`1, Manhattan
or taxicab) distance between p1 and p2 is d1(p1, p2) = |x1 − x2|+ |y1 − y2|.

Definition 9.1 (Hanan grid [Hanan 1966]). Given a set T of n terminal points in the
Euclidean plane R2, the Hanan grid G of T is defined as follows. The vertex set V (G)
of G is the set of intersection points obtained by drawing a horizontal line (line parallel
to x-axis) and a vertical line (line parallel to y-axis) through each point of T . For every
u, v ∈ V (G), there is an edge between u and v in G, if and only if u and v are adjacent
along a horizontal or vertical line; the weight of edge uv is the rectilinear distance between
u and v. For a Hanan grid G we define a weight function recdistG from the edge set E(G)
to R such that for an edge uv ∈ E(G), recdistG(uv) = d1(u, v). If the graph G is clear
from the context we drop the subscript from recdistG and only use recdist.

When G is the Hanan grid of a set T of n points, then T ⊆ V (G), |V (G)| ≤ n2, and for
every u, v ∈ V (G), the weight of a shortest path between u and v is equal to d1(u, v). For
an edge uv ∈ E(G), we say that uv is a horizontal (vertical) edge if both points u and v
are on the same horizontal (vertical) line. It was shown by Hanan [Hanan 1966] that the

179

Rectilinear Steiner Tree problem can be defined as the following variant of Steiner
Tree.

Rectilinear Steiner Tree
Input: A set T of n terminal points, the Hanan grid G of T and recdistG.
Output: A minimum Steiner tree for T in G.

Previous work on Rectilinear Steiner Tree. Though the Rectilinear Steiner
Tree problem is a very special case of the Steiner Tree problem, the decision version
of the problem is known to be NP-complete [Garey 1977]. A detailed account of vari-
ous algorithmic approaches applied to this problem can be found in books of Brazil and
Zachariasen [Brazil 2015], and Hwang, Richards, and Winter [Hwang 1992]. In particular,
several exact algorithms for this problem can be found in the literature. The classic algo-
rithm of Dreyfus and Wagner [Dreyfus 1971], from 1971, solves Steiner Tree on general
graphs in time 3n · logW · |V (G)|O(1), where W is the maximum edge weight in G. For
Rectilinear Steiner Tree, an adaptation of Dreyfus-Wagner algorithm provides an
algorithm of running time O(n2 ·3n). The survey of Ganley [Ganley 1999] summarises the
chain of improvements based on this approach, concluding with the O(n2 · 2.62n)-time al-
gorithm of Ganley and Cohoon [Ganley 1997]. Thomborson et al. [Thomborson 1987] and
Deneen et al. in [Deneen 1994] gave randomized algorithms with running time 2O(

√
n logn)

for the special case of Rectilinear Steiner Tree when the terminal points T are drawn
from a uniform distribution on a rectangle.

It is also worth mentioning relevant parameterized algorithms for Steiner Tree on gen-
eral graphs. Fuchs et al. [Fuchs 2006] provide an algorithm with running time O((2 +
ε)n|V (G)|f(1/ε) logW). Björklund et al. [Björklund 2007] and Nederlof [Nederlof 2013]
gave 2n|V (G)|O(1) ·W time algorithms for Steiner Tree. Let us remark that, since the
distances between adjacent vertices in Hanan grid can be exponential in n, the algorithms
of Björklund et al. and of Nederlof do not outperform the Dreyfus-Wagner algorithm for
the Rectilinear Steiner Tree problem. Interesting recent developments also concern
Steiner Tree on planar graphs, and more generally, on graphs of bounded genus. While
the existence of algorithms running in time subexponential in the number of terminals on
these graph classes is still open, Pilipczuk et al. [Pilipczuk 2013, Pilipczuk 2014] showed
that Steiner Tree can be solved in time subexponential in the size of the Steiner tree
on graphs of bounded genus.

In spite of the long history of research on Rectilinear Steiner Tree and Steiner
Tree, whether Rectilinear Steiner Tree can be solved in time subexponential in
the number of terminals remained open. In this chapter, a description of the first such
algorithm is given. The running time of our algorithm is 2O(

√
n logn). Further, our tech-

niques also yield the first subexponential algorithm for the related Rectilinear Steiner
Arborescence problem.

Definition 9.2. Let G be a graph, T ⊆ V (G) a set of terminals, and r ∈ T be a root
vertex. A Steiner arborescence of T in G is a subtree H ⊆ G rooted at r with the following
properties:

• H contains all vertices of T , and

• For every vertex t ∈ T \ {r}, the unique path in H connecting r and t is also the
shortest r · · · t path in G.

180

Let us note that if H is a Steiner arborescence of T in G, then for every vertex v ∈
V (H), the unique path connecting r and v in H is also a shortest r · · · v path in G. The
Rectilinear Steiner Arborescence problem is defined as follows.

Rectilinear Steiner Arborescence
Input: A set T of n terminal points, the Hanan grid G of T , a root r ∈ T and recdistG.
Output: A minimum length Steiner arborescence of T .

Rectilinear Steiner Arborescence was introduced by Nastansky, Selkow, and Stew-
art [Nastansky] in 1974. Interestingly, the complexity of the problem was open un-
til 2005, when Shu and Su [Shi 2000] proved that the decision version of Rectilinear
Steiner Arborescence is NP-complete. No subexponential algorithm for this problem
was known prior to our work.

Our method. Most of the previous exact algorithms for Rectilinear Steiner Tree
exploit Hwang’s theorem [Hwang 1976], which describes the topology of so-called full recti-
linear trees. Our approach here is entirely different. The main idea behind our algorithms
is inspired by the work of Klein and Marx [Klein 2014], who obtained a subexponential
algorithm for Subset Traveling Salesman Problem on planar graphs. The approach
of Klein and Marx was based on the following two steps: (1) find a locally optimal solution
such that its union with some optimal solution is of bounded treewidth, and (2) use the
first step to guide a dynamic program. While our algorithm follows this general scheme,
the implementations of both steps for our problems are entirely different from [Klein 2014].

We give a high level description of the algorithm for Rectilinear Steiner Tree. The
algorithm for Rectilinear Steiner Arborescence is similar. In the first step we build
in polynomial time a (possibly non-optimal) solution. To build a non-optimal Steiner tree
Ŝ of T = {t1, . . . , tn}, we implement the following greedy strategy. We build Ŝ starting
from vertex t1 and gradually connect new terminals to the tree. When we connect terminal
ti+1 to tree Si spanning the first i terminals, we select a shortest monotone (containing at
most one “bend”) path from ti+1 to Si in the Hanan grid. If there are two such paths, we
select one of them according to the structure of Si. The constructed tree Ŝ can be seen
as a “shortest path” rectilinear Steiner tree. The property of Ŝ which is crucial for the
algorithm is that there is an optimal Steiner tree Sopt such that graph S = Ŝ ∪ Sopt is of
treewidth O(

√
n).

For the second step we have Ŝ at hand and know that there exists a subgraph S of G
of treewidth O(

√
n), which contains an optimal Steiner tree Sopt and Ŝ. Of course, if

the subgraph S was given to us, then finding Sopt in S could be done by a standard
dynamic programming on graphs of bounded treewidth. However, we only know that
such a subgraph S exists, albeit with the extra information that Ŝ∪Sopt ⊆ S. It turns out
that this is sufficient in order to mimic the dynamic programming algorithm for bounded
treewidth, to solve Rectilinear Steiner Tree in time 2O(

√
n logn).

Let us recall the dynamic programming algorithm for Steiner Tree on a rooted tree
decomposition T = (T,X = {Xt}t∈V (T)) of the input graph, see e.g. [Cygan 2015, The-
orem 7.8]. For each node t ∈ V (T), let Vt be the union of vertices contained in all bags
corresponding to nodes of the subtree of T rooted at t and let St be the subgraph induced
by Vt. Then, in the dynamic programming algorithm, for each t we store a set of states,
capturing the interaction between a minimal Steiner tree and subgraph St; in particular
the weight of a tree and the information about its connected components in St. It is

181

possible to ensure that all the information carried out in each state is “locally” defined,
i.e., the information can be encoded by the elements of the bag Xt only. Therefore, at the
root node, there is a state that corresponds to an optimal Steiner tree.

In our algorithm, we define types, which are analogous to the states stored at a node of
a tree decomposition. A type stores all the information of its corresponding state. Since
we do not know the tree decomposition T , a type stores more “local” information, to take
care of the lack of definite information about S. We guess some structural information
about the virtual tree decomposition T of S. For example, we guess the height h of the
rooted tree T. In a rooted tree decomposition, the level of a node t is defined by the
height of the subtree rooted at t. In our algorithm, we generate types over h levels. The
intuition is that, for a node t ∈ T of level h′, for each state, of t, that was required for
the dynamic programming over T , there is an equivalent type generated in level h′ of
our algorithm. This implies that, at level h, there is a type equivalent to a state that
corresponds to an optimal Steiner tree in S. In fact, we show that any Steiner tree
corresponds to exactly one type D̂. During the iterative generation of types, the type D̂
may be generated many times. One such generation corresponds to an optimal solution.
So, the final step of the algorithm involves investigating all the occurrences of type D̂ in
the iterative generation, and finding the weight of a minimum Steiner tree. As in dynamic
programming, a backtracking step will enable us to retrieve a minimum Steiner tree of S,
and therefore of G. This work is based on [Fomin 2016].

9.2 Preliminaries

For a set V , and two partitions P1 and P2 of V , the join operation results in the partition
P, that is the most refined partition of V such that each part of P1 and P2 is contained
in a single part of P. The resultant partition P is often denoted as P1 tP2. Given a part
B of P, by P \B denotes removing the part B from P.

Given a weight function w : E(G)→ R, for a subgraph H of G, we use w(H) to denote the
number

∑
e∈E(H)w(e). Furthermore, for two vertices s and t in V (G), by the term shortest

path between s and t we mean the shortest path with respect to the weight function w.
Given two subgraphs G1, G2 of G, a shortest path between G1 and G2 is a path P between
a vertex u ∈ V (G1) and a vertex v ∈ V (G2) such that, among the shortest paths for each
possible pair {u′ ∈ V (G1), v′ ∈ V (G2)}, P has minimum length.

Treewidth. The concept of a tree decomposition and treewidth of a graph was defined
in Section 1.2. In this chapter, we require a tree decomposition with more properties. A
tree decomposition (T,X) is called a nice tree decomposition if T is a tree rooted at some
node r where Xr = ∅, each node of T has at most two children, and each node is of one of
the following kinds:

1. Introduce node: a node t that has only one child t′, where Xt ⊃ Xt′ and |Xt| =
|Xt′ |+ 1.

2. Introduce edge node: a node t labelled with an edge uv, with only one child t′

such that {u, v} ⊆ Xt′ = Xt. This bag is said to introduce uv.

3. Forget vertex node: a node t that has only one child t′, where Xt ⊂ Xt′ and
|Xt| = |Xt′ | − 1.

182

4. Join node: a node t with two children t1 and t2, such that Xt = Xt1 = Xt2 .

5. Leaf node: a node t that is a leaf of T, and Xt = ∅.

Additionally, we require that every edge is introduced exactly once. One can show that
a tree decomposition of width t can be transformed into a nice tree decomposition of the
same width t and with O(t|V (G)|) nodes, see e.g. [Cygan 2015].

9.2.1 Planar graph embeddings and minors

A graph is planar if it can be embedded in the plane. That is, it can be drawn on
the plane in such a way that its edges intersect only at their endpoints. Formally, a
planar embedding Π of a graph G consists of an injective mapping Π : V (G) → R2 and
a mapping Π of edges uv ∈ E(G) to simple curves in R2 that join Π(u) and Π(v). The
mapping ensures that for e, f ∈ E(G), Π(e) ∩ Π(f) contains only the images of common
end vertices. Also, for e ∈ E(G) and v ∈ V (G), Π(v) is not an internal point of Π(e).
Now we define the notion of a minor of a graph G.

Definition 9.3. A graph H is a minor of a graph G, denoted as H ≤m G, if it can be
obtained from a subgraph of G by a sequence of edge contractions.

Notice that this implies that H can be obtained from G by a sequence of vertex deletions,
followed by a sequence of edge deletions and finally a sequence of edge contractions.

We will need the following folklore observation.

Observation 9.1. Suppose G,H are connected graphs such that H is a minor of G. Then
H can be obtained from G only by edge deletions and contractions.

Proof. If H is a minor of G, then there is a sequence of minor operations such that all
vertex deletions are performed first and then all edge operations are performed. Let σ be
such a sequence for our graphs G and H. Let V ′ be the vertex set of G deleted by σ. Since
H is connected, The graph G− V ′ is also connected. We show that there is a sequence σ′

such that the vertex deletion operations do not disconnect the graph.

We look at the following graph G′. The vertex set of G′ contains a special vertex vsp and
all vertices of V ′. The edge set contains all edges with both end points in V ′. Also, suppose
for a vertex v ∈ V ′, there is at least one vertex u ∈ V (G) \V ′ such that uv ∈ E(G). Then
E(G′) contains the edge (vsp, v). Since G is connected, so is G′. Let TG′ be a Breadth-first
Search tree of G′, rooted at vsp. We reorder the vertex deletions of σ by deleting vertices
with maximum distance from vsp, in TG′ , to the neighbours of vsp. The new sequence of
minor operations has the property that vertex deletions do not disconnect the graph.

Now, a vertex deletion is equivalent to the contraction of an arbitrary incident edge,
followed by the deletion of the remaining incident edges. Thus, we have exhibited a
sequence of only edge operations to derive H from G.

We will also be using the notion of a minor model.

Definition 9.4. Let G and H be two connected graphs, and H ≤m G. A minor model, or
simply a model, of a graph H is a collection of pairwise disjoint vertex subsets P(H) =
{Cv ⊆ V (G) | v ∈ V (H)} such that,

183

Figure 9.1: The solid edges define a subgrid of a grid.

(a) V (G) =
⊎
v∈V (H)Cv,

(b) for each v ∈ V (H), G[Cv] is connected, and

(c) for any uv ∈ E(H), there exists w ∈ Cu and w′ ∈ Cv such that ww′ ∈ E(G).

Remark 9.1. It is important to point out that in general the definition of a minor model
does not demand that the vertex sets in P(H) = {Cv ⊆ V (G) | v ∈ V (H)} form a partition
of V (G). However, when both G and H are connected one can easily show that even this
extra property can be assumed.

Grids and subgrids play an important role for the results of this chapter. For a subset
W ⊆ [n], by maxW (minW) we denote the maximum (minimum) element of W .

Definition 9.5. Let n,m be two positive integers. An n×m grid is a graph G such that
V (G) = {vi,j

∣∣ i ∈ [n], j ∈ [m]} and E(G) = {vijvi′j′
∣∣ |i − i′| + |j − j′| = 1}. For any

i ∈ [n], we call {vi1, . . . , vim} to be the i-th row of the grid G and for any j ∈ [m], we call
{v1j , . . . , vnj} to be the j-th a column of the grid G. The vertices in the first row, n-th
row, the first column and m-th columns are called the boundary vertices of the grid. The
vertices that are not boundary vertices are called internal vertices.

The graph H is called a subgrid of G, if there exist subsets R ⊆ [n], C ⊆ [m] such that
V (H) = {vij ∈ V (G) : (minR ≤ i ≤ maxR) ∧ (minC ≤ j ≤ maxC) ∧ (i ∈ R ∨ j ∈ C)}
and E(H) = {vijvi′j′ ∈ E(G) : vij , vi′j′ ∈ V (H) ∧ (i = i′ ∈ R ∨ j = j′ ∈ C)}. The set of
vertices {vij ∈ V (H) : i /∈ {minR,maxR} ∨ j /∈ {minC,maxC}} are called the internal
vertices of H. The set of vertices {vij ∈ V (H) : i ∈ R ∧ j ∈ C} are called cross vertices.
Finally, the set of vertices {vij ∈ V (H) : i /∈ R ∨ j /∈ C} are called subdivision vertices
of H. (See Figure 9.1).

Given a planar graph G with an embedding Π, we call the vertices of the outer face
boundary vertices, and all other vertices internal vertices.

Definition 9.6. Let G be a planar graph with a planar embedding Π, and C be a simple
cycle of G. Let p∞ be a point in the outer face of G in the embedding Π. Then removal
of C from R2 divides the plane into two regions. The region that does not contain the
point p∞ is called the internal region of C, and the region containing p∞ is called the
outer/external region of C. A vertex in V (G) is called internal if it lies in the internal
region of C, and external if it lies in the external region of C. An edge in E(G) is called
an external edge if there is at least one point on its curve that lies in the external region. It

184

u

v

u

Figure 9.2: Derived embedding: the edge uv is contracted to the vertex u.

is called an internal edge if there is at least one point on its curve that lies in the internal
region.

By definition of a planar embedding, an edge of E(G) can be exactly one of the three
kinds: an edge of E(C), and external edge with respect to C or an internal edge with
respect to C. Similarly a vertex can be exactly one of the three kinds: a vertex of C, an
external vertex or an internal vertex.

Observation 9.2. Let G be a planar graph with a planar embedding Π in R2. Let p∞ be
a point in the outer face of Π. Let H be a minor of G, and P(H) = {Cv|v ∈ V (H)} be a
minor model of H. Then H is a planar graph. Furthermore, a planar embedding Π′ of H
can be obtained from Π that satisfies the following properties:

• Every vertex v ∈ H is positioned in the place of a vertex in Cv.

• The point p∞ is on the outer face of Π′.

We call such a planar embedding Π′ the embedding derived from Π.

Proof. It is well known that a minor of a planar graph is also a planar graph. We modify
Π to obtain Π′, in the following way:

1. A deletion operation changes the embedding of the current graph by simply deleting
the element concerned. No other vertex or edge changes position.

2. Suppose the edge uv is to be contracted. Let the degree of v be d. we first make
d − 1 parallel copies of uv. We forget the vertex v and reroute the edges incident
with v, other than uv using the original edges and one of the d− 1 copies of uv (See
Figure 9.2). The new embedding is a planar embedding of the new graph.

This ensures the two properties above.

On the proof of the first step of the algorithm, we will use the following auxiliary lemma.

Lemma 9.1. Let G and H be two connected planar graphs such that H ≤m G and let
P(H) = {Cv|v ∈ V (H)} be a minor model of H in G. Let Π′ be an embedding of H
derived from a planar embedding Π of G. Suppose that H contains an induced subgraph
H ′ isomorphic to a 3× 3 grid. Let C ′ be the cycle formed by boundary vertices of H ′ and
let v be the vertex of H ′ in the internal region of C ′. Then there is a simple cycle C in G,
such that:

185

(1) V (C) ⊆
⋃
u∈V (H′);u6=v Cu.

(2) For each vertex w ∈ G that is contained in the internal region of C in Π, there is a
vertex u ∈ H ′ with w ∈ Cu.

(3) All vertices of Cv are completely contained in the internal region of C in Π.

(4) There is a vertex w ∈ Cv such that dG(w) ≥ 3.

Proof. Consider consecutive vertices u,w in C ′. The edge uw corresponds to an edge
u′w′ ∈ E(G), such that u′ ∈ V (Cu), w′ ∈ V (Cw). We will call edges like u′w′ marked
edges in G. Note that both u′ and v′ do not belong to Cv. Now, for a boundary vertex u
of H ′, consider the connected graph Cu of G. There are at most two vertices, u1 and u2,
that are incident with marked edges in V (Cu). Since G[Cu] is a connected graph, there
is a shortest path Pu1u2 connecting u1 and u2 in G[Cu]. We call Pu1v2 as a marked path.
Note that V (Pu1u2)∩Cv = ∅. The union of the marked edges and marked paths forms the
simple cycle C and the vertex set V (C) is disjoint from Cv. This proves condition (1). In
fact a vertex of C only belongs to Cu for a vertex u ∈ C ′.

Now we show condition 2. Consider a vertex w that is contained in the internal region of
C in Π. Since G and H are both connected graphs, by Definition 9.4, there is a vertex
u ∈ H such that w ∈ Cu. If u ∈ H ′, then condition 2 holds. Suppose not. Then u belongs
to the external region of C ′ in Π′. By Observation 9.2, u is positioned at a vertex w′ ∈ Cu.
This means that Cu has a vertex w′ in the external region of C and a vertex w in the
internal region of C. Since u /∈ H ′, Cu ∩ C = ∅. However, Cu is a connected subgraph of
G and cannot be embedded without crossing with the cycle C. This is a contradiction to
the fact that G is a planar graph. Hence, condition 2 must hold.

Next, we show that for the internal vertex v ∈ H, all vertices of Cv are completely
contained in the internal region of C. From the definition of the derived embedding Π′

from Π, as described in Observation 9.2, the point p∞ is a point in the outer face of both
embeddings. The internal vertex v ∈ H is contained in the internal region of C ′. Then,
from the definition of Π′ derived from Π, v is placed in the position of a vertex u ∈ Cv. By
construction of C, it is disjoint from the vertices of Cv. Since Cv is connected, to maintain
planarity, it follows that Cv is in the internal region of C.

Lastly, we show that for the internal vertex v ∈ H, there is a vertex w ∈ Cv that has at
least three neighbours in G. Notice that the induced subgraph G′ of G, formed by the
vertices of C and the internal region of C, also has H ′ as a minor. For a vertex u ∈ H ′,
let Du denote the restriction of Cu in G′. Since, for the internal vertex v ∈ H ′, Cv is
completely contained in the internal region of C, Dv = Cv. There are four neighbours of
v ∈ H ′ in H ′. For a neighbour u of v, let e be an edge between Du and Cv. We call the
endpoint of e, in Cv, a marked vertex. There are at most four marked vertices in Cv.

Suppose there are at most two marked vertices. This means that at least one marked
vertex, say w, has at least two neighbours outside Cv. Since Cv is connected, and there
are at least two marked vertices in Cv, the degree of w must be at least three in G.

Otherwise, there are at least three marked vertices x1, x2, x3 ∈ Cv. Let P12 be a shortest
path in Cv, between x1 and x2. Among the vertices of P12, let w be the closest to x3, and
let the shortest path between w and x3 be Q. If w = x3, then w must be internal in P12

and thus has at least two neighbours in Cv. Since w is also a marked vertex, it has a third
neighbour outside Cv, thereby making its degree in G at least three. Otherwise, suppose
w is an internal vertex of P12. Then, the two neighbours in P12 and a neighbour in Q

186

v

u

a b

Figure 9.3: The red and blue paths are the two monotone u · · · v paths, and the green
path is the single monotone a · · · b path.

make the degree of w at least three in G. Otherwise, w is one of x1 or x2. This means
that w has a neighbour in P12, x3 as a neighbour, and a neighbour outside Cv. Thus, w
has degree at least three in G. This completes the proof.

Finally, our proof will be using the following version of the fundamental result of Robertson
et al. [Robertson 1994].

Proposition 9.1 ([Gu 2012]). Let t be a nonnegative integer. Then every planar graph
G of treewidth at least 9t/2 contains a t× t grid as a minor.

9.2.2 Properties of shortest paths in the Hanan grid

Let G be the Hanan grid of a set of n points P . For a subgraph H of G, and v ∈ V (H),
we say that v is a bend vertex if there exists at least one horizontal edge and at least one
vertical edge from E(H) incident with v. A path R = u1 · · ·u`, between u1 and u` in G,
is called a monotone path if there exists i ∈ [`] such that the points u1, . . . , ui belong to
a horizontal line and ui, . . . , u` belong to a vertical line or vice-versa. In other words, all
the horizontal edges as well as all the vertical edges in R are contiguous.

The following observation contains some simple facts about monotone paths (see Fig-
ure 9.3).

Observation 9.3. Let u and v be two vertices of a Hanan grid G. Then,

(a) There is at least one and at most 2 monotone u · · · v paths,

(b) If the x-coordinates of u and v are equal, then there is only one monotone u · · · v
path and all the edges in this path are vertical. Similarly, if the y-coordinates of u
and v matches, the unique monotone u · · · v path consists of horizontal edges only.

(c) If there are two monotone paths between u and v, then one path has a horizontal
edge incident with u while the other path has a vertical edge incident with u

Definition 9.7. Suppose we are given a Hanan grid G of a set of terminals T and two
vertices u, v ∈ V (G). Let x1 = min{ux, vx}, x2 = max{ux, vx}, y1 = min{uy, vy}, and
y2 = max{uy, vy}. Let V ′ = {w ∈ V (G)|wx ∈ [x1, x2], wy ∈ [y1, y2]}. Then G′ = G[V ′],
the subgraph of G induced by V ′, is called a grid defined by the two vertices u, v as its
diagonal points.

187

Observation 9.4. Given a Hanan grid G, a shortest path between any two vertices u, v
has the property that the sequence of the x-coordinates of the vertices of the path is a
monotone sequence, and the sequence of their y coordinates is also a monotone sequence.

Observation 9.5. Given a grid G, all shortest paths between two vertices u, v are con-
tained in the grid G′ ≤s G that is defined by u, v as its diagonal points. In fact, any path,
with the property that the sequence of the x-coordinates of the vertices of the path is a
monotone sequence and the sequence of their y coordinates is also a monotone sequence,
and which is fully contained inside G′, is a shortest path between u and v.

9.3 Subexponential algorithm for Rectilinear Steiner Tree

In this section, we give a subexponential algorithm for Rectilinear Steiner Tree.
Let T be an input set of terminals (points in R2), |T | = n, and G be the Hanan grid
of T . Furthermore, let recdistG denote the weight function on the edge set E(G). For
brevity we will use recdist for recdistG. The described algorithm is based on a dynamic
programming over vertex subsets of size O(

√
n) of G. To reach the stage where we can

apply the dynamic programming algorithm, we do as follows. First, we define a rectilinear
Steiner tree, called shortest path RST, and describe some of its properties. Next, we show
that for a shortest path RST Ŝ, there is an optimal Steiner tree Sopt such that Ŝ ∪ Sopt
has bounded treewidth. Finally, keeping a hypothetical tree decomposition of Ŝ ∪ Sopt
in mind, we design a dynamic programming algorithm to obtain the size of a minimum
rectilinear Steiner tree of G.

9.3.1 Shortest Path RST and its properties

In this part, we define a shortest path RST for a set T = {t1, . . . , tn} of input terminals
and prove some useful properties of such a Steiner tree. We define a shortest path RST as
follows.

Let G be the Hanan grid of T . We define a shortest path RST Ŝ through the following
constructive greedy process. Initially, we set S1 to the graph ({t1}, ∅), which is a recti-
linear Steiner tree of {t1}. In the ith step, we compute a rectilinear Steiner tree Si+1 of
{t1, . . . ti+1} from Si as follows. If ti+1 ∈ V (Si), then we set Si+1 = Si. Otherwise, let
v be a vertex in Si such that recdist(v, ti+1) = minu∈V (Si) recdist(u, ti+1). If there is only
one monotone t · · · v path, then let Q be this path. Otherwise, there are two monotone
t · · · v paths, such that one path has a horizontal edge incident with v and the other has a
vertical edge incident with v. If there is a horizontal edge in Si which is incident with v,
then we choose Q to be the monotone t · · · v path such that the edge in Q incident with
v is a horizontal edge. Otherwise we choose Q to be the monotone t · · · v path such that
the edge in Q incident with v is a vertical edge. Then we construct Si+1 by adding the
chosen monotone path Q to Si. After n − 1 iterations, we construct a tree Ŝ = Sn of G,
which is a Steiner tree of T . This is our shortest path RST.

It easy to see that one can construct a shortest path RST in polynomial time.

Lemma 9.2. Given a set T of terminal points and the Hanan grid G of T , a shortest
path RST Ŝ of T can be constructed in polynomial time.

188

Proof. Consider the procedure used to define a shortest path RST. The procedure involves
|T | steps. In each step, a shortest path, between two vertices of G, is found out. Since the
shortest path subroutine can be executed in polynomial time, and there are polynomially
many calls to this subroutine, the construction of Ŝ requires polynomial time.

Next, we give an upper bound on the number of bend vertices in a shortest path RST.

Lemma 9.3. The number of bend vertices in Ŝ is at most n.

Proof. We prove the assertion by induction on the number of iterations to construct the
solution Ŝ. Towards this, using induction on i, we prove that the number of bend vertices
in Si is at most i. In the base case, S1 is a single vertex with no bend vertices. Suppose
that the statement holds for Si−1. If ti is already contained in Si−1, then Si = Si−1. By
induction, the number of bend vertices in Si−1 is at most i− 1, and therefore the number
of bend vertices in Si is at most i. Otherwise, we find a vertex v ∈ V (Ŝi−1) such that a
shortest path Q between ti and Ŝi−1 ends with v.

Since Q is a shortest path between ti and Ŝi−1, the set of internal vertices of Q is disjoint
from V (Ŝi−1). By induction hypothesis, Si−1 had at most i−1 bend vertices. The number
of bend vertices in Q is at most 1. If v is already a bend vertex in Si−1, then the number
of bend vertices in Si is at most i− 1 + 1 = i. By the way we define shortest path RST,
if v is not a bend vertex in Si−1, it is also not bend in Si. Therefore, in this case, the
number of bend vertices in Si is also at most i. This concludes the proof.

9.3.2 Supergraph of an optimal RST with bounded treewidth

We view the Hanan grid G as a planar graph, and use this viewpoint to obtain the required
upper bound on the treewidth of a subgraph of G. In particular, given a shortest path
RST Ŝ, we show the existence of an optimal Steiner tree Sopt such that the treewidth of

Ŝ ∪ Sopt is sublinear in the number of terminal points T . First, we show that there is an
optimal Steiner tree in G that has a bounded number of bends.

Lemma 9.4. Let T be a set of n points in R2 and G be the Hanan grid of T . Then there
is an optimal rectilinear Steiner tree of T , such that the number of bend vertices in the
rectilinear Steiner tree is at most 3n.

Proof. We prove the lemma using induction on n = |T |. The base case is when n = 1.
Since the tree (T, ∅) is an optimal Steiner tree when |T | = 1, the number of bend vertices
in the tree (T, ∅) is zero. Similarly, when n = 2, a monotone path between the two
terminal vertices is an optimal Steiner tree. Therefore, the number of bends is one and
the hypothesis is still true.

Consider the induction step where n = |T | > 2. Let Sopt be an optimal Steiner tree of T
in G. Since Sopt is an optimal Steiner tree of |T |, there are at least 2 leaves and each leaf
node is a terminal. Also, there is a pair {t1, t2} of leaf terminals such that, in the t1 · · · t2
path P of Sopt, there is at most one internal vertex with degree at least three in Sopt. This
means that all other internal vertices in P are of degree exactly two in Sopt. If there are
no internal vertices of degree at least three in P , this means that all the terminals in T are
collinear and that Sopt is a path. Otherwise, let u be an internal vertex of P with degree

189

at least three in Sopt. Consider the sub-paths P1 and P2, which are t1 · · ·u and t2 · · ·u
paths. Suppose there is a terminal t appearing as an internal vertex on P . Without loss
of generality, we can assume that t ∈ V (P1) and t is the second terminal vertex in the
path P1 (first terminal vertex is t1). Let us denote the t1 · · · t sub-path of P1 as P3. By
definition, all the internal vertices between t1 and t are degree two non-terminal vertices.
Let S1 be the tree obtained by deleting V (P3) \ {t} from Sopt. Since Sopt is an optimal
Steiner tree of T , S1 is an optimal Steiner tree of T \ {t1} and P3 is a minimum weight
t1 · · · t path. Since |T \ {t1}| = n− 1, by induction hypothesis, there is an optimal Steiner
tree S′ of T \ {t1} such that the number of bend vertices is at most 3(n− 1). Let P ′3 be a
monotone t1 · · · t path. Since recdist(S′ ∪ P ′3) ≤ recdist(S1 ∪ P3) = recdist(Sopt), S

′ ∪ P ′3 is
an optimal Steiner tree of T . By the definition of a monotone path, the number of bend
vertices in P ′3 is at most 1. Thus, any bend vertex b in S′ ∪ P ′3 is a bend vertex in S′, or
a bend vertex in P ′3, or b = t. This implies that the number of bend vertices in S′ ∪ P ′3 is
at most 3(n− 1) + 1 + 1 ≤ 3n.

The remaining case is that the t1 · · · t2 path P has exactly one internal vertex u of degree
at least three, while all other internal vertices are of degree two and are not terminals.
Let S1 be the tree obtained by deleting V (P1 ∪ P2) \ {u} from Sopt. Since Sopt is an
optimal Steiner tree of T , S1 is an optimal Steiner tree of T \ {t1, t2} ∪ {u}. Again,
the sub-paths P1 and P2 must be minimum weight t1 · · ·u and t2 · · ·u paths respectively.
Since |T \ {t1, t2} ∪ {u}| = n − 1, by induction hypothesis, there is an optimal Steiner
tree S′ of T \ {t1, t2} ∪ {u} such that the number of bend vertices is at most 3(n − 1).
By optimality of Sopt, for any minimum weight t1 · · ·u path P ′1 and t2 · · ·u path P ′2,
recdist(S′ ∪ P ′1 ∪ P ′2) = recdist(Sopt). Thus, S = S′ ∪ P ′1 ∪ P ′2 is an optimal Steiner tree
of T . We choose P ′1 and P ′2 to be monotone paths. Thus, the number of bend vertices in
P ′1 and P ′2 is at most one each. This means that u could be a new bend vertex in S, and
there could be at most two new bend vertices in the two monotone paths added. This
brings the total number of newly introduced bend vertices to at most three. Thus, the
total number of bend vertices in S is at most 3n. This completes the proof.

With respect to a shortest path RST Ŝ, of G, we prove the next Lemma. In particular, we
show that the treewidth of S = Ŝ ∪ Sopt is at most 41

√
n. Here, Sopt is a carefully chosen

optimal Steiner tree for T . In order to get the desired upper bound on the treewidth of S,
we show that it does not contain O(

√
n)×O(

√
n) grid as a minor. In fact, we prove that

if there is a large grid, then we can find a “clean part of the grid” (subgrid not containing
vertices of T and bend vertices of either Ŝ or Sopt), and reroute some of the paths in either

Ŝ or Sopt. This, in turn, contradicts either the way Ŝ is constructed or the optimality of
Sopt.

Lemma 9.5. Given a set T of n points and a shortest path RST Ŝ of T , there is an
optimal rectilinear Steiner tree Sopt of T with the property that the treewidth of Ŝ ∪ Sopt
is bounded by 41

√
n.

Proof. Among the optimal Steiner trees of T with the minimum number of bend vertices,
we select a tree Sopt which has maximum edge intersection with E(Ŝ). From Lemma 9.4,
it follows that the number of bend vertices in Sopt is at most 3n.

Let S = Ŝ ∪ Sopt. Let B̂ and Bopt be the set of bend vertices in Ŝ and Sopt, respectively.

Let U = T ∪ B̂ ∪ Bopt and N = V (G) \ U . Since |T | = n, |B̂| ≤ n, and |Bopt| ≤ 3n,
we know that |U | ≤ 5n. Let ΠS be a planar embedding of S, obtained by deleting all

190

the edges and vertices not in S from the planar embedding Π of G. We show that the
treewidth of S is at most 41

√
n. We can assume that n ≥ 4, as otherwise we can greedily

find out the best rectilinear Steiner tree from the constant sized Hanan grid. For the
sake of contradiction, assume that tw(S) > 41

√
n. Then, by Proposition 9.1, there is a

9
√
n × 9

√
n grid H appearing as a minor of S. Let P(H) = {Cv|v ∈ V (H)} be a minor

model of H. Since H and G are connected graphs, P(H) is a partition of the vertex set
V (G). We identify a 3× 3 subgrid H ′ of H by the following process. For any v ∈ V (H),
we mark the vertex v if Cv ∩ U 6= ∅ (i.e, Cv contains a terminal or a bend vertex from Ŝ
or Sopt). Since |U | ≤ 5n, the number of marked vertices in H is at most 5n. Since H is a
9
√
n × 9

√
n grid, there are at least 6n vertex disjoint 3 × 3 subgrids in H. This implies

that there is a 3× 3 subgrid H ′ in H such that each vertex of H ′ is unmarked. The fact
that for u ∈ V (H ′), Cu ∩ U = ∅ implies the following observation.

Observation 9.6. Let u ∈ V (H ′) and w ∈ Cu.

(i) d
Ŝ

(w), dSopt(w) ∈ {0, 2}. If for any Si ∈ {Ŝ, Sopt}, dSi(w) = 2, then the two edges in
Si incident with w are of same kind (either horizontal or vertical).

(ii) If one horizontal (vertical) edge incident with w is present in S, then the other
horizontal (vertical) edge incident with w is also present in S. Hence dS(w) ∈ {2, 4}.

Note that H ′ is a connected graph and is a minor of a connected graph S. Let ΠH′ be a
planar embedding derived from ΠS . By Lemma 9.1, we know that there is a simple cycle
C ′ in S with the following properties.

(i) V (C ′) ⊆
⋃
u∈V (H′)Cu.

(ii) For each vertex w ∈ G that is contained in the internal region of C ′ in Π, there is
a vertex u ∈ H ′ with w ∈ Cu. In particular, all the vertices of V (S) \

⋃
v∈V (H′)Cv

(which includes U) are not in the internal region of C ′.

(iii) For the internal vertex v ∈ V (H ′), all the vertices in Cv are in the internal region of
C ′.

(iv) Finally, there is a vertex w ∈ Cv, in the internal region of C ′, such that dS(w) ≥ 3.
By Observation 9.6, dS(w) = 4.

That is, there is a cycle C ′ in the Hanan grid G such that V (C ′) ⊆ V (S) \U , every point
in the internal region of C ′ does not correspond to any vertex in U and there is a vertex
w of degree 4 in S, which is in the internal region of C ′. The following claim follows from
Observation 9.6.

Claim 9.1. Let u, v ∈ V (G) be points which are either on the same horizontal line or on
the same vertical line. If the line segment L connecting u and v does not intersect with
the outer region of C ′, and there is an edge v1v2 ∈ E(S) on the line L, then all the edges
on the line segment L belong to E(S).

Let C ′ be a minimum-weight cycle satisfying properties (i), (ii) and (iv) and w′ be a vertex
of degree 4 in the internal region of C ′. Let Ew′ be the set of edges of S not in the outer
region of C ′ and each edge either belongs to the horizontal line or vertical line containing
w′.

Claim 9.2. Graph G′ = C ′ ∪ Ew′ is a subgrid of G. Moreover, V (G′) ⊆ V (G) \ U ,
E(G′) ⊆ E(S), and all the subdivision vertices in G′ have degree exactly 2 in S.

191

Proof. The definition of G′ implies that V (G′) ⊆ V (G)\U and E(G′) ⊆ E(S). Let L1 and
L2 be the horizontal and vertical line passing through the point w′ = (w′x, w

′
y) respectively.

We show that G′ is indeed a subgrid of G. Let l, r be degree 4 vertices of S on the line L1

such that lx < w′x, rx > w′x, and the distances recdist(w′, l) and recdist(w′, r) are minimized.
Similarly, let a, b be degree 4 vertices of S on the line L2 such that ay > w′y, by < w′y and
the distances recdist(w′, a) and recdist(w′, b) are minimized. Let R = {ay, w′y, by} and
C = {lx, w′x, rx}. Now we will show that the subgrid G′′, of G, defined by R and C is same
as G′. Let L′1 be the line segment of L1, between l and r. This line segment is not in the
external region of C ′. Similarly, the line segment L′2 on L2, between a and b, is not in the
external region of C ′.

Let C ′′ be the cycle formed by the boundary vertices of G′′. We need to show that C ′′ is
the same as C ′. We first show that (a) there is no edge uv ∈ E(S) such that uv is in the
internal region of C ′′ and uv ∈ E(S) \ E(G′′). Suppose not. Among all such edges, let
uv be an edge such that recdist(w′, u) is minimized in the Hanan grid G. As uv does not
belong to E(G′′), it does not lie on the line segments L′1 and L′2. Since uv is an internal
edge of C ′′, lx < ux < rx and by < uy < ay. Notice that any shortest path, in G, between
u and w′ lies in the internal region of C ′′. In other words, the grid Gu defined by the u
and w′ lies in the internal region of C ′′. Any edge in Gu has shorter distance to w′ than
uv. Thus, since uv has minimum distance to w′, if an edge, of Gu, does not belong to L′1
or L′2, then the edge cannot belong to E(S). We show that uv is not in the external region
of C ′. Suppose uv is in the external region of C ′. Since, w′ is in the internal region of C ′,
a shortest path from u to w′ must cross into the internal region bounded by C ′. As L′1
and L′2 are also not in the external region of C ′, there is an edge of E(Gu)\ (L′1∪L′2), that
belongs to C ′. Therefore, there is an edge in Gu that belongs to S. This edge belongs to
E(S) \E(G′′), is in the internal region of C ′′, but is closer to w′ than uv. This contradicts
the choice of uv. Thus, uv is not in the external region of C ′. Consider the line L passing
through uv. As mentioned earlier, L /∈ {L1, L2}. Then L hits the line Li, where Li is
exactly one of L1 or L2, at a single point z. First, suppose u 6= z. Let the line segment
L′ of L connect u and z. As shown above, u either belongs to C ′, or is in the internal
region of C ′. Following from Observation 9.6, since uv is an edge of S, there is another
edge ux incident with u and lying on the line segment L′. This edge is also in the internal
region of C ′′ and does not belong to E(G′′). Consider the other endpoint x. This vertex
has shorter distance to w′ than u. This contradicts the fact that uv was the chosen edge.

Finally, if u = z, then u lies on the line Li. The line segments of L′1 and L′2 are not in
the external region of C ′. Note that, lx < ux < rx and by < uy < ay. This means that
the edge uv as well as the two edges of Li, incident on u, belong to S and are not in the
external region of C ′. Hence, there are both horizontal and vertical edges in S which are
incident with u. Since u is not an external vertex of C ′, the degree of u in S is 4 (by
Observation 9.6). However, u is a vertex on Li, lx < ux < rx and by < uy < ay. This
contradicts the choice of one of l, r, a or b.

The condition (a) implies that the internal region of C ′′ does not have an edge of S. Since
all the vertices {`, r, a, b, w′} either belong to C ′ or to the internal region of C ′, the internal
region of C ′′ is a subset of the internal region of C ′. Also, all the edges in C ′′ are not in
the outer region of C ′. Since the degree of l, r, a and b in S is 4, by Claim 9.1, all the
edges in C ′′ belong to E(S). Since w′ is in the internal region of C ′′, condition (iv) holds
for C ′′. Also the vertices and edges of C ′′ either belong to C ′ or are in the internal region
of C ′. Thus conditions (i) and (ii) also hold. Then, by the minimality of C ′, C ′′ = C ′.

192

Since the degree of w′ in S is 4, by Claim 9.1, all the edges in Ew′ belong to E(S).

Now, we need to show that all the subdivision vertices of G′ have degree 2 in S. Suppose
not. Let u be a subdivision vertex in G′ such that degree of u in S is greater than 2.
By Observation 9.6, degree of u in S is 4. This implies that there is an edge uv in the
internal region of C ′ and uv /∈ E(G′). This contradicts condition (a). We have shown that
G′ = C ′ ∪ Ew′ is a subgrid, where all subdivision vertices are of degree 2 in S.

The next claim provides us with the insight on how subpaths of Ŝ and Sopt behave in G′.

Claim 9.3. Let Fh and Fv be the sets of horizontal and vertical edges in G′ = C ′ ∪ Ew′
respectively. Then exactly one of the following conditions is true.

1. Fh ⊆ E(Ŝ) and Fv ⊆ E(Sopt).

2. Fv ⊆ E(Ŝ) and Fh ⊆ E(Sopt).

Proof. Let G1 = G′[E(Ŝ)] and G2 = G′[E(Sopt)]. First, we show that each component of
G1 and G2 is a path where all edges are of the same kind, i.e., either all are horizontal
or all are vertical. Note that a component of G1 or G2, with only horizontal or only
vertical edges, must be a path. For contradiction’s sake, suppose there is a component
with both horizontal and vertical edges. Without loss of generality, we assume that there
is a component C1 ∈ G1 with both kinds of edges. This implies that there is a vertex
v ∈ V (C) such that v is incident with a vertical edge as well as a horizontal edge. However,
by Observation 9.6(i) and the definition of G′, such a vertex cannot be in G′. Therefore,
each component of G1 and G2 is a path where all edges are of the same kind.

Next, we show that the edges of G1 are either all horizontal or all vertical. For ease of
notation, we will call a set of edges, which are all horizontal or all vertical, to be parallel
edges. Let D be a component of G1 and e an edge of E(G1) \E(D). Also, the edges of D
are of a different orientation than the edge e. That is, if all the edges of D are horizontal,
then e is a vertical edge, and vice-versa. As shown above, all the edges of D are parallel to
each other. Among all such pairs (D, e) we choose a pair (C1, uv) that has the minimum
distance between D and e in G′. As G′ is connected, there is a path between C1 and
uv. Without loss of generality, assume that all edges of C1 are horizontal, and that uv
is a vertical edge. Assume that u and a vertex w ∈ C1 are the vertices whose shortest
path Quw in G′ is a witness to the vertical edge uv and the component C1 having the
minimum distance between them. We first show that no edge of Quw belongs to E(Ŝ).
Traversing from u along Quw, let e∗ be the first edge of E(Ŝ) that is encountered. If e∗

is a vertical edge, then (C1, e
∗) is a pair which satisfies the above description. However,

the distance between C1 and e∗ is strictly smaller than the distance between C1 and uv,
which is a contradiction. On the other hand, suppose that e∗ is a horizontal edge and that
it belongs to the component C2 6= C1 of G1. Then (C2, uv) is a closer pair than (C1, uv).
Thus, all edges of Quw belong to E(Sopt) and not to E(Ŝ). Moreover, all the edges of Quw
must belong to a single component C2 of G2. This implies that all the edges of Quw are
parallel to each other. Let ew be the edge of Quw that is incident with w. Since w has
at least one horizontal edge of E(C1) ⊆ E(Ŝ) and ew /∈ E(Ŝ), by Observation 9.6(i) with
respect to w, ew must be a vertical edge. Since, C2 is a component of G2, all edges of
Quw must be vertical edges. Let eu be the edge of Quw incident with u. Both eu ∈ G2

and e ∈ G1 are vertical edges, where e ∈ E(Ŝ) while eu /∈ E(Ŝ). This is a contradiction

193

P147 P258 P369
u′2u′1

u2u1
P123

l1 l2

p

P456

P789

Figure 9.4: The subgrid G′.

to Observation 9.6(i) with respect to u. A similar argument shows that E(G2) is a set of
parallel edges. This completes the proof of Claim.

Note that G′ is a 3×3 subgrid of G. Let G′ be formed by horizontal paths P123, P456, P789

and vertical paths P147, P258, P369. Let u1, . . . , u9 be the 9 vertices in G′ such that the path
Pijk, where i, j, k ∈ [9], contains the vertices ui, uj and uk. Due to Claim 9.3, without loss
of generality, we may assume that the horizontal paths belong to Sopt, and the vertical

paths belong to Ŝ. For a path Pijk, we use Pij and Pjk to denote the sub-paths of Pijk
connecting ui and uj , and uj and uk respectively. Let the length of the sub-path P12 be
l1 and the length of the sub-path P23 be l2. By the definition of G′, the length of P45 is
also l1, and the length of P56 is l2. (See Figure 9.4).

Suppose l1 + l2 > 2p. Then, we consider the graph S∗ formed by deleting in Sopt the path
P123, and adding the two paths P14 and P36. Since all the subdivision vertices of G′ are
of degree 2 in S, S∗ is a Steiner tree of weight strictly less than the weight of Sopt. This
contradicts the choice of Sopt. Hence, this is not possible.

Suppose l1 + l2 ≤ 2p. Without loss of generality, let l1 ≤ l2. Thus, l1 ≤ p. Consider the
two paths P147 and P258. They are vertical paths of Ŝ, such that all the vertices in these
paths belong to V (G) \U (that is, non-terminals and non-bend vertices) and have degree
2 in Ŝ (by Observation 9.6). This implies that all the edges in any path R ∈ {P147, P258}
are added in a single step while constructing Ŝ. Since both the paths are parallel, by
Observation 9.4, if a path R1 in Ŝ has both P147 and P258 as sub-paths, then R cannot
be a shortest path between its endpoints. Thus, by construction of Ŝ, both P147 and P258

could not have been added to Ŝ in a single step of the construction. Also by construction,
one of them is added to Ŝ before the other. Without loss of generality, let P147 be added
before P258. Again by construction, a path, containing P258 as a sub-path, was added in
the ith step, to connect a terminal t to the already constructed Ŝi−1. Let R∗ be the path
added to Si−1. By definition of G′, this terminal t must lie outside the region formed by the
subgrid G′. Since P258 was part of a shortest path between Ŝi−1 and t, by Observation 9.4,
t must lie on a row strictly higher than or strictly lower than the rows in G′. Suppose that
this terminal lies above P123. By Observation 9.6, both the vertical edges incident on u1

belong to Ŝ. Since u1 and u2 are of degree 2 in Ŝ, both the vertical edges incident with u1

as well as u2 are added, when the path containing P147 or P258 is added to construct Ŝ.

194

This implies that both the vertical edges, incident with u1, are present in Si−1. Let u1u
′
1

be the vertical edge present in Si−1 and not in E(P147). Let u2u
′
2 be the vertical edge not

present in P258. Now, consider the path R2, between u′2 and t, obtained by concatenating
the horizontal path between u′1 and u′2, and the sub-path of R∗ connecting u′2 and t. The
length of the path R2 is strictly less than that of R∗ and u′1 ∈ Si−1. This is a contradiction.
The case when t lies below any row in G′ is identical to the other case.

Thus, there is no such subgrid G′ of G, such that G′ is a subgraph of S. This implies that
there is no 9

√
n × 9

√
n grid as a minor in S. Due to Proposition 9.1, the treewidth of S

must be at most 9
2 · 9
√
n = 41

√
n. This completes the proof.

9.3.3 Dynamic Programming Algorithm for Rectilinear Steiner Tree

In this section we utilize all the results proved in the previous sections and design our
algorithm for Rectilinear Steiner Tree. By Lemma 9.5, we known that given a
shortest path RST Ŝ, there exists an optimum Steiner tree Sopt such that the treewidth of

S = Ŝ ∪Sopt is bounded by 41
√
n. The idea of the algorithm is to implicitly do a dynamic

programming over a tree decomposition of S, even though we do not know what S is, to
compute an optimum Steiner tree for T .

Suppose we know the subgraph S of G, such that there is an optimum Steiner tree fully
contained in S. Then we can do the well known algorithm for Steiner tree over the tree
decomposition of S [Cygan 2015]. To give a proper intuition to our algorithm, we first re-
call the important step of the dynamic programming algorithm for Steiner tree over the
tree decomposition of the graph S (see [Cygan 2015, Theorem 7.8] for more details). Let
(T,X = {Xt}t∈V (T)) be a nice tree decomposition of S, where T is a rooted tree. For a node
t, let Vt be the union of all the bags present in the subtree of T rooted at t. For a node t, we
define a graph St = (Vt, Et = {e ∈ E(S) : e is introduced in the subtree rooted at t}).
The important step in the algorithm for Steiner Tree is to compute the following in-
formation: for each bag Xt, X ⊆ Xt and a partition P = (P1, . . . , Pq) of X, the value
c[t,X,P] is the minimum weight of a subgraph F of St with the following properties:

1. F has exactly q connected components C1, . . . , Cq such that ∅ 6= Pi = Xt ∩ V (Ci)
for all i ∈ [q]. That is, P corresponds to connected components of F .

2. Xt ∩ V (F) = X. That is, the vertices of Xt \X are untouched by F .

3. T ∩ Vt ⊆ V (F). That is, all the terminal vertices in St belong to F .

For our purpose, the second step is redundant but we still carry it out to give a proper
analogy with the known algorithm for Steiner Tree over a graph of bounded treewidth
we are referring to. Note that the number of parts in the partition P is q. Throughout
this section, q will denote the number of parts of the partition in question.

It is known that computing the values c[t,X,P] for each tuple (t,X,P), where t ∈
V (T), X ⊆ Xt and P is a partition of X, is enough to compute the value of an opti-
mum Steiner tree of T in S. Also, this can be computed in time twO(tw)|V (S)|O(1) (See
Chapter 7 in the book [Cygan 2015]). In our case, we do not know the graph S = Ŝ ∪Sopt
and a tree decomposition of S, but we know that the treewidth of S is at most 41

√
n.

This implies that the number of choices for bags in a tree decomposition of S is bounded
by nO(

√
n). Consider the properties 1 and 2 mentioned above. They are local properties

195

of the witness subgraph F with respect to the bag Xt. However, the property 3 says that
all the terminals in the subgraph St should be present in F . In fact, we can bound the
potential sets T ∩ V (St), using the rectilinear Steiner tree Ŝ. Observe that any bag Xt

is a separator of size O(
√
n) for S and thus for Ŝ. This implies that for every connected

component C of Ŝ−Xt, either T ∩V (C) is fully in Vt or no vertex in T ∩V (C) belongs to
Vt. Since each vertex in G has degree at most 4 and Xt is a bag in a tree decomposition,
the number of connected components in Ŝ − Xt is at most 4|Xt| ≤ 164(

√
n + 1). As

observed before, for any connected component C of Ŝ − Xt, either T ∩ V (C) is fully in
Vt or no vertex in T ∩ V (C) belongs to Vt. This implies that the potential sets T ′ ⊆ T
such that T ′ = (Vt \ Xt) ∩ T is bounded by 2164(

√
n+1) and we can enumerate them in

sub-exponential time. Using this observation we could keep track of property 3 as well,
even though we do not know the graph S and its tree decomposition.

Now, we move towards the formal explanation of our algorithm. We first define the notion
of a type, which is the analogue of a tuple (t,X,P) in the normal dynamic programming
we explained above.

Definition 9.8. A type is a tuple (Y, Y ′ ⊆ Y,P, T ′) such that the following holds.

(i) Y is a subset of V (G) of size at most 41
√
n+ 2.

(ii) P is a partition of Y ′.

(iii) There exists a set of components C1, . . . , Cq in Ŝ−Y such that T ′ = T∩(Y ′ ∪
⋃q
i=1 V (Ci)).

Informally, in a type (Y, Y ′,P, T ′), Y represents a potential bag Y of a node (say t) in
a tree decomposition of S. The set Y ′ and partition P have the same meaning as that
of (t, Y ′,P) in the normal dynamic programming algorithm for Steiner Tree. The set
T ′ is the set of terminals in the graph St. The next lemma gives an upper bound on the
number of types.

Lemma 9.6. There is a 2O(
√
n logn)nO(1) time algorithm B enumerating all the types.

Proof. We know that a type is a tuple (Y, Y ′,P, T ′) satisfying properties (i)− (iii). Since
|V (G)| ≤ n2, the number of choices for Y is nO(

√
n). The cardinality of Y is at most

41
√
n + 2, thus for a fixed Y , the number of choices for Y ′ is 2O(

√
n) and the number of

choices for the partition P, of Y ′, is nO(
√
n). By definition of the Hanan grid G, each vertex

in G has at most 4 neighbours. Thus, Ŝ−Y has at most 4(41
√
n+2) components. Hence,

on fixing Y , the choices for T ′ is at most 2O(
√
n). Thus we get an upper bound of 2O(

√
n logn)

on the number of types. Furthermore, it can be enumerated in time 2O(
√
n logn)nO(1).

Our algorithm is a dynamic programming algorithm over the types of S. As moti-
vated earlier, this algorithm essentially describes the ideas of the dynamic program-
ming algorithm for Steiner Tree over a tree decomposition of an input graph. Let
N = 3(|V (G)| + |E(G)|). Our algorithm computes values A[i,D], where i ∈ [N] and D
is a type. We want the table A[,] to contain all the information that is necessary for
the correctness of the dynamic programming algorithm for Steiner Tree over a tree
decomposition of S. To motivate the definition of A[,], we assume a hypothetical tree
decomposition T = (T,X = {Xt}t∈V (T)) of S. For ease of understanding, let it be a nice
tree decomposition and let the tree be rooted at a node r ∈ T. The level of a vertex t ∈ T
is the height of the subtree of T rooted at t. The height of a node t is the number of

196

vertices in the longest downward path to a leaf from that node. Note that the level of any
node of T is at most N . Suppose t ∈ T is a node at level i, and corresponds to the bag Xt.
Let Vt be the union of bags present in the subtree rooted at t. Let the graph St be defined
as (Vt, {e | e is introduced in a the subtree rooted at t}). Let T ′ = Vt ∩ T . Then, for any
X ⊆ Xt, and a partition P of X having q parts, A[i,Xt, XP, T ′)] = c[t,X,P]. As men-
tioned before, c[t,X,P] is the minimum weight of the subgraph F of St such that the fol-
lowing hold: (i) F has q connected components C1, . . . , Cq such that ∅ 6= Pi = Xt∩V (Ci),
(ii) Xt ∩ V (F) = X, and (iii) T ∩ Vt ⊆ V (F). For other pairs (i,D), we do not guarantee
that the value of A[i,D] is meaningful. However, it is enough to maintain reasonable
values for only the above subset of pairs (i,D). Of course, we do not know S and thus we
do not know the tree decomposition T . So, we store values in the table A[,] in such a way
that given any nice tree decomposition of S, we have information pertaining to it. Thus,
given a pair (i,D) where D = (Y, Y ′ ⊆ Y,P, T ′), we view Y as a bag of some hypothetical
nice tree decomposition, T , of S and assume that the level of the bag corresponding to
Y in T is i. At a level i of this hypothetical nice tree decomposition, any bag is one of
at most five kinds. We guess the relationship between a bag at level i and its children,
which must be at level i − 1. For example, if our hypothetical node t corresponds to an
introduce vertex bag Xt, then we pretend that we know Xt, the child node t′, the bag Xt′ ,
and the vertex v that is being introduced at node t. Thereafter, for a subset X ⊆ Xt, and
a partition P of X, we try to compute A[i, (Xt, X,P, T ′)] using that values of A calculated
at step i−1 of the algorithm. The calculation ensures that A[i, (Xt, X,P, T ′)] = c[t,X,P].
In what follows we give a formal definition of A[,].

We write a recurrence relation for A[i,D], where i ∈ [N] and D is a type. We fix a terminal
t∗ in T

A[1, D] =

{
0 if D = ({t∗}, {t∗}, {{t∗}}, {t∗})
∞ otherwise

(9.1)

To define A[i,D] for i ∈ [N] \ {1} and a type D = (Y, Y ′,P, T ′), we first define many
intermediate values and take the minimum over all such values.

We first try to view Y as an introduce node in some nice tree decomposition of S and
having level i. This viewpoint results in the following recurrence. For all v ∈ Y ,

Iv[i,D] =


∞ if v /∈ Y ′ and v ∈ T

A[i− 1, (Y \ {v}, Y ′,P, T ′)] if v /∈ Y ′ and v /∈ T
A[i− 1, (Y \ {v}, Y ′ \ {v},P \ {{v}}, T ′ \ {v})] if v ∈ Y ′

(9.2)
Intuitively, if Y is a bag corresponding to a node t in a tree decomposition of S and T ′ is
the set of terminals in St, then Equation 9.2 corresponds to the computation of c[t, Y ′,P]
in the dynamic programming algorithm of Steiner Tree. See [Cygan 2015, Theorem
7.8] for more detailed explanation.

For all u, v ∈ Y and uv ∈ E(G),

Iuv[i,D] = min

{
min
P ′

{
A[i− 1, (Y, Y ′,P ′, T ′)] + recdist(uv)

}
,A[i− 1, D]

}
, (9.3)

where P ′ varies over partitions of Y ′ such that u and v are in different parts of P ′ and by
merging these two parts we get the partition P. Note that if {u, v} * Y ′ or u and v are in
same part of P, then Equation 9.3 gives Iuv[i,D] = A[i− 1, D]. Equation 9.3 corresponds
to the computation of values in the introduce edge node where the edge uv is introduced.

197

For all w ∈ V (G),

Fw[i,D] = min{min
P ′
{A[i− 1, (Y ∪ {w}, Y ′ ∪ {w},P ′, T ′)]},A[i− 1, (Y ∪ {w}, Y ′,P, T ′)]},

(9.4)
where P ′ in the inner minimum varies over all the partitions obtained by adding w to one
of the existing parts. Equation 9.4 corresponds to computation in a forget node where w
is forgotten.

J [i,D] = min
P=P1tP2
T ′=T ′1∪T ′2
i′≤i−1

{
A[i− 1, (Y, Y ′,P1, T

′
1)] +A[i′, (Y, Y ′,P2, T

′
2)]
}

(9.5)

Equation 9.5 corresponds to a computation in a join node.

We define A[i,D] for i ∈ [N] \ {1} and type D = (Y, Y ′,P, T ′) as,

A[i,D] = min



min
v∈Y

Iv[i,D]

min
uv∈E(G)
u,v∈Y

Iuv[i,D]

min
w∈V (G)

Fw[i,D]

J [i,D]

(9.6)

For each i ∈ [N] and each type D, we associate with A[i,D] a subgraph of S. We say that
a subgraph F is of type (Y, Y ′,P, T ′), where P = {P1, . . . Pq} if the following holds.

(a) The number of connected components in F is equal to |P| = q. We can order the
connected components C1, . . . , Cq of F such that V (Ci) ∩ Y = Pi.

(b) V (F) ∩ T = T ′.

In the following lemma, we show the connection between A[i,D] and a graph of type D.

Lemma 9.7. Let i ∈ [N] and D be a type. Furthermore, let A[i,D] be computed by the
Equation 9.6, and have a finite value `. Then there is a subgraph F , of type D, such that
recdist(F) ≤ `.

Proof. We prove the statement using induction on i. Since the graph ({t∗}, ∅) is of
type ({t∗}, {t∗}, {{t∗}}, {t∗}), the base case holds trivially. Let 1 < i ≤ N and D =
(Y, Y ′,P, T ′) be a type and A[i,D] = `. We need to show that there is a subgraph
F of G such that F has type D and recdist((F) ≤ `. We know that A[i,D] is com-
puted using Equation 9.6, which is a minimum over a set of values. Suppose A[i,D] =
Iv[i,D] = ` for some v ∈ Y . If v /∈ Y ′ and v /∈ T , then by Equation 9.2, ` =
Iv[i,D] = A[i − 1, (Y \ {v}, Y ′,P ′, T ′)]. By induction hypothesis there is a subgraph
F of type D′ = (Y \ {v}, Y ′,P ′, T ′) and recdist(F) ≤ `. The definition of satisfying type
D or D′ (conditions (a) and (b)) implies that F is of type D as well. If v ∈ Y ′, then
` = Iv[i,D] = A[i−1, D′′ = (Y \{v}, Y ′ \{v},P \{v}, T ′ \{v})]. By induction hypothesis,
there is a subgraph F such that recdist(F) ≤ ` and F is of type D′′. This implies that the
graph F ′ = F ∪ ({v}, ∅) is of type D and recdist(F ′) = recdist(F) ≤ `. In all other cases
the proof follows by similar arguments.

198

The next lemma helps us to relate an optimal rectilinear Steiner tree to the values com-
puted for the table A[,]. First we recall the definition of c[, ,]. For a subset X ⊆ Xt, and
a partition P of X with q parts, let c[t,X,P] be the minimum weight of the subgraph F
of St such that the following hold: (i) F has q connected components C1, . . . , Cq such that
∅ 6= Pi = Xt ∩ V (Ci), (ii) Xt ∩ V (F) = X, and (iii) T ∩ Vt ⊆ V (F). If there is no such
subgraph F , then the value of c[t,X,P] is ∞.

Lemma 9.8. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of S. For a node t,
let Xt be the corresponding bag, X ⊆ Xt, P be a partition of X, Vt be the union of bags
in the subtree rooted at t, and T ′ = T ∩ Vt. Then A[i, (Xt, X,P, T ′)] ≤ c[t,X,P].

Proof. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of S and |V (T)| ≤ 3(|V (S)|+
|E(S)|) ≤ N . Recall that t∗ is a fixed terminal. We add t∗ to all the bags in T . This
new decomposition still satisfies all the property of a tree decomposition. The width of
this new tree decomposition increases by at most 1. For the ease of presentation, we
use T = (T, {Xt}t∈V (T)) to denote the new tree decomposition of S. Note that all the
leaf bags and the root bag contain only one element, t∗. Let r be the root of T. For
any node t ∈ V (T) we define the level of t as the height of the subtree rooted at t.
Recall, that the height of a node t is the number of vertices in the longest downward
path to a leaf from that node. Note that leaves in T other than root r, have level 1
and the level of r is the height of T. The level of any node in T is at most N . For any
node t ∈ V (T), we use `t to denote the level of t. For any t, we denote the graph St
as (Vt, {e | e is introduced in a the subtree rooted at t}), where Vt is the union of bags
present in the subtree rooted at t.

We prove the following statement: For any t ∈ V (T), X ⊆ Xt and a partition P of X,
A[`t, (Xt, X,P, T ∩ Vt)] ≤ c[t,X,P]. We prove the statement using induction on the level
of the node t. The base case is when `t = 1. In this case, Xt = {t∗}. If X = {t∗}
and P = {{t∗}}, by definition A[1, (Xt, X, {X}, T ∩ Vt)] = 0 = c[t,X, {X}]. Otherwise,
A[1, (Xt, X,P, T ∩ Vt)] = ∞ = c[t,X, {X}]. Let t be a node in V (T), X ⊆ Xt and P be
a partition of X such that 1 < `t ≤ N . Let T ′ = T ∩ Vt. If (Xt \ X) ∩ T 6= ∅, then by
definition c[t,X,P] =∞ and so the statement holds. Suppose (Xt \X) ∩ T = ∅. Since Ŝ
is a Steiner tree for T , T ⊆ V (Ŝ). Since X is a bag in the tree decomposition T , all the
terminals in a connected component C of Ŝ−Xt are either fully contained in Vt or none of
the terminals in the component C are present in Vt. Thus, there are connected components
C1, . . . , Cj of Ŝ −Xt such that T ′ = T ∩ Vt = T ∩ (Xt ∪

⋃j
i=1 V (Ci)). This implies that

(Xt, X,P, T ′) is a type. Let P = {P1, . . . , Pq} and F be a witness subgraph for the value
c[t,X,P]. That is, recdist(F) = c[t,X,P] and the following conditions hold: (i) F has q
connected components C1, . . . , Cq such that ∅ 6= Pi = Xt ∩ V (Ci), (ii) Xt ∩ V (F) = X,
and (iii) T ∩ Vt ⊆ V (F). We analyse cases based on the nature of the node t.

Case 1: t is an introduce vertex node. Let t′ be the child of t and {v} = Xt\X ′t. Note
that the level of t′ is `t − 1. If v /∈ V (F), then c[t′, X,P] ≤ recdist(F). By Equations 9.6
and 9.2, A[`t, (Xt, X,P, T ′)] ≤ A[`t − 1, (X ′t, X,P, T ′)]. By induction hypothesis, A[`t −
1, (X ′t, X,P, T ′)] ≤ c[t′, X,P] ≤ recdist(F) = c[t,X,P]. If v ∈ V (F), then v appears as an
isolated vertex in F , because v is an isolated vertex in St. This implies that c[t′, X\{v},P\
{{v}}] ≤ recdist(F). By Equations 9.6 and 9.2, A[`t, (Xt, X,P, T ′)] ≤ A[`t − 1, (X ′t, X \
{v},P \ {{v}}, T ′)]. By induction hypothesis, A[`t − 1, (X ′t, X \ {v},P \ {{v}}, T ′)] ≤
c[t′, X \ {v},P \ {{v}}] ≤ recdist(F \ {v}) = recdist(F) = c[t,X,P].

199

Case 2: t is an introduce edge node. Let t be labelled with the edge uv and t′ be the
child of t. That is, {u, v} ⊆ Xt′ = Xt. Note that the level of t′ is `t−1. If uv /∈ E(F), then
c[t′, X,P] ≤ recdist(F). By Equations 9.6 and 9.3 we know that A[`t, (Xt, X,P, T ′)] ≤
A[`t − 1, (X ′t, X,P, T ′)]. By induction hypothesis, A[`t − 1, (X ′t, X,P, T ′)] ≤ c[t′, X,P] ≤
recdist(F) = c[t,X,P].

Suppose uv ∈ E(F). Let C ′1, . . . , C
′
q′ are the connected components of F−uv. Consider the

partition P ′ to be {V (C ′1)∩X, . . . , V (C ′q′)∩X}. This implies that c[t′, X,P ′] ≤ recdist(F \
{uv}) = recdist(F) − recdist(uv). By induction hypothesis, A[`t − 1, (Xt′ , X,P ′, T ′)] ≤
c[t′, X,P ′] ≤ recdist(F)− recdist(uv). The property of F implies that in the partition P ′, if
we merge the parts containing u and v, then we get the partition P. Thus, by Equations 9.6
and 9.3, A[`t, (Xt, X,P, T ′)] ≤ A[`t − 1, (Xt′ , X,P ′, T ′)] + recdist(uv) ≤ recdist(F).

Case 3: t is a forget node. Let t′ be the child of t and {w} = Xt′ \ Xt. Note
that the level of t′ is `t − 1. If w /∈ V (F), then c[t′, X,P] ≤ recdist(F). By induction
hypothesis, A[`t − 1, (Xt′ , X,P, T)] ≤ c[t′, X,P] ≤ recdist(F). By Equations 9.6 and 9.4,
A[`t, (Xt, X,P, T ′)] ≤ A[`t − 1, (Xt′ , X,P, T ′)] ≤ recdist(F).

Suppose w ∈ V (F). Let Ci be the component of F containing w. Note that Pi = V (Ci)∩X.
Let P ′ be a partition obtained from P, by adding w to the part Pi. Then P ′ is a partition
of X ∪ {w}. This implies that c[t′, X ∪ {w},P ′] ≤ recdist(F). By induction hypothesis,
A[`t′ , (Xt′ , X ∪ {w},P ′, T ′)] ≤ c[t′, X ∪ {w},P ′] ≤ recdist(F). By Equations 9.6 and 9.4,
A[`t, (Xt, X,P, T ′)] ≤ A[`t − 1, (Xt′ , X ∪ {w},P ′, T ′)] ≤ recdist(F).

Case 4: t is a join node. Let t1 and t2 be the children of t. Here Xt = Xt1 = Xt2 , and
the level of Xti , i ∈ {1, 2}, is `t− 1. Let F1 be the graph with vertex set as V (F)∩Vt1 and
edge set as E(F) ∩ E(St1). Let F2 be the graph with vertex set as V (F) ∩ Vt2 and edge
set as E(F) \ E(F1). Note that F = F1 ∪ F2. Let T ′1 = V (F1) ∩ T and T ′2 = V (F2) ∩ T .
Since all the connected components in V (F) contain at least one vertex from X and Xt

is a bag in the tree decomposition, all the connected components in F1 as well as in F2

contain at least one vertex from X. Let C ′1, . . . , Cq′ be the connected components of F1 and
C ′′1 , . . . , C

′′
q′′ be the connected components in F2. Let P1 = {X∩V (C ′i), . . . , X∩V (C ′q′)} and

P2 = {X ∩ V (C ′′i), . . . , X ∩ V (C ′′q′′)}. Thus, c[t1, X,P1] ≤ recdist(F1) and c[t2, X,P2] ≤
recdist(F2). By induction hypothesis, A[`ti , (Xti , X,Pi, T ′i)] ≤ c[ti, X,Pi] for i ∈ {1, 2}.
The definitions of F, F1 and F2 imply that P = P1 t P2. By Equations 9.5 and 9.6, it
follows that A[`t, (Xt, X,P, T ′)] ≤ A[`t − 1, (Xt, X,P1, T

′
1)] + A[`t − 1, (Xt, X,P2, T

′
2)] ≤

recdist(F1) + recdist(F2) = recdist(F).

Finally, we describe the subexponential algorithm for Rectilinear Steiner Tree.

Theorem 9.1. Rectilinear Steiner Tree can be solved in time 2O(
√
n logn)nO(1).

Proof. We take as input a set T of n terminal points, the Hanan grid G of T and the
weight function recdist. Then, using Lemma 9.2, we compute a shortest path RST Ŝ. By
Lemma 9.5, we know that there is an optimal Steiner tree Sopt with tw(Ŝ∪Sopt) ≤ 41

√
n.

Based on the shortest path RST Ŝ, we apply Lemma 9.6, to enumerate all possible types
D of G. We fix an integer N = 3(|V (G)|+ |E(G)|) and a terminal t∗ in T . For each i ∈ [N]
and each type D, the algorithm computes values A[i,D], according to Equations 9.1 and
9.6. The values in A[,] are filled in the increasing order of i. Finally, the algorithm outputs
mini∈[N]A[i, ({t∗}, {t∗}, {{t∗}}, T)].

200

For the hypothetical set S, fix an optimal nice tree decomposition T , rooted at node r.
Add a fixed terminal t∗ to each bag of the nice tree decomposition (as described in the
proof of Lemma 9.8). The treewidth of this tree decomposition is bounded by 41

√
n+ 1.

Let t be a node in the tree decomposition, of level `t. Let Xt be the bag of t and Vt be
the union of bags in the subtree rooted at t. Let T ′ = T ∩ Vt. Suppose X ⊆ Xt and P is
a partition of X. By definition, c[t,X,P] is the size of a subgraph of type (Xt, X,P, T ′).
Then, Lemmata 9.7 and 9.8 imply that A[`t, (Xt, X,P, T ′)] = c[t,X,P]. In particular,
for the root r of the tree decomposition, A[`r, ({t∗}, {t∗}, {{t∗}}, T)] = c[r, {t∗}, {{t∗}}].
Notice, that c[r, {t∗}, {{t∗}}] is the size of a minimum Steiner tree of G.

On the other hand, by Lemma 9.7, for all i ∈ [N], if A[i, ({t∗}, {t∗}, {{t∗}}, T)] = ` then
there is a subgraph F that connects all the terminals of T , and that satisfies recdist(F) ≤ `.
As the algorithm outputs mini∈[N]A[i, ({t∗}, {t∗}, {{t∗}}, T)], it must output the weight
of a minimum rectilinear Steiner tree of G. This proves the correctness of the algorithm.

The size of the tableA[,] isN ·2O(
√
n logn) and each entry can be filled in time 2O(

√
n logn)nO(1).

Thus, the running time of the algorithm is 2O(
√
n logn)nO(1). Using standard back-tracking

tricks we can also output an optimal RST. This concludes the proof.

9.4 Subexponential Algorithm for Rectilinear Steiner Ar-
borescence

In this section, we are again given T , and the root vertex r ∈ T as an input of Rectilinear
Steiner Arborescence. Furthermore, let |T | = n and G be the Hanan grid of T . We
assume that the root vertex r is placed at (0, 0) in R2. Let recdistG be the weight function
defined on the edges of G. In short, we use recdist for recdistG. Our aim is to design
a subexponential algorithm for Rectilinear Steiner Arborescence. The algorithm
is very similar to that for Rectilinear Steiner Tree. We define a rectilinear Steiner
arborescence, called shortest path RSA, for a graph G. Then, for a shortest path RSA
Ŝ, we show that there exists an optimal rectilinear Steiner arborescence Sopt such that

the treewidth of Ŝ ∪ Sopt is bounded. Aided by this information, we design a dynamic
programming algorithm for Rectilinear Steiner Arborescence.

9.4.1 Shortest path RSA and its properties

For a given G, we define a shortest path RSA, which is a rectilinear Steiner Arborescence
as follows.

We give an arbitrary ordering {r, t1, . . . tk} on the terminals, such that the root is the
first vertex in the ordering. We define a shortest path RSA, Ŝ, through a constructive
greedy process. Initially we set S1 to a r · · · t1 monotone path. This is a rectilinear Steiner
arborescence of {r, t1}. In the ith step, we compute a rectilinear Steiner arborescence Si+1

of {t1, . . . ti+1} from Si as follows. If ti+1 ∈ V (Si), then we set Si+1 = Si. Otherwise, for
each vertex u ∈ Si let `1u be the length of a shortest u · · · ti+1 path. Let `2u be the length of
the shortest r · · ·u path that exists in Si. Also, ` denotes the length of a shortest r · · · ti+1

path. Let N ⊆ V (Si) be the set of vertices such that, for each u ∈ N , `1u + `2u = `. Let
u∗ ∈ N be a vertex for which `1u∗ is minimized. If there is only one monotone ti+1 · · ·u∗
path, then let Q be that path. Otherwise there are two monotone ti+1 · · ·u∗ paths such

201

that one path has a horizontal edge incident with u∗ and other has a vertical edge incident
with u∗. If there is a horizontal edge in Si which is incident with u∗, then we choose Q to
be the monotone ti+1 · · ·u∗ path such that the edge in Q incident with u∗ is a horizontal
edge. Otherwise, we choose Q to be the monotone ti+1 · · ·u∗ path such that the edge in
Q incident with u∗ is a vertical edge. Then, we construct Si+1 by adding the monotone
path Q to Si. After n− 1 iterations, we construct a tree Ŝ = Sn of G, which is a Steiner
arborescence of T . This is our shortest path RSA.

It is possible to construct a shortest path RSA in polynomial time.

Lemma 9.9. Given a set T of terminal points, and the Hanan grid G of T , a shortest
path RSA Ŝ, of T , can be constructed in polynomial time.

Similar to Lemma 9.3, we can give a bound on the bend vertices of a shortest path RSA.

Lemma 9.10. The number of bend vertices in Ŝ is at most n.

9.4.2 Supergraph of an optimal RSA with bounded treewidth

Let T be an input set of points for Rectilinear Steiner Arborescence, r ∈ T is a
root terminal, and G is the Hanan grid of T . In this part, given a shortest path RSA Ŝ,
we show the existence of an optimum rectilinear Steiner arborescence Sopt of T with the

property that the treewidth of Ŝ ∪Sopt is sublinear in the number of input points. Similar
to Lemma 9.4, we can show that there is an optimal rectilinear Steiner arborescence with
a bounded number of bend vertices.

Lemma 9.11. Let T be a set of n terminals in R2, with a root terminal r ∈ T and G be
the Hanan grid of T . Then there is an optimum rectilinear Steiner arborescence of T in
G such that the number of bend vertices of the Steiner arborescence in G is at most 3n.

After finding a shortest path RSA, as described by Lemma 9.9, we prove the following
lemma.

Lemma 9.12. Given a set T of n points, with r ∈ T as the root terminal, and a shortest
path RSA Ŝ of T , there is an optimal rectilinear Steiner arborescence Sopt of T with the

property that the treewidth of Ŝ ∪ Sopt is bounded by 41
√
n.

Proof. We choose an optimum rectilinear Steiner arborescence of T and prove it satisfies
the required property. Among the optimum Steiner arborescences with minimum number
of bend vertices we select an arborescence Sopt which has maximum edge intersection with

Ŝ.

We show that Ŝ∪Sopt has O(
√
n) treewidth. For the sake of contradiction, suppose Ŝ∪Sopt

has treewidth greater than 41
√
n. Again, we can assume that n ≥ 4, as otherwise we can

greedily find out the best rectilinear Steiner arborescence from the constant sized Hanan
grid. Then, by Proposition 9.1, there is a 9

√
n × 9

√
n grid H appearing as a minor in

Ŝ ∪ Sopt. Let P(H) = {Cv|v ∈ V (H)} be a minor model of H. For a vertex v ∈ V (H), if

any vertex of Cv is a terminal vertex of G, a bend vertex of Ŝ or a bend vertex of Sopt,
then we mark the vertex v in H. By Lemmata 9.10 and 9.11, the number of vertices of H
that get marked is at most 5n. By the arguments given in Lemma 9.5, we can find from

202

H, a 2× 2 grid H ′ in H, where none of the vertices are marked. With arguments similar
to Claim 9.2, we can also find a subgrid G′ in G (in some sense contained in H ′) that has
the following properties:

1. No vertex in G′ is a terminal vertex of G, or a bend vertex for Ŝ or Sopt.

2. There are four vertices u1, . . . , u4 which are of degree exactly four in Ŝ ∪ Sopt. All

other vertices are of degree exactly two in Ŝ ∪ Sopt.
3. There are horizontal paths P12 = u1 · · ·u2, P34 = u3 · · ·u4, and vertical paths P13 =
u1 · · ·u3, P24 = u2 · · ·u4. Each of the internal vertices of these paths are of degree 2
in the grid G.

4. Either all the horizontal paths belong to Sopt and not Ŝ, while all the vertical paths

belong to exactly Ŝ and not Sopt, or vice-versa. These are the only two possibilities.

The following observation tells us about the position of the vertices in G′, with respect to
the origin, where the root terminal is positioned.

Observation 9.7. Let T be a set of terminals with the root terminal r placed at the origin.
Let G be the Hanan grid of T and Smml be an edge minimal Steiner arborescence for T .
Let u, v ∈ V (Smml) be a pair of vertices with the following properties:

• Either ux = vx 6= rx and uy < ry < vy or uy = vy 6= ry and ux < rx < vx,

• The monotone u · · · v path Q is a subgraph of Smml.

Then it cannot be the case that all internal vertices of Q have degree two in Smml.

Proof. Without loss of generality, assume that ux = yx 6= rx and uy < ry < vy are true.
For the sake of contradiction, let the monotone u · · · v path Q be a subgraph of Smml such
that every internal vertex of Q is degree two in Smml. Let S′ be the graph obtained by
deleting the internal vertices and edges of Q. Since, for each t ∈ T , there is a unique r · · · t
path in Smml, if t is still connected to r, in S′, then the r · · · t path is still a shortest r · · · t
path. We show that all terminals are still connected to r in S′. This implies that S′ is a
Steiner arborescence, thereby contradicting the edge minimality of Smml.

Suppose there is a terminal t, such that the r · · · t path Q′ of Smml had an edge in common
with E(Q). Since every internal vertex of Q is of degree two in Smml, it must be the case
that the entire path Q is a subpath of Q′. By definition of Q, the entire path cannot be
contained in the grid defined by r and t. However, from Observation 9.5, it cannot be the
case that Q is a shortest r · · · t path. Thus, for no terminal t, does the r · · · t path in Smml

intersect with Q. Thus, each terminal t remains connected to r in S′. Hence, we conclude
that such a path Q cannot exist in an edge minimal Steiner arborescence Smml.

By definition, both Ŝ and Sopt are minimal rectilinear Steiner arborescences. Then, by
Observation 9.7, it follows that G′ lies in one of the quadrants of R2. For the sake of the
proof, we assume without loss of generality that G′ lies in the first quadrant of R2. Also,
without loss of generality, let the horizontal paths belong to Sopt and the vertical paths

belong to Ŝ. Let the length of P12 be l. By the definition of the subgrid G′, the length of
P34 is also l. Let the length of P13 be p. This is also the length of P24. Suppose l > p.
Then, we consider the Steiner arborescence formed by deleting, in Sopt, the path P12 and

203

adding the path P24. The resulting Steiner arborescence has weight strictly less than that
of weight of Sopt. This contradicts the choice of Sopt. Hence, this is not possible.

Now, suppose l ≤ p. Consider the two paths P13 and P24. They are paths of Ŝ. By
construction and by Observation 9.4, they cannot be subpaths of a path added in a single
construction step, as otherwise they will not be part of a shortest path. Also by construc-
tion, one of them is added to Ŝ before the other. Without loss of generality, let P13 be
added before P24. By construction, P24 is a subpath of a path P that was added in some
step i, to connect a terminal t to the already constructed Si−1. By definition of H ′ and G′,
this terminal must lie outside the region formed by the subgrid G′. Since P24 was part of
a shortest path between Si−1 and t, t must lie on a row strictly higher than the rows of G′.
Since, u1 and u2 are not bend vertices in Ŝ, they have neighbours u′1 and u′2 in Ŝ. Also, u′1
and u′2 are on the same row, and u′1 is on the same column as u1 while u′2 is on the same
column as u2. Let Pu′1 be the path from r to u′1 in Si−1, Pu′2 be the subpath of P between
r and u′2, and Pt be the subpath of P between u′2 and t. By definition of a shortest path,
the subpath Pu′2 is a shortest path between r and u′2 and the subpath Pt is a shortest path
between u′2 and t. Let Gu′1 ≤s G be the grid defined by r, u′1 as its diagonal points and
Gu′2 ≤s G be the grid defined by r, u′2 as its diagonal points. Due to the position of the
vertex r, Gu′1 ≤s Gu′2 . Then, by Observation 9.5, Pu′1 ∪ P

′ is a shortest path between r
and u′2, as is Pu′2 . This implies that Pu′1 ∪P

′ ∪Pt is a shortest r · · · t path. Notice that, P
is of weight at least (u′2, u2, u4). Since l ≤ p, this implies that P is of weight strictly more

that the path P ′. However, by the description of construction of Ŝ, the path P ′ ∪ Pt is
a better candidate than the path P in step i. This contradicts the choice of adding the
path P to form Si. Therefore, it is not possible that l ≤ p.

Thus, we obtain a contradiction to the fact that Ŝ ∪ Sopt has a grid minor greater than

9
√
n. This proves that Ŝ ∪ Sopt has treewidth less than 41

√
n.

9.4.3 Dynamic Programming Algorithm for Rectilinear Steiner Ar-
borescence

Using the results of the previous sections we design a subexponential algorithm for Rec-
tilinear Steiner Arborescence. By Lemma 9.12, we know that, given a shortest
path RSA Ŝ, there exists an optimal Steiner arborescence Sopt such that the treewidth

of S = Ŝ ∪ Sopt is bounded by 41
√
n. As in the case of the Rectilinear Steiner

Tree problem, we do not know the graph S. However, we simulate a dynamic program-
ming algorithm which contains all the information needed to compute an optimal Steiner
arborescence on the tree decomposition of S.

Again, if we knew the subgraph S of G such that there is an optimal Steiner arbores-
cence fully contained in S, we could design a dynamic programming algorithm for Rec-
tilinear Steiner Arborescence over the tree decomposition of S. This algorithm
is similar in ideas to the algorithm for Steiner Tree over a tree decomposition of a
given graph. Let (T,X ′ = {X ′t}t∈V (T)) be a nice tree decomposition of S where T is
a rooted tree. Let the root vertex be z. From this we obtain a tree decomposition
(T,X = {Xt}t∈V (T)) by adding the root terminal r to each bag X ′t, t ∈ V (T). We con-
tinue to name a bag Xt as we named X ′t, i.e., if X ′t was a leaf bag then so is Xt and
so on. Notice that the treewidth of (T,X) increases by at most 1, but the root and
leaf bags of T are identical to the singleton set {r}. For a node t, let Vt be the union

204

of all bags present in the subtree of T rooted at t. For a node t, we define a graph
Gt = (Vt, Et = {e ∈ G : e is introduced in the subtree rooted at t}). A relevant defini-
tion for this problem is that of a locally-rooted subgraph. A forest F ≤s G, with connected
components C1, . . . , Cq, is called a locally-rooted subgraph if, each component Ci has a
special vertex, or a root vertex ri.

The important step in the algorithm for Rectilinear Steiner Arborescence is to
compute the following information about locally-rooted subgraphs: for each bag Xt, X ⊆
Xt, a partition P = (P1, . . . , Pq) of X, and a set Xsp = {r1, . . . , rq} such that ri ∈ Pi, for
each i ∈ [q], the value c[t,X,P, Xsp] is the minimum weight of a locally-rooted subgraph
F of Gt with the following properties:

1. F has exactly q connected components C1, . . . , Cq such that ∅ 6= Pi = Xt ∩ V (Ci)
for all i ∈ [q]. That is, P corresponds to connected components of F .

2. Xt ∩ V (F) = X. That is, the vertices of Xt \X are untouched by F .

3. T ∩ Vt ⊆ V (F). That is, all the terminal vertices in Gt belong to F .

4. For each i ∈ [q], and each vertex w ∈ V (Ci)\{ri}, the w · · · ri path in F is a shortest
path in G and there is a ri · · · r shortest path in G that has ri as an internal vertex.

Again, the number of parts in P is q, and this variable is used throughout the section
to denote the number of parts of the partition in question. Suppose we know the values
c[t,X,P, Xsp] for each tuple (t,X,P, Xsp), where t ∈ V (T), X ⊆ Xt, P is a partition of X,
and Xsp is a set of vertices such that there is exactly one vertex from each part of P. Then
c[z, {r}, {{r}}, {r}] corresponds to the weight of a minimum Steiner arborescence. Thus,
knowing the function c[·] is enough to know the weight of an optimal rectilinear Steiner
arborescence of T in S. In our case, we do not know the graph S = Ŝ∪Sopt and a tree de-
composition of S, but we know that the treewidth of S is at most 41

√
n. This implies that

the number of choices for bags in a tree decomposition of S is bounded by nO(
√
n). Notice

that the properties 1–3 are same as the properties maintained for designing a dynamic
programming algorithm for Rectilinear Steiner Tree on a tree decomposition of S.
Property 4 is necessary to solve the Rectilinear Steiner Arborescence problem.
Each vertex ri ∈ Xsp can be thought of as a local root vertex for the component Ci of F .
The intuition behind this property is as follows. Suppose F was a subgraph of an edge
minimal Steiner arborescence S∗ rooted at r. Also, for each i ∈ [q], ri is the unique vertex
in Ci that has minimum distance to r in S. Then, for each i ∈ [q], w ∈ Ci, the w · · · r
path in S∗ satisfies Property 4. In particular, if S∗ was an optimal Steiner arborescence,
Property 4 still holds for F . The number of choices for Xsp, which is a subset of X, is at

most 2
√
n.

In fact, if there are two vertices u, v such that there is a u · · · r shortest path in G that
has v as an internal vertex, we say that u has the shortness property with v. Notice that
the shortness property is transitive. That is, if u has the shortness property with v and w
has the shortness property with u, then w has the shortness property with v. Whether a
vertex u has the shortness property with v can be tested, by checking if, in G, the length
of a shortest u · · · v path plus the length of a shortest v · · · r path equals the length of a
shortest u · · · r path.

We explain the algorithm more formally. We first define a type which is the analogue
of a tuple (t,X,P, Xsp) in the normal dynamic programming for Rectilinear Steiner
Arborescence.

205

Definition 9.9. A type is a tuple (Y, Y ′ ⊆ Y,P, Ysp, T ′) such that the following holds.

(i) Y is a subset of V (G) of size at most 41
√
n+ 2.

(ii) P is a partition of Y ′.

(iii) There exists a set of components C1, . . . , Cq in Ŝ\Y such that T ′ = T∩(Y ′ ∪
⋃q
i=1 V (Ci)).

(iv) Ysp has exactly one vertex ri from each part Pi ∈ P.

In a type (Y, Y ′,P, Ysp, T ′), Y represents a potential bag Y of a node (say t) in a tree
decomposition of S. The set Y ′, partition P and Ysp have the same meaning as that of
(t, Y ′,P, Ysp) in the normal dynamic programming algorithm for Rectilinear Steiner
Arborescence over a tree decomposition of an input graph. The set T ′ is the set of
terminals in the graph Gt. We can show that the number of types is bounded.

Lemma 9.13. There is a 2O(
√
n logn)nO(1) time algorithm B enumerating all the types.

Proof. The number of choices for Y is n
√
n. Once a Y is fixed, the number of choices for

Y ′ is O(2
√
n), while the number of choices for the partition P, of Y ′, is O(

√
n
√
n
). By

definition of the Hanan grid G, each vertex in G has at most 4 neighbours. Thus, Ŝ − Y
has at most 4

√
n components. On fixing a Y , the choices for T ′ correspond to the 2O(

√
n)

choices of at most 4
√
n components of Ŝ − Y . This gives us the desired bound on the

number of suitable types.

Below, we explain the steps of our algorithm. We fix an integer N = |3(V (G)|+ |E(G)|).
Just like the dynamic programming algorithm for Rectilinear Steiner Tree, this
algorithm computes values A[i,D], where i ∈ [N] and D is a type. As before, we want
the table A[,] to contain all the information that is necessary for the correctness of the
dynamic programming algorithm for Steiner Arborescence over a tree decomposition
of S. Since we do not know the graph S, we assume a hypothetical nice tree decomposition
T = (T,X = {Xt}t∈V (T)) of S. We may also assume that the nice tree decomposition
is rooted at a node z ∈ T. The level of a vertex t ∈ T is the height of the subtree of T
rooted at t. The level of any node of T is at most N . Suppose t ∈ T is a node at level i,
and corresponds to the bag Xt. Let Vt be the union of bags present in the subtree rooted
at t. Let the graph Gt be defined as (Vt, {e | e is introduced in the subtree rooted at t}).
Let T ′ = Vt ∩ T . Then, for any X ⊆ Xt, a partition P of X, and a set Xsp defined
with exactly one vertex from each part of P, A[i, (Xt, X,P, Xsp, T

′)] = c[t,X,P, Xsp]. As
mentioned before, c[t,X,P, Xsp] is the minimum weight of the locally-rooted subgraph F
of Gt such that the following hold: (i) F has q connected components C1, . . . , Cq such
that ∅ 6= Pi = Xt ∩ V (Ci), (ii) Xt ∩ V (F) = X, (iii) T ∩ Vt ⊆ V (F), and (iv) for each
i ∈ [q], and each vertex w ∈ V (Ci) \ {ri}, the w · · · ri path in F is a shortest path in G
and w has the shortness property with ri. For other pairs (i,D), we do not guarantee that
the value of A[i,D] is meaningful. As we had motivated the ideas behind the algorithm
for Rectilinear Steiner Tree, the main idea behind this algorithm is that we pretend
that a tree decomposition for S is given to us, even though in reality we do not even know
the graph S. Our dynamic programming is designed to mimic a dynamic programming
algorithm for Steiner Arborescence over a tree decomposition of an input graph.

We write a recurrence relation for A[i,D], where i ∈ [N] and D is a type. The motivation
for the recurrence relation is similar to that for the recurrence in the subexponential

206

algorithm of Rectilinear Steiner Tree.

A[1, D] =

{
0 if D = ({r}, {r}, {{r}}, {r}, {r})
∞ otherwise

(9.7)

In order to define A[i,D] for i ∈ [N]\{1} and a type D = (Y, Y ′,P, Ysp, T ′), we first define
many intermediate values and take the minimum over all such values.

For all v ∈ Y ,

Iv[i,D] =



∞ if v /∈ Y ′
and v ∈ T

∞ if v ∈ Y ′
but {v} /∈ P

A[i− 1, (Y \ {v}, Y ′,P, Ysp, T ′] if v /∈ Y ′
and v /∈ T

A[i− 1, (Y \ {v}, Y ′ \ {v},P \ {{v}}, Ysp \ {v}, T ′ \ {v})] if v ∈ Y ′
(9.8)

Intuitively, if Y is a bag corresponding to a node t in a tree decomposition of S and T ′ is
the set of terminals in Gt, then Equation 9.8 corresponds to computation of c[t, Y ′,P, Ysp]
in the dynamic programming algorithm of Rectilinear Steiner Arborescence.

For all u, v ∈ Y such that u, v belong to the same part P of P and uv ∈ E(G), we do the
following. Let w be the vertex that belongs to P ∩ Ysp. We first define a set P of pairs
(P ′, Y ′sp) on Y ′. For a pair (P ′, Y ′sp), P ′ denotes a partition of Y ′, while Y ′sp is defined by
taking exactly one vertex per part of P ′. For a pair (P ′, Y ′sp) to belong to P they must be
exactly one of the following kinds of pairs:

1. The vertices u, v belong to the same part of P ′. For each part P ′ ∈ P ′, and vertex
v ∈ P ′ ∩ Y ′sp, every vertex of P ′ has the shortness property with v.

2. The vertices u, v belong to distinct parts Pu, Pv, respectively, of P ′. For each part
P ′ ∈ P ′, and vertex v ∈ P ′ ∩ Y ′sp, every vertex of P ′ has the shortness property with
v. Assume u∗ ∈ Y ′sp∩Pu and v∗ ∈ Y ′sp∩Pv. Then, exactly one of the two possibilities
holds:

• It holds that u∗ = w, v∗ = v. The vertex v has the shortness property with u,
and therefore the shortness property with w.

• It holds that v∗ = w, u∗ = v. The vertex u has the shortness property with v,
and therefore the shortness property with w.

Then, for the pair u, v ∈ Y ,

Iuv[i,D] = min

{
min

(P ′,Y ′sp)∈P

{
A[i− 1, (Y, Y ′,P ′, Y ′sp, T ′)] + recdist(uv)

}
,A[i− 1, D]

}
(9.9)

Note that if {u, v} * Y ′ or u and v are in same part of P, then Equation 9.9 gives
Iuv[i,D] = A[i − 1, D]. Equation 9.9 corresponds to the computation of values in the
introduce edge node where the edge uv is introduced.

207

For all w ∈ V (G),

Fw[i,D] = min

{
min
P ′

{
A[i− 1, (Y ∪ {w}, Y ′ ∪ {w},P ′, Ysp, T ′)]

}
,

A[i− 1, (Y ∪ {w}, Y ′,P, Ysp, T ′)]

}
, (9.10)

where P ′ in the inner minimum varies over all the partitions obtained by adding w to one
of the existing parts, and w was not a local root vertex. Equation 9.10 corresponds to
computation in a forget node where w is forgotten.

Let Q be the set of tuples, (P1,P2, Y
1
sp, Y

2
sp), that satisfies the following properties:

1. P1 t P2 = P.

2. Ysp ⊆ Y 1
sp ∪ Y 2

sp.

3. For i ∈ [2], Y i
sp is defined with exactly one vertex from each part of Pi. All vertices

in a part of Pi have the shortness property with the vertex of Y i
sp in that part.

4. Let P1 and P2 be parts of P1 and P2 respectively. Then |P1 ∩ P2| ≤ 1. A vertex in
P1 ∩ P2 belongs to at least one of Y 1

sp and Y 2
sp. We call such a vertex an intersection

vertex.

5. For any part P ∈ P, let it be formed by {P11, P12, . . . , P1a} ∈ P1 and {P21, . . . , P2b} ∈
P2. Let Y ′1 be the subset of Y 1

sp defined by {P11, P12, . . . , P1a}. Let Y ′2 be the subset of
Y 2
sp defined by {P21, P22, . . . , P2b}. Let rP = P ∩Ysp. Consider the auxiliary bipartite

graph H = (A] B,E(H)) such that the vertices in A correspond to the parts
{P11, P12, . . . , P1a, P21, P22, . . . , P2b} and B = Y ′1 ∪ Y ′2 . An edge is added between
a vertex u ∈ A and v ∈ B, if part corresponding to u contains the intersection
vertex corresponding to v. This auxiliary graph H must be a tree, in order for
(P1,P2, Y

1
sp, Y

2
sp) to be a tuple of Q. For a vertex v ∈ B, let Rv be the rP · · · v path

in H. Let Lv = {v = v1, v2, . . . , rP = v`} be the sequence of intersection vertices
obtained from Rv. Then for two consecutive vertices {vj , vj+1} in Lv, vj has the
shortness property with vj+1.

With respect to the set Q, we define the following equation:

J [i,D] = min
P=P1tP2

(P1,P2,Y 1
sp,Y

2
sp)∈Q

T ′1∪T ′2=T ′

i′≤i−1

{
A[i− 1, (Y, Y ′,P1, Y

1
sp, T

′
1)] +A[i′, (Y, Y ′,P2, Y

2
sp, T

′
2)]
}

(9.11)

Equation 9.11 corresponds to a computation in a join node.

We define A[i,D] for i ∈ [N] \ {1} and type D = (Y, Y ′,P, Ysp, T ′) as,

A[i,D] = min



min
v∈Y

Iv[i,D]

min
uv∈E(G)
u,v∈Y

Iuv[i,D]

min
w∈V (G)

Fw[i,D]

J [i,D]

(9.12)

208

For each i ∈ [N] and each type D, we associate with A[i,D] a locally-rooted subgraph
of S. We say that a locally-rooted subgraph F is of type (Y, Y ′,P, Ysp, T ′), where P =
{P1, . . . Pq} if the following holds.

(a) The number of connected components in F is equal to |P| = q. Also, V (Ci)∩Y = Pi.

(b) V (F) ∩ T = T ′.

(c) For each i ∈ [q], ri ∈ Pi.
(d) For each i ∈ [q], and each w ∈ Ci, the ri · · ·w path in F is a shortest path in G and

there is a shortest r · · ·w path in G with ri appearing as an internal vertex.

The next Lemma shows the relation between the function A[·] and the set of locally-rooted
subgraphs of S.

Lemma 9.14. Let i ∈ [N] and D be a type. Furthermore, let A[i,D] be computed by the
Equation 9.12, and have a finite value `. Then there is a locally-rooted subgraph F , of type
D, such that recdist(F) ≤ `.

Proof. We show the statement using induction on i.

Case 1: Base case. Since the graph ({r}, ∅) is of type ({r}, {r}, {{r}}, {r}, {r}), the
base case holds trivially.

Now, let 1 < i ≤ N and D = (Y, Y ′,P, Ysp, T ′) be a type and A[i,D] = `. We need to show
that there is a locally-rooted subgraph F of G such that F has type D and recdist(F) ≤ `.

Case 2. We know that A[i,D] is computed using Equation 9.12, which is a minimum over
a set of values. Suppose A[i,D] = Iv[i,D] = ` for some v ∈ Y . If v /∈ Y ′ and v /∈ T , then
by Equation 9.8, ` = Iv[i,D] = A[i− 1, (Y \ {v}, Y ′,P ′, Ysp, T ′)]. By induction hypothesis
there is a locally-rooted subgraph F which is of type D′ = (Y \ {v}, Y ′,P ′, Ysp, T ′) and
recdist(F) ≤ `. The definition of satisfying type D or D′ (conditions (a) - (d)) implies that
F is of type D as well. If v ∈ Y ′, then ` = Iv[i,D] = A[i− 1, D′′ = (Y \ {v}, Y ′ \ {v},P \
{v}, Ysp \ {v}, T ′ \ {v})]. By induction hypothesis, there is a locally-rooted subgraph F
such that recdist(F) ≤ ` and F is of type D′′. This implies that the graph F ′ = F ∪({v}, ∅)
is of type D and recdist(F ′) = recdist(F) ≤ `.

Case 3. Suppose A[i,D] = Iuv[i,D] = ` for some u, v ∈ Y , such that uv ∈ E(G). If u
and v are in the same part of P, then A[i,D] = A[i− 1, D] = `. By induction hypothesis
there is a locally-rooted subgraph F which is of type D and recdist(F) ≤ `. On the
other hand, suppose u and v are in different parts of P. If A[i,D] = A[i − 1, D] = `,
then again by induction hypothesis we have a locally-rooted subgraph of type D and
weight at most `. Otherwise, A[i,D] = A[i− 1, (Y, Y ′,P ′, Y ′sp, T ′)] + recdist(uv) for a pair
(P ′, Y ′sp) ∈ P. By induction hypothesis, there is a locally-rooted subgraph F ′ with type
D′ = (Y, Y ′,P ′, Y ′sp, T ′), such that recdist(F ′) ≤ `− recdist(uv) and there is no u · · · v path
in F ′. By definition of pairs in P and transitivity of the shortness property, the graph
F = F ′ ∪ ({u, v}, {uv}) is a locally-rooted subgraph that has type D, by satisfying all of
the properties (a)–(d). Since recdist(F) ≤ ` we are done.

Case 4. When A[i,D] = Fw[i,D] = `, for some w ∈ V (G), then the arguments are similar
to the Case 1.

209

Case 5. Suppose A[i,D] = A[i− 1, (Y, Y ′,P1, Y
1
sp, T

′
1)] +A[i− 1, (Y, Y ′,P2, Y

2
sp, T

′
2)] = `,

for a tuple (P1,P2, Y
1
sp, Y

2
sp) ∈ Q and for T ′1∪T ′2 = T ′. By induction hypothesis, for i ∈ [2],

there is a locally-rooted subgraph Fi of type Di = (Y, Y ′,Pi, Y i
sp, T

′
i). By the last two

properties of the tuple (P1,P2, Y
1
sp, Y

2
sp), if F1 and F2 are forests, then F1 ∪ F2 is also a

forest. Also, by transitivity of the shortness property, it follows that F = F1 ∪ F2 is a
locally-rooted subgraph of type D. Since, recdist(F) ≤ recdist(F1) + recdist(F2) ≤ `, this
proves the hypothesis.

The next Lemma links an optimal rectilinear Steiner arborescence to the values computed
for the table A[,]. First we recall the definition of c[, ,]. For a subset X ⊆ Xt, a partition
P of X, and a set Xsp defined by selecting exactly one vertex from each part of P, let
c[t,X,P, Xsp] be the minimum weight of the subgraph F of Gt such that the following
hold: (i) F has q connected components C1, . . . , Cq such that ∅ 6= Pi = Xt ∩ V (Ci),
(ii) Xt ∩ V (F) = X, (iii) T ∩ Vt ⊆ V (F), and (iv) for each i ∈ [q], and each vertex
w ∈ V (Ci) \ {ri}), the w · · · ri path in F is a shortest path in G and w has the shortness
property with ri. If there is no such subgraph F , then the value c[t,X,P, Xsp] is ∞.

Lemma 9.15. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of S. For a node t,
let Xt be the corresponding bag, X ⊆ Xt, P be a partition of X and Xsp be a set defined by
selecting exactly one vertex from each part of P. Let Vt be the union of bags in the subtree
rooted at t, and T ′ = T ∩ Vt. Then A[i, (Xt, X,P, Xsp, T

′)] ≤ c[t,X,P, Xsp].

Proof. Consider a nice tree decomposition T = (T, {X ′t}t∈V (T)), of S, rooted at a node
z. To each bag in T we add the root terminal r, thereby obtaining a new tree decom-
position T ′ = (T, {X ′t}t∈V (T)). The treewidth of the new tree decomposition is at most
1 more than that of the old tree decomposition. For the ease of presentation, we use
T = (T, {Xt}t∈V (T)) to denote the new tree decomposition of S. Note that all the leaf
bags and the root bag z, of T , contain only one element r. As before, for any node
t ∈ V (T) the level of t is the height of the subtree rooted at t. Note that leaves in T other
than root z, have level 1. The level of z is the height of T. The level of any node in T is
at most N . For any node t ∈ V (T) we use `t to denote the level of t. For any t we denote
the graph St as (Vt, {e | e is introduced in the subtree rooted at t}) where Vt is the union
of bags present in the subtree rooted at t.

We prove the following statement : For any t ∈ V (T), X ⊆ Xt, a partition P =
{P1, . . . , Pq} of X, and a set Xsp = {r1, . . . , rq} such that ri ∈ Pi, it must be the case that
A[`t, (Xt, X,P, Xsp, T ∩ Vt)] ≤ c[t,X,P, Xsp]. We prove the statement using induction on
the level of the node t. The base case is when `t = 1. In this case X = {r}. If X = {r} and
P = {{r}}, by definition A[1, (Xt, X, {X}, X, T ∩ Vt)] = 0 = c[t,X, {X}, X]. Otherwise
A[1, (Xt, X,P, X, T ∩ Vt)] = ∞ = c[t,X, {X}, X]. Let t be a node in V (T), X ⊆ Xt,
P be a partition of X, Xsp be a set defined by selecting exactly one vertex from each
part of P, and 1 < `t ≤ N . Let T ′ = T ∩ Vt. If (Xt \ X) ∩ T 6= ∅, then by definition
c[t,X,P, Xsp] = ∞ and so the statement holds. Suppose (Xt \ X) ∩ T = ∅. Since Ŝ is

a Steiner arborescence for T , T ⊆ V (Ŝ). Since Xt is a bag in the tree decomposition T ,
each terminal in a connected component C of Ŝ − Xt is either fully contained in Vt or
none of the terminals in the component C are present in Vt. Thus there exists a set of
connected components C1, . . . , Cj of Ŝ−Xt such that T ′ = T ∩Vt = T ∩(Xt∪

⋃j
i=1 V (Ci)).

This implies that (Xt, X,P, Xsp, T
′) is a type. Let P = {P1, . . . , Pq}, Xsp = {r1, . . . , rq}

such that ri ∈ Pi, and F be a witness subgraph for the value c[t,X,P, Xsp]. That is,

210

recdist(F) = c[t,X,P, Xsp] and the following conditions hold: (i) F has q connected com-
ponents C1, . . . , Cq such that ∅ 6= Pi = Xt∩V (Ci), (ii) Xt∩V (F) = X, (iii) T ∩Vt ⊆ V (F),
and (iv) for each i ∈ [q], and each vertex w ∈ V (Ci) \ {ri}), the w · · · ri path in F is a
shortest path in G and w has the shortness property with ri. We look at cases based on
the nature of the node t.

Case 1: t is an introduce vertex node. Let t′ be the child of t and {v} = Xt\X ′t. Note
that the level of t′ is `t−1. If v /∈ V (F), then c[t′, X,P, Xsp] ≤ recdist(F). By Equations 9.8
and 9.12, A[`t, (Xt, X,P, Xsp, T

′)] ≤ A[`t−1, (X ′t, X,P, Xsp, T
′)]. By induction hypothesis,

A[`t − 1, (X ′t, X,P, Xsp, T
′)] ≤ c[t′, X,P, Xsp] ≤ recdist(F) = c[t,X,P, Xsp].

If v ∈ V (F), then v appears as an isolated vertex in F , because v is an isolated vertex
in St. By definition of Xsp, v must belong to Xsp. This implies that c[t′, X \ {v},P \
{{v}}, Xsp \ {v}] ≤ recdist(F). By Equations 9.8 and 9.12,

A[`t, (Xt, X,P, Xsp, T
′)] ≤ A[`t − 1, (X ′t, X \ {v},P \ {{v}}, Xsp \ {v}, T ′)].

By induction hypothesis, A[`t−1, (X ′t, X \{v},P \{{v}}, Xsp \{v}, T ′)] ≤ c[t′, X \{v},P \
{{v}}, Xsp \ {v}] ≤ recdist(F \ {v}) = recdist(F) = c[t,X,P, Xsp].

Case 2: t is an introduce edge node. Let t be labelled with the edge uv and t′ be the
child of t. That is, {u, v} ⊆ Xt′ = Xt. Note that the level of t′ is `t − 1. If uv /∈ E(F),
then c[t′, X,P, Xsp] ≤ recdist(F). By Equations 9.9 and 9.12 we know that

A[`t, (Xt, X,P, Xsp, T
′)] ≤ A[`t − 1, (X ′t, X,P, Xsp, T

′)].

By induction hypothesis,

A[`t − 1, (X ′t, X,P, Xsp, T
′)] ≤ c[t′, X,P, Xsp] ≤ recdist(F) = c[t,X,P, Xsp].

Suppose uv ∈ E(F). This means that there is a single component C, in F , that contains
u, v. Let rC = C ∩Xsp. Then, for each vertex w ∈ C, w has the shortness property with
rC . Let C ′1, . . . , C

′
q′ be the connected components of F − uv. Since each component of F

is a tree, the component C breaks into two components, C ′ and C ′′, of F \ {uv}. Without
loss of generality, assume that rC , u ∈ C ′ and v ∈ C ′′. Notice that any vertex of C ′′

has the shortness property with v, and any vertex of C ′ continues to have the shortness
property with rC . Consider the partition P ′ to be {V (C ′1)∩X, . . . , V (C ′q′)∩X} and X ′sp =
Xsp∪{v}. This implies that c[t′, X,P ′, X ′sp] ≤ recdist(F \{uv}) = recdist(F)− recdist(uv).
By induction hypothesis,

A[`t − 1, (Xt′ , X,P ′, X ′sp, T ′)] ≤ c[t′, X,P ′, Xsp] ≤ recdist(F)− recdist(uv).

The property of F implies that in the partition P ′, if we merge the parts containing u and
v, then we get the partition P. This, along with the definition of X ′sp, implies that the
tuple (P ′, X ′sp) ∈ P. Thus, by Equations 9.9 and 9.12,

A[`t, (Xt, X,P, Xsp, T
′)] ≤ A[`t − 1, (Xt′ , X,P ′, X ′sp, T ′)] + recdist(uv) ≤ recdist(F).

Case 3: t is a forget node. Let t′ be the child of t and {w} = Xt′ \ Xt. Note that
the level of t′ is `t − 1. If w /∈ V (F), then c[t′, X,P, Xsp] ≤ recdist(F). By induction

211

hypothesis, A[`t, (Xt′ , X,P, Xsp, T)] ≤ c[t′, X,P, Xsp] ≤ recdist(F). By Equations 9.10
and 9.12, A[`t, (Xt, X,P, Xsp, T

′)] ≤ A[`t − 1, (Xt′ , X,P, Xsp, T
′)] ≤ recdist(F).

Suppose w ∈ V (F). Note that w does not belong to X. Consider the set X ∪ {w} ⊆ Xt′ .
Let Ci be the component of F containing w. Note that Pi = V (Ci) ∩X. Since, w /∈ X,
w 6= Ci ∩Xsp. Let P ′ is a partition obtained from P, by adding w to the part Pi. Then
P ′ is a partition of X ∪ {w}. This implies that c[t′, X ∪ {w},P ′, Xsp] ≤ recdist(F). By
induction hypothesis,

A[`t′ , (Xt′ , X ∪ {w},P ′, Xsp, T
′)] ≤ c[t′, X ∪ {w},P ′, Xsp] ≤ recdist(F).

By Equations 9.10 and 9.12,

A[`t, (Xt, X,P, Xsp, T
′)] ≤ A[`t − 1, (Xt′ , X ∪ {w},P ′, Xsp, T

′)] ≤ recdist(F).

Case 4: t is a join node. Let t1 and t2 be the children of t. Here Xt = Xt1 = Xt2

and the level of Xti , i ∈ {1, 2}, is `t − 1. Let F1 be the graph with vertex set V (F) ∩ Vt1
and edge set E(F) ∩ E(St1). Let F2 be the graph with vertex set V (F) ∩ Vt2 and edge
set E(F) \ E(F1). As F was a forest, the graphs F1 and F2 are also forests. Note
that F = F1 ∪ F2. Let T ′1 = V (F1) ∩ T and T ′2 = V (F2) ∩ T . Since all the connected
components in V (F) contain at least one vertex from X and Xt is a bag in the tree
decomposition, each connected component in F1 as well as in F2 contains at least one
vertex from X. Let C ′1, . . . , Cq′ be the connected components of F1 and C ′′1 , . . . , C

′′
q′′ be

the connected components in F2. Let P1 = {X ∩ V (C ′i), . . . , X ∩ V (C ′q′)} and P2 =
{X ∩ V (C ′′i), . . . , X ∩ V (C ′′q′′)}. Consider a new part C ′, from one of the partitions P1

or P2, and assume that C ′ ⊆ C ∈ P. Let rC′ be the unique vertex, in V (C ′), that
has minimum distance to the vertex rC ∈ C ∩ Xsp. Then, each vertex in V (C) has the
shortness property with rC′ . This way, we obtain, for each i ∈ [2], a set Xi

sp defined
by taking exactly one vertex from each part of Pi. Thus, c[t1, X,P1, X

1
sp] ≤ recdist(F1)

and c[t2, X,P2, X
2
sp] ≤ recdist(F2). By induction hypothesis, A[`ti , (Xti , X,Pi, Xi

sp, T
′
i)] ≤

c[ti, X,Pi, Xi
sp] for i ∈ {1, 2}. The definitions of F, F1 and F2 implies that P = P1 t

P2. Also, notice that the tuple (P1,P2, X
1
sp, X

2
sp) ∈ Q. By Equations 9.11 and 9.12,

it must be true that A[`t, (Xt, X,P, Xsp, T
′)] ≤ A[`t − 1, (Xt, X,P1, X

1
sp, T

′
1)] + A[`t −

1, (Xt, X,P2, X
2
sp, T

′
2)] ≤ recdist(F1) + recdist(F2) = recdist(F). This concludes the proof.

Finally, we describe the subexponential algorithm for Rectilinear Steiner Arbores-
cence.

Theorem 9.2. Rectilinear Steiner Arborescence can be solved in time 2O(
√
n logn)nO(1).

Proof. We take as input a set T of n terminal points, the Hanan grid G of T and the
weight function recdist. Furthermore, r ∈ T is the root terminal. Then using Lemma 9.9
we compute a shortest path RSA Ŝ. By Lemma 9.12, we know that there is an optimal
Steiner tree Sopt with tw(Ŝ ∪ Sopt) ≤ 41

√
n. Based on the shortest path RSA Ŝ, we

apply Lemma 9.13, to enumerate all possible types D of G. We fix an integer N =
3(|V (G)| + |E(G)|). For each i ∈ [N] and each type D, the algorithm computes values
A[i,D], according to Equations 9.7 and 9.12. The values in A[,] are filled in the increasing
order of i. Finally, the algorithm outputs mini∈[N]A[i, ({r}, {r}, {{r}}, {r}, T)].

212

For the hypothetical set S, fix an optimal nice tree decomposition T , rooted at node
z. Add the root terminal r to each bag of the nice tree decomposition (as described
in the proof of Lemma 9.15). The treewidth of this tree decomposition is bounded
by 41

√
n + 1. Let t be a node in the tree decomposition, of level `t. Let Xt be the

bag of t and Vt be the union of bags in the subtree rooted at t. Let T ′ = T ∩ Vt.
Suppose X ⊆ Xt, P is a partition of X, and the set Xsp is defined by selecting ex-
actly one vertex from each part of P. By definition, c[t,X,P, Xsp] is the size of a
locally-rooted subgraph of type (Xt, X,P, Xsp, T

′). Then, Lemmata 9.14 and 9.15 im-
ply that A[`t, (Xt, X,P, Xsp, T

′)] = c[t,X,P, Xsp]. In particular, for the root z of the
tree decomposition, A[`z, ({r}, {r}, {{r}}, {r}, T)] = c[z, {r}, {{r}}, {r}]. Notice, that
c[z, {r}, {{r}}, {r}] is the size of a minimum rectilinear Steiner arborescence of G.

On the other hand, by Lemma 9.14, for all i ∈ [N], if A[i, ({r}, {r}, {{r}}, {r}, T)] = `
then there is a locally-rooted subgraph F that connects all the terminals of T , and that
satisfies recdist(F) ≤ `. As the algorithm outputs mini∈[N]A[i, ({r}, {r}, {{r}}, {r}, T)],
it must output the weight of a minimum rectilinear Steiner arborescence of G.This proves
the correctness of the algorithm.

The size of the tableA[,] isN ·2O(
√
n logn) and each entry can be filled in time 2O(

√
n logn)nO(1).

Thus, the running time of the algorithm is 2O(
√
n logn)nO(1). Using standard back-tracking

tricks we can also output an optimal RSA. This concludes the proof.

9.5 Chapter Summary

We exhibit the first deterministic subexponential algorithms for Rectilinear Steiner
Tree and Rectilinear Steiner Arborescence. The running time of both the al-
gorithms is 2O(

√
n logn)nO(1) time. Finding a lower bound for the running time of an

algorithm and exhibiting an algorithm with optimal running time, for both the problems,
remain open for investigation.

213

214

Part III

Conclusion and References

215

Chapter 10

Conclusion and Future Directions

Parameterized complexity has come a long way and now can be considered a field in its
own right. It has a rich set of techniques and machinery, both for algorithm design and
lower bound proofs. First and foremost, it is always interesting to classify a parameter-
ized problem according to the W-hierarchy of parameterized complexity. On the positive
side, there is always an endeavour to design algorithms with improved running times with
respect to known algorithms, for a parameterized problem. Similarly, it is always inter-
esting to try for better bounds on the size of a kernel for a parameterized problem. On
the negative side, there are techniques to show lower bounds for the running time of an
FPT algorithm, based on standard complexity theoretic assumptions. Lower bounds for
the size of a kernel of a parameterized problem are also studied. In this thesis, problems
were considered in the parameterized setting.

In graph partitioning, we studied Vertex (r, `)-Partization and Edge (r, `)-Partization
on general graphs. We completed the dichotomy for Vertex (r, `)-Partization and
almost did the same for Edge (r, `)-Partization. We also explored Vertex (r, `)-
Partization in perfect graphs, concluding that the problem is FPT but most likely with
no polynomial kernel. From here, we generalised the notion of partitioning, and considered
(F1,F2)-Partition, for two hereditary graph families F1 and F2. Here, the partitioning of
the graph is actually a two-partitioning such that G[V1] ∈ F1 while G[V2] ∈ F2. The ques-
tion is whether we can delete at most k vertices of the input graph to obtain a subgraph
that has an (F1,F2)-Partition. We exhibit a technique to obtain FPT algorithms for a wide
range of problems, Vertex (r, `)-Partization being one. In fact, the technique uses a re-
lation between (F1,F2)-Partition and the Two-Party model of Communication complexity
for computing a binary function. This brings forward questions regarding parameteriza-
tion in communication complexity. Lastly, we recall that Odd Cycle Transversal is a
special case of Vertex (r, `)-Partization. We study the dual problem of Even Cycle
Transversal, and obtain the current fastest FPT algorithm. It should be mentioned
that it is a randomized algorithm.

We also considered several geometric covering problems. Many of the problems are variants
of Set Cover with the restriction that the set systems satisfy some geometric constraint.
The set systems we have considered are lines, hyperplanes, unit squares, disks and sets of
bounded intersection. We settled the parameterized complexity of most of the geometric
covering problems we considered. We also explored the Conflict-Free Colouring and
Unique-Maximum Colouring problems, which have important applications in compu-
tational geometry. In both the problems, the input is a set system, and the objective is
to determine if the elements of the set system can be conflict-free coloured, or unique-
maximum coloured, with a given number r of colours. We considered the problem of
finding the maximum-sized subsystem, of the input set system, that can be conflict-free
coloured, or unique-maximum coloured, with r colours. We obtained the current best
exact algorithm for these two problems. We also addressed the parameterized version,

217

where the objective is to determine whether there is a subsystem with at least k sets,
that can be conflict-free coloured, or unique- maximum coloured, with r colours. Here k
is the parameter. We showed that both the problems are FPT. Finally, we considered
the Rectilinear Steiner Tree and Rectilinear Steiner Arborescence problems,
and gave the first subexponential time exact algorithms for determining minimum-sized
rectilinear Steiner trees or rectilinear Steiner arborescences.

In most of the considered problems, the questions considered lead to many more open
parameterized problems, opening up many directions of research in the future. At the end
of each chapter, a description is given of some important open problems related to the
problem considered in the chapter. They are some of the relevant problems that we hope
to explore in future.

10.1 Related potential projects

Parameterized Communication Complexity: The notions of the two-party model
for communication complexity has been described in Chapter 4. The Clique vs Indepen-
dent Set problem is a cornerstone problem in this model of communication complexity.
Lower bounds for the communication complexity of this problem are being seeked actively.
Most of the existing lower bounds, except for one trivial bound, exhibit an infinite fam-
ily of graphs for which the lower bound holds. This is where parameterization could be
brought in. A parameterization can be thought of as a partitioning of all input instances.
In some sense, a well-chosen parameter distinguishes between hard instances and easy
instances. The concept of parameterized communication complexity could bring about a
systematic study of nuanced lower bounds, where the lower bound has a dependence on
the parameter associated with the input function.

Geometric Steiner Tree: Rectilinear Steiner Tree is in the intersection of geo-
metric steiner tree variants and graphic steiner tree problems. This problem was originally
defined in the geometric setting, but has an alternative graphic definition. In Chapter 9,
we utilized the graphic properties to obtain efficient algorithms. It would be interesting
to understand how the techniques can be adopted for other geometric variants, where our
techniques break down and what adaptions can be made.

Art Gallery Problems: The Art Gallery Problem generates a lot of interest in the
computational geometry community. Essentially, the problem takes as input a polygon,
a set S of points in the polygon and another set S′ of potential guard points from the
polygon. The objective is to use as few guard points from S′ as possible to cover all the
points of S. There are several notions of a point p1 covering another point p2. The most
popular one is when the line segment joining p1 and p2 is completely contained inside the
input polygon. So far, there has been little interest in studying parameterized versions of
the many variants of this problem. Given that most questions are hard in the classical
sense, this would be a good area to bring in parameterized complexity. Not only are
there algorithmic questions of finding optimal guard sets, but there is also hope of refining
known combinatorial bounds when the input polygons are known to be associated with a
certain parameter.

218

Bibliography

[Abu-Khzam 2010] Faisal N. Abu-Khzam. A kernelization algorithm for d-Hitting Set. J.
Comput. Syst. Sci., vol. 76, no. 7, pages 524–531, 2010. 60

[Addario-Berry 2010] Louigi Addario-Berry, W.S. Kennedy, Andrew D. King, Zhentao Li
and Bruce Reed. Finding a maximum-weight induced -partite subgraph of an -
triangulated graph. Discrete Applied Mathematics, vol. 158, no. 7, pages 765 – 770,
2010. Third Workshop on Graph Classes, Optimization, and Width Parameters
Eugene, Oregon, USA, October 2007. 51

[Agarwal 2005] Amit Agarwal, Moses Charikar, Konstantin Makarychev and Yury
Makarychev. O(

√
log n) approximation algorithms for min UnCut, min 2CNF dele-

tion, and directed cut problems. In STOC, pages 573–581, 2005. 35, 40, 41

[Ajwani 2012] Deepak Ajwani, Khaled Elbassioni, Sathish Govindarajan and Saurabh
Ray. Conflict-free coloring for rectangle ranges using O (n. 382) colors. Discrete
& Computational Geometry, vol. 48, no. 1, pages 39–52, 2012. 159

[Alber 2004] Jochen Alber and Ji Fiala. Geometric separation and exact solutions for
the parameterized independent set problem on disk graphs. Journal of Algorithms,
vol. 52, no. 2, pages 134 – 151, 2004. 25

[Alon 1995] Noga Alon, Raphael Yuster and Uri Zwick. Color-coding. J. ACM, vol. 42,
no. 4, pages 844–856, July 1995. 161, 165, 169, 171, 173

[Amano 2014] Kazuyuki Amano. Some improved bounds on communication complexity
via new decomposition of cliques. Discrete Applied Mathematics, vol. 166, pages
249–254, 2014. 61

[Appel 1977] K. Appel and W. Haken. Every planar map is four colorable. Part I: Dis-
charging. Illinois J. Math., vol. 21, no. 3, pages 429–490, 09 1977. 20

[Ashok 2015a] Pradeesha Ashok, Aditi Dudeja and Sudeshna Kolay. Exact and FPT Al-
gorithms for Max-Conflict Free Coloring in Hypergraphs. In Algorithms and Com-
putation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December
9-11, 2015, Proceedings, pages 271–282, 2015. 160

[Ashok 2015b] Pradeesha Ashok, Sudeshna Kolay, Neeldhara Misra and Saket Saurabh.
Unique Covering Problems with Geometric Sets. In Computing and Combinatorics
- 21st International Conference, COCOON 2015, Beijing, China, August 4-6, 2015,
Proceedings, pages 548–558, 2015. 144

[Ashok 2016] Pradeesha Ashok, Sudeshna Kolay and Saket Saurabh. Parameterized Com-
plexity of Red Blue Set Cover for Lines. In LATIN 2016: Theoretical Informatics -
12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceed-
ings, pages 96–109, 2016. 113

[Baste 2015] Julien Baste, Luerbio Faria, Sulamita Klein and Ignasi Sau. Parameterized
complexity dichotomy for (r, l)-Vertex Deletion. CoRR, vol. abs/1504.05515, 2015.
34, 89

219

[Becker 2000] Ann Becker, Reuven Bar-Yehuda and Dan Geiger. Randomized Algorithms
for the Loop Cutset Problem. (JAIR), vol. 12, pages 219–234, 2000. 92

[Binkele-Raible 2012] Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel
Lokshtanov, Saket Saurabh and Yngve Villanger. Kernel(s) for problems with no
kernel: On out-trees with many leaves. ACM Trans. Algorithms, vol. 8, no. 4,
page 38, 2012. 18

[Björklund 2007] Andreas Björklund, Thore Husfeldt, Petteri Kaski and Mikko Koivisto.
Fourier meets möbius: fast subset convolution. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, San Diego, California, USA, June
11-13, 2007, pages 67–74, 2007. 180

[Bodlaender 2009] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Pen-
ninkx, Saket Saurabh and Dimitrios M. Thilikos. (Meta) Kernelization. In FOCS
2009, pages 629–638, 2009. 92

[Bodlaender 2011] Hans L. Bodlaender, Stéphan Thomassé and Anders Yeo. Kernel
bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., vol. 412, no. 35,
pages 4570–4578, 2011. 19

[Bodlaender 2013] Hans L. Bodlaender, Bart M. P. Jansen and Stefan Kratsch. Prepro-
cessing for Treewidth: A Combinatorial Analysis through Kernelization. SIAM J.
Discrete Math., vol. 27, no. 4, pages 2108–2142, 2013. 24

[Bodlaender 2014] Hans L. Bodlaender, Bart M. P. Jansen and Stefan Kratsch. Kerneliza-
tion Lower Bounds by Cross-Composition. SIAM J. Discrete Math., vol. 28, no. 1,
pages 277–305, 2014. 24

[Bousquet 2014] Nicolas Bousquet, Aurélie Lagoutte and Stéphan Thomassé. Clique ver-
sus independent set. Eur. J. Comb., vol. 40, pages 73–92, 2014. 63

[Brandstdt 1998] Andreas Brandstdt, Van Bang Le and Thomas Szymczak. The complex-
ity of some problems related to Graph 3-colorability. Discrete Applied Mathematics,
vol. 89, no. 13, pages 59 – 73, 1998. 33, 36

[Brazil 2015] Marcus Brazil and Martin Zachariasen. Optimal interconnection trees in
the plane: Theory, algorithms and applications. Springer Publishing Company,
Incorporated, 2015. 179, 180

[Broersma 2002] Hajo Broersma, Fedor V. Fomin, Jaroslav Nesetril and Gerhard J. Woeg-
inger. More About Subcolorings. Computing, vol. 69, no. 3, pages 187–203, 2002.
20

[Byskov 2004] J.M. Byskov. Exact algorithms for graph colouring and exact satisfiability.
2004. 87

[Cairnie 1998] Niall Cairnie and Keith Edwards. The achromatic number of bounded degree
trees. Discrete Mathematics, vol. 188, no. 13, pages 87 – 97, 1998. 20

[Cao 2015a] Yixin Cao. Unit Interval Editing is Fixed-Parameter Tractable. In ICALP
2015, volume 9134 of LNCS, pages 306–317. Springer, 2015. 91

[Cao 2015b] Yixin Cao and Dániel Marx. Interval Deletion Is Fixed-Parameter Tractable.
ACM Transactions on Algorithms, vol. 11, no. 3, pages 21:1–21:35, 2015. 91

220

[Carr 2000] Robert D Carr, Srinivas Doddi, Goran Konjevod and Madhav V Marathe.
On the red-blue set cover problem. In SODA, volume 9, pages 345–353, 2000. 111,
113

[Chambers 2008] Erin W. Chambers, ric Colin de Verdire, Jeff Erickson, Francis Lazarus
and Kim Whittlesey. Splitting (complicated) surfaces is hard. Computational Ge-
ometry, vol. 41, no. 12, pages 94 – 110, 2008. Special Issue on the 22nd European
Workshop on Computational Geometry (EuroCG)22nd European Workshop on
Computational Geometry. 24

[Chan 2015] Timothy M Chan and Nan Hu. Geometric red–blue set cover for unit squares
and related problems. Computational Geometry, vol. 48, no. 5, pages 380–385,
2015. 113

[Chan 2016] Timothy M. Chan. Improved Deterministic Algorithms for Linear Program-
ming in Low Dimensions. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Jan-
uary 10-12, 2016, pages 1213–1219, 2016. 24

[Chazelle 1996] Bernard Chazelle and Ji Matouek. On Linear-Time Deterministic Al-
gorithms for Optimization Problems in Fixed Dimension. Journal of Algorithms,
vol. 21, no. 3, pages 579 – 597, 1996. 24

[Cheilaris 2011] Panagiotis Cheilaris and Géza Tóth. Graph unique-maximum and
conflict-free colorings. Journal of Discrete Algorithms, vol. 9, no. 3, pages 241–
251, 2011. 160

[Chen 2010] Jianer Chen, Iyad A. Kanj and Ge Xia. Improved upper bounds for vertex
cover. Theor. Comput. Sci., vol. 411, no. 40-42, pages 3736–3756, 2010. 21, 90

[Chudnovsky 2006] Maria Chudnovsky, Neil Robertson, Paul D. Seymour and Robin
Thomas. The strong perfect graph theorem. Annals of Mathematics, vol. 164,
pages 51–229, 2006. 52

[Cook 1971] Stephen A. Cook. The Complexity of Theorem-proving Procedures. In STOC,
pages 151–158, New York, NY, USA, 1971. ACM. 43

[Cormen 2009] Thomas H Cormen. Introduction to algorithms. MIT press, 2009. 17

[Courcelle 1990] Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Rec-
ognizable Sets of Finite Graphs. Inf. Comput., vol. 85, no. 1, pages 12–75, 1990.
48

[Cygan 2013] Marek Cygan and Marcin Pilipczuk. Split Vertex Deletion meets Vertex
Cover: New fixed-parameter and exact exponential-time algorithms. Inf. Process.
Lett., vol. 113, no. 5-6, pages 179–182, 2013. 21, 63, 64, 77, 79

[Cygan 2015] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk and Saket Saurabh. Parameterized al-
gorithms. Springer, 2015. 19, 46, 88, 89, 181, 183, 195, 197

[Cygan 2016] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov,
Ivan Mihajlin, Jakub Pachocki and Arkadiusz Socala. Tight Bounds for Graph
Homomorphism and Subgraph Isomorphism. In Proceedings of the Twenty-Seventh

221

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 1643–1649, 2016. 21

[Dailey 1980] David P. Dailey. Uniqueness of colorability and colorability of planar 4-
regular graphs are NP-complete. Discrete Mathematics, vol. 30, no. 3, pages 289 –
293, 1980. 20

[de Figueiredo 2000] Celina M.H. de Figueiredo, Sulamita Klein, Yoshiharu Kohayakawa
and Bruce A. Reed. Finding Skew Partitions Efficiently. Journal of Algorithms,
vol. 37, no. 2, pages 505 – 521, 2000. 20

[Deineko 2004] Vladimir G. Deineko, Michael Hoffmann, Yoshio Okamoto and Gerhard J.
Woeginger. Computing and combinatorics: 10th annual international conference,
cocoon 2004, jeju island, korea, august 17-20, 2004. proceedings, chapitre The
Traveling Salesman Problem with Few Inner Points, pages 268–277. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004. 25

[Demaine 2005] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi and
Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus
graphs and H-minor-free graphs. J. ACM, vol. 52, no. 6, pages 866–893, 2005. 112

[Demaine 2008] Erik D Demaine, Uriel Feige, MohammadTaghi Hajiaghayi and Moham-
mad R Salavatipour. Combination Can Be Hard: Approximability of the Unique
Coverage Problem. SIAM J. Comput. (), vol. 38, no. 4, pages 1464–1483, 2008. 143

[Deneen 1994] L. Deneen, G. Shute and C. Thomborson. A probably fast, provably optimal
algorithm for rectilinear Steiner trees. Random Structures Algorithms, vol. 5, no. 4,
pages 535–557, 1994. 180

[Diestel 2012] Reinhard Diestel. Graph theory, 4th edition, volume 173 of Graduate texts
in mathematics. Springer, 2012. 15, 93, 94

[Dom 2008] Michael Dom, Jiong Guo, Rolf Niedermeier and Sebastian Wernicke. Red-blue
covering problems and the consecutive ones property. J. Discrete Algorithms, vol. 6,
no. 3, pages 393–407, 2008. 113

[Dom 2014] Michael Dom, Daniel Lokshtanov and Saket Saurabh. Kernelization Lower
Bounds Through Colors and IDs. ACM Trans. Algorithms, vol. 11, no. 2, pages
13:1–13:20, 2014. 117, 151

[Downey 2012] Rodney G Downey and Michael Ralph Fellows. Parameterized complexity.
Springer Science & Business Media, 2012. 19, 112, 117, 146

[Dreyfus 1971] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks,
vol. 1, no. 3, pages 195–207, 1971. 180

[Dyer] M. E. Dyer and A. M. Frieze. A randomized algorithm for fixed-dimensional linear
programming. Mathematical Programming, vol. 44, no. 1, pages 203–212. 24

[Edelsbrunner 1986] H. Edelsbrunner and R. Waupotitsch. Computing a ham-sandwich
cut in two dimensions. Journal of Symbolic Computation, vol. 2, no. 2, pages 171
– 178, 1986. 25

222

[Eppstein 2010] David Eppstein, Maarten Löffler and Darren Strash. Listing All Maximal
Cliques in Sparse Graphs in Near-Optimal Time. In Algorithms and Computation
- 21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17,
2010, Proceedings, Part I, pages 403–414, 2010. 46

[Even 2002] G. Even, Z. Lotker, D. Ron and S. Smorodinsky. Conflict-free colorings of
simple geometric regions with applications to frequency assignment in cellular net-
works. In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual
IEEE Symposium on, pages 691–700, 2002. 159

[Feder 1999] Tomas Feder, Pavol Hell, Sulamita Klein and Rajeev Motwani. Complexity
of Graph Partition Problems. In Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, STOC ’99, pages 464–472, New York, NY,
USA, 1999. ACM. 62

[Feder 2003] Tomas Feder, Pavol Hell, Sulamita Klein and Rajeev Motwani. List parti-
tions. SIAM Journal on Discrete Mathematics, vol. 16, no. 3, pages 449–478, 2003.
20, 33, 36

[Feder 2011] Tomás Feder, Pavol Hell and Shekoofeh Nekooei Rizi. Partitioning Chordal
Graphs. Electronic Notes in Discrete Mathematics, vol. 38, pages 325–330, 2011.
33, 51

[Fellows 2008] Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar
Ragde, Frances A. Rosamond, Ulrike Stege, Dimitrios M. Thilikos and Sue White-
sides. Faster Fixed-Parameter Tractable Algorithms for Matching and Packing
Problems. Algorithmica, vol. 52, no. 2, pages 167–176, 2008. 112

[Fellows 2009] Michael R. Fellows, Danny Hermelin, Frances Rosamond and Stéphane
Vialette. On the Parameterized Complexity of Multiple-interval Graph Problems.
Theor. Comput. Sci., vol. 410, no. 1, pages 53–61, January 2009. 152

[Fiorini 2010] Samuel Fiorini, Gwenaël Joret and Ugo Pietropaoli. Hitting Diamonds and
Growing Cacti. In IPCO 2010, pages 191–204, 2010. 92, 94, 106

[Flum 2006] J. Flum and M. Grohe. Parameterized complexity theory (texts in theoretical
computer science. an eatcs series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006. 18, 19

[Fomin 2008] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin and Igor Razgon. On
the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms.
Algorithmica, vol. 52, no. 2, pages 293–307, 2008. 88

[Fomin 2009] Fedor V. Fomin, Serge Gaspers, Saket Saurabh and Alexey A. Stepanov.
On Two Techniques of Combining Branching and Treewidth. Algorithmica, vol. 54,
no. 2, pages 181–207, 2009. 112

[Fomin 2010] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer,
2010. 161, 162

[Fomin 2011] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip
and Saket Saurabh. Hitting forbidden minors: Approximation and Kernelization.
In Thomas Schwentick and Christoph Dürr, editeurs, STACS 2011, volume 9 of
(LIPIcs), pages 189–200, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. 92

223

[Fomin 2012] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra and Saket Saurabh.
Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms.
In FOCS 2012, pages 470–479, 2012. 91, 92

[Fomin 2013] Fedor V. Fomin and Yngve Villanger. Subexponential Parameterized Algo-
rithm for Minimum Fill-In. SIAM J. Comput., vol. 42, no. 6, pages 2197–2216,
2013. 91

[Fomin 2014a] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan and Saket Saurabh.
Representative Sets of Product Families. In ESA, volume 8737, pages 443–454,
2014. 139

[Fomin 2014b] Fedor V. Fomin, Daniel Lokshtanov and Saket Saurabh. Efficient Compu-
tation of Representative Sets with Applications in Parameterized and Exact Algo-
rithms. In SODA, pages 142–151, 2014. 139

[Fomin 2016] Fedor V. Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan and
Saket Saurabh. Subexponential Algorithms for Rectilinear Steiner Tree and Arbores-
cence Problems. In 32nd International Symposium on Computational Geometry,
SoCG 2016, June 14-18, 2016, Boston, MA, USA, pages 39:1–39:15, 2016. 182

[Fortnow 2011] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compres-
sion and succinct PCPs for NP. J. Comput. Syst. Sci., vol. 77, no. 1, pages 91–106,
2011. 19, 57

[Fuchs 2006] B. Fuchs, W. Kern, D. Mlle, S. Richter, P. Rossmanith and X. Wang. Dy-
namic programming for minimum Steiner trees. Theory Comput Syst, pages 270–
280, 2006. 180

[Ganley 1997] Joseph L. Ganley and James P. Cohoon. Improved Computation of Optimal
Rectilinear Steiner Minimal Trees. Int. J. Comput. Geometry Appl., vol. 7, no. 5,
pages 457–472, 1997. 180

[Ganley 1999] Joseph L Ganley. Computing optimal rectilinear Steiner trees: A survey
and experimental evaluation. Discrete Applied Mathematics, vol. 90, no. 13, pages
161 – 171, 1999. 180

[Garey 1977] M. R. Garey and David S. Johnson. The Rectilinear Steiner Tree Problem
in NP Complete. SIAM Journal of Applied Mathematics, vol. 32, pages 826–834,
1977. 180

[Garey 2002] Michael R Garey and David S Johnson. Computers and intractability, vol-
ume 29. wh freeman New York, 2002. 20, 26, 33, 51

[Gargano 2015] Luisa Gargano and Adele A. Rescigno. Complexity of Conflict-Free
Colourings of Graphs. Theoretical Computer Science, vol. 566, pages 39–49, 2015.
159, 160, 161

[Ghosh 2015] Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad
Panolan, Ashutosh Rai and M. S. Ramanujan. Faster Parameterized Algorithms
for Deletion to Split Graphs. Algorithmica, vol. 71, no. 4, pages 989–1006, 2015.
21, 22

224

[Giannopoulos 2009] Panos Giannopoulos, Christian Knauer and Günter Rote. The pa-
rameterized complexity of some geometric problems in unbounded dimension. In
Parameterized and Exact Computation, pages 198–209. Springer, 2009. 25

[Giannopoulou 2015] Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov
and Saket Saurabh. Uniform Kernelization Complexity of Hitting Forbidden Mi-
nors. In ICALP 2015, volume 9134 of LNCS, pages 629–641. Springer, 2015. 91

[Golumbic 2004] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs
(annals of discrete mathematics, vol 57). North-Holland Publishing Co., Amster-
dam, The Netherlands, The Netherlands, 2004. 20, 22

[Göös 2015a] Mika Göös. Lower Bounds for Clique vs. Independent Set. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 1066–1076, 2015. 61, 63

[Göös 2015b] Mika Göös, T. S. Jayram, Toniann Pitassi and Thomas Watson. Randomized
Communication vs. Partition Number. Electronic Colloquium on Computational
Complexity (ECCC), vol. 22, page 169, 2015. 61

[Göös 2015c] Mika Göös, Toniann Pitassi and Thomas Watson. Deterministic Commu-
nication vs. Partition Number. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages
1077–1088, 2015. 61

[Graham 1972] Ronald L. Graham. An Efficient Algorithm for Determining the Convex
Hull of a Finite Planar Set. Inf. Process. Lett., vol. 1, no. 4, pages 132–133, 1972.
24

[Gu 2012] Qian-Ping Gu and Hisao Tamaki. Improved Bounds on the Planar Branchwidth
with Respect to the Largest Grid Minor Size. Algorithmica, vol. 64, no. 3, pages
416–453, 2012. 187

[Guo 2006] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier and Sebastian Wer-
nicke. Compression-based fixed-parameter algorithms for feedback vertex set and
edge bipartization. J. Comput. Syst. Sci., vol. 72, no. 8, pages 1386–1396, 2006. 21,
47

[Gupta 2012] Sushmita Gupta, Venkatesh Raman and Saket Saurabh. Maximum r-
Regular Induced Subgraph Problem: Fast Exponential Algorithms and Combina-
torial Bounds. SIAM J. Discrete Math., vol. 26, no. 4, pages 1758–1780, 2012.
88

[Gyárfás 1998] András Gyárfás. Generalized Split Graphs and Ramsey Numbers. J. Comb.
Theory, Ser. A, vol. 81, no. 2, pages 255–261, 1998. 35, 40, 52

[Hanan 1966] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal
on Applied Mathematics, no. 14, pages 255–265, 1966. 179

[Har-Peled 2005] Sariel Har-Peled and Shakhar Smorodinsky. Conflict-free coloring of
points and simple regions in the plane. Discrete & Computational Geometry,
vol. 34, no. 1, pages 47–70, 2005. 159

225

[Heggernes 2013] Pinar Heggernes, Dieter Kratsch, Daniel Lokshtanov, Venkatesh Raman
and Saket Saurabh. Fixed-parameter algorithms for Cochromatic Number and Dis-
joint Rectangle Stabbing via iterative localization. Inf. Comput., vol. 231, pages
109–116, 2013. 21, 26, 51, 52, 53, 54, 56

[Hell 1976] Pavol Hell and Donald J. Miller. Graph with given achromatic number. Discrete
Mathematics, vol. 16, no. 3, pages 195 – 207, 1976. 21

[Hochbaum 1987] Dorit S Hochbaum and Wolfgang Maass. Fast approximation algorithms
for a nonconvex covering problem. Journal of algorithms, vol. 8, no. 3, pages 305–
323, 1987. 144

[Huang 2012] Hao Huang and Benny Sudakov. A counterexample to the Alon-Saks-
Seymour conjecture and related problems. Combinatorica, vol. 32, no. 2, pages
205–219, 2012. 61

[Hüffner 2009] Falk Hüffner. Algorithm Engineering for Optimal Graph Bipartization. J.
Graph Algorithms Appl., vol. 13, no. 2, pages 77–98, 2009. 21

[Hwang 1976] F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM
Journal on Applied Mathematics, no. 30, pages 104–114, 1976. 181

[Hwang 1992] F. K. Hwang, D. S. Richards and P. Winter. The Steiner tree problem.
Annals of Discrete Mathematics, vol. 53, 1992. 179, 180

[Impagliazzo 2001] Russell Impagliazzo, Ramamohan Paturi and Francis Zane. Which
Problems Have Strongly Exponential Complexity? J. Comput. Syst. Sci., vol. 63,
no. 4, pages 512–530, 2001. 115

[Iwata 2014] Yoichi Iwata, Keigo Oka and Yuichi Yoshida. Linear-Time FPT Algorithms
via Network Flow. In SODA, pages 1749–1761, 2014. 21

[Jansen 2013] Bart M. P. Jansen and Hans L. Bodlaender. Vertex Cover Kernelization
Revisited - Upper and Lower Bounds for a Refined Parameter. Theory Comput.
Syst., vol. 53, no. 2, pages 263–299, 2013. 24

[Jansen 2014] Bart M. P. Jansen, Daniel Lokshtanov and Saket Saurabh. A Near-Optimal
Planarization Algorithm. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 1802–1811, 2014. 90

[Joret 2014] Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh and Stéphan
Thomassé. Hitting and Harvesting Pumpkins. SIAM J. Discrete Math., vol. 28,
no. 3, pages 1363–1390, 2014. 91, 92

[Jukna 2011] Stasys Jukna. Extremal combinatorics: with applications in computer sci-
ence. Springer Science & Business Media, 2011. 164

[Kára 2006] Jan Kára and Jan Kratochv́ıl. Parameterized and exact computation: Second
international workshop, iwpec 2006, zürich, switzerland, september 13-15, 2006.
proceedings, chapitre Fixed Parameter Tractability of Independent Set in Segment
Intersection Graphs, pages 166–174. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. 25

226

[Karp 1972] Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, pages 85–103,
1972. 111, 143

[Kim 2015] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Ross-
manith, Ignasi Sau and Somnath Sikdar. Linear kernels and single-exponential
algorithms via protrusion decompositions. ACM Transactions on Algorithms
(TALG), vol. 12, no. 2, page 21, 2015. 91, 92

[Kirkpatrick 1986] David G. Kirkpatrick and Raimund Seidel. The Ultimate Planar Con-
vex Hull Algorithm? SIAM J. Comput., vol. 15, no. 1, pages 287–299, 1986. 24

[Klein 1996] Sulamita Klein and Celina M. H. De Figueiredo. The NP-completeness of
multi-partite cutset testing. Congr. Numer, vol. 119, pages 217–222, 1996. 20

[Klein 2014] Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm
for Subset TSP on planar graphs. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1812–1830, 2014. 181

[Knauer 2006] Christian Knauer and Andreas Spillner. Graph-theoretic concepts in com-
puter science: 32nd international workshop, wg 2006, bergen, norway, june 22-
24, 2006 revised papers, chapitre A Fixed-Parameter Algorithm for the Minimum
Weight Triangulation Problem Based on Small Graph Separators, pages 49–57.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. 24

[Knauer 2011] Christian Knauer, Hans Raj Tiwary and Daniel Werner. On the computa-
tional complexity of Ham-Sandwich cuts, Helly sets, and related problems. In 28th
International Symposium on Theoretical Aspects of Computer Science, STACS
2011, March 10-12, 2011, Dortmund, Germany, pages 649–660, 2011. 25

[Kociumaka 2014] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic Feed-
back Vertex Set. Inf. Process. Lett., vol. 114, no. 10, pages 556–560, 2014. 90

[Kolay 2015a] Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan and Saket Saurabh.
Quick but Odd Growth of Cacti. In 10th International Symposium on Parameterized
and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, pages
258–269, 2015. 92

[Kolay 2015b] Sudeshna Kolay and Fahad Panolan. Parameterized Algorithms for Dele-
tion to (r, ell)-Graphs. In 35th IARCS Annual Conference on Foundation of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2015, December
16-18, 2015, Bangalore, India, pages 420–433, 2015. 34, 89

[Kratsch 2012] Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant
Vertices: New Tools for Kernelization. In FOCS, pages 450–459, 2012. 42, 43

[Kratsch 2014a] Stefan Kratsch, Geevarghese Philip and Saurabh Ray. Point Line Cover:
The Easy Kernel is Essentially Tight. In SODA, pages 1596–1606, 2014. 112

[Kratsch 2014b] Stefan Kratsch and Magnus Wahlström. Compression via Matroids: A
Randomized Polynomial Kernel for Odd Cycle Transversal. ACM Transactions on
Algorithms, vol. 10, no. 4, page 20, 2014. 21, 35, 40

227

[Krithika 2013] R. Krithika and N. S. Narayanaswamy. Parameterized Algorithms for (r,
l)-Partization. J. Graph Algorithms Appl., vol. 17, no. 2, pages 129–146, 2013. 21,
51

[Kushilevitz 1997] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cam-
bridge University Press, New York, NY, USA, 1997. 65, 66

[Kzdy 1996] Andr E. Kzdy, Hunter S. Snevily and Chi Wang. Partitioning permutations
into increasing and decreasing subsequences. Journal of Combinatorial Theory,
Series A, vol. 73, no. 2, pages 353 – 359, 1996. 52, 60

[Langerman 2005] Stefan Langerman and Pat Morin. Covering things with things. Discrete
& Computational Geometry, vol. 33, no. 4, pages 717–729, 2005. 25, 26, 112, 115,
116, 118, 146, 149, 150

[Lewis 1980] John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for
Hereditary Properties is NP-Complete. J. Comput. Syst. Sci., vol. 20, no. 2, pages
219–230, 1980. 91

[Lokshtanov 2009] Daniel Lokshtanov, Saket Saurabh and Somnath Sikdar. Simpler Pa-
rameterized Algorithm for OCT. In IWOCA, pages 380–384, 2009. 21

[Lokshtanov 2012] Daniel Lokshtanov and M. S. Ramanujan. Parameterized Tractability
of Multiway Cut with Parity Constraints. In ICALP 2012, pages 750–761, 2012.
100

[Lokshtanov 2014] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S.
Ramanujan and Saket Saurabh. Faster Parameterized Algorithms Using Linear
Programming. ACM Transactions on Algorithms, vol. 11, no. 2, page 15, 2014. 21,
37, 90

[Lovász 1972] László Lovász. A characterization of perfect graphs. J. Comb. Theory, Ser.
B, vol. 13, no. 2, pages 95–98, 1972. 52

[Lovász 1990] László Lovász. Communication complexity: a survey. Paths, flows, and
VLSI-layout, pages 235–265, 1990. 61, 63, 66, 77

[Lovász 1994] László Lovász. Stable sets and polynomials. Discrete Mathematics, vol. 124,
no. 1-3, pages 137–153, 1994. 63

[MacGillivray 1999] Gary MacGillivray and Min-Li Yu. Generalized partitions of graphs.
Discrete Applied Mathematics, vol. 91, no. 13, pages 143 – 153, 1999. 20

[Marx 2005] Dániel Marx. Efficient approximation schemes for geometric problems? In
ESA, pages 448–459. Springer, 2005. 25, 26, 112, 144

[Marx 2006] Dániel Marx. Parameterized complexity of independence and domination
on geometric graphs. In Parameterized and Exact Computation, pages 154–165.
Springer, 2006. 25, 128

[Marx 2013] Dániel Marx, Barry O’Sullivan and Igor Razgon. Finding small separators
in linear time via treewidth reduction. ACM Transactions on Algorithms, vol. 9,
no. 4, page 30, 2013. 35, 48

228

[Mathieson 2008] Luke Mathieson and Stefan Szeider. The Parameterized Complexity of
Regular Subgraph Problems and Generalizations. In CATS, volume 77, pages 79–86,
2008. 120

[Matoušek] J. Matoušek, M. Sharir and E. Welzl. A subexponential bound for linear
programming. Algorithmica, vol. 16, no. 4, pages 498–516. 24

[Matoušek 2002] Jǐŕı Matoušek. Lectures on discrete geometry, volume 108. Springer New
York, 2002. 145

[Megiddo 1982] Nimrod Megiddo and Arie Tamir. On the Complexity of Locating Linear
Facilities in the Plane. Oper. Res. Lett., vol. 1, no. 5, pages 194–197, November
1982. 154

[Megiddo 1984] Nimrod Megiddo. Linear Programming in Linear Time When the Dimen-
sion Is Fixed. J. ACM, vol. 31, no. 1, pages 114–127, 1984. 24

[Misra 2012] Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan and Saket Saurabh.
Parameterized Algorithms for Even Cycle Transversal. In WG 2012, pages 172–183,
2012. 92

[Misra 2013] Neeldhara Misra, Hannes Moser, Venkatesh Raman, Saket Saurabh and Som-
nath Sikdar. The Parameterized Complexity of Unique Coverage and Its Variants.
Algorithmica, pages 517–544, 2013. 146, 151, 152, 161, 163

[Moon] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,
vol. 3, no. 1, pages 23–28. 87, 88

[Mulzer 2008] Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-
hard. Journal of the ACM (JACM), vol. 55, no. 2, page 11, 2008. 24

[Mustafa 2009] Nabil Mustafa and Saurabh Ray. PTAS for geometric hitting set problems
via local search. In Proceedings of the 25th annual symposium on Computational
geometry, pages 17–22. ACM, 2009. 144

[Naor 1995] Moni Naor, Leonard J. Schulman and Aravind Srinivasan. Splitters and Near-
Optimal Derandomization. In 36th Annual Symposium on Foundations of Com-
puter Science, Milwaukee, Wisconsin, 23-25 October 1995, pages 182–191, 1995.
169

[Nastansky] L. Nastansky, S. M. Selkow and N. F. Stewart. Cost-minimal trees in directed
acyclic graphs. Zeitschrift für Operations Research, vol. 18, no. 1, pages 59–67. 181

[Nederlof 2013] Jesper Nederlof. Fast Polynomial-Space Algorithms Using Inclusion-
Exclusion. Algorithmica, vol. 65, no. 4, pages 868–884, 2013. 180

[Niedermeier 2003] Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter
algorithm for 3-Hitting Set. Journal of Discrete Algorithms, vol. 1, no. 1, pages 89
– 102, 2003. Combinatorial Algorithms. 90

[Pach 2009] János Pach and Gábor Tardos. Conflict-free colourings of graphs and hyper-
graphs. Combinatorics, Probability and Computing, vol. 18, no. 05, pages 819–834,
2009. 27, 159

229

[Panolan 2015] Fahad Panolan, Geevarghese Philip and Saket Saurabh. B-Chromatic
Number: Beyond NP-Hardness. In 10th International Symposium on Parameter-
ized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece,
pages 389–401, 2015. 21

[Peleg 2007] David Peleg. Approximation algorithms for the Label-CoverMAX and Red-
Blue Set Cover problems. J. Discrete Algorithms, vol. 5, no. 1, pages 55–64, 2007.
113

[Pilipczuk 2012] Marcin Pilipczuk and Michal Pilipczuk. Finding a Maximum Induced
Degenerate Subgraph Faster Than 2 n. In Parameterized and Exact Computation
- 7th International Symposium, IPEC 2012, Ljubljana, Slovenia, September 12-14,
2012. Proceedings, pages 3–12, 2012. 87

[Pilipczuk 2013] Marcin Pilipczuk, Micha l Pilipczuk, Piotr Sankowski and Erik Jan van
Leeuwen. Subexponential-Time Parameterized Algorithm for Steiner Tree on
Planar Graphs. volume 20, pages 353–364, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. 180

[Pilipczuk 2014] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski and Erik Jan van
Leeuwen. Network Sparsification for Steiner Problems on Planar and Bounded-
Genus Graphs. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 276–285,
2014. 180

[Pilipczuk 2015] Marcin Pilipczuk, Michal Pilipczuk and Marcin Wrochna. Edge Biparti-

zation faster than 2k. CoRR, vol. abs/1507.02168, 2015. 21

[Prömel 2002] H. J. Prömel and A. Steger. The Steiner tree problem. Advanced Lectures
in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2002. 179

[Raman 2008] Venkatesh Raman and Saket Saurabh. Short cycles make W-hard prob-
lems hard: FPT algorithms for W-hard problems in graphs with no short cycles.
Algorithmica, vol. 52, no. 2, pages 203–225, 2008. 112

[Ramanujan 2014] M. S. Ramanujan and Saket Saurabh. Linear Time Parameterized
Algorithms via Skew-Symmetric Multicuts. In SODA, pages 1739–1748, 2014. 21

[Reed 2004] Bruce A. Reed, Kaleigh Smith and Adrian Vetta. Finding odd cycle transver-
sals. Oper. Res. Lett., vol. 32, no. 4, pages 299–301, 2004. 21, 22, 42

[Robertson 1984] Neil Robertson and P.D Seymour. Graph minors III Planar tree-width.
Journal of Combinatorial Theory, Series B, vol. 36, no. 1, pages 49 – 64, 1984. 17

[Robertson 1994] Neil Robertson, Paul D. Seymour and Robin Thomas. Quickly Excluding
a Planar Graph. J. Comb. Theory, Ser. B, vol. 62, no. 2, pages 323–348, 1994. 187

[Shi 2000] Weiping Shi and Chen Su. The Rectilinear Steiner Arborescence Problem is
NP-Complete, 2000. 181

[Shigeta 2015] Manami Shigeta and Kazuyuki Amano. Ordered biclique partitions and
communication complexity problems. Discrete Applied Mathematics, vol. 184, pages
248–252, 2015. 61

230

[Smorodinsky 2007] Shakhar Smorodinsky. On the chromatic number of geometric hyper-
graphs. SIAM Journal on Discrete Mathematics, vol. 21, no. 3, pages 676–687,
2007. 159

[Spillner 2005] Andreas Spillner. A Faster Algorithm for the Minimum Weight Triangu-
lation Problem with Few Inner Points. In Algorithms and Complexity in Durham
2005 - Proceedings of the First ACiD Workshop, 8-10 July 2005, Durham, UK,
pages 135–146, 2005. 24

[Tarjan 1985] Robert E. Tarjan. Decomposition by clique separators. Discrete Mathemat-
ics, vol. 55, no. 2, pages 221 – 232, 1985. 20

[Thomassen 1988] Carsten Thomassen. On the presence of disjoint subgraphs of a specified
type. Journal of Graph Theory, vol. 12, no. 1, pages 101–111, 1988. 92

[Thomborson 1987] C. Thomborson, L. Deneen and G. Shute. Computing a rectilinear
steiner minimal tree in nO(

√
n) time. Parallel Algorithms and Architectures, pages

176–183, 1987. 180

[Vapnik 1971] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability & Its
Applications, vol. 16, no. 2, pages 264–280, 1971. 145

[Vikas 2004] Narayan Vikas. Computing and combinatorics: 10th annual international
conference, cocoon 2004, jeju island, korea, august 17-20, 2004. proceedings,
chapitre Computational Complexity Classification of Partition under Compaction
and Retraction, pages 380–391. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004. 20

[Wagner 1984] Klaus W. Wagner. Monotonic Coverings of Finite Sets. Elektronische
Informationsverarbeitung und Kybernetik, vol. 20, no. 12, pages 633–639, 1984.
21, 26, 51

[Yannakakis 1991] Mihalis Yannakakis. Expressing combinatorial optimization problems
by Linear Programs. Journal of Computer and System Sciences, vol. 43, no. 3,
pages 441 – 466, 1991. 61, 67

[Yao 1979] Andrew Chi-Chih Yao. Some Complexity Questions Related to Distributive
Computing(Preliminary Report). In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing, STOC ’79, pages 209–213, New York, NY,
USA, 1979. ACM. 61

231

	List of Figures
	List of Algorithms
	List of Tables
	List of Symbols
	Introduction
	Preamble
	Preliminaries
	Graph Partitioning in Parameterized Complexity
	Parameterized Complexity and Computational Geometry
	Scope of this thesis

	I Graph Partitioning
	Parameterized Algorithms for Deletion to (r,)-graphs
	Introduction
	Preliminaries
	Vertex Deletion to (r,)-graphs
	Approximation algorithm for Vertex (r,)-Partization
	Turing Kernels for Vertex Deletion to (r,)-graphs
	Edge Deletion to (r,)-graphs
	Edge (2,1)-Partization
	Edge (1,2)-Partization

	Chapter Summary

	Parameterized Algorithms on Perfect Graphs for deletion to (r,)-graphs
	Introduction
	Preliminaries
	FPT algorithm for Vertex Partization
	Kernel lower bound
	Polynomial kernel when r and are constants
	Chapter Summary

	Communication Complexity of Separating Families with Applications
	Introduction
	Preliminaries
	Communication protocols for pairs of Hereditary graph families
	Communication Protocol for Families of Sparse and Dense graphs
	Characterization for Hereditary graph families
	A Parameterized approach to designing protocols
	Parameterizing by degeneracy

	Separating families
	Separating families for Sparse and Dense graphs
	Separating families and parameterization
	Separating families when parameterized by degeneracy

	Applications in Parameterized and Exact Algorithms
	Combinatorial bounds and Exact Algorithms
	Parameterized Algorithms

	Chapter Summary

	Quick but Odd Growth of Cacti
	Introduction
	Preliminaries
	Counting Lemma
	Algorithm for Even Cycle Transversal
	Algorithm for Diamond Hitting Set
	Chapter Summary

	II Geometric Covering
	Multivariate Analysis of Geometric RBSC
	Introduction
	Problems Studied, Context and Framework
	Our Contributions
	Our methods and an overview of main algorithmic results

	Preliminaries
	Parameterizing by kr and r
	Parameterizing by
	Parameterizing by k, b and k+b
	Parameter k+ b
	Special case under the parameter k

	Parameterizing by kr+k and b+kr
	Kernelization for Gen-RBSC-lines parameterized by k+kr and b+kr

	Hyperplanes: parameterized by k+kr
	Multivariate complexity of Gen-RBSC-lines: Proof of Theorem 6.1
	Parameterized Landscape for Red Blue Set Cover with lines
	RBSC-lines parameterized by r
	RBSC-lines parameterized by kr
	Proof of Theorem 6.2

	Generalised Red Blue Set Cover
	Gen-RBSC parameterized by k+kr and k+r
	A special case of Gen-RBSC parameterized by k

	Chapter Summary

	Unique Covering problems with Geometric Sets
	Introduction
	Preliminaries
	Exact Cover
	Unique Cover
	Unique Set Cover
	Chapter Summary

	Exact and FPT Algorithms for Max-Conflict Free Colouring in Hypergraphs
	Introduction
	Preliminaries
	FPT Algorithm for p-CFC
	FPT Algorithm for p-UMC
	Exact Algorithm for Max-Conflict Free Colouring
	Exact Algorithm for Unique maximum Colouring
	Chapter Summary

	Subexponential algorithms for rectilinear Steiner tree and arborescence problems
	Introduction
	Preliminaries
	Planar graph embeddings and minors
	Properties of shortest paths in the Hanan grid

	Subexponential algorithm for Rectilinear Steiner Tree
	Shortest Path RST and its properties
	Supergraph of an optimal RST with bounded treewidth
	Dynamic Programming Algorithm for Rectilinear Steiner Tree

	Subexponential Algorithm for Rectilinear Steiner Arborescence
	Shortest path RSA and its properties
	Supergraph of an optimal RSA with bounded treewidth
	Dynamic Programming Algorithm for Rectilinear Steiner Arborescence

	Chapter Summary

	III Conclusion and References
	Conclusion and Future Directions
	Related potential projects

	Bibliography

