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SYNOPSIS

Introduction

In the last several years, the sharp decrease in the cost of memory in computer sys-

tems has temporarily taken the focus away from space efficient algorithms. However,

the proliferation of specialized handheld devices with limited supply of memory and the

astronomical explosion of data has brought the focus back again on the need to pay atten-

tion to the memory usage of algorithms. Even if mobile devices and embedded systems

are designed with large supply of memory, it might be useful to restrict the number of

write operations. For example, on flash memory, writing is a costly operation in terms

of speed, and it also reduces the reliability and longevity of the memory. Write-access to

removable memory devices might also be limited for technical or security reasons. When-

ever multiple concurrent algorithms are working on the same data set, write operations

also become troublesome and complicated due to concurrency problems. Keeping all

these constraints in mind, it makes sense to consider algorithms that do not modify the

input and use only a limited amount of work space. Although many variations of this

principle exist in the literature, the general idea remains the same: the input is in some

kind of read-only data structure, the output must be produced in a write-only structure,

and in addition to these two structures, we can only use a fixed amount of memory to

compute the solution. This memory should be enough to cover all space requirements of

the algorithm (including all the local and global variables used by the algorithm, space
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used during recursion, invoking various procedures, etc.). In the following we list the

most commonly considered limitations that have received considerable attention in the

literature for both the input and the workspace.

• One of the most restrictive models that has been considered is the one-pass (or

streaming) model. In this setting the elements of the input can only be scanned

once in a sequential fashion. These algorithms have limited memory available to

them (much less than the input size and typically of size O(nα) bits where α is

less than one or even O(poly lg n) bits1 where n is the input size) and also limited

processing time per item. Given these limitations, the usual aim is to approximate

the solution and ideally obtain some kind of worst-case approximation ratio with

respect to the optimal solution. The natural extension of the above constraint is

the multi-pass model, in which the input can be scanned sequentially a constant

number of times. In here we look for trade-off between the number of passes and

either the size of the workspace or the quality of the approximation. Early work

on these models focus on processing numerical data such as estimating quantiles,

heavy hitters, or the number of distinct elements in the stream [4, 17, 77], and

later focused on graph problems [91, 106]. Another relaxation of this setting is the

semi-streaming model where most of the work on graph streams has occurred in

the last decade [76, 114]. In this model the data stream algorithm is permitted

O(n poly lg n) bits of space where n is the number of nodes in the graph. This

is because most problems are provably intractable if the available space is sub-

linear in n, whereas many problems become feasible once there is memory roughly

proportional to the number of nodes in the graph. See [106] for more details.

• The next natural step is to allow input to be scanned any number of times and even

allowing random access to the input values. Thus in the random access read-only

memory (ROM) model, we assume that the input is given in a read-only memory

1We use lg to denote logarithm to the base 2 throughout this thesis.

22



which can be randomly accessed along with a limited random access workspace and

the output of an algorithm is written on to a separate write-only memory which

can not be read or modified again. The data on this workspace is manipulated

wordwise as on the standard word RAM (i.e. random access memory), where the

machine consists of words of size Ω(lg n) bits, and any logical, arithmetic, and

bitwise operations involving a constant number of words take a constant amount

of time. We count space in terms of the number of bits used by the algorithms

in workspace. Generally research for this model focuses on either computability

(i.e., determining whether or not a particular problem is solvable with a workspace

of fixed size) or the design of efficient algorithms whose running time is not much

worse (when compared to the case in which no space constraints exist). Early work

on this model was on designing lower bounds [21, 29, 30], for designing algorithms

for selection and sorting [45, 70, 82, 110, 111, 116] and problems in computational

geometry [8, 11, 18, 44, 57].

• A more relaxed model considered is the in-place model where the input elements

are given in an array, and the algorithm may use the input array as working space.

Hence, the algorithm may modify (i.e. rearrange or sometimes even overwrite) the

input array during its execution. After the execution, all the input elements should

be present in the array (maybe in a permuted order) and the output may be put

in the same array or sent to an output stream. The amount of extra space usage

during the entire execution of the algorithm is limited to O(lg n) bits, although

sometimes poly-logarithmic words of extra space is also allowed. By making an ap-

propriate permutation of the input, we can usually encode different data structures.

Thus, algorithms under this model often achieve the running times comparable to

those in unconstrained settings. A prominent example of an in-place algorithm is

the classic heap-sort. Other than in-place sorting [81], searching [79, 113] and se-

lection [103] algorithms, many in-place algorithms have been designed in areas such

as computational geometry [34] and stringology [80].

23



• Chan et al. [46] introduced the restore model which is a more relaxed version of

read-only memory (and a restricted version of the in-place model), where the input

is allowed to be modified, but at the end of the computation, the input has to be

restored to its original form. They also gave space efficient algorithms for selection

and sorting on integer arrays in this model. This has motivation, for example, in

scenarios where the input (in its original form) is required by some other application.

• Buhrman et al. [35, 36, 101] introduced and studied the catalytic-space model where

a small amount (typically O(lg n) bits) of clean space is provided along with addi-

tional auxiliary space, with the condition that the additional space is initially in an

arbitrary, possibly incompressible, state and must be returned to this state when

the computation is finished. The input is assumed to be given in ROM. They show

various interesting complexity theoretic consequences in this model and designed

significantly better (in terms of space) algorithms in comparison with ROM model.

Even though these models were introduced in the literature with the aim of designing

and/or implementing various algorithms space efficiently, space efficient graph algorithms

have been designed only in the (semi)-streaming and ROM model. In the streaming and

semi-streaming model, researchers have studied several basic and fundamental algorth-

mic problems such as connectivity, minimum spanning tree, matching. See [106] for a

comprehensive survey in this field. Research on these two models (i.e., streaming and

semi-streaming) is relatively new and has been going on for last decade or so whereas the

study in ROM could be traced back to almost 40 years ago. In fact there is already a rich

history of designing space efficient algorithms in the read-only memory model. The com-

plexity class L (also known as DLOGSPACE) is the class containing decision problems that

can be solved by a deterministic Turing machine using only logarithmic amount of work

space for computation. There are several important algorithmic results [59, 64, 65, 66] for

this class, the most celebrated being Reingold’s method [121] for checking st-reachability

in an undirected graph, i.e., to determine if there is a path between two given vertices s
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and t. NL is the non-deterministic analogue of L and it is known that the st-reachability

problem for directed graphs is NL-complete (with respect to log space reductions). Using

Savitch’s algorithm [7], this problem can be solved in nO(lgn) time using O(lg2 n) bits.

Savitch’s algorithm is very space efficient but its running time is superpolynomial. Among

the deterministic algorithms running in polynomial time for directed st-reachability, the

most space efficient algorithm is due to Barnes et al. [19] who gave a slightly sublinear

space (using n/2Θ(
√

lgn) bits) algorithm for this problem running in polynomial time. We

know of no better polynomial time algorithm for this problem with better space bound.

Moreover, the space used by this algorithm matches a lower bound on space for solving

directed st-reachability on a restricted model of computation called Node Naming Jump-

ing Automata on Graphs (NNJAG) [50, 63]. This model was introduced especially for

the study of directed st-reachability and most of the known sublinear space algorithms

for this problem can be implemented on it. Thus, to design any polynomial time ROM

algorithm taking space less than n/2Θ(
√

lgn) bits requires significantly new ideas. Recently

there has been some improvement in the space bound for some special classes of graphs

like planar and H-minor free graphs [10, 37].

A drawback, however, for all these graph algorithms using small space i.e., sublinear

bits, is that their running time is often some polynomial of high degree. For example,

to the best of our knowledge, the exact running time of Reingold’s algorithm [121] for

undirected s-t connectivity is not analysed, yet we know it admits a large polynomial

running time. In fact this phenomenon is not unusual, as Edmonds et al. [63] have shown

in the so-called NNJAG model that only a slightly sublinear working-space bound is

possible for an algorithm that solves the reachability problem when required to run in

polynomial time. Tompa [132] showed a surprising result that for directed s-t connectivity,

if the number of bits available is o(n) then some natural algorithmic approaches to the

problem require superpolynomial time.

Motivated by these impossibility results from complexity theory and inspired by the
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practical applications of these fundamental graph algorithms, recently there has been a

surge of interest in improving the space complexity of the fundamental graph algorithms

without paying too much penalty in the running time i.e., reducing the working space

of the classical graph algorithms to O(n) bits with little or no penalty in running time.

Thus the goal is to design space-efficient yet reasonably time-efficient graph algorithms

on ROM model. Generally most of the classical linear time graph algorithms take O(n)

words or equivalently O(n lg n) bits of space. This field started with the paper by Asano

et al. [9] where they showed that a depth-first search (DFS) can be performed in ROM

using O(m lg n) time and O(n) bits of space, where n and m denote the the number of

vertices and edges, respectively, of the input graph. This is followed by the paper of

Elmasry et al. [69] where they obtained space efficient algorithms for several other fun-

damental graph problems including BFS, minimum spanning tree, (strongly) connected

components, topological sort etc. In this thesis, not only do we improve these results,

we also design and present new results for various other fundamental graph algorithms.

These results can be categorized primarily into two types:

• In one direction, we improved the space bounds of several fundamental graph al-

gorithms while keeping the runtimes asymptotically same as in the classical setting

in whose design economy of space was not a primary concern. This includes per-

forming BFS, DFS in sparse graphs and determining the 2-edge connected and

biconnected components, performing topological sort etc.

• On the other hand, we focused on obtaining linear (i.e., O(n)) bit or sometimes even

sublinear bits algorithms (improving upon the O(n lg n) bits classical implementa-

tion) for various fundamental graph algorithms without paying too much penalty

in the running time. This includes DFS for dense graphs, strong connectivity,

st-numbering, various optimization problems on bounded treewidth graphs.

Most of these aforementioned fundamental polynomial time graph algorithms on a
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graph with n vertices seem to need almost Θ(n) bits of space in the ROM model. In

order to break this inherent space bound barrier we sought inspiration from the classical

in-place sorting algorithms, and devised two frameworks for designing efficient in-place

graph algorithms (i.e., with O(lg n) bits of extra space). To the best of our knowledge,

this has not been done in the literature before. We designed various fundamental graph

algorithms in this model and showed many surprising complexity theoretic consequences

of such results. In the next section, we describe the contents/organization of the thesis

and also briefly mention the main results obtained.

Thesis Outline and Main Results

In this section, we describe the results in the chapters of the thesis in more detail. The

technical content of the thesis is organized in the chapters which are divided into roughly

four parts as described in the subsections below.

Space Efficient Linear Time Algorithms

Recent works by Asano et al. [9] and Elmasry et al. [69], reconsidered classical funda-

mental graph algorithms focusing on improving the space complexity in ROM. Elmasry

et al. gave, among others, an implementation of breadth first search (BFS) in a graph G

with n vertices and m edges, taking the optimal O(m+ n) time using O(n) bits of space

improving the näıve O(n lg n) bits implementation. Similarly, Asano et al. provided sev-

eral space efficient implementations for performing depth first search (DFS) in a graph

G. We continue this line of work focusing on improving the space requirement of several

fundamental graph algorithms while keeping the runtimes asymptotically same as in the

classical setting in the ROM model.

Towards this goal our first result is a simple data structure that can maintain any
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subset S of a universe of n elements using just n+o(n) bits and supports in constant time,

apart from the standard insert, delete and membership queries, the operation findany that

finds and returns any element of the set (or outputs that the set is empty). It can also

enumerate all elements present currently in the set in no particular order in O(k + 1)

time where k is the number of elements currently belonging to the set. While this data

structure supports a weaker set of operations than that of Elmasry et al. [69], it is

simple, more space efficient and is sufficient to support a BFS implementation optimally

in O(m + n) time using at most 2n + o(n) bits. Later, we further improve the space

requirement of BFS to at most n lg 3 + o(n) bits albeit with a slight increase in running

time to O(m lg nf(n)) time where f(n) is any extremely slow growing function of n, and

the o term in the space is a function of f(n).

For DFS in a directed or undirected graph G, we provide an implementation tak-

ing O(m + n) time and O(n lg(m/n)) bits in ROM. This partially answers at least for

sparse graphs (where m = O(n)), a question asked by Asano et al. [9] whether DFS can

be performed in O(m + n) time and using O(n) bits, and also simultaneously improves

(for sparse graphs) the DFS result of Elmasry et al. [69]. Building on top of this DFS

algorithm and other observations, we show how to efficiently compute the chain decom-

position of a connected undirected graph. This lets us perform a variety of applications

of DFS (including testing biconnectivity and 2-edge connectivity, finding cut vertices and

edges among others) within the same time and space bound. Our algorithms for these

applications improve the space requirement (for sparse graphs) of all the previous algo-

rithms from Ω(n lg n) bits to O(n) bits, preserving the same linear runtime. For the dense

graphs (where m = O(n2)), we show that all these applications can be performed using

O(n lg lg n) bits and linear time whereas earlier classical linear time algorithms for these

problems used Ω(n lg n) bits of space. These results are reported in [14, 16, 38].
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Time Efficient Linear Bits Algorithms

Continuing our pursuit on designing space efficient graph algorithms, we focus this time

in our work on designing fast/time efficient algorithms taking linear i.e., O(n) bits for the

classical applications of DFS in the ROM model. Starting point of this came from a recent

paper of Asano et al. [9] who showed that Depth First Search (DFS) in a directed or an

undirected graph can be performed in O(m lg n) time and O(n) bits of space. Elmasry et

al. [69] improved the time to O(m lg lg n) still using O(n) bits of space. We build upon

these results to give space efficient implementations of several classical applications of

DFS. First, as a warm up, we start with some simple applications of the space efficient

DFS to show the following.

• An O(m lg n lg lg n) time and O(n) bits of space algorithm to compute the strongly

connected components of a directed graph.

In addition, we also give

• an algorithm to output the vertices of a directed acyclic graph in a topologically

sorted order, and

• an algorithm to find a sparse (with O(n) edges) spanning biconnected subgraph of

an undirected biconnected graph.

both using asymptotically the same time and space used for DFS, i.e., using O(n) bits

and O(m lg lg n) time.

To develop fast and space efficient algorithms for other non-trivial graph problems

which are also applications of DFS, we develop a space efficient tree covering technique

which, roughly speaking, partitions the DFS tree into connected smaller sized subtrees

which can be stored using less space. Finally we solve the corresponding graph problem on

these smaller sized subtrees and merge the solutions across the subtrees to get an overall
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solution. All of these can be done using less space and not paying too much penalty in

the running time. Some of these ideas are borrowed from succinct tree representation

literature.

As the first application, we consider a space efficient implementation of chain de-

composition of an undirected graph. This is an important preprocessing routine for an

algorithm to find cut vertices, biconnected components, cut edges, and also to test 3-

connectivity [123] among others. We provide an algorithm that takes O(m lg2 n lg lg n)

time using O(n) bits of space, improving on previous implementations that took Ω(n lg n)

bits [124] or Θ(m + n) bits [14] or O(n lgm/n) bits [41] of space. This is follwed by the

improved space efficient algorithms for testing whether a given undirected graph G is

biconnected and/or 2-edge connected, and if G is not biconnected and/or 2-edge con-

nected, we also show how one can find all the cut vertices and/or bridges of G. For this,

we provide a space efficient implementation of Tarjan’s classical lowpoint algorithm [128].

Our algorithms take O(m lg n lg lg n) time and O(n) bits of space.

Given a biconnected graph, and two distinguished vertices s and t, st-numbering is

a numbering of the vertices of the graph so that s gets the smallest number, t gets the

largest and every other vertex is adjacent both to a lower-numbered and to a higher-

numbered vertex. Finding an st-numbering is an important preprocessing routine for a

planarity testing algorithm [72] among others. We present an algorithm to determine

an st-numbering of a biconnected graph that takes O(m lg2 n lg lg n) time using O(n)

bits. This improves the earlier implementations that take Ω(n lg n) bits [31, 62, 72, 130].

Using this as a subroutine, we also provide improved space effcient implementation for

two-partitioning and two independent spanning tree problem among others.

Moving on from the space efficient implementations of DFS and its several applications

in ROM, this time we focus on designing space efficient algorithms for another graph

method, which is known in the literature as Maximum Cardinality Search (MCS), and

a few of its applications. Tarjan, in an unpublished note [127], defined MCS, and later
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Tarjan and Yannakakis [131] presented its applications to recognize chordal graphs and

test acyclicity of hypergraphs, etc. We refer the interested readers to the excellent text of

Golumbic [89] for thorough coverage of chordal graph recognition, MCS and many other

related topics. We show that using only O(n) bits and O(m2/n) time in ROM, we can

perform MCS in a given input graph G, improving on the naive O(n lg n) bit classical

implementation. Using this as a subroutine, we also provide improved space efficient

implementations for finding an independent set, vertex cover, proper coloring etc in a

given chordal graph. These results are reported in [40, 41, 42, 43].

Space Efficient Algorithms for Optimization Problems in Bounded

Treewidth Graphs

Barba et al. [18] introduce the compressed stack technique, a procedure to transform

algorithms whose main memory consumption takes the form of a stack into memory-

constrained algorithms in ROM, and show various applications of this method by design-

ing space efficient algorithms for problems in computational geometry. In what follows,

we briefly explain the set up and state their main result.

Let A be a class of deterministic algorithms which uses a stack and optionally other

auxiliary data structures of constant size. The operations that can be supported are push,

pop and accessing the k topmost element of the stack for a constant k. Let x ∈ A be

any deterministic algorithm. We call x a stack based algorithm if, given a set of ordered

input I, x processes i ∈ I one by one in order and based on i, the top k elements (for

some constant k) of the stack and the auxiliary data structure’s current configuration, it

decides to either push i (or some function of i and some constant words of information) or

pop some elements off the stack. While popping some element v off the stack, x can also

output v (or some function of v) as a part of the final solution for the problem considered.

In [18], they assume that the output is what is left in the stack at the end, while we use
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an output array to output elements during the execution of the algorithm itself. Any

algorithm following this structure is called a stack based algorithm. The main result of

their paper is the following:

Theorem 0.1. Any stack algorithm which takes O(n) time and Θ(n) space can be adapted

so that, for any parameter 2 ≤ p ≤ n, it solves the problem in O(n1+(1/ lg p)) time using

O(p lgp n) variables.

We explore applying the technique mentioned above for various optimization problems

in trees and bounded treewidth graphs in the ROM model. En route we also generalize

the above mentioned stack compression framework to a broader class of algorithms, which

we believe can be of independent interest [15] and may find other applications as well.

Using this extended stack compression framework, we show that we can solve various

optimization problems like Minimum vertex cover, Maximum independent set, Minimum

Dominating set etc in bounded treewidth graphs using O(lg2 n) bits of space. In fact we

prove the following more general meta theorem which roughly says, for bounded treewidth

graphs, if any graph problem can be described in monadic second order (MSO) logic, we

can obtain a smooth deterministic time-space trade-off from logarithmic words to linear

space. Our result can be seen as a generalization of the results of Elberfeld et al. [64]

and the famous Courcelle’s theorem [53]. Broadly speaking, the well-known Courcelle’s

theorem states that many graph properties (that are expressible in monadic second order

logic) can be solved in linear time on graphs of bounded treewidth. Elberfeld et al. [64]

show the logspace version of the same result. We develop an alternate methodology

using the standard table-based dynamic programming approach and extended stack-

compression technique to give a space efficient version (using O(lg2 n) bits of space)

of Courcelle’s theorem. We only need the input graph and its tree decomposition to be

given in ROM such a way that navigating to the parent, leftmost child and right sibling

can be done in constant time. While it has been known that the more general Courcelle’s

theorem can be implemented in logarithmic space and an unspecified yet large polynomial
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running time (using the result of Elberfeld et al. [64]), our algorithms provide a much

simpler, cleaner and more practical approach for these problems using much less time

with slightly more space. These results are reported in [15].

In-place Graph Algorithms

Read-only memory (ROM) model is a classical model of computation to study time-space

tradeoffs of algorithms. One of the classical results on the ROM model is that any sorting

algorithm that uses O(s) words of extra space requires Ω(n2/s) comparisons for lg n ≤

s ≤ n/ lg n and the bound has also been recently matched by an algorithm. However, if we

relax the model (from ROM), we do have sorting algorithms (say Heapsort) that can sort

using O(n lg n) comparisons using O(lg n) bits of extra space, even keeping a permutation

of the given input sequence at any point of time of the algorithm. Such a model is known

in the literature as in-place model. Even though sorting, searching, selection and many

other algorithms in computational geometry and stringology are known in-place, nothing

is known, to the best of our knowledge, for graph algorithms in such a setting.

In our work we initiate a systematic study of designing efficient in-place (i.e., O(lg n)

extra bits) algorithms for fundamental graph problems. In fact we show that a simple

natural relaxation of ROM model allows us to beat, by exponential margin, the ROM

space bounds for several fundamental graph algorithms like DFS, BFS, shortest path etc

in this new model. By simply allowing elements in the adjacency list of a vertex to be

permuted, we show that, on an undirected connected graph G having n vertices and m

edges, the vertices of G can be output in a

• DFS order using O(lg n) bits of extra space and O(m2/n) time if the graph is given

in an adjacency list, and in O(m2 lg n/n) time if the graph is given in an adjacency

array;

• BFS order using O(lg n) bits of extra space and O(m) time if all vertices have degree
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at least 2 lg n+ 3, in O(n2) time if there are no degree 2 vertices, and in O(n3) time

otherwise.

Most of these results carry over to directed graphs too, with a slight degradation in

running time. Thus we obtain similar bounds for reachability and shortest path distance

(both for undirected and directed graphs). With a little more (but still polynomial)

time, we can also output vertices in the lex-DFS order. As reachability in directed graphs

(even in DAGs) and shortest path distance (even in undirected graphs) are NL-complete

problems, and lex-DFS is P-complete, our results show that our model is probably more

powerful than ROM.

En route, we introduce and develop algorithms for another relaxation of ROM where

the adjacency lists of the vertices are circular lists and we can only modify the heads of

the lists. Here we first show a linear time DFS implementation using n + O(lg n) bits.

Improving the space further to only O(lg n) bits, we also obtain BFS and DFS albeit

with a slightly slower running time. Some of these algorithms also translate to improved

algorithms for DFS and its applications in ROM. Both the models we propose maintain

the graph structure throughout the algorithm, only the order of vertices in the adjacency

list changes.

In sharp contrast, for BFS and DFS, to the best of our knowledge, there are no

algorithms in ROM that use even O(n1−ε) bits of space; in fact, implementing DFS using

cn bits for c < 1 has been mentioned as an open problem [9]. Furthermore, DFS (BFS)

algorithms using n + o(n) (or o(n)) bits use Reingold’s or Barnes et al’s reachability

algorithm and hence have high runtime. All our algorithms are simple but quite subtle,

and we believe that these models are practical enough to spur interest for other graph

problems in these models. These results are reported in [39].
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Conclusion

We conclude this synopsis by higlighting our main results and mentioning some open

problems below.

• First, we show O(m+ n) time and O(n) bit algorithms for BFS, DFS and many of

its applications including biconnectivity, 2-edge connectivity, st-numbering etc for

sparse graphs in ROM. Under some reasonable complexity theoretic assumption,

this is the best we can hope for. One very general yet challenging and important

open problem in this direction is, can we design sublinear bits algorithms that are

reasonably time efficient (i.e., low degree polynomial running time) for all these

problems?

• Next, we present O(m poly lg n) time and O(n) bit algorithms for DFS and many

of its fundamental applications including strong connectivity, topological sorting,

biconnectivity etc in the case of dense graphs in ROM. One immediate open problem

in this regard is, can we shave off the poly-log factor in the running time from all

of our algorithms while retaining the same space bound? Note that, from the

previous point, we can achieve such results when the input graph is sparse. A

rather challenging problem would be to obtain a sublinear space algorithm with

low polynomial running time for these problems.

• Then we provide a simple algorithm showing smooth time-space tradeoffs for vari-

ous optimization problems on bounded treewidth graphs generalizing the results of

Elberfeld et al. [64] and Courcelle [53] in the ROM model. Our algorithm is opti-

mal upto a log factor in the space bound and particularly time efficient. It remains

an open problem to make it optimal from space point of view i.e., shave off the

multiplicative log factor from the space bound with very little or no compromise in

the running time.

• Finally, we formulate two new frameworks for designing in-place graph algorithms
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for the first time in the literature and exemplify its power by designing efficient al-

gorithms for various fundamental graph algorithms including DFS, BFS, minimum

spanning tree etc. In stark contrast to the best space bounds in ROM, these algo-

rithms are very economic in both space and time requirement. One broad future

goal in this direction would be to expand the horizon of graph algorithms that can

be designed in-place.
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Chapter 1

Introduction

1.1 Introduction

With technological revolution, while the cost of memory has come down drastically, the

amount of data available in applications is growing even more. So algorithms that pay

attention to space usage are becoming increasingly important. Furthermore, the prolifer-

ation of specialized handheld devices and embedded systems that have a limited supply of

memory provides an additional motivation to design and study space efficient algorithms.

Even if mobile devices and embedded systems are designed with large supply of memory,

it still might be useful to restrict the number of write operations for several reasons. For

example, on flash memory, writing is a costly operation in terms of speed. Write-access

to removable memory devices might also be limited for technical or security reasons as

whenever multiple concurrent algorithms are working on the same data set, write oper-

ations also become troublesome and complicated due to concurrency problems. Keeping

all these constraints in mind, it makes sense to consider algorithms that do not modify

the input and use only a limited amount of work space. Although many variations of this

principle exist in the literature, the general idea remains the same: the input is in some

kind of read-only data structure, the output must be produced in a write-only structure,
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and in addition to these two structures, we can only use a fixed amount of memory to

compute the solution. This memory should be enough to cover all space requirements

during the execution of the algorithm (including all the local and global variables used

by the algorithm, and the space used during recursion, and invoking various procedures).

1.1.1 ROM and In-place model

In what follows we describe two of the most commonly considered models that have

received considerable attention in the literature for both the input and the workspace as

they were historically developed. Also these are the two main models that are used in

this thesis for designing space efficient algorithms.

• In the random access read-only memory (ROM) model, we assume that the input is

given in a read-only memory which can be randomly accessed along with a limited

random access workspace and the output of an algorithm is written on to a separate

write-only memory which can not be read or modified again. So the input is “read

only” and the output is “write only”. The data on the workspace is manipulated

wordwise as on the standard word RAM (i.e. random access memory), where the

machine consists of words of size Ω(lg n) bits, and any logical, arithmetic, and

bitwise operations involving a constant number of words take a constant amount

of time. We count space in terms of the number of bits used by the algorithms in

workspace. This model is also called the register input model, and it was introduced

by Frederickson [82] while studying some problems related to sorting and selection.

Mainly research for this model focuses on either computability (i.e., determining

whether or not a particular problem is solvable with a workspace of fixed size)

or the design of efficient algorithms whose running time is not much worse (when

compared to the case in which no space constraints exist). Early work on this

model was on designing lower bounds [21, 29, 30], for designing algorithms for
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selection and sorting [45, 70, 82, 110, 111, 116] and problems in computational

geometry [8, 11, 18, 44, 57].

• A more relaxed model considered is the in-place model where the input elements

are given in an array, and the algorithm may use the input array as working space.

Hence, the algorithm may modify (i.e. rearrange or sometimes even overwrite) the

input array during its execution. After the execution, all the input elements should

be present in the array (maybe in a permuted order) and the output may be put

in the same array or sent to an output stream. The amount of extra space usage

during the entire execution of the algorithm is limited to O(lg n) bits, although

sometimes poly-logarithmic words of extra space is also allowed. By making an ap-

propriate permutation of the input, we can usually encode different data structures.

Thus, algorithms under this model often achieve the running times comparable to

those in unconstrained settings. A prominent example of an in-place algorithm is

the classic heap-sort. Other than in-place sorting [81], searching [79, 113] and se-

lection [103] algorithms, many in-place algorithms have been designed in areas such

as computational geometry [34] and stringology [80].

1.1.2 Other related models

There exist a few other models in the literature for designing space efficient algorithms as

well other than the ones mentioned above. Chan et al. [46] introduced the restore model

which is a more relaxed version of read-only memory (and a restricted version of the in-

place model), where the input is allowed to be modified, but at the end of the computation,

the input has to be restored to its original form. Buhrman et al. [35, 36, 101] introduced

and studied the catalytic-space model where a small amount (typically O(lg n) bits) of

clean space is provided along with additional auxiliary space, with the condition that the

additional space is initially in an arbitrary, possibly incompressible, state and must be

restored to this state when the computation is finished. The input is assumed to be given
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in ROM. Thus this model can be thought of as having an auxiliary storage that needs to

be ’restored’ in contrast to the model by Chan et al. [46] where the input array has to be

’restored’. In the streaming model (and in its variants, e.g multi-pass and semi-streaming)

the elements of the input can only be scanned in a sequential fashion [4, 76, 106, 110].

These algorithms have limited memory available to them (much less than the input size

and typically of size O(poly lg n) bits where n is the input size) and also limited processing

time per item. Given these limitations, the usual goal is to approximate the solution and

ideally obtain some kind of worst-case approximation ratio with respect to the optimal

solution.

1.1.3 Motivation

Even though these models were introduced in the literature with the aim of designing

and/or implementing various algorithms space efficiently, space efficient graph algorithms

have been designed only in the (semi)-streaming and ROM model. In the streaming and

semi-streaming model, researchers have studied several basic and fundamental algorth-

mic problems such as connectivity, minimum spanning tree, matching. See [106] for a

comprehensive survey in this field. Research on these two models (i.e., streaming and

semi-streaming) is relatively new and has been going on for last decade or so whereas the

study in ROM could be traced back to almost 40 years. In fact there is already a rich

history of designing space efficient algorithms in the read-only memory model. The com-

plexity class L (also known as DLOGSPACE) is the class containing decision problems that

can be solved by a deterministic Turing machine using only logarithmic amount of work

space for computation. There are several important algorithmic results [59, 64, 65, 66] for

this class, the most celebrated being Reingold’s method [121] for checking st-reachability

in an undirected graph, i.e., to determine if there is a path between two given vertices s

and t. NL is the non-deterministic analogue of L and it is known that the st-reachability

problem for directed graphs is NL-complete (with respect to log space reductions). Using
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Savitch’s algorithm [7], this problem can be solved in nO(lgn) time using O(lg2 n) bits.

Savitch’s algorithm is very space efficient but its running time is superpolynomial. Among

the deterministic algorithms running in polynomial time for directed st-reachability, the

most space efficient algorithm is due to Barnes et al. [19] who gave a slightly sublinear

space (using n/2Θ(
√

lgn) bits) algorithm for this problem running in polynomial time. We

know of no better polynomial time algorithm for this problem with better space bound.

Moreover, the space used by this algorithm matches a lower bound on space for solving

directed st-reachability on a restricted model of computation called Node Naming Jump-

ing Automata on Graphs (NNJAG) [50, 63]. This model was introduced especially for

the study of directed st-reachability and most of the known sublinear space algorithms

for this problem can be implemented on it. Thus, to design any polynomial time ROM

algorithm taking space less than n/2Θ(
√

lgn) bits requires significantly new ideas. Recently

there has been some improvement in the space bound for some special classes of graphs

like planar and H-minor free graphs [10, 37].

A drawback, however, for all these graph algorithms using small space i.e., sublinear

bits, is that their running time is often some polynomial of high degree. For example,

to the best of our knowledge, the exact running time of Reingold’s algorithm [121] for

undirected s-t connectivity is not analysed, yet we know it admits a large polynomial

running time. In fact this phenomenon is not unusual, as Edmonds et al. [63] have shown

in the so-called NNJAG model that only a slightly sublinear working-space bound is

possible for an algorithm that solves the reachability problem when required to run in

polynomial time. Tompa [132] showed a surprising result that for directed s-t connectivity,

if the number of bits available is o(n) then some natural algorithmic approaches to the

problem require superpolynomial time.

Motivated by these impossibility results from complexity theory and inspired by the

practical applications of these fundamental graph algorithms, recently there has been a

surge of interest in improving the space complexity of the fundamental graph algorithms
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without paying too much penalty in the running time i.e., reducing the working space

of the classical graph algorithms to O(n) bits with little or no penalty in running time.

Thus, the goal is to design space-efficient yet reasonably time-efficient graph algorithms

on ROM model. Generally most of the classical linear time graph algorithms take O(n)

words or equivalently O(n lg n) bits of space. This field started with the paper by Asano

et al. [9] where they showed that a depth-first search (DFS) of a graph G with n vertices

and m edges can be performed in ROM using O(m lg n) time and O(n) bits of space.

This is followed by the paper of Elmasry et al. [69] where they obtained space efficient

algorithms for several other fundamental graph problems including breadth-first search

(BFS), minimum spanning tree (MST), (strongly) connected components and topological

sort. In this thesis, not only do we improve these results, we also design and present new

results for various other fundamental graph algorithms which we briefly discuss in the

next section.

1.2 Our results and organization of the thesis

In this section, we describe the results in the chapters of the thesis in more detail. The

technical content of the thesis is organized in the chapters which are divided into roughly

four parts as described in the subsections below.

1.2.1 Space Efficient Linear Time Algorithms

Recent works by Asano et al. [9] and Elmasry et al. [69], reconsidered classical funda-

mental graph algorithms focusing on improving the space complexity in ROM. Elmasry

et al. gave, among others, an implementation of breadth first search (BFS) in a graph G

with n vertices and m edges, taking the optimal O(m+ n) time using O(n) bits of space

improving the näıve O(n lg n) bits implementation. Similarly, Asano et al. provided sev-

eral space efficient implementations for performing depth first search (DFS) in a graph

44



G. We continue this line of work focusing on improving the space requirement of several

fundamental graph algorithms while keeping the runtimes asymptotically same as in the

classical setting in the ROM model.

Towards this goal our first result, in Chapter 3, is a simple data structure that can

maintain any subset S of a universe of n elements using just n+ o(n) bits and supports

in constant time, apart from the standard insert, delete and membership queries, the

operation findany that finds and returns any element of the set (or outputs that the set

is empty). It can also enumerate all elements present currently in the set in no particular

order in O(k+ 1) time where k is the number of elements currently belonging to the set.

While this data structure supports a weaker set of operations than that of Elmasry et

al. [69], it is simple, more space efficient and is sufficient to support a BFS implementation

optimally in O(m+ n) time using at most 2n+ o(n) bits. Later, we further improve the

space requirement of performing BFS to at most n lg 3 + o(n) bits albeit with a slight

increase in the running time to O(m lg nf(n)) time where f(n) is any extremely slow

growing function of n, and the o term in the space is a function of f(n).

For DFS in a directed or undirected graph G, we provide an implementation tak-

ing O(m + n) time and O(n lgm/n) bits in ROM. This partially answers at least for

sparse graphs (where m = O(n)), a question asked by Asano et al. [9] whether DFS can

be performed in O(m + n) time and using O(n) bits, and also simultaneously improves

(for sparse graphs) the DFS result of Elmasry et al. [69]. Building on top of this DFS

algorithm and other observations, we show how to efficiently compute the chain decom-

position of a connected undirected graph. This lets us perform a variety of applications

of DFS (including testing biconnectivity and 2-edge connectivity, finding cut vertices and

edges among others) within the same time and space bound. Our algorithms for these

applications improve the space requirement (for sparse graphs) of all the previous algo-

rithms from Ω(n lg n) bits to O(n) bits, preserving the same linear runtime. For dense

graphs (where m = Θ(n2)), we show that all these applications can be performed using
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O(n lg lg n) bits and linear time whereas earlier classical linear time algorithms for these

problems used Ω(n lg n) bits of space. This chapter combines the results of [14, 16, 38].

1.2.2 Time Efficient Linear Bits Algorithms

Continuing our pursuit on designing space efficient graph algorithms, we focus this time

in Chapter 4 on designing fast/time efficient algorithms taking linear i.e., O(n) bits for

the classical applications of DFS in the ROM model. The starting point of this came

from a recent paper of Asano et al. [9] who showed that Depth First Search (DFS) in

a directed or an undirected graph can be performed in O(m lg n) time and O(n) bits of

space. Elmasry et al. [69] improved the time to O(m lg lg n) still using O(n) bits of space.

We build upon these results to give space efficient implementations of several classical

applications of DFS. First, as a warm up, we start with some simple applications of the

space efficient DFS to show the following.

• An O(m lg n lg lg n) time and O(n) bits of space algorithm to compute the strongly

connected components of a directed graph.

In addition, we also give

• an algorithm to output the vertices of a directed acyclic graph in a topologically

sorted order, and

• an algorithm to find a sparse (with O(n) edges) spanning biconnected subgraph of

an undirected biconnected graph.

both using asymptotically the same time and space used for linear bits DFS, i.e., using

O(n) bits and O(m lg lg n) time.

To develop fast and space efficient algorithms for other non-trivial graph problems

which are also applications of DFS, we develop a space efficient tree covering technique
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which, roughly speaking, partitions the DFS tree into connected smaller sized subtrees

which can be stored using less space. Finally we solve the corresponding graph problem on

these smaller sized subtrees and merge the solutions across the subtrees to get an overall

solution. All of these can be done using less space and by not paying too much penalty

in the running time. Some of these ideas are borrowed from succinct tree representation

literature.

As the first application, we consider a space efficient implementation of chain de-

composition of an undirected graph. This is an important preprocessing routine for an

algorithm to find cut vertices, biconnected components, cut edges, and also to test 3-

connectivity [123] among others. We provide an algorithm that takes O(m lg2 n lg lg n)

time using O(n) bits of space, improving on previous implementations that took Ω(n lg n)

bits [124] or Θ(m + n) bits [14] or O(n lgm/n) bits [41] of space. This is followed by

the improved space efficient algorithms for testing whether a given undirected graph G

is biconnected and/or 2-edge connected, and if G is not biconnected and/or 2-edge con-

nected, we also show how one can find all the cut vertices and/or bridges of G. For this,

we provide a space efficient implementation of Tarjan’s classical lowpoint algorithm [128].

Our algorithms take O(m lg n lg lg n) time and O(n) bits of space.

Given a biconnected graph, and two distinguished vertices s and t, st-numbering is

a numbering of the vertices of the graph so that s gets the smallest number, t gets the

largest and every other vertex is adjacent both to a lower-numbered and to a higher-

numbered vertex. Finding an st-numbering is an important preprocessing routine for a

planarity testing algorithm [72] among others. We present an algorithm to determine

an st-numbering of a biconnected graph that takes O(m lg2 n lg lg n) time using O(n)

bits. This improves the earlier implementations that take Ω(n lg n) bits [31, 62, 72, 130].

Using this as a subroutine, we also provide improved space effcient implementation for

two-partitioning and two independent spanning tree problem among others.

Moving on from the space efficient implementations of DFS and its several applications
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in ROM, this time we focus on designing space efficient algorithms for another graph

method, which is known in the literature as Maximum Cardinality Search (MCS), and

some of its applications. Tarjan, in an unpublished note [127], defined MCS, and later

Tarjan and Yannakakis [131] presented its applications to recognize chordal graphs and

test acyclicity of hypergraphs, etc. We refer the interested readers to the excellent text of

Golumbic [89] for thorough coverage of chordal graph recognition, MCS and many other

related topics. We show that using only O(n) bits and O(m2/n) time in ROM, we can

perform MCS in a given input graph G, improving on the naive O(n lg n) bit classical

implementation. Using this as a subroutine, we also provide improved space efficient

implementations for finding an independent set, vertex cover, proper coloring in a given

chordal graph. These results are reported in [40, 41, 42, 43].

1.2.3 Space Efficient Algorithms for Optimization Problems in

Bounded Treewidth Graphs

Barba et al. [18] introduce the compressed stack technique, a procedure to transform

algorithms whose main memory consumption takes the form of a stack into memory-

constrained algorithms in ROM, and show various applications of this method by design-

ing space efficient algorithms for problems in computational geometry. In what follows,

we briefly explain the set up and state their main result.

Let A be a class of deterministic algorithms which use a stack and optionally other

auxiliary data structures of constant size. The operations that can be supported are push,

pop and accessing the k topmost element of the stack for a constant k. Let x ∈ A be

any deterministic algorithm. We call x a stack based algorithm if, given a set of ordered

input I, x processes i ∈ I one by one in order and based on i, the top k elements (for

some constant k) of the stack and the auxiliary data structure’s current configuration, it

decides to either push i (or some function of i and some constant words of information) or
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pop some elements off the stack. While popping some element v off the stack, x can also

output v (or some function of v) as a part of the final solution for the problem considered.

In [18], they assume that the output is what is left in the stack at the end, while we use

an output array to output elements during the execution of the algorithm itself. Any

algorithm following this structure is called a stack based algorithm. The main result of

their paper is the following:

Theorem 1.1. Any stack algorithm which takes O(n) time and Θ(n) space can be adapted

so that, for any parameter 2 ≤ p ≤ n, it solves the problem in O(n1+(1/ lg p)) time using

O(p lgp n) variables.

In chapter 5, we explore applying the technique mentioned above for various opti-

mization problems in trees and bounded treewidth graphs in the ROM model. En route

we also generalize the above mentioned stack compression framework to a broader class

of algorithms, which we believe can be of independent interest and may find other appli-

cations as well. Using this extended stack compression framework, we show that we can

solve various optimization problems like Minimum vertex cover, Maximum independent

set, Minimum Dominating set etc in bounded treewidth graphs using O(lg2 n) bits of

space. In fact we prove the following more general meta theorem which roughly says,

for bounded treewidth graphs, if any graph problem can be described in monadic second

order (MSO) logic, we can obtain a smooth deterministic time-space trade-off from loga-

rithmic words to linear space. Our result can be seen as a generalization of the results of

Elberfeld et al. [64] and the famous Courcelle’s theorem [53]. Broadly speaking, the well-

known Courcelle’s theorem states that many graph properties (that are expressible in

monadic second order logic) can be solved in linear time on graphs of bounded treewidth.

Elberfeld et al. [64] show the logspace version of the same result. We develop an alter-

nate methodology using the standard table-based dynamic programming approach and

extended stack-compression technique to give a space efficient version (using O(lg2 n) bits

of space) of Courcelle’s theorem. We only need the input graph and its tree decomposi-
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tion to be given in ROM in such a way that navigating to the parent, leftmost child and

right sibling can be done in constant time. While it has been known that the more gen-

eral Courcelle’s theorem can be implemented in logarithmic space and an unspecified yet

large polynomial running time (using the result of Elberfeld et al. [64]), our algorithms

provide a much simpler, cleaner and more practical approach for these problems using

much less time with slightly more space. This chapter is based on the paper [15].

1.2.4 In-place Graph Algorithms

So far all the results we discussed are in Read-only memory (ROM) model which is

a classical model of computation to study time-space tradeoffs of algorithms. One of

the early classical results on the ROM model is that any sorting algorithm that uses

O(s) words of extra space requires Ω(n2/s) comparisons for lg n ≤ s ≤ n/ lg n and the

bound has also been recently matched by an algorithm. However, if we relax the model

(from ROM), we do have sorting algorithms (say Heapsort) that can sort using O(n lg n)

comparisons using O(lg n) bits of extra space, even keeping a permutation of the given

input sequence at any point of time of the algorithm. Such a model is known in the

literature as in-place model. Even though sorting, searching, selection and many other

algorithms in computational geometry and stringology are known in-place, nothing is

known, to the best of our knowledge, for graph algorithms in such a setting.

In our work we initiate a systematic study of designing efficient in-place (i.e., O(lg n)

extra bits) algorithms for fundamental graph problems. In fact, in Chapter 6, we show

that a simple natural relaxation of ROM model allows us to beat, by exponential mar-

gin, the ROM space bounds for several fundamental graph algorithms like DFS, BFS,

minimum spanning tree (MST) in this new model. By simply allowing elements in the

adjacency list of a vertex to be permuted, we show that, on an undirected connected

graph G having n vertices and m edges, the vertices of G can be output in a
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• DFS order using O(lg n) bits of extra space and O(m2/n) time if the graph is given

in an adjacency list, and in O((m2 lg n)/n) time if the graph is given in an adjacency

array;

• BFS order using O(lg n) bits of extra space and O(m) time if all vertices have degree

at least 2 lg n+ 3, in O(n2) time if there are no degree 2 vertices, and in O(n3) time

otherwise.

Most of these results carry over to directed graphs too, with a slight degradation in

running time. Thus we obtain similar bounds for reachability and shortest path distance

(both for undirected and directed graphs). With a little more (but still polynomial)

time, we can also output vertices in the lex-DFS order. As reachability in directed graphs

(even in DAGs) and shortest path distance (even in undirected graphs) are NL-complete

problems, and lex-DFS is P-complete, our results show that our model is probably more

powerful than ROM.

En route, we introduce and develop algorithms for another relaxation of ROM where

the adjacency lists of the vertices are circular lists and we can only modify the heads of

the lists. Here we first show a linear time DFS implementation using n + O(lg n) bits.

Improving the space further to only O(lg n) bits, we also obtain BFS and DFS albeit

with a slightly slower running time. Some of these algorithms also translate to improved

algorithms for DFS and its applications in ROM. Both the models we propose maintain

the graph structure throughout the algorithm, only the order of vertices in the adjacency

list changes.

In sharp contrast, for BFS and DFS, to the best of our knowledge, there are no

algorithms in ROM that use even O(n1−ε) bits of space; in fact, implementing DFS using

cn bits for c < 1 has been mentioned as an open problem [9]. Furthermore, DFS (BFS)

algorithms using n + o(n) (or o(n)) bits use Reingold’s or Barnes et al’s reachability

algorithm and hence have high runtime. All our algorithms are simple but quite subtle,
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and we believe that these models are practical enough to spur interest for other graph

problems in these models. The results obtained in this chapter are based on a joint work

with Anish Mukherjee, Venkatesh Raman and Srinivasa Rao Satti [39].

1.3 Conclusion

Finally we conclude the thesis in Chapter 7 with some closing remarks and open problems

for future direction. This thesis is mainly about designing graph algorithms which are

both time as well as space efficient. In this chapter we motivated the study of designing

such algorithms and provided a summary of the results obtained in this thesis.
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Chapter 2

Preliminaries

In this chapter we lay down the notation, terminology and input representations used

elsewhere in the thesis, for the sake of easy reference.

2.1 Graph theoretic terminology

Here we follow the graph terminology used in the textbook by Cormen et al. [51]. A

directed graph (or digraph) G is a pair (V,E), where V is a finite set and E is a binary

relation on V . The set V is called the vertex set of G, and its elements are called vertices

(singular: vertex). Throughout this thesis, we assume that the vertex set V of G is the set

V = {1, 2, · · · , n}. The set E is called the edge set of G, and its elements are called egdes.

We use n and m to denote the number of vertices and the number of edges respectively,

in the input graph G. I.e., |V | = n and |E| = m. In an undirected graph G = (V,E), the

edge set E consists of unordered pair of vertices, rather than ordered pairs. That is, an

edge is a set {u, v}, where u, v ∈ V and u 6= v. By convention, we use the notation (u, v)

for an edge, rather than the set notation {u, v}, and we consider (u, v) and (v, u) to be the

same edge. The degree of a vertex in an undirected graph is the number of edges incident

on it. In a directed graph, the out-degree of a vertex is the number of edges leaving it,
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and the in-degree of a vertex is the number of edges entering it. An undirected graph is

connected if every vertex is reachable from all other vertices. The connected components

of a graph are the equivalence classes of vertices under the “is reachable from” relation.

In an undirected graph G, a cut vertex is a vertex v that when removed (along with

its incident edges) from a graph creates more (than what was there before) components

in the graph. A (connected) graph with at least three vertices is biconnected (also called

2-connected or 2-vertex connected in the literature) if and only if it has no cut vertex.

A biconnected component is a maximal biconnected subgraph. These components are

attached to each other at cut vertices. Similarly in an undirected graph G, a bridge

is an edge that when removed (without removing the vertices) from a graph creates

more components than previously in the graph. A (connected) graph with at least two

vertices is 2-edge-connected if and only if it has no bridge. A 2-edge connected component

is a maximal 2-edge connected subgraph. A graph has a degeneracy d if every induced

subgraph of the graph has a vertex with degree at most d. An ordering v1, v2, . . . , vn of the

vertices in such a graph is a degenerate order if for any i, the i-th vertex has degree at most

d among vertices vi+1, vi+2, . . . , vn. A topological sort or topological ordering of a directed

acyclic graph is a linear ordering of its vertices such that for every directed edge (u, v) ∈ E

from vertex u to vertex v, u comes before v in the ordering. A minimum spanning tree

(MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-

weighted undirected graph that connects all the vertices together, without any cycles and

with the minimum possible total edge weight. That is, it is a spanning tree whose sum

of edge weights is as small as possible.

Given a biconnected graph G, and two distinguished vertices s and t in V such that

s 6= t, st-numbering is a numbering of the vertices of the graph so that s gets the smallest

number, t gets the largest and every other vertex is adjacent both to a lower-numbered

and to a higher-numbered vertex i.e., a numbering s = v1, v2, · · · , vn = t of the vertices of

G is called an st-numbering, if for all vertices vj, 1 < j < n, there exist 1 ≤ i < j < k ≤ n
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such that {vi, vj}, {vj, vk} ∈ E. It is well-known that G is biconnected if and only if,

for every edge {s, t} ∈ E, it has an st-numbering. In the k-partitioning problem, we are

given vertices a1, · · · , ak of an undirected graph G and natural numbers c1, · · · , ck with

c1 + · · · + ck = n, and we want to find a partition of V into sets V1, · · · , Vk with ai ∈ Vi

and |Vi| = ci for every i such that every set Vi induces a connected graph in G. Given a

graph G, we call a set of k rooted spanning trees independent if they all have the same

root vertex r and, for every vertex v 6= r, the paths from v to r in all the k spanning

trees are vertex-disjoint (except for their endpoints).

A directed graph G is said to be strongly connected if for every pair of vertices u and

v in V , both u and v are reachable from each other. If G is not strongly connected, it

is possible to decompose G into its strongly connected components i.e., a maximal set

of vertices C ⊆ V such that for every pair of vertices u and v in C, both u and v are

reachable from each other. Let T be a depth-first search tree of a connected undirected

(or directed) graph G. For each vertex v of T , preorder number of v is the number of

vertices visited up to and including v during a preorder traversal of T . Similarly, postorder

number of v is the number of vertices visited up to and including v during a postorder

traversal of T . A chordal graph is one in which all cycles of four or more vertices have a

chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

The chordal graphs may also be characterized as the graphs that have perfect elimination

orderings (PEO). A perfect elimination ordering in G is an ordering of the vertices such

that, for each vertex v, v and the neighbors of v that occur after v in the order form a

clique.

2.2 Input graph representations

There are two standard ways to represent a graph G = (V,E): as a collection of adjacency

lists or as an adjacency matrix. Either way applies to both directed and undirected
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graphs. Because the adjacency list representation provides a compact way to represent

sparse graphs – those for which |E| is much less than |V |2 – it is usually the method

of choice. Adjacency matrix representation is preferred, however, when the input graph

is dense – |E| is close to |V |2 or when we need to quickly figure out if there is an edge

connecting two given vertices.

The adjacency list representation of a graph G = (V,E) consists of an array Adj

of length |V |, where Adj[i] stores a pointer to the adjacency list of vertex i, i.e., a list

containing all the neighbors of vertex i with Adj[i] pointing to the head of the list. If

G is a directed graph, the sum of the lengths of all the adjacency lists is |E| whereas

for the undirected graphs, the sum of the lengths of all the adjacency lists is 2|E|, since

every edge appears twice in this representation. It’s easy to augment the lists with the

weights of the edges so that we can represent weighted graphs as well. The adjacency

matrix representation of a graph G = (V,E) consists of a n × n matrix A = (aij) such

that aij = 1 if (i, j) ∈ E and 0 otherwise. Thus, the adjacency matrix of a graph

requires Θ(n2) memory, independent of the number of edges in the graph. By storing the

weights of the edges as the entries of the matrix, it’s easy to extend this representation

for weighted graphs.

While designing space efficient algorithms in read-only memory model, the specific

details of the input graph representation are of great significance as we can neither modify

the input nor copy the whole input in workspace. Thus space-efficient algorithms [41, 69,

94, 99] assume slightly more powerful form of input representation than what is typically

assumed in classical settings.

In some of our algorithms (more specifically, in Chapter 3), we assume that the input

graph G is represented using the standard adjacency list along with cross pointers, i.e., for

undirected graphs given a vertex u and the position in its list of a neighbor v of u, there

is a pointer to the position of u in the list of v. In the case of directed graphs, for every

vertex u, we have a list of out-neighbors of u and a list of in-neighbours of u. And, finally
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we augment these two lists for every vertex with cross pointers, i.e., for each (u, v) ∈ E,

given u and the position of v in out-neighbors of u, there is a pointer to the position of

u in in-neighbors of v. This form of input graph representation was introduced recently

in [69] and used subsequently in [14, 94, 99] to design various other space efficient graph

algorithms. We also note that some of our algorithms in this chapter will work even with

less powerful and the more traditional adjacency list representation. We specify these

details regarding the exact form of input graph representation at the respective sections

while describing our algorithms.

Algorithms of Chapter 4 assume that the input graphs G = (V,E) are represented

using adjacency array, i.e., G is represented by an array of length |V | where the i-th

entry stores a pointer to an array that stores all the neighbors of the i-th vertex. For

the directed graphs, we assume that the input representation has both in/out adjacency

array for all the vertices i.e., for directed graphs, every vertex v has access to two arrays,

one array is for all the in-neighbors of v and the other array is for all the out-neighbors

of v. This representation which has now become somewhat standard was also used in

[14, 41, 69, 94, 99] recently to design various other space efficient graph algorithms.

Algorithms of Chapter 5 deal with trees mostly, and for this we work with the standard

left-most child, right-sibling based representation for trees [51] (this is slightly weaker in

contrast to the doubly connected edge list representation used in [12, 23]). I.e., we assume

that the tree (of the input or of the tree-decomposition) is given in a representation where

the children of a node are organized in a linked list. I.e. given a node label, we can find its

left-most child and its right sibling in constant time. In particular, we do not have parent

pointers associated with the nodes, unless stated otherwise. For the weighted versions

of the algorithms and for graphs of bounded treewidth, we assume that weights or the

bag sets of the vertices are given in a separate array indexed by the labels of the vertices

of the tree (which we assume are in {1, 2, . . . n}). For bounded treewidth graphs, apart

from the tree decomposition, we also need the graph in read-only memory, represented
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in a way that adjacency can be checked in constant time.

All the graph representations we have seen so far are, roughly speaking, slight vari-

ations of the classical adjacency list representation, and these are used while designing

space efficient graph algorithms for ROM. In Chapter 6, we work with the in-place model

and it requires different input representations. We choose to defer the discussion regard-

ing the details of this representation to the specific chapter for better readability.
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Chapter 3

Space Efficient Linear Time

Algorithms for BFS, DFS and

Applications

3.1 Introduction

Since the early days of designing graph algorithms, researchers have developed several

approaches for testing whether a given undirected (or directed) graph G is (strongly

connected) biconnected and/or 2-edge connected, and for finding cut vertices and/or

bridges of G. All of these methods use depth-first search (DFS) as the backbone to

design the main algorithm. The classical linear time algorithms due to Tarjan [128, 129]

compute the so-called “low-point” values (which are defined in terms of a DFS-tree of G)

for every vertex v, and checks some conditions using that to determine whether G has

the desired property. There are other linear time algorithms as well for these problems

(see [124] and all the references therein). Similary, breadth-first search (BFS) has been

used to find shortest path in unweighted graphs and testing if a given graph is bipartite.

All of these classical algorithms take O(m + n) time and O(n) words (our model of
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computation is the register input model) of space. In this chapter, we focus on improving

the space bounds of these fundamental and basic graph algorithms while keeping their

running time intact as in the classical implementations. For this we first design space

efficient algorithms for BFS and DFS, and later complement these algorithms with other

ideas to solve several applications of these two most fundamental and well known graph

search methods space efficiently. Throughout this chapter, we assume that the input

graph G is represented using the standard adjacency list along with cross pointers.

3.1.1 Our results and organization of this chapter

Asano et al. [9] show that DFS of a directed or undirected graph G on n vertices and m

edges can be performed using n+ o(n) bits and (an unspecified) polynomial time. Using

2n+o(n) bits, they bring down the running time to O(mn) time, and using a larger O(n)

bits, the running time of their algorithm is O(m lg n). In a similar vein,

• we show in Section 3.3 that the vertices of a directed or undirected graph can be

listed in BFS order using n lg 3 + o(n) bits and O(mf(n) lg n) time where f(n) is

any (extremely slow-growing) function of n for example lg∗ n (the o term in the

space is a function of f(n)), while the running time can be brought down to the

optimal O(m+ n) time using 2n+ o(n) bits.

En route to this algorithm, we develop in Section 3.2,

• a data structure that maintains a set of elements from a universe of size n, say [1..n],

using n + o(n) bits to support, apart from the standard insert, search and delete

operations, the operation findany of finding an arbitrary element of the set, and

returning its value all in constant time. It can also output all elements of the set in

no particular order in O(k + 1) time where k is the number of elements currently

belonging to the set.
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In what follows, in Section 3.3.2, we improve the space for BFS further at the cost

of slightly increased runtime. Next, we digress slightly from our theme of linear time

algorithms and provide a time/space tradeoff like BFS for the minimum spanning tree

problem in Section 3.4. In particular, we provide an implementation to find a minimum

weight spanning tree in a weighted undirected graph (with weights bounded by polynomial

in n) using n+O(n/f(n)) bits and O(m lg nf(n)) time, for any function f(n) such that

1 ≤ f(n) ≤ n.

• For DFS, Asano et al. [9] showed that DFS in a directed or undirected graph can

be performed in O(m lg n) time and O(n) bits of space, and Elmasry et al. [69]

improved the time to O(m lg lg n) time still using O(n) bits of space. We show the

following:

– In Section 3.5, we first show that, we can perform DFS in a directed or undi-

rected graph in linear time using O(m+ n) bits. This, for example, improves

the runtime of the earlier known results for sparse graphs (where m is O(n))

while still using the same asymptotic space. Building on top of this DFS al-

gorithm and other observations, we show how to efficiently compute the chain

decomposition of a connected undirected graph. This lets us perform a variety

of applications of DFS (including testing biconnectivity and 2-edge connectiv-

ity, finding cut vertices and edges among others) within the same time and

space bound. Our algorithms for these applications improve the space require-

ment (for sparse graphs) of all the previous algorithms from Θ(n lg n) bits to

O(m+ n) bits, preserving the same linear runtime.

– in Section 3.6, for all the problems mentioned above and dealt in Section 3.5, we

improve the space even further to O(n lg(m/n)) bits keeping the same O(m+n)

running time. The space used by these algorithms, for some ranges of m (say

Θ(n(lg lg n)c for some constant c), is even better than that of the recent work by

Kammer et al. [99], that computes cut vertices using O(n+ min{m,n lg lg n})
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bits.

– In Section 3.7, we give an implementation of computing a topological sort of

a directed acyclic graph in O(m + n) time and O(n lg(m/n)) bits of space.

We can even detect if the graph is not acyclic within the same time and space

bounds. This implementation contrasts with an earlier bound of O(m+n) time

and O(n lg lg n) bits of space [69], and is more space efficient for sparse directed

graphs (that includes those directed graphs whose underlying undirected graph

is planar or has bounded treewidth or degeneracy).

A graph has a degeneracy d if every induced subgraph of the graph has a

vertex with degree at most d (for example, planar graphs have degeneracy 5,

and trees have degeneracy 1). An ordering v1, v2, . . . vn of the vertices in such

a graph is a degenerate order if for any i, the i-th vertex has degree at most

d among vertices vi+1, vi+2, . . . vn. There are algorithms [20, 71] that can find

the degeneracy order in O(m + n) time using O(n) words. We show that,

given a d, we can output the vertices of a d-degenerate graph in O(m + n)

time using O(n lg(m/n)) bits of space in the degeneracy order. We can even

detect if the graph is d-degenerate in the process. As m is O(nd), we have

an O(nd)-bit algorithm which is more space efficient if d is o(lg n) (this is the

case, for example, in planar graphs or trees).

– In Section 3.8, we show an even improved algorithm for these problems using

some very recent reults of [99] and some new observations. These algorithms

fare well for dense graphs than the previously described results. Finally we

conclude with an unified linear time and space efficient result concerning DFS

and many of its applications.
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3.1.2 Related work

Regarding the data structure we develop to support the findany operation, Elmasry et al.

[Lemma 2.1, [69]] state a data structure (without proof) that supports all the operations

i.e., insert, search, delete and findany (they call it some id) among others, in constant

time. But their data structure takes O(n) bits of space where the constant in the O term

is not explicitly stated. Since the publication of our result, Hagerup and Kammer [94]

have independently reported a structure with n + o(n). Though their lower order (the

little “oh”) term O(n/ lg n) is better than ours which is O(n lg lg n/ lg n), we believe that

our structure is a lot simpler and supports a smaller set of operations, yet sufficient for the

space efficient BFS implementation. Furthermore, we do provide a few other applications

of our structure also. Recently, Poyias et al. [117] considered the problem of compactly

representing a rewritable array of bit-strings, and to achieve that they used our findany

structure in their algorithms.

Brodal et al. [32] considered a version of the findany operation where the goal was

to find any element of the set and return its rank (the number of elements smaller than

that). For that they gave a non-constant lower bound, though they don’t assume that the

elements are from a bounded universe. They give a randomized data structure that takes

a constant amortized time per operation. However their main objective was to provide

time tradeoffs between operations supported by the data structure and they didn’t worry

about space considerations. We note that this operation and their setup is different from

the findany query we support.

3.1.3 Preliminaries

Representing a Vector: We will use the following theorem from [60]:

Theorem 3.1. [60] On a Word RAM, one can represent a vector A [1..n] of elements

63



from a finite alphabet Σ using n lg |Σ|+O(lg2 n) bits1, such that any element of the vector

can be read or written in constant time.

Rank-Select: We also make use of the following well-known theorem.

Theorem 3.2. [49, 92, 109] We can store a bitstring O of length n with additional o(n)

bits such that rank and select operations (defined below) can be supported in O(1) time.

Such a structure can also be constructed from the given bitstring in O(n) time.

Here the rank and select operations are defined as following:

• ranka(O, i) = number of occurrences of a ∈ {0, 1} in O[1, i], for 1 ≤ i ≤ n;

• selecta(O, i) = position in O of the i-th occurrence of a ∈ {0, 1}.

3.2 Maintaining dictionaries under findany operation

We consider the data structure problem of maintaining a set S of elements from {1, 2, . . . n}

to support the following operations in constant time.

• insert (i): Insert element i into the set.

• search (i): Determine whether the element i is in the set.

• delete (i): Delete the element i from the set if it exists in the set.

• findany: Find any element from the set and return its value. If the set is empty,

return a NIL value.

Note that there exist several solutions for this problem in the data structure literature

already even though their main focus is different than ours. For example it is trivial

1The data structure requires O(lg n) precomputed word constants, thus the second order O(lg2 n)
bits.

64



to support the first three operations in constant time using n bits of a characteristic bit

vector (CBV) where the i-th bit of the vector is set to 1 if i ∈ S and is set 0 otherwise. We

could support the findany operation by keeping track of one of the elements, but once that

element is deleted, we need to find another element to answer a subsequent findany query.

This might take O(n) time in the worst case. But this is easy to support in constant time

if we have the elements stored in a linked list which takes O(n lg n) bits. One could also

use the dynamic rank-select (DRS) structure where insert, delete and findany operations

take O(lg n/ lg lg n) time, and search takes O(1) time [96, 118]. Another approach would

be to use the classical balanced binary search tree (BBST) to support these operations

where the dictionary operations take O(lg n) time and findany takes O(1) time. This

can be slightly improved by using the van Emde Boas tree (vEB) [133]. One can further

improve the results for balanced binary search trees and van Emde Boas trees by using

the ‘dynamic range report’ structure (DRR) of Mortensen et al. [108], though it still

lacks the time and space bound we want here. Our main result in this section is that the

findany operation, along with the other three, can be supported in constant time using

o(n) additional bits.

3.2.1 Findany dictionary

Theorem 3.3. A set of elements from a universe of size n can be maintained using

n + o(n) bits to support insert, delete, search and findany operations in constant time.

We can also enumerate all elements of the set (in no particular order) in O(k + 1) time

where k is the number of elements in the set. The data structure can be initialized in

O(1) time.

Proof. Let S be the characteristic bit vector of the set having n bits. We follow a two

level blocking structure of S, as in the case of succinct structures supporting rank and

select [49, 109]. However, as S is ‘dynamic’ (in that bit values can change due to insert
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and delete), we need more auxiliary information. In the discussion below, sometimes we

omit floors and ceilings to keep the discussion simple, but they should be clear from the

context.

We divide the bit vector S into n/ lg2 n blocks of consecutive lg2 n bits each, and

divide each such block into up to 2 lg n sub-blocks of size d(lg n)/2e bits each. We call a

block (or sub-block) non-empty if it contains at least a 1. We maintain the non-empty

blocks, and the non-empty sub-blocks within each block in linked lists (not necessarily

in order). Within a sub-block, we find the first 1 or the next 1 by a table look up. We

provide the specific details below.

First, we maintain an array number indicating the number of 1s in each block, i.e.,

number[i] gives the number of 1s in the i-th block of S. It takes O(n lg lg n/ lg2 n) bits as

each block can have at most lg2 n elements of the given set. Then we maintain a queue

(say implemented in a space efficient resizable array [33]) block-queue having the block

numbers that have a 1 bit, and new block numbers are added to the list as and when

new blocks get 1. It can have at most n/ lg2 n elements and so has O(n/ lg2 n) indices

taking totally O(n/ lg n) bits. In addition, every element in block-queue has a pointer

to another queue of sub-block numbers of that block that have an element of S. Each

such queue has at most 2 lg n elements each of size at most lg lg n bits each (for the sub-

block index). Thus the queue block-queue along with the queues of sub-block indices takes

O(n lg lg n/ lg n) bits. We also maintain an array, block-array, of size n/ lg2 n where block-

array[i] points to the position of block i in block-queue if it exists, and is a NIL pointer

otherwise and array, sub-block-array, of size 2n/ lg n where sub-block-array[i] points to the

position of the subblock i in its block’s queue if its block was present in block-queue, and

is a NIL pointer otherwise. So, block-array takes n/ lg n bits and sub-block-array takes

2n lg lg n/ lg n bits.

We also maintain a global table T precomputed that stores for every bitstring of size

d(lg n)/2e, and a position i, the position of the first 1 bit after the i-th position. If there
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is no ‘next 1’, then the answer stored is −1 indicating a NIL value. The table takes

O(
√
n(lg lg n)2) bits. This concludes the description of the data structure that takes

n+O(n lg lg n/ lg n) bits. See Figure 2.1 for an illustration.

b b b

b b

b b

b b b

Number

Block array

Block queue

Sub-block array

Characteristic Vector

n

lgn
2

b b

lg2 n

b b b

b b bb b b b b b

Sub-block queue

lgn
lg lgn

Figure 3.1: An illustration of the inner working details of our findany data structure.
The precomputed table is not shown in the diagram.

Now we explain how to support each of the required operations. Membership is the

easiest: just look at the i-th bit of S and answer accordingly. In what follows, when

we say the ‘corresponding bit or pointer’, we mean the bit or the pointer corresponding

to the block or the sub-block corresponding to an element, which can be determined in

constant time from the index of the element. To insert an element i, first determine from

the table T , whether there is a 1 in the corresponding sub-block (before the element is

inserted), set the i-th bit of S to 1, and increment the corresponding value in number. If

the corresponding pointer of block-array was NIL, then insert the block index to block-

queue at the end of the queue, and add the sub-block corresponding to the i-th bit

into the queue corresponding to the index of the block in block-queue, and update the
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corresponding pointers of block-array and sub-block-array. If the corresponding bit of

block-array was not NIL (the big block already had an element), and if the sub-block did

not have an element before (as determined using T ), then find the position of the block

index in block-queue from block-array, and insert the sub-block index into the queue of

that block at the end of the queue. Update the corresponding pointer of sub-block-array.

To support the delete operation, set the i-th bit of S to 0 (if it was already 0, then there

is nothing more to do) and decrement the corresponding number in number. Determine

from the table T if the sub-block of i has a 1 (after the i-th bit has been set to 0). If not,

then find the index of the sub-block from the arrays block-array and sub-block-array and

delete that index from the block’s queue from block-queue. If the corresponding number

in number remains more than 0, then there is nothing more to do. If the number becomes

0, then find the corresponding block index in block-queue from the array block-array, and

delete that block (along with its queue that will have only one sub-block) from block-

queue. Update the pointers in block-array and sub-block-array respectively. As we don’t

maintain any order in the queues in block-queue, if we delete an intermediate element

from the queue, we can always replace that element by the last element in the queue

updating the pointers appropriately.

To support the findany operation, we go to the tail of the queue block-queue, if it is

NIL, we report that there is no element in the set, and return the NIL value. Otherwise,

go to the block at the tail of block-queue, and get the first (non-empty) sub-block number

from the queue, and find the first element in the sub-block from the table T , and return

the index of the element.

To enumerate the elements of the set, we traverse the list block-queue and the queues

of each element of block-queue, and for each sub-block in the queues, we find the next 1

in constant time using the table T and output the index.

To enable initialization in O(1) time, with each entry of the block (sub-block) queue,

we also store the block index corresponding to that entry – analagous to the “on-the-fly
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array initialization” technique of [Exercise 2.12 of [3], Section III.8.1 of [107], [83]], for

example. The (sub) block index stored with the entries in the (sub) block queue act as

the “back pointers” to the (sub) block-array. Also, instead of storing the precomputed

tables to compute the ‘first 1 bit after the i-th position’ operation, we can support the

operation using O(1) word operations [67].

3.2.2 Extension

We generalize the data structure of the last section to maintain a collection of more than

one disjoint subsets of the given universe to support the insert, delete, membership and

findany operations. In this case, insert, delete and findany operations should come with

a set index (to be searched, inserted or deleted).

Theorem 3.4. A collection of c disjoint sets that partition the universe of size n can be

maintained using n lg c+o(n) bits to support insert, delete, search and findany operations

in constant time. We can also enumerate all elements of any given set (in no particular

order) in O(k + 1) time where k is the number of elements in the set.

Proof. The higher order term is for representing the (generalized) characteristic vector

S where S[i] is set to the number (index) of the set where the element is present. From

Theorem 3.1, S can be represented using n lg c + o(n) bits so that the i-th value can be

retrieved or set in constant time. The rest of the data structures and the algorithms

are as in the proof of Theorem 3.3 (hence the extra o(n) bits), we have a copy of such

structures for each of the c sets.
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3.3 Breadth First Search (BFS)

3.3.1 Using 2n+ o(n) bits

We explain how breadth first search (BFS) can be performed in a space efficient manner

using the data structure of Theorem 3.4. Our goal is to output the vertices of the graph

in the BFS order. We start as in the textbook BFS by coloring all vertices white. The

algorithm grows the search starting at a vertex s, making it grey and adding it to a

queue. Then the algorithm repeatedly removes the first element of the queue, and adds

all its white neighbors at the end of the queue (coloring them grey), coloring the element

black after removing it from the queue. As the queue can store up to O(n) elements, the

space for the queue can be O(n lg n) bits. To reduce the space to O(n) bits, we crucially

observe the following two properties of BFS:

• Elements in the queue are only from two consecutive levels of the BFS tree.

• Elements belonging to the same level can be processed in any order, but elements

of the lower level must be processed before processing elements of the higher level.

The algorithm maintains four colors: white, grey1, grey2 and black, and represents

the vertices with each of these colors as sets W,S1, S2 and B respectively using the data

structure of Theorem 3.4. It starts with initializing S1 (grey1) to s, S2 and B as empty

sets and W to contain all other vertices. Then it processes the elements in each set S1

and S2 switching between the two until both sets are empty. As we process an element

from Si, we add its white neighbor to Si+1 mod2 and delete it from Si and add it to B.

When S1 and S2 become empty, we scan the W array to find the next white vertex and

start a fresh BFS again from that vertex. As insert, delete, membership and findany

operations take constant time, and we are maintaining four sets, we have from Theorem

3.4,
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Theorem 3.5. Given a directed or undirected graph G, its vertices can be output in a

BFS order starting at a vertex using 2n+ o(n) bits in O(m+ n) time.

Note that, we don’t need to build the findany structure on top of B and W i.e., they

can be implemented as plain bitmaps. The findany structures are only required on sets

S1 and S2 respectively to efficiently find grey vertices.

3.3.2 Using n lg 3 + o(n) bits

Here we slightly deviate from the theme of the chapter and show that we can improve

the space further for performing BFS if we are willing to settle for more than a linear

amount of time. We provide the algorithms next. We will have three colors, one for

the white unexplored vertices and two colors for those explored including those currently

being explored. The two colors indicate the parity of the level (the distance from the

starting vertex) of the explored vertices. Thus the starting vertex s is colored 0 to mark

that its distance from s is of even length and every other vertex is colored 2 to mark them

as unexplored (or white). We simply have these values stored in the representation of

Theorem 3.1 using n lg 3+O(lg2 n) bits and we call this as the color array. The algorithm

repeatedly scans this array and in the i-th scan, it changes all the 2 neighbors of i mod 2

to i+ 1 mod 2. i.e., in one scan of the array, the algorithm changes all the 2-neighbors of

all the 0 vertices to 1, and in the next, it changes all the 2-neighbors of all of the 1 vertices

to 0. The exploration (of the connected component) stops when in two consecutive scans

of the list, no 2 neighbor is found. Note that for those vertices which would have been

colored black in the normal BFS, none of its neighbors will be marked 2, and so the

algorithm will automatically figure them as black. The running time of O(mn) follows

because each scan of the list takes O(m) time (to go over neighbors of vertices with one

color, some of which could be black) and at most n+ 2 scans of the list are performed as

in each scan (except the last two), the color of at least one vertex marked 2 is changed.
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Thus we have the following theorem,

Theorem 3.6. Given a directed or undirected graph, its vertices can be output in a BFS

order starting at a vertex using n lg 3 +O(lg2 n) bits and in O(mn) time.

The O(m) time for each scan of the previous algorithm is because while looking for

vertices labelled 0 that are supposed to be ‘grey’, we might cross over spurious vertices

labelled 0 that are ‘black’ (in the normal BFS coloring). To improve the runtime further,

we maintain two queues Q0 and Q1 each storing up to n/ lg2 n values to find the grey 0

and grey 1 vertices quickly, in addition to the color array that stores the values 0, 1 or

2. We also store two boolean variables, overflow-Q0, overflow-Q1, initialized to 0 and to

be set to 1 when more elements are to be added to these queues (but they don’t have

room). Now the algorithm proceeds in a similar fashion as the previous algorithm except

that, along with marking corresponding vertices 0 or 1 in the color array, we also insert

them into the appropriate queues. i.e. when we expand vertices from Q0 (Q1), we insert

their (white) neighbors colored 2 to Q1 (Q0 respectively) apart from setting their color

entries to 1 (0 respectively). Due to the space restriction of these queues, it is not always

possible to accomodate all the vertices of some level during the execution of BFS. So,

when we run out of space in any of these queues, we continue to make the changes (i.e.

2 to 1 or 2 to 0) in the color array directly without adding those vertices to the queue,

and we also set the corresponding overflow bit.

Now instead of scanning the color array for vertices labelled 0 or 1, we traverse the

appropriate queues spending time proportional to the sum of the degree of the vertices

in the level. If the overflow bit in the corresponding queue is 0, then we simply move on

to the next queue and continue. When the overflow bit of a queue is set to 1, then we

switch to our previous algorithm and scan the array appropriately changing the colors of

their white neighbors and adding them to the appropriate queue if possible. It is easy to

see that this method correctly explores all the vertices of the graph. The color array uses

n lg 3 +O(lg2 n) bits of space. And, for other structures, Q0, Q1 and other variables, we
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need at most O(n/ lg n) bits. So, overall the space requirement is n lg 3 + o(n) bits. To

analyse the runtime, notice that as long as the overflow bit of a queue is 0, we spend time

proportional the number of neighbors of the vertices in that level, and we spend O(m)

time otherwise. When an overflow bit is 1, then the number of nodes in the level is at

least n/ lg2 n and this can not happen for more than lg2 n levels where we spend O(m)

time each. Hence, the total runtime is O(m lg2 n).

Theorem 3.7. Given a directed or undirected graph, its vertices can be output in a BFS

order starting at a vertex using n lg 3 + o(n) bits of space and in O(m lg2 n) time.

Remark: We can slightly optimize the previous algorithm by observing the fact that a

vertex v belongs to an overflowed level then v is expanded twice i.e., first time when the

algorithm was expanding vertices from the queue and deleting them. And, secondly, as

the overflow bit is set, the algorithm switches to our previous algorithm of Theorem 3.6

and scan the color array appropriately changing the colors of their white neighbors and

adding them to the appropriate queue if possible. We can avoid this double expansion by

checking the overflow bit first and if this bit is set, instead of taking vertices out of the

corresponding queue and expanding, the algorithm can directly start working with the

color array. We can still correctly retrieve all the vertices by checking the same condition.

This ensures that all the vertices which belong to an overflowed level won’t be expanded

twice.

Note that by making the sizes of the two queues to O(n/(f(n) lg n)) for any (slow

growing) function f(n), the space required for the queues will be O(n/f(n)) bits and the

running time will be O(mf(n) lg n).

Theorem 3.8. Given a directed or undirected graph, its vertices can be output in a BFS

order starting at a vertex using n lg 3 +O(n/f(n)) bits and in O(mf(n) lg n) time where

f(n) is any function of n such that 1 ≤ f(n) ≤ n.
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Since the appearance of our result in [14], Hagerup et al. [94] presented an implemen-

tation of BFS taking n lg 3+O(n/ lg n) bits of space and the optimal O(m+n) time, thus

improving the result of our Theorem 3.8. But, note that, in our algorithm of Theorem

3.6, we improved the space (in the second order) even further than what is needed in

their algorithm [94] albeit with degradation in time. We do not know whether we can

reduce the space further (to possibly n + o(n) bits) while still maintaining the runtime

to O(m lgc n) for some constant c or even O(mn). We leave this as an open problem.

However, in the next section we provide such an algorithm for the Minimum Spanning

Tree (MST) problem.

3.4 Minimum Spanning Tree (MST)

In this section, we give a space efficient implementation of Prim’s algorithm [51] to find

a minimum spanning tree. Here we are given a weight function w : E → Z. We also

assume that the weights of non-edges are ∞ and that the weights can be represented

using O(lg n) bits. In particular, we show the following,

Theorem 3.9. A minimum spanning forest of a given undirected weighted graph, where

the weights of any edge can be represented in O(lg n) bits, can be output using n +

O(n/f(n)) bits and in O(m lg nf(n)) time, for any function f(n) such that 1 ≤ f(n) ≤ n.

Proof. Our algorithm is inspired by the MST algorithm of [69], but we work out the

constants carefully. Prim’s algorithm starts with initializing a set S with a vertex s. For

every vertex v not in S, it finds and maintains d[v] = min{w(v, x) : x ∈ S} and π[v] = x

where w(v, x) is the minimum among {w(v, y) : y ∈ S}. Then, it repeatedly deletes

the vertex with the smallest d value from V \ S adding it to S. Then, the d values are

updated by looking at the neighbors of the newly added vertex.

The space for d values can take up to O(n lg n) bits. To reduce the space to O(n) bits,
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we find and keep, in O(n) time, the set M of the smallest n/(f(n) lg n) values among

the d values of the elements of V \ S in a binary heap. This takes O(n/f(n)) bits and

O(n) time. We maintain the set S in a bit vector taking n bits. We maintain the indices

of M in a balanced binary search tree, and each node (index v) has a pointer to its

position in the heap of the d values, and also stores the index π[v]. Thus we can think

of M as consisting of triples (v, d[v], π[v]) where d[v] is actually a pointer to d[v] in the

heap. The storage for M takes O(n/f(n)) bits. We also find and store the max value of

M in a variable Max that also has the vertex label that achieves the maximum. Now

we execute Prim’s algorithm by repeatedly deleting elements only from M and updating

(decreasing) values in M until M becomes empty. In particular, while updating the values

we check if the new value is larger than the variable Max. In such cases, we don’t do

anything. Otherwise, we insert the new value in M and delete the current vertex realizing

the maximum value and we proceed further till M becomes empty. Then (for f(n) lg n)

times) we find the next smallest n/(lg nf(n)) values from V \M \ S and continue the

process.

Finding the d values of every element in L = V \ S \M requires an overall O(m)

time (for finding the minimum among all edges incident with vertices in S), and finding

the smallest n/f(n) lg n values among them take O(n) time. These steps are repeated

O(f(n) lg n) times resulting in the overall runtime of O(mf(n) lg n) .

In the heap, n − 1 deletemins and up to m decrease key operations are executed

which take O((m + n) lg n) time by using a binary heap. Note that more sophisticated

(for example, Fibonacci heap) implementations are unnecessary as the other operations

dominate the running time.

Note that, for all the algorithms discussed in this section, we can assume that the

input graph is represented as the standard adjacency list [51], instead of the more powerful

adjacency array with cross pointers representation.
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3.5 DFS and its applications using O(m + n) bits

The classical and standard implementation of DFS using a stack and color array takes

O(m+n) time and O(n lg n) bits of space. Improving on this, recently Elmasry et al. [69]

showed the following,

Theorem 3.10. A DFS traversal of a directed or undirected graph G with n vertices and

m edges can be performed using O(n lg lg n) bits of space and O(m+ n) time.

In this section, we start by improving upon the results of Theorem 3.10 of Elmasry et

al. [69] and Theorem 4 of Asano et al. [9] by showing an O(n)-bit DFS traversal method

for sparse graphs that runs in linear time. Using this DFS as backbone, we provide a space

efficient implementation for computing several other useful properties of an undirected

graph.

3.5.1 DFS

In what follows we describe how to perform DFS in O(n+m) time using O(n+m) bits

of space. Note that, this is better (in terms of time) than both the previous solutions

for sparse graphs (when m = o(n lg lg n)) with same space bounds. The class of sparse

graphs includes a large class of graphs including planar graphs, bounded genus, bounded

treewidth, bounded degree graphs, and H-minor-free graphs. These are also the majority

of the graph classes which arise in practice, thus we believe that an implementation of

our algorithm would be very useful.

Recall that, our input graphs G = (V,E) are represented using the standard adjacency

array along with cross pointers. We describe our algorithm for directed graphs, and

mention the changes required for undirected graphs. Central to our algorithm is an

encoding of the out-degrees of the vertices in unary. Let V = {1, 2, · · · , n} be the vertex

set. The unary degree sequence encoding O of the directed graph G has n 0s to represent
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the n vertices and each 0 is followed by a number of 1s equal to the out-degree of that

vertex. Moreover, if d is the degree of vertex vi, then d 1s following the i-th 0 in the

O array corresponds to d out-neighbors of vi (or equivalently the edges from vi to the

d out-neighbors of vi) in the same order as in the out-adjacency array of vi. Clearly O

uses n+m bits and can be obtained from the out-neighbors of each vertex in O(m+ n)

time. We use another bit string E of the same length where every bit is initialized to 0.

The array E will be used to mark the tree edges of the DFS as we build the DFS tree,

and will be used to backtrack when the DFS has finished exploring a vertex. The bits in

E are in one-to-one correspondence with bits in O. If (vi, vj) is an edge in the DFS tree

where vi is the parent of vj, and suppose k is the index of the edge (vi, vj) in O, then the

corresponding location in the E array is marked as 1 during DFS. Thus once DFS finishes

traversing the whole graph, the number of ones in the E array is exactly the number of

tree edges. We also store another array, say C, having entries from {white, gray, black}

with the usual meaning i.e., each vertex v remains white until it is visited, is colored gray

when DFS visits v for the first time, and is colored black when its out-adjacency array

has been checked completely. We can represent C using Theorem 3.1 in n lg 3 + o(n) bits

so that individual entries can be accessed or modified in constant time. The bitvector

O is represented using the static rank-select data structure of Theorem 3.2 that uses

additional o(m+n) bits. So overall we need 2m+ (lg 3 + 2)n+ o(m+n) bits to represent

the arrays O,E and C.

Suppose vj is a child of vi in the final DFS tree. We can think of the DFS procedure

as performing the following two steps repeatedly until all the vertices are explored. First

step takes place when DFS discovers a vertex vj for the first time, and as a result vj’s

color changes to gray from white. We call this phase as forward step. When DFS

completes exploring vj i.e. the subtree rooted at vj in the DFS tree, it performs two

tasks subsequently. First, it backtracks to its parent vi, and then finds in vi’s list the

next white neighbor to explore. The latter part is almost similar to the forward step

described before. We call the first part alone as backtrack step. In what follows, we
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describe how to implement each step in detail.

We start our DFS with the starting vertex, say r, changing its color to gray in the

color array C. Then, as in the usual DFS algorithm, we scan the out-adjacency list of r,

and find the first white neighbor, say v, to make it gray. When the edge (r, v) is added

to the DFS tree, we mark the position corresponding to the edge (r, v) in E to 12. We

continue the process with the new vertex making it gray until we encounter a vertex w

that has no white out-neighbors. At this point, we will color the vertex w black, and we

need to backtrack.

To find the vertex to backtrack, we do the following. We go to w’s in-neighbor list to

find a gray vertex which is its parent. For each gray vertex t in w’s in-neighbor list, we

follow the cross pointers to reach w in t’s out-adjacency list and check its corresponding

entry (t, w) in E array (using select operation to find w after t-th 0). Observe that, among

all these gray in-neighbors of w, only one edge out of them to w will be marked in E as

this is the edge that DFS traversed while going in the forward direction to w. So once we

find an in-neighbor t such that the position corresponding to (t, w) in E is marked and t

is gray, we know that w’s parent is t in the DFS tree. Also the cross pointer puts us in

the position of w in t’s out-neighbor list, and we start from that position to find the next

white vertex to explore DFS. So the only extra computation from the standard DFS we

do is to spend time proportional to the degree of each black vertex (to find its parent to

backtrack) and so overall there is an extra overhead of O(m) time. The navigation we do

to determine the tree edges are on O which is a static array, and so from Theorem 3.2,

all these operations can be performed in constant time. Thus we have

Theorem 3.11. A DFS traversal of a directed graph G can be performed in O(n + m)

time using (2m+ (lg 3 + 2)n) + o(m+ n) bits.

For undirected graphs, first observe that the unary degree sequence encoding O takes

2m+ n bits as each edge appeares twice. As E also takes 2m+ n bits, overall we require

2Note that to implement this step, we only require the select0 operation in Theorem 3.2.
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(4m+ (lg 3 + 2)n) + o(m+n) bits of space. As for DFS, observe that the forward step, as

defined before, can be implemented in exactly the same manner. It is crucial to mention

one subtle point that, while marking an edge (vi, vj), we don’t mark its other entry i.e.

(vj, vi). So when DFS finishes, for tree edges exactly one of the two entries will be marked

one in E array. Backtracking step is now little easier as we don’t have to switch between

two lists. We essentially follow the same steps in the adjacency array to check for a vertex

t in w’s array such that t is gray and the corresponding entry for the edge (t, w) is marked

in E. Once found, we start with the next white vertex. Hence,

Theorem 3.12. A DFS traversal of an undirected graph G can be performed in O(n+m)

time using (4m+ (lg 3 + 2)n) + o(m+ n) bits.

We can decrease the space slightly by observing that, we are not really using the

third color black. More specifically, we can continue to keep a vertex gray even after its

subtree has been explored. As we only explore white vertices always and never expand

gray or black, the correctness follows immediately. Note that this observation is true in

the standard DFS implementation as well. This gives us the following.

Theorem 3.13. A DFS traversal of a directed graph G can be performed in O(n + m)

time using (2m+ 3n) + o(m+ n) bits. For undirected graphs, the space required is (4m+

3n) + o(m+ n) bits.

3.5.2 Applications of DFS

One of the classical applications of DFS is to determine, in a connected undirected graph,

all the cut vertices and bridges which are defined as, respectively, the vertices and edges

whose removal results in a disconnected graph. Since the early days of designing graph

algorithms, researchers have developed several approaches to test biconnectivity and 2-

edge connectivity, find cut vertices and bridges of a given undirected graph. Most of

these methods use depth-first search as the backbone to design the main algorithm. For
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biconnectivity and 2-edge connectivity, the classical algorithm due to Tarjan [128, 129]

computes the so-called “low-point” values (which are defined in terms of a DFS-tree) for

every vertex v, and checks some conditions using that to determine cut vertices, bridges of

G and check whether G is 2-edge connected or biconnected. Brandes [31] and Gabow [85]

gave considerably simpler algorithms for testing biconnectivity by using simple path-

generating rules instead of low-points; they call these algorithms path-based. All of these

algorithms take O(m + n) time and O(n) words of space. Another algorithm due to

Schmidt [124] is based on chain decomposition of graphs to determine biconnectivity

and 2-edge connectivity. Implementing this algorithm takes O(m + n) time and O(m)

words of space. In what follows, we present a space efficient implementation for Schmidt’s

algorithm based on the DFS algorithm we designed in the previous section. We summarize

our result in the theorem below.

Theorem 3.14. Given a connected undirected graph G, in O(m + n) time and using

O(m+ n) bits of space we can determine whether G is 2-vertex (and/or edge) connected.

If not, in the same amount of time and space, we can compute all the bridges and cut

vertices of the graph.

Schmidt [123] introduced a decomposition of the input graph that partitions the edge

set of the graph into cycles and paths, called chains, and used this to design an algorithm

to find cut vertices and biconnected components [124] and also to test 3-connectivity [123]

among others. We briefly recall Schimdt’s algorithm and its main ingredient of chain

decomposition. The algorithm first performs a depth first search on G. Let r be the

root of the DFS tree T . DFS assigns an index to every vertex v i.e. the time vertex

v is discovered for the first time (discovery time) during DFS. Call it depth-first-index

(DFI(v)). Imagine that the the back edges are directed away from r and the tree edges

are directed towards r. The algorithm decomposes the graph into a set of paths and

cycles called chains as follows. See Figure 2.2 for an illustration.

First we mark all the vertices as unvisited. Then we visit every vertex starting at r
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Figure 3.2: Illustration of Chain Decomposition. (a) An input graph G. (b) A DFS
traversal of G and the resulting edge-orientation along with DFIs. (c) A chain decompo-
sition D of G. The chains D2 and D3 are paths and rest of them are cycles. The edge
(V5, V6) is bridge as it is not contained in any chain. V5 and V6 are cut vertices.

in increasing order of DFI, and do the following. For every back edge e that originates

at v, we traverse a directed cycle or a path. This begins with v and the back edge e and

proceeds along the tree towards the root and stops at the first visited vertex or the root.

During this step, we mark every encountered vertex visited. This forms the first chain.

Then we proceed with the next back edge at v, if any, or move towards the next v in

increasing DFI order and continue the process. Let D be the collection of all such cycles

and paths. Notice that, the cardinality of this set is exactly the same as the number of

back edges in the DFS tree as each back edge contributes to one cycle or a path. Also as

initially every vertex is unvisited, the first chain would be a cycle as it would end in the

starting vertex. Schmidt proved the following theorem.
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Theorem 3.15. [124] Let D be a chain decomposition of a connected graph G(V,E).

Then G is 2-edge-connected if and if the chains in D partition E. Also, G is 2-vertex-

connected if and if δ(G) ≥ 2 (where δ(G) denotes the minimum degree of G) and D1 is

the only cycle in the set D where D1 is the first chain in the decomposition. An edge e

in G is bridge if and if e is not contained in any chain in D. A vertex v in G is a cut

vertex if and if v is the first vertex of a cycle in D \D1.

The algorithm (the tests in Theorems 3.15) can be implemented easily in O(m + n)

time using O(m+ n) words as we can store the DFIs and entire chain decomposition D.

To reduce the space to O(m+ n) bits, we first perform a depth first search of the graph

G (using Theorem 3.12) and recall that at the end of the DFS procedure, we have the

color array C with all colors black and the array E which encodes the DFS tree. Here

for a tree edge (i, j) where i is closer to the root, the position corresponding to the edge

(i, j) is marked 1 in E and that corresponding to (j, i) is marked 0, and the backedges

are marked 0. To implement the chain decomposition, we do not have space to store the

chains or the DFS indices. To handle the latter (DFI), we (re)run DFS and then use

Schmidt’s algorithm along with DFS in an interleaved way. Towards the end, we recolor

all the vertices to white. To handle the former, we use two more arrays, one to mark the

vertices visited in the chain decomposition, called visited and another array M , to mark

the edges visited during the chain decomposition. The array M has size (n + 2m) bits,

and it has the same initial structure as E i.e. 0’s separated by 1’s where 0’s denote edges

and 1’s denote vertices. The details of forming the chain decomposition and finding all

cut vertices and bridges using these arrays O (original outdegree encoding), E (the DFS

tree), C (color array), visited and M (to mark edges) are explained below.

Proof. of Theorem 3.14. We start at the root vertex r, and using the array E, find the

first ‘back edge’ (non-tree edge) (r, x) to r. This can be found by going to the r-th 0 in

O and then to the corresponding position in E that represents the vertex r (note that

E has a lot more zeroes, and so we should get to the corresponding 0 of r in E by first

82



getting to the corresponding position in O). If O has 1s after the corresponding 0, then

we look for the first 0 after the corresponding position in E to find the back edge (as all

the tree edges are marked 1). We mark r and x visited (if they were unvisited before)

and mark both copies of the edge (r, x) (unlike what we do in the forward step of DFS)

using the cross pointer in M . Now to obtain the chain, we need to follow the tree edges

from x. We use the ‘backtracking’ procedure we used earlier for DFS. We look for an

(the only) edge marked 1 in E out of the edges incident on x by scanning the adjacency

list, and that gives the parent y of x (Here is where we use the fact we only mark one

copy of the edge as we explore the DFS tree.).

We continue after marking y visited, and the edge (x, y) (both copies) in M until we

reach r or a visited vertex when we complete the chain. Now we continue from where

we left of in r’s neighborhood to look for the next back edge and continue this process.

Once we are done with back edges incident on r, we need to proceed to the next vertex

in DFS order. As we have not stored the Depth First Indices, we essentially (re)run the

DFS using the color array C. For this, we flush out the color array to make every vertex

white again. Note that we don’t make any changes to array E and O respectively. As

this DFS procedure is deterministic, it will follow exactly the same sequence of paths like

before, ultimately leading to the same DFS tree structure, and note that, this structure

is already saved in array E. Conceptually, this whole process could be thought of as

one step of DFS followed by multiple backtracking (for each back edge coming out of a

vertex) and repeat till we visit all the vertices.

Clearly, the amount of space taken is O(m + n) bits. To analyze the runtime, note

that, we first perform a DFS traversal which takes linear time. At the second step, we

basically perform one more round of DFS but in lazy fashion as this step comprises of one

forward step followed by some backtracking. As a visited node is never explored (using

the visited array), the overall runtime is O(m + n). Edge connectivity (Theorem 3.15)

can easily be checked using the array M once we have the chain decomposition. The
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bridges are the edges marked 0 in the array M . Cut vertices can be obtained and listed

out if and and when we reach the starting vertex while forming a chain, except at the

first chain (if exists). This completes the proof.

Combining all the main results from this section, we summarize our results in the

following theorem below,

Theorem 3.16. A DFS traversal of an undirected or directed graph G can be performed

in O(m + n) time using O(m + n) bits. In the same amount of time and space, given

a connected undirected graph G, we can perform a chain decomposition of G, and using

that we can determine whether G is 2-vertex (and/or edge) connected. If not, in the same

amount of time and space, we can compute all the bridges and cut vertices of G.

In what follows, we show in Section 3.6 how to improve the space bounds of Theo-

rem 3.16 keeping the same running time by applying different bookeeping technique but

essentially using the same algorithm itself.

3.6 DFS and its applications using O(n lg(m/n)) bits

As mentioned previously, one can easily implement the tests in Theorem 3.15 in O(m+n)

time using O(m) words, by storing the DFIs and the entire chain decomposition, D.

Theorem 3.16 shows how to perform the tests using O(m + n) bits and O(m + n) time.

The central idea there is to maintain the DFS tree using O(m + n) bits using an unary

encoding of the degree sequence of the graph. And later, build on top of it another

O(m+n) bits structure to perform chain decompositions and the other tests of Schimdt’s

algorithm. We first show how the space for the DFS tree representation can be improved

to O(n lgm/n) bits. Also note that, all the algorithms from the last section assume

that the input graph must be respresented as adjacency array with cross pointers. Our

algorithms in this section also get rid of this assumption. Here we only assume that the

84



input graph is represented as a standard adjacency array i.e., given a vertex v and an

integer k, we can access the k-th neighbor of vertex v in constant time. We remark that

this input representation was also used in [41, 99] recently to design various other space

efficient graph algorithms. We start by proving the following useful lemma.

Lemma 3.17. Given the adjacency array representation of an undirected graph G on

n vertices with m edges, using O(m) time, one can construct an auxiliary structure of

size O(n lg(m/n)) bits that can store a “pointer” into an arbitrary position within the

adjacency array of each vertex. Also, updating any of these pointers (within the adjacency

array) takes O(1) time.

Proof. We first scan the adjacency array of each vertex and construct a bitvector B as

follows: starting with an empty bitvector B, for 1 ≤ i ≤ n, if di is the length of the

adjacency array of vertex vi (i.e., its degree), then we append the string 0dlg die−11 to

B. The length of B is
∑n

i=1dlg die, which is bounded by O(n lg(m/n)). We construct

auxiliary structures to support select queries on B in constant time, using Theorem 3.2.

We now construct another bitvector P of the same size as B, which stores the required

pointers into the adjacency arrays of each vertex. The pointer into the adjacency array of

vertex vi is stored using the dlg die bits in P from position select(i− 1, B) + 1 to position

select(i, B), where select(0, B) is defined to be 0. Now, using the select operations on

B array and using constant time word-level read/write operations, one can easily access

and/or modify these pointers in constant time.

Given that we can maintain such pointers into the lists of every vertex, the following

lemma shows that, within the same time and space bounds, we can actually maintain the

DFS tree of a given graph G.

Lemma 3.18. Given a graph G with n vertices and m edges, in the adjacency array

representation in the read-only memory model, the representation of a DFS tree can be

stored using O(n lg(m/n)) additional bits, which can be constructed on the fly during the
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DFS algorithm.

Proof. We use the representation of Lemma 3.17 to store parent pointers into the ad-

jacency array of each vertex. In particular, whenever the DFS outputs an edge (u, v),

where u is the parent of v, we scan the adjacency array of v to find u and store a pointer

to that position (within the adjacency array of v). The additional time for scanning the

adjacency arrays adds upto O(m) which would be subsumed by the running time of the

DFS algorithm.

We call the representation of the DFS tree of Lemma 3.18 as the parent pointer

representation. Now given Lemma 3.17 and 3.18, we can simulate the DFS algorithm of

Theorem 3.12 to obtain an O(n lg(m/n)) bits and O(m + n) time DFS implementation.

The proof of Theorem 3.14 then uses another O(m + n) bits to construct the chain

decomposition of G and to perform the tests as mentioned in Theorem 3.15. We show

here how even the space for the construction of a chain decomposition and performing

the tests can be improved. We summarize our results in the following theorem below:

Theorem 3.19. A DFS traversal of an undirected or directed graph G can be performed

in O(m + n) time using O(n lg(m/n)) bits of space. In the same amount of time and

space, given a connected undirected graph G, we can perform a chain decomposition of

G, and using that we can determine whether G is 2-vertex (and/or edge) connected. If

not, in the same amount of time and space, we can compute and report all the bridges

and cut vertices of G.

Proof. Using Lemma 3.18 we can simulate the DFS algorithms of Theorem 3.11 and 3.12

to obtain an O(n lg(m/n)) bits and O(m+n) time DFS implementation. In what follows

we use this DFS algorithm to perform the tests in Theorem 3.15. With the help of the

parent pointer representation, we can visit every vertex, starting at the root r of the DFS

tree, in increasing order of DFI, and enumerate (or traverse through) all the non-tree

(back) edges of the graph as required in Schimdt’s algorithm as follows: for each node v
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in DFI order, and for each node u in its adjacency list, we check if u is a parent of v. If

so, then (u, v) is a tree edge, else it is a back edge. We maintain a bit vector visited of

size n, corresponding to the n vertices, initialized to all zeros meaning all the vertices are

unvisited at the beginning. We use visited array to mark vertices visited during the chain

decomposition. When a new back edge is visited for the first time, the algorithm traverses

the path starting with the back edge followed by a sequence of tree edges (towards the

root) untill it encounters a marked vertex, and also marks all the vertices on this path.

By checking whether the vertices are marked or not, we can also distinguish whether

an edge is encountered for the first time or has already been processed. Note that this

procedure constructs the chains on the fly.

To check whether an edge is a bridge or not, we first note that only the tree edges

can be bridges (back edges always form a cycle along with some tree edges). Also,

from Theorem 3.15, it follows that any (tree) edge that is not covered in the chain

decomposition algorithm is a bridge. Thus, to report these, we maintain a bitvector M

of length n, corresponding to the n vertices, initialized to all zeros. Whenever a tree

edge (u, v) is traversed during the chain decomposition algorithm, if v is the child of u,

then we mark the child node v in the bit vector M . After reporting all the chains, we

scan the bitvector M to find all unmarked vertices v and output the edges (u, v), where

u is the parent of v, as bridges. If there are no bridges found in this process, then G is

2-edge connected. To check whether a vertex is a cut vertex (using the characterization

in Theorem 3.15), we keep track the starting vertex of the current chain (except for the

first chain, which is a cycle), that is being traversed, and report that vertex as a cut

vertex if the current chain is a cycle. If there are no cut vertices found in this process

then G is 2-vertex connected. Otherwise, we keep one more array of size n bits to mark

which vertices are cut vertices. This completes the proof.

Note that, all of our algorithms in this section do not use cross pointers and hence,

we can just assume that the input graph G is represented via adjacency array i.e., given
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a vertex v and an integer k, we can access the k-th neighbor of vertex v in constant time.

3.7 Other applications using O(n lg(m/n)) bits

The following lemma can be proved along the same lines as the proof of Lemma 3.17.

Lemma 3.20. Given an undirected graph G on n vertices with m edges, one can con-

struct an auxiliary structure of size O(n lg(m/n)) bits that can store O(lg di)-bit satellite

information with vertex vi having degree di, in O(m) time. Also, the satellite information

associated with any vertex can be updated in O(1) time.

Using the above lemma, we show the following:

Theorem 3.21. Given a directed acyclic graph G, its vertices can be output in topologi-

cally sorted order using O(m+ n) time using O(n lg(m/n)) bits of space. The algorithm

can also detect if G is not acyclic.

Proof. A standard algorithm repeatedly outputs a vertex with indegree zero and deletes

that vertex along with its outgoing edges, until there are no more vertices. To implement

this, we maintain first the set Z of indegree 0 vertices in the data structure of Theorem 3.3

to support findany operation in constant time. This takes O(m + n) time and n + o(n)

bits. We also represent the indegree sequence of the vertices using the data structure of

Lemma 3.20 where the satellite information stored with vertex vi is its indegree. The

algorithm repeatedly finds any element from Z, outputs and deletes it from Z. Then, it

decrements the indegree of its out-neighbors, and includes them in Z if any of them has

become 0 (that can be determined in constant time as the indegrees are decremented) in

the process. If Z becomes empty even before all elements are output (that can be checked

using a counter or a bit vector), then at some intermediate stage of the algorithm, we did

not encounter a vertex with indegree zero which means that the graph is not acyclic.
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An undirected graph is d-degenerate if every induced subgraph of the graph has a

vertex with degree at most d. For example, a graph with degree at most d is d-degenerate.

A planar graph is 5-degenerate as every planar graph has a vertex with degree at most 5.

The degeneracy order of a d-degenerate graph is an ordering v1, v2, . . . vn of the vertices

such that vi has degree at most d among vi+1, vi+2, . . . vn. We show the following using

our data structure developed in this section.

Theorem 3.22. Given a d-degenerate graph G, its vertices can be output in d-degenerate

order using O(n lg(m/n)) bits and O(m + n) time. The algorithm can also detect if the

given graph is not d-degenerate.

Proof. As in the topological sort algorithm, we maintain the set Z of vertices whose degree

in the entire graph is at most d, using our findany data structure. This takes O(m + n)

time and n + o(n) bits. Then, we represent the degree sequence of the vertices using

the data structure of Lemma 3.20 where the satellite information stored with vertex vi is

xi = max{0, di − d} where di is the degree of the i-th vertex. The algorithm repeatedly

finds any element from Z, outputs and deletes it from Z. Then, it decrements the degree

of its neighbors, and includes them in Z if any of them has become 0. If Z becomes empty

even before all elements are output (that can be checked using a counter or a bitvector),

then at some intermediate stage of the algorithm, we did not encounter a vertex with

degree less than d, which means that the graph is not d-degenerate.

Note that, both the algorithms discussed in this section assume that the input graph

is represented as the standard adjacency list [51].

3.8 DFS and its applications using O(n lg lg n) bits

In what follows we show that for dense graphs we can achieve slightly better space bounds

for the problems mentioned above. Let T denote the DFS tree of G. Following Kammer
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et al. [99], we call a tree edge (u, v) of T with u being the parent of v full marked if there

is a back edge from a descendant of v to a strict ancestor of u, half marked if it is not

full marked and there exists a back edge from a descendant of v to u, and unmarked,

otherwise. They use this definition to prove the following theorem:

Theorem 3.23 ( [99]). Let T denote a DFS tree of a graph G with root r, then the

following holds:

1. every vertex u (except the root r) is a cut vertex exactly if at least one of the edges

from u to one of its children is either an unmarked edge or a half marked edge, and

2. root r is a cut vertex exactly if it has at least two children in T .

Now based on the above characterization and using the O(m+n) time and O(n lg lg n)

space DFS algorithm of Theorem 3.10, they gave O(m + n) time and O(n lg lg n) bits

algorithm to test/report if G has any cut vertex. Our main observation is that we can give

a similar characterization for bridges in G, and essentially using the same implementation

as theirs, we can also obtain O(m + n) time and O(n lg lg n) bits algorithms for testing

2-edge connectivity and reporting bridges of G. We start with the following lemma.

Lemma 3.24. A tree edge e = (u, v) in T is a bridge of G if and only if it is unmarked.

Proof. If e is unmarked, then no descendants of v reaches u or any strict ancestor of u,

so deleting e would result in disconnected graph, thus e has to be a bridge. On the other

direction, it is easy to see that if e is a bridge, it has to be an unmarked edge.

Now we state our theorem below.

Theorem 3.25. Given an undirected graph G, in O(m + n) time and O(n lg lg n) bits

of space we can determine whether G is 2-edge connected. If G is not 2-edge connected,

then in the same amount of time and space, we can compute and output all the bridges

of G.
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Proof. Using Lemma 3.24 and the exact implementation of using stack compression and

other tools of the algorithm provided in Section 3.2 of Kammer et al. [99], we can prove

the above theorem.

Now combining the results of Theorem 3.10 [69], Theorem 3.25 and the result of [99],

we obtain the following,

Theorem 3.26. A DFS traversal of an undirected or directed graph G can be performed

in O(m + n) time using O(n lg lg n) bits of space. In the same amount of time and

space, given a connected undirected graph G, we can test if G is 2-vertex (and/or edge)

connected. If not, in the same amount of time and space, we can compute and report all

the bridges and cut vertices of G.

Note that the space bound of Theorem 3.26 improves the results of Theorem 3.19 and

Theorem 3.16 for sufficiently dense graphs (when m = ω(n lg lg n) and m = ω(n lgO(1) n)

respectively) while keeping the same linear runtime. Thus combining all these results, we

have the following unified result.

Theorem 3.27. A DFS traversal of an undirected or directed graph G can be performed

in O(m + n) time using O(n.min{lg(m/n), lg lg n})) bits of space. In the same amount

of time and space, given a connected undirected graph G, we can test if G is 2-vertex

(and/or edge) connected. If not, in the same amount of time and space, we can compute

and report all the bridges and cut vertices of G.

3.9 Concluding remarks and open problems

We have provided several implementations of BFS focusing on optimizing space without

much degradation in time. In particular with 2n + o(n) bits we get an optimal linear

time algorithm whereas squeezing space further gives an algorithm with running time

O(mf(n) lg n) where f(n) can be any (extremely slow-growing) function of n. One can
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immediately obtain similar time-space tradeoffs for natural applications of BFS including

testing whether a graph is bipartite or to obtain all connected components of a graph. To

achieve this, we also provide a simple and space efficient implementation of the findany

data structure. This data structure supports in constant time, apart from the standard

insert, delete and membership queries, the operations findany and enumerate. Very

recently, Poyias et al. [117] considered the problem of compactly representing a rewritable

array of bit-strings, and for this, they used our findany data structure. It would be

interesting to find other such applications for our data structure. Using the findany

data structure, we also provide a space efficient implementation of the decrement data

structure which supports in constant time the decrement and check if any element is zero

operations. We use this decrement data structure to design space efficient algorithms

for performing topological sort in a directed acyclic graph and computing degeneracy

ordering of a given undirected graph. For the MST problem, we could reduce the space

further to n+ o(n) bits. It is an interesting question whether we can perform BFS using

n+ o(n) bits with a runtime of O(m lgc n) for some constant c or even O(mn).

For DFS, we provide an O(m+ n) time and O(n.min{lg(m/n), lg lg n})) bits of space

algorithm. For a large class of graphs including planar, bounded degree and bounded

treewidth graphs, this gives an O(n) bits and O(m + n) time DFS algorithm. Within

the same time and space bound, we also show how to test biconnectivity and 2-edge

connectivity, obtain cut vertices and bridges, and compute a chain decomposition of a

given undirected graph G. It is a challenging and interesting open problem whether DFS

and all these applications can be performed using O(m+n) time and O(n) bits for dense

graphs as well. In the next chapter, we show that we can come pretty close. I.e., we

can design O(n) bits algorithms for most of the problems considered in this chapter and

others, albeit with a slightly more than linear running time.
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Chapter 4

Time Efficient Linear Bits

Algorithms for DFS, MCS and

Applications

4.1 Introduction

In the last chapter our goal was to obtain as far as possible best space bounds for DFS,

BFS and many of their applications without compromising the linear running time. In

this chapter, we take a look at those problems from different a angle i.e., here we focus

on developing O(n) bits algorithms for them. As we see later, we often pay some extra

polylog multiplicative factor in the running time to achieve the goal of designing linear

bits algorithms. As in the previous chapter, here also we work with the same register

input model, and we assume that the input graphs G = (V,E) are represented using

adjacency array.
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4.1.1 Our results and organization of the chapter

First, as a warm up, we start with some simple applications of the space efficient DFS to

show the following.

• An O(m lg n lg lg n) time and O(n) bits of space algorithm to compute the strongly

connected components of a directed graph in Section 4.2.1.

In addition, we also give

• an algorithm to output the vertices of a directed acyclic graph in a topologically

sorted order in Section 4.2.2, and

• an algorithm to find a sparse (with O(n) edges) spanning biconnected subgraph of

an undirected biconnected graph in Section 4.2.3

both using asymptotically the same time and space used for DFS, i.e., using O(n) bits

and O(m lg lg n) time.

To develop fast and space efficient algorithms for other non-trivial graph problems

which are also applications of DFS, in Section 4.3, we develop and describe in detail a

space efficient tree covering technique, and use this in subsequent sections. This tech-

nique, roughly speaking, partitions the DFS tree into connected smaller sized subtrees

which can be stored using less space. Finally we solve the corresponding graph problem

on these smaller sized subtrees and merge the solutions across the subtrees to get an over-

all solution. All of these can be done using less space and not paying too much penalty

in the running time. Some of these ideas are borrowed from succinct tree representation

literature.

As the first application, we consider in Section 4.4.1, a space efficient implementation

of chain decomposition of an undirected graph. As we have seen in the previous chapter,
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this is an important preprocessing routine for an algorithm to find cut vertices, bicon-

nected components, cut edges, and also to test 3-connectivity [123] among others. We

provide an algorithm that takes O(m lg2 n lg lg n) time using O(n) bits of space, improv-

ing on previous implementations that took Ω(n lg n) bits [124] or Θ(m + n) bits [14] of

space.

In Section 4.4.2, we give improved space efficient algorithms for testing whether a

given undirected graph G is biconnected, and if G is not biconnected, we also show how

one can find all the cut vertices of G. For this, we provide a space efficient implementation

of Tarjan’s classical lowpoint algorithm [128]. Our algorithms take O(m lg n lg lg n) time

and O(n) bits of space. In Section 4.4.3, we provide a space efficient implementation for

testing 2-edge connectivity of a given undirected graph G, and producing cut edges of G

using O(m lg n lg lg n) time and O(n) bits of space.

Given a biconnected graph, and two distinguished vertices s and t, st-numbering is

a numbering of the vertices of the graph so that s gets the smallest number, t gets the

largest and every other vertex is adjacent both to a lower-numbered and to a higher-

numbered vertex. Finding an st-numbering is an important preprocessing routine for a

planarity testing algorithm [72, 73] among others. In Section 4.4.4, we give an algorithm

to determine an st-numbering of a biconnected graph that takes O(m lg2 n lg lg n) time

using O(n) bits. This improves the earlier implementations that take Ω(n lg n) bits [31,

62, 72, 130]. Using this as a subroutine, in Section 4.5, we provide improved space effcient

implementation for two well-known problems i.e., two-partitioning and two independent

spanning tree problems.

Moving on from DFS and its applications, in Section 4.6 we introduce Maximum

Cardinality Search (MCS) and provide its implementation as described in [131]. This is

followed by various space efficient implementations of MCS in Section 4.7. Next we show,

in Section 4.8, some applications of our MCS algorithm by providing space efficient pro-

cedures to recognize chordal graphs, find independent set and proper coloring in chordal
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graphs.

4.1.2 Preliminaries

Related work on Space-efficient DFS: Elmasry et al. [69] showed the following

tradeoff result for DFS,

Theorem 4.1 ([69]). For every function t : N→ N such that t(n) can be computed within

the resource bound of this theorem (e.g., in O(n) time using O(n) bits), the vertices of a

directed or undirected graph G can be visited in depth first order in O((m+ n)t(n)) time

with O(n+ n lg lgn
t(n)

) bits.

In particular, fixing t(n) = O(lg lg n), one can obtain a DFS implementation which

runs in O(m lg lg n) time using O(n) bits. We build on top of this DFS algorithm to

provide space efficient implementation for various applications of DFS in directed and

undirected graphs in the rest of this chapter.

4.2 Some simple applications of DFS using O(n) bits

Classical applications of DFS in directed graphs (see [51]) are to find strongly connected

components of a directed graph, and to do a topological sort of a directed acyclic graph

among many others. Also, given an undirected biconnected graph G, DFS is used as

the main tool to produce a sparse spanning biconnected subgraph of G where the goal is

to produce a sparse (with O(n) edges) subgraph of G which contains all the vertices of

G and still remains biconnected. We show here that while topological sort and produc-

ing a sparse spanning biconnected subgraph of an undirected biconnected graph can be

solved using the same O(n) bits and O(m lg lg n) time (as for DFS), strongly connected

components of a directed graph can be obtained using O(n) bits and O(m lg n lg lg n)

time.
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4.2.1 Strongly Connected Components

There is a classical two pass algorithm (see [51] or [58]) for computing the Strongly

Connected Components (SCC) of a given directed graph G which works as follows. In

the first step, it runs a DFS on GR, the reverse graph of G. In the second pass, it runs

the connected component algorithm using DFS in G but it processes the vertices in the

decreasing order of the finishing time from the first pass.

We can obtain GR by switching the role of in and out adjacency arrays present in the

input representation. As we can not remember the vertex ordering from the first pass

due to space restriction, we process them in batches of size n/ lg n in the reverse order

i.e., we run a full DFS in GR to obtain and store the last n/ lg n vertices in an array

A as they are the ones which have the highest set of finishing numbers in decreasing

order. I.e., we maintain A as a queue of size n/ lg n and as and when a new element

is finished, it is added to the queue and the element with the earliest finish time at the

other end of the queue is deleted. Now, we pick the vertices from A one by one in the

order from the queue with the latest finish time and start a fresh DFS in G to compute

the connected components and output all the vertices reachable as a SCC. The output

vertices are marked in a bitmap so that we don’t output them again. Once we are done

with all the vertices in A, we restart the DFS from the beginning and produce the next

chunk of n/ lg n vertices by remembering the last vertex produced in the previous step and

stop as soon as we hit that boundary vertex. Then we repeat the connected component

algorithm from this chunk of vertices and continue this way. It is clear that the algorithm

produces the SCCs correctly. As we are calling the DFS algorithm O(lg n) times, total

time taken by this algorithm is O(m lg lg n lg n) with O(n) bits of space. Hence, we have

the following,

Theorem 4.2. Given a directed graph G on n vertices and m edges, represented as in/out

adjacency array, we can output the strongly connected components of G in O(m lg n lg lg n)

time and O(n) bits of space.
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4.2.2 Topological Sort

The standard algorithm for computing topological sort [51] outputs the vertices of a DFS

in reverse order. If we can keep track of the DFS numbers, then reversing is an easy task.

While working in space restricted setting (with o(n lg n) bits), this is a challenge as we

don’t have space to keep track of the DFS order. We can do as we did in the strongly

connected components algorithm in the last section, by storing and outputting vertices

in batches of n/ lg n resulting in an O(m lg n lg lg n) time algorithm.

Elmasry et al. [69] showed that, the vertices of a DAG G can be output in the order

of a topological sort within the time and space bounds of a DFS in G plus an addi-

tional O(n lg lg n) bits. As they also showed how to perform DFS in O(m + n) time

and O(n lg lg n) bits, overall their algorithm takes O(m+ n) time and O(n lg lg n) bits to

compute a topological sorting of G. Their main idea is to maintain enough information

about a DFS to resume it in the middle and apply this repeatedly to reverse small chunks

of its output, produced in reverse order, one by one.

We observe that, instead of storing information to restart DFS and produce the reverse

order, we simply work with the reverse graph itself (which can be obtained from the input

representation by switching the role of in and out adjacency arrays) and do a DFS in the

reverse graph and output vertices as they are finished (or blackened) i.e., in the increasing

order of finishing time. To see the correctness of this procedure, note that the reverse

graph is also a DAG, and if (i, j) is an edge in the DAG G, then (j, i) is an edge in the

reverse graph and i will become black before j while the algorithm performs DFS in the

reverse graph. Hence, i will be placed before j in the correct topological sorted order.

Thus we have the following,

Theorem 4.3. Given a DAG G on n vertices and m edges, if the black vertices of the

DFS of G can be output using s(n) space and t(n) time, then its vertices can be output in

topologically sorted order using O(s(n)) space and O(t(n)) time assuming that the input
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representation has both the in and out adjacency array of the graph.

From Theorem 4.1 (setting t(n) = O(lg lg n)) and Theorem 4.3, we have the following.

Corollary 4.4. Given a DAG G on n vertices and m edges, its vertices can be output in

topologically sorted order using O(m lg lg n) time and O(n) bits.

Note that, we knew all along that DFS and topological sort take the same time, the

main contribution of Theorem 4.3 is that it shows they take the same space (improving

on the result of [69] where they showed that topological sort space = DFS space +

O(n lg lg n) bits under the same time) when both the in/out adjacency arrays are present

in the input.

Now we proceed to produce an algorithm for topological sort that uses o(n) bits of

space, one of the very few such algorithms in this thesis.

4.2.3 Topological Sort in Sublinear Space

We note the following theorem of Asano et al. [9].

Theorem 4.5. DFS on a DAG G can be performed in space O( n
2(

√
lgn) ) bits and in poly-

nomial time.

While it should immediately follow from Theorem 4.3 that topological sort can also

be performed using similar space, there is one caveat. Asano et al.’s algorithm works

assuming that the given DAG G has a single source vertex. In particular, they determine

whether a vertex is black by checking whether it is reachable from the source without

using the gray vertices (using the sublinear space reachability algorithm of [19]).

The algorithm can be easily extended to handle s many sources if we have some

additional s lg n bits. We simply keep track of the indices of the sources from which DFS

has been explored, and to determine whether a vertex is black, we ask if it is reachable
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from an earlier source or from the current source without using the gray vertices. Thus

we have the following improved theorem.

Theorem 4.6. DFS on DAG G with s sources can be performed using s lg n+ o(n) bits

and polynomial time. In particular, if s is o(n/ lg n), the overall space used is o(n) bits.

Thus from Theorem 4.3 and Theorem 4.6 we obtain the following,

Theorem 4.7. Topological Sort on a DAG G with s sinks can be performed using s lg n+

o(n) bits and polynomial time. In particular if s is o(n/ lg n), the overall space used is

o(n) bits.

4.2.4 Finding a sparse biconnected subgraph of a biconnected

graph

The problem of finding a k-connected spanning subgraph with the minimum number

of edges of a k-connected graph is known to be NP-hard for any k ≥ 2 [86]. But the

complexity of the problem decreases drastically if all we want is to produce a “sparse”

k-connected spanning subgraph, i.e., one with O(n) edges. Nagamochi and Ibaraki [115]

gave a linear time algorithm which produces a k-connected spanning subgraph with at

most kn − k(k+1)
2

edges. Later, Cheriyan et al. [47] gave another linear time algorithm

for k = 2 and 3 that produced a 2-connected spanning subgraph with at most 2n − 2

edges, and a 3-connected subgraph with at most 3n− 3 edges. Later, Elmasry [68] gave

an alternate linear time algorithm for producing a sparse spanning biconnected subgraph

of a given biconnected graph by performing a DFS with additional bookkeeping. In what

follows, we provide a space efficient implementation for it. In order to do that, we start

by briefly describing Elmasry’s algorithm.

Let DFI(v) denote the index (integer) that represents the time at which the vertex

v is first discovered from the vertex u when performing a DFS i.e., u is the parent of v in
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the DFS tree. Let low(v) be the smallest DFI value among the DFI values of vertices w

such that (v, w) is a back edge. (Note that this quantity is different from the “lowpoint”

value used in Tarjan’s [128] classical biconnectivity algorithm.) Basically low(v) captures

the information regarding the deepest back edge going out of the vertex v. If v has no

backedges, for convenience (the reason will become clear in the following lemma), we

adopt the convention that low(v) = DFI(parent(v)). The edge (v, low(v)) is the deepest

backedge out of v. Note that, it is actually the tree edge between v and its parent if v

does not have a backedge. The algorithm maintains all the edges of the DFS tree. In

addition, for every vertex in the graph, the algorithm maintains the DFI and the low

values along with the back edge that realizes it. As the root of the DFS tree does not

have any back edge and, as the underlying graph is 2-connected, the root has only one

child v so that there is no back edge emanating from v as well. Thus we get at most n−2

back edges along with n − 1 tree edges, giving a subgraph with at most 2n − 3 edges.

Elmasry [68] proved that the resulting graph is indeed a spanning 2-connected subgraph

of G. His algorithm takes O(m + n) time and O(n lg n) bits of space. We improve the

space bound, albeit with slight increase in time, by first proving a more general lemma

as following,

Lemma 4.8. Given any undirected graph G with n vertices and m edges, we can compute

and report the low(v) values i.e., deepest back edge going out of v in the DFS tree of G,

for every vertex v, using O(n) bits of space and O(m lg lg n) time.

Proof. The aim is to output all the deepest back edges out of every vertex v in G as

we perform the DFS. As always, let {v1, v2, · · · , vn} be the vertices of the graph. We

perform a DFS with the usual color array and other relevant data structures (as required

in Theorem 4.1 with t(n) = lg lg n) along with one more array of n bits, which we call

DBE (for Deepest Back Edge) array, which is initialized to all zero. DBE[i] is set to

1 if and only if the algorithm has found and output the deepest back edge emanating

from vertex vi. So whenever a white vertex vi becomes grey (i.e., vi is visited for the first
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va

vb

vc

vi

Figure 4.1: A part of the full DFS tree. The wiggling edges represent tree edges and the
edges with arrow heads represent back edges. If low(vi) = va, we would come across vi
in the adjacency array of va before encountering from the arrays of vb and vc. I.e., the
back edge (va, vi) will be processed before the other back edges (vb, vi) and (vc, vi) since
we process the vertices (and the backedges incident to them) in their DFS order.

time), we scan vi’s adjacency array to mark, for every white neighbor vj, DBE[j] to 1

if and only if it was 0 before. The correctness of this step follows from the fact that as

we are visiting vertices in DFS order, and if DBE[j] is 0, then vertex vj is not adjacent

to any of the vertices we have visited so far, and as it is adjacent to vi, the deepest back

edge emanating from vj is (vi, vj). Hence we output this edge and move on to the next

neighbor and eventually with the next step of DFS until all the vertices are exhausted.

This completes the description of the algorithm. See Figure 3.1 for an illustration. Now

to see how this procedure produces all the deepest back edges out of every vertex, note

that, at vertex vi, our algorithm reports all the back edges e = (vi, vj) where e is the

deepest back edge from vj, and also all tree edges (vi, vj) where vj has no back edge.

Observe that from our convention, in the second case, (vi, vj) is the deepest back edge

out of vj. This concludes the proof of the lemma. As we performed just one DFS to

produce all such edges, using Theorem 4.1, the claimed running time and space bounds
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follow.

The way we will actually use Lemma 4.8 in our algorithms, is for finding and storing

the low values for at most n/ lg n vertices. So we state a corollary for that.

Corollary 4.9. Given any undirected graph G with n vertices and m edges and any set

L of O(n/ lg n) vertices as input, we can compute, report and store the low(v) values for

every vertex v in L in the DFS tree T of G using O(n) bits of space and O(m lg lg n)

time.

Note that, Lemma 4.8 holds true for any undirected connected graph G. In what

follows, we use Lemma 4.8 to give a space efficient implementation of Elmasry’s algorithm

when the input graph G is an undirected biconnected graph. In particular, we show the

following,

Theorem 4.10. Given an undirected biconnected graph G with n vertices and m edges,

we can output the edges of a sparse spanning biconnected subgraph of G using O(n) bits

of space and O(m lg lg n) time.

Proof. When the underlying graph G is undirected biconnected graph, we know that

Elmasry’s algorithm produces a sparse spanning subgraph which is also biconnected. In

order to implement that, given an undirected biconnected graph G, we first run on G the

algorithm of Lemma 4.8 which produces and reports all the deepest back edges out of

all the vertices v in G. Out of all those deepest back edges, note that, some are actually

tree edges from our convention. Hence, we don’t want to report them multiple time.

More specifically, if a vertex vj has no back edge going out of it, Lemma 4.8 outputs

the edge (vi, vj) as the deepest back edge out of vj, which is actually a tree edge in the

DFS tree T of G. In order to avoid reporting such edges more than once, we perform

the following. During the scanning of vi’s adjacency array, we also check if any of its

neighbor, other than its parent, is grey. If so, we report the edge from vi to its parent.
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Note that if vi has a back edge to one of its ancestors (other than its parent), then this

step reports the tree edge from vi to its parent. Otherwise, vi didn’t have any back edge,

and hence the tree edge to its parent would have been output while DFS was exploring

and outputting deepest back edges from its parent; so we do not output the edge again.

Note that, we can do this test along with the algorithm of Lemma 4.8 so that using

just one DFS, we can produce all the tree edges and deepest back edges as required

in Elmasry’s algorithm. Thus using Theorem 4.1, we can output the edges of a sparse

spanning biconnected subgraph of G using O(n) bits of space and O(m lg lg n) time.

4.3 Tree cover and space efficient construction

Before moving on to handle other complex applications of DFS in undirected graphs,

namely biconnectivity, 2-edge connectivity and st-numbering, in the this section we dis-

cuss the common methodology to attack all of these problems. Once we set all our

machinery here, in Section 4.3, we see afterwards how to use them almost in a similar

fashion to several problems. Central to all of our algorithms following this section is a

decomposition of the DFS tree. For this we use the well-known tree covering technique

which was first proposed by Geary et al. [88] in the context of succinct representa-

tion of rooted ordered trees. The high level idea is to decompose the tree into subtrees

called minitrees, and further decompose the mini-trees into yet smaller subtrees called

microtrees. The microtrees are tiny enough to be stored in a compact table. The root of

a minitree can be shared by several other minitrees. Thus to represent the tree, we only

have to represent the connections between the subtrees. Later He et al. [95] extended

this approach to produce a representation which supports several additional operations.

Farzan and Munro [74] modified the tree covering algorithm of [88] so that each mini-

tree has at most one node, other than the root of the minitree, that is connected to the

root of another minitree. This simplifies the representation of the tree, and guarantees

that in each minitree, there exists at most one non-root node which is connected to (the
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root of) another minitree. The tree decomposition method of Farzan and Munro [74] is

summarized in the following theorem:

Figure 4.2: An illustration of Tree Covering technique with L = 5. The figure is repro-
duced from [74]. Each closed region formed by the dotted lines represents a minitree.
Note that each minitree has at most one ‘child’ minitree (other than the minitrees that
share its root) in this structure.

Theorem 4.11 ([74]). For any parameter L ≥ 1, a rooted ordered tree with n nodes can

be decomposed into Θ(n/L) minitrees of size at most 2L which are pairwise disjoint aside

from the minitree roots. Furthermore, aside from edges stemming from the minitree root,

there is at most one edge leaving a node of a minitree to its child in another minitree.

The decomposition can be performed in linear time.

See Figure 3.2 for an illustration. In our algorithms, we apply Theorem 4.11 with

L = n/ lg n. For this parameter L, since the number of minitrees is only O(lg n), we can
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represent the structure of the minitrees within the original tree (i.e., how the minitrees

are connected with each other) using O(lg2 n) bits. The decomposition algorithm of [74]

ensures that each minitree has at most one ‘child’ minitree (other than the minitrees that

share its root) in this structure. We use this property crucially in our algorithms. We

refer to this as the minitree-structure. See Figure 3.3(a) for the minitree structure of the

tree decomposition shown in Figure 3.2.
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Figure 4.3: (a) The minitree structure of the tree decomposition shown in Figure 2. (b)
This array encodes the entire DFS tree using the balanced parenthesis (BP) representa-
tion. (c) In this array, we demonstrate how the minitrees are split into a constant number
of consecutive chunks in the BP representation. Note that the bottom array can actually
be encoded using O(lg2 n) bits, by storing, for each of the O(lg n) minitrees, pointers to
all the chunks in BP sequence indicating the starting and ending positions of the chunks
corresponding to the minitrees.

Explicitly storing all the minitrees (using pointers) requires ω(n) bits overall. One way

to represent them efficiently using O(n) bits is to store them using any linear-bit encoding

of a tree. But these representations [95, 88] don’t allow us to efficiently compute the

preorder numbers of the nodes, for example, which is needed in our algorithms. Instead,
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we encode the entire tree structure using a linear-bit encoding, and store pointers into

this encoding to represent the minitrees, as described below. We first encode the tree

using the balanced parenthesis (BP) representation [105, 112], summarized in the following

theorem.1

Theorem 4.12 ([105]). Given a rooted ordered tree T on n nodes, it can be represented as

a sequence of balanced parentheses of length 2n. Given the preorder or postorder number

of a node v in T , we can support subtree size, parent and i-th child on v in O(1) time

using an additional o(n) bits.

We now represent each minitree by storing pointers to the set of all chunks in the BP

representation that together constitute the minitree. The following lemma by Farzan et

al. [75, Lemma 2] (restated) shows that each minitree is split into a constant number of

consecutive chunks in the BP sequence.

Lemma 4.13. In the BP sequence of a tree, the bits corresponding to a mini-tree form a

set of constant number of substrings. Furthermore, these substrings concatenated together

in order, form the BP sequence of the mini-tree.

Hence, one can store a representation of the minitrees by storing an O(lg2 n)-bit

structure that stores pointers to the starting positions of the chunks corresponding to

each minitree in the BP sequence We refer to the representation obtained using this

tree covering (TC) approach as the TC representation of the tree. See Figure 3.3 for

a complete example of a minitree structure along with the BP sequence of the tree of

Figure 3.2. The following lemma shows that we can construct the TC representation of

the DFS tree of a given graph, using O(n) additional bits.

Lemma 4.14. Given a graph G on n vertices and m edges, if there is an algorithm that

1The representation of [112] does not support computing the i-th child of a node in constant time
while the one in [105] can. When using these representations to produce a tree cover, the representation
of [112] is sufficient as we just need to compute the ‘next child’ as we traverse the tree in post-order
computing the subtree sizes of each subtree.
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takes t(n,m) time and s(n,m) bits to perform DFS on G, then one can create the TC

representation of the DFS tree in t(n,m) +O(n) time, using s(n,m) +O(n) bits.

Proof. We first construct the balanced parenthesis (BP) representation of the DFS tree

as follows. We start with an empty sequence, BP, and append parentheses to it as we

perform each step of the DFS algorithm. In particular, whenever the DFS visits a vertex v

for the first time, we append an open parenthesis to BP. Similarly when DFS backtracks

from v, we append a closing parenthesis. At the end of the DFS algorithm, as every

vertex is assigned a pair of parenthesis, length of BP is 2n bits. We just need to run the

DFS algorithm once to construct this array, hence the running time of this algorithm is

asymptotically the same as the running time of the DFS algorithm.

We construct auxiliary structures to support navigational operations on the DFS tree

using the BP sequence, as mentioned in Theorem 4.12. This takes o(n) time and space

using the algorithm of [87]. We then use the BP sequence along with the auxiliary

structures to navigate the DFS tree in postorder, and simulate the tree decomposition

algorithm of Farzan and Munro [74] for constructing the TC representation of the DFS

tree. If we reconstruct the entire tree (with pointers), then the intermediate space would

be Ω(n lg n) bits. Instead, we observe that the tree decomposition algorithm of [74] never

needs to keep more than O(L) temporary components (see [74] for details) in addition

to some of the permanent components. Each component (permanent or temporary) can

be stored by storing the root of the component together with its subtree size. Since

L = n/ lg n, and the number of permanent components is only O(lg n), the space required

to store all the permanent and temporary components at any point of time is bounded

by O(n) bits. The construction algorithm takes O(n) time.

We use the following lemma in the description of our algorithms in the later sections.

Lemma 4.15. Let G be a graph, and T be its DFS tree. If there is an algorithm that

takes t(n,m) time and s(n,m) bits to perform DFS on G, then, using s(n,m) + O(n)
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bits, one can reconstruct any minitree given by its ranges in the BP sequence of the

TC representation of T , along with the labels of the corresponding nodes in the graph in

O(t(n,m)) time.

Proof. We first perform DFS to construct the BP representation of the DFS tree, T .

We then construct the TC representation of T , as described in Lemma 4.14. We now

perform DFS algorithm again, keeping track of the preorder number of the current node

at each step. Whenever we visit a new node, we check its preorder number to see if it falls

within the ranges of the minitree that we want to reconstruct. (Note that, as mentioned

above, from [75, Lemma 2], the set of all preorder number of the nodes that belong to

any minitree form a constant number of ranges, since these nodes belong to a constant

number of chunks in the BP sequence.) If it is within one of the ranges corresponding

to the minitree being constructed, then we add the node along with its label to the

minitree.

4.4 Applications of DFS using tree-covering tech-

nique

In this section, we provide O(n) bit implementations of various algorithmic graph prob-

lems that use DFS, by using the tree covering technique developed in the previous section.

At a higher level, we use the tree covering technique to generate the minitrees one by

one, and then partially solve the corresponding graph problem inside that minitree be-

fore finally combining the solution across all the minitrees. The problems we consider

include algorithms to test biconnectivity, 2-edge connectivity and to output cut vertices,

edges, and to find a chain decomposition and an st-numbering among others. To test

for biconnectivity and related problems, the classical algorithm due to Tarjan [128, 129]

computes the so-called “low-point” values (which are defined in terms of a DFS-tree)
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for every vertex v, and checks some conditions based on these values. Brandes [31] and

Gabow [85] gave considerably simpler algorithms for testing biconnectivity and comput-

ing biconnected components by using some path-generating rules instead of low-points;

they call these algorithms path-based. An algorithm due to Schmidt [124] is based on

chain decomposition of graphs to determine biconnectivity (and/or 2-edge connected).

All these algorithms take O(m + n) time and O(n) words of space. Roughly these ap-

proaches compute DFS and process the DFS tree in specific order maintaining some

auxiliary information of the nodes. Readers are referred to Section 3.5.2 for the full

explanation of the chain decomposition and its application.

4.4.1 Chain decomposition

In what follows, we describe an implementation of Schmidt’s chain decomposition algo-

rithm using only O(n) bits of space and in O(m lg2 n lg lg n) time using our partition of

the DFS tree of Section 4.3. In the following description, processing a back edge refers

to the step of outputting the chain (directed path or cycle) containing that edge and

marking all the encountered vertices as visited. Processing a node refers to processing all

the back edges out of that node. The main idea of our implementation is to process all

the back edges out of each node in their preorder (as in Schmidt’s algorithm). To perform

this efficiently (within the space limit of O(n) bits), we process the nodes in chunks of

size n/ lg n each (i.e., the first chunk of n/ lg n nodes in preorder are processed, followed

by the next chunk of n/ lg n nodes, and so on). But when processing the back edges out

of a chunk C, we process all the back edges that go from C to all the minitrees in their

postorder, processing all the edges from C to a minitree τ1 before processing any other

back edges going out of C to a different minitree. This requires us to go through all

the edges out of each chunk at most O(lg n) times (once for each minitree). Thus the

order in which we process the back edges is different from the order in which we process

them in Schmidt’s algorithm, but we argue that this does not affect the correctness of
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the algorithm. In particular, we observe the following easy to see fact:

• Schmidt’s algorithm correctly produces a chain decomposition even if we process

vertices to any order – for example, in level order instead of preorder, as long as we

process a vertex v only after all its ancestors are also processed. This also implies

that as long as we process the back edges coming to a vertex v (from any of its

descendants) only after we process all the back edges going to any of its ancestors

from any of v’s descendants, we can produce a chain decomposition correctly.

To process a back edge (u, v) between a chunk C and a minitree τ , where u belongs

to C, v belongs to τ , and u is an anscestor of v, we first output the edge (u, v), and

then traverse the path from v to the root of τ , outputting all the traversed edges and

marking the nodes as visited. We then start another DFS to produce the minitree τp

containing the parent p of the root of τ , and output the path from p to the root of τp,

and continue the process untill we reach a vertex that has been marked as visited. Note

that this process will terminate since u is marked and is an ancestor of v. We maintain

a bitvector of length n to keep track of the marked vertices to perform this efficiently.

A crucial observation that we use in bounding the runtime is that once we produce a

minitree τp for a particular pair (C, τ), we don’t need to produce it again, as the root of τ

will be marked after the first time we output it as part of a chain. Also, once we generate

a chunk C and a minitree τ , we go through all the vertices of C in preorder, and process

all the edges that go between C and τ . We provide the pseudocode (see Algorithm 1)

below describing the high-level algorithm for outputting the chain decomposition.

The time taken for the initial part, where we construct the DFS tree, decompose it

into minitrees, and construct the auxiliary structures, is O(m lg lg n), using Theorem 4.1

with t(n) = lg lg n. The running time of the rest of the algorithm is dominated by the

cost of processing the back edges. As outlined in Algorithm 1, we process the back edges

between every pair (Ci, τj), where Ci is the i-th chunk of n/ lg n nodes in preorder, and

τj is the j-th minitree in postorder, for 1 ≤ i ≤ lg n and 1 ≤ j ≤ l. The outer loop of the
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Algorithm 1 Chain Decomposition

Let τ1, τ2, · · · , τl be the minitrees in postorder and C1, C2, · · · , Cm be the chunks of
vertices in preorder where l = O(lg n) and m = lg n

1: for i = 1 to m do
2: for j = 1 to l do
3: for all back edges (u, v) with u ∈ Ci and v ∈ τj do
4: output the chain containing the edge (u, v)
5: end for
6: end for
7: end for

algorithm generates each chunk in preorder, and thus requires a single DFS to produce

all the chunks over the entire execution of the algorithm. The inner loop goes through

all the minitrees for each chunk. Since there are lg n chunks and O(lg n) minitrees, and

producing each minitree takes O(m lg lg n) time, the generation of all the chunk-minitree

pairs takes O(m lg lg n lg2 n) time.

For a particular pair (C, τ), we may need to generate many (O(lg n), in the worst-

case) minitrees. But we observe that, this happens for at most one back edge for a every

pair (C, τ), since after processing the first such back edge, the root of the minitree τ is

marked and hence any chain that is output afterwards will stop before the root of the

minitree. Also, if a minitree τ` is generated when processing a pair (C, τ), then it will

not be generated when processing any other pair (C ′, τ ′) which is different from (C, τ)

(since each minitree has at most one child minitree). Thus the overall running time is

dominated by generating all the pairs C, τ), which is O(m lg2 n lg lg n). Thus, we obtain

the following.

Theorem 4.16. Given an undirected graph G on n vertices and m edges, we can output

a chain decomposition of G in O(m lg2 n lg lg n) time using O(n) bits.

4.4.2 Testing biconnectivity and finding cut vertices

A näıve algorithm to test for biconnectivity of a graphG = (V,E) is to check if (V \{v}, E)

is connected, for each v ∈ V . Using the O(n) bits and O(m + n) time BFS algorithm
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[14] for checking connectivity, this gives a simple O(n) bits algorithm running in time

O(mn). Another approach is to use Theorem 4.16 combining with criteria mentioned in

Theorem 3.15 to test for biconnectivity and output cut vertices in O(m lg2 n lg lg n) time

using O(n) bits.

Here we show that using O(n) bits we can design an even faster algorithm running

in O(m lg n lg lg n) time. If G is not biconnected, then we also show how one can find

all the cut-vertices of G within the same time and space bounds. We implement the

classical low-point algorithm of Tarjan [128]. Recall that, the algorithm performs a DFS

and computes for every vertex v, a value lowpoint[v] which is recursively defined as

lowpoint[v] = min{ DFI(v) ∪ {lowpoint[s]| s is a child of v}

∪ {DFI(w)|(v, w) is a back-edge} }

Tarjan proved that if a vertex v is not the root, then v is a cut vertex if and only

if v has a child w such that lowpoint[w] ≥ DFI(v). The root of a DFS tree is a cut

vertex if and only if the root has more than one child. Since the lowpoint values require

Ω(n lg n) bits in the worst case, this poses the challenge of efficiently testing the con-

dition for biconnectivity with O(n) bits. To deal with this, as in the case of the chain

decomposition algorithm, we compute lowpoint values in O(lg n) batches using our tree

covering algorithm. Cut vertices encountered in the process, if at all, are stored in a

separate bitmap. We show that each batch can be processed in O(m lg lg n) time using

DFS, resulting in an overall runtime of O(m lg n lg lg n).

Computing lowpoint and reporting cut vertices: We first obtain a TC representa-

tion of the DFS tree using the decomposition algorithm of Theorem 4.11 with L = n/ lg n.

We then process each minitree, in the postorder of the minitrees in the minitree struc-

ture. To process a minitree, we compute the lowpoint values of each of the nodes in
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the minitree (except possibly the root of the minitree) in overall O(m) time. During the

processing of any minitree, if we determine that a vertex is a cut vertex, we store this

information by marking the corresponding node in a seperate bit vector. Each minitree

can be reconstructed in O(m lg lg n) time using Lemma 4.15. The lowpoint value of a

node is a function of the lowpoints of all its children. However the root of a minitree

may have children in other minitress. Hence for the root of the minitree, we store the

partial lowpoint value (till that point) which will be used to update its value when all its

subtrees have computed their lowpoint values (possibly in other minitrees).

Computing the lowpoint values in each of the minitrees is done in a two step process.

In the first step, we compute and store the low values of each node (which is the DFI

value of the deepest back edge emanating from that node) belonging to the minitree using

Corollary 4.9. Note that the low values form one component of the values among which

we find the minimum, in the definition of lowpoint above, with a slight change. I.e., if a

vertex v has a backedge, then low(v) is nothing but min{DFI(w) : (v, w) is a back edge}.

However, if v does not have a backedge, by our convention low(v) has the DFI value of

its parent which needs to be discounted in computing lowpoint value of v. This is easily

done if we also remember the DFI value of the parent of every node in the minitree (using

O(n) bits).

Once these low(v) values are computed and stored for all the vertices v belonging to

a minitree, they are passed on to the next step for computing lowpoint(v) values. More

specifically, in the second step, we do another DFS starting at the root of this minitree

and compute the lowpoint values for all the vertices v belonging to a minitree exactly in

the same way as it is done in the classical Tarjan’s [128] algorithm using the explicitly

stored low(v) values. We provide the code snippet which actually shows how to compute

lowpoint values recursively for a minitree in Algorithm 2. Thus we obtain the following,

Lemma 4.17. Computing and storing the lowpoint(v) values for all the nodes v in a

minitree can be performed in O(m lg lg n) time, using O(n) bits.
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Algorithm 2 DFS(v)

1: if low(v) = DFI(parent(v)) then
2: lowpoint(v) = DFI(v)
3: else lowpoint(v) = Min{DFI(v), low(v)}
4: for all y ∈ adj(v) do
5: if y is white then
6: DFI(y)← DFI(v) + 1
7: DFS(y)
8: if lowpoint(y) < lowpoint(v) then
9: lowpoint(v) = lowpoint(y)

10: end if
11: end if
12: end for

To compute the effect of the roots of the minitrees on the lowpoint computation, we

store various Θ(lg n) bit information with each of the Θ(lg n) minitree roots including

their partial/full lowpoint values, the rank of its first/last child in its subtree. After we

process one minitree, we generate the next minitree, in postorder, and process it in a

similar fashion and continue until we exhaust all the minitrees. As we can store the cut

vertices in a bitvector B of size n marking B[i] = 1 if and only if the vertex vi is a cut

vertex, reporting them at the end of the execution of the algorithm is a routine task.

Clearly we have taken O(n) bits of space and the total running time is O(m lg lg n lg n)

as we run the DFS algorithm O(lg n) times overall. Thus we have the following

Theorem 4.18. Given an undirected graph G with n vertices and m edges, in O(m lg n lg lg n)

time and O(n) bits of space we can determine whether G is 2-vertex connected. If not, in

the same amount of time and space, we can compute and report all the cut vertices of G.

4.4.3 Testing 2-edge connectivity and finding bridges

The classical algorithm of Tarjan [129] takes O(m+n) time using O(n) words to check if

G is 2-edge connected. Schmidt’s algorithm [124] which is based on chain decomposition

can also be implemented in linear time but with O(m) words. The purpose of this section

is to improve the space bound to O(n) bits, albeit with slightly increased running time.
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For this, we use the following folklore characterization:

• A tree edge (v, w), where v is the parent of w, is a bridge if and only if lowpoint[w]

> DFI(v).

That is, a tree edge (v, w) is a bridge if and only if the vertex w and any of its descedants

in the DFS tree cannot reach to vertex v or any of its ancestors. Thus if the edge (v, w)

is removed, the graph G becomes disconnected. Note that, since storing the lowpoint

values requires Ω(n lg n) bits, we cannot store all of them at once to check the criteria

mentioned in the characterization, and this poses the challenge of efficiently testing the

condition for 2-edge connectivity with only O(n) bits. To perform this test in a space

efficient manner, we extend ideas developed in the previous section.

Similar to the biconnectivity algorithm, here also we first construct a TC representa-

tion of the DFS tree using the decomposition algorithm of Theorem 4.11 with L = n/ lg n.

We then process each minitree, in the postorder of the minitrees in the minitree structure.

To process a minitree, we compute the lowpoint values of each of the nodes in the mini-

tree (except possibly the root) in overall O(m) time. While processing these minitrees,

if we come across any bridge, we store it in a separate bitvector so that at the end of the

execution of the algorithm we can report all of them. Using Lemma 4.15, we know that

each minitree can be reconstructed in O(m lg lg n) time, and also we store for the root

the partially computed lowpoint (till the point we are done processing minitrees). Now

we compute the lowpoint values for each of the vertices belonging to a minitree using

Lemma 4.17.

Once we determine lowpoint values for all the vertices belonging to a minitree, we

generate each minitree along with the node labels, and easily test whether any tree edge is

a bridge using the characterization mentioned above. We also need to check this condition

for edges that connect two minitrees; but this can also be done within the same time and

space bounds. We store this information using a bit vector B of length n − 1 such that
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B[i] = 1 if and only if the i-th edge in pre-order, of the DFS tree, is a bridge. Thus, by

running another DFS, we can report all the bridges of G. Clearly this procedure takes

O(n) bits of space and the total running time is O(m lg lg n lg n) as we run the DFS

algorithm O(lg n) times overall. Hence we obtain the following.

Theorem 4.19. Given an undirected graph G with n vertices and m edges, in O(m lg n lg lg n)

time and O(n) bits of space we can determine whether G is 2-edge connected. If G is

not 2-edge connected, then in the same amount of time and space, we can compute and

output all the bridges of G.

4.4.4 st-numbering

The st-ordering of vertices of an undirected graph is a fundamental tool for many graph

algorithms, e.g., in planarity testing and graph drawing. The first linear-time algorithm

for st-ordering the vertices of a biconnected graph is due to Even and Tarjan [72], and

is further simplified by Ebert [62], Tarjan [130] and Brandes [31]. All these algorithms,

however, preprocess the graph using depth-first search, essentially to compute lowpoints

which in turn determine an (implicit) open ear decomposition. A second traversal is

required to compute the actual st-ordering. All of these algorithms take O(n lg n) bits of

space. We give an O(n) bits implementation of Tarjan’s [130] algorithm.

We first describe the two pass classical algorithm of Tarjan without worrying about the

space requirement. The algorithm assumes, without loss of generality, that there exists

an edge between the vertices s and t, otherwise it adds the edge (s, t) before starting with

the algorithm. Moreover, the algorithm starts a DFS from the vertex s and the edge (s, t)

is the first edge traversed in the DFS of G. Let p(v) be the parent of vertex v in the DFS

tree. DFI(v) and lowpoint(v) have the usual meaning as defined previously. The first

pass is a depth first search during which for every vertex v, p(v), DFI(v) and lowpoint(v)

are computed and stored. The second pass constructs a list L, which is initialized with
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[s, t], such that if the vertices are numbered in the order in which they occur in L, then

we obtain an st-ordering. In addition, we also have a sign array of n bits, intialized with

sign[s]=-. The second pass is a preorder traversal starting from the root s of the DFS

tree and works as described in the following pseudocode (Algorithm 3) below.

Algorithm 3 st-numbering

1: DFS(s) starts with the edge (s, t)
2: for all vertices v 6= s, t in preorder of DFS(s) do
3: if sign(lowpoint(v)) == + then
4: Insert v after p(v) in L
5: sign(p(v)) = −
6: end if
7: if sign(lowpoint(v))==- then
8: Insert v before p(v) in L
9: sign(p(v))=+

10: end if
11: end for

It is clear from the above pseudocode that the procedure runs in linear time using

O(n lg n) bits of space for storing elements in L. To make it space effcient, we use ideas

similar to our biconnectivity algorithm. At a high level, we generate the lowpoint values

of the first n/ lg n vertices in depth first order and process them. Due to space restriction,

we cannot store the list L as in Tarjan’s algorithm; instead we use the BP sequence of the

DFS tree and augment it with some extra information to ‘encode’ the final st-ordering,

as described below.

In the first phase, to obtain the lowpoint values of the first n/ lg n vertices in depth

first order, we store explicitly for these vertices their lowpoint values in an array. Also

during the execution of the biconnectivity algorithm, the BP sequence is generated and

stored in the BP array. We create two more arrays, of size n bits, that have one to one

correspondence with the open parentheses of the BP sequence. We can use rank/select

operations (as defined Section 3.2) to map the position of a vertex in these two arrays

to the corresponding open parenthesis in the BP sequence. The first array, called Sign,

is for storing the sign for every vertex as in Tarjan’s algorithm. To simulate the effect
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of the list L, we create the second array, called P , where we store the relative position,

i.e., “before” or “after”, of every vertex with respect to its parent. Namely, if u is the

parent of v, and v comes before (after, respectively) u in the list L in Algorithm 3, then

we store P [v] = b (P [v] = a, respectively). One crucial observation is that, even though

the list L is dynamic, the relative position of the vertex v does not change with respect

to the position of u, and is determined at the time of insertion of v into the list L (new

vertices may be added between u and v later). In what follows, we show how to use the

BP sequence, and the array P to emulate the effect of list L and produce the st-ordering.

We first describe how to reconstruct the list L using the BP sequence and the P

array. Note that all the nodes in a subtree appear “together” (consecutively) in the

list L. Moreover, all the children marked b appear in the increasing order of the DFI

while all the children marked a appear in the decreasing order of the DFI. The main

observation we use in the reconstruction of L is that a node v appears in L after all

the nodes in its child subtrees whose roots are marked with b in P , and also before all

the nodes in its child subtrees whose roots are marked with a in P . Thus by looking

at the P [v] values of all the children of a node u, and computing their subtree sizes, we

can determine the position in L of u among all the nodes in its subtree. Let us call a

child v of u as after-child if v is marked a in P . Similarly, if v is marked b in P , it is

called before-child. Let T (v) denote the subtree rooted at the vertex v in the DFS tree

T of G and |T (v)| denotes the size of T (v). Let us also suppose that the vertex u has

k + ` children, out of which k children v1, · · · , vk are before-children and the remaining

` children w1, · · · , w` are after-children, where DFI(v1) < DFI(v2) < · · · < DFI(vk)

and DFI(w1) < DFI(w2) < · · · < DFI(w`). Then in L, all the vertices from T (v1),

T (v2), followed by till T (vk) appear, followed by u and finally the vertices from T (w`),

T (w`−1) till T (w1) appear. More specifically, u appears at the (S + 1)-th location where

S =
∑k

i=1 |T (vi)|. With this approach, we can reconstruct the list L, and hence output

the st-numbers of all the nodes in linear time, if L can be stored in memory - which

requires O(n lg n) bits. Now to perform this step with O(n) bits, we repeat the whole
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process of reconstruction lg n times, where in the i-th iteration, we reproduce sublist

L[(i − 1)n/ lg n + 1, . . . , i.n/ lg n] – by ignoring any node that falls outside this range –

and reporting all these nodes with st-numbers in the range [(i−1)n/ lg n+1, . . . , i.n/ lg n].

As each of these reconstruction takes O(m lg n lg lg n) time, we obtain the following,

Theorem 4.20. Given an undirected biconnected graph G on n vertices and m edges,

and two distinct vertices s and t, we can output an st-numbering of all the vertices of G

in O(m lg2 n lg lg n) time, using O(n) bits of space.

4.5 Applications of st-numbering

In this section, we show that using the space efficient implementation of Theorem 4.20

for st-numbering, we immediately obtain similar results for a few applications of st-

numbering.

4.5.1 Two-partitioning problem

In this problem, given vertices a1, · · · , ak of a graph G and natural numbers c1, · · · , ck

with c1 + · · ·+ ck = n, we want to find a partition of V into sets V1, · · · , Vk with ai ∈ Vi

and |Vi| = ci for every i such that every set Vi induces a connected graph in G. This

problem is called the k-partitioning problem. The problem is NP-hard even when k = 2,

G is bipartite and the condition ai ∈ Vi is relaxed [61]. But, Györi [93] and Lovasz

[104] proved that such a partition always exists if the input graph is k-connected and

can be found in polynomial time in such graphs. Let G be 2-connected. Then two-

partitioning problem can be solved in the following manner [125]: Let v1 := a1 and

vn := a2, compute an v1vn-numbering v1, v2, · · · , vn and note that, from the property of

st-numbering, for any vertex vi (in particular for i = c1) the graphs induced by v1, · · · , vi

and by vi, cdots, vn are always connected subgraph of G. Thus applying Theorem 4.20,
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we obtain the following:

Theorem 4.21. Given an undirected biconnected graph G, two distinct vertices a1, a2,

and two natural numbers c1, c2 such that c1 + c2 = n, we can obtain a partition (V1, V2)

of the vertex set V of G in O(m lg2 n lg lg n) time, using O(n) bits of space, such that

a1 ∈ V1 and a2 ∈ V2, |V1| = c1, |V2| = c2, and both V1 and V2 induce connected subgraph

on G.

4.5.2 Vertex-subset-two-partition problem

Wada and Kawaguchi [134] defined the following problem which they call the vertex-

subset-k-partition problem. This is actually an extension of the k-partition problem

defined in Section 4.5.1. The problem is defined as follows:

Input:

1. An undirected graph G = (V,E) with n vertices and m edges;

2. a vertex subset V ′ (⊆ V ) with n′ = |V ′| ≥ k;

3. k distinct vertices ai (1 ≤ i ≤ k) ∈ V ′, ai 6= aj (1 ≤ i < j ≤ k); and

4. k natural numbers n1, n2, · · · , nk such that
∑k

i=1 ni = n′.

Output: a partition V1∪V2∪· · ·∪Vk of the vertex set V and a partition V ′1 ∪V ′2 ∪· · ·∪V ′k

of vertex set V ′ such that for each i(1 ≤ i ≤ k)

1. ai ∈ V ′i ;

2. |V ′i | = ni;

3. V ′i ⊆ Vi and

4. each Vi induces a connected subgraph of G.
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Note that this problem is an extension of the k-partition problem, since choosing V ′ = V

corresponds to the original k-partition problem. Wada and Kawaguchi [134] proved that

vertex-subset-k-partition problem always admits a solution if the input graph G is k-

connected (for k ≥ 2). In particular, if G is 2-connected, using st-ordering, the vertex-

subset-two-partitioning problem can be solved in the following manner [134]: suppose

that G, V ′ (⊆ V ), a1, a2, n1 and n2 (n1 + n2 = n′ = |V ′|) are the inputs. Let s = v1 := a1

and t = vn := a2, compute an st-numbering v1, v2, · · · , vn. From this st-numbering, note

that, V now can be partitioned in two sets V1 and V2 such that |V1 ∩ V ′| = n1 and

|V2 ∩ V ′| = n2. From the property of st-numbering, we know that both V1 and V2 induce

a connected subgraph of G. Moreover, a1 ∈ V1 and a2 ∈ V2. Using Theorem 4.20 as a

subroutine to compute such an st-numbering of G, we obtain the following result.

Theorem 4.22. Given an undirected biconnected graph G, we can solve the vertex-subset-

two-partitioning problem in O(m lg2 n lg lg n) time, using O(n) bits of space.

4.5.3 Two independent spanning trees

Recall that k spanning trees of a graph G are independent if they all have the same root

vertex r, and for every vertex v 6= r, the paths from v to r in the k spanning trees are

vertex-disjoint (except for their endpoints). Itai and Rodeh [98] conjectured that every

k-connected graph contains k independent spanning trees. Even though the most general

version of this conjecture has not been proved yet, this conjecture is shown to be true for

k ≤ 4 [48, 55, 98, 135], and also for planar graphs [97]. In particular, if the given graph

G is biconnected, we can generate two independent spanning trees (let us call them S

and T ) in the following manner [98].

Choose an arbitrary edge, say (s, t) in G. Let f be an st-numbering of G. To construct

S, choose for every vertex v 6= s an edge (u, v) such that f(u) < f(v), and for t choose

an edge other than (s, t). To construct T , choose the edge (s, t) and for every vertex

122



v /∈ {s, t} an edge (v, w), f(v) < f(w) . We will make s as the root of both S and

T . Also S and T are independent spanning trees as, for every vertex v, the path from

the root s to v in S consists of vertices u with f(u) < f(v) but except the edge (s, t),

whereas in T , along with the edge (s, t), it consists of vertices w with f(v) < f(w).

Using Theorem 4.20 to compute such an st-numbering of G, we can produce S and T in

O(m lg2 n lg lg n) time. Thus we obtain the following,

Theorem 4.23. Given an undirected biconnected graph G, we can report two independent

spanning trees S and T in O(m lg2 n lg lg n) time, using O(n) bits.

This concludes our space efficient algorithms for DFS based applications. From the

next section, we start discussing Maximum cardinality search (MCS) and its applications.

4.6 Maximum Cardinality Search (MCS)

A widely used graph search method which is a restriction of breadth-first search (BFS)

is lexicographic BFS (Lex-BFS), introduced by Rose et al. [122] under the name Lex-P.

They used Lex-BFS to find a perfect elimination ordering (PEO) of the vertices of a

graph G if G is chordal. A perfect elimination ordering in G is an ordering of the vertices

such that, for each vertex v, v and the neighbors of v that occur after v in the order

form a clique. Fulkerson et al. [84] showed that a graph is chordal if and only if it has a

perfect elimination ordering. Thus to recognize a chordal graph, we can run the Lex-BFS

algorithm, and test whether the resulting order is a perfect elimination order. Rose et

al. [122] showed both the tasks of performing Lex-BFS of G and testing if the resulting

order is PEO can be done in O(m+n) time. Even though the Lex-BFS runs in linear time,

its implementation is a bit involved, and it takes O(m + n) words of space [122]. Later

Tarjan, in an unpublished note [127], derived another simpler and alternate graph search

method for finding a PEO of chordal graphs, known as Maximum Cardinality Search

(MCS). Tarjan and Yannakakis [131] presented MCS and its applications to recognize
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chordal graphs and test acyclicity of hypergraphs. We provide space efficient algorithms

for MCS and its many applications in chordal graphs.

4.6.1 The MCS algorithm and its implementation

We start by briefly describing the MCS algorithm and its implementation as provided

in [131]. The output of the MCS algorithm is a numbering of the vertices from 1 to n.

During the execution of the algorithm, vertices are chosen by choosing an unnumbered

vertex that is adjacent to the maximum numbered vertices. We provide the pseudocode

below for completeness along with an illustration of the MCS algorithm in a given graph.

Algorithm 4 Maximum Cardinality Search (MCS)

Input: a graph G = (V,E) with |V | = n and |E| = m.
Output: an ordering σ of V .

1: assign label 0 to all the vertices
2: for i← 1 to n do
3: pick an unnumbered vertex v with maximum label
4: σ(i)← v . This assigns to v ∈ V the number i
5: for each unnumbered vertex w adjacent to v do
6: label(w)← label(w) + 1
7: end for
8: end for

v1

v2 v3

v4

v5 v6

v7

v8

v9

v10

v11
v12

(1)

(2)(3)

(4)

(5) (6)

(7)

(8)

(9) (10)

(11)

(12)

Figure 4.4: An input graph G with n vertices from v1 to vn. The numbers in the brackets
show one possible output of the MCS algorithm on G when it starts with the vertex v1.
The resulting vertex ordering obtained is v1, v3, v2, v4, v5, v6, v7, v9, v8, v11, v10, v12.

Tarjan et al. [131] gave a O(m+ n) time implementation of MCS. Even though they
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did not explicitly analyse the space requirement of their algorithm, we show that it

takes O(n) words of space. This exact space bound is particularly interesting and worth

mentioning since many of the subsequent papers actually cite this version of MCS result

saying, the implementation of Tarjan et al. [131] takes O(m+n) time and words of space.

For example see Theorem 7.1 of [102] and Theorem 5.2 of [22]. In the rest of this section,

we briefly describe the original algorithm of Tarjan et al. [131] and its time and space

complexities.

The MCS algorithm of Tarjan et al. maintains an array of sets set[i] for 0 ≤ i ≤ n−1

where set[i] stores all unnumbered vertices adjacent to exactly i numbered vertices. So,

at the beginning all the vertices belong to set[0]. They also maintain the largest index

j such that set[j] is non-empty. To implement an iteration of the MCS algorithm, they

remove a vertex v from set[j] and number it. For each unnumbered vertex w adjacent

to v, w is moved from the set containing it, say set[i], to set[i + 1]. If there is a new

entry in (j + 1), we move to set[j + 1] and repeat the same. Otherwise when set[j]

becomes empty, they repeatedly decrement j till a non-empty set is found and in this set

we repeat the same procedure. In order to delete easily, they implement each set as a

doubly-linked list. In addition, for every vertex, they store the index of the set containing

it. This completes the description of the implementation level details of MCS as provided

by Tarjan et al. [131].

Now, observe that in the above implementation, when the vertex w needs to be moved

from set[i] to set[i + 1], we just know the index of set[i] that w belongs to, but not w’s

location inside set[i]. To get overall linear time, we cannot afford to perform a linear

search for w in set[i] as this might be a costly operation. A simple way to fix this is to,

instead of storing for every vertex v the set index where it belongs to, store a pair (i, j)

if a vertex v belongs to the list set[i] and j is the pointer to v’s location inside set[i].

Then we can directly access v and move it to set[i+ 1] from set[i] in constant time. This

concludes the description of our modified implementation. It is easy to see that every

125



vertex appears only once in any of these sets, so array set takes at most 2n words in

worst case. Clearly the running time is O(m + n) and space required is O(n) words. In

the next section we provide space efficient implementations for MCS.

4.7 Space efficient implementations of MCS

Algorithm 1: Using n+O(lg n) bits. Here we show using just n+O(lg n) bits, albeit

with increased time, we can perform MCS. Towards that we maintain a bit vector B

(initialized with all 0 entries) of size n bits where the B[i]-th entry is 1 if and only if the

vertex vi has already been numbered. The algorithm works as follows: at each step it

scans the whole B array to find all the zero entries and for each one of them, it goes over

the adjacency array to find out how many of its neighbors are already marked ‘1’. Then

the vertex v which has the maximum number of numbered neighbors (ties are broken

arbitrarily) is marked ‘1’ in B. We repeat this step until all the vertices are marked. This

procedure uses n + O(lg n) bits. At each step, the algorithm spends O(m) time to find

a vertex to number, and this happens exactly n times. Hence, the running time is O(mn).

Algorithm 2: Using O(n) bits. By increasing the space bound by a constant factor, we

can design a faster algorithm, by using similar ideas as in Tarjan et al.’s [131] algorithm

with a few changes. We define the label of an unnumbered vertex (at any instance of

the algorithm) as its number of numbered neighbors. The main idea is to maintain a

doubly linked list, call it L, of size at most n/ lg n at any point during the execution of

the algorithm. Each element in L stores a label k and a pointer to a sublist. The sublist

labeled k stores a set of vertices with label k, and is itself maintained as a doubly linked

list. The sublists in L are stored in the increasing order of their labels. Moreover, the

sum of the sizes of all the sublists, at any time, is at most n/ lg n. Also, we maintain all

the vertices that are currently stored in L in a balanced binary search tree, T , and store
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pointers from the nodes of T to the corresponding vertices in L.

At the beginning of the algorithm, we add n/ lg n vertices into the tree T and the

same vertices also into the list L in a sublist labeled 0 (with pointers to the corresponding

vertices from T to L). As before, we maintain a bit vector B of length n to keep track

of the numbered vertices. The i-th step of the algorithm, for 1 ≤ i ≤ n, proceeds as

follows. We select the first (arbitrary) element of the sublist with the largest label in L.

Let v be the vertex stored in this element. Then, we first number the vertex v with i and

delete v from both L and T . We then go through each unnumbered neighbor w of v and

compute the label k of w. If the new label k is greater than the label of the sublist with

the smallest label, then we add w to L in the sublist labeled k; delete the first (arbitrary)

element from the sublist with the smallest label, if necessary (to maintain the invariant

that L has at most n/ lg n elements); and also add (and delete) the corresponding vertices

to the tree T . (Note that we can also add w to L if k is equal to the label of the sublist

with the smallest label as long as the number of elements in L is at most n/ lg n; but

this does not change the worst-case running time of the algorithm.) Also, if w is already

stored in L (in the sublist labeled k − 1), then we move w from the sublist labeled k − 1

to the sublist labeled k.

Note that, after a while, due to deletion of vertices, the list L may become empty. At

that time, we refill the list L with n/ lg n unnumbered vertices with the highest labels (or

refill with all the remaining vertices if there are fewer than n/ lg n unnumbered vertices).

This is done by scanning the bit vector B from left to right, and for each unnumbered

vertex v, computing its label. The first n/ lg n unnumbered vertices are simply inserted

into the appropriate sublists in L. For the remaining unnumbered vertices, if the label

is greater than the label of the smallest labeled sublist currently in L, then we insert

the new vertex into the appropriate sublist, and delete the first vertex from the sublist

with the smallest label. The cost of this refilling is dominated by the cost of computing

the labels of the vertices which is O(m). After constructing the list L, we insert each of
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the vertices in L into an initially empty binary search tree T and add pointers from the

nodes in T to the corresponding elements in L, which takes O(n) time. The refilling of

the list L happens at most O(lg n) times since at least n/ lg n vertices will be numbered

after each refilling, and hence over the full execution of the algorithm it takes O(m lg n)

time. Computing the label of a vertex v takes O(dv) time, where dv is the degree of v.

During the execution of the algorithm, we need to compute the label of a vertex v at

most O(dv) times (every time one of its neighbors is numbered). Thus, running time of

computing the labels of vertices is bounded by, O(
∑

v∈V d
2
v) = O(m2/n). Finally, moving

an element from one sublist to another takes O(lg n) time since we need to search for it

in the binary search tree first, before moving it. Since a vertex v is moved at most dv

times, this step contributes O(
∑

v∈V dv lg n) = O(m lg n) time to the total running time.

Thus overall the algorithm takes O(m2/n+m lg n) time.

Algorithm 3: Using O(n lg m
n

) bits. We show that using O(n lg m
n

) bits we can design

a significantly faster algorithm. Note that for sparse graphs (m = O(n)), this space is

only O(n) bits. We first scan the adjacency list of each vertex and construct a bitvector

D as follows (as we have done in Section 3.6): starting with an empty bitvector D, for

1 ≤ i ≤ n, if di is the degree of the vertex vi, then we append the string 0dlg die−11

to D. The length of D is
∑n

i=1dlg die, which is bounded by O(n lg(m/n)). We also

construct auxiliary structures to support select queries on D in constant time [109]. Like

the previous algorithm, we also maintain the current top O(n/ lg n) values in the list of

doubly linked list L along with all other auxiliary information. Finally, we maintain in a

bitmap B marking all the already numbered and output vertices. Overall space usage is

O(n lg m
n

) bits.

The algorithm is essentially same as earlier. The only difference is that, using the

structure D, we can compute and update (by doing word level read and write) the labels

of vertices in O(1) time (instead of O(dv) time as in the earlier algorithm). Thus the

128



running time of computing the labels of the vertices is now bounded by O(m), and the

rest of the computations is same as earlier. Hence the overall running time is O(m lg n).

The three algorithms described above can be summarized as follows.

Theorem 4.24. Given a graph G, we can obtain an MCS ordering of G in (a) O(mn)

time using n+O(lg n) bits, or (b) O(m2/n+m lg n) time using O(n) bits, or (c) O(m lg n)

time using O(n lg(m/n)) bits.

4.8 Applications of MCS

In this section, we provide several applications of our MCS algorithms presented in the

previous section. We start with some surprising connection of our MCS algorithm with a

few other totally unrelated graph problems and their algorithms with respect to designing

space efficient algorithms. Next we show how to use MCS to provide space efficient

solutions for solving some combinatorial problems in chordal graphs, and also recognition

of chordal graphs. We start by describing the connection with MCS first.

4.8.1 Connection with other problems

In this section, we discuss two other seemingly different problems and their algorithms

which will be similar to the space efficient MCS algorithms. First is the problem of

topologically sorting the vertices of a directed acyclic graph, and the second is that of

finding the degeneracy of an undirected graph. The similarity of these two problems with

MCS comes from the fact that the linear time algorithms for all three of these problems

have a very natural greedy strategy. We start by briefly explaining the linear time greedy

algorithms for these two problems.

One of the algorithms for topological sort works by maintaining the in-degree count of

every vertex, and at each step, it deletes a vertex of in-degree zero and all of its outgoing
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edges. The order in which the vertices are deleted gives the topological sorted order. To

efficiently implement the algorithm, all the vertices currently having in-degree zero are

stored in a queue. This algorithm can also test if the given graph is acyclic or not at

the same time. If it is acyclic, it produces a topological sort. Note the similairy of this

algorithm with that of MCS. It is not hard to see that each of the solutions for MCS

explained before could be made to work for topological sort with similar resource bounds.

The degeneracy of a graph G is the smallest value d such that every nonempty sub-

graph of G contains a vertex of degree at most d. Such graphs have a degeneracy ordering,

i.e., an ordering in which each vertex has d or fewer neighbors that come later in the order-

ing. Degeneracy and degeneracy ordering, can be computed by a simple greedy strategy

of repeatedly removing a vertex with smallest degree (and its incident edges) from the

graph until it is empty. The degeneracy is the maximum of the degrees of the vertices

at the time they are removed from the graph, and the degeneracy ordering is the order

in which vertices are removed from the graph. The linear time implementation of this

works almost in the same way as the MCS algorithm [20]. One can implement this al-

gorithm space efficiently using similar ideas as that of MCS. We omit the relatively easy

details. It would be intersting to find other problems with similar flavour. We want to

conclude this section by remarking that, for any greedy algorithm of this flavour we can

use similar technique to design space efficient implementation. We summarize our results

in the theorem below.

Theorem 4.25. Given a directed graph G, we can report whether G is acyclic or not, and

if so, we can produce a topological sort ordering in (a) O(mn) time using n+O(lg n) bits,

or (b) O(m2/n+m lg n) time using O(n) bits, or (c) O(m lg n) time using O(n lg(m/n))

bits. Using the same running time and space bounds, we can also test if an undirected

graph G is d-degenerate, and if so, we can output a d-degenerate ordering of G.

It is worth mentioning that in Theorem 4.4, we showed that using just O(n) bits,

topological sort of a directed acyclic graph G can be performed in O(m lg lg n lg n) time.
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This contrasts with the above theorem in the fact that the algorithm of Theorem 4.4

heavily relies on that fact that in the input representation both the in as well as out

adjacency lists are provided for every vertex v, and this facilitates the improved running

time of their algorithm. Here, instead, we work with more traditional and commonly

used out-adjacency list in our O(n) bits algorithm. We don’t know if we can achieve the

bounds of Theorem 4.4 without the in and out adjacency list assumption.

4.8.2 Finding Independent set, Vertex cover and Proper color-

ing

In this section, we show that using Theorem 4.24 how one can solve some combinatorial

problems on chordal graphs space efficiently. Recall that a perfect elimination ordering

(PEO) in G is an ordering of the vertices such that, for each vertex v, v and the neighbors

of v that occur after v in the order form a clique. Tarjan et al. [131] showed that, if G is a

chordal graph and σ is an MCS ordering of G, then the reverse of σ is a PEO of G. More

specifically, given the graph G, and a vertex ordering σ of G, we define the following:

• The edge directions implied by σ is obtained by directing (vi, vj) as vi → vj if i < j

and vj → vi if i > j.

• If vi → vj is an edge implied by the order, then vi is the predecessor of vj and vj is

a successor of vi.

Thus the theorem of Tarjan et al. [131] says that, the predecessor set of every vertex (i.e.,

set containing all the predecessors) in σ forms a clique, or equivalently in the reverse of

σ, for each vertex v, v and its successor set form a clique if and only if G is chordal. To

solve some combinatorial problems in chordal graphs, we need the reverse PEO whereas

for some applications we need the PEO. For all applications where we need a PEO, we

spend extra time for reversing the list produced by our MCS algorithm as, due to space
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restriction, we cannot store the PEO and reverse it in linear time. This seems to be a

fundamental bottleneck while designing space efficient algorithms.

Maximum Independent Set: We start with the problem of finding a maximum in-

dependent set (MIS), and for this, a simple greedy strategy works [89]. Given a reverse

PEO of the input chordal graph G, the algorithm scans the vertices in order, and for

every vertex vi, it adds vi to the solution set I if none of its predecessors has been added

to I already. Note that using a bitmap S of size n bits, where S[i] is set if the vertex vi

belongs to I, on top of the structures of Theorem 4.24, we can easily implement this to

find an MIS with no extra time. More specifically, at any iteration of the algorithm, while

we arrive at a vertex vi i.e., at that instance vertex vi is generated in the reverse PEO, we

scan all the neighbors of vi and add vi to the solution set I if none of its predecessors has

been added to I already. Also the complement of the set S gives us a minimum vertex

cover for G. Thus,

Theorem 4.26. Given a chordal graph G, we can output a maximum independent set

and/or a minimum vertex cover of G in (a) O(mn) time using 2n + O(lg n) bits, or (b)

O(m2/n + m lg n) time using O(n) bits, or (c) O(m + n lg n) time using O(n lg(m/n))

bits.

Proper coloring: In what follows, we discuss a space efficient implementation of find-

ing a proper coloring of a chordal graph G. It is known that the natural greedy algo-

rithm [89] for coloring yields the optimal number of colors if andonly if the vertex order

is a PEO. The algorithm works as follows: given a PEO, it scans the vertices in order,

and colors each vertex with the smallest color not used among its predecessors. Note

that, we need a PEO here, but MCS produces a reverse one, thus we first need to reverse

the list produced by the MCS algorithm. Also, it is easy to see that this coloring scheme

assigns, for any vertex v, the color at most maxi{indeg(vi) + 1} where indeg(vi) refers

to the neighbors of vi which appeared before in PEO and have already been colored.
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Suppose we store the explicit colors for each vertex in an array B, then the length of B

is
∑n

i=1dlg di + 1e = O(n lg(m/n)). We construct auxiliary structures to support select

queries on B in constant time [109]. Suppose we have O(n lg(m/n)) bits at our disposal,

then we run our MCS algorithm and store the last chunk of O(n/ lgm/n n) vertices in a

queue Q. Now dequeue vertices from Q one by one and run the greedy coloring algorithm

while storing the colors in B array explicitly, and continue. Once Q becomes empty, run

the MCS algorithm to generate the previous chunk and store them in Q, and repeat the

greedy coloring algorithm afterwards. This process is repeated at most O(lgm/n n) times,

and each time we run the MCS algorithm followed by the greedy coloring scheme, hence

total running time is O((m+ n lg n) lgm/n n). We summarize our result below.

Theorem 4.27. Given a chordal graph G, we can output a proper coloring of G in

O((m+ n lg n) lgm/n n) time using O(n lg(m/n)) bits.

Note that with O(n) bits, we cannot store the colors of all the vertices simultaneosuly,

and this poses a challenge for the greedy algorithm. We leave open the problem to find

a proper coloring of chordal graphs using O(n) bits.

4.8.3 Recognition of chordal graphs

In what follows, we present a space efficient implementation for the recognition of chordal

graphs. The idea is to apply MCS on G first to generate a vertex ordering, and then

check whether the resulting vertex ordering is indeed a PEO. Let v1, v2, . . . , vn be the

ordering of the vertices reported by the MCS algorithm.

Chordal graph recongnition with O(n lg(m/n)) bits: We first observe that one can

compute the predecessor/successor of any vertex vi during the MCS algorithm. Since we

have O(n lg(m/n)) bits, we can store one pointer into its adjacency list with each vertex.

We use this space to store a pointer to the last predecessor for each vertex. To test
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whether G is chordal, we need to test, for each vertex vi, whether the neighbors of vi

numbered less than i form a clique. To perform this test, it is enough to test whether the

predecessor set of vi is a subset of the predecessor set of vj where vj is the last predecessor

of vi [89].

Now we run the MCS algorithm once again, and whenever we number a vertex vj,

we also generate its predecessor set Pj. For this purpose, we maintain a bit vector B

to mark all the vertices that are numbered during the current MCS algorithm. Using

this (dynamic) bit vector B, one can easily generate the set Pj by simply scanning the

adjacency list of vj and checking whether they are marked in B. This set Pj is stored

as a bit vector Q of length n such that Q[`] = 1 iff v` ∈ Pj. This helps us in checking

the membership of a vertex in the set Pj in O(1) time. The bit vector Q is initialized in

O(n) time at the beginning of the algorithm, and is used to store the predecessor set of

the currently numbered vertex vj, for 1 ≤ j ≤ n. After generating the predecessor set Pj

of vj, we scan the adjacency list of vj to check for any vertex vi, where i > j, if vj is the

last predecessor of vi (given vi and vj, we can check whether vj is the last predecessor of

vi in constant time using the predecessor pointer of vi). If vj is the last predecessor of vj,

then we test whether the predecessor set of vi, excluding vj, is a subset of Pj. Note that

since vj is the last predecessor of vi, all the other predecessors of vi must have already

been numbered when vj is numbered, and hence are stored in the set represented by the

bit vector B. Thus we can test whether the predecessor set of vi is a subset of Pj in time

proportional to the degree of vi (with the aid of the bit vector Q). This completes the

description of our algorithm for chordal graph recongnition.

The overall runtime of the algorithm is dominated by the runtime of the MCS algo-

rithm. Thus if we can perform MCS on a graph G in t(n,m) time using s(m,n) bits, then

we can also check whether G is chordal in O(t(n,m)) time using s(m,n) +O(n lg(m/n))

bits.
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Chordal graph recongnition with O(n) bits: Since we cannot store the predecessors

of all the n vertices of G (in the MCS order), we generate these vertices in lg n phases,

where in the `-th phase, we generate the vertices V` = {v`k+1, v`k+2, . . . v`(k+1)}, for 1 ≤

` ≤ lg and k = n/ lg n. In each phase, for each vertex vi generated, we test the condition

whether predecessor set of vi is a subset of the predecessor set of vj where vj is the last

predecessor vi. To do this, we first perform another MCS, to compute the last predecessor

of each vertex in V` (in fact, this step can be combined with the step where we generate

the set V`). We maintain a bit vector to mark the set of last predecessors of elements

in V` to check their membership in O(1) time, and another bit vector B to mark the

numbered vertices. Now we start another MCS, and whenever a node vj is numbered,

we check to see if it is the last predecessor of some node vi in V`. If so, we generate the

predecessor sets of vj and vi with the aid of B, and check the required condition.

Thus if we can perform MCS on a graph G in t(n,m) time using s(m,n) bits, then we

can also check whether G is chardal in O(t(n,m) · lg n) time using s(m,n) + O(n) bits.

Thus we obtain the following,

Theorem 4.28. Given an undirected graph G, if MCS on G can be performed in t(n,m)

time using s(m,n) bits, then chordality of G can be tested in (a) O(t(n,m)) time using

s(m,n) +O(n lg(m/n)) bits, or (b) O(t(n,m) · lg n) time using s(m,n) +O(n) bits.

Corollary: Given an undirected graph G with n vertices and m edges, we can test if G

is chordal using O(m lg n) time and O(n lg(m/n)) bits of space or O((m2 lg n)/n+m lg2 n)

time using O(n) bits of space.

4.9 Concluding remarks and open problems

We have presented space efficient algorithms for a number of important applications of

DFS. Obtaining linear time algorithms for them while maintaining O(n) bits of space
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usage is both interesting and challenging open problem. One of the main bottlenecks

(with this approach) towards this is finding an O(n)-bit, O(m + n)-time algorithm for

DFS, which is also open, even though for BFS we know such implementations [14, 69].

Another challenging open problem is to remove the additional poly-log terms in the

running times of the algorithms described (e.g., the lg n term in the running time of 2-

vertex and 2-edge connectivity algorithm, and the lg2 n term in the running time of two

independent spanning trees algorithm). These terms seem inherent in our tree covering

approach. It would be interesting to find other applications of our tree covering approach

for space efficient algorithms. Planarity is an example where DFS has been used very

crucially. So it is a natural question that, can we test planarity of a given graph using

O(n) bits? Recently Kammer [99] et al. provided an algorithm to recognize outerplanar

graphs using O(n) bits.

We also showed several time-space tradeoffs for performing MCS and provided space

efficient implementation for its applications including testing if a given undirected graph

is chordal, reporting an maximum independent set, and a proper coloring of a given

chordal graph. One very challenging open problem would be to obtain a sublinear space

implementation for any of these methods (DFS and MCS). Note that DFS is known to

be P-complete, hence we don’t expect to have a poly-log space algorithm for DFS as that

would collapse the class L (deterministic logspace) and P (polynomial time). But can we

even design O(
√
n) space and polynomial time algorithm for DFS? Even though no such

complexity theoretic results are known for MCS, it still seems hard to obtain sublinear

space algorithm for MCS as well. We leave that also as another challenging open problem.
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Chapter 5

Space Efficient Algorithms for

Optimization Problems in Bounded

Treewidth Graphs

5.1 Introduction

So far we have seen a variety of space efficient graph algorithms but for none of them we

could achieve sublinear space algorithms. In this chapter, we show that for a large class

of optimization problems in bounded treewidth graphs, we could actually design such

sublinear space algorithms without loosing too much on time. In fact our result is more

general i.e., we provide a smooth time/space tradeoff result for these problems.

More specifically, it is well-known by the famous Courcelle’s theorem that many graph

properties (those that are expressible in monadic second order logic) can be solved in lin-

ear time on graphs of bounded treewidth. Logspace versions of this using automata

theoretic framework are also known. In this chapter, we develop an alternate method-

ology using the standard table-based dynamic programming approach to give a space
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efficient version of Courcelle’s theorem. We assume that the given graph and its tree de-

composition are given in a read-only memory. Our algorithms use the recently developed

stack-compression machinery of Barba et al. [18] and the classical framework of Borie

et al. [28] to develop time-space tradeoffs for dynamic programming algorithms that use

O(p lgp n) variables where 2 ≤ p ≤ n is a parameter. We believe that our approach is

more natural and simpler. En route we also slightly generalize the stack compression

framework to a broader class of algorithms, which we believe can be of independent

interest.

5.1.1 Motivation

The aim of this chapter is to demonstrate the power of two class of algorithms – one

classical [28] and one recent [18] – and to show that a combination of them can provide

extremely space efficient algorithms for graphs of bounded treewidth even when the tree

of the decomposition is given in a read-only memory.

It is well-known [26] that many problems that are NP-hard on general graphs can

be solved in linear time, using dynamic programming, on trees and graphs of bounded

treewidth. This is captured by the most general theorem due to Courcelle [53] which

states that properties that can be expressed in Counting Monadic Second Order Logic

(CMSO) can be tested in linear time on graphs of bounded treewidth. Aspvall et al. [13]

considers a closely related problem. Given the tree T of tree decomposition, they look at

the problem of finding a root and traversal order to minimize the space requirement i.e.

the minimum number of tables that need to stored simultaneously in the main memory.

They showed how to find such a root, and also proved that dfs order traversal of T

actually minimizes the space requirement. More specifically, they showed that, the space

requirement is lower bounded by the pathwidth of the tree of the tree decomposition T

plus one, and upper bounded by twice the pathwidth of T . In particular, as the pathwidth

of a tree on n nodes is O(lg n), this implies that O(lg n) tables are sufficient. Not just
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the optimum value, Bodlaender and Telle [27] later show that the sets that realize the

optimum solution can be determined in O(n lgs n) time using O(s + w) words of space

where s ≤
√
cn/2 is a parameter, w is the pathwidth of T and c is the maximum number

of children of any node in the tree of the tree decomposition.

Our main objective here is to implement these standard dynamic programming al-

gorithms in the read-only memory model where the input tree is given in a read-only

input. Apart from adjacency of the graph, we can only access the leftmost child, right

sibling and the bags of each node in constant time (in particular, we do not assume parent

pointers which poses a challenge when doing a bottom-up traversal). We show that the

above bounds (that of Aspvall et al. [13]) can be achieved if we use an additional stack

that could grow to linear size. We then use the recent stack compresion method of Barba

et al. [18] to reduce the space to O(lg n) without too much degradation in time. Towards

this end, we first generalize the stack-compression method to a broader class of stack

algorithms.

5.1.2 Related Work

Elberfeld et al. [64] showed that Bodlaender’s [24] linear time algorithm (to determine

whether a given graph has treewidth at most k for a fixed k) and Courcelle’s [53] linear

time algorithm (to determine the satisfiability of a CMSO expressible property on a

bounded treewidth graph) can be implemented in O(1) words, i.e., using O(lg n) bits

of space. However, the algorithm of Elberfeld et al. [64] is reasonably complicated, and

is based on the automata theoretic framework of Courcelle’s theorem, while we use the

natural table based approach of the dynamic programming algorithms. Elberfeld et.al [64]

does not focus on time needed to implement their algorithm and, similarly, Courcelle’s

[53] linear time algorithm does not consider space issues. We, in this chapter, give a

smooth tradeoff between time and space for such dynamic programming algorithms.
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The Maximum Independent Set problem covered by our main result in this chap-

ter, Bhattacharya et. al [23] gave an O(n) algorithm using O(h) word space; here h

is the height of the tree that could be as high as n. In contrast, our algorithm gives

the optimum value in O(n) time and O(nε) words of space even for weighted trees and

bounded treewidth graphs. It can also output the set realizing the optimum value in the

same time and space for unweighted trees. But for weighted trees and bounded treewidth

graphs, outputting the solution set takes O(n2) time using the same space. We also give

algorithms that take O(lg n) words of space and O(n1+ε) time to output the optimum

value. Here ε is any fixed positive constant less than 1.

Our results, apart from adding to the growing body of literature on space efficient

graph algorithms, bring to light two important results for space efficient implementation

of dynamic programming algorithms:

• the classical observation (doesn’t seem to be well-known) due to Aspvall et.al. [13]

that a careful post order traversal of the tree decomposition requires only O(lg n)

open tables for dynamic programming based algorithms for bounded tree-width

graphs, and

• the recent technique to reduce the space requirement of algorithms that use only a

stack (that could grow to linear size) and a constant number of auxiliary words.

Like previous chapters, here also we work with the register input model. Our al-

gorithms work with the standard left-most child, right-sibling based representation for

trees [51]. I.e., we assume that the tree (of the input or of the tree-decomposition) is

given in a representation where the children of a node are organized in a linked list. I.e.

given a node label, we can find its left-most child and its right sibling in constant time. In

particular, we do not have parent pointers associated with the nodes, unless stated oth-

erwise. For the weighted versions of the algorithms and for graphs of bounded treewidth,

we assume that weights or the bag sets of the vertices are given in a separate array in-
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dexed by the labels of the vertices of the tree (which we assume are in {1, 2, . . . n}). For

bounded treewidth graphs, apart from the tree decomposition, we also need the graph in

read-only memory, represented in a way that adjacency can be checked in constant time.

5.1.3 Problem Definitions

In this subsection, we define some of the optimization problems we solve space efficiently

on trees and bounded treewidth graphs. Given a graph G, a subset S ⊆ V is called a

vertex cover if for all e = (i, j) ∈ E, S contains i or j or both. Equivalently G[V − S] is

an independent set i.e., a set of vertices in a graph, no two of which are adjacent.

Minimum Vertex Cover

Input: A graph G = (V,E).

Question: Find the cardinality of a minimum sized vertex

cover and a set that realizes this value.

Similarly, we define Maximum Independent Set.

Maximum Independent Set

Input: A graph G = (V,E).

Question: Find the cardinality of a maximum sized indepen-

dent set and a set that realizes this value.

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges;

that is, no two edges share a common vertex.

Maximum Matching

Input: A graph G = (V,E).

Question: Find the cardinality of a maximum sized matching

and a set that realizes this value.
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Given a graph G = (V,E), a subset S ⊆ V is called a dominating set if every vertex in

the subset V \ S is adjacent to at least one vertex in S.

Minimum Dominating Set

Input: A graph G = (V,E).

Question: Find the cardinality of a minimum sized dominat-

ing set and a set that realizes this value.

For the weighted versions of these problems (except Maximum Matching), we are

given a non-negative integer weight on each vertex of the input graph, and the objective

is to find the weight of a minimum/maximum weighted set and a set that realizes this

minimum/maximum weight.

5.1.4 Organization of the chapter

In Section 5.2, we first explain the general working scheme of stack based algorithms

and also state the main lemma from [18]. Then we provide our generalization of the

stack based algorithms, and prove our stack compression lemma for the generalization.

We begin the development of our dynamic programming based algorithms on the simple

problem of performing a depth-first search (DFS) of a tree in Section 5.3. The algorithm

contains the main ideas that are used later to develop dynamic programming algorithms

on bounded treewidth graphs. Then in Section 5.4 we provide the dynamic programming

algorithms for the specific optimization problems on trees using the stack compression

machinery, as a warm up for our general result. This section also considers different

variants of these problems on trees. In Section 5.5 we develop our main space efficient

algorithm for problems expressible in counting monadic second order logic (CMSO). This

section also considers the weighted versions and the modifications necessary to output

the solution set. Section 5.6 contains some concluding remarks.
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5.2 Generalized Stack Framework

In what follows, we explain the general scheme of stack based algorithms defined in [18].

As we generalize the scheme slightly, we find it useful for the readers to reproduce the

framework and the main lemma with proof sketches which we use to argue about our

generalized framework.

Let A be a class of deterministic algorithms which uses a stack and optionally other

auxiliary data structures of constant size. The operations that can be supported are

push, pop and accessing the k top most elements of the stack for a constant k.

Let X ∈ A be any algorithm and a1, a2, · · · , an ∈ I be the values of the input, in the

order in which they are treated by A. We only assume that given ai, we can access the

next input element in constant time. We will call X a stack based algorithm if, given a

set of ordered input I, X processes ai ∈ I one by one in order and based on ai, the top

k elements (for some constant k) of the stack and the auxiliary data structures’ current

configuration, it decides to pop some elements off the stack first, then push ai (or some

function of ai) along with some constant words of information into the stack. Then the

computation moves forward to the next element, until all the elements are exhausted.

The final result which is stored in the stack, is then output by popping them one by one

until the stack is empty. Any algorithm following this structure is called a stack based

algorithm. We provide the pseudocode in the next page for completeness [18].

Algorithm 5 Basic scheme of a stack based algorithm

1: Initialize stack and auxiliary data structure DS with O(1) elements from I
2: for all input a ∈ I in order do
3: while some-condition(a, DS, STACK.TOP(1),· · · , STACK.TOP(k)) do
4: STACK.POP
5: end while
6: if another-condition(a, DS, STACK.TOP(1),· · · , STACK.TOP(k)) then
7: STACK.PUSH(a or some function of a)
8: end if
9: end for

10: Report(STACK)
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For such stack based algorithms, in [18] the authors prove the following result. We

give the proof for completeness as it is helpful for understanding our generalized frame-

work.

Theorem 5.1 ([18]). Any stack algorithm which takes O(n) time and Θ(n) space can be

adapted so that, for any parameter 2 ≤ p ≤ n, it solves the problem in O(n1+(1/ lg p)) time

using O(p lgp n) variables.

Proof. We partition the input into p blocks for a given 2 ≤ p ≤ n (assume for ease

of presentation that n is divisible by p). Thus each block has a size of n/p. We then

compress each block except the top two non-empty blocks in the stack. Compression

involves storing only the first and last elements of the blocks which are in the stack and

are denoted by ab and at respectively for each block. Along with ab we store an auxiliary

data structure of size O(1) to help reconstruct the block elements when required. The

top two non empty blocks are partially compressed level by level. This means that we

recursively subdivide them into p sub-blocks till level h = lgp n − 1 when we explicitly

store the blocks. Note that at level h the explicitly stored blocks have p elements stored.

Let us denote by Fi and Si the first two blocks at level i. We also say that Fi may be

empty but Si is always non-empty.

Lemma 5.2. [18] The compressed stack structure uses O(p lgp n) words space.

Proof. At each level both the top two partially compressed blocks and the totally com-

pressed blocks below them take O(p) space each. As there are h = lgp n levels the space

bound follows. We can look at it as storing h different stacks each of O(p) space.

Let us now see how to implement the Pop and Push operations such that the com-

pressed stack structure is maintained.
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Push Operation : We push an element at level h. If the block Fh has space left, then we

add the element to the block and update all the levels below it. By update, we refer to

changing the at values of the blocks Fi at each level i to the newly pushed element. It

may also happen that Fh or some lower level Fi has no space left and we need to create a

new block Fi for the pushed element. In this case the old Fi becomes the new Si and we

compress the old Si noting that the compressed Si is already available at a level above.

So we need to just query level i − 1 for the compressed Si. In this case we need to also

push in the element along with the auxiliary data structure. Thus all push operations

can be performed in constant time per level.

Pop Operation : We pop an element from level h. If the block Fh or Sh has elements

left (note that Fh may be empty), in that case we again change the at values of all the

levels below for the corresponding Fi or Si. Now if the block Fh becomes empty then we

propagate down the levels until we find a non-empty Fi (or Si if Fi is empty). For this

non empty Fi or Si both ab and at are known and we need to reconstruct this block.

Reconstruction : For reconstructing a block, say B, we have the ab value stored along

with the context. The reconstruction of the block mimics algorithm A i.e. it starts with

ab and then follows algorithm A pushing and popping in elements until it reaches at when

it stops. The procedure is handled by another auxiliary stack, say SA. We initially feed

it ab along with the context. It then generates either partially compressed blocks or a full

block stored explicitly (at level h). The auxiliary stack is also compressed similar to the

original stack. After the procedure we can return the reconstructed block and continue

with the algorithm A. As the procedure exactly follows algorithm A but for a smaller

input (for block B), the elements in SA will be the same as B. Note here that as the

number of levels for A is bounded, the Reconstruction procedure will also terminate.

Lemma 5.3. [18] The space used by the Reconstruction procedure is O(p lgpm) words,

where m is the number of elements between ab and at.
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Proof. : Reconstructing a block B can trigger multiple nested reconstructions if, say, a

block in SA becomes empty. But the crucial fact here is that SA mimicsA but on a smaller

input. Hence, for each nested reconstruction the level of a block to reconstruct increases.

Thus there can be at most h many reconstructions possible. We can use auxiliary stacks

for each level. By Lemma 5.2, each reconstruction procedure takes O(p lgpm) space.

We observe that the reconstruction procedure at level i can utilize space unused by the

original stack itself as then the space allocated in the original stack for levels greater than

i remains unused. So the space used by SA and the other auxiliary stacks can be charged

to the space unused in the original stack. Thus the reconstruction operation does not

need any extra space other than the space allocated to the original stack.

Lemma 5.4. [18] The time taken by the stack algorithm A is O(n1+1/ lg p).

Proof. The time taken by the Push and Pop operations are constant time per level.

So the total time taken is O(nh). We now bound the time taken by Reconstruction

using a charging scheme. For a block that is reconstructed, we charge the time taken for

that block to the block that, on being empty, had caused the reconstruction. We know

that a block once popped cannot be popped again, hence we can bound the number of

reconstructions by the number of blocks. We should also take into consideration that

we are working with a compressed stack. So a block on being reconstructed by A may

have to be compressed again, to be reconstructed again by some smaller block Si getting

empty. Thus each block can be charged twice for a reconstruction. Also the time taken

for reconstruction of a block of size p is O(p). If T (m) is the time taken to reconstruct a

block of size m, then T (p) = O(p).

Thus we have the recurrence, T (n) = 2pT (n/p) + O(p), where the O(p) denotes the

constant time spend to read the context of each ab to reconstruct. This recurrence solves

to O(n1+1/ lg p). Thus the total running time is O(nh + n1+1/ lg p) = O(n1+1/ lg p), when

h = lgp n− 1.
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Hence, from Lemmas 5.3 and 5.4, Theorem 5.1 follows.

In [18], the authors have shown that a large number of algorithms in computational

geometry literature fits into the stack framework and for those applications they obtained

time-space tradeoff using Theorem 5.1. Even though the stack framework is general

enough to capture those algorithms, we observe that even for performing a depth first

traversal (DFS) on trees, this is not sufficient. In particular, in [18], the input elements are

maintained in a list structure so that given access to an input element ai, the algorithm

can access ai+1 in constant worst case time. However to perform DFS, the next element

of the DFS order is to be determined by navigating the tree, which may involve multiple

backtracking, resulting in a non-constant time. Towards capturing such problems, we

first generalize the above stack based algorithms to a broader class of algorithms and still

prove a version of Lemma 5.1. More specifically,

• We allow the number of auxiliary variables to be a parameter t, which need not be

a constant, and any of the auxiliary variables can be accessed in a constant time.

This is possible if we simply assume that the auxiliary variables form an array of t

elements. We then capture the time and space also as a function of the number of

auxiliary variables.

• We assume that the next element to be processed could depend on the pushes and

pops done and hence could take more than a fixed constant time to determine. In

fact, as the input is in read-only memory, the algorithm may even make several

scans over the input (along with the stack and auxiliary storage) and take, say

some g(n, t) time (as k is a constant, we ignore its dependence on g) to find the

next element to process.

• We also assume that each element is processed at most once.

• Finally, we allow the condition that decides what to push into the stack or whether

to pop the stack element to take time an arbitrary function h(n, t) of n and t and
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space s(n) words. Hence each push and pop can take h(n, t) time, and hence the

entire algorithm takes O(nh(n, t) + ng(n, t)) time using s(n) + t words apart from

a stack.

We also allow the algorithms to output elements to a write-once output array along the

way.

We call such a stack algorithm, a generalized stack based algorithms. We provide the

pseudocode below.

Algorithm 6 Basic scheme of a generalized stack based algorithm

1: Initialize the stack and auxiliary data structure DS of size t
2: Initialize the first input element a to be processed and push it into the stack.
3: repeat
4: while some-condition(a, input, DS, STACK.TOP(1),. . ., STACK.TOP(k)) do
5: STACK.POP
6: end while
7: a← next(a) (next(a) is computed based on a, all the pops and push done in this

step as well as the input set)
8: if some-condition(a, input, DS, STACK.TOP(1),. . ., STACK.TOP(k)) then
9: STACK.PUSH(a or some function of a)

10: end if
11: until a is NULL

For such generalized stack based algorithms, we can prove the following theorem:

Theorem 5.5. Any generalized stack algorithm that takes O(n(h(n, t) + g(n, t))) time

and O(n + t + s(n)) space, where O(n) space is for the explicit stack and O(t) space is

for auxiliary data structures, and s(n) space is to check the conditions for pushes and

pops, can be adapted so that, for any parameter 2 ≤ p ≤ n, it solves the problem in

O((n(h(n, t) + g(n, t)))1+(1/ lg p)) time using O(pt lgp n+ s(n)) variables.

Proof. The space for auxiliary data structures play a role in Lemma 5.1 when we compress

a block in the stack, and store the ‘context’ of the auxiliary data structures with the first

element of the block. In our case, we can store the values of the t variables into the stack,

thereby increasing the storage space by a factor of t. Also the reconstruction steps in
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Lemma 5.1 simulate the original stack algorithm repeatedly (sometimes with recursive

calls), and hence the ability to compute the next element of an element after processing

that element (which could take more than a constant time) does not affect the analysis

in any way. At the base case of the recursive step of reconstruction, a block of size p is

reconstructed with full stack space of size p which takes O(p(g(n, t) + h(n, t))) time (as

only the elements of that block are pushed and popped), so T (p) = O(p(g(n, t)+h(n, t))).

The general step remains as before resulting in the earlier recurrence for the total running

time as T (n) = 2p(h(n, t)+g(n, t))T (n
p
)+O(p(h(n, t)+g(n, t)) which solves to the claimed

runtime bound.

For the generalized stack algorithms we deal with in the chapter, the parameters

s(n) and h(n, t) are constants while g(n, t) is an amortized constant. By fixing these

parameters in Theorem 5.5, we get the following theorem,

Theorem 5.6. Any generalized stack algorithm which takes O(n) time and O(n+t) space

(where O(n) is for the stack, and t is for the auxiliary variables) can be adapted so that,

for any parameter 2 ≤ p ≤ n, it solves the problem in O(n1+(1/ lg p)) time using O(pt lgp n)

variables.

To start with we use Theorem 5.6, in the next section, to provide a space efficient

implementation of some optimization problems on trees and later generalize to bounded

treewidth graphs.

5.3 DFS on trees

Asano et al. [9] in a recent paper gave an algorithm to perform the DFS traversal of an

undirected tree T using O(lg n) bits of space and linear time. It actually produces rather

the Eulerian tour of T . Specifically, their algorithm traverses T in a DFS fashion and

outputs every edge of T twice, first time while going down and, secondly, while moving
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up the tree. The algorithm produces the list of edges in Eulerian tour order and it is not

clear how to extract out the vertices in DFS order from this edge list in O(lg n) space and

linear time (actually the number of times a vertex appears in the list is its degree in this

list). We show that we can output the vertices in DFS traversal order albeit with a little

more time and space. Note that, we assume that the input tree is given in leftmost child

and right sibling representation which is strictly weaker than their input representation.

We formalise our theorem below.

Theorem 5.7. Given a rooted undirected tree on n vertices in left-most child and right-

sibling representation, we can output the vertices in DFS order in O(n1+(1/ lg p)) time using

O(p lgp n) variables of extra space where 2 ≤ p ≤ n.

Proof. We implement depth first order using a stack which is initialized to contain the

root vertex. We output a node as we discover it, and add it to the stack (and so the

root is output first). At each step, we add the leftmost child of the node at the top of

the stack unless the node has no children. When the stack top node has no children, the

node has been fully explored; we pop the node from the stack and add (after outputting)

its right sibling (which is the next child of its parent to be explored) to the stack as long

as the node has a right sibling. When the stack top node has no children or right sibling,

then it is the last child of its parent and hence its parent has been fully explored. So

we pop the node off the stack and pop also its parent (which will be at the top of the

stack after popping the node) and continue the process until the stack becomes empty.

A psuedocode description of the algorithm is given below.

Notice that this algorithm as we described fits into our generalized stack framework

(with t and s(n) constants while g(n, t) and h(n, t) are non-constants in some steps though

they are constants when amortized over the processing steps of all the elements; hence

they do not fit into the original generalized stack framework). Hence Theorem 5.5 can

be applied to obtain the desired bounds.
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Algorithm 7 DFS(x)

1: Initialize stack S to NULL
2: while x 6= NULL do
3: Output(x), Push(x, S)
4: x← next(x)
5: end while
6:

7: next(x)
8: if x has leftmost child y then
9: next(x)← y

10: else
11: z ← StackTop (note that z = x initially)
12: Pop(z, S)
13: while z has no right sibling and stack is not empty do
14: z ← StackTop
15: Pop(z, S)
16: end while
17: if stack is empty then
18: next(x)← NULL
19: else
20: next(x)← right sibling(z)
21: end if
22: end if

Setting p to a small fixed constant or nε for a positive constant ε < 1, we obtain

Corollary 5.8. We can output the vertices of a rooted undirected tree T in DFS order

using O(lg n) variables and O(n1+ε) time or using O(nε) variables and O(n) time.

5.4 Optimization problems

In the next section we give a generic algorithm for problems expressible in CMSO over

graphs of bounded treewidth. In this section as a warm up, we explain our algorithms

for specific problems on trees. The main reason for doing this is to show that to obtain

a space efficient algorithm, all we need to do is to turn natural dynamic programming

based algorithms into a stack based algorithm and then use Theorem 5.5 to obtain the

desired trade-off between space and time. Thus, these algorithms are useful in practice.
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5.4.1 Unweighted Trees

We exemplify our approach by giving time-space tradeoffs for Minimum Vertex Cover,

Maximum Independent Set, Maximum Matching, and Minimum Weighted Dom-

inating Set (MWDS).

Theorem 5.9. Minimum Vertex Cover and Maximum Independent Set, Maxi-

mum Matching and Minimum Dominating Set can be solved on a rooted unweighted

tree on n vertices in O(n1+(1/ lg p)) time using O(p lgp n) variables of extra space where

2 ≤ p ≤ n. In fact, we can also output the corresponding set and its cardinality for

each of the above problems in the same time and space. The output is generated through

an output array (which can not be seen/used by the algorithm once the output has been

generated) which will list out the vertices.

Proof. The standard dynamic programming algorithms for these problems on trees com-

pute these values in a bottom up fashion. To implement those algorithms, we proceed

as in the case of the DFS traversal algorithm in Section 5.3 except when we push ele-

ments onto the stack, we also push some (tentative) values along with them. And as

we compute these values bottom up, the values from the children are passed on to the

parents through the stack. Thus we also get around the lack of parent pointer by pushing

elements into the stack as we traverse (and so the parent is at the top of the stack when

an element is popped), but then this lets the stack to grow to size n. Then we apply

the stack compression of Theorem 5.5 to reduce the space. This completes a high level

description of our algorithm starting from the root. Below we give detailed specifics of

the algorithm for the specific problems claimed in the theorem.

Minimum Vertex Cover: A standard algorithm to find a minimum vertex cover in a

tree is based on the following simple observation:

Observation If v is a vertex with degree 1, then there exists a minimum vertex cover that

contains v’s unique neighbor u.
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Hence the algorithm repeatedly includes the neighbor of leaf nodes into the solution

and deletes them (and their neighbors) from the tree, until the tree becomes empty. This

algorithm can be implemented using a stack as follows: we do a depth first traversal of

the tree starting from the root, including every vertex into the stack along with a bit 0

associated with the vertex (to indicate our initial guess to exclude that vertex from the

solution) as we visit. The first popping happens when we visit a leaf. While popping out

a vertex (after visiting its entire subtree), if its value remains as 0, we make its parent

(which would be at the top of the stack) 1. Once a node becomes 1, it stays as 1 during

its lifetime in the stack. While popping a node if its associated bit is 1, we output it in

the output array. Thus in the third line of Algorithm 7, replace Push(X) by Push(X, 0)

and Pop(X) by the following code snippet,

Pop(X, b);

If b = 1, output X;

If b = 0; Z ← StackTop;

Pop(Z, b);

Push(Z, 1).

We also maintain a variable which is incremented everytime we output a vertex so that,

along with the set, we can also report the cardinality of the optimum solution. This

completes the description of the algorithm, and it is easy to see that this algorithm

essentially implements the algorithm outlined above using a stack and a constant number

of variables. When a vertex assigned 0 is popped it implies that it is a leaf and hence its

parent is assigned 1 which is correct by the observation above.

Maximum Independent Set: This can be solved similarly. We provide the details be-

low for completeness. Basically we use the observation that the complement of minimum

vertex cover is a maximum independent set. So, the algorithm is exactly similar to the

minimum vertex cover algorithm with the switching of the roles of 1 and 0. i.e., we set

the bit of the vertex to 1 as we push into the stack, and whenever a vertex is popped, if

its value is 1, we set its parent’s value to 0. And a node getting 0 will remain as 0 during
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its stay in the stack. And when we pop a vertex whose value is set to 1, we output it.

We can report the cardinality of the solution in similar way as before.

Maximum Matching: We modify the minimum vertex cover algorithm as follows.

When we pop out a vertex with value 0, if its parent (which would be at the top of

the stack) has value 0, we set it to 1, and output the edge joining it and its parent as

part of the maximum matching. This ensures that the set of edges in the output form

a matching, and every time when a vertex becomes 1 the first time, an edge (joining it

to the vertex which made it 1) is taken into the matching, ensuring that the size of the

matching output is the same as the size of the (minimum) vertex cover. This proves that

what we output is a maximum matching (by Konig’s theorem, as a tree is a bipartite

graph).

Minimum Dominating Set: Similar to the algorithm for Minimum Vertex Cover,

this algorithm also uses the observation that there exists a minimum dominating set that

contains the unique neighbor of any leaf node. However, unlike minimum vertex cover

algorithm where a vertex along with its incident edges can be deleted once included in a

solution (and the problem can be solved recursively), before we delete a vertex that has

been included in the dominating set, we mark its parent as one that has been already

dominated. Furthermore, we include the parent of a leaf node in the dominating set only

if the leaf node has not been dominated already. In particular, if all the children (leaves)

of a node are already dominated, then the parent is not included in the solution unless it

is a root. Detailed implementation of the algorithm with a stack is given below.

As before, we do a depth first traversal and assign the number 0 to the vertex as it

is pushed into the stack. At any point of time, each vertex (in the stack) is in one of

the three states indicated by its assigned bit. A 1 bit indicates that the vertex is in the

dominating set (constructed so far), while 2 indicates that the vertex, though not in the

dominating set, has already been dominated. An assigned bit of 0 for a vertex indicates

that the vertex has not been dominated and we are yet to decide about the vertex’s
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presence in the dominating set.

While popping out a vertex v (after visiting its entire subtree), if it has value 0 and has

a parent, then we assign the parent (which is at the top of the stack) value 1; if that

vertex is the root, we assign it value 1; if the vertex that was popped out has value 1,

then we assign 2 to the parent if the parent was not already assigned 1. In all other cases

(if the parent of the popped vertex with value 1, was already 1 or if the popped vertex

has value 2), we do nothing. The vertices which are assigned 1 while popping out form

the solution set and hence are output as we pop them out. As before, the assignment

to each vertex is forced in a bottom-up fashion. Therefore when a vertex assigned 0 is

popped it implies that none of its children has dominated the vertex nor does the vertex

belong to the dominating set. So if the vertex has no parent we take it into the solution,

assigning value 1. If it has a parent we assign the parent as 1 as the parent can dominate

more vertices than the vertex itself. This proves the correctness of the algorithm.

It is also clear that the algorithms satisfy the generalized stack framework and hence

the claimed bounds follow from Theorem 5.5.

5.4.2 Weighted Trees

The algorithms we described for Minimum Vertex Cover or Maximum Indepen-

dent Set use the observation that for any leaf, its unique neighbor can be picked up

in any maximum independent set or a minimum vertex cover. This is no longer true in

the weighted variants of these problems. Thus, in this case we resort to a modification

of standard dynamic programming algorithm. However, this comes at a cost: now we

cannot output the desired set in the same running time, but with a linear factor increase

in the runtime. We exemplify the approach via Minimum Weighted Dominating

Set (MWDS), Minimum Weighted Vertex Cover and Maximum Weighted

Independent Set.
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Theorem 5.10. Given a rooted node-weighted tree on n vertices where every vertex has

a positive weight, given in the form of a read-only memory pointer representation, we can

determine

• the weight of a maximum weight independent set, a minimum weight vertex cover

and a minimum weight dominating set in the tree in O(n1+(1/ lg p)) time using

O(p lgp n) variables of extra space where 2 ≤ p ≤ n; furthermore, using the same

time and space,

– we can determine whether or not the root is in the optimum solution of a

maximum weight independent set or a minimum weight vertex cover.

– we can determine whether or not the root is in the optimum solution for a

minimum dominating set. If the root is not in the minimum weight dominating

set whose weight is D(root), we can also find the child that dominates the root.

Furthermore, we can also find in the same time and space,

∗ E(root) = The weight of a minimum dominating set that does not contain

the root.

∗ DE(root) = The weight of a minimum dominating set that dominates all

vertices of the subtree except possibly the root; also whether or not the root

is in such a dominating set.

∗ I(root) = The weight of a minimum dominating set that contains the root.

Proof. We describe the essence of the algorithms first and suggest modifications needed

for them to use just a stack. The standard dynamic programming algorithm to compute

weighted Maximum Independent Set on trees computes the following values for every

node v in bottom up fashion:

M+[v] = weight of the maximum weight independent set of the subtree rooted at v

containing v.

M−[v] = weight of the maximum weight independent set of the subtree rooted at v not
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containing v.

Once we have computed these quantities for all the children vi · · · vd of an internal node

v, then we can compute it for v as follows:

M+[v] = w[v] +
d∑
i=1

M−[vi];M
−[v] =

d∑
i=1

max{M+[vi],M
−[vi]}

As before, our algorithms proceed in a depth first fashion inserting the nodes, and

some initial values with them as we push them into the stack. The initial values for any

node as they are inserted into the stack are w(v) for M+[v] and 0 for M−[v]. Observe that

for a vertex v, what we actually push into a stack is the tuple, Push(v,M+[v],M−[v]) in

the third line of Algorithm 7. It is easy to compute these values for leaf nodes. Once

we pop a vertex u, we would have visited its entire subtree, and hence computed these

values for that vertex. We, then update its parent v (which is at the top of the stack) with

its contribution to both these quantities of its parent. More precisely, we update M+[v]

by M+[v] + M−[u], and M−[v] by M−[v] + max{M+[u],M−[u]}. It is easy to see that

the above expression correctly computes the two quantities for every node in a postorder

traversal using just a stack and the final answer is given by max{M+[root],M−[root]}.

Furthermore we see that the root will be in the solution if M+[root] ≥M−[root].

The weight of the Minimum Vertex Cover can be computed by the straight-

forward modification of the M+[v] and M−[v] stated above. And then similar depth

first traversal of the tree along with value updation in stack and final application of our

generalized stack compression theorem yields same running time and space bounds for

Minimum Vertex Cover.

The standard dynamic programming algorithm for MWDS needs the values at each

child of a node before computing the value of the node, which may result in a storage

more than a stack. To recall, a dynamic programming algorithm works as follows. It

computes four quantities I(v), D(v), DE(v), E(v) for each vertex v, which are defined as

157



below.

1. E(v) = The weight of a minimum dominating set of the subtree rooted at v, that

excludes vertex v.

2. DE(v) = The weight of a minimum dominating set of the subtree rooted at v that

dominates all vertices of the subtree except possibly v.

3. I(v) = The weight of a minimum dominating set of the subtree rooted at v that

contains vertex v.

4. D(v) = The weight of a minimum dominating set of the subtree rooted at v.

Clearly D(v) = min{I(v), E(v)}. It is easy to find these values for leaf nodes, and once

we have computed these quantities for all the children of a node v, they can be computed

for v as follows: let u1, u2, . . . ud be the children of v. Then

I(v) = w(v) +
∑d

i=1DE(ui),

DE(v) = min{I(v),
∑d

i=1D(ui)},

E(v) = min1≤i≤d{I(ui) +
∑d

k=1,k 6=iD(uk)}

Now, all these quantities can be computed in a depth first order as follows. We

initialize DE(u) and E(u) to 0, and I(u) to w(u), as we push a vertex u into the stack.

Once we pop a vertex u, we would have visited its entire subtree, and hence computed

these values for that vertex. We can then easily compute D(u) for that vertex. Then

we update its parent (which is at the top of the stack) with its contribution to all of

these quantities of its parent. More precisely, for the parent vertex v, we make I(v) ←

I(v) +DE(u);DE(v)← DE(v) +D(u).

Updating E(v) is a bit tricky, but it becomes easier, if we rewrite the quantity E(v)

in the above equation as,

E(v) = min
1≤i≤d

{
d∑
i=1

D(ui) + (I(ui)−D(ui))

}
= DE(v) + min

1≤i≤d
(I(ui)−D(ui)).
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To compute D(v), we simply keep track of min{I(u)−D(u)} over its children u of v and

also the vertex u that realizes the min. When we pop a vertex u, we update the DE

value of its parent v as DE(v) = DE(v) +D(u) and update the min{I(u)−D(u)} at its

parent by (I(u)−D(u)) if the (I(u)−D(u)) quantity is smaller. When all the children

are popped, E(v) is set to E(v) = DE(v)+(I(u)−D(u)). It is easy to see that the above

expression correctly computes the four quantities in a postorder traversal using just a

stack and the final answer is given by D(root).

If D(root) = I(root) then we conclude that the root in the solution. If not, then

D[root] = E[root] = DE[root] + min{I(u) − D(u)} where the min is taken over the

children u of root. Hence if the root is not in the solution then the child u realizing the

min is the vertex that dominates the root. It is easy to see that we can implement the

above described procedure in the template of Algorithm 7 and, hence, using Theorem 5.5

we get the claimed running time and space bounds.

5.4.3 Reporting Solution Set in the Weighted Case

Theorem 5.10 gives only the output weight of the solution. But to output a set that

actually realizes the optimal solution is a bit tricky. In particular this can not be computed

in a bottom-up fashion, as the presence of a vertex in the optimum solution depends both

on its parent as well as its children. One approach to solve this is to perform the “forward”

direction as in Theorem 5.10 and determine whether the root node is in the optimum

solution or not. Then trace back to the leaves back through the entries in the earlier

nodes that gave rise to the optimum solution. This results in a linear factor increase in

the runtime. More specifically, we do a depth first traversal of the tree, starting from root,

calling Theorem 5.10 at each node to determine appropriate values at the node, including

its presence or absence in the optimum solution in the subtree rooted at the vertex, and

store them in a stack. Its actual value (whether or not it is in the optimum solution of

the entire tree) is computed based also on the appropriate values of its parent, that is
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stored in the stack. We let this stack grow to linear size, and use the stack compression

lemma to compress it to the required space. We formalize our theorem below.

Theorem 5.11. Given a node-weighted tree on n vertices where every vertex has a posi-

tive weight, given in the form of a read-only memory representation, we can determine the

solution set that realizes a Maximum Weighted Independent Set or a Minimum

Weighted Vertex Cover or a Minimum Weighted Dominating Set in the tree

in O(n(2+ 1
lg p

)) time and O(p lgp n) space where 2 ≤ p ≤ n.

Proof. We examplify our theorem with Maximum Weighted Independent Set and

a straightforward modification can output the solution set for Minimum Weighted

Vertex Cover. Finally we show how to produce the solution set realizing an optimal

value for Minimum Weighted Dominating Set.

Maximum Weighted Independent Set: We perform a depth first order calling

Theorem 5.10 at each node to determine whether the node (the root of the subtree rooted

at the node) is in the maximum independent set. Let b[v] = 1 if v is in the maximum

weighted independent set of the subtree rooted at v (as obtained from Theorem 5.10),

and 0 otherwise. As we visit a node v in depth first order, we push the node label along

with its b value in the stack. Let v be an internal node (encountered in the DFS order)

and let u be v’s parent. If b[u], which is available in the stack top, is 1, then we simply

set b[v] to 0 (in which case we need not even call Theorem 5.10 at v) and move on.

If b[u] is 0, then we call theorem 5.10 with the subtree rooted at u, and set its b value

appropriately and insert it into the stack. Whenever we set the b value of a node to 1, we

output it. Compression, Pop, Push are implemented exactly as in the proof of Theorem

5.9. Furthermore, as we run Theorem 5.10 for every vertex of the tree, our run time is

n times the runtime of Theorem 5.10, i.e. O(n2+(1/ lg p)). Hence the claimed bounds for

time and space.

Minimum Weighted Dominating Set: This proceeds in a similar fashion to the

160



above. We run Theorem 5.10 as a black box on every vertex of the tree in depth first

traversal order, and go on inserting them in a stack along with its associated bit value

b determining whether vertex v is in the solution or not. If the b value of a node is set

to 0, we also store the label of a node (a child or its parent) value x that dominates the

node (obtained from Theorem 5.10), in the stack. Initially for the root, b[root] is set to

1 if root is in the minimum dominating set, and is set to 0 otherwise. If b[root] = 0, we

find the child x that dominates it from Theorem 5.10 and store it in the stack.

For a node u with parent v (on the top of the stack), if b[v] is to 1, then we call

Theorem 5.10 to determine DE(u) and set b[u] to 1 if u is in such a dominating set

(determined by Theorem 5.10) and 0 otherwise. If b[u] happens to be 0, we simply set

the node (that dominates it) value to the label of the parent v.

For a node u with parent v whose b value is 0, if the label of u is stored in the parent

(as the node that dominates it), then we call Theorem 5.10 to find I(u), and set b[u] to

1. Otherwise, we simply call Theorem 5.10 to compute D(u) and set b[u] and the child

that dominates it (if appropriate) and push them into the stack.

Once we set a b value of a node in the stack to 1, we can output it. It is easy to see that

this correctly outputs the set realizing the optimal value and we invoke Theorem 5.10

total n times i.e., for every vertex of the tree, hence the bounds for time and space

follow.

5.5 Algorithms for graphs of bounded treewidth

In this section we design the most general result, namely the space efficient version of

optimization (which actually works for larger class of graphs than bounded treewidth

graphs and larger class of properties than CMSO expressible ones) variant of Courcelle’s

Theorem. We follow the proof of Borie et al. [28] and use the machinery of stack compres-
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sion to obtain the desired theorem. We start with the notations and set up the language

in which we will be working with.

5.5.1 Treewidth

For a rooted tree T and a non-root node t ∈ V (T ), by parent(t) we denote the parent

of t in the tree T . For two nodes u, t ∈ T , we say that u is a descendant of t, denoted

u � t, if t lies on the unique path connecting u to the root. Note that every node is thus

its own descendant.

Definition 5.12 (tree decomposition). A tree decomposition of a graph G is a pair

(T, β), where T is a rooted tree and β : V (T )→ 2V (G) is a mapping such that:

• for each node v ∈ V (G) the set {t ∈ V (G)|v ∈ β(t)} induces a nonempty and

connected subtree of T ,

• for each edge e ∈ E(G) there exists t ∈ V (T ) such that e ⊆ β(t).

The set β(t) is called the bag at t, while sets β(u) ∩ β(v) for uv ∈ E(T ) are called

adhesions . Following the notation from [90], for a tree decomposition (T, β) of a graph

G we define auxiliary mappings σ, γ : V (T )→ 2V (G) as

σ(t) =


∅ if t is the root of T

β(t) ∩ β(parent(t)) otherwise

γ(t) =
⋃
u�t

β(u)

We now define a class of graph optimization problems, called min/max-CMSO[ψ],

with one problem for each CMSO sentence ψ on graphs, where ψ has a free vertex (edge)

set variable S.
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5.5.2 Counting Monadic Second Order Logic.

We use Counting Monadic Second Order Logic (CMSO), an extension of MSO, as a basic

tool to express properties of vertex/edge sets in graphs. The syntax of Monadic Second

Order Logic (MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables

for vertices, edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be

applied to these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u and

v are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of monadic second-order logic, if we have atomic

sentences testing whether the cardinality of a set is equal to q modulo r, where q and r

are integers such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called the

counting monadic second-order logic. So essentially CMSO is MSO with the following

atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

We refer to [6, 53, 52] and the book of Courcelle and Engelfriet [54] for a detailed intro-

duction to CMSO. In [54], CMSO is referred to as CMS2.

The min-CMSO problem defined by ψ is denoted by min-CMSO[ψ] and defined as

follows.
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min-CMSO[ψ]

Input: A graph G = (V,E).

Question: Find the cardinality of a minimum sized subset

S ⊆ V (S ⊆ E) (if exists) such that (G,S) |= ψ.

The definition of max-CMSO[ψ] problem is analogous to the min-CMSO[ψ] prob-

lem. The only difference is that now we try to find a maximum sized subset S ⊆ V .

Here, we only give an algorithm for min/max-CMSO[ψ] problems when S is a vertex

subset. All of our results can be extended to edge setting in a straightforward way. In

particular, an edge set problem on graph G = (V,E) can be transformed to a vertex

subset problem on the edge-vertex incidence graph I(G) of G, which is a bipartite graph

with vertex bipartitions V and E with edges between vertices v ∈ V and e ∈ E if and

only if v is incident with e in G. Observe that the treewidth of G and I(G) only differ

by a factor of 2 [56]. To make the translation work in the proof, it is sufficient to use the

fact that the property of being an incidence graph of a graph G is expressible in CMSO.

To avoid complications in our proof we omit the details for this. From now on we only

concentrate on min/max-CMSO[ψ] problems defined over vertex subsets.

Now we give a couple of examples of problems, that can be encoded using min/max-

CMSO[ψ]. To express Maximum Independent Set we do as follows. Given a graph

G and a vertex subset X, a simple constant length formula indp(X) that verifies that

X is an independent set of G is: ∀x∈X∀y∈X¬adj(x, y). Thus we can express Maximum

Independent Set using the above logical sentence. Let us consider another example,

namely, Minimum Dominating Set. Given a graph G and a vertex subset X, a sim-

ple constant length formula dom(X) that verifies that X is a dominating set of G is:

∀x∈V (G)[x ∈ X ∨ ∃y∈Xadj(x, y)].

Dynamic programming algorithms over tree decompositions. The standard dy-

namic programming algorithms on bounded treewidth graphs for standard optimization
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problems, see [6, 25, 26] proceed by doing a bottom-up traversal of the tree computing

tables at every node starting from the leaves. Aspvall et al, in [13] identify the space

requirement of the algorithms and argue that O(lg n) ‘open tables’ are sufficient in the

bottom-up implementation. Bodlaender and Telle [27], building on the work of Aspvall

et al, claim without proof that any property expressible in monadic second order logic

can be implemented using O(lg n) tables in the bottom-up traversal.

However, implementing this in the read-only memory model without parent pointers,

provide challenges in terms of space, and that is our task in this section.

In particular, we provide an alternate O(lg n) word space algorithm that precludes

the need for parent pointers in the input representation, and uses the stack compression

machinery recently developed by Barba et al [18] to prove the following theorem.

Theorem 5.13. Let G be a graph given with a tree decomposition (T = (VT , ET ), β) of

width k. Then min/max-CMSO[ψ]can be solved in time O(τ(k) · n1+(1/ lg p)) time and

O(τ(k) · p lgp n) space algorithm, for any parameter 2 ≤ p ≤ n. Here, |V | = n and τ is a

function of k alone.

In fact we prove a weighted variant of Theorem 5.13. We also obtain an algorithm

that not only outputs the weight of a maximum weighted subset (or a minimum weighted

subset) S such that (G,S) |= ψ, but also the set S. We call this version of the problem

Constructive-Weighted-min/max-CMSO[ψ].

Theorem 5.14. Let G be a graph given with a tree decomposition (T = (VT , ET ),

β) of width k. Then Constructive-Weighted-min/max-CMSO[ψ] can be solved in

time O(τ(k) · n2+(2/ lg p)) time and O(τ(k) · p lgp n) space algorithm, for any parameter

2 ≤ p ≤ n. Here, |V | = n and τ is a function of k alone.

In what follows we prove Theorems 5.13 and 5.14. Towards this we first give definitions

of recursive graphs and regular properties.
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5.5.3 k-terminal recursive graphs

In this section we use the following alternative definition of treewidth, based on terminal

graphs. A k-terminal graph G = (V, T,E) is a graph with an ordered set T ⊆ V of at

most k distinguished vertices, called terminals. Denote by τ(G) the number of terminals

of graph G.

A k-terminal graph (V, T,E) is a base graph if V = T . We define composition oper-

ations over the set of k-terminal graphs. A composition operation f is of arity 1 or 2.

When f is of arity 2, it acts on two k-terminal graphs G1, G2 and produces a k-terminal

graph G = f(G1, G2) as follows. It first makes disjoint copies of the two graphs, then

“glues” some terminals of graphs G1 and G2. Operation f is represented by a matrix

m(f). The matrix has 2 columns and τ(G) ≤ k lines, its values are integers between

0 and k. At row i of the matrix, element mij(f) indicates which terminal of graph Gj

is identified to terminal number i of G. If mij(f) = 0 it means that no terminal of Gj

was identified to terminal number i of G. A terminal of Gj can be identified to at most

one terminal of G (a column j cannot contain two equal non-zero values). Note that if

mi1(f) = 0 and mi2(f) = 0 it means that terminal i of G is a new vertex.

When f is of arity 1, its matrix m(f) has only one column. The k-terminal graph

G = f(G1) is obtained from graph G1 and matrix m(f) as above, by identifying terminal

mi1(f) to terminal number i in G.

Observe that the number of possible composition operations over k-terminal graphs is

bounded by some function of k. We say that a k-terminal graph G is k-terminal recursive

if it can be obtained from k-terminal base graphs through a sequence of composition

operations. This sequence is called the k-expression of graph G.

Lemma 5.15 ([25]). For any tree decomposition of width k of graph G = (V,E) and any

bag W of the decomposition, (V,W,E) is a (k + 1)-terminal recursive graph.

Let G be a graph and (T, β), be a tree-decomposition. For any node v ∈ V (T ), we
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think of G[γ(v)] as (k + 1) terminal graphs with vertices in β(v) as terminals.

5.5.4 Regular properties

To use the framework of Borie et al. [28], we need a notion of regular properties. Let G

and Gk denote the family of graphs and the family of all k-terminal graphs, respectively.

By Γversub ( Γkversub), we denote the set of (graph × vertex subsets) pairs (G,S) such that

G = (V,E) ∈ G (G = (V,E) ∈ Gk) and S ⊆ V . A vertex property P is a function from

Γversub to {0, 1}. We can similarly define a notion of edge property P over Γedgesub. By

property P we mean either a vertex property or an edge property.

We say that a CMSO-sentence ϕ expresses a graph property P if P(G,X) is true if

and only if (G,X) |= ϕ (i.e., the sentence ϕ is true exactly on graphs G and vertex/edge

subsets S such that P(G,X) is true). Borie et al. [28] defined regular properties, whose

definition we give soon. For all our applications, we need only the fact from Borie et

al. [28] that every property P expressible by a CMSO-formula is regular.

Let G = (V, T,E) be a (k+ 1)-terminal recursive graph. For a composition operation

f , let ◦f denote the composition operation over pairs (G,X), where f extends in a

natural way over the values of vertex sets. If G = f(G1) then ◦f ((G1, X)) = (G,X). If

G = f(G1, G2) then ◦f ((G1, X1), (G2, X2)) = (G,X), the operation being valid only if, for

each pair of terminals that are merged together to form a new terminal vertex “i” of G,

either all these terminals are members of their respective X’s or all of them are vertices

of the set X which contains exactly those terminals that meet the former requirements.

Definition 5.16 (Regular Property). Consider a property P. A property P is called

regular if, for every k, there exists a finite set C, a homomorphism h associating to each

k-terminal recursive graph G = (V,E) and every X ⊆ V (X ⊆ E) a class h(G,X) ∈ C

(h : Γkversub(Γ
k
edgesub)→ C), and an update function �f : C ×C → C for each composition

operation f of arity 2 (resp. �f : C → C for each composition operation f of arity 1),
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satisfying:

• (P is preserved) If h(G1, X1) = h(G2, X2) then P(G1, X1) = P(G2, X2).

• (integrity of operations) For any composition operation f , we have that

h(◦f ((G1, X1), (G2, X2))) = �f (h(G1, X1), h(G2, X2))

if f is of arity 2, and

h(◦f (G1, X1)) = �f (h(G1, X1))

if f is of arity 1.

We point out that the homomorphism class h(G,X) depends on G and on the

value of X. Typically the class of h(G,X) encodes, among other information, the in-

tersection of X with the set of terminals. For example, if the composition operation

◦f ((G1, X1), (G2, X2)) is not valid, then �f (c1, c2), where c1 and c2 are the respective

homomorphism classes of (G1, X1) and of (G2, X2), is also undefined.

Typical algorithms over recursively constructed graphs proceed by dynamic program-

ming. When browsing the (k + 1)-expression of G, the algorithm stores in each node a

table of classes (sometimes called characteristics) depending on the branch of the current

sub-expression and the partial solutions (i.e., possible subsets of X) encountered so far.

Let G1 be such a sub-expression and let X1 be a subset of vertices that we aim to extend

into the solution X. The intuition is that if the class of (G1, X1) is the same as the class

of some other pair (G2, X2), then we can replace the branch of G1 by an expression of

G2, and the new graph G′ is such that X1 extends into a solution X1∪Y of G if and only

if X2 extends into a solution X2 ∪ Y of G′.

In order to efficiently solve our problem, we need an efficient computation of classes for

base graphs, as well as an efficient computation of the classes for compositions of graphs
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and partial solutions. Note that for any fixed k and any regular property P , the number

of classes is a constant, the size of C. Nevertheless, this constant depends on k and on

the property P . For algorithmic purposes, given k and P , we need an explicit algorithm

computing the homomorphism class of a given base graph, and an algorithm computing

the update functions �f . I.e., we need an algorithm that takes as input a composition

operation f and one or two classes c1, c2 ∈ C and computes the class �f (c1, c2) if f is of

arity 2 (resp. �f (c1) if f is of arity 1). Eventually, we must know the set of accepting

classes, that is the set of classes c such that h(G,X) = c implies that P(G,X).

For our proof we will need following relation between regular properties and properties

expressible using a CMSO formula.

Lemma 5.17 (Borie et al. [28]). Any property P(G,X) expressible by a CMSO-formula

is regular.

Moreover, the result of Borie et al. [28] is constructive in the sense that, given a

CMSO-formula, it provides in linear time the homomorphism classes C, the subset of

accepting classes and the algorithms computing the classes of base graphs as well as the

update functions for the regular property P on (t + 1)-terminal recursive graphs. The

regularity is actually proven in [28] for all properties expressible by CMSO-formulae,

which allows an arbitrary number of free variables over vertices, edges, vertex sets and

and edge sets. For our proof, it is sufficient to consider properties over graphs and one

vertex set, corresponding to formulae with a unique free variable, which is a set of vertices.

Finally, we are ready to give proofs of Theorems 5.13 and 5.14.

Theorem 5.13 (Restated). Let G be a graph given with a tree decomposition (T =

(VT , ET ), β) of width k. Then min/max-CMSO[ψ]can be solved in time O(τ(k)·n1+(1/ lg p))

time and O(τ(k) · p lgp n) space algorithm, for any parameter 2 ≤ p ≤ n. Here, |V | = n

and τ is a function of k alone.
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Proof. First we show how to transform the proof of Borie et al. [28] into the stack frame-

work. Then we get the desired result by applying Theorem 5.5.

The property ψ is regular and hence there exists a finite set C and a homomorphism

function h : ΓS → C. A class c ∈ C is said to be accepting if and only if h(G,X) = c

implies that (G,S) |= ψ. Recall that the size of C only depends on k and ψ. Since ψ is

fixed, we can assume that |C| ≤ η(k), for some function η that only depends on k. We

will obtain our result by doing a bottom-up dynamic programming over T starting from

leaves. For every v ∈ VT , by Gv = (γ(v), Ev), we denote the graph G[γ(v)]. We will view

Gv as a k + 1-terminal graph (γ(v), β(v), Ev). For the algorithm at each node v ∈ VT

we have a table stored as an array Tv indexed by c ∈ C and Z ⊆ β(v) and stores the

following. Let

F(v, c, Z) = {X ⊆ γ(v) | X ∩ β(v) = Z, h((Gv, X)) = c}.

If F(v, c, Z) is non-empty then by value(Tv, c, Z) we denote the size of a largest (or a

smallest depending on whether we are solving a maximization or minimization problem)

set in F(v, c, Z) else we set it to 0. Thus, for every c ∈ C, Tv[v, c, Z] = value(Tv, c, Z).

Observe that the size of the table is upper bounded by O(2kη(k)). The next question is

how we update the table of a node when we know the tables for its children.

Towards this we use the proof of Borie et al. [28].. Recall that, an update function

�f : C × C → C for each composition operation f of arity 2 (resp. �f : C → C for each

composition operation f of arity 1), satisfying:

• (integrity of operations) For any composition operation f , we have that

h(◦f ((G1, X1), (G2, X2))) = �f (h(G1, X1), h(G2, X2))
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if f is of arity 2, and

h(◦f (G1, X1)) = �f (h(G1, X1))

if f is of arity 1.

We use the update function to obtain a table for a node in VT , given tables for its children.

Now we give details for how we obtain a table at node v given tables for its children

v1, . . . , vp. We view the graph Gv as follows.

Gv = f(f(· · · f(f(f(β(v), Gv1), Gv2), Gv3), . . .), Gvp).(5.1)

Here, the composition operation f(G1, G2) takes two (k + 1)-terminal graphs, with ter-

minal sets W and W1 respectively, and composes them into a new (t+ 1)-terminal graph

having W as set of terminals. In the gluing operation, terminal number j of Wi is glued

on terminal number ` of W if and only if they correspond to the same vertex of G. Hence,

this composition operation f(G1, G2) only depends on W and W1. In particular, the ter-

minals for Gv is β(v). While designing our algorithm we construct the graph Gv using

f applied from left to right in Expression (5.1). Let G1 = f(G[β(v)], Gv1). Then, for

i ∈ {2, . . . , p}, we define Gi = f(Gi−1, Gvi). Observe that Gv = Gp. Let Ti correspond to

the table for Gi. Observe that f is an arity 2 composition function. We will first compute

the table Tv0 for G[β(v)]. Observe that G[β(v)] is a base graph and thus we can use Borie

et al. [28] to obtain the homomorphism classes C, the subset of accepting classes. Now

we go over every subset X ⊆ β(v) and compute h(G[β(v)], X). Since the size of β(v) is

at most k+ 1, we can do this in τ(k) time. Given h(G[β(v)], X), we can easily obtain Tv0.

Observe that when v does not have a child, that is, when v is a leaf node, then Tv = Tv0.

Now we show how to compute the table Ti for, say, Gi = f(Gi−1, Gvi), i ∈ {1, . . . , p},

given the table Ti−1 for Gi−1 (or T0 = Tv0) and the table Tvi for Gvi . For this we will use

the composition operator �f : C × C → C. For every c ∈ C define a family of pair of

classes as follows: Classes(c) = {(c1, c2) | c1, c2 ∈ C, �f (c1, c2) = c}. Now given a set
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Z ⊆ β(v) and c ∈ C, we obtain Ti[v, c, Z] as follows. Define,

V(v, c, Z) =
{
value(Ti−1, c1, Z) + value(Tvi , c2, Z1)− |Z ∩ Z1|

∣∣∣
Z1 ∩ β(v) ⊆ Z, (c1, c2) ∈ Classes(c)

}
.(5.2)

We set Ti[v, c, Z] with the largest (or the smallest depending on the problem type) integer

in V(v, c, Z). The solution to the optimization problem is found by taking the minimum

(or maximum) over those entries in Tr such that in its index we have c ∈ C, that is an

accepting class. Observe that the running time to compute a table is a function of the

maximum size of a table and thus a function that only depends on k. Let τ(k) denote

the maximum of a table size and the running time to compute a table.

Now we show how we can implement the above algorithm in the stack framework.

Let r denote the root of the tree T . We do a depth first traversal of the given tree

decomposition T starting with root r. We start from the root, keep following the leftmost

child until we reach a node without a leftmost child (or a leaf node). However, during

this process if v is not a leaf node (that is, it has a leftmost child) we push a tuple (v,Tv0),

else we push (v,Tv) (that is when v is a leaf node). If we can’t push something to the

stack, we pop the stack and we know that its parent is now at the top of the stack. Let

v′ be the vertex we have popped and the tuple currently with respect to this be (v′,T′).

We pop the stack and say the current tuple is (v′′,T′′). We know that v′′ is the parent

of v′. Now we compute a new table at v′′ by using tables T′ and T′′. Let the newly

constructed table be T. Then we push back (v′′,T). Then, we push the right sibling w

of v′ with (w,Tw0 ). Finally, when the stack is empty then the last tuple we have popped

corresponds to (r,Tr). Using this we can find the size of a largest (a smallest) subset

of vertices satisfying the CMSO predicate ψ. To get the desired running time we apply

Theorem 5.5 with t = O(τ(k)), g(n, t) = O(1), h(n, t) = O(τ(k)) and s(n) = O(1).

We can also prove a weighted version of min/max-CMSO[ψ] problem, namely Weighted-
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min/max-CMSO[ψ]. In this problem, apart from a graph G = (V,E) we are also given a

weight function w : V → N (w : E → N), and our objective is to find the value of a maxi-

mum weighted subset (or a minimum weighted subset) S such that (G,S) |= ψ. Here, the

weight of a subset S, denoted by w(S), is
∑

s∈S w(s). To solve the Weighted-min/max-

CMSO[ψ] problem, the only changes we need to make in the proof of Theorem 5.13 are

as follows. For, every v ∈ V (T ), Z ⊆ β(v) and c ∈ C we had defined F(v, c, Z) and

value(Tv, c, Z). However, for Weighted-min/max-CMSO[ψ] we will store the weight

of a maximum weighted set (or a minimum weighted set) in F(v, c, Z). Similarly, we will

define

V(v, c, Z) =
{
value(Ti−1, c1, Z) + value(Tvi , c2, Z1)− w(Z ∩ Z1)

∣∣∣
Z1 ∩ β(v) ⊆ Z, (c1, c2) ∈ Classes(c)

}
.

These two changes together imply the following theorem.

Theorem 5.18. Let G be a graph given with a tree decomposition (T = (VT , ET ), β) of

width k. Then Weighted-min/max-CMSO[ψ] can be solved in time O(τ(k)·n1+(1/ lg p))

time and O(τ(k) · p lgp n) space algorithm, for any parameter 2 ≤ p ≤ n. Here, |V | = n

and τ is a function of k alone.

Next we obtain a theorem that not only outputs the weight of a value of a maximum

weighted subset (or a minimum weighted subset) S such that (G,S) |= ψ, but also

the set S. We call this version of the problem: Constructive-Weighted-min/max-

CMSO[ψ].

Theorem 5.14 (Restated). Let G be a graph given with a tree decomposition (T =

(VT , ET ), β) of width k. Then Constructive-Weighted-min/max-CMSO[ψ] can be

solved in time O(τ(k) · n2+(2/ lg p)) time and O(τ(k) · p lgp n) space algorithm, for any

parameter 2 ≤ p ≤ n. Here, |V | = n and τ is a function of k alone.
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Proof. As before let Ti correspond to the table for Gi. Our algorithm is a standard

recursive algorithm based on tracing pointers from root to a specific node of T . We

call the algorithm to be Set-Output. It takes as input a node v, a table entry Tv[v, c, Z]

(of course we also know the arguments c and Z required in the definition of Tv[v, c, Z])

and a set σ(v) and outputs a set of vertices S \ σ(v) such that S ∈ F(v, c, Z) and

w(S) = Tv[v, c, Z]. We start the algorithm Set-Output on an appropriate arguments

related to the root. The algorithm first outputs Z \ σ(v) and then checks whether the

given node v is a leaf node or not. If v is not a leaf node (that is, it has a left child) we call

the algorithm Set-Output with appropriate instantiations. To find the desired arguments

for the algorithm we do as follows. We assume that we are currently working on a node

v of T and w is one of its children (for the case of root we explain later).

1. From Equation 5.2, we know that each table entry of Tv is a function of table entries

stored at its children. In particular it is a function which takes exactly one table

entry from each of its children. For the node v, given a table entry Tv[v, c, Z], stored

at v, we say that Tw[w, c′, Z ′] is an accompanying entry if this is the entry stored at

Tw that has been used to compute Tv[v, c, Z].

2. We assume that the table entry Tv[v, c, Z] is at the top of the stack (We ensure this

when we explain the details for the root as we start from the roort.). Given the

table entry Tv[v, c, Z], we apply the algorithm described in Theorem 5.13 and for

w we compute the accompanying table entry Tw[w, c′, Z ′].

3. The set σ(w) is computed by taking intersection of β(v) and β(w).

The label w along with σ(w) is pushed on to the stack (which is needed when we need

to compute the set for its children).

For the root r, using Theorem 5.13 we compute the table Tr and as a table entry we

take the one that corresponds to the value of a maximum weighted (a minimum weighted)
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subset of vertices satisfying the CMSO predicate ψ. Finally, we call Set-Output on r using

these arguments, and store the output along with r in a stack. Our algorithm is a stack

algorithm where we need O(τ(k) ·n1+(1/ lg p)) time (since we use Theorem 5.13) for finding

what we need to push and thus the running time follows by applying Theorem 5.5 with

t = O(τ(k)), g(n, t) = O(1), h(n, t) = O(τ(k) ·n1+(1/ lg p)) and s(n) = O(τ(k)p lgp n). This

concludes the proof.

5.6 Concluding remarks and open problems

We have shown that several optimization problems can be solved on trees and bounded

treewidth graphs using logarithmic number of extra variables, in linear (and sometimes

quadratic) time even when the input tree is given in a read-only memory. We achieve

this by modifying the standard dynamic programming algorithms to use only a stack

and using the recent stack compression routine to reduce space. Barba et. al. [18] also

provide a stack compression scheme that can be used to reduce work space to O(1)

words provided the (full stack) algorithm satisfies what they called a “green” property.

The standard dynamic programming algorithms we use are not “green”. It would be

interesting to see whether our approach can be extended to obtain algorithms using only

O(1) or even o(lg n) words. This would give an alternate O(1) (words of) space version

of Courcelle’s theorem. Another open problem is whether this approach helps to give an

alternate logarithmic space version of Bodlaender’s theorem [24].

Bodlaender and Telle [27] give a divide and conquer strategy to find the optimum

set in O(n lg n) time (against a naive O(n2) time) using O(lg n) words of extra space,

when the tree of the tree-decomposition has a constant number of children for each node.

Extending this (in the read-only memory model) to the case when each node has an

arbitrary number of children, or to obtain a ‘nice-tree decomposition’ from a general

tree-decomposition and implementing their approach in logarithmic (words of) space in
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read-only memory model, are challenging open problems. It would also be interesting to

find other applications of the (generalized) stack compression framework.

176



Chapter 6

Two Frameworks for Designing

In-place Graph Algorithms

6.1 Introduction

Read-only memory (ROM) model is one of the classical models of computation to study

time-space tradeoffs of algorithms along with a few others that we have mentioned in

the beginning of the thesis. One of the early classical results on the ROM model is that

any sorting algorithm that uses O(s) words of extra space requires Ω(n2/s) comparisons

for lg n ≤ s ≤ n/ lg n and the bound has also been recently matched by an algorithm.

However, if we relax the model (from ROM), we do have sorting algorithms (say Heapsort)

that can sort using O(n lg n) comparisons using O(lg n) bits of extra space, even keeping

a permutation of the given input sequence at any point of time of the algorithm.

We address similar questions for graph algorithms in this chapter. We show that

a simple natural relaxation of ROM model allows us to implement fundamental graph

search methods like BFS and DFS more efficiently than in ROM. By simply allowing

elements in the adjacency list of a vertex to be permuted, we show that, on an undirected
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connected graph G having n vertices and m edges, the vertices of G can be output in a

• DFS order using O(lg n) bits of extra space and O(m2/n) time if the graph is given

in an adjacency list, and in O(m2 lg n/n) time if the graph is given in an adjacency

array;

• BFS order using O(lg n) bits of extra space and O(m) time if all vertices have degree

at least 2 lg n+ 3, in O(n2) time if there are no degree 2 vertices, and in O(n3) time

otherwise.

Most of these results carry over to directed graphs too, with a slight degradation in

running time. Thus we obtain similar bounds for reachability and shortest path distance

(both for undirected and directed graphs). With a little more (but still polynomial)

time, we can also output vertices in the lex-DFS order. As reachability in directed graphs

(even in DAGs) and shortest path distance (even in undirected graphs) are NL-complete

problems, and lex-DFS is P-complete, our results show that our model is probably more

powerful than ROM.

En route, we introduce and develop algorithms for another relaxation of ROM where

the adjacency lists of the vertices are circular lists and we can only modify the heads of

the lists. Here we first show a linear time DFS implementation using n + O(lg n) bits.

Improving the space further to only O(lg n) bits, we also obtain BFS and DFS albeit

with a slightly slower running time. Some of these algorithms also translate to improved

algorithms for DFS and its applications in ROM. Both the models we propose maintain

the graph structure throughout the algorithm, only the order of vertices in the adjacency

list changes.

In sharp contrast, for BFS and DFS, to the best of our knowledge, there are no

algorithms in ROM that use even O(n1−ε) bits of space; in fact, implementing DFS

using cn bits for c < 1 has been mentioned as an open problem. Furthermore, DFS

(BFS) algorithms using n+ o(n) (o(n)) bits use Reingold’s or Barnes et al’s reachability
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algorithm and hence have high runtime.

All our algorithms are simple but quite subtle, and we believe that these models are

practical enough to spur interest for other graph problems in these models.

6.1.1 In-place model for graph algorithms

Our main objective of this chapter is to initiate a systematic study of efficient (i.e.,

low degree polynomial running time) in-place (i.e., using O(lg n) bits of extra space)

algorithms for graph problems. To the best of our knowledge, this has not been done

in the literature before. Our first goal is to properly define models for the in-place

graph algorithms. As in the case of standard in-place model, we need to ensure that the

graph (adjacency) structure remains intact throughout the algorithm. Let G = (V,E)

be the input graph with n = |V |, m = |E|, and assume that the vertex set V of G is

the set V = {1, 2, · · · , n}. To describe these models, we assume that the input graph

representation consists of two parts: (i) an array V of length n, where V [i] stores a pointer

to the adjacency list of vertex i, and (ii) a list of singly linked lists, where the i-th list

consists of a singly linked list containing all the neighbors of vertex i with V [i] pointing

to the head of the list. In ROM model, we assume that both these components cannot

be modified. In our relaxed models, we assume that one of these components can be

modified in a limited way.

The most natural analogue of in-place model allows any two elements in the adjacency

list of a vertex to be swapped (in constant time assuming that we have access to the

nodes storing those elements in the singly linked list). The adjacency “structure” of

the representation does not change; only the values stored can be swapped. (One may

restrict this further to allow only elements in adjacent nodes to be swapped. Most of

our algorithms work with this restriction.) We call it the implicit model inspired by the

notion of implicit data structures [113]. We introduce and develop algorithms for another
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relaxed model which we call rotate model. In this model, we assume that only the pointers

stored in the array V can be modified, that too in a limited way - to point to any node in

the adjacency list, instead of always pointing to the first node. In space-efficient setting,

since we do not have additional space to store a pointer to the beginning of the adjacency

list explicitly, we assume that the second component of the graph representation consists

of a list of circular linked lists (instead of singly linked lists) – i.e., the last node in the

adjacency list of each vertex points to the first node (instead of storing a null pointer).

See the figure below to get a better visual description. We call the element pointed to by

the pointer as the front of the list, and a unit cost rotate operation changes the element

pointed to by the pointer to the next element in the list.
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Figure 6.1: (a) An undirected graph G with 5 vertices and 8 edges. (b) A circular list
representation of G. To avoid cluttering the picture, we draw the vertices and the pointers
to the next node separately as opposed to a single node having two different fields in the
circular list. (c) An illustration of a single clockwise rotation in the circular list of vertex
4.

Thus the rotate model corresponds to keeping the adjacency lists in read-only memory
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and allowing (limited) updates on the pointer array that points to these lists. And,

the implicit model corresponds to the reverse case, where we keep the pointer array in

read-only memory and allow swaps on the adjacency lists/arrays. A third alternative

especially for the implicit model is to assume that the input graph is represented as an

adjacency array, i.e., adjacency lists are stored as arrays instead of singly linked lists

(see [41, 69, 99] for some results using this model); and we allow here that any two

elements in the adjacency array can be swapped. In this model, some of our algorithms

have improved performance in time.

As is standard in the design of space-efficient algorithms, while working with directed

graphs, we assume that the graphs are given as in/out (circular) adjacency lists i.e., for

a vertex v, we have the (circular) lists of both in-neighbors and out-neighbors of v. For

the workspace, we assume the standard word RAM model of computation where the

machine consists of words of size w in Ω(lg n) bits and any logical, arithmetic and bitwise

operation involving a constant number of words takes O(1) time. We count space in

terms of number of bits used by the algorithm other than the input. Before getting into

the technical part of the chapter, we set up a few notations. In what follows, by a path

of length d, we refer to a simple path on d edges. By deg(x) we refer to the degree of the

vertex x. In directed graphs, it should be clear from the context whether that denotes

out-degree or in-degree. By a BFS or DFS traversal of the input graph G, as in the

previous chapters, we refer to outputting the vertices of G in the BFS or DFS ordering,

i.e., in the order in which the vertices are visited for the first time.

6.1.2 The complexity of BFS and DFS

In this chapter, we mainly focus on designing in-place algorithms for two of the most

basic and fundamental graph search methods. As they are also backbone to so many

other graph algorithms, many corollaries follow. For the DFS problem, there have been

two versions studied in the literature. In the lexicographically smallest DFS or lex-DFS
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problem, when DFS looks for an unvisited vertex to visit in an adjacency list, it picks

the “first” unvisited vertex where the “first” is with respect to the appearance order in

the adjacency list. The resulting DFS tree will be unique. In contrast to lex-DFS, an

algorithm that outputs some DFS numbering of a given graph, treats an adjacency list

as a set, ignoring the order of appearance of vertices in it, and outputs a vertex ordering

T such that there exists some adjacency ordering R such that T is the DFS numbering

with respect to R. We say that such a DFS algorithm performs general-DFS. Reif [120]

has shown that lex-DFS is P-complete (with respect to log-space reductions) implying

that a logspace algorithm for lex-DFS results in the collapse of complexity classes P and

L. Anderson et al. [5] have shown that even computing the leftmost root-to-leaf path

of the lex-DFS tree is P-complete. For many years, these results seemed to imply that

the general-DFS problem, that is, the computation of any DFS tree is also inherently

sequential. However, Aggarwal et al. [1, 2] proved that the general-DFS problem can be

solved much more efficiently, and it is in RNC. Whether the general-DFS problem is in

NC is still open.

6.1.3 Our main results and the organization of this chapter

Rotate Model: For DFS, in the rotate model, we show the following in Sections 6.2.1, 6.2.3

and 6.2.5.

Theorem 6.1. Let G be a directed or an undirected graph, and ` ≤ n be the maximum

depth of the DFS tree starting at a source vertex s. Then in the rotate model, the vertices

of G can be output in

(a) the lex-DFS order in O(m+ n) time using n lg 3 +O(lg2 n) bits,

(b) a general-DFS order in O(m+ n) time using n+O(lg n) bits, and

(c) a general-DFS order in O(m2/n+m`) time for an undirected graph and in O(m(n+

182



`2)) time for directed graphs using O(lg n) bits. For this algorithm, we assume that

s can reach all other vertices.

This is followed by the BFS algorithms where, in the rotate model, we show the

following in Sections 6.3.1 and 6.3.2.

Theorem 6.2. Let G be a directed or an undirected graph, and ` be the depth of the BFS

tree starting at the source vertex s. Then in the rotate model, the vertices of G can be

output in a BFS order in

1. O(m+ n`2) time using n+O(lg n) bits, and

2. O(m` + n`2) time using O(lg n) bits. Here we assume that the source vertex s can

reach all other vertices.

Implicit Model: In the implicit model, we obtain polynomial time implementations

for lex-DFS and general-DFS using O(lg n) bits. For lex-DFS, this is conjectured to be

unlikely in ROM as the problem is P-complete [120]. In particular, we show the following

in Section 6.5.1.

Theorem 6.3. Let G be a directed or an undirected graph with a source vertex s and

` ≤ n be the maximum depth of the DFS tree starting at s that can reach all other vertices.

Then in the implicit model, using O(lg n) bits the vertices of G can be output in

(a) the lex-DFS order in O(m3/n2 + `m2/n) time if G is given in adjacency list and

in O(m2 lg n/n) time if G is given in adjacency array for undirected graphs. For

directed graphs our algorithm takes O(m2(n+`2)/n) time if G is given in adjacency

list and O(m lg n(n+ `2)) time if G is given in adjacency array;

(b) a general-DFS traversal order in O(m2/n) time if the input graph G is given in an

adjacency list and in O(m2(lg n)/n + m` lg n)) time if it is given in an adjacency

array.
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In the implicit model, we can match the runtime of BFS from rotate model, and do

better in some special classes of graphs. In particular, we show the following in Section 6.6

.

Theorem 6.4. Let G be a directed or an undirected graph with a source vertex that can

reach all other vertices by a distance of at most `. Then in the implicit model, using

O(lg n) bits the vertices of G can be output in a BFS order in

1. O(m+ n`2) time;

2. the runtime can be improved to O(m+ n`) time if there are no degree 2 vertices;

3. the runtime can be improved to O(m) if the degree of every vertex is at least 2 lg n+3.

In sharp contrast, for space efficient algorithms for DFS in ROM, the landscape looks

markedly different. To the best of our knowledge, there are no DFS algorithms in general

graphs in ROM that use O(n1−ε) bits. In fact, an implementation of DFS taking cn bits

for c < 1 has been proposed as an open problem by Asano et al. [9]. Similar to DFS,

to the best of our knowledge, there are no polynomial time BFS algorithms in ROM

that use even O(n1−ε) bits. On the other hand, we don’t hope to have a BFS algorithm

(for both undirected and directed graphs) using O(lg n) bits in ROM as the problem is

NL-complete [7].

Moving on from DFS and BFS, we also study the problem of reporting a minimum

spanning tree (MST) of a given undirected connected graph G. We show the following

result in Section 6.7.

Theorem 6.5. A minimum spanning forest of a given undirected weighted graph G can

be found using O(lg n) bits and in

1. O(mn) time in the rotate model,

2. O(mn2) time in the implicit model if G is given in an adjacency list, and
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3. O(mn lg n) time in the implicit model when G is represented in an adjacency array.

Note that by the results of [121, 119], we already know logspace algorithms for MST in

ROM but again the drawback of those algorithms is high time complexity. On the other

hand, our algorithms have small polynomial running time, simplicity and we believe it

would be easy to use in practice.

6.1.4 Techniques

Our implementations follow (variations of) the classical algorithms for BFS and DFS

that use three colors (white, gray and black), but avoid the use of stack (for DFS) and

queue (for BFS). In the rotate model, when a node is visited for the first time, we use

the rotate operation to move the parent or a (typically the currently explored) child to

the beginning of the list to help navigate through the tree during the forward or the

backtracking step. This avoids the need for stack or queue. Algorithms using O(lg n)

bits (which don’t even have space to store the color array) use the rotate operation in a

non-trivial way to move elements within the lists to determine the color of the vertices

as well.

In the implicit model, we use the classical bit encoding trick used in the development of

implicit data structures [113]. We encode one (or two) bit(s) using a sequence of two (or

three respectively) distinct numbers. To encode a single bit b using two distinct values

x and y with x < y, we store the sequence x, y if b = 0, and y, x otherwise. Similarly,

permuting three distinct values x, y, z with x < y < z, we can represent six combinations.

We can choose any of the four combinations to represent up to 4 colors (i.e. two bits).

Generalizing this further, we can encode a pointer taking lg n bits using 2 lg n distinct

elements where reading or updating a bit takes constant time, and reading or updating

a pointer takes O(lg n) time. This also is the reason for the requirement of vertices with

(high) degree at least 3 or 2 lg n+ 3 for faster algorithms, which will become clear in the
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description of the algorithms.

6.1.5 Simulations across models

In general, an algorithm implemented in the rotate model can be implemented

• in the implicit model with a slow-down of a factor of at most n in the runtime,

as a rotate operation can be implemented in time proportional to the (maximum)

degree of a vertex;

• in read-only memory using an extra O(n lg(m/n)) bits by storing a pointer in each of

the arrays in the adjacency array representation, which can be updated in constant

time.

These are discussed in detail in Section 6.4 and in Section 6.8. Similarly any algorithm in

ROM can be implemented in the rotate and implicit models without any additional time

or space. The implicit model is the most general model and not surprisingly it is not easy

to simulate algorithms of that model, in general, in ROM or in rotate models without

substantial loss of time and/or space.

6.1.6 Consequences of our BFS and DFS results

There are many interesting and surprising consequences of our results for BFS and DFS

in both the rotate and implicit model. In what follows, we mention a few of them.

• For directed st-reachability, as mentioned previously, the most space efficient polyno-

mial time algorithm [19] uses n/2Θ(
√

lgn) bits. In sharp contrast, we obtain efficient

(timewise) logspace algorithms for this problem in both the rotate and implicit mod-

els (as a corollary of our directed graph DFS/BFS results). In terms of workspace

this is exponentially better than the best known polynomial time algorithm [19] for
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this problem in ROM. For us, this provides one of the main motivations to study

this model. A somewhat incomparable result obtained recently by Buhrman et

al. [35, 101] where they designed an algorithm for directed st-reachability on cat-

alytic Turing machines in space O(lg n) with catalytic space O(n2 lg n) and time

O(n9).

• Problems like directed st-reachability [7], distance [126] which asks whether a given

G (directed, undirected or even directed acyclic) contains a path of length atmost k

from s to t, are NL-complete i.e., no deterministic logspace algorithm is known for

these problems. But in our (both rotate and implicit) models, we design logspace al-

gorithms for them. These result show that probably both our models with logspace

are stronger than NL.

• The lex-DFS problem (both in undirected and directed graphs) is P-complete [120],

and thus polylogarithmic space algorithms are unlikely to exist. But we show

an O(lg n) space algorithm in the implicit model for lex-DFS. This implies that,

probably implicit model is even more powerful than rotate model. It could even

be possible that every problem in P can be computed using logspace in implicit

model. A result of somewhat similar flavor is obtained recently Buhrman et al. [35,

101] where they showed that any function in TC1 can be computed using catalytic

logspace, i.e., TC1 ⊆ CSPACE(lg n). Note that TC1 contains L, NL and even other

classes that are conjectured to be different from L.

• Our bounds for BFS and DFS in rotate and implicit model immediately imply

(with some care) similar bounds, that are improvement over the best space bounds

known so far in ROM, for many applications of DFS/BFS. Moreover, as described

before, any algorithm in rotate model can be implemented in ROM using extra

O(n lg(m/n)) bits. Thus, our linear time DFS algorithm in rotate model can be

implemented in ROM using O(n lg(m/n)) bits, matching the bound of [41] for DFS.

Using this DFS implementation, we can obtain improved space efficient algorithms
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for various applications of DFS in ROM. This is discussed in Section 6.8.

• For a large number of NP-hard graph problems, the best algorithms in ROM run

in exponential time and polynomial space. We show that using just logarithmic

amount of space, albeit using exponential time, we can design algorithms for those

NP-hard problems in both of our models under some restrictions. This gives an

exponential improvement over the ROM space bounds for these problems. In con-

strast, note that, no NP-hard problem can be solved in the ROM model using

O(lg n) bits unless P=NP. This is described in Section 6.9.

6.2 DFS Algorithms in the rotate model

In this section, we describe our space-efficient algorithms for DFS in the rotate model

proving Theorem 6.1. We restate the theorem statement here again for reader’s conve-

nience.

Theorem 6.1 (Restated) Let G be a directed or an undirected graph, and ` ≤ n

be the maximum depth of the DFS tree starting at a source vertex s. Then in the rotate

model, the vertices of G can be output in

(a) the lex-DFS order in O(m+ n) time using n lg 3 +O(lg2 n) bits,

(b) a general-DFS order in O(m+ n) time using n+O(lg n) bits, and

(c) a general-DFS order in O(m2/n+m`) time for an undirected graph and in O(m(n+

`2)) time for directed graphs using O(lg n) bits. For this algorithm, we assume that

s can reach all other vertices.
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6.2.1 Lex-DFS using n lg 3 +O(lg2 n) bits for undirected graphs

We begin by describing our algorithm for undirected graphs, and later mention the

changes required for directed graphs. Let us recollect how DFS works briefly again before

we start with the technical details of the algorithms. In the normal exploration of DFS

(see for example, Cormen et al. [51]) we use three colors. Every vertex v is white initially

meaning that it has not been discovered yet, becomes gray when DFS discovers v for the

first time, and is colored black when it is finished i.e., all its neighbors have been explored

completely.

We maintain a color array C of length n that stores the color of each vertex at any

point in the algorithm. We start DFS at the starting vertex, say s, changing its color

from white to gray in the color array C. Then we scan the adjacency list of s to find

the first white neighbor, say w. We keep rotating the list to bring w to the front of s’s

adjacency list (as the one pointed to by the head V [s]), color w gray in the color array C

and proceed to the next step (i.e. to explore w’s adjacency list). This is the first forward

step of the algorithm. In general, at any step during the execution of the algorithm,

whenever we arrive at a gray vertex u (including the case when u’s color is changed from

white to gray in the current step), we scan u’s adjacency list to find the first white vertex.

(i) If we find such a vertex, say v, then we rotate u’s list to make v as the first element,

and change the color of v to gray. (ii) If we do not find any white vertex, then we change

the color of u to black, and backtrack to its parent. To identify u’s parent, we use the

following lemma.

Lemma 6.6. Suppose w is a node that just became black. Then its parent p is the unique

vertex in w’s adjacency list which is (a) gray and (b) whose current adjacency list has w

in the first position.

Proof. Among all the neighbors of w, some vertices are w’s children in the DFS tree, and

the rest of them are w’s ancestors, and among the ancestors, exactly one vertex is w’s
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parent in the DFS tree. All the ancestors should have their currently explored (gray) child

at the first position in their adjacency list; and this current child would be different from

w for all the ancestors except p (as w was discovered from p). So, the second condition

is violated for them. All of w’s children have been fully processed earlier and have been

colored black, and hence the first condition is violated for them. Observe that, if w has

a child, say k, which is a leaf in the DFS tree, it might happen that k also has w at the

first position in its current adjacency list, but, fortunately, k is black while scanning w’s

list. So for such vertices, the first condition gets violated. Only for w’s parent, which is

p here, both the conditions are satisfied.

So, the parent can be found by by scanning the w’s list, to find a neighbor p that is

colored gray such that the first element in p’s list is u. This completes the description

of the backtracking step. Once we backtrack to p, we find the next white vertex (as in

the forward step) and continue until all the vertices of G are explored. Other than some

constant number of variables, clearly the space usage is only for storing the color array

C. Since C is of length n where each element has 3 possible values, C can be encoded

using n lg 3 + O(lg2 n) bits, so that the i-th element in C can be read and updated in

O(1) time [60]. So overall space required is n lg 3 + O(lg2 n) bits. As the algorithm

systematically brings a white vertex to the front, makes it gray, and moves it to the end

after it becomes black, at most two full rotations of each of the list may happen (the

second one to determine that there are no more white vertices) resulting in a linear time

lex-DFS algorithm.

6.2.2 Lex-DFS using n lg 3 +O(lg2 n) bits for directed graphs

Recall that we have access to both the in-adjacency and the out-adjacency lists for each

vertex w in a directed graph G, hence we can use these lists separately for performing

two steps of DFS. I.e., out-adjacency list is used for the exploration of DFS in the for-
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ward direction and the in-adjacency list is used for finding parent of a node during the

backtracking step. We provide the details below. Similar to our algorithm for undirected

graphs, in the forward direction, we scan the out-neighbor list of w to find the next white

neighbor and proceed. Once the out-neighbor list of w is fully processed, we need to

backtrack from w. Towards that we first have to identify w’s parent. In order to do so

we use the following lemma whose proof follows along the same lines as the Lemma 6.6

above. Hence we omit the proof.

Lemma 6.7. Suppose w is a node that just became black. Then its parent p is the unique

vertex in w’s in-adjacency list which is (a) gray and (b) whose current out-adjacency list

has w in the first position.

Once we figure out w’s parent p, DFS backtracks to p, finds the next white neighbor

(as done in the forward step) and continues until all the vertices are exhausted. It is clear

that this procedure performs lex-DFS on a directed graph G correctly in linear time, and

this completes the proof of the first part of Theorem 6.1.

6.2.3 General-DFS using n+O(lg n) bits for undirected graphs

To improve the space further, we replace the color array C with a bit array visited[1, . . . , n]

which stores a 0 for an unvisited vertex (white), and a 1 for a visited vertex (gray or black).

First we need a test like that in the statement of Lemma 6.6 without the distinction

of gray and black vertices to find the parent of a node. Due to the invariant we have

maintained, every internal vertex of the DFS tree will point to (i.e. have as first element

in its list) its last child. So the nodes that could potentially have a node w in its first

position are its parent, and any leaf vertex. Hence we modify the forward step in the

following way.

Whenever we visit an unvisited vertex v for the first time from another vertex u

(hence, u is the parent of v in the DFS tree and u’s list has v in the first position), we,
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as before, mark v as visited and in addition to that, we also rotate v’s list to bring u, to

the front (during this rotation, we do not mark any intermediate nodes as visited). Then

we continue as before (by finding the first unvisited vertex and bringing it to the front)

in the forward step. Now the following invariants are easy to see and are useful.

Invariants: During the exploration of DFS, in the (partial) DFS tree

1. any internal vertex has the first element in its list as its current last child; and

2. for any leaf vertex of the DFS tree, the first element in its list is its parent.

The first invariant is easy to see as we always keep the current explored vertex (child)

as the first element in the list. For leaves, the first time we encounter them, we make

its parent as the first element in the forward direction. Then we discover that it has no

unvisited vertices in its list, and so we make a full rotation and bring the parent to the

front again. The following lemma provides a test to find the parent of a node.

Lemma 6.8. Suppose w is a node that has just become black. Then its parent p is the

first vertex x in w’s adjacency list which is marked 1 in the visited array, and whose

current adjacency list has w in the first position.

Proof. From the invariants we observed, the nodes that can potentially have w in the

first position of their lists are its parent and its children that happen to be leaves. But in

w’s list, as we began the exploration of its neighbors starting from its parent, its parent

will appear first before its children. Hence the first node in w’s list which has w in the

first position must be its parent.

Once we backtrack to p, we find the next white vertex, and continue until all the

vertices of G are explored. Overall this procedure takes linear time. As we rotate the list

to bring the parent of a node, before exploring its white neighbors, we are not guaranteed

to explore the first white vertex in its original list, and hence we loose the lexicographic

property.
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6.2.4 General-DFS using n+O(lg n) bits for directed graphs

For performing DFS in directed graphs using n + O(lg n) bits, we don’t even need to

apply the modifications as we did for the undirected graphs during the forward direction,

and we can essentially use the same forward step idea as used for lex-DFS in undirected

graphs of Section 6.2.1. We provide the details below. When we arrive at a previously

unvisited vertex v from the vertex u (hence u is the parent of v in the DFS tree), we

rotate the in-neighbor list of v to bring u to the front and u stays there during the entire

course of the exploration. Thus we maintain the invariant that for any visited node v,

the first element in its in-neighbor list is its parent in the DFS tree. Now the algorithm

scans v’s adjacency list to find its unvisited neighbor. (i) If we find such a vertex, say

w, then we rotate v’s list to make w as the first element, and mark w visited. (ii) If

we do not find any such unvisited neighbor of v, then DFS needs to backtrack to its

parent. From the invariant we maintain in the in-neighbor list of every visited vertex,

this is easy. All we need to do is to see the first entry in v’s in-neighbor list to retrieve

its parent u and then continue from u. Overall this procedure takes linear time. Upon

closer inspection, it can be seen that, as we are not modifying the ordering of the vertices

in the out-neighbor lists in the forward direction (in contrast with the undirected graph

algorithm of Section 6.2.3), this procedure actually traverses the directed graph G in

lex-DFS ordering. This completes the proof of the second part of Theorem 6.1.

6.2.5 General-DFS using O(lg n) bits for undirected graphs

Now to decrease the space to O(lg n), we dispense with the color/visited array, and give

tests to determine white, gray and black vertices. For now, assume that we can determine

the color of a vertex. The forward step is almost the same as before except performing

the update in the color array. I.e., whenever we visit a white vertex v for the first time

from another vertex u (hence u is the parent of v), we rotate vs list to bring u to the front.
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Then we continue to find the first white vertex to explore. We maintain the following

invariants. (i) any gray vertex has the first element in its list as its last child in the

(partial) DFS tree; (ii) any black vertex has its parent as the first element in its list.

We also store the depth of the current node in a variable d, which is incremented by 1

every time we discover a white vertex and decremented by 1 whenever we backtrack. We

maintain the maximum depth the DFS has attained using a variable max. At a generic

step during the execution of the algorithm, assume that we are at a vertex x’s list, let p

be x’s parent and let y be a vertex in x’s list. We need to determine the color of y and

continue the DFS based on the color of y. We use the following characterization.

Lemma 6.9. Suppose the DFS has explored starting from a source vertex s, up to a vertex

x at level d. Let p be x’s parent. Note that both s and x are gray in the normal coloring

procedure. Let max be the maximum level of any vertex in the partial DFS exploration.

Let y be a vertex in x’s list. Then,

1. y is gray (i.e. (x, y) is a back edge, and y is an ancestor of x) if and only if we can

reach y from s following through the gray child (which is in the first location of each

of the lists of gray nodes) path in at most d steps.

2. y is black (i.e. (x, y) is a back edge, and x is an ancestor of y) if and only if

• there is a path P of length at most (max−d) from y to x (obtained by following

through the first elements of the lists of every vertex in the path, starting from

y), and

• let z be the node before x in the path P . The node z appears after p in x’s list.

3. y is white if y is not gray or black.

Proof. The test for gray and white vertices is easy to see. The vertex y is black implies

that y is a descendant of x in the partially explored DFS tree. This means that there is

a path of length at most (max−d) (obtained by following the parent which is in the first

194



element of the adjacency list) from y to x through an already explored child z . By the

way we process x’s list, we first bring the parent to the front of the list, and then explore

the nodes in sequence, and hence z, the explored neighbor of x must appear after p in

x’s list. Conversely, the unexplored neighbors of x appear before p in x’s list.

Now, if we use the above claim to test for colors of vertices, testing for gray takes at

most d steps. Testing for black takes at most (max − d) steps to find the path, and at

most deg(x) steps to determine whether p appears before. Thus for each vertex in x’s list,

we spend time proportional to max+ deg(x). So, the overall runtime of the algorithm is∑
v∈V deg(v)(deg(v) + `) = O(m2/n+m`), where ` is the maximum depth of DFS tree.

Maintaining the invariants for the gray and black vertices are also straightforward. We

provide details for directed graphs next.

6.2.6 General-DFS using O(lg n) bits for directed graphs

We describe our O(lg n) bits algorithm for directed graphs in the rotate model. More

specifically, we give a DFS algorithm to output all vertices reachable by a directed path

from the source vertex s. If we assume that s can reach all vertices, we get to output

all vertices. In the preprocessing step, the algorithm spends O(m) time to bring the

minimum valued neighbor (denote it by min) in the out-neighbor list of every vertex by

rotation (hence we loose the lexicographic DFS property). For now assume that we can

determine the color of a vertex. Given this, in the forward direction, when DFS arrives

at a previously unvisited vertex v from the vertex u (hence u is the parent of v in the

DFS tree), we rotate the in-neighbor list of v to bring u to the front and u stays there

during the entire course of the exploration. Also in u’s out-neighbor list, v is made the

first location. Hence we maintain the following invariants.

Invariants: During the exploration of DFS, in the (partial) DFS tree

1. gray vertices have their current last child in the first location of their out-neighbor
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lists;

2. all the visited (i.e., gray and black) vertices have their parent in the first location of

their in-neighbor lists.

We also keep track of the depth of the current node (i.e., the last gray vertex in the gray

path of the DFS tree) in a variable d, which, as before, is incremented by 1 every time

DFS visits a white vertex and decremented by 1 whenever DFS backtracks. We also store

the maximum depth the DFS tree has attained so far in a variable max. At a generic step

during the execution of the algorithm, assume that we are at a vertex x’s list, let p be

x’s parent (which can be found from the way x is visited by a forward or a backtracking

step using the invariants being maintained) and let y be a vertex in x’s list. We need to

determine the color of y and continue the DFS based on the color of y and maintain the

invariants. We use the following characterization.

Lemma 6.10. Suppose the DFS has explored starting from a source vertex s up to a

vertex x at level d. Let p be x’s parent. Note that both s and x are gray in the normal

coloring procedure. Let max be the maximum level of any vertex in the partial DFS

exploration. Let y be a vertex in x’s list. Then,

1. y is gray (i.e., (x, y) is a back edge and y is an ancestor of x) if and only if we can

reach y from s following the gray child (which is in the first location of each of the

out-neighbor lists of gray nodes) path in at most d steps.

2. y is black if and only if any of the following happens.

• There is a path P of length at most (max−d) from y to x obtained by following

the first elements of the in-neighbor lists of every vertex in the path P starting

from y. This happens when (x, y) is a forward edge, and x is an ancestor of y.

• There is a path P of length at most max from y to a gray vertex z 6= x (obtained

by following through the first elements of the in-neighbor lists of every vertex
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Figure 6.2: Illustration of the different cases of the possible positions of the vertex y when
DFS considers the directed edge (x, y) at some intermediate step. Suppose the root of
the DFS tree is the vertex s and the curvy path starting from s and going straight below
through x is the current gray path in the DFS tree. Intuitively all the vertices on the left
hand side of the path are black, and right hand side are white and yet to be explored.
From left to the right are cases when (x, y) is (a) back edge, (b) cross edge, (c) forward
edge, and (d) tree edge.

starting from y) which is the first gray vertex in the path. Let c be the node

before z in the path P , then c must appear after min in z’s list (this happens

when (x, y) is a cross edge).

3. The vertex y is white if it is not black or gray(i.e., (x, y) is the next tree edge with

x being the parent of y in the DFS tree).

Proof. See Figure 5.2 for a picture of all the cases. The test for gray and white vertices is

easy to see.

From a vertex x, there could be two types of outgoing edges to a black vertex y. When

(x, y) is a forward edge, y is a descendant of x and hence there must exist a path P of

length at most (max−d) (obtained by following the parent which is in the first location of
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the in-neighbor list of every vertex in P , starting from y) from y to x through an already

explored child t of x. In the other case, when (x, y) is a cross edge, y has already been

discovered and explored completely before DFS reaches to x. Hence there must exist a

gray ancestor z of x (z could be x) such that y belongs to the subtree rooted at z in the

DFS tree. Thus, from y’s in-neighbor list if we follow the path starting with y’s parent

for at most max steps, we must hit the gray path and the first vertex we come across is

z. Let c be the node before z in the path. By the way we process z’s out-neighbor list,

we first bring the min to the front of the list, and then explore the other neighbor nodes

in sequence, and hence c, the explored neighbor of z must appear after min in z’s list.

For the converse, suppose y is a white vertex. Either we never reach a gray vertex

in max steps (and we will correctly determin its color in this case) or we reach x or x’s

ancestor z from y following through the (spurious) first vertices of the in-neighbor list of

a white vertex y. Note that the parent of a white vertex is white or gray and it can never

be black. Hence z’s child in the path is white. Hence that child will appear before min

in z’s list.

Given the above test, if y turns out to be white, the edge (x, y) is added to the DFS

tree, and y now becomes the current gray vertex. Note that maintaining the invariants

are straightforward. Also, when any vertex v has been completely explored by DFS,

we retrieve its parent from the in-neighbor list to complete the backtracking step. This

procedure is continued until DFS comes back to the source vertex s. We stop at this

point. This is because, note that, our proof breaks down in the case when DFS in a

directed graph produces a forest and some cross edges go across these trees. In that

case, if we follow the path starting from y’s parent, we would reach the root of the DFS

tree containing y and this is different from the tree where x belongs to. As we cannot

maintain informations regarding all such roots of these previously explored DFS trees,

we might spuriously conclude that y is unvisited even though it is not the case. Thus our

algorithm produces the DFS tree containing only the vertices reachable from the source
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vertex s via some directed path in G. We leave open the case for desigining such logspace

algorithm for the general directed graphs.

Given the above lemma, if y turns out to be white, the edge (x, y) is added to the DFS

tree, and y now becomes the current gray vertex. Note that maintaining the invariants

are easy. When any vertex v has been completely explored by DFS, we retrieve its parent

from the in-neighbor list to complete the backtracking step. This procedure is continued

until DFS comes back to the source vertex s. We stop at this point and we have outputted

all vertices reachable from s.

To analyse the running time of our algorithm observe that testing for gray takes at

most d steps. Testing for black takes, in the worst case, at mostmax steps to find the path,

and at each step of the path, we take d time to test whether the new node is gray. Once we

reach a gray vertex, we spend at most deg(z) steps to determine whether c appears before

min. Thus for each vertex in x’s list, we spend time proportional to d+(d.max)+deg(z)

time. As z (which is independent of x) can have degree at most n. Thus, the overall

runtime of the algorithm is
∑

v∈V deg(v)(d+ d`+ n) which is O(m(n+ (1 + `)`) which is

O(m(n+ `2)), where ` is the maximum depth of DFS tree.

6.3 BFS Algorithms in the rotate model

In this section, we describe our space-efficient algorithms for BFS in the rotate model

proving Theorem 6.2. We restate the theorem statement here again for reader’s conve-

nience.

Theorem 6.2 (Restated) Let G be a directed or an undirected graph, and ` be

the depth of the BFS tree starting at the source vertex s. Then in the rotate model, the

vertices of G can be output in a BFS order in

(a) O(m+ n`2) time using n+O(lg n) bits, and
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(b) O(m`+ n`2) time using O(lg n) bits. Here we assume that the source vertex s can

reach all other vertices.

6.3.1 BFS using n+O(lg n) bits

It is well-known that BFS actually computes the shortest path lengths in unweighted

undirected or directed graph G from a given source vertex s ∈ V to every vertex v ∈ V

that is reachable from s. I.e., if a vertex v belongs to the d-th level in the BFS tree

(assuming the root s is at zero-th level), then we know that the length of the shortest

path from s to v is d. We use this crucially to design our BFS algorithms. We use a bit

array visited[1, · · · , n] that stores a 0 for an unvisited vertex, and 1 for a visited vertex.

We also maintain a counter dist which stores the level of the vertex that is currently

being explored in the BFS algorithm.

We start by setting visited[s] = 1, and initializing the counter dist to 0. At the

next step, for every unvisited neighbor v of s, we rotate their adjacency list so that s

appears as the first element in v’s list, set visited[v] = 1, and output v. This step ensures

that for each visited vertex, its parent is at the front of its adjacency list. We refer to

this front element in the adjacency list of a visited vertex as its parent pointer. (Also,

once we set the parent pointer for a vertex, we will not rotate its adjacency list in the

remaining part of the algorithm.) Once the root s’s list is fully processed as above, the

dist is incremented to 1. The next step in the algorithm is to find all the vertices in the

first level and mark all their unvisited neighbors as visited. As we haven’t stored these

vertices (in the first level), the challenge is to find them first. We use the following claim,

to find the level number of a visited vertex. The proof easily follows from the fact that

the parent pointers are set for all the visited vertices, and also that all the ancestors of a

visited vertex are also visited.

Claim 6.11. If the BFS has been explored till distance d from the source, then for any
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k ≤ d, a vertex x marked visited is in level k if and only if we can reach the source s in

exactly k steps by following through their parent pointers. Thus determining if a visited

vertex is in level d takes at most d steps.

So now we continue the BFS by scanning through the vertices, finding those vertices

in level d (using the above claim by spending d steps for each vertex), and marking their

unvisited neighbors visited, and making in their adjacency lists, their parent vertex as

the first element, and incrementing dist. We stop our algorithm when we discover no

new unvisited vertex while exploring any level. The correctness of the procedure and the

space used by the algorithm are clear. To analyze the runtime, note that the time spent

at level d is nd+
∑

i∈V (d) deg(i) where V (d) is the set of vertices in level d and deg(i) is

the degree of vertex i. Summing over all levels, we get a runtime O(m+ n`2), where ` is

the depth of the BFS tree.

To handle directed graphs, we follow the outneighbor list as we go down, and we set up

the parent at the first position in the in-neighbor list of every vertex v. To verify if v

belongs to the d-th level, we take d steps from v by following the parent pointers in the

in-neighbor lists of the (visited) vertices along the path, and check if we reach s at the

end. This proves the first part of Theorem 6.2.

6.3.2 BFS using O(lg n) bits

To reduce the space to O(lg n) bits, we dispense with the color array and explain how to

determine visited and unvisited vertices. Assume that we can determine this in constant

time. Our first observation is that Claim 6.11 is true even for unvisited vertices even

though the first vertex in the adjacency list of unvisited vertices can be an arbitrary

vertex (not necessarily referring to their parent in the BFS tree). However, we know (by

the property of BFS) that no unvisited vertex is adjacent to a vertex in level less than d,

and hence they can not reach s by a path at most d. Using the same argument, we can
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show that

Claim 6.12. If vertices up to level d have been explored and visited, then a vertex x is a

visited vertex if and only if by following through the parent pointers, x can reach s by a

path of length at most d. Furthermore, a vertex is in level d if and only if we can reach

s by a path of length exactly d by following through the parent pointers.

Thus, to check whether a vertex is visited, we spend O(d) time when exploring vertices

at level d instead of O(1) time when the visited array was stored explicitly. Hence, the

total the time spent at level d is O(nd + d
∑

i∈V (d) deg(i)), where the first term gives

the time to find all the visited vertices at level d, and the second term gives the time to

explore those vertices (i.e., going through their neighbor lists, identifying the unvisited

neighbors and setting their parent pointers). Summing over all levels, we get a total

runtime of O(n`2 +m`). Note that this algorithm works only when the input undirected

graph is connected as Claim 6.12 breaks down if there are more than one component. The

modifications to handle the directed graphs are similar to those for the directed graph

BFS algorithm. This proves the second part of Theorem 6.2.

6.4 Simulation of algorithms for rotate model in the

implicit model

We can implement a single rotate operation that moves the head of the list by one position

(which is assumed to be a unit-cost operation in the rotate model) in the implicit model

by moving all the elements in the adjacency list circularly. If dv is the degree of a vertex

v, then performing a rotation of the adjacency list of v can be implemented in O(dv)

time in the implicit model. Thus, if we have an algorithm in the rotate model that takes

t(m,n) time, then it can be implemented in O(D · t(m,n)) time in the implicit model,

where D is the maximum degree of the graph. One can get a better runtime by analysing
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the algorithm for the rotate model more carefully. In particular, if the runtime of the

algorithm in the rotate model can be expressed as r(m,n) + f(m,n), where r(m,n) is

the number of rotations performed and f(m,n) is the remaining number of operations,

then the algorithm can be implemented in the implicit model in O(D · r(m,n)) + f(m,n)

time. Furthermore, if r(m,n) ≤
∑

v∈V rv(m,n) where rv(m,n) is the number of rotations

made in v’s list, then the runtime of the algorithm in the implicit model can be bounded

by
∑

v∈V rv(m,n) · dv + f(m,n).

If the input graph is given in the adjacency array representation and if the ordering

of the elements in the adjacency array is allowed to be changed, then one can simulate

the rotate operation even faster. The main idea is to simulate the algorithm for the

rotate model after sorting the adjacency arrays of each vertex. Using an in-place linear

time radix sorting algorithm [81], sorting all the adjacency arrays can be done in O(m)

time. Next, we note that in the rotate model, the head points to an element in an

arbitrary position (called the front element) in the adjacency list of any vertex and the unit

operation moves it one position. Thus, it is enough to show how to access the next element

in sorted order. We maintain the following invariant: if the first element is the i-th element

in sorted order, then the adjacency array consists of the sorted array of all the adjacent

vertices, with the first element swapped with the i-th element. To bring the (i + 1)-st

element to the front, we first perform a binary search for the i-th element which is in the

first position in the ‘almost sorted’ adjacency array to find the position i, and move the

elements appropriately to maintain the invariant (with the (i+1)-st element at the front).

This takes O(lg dv) time to simulate the rotation of the adjacency array of a vertex v with

degree dv. Thus, if we have an algorithm in the rotate model that takes t(m,n) time, then

it can be implemented in O(lgD · t(m,n)) time in the implicit model. Moreover, if the

runtime of the algorithm in the rotate model can be expressed as
∑

v∈V rv(m,n)+f(m,n),

where rv(m,n) is an upper bound on the number of rotations performed on vertex v and

f(m,n) is the remaining number of operations, then the algorithm can be implemented

in the implicit model in O(
∑

v∈V rv(m,n) lg dv + f(m,n)) time. Most of our algorithms

203



in the next section use these simulations with some enhancements. The following result

summarizes the overhead incurred while simulating any rotate model algorithm in the

implicit model.

Theorem 6.13. Let D be the maximum degree of a graph G. Then any algorithm running

in t(m,n) time in the rotate model can be simulated in the implicit model in (i) O(D ·

t(m,n)) time when G is given in an adjacency list, and (ii) O(lgD · t(m,n)) time when G

is given in an adjacency array. Furthermore, let rv(m,n) denote the number of rotations

made in v’s (whose degree is dv) list, and f(m,n) be the remaining number of operations.

Then any algorithm running in t(m,n) =
∑

v∈V rv(m,n) + f(m,n) time in the rotate

model can be simulated in the the implicit model in (i) O(
∑

v∈V rv(m,n) · dv + f(m,n))

time when G is given in an adjacency list, and (ii) O(
∑

v∈V rv(m,n) lg dv +f(m,n)) time

when G is given in an adjacency array.

Most of our algorithms in the implicit model use these simulations often with some

enhancements and tricks to obtain better running time bounds for some specific problems.

6.5 DFS Algorithms in the implicit model

In this section, we describe our space-efficient algorithms for DFS in the implicit model

proving Theorem 6.3. We restate the theorem statement here again for reader’s conve-

nience.

Theorem 6.3 (Restated) Let G be a directed or an undirected graph with a source

vertex s and ` ≤ n be the maximum depth of the DFS tree starting at s that can reach

all other vertices. Then in the implicit model, using O(lg n) bits the vertices of G can be

output in

(a) the lex-DFS order in O(m3/n2 + `m2/n) time if G is given in adjacency list and

in O(m2 lg n/n) time if G is given in adjacency array for undirected graphs. For
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directed graphs our algorithm takes O(m2(n+`2)/n) time if G is given in adjacency

list and O(m lg n(n+ `2)) time if G is given in adjacency array;

(b) a general-DFS traversal order in O(m2/n) time if the input graph G is given in an

adjacency list and in O(m2(lg n)/n + m` lg n)) time if it is given in an adjacency

array.

6.5.1 Lex-DFS using O(lg n) bits

To obtain a lex-DFS algorithm, we implement the O(lg n)-bit DFS algorithm in the

rotate model, described in Section 6.2.5, with a simple modification. First, note that

in this algorithm (in the rotate model), we bring the parent of a vertex to the front of

its adjacency list (by performing rotations) when we visit a vertex for the first time.

Subsequently, we explore the remaining neighbors of the vertex in the left-to-right order.

Thus, for each vertex, if its parent in the DFS were at the beginning of its adjacency

list, then this algorithm would result in a lex-DFS algorithm. Now, to implement this

algorithm in the implicit model, whenever we need to bring the parent to the front, we

simply bring it to the front without changing the order of the other neighbors. Sub-

sequently, we simulate each rotation by moving all the elements in the adjacency list

circularly. As mentioned in Section 6.4, this results in an algorithm whose running time

is O(
∑

v∈V dv(dv + `) · dv) = O(m3/n2 + `m2/n) if the graph is given in an adjancecy list

and in O(
∑

v∈V dv(dv + `) · lg dv) = O(m2(lg n)/n+m` lg n)) when the graph is given in

the form an adjacency array. This proves the first part of Theorem 6.3 for undirected

graphs. The results for the directed case follow from simulating the corresponding results

for the directed graphs.
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6.5.2 General-DFS using O(lg n) bits

We implement the linear-time DFS algorithm of Theorem 6.1 for the rotate model that

uses n+O(lg n) bits. This results in an algorithm that runs in O(
∑

v∈V d
2
v+n) = O(m2/n)

time (or in O(
∑

v∈V dv lg dv + n) = O(m lgm + n) time, when the graph is given as an

adjacency array representation), using n+O(lg n) bits. We reduce the space usage of the

algorithm to O(lg n) bits by encoding the visited/unvisited bit for each vertex with degree

at least 2 within its adjacency list (and not maintaining this bit for degree-1 vertices).

We describe the details below.

Whenever a node is visited for the first time in the algorithm for the rotated list

model, we bring its parent to the front of its adjacency list. In the remaining part of

the algorithm, we process each of its other adjacent vertices while rotating the adjacency

list, till the parent comes to the front again. Thus, for each vertex v with degree dv,

we need to rotate v’s adjacency list O(dv) times. In the implicit model, we also bring

the parent to the front when a vertex is visited for the first time, for any vertex with

degree at least 3. We use the second and third elements in the adjacency list to encode

the visited/unvisited bit. But instead of rotating the adjacency list circularly, we simply

scan through the adjacency list from left to right everytime we need to find the next

unvisited vertex in its adjacency list. This requires O(dv) time for a vertex v with degree

dv. We show how to handle vertices with degree at most 2 separately.

As before, we can deal with the degree-1 vertices without encoding visited/unvisited

bit as we encounter those vertices only once during the algorithm. For degree-2 vertices,

we initially (at preprocessing stage) encode the bit 0 using the two elements in their

adjacency arrays - to indicate that they are unvisited. When a degree-2 vertex is visited

for the first time from a neighbor x, we move to its other neighbor – continuing the

process as long as we encounter degree-2 vertices until we reach a vertex y with degree

at least 3. If y is already visited, then we output the path consisting of all the degree-2

vertices and backtrack to x. If y is not visited yet, then we output the path upto y, and
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continue the search from y, and after marking y as visited. In both the cases, we also

mark all the degree-2 nodes as visited (by swapping the two elements in each of their

adjacency arrays).

During the preprocessing, for each vertex with degree at least 3, we ensure that the

second and third elements in its adjacency list encode the bit 0 (to mark it unvisited).

We maintain the invariant that for any vertex with degree at least 3, as long as it is not

visited, the second and third elements in its adjacency array encode the bit 0; and after

the vertex is visited, its parent (in the DFS tree) is at the front of its adjacency array,

and the second and third elements in its adjacency array encode the bit 1. Thus, when

we visit a node v with degree at least 3 for the first time, we bring its parent to the front,

and then swap the second and third elements in the adjacency list, if needed, to mark it

as visited. The total running time of this algorithm is bounded by
∑

v∈V d
2
v = O(m2/n).

We can implement the above DFS algorithm even faster when the input graph is

given in an adjacency array representation. We deal with vertices with degree at most

2 exactly as before. For a vertex v with degree at least 3, we bring its parent to the

front and swap the second and third elements to mark the node as visited (as before)

whenever v is visited for the first time. We then sort the remaining elements, if any, in the

adjacency array, in-place (using the linear-time in-place radix sort algorithm [81]), and

implement the rotations on the remaining part of the array as described in Section 6.4.

The total running time of this algorithm is bounded by
∑

v∈V dv lg dv = O(m lgm + n).

This completes the proof of the second part of of Theorem 6.3.

6.6 BFS algorithms in the implicit model

In this section, we describe our space-efficient algorithms for BFS in the implicit model

proving Theorem 6.4. We restate the theorem statement here again for reader’s conve-

nience.

207



Theorem 6.4 (Restated) Let G be a directed or an undirected graph with a source

vertex that can reach all other vertices by a distance of at most `. Then in the implicit

model, using O(lg n) bits the vertices of G can be output in a BFS order in

(a) O(m+ n`2) time;

(b) the runtime can be improved to O(m+ n`) time if there are no degree 2 vertices;

(c) the runtime can be improved to O(m) if the degree of every vertex is at least

2 lg n+ 3.

Before giving the proof, we outline the main ideas involved in proving Theorem 6.4.

One can simulate the BFS algorithm of Item 2 of Theorem 6.2 (for the rotate model) in the

implicit model using the simulation described in Section 6.4. Since these BFS algorithms

scan through each of the adjacency lists/arrays at most twice during the algorithm,

there won’t be any slowdown in the runtime. This results in an algorithm running in

O(m` + n`2) time, using O(lg n) bits. To improve the running time, we simulate the

algorithm in Item 1 of Theorem 6.2 using the trick of encoding the visited bit of each

vertex in its adjacency list instead of storing the visited array explicitly. This requires

special attention to degree-1 and degree-2 vertices along with few other technical issues

which are dealt in the proof given next.

Proof. Here we give the full proof of Theorem 6.4. In particular, we provide all the

details of the case when the degree of each vertex is at least 3, and in that case, we show

that we can implement the BFS algorithm using 4 colors of Theorem 3.5, by encoding

the 4 color of a vertex using the first three elements in its adjacency list, resulting in an

algorithm that takes O(m+n`) time. Moreover, when the degree of every vertex is at least

2 lg n + 3, then we show that the above algorithm can be implemented more efficiently,

resulting in an algorithm that takes O(m) time. Details follow. One can simulate the

BFS algorithm of in Item 2 of Theorem 6.2 (for the rotate model) in the implicit model
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using the simulation described in Section 6.4. Since these BFS algorithms scan through

each of the adjacency lists/arrays at most twice during the algorithm, there won’t be any

slowdown in the runtime. This results in a BFS algorithm that runs in O(m`+n`2) time,

using O(lg n) bits.

To improve the running time further, we simulate the algorithm in Item 1 of Theo-

rem 6.2. But instead of storing the visited array explicitly, we encode the visited bit of

each vertex in its adjacency list, as explained below, resulting in an algorithm that takes

O(m+ n`2) time, using O(lg n) bits. For a vertex x with degree at least 3, we encode its

visited bit using the second and third elements in its adjacency list. To set the parent

pointer for x (when it is visited for the first time), we bring its parent to the front, and

move the second and third elements, if necessary, to encode the visited bit. We now

describe how to deal with the degree-1 and degree-2 vertices.

First, observe that in the original BFS algorithm, we can simply output any degree-1

vertex, when it is visited for the first time. Thus, we need not store the visited bit for

degree-1 vertices. For degree-2 vertices, we encode the visited bit using the two neighbors.

We do not bring its parent to the front, as we do for other vertices. Whenever we need

to check whether a visited degree-2 vertex is at depth d, we follow parent pointers from

both the neighbors - if one of them does not exist, then the other one is its parent - for

a distance of length at most d. (While following the parent pointers from a vertex to the

root, it is easy to find its parent - since there is only one alternative to follow.) Thus, the

first part of the theorem follows from Item 1 of Theorem 6.2, with the above modification.

To improve the runtime further, we implement the BFS algorithm using 4 colors of

Theorem 3.5, where all the unvisited vertices are white, all the visited, yet unfinished

vertices of the two consecutive layers of BFS are gray1 and gray2 respectively, and all the

vertices which are completely explored are black. Suppose the degree of every vertex in

the given graph is at least three. In this case, we can encode the color of any vertex by

permuting the first three elements in its adjacency array appropriately. This enables us

209



to retrieve (or modify) the color of any vertex in constant time by reading (or modifying)

the permuted order of the first elements in its adjacency array.

Since we haven’t stored the gray1 or gray2 vertices in a queue (as in the standard BFS),

we scan through the entire vertex set (in the increasing order of their labels), and when

we find any vertex v colored gray1, we color all its white neighbors with gray2, and color v

itself with black. We call this an exploration phase. The time taken for each exploration

phase is equal to the sum of the degrees of all the gray1 vertices at the beginning of the

phase, plus O(n). At the end of each exploration phase, we change the colors of all gray2

vertices to gray1 and also output them, using an additional O(n) time. We call this a

consolidation phase. We need to repeat the exploration and consolidation phases for `

times before all the nodes are colored black, where ` is the height of the BFS tree. Thus

the overall time taken by this procedure can be bounded by O(m+ n`). This proves the

second part of the theorem.

If every vertex has degree at least 2 lg n+ 3, then we can perform BFS in O(m) time

(note that m ≥ n lg n in this case) – by encoding the current set of gray1 vertices as a

linked list by using 2 lg n vertices to encode (a pointer to) the next vertex in the list.

The time to read all the gray1 vertices in a phase when there are k vertices colored gray1

becomes O(k lg n) instead of O(n). This results in O(m + n lg n) time which is O(m).

This proves the third part of the theorem.

6.7 Minimum Spanning Tree

In this section, we start by giving an in-place implementation of the Prim’s algorithm [51]

to find a minimum spanning tree of a given weighted undirected graph in the rotate model.

Here we are given a weight function w : E → Z. We also assume that the weights of

non-edges are ∞ and that the weights can be represented using O(lg n) bits. The input

representation also changes slightly to accommodate these weights. Now each element of
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the circular linked list has three fields, (a) the vertex label, (b) the weight, and (c) the

pointer to the next vertex respectively. In what follows, when we talk about computing a

minimum spanning tree, what we mean is reporting the edges of such a tree. Our result

is the following,

Theorem 6.14. A minimum spanning forest of a given undirected weighted graph G can

be found using O(lg n) bits and in O(mn) time in the rotate model.

Proof. Our rotate model algorithm basically mimics Prim’s algorithm with a few tweaks.

Prim’s algorithm starts with initializing a set S with a vertex s. For every vertex v

not in S, it finds and maintains d[v] = min{w(v, x) : x ∈ S} and π[v] = x where

w(v, x) is the minimum among {w(v, y) : y ∈ S}. Then it repeatedly deletes the vertex

with the smallest d value from V − S adding it to S. Then the d values are updated

by looking at the neighbors of the newly added vertex. To implement this procedure

using just extra O(lg n) bits of space, first we need to find a way to mark/unmark a

vertex v if it has been taken into S without using n bits explicitly. The way we do this

is as follows. In the preprocessing step, the algorithm spends O(m) time to bring the

minimum valued neighbor (denote it by min) in the neighbor list of every vertex v by

rotation. Subsequently we would attach the following meaning with the position of min

in the list of any vertex v. If the first element in the list of any vertex v is min, this

means that v is not taken into S so far during the execution of the algorithm, otherwise

it belongs to S. This way we can store the information regarding the status of any vertex

v without using any extra space but actually figuring out this information takes time

proportional to the degree of v. Note that for vertices having degree one, we cannot

determine exactly its status correctly by this method. But a simple fact we can use here.

If a vertex z has degree one (say its neighbor is y), then the edge (y, z) is always a part

of the minimum spanning tree. Hence, after the preprocessing step, we can output all

such edges at once and embark on executing the rest of the algorithm.

The algorithm initializes the set S with the starting vertex s, and goes to its list to

211



give a rotation so that min does not stay in the first location in s’s list. We call this step

as the marking step. This is followed by finding the smallest weight neighbor (say u) of

s. According to Prim’s algorithm, u should now move to S. We achieve the same by

marking u i.e., going to u’s list to give a rotation to move min from the first location to

indicate that u belongs to S now and subsequently continue to in u’s list find its smallest

weight neighbor and repeat. Thus at any generic step of the algorithm, we go over the

list of unmarked vertices (i.e., those vertices having min at the first position of their

respective lists) and collect the minimum weight vertex (say t), and t is then marked and

we continue until all the vertices are marked.

Clearly this method returns all the correct edges of a minimum spanning tree of G.

Space bound of this algorithm is easily seen to be O(lg n) bits for keeping a few variables.

Total time spent by algorithm can be bounded by O(mn) where at the preprocessing step,

it spends O(m) time and after the preprocessing, for reporting each edges of the minimum

spanning tree, in the worst case, the algorithm spends O(m) time, hence O(mn) is the

bound on the running time.

As mentioned in Section 6.4, simulating this algorithm in the implicit model would

result in an algorithm having running time O(mn.dv)=O(mn2) if the graph is given in

an adjacency list and in O(mn. lg dv)=O(mn lg n) when the graph is represented in an

adjacency array. Hence, we have the following,

Theorem 6.15. In the implicit model a minimum spanning forest of a given undirected

weighted graph G can be found using O(lg n) bits and

1. O(mn2) time if the graph is given in an adjacency list, and

2. O(mn lg n) time when the graph is represented in an adjacency array.
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6.8 Improved algorithm for DFS and applications in

read-only memory

This section discusses some of the applications of our previously designed in-place DFS/BFS

algorithms. More specifically, we show, using a little more space, how to simulate any

rotate model algorithm in the read-only model. This results in improved space-efficient

algorithms for various fundamental graph problems in the read-only model over the clas-

sical implementation for these problems. This also matches the space and time bounds

of our earlier designed algorithms for these problems. Hence this gives alternate proofs

for those previous algorithms as well. Details follow.

Observe that, the only modification of the input that we do in our rotate model algorithm

is to make the head pointer point to an arbitrary element in the adjacency list (instead of

a fixed element) at various times. To simulate this in read-only memory, we can simply

maintain a pointer in each of the lists in the adjacency list. The resources required to

store and update such pointers is proven in the following lemma which we have proven

in Chapter 3. We restate the lemma statement here for reader’s convenience.

Lemma 3.17 (Restated) Given the adjacency list representation of a directed or an

undirected graph G on n vertices with m edges, using O(m) time, one can construct an

auxiliary structure of size O(n lg(m/n)) bits that can store a “pointer” into an arbitrary

index within the adjacency list of each vertex. Also, updating any of these pointers (within

the adjacency list) takes O(1) time.

To actually get to the element in the list, we need the graph to be represented as what

is referred as adjacency array [69]. Here given an index in the list of a vertex, we can

access the (adjacent) vertex in that position of the vertex’s adjacency list in constant time.

Now if we simulate our rotate model algorithm of Theorem 6.1 in read-only memory using

the auxiliary structure as stated in Lemma 3.17 as additional storage, then we obtain,

Theorem 6.16. A DFS traversal of an undirected or a directed graph G, represented by
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an adjacency array, on n vertices and m edges can be performed in O(m+ n) time using

O(n lg(m/n)) bits, in the read-only model.

The above result improves the DFS tradeoff result of Elmasry et al. [69] for relatively

sparse graphs in the read-only model. In particular, they showed the following (which we

restate here),

Theorem 4.1 (Restated) For every function t : N → N such that t(n) can be

computed within the resource bound of this theorem (e.g., in O(n) time using O(n) bits),

the vertices of a directed or undirected graph G, represented by adjacency arrays, with

n vertices and m edges can be visited in depth first order in O((m + n)t(n)) time with

O(n+ n lg lgn
t(n)

) bits.

Thus to achieveO(m+n) time for DFS, their algorithm (Theorem 4.1) usesO(n lg lg n)

bits. This is Ω(n lg(m/n)) for all values of m where m = O(n lg n). Hence, for sparse

graphs we obtain better tradeoff bounds. Note that in Chapter 3, we obtained exactly

same result by a slightly different technique. In what follows, we show that using Theorem

6.16, we can improve the space bounds of some of the classical applications of DFS in

read-only model.

We illustrate this by the means of giving a few examples. Note that, one of the many

classical applications of DFS (see [51]) include (i) topological sorting of the vertices of a

directed acyclic graph [100], and (ii) producing a sparse (having O(n) edges) spanning

biconnected subgraph of a undirected biconnected graph G [68] etc. For all of these

problems, classical algorithms [100, 68] take linear time and O(n lg n) bits of space. Now

the following result is implicit from Theorem 4.3 and Theorem 4.10 which were proved

in Chapter 4.

Theorem 6.17. In the read-only model, if the DFS of G on n vertices and m edges, can

be performed in t(m,n) time using s(m,n), where s(m,n) = Ω(n), bits of space, then

using O(s(m,n)) bits and in O(t(n,m)) time, we can output
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1. the vertices of a directed acyclic graph in topologically sorted order,

2. the edges of a sparse spanning biconnected subgraph of a undirected biconnected

graph G.

Now plugging the improved DFS algorithm of Theorem 6.16 in the above theorem,

we obtain for these applications an improved (over the classical implementation) space-

efficient implementations taking O(m + n) time and O(n lg(m/n)) bits of space. There

are many other examples for which we can prove similar results but we choose these two

only for demonstration purpose.

6.9 Solving NP-hard problems in in-place models

We show how to solve some NP-hard graph problems using logspace and exponential time

in the rotate and implicit models. In particular, this implies that problems such as vertex

cover and dominating set can be solved in exponential time using O(lg n) bits in both the

models. In constrast, note that, no NP-hard problem can be solved in the ROM model

using O(lg n) bits unless P=NP.

Similar to Fomin et al. [78], we define a class of graph problems in NP which we

call graph subset problems where the goal is to find a subset of vertices satisfying some

property. We show a meta theorem showing that a restricted class of graph subset

problems that are in NP admit log-space exponential algorithms in the rotate and implicit

models.

Given a graph G with its adjacency list, we encode a subset of the vertices as fol-

lows. For every vertex in the subset, we bring in the minimum labelled vertex among its

neighbors to the front of the list, and for others, we keep a vertex with a higher label

(than the minimum) at the front of the list. So it takes a linear time to check whether

a vertex is in the subset. The algorithm enumerates all subsets (by this encoding) and
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simply verifies using the NP algorithm whether that subset satisfies the required property

until it finds a subset satisfying the property or it has enumerated all the subsets. By a

standard theorem in complexity theory [7], every problem in NP is actually verifiable by

a log-space ROM and hence the overall space taken by our algorithm is only logarithmic.

Note that our algorithm requires that the adjacency list of any vertex has at least two

values, i.e. that the degree of any vertex is at least two. Thus we have

Theorem 6.18. Any graph subset problem in NP can be solved using O(lg n) bits of

extra space (and exponential time) in the rotate and implicit models in graphs G having

minimum degree 2.

Remark 1 We remark that the above idea can work for other graph problems that are

not necessarily subset problems. For example, for testing hamiltonicity, we can simply

explore all neighbors of a vertex (starting at the smallest labelled neighbor so we know

when we have explored them all) in a systematic fashion simply encoding them into the

adjacency list by moving the current neighbor to the front of the list, and test whether

together they form a cycle of length n.

If the graphs have larger minimum degree (say at least 2 lg n), we can even encode

pointers in each adjacency list and using that we can even test for graph isomorphism in

logarithmic space.

Remark 2 The minimum degree 2 restriction in the above theorem is not a seri-

ous restriction as for many problems (like vertex cover, dominating set and travelling

salesperson problem), we can handle the degree 1 vertices easily.

6.10 Concluding remarks and open problems

Our initial motivation was to get around the limitations of ROM to obtain a reasonable

model for graphs in which we can obtain space efficient algorithms. We achieved that
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by introducing two new frameworks and obtained efficient (of the order of O(n3 lg n))

algorithms using O(lg n) bits of space for fundamental graph search procedures. We

also discussed various applications of our DFS/BFS results, and it is not surprising that

many simple corollaries would follow as DFS/BFS being the backbone of so many graph

algorithms. We showed that some of these results also translate to improved space efficient

algorithms in ROM (by simulating the rotate model algorithms in ROM with one pointer

per list). With some effort, we can obtain log space algorithm for minimum spanning

tree. These results can be contrasted with the state of the art results in ROM that take

almost linear bits for some of these problems other than having large runtime bounds. All

our algorithms are conceptually simple, and as they don’t use any heavy data structures,

we believe that they are also practical to implement. Still, there are plenty of algorithmic

graph problems to be studied in this model. We believe that our work is the first step

towards this and will inspire further investigation into designing in-place algorithms for

other graph problems.

Surprisingly we could design log-space algorithm for some P-complete problems, and

so it is important to understand the power of our model. Towards that we discovered

that we can even obtain log-space algorithms for some NP-hard graph problems. More

specifically, we defined graph subset problems and obtained log-space exponential time

algorithms for problems belonging to this class in Section 6.9. One interesting future

direction would be to determine the exact computational power of these models along

with exploring the horizon of interesting complexity theoretic consequences of problems

in this model.
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Chapter 7

Conclusion

The concept of space complexity had already been explored in the 1970s; In particular,

Savitch’s theorem [7] was one of the initial results regarding the space complexity of graph

algorithms. After that many beautiful results regarding the space bounds of different

kinds of problems have been discovered. Mostly these algorithms are extremely space

efficient at the cost of large, yet polynomial, running time. In this thesis we took a

slightly different approach while designing space efficient algorithms for some basic and

fundamental graph algorithms. Our main focus was to obtain/design space-efficient yet

reasonably time-efficient graph algorithms on various restricted memory computational

model. In this concluding chapter we take a look back on the results obtained, ponder

on possible directions of future work and mention some open problems.

We started this thesis focusing on designing linear time algorithms for many fun-

damental graph problems in ROM. The following table summarizes the main results

obtained along with mentioning a few problems which we leave open.
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Problem Time Space (in bits) Status

BFS O(m+ n) 2n+ o(n) Thm 3.5

BFS O(m lg n) or O(mn) n+ o(n) Open

DFS, 2-vertex (edge) connectivity O(m+ n) O(n lg(m/n)) Thm 3.19

Chain decomposition O(m+ n) O(n lg(m/n)) Thm 3.19

DFS, 2-vertex (edge) connectivity O(m+ n) O(n lg lg n) Thm 3.26

Chain decomposition O(m+ n) O(n) or O(n lg lg n) Open

DFS, 2-vertex (edge) connectivity O(m+ n) O(n) Open

DFS Polytime o(n) Open

In the next chapter, we focused on designing linear bits algorithms for some of well

studied classical graph problems. This chapter also saw proper fusion of results from

succinct data structure and algorithmic graph theory to design space efficient graph

algorithms. We developed a technique called space-efficient tree cover method and use it

successively to design very lightweight (in terms of space) algorithms for plethora of DFS

applications in ROM. The following table summarizes the main results obtained along

with mentioning a few problems which we leave open.

Problem Time Space (in bits) Status

DFS, Topological sort O(m lg lg n) O(n) Thm 4.1 & 4.3

DFS, Topological sort O(m) or O(m lg∗ n) O(n) Open

2-vertex (edge) connectivity O(m lg lg n lg n) O(n) Thm 4.18 & 4.19

2-vertex (edge) connectivity O(m) or O(m lg lg n) O(n) Open

st-numbering O(m lg2 n lg lg n) O(n) Thm 4.16 & 4.20

st-numbering O(m) or O(m lg n lg lg n) O(n) Open

MCS, Max-Independent set O(m2/n+m lg n) O(n) Thm 4.24 & 4.26

Coloring chordal graphs O((m2 lg n)/n+m lg2 n) O(n lg(m/n)) Thm 4.27

Coloring chordal graphs Polytime O(n) Open

MCS O(m)/Polytime O(n)/o(n) Open
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In the next chapter we shifted our focus to designing space efficient algorithms for

a special class of optimization problems on bounded treewidth graphs. Toward that

we use the result of Barba et al. [18] who introduced the compressed stack technique,

a procedure to transform algorithms whose main memory consumption takes the form

of a stack into memory-constrained algorithms, and showed various applications of this

method by designing space efficient algorithms for problems in computational geometry.

We extended the technique of Barba et al. slightly and showed an enhanced compression

technique which can be applied to a broader class of stack algorithms. Using this, we

proved the following meta theorem which roughly says, for bounded treewidth graphs,

if any graph problem can be described in monadic second order (MSO) logic, we can

obtain a smooth deterministic time-space trade-off from constant words to linear space.

Our result can be seen as a generalization of the results of Elberfeld et al. [64] and

Courcelle [53]. Our understanding of such general compression technique is limited only

to a few very basic data structures, thus it would be an interesting task to design such

general compression schemes for variety of other fundamental data structures as a possible

future work. Also our algorithm is optimal upto a log factor in the space bound and

particularly time efficient. It remains an open problem to make it optimal from space

point of view i.e., shave off the multiplicative log factor from the space bound with very

little or no compromise in the running time.

In contrast to sorting, various geometric and string problems (where plenty of algo-

rithms with sublinear space bounds are known), most of these aforementioned fundamen-

tal polynomial time graph algorithms on a graph with n vertices seem to need almost

Θ(n) bits of space in word RAM. Also under some reasonable complexity theoretic as-

sumption, this is the best we can hope for. Motivated by this barrier and inspired by the

classical in-place sorting algorithms, we introduced two frameworks for designing efficient
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in-place graph algorithms (i.e. with O(lg n) bits of extra space), and showed that we can

beat, by exponential margin, the ROM space bounds for several fundamental graph algo-

rithms like DFS, BFS, shortest path and many more in this new model. Our goal here is

to allow restricted modifications to the input but still keeping the graph adjacency struc-

ture intact throughout the execution of the algorithm. To achieve this, in one framework

(we refer to this as implicit model) we simply allow elements in the adjacency list of a

vertex to be permuted, and in the other framework (we refer to this as rotate model), we

assume that the adjacency lists of the vertices are circular lists and we can only modify

the heads of the lists. We summarize our main results in both of these models and list a

few open problems in the table below.

Model Problem Time Space (in bits) Status

Rotate DFS O(mn2) O(lg n) Thm 6.1

Rotate BFS O(n3) O(lg n) Thm 6.2

Rotate MST O(mn) O(lg n) Thm 6.5

Rotate BFS/DFS/MST O(m) or o(n3) O(lg n) Open

Implicit DFS O(m2/n) O(lg n) Thm 6.3

Implicit BFS O(n3) O(lg n) Thm 6.4

Implicit MST O(mn2) O(lg n) Thm 6.5

Implicit BFS/DFS/MST O(m) or o(n3) O(lg n) Open

Implicit/Rotate Other graph problems Low-degree polytime O(lg n) Open

One broad and general future research direction in this regard would be to design

efficient in-place algorithms for various other graph problems and extend them to work

even in recently introduced restore model by Chan et al. [46].
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