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NOTATIONS

Symbol Description

N The set of natural numbers

Z The ring of rational integers

Q The field of rational numbers

Q The field of algebraic numbers

C The field of complex numbers

OK The ring of integers of a number field K

K[X ] Polynomial ring in one indeterminate X over a field K

∆K Discriminant of a number field K

Ω A finite set of prime numbers

PΩ The product of all the primes in a finite set of primes Ω

(a,b) The greatest common divisor of two natural numbers a and b

a|b a divides b

ζn A primitive n-th root of unity

Φn(X ) The n-th cyclotomic polynomial

ϕ The Euler’s totient function

µ The Möbius function

Λ The von Mangoldt function

Γ The gamma function

Ψ The digamma function

ζ(s) The Riemann zeta function

ℜ(s) The real part of a complex number s

Ĝ The group of characters of a finite abelian group G
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SYNOPSIS

Introduction

The central object of study in this doctoral thesis is Euler’s constant γ and its various

generalisations. Our research is devoted to study their arithmetic properties such as their

transcendence, linear independence and algebraic independence.

In 1731, Euler introduced γ as the following limit

γ := lim
x→∞

( ∑
n≤x

1
n
− log x

)
.

Besides proving the existence of the limit, he also expressed this limit as a conditionally

convergent sum. More precisely, he showed that

γ= ∑
n≥2

(−1)n ζ(n)
n

.

Further, γ appears as the constant term in the Laurent series expansion of the Riemann

zeta function around s = 1.

The nature of γ continues to elude us though it is almost three centuries since its

inception. The central theme of our doctoral research is to study the arithmetic nature of

families of numbers of which γ is a member, rather than studying γ in isolation. These

families owe their origin to analytic as well as arithmetic contexts.

xix



SYNOPSIS

This approach is evident in the works of Murty-Saradha [26] and Rivoal [38]. While

Rivoal studied γ along with e and Euler-Gompertz constant δ := ∫ ∞
0

e−w

1+w dw, Murty-Saradha

studied it as a member of a family of constants which were introduced by Briggs [7] and

studied extensively by Lehmer [21].

Diamond and Ford [10], trying to relate eγ with the Riemann hypothesis, defined another

family of generalisations of γ, whose arithmetic properties were studied by R. Murty with

Zaytseva [27].

In our work, we study a family of numbers which unifies the two seemingly different

families of constants introduced by Briggs and Diamond-Ford respectively. We call these

unified constants as generalised Euler-Briggs constants. The first part of our thesis revolves

around the transcendence of these family of numbers.

Transcendental results

Definition 0.0.1 (Generalised Euler-Briggs constants). For a finite set of primes Ω and

natural numbers a, q with (q,PΩ)= 1, the constants

γ(Ω,a, q) := lim
x→∞

 ∑
n≤x

n≡a mod q
(n,PΩ)=1

1
n

− δΩ
log x

q


are called generalised Euler-Briggs constants. Here PΩ :=∏

p∈Ω p and δΩ :=∏
p∈Ω

(
1− 1

p

)
.

For these constants, we along with Gun and Sinha prove the following theorems in [16].

Theorem 0.0.2. Let a and q > 1 be natural numbers with (a, q)= 1. Also let

U := {
Ω |Ω is a finite set of primes, (q,PΩ)= 1

}
.

Then the set T := {
γ(Ω,a, q) |Ω ∈U

}
has at most one algebraic element.

xx



LINEAR INDEPENDENCE RESULTS

In our next theorem, we work with a fixed set of finitely many primes.

Theorem 0.0.3. Let Ω be a finite set of primes and S = {q1, q2, · · · } be an infinite set of

mutually co-prime natural numbers qi > 1 with (qi,PΩ) = 1 for all i ≥ 1. Then for any

a ∈N co-prime to qi for all i, the set T := { γ(Ω,a, qi) | qi ∈ S} has at most one algebraic

element.

The following general transcendental result plays a crucial role in some of our investi-

gations. This we obtain by using Baker’s theory of linear forms in logarithm and theory of

cyclotomic units, in particular, Ramachandra units.

Theorem 0.0.4. Let q1, q2 > 1 be natural numbers with (q1, q2)= 1 and Ω be a finite set of

primes co-prime to q1q2. Also let αp,µr,βχ,β′
χ,ηψ and η′ψ be algebraic numbers, where

p and r vary over the prime divisors of q1q2 and elements of Ω respectively and χ,ψ are

non-trivial characters modulo q1 and q2 respectively. Then the number

∑
p|q1q2

αp log p +∑
r∈Ω

µr log r + ∑
χ even
χ6=χ0

βχL(1,χ) + ∑
ψ even
ψ 6=ψ0

ηψL(1,ψ) + ∑
χ odd

β′
χL(1,χ) + ∑

ψ odd
η′ψL(1,ψ)

is transcendental provided not all αp,µr,βχ,ηψ’s are zero.

Linear independence results

In the second part of our work, we consider questions of linear independence of these

constants over number fields and Q. The following theorem proved jointly with Gun [15]

constitutes a main ingredient for the study of linear independence of these constants.
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Theorem 0.0.5. Let f be a periodic arithmetic function with period q ≥ 1 and M be a

natural number co-prime to q. Then the series

∑
n≥1

(n,M)=1

f (n)
n

converges if and only if
∑q

a=1 f (a)= 0 and in which case, it is equal to
∑q

a=1 f (a)γ(Ω,a, q).

Here Ω is the set of prime divisors of M.

Thus the question of linear independence of generalised Euler-Briggs constants is

now reduced to non-vanishing of certain periodic Dirichlet series at the point s = 1. The

following theorem of Baker, Birch and Wirsing [5], which answers a question of Chowla,

therefore enters naturally into our investigation.

Theorem 0.0.6 (Baker, Birch and Wirsing). Let f be a non-zero algebraic valued periodic

arithmetical function with period q ≥ 1. Also let f (n)= 0 whenever 1< (n, q)< q and the q-

th cyclotomic polynomial Φq(X ) be irreducible over Q( f (1), · · · , f (q)), then
∑∞

n=1
f (n)

n 6= 0.

Building upon these results, we prove the following theorem in [14], which gives a

lower bound on the dimension of the vector space generated by these numbers.

Theorem 0.0.7. Let Ω be a finite set of primes. Consider the Q-vector space

VQ,N :=Q〈γ(Ω,m,n) | 1≤ m ≤ n ≤ N, (m,n)= 1= (n,PΩ)〉 .

Then for N sufficiently large, we have N ¿Ω dimQVQ,N . In particular, the dimension of

the Q-vector space

VQ :=Q〈γ(Ω,m,n) | m,n ∈N, (m,n)= 1= (n,PΩ)〉

is infinite.

xxii



LINEAR INDEPENDENCE RESULTS

In fact, we have the following general theorem about linear independence of these

constants over any number field.

Theorem 0.0.8. Let K be a number field with discriminant d > 1,Ω be a finite set of primes

such that K ∩Q(ζPΩ)=Q, where ζPΩ := e
2πi
PΩ . Consider the K-vector space

VK ,N := K 〈γ(Ω,m,n) | 1≤ m ≤ n ≤ N, (m,n)= 1= (n,dPΩ)〉 .

Then for N sufficiently large, we have

N ¿K ,Ω dimK VK ,N .

In particular, the K-vector space

VK := K 〈γ(Ω,m,n) | m,n ∈N, (m,n)= 1= (n,dPΩ)〉

is infinite dimensional.

Note that the trivial upper bounds for dimQVQ,N in Theorem 0.0.7 and for dimK VK ,N

in Theorem 0.0.8 are N2.

We now study the analogous linear spaces over Q. For this, we shall need to introduce

some notions.

For a finite set of primes Ω and a ∈N, consider C(a,Ω) := {q ∈N | (a, q)= 1= (q,PΩ)}.

We define an equivalence relation on the set X := {γ(Ω,a, q) : q ∈ C(a,Ω)}, given by

γ(Ω,a, q1) ∼ γ(Ω,a, q2) if γ(Ω,a, q1) = λγ(Ω,a, q2) for some λ ∈ Q∗
. Then we have the

following theorem for subsets of X .

Theorem 0.0.9. LetΩ be a finite set of primes and a ∈N. Let Y be a subset of C(a,Ω), con-

sisting of co-prime integers. Then in {γ(Ω,a, q) : q ∈Y }, each equivalence class [γ(Ω,a, q)],

where the equivalence relation is restricted to Y , has at most two elements.

xxiii
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In particular, it follows that the following Q linear space

V
Q

:=Q〈γ(Ω,m,n) | m,n ∈N, (m,n)= 1= (n,PΩ)〉

has dimension at least two.

It is also possible to derive similar theorems for family of generalised Euler-Briggs

constants where we vary Ω’s with fixed q. For this, define

C(q) := {Ω | Ω is a finite set of primes and (q,PΩ)= 1}.

As before, for a fixed a with (a, q)= 1, one can define a similar equivalence relation on

the set Z := {γ(Ω,a, q) :Ω ∈ C(q)}. In this set-up, we have the following theorem.

Theorem 0.0.10. The orbit of any element γ(Ω,a, q) ∈ Z has at most two elements.

In particular, it follows from above that the following Q linear space

W
Q

:=Q〈γ(Ω,a, q) | Ω ∈ C(q)〉

has dimension at least two.

However, we prove the following much stronger result using different tools.

Theorem 0.0.11. The vector space W
Q

is infinite dimensional over Q.

This summarises our study of linear independence of generalised Euler-Briggs constants.

Algebraic independence results

In the penultimate part of our work, we study the question of algebraic independence of

these constants. Algebraic independence of numbers is rather delicate with very few known

results and we shall need to assume the weak Schanuel conjecture which we recall below.

xxiv



GENERALISED EULER-BRIGGS CONSTANTS AND CERTAIN INFINITE SERIES

Conjecture 0.0.12 (weak Schanuel). Let α1, · · · ,αn be non-zero algebraic numbers such

that the numbers logα1, · · · , logαn are Q-linearly independent. Then logα1, · · · , logαn are

algebraically independent.

We shall just illustrate one of our results in this direction. For this, let us introduce some

more notations. For a, q ∈N with 1≤ a ≤ q and (a, q)= 1, define

γ∗(Ω,a, q) := qγ(Ω,a, q)
δΩ

.

We call a finite set {Ω1, · · · ,Ωn} of sets to be irreducible if ∪n
i=1Ωi 6= ∪ j∈JΩ j for any

proper subset J ⊂ {1, · · · ,n}. We call an infinite set X of sets to be irreducible if every finite

subset of X is irreducible. In this context we prove the following theorem in [14].

Theorem 0.0.13. Suppose that the weak Schanuel conjecture is true. Let q ∈N and T be

an infinite set consisting of finite subsets Ω of primes with (PΩ, q)= 1. Consider the set

S1 := {γ∗(Ω,a, q)−γ− ∑
χ6=χ0

α∗
χ,Ω,qL(1,χ) | Ω ∈ T},

where χ runs over non-principal Dirichlet character modulo q and

α∗
χ,Ω,q := χ(a)

∏
p∈Ω

(
1− χ(p)

p

)(
1− 1

p

)−1 ∏
p|q

(
1− 1

p

)−1
.

Then the elements of S1 are algebraically independent if the infinite set T is irreducible.

Generalised Euler-Briggs constants and certain infinite

series

In the final part of our work, we study the non-vanishing of certain series which are variants

of the Hurwitz zeta function. In this context, we prove the following theorem.

xxv
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Theorem 0.0.14. Let M, q be co-prime natural numbers and f be a periodic arithmetic

function with period q. Also let a < b be co-prime natural numbers such that a ≡ 0 mod M.

Then the infinite series ∑
n≥0

(n,M)=1

f (n)
n+a/b

converges if and only if
∑q

t=1 f (t)= 0. In that case, the sum is equal to

b
q−1∑
t=0

f (t) γ(Ω, a+ tb, bq).

Here Ω is the set of prime divisors of M.

We also study sums of the type

∑
n≥0

(n,M)=1

A(n)
B(n)

,

where A(X ),B(X ) ∈Q[X ] are non-zero polynomials and link such sums to linear combina-

tions of generalised Euler-Briggs constants.

xxvi
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1
INTRODUCTION

1.1 Euler’s constant

Perhaps the most fundamental object of study in number theory is the Riemann zeta function

ζ(s). For a complex number s with ℜ(s)> 1, the Riemann zeta function ζ(s) is defined by

the absolutely convergent series

ζ(s) := ∑
n≥1

1
ns .

Sometimes it is also called the Euler-Riemann zeta function. Leonhard Euler was the first

person to introduce this function as a function of a real variable and studied the special

values of this function at positive integral points. More than a century later, in 1859,

Bernhard Riemann [37] extended Euler’s definition to complex numbers and studied its

analytic properties.

While studying the special values of the Riemann zeta function at positive integral

1



CHAPTER 1. INTRODUCTION

points, Euler derived that ζ(2) = π2/6. In fact he could prove a general result about the

Riemann zeta values at even arguments. He proved that for all n ≥ 1,

ζ(2n)= (−1)n−122n−1B2n

(2n)!
π2n.

Here Bn denotes the n-th Bernoulli number which is defined by the generating function

t
et −1

= ∑
n≥0

Bn
tn

n!
.

However Euler could not succeed in obtaining similar results for Riemann zeta values at

odd integers. In his quest to assign a value for ζ(1), he introduced the constant γ as the limit

γ := lim
x→∞

( ∑
1≤n≤x

1
n
− log x

)
.

The above constant is now known as Euler’s constant. The convergence of the above series

can be easily proved by using Abel’s partial summation formula which we recall below.

Theorem 1.1.1. Suppose {an}∞n=1 is a sequence of complex numbers and f is a continuously

differentiable function on [y, x] where 0< y< x. Let A(t) :=∑
n≤t an. Then

∑
y<n≤x

an f (n)= A(x) f (x)− A(y) f (y)−
∫ x

y
A(t) f ′(t) dt.

For a proof of Theorem 1.1.1, we refer the reader to [2], page 77. Now by Theorem 1.1.1,

we can write

∑
n≤x

1
n
= [x]

x
+

∫ x

1

[t]
t2 dt

= 1− {x}
x

+ log x−
∫ x

1

{t}
t2 dt.

Hence ∑
n≤x

1
n
− log x =

(
1−

∫ ∞

1

{t}
t2 dt

)
+

∫ ∞

x

{t}
t2 dt− {x}

x
.

2



1.1. EULER’S CONSTANT

Letting x →∞, we see that the limit

lim
x→∞

( ∑
n≤x

1
n
− log x

)

exists. Besides proving the existence of this limit, Euler also expressed this limit as the

conditionally convergent sum

γ= ∑
n≥2

(−1)n ζ(n)
n

.

Euler obtained this formula using the expansion

log(1+ x)= ∑
k≥1

(−1)k+1 xk

k
for |x| < 1.

Note that this formula is also valid for |x| = 1 except for x =−1.

While Euler was trying to find the explicit decimal expansion of γ, one of his key idea

was to express γ by means of infinite series involving other known constants. For example,

he observed that

γ= ∑
n≥1

n
n+1

(ζ(n+1)−1)

and

1−γ= ∑
n≥2

1
n

(ζ(n)−1).

These two absolutely convergent series expressions are of particular interest, for instance

they imply that 0< γ< 1. Euler could calculate γ up to 15 decimal places and in particular

he obtained

γ= 0.577215664901532 · · · .

As of 2013, γ has been calculated up to 119377958182 decimal digits by A. J. Yee (see

http://www.numberworld.org/digits/EulerGamma/ for more details).
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CHAPTER 1. INTRODUCTION

1.2 Significance of γ

Euler’s constant γ makes its appearance in several themes. To start with, it occurs in the

context of the ubiquitous gamma function

Γ(t) :=
∫ ∞

0
xt−1e−xdx

defined for t > 0. This is one of the main reasons to denote Euler’s constant by the Greek

lower case ‘γ’, though Euler used the notation ‘C’ to denote this constant.

Euler himself noticed that Γ′(1)=−γ. Thus γ features in the Taylor series expansion of

Γ(t) around t = 1. In addition to that, γ also appears in the Hadamard product expansion of

the entire function 1
Γ(z) which is

1
Γ(z)

:= zeγz ∏
n≥1

(
1+ z

n

)
e−

z
n .

Euler’s constant is also connected to the digamma function which is defined to be the loga-

rithmic derivative of gamma function. More precisely, for any real number x 6= 0,−1,−2, . . .

the digamma function Ψ(x) can be defined as

−Ψ(x) := γ+ 1
x
+ ∑

n≥1

(
1

n+ x
− 1

n

)
.

In particular, −Ψ(1) = γ, as noticed by Euler. Gauss gave an explicit formula for the

digamma function at rational numbers involving γ. For the digamma function Euler proved

the following theorem.

Theorem 1.2.1 (Euler, 1765). The digamma function has Taylor series expansion given by

Ψ(z+1)=−γ+ ∑
k≥1

(−1)k+1ζ(k+1)zk,

where the series on the right hand side converges absolutely for |z| < 1.
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The constant γ further appears in the Laurent series expansion of the Riemann zeta

function. This fact was first proved by Stieltjes.

Theorem 1.2.2 (Stieltjes, 1885). The Laurent series expansion of ζ(s) around s = 1 is given

by

ζ(s)= 1
s−1

+γ+ ∑
n≥1

(−1)n

n!
γn(s−1)n,

where for n ≥ 1, γn := limm→∞
(∑

1≤k≤m
(logk)n

k − (logm)n+1

n+1

)
.

Euler’s constant is also connected to several formulations of the Riemann hypothesis,

which states that all complex zeros of the Riemann zeta function off the real line have

real part equal to 1
2 . The first result in this direction seems to be the following one due to

Ramanujan, where he linked the Riemann hypothesis with the sum of divisor function

σ(n) := ∑
d|n

d.

Theorem 1.2.3 (Ramanujan [1, 31, 35, 36]). If Riemann hypothesis is true, then for n0

large enough
σ(n)

n loglogn
< eγ

for all n ≥ n0.

At this point we also mention the following theorem of Gronwall.

Theorem 1.2.4 (Gronwall [11]). One has

limsup
n→∞

σ(n)
n loglogn

= eγ.

In 1984, Robin improved Ramanujan’s theorem and proved:

Theorem 1.2.5 (Robin [39]). The Riemann hypothesis is equivalent to the inequality

σ(n)
n loglogn

< eγ,

5
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for all n ≥ 5041.

In [9], authors showed that the above inequality holds for squarefree integers greater

than 30 and odd integers greater than 9 and thereby reformulated the above equivalent

condition of the Riemann hypothesis.

The following equivalent formulations of the Riemann hypothesis are due to Nicolas.

Theorem 1.2.6 (Nicolas [29]). The Riemann hypothesis is equivalent to the inequality

Pk

ϕ(Pk) loglogPk
> eγ,

for all k ≥ 2. Here Pk denotes the product of first k primes and ϕ denotes the Euler’s totient

function.

Theorem 1.2.7 (Nicolas [30]). For all n ≥ 2, define

cn :=
(

n
ϕ(n)

− eγ loglogn
)√

logn .

Then the Riemann hypothesis is equivalent to the statement that

limsup
n→∞

cn = eγ(4+γ− log(4π)).

In fact Euler’s constant also appears in the estimation of the divisor function d(n) :=∑
d|n 1. The following theorem is due to Dirichlet.

Theorem 1.2.8 (Dirichlet, 1849). For all x ≥ 1, we have

∑
n≤x

d(n)= x log x+ (2γ−1)x+O(
p

x ).

These are some of the instances of the central roles played by this constant. For

an encyclopedic account on Euler’s constant, we refer to the beautiful article of J. C.

Lagarias [20].
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1.3 Arithmetic nature of γ

As far as the arithmetic nature of γ is concerned, we can only say that γ ∉Z. Though the

arithmetic nature of γ has been in the focus of research since the time of Euler, it has been

very difficult to establish any result in that direction, for instance, to answer the question of

irrationality of γ.

Continued fraction of a number is directly linked to its irrationality and its algebraicity.

We know that a real number has a finite continued fraction if and only if it is rational.

Also the continued fraction of a quadratic irrational is eventually periodic. Papaniko-

laou computed the first few terms of the continued fraction expansion of γ which are

[0;1,1,2,1,2,1,4,3,13, . . .] and he showed that it has at least 470,000 terms without any

evident pattern. From this he derived that if γ is rational, then its denominator has to be

greater than 10242080.

Without further ado, let us state the following folklore conjecture:

Conjecture 1.3.1. Euler’s constant is irrational.

This long-standing open problem even has a stronger version due to Kontsevich and

Zagier.

Conjecture 1.3.2 (Kontsevich-Zagier [19]). Euler’s constant is not a Kontsevich-Zagier

period. In particular, it is transcendental.

A period, as defined by Kontsevich and Zagier [19], is a complex number whose real

and imaginary parts are values of absolutely convergent integrals of algebraic functions with

algebraic coefficients over domains in Rn given by polynomial inequalities with algebraic

coefficients. Clearly, an algebraic number is a period. The simplest example of a period

7
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which is not algebraic is

π=
∫ ∫

x2+y2≤1
dx dy.

In fact all the Riemann zeta values are examples of periods. Besides these, logarithms of

algebraic numbers are also periods. Though the set of periods is countable, till date we

do not have an explicit natural example of a non-period. Kontsevich and Zagier have also

conjectured e to be a non-period. A special subset of the set of periods is the set of Baker

periods.

Definition 1.3.3. A Baker period is a complex number which is a Q-linear combination of

logarithms of non-zero algebraic numbers.

For more details on Baker periods we refer to [24], page 113. As a consequence of the

celebrated theorem of Baker, it follows that every non-zero Baker period is transcendental.

So one can ask whether γ is a Baker period. A partial answer to this question is given by M.

R. Murty and N. Saradha.

Theorem 1.3.4 (Murty-Saradha [25]). Let q > 1 be a natural number and K be a number

field over which the q-th cyclotomic polynomial Φq(X ) is irreducible. Then the K-vector

space generated by the numbers

{γ,Ψ(a/q) : 1≤ a ≤ q and (a, q)= 1}

has dimension at least ϕ(q).

Inspired by the above theorem, they formulated the following conjecture.

Conjecture 1.3.5 (Murty-Saradha [25]). Let q > 1 be a natural number and K be a number

field over which the q-th cyclotomic polynomial Φq(X ) is irreducible. Then the numbers

{Ψ(a/q) : 1≤ a ≤ q and (a, q)= 1}

8
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are linearly independent over K .

In connection to the question of γ being a Baker period, they have the following theorem.

Theorem 1.3.6 (Murty-Saradha [25]). At least one of the following statements is true.

1. γ is a Baker period.

2. The above conjecture is true.

In [12], the authors showed that the above conjecture is true most of the times. More

precisely, they proved the following theorem.

Theorem 1.3.7 (Gun-Murty-Rath [12]). Let q, r > 1 be two co-prime integers. Let K be

a number field over which both the q-th and r-th cyclotomic polynomials are irreducible.

Then at least one of the following sets of real numbers

{Ψ(a/q) : 1≤ a ≤ q and (a, q)= 1},

{Ψ(b/r) : 1≤ b ≤ r and (b, r)= 1}

is linearly independent over K . Thus in particular, there exists an integer q0 > 1 such that

for any integer q co-prime to q0, the set of real numbers

{Ψ(a/q) : 1≤ a ≤ q and (a, q)= 1}

is linearly independent over Q.

Now from Theorem 1.3.4, one can conclude that the set

{γ,Ψ(a/q) : 1≤ a ≤ q and (a, q)= 1}∩Q

has cardinality at most one. But they also proved a stronger result about the arithmetic

nature of the numbers in that set.

9
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Theorem 1.3.8 (Murty-Saradha [25]). Let q > 1 be a natural number. At most one of the

ϕ(q)+1 numbers in the set

{γ,Ψ(a/q) : 1≤ a ≤ q and (a, q)= 1}

is algebraic.

In the above theorem γ is viewed as a special value of the digamma function. This result

suggests an alternate approach for the study of the arithmetic nature of γ. It indicates that it

might be judicious to study γ as a member of a family of constants rather than studying it

in isolation. This idea is further supported by the following result of Rivoal.

Theorem 1.3.9 (Rivoal [38]). At least one of the numbers γ and δ := ∫ ∞
0

e−w

1+w dw is tran-

scendental.

This result was also proved independently by Kh. Hessami Pilehrood and T. Hessami

Pilehrood [33] using a different method. In fact the above statement follows immediately

from the following stronger theorem of Rivoal.

Theorem 1.3.10 (Rivoal [38]). At least two of the numbers e,γ and δ are algebraically

independent.

Note that the constants e,γ and δ are part of a family of numbers called exponential

periods, introduced in [18, 19]. Exponential periods are natural extensions of the set of

periods. Here the integrand is the product of an algebraic function and the exponential of

an algebraic function. It is known that

γ=
∫ 1

0

∫ 1

x

e−x

y
d ydx−

∫ ∞

1

∫ x

1

e−x

y
d ydx,

and hence an exponential period (for more details see [18] and [20], page 595).

10
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1.4 Generalisations of Euler’s constant

Over the past fifty years, Euler’s constant has been generalised and studied by many

mathematicians. Perhaps the first such instance is in a work by W. E. Briggs [7], where

he considered Euler’s constant for arithmetic progression. For a natural number q > 1, he

considered the constants

γ(a, q) := lim
x→∞

 ∑
n≤x

n≡a mod q

1
n
− 1

q
log x

 .

Convergence of these sums can again be established using Abel’s partial summation formula.

From now on we refer to these constants as Euler-Briggs constants. These constants were

studied extensively by D. H. Lehmer [21]. We mention one of his result below. The

following result allows one to study the arithmetic nature of the family of Euler-Briggs

constants.

Theorem 1.4.1 (Lehmer [21]). For a natural number q > 1, one has

qγ(a, q)= γ+ ∑
ζq∈µq
ζq 6=1

ζ−a
q log(1−ζq).

Here µq denotes the set of q-th roots of unity and ζq denotes a q-th root of unity.

Murty and Saradha derived the following theorem concerning the arithmetic nature of

the Euler-Briggs constants.

Theorem 1.4.2 (Murty-Saradha [25]). Let q > 1 be a natural number. At most one of the

ϕ(q)+1 numbers in the set

{γ,γ(a, q) : 1≤ a ≤ q and (a, q)= 1}

is algebraic.

11
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In a follow-up article [26], they strengthened this result and proved the following

theorem.

Theorem 1.4.3 (Murty-Saradha [26]). At most one number in the infinite list of numbers

{γ(a, q) : 1≤ a < q and q ≥ 2}

is an algebraic number.

It can be verified that γ(2,4)= γ

4 . In 2008, a further generalisation of γ was introduced

by H. Diamond and K. Ford [10]. They named those numbers as generalised Euler constants.

In their work, they connected these numbers to the Riemann hypothesis.

We need to set up some notations to define these constants. Let Ω be a finite set primes.

Let

PΩ :=


∏

p∈Ω p if Ω 6=φ,

1 otherwise,

and

δΩ :=


∏

p∈Ω(1− 1
p ) if Ω 6=φ,

1 otherwise.

For a finite set of primesΩ, Diamond and Ford [10] denoted the generalised Euler constants

by γ(Ω) and defined as the following limit:

γ(Ω) := lim
x→∞

 ∑
n≤x

(n,PΩ)=1

1
n

− δΩ log x

 .

Again, the existence of these constants can be showed using Abel’s partial summation

formula. Note that, when Ω=φ, then γ(Ω)= γ.

Besides defining these generalisations of γ, they derive an expression linking γ with

γ(Ω)’s. In their article they mainly considered the subfamily consisting of the constants

12
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γ(Ωr), where Ωr denotes the set of first r primes. One of their main result is the following

theorem.

Theorem 1.4.4 (Diamond-Ford [10]). The Riemann hypothesis is equivalent to the state-

ment

γ(Ωr)> e−γ for all r ≥ 0.

More recently, the arithmetic nature of these constants was discussed by M. R. Murty

and A. Zaytseva.

Theorem 1.4.5 (Murty-Zaytseva [27]). Let S be the set of numbers {γ(Ω)}, as Ω ranges

over all finite sets of distinct primes. Then all numbers of S are transcendental with at most

one exception.

In our work [16], we introduce the following generalisation of γ, which unifies the

families introduced by Briggs and Diamond-Ford. We refer to them as generalised Euler-

Briggs constants. Let Ω be a finite subset of primes and a, q be natural numbers such that

(q,PΩ) = 1, where PΩ is as defined earlier. Then the generalised Euler-Briggs constant

γ(Ω,a, q) is defined by the following limit:

γ(Ω,a, q) := lim
x→∞

 ∑
n≤x

n≡a mod q
(n,PΩ)=1

1
n

− δΩ
log x

q

 .

Note that for any finite subset of primes Ω and a natural number q such that (PΩ, q) = 1,

one has

γ(Ω, q, q)= 1
q

(γ(Ω)−δΩ log q).

This thesis is devoted to study various facets of these constants. In the following section we

briefly discuss the main contents of the chapters in this thesis.

13
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1.5 Arrangement of the thesis

In the second chapter, we recall various basic definitions and some of the known results

from algebraic, analytic and transcendental number theory which are required for our

theorems in the upcoming chapters. At times we indicate briefly the proofs of some of these

theorems to keep the exposition self-contained to the extent possible.

In the third chapter, we discuss the possible transcendental nature of the generalised

Euler-Briggs constants. Some of the main ingredients for the theorems in this chapter are

coming from the theory of linear forms in logarithm as developed by A. Baker [3] and the

theory of multiplicatively independent cyclotomic units due to K. Ramachandra [34].

In the fourth chapter, we study the linear independence of the generalised Euler-Briggs

constants over Q as well as over other number fields and Q. We also derive a non-trivial

lower bound of certain vector spaces generated by these constants. In addition to the

ingredients alluded to above, we shall need a theorem of A. Baker, B. J. Birch and E. A.

Wirsing.

The penultimate chapter deals with the algebraic independence of these generalised

Euler-Briggs constants. The results in this sections are conditional, subject to the weak

Schanuel conjecture. Several consequences of Schanuel’s conjecture and the weak Schanuel

conjecture can be found in [13].

In the last chapter, we explore the connection between the generalised Euler-Briggs

constants and certain infinite series. Inspired by a result of Lehmer [21], we derive a

necessary and sufficient condition for the existence of periodic Dirichlet series at s = 1

twisted by certain principal Dirichlet character. We express this sum as a linear combination

of generalised Euler-Briggs constants. We also prove a result about the special values of a

shifted periodic Dirichlet series which can be seen as a variant of the Hurwitz zeta function.

14
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2
PRELIMINARIES

In this chapter we list the basic results from all the branches of number theory required

to prove the theorems in the thesis. We include some of the proofs which follow from

elementary observations. In the first section we recall basic definitions from algebraic

number theory. For the first section we follow [28] and [40]. In the second section we recall

the basics from analytic number theory. Here we follow [2, 22]. In the third section we

have given the prerequisites from transcendental number theory following [4, 24]. In the

last but one we give an exposition on characters of finite abelian group. We end the chapter

by discussing the arithmetic properties of Dirichlet L-functions.

2.1 Some requisites from algebraic number theory

We start with the definition of a number field.

Definition 2.1.1. Any finite field extension K ⊂C of Q is called a number field.

15
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By degree of K , we mean the dimension of the vector space K over Q.

Definition 2.1.2. A complex number α is said to be an algebraic number if there exists a

non-zero polynomial P(X ) ∈Q[X ] such that P(α)= 0.

The least degree monic polynomial satisfied by α is unique and called the minimal

polynomial of α. One can easily verify that all the elements of a number field K are

algebraic numbers.

Definition 2.1.3. A complex number α which satisfies a monic polynomial over Z is called

an algebraic integer. Set of all the elements of a number field K which are algebraic integers

is a ring. This ring is called the ring of integers of K and denoted by OK .

Definition 2.1.4. Let K be a number field of degree n. A set of elements α1, . . . ,αn ∈OK

is called an integral basis of K over Q or a basis of OK over Z if

OK =Zα1 +·· ·+Zαn.

Note that any integral basis is always a basis of K over Q. Next we define the trace of

an algebraic number in K .

Definition 2.1.5. Let K be a number field and α ∈ K . Consider the linear map

Tα : K → K

defined by

Tα(x)=αx

for all x ∈ K . Then the trace of α ∈ K , denoted by TrK /Q(α), is the trace of the linear

operator Tα.
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It can be deduced that TrK /Q(α) = ∑
σ
σ(x), where σ varies over all embeddings of K

into Q.

Definition 2.1.6. Let K be a number field of degree n. Then the discriminant of the number

field K is defined by

∆K := det [TrK /Q(αiα j)],

where α1, . . . ,αn is an integral basis of K over Q.

One can also show that ∆K = det(σiα j)2, where σi’s vary over all the distinct embed-

dings of K into Q. Note that the definition of the discriminant is independent of the integral

basis as the determinant of the base change matrix is a unit in Z.

Definition 2.1.7. A noetherian, integrally closed integral domain where every non-zero

prime ideal is maximal is called a Dedekind domain.

Theorem 2.1.8. In a Dedekind domain every non-zero proper ideal factorizes uniquely

into product of prime ideals.

The following theorem gives us important examples of Dedekind domains.

Theorem 2.1.9. For any number field K , OK is a Dedekind domain.

Let p be a prime in Z and K be a number field. Consider the ideal pOK in OK . Since

OK is a Dedekind domain, we can write

pOK = pe1
1 · · ·per

r ,

where p1, . . . ,pr are distinct prime ideals of OK . The prime p is said to be ramified in K if

at least one of the e i’s is greater than 1.

Now we mention the following theorem which tells us that there are only finitely many

primes which ramify in a number field.
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Theorem 2.1.10. Let K be a number field and ∆K be the discriminant of K . Then a prime

p in Z ramifies in K if and only if p|∆K .

The n-th cyclotomic field is the number field obtained by adjoining a primitive n-th

root of unity to Q. We know that the absolute value of the discriminant of the cyclotomic

field Q(ζpn) is equal to

ppn−1(pn−n−1).

Thus by Theorem 2.1.10, the only prime that ramifies in Q(ζpn) is p. The following theorem

about the cyclotomic fields has been used in the subsequent chapters.

Theorem 2.1.11. Let m,n be two positive integers. Then Q(ζm)∩Q(ζn)=Q if and only if

(m,n)= 1.

To prove the above theorem, we shall need the following result.

Theorem 2.1.12. Let n be a positive integer. Then a prime p ∈Z ramifies in Q(ζn) if and

only if p|n.

Proof. Let p|n. So Q(ζp)⊆Q(ζn). Now by Theorem 2.1.10, p ramifies in Q(ζp) and hence

in Q(ζn). Next let p ramifies in Q(ζn) but p does not divide n =∏k
i=1 pni

i . Now p does not

ramify in the field Q(ζp
ni
i

) for all 1 ≤ i ≤ k. Hence p does not ramify in the compositum,

which is Q(ζn). This fact follows from Theorem 2.1.10 and the following proposition. �

Proposition 2.1.13. Let K ,L be two number fields of degree m,n and with discriminant

c,d respectively. Further suppose such that both the extensions L/Q and K /Q are Galois

and K ∩L =Q. Then the compositum KL has discriminant cndm.

For a proof of a more general version of the above proposition see page 13 of [28]. We

also need the following theorem of Minkowski.
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Theorem 2.1.14 (Minkowski). The discriminant of a number field K of degree n satisfies

|∆K | ≥ n2n

(n!)2

(π
4

)n
.

For a proof of the above theorem we refer to [28], page 204. As a consequence we get

that the discriminant of a number field K of degree n > 1 is not equal to ±1. Now we give

the proof of Theorem 2.1.11.

Proof of Theorem 2.1.11 Clearly Q(ζm)∩Q(ζn) = Q implies (m,n) = 1 as otherwise if

(m,n) = d > 1, then Q( Q(ζd) ⊆ Q(ζm)∩Q(ζn). Now suppose that (m,n) = 1. Let K =
Q(ζm)∩Q(ζn). If K 6=Q, then by Theorem 2.1.14 and Theorem 2.1.10, there exists a prime

p ∈ Z such that p divides the discriminant of K , hence p ramifies in K . So we have p

ramifies in both the fields Q(ζm) and Q(ζn). By Theorem 2.1.12, p|(m,n), which is a

contradiction. �

2.2 Some definitions and tools from analytic number

theory

By an arithmetical function we mean a function f : N→ C. An arithmetical function f

is said to be multiplicative if f (mn) = f (m) f (n) for all (m,n) = 1. To give an example,

consider the Möbius function

µ(n) :=



1 if n = 1,

(−1)k if n = p1 · · · pk where pi’s are distinct primes,

0 otherwise.
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Another important example is the Euler’s totient function

ϕ(n) := ∑
1≤m≤n
(m,n)=1

1.

With the two functions in place we mention the following propositions.

Proposition 2.2.1. For n ≥ 1 we have

∑
d|n

µ(d)=
[

1
n

]
=


1 if n = 1,

0 otherwise.

The above result is known as the fundamental property of Möbius function and can

easily be derived from the definition using the fact that µ is multiplicative.

Proposition 2.2.2. For n ≥ 1, we have

ϕ(n)
n

= ∑
d|n

µ(d)
d

.

Proof. We have

ϕ(n)= ∑
1≤m≤n

[
1

(n,m)

]
.

By Proposition 2.2.1 we can write

ϕ(n)= ∑
1≤m≤n

∑
d|(m,n)

µ(d).

So,

ϕ(n) = ∑
d|n

∑
1≤m≤n

d|m

µ(d)

= ∑
d|n

µ(d)
∑

1≤k≤n/d
1

= n
∑
d|n

µ(d)
d

.

�
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Next proposition gives us an expression of ϕ(n) in terms of the prime divisors of n.

Proposition 2.2.3. For n ≥ 1, one has

ϕ(n)= n
∏
p|n

(
1− 1

p

)
.

Proof. Since ϕ is multiplicative, it is enough to prove the formula for prime powers. Let

n = pk for some prime p and k ∈N. The numbers that are smaller than or equal to n and

share a common factor greater than 1 with n, are the multiples of p up to pk. Now there

are pk−1 many multiples of p which are smaller than or equal to n. Hence,

ϕ(n)= pk − pk−1 = n
(
1− 1

p

)
.

�

Before we prove the next identity we recall the definition of the von Mangoldt function

and the Möbius inversion formula.

Definition 2.2.4. The von Mangoldt function Λ is defined by

Λ(n)=



1 if n = 1,

log p if n = pk,k ≥ 1,

0 otherwise .

Theorem 2.2.5 (Möbius inversion formula). Let f , g be two arithmetical functions. Then

f (n)= ∑
d|n

g(d),

if and only if

g(n)= ∑
d|n

µ(d) f (
n
d

)

for all n.
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From the definition of Λ, one can deduce that

logn = ∑
d|n
Λ(d).

Hence by the Möbius inversion formula, we have

Λ(n)=− ∑
d|n

µ(d) logd.

Now we give a proof of the following identity which we shall need later.

Proposition 2.2.6. Let n be a natural number. Then

−∑
d|n

µ(d) logd
d

= ∏
p|n

(
1− 1

p

)∑
p|n

log p
p−1

Proof. First we prove that for a square-free number n, one has

−∑
d|n

µ(d) logd
d

= ∏
p|n

(
1− 1

p

)∑
p|n

log p
p−1

.

Since

Λ(d)=− ∑
t|d
µ(t) log t,

by Möbius inversion formula, one can write

− µ(d) logd =∑
t|d
µ(t)Λ(

d
t

).
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So

−∑
d|n

µ(d) logd
d

= ∑
d|n

∑
t|d

µ(t)Λ( d
t )

d

= ∑
ts|n

µ(t)Λ(s)
ts

= ∑
p|n

log p
p

∑
t| n

p

µ(t)
t

= ∑
p|n

log p
p

ϕ(n/p)
n/p

= ∑
p|n

log p
p

∏
p′| n

p

(
1− 1

p′

)

= ∏
p|n

(
1− 1

p

)∑
p|n

log p
p−1

.

Note that for any n = pa1
1 · · · par

r , ai ≥ 0 for 1≤ i ≤ r, one has

−∑
d|n

µ(d) logd
d

=− ∑
d|p1···pr

µ(d) logd
d

.

�

2.3 Inputs from transcendental number theory

A complex number α is transcendental if it is not algebraic. We begin this section with

the famous theorem of Baker concerning linear forms in logarithms of non-zero algebraic

numbers.

Theorem 2.3.1 (Baker [3]). If α1, . . . ,αn are non-zero algebraic numbers such that the

numbers logα1, . . . , logαn are linearly independent over Q, then 1, logα1, . . . , logαn are

linearly independent over Q.

Another equivalent formulation of the Baker’s theorem is the following theorem, which

we use frequently in the subsequent chapters .
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Theorem 2.3.2 (Baker [4]). Let α1, · · · ,αn ∈Q\{0} and β1, · · · ,βn ∈Q, then

β1 logα1 +·· ·+βn logαn

is either zero or transcendental. The latter case arises if logα1, · · · , logαn are linearly

independent over Q and not all β1, · · · ,βn are zero.

For more details on Baker’s theorem, we refer to Chapter 19-20 of [24]. The following

theorem of Baker, Birch and Wirsing, which displays a very important application of

Baker’s theorem, plays a central role in our investigations in Chapter 4.

Theorem 2.3.3 (Baker, Birch and Wirsing [5]). Let f be a non-zero algebraic valued

periodic arithmetical function with period q ≥ 1. Also let f (n)= 0 whenever 1< (n, q)< q

and the q-th cyclotomic polynomial Φq(X ) be irreducible over Q( f (1), · · · , f (q)), then

∞∑
n=1

f (n)
n

6= 0.

The following theorem from the theory linear forms in logarithms of algebraic numbers

is also used multiple times in this thesis.

Theorem 2.3.4 (Murty-Murty, Murty-Saradha [23, 26]). Let α1, · · · ,αn be positive alge-

braic numbers. If β0, · · · ,βn are algebraic numbers with β0 6= 0, then

β0π +
n∑

j=1
β j logα j

is a transcendental number and hence non-zero.

Proof. Denote

α :=β0π +
n∑

j=1
β j logα j.
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We choose a maximal Q-linearly independent subset J of the set {logα1, . . . , logαn}. With-

out loss of generality, let J = {logα1, . . . , logαs}. We then rewrite

iα= c0 log(−1) +
s∑

j=1
c j logα j,

where we have used the fact that iπ = log(−1). Note that β0 6= 0 implies c0 6= 0. Now by

Theorem 2.3.2, iα is either zero or transcendental. If iα is transcendental, then we get α is

transcendental. So we assume iα= 0. Hence {log(−1), logα j : 1 ≤ j ≤ s} is not Q-linearly

independent. Using Theorem 2.3.1 we get that there exists integers a0, . . . ,as, not all zero

such that

(2.3.1) a0 log(−1)=
s∑

j=1
a j logα j.

This gives us

1=
s∏

j=1
α

2a j
j .

Now {α j : 1 ≤ j ≤ s} is multiplicatively independent. So we get a j = 0 for all 1 ≤ j ≤ s.

Putting the values of a j for all 1≤ j ≤ s in (2.3.1) we get a0 = 0. Hence a contradiction to

the fact that not all a j for 0≤ j ≤ s are zero. �

2.4 Dirichlet characters

In this section, we recall the definition and certain properties of Dirichlet characters. For the

sake of completeness, we begin with the basic theory of characters defined on an arbitrary

abelian group G of finite order.

Definition 2.4.1. Let G be a finite abelian group. By a character on G, we mean a group

homomorphism f : G →C∗.
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The set of all such characters on G is denoted by Ĝ. It is easy to see that Ĝ has an

abelian group structure with the identity element 1G : G →C∗ for which g 7→ 1 for all g ∈G.

For the group Ĝ, we have the following propositions.

Proposition 2.4.2. Let G be a finite abelian group of order n. Then |Ĝ| = n.

Proof. We prove this by induction on the order of the group. Clearly, this is true if G is

singleton. Now we assume the induction hypothesis. Let H be a maximal subgroup of G

with |H| = m < n and a ∈ G \ H. Then the group generated by H and a is the full group

G. Further let k be the least positive integer such that ak ∈ H. Then every element of G is

uniquely written as aix for some x ∈ H and 1≤ i ≤ k i.e.

G = {aix : x ∈ H,1≤ i ≤ k}.

Hence, n = |G| = k|H| = km. Note that a character on G restricts to a character on H.

By induction hypothesis we know |Ĥ| = m. Now we prove that a character on H can be

extended to a character on G only in k distinct ways.

Let f : H →C∗ be a character. Since, ak ∈ H, f (ak) is defined. Let f (ak)= c ∈C∗. Now

we can extend f to G by setting f (a) to be a k-root of c. Thus f can be extended to a

character on G at least in k ways. Now suppose that f̃ : G → C∗ is an extension of the

character f : H → C∗. Then, f̃ (ak) = f (ak) and thus f̃ (a)k = f (ak) = c. Hence f̃ (a) is a

k-root of c. This proves that |Ĝ| = km = n. �

Proposition 2.4.3. Let G be a finite abelian group. Then G ' Ĝ.

Proof. We first prove this for cyclic groups. Let G be a cyclic group of order n and a ∈G

be a generator of G. Let f : G → C∗ be a character. Then f (an) = 1 and hence f (a)n = 1.

This implies that f (a) is a n-th root of unity. If f (a) is a primitive n-th root of unity, then f

generates the character group Ĝ. This proves G ' Ĝ for any cyclic group G.
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Now for a finite abelian group G we appeal to the fundamental theorem of finite abelian

groups and write it as product of cyclic groups. By virtue of this we are now reduced to

prove that if G1, . . . ,Gr are finite cyclic groups then

Ĥ ' Ĝ1 ×·· ·× Ĝr,

where H := G1 ×·· ·×Gr. Clearly both these groups are of same order. Now we provide

an injective homomorphism from Ĝ1 × ·· · × Ĝr to Ĥ. Define f : Ĝ1 × ·· · × Ĝr → Ĥ by

( f1, . . . , fr) 7→ f1 · · · fr, where f1 · · · fr : H → C∗ denotes the map for which (g1, . . . , gr) 7→
f1(g1) · · · fr(gr) for all (g1, . . . , gr) ∈G1×·· ·×Gr. It is easy to see that f defines an injective

homomorphism from Ĝ1 ×·· ·× Ĝr to Ĥ. This completes the proof. �

We now prove the orthogonality relations satisfied by the characters.

Proposition 2.4.4. Let G be a finite abelian group of order n. Then

∑
g∈G

f (g)=


n if f = 1G ,

0 otherwise

and

∑
f ∈Ĝ

f (g)=


n if g = eG ,

0 otherwise.

Here 1G : G →C∗ denotes the trivial homomorphism and eG denotes the identity element of

the group G.

Proof. Since 1G(g)= 1 for all g ∈G we obtain
∑

g∈G 1G(g)= n. Now if f 6= 1G , then there

exists h ∈G such that f (h) 6= 1. Hence,

f (h)
∑
g∈G

f (g)= ∑
g∈G

f (gh)= ∑
g∈G

f (g).
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Since f (h) 6= 1, we get the desired result.

For the second identity, note that f (eG)= 1 for all f ∈ Ĝ. Hence
∑

f ∈Ĝ f (eG)= n. Now

if g 6= eG , then there exists φ ∈ Ĝ such that φ(g) 6= 1. To see this we start with a non-trivial

character on the cyclic group H generated by g. This character on H then can be extended

to G following the method described in the proof of Proposition 2.4.2. Now for such an φ

on G,

φ(g)
∑
f ∈Ĝ

f (g)= ∑
f ∈Ĝ

φ f (g)= ∑
f ∈Ĝ

f (g).

Since φ(g) 6= 1, we get the desired result. �

In fact the second identity can also be derived from the first one using the canonical

isomorphism G ' ̂̂G. A further extension of the orthogonality relations is given by the

following proposition, which is in fact an easy consequence of Proposition 2.4.4.

Proposition 2.4.5. Let G be a finite abelian group of order n. Then

∑
g∈G

f1(g) f −1
2 (g)=


n if f1 = f2,

0 otherwise

and

∑
f ∈Ĝ

f (gh−1)=


n if g = h,

0 otherwise.

Now we define Dirichlet characters.

Definition 2.4.6. Let q ≥ 1 be an integer and f : (Z/qZ)∗ →C∗ be a character. This f can

be extended to an arithmetical function χ by defining

χ(n) :=


f (n̄) if (n, q)= 1,

0 otherwise,
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where n̄ denotes the residue class n mod q. Such a χ is called a Dirichlet character modulo

q. If f is the trivial homomorphism then the corresponding Dirichlet character is called the

principal Dirichlet character modulo q and denoted by χ0.

There are ϕ(q) Dirichlet characters modulo q. Since −1 is of order 2 in (Z/qZ)∗,

q > 2, the possible values of χ(−1) are ±1. We say that a Dirichlet character χ is even

if χ(−1) = 1 and odd if χ(−1) = −1. Let χ be a Dirichlet character corresponding to a

character f : (Z/qZ)∗ → C∗. Then the Dirichlet character corresponding to the character

f −1 : (Z/qZ)∗ → C∗ is denoted by χ and called the conjugate of χ. The orthogonality

relations satisfied by the Dirichlet characters are given in the following proposition.

Proposition 2.4.7. Let a,b, q be positive integers and χ1,χ2 be two Dirichlet characters

modulo q. Then

∑
1≤a≤q

χ1(a)χ2(a)=


ϕ(q) if χ1 = χ2,

0 otherwise

and

∑
χ mod q

χ(a)χ(b)=


ϕ(q) if a ≡ b mod q,

0 otherwise.

2.5 Dirichlet L-functions

Let q ≥ 1 be an integer and χ be a Dirichlet character modulo q. By the Dirichlet L-function

associated to the character χ, we mean the Dirichlet series

∑
n≥0

χ(n)
ns ,

defined initially for ℜ(s)> 1. This function is denoted by L(s,χ). The above series converges

absolutely and uniformly on compact subsets of ℜ(s)> 1, hence defines an analytic function
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there. The meromorphic continuation of the Dirichlet L-function L(s,χ) is given by the

following general theorem which is valid for any periodic Dirichlet series.

Theorem 2.5.1. Let f be a periodic arithmetical function with period q and let

D(s, f ) := ∑
n≥1

f (n)
ns

be the associated Dirichlet series. If
∑q

a=1 f (a) = 0, then D(s, f ) can be extended to an

entire function. Otherwise it can be continued analytically except at s = 1 where it has a

simple pole with residue 1
q
∑q

a=1 f (a).

For a periodic arithmetical function f of period q, we define

D(1, f ) := lim
s→1+

D(s, f ), when it exists.

So, from the above theorem we get that D(1, f ) exists if and only if
∑q

a=1 f (a)= 0. On the

other hand if we assume
∑q

a=1 f (a)= 0, using Abel’s partial summation formula it can also

be shown that
∑

n≥1
f (n)

n exists. Therefore, a natural question arises whether

D(1, f )= ∑
n≥1

f (n)
n

.

This question is answered in the following proposition which is valid for more general

Dirichlet series.

Proposition 2.5.2. Let f be an arithmetical function such that the associated Dirichlet

series

D(s, f ) := ∑
n≥1

f (n)
ns

converges absolutely for ℜ(s) > 1. Also suppose that
∑

n≥1
f (n)

n exists. Then for a real

parameter σ we have,

lim
σ→1+

D(σ, f )= ∑
n≥1

f (n)
n

.
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Proof. For a positive integer N, let

F(N) := ∑
1≤n≤N

f (n)
n

and lim
N→∞

F(N)=α.

We write F(t)= E(t)+α. Using Abel’s partial summation formula, for ℜ(s)> 1, we get

∑
1≤n≤N

f (n)
ns = F(N)

Ns−1 + (s−1)
∫ N

1

F(t)
ts dt

= F(N)
Ns−1 + (s−1)α

∫ N

1

dt
ts + (s−1)

∫ N

1

E(t)
ts dt

= F(N)−α
Ns−1 +α+ (s−1)

∫ N

1

E(t)
ts dt.

Letting N →∞, for ℜ(s)> 1, we get

D(s, f )=α+ (s−1)
∫ ∞

1

E(t)
ts dt.

Hence for a real parameter σ> 1 we have,

D(σ, f )=α+ (σ−1)
∫ x

1

E(t)
tσ

dt+ (σ−1)
∫ ∞

x

E(t)
tσ

dt,

which holds for all x ≥ 1. Let ε> 0 be given. Since E(t) → 0 as t →∞, we can choose x

such that |E(t)| < ε for all t ≥ x. Hence,

|D(σ, f )−α| ≤ (σ−1)
∫ x

1

|E(t)|
tσ

dt+ε(σ−1)
∫ ∞

x

1
tσ

dt = cx(σ−1)+ ε

xσ−1 ,

for some positive real number cx. Thus letting σ→ 1, we obtain

lim
σ→1+

D(σ, f )= ∑
n≥1

f (n)
n

.

�

With this proposition in place, it is now justified to write

D(1, f )= ∑
n≥1

f (n)
n

,
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for a periodic arithmetical function f of period q with
∑q

a=1 f (a) = 0. From Proposi-

tion 2.4.7, we know that for a non-principal Dirichlet character χ modulo q, one has

q∑
a=1

χ(a)= 0.

Hence L(1,χ)=∑
n≥1

χ(n)
n exists for χ 6= χ0. Dirichlet himself proved that L(1,χ) 6= 0. For

a proof see page 118 of [8]. Using Baker’s theorem, we give a proof of the fact that for

non-principal Dirichlet character χ modulo q, L(1,χ) is transcendental.

We consider the Fourier transform of the periodic function χ. Let

χ̂(n) := 1
q

∑
1≤a≤q

χ(a)e−2πian/q

denote the Fourier transform of χ. Using orthogonality, we get

χ(n)= ∑
1≤a≤q

χ̂(a)e2πian/q.

The condition
∑q

a=1χ(a)= 0 implies that χ̂(q)= 0. Thus we obtain

L(1,χ) = ∑
n≥1

χ(n)
n

= ∑
n≥1

1
n

∑
1≤a≤q−1

χ̂(a)e2πian/q

= − ∑
1≤a≤q−1

χ̂(a) log(1− e2πia/q).

We know that L(1,χ) 6= 0 and this is a linear form in logarithms of algebraic numbers with

algebraic co-efficients. So by Baker’s theorem we conclude that L(1,χ) is transcendental.

If χ is even, then χ̂ is also even. So χ̂(a) = χ̂(q−a). Thus it follows from the above

expression of L(1,χ) that if χ is a non-principal even Dirichlet character modulo q then

(2.5.1) −L(1,χ)=


∑

1≤a<q/2
2χ̂(a) log |1− e2πia/q| when q is odd,

∑
1≤a<q/2

2χ̂(a) log |1− e2πia/q|+ χ̂(q/2) log2 when q is even.
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Here we have used the fact that for the principal branch of logarithm

log z+ log z̄ = log |z|2.

In case of odd Dirichlet characters, we can express L(1,χ) as an algebraic multiple of π.

Proposition 2.5.3. Let χ be an odd Dirichlet character modulo q, then L(1,χ) is an

algebraic multiple of π.

Proof. We use the following cotangent expression to give a proof of this fact. For a real

number x which is not an integer, we have

πcot(πx)= ∑
n∈Z

1
n+ x

.

In the above expression the infinite series
∑

n∈Z 1
n+x denotes the limit

lim
N→∞

∑
−N≤n≤N

1
n+ x

.

Since χ is odd, we have ∑
n∈Z,n 6=0

χ(n)
n

= 2
∑
n≥1

χ(n)
n

.

Now we write

∑
n∈Z,n 6=0

χ(n)
n

= ∑
1≤a≤q

χ(a)
∑

n≡a mod q
n 6=0

1
n

= 1
q

∑
1≤a≤q−1

χ(a)
∑
n∈Z

1
n+a/q

= π

q

∑
1≤a≤q−1

χ(a)cot(πa/q).

Hence we obtain that

L(1,χ)= π

2q

∑
1≤a≤q−1

χ(a)cot(πa/q).

Now we know that cot(πa/q) is algebraic for all 1≤ a ≤ q−1. This completes the proof. �
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Let us denote Veven,q and Vodd,q to be the Q vector spaces generated by the values L(1,χ)

as χ varies over non-principal even and odd Dirichlet characters modulo q respectively.

Therefore in view of Theorem 2.3.4, Proposition 2.5.3 and formula (2.5.1), we obtain that

Veven,q ∩Vodd,q = {0}.

From Proposition 2.5.3 we also get that

dim(Vodd,q)= 1.

On the other hand, T. Okada [32] proved the following theorem about Veven,q.

Theorem 2.5.4 (Okada [32]). The values L(1,χ) and log p as χ varies over non-principal

even Dirichlet characters modulo q and p runs through all the prime factors of q, are

linearly independent over Q. In particular, one has

dim(Veven,q)= ϕ(q)
2

−1.

Hence from the above discussion we obtain the following theorem as an immediate

consequence.

Theorem 2.5.5. The Q vector space generated by the values L(1,χ) as χ varies over

non-principal Dirichlet characters modulo q is of dimension ϕ(q)
2 .

Now we end this chapter by recalling real multiplicatively independent units of a

cyclotomic field which are known as Ramachandra units. Ramachandra [34] discovered a set

of real multiplicatively independent units in cyclotomic field Q(ζq) for any arbitrary natural

number q. Following the notation used in [40], we denote them as ξa (with 1< a < q/2 and

(a, q)= 1) where the ambient cyclotomic field is Q(ζq). One of the fundamental property of
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these units which is very relevant in our context is that for any non-principal even Dirichlet

character χ modulo q,

L(1,χ)= Aχ

∑
1<a<q/2
(a,q)=1

χ̄(a) logξa,

where Aχ’s are non-zero algebraic number and ξa = ζda
q ηa. Here

ηa := ∏
d|q,d 6=q

(d,q/d)=1

1−ζad
q

1−ζd
q

and da := 1
2

(1−a)
∑

d|q,d 6=q
(d,q/d)=1

d.

This particular expression of L(1,χ) is the key to the proof of Theorem 2.5.4.
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3
TRANSCENDENTAL RESULTS

We begin this chapter by recalling that a complex number α is said to be algebraic if

there exists a non-zero polynomial P(x) ∈Q[x] such that P(α)= 0. Otherwise, it is called

transcendental. In the first section of this chapter, we state the results related to the tran-

scendental nature of the generalised Euler-Briggs constants. In the second section, we

record all the intermediate results, along with their proofs, which are required to prove the

main theorems of this chapter. In the last section, we provide the proofs of the theorems

mentioned in the first section. These results appear in [16] which generalise as well as unify

the works in [26] and [27].
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3.1 Statement of the theorems

It is easy to derive from the definition of γ(Ω,a, q) that if (a, q)= d for some d ≥ 1, then

γ(Ω,a, q)= 1
d
γ(Ω,a/d, q/d)− δΩ

q
logd.

For our purpose, we work with the condition (a, q)= 1.

Theorem 3.1.1. Let Ω be a non-empty finite set of primes and a, q ≥ 1 be natural numbers

with (a, q)= 1. Then

γ(Ω,a, q) − δΩ
γ

q

is transcendental.

The above theorem does not shed any light about the transcendence of the generalised

Euler-Briggs constants (except in the very unlikely scenario that γ is algebraic). To study

the transcendental nature of the generalised Euler-Briggs constants, we consider a family

of such constants and derive the following theorem.

Theorem 3.1.2. Let a and q ≥ 1 be natural numbers with (a, q)= 1. Let

U := {
Ω :Ω is a finite set of primes and (PΩ, q)= 1

}
.

Then the set

T(a, q) := {
γ(Ω,a, q) |Ω ∈U

}
is infinite and has at most one algebraic element.

In our next theorem, we fix a finite set of primes Ω and vary q over a collection of

mutually co-prime integers.
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Theorem 3.1.3. Let Ω be a finite set of primes and S = {q1, q2, · · · } be an infinite set of

mutually co-prime natural numbers qi ≥ 1 for all i ∈N. Further suppose that each qi is

co-prime to PΩ. Let a be a natural number with (a, qi)= 1 for all i. Then the set

T(Ω,a) := { γ(Ω,a, qi) | qi ∈ S}

has at most one algebraic element.

3.2 Intermediate results

We need a number of intermediate results to prove the above mentioned theorems. We begin

with a suitable expression for the generalised Euler-Briggs constants.

Lemma 3.2.1. Let a and q ≥ 1 be natural numbers such that (a, q) = 1. Also, let Ω be a

finite set of primes such that (PΩ, q)= 1. Then γ(Ω,a, q) exists and

γ(Ω,a, q) = 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)
+ δΩ

q

(
γ+∑

p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
.

Proof. When q = 1, the above identity reduces to

γ(Ω) = δΩ

(
γ+ ∑

p∈Ω

log p
p−1

)
,

which has been proved by Diamond and Ford in [10]. Hence we assume that q > 1 and

write

∑
n≤x

n≡a mod q
(n,PΩ)=1

1
n

= 1
ϕ(q)

∑
n≤x

(n,PΩ)=1

1
n

∑
χ mod q

χ(a)χ(n)

= 1
ϕ(q)

∑
χ mod q

χ(a)
∑
n≤x

χ(n)
n

∑
d|(n,PΩ)

µ(d)

= 1
ϕ(q)

∑
χ mod q

χ(a)
∑

d|PΩ

µ(d)χ(d)
d

∑
m≤x/d

χ(m)
m

= A + B,
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where

A := 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)
∑

d|PΩ

µ(d)χ(d)
d

∑
m≤x/d

χ(m)
m

and

B := 1
ϕ(q)

∑
d|PΩ

µ(d)
d

∑
m≤x/d

χ0(m)
m

.

We deduce that

A = 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)
∑

d|PΩ

µ(d)χ(d)
d

∑
m≤x/d

χ(m)
m

= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)
∑

d|PΩ

µ(d)χ(d)
d

(
L(1,χ) + O

(
d
x

))

= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)
+ O

(
1
x

)
,

and

B = 1
ϕ(q)

∑
d|PΩ

µ(d)
d

∑
m≤x/d

χ0(m)
m

= 1
ϕ(q)

∑
d|PΩ

µ(d)
d

∑
m≤x/d

(m,q)=1

1
m

= 1
ϕ(q)

∑
d|PΩ

µ(d)
d

∑
m≤x/d

1
m

∑
d1|(m,q)

µ(d1)

= 1
ϕ(q)

∑
d|PΩ

µ(d)
d

∑
d1|q

µ(d1)
d1

∑
t≤x/dd1

1
t

= 1
ϕ(q)

∑
d|PΩ

µ(d)
d

∑
d1|q

µ(d1)
d1

(
log

x
dd1

+ γ + O
(

dd1

x

))

= δΩ

q

(
log x+γ + ∑

p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
+ O

(
1
x

)
.

Here we use the identities

−∑
d|q

µ(d) logd
d

=
(∏

p|q

p−1
p

)∑
p|q

log p
p−1
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and

−1
q

∑
d|PΩ

µ(d) logd
d

= δΩ

q

∑
p∈Ω

log p
p−1

.

Thus ∑
n≤x

n≡a mod q
(n,PΩ)=1

1
n

= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)

+ δΩ

q

(
log x+γ+∑

p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
+O

(
1
x

)
.

Hence we obtain

γ(Ω,a, q)= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)
+ δΩ

q

(
γ+∑

p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
.

This completes the proof. �

The next set of propositions, apart from being central to the proofs of the theorems in

this chapter, are also of independent interest. Baker’s theory of linear forms in logarithms

and theory of Ramachandra units constitute the crucial ingredients in their proof.

Proposition 3.2.2. Let q > 1 be a natural number and Ω be a finite set of primes co-prime

to q. Then the number

(3.2.1)
∑
p|q
αp log p + ∑

p∈Ω
ηp log p + ∑

χ even
χ6=χ0

bχ L(1,χ) + ∑
χ odd

dχ L(1,χ)

is transcendental. Here αp, ηp, bχ are algebraic numbers, not all of them zero. Further,

dχ’s are arbitrary algebraic numbers.

Proof. We prove it by contradiction. We know by (2.5.1) that for any even Dirichlet

character χ 6= χ0, one can write L(1,χ) as follows:

−L(1,χ)=


∑

1≤a<q/2
2χ̂(a) log |1− e2πia/q| when q is odd,

∑
1≤a<q/2

2χ̂(a) log |1− e2πia/q|+ χ̂(q/2) log2 when q is even.
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Now for any odd Dirichlet character χ, we know by Proposition 2.5.3 that L(1,χ) is a

non-zero algebraic multiple of π. Hence Using these two facts one can rewrite (3.2.1) as

∑
p|q
αp log p + ∑

p∈Ω
ηp log p +

q∑
a=1

βa logαa +β π,

where β,βa’s are algebraic numbers and αa’s are positive algebraic numbers.

Now if β is non-zero, then by Theorem 2.3.4, we get that the above sum is necessarily

transcendental. Next we assume that β= 0 and hence that (3.2.1) is of the form

∑
p|q
αp log p + ∑

p∈Ω
ηp log p + ∑

χ even
χ6=χ0

bχ L(1,χ).

Now by Theorem 2.3.2, this sum is either zero or transcendental. Suppose that

(3.2.2)
∑
p|q
αp log p + ∑

p∈Ω
ηp log p + ∑

χ even
χ6=χ0

bχ L(1,χ)= 0.

As mentioned in Chapter 2, for a non-principal even Dirichlet character χ, we have

L(1,χ)=Wχ

∑
1<a<q/2
(a,q)=1

χ(a) logξa,

where ξa’s are real multiplicatively independent units in the cyclotomic field Q(ζq) and Wχ

is a non-zero algebraic number. Thus (3.2.2) can be written as

∑
p|q
αp log p + ∑

p∈Ω
ηp log p + ∑

1<a<q/2
(a,q)=1

λa logξa = 0,

where λa’s are algebraic numbers. Note that by Theorem 2.5.4,

∑
χ even
χ6=χ0

bχ L(1,χ)= 0 ⇐⇒ bχ = 0 for all χ,

and by Theorem 2.3.2,

∑
1<a<q/2
(a,q)=1

λa logξa = 0 ⇐⇒ λa = 0 for all a.
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Hence we conclude that λa = 0 for all a if and only if bχ = 0 for all even non-principal χ.

Now by Theorem 2.3.2, there exist integers dp for p|q, ep for p ∈ Ω and ca for

1< a < q/2 with (a, q)= 1, not all zero, such that

∑
p|q

dp log p + ∑
p∈Ω

ep log p − ∑
1<a<q/2
(a,q)=1

ca logξa = 0.

The above expression gives

∏
p|q

pdp
∏
p∈Ω

pep = ∏
1<a<q/2
(a,q)=1

ξ
ca
a .

Now taking norm on both sides, we see that

∏
p|q

pϕ(q)dp
∏
p∈Ω

pϕ(q)ep = 1.

This forces ep = 0= dp for all p ∈Ω and p|q. Further, ξa’s are multiplicatively independent

implies that ca’s are zero for all 1< a < q/2 with (a, q)= 1. This proves the proposition. �

In the following proposition, we deal with Dirichlet characters of different moduli.

Proposition 3.2.3. Let q1, q2 > 1 be natural numbers with (q1, q2)= 1. Also let αp,βχ,β′
χ,ηψ

and η′ψ be algebraic numbers, where p varies over the prime divisors of q1q2, χ 6= χ0,ψ 6=
ψ0 are characters modulo q1 and q2 respectively. Then the number

∑
p|q1q2

αp log p + ∑
χ even
χ6=χ0

βχL(1,χ) + ∑
ψ even
ψ6=ψ0

ηψL(1,ψ) + ∑
χ odd

β′
χL(1,χ) + ∑

ψ odd
η′ψL(1,ψ)

is transcendental provided not all αp,βχ,ηψ’s are zero.

Proof. As in the case of proof of Proposition 3.2.2, Theorem 2.3.4 allows us to ignore the

odd characters. We show that

∑
p|q1q2

αp log p + ∑
χ even
χ6=χ0

βχL(1,χ) + ∑
ψ even
ψ 6=ψ0

ηψL(1,ψ)
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is transcendental where αp for p|q1q2 and βχ,ηψ where χ,ψ varies over non-principal

even Dirichlet characters modulo q1 and q2 respectively, are algebraic numbers, not all

zero.

As in Proposition 3.2.2, we can write the above expression as∑
p|q1q2

αp log p + ∑
1<a<q1/2
(a,q1)=1

δa logξa + ∑
1<b<q2/2
(b,q2)=1

θb logξb,

where ξa,ξb’s are multiplicatively independent units in Q(ζq1) and Q(ζq2) respectively.

Note that using Theorem 2.5.4 and Theorem 2.3.2 it is easy to deduce that δa = 0 for all

a if and only if βχ = 0 for all even non-trivial χ modulo q1. Similarly θb = 0 for all b if and

only if ηψ = 0 for all even non-trivial ψ modulo q2.

Now by Theorem 2.3.2, the above expression is either zero or transcendental. Suppose

that it is zero i.e. the numbers appearing in the above sum are not Q-linearly independent

and thus again by Baker’s theorem they are Q-linearly dependent. Hence there exist integers

cp,da, eb, not all zero, such that

(3.2.3)
∏

p|q1q2

pcp = ∏
1<a<q1/2
(a,q1)=1

ξ
da
a

∏
1<b<q2/2
(b,q2)=1

ξ
eb
b ,

By taking norm on both sides of (3.2.3), we get cp = 0 for all p. Hence

(3.2.4)
∏

1<a<q1/2
(a,q1)=1

ξ
da
a = ∏

1<b<q2/2
(b,q2)=1

ξ
−eb
b .

Since (q1, q2) = 1, we know that Q(ζq1)∩Q(ζq2) =Q and hence we get that both sides of

(3.2.4) are rational numbers. Further they are algebraic integers and units, thus they have to

be equal to ±1. Now squaring both sides, we get

(3.2.5)
∏

1<a<q1/2
(a,q1)=1

ξ
2da
a = ∏

1<b<q2/2
(b,q2)=1

ξ
−2eb
b = 1.

This forces that da = 0 for all a’s and eb = 0 for all b since ξa’s and ξb’s are multiplicatively

independent. This completes the proof of the proposition. �
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3.3 Proof of the theorems

3.3.1 Proof of Theorem 3.1.1

The proof is now straightforward. From Lemma 3.2.1 we obtain the following expression:

γ(Ω,a, q) − δΩ
γ

q
= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)
+ δΩ

q

(∑
p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
.

Now the theorem follows as an immediate corollary of Proposition 3.2.2. �

3.3.2 Proof of Theorem 3.1.2

First we prove that the set T(a, q) is infinite. In fact we show that the list of numbers

γ(Ω,a, q), whereΩ varies over U can have at most one pair of repetitions, i.e. there is at most

one unordered pair (Ω1,Ω2) of distinct elements in U such that γ(Ω1,a, q) = γ(Ω2,a, q).

Suppose not, then there exist two unordered pairs (Ω1,Ω2), (Ω3,Ω4) of distinct elements in

U such that

γ(Ω1,a, q)= γ(Ω2,a, q) and γ(Ω3,a, q)= γ(Ω4,a, q),

with (Ω1,Ω2) 6= (Ω3,Ω4). Now we rewrite Lemma 3.2.1 as

γ(Ω,a, q)=α(Ω,a, q)+ δΩ

q
γ+β(Ω, q),

where

α(Ω,a, q)= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)

and

β(Ω, q)= δΩ

q

(∑
p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
.
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Thus the equation γ(Ω1,a, q)= γ(Ω2,a, q) is equivalent to the equation

γ= q
δΩ1 −δΩ2

(α(Ω2,a, q)+β(Ω2, q)−α(Ω1,a, q)−β(Ω1, q)).

Similarly the equation γ(Ω3,a, q)= γ(Ω4,a, q) is equivalent to the equation

γ= q
δΩ3 −δΩ4

(α(Ω4,a, q)+β(Ω4, q)−α(Ω3,a, q)−β(Ω3, q)).

Now we equating the right hand side of the above two equations we get a contradiction by

Proposition 3.2.2.

Next we prove that the set T(a, q) can have at most one algebraic element. We prove it

by contradiction. Suppose that γ(Ω1,a, q) and γ(Ω2,a, q) are algebraic, where Ω1,Ω2 ∈U

with Ω1 6=Ω2. Then by Lemma 3.2.1, we have

(3.3.1) δΩ2γ(Ω1,a, q) − δΩ1γ(Ω2,a, q) = M + δΩ1δΩ2

q

( ∑
p∈Ω1

log p
p−1

− ∑
p∈Ω2

log p
p−1

)
∈Q,

where

M := 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)

(
δΩ2

∏
p∈Ω1

(
1− χ(p)

p

)
− δΩ1

∏
p∈Ω2

(
1− χ(p)

p

))
.

But by Proposition 3.2.2, the number in the right hand side of (3.3.1) is transcendental,

which is a contradiction. This completes the proof of the theorem. �

3.3.3 Proof of Theorem 3.1.3

The proof is carried out along the same line. Suppose that the theorem is not true and there

exist natural numbers q1, q2 such that γ(Ω,a, q1) and γ(Ω,a, q2) are algebraic. Then by

Lemma 3.2.1, we have

(3.3.2)
1
q2
γ(Ω,a, q1) − 1

q1
γ(Ω,a, q2) = N + δΩ

q1q2

 ∑
p|q1,

p prime

log p
p−1

− ∑
p|q2,

p prime

log p
p−1

 ∈Q,
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where

N := ∑
χ mod q1
χ6=χ0

χ(a) L(1,χ)
q2ϕ(q1)

∏
p∈Ω

(
1− χ(p)

p

)
− ∑

χ mod q2
χ6=χ0

χ(a) L(1,χ)
q1ϕ(q2)

∏
p∈Ω

(
1− χ(p)

p

)
.

But by Proposition 3.2.3, we know that the right hand side of (3.3.2) is transcendental,

which is a contradiction. This proves the theorem. �
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4
LINEAR INDEPENDENCE RESULTS

4.1 Introduction

A complex number α is irrational if the numbers 1 and α are linearly independent over

Q. It is transcendental if for any natural number d, the numbers 1,α,α2 · · ·αd are linearly

independent over Q. The study of possible linear relations among any family of interesting

numbers constitutes an interesting theme in transcendence theory. For instance, any non-

zero period ω of an elliptic curve y2 = 4x3 − g2x− g3 defined over Q and π are linearly

independent over Q. Note that this neither implies, nor follows from the transcendence of π

and ω and hence is of independent interest.

To cite another instance, we can consider the family of Riemann zeta values at positive

odd integers. It is known that zeta value at non-positive integers are given by the formula

ζ(−n)= (−1)n Bn+1

n+1
for all n ≥ 0,
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where Bn+1 denotes the (n+1)-th Bernoulli number and hence the above zeta values are

rational numbers. For zeta values at positive even integers, Euler proved that

ζ(2n) ∈π2nQ∗ for all n ≥ 1.

It is known due to Lindemann that π is transcendental. So the zeta values at positive even

integers are transcendental numbers and furthermore are linearly independent over Q. But

the arithmetic nature of the zeta values at odd positive integers is still shrouded in mystery.

We have the following folklore conjecture for the odd zeta values.

Conjecture 4.1.1. The numbers π,ζ(2n+1) for all n ≥ 1 are algebraically independent.

For the definition of algebraic independence see Chapter 5. In particular, all the odd

zeta values are expected to be transcendental. But, till date we have no example of a single

odd zeta value which is shown to be transcendental. The only example of an odd zeta value

known to be irrational is ζ(3). This was proved by R. Apéry in 1978. Later in 2000, K. Ball

and T. Rivoal [6] proved the following remarkable theorem in this direction.

Theorem 4.1.2 (Ball-Rivoal). Given any ε> 0, there exists an integer N = N(ε) such that

for all n > N, the dimension of the Q-vector space generated by the numbers

1, ζ(3), · · · ,ζ(2n−1), ζ(2n+1)

exceeds
1−ε

1+ log2
logn.

In particular, this implies that there are infinitely many odd zeta values which are

irrational.

Let us now consider another family of numbers, namely for a given integer q > 1:

{L(1,χ) : χ is a non-principal Dirichlet character mod q}.
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We know that all the numbers in the above family are non-zero. Further, for any odd Dirichlet

character χ modulo q, L(1,χ) ∈π Q∗
. For even Dirichlet characters, by Theorem 2.3.2 these

special values are transcendental. It follows from Theorem 2.5.4 that the dimension of the

Q-vector space generated by all these constants is ϕ(q)
2 . But the dimension of the Q-vector

space generated by these constants is conjectured to be ϕ(q)−1 by Baker and it is yet to be

proved.

Against the backdrop of these, we now consider the family of generalised Euler-Briggs

constants and study the question of linear independence over various number fields as well

as over Q.

4.2 Linear independence over Q

In this section we prove the following result.

Theorem 4.2.1. Let Ω be a finite set of primes. Consider the Q-vector space

VQ,N :=Q〈γ(Ω,m,n) | 1≤ m ≤ n ≤ N, (m,n)= 1= (n,PΩ)〉 .

Then for N sufficiently large, we have N ¿Ω dimQVQ,N . In particular, the dimension of

the Q-vector space

VQ :=Q〈γ(Ω,m,n) | m,n ∈N, (m,n)= 1= (n,PΩ)〉

is infinite.

Before giving a proof of this theorem, we first mention the following result proved in

[15] which plays an important role in our proof.
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Theorem 4.2.2. Let f be a periodic arithmetic function with period q ≥ 1 and M be a

natural number co-prime to q. Then

∑
n≥1

(n,M)=1

f (n)
n

exists if and only if
∑q

a=1 f (a)= 0. Moreover, whenever the above sum exists, we have

∑
n≥1

(n,M)=1

f (n)
n

=
q∑

a=1
f (a)γ(Ω,a, q),

where Ω is the set of prime divisors of M.

We will give a proof of this theorem in Chapter 6.

4.2.1 Proof of Theorem 4.2.1

For any finite subset of primes Ω, let us define

SΩ := {u ∈N | (u,PΩ)= 1},

and for u ∈ SΩ,

ΓΩ,u := {γ(Ω,v,u) | 1≤ v ≤ u, (v,u)= 1}.

Note that for a fixed u the cardinality of ΓΩ,u is ϕ(u). We claim that for any two relatively

prime natural numbers s, t such that (s,PΩ)= (t,PΩ)= 1, at least one of the sets ΓΩ,s,ΓΩ,t

is Q-linearly independent.

Suppose our claim is not true. Then for all 1≤ a ≤ s with (a, s)= 1 and for all 1≤ b ≤ t

with (b, t)= 1, there exists rational numbers αa (not all zero), βb (not all zero) such that

(4.2.1)
∑

1≤a<s
(a,s)=1

αaγ(Ω,a, s)= 0, and
∑

1≤b<t
(b,t)=1

βbγ(Ω,b, t)= 0.
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Now we define the following two arithmetic functions:

f (n) :=



αa if n ≡ a mod s, (a, s)= 1

−∑
1≤a≤s
(a,s)=1

αa if n ≡ 0 mod s,

0 otherwise,

g(n) :=



βb if n ≡ b mod t, (b, t)= 1

−∑
1≤b≤r
(b,t)=1

βb if n ≡ 0 mod t,

0 otherwise.

We can see that f and g are periodic functions with periods s and t respectively. Further,∑
1≤a≤s

f (a)= 0, and
∑

1≤b≤t
g(b)= 0.

Hence by Theorem 4.2.2 and equation (4.2.1), we have∑
n≥1

(n,PΩ)=1

f (n)
n

=
s∑

a=1
f (a)γ(Ω,a, s) = f (s)γ(Ω, s, s) = f (s)

s
(
γ(Ω)−δΩ log s

)
(4.2.2)

and
∑
m≥1

(m,PΩ)=1

g(m)
m

=
t∑

b=1
g(b)γ(Ω,b, t) = g(t)γ(Ω, t, t) = g(t)

t
(
γ(Ω)−δΩ log t

)
.

Next we show that both f (s) and g(t) are non-zero. Suppose, f (s)= 0. Then by above

equation we get that ∑
n≥1

(n,PΩ)=1

f (n)
n

= 0.

We rewrite, ∑
n≥1

(n,PΩ)=1

f (n)
n

= ∑
n≥1

f χ0(n)
n

,

where χ0 denotes the trivial character mod PΩ. Now f χ0 is a rational valued sPΩ periodic

function for which we have

f χ0(n)= 0 for all 1< (n, sPΩ)< sPΩ.
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Now applying the theorem of Baker, Birch and Wirsing [5], we get

∑
n≥1

(n,PΩ)=1

f (n)
n

6= 0,

a contradiction and hence f (s) 6= 0. Similarly we get that g(t) 6= 0. So we have the following

two expressions for γ(Ω) from each of the equations of (4.2.2) i.e.

γ(Ω)= s
f (s)

s∑
a=1

f (a)γ(Ω,a, s)+δΩ log s = t
g(t)

t∑
b=1

g(b)γ(Ω,b, t)+δΩ log t.

Now using the definition of f and g we have

s
f (s)

∑
1≤a≤s
(a,s)=1

f (a)γ(Ω,a, s) + sγ(Ω, s, s) + δΩ log s = t
g(t)

∑
1≤b≤t
(b,t)=1

g(b)γ(Ω,b, t) + tγ(Ω, t, t) + δΩ log t.

i.e.

s
f (s)

∑
1≤a≤s
(a,s)=1

f (a)γ(Ω,a, s)− t
g(t)

∑
1≤b≤t
(b,t)=1

g(b)γ(Ω,b, t)= 0.

Since

f (s)= − ∑
1≤a≤s
(a,s)=1

f (a) and g(t)= − ∑
1≤b≤t
(b,t)=1

g(b),

using Lemma 3.2.1 we get

s
f (s)ϕ(s)

∑
χ mod s
χ6=χ0

L(1,χ)
∏
p∈Ω

(1− χ(p)
p

)
∑

1≤a≤s
(a,s)=1

f (a)χ(a) − δΩ
∑
p|s

log p
p−1

− t
g(t)ϕ(t)

∑
ψ mod t
ψ 6=ψ0

L(1,ψ)
∏
p∈Ω

(1− ψ(p)
p

)
∑

1≤b≤t
(b,t)=1

g(b)ψ(b) + δΩ
∑
p|t

log p
p−1

= 0,
(4.2.3)

which leads to a contradiction to Proposition 3.2.3. This proves our claim.

Now we proceed to calculate a lower bound of dimVQ,N . We have already shown that

for two natural numbers s, t such that (s,PΩ)= (t,PΩ)= 1, at least one of the sets ΓΩ,s,ΓΩ,t

is Q-linearly independent. To get a lower bound of the dimension of VQ,N , we find a pair

s, t of prime numbers in terms of N.
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Let l be the number of primes in Ω. Now using Bertrand’s postulate for large enough

N, we get that there are at least l +2 primes between N
2l+2 and N. Thus we can get two

primes s, t ≥ N
2l+2 such that they are co-prime to PΩ. Hence

dimVQ,N ≥min{ϕ(s),ϕ(t)}=min{s−1, t−1}≥ N
2l+2 −1ÀΩ N.

�

Remark 4.2.3. The trivial upper bound of dimVQ,N is O(N2). This can be observed by

counting the cardinality of the generating set

{γ(Ω,m,n) | 1≤ m ≤ n ≤ N ∈N, (m,n)= 1= (n,PΩ)}.

which is ∑
n≤N

(n,PΩ)=1

ϕ(n)=O(N2).

4.3 Linear independence over number fields

In this section, we prove result for number fields, analogous to the result in §2 of this

chapter. As will be evident, we need to impose certain natural restrictions on the number

fields under consideration.

Theorem 4.3.1. Let Ω be a finite set of primes and K be a number field such that

K ∩ Q(ζPΩ)=Q, where ζPΩ := e
2πi
PΩ . Consider the K-vector space

VK ,N := K 〈γ(Ω,m,n) | 1≤ m ≤ n ≤ N, (m,n)= 1= (n,PΩ)〉 .

Then for N sufficiently large, we have

N ¿K ,Ω dimK VK ,N ,
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where the implied constant depend on Ω and K . In particular, the K-vector space

VK := K 〈γ(Ω,m,n) | m,n ∈N, (m,n)= 1= (n,PΩ)〉

is infinite dimensional.

The proof of this theorem follows mutatis-mutandis the proof of Theorem 4.2.1. We

just indicate the necessary modifications.

1. In order to use the theorem of Baker, Birch and Wirsing, we replace the set SΩ by

S′
Ω, where

S′
Ω := {u ∈N | (u,PΩ)= 1, ΦuPΩ(X ) is irreducible over K}.

Here we note that the condition K ∩Q(ζPΩ) =Q is equivalent to the condition that

ΦPΩ(X ) is irreducible over K , and hence S′
Ω is non-empty. Here is a proof of this for

the sake of completeness.

Lemma 4.3.2. For any number field L, L∩Q(ζn) =Q if and only if Φn(X ) is irre-

ducible over L, where ζn denotes a primitive n-th root of unity.

Proof. First suppose that L∩Q(ζn)=Q. We show that Φn(X ) is irreducible over L.

Suppose not, then we can write Φn(X )= f (X )g(X ) where f , g are polynomials over

L with deg f ,deg g ≥ 1. Now the co-efficients of f , g are symmetric polynomials of

primitive n-th roots of unity. Since L∩Q(ζn) = Q, we get that f (X ), g(X ) ∈ Q[X ].

We get a contradiction to the fact that Φn(X ) is irreducible over Q.

Now we prove the converse part. From hypothesis, we have [L(ζn) : L]=ϕ(n). Thus

if [L :Q] = m, we have that [L(ζn) :Q(ζn)] = m. Now we show that L∩Q(ζn) =Q.

Suppose not, then there exists α ∈ L∩Q(ζn) such that α ∉Q. Consider the following

tower of field extensions.
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Q

Q(α)

L∩Q(ζn)

L Q(ζn)

L(ζn)

Now suppose [L : Q(α)] = l. Then l ≤ m and [L(ζn) : Q(ζn,α)] ≤ l. But Q(ζn,α) =
Q(ζn). Hence, m ≤ l. This in turn gives us

[L :Q]= m = l = [L :Q(α)],

i.e. Q=Q(α).

�

2. To conclude the theorem, we need the set S′
Ω to be infinite. This can be proved using

the following lemma for L = K(ζPΩ) and the fact that only finitely many primes

ramify in a number field.

Lemma 4.3.3. Let L be a number field and p be a rational prime which does not

ramify in L. Then Φp(X ) is irreducible over L.

Proof. We show that L∩Q(ζp)=Q. Consider the following tower of field extensions.
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Q

L∩Q(ζp)

L Q(ζp)

L(ζp)

For the field extension L/Q, p is a prime which does not ramify and for the field

extension Q(ζp)/Q, p is the only prime that ramifies. Hence, if L∩Q(ζp) 6= Q, by

considering a prime q which ramifies in L∩Q(ζp)/Q, we arrive at a contradiction. �

To get a lower bound on dimK VK ,N , let m be the number of primes which are ramified in

the extension Q⊆ K(ζPΩ) and l be the number of primes in Ω. Then again by Bertrand’s

postulate for large enough N, we get that there are at least (m+ l+2) primes between N
2m+l+2

and N. Thus we can get two primes s, t ≥ N
2m+l+2 such that they are co-prime to PΩ and do

not ramify in K(ζPΩ). Hence

dimVK ,N ≥min{ϕ(s),ϕ(t)}=min{s−1, t−1}≥ N
2m+l+2 −1ÀΩ,K N.

This completes the proof. �

Remark 4.3.4. As earlier, the trivial upper bound of dimK VK ,N is again O(N2).

4.4 Linear independence over Q

In this section we will discuss the case ofQ-linear independence of generalised Euler-Briggs

constants. First notice that in the case of Q with a fixed finite set of primes Ω, we can no

longer use the theorem of Baker, Birch and Wirsing as Q(ζPΩ)∩Q 6=Q.
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To state the theorems we begin with the following notations: For a finite set of primes

Ω and a ∈N, consider C(a,Ω) := {q ∈N | (a, q) = 1 = (q,PΩ)}. We define an equivalence

relation on the set X := {γ(Ω,a, q) : q ∈ C(a,Ω)}, given by γ(Ω,a, q1) ∼ γ(Ω,a, q2) if

γ(Ω,a, q1) = λγ(Ω,a, q2) for some λ ∈ Q∗
. Then we have the following theorem for a

particular subset Y of X .

Theorem 4.4.1. LetΩ be a finite set of primes and a ∈N. Let Y be a subset of C(a,Ω), con-

sisting of co-prime integers. Then in {γ(Ω,a, q) : q ∈Y }, each equivalence class [γ(Ω,a, q)],

where the equivalence relation is restricted to Y , has at most two elements.

For the proof of Theorem 4.4.1, we shall need the following theorem.

Theorem 4.4.2. Let q1, q2, q3 > 1 be mutually co-prime natural numbers. Then for any

algebraic numbers αp,βχ,βφ,βψ, the number

∑
p|q1q2q3

αp log p + ∑
χ mod q1
χ6=χ0

βχL(1,χ) + ∑
φ mod q2
φ 6=φ0

βφL(1,φ) + ∑
ψ mod q3
ψ6=ψ0

βχL(1,ψ)

is transcendental provided not all αp,βχ,βφ,βψ for even characters χ,φ,ψ are zero.

Proof. We will prove this theorem by contradiction. We know that for any even Dirichlet

character χ 6= χ0, one can write L(1,χ) as a non-zero algebraic multiple of

(4.4.1)
∑

1<a<q/2
(a,q)=1

χ(a) logξa,

where ξa’s are real multiplicatively independent units in the cyclotomic field Q(ζq), known

as Ramachandra units and for any odd Dirichlet character χ, we know that L(1,χ) is a

non-zero algebraic multiple of π.

Using these results and Theorem 2.3.4, we can therefore ignore the odd characters. In

order to complete the proof of the theorem, we will now show that
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1. log p : for all primes p|q1q2q3

2. L(1,χ) : for all even non-principal characters χ modulo q1

3. L(1,φ) : for all even non-principal characters φ modulo q2

4. L(1,ψ) : for all even non-principal characters ψ modulo q3

are linearly independent over Q. Suppose not. Then there exists algebraic numbers αp for

p|q1q2q3 and βχ,βφ,βψ, where χ,φ,ψ vary over non-principal even Dirichlet characters

modulo q1, q2 and q3 respectively, not all zero, such that

∑
p|q1q2q3

αp log p + ∑
χ even
χ6=χ0

βχL(1,χ) + ∑
φ even
φ 6=φ0

βφL(1,φ) + ∑
ψ even
ψ6=ψ0

βψL(1,ψ) = 0.

We can rewrite the above expression as

∑
p|q1q2q3

αp log p + ∑
1<a<q1/2
(a,q1)=1

δa logξa + ∑
1<b<q2/2
(b,q2)=1

δb logξb + ∑
1<c<q3/2
(c,q3)=1

δc logξc = 0,

where ξa,ξb,ξc ’s are multiplicatively independent units in Q(ζq1),Q(ζq2) and Q(ζq3) re-

spectively. Now by Theorem 2.3.2, we have

(4.4.2)
∏

p|q1q2

pcp = ∏
1<a<q1/2
(a,q1)=1

ξ
da
a

∏
1<b<q2/2
(b,q2)=1

ξ
eb
b

∏
1<c<q3/2
(c,q3)=1

ξ
fc
c

where cp,da, eb, fc’s are integers. By taking norms on both sides of (4.4.2), we get cp = 0

for all p. Hence

(4.4.3)
∏

1<a<q1/2
(a,q1)=1

ξ
da
a = ∏

1<b<q2/2
(b,q2)=1

ξ
−eb
b

∏
1<c<q3/2
(c,q3)=1

ξ
− fc
c

Since q1, q2, q3 are mutually co-prime, Q(ζq1)∩Q(ζq2q3)=Q. So we see that both sides of

(4.4.3) are rational numbers and hence equal to ±1. Now squaring both sides, we get

(4.4.4)
∏

1<a<q1/2
(a,q1)=1

ξ
2da
a = ∏

1<b<q2/2
(b,q2)=1

ξ
−2eb
b

∏
1<c<q3/2
(c,q3)=1

ξ
−2 fc
c = 1.
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This forces that da = 0 for all a since ξa’s are multiplicatively independent. Again going

back to (4.4.3) and following the same argument, we get eb = 0, fc = 0 for all b, c. This

completes the proof. �

Now we are ready to prove Theorem 4.4.1:

4.4.1 Proof of Theorem 4.4.1

Suppose that γ(Ω,a, q2), γ(Ω,a, q3) ∈ [γ(Ω,a, q1)], where q1, q2, q3 are distinct elements

in Y . Then there exist non-zero algebraic numbers β,λ such that

(4.4.5) γ(Ω,a, q1) = βγ(Ω,a, q2), and γ(Ω,a, q1) = λγ(Ω,a, q3).

Write

aΩ,qi := δΩ

qi
6= 0, γ1 := γ+ ∑

p|Ω

log p
p−1

and αΩ,χ,qi := χ(a)
ϕ(qi)

∏
p∈Ω

(
1− χ(p)

p

)
.

Using Lemma 3.2.1 and (4.4.5), we get

γ1(aΩ,q1 −βaΩ,q2) + aΩ,q1

∑
p|q1

log p
p−1

− βaΩ,q2

∑
p|q2

log p
p−1

(4.4.6)

+ ∑
χ mod q1
χ6=χ0

αΩ,χ,q1 L(1,χ) − β
∑

χ mod q2
χ6=χ0

αΩ,χ,q2 L(1,χ) = 0.

Similarly, we have

γ1(aΩ,q1 −λaΩ,q3) + aΩ,q1

∑
p|q1

log p
p−1

− λaΩ,q3

∑
p|q3

log p
p−1

(4.4.7)

+ ∑
χ mod q1
χ6=χ0

αΩ,χ,q1 L(1,χ) − λ
∑

χ mod q3
χ6=χ0

αΩ,χ,q3 L(1,χ) = 0.
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Since q1, q2 and q3 are mutually co-prime natural numbers, applying Proposition 3.2.3 to

equations (4.4.6) and (4.4.7), we get

aΩ,q1 −βaΩ,q2 6= 0, aΩ,q1 −λaΩ,q3 6= 0.

Similar reasoning shows that

βaΩ,q2 −λaΩ,q3 6= 0.

Hence

CaΩ,q1

∑
p|q1

log p
p−1

− βaΩ,q2

(aΩ,q1 −βaΩ,q2)

∑
p|q2

log p
p−1

+ λaΩ,q3

(aq1 −λaΩ,q3)

∑
p|q3

log p
p−1

+ C
∑

χ mod q1
χ6=χ0

αΩ,χ,q1 L(1,χ) + λ

(aΩ,q1 −λaΩ,q3)

∑
χ mod q3
χ6=χ0

αΩ,χ,q3 L(1,χ)

− β

(aΩ,q1 −βaΩ,q2)

∑
χ mod q2
χ6=χ0

αΩ,χ,q2 L(1,χ) = 0,

(4.4.8)

where

C := βaΩ,q2 −λaΩ,q3

(aΩ,q1 −βaΩ,q2)(aΩ,q1 −λaΩ,q3)
6= 0,

a contradiction to Theorem 4.4.2. �

Remark 4.4.3. It follows from the above theorem that the following Q linear space

V
Q

:=Q〈γ(Ω,m,n) | m,n ∈N, (m,n)= 1= (n,PΩ)〉

has dimension at least two.

It is also possible to derive similar theorems for family of generalised Euler-Briggs

constants where we vary Ω’s with fixed q. For this, define

C(q) := {Ω | Ω is a finite set of primes and (q,PΩ)= 1}.

As before, for a fixed a with (a, q)= 1, one can define a similar equivalence relation on

the set Z := {γ(Ω,a, q) :Ω ∈ C(q)}. In this set-up, we have the following theorem.
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Theorem 4.4.4. The orbit of any element γ(Ω,a, q) ∈ Z has at most two elements.

Proof. Suppose that γ(Ω2,a, q), γ(Ω3,a, q) ∈ [γ(Ω1,a, q)], where Ω1,Ω2 and Ω3 are dis-

tinct elements in C(q). Then there exist non-zero algebraic numbers β,λ such that

(4.4.9) γ(Ω1,a, q) = βγ(Ω2,a, q) and γ(Ω1,a, q) = λγ(Ω3,a, q).

For a Dirichlet character χ modulo q and a finite set Ω consisting of primes co-prime to q,

we have the numbers aΩ,q, γ1 and αΩ,χ,q as defined in the proof of Theorem 4.4.1.

Using Lemma 3.2.1 and (4.4.9), we get

γ1(aΩ1,q −βaΩ2,q)+aΩ1,q
∑

p∈Ω1

log p
p−1

−βaΩ2,q
∑

p∈Ω2

log p
p−1

+ ∑
χ mod q
χ6=χ0

L(1,χ)(αΩ1,χ,q −βαΩ2,χ,q) = 0
(4.4.10)

and

γ1(aΩ1,q −λaΩ3,q)+aΩ1,q
∑

p∈Ω1

log p
p−1

−λaΩ3,q
∑

p∈Ω3

log p
p−1

+ ∑
χ mod q
χ6=χ0

L(1,χ)(αΩ1,χ,q −λαΩ3,χ,q) = 0.
(4.4.11)

Since Ω1,Ω2,Ω3 are distinct set of primes, applying Proposition 3.2.2 to equations (4.4.10)

and (4.4.11), we get

aΩ1,q −βaΩ2,q 6= 0, aΩ1,q −λaΩ3,q 6= 0.

Similarly we deduce that

aΩ3 −
β

λ
aΩ2 6= 0.

Now from (4.4.10) and (4.4.11), it follows that

aΩ1,q(βaΩ2,q −λaΩ3,q)
(aΩ1,q −βaΩ2,q)(aΩ1,q −λaΩ3,q)

∑
p∈Ω1

log p
p−1

− βaΩ2,q

(aΩ1,q −βaΩ2,q)

∑
p∈Ω2

log p
p−1

+ λaΩ3,q

(aΩ1,q −λaΩ3,q)

∑
p∈Ω3

log p
p−1

+ ∑
χ mod q
χ6=χ0

L(1,χ)A(χ) = 0,
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where

A(χ)= (αΩ1,χ,q −βαΩ2,χ,q)
(aΩ1,q −βaΩ2,q)

− (αΩ1,χ,q −λαΩ3,χ,q)
(aΩ1,q −λaΩ3,q)

.

Since Ω1,Ω2,Ω3 are distinct set of primes, without loss of generality, one can assume that

there exists a prime p1 ∈Ω1 such that either p1 ∉Ω2 ∪Ω3 or p1 ∈Ω2 but not in Ω3. The

coefficient of log p1 in the first case is

aΩ1,q(βaΩ2,q −λaΩ3,q)
(aΩ1,q −βaΩ2,q)(aΩ1,q −λaΩ3,q)(p1 −1)

6= 0

and in the second case is
λaΩ3,q

(λaΩ3,q −aΩ1,q)(p1 −1)
6= 0.

Hence in both cases we arrive at a contradiction by Proposition 3.2.2. �

From Theorem 4.4.4, we can conclude that the following Q linear space

V
Q,a,q :=Q〈γ(Ω,a, q) | Ω ∈ C(q)〉

has dimension at least two. But we prove something stronger in the following theorem.

Theorem 4.4.5. Let a, q be natural numbers with (a, q) = 1. Then the dimension of the

Q-vector space

V
Q,a,q :=Q〈γ(Ω,a, q) | Ω ∈ C(q)〉

is infinite.

Proof. It is sufficient to show that given any natural number n, there exist disjoint subsets

Ω1, . . . ,Ωn ∈ C(q) such that γ(Ω1,a, q), . . . ,γ(Ωn,a, q) are linearly independent over Q.

Suppose that our claim is not true. Then there exists an n ∈N such that for any disjoint sets

Ω1, . . . ,Ωn ∈ C(q) and Ω′
1, . . . ,Ω′

n ∈ C(q), we can find αi,β j ∈Q, 1 ≤ i, j ≤ n, not all zero

such that

α1γ(Ω1,a, q)+·· ·+αnγ(Ωn,a, q)= 0 and β1γ(Ω′
1,a, q)+·· ·+βnγ(Ω′

n,a, q)= 0.
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Further assume that Ωi’s are disjoint from Ω′
j’s for all 1≤ i, j ≤ n. Then by Lemma 3.2.1,

we have

γ
n∑

i=1
αiδΩi =

−q
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
n∑

i=1
αi

∏
p∈Ωi

(
1− χ(p)

p

)

− ∑
p|q

log p
p−1

n∑
i=1

αiδΩi −
n∑

i=1
αiδΩi

∑
p∈Ωi

log p
p−1

(4.4.12)

and

γ
n∑

j=1
β jδΩ′

j
= −q
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
n∑

j=1
β j

∏
p∈Ω′

j

(
1− χ(p)

p

)

− ∑
p|q

log p
p−1

n∑
j=1

β jδΩ′
j
−

n∑
j=1

β jδΩ′
j

∑
p∈Ω′

j

log p
p−1

.

(4.4.13)

Applying Proposition 3.2.2, we see that A := ∑n
i=1αiδΩi 6= 0 and B := ∑n

j=1β jδΩ′
j
6= 0.

Hence from (4.4.12) and (4.4.13), we get

q
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)

 n∑
i=1

αi

A

∏
p∈Ωi

(
1− χ(p)

p

)
−

n∑
j=1

β j

B

∏
p∈Ω′

j

(
1− χ(p)

p

)

+
n∑

i=1

αiδΩi

A

∑
p∈Ωi

log p
p−1

−
n∑

j=1

β jδΩ′
j

B

∑
p∈Ω′

j

log p
p−1

= 0,

a contradiction to Proposition 3.2.2. �
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5
ALGEBRAIC INDEPENDENCE RESULTS

5.1 Introduction

Let α1, . . . ,αn be complex numbers. They are said to be algebraically independent if

P(α1, . . . ,αn) 6= 0 for any non-zero polynomial P(x1, . . . , xn) ∈ Q[x1, . . . , xn]. Otherwise,

the numbers α1, . . . ,αn are said to be algebraically dependent. An infinite set of complex

numbers is called algebraically independent if every finite subset of it is algebraically

independent.

We begin with the following remarkable theorem of Lindemann-Weierstrass.

Theorem 5.1.1 (Lindemann-Weierstrass). If α1, . . . ,αn are algebraic numbers which are

linearly independent over Q, then

eα1 , . . . , eαn

are algebraically independent.
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The above theorem is a special case of a far reaching conjecture, proposed by Stephen

Schanuel in the 1960s.

Conjecture 5.1.2 (Schanuel). Let α1, . . . ,αn be complex numbers which are linearly inde-

pendent over Q. Then among the following numbers

α1, . . . ,αn, eα1 , . . . , eαn ,

at least n are algebraically independent.

Remark 5.1.3. Note that the Q-linear independence of the numbers α1, . . . ,αn is a necessary

condition as can be seen by taking α1 = iπ and α2 = 2iπ.

The following consequence of Schanuel’s conjecture, which is known as the weak

Schanuel conjecture, generalises Baker’s theorem. See [13, 24] for more details.

Conjecture 5.1.4 (weak Schanuel conjecture). Let α1, · · · ,αn be non-zero algebraic num-

bers such that the numbers logα1, · · · , logαn areQ-linearly independent. Then logα1, · · · , logαn

are algebraically independent.

For a proof of Theorem 5.1.1 and consequences of Conjecture 5.1.2 and Conjecture 5.1.4,

we refer to [13, 24].

In this chapter, we present some results dealing with the algebraic independence of

generalised Euler-Briggs constants. The question of algebraic independence of numbers

is generally a delicate one with very few explicit results. Theorems in this chapter are

conditional subject to the weak Schanuel conjecture.
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5.2 Some Definitions and Notations

For a, q ∈N and (q,PΩ)= 1, we denote

γ∗(Ω,a, q) := qγ(Ω,a, q)
δΩ

.

Definition 5.2.1. We call a finite set {Ω1, · · · ,Ωn} of sets to be irreducible if

n⋃
i=1
Ωi 6= ⋃

j∈J
Ω j

for any proper subset J ⊂ {1, · · · ,n}. We call an infinite set X of sets to be irreducible if

every finite subset of X is irreducible.

To give an example, let

p1 < p2 < ·· ·

be a sequence of distinct prime numbers and Ωi := {pi}, then {Ωi : i ∈N} is an irreducible

set. On the other hand, the set of sets

{p1}, {p2}, {p1, p2}

where pi’s are distinct prime numbers is not irreducible.

In the same spirit, we define the following:

Definition 5.2.2. A finite subset I of N is called irreducible if and only if

P(I) 6= ⋃
J(I

P(J),

where for a subset J of N, P(J) denotes the set of all prime divisors of the elements of J.

An infinite subset T ⊆N is called irreducible if all finite subsets of T are irreducible.

For example, a subset of primes is irreducible, whereas a set consisting of a prime and

its powers is not irreducible.
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5.3 Statements of the theorems

With the above notations in place, we prove the following theorems in [14].

Theorem 5.3.1. Suppose that the weak Schanuel conjecture is true. Let q ∈N and T1 be an

infinite set consisting of finite subsetsΩ of primes with (PΩ, q)= 1. For a ∈N with 1≤ a ≤ q

and (a, q)= 1, consider the set

S1 := {γ∗(Ω,a, q)−γ− ∑
χ6=χ0
χ mod q

α∗
χ,Ω,qL(1,χ) | Ω ∈ T1},

where χ runs over non-principal Dirichlet character modulo q and

α∗
χ,Ω,q := χ(a)

∏
p∈Ω

(
1− χ(p)

p

)(
1− 1

p

)−1 ∏
p|q

(
1− 1

p

)−1
.

Then the elements of S1 are algebraically independent if the infinite set T1 is irreducible.

In our next theorem, we fix an Ω and vary q in an irreducible subset T of N.

Theorem 5.3.2. Suppose that the weak Schanuel conjecture is true. Let Ω be a finite set of

primes. Assume that T2 is an infinite irreducible subset of natural numbers consisting of

integers which are co-prime to the primes in Ω. Also fix a ∈N such that (a, q) = 1 for all

q ∈ T2. Then the elements of the set

S2 := {γ∗(Ω,a, q)−γ− ∑
χ6=χ0
χ mod q

α∗
χ,Ω,qL(1,χ) | q ∈ T2},

where α∗
χ,Ω,q is as in Theorem 5.3.1 are algebraically independent.

5.4 Proof of Theorem 5.3.1

Let T1 be an infinite set consisting of finite subsets Ω of primes with (PΩ, q)= 1. We recall

the following expression for generalised Euler-Briggs constants proved in Chapter 3.
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For a finite set of primes Ω and natural numbers a, q such that (a, q)= 1= (PΩ, q)= 1,

we have

γ(Ω,a, q)= 1
ϕ(q)

∑
χ mod q
χ6=χ0

χ(a)L(1,χ)
∏
p∈Ω

(
1− χ(p)

p

)
+ δΩ

q

(
γ+∑

p|q

log p
p−1

+ ∑
p∈Ω

log p
p−1

)
.

Hence for an Ω in T1 and natural numbers a, q with (a, q)= 1, we get that

(5.4.1) AΩ := γ∗(Ω,a, q)−γ− ∑
χ6=χ0
χ mod q

α∗
χ,Ω,q L(1,χ)= ∑

p∈Ω

log p
p−1

+∑
p|q

log p
p−1

.

Hence by Conjecture 5.1.4, it is sufficient to show that the elements AΩ’s for Ω ∈ T1 are

linearly independent over Q. We prove it by contradiction. Suppose there exists a finite

subset T ′
1 = {Ω1, . . . ,Ωk} of T1 and integers m1, . . . ,mk, not all zero, such that

(5.4.2) m1AΩ1 + ·· · + mk AΩk = 0.

Let us set Ω :=∪k
i=1Ωni . Then applying (5.4.1) in (5.4.2), we get

(5.4.3)
∑
p∈Ω

tp log p + ∑
`|q

r` log` = 0,

where tp, r` ∈ Q and p ∈ Ω with (p, q) = 1. Being a subset of T1, the set T ′
1 is also an

irreducible set. Also note that not all the mi’s are zero. Hence it follows that not all the

tp’s are zero. This is a contradiction to (5.4.3) as the set of primes is multiplicatively

independent. �

5.5 Proof of Theorem 5.3.2

In this section, as in the case of Theorem 5.3.1, it is sufficient to show that the elements of

S2 are linearly independent over Q. Suppose not, then there exists a finite subset {q1, . . . , qn}
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of T2 and integers m1, . . . ,mn, not all 0, such that

n∑
i=1

mi

γ∗(Ω,a, qi)−γ−
∑
χ6=χ0

χ mod qi

α∗
χ,Ω,qi

L(1,χ)

= 0,

i.e. ∑
p∈Ω

log p
p−1

n∑
i=1

mi +
n∑

i=1
mi

∑
p|qi

log p
p−1

= 0.

Without loss of generality, let m1 be non-zero. Since T2 is irreducible, by definition

all finite subsets of T2 are irreducible. From definition, we get that P({q1, q2, . . . , qn}) 6=
P({q2, . . . , qn}) and hence there exists a prime p such that p | q1 but p - q j for all j 6= 1. This

implies that the coefficient of log p is m1
p−1 6= 0, a contradiction to the fact that primes are

multiplicatively independent. �
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6
GENERALISED EULER-BRIGGS

CONSTANTS AND INFINITE SERIES

In this chapter, we will revisit a theorem of Lehmer [21], where he established an identity

involving Euler’s totient function ϕ, γ and the Euler’s constants in arithmetic progressions

considered by Briggs [7]. We extend this theorem for the class of generalised Euler-Briggs

constants which in turn gives us an alternate proof of the theorem of Lehmer. Our first

section consists of all the basic lemmas required to prove the theorems of this chapter. In the

penultimate section, following the prototypical result of Lehmer [21] about the existence

of periodic Dirichlet series at s = 1, we furnish a necessary and sufficient condition for

the existence of a periodic Dirichlet series at s = 1 with period q, twisted by the principal

Dirichlet character modulo M where (q, M) = 1. We also express this sum as a linear

combination of generalised Euler-Briggs constants. In the last section, we prove a result
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about the special values of a shifted periodic Dirichlet series which also can be seen as a

variant of Hurwitz zeta function. We end the chapter by proving a theorem connecting some

rational functions with the generalised Euler-Briggs constants under certain conditions.

6.1 Basic lemmas

In this section we provide all the results that are required to prove our theorems. From

now on, by ζn we denote a primitive n-th root of unity, Φn(X ) denotes the n-th cyclotomic

polynomial i.e. the minimal polynomial of ζn over Q and we will always consider the

principal branch of logarithm.

Lemma 6.1.1. For the n-th (n > 1) cyclotomic polynomial

Φn(X ) := ∏
(a,n)=1

1≤a≤n−1

(X −ζa
n),

Φn(1) ∈N.

Proof. Clearly Φn(1) ∈Z. We only have to show that it is positive. We prove it by induction

on n.

Note that Φ2(1)= 2. Also,

Φn(X )= X n −1∏
d|n
d<n

Φd(X )
= X n−1 +·· ·+1∏

d|n
1<d<n

Φd(X )
.

Thus by induction hypothesis Φn(1)> 0. �

Lemma 6.1.2. Let n > 1 be an integer having at least two prime divisors, then Φn(1)= 1.

Proof. We first note that for any n ≥ 1,

X n −1=
n∏

i=1
(X −ζi

n).
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i.e.,

X n−1 +·· ·+1=
n−1∏
i=1

(X −ζi
n).

Putting X = 1, we get that for all n ≥ 1,

(6.1.1) n =
n−1∏
i=1

(1−ζi
n).

Now suppose that n = pa1
1 · · · par

r , with r ≥ 2. Using (6.1.1), we get that

(6.1.2)
n−1∏
j=1

(1−ζ j
n)=

r∏
i=1

p
ai
i −1∏
j=1

(1−ζ j
p

ai
i

).

Note that all the terms in the right hand side of (6.1.2) appear in the left hand side of (6.1.2).

Now since r ≥ 2, ζp
ai
i

is not a primitive n-th root of unity, hence by cancellation we obtain

α
∏

1≤ j≤n−1
( j,n)=1

(1−ζ j
n)= 1,

for some α ∈Z[ζn]. Hence it follows that (1−ζn) is a unit and thus its norm

∏
1≤ j≤n−1
( j,n)=1

(1−ζ j
n)=±1,

i.e. Φn(1)=±1. Then by Lemma 6.1.1, we obtain that Φn(1)= 1. �

Lemma 6.1.3. For n ≥ 1,

n−1∑
b=1

log(1−ζb
n)= log

(
n−1∏
b=1

(1−ζb
n)

)
.

Proof. For the principal branch of logarithm, we have log z = log |z|+ iθ, where z = |z|eiθ

and −π< θ ≤π. Hence log z̄ = log |z|− iθ. Thus

log z+ log z̄ = log |z|2 = log(zz̄).

We know that the only self conjugate roots of unity are ±1.
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Let ζb
n 6= ±1. Then ζ̄b

n is also a n-th root of unity and not equal to ζb
n. Hence

log(1−ζb
n)+ log(1− ζ̄b

n)= log((1−ζb
n)(1− ζ̄b

n)),

which is the logarithm of a positive real number.

Now if ζb
n = −1, then log(1−ζb

n) = log2. Thus
∑n−1

b=1 log(1−ζb
n) can be rewritten as a

sum of logarithms of positive real numbers and hence can be written as in Lemma 6.1.3. �

6.2 An identity of Lehmer

We begin this section with the following definition:

Definition 6.2.1. For natural numbers a, q ≥ 1, define

Φ(q) := ∑
1≤a≤q
(a,q)=1

γ(a, q).

In 1975, Lehmer proved the following identity about Φ(q) while studying Euler’s

constants in arithmetic progressions.

Theorem 6.2.2 (Lehmer [21]). There exists a natural number Nq such that

qΦ(q)=ϕ(q)γ+ log Nq,

where ϕ denotes Euler’s totient function.

More precisely, Lehmer showed that Nq is equal to
∏

p|q pϕ(q)/(p−1). In order to prove

this, Lehmer used properties of Möbius function and Möbius inversion formula.

To extend the above theorem for generalised Euler-Briggs constants, we first have the

following definition.
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Definition 6.2.3. For a finite set of primes Ω and a natural number q co-prime to PΩ,

ΦΩ(q) := ∑
1≤a≤q
(a,q)=1

γ(Ω,a, q).

With this definition we prove the following theorem in [15]:

Theorem 6.2.4. Let Ω be a finite set of primes and q be a natural number co-prime to PΩ.

Then

qΦΩ(q)=ϕ(q)γ(Ω)+δΩ log Nq,

where ϕ denotes Euler’s totient function and as before Nq =∏
p|q pϕ(q)/(p−1).

To prove the result we will require the following theorem proved in [17].

Theorem 6.2.5. Let Ω be a finite set of primes and q ≥ 1 such that (q,PΩ)= 1. Then

qγ(Ω,a, q)−δΩγ = δΩ
∑
p∈Ω

log p
p−1

− ∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′

q−1∑
b=1

ζ−ab
q log(1−ζbPΩ′

q ),

where Card(Ω′) denotes the cardinality of the set Ω′.

Proof of Theorem 6.2.4 By using Theorem 6.2.5, we write,

qΦΩ(q) = ∑
(a,q)=1

(
δΩγ + δΩ

∑
p∈Ω

log p
p−1

− ∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′

q−1∑
b=1

ζ−ab
q log(1−ζbPΩ′

q )

)

= δΩϕ(q)γ + δΩϕ(q)
∑
p∈Ω

log p
p−1

− ∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′

q−1∑
b=1

nb log(1−ζbPΩ′
q ),

where nb := TrQ(ζq)/Q(ζ−b
q ) ∈Z. Putting a = q = 1 in Theorem 6.2.5, we get

qΦΩ(q)=ϕ(q)γ(Ω)− ∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′

q−1∑
b=1

nb log(1−ζbPΩ′
q ).

Now nb = nbPΩ′ as (PΩ′ , q)= 1. Therefore

q−1∑
b=1

nb log(1−ζbPΩ′
q )=

q−1∑
b=1

nbPΩ′ log(1−ζbPΩ′
q )=

q−1∑
b=1

nb log(1−ζb
q).
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Also,

δΩ = ∏
p∈Ω

(1− 1
p

)= ϕ(PΩ)
PΩ

= ∑
d|PΩ

µ(d)
d

= ∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′
.

Thus we obtain

qΦΩ(q)=ϕ(q)γ(Ω)−δΩ
q−1∑
b=1

nb log(1−ζb
q).

Let us set

Nq :=
q−1∏
b=1

(1−ζb
q)−nb .

We write

Nq =
∏
d|q

∏
(b,q)=d

1≤b≤q−1

(1−ζb
q)−nb .

Now if (b1, q)= (b2, q), then ζ−b1
q and ζ−b2

q are conjugate to each other and hence nb1 = nb2 .

So, for all b such that (b, q)= d, nb = nd. Also by Lemma 6.1.1, one has

∏
(b,q)=d

1≤b≤q−1

(1−ζb
q)=Φq/d(1) ∈N,

where Φq/d is the q/d-th cyclotomic polynomial. Hence

Nq =
∏
d|q
Φq/d(1)−nd .

By Lemma 6.1.2, we know that Φq/d(1) 6= 1 only if q/d = pk for some prime p and k ≥ 1.

Now for q/d = pk, we find out nd explicitly. In fact

nd = TrQ(ζq)/Q(ζ−d
q )

= TrQ(ζq)/Q(ζq/d)

= [Q(ζq) :Q(ζpk )] TrQ(ζpk )/Q(ζpk )

We know that the minimal polynomial of ζpk is

X pk−1(p−1) + X pk−1(p−2) +·· ·+ X pk−1 +1.
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6.2. AN IDENTITY OF LEHMER

For k ≥ 2, the coefficient of X pk−1(p−1)−1 is 0, i.e. TrQ(ζpk )/Q(ζpk ) = 0 and for k = 1,

TrQ(ζp)/Q(ζp)=−1. Hence

nd =


0 for k ≥ 2,

−ϕ(q)/p−1 for k = 1.

This yields

Nq =
∏
p|q

pϕ(q)/p−1.

Now following the proof of Lemma 6.1.3, we get

qΦΩ(q)=ϕ(q)γ(Ω)+δΩ log Nq.

�

Remark 6.2.6. Besides giving a new proof of Lehmer’s theorem, our work gives a natural

explanation for the exponent ϕ(q)/(p−1) appearing in the product.

Now we state and prove our next identity:

Theorem 6.2.7. Let q, M be natural numbers such that a ≡ 0 mod M and (q, M)= 1. Then

γ(Ω,a, q)= γ(Ω)
q

− δΩ log q
q

− ΨΩ(a/q)
q

,

where Ω is the set of prime divisors of M and

ΨΩ(x)=: x
∑
n≥1

(n,M)=1

1
n(n+ x)

for x ≥ 0.
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Proof. Let χ0 be the principal character modulo M, Ω be the set of prime divisors of M

and δΩ be as in the introduction. We have

γ(Ω,a, q) = lim
N→∞

 ∑
m≤a+Nq

m≡a mod q

χ0(m)
m

− δΩ

q
log(a+Nq)


= lim

N→∞

(
N∑

n=0

χ0(a+nq)
a+nq

− δΩ

q
log(a+Nq)

)

= χ0(a)
a

+ lim
N→∞

(
N∑

n=1

(
χ0(nq)

nq
− χ0(nq)

nq
+ χ0(a+nq)

a+nq

)
− δΩ

q
log(a+Nq)

)

= γ(Ω)
q

+ lim
N→∞

(
−δΩ

q
log

a+Nq
N

−
N∑

n=1

(
χ0(nq)

nq
− χ0(a+nq)

a+nq

))
.

Since (q, M)= 1 and a ≡ 0 mod M, we have

(n, M)= 1 ⇐⇒ (a+nq, M)= 1.

Hence

γ(Ω,a, q) = γ(Ω)
q

− δΩ

q
log q − lim

N→∞

 ∑
1≤n≤N
(n,M)=1

(
1

nq
− 1

a+nq

)
= γ(Ω)

q
− δΩ

q
log q − ΨΩ(a/q)

q
.

�

6.3 Existence of periodic Dirichlet series at s = 1

In this section, we give an equivalent condition for convergence of a periodic Dirichlet

series. This result is in the spirit of the following well-known result due to Lehmer.

Theorem 6.3.1 (Lehmer [21]). Let f be a periodic arithmetic function with period q ≥ 1.

Then a necessary and sufficient condition for the convergence of
∑

n≥1
f (n)

n is
∑q

a=1 f (a)= 0.

In that case the sum is equal to
∑q

a=1 f (a)γ(a, q).
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In [15], we prove:

Theorem 6.3.2. Let f be a periodic arithmetic function with period q ≥ 1 and M be a

natural number co-prime to q. Then

∑
n≥1

(n,M)=1

f (n)
n

converges if and only if
∑q

a=1 f (a)= 0. Moreover, whenever the above series converges, we

have ∑
n≥1

(n,M)=1

f (n)
n

=
q∑

a=1
f (a)γ(Ω,a, q),

where Ω is the set of prime divisors of M.

Proof. Let Ω be the set of prime divisors of M and χ0 be the principal character modulo

M. We write

∑
n≤x

(n,M)=1

f (n)
n

= ∑
n≤x

f (n)χ0(n)
n

=
q∑

a=1

∑
n≤x

n≡a mod q

f (n)χ0(n)
n

=
q∑

a=1
f (a)

∑
n≤x

n≡a mod q

χ0(n)
n

=
q∑

a=1
f (a)

 ∑
n≤x

n≡a mod q

χ0(n)
n

− δΩ log x
q

 + δΩ log x
q

q∑
a=1

f (a).

Taking x →∞, we see that

∑
n≥1

(n,M)=1

f (n)
n

=
q∑

a=1
f (a)γ(Ω,a, q)

if and only if
∑q

a=1 f (a)= 0. �
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Remark 6.3.3. Let q, M be co-prime natural numbers and χ0 be the principal character

modulo M. Then by Theorem 6.3.1, a necessary and sufficient condition for the series

∑
n≥1

(n,M)=1

f (n)
n

= ∑
n≥1

f (n)χ0(n)
n

to converge is that
∑qM

a=1 f (a)χ0(a)= 0. Note that in Theorem 6.3.2, we obtain a condition

involving a sum over smaller set of numbers. However it can be checked that

qM∑
a=1

f (a)χ0(a)= 0 ⇐⇒
q∑

a=1
f (a)= 0.

To see this, note that

qM∑
a=1

f (a)χ0(a)=
q∑

a=1
f (a)

( M−1∑
n=0

χ0(a+nq)
)

Now for any 1≤ a ≤ q, we claim that

{a+nq : 0≤ n ≤ M−1}

is a complete set of residue classes modulo M. Clearly there are M numbers in the above

set. Hence if we show that they are distinct modulo M, then we are done. If

(a+n1q)≡ (a+n2q) mod M,

for 0 ≤ n1 < n2 ≤ M −1, then M divides (n2 −n1)q, a contradiction as (q, M) = 1. Thus

the inner sum in the right hand side of the above equation is ϕ(M). Therefore we have

qM∑
a=1

f (a)χ0(a)=ϕ(M)
q∑

a=1
f (a).

6.4 An application of Theorem 6.3.2

Theorem 6.4.1. Let M, q be co-prime natural numbers and f be a periodic arithmetic

function with period q. Also let a ≤ b be co-prime natural numbers such that a ≡ 0 mod M.
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Then ∑
n≥0

(n,M)=1

f (n)
n+a/b

= b
q−1∑
t=0

f (t) γ(Ω, a+ tb, bq),

if and only if
∑q

t=1 f (t)= 0. Here Ω is the set of prime divisors of M.

Proof. Since (a,b)= 1 and a ≡ 0 mod M, we have

(n, M)= 1 ⇐⇒ (a+nb, M)= 1.

Hence we can write ∑
n≥0

(n,M)=1

f (n)
n+a/b

= ∑
m≥1

(m,M)=1

g(m)
m

,

where

g(m)=


bf (n) for m = a+nb,

0 otherwise.

Since g is a periodic function of period bq, using Theorem 6.3.2, we get

∑
m≥1

(m,M)=1

g(m)
m

=
bq∑
r=1

g(r)γ(Ω, r,bq)= b
q−1∑
t=0

f (t)γ(Ω,a+ tb,bq)

if and only if
bq∑
r=1

g(r)= 0 ⇐⇒
q∑

t=1
f (t)= 0.

�

6.5 Infinite series involving rational functions

In the following theorem we express a series involving rational functions in terms of finite

linear combination of generalised Euler-Briggs constants and logarithm of natural numbers.
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Theorem 6.5.1. Let A(X ),B(X ) ∈ Q[X ] be non-zero polynomials with deg A < degB.

Suppose that B(X ) has distinct rational roots with the factorisation

B(X )= c
r∏

j=1
(X +a j/b j),

where a j ≤ b j are co-prime natural numbers. Let M be a natural number such that

a j ≡ 0 mod M for all j. Then the following sum

∑
n≥0

(n,M)=1

A(n)
B(n)

converges if and only if deg A < degB−1. In this case, we have

∑
n≥0

(n,M)=1

A(n)
B(n)

=
r∑

j=1
c j( γ(Ω,a j,b j) + δΩ

b j
logb j)

for some explicitly determined constants c j ∈Q. Here Ω is the set of prime divisors of M.

Proof. Since B(X ) has simple rational roots with deg A < degB, using partial fractions,

we can write

A(X )
B(X )

=
r∑

j=1

c j

a j +b j X
, where c j ∈Q.

Hence

∑
0≤n≤x

(n,M)=1

A(n)
B(n)

=
r∑

j=1
c j

∑
0≤n≤x

(n,M)=1

1
a j +b jn

.

Also by the hypothesis of the theorem, we have

(n, M)= 1 ⇐⇒ (a j +b jn, M)= 1.
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Thus

∑
n≥0

(n,M)=1

A(n)
B(n)

= lim
x→∞

r∑
j=1

c j
∑

1≤m≤(x+1)b j
m≡a j mod b j

(m,M)=1

1
m

= lim
x→∞

r∑
j=1

c j


∑

m≤(x+1)b j
m≡a j mod b j

(m,M)=1

1
m

− δΩ

b j
log(x+1)b j + δΩ

b j
log(x+1)b j

 .

Note that the condition deg A(X )≤ degB(X )−2 is equivalent to the condition

r∑
j=1

c j

b j
= 0

which in fact is a necessary as well as sufficient condition for the convergence of the series

∑
n≥0

(n,M)=1

A(n)
B(n)

.

Therefore we have

∑
n≥0

(n,M)=1

A(n)
B(n)

=
r∑

j=1
c j

(
γ(Ω,a j,b j) + δΩ

b j
logb j

)
.

�
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