
DEFINABILITY AND DECIDABILITY IN FIRST
ORDER THEORIES OF GRAPH ORDER

By

RAMANATHAN THINNIYAM SRINIVASAN

MATH10201204005

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February, 2019

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library

to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgement of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may be

granted by the Competent Authority of HBNI when in his or her judgement the proposed

use of the material is in the interests of scholarship. In all other instances, however,

permission must be obtained from the author.

Ramanathan Thinniyam Srinivasan

DECLARATION

I hereby declare that the investigation presented in the thesis has been carried out by

me. The work is original and has not been submitted earlier as a whole or in part for a

degree / diploma at this or any other Institution / University.

Ramanathan Thinniyam Srinivasan

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Journal

1. “Defining recursive predicates in graph order”, R. S. Thinniyam, in Logical Methods

in Computer Science (LMCS), 2018 September, Volume 14, Issue 3.

Conferences

1. “Definability in first order theories of graph orderings”, R. Ramanujam, R. S. Thin-

niyam, in International Symposium on Logical Foundations of Computer Science

(LFCS), 2016 January, (pp. 331-348). Springer, Cham.

2. “Definability of recursive predicates in the induced subgraph order”, R. S. Thinniyam,

in Indian Conference on Logic and Its Application, 2017 January, (pp. 211-223).

Springer, Berlin, Heidelberg.

3. “Decidability in the substructure ordering of finite graphs”, A. Padmanabha, R. S.

Thinniyam, presented at Logic Colloquium, 23 to 28 July 2018, Udine, Italy.

Ramanathan Thinniyam Srinivasan

DEDICATIONS

To the one who came before me

and to the one who will come after.

ACKNOWLEDGEMENTS

I would like to acknowledge the support I have received and continue to receive from

my parents, without which it would have been impossible for me to find my bearings. I

am grateful to my guide Prof R. Ramanujam who was more generous with his time than I

could have imagined and gave me the space to explore freely. Thanks is also due to the

faculty of the TCS department who have taught me things both academic and non-academic

during the past six years. I am indebted to my friends who ensured that I did not become a

vegetable when the going got tough.

Contents

Synopsis i

List of Figures ix

1 Introduction and Literature Survey 1

1.1 Studies of Substructure Orderings over Finite Structures 2

1.2 Term Rewriting Literature and the Subword Order 6

1.3 Results and Thesis Organization . 8

2 Preliminaries 19

2.1 First Order Logic . 19

2.2 Structures over Graphs and Graph Orders 25

2.3 Computability and Arithmetic . 29

2.3.1 Turing Machines and Representations 29

2.3.2 Arithmetical Predicates over Graphs 33

3 Mutual Interpretability of Arithmetic and Graph Order 37

3.1 Defining Basic Graph Theoretic Predicates in Graph Order 37

3.1.1 Basic Predicates in the Subgraph Order 41

3.1.2 Basic Predicates in the Minor Order 47

3.1.3 Basic Predicates in the Induced Subgraph Order 51

3.2 Defining Arithmetic in Graph Order . 51

3.2.1 Defining Addition in Graph Order 52

3.2.2 Defining Multiplication in Graph Order 54

3.3 Defining Graph Orders in Arithmetic . 56

3.3.1 Basic Predicates in Arithmetic 57

3.3.2 Defining Graph Orders in Arithmetic 61

4 Defining Arithmetical Predicates in Arbitrary Structures over Graphs 67

4.1 Defining Recursively Enumerable Predicates in Arithmetic 68

4.2 Capable Structures . 72

4.3 The Induced Subgraph Order is Capable 78

5 Defining Arithmetical Predicates in the Subgraph Order 87

5.1 (G,s, disjointUnion, sameSize) is Capable 88

5.1.1 Defining CP4C . 90

5.1.2 Defining G̃ . 93

5.1.3 Defining constructFromCycles 97

5.2 The Subgraph Order is Capable . 98

5.2.1 Defining Disjoint Union in the Subgraph Order 98

5.2.2 Defining sameSize in the Subgraph Order 103

5.3 (G,m, sameSize) is Capable . 109

6 Decidability in Graph Order 111

6.1 Existential Fragments . 113

6.1.1 Existential Fragment without Constants 114

6.1.2 Existential Fragment with Constants 116

6.1.3 Positive Existential Fragment with Constants 120

6.2 Finite Variable Fragments . 124

6.2.1 The FO3 Fragment of the Induced Subgraph Order 125

6.2.2 FO1 fragment of graph order 125

6.2.3 FO2(+) Fragment of the Induced Subgraph Order 128

6.3 Towards FO2 Decidability . 136

6.3.1 Definability in Locally Recursive Posets 137

6.3.2 Constants in FO2 . 141

7 Future Work and Conclusion 145

7.1 Definability in Graph Order . 145

7.2 Decidability in Graph Order . 149

Bibliography 153

Synopsis

Introduction

Finite graphs are used to model a variety of problems (see book on applications of graph

theory by Foulds [15]) and are of central importance in computer science. There are

different variants of graphs such as directed graphs, undirected graphs, graphs with edge

weights etc. which are used to model different situations. In this thesis, we restrict our

study to finite, undirected, simple graphs, that is, ones where the edge relation E is a

symmetric and irreflexive binary relation. In particular, we study the first order theory

of structures of the kind (G, ⌧) where G is the set of isomorphism types of finite graphs;

and the vocabulary ⌧ contains a binary relation which is interpreted as a partial order.

There are several natural candidates for the partial order which arise from graph theory,

and we study the induced subgraph, subgraph and minor orders (denoted i,s and m

respectively) with an emphasis on the induced subgraph and subgraph relations. We will

call such theories first order theories of graph order.

The study of the first order theory of (N,+,⇥), called first order arithmetic (or simply

arithmetic) has a long and storied history (see survey by Bés [3]). Another example of the

study of the first order theory of a structure is Tarski’s celebrated decision procedure for

the first order theory of real arithmetic (see survey by Dries [41]).

These examples follow a particular pattern: collect the objects of interest into one

i

infinite domain D, specify a finite set of operations ⌧ of interest (addition and multiplication

in the case of numbers) and study the first order theory of the structure (D, ⌧). The study

of first order theories of graph order is exactly this kind of study where the objects of

interest are graphs. There is much less literature dealing with graph orders as compared to

arithmetic.

At this juncture, we would like to make a note of the difference between a major field

of logical study of finite graphs, namely Finite Model Theory (FMT) and the study of

graph orders. In FMT (and in its associated field of Descriptive Complexity), the approach

taken is that a single finite graph g = (V,E) is the model and the vocabulary is the edge

relation {E} (sometimes extended by other operators such as a total order on the finite

domain). We do not have explicit access to the edge relation in theories of graph order,

though as we shall see, the ‘internal structure’ of graphs can be accessed in an indirect

fashion using graph order.

We now describe two bodies of literature which are closely related to this thesis. The

first body of work is the study of substructure orderings on various kinds of finite objects

such as semi-lattices [20], posets [23], distributive lattices [21] and lattices [22] initiated

by Jězek and McKenzie. This was extended by Wires [43] to the case of graphs, where

the notion of substructure is the induced subgraph order. One of the main objectives in

Wires’ study is to understand the lattice Sg of classes of graph axiomatized by universal

theories. It turns out that the induced subgraph order is closely related to this structure

and the definability of constants in the induced subgraph order implies definability of the

finitely generated order-ideals of the induced subgraph order in the structure Sg.

Theorem (Wires [43]). Every element is definable as a constant in the first order theory

of (G,i, P3), where P3 is a constant interpreted as the path on three vertices. The only

non-trivial automorphism of (G,i) is the automorphism mapping every graph to its

complement.

On the way to proving the above theorem, Wires shows that many important graph

ii

theoretical predicates such as connectivity, disjoint union of graphs, independence number

etc. are definable in this first order theory which we find to be of independent interest. The

undecidability of the theory follows from the following fact:

Theorem (Wires [43]). First order arithmetic is interpretable in the first order theory of

(G,i, P3).

However, the computational content of the first order theory of induced subgraph is

not studied by Wires. Understanding the computational content of graph orders is one of

the primary motives of this thesis. In our attempt to do so, we crucially use the notion of

o-presentations introduced by Jězek and McKenzie and defined for graphs by Wires. An

o-presentation of a graph g is a representation of an ordered version of g as another graph

g̃. This can be used as a tool to relate edge information of g which is not available to us in

the vocabulary with induced subgraph information about g0.

The second body of work related to this thesis is the study of various kinds of orderings

on terms (which can be seen as ranked trees) and words (which can be seen as symmetric

labelled paths) which is a part of the term rewriting literature [9, 7]. Different kinds of

orders such as lexicographic path order, infix order and subword order have been studied in

this literature, of which the subword order is closest in spirit to the graph orders considered.

An early result which considers the subword order is by Kuske:

Theorem (Kuske [30]). The ⌃3 fragment of the subword order is undecidable, and the ⌃1

fragment is decidable.

Recently, the subword order has regained interest. The question about the decidability

of the ⌃2 fragment which was left open by Kuske was shown to be undecidable by

Karandikar and Schnoebelen [24]. This result was further strengthened by Halfon et al. to

show the following surprising result.

Theorem (Halfon et al. [18]). The ⌃1 theory of the subword order expanded with constants

is undecidable.

iii

There was also work done on finite variable fragments.

Theorem (Karandikar and Schnoebelen [24]). The FO3 fragment of the subword order

expanded by constants is undecidable. The FO2 fragment of the subword order with

constants is decidable.

The techniques used to obtain the above results are based on automata theory. Un-

fortunately, automata theory for tree and graphs is not as well understood as that for

words.

Contributions of the Thesis

We first summarize the main results on definability in graph order.

We show that arithmetic can be interpreted in each of the graph orders considered in

this thesis.

Theorem. The first order theories of each of the structures (G,i, P3),(G,s) and (G,m)

is mutually interpretable with first order arithmetic.

We then define the notion of a capable structure (G, ⌧) over graphs (see Definition 4.6)

and characterize the relations definable in such a structure.

Theorem. Let (G, ⌧) be a capable structure over graphs. A relation is definable in a

capable structure if and only if it is arithmetical.

The capability of the induced subgraph order can be seen as a corollary of results

obtained by Wires [9], but we provide explicit formulae for the same. The main technical

contribution of this thesis is the proof of capability of the subgraph order, during the course

of which we show the definability of natural graph theoretic predicates (such as counting

the number of edges of a graph and the disjoint union of graphs) in the subgraph order.

iv

As a corollary we also obtain the capability of the minor order when expanded by the

predicate sameSize(x, y) which holds if and only if x and y have the same number of

edges.

Theorem. Each of the structures (G,i, P3),(G,s) and (G,m, sameSize) is capable.

The above theorem gives us a characterization of the relations definable in graph order

and concludes the main results on definability in graph order. We prove some results

regarding the decidability of syntactic fragments of the induced subgraph order. These

results are summarized in the following table.

Table 1: Summary of decidability results for the induced subgraph order. A † indicates the
result also holds for the subgraph and minor orders.

Existential FO1 FO2 FO3

Pure NP-complete† -NA- ? ?
With constants Undecidable in NPNP \ coNPNP † ? Undecidable
Positive with NP-complete† in NPNP \ coNPNP † Decidable ?

constants

In the next section, we describe the organization of this thesis and discuss future

directions.

Organization of the Thesis

This thesis is comprised of the following chapters:

1. Introduction: We give an informal introduction to graph orders, summarize relevant

literature and describe the organization of the thesis.

2. Preliminaries: This chapter contains a brief summary of first order logic, definitions

related to graph orders and notions of recursively enumerable relations over graphs

and arithmetical relations over graphs. We introduce notation which will be used

throughout the thesis and the particular encodings of graphs as strings which allow

v

us to talk about recursively enumerable predicates over graphs using the Turing

Machine model. We also define a particular total order on the set of all finite graphs

G with respect to which the structures over graphs are arithmetical.

3. Mutual Interpretability of Arithmetic and Graph Orders: In this chapter we define

many graph families and graph relations in each of the three graph orders studied in

this thesis: the subgraph, the induced subgraph and the minor orders. These basic

definability results allow us to interpret arithmetic in a uniform way in graph order.

Though the converse is not unexpected, we show the definability of graph orders in

arithmetic.

4. Defining Arithmetical Predicates in Arbitrary Structures over Graphs: We give a

proof of the well known result that any recursively enumerable relation over numbers

is definable in first order arithmetic to ensure that the abstract definability result in

the second section of this chapter is self-contained. We then introduce the concept

of a capable structure over graphs, which is one which can interpret arithmetic and

define three particular graph theoretic predicates related to o-presentations. We then

show that any capable structure can define any relation which is arithmetical. An

important corollary is the definability of every recursively enumerable predicate

in capable structures. We then show that the induced subgraph order is a capable

structure. The capability of the induced subgraph order follows as a corollary from

the results in Wires [43] and our alternate development extensively uses the basic

predicates defined by Wires in the induced subgraph order.

5. Defining Arithmetical Predicates in the Subgraph Order: The capability of the

subgraph order uses the definability of two natural graph theoretic predicates

of independent interest not previously defined in literature: a ternary predicate

disjointUnion(z, x, y) if and only if z is the disjoint union of x and y, and a bi-

nary predicate sameSize(x, y) if and only if x and y have the same number of

edges. The proof is broken up into two parts. In the first, we show the capability of

(G,s, disjointUnion, sameSize) and in the second we show the definability of

vi

disjointUnion and sameSize in the subgraph order. As a corollary, we also obtain

the capability of the expansion of the minor order with the predicate sameSize.

This chapter may be considered the main technical contribution of this thesis.

6. Decidability in Graph Order: This chapter contains decidability results concerning

syntactic fragments of the induced subgraph order. The fragments considered are of

two kinds: expansions of the existential theory and finite variable fragments. The

existential theory of (G,i) is shown to be NP�complete and the existential theory

on expansion with constants, denoted (G,i,Cg), is shown to be undecidable. In the

case of finite variable restrictions, the FO3 fragment of (G,i,Cg) is shown to be

undecidable and the FO1 fragment decidable. We also show that the FO2(+) frag-

ment of (G,i,Cg), which is the restriction of FO2 to only positive formulae, is also

decidable. The decidability of the FO2 fragment is left open. The techniques used

by Karandikar and Schnoebelen [25] to show the decidability of the FO2 fragment

of the subword order implicitly contain a strategy for showing the decidability of the

FO2 fragment of the theory of any poset satisfying certain conditions. We separate

the logical and combinatorial concerns and define the notion of a locally recursive

poset for which this strategy works.

7. Future Work and Conclusion: We go through the results obtained in the thesis

and discuss possible extensions and strengthenings. Of particular interest is the

definability of recursively enumerable predicates using only existential formulae,

which we call the MRDP conjecture for graphs (the analog of MRDP theorem

for numbers [34]). On the decidability front, we have concentrated on syntactic

fragments of the induced subgraph order. The main open problem arising from

syntactic restrictions that may be taken up next is the decidability of the two variable

fragment of the induced subgraph order. We discuss work to be done on the other

graph orders as well as domain restrictions and structures over graphs with different

vocabularies.

vii

viii

List of Figures

1.1 The first few levels of the induced subgraph order i. Note the symmetry

arising from the automorphism f(g) = gc. 3

1.2 Initial layers of the object (G,i). Note that the edge relation i.e. the “in-

ternal structure” is not available to us directly, nor are the names indicated

inside the nodes. The arrows indicate the upper cover relation. 4

2.1 Isolated points, path, cycle, clique and star of order 5 from left to right. . . 28

2.2 From top to bottom we see how to obtain the graph UG(UN(g)) 2 N

from any graph g 2 G using g = P3 as an example. The subscripts 2 and

10 in the numbers correspond to the base used. 32

3.1 Contraction of the edge uv which lies on a path between high degree

vertices cannot be simulated using deletion. The arrow is the covering

relation under the minor order. 38

3.2 The first few layers of the subgraph order s. Note the lack of symmetry

as compared to the induced subgraph order. The last layer containing S4

and P4 is incomplete. 41

3.3 All graphs above belong to the family pac. Only K2[· K3[· C5, K1[· K3[·

K3 [· C5, K3 [· K3 [· C5 belong to soc0 and only K3 [· K3 [· C5 is a soc.

Arrows indicate the covering relation under the subgraph order. 44

ix

3.4 Top Left: minimum cardinality tree with maximum degree k and maximum

path subgraph Pl. Bottom Right : tree tn containing n2 + 1 vertices. . . . 54

4.1 Top left: the graph S4. Bottom left: A vertex ordering of S4. Right: The

o-presentation corresponding to the given vertex ordering. 73

4.2 Maps UN and UG and how they act on R ✓ G. For any graph g 2 R it

is the case that UG(UN(g)) = g0 2 UG(UN(R)). For any graph g1 /2 R

correspondingly UG(UN(g1)) = g01 2 (UG(UN(G)) \ UG(UN(R))). . . . 75

4.3 Left: a pointed cycle sum. Right: a bicycle. 80

4.4 The CP4C graph corresponding to an edge between vertices vi and vj . . . 85

5.1 Left: a graph from the family twoC1s. Right: the graph double3star. . . 91

5.2 The gadget g0 for counting number of edges of the connected graph g = S4.

Note that g0 = c0 [· c1 [· c2 [· c3 with c0 = S4 and c3 = K4 104

5.3 The map fK taking the graph g = K1 [· P3 [· K3 [· S4 [· C5 to the graph

fK(g) = K1[· K3[· K3[· K4[· K5 belonging to the family unionOfCliques .105

6.1 Embedding finite posets in graph order : graphs gi, gj corresponding to

pi, pj such that pj <P pi. 115

x

Chapter 1

Introduction and Literature Survey

In this thesis we study the first order theories of structures over graphs with an emphasis

on graph orders. Structures over graphs are structures of the kind (G, ⌧) where G is the

set of all finite, undirected graphs, and ⌧ some set of relations and constants. Graph

orders are structures over graphs where ⌧ contains a partial order . The partial orders we

consider are the subgraph, induced subgraph and minor relations (see Figure 1.1 for an

initial segment of the induced subgraph order).

The questions about graph orders that we address are of two kinds. The first is that of

definability, which asks what kind of relations among graphs are definable using first order

formulae over graph order. The second is that of decidability, which asks for programs

which can decide the truth of first order sentences or fragments thereof.

The study of decidability and definability in first order theories over natural numbers

has a long history (see Bés [3] for a survey). Similar studies have been carried out for real

arithmetic, and include celebrated results such as Tarski’s quantifier elimination procedure

for real closed fields (see Arnon [1]) for a survey). However, the study of combinatorial

theories i.e. theories where the objects of interest are words, trees, graphs etc. has assumed

more importance more recently, since the advent of computer science.

1

One approach to the logical study of graphs is that taken by Finite Model Theory (FMT

for short, see Libkin [32]) and the related field of Descriptive Complexity (see Immerman

[19]). What follows is a simplistic account of FMT as is revelant to the study of finite

graphs. A fixed finite graph G = (V,E) is taken as the model with finite domain (vertex

set) V and the vocabulary consisting of the edge relation E (sometimes the vocabulary

may involve other predicates such an order on the vertices of the graph). Thus the

quantification in FMT is over the finite set V with variables denoting vertices.

In this thesis however, the domain is the set G and the quantification is over all graphs

with a variable denoting a graph. In particular, we do not have access to the edge relation

or ‘internal structure’ of a graph (see Figure 1.2). There is also a large difference in the

expressive power of first order logic (FOL) considered in these two diferent contexts.

While FOL in the FMT setting defines subsets of G, FOL over graph order can be used to

define relations of any arity over G.

FMT studies the set of all finite structures while the study of graph order is the study

of a single infinite structure (G,). There are two kinds of structures studied in literature

which are similar in nature to graph orders. The first are the substructure orderings of finite

structures which are not graphs, for example, the set of all finite posets. The second kind

of structures are orderings on words and terms. We give an overview of these two bodies

of work in the next two sections, and in the last section we discuss the organization of this

thesis.

1.1 Studies of Substructure Orderings over Finite Struc-

tures

In a series of papers, Ježek and McKenzie studied the substructure orderings over finite

objects such as semi-lattices [20], posets [23], distributive lattices [21] and lattices [22].

2

;g
N1

K2

N2

K3

P3

K2N1

N3

K4

Kite4

C4

Paw4

K3N1

S4

P4

P3N1

K2K2

K2N2

N4

Figure 1.1: The first few levels of the induced subgraph order i. Note the symmetry
arising from the automorphism f(g) = gc.

3

;g N1

K2

N2

K3

P3

K2N1

N3

Figure 1.2: Initial layers of the object (G,i). Note that the edge relation i.e. the “internal
structure” is not available to us directly, nor are the names indicated inside the nodes. The
arrows indicate the upper cover relation.

Wires [43] extended this work to the substructure order on graphs, also known as the

induced subgraph order. A related work by Kunos [29] studies directed graphs under the

subdigraph order.

One of the objectives in these studies is to understand universal classes of objects, not

necessarily finite. For instance, let K be a class of semi-lattices described by some set of

universal sentences. Ordering all such K by inclusion gives the lattice U . Let S be the set

of all finite semi-lattices. Then the map sending K to K \ S is an isomorphism between

U and the set of all order-ideals of S. Ježek and McKenzie observe that the definability

in U of the set of K which contain only finitely many elements (in other words, the set of

finitely generated order ideals of S) can be reduced to showing the definability in S of

every domain element as a constant. They proceed to show that this latter fact holds.

The equivalent question for the case of graphs is whether every graph is definable in

the first order theory of the structure (G,i). However, this is not possible due to the

fact that the map sending every graph g to its complement gc is an automorphism of the

induced subgraph order. This ‘natural automorphism’ turns out to be the only one, and it

4

can be broken by addition of a single constant. Wires shows that every constant can be

defined in the first order theory of (G,i, P3) where P3 is a constant for the path on three

vertices. In the course of doing so, he establishes the definability of many natural graph

theoretical predicates such as cardinality, disjoint union etc. as well as graph families such

as paths, cycles, stars, trees etc. in this structure. An important corollary obtained is the

undecidability of the first order theory of the induced subgraph order via interpretation of

arithmetic.

Wires also shows that the set of predicates definable in (G,i, P3) is exactly the set of

isomorphism invariant predicates definable in the first order theory of a simple expansion

CG 0 of the small category of graphs CG. The category CG can be thought of as a two-sorted

structure with domain G⇤ [F . The elements of G⇤ are ordered graphs which are those

whose vertex set is an initial segment of N. The elements in F are the arrows of the

category and are homomorphisms between elements of G⇤. A member of F is a triple

(g, f, g0) where f is a morphism from g to g0, where g, g0 2 G⇤. The composition relation

between arrows forms the vocabulary. The structure CG 0 should be thought of as a second

order structure since we are allowed to quantify over F . The fact that first order definability

in the induced subgraph order is equivalent to second order definability is a strong result

which implies our results regarding the induced subgraph order in Section 4.3.

The definability results obtained in this thesis differ from the above in their connection

to computation. We show that every relation over graphs which is arithmetical is definable

in graph order. Since the predicates in the vocabulary are recursive (and hence arithmetical),

this gives us a characterization: the predicates definable in graph order are exactly those

which are arithmetical. Our techniques rely crucially on the construction of objects known

as o-presentations introduced first by Ježek and Mckenzie [23]. In the case of graphs,

Wires defines o-presentations which are formed by attaching large cycles to the vertices

of the original graph g to obtain a new graph g0 (see Figure 4.1 for an example). While

originally used to show that every graph can be defined as a constant, o-presentations are

5

used in this thesis to define the edge relation in an indirect way using FOL over graph

order.

Another point of distinction compared to Wires [43] is that other graph orders of

significance in graph theory, such as the subgraph and minor orders, were not studied by

him. The work in this thesis highlights some of the similarities between these orders: for

instance, we give a uniform way to encode arithmetic in all three graph orders. However,

there are also interesting differences in the difficulty of defining different graph theoretical

predicates in these orders. For instance, the cardinality of a graph is easily defined in

the subgraph order as the largest member of the family N (of graphs consisting of only

isolated points) which is a subgraph; but it takes much more work in the induced subgraph

order. In the end, the results of this thesis indicate that the different graph orders considered

are equally powerful in terms of definability when we consider full FOL.

The results in this thesis also indicate that theories of graph order may be used to

formalize graph theoretic statements just as arithmetic (both first and second order variants)

may be used to formalize statements in number theory. Many theorems in an introductory

text on graph theory (such as Diestel [10]) may be written in theories of graph order. There

do exist important statements such as the Graph Minor Theorem [37] which quantify over

infinite subsets of G and are not expressible in theories of graph order.

In the next two sections we discuss the literature related to the work in this thesis.

1.2 Term Rewriting Literature and the Subword Order

This thesis can also be thought of as extending the study of structures of order over words

and trees to graphs. While structures with the domain set ⌃⇤ of finite words over an

alphabet ⌃ have been studied for some time (see Quine [35] on (⌃⇤, .) where . is a binary

function symbol for concatenation), the study of order theories of combinatorial objects is

more recent and arose as part of the term rewriting literature [42, 9, 7]. Treinen and Comon

6

[8] studied the lexicographic path ordering on words. Other orders such as subword, infix

etc. were studied by Kuske [30]. The decidability of restricted fragments of FOL over

different orders has been of interest (see Comon and Treinen [7] for a survey).

Out of the various orderings on words, the subword order (⌃⇤,sw) (where ⌃ = {a, b})

is the closest in nature to the orders studied in this thesis. In particular, we show that there

is a quantifier-free interpretation of the subword order in the induced subgraph order if we

have access to a constant for each domain element. Thus the subword order is a subposet

of the induced subgraph order. This allows us to transfer many of the undecidability results

for the subword order to the induced subgraph order. We now give an overview of what

has been accomplished in literature with regards to decidability in the subword order.

The study of decidability of the subword order has concentrated on syntactic fragments.

Work by Kuske [30] showed that the ⌃3 fragment is undecidable while the ⌃1 fragment is

NP-complete. This left open the question of the decidability of the ⌃2 fragment, which

was shown to be undecidable by Karandikar and Schnoebelen [24]. In the same paper,

the FO2 fragment of the subword order was shown to be decidable, even on addition of

all regular languages as unary predicates to the vocabulary. In a very surprising result,

Halfon et al [18] showed the undecidability of the ⌃1 fragment of the subword order when

expanded by constants for all words.

The upper bound on complexity given by Karandikar and Schnoebelen [24] was non-

elementary due to the techniques used, which involved complementation of automata. In

an attempt to improve the bound, the same authors introduced new techniques combined

with a deeper understanding of the combinatorial properties of piecewise testable (p.t.)

languages to give a 3EXPTIME decision procedure in [25]. The p.t. sets are a subset of

regular languages of words which have been extensively studied and form the first level of

what is called the dot-depth hierarchy (introduced by Brzozowski and Cohen[6]). The p.t.

sets were studied by Imre Simon in his PhD thesis [38]. We quote Denis Thérien on Imre

Simon’s work: ”His graduate work had major impact on algebraic theory of automata...”

7

[39].

The new techniques used by Karandikar and Schnoebelen involve the understanding of

various kinds of closure operations on p.t. languages. Such an understanding of closure

operations on infinite posets leads to an abstract decidability result of the FO2 fragment of

infinite posets which satisfy said closure properties. We exploit these techniques to give

some results in the case of graph order.

We would also like to note that Kudinov et al. [28] show that the subword order

can define any relation which is arithmetical. The paper by Kudinov et al is unrelated

to the term-rewriting literature above, and is part of the program on computability in

abstract structures stemming from Barwise’s treatise on admissible sets [2] and continued

by researchers from the Novosibirsk school [14].

1.3 Results and Thesis Organization

We recall that the graph orders studied in this thesis are the induced subgraph, subgraph

and minor orders. In the case of the induced subgraph order, the vocabulary is expanded

by adding a constant P3 for the path on three vertices. This is to break the automorphism

f : G ! G defined as f(g) = gc i.e. every graph is mapped to the graph obtained by

exchanging edges and non-edges (see Figure 1.1). We note that without the constant P3,

there is no way to distinguish between a graph and its complement using first order logic.

In the case of the subgraph and minor orders, the constant P3 is not required as there

do not exist any non-trivial automorphisms. In the rest of this section, when we talk of

the induced subgraph order, we assume that the constant P3 is also available to us unless

explicitly left out.

8

Chapter 1: Introduction and Literature Survey

This chapter expands on the introduction in this synopsis, explaining in more detail the

place of this thesis with respect to the literature.

Chapter 2: Preliminaries

We recall basic definitions from first order logic and graph theory. We also introduce

encodings of graphs as strings and vice versa. These are used to give formal definitions for

the notion of ‘recursively enumerable predicate over graphs’ used in this thesis. We also

define the notion of an ‘arithmetical predicate over graphs’.

Chapter 3: Mutual Interpretability of Arithmetic and Graph Order

This chapter contains many basic constructions which culminate in the definability of

arithmetic in the subgraph and minor orders. In the case of the induced subgraph order,

many of the graph theoretic predicates required to carry out the constructions in this thesis

are already present in Wires’ work [43]. We also show the definability of graph order in

arithmetic.

Many interesting predicates are definable using simple formulae with just an order

relation.

Theorem 1.1. The following predicates are definable in the subgraph and minor orders:

1. Covering relation: xl y if and only if x < y and there is no graph strictly between

them.

2. Constants N1, K2, K3, S4, P4 for the graph with one vertex, clique on two vertices,

clique on three vertices, star on four vertices, path on four vertices.

3. The family N of graphs with isolated points.

9

4. The cardinality of a graph: |x| = |y| if and only if x and y have the same number of

vertices.

The ability to define constants combined with atomic negation is powerful: for instance,

the formula S4 ⇥s x defines the family pac of graphs which are disjoint unions of paths and

cycles by avoiding degree 3 vertices. For a fixed cardinality n of the vertex set, collecting

the maximal graphs in the family pac under the subgraph order gives us the family soc of

disjoint unions of cycles. Bootstrapping on these basic constructions allows us to define

many families of graph theoretic interest.

Theorem 1.2. The families N ,K, forest, T , C,S,P , conn which denote isolated points,

cliques, forests, trees, cycles, stars, paths and connected graphs respectively (see Figure

2.1), are definable in the subgraph and minor orders.

The maximum degree and maximum path length of a graph are definable in the subgraph

and minor orders.

The family N is used to represent numbers, and numerical parameters of a graph

such as maximum degree are interpreted as belonging to this family. For instance, the

predicate maxDeg(x, n) which holds if and only if n 2 N and the maximum degree of a

vertex in x is |n|, is definable in the subgraph and minor orders. The definability of the

predicate maxDeg(x, n) is simply referred to as definability of maximum degree in the

above theorem.

At this point, we can construct gadgets to define arithmetic operations over the set N

used to represent numbers. For instance, given any n, there is a maximum tree tn under

the subgraph order which has maximum path subgraph P5 and maximum degree n; and

the cardinality of tn is n2 + 1. This gadget tn is used to define the arithmetical predicate

square(m,n) if and only if n,m 2 N and |n| = |m|2. Together with a gadget for defining

addition, we are able to define arithmetic.

Theorem 1.3. First order arithmetic is definable in the subgraph and minor orders.

10

We note that the result above does not immediately follow from the corresponding

result for the induced subgraph order obtained by Wires [43].

Theorem 1.4. The induced subgraph, subgraph and minor orders are mutually inter-

pretable with arithmetic.

Chapter 4: Defining Arithmetical Predicates in Arbitrary Structures

over Graphs

In this chapter, we establish some sufficient conditions for any arithmetical structure

over graphs (G, ⌧) to be able to define every arithmetical predicate over graphs. We call

such structures capable structures over graphs. Since every relation definable in any

arithmetical structure is also arithmetical, this gives a characterization of the relations

definable in a capable structure: a relation is definable in a capable structure if and only if

it is arithmetical. We recall the notion of an arithmetical structure and arithmetical relation

ober graphs.

Definition 1.5. A relational structure (G, ⌧) over graphs is called arithmetical if there

exists a total order t on G such that (G,t) is isomorphic to (N,) and all relations

R 2 ⌧ are arithmetical. In other words, if plust and timest are the ternary addition and

multiplication relations with respect to the order t, then every R 2 ⌧ is definable in

(G, plust, timest).

An arithmetical relation over graphs is one definable in (G, plust, timest).

In order to state what a capable structure is, we need the notion of an o-presentation.

Definition 1.6 (o-presentation). An o-presentation of g 2 G is another graph g0 constructed

as follows: Fix a vertex ordering v1 < v2 < · · · < vn of vertices of g. Let g00 be the graph

formed by the disjoint union of g and the cycles Cn+i+2 for each 1 i n. Add n

additional edges to g00 connecting each cycle Cn+i+2 to the corresponding vertex vi. The

resulting graph is g0.

11

The cycles of size n+ i+ 2 for 1 i n are called indicator cycles of a graph g on

n vertices.

The graph g0 as constructed above is not unique (see Figure 4.1); in fact there is a

bijective correspondence between vertex orderings of g and the set of o-presentations of g.

We write g0 2 g̃ to denote that g0 is an o-presentation of g.

Definition 1.7 (Capable Structure over Graphs). We call an arithmetical structure (G, ⌧) a

capable structure over graphs if it satisfies the following three conditions:

(C1) Arithmetic can be defined in (G, ⌧), in particular, the following predicates are

definable:

1. The family N of graphs which do not contain edges i.e. are made of isolated points.

2. The predicate plus(z, x, y) which holds if and only if x, y, z 2 N and |x|+ |y| = |z|.

3. The predicate times(z, x, y) which holds if and only if x, y, z 2 N and |x|⇥ |y| =

|z|.

(C2) The following predicates related to o-presentations are definable in (G, ⌧):

1. opres(x, y) which holds if and only if x is an o-presentation of y, also written x 2 ỹ.

2. edgeOP (x, i, j) which holds if and only if there exists a graph y such that x 2 ỹ and

in the vertex ordering induced on y by the o-presentation x, the vertices vi and vj in

y have an edge.

(C3) The predicate sameCard(x, y) which holds if and only if x and y have the same

number of vertices, is definable in (G, ⌧).

Theorem 1.8. For any (G, ⌧) which is a capable structure over graphs, every arithmetical

predicate R ✓ Gn over graphs is definable in (G, ⌧).

The proof of the above theorem has two ingredients: (1) arithmetical definability and

(2) the ability to define a binary predicate enc(x, y) which represents an injective map

12

enc : G ! N such that enc(x, y) is true iff enc(x) = y. Together, these two ingredients

allow us to go from a graph g to its corresponding image enc(g) which resides in N and

perform the required computation in the isomorphic copy of arithmetic (N , plus, times)

residing inside the graph order.

The rest of the chapter involves showing that the induced subgraph order is a capable

structure over graphs. The fact that the induced subgraph order is a capable structure is

a corollary of results obtained by Wires. We give an alternate presentation with explicit

formulae establishing that the induced subgraph order is capable.

Theorem 1.9. Every arithmetical predicate is definable in the induced subgraph order.

Chapter 5: Defining Arithmetical Predicates in the Subgraph Order

This chapter contains the constructions required to prove condition (C2) for the subgraph

order. There are subtle differences between the induced subgraph and subgraph orders.

For instance, in the induced subgraph order an o-presentation g̃ is constructed from g by

first constructing the graph g [·
S
· |g|
i=1 P|g|+i+1 which is the disjoint union of g with a set

of paths and then adding the rest of the vertices and edges. In contrast, we construct the

graph g [·
S
· |g|
i=1 C|g|+i+2 which is the disjoint union of g with a set of cycles and add the

remaining edges in the case of the subgraph order.

We reduce the problem to that of defining three other intermediate predicates. To state

the technical lemma, we need some definitions.

Definition 1.10. The graph Ci!1 is the connected graph formed by adding one new vertex

and one new edge to the cycle of cardinality i denoted Ci.

Given a graph g with |g| = n, an indicator cycle is a cycle Cn+i+2 where 1 i n.

Note that these are the cycles attached to vertices of g to form an o-presentation.

Lemma 1.11. The predicates opres and edgeOP are definable in the subgraph order

assuming the definability of the following predicates:

13

1. CP4C(x, i, j) holds if and only if i, j 2 N , 3 < i < j and x is constructed from the

graph Ci!1 [· Cj!1 by adding one additional edge between the unique degree one

vertices of Ci!1 and Cj!1.

2. G̃(x) holds if and only if x is an o-presentation of some graph.

3. constructFromCycles(x, y) holds if and only if y is constructed by adding |x|

edges to the graph g which is the disjoint union of x and all indicator cycles

corresponding to x.

Of the three intermediate predicates, CP4C is the easiest, followed by G̃ and

constructFromCycles(x, y) the most difficult. We break the proof up into two parts.

First we show that the structure (G,s, disjointUnion, sameSize) is capable, where

disjointUnion(z, x, y) is a ternary predicate which holds if and only if z is the disjoint

union of the graphs x and y and sameSize(x, y) is a binary predicate which holds if and

only if x and y have the same number of edges. Second, we show that disjointUnion and

sameSize are definable in the subgraph order.

Lemma 1.12. The predicate constructFromCycles is definable in the subgraph order

assuming the definability of the following predicates:

1. csum(x, n) holds if and only if x =
S
· n

i=1 Cn+i+2.

2. disjointUnion(z, x, y) holds if and only if z is the disjoint union of the graphs x

and y.

3. countEdges(x, n) holds if and only if n 2 N and x has |n| many edges.

The remainder of the chapter is devoted to the construction of gadgets to enable the

definition of disjoint union and edge counting. We sum up the results of this chapter and

the previous one with the formal statement of definability of arithmetical predicates in

graph order:

Theorem 1.13 (Arithmetical Predicates in Graph Orders). For a structure A, let Def(A)

14

be the set of all predicates definable in A. Then

Def(G, plust, timest) = Def(G,s) = Def(G,i, P3) = Def(G,m, sameSize).

Chapter 6: Decidability in Graph Order

In this chapter, we take up the issue of decidability. The ability to encode arithmetic implies

that the full first order theory of graph order is undecidable. We concentrate on examining

syntactic fragments, namely the existential fragment and the finite variable fragments; with

an emphasis on the induced subgraph order. Atomic negation and constants contribute

significant power towards definability of predicates. Hence we explore the consequences of

extending the vocabulary by constants and removal of negation in the syntactic fragments.

In Table 1.1 we summarize the decidability results obtained. We discuss some of them

below.

Table 1.1: Summary of decidability results for the induced subgraph order. A † indicates
the result also holds for the subgraph and minor orders.

Existential FO1 FO2 FO3

Pure NP-complete† -NA- ? ?
With constants Undecidable in NPNP \ coNPNP † ? Undecidable
Positive with NP-complete† in NPNP \ coNPNP † Decidable ?

constants

We first describe the results on the existential fragment. The following result is a

consequence of the fact that each of the graph orders is universal for finite posets.

Theorem 1.14. The existential theories of each of the induced subgraph, subgraph and

minor orders is NP-complete.

But on addition of constants to the vocabulary, we get an undecidable theory.

Theorem 1.15. The existential theory of the induced subgraph order with a constant

symbol for each graph (denoted 9⇤(G,i,Cg)) is undecidable.

15

The result is obtained via a quantifier free interpretation of the subword order in the

subgraph order; the analogous result for subword order having already been established by

Halfon et al. [18]. However, it is not clear whether it is possible to interpret the subword

order in the subgraph and minor orders. On further restriction to only the positive fragment,

we get back decidability.

Theorem 1.16. Let denote any one of i,s,m. The theory 9⇤(+)(G,,Cg), which

has formulae given by the grammar

� := c2x | x2y | 9y � | �1 ^ �2 | �1 _ �2

where 2 2 {<,>,=} is NP-complete.

Next we describe the results for finite variable fragments. The ⌃0 interpretation of the

subword in the induced subgraph order also gives the following result.

Theorem 1.17. The FO3 \ ⌃2 fragment of the induced subgraph order with constants is

undecidable.

Since the single variable fragment with constants can be shown to be in NPNP\coNPNP,

this leaves open the question of decidability of the FO2 fragment. We note that many

constants are already definable (upto automorphism of the structure) in the FO2 fragment,

and thus with regards to decidability, there is unlikely to be any difference on adding or

removing constants from the vocabulary. For this reason we concentrate on the expansion

with constants.

Lemma 1.18. Every graph on at most 4 vertices is definable upto automorphism in the

FO2 fragment of the induced subgraph order.

The decidability of FO2 with constants in the case of the subword order does not carry

over in any obvious way to the case of graphs. By analyzing the proof by Karandikar

16

and Schnoebelen [25], we are able to separate the logical and combinatorial concerns. In

particular, it is clear that the techniques used by them are relevant for a broad class of

infinite posets which we call locally recursive.

In the case of such locally recursive posets, the quantifier free formulae in one free

variable define sets which are finite unions of universes which are solution sets J�(x)K of

quantifier free formulae of the form �(x) = c x ^
V

d2D d ⇥ x; where D is a finite set.

We call a finite union of universes a multiverse.

We have the following result:

Theorem 1.19. Let (P,P) be a locally recursive poset. Given a set S ✓P we define

the unary operations S += {p | 9p0 2 S p <P p0} and S|| = {p | 9p0 2 S p ⇥P

p0 ^ p0 ⇥P p} which map subsets of P to subsets of P . If the multiverses of P are

closed under S + and S||, and furthermore, a representation for the resulting multiverse

can be effectively computed from a representation of the input multiverse, then the FO2

theory of (P,P ,CP) is decidable.

The conditions of closure in the above theorem in the case where P is a graph order

are related to generalizations of the Ramsey theorem. We do not attack this problem in this

thesis.

Chapter 7: Future Work and Conclusion

We recognize that there are two immediate technical questions for the short term. The

first is the possibility of strengthening Theorem 1.13; in particular, we raise the question

of the existence of a vocabulary ⌧ so that the existential theory of (G, ⌧) is capable of

defining every recursively enumerable predicate. This can be thought of as the analog in

graphs to the MRDP (Matiyasevich-Robinson-Davis-Putnam) theorem [34], which states

that the definable sets in the existential theory of arithmetic are exactly the recursively

17

enumerable sets of numbers. Secondly we discuss the combinatorial results required to

prove the decidability of the FO2 fragment left open.

A longer term project is the understanding of how various complexity classes fit

into theories of graph order. This involves developing the graph analog to the Bounded

Arithmetic theories (see Buss [5]) shown to characterize complexity classes. Unfortunately

the vocabulary of graph order is too coarse since the atomic predicates are already NP-

complete and hence we need to identify the right vocabulary.

18

Chapter 2

Preliminaries

2.1 First Order Logic

For the sake of completeness, we give here a basic account of the syntax and semantics of

first order logic (FOL). Subleties such as variable capture and renaming of variables are

not dealt with here and the reader may consult a standard text such as Enderton [11] for

the same. Readers conversant with FOL may skip ahead to Section 2.2.

FOL uses symbols from a vocabulary ⌧ = (F ,R,C) comprised of countable sets

of function symbols F , relation (aka predicate) symbols R and constant symbols C , a

countable set V of variables and logical symbols _,¬, 9,=. These symbols are used to

construct ⌧�terms and ⌧�formulae. Where ⌧ is clear from the context, we just say terms

and formulae.

A term is specified by the grammar:

t := c | x | f(t1, t2, ..., trf).

That is, any constant c or variable x is a term, and if t1, t2, ..., trf are terms then f(t1, t2, ..., trf)

is a term (where rf is the arity of f).

19

A formula is specified by the grammar :

� := R(t1, t2, .., trR) | (t1 = t2) | (�1 _ �2) | (¬�) | (9x �(x))

where R is a relation symbol of arity rR.

The logical symbols ^,�, 8, () are defined as:

�1 ^ �2 := ¬(�1 _ �2)

�1 � �2 := ¬�1 _ �2

�1 () �2 := (�1 � �2) ^ (�2 � �1)

8x �(x) := ¬9x ¬�(x)

9!x �(x) := 9x �(x) ^ 8y �(y) � x = y

We will also sometimes use bounded quantifers of the form 8x 1 x y �(x, y)

which is to be read 8x (1 x y) � �(x, y). Similarly, 9x (1 x y) �(x, y) is to be

read 9x (1 x y) ^ �(x, y).

Formulae of the form R(t1, t2, .., trR) and (t1 = t2) are called atomic formulae. Com-

pound formulae are generated from atomic formulae by use of logical symbols.

A quantifier-free formula is one which does not contain the symbols 9 and 8. A free

variable is one which is not quantified. A formula with no free variables is called a

sentence.

A first order structure A with vocabulary ⌧ is a tuple (D, I) where D is a domain set

and I an interpretation which assigns the following:

1. For each function symbol f 2 F of arity rf an rf -ary function f I : Drf ! D.

2. For each R 2 R of arity rR a subset RI of DrR .

3. For each constant c 2 C a domain element cI 2 D.

An assignment � : V ! D is a function mapping every variable to an element of the

domain D of a ⌧�structure A = (D, I). The assignment function is extended to terms

20

in the obvious way and for a term t we will write �(t) to denote the domain element

assigned to t by �. Consider a ⌧�structure A together with an assignment �. For any

⌧�formula �(x̄) where x̄ = (x1, x2, ..., xn), let �(x̄)[x̄ c̄] be the ⌧ 0�formula produced

by replacing each free variable xi by a new constant symbol ci /2 ⌧ . The tuple (A, �) is

said to model a formula �(x̄) where x̄ = (x1, x2, ..., xn), written A, � |= �(x̄) using the

following inductive definition:

• For an atomic formula R(t1, t2, ..., trR), consider the expansion of A0 = (D, I 0) with

vocabulary ⌧ [{c1, c2, .., cn} of A = (D, I). Each ci is a new constant symbol not

present in ⌧ and the interpretation cI
0

i
of each ci is given by �(xi). I 0 agrees with

I on the interpretation of all symbols in ⌧ . The sentence R(t1, t2, ..., trR)[x̄ c̄]

is a ⌧ 0 sentence obtained by replacement of every variable xi by the corresponding

constant symbol ci.

A, � |= R(t1, t2, ..., trR) if and only if RI
0
(t1, t2, ..., trR)[x̄ c̄] holds

Similarly for atomic formulae of the form (t1 = t2),

A, � |= (t1 = t2) if and only if �(t1) = �(t2)

• For compound formulae of the form �(x̄) = �1(x̄) _ �2(x̄) and �(x̄) = ¬�0(x̄) we

have, respectively:

A, � |= �(x̄) if and only if (A, � |= �1(x̄) or A, � |= �2(x̄)), and

A, � |= �(x̄) if and only if A, � 6|= �0(x̄).

The symbol 6|= denotes ‘does not model’.

21

• For a compound formula of the form �(x̄) = 9y (�0(x̄, y))

A, � |= �(x̄) if and only if there is an expansion A00 of A with vocabulary

⌧ [{c} and it is the case that A00, � |= �0(x̄, y)[y c].

Note that in the above definition, the constant symbol c is not contained in ⌧ .

In case � is a sentence, no assignment function is required and simply write A |= �.

The phrases ‘entails’, ‘holds of’ or ‘is true of’ are also used in place of ‘models’ to denote

that a property holds of a structure.

Example 2.1. 1. Every natural number is the sum of four squares:

(N,+,⇥) |= 8x 9y1 9y2 9y3 9y4 x = y21 + y22 + y23 + y24

2. There are no 0�divisors in arithmetic:

(N,⇥, 0) 6|= 9x 9y x 6= 0 ^ y 6= 0 ^ x⇥ y = 0

3. Three is less than four:

(N,+), (3, 4) |= 9y x1 + y = x2

In the last example, we need an assignment function because 9y x1 + y = x2 is a

formula. Often, free variables of a formula are listed as a tuple x1, x2, ... and on the left

hand side, we specify the assignments in the appropriate order. In this case, 3 is assigned

to x1 and 4 is assigned to x2.

Definition 2.2 (Theories). A theory T is a set of ⌧�sentences for some fixed vocabulary

⌧ .

The first order theory of a ⌧�structure A is the set of all sentences that are true of A.

We denote this set by ThFO(A).

ThFO(A) := {� | A |= �}

We simply say theory of a structure since the theories dealt with in this thesis are all

22

contained in the first order theory.

Fix a set x̄ = {x1, x2, ..., xk} of variables. Let FOk denote the subset of first order

formulae whose variables are a subset of x̄. The k�variable fragment of the first order

theory of A is FOk(A) = ThFO(A) \ FOk.

Existential formulae are those which are of the form 9x1 9x2 ...9xn ↵(x1, ..., xn)

where ↵ is a quantifier free formula. The existential theory of A is the restriction of

ThFO(A) to existential sentences, and is denoted 9⇤(A).

The ⌃2 theory of a structure A is the restriction of ThFO(A) to sentences of the form

9x1 9x2 ... 9xn 8y1 8y2 ... 8ym �(x̄, ȳ) where �(x̄, ȳ) is a quantifier-free formula and

n,m 2 N.

When referring to definability in the first order theory of a structure A, we will often

just say ‘definable in the theory of A’ or ‘definable in A’.

Example 2.1(3) leads us naturally to the related notion of solution sets of formulae,

which is the set of tuples of domain elements making a formula true. Fixing (N,+) as our

structure of study, the tuple (3, 4) is an assignment which makes the formula true while

(4, 3) is a tuple which makes the formula false. In this example, the solution set is the set

of all tuples (m,n) such that m n. We say the formula 9y x1 + y = x2 defines the order

relation between numbers.

Definition 2.3. The solution set of a ⌧�formula �(x̄) with k free variables in a ⌧�structure

A, denoted J�(x̄)KA, is the set of k�tuples of domain elements of A which make the formula

true in A.

J�(x̄)KA := {ā | A, ā |= �(x̄)}

In most cases, the structure A of interest is clear from the context and we drop the

subscript A and just write J�K.

Definition 2.4 (Definability of Relations). An n-ary relation R is definable in a ⌧ -structure

23

A if there is a formula �(x̄) with n free variables such that for any n-tuple ā 2 A,

R(ā) () A, ā |= �(x̄)

When we talk of the definability of a function f in this thesis, we mean the definability

of the associated relation Rf with arity one greater than the arity of f :

f(x̄) = y () Rf (x̄, y)

Remark 2.5. We will abuse notation by talking of definability of a relation R in a theory

T . The intended meaning of such a statement is that R is definable by a formula �(x̄)

such that Q̄x̄ �(x̄) belongs to T , where Q̄ is any sequence of quantifiers.

We also talk of the definability of an element of the domain.

Definition 2.6 (Definability of Constants). Let d be an element of the domain of a

⌧�structure A. We say that d is definable if there exists a ⌧�formula �d(x) in one free

variable such that A, d ✏ �d(x) and for any d0 6= d in the domain of A, A, d0 2 �d(x).

We use d as a constant symbol for the domain element d with the understanding that

an equivalent formula can be written without the use of this constant symbol.

Definition 2.7. The first order theory of the structure (N,+,⇥) is called first order arith-

metic. A relation definable in this structure is called an arithmetical relation.

We will often just say ‘definable in arithmetic’ to mean definable in (N,+,⇥).

Remark 2.8. In this thesis, we will not make a distinction between definability in (N,+,⇥)

and definability in (N, plus, times) which is the structure obtained by replacing +,⇥ by

ternary relations plus, times respectively where plus(z, x, y) holds if and only if x+y = z

and similarly for times.

24

Definition 2.9 (Interpretability of Structures). A relational ⌧�structure A is said to be

interpretable in a relational ⌧ 0�structure B if there exist the following:

1. an injective map f from the domain A of A to the domain B of B,

2. a formula �A(x) in the vocabulary ⌧ 0 such that for any element b 2 B it is the case

that �A(b) holds if and only if b belongs to the image set f(A), and

3. for each k�ary relation R 2 ⌧ , there is a formula �R(x̄) in the vocabulary ⌧ 0 such

that for any k�tuple ā of elements of A, it is the case that R(ā) holds if and only if

�R(f(ā)) holds.

Two structures A and B are said to be mutually interpretable if each is interpretable in

the other.

The definition above can extended to vocabularies containing functions by considering

the definability of the (k + 1)�ary relation Rf (x̄, y) corresponding to a k�ary function

f(x̄) = y.

2.2 Structures over Graphs and Graph Orders

To clarify what we mean by the isomorphism type of a graph, we formally define the

notion of an ordered graph.

Definition 2.10. An ordered (finite) graph is a structure (V,E) where V = [n] =

{1, 2, 3, ..., n} for some n 2 N, and E is a symmetric, irreflexive binary relation. For

any two ordered graphs g = (V,E), g0 = (V 0, E 0), we say they are isomorphic if

V (g) = V (g0) = [n] for some n and there exists a function ⌘ : [n] ! [n] such that

for any i, j 2 [n] E(i, j) () E 0(⌘(i), ⌘(j)). We write g 'g g0 to denote that two

ordered graphs are isomorphic.

We will write V = {v1, v2, ..., vn} instead of using the set [n] to avoid confusion

between numbers used to represent vertices and numbers in themselves.

25

Definition 2.11. A graph g is an equivalence class (aka isomorphism type) of ordered

graphs under the equivalence relation 'g. We write g = [g0] to denote that g0 is an ordered

graph belonging to the equivalence class denoted by g.

In some proofs, it is easier to write arguments about the structure of a graph g by fixing

an ordered graph g0 with g 2 [g0]. Where the ordering on vertices is not required, we

will use u, v to denote vertices. Similarly, e is used to represent a particular edge and uv

denotes the edge between vertices u and v.

Definition 2.12 (Structure over Graphs). A structure over graphs is one which has as its

domain the set G and a set ⌧ = [F ,R,C] of functions F , relations R and constants C

in G. We will denote the structure by (G, ⌧).

The structures over graphs of interest in this thesis always include a binary relation

as part of the vocabulary which is interpreted as a partial order. We call such structures

graph orders.

The graph orders studied in this thesis are the induced subgraph, subgraph and minor

orders.

Definition 2.13 (Graph Partial Orders). Consider the following operations on graphs:

• A1. Deletion of a vertex (and all the edges incident on that vertex).

• A2. Deletion of an edge.

• A3. Contraction of an edge (given an edge e = uv, delete both u and v and introduce

a new vertex w not in V (g); connect all vertices which were adjacent to either u or

v to w).

For graphs g and g0, g can be obtained from g0 by a finite sequence of the operations

1. A1,A2 and A3 if and only if g m g0(g is a minor of g0);

2. A1 and A2 if and only if g s g0(g is a subgraph of g0); and

3. A1 if and only if g i g0(g is an induced subgraph of g0).

26

When both A1 and A2 are part of the set O of allowed operations, we can replace A1

by the operation A1’ which is the deletion of an isolated vertex to obtain an equivalent set

of operations O
0. In some cases, it will be more convenient to consider the latter.

The following structures play a prominent role in this thesis:

1. (G,i, P3): the induced subgraph order with a constant symbol P3 for the path on

three vertices.

2. (G,s) : the subgraph order.

3. (G,m, sameSize) : the minor order with an additional binary relation sameSize(x, y)

which holds if and only if x and y have the same number of edges.

4. We also consider graph orders expanded by the set Cg which contains a constant

symbol for each element in G. Corresponding to each of the three graphs orders we

have (G,i,Cg), (G,s,Cg) and (G,m,Cg).

The constant P3 is used to break the symmetry of the induced subgraph order which by

itself cannot distinguish between a graph and its complement since the map sending a

graph to its complement is an automorphism of the induced subgraph order. The subgraph

order does not have any symmetry; this fact follows from the fact that every constant is

definable in its first order theory. It seems likely that the minor order also has no symmetry,

this has not been proved in this thesis.

Remark 2.14. We describe a convention we follow throughout this thesis regarding the

order of variables used to define predicates over graphs. Let R(x1, x2, ..., xk) be a k�ary

relation defined using a formula R(x1, x2, ..., xk) over graph order. The order of the

variables is x1 < x2 < ... < xk in this instance. The convention adopted states that if

R(g1, g2, ..., gk) implies that gi gj for some i, j 2 N, then it must be the case that i < j.

For a more concrete example, consider the predicate comp(x, y) which holds if and only if

y is a component of x. If comp(g1, g2) holds, then so does g1 i g2. We could have chosen

to define the predicate as: comp(x, y) holds if and only x is a component of y, but the

former definition is used in accordance with the convention. We hope this will help the

27

N5 P5 C5 K5 S5

Figure 2.1: Isolated points, path, cycle, clique and star of order 5 from left to right.

reader in parsing the formulae.

Remark 2.15. We make a note of the different symbols used in this thesis in the list below.

Subscripts and superscripts used with a symbol represent the same kind of objects as do

the symbol (with the exception that wi represents the ith letter of a word w).

• x, y, z are variables representing graphs in graph formulae and numbers in arith-

metic formulae.

• g, h are used to represent particular graphs.

• F ,G represent families of graphs.

• Ni, Ki, Ci, Si, Pi represent the graph consisting of i isolated vertices, the i-clique,

the cycle on i vertices, the star on i vertices and the path on i vertices respectively

(see Figure 2.1).

• N ,K, C,S,P the corresponding families of isolated vertices, cliques, cycles, stars

and paths.

• i, j, k, l,m, n are used for natural numbers (also on occasion, members of the N

family).

• #,+, ",* represent downclosure, strict downclosure, upclosure and strict upclosure

in a poset respectively.

Given a graph g, we use the following notation to represent parameters or contructions

which use g as indicated:

• V (g) stands for the vertex set of g.

• E(g) stands for the edge set of g.

28

• |g| stands for the number of vertices of g (also called the order of g).

• ||g|| stands for the number of edges of g (also called the size of g).

• |g|g stands for the graph consisting of only isolated vertices which has the same

number of vertices as g.

• g [· h stands for the disjoint union of the graphs g and h.

• Given a subset V0 ✓ V (g), g[V0] denotes the graph induced by the vertices V0.

Remark 2.16. We will often deal with interpretations of arithmetic in structures (G, ⌧)

over graphs in this thesis. When such an interpretation is possible, there exists a formula

 trans over the vocabulary ⌧ which is the translation of a formula � over the vocabulary

(+,⇥). The relation defined by trans will be called a number-theoretic relation in order

to avoid confusion with the notion of an arithmetical relation.

2.3 Computability and Arithmetic

In this section, we introduce two notions which give us a way to measure the power of

FOL over graph orders in its ability to define relations over the set G. The first is the notion

of a computable relation which comes from the Turing Machine model of computation

and the second is that of arithmetic predicates over graphs.

2.3.1 Turing Machines and Representations

Turing Machines are widely accepted as the standard model of computation. A Turing

Machine M can be in one of a finite set of states Q, has an infinite tape comprised of cells

indexed by N with each cell containing an alphabet from a finite set ⌃ of alphabets and has

a head which is positioned over a particular tape cell. A configuration of the machine is its

state together with the tape contents and the position of the head. The initial configuration

of the machine is one where the state is a designated start state, the head is positioned at

29

the first cell and the tape contents contain the input string. The machine transitions from

one configuration to another according to a transition function. There is also a designated

final state f such that there are no transitions possible from f . The machine halts if no

transition is possible. The machine accepts an input x if and only if it halts after reaching

the final state. The language L(M) accepted by M is the set of all strings accepted by M .

The formal definition of a Turing Machine is given below.

Definition 2.17. A Turing Machine M is a 5-tuple (Q,⌃, �, s, f) where

• Q is a finite, nonempty set of states,

• ⌃ is a finite, nonempty set of alphabets,

• � : Q \ {f} ⇥ ⌃ ! Q ⇥ ⌃ ⇥ {L,R} is a transition function which is intended to

represent a move of M . A transition (q, a)! (q0, a0, d) allows the machine to move

from a state q on reading alphabet a to a state q0 after writing a0 in place of a and

moving its head in the direction d; where d = L denotes movement of the head one

cell to the left and d = R one cell to the right.

• s 2 Q is the designated start state.

• f 2 Q is the designated final state.

A halting Turing Machine M is one which runs for finitely many steps on any input

and halts in one of two designated states: a state f which is an accept state and a state r

which is a reject state. The language L(M) of a halting Turing Machine M is the set of

strings on which M halts in state f .

Definition 2.18. A recursively enumerable (r.e.) set R ✓ ⌃⇤ of strings is one such that

there exists a Turing Machine M with L(M) = R.

A recursive set R ✓ ⌃⇤ of strings is one such that there exists a halting Turing Machine

M with L(M) = R.

The notion of an r.e. set (respectively recursive set) can be extended to that of an r.e.

relation (respectively recursive relation) by giving as input to the Turing Machine a tuple

30

of strings encoded as a single string using a special separating alphabet.

A formula (or sentence) in FOL can be thought of as a finite string which can be given

to a Turing Machine as input in order to decide some property of the input formula.

Definition 2.19. The decision problem associated with a theory T is whether a given

input sentence � belongs to T or not. If there exists a halting Turing Machine for this

decision problem, we say the theory T is decidable, else it is undecidable.

The decision problem for a theory T will on occasion also be referred to as the truth

problem for the theory T .

The input to a Turing Machine is always a string. Hence, in order to use this notion to

talk of a recursively enumerable set of graphs, it is necessary to encode a graph as a string.

Representing graphs as numbers also gives a representation as strings via the usual binary

representation of numbers as strings, which we proceed to do below.

Definition 2.20 (Number Representation of a Graph). If g is either ;g or N1, it is repre-

sented by the numbers 0 and 1 respectively. A number representation of a graph g which is

not ;g or N1 is defined using the following procedure.

1. Choose an ordered graph g0 such that g = [g0]. The order on vertices given by Lg0

induces an order e on set S of all tuples of vertices (vj, vi) of g with i < j. Let

(vj, vi) and (vl, vk) belong to S (i.e. i < j, k < l). Define (vj, vi) e (vl, vk) if and

only if j < l or j = l, i < k. Thus the smallest tuple is (v2, v1) while the largest is

(v|g|, v|g|�1).

2. Arrange all the tuples belonging to S in descending order bye to form the sequence

seqg.

3. Create the number m whose binary expansion is
�
n

2

�
+ 1 bits long and has the

following property: the ith most significant bit is 0 or 1 according to whether the

ith smallest tuple in seqg corresponds to a non-edge or edge (respectively) of the

ordered graph g0.

31

P3

[
v1

v2 v3

v1

v2 v3

v1

v2 v3

Vertex
Orderings

of P3

]

[11012 10112 11102]
Corresponding

Number
Representations

UN(P3) = 10112 = 1110
Unique Number
Representation

of P3

UG(UN(P3)) = N11

Unique Graph
Representation

of 11

Figure 2.2: From top to bottom we see how to obtain the graph UG(UN(g)) 2 N from
any graph g 2 G using g = P3 as an example. The subscripts 2 and 10 in the numbers
correspond to the base used.

The number m is called a number representation of the graph g. We will denote the set of

all number representations by NR. We can also think of NR : N! G as a partial function

from numbers to graphs.

Given a number n, we will use the notation g(n) to denote the graph NR(n).

Definition 2.21 (Unique Number Representation of a Graph aka UN). The unique number

representation of a graph g is the least number m such that it is a number representation of

g and is denoted UN(g). Note that the map UN : G ! N is a one-one map (see Figure

2.2 for an example). Tuples of graphs ḡ are represented by tuples of numbers in the usual

way. The map UN can also be thought of as a map from graphs to strings by considering

the binary representation of numbers.

Observation 2.22. The unique representation UN(g) of a graph g induces a particular

32

ordering on the vertices of the graph g since every representation NR(n) which maps n to

g can be associated with a particular ordering of V (g).

The formal definition of a recursively enumerable predicates over graphs.

Definition 2.23. We say a predicate R ✓ Gn is r.e. if there exists a Turing Machine M

such that

R(ḡ) () UN(ḡ) 2 L(M)

i.e. the Turing Machine M accepts exactly the tuples of strings which correspond to UN

representations of tuples belonging to R.

We will also need to encode numbers as graphs.

Definition 2.24 (Unique Graph Representation of a Number aka UG). Let N be the family

of graphs which consists of graphs with no edges. This family contains exactly one graph

of cardinality k for any fixed k 2 N, denoted by Nk.

The one-one map UG : N! G sends a number k to the graph Nk which is called the

unique graph representation of k.

2.3.2 Arithmetical Predicates over Graphs

The second natural measure of definability we use is related to arithmetical definability. The

sets G and N are both countably infinite and in the case where ⌧0 is the empty vocabulary,

(G, ⌧0) and (N, ⌧0) are identical structures. The distinction between structures over graphs

and number-theoretic structures comes from our notion of ‘natural’ operations or relations

on graphs and numbers respectively.

Consider a total order t on G such that fiso : (G,t) ! (N,) is an isomorphism.

A graph order such as s on G can be thought of as an ‘unnatural’ partial order on N

via the isomorphism fiso. Conversely, the natural operations +t,⇥t which are addition

33

and multiplication with respect to t are ‘unnatural’ operations on graphs, giving us the

structure (G,+t,⇥t) which is isomorphic to (N,+,⇥) via the isomorphism fiso. This

enables us to transfer results and concepts from numbers to graphs and vice versa once a

total order t is fixed.

We define the notion of an arithmetical structure over graphs.

Definition 2.25. A relational structure (G, ⌧) over graphs is called arithmetical if there

exists a total order t on G such that (G,t) is isomorphic to (N,) and all relations

R 2 ⌧ are arithmetical. In other words, if plust and timest are the ternary addition and

multiplication relations with respect to the order t, then every R 2 ⌧ is definable in

(G, plust, timest).

Observation 2.26. Every predicate definable in an arithmetical structure is also arith-

metical.

Remark 2.27. The more general definition of an arithmetical structure A which is not

necessarily a structure over graphs used by Kudinov and Selivanov [27] is different from

that given above in the following ways:

1. Instead of an ordering, Kudinov and Selivanov consider a numbering function

num : N! A which is required to be onto.

2. The relations in ⌧ as well as the equality relation are arithmetical modulo the

numbering.

Definition 2.28. An arithmetical structure (G, ⌧) over graphs is said to have the maximal

definability property if every arithmetical predicate (w.r.t. t) is definable in the first order

theory of (G, ⌧).

It is clear that the maximal definability property for an arithmetical structure (G, ⌧)

gives a characterization of the definable predicates of the structure i.e. a predicate is

definable in (G, ⌧) iff it is arithmetical (w.r.t. t). The set of arithmetical predicates w.r.t.

any other total order t0 on G remains the same as long as t0 is arithmetical w.r.t. t.

34

The situation is analogous to the considerations of string encodings of graphs encountered

in the previous section.

Next we define the total order t with respect to which the structures we consider in

this thesis are arithmetical. In the rest of this thesis, we shorten the phrase ‘arithmetical

with respect to t’ to just ‘arithmetical’ with the understanding that the underlying order

t is the following:

Definition 2.29. Define g1 t g2 for g1, g2 2 G if and only if UN(g1) UN(g2). Note

that t is a total order on G by the uniqueness of the map UN .

This concludes the definitions we require to parse the results in this thesis. The next

four chapters form the technical content of this thesis. We take up the interpretability of

arithmetic in graph order in the next chapter.

35

36

Chapter 3

Mutual Interpretability of Arithmetic

and Graph Order
1

In this chapter, we show the mutual interpretability of arithmetic 2 with the induced

subgraph, subgraph and minor orders. The chapter is divided into three sections. In the

first section, we define some basic predicates and graph families in the three different

graph orders. In the second, we construct gadgets based on the results of the first section

to define arithmetic in graph orders. In the third, we define graph orders in arithmetic.

3.1 Defining Basic Graph Theoretic Predicates in Graph

Order

The predicates defined in this section are basic in two ways: first, they correspond to graph

families (such as trees, cycles, cliques etc) and numerical parameters (such as maximum

degree) encountered in initial chapters of standard graph theory text books ; second, they
1The results in this chapter are from Ramanujam and Thinniyam [36].
2Mutual interpretability is a weaker notion than bi-interpretability. Unfortunately, our paper [36] wrongly

uses the word bi-interpretable instead of mutually interpretable.

37

u v

Figure 3.1: Contraction of the edge uv which lies on a path between high degree vertices
cannot be simulated using deletion. The arrow is the covering relation under the minor
order.

will be used in multiple chapters of this thesis.

We will take up the subgraph, minor and induced subgraph orders, in that order, in

the three sections of this chapter. Many of the basic predicates in the case of the induced

subgraph order are present in Wires [43]. The defining formulae used in the subgraph

order can be transferred to the minor order in some special cases using the following

observations.

Observation 3.1. The downclosures of S4, P4, K3 are identical under the subgraph and

minor orders.

Under some natural restrictions, the subgraph and minor orders are the same.

Observation 3.2. If |x| = |y| then x s y iff x m y and y ls x iff y lm x. Since the

contraction operation reduces the number of vertices, restricting the orders to tuples of the

same cardinality makes minor and subgraph equivalent.

Another restriction which makes the subgraph and minor orders equivalent is as follows.

Lemma 3.3. Let x be a tree with at most one degree 3 vertex and no vertex of degree 4 or

more. Then for any other graph y, x m y iff x s y.

Proof. It suffices to prove the only if direction since any subgraph is also a minor. The

idea is that edges which are contracted between high degree nodes cannot be replaced by

deletions to obtain the same graph (see Figure 3.1), but otherwise this is possible.

38

We observe that there is a normal form for any sequence of minor operations. Let

x = xn and y = x0 and xn m x0 via a sequence of minor operations o1, o2, ..., on,

then there exists a series of minor operations o01, ..., o
0
m

on x0 resulting in xn such that

no deletion operation occurs after a contraction operation and the number of contraction

operations in the sequence o01, ..., o
0
m

is at most the number of contractions in the original

sequence o1, ..., on. This is because for any two operations oi, oi+1 where oi is a contraction

and oi+1 a deletion, the only case in which the operations do not commute is when oi+1 is

the deletion of the new vertex v formed after the contraction oi. But since we only allow

deletion of isolated vertices, it must be the case that oi involves the contraction of an edge

ukul which forms a component. We can replace oi, oi+1 by o0
i
, o0

i+1, o
0
i+2 which are deletion

of the edge ukul followed by deletion of uk and deletion of ul. We assume this normal

form for sequences of operations in the rest of the proof.

We prove the result by induction on the number of contraction operations in transforming

x0 to xn.

Base Case: There are no contraction operations, there is nothing to be done.

For the induction step there are two cases we consider:

Case 1 : xn has no degree 3 node. Let xn be a path u0, u1, ..., um with edges uiui+1 for

0 i m � 1. Let o1, .., on be the sequence of minor operations in normal form with

xi being obtained from xi�1 via operation oi. The last operation on must be a contraction

operation (else all operations are deletions and we are done). Therefore xn�1 is either a

path of length m+ 1 or a graph such that V (xn�1) = V (xn) [{u0} and there exists an i

with E(xn�1) = E(xn)[{u0ui} or E(xn�1) = E(xn)[{u0ui, u0ui+1}. In the cases where

xn�1 is a path or E(xn�1) = E(xn) [{u0ui}, we can delete an edge and a vertex in order

to obtain xn. Thus there is a sequence o1, .., on�1, o0n, o
0
n+1 where the last two are deletion

operations to obtain xn from x0. In the third case of E(xn�1) = E(xn) [{u0ui, u0ui+1},

we have to delete two edges and a vertex. In all three cases, since the new sequence has a

smaller number of contractions, by induction hypothesis, xn is a subgraph of x0.

39

Case 2 : xn has exactly one degree three node. Let xn consist of a degree 3 node u with

paths p1, p2, p3 incident on u. As before, consider the sequence of minor operations. In

one case xn�1 is a graph with a degree 3 node attached to three paths exactly one of which

has length one more than previously. We can delete the end point and incident edge of

the appropriate path to get xn from xn�1. Another possibility is that xn�1 is a graph with

a vertex u0 /2 V (xn) such that u0 is attached to either u or a vertex v in one of the paths

p1, p2, p3 or two adjacent vertices in one of the paths. As before, we can delete u0 and one

or two incident edges to get xn from xn�1. Then by induction hypothesis xn is a subgraph

of xn�1.

Before taking up the graph orders, we have some useful observations which hold of

any partial order.

Definition 3.4 (Covering Relation of a Poset). Given elements p, p0 of a poset (P,P) we

define the covering relation plP p0 as

plP p0 if and only if p <P p0 and there exists no element p00 of P such that p <P p00 <P p0.

Observation 3.5. The covering relation of a poset (P,P) is first order definable using

P :

xlP y := x <P y ^ 8z¬(x <P z <P y)

Observation 3.6. Given a poset (P,P), let F0 ✓ P be a definable family of graphs

and 0 be a definable order on F0 such that (F0,0) is isomorphic to (N,). Then every

element of F0 is definable.

By assumption there is a minimum element of F0 under the order and by repeated

use of the covering relation lP , we can inductively construct every member of F0.

40

;g
N1

N2

N3

K2

N4

K2N1

N5

K2N2

P3

N6

K2N3

K2K2

P3N1

K3

...

P4

S4

...

Figure 3.2: The first few layers of the subgraph order s. Note the lack of symmetry as
compared to the induced subgraph order. The last layer containing S4 and P4 is incomplete.

3.1.1 Basic Predicates in the Subgraph Order

We will first define a few graphs of small cardinality. The application of atomic negation

to formulae containing constants helps us define cardinality of a graph.

Lemma 3.7. The covering relation, the order of a graph, the family N and the graphs

N1, K2, K3, S4, P4 are definable in the subgraph order.

The definability of the covering relation for subgraph follows from Observation 3.5.

The following graphs in the first few layers of the subgraph order are definable. Refering

to Figure 3.2, the following formulae can easily be verified:

41

1. ;g(x) := 8y x s y

2. N1(x) := ;ls x

3. N2(x) := N1 ls x

4. K2(x) := N2 ls x ^ 9y xls y ^ 8z xls z � z = y

5. N3(x) := N2 ls x ^ x 6= K2

6. K2N1(x) := K2 ls x

7. K2N2(x) := K2N1 ls x ^ N4 ls x

8. P3(x) := 9!y y ls x ^ y = K2N1

9. P3N1(x) := P3 ls x ^K2N2 ls x ^ 8y y ls x � (y = P3 _ y = K2N2)

10. S4(x) := P3N1 ls x ^ 8y y ls x � y = P3N1

11. K3(x) := 9!y y ls x ^ y = P3

12. P4(x) := P3N1 ls x ^ x 6= S4

The family of isolated points is now easily seen to be definable via: N (x) := K2 ⇥s x. In

addition, using the family N as a “yardstick”, we can capture the cardinality (order) of a

graph. The predicate card(x, n) which holds if and only if n 2 N and |x| = |n| can be

defined:

card(x, n) := N (n) ^ 8m (N (m) ^ m s x) � m s n

For definable numerical predicates such as cardinality, we will simply use them as functions

instead of predicates to simplify notation from here on. For instance, |x|g in a formula in

the vocabulary of graph order will denote the member of N whose cardinality is the same

as that of x. Thus we will write formulae such as |x|g = |y|g which denotes the relation

which holds if and only if x and y have the same cardinality. This relation can be defined

using card(x, n)

|x|g = |y|g := 9n card(x, n) ^ card(y, n)

Next we show that several natural graph families are definable in the subgraph order.

Lemma 3.8. The families K,P , C, forest, T ,S are definable in the subgraph order.

42

Cliques: Any graph to which an edge can be added contains at least two upper covers. The

unique upper cover of a clique is formed by adding an isolated point to it.

K(x) := 9!y xls y

Paths

In order to define paths, we need to define a few additional families :

1. Disjoint unions of paths and cycles (denoted pac)

2. Disjoint unions of cycles i.e. sums of cycles (denoted soc)

3. Disjoint unions of paths i.e. forest of paths(denoted fop)

Assuming these, we can define paths :

P(x) := fop(x) ^ 8y |x|g = |y|g ^ fop(y) � y s x.

Out of all the fops of the same order n, the graph Pn forms the maximum element. Clearly

by adding appropriate edges to a fop of the same order, one can form Pn. Adding any more

edges to Pn gives a non-fop.

A graph is a disjoint union of paths and cycles if and only if it has maximum degree at

most two:

pac(x) := S4 ⇥s x

Assuming soc, fop can be defined :

fop(x) := pac(x) ^ (8y soc(y) � y ⇥s x)

if: x is clearly a pac. Since x does not have any cycles as subgraph, it cannot have any soc

as a subgraph.

only if: Let x = c1 [· c2 [· ... [· cn where ci is either a path or a cycle, for all i. Suppose

43

K2 [· K3 [· P5 K2 [· K3 [· C5 K1 [· K2 [· K3 [· C5

P3 [· K3 [· C5K3 [· K3 [· C5K1 [· K3 [· K3 [· C5

Figure 3.3: All graphs above belong to the family pac. Only K2 [· K3 [· C5, K1 [· K3 [·
K3 [· C5, K3 [· K3 [· C5 belong to soc0 and only K3 [· K3 [· C5 is a soc. Arrows indicate
the covering relation under the subgraph order.

44

there is an i with ci cycle. Then clearly ci s x but ci is also a soc, which is a contradiction.

Hence all components are paths and x is a fop.

It is only left to define disjoint unions (sums) of cycles i.e. soc:

soc(x) =soc0(x) ^ 8y (xls y ^ pac(y)) � soc0(y)

where

soc0(x) :=x 6= ;g ^ pac(x) ^ 8y (|y|g = |x|g ^ pac(y)) � ¬x <s y

Claim 3.9. soc0(x) holds if and only if x is not the empty graph and every component of x

is a cycle, N1 or K2 and x contains at most one copy of N1 or one copy of K2 but not both.

Proof. if: Clearly x is a pac. Suppose there exists a pac y of the same order as x and

x <s y. We can obtain y from x by addition of edges. But addition of any edge would

introduce a degree three node, thus such a y cannot exist.

only if: Let x = c1 [· c2 [· ... [· cn where ci is either a cycle or a path. Suppose there is an

i such that ci is a path of cardinality at least three. Let c0
i

be the cycle formed by joining

the ends of ci. Now x0 = c1 [· ...ci�1 [· c0i [· ci+1... [· cn is also a pac, |y| = |x| and x

can obtained from y by deleting the newly added edge to get ci from c0
i
. Thus no path of

cardinality more than two can exist (see Figure 3.3 for examples). Similarly, we can obtain

a contradiction in the following cases by appropriately constructing x0:

1. There are two copies of K2 in x. Join the two copies end to end to form a path of

cardinality four, to get x0.

2. There are two copies of N1 in x. Join the copies by an edge to get x0.

3. There is a K2 and an N1 as components in x. Join N1 by an edge to K2 to get a path

of cardinaltiy three, to get x0.

Now we show the correctness of soc(x).

45

if: Clearly x is a soc0. The only upper cover of x which is a pac is x[· N1 since adding any

more edges would lead to a degree three node. x [· N1 is a soc0.

only if: Let x = c1 [· c2 [· ... [· cn and x is a soc0. Suppose there is i such that ci is K2.

Consider x0 = x[· N1. The graph x0 is an upper cover of x, is a pac but is not a soc0 because

it has an N1 and a K2 as components. Similarly we can rule out N1 as a component of x.

Cycles, Forests, Trees, Stars

C(x) :=pac(x) ^ 9y P(y) ^ |x|g = |y|g ^ y ls x

forest(x) :=8y C(y) � y ⇥s x

T (x) :=forest(x) ^ 8y (forest(y) ^ |x|g = |y|g) � ¬x <s y

S(x) :=T (x) ^ P4 ⇥s x

C(x) i.e. cycles: It is clear that by deleting any edge from a cycle, we get a path which is a

lower cover of the same order.

Conversely, consider any upper cover of a path with the same order. Adding an edge which

joins the degree one vertices of the path gives a cycle, but adding an edge any where else

creates a degree three vertex, which violates the condition that x is a pac. Thus only a

cycle fulfills all the conditions.

forest(x): A forest is a graph which contains no cycles.

T (x) i.e. trees: Of all forests with the same cardinality, a tree is a maximal element since

adding another edge gives a cycle. A non-tree forest can be made into a tree of same order

by adding appropriate edges.

S(x) i.e. stars: A star is a tree which does not contain a path on four vertices as subgraph.

We next take up the definability of some natural graph theoretic predicates.

Lemma 3.10. Connectivity, maximum degree and maximum path length are definable in

the subgraph order.

46

Connectivity

The predicate conn(x) holds if and only if x is a connected graph.

conn(x) := 9y T (y) ^ y s x ^ |x| = |y|

A graph is connected iff it has a spanning tree.

Maximum path

maxPath(x, n) holds if and only if n 2 N and the largest path which is a subgraph of x

is Pn.

maxPath(x, n) :=N (n) ^ 9y P(y) ^ y s x ^ |y|g = n ^

8z (P(z) ^ z s x) � z s y

Maximum degree

maxDeg(x, n) holds if and only if n 2 N and the maximum degree of x is |n|.

maxDeg(x, n) :=N (n) ^ 9y S(y) ^ y s x ^ nls |y|g ^

8z (S(z) ^ z s x) � z s y

The maximum degree of x is one less than the order of the largest star which is a subgraph

of x.

3.1.2 Basic Predicates in the Minor Order

Lemma 3.11. The covering relation, the cardinality of a graph, the family N and the

graphs N1, K2, K3, P4, S4 are definable in the minor order.

Proof. The definability of the covering relation follows from Observation 3.5.

47

By use of Observations 3.1, and the fact that the defining formulae used in Lemma

3.7 only refer to graphs in the common initial segment, we see that the subgraph order

replaced by the minor order in the defining formulae define the corresponding constants

in the minor order. In particular, note that the defining formulae for graphs of cardinality

greater than 3 only involve atomic formulae where the free variable x always appears in

the form cls x, y ls x where c is some constant; and for smaller graphs, xls y implies

that y is contained in the initial segment referred to in Observation 3.1.

By Lemma 3.3, K2 ⇥m x is equivalent to K2 ⇥s x and hence defines the family N .

Similarly, replacing the subgraph by the minor order gives us the defining formula for the

cardinality of a graph.

Lemma 3.12. The families K,P , C, forest, T ,S are definable in the minor order.

Firstly note that a graph contains a cycle as subgraph iff it contains K3 as a minor (by

contraction along the cycle after deleting the rest of the graph). Hence forests are defined

by:

forest(x) := K3 ⇥m x

By Lemma 3.3, we can replace subgraph by minor in the defining formula for disjoint

unions of paths and cycles (pac):

pac(x) := S4 ⇥m x.

For forest of paths (fop), we can restrict a pac to be a forest, giving a fop:

fop(x) := forest(x) ^ pac(x)

Now, using Observation 3.2, we can immediately get paths, cliques, cycles and trees; and

48

stars by Lemma 3.3:

P(x) :=fop(x) ^ 8y (|x|g = |y|g ^ fop(y)) � y m x

K(x) :=8y |y|g = |x|g � y m x

C(x) :=pac(x) ^ 9y (P(y) ^ |x|g = |y|g ^ y lm x)

T (x) :=forest(x) ^ 8y (forest(y) ^ |x|g = |y|g) � ¬x <m y

S(x) :=T (x) ^ P4 ⇥m x

Lemma 3.13. Connectivity, maximum degree and maximum path length are definable in

the minor order.

Proof. Application of Observation 3.2 and Lemma 3.3 give defining formulae for connec-

tivity and maxPath :
conn(x) :=9y T (y) ^ y m x ^ |x|g = |y|g

maxPath(x, n) :=N (n) ^ 9y P(y) ^ y m x ^ |y|g = n ^

8z (P(z) ^ z m x) � z m y

It remains to define maxDeg(x, n) which holds if and only if n 2 N and the maximum

degree of x is |n|.

Here we need to do some more work since the largest star which is a minor of x may

be much larger than the maximum degree of the graph. In order to apply Observation 3.2,

we construct the following family:

S [· N (x) holds if and only if x is formed by addition of some arbitrary number of isolated

vertices to a star.

49

S [· N (x) :=F(x) ^ 9y hasStarComp(x, y) ^ onlyStar(x, y)

where

hasStarComp(x, y) :=S(y) ^ y m x ^ 8z conn(z) ^ z m x � z m y

onlyStar(x, y) :=8x0 F(x0) ^ |x0|g = |x|g ^ xlm x0 �

8y0 (conn(y0) ^ y0 m x0) � |y|g lm |y0|g

hasStarComp asserts that y is a star minor of x and in addition, every connected minor of

x is also a minor of y. To fulfill this condition, x has to contain y as a connected component.

However, x could contain multiple copies of subgraphs of y.

onlyStar asserts that any forest x0 which is formed by adding an edge to x (by Observation

3.2) has the property that all its connected minors have order one more than the order of y.

Clearly, any graph formed by adding isolated vertices to a star has these properties.

Conversely, consider a graph g satisfying the formula S [· N (x). Then g has a connected

component c0 which is a star such that hasStarComp(g, c0) holds. Suppose g had another

component c1 6= N1. Then by adding an edge between c0 and c1, we get a graph g0 such

that |g0| > |c0|+ 1 and g0 is a minor of g00 which is a forest formed by adding an edge to g.

This contradicts the formula onlyStar, and hence g is the union of c0 with some number

of isolated points.

maxDeg(x, n) :=9y S [· N subgraph(x, y) ^ 8z S [· N subgraph(x, z) � z m y

^ 9z0 S(z0) ^ nlm |z0|g ^ z0 m y

where

S [· N subgraph(x, y) :=S [· N (y) ^ |x|g = |y|g ^ y m x

S[· N subGraph states that there is a subgraph y of x which is a S[· N of same cardinality

as x. Note that for Sn[· Nm and Sn0 [· Nm0 with n+m = n0+m0, Sn[· Nm m Sn0 [· Nm0

50

iff n n0. Thus the maximal y satisfying the formula S [· N subGraph contains the

largest star occuring as a subgraph of x. We extract the star from this object to obtain the

maximum degree of x.

3.1.3 Basic Predicates in the Induced Subgraph Order

In this subsection, we summarize some definability results from Wires [43] needed for the

next section on arithmetical definability in graph order.

Lemma 3.14 (Wires [43]). The following predicates are definable in the induced subgraph

order:

1. The families N , T ,P of isolated points, trees and paths respectively.

2. |x| = |y| if and only if x and y have the same cardinality (i.e. same number of

vertices, also known as order of the graph).

We need to define the family of stars.

Observation 3.15. The predicate S(x) which holds if and only if x is a star, is definable

in the induced subgraph order.

S(x) := T (x) ^ P4 ⇥i x

As usual, it is easy to see that the conditions specified are necessary. In a tree, a path is

present as a subgraph iff it is present as an induced subgraph. Any graph containing P4 as

a subgraph cannot be a star.

3.2 Defining Arithmetic in Graph Order

We use the family N to represent numbers. This is a natural choice which is very convenient

in the case of the subgraph order. Recall (see Lemma 3.7) that this immediately allows

51

us to define cardinality in the subgraph and minor orders. However, consider the same

formula in the induced subgraph order:

↵(x) = ↵(y) := 8z N (z) � (z i x () z i y)

This defines the binary predicate ↵(x) = ↵(y) which holds if and only if the graphs x

and y have the same independence number. It turns out that defining |x| = |y| in the

induced subgraph order requires much more work. Wires defines addition initially using

the family P of paths instead [43]; though he shows later that one can also use the family

N . Since we will be constructing explicit formulae which use arithmetical definability in

later chapters, it is convenient to work with the same representation of numbers for the

sake of uniformity.

Definition 3.16. By definability of arithmetic in graph order we mean the existence of

defining formulae for the following predicates:

1. N (x) holds if and only if x belongs to N .

2. plus(z, x, y) holds if and only if x, y, z 2 N and |x|+ |y| = |z|.

3. times(z, x, y) holds if and only if x, y, z 2 N and |x|⇥ |y| = |z|.

Since the formula K2 ⇥ x defines the family N in each of the graph orders, we

need to exhibit defining formulae for plus and times, which we take up in the next two

subsections.

3.2.1 Defining Addition in Graph Order

The definability of addition in the induced subgraph order has already been established :

Lemma 3.17 (Wires [43]). The predicate plus(z, x, y) if and only if x, y, z 2 N and

|x|+ |y| = |z| is definable in the induced subgraph order.

We take up the definability of addition in the subgraph and minor orders.

52

Lemma 3.18. The predicate plus(z, x, y) if and only if x, y, z 2 N and |x|+ |y| = |z| is

definable in the subgraph and minor orders.

Proof.

plus(m, k, l) :=N (k) ^ N (l) ^ N (m) ^

(initial(m, k, l) _ (N3 s k ^ N3 s l ^

9x starTail(k, l, x) ^ plus2(m, x))); where

starTail(x, k, l) :=starTail0(x, k, l) ^ 8x0 (starTail0(x0, k, l) � |x|g s |x0|g)

starTail0(x, k, l) :=T (x) ^ maxDeg(x) = k ^ maxPath(x) = l

plus2(x,m) :=9m0 xls |m0|g ^ |m0|g ls mg

initial(m, k, l) :=(k = ;g ^ m = l) _ (l = ;g ^ m = k)_

(k = N1 ^ l ls m) _ (l = N1 ^ k ls m)_

(k = N2 ^ 9m0 l ls |m0|g ^ |m0|g ls m)_

(l = N2 ^ 9m0 k ls |m0|g ^ |m0|g ls m)

When either k or l are strictly less than two, we hardcode the function value using initial.

When both are at least three, consider a tree with maximum degree k and maximum

path l. A tree of least order with these properties is formed from a path by choosing

some degree two vertex vi of the path v1, v2, ..., vi, vi+1, ..., vl, adding k � 2 new vertices

u1, u2, ..., uk�2 and adding the edges u1vi, u2vi, ..., uk�2vi (see Figure 3.4). The order of

this tree is k + l � 2. This is captured in the formula starTail and in plus2 we add two to

its cardinality to get k + l.

By Observations 3.1 and 3.2; and Lemma 3.3, the defining formula above can be

transferred to the minor order simply by replacing the subgraph order by the minor

order.

53

v1 v2 · · · vi · · · vl

u1 u2

· · ·
uk�2

Gadget for Addition

v0

v1

v1,1 v1,2
· · ·

v1,n�1

v2

v2,1 v2,2
· · ·

v2,n�1

· · · vn

vn,1 vn,2
· · ·

vn,n�1

Gadget for Squaring

Figure 3.4: Top Left: minimum cardinality tree with maximum degree k and maximum
path subgraph Pl. Bottom Right : tree tn containing n2 + 1 vertices.

3.2.2 Defining Multiplication in Graph Order

Instead of the formula times(z, x, y), we can equivalently define the square predicate

square(x, y) if and only if x, y 2 N and |x| = |y|2. Definability of multiplication follows

from definability of addition and the equality

(n+m)2 = n2 +m2 + 2mn

To define squaring, we construct a tree tn given a numerical parameter n such that its

cardinality is n2 + 1.

Definition 3.19. Define the tree tn by

V (tn) = {v0} [{v1, v2, ..., vn} [
S

n

i=1{vi,1, vi,2, ..., vi,n�1},

E(tn) = {v0v1, v0v2, ..., v0vn} [
S

n

i=1{vivi,1, vivi,2, ..., vivi,n�1}.

The predicate stree(x, n) holds if and only if x = tn.

Lemma 3.20. If the predicates N , |x| = |y|, |x| = |y| + 1 and stree(x, n) are definable

in a structure (G, ⌧) over graphs, then the predicate square(x, y) which holds if and only

if x, y 2 N and |x| = |y|2 is definable in (G, ⌧).

54

Proof. The defining formula for the predicate square(x, y) is given below.

square(x, y) := N (x) ^ N (y) ^ 9z stree(z, y) ^ |z|g = x+ 1

The tree tn has a root v0 which has degree n and each of its neighbours also has degree n.

It is easy to see that |tn| = 1 + n+ n(n� 1) = n2 + 1 (see Figure 3.4).

Lemma 3.21. Multiplication is definable in the induced subgraph, subgraph and minor

orders.

Proof. We note that x+ 1 = y for x, y 2 N can be defined by the formula xl y in each

of the three graph orders. Since all the predicates in the hypothesis of the above lemma

except for stree are definable in each graph order, the definability of squaring (and thus

multiplication) is reduced to defining stree.

The predicate stree can be defined in the induced subgraph order in two steps. First

we define stree0:

stree0(x, n) :=maxDegInTrees(x, n) ^ maxPath5(x)

where

maxDegInTrees(x, n) :=T (x) ^ Sn i x ^ 8m (N (m) ^ m > n � Sm ⇥i x)

maxPath5(x) :=T (x) ^ P5 i x ^ 8m (N (m) ^ m > 5 � Pm ⇥i x)

The maximum degree of a forest is one less than the largest star which is an induced

subgraph. Let x be a tree satisfying stree0(n, x). Fix the vertex v0 as root of this tree. The

degree condition implies that v0 has at most n neighbouring vertices and the maxPath5

condition ensures that the maximum depth of the tree is two. In the second step, we define

stree(x, n) using stree0:

stree(x, n) :=stree0(x, n) ^ 8y stree0(y, n) � |y| i |x|

55

The tree of maximum cardinality satisfying stree0 is exactly the tree tn.

In the case of the subgraph and minor orders, we already have the definability of the

predicates maxDeg,maxPath from Lemma 3.14:

stree0(x, n) :=T (x) ^ maxDeg(x, n) ^ maxPath(x,N5)

stree(x, n) :=stree0(x, n) ^ 8y stree0(y, n) � |y|g s |x|g

The formula for the minor order is obtained simply by replacing occurrences of the

subgraph order by the minor order.

Thus by Lemmas 3.17, 3.18 and 3.21 we have the following theorem.

Theorem 3.22. First order arithmetic is definable in the induced subgraph, subgraph and

minor orders.

3.3 Defining Graph Orders in Arithmetic

We show that the structures (G,s), (G,i, P3) and (G,m) can be interpreted in first order

arithmetic. While this is not unexpected, it completes the proof of mutual interpretability.

This section is broken up into two subsections. In the first subsection we define some

basic arithmetic predicates which allow us to manipulate the binary encodings of numbers.

This allows us to define the number representation NR introduced in Definition 2.20 in

which multiple numbers represent the same graph. We then define some relations in

arithmetic related to permutations on the set [n]. This makes it possible for us to define the

representation UN introduced in the Preliminaries 2.21. To distinguish between NR and

UN we will use the phrases ‘represent’ and ‘uniquely represent’ respectively when talking

about representations. In the second subsection, we use the basic predicates defined in the

first to define the graph orders.

56

3.3.1 Basic Predicates in Arithmetic

We give defining formulae for some basic predicates in arithmetic.

Lemma 3.23. The following predicates are definable in first order arithmetic.

1. nchoose2(x, n) holds if and only if x =
�
n

2

�
where

�
n

2

�
= n⇥ (n� 1)/2.

2. div(x, y, n) holds if and only if n is the quotient when x is divided by y; denoted

n = bx
y
c.

3. x|y holds if and only if there exists n such that n⇥ x = y i.e. x divides y.

4. prime(x) holds if and only if x is a prime.

5. rem(x, y, n) holds if and only if n is the remainder when x is divided by y; denoted

n = rem(x, y).

6. exp(x, y, z) holds if and only if xy = z.

7. pow2(x, i) holds if and only if x = 2i.

8. bit(x, i) holds if and only if the ith bit (counting from the least significant bit) of the

binary representation of x is a 1.

9. length(x, n) holds if and only if the length of the binary representation of x is n. We

will denote this unique n by |x|.

10. For any binary representation w, let w[i, j] for 1 i j |w| be the infix (i.e.

contiguous segment) of w beginning at the ith most significant bit and ending at the

jth most significant bit. The predicate window(k, i, x, n) holds if and only if the

number whose binary representation (ignoring leading 0’s) is x[|x|� ki, |x|� 1�

k(i� 1)] is n and |x| � ki+ 1.

By window(k, i, x) we mean the unique n such that window(k, i, x, n) holds.

11. prime(x, i) if and only if x is the ith prime. We denote it by pi.

Proof.

nchoose2(x, n) := 2⇥ x+ n = n2

div(x, y, n) := 9z x = y ⇥ n+ z ^ z < y

57

x|y := 9n n⇥ x = y

prime(x) = 8y y|x � (x = y _ y = 1)

rem(x, y, n) := 9z x = y ⇥ z + n ^ n < y

exp(x, y, z) :=9x1 9x2 pseq(x1, x2, 0, 1) ^ pseq(x1, x2, y, z) ^

8y1 8y2 (y1 < y ^ pseq(x1, x2, y1, y2)) � pseq(x1, x2, y1 + 1, xy2)

where

pseq(x, y, n, w) :=rem(x, y(n+ 1) + 1, w)

The intended meaning of the above formula is that there exists a sequence of numbers

i1, i2, ..., iy with i1 = 1 and iy = z and consecutive numbers ij, ij+1 are related by

xij = ij+1. We refer the reader to the text by Kaye [26] for the correctness of the formula.

pow2(x, i) := exp(2, i, x)

bit(x, i) :=
rem(x, 2i)� rem(x, 2i�1)

2i�1
= 1

length(x, n) := bit(x, n) ^ 8n0 n < n0 � ¬bit(x, n0)

window(k, i, x, n) :=|x| � ki+ 1 ^ |n| k ^

8j 1 j k � (bit(n, j) () bit(x, |x|� ki� 1 + j))

58

prime(x, i) :=prime(x) ^ 9y |y| = 1 + 2|x|x ^ 81 j x

window(|x|, 2j � 1, y) = j ^ window(|x|, 2, y) = 0

^ ((prime(window(|x|, 2j + 1, y)) ^ j < x)

� window(|x|, 2j, y) + 1 = window(|x|, 2j + 2, y))

^ window(|x|, 2x, y) = i

The formula above encodes a naive algorithm for finding the ith prime, namely run through

all the numbers up to x and increment a counter every time a prime is found. The number

y represents this computation via its binary encoding which is 1 + 2|x|x bits long. Starting

from the most significant digit of y, every window of size |x| encodes a number. The

windows in the odd positions correspond to numbers from 1 to x while the even position

windows represent the counter, with window at i = 2 initialized to 0. We check that the

final window representing the value of the counter at the end of the process is i.

Using the above predicates, we can now define some of the required graph predicates

in arithmetic.

Lemma 3.24. The following predicates are definable in arithmetic:

1. NRinv(x) holds if and only if x is a number which represents a graph i.e. there

exists an image g = NR(x) under the map NR.

2. graphOrder(x, n) holds if and only if NR(x) holds and |g(x)| = n.

3. edgeExists(x, i, j) holds if and only if NR(x) holds and vivj 2 E(g(x)).

Proof. Recall that we use g(x) to denote the graph NR(x) and whenever we talk of a vertex

vi of g(x) we mean the ith vertex in the order induced by the representation x on g(x).

NRinv(x) := x = 0 _ x = 1 _ 9n |x| = (1 +

✓
n

2

◆
)

59

graphOrder(x, n) := NRinv(x) ^ 2⇥ |x| = 2 + n⇥ (n� 1)

edgeExists(x, i, j) :=9n graphOrder(x, n) ^

((1 i < j n ^ bit(x, ((j2 � 3j + 2)/2) + i)

_ (1 j < i n ^ bit(x, ((i2 � 3i+ 2)/2) + j)

To assert that there is an edge from vi to vj in g(x) (where i < j), note that the tuple (vj, vi)

occurs at bit position ⌃j�1
k=1(k � 1) + i = j

2�3j+2
2 + i.

Any permutation of vertices of a ordered graph induces a permutation on the edges of a

graph. To identify all numbers which represent the same graph under the map NR, we will

need to represent permutations on [n] and their actions. This helps us define the map UN

as well as to identify when a graph is a subgraph of another using number representations.

Definition 3.25. We represent a permutation by a bit string which is of length n⇥ |n|+ 1.

The most significant bit is ignored, after which every block of |n| bits represents a number

from 1 to n. Additionally, every number in [n] occurs exactly in one block. The permutation

sends i 2 [n] to the number represented by the ith block from the left. Let perm(x, n) hold

if and only if x represents a permutation on [n].

Lemma 3.26. The following predicates are definable in arithmetic:

1. perm(x, n) holds if and only if x represents a permutation on [n].

2. applyperm(x, i, j, n) holds if and only if x is a permutation on [n] and sends i to j

for i, j 2 [n].

3. sameGraph(x, y) holds if and only if g(x) = g(y).

4. UNinv(x) holds if and only if NRinv(x) and x is the smallest number representing

g(x).

60

Proof.

perm(x, n) :=|x| = 1 + n⇥ |n| ^ 8i 1 i n 9!j 1 j n

i = window(j, |n|, x)

applyperm(x, i, j, n) :=perm(x, n) ^ i n ^ j n ^

j = window(i, |n|, x)

sameGraph(x, y) := 9n |x| = |y| = 1 +

✓
n

2

◆
^ 9z perm(z, n) ^

8i 8j 1 i < j n � (edgeExists(x, i, j) () (9i09j0 applyPerm(z, i, i0, n)

^ applyPerm(z, j, j0, n) ^ edgeExists(y, i0, j0)))

The formula above states that for x and y to represent the same graph, there must exist a

permutation z such that for any tuple (vi, vj) of vertices of x, vivj 2 E(g(x)) iff vz(i)vz(j) 2

E(gy).

UNinv(x) := NRinv(x) ^ 8y sameGraph(x, y) � x y

3.3.2 Defining Graph Orders in Arithmetic

We have all the intermediate predicates required to define the subgraph and induced

subgraph orders in arithmetic, which we proceed to do now.

Lemma 3.27. The following predicates are definable in arithmetic:

1. subGraph(x, y) holds if and only if x, y uniquely represent graphs and g(x) is a

61

subgraph of gy.

2. inSubGraph(x, y) holds if and only if x, y uniquely represent graphs and g(x) is an

induced subgraph of y.

3. P3(x) holds if and only if x = UN(P3).

Proof.

subGraph(x, y) := UNinv(x) ^ UNinv(y) ^ |g(x)| |gy| ^

9z sameGraph(y, z) ^ 8k (1 k |x|� 1) � (bit(x, k) � bit(z, k))

If g(x) s g(y), then there must exist a permutation of vertices of g(y) (w.r.t to the order

specified by y) to give another representation z of gy such the vertices forming the witness

for the subgraph relation are an initial segment of [|g(y)|] and moreover, the ordering among

these is the same as the ordering imposed by x. This implies that the binary expansion of x

(with the most significant bit removed) occurs as an initial segment of the binary expansion

of z.

We can define induced subgraph by a small modification in the subgraph formula as

follows:

inSubGraph(x, y) := UNinv(x) ^ UNinv(y) ^ |g(x)| |gy| ^

9z sameGraph(y, z) ^ 8k (1 k |x|� 1) � (bit(k, x) () bit(k, z))

The formula for P3 just requires us to identify UN(P3).

P3(x) := (x = 11)

The correctness of the above formula is clear from Figure 2.2.

In order to define the minor relation in arithmetic, we use the following alternate

62

definition of the minor relation (see Diestel [10]):

Definition 3.28. Let x be a graph on the vertex set V = {v1, v2, ..., vn} and y be a graph

on the vertex set U = {u1, u2, ..., um} . Then, x is a minor of y iff there exist disjoint

subsets S1, S2, ..., Sn of U such that the graph y[Si] induced by each Si is connected and

for any edge vivj of x, there exists uk 2 Si, ul 2 Sj such that ukul is an edge of y.

In order to use the above definition, we need a way to encode sets of vertices, the notion

of an element in a set etc. to get a formula in the language of arithmetic.

Definition 3.29. A nonempty sequence of numbers i1, i2, ..., in is encoded as the number

2i1+1 ⇥ 3i2+1 ⇥ ...p
ij+1
j

...pin+1
n

where pj stands for the jth prime. Corresponding to this

definition of sequence we have the predicate seq(x) if and only if x is a number which

encodes a sequence.

Lemma 3.30. The following predicates are definable in arithmetic:

1. seq(x) holds if and only if x is a number which encodes a sequence.

2. index(x, i, p) holds if and only if x is a sequence and p is a prime such that the largest

power of p dividing x is pi + 1. We will write i 2 x if and only if 9p index(x, i, p).

3. set(x) holds if and only if x is a sequence, any number occurs only once in the

sequence and for any pair of numbers m < n occuring in the sequence x, m occurs

before n. We will write s 2 x to denote that s belongs to the set x.

4. extract(s, i, n) holds if and only if s is a set and the ith smallest element of s is n.

We denote the unique n by s(i).

5. cardSet(s, n) holds if and only if s is a set and its cardinality is n. We will denote

the unique n satisfying cardSet(s, n) by |s|set.

Proof. We give the defining formulae below, the proof of correctness is straightforward.

seq(x) :=x 6= 0 ^ x 6= 1 ^ 8p prime(p) ^ p|x �

8p0 (prime(p0) ^ p0 < p) � p0|x

63

index(x, i, p) :=seq(x) ^ prime(p) ^ pi+1|x ^ pi+2 6 |x

set(x) :=seq(x) ^ 8i 8j (i 2 x ^ j 2 x) �

(unique(i, x) ^ ordered(i, j, x))

where

unique(i, x) :=9!p index(x, i, p)

ordered(i, j, x) :=9p 9p0 index(x, i, p) ^ index(x, j, p0) ^ (i < j � p < p0)

extract(s, i, n) := set(s) ^ index(s, n, pi)

cardSet(s, n) := set(s) ^ pn|s ^ pn+1 6 |s

Lemma 3.31. The predicate minor(x, y) if and only if g(x) m g(y) is definable in

arithmetic.

Proof. First we need the following intermediate predicate:

induced(s, x, y) if and only if x, y represent graphs, s is a set which is a subset of [|g(x)|]

and g(y) = x[s] where x[s] is the graph induced by s on x.

induced(s, x, y) :=set(s) ^ NRinv(x) ^ NRinv(y) ^ |g(y)| = |s|set ^

8i1 8i2(1 i1 < i2 |g(y)|) �

(edgeExists(i1, i2, y) () edgeExists(s(i1), s(i2), x))

64

We can now define the predicate minor(x, y).

minor(x, y) :=UNinv(x) ^ UNinv(y) ^ 9s set(s) ^ 8q 2 s set(q) ^

disjoint(x, y, s) ^ edges(x, y, s) ^ connCond(x, y, s)

where

disjoint(x, y, s) :=8q1, q2 2 s(8i (1 i |g(x)|) i 2 q1 � i /2 q2)^

8j (j 2 q1) � (1 j |g(x)|)

edges(x, y, s) :=8i1 8i2 (1 i1 < i2 |g(x)|) edgeExists(i1, i2, x) �

9j1 2 s(i1) 9j2 2 s(i2) edgeExists(j1, j2, y)

connCond(x, y, s) :=8q 2 s 9z induced(q, y, z) ^ conn(gz)

The set s is a set of subsets q1, q2, ... of the vertex set of gy. The formula disjoint(x, y, s)

ensures that the sets qi of s are all disjoint. The formula edges(x, y, s) ensures that if there

is an edge between two vertices of g(x) then there is an edge between the appropriate sets

of vertices in s and connCond(x, y, s) ensures that the graph induced by each of the qi is

connected. Note that the existence of a formula conn(gz) which states that the graph gz is

connected follows from two facts: first that connectivity is definable using the subgraph

order by Lemma 3.10 and second that the subgraph order is definable in arithmetic by

Lemma 3.27.

Using Lemmas 3.31 and 3.27 we have the following theorem:

Theorem 3.32. The structures (G,m), (G,s) and (G,i, P3) are definable in (N,+,⇥).

Combining the above result with Theorem 3.22 we have:

Theorem 3.33. The structures (G,m), (G,s) and (G,i, P3) are mutually interpretable

with first order arithmetic.

65

66

Chapter 4

Defining Arithmetical Predicates in

Arbitrary Structures over Graphs
1

This chapter is divided into three sections. In the first section, we give a proof of the

fact that every recursively enumerable relation over numbers is definable in first order

arithmetic. In the second section, we define the notion of a capable structure over graphs

which are arithmetical structures which can interpret arithmetic and define three particular

predicates over graphs. It is then shown that such capable structures have the maximal

definability property (m.d.p.), that is, a relation is definable in such structures iff it is

arithmetical. The third section is devoted to showing that the induced subgraph order is

a capable structure and thus has the m.d.p. An important corollary is the definability of

every recursively enumerable predicate over graphs in the induced subgraph order.
1The results in this chapter are from Thinniyam [40].

67

4.1 Defining Recursively Enumerable Predicates in Arith-

metic

The following theorem is in fact a weakening of the MRDP theorem [34] which states that

every recursively enumerable relation over numbers is existentially definable in arithmetic,

but we give a proof here so that the abstract definability result in the next section (Theorem

4.8) has a self contained proof.

Theorem 4.1. Every recursively enumerable relation over numbers is definable in first

order arithmetic.

To simplify the presentation, we will consider R ✓ N which is an r.e. set of numbers.

The essence of the proof remains the same for a relation of arity more than one. By

assumption, there is a Turing Machine MR = (Q,⌃, �, s, f) with finite set of states Q,

alphabet ⌃ = {0, 1}, transition function � : Q\{f}⇥{0, 1}! Q⇥{0, 1}⇥{L,R}, start

state s and final state f such that the language L(MR) accepted by the Turing Machine is

R.

We need to construct a formula �R(x) in one free variable such that

n 2 L(MR) () (N,+,⇥) |= �R(n)

The accepting run of MR on x is a sequence of configurations c0, c1, ..., cn2 of the machine

MR where c0 is the initial configuration and the final configuration cn2 is in the accepting

state f . This accepting run can be encoded as the binary representation of a number y,

which is used to construct the required formula �R.

Let Q = {q1, q2, ..., qk} where q1 = s and q2 = f . Let ⌃0 = {a1, a2, ..., ak+5}

where a1 = 0, a2 = 1, a3 = #, a4 = 00, a5 = 10 and ai+5 = qi for 1 i k. Let

n0 = blog(⌃0)c + 1. The symbol # is used to separate consecutive configurations, the

alphabets 00 and 10 are intended to represent the fact that the letter being read by the head

68

of the Turing Machine is 0 and 1 respectively, and the rest of ⌃0 is used to represent the

states of MR. The number n0 is the number of bits required to represent one letter of ⌃0

and is independent of the input x. Suppose the machine M uses n1 � 2 tape cells and runs

for time n2 before accepting the input x, then the binary representation of y (disregarding

the most significant bit) can be thought of as c0#c1#...#cn2# where a configuration ci

is a string qb1b2....bn1�2 with q the state and b1...bn1�2 the tape contents. The bi are either

0 or 1 except for a unique bj which is either 00 or 10 indicating the current position of the

head of the machine.

�R(x) := 9y 9n0 9n1 9n2 |y| = 1 + n0n1n2 ^ init(x, y, n0, n1, n2) ^

checkConfig(y, n0, n1, n2) ^ validMoves(y, n0, n1, n2) ^ accept(y, n0, n1, n2)

The formula checkConfig makes sure that the binary representation of y is of the form

c0#c1#...#cn2#, init makes sure the initial configuration is correct, accept makes sure

that MR is in the state f at the end of the accepting run and validMoves makes sure that

consecutive configurations ci and ci+1 are related by the transition function �.

To define the above formulae, we need some intermediate predicates:

ai(j, z, n0) := window(n0, j, z) = i

config(i, y, n0, n1) := 2n0n1 + window(n0n1, i, y)

head(i0, i, x, n0, n1) := a4(i0, config(i, y, n0, n1), n0) _ a5(i0, config(i, y, n0, n1), n0)

In the above, the formula ai(j, z, n0) states that z when seen as a word over ⌃0 has letter

ai in position j when read left to right. We use the predicate window defined in Lemma

3.23. The second formula has been written as a term where the term config(i, y, n0, n1)

is intended to mean a number of total bit length 1 + n0n1 which when seen as a word

over {0, 1} (disregarding the most significant bit) is the ith subword of y of window length

69

n0n1 when y is read left to right. The formula head is intended to capture the position

of the head of the Turing Machine and says that the head is at position i0 along the word

config(i, y, n0, n1) read from left to right. We can now write down the required formulae:

init(x, y, n0,n1, n2) := a6(1, y, n0) ^ 8i (2 i |x|) �

[bit(|x|� i+ 1, x) � a2(i+ 1, y, n0) ^ (¬bit(|x|� i+ 1, x) � a1(i+ 1, y, n0))

^ (bit(|x|, x) � a5(2, y, n0)) ^ (¬bit(|x|, x) � a4(2, y, n0))

^ (8i (|x|+ 1 i n1) � a1(i, y, n0))]

The above formula checks that the first letter in y corresponds to the initial state, the second

letter is either 00 or 10 depending on whether the most significant bit of the input x is 0 or 1

respectively, and the letters from positions 2 to |x| are 0 or 1 depending on whether the

corresponding bit of x is 0 or 1 and the letters in positions |x|+ 1 to n1 are all 0.

checkConfig(y, n0,n1, n2) := 8i (1 i n2) � state(y, i, n0, n1) ^

hashMarker(y, i, n0, n1) ^ 9i0 head(i0, i, y, n0, n1)

^ 8i1(2 i1 n1 ^ i1 6= i0) �

tapeContents(i1, i, y, n0, n1)

where

state(y, i, n0, n1) :=
_

k+5�j�6

aj(1, config(i, y, n0, n1), n0)

hashMarker(y, i, n0, n1) :=a3(n1, config(i, y, n0, n1), n0)

tapeContents(i1, i, y, n0, n1) :=a1(i1, config(i, y, n0, n1), n0)_

a2(i1, config(i, y, n0, n1), n0)

The formula checkConfig checks that the first letter in every window is a state, the last

letter in every window is a #, there is a unique position i0 in every window which indicates

70

the head position and the rest of the letters in a window are either 0 or 1.

validMoves(y, n0,n1, n2) := 8i (1 i n2 � 1) � [
_

(qj ,b)!(qj0 ,b
0,d)2�

9i0 moveHead(i0, i, y, n0, n1)

^ stateChange(i0, i, y, n0, n1)

^ letterUnderOldHead(i0, i, y, n0, n1)

^ letterUnderNewHead(i0, i, y, n0, n1)

^ otherLetters(i0, i, y, n0, n1)]

where

moveHead(i0, i, y, n0, n1) :=head(i0, i, y, n0, n1) ^

head(i0 + d, i+ 1, y, n0, n1)

stateChange(i0, i, y, n0, n1) :=aj+5(1, config(i, y, n1))

^ aj0+5(1, config(i, y, n0, n1), n0)

letterUnderOldHead(i0, i, y, n0, n1) :=ab+4(i0, config(i, y, n0, n1), n0)

^ ab0+1(i0, config(i, y, n1))

letterUnderNewHead(i0, i, y, n0, n1) :=ab+1(i0 + d, config(i, y, n0, n1), n0) ^

ab0+4(i0 + d, config(i, y, n1))

otherLetters(i0, i, y, n0, n1) :=8i (1 i0 n1 ^ i0 6= i0 ^ i0 6= i0 + d) �

a1(i
0, config(i, y, n0, n1), n0) () a1(i

0, config(i+ 1, y, n0, n1), n0)

By a transition (qj, b)! (qj0 , b0, d) we mean that the machine MR from a state qj on

reading a bit b, changes its state to qj0 after replacing b by the bit b0 and moves its head in

the direction d, where d = 1 if the machine head moves right and d = �1 if it moves left.

The formula validMoves checks that for every pair of consecutive configurations, there

exists a transition (qj, b)! (qj0 , b0, d) such that movement of the head, the state change,

the letter under the head before and after the move are in accordance with the transition

71

and the remaining letters remain the same.

accept(y, n0, n1, n2) := a7(1, config(n2, y, n0, n1).n0)

The formula accept checks if the final configuration is in the accepting state f . This

concludes the proof of Theorem 4.1.

4.2 Capable Structures

In this section, we introduce the notion of a capable structure over graphs which is an

arithmetical structure with the ability to define arithmetic and certain predicates related

to o-presentations. We then show that any capable structure can define every arithmetical

predicate over graphs. We note that the graph orders considered in this thesis are arithmeti-

cal; the abstract definability results of this chapter will be used to give a characterization

of the predicates definable in graph orders in the next chapter.

Lemma 4.2. The structures (G,i, P3), (G,s) and (G,m, sameSize) are arithmetical.

Proof. The fact that i,s,m, P3, sameSize are definable in (G, plust, timest) follows

from the fact that they are recursively enumerable predicates and using

Theorem 4.1.

In order to introduce the notion of a capable structure, we need the notion of an o-

presentation, first introduced by Ježek and McKenzie [23] in the setting of posets and

defined by Wires [43] for graphs. An o-presentation is the representation of an ordered

version of a graph g by another graph g0. The definability of predicates related to such

o-presentations allows us to access the internal structure of a graph i.e. the edge relation,

which is not available in the vocabulary.

72

S4

v1

v2

v3 v4

Ordered S4

C8C7

C9 C10

an o-presentation of S4

Figure 4.1: Top left: the graph S4. Bottom left: A vertex ordering of S4. Right: The
o-presentation corresponding to the given vertex ordering.

Definition 4.3 (o-presentation). An o-presentation of g 2 G is another graph g0 constructed

as follows: fix an ordering v1 < v2 < ... < vn of vertices of g. Let g00 be the graph formed

by the disjoint union of g and the cycles Cn+i+2 for each 1 i n. Add n additional

edges to g00 connecting each cycle Cn+i+2 to the corresponding vertex vi. The resulting

graph is g0.

Remark 4.4. Note that each vertex ordering of a graph g leads to a (possibly) different

o-presentation. We will refer to the set of o-presentations of g by g̃ and write g0 2 g̃ to

indicate that g0 is an o-presentation of g. The example in Figure 4.1 clarifies the bijective

correspondence between o-presentations and labellings of a graph.

Definition 4.5 (Indicator Cycle). Given a graph g, a cycle C is called an indicator cycle

of g if |g|+ 3 |C| 2|g|+ 2.

We will often just call C an indicator cycle if the graph g is understood from the

context.

Definition 4.6 (Capable Structure over Graphs). We call an arithmetical structure (G, ⌧) a

capable structure over graphs if it satisfies the following three conditions:

73

(C1) Arithmetic can be defined in (G, ⌧), in particular, the following predicates are

definable:

1. The family N of graphs which do not contain edges i.e. are made of isolated points.

2. The predicate +(z, x, y) holds if and only if x, y, z 2 N and |x|+ |y| = |z|.

3. The predicate ⇥(z, x, y) holds if and only if x, y, z 2 N and |x|⇥ |y| = |z|.

(C2) The following predicates related to o-presentations are definable in (G, ⌧):

1. opres(x, y) holds if and only if x is an o-presentation of y, also written x 2 ỹ.

2. edgeOP (x, i, j) holds if and only if i, j 2 N and there exists a graph y such that

x 2 ỹ and in the vertex ordering induced on y by the o-presentation x, the vertices

v|i| and v|j| in y have an edge.

(C3) The predicate sameCard(x, y) holds if and only if x and y have the same number of

vertices.

Observation 4.7. The binary relation card(x, y) which holds if and only if y = |x|g is

definable :

card(x, y) := N (y) ^ sameCard(x, y)

Recall that an arithmetical structure over graphs is said to have the maximal definability

property if it can define every arithmetical predicate over graphs.

Theorem 4.8. Any (G, ⌧) which is a capable structure over graphs has the maximal

definability property.

Let nx be the number assigned to a graph x in accordance with the order t. It is

sufficient to show that the following predicates are definable in any capable structure:

1. plust(z, x, y) if and only if nx + ny = nz.

2. timest(z, x, y) if and only if nx ⇥ ny = nz.

We will instead show that any recursive relation R ✓ Nk over graphs is definable via a

74

G

RN
UG(UN(G))

UG
(U

N
(R

))

g

g0

g1

g01

N
UN

(G)U N(R
)

UN(g)

UN(g1)
UN

UG

UN

UG

Figure 4.2: Maps UN and UG and how they act on R ✓ G. For any graph g 2 R it is
the case that UG(UN(g)) = g0 2 UG(UN(R)). For any graph g1 /2 R correspondingly
UG(UN(g1)) = g01 2 (UG(UN(G)) \ UG(UN(R))).

formula R in a capable structure. This implies the definability of plust and timest since

they are both recursive predicates. The proof is carried out in two steps which we outline

below:

Step 1 :

Corresponding to every graph g there exists the graph g0 = UG(UN(g)) 2 N . From

the definitions of the maps UN and UG it is clear that the map UG � UN is a bijection

between the sets G and UG(UN(G)). The fact that UG(UN(G)) ✓ N allows us to use

the definability of arithmetic to capture the image UG(UN(R)) of the relation R using a

formula trans

UG(UN(R)) over ⌧ which is the translation of an arithmetic formula �UN(R).

Step 2 :

What remains to be done is to show that the predicate enc(x, y) which holds if and only if

y = UG(UN(x)) is definable in (G, ⌧). Once this is done, we immediately get the defining

formula R by moving over from the input k�tuple x̄ to the k�tuple ȳ and verifying that

ȳ belongs to UG(UN(R))

We now give details of the first step whose aim is to define trans

UG(UN(R)).

Since R is a recursive predicate, by Definition 2.23 there exists a machine M which

75

accepts the UN encodings of the set of k�tuples of graphs which belong to R.

R(ḡ) () UN(ḡ) 2 L(M)

By Theorem 4.1, there is an arithmetic formula �UN(R)(x̄) such that for any k�tuple n̄

of numbers,

(N,+,⇥) |= �UN(R)(n̄) () n̄ 2 UN(R)

The condition (C1) that arithmetic is definable in any capable structure gives the

following corollary:

Corollary 4.9. For every formula �(x̄) in arithmetic there is a formula trans

UG
(x̄) in (G, ⌧)

such that for any k�tuple n̄ of numbers,

(N,+,⇥) |= �(n̄) () (G, ⌧) |= trans

UG
(UG(n̄))

Applying this translation to �UN(R) gives us the graph formula t

UG(UN(R)). This

completes the first step of the proof.

For the second step, we show how to define enc. To do so, we need arithmetical

predicates to identify the image set UN(G) ✓ N, identify the cardinality of g and draw out

the edge information E(g) from the unique number representation UN(g).

The following lemma is a corollary of Theorem 4.1.

Lemma 4.10. The following predicates are definable in arithmetic:

1. �UN(x) holds if and only if x is a number which uniquely represents a graph (see

Definition 2.21).

2. �edge(x, i, j) holds if and only if there is a graph g such that x = UN(g) and vivj is

an edge in the order induced by the map UN .

3. �length(x, n) holds if and only if the length of the binary representation of x is n. We

76

will just write length(x) to denote n.

We can now define the binary relation y = UG(UN(x)) by the formula enc(x, y):

 enc(x, y) :=N (y) ^ trans

graphOrder
(y, |x|g) ^ trans

UN
(y) ^

9z [z 2 x̃ ^ 8 N1 i < j |x|g

 trans

edge
(y, i, j) () edgeOP (z, i, j)]

We explain the various subformulae used in the formula above:

1. trans

UN
and trans

edge
are translations of arithmetical formulae by use of Theorem 4.10.

2. z 2 x̃ which holds if and only if z is an o-presentation of x and edgeOP (z, i, j) are

from condition C2.

3. The cardinality |x| (represented by |x|g which is the corresponding member of N)

of a graph x uses condition C3.

4. trans

graphOrder
is the translation of the following arithmetic formula:

�graphOrder(n,m) := length(n) = 1 +m(m� 1)/2

Given a graph x, UN(x) = nx is a number which has bit length 1 + |x|(|x| � 1)/2.

Applying UG to nx should give us y. Thus the number n = UG�1(y) should have bit

length 1+ |x|(|x|�1)/2. This condition is taken care of by the formula trans

graphOrder
(y, |x|).

Effectively, what this amounts to is identifying the cardinality of x. The formula trans

UN
(y)

verifies that n belongs to the set UN(G). Finally, we need to check that the edge information

is correct to conclude that nx = n. This is done using the fact that there is a witnessing

o-presentation z of x such that the edge information in z matches with the edge information

in n (which is accessed via y in the formula). This concludes the definability of enc(x, y).

77

We can now write the required formula R in (G, ⌧).

 R(x̄) := 9ȳ
k^

i=1

 enc(xi, yi) ^ trans

UG(UN(R))(ȳ)

This concludes the proof of Theorem 4.8. In the next section, we show that the induced

subgraph order is a capable structure.

4.3 The Induced Subgraph Order is Capable

The fact that the induced subgraph order is a capable structure is already implicit in the

work of Wires [43] and follows from the result therein that a relation over graphs is

definable in the induced subgraph order if and only if it is definable in the associated small

category of graphs. In fact, most of the formulae required are already explicitly present

in Wires; for the few which are not, we give explicit formulae. In particular condition C1

is by Lemma 3.14 (2) and C3 is by Lemmas 3.14 (1), 3.17 and 3.21. It remains to give

explicit formulae for condition C2.

In other words, we need to show the definability of the predicate x 2 ỹ which stands

for ‘x is an o-presentation of y’ and the predicate edgeOP (x, i, j) which holds if and

only if x is an o-presentation and there is an edge between vertices vi and vj in the

corresponding ordered graph. The formulae required to do this make extensive use of

number-theoretic predicates and we will freely use formulae such as |x|2 + |y| = |z|+ 3

with the understanding that appropriate formulae can be written in the original vocabulary;

in particular we drop the subscript |x|g and use |x| to denote the graph N|x|.

We will first define the set G̃ of all o-presentations and then use it to define x 2 ỹ. We

recall some definability results from Wires [43].

Lemma 4.11 (Wires [43]). The following predicates are definable in (G,i, P3).

1. The family C of cycles.

78

2. maximalComp(x, y) if and only if y is a maximal connected component of x.

3. cover(y, x, n) holds if and only if there are exactly n� 1 graphs between x and y in

the order and x i y. Also denoted xln

i
y.

4. C!1(x) holds if and only if x is the connected graph formed by adding one extra

vertex and one extra edge to a cycle.

5. conn(x) holds if and only if x is a connected graph.

6. disjointUnion(z, x, y) (also written z = x [· y) holds if and only if z is the disjoint

union of x and y.

7. C!2(x) holds if and only if x is formed from the graph g which satisfies C!1(g) by

adding an additional vertex and joining it to the unique vertex in g which has degree

1.

8. pointedCycleSum(z, x, y) holds if and only if x and y are incomparable cycles and

z is formed by starting with the graph x [y and adding one extra vertex v and two

extra edges, one from v to any vertex of x and another from v to any vertex of y. We

will write z = x+p y for short.

9. CP4C(x, i, j) holds if and only if i, j 2 N , 3 < i < j and x is formed by adding to

the graph Ci[· Cj two additional vertices v1, v2 and the edge v1v2, one edge between

Ci and v1 and one edge between Cj and v2. We denote x by CP4C(i, j).

Notice that from the definability of C!1(x) we also have definability of the graph Cj!1

which stands for the member of C!1 of order j +1 because the family is totally ordered by

number of vertices and thus Observation 3.6 can be applied to Cj!1 to define each member

of the family as a constant. Additionally, given a parameter n, we can obtain Cn!1. For

the same reason, Cn!2 is also definable given n.

We need one additional predicate not explicitly defined by Wires.

Lemma 4.12. The family bicycle(x) which holds if and only if x is formed by adding an

edge between two unequal cycles, is definable in the induced subgraph order.

79

C5 +p C6 bicycle

Figure 4.3: Left: a pointed cycle sum. Right: a bicycle.

Proof.

bicycle(x) :=conn(x) ^ 9y 9z C(y) ^ C(z) ^ y 6= z

^ |x| = |y|+ |z| ^ y i x ^ z i x ^

8w (w 6= C|y|!2 ^ C|y|!1 li w) � w ⇥i x

^ 8w (w 6= C|z|!2 ^ C|z|!1 li w) � w ⇥i x

Since the two cycles y and z are induced subgraphs and the cardinality constraint implies

that there are no other vertices apart from the cycle vertices, x is restricted to graphs

which are formed by adding edges between z and y. There is at least one edge due to the

connectedness constraint. We avoid multiple edges by avoiding induced subgraphs which

contain two edges incident on either cycle.

We can now define the set of all o-presentations.

Lemma 4.13. The predicate G̃(x) which holds if and only if x is an o-presentation is

definable in the induced subgraph order.

80

Proof.

G̃(x) :=9n cardCond(x, n) ^ hasC1s(x, n) ^

hasUnionOfCycles(x, n) ^ noMultiEdge(x, n)

^ noPointedCycleSums(x, n) ^ noBicycles(x, n)

where

cardCond(x, n) :=N (n) ^ |x| = n2 + n(n+ 1)/2 + 3n

hasC1s(x, n) :=8i (1 i n) � Ci+n+2!1 i x

hasUnionOfCycles(x, n) :=
n[
·

i=1

Cn+i+2 i x

noMultiEdge(x, n) :=8i (1 i n) � [8z (Cn+i+2!2 6= z ^

Cn+i+2!1 li z) � z ⇥i x]

noPointedCycleSums(x, n) :=8i 8j (1 i < j n) � Cn+i+2 +p Cn+j+2 ⇥i x

noBicycles(x, n) :=8y (bicycle(y) ^ |y| > 2n) � y ⇥i x

In order to show that a graph x is an o-presentation, we need to show that the vertex set V

of x can be partitioned into two sets V1 and V2 such that:

1. Let |V2| = n. The graph g induced on V1 is
S
· n

i=1 Cn+i+2. We denote the vertex set

of each large cycle Cn+i+2 by V 0
i

and
S
·
i
V 0
i
= V1.

2. There is a bijection f : {V 0
1 , V

0
2 , ..., V

0
n
} ! V2 such that there is an edge from a

unique vertex of V 0
i

to f(V 0
i
) and there are no other edges between the large cycles

in x and the vertex set V2.

The formula cardCond states that the graph has as many vertices as required to contain

as induced subgraph a graph on n vertices and cycles of order n+ i+2 for each i between

1 and n.

hasUnionOfCycles states that the disjoint union of all the required cycles is an

induced subgraph. Because of the cardinality constraint already imposed, this implies that

81

there is a unique copy of each cycle in x. Let V1 be the set of vertices which induce the

graph
S
· n

i=1 Cn+i+2. The remaining vertices of x form the set V2, which has cardinality

n. No restriction is placed on the edges between the non-cycle vertices V2. It remains to

place appropriate restrictions on V1 in order to make sure that the resulting graph x is of

the required form. The formula hasC1s states that the C!1 are induced subgraphs, thus

there is at least one edge from every indicator cycle to the rest of the graph. The formula

noMultiEdge ensures that there are no multiple edges between an indicator cycle and the

rest of the graph while noPointedCycleSums ensures that two different indicator cycles

do not have an edge to a vertex v external to the two cycles. At this point, the constraints

ensure that there is exactly one edge incident on each indicator cycle which has its other

end elsewhere. But this does not rule out the possibility of two cycles directly connected

by an edge. To rule this out, we have noBicycles. Note that by design all indicator cycles

are of different length. Thus the edge enforced via hasC1s must be between a indicator

cycle and a vertex in V2. Together, this implies the existence of the bijection f between

indicator cycles and vertices in V2.

Towards defining opres, we define two more intermediate predicates.

Lemma 4.14. The following predicates are definable in the induced subgraph order:

1. csum(x, n) holds if and only if n 2 N and x =
S
· n

i=1 Cn+i+2.

2. psum(x, n) holds if and only if x =
S
· n

i=1 Pn+i+1.

Proof. We can construct the object
S
· n

i=1 Cn+i+2 as follows:

82

csum(x, n) :=8z maximalComp(x, z) � C(z) ^

cardCond(x, n) ^ allCycles(x, n)

where

cardCond(x, n) :=N (n) ^ |x| = n2 + n(n+ 1)/2 + 3n

allCycles(x, n) :=8m (n+ 3 m 2n+ 2) � Cm i x

If x =
S
· n

i=1 Cn+i+2 then it clearly satisfies the formula csum(x, n). Suppose x satisfies

csum(x, n). Therefore it contains every cycle Cm for n + 3 m 2n + 2 as induced

subgraph. Suppose a copy of Cm and Cm0 (where m 6= m0 and Cm, Cm0 are both indicator

cycles) present in x share a common vertex v. Consider the subgraph g formed by the

vertices of these copies: it is connected. Hence the component of x containing g is not

a cycle, which contradicts 8z maximalComp(x, z) � C(z). Hence any copy of Cm is

disjoint from a copy of Cm0 present inside x. But the cardinality condition imposed by

cardCond implies that there is a unique copy of each Cm. In fact, there are no other

vertices in x apart from vertices belonging to the cycles Cm. There cannot be any edges

between different cycles, again because of the maximalComp condition. Hence x is

exactly the graph
S
· n

i=1 Cn+i+2.

Next we show how to construct the graph
S
· n

i=1 Pn+i+1, which is formed by deleting

one vertex from each cycle in the graph
S
· n

i=1 Cn+i+2.

psum(x, n) := 9y y =
n[
·

i=1

Cn+i+2 ^ xln

i
y ^ 8z C(z) � z ⇥i x

i.e. we get the appropriate graph by enforcing the condition that no cycle is an induced

subgraph.

83

We can now define opres(y, x) which holds if and only if y is an o-presentation of x.

 opres(y, x) :=G̃(y) ^ constructFromPaths(y, x)

^ cardCond(y, x)

where

cardCond(y, x) :=|y| = |x|2 + |x|(|x|+ 1)/2 + 3|x|

constructFromPaths(y, x) :=9z z = x [·
|x|[
·

i=1

P|x|+1+i ^ z l|x|
i

y

The formula opres states that y is an o-presentation of appropriate order and deletion of

|x| vertices from y gives the disjoint union of x with paths of size |x|+2 to 2|x|+1. Let y

be an o-presentation obtained by by addition of |x| new vertices Vnew = {v1, v2, ..., v|x|} to

z. Let V (z) = V (x) [VP where VP are the vertices of
S
· |x|
i=1 P|x|+1+i. The cardinality of y

is |x|2 + |x|(|x|+1)+ 3|x| and hence it must contain each cycle in the set {C|x|+i+2 | 1

i |x|} of indicator cycles as induced subgraph. None of these cycles is present in z as

induced subgraph since neither x nor any of the graphs P|x|+1+i contain them. Hence every

such cycle has to be created in y through addition of new edges between the newly added

vertices Vnew and V (z). Since the creation of each indicator cycle requires at least one new

vertex and the number of new vertices is equal to the number of indicator cycles, the only

way to get
S
· |x|
i=1 C|x|+i+2 as an induced subgraph of y is to add two edges connecting the

ends of the path P|x|+i+1 to vi, for every i. This gives us the graph y0 = x [·
S
· |x|
i=1 C|x|+2+i

where V (y0) = V (z) [Vnew. We need to add some more edges between Vnew and the

vertices V (z) in y0 to get an o-presentation. But by the properties of o-presentations, there

is exactly one more edge between each vertex in Vnew and the vertices V (x) of z. Thus the

graph y must be an o-presentation of x.

We now take up the definition of the predicate edgeOP (x, i, j).

84

Cn+i+2 Cn+j+2

vi vj

Figure 4.4: The CP4C graph corresponding to an edge between vertices vi and vj .

 edgeOP (x, i, j) :=9y x 2 ỹ ^ 9m (|x|g = m2 +m(m+ 1)/2 + 3m) ^

CP4C(m+ i+ 2,m+ j + 2) i x

The existence of an edge between vertices vi and vj in the graph x is captured by

the presence of a CP4C induced subgraph in y (which is an o-presentation of x) with

appropriate parameters and this is stated by the formula edgeOP .

This concludes the proof that (G,i, P3) satisfies condition C2.

Lemma 4.15 (Wires [43]). The structure (G,i, P3) is capable.

By Theorem 4.8 and the above result, we get the following result.

Theorem 4.16. The structure (G,i, P3) has the maximal definability property.

85

86

Chapter 5

Defining Arithmetical Predicates in the

Subgraph Order
1

The main result of this chapter is that the subgraph order is a capable structure. The

proof of the induced subgraph order being capable in the previous chapter was presented

bottom-up since many of the intermediate predicates required were already available

in literature. Since we need to define all the predicates for the subgraph order and the

details are tricky, we present a top-down approach for the analogous result. Examining

the defining formulae for the relations opres and edgeOP in the induced subgraph order,

we see that the result follows from the definability of three intermediate predicates: G̃,

CP4C and constructFromPaths. The difference in the case of the subgraph is that

instead of constructFromPaths we use a relation constructFromCycles, along with

G̃ and CP4C. The constructFromCycles relation is used to capture the construction of

o-presentations in the subgraph order. An o-presentation g00 of a graph g is constructed

from the graph g0 = g [·
S
· |g|
i=1 C|g|+i+2 which is the disjoint union of g with its indicator

cycles, by addition of |g| many edges to g0. This difference arises from the fact that the

covering relation in the subgraph order is equivalent to deletion of a single edge or isolated
1The results in this chapter are from Thinniyam [40].

87

vertex, as opposed to deletion of a vertex along with all its incident edges in the induced

subgraph order.

The definability of constructFromCycles is more involved than that of G̃ and CP4C

and is facilitated by the definition of two natural graph theoretic predicates of inde-

pendent interest : a ternary relation disjointUnion(x, y, z) if and only if x [· y = z,

and a binary predicate sameSize(x, y) if and only if x and y have the same number of

edges. Thus the proof can be split up into two steps: first we show that the structure

(G,s, disjointUnion, sameSize) is capable; second, we show that disjointUnion and

sameSize are definable in (G,s), completing the proof that the subgraph order is capable.

The two steps form the first two sections of this chapter. As a corollary we obtain the fact

that the structure (G,m, sameSize) is also capable in the third section.

5.1 (G,s, disjointUnion, sameSize) is Capable

We first note the importance of the sameSize predicate. Recall that the number of edges

of x is denoted by ||x||. Representing the number of edges of a graph x as a member of

N allows us to perform arithmetic operations on ||x|| and by an abuse of notation we will

write ||x|| in graph formulae to denote the corresponding member of N . This enables us

to write formulae such as ||x||+ |y| = ||z|| which will be critically used in this section.

As in the case of the induced subgraph order, condition C1 follows from Lemmas

3.7, 3.18 and 3.21 and condition C3 from Lemma 3.7 for the subgraph order. We show

that condition C2 holds of (G,s, disjointUnion, sameSize). Continuing our top-down

approach, we first show that (G,s, disjointUnion, sameSize) is capable assuming the

definability of the relations CP4C, G̃ and constructFromCycles. This is followed by

three subsections in which we show the definability of these three relations.

Observation 5.1. The following predicates are known to be definable in the subgraph

order by the results in Section 3.1:

88

1. xls y, xlsv y, xlse y if and only if y is an upper cover, an upper cover formed by

adding a single vertex, an upper cover formed by adding a single edge (respectively)

to x.

2. The family soc(x) of graphs where x is made of disjoint unions of cycles.

3. The families N , T ,K,P , C,S (isolated points, trees, cliques, paths, cycles, stars

respectively).

4. conn(x) if and only if x is a connected graph.

Explicit formulae for lsv and lse were not given previously, we give them here:

xlsv y := xls y ^ |x| 6= |y|

xlse y := xls y ^ |x| = |y|

It is clear that for any fixed n, xln

sv
y if and only if y is formed by addition of n isolated

vertices to y and similarly xln

se
y can be defined in an analogous manner.

Lemma 5.2. The predicates opres and edgeOP are definable in

(G,s, disjointUnion, sameSize) assuming the definability of the following predicates:

1. CP4C(x, i, j) if and only if i, j 2 N , 3 < i < j and x is constructed from the graph

Ci!1 [· Cj!1 by adding one additional edge between the unique degree one vertices

of Ci!1 and Cj!1.

2. G̃(x) if and only if x is an o-presentation of some graph.

3. constructFromCycles(y, x) if and only if y is constructed by adding |x| edges to

the graph g which is the disjoint union of x and all indicator cycles corresponding

to x.

Proof.

 opres(x, y) := G̃(y) ^ constructFromCycles(y, x)

The proof of correctness of the formula is similar to that in the induced subgraph case. Let

89

g be the graph x [·
S
· |x|
i

C|x|+i+2. The only way to get an o-presentation from the graph g

by adding |x| edges is to connect each indicator cycle to a vertex of x. The resulting graph

has to be an o-presentation of x.

 edgeOP (x, i, j) :=9y x = ỹ ^ 9m (|x| = m2 +m(m+ 1)/2 + 3m) ^

CP4C(m+ i+ 2,m+ j + 2) s x

The formula edgeOP we use in the subgraph order is just the formula used in the induced

order with i replaced by s. The correctness of the formula follows from the fact

that from the construction of o-presentations, it is clear that an indicator cycle (and the

CP4C graphs) is a subgraph of an o-presentation iff it is an induced subgraph of that

o-presentation.

We now take up the definability of the relations CP4C, G̃ and constructFromCycles

in that order.

5.1.1 Defining CP4C

In this subsection we define the relation CP4C(x, i, j). We will need the following inter-

mediate predicates:

Lemma 5.3. The following predicates are definable in the subgraph order:

1. maximalComp(y, x) if and only if x is a maximal component of y under the sub-

graph order.

2. addV ert(x, y) if and only if y is a connected graph and x is a connected graph

formed by adding one additional vertex and one additional edge to y.

3. C!1(x) if and only if x is the connected graph formed by adding one additional

vertex and one additional edge to a cycle.

90

C5!1 [· C6!1

double3star

Figure 5.1: Left: a graph from the family twoC1s. Right: the graph double3star.

4. C!2(x) if and only if x is a graph which is formed by a taking a graph g from the

family C!1 and adding an additional vertex and connecting it to the unique degree

one vertex in g.

5. twoC1s(x, i, j) if and only if 3 < i < j and x is a graph formed from the graph

Ci [· Cj by addition of two new vertices v1, v2 and two new edges e1, e2 where e1

joins v1 to Ci and e2 joins v2 to Cj . For fixed values of i, j there is a unique graph x

satisfying the formula and we will denote it by Ci!1 [· Cj!1 (see Figure 5.1).

Proof. The proof of correctness of the defining formulae for the first three predicates is

straightforward and essentially follows from their definitions.

maximalComp(y, x) := conn(x) ^ x s y ^ 8z conn(z) ^ z s y � ¬(x <s z)

addV ert(x, y) := conn(x) ^ conn(y) ^ 9z y lsv z ^ z lse x

C!1(x) := 9y C(y) ^ addV ert(x, y)

We need to define a particular constant graph to define C!2. The graph double3star

(see Figure 5.1) has vertex set V = {v1, v2, v3, v4, v5, v6} and edge set

E = {v1v2, v3v2, v2v4, v4v5, v4v6}. The definability of this constant is straighforward:

double3star(x) := T (x) ^ |x| = 6 ^ P4 s x ^ P5 ⇥s x ^ S5 ⇥s x.

91

C!2(x) := 9y C!1(y) ^ addV ert(x, y) ^ P|x| s x ^ double3star ⇥s x

Let g be a graph satisfying the formula C!2. It is a connected graph formed by adding one

more vertex and one more edge to a graph g0 2 C!1. The formula states that a path of the

same order as g is a subgraph of g. This implies that we can delete one edge from g to get

P|g|. There are only two possible such graphs. One of them is the graph we require and

the other is the graph g00 which is formed from g0 as follows. Let v be the vertex of degree

three in g0 and u be a vertex of degree two which is adjacent to v. Add a new vertex v0 and

the edge uv0 to get g00. By deleting the edge uv from g00 we can get P|g|. But this graph

contains double3star as a subgraph, which is disallowed by the formula. The correctness

of the formula follows.

2C1s(x, i, j) :=|x| = i+ j + 2 ^ Ci!1 s x ^ Cj!1 s x

^ 8z maximalComp(x, z) � C!1(z)

We now show the correctness of the above formula. Let x, i, j be a tuple satisfying the

formula. Every maximal component of x is a graph from the family C!1 . Since the

members of the C!1 family are pairwise incomparable under the subgraph order, any Ck!1

which is a subgraph of x must be a component of x. Hence Ci!1 and Cj!1 are components

of x. But according to condition |x| = i+ j + 2, there cannot be any other vertices in x

except for those belonging to the copy of Ci!1 or to the copy of Cj!1. Hence x is exactly

the graph Ci!1 [· Cj!1.

Now we can define CP4C:

Lemma 5.4. The predicate CP4C(x, i, j) if and only if i, j 2 N , 3 < i < j and x is

constructed from the graph Ci!1 [Cj!1 by adding one additional edge between the

unique degree one vertices of Ci!1 and Cj!1 is definable in the subgraph order.

92

Proof.

CP4C(x, i, j) :=conn(x) ^ N (i) ^ N (j) ^ 3 < i < j ^

Ci!1 [· Cj!1 lse x ^ 8z z s x ^

(addV ert(z, Ci!1) _ addV ert(z, Cj!1)) � C!2(z)

Let (x, i, j) be a tuple satisfying the above formula. We start with Ci!1 [· Cj!1 and add

an edge to get a connected graph. Suppose we connect a vertex from Ci!1 of degree more

than 1 to a vertex of Cj!1. The resulting graph contains a graph g as subgraph which

satisfies addV ert(g, Ci!1) but does not satisfy C!2(g). This contradicts the last condition

of the formula. Hence the edge has to be added between the unique degree one vertices of

Ci!1 and Cj!1.

5.1.2 Defining G̃

We take up the definability of the set G̃ of all o-presentations in (G,s, sameSize) in this

subsection.

Lemma 5.5. The following predicates are definable in the subgraph order:

1. soc2(x, i, j) if and only if x is made of the disjoint union of the cycles Ci and Cj .

2. bicycle(x, i, j) if and only if x is the connected graph formed by adding an edge to

the graph g = Ci [· Cj .

3. pointedCycleSum(x, i, j) if and only if x is formed from the graph g = Ci [Cj by

addition of a vertex v, an edge connecting v to Ci and another edge connecting v

to Cj . We will denote the unique x which is the pointed cycle sum of Ci and Cj by

Ci +p Cj .

4. csum(x, n) if and only if x =
S

n

i=1 Cn+i+2.

93

Proof.

soc2(x, i, j) :=N (i) ^ N (j) ^ soc(x) ^ |x| = i+ j

^ 8y (C(y) ^ y s x) � (y = Ci _ y = Cj) ^

Ci s x ^ Cj s x

Let (x, i, j) be a tuple satisfying the formula. Then x is a soc on i+ j vertices. Suppose

i 6= j, then Ci and Cj are incomparable. Then it is sufficient to state that both Ci and Cj

are subgraphs of x, because Ci [· Cj is also forced as a subgraph of x. Along with the

cardinality constraint, this implies that x is exactly Ci [· Cj .

If i = j and i = n1 ⇥ n2, then the graph Ci [· Cn1 [· ... [· Cn1 i.e. the disjoint union

of Ci with n2 copies of Cn1 also satisfies the conditions enforced so far. Enforcing the

condition that every cycle subgraph must be either Ci or Cj disallows this latter graph,

thus completing the proof of correctness.

bicycle(x, i, j) := conn(x) ^ 9y soc2(y, i, j) ^ y lse x

The proof of correctness of the above formula follows from the definition.

pointedCycleSum(x, i, j) :=conn(x) ^ 9y y = Ci [· Cj ^ 9z y lsv z

^ z l2
se
x ^ 8w bicycle(w) � w ⇥s x

Let (x, i, j) be a tuple satisfying the formula. It is constructed from the graph Ci [· Cj by

adding one more vertex v and two more edges e1, e2. Suppose without loss of generality

that e1 connects v to the cycle Ci since to form a connected graph, v must be connected

to one of the cycles. Then e2 must join the other cycle Cj to either v or Ci. Suppose it

connects Ci and Cj , then there is a bicycle subgraph of x which is disallowed. Therefore

e2 must connect Cj to v. Hence the graph x is the required graph.

94

We can use the same formula we used in Lemma 4.14 with the formula allCycles0

being the formula obtained by replacing occurrences of i in allCycles by s:

csum(x, n) :=N (n) ^ 8z maximalComp(x, z) � C(z) ^

cardCond(x, n) ^ allCycles0(x, n)

where

allCycles0(x, n) := 8m (n+ 3 m 2n+ 2) � Cm s x

cardCond(x, y) := |y| = |x|2 + |x|(|x|+ 1)/2 + 3|x|

The formula maximalComp is from Lemma 5.3 and cardCond is definable by conditions

C1 and C3. This is because the combination of allCycles0 which states that every cycle is

present as a subgraph is equivalent to every cycle being present as an induced subgraph

under the condition that every maximal component is a cycle.

We now exhibit the defining formula for G̃(x).

Lemma 5.6. The family G̃(x) if and only if x is an o-presentation is definable in (G,s

, sameSize).

Proof. For any o-presentation x 2 g̃, its cardinality is related to the cardinality of g by

|x| = |g|2 + |g|(|g| + 1)/2 + 3|g|. In order for an arbitrary x be an o-presentation, it is

necessary and sufficient to show that the graph x is formed by adding some number of

edges to g0 =
S
· |g|
i=1 C|g|+i+2!1 such that each new edge is constrained to be between the

degree 1 vertices of the C|g|+i+2!1. We will first construct g0 given a parameter |g| and use

it to define G̃.

The predicate csumHook(x, n) which holds if and only if x =
S
· n

i=1 Cn+i+2!1 is

95

defined by the following formula:

csumHook(x, n) :=N (n) ^ 9y csum(y, n) ^ |x| = |y|+ n ^ ||x|| = ||y||+ n

^ y s x ^ 8i (1 i n) � Cn+i+2!1 s x.

The only way to get every graph Cn+i+2!1 as a subgraph by adding n vertices and n edges

to
S
· n

i=1 Cn+i+2 is by connecting each new vertex to exactly one of the cycles.

The defining formula for G̃ is given below:

G̃(x) :=9n 2 N cardCond(x, n) ^
n[
·

i=1

Cn+i+2!1 s x

^ indicatorsInduced(x, n) ^ noBicycles(x, n)

^ noPointedCycleSum(x, n)

where

cardCond(x, y) :=|y| = |x|2 + |x|(|x|+ 1)/2 + 3|x|

indicatorsInduced(x, n) :=8y 8i ((1 i n) ^ Cn+i+2!1 se y) � ¬(y s x)

noBicycles(x, n) :=8y 8i 8j ((1 i, j n) ^ bicycle(y, i, j)) � y ⇥s x)

noPointedCycleSum(x, n) :=8i 8j (1 i, j n) � Cn+i+2 +p Cn+j+2 ⇥s x

The formula cardCond enforces a cardinality condition that ensures that the every vertex of

x has to be used to witness the fact that
S
· n

i=1 Cn+i+2!1 is a subgraph. We now need to make

sure that none of the extra edges occur and that
S
· n

i=1 Cn+i+2!1 occurs as an induced sub-

graph. The edges inside a particular Cn+i+2!1 are forbidden by indicatorsInduced, edges

between two indicator cycles are forbidden by noBicycles and noPointedCycleSum en-

sures that two cycles are not connected to the degree 1 vertex in a Cn+i+2!1. Thus the

only extra edges allowed are between the degree 1 vertices of the Cn+i+2!1.

Remark 5.7. We note that it is possible to define G̃ without having to resort to the use

96

of the sameSize predicate, but the construction and proof of correctness become more

complicated.

5.1.3 Defining constructFromCycles

The relation constructFromCycles(y, x) states that y is formed by adding |x| number of

edges to the graph obtained by the disjoint union of x with all its indicator cycles. The

construction of the disjoint union of a set of indicator cycles has already been shown in

Lemma 5.5, but defining arbitrary disjoint union and counting the number of edges of a

graph take more work.

We observe that sameSize and edge counting are equidefinable under the subgraph

order.

Observation 5.8. The predicate sameSize if and only if x and y have the same number

of edges allows us to define the related predicate countEdges(x, n) if and only if n 2 N

and x has |n| edges. We denote the unique n satisfying countEdges(x, n) for a fixed x by

||x||.

countEdges(x, n) := n 2 N ^ sameSize(x, n)

It is also clear that sameSize(x, y) is definable in (G,s, countEdges):

sameSize(x, y) := 9n countEdges(x, n) ^ countEdges(y, n)

We can now define constructFromCycles.

Lemma 5.9. The predicate constructFromCycles is definable in

(G,s, disjointUnion, sameSize).

97

Proof.

constructFromCycles(y, x) := 9z z = x[·
|x|[
·

i=1

C|x|+i+2 ^ |z| = |y| ^ ||z||+ |x| = ||y||

This concludes the proof that condition C2 holds for the structure

(G,s, disjointUnion, sameSize), giving us the following result.

Lemma 5.10. The structure (G,s, disjointUnion, sameSize) is capable.

5.2 The Subgraph Order is Capable

In this section, we show that the predicates disjointUnion and sameSize are definable

in the subgraph order. By the results of the previous section, we then obtain the fact that

the subgraph order is a capable structure.

5.2.1 Defining Disjoint Union in the Subgraph Order

We outline the strategy employed for defining disjoint union. Consider g = g1 [· g2. The

connected components of g must occur either in g1 and g2. Further, for any component c

of g, the number of times it occurs as a component is equal to the sum of the number of

times it occurs as a component in g1 and g2. Checking the two conditions is necessary and

sufficient to verify that a given graph g0 is indeed the disjoint union of g1 and g2. However,

we do not have a definition for the predicate comp(y, x) which holds if and only if x is a

component of y. Hence we will enforce a condition which turns out to be equivalent when

quantified over all graphs.

For any connected graph g0 which is a subgraph of g, let maxCopies(g, g0, n) be true

if and only if g contains n disjoint copies of g0 as a subgraph, but not n+ 1 disjoint copies

98

of g0. We verify that that the number of copies of any such connected graph g0 present in g

is the sum of the number of copies of g0 in g1 and g2. We show how to define maxCopies

first, and then use it to define disjoint union.

Lemma 5.11. The following predicates are definable in the subgraph order:

1. mult(x, y, n) holds if and only if y is a connected graph and x is the disjoint union

of n many components, each of which is y.

2. maxCopies(x, y, n) holds if and only if y is connected and the graph g satisfying

mult(g, y, n) is a subgraph of x but not the graph g0 satisfying mult(g0, y, n+ 1).

We will refer to the unique n satisfying maxCopies(x, y, n) (where x and y are fixed

graphs) as the “the number of copies of y in x” and write maxCopies(x, y) to denote n.

Proof. It is sufficient to define the relation mult(x, y) which holds if and only if x is made

of up some arbitrary number of components, each of which is y. Using mult(x, y) we can

define mult(x, y, n) if and only if x is made of exactly n many y. This is because we can

use arithmetic to get n = |x|
|y| .

mult(x, y) :=zero(x) _ (conn(y) ^ maximumComp(x, y) ^

uniqueCompCard(x, y) ^ edgeMaximal(x, y))

where

zero(x) := x = ;g

maximumComp(x, y) := maximalComp(x, y) ^ 8z maximalComp(x, z) � z s y

99

uniqueCompCard(x, y) :=8z xlse z � (8z0 maximalComp(z, z0) �

(|z0| = |y| _ |z0| = 2|y|))

edgeMaximal(x, y) := 8z xlse z � ¬maximumComp(z, y)

The subformula zero is necessary for the boundary case where x = ;g with x made of zero

number of copies of y. The defining formula for mult(x, y) enforces three conditions:

1. maximumComp(x, y): y is a maximum component of x i.e. for any component c

of x, it is the case that c s y.

2. uniqueCompCard(x, y) : Adding any edge to x gives a graph z such that every

maximal component of z has cardinality either |y| or 2|y|.

3. edgeMaximal(x, y): Adding any edge to x ensures that y is no longer the maximum

component of the new graph.

The proof of correctness of the formulae enforcing these three conditions is straightforward.

We now show that they suffice to define mult. Let the tuple (x, y) satisfy the defining

formula. We have to show that x is the disjoint union of some arbitrary number of y.

Suppose x has a component c which is not y and therefore is a strict subgraph of y.

Therefore y [· c is an induced subgraph of x since y is also a component of x. Adding an

edge between y and c gives us an edge cover z of x which has a component c0 of order

|y|+ |c|. Since y is the maximum component of x, c0 is a maximal component of z. Hence

by uniqueCompOrder which states that any edge cover of x has the property that every

maximal component has order |y| or 2|y|, we get |c| = |y|. But we chose an arbitrary c, so

all components in x have order |y|. Thus any component c of x is obtained by deletion of

some number of edges from y while making sure the resulting graph is still connected.

Now, let c be a component which is a strict subgraph of y. We can add an edge to

c to get c0 which is still a subgraph of y. The edge cover of x thus formed still has as

100

its maximum component y, which contradicts the formula edgeMaximal. Hence c is

not a strict subgraph of y. Hence all components in x are in fact y. We can now define

maxCopies :

maxCopies(x, y, n) := 9z mult(z, y, n) ^ z s x ^ 9z0 mult(z, y, n+1) ^ ¬z0 s x

Next we use maxCopies to define disjoint union.

Lemma 5.12. The predicate disjointUnion(z, x, y) if and only if z = x [· y is definable

in the subgraph order.

Proof.

disjointUnion(z, x, y) :=8z0 conn(z0) ^ compUnionInZ(z, x, y, z0) ^

compZInUnion(z, x, y, z0)

where

compUnionInZ(z, x, y, z0) :=((z0 s x _ z0 s y) �

maxCopies(x, z0) +maxCopies(y, z0) = maxCopies(z, z0))

compZInUnion(z, x, y, z0) :=z0 s z � (maxCopies(x, z0) +maxCopies(y, z0)

= maxCopies(z, z0))

Consider any component c of x [· y. Such a c must be a subgraph of either x or y since

any component of x [· y must be a component of either x or y (or both). Hence by

compUnionInZ, the number of copies of c in x [· y which is the same as the sum of the

number of copies of c in x and y, is the number of copies of c in z.

By a similar arguement, compZInUnion enforces that the number of copies of a compo-

nent c in z is the sum of number of its copies in x and y i.e. the number of copies in x [· y.

We now observe that:

101

Observation 5.13. For any two graphs g1 and g2, g1 = g2 iff for any component c of g1,

maxCopies(g1, c) = maxCopies(g2, c) and for any component c0 of g2, maxCopies(g1, c0) =

maxCopies(g2, c0).

The forward direction is obvious, we consider the reverse. Let g1 6= g2 be two graphs

of smallest order which form a counterexample. Let c be a maximal component of g1,

then it must also be a maximal component of g2; otherwise either there exists a compo-

nent c0 of g2 which is a supergraph of c or c is not a subgraph of g2. In the first case

maxCopies(g2, c0) > 0 but maxCopies(g1, c0) = 0, in the second maxCopies(g2, c) = 0

but maxCopies(g1, c) > 0. Further, maxCopies(g1, c) = maxCopies(g2, c) by assump-

tion and let this number be nc. Clearly g1 = ncc [· g01 and g2 = ncc [· g02 i.e. g1 is the

disjoint union of a graph g01 which does not contain c as subgraph with the graph ncc which

is the disjoint union of nc maxCopies of c. Similarly for g2. This implies that g01 6= g02

which contradicts the assumption that g1, g2 form the smallest counterexample and the

observation follows.

We have shown above that x[· y and z satisfy the property in the above observation and

hence z = x [· y. This concludes the proof of definability of disjoint union in the subgraph

order.

The following corollary will be of use in the next section.

Corollary 5.14. The predicate comp(y, x) which holds if and only if x is a component of

y is definable in the subgraph order.

comp(y, x) := conn(x) ^ 9z x [· z = y

102

5.2.2 Defining sameSize in the Subgraph Order

By Observation 5.8, it is sufficient to define the predicate countEdges which counts the

number of edges of a graph. We will break this problem up into two parts: counting of

edges n of a connected graph x using the predicate countEdgesConn(x, n), and counting

the number of components n of a graph x using the predicate countComps(x, n).

Let a graph g have m2 many components. The minimum number of edges to be added

to g to get a connected graph g0 is m2 � 1. It is clear that the number of edges in g and

g0 are related by ||g||+m2 � 1 = ||g0||. Thus using countEdgesConn and countComps

we can define the required predicate countEdges.

Lemma 5.15. The predicate countEdgesConn(x, n) which holds if and only if x is a

connected graph and n is the number of edges of x, is definable in the subgraph order.

Proof. We construct a gadget to define countEdgesConn(x, n). For any given graph g,

we construct a graph g0 which has the following properties:

1. g is a component of g0.

2. Every component of g0 is formed by adding some number of edges to g.

3. For every component c of g0, there is a component c0 of g0 such that c0 is an edge-cover

of c, or it is the case that c is a clique.

4. g0 is a minimal element under the subgraph order of the set of graphs satisfying the

above three properties.

It is easy to see that any such g0 = c0 [· c1 [· 2 ...cm where c0 = g, cm = K|g| and for every

i > 0, ci is an edge-cover of ci�1 (see Figure 5.2 for an example). Hence using some

arithmetic, we can relate the cardinality of g0 to the number of edges of g and retrieve the

latter : |g|(
�|g|
2

�
� ||g|| + 1) = |g0|. Having given the proof idea, we give the formulae

below:

103

c0 c1 c2 c3

Figure 5.2: The gadget g0 for counting number of edges of the connected graph g = S4.
Note that g0 = c0 [· c1 [· c2 [· c3 with c0 = S4 and c3 = K4

First we have a formula which enforces only the first two conditions on g0.

countEdgesGadget0(y, x) :=conn(x) ^ comp(y, x) ^ 8z comp(y, z) �

[x s z ^ |x| = |z| ^

(K(z) _ 9z0 (comp(y, z0) ^ z lse z
0))]

The third condition of minimality is enforced:

countEdgesGadget(y, x) :=countEdgesGadget0(y, x)

^ 8z countEdgesGadget0(z, x) � ¬(z <s y)

We use the constructed gadget to do the edge counting:

countEdgesConn(x, n) := 9y countEdgesGadget(x, y) ^ |x|(
✓
|x|
2

◆
� n+ 1) = |y|

The other predicate needed to define countEdges is countComps.

Lemma 5.16. The predicate countComps(x, n) if and only if x contains n components is

definable in the subgraph order.

Proof. We show that for any graph g, we can construct the graph g0 which is obtained by

adding all the edges uv such that u, v belong to the same component of g (see Figure 5.3

for an example). Such a graph is a disjoint union of cliques and we will call this family of

104

K1

P3 K3

S4

C5

K1

K3 K3

K4

K5

Figure 5.3: The map fK taking the graph g = K1 [· P3 [· K3 [· S4 [· C5 to the graph
fK(g) = K1 [· K3 [· K3 [· K4 [· K5 belonging to the family unionOfCliques .

graphs unionOfCliques. The number of components in both g and g0 is the same. We

then show how to use arithmetic to count components assuming that the input graph is

always from the family unionOfCliques.

Definition 5.17 (Extend to Cliques). The map f : G ! G takes a graph g = c0[· c1 · · ·[· cn

(where each ci is a component) to the graph fK(g) = K|c0| [· K|c1| [· · · · [· K|cm|.

It is easy to define the family unionOfCliques:

unionOfCliques(x) := 8y comp(x, y) � K(y)

The predicate extendToCliques(y, x) holds if and only if y = fK(x) and is defined by

the formula

extendToCliques(y, x) :=unionOfCliques(y) ^

8z (unionOfCliques(z) ^ x s z) � ¬(y <s z)

We show the correctness of the defining formula. The formula states that y is a member

of unionOfCliques which is a minimal element under the subgraph order of the set S

of all graphs which are supergraphs of x and also belong to unionOfCliques. Clearly

the graph y = fK(x) belongs to S. We claim that it is the unique minimal element of S.

105

Consider any y0 2 S. Since y0 is a supergraph of x = c0 [· c1 [· ...[· cn, there are vertex sets

V0, V1, ..., Vn such that Vi ⇢ V (y0), Vi \ Vj = ; for all i 6= j and x[Vi] is a supergraph of ci

with |Vi| = |ci|. Thus x[Vi] is also a connected graph. But this implies that x[Vi] is equal to

K|ci|. Hence fK(x) is also a subgraph of y0 and hence is the unique minimal element of S.

Next we show that through the use of arithmetic, we can extract the number of compo-

nents from a graph of the family unionOfCliques.

Arithmetic allows us to create sequences of numbers which can be stored as a single

number and manipulate this sequence.

Observation 5.18. The following predicates are definable in arithmetic:

1. �sequence(n, i, j) holds if and only if the largest power of the ith prime which divides n

is j. We will abuse notation in the sequel and refer to the number 2n1⇥3n2⇥ ...⇥pnk
k

as the sequence (n1, n2, ..., nk).

2. �sequenceSum(n,m) holds if and only if the sum of the exponents of all primes dividing

n is m i.e. n = 2n1 ⇥ 3n2 ⇥ ...⇥ pnk
k

and m = n1 + n2 + ...+ nk.

The intended usage of �sequence(n, i, j) is that n is a sequence of numbers and we can

extract the ith number in the sequence if we are given the index i.

Suppose we are able to create a sequence lx which contains the number of times each

clique occurs as a component in a given member x of unionOfCliques. For example, if

x = K2 [· K2 [· K4 [· K5 then the sequence lx corresponding to it would be (0, 2, 0, 1, 1)

since there are no K1 components, two K2 components etc. However, what we can easily

obtain using the predicates we have defined is the sequence l0
x

corresponding to the numbers

maxCopies(Ki, x). In this case, the sequence is (13, 6, 2, 2, 1).

In the general case, we have the following definition which relates these two sequences:

Definition 5.19. Let A ✓ N⇤ be the subset of sequences of natural numbers such that for

any l 2 A with l = (n1, n2, ..., nk), it is the case that nk > 0.

We define a map f1 : A! N⇤ as follows:

106

For l = (n1, n2, ..., nk) 2 A, f1(l) = l0 = (m1,m2, ...,mk) where

mi = ⌃k

j=1b
j

i
c ⇥ nj

Let B ✓ N⇤ be the image set under the map f1. We can define the inverse map f�1
1 : B ! A

of the map f1. Given l0 = (m1,m2, ...,mk), it is possible to compute ni if we know the

value of mi, ni+1, ni+2, ..., nk:

nk =mk

ni =mi � ⌃k

j=i+1b
j

i
c ⇥ nj

From the above definition, it is clear that the inverse map f�1
1 is well defined and is

recursive and hence, definable in arithmetic.

Observation 5.20. The predicate �sequenceConvert(m,n) if and only if n,m are sequences

such that n = f�1
1 (m) is definable in arithmetic.

Let makeSequenceFromUOC(x, n) hold if and only if n is a sequence, x 2 unionOfCliques

and for every i, the ith member of the sequence n is the number j such that maxCopies(x,Ki, j)

is true. The predicate makeSequenceFromUOC(x, n) is definable in the subgraph order:

makeSequenceFromUOC(x, n) :=unionOfCliques(x) ^ 8i, j 2 N

(trans

sequence
(n, i, j) () copies(Ki, x) = j)

Note that trans

sequence
is a formula in the vocabulary of the subgraph order which is the

translation of the arithmetic formula �sequence (see Corollary 4.9).

We can define countComps by creating the sequence of number of copies, translating

107

it under the map f�1
1 and adding up the elements of the latter sequence:

countComps(x, n) :=9y extendToCliques(y, x) ^ 9m1,m2 2 N ^

makeSequenceFromUOC(y,m1) ^ trans

sequenceConvert
(m1,m2)

^ trans

sequenceSum
(m2, n)

This concludes the proof of Lemma 5.16.

We can now define countEdges.

Lemma 5.21. The predicate countEdges(x, n) which holds if and only if x has n edges

is definable in the subgraph order.

Proof. Using Lemma 5.15 (definability of countEdgesConn) and Lemma 5.16 (defin-

ability of countComps), we can define countEdges:

countEdges(x, n) :=9y conn(y) x s y ^ 8z conn(z) ^ x s z � ¬(z <s y) ^

9m1,m2 2 N countEdgesConn(y,m1) ^ countComps(x,m2)

^ n = m1 �m2 + 1

By Observation 5.8, we get :

Corollary 5.22. The predicate sameSize is definable in the subgraph order.

Combining the capability of (G,s, disjointUnion, sameSize) proved in Lemma

5.10 with the definability of disjoint union and edge counting proved in Lemma 5.12 and

Corollary 5.22 respectively, we conclude that that the subgraph order is a capable structure.

Lemma 5.23. (G,s) is a capable structure.

108

5.3 (G,m, sameSize) is Capable

The following lemma implies that (G,m, sameSize) is a capable structure.

Lemma 5.24. The subgraph order is definable in the structure (G,m, sameSize).

Proof.

x s y := 9z x m z ^ sameSize(x, z) ^ z m y ^ |z| = |y|

Suppose x s y. Then y can be constructed from x in two steps. The first step involves

addition of an arbitrary number of vertices to give a graph z. The second step involves

addition of an arbitrary number of edges to the graph z to get y. Note that this two

step construction characterizes the subgraph order. The formula captures this two step

construction and its correctness follows from the following observation:

Observation 5.25. Let g1, g2 2 G. If g1, g2 have the same number of edges or same

cardinality, then

g1 s g2 () g1 m g2.

This is due to the fact that a contraction operation decreases both the number of edges as

well as the number of vertices in a graph. Thus constraining either one of these parameters

to remain constant means that contraction operations cannot be used.

We conclude this section with the formal statement of the main result of this thesis:

Theorem 5.26 (Arithmetical Predicates in Graph Orders). Each of the structures (G,i

, P3), (G,s) and (G,m, sameSize) has the maximal definability property. In other

words, let Def(A) be the set of all definable predicates of a structure A; then

Def(G, plust, timest) = Def(G,s) = Def(G,i, P3) = Def(G,m, sameSize).

109

Corollary 5.27. Every recursively enumerable predicate over graphs is definable in each

of the structures (G,i, P3), (G,s) and (G,m, sameSize).

110

Chapter 6

Decidability in Graph Order
1

The arithmetical interpretability results of Chapter 3 show that the full first order theory

of graph order is undecidable. We would like to identify fragments of the theory which

are decidable. These fragments may be obtained by application of different kinds of

restrictions to the first order theory. These restrictions are of three kinds:

1. Vocabulary restrictions: The results of Chapter 4 show that any arithmetical relation

R ✓ G is definable in the full first order theory of graph order. The theory of (G, ⌧)

can be seen as a fragment of the theory of graph order for any set ⌧ of arithmetical

relations over graphs.

2. Domain restrictions : Let G0 ✓ G be a family of graphs definable in graph order.

One could consider studying the first order theory Th(G0,).

3. Syntactic restrictions: These restrictions are placed on the syntax of the logic, for

instance, by considering only some strict subset of the logical symbols. Another way

to place a syntactic restriction is by defining a numerical parameter P which maps

every FOL formula � to a number P (�) and considering only the set of formulae

Sk = {� | P (�) k} for some k 2 N.
1The results in this chapter will be presented at Logic Colloquium 2018 to be held at Udine, Italy from

23 to 28 July 2018.

111

Of the three kinds of restrictions mentioned above, the choice of ⌧ in the first and G0 in

the second depends largely on what is considered important in graph theory; whereas in

the third we may direct our attention towards fragments which are analogs of those studied

in the satisfiability problem for FOL (see the text The Classical Decision Problem [4]).

In this chapter, we primarily study decidability in the induced subgraph order, with a

focus on syntactic restrictions; in some cases the proof obtained goes through in a uniform

way for all three graph orders. In particular, we consider the existential fragment and the

finite variable fragments in the first two sections of this chapter. In each of these two cases,

we further consider what happens when constants are added to the vocabulary; and what

happens when negation is disallowed.

At this juncture, we make a couple of remarks regarding negation-free fragments and

concerns of measuring the size of a formula which contains constants.

Remark 6.1. We make a note here about different syntactic forms of the atomic formulae

with regards to negation. It is possible to define the following new atomic predicates using

{,⇥}:

x = y := x y ^ y x

x < y := x y ^ x 6= y

x||y := x ⇥ y ^ y ⇥ x

The predicates {<,>,=, ||} partition the space G ⇥G and are mutually exclusive. Further,

they can be taken as atomic predicates and used to define ,⇥:

x y := x < y _ x = y

x ⇥ y := y < x _ x||y

When we talk of fragments without negation, we actually mean that the atomic predicates

are taken to be {<,>,=} i.e. we exclude ||. Note that < cannot be defined using only

112

without using negation. When dealing with fragments without the positivity constraint,

we can choose either of the two sets {<,>, ||,=} or {,⇥,�,⇤} as is convenient. It is

convenient to use the symbol , for the comparability relation defined by

x , y := x y _ y x.

Remark 6.2. In the case of a formula over a vocabulary which does not contain constants,

the size of the formula is taken to be the number of symbols occuring in it. This implicitly

assumes that every symbol has the same size. When constant symbols are used for each

graph g, we define the size of a formula � as the sum of the sizes of the symbols occuring

in it, where a constant symbol g has size |g|+ ||g|| and every non-constant symbol has unit

size.

The results in this chapter on the computational complexity of the fragments of graph

order considered assume that a formula � is represented as a string s� such that the

representation of constants c contained in the formula is of size O(|c|+ ||c||). For instance,

we could use the representation NR, but any other representation which is polynomially

bigger will also work.

6.1 Existential Fragments

In this section, we will see that the theory 9⇤(G,i) is NP�complete, but 9⇤(G,i,Cg) is

undecidable. These two results form the first two subsections of this section. In the third

subsection, we show that restricting 9⇤(G,i,Cg) to its negation-free fragment gives the

theory 9⇤(+)(G,i,Cg) which is NP�complete. These results further validate the power

of negation applied to atomic formulae containing constants. Many families important

from the viewpoint of graph theory have simple definitions using negated atomic formulae;

recall that the formulae K2 ⇥i x and K3 ⇥m x define the families N and fop respectively.

113

6.1.1 Existential Fragment without Constants

We show that each of the existential theories 9⇤(G,i), 9⇤(G,s), 9⇤(G,m) of the three

graph orders is NP-complete.

The result follows easily from the following lemma which shows that each graph order

is universal for finite posets: every finite poset is embeddable in each of the three graph

orders.

Lemma 6.3. Let P = ({p1, p2, ..., pn},p) be a partial order on n elements. Then P can

be embedded into (G,) where is i,s or m.

Proof. We map each pi to a graph gi which is constructed as follows:

Start with a path of length n + 2 with vertex set V = {v0, v0, v1, ...vn, v00} and edge set

E = {v0v0, vnv00} [{vivi+1|0 i (n� 1)}.

Add the following vertices and edges to the above path to get gi:

Add vertices u0, u00 and edges u0v0, u00v0.

For every 0 < j n add a new vertex uj and an edge ujvj iff pj p pi.

The resulting graph is shown in Fig. 6.1.

Claim: ({gi}1in,i) is isomorphic to (P,p).

pi p pj) gi i gj: Let uk be present in gi. This implies that pk p pi. But since P is a

partial order and pi p pj , therefore pk p pj . Thus by construction uk is also present in

gj . Delete all vertices in gj not present in gi to get gi from gj i.e. gi i gj .

gi i gj) pi p pj: First we observe that none of the vertices v0, v00, vi can be deleted

since there is a unique longest path in all of the graphs constructed which must be retained.

Since gi can be obtained from gj by deletion vertices and gi contains ui, it must be the case

that gj also contains ui. But by construction this implies that pi p pj . This proves the

claim and it follows that the induced subgraph order is universal for finite posets.

For the other two orders s and m, the direction pi p pj) gi gj follows

from the fact that an induced subgraph is also a subgraph and minor. For the direction

114

v0 v0

v1

v2 · · · vi · · · vj · · · vn v00

u0

u00

ui
uj

gi

v0 v0

v1

v2 · · · vi · · · vj · · · vn v00

u0

u00

uj

gj

Figure 6.1: Embedding finite posets in graph order : graphs gi, gj corresponding to pi, pj
such that pj <P pi.

gi gj) pi p pj , we observe that the subgraph and induced subgraph orders are

identical when restricted to trees. In the case of the minor order, contraction of any edge in

the longest path decreases the longest path, contraction of edges from u0, u00 decreases the

maximum degree to less than 4, and contraction of an edge from ui to vi is the same as

deletion of the vertex ui. Thus the result also holds for the minor order.

The above lemma immediately gives the following result.

Theorem 6.4. The existential theories of each of the induced subgraph, subgraph and

minor orders is NP-complete.

Proof. We demonstrate the assertion for the induced subgraph order. The argument is

similar for the other two orders. Any purely existential statement 9x̄ �(x̄) on |x̄| = n

variables in the induced subgraph order asserts the existence of a substructure with certain

conditions on how the variables are ordered. Since i contains every n-element partial

order and every substructure must be a partial order, it is necessary and sufficient to

verify that there exists an n-element partial order P consistent with the conditions in the

quantifier free formula �(x̄). We can guess such a P and verify in polynomial time that it

is consistent with �.

To prove hardness, we reduce from 3 � SAT. Let �(x̄) be a 3 � SAT instance with

n variables. Replace each xi occuring in positive form by xi z and each negative

115

occurence by xi > z to form �0(x̄, z).

(G,i) |= 9z 9x̄ �0(x̄, z) () �(x̄) is satisfiable.

If there is an assignment � to x̄ making �(x̄) true, let Y be the set of variables set to 1

by the assignment and Z be the set of variables set to 0 by the assignment. Then assign

every variable xi 2 Y and z to the graph ;g; assign every variable xi 2 Z to the graph N1.

This gives a witness for (G,i) |= 9z 9x̄ �0(x̄, z). Conversely, given a witness assigning

variables to graphs gi for each xi and g for z, for any gi i g set �(xi) to 1 and set all other

variables to 0. This gives a satisfying assignment for the original 3� SAT formula.

In the next subsection, we show that an attempt to strengthen the decidability result by

adding constants to the vocabulary fails.

6.1.2 Existential Fragment with Constants

We show that the existential fragment of the induced subgraph order extended by constants

is undecidable. The proof is via reduction to the corresponding fragment of the subword

order shown to be undecidable by Halfon etal. [18].

Definition 6.5. A graph is a threshold graph if it does not contain P4, K2K2, C4 as induced

subgraph and it is not the empty graph. We denote the family of threshold graphs by Thr.

Observation 6.6. The family Thr is definable in the induced subgraph order with constants

using a quantifier-free formula.

Thr(x) := P4 ⇥i x ^ C4 ⇥i x ^ K2K2 ⇥i x ^ x 6= ;g

The following lemma is a known property of threshold graphs (see Mahadev and Peled

[33]), but we give a proof here for the sake of completeness.

116

Lemma 6.7. Every threshold graph contains either a dominating vertex (a vertex adjacent

to every other vertex) or isolated vertex (a vertex adjacent to no other vertex).

Proof. Suppose g 2 Thr is a minimal graph which does not contain either a dominating

vertex or isolated vertex. Pick any vertex v0 2 g. Let U be the subset of vertices of V (g)

to which v0 has an edge and let V = V (g) \ (U [{v0}). By assumption, both U and V

are non-empty sets.

Case |U | = 1: Suppose U = {u}. Let vi 2 V be a vertex not connected to u (else u

is a dominating vertex in g). But since g does not have isolated vertices, vi is connected

to some vj 2 V . If uvj is present then v0, u, vi, vj form an induced P4, else they form an

induced K2K2.

Case |V | = 1: Suppose V = {v}. Let ui 2 U be a vertex adjacent to v (since v is not

isolated). There exists uj such that uiuj is not an edge (else uj is dominating). If vuj is an

edge then v0, v, ui, uj form an induced C4 else they form an induced P4.

Case |U |, |V | � 2: Because g is a minimal counterexample, there is either a vertex

u1 2 U which is an isolated vertex in g[U [V] or there is a vertex v1 2 V which is a

dominating vertex in g[U [V]. Note that a dominating vertex belonging to U in g[U [V]

is also a dominating vertex in g and for similar reasons an isolated vertex in V is also not

possible. We also note that there must be an edge between U and V . Otherwise, g has

multiple components (and no isolated vertices) i.e. there exists an induced K2K2. We have

the following subcases:

• Subcase u1 is isolated in g[U [V]: pick u2 2 U and vi 2 V such that u2vi is an

edge. Then u1, v0, u2, vi form an induced P4.

• Subcase v1 is a dominating vertex in g[U [V]: for any two vertices ui, uj 2 U , v1ui

and v1uj are edges. If uiuj is a non-edge, then v0, ui, v1, uj form an induced C4.

Hence uiuj is forced, and since we considered two arbitrary vertices of U , g[U] is a

clique. There must exist v2 such that uiv2 is a nonedge (else ui is dominanting in g).

117

But this implies v0uiv1vj is an induced P4.

Definition 6.8. We define the following unary graph operations which take an input graph

g:

• (AddIsoV) Disjoint union with N1: AddIsoV (g) = g [· N1.

• (Complement) Complementation: Complement(g) = gc which is defined by vertex

set V (gc) = V (g) and edge set E(gc) = {uv | uv /2 E(g)}.

• (AddDomV) Join with N1: AddDomV (g) = (gc [· N1)c.

Theorem 6.9 (Halfon etal.[18]). Let ⌃ = {a, b}. The existential theory of the subword

order with constants, denoted 9⇤(⌃⇤,sw,Cw), is undecidable.

Lemma 6.10. The structure (Thr,i) is isomorphic to (⌃⇤,sw).

Proof. We define the map f : ⌃⇤ ! G inductively as follows: f(✏) = N1, f(wa) =

AddIsoV (f(w)), f(wb) = AddDomV (f(w)). We need to prove that f is an order

preserving bijection between (⌃⇤,sw) and (Thr,i). For any g, it is clear that |g|+ 1 =

|f(g)| i.e. the number of vertices in g is the same as one more than the number of letters

in the word f(g). Let fi be the restriction of f to words of cardinality at most i; then

f =
S

i<!
fi. We prove by induction on i that fi is an order preserving bijection between

⌃⇤
i

= {w | 0 |w| i} and Thri+1 = {g 2 Thr | 1 |g| i+ 1}.

Base case: f0 maps ✏ to N1. There are no other graphs of cardinality one and the

property holds trivially.

Induction: Let fi�1 satisfy the required property. We need to show that fi is an order

preserving bijection between ⌃⇤
i

= {w | 0 |w| i} and Thri+1 = {g 2 Thr | 1

|g| i+ 1}.

First, we prove that fi is a surjection. To do so, we need to show that any graph

g 2 Thri is the image of some word w. By Lemma 6.7, we know that g has to contain a

118

dominating or isolated vertex. Let us assume that g = g0[· N1. But by induction hypothesis,

there exists a word w0 such that f(w0) = g0. Clearly f(w0a) = g; the case where g contains

a dominating vertex is similar.

Showing that fi is order preserving also implies that it is an injection. This is because

if f(w) = f(w0) for w 6= w0 with |w| = |w0| = i then w ⇥sw w0 but f(w) i f(w0) which

contradicts order preservation. We show that the map fi preserves order next.

Let w,w0 be two words of cardinality at most i. In the case where both of the words

have cardinality strictly smaller than i, the requirement follows from induction hypothesis.

If |w| = |w0| = i then w sw w0 () w = w0. But w = w0) f(w) = f(w0).

Conversely, if f(w) = f(w0), let w = va and w0 = v0a since if w,w0 have different

last letters then one has a dominating vertex and the other an isolated vertex leading

to a contradiction. Then f(va) = f(v) [· N1, f(v0a) = f(v0) [· N1. But this implies

f(v) = f(v0) and by induction hypothesis, v = v0) w = w0. The argument when the last

letter is b is similar.

The remaining case is |w| = j < i, |w0| = i. Let w = w1w2...wj , w0 = w0
1w

0
2...w

0
i

and wj 6= w0
i
. Then w sw w0 () w sw w00 where w00 = w0

1w
0
2...w

0
i�1. By induction

hypothesis w sw w00 () f(w) i f(w00). But by construction f(w) i f(w00))

f(w) i f(w0) and f(w) i f(w0)) f(w) i f(w00) by the assumption that wj 6= w0
i
.

Hence w sw w00 () f(w) i f(w0).

Otherwise we have |w| = j < i, |w0| = i, wj = w0
i
. Let w0

i
= a giving w = va,

w0 = v0a. Then w sw w0 () v sw v0 () f(v) i f(v0) (by induction hypothesis);

but then f(v) i f(v0) () f(va) i f(v0a). The argument for the case of appending b

is similar. This completes the proof of order preservation and the lemma follows.

Theorem 6.11. The existential theory of the induced subgraph order with a constant

symbol for each graph, denoted 9⇤(G,i,Cg), is undecidable.

Proof. By Observation 6.6, the family of threshold graphs is definable via a quantifier-free

119

formula in (G,i,Cg). The theorem follows from Theorem 6.9 and Lemma 6.10. Given

a sentence 9x̄ (x̄) in the vocabulary of the subword order expanded by constants, we

construct the sentence 9x̄
V

x2x̄ Thr(x)^ 0(x̄) in the vocabulary of the induced subgraph

order expanded by constants where 0(x̄) is the formula obtained from (x̄) by replacing

all occurences of sw by i and constants from Cw by constants from Cg using the map f

defined in Lemma 6.10. It is clear that 9x̄ (x̄) is true of the subword order with constants

if and only if 9x̄
V

x2x̄ Thr(x)^ 0(x̄) is true of the induced subgraph order with constants

and the construction of the latter formula is recursive.

Remark 6.12. The above reduction from the existential fragment of the subword order to

the induced subgraph order respects the automorphisms of the two structures. In particular,

note that the map f 0 sending any word w to the word wa$b which has an a in every position

of w which has a b and vice versa for b, is an automorphism of the subword order. The map

f in the theorem above sends the word wa$b to the graph f(w)c which is the complement

of the image of the word w.

The subgraph and minor orders do not have any automorphisms and it is not clear if it

is possible to embed the subword order into either of them.

6.1.3 Positive Existential Fragment with Constants

Next we show that removing negation from the existential fragment with constants gives

decidability again. We first define some notions related to posets.

Definition 6.13. Let (P,P) be a poset. A filter F , also known as an upclosed set, is

one such that for any p, p0 2 P with p P p0 it is the case that p 2 F implies p0 2 F .

Given a set S, we define its upclosure S " by S "= {p | 9p0 2 S p0 P p}. The strict

upclosure S * is defined by replacing P by <P in the definition of upclosure. We define

downclosure of a set by replacing P by �P in the definition of upclosure and similarly

define strict downclosure. When the set S is a singleton, we will write p " instead of {p} ".

120

Theorem 6.14. Let denote any one of i,s,m. The theory 9⇤(+)(G,,Cg), which

has formulae given by the grammar

� := c2x | x2y | 9y � | �1 ^ �2 | �1 _ �2

where 2 2 {<,>,=} is NP-complete.

Proof. The NP�hardness result follows from the fact that the quantifier-free fragment

contains formulae of the form c1 c2 which corresponds to the problem of deciding when

a graph is a subgraph, induced subgraph or minor of another graph. These problems are

known to be NP�hard problems (see Garey and Johnson [17] for the orders i,s and

Eppstein [12] for m).

We will show that there exists a certificate for any yes instance of the problem which is

polynomial in the input size and verifying that the certificate is valid can be done in time

polynomial in the input size.

First we describe the construction of the certificate Cert� for an input sentence assumed

to be in prenex form 9x̄ �(x̄) where �(x̄) is quantifier free. Consider the formula �(x̄).

The atomic formulae in � can be thought of as propositions and thus there exists a quantifier

free formula �0 which is equivalent to � such that �0 is in Disjunctive Normal Form (DNF).

Let �0 = t1 _ t2 _ ...tl where each ti is a term 2 of the form l1 ^ l2 ^ · · ·^ ln with each lj an

atomic formula of the form x2y or c2x. The set of atomic subformulae of �0 is contained

in the set of atomic subformulae of �. Note that �0 may be exponentially bigger than �,

but we do not need to construct it. We appeal to the equivalence � ⌘ �0 only for the proof

of the fact that Cert� is indeed a certificate.

We need to define some parameters of �0 to construct the certificate. Let C =

{c1, c2, ..., cm} be the set of constants used in �0, x̄ = {x1, x2, ..., xn} the set of vari-
2Unfortunately, this is standard terminology and is not to be confused with terms in FOL. Note that there

are no function symbols in the vocabulary being considered here.

121

ables in �0 and S = C # the downclosure of the set of contants. The truth of 9x̄ �0(x̄)

requires the assignment ḡ of graphs to the variables so that �0(ḡ) holds. Fix an assignment

ḡ making �0 true. This happens if and only if there exists a term t of �0 such that t(ḡ) is

true. Let t be such a term which witnesses the satisfiability of �0. The size of any term t is

at most the size of � since every literal l contained in t is an atomic subformula of �. Let

At(t) be the set of literals of t. Define the set Xt ✓ {x1, x2, ..., xn} of bounded variables

as the smallest set of variables which satisfy the following conditions:

1. For any x if there exists some c 2 C such that one of x < c, x = c belongs to t, then

x 2 Xt.

2. If xi 2 Xt and one of xj < xi, xj = xi belongs to t then xj 2 Xt.

We see that the assignment to any variable in Xt must come from S since the term t

imposes a bound on these variables and hence this part of the assignment is polynomial in

the size of the input.

This leaves the assignment to the remaining variables, which we will show need not

be guessed. Let X 0
t
= x̄ \Xt be the unbounded variables. Fix a variable x0 in X 0

t
. Any

such variable x0 does not occur in an atomic formula of the form x0 < c, x0 = c, x0 = y

or x0 < y where y is a bounded variable in the term t. This implies that
V

x2Xt
x < x0

is consistent with the term t for any x0 2 X 0
t
. Let g0 = N1 [·

S
·
c2C c. If g0 x0 then

V
x2Xt

x < x0 holds because g0 is a supergraph of every c 2 C.

The equality relation imposed by t breaks X 0
t

up into equivalence classes

E1, E2, ..., Ek. Let X 00
t
✓ X 0

t
be a set of representatives for these equivalence classes.

The conditions in t impose a partial order t on X 00
t
. Note that since || is not part of the

vocabulary, we cannot force any two unbounded variables to be incomparable and this

is a critical fact. Let tot be a total order which extends the partial order t. Suppose

X 00
t
= {x0

1, x
0
2, ..., xl} where x0

i
<tot x0

j
, then the assignment g0 [· Ni+1 to the variable x0

i

is consistent with the term t. This follows from the consistency of this assignment with

the total order tot and the fact that
V

x2Xt
x < x0 holds for this assignment. The actual

122

assignment of graphs to the unbounded variables is not part of the certificate; the total

order tot suffices since we know that an appropriate assignment exists for each such total

order. We are now in a position to describe the certificate.

The polynomial size certificate Cert� consists of the following :

1. The set Xt, an assignment function � : Xt ! S for each x 2 Xt. The size of Xt is

O(|�|) and that of � is O(|�|2).

2. The equivalence classes E1, E2, ..., EK and the order tot. The size of this part of

the certificate is O(|�|log(|�|)).

3. The set At(t) of atomic subformulae of � which form the set of literals of the term t.

This is of size O(|�|).

4. Once we have fixed the above elements of the certificate, we can obtain a formula ��

which is obtained from � by substituting the appropriate assignments to the variables

in Xt. We now guess the maps which witness atomic formulae of the form c2c0 for

each such atomic formula in ��, depending on which graph order is being considered.

For example, if � assigns g1 to x and g2 to y, and there exists an atomic formula

x <s y in At(t), then we need to guess a map f : V (g1)! V (g2) which witnesses

the fact that g1 is a subgraph of g2. The maps are linear in the size of the graphs and

hence in the size of � and there are At(t) many of them. The size of this part of the

certificate is O(|�|2).

The process of verifying the certificate is as follows.

1. Plug in the assignment � contained in Cert�(1) to the variables Xt to produce the

formula ��.

2. For each atomic formula ↵ 2 At(t), there exists a corresponding formula ↵� in ��

which can be obtained from �. We now have to check that:

• If ↵� is of the form c2c0, then verify that the map guessed in Cert�(4) for this

formula is correct.

• If ↵� is of the form x0 < x00 for x0, x00 2 X 0
t
, then verify that the total order

123

tot in Cert�(2) is consistent with ↵�.

• If ↵� is of the form x0 = x00 for x0, x00 2 X 0
t
, then verify that there exists an

equivalence class Ei in Cert�(2) such that x, x0 2 Ei.

3. Set all atomic formulae not in At(t) to false and those in At(t) to true, and verify

that the formula � evaluates to true.

The certificate as outlined is polynomial in the size of the input; the correctness of

the certificate follows from the equivalence of 9x̄ �(x̄) and 9x̄ �0(x̄); and the verification

process is in polynomial time.

We note that if one allows atomic formulae of the form xi||xj for two unbounded

variables xi, xj then the assignment of graphs of the form g0 [· Ni to unbounded variables

is no longer consistent with the formula. Hence the above proof does not work for the

existential fragment with constants.

This concludes our study of the existential fragment and we take up the finite variable

fragments in the next section.

6.2 Finite Variable Fragments

The finite variable fragment FOk is defined to be the fragment of FOL which only employs

variables from {x1, x2, .., xk}. Nesting of quantifiers allows the reuse of variables, for

example 9x1 (�1(x1) ^ (8x2 (�2(x1, x2) ^ 9x1 �3(x1, x2)))) is a sentence in FO2.

In this section, we will see that the FO1 fragment of graph order with constants is

decidable for each graph order and the FO3 fragment of the induced subgraph order is

undecidable. These two results form the first two subsections of this section. In the third

subsection we show that the negation-free fragment of FO2(G,i) is decidable.

124

6.2.1 The FO3 Fragment of the Induced Subgraph Order

Theorem 6.15 (Karandikar and Schnoebelen [24]). The FO3\⌃2 fragment of the subword

order with constants is undecidable.

The quantifier-free interpretation of the subword order in the induced subgraph order

from Observation 6.6 and Lemma 6.10 combined with the above theorem also gives us the

following undecidability result for the FO3 fragment of the induced subgraph order with

constants.

Theorem 6.16. The FO3 \ ⌃2 fragment of the induced subgraph order with constants is

undecidable.

It would be interesting to see if the above theorem can be strengthened by getting rid

of the constants in the vocabulary. One way to do so would be to show that constants are

definable in the FO3 \ ⌃2 fragment of the subword order.

We take up the decidability of the FO1 fragment next.

6.2.2 FO1 fragment of graph order

We note that without constants, restriction to a single variable does not make sense since the

vocabulary consists of a single binary relation. The quantifier free part of the FO1 fragment

with constants consists only of statements such as c1 c2. This quantifier-free fragment is

known to be NP-complete for each of the three orders. In the case of the induced subgraph

order and subgraph order, the independent set problem and the Hamiltonian cycle problem

are well known special cases which are already NP-complete (see Garey and Johnson

[16]) and similarly finding clique minors is known to be NP-complete (see Eppstein [12]).

Due to closure under boolean operations, the FO1 fragment also contains coNP-complete

problems. We give an upper bound for this fragment next.

125

Formally, the formulae in FO1 are given by the grammar

� := c12c2 | c2x | �1 _ �2 | �1 ^ �2 | 9x � | 8x �,

where 2 2 {,�,⇥,⇤}.

Theorem 6.17. The truth problem for the FO1 fragment of each of the structures (G,i

,Cg), (G,s,Cg), (G,m,Cg) is contained in NPNP \ coNPNP.

Proof. We observe that any FO1 sentence can be written in polynomial time as conjunc-

tions and disjunctions of subformulae of one of the forms

1. c12c2 for 2 2 {,�,⇥,⇤}.

2. 9x �(x), where �(x) is quantifier free and contains atomic formulae of the kind c2x

for 2 2 {,�,⇥,⇤}.

3. 8x �(x), where �(x) is quantifier free and contains atomic formulae of the kind c2x

for 2 2 {,�,⇥,⇤}.

The above normal form follows from pulling out subformulae which are not contained

in the scope of a quantifier. Further, is a boolean combination of subformulae of the

kind c12c2 and 9x �(x) since 8x �(x) can be rewritten using negation and 9x �(x).

Alternately, we have a dual representation of as a boolean combination of only c12c2

and 8x �(x) subformulae. We will show that using the subformulae of the kind c12c2 and

9x �(x) which we will call propositions, we have a procedure which is in NPNP. By using

the dual representation, we also obtain a coNPNP procedure, which gives us the result that

the problem is in coNPNP \ NPNP.

We now demonstrate the NPNP procedure. The truth of propositions of the form c12c2

can be determined using an NP oracle. Suppose we have a NPNP procedure which solves

the truth problem for propositions of the kind 9x �(x), then we can obtain the truth values

of all the propositions of in NPNP, followed by a simple circuit evaluation which is linear

time, which completes the NPNP procedure. It is sufficient to prove the following claim

126

to obtain an NPNP procedure which solves the truth problem for propositions of the kind

9x �(x).

Claim: If 9x �(x) is true, then there is a graph g whose cardinality is polynomial in

|�| such that �(g) is true. We call g a polynomial-size witness for 9x �(x).

Assuming the above claim gives us a polynomial-size witness g; the problem of

evaluating the truth of �(g) can be done by using an NP oracle which is used to evaluate

the truth of subformulae of the form g2c contained in �(g) followed by a circuit evaluation.

The guess of the witness g followed by calls to an NP oracle results in an NPNP procedure.

We will now prove the claim that there is a polynomial-size witness g for 9x �(x).

As in the proof of Theorem 6.1.3, there exists a quantifier-free formula �0(x) such that

�(x) ⌘ �0(x) with �0 in DNF. It is sufficient to prove that a polynomial-size witness exists

for sentences of the kind 9x �0(x) with �0(x) = l1 ^ l2 · · · ln where each li is a literal of

the kind x2c for 2 2 {,�,⇥,⇤}.

If there exists a literal x c in �0 then we immediately obtain a polynomial bound

on x and therefore we can assume this is not the case. Suppose there is a literal of the

form x ⇥ c in �0. Since Jx ⇥ cK = G|c|+1 [S0, where S0 is the finite set of graphs with

cardinality smaller than |c| which are incomparable to c , the claim follows if there exists a

solution for x which is in S0. Thus we can replace x ⇥ c by
W

c02G=|c|+1
c0 x and assume

that atomic formulae that occur in �0 are of the form c x, c ⇥ x only.

Let C,D be the sets of constants that occur in �0 which occur in the atomic forms

c x, d ⇥ x respectively i.e. �0 =
V

c2C c x ^
V

d2D d ⇥ x. Let g 2 J�0K be a graph

that contains every c as induced subgraph and does not contain any d as induced subgraph.

The property of not containing d as an induced subgraph is downclosed i.e. any induced

subgraph of g also does not contain d (this remains true for the other graph orders). Let

V0 ✓ V (g) be the set of vertices such that g[V0] contains every c 2 C as induced subgraph.

Clearly |V0| ⌃c2C |c| and thus we have a witness for x which is polynomial in the size of

127

the formula and this proves the claim.

This concludes the proof that the truth problem for the FO1 fragment with constants is

in NPNP \ coNPNP.

Remark 6.18. We leave the lower bound problem open for the case of FO1. Clearly

the problem is both NP�hard and coNP�hard since the quantifer-free fragment of FO1

contains hard problems of the form c12c2.

These results motivate the question of whether the FO2 fragment is decidable. While

we do not have a decision procedure on hand for the FO2 fragment, analogous results in

the case of words and partial results in the case of graphs give evidence for believing that

the FO2 fragment is decidable.

In the next subsection, we give a decision procedure for the positive fragment of the

FO2 theory of the induced subgraph order without constants, denoted

FO2(+)(G,i).

6.2.3 FO2(+) Fragment of the Induced Subgraph Order

We give a proof of decidability of the negation-free fragment of the FO2 theory of the

induced subgraph order without constants denoted FO2(+)(G,i) in this section. Note that

we do not add the constant P3 to the vocabulary and in this section, by the induced subgraph

order we mean the structure (G,i). The strategy employed may lead to analogous

results for the subgraph and minor orders, but we do not pursue this. We believe the

decidability of the FO2 fragment can be obtained via similar means and we discuss this in

the next subsection. We make the following observation regarding the automorphism of

the induced subgraph order which maps every graph g to its complement gc. Note that we

use the notation G \ S for set complementation and this is not to be confused with graph

complementation.

128

Observation 6.19. Every set definable in the first order theory of induced subgraph order

is closed under graph complement i.e. for any formula �(x̄) with n free variables, the

n-tuples defined by it have the property that if ḡ = (g1, g2, ..., gn) satisfies �, then so does

ḡc = (gc1, g
c

2, ..., g
c

n
).

We now describe the strategy employed to show the decidability of FO2(+)(G,i).

Consider a sentence 2 FO2(+). There are no quantifier free sentences in this fragment

and so we can assume = Qx �(x) where Q is either 9 or 8 and �(x) is a formula with

one free variable. The truth problem for FO2(+)(G,i) reduces to checking the emptiness

or universality of the solution set J�(x)K depending on whether Q is the existential or

universal quantifier respectively.

We show that any solution set J�(x)K of a formula in FO2(+) can be effectively and

finitely encoded. The resulting finite encoding s� has the following properties:

1. Given an encoding s�, it is possible to decide whether J�(x)K = ; and whether

J�(x)K = G.

2. An encoding s� can be computed for J�(x)K given encodings for its strict subformu-

lae.

We now take up the details of how the above is accomplished.

Definition 6.20. A principal filter is a set S ✓ G defined as the upclosure of a single

element i.e. S = g ". A special multifilter S 0 is a finite union of principal filters that the

following additional properties:

1. S 0 does not contain either ;g or N1.

2. If for any i 2 N, Ni 2 S 0, then it is the case that S contains all graphs on i vertices,

denoted G=i. We call any set satisfying this condition a convex set.

An almost special multifilter S 00 is the union of a special multifilter S1 with a set S2 where

S2 ✓ {;g, N1}.

129

Note that we consider S 0 = ; also as a special multifilter since it is the finite union of

zero many principal filters.

We will also need to refer to the following kinds of sets in our proof.

Definition 6.21. Let S ✓ G. A layer of S is a set S=n = {g 2 S : |g| = n} for some

n 2 N. We also define Sn = {g 2 S : |g| � n} and Sn = {g 2 S : |g| n}.

In particular, G=n stands for the set of graphs of cardinality n for some fixed n 2 N, Gn

for graphs of cardinality at least n and Gn for graphs of cardinality at most n.

We introduce the encoding we use for almost special multifilters.

Definition 6.22. A special multifilter S is encoded by the finite set min(S) of its minimal

elements. The union of a special multifilter with a finite set S 0 is encoded by min(S)

together with the list of elements present in S 0.

Note that it is possible to encode a special multifilter S by any finite set S 0 such that

S = S 0 ". Clearly S = S 0 "= min(S) " and min(S) ✓ S 0. However, one can always

eliminate S 0 \ min(S) by comparing each element of S 0 with the rest of S 0 to obtain

min(S).

Observation 6.23. Given the encoding of a set S which is an almost special multifilter,

checking emptiness and universality of S are both decidable. In fact, both of these problems

are trivial because any S which has a non-empty set of minimal elements is non-empty

and only S = (K2 " [N2 ") [{;g, N1} which is encoded by ({K2, N2}, {;g, N1}) is

universal.

Definition 6.24. SolFO2(+) is defined to be the set of all solutions sets of FO2(+) formulae

in one free variable.

SolFO2(+) := {J�(x)K | �(x) 2 FO2(+)}

Lemma 6.25. Every set S 2 SolFO2(+) is an almost special multifilter.

130

Given a formula �(x) 2 FO2(+)(G,i), an encoding s� of the solution set J�(x)K can

be effectively computed.

We postpone the proof of the above lemma and introduce some tools used to prove it

first.

Definition 6.26. An FO2(+) formula in one free variable is said to be in Operator Normal

Form (ONF) if it can be generated by the following grammar :

�(x) := S(x) | �1(x) ^ �2(x) | �1(x) _ �2(x) | 8y �(y) _ x20y | 9y �(y) ^ x2y

where 2 2 {<,>,=}; 20 2 {<,>,=,,�, ,} and S(x) is one of the formulae 9y x <i

y, 9y y <i x, 8y x i y or 8y x i y _ y <i x.

The formulae of the form S(x) in the above definition correspond to formula with

a single quantifier and one free variable x over FO2(+) and form the base case of our

analysis later in this section.

The usefulness of the ONF lies in the fact that the cases in Definition 6.26 correspond

naturally to operations on FO2(+) solution sets which behave well with respect to the

encoding of the solution sets. This enables us to compute an encoding of a solution set

J�(x)K given encodings of the solution sets of its subformulae.

Definition 6.27. Let O : (2G)k ! 2G be a k�ary operation sending k�tuples of subsets

of G to a subset of G.

The collection of almost special multifilters is said to be closed under an operation O

if whenever each of S1, S2, ..., Sk is an almost special multifilter, then O(S1, S2, ..., Sk) is

also an almost special multifilter.

The collection of almost special multifilters is said to be recursively closed under an

operation O if it is closed under O and in addition, an encoding of O(S1, S2, ..., Sk) can

be computed given encodings for each of the Si.

131

Every case in the grammar for the ONF in Definition 6.26 corresponds to an operation.

For instance �1(x)^�2(x) corresponds to an operation which takes in J�1(x)K and J�2(x)K

as input and produces their intersection as output.

Definition 6.28. The set OFO2(+) of FO2(+)-operations on a poset (P,) is comprised

of the two binary operations union and intersection and the following unary operations

which take a set S ✓P as input:

9+(S) := {p | 9y S(y) ^ p < y}

9*(S) = {p | 9y S(y) ^ p > y}

8*(S) = {p | 8y S(y) _ p < y}

8+(S) = {p | 8y S(y) _ p > y}

8"(S) = {p | 8y S(y) _ p y}

8#(S) = {p | 8y S(y) _ p � y}

8,(S) = {p | 8y S(y) _ p , y}

Observation 6.29. Let S, S 0 be the solution sets of FO2(+) formulae �(x),�0(x) respec-

tively.

J�(x) ^ �0(x)K := S [S 0

J�(x) _ �0(x)K := S \ S 0

J9y �(y) ^ x < yK := 9+(S)

J9y �(y) ^ x > yK := 9*(S)

J8y �(y) _ x < yK := 8*(S)

J8y �(y) _ x > yK := 8+(S)

132

J8y �(y) _ x yK := 8"(S)

J8y �(y) _ x � yK := 8#(S)

J8y �(y) _ x , yK := 8,(S)

Lemma 6.30. Any FO2(+) formula is equivalent to a formula 0 in ONF and 0 can be

computed from .

Proof. The lemma follows from the distribution of the existential quantifier over dis-

junctions, distribution of the universal quantifier over conjunctions and the pairwise

inconsistency of formulae of the form x2y for 2 2 {<,>,=}.

We are now ready to prove Lemma 6.25. We will show that the set of almost special

multifilters is recursively closed under the set OFO2(+) of operations and that every set in

SolFO2(+) which is the solution set of a formula �(x) with only one quantifier is an almost

special multifilter with known encoding. This implies that every set S in SolFO2(+) is an

almost special multifilter and further we can compute an encoding of S.

Proof of Lemma 6.25.

Let Sbase = {G,G \ {;g}, {;g, N1}, {;g}, {N1}}.

The only sets that are definable in FO2(+) using a single quantifier are those in Sbase

and Sbase is closed under unions and intersections. Let us call any set S that can be written

as S1[S2 where S1 is a special multifilter and S2 ✓ {;g, N1} an almost special multifilter

set. We note that each of the sets in Sbase is an almost special multifilter

J9y x <i yK = G = (N2 " [K2 ") [{;g, N1}

J9y y <i xK = G \ {;g} = (N2 " [K2 ") [{N1}

133

J8y x i yK = {;g}

J8y x i y _ y <i xK = {;g, N1}

{N1} can be produced by intersection of G \ {;g} and {;g, N1}.

All other sets definable in FO2(+) are built from those in Sbase using the operations

OFO+(2) by the fact that every formula can be effectively converted to one in ONF by

Lemma 6.30. We need to show recursive closure of almost special multifilter sets under

the OFO+(2) operations to complete the proof.

The OFO+(2) operations satisfy some obvious inclusions which help in case analysis

later.

Observation 6.31. Let 2,20 2 {,�, <,>, ,} and let 82 and 820 be the corresponding

operations as defined in Definition 6.26. If x2y � x20y, then 82(S) ✓ 820
(S).

If S ✓ S 0, then 82(S) ✓ 82(S 0).

Observation 6.32. Any filter c " contains members of N iff c = Ni for some i.

We now take up the recursive closure of almost special multifilters under the OFO+(2)

operations. Let S = S1 [S2 and S 0 = S 0
1 [S 0

2.

Closure under unions and intersections:

S [S 0 = (S1 [S2) [(S 0
1 [S 0

2) = (S1 [S 0
1) [(S2 [S 0

2) is of the required form because

convexity is preserved under unions.

S \ S 0 = (S1 [S2)\ (S 0
1 [S 0

2) = (S1 \ S 0
1)[(S2 \ S 0

2) because S1 \ S 0
2 = ;. We are

now required to show that (S1 \ S 0
1) is a special multifilter The intersection of principal

filters gives a finite union of principal filters because of the finite lub property. It is easy to

verify that convexity is retained under intersection.

Closure under the 92 operators:

S += (S1 [S2) += S1 + [S2 +. S2 +✓ {;g, N1}. For any filter c ", it is the case that

134

(c ") += G. This is because for any g 6= c, g [c 2 c " i.e. the disjoint union graph is the

required witness. This means any nonempty special multifilter gives G, which is convex.

S *= (S1[S2) *= S1 * [S2 *. If S2 is non-empty, then S2 * is either G \{;g} = G1

or G2; both of which always contain S1 * for any choice of S1 and both are convex.

Let S1 be represented by C = {c1, c2, ..., cn}. We can assume that there are no ci, cj

which are comparable i.e. C is a minimal set. Then S1 * is represented by C 0 = {c0 | 9c 2

C, c0 2 UC(c)} where UC(c) is the set of upper covers of c. If C does not contain any Ni,

then neither can C 0 and hence S " is convex by Observation 6.32. Suppose Ni 2 C, then

for every other c 2 C, |c| i by convexity. Ni /2 S * but Ni+1 2 S *. Since G=i ✓ S,

this means that G=i+1 ✓ S * since no element of Gi+1 can be minimal in S. Thus S * is

also convex.

Closure under the 82 operators:

We divide these into cases.

Case 1: S1 does not contain a filter rooted ar Ni for any i

In this case, 8,(S) = ; no matter the value of S2. By Observation 6.31, every operator

82(S) is also ;.

Case 2 : S1 contains a filter rooted at some Ni

Subcase 2.1 : S1 = N2 " [K2 "

If S2 = ;, then 8+(S) = G2, 8#(S) = G1, 8,(S) = G, 8*(S) = ;, 8"(S) = {;g}.

If S2 = {;g, N1}, then 82(S) = G for any value of 2.

This implies that for S2 = {;g} and S2 = {N1}, G2 ✓ 82(S) by Observation 6.31

because it is sandwiched between S2 = ; and S2 = {;g, N1} above.

Subcase 2.2 : S1 \ {K2, N2} = ;

8"(S) ✓ {;g, N1} no matter the value of S2, because for any graph m, {K2, N2} ✓ m "

implies that m = ;g or m = N1. By Observation 6.31, 8*(S) ✓ {;g, N1}.

135

We claim 8,(S) = 8,(S) = 8#(S) = 8+(S). Since {K2, N2} \ S = ; and by

assumption Ni is the smallest member of N present in S, it must be the case that for any

m 2 8,(S), Ni�1 and Ki�1 are part of m + where i � 2. This is because both Ni�1, Ki�1

cannot be in m ". This implies that m also belongs to 8+(S).

Since by assumption S contains filters rooted at Ni and Ki (the latter due to Observation

6.19), by Ramsey theory, S 0 = G \ S is finite and can be computed. This gives us

8+(S) := {m | 9g g 2 lub(S 0), g < m}

Thus 8+(S) is a finite union of filters and since {K2, N2} ✓ S 0, lub(S 0) \ (K [N) = ;

and thus 8+(S) is convex.

It is clear from the proof of closure above that we can compute an encoding of the new

set produced in every case considered. This concludes the proof of recursive closure of

almost special multifilter sets under the OFO+(2) operations. This shows that every set in

SolFO2(+) is an almost special multifilter and also concludes the proof of Lemma 6.25.

Theorem 6.33. The theory FO2(+)(G,i) is decidable.

Proof. The input is an FO2(+) sentence � = Qx �(x). We convert �(x) to �0(x) which

is in ONF by Lemma 6.30. Using Lemma 6.25, we get an encoding of the solution set

J�0(x)K and by Observation 6.23 we can decide whether J�0(x)K is empty or G.

6.3 Towards FO2 Decidability

In this section, we introduce the notion of a locally recursive poset (P,P). Graph orders

are locally recursive posets. We also define a normal form for solution sets of quantifier-

free formulae with one free variable over the vocabulary {P ,CP} (where CP is a set of

constants corresponding to the domain elements in P) for any locally recursive poset. This

136

normal form is called the Multiverse Normal Form (MNF) and gives rise to an associated

family of solution sets called multiverses which have a natural encoding analogous to the

special multifilters introduced in the previous section. Testing for emptiness or universality

of (the encoding of) a multiverse is easy and the problem reduces to showing the recursive

closure of (the encodings of) multiverses under operations arising from the FO2 fragment.

These operations are analogous to those obtained for FO2(+) in Definition 6.28.

In contrast with special multifilter sets, multiverses can be represented directly because

of the presence of constants in the vocabulary and the strategy in the previous section when

applied to FO2(P,P ,CP) can be thought of as a quantifier elimination procedure. The

strategy, if successful, would give us the result that every set definable in FO2(P,P ,CP)

is a multiverse whose encoding can be computed.

Resolution of the latter problem regarding recursive closures depends on the specific

poset P under consideration and is a problem which is combinatorial rather than logical

in flavour. In the case of graph orders, the combinatorics required can be seen as a

generalization of the results obtained for the subword order by Karandikar and Schnoebelen

[25] in view of the quantifier-free interpretation of the subword order in the induced

subgraph order in Section 6.1.

In the last subsection, we obtain some results related to constant definability in

FO2(G,i) which indicate that FO2(G,i,Cg) may lie on the same side of the decidability-

undecidability divide, in contrast to the existential fragment of graph order. In the rest of

this section, we assume that constants are part of the vocabulary.

6.3.1 Definability in Locally Recursive Posets

We start with a poset (P,P) with a countably infinite domain P . By the structure

(P,P ,CP) we mean the poset expanded with constant symbols for each member of the

domain.

137

Definition 6.34. For any S ✓ P for a poset (P,P) define min(S) to be the set of

minimal elements of S, max(S) to be the set of maximal elements of S and lub(S) =

{p | 8p0 2 S p0 P p}.

Definition 6.35. A poset is called locally recursive if it satisfies the following properties:

(P1) The downclosure c # of any element c is finite and computable.

(P2) The set UC(c) of upper covers of an element c is finite and computable.

(P3) The set lub(c, c0) = {p | c < p, c0 < p,¬9p0 (c < p0 < p ^ c0 < p0 < p)} is finite and

computable for any choice of c, c0.

(P4) The set min(P) = {p | ¬9p0 p0 < p} is finite and computable.

Remark 6.36. Each of the three graph orders considered in this thesis is a locally recursive

poset. The meaning of ‘computable’ as used in the above definition requires the notion

of a representation of the elements of P as strings similar to our representation UN for

graphs.

Definition 6.37 (Multiverse Normal Form). A universe Uc,D is the solution set J�(x)K of

the quantifier free formula �(x) = c x ^
V

d2D d ⇥ x; where D is a finite set. We will

write g 2 Uc,D instead of g 2 Jc x^
V

d2D d ⇥ xK for short. We can assume that c < di

for every di for any non-empty universe. A multiverse is a finite union of universes. We

denote the the set of all multiverses by M .

A formula which is a disjunction of formulae of the form c x ^
V

d2D d ⇥ x is said

to be in Multiverse Normal Form (MNF).

A universe Uc,D is encoded by the tuple (c,D) and a multiverse is encoded by the

collection of encodings of its constituent universes.

In the rest of this subsection, we will talk of recursive closure of multiverses under

operations with the understanding that formally we mean the recursive closure of the

encoding.

138

Lemma 6.38. Multiverses of a locally recursive poset are recursively closed under boolean

operations.

Proof. The recursive closure of multiverses under union follows from definition; we take

up recursive closure under intersection. Let S = S1 [S2... [Sn, S 0 = S 0
1 [S 0

2 [...S 0
m

be

multiverses. It is sufficient to show that intersection Si \ S 0
j

of atomic universes Si and S 0
j

is a multiverse. If (c,D) and (c0, D0) are encodings for Si, S 0
j

then Si\S 0
j
= Jc x^ c0

x^
V

d2D[D0 d ⇥ xK =
S

c002lub(c,c0)Jc00 x^
V

d2D[D0 d ⇥ xK, which is a multiverse since

lub(c, c0) is a finite, computable set by property (P3) of locally recursive posets.

We take up recursive closure under complementation. For any S = S1 [S2 [...Sn

where Si are universes with encoding (ci, Di) respectively, P \ S = (P \ S1) \ (P \

S2) \ ...(P \ Sn). The set (P \ Si) = Jci ⇥ x _
W

d2Di
d xK is a multiverse with

encoding {(c0, {ci}) | c0 2 min(P)} [{(d, ;) | d 2 Di}, using property (P4).

Observation 6.39. Given an encoding (c,D) of a universe, we can decide whether Uc,D =

; : this happens if and only if there exists d 2 D such that d c; this implies that checking

whether a given multiverse is ; is also decidable. By closure under complementation

proved in the above lemma, checking if Uc,D = P is also decidable.

Lemma 6.40. Let (P,P ,CP) be a locally recursive poset. Any quantifier free formula

�(x) in one free variable in the vocabulary {P ,CP} is equivalent to a formula �0(x) in

MNF and �0 can be computed from �.

Proof. We can assume that the formula �(x) is in Disjunctive Normal Form i.e. �(x) =

t1(x)_ t2(x)_ ..._ tn(x) where ti(x) is a conjunction of atomic formulae of the kind c2x

for 2 2 {P ,⇥P ,�P ,⇤P}. We observe that the formula x = c (equality being definable

using the partial order) is a universe : c P x ^
V

clP c0 c
0 ⇥P x by appeal to property (P2).

Consider a formula of the kind x P c. By property (P1) , there are only finitely

many c0 such that c0 c and thus we can write an equivalent formula
W

c0P c
x = c0. Next

139

consider a formula x ⇥P c; this is the complement of x P c and thus is a multiverse by

Lemma 6.38. We can thus convert the original formula into one where all atomic formulae

can be replaced by multiverses and the proof follows from Lemma 6.38.

Definition 6.41. We define the following unary operations on the subsets of P:

1. Strict downclosure of a set S, denoted by S += {p | 9p0 2 S, p <P p0}.

2. Strict upclosure of a set S, denoted by S *= {p | 9p0 2 S, p0 <P p}

3. Parallel closure of a set S, denoted by S|| = {p | 9p0 2 S, p0 ⇥P p ^ p ⇥P p0}.

Lemma 6.42. If the multiverses of a locally recursive poset P are recursively closed

under S + and S||, then the FO2 theory of (P,P ,CP) is decidable.

Proof. By Lemma 6.40, any quantifier free formula in one free variable is equivalent to a

multiverse. Hence formulae of FO2 in one free variable are generated by the grammar

�(x) := x 2 S | �1(x) ^ �2(x) | ¬�(x) | 9y �(y) ^ x2y

where 2 2 {<,>, ||,=}, and S is a multiverse with known encoding.

In the case of FO2, we have three operations on sets S +, S *, S|| which correspond

to the solution sets of the formulae of the form 9y �(y) ^ x2y where 2 is <,>, ||

respectively. By Lemma 6.38, we already have recursive closure of multiverses under

boolean operations. Recursive closure under S +, S|| are assumed by the hypothesis of the

lemma, so it remains to show the recursive closure of multiverses under S *.

Closure under S *

The operator distributes over unions and thus it is sufficient to consider S * where S is a

universe, say with encoding (c,D). Let UC(c) be the set of upper covers of c. Then S * is

represented by {(c0, D0) | c0 2 UC(c), D0 = ;}. This is because c /2 S * (since there is no

element less than c in S), but every element strictly more than c must be in S *. Elements

not in c * cannot be in S *.

140

By an argument similar to that in Theorem 6.33 the FO2 theory of (P,P ,CP) is

decidable.

6.3.2 Constants in FO2

The results in this subsection give evidence that from the perspective of decidability, there

isnt much of a difference between FO2 with and without constants over the induced

subgraph order. The definability of a graph g gives us immediate access to the filter rooted

at g using the upclosure operator. By Observation 6.19, it is not possible to distinguish a

graph from its complement in the absence of constants even in the full first order theory of

the induced subgraph order.

The best one can hope for is the definability of every pair {g, gc} in FO2(G,i). This

leads to the natural question of what kind of finite sets are definable in FO2, which can be

seen as a weakening of the definability of constants. We examine this latter question in

this subsection.

Lemma 6.43. Given any finite set S definable in FO2(G,i) and a number n, the layer

S=n is definable. In particular, G=n,Gn and Gn are definable for each n 2 N.

Proof. We show that Gn is definable inductively. We already know that G1 = G \ {;g} is

definable using the formula 9y y <i x.

Gn+1(x) := 9y Gn(y) ^ y <i x

By recursive closure under complementation of multiverses, we have the definability of

Gn and by closure under intersection, we get G=n. Finally, S=n = S \ G=n.

Lemma 6.44. Let S be a definable set. Then min(S),max(S) and lub(S) are definable

in FO2(G,i).

141

Proof. min(S) = S \ (S *), where the set difference operation \ is a boolean operation.

Similarly, max(S) = S \ S +.

S 0 = lub(S) "= 8+(S); lub(S) = min(S 0). We note here that if S is an infinite set,

then lub(S) is empty.

Observation 6.45. FO2 can define each pair {g, gc} of graphs for g, gc 2 G4.

Proof. {P3, K2N1} := lub(G2).

K [N := ({P3, K2N1} ")c.

{Ni, Ki} := (K [N) \ G=i.

The above result implies that for all graphs upto layer 2, we have proved that FO2

without constants can define each pair {g, gc}. Since the only elements at layer 3 are

{N3, K3, P3, K2N1}, we can take up layer 4 next.

G=4 = {K4, N4}[{K2K2, C4}[{P4}[{Kite4, K2N2}[{Paw4, P3N1}[{S4, K3N1}.

{K4, N4} is definable as shown above.

{K2K2, C4, P4}(x) := G=4(x) ^ 8y 2 {K3, N3}y ⇥i x

P4(x) := {K2K2, C4, P4}(x) ^ 8y 2 {P3, K2N1}y i x

Removing P4 from {K2K2, C4, P4} we get {K2K2, C4}.

{Paw4, P3N1}(x) := x 2 (lub({P3, K2N1} \ G=4).

Removing all of the above defined elements from G=4 gives S 0 = {Kite4, K2N2} [

{S4, K3N1}.

{Kite4, K2N2}(x) := S 0(x) ^ 9y 2 lub({K3, N3}) x i y.

Removing {Kite4, K2N2} from S 0 gives us {S4, K3N1}.

This concludes the proof of the observation.

142

Remark 6.46. Given an encoding (c,D) of a universe Uc,D, the definability of each of the

constants in the encoding implies the definability of the universe :

Uc,D = c " \(
[

d2D

d ").

143

144

Chapter 7

Future Work and Conclusion

In this thesis, we have studied the definability and decidability of FOL over structures of

the kind (G, ⌧) where ⌧ includes a partial order. The work on definability forms the larger

part of the thesis. Some preliminary results have been obtained on decidability, but there

are a number of questions left open. We discuss the results of this thesis and avenues for

further work on definability and decidability in graph order in the next two sections.

7.1 Definability in Graph Order

The results related to definability form Chapters 3, 4 and 5 of this thesis. Many of the

graph theoretical relations required for the results in this thesis are already defined for

the induced subgraph order by Wires; but definability in other graph orders has not been

studied before. We will now take up each chapter and discuss the technical details of the

results, problems that remain open and possible ways to tackle them.

In Chapter 3, we have shown that many small graphs can be defined in the first order

theory of graph order. The availability of constants along with the power of atomic negation

is crucial at this juncture to define many important graph families. For instance we are able

145

to define the family of isolated points :

N (x) := K2 ⇥ x

In the above formula, ⇥ can be any of subgraph, induced subgraph or minor. Thus there is a

uniform way to define N in all three graph orders. This uniformity does not extend to other

relations such as the predicate maxDeg(x, n) which holds if and only if the maximum

degree of x is n. This is because the maximum degree of a graph is one less than the

cardinality of the maximum star subgraph, but this fact does not hold of the maximum star

minor.

The basic graph predicates defined have been used to construct gadgets which enabled

us to interpret arithmetic in graph order. These gadgets are trees and so it seems likely

that the structure (forest,s) which denotes forests under the subgraph order, can also

interpret arithmetic. It is possible that with further restriction of the domain to either only

fop (disjoint unions of paths) or only trees, we still have definability of arithmetic. In

the case of fop, we no longer have access to the tree gadgets used and so new gadgets

need to be constructed. In the case of trees, we no longer have definability of the predicate

|x| = |y| via the route taken in this thesis because N is not contained in trees. Thus in

either case, more work is needed.

In Chapter 4, we have introduced the notion of a capable structure over graphs, which is

one satisfying a set of three definability conditions: definability of arithmetic, definability

of cardinality and definability of two graph relations related to o-presentations. An o-

presentation g̃ of a graph g converts edge information contained in the latter to the subgraph

information about the former by attaching large cycles of different cardinalities to the

vertices of g. We have proved a theorem showing that any capable structure has the maximal

definability property; in other words, a graph relation is definable in graph order iff it is

arithmetical. An important corollary is the definability of every recursively enumerable

predicate over graphs in theories of graph order. These two results have been presented

146

modulo a particular encoding of graphs as strings (respectively a particular total ordering

on graphs), with the understanding that any other encoding (respectively total order) in

the same equivalence class with respect to Turing reducibility (respectively arithmetical

definability) leads to the same notion of recursively enumerable predicate (respectively

arithmetical relation) over graphs. We have also shown that the induced subgraph order is a

capable structure, though this result is already implicit in the work of Wires [43] and many

of the relations required to be defined are present explicitly in his work. The definition of a

capable structure over graphs seems to have little to do with graphs and we hope that the

results in this chapter can be generalized to other finite objects considered by Ježek and

McKenzie [20], [23], [22], [21].

In Chapter 5, we have taken up the task of showing that the subgraph order is capable.

The strategy employed to do so is the same as that for the induced subgraph order. The

task is broken up into the definability of three relations out of which CP4C and G̃ are

also used in the proof of capability of the induced subgraph order, but the third, namely

constructFromCycles, is subtly different. The definability of CP4C follows easily from

the basic predicates defined in Chapter 3. We have shown that the definability of G̃

and constructFromCycles follows assuming predicates for the disjoint union of graphs

and edge counting. The capability of the structure (G,s, disjointUnion, sameSize)

has been shown and the rest of the chapter is dedicated to showing the definability

of disjointUnion and sameSize in the subgraph order. We have noted that (G,m

, sameSize) can define the subgraph order and leave the problem of defining sameSize

in the minor order open. We note that showing that the minor order is capable by direct

use of o-presentations seems more difficult. The fact that the family C of cycles forms an

infinite antichain under the subgraph and induced subgraph orders is what allows us to

represent the vertex ordering of a graph via an o-presentation. In contrast, the celebrated

Graph Minor Theorem [37] states that there are no infinite antichains under the minor order.

There may well be other ways to represent vertex orderings of graphs via an alternative to

o-presentations for the minor order, but we do not study this in this thesis.

147

Conjecture 7.1. The minor order is a capable structure and thus has the maximal defin-

ability property.

Showing that the minor order is capable would bring closure to the understanding of

definability in the full first order theory of graph order. As regards definability in fragments,

there is some evidence that it may be possible to strengthen Corollary 5.27 regarding the

definability of r.e. predicates as follows.

Conjecture 7.2 (MRDP for Graphs). Every recursively enumerable predicate over graphs

is definable using an existential formula in the structure (G,i,Cg).

The evidence mentioned is that arithmetic is existentially definable in (G,i,Cg) via

the quantifier-free interpretation of the subword order in Theorem 6.11; the analogous

result for the subword order has already been shown by Halfon et al [18]. In order to prove

the above conjecture, one possible route involves proving two additional facts:

1. Arithmetic is universally definable in (G,i,Cg) i.e. it is ��definable in (G,i,Cg).

2. The formula enc is existentially definable in (G,i,Cg).

The fact that this would suffice is clear from the form of the formula �R(x̄) for a relation

R constructed in the proof of Theorem 4.8.

One variant of this approach involves changing our encoding function UN to one

that may be more amenable to ��definability of arithmetic in (G,i,Cg). Another

variant would be to show the ��definability of arithmetic with the domain set used for

interpretation being all of G and not just N. This approach would rid us of the need to

define encoding functions. This latter approach is closely connected to the Theory of

Numberings introduced by Ershov [13].

We take up the discussion of decidability in graph order in the next section.

148

7.2 Decidability in Graph Order

Our results on decidability are contained in Chapter 6 and have concentrated on syntactic

fragments of the induced subgraph order. In particular, we have shown that the existential

theory of (G,) is NP�complete for each of the three graph orders but the existential

theory of (G,i,Cg) is undecidable. The decidability of the existential theory of (G,s,Cg)

and (G,m,Cg) is left open.

Conjecture 7.3. The existential theories of (G,s,Cg) and (G,m,Cg) are both undecid-

able.

The other syntactic restriction we have studied is variable restriction, where we have

shown that the three variable fragment of (G,i,Cg) is undecidable while the correspond-

ing single variable fragment is in NPNP \ coNPNP. The decidability of the two variable

fragment is left open. The FO2 problem in the case of the subword order has been shown

to be decidable by Karandikar and Schnoebelen and the strategies employed in [25] look

promising.

Conjecture 7.4. The two variable fragment of each of (G,i,Cg),(G,s,Cg) and (G,m

,Cg) is decidable.

In particular, the above problem reduces to proving the recursive closure of multiverses

under the operators S + and S|| for graph orders in view of Lemma 6.42. These questions

are related to Ramsey Theory. Consider a universe U ✓ G represented by (;g, D). Let

max(U) be the set of maximal elements of U under the order i. The set U + is equal to

U \max(U) in this case. In case D contains some Km and Nk, the Ramsey Theorem states

that the entire set U is finite, and hence U + is also finite and is thus a multiverse. But when

D does not contain any Km, every clique belongs to U and hence U is infinite. However, it

may still be the case that max(U) is finite and this is not implied by the Ramsey Theorem.

The finiteness of max(U) immediately implies that U + is a multiverse by Lemma 6.38

which shows that multiverses are closed under boolean operations.

149

The results in Section 6.3.2 indicate that we can define many constants in FO2 (upto

automorphism) and it may in fact be the case that we can define all constants in FO3. If

so, there would be no difference in decidability between FO3 over graph order with and

without constants.

Conjecture 7.5. The FO3 fragment of each of the graph orders (G,i),(G,s) and(G,m)

is undecidable.

This concludes our discussion of the syntactic restrictions. There are two other ways

to place restrictions on the first order theory of graph order: domain restrictions and

vocabulary restrictions.

Domain restrictions give rise to first order theories of structures of the form (G0,i)

where G0 ✓ G. Recall from the previous section that arithmetical definability results are

hard to extend to the case where G0 = T . Even if it is not possible to interpret arithmetic

in trees under the subtree order, the structure seems rich enough that we conjecture it has

an undecidable theory.

Conjecture 7.6. The first order theory of (T ,i) is undecidable.

Changing the vocabulary from graph orders to other relations gives us structures whose

theories can be seen as fragments of (G,s) in view of our definability results because all

natural relations over graphs that could be considered are recursive relations over graphs.

For instance, one may consider the first order theory of the covering relation (G,li). On

the one hand, this theory seems too weak to be undecidable. On the other hand, open

problems related to Graph Reconstruction [31] can be stated in it :

8x 8y 8z (z li x () z li y) � x = y

The above sentence states that every graph is characterized by the set of its one-vertex

deleted subgraphs. Hence we do not expect a simple decision procedure for this theory, if

one exists. We are less sure of the following conjecture:

150

Conjecture 7.7. The first order theory of (G,li) is decidable.

The decidability of structures over graphs which use different relations such as disjoint

union, edge counting, connectivity etc. can be considered, but the choice of vocabulary is

large and apriori it is not clear which of these would be the most fruitful. An understanding

of how complexity classes such as the set of polynomial time predicates over graphs can

be represented as a theory of some structure over graphs would greatly help this choice. In

the case of graph orders, the quantifier-free formulae g1 g2 when seen as computational

problems are already NP�complete and thus seem too coarse-grained for such a study by

themselves. The exploration of graph relations of smaller complexity possibly qualifies as

a long term project in itself.

151

152

Bibliography

[1] Dennis S Arnon. A bibliography of quantifier elimination for real closed fields.

Journal of symbolic computation, 5(1-2):267–274, 1988.

[2] Jon Barwise. Admissible sets and structures, volume 7. Cambridge University Press,

2017.

[3] Alexis Bés. A survey of arithmetical definability. 2002.

[4] Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem.

Springer Science & Business Media, 2001.

[5] Samuel R Buss. Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985 Princeton

University Ph. D. PhD thesis, thesis.

[6] Rina S Cohen and Janusz A Brzozowski. Dot-depth of star-free events. Journal of

Computer and System Sciences, 5(1):1–16, 1971.

[7] Hubert Comon and Ralf Treinen. Ordering constraints on trees. In Colloquium on

Trees in Algebra and Programming, pages 1–14. Springer, 1994.

[8] Hubert Comon and Ralf Treinen. The first-order theory of lexicographic path order-

ings is undecidable. Theoretical Computer Science, 176(1-2):67–87, 1997.

[9] Nachum Dershowitz. Orderings for term-rewriting systems. In Foundations of

Computer Science, 1979., 20th Annual Symposium on, pages 123–131. IEEE, 1979.

153

[10] Reinhard Diestel. Graph theory. Springer, 2005.

[11] Herbert Enderton. A mathematical introduction to logic. Academic press, 2001.

[12] David Eppstein. Finding large clique minors is hard. J. Graph Algorithms Appl.,

13(2):197–204, 2009.

[13] Yuri L Ershov. Theory of numberings. Handbook of computability theory, 140:473–

506, 1999.

[14] Yuri Leonidovich Ershov. Definability and computability. Springer Science &

Business Media, 1996.

[15] Leslie R Foulds. Graph theory applications. Springer Science & Business Media,

2012.

[16] Michael R Garey and David S Johnson. Computers and intractability, volume 29.

wh freeman New York, 2002.

[17] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified np-

complete graph problems. Theoretical computer science, 1(3):237–267, 1976.

[18] Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity,

and expressiveness of first-order logic over the subword ordering. In Logic in

Computer Science (LICS), 2017 32nd Annual ACM/IEEE Symposium on, pages 1–12.

IEEE, 2017.

[19] Neil Immerman. Descriptive complexity. Springer Science & Business Media, 2012.

[20] Jaroslav Ježek and Ralph McKenzie. Definability in substructure orderings, i: finite

semilattices. Algebra universalis, 61(1):59–75, 2009.

[21] Jaroslav Ježek and Ralph McKenzie. Definability in substructure orderings, iii: finite

distributive lattices. Algebra universalis, 61(3-4):283–300, 2009.

154

[22] Jaroslav Ježek and Ralph McKenzie. Definability in substructure orderings, iv: finite

lattices. Algebra universalis, 61(3-4):301–312, 2009.

[23] Jaroslav Ježek and Ralph McKenzie. Definability in substructure orderings, ii: finite

ordered sets. Order, 27(2):115–145, 2010.

[24] Prateek Karandikar and Philippe Schnoebelen. Decidability in the logic of subse-

quences and supersequences. In 35th IARCS Annual Conference on Foundation of

Software Technology and Theoretical Computer Science, FSTTCS 2015, December

16-18, 2015, Bangalore, India, pages 84–97, 2015.

[25] Prateek Karandikar and Philippe Schnoebelen. The Height of Piecewise-Testable

Languages with Applications in Logical Complexity. In Jean-Marc Talbot and

Laurent Regnier, editors, 25th EACSL Annual Conference on Computer Science

Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 37:1–37:22, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

[26] Richard Kaye. Models of Peano arithmetic. Oxford University Press, USA, 1991.

[27] Oleg V Kudinov and Victor L Selivanov. A gandy theorem for abstract structures and

applications to first-order definability. In Conference on Computability in Europe,

pages 290–299. Springer, 2009.

[28] Oleg V Kudinov, Victor L Selivanov, and Lyudmila V Yartseva. Definability in the

subword order. In Programs, Proofs, Processes, pages 246–255. Springer, 2010.

[29] Ádám Kunos. Definability in the embeddability ordering of finite directed graphs.

Order, 32(1):117–133, 2015.

[30] Dietrich Kuske. Theories of orders on the set of words. RAIRO-Theoretical Informat-

ics and Applications, 40(01):53–74, 2006.

155

[31] Josef Lauri and Raffaele Scapellato. Topics in graph automorphisms and reconstruc-

tion, volume 432. Cambridge University Press, 2016.

[32] Leonid Libkin. Elements of finite model theory. Springer Science & Business Media,

2013.

[33] Nadimpalli VR Mahadev and Uri N Peled. Threshold graphs and related topics,

volume 56. Elsevier, 1995.

[34] Yuri Vladimirovich Matiyasevich. Diophantine representation of enumerable predi-

cates. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35(1):3–30,

1971.

[35] Willard V Quine. Concatenation as a basis for arithmetic. The Journal of Symbolic

Logic, 11(4):105–114, 1946.

[36] R Ramanujam and RS Thinniyam. Definability in first order theories of graph

orderings. In Logical Foundations of Computer Science, pages 331–348. Springer,

2016.

[37] Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. Journal

of Combinatorial Theory, Series B, 92(2):325–357, 2004.

[38] Imre Simon. Hierarchies of events with dot-depth one. PhD thesis, Thesis (Ph.

D.)–University of Waterloo, 1972.

[39] Denis Thérien. Imre simon: an exceptional graduate student. RAIRO-Theoretical

Informatics and Applications, 39(1):297–304, 2005.

[40] Ramanathan S. Thinniyam. Defining recursive predicates in graph orders. Logical

Methods in Computer Science, 14(3), 2018.

[41] Lou Van Den Dries. Alfred tarski’s elimination theory for real closed fields. The

Journal of Symbolic Logic, 53(01):7–19, 1988.

156

[42] KN Venkataraman. Decidability of the purely existential fragment of the theory of

term algebras. Journal of the ACM (JACM), 34(2):492–510, 1987.

[43] Alexander Wires. Definability in the substructure ordering of simple graphs. Annals

of Combinatorics, 20(1):139–176, 2016.

157

