
Parameterized Algorithms for
Network Design

by

Pranabendu Misra

MATH10201204006

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

May, 2016

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation

prepared by Pranabendu Misra entitled “Parameterized Algorithms for Network Design”

and recommend that it maybe accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy.

Date:

Chair - Prof. Venkatesh Raman

Date:

Guide/Convener - Prof. Saket Saurabh

Date:

Member 1 - Prof. R. Ramanujam

Date:

Member 2 - Prof. Sourav Chakraborty

Date:

Member 3 - Prof. Neeldhara Misra

Final approval and acceptance of this dissertation is contingent upon the candidate’s

submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: Guide

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgment the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Pranabendu Misra

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution / University.

Pranabendu Misra

List of publications arising from the thesis

Journal Papers.

1. A polynomial kernel for Feedback Arc Set on bipartite tournaments.

Pranabendu Misra, Venkatesh Raman, M.S. Ramanujan and Saket Saurabh.

Theory of Computing Systems, November 2013, Volume 53, Issue 4. Pages 609-620.

A preliminary version appeared in the proceedings of ISAAC 2011, Yokohama, Japan.

Conferences and Other Papers.

1. Minimum Equivalent Digraph is Fixed Parameter Tractable

Manu Basavaraju, Pranabendu Misra, M.S. Ramanujan and Saket Saurabh.

Manuscript.

2. Derandomization of Transversal Matroids and Gammoids in Moderately Exponential

Time.

Pranabendu Misra Fahad Panolan, M.S. Ramanujan and Saket Saurabh.

Manuscript.

3. Fast Exact Algorithms for Survivable Network Design with Uniform Requirements.

Akanksha Agarwal, Pranabendu Misra, Fahad Panolan and Saket Saurabh.

Manuscript.

4. Deterministic Truncation of Linear Matroids.

Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan and Saket Saurabh.

In Proceedings of ICALP 2015, Kyoto, Japan.

5. Finding Even Subgraphs Even Faster.

Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip and Saket

Saurabh.

In Proceedings of FSTTCS 2015, Bangalore, India.

6. Parameterized Algorithms to Preserve Connectivity.

Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, Pranabendu Misra, M. S.

Ramanujan and Saket Saurabh.

In Proceedings of ICALP 2014, Copenhagen, Denmark.

Pranabendu Misra

Dedicated to my parents.

ACKNOWLEDGEMENTS

I have been fortunate to have Dr. Saket Saurabh as my thesis adviser. He provided the

initial encouragement to pursue a PhD in Computer Science, and invaluable guidance and

support all through it. I am deeply indebted to him for all the knowledge and advice I

have received over the years, without which this thesis would not have been possible. I

am very grateful to Dr. Venkatesh Raman for being my thesis co-adviser. He was always

generous with his time, and access to his extensive knowledge and experience.

I am very grateful to Dr. Sourav Chakraborty for his advice and guidance, especially

during my masters degree at CMI. I am grateful to Dr. Meena Manajan, Dr. V Arvind,

Dr. C. R. Subramaniam, Dr. Sayan Bhattacharjee and Dr. Prahladh Harsha at IMSc, and

Dr. Samir Datta, Dr. Madhavan Mukund, Dr. K. V. Subrahmanyam and Dr. S P Suresh

at CMI. They were always accessible, and generous with their knowledge and time, and it

was a privilege to learn from them.

I am also very grateful to Dr. Madhadan Mukund for his help with arranging my trip to

ISAAC 2011, while at CMI. I am thankful to Dr. Fedor Fomin for arranging my visit to

the Algorithms Group at the University of Bergen during May-Oct 2015, which was very

enriching. I would also like to thank Dr. Geevarghese Philip for arranging my visit to the

Max-Planck Institute for Informatics during August 2013, which was very enjoyable.

I would like to thank M.S Ramanujan, Manu Basavaraju, Nitin Saurabh, Fahad Panolan

and several other current and past members of the computer science group at IMSc for

the numerous fun and interesting discussions on many things, science or otherwise. I am

grateful to all my co-authors and collaborators, for I have learnt a lot while working with

them and I look forward to our future collaborations. Finally, thanks to my friends at CMI

and IMSc, for making my time here a lot of fun.

Contents

Synopsis 7

List of Figures 13

Part I : Introduction 17

1 Organization of the Thesis 17

2 Computational Framework 19

2.1 Exact Algorithms . 22

2.2 Parameterized Complexity . 22

2.2.1 Kernelization . 23

2.3 Randomized Algorithms . 24

3 Preliminaries 27

3.1 Sets . 27

3.2 Graphs . 28

3.2.1 Graph Connectivity . 30

4 Illustration: A polynomial kernel for Feedback Arc Set on Bipartite

Tournaments 33

4.1 Preliminaries . 35

4.1.1 Modular Partitions . 35

1

4.2 A Cubic Kernel . 37

4.2.1 Data Reduction Rules . 37

4.2.2 Analysis of the Kernel Size . 42

4.3 Discussion . 45

5 An introduction to Matroids 47

5.1 Matroids . 48

5.1.1 Linear Matroids and Representable Matroids 49

5.1.2 Direct Sum of Matroids . 49

5.1.3 Truncation of a Matroid . 50

5.1.4 Deletions and Contractions . 50

5.1.5 Uniform and Partition Matroids . 51

5.1.6 Graphic Matroids . 52

5.2 Representative Sets . 52

6 Illustration: An FPT algorithm for k-path 57

6.1 The Algorithm . 58

6.2 Discussion . 60

7 Connectivity Matroids 61

7.1 Co-Graphic Matroids . 61

7.2 Gammoids . 62

7.3 Linkage Matroids . 63

7.4 Tangle Matroids . 64

7.5 Discussion . 64

8 An introduction to Network Design Problems with Connectivity Con-

straints 67

8.1 Network Augmentation . 68

8.1.1 Parameterizations of Network Augmentation Problems 70

2

8.2 Network Optimization . 71

8.2.1 Parameterizations of Network Optimization Problems 72

8.3 Discussion. 74

Part II : Deterministic Matroid Algorithms 77

9 Deterministic Truncation of Linear Matroids and Applications 77

9.1 Introduction . 77

9.2 Preliminaries . 79

9.2.1 Fields and Polynomials . 79

9.2.2 Vectors and Matrices . 80

9.2.3 Derivatives . 81

9.2.4 Determinants . 82

9.3 Matrix Truncation . 82

9.3.1 Tools and Techniques . 82

9.3.2 Deterministic Truncation of Matrices 94

9.3.3 Representation of the `-elongation of a Matroid 101

9.4 Application to Computation of Representative Families 102

9.4.1 Weighted Representative Families . 105

9.4.2 Applications . 109

10 Derandomization of Transversal Matroids and Gammoids in Moderately

Exponential Time 111

10.1 The Algorithm . 114

10.2 Representing matroids related to transversal matroids 120

10.2.1 Truncations and contractions of transversal matroids 120

10.2.2 Gammoids . 122

3

Part III : Algorithms for Connectivity Problems 127

11 Finding Even Subgraphs Even Faster 127

11.0.1 Notations used in this chapter . 130

11.1 Undirected Eulerian Edge Deletion 131

11.2 Directed Eulerian Edge Deletion . 142

12 Fast Exact Algorithms for Survivable Network Design with Uniform

Requirements 147

12.1 Directed Graphs . 149

12.2 Undirected Graphs . 158

12.3 Algorithms for Network Augmentation . 165

13 Parameterized Algorithms for Network Augmentation I 167

13.1 Tools and Techniques . 169

13.1.1 Link-Intersection Graphs . 170

13.2 Relating augmenting sets to Steiner trees. 175

13.3 An improved Algorithm for Cactus Augmentation 177

14 Parameterized Algorithms for Network Augmentation II 179

14.1 Single Exponential FPT algorithm . 181

14.1.1 Reducing Laminar Strips . 188

14.1.2 Bounding the cycle lengths and tree-width of the link-intersection

graph . 191

14.2 Polynomial Kernels for m− k Cactus Augmentation 196

14.2.1 A linear kernel for m− k Tree Augmentation problem 196

14.2.2 A quadratic kernel for m− k Cactus Augmentation 199

14.2.3 Kernels for general m− k Augmentation by One. 203

15 Minimum Equivalent Digraph is Fixed-Parameter Tractable 205

15.1 Preliminaries . 208

4

15.2 Minimum Equivalent Digraph . 209

15.2.1 A Linear time FPT algorithm for MSCSS 217

Part IV : Conclusion 221

16 Conclusion and Future Directions. 221

5

6

Synopsis

In this thesis we design algorithms for several network design problems in the framework of

parameterized complexity and exact algorithms. Along the way, we also give deterministic

algorithms for certain problems in matroid theory. Our results adds to the small list of

results on network design problems in the realm of parameterized and exact algorithms

Owing to the intractability of these problems [GJ02, AB09], research has focused on

solving these problems in specific settings, called computational frameworks, which involve

various trade-offs between the resources consumed by an algorithm and the quality of

the computed solution. In this thesis, we study the network design problems under the

following frameworks. (1) Exact algorithms [FK11], where the goal is to optimally solve a

given instance, much faster than a typical brute force algorithm. While the running time

of the algorithm is still an exponential in the input size, it becomes tractable for inputs

of small and even moderate sizes. (2) Parameterized complexity [CFK+15], where the

goal is to solve the “structurally simple” instances of the problem quickly. The simplicity

of an instance is measured via an associated parameter, which is often the size of an

optimum solution. The input instances have the form (x, k), where x denotes the instance

and k is a number which denotes parameter. An FPT algorithm solves such instances in

time O(f(k)nO(1)), where n is the size of x and f is a function of k alone. Kernelization

is a important sub-area of parameterized complexity, which studies “data reduction” of

problem instances. Given an instance of a parameterized problem, in polynomial time,

a kernelization algorithm produces an equivalent instance, whose size is bounded by a

polynomial function of the parameter. Observe that if a problem admits a polynomial kernel,

then it is also FPT, although the converse is not true. (3) Randomized algorithms [MR10],

7

the goal is to use random bits in computing a solution. This often allows us to design faster

and simpler algorithms as compared to their deterministic counterparts. Furthermore, for

many problems, such Polynomial Identity Testing, the only known efficient algorithms

are randomized. Derandomization of a randomized algorithm, i.e. finding a deterministic

version of a randomized algorithm, is an active topic of research. We derandomize FPT

algorithms for several problems in this thesis.

Network Design Problems. Network design problems are one of the most well studied

class of problems studied in computer science and graph theory. These problems arise from

various real world applications and most of them are NP-hard [GJ02, AB09]. Network

design problems have been extensively studied in the framework of approximation algo-

rithms [KN10, GK11, Khu97]. These problems are typically of the following flavor. The

input is a graph or digraph, and goal is to find a minimum subgraph the input graph which

satisfies a given set of network constraints. Such constraints could on the connectivity

between pairs of vertices, the distance between pairs of vertices vertices, the degree of

vertices and so on. Observe that, in such problems we must ensure the output graph

is “well connected”, as per the constraints. In this thesis, we consider network design

problems with connectivity constraints. A well known example is the Minimum Spanning

Tree problem, where the goal is to compute a minimum cost subgraph which connects all

vertices. This problem is solvable in polynomial time. This is an example of a network

optimization problem where the goal is to find a minimum subgraph which meets the

connectivity constraints of the problem.

Another variant of network design problems are the augmentation problems. Here, the input

is a graph or digraph along with a set of links between vertex pairs. The goal is to augment

the input graph with a minimum number of links so that it meets the given connectivity

constraints. For example, the Minimum Augmentation problem is to augment an input

graph or a digraph with a minimum number of links to make it λ-edge connected. Here

the set of links is unrestricted and unweighted, i.e. any pair of edges may be added to the

graph at a unit cost, and this problems is polynomial time solvable [Fra92a]. However when

the set of links is restricted or has weights, the problem becomes NP-hard. The problems

8

remains hard even if the input graph is guaranteed to be λ− 1 edge-connected [Fra92a].

Finally, a third variant is the intersection of network design and graph modification

problems. Here the goal is to obtain a subgraph of a input graph or digraph, by deleting

or editing a minimum number of the vertices and edges, such that the result lies in a given

graph class while also satisfying the given connectivity constraints. These problems are of

interest as many NP-hard problems become tractable on specific graph classes. Hence we

can extend the algorithms for the graph class, to those instances that are “close” to this

class. Such problems can also be viewed as a graph modification problem with connectivity

constraints.

While these problems have been extensively studied in the framework of approximation

algorithms, their parameterized complexity is only recently being explored. Furthermore,

no exact algorithms better than the trivial brute-force algorithm is known for many of

these problems. The following is a list of network design problems studied in this thesis.

(1) Eulerian Edge Deletion. Eulerian graphs are those graphs which are connected

and every vertex has even degree. Many network design problems, are tractable on eulerian

graphs [CCM92, PTW01, ZA12, SHSL02]. Hence we consider the problems of remove a

minimum number of edges from an input graph or digraph so that the remaining graph

is eulerian, which is called the Eulerian Edge Deletion. We also consider another

variant of this problem, called Connected Odd Edge Deletion, where the remaining

graph must be an odd graphs, i.e. the degree of every vertex is an odd number. For both

these problems we give FPT algorithms running in time 2O(k)nO(1), where k is the size of

a solution. This improves upon the previous algorithms for Eulerian Edge Deletion

whose running time depended on k as 2O(k log k) [CMP+14].

(2) Exact algorithms for Survivable Network Design with uniform requirements.

Survivable network design involves designing a minimum cost network, or augmenting a

given network with a set of links of minimum total cost, so that it remains connected after

one or more link failures [KN10]. For example, a minimum spanning tree network will

becomes disconnected on even a single connection failure. Indeed, any network that must

survive λ − 1 failures must be λ connected. There are two versions of this problem. In

9

Weighted Network Optimization, we are given a graph or digraph, on n vertices

and m edges with edge costs, which is λ connected, The goal is to find a minimum cost

subgraph of this graph which is λ-connected. In Weighted Minimum Augmentation,

the goal is to augment a given graph or digraph to a λ connected graph by adding a set

of new edges of minimum total cost. Note both problems are NP-hard [KN10]. The best

known exact algorithm for this problem, until now, was the trivial brute-force algorithm

which enumerates and tests all possible solution, and hence takes 2O(m) time. In this thesis,

we design fast exact algorithms, which run in time 2O(n), for both the problems.

(3) Parameterized complexity of Augmentation by One. Next we consider the parame-

terized complexity of network augmentation of a λ− 1 connected graph to λ. The input is

a λ− 1 connected graph G and a set of links L. The goal is to augment G with a minimum

number of links in L to make it λ connected. This is a NP-hard problem via a reduction

from the classical Hamiltonian Cycle problem. We consider this problem with respect

to two parameters. First we parameterize it by the size of a minimum augmenting set and

show that it admits a 2O(k)nO(1) FPT algorithm, even when the links have weights. This

improves upon the previous algorithm which runs in time 2O(k log k)nO(1) [MV15]. Next we

parameterize it by the size of unused links, i.e. the complement of a minimum augmenting

set. We show that the problems admits a 2O(k)nO(1) FPT algorithm and a polynomial

kernel with this parameter. Our algorithms are based on an interesting connection of these

problems to the Steiner Tree problem.

(4) Minimum Equivalent Digraph is fixed parameter tractable. In this problem, we

are given a digraph D as input and the goal is to find a minimum spanning subgraph H

which has the same reachability relations as D. This problem has been studied in the

frameworks of approximation and exact algorithms [BDK09, Vet01, FLS14]. Observe that

a reasonable parameter for this problem is the number of arcs which may be safely deleted

from the graph, i.e. A(D) \ A(H), since any optimum solution has O(|V (D)|) arcs. We

show that with this parameter, the problem admits a polynomial kernel, and hence it is

FPT. Our algorithm is based on an interesting combinatorial result, which relates the

size of a maximum arc deletion set to the total number of arcs which may be individually

removed from the graph.

10

Matroid Algorithms. Matroids have found application in many recent FPT and kernel-

ization algorithms [FLS14, FLPS14, KW12, Mar09]. Matroids and algorithmic tools based

on them play an important role in several of the results mentioned above. The connections

between linear matroids and graph connectivity are well studied. Co-graphic matroid

represents those subsets of edges of a connected graph, which may be removed from the

graph without making the graph disconnected [Oxl06]. This property is crucially used in

our algorithms for Eulerian Deletion, mentioned above. A key step in this algorithm is

to first find a truncation of the co-graphic matroid in deterministic polynomial time.

(1) Deterministic truncation of linear matroids. We give a deterministic algorithm

for truncation of any linear matroid. Our algorithms are based on a connection of

matroid truncation to the Wronskian matrix of polynomials which is well studied in

linear algebra. Representative Sets were a key tool which was used in many recent FPT

algorithms and kernels. The previously known algorithms for computing a representative

set was randomized, whenever the rank of the matroid is too large [FLS14, KW12].

Using the above algorithm for matroid truncation, we give deterministic algorithms for

computing representative sets over any matroid of any rank. This also de-randomizes

several algorithms of Marx[Mar09], including FPT algorithms for `-Matroid Parity and

`-Matroid Intersection.

(2) Deterministic representation of gammoids in moderately exponential time. Gammoids

are another class of linear matroids which arise from graph connectivity. They represent

the subsets of vertices of a graph which are reachable from a particular subset of vertices,

called the terminals, by a system of disjoint paths [Oxl06]. Gammoids have recently

been used in designing FPT algorithms and kernels for several problems [FLS14, KW12].

Gammoids are closely related to the class of transversal matroids, and one can find a

representation of them in randomized polynomial time [Mar09]. Here, we give moderately

exponential deterministic algorithms for computing a representation of transversal matroid

and gammoids. Our algorithms run in polynomial time, whenever the rank of the matroid is

a fixed constant. This gives the first improvement upon the trivial brute force deterministic

algorithm for finding a representation.

11

12

List of Figures

4.1 Constructing a closed walk from the cycle C. 41

13.1 An illustration of projection of a link and the operation of refining a single

link. 170

14.1 An illustration of the proof of Lemma 14.7. 185

14.2 An illustration of a laminar strip (the red path) and the operation of

shrinking it. 190

13

14

Introduction

15

Chapter 1

Organization of the Thesis

This thesis is organized into three parts – (i) an introduction to the thesis, computational

frameworks and algorithmic techniques, (ii) deterministic algorithms for matroids and

application, and (iii) algorithms for various graph connectivity problems.

In the first part, we introduce computational frameworks and algorithmic techniques used

in this thesis. In chapter 2 we introduce the computational frameworks in which the results

of this thesis were obtained. In chapter 3, we review the notations and basic definitions

of graphs, connectivity and sets which are required in this thesis. In chapter 4, we give a

polynomial kernel for Feedback Arc Set on bipartite tournaments. This is an illustration

of a kernelization algorithm, and we will design such algorithms for several network design

problems in later chapters. In chapter 5, we introduce matroids and representative sets,

and give various definitions, examples and algorithmic tools which will be used in the thesis.

Then in chapter 6, we give a simple FPT algorithm for the k-path problem. This illustrates

the technique of dynamic programming with representative sets over linear matroids, which

is a key technique used in this thesis. In chapter 7, we list a few matroids which are related

to graph connectivity and their analogues in matroids. Finally in chapter 8, we give a brief

history of of network design problems, the currently known algorithmic results, and a list

open problems, from the viewpoint of parameterized complexity.

In the second part of the thesis, we give deterministic algorithms for two problems in

matroid theory. These algorithms then de-randomize many other algorithms, and will also

17

be useful in other results in the later parts of the thesis. In chapter 9, we give a deterministic

polynomial time algorithm to find the representation of the truncation of a linear matroid.

Then we give a deterministic algorithm to compute representative sets over any linear

matroid, and deterministic FPT algorithms for `-Matroid Parity. In chapter 10, we

give a deterministic algorithm for constructing a representation of transversal matroid and

gammoids in moderately exponential time.

In the third part of the thesis, we give algorithms for various network design problems.

In chapter 11, we give a single exponential FPT algorithm for the Eulerian Deletion

problem in graphs and digraphs, parameterized by the size of the deletion edge set. In

chapter 12, we give single exponential exact algorithms for the problems of finding a

minimum cost λ-edge connected subgraph of an input graph or digraph. Our algorithms

also imply a single exponential algorithm for computing a minimum cost augmenting set

to augment the edge connectivity of a graph or digraph to λ. In chapter 13, we give a

single exponential FPT algorithm for the problem of augmenting the connectivity of a

graph from λ to λ+ 1 by a given set of links parameterized by the size of the augmenting

set. In chapter 14, we consider the above problem parameterized by the size of the

complement of the augmenting set in the given set of links. We show that, with respect

to this parameter the problem has a single exponential FPT algorithm and a polynomial

kernel. Our algorithms are based on a connection of these problems to the Steiner Tree

problem. And finally, in chapter 15 we give a kernelization algorithm for the Minimum

Equivalent Digraph problem, parameterized by the size of the number of arcs which

may be removed from the digraph. We also show that Minimum Strongly Connected

Spanning Subgraph has a linear time FPT algorithm.

18

Chapter 2

Computational Framework

Computer Science grew out of a need to compute solutions to real world problems as

efficiently as possible. A computational problem is often to compute a maximum (or

a minimum) value solution of the given problem instance, which is called an optimal

solution to the instance. In computer science, such problems are often modeled as abstract

problems on mathematical structures such as graphs, set systems, linear equations etc,

which captures all the relevant details of the problem. The primary goal is to design

efficient algorithms to find a solution to these abstract problems. With the advent of

computers, computer science grew in popularity, and many problems arising from the real

world were investigated. It was soon discovered that only a few of these problems seem

to be efficiently solvable and for some inexplicable reason, a vast majority are not. This

mystery took on a more concrete form, when Karp and Levin, independently, discovered

that these “difficult” problems were all related to each other, as in, if one of them could

be solved efficiently then all of them could be solved efficiently. It led to the widely held

belief that these difficult problems are indeed intractable, and this was the starting point

of research in Computational Complexity which investigates the difficulty of computational

problems. A proof of the intractability of these problems is the biggest open problem in

computer science and perhaps all of mathematics.

But this still leaves us with the question of solving these problems, as many of these

problems have important real world applications. Researchers have attempted to tackle the

19

intractability of these problems, within acceptable limits, by designing algorithms for them

in various computational frameworks. When we are mainly concerned with how much time

it takes to solve a problem, the following are the prominent algorithmic frameworks.

• Exact algorithms, where we try to design algorithms to find an optimal solution as

quickly as possible.

• Approximation algorithms, where we try to efficiently compute a solution which is

not too worse compared to an optimal solution.

• Parameterized Complexity, which tries to exploit structural properties of the problem,

to find an optimum solution efficiently. In particular, the goal is to efficiently solve

those instances of the problem which are “structurally simple”, as is the case with

real world instances of many problems.

In this thesis, we design algorithms mainly in the framework of parameterized complexity

and exact algorithms. In the following, we briefly review some relevant notions and terms.

For a detailed introduction to the topic of classical complexity theory we refer to [AB09]

for parameterized complexity we refer to [CFK+15] and finally for exact algorithm we refer

to [FK11].

Often a computation problem is recast as a decision problem, where the objective is to

determine if the given problem instance has a solution whose value is greater (or smaller)

than a given target value. Generally, the computational problem and the decision problem

are “equivalent”, i.e. an efficient algorithm that answers the decision problem can be

converted into an efficient algorithm for the computational problem, and vice versa. Let us

state these formally. Let Σ be finite set, called the alphabet and let Σ∗ be the set of strings

over this alphabet. A language L is a subset of Σ∗ and the decision problem Π associated

with L is the following. Given a string x ∈ Σ∗, decide if x ∈ L or not. In many contexts,

the terms Π and L can be used interchangeably. An algorithm A for the problem Π is a

finite sequence of instruction, that given x can correctly decide the membership of x. Often,

algorithms are modeled as Turing Machines which carries out the steps of the algorithm.

The complexity of an algorithm is measured in terms of the resources it consumes, such

20

as the number of steps required (i.e. time), or amount of space used. In this thesis, we

are mainly concerned with time complexity of algorithms, which is also called the running

time. Before moving ahead, let us briefly discuss how such things are measured. For a

resource, such as time, we measure the running time as a function of n, where n is the

length of the input string x. For example, say that an algorithm is polynomial time if the

running time of the algorithm is a polynomial function of of n. Usually we don’t state

the function explicitly and instead use the “Big-O” notation. For two functions, f(n) and

g(n) we write f(n) = O(g(n)) if there are constants C and N such that f(n) ≤ Cg(n) for

all n > N . For example, when the running time of an algorithm is a function which is

a polynomial in n of degree c, we write the running time as O(nc), and such algorithms

are called polynomial time algorithms. For an exponential function f(n), we also use the

notation O∗(f(n)) to mean O(f(n) · nc) where c is a constant.

Problems are often sorted into classes, as per the properties of the best known algorithms

for the problem. Such classes of problems is called a complexity class. Two important

complexity classes are P and NP. The class P contains all those problems for which there

are polynomial time algorithms. To define NP we need notion of a polynomial time verifier.

A problem Π is said to have a verifier A, which is an algorithm that given a string x of

length n, and a claimed proof y of membership of x in Π such that |y| is some polynomial

in n, decides the validity of the proof in polynomial time. In other words x ∈ Π, if and only

if there is a string y of length polynomial in n, such that the verifier A accepts the string

(x, y) in polynomial time. The class NP contains all those languages that have a polynomial

time verifier. It is clear that P is contained in NP. Problems in P are considered to be

“easy” as they can be decided in polynomial time. The class NP includes the “difficult”

problems, for which there are no known polynomial time algorithms, but a solution to an

NP-problem can be verified in polynomial time.

A polynomial time many one reduction from a problem A to a problem B is a polynomial

time algorithm, that given an instance x of A, produces an instance y such at |y| is a

polynomial function of |x|, and x ∈ A if and only if y ∈ B. Therefore, if there is a

polynomial time algorithm for solving B, then there is also a polynomial time algorithm

for solving A. A problem B is called NP-hard if there is a polynomial time many one

21

reduction from every problem in NP to B. Reduction between problems in NP was first

investigated by Karp, and independently by Levin, who showed that a number of problems

in NP, which have no known polynomial time algorithm, are all reducible to each other.

This led to the definition of NP-complete problems which are those problems in NP which

are also NP-hard. Since then thousands of problems arising from real world applications

have been shown to be NP complete, and it led credence to the belief that these problems

are indeed intractable. See [AB09, GJ02] for more details.

Let us now look at the computational frameworks used in this thesis.

2.1 Exact Algorithms

The goal of an exact algorithm is to compute an optimum solution to an instance of a

computational problem in as little time as possible. For problems whose decision versions

are NP-complete, such an algorithm is expected to take an exponential time. Observe that

we always have a “brute-force” algorithm for this class of problems, which enumerates all

potential solutions, verifies each one and finally returns an optimal solution. Hence, the

goal is to design an exact algorithm which is provably faster than the brute-force algorithm.

While the running time of the algorithm is still an exponential in the input size, it becomes

tractable for inputs of small and even moderate sizes. See [FK11] for an introduction to

this framework. In this thesis, we will design fast exact algorithms for several network

design problems.

2.2 Parameterized Complexity

In parameterized complexity we investigate problems with respect to their structural

parameters in order to design algorithms which solve them almost efficiently. Let us define

the terms formally. A parameterized language L is a subset of Σ∗ ×N . A parameterized

problem is to decide the membership of a pair (x, k) where x is a string and k is a number

in a parameterized language. Here x is called an instance, while k is called the parameter of

the instance. A parameterized problem is fixed parameter tractable if there is an algorithm

22

for this problem which decides the membership of (x, k) pairs in time O(f(k)nc) where is f

is an arbitrary function of k alone and c is a constant. FPT algorithms are considered to be

“efficiently solvable” in this framework. The key insight here is that when the parameter

is small, the problem instances are“structurally simple” even if |x| is large. Hence, the

instance can be solved efficiently. The most commonly used parameter is the solution

size. Other examples of parameters are the treewidth of the input graph, rank of an input

matrix, the chromatic number of the input graph etc. Example of problems which admit

FPT algorithms include k-path, Vertex Cover, Feedback Vertex Set, Multi-Cut

etc. When stating the running time of an FPT algorithm, we often omit the polynomial

terms in the running time and write O∗(f(k)), where the algorithm has a running time of

O(f(k)nO(1)). When the FPT algorithm has a running time O(f(k)n), it is called a linear

time FPT algorithm.

Not all parameterized problems are known to be fixed parameter tractable (FPT). Examples

include problems such as Independent Set, Dominating Set, Set Cover etc. There is a

theory of intractability of parameterized problems which sorts the problems into a hierarchy

of complexity classes called theW -hierarchy. It is organized as FPT ⊆ W[1] ⊆ W[2] . . . ⊆ XP,

where each W [i] is a superset of all W [j] for j < i, and it is conjectured that they are all

distinct. The class XP consists of those parameterized problems which have an algorithm,

that given (x, k) ∈ Σ∗ × N and decides the membership in time O(nf(k)) where f is an

arbitrary function of k alone. Note that such an algorithm is often feasible for small values

of k. We refer to [CFK+15, FG06] for an introduction to parameterized complexity.

2.2.1 Kernelization

Kernelization is an important sub-topic of parameterized complexity. A parameterized

problem Π, is said to admit an f(k) kernel,where f is a function of k, if there is a polynomial

time algorithm which given an input (x, k) outputs (x′, k′) such that |x′|, |k′| ≤ f(k) and

(x, k) ∈ Π if and only if (x′, k′) ∈ Π. The function f(k) is often called the size of the kernel.

It is easy to observe that if a parameterized problem has an FPT algorithm with a running

time of O(f(k)nc), then it also admits a O(f(k)) kernel.

23

A more interesting notion is that of a polynomial kernel, where the goal is to find a kernel

of size polynomial in the parameter. It is known that the parameterized version of many

NP-complete problems admit polynomial kernels. This include problems such as Vertex

Cover, Feedback Vertex Set etc. On the other hand, there are several problems

which have an FPT algorithm but are not known admit polynomial kernels. This includes

problems such as Multicut and k-path. There is also a corresponding theory of hardness

of kernelization which is being actively developed, based on deep connections to classical

complexity theory. Note that if a problem admits a polynomial kernel, it is also FPT, as

even a bruteforce algorithm to solve the kernel will run in FPT time. In this thesis, we

shall shall show that some important network design problems admit polynomial kernels.

2.3 Randomized Algorithms

As the name suggests, randomized algorithms, and the complexity classes related to them,

are obtained by allowing the algorithms to use random bits in their computation. This

often allows us to design faster and simpler algorithms as compared to their deterministic

counterparts. While we won’t go into the details, let us briefly mention a few things, which

are relevant to this thesis. See [MR10] for an introduction to this topic.

The class BPP contains all those problems which are decidable by a randomized polynomial

time algorithm whose probability of error bounded by a constant. Note that it is a

counterparts of the class P. It is conjectured that BPP = P, even though we don’t know of

a proof of BPP ⊂ NP. A proof of these conjectures is a major open problem in theoretical

computer science. There are randomized counterparts of many other complexity classes

as well, such as FPT and XP, and it is conjectured that they are equivalent to their

deterministic counterpart. Observe that any problems in P is contained in BPP, but

there are several problems such as Polynomial Identity Testing which are in BPP,

i.e. they have randomized polynomial time algorithms, but no deterministic polynomial

time algorithms have been found yet. Similarly there are several problems for which

only randomized FPT and kernelization algorithms are known. The derandomization of

these randomized algorithms, i.e. constructing deterministic counterparts of randomized

24

algorithms for specific problems, is an active topic of research in computer science. In this

thesis, we shall see two such examples for problems on linear matroids. These algorithms

are then used to obtain deterministic algorithms for some other problems.

25

26

Chapter 3

Preliminaries

We review some basic definitions and notations used in this thesis. For more details see,

[Die12, BJG08].

3.1 Sets

Let N∗ denote the set of natural numbers along with 0, and let R∗ denote the set of non-

negative real numbers. We define [n] to be the set {1, . . . , n}. We use the term universe to

distinguish a set from it’s subsets. For any two subsets X and Y of a universe U , we use

X \Y or X−Y to denote the subset of X whose elements are not present in Y . For any set

U define
(
U
i

)
= {X | X ⊆ U, |X| = i}. We say that a family S = {S1, . . . , St} of subsets

of a universe U is a p-family if each set in S has cardinality at most p. For two families

S1 and S2 of a universe U , define S1 • S2 = {Si ∪ Sj | Si ∈ S1, Sj ∈ S2 and Si ∩ Sj = ∅}.

Throughout the thesis we use ω to denote the exponent in the running time of matrix

multiplication, the current best known bound for which is ω < 2.373 [Wil12].

Let S be a collection of subsets of an universe U , and let P be a subset S. We say that

P̂ ⊆ P is a representative set of P, if for any X ∈ P and Y ⊆ U such that X ∪ Y ∈ S,

there is some X̂ ∈ P̂ such that X̂ ∪ Y ∈ S. As we shall see later, this notion is especially

useful when S represents a linear matroid.

27

3.2 Graphs

A graph G is a pair (V,E) where V is a set of elements called vertices, and E is a collection

of pairs of vertices called the edges. The two vertices of an edge are called the endpoints of

the edge and, the edge is said to be incident on the two vertices. A digraph or a directed

graph D is a pair (V,E) where V is the vertex set and E is the set of directed edges or arcs

of the digraph. A directed edge e = (u, v) is an ordered pair of vertices where the vertex u

is called the initial vertex or tail of e (denoted by tail(e)), and the vertex v is called the

terminal vertex or head of e (denoted by head(e)). Note that for u, v ∈ V (D), (u, v) and

(v, u) denote two distinct directed edges, and they are reverse edges of each other. A simple

graph is a graph where every edge is distinct and further the two endpoints of any edge are

distinct vertices. A multigraph is a graph where we allow multiple copies of the same edge

in the edge set (parallel edges) and further, we allow an edge to have the same vertex as

both it’s endpoints (loops). A subdivision of an edge e = (u, v) of G yields a new digraph,

G′, containing one new vertex w, and with an edge set replacing e by two new edges, (u,w)

and (w, v). That is, V (G′) = V (G) ∪ {w} and E(G′) = (E(G) \ {(u, v)}) ∪ {(u,w), (w, v)}.

Unless specified otherwise, the graphs and digraphs in this thesis are simple.

In the following, we define various terms with respect to undirected graphs. Many of

these terms are similarly defined for digraphs and we only mention those that are defined

differently. For a graph G we use V (G) and E(G) to denote the vertex set and the

edge sets respectively. For X ⊆ V (G), G[X] denotes the induced subgraph on X of G,

which has vertex set X, and the edge contains all edges in G whose both endpoints lie

in X. Given a graph or digraph G and a subset X of V (G) (or E(G)), by G \ X we

denote the graph obtained by deleting X from V (G) (or from E(G)). When X contains

just a single vertex v (or a single edge e), we often write G − v (and G − e) to denote

G \ {v} (and G \ {e}). In a undirected graph, the neighbourhood of a vertex v ∈ V (G)

is defined as the set N(v) = {u ∈ V (G)|(u, v) ∈ E(G)}. In a directed graph, we define

N+(v) = {w ∈ V (D)|(v, w) ∈ E(D)} and N−(v) = {u ∈ V (D)|(u, v) ∈ E(D)} to be

the set of out-neighbours and in-neighbours of v respectively. The underlying graph of a

digraph D is the undirected graph obtained from D by removing the direction of every

28

edge. The union of graphs G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and

edge set E(G1) ∪ E(G2) A graph G1 is said to be a subgraph of another graph G2 is

V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2). A walk W in a graph G consists of a sequence of

vertices and edges {v0, e1, v1, e2, . . . , e`, v`} ⊆ E(G), such that the edge ei is incident on

vi−1 and vi. We say that a walk W visits the vertices and the edges in W . The vertices v0

and v` are called the start and the end vertex, respectively, of the walk. All other vertices

visited by W are called internal vertices. A walk is a closed walk if it’s start vertex and end

vertex are the same. A path P is a walk which visits any vertex at most once, i.e. there are

at most two arcs in P which are incident on any vertex visited by W . A cycle is a closed

walk which visits all the internal vertices exactly once and the start/end vertex exactly

twice. Observe that any edge or vertex occurs at most once in a path P which induces an

ordering of these edges, and we say that P visits these edges in that order. Similarly, for

the collection of vertices which are present in P , P induces ordering of these vertices and

we say that P visits them in that order. Let P be a path which visits a vertex u and then

visits a vertex v. We write P [u, v] to denote the sub-path of P which starts from u and

ends at v. For two path P and Q such that the end vertex of P is same as the start vertex

of Q, we write P +Q to denote the walk from the start vertex of P to the end vertex of Q.

A path system P in graph G is an ordered collection of paths in G. It is edge-disjoint if no

two paths in the system share an edge. We use V (P) and E(P) for the set of vertices and

edges, respectively, in a path system P. Similarly, we may define a vertex disjoint path

systems. A cycle is a graph (or digraph) with vertex set V (P) = {v1, v2, . . . , v`} and edge

set E(P) = {(vi, vi+1) | 1 ≤ i ≤ `− 1} ∪ {(v`, v1)}, i.e. it is a path plus an edge from the

last to the first vertex. A acyclic graph (or a digraph), as the name implies, contains no

cycles. A connected acyclic graph is called a tree. An undirected acyclic graph is a union

of trees, and it is called a forest. An acyclic digraph is are called DAG, which is short for

“directed acyclic graph”. A clique or a complete graph is a simple graph where every pair

of vertices form an edge. A clique on n vertices is denoted by Kn. An independent set is a

graph with an empty edge set.

29

3.2.1 Graph Connectivity

A graph is called connected is there if a path between every pair of vertices. Similarly,

a digraph is called strongly connected if for every ordered pair of vertices, (u, v), there

is a path from u to v. Observe that every vertex of a strongly connected digraph must

be part of some cycle. A digraph is called weakly connected is the underlying graph of

the digraph is connected. Let P1 = x1x2 . . . xr and P2 = y1y2 . . . ys be two edge-disjoint

paths in graph G. If xr = y1 and V (P1) ∩ V (P2) = {xr}, then we use P1P2 to denote the

path x1x2 . . . xry2 . . . ys. A connected component of a graph G is a maximal subgraph of G

which is connected. From the definition of a connected graph it follows that the connected

components form a partition of a graph. Similarly, in digraphs we have strongly connected

components, and these form a partition of the digraph.

Let λ be a natural number. A graph G is called λ edge connected if for any pair of vertices

u and v, there is a collection of λ edge disjoint paths with u and v as their endpoints.

Similarly, a graph G is called λ vertex connected if for any pair of vertices u and v, there is

a collection of λ paths with u and v as their endpoints, which are vertex disjoint except for

the endpoints u and v. We have similar definitions for digraphs. A edge cut in a graph

G is a partition (X,X) of V (G) and, δG(X) denotes edges of G with one endpoint in X

and the other in X. The size of a cut (X,X) in G is the value |δG(X). When the graph

is clear from context, we simply write δ(X). Note that in digraphs, (X,X) and (X,X)

denote different cuts, and δ(X) denotes those directed edges with their tail in X and head

in X. Observe that if (X,X) is an edge cut in G, then there is no path from a vertex in X

and a vertex in X in G \ δ(X). Often we use δ(X) to denote both the edge-set as well as

the number of edges in this set. A vertex cut in a graph G is a pair (X,Y) of subsets of

V (G) such that X ∪ Y = V (G) and any path between a vertex in X to a vertex in Y (and

vice-versa) passes through a vertex in X ∩ Y . This definition implies that, there is no path

between a vertex in X and a vertex in Y (and vice-versa) in G \ (X ∩ Y). The size of the

cut (X,Y) is defined as |X ∩ Y |. As in the case of edge cut, we often use X ∩ Y to denote

the vertex cut (X,Y). In this thesis, we are largely concerned with the edge connectivity of

graphs, and we use the terms “cut” and “λ connected graph” to mean an edge cut and a λ

edge connected graph. For subsets of vertices A and B, we say that a cut (X,X) separates

30

A and B f A ⊆ X and B ⊆ Y . We have a similar definition for the case of vertex cuts.

Menger’s theorem is one of the earliest results in graph connectivity. It relates the size of a

min-cut between two vertices to the number of edge disjoint paths between them.

Theorem 3.1 (Menger [Die12]). Let G be a graph and let u, v be two distinct vertices.

Then the size of minimum cut in G separating u and v is equal to the maximum number of

edge-disjoint paths between u and v in G.

31

32

Chapter 4

Illustration: A polynomial kernel

for Feedback Arc Set on

Bipartite Tournaments

In this chapter, we consider an example of a kernelization algorithm. A feedback arc set in

a digraph is a subset of arcs whose deletion makes the digraph acyclic, and the Feedback

Arc Set problem is to determine if an input digraph has a feedback arc set of a given size.

We consider the Feedback Arc Set problem on bipartite tournaments, and show that it

admits a polynomial kernel when parameterized by the solution size. Feedback Arc

Set on tournaments is useful in rank aggregation. In rank aggregation we are given several

rankings of a set of objects, and we wish to produce a single ranking that on average is as

consistent as possible with the given ones, according to some chosen measure of consistency.

This problem has been studied in the context of voting [Bor81, Con85], machine learning

[CSS97], and search engine ranking [DKNS01]. A natural consistency measure for rank

aggregation is the number of pairs that occur in a different order in the two rankings. This

leads to Kemeny rank aggregation [Kem59, KS62], a special case of a weighted version

of Feedback Arc Set on tournaments (FAST). Similarly, Feedback arc set on

bipartite tournaments finds its usefulness in applications that require establishment of

mappings between“ontologies”. We refer to [SKH10] for more details.

33

Feedback Arc Set on Bipartite Tournaments (FASBT) Parameter: k

Input: A bipartite tournament H = (X ∪ Y,E) and an integer k.

Question: Does there exist a subset F ⊆ E of at most k arcs whose removal makes H

acyclic?

In the last few years several algorithmic results have appeared on “feedback set” problems

in tournaments and bipartite tournaments. Speckenmeyer [Spe89] showed that Feedback

Vertex Set is NP-complete on tournaments. FAST was conjectured to be NP-complete

for a long time [BJT92], and it was proved only a few years ago. Ailon et al. [ACN05] gave

a randomized reduction from Feedback Arc Set on general directed graphs, which

was independently derandomized by Alon [Alo06] and Charbit et al. [CTY07]. From the

approximation perspective, initially a constant factor approximation was obtained for

FAST in [vZHJW07] and later it was shown in [KMS07] that it admits a polynomial

time approximation scheme. Now we turn to problems on bipartite tournaments. Cai

et al. [CDZ02] showed that Feedback Vertex Set on bipartite tournaments is NP-

complete. They have also established a min-max theorem for feedback vertex set on bipartite

tournaments. However, only recently Guo et al. [GHM07] showed that FASBT is NP-

complete. FASBT is also known to admit constant factor approximation algorithms [Gup08,

vZ11]. These problems are also well studied in parameterized complexity. Raman and

Saurabh [RS06] showed that FAST is FPT by obtaining an algorithm running in time

O(2.415k · k4.752 + nO(1)). Recently, Alon et al. [ALS09] have improved this result by

giving an algorithm for FAST running in time O(2O(
√
k log2 k) + nO(1)). Moreover, a

new algorithm due to Karpinsky and Schudy [KS10] with running time O(2O(
√
k) + nO(1))

improves again the complexity of FAST. Dom et al. [DGH+10] obtained an algorithm with

running time O(3.373kn6) for FASBT based on a new forbidden subgraph characterization.

It is well known that Feedback Vertex Set admits a kernel with O(k2) and O(k3)

vertices on tournaments and bipartite tournaments respectively [AK10, ALS09, DGH+10].

And only recently a O(k) vertex kernel for Feedback Arc Set on tournaments was

obtained [BFG+09] using maximal transitive modules.

In this chapter, we show that that FASBT admits a cubic vertex kernel, i.e we give

34

a polynomial time algorithm which given an instance (H, k) of FASBT produces an

equivalent instance (H ′, k′) on O(k3) vertices. This is the first polynomial kernel for this

problem and it completes the kernelization picture for the Feedback Arc/Vertex Set

problem on tournaments and bipartite tournaments, as polynomial kernels were known

for all the other problems. The main ingredient of our result is a data reduction rule

that applies independent modules in a non trivial way. Our result adds to a small list

of problems for which graph modules have turned out to be useful. Previously, clique

modules and transitive modules were useful in obtaining kernels for Cluster Editing

and FAST [BFG+09, Guo09].

4.1 Preliminaries

Let us review a few definitions and results that relevant to this chapter. A bipartite

tournament H = (X ∪ Y,E) is an orientation of a complete bipartite graph, i.e. its vertex

set is the union of two independent disjoint sets X and Y and for every pair of vertices

u ∈ X and v ∈ Y there is exactly one arc between them. By C4 we mean a directed cycle

of length 4. Given a directed graph D = (V,E), a subset F ⊆ E of arcs is called a feedback

arc set (fas) if D \ F is a directed acyclic graph. A feedback arc set F is called minimal

fas if none of the proper subsets of F is a fas. Given a directed graph D = (V,E) and a

set F of arcs in E define D{F} to be the directed graph obtained from D by reversing all

arcs of F . In our arguments we will need the following folklore characterization of minimal

feedback arc sets in directed graphs. (Follows from Proposition 15.0.1(b) of [BJG08].)

Proposition 4.1. Let D = (V,A) be a directed graph and let F be a minimal feedback arc

set of D. Then, D{F} is a directed acyclic graph.

4.1.1 Modular Partitions

A Module of a directed graph D = (V,E) is a set S ⊆ V such that ∀u, v ∈ S, N+(u)\S =

N+(v) \ S, and N−(u) \ S = N−(v) \ S. Essentially, every vertex in S has the same set of

in-neighbours and out-neighbors outside S. The empty set and the whole of the vertex set

35

are called trivial modules. We always mean non-trivial modules unless otherwise stated.

Every vertex forms a singleton module. A maximal module is a module such that we

cannot extend it by adding any vertex. The modular partition, P, of a directed graph

D, is a partition of the vertex set V into (V1, V2, . . . , V`), such that every Vi is a maximal

module. If A and B are two modules in a directed graph, then all the edges between them

are directed either from A to B, or from B to A. We denote the two cases by A → B

and by B → A respectively. Now we look at some simple properties of the modules of a

bipartite tournament.

Lemma 4.2. Let H = (X ∪ Y,E) be a bipartite tournament, and S be any non-trivial

module of H. Then S is an independent set. Thus S ⊂ X or S ⊂ Y .

Proof. If |S| = 1 then it is obvious. So we assume that |S| ≥ 2. But S cannot contain

two vertices x and y such that x ∈ X and y ∈ Y because their neighborhoods excluding

S are different. Hence, S contains vertices form only one of the partitions. Hence, S is

an independent set. Now because H is a bipartite tournament we have that S ⊆ X or

S ⊆ Y .

Consider the modular partition P = A ∪ B of X ∪ Y , where A = {A1, A2, ...} is a partition

of X and B = {B1, B2, ...} is a partition of Y .

Lemma 4.3 ([TCHP08]). For a bipartite tournament H = (X ∪Y,E), a modular partition

is unique and it can be computed in O(|X ∪ Y |+ |E|).

Now we define the well known notion of quotient graph of a modular partition.

Definition 4.1. To a modular partition P = {V1, . . . , V`} of a directed graph D, we

associate a quotient directed graph DP , whose vertices {v1, . . . , v`} are in one to one

correspondence with the parts of P. There is an arc (vi, vj) from vertex vi to vertex vj of

DP if and only if Vi → Vj. We denote its vertex set by V (DP) and the edge set by E(DP).

We conclude this section with the observation that for a bipartite tournament H, the

quotient graph HP corresponding to the modular partition P, is a bipartite tournament.

36

We refer to the recent survey of Habib and Paul [HP10] for further details and other

algorithmic applications of modular decomposition.

4.2 A Cubic Kernel

In this section we show that FASBT admits a polynomial kernel with O(k3) vertices. We

provide a set of reduction rules and assume that at each step we use the first possible

applicable rule. After each reduction rule we discuss its soundness, that is, we prove that

the input and output instances are equivalent. If no reduction rule can be used on an

instance (H, k), we claim that |V (H)| is bounded by O(k3). Throughout this chapter,

whenever we say cycle, we mean directed cycle; whenever we speak of a fas, we mean a

minimal fas, unless otherwise stated.

We start with some simple observations regarding the structure of directed cycles in

bipartite tournaments.

Lemma 4.4 ([DGH+10]). A bipartite tournament H has a cycle C if and only if it has a

C4.

Lemma 4.5. Let H = (V,E) be a bipartite tournament. If v ∈ V is part of some cycle C,

then it is also part of some C4.

Proof. We prove the statement of the lemma by induction on the length of C. If C is a

C4, then there is nothing to prove. Suppose the length of C is longer than 4 and assume

that the statement of the lemma holds for all cycles shorter than C. Let . . . v, a, b, c . . . be

a sub-path of C. If the arc between c and v is (c, v) then, v, a, b, c is a C4 containing v and

if it is (v, c), then we have a shorter cycle which contains v and excludes a and b. By the

induction hypothesis, there is a C4 which contains v.

4.2.1 Data Reduction Rules

We begin with the following simple rule.

37

Reduction Rule 4.6. If v ∈ V is not part of any cycle in H then remove v, that is,

return an instance (H \ v, k).

Lemma 4.7. Reduction Rule 4.6 is sound and can be applied in polynomial time.

Proof. Let H ′ = H \ v and F ′ be a fas of H ′. Observe that, deleting v doesn’t affect any

cycle in H and, every cycle of H is present in H ′.

Suppose F ′ is not an fas of H. Hence, after reversing the arcs of F ′ in H, there is still a

cycle left. But this cycle does not involve v, so it is also present in H ′ with F ′ reversed.

Therefore there is a cycle in H ′, which is not removed by F ′. Hence, F ′ is not a fas of H ′,

which is a contradiction.

And by Lemma 4.5, to determine if a vertex is part of any cycle, we only need to check if v

is part of some C4. This can easily be done in polynomial time.

Reduction Rule 4.8. If there is an arc e ∈ E, such that there are at least k + 1 C4’s,

which pairwise have only e in common, then reverse e and reduce k by 1. That is, return

the instance (H \ {e}, k − 1).

Lemma 4.9. Reduction Rule 4.8 is sound and can be applied in polynomial time.

Proof. Such an arc e must be in any fas of size ≤ k. Otherwise, we have to pick at least

one distinct arc for each of the cycles, and there are ≥ k + 1 of them.

To find such arcs, we use the idea of an opposite arc. Two vertex disjoint arcs e1 = (a, b)

and e2 = (c, d) are called opposite arcs if (a, b, c, d) forms a C4. Consider the set of opposite

arcs of an arc e; this can be easily computed in polynomial time. It is easy to see that an

arc e has ≥ k + 1 vertex disjoint opposite arcs if and only if there are ≥ k + 1 C4 which

pairwise have only e in common. Hence, we only need to check if the size of the set of

opposite arcs, for any arc e, is larger than k and reverse e if that is the case.

Let H = (X ∪ Y,E) be a bipartite tournament. From now onwards we fix the unique

modular partition P = A ∪ B of X ∪ Y , where A = {A1, A2, ...} is a partition of X and

38

B = {B1, B2, ...} is a partition of Y . Next we show how a C4 interacts with the modular

partition.

Lemma 4.10. Let H be a bipartite tournament, then any C4 in H has each of its vertices

in different modules of P.

Proof. Let u and v be any two vertices of a C4 in H. If u and v are from different partitions

of H then by Lemma 4.2, they cannot be in the same module. And if they are from the

same partition, then there is some vertex w from the other partition that comes between

them in the cycle as u→ w → v, and hence in the outgoing neighbourhood of one but the

incoming neighbourhood of the other. So they cannot be in the same module.

The main reduction rule that enables us to obtain an O(k3) kernel is based on the following

crucial lemma. It states that there exists an optimum solution where all arcs between two

modules are either a part of the solution or none of them are.

Lemma 4.11. Let X1 and Y1 be two modules of a bipartite tournament H(X ∪ Y,E) such

that X1 ⊆ X and Y1 ⊆ Y and let E(X1, Y1) be the set of arcs between these two modules.

Let F be any minimal fas of H. Then there exists an fas F ∗ such that |F ∗| ≤ |F | and

E(X1, Y1) ⊆ F ∗ or E(X1, Y1) ∩ F ∗ = φ.

Proof. Let X1 = {x1, x2, ..., xr} and Y1 = {y1, y2, ..., ys}. Let e = (x1, y1) be an arc of

E(X1, Y1). We define, what we call a mirroring operation with respect to the arc e, that

produces a solution F ′ that contains all the arcs of the module if e was in F and does not

contain any arc of the module if e was not in F ; i.e. the mirroring operation mirrors, the

intersection of the solution F with the set containing the arc e and all the arcs incident on

the end points of e, to all arcs of the module. To obtain F ∗ we will mirror the arc that has

the smallest intersection. We define this operation formally below.

The operation mirror(F, e, E(X1, Y1)) returns a subset F ′(e) of arcs obtained as follows.

Let FX1Y1 be the set of all arcs in F which have at least one end point in X1 ∪ Y1.

Let e ∈ E(X1, Y1) and define Ext(e) = {f ∈ FX1Y1 |f ∩ e 6= φ, f /∈ E(X1, Y1)}, i.e.

Ext(e) is the set of all external edges in FX1Y1 which are incident on endpoints of e. Let

Ext = ∪rsi=1Ext(ei).

39

Let F1(e) = {(xi, y)|(x1, y) ∈ Ext(e)} ∪ {(yi, x)|(y1, x) ∈ Ext(e)}

∪{(y, xi)|(y, x1) ∈ Ext(e)} ∪ {(x, yi)|(x, y1) ∈ Ext(e)}.

Let F2(e) =

 E(X1, Y1) e ∈ F

φ e /∈ F.

For an edge e define F ′(e) = F − FX1Y1 ∪ F1(e) ∪ F2(e). We claim that F ′(e) for any

arc e ∈ E(X1, Y1) is a feedback arc set, and that there exists an e ∈ E(X1, Y1) such that

|F ′(e)| ≤ |F |, and we will output F ∗ as F ′(e) for that e.

Claim 1. F ′(e) is a feedback arc set for any arc e ∈ E(X1, Y1).

Proof. Suppose not. Let C be a cycle in the graph H{F ′(e)} and let e = (xs, yt). Replace

any vertex xj , j 6= s by xs and any vertex yj , j 6= yt by yt in the cycle C to get C ′ (See Fig.

4.1). We claim that C ′ is a closed walk (from which a cycle can be obtained) in H{F}

contradicting the fact that F was a fas for H. That C ′ is a closed walk is clear because

for any arc (u, xj) or (xj , u) incident on xj , j 6= s, the corresponding arcs (u, xs) or (xs, u)

exists as X1 is a module.

Similarly, for any arc (u, yj) or (yj , u) incident on yj , j 6= t, the corresponding arcs (u, yt)

or (yt, u) exists as Y1 is a module. Note that C ′ does not contain arcs incident on any

xj 6=s ∈ X1 or any yj 6=t ∈ Y1. And the arcs incident on xs and yt are not affected by the

mirroring operation to obtain F ′ (i.e. if the edge was initially present in F then it continues

to be present in F ′, and if it was initially absent in F then it continues to be absent in F ′).

Hence C ′ is a walk in H{F}. This completes the proof of this claim.

Claim 2. There exists an arc e ∈ E(X1, Y1) such that |F ′(e)| ≤ |F |.

40

Figure 4.1: Constructing a closed walk from the cycle C.

Proof. Let e1, e2, ...ers be the arcs in E(X1, Y1). By the definition of F ′(ei), we have

rs∑
i=1

|F ′(ei)| = (rs)|F | − (rs)|FX1Y1 |+
rs∑
i=1

|F1(ei)|+
rs∑
i=1

|F2(ej)|.

We will show that the last three terms cancel out. For x ∈ X1, define Ext(x) = {f ∈

Ext|f ∩ x 6= φ}. Whenever an edge incident on x is mirrored by other arcs, Ext(x) is

repeated on each of the r vertices in X1 and there are s edges in E(X1, Y1) which are

incident on x. Therefore Ext(x) is repeated (rs) times. Similarly we can define Ext(y)

and show that it is repeated (rs) times. Therefore the third term
∑rs

i=1 |F1(ei)| = rs|Ext|.

Furthermore, whenever e is in F , it is repeated (rs) times. This implies that the last term∑rs
i=1 |F2(ei)| = rs|FX1Y1 − Ext|. Therefore the sum of the last two terms is nothing but

(rs) times |FX1Y1 |.

Hence, we have
∑rs

i=1 |F ′(ei)| = (rs)|F |. Therefore, there is an arc ei ∈ E(X1, Y1) such

that |F ′(ei)| ≤ |F |. Note that to find such an arc ei, we can compute an arc ei that has

the smallest intersection between F and the arcs incident on its end points.

This completes the proof of Lemma 4.11.

From this point, we will only consider fas which either contains all the arcs between two

modules or contains none of them. An easy consequence of this lemma is that if S is a

module of size at least k + 1, then a fas of size at most k contains no arc incident on S.

This is because between any other module R and S there are at least k + 1 arcs and they

all cannot be in the fas.

Reduction Rule 4.12. In A ∪ B truncate all modules of size greater than k + 1 to k + 1.

41

In other words if S is a module of size more than k + 1 then delete all but k + 1 of its

vertices arbitrarily.

Lemma 4.13. Reduction Rule 4.12 is sound.

Proof. Once we have a modular partition, we can see which modules have size ≥ k+ 1 and

arbitrarily delete vertices from them to reduce their size to k + 1.

Next we show that the rule is correct. Suppose H is a bipartite tournament and H ′ is

obtained from H by deleting a single vertex v from some large module S which has ≥ k+ 2

vertices. Consider a fas F ′ of H ′ of size ≤ k and let S′ = S \ {v}, which is a module in H ′.

Since |S′| ≥ k + 1, no arc incident on S′ is in F ′. Now reverse the arcs of F ′ in H. If F ′ is

not a fas of H then there is a cycle C of length 4 in H. If C does not contain v then it

will be present in H ′ with F ′ reversed, which is a contradiction. Otherwise C contains v.

Let u ∈ S′ and consider the cycle C ′ of length 4 obtained from C by replacing v with u.

C ′ is present in H ′ with F ′ reversed, which is again a contradiction.

Now we can use induction on the number of vertices deleted from a module to show that

truncating a single module does not change the solution. We can then use induction on

the number of truncated modules to show that the rule is correct.

4.2.2 Analysis of the Kernel Size

We apply the above Reduction Rules 4.6, 4.8 and 4.12 exhaustively (until no longer possible)

and obtain a reduced instance (H ′, k′) of FASBT from the initial instance (H, k). Observe

that we will not keep applying these rules indefinitely to an instance because either the size

of the graph or the parameter k drops after each application of the reduction rules. For

brevity we abuse notation and denote the reduced instance also by (H, k). As before we fix

the unique modular partition P = A∪B of X ∪ Y , where A = {A1, A2, ...} is a partition of

X and B = {B1, B2, ...} is a partition of Y . Let HP be the corresponding quotient graph.

The following lemma lists some properties of the quotient graph.

Lemma 4.14. Let HP be the quotient graph of H. Then the following hold:

42

(a) Every vertex in HP is part of some C4.

(b) For each arc e ∈ E(HP) there are ≤ k C4 in HP which pairwise have e as the only

is the common arc.

(c) If H has a fas of size ≤ k then HP has a fas of size ≤ k.

(d) For all u, v ∈ V (HP), N+(u) 6= N+(v) or equivalently N−(u) 6= N−(v).

Proof. (a) Consider a vertex u ∈ HP . Let S be the corresponding module in H. Consider

a vertex x ∈ S. If x is not part of any cycle then rule 4.6 applies, which is a contradiction.

Otherwise x is part of some cycle in H and by Lemma 4.5 it is part of some C4 x, y, z, p

in H. By Lemma 4.10, each of x, y, z, p lies in a different module. Let v, w, t be vertices

in HP corresponding to the modules containing y, z, p respectively. Then by definition of

E(HP), (u, v, w, t) forms a C4 in HP .

(b) Suppose there were an arc e ∈ E(HP) which is the only pairwise common arc of ≥ k+ 1

C4 in HP . Consider such a collection of C4 in HP . For each vertex in this collection, there

is a module in H. Pick one vertex from each module and the arcs between these vertices

in H. Let e′ ∈ H be the arc corresponding to e. This gives us a collection of ≥ k+ 1 C4 in

H, which pairwise have only e′ in common. But then Rule 4.8 applies.

(c) Let F ′ be any fas of H. Therefore |F ′| ≤ k. Let F be the corresponding set of arcs

in HP , so |F | ≤ k. Every arc (u, v) ∈ F corresponds to the set of all arcs between the

modules Su and Sv in F ′. We reverse F in HP and F ′ in H respectively. If F is not a

fas of HP , then there is a C4 = (u, v, w, t) ∈ HP with F reversed. Then consider the

vertices x, y, z, p ∈ H where x ∈ Su, y ∈ Sv, z ∈ Sw, p ∈ St. By Lemma 4.11 the arcs

(u, v), (v, w), (w, t), (t, u) in HP with F reversed, imply the arcs (x, y), (y, z), (z, p), (p, x) in

H with F ′ reversed. This implies that F ′ is not a fas of H which is a contradiction.

(d) HP is a Bipartite Tournament. Hence, if for some u, v ∈ HP , N+(u) = N+(v) =⇒

N−(u) = N−(v). But then Su is not a maximal module, because we can add any vertex

from Sv to it. This is a contradiction to the fact that A ∪ B was a maximal modular

partition.

43

Let HP be the quotient graph of H. Let F be an fas of HP of size at most k. Let T be the

topological sort of HP obtained after reversing the arcs of F . If we arrange the vertices

of HP from left to right in order of T , then only the arcs of F go from right to left. For

an arc e ∈ F , the span of e is the set of vertices which lie between the endpoints of e in

T . We call a vertex v an affected vertex if there is some arc in F which is incident on v.

Otherwise we call v an unaffected vertex.

Lemma 4.15. If v is an unaffected vertex, then there exists an arc e ∈ F such that v is

in the span of e.

Proof. Let v be any unaffected vertex in HP . By Lemma 4.14(a) there is a C4 u, v, w, t

which contains v. Since v is unaffected the order u→ v → w is fixed in T . Therefore the

arc t→ u goes from right to left in T . Hence, v is contained in the span of (t, u).

Lemma 4.16. Let u and v be two unaffected vertices from the same vertex partition of

the bipartite tournament HP such that u occurs before v in T . Then there exists w from

the other partition which lies between u and v in T .

Proof. Since HP is the quotient graph of H and u and v are different modules, therefore

there is some vertex w in the other partition such that (u,w), (w, v) ∈ E(HP). Furthermore,

these two arcs are not in the fas F as u and v are unaffected. Hence, w comes between u

and v in T .

Lemma 4.17. There are at most 2k + 2 unaffected vertices in the span of any arc e ∈ F .

Proof. Let the span of e contain 2k+ 3 unaffected vertices. Then without loss of generality

assume that k + 2 of these vertices come from the partition A. Then there are at least

k + 1 vertices of partition B and by Lemma 4.16 between each pair of consecutive vertices

of A lies a vertex of B. This gives us k + 1 C4’s which pairwise have only e in common.

But then the graph H contains an arc e′ for which there are k + 1 C4’s which pairwise

have only e′ in common. This contradicts the fact that H was reduced with respect to

Rule 4.8.

Reduction Rule 4.18. If HP contains more than 2k2 + 2k vertices then return NO.

44

Lemma 4.19. Reduction Rule 4.18 is sound.

Proof. By Lemma 4.14 (c), if H has a fas of size ≤ k, then HP has a fas of size ≤ k. If

there are more than 2k2 + 2k vertices in HP , then there is some arc e whose span contains

more than 2k + 2 unaffected vertices; this contradicts Lemma 4.17.

Hence, we may assume that HP contains O(k2) vertices.

Lemma 4.20. H contains O(k3) vertices.

Proof. Each vertex in HP corresponds to a module in H and any module in H has size at

most k + 1 (due to Reduction Rule 4.12). Hence, there are O(k3) vertices in H.

Lemma 4.20 implies the following theorem.

Theorem 4.2. FASBT admits a polynomial kernel with O(k3) vertices.

4.3 Discussion

In this chapter we obtained a polynomial kernel for FASBT with O(k3) vertices. This

illustrates the main idea behind a kernelization algorithm, which is a series of reduction

rules, designed to cleverly exploit the structural properties of the input, exhaustively

applied, reduces the instance to a kernel, in polynomial time. In later sections of this thesis,

we shall see polynomial kernels for a few network design problems. We also remark that

the kernel obtained in this chapter generalizes to multi-partite tournaments. Recently Guo

and Xiao [XG12] gave kernel for this problem with O(k2) vertices.

45

46

Chapter 5

An introduction to Matroids

Matroids generalize the notion of “independence” in linear algebra, to set systems. It was

introduced by Whitney [Whi35], and since then it has grown into an important area, with

connections to many branches of mathematics and theoretical computer science. Matroids

are important mathematical objects in the theory of algorithms and combinatorial optimiza-

tion. Often an algorithm for a class of matroids gives us an “algorithmic meta theorem”,

which gives a unified solution to a number of other problems. For example, it is known

that any problem which admits a greedy algorithm can be embedded into a matroid and

finding a minimum (maximum) weighted independent set corresponds to finding a solution

to the problem. Other important examples are Matroid Intersection and Matroid

Parity problems, which encompasses several combinatorial optimization problems such as

Bipartite Matching, 2-Edge Disjoint Spanning Trees and Arborescence. We

refer to the textbook of Oxley [Oxl06] for an introduction to this topic.

Recently, matroids have been applied in designing several FPT, Kernelization and Exact

algorithms [FLPS14, FLS14, KW12, KW14, Mar09, GMP13, SZ14], which has resolved

a number of long standing open problems in these areas. In particular, the notion of

representative families over linear matroids has been the key to many of these results.

Representative Sets were introduced by Bollobás [Bol65] for extremal set systems and

later generalized to subspaces of a vector space by Lovász [Lov77] (see also [Fra82]). Their

results are corner-stones in extremal set theory with numerous applications in graph and

47

hypergraph theory, combinatorial geometry and theoretical computer science. We refer to

Section 9.2.2 of [Juk11], surveys of Tuza [Tuz94, Tuz96], and a blog post of Gil Kalai1 for

more information on the theorems and their applications.

Dynamic programming with representative sets over linear matroids is the second main

technique in many of the results in this thesis. In this chapter we give a short overview

of Matroids and Representative Sets. In the following chapter we shall illustrate this

technique via a FPT algorithm for k-path. In later chapters we shall apply this technique

to obtain FPT and Exact algorithms for network design problems.

5.1 Matroids

We begin with the definition of a matroid.

Definition 5.1. A pair M = (E, I), where E is a ground set and I is a family of subsets

(called independent sets) of E, is a matroid if it satisfies the following conditions:

(I1) ∅ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

(I3) If A,B ∈ I and |A| < |B|, then ∃ e ∈ (B \A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only (I2)

is called a hereditary family. An inclusion wise maximal set of I is called a basis of the

matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have the same

size. This is called the rank of the matroid M , and is denoted by rank(M). The notion

of rank may be extended to any subset of E. For any X ⊆ E we define rankM (X) to be

max{|A| | A ⊆ X such that A is independent in M}. This is called the rank function of

the matroid M . The following proposition can be proved easily by using the axiom (I3) of

matroids.

Proposition 5.1. Let M = (E, I) be a matroid. If A ∈ I such that |A| < `, B ⊆ E and

rM (A ∪B) = ` then there is a subset B′ ⊆ B, |B′| = `− |A| such that A ∪B′ ∈ I.

1http://gilkalai.wordpress.com/2008/12/25/lovaszs-two-families-theorem/

48

An important notion in matroid theory is that of Dual Matroids which is defined as follows.

Dual of a Matroid. Let M = (E, I) be a matroid. The dual of M is the matroid

M∗ = (E, I∗) where I∗ = {A ⊆ E | rank(E \A) = rank(M)}

It can be easily verified the above definition indeed produces a valid matroid. Further,

for any basis B∗ of M∗, the set E \B∗ is a basis of M and vice versa. This implies that

rank(M∗) = |E| − rank(M), and in fact (M∗)∗ = M .

5.1.1 Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. We

define the matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I)

if the corresponding columns are linearly independent over F. The matroids that can

be defined by such a construction are called linear matroids, and if a matroid can be

defined by a matrix A over a field F, then we say that the matroid is representable over

F. That is, a matroid M = (E, I) is representable over a field F if there are vectors in Fr

corresponding to each of the elements in the ground set such that, the linearly independent

subsets of these vectors correspond precisely to the independent sets of the matroid. Here,

r = rank(M). A matroid M = (E, I) is called representable or linear if it is representable

over some field F. The dual matroid M∗ of a linear matroid M is also linear and we have

the following theorem about the representation of dual matroids.

Theorem 5.2 ([Oxl06, Section 2.2]). Let M be a linear matroid. Given a matrix A over a

field F which represents M , we can obtain a matrix A∗ which represents the dual matroid

M∗ in polynomially many field operations.

5.1.2 Direct Sum of Matroids

Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t matroids with Ei ∩ Ej = ∅

for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt is a matroid M = (E, I) with

E :=
⋃t
i=1Ei and X ⊆ E is independent if and only if for all i ≤ t, X ∩ Ei ∈ Ii. Let Ai

49

be the representation matrix of Mi = (Ei, Ii). Then,

AM =

A1 0 0 · · · 0

0 A2 0 · · · 0

...
...

...
...

...

0 0 0 · · · At

is a representation matrix of M1 ⊕ · · · ⊕Mt. The correctness of this construction is proved

in [Mar09].

Proposition 5.2 ([Mar09, Proposition 3.4]). Given representations of matroids M1, . . . ,Mt

over the same field F, a representation of their direct sum can be found in polynomial time.

5.1.3 Truncation of a Matroid

The t-truncation of a matroid M = (E, I) is a matroid M ′ = (E, I ′) such that S ⊆ E is

independent in M ′ if and only if |S| ≤ t and S is independent in M (that is S ∈ I).

Proposition 5.3 ([Mar09, Proposition 3.7]). Given a matroid M with a representation A

over a finite field F and an integer t, a representation of the t-truncation M ′ can be found

in randomized polynomial time.

In a later chapter, we shall see a deterministic polynomial time algorithm for obtaining a

representation of the truncation of a linear matroid.

5.1.4 Deletions and Contractions

Deletion in a matroid. Let M = (E, I) be a matroid and F ⊆ E. Then the deletion

of F in M , is a matroid denoted by M \ F , whose independent sets are those independent

sets of M , that are contained in E \ F .

It is clear that if M is a linear matroid then M \ F is also a linear matroid, and a

representation can be found by deleting the columns corresponding to F in a representation

of M .

50

Contraction in a matroid. Let M = (E, I) be a matroid and F ⊆ E. Then the

contraction of M by F , is a matroid, denoted by M/F , on the ground set E \ F , whose

rank function is defined as, rM/F (A) = rM (A ∪ F)− rM (F) for any A ⊆ E \ F .

We have the following proposition which relates the contraction of matroid to deletions in

the dual matroid.

Proposition 5.4 ([Oxl06]). Let M = (E, I) be a matroid and F ⊆ E. Then M/F =

(M∗ \ F)∗.

Hence, if M is a linear matroid then M/F is also a linear matroid and a representation of

it may be computed in polynomial time.

5.1.5 Uniform and Partition Matroids

Uniform Matroid. A pair M = (E, I) over an n-element ground set E, is called a

uniform matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where

k is some constant. This matroid is denoted as Un,k. Every uniform matroid is linear and

can be represented over a finite field by a k × n matrix AM where the AM [i, j] = ji−1.

AM =

1 1 1 · · · 1

1 2 3 · · · n

1 22 32 · · · n2

...
...

...
...

...

1 2k−1 3k−1 · · · nk−1

Observe that for AM to be representable over a finite field F, we need that the determinant

of any k × k submatrix of AM must not vanish over F. The determinant of any k × k

submatrix of AM is upper bounded by k!× nk2 (this follows from the Laplace expansion

of determinants). Thus, choosing a field F of size larger than k!× nk2 suffices. However,

it can be shown that Un,k is actually representable over all fields with at least n + 1

elements [Oxl06]. When k = 1, the uniform matroid has a representation over any field

with at least 2 elements [Oxl06].

51

Partition Matroid. A partition matroid M = (E, I) is defined by a ground set E

being partitioned into (disjoint) sets E1, . . . , E` and by ` non-negative integers k1, . . . , k`.

A set X ⊆ E is independent if and only if |X ∩ Ei| ≤ ki for all i ∈ {1, . . . , `}. Observe

that a partition matroid is a direct sum of uniform matroids U|E1|,k1 , · · · , U|E`|,k` . So by

Proposition 5.2 we have the following.

Proposition 5.5. A representation of a partition matroid can be constructed in polynomial

time, over a field of size |E|+ 1 Here k = max{k1, k2, . . . , k`}.

However note that when k = 1, the partition matroid has a representation over any field

with at least 2 elements [Oxl06].

5.1.6 Graphic Matroids

Given a graph G, the graphic matroid of G, M = (E, I), is defined by the ground set

E = E(G) and F ⊆ E(G) is in I if it forms a spanning forest in the graph G. A graphic

matroid is representable over any field of size at least 2. Consider the matrix AM with a

row for each vertex i ∈ V (G) and a column for each edge e = ij ∈ E(G). In the column

corresponding to e = ij, all entries are 0, except for a 1 in i or j (arbitrarily) and a −1 in

the other. For a digraph D, we define the graphic matroid with respect to the underlying

graph of D.

Proposition 5.6 ([Oxl06]). Graphic matroids are representable over any field of size at

least 2.

5.2 Representative Sets

In this section we give brief introduction to representative sets.

Definition 5.3 (q-Representative Family). Given a matroid M = (E, I) and a family

S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following

holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y

52

with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is

q-representative for S we write Ŝ ⊆qrep S.

In other words if some independent set in S can be extended to a larger independent set by

q new elements, then there is a set in Ŝ that can be extended by the same q elements. We

define a weighted version of q-representative families, which is useful for solving problems

where we are looking for objects of maximum or minimum weight. Note that the weight

function can be any arbitrary non-negative function on the independent sets of the matroid.

Definition 5.4 (Min/Max q-Representative Family). Given a matroid M = (E, I),

a family S of subsets of E and a non-negative weight function w : S → N we say that

a subfamily Ŝ ⊆ S is min q-representative (max q-representative) for S if the following

holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with

X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with

(i) X̂ ∪ Y ∈ I; and

(ii) w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max q-representative)

family for S.

The following lemmas establish some properties of representative sets which are useful in

algorithmic applications.

Lemma 5.7 ([FLS14]). Let M = (E, I) be a matroid and S be a family of subsets of E.

If S ′ ⊆qrep S and Ŝ ⊆qrep S ′, then Ŝ ⊆qrep S.

Lemma 5.8 ([FLS14]). Let M = (E, I) be a matroid and S be a family of subsets of E.

If S = S1 ∪ · · · ∪ S` and Ŝi ⊆qrep Si, then ∪`i=1Ŝi ⊆
q
rep S.

Lemma 5.9 ([FLS14]). Let M = (E, I) be a matroid of rank k and S1 be a p1-family of

independent sets, S2 be a p2-family of independent sets, Ŝ1 ⊆k−p1rep S1 and Ŝ2 ⊆k−p2rep S2.

Then Ŝ1 • Ŝ2 ⊆k−p1−p2rep S1 • S2.

53

Given a representable matroid M = (E, I) of rank k = p+ q with its representation matrix

AM and a p-family of independent sets S = {S1, . . . , St}, a non-negative weight function

w : S → N, we can compute Ŝ ⊆qminrep S and Ŝ ⊆qmaxrep S of size
(
p+q
p

)
deterministically

in time O
((

p+q
p

)
tpω + t

(
p+q
q

)ω−1)
.

Theorem 5.5 ([FLS14]). Let M = (E, I) be a linear matroid of rank p + q = k, S =

{S1, . . . , St} be a p-family of independent sets and w : S → N be a non-negative weight

function. Then there exists Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size
(
p+q
p

)
. Moreover, given a

representation AM of M over a field F, we can find Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size at

most
(
p+q
p

)
in O

((
p+q
p

)
tpω + t

(
p+q
q

)ω−1)
operations over F.

In Theorem 5.5 we assumed that rank(M) = p + q. However, one can obtain a similar

result even when rank(M) > p+ q. To do so, we first obtain a truncation of the matroid

M to rank p+ q via Proposition 5.3. As noted before, the previously known algorithms for

the truncation of a linear matroid were randomized, and hence the resulting algorithm is

randomized as well.

Theorem 5.6 ([FLS14]). Let M = (E, I) be a linear matroid and let S = {S1, . . . , St} be a

p-family of independent sets and w is a non-negative weight function on S. Then there exists

Ŝ ⊆qrep S of size
(
p+q
p

)
, where p+ q ≤ rank(M). Furthermore, given a representation AM

of M over a field F, there is a randomized algorithm computing Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S)

in O
((

p+q
p

)
tpω + t

(
p+q
q

)ω−1)
operations over F.

We shall see in a later chapter that, by using certain algebraic tools, we can make the

above algorithm deterministic. In the case of uniform matroids one can avoid matrix

multiplication required in the above algorithms and obtain much faster results. This is

because in uniform matroids, A′ ⊆ A of the family A q-represents A if for every set B

of size q such that there is an A ∈ A and A ∩ B = ∅, there is a set A′ ∈ A′ such that

A′ ∩B = ∅.

Theorem 5.7 ([FLS14]). There is an algorithm that given a family A of sets of size p

over a universe U of size n and an integer q, computes in time O(|A| · (p+qq)q · log n) a

subfamily A′ ⊆ A such that |A′| ≤
(
p+q
p

)
· 2o(p+q) · log n and A′ q-represents A.

54

The proof of the above theorem requires a construction of a small separating family for

separating subsets of size p and subsets of size q of the universe. See [FLS14] for more

details.

55

56

Chapter 6

Illustration: An FPT algorithm for

k-path

In this chapter, we shall see a simple algorithm for the k-path problem by using the

technique of dynamic programming with representative sets. This algorithm is based on

the work of Fomin et al. [FLS14]. The problem is defined as follows.

k-Path Parameter: k

Input: A graph G on n vertices and m edges, and an integer k.

Question: Is there a path in G with k or more vertices ?

This problem is well studied in parameterized complexity. Monien[] gave the first FPT algo-

rithm for this problem, and interestingly enough this algorithm too relied on representative

sets, although the algorithm for computing representative sets was much slower. It was

conjectured that this problem is solvable in polynomial time for k = log n in an n vertex

graph. This was proved in the seminal paper of Alon et.al [AYZ95], who introduced the

technique of color coding to solve this problem. A number of results followed, improving the

running time via more sophisticated techniques. Several randomized algorithms were also

designed, which use sophisticated algebraic techniques [BHKK10, Wil09, KW09]. Currently

the fastest known randomized algorithm runs in time O∗(1.66k) [BHKK10]. Recently,

Fomin et al. [FLS14, FLPS14] gave efficient algorithms for computing representative sets,

57

and then applied their algorithm in designing a deterministic algorithm with a running

time of O∗(2.619k). Interestingly, their results apply the techniques of Alon et al. in

computing the representative sets. It has been further improved to an algorithm running

in time O∗(2.597k) [Zeh15].

In this chapter, we shall see a simple algorithm based on the approach of Fomin et

al. [FLS14]. While the running time of this algorithm can be significantly improved, our

focus will be on illustrating the technique of the algorithm, which is a key algorithmic

technique in this thesis.

6.1 The Algorithm

Let us assume that the k-path in G starts from a fixed vertex s ∈ V (G). This is easy to

ensure, by adding a new vertex s to the graph and making it adjacent to all the vertices.

The the new graph has a path on k+ 1 vertices if and only if the original graph has a path

on k vertices.

Consider the following dynamic programming algorithm, A, which computes a k-path in

G which starts from s, if such a path exists. let T [i] be the collection the those paths in G

which start from s and contain exactly i vertices. For a vertex v ∈ V (G), let T [i, v] denote

the subset of T [i] which contains all the paths which end at the vertex v. Observe that

T [i, v] partition T [i], i.e. T [i] =
⊎
v∈V (G) T [i, v]. For i = 1, we have T [1, s] = {{s}} and

T [1, v] = ∅ for any v 6= s. Now, given the paths T [i − 1, v] for every v ∈ V (G), we can

compute each T [i, v] as follows.

T [i, v] = {P ∈ T [i− 1, u] where u ∈ N(v)} • {{v}}

It is easy to see the following.

Proposition 6.1. Algorithm A computes a k-path, if there is such a path in G. Further,

the running time of this algorithm is O∗(nk).

Observe that there could be as many as
(
n
i−1
)

paths in T [v, i− 1], and hence computing

58

T [v, i] could take O∗(
(
n
i

)
) time. However, by using representative sets, we can “compress”

the number of paths in T [i, v] to O(2k). To do so, first we have to show that the partial

solutions are independent in a linear matroid. Then we must show that a representative

set of a collection of partial solutions always contains a candidate which can be extended

to a full solution. And finally, we show that the representative sets of the partial solutions

can be computed at each stage, by using the representative sets from the previous stages.

Let us consider each of these steps.

Consider the matroid M which is a uniform matroid of rank k over the ground set V (G),

i.e. any subset of k vertices is independent inM. Then T [i, v] is a collection of independent

sets of size i in M. Next, we say that a path P ∈ T [i] is extendable to a k-path if and

only if, there is a path Q with k − i + 1 vertices such that, P ∩Q = {v} where v is the

end vertex of P and the start vertex of Q. Observe that P + Q is a k-path in G. Let

T̂ [i, v] ⊆k−irep T [i, v] with respect to the above matroid, and let T̂ [i] =
⋃
v∈V (G) T̂ [i, v]. We

have the following lemma.

Lemma 6.2. P ∈ T [i] is extendable to a k-path if and only if there is a P̂ ∈ T̂ [i] which is

extendable to a k-path.

Proof. Consider the forward direction of the claim. Suppose P is extendable to a k-path by

some path Q, and let v be the common vertex between them. Observe that P ∈ T [v, i] and

Q is a path on k− i+ 1 vertices. If P ∈ T̂ [v, i] then P̂ = P is the required path. Otherwise,

consider the sets P and Q− v and observe that they are of size i and k − i respectively,

and furthermore they are disjoint. Therefore by the definition of representative sets, there

is a path P̂ ∈ T̂ [i, v] such that P̂ and Q− v are disjoint. Observe that P̂ is a path from s

to v of length i, and hence P̂ +Q is a k-path in G.

The reverse direction of this claim is trivial since every P̂ ∈ T̂ [i, v] is also contained in

T [i].

From the above lemma, we conclude that it is sufficient to store T̂ [i] in place of T [i], which

we can compute by Theorem 5.5 in O∗(2O(k)) time. However we must still address the issue

of computing T̂ [i] when we are only given T̂ [i−1]. Let T ′[i, v] = {P ∈ T̂ [i−1, u] where u ∈

59

N(v)} • {{v}}. Then by Theorem 5.5 and Lemma 5.7, we can easily show the following.

Lemma 6.3. T̂ ′[i, v] ⊆k−1rep T [i, v] and it contains at most 2k paths. Further it may be

computed in O∗(2O(k)).

Let T̂ ′[i] =
⋃
v∈V (G) T̂

′[i, v], and from the two lemmas above we conclude that it is enough

to store T̂ ′[i] in place of T [i]. Thus we obtain a new algorithm Â from A, where we compute

and store T̂ ′[i] for every i ∈ [k]. Further, in every step of the algorithm we require a time

O∗(2O(k). Therefore, we have the following theorem.

Theorem 6.1. Let G be a graph and k be an integer. Then we can find a k-path in G in

time O∗(2O(k)).

6.2 Discussion

The above algorithm illustrates the technique of dynamic programming with representative

sets over linear matroids. The first step is to design a dynamic programming algorithm,

whose partial solutions are independent sets in an appropriately chosen matroid. The next

step is to show that, retaining a representative set of the collection of partial solutions at

each step is sufficient. Finally, we must show that one can compute the representative

sets at each step efficiently. Then from the properties of the representative sets, we obtain

an efficient algorithm for the problem. A key benefit of using the above technique is that

designing a fast FPT or Exact algorithm for a problem boils down to designing a dynamic

programming algorithm which is “embeddable” in a linear matroid. In this later sections

of this thesis, we shall see some algorithm for network design problems using dynamic

programming over representative sets. The algorithms will have the same basic structure as

illustrated above, but the dynamic program and the matroids will be much more involved.

We also remark that the running time of the algorithm presented in this section can be

significantly improved by using more sophisticated analysis and methods for computing

representative sets.

60

Chapter 7

Connectivity Matroids

In this chapter, we review some matroids that are associated with graph connectivity, and

some of their algorithmic applications. We also mention two matroids which arise from the

notion of matroid connectivity.

7.1 Co-Graphic Matroids

The co-graphic matroid characterized those edge subsets of a connected graph which may

be safely deleted without disconnecting the graph.

Definition 7.1. The co-graphic matroid of a connected graph G is defined as M =

(E(G), I) where I = {S ⊆ E(G) | (G \ S) is connected }.

It is clear from the definition that, the co-graphic matroid of a graph G is the dual of

the graphic matroid of G, and therefore it is a linear matroid. The rank of the cographic

matroid of a connected graph G is (|E(G)| − |V (G)|+ 1). Further, a representation of the

co-graphic matroid of G can be found in polynomial time over any field [Mar09, Oxl06]

over any field.

Co-graphic matroids are useful in edge deletion problems where preserving the connectivity

of the graph is one of the constraints. We may imagine that the solutions to a given

instance are embedded in a co-graphic matroid related to the input. Then combined with

61

other structural properties, we may obtain an algorithm for the problem. We shall see an

example of such an algorithm in a later chapter.

7.2 Gammoids

Gammoids characterize those vertex subsets which are reachable from a fixed set of source

vertices, by vertex disjoint paths. They are defined as follows.

Definition 7.2. Let G be any graph or digraph, S ⊆ V (G) be a set of source vertices

and T ⊆ V (G). Then the gammoid on T in G with respect to S, is the pair (T, I) where

I = {A ⊆ T | there are |A| vertex disjoint paths from T to A in G}.

A gammoid is called a strict gammoid, when T = V (G). Observe that any gammoid may

be obtained from a strict gammoid by deletion. The following useful result was proved by

Ingleton and Piff in 1972 [IP73](also see [Oxl06, Mar09]), shows that strict gammoids and

transversal matroids are duals.

Lemma 7.1. Let D be a digraph and S ⊆ V (D). Let T = V (D) and V ′ = V (D) \ S be

two copies of vertex subsets. Then there is bipartite graph G = (T] V ′, E) such that the

strict gammoid with respect to D and S is the dual of the transversal matroid MG on the

ground set T . Moreover, given D and S, there is a polynomial time algorithm to output

the graph G.

Further, they are both linear matroids [Oxl06] and a representation can be obtained

in randomized polynomial time [Mar09]. In a later chapter, we shall see moderately

exponential deterministic algorithms for computing representations of transversal matroids

and gammoids.

Recently gammoids have been applied in obtaining a polynomial kernels for a num-

ber of problems such as Odd Cycle Transversal, Multiway Cut and Almost

2-SAT [KW12]. While we go into the details of these algorithms, the main idea behind

these results is to identify a subset of vertices which must be present in every solution.

This set is computed by using the representative sets algorithm over a linear matroid,

62

which is a direct sum of several matroids including gammoids. Finally, it is shown that

there is always a solution contained in the above subset of vertices. Hence, reducing the

graph down to the above subset gives a kernel.

7.3 Linkage Matroids

Linkage matroids are an analogue of gammoids based on matroid connectivity, which was

introduced by Geelan et al. [GGW07]. In gammoids the underlying object is a graph, and

the independent sets correspond to those vertex subsets which are well connected to a

fixed subset of vertices. In linkage matroids the underlying object is a matroid, and the

independent sets are those subsets of the ground set which are well connected to a fixed

subset of the ground set. Before we define these matroids, we need to define the notion of

connectivity in a matroid.

Let M = (E, I) be a matroid and let r be the rank function of this matroid. The

connectivity function, λ, of the matroid M is defined as follows.

λ(X) = r(X) + r(E \X)− r(M), for any X ⊆ E

Observe that λ(X) = λ(X). For two disjoint subsets A and B of E, we define the

connectivity of S and T in M as follows.

κ(A,B) = minX⊆E {λ(X) | A ⊆ X, B ⊆ (E \X)}

This function was defined by Tutte, who then gave an analogue of Menger’s theorem in

graphs, in matroids [Tut65]. Let S be a subset of E. For any X ⊆ (E \ S) consider the

following function.

αS(X) = κ(X,S)

Geelan et al. [GGW07] showed the following theorem.

Theorem 7.3. The function αS is the rank function of a matroid over the ground set

E \ S.

63

This matroid is called the linkage matroid ofM, with respect to the set S. The independent

sets of this matroids are those subsets of E \ S, which are well connected to the set S in

M.

7.4 Tangle Matroids

Before we define these matroids, let us define the notion of a separation in a matroid. A

partition (X,X) of E is called a separation of order λ(X) in M. Tangles are a collection

of separations in a matroid with certain properties. A tangle T of order k in the matroid

M is a collection of subsets of E which satisfies the following.

(i) for every X ∈ T , λ(X) < k,

(ii) for every separation (X,X) of order strictly less than k, either X ∈ T or X ∈ T ,

(iii) if X] Y] Z is a partition of E, then at least one of these sets is not a member of T .

(iv) and for any e ∈ E, E − e /∈ T .

Tangles in matroids are an analogue of tangles in graphs. The members of the tangle T

are called small sets. Now consider the following function.

φ(X) =

min{λ(Y) | Y ∈ T such that X ⊆ Y } if such a Y exists,

k otherwise

Geelan et al. showed the following theorem [GGRW06].

Theorem 7.4. The function φ is the rank function of a matroid over E.

This matroid is called the tangle matroid of M.

7.5 Discussion

In this thesis, we will see some algorithmic application of Co-graphic matroids and Gam-

moids. Some of the other matroids such as Graphic matroids and Partition matroid

64

will also find algorithmic applications. The Linkage matroid and Tangle matroid have

been recently defined and the problem of determining if these matroids are representable,

whenever the underlying matroid is representable, remains an open problem. Futhermore,

characterization of the duals of these matroids and other properties of these matroids also

open problems.

65

66

Chapter 8

An introduction to Network

Design Problems with

Connectivity Constraints

Network design problems with connectivity constraints are a well studied class of problems

in computer science. Typically the aim is to design a cost effective network that can survive

communication failures, which may be caused by any number of things such as a hardware

or software breakage, human error or a broken link between two network components. Such

problems often modeled as graphs, with the nodes representing the network components

(such as computers, routers, etc.), and edges representing the communication links between

the components. Designing a network which satisfies certain connectivity constraints, or

augmenting a given network to a certain connectivity are important and well studied

problems in network design. In terms of graph theory, these problems problems corre-

spond to, finding a spanning subgraph of a weighted complete graph which satisfies given

connectivity constraints and, augmenting the given graph with additional edges so that

it satisfies the given constraints, respectively. These problems have many important real

world applications and have been extensively studied in the framework of approximation

algorithms [KN10, GK11, BDK09].

Designing a minimum cost network which connects all the nodes, is known as Minimum

67

Spanning Tree(MST) problem. Bor̊uvka in 1926 presented an algorithm for MST which

was motivated by design of economic electric power distribution networks [NMN01], and

subsequently several other algorithms were designed for this problem. However such a

network fails on the failure of a single link. This leads to the question of designing a

minimum cost network which can survive one or more link failures. Observe that, such a

network must be λ-connected, in order to survive λ− 1 link failures.

Adding a minimum number of edges to make the graph satisfy certain connectivity

constrains is known as minimum augmentation problem. Minimum augmentation was

studied in the design of survivable networks [FC70, JG86], and it has applications in other

areas such as data security [Gus88, Kao96].

All these problems are special cases of the Generalized Steiner Network problems

which is defined as follows.

Generalized Steiner Network (GSN)

Input: A graph or digraph G, a cost function w : E(G)→ N∗, a requirement function

r : V (G)× V (G)→ N∗.

Question: Find a subgraph H of minimum total cost such that, there are r(u, v) edge

disjoint paths from u to v in H for every (u, v) ∈ V (G)× V (G).

It encapsulates a number of network design problems with connectivity constraints, for

particular weight and requirement functions. The study of these problems in the framework

of parameterized complexity, has only recently began. Furthermore, nothing better the

trivial bruteforce algorithms are known for these many of these problems in the framework

of exact algorithms. In this chapter, we collect a small list of these problems and discuss

some relevant parameterizations.

8.1 Network Augmentation

In network augmentation problems, the goal is to augment the connectivity of an input graph

or digraph by add a set of links between the vertices of minimum total cost. Augmentation

68

problems may be modeled as GSN in the following way. The edge set E(G) is partitioned

as E0] L such that, the weight function assigns a weight 0 to every edge in E0 and an

arbitrary weight to edges in L. Then by choosing requirement function appropriately,

we get the various network augmentation problems. Note that the set of links is called

unrestricted if it is equal to V (G)× V (G) and the weight function assigns the same weight

to every link. Otherwise, the set of links is said to be restricted.

The requirement function is called uniform if it assigns the same value to every pair of

vertices, otherwise it is called a general requirement function. In the special case, when

the set of links is unrestricted and the requirements are uniform, i.e r(u, v) = λ for some

constant λ > 0, this is called the Minimum Augmentation problem. Watanabe and

Nakamura gave a polynomial time algorithm for solving this problem in an undirected

graph [WNN89]. Frank gave a polynomial time algorithm for the same problem in directed

graphs [Fra92a]. In undirected graph, this problem is solvable in polynomial time even

for a general requirement function [Fra92a]. However in the weighted case or when

the augmenting set must be a subset of a given set of links, the problem becomes NP-

Hard [Fra92a]. Even the restricted case of augmenting the edge connectivity of a graph from

λ− 1 to λ is NP-hard [BJG08]. A 2-approximation may be obtained for these problems,

by choosing a suitable weight function and applying the algorithm of [KV94]. We refer

to [KN10, BJG08, Khu97, BDK09] for more details. Let us now describe some of these

problems.

In a directed graph, setting r(u, v) = 1 for every pair of vertices along with a restricted

link set, gives us following problem.

Strong Connectivity Augmentation

Input: A digraph G, a subset L of V (G)× V (G) and a weight function w on L.

Question: Find a F ⊆ L of minimum total cost such that G ∪ F is strongly connected.

The undirected version of the above problems is called the 2-Connectivity Augmenta-

tion problem. When the requirements are uniform r(u, v) = λ for a constant λ > 0, we

get the following problem.

69

λ-Connectivity Augmentation

Input: A graph or digraph G, a subset L of V (G)× V (G) and a weight function w on L.

Question: Find a F ⊂ L of minimum total cost such that G ∪ F is λ-edge connected.

When it is additionally guaranteed that, G is (λ− 1)-edge connected in the above problem,

it is called the Augmentation by One problem. Let us note that this problem is NP-hard

even all the weights on L are {0, 1}, by a reduction from Hamiltonian Cycle, Similarly,

for any constant α < λ, such that G is guaranteed to be (λ− α)-edge connected, we have

the Augmentation by α problem.

We may also consider a “steiner” version of the above problem, where we are concerned

with only a subset of the vertices of the input graph.

Steiner λ-connectivity Augmentation

Input: A graph or digraph G, a subset T of V (G), a subset L of V (G) × V (G) and a

weight function w on L.

Question: Find a F ⊂ L of minimum total cost such that in G ∪ F , there are λ edge

disjoint paths between any pair of vertices in T .

8.1.1 Parameterizations of Network Augmentation Problems

A straightforward parameterization of Network Augmentation Problems is the size of a

minimum augmenting set. A few results are known under this parameterization. The

first parameterized algorithm for a connectivity augmentation problem was given by

Nagamochi [Nag03], who gave an 2O(k log k)|V |O(1) algorithm for Augmentation by One in

the case when the weights on the links are identical and λ is odd. Guo and Uhlmann [GU10]

gave a kernel with O(k2) vertices and links for the same case. Most recently, Marx and

Vegh [MV15] studied the problem in its full generality and gave a kernel with O(k) vertices,

O(k3) links and weights of (k6 log k) bit integers. This as well as other previous results

lead to an algorithm with running time 2O(k log k)|V |O(1), even for unweighted version of

the problem. In a later chapter, we shall see improved FPT algorithms for this problem.

70

One could also consider as a parameter, the cardinality of the complement of a solution,

i.e. |L \ F |. In a later chapter, we consider Augmentation by One in undirected graphs

with respect to this parameter. This is a much more difficult problem. Nonetheless, we

obtain an FPT algorithm and a polynomial kernel for it.

Currently, no other results are known for any other augmentation problems in the realm

of parameterized complexity. It is however suspected that Strong Connectivity

Augmentation is FPT.

8.2 Network Optimization

In a network optimization problem, the goal is to find a subgraph of the input graph of

digraph of minimum total costs that meets the given connectivity constraints.

When the requirements are uniform, i.e. r(u, v) = λ for every pair of vertices where λ > 0,

we obtain the following problem.

Minimum λ-edge connected Subgraph

Input: A graph or digraph G which is λ-edge connected and a weight function w on the

edges of the graph.

Question: Find a spanning subgraph H of G of minimum total cost such that H is λ

connected.

This problem is NP-hard, and a there is 2-approximation algorithm is known for it [KV94].

In the special case when the weights are 1 or ∞, i.e. we wish to find a minimum spanning

λ-connected subgraph, a 1 + 2
k approximation may be obtained in polynomial time [CT00].

For the special case of λ = 1 in directed graphs we obtain the Minimum Strongly

Connected Spanning Subgraph (MSCSS) problem.

Minimum Strongly Connected Spanning Subgraph

Input: A graph or digraph G which is strongly connected and a weight function w on

the edges of the graph.

Question: Find a spanning strong subgraph H of G of minimum total cost.

71

Observe that this problem is a generalization of the Hamiltonian Cycle problem, and

furthermore the classical Minimum Equivalent Graph problem also reduces to this

problem in polynomial time.

Let T be subset of V (G), and let requirement function be r(u, v) = 1 if u, v ∈ T and 0

otherwise. Then this gives the well known Steiner Tree problem. In digraphs where the

requirement function is such that r(u, v) = 2 if u, v ∈ T and 0 otherwise, we obtain the

Minimum Strong Steiner Subgraph problem, which is a generalization of MSCSS.

Minimum Strong Steiner Subgraph

Input: A digraph G, a subset T of the vertices and a weight function w on the arcs.

Question: Find a minimum cost strongly connected subgraph H, such that T ⊆ V (H).

Finally we have a “steiner” version of the above problems.

λ-connected Steiner Subgraph

Input: A graph or digraph G, a subset T of V (G) and a weight function w on E(G).

Question: Find a subgraph H of G of minimum total cost such that in H, there are λ

edge disjoint paths between any pair of vertices in T .

8.2.1 Parameterizations of Network Optimization Problems

Generally, the standard parameter for a parameterized problem is the size of a solution to

a given instance. For example for MSCSS, it will be the number of arcs in a minimum

solution H. If G is a graph on n vertices, then observe that the number of arcs in H

must be at least n, as H is also strongly connected. Thus either ` ≥ n or the given

instance, (G, `), is a No instance. Hence, if we use the solution size as a parameter then

the problem is trivially FPT – just try all arcs subsets of size at most `. Clearly, this is at

most
(
n2

`

)
≤
(
`2

`

)
, and thus MSCSS is FPT with respect to ` with an algorithm running in

time 2O(` log `) +O(m+ n). So probably a more meaningful question is whether there is a

subgraph H on at most n+ k arcs, where k is the parameter (such parameterizations are

72

called above/below guarantee parameterization, see [GY12, MRS09] for an introduction to

this topic). However, it is not possible that we can even have an algorithm of the form

ng(k), for any arbitrary function g. The reason for this is as follows. A digraph G has an

equivalent sub-digraph of size n if and only if it has a directed Hamiltonian cycle. Thus an

algorithm of the form ng(k) is polynomial for ` = 0 and hence in polynomial time we could

detect whether an input digraph has a directed Hamiltonian cycle and that would imply

P=NP! So we must look for other relevant parameters.

It is known that a digraph is strong if and only if it contain an out-branching and an

in-branching rooted at some vertex v ∈ V (D) [BJG08, Proposition 12.1.1]. This implies

that for MSCSS, the graph H has at most ≤ 2n−2. Thus, a natural question is whether one

can obtain an a solution with at most 2n− 2−k, with k being the parameter. Bang-Jensen

and Yeo [BJY08] studied this problem and showed that it is FPT by designing an algorithm

with running time 2O(k log k)nO(1). However, notice that if the number of arcs in the input

digraph is less than 2n− 2− k then this algorithm just returns the instance. For example

consider a digraph G which has maximum total degree 3 (the number of in-neighbors

and out-neighbors), and therefore the total number of arcs is bounded by 3
2n. Hence,

this parameterization is not helpful for such instances. For higher connectivity, it can be

shown that any λ connected digraph has at most 2λ(n− 1) arcs, when the graph is λ-edge

connected. Then the corresponding question is whether there is a λ connected subgraph

on at most 2λ(n− 1)− k arcs. It is clear that, this parameterization is not helpful when

the number of arcs is bounded by say 3
2λ(n− 1).

Now, consider the set of arcs D = A(G) \A(H), which may be safely removed from the

graph without affecting the strong connectivity. It is clear that the total weight of D is

maximized when the graph H is the minimum solution. Hence, the cardinality of the set

D could be chosen as a parameter. We shall see in a later chapter, this parameterization

of MSCSS admits a polynomial kernel. Minimum λ-edge Connected Subgraph and

Steiner Tree can also be parameterized in the same way. Currently, no other results

are known for any other network optimization problems in the realm of parameterized

complexity.

73

8.3 Discussion.

There are many other types of network design problem, which we have not discussed here.

For example, problems with distance or latency constraints, degree constraints etc instead

of connectivity constraints are also studied. Furthermore, network design problems are also

studied in a game-theoretic setting where a collection of agents try to route commodities.

See [GK11] for more details. One could also consider other structural parameters such as

the treewidth of the graph for these problems.

There are also vertex-connectivity versions of the above problems, i.e. the requirement

function asks for r(u, v) vertex disjoint paths from u to v. These are substantially harder

and very few results are known about them outside the framework of approximation

algorithms.

To conclude, there are many interesting network design problems, with important practical

applications, whose parameterized complexity has not been explored. Such an endeavor will

perhaps require the development of new tools and techniques in parameterized complexity.

74

Deterministic

Matroid Algorithms

75

Chapter 9

Deterministic Truncation of Linear

Matroids and Applications

9.1 Introduction

In this chapter, we give a deterministic polynomial time algorithm for obtaining a repre-

sentation of the truncation of a linear matroid. This is the first deterministic algorithm for

this problem. In later sections of this chapter we shall see the applications of this algorithm

in de-randomizing some of the results of Marx and Fomin et. al. [FLS14, Mar09].

Let us recall the definition of the truncation of a matroid. For a matroid M = (E, I), the

k-truncation of M is a matroid M ′ = (E, I ′) such that for any A ⊆ E, A ∈ I ′ if and only if

|A| ≤ k and A ∈ I. Given a linear representation of a matroid M of rank n over a universe

of size m (which has a representation matrix of dimension n×m), the problem of finding

a linear representation of the k-truncation of the matroid M = (E, I), can be stated as

the problem of obtaining a rank k truncation of the matrix M1. The rank k-truncation

of a n ×m matrix M , is a k ×m matrix Mk such that for every subset I ⊆ {1, . . . ,m}

of size at most k, the set of columns corresponding to I in M has rank |I| if and only

of the corresponding set of columns in Mk has rank |I|. We can think of finding a rank

k-truncation of a matrix as a dimension reduction problem such that linear independence

1We abuse notation slightly and denote both the matroid and it’s representation matrix by M

77

among all sets of columns of size at most k is preserved. This problem is a variant of the

more general dimensionality reduction problem, which is a basic problem in many areas

of computer science such as machine learning, data compression, information processing

and others. In dimensionality reduction, we are given a collection of points (vectors) in

a high dimensional space, and the objective is to map these points to points in a space

of small dimension while preserving some property of the original collection of points.

For an example, one could consider the problem of reducing the dimension of the space,

while preserving the pairwise distance, for a given collection of points. Using the Johnson-

Lindenstrauss Lemma this can be done approximately for any collection of m points, while

reducing the dimension of the space to O(logm). Here, we study dimensionality reduction

under the constraint that linear independence of any subcollection of size up to k of the

given set of vectors is preserved. Here the objective is to map the set of column vectors of

M (which lie in a space of dimension n) to vectors in a space of dimension k such that,

any set S of column vectors of M with |S| ≤ k are linearly independent if and only if the

corresponding set of vectors in the k-dimensional vector space are linearly independent.

As observed by Marx [Mar09], a common way to obtain a rank k-truncation of a matrix

M , is to left-multiply M by a random matrix of dimension k × n (with entries from a field

of an appropriate size). Then using the Schwartz-Zippel Lemma one can show that, the

product matrix is a k-truncation of the matrix M with high probability.

Proposition 9.1 ([Mar09, Proposition 3.7]). Given a matroid M with a representation A

over a finite field F and an integer t, a representation of the t-truncation of M , say M ′,

can be found in randomized polynomial time.

Note that there is no known polynomial time algorithm to check the output of this algorithm,

as such an algorithm must verify that every independent set of size at most k in M must

be preserved. This raises a natural question of whether there is a deterministic algorithm

for computing k-truncation of a matrix. In this chapter we settle this question by giving a

polynomial time deterministic algorithm to solve this problem. We further show that for

many fields, the k-truncation matrix can be represented over a finite degree extension.

A related notion is the `-elongation of a matroid, where ` > rank(M). It is defined as

78

the matroid M ′ = (E, I ′) such that S ⊆ E is a basis of M ′ if and only if, it contains a

basis of M and |S| = `. Note that the rank of the matroid M ′ is `. As a corollary of the

above algorithm, we obtain a deterministic polynomial time algorithm for computing the

representation of the `-elongation of any linear matroid.

9.2 Preliminaries

Let us review some definitions and results which are required for this chapter.

9.2.1 Fields and Polynomials

In this section we review some definitions and properties of fields. We refer to any graduate

text on algebra for more details. The cardinality or the size of a field is called its order.

It is well known that rational numbers Q and real numbers R are fields of infinite order.

For every prime number p and a positive integer `, there exists a finite field of order p`.

For a prime number p, the set {0, 1, . . . , p− 1} with addition and multiplication modulo

p forms a field, which we denote by Fp. Such fields are known as prime fields. Let F be

a finite field and F[X] be the ring of polynomials in X over F. For the ring F[X] we can

define a field F(X) which is called the field of fractions of F[X] as follows. The elements

of F(X) are of the form P (X)/Q(X) where P (X), Q(X) ∈ F[X] and Q(X) is not a zero

polynomial. The addition and multiplication operations from F[X] are extended to F(X)

in the usual way. The degree of a polynomial P (X) ∈ F(X) is the highest exponent on

indeterminate X with a nonzero coefficient in P (X). We will use F[X]<n to denote the set

the polynomials in F[X] of degree < n.

For a field F, we use +F and ×F to denote the addition and multiplication operations.

(Often we write a + b and ab when the context is clear.) The characteristic of a field,

denoted by char(F), is defined as least integer m such that
∑m

i=1 1 = 0. For fields such as

R where there is no such m, the characteristic is defined to be 0. For a finite field F = Fp` ,

let F∗ = F \ {0}. This is called the multiplicative group of F which is a cyclic group and

has a generator α ∈ F∗. Every element of F∗ can be written as αi for some number i. The

79

element α is called a primitive element of the field F. We say that an element β ∈ F has

order r, if r is the least integer such that βr = 1.

A polynomial P (X) ∈ F[X] is called irreducible if it cannot expressed as a product of two

other non-trivial polynomials in F[X]. Let P (X) be an irreducible polynomial in F[X],

of degree `. Then K = F[X]
P (X) = F[X](mod P (X)) is also a field. It is of order |F|` and

characteristic of K is equal to the characteristic of F. We call K a field extension of F of

degree `. All finite fields are obtained as extensions of prime fields, and for any prime p

and positive integer ` there is exactly one finite field of order p` up to isomorphism.

9.2.2 Vectors and Matrices

A vector v over a field F is an array of values from F. A collection of vectors {v1, v2, . . . , vk}

are said to be linearly dependent if there exist values a1, a2, . . . , ak, not all zeros, from F

such that
∑k

i=1 aivi = 0. Otherwise these vectors are called linearly independent.

For a matrix A = (aij) over a field F, the row set and the column set are denoted by R(A)

and C(A) respectively. For I ⊆ R(A) and J ⊆ C(A), A[I, J] =
(
aij | i ∈ I, j ∈ J

)
means

the submatrix (or minor) of A with the row set I and the column set J . The matrix is said

to have dimension n×m if it has n rows and m columns. For a matrix A (or a vector v) by

AT (or vT) we denote its transpose. Note that each column of a matrix is a vector over the

field F. The rank of a matrix is the cardinality of the maximum sized collection of columns

which are linearly independent. Equivalently, the rank of a matrix is the maximum number

k such that there is a k × k submatrix whose determinant is non-zero. We can use the

definition of rank of a matrix to certify the linear independence of a set of vectors. A

collection of n vectors v1, v2, . . . , vn are linearly independent if and only if the matrix M

formed by v1, v2, . . . , vn as column vectors have rank n. Determinant of a n× n matrix A

is denoted by det(A) and is defined as

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

A[i, σ(i)].

Here, Sn is the set of all permutations of {1, . . . , n} and sgn(σ) denotes the signature of

80

the permutation σ.

9.2.3 Derivatives

Recall the definition of the formal derivative d
dx of a function over R. We denote the k-th

formal derivative of a function f by f (k). We can extend this notion to finite fields. Let F

be a finite field and let F[X] be the ring of polynomials in X over F. Let P ∈ F[X] be a

polynomial of degree n− 1, i.e. P =
∑n−1

i=0 aiX
i where ai ∈ F. Then we define the formal

derivative of as P ′ =
∑n−1

i=1 iaiX
i−1. We can extend this definition to the k-th formal

derivative of P as P (k) = (P (k−1))′. Note that higher derivatives are defined iteratively

using lower derivatives, thus they are also called iterated formal derivatives.

Formal derivatives continue to carry many of their properties in R to finite fields F. However

not all properties carry through. For example, in F3[X] the polynomial P (X) = X3 has all

derivatives 0. To remedy such problems, we require the notion of Hasse Derivatives. For a

polynomial P (X) ∈ F[X], the i-th Hasse derivative Di(P) is defined as the coefficient of

Zi in P (X + Z).

P (X + Z) =
∞∑
i=0

Di(P (X))Zi

We note some important properties of Hasse derivatives and how they relate to formal

derivatives. We refer to [DKSS09] and [Gol03] for details.

Lemma 9.2. Let F be a finite field of characteristic p, P,Q ∈ F[x]. Then the following

holds :

1. Dk is a linear map from F[X] to F[X].

2. Let k be some number and let k! be non-zero in F (i.e. k! 6= 0 mod p). Then

k!.Dk(P) = P (k). In particular D0(P) = f and D1(P) = P (1).

Observe that the second statement in the above lemma shows that the value of k-th hasse

derivatives and k-th formal derivatives differ only by a multiplicative value whenever k! is

non-zero in F. In particular when k < p, (the characteristic of the field F) then k! is always

non-zero in F. In our setting this is always the case.

81

9.2.4 Determinants

Proposition 9.3 (Generalized Laplace expansion). For an n × n matrix A and J ⊆

C(A) = [n], it holds that

det(A) =
∑

I⊆[n],|I|=|J |

(−1)
∑
I+

∑
Jdet(A[I, J]])det(A[Ī , J̄])

We refer to [Mur00, Page number 33, Proposition 2.1.3] for a proof of the above identity.

We always assume that the number of rows in the representation matrix AM of M over a

field F is equal to the rank(M) = rank(M). Else, using Gaussian elimination we can obtain

a matrix of the desired kind in polynomial time. See [Mar09, Proposition 3.1] for details.

9.3 Matrix Truncation

In this section we give our one of the main results. We start with an introduction to our

tools and then we give two results that give rank k-truncation of the given matrix M .

9.3.1 Tools and Techniques

In this subsection we collect some known results, definitions and derive some new connections

among them that will be central to our results.

Polynomials and Vectors

Let F be a field. The set of polynomials P1(X), P2(X), . . . , Pk(X) in F[X] are said to be

linearly independent over F if there doesn’t exist a1, a2, . . . , ak ∈ F, not all zeros such that∑k
i=1 aiPi(X) ≡ 0. Otherwise they are said to be linearly dependent.

Definition 9.1. Let P (X) be a polynomial of degree at most n − 1 in F[X]. We define

the vector v corresponding to the polynomial P (X) as follows: v[j] = cj where P (X) =
n∑
j=1

cjx
j−1. Similarly given a vector v of length n over F, we define the polynomial P (X)

82

in F[X] corresponding to the vector v as follows: P (X) =
n∑
j=1

v[j]xj−1.

The next lemma will be key to several proofs later.

Lemma 9.4. Let v1, . . . , vk be vectors of length n over F and let P1(X), . . . , Pk(X) be the

corresponding polynomials respectively. Then P1(X), . . . , Pk(X) are linearly independent

over F if and only if v1, v2, . . . , vk are linearly independent over F.

Proof. For i ∈ {1 . . . k}, let vi = (ci1, . . . , cin) and let Pi(X) =
∑n

j=1 cijx
j−1 be the

polynomial corresponding to vi.

We first prove the forward direction of the proof. For a contradiction, assume that

v1, . . . , vk are linearly dependent. Then there exists a1, . . . , ak ∈ F, not all zeros, such that∑k
i=1 aivi = 0. This implies that for each j ∈ {1, . . . n},

∑k
i=1 aivi[j] = 0. Since vi[j] = cij ,

we have
∑k

i=1 aicij = 0, which implies that
∑k

i=1 aicijx
j−1 = 0. Summing over all these

expressions we get
∑k

i=1 aiPi(X) ≡ 0, a contradiction. This completes the proof in the

forward direction.

Next we prove the reverse direction of the lemma. To the contrary assume that P1(X), . . . , Pk(X)

are linearly dependent. Then there exists a1, . . . , ak ∈ F, not all zeros, such that∑k
i=1 aiPi(X) ≡ 0. This implies that for each j ∈ {1, . . . , n}, the coefficients of xj−1

satisfy
∑k

i=1 aicij = 0. Since cij is the j-th entry of the vector vi for all i and j, we have∑k
i=1 aivi = 0. Thus the vectors v1, . . . , vk are linearly dependent, a contradiction to the

given assumption. This completes this proof.

We will use this claim to view the column vectors of a matrix M over a field F as elements in

the ring F[X] and in the field of fractions F(X). We shall then use properties of polynomials

to deduce properties of these column vectors and vice versa.

The Wronskian matrix

Let F be a field with characteristic at least n. Consider a collection of polynomials

P1(X), . . . , Pk(X) from F[X] of degree at most n − 1. We define the following matrix,

called the Wronskian, of P1(X), . . . , Pk(X) as follows.

83

W (P1, . . . , Pk) =

P1(X) P2(X) . . . Pk(X)

P
(1)
1 (X) P

(1)
2 (X) . . . P

(1)
k (X)

...
...

. . .
...

P
(k−1)
1 (X) P

(k−1)
2 (X) . . . P

(k−1)
k (X)

k×k

Note that, the determinant of the above matrix actually yields a polynomial. For our

purpose we will need the following well known result.

Theorem 9.2 ([BD10, GV87, Mui82]). Let F be a field and P1(X), . . . , Pk(X) be a set

of polynomials from F[X]<n and let char(F) > n. Then P1(X), . . . , Pk(X) are linearly

independent over F if and only if the Wronskian determinant det(W (P1(X), . . . , Pk(X))) 6≡

0 in F[X].

The notion of Wronskian dates back to 1812 [Mui82]. We refer to [BD10, GV87] for

some recent variations and proofs. The switch between usual derivatives and Hasse

derivatives multiplies the Wronskian determinant by a constant, which is non-zero as

long as n < char(F), and thus this criterion works with both notions. Observe that the

Wronskian determinant is a polynomial of degree at most nk in F[X]. Thus to test if such

a polynomial (of degree d) is identically zero, we only need to evaluate it at d+ 1 arbitrary

points of the field F, and check if it is zero at all those points.

The Folded Wronskian matrix

The above definition of Wronskian requires us to compute derivatives of degree (n − 1)

polynomials. As noted earlier, they are well defined only if the underlying field has

characteristic greater than or equal to n. However, we might have matrix over fields of

small characteristic. For these kind of fields, we have the notion of Folded Wronskian

which was recently introduced by Guruswami and Kopparty in the context of subspace

design [GK13].

Consider a collection of polynomials P1(X), . . . , Pk(X) from F[X] of degree at most (n−1).

Further, let F be of order at least n + 1, and α be an element of F∗. We define the the

84

α-folded Wronskian, of P1(X), . . . , Pk(X) as follows.

Wα(P1, . . . , Pk) =

P1(X) P2(X) . . . Pk(X)

P1(αX) P2(αX) . . . Pk(αX)

...
...

. . .
...

P1(α
k−1X) P2(α

k−1X) . . . Pk(α
k−1X)

k×k

As before, the determinant of the above matrix is a polynomial of degree at most nk in

F[X]. Note that Guruswami and Kopparty defined the above notion of α-folded Wronskian

only for those α that are primitive element of F. In particular, they proved the following

result about α-folded Wronskians [GK13, Lemma 12].

Theorem 9.3 ([GK13]). Let F be a field of order > n, α be a primitive element of F and let

P1(X), . . . , Pk(X) be a set of polynomials from F[X]<n. Then P1(X), . . . , Pk(X) are linearly

independent over F if and only if the α-folded Wronskian determinant det(Wα(P1, . . . , Pk)) 6≡

0 in F[X].

Theorem 9.3 requires a primitive element α of the underlying field F. However, finding

a primitive element in a finite field is a non-trivial problem and currently there are no

deterministic polynomial time algorithm known for this problem. To overcome this difficulty,

we prove a generalization of Theorem 9.3. The next theorem relaxes the requirement that

α must be a primitive element of the field F, and only requires that α be an element of

sufficiently large order. Finding an element of large order is slightly easier task than finding

a primitive element of a finite field F, and this will be sufficient for our purposes. We note

that the following theorem was also proved by Forbes and Shpilka [FS12], who applied it

in construction pseudorandom objects for polynomial identity testing and other related

problems. Here, we provide a different proof of this

Theorem 9.4. Let F be a field, α be an element of F of order > (n − 1)(k − 1) and let

P1(X), . . . , Pk(X) be a set of polynomials from F[X]<n. Then P1(X), . . . , Pk(X) are linearly

independent over F if and only if the α-folded Wronskian determinant det(Wα(P1, . . . , Pk)) 6≡

0 in F[X].

In what follows we build towards the proof of Theorem 9.4. For the sake of brevity, we use

85

Wα to denote the matrix Wα(P1, . . . , Pk). We use the notation Z1, Z2, . . . , Zk to denote

the columns of Wα. That is, Zi = (Pi(X), Pi(αX), . . . , Pi(α
k−1X))T . Observe that Wα is

a matrix over the field F(X), with entries from the ring F[X]. When we talk about linear

independence of {Zi}ki=1, the underlying field is F(X). We recall the following well known

lemma about non-zero determinant of a square matrix and the linear independence of it’s

columns.

Lemma 9.5. Let M be a n×n over a field F. Then det(M) 6= 0 if and only if the columns

of M are linearly independent over F.

The next lemma will prove the reverse direction of Theorem 9.4.

Lemma 9.6. If P1(X), . . . , Pk(X) are linearly dependent over F, then det(Wα) ≡ 0.

Proof. Since P1(X), . . . , Pk(X) are linearly dependent over F, there exist λ1, . . . , λk ∈ F

(not all equal to zero) such that
∑k

i=1 λiPi(X) = 0. Therefore, for all d ∈ {0, 1, . . . , k − 1}

we have that
∑k

i=1 λiPi(α
dX) = 0. This implies that

∑k
i=1 λiZi = 0. That is, the columns

of Wα are linearly dependent over F ⊆ F(X). Therefore by Lemma 9.5 the polynomial

det(Wα) is identically zero. That is, det(Wα) ≡ 0. This completes the proof.

The next lemma will be used in the forward direction of the proof.

Lemma 9.7. Let A(X) and B(X) be non zero polynomials in F[X] of degree at most `. Let

β ∈ F be an element of order > `. If A(X)B(βX)−A(βX)B(X) ≡ 0 then A(X) = λB(X)

where 0 6= λ ∈ F.

Proof. Let A(X) =
∑`

i=0 aiX
i, and B(X) =

∑`
j=0 bjX

j where ai, bj ∈ F.

Case 1: We first assume that b0 6= 0. Later we will show how all other cases reduce to

this. Let

SA,B(X) = A(X)B(βX)−A(βX)B(X).

Since SA,B(X) ≡ 0 we have that for all t ∈ {0, 1, . . . , 2l}, the coefficients of Xt in SA,B(X)

is zero. Our proof is based on the following claim.

86

Claim 1. For all i ∈ {1, . . . l}, either ai
bi

= a0
b0

, or ai = bi = 0.

Proof. We prove the claim using induction on i. For i = 1, consider the coefficient of X in

SA,B(X). The coefficient of X in SA,B(X) is (β − 1)(a0b1 − a1b0). Since the order of β is

> `, (β − 1) 6= 0. This implies (a0b1 − a1b0) = 0. So if b1 = 0, then a1 = 0 (because b0 6= 0)

and if b1 6= 0, then a0
b0

= a1
b1

. Thus we assume that i ≥ 2 and by induction hypothesis the

claim holds for j ∈ {1, . . . , i− 1}. Now, consider the coefficients of Xi in SA,B(X). The

coefficient of Xi in SA,B(X) is

βi(a0bi − aib0) + βi−1(a1bi−1 − ai−1b1) + . . .+ (aib0 − a0bi).

By our assumption we know that

βi(a0bi − aib0) + βi−1(a1bi−1 − ai−1b1) + . . .+ (aib0 − a0bi) = 0.

Consider the term βj(ai−jbj − ajbi−j) for 0 < j < i. By induction hypothesis, one of the

following statement is true.

• aj = bj = 0

• ai−j = bi−j = 0

• ai−j
bi−j

= a0
b0

=
aj
bj

In all the three cases the term βj(ai−jbj − ajbi−j) is zero. Therefore the coefficient of Xi

simplifies to, (βi − 1)(a0bi − aib0) and we get (βi − 1)(a0bi − aib0) = 0. Since the order of

β is strictly larger than `, (βi − 1) 6= 0. This implies (a0bi − aib0) = 0. So if bi = 0, then

ai = 0 (because b0 6= 0) and if bi 6= 0, then a0
b0

= ai
bi

. This concludes the claim.

Let λ = a0
b0
∈ F. Thus ai = λbi. Therefore A(X) = λB(X). Since A(X) 6≡ 0, λ 6= 0.

87

Case 2: Suppose b0 = 0 and a0 6= 0. Then let A1(X) = B(X) and B1(X) = A(X). Since

A(X)B(βX)−A(βX)B(X) ≡ 0, we have that

B1(X)A1(βX)−B1(βX)A1(X) ≡ 0

=⇒ −(B1(βX)A1(X)−B1(X)A1(βX)) ≡ 0.

Thus A1(X)B1(βX)−A1(βX)B1(X) ≡ 0. So by applying Case 1 with A1(X) and B1(X),

we get A1(X) = λB1(X) where 0 6= λ ∈ F. This implies that A(X) = λ−1B(X) where

0 6= λ−1 ∈ F.

Case 3: Suppose b0 = 0 and a0 = 0. Let r be the least integer such that either ar 6= 0

or br 6= 0. Then let A(X) = XrA2(X) and B(X) = XrB2(X). Since A(X)B(βX) −

A(βX)B(X) ≡ 0, we have that A2(X)B2(βX) − A2(βX)B2(X) ≡ 0. Note that the

coefficient ofX0 is non zero in at least one of the polynomials A2(X) or B2(X). Furthermore,

A2(X), B2(X) 6≡ 0. Thus, if the coefficient of B2(X) is non-zero then we are in Case 1

else we are in Case 2. This completes the proof of the lemma.

The next lemma will be useful in showing the forward direction of Theorem 9.4.

Lemma 9.8. Let P1(X), . . . , Pk(X) be a set of polynomials from F[X]<n and α be an

element of order > (n − 1)(k − 1). If det(Wα) ≡ 0, then P1(X), . . . , Pk(X) are linearly

dependent over F.

Proof. We prove the lemma using induction on k – the number of polynomials. For k = 1,

Wα = [P1(X)] and the lemma vacuously holds. From now on we assume that k ≥ 2 and that

the lemma holds for all t < k. Recall that Zi denotes the i-th column of the matrix Wα. We

first give the proof for the case when there is a subset of columns of Z1, . . . , Zk, of size < k

that are linearly dependent over F(X). Let {i1, . . . , it} ⊂ {1, . . . , k} of size at most k − 1,

such that Zi1 , . . . , Zit are linearly dependent. Thus, there exists δ1(X), . . . , δt(X) ∈ F(X),

not all equal to zero polynomial in F(X), such that
∑t

j=1 δi(X)Zij ≡ 0. Let Z ′i1 , . . . , Z
′
it

denote the restriction of Zi1 , . . . , Zit to first t rows of Wα. Since
∑t

j=1 δi(X)Zij ≡ 0, this

implies that
∑t

j=1 δi(X)Z ′ij ≡ 0. Therefore Z ′i1 , . . . , Z
′
it

are also linearly dependent over

88

F(X). Consider Wα(Pi1 , . . . , Pit). This is a t× t matrix with columns Z ′i1 , . . . , Z
′
it

. Since

Z ′i1 , . . . , Z
′
it

are linearly dependent, by Lemma 9.5, det(Wα(Pi1 , . . . , Pit)) ≡ 0. By induction

hypothesis, this implies that Pi1(X), . . . , Pit(X) are linearly dependent over F and thus

P1(X), . . . , Pk(X) are linearly dependent over F. So from now on we assume that for any

subset {i1, . . . , it} ⊂ {1, . . . , k} of size at most k − 1, Zi1 , . . . , Zit are linearly independent

and det(Wα(Pi1 , . . . , Pit)) 6≡ 0.

Next we prove the claim that if {Zi}ki=1 are linearly dependent then we can choose the

polynomials δi(X) in F(X) which satisfy certain desirable properties.

Claim 1. Let det(Wα(P1, . . . , Pk) ≡ 0. Then there exist non-zero polynomials δ1(X), . . . , δk(X) ∈

F[X], of degree at most (n− 1)(k − 1) such that
∑k

i=1 δi(X)Zi = 0.

Proof. For all i ∈ {1, . . . , k}, define

δi(X) = (−1)1+idet(Wα(P1(αX), . . . , Pi−1(αX), Pi+1(αX), . . . , Pk(αX)))

= (−1)1+idet(Wα(P1, . . . , Pk)[{2, . . . , k}, {1, . . . , k} \ {i}]).

Observe that
k∑
i=1

δi(X)Pi(X) = det(Wα(P1, . . . , Pk)) ≡ 0,

because by assumption det(Wα(P1, . . . , Pk)) ≡ 0. Now consider the matrix Wj obtained by

replacing the first row of Wα(P1, . . . , Pk) with jth row of Wα(P1, . . . , Pk). That is,

Wj =

P1(α
j−1X) P2(α

j−1X) . . . Pk(α
j−1X)

P1(αX) P2(αX) . . . Pk(αX)

P1(α
2X) P2(α

2X) . . . Pk(α
2X)

...
...

. . .
...

P1(α
k−1X) p2(α

k−1X) . . . Pk(α
k−1X)

k×k

Note that for any j ∈ {2, . . . , k},
∑k

i=1 δi(X)Pi(α
j−1X) = det(Wj) ≡ 0 (as Wj has two

identical rows). Hence,
∑k

i=1 δi(X)Zi = 0. Since we are in the case where for any subset

{i1, . . . , it} ⊂ {1, . . . , k} of size at most k− 1, Zi1 , . . . , Zit are linearly independent we have

89

that

det(Wα(P1, . . . , Pi−1, Pi+1, . . . , Pk)) 6≡ 0.

This implies that

δi(X) = (−1)1+idet(Wα(P1(αX), . . . , Pi−1(αX), Pi+1(αX), . . . , Pk(αX))) 6≡ 0

and the degree of δi(X) is at most (n− 1)(k − 1) for all i ∈ {1, . . . , k}. This completes the

proof of the claim.

From now on we work with the collection {δi(X)}ki=1 provided by Claim 1. We have the

following expression.

k∑
i=1

δi(X)Zi =
k∑
i=1

δi(X)

Pi(X)

Pi(αX)

. . .

Pi(α
k−1X)

= 0

This implies that for each j ∈ {0, . . . , k − 1}, we have

k∑
i=1

δi(X)Pi(α
jX) = 0. (9.1)

By rearranging Equation 9.1 and absorbing the negative sign into δk(X) we get

k−1∑
i=1

δi(X)Pi(α
jX) = δk(X)Pk(α

jX). (9.2)

Substitute αX for X in Equation 9.2 for all j ∈ {0, . . . , k − 2} we get

k−1∑
i=1

δi(αX)Pi(α
j+1X) = δk(αX)Pk(α

j+1X). (9.3)

90

Substitute the value of Pk(αj+1X) from Equation 9.2 into Equation 9.3, we get that for all

j ∈ {0, 1, . . . , k − 2}

δk(X)
k−1∑
i=1

δi(αX)Pi(α
j+1X) = δk(αX)

k−1∑
i=1

δi(X)Pi(α
j+1X). (9.4)

Thus for each j ∈ {0, 1, . . . , k − 2} we have

k−1∑
i=1

{
δk(X)δi(αX)− δk(αX)δi(X)

}
Pi(α

j+1X) = 0. (9.5)

Substitute βX for X in Equation 9.5, where β = α−1. Then for all j ∈ {0, 1, . . . , k − 2}

k−1∑
i=1

{
δk(βX)δi(X)− δk(X)δi(βX)

}
Pi(α

jX) = 0. (9.6)

Let Z ′i be the column vector corresponding to Zi in the matrix Wα(P1, . . . , Pk) restricted

to the first k − 1 rows. Then from Equation 9.6 we get that for all j ∈ {0, 1, . . . , k − 2}

k−1∑
i=1

{
δk(βX)δi(X)− δk(X)δi(βX)

}

Pi(X)

Pi(αX)

. . .

Pi(α
k−2X)

= 0. (9.7)

which implies that

k−1∑
i=1

{
δk(βX)δi(X)− δk(X)δi(βX)

}
Z ′i = 0. (9.8)

Consider the (k−1)× (k−1) matrix [Z ′1, Z
′
2, . . . , Z

′
k−1] = Wα(P1(X), P2(X), . . . , Pk−1(X)).

By the case of proof we are currently dealing, we have that Wα(P1(X), P2(X), . . . , Pk−1(X))

has a non-zero determinant. In other words, the vectors Z ′1, . . . , Z
′
k−1 are linearly indepen-

dent over F(X). This implies that for all i ∈ {1, . . . , k − 1},

δi(X)δk(βX)− δi(βX)δk(X) = 0

91

Observe that δi(X), i ∈ {1, . . . , k}, are non-zero polynomials in F[X] of degree at most

(n − 1)(k − 1). Furthermore, the order of β is > (n − 1)(k − 1), and thus by applying

Lemma 9.7 we get that δi(X) = λiδk(X) for all i ∈ {1, . . . , k − 1} where 0 6= λi ∈ F. By

simplifying we get the following.

k∑
i=1

δi(X)Zi = 0

⇐⇒
k∑
i=1

λiδk(X)Zi = 0 (because δi(X) = λiδk(X))

⇐⇒
k∑
i=1

λiZi = 0 (because δk(X) 6≡ 0)

⇐⇒
k∑
i=1

λiPi(X) = 0

Hence P1(X), . . . Pk(X) are linearly dependent over F. This completes the proof of the

lemma.

Combining Lemmata 9.6 and 9.8, we get the proof of Theorem 9.4. We can get the following

corollary from Theorems 9.3 and 9.4.

Corollary 9.9. Let F be a field of size > n, α be either a primitive element or an element

of F of order > (n − 1)(k − 1) and let P1(X), . . . , Pk(X) be a set of polynomials from

F[X]<n. Then P1(X), . . . , Pk(X) are linearly independent over F if and only if the α-folded

Wronskian determinant det(Wα(P1, . . . , Pk)) 6≡ 0 in F[X].

Finding irreducible polynomials and elements of large order

Whenever we will need to use folded Wronskians, we will also need to get hold of a primitive

element or an element of large order of an appropriate field. We start by reviewing some

known algorithms for finding irreducible polynomials over finite fields. Note that for a

finite field of order p`, the field operations can be done in time (l log p)O(1). And for an

infinite field, the field operations will require (logN)O(1) where N is the size of the largest

value handled by the algorithm. Typically we will provide an upper bound on N when

the need arises. A result by Shoup [Sho88, Theorem 4.1]) allows us to find an irreducible

92

polynomial of degree r over Fp` in time polynomial in p, l and d. Adleman and Lenstra

[AJ86, Theorem 2] gave an algorithm that allows us to compute an irreducible polynomial

of degree at least r over a prime field Fp in time polynomial in log p and r.

Lemma 9.10 ([AJ86, Sho88]). (Finding Irreducible Polynomials)

1. There is an algorithm that given prime p and r, it can compute an irreducible

polynomial f(X) ∈ Fp[X] such that r ≤ deg(f) ≤ cr log p in (cr(log p)2)c time, where

c is a constant.

2. For q = p` and an integer r, we can compute an irreducible polynomial of Fq[X] of

degree r in O
(√
p(log p)3r3(log r)O(1)+(log p)2r4(log r)O(1)+

(log p)r4(log r)O(1)`2(log `)O(1)
)

time.

Next we consider a few algorithms for finding primitive elements in finite fields. For fields

of large order but small characteristic, we have the following lemma, which follows from

the results of Shparlinski [Shp90] and also from the results of Shoup [Vic90].

Lemma 9.11 ([Shp90, Vic90]). Let F = Fp` be a finite field. Then we can compute a set

S ⊂ F, containing a primitive element, of size poly(p, `) in time poly(p, `).

We use Lemma 9.11 to get the following result that allows us to find elements of sufficiently

large order in a finite field or a primitive element in a field of small size.

Lemma 9.12. Let F = Fp` be a finite field. Given a number n such that n < p`, we can

compute an element of F of order greater than n in poly(p, `, n) time. Furthermore, we

can find a primitive element in F in time |F|O(1).

Proof. We begin by applying Lemma 9.11 to the field F and obtain a set S of size

poly(p, `). This takes time poly(p, `). Then for each element α ∈ S we compute the set

Gα = {αi | i = 1, 2, . . . , n + 1}. If for any α, |Gα| = n + 1, then we return this as the

required element of order greater than n. Since the set S contains at least one primitive

element of F, we will find some α in this step. Note this this step too takes poly(p, `, n)

time.

93

To prove the second statement of the lemma do as follows. For each element α ∈ S,

consider the set S(α) = {αi | i = 1, . . . , p`}. If |S(α)| = |F∗| = p` − 1, then α generates

F∗. Since the set S contains at least one primitive element of F, we will find some α in

this step. Note this this step can be done in time |F|O(1). This completes the proof of this

lemma.

When given a small field, the following lemma allows us to increase the size of the field as

well as find a primitive element in the larger field.

Lemma 9.13. Given a field F = Fp` and a number n such that p` < n, we can find an

extension K of F such that n < |K| < n2 and a primitive element α of K in time nO(1).

Proof. Let r be smallest number such that p`r > n. But then p`r/2 < n. Therefore we

have that p`r < n2. Next we find an extension of F of degree r, by finding an irreducible

polynomial over F of degree r using Lemma 9.10 in time polynomial in p, `, r, which is

nO(1). Then we can use Lemma 9.12 to compute a primitive element of K. Since |K| < n2,

this can be done in time nO(1). This completes the proof of this lemma.

9.3.2 Deterministic Truncation of Matrices

In this section we look at algorithms for computing k-truncation of matrices. We consider

matrices over the set of rational numbers Q or over some finite field F. Therefore, we are

given as input a matrix M of rank n over a field F. Let p be the characteristic of the field

F and N denote the size of the input in bits. The following theorem, gives us an algorithm

to compute the truncation of a matrix using the classical wronskian, over an appropriate

field. We shall refer to this as the classical wronskian method of truncation.

Lemma 9.14. Let M be a n ×m matrix of rank n over a field F, where F is either Q

or char(F) > n. Then we can compute a k ×m matrix Mk of rank k over the field F(X)

which is a k-truncation of the matrix M in O(mnk) field operations.

Proof. Let F[X] be the ring of polynomials in X over F and let F(X) be the corresponding

field of fractions. Let C1, . . . , Cm denote the columns of M . Observe that we have a

94

polynomial Pi(X) corresponding to the column Ci of degree at most n−1, and by Lemma 9.4

we have that Ci1 , . . . , Ci` are linearly independent over F if and only if Pi1(X), . . . , Pi`(X)

are linearly independent over F. Further note that Pi lies in F[X] and thus also in F(X).

Let Di be the vector (Pi(X), P
(1)
i (X), . . . , P

(k−1)
i (X)) of length k with entries from F[X]

(and also in F(X)). Note that the entries of Di are polynomials of degree at most n− 1.

Let us define the matrix Mk to be the (k ×m) matrix whose columns are DT
i , and note

that Mk is a matrix with entries from F[X]. We will show that indeed Mk is a desired

k-truncation of the matrix M .

Let I ⊆ {1, . . . ,m} such that |I| = ` ≤ k. Let Ci1 , . . . , Ci` be a linearly independent set of

columns of the matrix M over F, where I = {i1, . . . , i`}. We will show that the columns

DT
i1
, . . . , DT

i`
are linearly independent in Mk over F(X). Consider the k×` matrix MI whose

column are the vectors DT
i1
, . . . , DT

i`
. We shall show that MI has rank ` by showing that there

is a `× ` submatrix whose determinant is a non-zero polynomial. Let Pi1(X), . . . , Pi`(X)

be the polynomials corresponding to the vectors Ci1 , . . . , Ci` . By Lemma 9.4 we have that

Pi1(X), . . . , Pi`(X) are linearly independent over F. Then by Theorem 9.2, the (` × `)

matrix formed by the column vectors (Pij (X), P
(1)
ij

(X), . . . , P
(`−1)
ij

(X))T , ij ∈ I, is a non-

zero determinant in F[X]. But note that this matrix is a submatrix of MI . Therefore MI

has rank ` in F(X). Therefore the vectors DT
i1
, . . . , DT

i`
are linearly independent in F(X).

This completes the proof of the forward direction.

Let I ⊆ {1, . . . ,m} such that |I| = ` ≤ k and let DT
i1
, . . . , DT

i`
be linearly independent

in Mk over F(X), where I = {i1, . . . , i`}. We will show that the corresponding set of

columns Ci1 , . . . , Ci` are also linearly independent over F. For a contradiction assume that

Ci1 , . . . , Ci` are linearly dependent over F. Let Pi1(X), . . . , Pi`(X) be the polynomials in

F[X] corresponding to these vectors. Then by Lemma 9.4 we have that Pi1(X), . . . , Pi`(X)

are linearly dependent over F. So there is a tuple ai1 , . . . , ai` of values of F such that∑`
j=1 aijPij (X) = 0. Therefore, for any d ∈ {1, . . . , `−1}, we have that

∑`
j=1 aijP

(d)
ij

(X) =

0. Now let DT
i1
, . . . , DT

i`
be the column vectors of Mk corresponding to Ci1 , . . . , Ci` . Note

that F is a subfield of F(X) and by the above, we have that
∑`

j=1 aijDij = 0. Thus

DT
i1
, . . . , DT

i`
are linearly dependent in Mk over F(X), a contradiction to our assumption.

95

Thus we have shown that for any {i1, . . . , i`} ⊆ {1, . . . ,m} such that ` ≤ k, Ci1 , . . . , Ci`

are linearly independent over F if and only if Di1 , . . . , Di` are linearly independent over

F(X). To estimate the running time, observe that for each Ci we can compute Di in O(kn)

field operations and thus we can compute Mk in O(mnk) field operations. This completes

the proof of this lemma.

Lemma 9.14 is useful in obtaining k-truncation of matrices which entries are either from the

filed of large characteristic or from Q. The following lemma allows us to find truncations

in fields of small characteristic which have large order. We however require a primitive

element or an element of high order of such a field to compute the truncation. In the next

lemma we demand a lower bound on the size of the field as we need an element of certain

order. We will later see how to remove this requirement from the statement of the next

lemma.

Lemma 9.15. Let F be a finite field and α be an element of F of order at least (n− 1)(k−

1) + 1. Let M be a (n × m) matrix of rank n over a field F. Then we can compute a

(k ×m) matrix Mk of rank k over the field F(X) which is a k-truncation of the matrix M

in O(mnk) field operations.

Proof. Let F[X] be the ring of polynomials in X over F and let F(X) be the corresponding

field of fractions. Let C1, . . . , Cm denote the columns of M . Observe that we have a

polynomial Pi(X) corresponding to the column Ci of degree at most n−1, and by Lemma 9.4

we have that Ci1 , . . . , Ci` are linearly independent over F if and only if Pi1(X), . . . , Pi`(X)

are linearly independent over F. Further note that Pi(X) lies in F[X] (and also in F(X)).

Let Di be the vector (Pi(X), Pi(αX), . . . , Pi(α
k−1X)). Observe that the entries of Di are

polynomials of degree at most n− 1 and are elements of F[X]. Let us define the matrix

Mk to be the (k ×m) matrix whose columns are the vectors DT
i , and note that Mk is a

matrix with entries from F[X] ⊆ F(X). We will show that Mk is a desired k-truncation of

the matrix M .

Let I ⊆ {1, . . . ,m} such that |I| = ` ≤ k. Let Ci1 , . . . , Ci` be a linearly independent set of

columns of the matrix M over F, where I = {i1, . . . , i`}. We will show that DT
i1
, . . . , DT

i`

96

are linearly independent in Mk over F(X). Consider the k × ` matrix MI whose columns

are the vectors DT
i1
, . . . , DT

i`
. We shall show that MI has rank ` by showing that there is a

`× ` submatrix whose determinant is a non-zero polynomial. Let Pi1(X), . . . , Pi`(X) be

the polynomials corresponding to the vectors Ci1 , . . . , Ci` . By Lemma 9.4 we have that

Pi1(X), . . . , Pi`(X) are linearly independent over F. Then by Theorem 9.4, the (` × `)

matrix formed by the column vectors (Pij (X), Pij (αX), . . . , Pij (α
(l−1)X))T , ij ∈ I, is a

non-zero determinant in F[X]. But note that this matrix is a submatrix of MI . Therefore

MI has rank ` in F(X). Therefore the vectors Di1 , . . . , Di` are linearly independent in

F(X). This completes the proof of the forward direction.

Let I ⊆ {1, . . . ,m} such that |I| = ` ≤ k and let DT
i1
, . . . , DT

i`
be linearly indepen-

dent in Mk over F(X), where I = {i1, . . . , i`}. We will show that the corresponding

set of columns Ci1 , . . . , Ci` are also linearly independent over F. For a contradiction

assume that Ci1 , . . . , Ci` are linearly dependent over F. Let Pi1(X), . . . , Pi`(X) be the

polynomials in F[X] corresponding to these vectors. Then by Lemma 9.4 we have that

Pi1(X), . . . , Pi`(X) are linearly dependent over F So there is a tuple ai1 , . . . , ai` of val-

ues of F such that
∑`

j=1 aijPij (X) = 0. Therefore, for any d ∈ {1, . . . , ` − 1}, we have

that
∑`

j=1 aijPij (α
dX) = 0. Now let DT

i1
, . . . , DT

i`
be the column vectors of Mk corre-

sponding to Ci1 , . . . , Ci` . Note that F is a subfield of F(X) and by the above, we have

that
∑`

j=1 aijDij = 0. Thus DT
i1
, . . . , DT

i`
are linearly dependent in Mk over F(X), a

contradiction to our assumption.

Thus we have shown that for any {i1, . . . , i`} ⊆ {1, . . . ,m} such that ` ≤ k, Ci1 , . . . , Ci`

are linearly independent over F if and only if Di1 , . . . , Di` are linearly independent over

F(X). To estimate the running time, observe that for each Ci we can compute Di in O(kn)

field operations and thus we can compute Mk in O(mnk) field operations. This completes

the proof of this lemma.

In Lemma 9.15 we require that α be an element of order at least (n− 1)(k − 1) + 1. This

implies that the order of the field F must be at least (n− 1)(k − 1) + 1. We can ensure

these requirements by preprocessing the input before invoking the Lemma 9.15. Formally,

we show the following lemma.

97

Lemma 9.16. Let M be a matrix of dimension n×m over a finite field F, and of rank

n. Let F = Fp` where p < n. Then in polynomial time we can find an extension field K

of order at least nk + 1 and an element α of K of order at least nk + 1, such that M is

a matrix over K with the same linear independence relationships between it’s columns as

before.

Proof. We distinguish two cases by comparing the values of p` and n.

Case 1: p` ≤ nk + 1. In this case we use Lemma 9.13 to obtain an extension K of F of

size at most (nk + 1)2, and a primitive element α of K in polynomial time.

Case 2: nk + 1 < p`. In this case we set K = F and and use Lemma 9.12 to find an

element of order at least nk, in time poly(p, l, nk).

Observe that F is a subfield of K, M is also a matrix over K. Thus, any set of linearly

dependent columns over F continue to be linearly dependent over K. Similarly, linearly

independent columns continue to be linearly independent. This completes the proof of this

lemma.

Next we show a result that allows us to find basis of matrices with entries from F[X].

Lemma 9.17. Let M be a m × t matrix with entries from F[X]<n and let m ≤ t. Let

w : C(M)→ R+ be a weight function. Then we can compute minimum weight column

basis of M in O(m2n2t+mωnt) field operations in F

Proof. Let S ⊆ F∗ be a set of size (n−1)m+1 and for every α ∈ S, let M(α) be the matrix

obtained by substituting α for X in the polynomials in matrix M . Now we compute the

minimum weight column basis C(α) in M(α) for all α ∈ S. Let ` = max{|C(α)| | α ∈ S}.

Among all the column basis of size `, let C(ζ) be a minimum weighted column basis for

some ζ ∈ S. Let C ′ be the columns in M corresponding to C(ζ). We will prove that C ′ is

a minimum weighted column basis of M . Towards this we start with the following claim.

Claim 1. The rank of M is the maximum of the rank of matrices M(α), α ∈ S.

98

Proof. Let r ≤ m be the rank of M . Thus, we know that there exists a submatrix Wof

M of dimension r × r such that det(W) is a non-zero polynomial. The degree of the

polynomial det(W (X)) ≤ (n − 1) × r ≤ (n − 1)m. Thus, we know that it has at-most

(n− 1)m roots. Hence, when we evaluate det(W (X)) on set S of size more than (n− 1)m,

there exists at least one element in S, say β, such that det(W (β)) 6= 0. Thus, the rank of

M is upper bounded by the rank of M(β) and hence upper bounded by the maximum of

the rank of matrices M(α), α ∈ S.

As before let r ≤ ` be the rank of M . Let α be an arbitrary element of S. Observe that

for any submatrix Z of dimension r′ × r′, r′ > r we have that det(Z(X)) ≡ 0. Thus, for

any α, the determinant of the corresponding submatrix of M(α) is also 0. This implies

that for any α, the rank of M(α) is at most r. This completes the proof.

Claim 1 implies that ` = max{|C(α)| | α ∈ S} is equal to the rank of M . Our next claim

is following.

Claim 2. For any α ∈ S, and C ⊆ C(M(α)), if C is linearly independent in M(α) then

C is also linearly independent in M .

The proof follows from the arguments similar to the ones used in proving reverse direction of

Claim 1. Let r ≤ m be the rank of M and let C∗ be a minimum weight column basis of M .

Thus, we know that there exists a submatrix W of M of dimension r×r such that det(W) is

a non-zero polynomial. The degree of the polynomial det(W (X)) ≤ (n− 1)× r ≤ (n− 1)m.

Thus, we know that it has at most (n− 1)r roots. Hence, when we evaluate det(W (X)) on

set S of size more than (n− 1)r, there exists at least one element in S, say β, such that

det(W (β)) 6= 0 and the set of columns C∗ is linearly independent in M(β). Using Claim 2

and the fact that C∗ is linearly independent in both M(β) and M , we can conclude that

C∗ is a column basis for M(β). Since |C ′| = |C∗|, w(C ′) ≤ w(C∗), C ′ is indeed a minimum

weighted column basis of M .

We can obtain any M(α) with at most O(nmt) field operations in F. Furthermore, we can

compute minimum weight column basis of M(α) in O(tmω−1) field operations [BCKN13].

Hence the total number of field operations over F is bounded by O(m2n2t+mωnt).

99

Finally, we combine Lemma 9.14, Lemma 9.16 and Lemma 9.15 to obtain the following

theorem.

Theorem 9.5. Let F = Fp` be a finite field or F = Q. Let M be a n×m matrix over F

of rank n. Given a number k ≤ n, we can compute a matrix Mk over the field F(X) such

that it is a representation of the k-truncation of M . Furthermore, given Mk, we can test

whether a given set of l columns in Mk are linearly independent in O(n2k3) field operations.

Proof. We first consider the case when the characteristic of the field F is 0, or if the

characteristic p of the finite field is strictly larger than n (char(F) > n). In this case we

apply Lemma 9.14 to obtain a matrix Mk over F(X) which is a k-truncation of M . We

now consider the case when F is a finite field and char(F) < n. First apply Lemma 9.16 to

ensure that the order of the field F is greater than (n − 1)(k − 1) + 1 and to obtain an

element of order at least (n− 1)(k− 1) + 1 in the field F. Of course by doing this, we have

gone to an extension of K of F of size at least (n− 1)(k − 1) + 1. However, for brevity of

presentation we will assume that the input is given over such an extension. We then apply

Lemma 9.15 to obtain a matrix Mk over F(X) which is a representation of the k-truncation

of the matrix M . One should notice that in fact This completes the description of Mk in

all the cases.

Let I ⊆ {1, . . . ,m} such that |I| = ` ≤ k. Let Di1 , . . . , Di` be a set of columns of the matrix

Mk over F, where I = {i1, . . . , i`}. Furthermore, by MI we denote the k × ` submatrix

of Mk containing the columns Di1 , . . . , Di` . To test whether these columns are linearly

independent, we can apply Lemma 9.17 on MT
I and see the size of column basis of MT

I is

` or not. This takes time O(`2n2k + `ωnk) = O(n2k3) field operations in F.

Representing the truncation over a finite field

In Theorem 9.5, the representation Mk is over the field F(X). However, in some cases this

matrix can also be viewed as a representation over a finite extension of F of sufficiently

large degree. That is, if F = Fp` is a finite field then Mk can be given over Fp`′ where

`′ ≥ nk`. Formally we have the following lemma.

100

Theorem 9.6. Let M be a n×m matrix over F of rank n, k ≤ n be a positive integer and

N be the size of the input matrix. If F = Fp be a prime field or F = Fp` where p = NO(1),

then in polynomial time we can find a k-truncation Mk of M over a finite extension K of

F where K = Fpnk`.

Proof. Let Mk be the matrix returned by Theorem 9.5. Next we show how we can view

the entries in Mk over a finite extension of F. Consider any extension K of F of degree

r ≥ nk. Thus K = F[X]
r(X) , where r(X) is a irreducible polynomial in F[X] of degree r. Recall

that each entry of Mk is a polynomial in F[X] of degree at most n− 1 and therefore they

are present in K. Further the determinant of any k × k submatrix of Mk is identically

zero in K if and only if it is identically zero in F(X). This follows from the fact that the

determinant is a polynomial of degree at most (n− 1)k and therefore is also present in K.

Thus Mk is a representation over K.

To specify the field K we need to compute the irreducible polynomial r(X). If F is a

prime field, i.e. F = Fp, then we can compute the polynomial r(X) using the first part of

Lemma 9.10. And if p = NO(1) we can use the second part of Lemma 9.10 to compute r(X).

Thus we have a well defined k-truncation of M over the finite field K = F[X]
r(X) . Furthermore,

if degree of r(X) is nk then K is isomorphic to Fpnk` . This completes the proof of this

theorem.

From the above theorems we conclude the following.

Theorem 9.7. Let M be a linear matroid of which is representable over a field F. Then

we can find a representation of the k-truncation of M , deterministically, in polynomially

many field operations.

9.3.3 Representation of the `-elongation of a Matroid

The `-elongation of a matroid M may be obtained from a truncation of the dual matroid

M∗ by the following observation.

Observation 9.18 ([Mur00], page 75). Let M be a matroid of rank n over a ground set

of size m. Let M∗ denote the dual of the matroid M and E(M, `) denote the `-elongation

101

of M . Further let T (M∗,m− `) denote the (m− `) truncation of M∗. Then E(M, `) =

{T (M∗,m− `)}∗, i.e. the `-elongation of M is the dual of the (m− `)-truncation of the

dual of M .

When M is a linear matroid, this observation leads to the following corollary.

Corollary 9.19. Let M be a linear matroid of rank n, over a ground set of size m, which

is representable over a field F. Given a number ` ≥ n, we can compute a representation of

the `-elongation of M , over the field F(X) in O(mn`) field operations over F.

9.4 Application to Computation of Representative Families

In this section we give deterministic algorithms to compute representative families of a linear

matroid, given its representation matrix. Let us recall the definition of a q-representative

family.

Definition 9.8 (q-Representative Family). Given a matroid M = (E, I) and a family

S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following

holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y

with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is

q-representative for S we write Ŝ ⊆qrep S.

Let p+ q = k. Fomin et al. [FLS14, Theorem 3.1] first gave a deterministic algorithm for

computing q-representative of a p-family of independent sets if the rank of the corresponding

matroid is p+ q. For matroids of higher rank they first computes the representation matrix

of a k-truncation of M = (E, I). This step is randomized and it returns representation

of a k-truncation of M = (E, I) with a high probability. Given this matrix, one applies

[FLS14, Theorem 3.1] and arrive at Theorem 9.11. We state their result below.

Theorem 9.9 ([FLS14]). Let M = (E, I) be a linear matroid and let S = {S1, . . . , St} be

a p-family of independent sets. Then there exists Ŝ ⊆qrep S of size
(
p+q
p

)
. Furthermore,

given a representation AM of M over a field F, there is a randomized algorithm computing

Ŝ ⊆qrep S in O
((

p+q
p

)
tpω + t

(
p+q
q

)ω−1)
operations over F.

102

In this section we design fast deterministic algorithm for computing q-representative even

if the underlying linear matroid has unbounded rank, using deterministic truncation of

linear matroids. A deterministic algorithm can be easily obtained from the above recipe

by using our deterministic truncation algorithm in place of the randomized one. However

observe that the representation given by Theorem 9.5 is over F(X). For the purpose of

computing q-representative of a p-family of independent sets, we need to find a set of

linearly independent columns over a matrix with entries from F[X]. However, deterministic

algorithms to compute basis of matrices over F[X] is not as fast as compared to the

algorithms where we do not need to do symbolic computations. We shall see that there is

a faster algorithm for computing a representative set, but of a slightly larger size.

Definition 9.10. Let W = {v1, . . . , vm} be a set of vectors over F and w : W → R+. We

say that S ⊆ W is a spanning set, if every v ∈ W can be written as linear combination

of vectors in S with coefficients from F. We say that S is a nice spanning set of W , if

S is a spanning set and for any z ∈ W if z =
∑

v∈S λvv, and 0 6= λv ∈ F then we have

w(v) ≤ w(z).

The following lemma enables us to find a spanning set of vectors over F(X), of small size.

Lemma 9.20. Let F be a field and let M ∈ F[X]m×t be a matrix over F[X]<n and let

w : C(M)→ R+ be a weight function. Then we can find a nice spanning set S of C(M)

of size at most nm with at most O(t(nm)ω−1) field operations.

Proof. The essential idea is to do a “gaussian elimination” in M , but only over the subfield

F of F(X). Let Ci be a column of the matrix M . It is a vector of length m over F[X]<n

and it’s entries are polynomials Pji(X), where j ∈ {1, . . . ,m}. Observe that Pji(X) is a

polynomial of degree n− 1 with coefficients from F. Let vji denote the vector of length

n corresponding to the polynomial Pji(X). Consider the column vector vi formed by

concatenating each vji in order from j = 1 to m. That is, vi = (v1i, . . . , vmi)
T . This vector

has length nm and has entries from F. Let N be the matrix where columns correspond

to column vectors vi. Note that N is a matrix over F of dimension nm× t and the time

taken to compute N is O(tnm). For each column vi of N we define it’s weight to be w(Ci).

We now do a gaussian elimination in N over F and compute a minimum weight set of

103

column vectors S′, which spans N . Observe that |S′| ≤ nm and time taken to compute S′

is O(t(nm)ω−1) [BCKN13]. Let S be the set of column vectors in M corresponding to the

column vectors in S′. We return S as a nice spanning set of column vectors in M .

Now we show the correctness of the above algorithm. We first show that S is a spanning

set of M . Let v1, . . . , v|S| be the set of vectors in S and let vd be some column vector

in N . Then vd =
∑|S|

i=1 aivi where ai ∈ F. In particular for any j ∈ {1, . . . ,m} we have

vjd =
∑|S|

i=1 aivji. Let C1, . . . , C|S| be the column vectors corresponding to v1, . . . , v|S| and

let Cd be the column vector corresponding to vd. We claim that Cd =
∑|S|

i=1 aiCi. Consider

the j-th entry of the column vector C and of C1, . . . , C|S|. Towards our claim we need

to show that Pjd(X) =
∑|S|

i=1 aiPji(X). But since vdj and {vij | j ∈ {1, . . . ,m}} are the

collection of vectors corresponding to Pjd(X) and {Pji(X) | j ∈ {1, . . . ,m}}, the claim

follows.

Next we show that S is indeed a nice spanning set. Since S is a spanning set of M we

have that any column Cd =
∑

Ci∈S λiCi, λi ∈ F. Let Cj ∈ S be such that λj 6= 0 and

w(Cj) > w(Cd). Let vd and vj be the vectors corresponding to Cd and Cj respectively.

We have that vd =
∑

vi∈S λivi, which implies vj = λ−1j vd −
∑

vi∈S,vi 6=vj λ
−1
j λivi. But this

implies that S∗ = (S \ {vj}) ∪ {vd} is a spanning set of N , and w(S∗) < w(S), which is a

contradiction. Thus we have that for every column vector C ∈M if C =
∑

Ci∈S λiCi and

0 6= λi ∈ F, then w(Ci) ≤ w(C). This completes the proof.

The main theorem of this section is as follows.

Theorem 9.11. Let M = (E, I) be a linear matroid of rank n and let S = {S1, . . . , St}

be a p-family of independent sets. Let A be a n× |E| matrix representing M over a field F,

where F = Fp` or F is Q. Then there are deterministic algorithms computing Ŝ ⊆qrep S as

follows.

(i) A family Ŝ of size
(
p+q
p

)
in O

((
p+q
p

)2
tp3n2 + t

(
p+q
q

)ω
np
)

+ (n+ |E|)O(1), operations

over F.

(ii) A family Ŝ of size np
(
p+q
p

)
in O

((
p+q
p

)
tp3n2 + t

(
p+q
q

)ω−1
(pn)ω−1

)
+ (n + |E|)O(1)

operations over F.

104

Proof. Let p + q = k and |E| = m. We start by finding k-truncation of A, say Ak, over

F[X] ⊆ F(X) using Theorem 9.5. We can find Ak with at most (n + m)O(1) operations

over F. Given the matrix Ak we follow the proof of [FLS14, Theorem 3.1]. For a set S ∈ S

and I ∈
(
[k]
p

)
, we define s[I] = det(Ak[I, S]). We also define

~si = (si[I])
I∈([k]p) .

Thus the entries of the vector ~si are the values of det(Ak[I, Si]), where I runs through all

the p sized subsets of rows of Ak. Let HS = (~s1, . . . , ~st) be the
(
k
p

)
× t matrix obtained by

taking ~si as columns. Observe that each entry in Ak is in F[X]<n. Thus, the determinant

polynomial corresponding to any p× p submatrix of Ak has degree at most pn. It is well

known that we can find determinant of a p×p matrix over F[X]<n in time O(p3n2) [MS03].

Thus, we can obtain HS in time O(t
(
p+q
p

)
p3n2).

Let W be a spanning set of columns for C(HS). We define Ŵ = {Sα | ~sα ∈ W} as

the corresponding subfamily of S . The proof of [FLS14, Theorem 3.1] implies that if

W is a spanning set of columns for C(HS) then the corresponding Ŵ is the required

q-representative family for S. That is, Ŵ ⊆qrep S. We get the desired running time by

either using Lemma 9.17 to compute a basis of size
(
p+q
p

)
for HS or by using Lemma 9.20

to compute a spanning set of size np
(
p+q
p

)
of C(HS). This completes the proof.

In fact one can prove Theorem 9.11 for a “weighted notion of representative family”.

9.4.1 Weighted Representative Families

In this section we give deterministic algorithms to compute weighted version of representa-

tive families of a linear matroid. A weighted version of q-representative families is defined

as follows. It is useful for solving problems where we are looking for objects of maximum

or minimum weight. Given a non-negative weight function w : E → R+ and A ⊆ E, we

define w(A) =
∑

a∈Aw(a).

Definition 9.12 (Min/Max q-Representative Family). Given a matroid M = (E, I),

a family S of subsets of E and a non-negative weight function w : S → R+, we say that

105

a subfamily Ŝ ⊆ S is min q-representative (max q-representative) for S if the following

holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with

X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with

1. X̂ ∪ Y ∈ I; and

2. w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max q-representative)

family for S.

The main theorem in this section is as follows.

Theorem 9.13. Let M = (E, I) be a linear matroid of rank n and let S = {S1, . . . , St}

be a p-family of independent sets. Let w : S → R+ is a non-negative weight function on S.

Let A be a n× |E| matrix representing M over a field F, where F = Fp` or F is Q. Then

there are deterministic algorithms computing Ŝ ⊆qminrep S as follows.

1. A family Ŝ of size
(
p+q
p

)
in O

((
p+q
p

)2
tp3n2 + t

(
p+q
q

)ω
np
)

+ (n+ |E|)O(1), operations

over F.

2. A family Ŝ of size np
(
p+q
p

)
in O

((
p+q
p

)
tp3n2 + t

(
p+q
q

)ω−1
(pn)ω−1

)
+ (n + |E|)O(1)

operations over F.

Proof. Let p + q = k and |E| = m. We start by finding k-truncation of A, say Ak, over

F[X] ⊆ F(X) using Theorem 9.5. We can find Ak with at most (n + m)O(1) operations

over F. Given the matrix Ak we follow the proof of [FLS14, Theorem 3.1]. For a set S ∈ S

and I ∈
(
[k]
p

)
, we define s[I] = det(Ak[I, S]). We also define

~si = (si[I])
I∈([k]p) .

Thus the entries of the vector ~si are the values of det(Ak[I, Si]), where I runs through all

the p sized subsets of rows of Ak. Let HS = (~s1, . . . , ~st) be the
(
k
p

)
× t matrix obtained by

taking ~si as columns. Observe that each entry in Ak is in F[X]<n. Thus, the determinant

polynomial corresponding to any p× p submatrix of Ak has degree at most pn. It is well

106

known that we can find determinant of a p×p matrix over F[X]<n in time O(p3n2) [MS03].

Thus, we can obtain HS in time O(t
(
p+q
p

)
p3n2).

Now we define a weight function w′ : C(HS)→ R+ on the set of columns of HS . For the

column ~si corresponding to Si ∈ S, we define w′(~si) = w(Si). Let W be a spanning set of

columns for C(HS). We define Ŵ = {Sα | ~sα ∈W} as the corresponding subfamily of S.

Now we claim that if W is a nice spanning set of columns for C(HS) or minimum weight

column basis of C(HS), then the corresponding Ŵ is the required min q-representative

family for S. That is, Ŵ ⊆qminrep S. If W is a minimum weight column basis of C(HS),

the claim follows from the proof of [FLS14, Theorem 3.1].

Now we show that if W is a nice spanning set of columns for C(HS), then Ŵ ⊆qminrep S.

Let Sβ ∈ S such that Sβ /∈ Ŵ. We show that if there is a set Y ⊆ E of size at most

q such that Sβ ∩ Y = ∅ and Sβ ∪ Y ∈ I, then there exists a set Ŝβ ∈ Ŝ disjoint from

Y with Ŝβ ∪ Y ∈ I and w(Ŝβ) ≤ w(Sβ). Let us first consider the case |Y | = q. Since

Sβ ∩Y = ∅ we have that |Sβ ∪Y | = p+q = k. Furthermore, since Sβ ∪Y ∈ I, we have that

the columns corresponding to Sβ ∪ Y in M are linearly independent over F(X); that is,

det(Ak[R(Ak), Sβ ∪ Y]) 6≡ 0. Recall that, ~sβ = (sβ[I])
I∈([k]p) , where sβ[I] = det(Ak[I, Sβ]).

Similarly we define y[L] = det(Ak[L, Y]) and ~y = (y[L])
L∈([k]q) .

Let
∑
J =

∑
j∈Sβ j. Define

γ(~sβ, ~y) =
∑
I∈([k]p)

(−1)
∑
I+

∑
Jsβ[I] · y[Ī].

Since
(
k
p

)
=
(
k
k−p
)

=
(
k
q

)
the above formula is well defined. Observe that by Proposition 9.3,

we have that γ(~sβ, ~q) = det(Ak[R(Ak), Sβ ∪ Y]) 6≡ 0. We also know that ~sβ can be written

as a linear combination of vectors in W = {~s1, ~s2, . . . , ~s`}. That is, ~sβ =
∑`

i=1 λi~si, λi ∈ F

107

and for some i, λi 6= 0. Thus,

γ(~sβ, ~y) =
∑
I

(−1)
∑
I+

∑
Jsβ[I] · y[Ī]

=
∑
I

(−1)
∑
I+

∑
J

(∑̀
i=1

λisi[I]

)
y[Ī]

=
∑̀
i=1

λi

(∑
I

(−1)
∑
I+

∑
Jsi[I]y[Ī]

)

=
∑̀
i=1

λidet(Ak[R(Ak), Si ∪ Y]) (by Proposition 9.3)

Define

sup(Sβ) =
{
Si

∣∣∣ Si ∈ Ŝ, λidet(Ak[R(Ak), Si ∪ Y])) 6≡ 0
}
.

Since γ(~sβ, ~y) 6= 0, we have that (
∑`

i=1 λidet(Ak[R(Ak), Si∪Y])) 6≡ 0 and thus sup(Sβ) 6= ∅.

Observe that for all S ∈ sup(Sβ) we have that det(Ak[R(Ak), S∪Y]) 6≡ 0 and thus S∪Y ∈ I.

Since W is a nice spanning set, If ~sβ =
∑`

i=1 λi~si and 0 6= λi ∈ F, then w(~sβ) ≥ w(~si).

Thus w(Ŝ) ≤ w(S) for all S ∈ sup(Sβ). Thus Ŝ is a min q-representative of S.

Suppose that |Y | = q′ < q. Since M is a matroid of rank k = p+ q, there exists a superset

Y ′ ∈ I of Y of size q such that Sβ ∩ Y ′ = ∅ and Sβ ∪ Y ′ ∈ I. This implies that there exists

a set Ŝ ∈ Ŝ such that det(Ak[R(Ak), Ŝ ∪ Y ′]) 6≡ 0. Thus the columns corresponding to

Ŝ ∪ Y are linearly independent.

Thus, if W is a minimum weight column basis of C(HS) or a nice spanning set of columns

for C(HS) then the corresponding Ŵ is a min q-representative family for S. By applying

Lemma 9.17 to compute a basis of size
(
p+q
p

)
for HS , we get min q-representative family

for S of size
(
p+q
p

)
in O

((
p+q
p

)2
tp3n2 + t

(
p+q
q

)ω
np
)

+ (n+ |E|)O(1), operations over F. By

applying Lemma 9.20 to compute a nice spanning set of size np
(
p+q
p

)
of C(HS), we get

min q-representative family for S of size np
(
p+q
p

)
in O

((
p+q
p

)
tp3n2 + t

(
p+q
q

)ω−1
(pn)ω−1

)
+

(n+ |E|)O(1) operations over F. This completes the proof.

108

9.4.2 Applications

Marx [Mar09] gave algorithms for several problems based on matroid optimization. The

main theorem in his work is Theorem 1.1 [Mar09] on which most applications of [Mar09]

are based. The proof of the theorem uses an algorithm to find representative sets as a

black box. Applying our algorithm (Theorem 9.11) instead gives a deterministic version of

Theorem 1.1 of [Mar09].

Proposition 9.21. Let M = (E, I) be a linear matroid where the ground set is partitioned

into blocks of size `. Given a linear representation AM of M , it can be determined in

O(2ωk`||AM ||O(1)) time whether there is an independent set that is the union of k blocks.

(||AM || denotes the length of AM in the input.)

Finally, we mention another application from [Mar09] which we believe could be useful to

obtain single exponential time parameterized and exact algorithms.

`-Matroid Intersection Parameter: k

Input: Let M1 = (E, I1), . . . ,M1 = (E, I`) be matroids on the same ground set E given

by their representations AM1 , . . . , AM`
over the same field F and a positive integer k.

Question: Does there exist k element set that is independent in each Mi (X ∈ I1∩. . .∩I`)?

Using Theorem 1.1 of [Mar09], Marx [Mar09] gave a randomized algorithm for `-Matroid

Intersection. By using Proposition 9.21 instead we get the following result.

Proposition 9.22. `-Matroid Intersection can be solved in O(2ωk`||AM ||O(1)) time.

109

110

Chapter 10

Derandomization of Transversal

Matroids and Gammoids in

Moderately Exponential Time

In this chapter, we design exponential time deterministic algorithms for constructing a

representation of transversal matroids and gammoids, which are much faster than the

typical brute-force algorithm. Let us recall the definition of the representation of a matroid.

A matrix A over a field F is called a linear representation of a matroid M = (E, I),

if there is a bijection between the columns of A and E such that, a subset S ⊆ E is

independent in M if and only if the corresponding columns in A are linearly independent

over the field F. While not all matroids admit a linear representation, a number of

important classes of matroids do. And these classes of matroids have many algorithmic

applications which need a representation of the matroid. This naturally motivates the

question of constructing linear representations for various classes of matroids efficiently.

Deterministic polynomial time algorithms for construction of a representation were known

for several classes of matroids such as uniform matroids, partition matroids, graphic

matroids and co-graphic matroids [Oxl06]. In this chapter, we consider the transversal

matroids and gammoids, for which, only randomized polynomial time algorithms are known

for construction of a linear representations. These matroids feature in many recent FPT

111

and Kernelization algorithms [Mar09, FLS14, KW12, KW14], which are randomized only

because they require a representation of the matroid. Hence, deterministic algorithms to

find linear representations of these two matroids will derandomize these algorithms.

Let us recall the definition of transversal matroid. Let G = (U]V,E) be a bipartite graph.

The transversal matroid MG on the ground set U has the following family of independent

sets: U ′ ⊆ U is independent in MG if and only if there is a matching in G saturating U ′.

Furthermore assume that |U | = |V | = m and G has a perfect matching. A natural question

in this direction is as follows.

Question 1: Could we exploit the fact that G has a perfect matching to

design a deterministic polynomial time algorithm to find a linear representation

for MG?

Answer to this question is of course, Yes! A m×m identity matrix is a linear representation

of MG. This naturally leads to the following question.

Question 2: Suppose G has a matching of size m− `, where ` is a constant.

Can we use this fact to design a deterministic polynomial time algorithm to

find a linear representation for MG?

In fact, no deterministic polynomial time algorithm is known for finding a linear represen-

tation for MG even when ` = 1. Now consider the following symbolic representation of a

transversal matroid.

Let G = (U] V,E) be a bipartite graph, where U = {v1, . . . , vm} and V =

{v1, . . . , vn}. Let X = {xi,j | i ∈ [n], j ∈ [m]}. Define a n ×m matrix A as

follows: for each i ∈ [n], j ∈ [m], A[i, j] = 0 if (vi, uj) /∈ E and xi,j otherwise.

Then for any R ⊆ [n], C ⊆ [m], |R| = |C|, det(A[R,C]) 6≡ 0 if and only if there

is a perfect matching in G[{vi | i ∈ R} ∪ {uj | j ∈ C}]. This implies that A is

in fact a linear representation of the transversal matroid MG on the ground set

U over the field of fractions F(X), where F is any field of size at least 2.

112

However, in the representation above, to check whether a set is linearly independent we

need to check whether there is a corresponding determinant polynomial which is identically

non-zero. This is a case of the well known polynomial identity testing (PIT) problem,

and we do not know of a deterministic polynomial time algorithm for this problem. It

appears that derandomizing the above approach has some obstacles, as this will have some

important consequences on lower bounds in complexity theory [KI04]. We can obtain

another representation, by substituting random values for each x ∈ X from a field of size at

least 2pm2m, where p ∈ N, and succeed with probability at least
(
1− 1

2p

)
. This leads to a

randomized polynomial time construction [Mar09]. Observe that, the above approach also

gives a deterministic algorithm of running time 2O(m
4), that tests all possible substitutions

from a field of size 2m2m, since one of them will certainly be a linear representation of MG.

In this chapter, we answer Questions 2 affirmatively. Our main theorem is the following.

Theorem 10.1. Let G = (U] V,E) be a bipartite graph and r be the size of a maximum

matching in G. Let F be a field of size strictly greater than
(|U |
r

)
. Then there is a

deterministic algorithm which outputs a linear representation of the transversal matroid

MG = (U, I) over F in time O(
(|U |
r

)
|V |·|E|+N), where N is time required to do O(

(|U |
r

)
|V |·

|U |) operations in F.

In the language of parameterized complexity, Theorem 10.1 gives an XP algorithm for

finding a linear representation of transversal matroids parameterized by the rank of the

given matroid. Observe that if r is the rank of the matroid then the size of a maximum

matching of the graph is exactly r. That is, r = |U | − ` and hence ` = |U | − r. This

together with the fact that
(
m
a

)
=
(
m

m−a
)

implies that Theorem 10.1 gives a polynomial

time algorithm for Question 2, whenever ` is a constant.

Recall that, transversal matroids and strict gammoids are duals. Therefore obtaining an

algorithm to construct a linear representation of a gammoid is at least as hard as that of

transversal matroids. In this work we prove the following theorem.

Theorem 10.2. Let D be a n-vertex digraph, S ⊆ V (D), |S| = r, T ⊆ V (D), |T | = n′

and F be a field of size strictly greater than
(
n′

r

)
. Then there is a deterministic algorithm

which outputs a linear representation of a gammoid with ground set T , over F in time

113

O(
(
n′

r

)
n3 +N), where N is time required to do O(

(
n′

r

)
n3) operations in F.

10.1 The Algorithm

In this section, we first give a deterministic algorithm to compute a linear representation of

transversal matroids. In the next section, we show that this algorithm may be modified to

obtain more efficient algorithms for other classes of matroids that are related to transversal

matroids.

Let G = (U] V,E) be a bipartite graph such that U and V contain m and n vertices,

respectively. Let U = {u1, . . . , um} and V = {v1, . . . , vn}. Let MG = (U, I) be the

transversal matroid associated with G where the ground set is U . That is, S ⊆ U is

independent in MG if and only if there is a matching in G, saturating S. Let A′ be the

bipartite adjacency matrix of G. That is, the rows of A′ are indexed with elements from V ,

columns of A′ are indexed with elements from U , and for any v ∈ V, u ∈ U , A′[v, u] = 1 if

and only if vu ∈ E. Let A be an n×m matrix defined as follows. For any vi ∈ V, uj ∈ U ,

A[vi, uj] = A′[vi, uj] · xi,j , where X = {xi,j | i ∈ [n], j ∈ [m]} is a set of variables. Notice

that for any v ∈ V, u ∈ U , A[v, u] = 0 if and only if vu /∈ E. Also, note that each variable

xi,j appears at most once in the matrix A. As mentioned earlier, there is a deterministic

algorithm to find this representation in 2O(m
2n) time.

We now describe a more efficient algorithm for this problem. We call this algorithm, Algo-

rithm A. For each j ∈ [m], we define a set Xj = {xi,j | i ∈ [n] and xi,j is an entry of A },

i.e. it is the j-th column of A. Our algorithm is an iterative algorithm that produces values

for X1, X2, . . . , Xm in order, by solving a system of linear inequalities the variables in Xi

in the i-th iteration. Let r be the size of a maximum matching in G. Now we define a

family of subsets of U as follows.

B =

{
S ∈

(
U

r

) ∣∣∣ there is a matching in G saturating S

}
.

That is B is the set of bases in MG and let B = {S1, . . . , St}. Now, for any S ∈ B, we fix

a matching M(S) saturating S. For any S ∈ B, let R(S) be the set of vertices from V ,

114

saturated by M(S). Note that R(S) ∈
(
V
r

)
, and G[S ∪ R(S)] has a perfect matching (a

matching of size r). Our goal is to assign values to all the variables in X from a field such

that for any S ∈ B, det(A[R(S), S]) 6= 0. We will then show that this is enough to produce

a linear representation of MG (the details may be found in the correctness proof presented

later in this subsection).

Let us now describe the steps of our algorithm. Recall that for each j ∈ [m], Xj =

{xi,j | i ∈ [n]} and let X<j =
⋃j−1
j′=1Xj′ for any j ∈ [m] \ {1}. For S ⊆ U , and j ∈ [m],

we define S(j) = {uj′ ∈ S | j′ ∈ [j]}. Let F be a field of size strictly more than
(
m
r

)
. Our

algorithm assigns values for the variables in Xj in the increasing order of j. Initially, in the

first iteration, set all the variables in X1 to 1, i.e. for all i ∈ [n], xi,1 = 1. Then, in j-th

iteration, for j ≥ 2, the algorithm will assign values for variables in Xj as follows. Note

that at this stage, all the variables in X<j have been assigned values already. We denote

by Aj−1 the matrix A instantiated with the values for X<j .

For any Si ∈ B, recall that M(Si) is a fixed matching. Let Mij be the set of edges in M(Si)

which saturate the vertices in Si(j). Let Rij be the subset of V saturated by Mij . Notice

that the matching Mij saturates the vertices Si(j)∪Rij . Now the algorithm obtains values

for Xj by solving the following t inequalities, one for each Si ∈ B.

det(Aj−1[Rij , Si(j)]) 6= 0 (10.1)

Observe that for each i ∈ [t], det(Aj−1[Rij , Si(j)]) is a linear function of the variables in

Xj , since all the entries in Aj−1[Rij , Si(j)] are elements from F except the entries in the

last column which are either 0 or variables from Xj . Therefore, (10.1) is a system of linear

inequations in the variables in Xj . We can express this system as,

DXj 6= ~0 (10.2)

where D is a t′ × n matrix for some t′ ≤ t and ~0 is a zero column vector of length t′. All

the entries in DXj are linear functions, and note that the constraints require that every

one of these linear functions is non-zero. Furthermore, we also know that |F| > t′. Now

our algorithm will execute the following algorithm (Lemma 10.1) to find a solution to the

115

system (10.2).

Lemma 10.1. Let F be a field of size strictly greater than t and let D be a t× n matrix

over F such that no row vector in D contains only zeros. Then there is an n-length column

vector Y ∗ such that DY ∗ 6= ~0. Moreover such a vector can be computed using O(t · n)

operations over the field F.

Proof. Let Y = [y1, . . . , yn]T be a column vector containing n variables. We will directly

give an n step iterative process to compute Y ∗, an instantiation of Y satisfying the system

of linear inequations DY 6= ~0. Initially, set all the variables in Y to be 0 and we use

Y (0) to denote this assignment. In other words, Y (0) be an n length zero column vector.

At each step we find out new assignment for Y . In step i we find out an assignment

Y (i) for Y and prove that indeed D · Y (n) 6= ~0. Now for any i ∈ [n], at step i, Y (i) is

computed as follows. Note that at this step we have the assignment Y (i − 1) for Y . In

other words, Y (i − 1) is an n-length column vector such that the jth entry is same as

the value assigned for yj in step i − 1. Let Zi be an n-length column vector where all

entries are same as the entries in Y (i − 1), except the ith entry which is the variable yi.

That is, in Zi, we did not assign any value to yi, but all other variables are assigned the

same value as in the assignment Y (i− 1). Now consider the entries in the column vector

DZi. Some entries are elements in the field F and some are linear functions on variable

yi. Let P1(yi) = p1yi + q1, . . . , Pt′(yi) = pt′yi + qt′ be the entries in DZj which are linear

functions. Notice that t′ ≤ t. Since the size of the field F is strictly larger than t ≥ t′,

there is an element a ∈ F such that for all j ∈ [t′], Pj(yi) 6= 0. Now we set Y (i) as follows.

Each entry in Y (i) is same as each entry in Y (i− 1), except the ith entry which is set to

a. Our algorithm will output Y (n) as the required column vector. The correctness of the

algorithm follows from the claim below.

Claim 1. For all i ∈ {0, 1, . . . , n}, Y (i) satisfies the set of inequalities in DY 6= ~0,

containing variables from {y1, . . . , yi}.

Proof. We prove the claim by induction on i. For the base case, when i = 1, we set all

variables to 0 except y1, which is set to a value such that the set of inequalities in DZ1 6= ~0

are satisfied. This implies that Y (1) satisfies the set of inequalities in DY 6= ~0 containing

116

y1. Now suppose the statement holds true for all i < k, for some k < n, by induction

hypothesis. We wish to show that Y (k) satisfies all inequalities that contain a variable from

{y1, . . . , yk}. We divide the set of all such inequalities into those that don’t contain yk and

those that do, which we call D1 and D2 respectively. Now observe that the inequalities in

D1 are unaffected by the choice of yk and therefore they continue to hold as Y (k − 1) and

Y (k) agree on all values except for yk. And for the inequalities in D2, we first substitute

values for all the other variables to obtain the system DZk 6= ~0. Then we choose a value

for yk so that all these inequalities are satisfied. Hence, Y (k) satisfies all inequalities which

contains a variable from {y1, . . . , yk}. Therefore Y (n) satisfies all the inequalities. This

completes the proof of the claim.

At step i, the algorithm computes DZi and chooses a value for yi by looking at a linear

function of yi in the t-length column vector DZi. Since Zi−1 and Zi differ only in two

entries, DZi can be computed from DZi−1, and the (i− 1)st and ith columns of D, using

O(t) operations over F. Since algorithm has n iterations, the number of field operations

performed is O(t · n).

Our algorithm iterates over all values of j from 1, 2, . . .m, and produces an assignment of

values from the field F for the variables in Xj in the j-th iteration. After m iterations an

assignment for all variables will have been computed, and we let Am be the instantiation of

the matrix A with this assignment. Our algorithm outputs Am as the representation of the

transversal matroid MG. This completes the description of Algorithm A. The following

two lemmata are required for proving the correctness of Algorithm A.

Lemma 10.2. For any j ∈ [m] and Si ∈ B, let Mij be the set of edges in M(Si)

which saturates Si(j). Let Rij ⊆ V be the set of vertices in V saturated by Mij. Then

det(Aj [Rij , Si(j)]) 6= 0.

Proof. We prove the lemma using induction on j. For the base case, j = 1. Let Si ∈ B.

If Si(1) = ∅, then the conclusion of the statement is empty and the lemma holds triv-

ially. Otherwise, Mij contains only one edge (say u1vi′). That is, Rij = {vi′}. Then

det(A1[Rij , Si(j)]) = A1[vi′ , u1] = 1, because A′[vi′ , u1] = xi′,1 is set to 1. For the in-

117

duction hypothesis we assume that the statement in the lemma holds for all values

j′ < j. Now consider the induction step for j ∈ [m]. Note that |Rij | = |Si(j)|, and

let Si(j) = {uj1 , . . . uj`} and Rij = {vi1 , . . . , vi`} where j1 < . . . < j` and i1 < . . . < i`.

We need to show that det(Aj [Rij , Si(j)]) 6= 0. If j` = j′ < j then det(Aj [Rij , Si(j)]) =

det(Aj′ [Rij , Si(j)]) 6= 0, by the induction hypothesis. Otherwise j` = j. Now consider the

determinant det(Aj−1[Rij , Si(j)]).

det(Aj−1[Rij , Si(j)]) =
∑̀
k=1

Aj−1[vik , uj] · (−1)k+` · det(Aj−1[Rij \ {vik}, Si(j) \ {uj}])

=
∑̀
k=1

[vikuj]xik,j(−1)k+` · det(Aj−1[Rij \ {vik}, Si(j) \ {uj}])

(10.3)

In the above equation [vikuj] = 1 if vikuj ∈ E and 0 otherwise. Let vk′uj be the edge in

Mij which is incident to uj . This implies that Mij \ {vk′uj} are the edges in M(Si), which

saturate Si(j− 1). Thus, by the induction hypothesis, det(Aj−1[Rij \ {vik}, Si(j) \ {uj}]) =

det(Aj−1[Rij \ {vik}, Si(j − 1)]) 6= 0. This implies that det(Aj−1[Rij , Si(j)]) is a non-zero

linear function of the variables in Xj , Therefore, in Step j, the algorithm would select

values for Xj such that det(Aj [Rij , Si(j)]) 6= 0. This completes the proof of the lemma.

Lemma 10.3. Let S′ ⊆ U such that there is no matching saturating S′ (or in other words

S′ /∈ I). Then the columns corresponding to S′ in Am are linearly dependent.

Proof. Suppose the columns corresponding to S′ in Am are linearly independent. Then

then there is a subset V ′ ⊆ V such that det(Am[V ′, S′]) 6= 0. That is,

det(Am[V ′, S′]) =
∑

f :S′
1−1−−→V ′

∏
s∈S′

Am[f(s), s] 6= 0,

where the summation is taken over all one to one maps f from S′ to V ′. This implies

that there is a one to one map f ′ : S′ → V ′ such that
∏
s∈S′ Am[f ′(s), s] 6= 0 and hence

Am[f ′(s), s] 6= 0 for all s ∈ S′. This implies that the pair (f ′(s)s) is an edge in E for

all s ∈ S′, which gives a matching in G saturating S′. This is a contradiction to the

assumption that S′ /∈ I.

118

Now we prove the correctness of Algorithm A.

Lemma 10.4. The matrix Am is a linear representation of the matroid MG = (U, I).

Proof. We need to show that for any U ′ ⊆ U , U ′ ∈ I if and only if the columns in Am

indexed with elements from U ′ are linearly independent. If U ′ /∈ I, then by Lemma 10.3,

the columns in Am indexed with elements from U ′ are linearly dependent.

Now we need to show that if U ′ ∈ I, then the corresponding columns in Am are linearly

independent. Since (U, I) is a matroid, there is a set S ∈ B such that U ′ ⊆ S. Note

that S(m) = S and M(S) is a fixed matching. Let R be the subset of V , saturated by

the matching M(S). By Lemma 10.2 , det(Am[R,S]) 6= 0. This implies that the columns

of Am corresponding to S are linearly independent and since U ′ ⊆ S, the columns of

Am corresponding to U ′ are also linearly independent. This completes the proof of the

lemma.

Lemma 10.5. Algorithm A runs in time O(
(
m
r

)
· |E|
√
n+N), where N is the time required

to perform O(
(
m
r

)
n ·m) operations over F.

Proof. Algorithm A first computes B and for each S ∈ B a matching M(S). This can be

done by executing the bipartite maximum matching algorithm for each r-vertex subset

of U . Since there are
(
m
r

)
such subsets and each execution of the bipartite maximum

matching algorithm is on a bipartite graph having at most r + n ≤ 2n vertices, this step

takes time O(
(
m
r

)
· |E|
√
n) [HK73]. Following this, Algorithm A executes the algorithm

of Lemma 10.1 once for each Xi, where i ∈ [m]. Since each execution of this algorithm

takes O(
(
m
r

)
n) field operations, the total number of field operations required for the second

phase of Algorithm A is O(
(
m
r

)
mn). This completes the proof of the lemma.

The correctness and running time bounds we have obtained for Algorithm A imply Theorem

10.1.

119

10.2 Representing matroids related to transversal matroids

In this section, we give deterministic algorithms for constructing linear representations of

gammoids and strict gammoids. These algorithms utilize the algorithm for constructing

linear representation of transversal matroids.

10.2.1 Truncations and contractions of transversal matroids

Several algorithmic applications require a linear representation of the k-truncation of

matroids [LMPS15, GMP+15, FGPS]. One way of deterministically computing a linear

representation of the k-truncation of a transversal matroid MG = (U, I) of rank r is as

follows. We first execute Algorithm A of Theorem 10.1 and then truncate the computed

represenation matrix using Theorem 9.7. However, observe that the running time of

Algorithm A is Ω(
(|U |
r

)
) since it has to iterate over all bases of the matroid.

However, when k is much smaller than r as is often the case when designing FPT algorithms,

we can get a faster algorithm to compute a linear representation of the k-truncation of MG

by slightly modifying Algorithm A and using Theorem 9.7. In the new algorithm, call it

Algorithm A′, we define B as follows.

B =

{
S ∈

(
U

k

) ∣∣∣ there is a matching in G saturating S

}
.

That is, B is directly defined to be the set of bases in the k-truncation of MG. Then we

follow the steps of algorithm A. This algorithm will output an n×m matrix Â over a field

of size strictly more than
(|U |
k

)
. Lemmata 10.2 and 10.3 are clearly true for Algorithm A′

as well. That is, all the columns corresponds to a basis in k-truncation of MG form a set

of linearly independent vectors. But there may be a set of columns of size strictly greater

than k which are also linearly independent. To get rid of this, we apply Theorem 9.7 to

obtain the k-truncation of Â, which gives us a linear representation of the k-truncation of

MG.

Theorem 10.3. There is a deterministic algorithm that, given a bipartite graph G =

(U] V,E) and k ∈ N, outputs a linear representation of the k-truncation of the transversal

120

matroid MG = (U, I) over a field F(Y) where F has size strictly greater than
(|U |
k

)
, in time

O(
(|U |
k

)
|V | · |E|+N), where N is the time required to perform O(

(|U |
k

)
|V | · |U |) operations

over F.

Contractions of transversal matroids. Other useful matroids are matroids obtained

by contracting some elements of the ground set of a second matroid. Like truncation,

contraction also reduces the rank of the matroid. Here, we give a faster algorithm to compute

a linear representation for a contracted transversal matroid by modifying Algorithm A.

We will use this linear representation to obtain a linear representation of gammoids (see

Subsection 10.2.2). Let MG = (U, I) be the transversal matroid associated with the graph

G = (U] V,E) on ground set U . Let F ⊆ U . One way of getting a representation of

MG/F is to find a linear representation of MG and then find a linear representation of

MG/F by applying Proposition 5.4, but we can do better. Let r be the size of a maximum

matching in G, that is rMG
(U) = r. Let rMG

(F) = ` and k = rMG
(U)−rMG

(F). Note that

the rank of MG/F is k. Now we explain how to modify Algorithm A to get an algorithm,

A′′, for computing a linear representation of MG/F . Towards that we first define B as

follows.

B =

{
S ∈

(
U

r

) ∣∣∣ there is a matching in G saturating S and |S \ F | = k

}
.

Now, Algorithm A′′ follows the steps of Algorithm A and it constructs an n×m matrix

Am. Lemmata 10.2 and 10.3 are true in this case as well. Let M [Am] = (E, I ′′) be the

matroid represented by the matrix Am. Now Algorithm A′′ run the algorithm mentioned

in Proposition 5.4 to compute a linear representation C of M [Am]/F .

Lemma 10.6. The matrix C is a linear representation of MG/F .

Proof. Let Q = M [Am]/F be the matroid represented by C. To prove Q is indeed MG/F ,

we need to show that for all T ⊆ E \F , rQ(T) = rMG
(T ∪F)− rMG

(F). So it is enough to

show that (i) rM [Am](F) = rMG
(F) and (ii) for any T ⊆ E\F , rM [Am](T∪F) = rMG

(T∪F).

Since statement (ii) includes statement (i) as well, when T = ∅, it is enough to show that

statement (ii) is true.

121

Fix an arbitrary T ⊆ E \ F . Let F ′ ⊆ F such that |F ′| = rMG
(F) = `. By Proposition 5.1,

there is set T ′ ⊆ T such that |T ′ ∪ F ′| = rMG
(T ′ ∪ F ′) = rMG

(T ∪ F). Again, by

Proposition 5.1, there is set S′ ∈ E\(T ′∪F ′) such that |S′∪T ′∪F ′| = rMG
(S′∪T ′∪F ′) = r.

Since |S′ ∪ T ′| = r − ` = k, the set S′ ∪ T ′ ∪ F ′ belongs to B. Thus, by Lemma 10.2,

columns corresponding to S′ ∪ T ′ ∪ F ′ are linearly independent in Am. This implies that

rM [Am](T ∪F) ≥ rM [Am](T
′ ∪F ′) = |T ′ ∪F ′| = rMG

(T ∪F). Since |T ′ ∪F ′| is the size of a

maximum matching in G[T∪F∪V], by Lemma 10.3, rM [Am](T∪F) ≤ |T ′∪F ′| = rMG
(T∪F).

Therefore, we have that rM [Am](T ∪ F) = rMG
(T ∪ F). This completes the proof of the

lemma.

Now consider the running time of Algorithm A′′. Let M be a maximum matching in

G[F ∪ V] and the F ′ be the set of vertices from F saturated by M . By Proposition 5.1,

for any S′ ⊆ U \ F of cardinality k, there is a matching of size r in G[F ∪ S′] if and only if

there is a matching of size r in G[F ′ ∪ S′]. This implies that algorithm A′′ can construct

B, by running the bipartite maximum matching algorithm at most
(n−|F |

k

)
times. Thus,

we get the following theorem.

Theorem 10.4. There is a deterministic algorithm that, given a bipartite graph G =

(U] V,E) and a vertex set F ⊆ U , outputs a linear representation of MG/F over a field F

of size strictly greater than
(|U |−|F |

k

)
, in time O(

(|U |
k

)
|V | · |E|+N), where k = rank(MG/F)

and N is the time required to perform O(
(|U |−|F |

k

)
|V | · |U |) operations over F.

10.2.2 Gammoids

In this subsection we explain how to get a linear representation of a gammoid efficiently.

By Lemma 7.1, we know that there is a polynomial time algorithm which given a digraph

D and S ⊆ V (D), outputs a bipartite graph G = (T] V ′, E), where T = V (D) and

V ′ = V (D) \ S, such that the strict gammoid with respect to D and S is the dual of the

transversal matroid MG on the ground set T . Thus by Lemma 7.1, Theorem 10.1 and

Proposition 5.4, we get the following theorem.

Theorem 10.5. Let D be an n-vertex digraph, S ⊆ V (D), |S| = r and F be a field of

size strictly greater than
(
n
n−r
)
. Then there is a deterministic algorithm which outputs

122

a linear representation of the strict gammoid with respect to D and S, over F in time

O(
(
n
n−r
)
n3 +N), where N is the time required to perform O(

(
n
n−r
)
n2) operations over F.

One way to get a representation of a gammoid is to first construct a representation of

the strict gammoid in the graph and then delete some elements from the strict gammoid.

However, observe that if we compute the representation of the strict gammoid via the

algorithm of Theorem 10.5, the running time depends on the total number of vertices in

the graph. We can obtain a much faster algorithm as follows. Let D be a digraph and let

S and W be subsets of V (D). Let M be the gammoid in D with ground set W ⊆ V (D),

with respect to S ⊆ V (D) of rank r. We may assume that r = |S|. Otherwise, we construct

the graph D′ obtained from D by adding S′, a set of r new vertices, and all possible edges

from S′ to S. Now consider the gammoid in D′ with ground set W with respect to S′. It

is easy to see that, for any subset of X of W , there has |X| vertex disjoint paths from

S′ to X in D′ if and only if there are |X| vertex disjoint paths from S to X in D, So

these two gammoids are the same and our assumption holds. Now let MS be the strict

gammoid in D with respect to S and note that the rank of MS and M are same. Let M∗S

be the transversal matroid which is the dual of MS and it is defined on the bipartite graph

G = (V (D)] V ′, E), where V ′ = V (D) \ S. Now let N be the matroid obtained from M∗S

by contracting V (D) \W . It is easy to see the following lemma.

Lemma 10.7. M = N∗

Proof. Since N is a matroid obtained by contracting V (D) \W in M∗S , Proposition 5.4

implies that N∗ is the matroid MS \ (V (D) \W). That is N∗ = M .

Combining Lemma 10.7, Theorem 10.4 and Proposition 5.4 we obtain Theorem 10.2.

123

124

Algorithms for

Graph Connectivity Problems

125

Chapter 11

Finding Even Subgraphs Even

Faster

Many well-studied algorithmic problems on graphs can be phrased in the following way:

Let F be a family of graphs or digraphs. Given as input a graph (digraph) G and a positive

integer k, can we delete k vertices (or edges or arcs) from G such that the resulting graph

(digraph) belongs to the class F ? Recent research in parameterized algorithms has focused

on problems of this kind where the class F consists of all graphs/digraphs whose vertices

satisfy certain parity constraints [CMP+14, FG14, CY11, DGvHP14]. In this chapter we

obtain significantly faster parameterized algorithms for two such problems, improving the

previous best bounds due to Cygan et al. [CMP+14]. We also settle the parameterized

complexity of a third problem, disproving a conjecture of Cai and Yang [CY11] and solving

an open problem posed by Fomin and Golovach [FG14].

An undirected graph G is even (respectively, odd) if every vertex of G has even (resp. odd)

degree. A directed graph D is balanced if the in-degree of each vertex of D is equal to its

out-degree. An undirected graph is Eulerian if it is connected and even; and a directed

graph is Eulerian if it is strongly connected and balanced. Cai and Yang [CY11] initiated

the systematic study of parameterized Eulerian subgraph problems. In this work we take

up the following edge-deletion problems of this kind:

127

Undirected Eulerian Edge Deletion Parameter: k

Input: A connected undirected graph G and an integer k.

Question: Does there exist a set S of at most k edges in G such that G \S is Eulerian?

Undirected Connected Odd Edge Deletion Parameter: k

Input: A connected undirected graph G and an integer k.

Question: Does there exist a set S of at most k edges in G such that G \ S is odd and

connected?

Directed Eulerian Edge Deletion Parameter: k

Input: A strongly connected directed graph D and an integer k.

Question: Does there exist a set S of at most k arcs in D such that D \S is Eulerian?

Our algorithms for these problems also find such a set S of edges/arcs when it exists; so

we slightly abuse the notation and refer to S as a solution to the problem in each case.

Previous Work and Discussion

Cai and Yang [CY11] listed sixteen odd/even undirected subgraph problems in their

pioneering paper, and settled the parameterized complexity of all but four. The first

two problems above are among these four; Cai and Yang conjectured that these are

both W[1]-hard, and so are unlikely to have fixed-parameter tractable (FPT) algorithms:

those with running times of the form f(k) · nO(1) for some computable function f where

n is the number of vertices in the input graph. Cygan et al. [CMP+14] disproved this

conjecture for the first problem: they used a novel and non-trivial application of the

colour-coding technique to solve both Undirected Eulerian Edge Deletion and

Directed Eulerian Edge Deletion in time 2O(k log k)nO(1). They also posed as open

the question whether there exist 2O(k)nO(1)-time algorithms for these two problems. It was

also posed as an open problem at the School on Parameterized Algorithms and Complexity

2014, Bȩdlewo, Poland [CFJ+]. Fomin and Golovach [FG14] settled the parameterized

complexity of the other two problems—not defined here—left open by Cai and Yang, but

left the status of Undirected Connected Odd Edge Deletion open.

128

We devise deterministic algorithms which run in time 2O(k)nO(1) for all the three problems

defined above. This answers the question of Cygan et al. [CMP+14] in the affirmative,

solves the problem posed by Fomin and Golovach, and disproves the conjecture of Cai and

Yang for Undirected Connected Odd Edge Deletion.

Theorem 11.1. Undirected Eulerian Edge Deletion, Undirected Connected

Odd Edge Deletion, and Directed Eulerian Edge Deletion can all be solved in

time O(2(2+ω)k · n2m3k6) +mO(1) where n = |V (G)|, m = |E(G)| and ω is the exponent of

matrix multiplication.

Our main conceptual contribution is to view the solution as an independent set of a

co-graphic matroid, which we believe will be useful in other problems where one of the

constraints that need to be satisfied is that of connectivity.

We now give a high-level overview of our algorithms. Given a subset of vertices T of

a graph G, a T -join of G is a set S ⊆ E(G) of edges such that T is exactly the set of

odd degree vertices in the subgraph H = (V (G), S). Observe that T -joins exist only

for even-sized vertex subsets T . The following problem is long known to be solvable in

polynomial time [EJ73].

Min T -Join

Input: An undirected graph G and a set of terminals T ⊆ V (G).

Question: Find a T -join of G of the smallest size.

Consider the two problems we get when we remove the connectivity (resp. strong connec-

tivity) requirement on the graph G \ S from Undirected Eulerian Edge Deletion

and Directed Eulerian Edge Deletion; we call these problems Undirected Even

Edge Deletion and Directed Balanced Edge Deletion, respectively. Cygan et

al. show that Undirected Even Edge Deletion can be reduced to Min T -Join, and

Directed Balanced Edge Deletion to a minimum cost flow problem with unit costs,

both in polynomial time [CMP+14]. Thus it is not the local requirement of even degrees

which makes these problems hard, but the simultaneous global requirement of (strong)

connectivity.

129

To handle this situation we turn to a matroid which correctly captures the connectivity

requirement. Let I be the family of all subsets X ⊆ E(G) of the edge set of a graph G such

that the subgraph (V (G), E(G) \X) is connected. Then the pair (E(G), I) forms a linear

matroid called the co-graphic matroid of G (See Section 11.0.1 for definitions). Let T be the

set of odd-degree vertices of the input graph G. Observe that for Undirected Eulerian

Edge Deletion, the solution S we are after is both a T -join and an independent set of the

co-graphic matroid of G. We exploit this property of S to design a dynamic programming

algorithm which finds S by computing “representative sub-families” [FLS14, KW12, Mar09,

Mon85] of certain families of edge subsets in the context of the co-graphic matroid of G.

We give simple characterizations of solutions which allow us to do dynamic programming,

where at every step we only need to keep a representative family of the family of partial

solutions where each partial solution is an independent set of the corresponding co-graphic

matroid. Our methods also imply that Undirected Connected Odd Edge Deletion

admits an algorithm with running time 2O(k)nO(1).

11.0.1 Notations used in this chapter

For an edge set E′ ⊆ E(G), we use (i) V (E′) to denote the set of end vertices of the edges

in E′, (ii) G \ E′ to denote the subgraph G′ = (V (G), E(G) \ E′) of G, and (iii) G(E′) to

denote the subgraph (V (E′), E′) of G. We say that a path system P = {P1, . . . , Pr} ends

at a vertex u if the path Pr ends at u, and u is called the final vertex of P . We use V e(P)

to denote the set of end vertices of paths in a path system P. For a path system P in a

digraph D, we use V i(P) and V f (P), respectively, to denote the set of initial vertices and

the set of final vertices, respectively, of paths in P. For a path system P = {P1, . . . , Pr}

and an edge/arc (u, v), we define P ◦ (u, v) as follows.

P ◦ (u, v) =

 {P1, . . . , Prv} if u is the final vertex of Pr and v /∈ V (Pr)

{P1, . . . , Pr, uv} if u is not the final vertex of Pr

Let A be a family of path systems in a graph G. Let e = (u, v) be an edge in G (or an arc

in D), and let M = (E, I) be the co-graphic matroid of graph G (or of digraph D). We

130

use A • {e} to denote the family of path systems

A • {e} =
{
P ′ = P ◦ e | P ∈ A, e /∈ E(P), E(P ′) ∈ I

}
.

11.1 Undirected Eulerian Edge Deletion

In this section we describe our 2O(k)nO(1)-time algorithm for Undirected Eulerian

Edge Deletion. Let (G, k) be an instance of the problem. Cygan et al. [CMP+14]

observed the following characterization.

Observation 11.1. A set S ⊆ E(G) ; |S| ≤ k of edges of a graph G is a solution to the

instance (G, k) of Undirected Eulerian Edge Deletion if and only if it satisfies the

following conditions:

(a) G \ S is a connected graph; and,

(b) S is a T -join where T is the set of all odd degree vertices in G.

For a designated set T ⊆ V (G) of terminal vertices of graph G, we call a set S ⊆ E(G)

a co-connected T -join of graph G if (i) G \ S is connected and (ii) S is a T -join. From

Observation 11.1 we get that the Undirected Eulerian Edge Deletion problem is

equivalent to checking whether the given graph G has a co-connected T -join of size at most

k, where T is the set of all odd-degree vertices in G. We present an algorithm which finds

a co-connected T -join for an arbitrary (even-sized) set of terminals T within the claimed

time-bound. That is, we solve the following more general problem

Co-Connected T -Join Parameter: k

Input: A connected graph G, an even-sized subset T ⊆ V (G) and an integer k.

Question: Does there exist a co-connected T -join of G of size at most k?

We design a dynamic programming algorithm for this problem where the partial solutions

which we store satisfy the first property of co-connected T -join and “almost satisfy” the

second property. To limit the number of partial solutions which we need to store, we

compute and store instead, at each step, a representative family of the partial solutions in

131

the corresponding co-graphic matroid. We start with the following characterization of the

T -joins of a graph G.

Proposition 11.2. [Fra93, Proposition 1.1] Let T be an even-sized subset of vertices

of a graph G, and let ` = |T |
2 . A subset S of edges of G is a T -join of G if and only if

S can be expressed as a union of the edge sets of (i) ` paths which connect disjoint pairs

of vertices in T , and (ii) zero or more cycles, where the paths and cycles are all pairwise

edge-disjoint.

This proposition yields the following useful property of inclusion-minimal co-connected

T -joins (minimal co-connected T -joins for short) of a graph G.

Lemma 11.3. Let T be an even-sized subset of vertices of a graph G, and let ` = |T |
2 . Let

S be a minimal co-connected T -join of G. Then (i) the subgraph G(S) is a forest, and (ii)

the set S is a union of the edge-sets of ` pairwise edge disjoint paths which connect disjoint

pairs of vertices in T .

Proof. Suppose the subgraph G(S) is not a forest. Then there exists a cycle C in G(S).

The degree of any vertex v of G in the subgraph G(S \ E(C)) is either the same as its

degree in the subgraph G(S), or is smaller by exactly two. So the set S \ E(C) is also a

T -join of G. And since the subgraph G \ S is connected by assumption, we get that the

strictly larger subgraph G \ (S \E(C)) is also connected. Thus S \E(C) is a co-connected

T -join of G which is a strict subset of S. This contradicts the minimality of S, and hence

we get that G(S) is a forest.

Thus there are no cycles in the subgraph G(S), and hence we get from 11.2 that S is a

union of the edge sets of ` pairwise edge-disjoint paths which connect disjoint pairs of

vertices in T .

Note that the set of paths described in Lemma 11.3 are just pairwise edge-disjoint. Vertices

(including terminals) may appear in more than one path as internal vertices. A partial

converse of the above lemma follows directly from Proposition 11.2.

Lemma 11.4. Let T be an even-sized subset of vertices of a graph G, and let ` = |T |
2 . Let

a subset S ⊆ E(G) of edges of G be such that (i) G \ S is connected, and (ii) S is a union

132

of the edge-sets of ` pairwise edge-disjoint paths which connect disjoint pairs of vertices in

T . Then S is a co-connected T -join.

Proof. Since S is a union of the edge sets of ` pairwise edge-disjoint paths which connect

disjoint pairs of vertices in T , we get from 11.2 that S is a T -join. Since G \S is connected

as well, S is a co-connected T -join.

An immediate corollary of Lemma 11.3 is that for any set T ⊆ V (G), any T -join of the

graph G has at least |T |/2 edges. Hence if |T | > 2k then we can directly return No as

the answer for Co-Connected T -Join. So from now on we assume that |T | ≤ 2k. From

Lemmas 11.3 and 11.4 we get that to solve Co-Connected T -Join it is enough to check

for the existence of a pairwise edge-disjoint collection of paths P = {P1, . . . , P |T |
2

} such

that (i) the subgraph (G \ E(P)) is connected, (ii) |E(P)| ≤ k, and (iii) the paths in P

connect disjoint pairs of terminals in T . We use dynamic programming to find such a path

system.

We first state some notation which we need to describe the dynamic programming table.

We use Q to denote the set of all path systems in G which satisfy the above conditions.

For 1 ≤ i ≤ k we use Q(i) to denote the set of all potential partial solutions of size i :

Each Q(i) is a collection of path systems Q(i) = {P(i)
1 , . . . ,P(i)

t } where each path system

P(i)
s = {P1, . . . , Pr} ∈ Q(i) has the following properties:

(i) The paths P1, . . . , Pr are pairwise edge-disjoint.

(ii) The end-vertices of the paths P1, . . . , Pr are all terminals and are pairwise disjoint,

with one possible exception. One end-vertex (the final vertex) of the path Pr may be

a non-terminal, or a terminal which appears as an end-vertex of another path as well.

(iii) |E(P(i)
s)| = i, and the subgraph G \ E(P(i)

s) is connected.

Note that the only ways in which a partial solution P(i)
s may violate one of the conditions

in Lemma 11.4 are: (i) it may contain strictly less than |T |2 paths, and/or (ii) there may be

a path Pr (and only one such), which has one end-vertex vr which is a non-terminal or is a

133

terminal which is an end-vertex of another path as well. For a path system P = {P1, . . . , Pr}

and u ∈ V (G) ∪ {ε}, we use W (P, u) to denote the following set.

W (P, u) =

V e(P) if u = ε

(V e(P \ {Pr})) ∪ {v | v is the initial vertex of Pr} if u 6= ε

Finally, for each 1 ≤ i ≤ k, T ′ ⊆ T , and v ∈ (V (G) ∪ {ε}) we define

Q[i, T ′, v] = {P ∈ Q(i) |W (P, v) = T ′, and if v 6= ε then v is the final vertex of P}

as the set of all potential partial solutions of size i whose set of end vertices is exactly

T ′ ∪ {v}. Observe from this definition that in the case v = ε, the last path Pr in each path

system P = {P1, . . . , Pr} ∈ Q[i, T ′, ε] ends at a “good” vertex; that is, at a terminal vertex

which is different from all the end vertices of the other paths P1, . . . , P(r−1) in P.

It is not difficult to see that this definition of Q[i, T ′, v] is a correct notion of a partial

solution for Co-Connected T -Join:

Lemma 11.5. Let (G,T, k) be a Yes instance of Co-Connected T -Join which has

a minimal solution of size k′ ≤ k, and let ` = |T |
2 . Then for each 1 ≤ i ≤ k′ there

exist T ′ ⊆ T , v ∈ (V (G) ∪ {ε}), and path systems P = {P1, P2, . . . , Pr} ∈ Q[i, T ′, v] and

P ′ = {P ′r, P ′r+1, . . . , P
′
`} in G (where E(P ′r) = ∅ if v = ε) such that (i) E(P) ∩ E(P ′) = ∅,

(ii) PrP
′
r is a path in G, and (iii) P ∪ P ′ = {P1, P2, . . . , PrP

′
r, P

′
r+1, . . . , P

′
`} is an edge-

disjoint path system whose edge set is a solution to the instance (G,T, k).

Proof. Let P̂ = {P̂1, . . . , P̂`} be a path system in graph G which witnesses —as per

Lemma 11.3— the fact that (G,T, k) has a solution of size k′. If i =
∑r

j=1 |E(P̂j)| for

some 1 ≤ r ≤ ` then the path systems P = {P̂1, P̂2, . . . , P̂r} ∈ Q[i, T ′, v] and P ′ =

{∅, P̂r+1, P̂r+2, . . . , P̂`} satisfy the claim, where T ′ = T ∩ V e(P) and v = ε.

If i takes another value then let 1 ≤ r ≤ ` be such that
∑r−1

j=1 |E(P̂j)| < i <
∑r

j=1 |E(P̂j)|.

“Split” the path P̂r as P̂r = P̂ 1
r P̂

2
r such that

∑r−1
j=1 |E(P̂j)|+ |E(P̂ 1

r)| = i. Now the path

systems P = {P̂1, P̂2, . . . , P̂r−1, P̂
1
r } ∈ Q[i, T ′, v] and P ′ = {P̂ 2

r , P̂r+1, P̂r+2, . . . , P̂`} satisfy

the claim, where T ′ = T ∩ V e(P) and v is the final vertex of the path P̂ 1
r .

134

Given this notion of a partial solution the natural dynamic programming approach is

to try to compute, in increasing order of 1 ≤ i ≤ k, partial solutions Q[i, T ′, v] for all

T ′ ⊆ T , v ∈ (V (G) ∪ {ε}) at step i. But this is not feasible in polynomial time because

the sets Q[i, T ′, v] can potentially grow to sizes exponential in |V (G)|. Our way out is

to observe that to reach a final solution to the problem we do not need to store every

element of a set Q[i, T ′, v] at each intermediate step. Instead, we only need to store a

representative family R of partial solutions corresponding to Q[i, T ′, v], where R has the

following property: If there is a way of extending—in the sense of Lemma 11.5—any partial

solution P ∈ Q[i, T ′, v] to a final solution then there exists a P̂ ∈ R which can be extended

the same way to a final solution.

Observe now that our final solution and all partial solutions are independent sets in the

co-graphic matroid MG of the input graph G. We now use Theorem 9.11(ii) to compute

these representative families of potential partial solutions at each intermediate step. In

step i of the dynamic programming we store, in place of the set Q[i, T ′, v], its (k − i)-

representative set ̂Q[i, T ′, v] ⊆k−irep Q[i, T ′, v] with respect to the co-graphic matroid MG;

for the purpose of this computation we think of each element P of Q[i, T ′, v] as the edge

set E(P). Lemma 11.6 below shows that this is a safe step. Whenever we talk about

representative families in this section, it is always with respect to the co-graphic matroid

MG associated with G; we do not explicitly mention the matroid from now on. We start

with the following definitions.

Definition 11.2. Let 1 ≤ i ≤ k , T ′ ⊆ T, ` = |T |
2 and v ∈ (V (G) ∪ {ε}), and let Q[i, T ′, v]

be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} be a path system in

the set Q[i, T ′, v]. Let P ′ = {P ′r, P ′r+1, . . . , P
′
`} be a path system in G (where E(P ′r) = ∅

if v = ε) such that (i) |E(P ′)| ≤ (k − i), (ii) PrP
′
r is a path in G, (iii) P ∪ P ′ =

{P1, P2, . . . , PrP
′
r, P

′
r+1, . . . , P

′
`} is an edge-disjoint path system that connects disjoint pairs

of terminals in T , (iv) V e(P ∪ P ′) = T and (v) G \ (E(P) ∪E(P ′)) is connected. Then P ′

is said to be an extender for P.

Definition 11.3. Let 1 ≤ i ≤ k , T ′ ⊆ T and v ∈ (V (G) ∪ {ε}), and let Q[i, T ′, v] be

the corresponding set of partial solutions. We say that J [i, T ′, v] ⊆ Q[i, T ′, v] is a path-

system equivalent set to Q[i, T ′, v] if the following holds: If P ∈ Q[i, T ′, v] and P ′ be

135

an extender for P, then there exists P∗ ∈ J [i, T ′, v] such that P ′ is an extender for P∗ as

well. We say that J [i, T ′, v] vk−ipeq Q[i, T ′, v].

The next lemma shows that a representative family is indeed a path-system equivalent set

to Q[i, T ′, v].

Lemma 11.6. Let (G,T, k) be an instance of Co-Connected T -Join such that the

smallest co-connected T -join of G has size k and let ` = |T |
2 . Let 1 ≤ i ≤ k , T ′ ⊆ T

and v ∈ (V (G) ∪ {ε}), and let Q[i, T ′, v] be the corresponding set of partial solutions. If

̂Q[i, T ′, v] ⊆k−irep Q[i, T ′, v], then ̂Q[i, T ′, v] vk−ipeq Q[i, T ′, v]. More generally, if J [i, T ′, v] ⊆

Q[i, T ′, v] and ̂J [i, T ′, v] ⊆k−irep J [i, T ′, v] then ̂J [i, T ′, v] vk−irep J [i, T ′, v].

Proof. We first prove the first claim. The second claim of the lemma follows by similar

arguments. Let ̂Q[i, T ′, v] ⊆k−irep Q[i, T ′, v], let P = {P1, . . . , Pr} be a path system in the

set Q[i, T ′, v], and let P ′ = {P ′r, P ′r+1, . . . , P
′
`} be a path system in G (where E(P ′r) = ∅

if v = ε) which is an extender for P. We have to show that there exists a path system

P∗ ∈ ̂Q[i, T ′, v] such that P ′ is an extender for P∗ as well. Since P ′ is an extender

for P we have, by definition, that (i) |E(P ′)| ≤ (k − i), (ii) PrP
′
r is a path in G, (iii)

P∪P ′ = {P1, . . . , PrP
′
r, P

′
r+1, . . . , P

′
`} is an edge-disjoint path system that connects disjoint

pairs of terminals in T , (iv) V e(P ∪ P ′) = T and (v) G \ (E(P) ∪ E(P ′)) is connected.

Since (i) P ∈ Q[i, T ′, v], (ii) E(P) ∩ E(P ′) = ∅, (iii) G \ (E(P) ∪ E(P ′)) is connected,

and (iv) ̂Q[i, T ′, v] ⊆k−irep Q[i, T ′, v], there exists a path system P∗ = {P ∗1 , P ∗2 , . . . , P ∗r } in

̂Q[i, T ′, v] such that (i) E(P∗)∩E(P ′) = ∅ and (ii) G \ (E(P∗)∪E(P ′)) is connected. This

follows directly from the definitions of a co-graphic matroid and a representative set.

We now show that P ′ is indeed an extender for P∗. Since P and P∗ both belong to the set

Q[i, T ′, v] we get that |E(P)| = |E(P∗)| = i and that P∗ is an edge-disjoint path system.

And since E(P∗) ∩ E(P ′) = ∅, we have that P∗ ∪ P ′ = {P ∗1 , . . . , P ∗r−1, P ∗r P ′r, P ′r+1, . . . , P
′
`}

is an edge-disjoint path system but for P ∗r P
′
r which could be an Eulerian walk (walk where

vertices could repeat but not the edges). Now we prove that the “path system” P∗ ∪ P ′

connects disjoint pairs of terminals in T , but for a pair which is connected by an Eulerian

walk. We now consider two cases for the “vertex” v.

136

Case 1: v = ε. In this case, since P and P∗ both belong to the set Q[i, T ′, ε] we

have that V e(P) = V e(P∗) = T ′. Also E(P ′r) = ∅, and P ∪ P ′ is the path system

{P1, . . . , Pr, P
′
r+1, P

′
r+2, . . . , P

′
`} with exactly ` = |T |

2 paths which connect disjoint pairs of

terminals in T . Since V e(P ∪ P ′) = T , P = {P1, . . . , Pr} and V e(P) = T ′, we get that

V e(P ′) = T \ T ′. Now since V e(P∗) = T ′ it follows that P∗ ∪ P ′ is a path system which

connects disjoint pairs of terminals in T .

Case 2: v 6= ε. In this case, since P and P∗ both belong to the set Q[i, T ′, v] we have

that V e(P) = V e(P∗) = T ′ ∪ {v}, and that the final vertex of each of these two path

systems is v. Also P∪P ′ = {P1, . . . , PrP
′
r, P

′
r+1, P

′
r+2, . . . , P

′
`} is a path system with exactly

` = |T |
2 paths which connect disjoint pairs of terminals in T . Since (i) V e(P ∪ P ′) = T , (ii)

P = {P1, . . . , Pr}, (iii) P ′ = {P ′r, P ′r+1, . . . , P
′
`}, (iv) V e(P) = T ′ ∪ {v}, and (v) the final

vertex of the path Pr in P is v, we get that (i) the initial vertex of the path P ′r in P ′ is v

and (ii) V e(P ′) = (T \ T ′) ∪ {v}. Now since V e(P∗) = T ′ ∪ {v} and (ii) the final vertex of

P∗ is v it follows that P∗ ∪ P ′ is a path system which connects disjoint pairs of terminals

in T , where P ∗r P
′
r which could be an Eulerian walk.

Thus, we have shown that P∗ ∪ P ′ connects disjoint pairs of terminals in T with paths,

except for P ∗r P
′
r which could be an Eulerian walk. Combining this with Proposition 11.2

and the fact that G \ (E(P∗) ∪ E(P ′)) is connected, we get that E(P∗) ∪ E(P ′) is a

co-connected T -join of G.

Finally, we show that P∗∪P ′ is a path system. Towards this we only need to show that P ∗r P
′
r

is not an Eulerian walk but a path. Observe that |E(P∗)∪E(P ′)| ≤ |E(P∗)|+ |E(P ′)| ≤ k.

However, E(P∗) ∪ E(P ′) is a co-connected T -join of G and thus by our assumption,

E(P∗) ∪E(P ′) has size exactly k – thus a minimum sized solution. By Lemma 11.3 this

implies that E(P∗) ∪ E(P ′) is a forest and hence P ∗r Pr is a path in G. This completes the

proof.

For our proofs we also need the transitivity property of the relation vqpeq.

Lemma 11.7. The relation vqpeq is transitive.

Proof. Let A vqpeq B and B vqpeq C. We need to show that A vqpeq C. Let P ∈ C and P ′ be

137

an extender for P. By the definition of B vqpeq C, there exists Pb ∈ B such that P ′ is also

an extender of Pb. Since A vqpeq B, there exists Pa ∈ A such that P ′ is also an extender of

Pa. This implies A vqpeq C.

Our algorithm is based on dynamic programming and stores a table D[i, T ′, v] for all

i ∈ {0, . . . , k}, T ′ ⊆ T and v ∈ V (G) ∪ {ε}. The idea is that D[i, T ′, v] will store a path-

system equivalent set to Q[i, T ′, v]. That is, D[i, T ′, v] vk−ipeq Q[i, T ′, v]. The recurrences for

dynamic programming is given by the following.

For i = 0, we have the following cases.

D[0, T ′, v] :=

{∅} if T ′ = ∅ and v = ε

∅ otherwise

(11.1)

For i ≥ 1, we have the following cases based on whether v = ε or not.

D[i, T ′, v] :=

(⋃
t∈T ′

(t,v)∈E(G)

D[i− 1, T ′ \ {t}, ε] • {(t, v)}
)⋃

(⋃
(u,v)∈E(G)

D[i− 1, T ′, u] • {(u, v)}
)

(11.2)

D[i, T ′, ε] :=

(⋃
t1,t2∈T ′

(t1,t2)∈E(G)

D[i− 1, T ′ \ {t1, t2}, ε] • {(t1, t2)}
)⋃

(⋃
t∈T ′

(u,t)∈E(G)

D[i− 1, T ′ \ {t}, u] • {(u, t)}
)

(11.3)

The next lemma will be used in proving the correctness of the algorithm.

Lemma 11.8. For all i ∈ {0, . . . , k}, T ′ ⊆ T, v ∈ V (G) ∪ {ε}, D[i, T ′, v] vk−ipeq Q[i, T ′, v].

Proof. Let I denote the family of independent sets in MG, the co-graphic matroid associated

with G. We prove the lemma using induction on i. The base case is i = 0. From

the definition of Q[0, T ′, v], we have that Q[0, T ′, v] = {∅} if T ′ = ∅ and v = ε, and

138

Q[0, T ′, v] = ∅ otherwise.

Now we prove that the claim holds for i ≥ 1. Let us also assume that by induction

hypothesis the claim is true for all i′ < i. Fix a T ′ ⊆ T , and v ∈ V (G) ∪ {ε} and let

Q[i, T ′, v] be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} ∈ Q[i, T ′, v]

and P ′ = {P ′r, P ′r+1, . . . , P
′
`} be a path system such that P ′ is an extender for P . We need

to show that there exists a P∗ ∈ D[i, T ′, v] such that P ′ is also an extender for P∗.

Case 1: v 6= ε. Consider the path system P = {P1, . . . , Pr} ∈ Q[i, T ′, v]. P has i edges

and its set of end-vertices is T ′ ∪ {v}. Also, its final vertex is v. Let (u, v) be the last edge

in path Pr. Let P ′′r be the path obtained by deleting edge (u, v) from Pr. More precisely:

If Pr has at least two edges then P ′′r is the non-empty path obtained by deleting the edge

(u, v) and the vertex v from Pr, and if (u, v) is the only edge in Pr (in which case u ∈ T ′)

then P ′′r = ∅. Note that the initial vertex of P ′r ∈ P ′ is v. Let uP ′r be the path obtained by

concatenating the path uv and P ′r. Let P1 = {P1, . . . , P
′′
r } and P ′1 = {uP ′r, P ′r+1, . . . , P

′
`}.

Then P1 has (i− 1) edges and P ′1 is an extender for P1. Now we consider two cases:

(u, v) is the only edge in Pr: Here P ′′r = ∅ and u ∈ T ′; let t = u. Note that P1 =

{P1, . . . , Pr−1} ∈ Q[i − 1, T ′ \ {t}, ε]. Hence by induction hypothesis there exists P∗1 ∈

D[i− 1, T ′ \ {t}, ε] such that P ′1 is also an extender for P∗1 . Since P ′1 is an extender for P∗1 ,

E(P∗1) ∪E(P ′1) ∈ I (by the definition of extender). This implies that E(P∗1) ∪ {(t, v)} ∈ I.

Since P∗1 ∈ D[i− 1, T ′ \ {t}, ε] and (t, v) ∈ E(G), by Equation 11.2, we get a path system

P∗ ∈ D[i, T ′, v] by adding the new path Pr = tv to P∗1 . Since P ′1 is an extender of P∗1 , P ′

is an extender of P∗ as well.

(u, v) is not the only edge in Pr: Here P ′′r 6= ∅, and u is the final vertex in P ′r. Hence

P1 = {P1, . . . , P
′′
r } ∈ Q[i−1, T ′, u]. Since P ′1 is an extender for P1, by induction hypothesis

there exists P∗1 ∈ D[i− 1, T ′, u] such that P ′1 is also an extender for P∗1 . By the definition

of extender, we have that E(P∗1) ∪ E(P ′1) ∈ I . This implies that E(P∗1) ∪ {(u, v)} ∈ I.

Since P∗1 ∈ D[i − 1, T ′, u] and (u, v) ∈ E(G), by Equation 11.2, we get a path system

P∗ ∈ D[i, T ′, v] by adding the new edge {(u, v)} to P∗1 . Since P ′1 is an extender of P∗1 , P ′

is an extender of P∗ as well.

139

Case 2: v = ε. We have that P = {P1, . . . , Pr} ∈ D[i, T ′, ε]. Then P has i edges, its

set of end-vertices is T ′, and no end-vertex repeats. Let (u, t) be the last edge in path

Pr. Then t ∈ T ′. Let P ′′r be the path obtained by deleting edge (u, t) from Pr. More

precisely: If Pr has at least two edges then P ′′r is the non-empty path obtained by deleting

the edge (u, t) and the vertex t from Pr, and if (u, t) is the only edge in Pr then P ′′r = ∅.

Let P1 = {P1, . . . , P
′′
r } and P ′1 = {ut, P ′r, P ′r+1, . . . , P

′
`}. Then P1 has (i− 1) edges and P ′1

is an extender for P1. Now we consider two cases:

(u, t) is the only edge in Pr: Here P ′′r = ∅, and {u, t} ⊆ T ′. Let t1 = u, t2 = t. Then

P1 is a path system in Q[i − 1, T ′ \ {t1, t2}, ε]. By induction hypothesis there exists

P∗1 ∈ D[i− 1, T ′ \ {t1, t2}, ε] such that P ′1 is also an extender of P∗1 . By the definition of

extender, we have that E(P∗1)∪E(P ′1) ∈ I. This implies that E(P∗1)∪{(t1, t2)} ∈ I. Since

P∗1 ∈ D[i− 1, T ′ \ {t1, t2}, ε] and (t1, t2) ∈ E(G), by Equation 11.3, we get a path system

P∗ ∈ D[i, T ′, v] by adding the new path t1t2 to P∗1 . Since P ′1 is an extender of P∗1 , P ′ is an

extender of P∗ as well.

(u, t) is not the only edge in Pr: Here P ′′r 6= ∅, u is the final vertex in P ′′r . Then

P1 ∈ Q[i − 1, (T ′ \ t), u]. By induction hypothesis there exists P∗1 ∈ D[i − 1, (T ′ \ t), u]

such that P ′1 is also an extender of P∗1 . By the definition of extender, we have that

E(P∗1)∪E(P ′1) ∈ I. This implies that E(P∗1)∪ {(u, t)} ∈ I. Since P∗1 ∈ D[i− 1, (T ′ \ t), u]

and (u, t) ∈ E(G), by Equation 11.3, we get a path system P∗ ∈ D[i, T ′, ε] by adding the

new edge (u, t) to P∗1 . Since P ′1 is an extender of P∗1 , P ′ is an extender of P∗ as well.

In both cases above we showed that D[i, T ′, v] vk−ipeq Q[i, T ′, v].

Algorithm, Correctness and Running Time.

We now describe the main steps of the algorithm. It finds a smallest sized co-connected

T -join (of size at most k) for G. The algorithm iteratively tries to find a solution of size

|T |
2 ≤ k

′ ≤ k and returns a solution corresponding to the smallest k′ for which it succeeds;

else it returns No. By Lemma 11.6 it is enough, in the dynamic programming (DP) table, to

store the representative set ̂Q[i, T ′, v] ⊆k−irep Q[i, T ′, v] instead of the complete set Q[i, T ′, v],

for all i ∈ {1, 2, . . . , k}, T ′ ⊆ T and v ∈ (V (G) ∪ {ε}). In the algorithm we compute and

140

store the set ̂Q[i, T ′, v] in the DP table entry D[i, T ′, v]. We follow Equations 11.1, 11.2 and

11.3 and fill the table D[i, T ′, v]. For i = 0 we use Equation 11.1 and fill the table. After

this we compute the values of D[i, T ′, v] in increasing order of i from 1 to k. At the ith

iteration of the for loop, we compute D[i, T ′, v] from the DP table entries computed at the

previous iteration. Since we need to keep the size of potential partial solutions in check, we

compute the representative family ̂D[i, T ′, v] for each DP table entry D[i, T ′, v] constructed

in the ith iteration and then set D[i, T ′, v]← ̂D[i, T ′, v]. By the definition of Q[i, T, ε] and

Lemma 11.4, any path system in D[i, T, ε] is a solution to the instance (G,T, k); we check

for such a solution as the last step. This completes the description of the algorithm.

The correctness of the algorithm follows from the following. By Lemma 11.8 we know

that D[i, T ′, v] vk−ipeq Q[i, T ′, v] and by Lemma 11.6 we have that ̂D[i, T ′, v] vk−ipeq D[i, T ′, v].

Thus, by transitivity of vqpeq (by Lemma 11.7) we have that ̂D[i, T ′, v] vk−ipeq Q[i, T ′, v].

This completes the proof of correctness. We now compute an upper bound on the running

time of the algorithm.

Lemma 11.9. The above algorithm runs in time O(2(2+ω)k · n2m3k5) + mO(1) where

n = |V (G)| and m = |E(G)|.

Proof. Let 1 ≤ i ≤ k and T ′ ⊆ T and v ∈ (V (G) ∪ {ε}) be fixed, and let us con-

sider the running time of computing ̂D[i, T ′, v]. That is, the running time to compute

(k − i)-representative family of D[i, T ′, v]. We know that the co-graphic matroid MG is

representable over F2 and that its rank is bounded by m − n + 1. By Theorem 9.11,

the running time of this computation of the (k − i)-representative family is bounded by

O
((

k
i

)
· |D[i, T ′, v]|i3m2 + |D[i, T ′, v]| ·

(
k
i

)ω−1
(i ·m)ω−1

)
+mO(1).

The family D[i, T ′, v] is computed using Equation 11.2 or Equation 11.3 from the DP table

entries D[i − 1, T ′′, u], computed in the previous iteration and the size of D[i − 1, T ′′, u]

is bounded according to Theorem 9.11. Thus the size of the family D[i, T ′, v] is upper

bounded by, |D[i, T ′, v]| ≤ ((2k)2 + 2kn) ·
(
maxT ′′⊆T ′,u∈V ̂D[i− 1, T ′′, u]

)
. Theorem 9.11

gives bounds on the sizes of these representative families ̂D[i− 1, T ′′, u], from which we get

|D[i, T ′, v]| ≤ 4kn ·mi
(
k
i−1
)
. Observe that since the number choices for (T ′, v) such that

T ′ ⊆ T and v ∈ V (G){ε} is bounded by 4k(n+ 1), and we compute DP table entries for

141

i = 1 to k, the overall running time can be bounded by O
(

4kn
∑k

i=1

((
k
i

)
·
(
k
i−1
)
kni4m3 +(

k
i−1
)
·
(
k
i

)ω−1
kn(im)ω

))
+mO(1). The running time above simplifies to O(2(2+ω)k ·n2m3k5)

+mO(1).

Putting all these together we get

Theorem 11.4. Co-Connected T -Join can be solved in O(2(2+ω)k · n2m3k6) +mO(1)

time where n = |V (G)| and m = |E(G)|.

Using Theorem 11.1 and Theorem 11.4 we get

Theorem 11.5. Undirected Eulerian Edge Deletion can be solved in time O(2(2+ω)k·

n2m3k6) +mO(1) where n = |V (G)| and m = |E(G)|.

11.2 Directed Eulerian Edge Deletion

Directed Eulerian Edge Deletion In this section we modify the algorithm described

for Undirected Eulerian Edge Deletion to solve the directed version of the problem.

The main ingredient of the proof is the characterization of “solution” for the directed

version of the problem. We begin with a few definitions. For a digraph D, we call S ⊆ A(D)

a balanced arc deletion set, if D \ S is balanced. We call a set S ⊆ A(D) a co-connected

balanced arc deletion set if D \ S is balanced and weakly connected.

Let (D, k) be an instance to Directed Eulerian Edge Deletion. A solution S ⊆ A(D)

of the problem should satisfy the following two properties, (a) S must be a balanced arc

deletion set of D and, (b) D \ S must be strongly connected. In fact, something stronger

is known in the literature.

Proposition 11.10. [BJG08] A digraph D is Eulerian if and only if D is weakly connected

and balanced.

Due to Proposition 11.10, we can relax the property (b) of the solution S and replace

the requirement of having D \ S as strongly connected with just requiring D \ S to be be

weakly connected. Now observe that solution S of Directed Eulerian Edge Deletion

142

is in fact a co-connected balanced arc deletion set of the directed graph D. Thus our goal

is to compute a minimal co-connected balanced arc deletion set of D of size at most k.

We start with the following easy property of in-degrees and out-degrees of vertices in D. For

a digraph D, define T − = {v ∈ V (D) | d−D(v) > d+D(v)}, T = = {v ∈ V (D) | d−D(v) = d+D(v)}

and T + = {v ∈ V (D) | d−D(v) < d+D(v)}.

Proposition 11.11. In a digraph D,
∑

v∈T +

d+D(v)− d−D(v) =
∑

v∈T −
d−D(v)− d+D(v).

Proof. In any digraph we have the following statement,

∑
v∈V (D)

d+(v) =
∑

v∈V (D)

d−(v)

⇐⇒
∑
v∈T +

d+(v) +
∑
v∈T −

d+(v) =
∑
v∈T −

d−(v) +
∑
v∈T +

d−(v)

⇐⇒
∑
v∈T +

d+D(v)− d−D(v) =
∑
v∈T −

d−D(v)− d+D(v).

This completes the proof.

The following lemma characterizes the set of arcs which form a minimal solution S of the

given instance (D, k). We then use this characterization to design a dynamic-programming

algorithm for the problem.

Lemma 11.12. Let D be a digraph, and ` =
∑

v∈T + d
+
D(v)− d−D(v). Let S ⊆ A(D) be a

minimal co-connected balanced arc deletion set. Then S is a union of ` arc disjoint paths

P = {P1, . . . , P`} such that

(1) For i ∈ {1, . . . , `}, Pi starts at a vertex in T + and ends at a vertex in T −.

(2) The number of paths in P that starts at v ∈ T + is equal to d+D(v)− d−D(v) and the

number of paths in P that ends at u ∈ T − is equal to d−D(u)− d+D(u).

Proof. First we claim that D(S) is a directed acyclic digraph. Suppose not, then let C be a

directed cycle in D(S). The in-degree and out-degree of any vertex of v of D in D(S \A(C))

is either same as its in-degree and out-degree in the subgraph D(S) or both in-degree and

143

out-degree of v is smaller by exactly one. So S \A(C) is a balanced arc deletion set of D.

And since the subgraph D \ S is connected by assumption, we get that the strictly larger

subgraph D \ (S \A(C)) is also connected. Thus S \A(C) is a co-connected balanced arc

deletion set of D. This contradicts the fact that S is minimal, and hence we get that D(S)

a directed acyclic digraph.

We prove the lemma using induction on `. When ` = 0, the lemma holds vacuously. Now

consider the induction step, i.e, when ` > 0. Consider a maximal path P in D(S). We claim

that P starts at a vertex in T +. Suppose not, let P starts at w ∈ V (D) \ T +. Further,

let (w, x) be the arc of P that is incident on w. By our assumption w ∈ T − ∪ T =, which

implies that if (w, x) ∈ S, then there must exist an arc (y, w) ∈ S or else the vertex w

cannot be balanced in D \ S. And since D(S) is a directed acyclic digraph we have that

y 6∈ V (P). But this contradicts the assumption that P is a maximal path in D(S). By

similar arguments we can prove that P ends at a vertex in T −. Let P starts at t1 and

ends at t2, where t1 ∈ T + and t2 ∈ T −. Now consider the digraph D′ = D \A(P). Clearly,

S \A(P) is a minimal co-connected balanced arc deletion set for the digraph D′. We claim

the following ∑
{v∈V (D′)|d+

D′ (v)>d
−
D′ (v)}

d+D′(v)− d−D′(v) = `− 1.

The correctness of this follows from the fact that the difference d+D′(v)− d−D′(v) = d+D(v)−

d−D(v) for all v ∈ V (D) \ {t1, t2}. And for t1 we have that d+D′(t1) − d
−
D′(t1) = d+D(t1) −

d−D(t1)− 1.

Now by applying induction hypothesis on D′ with `− 1 we have that S \A(P) is a union of

`− 1 arc disjoint paths P1, . . . , P`−1 which satisfies properties (1) and (2) for the digraph

D′. Now consider the path system P, P1, . . . , P`−1 and observe that it indeed satisfies

properties (1) and (2). This concludes the proof.

Finally, we prove a kind of “converse” of Lemma 11.12.

Lemma 11.13. Let D be a digraph, ` =
∑

v∈T + d
+
D(v) − d−D(v) and let S ⊆ A(D).

Furthermore, S is a union of ` arc disjoint paths P = {P1, . . . , P`} with the following

properties.

144

1. The digraph D \ S is weakly connected.

2. For i ∈ {1, . . . , `}, Pi starts at a vertex in T + and ends at a vertex in T −.

3. The number of paths in P that starts at v ∈ T + is equal to d+D(v)− d−D(v) and the

number of paths in P that ends at u ∈ T − is equal to d−D(u)− d+D(u).

Then S is a co-connected balanced arc deletion set.

Proof. By property (2), each vertex v ∈ T = appears only as internal vertex of any path in

P. Therefore v is balanced in D \ S. By property (3), for every vertex t ∈ T +, exactly

d+D(t)− d−D(t) paths start at t in P and no path in P ends at t and thus t is balanced in

D \ S. Similar arguments hold for all t ∈ T −. Hence D \ S is balanced. Since D \ S is

weakly connected as well by property (1), we have that S is a co-connected balanced arc

deletion set of D.

Now we are ready to describe the algorithm for Directed Eulerian Edge Deletion.

Let (D, k) be an instance of the problem. Lemma 11.12 and Lemma 11.13 imply that

for a solution we can seek a path system P with properties mentioned in Lemma 11.13.

Let T +
m be the multiset of vertices in the graph G such that each vertex v ∈ T + appears

d+D(v)− d−D(v) times in T +
m . Similarly, let T −m be the multiset of vertices in the graph D

such that each vertex v ∈ T − appears d−D(v)−d+D(v) times in T −m . Due to Proposition 11.11

we know that |T +
m | = |T −m |. Observe that if |T +

m | > k, then any balanced arc deletion set

must contain more than k arcs and thus the given instance is a No instance. So we assume

that |T +
m | ≤ k.

Lemma 11.12 implies that the solution can be thought of as a path system P = {P1, . . . , P`}

connecting vertices from T +
m to the vertices of T −m such that all the vertices of T +

m ∪ T −m

appear as end points exactly once and D \A(P) is weakly connected. Observe that the

solution is a path system with properties which are similar to those in the undirected case

of the problem. Indeed, the solution S corresponds to an independent set in the co-graphic

matroid of the underlying (undirected) graph of D. After this the algorithm for Directed

Eulerian Edge Deletion is identical to the algorithm for Co-Connected T -Join.

Let T = T +
m ∪T −m . We can define a notion of partial solutions analogous to Q[i, T ′, v]. The

145

definition of extender remains the same except for the last item, where we now require

that P ∪ P ′ is an arc disjoint path system connecting vertices from T +
m to the vertices of

T −m such that every vertex of T +
m ∪ T −m is an endpoint of exactly one path. Finally, we

can define the recurrences for dynamic programming similar to those defined for D[i, T ′, v]

in the case of Co-Connected T -Join. We then use these recurrences along with an

algorithm to compute representative families to solve the given instance. The correctness

of the algorithm follows via similar arguments as before. And by an analysis similar to the

case of Co-Connected T -Join we can obtain the following bound on the running time

of the algorithm.

Theorem 11.6. Directed Eulerian Edge Deletion can be solved in time O(2(2+ω)k ·

n2m3k6) +mO(1) where where n = |V (D)| and m = |A(D)|.

146

Chapter 12

Fast Exact Algorithms for

Survivable Network Design with

Uniform Requirements

In this chapter we consider the problem of designing an exact algorithm for finding a

minimum weight spanning subgraph of a given graph or digraph which is λ-edge connected.

This is also called the survivable network design with uniform requirements problem.

Minimum Weight λ-connected Spanning Subgraph

Input: A graph G (or digraph D), an integer λ and a weight function w on the edges(or

the arcs)

Question: Find a spanning λ-connected subgraph of minimum total weight.

Observe that such a subgraph contains at most λ(n − 1) edges (for digraphs, 2λ(n − 1)

arcs). Hence a solution can be obtained by enumerating all possible subgraphs with

at most these many edges and testing if it is λ connected. However such an algorithm

will take 2O(λn(logn+log λ)) time. One may try a more clever approach by observing that,

we can enumerate every minimal λ-connected graph on n vertices in 2O(λn) time. Then

we test if any of these graph is isomorphic to a subgraph of the input graph. However,

subgraph isomorphism requires 2λn(logn+log λ) unless the Exponential Time Hypothesis fails

147

[CFG+16], and hence this approach fails as well. In this chapter, we give the first single

exponential algorithm for this problem that runs in time 2O(λn). As a corollary, we also

obtain single exponential time algorithm for the minimum augmentation problem.

Minimum Weight λ-connectivity Augmentation

Input: A graph G (or a digraph D), a set of links L ⊆ V × V (ordered pairs in case of

digraphs), and a weight function w : L→ N.

Question: Find a minimum weight subset L′ of L such that G∪L (or D∪L) is λ-connected.

The first exact algorithm for MEG and MSCSS, running in time 2O(m) time, where m is

the number of edges in the graph, was given by Moyles and Thompson [MT69] in 1969.

Only recently, Fomin et. al. gave the first single-exponential algorithm for MEG and

MSCSS, i.e. with a running time of 2O(n) [FLS14]. For the special case of Hamiltonian

Cycle, a O(2n) algorithm is known [HK62, Bel62] for general digraphs from 1960s. It

was recently improved to O(1.657n) for graphs [Bjo14], and to O(1.888n) for bipartite

di-graphs [CKN13]. For other results and more details we refer to Chapter 12 of [BJG08]

and the works mentioned above.

Our approach is similar to that of Fomin et. al. for finding a Minimum equivalent

Graph [FLS14], although the algorithm becomes more involved. It is based on the following

fact. A digraph D is λ-connected if and only if for any r ∈ V (D), there is a collection

I of λ arc-disjoint in-branchings rooted at r and a collection O of λ arc-disjoint out-

branchings rooted at r. Then computing a I and a O with the largest possible intersection

yields a minimum spanning subgraph which is λ-connected. We show that the solution is

embedded in a linear matroid of rank O(λn), and then compute the solution by a dynamic

programming algorithm with representative sets over this matroid.

Theorem 12.1. Let D be a λ edge connected digraph on n vertices and w : A(D) → N.

Then we can find a minimum weight λ edge connected subgraph of D in 2O(λn).

For the case of undirected graphs, no equivalent characterization is known. However, we

obtain a characterization by converting the graph to a digraph with labels on the arcs.

148

Then by a similar approach we obtain the following.

Theorem 12.2. Let G be a λ edge connected graph on n vertices and w : E(G) → N.

Then we can find a minimum weight λ edge connected subgraph of G in 2O(λn) time.

For the problem of augmenting a network to a given connectivity requirement at a minimum

cost, we obtain the following results by applying the previous theorems with suitable weight

functions.

Theorem 12.3. Let D be a digraph (or a graph) on n vertices, L ⊆ V (D)× V (D) be a

collection of links with weight function w : L→ N. For any integer λ, we can find a L′ ⊆ L

of minimum total weight such that D′ = (V (D), A(D) ∪ L′) is λ edge connected, in time

2O(λn).

12.1 Directed Graphs

In this section, we give a single exponential exact algorithm, that is of running time

2O(λn), for computing a minimum spanning λ-connected subgraph of an input digraph on

n vertices. We first consider the unweighted version of the problem and it will be clear

that, essentially the same algorithm works for weighted version as well. We begin with the

following characterization of λ connectivity in digraphs.

Lemma 12.1. Let D be a digraph. Then D is λ connected if and only if for any r ∈ V (D),

there is a collection of λ arc-disjoint in-branchings rooted at r, and a collection of λ

arc-disjoint out-branchings rooted at r.

Proof. Fix an arbitrary vertex r ∈ V (D). In the forward direction, by Edmond’s disjoint

out-branching theorem [Sch03, Corollary 53.1b], there is a collection of λ arc-disjoint

out-branching rooted at a vertex r. To find the collection of in-branchings, we consider

the graph D′ which is the “reversed digraph” of D, i.e. V (D′) = V (D) and the arc

set A(D′) = {(v, u)|(u, v) ∈ A(D)}. Note that the digraph D′ is also λ connected, and

therefore there is a collection of λ arc-disjoint out-branchings O′1, O
′
2, . . . , O

′
λ rooted at r in

D′. From this collection, we construct the λ arc-disjoint in-branchings in D as follows. For

149

each j ∈ [λ], let Ij = {(u, v)|(v, u) ∈ A(O′j)} and note that this is an in-branching rooted

at r. This gives the required collection of in-branchings.

The reverse direction is easy to see, and it follows from [Sch03, Corollary 53.1b and

Corollary 53.1d].

Let D be the input to our algorithm, which is a λ connected digraph on n vertices. Let

us fix a vertex r ∈ V (D). By Lemma 12.1, any minimal λ connected subgraph of D is a

union of a collection I of λ arc-disjoint in-branchings and a collection O of λ arc-disjoint

out-branchings which are all rooted at vertex r. The following lemma relates the size of

such a minimal subgraph to the number of arcs common to both I and O. It follows easily

from Lemma 12.1. Here, A(I) denotes the set of arcs which are present in some I ∈ I and

A(O) denotes the set of arcs which are present in some O ∈ O. Observe that the set of

arcs in A(I), and the set of arcs in A(O), that are incident on r, are disjoint. Hence the

number of common arcs is at most λ(n− 2).

Lemma 12.2. Let D be a λ-connected digraph, r be a vertex in V (D) and ` ∈ [λ(n− 2)].

Then a subdigraph D′ with at most 2λ(n− 1)− ` arcs, is a minimal λ-connected spanning

subdigraph of D if and only if D′ is a union of a collection I of arc-disjoint in-branchings

rooted at r, and a collection O of arc-disjoint out-branchings rooted at r such that |A(I) ∩

A(O)| ≥ ` (i.e. they have at least ` common arcs).

By Lemma 12.2, a minimum λ connected subgraph of D′ is I∪O, where O = {O1, O2, . . . Oλ}

is a collection of λ arc disjoint out-branchings rooted at r, and I = {I1, I2, . . . Iλ} is a

collection of λ arc disjoint in-branchings rooted at r, such that A(O) ∩A(I) is maximized.

Let us assume that the number of arcs in the subdigraph D′ is 2λ(n − 1) − ` where

|A(O) ∩A(I)| = `. The first step of our algorithm is to construct the set A(O) ∩A(I), and

then, given the intersection, we construct I and O in polynomial time. The main idea is to

enumerate a subset of potential candidates for the intersection, via dynamic programming.

But note that there could be as many as nO(λn) such candidates, and enumerating all

of them will violate the claimed running time. So we try a different approach. We first

observe that the solution, I ∪O, may be embedded into a linear matroid of rank O(λn).

Then we prove that it is enough to keep a representative family of the partial solutions, at

150

each step, in the dynamic programming table. Since, the size of the representative family

is bounded by 2O(λn), our algorithm runs in the claimed running time.

Let us delve into the details of the algorithm. Let D−r be the digraph obtained from D

after removing the arcs in OutD(r). Similarly, let D+
r be the digraph obtained from D after

removing the arcs in InD(r). Observe that the arc sets of D−r and D+
r can be partitioned

as follows.

A(D−r) =
⊎

v∈V (D−r)

OutD−r (v) and A(D+
r) =

⊎
v∈V (D+

r)

InD+
r

(v)

We construct a pair of matroids corresponding to each of the λ in-branching in I and

each of the λ out-branching in O. For each in-branching Ii ∈ I, we have a matroid

Mi
I,1 = (EiI,1, IiI,1) which is a graphic matroid in D and EiI,1 is a copy of the arc set of

D. And similarly, for each out-branching Oi ∈ O, we have a matroid Mi
O,1 = (EiO,1, IiO,1)

which is a graphic matroid in D and EiO,1 is again a copy of the arc set of D. Note

that the rank of these graphic matroids is n − 1. Next, for each Ii, we define matroid

Mi
I,2 = (EiI,2, IiI,2) which is a partition matroid where EiI,2 is a copy of the arc set of D−r

and

IiI,2 = {X | X ⊆ EiI,2, |X ∩ OutD−r (v)| ≤ 1, for all v ∈ V (D−r)} 1

Since OutD−r (r) = ∅ and |V (D−r)| = n, we have that the rank of these partition matroids,

Mi
I,2, i ∈ [λ], is n− 1. And similarly, for each Oi, we define Mi

O,2 = (EiO,2, IiO,2) as the

partition matroid, where EiO,2 is a copy of the arc set of D+
r and

IiO,2 = {X | X ⊆ EiO,2, |X ∩ InD+
r

(v)| ≤ 1, for all v ∈ V (D+
r)}

Since InD+
r

(r) = ∅ and V (D+
r) = n, we have that the rank of these partition matroids,

Mi
O,2, i ∈ [λ], is n − 1. Next, we define two uniform matroids MI and MO of rank

λ(n− 1), corresponding to I and O, on the ground sets EI and EO, respectively, where Ei

and EO are copies of the arc set of D. We define matroid M = (E, I) as the direct sum of

1We slightly abuse notation for the sake of clarity, as strictly speaking X and OutDr
G

(v) are disjoint,
since they are subsets of two different copies of the arc set.

151

MI ,MO, Mi
I,j ,Mi

O,j , for i ∈ [λ] and j ∈ [2], That is,

M =
(⊕
i∈[λ],j∈[2]

(Mi
I,j ⊕Mi

O,j)
)
⊕MI ⊕MO

Since the rank of Mi
I,j ,Mi

O,j where i ∈ [λ] and j ∈ [2], are n− 1 each, and rank of MI

and MO is λ(n− 1), we have that the rank of M is 6λ(n− 1).

Let us briefly discuss the representation of these matroids. The matroids Mi
I,1,Mi

O,1 for

i ∈ [λ] are graphic matroids, which are representable over any field of size at least 2. And

the matroids Mi
I,2,Mi

O,1 are partition matroids with partition size 1, and therefore they

are representable over any field of at least 2 as well. Finally, the two uniform matroids,

MI and MO, are representable over any field with at least |A(D)|+ 1 elements. Hence, at

the start of our algorithm, we choose a representation of all these matroids over a field F

of size at least |A(D)|+ 1. So M is representable over any field of size at least |A(D)|+ 1,

as it is a direct sum of all these matroids.

For an arc e ∈ A(D) not incident to r there are 4λ + 2 copies of it in M. Let eiJ,j

denotes it’s copy in EiJ,j , where i ∈ [λ], j ∈ [2] and J ∈ {I,O}. An arc incident to

r has only 3λ + 2 copies in M. For an arc e ∈ InD(r) we will denote its copies in

EiI,1, E
i
O,1, E

i
I,2 by eiI,1, e

i
O,1, e

i
I,2, and similarly for an arc e ∈ OutD(r) we will denote its

copies in EiI,1, E
i
O,1, E

i
O,2 by eiI,1, e

i
O,1, e

i
O,2. And finally, for any arc e ∈ A(D), let eI and

eO denote it’s copies in EI and EO, respectively. For e ∈ A(D) \ OutD(r) and i ∈ [λ],

let SiI,e = {eiI,1, eiI,2}. Similarly for e ∈ A(D) \ InD(r), i ∈ [λ], let SiO,e = {eiO,1, eiO,2}. Let

Se = (∪λi=1S
i
I,e)
⋃

(∪λj=1S
j
O,e)

⋃
{eI , eO}. For X ∈ I, let AX denote the set of arcs e ∈ A(D)

such that Se ∩X 6= ∅.

Observation 12.3. Let I be an in-branching in D rooted at r. Then for any i ∈ [λ],

{eiI,1 | e ∈ A(I)} is a basis inMi
I,1 and {eiI,2 | e ∈ A(I)} is a basis inMi

I,2. And conversely,

Let X and Y be basis of Mi
I,1 and Mi

I,2, respectively, such that AX = AY . Then AX is

an in-branching rooted at r in D.

Observation 12.4. Let O be an out-branching in D. Then for any i ∈ [λ], {eiO,1 | e ∈

A(O)} is a basis in Mi
O,1 and {eiO,2 | e ∈ A(O)} is a basis in Mi

O,2. And conversely, Let

152

X and Y be basis of Mi
O,1 and Mi

O,2, respectively, such that AX = AY . Then AX is an

out-branching rooted at r in D.

Observe that any arc e ∈ A(D) can belong to at most one in-branching in I and at most

one out-branching in O, because both I and O are collection of arc disjoint subgraphs of

D. Because of Observation 12.3 and 12.4, if we consider that each Ii ∈ I is embedded into

Mi
I,1 and Mi

I,2 and each Oi ∈ O is embedded into Mi
O,1 and Mi

O,2, then we obtain an

independent set Z ′ of rank 4λ(n− 1) corresponding to I ∪O in the matroid M. Further,

since the collection I is arc-disjoint, {eI | e ∈ A(I)} is a basis of MI . And similarly,

{eO | e ∈ A(O)} is a basis of MO. Therefore, Z = Z ′ ∪ {eI | e ∈ A(I)} ∪ {eO | e ∈ A(O)}

is a basis of M.

Now observe that, each arc in the intersection I ∩O has six copies in the independent set

Z. The remaining arcs in I ∪ O have only three copies each, and this includes any arc

which is incident on r. Now, we define a function φ : I ×A(D)→ {0, 1}, where for W ∈ I

and e ∈ A(D), φ(W, e) = 1 if and only if exactly one of the following holds.

• Either, W ∩ Se = ∅.

• Or, {eI , eO} ⊆W and there exists t, t′ ∈ [λ] such that StI,e ⊆W and St
′
O,e ⊆W . And

for each i ∈ [λ] \ {t} and j ∈ [λ] \ {t′}, SiI,e ∩W = ∅ and SjO,e ∩W = ∅.

Using function φ we define the following collection of independent sets of M.

B6` = {W |W ∈ I, |W | = 6`,∀e ∈ A(D) φ(W, e) = 1}

By the definitions of φ, I and O,
⋃
e∈A(O)∩A(I)(Se ∪ {eI , eO}) is an independent set of M,

which is contained in B6`. In fact, for the optimal value of `, the collection B6` contains all

possible candidates for the intersection of O′ and I′, where O′ and I′ are collections of arc

disjoint in-branchings and arc disjoint out-branchings which form an optimum solution.

Our goal is to find one such candidate partial solution from B6`. We are now ready to

state the following lemma which shows that a representative family of B6` always contains

a candidate partial solution which can be extended to a complete solution.

153

Lemma 12.5. Let D be a λ-connected digraph on n vertices, r ∈ V (D) and ` ∈ [λ(n− 2)].

There exists a λ-connected spanning subdigraph D′ of D with at most 2λ(n− 1)− ` arcs if

and only if, there exists T̂ ∈ B̂6` ⊆n′−6`rep B6`, where n′ = 6λ(n− 1), such that D has a of λ

arc disjoint in-branchings containing A
T̂

and λ arc disjoint out-branchings containing A
T̂

,

which are all rooted at r.

Proof. In the forward direction consider a λ-connected spanning subdigraph D′ of D with

at most 2λ(n−1)−` arcs. By Lemma 12.2, D′ is union of a collection I = {I1, I2, . . . , Iλ} of

arc-disjoint in-branchings rooted at r, and a collection O = {O1, O2, . . . , Oλ} of arc-disjoint

out-branchings rooted at r such that |A(I) ∩ A(O)| ≥ `. By Observation 12.3, for all

i ∈ [λ], {eiI,1 | e ∈ A(Ii)} is a basis in Mi
I,1 and {eiI,2 | e ∈ A(Ii)} is a basis in Mi

I,2.

Similarly, by Observation 12.4, for all i ∈ [λ], {eiO,1 | e ∈ A(Oi)} is a basis in Mi
O,1 and

{eiO,2 | e ∈ A(Oi)} is a basis in Mi
O,2. Further {eI | e ∈ A(I)} and {eO | e ∈ A(O)}

are bases of MI and MO respectively. Hence the set ZD′ = {eiI,1, eiI,2 | e ∈ A(Ii), i ∈

[λ]}∪{eiO,1, eiO,2 | e ∈ A(Oi), i ∈ [λ]}∪{eI | e ∈ A(I)}∪{eO | e ∈ A(O)} is an independent

set inM. Since |ZD′ | = 6λ(n−1), ZD′ is actually a basis inM. Consider T ⊆ A(I)∩A(O)

with exactly ` arcs. Let T ′ = {eiI,1, eiI,2 | e ∈ T ∩ Ii, for some i ∈ [λ]} ∪ {eiO,1, eiO,2 | e ∈

T ∩Oi, for some i ∈ [λ]}∪ {eI , eO | e ∈ T}. Note that T ′ is a set of six copies of the ` arcs

that are common to a pair of an in-branching in I and an out-branching in O. Therefore,

by the definition of B6`, T ′ ∈ B6`. Then, by the definition of representative family, there

exists T̂ ∈ B̂6` ⊆n′−6`rep B6`, such that Ẑ = (ZD′ \ T ′) ∪ T̂ is an independent set in M. Note

that |Ẑ| = 6λ(n− 1), and hence it is a basis in M. Also note that A
T̂
⊆ A

Ẑ
.

Claim 1. For any i ∈ [λ] and e ∈ A(D), either {eiI,1, eiI,2} ⊆ Ẑ or {eiI,1, eiI,2} ∩ Ẑ = ∅.

And further for every e ∈ A(D) such that eiI,1 ∈ Ẑ for some i ∈ [λ], Ẑ also contains eI .

Similarly, for any i ∈ [λ] and e ∈ A(D), either {eiO,1, eiO,2} ⊆ Ẑ or {eiO,1, eiO,2} ∩ Ẑ = ∅,

and further, for every e ∈ A(D) such that eiO,1 ∈ Ẑ for some i ∈ [λ], Ẑ also contains eO.

Proof. Let us consider the first statement. Recall that Ẑ = (ZD′ \ T ′) ∪ T̂ . As discussed

earlier, for any e ∈ AD and i ∈ [λ], both ZD′ and T ′ contain both the copy in {eiI,1, eiI,2},

or none of the copies from {eiI,1, eiI,2}. Now T̂ ∈ B6` also satisfies this condition for every

e ∈ A(D). Hence Ẑ satisfies this condition as well. Now let us consider the second

154

statement. By construction, ZD′ contains eI , eO for every arc e ∈ A(I) ∪A(O). Similarly,

T ′ contains eI , eO for every arc e ∈ T . Finally, T̂ contain both eI , eO for any arc e ∈ A(D)

if and only if it contains ejI,1, e
j
I,2 for some j ∈ [λ]. Hence, for any arc e, if ejI,1 ∈ Ẑ for some

j ∈ [λ], then we have eI ∈ Ẑ as well. We can similarly show the other two statements.

Claim 2. For any i, j ∈ [λ], i 6= j, either {eiI,1, eiI,2} ∩ Ẑ = ∅ or {ejI,1, e
j
I,2} ∩ Ẑ = ∅.

Similarly, for any i, j ∈ [λ], i 6= j, either {eiO,1, eiO,2} ∩ Ẑ = ∅ or {eiO,1, eiO,2} ∩ Ẑ = ∅.

Proof. Again let us consider the first statement and suppose that it is not true. So there

are distinct i, j ∈ [λ] such that, {eiI,1, eiI,2} ∩ Ẑ 6= ∅ and {ejI,1, e
j
I,2} ∩ Ẑ 6= ∅ for an arc

e ∈ A(D). Initially, for any arc f in the collection of arc-disjoint in-branchings I, there

is exactly one k ∈ [λ] such that fkI,1, f
k
I,2 ∈ ZD′ and for any other k′ ∈ [λ], fk

′
I,1, f

k′
I,2 /∈ ZD′ .

Further, we have fI ∈ ZD′ . And for any arc not in A(I), no copies of this arc from EI

and EkI,1, E
k
I,2 for all k ∈ [λ], is present in ZD′ . Such a statement also holds true for T ′

and T̂ as well, as they are both in B6`. As Ẑ = (ZD′ \ T ′) ∪ T̂ , it must be the case that

{eiI,1, eiI,2} ∩ (ZD′ \ T ′) 6= ∅ and {ejI,1, e
j
I,2} ∩ T̂ 6= ∅. But then, ZD′ \ T ′ and T̂ have the

element eI in common. This contradicts the fact that T̂ is a representative of T ′ in B̂6`.

Hence, no such pair i, j exists. We can show the second statement in a similar way.

Since Ẑ is a basis in M, for any i ∈ [λ], j ∈ [2] and k ∈ {I,O}, we have that Ẑ ∩ Eik,j
is a basis in Mi

k,j . For each i ∈ [λ], let X̂i
1 = Ẑ ∩ EiI,1 and X̂i

2 = Ẑ ∩ EiI,2. By Claim 1,

A
X̂i

1
= A

X̂i
2

and hence, by Observation 12.3, Îi = A
X̂i

1
forms an in-braching rooted at r.

Because of Claim 2, {Îi | i ∈ λ} are pairwise arc-disjoint as Îi ∩ Îj = ∅ for every i 6= j ∈ [λ].

Further A
T̂

is covered in arc disjoint in-branchings {AIi,1 | i ∈ λ}, as T̂ ∩ EiI,k ⊆ X̂i
j for

j ∈ [2]. By similar arguments we can show that there exist a collection {Ôi | i ∈ [λ]} of λ

out-branchings rooted at r containing A
T̂

.

The reverse direction of the lemma follows from Lemma 12.2.

Lemma 12.6. Let D be a λ connected digraph on n vertices and ` ∈ [λ(n− 2)]. In time

2O(λn) we can compute B̂6` ⊆n′−6`rep B6` such that |B̂6`| ≤
(
n′

6`

)
. Here n′ = 6λ(n− 1).

Proof. We give a dynamic programming based algorithm. Let D be an array of size `+ 1.

155

For i ∈ {0, 1, . . . , `} the entry D[i] will store the family B̂6i ⊆n′−6irep B6i. We will fill the

entries in array D according to the increasing order of index i, i.e. from 0, 1, . . . , `. For

i = 0, we have B̂0 = {∅}. Let W = {{eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} | i, j ∈ [λ], e ∈ A(D)} and

note that |W| = λ2m, where m = |A(D)|. Given that we have filled all the entries D[i′],

where i′ < i+1, we fill the entry D[i+1] at step i+1 as follows. Let F6(i+1) = (B̂6i•W)∩I.

Claim 1. F6(i+1) ⊆n
′−6(i+1)
rep B̂6(i+1), for all i ∈ {0, 1, . . . `− 1}

Proof. Let X ∈ B̂6(i+1) and Y be a set of size n′ − 6(i + 1) such that X ∪ Y ∈ I and

X ∩ Y = ∅. We will prove that there exists some X̂ ∈ F6(i+1) such that X̂ ∪ Y ∈ I and

X̂ ∩ Y = ∅. This will prove the claim.

Let e ∈ A(D) and i, j ∈ [λ] such that {eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} ⊆ X. Let X ′ =

X\{eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} and Y ′ = Y ∪{eI , eO, eiI,1, eiI,2, e

j
O,1, e

j
O,2}. Note that X ′ ∈ I

and Y ′ ∈ I, since X ∪ Y ∈ I. But, X ′ ∈ B6i, X ′ ∪ Y ′ ∈ I and |Y ′| = n′ − 6i. This

implies that there exists X̂ ′ ∈ B̂6i such that, X̂ ′ ∩ Y ′ = ∅ and X̂ ′ ∪ Y ′ ∈ I. Therefore,

X̂ ′∪{eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} ∈ I and also X̂ ′∪{eI , eO, eiI,1, eiI,2, e

j
O,1, e

j
O,2} ∈ (B̂6i •W).

This proves the claim.

Now the entry for D[i+ 1] is F̂6(i+1) which is n′− 6(i+ 1) representative family for F6(i+1),

which is computed as follows. By Theorem 5.5 we know that |B̂6i| ≤
(
n′

6i

)
. Hence it follows

that |F6(i+1)| ≤ λ2m
(
n′

6i

)
and moreover, we can compute F6(i+1) in time O(λ2mn

(
n′

6i

)
).

We use Theorem 5.5 to compute F̂6(i+1) ⊆n
′−6(i+1)
rep F6(i+1) of size at most

(
n′

6(i+1)

)
. This

step can be done in time O(
(

n′

6(i+1)

)
tpω + t

(
n′

6(i+1)

)ω−1
), where t = |F6(i+1)| = λ2m

(
n′

6i

)
. We

know from Claim 1 that F6(i+1) ⊆n
′−6(i+1)
rep B6(i+1), and therefore by Lemma 5.7 we have

B̂6(i+1) = F̂6(i+1) ⊆n
′−6(i+1)
rep B6(i+1). Finally, we assign the family B̂6(i+1) to D[i+ 1]. This

completes the description of the algorithm and its correctness.

Since ` ≤ n′/6, we can bound the total running time of this algorithm as

O
(∑̀
i=1

(iω
(

n′

6(i+ 1)

)
+

(
n′

6(i+ 1)

)ω−1)
λ2m

(
n′

6i

))
≤ 2O(λn)

156

We have the following algorithm for computing I and O given A(I)∩A(O). This algorithm

extends a given set of arcs to a minimum weight collection of k arc disjoint out-branchings.

This is a simple corollary of [Sch03, Theorem 53.10] and it also follows from the results of

Gabow [Gab95].

Lemma 12.7. Let D be a digraph and w be a weight function on the arcs. For any subset

X of arcs of D, a vertex r and an integer k, we can find a minimum weight collection O

of k arc disjoint out-branchings rooted at r, such that X ⊆ A(O), if it exists, in polynomial

time.

Proof. We define a new weight function w′ which gives a weight 0 to any arc which is

contained in X and it is same as w for all other arcs. We now apply an algorithm [Sch03,

Theorem 53.10] with the weight function w′, which returns a minimum weight collection

O of k arc disjoint out-branchings rooted at r. If X ⊆ A(O), then we return O as the

required solution. Otherwise no such collection exists.

Theorem 12.4. Let D be a λ edge connected digraph on n vertices. Then we can find a

minimum λ edge connected subgraph of D in 2O(λn) .

Proof. Let q = 6λ(n− 1). By Lemma 12.2 we know that finding a minimum subdigraph D′

of D is equivalent to finding a collection I of λ arc disjoint in-branchings and a collection

O of λ arc disjoint out-branchings which are all rooted at a vertex r ∈ V (D) such that

|A(I) ∩ A(O)| is maximized . We fix an arbitrary r ∈ V (D) and for each choice of `,

the cardinality of |A(I) ∩ A(O)|, we attempt to construct a solution. By Lemma 12.5

we know that there exists a λ-connected spanning subdigraph D′ of D with at most

2λ(n − 1) − ` arcs if and only if there exists T̂ ∈ B̂6` ⊆n′−6`rep B6`, where n′ = 6λ(n − 1),

such that D has a collection I = {I1, I2, . . . , Iλ} of arc disjoint in-branchings rooted at

r and a collection O = {O1, O2, . . . , Oλ} of arc disjoint out-branchings rooted at r such

that A
T̂
⊆ A(I) ∩ A(O). Using Lemma 12.6 we compute B̂6l ⊆n′−6`rep B6` in time 2O(λn),

and for every F ∈ B̂6` we check if AF can be extended to a collection of λ arc disjoint

out-branchings rooted at r and a collection of λ arc disjoint in-branchings rooted at r,

using Lemma 12.7. Since ` ≤ λ(n− 2), the running time of the algorithm is bounded by

2O(λn).

157

An algorithm with the same running time for the weighted version of the problem can

be obtained by using the notion of weighted representative sets in the above. This then

proves Theorem 12.1.

12.2 Undirected Graphs

In this section, we give an algorithm for computing a minimum λ-connected subgraph of

an undirected graph G. As before, we only consider the unweighted version of the problem.

While there is no equivalent characterization of λ-connected graphs as there was in the

case of digraphs, we show that we can obtain a characterization by converting the graph

to a directed graph with labels on the arcs. Then, as in the previous section, we embed

the solutions in a linear matroid and compute them by a dynamic programming algorithm

with representative families.

Let DG be the digraph with V (DG) = V (G) and for each edge e = (u, v) ∈ E(G), we

have two arcs ae = (u, v) and a′e = (v, u) in A(DG). We label that arcs ae and a′e by the

edge e, which is called the type of these arcs. For X ⊆ A(DG) let Typ(X) = {e ∈ E(G) |

ae ∈ X or a′e ∈ X}. The following two lemmata relate λ-connected subgraphs of G with

collections of out-branchings in DG.

Lemma 12.8. Let G be an undirected graph and DG be the digraph constructed from G

as described above. Then G is λ-connected if and only if for any r ∈ V (DG), there are λ

arc disjoint out-branchings rooted at r in DG.

Proof. In the forward direction, observe that since G is λ-connected, DG is also λ-connected.

By Lemma 12.1, for any r ∈ V (DG), there are λ arc disjoint out-branchings rooted at r in

DG.

In the reverse direction, suppose there are λ arc disjoint out-branchings rooted at r in DG.

Therefore for any vertex v ∈ V (G), there is a collection of λ arc disjoint paths from r to v

in DG. If G is not λ connected, then there is a cut (X,X) such that |δG(X)| ≤ λ− 1, and

we may assume that r ∈ X. But then in DG, there are at most λ− 1 arcs which go from

158

X to X. Therefore, for any vertex v ∈ X, there are at most λ− 1 arc disjoint paths from

r to v in DG. This is a contradiction. This completes the proof of this lemma.

By Lemma 12.8 we know that G is λ-connected if and only if for any r ∈ V (D), there is a

collection O of λ arc disjoint out-branchings rooted at r in DG. So given such a collection

of out-branchings, we can obtain a λ-connected subgraph of G with at most λ(n− 1) edges.

Observe that for an edge e ∈ E(G) which is not incident on r, the two arcs corresponding

to it in DG may appear in two distinct out-branchings of O, but for an edge e incident on

r in G, only the corresponding outgoing arc of r may appear in O. Since there are λ(n− 1)

arcs in total that appear in O and at least λ of those are incident on r, the number of edges

of G such that both the arcs corresponding to it appear in O is upper bounded by λ(n−2)
2 .

So any minimal λ-connected subgraph of G has λ(n− 1)− ` edges where ` ∈ [bλ(n−2)2 c].

Lemma 12.9. Let G be an undirected λ-connected graph on n vertices and ` ∈ [bλ(n−2)2 c].

G has a λ-connected subgraph G′ with at most λ(n − 1) − ` edges if and only if for any

r ∈ V (DG), DG′ has λ arc disjoint out-branchings O = {O1, O2, . . . , Oλ} rooted at r such

that |Typ(A(O))| ≤ λ(n− 1)− `.

Proof. In the forward direction let G′ be a λ connected subgraph of G with at most

λ(n − 1) − ` edges. By Lemma 12.8, for any r ∈ V (DG′), DG′ has λ arc disjoint out-

branchings rooted at r. Observe that there are at most λ(n− 1)− ` edges in G′, therefore

the number of different types of edges possible in DG′ is at most λ(n− 1)− `.

In the reverse direction, consider a vertex r ∈ V (D) with λ arc disjoint out-branchings

O = {O1, O2, . . . , Oλ} such that |Typ(A(O))| ≤ λ(n − 1) − `. Consider the graph G′ =

(V (D),Typ(A(O))). Observe that G′ has at most λ(n− 1)− ` edges and is λ connected

subgraph of G. This concludes the proof.

By Lemma 12.9, a collection O of out-branchings rooted at some vertex r, that minimizes

|Typ(A(O))| corresponds to a minimum λ-connected subgraph of G. In the rest of this

section, we design an algorithm that find a collection of arc-disjoint out-branchings O in

DG such that |Typ(A(O))| is minimized. The first step of our algorithm is to compute the

159

set of edges of G such that both the arcs corresponding to it appear in the collection O,

and then we can extend this to a full solution in polynomial time.

Fix a vertex r. Let Dr
G denote the digraph obtained from DG by removing the arcs in

InDG(r). Observe that A(Dr
G) can be partitioned as follows.

A(Dr
G) =

⊎
v∈V (DrG)

InDrG(v)

We construct a pair of a graphic matroid and a partition matroid, corresponding to each

of the λ out-branching that we want to find. For each i ∈ [λ], we define a matroid

Mi
1 = (Ai1, Ii1) which is a graphic matroid of Dr

G whose ground set Ai1 is a copy of the

arc set A(DG). Similarly, for each i ∈ [λ] we define matroid Mi
2 = (Ai2, Ii2), which is a

partition matroid on the ground set Ai2, which is a copy of the arc set A(Dr
G), such that

the following holds.

Ii2 = {I | I ⊆ Ai2, |I ∩ InDrG(v)| ≤ 1, for all v ∈ V (Dr
G)}

Next, let MO be a uniform matroid of rank λ(n− 1) on the ground set AO where AO is

also a copy of A(DG). Finally, we define the matroid M = (AM, I) as the direct sum of

MO and Mi
1,Mi

2, for i ∈ [λ], i.e.

M =
(⊕
i∈[λ]

(Mi
1 ⊕Mi

2)
)
⊕MO

Note that the rank of this matroid is 3λ(n − 1) and it is representable over any field of

size at least |A(D)|+ 1. For an arc a ∈ A(D), we denote its copies in Ai1, A
i
2 and AO by

ai1, a
i
2 and aO respectively. For a collection O of λ out-branchings in DG, by A(O) we

denote the set of arcs which is present in some O ∈ O. For X ∈ I, by AX we denote the

set of arcs a ∈ A(DG) such that X ∩
⋃λ
i=1{a1i , a2i } 6= ∅. For e ∈ E(G) and i ∈ [λ], we let

Sie = {(ae)i1, (ae)i2, (a′e)i1, (a′e)i2} and Se = {(ae)O, (a′e)O} ∪
(⋃λ

i=1 S
i
e

)
. We define a function

ψ : I × E(G)→ {0, 1}, where for W ∈ I, e ∈ E(G), ψ(W, e) = 1 if and only if exactly one

of the following holds.

160

• Either W ∩ Se = ∅.

• Or, there exists t 6= t′ ∈ [λ] such that,

(i) (ae)O, (a
′
e)O ∈W

(ii) Ste ∩W = {(ae)t1, (ae)t2}

(iii) St
′
e ∩W = {(a′e)t

′
1 , (a

′
e)
t′
2 }

(iv) ∀i ∈ [λ] \ {t, t′}, Sie ∩W = ∅.

Now for each ` ∈ [bλ(n− 2)/2c], we define the following set.

B6` = {W |W ∈ I, |W | = 6` and ∀e ∈ E(G), φ(W, e) = 1}

Observe that for every W ∈ B6`, |Typ(AW)| = ` and, ae ∈ AW if and only if a′e ∈ AW .

Therefore any set in this collection corresponds to a potential candidate for the subset

of arcs which appear in exactly two out-branchings in O. We are now ready to state the

following lemma, which relates the computation of λ out-branchings minimizing types and

representative sets.

Lemma 12.10. Let G be a λ-connected undirected graph on n vertices, DG its corresponding

digraph and ` ∈ [bλ(n−2)2 c]. There exists a set O = {O1, O2, . . . Oλ} of out-branchings rooted

ar r, with |Typ(A(O))| ≤ λ(n− 1)− ` in DG if and only if there exists T̂ ∈ B̂6` ⊆n′−6`rep B6`,

where n′ = 3λ(n− 1), such that DG has a collection Ô of λ out-branchings rooted at at r,

A
T̂
⊆ A(Ô) and |Typ(Ô)| ≤ λ(n− 1)− `.

Proof. In the forward direction, let O be a collection of λ out-branchings rooted at r

in DG, such that |Typ(A(O))| ≤ λ(n − 1) − `. For each i ∈ [λ], let O1
i and O2

i be the

independent sets in M1
i and M2

i respectively, corresponding to the out-branching Oi ∈ O.

Now consider the set I = {aO, ai1, ai2 | a ∈ A(Oi), i ∈ [λ]} in the matroid M. For each

i ∈ [λ], {ai1 | a ∈ A(Oi)} is an independent set in the graphic matroid Mi
1 since Oi

corresponds to a tree in the underlying graph. And similarly {ai2 | a ∈ A(Oi)} is an

independent set in the partition matroid Mi
2, since Oi is an out-branching. Finally

{aO | a ∈ A(O)} is of cardinality λ(n − 1) and therefore a basis in MO. Therefore, I is

161

a basis in the matroid M, and note that |I| = 3λ(n− 1). Let P ′ = {e ∈ E(G) | ae, a′e ∈

A(O)} and clearly, |P ′| ≥ `. Fix an arbitrary subset P of P ′ with exactly ` edges. Let

T = {(ae)O, (a′e)O), (ae)
i
1, (ae)

i
2, (a

′
e)
j
1, (a

′
e)
j
2 | e ∈ P}. Observe that T ∈ B6`, and therefore

there is a T̂ ∈ B̂6` ⊆n′−6`rep B6` such that Î = (I \ T) ∪ T̂ is an independent set in M of size

3λ(n− 1), and note that |Typ(A
T̂

)| = `.

We will now prove that there is a collection Ô of λ arc-disjoint out-branchings, such that

A
T̂
⊆ A(Ô) and |Typ(Ô)| ≤ λ(n− 1)− `.

Claim 1. For any arc a ∈ A(DG) and i ∈ [λ], either ai1, a
i
2 ∈ Î or ai1, a

i
2 /∈ Î. Further, if

ai1 ∈ Î for some i ∈ [λ], then aO ∈ Î as well.

Proof. Let us consider the first statement. Initially, the statement hold for I by construction.

And since T, T̂ ∈ B6`, the statement holds for them as well. This implies that for

Î = (I \ T) ∪ T̂ also satisfies this statement. Now we consider the second statement.

Initially for any arc a ∈ A(O) we have aO, a
i
1 ∈ I. And T contains aO for some arc a if

and only if it also contains ai1 for some i ∈ [λ], and a similar statement holds for T̂ . Hence,

the second statement also holds for Î.

Claim 2. For any arc a, and any pair of i 6= j ∈ [λ], either ai1, a
i
2 /∈ Î or aj1, a

j
2 /∈ Î.

Proof. Suppose that there were some i 6= j ∈ [λ] and an arc a ∈ A(DG) such that

ai1, a
i
2, a

j
1, a

j
2 ∈ Î. Initially, for any arc b in the collection of arc-disjoint out-branchings

O, there is exactly one k ∈ [λ] such that bk1, b
k
2 ∈ I and for any other k′ ∈ [λ], bk

′
1 , b

k′
2 /∈ I.

Further, we have bO ∈ I. And for any arc not in A(O), no copies of this arc from EO and

Ek1 , E
k
2 for all k ∈ [λ], is present in I. Such a statement also holds true for T ′ and T̂ as well,

as they are both in B6`. As Î = (I \T ′)∪ T̂ , it must be the case that {ai1, ai2}∩ (I \T ′) 6= ∅

and {aj1, a
j
2} ∩ T̂ 6= ∅. But then, I \ T ′ and T̂ have the element eI in common, which

contradicts the fact that T̂ is a representative of T , in B6`.

Now since Î is a basis of M, we have that Xi
j = Î ∩ Aij is a basis of Mi

j , where i ∈ [λ]

and j ∈ [2]. Now by Claim 1, AXi
1

= AXi
2
, and hence Ôi = AXi

1
is an out-branching

rooted at r in DG. Next, by Claim 2, the collection Ô = {Ôi | i ∈ [λ]} is pairwise

162

arc-disjoint. And finally we bound the value of |Typ(Ô)|. Initially |Typ(AI)| = λ(n− 1)− `,

and |Typ(AT)| = |Typ(A
T̂

)| = `. Since T ∈ B6`, for any edge e of G, either both or

neither of ae, a
′
e lie in T , and a similar statement holds for T̂ as well. Therefore we have

|Typ(AI\T)| = λ(n− 1)− 2`, and hence |Typ(A
Î
)| = |Typ(Ô)| = λ(n− 1)− `.

The reverse direction follows trivially as Ô itself is the required collection of out-branchings.

Lemma 12.11. Let G be a λ-connected undirected graph on n vertices, DG its corresponding

digraph and ` ∈ [bλ(n− 2)/2c]. In time 2O(λn) we can compute B̂6` ⊆n′−6`rep B6` such that

|B̂6`| ≤
(
n′

6`

)
. Here n′ = 3λ(n− 1).

Proof. We give a dynamic programming based algorithm. Let D be an array of size `+ 1.

For i ∈ [` + 1] the entry D[i] will store the family B̂6` ⊆n′rep B6`. We will fill the entries

in array D according to the increasing order of index i, where i ∈ {0, 1, . . . `}. For i = 0,

we have B̂0 = {∅}. Let W =
{
{(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)

j
1, (a

′
e)
j
2} | i, j ∈ [λ], i 6=

j, and e ∈ E(G) is not incident on r
}

, and note that |W| ≤
(
λ
2

)
m. Given that we have

filled all the entries D[i′] for every i′ < i+ 1, we fill the entry at D[i+ 1] as described below.

Let F6(i+1) = (B̂6i • W) ∩ I. Observe that for any X ∈ F6(i+1), |Typ(AX)| = i + 1. We

now have the following claim.

Claim 1. F6(i+1) ⊆n
′−6(i+1)
rep B6(i+1), for all i ∈ {0, 1, . . . `− 1}

Proof. Let X ∈ B6(i+1) and Y be a set of size n′ − 6(i + 1) such that X ∪ Y ∈ I and

X ∩ Y = ∅. We will show that there exists some X ′ ∈ F6(i+1) such that X ′ ∪ Y ∈ I and

X ′ ∩ Y = ∅. This will prove the claim.

Let e ∈ E(G) and i 6= j ∈ [λ] such that {(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)
j
1, (a

′
e)
j
2} ⊆ X. Let

X ′ = X \ {(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)
j
1, (a

′
e)
j
2} and Y ′ = Y ∪ {(ae)O, (a′e)O, (ae)i1, (ae)i2,

(a′e)
j
1, (a

′
e)
j
2}. Note that X ′ ∈ I and Y ′ ∈ I, since X ∪ Y ∈ I. But X ′ ∈ B6i, X ′ ∪ Y ′ ∈ I

and |Y ′| = n′ − 6i, which implies that there exists X̂ ′ ∈ B̂6i such that, X̂ ′ ∪ Y ′ ∈

I. Therefore, X̂ ′ ∪ {(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)
j
1, (a

′
e)
j
2} ∈ I and observe that X̂ ′ ∪

{(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)
j
1, (a

′
e)
j
2} ∈ (B̂6i •W).

163

We fill the entry for D[i+ 1] as the following. By Theorem 5.5 we know that |B̂6i| ≤
(
n′

6i

)
,

and hence it follows that |F6(i+1)| ≤
(
λ
2

)
m
(
n′

6i

)
. Moreover, we can compute F6(i+1) in time

O(
(
λ
2

)
mn
(
n′

6i

)
). We use Theorem 5.5 to compute F̂6(i+1) ⊆n

′−6(i+1)
rep F6(i+1) of size at most(

n′

6(i+1)

)
in time O(

(
n′

6(i+1)

)
tiω + t

(
n′

6(i+1)

)ω−1
), where t = |F6(i+1)|. We know from Claim 1

that F6(i+1) ⊆n
′−6(i+1)
rep B6(i+1), and therefore B̂6(i+1) = F̂6(i+1) ⊆n

′−6(i+1)
rep B6(i+1). And

finally, we assign the family B̂6(i+1) to D[i + 1]. This completes the description of the

algorithm and its correctness. Using the fact that ` < n′/6, the total running time of the

algorithm can bounded as follows.

O
(∑̀
i=1

((
n′

6(i+ 1)

)
tiω + t

(
n′

6(i+ 1)

)ω−1)
λ2m

(
n′

6i

))
≤ 2O(λn)

Theorem 12.5. Let G be a λ edge connected graph on n vertices. Then we can find a

minimum λ edge connected subgraph of G in 2O(λn) time.

Proof. Let n′ = 2λ(n− 1). By Lemma 12.9 we know that finding a minimum subgraph

G′ of G is equivalent to finding a collection O of λ arc disjoint out-branchings in DG

rooted at a fixed vertex r ∈ V (D) such that Typ(O) is minimized. For each choice of

` ∈ [bλ(n−2)2 c], by Lemma 12.8 and Lemma 12.10, we know that there exists a λ-connected

spanning subgraph G′ of G with at most λ(n − 1) − ` arcs if and only if there exists

T̂ ∈ B̂6` ⊆n′−6`rep B6`, such that DG has a collection O = {O1, O2, . . . , Oλ} of out-branchings

rooted at r and A
T̂
⊆ A(O). So we apply Lemma 12.11 to compute B̂6` in time 2O(λn),

and for every F ∈ B̂6` we check if AF can be extended to λ out-branchings rooted at r in

DG by using Lemma 12.7. We return the graph G′ with the least number of edges, among

all the graphs computed above, as our solution. Since ` ≤ λ(n− 2)/2, the running time of

the algorithm is bounded by 2O(λn). This completes the proof.

As before, an algorithm with the same running time for the weighted version of the problem

may be obtained by using the notion of weighted representative sets in the above. This

then proves Theorem 12.2.

164

12.3 Algorithms for Network Augmentation

The algorithms for Minimum Weight λ-connected Spanning Subgraph may be used

to solve instances of Minimum Weight λ-connectivity Augmentation as well. Given

an instance (D,L,w, λ) of the augmentation problem, we construct an instance (D′, w′, λ)

of Minimum Weight λ-connected Spanning Subgraph, where D′ = G ∪ L and w′ is

a weight function that gives a weight 0 to arcs in E(G) and it is w for the arcs from L.

It is easy to see that the solution returned by our algorithm contains a minimum weight

augmenting set. A similar approach will work for augmenting graphs as well. This then

proves Theorem 12.3.

165

166

Chapter 13

Parameterized Algorithms for

Network Augmentation I

In connectivity augmentation problems, the input is a (multi) graph and the objective is to

increase edge or vertex connectivity by adding the minimum number (weight) of additional

edges, called links. This problem was first studied by Eswaran and Tarjan [ET76] who

showed that increasing the edge connectivity of a given graph to 2 by adding minimum

number of links (also called an augmenting set) is polynomial time solvable. Subsequent

work in [WN87, Fra92b] showed that this problem is also polynomial time solvable for

any given target value of edge connectivity to be achieved. However, if the set of links

is restricted, that is, there are pairs of vertices in the graph which do not constitute a

link, or if the links have (non-identical) weights on them, then the problem of computing

the minimum size (or weight) augmenting set is NP-hard [ET76]. It is interesting to note

that the vertex version of the problem is substantially more difficult even when the set of

links which can be added is unrestricted, and is only known to be polynomial time for the

special case when the connectivity of the graph is to be increased by 1, with the general

case still open [Veg11].

In this chapter, we will focus on the parameterized complexity of the following problem,

called Weighted Edge Connectivity Augmentation By One (w-Aug-One). As

we discussed in chapter 8, this problems in NP-hard.

167

w-Aug-One Parameter: k

Input: Graph G = (V,E) which is λ-edge connected, set of links L, integer k, weight

function w on L, p ∈ R.

Question: Is there a link set F such that w(F) ≤ p, |F | ≤ k and (V,E ∪F) is λ+ 1-edge

connected?

Recently, Marx and Vegh [MV15] gave a kernel with O(k) vertices, O(k3) links and weights

of (k6 log k) bit integers for this problem. This leads to an FPT algorithm running in time

2O(k log k)|V |O(1). In this chapter, we obtain a single exponential FPT algorithm for this

problem. In particular, we have the following theorem.

Theorem 13.1. w-Aug-One is solvable in time 9k|V |O(1).

Our approach.

The result of Dinits et al. [DKL76] allows us to assume without loss of generality that

either λ = 1 and G is a tree, or λ = 2 and G is a cactus graph. We then define an

auxiliary graph which we call a link-terminal intersection graph, corresponding to a given

instance of the problem and show that augmenting sets for the given instance exactly

correspond to Steiner trees in the link-intersection graph for a specified set of terminals.

This structural lemma forms the backbone of our algorithms. The set of vertices in the

input graph corresponding to leaves or degree-2 vertices is chosen as the set of terminals

for the auxiliary Steiner Tree instance. However, the Steiner Tree problem is not

FPT when parameterized by the solution size. Thus, for our purposes we can only use

those parameterization for which Steiner Tree is known to be FPT. In our context we

use the following known results about Steiner Tree: an algorithm with running time

2|T ||V (G)|O(1) [DW71], where T is the set of input terminals. In the w-Aug-One problem,

the number of links in any augmenting set is at least half the number of leaves or degree-2

vertices in the input graph. We thus obtain a Steiner Tree instance where the number

of terminals is bounded linearly in the parameter, following which we can invoke known

results to give an algorithm.

168

13.1 Tools and Techniques

We begin with a few definitions and notations that will be used in this chapter and the

following chapter.

Definition 13.2. Given a graph G = (V,E), a spanning subgraph H of G is called a

cactus if it is 2-edge connected and every edge belongs to exactly one cycle. Equivalently,

H can be written as the union of a set C={C1, . . . , C`} where each Ci is a cycle, the graph

induced on their union is connected and every edge in this graph belongs to exactly one

cycle. Note that the subgraph H can have multi-edges. A cycle of length 2 in a cactus is

called a 2-circuit.

Definition 13.3. A set Z of t edges in a graph is called a t-cut if deleting the edges of

Z disconnects the graph and for every subset Z ′ ⊂ Z, the graph remains connected after

deleting the edges in Z ′.

Observation 13.1. Let {e, f} be a 2-cut of cactus C and let X be the vertices of degree 2

in the cactus. Each of the two components obtained by deleting the 2-cut {e, f} contains a

vertex from X.

The following observation is a consequence of the definition of a t-cut :

Observation 13.2. Every 1-cut of a tree is a bridge in a tree. The 2-cuts in a cactus are

contained in a cycle, i.e., if {e, f} is a 2-cut, then both the edges e and f belong to the

same cycle C of the cactus C.

Definition 13.4. We say that a link covers a bridge in a tree (2-cut in a cactus) if the

end points of the link are in distinct connected components obtained by deleting the bridge

(respectively 2-cut). Note that since every 2-cut is contained within a cycle, the vertices of

the cycle will be in two distinct connected components.

Definition 13.5. Tree Decomposition. A tree decomposition of a graph G = (V,E) is a

pair (M,β) where M is a rooted tree and β : V (M)→ 2V such that,

(i)
⋃
t∈V (M) β(t) = V

169

x

y

x
y

Figure 13.1: An illustration of projection of a link and the operation of refining a single
link.

(ii) For each edge (u, v) ∈ E, there is a t ∈ V (M) such that both u and v belong to β(t).

(iii) For each v ∈ V , the nodes in the set {t ∈ V (M) | v ∈ β(t)} form a connected subtree

of M .

Let (M,β) be a tree decomposition of a graph G. The width of (M,β) is min{|β(t)| − 1 |

t ∈ V (M)}.

13.1.1 Link-Intersection Graphs

In the first subsection, we introduce link-intersection graphs and prove certain properties

of these graphs. In the following subsection, we prove our main structural result relating

Steiner trees in these graphs and solutions for our problem.

Definition 13.6. (Projection of a link onto a cactus). Consider a cactus C and a

link (u, v). Let a1, . . . , ar be the cut vertices of the cactus (other than u and v) which lie on

every u-v path in the cactus and let C1, . . . , Cr+1 be the cycles which contain the segments

u-a1, a1-a2,. . . , ar-v respectively of this path. Then, we say that the pair 〈u, a1〉 is the

170

projection of the link (u, v) onto the cycle C1, the pair 〈ar, v〉 is the projection of the link

(u, v) onto the cycle Cr+1 and the pair ∠ai, ai+1〉 is the projection of the link onto the cycle

Ci+1. Note that if u and v lie in the same cycle of the cactus, then the projection is simply

the pair 〈u, v〉. If the pair 〈x, y〉 is a projection of a link onto a cycle of the cactus, then we

say that the link is projectively incident to x,y and this cycle and a link (x, y) is said to

be properly incident on x and y. We say that the projection of a link e on to the cycle

C is non-trivial if it is projectively incident to exactly two vertices of the cycle.

Definition 13.7. (Crossing pairs). Consider distinct vertices x1, x2, y1, y2 which lie

on the same cycle in a cactus. We say that the pair 〈x1, y1〉 crosses the pair 〈x2, y2〉 if

any path from x2 to y2 contains exactly one of vertices from {x1, y1} as an internal vertex.

Observe that the crossing relation is symmetric and hence we say that the pairs 〈x1, y1〉

and 〈x2, y2〉 are crossing. Let e be a link that is incident (possibly projectively incident)

on the vertices x1 and y1 of the cycle, then we say the link e = (x1, y1) crosses the pair

〈x2, y2〉. If both the pairs correspond to links e = (x1, y1) and f = (x2, y2), then we say

that the links e and f cross. A set L of links is said to be laminar if it does not contain a

pair of links which cross.

We now give an equivalent definition (to Definition 13.4) of covering 2-cuts using the notion

of crossing pairs. For ease of description, we will be working with this definition from now

on.

Definition 13.8. (Covering a 2-cut). Let e = (a1, b1) and f = (a2, b2) be the edges of

a cycle C such that the vertices appear as a1, b1, a2, b2 in a fixed ordering of the vertices of

the cycle. Note that b1 can be the same as a2 and a1 can be the same as b2. We say that

the link d = (x, y) covers the 2-cut {e, f} if it satisfies one of the following properties: (i)

{x, y} = {a1, b1}, (ii) {x, y} = {a2, b2}, (iii) the link d crosses one of the pairs 〈a1, b2〉 or

〈b1, a2〉.

Observation 13.3. Let C be a cactus and let e be a link that covers the 2-cut formed

by consecutive edges incident to a vertex v on a cycle of the cactus. Then, the link e is

projectively incident to the vertex v.

Definition 13.9. (Intersection graph with respect to a cactus.) Given a graph

171

G, a cactus C and the set L of links, we define the intersection graph HC of the cactus as

follows. We have a vertex for every link and the vertices corresponding to 2 links e1 and e2

are adjacent if

• there is a vertex in the cactus to which both these links are projectively incident or

• there are crossing pairs 〈x1, y1〉 and 〈x2, y2〉 which are projections of e1 and e2

respectively on the same cycle of the cactus.

We define the link-terminal intersection graph IC,L as the graph obtained from HC by

adding to it the vertex set of G (these new vertices are called terminals and the other

vertices, link-vertices) and making each vertex adjacent to the vertices of HC which

correspond to the links projectively incident to this vertex.

Definition 13.10. (Refining a cactus by an link set). We define the operation

of refining a cactus by the link e as the operation of identifying the vertices which e is

projectively incident on and deleting any resulting self-loops. We define the refining of a

cactus by a link set as the process of iteratively refining the cactus by each link in the set in

an arbitrary order and deleting any resulting self-loops.

The following observation is a clear consequence of the definition of refinements.

Observation 13.4. If a link has a non-trivial projection onto ` cycles, then the refinement

of this link creates ` more cycles in the cactus C′.

We now prove certain properties of link-intersection graphs which will be used both in our

main structural characterisation as well as directly in our algorithms.

Observation 13.5. Let C and L be a cactus and a set of links respectively and let IC,L be

the link-terminal intersection graph defined on the cactus and link set.

(a) Every terminal in the link-terminal intersection graph is simplicial, that is, the neigh-

borhood of the vertex induces a clique.

(b) If B is a connected induced subgraph such that the terminal set T ⊂ V (B), then the

induced subgraph of B containing only the link-vertices, B[V \ T], is also connected.

172

Proof. By the definition, the graph IC,L contains an edge between every pair of link-vertices

that are incident on the same vertex in the cactus. Therefore, for any terminal in IC,L,

the link-vertices corresponding to the links incident on this vertex form a clique in the

link-intersection graph. Furthermore, by definition, the terminal is not adjacent to any

other vertices in the link-terminal intersection graph. Therefore, the terminal is simplicial.

For the proof of the second statement, consider a shortest path P = {e, v1, v2, . . . , vr, f}

between link-vertices e and f in B. Let e = v0 and f = vr+1. Suppose that there exists a

terminal vi ∈ T in this path P . Since vi is simplicial, there exists an edge between vertices

vi−1 and vi+1, resulting in a shorter path P ′ = {e, v1, . . . , vi−1, vi+1, . . . , vr, f} between the

link-vertices e and f , a contradiction. Therefore P does not contain terminals. Therefore,

we conclude that a shortest path between any two link-vertices in B is disjoint from

the terminals implying that the induced subgraph of B containing only the link-vertices,

B[V \ T] is also connected.

Lemma 13.6. Consider a cactus C and a set L of links on this cactus. Let u and v be

the vertices of a cycle C in the cactus such that they are terminals in the same connected

component Z1 of the graph IC,L. Let e be a link with a non-trivial projection onto the cycle

C. If the link e crosses the pair 〈u, v〉, then the link-vertex e is also in the same connected

component Z1 in IC,L.

Proof. Let the link e be projectively incident on the vertices x and y of the cycle C. Since

the link e crosses the pair 〈u, v〉, we have that the pairs 〈x, y〉 and 〈u, v〉 are crossing. If

the link-vertex e is in Z1, then we are done. Suppose that e is not in Z1. By the definition

of IC,L, we know that x and y are not in Z1 and furthermore, e also does not cross any link

from Z1. Now consider the two internally vertex disjoint paths P1 and P2 between x and y

in the cycle C. Let V (P1) and V (P2) be the set of internal vertices of the paths P1 and P2

respectively. Since the pairs 〈x, y〉 and 〈u, v〉 are crossing, without loss of generality, we

can assume that u ∈ V (P1) and v ∈ V (P2).

Let L be the set of links in Z1 which have a non-trivial projection onto the cycle C. For

i ∈ {1, 2}, let Li ⊆ L be the set of links such that every link in Li is projectively incident

to a vertex on V (Pi). Suppose that L1 ∩L2 6= ∅. Let f = (a, b) ∈ L1 ∩L2. Without loss of

173

generality, let a ∈ V (P1) and b ∈ V (P2). Then the links e = (x, y) and f = (a, b) cross and

hence the corresponding link-vertices are adjacent in IC,L, which implies that e is in the

same component as f , that is Z1, a contradiction to our assumption that e was not in Z1.

Therefore we have L1 ∩ L2 = ∅. Therefore, we conclude that L = L1] L2. This implies

that any link in L is projectively incident to two vertices contained completely in V (P1) or

V (P2).

Now, consider a shortest path, Puv in Z1 from the terminal u to terminal v. Let L′ be the

set of link-vertices which form the internal vertices of the path from u to v. Let L′1 ⊂ L1

and L′2 ⊂ L2. We have that L′2 = L′ \ L′1. Note that since Puv exists, L′1 6= ∅ and L′2 6= ∅.

Furthermore, there are links e ∈ L′1 and f ∈ L′2 which are consecutive in Puv, and therefore

adjacent in IC,L. However, by definition, they are neither incident on a common vertex in

the cactus nor do they cross, contradicting their adjacency in IC,L. Therefore we infer that

the link-vertex e is in the same component and the pair 〈u, v〉, it crosses. This concludes

the proof of the lemma.

Lemma 13.7. Given a cactus C and a set L of links, let {xy, uv} be a 2-cut in the cactus.

Let a and b be any two vertices in the distinct connected components of C \ {xy, uv}. Also

let B be an induced subgraph of IC,L such that the terminal set T ⊂ V (B). If a and b are

in the same connected component Z1 of B, then there exists a link-vertex e in Z1 such that

the link e covers the 2-cut {xy, uv}.

Proof. Suppose that there is no link-vertex e in Z1 such that the link e covers the 2-cut

{xy, uv}. Let A1 and A2 be the components of C obtained by deleting the 2-cut {xy, uv}.

Without loss of generality let a ∈ V (A1) and b ∈ V (A2). Now, consider a shortest path,

Pab in Z1 from the terminal a to terminal b. Let L be the set of link-vertices which form

the internal vertices of the path from a to b. By assumption, none of the link-vertices in L

cover the cut {xy, uv}. Therefore, every link of L has both its end points either in A1 or in

A2. Let L1 ⊂ L be the set of links with both end points in A1 and let L2 = L \ L1. Note

that since Pab exists, L1 6= ∅ and L2 6= ∅. Furthermore, there are links e ∈ L1 and f ∈ L2

which are consecutive in Pab, and therefore adjacent in IC,L. However, by definition, they

are neither incident on a common vertex in the cactus nor do they cross, contradicting

174

their adjacency in IC,L. This completes the proof of the lemma.

13.2 Relating augmenting sets to Steiner trees.

Lemma 13.8. Let S be a set of links which is an augmenting set for the cactus C. Let C

be any cycle in the cactus C. Every pair of link-vertices in IC,L which correspond to a pair

of links with a non-trivial projection in the cycle C appear in the same connected component

Z1 of IC,L[S ∪ T]. Furthermore, the terminals in IC,L corresponding to the vertices of the

cycle C appear in Z1.

Proof. Let e1 and e2 be a pair of link-vertices with projections 〈x1, y1〉 and 〈x2, y2〉 in the

cycle C and suppose that they occur in different connected components of IC,L[S ∪ T].

Since link-vertices e1 and e2 cannot be adjacent, we infer that the projections of links e1

and e2 do not cross and also the vertices x1, y1, x2, y2 of C are all distinct. Without loss

of generality, we assume that these vertices appear in the order x1, x2, y2, y1 in a fixed

ordering of the cycle vertices. Let P1 be the path in the cycle between x1 and x2 disjoint

from {y1, y2} and let P2 be the path in the cycle between y1 and y2 disjoint from {x1, x2}

. Let e1 belong to the component Z1 and e2 belong to the component Z2. Let u be the

vertex in V (P1) closest to x2 such that u ∈ Z1. Similarly let v be the vertex in V (P2)

which is closest to y2, such that v ∈ Z1. Note that u and v exist since x1 and y1 themselves

are candidates to be u and v respectively. Let u′ be the neighbor of u in the subpath of P1

from u to x2 and let v′ be the neighbor of v in the subpath of P2 from v to y2. Note that

u′ can be the same as x2 and v′ can be the same as y2.

Consider the 2-cut formed by the edges (u, u′) and (v, v′) and consider a link e in S which

covers this cut. By our assumptions regarding u′ and v′, we have that e is not neighbor to

any vertex in Z1, in particular e not projectively incident to u or v. However, since e covers

this 2-cut, it must be the case that e crosses the pairs 〈u, v〉 and 〈u′, v′〉 (by Definition 13.8).

By Lemma 13.6, since u and v are each incident on a link in Z1, we have that e is in Z1 in

the graph IC,L[S ∪ T]. If e also crosses the pair 〈x2, y2〉, then e2 is in Z1, a contradiction.

Otherwise one of the end points of e is either in the subpath of P1 from u to x2 or in the

175

subpath of P2 from v to y2. But this contradicts the selection of u or v as the vertices

closest to y1 or y2 which are also in Z1. Therefore, we conclude that if a pair of links

in S have a non-trivial projection in the same cycle, they appear in the same connected

component of IC,L[S ∪ T].

Note that since S is an augmenting set for C, every vertex in the cycle C has at least one

link from S projectively incident on it. This is because every link that covers the 2-cut

formed by consecutive edges of the cycle has to be projectively incident on the common

vertex (by Definition 13.8). Therefore, we infer that every terminal in IC,L that corresponds

to a vertex of C is also in the component Z1. This completes the proof of the lemma.

Lemma 13.9. Given a cactus C and a set L of links, consider the link-terminal intersection

graph IC,L of the cactus. Let T be the terminals in IC,L and let X be the vertices in IC,L

which correspond to degree-2 vertices in the cactus. Then, a set S of links is an augmenting

set for this cactus if and only if IC,L[S ∪X] is connected.

Proof. Consider the forward direction and let S be a set of links which is an augmenting

set for this cactus. By Lemma 13.8, we know that every pair of link-vertices in IC,L which

correspond to a pair of links with a non-trivial projection in a particular cycle C appear in

the same connected component of IC,L[S ∪ T]. Observe that every vertex of X lies in a

unique cycle and also there must be a link in S properly incident on it. Since such a link

must have a non-trivial projection in this cycle, using Lemma 13.8, we conclude that every

pair of vertices in X which lie in the same cycle of C are in the same connected component

of IC,L[S ∪ T].

Now, consider an arbitrary pair t1, t2 of vertices in X which are not in the same cycle of

the cactus. Let a1, . . . , ar be the cut-vertices of the cactus which appear in the path from

t1 to t2 other than (possibly) the vertices t1 and t2. Let a0 = t1 and ar+1 = t2. Then, every

ai and ai+1 occur in the same cycle and by Lemma 13.8 the corresponding vertices in IC,L

are in the same connected component of IC,L[S ∪ T]. Since connectivity is an equivalence

relation, this implies that the vertices corresponding to a0 and ar+1 are also in the same

connected component of IC,L[S ∪ T]. Therefore we conclude that IC,L[S ∪ T] is connected

and by Observation 13.5, this implies that IC,L[S ∪X] is connected.

176

For the proof of the converse direction, we first show that if IC,L[S ∪X] is connected, then

IC,L[S ∪T] is also connected. Let v be any vertex in T \X. We know that v is a cut vertex

in the cactus. Let x and y be neighbors of v in a cycle C of the cactus. Now consider the

2-cut {vx, vy}. Let A1 and A2 be the components of the cactus C obtained by deleting the

2-cut {vx, vy}. From Observation 13.1 we infer that V (A1) ∩X 6= ∅ and V (A2) ∩X 6= ∅.

Let a ∈ V (A1) ∩X and b ∈ V (A2) ∩X. Since a and b are in same connected component

B in IC,L[S ∪ T], by Lemma 13.7, there exists a link e corresponding to a link-vertex in

B such that e covers the 2-cut {vx, vy}. By Observation 13.3, the link e is projectively

incident to v which implies that the terminal v is in the same component as X. Therefore

we conclude that all the vertices of T \X are in the same component of as X in IC,L[S ∪T].

Therefore if IC,L[S ∪X] is connected, then IC,L[S ∪ T] is also connected.

Now, suppose that S is not an augmenting set for the cactus and let e1, e2 be a 2-cut in a

cycle of the cactus which is not covered by S. Let A1 and A2 be the components of the

cactus C obtained by deleting the 2-cut {e1, e2}. By Observation 13.1 we can infer that

V (A1)∩X 6= ∅ and V (A2)∩X 6= ∅. Let a ∈ V (A1)∩X and b ∈ V (A2)∩X. Since a and b

are in same component in IC,L[S ∪T] (the entire subgraph being connected by assumption),

by Lemma 13.7, there exists a link e corresponding to a link-vertex in S such that e covers

the 2-cut {e1, e2}. This contradicts our assumption that S is not an augmenting set for

the cactus C. This completes the proof of the lemma.

13.3 An improved Algorithm for Cactus Augmentation

Theorem 13.11. The Weighted Edge Connectivity Augmentation of a Cactus

problem can be solved in time O∗(9k).

Proof. Given an instance (G = (V,E), C,L, k), we construct the link-terminal intersection

graph IG. Let X be the vertices of IG which correspond to degree-2 vertices of C. By

Lemma 13.9, we have that a set S of links is an augmenting set if and only if IG[S∪X] has a

connected component containing X. Therefore, we conclude that a min-cost augmenting set

of size at most k exactly corresponds to a min-cost steiner tree of size at most k+ |X| in IG

177

containing the set X. The dynamic programming algorithm of Dreyfuss and Wagner [DW71]

can be modified to compute the min-cost steiner tree of size at most k in time O∗(3|X|).

Since we already know that any augmenting set of links has size at least |X|/2, we return

No if |X| > 2k. Hence, we may assume that |X| ≤ 2k and therefore, we have an algorithm

for Min Cost augmentation of a cactus running in time O∗(9k).

Since the problem of augmenting a tree can be reduced to augmenting a cactus simply by

replacing every tree edge with a pair of parallel edges, we have the following corollary.

Corollary 13.10. The Weighted Edge Connectivity Augmentation of a Tree

problem can be solved in time O∗(9k).

Once again, using the result of Dinits et al. referred to in earlier sections, w-Aug-One can,

in polynomial time be reduced to Weighted Edge Connectivity Augmentation of

a Tree or Weighted Edge Connectivity Augmentation of a Cactus depending

on the parity of the connectivity of the given graph, hence proving Theorem 13.1.

178

Chapter 14

Parameterized Algorithms for

Network Augmentation II

In this chapter, we will focus on the parameterized complexity of the following problem.

m− k Augmentation by One Parameter: k

Input: (G,L, k) where G is a λ-edge connected, L is a set of edges, called links, G+L is

(λ+ 1)-edge connected, and k a positive integer.

Question: Is there a set of k links in L whose deletion from G+L maintains (λ+ 1)-edge

connectivity?

Intuitively, m− k Augmentation by One seems to be harder than w-Aug-by-One. For

example, if we want to augment a tree T to a 2-edge connected graph, the number of links

we have to add is at least half the number of leaves of T . By handling degree two vertices

in appropriate way, this almost immediately brings us to a polynomial kernel. But when

we want to delete links from L in order to keep a minimum 2-edge connected supergraph

of T , there is no lower bounds on the number of deleted links, and this makes the problem

much harder. Similar difference can be observed for graphs of larger connectivity. Not

surprisingly, to solve m− k Augmentation by One, we need completely different ideas,

and we obtain the following theorem.

Theorem 14.1. m− k Augmentation by One is solvable in time 2O(k)|V |O(1).

179

In other words, we establish that m−k Augmentation by One is FPT. The next natural

question following the establishment of parameterized tractability of a problem is if this

problem admits a “polynomial kernel”. We answer this question affirmatively.

Theorem 14.2. m− k Augmentation by One admits a kernel with 12k vertices and

3k links for odd λ and a kernel with O(k2) vertices and O(k2) links for even λ, where λ is

the connectivity of the input graph G.

As before, the result of Dinits et al. [DKL76] allows us to assume without loss of generality

that either λ = 1 and G is a tree, or λ = 2 and G is a cactus graph. Then we design

preprocessing rules based on several non-trivial structural lemmas regarding No instances

of the problem. We then show that applying these preprocessing rules exhaustively results

in an equivalent instance where the lengths of the cycles in the graph G is bounded linearly

in the parameter. In our final step, we show that this property, along with those proved

beforehand, gives a linear bound on the tree width of the link-terminal intersection graph,

where it suffices to compute an optimum Steiner tree. Finally, we apply an algorithm for

Steiner Tree, with a running time 2O(t)|V (G)|O(1) [BCKN13], where t is the treewidth of

the input graph, to obtain the solution. The techniques we use for the kernels for m− k

Augmentation by One depend on the parity of the connectivity λ. In the case when

λ is odd, we construct an alternate auxiliary graph with the set of links as the vertex

set and prove two properties regarding this graph. The first is that this graph has a

constant degeneracy and the second is that a vertex cover in this graph corresponds to

an augmenting set in the input instance. Combining these two properties, we are able to

conclude that if the size of the instance exceeds a certain constant factor of the parameter,

then the input instance is a Yes instance, thus obtaining a linear kernel. For the case when

λ is even, we introduce an additional preprocessing rule to the ones already used and show

that these rules together suffice to bound the size of a given instance quadratically in the

parameter. Our results are summarized in the following table.

180

Problem Name Algorithm Kernel

m− k Augmentation by One (odd λ) O∗(8k) 12k vertices and 3k links

m− k Augmentation by One (even λ) O∗(2O(k)) O(k2) vertices and O(k2) links

Table 14.1: The table gives a summary of our results, where the O∗(· · ·) notation hides
polynomial factors. The constants hidden by the O(· · ·) notation in the kernel sizes are
independent of λ.

14.1 Single Exponential FPT algorithm

In this section we give a single exponential FPT algorithm for m− k Augmentation by

One. As stated earlier, when λ is odd, we have a kernel with at most 3k links. Hence we

can easily obtain a FPT algorithm with a running time of O∗(28k) in this case. The case

where λ is even, is more challenging. We show that we can preprocess the input instance in

polynomial time, to reduce the treewidth of the associated link-intersection graph to O(k).

Then by applying a single exponential FPT algorithm for Steiner Tree, parameterized

by treewidth, we solve the instance in claimed running time.

We first consider the case of λ = 2 i.e. augmenting the connectivity of a cactus, which

is called m− k Cactus Augmentation. In this section, we give a set of preprocessing

rules using which we will obtain a bound on the treewidth of the link-intersection graph.

We begin by revisiting the operation of refining a cactus and proving certain properties of

this operation which will play a crucial role in the statements as well as correctness of our

preprocessing rules.

Lemma 14.1. Let F be an augmenting set of links for the given cactus C and let L ⊆ F .

Then, F \ L is an augmenting set for the cactus obtained by refining C by the set L.

Conversely, if refining C by a set L of links results in a cactus C′, then for any augmenting

set F of C′, F ∪ L is an augmenting set of C.

Proof. We begin by proving the following claim.

Claim 1. Let C be a cactus and L ⊆ L be a link-set. Let C′ be the cactus obtained by

refining the cactus C by the link-set L. Then the 2-cuts in the refined cactus C′ are precisely

those 2-cuts in C that are not covered by the link-set L.

181

Proof. We begin by assuming that the cactus C is a single cycle C. Consider a link e = (x, y)

in the link-set. Since C = {C}, we have that e is a chord of the cycle C. Let P1 and

P2 be the components formed by deleting the vertices x and y from C. For i ∈ {1, 2},

let Ci = C[V (Pi) ∪ {x, y}]. That is C1 and C2 are the paths xP1y and xP2y respectively.

Note that that link e = (x, y) covers all the 2-cuts of the form {g, h}, where g ∈ E(C1)

and h ∈ E(C2) where E(C1) and E(C2) are the edges involved in the paths C1 and C2

respectively. Therefore, the only 2-cuts which are not covered by e are of the form {g, h}

where g, h ∈ E(C1) or g, h ∈ E(C2). However, observe that all pairs of such edges appear

together in a cycle of the refined cactus and hence these 2-cuts are indeed preserved by

the operation of refinement. Furthermore, observe that it follows from the definition of

refinement that for every 2-cut {e1, e2} covered by this chord, e1 and e2 are in distinct

cycles of the refined cactus, and therefore no longer form a 2-cut. Hence, we conclude that

the 2-cuts of the resulting cactus C ′ are exactly the 2-cuts not covered by e.

Now, consider the case when C is not a single cycle. Then, refining a link e = (x, y) which

does not lie within a single cycle is clearly the same as refining each cycle of the cactus by

considering the projection of e onto this cycle as a chord of this cycle. Since any 2-cut in

the cactus lies in a single cycle, if e covers this 2-cut, then the projection of e on this cycle

covers this 2-cut. But we have already shown that the 2-cuts within each cycle which are

not covered by a chord are preserved upon refining the cycle by the chord. Therefore, we

conclude that refinement of the cactus by a link preserves the 2-cuts not covered by this

link. It follows from the definition of refinement that the 2-cuts covered by this link are

indeed absent in the refined cactus. Finally, applying this argument iteratively for every

link in the given link-set L, the claim is proved.

We now complete the proof of the lemma. Suppose that F is an augmenting set of links

for C. Since F covers all the 2-cuts in the cactus, by the above claim, we have that refining

C by the link-set F results in a cactus C′ with no 2-cuts, implying that C′ is a singleton

vertex. Now, consider L ⊆ F and let C′′ be the cactus obtained from C by refining it by L.

Since further refining C′′ by F \ L results in a singleton vertex, we conclude that F \ L is

indeed an augmenting set for C′′.

182

Conversely, suppose that for some set L of links, C′ is the cactus obtained from C by refining

it with L and F is an augmenting set of C′. Since F covers every 2-cut in C′ by the above

claim, F covers every 2-cut in C that is not covered by L. Therefore, we conclude that

F ∪ L covers every 2-cut in C. This completes the proof of the lemma.

Observation 14.2. A cycle of length ` requires at least `/2 links and can be augmented

with at most `− 1 links. Furthermore, the upper bound is tight when the given set of links

on the cycle is laminar.

Proof. Since every vertex of the cycle needs a link in the augmenting set which is projectively

incident on it and any link can only be projectively incident on 2 vertices of a cycle, the

lower bound follows. For the upper bound, the proof is by induction on the length of

the cycle. For ` = 2, the statement holds. Suppose that ` > 2. Consider a link e such

that refining the cycle by e results in a cactus with 2 non-trivial cycles. If such a link

does not exist, then every link is parallel to a cycle edge and we can pick any consecutive

`− 1 of them. Let the 2 cycles be of length `1 and `2 with `1 + `2 = `. By Lemma 14.1,

we have that the 2-cuts left uncovered by e are present in one of these 2 cycles and that

any augmenting set for the resulting cactus, along with the link e is an augmenting set

for the cycle. By the induction hypothesis, we have that the cycles can be augmented

with `1 − 1 and `2 − 1 links respectively. Therefore, the cycle can be augmented with

`1 − 1 + `2 − 1 + 1 = `− 1 links. Observe that the same argument shows that if the set of

links on the cycle is laminar then the minimum augmenting set also has size at least `− 1.

This completes the proof of the statement.

We now move to the description of our polynomial time preprocessing rules. Since it will

be clear from the statements that these rules can be implemented in polynomial time, we

will ignore this part of the analysis.

Reduction Rule 14.3. If there is a 2-cut in the cactus which is covered by a unique link

e, then refine the cactus by this link.

Observation 14.4. If Reduction Rule 14.3 does not apply then every 2-cut in the cactus

is covered by at least two links. Furthermore, if ` is the length of a cycle in the cactus, then

183

it has at least ` links projectively incident on it.

Proof. Since the rule does not apply, every 2-cut in the cactus must be covered by at least

2 links. In particular, for any vertex v and any cycle C containing this vertex, the 2-cut

formed by the 2 edges of C incident on v is also covered by at least 2 links. However, any

link which covers this 2-cut must be projectively incident on v. Therefore, every vertex in

a cycle has at least 2 links projectively incident on it, which implies that a cycle of length

` has at least ` links projectively incident on it.

Reduction Rule 14.5. Let x be a vertex in the cactus such that no link has x as an end

point and the only edges of the cactus incident on it are the four edges of two 2-circuits xy

and xz. Then contract the 2-circuit xy.

The correctness of the first rule directly follows from Lemma 14.1 and the correctness of

the second rule can be argued as follows. Since the links which cover the 2-cut formed by

the 2-circuit xz are precisely the links which cover the 2-cut formed by the 2-circuit xy, it

suffices to preserve exactly one of them in the instance. The following reduction rule is a

generalization of the previous rule.

Reduction Rule 14.6. Let x be a vertex of a cycle in the cactus such that the only

edges of the cactus incident on it are the edges of the cycle and two edges of a 2-circuit

xy. Furthermore, suppose that the only links projectively incident on x are those that are

incident on y. Then contract the 2-circuit xy.

Lemma 14.7. Let (C,L, k) be an instance on which Reduction Rule 14.3 does not apply.

If there is a vertex in the cactus which has more than 4k links projectively incident on it,

then the given instance is a Yes instance.

Proof. Consider a vertex x and the set L of links projectively incident on x. We prove by

induction on |L| that there is a minimal augmenting set which contains at most 3/4|L| of

the links incident on x. We now consider the base case of our induction, that is, |L| = 4.

Let e ∈ L be a link incident on x. Observe that since Reduction Rule 14.3 does not apply,

L \ {e} indeed covers all the 2-cuts in C.

184

x
u

vv0 v00

u0

Figure 14.1: An illustration of the proof of Lemma 14.7.

For the induction step, consider the Eulerian tour of the cactus starting and ending at x.

For any link (u, v) ∈ L where u, v 6= x, i.e (u, v) is projectively incident on x, we represent

it as 2 links in the Eulerian tour by adding a link between x and the first occurrence of u

in the tour. and one between x and the first occurrence of v (see Figure 14.1). Similarly,

for every link (x, v) ∈ L, we simply represent it as a link between the origin x and the first

occurrence of v in the tour.

Consider the first vertex u in the tour which has a link to x in the representation. Suppose

that this link represents the link e = (u, v) ∈ L where v 6= x. Let v′ be the first vertex on

the tour after v which has a link projectively incident on itself and x, call this link e(v′)

and v′′ be the last vertex on the tour before v which has a link projectively incident on

itself and x, call this link e(v′′). Similarly, let u′ be the first vertex on the tour after u

which has a link projectively incident on itself and x, call this link e(u′). If u′ = v or v′′ = u

or v′ = x, we let the corresponding links by undefined. Let L′ = {e, e(u′), e(v′), e(v′′)}. We

claim that in the cactus C′ obtained from C by refining the set L′ \ {e}, none of the links

in L \ L′ cover a 2-cut covered by e. We prove this by showing that every 2-cut covered

by e and a link in L \ L′ is also covered by a link in L′ \ {e}. Let P1 be the part of the

tour between the starting vertex and the first occurrence of u, P2 be the part of the tour

between the first occurrence of u and the first occurrence of v and let P3 be the rest of the

tour. Let Q1 be part of the tour between u and u′, Q2 be the part of the tour between

185

v′′ and v and let Q3 be the part of the tour between v and v′. Observe that any 2-cut

covered by e must have an edge in P1 and an edge in P2 or an edge in P3 and an edge in

P2. Clearly, no link in L \ L′ can cover a 2-cut one of whose edges is in P1 and the other

in Q1 or a 2-cut consisting of an edge in Q2 and one in Q3. Now, any 2-cut consisting of

an edge in P1 and one in P2 \Q1 is covered by the link e(u′). Similarly, any 2-cut which

consists of an edge in Q3 and an edge in P2 \Q2 is covered by e(v′′) and any 2-cut with an

edge in Q2 and one in P3 \Q3 is covered by e(v′). We therefore, conclude that every 2-cut

covered by e and a link in L \ L′ is also covered by a link in L′ \ {e}, implying that in the

cactus C′, none of the links in L \ L′ cover a 2-cut covered by e. Therefore, e, along with

an augmenting set for C′ will be an augmenting set for C.

By the induction hypothesis, we have that there is a minimal augmenting set F ′ for C′

which contains 3/4|L \L′| links from L \L. Since none of these links in L \L′ cover a 2-cut

covered by e, F ′ ∪ {e(u′), e(v′), e(v′′)} is indeed an augmenting set for C of size at most

3/4|L|. Therefore, we conclude that if x has more than 4k links projectively incident on it,

then the given instance is a Yes instance.

Lemma 14.8. Let C be a cycle of cactus. Let the number of links needed to augment the

cycle C be `. If the number of links projectively incident on the cycle C is greater than

`+ 4k, then the given instance is a Yes instance.

Proof. Let L be a set of ` links which augment the cycle and consider the cactus refined

by this link-set. Then, we get a vertex which is projectively incident to at least 4k links in

the refined cactus, which is a Yes instance by Lemma 14.7.

From Observation 14.2 and Lemma 14.8, we infer that if the number of links projectively

incident on a cycle C is greater than (t− 1) + 4k where t is the length of the cycle, then

the given instance is a Yes instance.

Greedy-augmenting-set(S, C):

186

1. Start with T = ∅, C = C and Cycles(C) = 1.

(Here Cycles(C) denotes the number of cycles in the cactus C)

2. Repeat until there are no more links in S \ T that can be added to T or until

T = 8k :

(a) If there exists e ∈ S \ T such that Cycles(C′) ≥ Cycles(C) + 2, where C′ is

the cactus obtained by refining C by the link e, then T = T ∪ {e} and set

C = C′.

(b) Else if there exist e, f ∈ S \ T , such that Cycles(C′) ≥ Cycles(C) + 3,

where C′ is the cactus obtained by refining C by the link-set {e, f}, then

T = T ∪ {e, f} and set C = C′.

Reduction Rule 14.9. Run the Greedy-augmenting-set algorithm with the set S of links

projected on a cycle C. When the algorithm stops, if |T | = 8k, then say Yes.

Lemma 14.10. Reduction Rule 14.9 is safe.

Proof. Let C be a cycle of length ` on which the greedy algorithm was applied. Observe

that in the first iteration of the algorithm, 3 new cycles are created after the refinement

using some two links. Thus Cycles(C) = 3+1 = 4 after the first iteration. After that in each

iteration at least 3
2x new cycles are created, where x is the number of links refined in that

iteration. When the algorithm stops, let t = Cycles(C) be the number of cycles resulting

from the refinement of the original cycle C. Therefore t ≥ 3
2(|T | − 2) + 4 = |T |+ |T |+2

2 .

We know that any cycle of length `i requires at most `i − 1 augmenting links (by Obser-

vation 14.2). Thus, we need
∑t

i=1 `i − 1 =
∑t

i=1 `i − t ≤
∑t

i=1 `i − (|T |+ |T |+2
2) links to

augment all of the new cycles. Since we have used T links for the refinement in the Greedy

Algorithm, the total number of links needed to augment the original cycle C is at most∑t
i=1 `i − (|T |+ |T |+2

2) + |T | =
∑t

i=1 `i − (|T |+2
2). But

∑t
i=1 `i = `. Therefore we have an

upper bound of `− (|T |+2
2) on the number of links needed to completely augment this cycle

C. Since there are at least ` edges projectively incident on the cycle (By Observation 14.4),

187

once the cycle is augmented by refining these `− (|T |+2
2) links, the cycle will be contracted

to a single vertex which will have at least |T |/2 = 8k/2 = 4k links projectively incident on

it. Therefore, by Lemma 14.7, the given instance is indeed a Yes instance.

14.1.1 Reducing Laminar Strips

Definition 14.3. Given a cactus C and a set of links L on the cactus, let C be a cycle in

the cactus. Consider a path P = v0, v1, v2 . . . vt, vt+1 of the cycle C where v0 6= vt+1. Let

L[P] ⊆ L be the set of links which have both endpoints in V (P) and let L[P1] ⊆ L be the set

of links projectively incident on the vertex set V (P1) = V (P) \ {v0, vt+1} = {v1, v2, . . . , vt},

that is the internal vertices of the path P . We call P a laminar strip if the following

conditions are satisfied (see Figure 14.2).

• L[P] is laminar.

• L[P1] ⊆ L[P].

• Every edge in the path P is covered by at least one link in L[P]. That is for every

edge (vi, vi+1), there is a link in L[P] with endpoints vj and vr where j ≤ i < r.

We call L[P] the set of links associated with the laminar strip P and define the length of a

laminar strip P as the number of edges in the path P .

Lemma 14.11. Given a cactus C and a set of links L, let P be a laminar strip of length

t+ 1 with endpoints x and y. Let C1 be the cycle obtained from P by adding an edge (x, y)

and let C2 be the cycle obtained from P by identifying x and y. Let F be any minimal

augmenting set and let L = L[P]∩ F . Then, either |L| ≥ t+ 1 and L is an augmenting set

for C1 or |L| ≥ t and L is an augmenting set for C2.

Proof. Observe that since P is a laminar strip, the set L[P] is laminar in both C1 and

C2. Suppose that L is not an augmenting set for C2. Consider a 2-cut {e1, e2} in C2 not

covered by L. Then, the 2-cut {e1, e2} is also not covered by L in the cactus C. Since

P is a laminar strip, no link disjoint from L[P] can cover this 2-cut, implying that F is

188

not an augmenting set for C, a contradiction. Therefore, we conclude that L is indeed

an augmenting set for C2. Since the length of C2 is t + 1, by Observation 14.2, |L| ≥ t.

Furthermore, if L is also an augmenting set for C1, then Observation 14.2 implies that

|L| ≥ t+ 1.

Given the above lemma, we define an operation we refer to as shrinking a laminar strip.

The intuition behind this operation is as follows. Since the intersection of any minimal

augmenting set with the laminar strip has one of only 2 possible “types” according to the

previous lemma, we replace each laminar strip by an “equivalent” laminar strip of constant

size. More precisely,

Definition 14.4. Shrinking a laminar strip. Given an instance (C,L, k) of m − k

Cactus Augmentation, let P be a laminar strip and L[P] be the associated link-set. We

define the process of shrinking the laminar strip P as follows. We contract the path P in

the cycle to the edge xy (see Figure 14.2), which we refer to as the path P ′ and change the

link-set L to L′ = (L \ L[P]) ∪ {(x, y)}. If |L[P]| = `, then set k′ = k − `+ t+ 1. Finally,

return (C′,L′, k′) where C′ and L′ are the resulting cactus and link-set respectively.

Reduction Rule 14.12. Given an instance (C,L, k) of m− k Cactus Augmentation,

if a cycle of the cactus contains a laminar strip P whose endpoints do not coincide, then

shrink it.

Lemma 14.13. Reduction Rule 14.12 is safe.

Proof. Let (C′,L′, k′) be the instance obtained by applying Reduction rule 14.12 to the

instance (C,L, k). Let P be the laminar strip on which the rule was applied, x and y be

its endpoints, let |P | = t+ 1 and |L[P]| = `. Then, we have that k′ = k − `+ t+ 1 and

|L′| = |L| − `+ 1. We now show that (C,L, k) is a Yes instance if and only if (C′,L′, k′) is

a Yes instance.

Suppose (C,L, k) is a Yes instance, F be a minimum augmenting set for C, and L = F ∩L[P].

Then |F | ≤ |L| − k. Consider the cycle C1 obtained from P by adding an edge (x, y) and

the cycle C2 obtained from P by identifying x and y. By lemma 14.11, we have that either

|L| ≥ t+ 1 and L augments C1 or |L| ≥ t and L augments C2.

189

Figure 14.2: An illustration of a laminar strip (the red path) and the operation of shrinking
it.

In the former case, we define the set F ′ = (F \ L) ∪ {(x, y)} and otherwise, we define

set F ′ = F \ L. We claim that |F ′| ≤ |L′| − k′ and that it is an augmenting set for C′.

Clearly, |F ′| ≤ |F | − t. Therefore, in order to prove that |F ′| ≤ |L′| − k′, it suffices to

prove that |L| − k − t ≤ |L′| − k′, which follows from the fact that k′ = k − `+ t+ 1 and

|L′| = |L| − `+ 1.

If F ′ is not an augmenting set for C′, then there is a 2-cut in C′ which is not covered by F ′.

Since the only links of F not present in F ′ are those in L, it must be case that any such

uncovered 2-cut in C′ contains the edge (x, y) and a second edge, say e. Since this 2-cut

is not covered by F ′, we infer that F ′ does not contain the link (x, y). Therefore, by the

definition of F ′ it must have been the case that L is not an augmenting set for C1. This

implies that any 2-cut comprising an edge in P and out outside P in C, must therefore, be

covered by a link in F \L. However, any such link is present in F ′ and will cover the 2-cut

{e, (x, y)} in C′, a contradiction. Hence, we conclude that F ′ is indeed an augmenting set

for C′ and this completes the forward direction.

For the converse direction, suppose (C′,L′, k′) is a Yes instance, F ′ be a minimum augment-

190

ing set for C′, and L′ = F ′ ∩ L′[P]. Then |F ′| ≤ |L′| − k. Furthermore, let L1, L2 ⊆ L[P]

be minimum augmenting sets for C1 and C2 respectively. By Observation 14.2 and the

fact that L[P] is laminar in C1 and C2, we have that |L1| = t+ 1 and |L2| = t.

We now define the set F as follows. If F ′ contains the link (x, y) then we define F = F ′∪L1

and F = F ′ ∪L2 otherwise. We now claim that |F | ≤ |L| − k and that it is an augmenting

set for C. Clearly, |F | = |F ′|+ t. Therefore, in order to prove that |F | ≤ |L| − k, it suffices

to prove that |F ′|+ t ≤ |L′|+ `− 1− k, which follows from the fact that k′ = k− `+ t+ 1.

If F is not an augmenting set for C, then there is a 2-cut in C which is not covered by F .

Since every 2-cut with both edges disjoint from E(P) is also present in C′ and F ′ covers

these 2-cuts, we conclude that F covers all 2-cuts with both edges disjoint from E(P).

Therefore, any 2-cut not covered by F in C must contain an edge, say e′ in E(P). Since

both L1 and L2 cover every 2-cut with both edges in E(P), it must be the case that exactly

one of the edges of the 2-cut, say e′′, lies outside P . Since L1 does cover such 2-cuts, we

can conclude that L1 is not contained in F , implying that L2 is contained in F . By the

definition of F this implies that F ′ does not contain the link (x, y). Let l be a link in F ′

which covers the cut {e′′, (x, y)}. Since l is also present in F and it covers 2-cuts formed

by e′′ and any edge in E(P), F is an augmenting set for C, a contradiction. Therefore, we

conclude that F is indeed an augmenting set for C and this completes the proof of the

lemma.

Now we can assume that there are no laminar strips of length greater than one in any

cycle of the cactus.

14.1.2 Bounding the cycle lengths and tree-width of the

link-intersection graph

Lemma 14.14. If the Reduction Rules 1-5 do not apply and there is a cycle in the cactus

which has length > 67k, then the given instance is a Yes instance.

Proof. Let C be a cycle in the cactus, L[C] be the set of links which are projectively

incident on C. We use degL(v) to denote the number of links projectively incident on v.

191

We partition the vertices of V (C) as follows and proceed to establish a bound on each of

them.

V3 = {v ∈ V (C)|degL(v) ≥ 3}

V a
2 = {v ∈ V (C)|degL(v) = 2 and v is a cut vertex in the cactus}

V b
2 = {v ∈ V (C)|degL(v) = 2 and v is not a cut vertex}

1. First, suppose that |V3| ≥ 8k. Since Reduction Rule 14.3 does not apply, every

vertex in the cactus is projectively incident on at least 2 links. Then, the sum of

the number of links projectively incident on each vertex in the cycle C is at least

2(`− 8k) + 3 · 8k where ` is the length of the cycle. Therefore, the number of links

which are projectively incident on this cycle is at least half this number, that is

`− 8k + 12k = `+ 4k, and by Lemma 14.8, we have that the given instance is a Yes

instance. Therefore, we may assume that |V3| < 8k.

2. Now, suppose that |V a
2 | ≥ k. Consider a vertex v ∈ V a

2 . The vertex v is a cut-vertex

in the cactus. Let a and b be the neighbors of v in the cycle C. Let C′ be a sub-cactus

of C formed by the component containing the vertex v, obtained by deleting the

edges (v, a) and (v, b) in the cactus C. We claim that there exists a link which is

properly incident on two vertices of C′. Suppose not. Then every link that is properly

incident on a vertex of C′ has another endpoint outside it. This implies that every

link has a non-trivial projection onto the cycle C. But we know that only two links

are projectively incident on v in C. Thus only two links are incident on the vertices

of C′. But note that by Observation 13.1, C′ contains a vertex u of degree 2 in C.

We also know that at least two links are properly incident on u. This implies that

every link incident on u is also projectively incident on v and v does not have any

other link incident on it. Furthermore, no other vertex in C′ have a link properly

incident on it. Therefore u and v would be part of a 2-circuit or a chain of 2-circuits

with no links incident on any of the intermediate vertices. Then in this situation,

either Reduction Rule 14.5 or Reduction Rule 14.6 would have applied. Therefore

we infer that there is a link which is properly incident on two vertices of C′. Let us

192

call this link ev. Observe that we have a distinct such link corresponding to every

vertex in V a
2 and furthermore, there is no 2-cut in the cactus covered by a pair these

links and hence we can still augment the cactus using the links disjoint from this set.

This implies that the given instance is a Yes instance if |V a
2 | ≥ k. Therefore, we may

assume that |V a
2 | < k.

3. We now proceed to bound the set V b
2 which requires more involved arguments. Since

Reduction Rule 14.9 does not apply, when the greedy algorithm terminated, we

have a link-set T of at most 8k links. Since vertices of V b
2 , call it X which appear

as endpoints of these links are bounded by 16k, it suffices for us to consider those

vertices which are not the endpoints of links in T and therefore, we consider the

cactus C′ which is obtained by refining the cycle C with the set T . Consider a vertex

v ∈ V b
2 \X. By the definition of V b

2 , the vertex v has exactly 2 links e1 = (v, z) and

e2 = (v, w) incident on it and other end points of both the links, z and w are in

V (C).

We claim that it cannot be the case that both z and w are in V b
2 \X. Suppose that

z and w are both indeed in V b
2 \X. Clearly, there is a cycle C ′ ∈ C′ which contains

the vertices v, z and w and furthermore, none of these vertices are cut vertices in

the cactus C′. Now, consider the set L[C ′] of links with non-trivial projections on C ′.

Since the greedy algorithm terminated at this point, it must be the case that no 2

links in L[C ′] cross (although they may be incident on the same vertex of C ′).

Observe that if z and w were the 2 neighbors of v in the cactus then the path

z, v, w would form a laminar strip of length 2, which contradicts our assumption that

Reduction Rule 14.12 does not apply. Therefore, at least one z or w is not adjacent

to v on the cycle C ′. Without loss of generality we assume that z is not adjacent to

v in the cycle. Let P be the subpath of C ′ between v and z that does not contain w.

Let v′ be the vertex on the path adjacent to v and let z′ be the vertex on this path

adjacent to z. It could be the case that v′ = z′. Now, consider the 2-cut formed by

the edges (z, z′) and (v, v′). Since (b, a) is a link and no pair of links in L[C ′] cross,

any link which covers this cut must have either z or v as one of its points. Since

193

by assumption, w cannot be equal to z′ and v only has 2 links incident on it, the

only possible link in L[C ′] and therefore in L which can cover this 2-cut is the link

(b, v′). However, this contradicts our assumption that Reduction Rule 14.3 cannot be

applied. Therefore, we conclude that either z or w is not in V b
2 \X. That is, every

vertex in V b
2 \X is incident on a link whose other endpoint lies in V3 ∪ V a

2 ∪X. We

now bound the size of V b
2 \X as follows.

The number of vertices of V b
2 \X which can be certified by X is bounded by |X| ≤ 16k.

Those which can be certified by the vertices in V a
2 is bounded by 2|V a

2 | ≤ 2k. Therefore

it remains to bound the number of vertices of V b
2 \X which can be certified by V3.

By the argument in case 1, at most 24k links are projectively incident on the vertices

of V3. This is because, otherwise, the sum of the number of links projectively incident

on each vertex in the cycle C is at least 2(`− 8k) + 24k, implying that there are at

least `− 8k+ 12k = `+ 4k links projectively incident on the cycle, implying that the

given instance is a Yes instance. Thus at most 24k vertices of V b
2 \X are certified by

the vertices of V3. Thus |V b
2 \X| ≤ 16k + 2k + 24k = 42k. Hence the total number

of vertices in the cycle is |V3|+ |V a
2 |+ |X|+ |V b

2 \X| < 8k + k + 16k + 42k = 67k.

We now bound the treewidth of the link-intersection graph constructed from instances on

which Reduction Rules 1-5 do not apply.

Lemma 14.15. Consider an instance (C,L, k) on which Reduction Rules 1-5 do not apply.

Then, there is an algorithm that in polynomial time either returns a tree-decomposition of

IC,L of width O(k) or correctly concludes that the given instance is a Yes instance.

Proof. Let IC,L = (V,E) and consider the rooted block tree of the given cactus and let M

be the tree whose vertices correspond to the cycles of the cactus and 2 vertices are adjacent

if the block corresponding to one is the parent of the block corresponding to the other in

the rooted block tree. Let VM be the vertices of M and for every v ∈ VM let Cv be the

corresponding cycle in the cactus. We now define the bags β : VM → V as follows.

194

β(v) = {u ∈ V |u ∈ Cv or u ∈ L and u is projectively incident on Cv}

We claim that (M,β) is indeed a tree-decomposition of IC,L. Clearly, every link and every

terminal appear in some bag. Furthermore, for every terminal, there is a bag which contains

this terminal and all links which are projectively incident on this terminal. Now, consider

an edge in IC,L between 2 links. They are adjacent because they are both projectively

incident on some vertex in which case there is a bag which contains both these links or

they cross, which implies that they are both projectively incident on some cycle, in which

case the corresponding bag contains both these vertices. Hence we conclude that every

edge of IC,L is contained in some bag. Finally, observe that any terminal appears only in

those bags whose corresponding cycles contain this terminal and they are by definition

connected. Similarly, a link only appears in those bags whose corresponding cycles have a

non-trivial projection of this link, which by definition form a path in the tree M . This

concludes the proof that (M,β) is indeed a tree decomposition of IC,L.

By Lemma 14.14, we have that every cycle in the cactus has length at most 67k and by

Lemma 14.8, we have that if the number of links projectively incident on a cycle exceeds the

length of the cycle by more than 4k, then we have a Yes instance. Therefore, if the number

of links projectively incident on any cycle exceeds 71k, then we say Yes. Otherwise, every

cycle has at most 71k links incident on it and therefore every bag in the tree-decomposition

has size at most 138k, thus concluding the proof of the lemma.

We are now have the following lemma.

Lemma 14.16. There is an algorithm for m − k Cactus Augmentation running in

time O∗(2O(k)).

Proof. We first apply Reduction Rules 1-5 on the given instance and then use the algorithm

of Lemma 14.15 to either conclude that the given instance is a Yes instance or obtain a

tree decomposition for the link-intersection graph, whose width is bounded linearly in the

parameter. By Lemma 13.9, it suffices to compute a minimum Steiner tree in IC,L with

the set of degree-2 vertices of the cactus as the terminals. We then solve the problem by

195

using the algorithm for Steiner Tree given by [BCKN13] running in time O∗(2O(tw)),

which translates to an O∗(2O(k)) algorithm for m− k Cactus Augmentation.

The proof of the following theorem follows easily from Lemma 14.16, Lemma 14.18 (proved

in the next section) and the results of Dinits et al. [DKL76].

Theorem 14.1. m− k Augmentation by One is solvable in time 2O(k)|V |O(1).

Proof. Dinits et al. [DKL76] showed that the general problem of m− k-augmentation

by one reduces in polynomial time either to m− k Cactus Augmentation or to m− k

Tree Augmentation without an increase in the parameter. Therefore, by Lemma 14.16

and Lemma 14.18, we have the claimed algorithm.

14.2 Polynomial Kernels for m− k Cactus Augmentation

In this section we show that m− k Augmentation by One admits a polynomial kernel.

We first consider the cases of tree augmentation and cactus augmentation, separately.

14.2.1 A linear kernel for m− k Tree Augmentation problem

Here we give a linear kernel for m− k Tree Augmentation. Note that, we obtain an

FPT algorithm for this problem which runs in time 2O(k)nP(1), as a corollary.

Definition 14.5. In a rooted tree, the depth of any node in a tree is the length of the

shortest path from the root the node. The depth of the root is 0 and the depth of any other

node is one greater than the depth of its parent. The depth of any edge f = ab ∈ E(T) is

defined as depth(f) = min(depth(a), depth(b)). The depth of a link e = xy ∈ L is the depth

of the least common ancestor of x and y.

Definition 14.6. A graph is called 2-degenerate if all of its induced subgraphs have a

vertex of degree at most 2. An ordering π of the vertices of a graph H is called a 2-degenerate

ordering if for any vertex v = π(i), the degree of v in H[Vi] is at most 2.

196

Lemma 14.17. Let (G,T, k) be the given instance of the problem, with the additional

property that every cut is covered by at least two links from L. Then there exists an

augmenting set for the tree T using at most b2|L|/3c links.

Proof. We construct an auxiliary graph H whose vertex set is the set of links. And the

depth of a vertex in H is the same as the depth of the corresponding link. The edge set is

defined as follows. Let σE be an ordering of the edges of the tree in the non-increasing

order of their depths. We process the edges according to this ordering. For an edge (a, b)

in the tree, let Vab be the set of vertices corresponding to the links covering the edge (a, b).

If there exists an edge between a pair of vertices in Vab, we do nothing. Otherwise Vab

is an independent set at this stage. Let ψab be an ordering of Vab in increasing order of

their depths. We put an edge between the first and the second vertex of the list, i.e.,

(ψab(1), ψab(2)) ∈ E(H). We do this for all the edges of the tree, processing each according

to the list σE and obtain the graph H.

Note that for every edge(cut) in T , there exists an edge in H. Therefore it is easy to see

that a vertex cover of H corresponds to a set of links that covers all the edges(cuts) of T .

Thus if there exists an independent set of size k in H, then there exists an augmenting

set of size |L| − k for T . Our objective is to show that the graph H we constructed is

2-degenerate, which implies the presence of an independent size of size at least d|L|/3e in

H which in turn implies an augmenting set of size at most |L| − d|L|/3e = b2|L|/3c for T .

Claim 1. The graph H is 2-degenerate.

Proof. Let φH be the ordering of the vertices of H in the increasing order of their depths.

We claim that this ordering is a 2-degenerate ordering. Suppose not and let H[Vi] (The

graph induced by the first i vertices in the ordering φH) be an induced subgraph which

has minimum degree greater than 2. Let e the link corresponding to the vertex φH(i). Let

the path covered by this link e = v in T be P = {x, v1, v2, . . . , vr, y}. Let z be the least

common ancestor of x and y. Let some three of the links corresponding to the neighbours

of φH(i) in H[Vi] be f1, f2, f3. Note that all these links have depth at most as that of e

since they appeared before e in the ordering φH . Since all three links are adjacent to e

197

in H, they cover an edge in the path P . Combining the observations in the previous 2

sentences, we conclude that the least common ancestor of the endpoints of any of these

links is either z or is an ancestor of z and all three of them cover an edge incident on z.

Since there are only two edges of the path P incident on z, at least two of the links in

f1, f2, f3 have to cover one of these edges. Without loss of generality assume that f1 and

f2 cover the edge (z, vi) where vi is in the subpath P ′ of P between x and z. Since there

are edges (e, f1) and (e, f2) in H, there are two distinct edges, say (a, b) and (c, d) in the

path P ′ that are responsible for the edges (e, f1) and (e, f2) in H respectively. Let the

depth of (a, b) be greater than that of (c, d). Then when we were building the graph H,

we would have added the edge (e, f1) to H when processing the edge (a, b). Observe that

the edge (c, d) is covered by both e and f1. Therefore, the edge (c, d) could not have been

responsible for the addition of the edge (e, f2) in H, a contradiction. Hence we conclude

that the graph H is 2-degenerate.

Given Lemma 14.17, if |L| ≥ 3k, then the given instance is a Yes instance. Therefore, we

may assume that |L| ≤ 3k.

Observe that the number of vertices of the tree with a link incident on it is bounded by

2|L|. This set includes all the leaves of the tree. Furthermore, the implies that the number

of vertices of the tree with degree at least 3 is also bounded by 2|L|. By short-circuiting

every degree-2 path in the tree with no links incident on the internal vertices (adding an

edge between the endpoints of the path and removing the internal vertices of the path), we

may assume that every degree-2 vertex in the tree has a link incident on it. Therefore, we

have that n ≤ 4|L| = 12k.

To conclude the proof of the kernel, we need to convert any given instance into one with the

property assumed by the statement of Lemma 14.17. Observe that if a single link covers a

bridge in the tree, then this link must be part of every augmenting set and hence we get

an equivalent instance when we contract all edges covered by any such link and removing

this link, with no change in the number of links to be excluded, k. Therefore, given an

198

instance (T,L, k), we obtain an equivalent instance (T ′,L′, k) by repeatedly contracting

an edge which is the only edge covering a bridge in the tree T . It is easy to see that the

resulting instance (G′, T ′, k) is equivalent to the original instance and furthermore every

edge in T ′ is covered by at least 2 links.

We also note the following corollary of the upper bound of 3k on the set of links.

Lemma 14.18. There is an algorithm for m− k Tree Augmentation running in time

O∗(8k).

14.2.2 A quadratic kernel for m− k Cactus Augmentation

Definition 14.7. In a cactus, cycles of length 2 are called trivial cycles and the others,

non-trivial cycles. A cycle is called empty if none of the links projectively incident on it

are properly incident on it. Otherwise the cycle is a non-empty cycle. A leaf-cycle in a

cactus is a cycle which has exactly one cut vertex incident on it.

We will also need the following observation which follows from Lemma 14.8.

Observation 14.19. Consider a non-trivial cycle C in the cactus. Then, the number of

trivial leaf-cycles which share a vertex with C is bounded by `+ 4k where ` is the length of

C.

Definition 14.8. Reforming an empty non-trivial leaf-cycle. Consider the (arbi-

trarily rooted) block tree of the cactus C and let C be an empty cycle which corresponds

to a non-leaf vertex whose children are all trivial leaf-cycles. Let v be the cut vertex on C

separating it from its parent cycle and let U = {u1, . . . , ur} be the other cut-vertices on C.

Suppose that every link projectively incident on C is also projectively incident on v.

We then define the operation of reforming this cycle as follows.

• C is non-trivial or C is trivial and u1 has a link properly incident on it: First subdivide

exactly once every edge except those incident on v. Then, replace every link of the

form (ui, w) where w is any vertex, with the link (v, w) and identify all the subdivision

vertices with v

199

• C is trivial and u1 has no link properly incident on it: Identify v and u1.

We now give a reduction rule for empty non-trivial leaf cycles.

Reduction Rule 14.20. Suppose the (arbitrarily rooted) block tree of the cactus C has

a cycle C which is empty and corresponds to a non-leaf vertex whose children are all

trivial leaf-cycles. Furthermore, suppose that every link projectively incident on C is also

projectively incident on the cut-vertex separating C from its parent cycle in the block tree.

Then reform the cycle C.

Lemma 14.21. Reduction Rule 14.20 is safe.

Proof. Let U = {u1, . . . , ur} be the set of cut vertices on C other than v, which is the

cut vertex separating C from its parent in the block tree. The correctness of the rule in

the second case, that is, when C is a trivial cycle and there is no link incident on u1 is

easy to see and therefore, we only concentrate on the application of the rule in the first

case. Consider an augmenting set F for the original instance. Consider the corresponding

link set F ′ in the reduced instance given by the definition of the reformation operation.

We claim that F ′ is an augmenting set for C′. Suppose that this is not the case. Clearly

any uncovered 2-cut must be one of the new 2-circuits obtained by the reformation of the

cycle C. Let the 2-circuit be {a, v} where a is a vertex in C. Since there was a link F

projectively incident on a and v in C and there is none in F ′, it must be the case that

a ∈ U . However, since a is a cut-vertex in C there was a 2-circuit {a, b} in C. Since F

contains a link projectively incident on b and v, the corresponding link in F ′ must also be

projectively incident on a, a contradiction.

Conversely, consider an augmenting set F ′ for the reduced instance. Construct the set F

of links in the original instance by simply replacing each link F ′ by the corresponding link

in the original instance. We claim that F is an augmenting set for C. If this were not the

case, it must be the case that any uncovered cut must be from C. However, since v now

forms a 2-circuit with every vertex in C and for each such 2-circuit, there is a link in F ′

which covers this 2-circuit, we have that for every vertex a ∈ C, there is a link in F which

is projectively incident on both a and v. This implies that F covers every 2-circuit in C, a

200

contradiction. Hence, we conclude that the reduced instance is equivalent to the original

instance and therefore, Reduction Rule 14.20 is safe.

We define an irreducible instance as an instance on which none of the Reduction Rules 1-6

apply.

Lemma 14.22. Let (C,L, k) be an irreducible No instance of

mkcactusaug. Then, the size of this instance is O(k2).

Proof. Consider the rooted block tree (where the root is not a leaf) associated with this

cactus, say T . Let T ′ be the tree resulting from T by removing all leaves of this tree which

correspond to trivial cycles. Since Reduction Rule 14.20 does not apply, it must be the case

that any cycle corresponding to a leaf of T ′ must be either non-empty or there is a link

projectively incident on C which is not projectively incident on the cut-vertex separating

C from its parent cycle. Therefore, if number of leaves in T ′ is at least k, then it implies

the presence of k links such that the corresponding sets of 2-cuts they cover are pairwise

disjoint and hence we would have a Yes instance. Therefore, we conclude that the number

of leaves of T ′ is at most k − 1. This also gives us a bound on the number of vertices of T ′

of degree at least 3.

Now, consider the degree-2 paths in T ′ where the endpoints are also degree-2 vertices. Let

this set of paths be Z. We now define a packing Z ′ of degree-2 paths as follows. Consider

a path P = {v1, . . . , vr} ∈ Z with endpoints where v1 is a descendant of vr in the tree T ′.

Let i be the least index such that vi satisfies the following property. The sub-cactus C′

corresponding to the path v1, . . . , vi (including the vertices in the trivial cycles attached

to the cycles corresponding to these vertices in T’) has a link with both endpoints inside

this sub-cactus referred to as an internal link. We then add the path v1, . . . , vi to Z ′ and

replace the path P in Z with the path vi+1, . . . , vr and continue this process. We now have

the following claim.

Claim 1. When the process described above can no longer continue, each degree-2 path in

Z and Z ′ has at length most 8k + 3 and the number of paths in the packing Z ′ is bounded

by k − 1.

201

Proof. Suppose that there is a degree-2 path in Z ′ of length greater than 8k + 3. Then,

the 2 endpoints of this path correspond to 2-cut vertices in the cactus such that every

link projectively incident on the corresponding sub-cactus is also projectively incident on

one of the 2 vertices. Since there is a link projectively incident on every vertex in the

sub-cactus and there are at least 8k + 1 vertices other than the cut-vertices themselves in

the sub-cactus, one of the 2-cut vertices must be projectively incident on at least 4k + 1

links, which by Lemma 14.7 implies that the given instance is a Yes instance, a contradiction

to our assumption that the given instance is a No instance. Observe that by the same

argument, no path left in Z can correspond to a sub-cactus with more than 8k + 3 vertices

as otherwise it would contradict our assumption that the construction of Z ′ is complete.

For the last part of the statement, observe that there is a set of |Z ′| links one corresponding

to each path in Z ′ such that each of them is internal to the corresponding sub-cactus. That

is, no two of these links cover the same cut. Therefore, a packing of size k implies that the

given instance is a Yes instance. This completes the proof of the claim.

The number of degree-2 paths in Z was originally bounded by twice the number of leaves of

T ′, that is, 2k. Furthermore, after the construction of Z ′, the number of paths in Z cannot

increase since in each step since we only replace a path in Z with another. Therefore, the

number of paths in Z is always bounded by 2k.

We now bound the number of vertices in the sub-cactus corresponding to each degree-2

path in the packings Z and Z ′. Observe that the argument in the above claim also implies

that the number of vertices in each such sub-cactus excluding those lying on the end point

cycles is also bounded by 8k + 3. By Lemma 14.14 and Observation 14.19, we have that

the number of vertices involved in trivial cycles attached to the same cycle is bounded

by O(k). Therefore, the number of vertices involved in the sub-cactus corresponding to

each degree-2 path can exceed 8k + 3 by only O(k) (due to the vertices and trivial cycles

attached to the 2 endpoint cycles) and hence the total number of vertices involved in the

sub-cactus corresponding to any degree-2 path in Z or Z ′ is bounded by O(k). Since the

number of paths in Z and Z ′ is O(k), we have that the number of vertices which occur in

202

the sub-cacti corresponding to the paths in the packing is O(k2).

At this point, the only vertices left to be bounded are those that form a 2-circuit with

a cycle which appears a leaf of T ′. However, by Observation 14.19, the number of such

2-circuits corresponding to each cycle is O(k) and since the number of such cycles is already

bounded by O(k), we have that these vertices are also bounded by O(k2). We have thus

bounded the vertex set of the cactus by O(k2). Since the number of links needed to

augment the cactus is also bounded linearly in the size of the cactus, we can assume that

the size of the link-set in the instance does not exceed this lower bound by more than k,

implying a bound of O(k2) on the link-set as well. This completes the proof of the lemma.

14.2.3 Kernels for general m− k Augmentation by One.

Given an instance of m− k Augmentation by One, we apply the algorithm of [DKL76]

and reduce it in polynomial time to an equivalent instance of either m − k Tree Aug-

mentation or m− k Cactus Augmentation. We then apply the apply the appropriate

kernelization algorithm and obtain an equivalent kernelized instance (G,L, k) of m − k

Tree Augmentation or m− k Cactus Augmentation. In the former case, make λ

copies of each tree edge and in the latter case, make λ/2 copies of each cactus edge and

return the instance (G′,L, k) where G′ is the graph thus constructed. This is an equivalent

instance of m− k Augmentation by One which has a bounded number of vertices and

links. This proves the following theorem.

Theorem 14.2. m− k Augmentation by One admits a kernel with 12k vertices and

3k links for odd λ and a kernel with O(k2) vertices and O(k2) links for even λ, where λ is

the connectivity of the input graph G.

203

204

Chapter 15

Minimum Equivalent Digraph is

Fixed-Parameter Tractable

In this chapter we consider a classical network design problem in digraphs, namely, the

Minimum Equivalent Digraph (MEG) problem. Two digraphs G and H on the same

vertex set, V (G) = V (H), are said to be equivalent, and denoted by G≡H, if for any pair

of vertices u, v, there is a path from u to v in G if and only if there is a path from u to v

in H. That is, two vertices in G are reachable if and only if they are reachable in H. A

decision version of MEG consists of a digraph G and a positive integer `, and the objective

is to decide whether there is a sub-digraph H of G on at most ` arcs such that G≡H. This

problem is easily seen to be NP-complete, by a reduction from the Hamiltonian Cycle

problem [GJ79]. It has been extensively studied in the realm of approximation algorithms

and exact algorithms (see the subsection on related work for details on this). However, in

the realm of parameterized complexity this problem is still not well understood.

Let (G, `) be an input instance to MEG on n vertices and m arcs. It is well known that

MEG can be reduced to an input G′ which is strongly connected (that is, there is a directed

path between every pair of vertices in G′). The following proposition is due to Moyles

and Thompson [MT69], see also [BJG08, Sections 2.3], reduces the problem of finding a

minimum equivalent sub-digraph of an arbitrary G to a strong digraph.

Proposition 15.1. Let G be a digraph on n vertices with strongly connected components

205

C1, . . . , Cr. Given a minimum equivalent subdigraph C ′i for each Ci, i ∈ [r], one can obtain

a minimum equivalent subdigraph G′ of G containing each of C ′i in O(nω) time.

Proposition 15.1 allows us to reduce an instance of MEG on a general digraph to instances

where the graph is strongly connected, in polynomial time. Observe that for a strong

digraph G any equivalent sub-digraph is also strong. This implies that since G has n

vertices, the number of arcs in H must be at least n. The way we have a lower bound on `,

there is also an upper bound on ` when the input digraph is strongly connected.

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s of

in-degree zero (out-degree zero). The vertex s is the root of T . If an out-tree (in-tree) T is

a spanning subdigraph of D, T is called an out-branching (an in-branching). It is known

that a digraph is strong if and only if it contain an out-branching and an in-branching

rooted at some vertex v ∈ V (D) [BJG08, Proposition 12.1.1]. This implies that ` ≤ 2n− 2.

Thus, a natural question is whether one can obtain an equivalent sub-digraph H of size

` ≤ 2n− 2− k with k being the parameter. However as we have discussed in chapter 8,

this parameter is not helpful in all instances. Hence, we parameterize the problem by the

maximum number of arcs which may be safely removed from the graph. In particular we

study the following problem.

Minimum Equivalent Digraph Parameter: k

Input: A digraph G and an integer k

Question: Is there a set of arcs F in G of size at least k, such that G and H = G \F are

equivalent ?

The parameterized complexity of Minimum Equivalent Digraph as stated above has

remained open until now. In this chapter we show that the problem is FPT by showing

that it admits a polynomial kernel of size O(k4).

Theorem 15.1. Minimum Equivalent Digraph admits a kernel with O(k4) vertices

and arcs.

As a corollary of Theorem 15.1, we obtain the following theorem.

Theorem 15.2. Minimum Equivalent Digraph has an algorithm running in time

206

2O(k log k) + nO(1).

By Proposition 15.1, MEG reduces to the following problem.

Minimum Strongly Connected Spanning Subgraph Parameter: k

Input: A strongly connected digraph G and an integer k

Question: Is there a set of arcs F in G of size at least k, such that G and H = G \F are

equivalent ?

There appears to be an absence of consensus in the literature on how to refer to these

problems. MEG sometimes is also referred as Minimum Equivalent Digraph and

Minimum Equivalent Subdigraph, while Minimum Strongly Connected Spanning

Subgraph (MSCSS) is also called Minimum Spanning Strong Subdigraph (MSSS).

For MSCSS we obtain a FPT algorithm with linear time dependence on the input size. In

particular, we get the following.

Theorem 15.3. MSCSS has an algorithm running in time 2O(k log k)O(n+m).

Our Methods. An arc in a digraph is deletable, if removing it doesn’t alter the reacha-

bility relations in the graph. At the heart of our algorithm is the following combinatorial

result. If a digraph contains more than O(k2) deletable arcs then there is a set of k arcs

which can be removed from the graph without altering the reachability relations. To prove

this result we consider the structure of a maximal set of arcs whose removal results in an

equivalent digraph. We delete the arcs of such a set iteratively, and note how deletable

arcs in the graph turn into undeletable arcs. The core of our argument is that if at any

step a large number of arcs turn undeletable, then we may remove this large set of arcs

from the graph without altering the reachability relations in the graph. Then using this

structural result and another reduction rule we obtain a polynomial kernel for MEG. We

also use the above structural result, along with a result of Italiano et. al. [ILS12], to obtain

a linear time FPTalgorithm MSCSS.

Related Work. The algorithmic study of MEG can be traced to the work of Moyles

and Thompson [MT69], and Hsu [Hsu75], who showed that this problem can be solved

207

exactly in O(n!) time. This was improved to an algorithm with a running time of O(2m)

[Mar79, MT82], where m is the number of arcs in the graph. Recently, an algorithm with

running time 2O(n) was obtained by Fomin et. al [FLS14], where n is the number of the

vertices in the digraph.

It was shown by Aho, Garey and Ullman [AGU72] that when the input graph is acyclic,

the problem can be solved in polynomial time. The problem of minimizing the size of

the graph H has been well studied in the realm of approximation algorithms. A factor 2

approximation algorithm was given by Fredricson and Jájá [FJ81]. This was improved to a

factor 1.617 approximation algorithm by Khullar, Ragavachari and Young [KRY95, KRY96].

Subsequently, this was improved to a factor 1.5 approximation algorithm by Vetta [Vet01].

A different factor 1.5 approximation algorithm for this problem was presented by Berman,

Dasgupta and Karpinski [BDK09]. The problem of computing a maximum sized deletion

set of arcs has also been studied, and Berman, Dasgupta and Karpinski [BDK09] have

shown a factor 1
2 approximation algorithm for this problem. We refer to chapter 12 of the

book of Bang-Jensen and Gutin [BJG08], for more combinatorial and algorithmic results

on MEG.

15.1 Preliminaries

Equivalence of digraphs. Two digraphs G and H on the same vertex set, V (G) =

V (H), are said to be equivalent, if for any pair of vertices u, v, there is a path from u to v

in G if and only if there is a path from u to v in H. Note that the notion of equivalence of

digraphs is transitive, i.e. if G1 is equivalent to G2 and G2 is equivalent to G3 then G1 is

equivalent to G3. We slightly generalize the notion of equivalence as follows. Let G and

H be two digraphs such that V (G) ⊆ V (H). And suppose we have that, for any pair of

vertices u and v in V (G), there is a path from u to v in G if and only if there is a path

from u to v in H. Then we say that G and H are equivalent with respect to V (G). This

definition allows us to make a useful observation.

Observation 15.2. Let G be a graph and let H be obtained from G by subdividing some

of its arcs. Then G and H are equivalent with respect to V (G).

208

15.2 Minimum Equivalent Digraph

In this section we will show that Minimum Equivalent Digraph admits a polynomial

kernel. We begin by deducing a combinatorial structure on the arcs of the digraph. Let

(G, k) be an instance of Minimum Equivalent Digraph.

Definition 15.4. Let e = (u, v) ∈ E(G). We say that e is deletable (in G) if there is a

path in G− e from u to v. All arcs that are not deletable are called undeletable.

We also make the following simple observation.

Observation 15.3. Let G be a digraph and e be a deletable arc in G. Then G and G− e

are equivalent digraphs.

Clearly, any solution to the instance (G, k) (if one exists) must be a subset of the set

of deletable arcs. We now consider the set of all deletable arcs in G and prove certain

properties of these arcs. Before moving ahead, we note that the set of deletable arcs can

be computed in polynomial time.

Definition 15.5. Let G be a digraph and e = (u, v) ∈ E(G) be a deletable arc. Let P be

a path from u to v which does not contain e. Then P is called an alternate path of e.

Furthermore, let e1 and e2 be two deletable arcs in G such that e2 occurs in every alternate

path of e1. Then, we say that e1 requires e2 or e2 is required for e1.

The following lemma shows that the above relation among the arcs is symmetric.

Lemma 15.4. For any two deletable arcs, e1 requires e2 if and only if e2 requires e1.

Proof. Let e1 = (u1, v1) and e2 = (u2, v2). Suppose that e1 requires e2 and e2 does not

require e1. Let P1 be an alternate path of e1. Then by definition, P1 contains e2. Let PA

be the sub-path of P1 from u1 to u2, and let PB be the sub-path of P1 from v2 to v1.

Let P2 be an alternate path of e2 such that,P2 doesn’t contain e1. Now, observe that the

walk PA + P2 + PB goes from u1 to u2 to v2 to v1. Furthermore, it does not contain e1

or e2. This implies the presence of an alternate path for e1 which is disjoint from e2, a

209

contradiction to the fact that e1 requires e2. The argument for the converse is analogous.

This completes the proof of the lemma.

The above lemma motivates the following definition.

Definition 15.6. Let e1 and e2 be a pair of deletable arcs, such that e1 is required for e2.

Then we call (e1, e2) a critical pair.

Further note the following corollary.

Corollary 15.5. Let (e1, e2) be a critical pair. Then e1 is undeletable in G− e2, and vice

versa.

Next, we consider some properties of a set of critical pairs such that they all have one arc

in common.

Lemma 15.6. Let e = (s, t) be an arc and let (e, ei) be a critical pair for i ∈ {1 . . . `},

where ei = (ui, vi). Let P and Q be two alternate paths for e. Then P and Q visit the arcs

e1, . . . , e` in the same order.

Proof. Since P and Q are alternate paths for e and (e, ei) form a critical pair, we have

that P and Q contain all of {e1, e2, . . . e`}. Suppose that P visits the arcs in the order

e1, e2, . . . , e`. Now, suppose that Q visits these arcs in a different order and let i be the

first position, where the orderings of P and Q differ. That is, the path P goes from ei−1 to

ei while the path Q goes from ei−1 to ej , where without loss of generality we assume j > i.

Now consider the walk P [s, vi−1] +Q[vi−1, vj] + P [vj , t]. Observe that this walk goes from

s to t, but it doesn’t contain e = (s, t) or ei = (ui, vi). This implies the presence of an

alternate path for e which is disjoint from ei. But this is a contradiction, as (e, ei) is a

critical pair. Hence, we conclude that P and Q must visit these arcs in the same order,

completing the proof of the lemma.

We note down the following corollaries and variants of the above lemma.

Corollary 15.7. Let e = (s, t) be an arc and let (e, ei) be a critical pair for i ∈ {1 . . . `},

where ei = (ui, vi). Then the following hold.

210

1. Any path from s to t (that excludes e) visits the endpoints of the arcs in the order,

s, u1, v1, u2, v2, . . . , u`, v`, t.

2. For j > i, there is no path from ui to uj or vj, which is disjoint from both vi and the

arc e.

3. For j > i, there is no path from vi to vj or uj+1 which is disjoint from both uj and

the arc e.

Proof. The first statement follows from Lemma 15.6. The proof of the second and the

third statement are also very similar to the proof of the above lemma. Consider the

second statement, and suppose that it is not true. Let Qi,j be a path from ui to uj which

avoids both e and vi. Suppose P is an alternate path for e. Then consider the walk

P [s, ui] +Qi,j + P [uj , t], which avoids the arcs ei = (ui, vi) and e. This walk implies the

existence of an alternate path for e which avoids ei, a contradiction. The arguments for

the case of vj are analogous.

Now suppose that the third statement is false. Let Qi,j be a path from vi to vj which

avoids both e and uj . As before, let P be an alternate path for e. Then consider the walk

P [s, vi] +Qi,j + P [vj , t], which avoids the arcs ej = (uj , vj) and e. This walk implies the

existence of an alternate path for e which avoids ej , a contradiction. The arguments for

the case of uj+1 are analogous.

Next we look at the structure of alternate paths for each of the arcs ei. We assume that the

collection of arcs e1, e2, . . . , e` is ordered according to the sequence in which an alternate

path P for e visits them.

Lemma 15.8. Let e = (s, t) be an arc and let (e, ei) be a critical pair for i ∈ {1 . . . `}, where

ei = (ui, vi). Then for all ui, there is a path from ui to s that avoids all of {e1, . . . , e`}.

Proof. Let Pi be an alternate path for ei. Since (e, ei) is a critical pair, e occurs in every

alternate path of ei. Thus Pi contains a subpath Qi that goes from ui to s. By definition,

Qi avoids ei. Suppose Qi contained some arc ej for j > i and let ej be the first such arc

211

in Qi. But then the subpath Qi[ui, uj] contradicts Corollary 15.7. Therefore, no such ej

occurs in Qi.

Next we claim that for all j < i, ej does not occur in Qi. We use induction on i. For the

base case i = 1, the claim trivially holds as there is no arc ej such that j < 1. Now by the

induction hypothesis, the claim holds for all ej where j < i. Now let ej′ be the first arc in

Qi such that j′ < i. Let Qj′ be a path from uj′ to s which avoids all of e1, . . . , e`. Then

consider the walk Qi[ui, uj′] +Qj′ , which goes from ui to s while avoiding all of e1, . . . , e`.

We can find a path contained in this walk which goes from ui to s. This completes the

proof of this lemma.

Lemma 15.9. There is an alternate path for ei, which avoids every ej for j < i.

Proof. Let Pi be an alternate path for ei. We can apply Lemma 15.8 to Pi to ensure that

the subpath Pi[ui, s] avoids all of e1, . . . , e`. Now if Pi contains some ej = (uj , vj) for

j < i, then consider the subpath Pi[vj , vi]. Observe that this subpath avoids e as well as

ei = (ui, vi). But this contradicts Corollary 15.7. Hence Pi avoids ej for all j < i.

Next, we have the following observation.

Observation 15.10. Let e, e1, . . . , e` be deletable arcs in G such that in G− e, the arcs

e1, . . . , e` are undeletable. Then (e, e1), . . . , (e, e`) are critical pairs.

Proof. For every i, since ei is undeletable in G− ei it must be the case that e is present

in every alternate path for ei. Therefore ei requires e and by Lemma 15.4, (e, ei) form a

critical pair.

The following is a corollary of Lemma 15.9 and Observation 15.10.

Corollary 15.11. Let G be a digraph and e, e1, . . . , e` be a collection of deletable arcs

in G such that, e1, e2. . . . , e` are undeletable in G − e. Then G \ {e1, . . . , e`} and G are

equivalent digraphs.

Proof. By Observation 15.10 we have that e1, e2, . . . , e` occur in every alternate path of e,

and we assume that they occur in the above sequence. LetGi be the graphG\{e1, e2, . . . , ei}.

212

We claim that G and Gi are equivalent for all i ∈ {1, 2, . . . , `}. We prove this by induction

on i. For the base case i = 1, we know that e1 is deletable in the graph G, i.e. there is an

alternate path for e1 in G. Therefore G and G1 are equivalent. Now by induction hypothesis,

we assume that the claim is true for all j = {1, 2, . . . i− 1}. Next we consider the arc ei

and show that it is deletable in the graph Gi−1. By Lemma 15.9, ei has an alternate path

which avoids all of e1, e2, . . . , ei−1 in the graph G. Then this alternate path is also present

in the graph Gi−1. Thus ei is deletable in G \ {e1, e2, . . . , ei−1}. By Observation 15.3, Gi−1

and Gi are equivalent digraphs. And since Gi−1 and G are equivalent, therefore Gi is

equivalent to G. This completes the proof of this lemma.

The following is our main combinatorial lemma.

Lemma 15.12. Let (G, k) be an instance of Minimum Equivalent Digraph. If G has

more than (k − 1)2 deletable arcs, then this instance has a solution of size k which can be

computed in polynomial time.

Proof. Let F = {f1, f2, . . . , fp} be an arbitrary maximal set of arcs such that G − F is

equivalent to G. We can construct F greedily. If |F | = p ≥ k, then we already have the

required solution. Therefore, we assume that p ≤ k − 1.

Now, consider the graphs Gi = G\{f1, . . . fi}. Therefore Gi+1 = Gi−fi+1 and Gp = G\F .

Observe that each of the graph Gi is equivalent to G, by the definition of F . Let Ci be

the set of deletable arcs in Gi which are undeletable in Gi+1. Then by Corollary 15.11,

we have that Gi and Gi \ Ci are equivalent. Since Gi is a subgraph of G, G \ Ci is also

equivalent to G. Therefore, if |Ci| ≥ k, then we have the required solution. Otherwise we

have |Ci| < k.

Now consider any deletable arc of G. It is either picked in F , or there is some i such that

it is deletable in Gi but undeletable in Gi+1. In other words, F ∪ C1 . . . Cp cover all the

deletable arcs of G. Since p ≤ k − 1 and all of F,C1, . . . , Cp have at most k − 1 arcs in

them, the total number of deletable arcs in G is bounded by (k − 1)2.

The above lemma is restated as the following reduction rule.

213

Reduction Rule 15.13. If G has more than (k − 1)2 deletable arcs, then return a trivial

Yes instance.

As noted before, the above Reduction Rule immediately implies an FPT algorithm for

Minimum Equivalent Digraph that runs in time 2O(k log k) +nO(1). We now move ahead

and complete the proof of Theorem 15.1 by giving a polynomial kernel for this problem.

Going forward, we assume that Reduction Rule 15.13 does not apply on the instance

of Minimum Equivalent Digraph we are dealing with. We then have the following

observation.

Observation 15.14. The number of vertices with a deletable arc incident on it is bounded

by 2(k − 1)2.

Observe that bounding the number of deletable arcs alone does not imply a kernel for this

problem, and our goal now is to bound the total number of arcs and vertices in the graph.

We need a few additional preprocessing rules to obtain an equivalent instance whose size is

polynomially bounded in the parameter. To this end, first we consider a colored version

of the problem, where arcs are colored red and green and only the green arcs are allowed

in any solution. We show that we can reduce the number of vertices in such a colored

instance. Finally, we shall reduce the colored instance to a uncolored instance.

We begin by coloring all the undeletable arcs of G red, and the remaining arcs green. We

have the following lemma, which is easy to see.

Lemma 15.15. Let G′ be the graph obtained from G by coloring its arcs as above. Then

the colored instance and the uncolored instances are equivalent.

We now apply the following reduction rule. We further have the following observation from

Reduction Rule 15.13.

Observation 15.16. The number of green arcs in a colored instance (G, k) is bounded by

(k − 1)2.

Reduction Rule 15.17. Let v be a vertex in G such that only red arcs are incident on

it, and let N−(v) and N+(v) be the in-neighbourhood and out-neighbourhood of v. Then

214

remove v from G, and for each x ∈ N−(v) and y ∈ N+(v) add an arc from x to y, if it is

not present, and color it red.

Lemma 15.18. Reduction rule 15.17 is safe.

Proof. Let G′ be the graph obtained from G, by the above process. Let F be any solution

of G (which contains only green arcs). So the arcs in F are also present in G′, and are

colored green. Consider a pair of vertices, x and y, in G′ such that y is reachable from

x. Then by construction of G′, y is reachable from x in G as well. Consider any path P

in G \ F , from x to y. If P doesn’t contain v, then this path is also present in G′ \ F .

Otherwise let u and w be the in and out-neighbour of v respectively in P . Since there is a

red arc from u to w in G′, by modifying P , we can obtain a path P ′ in G′ \ F which goes

from x to y. Therefore, G′ \ F and G are equivalent.

In the reverse direction, let F ′ be any solution in G′. Again observe that all the arcs in F ′

are also present in G, and are colored green. We will show that G \ F ′ is equivalent to G.

Now, consider a pair of vertices x and y in G, such that y is reachable from x. If x is v

then set x to some arbitrary out-neighbour of v, and similarly if y is v, then set y to some

arbitrary in-neighbour of v. Now, by construction of G′, y is reachable from x in G′. Since

F ′ is a solution in G′, therefore there is a path P ′ path from x to y in G′ \F ′. If P ′ doesn’t

contain any of the newly introduced arcs in G′, then it is also present in G \F ′. Otherwise,

by replacing each new arc (u,w) in P ′ with the length 2 path (u, v, w), we obtain a walk

in G \ F from x to y. Therefore G \ F and G are equivalent.

The next two lemmas follow easily from the above reduction rule.

Lemma 15.19. Each application of Reduction Rule 15.17 reduces the number of vertices

in the instance by 1.

Lemma 15.20. Let (G, k) be an instance on which Reduction Rule 15.17 cannot be applied.

Then the number of vertices of (G, k) is bounded by 2(k − 1)2.

Proof. If the reduction rule doesn’t apply, then every vertex has a green arc incident on it.

By Observation 15.16, the number of green arcs is bounded by (k − 1)2. Therefore the

215

number of vertices of (G, k) is bounded by 2(k − 1)2.

We have the following corollary.

Corollary 15.21. The number of red arcs in a reduced instance is bounded by 4k4.

Thus, we have a colored instance with a bounded number of vertices and arcs. The next

lemma shows that we can “uncolor” the instance, at a small cost.

Lemma 15.22. Let G′ be obtained from the colored graph G by replacing each red arc

with a new path of length 2, and then removing colors from all the arcs. Then the colored

instance (G, k) and the uncolored instance (G′, k) are equivalent. Further G′ has O(k4)

vertices and (k4) arcs.

Proof. Observe that, G′ is obtained by subdividing some of the arcs of G. And therefore

G′ and G are equivalent with respect to V (G).

Suppose F is a solution in the colored graph G, and therefore F is a subset of the set of

green arcs in G, which are also present in G′. Now observe that G′ \ F is obtained from

G \ F by subdividing all the red arcs. Therefore by Observation 15.2, G′ \ F and G \ F

are equivalent with respect to V (G). Now consider any pair of vertices in u and v in G′.

Let x be the unique out neighbour of u if u is a newly added vertex, otherwise x = u. And

similarly, let y be the unique in neighbour of v if v is a newly added vertex, otherwise

y = v. Then observe that v is reachable from u in G′ if and only if y is reachable from x in

G′. Since the arcs incident on the newly added vertices of G′ are disjoint from F , therefore

G′ and G′ \ F are equivalent. Thus, F is a solution in G′.

In the reverse direction, let F ′ be a solution in G′. Observe that every arc in F ′ was a

green arc in G, as the red-arcs have been replaced by length 2 paths, and these new arcs

are undeletable. We will show that F ′ is also a solution in G. Let u and v be two vertices

in V (G), such that v is reachable from u. Since G and G′ are equivalent with respect to

V (G), and G′ and G′ \ F ′ are also equivalent, therefore v is reachable from u in G \ F ′.

So consider a path P ′ in G′ \ F ′ from u to v. By replacing each of the newly added length

2 paths, which are present in P ′, with the corresponding red-arcs in G, we obtain a path

216

P in G \ F ′ which goes from u to v. Therefore, G \ F ′ and G are equivalent. Thus F ′ is a

solution in G.

Next, we bound the size of G′. Recall that G has at most O(k2) vertices, and there may

be at most O(k4) red arcs and O(k2) green arcs in G. Therefore, the number of newly

added vertices in G′ is at most O(k4), which also bounds the total number of vertices in G′.

Further, for each red arc we add exactly 2 arcs to G′ and for each green arc we have exactly

one arc in G′. Therefore the total number of arcs in G′ is also bounded by O(k4).

Combining the above results, have shown the following theorem.

Theorem 15.1. Minimum Equivalent Digraph admits a kernel with O(k4) vertices

and arcs.

15.2.1 A Linear time FPT algorithm for MSCSS

In this subsection, we prove Theorem 15.3. The main ingredient of our algorithm is

a result by Italiano et al. [ILS12] which computes the set of all undeletable arcs in a

strongly connected digraph in O(m + n) time. As noted by Italiano et. al., for acyclic

digraphs, computing the set of undeletable arcs is essentially equivalent to boolean matrix

multiplication[AGU72, Mun71, Fur70, FM71], and the best known algorithm for this

problem runs in time O(nω). Italiano et. al. use the term “strong bridge” to denote those

arcs in a digraph whose removal increases the number of strongly connected components.

Observe that the set of all strong bridges is precisely the set of all undeletable arcs in a

strongly connected digraph.

Theorem 15.7 ([ILS12], Theorem 4.4). The set of undeletable arcs of a strongly connected

directed graph G can be computed in O(n+m) time.

We have the following lemma for finding a solution in an instance with a large number of

deletable arcs.

Lemma 15.23. Let (G, k) be an instance of MSCSS and let X be the collection of all

deletable arcs in G, such that |X| > (k − 1)2. Let Y be a subset of X, of size (k − 1)2 + 1.

Then there is a subset Z of Y of size at least k, such that G \ Z is strongly connected.

217

Proof. Consider the graph G′ obtained from G by subdividing all the arcs in E(G) \ Y .

By Observation 15.2, G′ and G are equivalent with respect to V (G). Then the instance

(G′, k) has Y as its set of deletable arcs. By Lemma 15.12, there is some subset of Z of

size at least k which is a solution to the instance (G′, k). It is easy to see that this set Z

forms a solution for the original instance (G, k).

Now given the set of deletable arcs in G, we have the following theorem.

Theorem 15.3. MSCSS has an algorithm running in time 2O(k log k)O(n+m).

Proof. Let (G, k) be an instance of MSCSS. Recall that G is strongly connected. Let X be

the set of detable arcs in G. Using Theorem 15.7, we can compute X in O(n+m) time.

If |X| > (k − 1)2, then let Y be an arbitrary subset of X of size (k − 1)2 + 1. Then by

Lemma 15.23, there is a subset Z of Y which is the required solution. Otherwise we have

that |X| ≤ (k − 1)2 and let Y = X. In both cases, we may find a solution by iterating

over each subset Z of Y of size k, and testing if G \ Z is strongly connected. To test if

G \ Z is strongly connected we may use the algorithm of Tarjan [Tar72], which runs in

time O(m + n). Therefore we can find a solution, if it exists, in 2O(k log k)(n + m) time.

This completes the proof of this theorem.

218

Conclusion

219

Chapter 16

Conclusion and Future Directions.

In this thesis, we gave improved and new FPT algorithms, kernels and exact algorithms for

a number of problems related to network design, including

• the first single exponential FPT algorithm for Euler Edge Deletion and Undi-

rected Connected Odd Edge Deletion,

• the first single exponential exact algorithm for Survivable Network Design with

uniform requirements,

• the first single exponential FPT algorithm for Augmentation by One,

• new FPT algorithm and kernels for m− k augmentation by One,

• and the first FPT and kernelization algorithm for Minimum Equivalent Digraph.

Furthermore, we gave new deterministic algorithms for two matroid theory problems, and

their applications in network design problems.

We conclude with the following questions.

• Editing to a graph class while preserving high connectivity. Many network design

problems (as well as other problems) have efficient algorithms and heuristics on

certain graph classes. Can we extend those algorithms to other graphs which are

“close” to this graph class ?

221

This leads to the following problem, which lies at the intersection of graph modification

and network design problems.

Let λ be a fixed constant and Π be a graph class. Given a graph or digraph

G which is λ connected, edit (or delete) at most k edges (or vertices) to

obtain a graph H, such that H is λ edge-connected (or vertex connected)

and in Π.

For example, when λ = 2 and Π is the class of undirected eulerian graphs, we showed

that this problem in FPT. We may ask this question for many other classes of graphs

as well. We may also ask the augmentation version of the problem.

Let λ be a fixed constant and Π be a graph class. Given a graph or digraph

G and a set links L ⊆ V × V , find F ⊆ L containing at most k links such

that H = G ∪ F is λ edge-connected (or vertex connected) and in Π.

• FPT algorithms and kernels for other network design problems. While we saw

kernelization, FPT and exact algorithms for some of the problems mentioned in

chapter 8, many more remain unresolved. Here we mention, two which we are very

interested in.

– Is Strong Connectivity Augmentation fixed parameter tractable ?

– Is λ-connected Steiner Subgraph fixed parameter tractable, when parame-

terized by the size of the maximum edge deletion set ?

The last two questions are unresolved for both graphs and digraphs and for all values

of λ.

• Deterministic Polynomial time representation of Gammoids and Transversal Ma-

troids. These matroids are central to several recent kernelization results which are

randomized. Hence, a deterministic algorithm for computing their representation

would derandomize all these kernels. This might be a difficult problem though, as

this has connections to several other complexity theory questions.(See [Vad12] for

more details.) However, many of the above algorithms can still be derandomized if

one can deterministically compute representative sets over these matroids. Hence

222

arises the question of efficient computation of representative sets over these matroids,

deterministically.

223

224

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.

Cambridge University Press, 2009. 7, 8, 20, 22

[ACN05] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:

ranking and clustering. In STOC, pages 684–693, 2005. 34

[AGU72] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive

reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137,

1972. 208, 217

[AJ86] Leonard M. Adleman and Hendrik W. Lenstra Jr. Finding irreducible poly-

nomials over finite fields. In Juris Hartmanis, editor, STOC, pages 350–355.

ACM, 1986. 93

[AK10] F. N. Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of

Computer and System Sciences, 76(7):524 – 531, 2010. 34

[Alo06] N. Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics,

20(1):137–142, 2006. 34

[ALS09] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In ICALP, volume 5555

of LNCS, pages 49–58, 2009. 34

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the

ACM (JACM), 42(4):844–856, 1995. 57

[BCKN13] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof.

Deterministic single exponential time algorithms for connectivity problems

225

parameterized by treewidth. In ICALP (1), pages 196–207, 2013. 99, 104,

180, 196

[BD10] Alin Bostan and Philippe Dumas. Wronskians and linear independence. The

American Mathematical Monthly, 117(8):722–727, 2010. 84

[BDK09] Piotr Berman, Bhaskar Dasgupta, and Marek Karpinski. Approximating tran-

sitive reductions for directed networks. In Proceedings of the 11th International

Symposium on Algorithms and Data Structures, pages 74–85. Springer-Verlag,

2009. 10, 67, 69, 208

[Bel62] Richard Bellman. Dynamic programming treatment of the travelling salesman

problem. Journal of the ACM (JACM), 9(1):61–63, 1962. 148

[BFG+09] Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony

Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for feedback arc set in

tournaments. In FSTTCS, pages 37–47, 2009. 34, 35

[BHKK10] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.

Narrow sieves for parameterized paths and packings. arXiv preprint

arXiv:1007.1161, 2010. 57

[BJG08] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and

applications. Springer Science & Business Media, 2008. 27, 35, 69, 73, 142,

148, 205, 206, 208

[Bjo14] Andreas Bjorklund. Determinant sums for undirected hamiltonicity. SIAM

Journal on Computing, 43(1):280–299, 2014. 148

[BJT92] Jørgen Bang-Jensen and Carsten Thomassen. A polynomial algorithm for

the 2-path problem for semicomplete digraphs. SIAM Journal on Discrete

Mathematics, 5(3):366–376, 1992. 34

[BJY08] Jørgen Bang-Jensen and Anders Yeo. The minimum spanning strong subdi-

graph problem is fixed parameter tractable. Discrete Applied Mathematics,

156(15):2924–2929, 2008. 73

226

[Bol65] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar, 16:447–452,

1965. 47

[Bor81] J. Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale

des Sciences, 1781. 33

[CCM92] BS Carlson, CYR Chan, and DS Meliksetian. An efficient algorithm for the

identification of dual eulerian graphs and its application to cell layout. In

Circuits and Systems, 1992. ISCAS’92. Proceedings., 1992 IEEE International

Symposium on, volume 5, pages 2248–2251. IEEE, 1992. 9

[CDZ02] Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang. A min-max theorem on

feedback vertex sets. Mathematics of Operations Research, 27(2):361–371,

2002. 34

[CFG+16] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov,

Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph

homomorphism and subgraph isomorphism. In Proceedings of the Twenty-

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,

Arlington, VA, USA, January 10-12, 2016, pages 1643–1649, 2016. 148

[CFJ+] Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Lukasz Kowalik, Daniel

Lokshtanov, Dániel Marx, Marcin Pilipczuk, Micha l Pilipczuk, and Saket

Saurabh. Open Problems for FPT School 2014, Bȩdlewo, Poland. http:

//fptschool.mimuw.edu.pl/opl.pdf 128

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel

Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized

Algorithms. Springer Science & Business Media, to appear in 2015. 7, 20, 23

[CKN13] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity check-

ing via bases of perfect matchings. In Proceedings of the forty-fifth annual

ACM symposium on Theory of computing, pages 301–310. ACM, 2013. 148

227

http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf

[CMP+14] Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó

Schlotter. Parameterized complexity of eulerian deletion problems. Algorith-

mica, 68(1):41–61, 2014. 9, 127, 128, 129, 131

[Con85] M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions

rendues à la pluralité des voix, 1785. 33

[CSS97] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. In

NIPS, pages 451–457, 1997. 33

[CT00] Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size

k-connected spanning subgraphs via matching. SIAM Journal on Computing,

30(2):528–560, 2000. 71

[CTY07] P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem

is NP-hard for tournaments. Combinatorics, Probability and Computing,

16(1):1–4, 2007. 34

[CY11] Leizhen Cai and Boting Yang. Parameterized complexity of even/odd subgraph

problems. J. Discrete Algorithms, 9(3):231–240, 2011. 127, 128

[DGH+10] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß.

Fixed-parameter tractability results for feedback set problems in tournaments.

Journal of Discrete Algorithms, 8(1):76–86, 2010. 34, 37

[DGvHP14] Konrad K Dabrowski, Petr A Golovach, Pim vant Hof, and Daniël Paulusma.

Editing to eulerian graphs. In 34th International Conference on Foundation

of Software Technology and Theoretical Computer Science(FSTTCS), 2014.

127

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts

in mathematics. Springer, 2012. 27, 31

[DKL76] E. Dinits, A. Karzanov, and M. Lomonosov. On the structure of a family of

minimal weighted cuts in graphs. In: Fridman, A. (ed.) Studies in Discrete

Mathematics, Nauka, Moscow, pages 290–306, 1976. 168, 180, 196, 203

228

[DKNS01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods

for the web. In WWW, pages 613–622, 2001. 33

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions

to the method of multiplicities, with applications to kakeya sets and mergers.

In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE

Symposium on, pages 181–190. IEEE, 2009. 81

[DW71] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks,

1(3):195–207, 1971. 168, 178

[EJ73] Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the Chinese

postman. Mathematical Programming, 5(1):88–124, 1973. 129

[ET76] K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on

Computing, 5(4):653–665, 1976. 167

[FC70] H Frank and W Chou. Connectivity considerations in the design of survivable

networks. Circuit Theory, IEEE Transactions on, 17(4):486–490, 1970. 68

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in

Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin,

2006. 23

[FG14] Fedor V. Fomin and Petr A. Golovach. Long circuits and large euler subgraphs.

SIAM J. Discrete Math., 28(2):878–892, 2014. 127, 128

[FGPS] Fedor V. Fomin, Petr Golovach, Fahad Panolan, and Saket Saurabh. Editing

to connected f -degree graph. To appear in STACS 2016. 120

[FJ81] Greg N. Frederickson and Joseph JáJá. Approximation algorithms for several

graph augmentation problems. SIAM J. Comput., 10(2):270–283, 1981. 208

[FK11] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer,

2011. 7, 20, 22

[FLPS14] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Rep-

resentative sets of product families. In Algorithms - ESA 2014 - 22th Annual

229

European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,

volume 8737, pages 443–454, 2014. 11, 47, 57

[FLS14] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation

of representative sets with applications in parameterized and exact algorithms.

In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages

142–151, 2014. 10, 11, 47, 53, 54, 55, 57, 58, 77, 102, 105, 106, 107, 112, 130,

148, 208

[FM71] Michael J Fischer and Albert R Meyer. Boolean matrix multiplication and

transitive closure. In Switching and Automata Theory, 1971., 12th Annual

Symposium on, pages 129–131. IEEE, 1971. 217

[Fra82] P. Frankl. An extremal problem for two families of sets. European J. Combin.,

3(2):125–127, 1982. 47

[Fra92a] A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM

Journal on Discrete Mathematics, 5(1):25–53, 1992. 8, 9, 69

[Fra92b] András Frank. Augmenting graphs to meet edge-connectivity requirements.

SIAM Journal on Discrete Mathematics, 5(1):25–53, 1992. 167

[Fra93] András Frank. A survey on T-joins, T-cuts, and conservative weightings. In

Combinatorics, Paul Erdös is eighty, volume 2, pages 213–252. János Bolyai

Mathematical Society, 1993. 132

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank

recovery and compressed sensing. In Proceedings of the 44th Symposium on

Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19

- 22, 2012, pages 163–172, 2012. 85

[Fur70] ME Furman. Application of a method of fast multiplication of matrices to

problem of finding graph transitive closure. Doklady Akademii Nauk SSSR,

194(3):524, 1970. 217

230

[Gab95] Harold N Gabow. A matroid approach to finding edge connectivity and packing

arborescences. Journal of Computer and System Sciences, 50(2):259–273, 1995.

157

[GGRW06] Jim Geelen, Bert Gerards, Neil Robertson, and Geoff Whittle. Obstructions to

branch-decomposition of matroids. Journal of Combinatorial Theory, Series

B, 96(4):560–570, 2006. 64

[GGW07] Jim Geelen, Bert Gerards, and Geoff Whittle. Excluding a planar graph from

gf (q)-representable matroids. Journal of Combinatorial Theory, Series B,

97(6):971–998, 2007. 63

[GHM07] Jiong Guo, Falk Hüffner, and Hannes Moser. Feedback arc set in bipartite

tournaments is np-complete. Information Processing Letters, 102(2-3):62–65,

2007. 34

[GJ79] Michael R Garey and David S Johnson. Computers and intractability: a guide

to NP-completeness. WH Freeman New York, 1979. 205

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, vol-

ume 29. wh freeman New York, 2002. 7, 8, 22

[GK11] Anupam Gupta and Jochen Könemann. Approximation algorithms for network

design: A survey. Surveys in Operations Research and Management Science,

16(1):3–20, 2011. 8, 67, 74

[GK13] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. In

FOCS, pages 608–617, 2013. 84, 85

[GMP13] Prachi Goyal, Neeldhara Misra, and Fahad Panolan. Faster deterministic

algorithms for r-dimensional matching using representative sets. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India,

volume 24, pages 237–248, 2013. 47

[GMP+15] Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and

Saket Saurabh. Finding even subgraphs even faster. In 35th IARCS Annual

231

Conference on Foundation of Software Technology and Theoretical Computer

Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India, pages 434–

447, 2015. 120

[Gol03] David Goldschmidt. Algebraic functions and projective curves, volume 215.

Springer, 2003. 81

[GU10] Jiong Guo and Johannes Uhlmann. Kernelization and complexity results for

connectivity augmentation problems. Networks, 56(2):131–142, 2010. 70

[Guo09] Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical

Computer Science, 410(8-10):718–726, 2009. 35

[Gup08] Sushmita Gupta. Feedback arc set problem in bipartite tournaments. Infor-

mation Processing Letters, 105(4):150–154, 2008. 34

[Gus88] Dan Gusfield. A graph theoretic approach to statistical data security. SIAM

Journal on Computing, 17(3):552–571, 1988. 68

[GV87] Arnaldo Garcia and Jose Felipe Voloch. Wronskians and linear independence

in fields of prime characteristic. Manuscripta Mathematica, 59(4):457–469,

1987. 84

[GY12] Gregory Gutin and Anders Yeo. Constraint satisfaction problems parameter-

ized above or below tight bounds: A survey. In Hans L. Bodlaender, Rod

Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algo-

rithmic Revolution and Beyond, volume 7370 of Lecture Notes in Computer

Science, pages 257–286. Springer, 2012. 73

[HK62] Michael Held and Richard M Karp. A dynamic programming approach

to sequencing problems. Journal of the Society for Industrial and Applied

Mathematics, 10(1):196–210, 1962. 148

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum

matchings in bipartite graphs. SIAM J. Comput., 2:225–231, 1973. 119

232

[HP10] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of

modular decomposition. Computer Science Review, 4(1):41–59, 2010. 37

[Hsu75] Harry T Hsu. An algorithm for finding a minimal equivalent graph of a

digraph. Journal of the ACM (JACM), 22(1):11–16, 1975. 207

[ILS12] Giuseppe F Italiano, Luigi Laura, and Federico Santaroni. Finding strong

bridges and strong articulation points in linear time. Theoretical Computer

Science, 447:74–84, 2012. 207, 217

[IP73] A.W Ingleton and M.J Piff. Gammoids and transversal matroids. Journal of

Combinatorial Theory, Series B, 15(1):51 – 68, 1973. 62

[JG86] SP Jain and Krishna Gopal. On network augmentation. Reliability, IEEE

Transactions on, 35(5):541–543, 1986. 68

[Juk11] Stasys Jukna. Extremal combinatorics. Springer Verlag Berlin Heidelberg,

2011. 48

[Kao96] Ming-Yang Kao. Data security equals graph connectivity. SIAM Journal on

Discrete Mathematics, 9(1):87–100, 1996. 68

[Kem59] J. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959. 33

[Khu97] Samir Khuller. Approximation algorithms for finding highly connected sub-

graphs. Vertex, 2:2, 1997. 8, 69

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial

identity tests means proving circuit lower bounds. Computational Complexity,

13(1-2):1–46, 2004. 113

[KMS07] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In STOC,

pages 95–103, 2007. 34

[KN10] Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity

problems. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum

für Informatik, 2010. 8, 9, 10, 67, 69

233

[KRY95] Samir Khuller, Balaji Raghavachari, and Neal Young. Approximating the

minimum equivalent digraph. SIAM Journal on Computing, 24(4):859–872,

1995. 208

[KRY96] Samir Khuller, Balaji Raghavachari, and Neal Young. On strongly connected

digraphs with bounded cycle length. Discrete Applied Mathematics, 69(3):281–

289, 1996. 208

[KS62] J. Kemeny and J. Snell. Mathematical models in the social sciences. Blaisdell,

1962. 33

[KS10] M. Karpinski and W. Schudy. Faster algorithms for feedback arc set tour-

nament, kemeny rank aggregation and betweenness tournament. CoRR,

abs/1006.4396, 2010. 34

[KV94] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph

carvings. Journal of the ACM (JACM), 41(2):214–235, 1994. 69, 71

[KW09] Ioannis Koutis and Ryan Williams. Limits and applications of group algebras

for parameterized problems. In Automata, languages and programming, pages

653–664. Springer, 2009. 57

[KW12] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant

vertices: New tools for kernelization. In Proceedings of the 53rd Annual

Symposium on Foundations of Computer Science (FOCS 2012), pages 450–

459. IEEE, 2012. 11, 47, 62, 112, 130

[KW14] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A ran-

domized polynomial kernel for odd cycle transversal. ACM Transactions on

Algorithms, 10(4):20:1–20:15, 2014. 47, 112

[LMPS15] Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh.

Deterministic truncation of linear matroids. In Automata, Languages, and

Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,

July 6-10, 2015, Proceedings, Part I, pages 922–934, 2015. 120

234

[Lov77] L. Lovász. Flats in matroids and geometric graphs. In In Combinatorial surveys

(Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), pages

45–86. Academic Press, London, 1977. 47

[Mar79] S Martello. An algorithm for finding a minimal equivalent graph of a strongly

connected digraph. Computing, 21(3):183–194, 1979. 208

[Mar09] Dániel Marx. A parameterized view on matroid optimization problems. Theor.

Comput. Sci., 410(44):4471–4479, 2009. 11, 47, 50, 61, 62, 77, 78, 82, 109, 112,

113, 130

[Mon85] B. Monien. How to find long paths efficiently. In Analysis and design of

algorithms for combinatorial problems (Udine, 1982), volume 109 of North-

Holland Math. Stud., pages 239–254. North-Holland, Amsterdam, 1985. 130

[MR10] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman

& Hall/CRC, 2010. 7, 24

[MRS09] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing

above or below guaranteed values. Journal of Computer and System Sciences,

75(2):137–153, 2009. 73

[MS03] Thom Mulders and Arne Storjohann. On lattice reduction for polynomial

matrices. J. Symb. Comput., 35(4):377–401, 2003. 105, 107

[MT69] Dennis M Moyles and Gerald L Thompson. An algorithm for finding a

minimum equivalent graph of a digraph. Journal of the ACM (JACM),

16(3):455–460, 1969. 148, 205, 207

[MT82] Silvano Martello and Paolo Toth. Finding a minimum equivalent graph of a

digraph. Networks, 12(2):89–100, 1982. 208

[Mui82] Thomas Muir. A Treatise on the Theory of Determinants. Dover Publications,

1882. 84

[Mun71] Ian Munro. Efficient determination of the transitive closure of a directed

graph. Information Processing Letters, 1(2):56–58, 1971. 217

235

[Mur00] Kazuo Murota. Matrices and matroids for systems analysis, volume 20.

Springer, 2000. 82, 101

[MV15] Dániel Marx and László A Végh. Fixed-parameter algorithms for minimum-cost

edge-connectivity augmentation. ACM Transactions on Algorithms (TALG),

11(4):27, 2015. 10, 70, 168

[Nag03] Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected

subgraph containing a specified spanning tree. Discrete Applied Mathematics,

126(1):83–113, 2003. 70

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar bor̊uvka

on minimum spanning tree problem translation of both the 1926 papers,

comments, history. Discrete Mathematics, 233(1):3–36, 2001. 68

[Oxl06] James G Oxley. Matroid theory, volume 3. Oxford University Press, 2006. 11,

47, 49, 51, 52, 61, 62, 111

[PTW01] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path

approach to dna fragment assembly. Proceedings of the National Academy of

Sciences, 98(17):9748–9753, 2001. 9

[RS06] V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems

and their duals in tournaments. Theoretical Computer Science, 351(3):446–458,

2006. 34

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency,

volume 24. Springer Science & Business Media, 2003. 149, 150, 157

[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite

fields. In FOCS, pages 283–290. IEEE Computer Society, 1988. 92, 93

[Shp90] Igor Evgen’evich Shparlinski. On primitive elements in finite fields and on

elliptic curves. Matematicheskii Sbornik, 181(9):1196–1206, 1990. 93

[SHSL02] Arunabha Sen, Bin Hao, Bao Hong Shen, and Guohui Lin. Survivable routing

in wdm networks-logical ring in arbitrary physical topology. In Communica-

236

tions, 2002. ICC 2002. IEEE International Conference on, volume 5, pages

2771–2775. IEEE, 2002. 9

[SKH10] Bhavesh Sanghvi, Neeraj Koul, and Vasant Honavar. Identifying and elim-

inating inconsistencies in mappings across hierarchical ontologies. In OTM

Conferences (2), volume 6427 of LNCS, pages 999–1008, 2010. 33

[Spe89] E. Speckenmeyer. On feedback problems in digraphs. In WG, volume 411 of

LNCS, pages 218–231, 1989. 34

[SZ14] Hadas Shachnai and Meirav Zehavi. Representative families: A unified

tradeoff-based approach. In Algorithms - ESA 2014 - 22th Annual European

Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume

8737, pages 786–797, 2014. 47

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal

on computing, 1(2):146–160, 1972. 218

[TCHP08] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler

linear-time modular decomposition via recursive factorizing permutations. In

ICALP, LNCS, pages 634–645, 2008. 36

[Tut65] William T Tutte. Mengers theorem for matroids. J. Res. Nat. Bur. Standards

Sect. B, 69:49–53, 1965. 63

[Tuz94] Zs. Tuza. Applications of the set-pair method in extremal hypergraph theory.

In Extremal problems for finite sets (Visegrád, 1991), volume 3 of Bolyai Soc.

Math. Stud., pages 479–514. János Bolyai Math. Soc., Budapest, 1994. 48

[Tuz96] Zs. Tuza. Applications of the set-pair method in extremal problems. II. In

Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), volume 2 of

Bolyai Soc. Math. Stud., pages 459–490. János Bolyai Math. Soc., Budapest,

1996. 48

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical

Computer Science, 7(1-3):1–336, 2012. 222

237

[Veg11] L. Vegh. Augmenting undirected node-connectivity by one. SIAM Journal on

Discrete Mathematics, 25(2):695–718, 2011. 167

[Vet01] Adrian Vetta. Approximating the minimum strongly connected subgraph via

a matching lower bound. In SODA, volume 1, pages 417–426, 2001. 10, 208

[Vic90] Shoup Victor. Searching for primitive roots in finite fields. In Harriet Ortiz,

editor, STOC, pages 546–554. ACM, 1990. 93

[vZ11] Anke van Zuylen. Linear programming based approximation algorithms for

feedback set problems in bipartite tournaments. Theoretical Computer Science,

412(23):2556–2561, 2011. 34

[vZHJW07] A. van Zuylen, R. Hegde, K. Jain, and D. P. Williamson. Deterministic

pivoting algorithms for constrained ranking and clustering problems. In

SODA, pages 405–414, 2007. 34

[Whi35] Hassler Whitney. On the abstract properties of linear dependence. American

Journal of Mathematics, 57(3):509–533, 1935. 47

[Wil09] Ryan Williams. Finding paths of length k in o(k2) time. Information Processing

Letters, 109(6):315–318, 2009. 57

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-

Winograd. In Proceedings of the 44th Symposium on Theory of Computing

Conference (STOC 2012), pages 887–898. ACM, 2012. 27

[WN87] Toshimasa Watanabe and Akira Nakamura. Edge-connectivity augmentation

problems. Journal of Computer and System Sciences, 35(1):96 – 144, 1987.

167

[WNN89] Toshimasa Watanabe, Takanori Narita, and Akira Nakamura. 3-edge-

connectivity augmentation problems. In Circuits and Systems, 1989., IEEE

International Symposium on, pages 335–338. IEEE, 1989. 69

238

[XG12] Mingyu Xiao and Jiong Guo. A quadratic vertex kernel for feedback arc set

in bipartite tournaments. In MFCS, volume 7464 of LNCS, pages 825–835.

Springer, 2012. 45

[ZA12] Daniel Zelazo and Frank Allgöwer. Eulerian consensus networks. In CDC

2012. 51st IEEE Conference on Decision and Control, pages 4715–4720, 2012.

9

[Zeh15] Meirav Zehavi. Mixing color coding-related techniques. In Algorithms-ESA

2015, pages 1037–1049. Springer, 2015. 58

239

	Synopsis
	List of Figures
	Part I : Introduction
	Organization of the Thesis
	Computational Framework
	Exact Algorithms
	Parameterized Complexity
	Kernelization

	Randomized Algorithms

	Preliminaries
	Sets
	Graphs
	Graph Connectivity

	Illustration: A polynomial kernel for Feedback Arc Set on Bipartite Tournaments
	Preliminaries
	Modular Partitions

	A Cubic Kernel
	Data Reduction Rules
	Analysis of the Kernel Size

	Discussion

	An introduction to Matroids
	Matroids
	Linear Matroids and Representable Matroids
	Direct Sum of Matroids
	Truncation of a Matroid
	Deletions and Contractions
	Uniform and Partition Matroids
	Graphic Matroids

	Representative Sets

	Illustration: An FPT algorithm for k-path
	The Algorithm
	Discussion

	Connectivity Matroids
	Co-Graphic Matroids
	Gammoids
	Linkage Matroids
	Tangle Matroids
	Discussion

	An introduction to Network Design Problems with Connectivity Constraints
	Network Augmentation
	Parameterizations of Network Augmentation Problems

	Network Optimization
	Parameterizations of Network Optimization Problems

	Discussion.

	Part II : Deterministic Matroid Algorithms
	Deterministic Truncation of Linear Matroids and Applications
	Introduction
	Preliminaries
	Fields and Polynomials
	Vectors and Matrices
	Derivatives
	Determinants

	Matrix Truncation
	Tools and Techniques
	Deterministic Truncation of Matrices
	Representation of the -elongation of a Matroid

	Application to Computation of Representative Families
	Weighted Representative Families
	Applications

	Derandomization of Transversal Matroids and Gammoids in Moderately Exponential Time
	The Algorithm
	Representing matroids related to transversal matroids
	Truncations and contractions of transversal matroids
	Gammoids

	Part III : Algorithms for Connectivity Problems
	Finding Even Subgraphs Even Faster
	Notations used in this chapter
	Undirected Eulerian Edge Deletion
	Directed Eulerian Edge Deletion

	Fast Exact Algorithms for Survivable Network Design with Uniform Requirements
	Directed Graphs
	Undirected Graphs
	Algorithms for Network Augmentation

	Parameterized Algorithms for Network Augmentation I
	Tools and Techniques
	Link-Intersection Graphs

	Relating augmenting sets to Steiner trees.
	An improved Algorithm for Cactus Augmentation

	Parameterized Algorithms for Network Augmentation II
	Single Exponential FPT algorithm
	Reducing Laminar Strips
	Bounding the cycle lengths and tree-width of the link-intersection graph

	Polynomial Kernels for m-k Cactus Augmentation
	A linear kernel for m-k Tree Augmentation problem
	A quadratic kernel for m-k Cactus Augmentation
	Kernels for general m-k Augmentation by One.

	Minimum Equivalent Digraph is Fixed-Parameter Tractable
	Preliminaries
	Minimum Equivalent Digraph
	A Linear time FPT algorithm for MSCSS

	Part IV : Conclusion
	Conclusion and Future Directions.

