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SUMMARY

This thesis deals with the study of three different problems in analytic number
theory. It is divided into five chapters. The first three chapters study the ternary
Goldbach problem through an alternative approach suggested by Helfgott in his
recent breakthrough on the problem. Chapter 4 deals with the study of correlations
of arithmetic functions of a certain type and in Chapter 5, we study the distribution

of values of the Oppenheim factorization function.

Chapter 1 consists of an introduction, where we describe the Hardy-Littlewood
circle method and give a brief overview of Helfgott’s approach and the alternative

route suggested by him.

In the next two chapters, we prove explicit results for the type-1 sums and type-
IT sums occurring in this new approach. In Chapter 2, we prove a general result
with good constants for type-I sums. In Chapter 3, we prove different versions of
the large sieve inequality to handle the type-II sums, which are bilinear exponential

sums. Our main results lie in the case when both sequences are supported on primes.

In Chapter 4, we study correlations of a certain class of arithmetic functions
and improve the error terms in their asymptotic formulas. We apply this method
to study similar shifted sums over primes and improve upon an earlier result. The

method generalises to study similar shifted sums of more than two functions.

In Chapter 5, we study a problem of a combinatorial nature, concerning Op-
penheim’s factorization function. It counts the number of nontrivial unordered fac-
torizations of a positive integer. We obtain an upper bound for the number of its
distinct values upto a given parameter. It improves the earlier known bounds on
this quantity and we also give heuristic arguments to indicate that our bound is

essentially the best possible.
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Notation

Symbol Description

R The set of real numbers

R>o Set of non-negative real numbers

C The set of complex numbers

z The set of integers

N Set of positive integers

VA Set of non-negative integers

7% (r) 7"\ {(0,...,0)}.

x/yz Denotes y% for nonzero reals z, y and z
IE4] Distance of = from the nearest integer
e(r) e

|z, [x] Floor and Ceil functions, respectively
0, < Big O notation

O~ Big O notation with implied constant 1.
0 Little o notation

« An element of R/Z with an approximation 2o = a/q+0/x in

Chapters 1, 2, 3
do max{2, |6|/5}
n Non-negative function supported on [0, 1], twice differentiable

on (0,1) with L*-norm 1 and n(0) =n(1) =7 (1) =0
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The restriction of a function f to the intervals [1, U], (U, 00)
and (U, V), respectively

An upper bound for ¢/¢(q) when z > max{3, ¢}

Dirichlet convolution of arithmetic functions f and g¢.
Denote the first, second and k-th derivatives of f, respectively
Support of a function f

The class of functions k-times differentiable on I with a con-
tinuous k-th derivative

Characteristic function of the interval [a, 0]

Fourier transform of f normalized by f(t) = Ji f(x)e(—at) dx
Denotes of the L*-norm of f and f’. If f is differential outside
finitely many points, |f’|; denotes the total variation of f
Defined by [ e *VIF(z +¢) dt

Length of an interval Z

Cardinality of a set S

Legendre symbol for a prime p

Largest power of a prime p that divides n

GCD and LCM, respectively of positive integers d; and dy
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Mobius function

Von Mangoldt function
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Chapter 1

Introduction

In this chapter, we give a brief description of the Hardy-Littlewood circle method

and outline Helfgott’s approach to the ternary Goldbach problem.

1.1 The Circle method

Let n : R — R>( be compactly supported and twice differentiable, except for finitely

many points. Define

Syla, x) = ZA(n)n (g) e(na). (1.1)

The version of Hardy and Littlewood [HL23] and subsequent versions are without a
smoothing, i.e., with the brutal truncation n < x. The use of a smoothing is a major

ingredient in Helfgott’s proof. He works with two different smoothing functions.

To show that an odd positive integer N is expressible as a sum of three primes,

one considers the quantity

/ Sy.(0,@)S, (0 2)e(~Na)da =~ Am)Ama) Ay, (2 ) n. ()0 (22).
R/Z 2ni=N
(1.2)
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When (1.2) is positive, it implies the existence of prime powers n, ny and ng such
that n; +n9 +ns = n. Since the contribution to the above sum when at least one of
the n;’s is a proper prime power (not a prime) is negligible, it enough to show that

the integral in (1.2) is positive.

1.1.1 The Major and Minor arcs

The integral over R/Z in (1.2) is divided into two parts, namely the Major arcs
(denoted by 9t) and the Minor arcs (denoted by m). The major arcs are small
neighbourhoods around rationals having small denominators. The complimentary

set forms the minor arcs. The major arcs are normally defined as follows:

R
M = ads h g = R/Z - — < — 5. 1.
L] ] Dag where 9, {ae JZ : |l —a/q| qz} (1.3)
g<R 1<a<gq
(a,9)=1

Here ||.| denotes the distance from the nearest integer and R > 1 is a parameter,
which is normally taken be a power of logx. The arcs M, , can be made disjoint

provided z is large enough.

Helfgott’s choice of the major arcs was slightly different. It was as follows:

Definition 1.1. Let

Meyr = I_l |_| {a ER/Z: ||a—a/q| < M} (1.4)

T
q<(g,2)r 1<a<q q
(a,9)=1

IA

Helfgott chooses Cy = 8 and r = ry = 1.5-10°. This finite choice of r comes from
a verification of the Generalized Riemann hypothesis upto a certain height for all

L-functions with modulus less than 3 - 10° which was carried out by Platt [Plal6].
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1.1.2 Estimation of the integral

Splitting the integral in (1.2) into major and minor arcs, we obtain
/S (a,2)28, (o, z)e(—Na) do + /Sm(oz, 2)2S, (o, z)e(—Na) do
m m

To estimate the integral over 9, an asymptotic formula for S,,(a, z) and S5, (o, x),
for « € M, , is obtained, using which one can integrate over each M, , and then

sum over all (a,q) = 1 and all ¢ < R. This will lead to an asymptotic formula

2
/Ncn*m'x-

m

To bound the minor arc contributions, the following method is used:

/Sn*(oz,a:)zSn(a,x)e(—Noz) do| < mEaX\Sn(oc,x)|~/|S*(a,x)|2 do.

The integral over m above can now be extended to R/Z. An application of the
Parseval’s identity gives a bound of the order zlogz for [ S, (o, z)|* da. Helfgott
used a version of the large sieve inequality due to Ramaré [Ram09] in order to get
rid of the additional logx factor above. The idea is to divide the integral over m

into disjoint annulus of arcs in (1.4) and apply Ramaré’s version of the large sieve.

For a € m, he obtained a bound of the form [HH13, Theorem 3.1.1]

Cixlogr

N

|Sy(a, z)| < + Coz®/8,

Note that the trivial bound is z. Since r > 1.5 - 10° and logr//7 is decreasing, a

constant saving over the trivial bound is obtained.
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1.2 An alternate Vaughan’s identity

To give an upper bound for S, (o, z) for o € m, one needs to deal with sums over
primes where a decomposition of the Von-Mangoldt function, called the Vaughan’s

identity is commonly used. The standard version of Vaughan’s identity is as follows:
A=pcyxlog —Acy *pcy*1 + Tk psp x Asy + Acy,

where U,V > 1 are any parameters and * denotes the Dirichlet convolution. Though
there are free parameters U and V', the identity is not log-free, i.e., summing over the
RHS and using trivial bounds, one obtains two additional factors of log z compared

to the LHS. Hence, one needs extra work to get rid of these logarithmic factors.

In [HH13, Pg 49, Eq (3.17)], Helfgott mentions an alternate version of the
Vaughan’s identity which is essentially log-free. It originates from the work of

Bombieri [Bom76]:
A -log? = p*log® —3(u* log® xAcy) — 3(A-log) * Asy + Fyy, (1.5)

where Fyy = —Asy * Ax A+ 2(A<y * A x A). For n = nyngng, with ny < ny < ng

and V3 < n, we have

—6, ifall n; >V,

6, ny <ng <V < ng,
ng(n) = A(nl)A(le)A(ng) :
0, ny <V <ng <ns

12, ifall n; <V.

We have two more small parameters that occur as we further split the second and

third terms in (1.5) to separately deal with the contribution from the tail.
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Let
Z A(n)(logn)?n(n/z)e(na). (1.6)

n odd

Using the identity (1.5), this decomposes into
57772(@, ZL‘) = 5171’77 - 35[’2777 — 35’]177, + 5377], (17)

where

St = Y w(m) Y log®ne(mna)y(mn/z),

m odd n odd
Ston = Z A(l Z w(m) Z log” n e(Imna)n(lmn/z),
I<v m odd n odd
I odd (18)
Stin = Z (A -log)(m Z A(n)e(mna)n(mn/x)
m odd 77;?(‘1{1
Ssn =Y Fyv(n)e(na)(n/z),
n odd

The trivial bound for S, s(a, x) is of the order xlog? . Using (1.5), we are likely to

obtain a bound of the form

Cs(r)rlog? x
\/F

|Sn2(a, z)| < Cro + CoxlogV + 1Oyt

where 6 < 1. In the above bound, there are terms proportional to z and xlogV'.
These terms are quite large, and just better than the trivial bound. Therefore, it
becomes important to get the smallest possible constants here. The source of such

terms is St14, 1,2, and the tail of Si;, and Ss,,.

Terms in such a decompositions can be classified into two types, namely the
type-I and type-II sums. In type-I sums, the sum over one of the variables m and
n consists of a nice function (like logarithm), which allows some cancellation in the

exponential sum. For instance, the sums Sy, and S; 2, are type-I sums. In type-II

29



sums, one cannot obtain a cancellation directly by summing over one variable. We
may need to apply the Cauchy-Schwarz inequality followed by an application of the

large sieve inequality.

1.3 Choice of smoothing functions

Now, we mention the type of smoothing functions we will work with. We deal
with separate smoothing functions in the type-I and type-II sums. They will be

normalized so that their L'-norm is 1.

In the type-I sums, we work with a general smoothing n, but our aim is to apply

the bounds with the following function:

Definition 1.2. Let 79 : R — [0, 00) be defined by:

706(1 —)5(1 — 3t + 42 + t3/2), t € [0,1],
mo(t) = : (1.9)
0, otherwise.

Then 7y is non-negative, differentiable on [0, 1] and twice differentiable in (0,1]. It

also satisfies |no|y = 1 and 19(0) = no(1) = n)(1) = 0.

This choice of the above smoothing is purely for numerical reasons, as calcula-
tions done on a program have suggested that certain important quantities stay small

under this choice. This is certainly not an optimal choice.

In the type-II sums, we work with the same smoothing 7, as chosen by Helfgott

and Tao. It is defined as follows:
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Definition 1.3. Let 1, : R — [0, 00) be defined by

(

logdz, x€(1/4,1/2),

(e o]

() = 4 / o) ()12 (1)

0

dt

+ =49 logl/z, e (1/2,1), (1.10)

0, otherwise.
\

One of the main advantage is that it allows the bilinear sum to be decomposed
dyadically in the two variables, which will be evident when we discuss these sums

in Chapter 3.
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Chapter 2

Type-1 sums

In this chapter, we prove results for the type-I sums. We work with a smoothing
function 7 satisfying some general conditions, but our aim is to apply it to the

function 7y defined in (1.9).

The main result of this chapter broadly follows the approach of Helfgott’s, but
with certain modifications and differences to adapt the arguments in the current

setting. We have done some of the calculations in the appendix.

2.1 Smoothing functions and hypothesis

We begin with some general hypothesis on the smoothing function 7.

Definition 2.1 (General conditions on 7). Let  : R — R be a function satisfying

the following conditions:

n>0,  Supp(n) €[0,1], neC*0,1),
(C1)

i =1 and n(0) =n(1)=7'(1) =0,

where Supp(f) denotes the support of f and C*(I) denotes functions k times dif-
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ferentiable in I with a continuous k™ derivative.

Henceforth, 7 is a function satisfying (C1). The advantage of taking n over n,
in (1.10) is that it is twice differentiable and there the L'-norms are comparitively

smaller to that of 7.

Definition 2.2. Let n: R — R satisfy (C1). Then for ug > 3 and y > ug, define

n(t)(logyt):, t > uo/y,
M).hao () = (2.1)

0, otherwise.

It can be seen that

—_—

k
T (t Z( ) log )" ()0, - 108" ™) (1), (2.2)
=

where f denotes the Fourier transform of f defined by

_ /R F@)e(—xt) dz. (2.3)

For functions that are C* except for a finite number of points, we define (following

Helfgott and Tao) the L' norms in terms of their total variation.

Definition 2.3 (L!'-norm as a total variation). Let f : [a,b] — R be C' except for
the set of points {z1,...,2,}. We define |f’|; to be the total variation of f. In

particular,
b n
P = / Pl + S| FE) - far)]. (2.4)
g =1

This coincides with the usual definition if f were C! in all of [a, b]. We can similarly

define | f®)|; for k > 2.

Hypothesis 2.4. We assume that there are non-negative functions which act as
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upper bounds for the the L'-norms of 1) 4., and its derivatives. In particular,

M) kuolt < Fokue (108 Y),
|néy):k7uo‘1 S PLk:uO (log y)? (Hl)

|T]E/y)7k7u0|1 S P27k7u0 (10g y)?

for all y > ug. We also define Pk(izo, j=0,2 as:
0 s N > @) P kg
Pk,uo = P07k7u0 ) P27k7u0 and Pk,uo = P17k7u0 P : <H2)
0,k,uo
and assume that

P; jo.uo (log y), P,g)) (logy) and p® (logy) are increasing for all y > wg.

uQ k,ug
(H3)
Further, assume there are positive constants C; ., j = 0, 1,2, such that
P; juo(logy) = Cjk.y - (log y)*,  for all y > ug
(H4)

and C2,k,17 S 1000 - CL’CJ]'

Consequently, we have

C
PO (logy) = \/Copy Copr - (logy)* and P (logy) = Ch ﬁ-(logy)’“-
77n
(2.5)

Remark 2.5. From (H4), it follows that one can assume P}, (logy)/y to be de-

creasing for y > e*.

Explicit values for the constants Cjj, (in terms of certain norms involving 7)

have been computed in Proposition A.7 in the appendix.

Remark 2.6. Note that 7)., and nzy) v are not continuous (hence are not

uo

differentiable) at ¢ = uo/y. So, to evaluate [, , , [1 and ()  , |1 w.r.t. Definition
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2.3, we have to add additional contributions (which are jumps of discontinuity at

u/y)

k—1M(vo/Yy)

In(uo/y)(loguo)*| and |1’ (uo/y)(log ue)* + k(logug) wly |

respectively to the integral from ug/y to 1.

Definition 2.7. For all integers [ > 0 and 7 satisfying (C1), we define

C/
Col = |0 log |1, c;?’l = |(n-log")|; and b, = max {2@,7,, 5L7Tl} ) (2.6)
Then for any § € R and §y = max{2, |0|/5}, we have
min { ¢ i < bud (2.7)
TR e '

Definition 2.8. Let [ > —1 be a real number and suppose F': R — R satisfies

F>0, FecCYx,o00) and /6_(l+1)tF(t) < 00, where zy > 0. (C2)

Zo

Then for x > x, define

(T'F)(z) = / ) P 4 1) dt. (2.8)

2.2 The main result

Let & € R/Z and @y > 1 be given. By Dirichlet approximation, we have

20 =a/q+d/x, [6/x] <1/qQo, (a,q)=1 and ¢ < Qy, (AP1)
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and assume ¢ to be the smallest possible. Define

do = do(er, Qo) = max{2,|6|/5} and s = s(a,Qo) = doq. (2.9)

Let
x
Sop =mins s, —— . 2.10
o= min{s, -1 (2.10)

Our aim is to bound the following sum:

Definition 2.9. Let f : N — C be an arithmetic function and let x > 1. Suppose

3 < up < sp and 7 satisfies (C1). For k = 1,2, 3, we consider the sum

Sk f(Q, ) Z f(m Z (log n)*e(mna)n(mn/x). (2.11)
m<x/ug n>uog
m odd n odd

Remark 2.10. The condition m < x/ug above is forced upon by the fact that 7 is

supported in [0, 1] and that n > wu,.

In the next theorem, we prove the main type-I bound for the sum S, ; ; with the
assumption of the certain reasonable hypothesis we have given earlier. We prove the

following bound for S, f(a, ).

Theorem 2.11 (Type I bound). Let z > 10'® and Qo be a given parameter. Let a
be as in (AP1) and s, s be as in (2.9), (2.10) with s > so > 1.5-10°. Let n be as
in (C1) and S, i (v, x) be as in (2.11) with k € {1,2,3}. Suppose that (H1), (H2),
(H3) and (H4) hold. Also, assume q < \/x/5 and that

3 <y < s,

VI /5 < Qo < x/10°, (H5)

|lf(m)| <k, forall m<u.
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Then with Pjj y,, rY

k,uo

and Pk(izo in (H1) and (H2), T" as in (2.8), we have

T°P (log u) ) T'P) (log uo)

Sy k. (o, )] < zk ( + Lk(s)> + Ry q(s,z, f),

T 27mul
(2.12)
where
By (log 10s)***
Li(s) = Ag + k(ogs ST (2.13)
with

Ay, = 0.002 Co .y + 0.00003 Cy .,y + 107% Co e,

C
Bie = 0108y/Cosy Cosy 0002 Gy + 107" Cry Cor

0,k,n

Here, Ry ,(s,x, f) is a decreasing function of s for s > 1.5-10° and satisfies

. (2.14)

k ) .
x kN (7 i
Rt d) = 535 (V) (1 )acstion 100

i=0 j=0

xr
s (S

where

mate )= S0 (e )’

m<x
(m,q)=1

and by;’s are given in (2.6). Furthermore, for k = 1,2,3, it can be seen that the
RHS of (2.12) is decreasing for s > 1.5-10°. Eaxplicit expressions for Ry, in the

case n = 1o (with ny given in (1.2)) are given in Proposition A.11.

In the next corollary, we show that essentially the same result holds even if we

relax the condition ¢ < /z/5 in Theorem 2.11.

Corollary 2.12. Let x > 10" and n be as in (C1). Let Qo be a given parameter,
a be as in (AP1) and S,k be as in (2.11) with k € {1,2,3}. Suppose that (H1),
(H2), (H3), (H4) and (H5) hold and s > sy > 1.5-10° be as in (2.9) and (2.10).
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Then, we have

T()Pk(?u)O (log ug) N TlPk(ifo (log ug)

TUg 2mud

|Sn,k,f(047 r)| <k ( + Lk(50)> + Rk,q<507x; f).

(2.15)

Proof. We will prove Corollary 2.12 assuming Theorem 2.11. The only difference in

the hypothesis from Theorem 2.11 is the condition ¢ < y/z/5. Consider two cases:

Case (i): ¢ < y/z/5. In this case, we can directly apply Theorem 2.11 and
obtain the bound (2.12) for S, 1, r(cv, ) in terms of s. Since s > sy and the RHS of

(2.12) is decreasing, we prove (2.15) in this case.

Case (ii): ¢ > /x/5. We let Q) = /x/5. Using the parameter @, we seek
another Dirichlet approximation for 2« i.e., 2a = ay/q1 + 61/x with (a1,q1) = 1,
¢ < Q) and |61/ < 1/q1Qf. Then [6;|/x cannot be O*(1/¢1Qp) (as g was the

smallest possible satisfying (AP1) and ¢; < @} < ¢) and therefore

101|q1 > x/Qo.

Now, 1 < v/z/5 and \/z/5 = Qp < x/10°, since x > 10'®. We can now apply

Theorem 2.11 with ¢; in place of ¢ and Q) in place of (). Letting

4 )
s1 = s1(o, Qp) = max{Z, %} @ > | 15|q1 > 5%20 > 1.5-10°,

we find that 3 < ug < sg < s;. This leads us to the bound (2.12) with s replaced

by s1. Since s1 > sg and the RHS of (2.12) is decreasing, we prove (2.15). O
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2.3 Preliminary lemmas

In this section, we give some preliminaries for the proof of Theorem 2.11. First, we
provide bounds on trigonometric sums.
2.3.1 Trigonometric sums

Let f : R — R be compactly supported and piecewise C* except for a finite number

of points. From [HH13, Eq (2.1), Pg 32|, we have

fity =0 (\(J;:’i\)o:) _ o (g::)\;) . for k>0, (2.16)

where f*) denotes the k-th derivative of f and |f*|; is w.r.t. Definition 2.3.

The following lemma provides cancellations in the trigonometric sums. It is

[Taol4, Corollary 3.2] and is implied by a change of variable in [HH13, Eq (2.2), Eq
(2.3)].

Theorem 2.13. Let « € R/Z and f : R — R be compactly supported and piecewise
C?. Then

1
2

Y f)e(na)

n odd

<
- | sin 27|’ (sin 27 cr)?

!/ "
win {1+ 17, L P
Remark 2.14. If in (2.16) and Theorem 2.13, f is C? except for a finite number of
points, one can consider |f'|; and |f”|; as total variations of f and f’, respectively

following Definition 2.3.

Remark 2.15. Unlike Helfgott, we do not consider \ﬁ]oo in the final bound above,
but instead use the weaker bound |f”|;. This is done in order because of the com-

plications that arise when estimating the Fourier transforms of T]Ey)7 o A0 ngy),kvuo.
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Next, we state a lemma from [HH13].

Lemma 2.16.

(a) Let « be as in (AP1) and 1 <1y < yp < ﬁ with yo —y1 < q. Then
S minfa ¢ 1 200,
min :
"|sin2mnal? | T 3w?
y1<n<y2
afn
(b) Let a be as in (AP1) and 1 <1y <y < 377 With y2—y1 < q. Suppose further

that tB/e > Cq. Then

. B C 4Bq
Z min - T < .
| sin 27rnal’ | sin 2mrna|? T

y1<n<y2
gqin

Proof. Here, (a) is the first bound of [HH13, Lemma 4.1.2], but with (/2 replaced

by 5 (> Qo/2), since in the proof, we only need n|d|/z < 1/2q, which is ensured

X
dlg-

Part (b) is the first bound of [HH13, Lemma 4.1.3]. O

Now, we save the factor 2 when the sum runs over odd numbers. Although the
saving may seem modest, it is going to play a crucial role when estimating the final

sum. The proof of this lemma follows closely to that of [HH13, Lemma 4.1.1].

Lemma 2.17. Let y > 1 and let 2a = a/q + O*(1/¢*). Then, we have

C 4

E minq A, — » < 64+ ~L\/AC.
| sin 2mnal? T

sy

Proof. We can assume that C' < A since otherwise the trivial bound Agq is better

than the given bound.
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Case (i): q odd. Write n = mgy + 2j, where j € (—q/2,q/2]. Then

2a7 + ¢
ITC

2na = (mg + 2j) (g + 0*(1/q2)) - 0*(3/2q).

Let r = 2aj + ¢(mod q), so that as j varies in (—¢/2,q/2], r also varies through
(—q/2,q/2]. We bound the terms with » = 0,£1,£2 by A. For terms with |r| > 3,
it follows that ||2na| = ||r/q + O*(3/2¢)|| > |r|/q¢ — 3/2q > (]r| — 2)/q. Letting

= |r| — 2, the given sum is at most

C

5A +2 min{ A, ——— ;.

Z { sin? ™~ }
1<r’'<q/4 q

Now, we use the first bound above when ' < %sin_1 \/C/A and the second bound

otherwise. The number of such values of 7 is at most < sin~" {/C/A. For the terms

satisfying 1/ > 2sin~" /C/A, we can replace the sum by an integral (owing to the

convexity of sin in (0,7/2)). Therefore, this is at most

a/4
1
Sin- —
Lsin~t/C/A !
<5A+—Sln VvC/A 2_C'q §—1§5A+@\/AC,
T

where we used the inequality sin'x 4+ 2v1 —22 <2z, for 0 <z <1

Case (ii): g even. We consider the sum in an interval of length ¢, i.e., we have

Z min A,_L .
| sin 27rnal?

y<n<y+q
n odd

As before, write n = mg + 27, with j in (—q/4, q/4], so that 2na = r/q+ O*(1/q),
where 7 = 2aj + ¢(mod ¢). Let p = ¢(mod 2) € {0,1}. Then, we can replace r

by 2r — p, with r ranging in (—q/4, ¢/4]. Again, bound the terms corresponding to
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r=0,£1 by A. For |r| > 2, we have |2na| = ||(2r—p)/q+O0*(1/q)|| > 2(|r|—1)/q.

Letting r' = |r| — 1, this sum is at most

3A+2 ) min{A,%}.
q

Sin
1<r’'<q/4

As before, the first bound is used when 27" < %Sin_l \/C/A, the number of which
is at most oL sin~" /C/A. For terms with 21’ > Zsin~" /C/A, we replace the sum

by an integral, to get

q/4

q . _ 1 2q
3A+2A(%sm 1\/C/A>+20 / TﬂdtégA—i_?\/AO?

Sin

P sin~!4/C/A

as before. Since the result is established for an interval of length ¢, twice this bound

holds for an interval of length 2¢. This completes the proof. O

2.3.2 Alternate approximation for «

We may sometimes want the g obtained in (AP1) to be large. If our ¢ happens to be

small, an alternate approximation for a (with a parameter other than ) is sought.

The following lemma can be extracted from the proof of [HH13, Lemma 4.2.1]

Lemma 2.18. Let 2a = a/q+ 0/x in (AP1) with § # 0. Then we can always find

an approzimation a’'/q', different from a/q, such that

20 =ad /¢ + &)z, (d,¢)=1, |&|/z<1/({)* and ﬁ
q

Proof. Let Q1 = x/|d]q. Then, we have 2a = a/q + O*(1/¢Q) and ¢ < @ (since
6]/ < 1/¢%). Letting Q2 = 2Q), there is an approximation a’/q, different from
a/q such that 2a = //¢’ + §'/z with ¢ < Q9 and |0'|/z < 1/¢'Q2 < 1/(¢')*. The

approximation is different from a/q because §/x cannot be O*(1/¢Q)3), because of
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the choice of )1. By the triangle inequality, we have

1 a 1 1

— <=5 S At

aq¢" ~lq 4|7 q@Q1  2¢'C
It then follows that ¢' > Q; — 1 > % = 2\§|q' The other bound follows from
¢ < Q=20 = 2x/|d|q, proving the lemma. ]

This leads us to the following:

Lemma 2.19. Let o € R/Z and q be as obtained in (AP1). Let dy be as in (2.9).

If ¢ < +\/x/5, there is an approximation

doq

2
da=d/d +8 )z, (d¢)=1, |&|/z<1/(¢)? and S <d < qu (AP2)
0

where it is possible that a'/q' equals a/q obtained in (AP1).

Proof. We consider two cases:

Case (i): |0] < 10. In this case, one has dy = 2 and so we take a'/¢ = a/q.
Then ¢ = doq/2 and also ¢ = ¢ < x/5q = 2x/50q, since ¢ < \/x/5 (a hypothesis
of Theorem 2.11). We also have |0'|/z = [0|/x < 1/¢* = 1/(¢')*.

Case (ii): |d] > 10. In this case, we have dy = |§|/5. By Lemma 2.18, there is

an approximation a'/q’ such that 2o = @/ /¢’ + &' /x with || /x < 1/(¢)?* and

x <4< 2 2z
2[0lg = 7 |8l Hdog

We now show that -%— > %4

56T = o %. This is equivalent to [d[g < v/5x, which is true

because [|lg < x/Q and Qo > /x/5 from (H5). This proves the lemma. O
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2.3.3 Other important lemmas

Lemma 2.20. Let 1 <Y < X, p> 0 and l > —1 be real numbers. Suppose that

F: R — R satisfies (C2) with 1y = log & and that

X
F'(t)>0 for t>log?. (C3)
Then
X X
Y (m+p)'F (log ) <YyHiTR (log ?) + Y!'TE (log ?>
0<m<Y —p m p

X
+ p'F (log —) ,
p

where 1™ = max{l,0} and T" is as in (2.8), i.e., (T'F)(z) = [;° e "TDF(z +t) dt.

Moreover, for | = —1, we have

log %

1 X X
Z —F (log ) < / Ft)dt+p 'F (log —)
m+p m+p p

0<m<Y —p

log %

If p =0 and the range of sum is 1 < m <Y, we obtain the same bound by looking

at the sum 0 <m <Y — p with p =1 by a change of variable.

Proof. Suppose that [ > —1. By the Euler summation formula, we have

Y—p

> (m+p)F (log m)_i p) = /(t—l—p)lF (logtfp> dt

0<m<Y —p

n Y/p{t} (t+p) 7 (IF = F) (bgtfp) “

X X
+p'F <log —) —{Y —p}Y'F <log ?) .
p
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Bound {t} by 1 and ignore F’ in the second term as F’ > 0 (also ignore [F if [ < 0)

above. Moreover, the negative term on the third line can be ignored, which gives

Y Y
X X X
Z (m+ p)'F (log > < /tlF (log —> dt+l+/tllF (log —) dt
m+p t t
p p

0<m<Y—p
X

+p'F (log —) ,
p

where [T = max{l,0}. A change of variable A = log ¥ gives the desired bound.

Now, we consider the case [ = —1. We have
X I F(log X) (F+ F’)(log )
Z (m+p)1F<log ):/—tdt—/{t—p} dt
m—+p t
0<m<Y —p p P

X X
+p'F (log —) —{Y —p}Y'F (log ?> .
)

Ignoring the negative terms and letting A = log %, we prove the lemma. O]

2.4 Proof of Theorem 2.11

We have
Sues(an)= 3 fm) S (logn) e(mna)(mn/z),
m<z/ug n>ug
m odd n odd
with a as in (AP1). Let
T
2.17

We split the sum S, ¢ into three parts Si, Sy and S, i.e.,

Spks =D, + >, 4+ > =5 + S + S (2.18)

m<M m<M M<m<zx/ug
glm qim m odd
m odd m odd
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We write

n(mt/x)(logt)*, if t > uy,
G () = 11 /m) ko (M0 ) = (2.19)

0, otherwise,

by abuse of notation. Then from (H1) (with a change of variable), we have

i X e m X
[9m |1 < —Pokuo <1Og —> gl < Prgu <1Og —> v gml £ —Pagwg (10g —> :
m m m xr m

First consider S;. We note that a = a/2q + §/2x + ~, with v = 0 or 1/2. For the

sum over n, we note that ¢ | m, and therefore

3" gnm)e(mna) = 3" gu(n)e (mn (2% + % + v))

n odd n odd (220)

with u = e(a/2 + ) as both m, n are odd. Also since (®(t)e(ta)) = ¢(t — a) and

(2.20) equals

u _— mo e mo 1
5; (g’" (”‘Z> m (”‘%*5))
T o xn 0 - m 5 "
N u2m Z (n(x/m%h% (m - 5) = Mz /m),k,uo (E ) + %)> .

n
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Using (2.16), the second term in (2.21) can be bounded as:

x _—— (an O =z x ‘Um/m kuo|
2m & (/mbkwo \ " 72 om ZmZn:(QW) (5_34‘%)2
T x\ m? 1

T py ()

m T - 1 1
<stpren (o) (2 (3 o)

< 0.307 2 Py g <log 3) ,
x m
where we use, in the second line

mo
2

W e Bl
- 20 — 1050q 2z

< 1/4qg < 1/4,

as M = x/106pq and |0] < 5dp.
Next, consider the contribution to the first term of (2.21) from n # 0, which is

2

T !nx/mmuol z < 93) m 1
< — < Pyt (log —) — -
- 2””‘% (2m)p (2 — )7~ Swem A ) ; (n—1)"

< 0.048 Py j 0, <1og 3) .
X m

Hence, (2.21) equals

T

— . m x
St e (—0/2) + 0" (03557 Posg (log =) ).

Summing over m < M, ¢ | m and m odd and using the bound |f(m)| < & in the

error term, we get

|51 < — Z f mﬁq\kuo( 5/2)| + O* 0'3;)5,{ Z m Py g, <log%>

m<M/q m<M
(m,2¢q)=1 qlm
m odd

(2.22)
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By (2.2), (2.6), (2.7) and (2.16), the main term of (2.22) is

(I;>\n$g\kl(—5/2)| 2. %(logﬁq)l

m<M/q
(m,2q)=1

(k) mm{ okt C;7|k5|l} mg;/q % (10g miq)l (2.23)
> (;

A
N
E

N
Il
o

A
N
sz

Il
=)

l

(m,2q)=1
!
i k—1 l x A\ M
< 2_q 2 ) mm{ Cn,k—1s "|5| }Z (l’) <10g M> Mag 1 (7,f)‘
[ .
S ZZ()() nkl(10g105oq ‘qul <W,f>‘-
1=0 I'=0

It remains to bound the error term of (2.22). This is at most

0.355sM T 0.355xM
—ZPZku()(lOg ) T Z P2ku0(10g_)

m<M 1<m<M/q mq
qlm

0.3556M (M )
< D00k M (—TOPQ,;C,UO <log L ) + P2gk7uo<log f)) (2.24)
T q M q

0.355xK 0.355kK
< = 79p, . (log 106
= 10258q3 2.k, 0( 0g OQ) + 1080q

P2,k,uo (log .Z'),

where we apply Lemma 2.20 with F' = Paj,,, | = 0, X = z/q, Y = M/q and
p = 1. The condition (C3) of Lemma 2.20 holds from (H3) and the fact that
XY =x/M = 105yq > ug (since ug < dogq holds from (H5)).

For Sy, we apply Theorem 2.13 to the n-sum with g, as in (2.19). Let

.| q pox T Cipy
K= g Tl 2.25
mln{2 . } where  p = — Corr (2.25)

Then clearly K > 1/2 (since py > 10007 /e from (H4) and ¢ < Qy < z/10° from

(H5)). We now split the m-sum into two parts, namely m < K and K <m < M,
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and then use |f(m)| < k from (H5), to obtain

|Sa| <1 Z nin 971 g1
K T2 | sin 2rmal’ (sin 2rma)?

m<K
afm
1 : / |91
- - , — =S Sa2.
+2 Z m1n{|g 1+ 1gh (sin 2rmar)? 2 F o
K<T§M
gtm

We first consider Sy;. We use Lemma 2.16 (b) with |g;,[1 < Ppgu(log =) <
Py puo(logz) = B and |g |1 < (x/m) 7 Py, (log ) < (2/K) ' Pyjye(logz/K) =
C, since Pjy.,, is increasing from (H3) and P}y, (logy)/y is decreasing from Re-
mark 2.5 (because x/K > 2x/q > 2-10% > ¥, for k = 1,2,3). We need to verify
K < x/2|6|q (to ensure yo < 2/2|0|q), which holds since K < ¢/2 and ¢/2 < x/2|d|q

(as |0|/z < 1/¢*). We also need to verify the condition 7B/e > Cq, i.e.,

TP, (log ) o4 Py g o (log )
e - z/K '

By (H4), the above is true if K < x/q-7/e- Ciy/Coky = por/q, which holds by

the definition of K. Therefore, from Lemma 2.16 (b), we have

2
521 S ?qP17k7uO(10g .CE) (226)

For Sy, it follows from Remark 2.5, that (m/x) P ., (log £) is increasing in m
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for m < M (as x/m > x/M = 1050q > 20 > €, for k = 1,2,3) and therefore

1 N\ 2P (logﬁ)
Spy < = Pu(l ) Pu<1 —>,m.”° m
2=9 Z mm{ 0kuo \ 106 + Mk (108 m (sin 27rma)?

K<m<M
gfm
M/q—p
1 ) T T
< 5 Z Z mm{ 4/_(1 Po ke ug <log v/q > + P <log ,_{_q > ,
J=0 jg<m—q/2<(j+1) JTP Jtp JTp
qfm
J+p)q z/q
LR, ), (log ﬁp)
(sin 27Tma)2 ’

where p = K/q. We will apply Lemma 2.16(a) to the above sum. The condition

Yo < x/2|6|q is true because M = Therefore,

1050q = 2|5|

We bound j + p by M/q and apply Lemma 2.20 with F' = Py, [ =0, X = 2/q,
Y = M/q and p = K/q, to obtain

10¢°M (M x T
Sag < 32y (_TOPZ,k,uo (1085 M) + Pz,k,uo<10g K))

(2.27)

TP, ko (10g 1060q) + Pg kuo (108 2).

= 607r2 8o 672

For S, we use the alternate approximation (AP2) for 2q, i.e., 2a = d'/q' + ¢'/x,

where 0pq/2 < ¢’ < 2x/500q. Splitting the sum into intervals of length 2¢’, we write

M /29"
=< 3 Z min § 5~ P + P | log ——7 |
: i=0  2j/<m—M<2(j+1)d ¢ I+ 2y U
m odd
(G+1)+ x/2q
o Pk <10g m)
(sin 2mma)?

(2.28)

51



We use Lemma 2.17 to the inner sum and multiply by 1/2. Then it is at most

37/2¢ /2q 2/2q
P Po k,uo 10gj i + 3P o g logj T

2q’ 2q’ 2_q/
jA1+ 4 2
7 (Posao - Pouo) | log fx/ 3]4
LW T Ty Iy (2.29)
T 29" (. M x/2q
\ + ? (] + 1 + 2_q/> (Pl,kﬂto . P27k‘,’u0) (10g] n 2Mq/>
= S31 + Ss.

First we deal with S3; (first line of (2.29)). To sum S3; over j, apply Lemma 2.20
to both the terms with F' = By, [ = —1 and F' = P, j,,, | = 0, respectively and

with X = z/2¢, Y = 2/2upq’ and p = M/2¢, to obtain

log %
3z 2q' x
S31 S 2—q/ / POJWJO (t) dt + WPOJWJO (IOg M)
log ug
+3 a TP g,y (log o) + Pl | log z
g’ " ” q (2.30)
log 1050q
3 1
<2z Pojon () dt + —TOPy 4, (log uo)
doq w Ug o

log ug

+ 30009 Po kuo (log 1000q) + 3P g, (log ),

where we substitute M = 2/1050q and use ¢’ > dyq/2.

We now bound Ss,. By using vA+ B < VA + %, S3o without the j-sum is

x/2q 2(q')? ( M ) @) x/2q¢
log - + +—=+1) P |log- ,
(gj+M) mr \’ 2q¢' Fuo gj—l—%

27

(2.31)

where /P kuo Piku = PISBO and P g o/ Pokuo /Lo ke = P,Eiio from (H2).
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-‘rl-ﬁ-]V 1+ 1/2

2q 2q

and apply Lemma 2.20 with F' = P,Egzo and [ = 0 and [ = —1, respectively to the

To sum the first term of (2.31) over j, we use the inequality

two terms with X = 2/2¢, Y = 2/2u¢q’ and p = M/2¢'. Then it is at most

2¢ x
— <mT0P,§ % (log ug) + P,§ ) (log 1O§0q))

. [ log1060g
+ % / k uo( t)dt + i P(?u)o (log 100q) 2
o log 1080q
= WinTOP’S ’30 (log uo) + 10mdoq 40pk(,0130 (10g 1050(]) + / Pk(?u)o (t) dt
log uo

where we used ¢’ < 4M and M = x/100yq.

To sum the second term of (2.31), apply Lemma 2.20 with F' = P( )0 and [ =1

and [ = 0, respectively, with X = x/2¢, Y = x/2uoq’ and p = M/2q¢’. Then, this is

2¢)° ’ TIP( ) (logug) + 2 TP (log up)
T 2u0q’ k.o 2u0q ko
M (2) i
" (1 ! E) Pt (los M))

TlP( )

k,ug

|
- 27TU0 ( 8 uo) +

From (2.18), (2.22), (2.23), (2.24), (2.26), (2.27), (2.29), (2.30), (2.32), (2.33)
and using ¢ < y/x/5 < Qo and observing

1.5-10° < s = 6poq < max{2y/z/5,2/5Qy} = 2+/x/5, (2.34)

gives

70p) o (log ug) N 7' p> o (log uo)

TU 2mul

‘Sﬁ7k7f(a?$)‘ < TR < Lk,uo(swx)) + Rk,q(‘gaxa f)a
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where

0.355
106

1
Lo (s,2) = - (3P1,k7uo(log x) + Py gy (log x))
1 2 1
—+ E ;Pl,k-’uo (10g x) + @ 2,k,ug (log 23:) + 60P0,k,uo (log '7;)

log 10s

1(4 1 4
(0) 0 p(0)
+ - . ( Py, (log 10s) + — T0m Pk uo( ) dt + 57ru0T Py, (log ug)
log ug

02 (log 103))
+ 2 (0.003557° P, (1og105)+ip(2> (log 10s) | .
2 o 257 Ko
(2.35)

and R, . is as in (2.14), i.e.,
T e T
Ry kq(s,x, f) ZEZZ] ( )()bk i(log 10s)"~ ‘mgq,j (qu,fﬂ

The simplified bound (2.13) for Ly, (s,«) is now obtained from Proposition A.9
(we remove the dependence on x), with the constants Ay and By being explicitly

determined therein.

This completes the proof of Theorem 2.11.
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Chapter 3

Type-11 sums

In this chapter, we discuss different versions of the large sieve inequality to bound
the type-II sums, which take the form of bilinear exponential sums. We use some
of the standard results on the large sieve inequality, which includes the version
for prime support. We also make use of certain combinatorial results, where the

Brun-Titchmarsh theorem plays a central role.

3.1 The bilinear exponential sum

Definition 3.1. Let {a,}n>1, {bm}m>1 be sequences of complex numbers and let [

and J be intervals. A typical sum we consider takes the form

Sp (1, J,a) = Z Z Ay be(mna) na(mn/x), (3.1)

mel neJ
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where 17, : [0,1] — R is defined by (1.10), i

logdz, € (1/4,1/2),

r dt
mle) =4 [ Lo @lan@/0F =13 1082, we/21) (3.2
0
0, otherwise.

\

This is the same smoothing as chosen by Helfgott [HH13] and Tao [Taol4]. One
of the main advantages is that it allows us to break the bilinear sum dyadically in

the variables m and n, making it easier to apply the large sieve inequalities. In

particular,
aw
Sp. (I, J,a)) =4 E E ap bpe(mna) 1/2,1](nW/x) /21 (n/W) —- W
mel neJ
/ aw
—4 > S o
/ apbme(mna) W
0 mel ned
me~x /W n~W

where m ~ x means x/2 < m < x. It is therefore enough to consider sums

SIM,N,a) = Z Zan me(mna) (3.3)

neN memM

where M and N are intervals satisfying:
M C [M,2M], N C[N,2N| and MN =z/4, (H6)

for some M, N > 1. We denote by
1/2 1/2
lal| == <Z \%\2) and [|b]| := (Z |me2> : (3.4)
neN meM

We consider (3.3) under different cases depending upon the support of the sequences

{a,} and {b,,}, namely (i) when both sequences are supported on odd numbers, (ii)
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when one is supported on primes and the other on odd numbers and (iii) when both

sequences are supported on the primes.

Various results for (i) and (ii) are present in [HH13, Proposition 5.2.4]. We give
bounds of similar nature and will include their proofs. In addition, we prove a
few variations in Theorem 3.4, allowing us to obtain better constants in the tail of
S(M,N,a), i.e., when one of M and N is large and the other small. For (iii), we

prove two versions in Proposition 3.16, which lead to Theorem 3.3.

Let Q9 > 0 be a given parameter. By Dirichlet’s theorem we have an approxi-

mation

2 =a/q+6/x, |§]/xr <1/qQo, (a,q) =1, q<Qy, (AP3)

and let g be the smallest possible. As in Chapter 2, we define
do = do(a, Qo) = max{2,[d|/5}. (3.5)

By the Cauchy-Schwarz inequality, we have

o\ 1/2

[SIMN )l < bl | D

meM

Z ane(mna)

neN

(3.6)

The second quantity in the above product is estimated by application of a large

sieve inequality, which provides a bound of the form

2

< AMN) - lal?,

D

meM

Z ane(mna)

neN

for some constant A(M, N') depending only on M and N. Therefore,

[S(M,N, )] < AM,N)[al - [bl|. (3.7)
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3.2 Main results

We now list the main results of this chapter. As was the case in [HH13], our bounds

become better as § becomes larger.

First, we state the version when one of {a,, } and {b,,} supported on odd numbers.

Theorem 3.2. Let o be as in (AP3) and M, N be as in (H6). Let {a,}, {bn} be
sequences of complex numbers with {a,} supported on the odd numbers and assume

one of the following holds:

(1) 16| <10 and |0]/z < 1/24¢*, or

(i1) |8] > 10 and M + q < z/|d|q.

Then

N z \?
< (= — |18l
SN < (3 20+t 1) fal- ol

Let Fjy be an increasing function that satisfies

q
—— < Fy(x), for all x > max{3,q}. 3.8

An explicit choice for Fj is given in Lemma A.5.

Next, we consider the case when both {a,} and {b,,} are supported on primes.

In this case, we save two logarithmic factors.

Theorem 3.3. Let a be as in (AP3) and 6y = max{2,|0|/5} be as in (3.5). Let

{an} and {b,,} be sequences supported on the primes and M, N satisfy (H6). If

760g < N < x/44000q (so that 1105y < M < x/280¢q),
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then

) 1/2
|ﬂWLNﬂH§< 2 Fo(00) ) lall - |1b]] (3.9)

doq log % log %

where Fy is as in (3.8).

The next result is a variant of the case when one variable is supported on the
primes. It is useful in saving a constant in the tail of S(M, N, «a). We are able to

save a factor close to 2 over the standard large sieve for primes.

Theorem 3.4. Let 75/x < Qp < /1000, o be as in (AP3) and &y be as in (3.5).
Let {a,} be supported on the odd numbers and {b,,} be supported on the primes. Let
M, N be as in (H6) and Fy be as in (3.8). Then

(a) If ¢ < x/10Qo and M > x/2850q (so that N < Tdyq), then

9 d0q log 448&(1)2

/2
sM 822\ Y2 [ Fy(15600)
|aMmeg@—+ ) (Jlil fall - 5]

(b) If /10Q0 < q¢ < Q/100, we have

9 q log 2%?]

sM 4060\ Y2 [ Fo(300)\ "
|ﬂMwmst—+ x) (“qﬁ lal - 6]l

(c) If M > 200Qo, we have

1/2
sM 22\"* [ Fy(30q)
S < el [ 21 4 27 ZO0\WOH) -IBll.
ISIM, N, a)| <e (15 + q) (1og% lall - o]

Remark 3.5. The standard large sieve for primes on the m-variable would have
given the factor (2+¢)M instead of 5/ /9 or 8 M /15 in the above scenario, although
with Fy(q) instead of Fj(30¢) (which does not make much difference since Fy(z) is

of the order loglog z).
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3.3 Preliminaries

We now give a background and list the known results on the large sieve inequality,
including the large sieve for primes. We will provide the proofs in some cases. In a
later section, we will discuss some combinatorial results which will aid the proof of

Theorems 3.3 and 3.4.

3.3.1 Large sieve inequality

Definition 3.6. For any = € R, define ||z|| to be the distance of x to the nearest

integer, or the norm in R/Z. More precisely, let
l|z|| :== min{|x — n| : n € Z}.

Definition 3.7. A set of points {«, },er in R/Z is said to be well-spaced if there is
a 0 > 0, such that

|, — a|| > 0, for all r # s.

They are alternatively called a set of d-spaced points.

Given a set of d-spaced points {«, },er, the large sieve problem asks for a bound

of the form )

<SARN) D anl,

neN

D

reR

Z ane(nao,.)

neN

for a suitable quantity A(R,N) depending only on the sets R and N. The large

sieve inequality answers this question with A(R,N) = N + 1.

Theorem 3.8 (Large-sieve inequality). Let {a,}.er be a set of 0-spaced points in

R/Z and {a,} be a sequence of complex numbers. Let N be an interval length at
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most N. Then )

(N4 anl

neN

>

reR

Z ane(na;)

neN

Proof. For integer N, see Iwaniec-Kowalski [IK04, Theorem 7.7] (with N +¢~' —1
instead of N + §~'), Montgomery-Vaughan [MV73, Theorem 1] or Richert [RS76,
Theorem 2.3]. When N is not an integer, N is replaced by N +1 (as there are most
N + 1 integers in V), which gives the factor (N + 1+ 6! — 1), giving the required
bound. O

Theorem 3.9 (Weighted large sieve inequality). Let {a, },.er be a set of points in
R/Z and let

Or = gé%l | — o
S#T

Let {a,} be a sequence of complex numbers and N be an interval of length at most

N. Then

2
<) anl.

neN

ST(N+1+3/2-671)7"

reR

Z ane(na,)

neN

Proof. When N is an integer, this holds (without the 1) due to Montgomery-
Vaughan [MV73, Theorem 1] and Richert [RS76, Theorem 2.4]. Again, when N

is not a integer, N is replaced by N + 1, which gives the required version. O]

3.3.2 Large sieve inequality for primes

In this section, we discuss the large sieve inequalities for primes. We begin with

Montgomery’s inequality from [Mon68|.

Lemma 3.10 (Montgomery’s inequality). Let r be a squarefree positive integer and

let {a,} be supported on integers coprime to r. If S(a) = > ane(na), we have
n<N




Proof. See [Mon68] or [IK04, Lemma 7.15]. O

Now, we obtain large sieve inequalities for the primes by using Montgomery’s
inequality. Parts (a) and (c) of the next lemma are similar to Lemma [HH13, Lemma

5.2.1] with change of notation. Part (b) is the large sieve for primes and similar to

[HH13, Eq (5.4.3)).

Lemma 3.11. Let {a,} be a sequence supported on the primes and N be an interval
of length at most N. Let {cy, tmer be a set of points in R/Z. Letb,, € Z, B, v € R,
and 0 < 0 < 1/2 be such that

Oy = b /q+ B+, and |Bp — Bur| < 0, for all m,m' € R.

(a) Suppose by, = by (mod q), m # m' implies |Bm — Bmr| = p (set p =00 if by, s
are distinct modulo q) and let ¢ = min{l1/q — 0, p}. Then

2

meER

Z ane(nam)

neN

(N6 anl*

neN

Here we do not require {a,} to be supported in primes.

(b) Suppose {by,}mer are all distinct (mod q) and 14g < N < 5/(40). Then

Z ane(nay,)

neN

D

meR

< L) IR

Og 29 neN

(¢) Suppose by, = by (mod q), m # m' implies |5y, — Brms| > p and that 1/Ng <
0+p<1/q. Then

D

meR

Z ane(nag,)

neN




Proof. For (a), it is seen that for distinct m,m’ € R

1/q—0, by # by (mod q)
[t — || = [[(bm = b)) /@ + (B — B ) || 2

p, by = byy (mod q).

Letting ¢ = min{1/q — p, p} and applying the standard large sieve inequality (The-

orem 3.8) gives the required bound.

We now prove (b). Since {a,} are supported on the primes, Montgomery’s
inequality gives (with S(z) =) ane(n(an)) - e(nx))
2

< 3

a’ (mod r)

2

Z ane(n(ay, +ad /r))| , (3.10)

neN

12 (r)
o(r)

Z ane(na,)

neN

for all ¥ < R < v/N and (r,q) = 1. Here R is a parameter to be chosen later. Let

P(m,d' /1) = ay, +d/r.

This is a double-indexed set over m and the fractions o’/r, with r < R and (r,q) =1

of elements in R/Z. Their separation is at least

[ (m, a’/r) = p(m’,a” /') || = || (bm = b)) /@ + (B = Brwr) + (a' /1 = " /1)
1/grR—0, d/r#ad"/r', m#m

1/q—0, a/r=ad"/r.

Multiply both sides of (3.10) by (N + 1 +3/2(1/qrR — 6)")~! and sum over m € R
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and r < R, (r,q) = 1 and use the weighted large sieve (Theorem 3.9), to get

Z i <N+1+ (1/qrR —0)~ ) 3

Z ane(na,)

T<R meR [neN
-1 2
<> Z > (N+1+ (1/qrR —6)~ ) > ane(n(am +d'/r))
r<R a’ (mod r) meR neN
(rg)=1
<D laf”
neN
(3.11)
Choose
N V2
== > 2 3.12
() =2 (312)
since N > 14q. Now, as § < 5/(4N), we have
1 1 5 R (N 5 R R
> 2 I L ) L
qrR gqrR AN~ Nr \qR? 4R Nr 4Nr
and therefore
6Nr Nr Nr r
N1+ 2(1grR—0) P < N4 1+ ok < Np Ly (1-2F N(l—).
++(/qr ) ++7R_+R+( 7R>< +t 3

This is because Nr > N = 2—V7Nq > @ > 1, since N > 14q. Therefore,

1 (r) -
(N+1+ (1/grR—0)" )
r<R SO(T)
(T,L?)Zl
1 p2(r) ryTt o Lele) A ry!
>~ 1+2) >+ 14—
N TZ}; o(r) ( R) N g 7;% o(r) ( R>
(7‘,(1_):1
1 o(g) (logs, 1 p(q) 108 5
> T\ T\
=N ¢ ( + 0.25068 | > N g 5

where the inequality > p*(r) /() - (1 +7/R)~" > log R 4 0.25068 holds for all
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R > 2 by a lemma of Montgomery-Vaughan [MV73, Lemma 8], for R > 100 and a

verification by Helfgott for 2 < R < 100. Using this in (3.11), we prove (b).
For (c), Montgomery’s inequality gives
2

< 3

a’ (mod r)

1*(r) :
e(r)

Z ane(nay,)

neN

Z ane(n(ay, +d /1))

neN

: (3.13)

forall r < R < N, (r,q) = 1. Let ¥(m,d'/r) = apn + ' /r. Similar to the earlier

cases, we find that when (m,a’/r) # (m/,a” /r’), we have

b, — by

o T B )+ a/r—a"/r

[ (m, a’ fr) = ap(m’,d" /r')|| = ‘

;

1/qR? — 0, by, # b,y (mod q), a'/r # a" /1’

ZA1/R>—0, by = by (mod q), d/r#ad"/r
& by = by (mod q), a'/r =d" /7.
(3.14)
Let
1
1= q(0+p)

The conditions 1/(Nq) < 6 + p < 1/q ensure that 1 < R < +/N. We find that the
first and third quantities in (3.14) have the smallest value (= p). Summing (3.13)

over r and applying the large sieve inequality along with the bound

2
Z w(r) > ©(q) log R,
= w(r) q
(rg)=1

we prove (c). O
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3.3.3 Combinatorial lemmas

Now, we discuss some combinatorial results which will be useful in the proof Theo-

rems 3.3 and 3.4.
We first recall the Brun-Titchmarsh theorem from [MV73, Theorem 2.

Theorem 3.12 (Brun-Titchmarsh). Let g be a positive integer and Z be an interval
with |Z| > q. For any residue class (a,q) = 1, let n(Z,q,a) denote the number of

primes in L congruent to a (mod q). Then, we have

2/7]

7(Z,q,a) < ————.
#(q)log &

The next lemma provides an upper bound for the maximum number of subsets,
the the primes in an interval Z can be partitioned so as to ensure that they satisfy

some given properties.

Lemma 3.13. Let q be a positive integer and T = (x,x + y) be an interval with

x> q and |Z| =y > q. Then, we have the following:

(a) Let

By =Bi(Z,q) = (3.15)

2|Z|
#(q) log &l

Then the primes of Z can be partitioned into at most | By | subsets S;, 1 < j <

| By |, such that no two primes in S; occupy the same residue class mod q.

(b) Let 3 < L <|Z|/q be a given parameter and

q
By = By(L = — )
2 2( 7Q) QO(C])IOgL

(3.16)

Then one can partition the primes in Z into at most [ By| subsets S;, 1 < j <

[By], such that primes congruent mod q in any S; are separated by at least
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Lq. More precisely, if p, p' are distinct primes in S; satisfying p = p’ (mod q),

then |p — p'| > Lg.

Proof. First, we prove (a). We assume that S;’s are empty to begin with and

partition the primes of Z in the following manner:

e For any residue class (a, q) = 1, consider the primes of Z congruent to a (mod q),
(at most By in number by the Brun-Titchmarsh theorem). Write them in in-
creasing order as {pi(a),...,p s, (a)} and place them in different subsets, i.e.,

put p;j(a) in S; for all j. It is possible there may not be these many primes.

e Repeat the above step for all coprime residue classes a (mod q).

Having done this process, it is clear that in any given Sj, no two primes can be

congruent to the same residue class modulo q.

Now, we prove (b). Let S;’s be empty sets to begin with. We do the following:

e Let (a,q) = 1 be a residue class (mod ¢) and enumerate the primes in Z,
congruent to a (mod ¢) in the increasing order as {pi(a), p2(a),...,pr(a)}. To
place pj(a), let jo = j (mod [By]) € {1,2,...,[B2]} and put p;(a) in Sj,. In
other words, put p;(a) in S1, p2(a) in Sy, etc., and put prp,141 again in S; and

continue this cyclically.

e Repeat the above step for all coprime residue classes a (mod q).

Claim: If p and p’ are distinct primes in S; with p = p’ (mod ¢), then |p—p'| > Lg.

To prove the claim, first note that since L > 3, we have By > 5, or [By] > 6.
Let p, p’ be distinct primes in S; satisfying p = p’ = a (mod ¢), where (a,q) = 1. It
then follows by construction that p = p;(a) and p’ = py(a), with i = ¢’ (mod [Bs]).

As i # ¢', we have |i — /| > [By] and therefore there are at least [By] > 6 primes
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(= a(mod ¢)) in J = (p,p] (or (p/,p]). Write |p — p'| = hq, with h > 6. By

2hq
©(q)logh

the Brun-Titchmarsh theorem, there are at most primes in J, which are

congruent to a (mod ¢). Therefore

2hq > B, = 2Lq |
©(q)logh ©(q)log L

from which it follows that h > L (as x/logz is increasing for x > e) and hence

|p — p'| = hq > Lq. This proves the claim and completes the proof of (b). ]

This leads to the following extension:

Lemma 3.14. Let q be a positive integer and T = (xz,x + y) be an interval with
x> qand |Z| =y > q. Let By = B1(Z,q) and By = By(L,q) be as in (3.15) and

(3.16), respectively. Then for any d | q, we have the following:

(a) The primes of T can be partitioned into at most ¢(d) | By | subsets Sj;, 1 < j <
|B1], 1 <i < @(d), such that in any S;;, the primes occupy distinct residue
classes (mod q) and any two primes are congruent mod d. When d = q, each

S;i has at most one element and the condition holds trivially.

(b) Let 3 < L < |Z|/q be a given parameter. Then the primes of T can be parti-
tioned into at most p(d) [Ba| subsets S;;, 1 < j < [Bs], 1 < i < ¢(d) such
that in any S;;, distinct primes congruent mod q are separated by at least Lq
and any two primes in S;; are congruent mod d. When d = q, any two primes

of Sji are separated by at least Lq (as any two are congruent mod q).

Proof. To prove (a), we apply Lemma 3.13 (a) to partition the primes of Z into
at most | By | subsets to ensure all primes in any subset S; occupy different residue
classes mod g. Then, we further partition each S; into ¢(d) subsets S;,;, 1 <i < ¢(d)
depending on the residue class mod d occupied i.e., the primes congruent to the same

class mod d are placed in the same subset. This ensures that for any p, p’ in S;;, one

68



has p = p/ (mod d). If d = g, then S, can have at most one element since primes of

S; were incongruent mod g.

For (b), use Lemma 3.13 (b) to divide Z into at most [Bs] subsets so that in
every S, primes congruent mod ¢ are separated by at least Lg. Again, further split
every S; into ¢(d) more parts depending on the residue class mod d occupied. This
ensures that the difference of any p, p’ in S;; is divisible by d. Again, when d = g,

it means that any two primes of S;; are separated by at least Lg. O

3.4 Proof of the main results

Now, we give the proof of Theorems 3.2, 3.3 and 3.4

3.4.1 Proof of Theorem 3.2

We prove the following proposition, which yields Theorem 3.2 as a corollary.

Proposition 3.15. Let « be as in (AP3) and {a,} be a sequence of supported on
the odd numbers. Let M and N be as in (H6). Then

(a) Suppose that |0]/x < 1/2¢* (this holds whenever ¢ < Qo/2). Then

PG ) e

neN

2

meM

Z ane(mna)

neN

(b) Suppose 6 #0 and M + q < x/|6|q. Then

(3 ) St

Proof of Proposition 3.15. Part (a) follows from the standard large sieve. As {a,}

Z ane(mna)| <

neN

D

meM
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is supported on odd numbers, a change of variable in the n-sum makes it

2

: (3.17)

>

meM

Z agnr1e(mn(2a))

neN’

where N’ denotes the set {(n —1)/2: n € N}, which is contained in an interval of

length at most N/2. We apply Lemma 3.11 (b) with
O = m(2a) = by /q+ B +7, where by, =ma, By, =md/z, v=0. (3.18)

To ensure that b,,’s are distinct mod ¢, M is divided into intervals of length ¢ (at
most [M/q] in number), which ensures that any m # m’ in such an interval are
distinct mod ¢. Then |5, — G| = |[(m — m)d|/z < ¢|d]/x < 1/2¢q = 6, since
|6]/z < 1/2¢*. Applying Lemma 3.11 (b) with ¢ = 1/¢ — 6 = 1/2q for all such

intervals, we get

1D ane(mna)| < %W <g+2q) > lazns|* = %w (g +2q> > lan|*.

meM | neN neN’ neN
n odd

For (b), again a change of variable reduces this to (3.17) and the n-sum runs over N’/
of length at most N/2. We use Lemma 3.11 (a) with a,, from (3.18). For m,m' € M,
we have |B,, — Bp| = [(m —m/)d /x| < M|§|/z = 0. Moreover, if b, = b, (mod q),
m # m/, then m = m/ (mod ¢) which means |3, — Bn| > ¢|d|/x = p. We also have

0+ p= M|§|/x+ q|d|/x < 1/q by hypothesis. Therefore, we get

2

Z Zane(mna) = Z

2

5 anactmn(2a))| < (545 ) 3l

meM | neN meM |neN’ neN’
n odd
< anl’.
( | |Q) Z o
This completes the proof. O
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Proof of Theorem 3.2. By the Cauchy-Schwarz inequality, we reduce to (3.6) and ap-
ply the large sieve to the second quantity. This gives the bound (3.7) with A(M, N)

as obtained from Proposition 3.15.

If (i) holds, then dy = 2 (as |d] < 10) and Proposition 3.15 (a) gives

M N M N N

If (ii) holds, then &y = |0|/5 and Proposition 3.15 (b) gives

AMN)=—+—=—+—

N T N T
2 19]q 2 500q

Comparing the above bounds, we see that the bound in (i) is larger. This completes

the proof. O

Next, we prove Theorem 3.3.

3.4.2 Proof of Theorem 3.3

We prove the following proposition, which immediately yields Theorem 3.3.

Proposition 3.16. Let a be as in (AP3), {a,} be a sequence supported on the
primes and M and N be as in (H6). Then

(a) If |0] < 10 and 149 < N < z/56q (so that 14q < M < z/56q), then

2
q 2q 2
Z Zane(mna) < N Z |an|”.
ey Pl ey v(q) p(29) 2q 10g2 log 5, =
m prime
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(b) If |6] > 10 and 2|0|q/5 < N < x/88|d|q (so that 22|6|q < M < 5x/8|d|q), then

2

q 2q
N Z Jan”.

~ (q) v(29) |9]q log 216]q log 16la neN’

D

meM

m prime

Z ane(mna)

neN

Proof of Proposition 3.16. We need to save logarithmic factors over both the vari-
ables m and n. For the n-sum, the large sieve for primes gives the saving and for

the m-sum, saving comes from the Brun-Titchmarsh Theorem.

Let us prove (a). We make use of Lemma 3.11 (a). As 2« = a/q + 0/, we have

(m—1)a

O = ma = by, /q+ B +7, where b, = 5

(3.19)
We have to ensure that b,,’s are all distinct (mod ¢), which is the same as 2¢ t m—m/.

We use Lemma 3.13 for this purpose. Let

2M

Bi=—— .
p(2q) log 3

From Lemma 3.13 (a) with Z = M and 2q in place of ¢, we can partition the primes
of M into subsets S;, 1 < j < |B;] such that primes in every S; occupy distinct
residue classes mod 2¢, i.e., b,,, m € S; are distinct (mod ¢). Moreover, the errors
Bm and B, are separated by at most [(m — m/)d|/2z < M|d|/2x = 6. We apply
Lemma 3.11 (a) for each S; with «,, as in (3.19) and § = M|§|/2xz = |§|/(8N). The
conditions 14¢g < N < 5/(46) = 10N/|| hold since |§| < 10. Therefore,

Z ane(mna)

neN

2

meM

‘m prime

q 2 2M 2
<B * n n
< B E |an|” = o(2q)log I E |l

q) log & 2 log 2

q 2(] ¥ Z’CLHP

~ () ©(29) 2¢ log 2,108 30

where we use M N = z/4 from (H6).
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To prove (b), we use Lemma 3.11 (c¢). Recall that a,,, = ma as in (3.19). Again,

by, = by (mod ¢) is the same as m = m/ (mod 2¢q). Let

M 2 2L
L=——>11 and B, = /i

2|0lq ©(2q) log L

Using Lemma 3.13 (b) with Z = M and with 2¢ in place of ¢, we partition the
primes of M into at most [By| < 10B5/9 subsets S;, 1 < j < [Bs] such that for
distinct primes m, m' in S; satisfying m = m/ (mod 2q) (or b,, = b,y (mod q)), we

have |m — m/| > 2Lq. This means that

= |08 a1

2x - ’

whenever b, = b,y (mod ¢) with m # m’. We already know that |5,, — S| < 6 =

M|é6|/2x from the proof of (a). Also

0+p=

<1/q,

Lq|é| N Mlo|  M(1+|d]) < 11M16|
x 2r 2z - 20z
since 1+ |0| < 11|6]/10, for |§] > 10 and M < 5z/8|d|q. Similarly, we have 0 + p =
M(1+16|)/2z > 1/Ng since |§] > 10 and M N = x/4. Therefore, the conditions of
Lemma 3.11 (c) hold and applying it for each subset S; (at most [By] < 10B5/9 in

number), we get

~ 20z
9 ©(q) log 1IM[3lq neN

Z 2 . 1032' 2q ( L|5|q> Z’ n’2

meM

m prime

Z ane(mna)

neN

20 ¢ 2¢ 2L ( L|5\q> Z a2
- A 20x n
9 »(q) ¢(2q) log L 10% TIMPlT men'

q 2q
N Z Janl?,

~ () v(29) |d]q log 20olq 10g 18]a neN
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where we use

x 2x 20x 80N TN
N+ ——=N+—=9N d log——— =log > lo .
TTIpg T MR8l BTl B Tolg
This completes the proof. n

Proof of Theorem 3.3. From Proposition 3.16, the bound (3.7) holds with

w?Q) (2q)21 xl ’ o< 10
q log 3 log &
AM,N) = I (’Sx
|0] > 10.

(q) (2q) 16]q log 5. log 57

Substituting 6y = 2 when |§| < 10 and d¢ = |d|/5 when [0| > 10, and comparing the

log factors, we get the required bound. O

3.4.3 Proof of Theorem 3.4

For Theorem 3.4, we will need the following proposition:

Proposition 3.17. Let 75\/x < Qg < /1000 and « be as in (AP3). Let Iy > 1
be a square-free positive integer and M, N be as in (H6). Let {a,} be a sequence

supported on odd numbers and Fy be as in (3.8). Then we have the following:

(a) Suppose ¢ < Qo/100 and let

1 L7 q S x/loQOJ
- ax{ x ,QO} =P (3.20)

10¢
% 2/10Q < g < Qo/100.

If 6] <10 and M > My (so that N < x/4M,), we have

D

meM

m prime

Z ane(mna)

2
< (M oll) + 128 M loq D5 a2
2 2 1

q neN
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(b) Suppose |§| > 10 (which implies ¢ < x/10Qy) and that M > 5x/28|5|q (so
that N < 7||q/5). Then

2
< ( (0) e l ) 0 Oq § :’ n,Q

¢ (lo
12 1 240)q"") log gy 2

D

meM

m prime

Z ane(mna)

neN

(c) Suppose 6 =0, i.e., 2a = a/q and that M > 200Qg. Then

Z ane (mna)| <

neN

2

meM

m prime

(o) = Fy(log) 2
2M — an,
< lo * 46] ) Z aal™

4 nenN

Proof of Proposition 3.17. The proceeds in a similar manner to Theorem 3.3.

We first prove (a). As {a,} are supported on odd numbers, the sum reduces to
(3.17). So, we apply Lemma 3.11 (b) with a,, given in (3.18). With M, in (3.20),
we have My > ¢ in both cases because ¢ < Qo/100 and Qg > 75\/x. We split M

into at at most [ M /M| intervals of length M. For any such interval M,, let

2My

By=——0
p(q)log *2

Let g = (lp, q). Then by Lemma 3.14 (a) with Z = Mg and d = g = (ly, q), we can
partition the primes of M, into at most ¢(g) | By | subsets S;; such that primes in
S;i occupy distinct residue classes mod ¢ and are congruent mod g (when g = g,
S;i has at most one element and the separation between a, is 0o). Therefore, for

m # m' in S;;, we have

ot — || =

a(m—m)+(m—m)5“ 29 M4 - 249
4q T q
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since g | m —m’ and

g
S L g < 2/10Q,,
Mold| _ J 250 = 250¢ ~ 25¢ 4 < /10Q

v ) Q@ _ 1 _ g

2/10Qy < g < Qo,/100.

Therefore,

9 2

= 3| S asre(2mna) g( 25q> ZI an|?.

meS;; TLG%

>

meS; ;

Z ane(mna)

neN

Summing the above over all 1 <7 < p(g), 1 < j < |B;] and over all intervals of

length My (at most [M/Mj] in number), we have

2
M 25 q
5 S metmmal] <[5t (5 +557) et
meM  [neN 0 neN
m prime
2M0 [M /Moy ( 25 q) )
< 5 Qn
<o) — T o(q) log 2 Z |an|
N(M + M, 25 M + M,
S 0) +_(p(g) 0 Z |an|2
qlog 12 g log nEN
(3.21)
where we are using My [M/My] < M + M,. Since (q,lp/g) = 1, one has
l l l
q _ 90( 0/9) qO/g < 30( O/Q)Fo(loq) (322>
vla) /g wldo/g) — /g
Therefore, from (3.21) (and using M N = z/4 from (H6)), we obtain
C MR
Z Zane(mna) < B ol ?\;]O Z| an|®
meM  [neN log neN
m prime
N 25 lo FO loq 2
M, n
+<4q+ 0( +1250)) %' |
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Using the bounds MyN/q < z/4q and x/4q < 250M,/4 with [y > 1, we prove (a).

The proof of (b) is similar to that of (a). Again, as {a,} are supported on odd
numbers, the given expression reduces to (3.17). We use Lemma 3.11 (b) with a,,’s

in (3.18). Let g = (lo, q) and let

. [ 32gx 5M} . 10gx 5M
M’:mm{—,M} and L:—Ozmln{ , } 3.23
° 3300lg 167lg EEENTERIP R

Now split M into at most [M/M]] intervals of length M/. For any such interval

b, we use Lemma 3.14 (b). It is seen that L < M{/q, since |6| > 10. We also have

10gx 10gx 10 - (75)%g )
> > > 300 M) <M
I — 33(|lg)* — 33(z/Qo0)* — 33 ’ ’ ’
) 5M 25 25

> 300, M! =M,

> >
16[d]q — 448([6]q)* — 448(x/Qo)?

as M > 5x/28||q, |0lqg < x/Qo and Q¢ > 75+/x. Let

since L > 300. Hence, [Bs| < 1+ By < 1.01B,. We apply Lemma 3.14 (b) with
Z = Mj, L from (3.23) and d = g = (ly, q) to partition M into at most ¢(g) [ Bs]
subsets S;;, such that any two primes in S;; are congruent mod g and distinct

primes m = m’ (mod q) satisfy |m —m/| > Lq. This implies

p, say,

T T

m—m')d Lqlé
whenever b,, = ¥/, (mod ¢q), m # m’. Also, in any S;;, we have |3, — S| <

M(|0]/z < 32¢g/33q = 6, say. Therefore, the a,,’s in S;; are separated by at least

(m—ma  (m— m/)aH - 9/4—0= 55, bm 7 by (mod g)

lam — ol = H
q T

Lidlg by, = by (mod q).

x
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It is easily seen that 33q > % > L'f‘q = p since 0| > 10 and L < 331(?% by

definition of L. Therefore, the large sieve applied to each 5;; gives

Z ane(mna)

neN

2.

mESjﬂ'

< (5 o) 2l = (5 * )

Summing over all S;; and all intervals M, we get

2

< 1015, [%W 0(9) ( 5T > Z ||

~ 10160 it g | (5 ) 2

L
¢(lo )( M)( )Fo loq 2
—101 1+ — NL + Qp,
Lig \' TR 510) TosL 2™

(3.24)

D

meM

m prime

Z ape(mna)

neN

where we use (3.22) in the last line. Now, we note that

M 2 LMN 2 2eM
1+ ) (NL+ ) < NL+ + +
( M 9]q Mg [0l Mpgldlq

< Lz N Lz N 2 N 2z maX{33M|(5\q 1}

T AM - AM) o |0lg  |dlg 32zg

< Sx N S +2x+ ax{%Q—x}

~ 64[0lg  64/0lg  |d]q " [0]q
133z 33M

=320 16y

where we use L/M < L/Mj = 5/16|d|q, substitute the value of M{ and then finally

use max{a, b} < a -+ b. Substituting the above in (3.24), we obtain

l 133 33M\ Fo(l
E E ane(mna) < 101f(/0) <32|; + 16 > : 501\31 E |an?

. . 0/9 q 9/ log ==

A IneN 16lg neN (3.25)

21x 25M (1 Fy(loq)
= (W@(ZOH 12 EO)) . T ) laf.
19l 0/ 108 35 nen

78



where we use M|, = min{32xg/33|0|q, M'} > 5x/28|d|q (since M > 5x/28|d|q) in the

log factor. This proves (b).

For (c), we have 2a = a/q, since 6 = 0 and we no longer have to bother about the
size of M (earlier we required My|d|/z < (1 —€)/q). Again, as {a,} are supported
on odd numbers, the expression reduces to (3.17) with 2a = a/q. We use Lemma

3.11 (a) with a,, from (3.18) and in addition, £, = 0. Let g = (I, q) and set

2M

Bj=——1
w(g)log &

Again, split M into at most ¢(g) |By]| subsets S;; so that primes in S;; are in-

congruent mod ¢ and congruent mod g. Then for distinct primes m, m' € S;;, we

have
(m—m'al|l _ g
o ] = [ 22222 > £
q q
Therefore
’ N
Z Z ape(mna)| < (5 + g) Z |an|.
mESJ‘,i neN neN
m prime

Summing over all 1 <1i < (g), 1 < j < [B], we obtain

2

<eB (5 +1) Tl

neN

< w(g)% (g + g) > lan)*

M
p(q) log =

D

meM

m prime

Z ane(mna)

neN

Proceeding in the same manner as the proof of (a) from (3.21) onwards with M = M,

and using (3.22), we will obtain the required bound. This completes the proof. [

Proof of Theorem 3.4. By the Cauchy-Schwarz inequality, the given expression for
S(M, N, a) reduces to (3.7), i.e., |S(M, N, a)| < A(M,N)?|al|||b]|, with A(M, N)

obtained from Proposition 3.17 according to the case under consideration.
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Let us first prove (a). We apply Proposition 3.17 (a) and (b) with [, = 2-3-5 = 30.

We then have ¢(ly) = 8 and %f)o) = .

If |6] < 10 (so that 6y = 2), Proposition 3.17 (a) (with My = x/250q) gives

AM,N) = (ﬂ 4 128z _8)  Fu(309) _ (5M N 8.192:1;) - Fy(15509)

1215 ' 250¢ log 552 9 00q /) 108 G507

If |§] > 10 (so that dp = |0]/5), Proposition 3.17 (b) gives

AM. ) = (25M 4 20z )  Fy(309) - (5M . 6.729:)' Fo(1580q)

2 1 5[0 |q 252 9 doq

10g 15702 10g a5

Comparing the estimates in the above two cases and choosing the weakest amongst

them, we get the desired bound by using Fy(30q) < Fy(15d09).

The proof of (b) follows in the same manner as (a) above with Proposition 3.17

(a) (as ¢ > x/10Qq implies |§] < 10) applied with My = Qo/25.

We now prove (c). Since 2a = a/q+ d/x, it follows that o = a’/¢’ + 0 /2x, where

either ¢ = q or ¢ = 2¢q. So we write

(mna’) (mné) (mna’) =1 (27rimn5>k
e(mna) = e e =e Z —
q 2x q' prd k! 2x

Therefore, we obtain

S(M, N, ) kz - (WS) S nfa, S mbbe (mna) (3.26)

neN meM

From (3.7) with the {a,}, {bn} replaced by {n*a,}, {m*b,,} and apply Proposition
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3.17 (c¢) (as 6 = 0 above) with Iy = 30 to get

Z n*a, Z mPb,,e (mﬁa’)‘

neN meM q
1/2
4 N\ Fo(309)
S(PMemtg® Fan Y| - [1{m" b 3.27
—( 51 ) <1Og% {n"an}| - [{m b} (3.27)
1/2
sM 22\"* [ Fy(30q)
S T === @N)FEeM)M|al - ||b
_<15+q) (log% 2N)*(2M)"|all - [|b],

since [[{n"a, }|| = (Zneank]anP)l/Q < (2N)¥||a|| and similarly we have ||[{m*b,,}| <

(2M)*||b]|. Implementing this in the above and substituting in (3.26), we find that

1 (4xldMNNY (sM 20\ 2 [ Fy(309)\
ISM N, )] < > +— — | lall- bl

T = k! x 15 q log i
1/2
sSM 20\ [ Fy(30
<o (B2 (RO al- o,
15 q log i
where we use M N = z/4 from (H6). This completes the proof. O
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Chapter 4

Correlations of certain arithmetic

functions

4.1 Introduction

In this chapter we study partial sums of products of shifted arithmetic functions of

a certain type. We make use of the convolution method to establish these results.

Definition 4.1. A function F': N — C is called an arithmetic function. It is called

multiplicative if
F(mn) = F(m)F(n) forall m,n €N with (m,n)= 1.

Definition 4.2. Let F and G be arithmetic functions. Then the Dirichlet convolu-

tion of F and GG, denoted by F' x (G, is defined by

(F+G)(n) =Y F(d)G (g) , forallneN.
dln

Let F' and G are arithmetic functions and h € Z. In [BG15] the authors obtain
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an asymptotic formula for the sum

> F(n)G(n - h), (4.1)

n<x

where F'= fx1 and G = g x 1 and F(p) and G(p) are close to 1 for primes p. We

give an improved asymptotic formula in Theorem 4.4.

One of the methods of estimating the sum (4.1) is the Convolution method. We

write F'(n) = >, , f(di) and G(n —h) =32, .., g(d»), so that the sum becomes

D> Fldglds) = D fldglds) Y, 1

n<z d1|n (d1 d2 \h n<x
da|n—h n=0 (mod d1)
n=h (mod d2)
= > fldi)g(dy) <— 0(1)) :
dy,d2<z [d1, da]
(di d2)|h

[d)o(d2) o1 estimates the error
d1,d2]

Then one proves that the main term is x Z( da o)

term. The same method can be applied to obtain an asymptotic formula for

S W )Gln = h), (12)

n<x

where p is the Mobius function defined by

1, n=1,

p(n) = (=1)", m=p1...p,, p; distinct.

0, otherwise

Much work has been done on this and related problems. In [Mir49b], Mirsky consid-

ers the sum > _ Fi(n+k)...Fs(n+ k), where F; = 1% f; and f;(p) = O(p~7*°)

n<x

for all j. In [Ste97], Stepanauskas considers (4.1) under a weaker hypothesis that

>,(f(p) +9p) —2)/p < co. In [SS07], Stepanauskas and Siaulys also consider
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the sum > _ F(p+ 1)G(p+ 2), where the sum runs over the primes. In [CMS16],

p<z
Coppola, Murty, Saha consider the sum (4.1) under a general condition that F' and
G admit a Ramanujan expansion. More results of this kind are found in papers of

Carlitz [Car66], Choi and Schwarz [CS02], Katai [K4at69] and Rearick [Rea66].

Since the aforementioned results are proved under different hypothesis (plural),
it is difficult to compare the strength of our results directly with earlier results.
However the functions like p4(n)/n® and o4(n)/n® serve as a common thread between

them and our Theorem 4.4.

4.2 Main results

In [BG15], Balasubramanian and Giri proved the following asymptotic formula for

the sum (4.1). Their main result is the following:

Theorem A. For arithmetic functions f and g, let E¢(x) = > |f(n)| and Ey(x) =

n<x

> lg(n)|. Then if F=1xf and G = 1% g we have

n<x

> F(n)G(n—h) =xC(h) + O (hEs(z)Ey(x)) .

n<x

where

J(d)g(dz)
=2 dl, dz

di,d2>1
(d1,d2)|h

Now we define a class of arithmetic functions.

Definition 4.3. For any a > 0, denote by A, the family of arithmetic functions ¢
for which there is a positive real number C' such that satisfying |g(n)| < £ for all

n € N.
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Henceforth, assume 0 < o« < 3 and define:

ri=e a < min{1, 8},

' %logx, a=B<lorl=a<p,

E(z;a,B) = (4.3)
log? z, a=p=1,

1, l<a<p.

We prove the following;:

Theorem 4.4. Let FF = fx1, G=gx1, with f € A, and g € Ag, with 0 < o < f.

Then, uniformly for all h € 7 with |h| < 5, we have

Y. F()G(n—h)=(z— H)C(h) + O (E(z;a,0))

H<n<lzx

where H = max{h,0} and

_ f(d1)g(d>)
CW= 2 Thnal
(d177d227|h

Moreover, the O-constant in the error term depends only on o and .

Remark 4.5. Theorem 4.4 also covers h = 0. In this case, there are no restrictions
on dy, dy in the expression for C(h). Also, since f(a) < d7® and g(b) < d;”, the
series for C'(h) is well-defined and admits a product expansion whenever f and g

are multiplicative, i.e.,

()9 (™)
O(h) - H Z pmax(el,eg) )
p e1,e2>0
min(ey,e2)<vp(h)
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oo, h=0,
where v,(h) =

m, h#0andp™ || |h|

This method also applies to study the sum (4.2). Let

Y 0<a<1/2,
Ei(z;a) = (4.4)

o2, a>1/2
In [BGS17], we prove the following:

Theorem 4.6. Let G = g* 1, with g € A, for some a > 0. Then, uniformly for all

|h| < 5 and e > 0 we have

> 12n)G(n—h) = (x — HYK(h) + O (¢°E (z;0)) (4.5)
where H = max{h,0} and
_ v Mag(d)
K(h) = a%l T

(aZ,b)|h

Remark 4.7. Later in Section 4.4.5, we shall indicate how the x¢ in the error term

of Theorem 4.6 may be replaced with a power of log x provided « is not close to 1/2.

Remark 4.8. Theorem 4.6 covers the case h = 0. Also, K (h) is well-defined since

g € A,. Again, for g multiplicative, K (h) admits a product expansion

K(h) =]] > %

D max(2e1,e2)<vp(h)

We also prove asymptotic formula for the shifted sum of product of k arithmetic

functions Fi, ..., Fy, with F; =1« f; and f; € A,. We have the following result:
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Theorem 4.9. Let 0 < o < 1 and k be a positive integer satisfying k = o (logloglog x).
Let Fy, ..., Fy be arithmetic functions satisfying F; = 1 x f;, with f; € A, for all
j. Let ay,...,a, be integers satisfying |a;| < x/2. Then, for any € > 0 and x

sufficiently large (depending upon € and k)

(a)
Z Fi(n+a)...Fy(n+ap) = Ciz + O, (7%,

n<lz
where k
o= ¥ M,
di,...,dg>1 [ 14 k}
(dmdj)‘ai—aj
(b)
Z F1(n2 + al) . Fk(nQ + ak) = Chx + O (I,l—a—‘,—e) ’
n<z
where k
H j=1 fj(dj)
Cy = Ady, ... dy) 2RI
2 dzd>1 (s k)[dla---7dk]
Tyeens k>
(ds-dy)ai—ay
Here \(dy, . ..,dy) denotes the number of solutions modulo [dy, ..., dy] to the
system of congruences n* = —a; (mod d;), for all 1 < j < k.

Remark 4.10. The method can be extended to study > . Fi(Pi(n)) ... Fi(Pk(n)),

where P;’s are polynomials with integer coefficients for each j.

Remark 4.11. The condition f; € A, and the bound for A from Lemma 4.25
ensures that C; and Cy are well defined. If the functions f; are multiplicative, the

sum C; admits the Euler product

Hf:l fi(p™)
=1 >, pr—m
D e1,...,e >0

min(e;,e;)<vp(a;—ay)

The constant C; can be computed in the following manner: suppose for simplicity

that a; = j and that f; = f, where f is multiplicative and supported on square-free
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numbers. This means the d; are square-free. First, consider those d;’s free of primes

< k. Then they would be pairwise coprime and therefore system of congruences
_ . . k )

n® = —j(mod d;), 1 < j < k has exactly \(dy,...,dy) = [[;_, [T <1 + (7]))

solutions modulo [dy,...,d;] = [[d;. The contribution for the d; composed of

primes less than £ has to evaluated separately according to local constraints. This

gives

i (1+ (3)) £67)

pmax{e1 ..... ek}

c-all| ¥

p>k |\ e1,...,ex€{0,1}
min{e;,e; }=0

=A[] 1+% (mﬂi(%)))

p>k

where As corresponds to the finite Euler product for primes < k.

We now consider the sum

ZF(p—l—h)G(p—l—k). (4.6)

p<z

We prove an asymptotic formula for (4.6) in the particular case F'(n) = G(n) = @

and h = 1, k = 2. The same method applies for F', G satisfying ' = f*x1, G =gx*1

and f, g in A, and Ag, respectively for all values of h, k. We prove:

Theorem 4.12. Fiz A > 0. Then

pp+2)plp+1)  li(z) 2 x
2 p+2 p+1 2 H(l p(p—l))+0<(1ogx)‘”>’

p<w

where the O-constant depends only on A. Here li(z) = [} kflgtt.
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Remarks and comparison to previous results

Now, we compare the main results of this chapter with earlier results of a similar

type.
Let f € A, and g € Ag with 0 < a < < 1. Then Theorem 4.4 gives:

ZF G(n—h) =zC(h)+ O(E(x;a, ),

n<x

for all h with || < §. Note that Theorem A of [BG15] gives the error term

O(hx?=2=P), so our result improves this in terms of h, a and 3.

Next, we take F(n) = n/¢(n) and G(n) = o(n)/n in Theorem 4.4, so that
flp) = p%, f(p*) =0 for k > 2 and g(n) = 1/n. Thus, we can take @ = 1 — € and

B =1 in Theorem 4.4, to get

Corollary 4.13.

n n 2 1
;%w Ol H ( ]ft 1)) +O(z). (4.7)
Z: o) oln+l) _ H ( 257:11)) + O(x°). (4.8)

We remark that Stepanauskas [Ste97] has proved (4.8) with an error term O <W) ,

which is much larger than O(z€).

Taking F(n) = o4(n)/n®, G(n) = o4(n)/n' in Theorem 4.4, where s < ¢ and
os(n) = 4, d°, we have f(n) = 1/n°® and g(n) = 1/n’. This gives

Corollary 4.14. Uniformly for |h| < N/2, we have

Z os(n) oy(n+ h) _ (N_H)C(s—l—l)((t—i-l)

ns  (n+h)t C(s+t+2) T—(s+t41)(h) + E(N3s,1),  (4.9)

n<N
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where the O-term depends only on s, t and is independent of h. The error term is

E(N;s,t) defined in (4.3).

We compare (4.9) above with Corollary 1 of [CMS16], where the error term is

dependent on A, and is given by

4

O (N'=#(log N)*%), s<1,

4 O(log® N), s =1,

O(1), s> 1.

Similar remarks apply for Corollary 2 of [CMS16].

Remark 4.15. Letting G(n) = ¢(n)/n in Theorem 4.6 with A = 0, we have

Z,ﬂ(n)@ =z ][] (1 - ]%) (1 T i 2p) +0 (2. (4.10)

n<x p

Now, observe that the Dirichlet series of u?(n)e(n)/n is

i p2(n)e(n) _ C(s)K(s)
nlts o

n=1

where K (s) is absolutely convergent in R(s) > 0. Due to Landau’s theorem,

the error term of (4.10) is Q(x'/27¢), if the zeta function were to have a zero

close to Re(s) = 1 and hence cannot be improved other than terms of the type

exp (—c(log £)?/5(log log z)*/%), unless one assumes a good zero-free region for ((s).
(—c(log glog g g

For 0 < a <1, let

N e A 1
aa(n)—Zd and gpa(n)—z o = H(l p"‘)'

din dln p|n

Theorem 4.9 leads to the following when k& = 3. The constants are computed by the

method mentioned in remark 4.11.
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Corollary 4.16.

oa(n+1) o4(n+2) ou(n+3) .
;(T“Fl) (n+2)* (n+3) AxH( Oé+1_1)+0(gc ),

ol +1) gol?+2) pal?+3) _ o (34 (3) 4 (5) +(3)
(n2+ 1> (n?2+2)* (n?2+3)~ potl

n<x p>2

4 O(ZEl_a+€),

where A, B are Euler factors for p =2 and (5> 1s the Legendre symbol. The Fuler

product above is ] <1 - z%> 1T <1 - Z%) 11 (1 - %) :

p=1(mod 24) p=13,17,19 (mod 24) p=5,7,11 (mod 24)

Also, Theorem 4.12 improves upon Corollary 1 of [SS07], where the authors

li(z)

W)’ which is much larger.

estimate the error term by O (

4.3 Preliminary lemmas

In this section we give some preliminary lemmas for the proof of the main results.

We assume throughout that 0 < o < 5. Recall that

ri=e, a < min(1, )
' %logx, a=pf<lorl=a</p,

log? z, a=p=1,

1, l<a<p.

The statements of the lemmas in this section stand true for all 0 < o« < 5. However,
we give the proofs of these lemmas only in the case a < min{l, 3} for ease of
exposition. The proof follows with minor changes in the other cases. When a <
min{1, 8} we find that

E(z) = O(z'™®).
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We begin with the following:

Lemma 4.17.

(a) If y > 1, then

% =0 (%)

mn2>y
(b) If x > 1, then

S= > mzo(@)

[a,b]>z

Proof. Let us first prove (a). Since 5 > « the sum equals

1 1 1 1 1 1
ZnHﬁ Z m1+a:ZW Z W—I—ZnHﬁzmHa

n>1 m>y/n n<y m>y/n n>y m21
1 1 1 —a
=0 <E2W> +0 (ZW> =0(y™),
n<y n>y

as required.

For (b), we split the sum depending on [ = ged(a, b). Write a = ml and b = nl,

so that

1 1
S T 2 prantd

>1 mn>x/l

Thus, using (a)

1 E(z/l) 1 1

<z >z m,n>1
—a 1 1 —a
€Dt D e €0
<z >z
This completes the proof of (b). O

Next, we have the following lemma:

Lemma 4.18.

93



(a) If y > 1, then

mn<y

(b) If x > 1, then

1 E(z)
Z aobB :O(luﬁ)'
[a,b]<z
(a,b)=l

(c) If x > 1, then

> 5 =0(Ew).

labl<e

Proof. For (a), we write the given sum as

1 1 1 1 y\i-o »
Zmanf’:gﬁ ﬁ:O<Zﬁ(%> ):O(yl )
n<y

mn<y m<y/n n<y

In order to prove (b), we again split the sum depending on the value of | = ged(a, b)

and use (a). Writing a = ml and b = nl as before, we find that the sum equals

1 1 1 s\l
[otB monp S Jats (7) ’
mn<z/l
(m,n)=1
which proves (b).
Now (c) follows directly from (b). O

The preceding lemmas lead us to:

Lemma 4.19.

(a) Lety > 1 and |k| < 4. Then

S= 3 Y e = 0(Ew)

K<m<y a|m
blm—k
ab>y
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where K = max{k,0} and the O-constant is dependent only on o and f3.

(b) Let x > 1 and |h| < §. Then

So= > Y c*d’=0(E(@)

H<n<z ¢|n
dln—h
[e,d| >z

where H = max{h,0} and the O-constant depends only on «, f3.

Proof. We first prove (a). Set m = ac, m — k = bd and write the sum in terms of ¢

and d to get

-8
m\— (m—k
s=> X (5 <d>
K<m<y clm
dlm—k
cd< mm=k)

Since cd < @ < m — k, it follows that m — k > cd. Therefore

S1 K Z *d’ Z m=*(m — k)",

cd<y m=0 (mod c¢)
m=k (mod d)
cd+k<m<y

The congruences on m reduce to m = r (mod [¢, d]). We now replace m by m + K,

so that the sum over m is at most

< Yoo o m < Y mh

m=r' (mod [c,d]) m=0 (mod [c,d])
cd<m<y—K cd<m<2y

Let | = ged(e, d) and write m = j[c, d], where [ < j < [02—‘2}. The sum over m is then

< [e,d]7*7F Z i,

._ 2
lﬁjﬁﬁ
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which means that

S, <<Zy Py T deE <<Zf” et N P
l,j

[e,d]<2y/j , [e,d]<2y/j
l<J (c,d)=l I<j (c,d)=l

Applying Lemma 4.18 (b) to the inner sum above, we get

1
-« -«
S1<y Z]1+5Zl1a<<y ZW<<E@)’

J I<j J<y
which proves (a).

For (b), we split the given sum depending on (¢, d) = to get

2.2 erdt= 3 3 ) (e

H<n<z ln ¢n H<n<Zz Ilh lcn
lln—h dln—h ldln—h
cd>lz cd>z/l
(c,d)=l (e,d)=1
< E [ b E E cdP.
lh H<n<z o7
n=0 (mod ) d|nsh h
cd>z/l

Let n/l =n’ and h/l = I’. Then the given sum becomes

Sy Y U N Y ed

lh H/l<n/'<z/l c|n’
dln'—h'
cd>z/l

Hence by (a), it follows that
S <Y I PE(@/l) <2 —— < E(x).
1|k I|h

This proves (b).
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Now we give the preliminary lemmas for the proof of Theorem 4.6. Recall that

'Y 0<a<1/2,
Ei(z) = Ei(z; ) =

o2 a>1/2.

We have the following:

Lemma 4.20.

(a) Let c be a positive integer. Then

s= 3 Zb‘“=0<%€ (g)aEl(y)>.

H<n<y ca?|n
bln—h
a?b>z

(b)
Y Y b =0E E().

Proof. For (a), observe that as ca® | n, we have ca? < y. Split the sum over a, b

dyadically i.e., let a ~ A and b ~ B, where n ~ x denotes z < n < 2x. Then

Sap= > | D1 D vl <B™y Y >

H<n<y \ ca?n bln—h H<n<y ca?|n
a~A b~B a~A
y y1+e
< yB | < y*B° <— 0@ ) .
yBY Y 1<y B (o5+00) < T
a~A H<n<ly a~A

n=0 (mod a2c)

Summing the above over A = 2% and B = 2% over powers of 2 with A < y*/?, B <y

and A’B > z, we get

1+e 1+e 1+e €
Y 1 Y 2a-1 _ Y —172 Y (Y\“
S = 3 < Yoot Ly <<—(—) Ei(y).
c Acsay? AB~ cz® = cz® c \z
B=2R<y A<yl/?
A2B>z
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For (b), let (a*b) = [3ly, with [ square-free. This means that a = kil and

b = mli?ly, where [a?,b] = k*m(l1l3)?. Also, for fixed [y, lo, the given sum is

E E pe
H<n<z  k21212|n
ml2la|n—h
kzm(l1l2)2>z
B2ls]h

Write h = '[3ly and n = n'l3ly, so that the sum becomes

< Y Yoo < (Bl > >ooome

H<n<z k21212|n H/12la<n/<z/(1212) Iok?|n’
n=0(112)  mi2lyn—h mln'—h'
E2m>z/(l112)? E2m>ax/(l112)?

z = —£= and ¢ = [, we find that for

Applying (a) to the above sum with y = BBE

z
121y

a fixed [; and [, the sum becomes

2Ly (=) etE (1)
< (hl) (5%52) ? 1(@2

Summing over /3], < x, we obtain the required bound. O

Remark 4.21. In the last step of the above proof, we sum over all [?l, < x instead

of just 2l | h. This means that the O-constant is indeed independent of h.

Lemma 4.22. With the notation as before, we have

(a)
ST b = O(Ei(y)).

a?b<y

(b)
> b =0(E(x)).

[a2 bl <a

Proof. For (a), the proof follows in the same way as that of Lemma 4.18 (a).
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To prove (b), let (a?,b) = [2l,, where I, is square-free. Write a = kljl, and
b = ml3ly like the proof of Lemma 4.20 (b). The given sum then reduces to that of

(a). Summing over 2l < z gives us the desired result. O

Lemma 4.23.

(a)

3 a%;lw _0 (El(y)> ‘

a?b>y Y

(b)

Py o (7))

Proof. For (a), we follow the proof of Lemma 4.17 (a). For (b), let (a?b) = [?i,
with [y square-free. Then a = klil, and b = ml%lg. The sum then reduces to a sum

of the kind in part (a). Summing over [y, [ then gives the desired result. H

Definition 4.24. Define a multiplicative function H(n) by
[
H(n)=]]p" . (4.11)
pln

In particular, for s square-free, we have H(r?s) = r.

Lemma 4.25. Let a, m be positive integers and h # 0. Let A\(m,a,h) denote the

number of solutions modulo m to the congruence ax® = h (mod m). Then
A(m,a,h) < H(m)T(m),

where T stands for the divisor function.

Proof. 1If (a,m) > 1, then (a,m) | h. Canceling that factor, the congruence becomes

azr? = hy (mod m,), (4.12)
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where m; = m/(a,m) and (my,a;) = 1. Note that any given solution to (4.12) lifts
to a unique solution of the congruence az? = h(mod m). As (my,a;) = 1, (4.12)
is the same as 2> = k (mod my). Writing m; = ¢i¢q2, with ¢ being the product
of prime powers p' with v,(m;) < v,(k) and go being the product of those prime

powers p' with v,(m;) > v,(k).

The equation z? = k (mod ¢;) is same as 2 = 0 (mod ¢;) having at the most
H(q,) solutions. Also, 2 = k (mod ¢») has at most 7(gz) solutions. Combining the
two, we find the total number of solutions to be at most H(q1)7(q2). As ¢ | m, we

get H(q1) < H(m) and since 7(go) < 7(m), the proof is complete. O

Lemma 4.26. For H(n) as in (4.11), we have

0(1)7 B > 1,
Z Hwrin) = { O(log” 2), B=1, (4.13)

O(x'P(logx)*), 0<pB<1.

\

roof. For any n < x, we can write it uniquely as n = r°s, with s squarefree.
P F < z, te it 1 25, with f

Moreover, we then have H(n) = H(r?*s) = r. We have

ZH(n)T(n) = Z r-7(r?s) < Z r-7(r?) Z Z r-7( log

n<lx r2s<zx r<\f s<x/1"2 r<z
<xlogazz —xlogxz Zl—xlogxz Z !
r< r<\f k|r? k<z r2=0(mod k) "

r<f
Now, write k = a?b, with b square-free, so that k | r* implies ab | r. So, the above is

§ § 1 2 § 1 4
T log X , T lOg T ab < .r(log .T)

a?b<zx r<x a?b<zx
r=0 (mod ab)

The result now follows from partial summation. O
Lemma 4.27. Let k and L be positive integers. The number of tuples (dy, ..., dy)
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of positive integers satisfying [dy, ..., d] = L is at most T(L)*.

Proof. Let J(L) denote the number of solutions to [dy,...,dy] = L. Since J is
multiplicative, it is enough to look at prime powers. For L = p°¢ the number
of solutions to [p,...,p%*| = p° or max{e;,...,ex} = e is clearly bounded by

(e + 1)k = 7(p°)*. The proof now follows from the multiplicativity of J. ]

4.4 Proof of the main results

4.4.1 Proof of Theorem 4.4

We have

=2 2 J@eb= >, > flag®)+ >, >, fla)g

H<n<lz aln H<n<z [a,b]<z H<n<z [ab]>x
bln—h

The second term on the right is O(E(x)) by Lemma 4.19 (b). The first term is

> sas) 3 1= 3 e (o +00)

la,b]<z H<n<z [a,b]<z
n=0 (mod a) (a,b)|h
n=h (mod b)

Also, the O-term above is O (E(x)) by Lemma 4.18 (c¢). The main term is then

m Yy f[c;) / o) Y f([c;)gb%b).
(a,b)|h ’ (a,b)|h ’
la,b]>x

Clearly, the first term is (x — H)C'(h) and the second term is O(E(z)) by Lemma
4.17 (b). This completes the proof of Theorem 4.4.
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4.4.2 Proof of Theorem 4.6

The given sum can be written as

S= 3 WmGh-h = 3 3 ula)g) =T+ T

H<n<lzx H<n<z o?|n
bin—h

where T} corresponds to [a?,b] < z and T}, corresponds to [a?,b] > z. We note that

Ty = O(z°E;(x)) by Lemma 4.20 (b). Now

L=Suast) X 1= 3w (g +OW) =T + T

n=0 (mod a?) [a?b]<z
n=h (mod b) (a?,b)|h
H<n<lzx

We first estimate T3, which is

Ty=(c—H) Y ”Eggf’;fuo vy l9(0)

The main term is (z — H)K (h) and the error is O (F1(x)) by Lemma 4.23 (b). Also,

T, =0 Z 19(b)

[a2,b]<z

= 0 (Ei(x)),

by Lemma 4.22 (b). This completes the proof of Theorem 4.6.

4.4.3 Proof of Theorem 4.9

For (a), denote the sum by S; and let L be the LCM of dy, ..., d,. Then

k k k
Si=>_ Y 116y => > TIr@) + > > )
n<z dj|n+a; j=1 n<x dj[‘/n<+aj j=1 n<z dj|nta; j=1

L>zx

:Sn + 512.
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For the second term, we have

SO MDD M URNAEES 3D

n<x LlH(TL+aJ) [d1 ..... dk n<x L|H(n+aj)
L>z L>x
Lz ot Z T (H(n - aj)) < glmote,
n<x

since by Lemma 4.27, the number of dy, . .., dy satisfying [d;, ..., dx] = L is at most
2

(L)% = O(xlosﬁgm) = O(z¢). This is because L < z*, 7(n + a;) < psies and

k = o(logloglog ). The first term is

k
SH == Z Hfj(dj) Z 1
di,...,di j=1 n=—a; (mod d;)
L<z n<x

/
Note that the n-sum is nonempty <= (d;,d;) | a; — a; for all 4, j. We write Z

to denote this condition. In this case, the solution is unique modulo L and hence

Su= Y [0 X e ST (g o)

LSI n<z L<z

(4.14)

The first term in (4.14) gives the desired main term Cjx. The series for C; is

convergent owing to the fact that f;(d) < d™*. Using f;(d;) < d;* and the fact
2

that number of d;’s satisfying [dy,...,d;] = L is at most 7(L)F < pEloEr & x€, we

find that the second O-term above is at most

1
< 1_1—&-5 Z m < xl—a—i—e‘

L>z
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Similarly, the third error term in (4.14) is

erLfoz < xlfo¢+e'

L<zx
Combining the estimates Sj; and Sjo, we prove (a).

Now, we prove (b). Denoting the given sum by S,, we have

Y S =3 Y (Lo + Y S [[5@)

n<z di,..,dp j=1 n<x di,...,dp j=1 n<x di,...,dp j=1
dj|n2+aj dj|?’L2+(lj d]-|n2+aj
L<z L>zx
= Sa1 + Sao.

As in (a), the second term Ss; is at most

pey ¥y ([Mo)'<x ¥

n<x LIT](n%+a;) [d1,..,di]=L n<z [|[I(n?+a;)
L>x L>z
&L xmote ZT <H(n2 + aj)> < gplmote,
n<x

where we again use Lemma 4.27, 7(L)* < 2 and that 7 ([[(n + a;)) < z¢ from the

proof of (a). The first term is

Su= >, [[H@) > 1

dl,...,dk j:l nQE—a' mod d;
L<a st )
To have a solution to the congruence n? = —a; (mod d;), first we need to have

/
(di,dj) | a; — aj for all 4, j. Again, we write Z to denote this condition. Let

A(d1, ..., d;) be the number of solutions modulo L = [dy, ..., d] to the system of

104



congruences n? = —a; (mod d;). Therefore,

x
S= 3 Al d) [T () (5 +0(0)
di,...,dg j=1
L<lx
¢ Mdy - di) TT—y fi(dy) ¢ Mdy, - d) T £i(d)
=T ) T tr ) L (4.15)
di,...,dx di,....dg
L>z
k
+ > My, di) [ £i(d))
dlL,.de j=1

The first term of (4.15) gives the main term Coz. We shall estimate the second and
third terms of (4.15). We note that the system of congruences n? = —a; (mod d;)
reduces to n? = b(mod L) and this has at most H(L)7(L) solutions modulo L by

Lemma 4.25. Hence, the second term of (4.15) is at most

H(L)T(L
X Z L1+a xlfa Z % < xlfo‘(log Jfk)6 — xlfa(k IOg ,I‘)ﬁ
r<L<zk L<ak
< :L,l—a—i—e?

from Lemma 4.26 and that k£ = o(logloglog ). The third term of (4.15) is at most

L<z

by Lemma 4.26. Combining the estimates for S5, and Syy, we complete the proof.

4.4.4 Proof of Theorem 4.12

Write the given sum as

gy AP DALY s o)
p<z p+2 p+1 p<z a|p+2
blp+1

=11 + 1y + 15,
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where T} corresponds to [a,b] < (logz)?, T for (logx)* < [a,b] < x and Ty for

[a,b] > x. Now

T3<Z Z ab log x)

n<z a|ln+2
bln+1
[a,b]>x

by Lemma 4.19 (b). Moreover

<y ) %Z > %(%jLO(l)):O(%

n<z ajn+2 (a,b)=1 (10g l’)

bln+1 (log z)4 <[a,b] <z
(log )4 <[a,b]<z

Next, we have

a)u(b a)u(b
22%22%21_

P<z [a,b]<(logz)4 [a,b]<(log )4 p<z
alp+2 p=—2(mod a)
blp+1 p=—1(mod b)

For p # 2, the p-sum survives only if (a,b) = 1 and a is odd. Thus

ne 3 (o (wan)

(a,b)=1
ab<(log )4

(4.16)

(4.17)

(4.18)

by Siegel’s theorem on primes in arithmetic progressions. Clearly, the O-term is

O (W) and the main term is

li(x) u(a)u(b)_l.() 3 pu(a)p(b)

— _li(x —
~ abyp(ab) ~ aby(ab)
(a,b)=1 (a,b)=1

ab>(log x)*

The second term is O <W> h(;) I1 (1 —

p>2
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4.4.5 Replacing z¢ by a power of logz in Theorem 4.6

Now, we sketch how z¢ can be replaced by a power of logx in the error term of
Theorem 4.6, provided that « is not close to 1/2. We recall that ¢ comes from

Lemma 4.20, and therefore we restrict our attention to this lemma. Recall that

S = Z Sap, where Syqp= Z Zu(a)b’o‘.

A=2k<y1/2 H<n<z o?|n

B=2!<x b|n—Ah
2 an~

A*B>x B

Here A and B run over powers of 2 and satisfy A < /2, B < z as well as A2B > z.

Case I: 209 < A < 294, In this case, Lemma 4.20 (a) tells us that Sap <

21t /(AB%). Summing A, B over powers of 2, we have

0.55—0.1a+¢€
1 x , a>1/2
S<<x1+6 § ABa < x17a+e E A2a71 < 7

20-05 < A< 0.45 20.05 < A< ,0.45 1’0'95_0'9a+6 a < 1/2
x/A_2<B§x o ’ ’

and the above is < Ej(z) whenever € < 0.1|a — 1/2].

Case II: A < 2%, In this case, we claim that

z(log A)'°

S
A,B << ABO‘ Y

To prove it, write n = a®c (since a® | n) and let
T:{(a,b,c,d):aQC—bd:h, aNA,bNB} (4.19)

This means that Sap < B~|T|. Since bd = a’c — h < 2z and a*b > x, we have
d < 2a®> < 2%, To bound the number of elements in T, first fix a, d, so that

the congruence a’c — h = 0(mod d) has at most (a?, d) solutions in c(mod d).
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As ¢ < x/a?, the number of choices for ¢ is at most (=5 4+ O(1)) (a?,d) and since

a < 299, d < 2%, the O-term can be absorbed into the main term and therefore

r(a* d) _ x(logz)'®
T< Y =g < 7
= a d A

d<2a?

0.05 A2
, A

which proves the claim. Summing Sy p over A < x B > x over powers of 2

now gives

x0.95—0.9a, a > 1/2

1
S < z(log )™ Z A5 < (log z)"

Aga0? e, a < 1/2.
<z

< Ey(z)(log )™

Case IIL: A > 2%% B > 2%2 Here again, Lemma 4.20 (a) gives Spp <

1% /(AB%) and summing A and B over powers of 2, we get S < E;(z).

Case IV: A > 294 B < 292, In this case, we again claim that

z(log B)!°

S
AB < T ga

Just as in Case II, we need an upper bound for |T'|, with T" as given in (4.19). Since

° one has ¢ < 2%!. Fixing ¢ and b, Lemma 4.25, tells us that

a’c < x and a > 2%
a’*c —h = 0 (mod b) has at most L(b)7(b) solutions for a (mod b). Since a ~ A, the
number of choices for a is at most (£ + O(1)) L(b)7(b). The O-term can be ignored
again as b ~ B < A. Also, since a’c < x, we have ¢ < x/A% Summing this over

¢ < x/A% and b ~ B and applying Lemma 4.26, the claim follows. Now, summing

A and B over powers of 2 in the relevant range, we find that S < (log z)'°FE;(z).
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Chapter 5

Number of factorizations of an

integer

In this chapter, we study a problem concerning the Oppenheim’s factorization func-
tion, that counts the number of ways of writing a positive integer as a product of
factors larger than 1 without taking the order into consideration. We estimate the

number of distinct values of this function not exceeding a given parameter x.

5.1 Oppenheim’s factorization function

Definition 5.1. Let f(n) denote the number of unordered factorizations of n into
factors larger than 1, i.e., f(n) is the number of tuples (nq,...,n,), with 1 < ny <

Nno < ---<n,and n=mniny...n,.

For example, f(18) = 4, since 18 has the factorizations
18, 2-9, 3.6, 2-3-3.

This function is a multiplicative analogue of the the partition function.
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The properties of this function have been studied before. Oppenheim [Opp26]

obtained the asymptotic formula

_rexp (2y/log z)
Zf 2/ (log x)3/4 "

n<z

Laterf Canfield, Erdés and Pomerance [CEP83| showed that the maximal order of
f(n)is

logn - loglog logn
—1 1
noxp (14 o(1)) KET VEUELE )

For any = > 1, let % (x) be the the set of values of f(n), not exceeding z, i.e.

F(x) ={f(n): f(n) <z} (5.1)

In [CEP83], the authors claimed that they could prove #.% (z) = 2°0), as x — oo,
but did not include a proof. In this connection, Luca, Mukhopadhyay and Srinivas

[LMS10] proved that

#ﬁ(;p) _ xO(loglog log z/ loglog:c).

Their bound was improved by Balasubramanian and Luca [BL11], who proved that

#7 (z) < exp (9(log x)2/3) , forall x > 1.

5.2 The main result

In this chapter and [BS17], we further improve this bound. We prove:

Theorem 5.2. Let C' = 2m+/2/3 and x be sufficiently large. Then

#F(x) <exp|C logz 140 M |
log log x log log «
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We have strong reasons to believe that up to the constant C', the above bound
is essentially the best possible. We will give reasons for believing the same in the

final section.

5.3 Preliminaries

In this section, we give some preliminary background needed for the proof.

5.3.1 A generalized partition function

In [CEPS83], the authors made the following observations:

f(¢") =p(n),  q prime, (5.2)

f(p1...py) = By, P1,...,p, distinct primes. (5.3)
Here p(n) is the partition function and B, is the r'" Bell number, which also happens
to be the number of partitions of a set with r distinct elements.

In view of the observations (5.2), (5.3) as well as the remarks made by the authors

of [CEP83], we generalize the partition function to N”.

Notation 5.3. For any r > 1, let

Z7(r) == (Z>0)"\ {0}, where 0 =(0,...,0). (5.4)

Definition 5.4. Let a = (ay,...,a,) € N'. A partition of a is an unordered

decomposition

a=pi+: -+ By

where 3; € Z*(r), for each 1 < i < [ and the addition is component-wise. The
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number of partitions of « is denoted by p(c).
Example 5.5. The partitions of a = (1,2) are
(1,2), (1,0)+(0,2), (0,1)+(1,1), (0,1)+(0,1)+ (1,0).

Remark 5.6. When r» = 1, the above corresponds to the usual partition function

in N. Moreover, any such partition 7 satisfying
= 2 hB
BeZ+(r)

can be represented as

= I #®.

BeZ+(r)
as in the case r = 1. Here, h(3) is the number of times 3 € Z*(r) appears in the
partition (note that all but finitely many h(3)’s are zero). For example, when r = 2,
the partition 7 of (2, 3) given by (2,3) = (0,1)+(0,1)4(1,0)+ (1, 1) can be written
as 7= (0,1)2- (1,0) - (1,1).

Remark 5.7. The function p(a) can be seen as a partition of the multi-set
{1,1,...,1,2,...,2,...,¢ ... T},
with each ¢ having exactly «; copies, for 1 < i <r.
The following lemma generalizes the observations in (5.2) and (5.3).

Lemma 5.8. Ifn = copimand o = (o, ..., ), then f(n) = p(a).

Proof. Let n = nins...n; be a nontrivial factorization of n, with n; > 1 for each i.
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For each 1 < <[, let

n; = Hpjij and ,81, - (Bil,"'aﬂir)'
j=1

!
Then, clearly 8; € Z*(r) and ) B; = a. Therefore, each unordered factorization
i=1

gives rise to a partition of a. Clearly, the partition obtained in this way is unique.

The converse follows analogously. O]

Hence, #.%(z) is bounded above by the number of unordered tuples a =

(v, ..., ), which satisfy p(a) < z. We record this as the following corollary:

Corollary 5.9.

#F () <H#{1 <y < - < pla) <z}

Our job is therefore reduced to determining the distribution of p(a) < z.

5.3.2 A generating function for p(a)

We give a generating function for p(ar), which is later used in order to obtain a lower

bound for p(c).

Notation 5.10. Let ¢ = (q1,...,¢-), with |¢;| < 1 for each 1 < ¢ < r. For

B € Z*(r), we use the notation

B 61...q§’“.

q =q

We have the following generating function for p(a):
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Lemma 5.11. Let

P@= [ 1-¢%".

BeZ*(r)
Then P(q) is a generating function for p(a); i.e., for any ac € N, the coefficient of

q* in P(q) is p(cv).

Remark 5.12. When r = 1, this corresponds to the generating function of the

partition function p(n).

Proof of Lemma 5.11. Since the given product converges locally uniformly, we have

P = ]] (Zq’ﬂ> D (5.5)
(r) h:Z+

Bez+ (r)—=Z>o

Therefore, the coefficient of g% above is the number of functions h : Z7(r) — Z>y,

for which

Z hB (5.6)

BezZ+(r
We show that the number of such h equals p(a). For a partition 7 of «, write the

decomposition

= 11 ﬁh (5.7)

Bez+(r
This defines h uniquely. Conversely, any such function A gives rise to a unique

decomposition in (5.6). This completes the proof. O

We also need some bounds on certain binomial coefficients. We prove them in
the next section.
5.3.3 Some bounds on factorials and binomial coefficients

We begin with the following.

114



Lemma 5.13. Let

1\** +1 1\"*2
2 x 2

Then, as x — oo, the functions hy and hy converge to e decreasingly.

Proof. 1t is clear that both hy(z) and he(z) converge to e as x — 0o. To show that

they are decreasing, we will use the following inequality

1 Hae _1/1 1 T+
1 1+-) = — < - (- = 2 for all z > 1. 0.8
og( +x> /w t_2(:1:+x+1> z(x+1) orant= (5:8)

Taking logarithmic derivative of hy, we get

1 T+ 3
=log|1+~-)—-—-2-<0
hy(x) o8 ( * :c) r(x+1) = 7
by (5.8) for all z > 1. Therefore, h; is decreasing.

To show hsy is decreasing, we look at

() 1 a?+2x+3 T+ 3 ?+ 2 +3
=log|1+—|— < - <0,
ho(z) x rz+D(z+2) ~zz+1) z(z+1)(z+2)
for all x > 1. This completes the proof. O

This leads to the following:
Lemma 5.14. Let n and k be positive integers. Then

(a)

2k,k+§

(b)

k +n 1 (/{7 + n)k—i—n—i—%
Z 1 1
k 2\/§ Lktapnts
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Proof. Proof is by induction on k£ > 1 (for any n > 1).

We first prove (a). When k = 1, (a) is trivially true. So, assume that (a) holds

for some k£ > 1. Then, by induction

2k + 2)kFt2

(k+2)! = (k+2)(k +1)! < =25 (5.9)

5
We need to show that the RHS of (5.9) is at most Mt#, which is equivalent to

3
k41 1\"*2
R (i >
k+2(+k> =

and this is true by Lemma 5.13 for the function hs.

Next, we prove (b). When k = 1, this reduces to
1
1\""2
<1 + —> < 2V/2.
n

This is true because h; is decreasing implying its maximum occurs at n = 1.

Now, suppose that (b) holds true for (k,n). We want to prove it holds for

(k4 1,n) as well. By induction

kn+1\ _k+ntl/k+n)_ 1 (k+n+1) (k+n)ktnts (5.10)
k+1 ) k+1 k) = 2v2 (k+1)  pktaprts '
We need to show that the RHS of (5.10) is at least

1 (k+n+ 1)kt
21/2 (k+1)k+%n”+%

?

and this is equivalent to

1\ k3 1 ktn+3
14— > 11
(rp) =0 ms)

116




which is true since h; is decreasing. This completes the proof. O

Remark 5.15. It was possible to prove Lemma 5.14 using Stirling’s formula. We
chose this approach because we wanted to a bound valid for all £,n > 1 without

bothering about the error terms occurring in Stirling’s approximation.

We prove the following lemma about the exponential of a power series:

Lemma 5.16. Suppose that

F(g)=a(0)+ > a(n)q™,
nezZt(r)
is convergent in {q : |q;| < 1}, with real coefficients satisfying a(n) > 0, for n €
Z*(r)U{0}. Then the power series of G(q) = exp(F(q)) around 0 also has non-

negative coefficients.

Proof. Note that

o

clg) =y MO

k=0

Now, since a(n) > 0, for each n € Z*(r), it follows that the coefficients of F(q)"

are non-negative for each k > 0. Therefore, G(q) has non-negative coefficients. [

The next lemma gives an upper bound to number of tuples of positive integers

satisfying > n; <.

Lemma 5.17. The number of unordered tuples (ny,...,n;) in N satisfying

l
Z n; S Y,
=1

15 at most y exp (W\/2y/3), for ally > 1.

l
Proof of Lemma 5.17. Suppose that > n; = n < y. From the proof of Theorem 15.3
i=1

in [Nat00, Pg 468], we have the upper bound p(n) < exp <7r\/2n/3> , foralln > 1.
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Therefore, the total number of choices for nq,...,n; is at most

> exp (y/B7) < g (+/ 357

n<y

5.3.4 A lower bound for p(a)

Now, we obtain a lower bound for p(a) in terms of a generalized hypergeometric

series.

Lemma 5.18. Let o« € N". Then

1 — 1 S (k4o
p“‘)ZzZ(kH)!H( Z ) (5.11)

Remark 5.19. The RHS of (5.11) is a generalized hypergeometric series

rF ;1

1 ar+1 ... .. oo+l oa+1
€ 1 1 2

When a = (1,1,...,1), equality holds in (5.11) and the RHS of (5.11) becomes the

Dobiriski’s formula for the v Bell number B,.

Proof of Lemma 5.18. Taking logarithms in the expression for P(q) in Lemma 5.11,

we get

oo mpB
log P(q) = Z —log(l —gq Z Z%: Z)qB;%
ez+ z+

Bez+(r) " ym=1 e (5.12)
17---7 Z 3

y o ¢® + H(q

Bez+(r (Bl?"'aﬁr Bez+(r)
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where (04, ..., B,) denotes a(ged(By, ..., 5;)), and

H(g)= ) (H — 1) q°. (5.13)

BeZ+(r

Taking exponential in (5.12), we get P(q) = exp ( > q5> -exp(H (q)). We have
BeZ*(r)

1
D D D D (TR fers R
Bez+(r) B, >0  Bi., Br>0 ). T
ZB]>1

(5.14)

Since H(q) has non-negative coefficients with constant term 0, it follows by Lemma
5.16 that exp(H(q)) also has non-negative coefficients with constant term 1. So, the
coefficient of ¢* in P(q) is at least 1/e times the coefficient of ¢* in exp (H (1-— Qi)_l) :

i=1
Since

exp (ﬁ(l —q) 1) =1+ Z 1 H (5.15)

=1

and (1—¢q) =1+ ("1"")¢", the coefficient of g* in (5.15) equals

k—1
n=1
> 1 - k + o — 1 e 1 - k + oy
ZH ( k—1 )_Z(k+1)!H( k )
k=1 i=1 k=0 i=1
This completes the proof. n
For ao = (avy,..., ) € N" and z > 0, define

g(a, z) = zlj (1 + %) - : (5.16)

Now, g(e, z) is a strictly increasing function of z with g(a, 1) < 1 since

Jg(e,z) r+1 _zr:

g(a, 2) — 2t
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for all z > 0. Therefore, g(e, z) = 1 has a unique positive solution z(a) > 1. Let

N=N(a) = |z(av)] . (5.17)

Now, we prove a lower bound for p(c).

Proposition 5.20. Let o = (ay,...,a,) € N" and N = N(ax) be as in (5.17).

Then

(a)

eN—2 r 1 ( N>Oéi+;
a) > 1+ — .
)2 o8 ZHQ\/QN a;

=1

(b) Further, if p(a) < x, then for x sufficiently large, we have

r<R

2logx (1 N 2logloglog

= and N < 3logx.
log log log log x

Notation 5.21. The quantity N = N(«) depends entirely on . From now on-

wards, we denote this by N for the sake of simplicity.

Proof of Proposition 5.20. With N from (5.17), we have
gla,N) <1<g(a,N +1). (5.18)

In particular,

f[ (1+ %) > N. (5.19)

=1

To prove (a), we use the bound given in Lemma 5.18; i.e.,

] — 1 (k4 oy 1 —
>\ - - >N "T(a. k 5.20
EERI=aT1 | (G EED ST NNCED
where

o=l (17)
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We do not have an asymptotic formula for the sum in (5.20). Fortunately for us,
the series converges very rapidly and therefore an optimally chosen term T'(e, k)

will be good enough to provide a good lower bound.

Applying Lemma 5.14 to T'(«x, k), we have for any k£ > 1, that

ek—1 ﬁ 1 (k_’_ai)k-i-ai-i-%

T(a, k) > , 1 5.21
(e, k) 2 kk+3 Pl 2V2  itapkrd (5:21)
Choosing k = N in (5.21), we obtain
N1 L] an\N [ N\
T(c, N) > (1+—’> (1+—) . 5.22
(M) 2 5w 11 2V2N N a; (522)
Using (5.19) in (5.22), we get
( ) - T(a,N) - eN—2 ﬁ 1 (1 N N)&H-é
o — )
ple) = e IN3 pale 2V/2N Q;
which proves (a).
Now we prove (b). From Lemma 5.18, we have
I 1 yr(k+o) Ik
> — —_— > - —. 5.23
RN (A M S

Considering the term k = [r/2], and using the inequality 1/k! > 1/k* for all k > 1,

we obtain

From this, it follows that » < R, for all z > 24.

To show N < 3logz, we take logarithms in (a) of Proposition 5.20, to obtain

N —1.04R - 0.5(R+3)log N —logz — 2.7 <0.
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Substituting R, we find that N < 3logx, for all x > ¢%4°. This completes the proof

of Proposition 5.20. O

5.4 Proof of Theorem 5.2

Assume z is sufficiently large. Let e € N” be such that p(a) < z. Taking logarithm
in the inequality in Proposition 5.20 (a), and transferring the negative terms to

RHS, we obtain

- N
N+ Z(ai +0.5) log (1 + E) <logx +0.5(r +3)log N 4+ 1.04r + 2.7.

i=1 ¢

Using the bounds for N, r from Proposition 5.20 (b) above and simplifying, we get:

: N loglog1
Sactor (145 ) <2i0gs (140 (CEEEDY) 5
— Q; log log x

We split the set {ay,..., .} into two parts I and J, where
I'={o;:0;, <AN+1)} and J={a;:a;>AN+1)},

and A > 0 is a parameter depending only on z. We shall choose

(loglog z)°

A= ogayz

(5.25)

We separately estimate the number of choices for elements in / and J.

For elements of I, we have o; < A(N + 1), which means

1 1+ N >1 1+ N >1 1+ !
BT T Ay ) =t T
> log log x 140 log log log x ‘
2 log log x
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for all o; € 1. With this applied to (5.24), we obtain (ignoring the elements of .J)

41 loglog1
S a, < o8 (1 L0 (w)) | (5.26)
- log log x log log x

By Lemma 5.17 applied to (5.26), the number of choices for «;’s in I, is at most

exp | 2w _2logz 1+0 logloglog @ . (5.27)
3loglog x log log x

Next, we estimate the total number of choices for elements of J. For any 1 <1 < r,
we have p(a;) < p(a) < z. Also, from [Mar03, Corollary 3.1], we have the lower

bound p(n) > exp(2y/n)/14, for all n > 1. In particular, for each «; € J, we have

a; < ~(log 147)* < log?z, for all z > 14. (5.28)

e

In the next lemma, we give an upper bound for the cardinality of J.

Lemma 5.22. With J as before, we have

1< 4+/log x

~ (loglogx)5

Proof. Recall that g(a, N + 1) > 1, which implies

! QL QL
N 1>|| 1 : >|| 1 ’ > (1+ A"
+ —izl( +N+1)_ J( +N+1)—( + A7

;€

since a; > A(N + 1), for all a; € J. Since A < 1, we have log(1 + A) > A/2 and
from Proposition 5.20, we have log(N + 1) < log(1 + 3logz) < 2loglogz, for all

x > e*. Hence,

log(N + 1) 4/log

J < < .
# ~ (loglog x)>

~ log(A+1)

This proves the lemma. O
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From (5.28) and Lemma 5.22, the number of choices for elements of J is at most

(log? )™ < exp (ﬂ) , (5.29)

(loglog x)*

Therefore, from (5.27) and (5.29), the total number of choices for v is at most

21 loglog1
exp | 27 _£08% 1+0 0808708 % .
3loglogx log log x

This completes the proof of Theorem 5.2.

5.5 Final remarks

We believe that the bound obtained in Theorem 5.2 is the best possible apart from

the constant C'. Our reasons for believing the same are as follows:

Bl
S:{a:aigvlongiand Zaig ogm}'

log log x

Then, for each a € S, we have p(a) = O(z) and the number of elements in this

log x
loglog x

set is at least exp <01 ) However, we are unable to show that the values
of p(a), as a runs over S, are largely distinct, i.e., they do not repeat too often.
Calculations do seem to suggest that the number of such distinct values of p(a), as

a € S have a lower bound of a similar order. We will return to this problem later.
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Appendix A

Appendix for Chapter 2

A.1 Partial sums of Mobius and related functions

We prove bounds for the partial sums of the Mdbius function. We have the following;:

Lemma A.1. Let {b,},>1 be any sequence of reals and for any k > 0, define

By (z) := an <log %)k

n<x

Then for all 0 <r <k —1, we have

Bu(x) = E(k—1)...(k—r) / (log z)krl B.(1) ﬂ

rl

Proof. Consider the quantity

] (1o %)’H_l BT(t)%: / (1o %)’H_l <Z b (10g % )) %

1




Making the change of variable A = (log £) / (log £), we find that

x 1

(log £)F="1(log L) B T\* her\r 1\ z\k (k—r—1)!r!
/ t dt = <log E) /(1 AT g = (1og 5) —
n 0
(A.2)
From (A.1) and (A.2), the proof is complete. O

We define a function f as follows:

Definition A.2. For an interval (A, B), we define the arithmetic function fy as

fo=p* N p. (A.3)

Although the function depends upon the choice of interval (A, B), we denote it by

fo as the interval (A, B) will be clear when writing fj.

Definition A.3. Let f : N — C be an arithmetic function. Define

my(z, f) = Z @ (10g %)k

(m,q)=1

Proposition A.4. Let x > 1 and ¢ > 1 be a positive integer. Then we have the

following bounds:

Imgo(@, )] < 1, Imqo(z, fo)| <log B, (A4)
q q
mgi1(z, 1) < 1.00303—, mq1(x, fo)| < 1.00303 log B, A5
mya(e, )] < - log (e fo)] < —Llogr-log B, (A)
mga(x, 1) < ——=logx, mga(x, < —logx - . .
v ¢(a) PRI 0(g)
Also, for all k > 3, we have
q k—1
Mg k(T )] < k—— (logz)" . AT
[mg(, )] = (log ) (A7)
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Proof. The proof uses a lemma of Granville-Ramaré [GR96] and the bounds of

Ramaré [Ram15]. First, we note that

msta il = | 35 HEE (e )| < 30 82| 57 0 (n )

ab<z A<b<B a<lz/b a
(ab,q)=1 (b,g)=1 (a,q)=1
A<b<B
< 32 52 s ()|
— M
— b q,k b?/"L
A<b<B

(A.8)

The first part of (A.4) is [GR96, Lemma 2.10], although a stronger bound is given
n [Ram14, Theorem 1.1]. The first parts of (A.5) and (A.6) are due to Ramaré
[Ram15, Corollary 1.10, 1.11]. For the second part of (A.4), we use (A.8) with

k = 0 along with the bound |m,o(x, 1)| <1 from the first part of (A.4) to obtain

[mgk(z, fo)| < Z # < log B.

A<b<B
The second parts of (A.5) and (A.6) are obtained in the same manner.
For (A.7), we use Lemma A.1 with » = 2 to obtain

o (1) = k(k — 12)(k —-2) / <log %>k3 _ %

1

Using the bound |mg2(t)] < 2¢/¢(q)logt from (A.6) above, we have

k(k—1)(k—2) q / (log £)¥=3 . 2log ¢
mg ()] < dt
’ q,k( )’ — D) (P(q> J ¢
-1 4 £)k=3
<k(k—-1)(k-— (log )" 1—/t dt < k——(logx ,
(k=D -2)- ¢(q) 90<Q)( "
since fo t1 —t)F=3dt = m. This completes the proof. O
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Now, we state the following bound from [HH13, Lemma C.2.2], also proved for
q > 27 in [RS62, Theorem 15].

Lemma A.5. Let q be a positive integer. Then, for any s > max{3,q}, we have

q/¢(q) < Fy(s), where

2.50637

Fy(z) = e’ loglogx + —————.
log log x

Lemma A.6. Fy(z)/z is decreasing for all x > 3.

Proof. 1t is enough to show that F(z) — xF'(x) > 0. This equals

2.50637 e’ 2.50637
e’ loglog x +

loglogz v zlogz  xlog z(loglog x)?
¢”((loglog z)*log 2 — (loglog x)?) 4 2.50637(1 + log  loglog z) -0
log z(log log x)?

whenever z > 3. ]

A.2 Explicit values of ()., and T' on monomials

In the next proposition, we give explicit values of constants C;y, in (H4). They
will be useful when y is large. When y is small, we will need to resort to explicit
numerical calculations using a program, as we need tight constants. The first two

terms in (2.12) will be numerically calculated as they are proportional to .

Proposition A.7. Let k = 1,2,3 and 1) u, and Pjru,’s be as in (2.1) and (H1),

respectively. Let Cjpy, j =0,1,2 be as in (H4). Then for all y > uy, we can take

1
Cokn =1, Cren =111 Cory =30l + / 0" (0] dt + 2k|n(t)/tle.  (A.10)
0
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Proof. For j =0, we note that

1 1
1
|7y ko 11 = / |7y) e (1)] dE < / n(t)(logyt)* dt < (logy)* / n(t) dt = (logy)*,
0
0

uo/y
which implies we can take Cy,,, = 1.

In the case j = 1, we need to add an additional contribution due to the discon-

tinuity of n/ at ug/y. Observe that ((logyt)*) > 0 and therefore, we have

(y) Jkuo

1y b0t = (0 /y) (log o)

=/WWMWﬁ=/mmmww+wwmwwwt

uo/y uo/y
1 1
</ wwmwwﬁ+(omwwwy/’wmmwwa
uo/y uo/y
1

< (logy)" / (In'(®)] = 7' (t)) dt — n(uo/y)(logue)* = (log y)* 'y — n(uo/y)(loguo)*,
0

since fo t) dt = 0. This shows we can take Cy ., = |71

We now consider the case j = 2. Here again, we have to consider additional

contribution arising from the discontinuity at ug/y. Therefore,

_11(uo/y) ’

k k
16 o l1 — ’n’(uO/y)(IOguO) + k(log uo) e

= / " (t)(log yt)* + 207/ (¢) (log yt)*)" + n(t)((log yt)*)"| dt

uo/y
1

< (logy)* /W'MHa/m (ot di+ [ n(o)|((log 0| dt

uo/y uo/y uo/y

(A.11)

where we use ((logyt)*) > 0. We note that ((logyt)*)” > 0 if and only if ¢t <

e*=1/y. Therefore, we split the last integral in (A.11) into two parts, namely Iy =
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(uo/y, €1 /y); and I, = (eF1/y, 1), where (a,b),; denotes (a,b)N(uo/y,1) ifa < b
and is empty otherwise. Therefore, the last integral of (A.11) is

[ 00 (o) de = [ n(e) (og )"

I() Il

= n(#) ((logut)")'[, ~ n(t) (o)) II+Z pt [ ) (Gogun®) a

]

<n(t) ((logyt)*)'|,, = n(t) (logyt)*)' |, + / i ()] ((log yt)*)" dt

uo/y

(A.12)

For the first two terms in (A.12), we consider three cases, namely (i) e*~1 < ug < v,
(i) ug < e <y and (iii) up <y < ¥ In case (i), Iy is empty and I, = (ug/y, 1)
and in case (iii), Iy = (uo/y,1) and I is empty. So, the first two terms of (A.12)

contribute in the three cases:

1

4 kﬁ(uo/y) (1ogu0)k_1, 21{:77( a l/y)(k _ 1)k—1 . n(uo/y)

log ug)*~
Uo/y ek=1/y Uo/y (log uo)

and therefore all of the above are at most 2k [n(t)/t|__ (logy)*~ /’{:77 (log ug)* L.

This means that (A.11) is at most:

(log )" / (O]dt+3 / 1/ (0)(ogut)*Y de + 2K (1), (log )"

uo/y
)k 1

_ . Muo/y)(log ug

uo/y
1

< / " (#)] dt + 31| oo + 2k|n(t) /t|c0 | (logy)* — 3[n|oc(log ug)"
0
n(uo/y) k—1
—k——Z(logu
UO/y ( og U)

This gives us the desired value for Cy ., and completes the proof. O
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Now, we compute the value of the operator 7" (defined in (2.8)) for monomials.

Lemma A.8. Let k be a positive integer | > —1 be a real number. Let T' be as

defined in (2.8). Then for x > 1, we have

k kY .1
T
Tlak < pi- ¥, where pp=) Uiﬁ (A.13)
r=0

The values of pix, | € {0,1} and k € {1,2,3} are given as follows:

Table A.1: Values of p;

E ] 1] 2 3
k| 2 | 5 | 16
pre | 0.75 | 1.25 | 2.375

Proof. For x > 1, we have

k (o)
x e x -+ Z . e
= 0

k

kY ph—r 3 k Ml
Z (Z(JET / et dt = Z (le’H < pr "

r+1
=0 0 r=0 + 1)

<

A.3 Explicit values in the case n = 7

Now, we give some explicit values for constants and for P}, when n = 1y given in

(1.2). We note that ny satisfies (C1) and from Mathematica, we have

Tl = 6194, ., |hloe = 1o(t)/tloo = 70 and / n(8)] dt = 89.327 .

(A.14)

The following are the explicit values for ¢, ;, ¢, and b,,; defined in (2.6).
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Table A.2: Values of ¢,;, ¢, and b,; when n =nj

! Cno,l Cro, ! bno,l

0 1 6.1948 . .. 2

1] 1.70906. .. 14.6946 . . . 3.418 ...
21 3.55424 . .. 42.0314 ... 7.1084 ...
3] 866541... | 143.6278 ... | 17.3308 ...

We would now like to give expressions for P;j, 4, PIESZO and Pk(izo and also compute
T'P(z), with [ = 0,1 for these polynomials P}, for k =1,2,3 in the case n = .
From Proposition A.7 for k = 1,2, 3 and using the values from (A.14), we can take
Cokmo = 1, Ci e = 6.195 and Co 5, = 720, i.e.,

Po oo () = zF, P () = 6.1952F and Py g () = 720" (A.15)

and therefore

P (x) =26.842" and P

k,ug

(z) = 166.232", (A.16)
Therefore, from Lemma A.8, it follows that

TPy juo(t) = T20posa®,  TOPY) (2) = 26.84pg sa”. (A.17)

A.4 Simplification of Lj,(s,z) and R, 1 .(s,, f)

We now give a simplified upper bound for Ly, (s, z) in (2.35) for k = 1,2, 3.

Proposition A.9. Let x > 10'® and let Ly (s, z) be as given in (2.35). Assume

that s > 1.5-10%. Then, for k =1,2,3, we have
By, (log 10s)k+1

Ly (s,2) < Ap + . , (A.18)
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where

Ay, = 0.002 Co 4., + 0.00003 Cy ., + 1075 Co .,

(A.19)
By = 0.108v/Co gy Cagy + 0.002 Co gy + 107 7C ey

Proof. We see from (2.35), that

1 0.355
L (s,2) = . (3P1,k,uo(log x)+ 106 Ps g (log x))

1 2 1
+ — T ( Py g, (log ) + = — Py i uo (log 22) 4+ 60 ; 4, (log x))

107 TUQ

log 10s
1 4 1 4
. ( P,g%o(log 10s) + — / Pk uo( ) dt + : TOPk o log u0)

log ug

G0 (log 10s)>

1
+3 <0.00355T0P2,k,uo(1og 10s) +

9
EP,SU)O (log 103)) :

(A.20)

Consider the first two lines of (A.20). Using Pjj.,(logz) = Cj, - (logz)* and

x > 10", we find that the they contribute at most (for k = 1,2, 3):

< 0.002 Cy .y + 0.00003 C, gy + 1076 Chp . (A.21)

Next, we look at the coefficient of 1/s in (A.20). Using (H4), (2.5) and the value

of T from Lemma A.8 (T'z* < p;12*), we find that this is at most

44/Cor C Cliy VCokn C
( \/m 4 22k pOJ“) (log 10s)* + M(log 10s)~*
T

6072 10(k + )7

n 4poer/Cojn Cokn  (loguo)” (A.22)

5 Uo

< By (log 10s)* 1,
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where

4 1 4 pox ( k ) pok Co
B/ = _ > _ 7Y SR,
k= VCokn Cakn (147r TG+ )T 5 14 (146) 9 o
< 0.1081/Copy Copr + 0.00193 C

(A.23)

Here we use log10s > 14 which implies (log’ig’s")k — (loguzgo) < 2k (5)" (since the

maximum of (logt)*/t is (k/e)*) and then use the values of pyy from Table A.1.

Next, the coefficient of 1/s? in (A.20) is at most

C
< (0.0568 Copn + 0.1146 C' 1, O“’") (log 10s)*. (A.24)
0,k,n

Therefore, from (A.21), (A.22), (A.23) and (A.24) and using s > 1.5 - 10°, we find

By, (log 10s)F+1
Lk,UO(sa‘r) S Ak + k( gs ) )

where Ay and By are as in (A.19). This completes the proof. n

Remark A.10. When 1 = 1y, we have Ay, = 0.0029... and B, = 4.3379... .

Next, we bound R, 4(s,y, f) in the case n =no, f € {p, fo} and k € {1,2,3}.

Proposition A.11. Suppose that n = 19 and s > 1.5-10°. Let B < \/x and

o= p*ANap) be as in (A.3). Then, the following are admissible choices:
(A,B)

Rup1.q(5, 2, 1) = 0.000205062, (A.25)
2F 1
Ry og($,, 1) = (0.001824 + M) z, (A.26)
2xlog B
Ry 24(s,2, fo) = r08 <log2 10s + Fy(s) log x), (A.27)

(A.28)

4 Fq log?
Ry 3,4(8, 2, 1) = (0.03494 + M) -

S
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Proof. We show that the R, 1, given above satisfy the following inequality:

. x
J Mag, 4 (qu, f)

where we denote by_; = by, x—;. For bounds related to |msg |, we will use of Propo-

Y

k i
st £33 () (estsin

1=0 j=

sition A.4. We also bound ¢q/¢(q) by Fo(q) < Fo(s) and use the fact that Fy(s)/s
is decreasing from Lemma A.6. We also note that (log 10s)*/s is decreasing as soon
as 10s > e¥, which will clearly hold for k = 1,2, 3 since s > 1.5 - 10°. For the values

of the constants b;, we refer to Table A.2, from which allows us to take
bp =2, by =342, by=7.11 and b3 =17.34 (A.29)

For (A.25), we have k = 1, f = p and the expression simplifies to

X
m?q,O (10 aM) ‘ + bO m?q,l (quv :u) ‘)

23 (bo + by log 10s + 1.00303by Fy(s))

2£S ((bo + b1 10g 108)

< 0.00020506z,

for s > 1.5-10° (as the above is decreasing in s in that range).

For (A.26), the given expression is

€T x
% ((bg + 2b; log 10s + by log® 10s) 1m0 (10 s,u) ‘

x x
Mg 1 <Fqs’u>‘ + by [Mag.2 (10 nU) D

; (bz + 2b; log 10s + by log? 10s + (2.00606b; + 0.00606bq log 10s) Fy (s)

+ (2b1 + 2bylog 10s)

+ 2b0F0(S) 10g LL’)

2xFy(s)logx
. :

< 0.001824x +
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For (A.27), we have k = 2 and f = fj, and the given expression is

x

M24,0 (TqufO)
T x

M2g1 <quaf0) ‘ + by | Mg 2 <quaf0) D

X

2s

((bQ + 2b; log 10s + by log® 10s)

+ (201 + 2bg log 10s)

xlog B

<

+ by log? 10s + 2y Fy(s) log x)

<xlogB

(4 log® 10s + 4F(s) log x) :

2s

since for s > 1.5 - 10°, we have

bg + 200606b1F0(8) + (2b1 + 000606[)0F0(8)) IOg 10s < b() 10g2 10s.

For (A.28), we have k = 3 and f = p and the given sum is

X

log 1
103(61 + by log 10s)

2% <b3 + 3by log 10s + 3b; log? 10s + by log® 105 + 6Fy(s) log
4 1.00303 Fy () (3by + 6by log 105 + 3bg log® 10s) + 4bo Iy (s) log? 1108)
< 235 (b3 + 3.00909b5 Fy(s) + (3by + 6(0.00303)b, Fy(s)) log 10s
+ (3by 4 1.00909by Fy(s)) log® 10s + by log® 10s

+ (6b; — 2bg log 10s) Fy(s) log x + 4by Fy(s) log? x)

4aFy(s)log® x
X :

< 0.03494z +

This completes the proof.
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