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DEDICATIONS

Dedicated to Lord Narayana...

By being established in Yoga, O Dhananjaya (Arjuna), undertake actions by

casting off attachment and remaining equipoised in success and failure.

Equanimity itself is called Yoga (Bhagavadgita - 2.47).
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Synopsis

This thesis is divided into two parts. In the first part, we deal with the question of proving

upper bounds on the positiveness of univariate and multivariate polynomials. In the second

part, we concentrate on lower bounds on the problem of orthogonal range querying.

In the first part of the thesis, we begin with the problem of proving bounds on the

positiveness of univariate polynomials with real coefficients. For a univariate polynomial,

an upper bound on its positiveness is a positive number B such that the polynomial is non-

negative at every value greater than or equal to B. Assuming that the leading monomial is

positive, any upper bound on the largest positive root of a univariate polynomial is also an

upper bound on its positiveness. One of the well known bounds in literature is due to Hong

[25]. Not only was the bound in [25] qualitatively better than the previously known bounds

but it was also linear time computable [30]. Using a root bound due to Lagrange [31], in

[15], Collins gave an improvement over the bound in [25]. This improved bound due to

Collins is the central theme in Chapter 2. We first show that the improved bound in [15] is

not only an upper bound on the largest positive root of the polynomial but also an upper

bound on the largest positive root of its derivatives. Although the bound due to Collins is

an improvement over Hong’s bound, it wasn’t known if Collins’ bound admits a linear time

algorithm like Hong’s bound [30]. We answer this question in the negative by showing a

super linear lower bound on the computation of Collins’ improved bound in the real RAM

model. Our lower bound on the computation of Collins’ improved bound demonstrates

that the bound in [25] achieves an optimal tradeoff between quality and computational
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complexity. Also, our lower bound matches the best known upper bound for computing

the improved bound due to Collins.

Then, we address the question of deriving upper bounds on the positiveness of multi-

variate polynomials. For a multivariate polynomial, a bound on its positiveness is a positive

real number B such that the polynomial is non-negative at every point whose every co-

ordinate is greater than or equal to B. For multivariate polynomials, we derive a bound

that improves upon the best known bound in the literature [25]. This improved bound

is achieved by first generalizing a root bound due to Westerfield [49] to the multivariate

setting. As a specific case of this generalized Westerfield bound, we derive a generaliza-

tion of Lagrange’s real root bound for multivariate polynomials. Then, we quantify the

improvement of the generalized Westerfield bound and the generalized Lagrange bound

over Hong’s bound in the multivariate setting. Finally, we give an algorithm for computing

the generalized Lagrange bound whose running time matches the running time of the best

known algorithm for computing Hong’s bound [35].

In the second part of the thesis, we concentrate on strengthening a lower bound

on orthogonal range querying due to Fredman [22]. Our algorithm for computing the

generalized Lagrange bound for multivariate polynomials performs orthogonal range

querying by building range trees. So, the question of lower bound on range querying is

motivated from the analysis of our algorithm to compute the generalized Lagrange bound.

The problem of range querying is as follows: Given a set X of m points in n dimensions,

pre-process X into a data structure such that for every query of the form Y ∈ Rn, the set

{Xi ∈ X : Xi ≤ Y}

can be output efficiently. Data structures for range querying typically store certain canoni-

cal subsets of X such that the output to every query is a disjoint union over these canonical

subsets. Fredman showed that in order to prove a lower bound on range querying in the

semigroup model, it suffices to prove a lower bound on the tradeoff between the sizes of the
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canonical subsets and the total number of canonical subsets required to cover all the outputs.

More specifically, Fredman showed that for any data structure that supports range querying

on a multidimensional grid, either the total size of the canonical sets is large or the total

number of canonical sets required for covering all the outputs is large. Our result shows

that this tradeoff can be strengthened; both the total size of the canonical sets and the total

number of canonical sets required for covering all the outputs are large. Our second result

is an alternate proof of Fredman’s tradeoff in the one dimensional setting. The problem of

answering range queries using canonical subsets can be formulated as factoring a specific

boolean matrix as a product of two boolean matrices, one representing the canonical sets

and the other capturing the appropriate disjoint unions of the former to output all possible

range queries. In this formulation, we can ask what is an optimal data structure, i.e., a data

structure that minimizes the sum of the two parameters mentioned above, and how does the

balanced binary search tree compare with this optimal data structure in the two parameters?

The problem of finding an optimal data structure is a non-linear optimization problem. In

one dimension, Fredman’s result implies that the minimum value of the objective function

is Ω(m logm), which means that at least one of the parameters has to be Ω(m logm). We

show that both the parameters in an optimal solution have to be Ω(m logm). This implies

that balanced binary search trees are near optimal data structures for range querying in one

dimension. We derive intermediate results on factoring matrices, not necessarily boolean,

while trying to minimize the norms of the factors, that may be of independent interest

We believe that our proof reveals more insight into range querying in one dimension by

relating the lower bounds to the spectrum of a certain special matrix.
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Chapter 1

Introduction

This thesis is divided into two main parts. In the first part, we study the problem of

computing upper bounds on the positiveness of polynomials. Motivated by a question from

the first part, in the second part, we focus on a certain lower bound on range querying due

to Fredman [22]. The motivation and the background for each of the two parts along with

our results will be given in the following sections.

1.1 Upper Bounds on the Positiveness of Polynomials

One of the important problems in computer algebra is to give efficiently computable upper

bounds on the roots of a univariate polynomial. A special case of this problem aims to

upper bound the largest positive root of the polynomial. Such bounds have algorithmic

applications in root isolation and approximation [42, 4]. Before we give more details

about the problem of upper bounding positive roots, we will describe briefly, the history of

polynomial equations.
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1.1.1 A Brief History of Polynomial Equations

1 Polynomial equations have been one of the oldest and perhaps the most studied object in

algebra for centuries. The main goal was to come up with closed formulas in terms of the

coefficients of the polynomial to express its roots.

The earliest known people to solve polynomial equations were the ancient Egyptians

and Babylonians. Babylonians were able to find the roots of linear and quadratic equations.

One of the fundamental problems in Babylonian algebra was to find a number which when

added to its reciprocal yields a given number, i.e.,

x+ x̄ = b such that xx̄ = 1.

The two equations above effectively leads to the quadratic equation x2−bx+1 = 0. Thus,

the Babylonians had the quadratic formula. Since Babylonians didn’t have negative

numbers, negative roots were neglected. Also, they were able to approximate the square

roots of numbers. The early Egyptians knew how to solve linear equations in one variable.

The process of solving though was purely arithmetical and there was no formal explanation

for these arithmetical methods. Egyptian algebra was also capable of handling simple

quadratic equations of the form ax2 = b.

The next big development in solving polynomial equations came from Greece in the

5th century BC. A group of mathematicians known as Pythagoreans proved that square

roots appearing in solutions to quadratic polynomials can give irrational numbers. The

Greeks used geometrical designs made with ruler and compass to solve polynomials of

degree 1, 2 and 3. In around 300 BC, Euclid developed a geometric approach for solving

quadratic equations. Euclid, though did not have the notion of equation, coefficients etc.

but worked purely with geometric quantities. Later, Alexandrian mathematicians, the

Hero of Alexandria and Diophantus expanded on these geometric ideas which eventually

1The historical facts mentioned here have been taken from the book “Mathematical Thought from Ancient
to Modern Times” by Morris Kline and [48].

24



reached the Arab world and the middle east.

In the Arab world, the task of finding roots of polynomials came to be known as “the

science of restoration and balancing”. The Arab word for restoration “al-jabru” is the root

of the word “algebra”. Al-Khwarizmi in the 9th century wrote a book on Arabic algebra

and provided the fundamentals for basic algebraic theory. Before Al-Khwarizmi, the Indian

mathematician Brahmagupta (5th century) had given the notation where abbreviations

were used for unknowns. By medieval times, Islamic mathematicians were able to discuss

the importance of the unknown variable x. They were able to multiply, divide, and find

the roots of polynomials and they started to put together binomial theorems. The Persian

mathematician Omar Khayyam showed how to approximate the roots of cubic equations

through line segments of intersected conic sections, but was unable to come up with an

expression for roots of cubic polynomials. However, in the early 13th century, Leonardo

Fibonacci achieved a close approximation of the cubic equation x3 +2x2 + cx = d.

Moving forward, in the 15th century, much progress in solving polynomial equations

came from Italy. Scipio del Ferro, a professor of mathematics at Bologna had managed to

solve several cubic polynomials of the form x3+mx = n. This work of Del Ferro was never

published as rivals were often challenged to solve the same problems at that time. Later,

Niccolo Fontana of Brescia, popularly known as Tartaglia, rediscovered the solutions to

cubic equations of the form x3 +mx = n. Furthermore, Fontana had also solved cubic

polynomials of the form x3 +mx2 = n. Gerolamo Cardano in his work Ars Magna, then

gave a solution for polynomials of degree 4 by reducing them to solving polynomials of

degree 3.

A significant development with regard to the roots of polynomials was the development

of the Newton’s method for approximating roots of polynomials. This was published in the

book “Method of Fluxions” in the 17th century. In the 18th century, it was J.L. Lagrange

who greatly influenced the theory of polynomials and building on his work, Gauss proved

the celebrated “Fundamental Theorem of Algebra”. Gauss had also conjectured that
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solving quintic equations by means of radicals might be impossible. Around the early

part of the 18th century, Paolo Ruffini had almost shown that there cannot be an algebraic

solution to degree 5 polynomials. But, as discovered later, Ruffini’s proof was incomplete.

The shortcomings in Ruffini’s argument was overcome by the Norwegian mathematician

N.H. Abel who conclusively showed that general polynomials of degree 5 cannot be

solved by means of radicals. But, an important question was to understand the conditions

under which such polynomial equations admit an algebraic solution. This question was

answered by Galois in an unpublished manuscript. This manuscript was communicated to

the mathematical world only a decade later after Galois’ death by Liouville.

Due to the negative results of Ruffini and Abel, mathematicians have sought efficient

methods for approximating the roots of polynomials. Some examples of such methods are

the Newton iteration method, Graeffe’s iteration etc. Fourier devised a root approximation

scheme which involved isolating the roots first and then approximating them to the desired

precision. Many algorithms based on Descartes’ rule of signs, Budan’s theorem, Vincent’s

theorem and Sturm sequences have been proposed for root isolation. Building on Vincent’s

theorem, Akritas [4] gave an algorithm for root isolation based on the idea of continued

fractions. A key sub-task in continued fractions method for isolation of real roots is to

compute an upper bound on the largest positive root of a certain polynomial. It is in this

context that upper bounds on the real roots of a polynomial are important.

1.1.2 Positiveness of Polynomials

For a univariate polynomial with real coefficients, a bound on positiveness is a positive

real number B such that the polynomial is non-negative at every value which is greater

than or equal to B. Many problems in mathematics, logic etc., can be reduced to testing

positiveness of a polynomial over reals. Hence the notion of positiveness is an important

concept. Assuming that the leading monomial is positive, an upper bound on the largest

positive root of the polynomial is an upper bound on the positiveness of the polynomial.
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The problem of computing upper bounds on the absolute value of the roots of a

polynomial has a long standing history with some of the bounds being attributed to Cauchy

and Lagrange [31]. Root bounds are functions that operate on univariate polynomials with

complex coefficients and compute an upper bound on the absolute value of its roots. For

some well known root bounds see [50, Chap. 6] and [37, p. 144]. Some of these root

bounds (e.g., see van der Sluis [47]), are tight relative to the largest absolute value among

all the roots of the polynomial. Often, however, one is interested in the special case of

upper bounds on just the positive real roots of a polynomial with real coefficients; for

example, in the continued fraction based algorithms for real root isolation [4, 42]. For

this special case, the literature contains some bounds [29, 44, 3, 7, 45, 40, 6, 48]. Among

these known bounds, the bound due to Kioustelidis [29] is very well known and was

widely used till Hong [25] introduced a better bound. Hong’s bound is in fact a bound

on absolute positiveness, i.e., it is not only a bound on the positiveness of the polynomial

but also a bound on the positiveness of its non-vanishing derivatives. In [25], it was also

shown that most of the known root bounds are in fact bounds for absolute positiveness of a

polynomial. The notion of absolute positiveness is relevant since for many polynomials, a

bound on the positiveness of the polynomial does not imply a bound on the positiveness

of its derivatives. The quality of a root bound is defined to be the ratio of the bound with

respect to the threshold of absolute positiveness. The smaller this ratio is, the better the

bound. In [23], it was shown that most upper bounds for positive roots can be arbitrarily

bad, i.e., their ratio with respect to the largest positive root of the polynomial can approach

infinity. Also, in [23], it was proved that under certain conditions, the ratio of Hong’s

bound with respect to the largest positive root is off by a factor which is at most linear in

the degree of the polynomial. From [7], we also see that within a general framework of

bounds on absolute positiveness, Hong’s bound is nearly optimal, i.e., it is off by a constant

factor with respect to the best bound that is possible in this framework. Thus in terms of

quality of real root bounds, Hong’s bound is nearly the best. But, how does Hong’s bound

perform with regard to computational complexity? This is an important question due to
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the fact that root bounds have algorithmic applications such as in root isolation algorithms

as already mentioned. Ideally, we would like to compute a root bound in time linear in the

degree of the polynomial. But, a naive implementation of Hong’s bound has arithmetic

cost quadratic in the degree, d, of the polynomial. This computational bottleneck was

overcome in [30], where an O(d) arithmetic cost algorithm to compute Hong’s bound for

univariate polynomials was given.

Recently, Collins [15] showed that a real root bound by Lagrange [31] is always better

than Hong’s bound. It must be noted that the Lagrange’s bound had not been covered in

the framework proposed in [7]. A simplified derivation of the Lagrange’s bound is given in

[36, 5, 15] and an extension to the complex setting is given in [36]. The improvement is

by a constant factor. A slight modification of the algorithm in [30] can be used to compute

Collins’ improvement in O(d logd) time. Given this improved bound, one can ask the

following questions regarding the Lagrange real root bound:2

Q1. Is the bound also a bound on the absolute positiveness of the polynomial?

Q2. Can this improved bound be computed using O(d) arithmetic operations?

We address the questions Q1 and Q2 in Chapter 2. Our results are:

1. In Theorem 2, we show that the Lagrange real root bound is an upper bound on

the absolute positiveness of the polynomial, i.e., not only does it upper bound the

positive roots of the polynomial but also its derivatives.

2. In Theorem 10, we prove a Ω(d logd) lower bound on the computation of the

Lagrange real root bound in the real RAM model. Our lower bound matches the best

known upper bound on the computation of the Lagrange real root bound.

The problem of proving upper bounds on positiveness generalizes naturally for multi-

variate polynomials. We say a positive real number B is an upper bound on the positiveness
2We refer to Collins’ improved bound [15] as the “Lagrange real root bound” since Collins uses La-

grange’s bound in improving upon Hong’s bound.
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of a multivariate polynomial F(x1,x2, . . . ,xn) ∈ R[x1, . . . ,xn] if the polynomial F is non-

negative at every point whose every coordinate is at least as large as B, i.e.,

F(x1,x2, . . . ,xn)≥ 0, for all xi ≥B.

A well known bound on the positiveness of multivariate polynomials is due to Hong

[25]. Hong’s bound for multivariate polynomials and the question of improving upon

it is the central theme of Chapter 3 of this thesis. More specifically, we concentrate on

the question of generalizing Lagrange’s real root bound for multivariate polynomials and

showing that it is an improvement over Hong’s bound. In generalizing Lagrange’s bound,

we first generalize a root bound due to Westerfield [49] for univariate polynomials to the

multivariate setting. Since Westerfield’s bound is more generic than the Lagrange bound in

the univariate setting, a generalization of Westerfield’s bound gives us a generalization of

Lagrange’s bound. To understand this, we first illustrate the difference between the various

bounds in the univariate setting: Consider the following special polynomial xd−∑
d−1
i=0 aixi,

where ai ≥ 0. For this special polynomial, Hong’s bound is 2maxi a1/(d−i)
i , whereas

Lagrange’s bound [31] is the sum of the first and the second maximum in the radical

sequence a1/(d−i)
i , i = 0, . . . ,d− 1. To obtain both the bounds for a general univariate

polynomial, we decompose it as a sum of such special polynomials and take the maximum

over the bound for each polynomial in the decomposition. Westerfield’s bound is more

generic in the sense that it is obtained by taking a suitable positive linear combination

of all the values in the radical sequence a1/(d−i)
i , i = 0, . . . ,d− 1, and therefore is an

improvement over both Hong’s and Lagrange’s bound. So, in Chapter 3, we address the

following questions:

Q3. What are the generalizations of Lagrange’s and Westerfield’s bound to the multivariate

setting?

Q4. Are these generalizations better than Hong’s bound for multivariate polynomials?

Q5. Can these generalizations be computed as effectively as Hong’s bound?
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Our main results in Chapter 3 are:

1. In Theorem 15, we give a generalization of Westerfield’s root bound to the multivari-

ate setting. In Section 3.2.1, we derive a generalization of Lagrange’s real root bound

as a specific case of the generalized Westerfield bound for multivariate polynomials.

2. In Lemma 16, we quantify the improvement of Westerfield’s bound and Lagrange’s

bound over Hong’s bound in the multivariate setting.

3. In Section 3.3, we give an algorithm to compute the Lagrange bound for multivariate

polynomials. Then, in Theorem 17, we show that the running time of this algorithm

matches the running time of the Mehlhorn-Ray algorithm for computing Hong’s

bound [35] when n ≥ 2. In the univariate setting, such an algorithm to compute

the Lagrange real root bound whose running time matches the running time of the

algorithm to compute Hong’s bound is not possible. This is due to our Ω(d logd)

lower bound on the computation of the Lagrange real root bound in Chapter 2.

1.1.3 Lower Bound on Orthogonal Range Querying

Chapter 4 of the thesis is devoted to lower bounds on the problem of orthogonal range

querying. Our algorithm for computing the multivariate Lagrange bound in Chapter 3

performs orthogonal range querying. In order to understand the efficiency of our algorithm

with respect to data structures for orthogonal range querying, we refer to a known lower

bound of Fredman [22] on range querying. In Chapter 4, we focus on strengthening this

lower bound on orthogonal range querying.

Orthogonal range querying is one of the fundamental problems in computational

geometry. The range querying problem is the following: Given a set X of m points in Rn

and a range set R of subsets of points in Rn, the goal is to pre-process the set X into a

data structure so that given a query range R ∈R, the set of points in X ∩R can be output
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efficiently. For orthogonal range querying, a range is simply an axis aligned box in Rn.

In this thesis, we only consider the problem of orthogonal range querying. Sometimes, we

are also interested in the number of points in the set X ∩R. The case where we output all

the points in X ∩R is called range reporting and the case where we only report the number

of points in X ∩R is called range counting. Other types of queries include whether or not

X ∩R is empty and so on. To capture these different types of queries in the range querying

framework, it is typical to associate with every point Xi ∈ X a weight wi, where wi comes

from a semigroup (S,+)3. Then, for every query range R, the output is ∑Xi∈X∩R wi. For

instance, for the orthogonal range reporting problem, we can take the semigroup (2X ,∪)

and set wi = {Xi}; for the range counting problem, we can take the semigroup (N,+) and

set wi = 1.

Data structures for range querying typically store certain canonical subsets of the input

set X and on a query range R, the query algorithm comes up with a set of disjoint canonical

subsets such that their union is exactly X ∩R. The performance of a data structure for range

querying is measured by the time spent in answering a query, the space requirement of the

data structure and also the preprocessing cost involved in building the data structure. Often,

the preprocessing is ignored as the data structure is built only once. In the dynamic setting

where operations such as delete and insert are permitted, update time is also important.

Most data structures for geometric problems are described in the real RAM model [41] and

the pointer-machine model [1, 2]. A popular data structure for orthogonal range querying

is the range tree which was introduced by Bentley [9]; for an exposition, see [10, chap. 5].

For orthogonal range reporting on m points in n dimensions, the range tree can be built in

time O(m logn−1 m) and every query can be answered in time O(logn m+k), where k is the

number of points in the output. The query time though can be improved to O(logn−1 m+k)

through a technique called fractional cascading [14, 33]. These upper bounds have been

subsequently improved for range querying in various computation models [1, 2].

3Another algebraic structure from which weights are assigned are groups [21, 19], but in this thesis we
restrict ourselves to the case where weights come from a semigroup.
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Fredman gave some of the first lower bounds on orthogonal range querying in the

semigroup model [20, 22]. These lower bounds are in the dynamic setting where insertions

and deletions are allowed. More specifically, in [22], he showed that for any m, there is

a sequence of m operations consisting of insert, delete and querying such that the time

required for this sequence is Ω(m logn m) in the semigroup model. Intuitively, at the heart

of this lower bound argument lies a certain tradeoff; if all the queries are easy to answer,

i.e., the querying algorithm needs to select very few canonical sets to answer a query,

then the points that occur very frequently in the outputs must be stored in many canonical

sets. In this case, a query to delete or insert a point that occurs in many outputs will be

expensive. On the other hand, if the querying algorithm needs to select many canonical

sets to answer a query, then the time spent in choosing the required canonical sets is too

much. This suggests an inherent tradeoff between the cost of updating the data structure

and the cost of querying. So, the required lower bound is obtained by balancing the cost of

an update (insertion or deletion) operation and the cost of a querying operation. In some

sense, the cost of update depends on the number of canonical subsets that a given element

is stored in. On the other hand, the cost of querying depends on the sizes of canonical

subsets. For instance, if the data structures stores all the outputs itself as the canonical

sets, then the querying algorithm needs to select only the appropriate canonical set. This

hints at a tradeoff between the sizes of the canonical sets and the number of canonical

sets needed to answer all the query ranges. This tradeoff is what Fredman exploits in

showing the required lower bound [34, p. 69, Lemma 9]. More precisely, Fredman showed

that for any data structure that supports range querying, either the sum of the sizes of

the canonical sets is large or the number of canonical sets needed to answer all the query

ranges is large. Motivated by the analysis of our algorithm for computing the Lagrange

bound for multivariate polynomials in Section 3.3.3, we prove a stronger version of this

combinatorial tradeoff: that both the sum of the sizes of the canonical sets and the number

of canonical sets needed to answer all the query ranges are large. Then, in Section 4.2,

we show that the balanced binary search tree is near optimal for range querying in one
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dimension in a more relaxed framework.
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Chapter 2

A Lower Bound on Computing

Lagrange’s Real Root Bound

In this chapter, we will present our results1 on the Lagrange real root bound for univariate

polynomials. Our main results in this chapter are:

1. In Theorem 2, we show that the Lagrange real root bound is a bound on the absolute

positiveness of the polynomial. The proof of this theorem involves partitioning

an arbitrary polynomial as a sum of some special polynomials and then arguing

that the Lagrange bound of these special polynomials is a bound on their absolute

positiveness(See Lemma 1 and Theorem 2 for details).

2. With regard to the question of computational complexity of the Lagrange real root

bound, we show that there does not exist a linear time algorithm for computing

the Lagrange real root bound. More specifically, in Theorem 10, we show an

Ω(d logd) lower bound on the computation of the Lagrange real root bound in the

real RAM model. In order to prove a lower bound in the RAM model, we follow

the usual approach of proving a lower bound in the algebraic decision tree model

which then implies the same lower bound in the real RAM model. In proving the
1Our results in this chapter were published in [39].
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required lower bound on the computation of the Lagrange real root bound, we first

interpret the Lagrange real root bound in a geometric setting. Then by using this

geometric interpretation, we formulate a decision problem and then show a lower

bound on this problem in the algebraic decision tree model(see Theorem 9). Then,

in Theorem 10, we show a reduction from the geometric decision problem to the

problem of computing the Lagrange real root bound to get the desired lower bound.

In the next section, we will define the problem of root bounds formally and give a descrip-

tion of some well known bounds in the literature.

2.1 Upper Bounds on the Positiveness of Univariate Poly-

nomials

From hereon in this chapter, we will assume that the leading monomial of a polynomial

is positive. Given a real polynomial

g(x) :=
d

∑
i=0

aixi, ai ∈ R

the numbers α ∈ R such that g(α) = 0, are referred to as the real roots of g.

DEFINITION 1. An upper bound on the positiveness of a polynomial g(x) ∈ R[x] is a

positive real number B such that

g(x)≥ 0, for all x≥B.

Since the leading monomial of g is assumed to be positive, any upper bound on the

positive real roots of g is an upper bound on the positiveness of g. Hence, to obtain a bound

on the positiveness of a polynomial, it suffices to upper bound its largest positive root.

DEFINITION 2. B is referred to as a bound on the absolute positiveness of g if
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• B is an upper bound on the positiveness of g and

• B is also an upper bound on the positiveness of its non-vanishing derivatives.

A bound on absolute positiveness need not be the same as the bound on the positiveness

of a polynomial. For instance, the polynomial (x−1)2 is positive from 0 onwards but its

derivative 2(x−1) is positive from 1.

Note that by computing an upper bound on the positive roots of g(−x), we can obtain

an upper bound on the negative roots of g(x). In this chapter, we will be concerned only

with upper bounds on the positive roots and for the sake of succinctness, we will refer to

them as just root bounds.

We will now describe the characteristics of a good root bound:

1. Quality: It is the ratio of the bound with respect to the infimum of all bounds on the

absolute positiveness of the polynomial. This infimum is referred to as the threshold

of absolute positiveness. The smaller the ratio, the better the bound.

2. Computational complexity: Since root bounds have algorithmic applications, we

would like them to efficiently computable. Ideally, we would like to have an algorithm

whose running time is linear in the degree of the polynomial for computing a given

root bound.

We will now present some root bounds in the literature which are relevant to our main

results in this chapter: Consider a polynomial

g :=
d

∑
i=0

aixi ∈ R[x].

B1. A well known and a frequently used real root bound is due to Kioustelidis [29],

K(g) :=2max
ai<0

∣∣∣∣ ai

ad

∣∣∣∣1/(d−i)

.
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In some sense, Kioustelidis’ bound tries to account for the contribution from the

negative monomials by pairing them only with the leading monomial. The contribution

of the remaining positive monomials is not considered. From the definition of K(g),

it is clear that it can be computed in time linear in the degree of the polynomial. For

the implementation details of the algorithm, we refer to [48, p. 21]. Here we note that

this bound has also been independently shown by Johnson [28].

B2. A more recent bound due to Hong [25] improves upon Kioustelidis’ bound by consid-

ering the contribution of all the positive monomials. Hong’s bound,

(2.1) H(g) :=2max
ai<0

min
a j>0
j>i

∣∣∣∣ ai

a j

∣∣∣∣1/( j−i)

.

With regard to quality, Hong showed that H(g) is off by a constant factor of d from

the threshold of absolute positiveness. In [7], it has been argued that H(g) is near

optimal within a certain framework. Coming to computational complexity, Hong’s

bound is linear time computable due to an algorithm in [30].

A bound asserted by Lagrange [31] happens to be better than Kioustelidis’ bound. Collins

[15] showed that this bound of Lagrange can be used to improve upon Hong’s bound. This

improvement of Collins over Hong’s bound is the central theme of this chapter. In the

next section, we will define Lagrange’s bound and show that it is a bound on the absolute

positiveness of a polynomial.

2.2 Absolute Positiveness of Lagrange’s Real Root Bound

In this section, we will prove that Lagrange’s real root bound [31] is a bound on the

absolute positiveness of a polynomial. Let

(2.2) f (x) :=xd−
d−1

∑
k=0

akxk,
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be a special polynomial where ak ∈ R≥0. Let R( f ) be the maximum and ρ( f ) be the

second maximum in the sequence |ak|1/(d−k), k = 0,1, . . . ,d−1 (we assume that d > 1).

Lagrange’s real root bound of the special polynomial f is defined as

(2.3) L( f ) :=R( f )+ρ( f ).

It is known that L( f ) is a bound on the positive roots of f [15, 36, 5]. We show that it

is also a bound on the positive roots of its non-vanishing derivatives. First we prove the

following result, a variation of the result in [7, Lemma. 2.2], which shows that any upper

bound on the positive roots of f is a bound on the absolute positiveness of f .

LEMMA 1. [39] L( f ) is a bound on the absolute positiveness of f defined in (2.2).

Proof. The j-th derivative of f is given by

f ( j)(x) =
d !

(d− j) !
xd− j−

d−1

∑
k= j

k !
(k− j) !

akxk− j.

Taking d !/(d− j) ! common from the RHS, we get,

f ( j)(x) =
d !

(d− j) !

(
xd− j−

d−1

∑
k= j

k !
(k− j) !

d !
(d− j) !

akxk− j

)
.

Since k !
(k− j) ! <

d !
(d− j) ! , we have

f ( j)(x)>
d !

(d− j) !

(
xd− j−

d−1

∑
k= j

akxk− j

)
, for all x > 0.

So,

f ( j)(x)>
d !

(d− j) !
f (x)
x j , for all x > 0.

Hence, L( f ) is a bound on the absolute positiveness of f . Q.E.D.

The bound in (2.3) can be generalized to an arbitrary polynomial as follows: Consider
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a general polynomial

(2.4) g(x) :=
d

∑
i=0

aixi ∈ R[x],

where ad > 0. For every ai < 0, define

(2.5) si := argmin{|ai/a j|1/( j−i) : j > i, a j > 0}.

Now for each j such that a j > 0, define

(2.6) g j(x) :=a jx j + ∑
si= j,ai<0

aixi.

Notice that g j is in the form given in (2.2), so R(g j) and ρ(g j) are well-defined as the first

and the second maximum, respectively, in the sequence |ai/a j|1/( j−i). Define L(g j) as in

(2.3). However, this can be done if g j has two or more negative coefficients; otherwise, if

g j has exactly one negative ai, then L(g j) is taken to be the unique positive root of g j; if g j

does not have negative coefficients, then L(g j) :=0. The Lagrange Real Root Bound of

g is defined as2

(2.7) L(g) := max
j

L(g j).

To compute L(g), we can compute the polynomials g j. This can be done in time

O(d logd) by the algorithm given in [35, Sec. 3.1]. We can then compute L(g j) in O(d)

time over all j. A further linear step of computing max j L(g j) gives us L(g). Our first

result is the following:

THEOREM 2. [39] The Lagrange Real Root Bound L(g) is a bound on the absolute

2This bound is the improved bound of Collins. Since the Lagrange bound is used for improvement, we
call it the “Lagrange real root bound”
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positiveness of g.

Proof. Since every negative monomial aixi has a unique si associated with it, we have

g(x) = ∑
a j>0

g j(x)+h(x)

where h(x) is a sum of positive monomials. From Lemma 1 and the definition of L(g j),

we know that L(g j) is a bound on the absolute positiveness of g j. Hence, from (2.7), we

conclude that L(g) is a bound on the absolute positiveness of g. Q.E.D.

Collins [15, Thm. 5] showed that L(g) is better than the Hong’s bound in (2.1).

Mehlhorn and Ray [35] gave an algorithm for computing H(g) in O(d) arithmetic oper-

ations. Can a similar algorithm exist for computing L(g)? In the following sections, we

will answer this question in the negative. We begin by giving an overview of the model of

computation in which we show a lower bound on the computation of the Lagrange real

root bound.

2.3 Algebraic Decision Trees - Basic Notations and Defi-

nitions

In this section, we will give an overview of the model of computation in which we prove a

lower bound on the computation of the Lagrange real root bound. Consider the following

classical decision problem of element distinctness: Are any two numbers in the sequence

(x1,x2, . . . ,xd) equal? A simple solution to this problem is to sort the sequence and then

scan the sorted list to find out if there are any duplicates. The time required by this solution

is O(d logd) since we need to sort the input. Intuitively, this simple solution also seems

like the best solution possible. But, how do we prove an Ω(d logd) lower bound? Since

this is a decision problem with only a ‘yes’ or a ‘no’ answer, the information theoretic
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argument used for the lower bound on sorting in the comparison tree model does not work.

This motivates the need for a stronger model of computation.

The simplest type of decision trees are the linear decision trees introduced by Dobkin

and Lipton [17]. In a linear decision tree, every internal node is labeled with a vec-

tor (a0,a1, . . . ,ad) and has three outgoing edges labeled +, − and 0. Given an input

(x1,x2, . . . ,xd), at every node the following linear polynomial is evaluated:

a0 +
d

∑
i=1

aixi.

Depending on the sign of the polynomial evaluation above, we decide which node to

branch to. The leaves of this tree are labeled either 0 or 1 and the label of the leaf at which

the computation ends is taken as the output of the tree. So, linear decision trees naturally

compute a function F : Rd → {0,1} and every internal node defines a hyperplane. The

measure of the complexity in this model is the depth of the tree which is a count of the

number of polynomial evaluations.

To prove lower bounds, we use the geometric interpretation of linear decision trees:

Consider the set of all points Sv in Rd that reach a given leaf v in the tree. All the points in

Sv satisfy a set of linear equalities and inequalities thereby forming a convex polyhedron.

Hence, the set Sv is connected. This property of connectivity gives us a nice handle to

prove lower bounds. Dobkin and Lipton [17] showed that

LEMMA 3. The depth of any linear decision tree computing a function F : Rd →{0,1} is

Ω(log(#F0+#F1)) where #F0 is the number of connected components of points x such that

F(x) = 0 and #F1 is defined similarly.

Hence if we want to prove a lower bound on a problem in the linear decision tree model,

we only need to bound the corresponding #F0 and #F1. The general flavour of the lower

bound argument can be explained with the following example: Again, consider the element

distinctness problem where the input is X := (x1,x2, . . . ,xd) ∈ Rd. Assuming X is a ‘yes’
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instance, i.e., elements of X are distinct, we permute the elements of X to generate d! ‘yes’

instances. Now the idea is to argue that these d! instances are all in different connected

components thereby obtaining a lower bound on #F1. To see this, consider any two distinct

permutations of X , say, U,V . There exists indices i, j such that Ui <U j and Vi >Vj. Now,

any continuous path γ : [0,1]→ Rd such that γ(0) =U and γ(1) =V must contain a point

W such that Wi =Wj. Clearly, W is ‘no’ instance of the element distinctness problem. Now

by using the connectedness property of the points reaching a given node in the tree, we can

conclude that U and V must be in different connected components.

An obvious generalization of the linear decision tree model was given by Steele and

Yao [43]: Algebraic decision trees. The only difference between a linear decision tree and

an algebraic decision tree is that the linear polynomials in the internal nodes of the linear

decision tree are replaced with degree n multivariate polynomials. Formally, an algebraic

decision tree is defined as follows: Given two positive integers m,n, an (m,n)-order

algebraic decision tree is a rooted tree T in which every internal node has associated

with it a multivariate polynomial in m variables of total degree at most n. The input or

domain of the decision tree is Rm and the function from Rm to {0,1} is computed exactly

in the same manner as in the case of linear decision trees. However, there is one crucial

difference between inputs to a linear decision tree and inputs to an (m,n)-order algebraic

decision tree, T : the set of points in Rm that reach a given node in the tree T form a

semi-algebraic set and not a convex polyhedron. It is well known that a semi-algebraic set

can be partitioned into connected components. Two points p, q ∈ Rm are said to be in the

same connected component corresponding to a node u of T iff there exists a continuous

curve γ : [0,1]→ Rm such that γ(0) = p, γ(1) = q and for all t ∈ [0,1], the point γ(t) on

the curve satisfies the set of polynomial equalities and inequalities from the root of T to

the node u. The measure of complexity in this model is again the depth of the decision

tree T , which counts the number of worst case polynomial evaluations from the root node

to a leaf.
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We say that an algebraic decision tree T solves the membership problem for a set

S ⊆ Rm if it satisfies the following: T outputs 1 on p ∈ Rm iff p ∈ S. However, in this

model we cannot leverage the connectedness argument as in the linear decision tree model

to prove lower bounds. This is because semi-algebraic sets can be disconnected. But, the

following lower bound on the number of connected components turns out to be useful:

PROPOSITION 4. [27, 38] Let X be a semi-algebraic set in Rm defined by k polynomial

equalities and h polynomial inequalities and the degree of all polynomials is at most n≥ 2.

Then, the number of connected components of X is upper bounded by n(2n−1)m+h−1

Ben-Or [8], using the lower bound above on the number of connected components

showed that

PROPOSITION 5. The height of any (m,n)-order algebraic decision tree T that solves

the membership problem for S is Ω(logn(#S)−m), where #S is the number of connected

components in S.

As in the case of linear decision trees, the crux of the lower bound argument in the

algebraic decision tree model boils down to lower bounding the number of connected

components in the required semi-algebraic set.

We will crucially use the following fact that relates lower bounds in the algebraic

decision tree model with lower bounds in the real RAM model [41, p. 30].

PROPOSITION 6. A lower bound for a decision problem A in the algebraic decision tree

model implies the same lower bound on A in the real RAM model.

We would also like to note that the real RAM model that we consider allows the

following operations:

• The arithmetic operations.

• Comparisons between two real numbers.
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• kth root, trigonometric functions, logarithmic function, exponentiation and other

analytic functions.

2.4 Lower Bound on a Geometric Problem

We start this section by motivating the definition of a certain geometric problem which

will be used for our lower bound argument.

2.4.1 Motivation

In order to obtain a lower bound on the computation of the Lagrange real root bound in

(2.7), we need to understand the geometric idea that underlies the linear time algorithm

of Koprowski-Mehlhorn-Ray [30] for the computation of Hong’s bound. For an arbitrary

polynomial g :=
d
∑

i=0
aixi ∈ R[x], recall the Hong’s bound of g in (2.1). From the definition

of H(g), we see that for every negative monomial in aixi in g, Hong’s bound tries to

associate it with a unique positive monomial a jx j such that j > i and minimizes the ratio∣∣ai/a j
∣∣1/( j−i)

. This ‘association’ can be understood geometrically as follows: By taking

the logarithm of the ratio
∣∣ai/a j

∣∣1/( j−i),

log
∣∣∣∣ ai

a j

∣∣∣∣ 1
( j−i)

=
log |ai|− log |a j|

j− i
,

we see that the RHS of the equality above is the slope of the line passing through the

points (i,− log |ai|) and ( j,− log |a j|). So, for a negative monomial aixi, the minimum of

the ratios
∣∣ai/a j

∣∣1/( j−i), for all j > i and a j > 0, is the slope of the lower tangent from

the point (i,− log |ai|) to the lower hull of the dominating set of points

(2.8)
{
( j,− log |a j|) : j > i,a j > 0

}
.
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With the interpretation above, we see that computing H(g) is equivalent to computing the

maximum of the slope of such lower tangents. This geometric interpretation of Hong’s

bound is what the linear time algorithm in [30] leverages.

Coming to the Lagrange real root bound, L(g) can be computed by computing the

polynomials g j defined in (2.6). Computation of g j’s requires computation of si as defined

in (2.5) for every negative monomial. From the definition of si in (2.5), we see that

si is the point of lower tangency from the point (i,− log |ai|) to the lower hull of its

dominating set as defined in (2.8). In this algorithm, computation of si’s is the expensive

step which requires construction of lower hulls and needs time O(d logd). The reason

for this logarithmic blowup in running time is due to the way in which the negative

monomials are processed. For Hong’s bound, we are only interested in computing the

maximum of a certain quantity, namely the slope of the lower tangents from points

corresponding to negative monomials to the lower hull of their dominating sets. So, if the

slope corresponding to the negative monomial being processed is not larger than some

precomputed slope, then this negative monomial can be discarded. But, we cannot do this

for the computation of the Lagrange bound, L(g). This is due to the fact that L(g) is the

maximum of L(g j) and L(g j) is defined as the sum of R(g j) and ρ(g j) as defined in (2.3).

We note that the quantities R(g j) and ρ(g j) are simply the exponentiation of the first and

the second maximum of the slopes of points whose points of tangency is ( j,− log |a j|).

Therefore, while computing L(g), we cannot discard a negative monomial whose si is

j unless we are sure that the Lagrange bound of the associated g j will not give us the

bound L(g). So in some sense, the worst case input for the computation of L(g) is the

polynomial g that forces the algorithm to compute the lower tangents corresponding to

all the negative monomials. This is the crucial aspect which our lower bound argument

exploits. In the next section, we will formulate a geometric decision problem based on

computing lower tangents from a point set to a lower hull. Then, we will show a lower

bound on this decision problem. By interpreting the points as monomials, we will show

that if there is a linear time algorithm for the computation of the Lagrange real root bound,
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then there is an algorithm for the geometric decision problem that violates the lower bound

shown for it.

2.4.2 The Point-Hull Bijection Problem

Consider the lower hull H of (d + 2) points in R2 such that all the (d + 2) points are

vertices of the lower hull; note that under this assumption the vertices of H can be ordered

in increasing order of x-coordinate; in this chapter, we only consider such hulls. From

any point p ∈ R2 there are two rays that are tangent to the hull H. Of these two rays,

the lower ray from p to H is the ray such that direction of the sweep to the other ray is

counterclockwise. The lower tangent from p to H is the line corresponding to the lower

ray from p. Note that p can be on H, in which case the lower tangent is an edge containing

p; in particular, if p is a vertex of H, the lower tangent is the edge that has p as the left

endpoint. The point of lower tangency for p is the left most vertex of H on the lower

tangent from p. The definition ensures that the lower tangent is well-defined for all points

in the plane.

The Point-Hull Bijection problem is the following: For a fixed H, given an ordered

point set P = (p1, . . . , pd), where pi ∈ R2, such that all the points in P are to the left of

the leftmost vertex of H, determine if every vertex of H, excluding the leftmost and the

rightmost vertex, is a point of lower tangency for some point in P? An ordered point set

P that has such a bijection to the vertices of H is called a YES-instance to the problem.

All other instances of P are NO-instances; in particular, if P has a point to the right of the

leftmost point of H then it is a NO-instance. Since the input is a set of d points in R2, we

take the length of the input to be 2d.

Known algorithms for computing the points of lower tangency test whether a given

point is on one side of a given line or on the line. These tests are equivalent to evaluating

a polynomial, and hence these algorithms can be modeled as algebraic decision trees.
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Figure 2.1: A point set P shown in blue, hull H and lower tangencies. The points in Pe and
Po are shown circumscribed by boxes and circles, respectively. The figure labelled (a) is a
NO-instance, whereas the figure labelled (b) is a YES-instance, to the Point-Hull Bijection
problem.

So algebraic decision trees solving the Point-Hull bijection problem can be thought of

as computing a function from R2d to the set {0,1}. The set of ordered point sets P

that are YES-instances to the problem form a connected components in R2d . Two YES-

instances are in different connected components iff all continuous paths connecting these

two instances contain a NO-instance. We will now derive a lower bound on the number of

such components.

Suppose P is an ordered point set that is a YES-instance to the Point-Hull Bijection

problem with respect to a given hull H. By enumerating the vertices of H from left to right,

starting with 0 to (d +1), we partition P into two subsets as follows:

Po :={pi ∈ P| pi’s point of lower tangency on H is odd}

and

Pe :={pi ∈ P| pi’s point of lower tangency on H is even}.

For the ease of exposition, we assume that all the odd indices in P are in Po and all the even

indices are in Pe. We now construct a large set P of ordered point sets obtained from P

such that all these instances are solutions to the Point-Hull Bijection problem. Keeping Po

fixed, we apply a permutation σ to the indices of points in Pe; let Pσ be the ordered point

set obtained in this manner from P. Note that the permutation σ only changes the order

48



in which the points from Pe are processed, but Pσ is still a YES-instance of the problem.

The set P , therefore, contains (d/2)! many instances that are solutions to the Point-Hull

Bijection problem. We are now in a position to derive the following lower bound:

LEMMA 7. There are at least (d/2)! connected components for the Point-Hull Bijection

problem.

Proof. Consider two distinct ordered point sets Pσ ,Pσ ′ ∈P . Then we know that there

is an even position 2i such that j :=σ(2i) is not the same as k :=σ ′(2i). In other words, the

points p j ∈ Pe at the position indexed 2i in Pσ and the point pk ∈ Pe at the same position in

Pσ ′ are different (by construction, the points in the odd position are the same in both).

Let ` be the vertical line touching the leftmost point of H. Consider a continuous curve

γ : [0,1]→ R2d that connects Pσ and Pσ ′ . Without loss of generality, we assume that γ(t)

stays to the left `; otherwise, we obtain a NO-instance to the problem. The component,

γ2i(t), of γ(t) gives us a continuous path between p j and pk. Since the points in P are to the

left of `, and the lower tangents intersect ` in decreasing order of y-coordinates, it follows

that the points p j and pk are on opposite sides of the lower tangent incident on either the

( j−1) or the ( j+1) vertex of H. As γ2i(t) is a continuous function and is also restricted

to the left of `, it intersects one of these tangents. So we have a point set Q ∈ R2d on γ(t)

such that there are two points in Q that have the same lower tangent in H, which means

that Q is a NO-instance to the problem. Therefore, Pσ and Pσ ′ are in different connected

components, and so we have the desired lower bound. For an illustration, see Figure 2.2.

Q.E.D.

Using the lemma above along with Proposition 5 and Proposition 6, we obtain the

following lower bound.

THEOREM 8. The arithmetic complexity of any algorithm solving the Point-Hull Bijection

problem is Ω(d logd) in the real RAM model, where 2d is the length of the input.

49



H

`

0

1

2 3

4

5

p1

p2

p3

γ2(t)

p4

Figure 2.2: In the example above Pσ = {p1, p2, p3, p4} and Pσ ′ = {p1, p4, p3, p2}, j = 2
and k = 4. Now the component γ2(t) is a continuous path in R2 that takes p2 to p4. Clearly,
the path intersects the lower tangent of p3 at the point shown in red.

It must be noted that n in Proposition 5 does not play a major role in the lower bound

above, because for a given algebraic decision tree n is fixed and hence (1/ logn) is a

constant.

To show the lower bound on algorithms computing L(g) where g is as defined in (2.4),

we need a point-hull pair that satisfies certain properties. For a hull H, let MinSlopeH and

MaxSlopeH denote the least and the largest slope over the edges of H. We call a point-hull

pair (P,H) nice if it satisfies the following conditions:

A1: MaxSlopeH < MinSlopeH +1.

A2: The interval (MinSlopeH ,MaxSlopeH ] contains the slopes of all the lower tangents

from P to H.

A3: The x-coordinates of points in P and H are fixed to 0, . . . ,2d +1.

An example of a nice point-hull pair is given in Figure 2.3; assumptions (A1) and (A2) are

not restrictive since we can construct instances where these assumptions hold, as shown in

the figure.

For a nice point-hull pair (P,H), the input is only the ordered set of y-coordinates of the

points in P. However, our earlier argument in Lemma 7 breaks down, because we cannot

50



0

0

2 3
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p1

p2

p3 4
1

p4

q

H

Figure 2.3: The vertices labeled 0 to 5 are the vertices of H; the point set P is shown in
blue; the red points are obtained by swapping the y-coordinates of p2 and p4. Note that q
and p3 have the same point of tangency on H.

permute points in Pe, since their x-coordinates are fixed and permuting the y-coordinates

may yield a NO-instance to the Point-Hull Bijection problem; e.g., in Figure 2.3, if we

swap the y-coordinates of p2 and p4 then the resulting point set is a NO-instance.

For every input y ∈ Rd , define the ordered point set

Py :=((0,y0), . . . ,(d−1,yd−1)).

Since the x-coordinates are fixed, we have to count the number of connected components

corresponding to y ∈ Rd such that (Py,H) is a YES-instance of the Point-Hull Bijection

problem.

To create a large number of input instances that are in different connected components

we do the following. For (xi,yi) := pi ∈ Pe, we define the following point set

Qi :={points of intersection of tangents incident on even vertices

in H with the line x = xi}.
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For the example shown in Figure 2.3, the sets Q2 and Q4 are illustrated in Figure 2.4.

For every pi ∈ Pe, we have |Qi| = d/2. So p2 can be replaced with d/2 points from Q2

corresponding to the d/2 tangents. However, to maintain a bijection, p4 has to avoid the

tangent on which p2 is mapped, and so can be replaced with ((d/2)−1) points from Q4.

Continuing in this manner, we obtain a YES-instance Py′ . The construction gives us (d/2)!

such input instances y′ ∈ Rd . Our claim is that two such instances y,y′ are in different

connected components in Rd , i.e., on every continuous path connecting them there is a y′′

such that Py′′ is a NO-instance to the Point-Hull Bijection problem.

0

0

2 3

5
p1

p2

p3 4
1

p4 q2

q4

H

Figure 2.4: The sets Q2 = {p2,q2} and Q4 = {p4,q4} corresponding to the example shown
in Figure 2.3.

To see this, consider a continuous curve γ : [0,1]→ Rd connecting y and y′. There

has to be a pi ∈ Pe that is mapped to (xi,yi) ∈ Py and (xi,y′i) ∈ P′y, where yi 6= y′i. Let

γi : [0,1]→ R be the ith component of γ that maps yi to y′i. Therefore, in R2, γi takes the

point (xi,yi) to (xi,y′i) along the line x = xi. Since (xi,yi) and (xi,y′i) are on two different

tangents incident on even vertices in H, and γi can only move along the line x = xi, it has to

cross a tangent which is incident on an odd vertex of H; e.g., in Figure 2.4, the path from

p2 to q2 keeping the x-coordinate fixed crosses the lower tangent corresponding to p3. So

there is a point y′′ ∈ Rd along the path of γ from y to y′ such that Py′′ is a NO-instance to the

Point-Hull Bijection problem. Hence y and y′ are in two different connected components
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in Rd . Therefore, we apply Proposition 5 and Proposition 6, to get the following result.

THEOREM 9. The arithmetic complexity of any algorithm solving the Point-Hull Bijection

problem for a nice point-hull pair (P,H) in the real RAM model is Ω(d logd), where d is

the length of the input.

2.5 Lower Bound on Computing Lagrange’s Real Root

Bound

In this section, we will use Theorem 9 to derive a lower bound on the arithmetic complexity

of computing L(g) (recall the definition from (2.7)). Before we proceed with the derivation,

we recall the interpretation of L(g) in the geometric setting.

Given a polynomial g(x) := ∑
d
i=0 aixi, let

pi :=(i, log(1/|ai|))

be the point corresponding to the monomial aixi in g. For ai < 0, define si as in (2.5); recall

that si is only defined for negative monomials. For a given pi such that ai < 0, let Hi be the

lower hull of the points in the dominating set as defined in (2.8). By definition of si we

have ∣∣∣∣ ai

asi

∣∣∣∣ 1
si−i

= min
j>i;a j>0

log
∣∣∣∣ ai

a j

∣∣∣∣ 1
j−i

.

This can be interpreted as the slope of the lower tangent from pi to Hi; note that if p j ∈ Hi

is the point of lower tangency for pi then si = j. For a j > 0, define Tj as the set of lower

tangents associated with p j, i.e.,

Tj := {pi ∈ P, such that si = j} .

Let MaxSlope1 j and MaxSlope2 j be the first and second maximum over the slopes of the
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lower tangents of the points in Tj; if |Tj|= 0, then MaxSlope1 j = 0 and if |Tj|= 1, then

MaxSlope2 j = 0. Define

(2.9) MaxSlope := max
j

{
MaxSlope1 j, where a j > 0

}
.

Then we have the following interpretations: For Hong’s bound

(2.10) H(g) = 21+MaxSlope,

and for Lagrange’s real root bound

(2.11) L(g) = max
(

max
j: |Tj|=1

2MaxSlope1 j , max
j: |Tj|>1

(
2MaxSlope1 j +2MaxSlope2 j

))
.

Using this interpretation, we will derive a lower bound on computing L(g).

THEOREM 10. An algorithm for computing L(g) for a real polynomial g of degree d

requires Ω(d logd) arithmetic operations in the real RAM model.

Proof. The main idea of the proof is to use an algorithm for computing the Lagrange

real root bound to decide the Point-Hull Bijection problem for a nice point-hull pair (Py,H),

where y ∈ Rn.

Let (Py,H) be a nice point-hull pair such that

Py = {(i,ai) : i ∈ [0, . . . ,d−1],ai ∈ R}

and

H = {(i,bi) : i ∈ [d, . . . ,2d +1],bi ∈ R} .

From (Py,H), we construct the following polynomial

(2.12) f (x) := ∑
(i,bi)∈H

xi

2bi
− ∑

(i,ai)∈Py

xi

2ai
.
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This reduction from (Py,H) to f requires O(d) many exponentiation operations.

To decide the Point-Hull Bijection problem for (Py,H), we do the following: compute

L(g) and H(g), for g given in (2.12). If 2L(g) = H(g), we output YES; otherwise, we

output NO. We now prove the correctness of this algorithm.

If (Py,H) is a YES-instance of the Point-Hull Bijection problem, then for all j, such that

a j > 0, |Tj|= 1. Therefore, from (2.9), (2.10) and (2.11), we obtain that H(g) = 2L(g).

Now we prove the converse: If (Py,H) is a NO-instance of the Point-Hull Bijec-

tion problem then 2L(g) > H(g). Let j be an index such that |Tj| > 1. Then from the

interpretation of L(g) given in (2.11) we obtain that

2L(g)≥ 2(2MaxSlope1 j +2MaxSlope2 j)

≥ 22+MinSlopeH

> 21+MaxSlopeH

≥ 21+MaxSlope = H(g),

where the second and fourth inequalities follow from assumption (A2), and the third

inequality follows from assumption (A1).

Since H(g) can be computed with O(d) many arithmetic operations, we can decide

whether a nice point-hull pair (Py,H) is a YES-instance in essentially the time taken by

the algorithm for computing L(g). From the lower bound in Theorem 9 and the result in

[41, p. 29, Prop. 1], we get the desired claim. Q.E.D.

Here we note that the algorithm for computing Hong’s bound in [30] assumes that the

monomials are given to us in the increasing order of their degree. But our lower bound on

the computation of the Lagrange real root bound is independent of any such assumption

and hence, it is applicable to any algorithm for computing the Lagrange real root bound.
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2.6 Conclusion

In this chapter, we have shown that the Lagrange real root bound, L(g), is a bound on

the absolute positiveness of a univariate real polynomial g. A goal in this line of work

is to actually derive a tight bound on the largest positive root of g, if one exists. Note

that such a bound should be able to detect if g has a positive real root or not. It is clear

that any algorithm for isolating real roots can be used to detect existence of a positive

real root. In the converse direction, we can ask the following question: Is the problem

of deciding whether a polynomial has a positive root at least as hard as isolating its real

roots? One way to prove such a statement is to give a reduction from real root isolation

that takes sub-quadratic (in the degree) arithmetic cost and makes at most sub-linear calls

to detecting positive roots. On the other hand, one can also try to obtain an algorithm with

sub-quadratic arithmetic cost for detecting or approximating positive roots.

Another direction to pursue is to generalize L(g) to the multivariate setting. In [25], a

bound on the absolute positiveness of multivariate polynomials is given. It is natural to

derive a version of the Lagrange real root bound for multivariate polynomials and give an

algorithm to compute it, similar to the one in [35]. One could then try to generalize the

lower bound in Theorem 10 to this more general setting. In the next chapter, we will focus

on generalizing the Lagrange real root bound L(g) for multivariate polynomials.
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Chapter 3

Generalizing the Lagrange Real Root

Bound for Multivariate Polynomials

In this chapter1, we will present our results on upper bounds on the absolute positiveness

of multivariate polynomials. Our main results are:

1. In (3.21), we give a generalization of Westerfield’s bound for multivariate polynomi-

als. Then, in Theorem 15, we show that it is a bound on the absolute positiveness

of multivariate polynomials. In proving Theorem 15, we first express an arbitrary

multivariate polynomial as a sum of special polynomials as defined in (3.2) and

then show that the Westerfield bound of these special polynomials is a bound on

their absolute positiveness (see (3.19) and Lemma 13). Also, in (3.25), we derive a

generalization of the Lagrange real root bound for multivariate polynomials. Then,

in Lemma 16, we quantify the improvement of the generalized Westerfield bound

and the generalized Lagrange bound over Hong’s bound in the multivariate setting.

2. For computing the Lagrange bound for multivariate polynomials, we give an al-

gorithm in Section 3.3. In Theorem 17, we show that our algorithm matches the

running time of the Mehlhorn-Ray algorithm [35] for computing Hong’s bound. A
1The results given in this chapter appeared in [40].
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key aspect of our algorithm for computing the Lagrange bound is that it uses range

trees for range querying. By referring to a known lower bound on range querying due

to Fredman [22], in Section 3.3.3, we argue that the running time of our algorithm

cannot be improved by using a different data structure for range querying.

3.1 Preliminaries

Consider a univariate real polynomial, f (x) :=
d
∑

i=0
aixi, ad > 0. From (2.3), Lagrange’s real

root bound of f is

L( f ) :=R( f )+ρ( f ),

where R( f ) and ρ( f ) are the first and the second maximum respectively in the sequence

(
|ai/ad|1/(d−i) : ai < 0

)
.

As mentioned in chapter 2, Collins [15] showed that L( f ) can be used to improve upon

a real root bound in [25]. It is natural to ask whether the bound can be further improved

if we consider more numbers from the sequence
(
|ai/ad|1/(d−i) : ai < 0

)
. This approach

has been explored by Westerfield [49] for deriving a root bound, i.e., an upper bound on

the absolute value of roots of a complex polynomial. For a monic complex univariate

polynomial zd +∑
d−1
i=0 aizi, he considers its Cauchy polynomial zd−∑

d−1
i=0 |ai|zi and defines

bi := the ith maximum in the sequence
(
|ai|1/(d−i)

)
.

Westerfield then defines a sequence of polynomials, (Pk)k∈N, where

Pk(y) :=yk−
k−1

∑
j=0

y j,
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whose unique positive roots are in increasing order, i.e., if yk is the positive root of Pk, then

1 = y1 < y2 < · · ·< yk < · · · ,

and in the limit they converge to 2. Let β1 :=1 and for k > 1 define

βk :=yk− yk−1.

Therefore, for any n ∈ N, we have 1≤ ∑
n
k=1 βk < 2. Westerfield proved the following root

bound [49]:

PROPOSITION 11 (Westerfield’33). If α ∈ C is a root of the polynomial zd +∑
d−1
i=0 aizi,

then

|α| ≤
d

∑
i=1

βibi=:W ( f ).

In the next section, we generalize Westerfield’s bound to a bound on the absolute

positiveness in the multivariate setting. Before that, we fix the following notation for this

chapter:

Notations:

1. For µ :=(µ1, . . . ,µn) ∈ Zn
≥0, define |µ| :=µ1 +µ2 + · · ·+µn.

2. Given µ,ν ∈ Zn
≥0, define ν−µ :=(ν1−µ1, . . . ,νn−µn).

3. For µ,ν ∈ Zn
≥0, we introduce the partial ordering “ � ” and write µ � ν if for all

i ∈ [n], µi ≤ νi. We write µ ≺ ν , if µ � ν and µ 6= ν .

4. Given µ ∈ Zn
≥0, define µ! :=µ1! · · ·µn!.

5. Let X :=(x1, . . . ,xn) be an n-tuple of real variables; we will use x to denote a

univariate real variable. For a µ ∈ Zn
≥0, define X µ :=xµ1

1 · · ·x
µn
n .
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6. Given λ ∈ Zn
≥0, and a polynomial F(X) ∈ R[X ], its partial derivative of order λ ,

F(λ )(X) :=
∂ |λ |F

∂xλ1
1 · · ·∂xλn

n
.

7. Given B ∈ R, by X ≥ B we mean x1 ≥ B, . . . ,xn ≥ B.

8. Let

(3.1) Ωn :=1− n

√
1
2
.

It is known that 1/Ωn ≥ n
ln2 +0.5 = 1.44n+0.5, and not hard to verify that Ωn is a

root of the series 2− (1− x)−n.

The following definition generalizes the notion of a real root bound to the multivariate

setting [25]:

DEFINITION 3. A real number B is said to be a bound on the positiveness of F ∈ R[X ] if

for all X ≥ B,F(X)≥ 0.

Hong [25] showed that most of the known bounds are not just upper bounds on the

positiveness of F but also upper bounds on the positiveness of its derivatives. Therefore,

we will be interested in bounding the following quantity:

DEFINITION 4. A real number B is said to be a bound on the absolute positiveness of

F ∈ R[X ] if

1. It is bound on the positiveness of F.

2. For all X ≥ B, F(λ )(X)≥ 0, for any partial derivative of F of order λ .

It is not clear whether there exists a bound on the absolute positiveness of an arbitrary

multivariate polynomial F(X). To ensure that F has such a bound, we need to make
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certain assumptions. In order to state the assumptions, we need the notion of a dominating

monomial [25].

DEFINITION 5. A monomial aνXν is said to dominate a monomial aµX µ if and only if

µ ≺ ν . A dominating monomial is the one that is not dominated by any other monomial in

the polynomial.

To ensure the existence of a bound for absolute positiveness, Hong and Jakus [26]

showed that we need the following assumptions:

1. The coefficients of all the dominating monomials in F are positive.

2. At least one of the monomials in F has a negative coefficient; otherwise, zero is a

trivial bound on the absolute positiveness.

From now we assume that F satisfies these two assumptions. Without the assumption on

the coefficients of the dominating monomials being positive, definition 3 is not relevant.

For instance, consider the polynomial x2− y2−1; in this polynomial, x2 and y2 are the

dominating monomials. From definition 3, a bound on positiveness is a real number B

such that x2− y2−1 is non-negative in the orthant hinged at the point (B,B). But, clearly

for any real number B, there will be infinitely many points in the orthant hinged at (B,B)

where the monomial x2 cannot dominate (−y2−1).

3.2 A Westerfield-type Bound in the Multivariate Setting

We first derive a bound on the absolute positiveness of the following special multivariate

polynomial: given ν ∈ Zn
≥0 define

(3.2) Fν(X) :=Xν + ∑
0�µ≺ν

aµX µ ,
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where aµ ∈ R≤0, for all µ . As in Westerfield’s bound for univariate polynomials, we define

bi’s and Bi’s with a slight difference, namely we only consider non-zero aµ ’s: Define

(3.3) bi := the ith largest number in the sequence
(∣∣aµ

∣∣1/|ν−µ|
,aµ 6= 0

)
,

and

(3.4) Bi := the ith largest in the set
{∣∣aµ

∣∣1/|ν−µ|
,aµ 6= 0

}
,

where 0 � µ ≺ ν . If the number of bi’s is smaller than |ν | then we repeat the smallest

amongst them to make up for the deficit. Thus the bi’s can occur with repetition and their

number is at least |ν |; the Bi’s, on the contrary, are the bi’s without repetition. Following

Westerfield, we also define a canonical sequence of univariate polynomials

(3.5) Pk(y) :=yk−
k

∑
j=1

(
n+ j−1

j

)
yk− j, k ∈ N.

In particular, P1(y) = y−n, P2(y) = y2−ny−
(n+1

2

)
and so on. As in the univariate setting,

the unique positive roots of Pk’s are in increasing order, i.e., if yk is the positive root of Pk,

then

n = y1 < y2 < · · ·< yk < · · · .

Analogous to the univariate setting, we define β1 :=n and for k > 1

(3.6) βk :=yk− yk−1.

The following result will be useful later:

LEMMA 12. Let k ∈ N and ν ∈ Zn
>0 be such that |ν |= k. Then

1. For y≥ 0 we have

Pk(y)≤ y|ν |− ∑
0�µ≺ν

y|µ|.
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2. The roots yk <
1

Ωn
. Furthermore,

1
Ωn
− yk > cn,k

Ωk
n

k(1−Ωne−1/k)
,

where

(3.7) cn,k :=


1 for n = 1(
1+ k+1

n−1

)n−1
for n > 1.

Note that cn,k < ek+1.

Proof.

1. The claim is trivially true if y = 0, so we assume that y > 0. From the definition of

Pk, it follows that the claim is equivalent to showing that

yk−
k

∑
j=1

(
n+ j−1

j

)
yk− j ≤ y|ν |− ∑

0�µ≺ν

y|µ|, for y > 0.

Since |ν | = k, we divide both sides by yk, cancel the unit term on both sides, and

substitute x = 1/y to obtain the following equivalent claim:

k

∑
j=1

(
n+ j−1

j

)
x j ≥ ∑

0�µ≺ν

x|ν |−|µ|, for x > 0.

The coefficient of x j on the RHS is equal to the number of µ’s such that |µ|= k− j

and µ ≺ ν . Since |ν | = k, the number of such µ’s is at most the number of non-

negative solutions to the equation x1 + x2 + · · ·+ xn = j. A standard combinatorial

argument shows that the number of such solutions is bounded by
(n+ j−1

j

)
. Therefore,

we conclude

Pk(y)≤ y|ν |− ∑
0�µ≺ν

y|µ|, for y > 0.
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2. The series Q(x) :=2−(1−x)−n vanishes at Ωn. Using the identity
(−n

i

)
=(−1)i(n+i−1

i

)
,

we obtain that

Q(x) = 1−nx−
(

n+1
2

)
x2−

(
n+2

3

)
x3−·· · .

But for x≥ 0, we have that the polynomial xkPk(1/x)≥Q(x). As both xkPk(1/x) and

Q(x) monotonically decrease for x ≥ 0, it follows that Ωn < 1/yk, or equivalently

yk < 1/Ωn.

To lower bound (1/Ωn−yk), we will derive a lower bound on yi+1−yi, and take the

sum of these lower bounds for i≥ k. In order to lower bound yi+1− yi, observe that

the polynomial Pi is convex from yi onwards, therefore, the Newton iterates starting

from yi+1 converge to yi from above. Hence, yi is smaller than the first Newton

iterate yi+1−P(yi+1)/P′(yi+1), that is,

(3.8) yi+1− yi ≥
P(yi+1)

P′(yi+1)
.

From the definition of the polynomials Pi+1 and Pi, it follows that

Pi+1(y) = yPi(y)−
(

n+ i
i+1

)
.

Evaluating both sides at yi+1, and substituting the value of Pi(yi+1) in (3.8), we

obtain that

yi+1− yi ≥
(

n+ i
i+1

)
1

yi+1 ·P′i (yi+1)
.

Since P′i (yi+1)≤ iyi−1
i+1, the inequality above, along with the observation that yi+1 <

1/Ωn, implies that

yi+1− yi ≥
(

n+ i
i+1

)
1

iyi
i+1

>

(
n+ i
i+1

)
Ωi

n
i
.
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Taking the sum of the LHS for i≥ k, we obtain that

(3.9)
1

Ωn
− yk > ∑

i≥k

(
n+ i
i+1

)
Ωi

n
i
.

The desired lower bound is essentially a slightly better estimate than the first term in

the summation above. Since the binomial term increases with i, we can replace it

with the binomial term corresponding to i = k, and then pull out the first term from

the summation to get a lower bound:

(3.10)
1

Ωn
− yk >

(
n+ k
k+1

)
Ωk

n
k ∑

i≥k

Ωi−k
n

i/k
.

Now we will derive a lower bound on the summation term in the RHS above. First,

we reorder the index to start from zero to obtain

∑
i≥k

Ωi−k
n

i/k
= ∑

i≥0

Ωi
n

1+(i/k)
.

Since for all x, (1+ x)< ex, we get that

∑
i≥0

Ωi
n

1+(i/k)
> ∑

i≥0
(Ωne−1/k)i =

1
1−Ωne−1/k

.

Substituting this lower bound in (3.10) gives us,

(3.11)
1

Ωn
− yk >

(
n+ k
k+1

)
Ωk

n

k(1−Ωne−1/k)
.

For n = 1 the binomial coefficient is just one. When n > 1, the binomial coefficient

in the inequality above is

(
n+ k
k+1

)
=

(
n+ k
n−1

)
=

(n+ k)(n+ k−1) · · ·(k+2)
(n−1)(n−2) · · ·1

.
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In the RHS above, we substitute the lower bound

n+ k− i
n−1− i

≥ n+ k
n−1

,

for i = 0, . . . ,n−2, to obtain that

(
n+ k
k+1

)
≥
(

n+ k
n−1

)n−1

=

(
1+

k+1
n−1

)n−1

.

Substituting this lower bound in (3.11) gives the required inequality:

1
Ωn
− yk > cn,k

Ωk
n

k(1−Ωne−1/k)
.

Q.E.D.

Now we generalize Westerfield’s bound for the special polynomial Fν as defined in

(3.2).

LEMMA 13. For the polynomial Fν given in (3.2), define

(3.12) W (Fν) :=
|ν |

∑
i=1

βibi.

Then W (Fν) is an upper bound on the positiveness of Fν .

Proof. For the sake of succinctness, let W :=W (Fν). Consider,

Fν(X) = Xν + ∑
0�µ≺ν

aµX µ .

= Xν

(
1+ ∑

0�µ≺ν

aµ

1
Xν−µ

)
.

(3.13)

Since aµ < 0, for every µ , the equation above implies that Fν(X) ≥ Fν(W ), for X ≥W .

So to prove that W is a bound on the positiveness of Fν , it suffices to prove that Fν(W )≥ 0.

Since we substitute W for each xi in Fν to get Fν(W ), we consider the univariate polynomial
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Fν(x) obtained by substituting x1 = x2 = · · ·= xn = x in Fν , i.e., the polynomial

(3.14) Fν(x) :=x|ν |+ ∑
0�µ≺ν

aµx|µ|,

where aµ ∈ R≤0, for all µ . To show that Fν(W )≥ 0, we follow the same approach as

in Westerfield’s proof [49], which is by induction on the the number of non-zero Bi’s.

1. Base case: There is exactly one non-zero Bi; let it be b. So,

Fν(x) = x|ν |− ∑
0�µ≺ν

b|ν−µ|x|µ|.

If |ν |= k, then from Lemma 12, we have that for y≥ 0

Pk(y)≤ y|ν |− ∑
0�µ≺ν

y|µ|.

Replacing y by x/b and multiplying by bk in this inequality, we get that

bkPk(x/b)≤ x|ν |− ∑
0�µ≺ν

b|ν−µ|x|µ| = Fν(x).

So the positive root of Fν(x) is at most byk = b
|ν |
∑

i=1
βi =W .

2. Induction case: Let B1 > .. . > B` > 0 be the ` > 1 distinct non-zero values in

the set
{∣∣aµ

∣∣1/|ν−µ|
,0� µ ≺ ν

}
. In the non-increasing sequence of bi’s, let k1 be

the number of repetitions of B1, k2− k1 be the number of repetitions of B2 and so

on k`− k`−1 be the number of repetitions of B`. Since we only consider the |ν |

largest bi’s in the definition of W , without loss of generality we assume that k` = |ν |.
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Therefore, W can be expressed as

(3.15) W =
k1

∑
i=1

βiB1 +
k2

∑
i=k1+1

βiB2 + · · ·+
|ν |

∑
i=k`−1+1

βiB`.

The key idea to show that Fν(W ) ≥ 0 is to introduce a parametric version of the

problem. This is done by introducing polynomials Bi(t)’s in a variable t ∈ [0,1] such

that for some choice t∗ ∈ [0,1] we recover the original Bi’s. If k = |ν |, then showing

Fν(W )≥ 0 is equivalent to showing,

(3.16) W (t)k ≥ h(t), for t ∈ [0,1],

where

h(t) :=
`

∑
i=1

∑
µ∈Ki

Bi(t)k−|µ|W (t)|µ|,

and the index sets Ki are defined as

Ki :=
{

µ : |aµ |1/(|ν−µ|) = Bi

}
.

To prove (3.16), Westerfield chooses Bi(t)’s such that W (t) is independent of t and

remains equal to W . For t either 0 or 1, we will use the induction hypothesis to

obtain that W k ≥ h(t). For t ∈ (0,1), the key observation will be that the function

h(t) is convex in t, and since W k dominates h(t) at the extremities, it dominates it

for all t ∈ (0,1). We now give the details of the proof for ` > 1.

The polynomials B1(t),B2(t) will be linear in t; for i > 2, Bi(t) :=Bi, i.e., they are

constants. Let B1(t) :=αt+β and B2(t) :=γt+δ . The choice of the four parameters

α,β ,γ and δ is governed by the following four constraints:

C1. To apply the induction hypothesis at t = 0, we ensure that B1(0) = B2(0), i.e.,

β = δ .

C2. To apply the induction hypothesis at t = 1, we ensure that B2(1) = 0. This
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implies that the number of non-zero Bi’s is (`−1).

C3. To ensure that W is independent of t, we require that

α

k1

∑
i=1

βi + γ

k2

∑
i=k1+1

βi = αyk1 + γ(yk2− yk1) = 0.

C4. To ensure that there is a t∗ such that B1(t∗) = B1 and B2(t∗) = B2 we require

that (B1−β )/α = (B2−β )/γ .

Solving for α,β ,γ we get the following:

β =
(B1−B2)yk1 +B2yk2

yk2

, α = β
(yk2− yk1)

yk1

,

and γ = −β . Since yk2 > yk1 , β is in the interval (B2,B1), B1(t) is increasing and

B2(t) is decreasing, but both are positive.

The conditions C1 and C2 imply that W k dominates h(0) and h(1). As mentioned

earlier, to prove that W k dominates h(t) for all t ∈ (0,1) it suffices to show that

h(t) is a convex function for t ∈ (0,1). This will follow if we show that the second

derivative of h is positive. Since only B1(t) and B2(t) depend on t, we have

h′′(t) = ∑
µ∈K1

(k−|µ|)(k−|µ|−1)α2B1(t)k−|µ|−2W |µ|+

∑
µ∈K2

(k−|µ|)(k−|µ|−1)γ2B2(t)k−|µ|−2W |µ|.

Since B1(t),B2(t)> 0, for t ∈ (0,1) and γ2 > 0, it follows that h′′(t)≥ 0, therefore,

h(t) is a convex function as desired. This completes the proof of the induction case.

Q.E.D.

Now, we will prove that the bound in (3.12) is a bound on the positiveness of the

non-zero derivatives of Fν .
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LEMMA 14. The bound W (Fν) in (3.12) is a bound on the absolute positiveness of Fν

given in (3.2).

Proof. Consider a non-zero derivative of Fν of order λ :

ν!
(ν−λ )!

Xν−λ + ∑
µ≺ν

λ�µ

µ!
(µ−λ )!

aµX µ−λ ,aµ < 0.

Since
ν!

(ν−λ )!
>

µ!
(µ−λ )!

,

for all µ ≺ ν , we see that for all non-zero partial derivatives of order λ , F(λ )
ν (X),

Fν(X)≤ F(λ )
ν (X),

for all X ≥ 0. Hence, from Lemma 13, we conclude that the bound in (3.12) is a bound on

the absolute positiveness of Fν . Q.E.D.

REMARK 1. Some remarks on the proof above.

1. The polynomial Fν in (3.2) is monic. But, in general, the leading coefficient of Fν ,

aν > 0, may not be equal to 1. For such polynomials, the definition of bi is taken to

be

bi := the ith largest number in

(∣∣∣∣aµ

aν

∣∣∣∣ 1
|ν−µ|

: 0� µ ≺ ν

)
.

The definition of Bi changes analogously as well. Also, the proof of Lemma 13

remains unchanged with these definitions. We will later need special notation for b1

and b2, so we define

(3.17) R(Fν) :=b1 and ρ(Fν) :=b2.
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Note that these definitions are analogous to the definitions of R( f ) and ρ( f ) in (2.3).

2. A tentative approach to prove Lemma 13 is to show that W (Fν(X)) is at least as

large as the univariate Westerfield bound W (Fν(x)) (see Proposition 11) applied

to the univariate polynomial Fν(x) (defined in (3.14)). This appears likely, but we

leave this as an open problem. Nevertheless, we do not use W (Fν(x)) to bound the

positiveness of the multivariate polynomial Fν(X) because computing it is not as

efficient as W (Fν) (this is addressed in Section 3.3) and it does not have an apriori

closed form expression like W (Fν) since the coefficients of Fν(x) depends on the

number of monomials having the same total degree in Fν(X).

We now generalize the bound W (Fν) to arbitrary multivariate polynomials. Consider

an arbitrary multivariate polynomial

(3.18) F(X) := ∑
µ∈µ(F)⊆Nn

aµX µ + ∑
ν∈ν(F)⊆Nn

aνXν ∈ R[X ]

where

µ(F) :=
{

µ ∈ Nn : aµ < 0
}
.

ν(F) := {ν ∈ Nn : aν > 0} .

We would like to partition F as follows:

(3.19) F = ∑
ν∈ν(F)

Fν +G

where each Fν is of the form given in (3.2) and G is a polynomial which is a sum of only

positive monomials. As in [15], we consider a negative monomial aµX µ , and assign it to

a unique ν ∈ ν(F). 2 This is done by establishing a special function s : µ(F)→ ν(F) as

2Instead of doing the assignment arbitrarily, we do it in a special manner because this will later help us in
reinterpreting Hong’s bound.
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follows: Given µ ∈ µ(F), consider the set of indices ν ′ such that

∣∣∣∣ aµ

aν ′

∣∣∣∣1/|ν ′−µ|
= min

ν

{∣∣∣∣aµ

aν

∣∣∣∣1/|ν−µ|
: aν > 0, µ ≺ ν

}
.

Define s(µ) to be an arbitrary element of this set; We can now partition F as desired in

(3.19): Given ν ∈ ν(F), define

(3.20) Fν(X) :=aνXν + ∑
s(µ)=ν

aµX µ .

The polynomials Fν ’s partition F because the function s : µ(F)→ ν(F) is well defined,

and hence every negative monomial is associated with a unique positive monomial. For

all the ν ∈ ν(F) that are not in the range of the function s(·), Fν is defined to be the zero

polynomial; these monomials appear in G in (3.19). The resulting partition of F is called

a slope partitioning of F from now onwards. 3

We are now in a position to define a generalization of the Westerfield’s root bound

to the multivariate setting. Consider a polynomial Fν , as in (3.20), in the slope partition

of F . From Lemma 13, we know that W (Fν) is a bound on absolute positiveness of Fν .

Taking the maximum of all these bounds we obtain the following bound on the absolute

positiveness of F :

(3.21) W (F) := max
ν∈ν(F)

W (Fν).

This is summarized in the following main result of this section:

THEOREM 15. Given a multivariate polynomial F as defined in (3.18), W (F) as defined

in (3.21) is a bound on the absolute positiveness of F.

From here on, we refer to the bound in (3.21) as the Westerfield bound on absolute

positiveness in the multivariate setting.
3The choice in the definition of the function s(µ) means that there may be more than one way of

partitioning F that yields a slope partition.
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3.2.1 Generalizing Lagrange’s Real Root Bound to the Multivariate

Setting

In this subsection, we will generalize Lagrange’s bound in (2.3) to the multivariate setting.

We first note that the Westerfield’s bound defined in (3.21) has a generic form among the

known bounds that use bi’s in their definition. One such well known bound was given by

Hong [25]. For the polynomial in (3.18), Hong’s bound is

H(F) :=
1

Ωn
max
aµ<0

min
aν>0
µ≺ν

∣∣∣∣aµ

aν

∣∣∣∣ 1
|ν−µ|

.

Hong showed that H(F) is a bound on the absolute positiveness of F . To the best of our

knowledge, we do not know any published bounds that are better than Hong’s bound in the

multivariate setting. Now, using the partition of F in (3.19), we can reinterpret H(F) as

(3.22) H(F) := max
ν∈ν(F)

H(Fν),

where H(Fν) is defined as,

H(Fν) :=
1

Ωn
max

s(µ)=ν

∣∣∣∣aµ

aν

∣∣∣∣ 1
|ν−µ|

=
R(Fν)

Ωn
,

and R(Fν) is as in (3.17).

Before we generalize Lagrange’s bound to the multivariate setting, we associate certain

linear combinations of bi’s, defined in (3.3), with a polynomial Fν as in (3.2). Recall that

y|ν | is the positive root of P|ν |. Given a sequence α :=(α1, . . . ,αk) of k numbers such that

∑
k
i=1 αi = y|ν |, associate the following number with the polynomial Fν :

(3.23) Bα(Fν) :=
k

∑
i=1

αibi.

For instance, if αi’s are equal to βi’s as defined in (3.6), then Bα(Fν) is the Westerfield
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bound, W (Fν). Note, however, not all choices of αi’s give us a bound on the absolute

positiveness of Fν . For an arbitrary multivariate polynomial F and a sequence α , we define

the number

Bα(F) := max
ν∈ν(F)

Bα(Fν),

where Fν ’s are the polynomials in the slope partition of F . Note that from the definition of

Bα(Fν) and R(Fν) we have

Bα(Fν)≤ R(Fν)∑
i

αi = R(Fν)y|ν |.

Since y|ν | < 1/Ωn, it follows that Bα(Fν) < H(Fν) and consequently Bα(F) < H(F).

Therefore, all numbers Bα(Fν) are smaller than Hong’s bound, though not all of them

are bounds on absolute positiveness. But it is not clear if Bα(F) can be computed as

efficiently as H(F). We know that H(F) can be computed in O(m logn m) time, where

m is the number of non-zero monomials in F [35]. Note that if α was just a singleton

element, namely y|ν |, then the resulting number is y|ν |R(Fν) is closest to H(Fν). Therefore,

if we want to attain similar running time as Hong’s bound, we should consider sequences

α that have constantly many terms. With this in mind, we define a spectrum of bounds,

with Westerfield’s bound on one extreme and Hong’s bound at the other extreme, such that

there is a tradeoff between the complexity of computing the bound and the tightness of the

bound.

Given a polynomial Fν , define the sequences

α j :=(β1,β2, . . . ,β j,y|ν |− (β1 + · · ·+β j))

for j = 0, . . . , |ν | and βi’s are as defined in (3.6). These sequences yield a hierarchy of

bounds for Fν that satisfy the relation

W (Fν) = Bα |ν |(Fν)≤Bα |ν |−1(Fν)≤ ·· · ≤Bα1(Fν)≤Bα0(Fν).
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For an arbitrary multivariate polynomial F , as defined in (3.18), we use the slope partition

of F and define the hierarchy of Westerfield-type bounds as follows:

(3.24) W (F) = max
ν∈ν(F)

Bα |ν |(Fν)≤ ·· · ≤ max
ν∈ν(F)

Bα1(Fν)≤ max
ν∈ν(F)

Bα0(Fν).

Clearly, all the bounds in the hierarchy are strictly smaller than H(F). But the larger

bounds are easier to compute since they require computing fewer βi’s. We will specially

be interested in the second largest bound of this hierarchy. More specifically, given a

polynomial Fν as in (3.2), recall the definitions of R(Fν) and ρ(Fν) from (3.17); since

β1 = n, we have α1 = (n,y|ν |−n). The Lagrange bound on absolute positiveness of a

polynomial F is defined as

(3.25) L (F) := max
ν∈ν(F)

L (Fν),

where

(3.26) L (Fν) :=nR(Fν)+(y|ν |−n)ρ(Fν)

and Fν are the polynomials in the slope partition of F .

REMARK 2. For a monic univariate polynomial f (x) :=xd +
d−1
∑

i=0
aixi, ai ∈ R, the bound in

(3.25) is R( f )+(yd−1)ρ( f ), where yd < 2. Hence, it is always better than Lagrange’s

bound of f in (2.3). Now, comparing the bound in (3.25) for f with the improvement given

in [6, Thm. 3.1], we see that when R( f ) is equal to ρ( f ), the bound given in (3.25) for f is

better than the improvement in [6, Thm. 3.1]. In other cases, it is not clear if the bound for

f given in (3.25) improves upon the bound for f in [6, Thm. 3.1].

We will now quantify the improvement of Westerfield-type bounds over Hong’s bound

LEMMA 16. For an arbitrary polynomial F of total degree d as in (3.18), Hong’s bound
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and any Westerfield-type bound satisfy the following inequality:

H(F)−Bα(F)> cn,d
Ωd

n

d(1−Ωne−1/d)
·
∣∣∣a
b

∣∣∣1/d
,

where a and b are the smallest and largest coefficients of F in absolute value, respectively,

and cn,d is as defined in (3.7).

Proof. Consider the special polynomial Fν in the slope partition of F where Bα(F)

is achieved, i.e, Bα(F) = Bα(Fν). Assuming k = |ν |, we have Bα(Fν) ≤ ykR(Fν).

Moreover, by definition of Hong’s bound (3.22), we know that H(F)≥ H(Fν). So,

H(F)−Bα(F)≥ H(Fν)−Bα(Fν)≥
(

1
Ωn
− yk

)
R(Fν).

As k ≤ d, and since yk monotonically converge to 1/Ωn, we obtain that

H(F)−Bα(F)≥
(

1
Ωn
− yd

)
R(Fν).

By applying the lower bound on (1/Ωn− yd) from Lemma 12, we get

H(F)−Bα(F)> cn,d
Ωd

n

d(1−Ωne−1/d)
R(Fν).

To lower bound R(Fν), observe that |ν − µ| ≤ d, for all ν ,µ ∈ ν(F)∪ µ(F); therefore,

R(Fν)≥ (a/b)1/d , for all ν ∈ ν(F), where a and b are as defined in the statement of the

lemma. This yields us the claimed result. Q.E.D.

In the next section, we will give an algorithm that computes L (F) and runs in time

O(m logn m).
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3.3 Algorithm for the Generalized Lagrange bound

Given a multivariate polynomial F as defined in (3.18) with m monomials, we need an

efficient sub-routine to compute the set {ν : ν ∈ ν(F),µ ≺ ν}, for a given µ ∈ µ(F). This

is a special case of orthogonal range searching in computational geometry. We give a brief

description of a data structure to solve this problem; more details can be found in [10,

Chapter 5].

3.3.1 Range Trees

Consider the following problem: Given a set of m input real numbers, and a number q ∈ R,

find the subset of the input that is larger than q. This problem is called a range query in

one dimension. A range query is more generic in the sense that one can input an interval

[a,b] and ask for all the numbers in the given input that are in the range [a,b]. In this paper

though, we restrict ourselves to half-open range queries. A 1-dimensional range tree

is simply a balanced binary search tree (BST) on the input set of m numbers. The input

numbers are stored at the leaves of the tree in an ascending order. The numbers stored at

the internal nodes come from the input set and guide the search on a query q. Starting with

the root we proceed recursively as follows: If the value at a node u is less than or equal to

q we go to the right subtree of u; otherwise, we go to the left subtree of u; on reaching a

leaf, we output all numbers associated with the leaves to the right of this leaf. To describe

the output we need the notion of the canonical subset of a node u, i.e,. the set of points

stored at the leaves of the sub-tree rooted at u. Since there is a canonical set associated

with each node, the number of canonical sets in the output to a query is O(logm). We

index them appropriately, and the output to a range query is an appropriate subset of these

indices, namely, on the search path whenever we go left at a node u, we include the index

of the canonical subset of its right child in the output. This approach naturally generalizes

to higher dimensions via the following recursive definition of an n-dimensional range tree:
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1. The first level tree is a balanced binary search tree on the x1-coordinates of the input

points in Rn.

2. For every node u in the first level tree, an associated (n− 1)-dimensional tree is

constructed on the remaining (n− 1)-coordinates of the points in the canonical

subset of u. This tree is referred to as the associated tree of u(see Figure 3.1 for

illustration).

u

P (u)

T

BST on P (u)

Figure 3.1: A 2-dimensional range tree.

To compute L (F), we construct the range tree T (F) on the set ν(F). Let W1, . . . ,Wr be

the canonical subsets of the nth level trees of T (F). It is known that [10, Chap. 5, p. 105],

(3.27)
r

∑
k=1
|Wk|= O(m logn m).

A query to T (F) is a vector of the form µ ∈ {0, . . . ,δ}n, where δ is the maximum degree

of any xi in F , i ∈ [n]. The output of the query is the set

O(µ) :={k ∈ [r] : Wk is a canonical subset in the

output to query µ},

i.e., the set of indices of at most O(logn m) many Wk’s whose disjoint union forms the

dominating set. The tree T (F) can be constructed in O(m logn−1 m) algebraic operations

[10, p. 110, Thm 5.9].
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3.3.2 Algorithm

We begin with some definitions that will be useful in the description of the algorithm. For

every non-zero monomial aλ Xλ in F , define the point

pλ :=(|λ |, log(1/ |aλ |)) ∈ R2.

For a given k ∈ O(µ), let

(3.28) σµ,k := log min
ν∈Wk

∣∣∣∣aµ

aν

∣∣∣∣1/|ν−µ|
= min

ν∈Wk

log
∣∣aµ

∣∣− logaν

|ν−µ|
.

Geometrically, (log
∣∣aµ

∣∣− logaν)/ |ν−µ| is the slope of the line passing through the

points pµ and pν . It is not hard to see that σµ,k is the slope of the lower tangent from the

point pµ to the lower convex hull of the points pν , for all ν ∈Wk. Also, s(µ) defined in

Section 3.2 satisfies the following property:

min
k∈O(µ)

σµ,k =

∣∣∣∣∣ aµ

as(µ)

∣∣∣∣∣
1/|s(µ)−µ|

.

We first describe a suboptimal algorithm that will compute L (F) in O(m logn+1 m) al-

gebraic operations. It is obtained by a slight modification to one of the algorithms of

Mehlhorn and Ray [35, p. 7]. Given F , we construct T (F). We query T (F) on every

µ ∈ µ(F) to compute O(µ). Now for a given pair (µ,k), for k ∈ O(µ), we compute the

value of σµ,k by computing the lower tangent of the point pµ to the lower hull of points

{pν : ν ∈Wk}. Then we compute the s(µ), for each µ in µ(F), from which we compute

the required partition of F , and thereby the bound L (F). Since the cost of constructing

a lower hull for a given Wk is O(|Wk| log |Wk|), from (3.27) we see that the total cost of

hull construction is O(m logn+1 m). So the algorithm runs in O(m logn+1 m) algebraic

operations. We now improve the running time of this algorithm to O(m logn m). Similar

to Mehlhorn and Ray, we construct an (n−1)-dimensional range tree T ′(F) on the last
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(n−1) coordinates of the points in ν(F) and then process the monomials in the decreasing

order of the remaining x1-coordinate. Let W ′1, . . . ,W
′
r be the canonical subsets of T ′(F).

Define

W ′µ,k :=
{

ν ∈W ′k : µ ≺ ν , i.e., ν dominates µ in x1 and (x2, . . . ,xn)
}
,

Now we redefine σµ,k as follows:

σµ,k := log min
ν∈W ′

µ,k

∣∣∣∣aµ

aν

∣∣∣∣1/|ν−µ|
.

The algorithm is the following:
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Algorithm: LagrangeBound

INPUT: A multivariate polynomial F(X) as in (3.18).

OUTPUT: The bound L (F) as in (3.25).

1. Construct the (n−1)-dimensional range tree T ′(F).

2. Sort the entries in the arrays W ′1, . . . ,W
′
r by their x1-coordinate.

3. For each k ∈ [r], let jk be the size of W ′k .

4. Hk← /0.

/ Lower hull corresponding to the points pν such that

/ ν ∈W ′
µ,k; data structure for Hk is as in [12] where with each

/ point on the hull we store a representative tuple ν .

5. For all µ ∈ µ(F) in decreasing order of x1-coordinate do:

Query T ′(F) to compute Out(µ).

5.a. For all k ∈ Out(µ) do:

Dµ,k← /0.

5.b. For all ν ∈W ′k starting from the index jk do:

5.c. If ν dominates µ in the x1-coordinate then

Dµ,k← ν ∪Dµ,k; jk← jk−1.

5.d. Hk← the lower hull of the points Hk∪
{

pν ,ν ∈ Dµ,k
}

.

5.e. Compute σµ,k, the slope of the lower tangent from pµ to Hk.

5.f. Let s(µ) be an index in ∪k∈Out(µ)W ′µ,k attaining mink∈Out(µ)σµ,k.

6. Compute the partitioning of F as in (3.19) using the values s(µ).

7. Compute L (Fν) as in (3.26), for each ν ∈ ν(F).

8. Output maxν∈ν(F)L (Fν).

Since the lower hulls Hk are updated dynamically, we use the data structure for dynamic

convex hull given by Jacob and Brodal [12] to store points in Hk. We analyse the algorithm

in the real RAM model where the usual arithmetic operations and operations such as

exponentiation are charged unit cost. The main result of this section is the following:
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THEOREM 17. The number of algebraic operations required by the algorithm above is

O(m logn m).

Proof. The running time of the algorithm can be analyzed as follows:

1. The cost of constructing the range tree T ′(F) is O(m logn−1 m).

2. Sorting the canonical subsets by their x1-coordinates takes O(m logn−1 m) algebraic

operations. This is because the canonical subsets of an (n−1)st level tree with m

leaves can be sorted in time O(m logm) time using merge sort [16].

3. The cost analysis of processing the negative monomials can be broken down as

follows:

(a) The cost of scanning a given W ′k in the for-loop at Step 5.b. to compute Dµ,k’s

over all iterations is |W ′k |. This is because we are processing the negative

monomials in the decreasing order of their x1-coordinates. So if a W ′k is in the

output of µ , we can start scanning W ′k from the index where the previous scan

of W ′k had stopped; this is done by the index jk. So the total cost of this step

over all iterations is ∑
r
k |W ′k |= O(m logn−1 m).

(b) The total cost of updating the hull Hk corresponding to a given W ′k is O(|W ′k | log |W ′k |).

This is because, if a W ′k is in the output of two points µ and µ ′ such that x1 ≥ x′1,

then W ′
µ,k ⊆W ′

µ ′,k. Therefore, while processing µ ′, Hk only needs to be updated

with points pν such that ν ∈ (W ′
µ ′,k \W ′

µ,k). Now the amortized cost of each

update, which could be an insertion or a deletion, can be done in O(log
∣∣W ′k∣∣)

operations [12, Thm 1]. So the total cost of constructing lower hulls Hk over

all iterations is
r

∑
k=1
|W ′k | log |W ′k |= O(m logn m).

(c) The cost of computing the lower tangent of a point pµ to the hull Hk is

O(log |W ′k |). Since there can be O(logn−1 m) many W ′k’s in the output of µ , the
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cost of computing the lower tangents of pµ is O(logn m). So the total cost of

this step over m iterations is O(m logn m).

(d) Computing s(µ) takes O(logn−1 m) operations for a given µ . Hence the total

cost of this step is O(m logn−1 m).

4. The cost of computing the required partition of F using s(µ), for all µ ∈ µ(F), is

O(m).

5. Since the bound L (F) is the maximum over the Lagrange bound of the Fν ’s in the

partition, it can be computed in O(m) time.

6. Computation of L(Fν), for each ν in ν(F), takes O(m) time.

From the steps above, we see that the total cost of the algorithm is bounded by O(m logn m).

Q.E.D.

REMARK 3. A few remarks on the algorithm above.

1. The space complexity of the algorithm LagrangeBound is as follows: Construction of

range tree requires O(m logn−2 m) space [10, p. 110, Thm 5.9]. The space complexity

of the lower hulls constructed is O(m logn−1 m). This is because the total number of

points over all the lower hulls is O(m logn−1 m) and the number of edges in a convex

hull is linear in the number of points. Since any output to a query is of size at most m,

the space required for writing down the querying output is O(m). Hence, the asymptotic

space complexity of LagrangeBound is O(m logn−1 m).

2. Computation of L(Fν) in the penultimate step of the algorithm needs the positive root,

y|ν |, of the canonical polynomial P|ν |. But y|ν | needs to computed only once and can be

stored for future iterations of the algorithm. Here we note that an ε approximation to

y|ν | can be computed with O(|ν | log(1/ε)) Newton iterations [32, Lemma. 2.2]. It must

be noted that by modifying the routine LagrangeBound, any arbitrary Westerfield-type
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bound that considers constant many bi’s can be computed in asymptotically same

running time as LagrangeBound. Also, LagrangeBound can be modified to compute

Westerfield’s bound defined in (3.21). But, in order to compute the bound in (3.21), we

need to compute y1, . . . ,y|ν |−1 along with y|ν |. This means that the number of Newton

iterations needed to compute the yk’s will be O(|ν |2 log(1/ε)).

3. In Remark 1, we had mentioned that one can apply univariate Westerfield bound W (Fν)

to the polynomial Fν(x), instead of W (Fν), to compute a bound on the positiveness of

Fν(X). What is the cost of computing the univariate polynomials Fν(x) given in (3.14)?

The degree of every monomial and the subsequent addition of the coefficients of the

monomials of the same degree needs extra work. Computing the total degree of all

the monomials needs Θ(mn) operations. Now, adding the monomials of the same total

degree in every Fν(X) can be done as follows: sort the monomials by their total degree,

which takes O(m logm) time, and add the coefficients of the monomials with the same

total degree; or, if we are allowed to use extra space, we can bucket sort the monomials

using O(|ν |) space and add the coefficients of the monomials in the same bucket in

O(m) time. In either case, it is not clear if the extra overhead involved is compensated

by an improvement in the quality of the bound.

To the best of our knowledge, the algorithm of Mehlhorn and Ray for computing

Hong’s bound [35, p. 7-8], is quite different from LagrangeBound. The main differences

are as follows:

1. The construction of the range tree in their algorithm seems to be done in an incre-

mental manner, which is not the case in our algorithm.

2. There is no sorting of the canonical subsets by the x1-coordinate in their algorithm.
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3.3.3 Efficiency of the Algorithm

In this section, we address the efficiency of the algorithm LagrangeBound for computing

Lagrange’s bound. For a polynomial in n variables with m monomials, Theorem 17 shows

that the number of algebraic operations needed by LagrangeBound is O(m logn m). This

is a consequence of steps 3.(b) and 3.(c) in the proof of Theorem 17. For a given n-

variate polynomial, the algorithm does range querying on m points in (n−1)-dimensions.

Although the algorithms uses orthogonal range trees for range querying, in principle, it can

work with any data structure for range querying. Is it possible that a different data structure

for range querying can be used to improve the running time of the algorithm? By applying

the lower bound on range querying due to Fredman [22], we can infer that the orthogonal

range tree is, in a certain sense, asymptotically the best data structure for range querying.

Let D be any data structure that answers range queries on m points in (n− 1)-

dimensions. Without loss of generality, we assume that there are m possible outputs.

Suppose D stores w1, . . . ,wr subsets of these m points such that every output to a (half-

open) range query is given as a union of at most ` pairwise disjoint sets from w1, . . . ,wr.

Then, the cost of the steps 3.(b) and 3.(c) will be Θ((logm)
r
∑

i=1
|wk|) and Θ(m` logm),

respectively. So, in order to improve the running time of the algorithm, D must have
r
∑

i=1
|wk|= o(m logn−1 m) and `= o(logn−1 m), i.e., either the total size of the sets w1, . . . ,wr

is small or the output of every query can be expressed as a union of small number of

sets from w1, . . . ,wr; if not, then at least one of the steps among 3.(b) or 3.(c) will be

Θ(m logn m). There is an inherent tradeoff between the the storage size ∑k |wk| and the

worst case output size `. To understand this tradeoff, let us consider the case of one-

dimensional range querying, i.e., when n = 1. In this case, there are m possible distinct

outcomes of the range queries. Two natural choices for the sets wk’s are either the sin-

gleton elements, or the m sets that can possibly appear in the output. In the first case,

∑
m
i=1 |wk| = m and ` = m; in the second case, ∑

m
i=1 |wk| = Θ(m2) and ` = 1. Therefore,

in these two extreme scenarios `∑i |wk| = Θ(m2). Can this be improved? Not surpris-
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ingly, if we consider the canonical sets wk stored by the balanced binary search tree in

one-dimension, then the quantity `∑i |wk|= Θ(m(logm)2). But is this bound tight, i.e., do

all data structures D satisfy the same inequality?

Fredman [22] answered a related question by showing the following weaker lower

bound on range querying:

PROPOSITION 18. Let D be a data structure that answers range queries on m points4

in Rn by storing w1, . . . ,wr subsets of these m points and using at most ` of these sets in

answering any range query. Then D must satisfy the following bound

r

∑
k=1
|wk|+m`= Ω(m logn m).

To keep our exposition concise, we refer to [34, p. 69] for the proof of the proposition

above. It must be noted that the lower bound above is shown by considering half-open

range queries like the ones considered in this paper. So, the lower bound above is applicable

to our setting. Note that the algorithm LagrangeBound does range querying in (n−1)-

dimensions for an n-variate polynomial. So, by applying Proposition 18 for (n− 1)

dimensions, we can infer that the combined complexity of steps 3.(b) and 3.(c) is

Θ(logm(
r

∑
k=1
|wk|+m`)) = Θ(m logn m).

This implies that we cannot improve the running time of the algorithm for computing

Lagrange’s bound by using a different data structure for range querying.

3.4 Further Directions

In this chapter, we have given generalizations of Westerfield and Lagrange’s bound to

the multivariate setting. These bounds are quantitative improvements over Hong’s bound,
4Fredman derives the lower bound by fixing the input to be the m points in the n-dimensional grid.
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which was the best known bound so far. We also give an O(m logn m) algorithm to compute

the Lagrange bound. The asymptotic running time of this algorithm is the same as the

asymptotic running time of the best known algorithm [35] for computing Hong’s bound.

Since the upper bounds of both the algorithms are the same, we ask the following question:

Is there a lower bound of Ω(m logn m) on these algorithms in the algebraic decision tree

model? An interesting case is when n = 1 where we have an O(m) time algorithm for

computing Hong’s bound [30] and an Ω(m logm) lower bound on the computation of

Lagrange’s bound [39]. However, it must be noted that the linear time algorithm for

computing Hong’s bound assumes that the monomials can be read in the decreasing

order of their degree. More precisely, the question when n = 1 would be, without the

assumption on the ordering of monomials, can we show a lower bound of Ω(m logm) on

the computation of Hong’s bound?

Another important question in this line of work is to give a bound only on the pos-

itiveness of the polynomial. The known bounds in the literature are all bounds on the

absolute positiveness of the polynomial. In the univariate setting, this question amounts to

bounding the largest positive root of the given polynomial, if one exists. Any algorithm

that computes such a root bound must detect if the given polynomial has a positive root

or not? It is clear that by using algorithms for root isolation or root approximation, we

can detect if the given polynomial has a positive root or not. But, it must be noticed that

the running time of the known algorithms for root isolation and root approximation are

quadratic in the degree of the polynomial. Hence the challenge is to give an algorithm that

detects if the given polynomial has a positive root or not and runs in sub-quadratic time.

Also, the tradeoff in Proposition 18 gives us a lower bound on the arithmetic mean

of the total size of the canonical sets and the total number of canonical sets needed for

covering query ranges. But in practice, data structures such as range trees need Θ(m logn m)

many canonical sets for orthogonal range querying on m points and the sum total size of

these sets is Θ(m logn m) as well. In view of this fact, it is more relevant to consider the
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geometric mean of the total size of the canonical sets and the number of canonical sets

needed for covering all the query ranges. In this respect we make the following stronger

claim:

CLAIM 1. Let D, w1, . . . ,wr and ` be as in Proposition 18. Then D must satisfy

m`
r

∑
k=1
|wk|= Ω(m2 log2n m).

From the AM-GM inequality it follows that the claim above implies Proposition 18.

In the next chapter, we will focus on proving the claim above and also show that the

balanced binary search tree is near optimal in a more relaxed framework for data structures

supporting range querying in one dimension.
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Chapter 4

Stronger Tradeoffs for Orthogonal

Range Querying in the Semigroup

Model

In this chapter, we will strengthen a lower bound on the tradeoffs for orthogonal range

querying due to Fredman [22]. Before we state Fredman’s lower bound precisely, we set up

some notations and definitions: Let X be the set of m points X1, . . . ,Xm in the n-dimensional

grid, i.e.,

X :=
[
1,2, . . . ,m1/n

]n
.

The n coordinates of the point Xi are represented as Xi j, j = 1, . . . ,n. A one-sided orthog-

onal range query on the set X takes as input a Y ∈ Rn and outputs

RY := {Xi ∈ X : Xi ≤ Y} ,

where Xi ≤ Y iff Xi j ≤ Yj, for all j ∈ [n]. In this chapter, range queries will always be

one-sided. Corresponding to m points in X , we have m range queries whose outputs are

R j :=RX j , for j ∈ [m]. A set D := {W1, . . . ,Wr} of subsets of X is a data structure for
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answering range queries on X if every output to a range query on X is represented as a

disjoint union over the canonical sets W1, . . . ,Wr. Let
〈
R j
〉

D denote the set of indices of

Wk’s used in the representation of R j. From Chapter 3, recalling the result in Proposition 18,

PROPOSITION 19. If D is a data structure that answers range queries on X then

r

∑
k=1
|Wk|+

m

∑
j=1
|
〈
R j
〉

D |= Ω(m logn m).

The result above is a more precise formulation of Proposition 18 as the parameter

“m`” in Proposition 18 is lower bounded by ∑
m
j=1 |

〈
R j
〉

D |. This tradeoff in the lower

bound argument in [22] is the central theme of this chapter. Many more lower bounds on

orthogonal range querying in different computation models are also known (see [1, p. 7]

and [2, p. 11]). To the best of our knowledge, most of these lower bounds are space-time

tradeoffs required by a data structure in answering a range query.

Our main results in this chapter are:

1. Motivated by the Claim 1 at the end of Chapter 3, we prove a stronger version of

Proposition 19:

THEOREM 20. If D is a data structure that answers range queries on X then

(
r

∑
k=1
|Wk|

)(
m

∑
j=1
|
〈
R j
〉

D |

)
= Ω(m2 log2n m).

Notice that the theorem above is stronger than Claim 1 as the parameter “m`” in

Claim 1 is lower bounded by
(

∑
m
j=1 |

〈
R j
〉

D |
)

. From the AM-GM inequality it is

clear that Theorem 20 implies Proposition 19. Theorem 20 also implies that any data

structure D that is tight with respect to Proposition 19, i.e.,

(4.1)
r

∑
k=1
|Wk|+

m

∑
j=1
|
〈
R j
〉

D |= Θ(m logn m),

90



must satisfy:

(4.2)
r

∑
k=1
|Wk|= Θ(m logn m) and

m

∑
j=1
|
〈
R j
〉

D |= Θ(m logn m).

The proof of Theorem 20 will be given in Section 4.1.

2. From (4.2), we see that the balanced binary search tree is an optimal data structure

in the boolean setting where the outputs are represented as disjoint unions over

canonical sets. This leaves open the possibility of existence of a more efficient data

structure that does not take disjoint unions of its canonical subsets but takes their

weighted sum in order to represent an output. In such a relaxed setting, Proposition 19

and Theorem 20 are not applicable. Can balanced binary search tree be an optimal

data structure even in this setting? In Section 4.2, we give a positive answer to this

question.

In order to account for data structures which take weighted sums of their canonical

sets, we will reinterpret range querying differently from Proposition 19. In the proof

of Proposition 19 [34, p. 69, Lemma 9 and 10], the problem of range querying is

interpreted in a graph theoretic setting, namely expressing a bipartite graph as a

“product” of two bipartite graphs. This can also be interpreted in terms of matrices

[13, Sec. 2.2]. Let Um×r be the incidence matrix of the set X with the canonical sets

Wk’s, i.e, Uik = 1 iff Xi ∈Wk. Similarly, define Vr×m to be the incidence matrix of

the canonical sets Wk’s and the outputs R j’s. Let Rm×m be the matrix whose columns

are the characteristic vectors of the sets R j’s. To give a proof of Proposition 19, it

suffices to derive a lower bound on the optimal value of the following optimization

problem:

(4.3) min
(
||U ||2F + ||V ||2F

)
subject to UV = R,

where R ∈ {0,1}m×m, U ∈ {0,1}m×r and V ∈ {0,1}r×m and ||.||F refers to the
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Frobenius norms of the respective matrices.

In this optimization based formulation of the problem, the objective function aims

to minimize the sum of the two parameters we are interested in: The total size of

the canonical sets, ||U ||2F and the total number of canonical sets needed to cover

all the query ranges, ||V ||2F . Every data structure that supports range querying in

one dimension is a feasible solution to the problem above. When the entries of the

matrices are restricted to be boolean, Proposition 19 implies that the optimal value of

the objective function is Ω(m logm). Hence, from (4.2), we see that for an optimal

solution (Ubool,Vbool),

(4.4) ||Ubool||2F = Θ(m logm) and ||Vbool||2F = Θ(m logm).

To extend the bounds in (4.4) for data structures which take weighted sums of their

canonical sets, we consider the relaxation of the problem in (4.3) where the matrix

entries are allowed to be arbitrary reals. For an optimal solution (U∗,V ∗) of this

relaxation, we show that

||U∗||2F = Ω(m logm) and ||V ∗||2F = Ω(m logm).

The lower bounds above imply that the balanced binary search tree is near optimal

not only in the boolean framework but also in a more relaxed setting.

The main idea in proving the lower bounds above is to use the Lagrangian dual of

the relaxation and show that

(4.5) ||U∗||2F = Trace((RtR)1/2) and ||V ∗||2F = Trace((RtR)1/2),

where we take the principal square-root of a matrix [24]. The result in (4.5) holds
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for an arbitrary matrix R (see Theorem 21) and is the key technical ingredient in

our proof. Then, by taking R to be the matrix corresponding to range querying in

one dimension and by using some well established results on explicit forms for the

eigenvalues of tri-diagonal matrix (in this case (RtR)−1), we show that

Trace((RtR)1/2) = Ω(m logm).

We believe that our proof gives more understanding on the optimality of this bound

by relating it to some intrinsic parameters of the matrix R, which is a representation

of the range query problem in one-dimension. To the best of our knowledge, our

proof is more general than the existing proofs in the literature; e.g., [46] works only

in the boolean setting. Whether our proof technique can be generalized to obtain an

alternative proof of Proposition 19 in all dimensions remains an open and interesting

question.

4.1 Tradeoff between Sizes of Canonical Sets and Out-

puts to Query Ranges

In this section, we will prove Theorem 20. The proof of the theorem follows by altering

the argument in the proof of Proposition 19. Before we proceed, we first present some

high level details of the proof of Proposition 19. For the complete details, we refer to [34,

p. 69].

The argument relies on interpreting range querying in a graph theoretic setting:

Consider the weighted bipartite graph G(X ∪ R,E), where R := {R1,R2, . . . ,Rm} and

E :=
{
(Xi,R j) : Xi ∈ R j

}
; see Figure 4.1(a) for illustration. The edge (Xi,R j) ∈ E is
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Figure 4.1: (a): Bipartite graph G with the vertex sets X , R and the edge set E. (b):
Tripartite graph G′ with vertex sets X , D and R.

assigned the weight

(4.6) W (Xi,R j) :=
1

n
∏

κ=1
(X jκ −Xiκ +1)

.

The graph G can be “factored” into a tripartite graph G′ whose vertex set is {X ∪D∪R}.

There is an edge (Xi,Wk) iff Xi ∈Wk and there is an edge (Wk,R j) iff k ∈
〈
R j
〉

D; see

Figure 4.1(b) for an illustration. Note that the edges of G are a disjoint union over the sets{
(Xi,R j) : Xi ∈Wk,k ∈

〈
R j
〉

D

}
, for all k ∈ [r], as every R j is a disjoint union of Wk’s. For

every set Wk, define

Ik := {Xi ∈ X : Xi ∈Wk}

i.e., the edges of G′ incident on Wk from the left and

Ok :=
{

R j ∈ R : k ∈
〈
R j
〉

D

}
,

i.e., the edges of G′ incident on Wk from the right. Therefore,

|Ik|= |Wk| and
m

∑
j=1
|
〈
R j
〉

D |=
r

∑
k=1
|Ok|.

At a high level, the proof of Proposition 19 can be broken down into two steps [34,
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p. 69, Lemma 9 and p. 71, Lemma 10]:

Step 1. For every k ∈ [r],

(4.7) ∑
Xi∈Ik

R j∈Ok

W (Xi,R j) = ∑
Xi∈Ik

R j∈Ok

1
n
∏

κ=1
(X jκ −Xiκ +1)

≤ (2π)n(|Ik|+ |Ok|),

where n is the dimension of the points in X . The outline of the proof is as follows.

Let M j = max
{

Xi j : Xi ∈ Ik
}

. Define the associate sets of Wk as

B := {(M1−Xi1,M2−Xi2, . . . ,Mn−Xin) : Xi ∈ Ik}

and

C :=
{
(X j1−M1,X j2−M2, . . . ,X jn−Mn) : R j ∈ Ok

}
.

Since every term of the form

(X jκ −Xiκ +1) = (Mκ −Xiκ +X jκ −Mκ +1),

the summation in (4.7) is equal to

∑
Xi∈Ik

R j∈Ok

1
n
∏

κ=1
(X jκ −Xiκ +1)

= ∑
u∈B
v∈C

1
n
∏

κ=1
(uκ + vκ +1)

.

Then, by applying a generalized version of Hilbert’s inequality for points with

natural numbers as their coordinates, one obtains

(4.8) ∑
u∈B
v∈C

1
n
∏

κ=1
(uκ + vκ +1)

≤ (2π)n(|B|+ |C|) = (2π)n(|Ik|+ |Ok|).
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Step 2. The second step is to show that the total sum of weights over all edges in E satisfies

(4.9) ∑
(Xi,R j)∈E

W (Xi,R j) =
r

∑
k=1

∑
Xi∈Ik

R j∈Ok

W (Xi,R j) = Ω(m logn m).

By summing the inequality in (4.7) over all Wk and applying the lower bound from (4.9),

we get the claim in Proposition 19.

We now give the proof of Theorem 20. Proof. We consider the same set X as in

Fredman’s proof, i.e.,

X :=
[
1,2, . . . ,bmc1/n

]n
.

Since ∑
r
k=1 |Wk|= ∑

r
k=1 |Ik| and ∑

m
j=1 |

〈
R j
〉

D |= ∑
r
k=1 |Ok|, we will show that

r

∑
k=1
|Ik| ·

r

∑
k=1
|Ok|= Ω(m2 log2n m).

To prove this, consider a pair of canonical sets, Wk and W`. Using the same weight function

as in (4.6) on the edges of G, we have

(4.10)

∑
Xi∈Ik

R j∈Ok

∑
Xc∈I`

Rd∈O`

W (Xi,R j) ·W (Xc,Rd) = ∑
Xi∈Ik

R j∈Ok

∑
Xc∈I`

Rd∈O`

1
n
∏

κ=1
(X jκ −Xiκ +1)(Xdκ −Xcκ +1)

.

Define the associate sets B, C of Wk as in Step 1; sets B′ and C′ are defined analogously

for W`. Notice that |B| = |Ik|, |C| = |Ok|, |B′| = |I`| and |C′| = |O`|. Using the associate

sets, equation (4.10) can be expressed as

(4.11) ∑
Xi∈Ik

R j∈Ok

∑
Xc∈I`

Rd∈O`

W (Xi,R j) ·W (Xc,Rd) = ∑
u∈B
v∈C

∑
u′∈B′
v′∈C′

1
∏

n
κ=1(uκ + vκ +1)(u′κ + v′κ +1)

.

The importance of the associate sets of Wk and W` is that they have positive coordinates

and they are in some sense independent of the actual coordinates of the points in X , since

difference choices of the point set X give the same associate sets. We now use the upper
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bound from (4.8) to upper bound the RHS of (4.11). Since the RHS of (4.11) can be

interpreted as a function over 2n dimensional points, we define the following sets in R2n

B :=
{
(u,u′) : u ∈ B,u′ ∈ B′

}
, C :=

{
(v,v′) : v ∈C,v′ ∈C′

}
and

B′ :=
{
(u,v′) : u ∈ B,v′ ∈C′

}
, C ′ :=

{
(v,u′) : v ∈C,u′ ∈ B′

}
.

The pair of sets (B, C ) and (B′, C ′) allow us to express the RHS of (4.11) in two different

ways as:

∑
u∈B
v∈C

∑
u′∈B′
v′∈C′

1
n
∏

κ=1
(uκ + vκ +1)(u′κ + v′κ +1)

= ∑
U ∈B
V ∈C

1
2n
∏

κ=1
(Uκ +Vκ +1)

= ∑
U ′∈B′
V ′∈C ′

1
2n
∏

κ=1
(U ′

κ +V ′κ +1)
.

From (4.8), the RHS of the equalities above can be upper bounded as

∑
U ∈B
V ∈C

1
2n
∏

κ=1
(Uκ +Vκ +1)

≤ (2π)2n(|B|+ |C |) and

∑
U ′∈B′
V ′∈C ′

1
2n
∏

κ=1
(U ′

κ +V ′κ +1)
≤ (2π)2n(|B′|+ |C ′|).

So, from the two inequalities above and (4.11) we obtain

∑
Xi∈Ik

R j∈Ok

∑
Xc∈I`

Rd∈O`

W (Xi,R j) ·W (Xc,Rd)≤ (2π)2n min{|B|+ |C |, |B′|+ |C ′|}.

= (2π)2n min{|B||B′|+ |C||C′|, |B||C′|+ |B′||C|},

= (2π)2n min{|Ik||I`|+ |Ok||O`|, |Ik||O`|+ |I`||Ok|}
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Therefore, for an arbitrary pair Wk, W`, we have

(4.12) ∑
Xi∈Ik

R j∈Ok

∑
Xc∈I`

Rd∈O`

W (Xi,R j) ·W (Xc,Rd)≤ (2π)2n(|Ik||O`|+ |I`||Ok|).

Note that every edge (Xi,R j) in E maps to a unique path (Xi,Wk,R j) in the graph G′. Hence

the sum of the LHS of (4.12) over all possible pairs of Wk and W` gives us the sum of the

product of weights of all possible pairs of edges (Xi,R j) and (Xc,Rd) in E. Hence from

(4.9) we obtain that

∑
Wk
W`

∑
Xi∈Ik

R j∈Ok

∑
Xc∈I`

Rd∈O`

W (Xi,R j) ·W (Xc,Rd) = ∑
(Xi,R j)∈E
(Xc,Rd)∈E

W (Xi,R j) ·W (Xc,Rd)

= Ω(m2 log2n m).(4.13)

Similarly, summing the RHS of (4.12) over all pairs of Wk and W` and using the fact that

|Ik|= |Wk| and
r
∑

k=1
|Ok|=

m
∑
j=1
|
〈
R j
〉

D |, we get

∑
Wk

∑
W`

(2π)2n(|Ik||O`|+ |I`||Ok|) = 2 · (2π)2n

(
m

∑
j=1
|
〈
R j
〉

D |

)(
r

∑
k=1
|Wk|

)
.

Therefore, from (4.12), 4.13 and the equality above, we conclude that

(
m

∑
j=1
|
〈
R j
〉

D |

)(
r

∑
k=1
|Wk|

)
= Ω(m2 log2n m).

Q.E.D.

4.2 Optimality of the Balanced Binary Search Tree

In this section, we will show the optimality of the balanced binary search tree in a relaxed

framework where the data structures are allowed to take a weighted sum of their canonical
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subsets. Let X := {1,2, . . . ,m} . Again, consider the set of one sided range queries: For j ∈

X , output R j := {i ∈ X : i≤ j} . Let D := {W1,W2, . . . ,Wr} be an arbitrary data structure

that answers range queries on X . Proposition 19 in one dimension reduces to:

(4.14)

(
r

∑
k=1
|Wk|

)
+

(
m

∑
j=1
|
〈
R j
〉

D |

)
= Ω(m logm).

To extend the lower bound above for data structures that are allowed to take weighted

sums of their canonical subsets, we will reinterpret range querying in a different setting.

The problem of range querying can be interpreted in a linear algebraic setting as follows:

Consider the 0/1 matrix U whose rows are indexed by the m numbers and columns are

indexed by the r sets, Wk’s. The (i, j)th entry is one iff the number i is a member of Wj.

Consider the range query that asks for all the numbers less than or equal to the jth number.

The output is a union of at most, say ` sets. Then, R j, which is an m-dimensional vector

with ones from the jth position onwards can be expressed as a linear combination of at

most ` columns of U . Let v j be this linear combination, i.e.

R j =Uv j

where v j is a 0/1 vector. Since there are m distinct range queries, we have v1, . . . ,vm such

vectors. If V is the matrix with these vectors as its columns, then our observation regarding

these m range queries can be succinctly represented by the following matrix equation

(4.15) UV =



1 0 0 · · · 0

1 1 0 · · · 0
...

... . . . . . . ...
...

... . . . . . . ...

1 1 1 · · · 1


=:R,

where R is the lower triangular matrix with all ones on and below the diagonal and the

rows of R are indexed by the numbers m,m−1, . . . ,1 and the columns by Rm,Rm−1, . . . ,R1.
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Also, U ∈ {0,1}m×r and V ∈ {0,1}r×m . Now,

r

∑
i=1
|Wi|= ||U ||2F and

m

∑
j=1
|
〈
R j
〉

D |= ||V ||
2
F ,

where ||A||F denotes the Frobenius norm of the matrix A. So, in terms of factorizations of

R as a product of U and V , proving (4.14) is equivalent to deriving a lower bound on the

optimal value of the following optimization problem:

min
(
||U ||2F + ||V ||2F

)
subject to UV = R,U ∈ {0,1}m×r ,V ∈ {0,1}r×m .

(4.16)

In order to consider data structures that may take weighted sum of their canonical

subsets instead of disjoint unions, we focus on the following relaxation of the problem in

(4.16):: Given an arbitrary matrix T ∈ Rm×m,

min
(
||U ||2F + ||V ||2F

)
subject to UV = T,U ∈ Rm×r,V ∈ Rr×m.

(4.17)

It is clear that a lower bound on the optimal value of (4.17), when T is taken to be R, is

also a lower bound on the optimal value of (4.16). So, we first prove the following result:

THEOREM 21. Any optimal solution (U∗,V ∗) for the optimization problem in (4.17)

satisfies:

||U∗||2F = Trace((T tT )1/2) and ||V ∗||2F = Trace((T tT )1/2),

where the matrix (T tT )1/2 is defined to be the principal square root of the matrix T tT [24,

p .20, Theorem 1.29].

Proof. The Lagrangian dual function associated with the problem in (4.17) is defined
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as [11, p. 216]

(4.18) inf
U,V

L(U,V,Λ) = inf
U,V

(
||U ||2F + ||V ||2F +

m

∑
i=1

m

∑
j=1

r

∑
k=1

(Ti j−Uik ·Vk j)λi j

)
,

where Λ ∈ Rm×m. The Lagrange dual problem is now defined as

(4.19) max
Λ

(
inf
U,V

L(U,V,Λ)
)
,

where Λ ∈ Rm×m. Any optimal solution (U∗,V ∗) for the primal problem satisfies the

following inequality:

||U∗||2F + ||V ∗||2F ≥max
Λ

(
inf
U,V

L(U,V,Λ)
)
.

From the inequality above, we see that it suffices to lower bound the optimal value of the

dual problem in order to prove the required claim. Consider the function

inf
U,V

L(U,V,Λ).

Applying the optimality conditions, we take the partial derivative of L(U,V,Λ) with respect

to variables in U to get the following matrix equation:

(4.20) ∇U L(U,V,Λ) = 2U t−V Λ
t = 0.

Similarly, taking derivative with respect to variables in V , we get

(4.21) ∇V L(U,V,Λ) = 2V −U t
Λ = 0.

From (4.20) and (4.21), we have

(4.22) V Λ
t = 2U t and U t

Λ = 2V.
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Since the dual problem is convex and aims to maximize the Lagrangian dual function in

(4.18) with respect to Λ, we apply the first order condition to L(U,V,Λ) with respect to Λ

to get

UV = T.

By left multiplying the first equation in (4.22) by U , we get

UV Λ
t = 2UU t

T Λ
t = 2UU t since UV = T .

Using the equality above and the fact that ||U ||2F = Trace(UU t), we get

||U ||2F =
1
2

Trace(T Λ
t).

Similarly, we can show that

||V ||2F =
1
2

Trace(ΛtT ).

Therefore, for an optimal solution Λ of the dual problem, we have

||U ||2F =
1
2

Trace(T Λ
t), ||V ||2F =

1
2

Trace(ΛtT ).

Since Trace(T Λt) = Trace(ΛtT ), it suffices to show that the trace of ΛtT is

2 ·Trace((T tT )1/2)

to prove the theorem. We begin by multiplying the transpose of the second equation in

(4.22) with the first equation in (4.22) to obtain

Λ
tUV Λ

t = 4(UV )t .
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Since UV = T , we see that any optimal solution for the dual problem must satisfy:

Λ
tT Λ

t = 4T t .

Multiplying the equality above by T from the right, we get

(ΛtT )2 = 4T tT.

Since T tT is a positive semidefinite matrix 1, it is diagonalizable. Assuming Q to be the

m×m matrix whose columns are the eigenvectors of T tT and γ1 ≥ γ2 ≥ ·· · ≥ γm to be the

eigenvalues of T tT , we can express the equality above as

(ΛtT )2 = 4Q−1
ΓQ

where Γ is the diagonal matrix with γk’s being the kth diagonal entry. Therefore, we have

(ΛtT ) = 2Q−1
Γ

1/2Q,

where Q−1Γ1/2Q is defined to be the principle square root of T tT whose eigenvalues are
√

γ1, . . . ,
√

γm and for all k,
√

γk ∈ R≥0. So,

Trace(ΛtT ) = 2Trace((T tT )1/2) = 2
m

∑
k=1

√
γk.

Hence, we conclude that

||U∗||2F = Trace((T tT )1/2) ||V ∗||2F = Trace((T tT )1/2).

Q.E.D.

Now, we will prove the following fact about the matrix R in (4.15).

1Here we use the fact that any matrix A that can be written as A = BtB, is positive semidefinite.
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LEMMA 22. Let R be the special lower triangular matrix as given in (4.15). Then, the

inverse of the matrix R, R−1, is given by the bidiagonal matrix

R−1 =



1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0
...

...
...

...
...

0 0 0 . . . . . . 1


.

Proof. Consider the matrix R in (4.15):

R :=



1 0 0 · · · 0

1 1 0 · · · 0
...

... . . . . . . ...
...

... . . . . . . ...

1 1 1 · · · 1


.

To obtain the the identity matrix I from R, we can simply subtract column j from column

j+1, j ∈ [m−1]. These (m−1) elementary column operations is equivalent to multiplying

the matrix R by the following bidiagonal matrix:



1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0
...

...
...

...
...

0 0 0 . . . . . . 1


.

Hence the matrix above is the inverse matrix of R. Q.E.D.
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Now, we will bound the trace of (RtR)1/2 in the following result:

LEMMA 23. Let R be the matrix as in (4.15). The trace of the principal square root of RtR,

i.e., (RtR)1/2 is

Trace((RtR)1/2) =
m

∑
k=1

√
γk = Ω(m logm),

where γk, k ∈ [m], are the eigenvalues of the matrix RtR.

Proof. To compute γk’s, consider

(RtR)−1 = R−1(R−1)t .

The inverse of the matrix R from Lemma 22 is the bidiagonal matrix

R−1 =



1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0
...

...
...

...
...

...

0 0 0 0 . . . 1


So, the matrix R−1(R−1)t is the following tridiagonal matrix

R−1(R−1)t =



1 −1 0 0 0 . . . 0

−1 2 −1 0 0 . . . 0

0 −1 2 −1 0 . . . 0

0 0 −1 2 −1 . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . −1

0 0 0 0 0 . . . 2



,
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which is obtained as a special case of tridiagonal matrices of the form



a+d b 0 0 0 . . . 0

b a b 0 0 . . . 0

0 b a b 0 . . . 0

0 0 b a b . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . b

0 0 0 0 0 . . . a+ c



,

by substituting a = 2, b = −1, d = −1, and c = 0. From [18, p. 27], we know that the

roots of the characteristic polynomial of the matrix above is given by

(4.23) a+2bcosθ

where θ varies over the m zeros of the following function

sin(m+1)θ − c+d
b sinmθ + cd

b2 sin(m−1)θ
sinθ

.

Substituting a = 2, b = d =−1, and c = 0 in the formula above, we obtain the following

expression
sin(m+1)θ − sinmθ

sinθ
.

Simplifying the formula above using the sum-to-product identity2, we get

2sin (m+1)θ−mθ

2 cos (m+1)θ+mθ

2
sinθ

=
2sin(θ/2)cos(mθ +θ/2)

2sin(θ/2)cos(θ/2)
=

cos(mθ +θ/2)
cos(θ/2)

.

2Namely, sinA− sinB = 2sin (A−B)
2 cos (A+B)

2
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The expression above vanishes at the values

(
2k−1
2m+1

)
π,

where k = 1,2, . . .m. Substituting in (4.23), we see that the eigenvalues of R−1(R−1)t are

2
(

1− cos
(

2k−1
2m+1

)
π

)
= 4sin2

(
2k−1
4m+2

)
π,

for k = 1,2, . . .m, where we use the identity (1− cosx) = 2sin2 x/2 above. So, the eigen-

values of RtR are

γk =
1

4sin2 ( 2k−1
4m+2

)
π
,

for k = 1,2, . . .m, and, therefore, the trace of the principal square root of RtR is

Trace((RtR)1/2) =
m

∑
k=1

√
γk =

m

∑
k=1

1
2sin

( 2k−1
4m+2

)
π

Since for k = 1, . . . ,m, the reciprocal of the sine functions is a monotonically decreasing

concave function, the summation above can be lower bounded as follows:

Trace((RtR)1/2) =
m

∑
k=1

1

2sin (2k−1)π
4m+2

≥
∫ m

1

dx

2sin (2x−1)π
4m+2

=
∫ m

1

csc (2x−1)π
4m+2

2
dx.

Substituting y = (2x−1)π
4m+2 and using the fact that

∫
cscy ·dy = ln | tan(y/2)|, we obtain

Trace((RtR)1/2)≥ 4m+2
4π

(
ln
(

tan
(2m−1)π
(8m+4)

)
− ln

(
tan

π

(8m+4)

))
.

As m tends to infinity, the term tan((2m−1)π/(8m+4)) tends to one. Therefore, we have

Trace((RtR)1/2) = Ω

(
m ln

(
cot

π

(8m+4)

))
.

From the Taylor series of the cotangent function, we know that for m ≥ 1, cot π

(8m+4) =
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Θ(m). Therefore,

Trace((RtR)1/2) = Ω(m logm).

Q.E.D.

We note that from Theorem 21 and Lemma 23, we have a stronger conclusion than

in (4.14). From (4.14), we can only infer that one of the two parameters is Ω(m logm)

whereas for data structures such as balanced binary search trees, both the parameters are

Θ(m logm). Our proof shows that

||UBST||F = Θ(||U∗||F) and ||VBST||F = Θ(||V ∗||F),

where (U∗,V ∗) is an optimal solution for the problem in (4.16) and (UBST,VBST) are the

matrices U and V corresponding to the balanced binary search tree. Therefore, binary

search trees are optimal with respect to both the parameters: The total size of the canonical

sets and the total number of canonical sets needed for covering all the query ranges. Also,

our proof implies that balanced binary search trees are near optimal in a more relaxed

framework where the data structures are allowed to take weighted sums of their canonical

subsets.

4.3 Conclusion

In this chapter, we have shown that there is a stronger tradeoff between the sizes of

canonical sets and the outputs to query ranges than the one shown by Fredman. In

Section 4.2, we have given an alternate proof of Proposition 18 in one dimension. Our

proof also shows the optimality of balanced binary search trees in a more general setting.

A natural continuation would be to generalize this proof to higher dimensions. One can

start by bounding the integrality gap between an optimal solution in the boolean setting

and an optimal solution of the relaxation. In one dimension, our proof shows that this
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gap is at most a constant. We also believe that the optimization problem introduced in

Section 4.2 is interesting in its own right. For instance, the lower bound for the average

complexity of the partial sums problem [21] in the one dimensional setting can be obtained

from the lower bound on the optimization problem in (4.16).
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