
Propositional Term Modal Logic

By

Anantha Padmanabha MS

MATH10201305001

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

December, 2019

Dedicated to my teachers. . .

ACKNOWLEDGEMENTS

I thank my PhD supervisor Ramanujam for his infinite patience. His ideas and

insights during discussions have helped me better understand the subject and the

problem at hand. He was always there for me during the low phases of my PhD and

made sure I remained grounded during the high phases. I thank him for his constant

support and motivation.

I thank Kamal, Sujata, Suresh, Yanjing, Hans, Meena, Arvind, Saket, Vikram,

Venkatesh, CRS, Amri, Madhavan, Kumar, Srivatsan, Sreejith, Praveen, Aishwarya

and all other faculty members at IMSc and CMI from whom I have learnt a lot,

academically and otherwise. I thank them for introducing me to the amazing world

of theoretical computer science. I also thank the numerous researchers and experts

worldwide whose text books, papers and lectures have helped me appreciate the

beauty of the subject.

I have been fortunate to have inspiring teachers throughout my life. Thanks to

my Ajji, Baby mam, Manorama mam, Kousalya mam, Uma mam, Saleena mam,

Mathad sir, Suresh sir, Antony sir, Kumar sir, Ramkrishna sir, KNG sir, CNS sir,

Roysten sir, Agnes mam, GK sir, NRP sir and many others who have always been

guiding me and motivating me. It is because of them that I am writing this thesis.

My parents have supported me with all the decisions that I have made. I thank

them for giving me the freedom to pursue what I want. It is from my dad that I

learnt the joy of getting lost in working on something that one is passionate about.

My mother taught me that faith can indeed move mountains and sometimes it is

better to be patient and have faith than to try and control the situation. Thanks

to Pavan for being my friend, intellectual companion and an inspiration.

I thank the administrative staff at IMSc who have been kind and helpful. Special

thanks to the house keeping and maintenance staff for making the stay at IMSc as

comfortable as possible. They are so dedicated that even when the whole city was

under water during the 2015 floods, they ensured that we had access to Canteen

and Electricity (and internet!). I thank all my friends from IMSc for a pleasant

and memorable life in Chennai. Also, thanks to my friends from Bhadravathi and

Mysuru who have always believed in me and supported me. I thank my relatives

and cousins for all the love that they have shown towards me.

Finally, everybody who I have crossed path with, has taught me a new perspec-

tive towards life. I am deeply indebted to every one of them.

Contents

Summary i

List of Figures iii

1 Introduction 1

1.1 Propositional logic . 2

1.2 First order logic . 4

1.3 Modal Logic . 6

1.3.1 Modality as agency . 7

1.3.2 Beyond finitely many agents 8

1.4 Term Modal Logic . 9

1.5 First order modal logic . 10

1.6 Thesis Contribution . 10

2 Preliminaries 13

2.1 Propositional multi-modal logic . 14

2.2 First order logic . 15

2.3 First order multi-modal logic . 17

2.4 Countably many modalities . 21

3 Term modal logic 25

3.1 TML syntax . 25

3.2 TML semantics . 27

3.3 Example . 30

3.4 Monotone condition of δ . 31

3.5 Negation normal form . 31

3.6 Propositional Term modal logic . 32

3.7 Adding Constants to the vocabulary 33

4 Satisfiability problem: Undecidability 35

4.1 Undecidability of PTML� . 36

4.2 Recursive inseparability for pure-PTML= 39

4.3 Discussion . 53

5 Decidable fragments 55

5.1 Translating TML to FOML . 56

5.2 Constant and Increasing agent models 62

5.3 Translating TML to PTML . 65

5.4 Bounded agent property . 69

5.5 Two variable fragment of TML . 72

5.5.1 Bounded model for FO2 . 73

5.5.2 Normal form for PTML2 . 74

5.5.3 Model extension . 84

5.5.4 Bounded agent property . 87

5.6 Bundled fragment . 97

5.6.1 Implicitly quantified modal logic 98

5.7 Discussion . 104

6 Expressivity 107

6.1 Bisimulation for PTML . 108

6.1.1 Deciding PTML bisimulation 116

6.2 Bisimulation for PTML= . 118

6.3 Bisimulation for IQML . 120

6.3.1 Characteristic formula . 123

6.3.2 Bisimulation games and invariance theorem 127

6.3.3 IQML and 1-variable fragment of PTML 132

6.4 Discussion . 133

7 Model checking 135

7.1 Finite structures . 136

7.2 Finitely specified structures . 139

7.2.1 Model specification . 140

7.2.2 Example . 142

7.2.3 Model checking . 144

7.3 Discussion . 148

8 Conclusion 149

8.1 Future directions . 150

Bibliography 152

List of Figures

3.1 Some of the syntactic fragments of term modal logic considered in the

thesis. The arrow indicates the inclusion relation. 26

3.2 Illustration of a term modal logic model 30

4.1 Model translation corresponding to the FO(Q) structure (D, I) where
D = {a, b, c} and I = {(a, b), (b, a), (c, b)}. 39

4.2 An instance of tiling. 43

4.3 A model for O when N′ = [0, 1 . . . , n] is finite with δ(w) = N′ for all

w. Observe that i < j iff M, r |= �i�j�. 47

4.4 Model corresponding to the aperoidic tiling described in Fig 4.2. The

subtree rooted at v1,j is present for every vertex vk,k′ at level 2. The

dotted line indicates an edge labelled by 0 and every tile ti in the

figure is a path of length i. 49

5.1 Illustration of a translation of term modal logic model to first order

modal logic model. The edge information is encoded in the predicate

E and all other valuations remain unchanged. 58

iii

5.2 Illustration of a translation of increasing agent model to constant

agent model. In the translated model, all worlds have the same set

of agents {a, b, c, d}. The predicate E encodes the δ function of the

original model. 64

5.3 Illustration of a translation of TML model to PTML model. The

dotted part in the second figure are the new components added during

the translation and hence q is true in non-dotted (original) worlds

and ¬q holds at every dotted world. Propositions p and r encode

predicates P and R respectively. For instance, since R(b, a) is true at

v1, the proposition r is true at the leaf of path v1
b−→ v1.b

a−→ v1.ba. . . 68

5.4 Illustration of extending the model by adding e, f as new agents at

w with Ω(e) = a and Ω(f) = b. 85

5.5 Given model such that M, r |= ∀x �x�x⊥ ∧ ∀x∃y (�x(�y(¬p) ∧
∃y �yp)) . 90

5.6 Corresponding bounded agent model with N , r |= θ. aji , b
j
i , c

j
i corre-

sponds to agents with 1 ≤ j ≤ 2 and i ∈ {0, 1, 2}. The edge aji , b
j
i , c

j
i

indicate one successor for every 1 ≤ j ≤ 2 and i ∈ {0, 1, 2}. 96

6.1 Two models which are IQML bisimilar but can be distinguished by

1- variable formula of PTML. Both are constant agent models with

{a, b} being the agents in M1 and {d, e, f} as agents in M2. 133

7.1 Illustration of a regular agent transition system. The valuation func-

tion ρ is not highlighted. 142

7.2 Configuration graph corresponding to transition system in Fig. 7.1

with (q0, {a, ab, ba}) as the initial states. The dotted lines indicate

more successors. 143

iv

SUMMARY

Modal logic has been ubiquitously used in many fields of computer science including

verification, epistemic logic etc. Typically we have two modal operators � and �
which in a broad sense refers to necessity and possibility respectively. For instance,

�iα in an epistemic setting means that “Reasoner i knows that alpha". Similarly,

�iα in the context of a system of processes is interpreted as “Process i can possibly

change the system configuration to a state where α holds". These reasoners or

process index are referred to as agents in general.

Classically, the number of agents is assumed to be fixed and finite. But in

many settings like multi-process systems / client-server systems / systems with

unboundedly many reasoners, we cannot fix the agent set beforehand. The active

agents change not only from one model to the other but also from one state to the

other in the same model. For instance, in multi-process systems, when the system

configuration changes, some processes may be terminated and some new ones may

be created.

Term modal logic introduced by Fitting et.al is suitable to study such settings,

where we can state properties like ∃x∀y �x�yα which in the epistemic setting trans-

lates to “there exists some agent who knows that everybody knows that α".

In this thesis we will explore three main aspects for term modal logic:

(1) Satisfiability problem (2) Bisimulation and (3) Model checking problem.

i

Satisfiability problem Surprisingly restriction to propositional fragment is of no

help. In fact we prove that TML satisfiability problem is undecidable even when

(�,⊥) are used as atoms. Using reductions of tiling problems, we strengthen the

result further that the FinSat, UnSat and InfAx are mutually recursively inseparable

for TML with atoms restricted only to equality.

These undecidability results motivate us to identify decidable fragments. In

this thesis, we identify some decidable fragments of term modal logic: the monodic

fragment, the bundled fragment and the two variable fragment.

Bisimulation characterizes modal logics model theoretically. We introduce bisim-

ulation for propositional term modal logic, and prove that it preserves elementary

equivalence and the converse holds over image finite models.

Further, we discuss van-benthem type invariance theorem for the variable free

fragment called the implicitly quantified modal logic. We also tailor the bisimulation

to different fragments of TML and use this to compare their expressiveness.

Model Checking When we consider the model checking problem for term modal

logic, it is clear that it reduces to classical model checking of First order logic when

models are finite, and only complexity issues are interesting. We present these,

considering the variants where the model is fixed, or the formula is fixed, or when

both are inputs.

When the model is infinite, we need a finite representation to provide input to

the algorithm. We consider models where agents are specified as regular expressions.

These specifications are motivated by consideration of how process identifiers are

created in dynamic systems of processes. For such specification, we show that model

checking is decidable.

ii

Chapter 1

Introduction

. . . after 13 rounds of nail biting contest, Alice, Bob and Charles were

declared as the best logicians in the city. Being friends, the three of

them decided to go to a bar and celebrate. In the bar, the bartender

welcomed them and asked ‘Do all of you want beer?’ Alice said, ‘I don’t

know’ and so did Bob. Now everybody looked at Charles, who replied

with a smile, ‘yes’.

How did Charles figure out the answer?1 This can be explained using formal

logic. Formal logic, among many other things, is a tool to model various systems

and reason about them. It was developed in the late nineteenth and early twentieth

century with notable contributions from Frege, Boole, Russell, Tarski, Hilbert and

many others.

The above example concerns the knowledge of the participants involved in the

situation. Hence, the logic that can be used here should be able to refer to the

knowledge of Alice, Bob and Charles and reason about it. Similarly, if there was

some other scenario which could have been modelled as a graph, then we would need

a logic that would allow us to talk about the properties of a graph.
1Refer the book on Reasoning about Knowledge [FHMV04] for a detailed formalization.

1

Thus, depending on the situation that is to be modelled, we have different logics.

In general, the syntax part of the logic defines what are all the properties that can

be expressed in the logic. The underlying scenario is then represented as an abstract

mathematical model. Finally, the semantics of the logic defines the notion of how

to check if the given property is true in the model or not.

For the example at hand, the logic suitable to model the setting is called Multi-

agent epistemic logic [FHMV04]. The syntax of this logic allows us to talk about

properties like : Alice wants beer, Bob knows that Alice wants beer, Alice knows

that Bob does not know that Charles wants beer etc. The system is then formally

represented as an epistemic Kripke-structure and the semantics describes how to

check if a property that is expressed in the syntax is true or false.2

Initially, logicians were interested in reasoning about mathematical structures

like groups, finite fields, graphs, linear orders and so on. For this purpose, Proposi-

tional logic (PL) and First-order logic (FO) were ideal candidates.

1.1 Propositional logic

Propositional logic (PL) is a logic of true/false. A proposition is any ‘property’ that

is either true or false in the situation under consideration. For example, in the

context of graphs, in PL we talk of propositions like graph is connected, graph has

an odd cycle etc which is either true or false for any given graph.

Suppose P0 = {p0, p1, p2, . . .} is some set of propositions over graphs then with

respect to the set P0, any graph G can be described as a sequence ρG = (v0, v1 . . .)

over {T, F} where vi = T if and only if the property pi is True for the graph G.
2In the example we need to analyze why the property

Charles knows that (Alice wants beer and Bob wants beer and Charles wants beer) is true after
Charles knows that [Alice does not know that (Alice wants beer and Bob wants beer and Charles
wants beer) AND (Bob does not know that (Alice wants beer and Bob wants beer and Charles
wants beer)].

2

Equivalently, ρG can be represented as a subset of P0 where ρG = {pi | property
pi is true in G}.3

In propositional logic over P0, every proposition p ∈ P0 is a property that

can be asserted about the underlying model. PL also allows us to assert boolean

combinations of these inductively constructed properties. Thus we can assert ¬α
(negation of property α) ; α ∧ β (property α and property β); α ∨ β (property α or

property β); α → β (if property α then property β). These are called as formulas

of PL over P0. As a norm in the literature, the syntax is formally defined by the

grammar:

α := pi | ¬α | α ∧ α | α ∨ α | α → α

where pi ∈ P0.

Thus, any PL formula (property) α over P0 can be associated with a parse tree

that generates α using the above grammar.

Note that every property α is either true or false in any model G. Suppose G is

described as the corresponding ρG ⊆ P0 then there is an inductive way to evaluate

whether the property corresponding to α is True or False over G just by looking at

ρG and parse tree structure of α.

We denote ρG |= α to indicate that the property corresponding to α is True in

G. This can be evaluated inductively as follows:

ρG |= pi ⇔ pi ∈ ρG

ρG |= ¬α ⇔ ρG �|= α

ρG |= (α ∧ β) ⇔ ρG |= α and ρG |= β

ρG |= (α ∨ β) ⇔ ρG |= α or ρG |= β

ρG |= (α → β) ⇔ ρG �|= α or ρG |= β

3If we were talking about groups, then P0 could have been a set of properties over groups and
any group G = (A, e, ∗) could have been described as ρG ⊆ P0 where pi ∈ ρG if and only if the
property pi is True for the group G.

3

For a given ρG and a PL formula α, checking whether ρG |= α is called the model

checking problem and this can be done in linear time [EFT13] for PL.

For any logic, one typical computational problem is to check for satisfiability,

which asks: given a formula ϕ, is there some model in which ϕ is true? This is

one of the central algorithmic problems for any logic, since it helps us to check if

some desirable property can ever be achieved or not. This is called the satisfiability

problem. Note that this problem is in NP [AB09] for PL since a non-determinitic

algorithm can guess ρG and verify that ρG |= α. In fact, satisfiability problem for

PL is NP-complete [EFT13].

A closely related problem is to ask whether the formula α is true in all models

and if it is so, then α is called a validity. It is easy to see a formula α is a validity iff

¬α is not satisfiable. Thus, checking if a given PL formula is valid is co-NP-complete

[EFT13, AB09].

Propositional logic has very limited expressive power in the sense that it can

describe only properties that are either true or false. It does not give access to the

underlying structure itself. For instance we might want to talk about edges between

vertices in the graph or describe some special properties of the group operator. Such

requirements lead us to First order logic.

1.2 First order logic

In the previous section, we represented a graph G as a sequence over {T, F} with

respect to the set of propositions P0. Another useful way of representing a graph is

to define G = (V,E) where V is the set of vertices of the graph and E ⊆ (V × V) is

the edge set.4

4In the context of groups, any group can be represented as G = (D, 0, f) where D is the
underlying set on which the group operator acts, 0 ∈ D is the identity and f : (D × D)
→ D
describes the action of ∗ operator.

4

In such specification, the underlying set (vertices in the case of graphs) is called

the domain and the corresponding vocabulary (edges in graphs) is interpreted as

a relation over the domain. With such representation, first order logic allows us

to access the domain of the given structure using terms and use predicates to talk

about the relation between the domain elements. Further, the syntax of first order

logic allows us to quantify over the terms.

For instance, when we consider graphs, there is only one predicate E which

represents the edges and this predicate has arity 2. We can talk about formulas like

∀y (x �= y) → E(x, y) which asserts there is an edge to all other vertices from x. Now

in any graph G = (V,E) there could be some vertex v ∈ V for which the property is

true when x is assumed to be the vertex v and some other vertex u ∈ V for which

the property is false when x is assumed to be the vertex u. Thus, first order logic

is more expressive compared to PL since we can mark the domain elements of the

structure using variables and verify properties over these marked domain elements.

The variables x, y etc used in the formula are called terms and these are interpreted

as domain elements. The quantifier ∃x α means there is some domain element which

on marking with x, makes α true. Similarly, ∀x α means that the property α holds

no matter which domain element is marked by x.

Thus, FO allows us to talk about the structures in more detail compared to

PL. The model checking problem for FO which is to evaluate if a given FO formula

is true in a given finite structure is in PTIME (in the size of the input structure)

[EFT13]. However, the satisfiability problem for FO, which is to decide whether

the given FO formula is true in some structure or not, turns out to be undecidable

[EFT13, AB09]. Thus, FO gives more expressive power compared to PL but the

computational problems are hard to solve.

5

1.3 Modal Logic

Some propositions like Alice is wearing a red shirt is ‘contingent’ whereas properties

like 2+2=4 seem to be true always (necessary truth). Modal logic was initially

conceived to study the notion of contingent and necessary truth [Bal14, Ben10b].

The basic modality �α asserts it is necessary that α and the modality �α is intended

to mean it is possible that α. The logic was initially developed by Lewis, Carnap,

Hintikka and many others [Bal14].

To model situations where necessary and contingent truths are under consid-

eration, Kripke introduced the possible world semantics. Any proposition that is

contingent (for instance Alice is wearing red shirt) could be either true or false.

However, the necessary propositions (for instance 2+2=4) are always true. Thus,

in the above case there are at least two possible worlds:5

• Alice is wearing red shirt and 2+2=4.

• Alice is not wearing red shirt and 2+2=4.

Formally, given a set of propositions P0 = {p0, . . .}, a world w is associated

with ρ(w) ⊆ P0 such that pi ∈ ρ(w) iff property pi is true at the world w. A

Kripke structure is given by M = (W ,R, ρ) where W denotes the set of all possible

worlds and ρ : W
→ 2P
0 where ρ(w) is as described above, for every w ∈ W . The

relation R ⊆ (W ×W) encodes the accessibility relation. The key idea is that the

contingent propositions might be either true or false in different accessible worlds

but the necessary propositions are true at all accessible worlds [HC96, BdRV01].

The modal operators can be interpreted meaningfully in various other contexts.

For instance, Gödel used �α to mean it is provable that α. Tarski used �α to
5Note that there might be many more possible worlds depending on other factors: for instance,

if Alice’s hair is black or not etc. In the above example we have restricted the scenario to consider
only two properties as important: red shirt of Alice and 2+2=4.

6

describe the topological interior of a set defined by α. With the works of Prior, Hin-

tikka, Stalnaker and others, modal logic found application in various fields of phi-

losophy and depending on the application these systems were called Epistemic logic,

Deontic logic, Temporal logic, Doxastic logic, Dynamic logic etc [HC96, BdRV01]

which were obtained by enforcing various conditions on the accessibility relation

R. For instance, �α in epistemic logic is interpreted as reasoner knows that α

[vDvdHK07, FHMV04] in which R is restricted to be an equivalence relation. Au-

mann and others used modal logic to study the notion of knowledge of players in

games [OR94].

With the development of theoretical computer science, the usefulness of modal

logics increased manyfold [BdRV01]. Notable among them are logics of programs

like propositional dynamic logic [FL79] and temporal logics used in the synthe-

sis and verification [Pnu77, AHK02] problems. Since then, modal logic has been

ubiquitously used to model various systems that arise in the context of theoretical

computer science.

1.3.1 Modality as agency

In epistemic logic, �α is intended to mean that the reasoner knows α [FHMV04].

However, if there are more than one reasoners involved, then we need to specify which

reasoner knows α. Thus, indexing the modal operator with the relevant reasoner

seems natural. We have �aliceα to mean that Alice knows that α. In general, we use

natural numbers to index the modalities and these indices are assumed to represent

the reasoners/agents present in the system. This logic is called multi-modal logics

where the modal operators are indexed. A typical formula in this logic would be of

the form �1�2α which is intended to mean reasoner 1 knows that reasoner 2 knows

that α.

7

Suppose there are n agents, the set of indices is given by Ag = {1, . . . , n} where

every index i ∈ Ag corresponds to a particular agent present in the system. In

multi-modal logics the modal operators are of the form �iα or �iα where i ∈ Ag.

Having indexed modality is useful in many applications. For instance, the modal-

ity �i can be interpreted as knowledge or belief of reasoner i [vDvdHK07, FHMV04];

player i move in a game [OR94]; configuration update by process i in a system

[Pnu77, AHK02] and many more.

1.3.2 Beyond finitely many agents

Note that in multi-modal logic, the underlying agent set Ag is assumed to be fixed

and finite. It is fixed beforehand depending on the number of agents involved in

the system under consideration. However, there are numerous situations where the

agent set cannot be fixed beforehand.

Example 1.1. Consider the following examples.

• Suppose we want to model some social network like Facebook and study how

knowledge about a particular incident spreads in the network. In this case, we

cannot have a limit on the number of users in the network or have an upper

bound on the the number of friends of a particular user. Moreover, the users

do not know all the other people in the entire network which in other words

means that the names of the users is not common knowledge [GH93, WS18].

• Consider a server-client system where the server handles the requests from the

clients. If we want to model this, again, we cannot bound the number of clients

beforehand. Moreover, the set of clients keeps changing dynamically. Once a

server has handled a client’s request that client becomes deactivated but during

this time there may be new clients who have issued requests.

8

• In a system of processes that can spawn new processes, the number of processes

active at any point of time is unbounded. Also, every time the system config-

uration changes, some processes may be terminated and some new processes

may be created.

A natural question arises in such contexts: how can we model systems where

the number of agents cannot be fixed a priori? Such requirements also arise in the

context of large games where the number of players is unbounded [PR14].

This leads us to consider modal logics where the modal index set not only varies

from structure to structure but also from one possible world to the other. We want

the logic used in such context to be able to index the unbounded number of agents.

1.4 Term Modal Logic

Unboundedness of the set of agents implies our inability to name them syntactically

but we can refer to such agents by their properties. Quantification serves this pur-

pose well and we may express properties like there exists an agent x such that �xα

or for all agent x if x satisfies property ϕ then �xα.

Term Modal Logic (TML), introduced by Fitting, Thalmann and Voronkov is a

natural candidate logic to study unboundedly many agents [FTV01]. TML is built

on a generic first order logic where the modalities are indexed by terms which can

be quantified over. For instance, we can assert: all agents who know that it is

raining also know that the ground is wet as ∀x �x(raining) → �x(wet_ground). In

fact TML can also express agent properties as predicates which allows us to assert

properties of the flavour: All eye-witnesses know who killed Mary as:

∃y∀x(Wit(x) → �x killed(y,Mary)
)
.

9

1.5 First order modal logic

Term modal logic is closely related to First order modal logic (FOML) [FM99].

Note that propositional modal logic talks about contingent and necessary truth

of propositions. On similar lines, FOML allows us to talk about contingent and

necessary truths about first order structures. First order multi-modal logic is well

suited to study epistemic logics of knowing-how, knowing-why, knowing-what, and

so on [Wan17]. For instance, ∃x �iP (x) may mean that the reasoner i knows the

value of x satisfying P .

Again, multi-modal FOML has fixed and finite agent set Ag = {1, . . . , n} from

which the modalities are indexed. A typical multi-modal FOML formula is of the

form ∀x (�i(P (x) ∨ �j (∃y R(x, y))
)
where i, j ∈ Ag.

Note that term modal logic is different from first order modal logic. The crucial

difference is that variables refer to domain elements in FOML and predicates refer to

properties of them whereas in TML the predicates refer to properties of agents and

variables refer to agents. Moreover, in TML quantified variables act as indices for

modalities whereas in multi-modal FOML, modality is still indexed by a fixed finite

index set Ag. However, TML can be embedded into FOML and we will discuss this

in detail in Chapter 5.

1.6 Thesis Contribution

In this thesis, we investigate three central problems for term modal logic:

satisfiability problem, expressivity and model checking problem.

For most of the thesis, we restrict the atoms to propositions which we call Propo-

sitional term modal logic (PTML). We make this choice since the technical difficulties

of quantification over modalities are already manifested in this simpler language.

10

Clearly, the satisfiability problem for TML is undecidable since formulas of FO

are also TML formulas. As we will see, restricting the atoms to propositions is

not enough to get decidability. In fact, we will prove that the problem remains

undecidable even when the atoms are restricted to just (,⊥) or equality. This

naturally motivates us to identify some decidable fragments. There have been some

attempts in the literature to identify decidable fragments of TML [OC17, Sht18,

PR19a, PR19c]. In this thesis we prove that the monodic, bundled and the two

variable fragments of TML are decidable.

Bisimulation characterizes modal logics model theoretically. We define the notion

of bisimulation appropriately for PTML, and prove that it preserves PTML formulas

and that the converse holds over image finite models. The notion of bisimulation for

PTML is along the same lines as that of the bisimulation for first order modal logic

[Ben10a] with obvious adjustments to suit term modal logic. Since FOML also has

predicates, the bisimulation needs to incorporate the notion of Partial isomorphism

associated with FO. On the other hand, PTML has only propositions as atoms with

quantified modalities and this leads to a slightly different way to define the notion

of bisimulation which we discuss in detail.

From algorithmic perspective, we analyse the computational complexity issues

for deciding whether the given two models are bisimilar or not. Further, we consider

a variable free fragment of PTML called the implicitly quantified modal logic (IQML)

with two modalities which, in an epistemic setting translates to everybody knows and

somebody knows. We give a complete axiom system for IQML and refine the notion to

bisimulation which matches the IQML fragment of PTML. We also show that there

is a translation of IQML to an appropriate 2-sorted FO and for which ‘van Benthem

type’ characterization theorem holds. We tailor bisimulation for various fragments

of PTML which will help us compare their expressive power.

11

Model checking problem for TML has a lot of potential applications including

distributed systems, dynamic network of processes etc. When we consider the model

checking problem for TML over finite structures, it is clear that the problem reduces

to classical first order model checking, and only complexity issues are interesting

which is discussed in the thesis.

On the other hand, when the model is infinite, we first need a finite represen-

tation to specify it. Motivated by creation of process id’s in dynamic network of

processes, we suggest one such finite representation where the agents are specified as

regular expressions and prove that with such specification, model checking problem

for PTML is decidable.

12

Chapter 2

Preliminaries

A decision problem is one where we have to decide yes/no for any given input.

An algorithm to solve a decision problem is called a recursive procedure if it halts

on all the inputs and outputs yes iff the input is a yes instance. Similarly, the

algorithm is called recursively enumerable procedure if it is guaranteed to halt on all

inputs which are yes instances and outputs correct answer whenever it terminates.

A decision problem is said to be decidable if there is a recursive procedure to compute

it (for more details, refer the books [AB09, Sip06]).

Most of the decidability results discussed in the thesis are supplemented with an

analysis of the complexity class to which the problem belongs to. We assume that

the reader is familiar with the standard complexity classes like PTIME, NP, PSPACE

etc [AB09].

Let N denote the set of all natural numbers {0, 1, 2, . . .} and ∅ denote empty set.

We use 2X to denote the power set of X.

Let P = {P0,P1, . . .} be a collection of predicates where each Pn is a countable

set of predicates of arity n. Every p ∈ P0 is called a proposition and every P ∈ P1

is called a unary predicate.

13

We use the same collection of predicates P in the vocabulary for all the logics

under consideration that use predicates (first order logic, term modal logic and first

order modal logic). We use the same set of propositions P0 for propositional multi-

modal logic (MLn) and propositional term modal logic (PTML). Also, we use the

same set of variables (V) for all the logics that use terms.1

2.1 Propositional multi-modal logic

As discussed earlier, propositional multi-modal logic has a fixed and finite agent set

Ag = {1, . . . , n}. The logic is built on propositional logic (PL) by adding indexed

modal operators of the form �iα and �iα where i ∈ Ag.

Definition 2.1 (MLn syntax). Let P0 be a countable set of propositions. The syntax

of propositional multi-modal logic with agent set Ag = {1, . . . n} is given by:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | �i ϕ

where p ∈ P0 and i ∈ Ag.

The boolean connectives ∨ (or) and → (implication) are defined in the standard

way where ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and ϕ → ψ := (¬ϕ ∨ ψ). The dual of �i modality

is given by �iϕ := ¬�i(¬ϕ). We denote MLn to be the set of all formulas with

Ag = {1, . . . , n}. If Ag is a singleton set then we have ML.

The modal depth of a formula α is inductively defined where for all p ∈ P0,

md(p) = 0; md(¬α) = md(α); md(α ∧ β) = max(md(α),md(β)) and md(�iα) =

md(α) + 1.

The set of subformulas of a formula α is defined inductively where SF(p) = {p};
SF(¬α) = {¬α}∪SF(α); SF(α∧β) = {α∧β}∪SF(ϕ) and SF(�iα) = {�iα}∪SF(α).

1This will help us translate the formulas from one logic to the other easily.

14

Definition 2.2 (MLn structure and semantics). A Kripke model for MLn is a tuple

M = (W ,R1, . . . ,Rn, ρ) where W is a non-empty countable set called worlds; for

every i ∈ Ag the accessibility relation is given by Ri ⊆ (W ×W) and ρ : W → 2P
0

is the valuation.

For any w ∈ W and a formula ϕ ∈ MLn define M, w |= ϕ inductively where:

M, w |= p ⇔ p ∈ ρ(w)

M, w |= ¬ϕ ⇔ M, w
|= ϕ

M, w |= (ϕ ∧ ψ) ⇔ M, w |= ϕ and M, w |= ψ

M, w |= �i ϕ ⇔ there is some u ∈ W such that

(w, u) ∈ Ri and M, u |= ϕ

A formula ϕ is satisfiable if there is some model M and some world w ∈ W such

that M, w |= ϕ. The length of a formula ϕ (denoted by |ϕ|) is the number of nodes

in the parse tree of ϕ from which the formula is generated.

Theorem 2.3 ([BdRV01]). For all n ≥ 1, the satisfiability problem for MLn is

PSPACE-complete.

2.2 First order logic

We recall first order logic over relational vocabulary without constants and without

function symbols.

Definition 2.4 (FO syntax). Given a collection of predicates P = (P0,P1, . . .)

where each Pk is a countable set of predicates of arity k, and given a countable set

of variables V the syntax of first order logic is given by:

α := P (x1, . . . , xn) | x = y | ¬α | α ∧ α | ∃x α

where P ∈ Pn and x, y, x1, . . . , xn ∈ V.

15

The boolean connectives ∨ and → are defined in the standard way. The dual of

∃ quantifier is given by ∀x ϕ := ¬∃x (¬ϕ). We denote the set of all first order logic

formulas by FO= and denote FO to be the set of all formulas that do not contain

equality. We denote FOk (similarly FOk
=) to be the set of all FO(FO=) formulas that

mention at most k-variables.

Given a formula α, the set of free variables of α is defined inductively where for all

P ∈ Pn we have FV(P (x1, . . . , xn)) = {x1, . . . , xn} ; FV(¬α) = FV(α); FV(α ∧ β) =

FV(α) ∪ FV(β) and FV(∃x α) = FV(α) \ {x}. We say α is a sentence if FV(α) = ∅.

The quantifier rank of a formula α (denoted by qr(α)) is inductively defined

where for all P ∈ Pn we have qr(P (x1, . . . , xn)) = 0 ; qr(¬α) = qr(α); qr(α ∧ β) =

max(qr(α), qr(β)) and qr(∃x α) = qr(α) + 1.

Definition 2.5 (FO structure). An FO structure is given by A = (D, ρ) where D is

a non-empty, countable set called domain and ρ : P �→ ⋃

i

2D
i is the interpretation

of the predicates such that for all n ≥ 1 and all P ∈ Pn we have ρ(P) ⊆ 2D
n and

for all p ∈ P0 we have ρ(p) ∈ {D, ∅}.

We assume that a proposition p ∈ P0 is true in an FO structure if ρ(p) = D. We

use the same convention for first order modal logic and term modal logic also. We

do not mention this technicality again, but it is implicitly assumed.

To interpret the variables, we have a function σ : V �→ D. For any interpretation

function σ and d ∈ D, let σ[x �→d] denote the variant of σ where for all y
= x we have

σ[x �→d](y) = σ(y) and σ[x�→d](x) = d.

Definition 2.6 (FO semantics). Given a formula ϕ ∈ FO= and an FO structure

A = (D, ρ) and an interpretation of variables σ : V �→ D, define A, σ |= ϕ inductively

as follows:2

2For all propositions p ∈ P0, we say A, σ |= p ⇔ ρ(p) = D. We use the same convention for
first order modal logic and term modal logic.

16

A, σ |= P (x1, . . . , xn) ⇔ (σ(x1), . . . σ(xn) ∈ ρ(P)

A, σ |= x = y ⇔ σ(x) = σ(y)

A, σ |= ¬ϕ ⇔ A, σ
|= ϕ

A, σ |= (ϕ ∧ ψ) ⇔ A, σ |= ϕ and A, σ |= ψ

A, σ |= ∃x ϕ ⇔ there is some d ∈ D such that A, σ[x �→d] |= ϕ

A formula ϕ is satisfiable if there is some FO structure A and some interpretation

σ such that A, σ |= ϕ. The set of subformulas of a formula ϕ is defined as usual

where SF(P (x1, . . . , xn)) = {P (x1, . . . , xn)} and SF(∃x ϕ) = {∃x ϕ} ∪ SF(ϕ).

Theorem 2.7. We recall some classical theorems about first order logic which are

relevant for the thesis.

1. [Göd33] Let Q ∈ P2 be some arbitrary binary predicate and let FO3(Q) denote

the 3-variable fragment of FO in which the only predicate occurring is Q.

The satisfiability problem for FO3(Q) is undecidable.

2. [EFT13] The satisfiability problem for FO= restricted to propositions and unary

predicates (P0 ∪ P1) is NEXPTIME-complete.

3. [GKV97] The satisfiability problem for FO2
= is NEXPTIME-complete.

2.3 First order multi-modal logic

Note that propositional multi-modal logic (MLn) is built by adding modal operators

to propositional logic. Similarly, first order multi-modal logic is built by adding

modal operators to first order logic.

17

Definition 2.8 (multi-modal FOML syntax). Given a collection of predicates P =

(P0,P1, . . .) where each Pm is a countable set of predicates of arity m, and given

a countable set of variables V and a fixed finite set of agents Ag = {1, . . . , n}, the

syntax of first order multi-modal logic over P is given by:

α := P (x1, . . . , xk) | x = y | ¬α | α ∧ α | ∃x α | �i α

where P ∈ Pn and x, x1, . . . , xk ∈ V and i ∈ Ag.

The boolean connectives ∨ and → are defined in the standard way. The dual

of ∃ quantifier is given by ∀x ϕ := ¬∃x (¬ϕ) and the dual of �i modality is given

by �iα := ¬�i¬α. We denote the set of all first order multi-modal logic formulas

by FOMLn
= (with agent set Ag = {1, . . . n}) and denote FOMLn to be the set of all

formulas that do not contain equality. If the agent set Ag is singleton, then we have

FOML and FOML=. Note that the propositional fragment of FOMLn corresponds to

MLn.

Given a formula α ∈ FOMLn
=, the set of free variables of α is defined inductively

as in first order logic where FV(�iα) = FV(α). The quantifier rank of α (denoted

by qr(α)) is also defined as in first order logic where qr(�iα) = qr(α). The modal

depth of a formula α is inductively defined in the standard way as in MLn where

md(P (x1, . . . , xn)) = 0 for all P ∈ Pn and md(∃x α) = md(α).

The set of all subformulas of a formula α is also defined inductively in the stan-

dard way as in first order logic where SF(�iα) = {�iα} ∪ SF(α).

To define the structures, recall that in the models for MLn, every world w is

associated with a set of propositions that are true at w given by the valuation

function ρ(w) ⊆ P0. In the similar spirit, for FOMLn, every world is to be associated

with an FO-structure. Roughly, we want the valuation function to be of the form

χ : W �→ Γ where Γ is a collection of FO-structures.

18

This can be elegantly defined as an FOMLn Kripke structure given by the tuple

M = (W ,D,R1, . . .Rn, δ, ρ) where W is the non-empty set of worlds and D is the

potential domain set. The function δ : W �→ 2D defines the local domain set at every

world and the valuation function ρ : (W ×P) �→ ⋃

i

2D
i gives the interpretation for

the predicates at every world over the corresponding local domain. The accessibility

relations R1, . . .Rn continues to serve the same purpose as in MLn.

When we associate every world with a first order structure, we encounter a key

technical difficulty in evaluating the formulas involving free variables. For instance,

when we try to evaluate the formula ∀x�i(P (x)) at a world w, then for every

d ∈ δ(w) and every successor (w, u) ∈ Ri we need to evaluate P (d) at u. But

for this d has to be present at the world u (or at least we should know how to

evaluate P (d) at u).

One way out of this technicality is that we can put a restriction that the FOMLn

models to have increasing domain property where we impose a monotonicity condi-

tion on the function δ with respect to R. Then, for the above example d is always

present at u and hence we can evaluate P (d) as u. We will use this monotonic-

ity assumption in the thesis. We will encounter a similar problem for term modal

logic also, where we will explain this in more detail. Even there we will assume the

monotonicity condition.

There are other ways to deal with this problem of evaluating formulas involving

free variables. For instance, we can consider δ(w) to be an inner domain for every

world, but then the valuation function ρ is defined for the entire potential domain

set D (which is called the outer domain). Thus we can always evaluate the predi-

cates involving free variables. In this case, we insist that the witness for existential

formulas come from inner domain. We will not consider this approach in this thesis,

but use the monotonicity restriction.

19

Definition 2.9 (FOMLn structure). An increasing domain model for FOMLn is a

tuple M = (W ,D, δ,R1, . . .Rn, ρ) where, W is a non-empty countable set called

worlds; D is a non-empty countable set called domain; for every i ∈ Ag, the ac-

cessibility relation is given by Ri ⊆ (W × W). The map δ : W �→ 2D assigns to

each w ∈ W a non-empty local domain set such that whenever (w, v) ∈ Ri we have

δ(w) ⊆ δ(v) and ρ : (W ×P) �→ ⋃

n

2D
n is the valuation function where for all n ≥ 1

and P ∈ Pn we have ρ(w, P) ⊆ [δ(w)]n and for p ∈ P0 we have ρ(w, p) ∈ {δ(w), ∅}.

Since FOMLn is built on first order logic, to interpret free variables, we need a

variable assignment σ : V �→ D. Call σ relevant at w ∈ W if σ(x) ∈ δ(w) for all

x ∈ V . Given a model M, for any interpretation σ and d ∈ D, we denote σ[x �→d] to

be the variant of σ where for all y
= x, σ[x �→d](y) = σ(y) and σ[x �→d](x) = d.

Definition 2.10 (FOML semantics). Given an FOMLn model M = (W ,D, δ,R, ρ)

and w ∈ W, and σ relevant at w, for all FOMLn
= formula ϕ define M, w, σ |= ϕ

inductively as follows:

M, w, σ |= P (x1, . . . , xn) ⇔ (σ(x1), . . . , σ(xn)) ∈ ρ(w,P)

M, w, σ |= x = y ⇔ σ(x) = σ(y)

M, w, σ |= ¬ϕ ⇔ M, w, σ
|= ϕ

M, w, σ |= (ϕ ∧ ψ) ⇔ M, w, σ |= ϕ and M, w, σ |= ψ

M, w, σ |= ∃x ϕ ⇔ there is some d ∈ δ(w) such that M, w, σ[x �→d] |= ϕ

M, w, σ |= �i ϕ ⇔ there is some u ∈ W such that

(w, u) ∈ Ri and M, u, σ |= ϕ

A formula ϕ is satisfiable if there is some FOMLn structure M and w ∈ W and

some interpretation σ relevant at w such that M, w, σ |= ϕ. A formula ϕ is valid if

¬ϕ is not satisfiable.

20

Let P be a unary predicate and Q be a binary predicate. Consider an FOML

model (with single accessibility relation) M where:

W = {u, v} D = {a, b, c} R = {(u, v)}
δ(u) = {a, b} and δ(v) = {a, b, c}
ρ(u, P) = {a} and ρ(v, P) = {a, c}
ρ(u,Q) = ∅ and ρ(v,Q) = {(a, c)}

In this model, M, u |= ∀x (
P (x) → � (∃y Q(x, y))

)
whereas M, u
|= ∀x� P (x).

Note that the modal free part of FOML (with single agent) corresponds to FO

and hence satisfiability problem for FOML is undecidable. In fact the two variable

fragment of FOML over propositions and unary predicates is already undecidable.

Theorem 2.11 (Rybakov and Shkatov[RS17]). Satisfiability problem for FOML

(with single agent, without equality) for 2-variable fragment restricted to proposi-

tions and unary predicates (P0 ∪ P1) is undecidable.

Towards finding decidable fragments, one promising direction is to restrict to

monodic formulas. An FOML formula ϕ is monodic if every modal subformula of

ϕ of the form Δψ has |FV(ψ)| ≤ 1 where Δ ∈ {�,�}. For instance, the formula

∀x∃y (�P (x) → �¬Q(y)) is a monodic formula whereas ∀x∃y �(P (x) ∧ ¬Q(y)) is

not a monodic formula.

Theorem 2.12 (Wolter and Zakharyaschev [WZ01]). Satisfiability problem for monodic

FOML formulas over unary predicates is decidable.

2.4 Countably many modalities

The first step towards considering unboundedly many agents is to hard-wire the

names to come from a countably infinite set, instead of a finite set. Thus we can have

a variant of propositional modal logic where natural numbers index the modalities.

21

Definition 2.13. Let P0 be a countable set of propositions. The syntax of proposi-

tional modal logic with countably many agents (MLω) is given by:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | �i ϕ

where p ∈ P0 and i ∈ N.

The model is the standard Kripke model as in MLn but the accessibility relation

spans the set of natural numbers (N). The semantics of this logic is standard except

that the relation R in the Kripke model is labelled by natural numbers.

Definition 2.14. A model for MLω is a tuple M = (W ,R, ρ) where W is a non-

empty set of worlds, R ⊆ (W × N×W) and ρ : W → 2P .

For any w ∈ W and a formula ϕ ∈ MLω define M, w |= ϕ where:

M, w |= p ⇔ p ∈ ρ(w)

M, w |= ¬ϕ ⇔ M, w
|= ϕ

M, w |= (ϕ ∧ ψ) ⇔ M, w |= ϕ and M, w |= ψ

M, w |= �i ϕ ⇔ there is some u ∈ W such that

(w, i, u) ∈ R and M, u |= ϕ

The notions of a formula α ∈ MLω is satisfiable/valid is standard. Similarly, the

modal depth (md(α)), set of subformulas of (SF(α)) and the length of α (|α|) are

also defined along standard lines.

For i ∈ N, let Ri = {(u, v) | (u, i, v) ∈ R}. It is easily seen that this logic has a

bounded agent property. For any N′ ⊆ N we say that a model M = (W ,R, ρ) is an

N′-agent model if for all i
∈ N′ we have Ri = ∅.

22

Proposition 2.15. For all formula ϕ ∈ MLω, ϕ is satisfiable iff ϕ is satisfiable in

an N′-agent model such that |N′| ≤ |ϕ|.

Proof. It is enough to prove (⇒). Let M = (W ,R, ρ) and w ∈ W such that

M, w |= ϕ. Let N′ = {i | i occurs in ϕ} and define M′ = (W ,R′, ρ) where

R′ = {(u, i, v) | i ∈ N′ and (u, i, v) ∈ R}. Since the formula can mention at most

|ϕ| many indices, we have |N′| ≤ |ϕ| and by construction, M′ is an N′-agent model.

Thus it is enough to show that M′, w |= ϕ. For this we prove a stronger claim.

Claim. For all u ∈ W and for all ψ ∈ SF(ϕ) we have M, u |= ψ iff M′, u |= ψ.

The proof is by induction on the structure of ψ. In the base case ψ is a proposition

of the form p ∈ P0. Hence M, u |= p iff u ∈ ρ(u) iff M′, u |= p.

For the case ¬ψ, we have M, u |= ¬ψ iff M, u
|= ψ iff (by induction hypothesis)

M′, u
|= ψ iff M′, u |= ¬ψ.

For the case ψ ∧ ψ′, we have M, u |= ψ ∧ ψ′ iff M, u |= ψ and M, u |= ψ′ iff (by

induction hypothesis) M′, u |= ψ and M′, u |= ψ′ iff M′, u |= ψ ∧ ψ′.

For the case �iψ, first note that i ∈ N′. Thus we have M, u |= �iψ iff there

is some (u, i, v) ∈ R and M, v |= ψ iff (by construction) (u, i, v) ∈ R′ and (by

induction hypothesis) M′, v |= ψ iff M′, u |= �iψ.

Since ϕ ∈ SF(ϕ), by claim we have M′, w |= ϕ.

The theorem implies that no formula in this logic can force unboundedly many

agents. Once a formula ϕ is specified, the number of agents required is known and

thus the satisfiability problem reduces to the case of propositional multi-modal logic

(MLn) for some n ≤ |ϕ|. Thus, from Theorem 2.3 it follows that:

Theorem 2.16. Satisfiability problem for MLω is PSPACE-complete.

23

In the logic MLω, the syntax ignores the essential problem that arises when we

work with unboundedly many agents, namely that the identity of an agent is not

known when we are specifying the system. We would then want to access the modal

index via quantification. This consideration naturally motivates term modal logic.

24

Chapter 3

Term modal logic

Term Modal Logic (TML) was introduced by Fitting, Thalmann and Voronkov

[FTV01] in which the modalities are indexed by terms which can be quantified

over. We first introduce the language of term modal logic without constant symbols

in the vocabulary. Further, we discuss some conventions and notations for various

fragments like propositional fragment, formulas with(out) equality etc and discuss

extending the language with constants. We do not consider function symbols in the

language throughout.

3.1 TML syntax

Definition 3.1 (TML syntax). Given a collection of predicates P = (P0,P1, . . .)

where each Pn is a countable set of predicates of arity n, and given a countable set

of variables V the syntax of term modal logic is defined by

ϕ := P (x1, . . . , xn) | x = y | ¬ϕ | (ϕ ∧ ϕ) | ∃x ϕ | �x ϕ

where P ∈ Pn and x, y, x1, . . . , xn ∈ V.

25

Figure 3.1: Some of the syntactic fragments of term modal logic considered in the
thesis. The arrow indicates the inclusion relation.

The boolean operators ∨ and → and ∀ quantifier are defined in the standard

way. The dual of �x modality is given by �xϕ := ¬�x¬ϕ. Define bi-implication

ϕ ⇔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). Let 	 ∈ P0 be a distinguished proposition and

⊥ := ¬	.

We denote the set of all term modal logic formulas by TML= and TML denotes

the set of all formulas without equality. Also, we denote propositional fragment

of term modal logic by PTML (PTML=) which is the set of all term modal logic

formulas which mention only propositions P0 (and equality). Further, we denote

pure-PTML= to be the set of all formulas that does not mention any predicates or

propositions (only equality is allowed) and PTML� to be the set of all formulas that

mention only 	 and ⊥ as atomic propositions (no equality). Figure 3.1 describes

the relation between these syntactic fragments.

For any formula ϕ, the notion of free variables is defined in the standard way

as in first order logic where FV(�x ϕ) = {x} ∪ FV(ϕ). We say that ϕ is a sentence

if FV(ϕ) = ∅. Similarly, qr(ϕ) is the quantifier rank of ϕ which is also standard

where qr(�xϕ) = qr(ϕ). The modal depth of a formula (denoted by md(ϕ)) is again

standard, where md(�x ϕ) = md(ϕ) + 1.

26

The subformulas of a given formula ϕ, denoted by SF(ϕ) is also defined in the

natural way where SF(�x ϕ) = {�x ϕ} ∪ SF(ϕ). Let the negation closure of SF(ϕ)

be given by SF(ϕ) = SF(ϕ) ∪ {¬ψ | ψ ∈ SF(ϕ)}

Given a TML= formula ϕ and variables x, y ∈ V , we write ϕ[y/x] for the formula

obtained by replacing every occurrence of x by y in ϕ. If FV(ϕ) ⊆ {x1, . . . , xn}
then we sometimes make it explicit by writing ϕ as ϕ(x1, . . . , xn). The length of

a formula ϕ (denoted by |ϕ|) is simply the number of nodes in the parse tree that

generates the formula ϕ.

3.2 TML semantics

Recall that term modal logic is motivated from the settings where the agent set

cannot be fixed beforehand. Thus, every model comes with its own set of potential

agents. Formally, in the model description, along with a set of worlds W we also

have a potential agent set D. Now, accessibility relation has to be labelled by the

potential agent set D and is given by R ⊆ (W ×D ×W). We also allow the set of

relevant agents to change from world to world and this agent dynamics is captured

by a function (δ : W �→ 2D below) that specifies, at any world w, the set of agents

live (or meaningful) at w. The condition that whenever (u, d, v) ∈ R, we have that

d ∈ δ(u) ensures only an agent live at u can consider v accessible. Finally, the

function ρ : (W ×P) �→ ⋃
n∈ω 2

Dn gives the valuation for predicates at every world

over the local agent set.

We impose monotonicity condition on the δ function with respect to the acces-

sibility relation: whenever (u, d, v) ∈ R, we have that δ(u) ⊆ δ(v). This restriction

is on the same lines of that we have for first order modal logic (Refer Page 19),

which is to handle the interpretation of free variables. Hence, the models are called

increasing agent models.

27

Definition 3.2 (TML structure). An increasing agent model for term modal logic is

a tuple M = (W ,D, δ,R, ρ) where, W is a non-empty countable set called worlds;

D is a non-empty countable set called agents; R ⊆ (W×D×W) is the accessibility

relation and δ : W �→ 2D is called live agent function which maps every w ∈ W to a

non-empty subset of D s.t if (w, d, v) ∈ R then d ∈ δ(w) ⊆ δ(v); and the valuation

function is given by ρ : (W ×P) �→ ⋃

n

2D
n where for all n ≥ 1 and P ∈ Pn we have

ρ(w, P) ⊆ [δ(w)]n and for all p ∈ P0 we have ρ(w, p) ∈ {δ(w), ∅}.

For a given model M, we use WM,DM, δM,RM, ρM to refer to the correspond-

ing components. We drop the superscript when M is clear from the context. We

sometimes write (w, d, u) ∈ R as w d−→ u and write δ(w) as Dw. If c ∈ δ(w) then we

say c is live at w. A constant agent model is one where Dw = D for all w ∈ W . A

model M is said to be a finite model if both W and D are finite.

To interpret free variables, we need a variable assignment σ : V �→ D. We say

that σ relevant at w ∈ W if σ(x) ∈ δ(w) for all x ∈ V . For all x ∈ V and d ∈ D,

we denote σ[x �→d] to be the variant of σ where for all y �= x, σ[x �→d](y) = σ(y) and

σ[x �→d](x) = d.

Observation 3.3. In any TML model M and any w ∈ W and for any interpretation

σ, the following holds:

1. if σ is relevant at w then for all d ∈ Dw and for all (w, d, u) ∈ R, σ is relevant

at u.

2. if σ is relevant at w then for any d ∈ Dw the variant σ[x �→d] is relevant at w.

The first observation follows from the monotonicity property of δ and the second

observation follows from the definition of σ[x �→d]. Also note that in a constant agent

model, every assignment σ is relevant at all the worlds.

28

Definition 3.4 (TML semantics). Given a TML model M = (W ,D, δ,R, ρ) and

w ∈ W, and σ relevant at w, for all ϕ ∈ TML=, define M, w, σ |= ϕ inductively

where:

M, w, σ |= P (x1, . . . , xn) ⇔ (σ(x1), . . . , σ(xn)) ∈ ρ(w, P)

M, w, σ |= x = y ⇔ σ(x) = σ(y)

M, w, σ |= ¬ϕ ⇔ M, w, σ �|= ϕ

M, w, σ |= (ϕ ∧ ψ) ⇔ M, w, σ |= ϕ and M, w, σ |= ψ

M, w, σ |= ∃x ϕ ⇔ there is some d ∈ δ(w) such that

M, w, σ[x �→d] |= ϕ

M, w, σ |= �x ϕ ⇔ there is some u ∈ W such that

(w, σ(x), u) ∈ R and M, u, σ |= ϕ

Note that from Obs. 3.3, it is clear that all inductive definitions only deal with

relevant interpretations. We often abuse notation and say ‘for all w and for all

interpretations σ’, when we mean ‘for all w and for all interpretations σ relevant at

w’ (and we will ensure that relevant σ are used in proofs).

For the distinguished proposition 	 ∈ P0, for all models M and for all w ∈ WM

we have M, w |= 	. In general, when considering the truth of ϕ in a model, it

suffices to consider σ : FV(ϕ) �→ D, assignment restricted to the variables occurring

free in ϕ. When FV(ϕ) ⊆ {x1, . . . , xn} and d ∈ [Dw]
n is a vector of length n

over Dw, we sometimes write M, w |= ϕ[d] to denote M, w, σ |= ϕ(x) where for all

i ≤ n, σ(xi) = di. When ϕ is a sentence, we simply write M, w |= ϕ. A formula ϕ is

satisfiable if there is some model M and some world w ∈ W and some interpretation

σ relevant at w such that M, w, σ |= ϕ. A formula ϕ is valid if ¬ϕ is not satisfiable.

Two formulas ϕ and ψ are equivalent if for all model M and all w ∈ W and all σ

relevant at w we have M, w, σ |= ϕ iff M, w, σ |= ψ.

29

Figure 3.2: Illustration of a term modal logic model

3.3 Example

Consider the increasing model described in the Figure 3.2 given byM = (W ,D, δ,R, ρ)

where:

• W = {w, v1, v2, u1, u2} and D = {a, b, c, d}

• δ(w) = δ(v2) = {a, b}; δ(v1) = δ(u1) = {a, b, c}; δ(u2) = {a, b, c, d}

• R = {(w, a, v1), (w, a, v2), (w, b, u2)} ∪ {(v1, c, u1), (v1, b, u2), }∪
{(v2, b, u2)} ∪ {(u1, a, u2), (u1, c, u2)}

• P is a unary predicate and Q is a binary predicate. The ρ function is defined

as follows:

w v1 v2 u1 u2

P {a} {b} ∅ {c} {c}
Q ∅ {(b, c)} {(a, b)} ∅ {(b, c)}

Now consider the formula ∀x�x (∃y Q(x, y)). We can verify that M, w |=
∀x�x (∃y Q(x, y)). This is because when x is assigned a we have M, v2 |= ∃y Q(a, y)

and when x is assigned b we have M, u2 |= ∃y Q(b, y).

30

3.4 Monotone condition of δ

Recall that in the TML models, we have imposed monotonicity condition on δ with

respect to R, which states that whenever (w, d, u) ∈ R we have δ(w) ⊆ δ(u).

Suppose this restriction was not there, then assume for now that in the model

described in Fig. 3.2 we had δ(v1) = {a, c} and hence it violates δ(w) ⊆ δ(v1) since

b ∈ δ(w) but b �∈ δ(v1). Now consider a formula ∀x∀y�xP (y). Suppose we want

to evaluate whether M, w |= ∀x∀y�xP (y). By semantics, in particular, we need to

verify that M, w |= �aP (b). For this, we need to verify that M, v1 |= P (b). But if

b �∈ δ(v1) then M, v1 |= P (b) is not well defined. This problem can be avoided if we

ensure that the agents assigned to free variables are always alive at the successor

worlds. The monotonicity condition achieves exactly this. The monotone condition

can be interpreted as the restriction where new agents are allowed to be born but

agents do not die.

Note that there are other ways to deal with this problem without imposing the

monotonicity condition. Analogous to the first order modal logic, we can consider

δ(w) to be the inner agent set for every world. But then, the valuation function ρ

is defined for the entire potential agent set D, thereby solving the problem of evalu-

ating the predicates involving free variables. In this case, the witness for existential

formulas come from inner agent set.

We will not consider this approach in this thesis, but use the monotonicity re-

striction.

3.5 Negation normal form

A literal is a predicate (proposition) or its negation. A formula ϕ is said to be in

negation normal form (NNF) if negation appears only in literals occurring in ϕ.

31

If we consider ∨,�x and ∀ operators explicitly (and not as derived operators),

then we can push the negations to atoms and get an equivalent NNF for every TML

formula.

Observation 3.5. For all TML formula ϕ, there is a formula ψ which is in negation

normal form such that ϕ and ψ are equivalent.

We can use the following validities and push the negation to the literals to get

the required negation normal form.

¬(α ∧ β) ⇔ (¬α ∨ ¬β) and ¬(α ∨ β) ⇔ (¬α ∧ ¬β)
¬�xα ⇔ �x¬α and ¬�xα ⇔ �x¬α
¬∃x α ⇔ ∀x¬α and ¬∀x α ⇔ ∃x¬α

3.6 Propositional Term modal logic

In this thesis we consider a special case of TML, where the atoms are restricted to

propositions (eg. ∀x�xp → ∃y�y�x(¬p)). Note that the variables still occur as the

index of modalities. We call this fragment Propositional term modal logic (PTML).

Analogously we have PTML= which is the propositional fragment of TML=. The

formulas that contain only equality (no propositions) as atoms are denoted by pure-

PTML=. These fragments help us to forget about the complications due to predicates

and focus on the effect of quantification over modal indices in isolation.

Recall that in the specification of TML models, for all propositions p ∈ P0 we

have the convention that δ(w, p) ∈ {δ(w), ∅} and M, w |= p if ρ(w, p) = δ(w). Given

a TML model M = (W ,D, δ,R, ρ) if we are working with PTML (or PTML=),

we can equivalently specify M as M′ = (W ,D, δ,R, ρ′) the valuation function

ρ′ is simply a map ρ : W �→ 2P
0 where P0 is the set of propositions such that

ρ′(w) = {p | ρ(w, p) = D}. With respect to PTML (or (pure)-PTML=), both M and

M′ are the equivalent.

32

Thus, whenever we consider PTML or PTML=, without loss of generality we

assume that the models have the valuation function of the form ρ : W �→ 2P
0 .

Now we illustrate that the fragment PTML= can already define some non-trivial

properties. Consider the formula α := ∀x∃y (�x�y	 ∧ ∀z ((�x�z) → (y = z))
)
.

Let the inner formula β := �x�y	 ∧ ∀z ((�x�z) → (y = z)).

Proposition 3.6. For any PTML model M, suppose M, w |= α then let

G = {(c, d) | M, w, [x �→ c, y �→ d] |= β}. Then G defines a function.

Proof. To verify this, first note that since M, w |= ∀x∃y β, for every c ∈ δ(w) there

is at least one d ∈ δ(w) such that M, w, [x �→ c, y �→ d] |= β. Now we need to prove

that for all c, d, d′ ∈ δ(w) if {(c, d), (c, d′)} ⊆ G then d = d′. To see this, assume

{(c, d), (c, d′)} ⊆ G.

Now since (c, d) ∈ G we have M, w, [x �→ c, y �→ d] |= ∀z (�x�z) → (y = z)

which implies M, w, [x �→ c, y �→ d, z �→ d′] |= (�x�z) → (y = z). Again by

assumption since (c, d′) ∈ G we have M, w, [x �→ c, z �→ d′] |= �x�z	 and hence

M, w, [x
c�−→, y �→ d, z �→ d′] |= (y = z) which implies d = d′.

Thus, PTML which mentions only equality and 	 can already define func-

tions. We can also state non-trivial properties of such functions. For instance,

α ∧ ∀x∀y∀z((�x�z	 ∧ �y�z) → (x = y)
)
ensures that the induced function is a

bijection. We analyze the fragments PTML� and pure-PTML= in detail in the next

chapter and in fact show that both of them are undecidable.

3.7 Adding Constants to the vocabulary

Let C be a countable set of constants. To extend term modal logic by adding

constants, in the syntax we have terms which are either constants or variables.

33

These terms can appear as components of some predicates or as indices of modal-

ities or in the form t = t′ where t, t′ are terms. The model specification now comes

with an interpretation for the constants in the vocabulary. Note that the interpre-

tation for constants can be specified in two ways:

1. One global interpretation function for all the constants.

2. Every world has a local interpretation function for the constants.

These two approaches are referred to as rigid constant interpretation and non-

rigid constant interpretation respectively. Both these approaches have been con-

sidered in the literature. In [FTV01], where term modal logic is introduced, Fit-

ting, Thalmann and Voronkov consider rigid constant interpretation which does not

change from world to world. On the other hand, term modal logic has been studied

in dynamic epistemic setting by Kooi [Koo07] where the interpretation of constants

vary from world to world.

In fact we can consider other variants. For instance, Wang and Seligman ([WS18])

study a restricted version of term modal logic where we have assignments in place

of quantifiers. In this variant, we have formulas of the form [x := b]Kx(α) where b

is a constant, whose interpretation as an agent will be assigned to x. This fragment

is motivated from modelling knowledge in a system of agents where the identity of

the agents are not common knowledge.

However, if there are no constants in the vocabulary, then this technicality of rigid

and non-rigid interpretation goes away. In this thesis, all the results are stated for

the vocabulary without constants and at the end of each chapter, we briefly discuss

how the results of that chapter extends when we have constants in the vocabulary.

34

Chapter 4

Satisfiability problem:

Undecidability

Note that the set of all modal free formulas of term modal logic is the same as the

set of all first order logic formulas. Thus, it follows that the satisfiability problem

for TML (and hence TML=) is undecidable.

One obvious direction towards obtaining a decidable fragment is to restrict the

atoms to propositions and consider PTML. In the previous chapter, we saw that

term modal logic with just (�,⊥) and equality can already define functions. Note

that with respect to the atoms, PTML� and pure-PTML= the strongest possible

restriction where the atoms are restricted to (�,⊥) and equality respectively.

In this chapter we first prove that the satisfiability problem continues to be

undecidable for PTML�. For pure-PTML=, we prove a ‘Trakhtenbrot like’ theorem

i.e, the FinSat,UnSat and InfAx are mutually recursively inseparable.

Note that when we consider PTML� and pure-PTML=, the valuation function

is irrelevant. Hence we drop ρ from the model specification altogether when we

consider these fragments.

35

4.1 Undecidability of PTML�

For PTML� without loss of generality we can consider the models to be M =

(W ,D, δ,R) (dropping ρ function) where M, w |= � for all w ∈ W . In this section

we will prove that the satisfiability problem for PTML� is undecidable. The proof

is via reduction from FO satisfiability over a single binary predicate.

Let Q ∈ P2 be a binary predicate. Let FO(Q) be the set of all first order logic

formulas (without equality) that mention only the predicate Q. The satisfiability

problem for FO(Q) is known to be undecidable [Göd33]. We reduce the satisfiability

problem of FO(Q) to satisfiability of PTML� thus proving that the satisfiability

problem for PTML� is undecidable.

In [Kri62], Kripke proved that the satisfiability problem for first order modal

logic with unary predicates (predicates with arity 1) is undecidable. In the proof he

uses the reduction from the satisfiability of FO(Q). In particular he encodes Q(x, y)

as �(P (x)∧R(y)) where P and R are two unary predicates. This translation obtains

an equi-satisfiable FOML formula thus proving the result. We will use the same idea

and encode Q(x, y) as �x�y� which gives us an equi-satisfiable PTML� formula.

Definition 4.1 (FO(Q) to PTML� translation). Given any FO(Q) formula ϕ, the

translation of ϕ to a PTML� formula is defined inductively as follows:

• Tr1(Q(x, y)) = �x�y�

• Tr1(¬ϕ) = ¬ Tr1(ϕ)

• Tr1(ϕ ∧ ψ) = Tr1(ϕ) ∧ Tr1(ψ)

• Tr1(∃x ϕ) = ∃x Tr1(ϕ)

36

Note that the translation gives us a PTML� formulas of modal depth 2. All the

quantifiers appear outside the scope of modalities in the translated formula and the

quantifier depth, number of variables are preserved.

Recall that an FO(Q) structure is given by A = (D, I) where D is the domain

and I ⊆ (D×D) is the interpretation of the binary predicate Q and in the semantics

we have A, [x �→ c, y �→ d] |= Q(x, y) iff (c, d) ∈ I.

Theorem 4.2. For any sentence ϕ ∈ FO(Q), ϕ is satisfiable in some FO(Q) struc-

ture iff Tr1(ϕ) is satisfiable in some TML model.

Proof. (⇒) Suppose (D, I) |= ϕ, define the TML model M = (W ,D, δ,R) (note

that we use domain D of FO(Q) structure as the agent set in M) where:

- W = {r} ∪ {ucd, vcd | (c, d) ∈ I} and for all w ∈ W , δ(w) = D.

- R = {(r, c, ucd) | ucd ∈ W} ∪ {(ucd, d, vcd) | ucd, vcd ∈ W}

Figure 4.1 illustrates an example translation. Note that M is a constant domain

model with agent set D. It is sufficient to prove that M, r |= ϕ. For this, we set up

the following induction.

Claim. For all ψ ∈ SF(ϕ) and for all interpretation σ : V �→ D we have

D, I, σ |= ψ iff M, r, σ |= Tr1(ψ).

In the base case, we have Q(x, y) and Tr1(Q(x, y)) = �x�y�. For any interpre-

tation σ : V �→ D, let σ(x) = c and σ(y) = d.

If D, I, σ |= Q(x, y) then (c, d) ∈ I iff r
c−→ ucd

d−→ vcd iff M, r, σ |= �x�y�.

On the other hand, if M, r, σ |= �x�y� then there is some r
c−→ u

d−→ v in R. By

construction, this is possible only if u = ucd and v = vcd. and hence (c, d) ∈ I.
Thus, D, I, σ |= Q(x, y).

37

The case of ¬ and ∧ is standard.

For ∃x ψ, we have D, I, σ |= ∃x ψ iff there is some d ∈ D such that D, I, σ[x �→d] |=
ψ iff (by induction) M, r, σ[x �→d] |= Tr1(ψ) iff M, r, σ |= ∃x Tr1(ψ).

Since D, I |= ϕ, it follows from the claim that M, r |= Tr1(ϕ) .

(⇐) Suppose Tr1(ϕ) is satisfiable. Let M be the TML model and r ∈ W such

that M, r |= Tr1(ϕ). We need to show that ϕ is satisfiable.

Define D′ = δ(r) and I ′ = {(c, d) | M, r, [x �→ c, y �→ d] |= �x�y�}. It is enough
to prove that D′, I ′ |= ϕ. Again, we set up an induction to prove this.

Claim. For all ψ ∈ SF(ϕ) and for all interpretation σ : V �→ D′ we have

M, r, σ |= Tr1(ψ) iff D′, I ′, σ |= ψ.

The proof is by induction on the structure of ψ.

In the base case, we have Q(x, y) and Tr1(Q(x, y)) = �x�y�. Suppose we have

M, r, σ |= �x�y� then (σ(x), σ(y)) ∈ I ′ which implies D′, I ′, σ |= Q(x, y).

Conversely, if D′, I ′, σ |= Q(x, y) then (σ(x), σ(y)) ∈ I ′. Hence M, r, σ |= �x�y�.

The case of ¬ and ∧ is standard. For ∃x ψ, we have M, r, σ |= ∃x Tr1(ψ) iff there

is some d ∈ δ(r) such that M, r, σ[x �→d] |= Tr1(ψ) iff (by ind.) D′, I ′, σ[x �→d] |= ψ iff

D′, I ′, σ |= ∃x ψ.

Corollary 4.3. Satisfiability problem for PTML� (restricted to formulas of modal

depth 2) is undecidable over both constant and increasing domain models.

38

Figure 4.1: Model translation corresponding to the FO(Q) structure (D, I) where
D = {a, b, c} and I = {(a, b), (b, a), (c, b)}.

4.2 Recursive inseparability for pure-PTML=

In the presence of equality, note that � can be encoded as ∀x x = x. Hence, from

Theorem 4.2, the satisfiability problem for pure-PTML= is undecidable. For this

fragment, we prove a stronger Trakhtenbrot type theorem of recursive inseparability.

Definition 4.4 (Recursive inseparability). Let X, Y be disjoint sets. We say that X

and Y are recursively inseparable if there is no Z such that Z ⊆ X and Z ∩ Y = ∅
where checking for membership in Z is decidable.

When we say Trakhtenbrot theorem holds for a logic, it means that the set of

all formulas of the logic can be partitioned into FinSat,UnSat and InfAx such that

these sets are mutually recursively inseparable, where FinSat is the set of all formulas

that are satisfiable in some finite model, UnSat is the set of all formulas that are

unsatisfiable and InfAx is the set of all formulas that are satisfiable in some infinite

model but not in any finite model. For instance, FO= restricted to unary and binary

predicates (P1,P2) satisfies this property. Now we prove this for pure-PTML=

Note that for pure-PTML=, finite models are those modelsM whereWM andDM

both are finite. The following theorem states that with respect to finite satisfiability

(for full PTML=), it suffices to restrict D to be a finite set without any restriction

on the size of W .

Theorem 4.5 (Finite satisfiability for PTML=). Let ϕ be any PTML= sentence.

The following are equivalent.

39

1. ϕ is satisfiable in some model M where both W and D are finite.

2. ϕ is satisfiable in some model M where D is finite.

Proof. It suffices to prove (2) implies (1). Let M = (W ,D, δ,R, ρ) be a model with

finite D and r ∈ W such that M, r |= ϕ. Let size of D be m.

Define an equivalence relation on W where for all u, v ∈ W we have u � v iff

the following hold:

• For every proposition p occurring in ϕ, we have M, u |= p iff M, v |= p.

• δ(u) = δ(v).

• for all ψ ∈ SF(ϕ) such that FV(ψ) ⊆ {x1, . . . xn}, for all d1, . . . dn ∈ δ(u),

M, u |= ψ(d1, . . . , dn) iff M, v |= ψ(d1, . . . , dn).

Define [u] = {v | u � v} and W ′ = {[u] | u ∈ W}. Let |ϕ| = l which

implies |SF(ϕ)| ≤ l. Since |D| = m, we have |W ′| ≤ 2l · 2m · (2m · 2l) = 2O(m+l).

Define the model N = (W ′,D, δ′,R′, ρ′) where δ′([w]) = δ(w) for all [w] ∈ W ′ and

R′ = {([u], d, [v]) | there is some u′ ∈ [u] and v′ ∈ [v] such that (u′, d, v′) ∈ R}.
Define ρ′([w]) = {p | p occurs in ϕ and M, w |= p}.

Clearly N is well defined and has finite world set and finite agent set.

Claim. For all ψ ∈ SF(ϕ) and for all w ∈ W , M, w, σ |= ψ iff N , [w], σ |= ψ.

The proof is by induction on the structure of ψ. Note that for the case x = y

the claim follows since σ remains the same. The case of predicates, ¬ and ∧ are

standard.

For the case �xψ, suppose M, w, σ |= �xψ, let σ(x) = c. By semantics, there

is some u ∈ W such that (w, c, u) ∈ R and M, u, σ |= ψ. By induction hypothesis,

N , [u], σ |= ψ and by construction ([w], c, [u]) ∈ R′. Hence, N , [w], σ |= �xψ.

40

On the other hand if N , [w], σ̂ |= �xψ, let σ(x) = c. Let w′ ∈ [w], we need to

prove that M, w′, σ |= �xψ. First note that σ is relevant at w′ and c ∈ δ(w′) since

δ′([w]) = δ(w) = δ(w′). Now, since N , [w], σ̂ |= �xψ, by semantics, there is some

([w], c, [u]) ∈ R′ such that N , [u], σ |= ψ and by construction, there is some w1 ∈ [w]

and u1 ∈ [u] such that (w1, c, u1) ∈ R and by induction hypothesis M, u1, σ |= ψ.

Now since (w1, c, u1) ∈ R we have M, w1, σ |= �xψ. But then w′ � w1 and hence

M, w′, σ |= �xψ.

For the case ∃x ψ, if M, w, σ |= ∃x ψ then there is some d ∈ δ(w) such that

M, w, σ[x �→d] |= ψ. By induction hypothesis, N , [w], σ[x �→d] |= ψ and this implies

N , [w], σ |= ∃x ψ.

If N , [w], σ |= ∃x ψ let w′ ∈ [w]. We need to prove that M, w′, σ |= ∃x ψ. Again,

note that σ is relevant at w′. Now, by semantics, there is some d ∈ δ′([w]) such that

N , [w], σ[x �→d] |= ψ and by induction hypothesis M, w, σ[x �→d] |= ψ. But then w′ � w

and hence M, w′, σ[x �→d] |= ψ which implies M, w′, σ |= ∃x ψ.

Thus for PTML= (and pure-PTML= in particular) it is enough to define finite

satisfiability by restricting D to be finite without worrying about the size of W .

This helps in simplifying the proofs.

Definition 4.6 (FinSat,UnSat, InfAx). For any formula ϕ ∈ pure-PTML= we say

that ϕ is finitely satisfiable if there is some model M = (W ,D,R, δ) with finite

D and some w ∈ W and interpretation σ : V ar �→ D relevant at w such that

M, w, σ |= ϕ. Further, ϕ is unsatisfiable if for all M and w ∈ W and all σ relevant

at w, we have M, w, σ �|= ϕ.

Let FinSat = {ϕ ∈ pure-PTML= | ϕ is finitely satisfiable}; UnSat = {ϕ ∈ pure-

PTML= | ϕ is unsatisfiable} and InfAx = pure-PTML= \ (FinSat ∪ UnSat).

41

Note that InfAx denotes the set of all formulas that are satisfiable in some model

with infinite D but unsatisfiable in all models with finite D. Also, FinSat,UnSat and

InfAx forms a disjoint partition over pure-PTML=.

We now prove that FinSat,UnSat and InfAx are mutually recursively inseparable.

To prove this, we use a reduction from tiling problem.

Tiling problem Let C be a set of colours. A tile type t ∈ C4 is a tuple of 4

colours. For any tile type t we shall call the 4 colours up, down, right and left

edge colours respectively, and write t = (ut, dt, rt, �t). A tiling instance is given by

T = (X, t0) where X is a finite set of tile types and t0 ∈ X. The tiling instance

T = (X, t0) has a proper tiling if there is a tiling function S : (N × N) �→ X such

that S(0, 0) = t0 and for all i, j ∈ N, if S(i, j) = t and S(i + 1, j) = t′ then rt = �t′

and similarly, if S(i, j) = t and S(i, j + 1) = t′ then ut = dt′ . We say that S

is a periodic tiling function if there exists some n ∈ N such that for all i, j ∈ N,

S(i, j) = S(i+n, j) = S(i, j+n). A tiling function S is aperiodic if it is not periodic.

Figure 4.2 illustrates a tiling instance.

Let PT = {T = (X, t0) | T has some periodic tiling} and similarly the set

NT = {T = (X, t0) | T has no proper tiling} and AT = {T = (X, t0) | T has only

aperiodic tilings} . We use the following result about tiling problem.

Theorem 4.7 (Gurevich and Koryakov[GK72]). The sets PT,AT and NT are mu-

tually recursively inseparable.

Now we show that the partitioning of pure-PTML= formulas as FinSat,UnSat

and InfAx are mutually recursively inseparable, by showing a correspondence with

PT,NT and AT respectively.

The key idea is to have natural numbers as the agent set. Then a grid point (i, j)

can be identified by a path of length 2 where first edge is labelled i and second by j.

42

Figure 4.2: An instance of tiling.

Thus, before encoding the tiling instance, we need to have an initial segment of N

either finite or infinite (depending upon periodic or aperiodic tiling) in the agent set

D on which the grid is built. To achieve this, we define a finite set of pure-PTML=

formulas O that induces a discrete and total linear order (with min) over the agent

set at any world in any model where the set of formulas O is true. To achieve this,

we encode i < j as �i�j�. Recall that � can be encoded as ∀x x = x.

43

ϕ0 := ∃x zero(x) there is a min element

ϕir := ∀x ¬�x�x� c �< c (irreflexive)

ϕtot := ∀x∀y (
(x �= y) → for all c �= d either

(�x�y� ∨ �y�x�)
)

c < d or d < c (total)

ϕdis := ∀x (
last(x)∨ for all c, either c is max or has

∃y succ(x, y)
)

a successor (discrete)

ϕtrans := ∀x∀y∀z (�x�y�∧ for all c, d, e if c < d and d < e

�y�z�) → (�x�z�) then c < e

where,

zero(x) := ∀y ¬�y�x� for all c, c �< σ(x)

last(x) := ∀y ¬�x�y� for all c, σ(x) �< c

�x�y� ∧ σ(x) < σ(y) and

succ(x, y) := ∀z (
(�z�y�) → for all c if c < σ(y) then

(x = z ∨ �z�x�)
)

σ(x) = c or c < σ(x)

Define O = {ϕ0, ϕir, ϕtot, ϕdis, ϕtrans} and Ô =
∧

ϕ∈O
ϕ. The following lemma

states that in any model M at any world w ∈ W if M, w |= Ô then there is a way

to induce a discrete linear order over δ(w).

Lemma 4.8. The following statements hold for the formula Ô:

1. For every N′ ⊆ N (either finite or infinite) which is an initial segment of

N, there is some M = (W ,N′, δ,R) and r ∈ W such that δ(r) = N′ and

M, r |= Ô.

2. For any model M, suppose M, r |= Ô then let N′ = [0, . . . , n− 1] if δ(r) is a

finite set of size n and N′ = N otherwise. There exists a function f : N′ → δ(r)

such that for all i, j ∈ N′ if i < j then M, w |= �f(i)�f(j)�.

44

Proof. To prove (1), pick any initial segment N′ (either finite of infinite).

We give a model where Ô is satisfied. Define the model M = (W ,N′, δ,R) where

• W = {r} ∪ {ui | i ∈ N′} ∪ {vij | i, j ∈ N′ and i < j}.

• for all w ∈ W define δ(w) = N′.

• R = {(r, i, ui) | i ∈ N′} ∪ {(ui, j, vij) | i, j ∈ N′ and i < j}.

It can be easily verified that M, r |= Ô. Figure 4.3 describes this model for a

finite N′ and the model described in figure 4.4 satisfies Ô when N′ = N.

To prove (2), let M, r |= Ô. Now we have two cases to consider depending on

whether δ(r) is finite or infinite.

The first case is when δ(r) is finite. Let |δ(r)| = n. Now, we construct a sequence

of partial functions f 0, f 1, . . . , fn−1 where each f i : [0 · · · i] �→ δ(r) such that for all

i, the following holds:

1. f i is an extension of f i−1.

2. Suppose f i(i) = c then for all b ∈ δ(r) if M, r |= �b�c� then b ∈ image(f i).

3. For all j, k ≤ i if j < k then M, r |= �f i(j)�f i(k)�.

Hence by condition (3), fn−1 is the required function. The construction of such

a sequence f i is by induction on i.

In the base case to construct f 0, by ϕ0 there is some agent (say a0 ∈ δ(r))

such that M, r |= zero(a0). Define f 0(0) = a0. Condition (1) does not apply.

Since M, r |= ∀y ¬�y�a0�, condition (2) is vacuously true. Also, by ϕir, we have

M, r |= ¬�a0�a0� and hence condition (3) holds.

45

Now inductively assume that we have f i for some i < n− 1. Let f i(j) = aj for

all j ≤ i. In particular, we have f i(i) = ai. Now by ϕdis either M, r |= last(ai) or

M, r |= ∃y succ(ai, y). Since i < n−1, we claim that M, r �|= last(ai). Suppose not,

then M, r |= ∀y ¬�ai�y�. Now since i < n− 1, there is at least one agent d ∈ δ(r)

such that d �∈ image(f i). This is because f i : [0 · · · i] → δ(r) and hence the image

size is at most i + 1 ≤ n − 1 < n = |δ(r)|. Now by assumption, M, r |= ¬�ai�d�
and by ϕtot, M, r |= �d�ai�. But then, by induction hypothesis condition (2),

d ∈ image(f i) which is a contradiction.

Hence it has to be the case that M, r |= ∃y succ(ai, y). Let ai+1 be the witness

and hence we have M, r |= �ai�ai+1
�. Define f i+1(j) = aj for all j ≤ i and

f i+1(i + 1) = ai+1. Clearly f i+1 is an extension of f i. To show condition (2),

suppose M, r |= �b�ai+1
� for some b ∈ δ(r). Since M, r |= succ(ai, ai+1), we have

M, r |= (b = ai ∨ �b�ai�). By induction hypothesis condition (2), b ∈ image(f i)

and hence b ∈ image(f i+1). Finally to verify that condition (3) holds, let j, k ∈
{0, 1, · · · i, i+ 1}. We consider all possible cases of j, k:

• For j, k ≤ i: Since f i+1 is an extension of f i the claim holds by ind. hyp.

• For j < i and k = i + 1 by induction hypothesis we have M, r |= �aj�ai�.

Also, since ai+1 is the successor of ai we have M, r |= �ai�ai+1
�. Thus, by

ϕtrans we have M, r |= �aj�ai+1
�.

• When j = i and k = i+ 1 since ai+1 is the successor of ai,

M, r |= �ai�ai+1
�

• Finally for j = k = i+ 1, by ϕir we have M, r |= ¬�ai+1
�ai+1

�.

For the case when δ(r) is infinite, as in the previous case, we construct a sequence

of functions f 0, f 1, . . . inductively where each f i again satisfies all the 3 properties

stated.

46

Figure 4.3: A model for O when N′ = [0, 1 . . . , n] is finite with δ(w) = N′ for all w.
Observe that i < j iff M, r |= �i�j�.

Notice that we have at any step of construction f i we have M, w |= ¬last(f i(i))

(otherwise M, r |= ∀y ¬�f i(i)�y� we can again hit a contradiction as argued in the

previous case). Finally, the required function in this case is given by f =
⋃

i∈N
f i.

Therefore, whenever M, r |= Ô, without loss of generality we assume that there

is some initial fragment N′ of N with |N′| = |δ(r)| such that N′ ⊆ δ(r) and for all

i, j ∈ N′ if i < j then M, w |= �i�j�.

For any finite set of tile types X = {t0, . . . , tm}, we encode every tile ti as a path

of length i, given by

pi :=
∧

j≤i

(
(∀z�z)

j(∃z �z�)
) ∧ (∀z�z)

i+1(∀z�z⊥)

where (∀z�z)
i(ϕ) = ∀z�z

(
(∀z�z)

i−1(ϕ)
)
and (∀z�z)

0(ϕ) = ϕ.

Given an input tiling instance T = (X, t0) define a finite set of formulas ΓT which

corresponds to the tiling instance T. First we have O ⊆ ΓT so that we have natural

numbers as agents.

47

Since the first 2 modal depths are used up to enforce the order, all tiling informa-

tion is encoded at modal depth level > 2. Thus, the grid point (x, y) having tile ti is

encoded as ∀z1∀z2 �z1�z2(�x�ypi). Using �z1�z2 as suffix, we can guarantee that

the tiling information can be extracted by looking at any of the successors at depth

2, depending on the length of the paths reachable thereafter. We use the definition

of succ(x, y) to check for the horizontal and vertical constraints. Thus, for a given

tiling instance the tiling constraint formulas T = (X, t0) are given by:

ϕtile := ∀z1∀z2∀x∀y �z1�z2

(
(�x�y�) ∧ every grid point has a

�x�y(
∨

ti∈X
pi)

)
unique tile

ϕinit := ∀z1∀z2∀x
(
zero(x) → (�z1�z2�x�xp0)

)
(0, 0) has tile t0

∀z1∀z2∀x∀y∀z colours match across

ϕhor :=
(
((last(x) ∧ zero(y)) ∨ succ(x, y)) → horizontal successors

�z1�z2 (
∨

rti=�tj

(�x�z(pi) ∧�y�z(pj))
)

∀z1∀z2∀x∀y∀z colours match across

ϕver :=
(
((last(x) ∧ zero(y)) ∨ succ(x, y)) → vertical successors

�z1�z2 (
∨

uti=dtj

(�z�x(pi) ∧�z�y(pj))
)

Define ΓT = O ∪ {ϕtile, ϕinit, ϕhor, ϕver}.

Note that, in any typical tiling reduction, to say every grid point has a unique

tile, we use the formula of the form
∨

i

(pi∧
∧

j �=i

¬pj). But in our case, it is not needed

since in any model M and any w ∈ W if M, w |= pi then it means every path

starting from w is exactly of length i+ 1 and this implies that for all j �= i we have

M, w �|= pj.

Theorem 4.9. For any given tiling instance T = (X, t0), let ϕT ::=
∧

ψ∈ΓT

ψ. Then

the following holds:

48

Figure 4.4: Model corresponding to the aperoidic tiling described in Fig 4.2. The
subtree rooted at v1,j is present for every vertex vk,k′ at level 2. The dotted line
indicates an edge labelled by 0 and every tile ti in the figure is a path of length i.

49

1. T ∈ PT iff ϕT ∈ FinSat

2. T ∈ AT iff ϕT ∈ InfAx

3. T ∈ NT iff ϕT ∈ UnSat

Proof. For (1), (⇒) direction, suppose T = (X, t0) has a periodic tiling then let

S : N × N → X be the tiling and n ∈ N be the period such that for all i, j ∈ N we

have S(i, j) = S(i+ n, j) = S(i, j + n).

Now we need to construct a model with finite D for ϕT. For this, we take

D = [0, 1, . . . , n − 1] (call it N′). Since tile types are encoded as paths, for every

ti ∈ X let Lt
i = (W t

i ,Rt
i) be a path of length i where each edge is labelled by 0.

Formally, W t
i = {wj

i | j ≤ i} and Rt
i = {(wj

i , 0, w
j+1
i) | j < i}. Thus Lt

i is of the

form w0
i

0−→ w1
i

0−→ · · · 0−→ wi
i. Let LT = {Lt

i | ti ∈ X} and WT =
⋃

ti∈X W t
i and

RT =
⋃

ti∈X Rt
i. Define M = (W ,N′, δ,R) where:

• W = {r} ∪ {ui |∈ N′} ∪ {vij | i, j ∈ N′ and i < j} ∪ {ai, bij | i, j ∈ N′} ∪WT.

• For all w ∈ W define δ(w) = N′.

• R = {(r, i, ui) | i ∈ N′} ∪ {(ui, j, vij) | i, j ∈ N′ and i < j} ∪
{(vij, i, ai) | i ∈ N′} ∪ {(ai, j, bij) | i, j ∈ N′} ∪
{(bij, 0, w0

k) | S(i, j) = k} ∪ RT.

Clearly M, w |= Ô ∧ ϕinit ∧ ϕtile. To verify that M, w |= ϕhor for any c, d ∈ N′

suppose M, w |= succ(c, d) then d = c + 1. Now for any e ∈ N′ let S(c, e) = ti

and S(c + 1, e) = tj and since S is a proper tiling we have rti = �tj and hence

M, w |= ∀z1, ∀z2∀z�z1�z2

(∨

rti=�tj

(�c�z(pi) ∧ �d�z(pj)
)
. On the other hand if

M, w |= zero(c)∧last(d) then c = 0 and d = n−1. For any e ∈ N′ let S(c, e) = ti and

S(0, e) = tj. Since S is a proper tiling of period n, we have S(n, e) = S(0, e) which

implies rti = �tj . Hence M, w |= ∀z1, ∀z2∀z�z1�z2

(∨

rti=�tj

(�x�z(pi) ∧�y�z(pj)
)
.

50

Similarly, M, w |= ϕver can be verified.

(⇐) Suppose ϕT ∈ FinSat. Then there is a model M with finite D such that

M, r |= ϕT. By Lemma 4.8, w.l.o.g assume that δ(r) = N′ = [0, 1, · · ·n− 1]. Hence

there is at least one path of length 2 from r
0−→ u

1−→ v. Define the tiling function

S : N×N → X where for all j, k ∈ N, S(j, k) = ti iff M, v |= �j′�k′pi where j′ = j

mod (n) and k′ = k mod (n).

Now by ϕtile, S is well-defined and total and by ϕinit, S(0, 0) = t0. Also by ϕhor

if S(i, j) = t and S(i + 1, j) = t′ then rt = �t′ and similarly by ϕver, if S(i, j) = t

and S(i, j + 1) = t′ then ut = dt′ . Finally, for all j, k ∈ N by construction, we have

S(j, k) = S(j + n, k) = S(j, k + n) and hence S is a proper periodic tiling of period

length n.

To prove (2), (⇒) suppose T ∈ AT, then T has only aperiodic tiling. Let S :

N× N → X be some aperiodic tiling.

We need to show that ϕT ∈ InfAx. First note that ϕT �∈ FinSat, otherwise by

(1), T ∈ PT which contradicts T ∈ AT. Hence it is sufficient to construct one model

for ϕT with infinite D. Again, let LT = {Lt
i | ti ∈ X} and WT =

⋃
ti∈X W t

i and

RT =
⋃

ti∈X Rt
i be as described in the previous case.

Now define M = (W ,N, δ,R) where

• W = {r} ∪ {ui |∈ N} ∪ {vij | i, j ∈ N and i < j} ∪
{ai, bij | i, j ∈ N} ∪WT.

• For all w ∈ W define δ(w) = N.

• R = {(r, i, ui) | i ∈ N} ∪ {(ui, j, vij) | i, j ∈ N and i < j} ∪
{(vij, i, ai) | i ∈ N′} ∪ {(ai, j, bij | i, j ∈ N} ∪ RT ∪
{(bij, 0, w0

k) | S(i, j) = k}.

51

Note that the only difference from the previous case is that here D = N (infinite)

but in the models for periodic tiling the agent set D is finite whose size is the same

as the period length.

Again, it can be verified that for all formulas ψ ∈ ΓT, M,w |= ψ. Figure 4.4

describes the corresponding model for the a periodic tiling instance described in

Figure 4.2.

(⇐) Suppose ϕT ∈ InfAx. Then there is a model M with infinite D such that

M, r |= ϕT, but no models with finite D. Now, if T has a periodic tiling, then

T ∈ PT then by (1) we have ϕT ∈ FinSat which is a contradiction. Hence if there is

any tiling of T, it has to be aperiodic. Thus it is enough to show that T has some

tiling.

By Lemma 4.8, w.l.o.g we assume that N ⊆ δ(r). Also, there is at least one path

of length 2 from r
0−→ u

1−→ v. Define the tiling function S : N×N → X where for all

j, k ∈ N, S(j, k) = ti iff M, v |= �j�kpi.

Now again, by ϕtile, S is well-defined and total and by ϕinit, S(0, 0) = t0. Also

ϕhor and ϕver ensure the horizontal and vertical colour constraints respectively.

Finally, for the case (3) let T ∈ NT. Suppose forward direction does not hold

then T ∈ NT and ϕT �∈ UnSat. This implies ϕT ∈ (FinSat∪ InfAx) and by (1), (2) we

get T ∈ (PT ∪ AT) which contradicts T ∈ NT.

Similarly if ϕT ∈ UnSat but T �∈ NT then T ∈ (PT ∪ AT) which will imply

ϕT ∈ (FinSat ∪ InfAx). This is again contradiction to ϕT ∈ UnSat.

Corollary 4.10. For TML=, the sets FinSat, InfAx and UnSat are mutually recur-

sively inseparable.

52

4.3 Discussion

Note that the equi-satisfiable translation from FO(Q) to PTML� with respect to

satisfiability problem is in some sense canonical. As a consequence, many results that

hold for FO(Q) can be lifted to PTML�. For instance, the finite satisfiability problem1

is undecidable. We also have other results like: 3-variable fragment of PTML�, ∀∃∀
fragment of PTML� etc are undecidable which follow from undecidability results of

FO(Q).

On the other hand, finite satisfiability problem for PTML� (in fact for full TML=)

is recursively enumerable since we can enumerate all finite models and an algorithm

can check if ϕ is satisfied in any of them, one by one. This procedure is guaranteed

to halt and say yes for all formulas ϕ that is satisfiable in some finite model.

One cause for undecidability is that the quantifiers and modal indices act inde-

pendently. By restricting them to occur in a certain from (bundling), we indeed get

decidable fragments which we will discuss in the next chapter.

Also, note that all the undecidability discussed in this chapter goes through

without the need for constants. However, when we consider the 2-variable fragment

TML, where the constant free fragment is decidable, adding constants makes the

fragment undecidable.

1which is to decide whether the given PTML� formula ϕ satisfiable in some finite model M

53

Chapter 5

Decidable fragments

The undecidability results in the previous chapter motivate us to identify some

decidable fragments. One natural question to ask is: if we consider some decid-

able fragment of first order logic, is the corresponding term modal logic decidable?

Towards this, note that restricting the arity of predicates will not help since the sat-

isfiability problem for PTML� is already undecidable. Another obvious candidate is

to limit the number of variables used in the formula. Again, from Theorem 4.2, it

follows that the 3-variable fragment of PTML� is undecidable.

Mortimer [Mor75] proved that the two variable fragment of FO (FO2) is decidable.

On the other hand, Grädel and Otto [GO99] proved that the satisfiability problem for

many of the natural extensions of FO2 (like transitive closure, lfp) are undecidable1.

In contrast to these negative results, we will show that the 2-variable TML is yet

another rare extension of FO2 that still remains decidable.

For first order modal logic, Wolter and Zakharyaschev [WZ01] prove that the

two variable fragment of FOML (without equality) is undecidable. In fact, Rybakov

and Shkatov prove that the two variable fragment of FOML with countably many

propositions and a single unary predicate is already undecidable [RS17].

1the only decidable extension of FO2 they consider is that of the counting quantifiers.

55

Thus, proving the decidability of two variable fragment of TML clearly distin-

guishes term modal logic from first order modal logic.

5.1 Translating TML to FOML

Before going into the two variable fragment, we will first discuss what happens to the

one variable fragment. Note that the satisfiable problem for one variable fragment

of FO is NP-complete.

For first order modal logic, with a single agent (FOML), again the one variable

fragment is decidable (result holds for multi-modal FOML as well). In fact, Wolter

and Zakharyaschev [WZ01] prove a more general result for FOML that the monodic

restriction built on any generic decidable fragment of FO (eg. unary predicates,

guarded fragment, two variable fragment) is decidable2. An FOML formula α is

said to be monodic if every subformula of the form �ψ or �ψ satisfies |FV(ψ)| ≤ 1

i.e, every modal subformula has at most 1 free variable. For instance, the formula

∀x∃y (�P (x) → �¬Q(y)) is a monodic whereas ∀x∃y �(P (x) ∧ ¬Q(y)) is not a

monodic formula.

To define the analogous notion of monodicity for term modal logic, note that the

modality itself will have a free variable as its index. Thus we can restrict the free

variable of the subformula inside the scope of the modality to the variable appearing

as the index itself. Thus a TML formula ϕ is monodic if every subformula of the

form Δxψ has FV(ψ) ⊆ {x} where Δ ∈ {�,�}.

We give an equi-satisfiable translation of TML formulas to FOML formulas that

preserves the monodicity property. Using this, we can identify some decidable frag-

ments of TML by looking at the corresponding FOML fragments.

2Note that all 1-variable FOML formulas are monodic formulas and is built on 1-variable frag-
ment of FO which is decidable.

56

Recall that we use the same set of predicates P as vocabulary and the same

variable set V for both TML and FOML. Thus, when we consider FOML (with

single agent), in terms of model description, the only technical difference between

first order modal logic models and term modal logic models is in the accessibility

relation (Def. 2.9, Def. 3.2 respectively). For first order modal logic, R ⊆ (W ×W)

whereas for term modal logic, the accessibility relation R ⊆ (W×D×W). In other

words, TML structures can be thought of as modified FOML structures, obtained by

interpreting domain set D of the FOML structure as the potential set of agents.

Note that, like most of the commonly used modal logics (including MLn and

FOMLn) TML also satisfies tree model property. i.e, for any TML formula ϕ, if

M, r, σ |= ϕ then MT , r, σ |= ϕ where MT is the standard tree unravelling of M
with r as the root. Further, we can also restrict the height of MT to be at most the

modal depth of ϕ. This claim is formally proved in the Chapter 6 (Theorem 6.9).

For now we will assume that whenever a TML formula ϕ is satisfiable, it is satisfied

in a tree model of height at most md(ϕ).

Suppose M is a TML model which is a rooted tree, we can simply ignore the

edge labels on the accessibility relation and that gives us an FOML model induced

on M (call it N). Now since every non-root world has a unique incoming edge (and

hence a unique agent as incoming edge label), the agent label of the incoming edge

for a world can be encoded as a unary predicate. Formally, we can take a unary

predicate E and define its valuation in N such that for all non-root w ∈ W we

have N , w |= E(d) iff d is the incoming edge of w in M. Figure 5.1 illustrates this

translation.

Definition 5.1 (Embedding TML into FOML). Given a TML formula ϕ, let E ∈ P
be a new unary predicate not occurring in ϕ. The translation of ϕ into an FOML

formula is inductively defined as follows:

57

Figure 5.1: Illustration of a translation of term modal logic model to first order
modal logic model. The edge information is encoded in the predicate E and all
other valuations remain unchanged.

58

• Tr2(R(x1, . . . , xn)) = R((x1, . . . , xn)

• Tr2(¬ϕ) = ¬ Tr2(ϕ) and Tr2(ϕ ∧ ψ) = Tr2(ϕ) ∧ Tr2(ψ)

• Tr2(�xϕ) = � (E(x) ∧ Tr2(ϕ))

• Tr2(∃x ϕ) = ∃x Tr2(ϕ)

Note that the translation preserves modal depth, quantifier rank and the number

of variables. Further, if we start with a monodic TML formula, the translation gives

us a monodic FOML formula.

Theorem 5.2. Let ϕ be any TML formula, ϕ is satisfiable in some TML model iff

Tr2(ϕ) is satisfiable in some FOML model.

Proof. (⇒) Suppose ϕ is satisfiable, let M = (W ,D, δ,RM, ρM) be a TML tree

model rooted at r and σ : V
→ Dr such that M, r, σ |= ϕ. We define the corre-

sponding FOML tree model N = (W ,D, δ,RN , ρN) as described before.

Define RN = {(w, u) | if there is some d ∈ δ(w) such that (w, d, u) ∈ RM}
and for every w ∈ W the valuation function is defined such that for the new unary

predicate E we have ρN (w,E) = {d | there is some w′ ∈ W and d ∈ δ(w′) such

that (w′, d, w) ∈ RM} and for all the other predicates Q �= E, define the valuation

ρN (w,Q) = ρM(w,Q). Figure 5.1 illustrates one such translation.

It is sufficient to prove that N , r, σ |= Tr2(ϕ). For this, we set up the following

induction. Recall that SF(ϕ) is the set of all subformulas of ϕ and the new unary

predicate E introduced in the translation does not occur in SF(ϕ).

Claim. For all ψ ∈ SF(ϕ), for all w ∈ W and for all interpretation σ′ : V
→ D
(relevant at w) we have M, w, σ′ |= ψ iff N , w, σ′ |= Tr2(ψ).

The proof of the claim is by induction on the structure of ψ.

59

In the base case, we have Q(x1, . . . , xn) and the claim follows since Q is not

the newly introduced predicate and Tr2(R((x1, . . . , xn)) = Q((x1, . . . , xn) and also

ρN (w,Q) = ρM(w,Q). The case of ¬ψ and ψ ∧ ψ′ are standard.

For the case �xψ, if M, w, σ′ |= �xψ then there is some (w, σ′(x), u) ∈ RM such

that M, u, σ′ |= ψ. By induction hypothesis, N , u, σ′ |= Tr2(ψ). By construction

(w, u) ∈ R′ and σ(x) ∈ ρN (w,E). Hence N , w, σ′ |= �(E(x) ∧ Tr2(ψ)).

On the other hand, if N , w, σ′ |= �(E(x)∧Tr2(ψ) then there is some (w, u) ∈ RN

such that N , u, σ′ |= E(x)∧Tr2(ψ) and by induction hypothesis, M, u, σ′ |= ψ. Now,

since M is a tree model, w is the unique parent of u, with unique edge label (say

d′). By construction, N , u |= E(d′) which implies N , u, σ′ |= E(d′) ∧ E(x). Also,

note that M is a tree model and since u is a non-root node, there is a unique

incoming edge to u which is the only agent for which predicate E is true at u.

Hence it has to be the case that σ′(x) = d′ and thus (w, σ′(x), u) ∈ RM which

implies M, w, σ′ |= �xψ.

For ∃x ψ, we have M, w, σ′ |= ∃x ψ iff there is some d ∈ δ(w) such that

M, w, σ′
[x �→d] |= ψ iff (by ind.) N , w, σ′

[x �→d] |= Tr2(ψ) iff N , w, σ′ |= ∃x Tr2(ψ).

Thus it follows from the claim that N , r, σ |= ϕ since M, r, σ |= ϕ.

Now we prove the (⇐) direction in the theorem.

Suppose N = (W ,D, δ,RN , ρ) is an FOML model such that N , r, σ |= Tr2(ϕ)

then to get the TML model, we just need to label the edges (w, u) ∈ RN by looking

at the valuation of predicate E at every world u. Define the corresponding TML

model3 M = (W ,D, δ,RM, ρ) where for all w, u ∈ W and d ∈ δ(w) we have

RM = {(w, d, u) | d ∈ ρ(w) and (w, u) ∈ RN and d ∈ ρ(u,E)}.
3 Note that this transformation will not always give us a tree model. In particular, if we have

(w, u) ∈ RN and {a, b} ⊆ ρ(u,E) then there will be at least two edges between w and u in M (i.e,
{(w, a, u), (w, b, u)} ⊆ RM}). However, this does not matter since we are only concerned with
existence of a model.

60

It is sufficient to prove that M, r, σ |= ϕ. Again, we set up the following induc-

tion.

Claim. For all ψ ∈ SF(ϕ), for all w ∈ W and for all interpretation σ′ : V
→ D
(relevant at w) we have N , w, σ′ |= Tr2(ψ) iff M, w, σ′ |= ψ.

The proof follows exactly as in previous case by induction on the structure of ψ.

We only illustrate the case �xψ.

If N , w, σ′ |= �(E(x) ∧ Tr2(ψ)) then there is some (w, u) ∈ RN such that

N , u, σ′ |= E(x) ∧ Tr2(ψ) and by ind. hyp, M, u, σ′ |= ψ. Since N , u, σ′ |= E(x)

and (w, u) ∈ RN and σ′(x) ∈ δ(w), by construction (w, σ′(x), u) ∈ RM and hence

M, w, σ′ |= �xψ.

IfM, w, σ′ |= �xψ then there is some (w, σ′(x), u) ∈ RM such thatM, u, σ′ |= ψ.

Since (w, σ′(x), u) ∈ RM, by construction (w, u) ∈ RN and N , u, σ′ |= E(x). Also,

by induction hypothesis N , u, σ′ |= Tr2(ψ). Thus, N , w, σ′ |= �(E(x)∧Tr2(ψ)).

In [WZ01], Wolter and Zakharyaschev prove that the monodic restriction for

any FOML (without equality) built upon a decidable FO fragment continues to be

decidable. Note that the translation in Def. 5.1 preserves monodicity i.e, if a TML

formula ϕ is monodic then Tr2(ϕ) is a monodic FOML formula. Thus, as a corollary

from [WZ01], we have theorems of the following flavour:

Theorem 5.3. Satisfiability problem for the monodic restriction of TML formulas

with unary predicates as atoms is decidable.

When we consider the two variable fragment of term modal logic, the translation

to first order modal logic is not useful since the 2-variable fragment of FOML is

undecidable [WZ01].

61

5.2 Constant and Increasing agent models

Recall that M is a constant agent TML model if for all w ∈ W we have δ(w) = D.

In this section we will prove there is essentially no difference between constant

agent models and increasing agent models in terms of satisfiability problem. In

other words, the satisfiability problem for TML over constant agent structures and

increasing agent structures is equally hard for most fragments.

Given an increasing agent TML model M, we can obtain a constant agent TML

model N by just setting δN (w) = D for all w. Further, we encode the information

of δM using a unary predicate E such that d ∈ ρN (w,E) iff d ∈ δM(w). Thus, all

quantifications have to be relativized with respect to the new predicate E. This

approach is similar to the ones used to prove analogous results for first order modal

logic [FM99, WZ01].

Definition 5.4. Let ϕ be any TML formula and let E be a new unary predicate not

occurring in ϕ. The translation is defined inductively as follows:

• Tr3(R(x1, . . . , xn)) = R(x1, . . . , xn)

• Tr3(¬ϕ) = ¬Tr3(ϕ) and Tr3(ϕ ∧ ψ) = Tr3(ϕ) ∧ Tr3(ψ)

• Tr3(�xϕ) = �x(Tr3(ϕ))

• Tr3(∃x ϕ) = ∃x (E(x) ∧ Tr3(ϕ))

Note that in Def. 5.1 (translation of TML to FOML, Tr2) we relativized the

modal formulas with respect to the new predicate. Here we relativize the quantified

formulas. Also, Tr3 preserves the number of variables, quantifier depth and the

modal depth.

62

Since predicate E is used to encode the δ function of the increasing agent

model, we need to ensure that the predicate E respects monotonicity. Note that

∀x∀y(E(x) → �yE(x)) encodes monotonicity condition for immediate successors.

In other words, for any constant agent model N and w ∈ WN if it is the case that

N , w |= ∀x∀y(E(x) → �yE(x)) then for all c ∈ δN (w) and u ∈ WN (w, c, u) ∈ RN

we have {d | M, w |= E(d)} ⊆ {d′ | M, u |= E(d′)}.

We want this property to be true at all worlds in the model. Since we are dealing

with rooted tree models of finite depth (say h), we just have to say that the property

∀x∀y(E(x) → �yE(x)) is true at all worlds at height i ≤ h. Let

γh =
∧

i<h

(∀y�y)
i
(∀x E(x) → (∀y�y E(x))

)

where (∀z�z)
j(ϕ) = ∀z�z

(
(∀z�z)

j−1(ϕ)
)
and (∀z�z)

0(ϕ) = ϕ.

Proposition 5.5. Let N be any constant agent TML model rooted at r and height at

most h. Suppose N , r |= γh then for all w, u ∈ WN and c ∈ DN (w) if (w, c, u) ∈ RN

then {d | d ∈ D and N , w |= E(d)} ⊆ {d′ | d′ ∈ D and N , u |= E(d′)}.

Proof. Suppose the claim is false, then there exists w, u ∈ WN and some c, d ∈ DN

such that (w, c, u) ∈ RN and N , w |= E(d) and N , u �|= E(d). This together gives:

N , w |= E(d) ∧ ¬∀y�y (E(d)) (*).

Let w be at height j ≤ h. Now since N , r |= γh, in particular we have N , r |=
(∀y�y)

j
(∀x E(x) → (∀y�y E(x))

)
and hence N , w |= ∀x (

E(x) → (∀y�y E(x))
)
.

This is a contradiction to (*).

The next lemma states that ϕ is satisfiable in an increasing agent model iff

Tr3(ϕ) ∧ γmd(ϕ) is satisfiable in some constant agent model. Moreover, both the

formulas are satisfiable over the same agent set D.

63

Figure 5.2: Illustration of a translation of increasing agent model to constant agent
model. In the translated model, all worlds have the same set of agents {a, b, c, d}.
The predicate E encodes the δ function of the original model.

64

Lemma 5.6. Let ϕ be any TML formula. ϕ is satisfiable in an increasing agent

model with agent set D iff γmd(ϕ) ∧ Tr3(ϕ) is satisfiable in a constant agent model

with agent set D.

Proof. (⇒) Suppose M = (W ,D, δM,R, ρM) is an increasing agent TML model

rooted at r ∈ W and σ relevant at r such that M, r, σ |= ϕ. Define the constant

domain model N = (W ,D, δN ,R, ρN) where δN (w) = D for all w ∈ W and the

valuation function is defined such that for the new unary predicate E we have

ρN (w,E) = {d | d ∈ δM(w)} and for all the other predicates Q �= E, define

ρN (w,Q) = ρM(w,Q). Figure 5.2 describes one such translation.

Since δ is monotone, at every w ∈ W we have N , w |= ∀x(E(x) → ∀y�yE(x).

Hence, N , r, σ |= γmd(ϕ). Thus, we can set up a routine induction and prove that for

all ψ ∈ SF(ϕ) and for all w ∈ W and for all interpretation σ′ relevant at w, we have

M, w, σ′ |= ψ iff N , w, σ′ |= Tr3(ψ).

(⇐) Suppose N = (W ,D, δN ,R, ρN) is a constant agent tree model of depth

at most md(ϕ) rooted at r ∈ W and σ relevant at r such that N , r, σ |= γmd(ϕ) ∧
Tr3(ϕ). Define the increasing agent model M = (W,D, δM,R, ρ) where c ∈ δM(w)

iff M, w |= E(c).

Note that N is a rooted tree of height at most md(ϕ) and N , r |= γmd(ϕ). Hence,

by Prop. 5.5, δM defined above is monotone. Again, we can set up a routine induc-

tion and prove that for all ψ ∈ SF(ϕ) and for all w ∈ W and for all interpretation

σ′ relevant at w we have N , w, σ′ |= Tr3(ψ) iff M, w, σ′ |= ψ.

5.3 Translating TML to PTML

Recall that PTML is the propositional fragment of TML. Now we show that satisfi-

ability problem for PTML is as hard as that for TML.

65

The reduction is based on the translation of an atomic predicate P ∈ Pn of the

form P (x1, . . . , xn) to �x1 . . .�xnp where p is a new proposition which represents

the predicate P . However, the coding does not preserve equi-satisfiability all the

time. For instance, if the given formula is ∀x (R(x) ∧ �x(P (x) ∧ ¬P (x)) then the

above translation does not work because the given formula asserts that there cannot

be any successors for any agent, but the translation needs at least one successor for

every agent to encode predicate R.

This problem occurs only when the formula does not allow successors for an

agent and can be fixed. We use a new proposition q, to distinguish the worlds in the

original model from the ones that are added because of the translation. But now,

the modal formulas have to be relativised with respect to q.

Note that a TML formula itself can mention some propositions and these do not

require any translation. Hence we distinguish the set of positive arity predicates

and propositions occurring in the TML formula.

Definition 5.7. Let ϕ be any TML formula where Pϕ = {P | P ∈ Pn for some

n ≥ 1 and P occurs in ϕ} and let P0
ϕ = {s | s ∈ P0 and s occurs in ϕ} be the set of

all positive arity predicates and propositions occurring in ϕ respectively. Enumerate

Pϕ = {P1, . . . Pm} and let ni be the arity for every Pi ∈ Pϕ. Let {p1, . . . , pm}∪{q} ⊆
P0 be a new set of propositions not occurring in ϕ. The translation of ϕ to a PTML

formula is defined inductively as follows:

• Tr4(Pi(x1, . . . , xni
)) = �x1(¬q ∧ �x2(. . .¬q ∧ �xni

(¬q ∧ pi) . . .))

• For s ∈ P0
ϕ, Tr2(s) = s

• Tr4(¬ϕ) = ¬Tr4(ϕ) and Tr4(ϕ ∧ ψ) = Tr4(ϕ) ∧ Tr4(ψ)

• Tr4(�xϕ) = �x(q → Tr4(ϕ))

• Tr4(∃x ϕ) = ∃x Tr4(ϕ)

66

Thus, for the TML formula ∀x (R(x) ∧ �x(P (x) ∧ ¬P (x)), the corresponding

PTML translation is given by: ∀x (�x(¬q∧ r)∧�x(q → �x(¬q∧ p)∧¬�x(¬q∧ p)
)
.

Note that Tr4 preserves the number of variables, and quantifier rank. If the given

TML formula ϕ has modal depth m and highest arity of predicate occurring in ϕ is

k then the modal depth of Tr4(ϕ) is m+ k.

Recall that, in terms of model specification we distinguish TML and PTML mod-

els in the definition of the ρ function. For TML models, we have ρ : (W×P)
→ ⋃

n

2D
n

which is the valuation function for predicates of arbitrary arity, whereas for PTML

models we have ρ : W
→ 2P
0 which is a valuation for propositions.

Lemma 5.8. For any TML formula ϕ, ϕ is satisfiable in an increasing (constant)

agent TML model with agent set D iff q ∧ Tr4(ϕ) is satisfiable in an increasing

(constant) agent PTML model with agent set D.

Proof. For any model M and u ∈ W let c ∈ D∗
u denote a (possibly empty, denoted

by ε) string of finite length over Du. Let ϕ be the given formula and we have P0
ϕ

and Pϕ as defined above. Let k be the highest arity of the predicates occurring in

Pϕ.

(⇒) Suppose ϕ is satisfiable. Let M be a TML model and w ∈ WM and σ

relevant at w such that M, w, σ |= ϕ. Define the PTML model N where:

- WN = {uc | u ∈ WM and c ∈ D∗
u of length at most k}.

- For all uc ∈ WN we have δN (uc) = δM(u).

- RN = {(uε, c, vε) | (u, c, v) ∈ RM} ∪ {(uc, d, ucd) | uc, ucd ∈ WN}

- ρN (uε) = {s | s ∈ P0
ϕ and M, u |= s} ∪ {q} and if c = c1 . . . cn has length ≥ 1

then ρN (uc1...cn) = {pi | M, u |= Pi(c1, . . . , cn)}.

67

Figure 5.3: Illustration of a translation of TML model to PTML model. The dotted
part in the second figure are the new components added during the translation and
hence q is true in non-dotted (original) worlds and ¬q holds at every dotted world.
Propositions p and r encode predicates P and R respectively. For instance, since
R(b, a) is true at v1, the proposition r is true at the leaf of path v1

b−→ v1.b
a−→ v1.ba.

68

Note that M, u, σ |= Pi(x1, . . . , xn) iff pi is true at the world uc1,...,cn where

σ(xi) = ci. Thus by construction, N , uε, σ |= �x1(¬q∧�x2(. . .¬q∧�xn(¬q∧pi) . . .))
(Refer Fig. 5.3). Also note that for all u ∈ WM we haveM, uε |= q. Thus a standard

inductive argument shows that for all ψ ∈ SF(ϕ) and for all u ∈ WM and for all

interpretation σ′ relevant at u we have M, u, σ′ |= ψ iff N , uε, σ
′ |= q ∧ Tr4(ψ).

Also note that if M is an increasing (constant) agent model over D then N is

also an increasing (constant) agent model over D. Figure 5.3 illustrates a model

translation from TML model to PTML model.

(⇐) Suppose N = (WN ,D, δN ,RN , ρN) is a PTML model with w ∈ WN and

σ relevant at w such that N , w |= q ∧ Tr4(ϕ). Define the TML model M =

(WM, D, δM,RM, ρM) where

- WM = {u ∈ WN | N , u |= q}.

- For all u ∈ WM we have δM(u) = δN (u).

- RM = RN ∩ (WM ×WM).

- For all Pi ∈ Pϕ define

ρM(u, P) = {(c1, . . . , cni
) | N , u |= �c1(¬q ∧ (. . .�cni

(¬q ∧ pi)} and

for all s ∈ P0
ϕ define ρM(w, p) = δ(w) iff N , w |= s.

Note that for all u ∈ WM we have M, u |= q. Again, an easy inductive argument

shows that for all ψ ∈ SF(ϕ) and for all u ∈ WM and for all interpretation σ′ relevant

at u, we have N , u, σ′ |= q ∧ Tr4(ψ) iff M, u, σ′ |= ψ.

5.4 Bounded agent property

One typical strategy to prove decidability of the satisfiability problem for any logic

is to prove a bounded model property.

69

In general, the theorem is of the following flavour: if a formula ϕ is satisfiable

then ϕ is satisfiable in some model whose size is bounded by some computable

function in the length of ϕ.

For term modal logic fragments, if we were to employ this strategy, we need to

find a model where both W and D are of bounded size. Now we will show that it is

enough to find a model with finite D without worrying about the size of W as long

as the fragment is closed under the constant agent and propositional translations

(Def 5.4, 5.7 respectively).

Definition 5.9. Let F ⊆ TML be any syntactic fragment of TML,

• F is ‘constant domain closed’ if for every formula ϕ ∈ F its corresponding

translated formula that is equi-satisfiable in constant domain (Def. 5.4) is in

F i.e, Tr3(ϕ) ∧ γmd(ϕ) ∈ F .

• F is ‘predicate closed’ if for every formula ϕ ∈ F its corresponding translation

to equi-satisfiable PTML formula (Def. 5.7) is in F i.e, q ∧ Tr4(ϕ) ∈ F .

• Let f : N
→ N be any computable function. F satisfies ‘f -bounded agent

property’ if for every formula ϕ ∈ F of length n, if ϕ is satisfiable then ϕ is

satisfiable in a model M with size of agent set, |D| ≤ f(n).

If a fragment of TML, F ⊆ TML is ‘constant domain closed’ it means that any

formula ϕ ∈ F is satisfiable in an increasing agent model iff ϕ is satisfiable in a

constant agent model. Similarly if F is ‘predicate closed’ it means that for any

ϕ ∈ F there is a corresponding Tr4(ϕ) ∈ F which has only propositions as atoms

such that ϕ and Tr4(ϕ) are equi-satisfiable. Thus, when we consider satisfiability

problem, for ‘predicate closed fragments’, it is enough to assume that the atoms are

propositions. In other words, if F is predicate closed fragment then satisfiability

problem for F is as hard as the satisfiability problem for F ∩ PTML.

70

Observation 5.10. Some examples of syntactic fragments:

1. TML is both constant domain closed and predicate closed.

2. One variable fragment of TML is predicate closed but not constant domain

closed since γmd(ϕ) in the translation uses two variables.

3. Monodic restriction4 of TML is both constant domain closed and predicate

closed.

4. Monodic restriction of two variable fragment of TML is constant domain closed

but not predicate closed since translation of R(x, y) will not remain monodic.

5. For all k ≥ 2, the k-variable fragment of TML is both constant domain closed

and predicate closed.

Theorem 5.11. Let F ⊂ TML be any syntactic fragment such that F is both con-

stant domain closed and predicate closed. If F satisfies f -bounded agent property

then satisfiability problem for F has an O(n · f(n))-SPACE algorithm.

Proof. We prove this by showing that for every formula ϕ ∈ F of length n, there is a

corresponding equi-satisfiable formula ψ in propositional multi-modal logic (MLf(n))

with at most f(n) agents where the size of ψ is O(n · f(n)). Since satisfiability

problem for MLf(n) can be solved in PSPACE (in the size of ψ), the theorem follows.

Suppose ϕ ∈ F is a formula of length n, then by Lemma 5.8, there is a corre-

sponding PTML formula ϕ1 ∈ F that is equi-satisfiable to ϕ with |ϕ1| = O(|ϕ|).
Let |ϕ1| = c1n for some constant c1. Since F satisfies f -bounded agent property,

without loss of generality, ϕ1 is satisfiable iff ϕ1 is satisfiable in a model with agent

set D = {1, . . .m} for some m ≤ f(c1n).

4Recall that ϕ ∈ TML is monodic if every subformula of the form Δxψ ∈ SF(ϕ) has FV(ψ) ⊆ {x}
where Δ ∈ {�,�}.

71

Now by Lemma 5.6, there is a corresponding formula ϕ2 ∈ F for ϕ1 such that

ϕ1 is satisfiable iff ϕ2 is satisfiable in a constant domain modal with the same agent

set D. Let |ϕ2| = c2n for some constant c2.

Now can expand the quantifiers of ϕ2 inductively replacing ∀x α by
m∧

i=1

α[i/x]

and ∃x α by
m∨

i=1

α[i/x]. The resulting formula obtained (say ψ) is a formula in

classical propositional multi-modal (MLm) logic over m agents such that ϕ2 and ψ

are equi-satisfiable. Note that size of ψ is at most c2n · f(c1n). Now, satisfiability

of ψ can be checked in PSPACE.

5.5 Two variable fragment of TML

From Theorem 4.2, it follows that the 3-variable fragment of PTML� (and hence

TML) is undecidable. On the other hand, every 1-variable formula is also a monodic

formula and hence by Theorem 5.3, the 1-variable fragment of TML is decidable.

This leaves the 2 variable case. Let TML2 denote the 2-variable fragment of TML

(excluding equality).

The translation of TML formulas to FOML(Def. 5.1) does not introduce any new

variables. But this does not help since 2-variable fragment of FOML is undecidable

[WZ01]. Quoting Wolter and Zakharyaschev from [WZ01], where they discuss the

root of undecidability of FOML fragments:

All undecidability proofs of modal predicate logics exploit formulas of the

form � ψ(x, y) in which the necessity operator applies to subformulas of

more than one free variable; in fact, such formulas play an essential role

in the reduction of undecidable problems to those fragments . . .

72

The above property is not expressible in TML2 where there is no ‘free’ modality;

every modality is bound to an index (x or y). With a third variable z, we could

indeed encode �P (x, y) as ∀z�zP (x, y), but we do not have it. The decidability of

the two variable fragment of TML, without constants or equality, hinges crucially on

this lack of expressiveness. In particular, for any arbitrary TML model M at some

world w ∈ W and c, d ∈ δ(w) suppose we have M, w |= �c(P (c, d)) ∧�d(¬P (c, d)),

then for all a �= c, d and for all w a−→ u if we change the valuation of P (c, d) at u

then still M, w |= �c(P (c, d)) ∧ �d(¬P (c, d)) will continue to hold.

Note that the fragment TML2 is both constant agent closed and predicate closed.

Hence, it is enough to show agent bounded model property for TML2 and the de-

cidability follows from Theorem 5.11. Further, note that the translation of TML

formulas into equi-satisfiable PTML formulas (Def. 5.7) preserves the number of

variables. Therefore it suffices to consider the satisfiability problem for the two

variable fragment of PTML. Let PTML2 denote the 2-variable fragment of PTML.

As is standard with two variable logics, we first introduce a normal form for

PTML2 which is a combination of Fine’s normal form for modal logics ([Fin75])

and the Scott normal form ([GKV97]) for FO2. We then prove a bounded agent

property using an argument that can be construed as modal depth induction over the

‘classical’ bounded model construction for FO2.

5.5.1 Bounded model for FO2

We now briefly recall the proof steps involved in showing that FO2 fragment has

bounded model property. Let x, y be the variables used. Recall that an FO struc-

ture is of the form A = (D, ρ) whereD is the domain and ρ : P
→ ⋃

i

2D
i is the

interpretation for the predicates.

73

First it can be proved that every sentence ϕ ∈ FO2 has an equi-satisfiable sentence

of the form ∀x∀y α∧∧
j

(∀x∃y βj) where α and βj are all quantifier free. This is called

Scott normal form [GKV97]. It is obtained by rewriting the given formula where

we introduce new unary predicates appropriately (this procedure will be discussed

in detail when we take up the normal form for term modal logic).

For a given FO structure A for any c, d ∈ D we can associate 2-type(c, d) =

(Γ1; Γ2) where Γ1 and Γ2 are atomic predicates or negated predicates that are true

when (x, y) is assigned to (c, d). Formally,Γ1 = {(¬)P (x, y) | A |= (¬)P (c, d)} and

Γ2 = {(¬)P (x, y) | A |= (¬)P (d, c)}.

The 1-type of c ∈ D is given by 1-type(c) = (Λ1; Λ2) where Λ1 = 2-type(c, c) and

Λ2 = {2-type(c, d) | d ∈ D}. Let 1-type(A) = {1-type(c) | c ∈ D}.

Given a Scott normal sentence ϕ that is satisfiable in A, we can define a bounded

model based on 1-type(A) (a similar construction is explained in detail for PTML2).

Since the size of 1-type(A) (restricted to the predicates occurring in ϕ) is at most

exponential in the length of ϕ, the new model that we obtain has size 2O(|ϕ|). Thus

we get an exponentially bounded model in which ϕ is satisfiable.

Theorem 5.12. Satisfiability problem for FO2 is in NEXPTIME.

We will essentially follow the same proof steps for PTML2 but we need to handle

modalities indexed by variables along the way.

5.5.2 Normal form for PTML2

Recall that from Lemma 5.8, proving that satisfiability for PTML2 is decidable

implies that decidability for TML2 also. Thus we consider PTML2. We use x, y ∈ V
as the two variables of PTML2.

74

In [Fin75], Fine introduces a normal form for ML (single agent) which is a dis-

junctive normal form (DNF) where every clause of the form (
∧

i

(si) ∧ �α ∧∧

j

�βj)

where every si is a proposition or its negation and α, βj are again in the normal

form. For FO2, we have Scott normal form [GKV97] where every FO2 sentence has

an equi-satisfiable sentence of the form ∀x∀y ϕ ∧∧

i

∀x∃y ψi where ϕ and every ψi

are quantifier free.

For PTML2, we introduce a combination of these two normal forms, which is a

DNF formula where every clause is of the form:

∧

i≤a

si ∧
∧

z∈{x,y}
(�zα∧

∧

j≤mz

�zβj) ∧
∧

z∈{x,y}
(∀z γ ∧

∧

k≤nz

∃z δk) ∧ ∀x∀y ϕ∧
∧

l≤b

∀x∃y ψl

where a,mx,my, nx, ny, b ≥ 0 and si denotes literals. Further, α and βj are re-

cursively in the normal form and the formulas γ, δk, ϕ, ψl do not have quantifiers

at the outermost level and all modal subformulas occurring in these formulas are

(recursively) in the normal form.

Note that the first two conjuncts mimic the modal normal form and the last

two conjuncts mimic the FO2 normal form. The additional conjuncts handle the

intermediate step where only one of the variable is quantified and the other is free.

We assume that the formulas are given in negation normal form (NNF) where the

negations appear only at the literals.

We use z to refer to either x or y and refer to variables z1, z2 to indicate the

variables x, y in either order. We use Δz to denote any modal operator Δ ∈ {�,�}
and z ∈ {x, y}. A literal is either a proposition or its negation.

Definition 5.13 (FSNF normal form). We define the following terms to introduce

the Fine Scott normal form (FSNF) for PTML2:

75

• A formula ϕ is a module if ϕ is a literal or ϕ is of the form Δzα where α is

any PTML2 formula and Δ ∈ {�,�} and z ∈ {x, y}.

• For any formula ϕ, the outermost components of ϕ given by C(ϕ) is defined

inductively where for any ϕ which is a module, C(ϕ) = {ϕ} and C(Qz ϕ) =

{Qz ϕ} where z ∈ {x, y} and Q ∈ {∀, ∃}. Finally C(ϕ � ψ) = C(ϕ) ∪ C(ψ)

where � ∈ {∧,∨}.

• A formula ϕ is quantifier-safe if every ψ ∈ C(ϕ) is a module.

• We define Fine Scott normal form(FSNF) normal form (DNF and conjunc-

tions) inductively as follows:

– Any conjunction of literals is an FSNF conjunction.

– ϕ is said to be in FSNF DNF if ϕ is a disjunction of formulas each of

which is an FSNF conjunction.

– Suppose ϕ is quantifier-safe and for every Δzψ ∈ C(ϕ) if ψ is in FSNF DNF

normal form then we call ϕ a quantifier-safe normal formula.

– Let a, b,mx,my, nx, ny ≥ 0. Suppose s1, . . . , sa are literals,

αx, αy, βx
1 , . . . , β

x
mx

, βy
1 , . . . , β

y
my

are formulas in FSNF DNF and

γx, γy, δx1 , . . . , δ
x
nx
, δy1 , . . . , δ

y
ny
, ϕ, ψ1, . . . , ψb are quantifier-safe normal for-

mulas then the following is an FSNF conjunction:

∧

i≤a

si∧
∧

z∈{x,y}
(�zα

z∧
∧

j≤mz

�zβ
z
j) ∧

∧

z1∈{x,y}
(∀z2 γz1 ∧

∧

k≤nz

∃z2 δz1k) ∧ ∀x∀y ϕ∧
∧

l≤b

∀x∃y ψl

Quantifier-safe formulas are those in which no quantifiers occur outside the scope

of modalities. For instance α := ∀x(∃y�x�yp ∧ ∀y�x�y�) is not quantifier-safe.

Such formulas are complicated to handle since there is no straight-forward induction

parameters that we make can use of. On the other hand, there is an equi-satisfiable

formula for α given by ∀x∃y(�x�y(q∧p)∧�x(¬q∧r))∧∀x∀y(�x(¬q∧r) ⇔ �x�yq)

76

where all formulas inside the scope of quantifiers are quantifier-safe and q is newly

introduced proposition. With quantifier-safe formulas, we know that all formulas

inside the scope of quantifiers are either atoms or have modality at the outer-most

level. Thus, in such formulas we can use modal depth of the sub-formulas as an

induction parameter.

Note that the superscripts in αx, αy etc only indicate which variable the formula

is associated with, so that it simplifies the notation. For instance, αx does not say

anything about the free variables in αx. In fact there is no restriction on free variables

in any of these formulas.

Also, by setting the appropriate indices to 0, we can have FSNF conjunctions

where one or more of the components corresponding to si, β
x, βy, δx, δy, ψl are ab-

sent. We also consider the conjunctions where one or more of the components

corresponding to �xα
x,�yα

y, ϕ are also absent. As we will see in the next lemma,

for any sentence ϕ ∈ PTML2, we can obtain an equi-satisfiable sentence, which at

the outer most level, is a DNF of formulas of the form
∧

i≤a

si ∧ ∀x∀y ϕ∧ ∧

l≤b

∀x∃y ψl.

For a given PTML2 formula, we keep rewriting it to get the formula in the normal

form. For this, we introduce some new unary predicates in the intermediate steps

and finally get rid of them using the translation for TML formulas to PTML formulas

(Def. 5.7). The proof essentially follows that of reducing an FO2 formula into its

equi-satisfiable Scott normal form [GKV97].

For the given formula ϕ, first observe that we can get an equivalent DNF over

C(ϕ) using propositional validities. If ϕ is modal free, then we can simply ignore

the quantifiers, since valuations of propositions do not depend on the quantifiers

and the agent set is always non-empty. For instance if ∃x∀y (p ∨ ¬q) is the given

formula, then (p ∨ ¬q) is an equivalent formula5.

5Note that they are equivalent since the local agent set at every world is non-empty.

77

Thus, for modal free formulas we get an equivalent propositional DNF by erasing

the quantifiers and this is in the required form.

If ϕ contains modal formulas, then we need to reduce every clause of the DNF

to an FSNF conjunction. We first translate the formulas at the outer most level to

the required form. This is the classical Scott-normal form construction which can

be obtained by introducing new unary predicates appropriately to get rid of the

nested quantifiers at the outer most level. For instance, if we consider the formula

α := ∀x(∃y�x�yp ∧ ∀y�x�y�) then we can introduce a new unary predicate R to

encode ∀y�x�y�. Thus, β := ∀x∃y(�x�yp ∧ R(x)) ∧ ∀x∀y(R(x) ⇔ �x�y�) is

the equi-satisfiable translation for α.

Note that β has new unary predicates. This can be eliminated using the trans-

lation of TML formulas to PTML formulas given by Def. 5.7 (Tr4) and we get an

equi-satisfiable PTML formula. In the above example, the translation of β is given

by ∀x∃y(�x�y(q ∧ p) ∧ �x(¬q ∧ r)) ∧ ∀x∀y(�x(¬q ∧ r) ⇔ �x�yq). We repeat the

above step until all formulas inside the scope of quantifiers are quantifier-safe. After

this, we replace conjuncts of the form �zϕ and �zψ by �z(ϕ ∧ ψ) for z ∈ {x, y} to

obtain the resulting formula which has at most one subformula of the from �xα
x

and �yα
y.

Note that after this translation, the resulting formula is in the required form

at the outermost level. We now only need to repeat the entire process for every

sub-formula inside the scope of modalities.

The following lemma formally describes the above construction.

Lemma 5.14. For every formula θ ∈ PTML2 there is a corresponding formula

θ̂ ∈ PTML2 where θ̂ is a FSNF DNF such that θ and θ̂ are equi-satisfiable.

Proof. We prove this by induction on the modal depth of θ.

78

Suppose θ has modal depth 0, then all modules occurring in ϕ are literals. Observe

that if α is a propositional formula then for Q ∈ {∀, ∃} and z ∈ {x, y} and for all

model M we have M, w, σ |= Qz α iff M, w, σ |= α. Hence we can simply ignore

all the quantifiers and get an equivalent DNF over literals, which is an FSNF DNF.

For the induction step, suppose md(θ) = h. First, let θ1 be a formula equivalent

to θ where θ1 is a DNF over the outermost components of θ given by C(θ). Such a

formula θ1 can be obtained by rewriting θ using propositional validities applied to

C(θ). Now if θ1 is an FSNF DNF then we are done.

Otherwise, there are some clauses in θ1 that are not FSNF conjunctions. Let

θ1 :=
∨

i ζi and Iθ = {ζi | ζi is not a FSNF conjunction} be the clauses that are not

FSNF conjunctions. To reduce θ1 to FSNF DNF, we replace every ζi ∈ Iθ with their

corresponding equi-satisfiable FSNF DNF in θ1.

Pick a clause ζ ∈ Iθ and let ζ := ω1 ∧ . . . ∧ ωn that is not an FSNF conjunction.

If md(ζ) < h then by induction hypothesis, there is an equi-satisfiable FSNF DNF

formula of ζ. Thus ζ can be replaced by its corresponding equi-satisfiable FSNF DNF

in θ1. Now suppose md(ζ) = h.

In the first step, consider the conjuncts with exactly 1 free variable. Let Iz =

{ωi | FV(ω) = {z}} for z ∈ {x, y} be the index of all conjuncts where z is the only

free variable. Let z1, z2 be the variables x, y in either order. Pick any ωi ∈ Iz1 which

means z2 is bound in ωi. Without loss of generality, ωi is of the form ∀z2 η. We will

first ensure that η is quantifier-safe. This is done by iteratively removing the non-

modules from C(η) and replacing it with a equi-satisfiable quantifier-safe formula.

Set χ0 := ∀z2 η.

a. if there is some strict subformula of the form Qz2 λ ∈ C(χ0) where λ is

quantifier-safe, let P be a new (intermediate) unary predicate.

79

Define χ1 := χ0[P (z1)/Qz2 λ] and τ1 := P (z1) ⇔ Qz2 λ. Note that if Q = ∀
then τ1 can be equivalently written as ∀z2 (¬P (z1)∨λ)∧∃z2 (P (z1)∨¬λ) and
if Q = ∃ then τ1 will be ∃z2 (¬P (z1) ∨ λ) ∧ ∀z2 (P (z1) ∨ ¬λ).

b. if there is some strict subformula of the form Qz1 λ ∈ C(χ0) where λ is

quantifier-safe, then we again use a similar translation as in previous case,

but since z2 is bounded, it is universally quantified in τ1. Let P be a new

unary predicate.

Define χ1 := χ0[P (z2)/Qz1 λ] and τ1 := ∀z2 (P (z2) ⇔ Qz1 λ). Again, that if

Q = ∀ then τ1 is equivalent to ∀z2∀z1(¬P (z2) ∨ λ) ∧ ∀z2∃z1(P (z2) ∨ ¬λ) and
if Q = ∃ then τ1 is ∀z2∀z1 (P (z2) ∨ ¬λ) ∧ ∀z2∃z1 (¬P (z2) ∨ λ).

Now remove the conjunct ωi from ζ and replace it with χ1 ∧ τ1. Note that

χ1 has at least one less quantifier than χ0 and τ1 introduces either conjuncts with

no free variables or a formula with one free variable of the form Qz λ where λ is

quantifier-safe. To see that this step preserves equi-satisfiability, note that in both

cases, χ1 ∧ τ1 implies ∀z2 η and for the other direction, we can define the valuation

ρ for the new unary predicate P appropriately in the same model in which ψ is

satisfiable.

Repeat this step for χ1, χ2, . . . , χm till χm is of the form ∀z2λ where the formula

λ is quantifier-safe. Then we would have χm ∧ τ1 . . .∧ τm as new conjuncts replacing

ωi in ζ. Now this step increases the number of conjuncts in ζ which have no free

variables, but all new conjuncts with one free variable are of the form Qz λ where

λ is quantifier-safe. Note that λ needs to be further refined since it is not yet

quantifier-safe FSNF (which will be taken up later).

Rewrite all ωi ∈ Iz using the above steps for all z ∈ {x, y}. Let the resulting

clause be ζ1 which is equi-satisfiable to ζ.

80

Now for z ∈ {x, y}, if there are two conjuncts of the form ∀z λ and ∀z λ′ in ζ1,

remove both of them and add ∀z (λ ∧ λ′) to ζ1 and keep doing this until there is a

single conjunct in ζ1 of the form ∀z γz for each z ∈ {x, y} where γz is quantifier-safe.

Let ζ1 := ω′
1 ∧ . . . ∧ ω′

n1
which is the result of rewriting of the clause ζ after the

above steps. Note that there are some new unary predicates introduced and hence

this intermediate formula ζ1 may not be in PTML2 (but is in TML2).

Now consider conjuncts with no free variables and make them quantifier-safe. Let

I = {ω′
i | FV(ψ′) = {x, y}}. For any ω′

i ∈ I, since neither variable is free, without

loss of generality assume that ω′
i is of the form ∀x η.

Pick any ω′
i ∈ I and set χ0 := ∀x η and z1, z2 refer to x, y in either order. If

Qz2 λ ∈ C(η), let P be a new unary predicate. Define χ1 := χ0[P (z1)/Qz2 λ] and

τ1 := ∀z1 (P (z1) ⇔ Qz2 λ). Similar to previous step, τ1 can be equivalently written

as two conjuncts of the form ∀z1∀z2 λ ∧ ∀z1∃z2 λ where λ and λ′ are quantifier-safe

formulas (but not quantifier-safe FSNF, yet).

Now remove the conjunct ω′
i from ζ1 and replace it with χ1 ∧ τ1. Note that χ1

has at least one less quantifier than χ0 and τ1 introduces only conjuncts of the form

Q1z1 Q2z2 λ where λ is quantifier-safe. Again for the equi-satisfiability argument,

note that χ1 ∧ τ1 → χ0 is a validity and for the other direction, the new predicates

can be interpreted appropriately in the same model of ζ1.

Repeat this step for χ1, χ2, . . . , χm till χm is of the form ∀xλ such that λ is

quantifier-safe. Then we would have χm ∧ τ1 . . . ∧ τm as new conjuncts replacing ω′
i.

Now rename variables appropriately in the newly introduced conjuncts so that we

have formulas only of the form ∀x∀y λ or ∀x∃y λ′ where λ, λ′ are quantifier-safe

formulas.

Rewrite all clauses ω′
i ∈ I using the steps described above and let the resulting

conjunct be ζ2 which is equi-satisfiable to ζ1.

81

Now if there are two conjuncts of the form ∀x∀y λ and ∀x∀y λ′ in ζ2, remove

both of them and add a new conjunct ∀x∀y (λ ∧ λ′) to ζ2. Repeat this till at most

one conjunct the form ∀x∀y λ in ζ2. Note that we still have unary predicates in

ζ2 and hence ζ2 is also a TML2 formula but not a PTML2 formula. Further, all

subformulas inside the scope of quantifiers are now quantifier-safe, but need to be

converted into quantifier-safe FSNF.

Let ζ2 := ω′′
1 ∧ . . . ∧ ω′′

n2
be the resulting formula after the above steps. Now to

eliminate the newly introduced unary predicates, apply the translation in Definition

5.7 to ζ2 and obtain an equi-satisfiable PTML formula ζ3. It is clear from the

construction that the new predicates are introduced only at the outermost level

(not inside the scope of any modality). Thus, in the translation, any occurrence

of the newly introduced predicate of the form P (z) will be replaced by �z(¬q ∧ p)

and ¬P (q) will be translated to ¬�z(¬q ∧ p) which can be equivalently written as

�z(q ∨ ¬p). Thus we eliminate the newly introduced unary predicates and ensure

all formulas within the scope of quantifiers are quantifier-safe.

Now consider conjuncts that are modal formulas. For z ∈ {x, y}, if there are two
conjuncts of the form �z λ and �z λ′ in ζ3, remove both of them from ζ3 and add

�z (λ ∧ λ′) to ζ3. Repeat this till there is at most one conjunct in ζ3 of the form

�z αz for each z ∈ {x, y}. Note that this step preserves equi-satisfiability because

of the validity ∀z (
(�zα ∧ �zβ) ⇔ �z(α ∧ β)

)
.

By rearranging the conjuncts, we obtain the formula ζ3 in the form:

∧

i≤a

si∧
∧

z∈{x,y}
(�zα

z∧
∧

j≤mz

�zβ
z
j) ∧

∧

z∈{x,y}
(∀z γz∧

∧

k≤nz

∃z δzk) ∧ ∀x∀y ϕ∧
∧

l≤b

∀x∃y ψl

where γz, δzk, ϕ and ψl are all quantifier-safe.

82

As a final step, we need to ensure that αx, αy, βx
1 , . . . , β

x
mx

, βy
1 , . . . , β

y
my

are for-

mulas in FSNF DNF and also the formulas γx, γy, δx1 , . . . , δ
x
nx
, δy1 , . . . , δ

y
ny
, ϕ, ψ1, . . . , ψb

are not just quantifier-safe, but also quantifier-safe FSNF formulas.

Towards this, note αz, βz
j have modal depth less than h. Hence, inductively

we have equi-satisfiable FSNF DNF for each of them which can be correspondingly

replaced in ζ3. This preserves equi-satisfiability since we can inductively maintain

that the translated formulas are satisfied in the same model of the given formula by

just tweaking the ρ function.

To translate γx, γy, δx1 , . . . , δ
x
nx
, δy1 , . . . , δ

y
ny
, ϕ, ψ1, . . . , ψb into quantifier-safe FSNF,

first note that these formulas are already quantifier-safe. Now for every Δzχ ∈ C(μ)

for μ is one of the above formulas, we have md(χ) ≤ h. Again, inductively we have

equi-satisfiable FSNF formulas for each of them. Replacing each such subformula

with its corresponding FSNF DNF formula gives us the required FSNF conjunction

ζ4 which is equi-satisfiable to ζ that we started with. Thus ζ can be replaced by ζ4

in θ1.

Repeating this for every ζ ∈ Iθ and replacing it in θ1 we obtain an equi-satisfiable

FSNF DNF for θ.

Since we repeatedly convert the formula into DNF (inside the scope of every

modality), if we start with a formula of length n, the final translated formula has

length at most 2n · 2n · · · 2n (n times). Hence the resulting normal form has length

2O(n2).

To illustrate the construction, consider the formula α := ∀x(∃y�x�yp∧∀y�x�y�)

which we had used to explain the construction informally. First we can introduce a

new unary predicate R to encode ∀y�x�y�.

83

Thus, we get β := ∀x∃y(�x�yp∧R(x)) ∧ ∀x∀y(R(x) ⇔ �x�y�) which is equi-

satisfiable formula for α. Now the newly introduced unary predicate is eliminated

and we obtain: ∀x∃y(�x�y(q∧p)∧�x(¬q∧r))∧∀x∀y(�x(¬q∧r) ⇔ �x�yq) which

is in the required form. This process is repeated for sub-formulas inside the scope

of a modalities if the formula has larger modal depth.

5.5.3 Model extension

To show bounded model property for PTML2, if a PTML2 formula θ is satisfiable in

a tree model, the strategy is to inductively come up with bounded agent models for

every subtree of the given tree (based on types), starting from leaves to the root.

While doing this, when we add new type based agents to a world at height h, to

maintain monotonicity, we need to propagate the newly added agents throughout its

descendants. For this, we define the notion of extending any tree model by addition

of some new set of agents.

Suppose in a tree model M, world w has local agent set Dw and we want to

extend Dw to Dw ∪C, then first we have Ω : C
→ Dw which assigns every new agent

to some already existing agent. The intended meaning is that the newly added agent

c ∈ C at w mimics the ‘type’ of Ω(c). If w is a leaf node, we can simply extend δ(w)

to Dw ∪C. If w is at some arbitrary height, along with adding the new agents to the

live agent set to w, we also need to create successors for every c ∈ C, one for each

successor subtree of Ω(c) and inductively add C to all the successor subtrees.

Definition 5.15 (Model extension). Let M = (W ,D, δ,R, ρ) be a tree model rooted

at r. For every w ∈ W let Mw be the sub-tree rooted at w. Let C be any finite set

of new agents such that C ∩ D = ∅ and for any w ∈ W let Ω : C
→ Dw be some

function mapping C to the local agent set at w. Define the operation of ‘adding C to

Mw guided by Ω’ by induction on the height of w to obtain a new sub-tree rooted at

w (denoted by Mw
(C,Ω)).

84

Figure 5.4: Illustration of extending the model by adding e, f as new agents at w
with Ω(e) = a and Ω(f) = b.

• If w is a leaf, then Mw
(C,Ω) is a tree with a single node w with new δM

w
(C,Ω)(w) =

δ(w) ∪ C and ρM
w
(C,Ω)(w) = ρ(w).

• If w is at height h, for all (w, d, u) ∈ R inductively we have Mu
(C,Ω) which

is a tree model rooted at u obtained by adding C to Du guided by Ω. The

new tree Mw
(C,Ω) is obtained from Mw rooted at w with δM

w
(C,Ω)(w) = δ(w) ∪ C

and ρM
w
(C,Ω)(w) = ρ(w) and for every (w, d, u) ∈ R replace the sub-trees Mu

rooted at u by Mu
(C,Ω), again rooted at u. Further, for every c ∈ C and every

(w,Ω(c), u) ∈ R create a new copy of Mu
(C,Ω) and rename its root as uc and

add an edge (w, c, uc) ∈ RMw
(C,Ω).

85

Figure 5.4 illustrates an effect of this tree operation. The next lemma states that

this transformation preserves PTML formulas.

Lemma 5.16. Let M = (W ,D, δ,R, ρ) be a tree model of finite depth rooted at r.

Let C be some new agent set such that C ∩ D = ∅ and for all w ∈ W and for all

Ω : C
→ Dw let Mw
(C,Ω) (rooted at w) be the appropriate model extension of Mw

(rooted at w). For any interpretation σ : V
→ (C ∪ Dw) define σ̂ : V
→ Dw where

σ̂(x) = Ω(σ(x)) if σ(x) ∈ C and σ̂(x) = σ(x) if σ(x) ∈ Dw.

Then for all w ∈ Ww
(C,Ω) for all σ : V
→ (C ∪Dw) and for all PTML formulas ϕ,

we have Mw
(C,Ω), w, σ |= ϕ iff M, w, σ̂ |= ϕ.

Proof. The proof is by reverse induction on the height of w.

In the base case w is a leaf. Note that ρ(w) remains the same in both the models.

Hence all propositional formulas continue to equi-satisfy at w in both the models.

Since w is a leaf, there are no descendants in both the models and hence all modal

formulas continue to equi-satisfy. Finally, since δ is non-empty in both the models

at w, for all formulas α ∈ PTML we have Mw
(C,Ω), w, σ |= Q x α iff M, w, σ̂ |= Q x α

where for Q ∈ {∀, ∃}.

For the induction step, let w be at height h. Now we induct on the structure

of ϕ. Again, if ϕ is a proposition, then the claim follows since ρ(w) remains same.

The cases of ¬ and ∧ are standard.

For �x ϕ, we need to consider two cases: when σ(x) ∈ C and σ(x) ∈ Dw.

• If σ(x) ∈ C then let Ω(c) = d and hence σ̂(x) = d. If Mw
(C,Ω), w, σ |= �xϕ then

there is some (w, c, w′) ∈ Rw
(C,Ω) such that Mw

(C,Ω), w
′, σ |= ϕ. By construction,

w′ is of the form uc and the subtree rooted at uc is a copy of Mu
(C,Ω) for

some (w, d, u) ∈ R. Hence Mu
(C,Ω), u, σ |= ϕ and by induction hypothesis

M, u, σ̂ |= ϕ. Thus, M, w, σ̂ |= �xϕ.

86

Suppose M, w, σ̂ |= �xϕ, then there is some (w, d, u) ∈ R s.t M, u, σ̂ |= ϕ.

By induction hypothesis, Mu
(C,Ω), u, σ |= ϕ . Now, since Ω(c) = d, by construc-

tion there is (w, d, uc) ∈ Rw
(C,Ω) such that the sub-tree rooted at uc is a copy

of Mu
(C,Ω). Hence Mw

(C,Ω), u
c, σ |= ϕ. Thus Mw

(C,Ω), w, σ |= �xϕ.

• If σ(x) ∈ Dw, let σ(x) = d. Now Mw
(C,Ω), w, σ |= �xϕ iff there is some

(w, d, u) ∈ Rw
(C,Ω) such thatMw

(C,Ω), u, σ |= ϕ iff (by construction) (w, d, u) ∈ R
and the sub-tree rooted at u in Mw

(C,Ω) is a copy of Mu
(C,Ω) iff Mu

(C,Ω), u, σ |= ϕ

iff (by induction) M, u, σ̂ |= ϕ iff M, w, σ̂ |= �xϕ.

For the case of ∃x ϕ, we have Mw
(C,Ω), w, σ |= ∃x ϕ iff there is some c ∈ C ∪Dw

such that Mw
(C,Ω), w, σ[x �→c] |= ϕ iff (by induction) M, w, σ̂[x �→c] |= ϕ iff M, w, σ̂ |=

∃x ϕ.

5.5.4 Bounded agent property

Now we prove the bounded agent property for PTML2 formulas that are in FSNF

form. Suppose a formula θ in PTML2 is satisfiable in some tree model M (of height

at most md(θ)), we build a ‘bounded type-based model’ for θ using M.

We need to define the notion of types for agents at every world. In FO2 we

defined 2-types with respect to atomic predicates. In PTML2 we define the types

with respect to modules. In any given tree model M rooted at r, the 2-type of (c, d)

at some world w ∈ W is simply the set of all modules that are true at w where the

two variables are assigned c, d in either order. The 1-type of c at w includes the

set of all modules that are true at w when both x, y are assigned c. Also, for every

non-root node w, if (w′ a−→ w) then the 1-type of any c ∈ Dw should also capture

how c behaves with respect to a. Further, 1-type(w, c) should also include how c

acts with respect to d, for every d ∈ Dw.

87

Thus the 1-type of c at w is given by a 3-tuple where the first component is the

set of all modules that are true when both x, y are assigned c, the second component

captures how c behaves with respect to the incoming edge of w and the third compo-

nent is a set of subset of formulas such that for each d ∈ Dw there is a corresponding

subset of formulas that captures the 2-type of c, d. To ensure that the type definition

also carries the information of the height of the world w, if w is at height h then we

restrict 1-type and 2-type at w to modules of modal depth at most md(ϕ)− h.

Recall that for any formula ϕ ∈ PTML2, SF(ϕ) is the set of all subformulas. We

always assume that � ∈ SF(ϕ). Let SFh(ϕ) ⊆ SF(ϕ) be the set of all subformulas of

modal depth at most md(ϕ)− h. Thus, SF(ϕ) = SF0(ϕ) ⊇ SF1(ϕ) . . . ⊇ SFmd(ϕ)(ϕ).

Definition 5.17 (PTML type). For any PTML2 formula ϕ and for any tree model

M rooted at r with height at most md(ϕ), for all w ∈ W at height h (let Δ ∈ {�,�}
and z ∈ {x, y}):

• For all c, d ∈ δ(w), define 2-type(w, c, d) = (Γxy; Γyx) where

Γxy = {Δzψ(x, y) | Δzψ ∈ SFh(ϕ) and M, w |= Δzψ(c, d)} and

Γyx = {Δzψ(x, y) | Δzψ ∈ SFh(ϕ) and M, w |= Δzψ(d, c)}.

• If w is a non root node, (say w′ a−→ w) then for all c ∈ δ(w) define

1-type(w, c) = (Λ1; Λ2; Λ2) where Λ1 = 2-type(w, c, c) and Λ2 = 2-type(w, c, a)

and Λ3 = {2-type(w, c, d) | d ∈ δ(w)}.

• For the root node r, for all c ∈ δ(r) define 1-type(w, c) = (Λ1; Λ2; Λ3) where

Λ1 = 2-type(w, c, c) and Λ2 = {�} and Λ3 = {2-type(w, c, d) | d ∈ δ(w)}.

The Λ2 component in 2-type for root r is added for uniformity.

For all w ∈ W define 1-type(w) = {1-type(w, c) | c ∈ Dw} and similarly we have

2-type(w) = {2-type(w, c, d) | c, d ∈ Dw}.

88

For any formula in normal form, we use the same notations as in Def. 5.13. For

a given formula θ ∈ PTML2 in FSNF DNF, let δxθ = {∃y δx ∈ SF(θ)}. Similarly, let

δyθ = {∃x δy ∈ SF(θ)} and ψθ = {∀x∃y ψ ∈ SF(ϕ)}.

For any tree model M, let # �∈ D. For every w ∈ W and for all ∃y δ ∈ δxθ let

gwδ : Dw
→ Dw ∪ {#} such that M, w |= δ(c, gwδ (c)) and gwδ (c) = # only if there is

no d ∈ Dw such that M, w |= δ(c, d).

Similarly for all ∃x δ ∈ δyθ let hw
δ : Dw
→ Dw∪{#} such that M, w |= δ(hw

δ (c), c)

and hw
δ (c) = # only if there is no d ∈ Dw such that M, w |= δ(d, c).

Also for all ∀x∃y ψ ∈ ψθ let fw
ψ : Dw
→ Dw ∪{#} such that M, w |= ψ(c, fw

ψ (c))

and fw
ψ (c) = # only if there is no d ∈ Dw such that M, w |= ψ(c, d).

The functions g, h, f provide the witnesses at a world for every agent (if they

exist) for the existential formulas respectively. Let Eθ = δxθ ∪ δyθ ∪ ψθ, note that

|Eθ| ≤ |ϕ|.

Definition 5.18 (Witness sets). Let θ ∈ PTML2 be an FSNF DNF and let Eθ =

{χ1, . . . χq} for some q ≤ |SF(θ)|. Let M be any tree model of height at most md(θ).

For every w ∈ W and a ∈ δ(w) define Υ(a) = {b1, . . . , bq} which is a multi-set

that gives the witnesses for a where bi = gwδ (a) if χi is of the form ∃y δ ∈ δxθ

(similarly bi = hw
δ (a) or bi = fw

ψ (a) corresponding to χi of the from ∃x δy and

∀x∃y ψ respectively). If bi = # then set bi = b for some arbitrary but fixed b ∈ δ(w).

Example 5.19. Consider a PTML2 sentence θ := ∀x �x�x⊥∧∀x∃y (�x(�y(¬p)∧
∃y �yp)) which is in FSNF DNF. Let M be the model described in Fig. 5.5. Clearly,

M, r |= θ. Let f r : Dr
→ Dr be defined by f r(2i) = 2i+2 and at all wi, gi(j) = 2i+1

for all i ∈ N be the two (relevant) witness functions.

At leaf nodes ui and vi there is only one distinct one type and two types. At wi,

note that r
2i−→ wi is the incoming edge and only 2i + 1 and 2i + 2 have outgoing

89

Figure 5.5: Given model such thatM, r |= ∀x �x�x⊥∧∀x∃y (�x(�y(¬p)∧∃y �yp))
.

edges. Thus, there are 3 distinct 1-type members at wi, each for (2i + 1), (2i + 2)

and [the rest]. At the root again we have only a single distinct 1-type.

Theorem 5.20. Let θ ∈ PTML2 be an FSNF DNF sentence. Then θ is satisfiable

iff it is satisfiable in a model with bounded number of agents.

Proof. It suffices to prove (⇒). Let M be a PTML tree model of height at most

md(θ) rooted at r such that M, r |= θ.

Let Eθ = {χ1, . . . χq} be some enumeration. For every w ∈ W and a ∈ δ(w) let

Υ(a) = {b1 . . . bq} be the witnesses as described above.

For all w ∈ W and Λ ∈ 1-type(w) fix some awΛ ∈ δ(w) such that 1-type(w, awΛ) =

Λ. Furthermore, if c is the incoming edge of w and 1-type(w, c) = Λ then let awΛ = c.

Let Aw = {awΛ | Λ ∈1-type(w)}.

Now we define the bounded agent model. For every w ∈ W let Mw be the

subtree model rooted at w ∈ W . For every such Mw, we define a corresponding type

based model with respect to θ (denoted by Tw
θ with components denoted by δwθ , ρ

w
θ

etc) inductively as follows:

• If w is a leaf then Tw
θ is a tree with a single node w with

δwθ (w) = 1-type(w)× [1 . . . q]× {0, 1, 2} and ρwθ (w) = ρ(w).

90

• If w is at height h, Tw
θ is a tree rooted at w with

δwθ (w) = 1-type(w)× [1 . . . q]× {0, 1, 2} and ρwθ (w) = ρ(w).

Before defining the successors of w in Tw
θ note that for every (w, a, u) ∈ R we

have T u
θ which is the inductively constructed type based model rooted at u.

Also, inductively we have δuθ (u) =1-type(u)× [1 . . . q]× {0, 1, 2}.

Now for every awΛ ∈ Aw let {b1 . . . bq} be the corresponding witnesses as de-

scribed above. For every successor (w, awΛ, u) ∈ R and for every 1 ≤ e ≤ q and

f ∈ {0, 1, 2}, create a new copy of T u
θ (call it N (Λ,e,f)) and name its root as

u(Λ,e,f). Now add δwθ (w) to N (Λ,e,f) at u(Λ,e,f) guided by Ω where Ω is defined

as follows:

– For all Π ∈ 1-type(w) we have awΠ ∈ Aw.

Define Ω((Π, e, f)) = (1-type(u, awΠ), e, f).

– For all k ≤ q if 1-type(u, bk) = Π then Ω((Π, k, f ′)) = (1-type(u, bk), e, f)

where f ′ = f + 1 mod 3.

– Let f ′ = f − 1 mod 3. For all Π ∈ 1-type(w) let the witness set of awΠ

be {d1 . . . dq}. For all l ≤ q if 1-type(w, dl) = Λ then by Λ3 component,

there is some a ∈ δ(w) such that 2-type(w, dl, awΠ) = 2-type(w, awΛ, a).

Define Ω((Π, l, f ′)) = (1-type(u, a), e, f).

– For all (Π, e′, f ′) ∈ δwθ (w) if Ω(Π, e′, f ′) is not yet defined, then set

Ω(Π, e′, f ′) = (1-type(u, awΠ), e, f).

Add an edge (w, (Λ, e, f), u(Λ,e,f)) to Rw
θ .

Note that Ω is well defined since the first three steps are defined for the indices

f, (f+1 mod 3) and (f -1 mod 3) respectively, which are always distinct. Also note

that T r
θ is a model that satisfies bounded agent property. Thus, it is sufficient to

prove that T r
θ , r |= θ.

91

Claim. For every w ∈ W at height h and for all λ ∈ SFh(θ) the following holds:

1. Suppose λ is a sentence and M, w |= λ then Tw
θ , w |= λ.

2. If FV(λ) ⊆ {x, y} and for all Λ,Π ∈ 1-type(w) if M, w, [x
→ awΛ, y
→ awΠ] |= λ

then for all 1 ≤ e ≤ q and f ∈ {0, 1, 2} we have Tw
θ , w, [x
→ (Λ, e, f), y
→

(Π, e, f)] |= λ.

Note that the theorem follows from claim (1), since θ is sentence and M, r |= θ.

The proof of the claim is by reverse induction on h.

In the base case h = md(θ) which implies λ is modal free and hence λ is a boolean

combination of propositions. Thus, both the claims follow since ρ(w) = ρwθ (w).

For the induction step, let w be at height h. Now we induct on the structure of

λ. Again if λ is a literal then both the the claims follow since ρ(w) = ρwθ (w). The

case of ∧ and ∨ are standard.

For the case �xλ, only claim (2) applies. Let M, w, [x
→ awΛ, y
→ awΠ] |= �xλ.

Pick arbitrary e and f . To prove: Tw
θ , w, [x
→ (Λ, e, f), y
→ (Π, e, f)] |= �xλ.

Pick any (w, (Λ, e, f), u(Λ,e,f)) ∈ Rw
θ , then by construction we have (w, awΛ, u) ∈ R

and since M, w, [x
→ awΛ, y
→ awΠ] |= �xλ, we have M, u, [x
→ awΛ, y
→ awΠ] |= λ.

Let auΠ′ ∈ Au such that 1-type(u, auΠ′) =1-type(u, awΠ). Since awΛ is the incoming

edge of u, by Π2 component, we have 2-type(u, awΠ, a
w
Λ) =2-type(u, auΠ′ , awΛ) and also

awΛ ∈ Au . Hence M, u, [x
→ awΛ, y
→ auΠ′] |= λ and by induction hypothesis we have

T u
θ , u, [x
→ (1-type(u, awΛ), e, f), y
→ (1-type(u, auΠ′), e, f)] |= λ.

Now by construction (since case 1 of Ω definition applies), at u(Λ,e,f) we have

Ω(Λ, e, f) = (1-type(w, awΛ), e, f) and Ω(Π, e, f) = (1-type(u, auΠ′), e, f). and by

Lemma 5.16 we have Tw
θ , u

(Λ,e,f), [x
→ (Λ, e, f), y
→ (Π, e, f)] |= λ. Since we picked

u(Λ,e,f) arbitrarily, we have Tw
θ , w, [x
→ (Λ, e, f), y
→ (Π, e, f)] |= �xλ.

92

The case for �yλ is analogous.

For case �yλ, again only claim(2) applies. Let M, w, [x
→ awΛ, y
→ awΠ] |= �yλ.

Now pick any e and f . To prove: Tw
θ , w, [x
→ (Γ, e, f), y
→ (Π, e, f)] |= �yλ.

By supposition, there is some w
awΠ−→ u such that M, u, [x
→ awΛ, y
→ awΠ] |= λ.

With the argument similar to the previous case, we can show that Tw
θ , u

(Λ,e,f), [x
→
(Λ, e, f), y
→ (Π, e, f)] |= λ and hence Tw

θ , w, [x
→ (Γ, e, f), y
→ (Π, e, f)] |= �yλ.

The case of �xλ is symmetric.

For the case ∃y λ (where x is free at the outer most level), to prove claim (2) first

note that since θ is in the normal form, λ is quantifier-safe. Also note that ∃y λ = χi

for some χi ∈ Eθ. Now suppose M, w, [x
→ awΛ] |= ∃y λ. We need to prove that

Tw
θ , w, [x
→ (Λ, e, f)] |= ∃y λ.

Let the ith witness of awΛ be bi and hence M,w, [x
→ awΛ, y
→ bi] |= λ. Let

1-type(w, bi) = Π′, we claim that Tw
θ , w, [x
→ (Λ, e, f), y
→ (Π′, i, f ′)] |= λ where

f ′ = f+1 mod 3. Suppose not, then ∧ and ∨ can be broken down and we get some

module such that M,w, [x
→ awΛ, y
→ bi] |= Δzλ
′ and Tw

θ , w, [x
→ (Λ, e, f), y
→
(Π′, i, f ′)] �|= Δzλ

′ where Δ ∈ {�,�} and z ∈ {x, y}. Assume Δ = � and z = x

(other cases are analogous).

Thus Tw
θ , w, [x
→ (Λ, e, f), y
→ (Π′, i, f ′)] |= �x¬λ′ and hence there is some

w
(Λ,e,f)−−−−→ u(Λ,e,f) such that Tw

θ , u
(Λ,e,f), [x
→ (Λ, e, f), y
→ (Π′, i, f ′)] |= ¬λ′ (*).

By construction, there is a corresponding w
awΛ−→ u in M. Now since M, w, [x
→

awΛ, y
→ bi] |= �xλ
′, we have M, u, [x
→ awΛ, y
→ bi] |= λ′. Let b′i ∈ Au such

that 1-type(u, bi) =1-type(u, b′i). Since awΛ is the incoming edge to u by Π′
2 compo-

nent, we have 2-type(u, bi, awΛ) =2-type(u, b′i, a
w
Λ) and awΛ ∈ Au. Thus, M,u, [x
→

awΛ, y
→ b′i] |= λ′ and by induction hypothesis we have T u
θ , u, [x
→ (Λ, e, f), y
→ (1-

type(u, b′i), e, f)] |= λ′.

93

Now by construction, at u we have Ω((Λ, e, f)) = (Λ, e, f) and (by case 2 of

Ω definition) Ω((Π′, i, f ′)) = (1-type(u, b′i), e, f) and hence by Lemma 5.16 we have

Tw
θ , u

(Λ,e,f), [x
→ (Λ, e, f), y
→ (Π′, i, f ′)] |= λ′ which is a contradiction to (*).

The case of ∃y λ is analogous.

For the case of ∀x λ (where y is free at the outer most level), to prove claim (2),

suppose M, w, [y
→ awΠ] |= ∀x λ. To prove: Tw
θ , w, [y
→ (Π, e, f)] |= ∀x λ.

Pick any (Λ′, e′, f ′) ∈ δwθ (w). We claim that Tw
θ , w, [x
→ (Λ′, e′, f ′), y
→ (Π, e, f)] |=

λ (otherwise, like in the previous case, since λ is quantifier-safe, we can reach a module

where they differ and obtain a contradiction). The case ∀y λ is analogous.

Finally we come to sentences which are relevant for claim (1). Note that in the

normal form, at the outermost level, a sentence will have only literals or formulas of

the form ∀x∃y ψl or ∀x∀y ϕ.

For the case M, w |= ∀x∃y ψl, let ∀x∃y ψl be ith formula in Eθ. We need to

prove Tw
θ , w |= ∀x∃y ψl. Pick any (Λ, e, f) ∈ δwθ (w) and we have awΛ ∈ Aw. Let the

ith witness for awΛ be bi. Thus we have M,w, [x
→ aΓ, y
→ bi] |= ψl.

Let 1-type(w, bi) = Π′. We claim that Tw
θ , w, [x
→ (Γ, e, f), y
→ [Π′, e, f ′)] |= ψl

where f ′ = f+1 mod 3. Suppose not, ∧ and ∨ can be broken down and we get some

module such that M, w, [x
→ awΛ, y
→ bi] |= Δzλ
′ and Tw

θ , w, [x
→ (Λ, e, f), y
→
(Π′, i, f ′)] �|= Δzλ

′ where Δ ∈ {�,�} and z ∈ {x, y}. Assume Δ = � and z = y

(other cases are analogous).

Hence, Tw
θ , w, [x
→ (Λ, e, f), y
→ (Π′, i, f ′)] |= �y¬λ′ (*).

Let awΠ′ ∈ Aw such that 1-type(w, awΠ′) = 1-type(w, bi) = Π′. By Π′
3 compo-

nent, there is some d ∈ δwθ such that 2-type(w, awΠ′ , d) = 2-type(w, bi, awΛ) and hence

M, w, [x
→ d, y
→ awΠ′] |= �yλ
′.

94

Hence there is some w
aw
Π′−−→ u such that M, u, [x
→ d, y
→ awΠ′] |= λ′. Now let

1-type(u, d) = 1-type(u, d′) such that d′ ∈ Au and since awΠ′ is the incoming edge, we

have M, u, [x
→ d′, y
→ awΠ′] |= λ′ and by induction hypothesis,

T u
θ , u, [x
→ (1-type(u, d′), i, f ′), y
→ (1-type(u, awΠ′), i, f ′)] |= λ′.

Now, while constructing u(Π′,i,f ′) (case 3 of Ω definition applies for awΛ) we

have Ω((Λ, e, f ′ − 1)) = (1-type(u, d′), i, f ′). By Lemma 5.16, Tw
θ , u

(Π′,i,f ′), [x
→
(Λ, e, f), y
→ (Π′, i, f ′)] |= λ′ which contradicts (*).

Finally, for the case ∀x∀y ϕ if M, w |= ∀x∀y ϕ, then we need to prove that

Tw
θ , w |= ∀x∀y ϕ. Pick any (Γ, e, f), (Δ, e′, f ′) ∈ δwθ (w), and we claim that

Tw
θ , w, [x
→ (Γ, e, f), y
→ (Δ, e′, f ′)] |= ϕ (else again, go to the smallest module

where they differ and prove contradiction).

Corollary 5.21. Satisfiability problem for TML2 is in 2-EXPSPACE.

Proof. First note that TML2 is both constant domain closed and predicate closed

(Def 5.9). Also, TML2 has bounded agent model property, because if a given ϕ ∈
TML2 is satisfiable then its corresponding PTML2 translation ϕ is satisfiable iff (by

Theorem 5.20) the corresponding normal form θ of ϕ is satisfiable over agent set D
of size 22O(|ϕ|) iff (by Lemma. Hence TML2 has bounded agent model property. Thus

by Theorem 5.11, satisfiability problem for TML2 has a 2-EXPSPACE algorithm.

Note that a NEXPTIME lower bound follows since FO2 is already NEXPTIME-

complete. This leaves a gap between the known upper bound and the lower bound

which needs to be worked out.

Consider the Example 5.19. Recall that the PTML2 sentence under consideration

is θ := ∀x �x�x⊥ ∧ ∀x∃y (�x(�y(¬p) ∧ ∃y �yp)) which is in FSNF DNF and the

model M described in Fig. 5.5 is given by M = (W ,D, δ,R, ρ) where

95

Figure 5.6: Corresponding bounded agent model with N , r |= θ. aji , b
j
i , c

j
i corre-

sponds to agents with 1 ≤ j ≤ 2 and i ∈ {0, 1, 2}. The edge aji , b
j
i , c

j
i indicate one

successor for every 1 ≤ j ≤ 2 and i ∈ {0, 1, 2}.

• W = {r} ∪ {ui, vi, wi | i ∈ N}

• D = N

• δ(r) = {2i | i ∈ N} (all even numbers) and

δ(wi) = δ(ui) = δ(vi) = N

• R = {(r, 2i, wi), (wi, 2i+ 1, ui), (wi, 2i+ 2, vi) | i ∈ N}

• ρ(r) = ρ(wi) = ρ(vi) = ∅ and ρ(ui) = p for all i ∈ N.

Clearly, M, r |= θ and the witnesses are given by f r : Dr
→ Dr be defined by

f r(2i) = 2i+ 2 and at all wi, gi(j) = 2i+ 1 for all i ∈ N. Recall that, at leaf nodes

ui and vi there is only one distinct one type and two types.

At wi, note that r
2i−→ wi is the incoming edge and only 2i + 1 and 2i + 2

have outgoing edges. Thus, there are 3 distinct 1-type members at wi, each for

(2i+1), (2i+2) and [the rest]. Let b, c, d be the respective types. At the root again

we have only a single distinct type (call it a).

Since there are 2 existential formulas, the root of the type based model has

(1 × 2 × 3) = 6 agents let it be {aef | 1 ≤ e ≤ 2, 0 ≤ f ≤ 2} and 0 be the

representative. At w0 we have (3 × 2 × 3) = 18 agents. Let the representatives be

1, 2, 0 for b, c, d respectively.

96

Note that we cannot pick any other representative for [the rest] other than 0

since 0 is the incoming edge to w0. Let the bounded agent set be {bef , cef , def | 1 ≤
e ≤ 2, 0 ≤ f ≤ 2}. The corresponding bounded model N is described in Figure

5.6. It can be verified that N , r |= θ.

5.6 Bundled fragment

As observed in Chapter 4, one cause for undecidability is the occurrence of quantifiers

and modalities independently. Thus we can try to restrict the occurrence of modality

and quantifiers in a restricted fashion to look for decidable fragments. One promising

approach towards this direction is where we have formulas only of the form ∃x�xα

and ∀x�xα (and ∀x�xα and ∃x�xα dually). Note that we do not impose any

restriction on the arity of the predicates.

In [PRW18], we consider the analogous notion of bundling for FOML where we

have formulas of the form ∀x�α and ∃x�α (again without any restriction on the

arity of predicates). This fragment is suitable to study epistemic logics for the

notions of knowing-how, knowing-why, knowing-what (see Wang, [Wan17]). For

instance, ∃x�ϕ may mean that there exists a mechanism which agent knows such

that executing it will make sure in a ϕ state.

For this fragment, it critically matters if the models considered are increasing

domain FOML models or constant domain FOML models. Table 5.1 describes the

summary of decidability results.

Note that the translation of TML formulas to FOML formulas (Def. 5.1, Tr2)

preserves bundled formulas i.e, if ϕ ∈ TML is a bundled formula then Tr2(ϕ) is a

bundled FOML formula. Thus positive results of Table 5.1 hold for bundled fragment

of TML.

97

Language Model Decidability Remark
∀�, P 1 Const. undecidable
∃�, P Const. decidable PSPACE-complete
∃�, ∀�, P Inc decidable PSPACE-complete

Table 5.1: Satisfiability problem classification for Bundled FOML fragment, P refers
to predicates of arbitrary arity and P 1 refers to unary predicates. Models are either
constant domain or increasing domain.

5.6.1 Implicitly quantified modal logic

When we consider the bundled fragment of PTML, we have formulas of the form

∀x�xα and ∃x�xα where α contains only propositions as atoms. Since there are no

predicates of positive arity, the variables can be eliminated from the syntax and we

can define a bimodal propositional logic where ∃x�x α can be replaced by a variable

free modality [∃]α, and similarly ∀x�x α is replaced by [∀] α. In this logic, the

modalities are implicitly quantified and thus we call this implicitly quantified modal

logic (IQML) [PR19b]. Note that even though PTML has only propositions, it is

still a quantified logic. In the spirit of propositional modal logic, IQML eliminates

variables altogether.

In an epistemic setting, IQML coincides with the notion of somebody knows and

everybody knows, when the set of reasoners is not fixed a priori. Grove and Halpern

[GH93, Gro95] discuss such a logic where the agent set is not fixed and the agent

names are not common knowledge. Khan et al. [KP18] use a logic similar to IQML

to study approximations in the context of rough sets.

Definition 5.22 (IQML syntax). Let P0 be a countable set of propositions. The

syntax of IQML is given by:

ϕ := p ∈ P0 | ¬ϕ | ϕ ∧ ϕ | [∃] ϕ | [∀] ϕ

98

The dual modalities of [∃] and [∀] are respectively defined by 〈∀〉ϕ := ¬[∃]¬ϕ
and 〈∃〉ϕ := ¬[∀]¬ϕ.

Note that we do not have free variables to talk about and hence we can re-

lax the monotonicity condition imposed for PTML structures. Thus, we can spec-

ify structures for IQML in a way closer to that of propositional multi-modal logic

(MLn). The only difference is that the Kripke structure for MLn is given by M =

(W ,R1, . . . ,Rn, ρ) where each Ri ⊆ (W × W) is the accessibility relation for the

corresponding index and ρ is the valuation of propositions at every world, whereas

in the case of IQML, the modal index set is specified along with the model.

Definition 5.23 (IQML structure). An IQML structure is given by the tuple M =

(W , I,R, δ, ρ) where W is a non-empty set of worlds, I is a non-empty countable

index set and R = {Ri | i ∈ I} where each Ri ⊆ (W×W) and δ : W
→ 2I such that

whenever (w, u) ∈ Ri we have i ∈ δ(w) and ρ : W
→ 2P is the valuation function.

The only difference between IQML and PTML models is that the monotonicity

condition on δ is relaxed for IQML. The agent set I is countable, and hence we

assume I to be some initial segment of N or N itself.

Definition 5.24 (IQML semantics). Given a IQML model M, an IQML formula ϕ

and w ∈ WM, define M, w |= ϕ inductively as follows:

M, w |= p ⇔ p ∈ ρ(w)

M, w |= ¬ϕ ⇔ M, w, �|= ϕ

M, w |= (ϕ ∧ ψ) ⇔ M, w � ϕ and M, w |= ψ

M,w |= [∃]ϕ ⇔ there is some i ∈ δ(w) such that for all u ∈ W
if (w, u) ∈ Ri then M, u |= ϕ

M, w � [∀]ϕ ⇔ for all i ∈ δ(w) and for all u ∈ W
if (w, u) ∈ Ri then M, u |= ϕ

99

A formula ϕ ∈ IQML is satisfiable if there is some model M and w ∈ W such

that M, w |= ϕ. A formula ϕ is said to be valid if ¬ϕ is not satisfiable.

Given any model M with w ∈ W and a formula [∃]ϕ, if M, w |= [∃]ϕ and i ∈ I
is the corresponding witness then we define the notation M, w |= �iϕ. Similarly

we have M, w |= �iϕ for 〈∃〉ϕ. Note that the elements of I are not present in the

syntax.

Note that IQML is a sub-fragment of bundled fragment of TML. In fact, IQML is

exactly the set of bundled TML formulas whose atoms are restricted to propositions.

Thus, the satisfiability for IQML is decidable in PSPACE. In this section we give a

complete axiom system for IQML and show that there is a canonical IQML model.

This gives an alternate decidability proof for IQML. Table 5.2 gives a complete

axiom system for the valid formulas of IQML. The proof is along the standard

lines, with the main interest being in how agent names are synthesized in the model

construction since the syntax is variable free.

The axioms and inference rules are standard. Axiom A2 describes the interaction

between [∀] and 〈∀〉 operators. The ([∃]Nec) rule is sound since I is non-empty. Note

that the axiom system is similar to the one discussed by Grove and Halpern [GH93],

except for ([∀]Nec) and ([∃]Nec). This is because IQML has no names, as opposed

to the logic considered in [GH93].

Lemma 5.25. The axiom system �AXA is sound for IQML.

Proof. We only prove that A2 is a validity. For any model M and any world w let

M, w |= [∀](ϕ → ψ) and M, w |= 〈∀〉ϕ. Since M, w |= [∀](ϕ → ψ) for all i ∈ δ(w)

and for all w i−→ u we have M, u |= ϕ → ψ. Further since M, w |= 〈∀〉ϕ, for all

i ∈ δ(w) there is some v such that w i−→ v and M, v |= ϕ. But then M, v |= ϕ → ψ

and hence M, v |= ψ. Thus by semantics, M, w |= 〈∀〉ψ.

100

�AXA
A0. All instances of propositional validities.
A1. [∀](ϕ → ψ) → ([∀]ϕ → [∀]ψ)
A2. [∀](ϕ → ψ) → (〈∀〉ϕ → 〈∀〉ψ)
(MP) ϕ → ψ, ϕ

ψ

([∀]Nec) ϕ
[∀]ϕ

([∃]Nec) ϕ
[∃]ϕ

Table 5.2: IQML axiom system (AXA)

A set of IQML formulas Γ is consistent if there is no formula α such that Γ �AXA α

and Γ �AXA ¬α. Also, Γ is maximally consistent if Γ is consistent and for every

ψ ∈ IQML either ψ ∈ Γ or ¬ψ ∈ Γ. Before proving completeness, we first prove

some useful lemmas.

Lemma 5.26. Given a set of formulas Γ ⊆ SF(ϕ), if Γ is a maximal consistent set

then

1. if 〈∃〉β ∈ Γ then {β} ∪ {ψ | [∀]ψ ∈ Γ} is consistent.

2. if {〈∀〉γ, [∃]δ} ⊆ Γ then {γ, δ} ∪ {ψ | [∀]ψ ∈ Γ} is consistent.

Proof. To prove (1), let Γ be a maximal consistent set of formulas and 〈∃〉β ∈ Γ.

Define Λ = {β} ∪ {ψ | [∀]ψ ∈ Γ}. We need to prove that Λ is consistent. Suppose

not, then there are some ψ1, ψ2 · · ·ψn ∈ Λ such that

�AXA (ψ1 ∧ ψ2 · · ·ψn) → ¬β.
By ([∀]Nec) we have �AXA [∀]((ψ1 ∧ ψ2 · · ·ψn) → ¬β).
By (A1) and (MP), �AXA [∀](ψ1 ∧ ψ2 · · ·ψn) → [∀]¬β.

Also note that ([∀]ψ1 ∧ [∀]ψ2 · · · [∀]ψn) → [∀](ψ1 ∧ ψ2 · · ·ψn) is a theorem in this

system. Hence �AXA ([∀]ψ1 ∧ [∀]ψ2 . . . ∧ [∀]ψn) → [∀]¬β. This implies [∀]¬β ∈ Γ

which is a contradiction to 〈∃〉β ∈ Γ (since Γ is maximally consistent).

101

To prove (2), again let Γ be a maximal consistent set of formulas and let

{〈∀〉γ, [∃]δ} ⊆ Γ. Define Λ = {γ, δ} ∪ {ψ | [∀]ψ ∈ Γ}. We need to prove that

Λ is consistent. Suppose not, then there are some ψ1, ψ2 · · ·ψn ∈ Λ such that

�AXA (ψ1 ∧ ψ2 · · ·ψn) → (γ → ¬δ).

Now arguing in the same way as in (1) we have

Γ �AXA [∀](γ → ¬δ)
By (A2) Γ �AXA [∀](γ → ¬δ) → (〈∀〉γ → 〈∀〉¬δ)
By (MP) Γ �AXA 〈∀〉γ → 〈∀〉¬δ
Since 〈∀〉γ ∈ Γ, Γ �AXA 〈∀〉¬δ.
This is a contradiction since [∃]δ ∈ Γ and Γ is consistent.

Now we define the canonical model. Let EB = {[∃]α | [∃]α ∈ IQML} be the

set of all [∃] IQML formulas. Let EB = {ϕ1, ϕ2, . . .} be some enumeration. These

formulas will be used as ‘agents’ in the canonical model.

Definition 5.27. The canonical IQML model is given by M̂ = (Ŵ , Î, R̂, δ̂, ρ̂) where

• Ŵ is set of all maximal consistent sets.

• Î = {i[∃]α | [∃]α ∈ EB} ∪ {0} where 0 is a new distinguished agent.

• For all w, u ∈ Ŵ,

For all [∃]α ∈ EB we have w
i[∃]α−−→ u if {α} ∪ {ψ | [∀]ψ ∈ w} ⊆ u.

For 0 ∈ Î we have w
0−→ u if {ψ | [∀]ψ ∈ w} ⊆ u.

• For all w ∈ Ŵ define δ̂(w) = {i[∃]α | [∃]α ∈ w} ∪ {0}

• ρ̂(w) = w ∩ P.

Lemma 5.28. In the canonical model, for all w, u ∈ Ŵ and i ∈ δ̂(w) if w i−→ u then

for all ψ ∈ u we have 〈∃〉ψ ∈ w.

Theorem 5.29. �AXA is a complete axiom system for IQML.

102

Proof. We show this by proving that any consistent formula ϕ ∈ IQML is satisfiable.

First note that any consistent set of formulas Γ can be extended to a maximal

consistent set by the standard Lindenbaum construction. Hence for any consistent

set of formulas Γ, there is some world w ∈ Ŵ such that Γ ⊆ w. Now, we prove the

truth lemma.

Claim. For any w ∈ Ŵ , M̂, w |= ϕ iff ϕ ∈ w.

The proof is by induction on the structure of ϕ. In the base case we have

propositions and the claim follows by definition of ρ̂. The ¬ and ∧ cases are standard.

For the case ϕ := 〈∃〉β, suppose M̂, w |= 〈∃〉β then there is some a ∈ δ̂(w) and

some (w, a, u) ∈ R̂ such that M̂, u |= β. By induction hypothesis β ∈ u and by

lemma 5.28, 〈∃〉β ∈ w.

For the other direction, suppose 〈∃〉β ∈ w then since w is a consistent set (by

lemma 5.26(1)) we have Γ = {β} ∪ {ψ | [∀]ψ ∈ w} is consistent. Thus there is some

world u ∈ Ŵ such that Γ ⊆ u. Now since β ∈ u, by induction hypothesis M̂, u |= β

and also since {ψ | [∀]ψ ∈ w} ⊆ u we have w
0−→ u and hence M̂, w |= 〈∃〉β.

For the case ϕ := [∃]β, To prove (⇒), we consider the contrapositive. We prove

that if [∃]β �∈ w then M̂, w |= 〈∀〉¬β. Let [∃]β �∈ w. Since w is maximally consistent

〈∀〉¬β ∈ w. Pick arbitrary i ∈ δ̂(w), then i is of the form i[∃]α or i = 0.

For i[∃]γ ∈ δ̂(w), we have [∃]γ ∈ w and by Lemma 5.26(2), Γ = {¬β, γ} ∪ {ψ |
[∀]ψ ∈ w} is consistent. Thus there is some world v ⊇ Γ and by construction of the

canonical model, w
i[∃]γ−−→ v. Also since ¬β ∈ v by induction M̂, v |= ¬β.

For 0 ∈ δ̂(w), let � be any validity. By ([∃]Nec) we have �AXA [∃]� and hence

[∃]� ∈ w. Again, by Lemma 5.26(2), Γ = {¬β,�} ∪ {ψ | [∀]ψ ∈ w} is consistent.

Hence there is some v ∈ Ŵ such that Γ ⊆ v. And thus w
0−→ v and by induction

hypothesis, M̂, v |= ¬β.

103

Thus for every a ∈ γ(w) there is some v such that w
a−→ v and M̂, v |= ¬β.

Hence M̂, w |= 〈∀〉¬β.

For the other direction, suppose [∃]β ∈ δ̂(w) then by definition of the canonical

model we have for any w
i[∃]β−−→ u it is always the case that β ∈ u. By induction

hypothesis, for any w
i[∃]β−−→ u we have M̂, u |= β. Hence M̂, w |= [∃]β.

Corollary 5.30. Satisfiability problem for IQML is decidable.

In the next chapter, we will discuss bisimulation for IQML and compare the

expressiveness of IQML to the 1-variable fragment of PTML.

5.7 Discussion

We have proved that the two variable fragment of PTML2 (and hence TML2) is

decidable. The upper bound shown is in 2-EXPSPACE. A NEXPTIME lower bound

follows since FO2 satisfiability can be reduced to PTML2 satisfiability. We believe

that by careful management of the normal form, space can be reused and the upper

bound can in fact be brought down by one exponent. That would still leave a

significant gap between lower and upper bounds to be addressed in future work.

If we have even a single constant c in the vocabulary then the 2-variable frag-

ment of TML becomes undecidable. This is because we can translate 2-variable

FOML formulas into 2-variable TML formulas by using the constant c to index the

modalities. Formally, �α is translated to �cα. This translation preserves satisfia-

bility and hence TML2 (by Lemma 5.8, PTML2) extended with a single constant is

undecidable.

However, the story is unclear when we have equality in the syntax. Note that

the proof strategy for PTML2 cannot be directly used when equality is involved.

104

In particular, we can no longer use model extension (Def.5.15 and Lemma 5.16)

since equality might restrict the number of agents at every world. The status of

decidability of TML2
= is currently open.

For the bundled fragment, the positive decidability results follow from trans-

lating bundled TML formulas to bundled FOML formulas. On the other hand, if

the translation takes us to undecidable fragments then the status is not clear. In

particular, the bundled fragment of the form ∀x�x is over constant agent models is

open.

For first order modal logic itself there are other natural bundles to consider: �∃
and �∀ and a sequence of quantifiers followed by a modality, but these fragments

do not make sense for TML since the variable quantification should occur before it

appears as modal index.

The fragments discussed in this thesis are motivated by syntactic restrictions.

There have been some investigations in the literature towards identifying some de-

cidable fragments of term modal logic motivated by semantic restrictions. These

fragments arise from their interest in the epistemic logic to model the notion of

‘everyone knows’ and ‘someone knows’ and community knowledge6 (see Grove and

Halpern [GH93, Gro95]). Orlandelli and Corsi [OC17] consider two such decidable

fragments:

1. Atoms are restricted to propositions and quantifiers, modality occurrence is re-

stricted to the form: ∃x�x α (and ∀x�x α dually). This fragment corresponds

to the [∃] operator of IQML that we have discussed.

2. Quantifiers appear in a restricted guarded form: ∀x(P (x) → �xα) and ∃x(P (x)∧
�xα) (and their duals) where atoms in α are restricted to propositions.

6Example: All lawyers know that everybody who has signed in the contract knows that they
are guilty : ∀x(Lawyer(x) → �x(∀y Sign(y) → �y (Guilty(y)).

105

They prove that the satisfiability is in PSPACE for both the fragments. The

PSPACE decidability for (1) is proved via translation into classical propositional

modal logic and a tableau proceduce again gives a PSPACE procedure for (2) [OC17].

Shtakser ([Sht18]) considers a second order version of the restricted guards (with

propositional atoms) of the form ∀X(P (X) → �Xα) and ∃X(P (X) ∧ �Xα) where

X is quantified over subsets of agents and P is interpreted appropriately at every

world w as ρ(w, P) ⊆ 22
Dw . Also, �Xα is true at w if for every c ∈ X, �cα is true at

w. This fragment is proved to be in PSPACE via translation into the loosely guarded

fragment of first order logic [Sht18].

Table 5.3 gives a summary of various fragments of term modal logic and its

decidability status.

Syntax Predicate Decidability Remark
Restriction Restriction

PTML� (�,⊥) � implies TML3 is undec.

TML3
= only = � mutually recursively inseparable

Monodic unary � translation to monodic FOML [WZ01]

Bundled No restriction � translation to bundled FOML [PRW18]

TML2 No restriction � bounded agent property

PTML2 Proposition � translation from 2-var
+1 const. FOML

TML2
= with = open

Guarded Propositions � [OC17], [Sht18]
PTML

Table 5.3: Summary of satisfiability problem for fragments of TML.

106

Chapter 6

Expressivity

The notion of bisimulation plays a crucial role in understanding the relationship

between the structural properties of the model and the semantics of the logic (see

book [BdRV01]). In general, bisimulation induces an equivalence relation over the

pointed structures such that all models belonging to the same equivalence class

satisfy the same set of formulas. In other words, there is no formula in the logic

that can distinguish two models that are bisimilar. For more details on bisimulation

for ML, refer [BdRV01, GO07, Ben10b] and refer [Ben10a, Wan17] for bisimulations

for first order modal logic. The notion of bisimulation is akin to the notion of partial

isomorphism studied for first order logic [PG92].

The notion of bisimulation for PTML is along the same lines as that of the

bisimulation for first order modal logic [Ben10a] with obvious adjustments to suit

term modal logic. However, since FOML also has predicates, the bisimulation needs

to incorporate the notion of Partial isomorphism associated with FO. On the other

hand, PTML has only propositions as atoms with quantified modalities and this

leads to a slightly different way to define the notion of bisimulation. We take this

up in detail in this chapter.

107

6.1 Bisimulation for PTML

Note that in MLn, the truth of a formula at a world in a model depends on the

valuation function at that world and the truth of subformulas in the successor worlds

in the model. On the other hand, the truth of an FO formula in a model depends on

the truth of subformulas in the model along various extensions of the interpretation

function. In our logic, we have both, and hence bisimilarity of PTML is given by a

pair (G,H) where G captures the bisimulation for worlds (corresponding to the ML

aspect of PTML) and H captures the bisimulation for agents (corresponding to the

FO aspect of PTML).

Definition 6.1 (PTML bisimulation). Let M1 = (W1,D1, δ1,R1, ρ1) and M2 =

(W2,D2, δ2,R2, ρ2) be two PTML models. Let G ⊆ (W1×W2) be a non-empty binary

relation over worlds and H = {H(w1,w2) | (w1, w2) ∈ G} where for every (w1, w2) ∈ G,

H(w1,w2) ⊆ (δ1(w1) × δ2(w2)) is a non-empty binary relation over agents. The pair

(G,H) is called a bisimulation if for all (w1, w2) ∈ G the following conditions hold:

val: ρ1(w1) = ρ2(w2).

agent-forth: For all d1 ∈ δ1(w1) there is some d2 ∈ δ2(w2) such that

(d1, d2) ∈ H(w1,w2).

agent-back: For all d2 ∈ δ2(w2) there is some d1 ∈ δ1(w1) such that

(d1, d2) ∈ H(w1,w2).

For all (d1, d2) ∈ H(w1,w2)

world-forth: for all u1 ∈ W1 if w1
d1−→ u1 ∈ R1 there exists some u2 ∈ W2 such that

w2
d2−→ u2 ∈ R2 and (u1, u2) ∈ G and H(w1,w2) ⊆ H(u1,u2).

world-back: for all u2 ∈ W2 if w2
d2−→ u2 ∈ R2 there exists u1 ∈ W1 such that

w1
d1−→ u1 ∈ R1 and (u1, u2) ∈ G and H(w1,w2) ⊆ H(u1,u2).

108

In the bisimulation tuple (G,H), G relates the bisimilar worlds. Now since the

set of local agents differs at each world, for every bisimilar world pair (w1, w2) ∈ G,

we need a bisimulation over agents and that is captured by H(w1,w2). Accordingly,

G is called world bisimulation and H is called agent bisimulation.

The first condition in the Def. 6.1 says that the bisimilar worlds agree on valua-

tion of propositions. Agent back and forth properties state that for every bisimilar

world pair, every agent in one world can be mapped to some agent in the other. The

last condition is the analogue of the back and forth condition of bisimulation of ML

which should hold for all the bisimilar agent pairs. Note that along with the stan-

dard back and forth conditions there is an additional constraint H(w1,w2) ⊆ H(u1,u2).

This ensures that bisimilar agent pairs continue to be bisimilar in the successor

worlds, corresponding to the monotonicity property of δ.

Given two PTML models M1 and M2 with w1 ∈ W1 and w2 ∈ W2 and for

all n ≥ 0 and for all c1, . . . , cn ∈ δ1(w1) and d1, . . . , dn ∈ δ2(w2) we say that

(M1, w1, c1, . . . , cn) is bisimilar to (M2, w2, d1, . . . , dn) if there is some bisimulation

(G,H) such that (w1, w2) ∈ G and {(ci, di) | i ≤ n} ⊆ H(w1,w2). We denote this by

(M1, w1, c1, . . . , cn) � (M2, w2, d1, . . . , dn). If n = 0, we have (M1, w1) � (M2, w2)

which does not impose any condition on H(w1,w2).

Bisimulation is the semantic counterpart of the classical notion of elementary

equivalence for modal logics which preserve formulas.

Definition 6.2 (Elementary equivalence). Let M1 = (W1,D1, δ1,R1, ρ1) and M2 =

(W2,D2, δ2,R2, ρ2) be two PTML models. For all w1 ∈ W1 and w2 ∈ W2, let n ≥ 0

and for all c1, . . . , cn ∈ δ1(w1) and d1, . . . , dn ∈ δ2(w2) we say that (M1, w1, c1, . . . , cn)

is elementarily equivalent to (M2, w2, d1, . . . , dn) if for all formula PTML formulas

ϕ(x1, . . . , xn) we have M1, w1 |= ϕ(c1, . . . , cn) iff M2, w2 |= ϕ(d1, . . . , dn).

We denote this by (M1, w1, c1, . . . , cn) ≡ (M2, w2, d1, . . . , dn).

109

If n = 0, we have (M1, w1) ≡ (M2, w2) which is the same as saying for all PTML

sentence ϕ we have M1, w1 |= ϕ iff M2, w2 |= ϕ.

As in MLn, we now prove that bisimulation implies elementary equivalence for

PTML.

Theorem 6.3 (bisimulation preserves elementary equivalence). Given two PTML

models M1 = (W1,D1, δ1,R1, ρ1) and M2 = (W2,D2, δ2,R2, ρ2), for all w1 ∈ W1

and w2 ∈ W2 and for all c1, . . . , cn ∈ δ1(w1) and d1, . . . , dn ∈ δ2(w2):

if (M1, w1, c1, . . . , cn) � (M2, w2, d1, . . . , dn) then

(M1, w1, c1, . . . , cn) ≡ (M2, w2, d1, . . . , dn).

Proof. We prove this for all models and for all bisimilar pairs simultaneously by

induction on the structure of the formula.

In the base case we have propositions and the claim follows by condition 1. The

¬ and ∧ cases follow by routine applications of the induction hypothesis.

For the case �xj
ψ, pick any M1,M2 with w1 ∈ W1 and w2 ∈ W2 and pick

any c1, . . . , cn ∈ δ1(w1) and d1, . . . , dn ∈ δ2(w2) such that (M1, w1, c1, . . . , cn) �

(M2, w2, d1, . . . , dn). Let (G,H) be the corresponding bisimulation which implies

(w1, w2) ∈ G and {(ci, di) | i ≤ n} ⊆ H(w1,w2). We need to prove that M1, w1 |=
�cjψ(c1, . . . , cn) iff M2, w2 |= �djψ(d1, . . . , dn).

Suppose M1, w1 |= �cjψ(c1, . . . , cn). Then by semantics there is some u1 ∈
W1 such that w1

cj−→ u1 ∈ R1 and M1, u1 |= ψ(c1, . . . , cn). By condition world-

forth, there is some u2 ∈ W2 such that w2
dj−→ u2 ∈ R2 and (u1, u2) ∈ G and

H(w1,w2) ⊆ H(u1,u2). Now since {(ci, di) | i ≤ n} ⊆ H(w1,w2), we also have {(ci, di) |
j ≤ n} ⊆ H(u1,u2). Thus (M1, u1, c1, . . . , cn) � (M2, u2, d1, . . . , dn) and by induction

hypothesis we haveM2, u2 |= ψ(d1, . . . , dn). HenceM2, w2 |= �djψ(d1, . . . , dn). The

proof of the other direction is symmetric using world-back condition .

110

For the case ϕ = ∃y ψ(x1, . . . , xn, y), again pick any M1,M2 with w1 ∈ W1 and

w2 ∈ W2 and c1, . . . , cn ∈ δ1(w1) and d1, . . . , dn ∈ δ2(w2) such that

(M1, w1, c1, . . . , cn) � (M2, w2, d1, . . . , dn).

Let (G,H) be the corresponding bisimulation which implies (w1, w2) ∈ G and

{(ci, di) | i ≤ n} ⊆ H(w1,w2). We need to prove that M1, w1 |= ∃y ψ(c1, . . . , cn, y) iff

M2, w2 |= ∃y ψ(d1, . . . , dn, y)

Suppose M1, w1 |= ∃y ψ(c1, . . . , cn, y). By semantics, there is some c ∈ δ1(w1)

such that M1, w1 |= ψ(c1, . . . , cn, c). Now by agent-forth condition, there exists

some d ∈ δ2(w2) such that (c,d) ∈ H(w1,w2) and thus we have

(M1, w1, c1, . . . , cn, c) � (M2, w2, d1, . . . , dn,d).

Now by induction hypothesis, M2, w2 |= ψ(d1, . . . , dn,d) and hence M2, w2 |=
∃y ψ(d1, . . . , dn, y). The proof of the other direction is symmetric, using the condi-

tion agent-back.

In MLn, the converse holds for image-finite models. For PTML, this notion is

name-specific.

Definition 6.4 (Image finite models). A PTML model M = (W ,D, δ,R, ρ) is

image-finite if for all u ∈ W , δ(u) is finite and for all d ∈ δ(u), the set {v | u d−→ v}
is finite.

Thus image-finite models have finitely many names associated with every world

and is finitely branching on each name. For classical propositional modal logic

(MLn), bisimilarity over image-finite models 1 coincides with formula preservation.

As one may expect, for PTML also, formula preservation characterizes bisimilarity

over image finite models.
1For MLn, an image finite model corresponds to having finitely many successors at every world

for every i ∈ Ag.

111

Theorem 6.5. Let M1 = (W1,D1, δ1,R1, ρ1) and M2 = (W2,D2, δ2,R2, ρ2) be

two image-finite PTML models. For all w1 ∈ W1 and for all w2 ∈ W2 and for all

c1, . . . , cn ∈ δ1(w1) and d1, . . . , dn ∈ δ2(w2) we have

(M1, w1, c1, . . . , cn) � (M2, w2, d1, . . . , dn) iff (M1, w1, c1, . . . , cn) ≡ (M2, w2, d1, . . . , dn).

Proof. (⇒) follows from Theorem 6.3. Thus it is sufficient to prove (⇐).

Define G = {(u1, u2) | for all PTML sentence ϕ we haveM1, w1 |= ϕ iffM2, w2 |=
ϕ}. For every (u1, u2) ∈ G define H(u1,u2) to be the smallest set such that and for

all n ≥ 1 and c1, . . . , cn ∈ δ1(u1) and d1, . . . , dn ∈ δ2(u2) if (M1, u1, c1, . . . , cn) ≡
(M2, u2, d1, · · · dn) then {(ci, di) | i ≤ n} ⊆ H(u1,u2).

It is sufficient to show that (G,H) is indeed a bisimulation. For this, we verify

all the conditions. Pick any (u1, u2) ∈ G.

Since u1 and u2 satisfy the same sentences, in particular they agree on proposi-

tions, Hence condition 1 holds.

For condition agent-forth, suppose it does not hold2. Then there is some c ∈
δ1(u1) such that for all d ∈ δ2(u2) we have (M1, u1, c) �≡ (M2, u2, d). Since M2

is image-finite, let δ2(u2) = {d1, . . . dm}. Thus, for every di ∈ δ2(u2) we have a

formula ϕi(x) such that M1, u1 |= ϕi(c) and M2, u2 |= ¬ϕi(di). This implies

M1, u1 |= ∃x (
∧

i≤m

ϕi) and M2, u2 |= ∀x (
∨

i≤m

¬ϕi). This contradicts the assumption

that (u1, u2) ∈ G.

Condition agent-back is proved analogously using the fact that M1 is image-

finite.

For condition world-forth, suppose it does not hold. Then there is some (c,d) ∈
H(u1,u2) and some u1

c−→ u′ ∈ R1 for which the condition fails.

2Note that c, di are not in the syntax and they are not needed.

112

Now since (c,d) ∈ H(u1,u2) it means there is some i, n ≥ 0 and some live

agents c1, . . . , ci−1, ci+1, . . . cn ∈ δ1(u1) and d1, . . . , di−1, di+1, . . . dn ∈ δ2(u2) such

that (M1, u1, c1, . . . , ci−1, c, ci+1, . . . cn) ≡ (M2, u2, d1, . . . , di−1,d, di+1, . . . dn).

Let S(d) = {v | u2
d−→ v ∈ R2}. Note that S(d) is non-empty: otherwise,

M1, u1, [xi �→ c] |= �xi
� and M2, u2, [xi �→ d] |= �xi

⊥ and this contradicts

(M1, u1, c1, . . . , ci−1, c, ci+1, . . . cn) ≡ (M2, u2, d1, . . . , di−1,d, di+1, . . . dn).

The model M2 is image-finite and hence let S(d) = {v1, . . . vk}. Define S1(d) =

{vj | vj ∈ S(d) and (u′, vj) ∈ G} and S2(d) = {vj | vj ∈ S(d) and (u′, vj) �∈ G}.
First we observe that S1(d) is non empty. If not, then for all vj ∈ S(d) there

is some sentence ψj such that M1,u
′ |= ψj and M2, vi |= ¬ψj. Thus we have

M1, u1, [xi �→ c] |= �xi
(

k∧

j=1

ψj) and M2, u2, [xi �→ d] |= �xi
(

k∨

j=1

¬ψj) which contra-

dicts (M1, u1, c1, . . . , ci−1, c, ci+1, . . . cn) ≡ (M2, u2, d1, . . . , di−1, d, di+1, . . . dn).

Hence S1(d) is non-empty. Let S1(d) = {v′1, . . . v′k′}. Now if there is some

v ∈ S1(d) such that H(u1,u2) ⊆ H(u′,v) then we are done. Suppose not, then for every

v′j ∈ S1(d), there is some (ej, f j) ∈ H(u1,u2) and (ej, f j) �∈ H(u′,vj). In particular, we

have (M1,u
′, c1, . . . , ci−1, c, ci+1, . . . cn, e

j) �≡ (M2, vj, d1, . . . , di−1, d, di+1, . . . dn, f
j).

Hence for every vj ∈ S1(d) there is some PTML formula αj(x1, · · · , xn, yj) such that

M1,u
′ |= αj(ci−1, c, ci+1, . . . cn, e

j) andM2, vj |= ¬αj(d1, . . . , di−1, d, di+1, . . . dn, f
j).

Recall that for all vj ∈ S2(d) there is a sentence ϕj such that M1,u
′ |= ϕj and

M2, vj |= ¬ϕj.

Thus we have M1, u1, [x1 �→ c1, . . . xn �→ cn] |= (
∧

vj∈S1(d)

�xi
αj ∧

∧

vj∈S2(d)

�xi
ϕj)

and M2, u2, [x1 �→ d1, . . . xn �→ dn] |= �xi
(

∨

vj∈S1(d)

¬αj ∨
∨

vj∈S2(d)

¬ϕj). This contra-

dicts (M1, u1, c1, . . . , ci−1, c, ci+1, . . . cn) ≡ (M2, u2, d1, . . . , di−1, d, di+1, . . . dn).

Condition agent-back is argued symmetrically.

113

As an application of bisimulation, we prove that PTML has the tree model prop-

erty: every satisfiable formula has a tree model. For this, we prove that for every

PTML model M and every w ∈ W , is bisimilar to some tree model. The canonical

tree model corresponding to (M, w) is the standard unravelling of the model M
starting from w.

For any PTML model M an R-path is a sequence of the from w0d1w1d2 . . . dnwn

where wi ∈ W and dj ∈ D such that (wi, di+1, wi+1) ∈ R.

Definition 6.6 (Tree models). A tree model for PTML is given by M = (W ,D, δ,R, ρ)

rooted at r ∈ W such that for every w ∈ W, there is a unique R-path from r to w.

Theorem 6.7. For any PTML formula ϕ we have ϕ is satisfiable iff ϕ is satisfiable

in a tree model.

Proof. It is enough to prove (⇒). Let ϕ be a PTML formula and let M be a model

such that M, r, σ |= ϕ where M = (W ,D, δ,R, ρ).

Let Π = Π′ ∪ {λ} where Π′ denotes the set of all R-paths in M starting from r

and λ is the empty path. The tree unravelling of the model starting from r is given

by M′ = (W ′,D, δ′,R′, ρ′) where:

• W ′ = Π′.

• For all πu ∈ W ′ define δ′(πu) = δ(u).

• R′ = {(π1, d, π2) | π1 = πu, π2 = πudv for some π ∈ Π}.

• For all πu ∈ W ′ define ρ′(πu) = ρ(u).

Define the bisimulation (G,H) where G = {(u, πu) | u ∈ W and πu ∈ W ′} and

for every (u, πu) ∈ G define H(u,πu) = {(d, d) | d ∈ δ(u)}.

114

Clearly condition [V al] holds since ρ(u) = ρ′(πu) and agent forth-back holds since

δ(u) = δ′(πu) and H(u,πu) is identity relation. For world forth-back if (w, d, u) ∈ R
then (πw, d, πwdu) ∈ R′ which satisfies the required conditions. On the other hand,

if (πw, d, πwdu) ∈ R′ then by construction we have (w, d, u) ∈ R which satisfies the

required conditions.

Thus by Theorem 6.3, since M, r, σ |= ϕ we have M′, r, σ |= ϕ.

Like in MLn, we can coarsen the definition of bisimulation to k-bisimilarity where

condition 3 is modified appropriately. This is useful to characterize the set of models

that satisfy the same set of formulas upto modal depth k.

A sequence of pairs {(Gj,Hj) | 0 ≤ j ≤ k} called a k-bisimulation where every

Gj ⊆ (W1 × W2) is a non-empty binary relation over worlds and Hj = {Hj
(w1,w2)

|
(w1, w2) ∈ Gj} where each Hj

(w1,w2)
⊆ (δ1(w1)×δ2(w2)). The conditions are modified

as follows:

For all (w1, w2) ∈ Gj the conditions of valuation (1) and agent back and forth

property (2 a,b) remain the same. The world back and forth are specialized to

respect the modal depth. For instance, if j > 0 then the forth property (condition

3a) is defined by: for all u1 ∈ W1 if w1
d1−→ u1 ∈ R1 there exists some u2 ∈ W2 such

that w2
d2−→ u2 ∈ R2 and (u1, u2) ∈ Gj−1 and Hj

(w1,w2)
⊆ Hj−1

(u1,u2)
. Similarly the back

condition (3b) is also modified.

For any two PTML models M1 and M2 and two worlds w1 and w2 in W1

and W2 respectively and for all c1, . . . cn ∈ δ1(w1) and d1, . . . , cn ∈ δ2(w2), we

denote (M1, w1, c1, . . . cn) �k (M2, w2, d1, . . . , dn) if there is some k-bisimulation

{(Gj,Hj) | j ≤ k} such that (w1, w2) ∈ Gk and {(cl, dl) | l ≤ n} ⊆ Hk
(w1,w2)

.

115

Similarly, we can also specialize elementary equivalence by modal depth. Define

(M1, w1, c1 . . . , cn) ≡k (M2, w2, d1, . . . , dn) if for every formula ϕ(x1, . . . , xn) with

modal depth at most k, we have: M1, w1 |= ϕ(c1, . . . , cn) iff M2, w2 |= ϕ(d1, . . . , dn).

Lemma 6.8. Let M1 = (W1,D1, δ1,R1, ρ1) and M2 = (W2,D2, δ2,R2, ρ2) be

two PTML models. For all w1 ∈ W1 and w2 ∈ W2 and for all c1, . . . , cn ∈
δ1(w1) and d1, . . . , dn ∈ δ2(w2). If (M1, w1, c1, . . . , cn) �k (M2, w2, d1, . . . , dn) then

(M1, w1, c1, . . . , cn) ≡k (M2, w2, d1, . . . , dn).

The proof of the lemma follows along the same lines as the proof of Theorem

6.3. Thus, we have the following theorem.

Theorem 6.9. For any PTML formula ϕ of modal depth h, ϕ is satisfiable iff ϕ is

satisfiable in a tree model of depth at most h.

6.1.1 Deciding PTML bisimulation

Having defined the notion of bisimulation, a natural algorithmic question arises:

Given two finite PTML models M1 and M2 with w1 ∈ W1 and w2 ∈ W2, de-

cide whether (M1, w1) � (M2, w2) or not. We assume that the underlying set of

propositions is finite, so that the valuation function ρ specified in the input is finite.

Algorithm 1 describes the procedure to decide PTML bisimulation.3 The procedure

is similar to the one used for MLn [BdRV01].

To see that the algorithm terminates, note that initially |G|+ |H| ≤ (|W1| · |W2| ·
|D1| · |D2|). Since the algorithm reduces the size of |G| + |H| by at least 1 in every

iteration and every condition can be checked in polynomial time, the algorithm

terminates in polynomial time.

3This kind of refinement technique with obvious adjustments also works to decide bisimulation
for first order modal logic without equality.

116

algorithm 1 Deciding PTML bisimulation
G ← {(u1, u2) | ρ1(u1) = ρ2(u2)} ; H ← {H(u1,u2) | (u1, u2) ∈ G} ;
where each H(u1,u2) ← (δ1(u1)× δ2(u2))
repeat

if there is some (u1, u2) ∈ G and c ∈ δ1(u1) such that there is no (c, d) ∈ H(u1,u2)

then
Remove (u1, u2) from G and Remove H(u1,u2) from H

end if
if there is some (u1, u2) ∈ G and d ∈ δ2(u2) such that there is no (c, d) ∈ H(u1,u2)

then
Remove (u1, u2) from G and Remove H(u1,u2) from H

end if
if there is some (u1, u2) ∈ G and some (c, d) ∈ H(u1,u2) such that for some
u1

c−→ v1 there is no u2
d−→ v2 such that (v1, v2) ∈ G and H(u1,u2) �⊆ H(v1,v2) then

Remove (c, d) from H(u1,u2)

end if
if there is some (u1, u2) ∈ G and some (c, d) ∈ H(u1,u2) such that for some
u2

d−→ v2 there is no u1
c−→ v1 such that (v1, v2) ∈ G and H(u1,u2) �⊆ H(v1,v2) then

Remove (c, d) from H(u1,u2)

end if
until No more deletion is possible
return yes if (w1, w2) ∈ G and no otherwise

To see that the algorithm is correct, if the algorithm returns yes, then it can

be verified that the final (G,H) obtained by the algorithm satisfies all properties

of bisimulation. On the other hand, if (M1, w1) � (M2, w2) then let (G′,H′) be

the corresponding bisimulation. If the algorithm returns no then consider the first

member of G′ or H′ that is being removed by the algorithm. If this tuple is of the

form (u1, u2) then it has to be removed in case 1 or 2. But this is not possible since

(G′, H ′) is a bisimulation and hence we can always find a corresponding (c, d) pair.

Similarly if the removed tuple is of the form (c, d) then it would have been removed

in case 3 or 4 and this again is not possible since we can always find an appropriate

(v1, v2) ∈ G′ ⊆ G which satisfies the required conditions (and by assumption this

pair is not yet removed).

Theorem 6.10. Given two finite PTML models M1 and M2 with w1 ∈ W1 and

w2 ∈ W2 deciding whether (M1, w1) � (M2, w2) is in PTIME.

117

6.2 Bisimulation for PTML=

When we have equality in the language, the logic gains more expressivity. In par-

ticular, the formulas can count the number of agents at every world.

For any two PTML modelsM1 andM2 with w1 and w2 say (M1, w1) is equaility-

PTML bisimilar to (M2, w2) if there is some bisimulation (G,H) such that (w1, w2) ∈
G and for all (u1, u2) ∈ G the corresponding H(u1,u2) is a bijection.

With this additional condition, analogous to Theorem 6.3, we can show that

equality-PTML bisimulation implies elementary equivalence over PTML= formulas.

The only extra condition to verify is the case x = y. Let M1, w1, σ1 |= (x = y)

and suppose (w1, w2) ∈ G and {(σ1(x), σ2(x)
)
,
(
σ1(y), σ2(y)

)} ⊆ H(w1,w2). Now since

H(w1,w2) is a bijection and σ1(x) = σ1(y) we also have σ2(x) = σ2(y). Hence it follows

that M2, w2, σ2 |= (x = y).

Similarly we can argue that if M2, w2, σ2 |= (x = y) then M1, w1, σ1 |= (x = y).

Having equality makes it harder to decide whether the given models are bisimilar

or not. First we note that NP suffices.

This is because we can guess (G,H) and check that it satisfies all the properties

in polynomial time. Is the problem NP-hard? Perhaps not. We will prove that

for equality-PTML bisimulation is as hard as the graph isomorphism problem. This

hardness is because of the demand that H(u1,u2) should be a bijection for every

(u1, u2) ∈ G.

Definition 6.11 (Graph isomorphism). Given two finite simple undirected graphs

G1 = (V1, E1) and G2 = (V2, E2) we say that G1 is isomorphic to G2 if there is a

bijective mapping f : V1 �→ V2 such that for all a, b ∈ V1 we have (a, b) ∈ E1 iff

(f(a), f(b)) ∈ E2.

118

Theorem 6.12 (Babai [Bab16]). Deciding whether two graphs G1 and G2 are iso-

morphic is in O(2log
k(n)) for some k where n = |V1|+ |V2|.

For the reduction, given two graphs G1 and G2 we construct the corresponding

PTML tree models M1 and M2 (of polynomial size) rooted at r1 and r2 respectively

such that G1 and G2 are isomorphic iff (M1, r1) is equality-bisimilar to (M2, r2).

Theorem 6.13. Deciding whether two PTML models are equality-bisimilar is at

least as hard as graph isomorphism problem.

Proof. For any simple indirected graph G = (V,E) define the corresponding PTML

model MG = (W , V, δ,R, ρ) where W = {r} ∪ {uab, vab | a, b ∈ V and (a, b) ∈ E}.
For all w ∈ W define δ(w) = V and ρ(w) = ∅. Define R = {(r, a, uab), (uab, b, vab) |
uab, vab ∈ W}. Clearly the size of MG is linear in the size of G.

Now given any two simple indirected graphs G1 = (V1, E1) and G2 = (V2, E2) let

M1 and M2 be the corresponding PTML models rooted at r1 and r2 respectively.

We claim that G1 is isomorphic to G2 iff (M1, r1) is equality-bisimilar to (M2, r2).

To prove this, suppose G1 and G2 are isomorphic, let f : V1 �→ V2 be the isomor-

phism mapping.

Define G = {(r1, r2), (uab, uf(a)f(b)), (vab, vf(a)f(b)) | a, b ∈ V1}. For every pair

(w,w′) ∈ G define H(w,w′) = {(a, f(a)) | a ∈ V1}. Since f : V1 �→ V2 is a bijection,

every H(w,w′) is also a bijection. Now we verify all the conditions for bisimulation.

Clearly condition Val holds since valuation function ρ is same at all worlds. Con-

ditions agent back and forth hold since f is a bijection. Finally condition world

back and forth holds since r1
a−→ uab

b−→ vab iff (a, b) ∈ E1 iff (f(a), f(b)) ∈ E2 iff

r2
f(a)−−→ uf(a)f(b)

f(b)−−→ vf(a)f(b).

119

For the other direction, suppose that (M1, r1) is equality bisimilar to (M2, r2).

Let (G,H) be the corresponding equality bisimulation. Define f : V1 �→ V2 where

for all a ∈ V1 we have f(a) = a′ such that (a, a′) ∈ H(r1,r2). Note that f is a

bijection since H(r1,r2) is a bijective mapping. To see that f satisfies isomorphism

property, note that (a, b) ∈ E1 iff r1
a−→ uab

b−→ vab iff r2
f(a)−−→ uf(a)f(b)

f(b)−−→ vf(a)f(b) iff

(f(a), f(b)) ∈ E2.

Note that there is a gap in the complexity. The upper bound for deciding

equality-PTML is NP and the lower bound is graph isomorphism. We believe that

this gap can be closed by reducing equality-PTML bisimulation to graph isomor-

phism problem. But the reduction seems to be more involved and is not taken up

in this thesis. Further investigation is needed in this direction.

6.3 Bisimulation for IQML

In the previous chapter, we introduced the implicitly quantified modal logic (IQML)

as the variable free fragment of PTML which has two modalities [∀] and [∃] which
represents ∀x�x and ∃x�x respectively. Recall that an IQML model is given by

M = (W , I,R, δ, ρ) where I is a non-empty countable index set and R = {Ri | i ∈
I} where each Ri ⊆ (W ×W) and δ : W �→ 2I such that whenever (w, u) ∈ Ri we

have i ∈ δ(w). Also, since we do not have variables in the syntax, recall that we do

not impose the monotonicity condition on δ function.4

To simplify the notations, given any model M, w ∈ W and a formula of the

form [∃]ϕ, if M, w |= [∃]ϕ and i ∈ I is the corresponding witness then we write

M, w |= �iϕ (similarly we have M, w |= �iϕ for 〈∃〉ϕ).
4The monotonicity condition can be relaxed since we do not have variables in the syntax and

hence the problem of evaluating free variables disappears.

120

Now we introduce the notion of bisimulation specialized for IQML. Note that

since there are no explicit mention of agents in this logic, we can get away with

dropping the H component of the bisimulation. All we need to ensure is that ev-

ery index in one structure has a corresponding index in the other. The following

definition of bisimulation formalizes the notion of ‘corresponding index’.

Definition 6.14. Given two IQML models M1 = (W1, I1,R1, δ1, ρ1) and M2 =

(W2, I2,R2, δ2, ρ2), an IQML-bisimulation on them is a non-empty relation G ⊆
(W1 ×W2) such that for all (w1, w2) ∈ G the following conditions hold:

Val. ρ1(w1) = ρ2(w2).

[∃]forth. For all i ∈ δ1(w1) there is some j ∈ δ2(w2) such that for all u2 if w2
j−→ u2

then there is some u1 such that w1
i−→ u1 and (u1, u2) ∈ G.

[∃]back. For all j ∈ δ1(w1) there is some i ∈ δ1(w1) such that for all u1 if w1
i−→ u1

then there is some u2 such that w2
j−→ u2 and (u1, u2) ∈ G.

〈∃〉forth. For all i ∈ δ1(w1) and for all u1 if w1
i−→ u1 then there is some j ∈ δ2(w2)

and some u2 such that w2
j−→ u2 and (u1, u2) ∈ G.

〈∃〉back. For all j ∈ δ2(w2) and for all u2 if w2
j−→ u2 then there is some i ∈ δ1(w1)

and some u1 such that w1
i−→ u1 and (u1, u2) ∈ G.

Note that these conditions are different from typical back and forth conditions.

Given two models M1 and M2 we say that w1, w2 are IQML bisimilar if there

is some IQML bisimulation G on the models such that (w1, w2) ∈ G and denote

it (M1, w1) ∼ (M2, w2). The elementary equivalence for IQML is denoted by

(M1, w1) � (M2, w2) if for all ϕ ∈ IQML, M1, w1 |= ϕ iff M2, w2 |= ϕ.

Now we restate the theorems discussed in the previous section for IQML.

Theorem 6.15. For any two IQML models M1 and M2 and any w1 ∈ W1 and

w2 ∈ W2, if (M1, w1) ∼ (M2, w2) then (M1, w1) � (M2, w2).

121

Proof. Let G be an IQML bisimulation such that (w1, w2) ∈ G. We can show that

for all (v1, v2) ∈ G we have M1, w1 |= ϕ iff M2, w2 |= ϕ, by induction on structure

of ϕ. The theorem follows along standard lines. We highlight only the modal cases.

For the case ϕ := [∃]ψ: Suppose M1, v1 |= [∃]ψ, we need to prove that M2, v2 |=
[∃]ψ. Since M1, v1 |= [∃]ψ, there is some i ∈ I1 such that M1, v1 |= �iψ. Now

let j ∈ I2 be the witness for i for condition ([∃]forth). We claim that M2, v2 |=
�jψ. Suppose not; then M2, v2 |= �j¬ψ and hence there is some v2

j−→ u2 such

that M2, u2 �|= ψ. Since j was the witness for i for ([∃]forth) condition, there

is some v1
i−→ u1 such that (u1, u2) ∈ G. By induction hypothesis, M1, u1 �|= ψ

which contradicts M1, v1 |= �iψ. The other direction is proved symmetrically using

([∃]back) condition.

For the case 〈∃〉ψ: Suppose M1, v1 |= 〈∃〉ψ then there is some i ∈ I1 and some

u1 ∈ W1 such that v1
i−→ u1 and M1, u1 |= ψ. By condition (〈∃〉forth) there is

some j ∈ I2 and some v2
j−→ u2 such that (u1, u2) ∈ G. By induction hypothesis

M2, u2 |= ψ and hence M2, v2 |= 〈∃〉ψ. The other direction is symmetrically argued

using (〈∃〉back) condition.

Again, the converse holds over image finite models with finite index set (I). An
IQML model M is said to be image-finite if I is finite and N i(w) = {u | (w, u) ∈ Ri}
is finite for all w ∈ W and i ∈ I.

Theorem 6.16. Suppose M1 and M2 are image-finite IQML models then (M1, w1) ∼
(M2, w2) iff (M1, w1) � (M2, w2).

Proof. (⇒) follows from Theorem 6.15. For (⇐), define G = {(v1, v2) | M1, v1 �

M2, v2}. It suffices to show that G is indeed an IQML bisimulation. For this, choose

any (v1, v2) ∈ G. Clearly [V al] holds since v1, v2 agree on all IQML propositions.

122

Now suppose that the ([∃]forth) condition does not hold. Let δ2(v2) = {j1 · · · jn}.
If the condition does not hold, then there is some i ∈ δ1(v1) such that for all jl ∈ I2

there is some ul ∈ W2 such that v2
jl−→ ul and for all v1

i−→ w we have (w, ul) �∈ G.

Let i-successors of v1 be Ni(v1) = {w | (v1, w) ∈ Ri}. Since M1 is image finite,

let Ni(v1) = {w1 · · ·wm}. By above argument, for all l ≤ n and d ≤ m we have

(wd, ul) �∈ G . Hence for every l ≤ n and every d ≤ m there is a formula ϕl
d such

that M1, wd |= ϕl
d but M2, ul |= ¬ϕl

d.

Now consider the formula α = [∃](∧
l

∨

d

ϕl
d). It can be verified that M1, v1 |=

�i(
∧

l

∨

d

ϕl
d) but M2, v2 |= 〈∀〉(∨

l

∧

d

¬ϕl
d) which contradicts (v1, v2) ∈ G.

The ([∃]back) condition is argued symmetrically.

Suppose that the (〈∃〉back) condition does not hold. Then there is some j ∈ I2

and some v2
j−→ u2 such that for all i ∈ δ1(w1) and for all w ∈ W2 if v1

i−→ w then

(u2, w) �∈ G. Let N(v1) = {w | (v1, w) ∈ Ri for some i ∈ I1}. Since M1 is image-

finite, let N(v1) = {w1, . . . wm}. By above argument, for every wd ∈ N(v1) there is a

formula ψd such that M1, wd |= ψd and M2,u2 |= ¬ψd. Hence M2, v2 |= �j(
∧

d

¬ψd)

but M1, v1 |= [∀](∨
d

ψd) which contradicts (v1, v2) ∈ G.

The (〈∃〉forth) is argued symmetrically.

6.3.1 Characteristic formula

As in PTML, we can define n-bisimulation that preserves n modal depth IQML for-

mulas. Moreover, we can give a formula that characterises n-bisimilarity. Formally,

over a finite set of propositions, for every IQML model M and every w ∈ W there

is a formula χn
[M,w] such that for any IQML model N and u ∈ WN if M, u |= χn

[M,w]

then M, w is n-IQML bisimilar to M, u.

123

Definition 6.17. Given two IQML models M1 and M2, a sequence {G0, . . . ,Gn} is

called an n-IQML bisimulation where each Gi ⊆ (W1×W2)} is a non-empty relation

such that for all k ≤ n and (w1, w2) ∈ Gk the following holds:

val. ρ1(w1) = ρ2(w2).

If k > 0

n-[∃]forth. For all i ∈ I1 there is some j ∈ I2 such that for all w2
j−→ u2 there is

some w1
i−→ u1 such that (u1, u2) ∈ Gk−1.

n-[∃]back. For all j ∈ I2 there is some i ∈ I1 such that for all w1
i−→ u1 there is

some w2
j−→ u2 such that (u1, u2) ∈ Gk−1.

n-〈∃〉forth. For all i ∈ I1 and for all w1
i−→ u1 there is some j ∈ I2 and some w2

j−→ u2

such that (u1, u2) ∈ Gk−1.

n-〈∃〉back. For all j ∈ I2 and for all w2
j−→ u2 there is some i ∈ I1 and some w1

i−→ u1

such that (u1, u2) ∈ Gk−1.

We write (M1, w1) ∼n (M2, w2) if there is some n-IQML bisimulation {G0, . . . ,Gn}
such that (q1, w2) ∈ Gn. Similarly we have (M1, w1) �n (M2, w2) if they agree on

all IQML formulas of modal depth at most n.

Along the lines of Theorem 6.15, we can show that if (M1, w1) ∼n (M2, w2) then

(M1, w1) �n (M2, w2). Now we prove that n-IQML bisimulation can be character-

ized by an IQML formula of modal depth n over a finite set of propositions. The

proof is along the standard lines as in MLn (refer Goranko and Otto, [GO07]).

Note that, along the lines of Theorem 6.7, we can show that any IQML model

is IQML-bisimilar to the tree unravelling. Hence we restrict our attention to tree

models. Given an IQML tree model M we define its restriction to level n in the

obvious manner: M|n is simply the same as M upto level n and the remaining

nodes in M are ‘thrown away’.

124

Lemma 6.18. Let the set of propositions P0 be a finite set. For all n and for all

IQML model M and for all w ∈ W there is a formula χn
[M,w] ∈ IQML of modal

depth n such that for any model M′ and w′ ∈ W ′ we have (M′, w′) |= χn
[M,w] iff

(M′, w′) �n (M, w).

Proof. Note that (⇐) follows from Theorem 6.15 specialized to n-IQML bisimulation.

For the other direction, for all u ∈ W we construct χn
[M,u] by induction on n. For

n = 0, since P0 is finite, χ0
[M,u] =

∧

p∈ρ(u)
p ∧ ∧

q �∈ρ(u)
¬q is the required formula.

By induction, for all u ∈ W we have χn
[M,u]. Let R =

⋃Ri and let Γn
M =

{χn
[M,u] | u ∈ W}. Note that inductively Γn

M is finite. For any S ⊆ Γn
M let

∨
S denote

the disjunction
∨

ϕ∈S
ϕ. For the induction step, the characteristic formula is given by:

χn+1
[M,u] =

V al.︷ ︸︸ ︷
χ0
[M,u] ∧

n−[∃]forth
︷ ︸︸ ︷∧

i∈I
[∃](

∨

(u,v)∈Ri

χn
[M,v]

)∧

n−[∃]back
︷ ︸︸ ︷
∧

S⊆Γn
M

(
[∃](

∨
S) →

∨

i∈I

∧

(u,v)∈Ri

[∀](χn
[M,v] →

∨
S)

)

∧

(u,v)∈R
〈∃〉χn

[M,v]

︸ ︷︷ ︸
n−〈∃〉forth

∧ [∀](
∨

(w,v)∈R
χn
[M,v]

)

︸ ︷︷ ︸
n−〈∃〉back

The formula remains finite even if I is infinite or the number of successors of u

is infinite, since inductively there are only finitely many characteristic formulas of

depth n. We now prove that the formula χn
[M,u] indeed captures n-bisimulation.

Note that for any finite set of formulas T , if α ∈ T then the formula α → (
∨

ψ∈T
ψ)

is a propositional validity. Also, for all n if χ ∈ Γn
M such that M′, u′ |= χ then for

all other characteristic formulas χ′ ∈ Γn
M we have M′, w′ �|= χ′.

First we verify that the formula χn
[M,u] holds at M, u:

125

• M, u |= χ0
[M,w] follows from the definition of ρ.

• For the n− [∃] forth part, for every i ∈ I we have M, u |= �i

(∨

(u,v)∈Ri

χn
[M,v]

)

and hence the claim follows.

• For the n − [∃]back part, let S ⊆ Γn
M. Suppose M, u |= [∃]

∨
S, let j be the

witness. Hence we have M, u |= �j

∨
S. Now observe that for all (u, v) ∈ Rj we

have χn
[M,v] ∈ S, otherwise there is some (u, v) ∈ Rj such that M, v |= ∧

ϕ∈S
¬ϕ

which is a contradiction to M, u |= �j

∨
S.

Now we need to show that M, u |= ∨

i∈I

∧

(u,v)∈Ri

[∀](χn
[M,u] →

∨
S). For this, set

i = j and pick any (u, v) ∈ Rj. From the above argument, χn
[M,v] ∈ S and hence

the formula (χn
[M,v] →

∨
S) is a validity. Thus, M, u |= ∧

(u,v)∈Rj

[∀](χn
[M,u] →

∨
S).

• For n−〈∃〉forth, let (u, v) ∈ R which means for some i ∈ I we have (u, v) ∈ Ri

and by induction hypothesis M, v |= χn
[M,v]. Hence M, u |= 〈∃〉χn

[M,u].

• For n−〈∃〉back, for any i ∈ I and any (u, v) ∈ Ri we have M, v |= χn
[M,v] and

hence M, u |= [∀](∨

(u,v)∈R
χn
[M,v]).

Thus for all u ∈ W and for all n we have M, u |= χn
M,u].

Now suppose M′, w′ |= χn
[M,w], then we need to prove that (M, w) ∼n (M′, w′).

Define {G0, . . . ,Gn} where every Gk = {(u, u′) | M′, u′ |= χk
[M,u]}. Now we verify

all the required conditions for all k ≤ n+ 1 and all (u, u′) ∈ Gk.

The (V al) condition holds since M′, u′ |= χ0
[M,u]. If k > 0 then we need to verify

the rest of the conditions.

• For (n− [∃]forth), pick any i ∈ I. We have M′, u′ |= χk
[M,u]. By ([∃]forth) part

of χk
M,u] we have M′, u′ |= [∃](∨

(u,v)∈Ri

χl
[M,v]

)
. Let j′ ∈ I ′ be the witness such

that M′, u′ |= �j′
(∨

(u,v)∈Ri

χl
[M,v]

)
. Hence for every (u′, v′) ∈ R′

j′ there is some

(u, v) ∈ Ri such that M′, v′ |= χl−1
[M,v] and by definition we have (v, v′) ∈ Gl−1.

126

• For condition (n− [∃]back), let j′ ∈ I ′.

Define S = {χk−1
[M,v] | for some (u′, v′) ∈ Rj′ we have M′, v′ |= χk−1

[M,v]}. Now

clearly, M′, u′ |= [∃](
∨
S). Hence by (n-[∃]back) part of χl

[M,u], there is some

i ∈ I1 such that M′, u′ |= ∧

(u,v)∈Ri

[∀](χl−1
[M,v] →

∨
S). In particular, M′, u′ |=

∧

(u,v)∈Ri

�j′(χ
l−1
[M,v] →

∨
S) but we also have M′, u′ |= �j′(

∨
S). Thus, by definition

of S we have M′, u′ |= �j′(
∨

(u,v)∈Ri

χl−1
[M,v]). Let i be the ([∃]back) witness for j′.

Hence, for every (u, v) ∈ Ri there is some (u′, v′) ∈ Rj′ such that M′, v′ |=
χl−1
M,v] and hence (v, v′) ∈ Gl−1.

• For the n−〈∃〉forth condition, let i ∈ I and (u, v) ∈ Ri. By n−〈∃〉forth part
of the formula, M′, u′ |= 〈∃〉χl−1

[M,v] and hence we have a corresponding i′ ∈ I ′

and (u′, v′) ∈ Ri′ such that M′, v′ |= χn−1
[M,v] and hence (v, v′) ∈ Gl−1.

• Finally for n− 〈∃〉back, suppose i′ ∈ I and (w′, u′) ∈ Ri′ then by n− 〈∃〉back
part of the formula, M′, u′ |= χn−1

[M,u] for some i ∈ I and (w, u) ∈ Ri. Thus we

obtain the required witness.

6.3.2 Bisimulation games and invariance theorem

There is a natural translation of IQML into a fragment of first order logic over two

sorted domain: one for agents and the other for worlds.

In the syntax we have two sorts of variables VX and VY for worlds and agents

respectively. Further, we have a ternary predicate R to encode the accessibility

relation. To encode propositions, for every p ∈ P0 we have a corresponding monadic

predicate Qp.

127

Definition 6.19 (2Sor.FO syntax). Let VX and VY be two countable and disjoint

sorts of variables. Let R be ternary predicate and for every p ∈ P0 let Qp is the

corresponding monadic predicate . The two sorted FO (2Sor.FO), corresponding to

IQML is given by:

α ::= Qp(x) | R(x, y, x′) | ¬α | α ∧ α | ∃y α | ∃x α

where x, x′ ∈ VX and y ∈ VY .

A 2Sor.FO structure is given by M = [(W , I), (R̂, ρ̂)] where (W , I) is the two
sorted domain and (R̂, ρ̂) are interpretations with R̂ ⊆ (W × I ×W) and ρ̂ : W �→
2QP where QP = {Qp | p ∈ P}. The semantics � is defined for 2Sor.FO in the

standard way where the variables in VX range over the first sort (W) and variables

of VY range over second (I).

Given an IQML structure M = (W , I,R, δ, ρ) the corresponding 2Sor.FO struc-

ture is given by M = [(W , I), (R̂, ρ̂)] where (w, i, v) ∈ R̂ iff (w, v) ∈ Ri and

Qp ∈ ρ̂(w) iff p ∈ ρ(w). Similarly given any 2Sor.FO structure, it can be inter-

preted as an IQML structure. Thus there is a natural correspondence between IQML

structures and 2Sor.FO structures. For any IQML structureM let the corresponding

2Sor.FO structure be denoted by M.

Definition 6.20 (IQML to 2Sor.FO translation). The translation of ϕ ∈ IQML into

a 2Sor.FO parametrized by x ∈ VX is given by:

Tr6(p : x) = Qp(x)

Tr6(¬ϕ : x) = ¬Tr6(ϕ : x)

Tr6(ϕ ∧ ψ : x) = Tr6(ϕ : x) ∧ Tr6(ψ : x)

Tr6([∃]ϕ : x) = ∃τ∀y (R(x, τ, y) → Tr6(ϕ : y))

Tr6([∀]ϕ : x) = ∀τ∀y (R(x, τ, y) → Tr6(ϕ : y))

Note that this translation can be achieved using two variables of each sort.

128

Proposition 6.21. For any formula ϕ ∈ IQML and any IQML structure M
M, w |= ϕ iff M, [x �→ w] � Tr6(ϕ : x).

Hence IQML can be translated into 2Sor.FO with 2 variables of VX sort and one

variable of VY sort. Given two IQML models M1 and M2, the notion of IQML

bisimulation naturally translates to bisimulation over the corresponding 2Sor.FO

models M1 and M2.

Given that every IQML formula can be translated to 2Sor.FO, a natural ques-

tion arises: When does a 2Sor.FO formula have an equivalent IQML formula? van

Benthem studied this question for propositional modal logic for its corresponding

translation into first order logic and proved that every first order logic formula is

bisimulation invariant iff there is an equivalent modal formula [BdRV01, Ben10b].

We prove a similar theorem for IQML: every IQML bisimulation invariant 2Sor.FO

formula has an equivalent IQML formula. Define α(x) ∈ 2Sor.FO to be IQML bisim-

ulation invariant if for all (M1, w1) ∼ (M2, w2) we have M1, [x �→ w1] � α(x) iff

M2, [x �→ w2] � α(x). We can similarly speak of α(x) being n-IQML bisimulation

invariant as well. Also, α(x) is equivalent to some IQML formula if there is some

formula ϕ ∈ IQML such that for all M we have M, [x �→ w] � α(x) iff M, w |= ϕ.

Theorem 6.22. Let α(x) ∈ 2Sor.FO with one free variable x ∈ VX . Then α(x) is

IQML bisimulation invariant iff α(x) is equivalent to some IQML formula.

Note that ⇐ follows from Theorem 6.15. To prove (⇒) it suffices to show that if

α(x) is bisimulation invariant then, for some n the formula α(x) is n-IQML bisimu-

lation invariant. The theorem follows since, by Lemma 6.18, n-bisimulation classes

have a characteristic formula and the equivalent formula of α(x) is the disjunction

of the characteristic formulas of all the n-bisimulation classes which are identified

by α(x).

129

We follow the proof strategy similar to that for propositional modal logic as

described in (Goranko and Otto [GO07]). Towards proving this, we introduce a

notion of locality for 2Sor.FO formulas. As usual, we restrict our attention to rooted

tree models. For any IQML tree model M and let M|n be the restriction of M to

nodes at depth at most n and the 2Sor.FO model corresponding to M|n is given by

M|n.

Definition 6.23. We say that a formula α(x) is n-local if for any IQML tree model

M rooted at w we have M � α(w) iff M|n � α(w).

Lemma 6.24. For any α(x) ∈ 2Sor.FOwith x ∈ VX , if α(x) is bisimulation invariant

then α(x) is n-local for n = 2q where q is the number of quantifications in α(x)

(including both VX and VY sorts).

Assuming this lemma, consider a 2Sor.FO formula α(x) which is bisimulation

invariant. It is n-local for a syntactically determined n. We now claim that α(x) is

n-bisimulation invariant. To prove this, consider any (M1, w1) �n (M2, w2). We

need to show that M1, [x �→ w1] � α(x) iff M2, [x �→ w2] � α(x). Suppose that

M1, [x �→ w1] � α(x). By locality, M1|n, [x �→ w1] � α(x). Now observe that

(M1|n,w1) � (M2|n,w2). By bisimulation invariance of α(x), M2|n, [x �→ w2] �

α(x). But then again by locality, M2, [x �→ w2] � α(x). The other direction is

symmetric.

Thus it only remains to prove the locality lemma. For this, it is convenient to

consider the Ehrenfeucht-Fraisse (EF) game for 2Sor.FO. In this game we have two

types of pebbles, one for W and the other for I. The game is played between two

players Spoiler (Sp) and Duplicator (Dup) on two 2Sor.FO structures.

A configuration of the game is given by [(M, s); (M′, t)] where s ∈ (W ∪ I)∗ is
a finite string (W ∪ I) and similarly t ∈ (W ′ ∪ I ′)∗. The game has two kinds of

rounds, namely W round and I round.

130

Suppose the current configuration is [(M, s); (M′, t)]. In a W round, Sp places a

W pebble on some W sort in one of the structures and Dup responds by placing a

W pebble on a W sort in the other structure. Similarly, in a I round, Sp picks one

structure and places an I pebble on some I sort and Dup responds by placing an I
pebble on some I sort in the other structure. In both cases, the new configuration

is updated to [(M, ss); (M′, tt)] where s and t are the new elements (either W or I
sort) picked in the corresponding structures.

A (qx, qy) round game is one where qx many pebbles of type W are used and qy

many pebbles of type I is used. Suppose after (qx, qy) rounds, the final configuration

is [(M, s); (M′, t)]. Player Dup wins if the mapping f(si) = ti forms a partial

isomorphism over M and M′. Otherwise Sp wins.

It can be shown along standard lines that Dup has a winning strategy in the

(qx, qy) round game over two structures iff they agree on all formulas with quantifier

rank of VX sort ≤ qx and quantifier rank of VY sort ≤ qy (refer books [BdRV01,

PG92]).

Let M, w be any tree structure. To prove Lemma 6.24, we need to show that

M, w |= α(x) iff M|n |= α(x) where n is as described in the lemma.

Note that inclusion relation G over M and M|n forms an n-IQML bisimulation.

Let q = qx + qy and N be q disjoint copies of M and M|n. Also note that G

continues to be an n-IQML bisimulation over the disjoint union of (N �M, w) and

(N�M|n, w). Moreover, notice that (M, w) is n-IQML bisimilar to (N�M, w) and

further (M|n, w) is n-IQML bisimilar to (N �M|n, w).

Now since α(x) is bisimulation invariant, it is enough to show that Dup has a

winning strategy in the game starting from [(N �M, w), (N �M|n, w)].

131

To describe the winning strategy for Dup, we introduce the notion of distance

between any two worlds in an IQML model which is given by the length of path

between the worlds. Suppose u1 is at a distance of m from w1 then we need a

formula of modal depth m to access u1 from w1. Hence for Dup to win, in W
round, she just needs to ensure that at every round m the m-distance neighbours

around a worlds marked by pebbles forms a partial isomorphism and in I round,

she can just play according to the identity mapping since the index set I is the same

on both sides.

In particular, if Sp places W pebble on a W sort which is within m distance of

an already pebbled W pebble, Dup plays according to a local isomorphism in the

m- neighbourhoods of previously pebbled elements (such move exists since n = 2q

and m < q); if Sp places a W pebble somewhere beyond 2q−m distance from all W
pebbles previously used, then, Dup responds in a fresh isomorphic copy of type M

or M|n correspondingly (again, this move is guaranteed to exist since previously at

most m− 1(< q) copies would have been used).

If Sp decides to use an I pebble and places it on some I sort i in one structure,

then Dup responds by placing an I pebble on i in the mirror copy in the other

structure, where by mirror copy we mean: for M or M|n in N then the mirror copy

in the other structure is itself and the original M and M|n are mirror copies of each

other.

This completes the proof of locality Lemma 6.24 and thus of Theorem 6.22.

6.3.3 IQML and 1-variable fragment of PTML

The formulas in IQML can be translated into 1-variable fragment of PTML by in-

ductively replacing [∃]ϕ by ∃x�xϕ and 〈∃〉ϕ by ∃x�xϕ.

132

Figure 6.1: Two models which are IQML bisimilar but can be distinguished by 1-
variable formula of PTML. Both are constant agent models with {a, b} being the
agents in M1 and {d, e, f} as agents in M2.

Now we prove that the 1-variable fragment of PTML is strictly more expressive

than IQML. For this we give two models which are IQML bisimilar but there is a

1-variable PTML formula that can distinguish the models.

Consider the models M1 and M2 described in Fig. 6.1.

Note that (M1, r1) ∼ (M2, r2) withG = {(r1, r2), (u1, u2), (v1, v2), (w1, u1), (w2, v1)}.
On the other hand M1, r1 |= ∃x (�xp ∧ �x¬p) but M2, r2 �|= ∃x (�xp ∧ �x¬p).

6.4 Discussion

We introduced the notion of bisimulation for PTML and PTML=. Note that the

definition of bisimulation can be lifted to TML (and TML=) by modifying the first

condition to say that the predicate type are same at bisimilar worlds. Formally, if

(w1, w2) ∈ G then for all c1, . . . , cn ∈ δ1(w1) and for all (c1, d1), . . . , (cn, dn) ∈ H(w1,w2)

and for all predicate P of arity n, (c1, . . . , cn) ∈ ρ1(w1, P) iff (d1, . . . , dn) ∈ ρ2(w2, P)

and vice-versa. With this, all the theorems discussed in this section go through.

Similarly, we can also specialize the notion of bisimulation to capture exactly the

monodic fragment of PTML.

133

Recall that ϕ is monodic fragment if every modal subformula of the form Δxψ

has FV(ψ) ⊆ {x} where Δ ∈ {�,�}. Thus, the formulas can carry an agent into

a world only if it is the incoming edge label. Thus, the conditions agent forth and

back of bisimulation (Def. 6.1) can be specialized for monodic PTML by replacing

H(w1,w2) ⊆ H(u1,u2) with (c, d) ∈ H(u1,u2). This relaxed condition suffices for monodic

formulas since they cannot access any other agent using modal formulas except the

agent which corresponds to the incoming label edge. With this modification, we can

prove that monodic bisimulation implies monodic elementary equivalence.

If we have constants C in the vocabulary, then we have an additional condition

in bisimulation that for all (u1, u2) ∈ G and for all constants c ∈ C if interpretations

of c are d1 and d2 in u1 and u2 respectively, then (d1, d2) ∈ H(u1,u2). Note that this

condition is enough to capture elementary equivalence for both rigid and non-rigid

interpretations of constants.

We discussed van Benthem type theorem for IQML. Similarly, PTML and TML

can be translated to 2Sor.FO over the appropriate vocabulary. For these fragments

also, a similar van Benthem characterization needs to be worked out. For instance,

can we always get the characterization theorem using finite models or do we have

to use omega saturated models?

134

Chapter 7

Model checking

For any logic L, given a formula ϕ in L and some L-structure A, a natural question

is to check whether A |= ϕ. For this to be an algorithmic problem, both the inputs

should be finite. This is known as the model checking problem or the verification

problem for L.

In particular, for TML, the model checking problem is to take a TML formula

ϕ and a finite structure M with w ∈ W and an interpretation σ relevant at w as

inputs and decide whether M, w, σ |= ϕ.

In this chapter, we will first discuss the complexity issues for model checking

TML and PTML. Note that the interest of TML is that it can specify properties

about infinitely branching structures. So if we present such infinite models in a

finite fashion, model checking over such structures could be of interest. Towards

this, we introduce a finite specification of infinite models using regular expressions

and prove that model checking problem for PTML over such input specification is

decidable.

135

Combined Expression Data
Logic Complexity Complexity Complexity

FO PSPACE PSPACE PTIME
ML PTIME PTIME PTIME

TML PSPACE PSPACE PTIME
PTML PSPACE PSPACE PTIME

Table 7.1: Summary of complexity results for the model checking problem over finite
structures.

7.1 Finite structures

First we consider the model checking problem for TML. Note that the model check-

ing algorithm has two parameters, one of them is a TML formula ϕ and the other

is a finite TML structure M with a designated w ∈ W and an interpretation

σ : FV(ϕ) �→ δ(w), which is together represented as a tuple (M, w, σ) which we

call a pointed TML structure. The output is yes or no depending upon whether

M, w, σ |= ϕ or not respectively. Thus, we have three different cases depending on

which parameters are fixed and which are provided by inputs. In the literature they

are called Combined Complexity when we consider both parameters as inputs;

Expression Complexity when the pointed TML structures are fixed (formulas are

inputs) and Data Complexity when formulas are fixed (pointed TML structures

are inputs).

Table 7.1 gives a summary of complexity results for model checking FO, ML, TML

and PTML. Note that since FO is the modal free fragment of TML, the different

variants of model checking problem for TML are at least as hard as that for FO.

Further, model checking for TML also reduces to model checking over FO since

there is a natural translation of TML to an appropriate 2-sorted FO similar to what

we discussed in Chapter 6, Def. 6.20 for IQML. Thus, the Combined Complexity,

Expression Complexity andData Complexity of TML are in PSPACE, PSPACE

and PTIME respectively.

136

On the other hand for PTML we can prove that the Expression Complexity

(and hence Combined Complexity) continues to be PSPACE hard for PTML. To

prove this, we use the reduction form quantified boolean formulas (QBF).

In fact, this follows from the translation of FO model checking to PTML model

checking using the translation Tr1 (Def. 4.1) described while proving PTML� is

undecidable, where we translate every FO formula into PTML� formula (Def. 4.1,

Tr1(ϕ)). In the proof of Theorem 4.2, we have a translation of FO model A to a

PTML model M rooted at r such that A, σ |= ϕ iff M, r, σ |= Tr1(ϕ). The model

translation and formula translation, both can be computed in PTIME. Hence we

can prove that the Expression Complexity (and henceCombined Complexity)

continues to be PSPACE hard for PTML. Here we give a direct proof by reduction

from TQBF problem.

Definition 7.1. (QBF) Let V be a countable set of variables. The boolean formulas

(α) and QBF formulas (ϕ) over V are defined by:

α := si | ¬si | α ∧ α | α ∨ α

ϕ := α | ∃si ϕ | ∀si ϕ
where si ∈ V.

To keep the presentation simple, we assume that every variable is quantified at

most once in any given QBF formula. Given a QBF formula ϕ, the free variables of

ϕ is defined in the standard way where FV(s) = FV(¬s) = {s} and FV(α ∨ β) =

FV(α∧ β) = FV(α)∪ FV(β) and FV(∃s ϕ) = FV(∀s ϕ) = FV (ϕ) \ {s}. We say that

ϕ is a totally quantified boolean sentence (TQBF sentence) if FV(ϕ) = ∅.

For any TQBF formula ϕ, any function σ : FV(ϕ) �→ {T, F} is called a valuation.

Definition 7.2. For any QBF formula ϕ given a valuation σ : FV(ϕ) �→ {T, F}, we

define σ |= ϕ where

137

σ |= si ⇔ σ(si) = T

σ |= ¬si ⇔ σ(si) = F

σ |= α ∧ β ⇔ σ |= α and σ |= β

σ |= α ∨ β ⇔ σ |= α or σ |= β

σ |= ∃s ϕ ⇔ there is some valuation σs such that σs |= ϕ

σ |= ∀s ϕ ⇔ for every valuation σs we have σs |= ϕ

where σs : FV(ϕ) ∪ {s} �→ {T, F} is a mapping that extends σ.

Thus for a TQBF sentence ϕ we can say whether |= ϕ or not which corresponds

to ϕ evaluating to T or F respectively.

Theorem 7.3 ([AB09]). Deciding whether a given TQBF sentence evaluates to T

or F is PSPACE complete.

Definition 7.4 (QBF to PTML translation). For every si ∈ V, let xi ∈ V be the

corresponding variable in the vocabulary of PTML. For any QBF formula ϕ, the

translation to PTML formula is defined inductively as follows:

• Tr5(si) = �xi
� and Tr5(¬si) = �xi

⊥

• Tr5(α ∧ β) = Tr5(α) ∧ Tr5(β) and Tr5(α ∨ β) = Tr5(α) ∨ Tr5(β)

• Tr5(∃siψ) = ∃xi Tr5(ψ) and Tr5(∀siψ) = ∀xi Tr5(ψ)

To prove that Expression Complexity of PTML is PSPACE hard, first we need

to fix the model. Define M = (W ,D, δ,R, ρ) where W = {u, v} and D = {0, 1}
with δ(u) = δ(v) = D and R = {(u, 1, v)} and also ρ(w) = ∅ for all w ∈ W . Note

that M is simply a model with two worlds u, v both having agent set {0, 1} and

there is a 1-labelled edge from u to v.

For any valuation σ : {s1, s2 . . . , sn} �→ {T, F} define σ̂ : {x1, x2, . . . , xn} �→ {0, 1}
such that σ̂(xi) = 1 iff σ(si) = T.

138

Theorem 7.5. Let M be the model defined above. For any QBF formula ϕ for any

valuation σ : FV(ϕ) �→ {T, F} we have σ |= ϕ iff M, u, σ̂ |= Tr5(ϕ).

Proof. The proof is by induction on the structure of ϕ. In the base case ϕ is of the

form si and σ |= si iff σ(si) = T iff σ̂(xi) = 1 iff M, u, σ̂ |= �xi
�. Similarly, σ |= ¬si

iff σ(si) = F iff σ̂(xi) = 0 iff M, u, σ̂ |= �xi
⊥.

The ∧ and ∨ cases are standard.

For ∃si ψ, we have σ |= ∃xi ψ iff there is some assignment σ′ that extends σ such

that σ′ |= ψ iff M, u, σ̂′ |= Tr5(ψ) iff M, u, σ̂ |= ∃xi Tr5(ψ).

The case of ∀si ψ is analogous.

Corollary 7.6. The Expression Complexity for PTML is PSPACE hard (and

hence Combined Complexity is also PSPACE hard).

7.2 Finitely specified structures

When we consider models which are potentially infinite, first we need a finite rep-

resentation of such models which can be provided as input for the model checking

algorithm. We motivate the finite representation with an example.

Example 7.7. Consider an operating system which can execute many processes at a

time. A configuration of the system is given by the states of its active processes. Any

active process can change the system state by making a move. Any move by a process

can create one or more new processes (threads), thus making the active set dynamic

and potentially unbounded. In this setting, consider the following assertions:

• There is at least one process active which can potentially change the system

state:

∃x �x�.

139

• For all possible next configurations, property p holds:

∀x(�xp).

• There are at least two active processes1:

∃x�xp ∧ ∃y �y¬p.

• There is a process such that it can change to a configuration in which none of

the processes can make a move (system halts):

∃x�x∀y�y⊥.

In such multi-thread dynamic systems, the names of the processes (id) can be

thought of as strings over a finite alphabet. We assume that the processes come from

a regular set and thus, can be specified as a transition system with finitely many

states and edges between the states labelled by regular expressions. Further, every

state also comes with its own regular expression which provides a pool of potential

new threads that can arise.

7.2.1 Model specification

We assume that the reader is familiar with the notion of regular languages and finite

automata [Sip06].

Let Σ be a finite alphabet and Reg(Σ) be the set of all regular expressions over Σ.

For all r ∈ Reg(Σ) let Lr denote the regular language generated by the expression

r. If s, t ∈ Σ∗ then s · t denotes the concatenation of strings s and t, often written

as st. We say that a string s ∈ Σ∗ matches regular expression r ∈ Reg(Σ) if s ∈ Lr.

Definition 7.8 (Regular agent transition system). Let P be a countable set of

propositions. A regular agent transition system is given by T = (Q,Λ, γ, μ, ρ) where:

1x and y cannot have same witness and hence at least two processes are required.

140

• Q is a finite set of states.

• Λ ⊆fin Reg(Σ) is a finite set of regular expressions.

• γ ⊆ (Q× Λ×Q) is the set of transitions labelled by regular expressions.

• μ : Q �→ Λ where μ(q) describes the potential set of new processes that are

created at q.

• ρ : Q → 2P is the valuation of propositions at every state.

From the regular agent transition system, we can obtain the configuration space

of the process system with threads. The configuration of the system is given by

a state along with the set of processes that are currently active. For any regular

expression r if there is an r edge from q to q′ in the transition system, then it means

any process with id s which matches the regular expression r that is currently active

can change the system configuration with the state being updated from q to q′.

Further, the new configuration will carry all previously active processes (strings)

as active ids2 along with a finite (unbounded) number of new threads created of

the form s · t ∈ Lμ(q′). Each new string of the from st in the updated configuration

indicates a new child thread created when the parent process s makes a transition.

Note that even though the number of threads newly created is finite, we cannot

bound the size beforehand. Hence, the number of new processes added is finite

but unbounded 3. The language of regular expressions is rich enough to consider

tree structures of concurrent and sequential threads with forking, as well as process

threads created within loops, perhaps while waiting for an external event to occur.

The input also needs to specify the initial configuration given by a state q0 and

a finite set of strings s1, . . . , sn ∈ Σ∗ which are the process that are present (alive)

at the start of the system.
2this corresponds having the condition that no thread can be reused, which corresponds to the

monotonicity condition when viewed as PTML model
3this corresponds to non-deterministic fork of threads

141

Figure 7.1: Illustration of a regular agent transition system. The valuation function
ρ is not highlighted.

Definition 7.9. Given regular agent transition system T = (Q,Λ, γ, μ, ρ) and an

initial state (q0, A0) where q0 ∈ Q and A0 = {s1, . . . , sn} ⊆ Σ∗. Define the con-

figuration graph CT = (W ,R) rooted at (q0, A0) to be the smallest tree such for

every (q, A) ∈ W and every (q, r, q′) ∈ γ and s ∈ A we have (q′, A′) ∈ W and
(
(q, A), t, (q′, A ∪ A′)

) ∈ R where A′ ⊆fin {st | st ∈ Lμ(q′)}

For any configuration graph CT = (W ,R) define the corresponding induced

PTML model MT = (W ,Σ∗,R, δ, ρ) where for all (q, A) ∈ W define δ((q, A)) = A

and ρ((q, A)) = ρ(q).

7.2.2 Example

Consider the regular agent transition system T = (Q,Λ, γ, μ, ρ) defined in Fig. 7.1.

The regular expressions on the edges denote the set of processes that can change

the corresponding system state. The regular expressions inside a state q given by

μ(q) states denote the potential pool of new processes that can be created when the

system enters the state q.

Suppose the system starts at initial state q0 and active processes {a, ab, ba}, then
the corresponding configuration graph of the system is described in Fig. 7.2.

Note that ab is the only process that can make a move from the root since it is

the only string that matches ab∗. However, ab itself can have unboundedly many

142

Figure 7.2: Configuration graph corresponding to transition system in Fig. 7.1 with
(q0, {a, ab, ba}) as the initial states. The dotted lines indicate more successors.

branches. In every such new world along with the old process set {a, ab, ba} there

are some finitely many new processes added which are of the form ab · s for some

s ∈ Σ∗ such that ab · s matches (a + b)∗a. The figure highlights 3 such possible

branches (one of them includes a state where there are no new processes created).

Now at the second level, consider the state where the set of live processes is

{a, ab, ba, abaa, abba} (the middle state). The possible processes that can make a

move from this state are ab and abba since these are the only strings that match

(ab+ ba)∗. Further, in the successors of abba, there are no new processes since there

cannot be a string of the form abba · s that matches ab∗. On the other hand, the

successors of ab are unbounded since there are infinitely many extensions of ab that

matches ab∗.

Consider the formula ∀x∀y (�x¬p → �y�xp). We will verify that this formula

is true at the root.

143

First note that the precondition holds only for [x �→ ab]. For y, we need to verify

only the case when [y �→ ab] since other processes do not have any successors. But

note all successors of ab from the root, have unboundedly many successors of ab.

On the other hand the formula ∀x (�xp ∨ �x�xp) is false. In particular when

[x �→ ab], all ab successors we have at least one ab successor to ¬p. Hence the

formula does not hold at the root.

7.2.3 Model checking

Note that for any regular agent transition system T the corresponding MT is an

unbounded branching model that describes the configuration space of the run of the

system starting from some initial configuration. In [PR17], we consider this model

specification and prove that model checking monodic PTML formulas over such

specification is decidable. In fact, we can prove that the model checking problem is

decidable for PTML without monodic restriction.

Given an input (T , q0, A0) and a PTML sentence ϕ as an input, the regular model

checking problem is the check whether MT , (q0, A0) |= ϕ. Let Mn
T denote the PTML

induced by T but is restricted to height at most n.

Observation 7.10. For any PTML formula ϕ and for any MT rooted at (q, A) we

have MT , (q, A), σ |= ϕ iff Mmd(ϕ)
T , (q, A), σ |= ϕ.

Thus, for any given PTML formula ϕ, it is enough to consider Mmd(ϕ)
T . To prove

that the model checking problem problem is decidable, we prove that every induced

model Mn
T is bisimilar to a some model Nmd(ϕ)

T of bounded size.

Now, by Theorem 6.3 (which states bisimulation implies elementary equivalence),

it is enough to check if the formula ϕ is true in Nmd(ϕ)
T which reduces to the model

144

checking problem over finite models. Towards this, first we define an equivalence

induced over agents and the worlds of Mn
T and using this we define a filtration

model.

Before defining the filtration, we recall some results about regular languages

and finite automata. For any r ∈ Reg(Σ) let Ar be the minimal deterministic

automaton for Lr. For any finite set of regular expressions Λ ⊆ Reg(Σ), and for

all strings s, t ∈ Σ∗, we can define an equivalence s ≡Λ t if for all r ∈ Λ, run of s

in Ar ends in the same state as that of the run of t in Ar. For all s ∈ Σ∗, define

�s�Λ = {t | s ≡Λ t} and �Σ∗�Λ = {�s�Λ | s ∈ Σ∗}. Similarly, for any sets of strings

A,B ⊆ Σ∗ define A ≡Λ B if {�s�Λ | s ∈ A} = {�t�Λ | t ∈ B}.

Definition 7.11 (Filtration model). Let T = (Q,Λ, γ, μ, ρ) be any regular agent

transition system and let (q0, A0) be the initial configuration and Mn
T = (W ,Σ∗,R, δ, ρ)

be the PTML model induced by T rooted at (q0, A0) restricted to height at most n.

• For all (q, A), (q, B) ∈ W define (q, A) �T (q′, B) if (q, A) and (q′, B) are at

same height and q = q′ and A ≡Λ B.

For all (q, A) ∈ W define �(q, A)�T = {(q, A′) | (q, A) � (q, A′)} and �W �T =

{�(q, A)�T | (q, A) ∈ W}.

For all A ⊆ Σ∗ define �A�T = {�s�Λ | s ∈ A}.

• The filtration model of Mn
T is given by N n

T = (W ′, D′, R′, δ′, ρ′) as follows:

– W ′ = �W �T and D′ = �Σ∗�T .

– R′ = {(�(q, A)�T , �s�Λ, �(q, B)�T
) | ((q, A), s, (Q′, B))

) ∈ R}.

– δ′(�(q, A)�T) = �A�T .

– ρ′(�(q, A)�T) = ρ((q, A)).

Note that N n
T is well defined. Now we prove that the filtration preserves bisimi-

larity.

145

Theorem 7.12. Let T = (Q,Λ, γ, μ, ρ) be any regular agent transition system and

let (q0, A) be the initial configuration and Mn
T = (W ,Σ∗,R, δ, ρ) be the PTML

model induced by T rooted at (q0, A) restricted to height at most n and N n
T =

(W ′, D′, R′, δ′, ρ′) be the corresponding filtration model. Then (Mn
T , (q0, A)) is

bisimilar to (N n
T , �(q0, A)�T).

Proof. First we define the bisimulation relation (G,H) where

G = {((q, A), �(q, A)�T
) | (q, A) ∈ W} and for every

(
(q, A), �(q, A)�T

) ∈ G define

H(
(q,A),�(q,A)�T

) = {(s, �s�Λ) | s ∈ δ((q, A))}.

We now show that (G,H) is a bisimulation by verifying all the required proper-

ties. Pick any
(
(q, A), �(q, A)�T

) ∈ G.

The condition [Val] holds since ρ depends only on q.

For condition (agent-forth), if s ∈ δ(q, A) then by definition s ∈ A and hence

�s�Λ ∈ �A�T = δ′(�(q, A)�T).

For condition (agent-back), suppose �s�Λ ∈ δ′(�(q, A)�T) then first note that there

is some (q, A) �T (q, A′) and s1 ≡Λ s such that �A1�T = �A�T and s1 ∈ A1. This

implies �s1�Λ ∈ �A�T and hence �s1�Λ ∈ �A�T . Thus there is some s2 ∈ A such that

s2 ≡S s and we have (s2, �s�Λ) ∈ H(
(q,A),�(q,A)�T

).

To verify world forth and back properties, pick any (s, �s�Λ) ∈ H(
(q,A),�(q,A)�T

).

For (world-forth), if
(
(q, A), s, (q′, B)

) ∈ R then (�(q, A)�T , �s�Λ, �(q′, B)�T) ∈
R′. Also, since A ⊆ B we have H(

(q,A),�(q,A)�T
) ⊆ H(

(q′,B),�(q′,B)�T
). Finally, by

definition of G we have
(
(q′, B), �(q′, B)�T

) ∈ G and we are done.

For (world-back) condition, suppose (�(q, A)�T , �s�Λ, �(q′, B)�T) ∈ R′, then we

need to find some
(
(q′, B1), �(q

′, B)�T) ∈ G such that (q, A)
s−→ (q′, B1) and also

H(
(q,A),�(q,A)�T)

⊆ H(
(q′,B1),�(q′,B)�T)

.

146

Now, since (�(q, A)�T , �s�Λ, �(q′, B)�T) ∈ R′, by construction there is some tran-

sition
(
(q, A1), s1, (q

′, B1)
) ∈ R such that (q, A) � (q, A1) and (q′, B) � (q′, B1) and

�s�Λ = �s1�Λ. Note that B1 is of the form A ∪ B2 where B2 = {s1t1, s1t2, . . . , s1tn |
s1ti ∈ Lμ(q′)}. Define B′

2 = {st1, s1t2, . . . , stn} which is obtained by replacing s1 by

s (as prefix) in every string occurring in B2. Let A′
2 = A ∪B′

2.

First we verify that
(
(q′, B), �(q′, A′

2)�T
) ∈ G. For this it is enough to prove that

�B�Λ = �A′
2�Λ. Pick any t′ ∈ A′

1 ∪A′
2. If t′ ∈ A then �t′�Λ ∈ �A′

1�Λ ∩ �A′
2�Λ. Further

if t′ ∈ B1 then t′ is of the form s1ti and we have sti ∈ B2 such that s1ti ≡Λ sti. On

the other hand if t′ ∈ B2 then t′ is of the form sti and we have s1ti ∈ B1 such that

s1ti ≡Λ sti. Thus, �B�Λ = �A′
2�Λ and hence

(
(q′, B), �(q′, A′

2)�T
) ∈ G.

Now since s1 ≡ s and every sti ∈ Lμ(q′) we have
(
(q, A), s, (q′, A′

2)
) ∈ R. Finally

since A ⊆ A′
2we have H(

(q,A),�(q,A)�T
) ⊆ H(

(q′,A′
1),�(q

′,A′
1)�T

).

Corollary 7.13. Regular Model checking problem has a non-deterministic algo-

rithm with O(l · 22|Λ| · |Q|) time complexity where l is the length of ϕ and Q and Λ

are the states and regular expressions mentioned in T respectively.

Proof. Note that for any regular expression r ∈ Reg(Σ) of length n the correspond-

ing minimal deterministic automaton Ar has at most 2n states. Hence, �Λ and ≡Λ

induce a bounded partition where the size of |D′| ≤ 2|Λ| and |W ′| ≤ 2|Λ| · |Q| where
Q and Λ are the finite set of states and finite set of regular expressions specified in

T respectively. Now the problem reduces to the case of model checking a formula

over finite structures and the claim follows.

147

7.3 Discussion

We considered one candidate for finite specification for PTML models based on

regular expressions. If we can encode predicate interpretation in states (again via

automata) then the same results can be lifted to model checking TML.

One obvious question is to what happens to Expression Complexity and

Data Complexity for the finitely specified models. Note that the filtration gives us

a model whose size is exponential in the given regular agent transition system. Thus,

it follows that the Expression Complexity and Data Complexity for PTML

over this specification are in PTIME and 2-NEXPTIME respectively. However, the

lower bound is open for all these model checking variants and needs to be pinned

down.

To specify reachability properties, we need a transitive modality or temporal

operators, which are not considered in this thesis. In [AAA+16], Abdulla et al intro-

duce a new framework for dynamic database systems, whose reachability properties

can be expressed in FOML with transitive modal operators. This provides a spec-

ification to represent infinite state relational transition systems and database with

updates. TML can be similarly used as a candidate logic to express properties to be

model checked.

148

Chapter 8

Conclusion

In this thesis we have studied propositional term modal logic (PTML). We showed

that it is an undecidable logic even when restricted further syntactically. This

motivated the study of decidable fragments for PTML and we identified a few: the

monodic, bundled and 2-variable fragments.

As PTML is a modal logic, its bisimulation is of interest. We characterized

elementary equivalence of PTML via bisimulation and studied associated algorithmic

questions. We also gave a van Benthem like characterization for the implicitly

quantified fragment of PTML.

We also studied model checking for PTML, though perhaps in less detail than

what might be possible. For instance, one could add transitive modalities �∗ and �∗

to express reachability properties and the model checking problem remains decidable

for PTML with the finite specification discussed in the thesis. There might be other

way of finite representations which might be of interest in other unbounded agent

systems which needs to be explored.

We extended many of the results to term modal logic and its fragments and

discussed how having constants in the vocabulary influences these results.

149

There are some natural questions that arise from the results considered in the

thesis for PTML. For instance, there is a gap between the known lower bound and

upper bound for satisfiability problem for PTML2. Also, the decidability status of

PTML2
= is open. Similarly, the decidability status of ∀x�x bundled fragment of

TML over constant agent models is open. It is also not clear how equality affects

the decidability results for the bundled fragments.

Term modal logic seems to be more expressive that FO but less expressive than

FOML (since TML2 is decidable but FOML2 is undecidable). On the other hand, TML

can be easily encoded in second order logic. Pinning down the exact expressiveness

of TML is an interesting and open ended project to explore.

8.1 Future directions

Decidable fragments. There are many directions to look for in terms of decid-

able fragments for TML. For instance, the analogue of the fluted fragment of FO,

fragments with bounded quantifier alternation and restricted quantifier prenex form

etc are all interesting.

Correspondence theory. An important branch of modal logic is correspondence

theory, by which frame conditions are characterized by modal formulas. Exploring

various fragments of TML to see what frame conditions can they characterize would

help us better understand the expressiveness of TML.

Finite model theory. Most of finite model theory literature is studied by fixing

the vocabulary. A less studied aspect is when the finite structure comes with its

own vocabulary. In such a setting we would like to assert properties like there is

some relation R such that α(R) where α is a formula that mentions R as a predicate.

150

Note that this is different from second order logic; since here, we are not allowed to

pick arbitrary interpretation for the quantified predicates. The structure fixes the

interpretation for all the relations that come with it.

This formalization is closer to the quantification of modalities used in term modal

logic. We believe that the results and proof techniques discussed in this thesis gives

us some tools to study finite model theory of unbounded vocabulary.

Also note that there is a way to induce a linear order over the underlying agent

set in TML using only equality (refer Lemma 4.8). Thus TML and its fragments can

be explored as candidate logics to capture various complexity classes over unordered

structures.

Database theory. Unordered unranked trees arise in the context of XML doc-

uments and relational database with updates. TML is a natural logic to express

properties on unranked, unordered trees with edge labels (where every tree comes

with its own set of potential labels). We believe that TML and its monadic second

order variants can be used to study the notion of regular languages over such trees.

Infinite state systems. In [AAA+16], Abdulla et al introduce a new framework

for dynamic database systems. Term modal logic is a natural candidate to specify

properties in such dynamic database systems. The freedom of having edge labels

being specified by the structure may help us to better model the system where edge

labels can encode information about who updates the database. Adding temporal

operators to TML or having transitive frame restrictions over TML can particularly

lead to interesting applications for verification of infinite state systems and for use

in database query languages.

151

SUMMARY

Modal logic has been ubiquitously used in many fields of computer science including

verification, epistemic logic etc. Typically we have two modal operators � and �
which in a broad sense refers to necessity and possibility respectively. For instance,

�iα in an epistemic setting means that “Reasoner i knows that alpha". Similarly,

�iα in the context of a system of processes is interpreted as “Process i can possibly

change the system configuration to a state where α holds". These reasoners or

process index are referred to as agents in general.

Classically, the number of agents is assumed to be fixed and finite. But in

many settings like multi-process systems / client-server systems / systems with

unboundedly many reasoners, we cannot fix the agent set beforehand. The active

agents change not only from one model to the other but also from one state to the

other in the same model. For instance, in multi-process systems, when the system

configuration changes, some processes may be terminated and some new ones may

be created.

Term modal logic introduced by Fitting et.al is suitable to study such settings,

where we can state properties like ∃x∀y �x�yα which in the epistemic setting trans-

lates to “there exists some agent who knows that everybody knows that α".

In this thesis we will explore three main aspects for term modal logic:

(1) Satisfiability problem (2) Bisimulation and (3) Model checking problem.

i

Satisfiability problem Surprisingly restriction to propositional fragment is of no

help. In fact we prove that TML satisfiability problem is undecidable even when

(�,⊥) are used as atoms. Using reductions of tiling problems, we strengthen the

result further that the FinSat, UnSat and InfAx are mutually recursively inseparable

for TML with atoms restricted only to equality.

These undecidability results motivate us to identify decidable fragments. In

this thesis, we identify some decidable fragments of term modal logic: the monodic

fragment, the bundled fragment and the two variable fragment.

Bisimulation characterizes modal logics model theoretically. We introduce bisim-

ulation for propositional term modal logic, and prove that it preserves elementary

equivalence and the converse holds over image finite models.

Further, we discuss van-benthem type invariance theorem for the variable free

fragment called the implicitly quantified modal logic. We also tailor the bisimulation

to different fragments of TML and use this to compare their expressiveness.

Model Checking When we consider the model checking problem for term modal

logic, it is clear that it reduces to classical model checking of First order logic when

models are finite, and only complexity issues are interesting. We present these,

considering the variants where the model is fixed, or the formula is fixed, or when

both are inputs.

When the model is infinite, we need a finite representation to provide input to

the algorithm. We consider models where agents are specified as regular expressions.

These specifications are motivated by consideration of how process identifiers are

created in dynamic systems of processes. For such specification, we show that model

checking is decidable.

ii

Bibliography

[AAA+16] Parosh Aziz Abdulla, C Aiswarya, Mohamed Faouzi Atig, Marco Mon-

tali, and Othmane Rezine. Recency-bounded verification of dynamic

database-driven systems. In Proceedings of the 35th ACM Symposium

on Principles of Database Systems, 2016.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern

approach. Cambridge University Press, 2009.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.

Alternating-time temporal logic. J. ACM, 49(5):672–713, 2002.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Pro-

ceedings of the forty-eighth annual ACM symposium on Theory of

Computing, pages 684–697. ACM, 2016.

[Bal14] Roberta Ballarin. Modern origins of modal logic. In Edward N. Zalta,

editor, The Stanford Encyclopedia of Philosophy. Winter 2014 edition,

2014.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic

(Cambridge Tracts in Theoretical Computer Science). Cambridge Uni-

versity Press, 2001.

153

[Ben10a] Johan van Benthem. Frame correspondences in modal predicate

logic. Proofs, categories and computations: Essays in honor of Grigori

Mints, pages 1–14, 2010.

[Ben10b] Johan van Benthem. Modal logic for open minds. 2010.

[EFT13] H-D Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical

logic. Springer Science & Business Media, 2013.

[FHMV04] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi.

Reasoning About Knowledge. A Bradford Book, 2004.

[Fin75] Kit Fine. Normal forms in modal logic. Notre Dame journal of formal

logic, 16(2):229–237, 1975.

[FL79] Michael J Fischer and Richard E Ladner. Propositional dynamic

logic of regular programs. Journal of computer and system sciences,

18(2):194–211, 1979.

[FM99] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic

(Synthese Library). Springer, 1999.

[FTV01] Melvin Fitting, Lars Thalmann, and Andrei Voronkov. Term-modal

logics. Studia Logica, 69(1):133–169, 2001.

[GH93] Adam J Grove and Joseph Y Halpern. Naming and identity in epis-

temic logics part i: the propositional case. Journal of Logic and Com-

putation, 3(4):345–378, 1993.

[GK72] Yu Sh Gurevich and IO Koryakov. Remarks on berger’s paper on the

domino problem. Siberian Mathematical Journal, 13(2):319–321, 1972.

[GKV97] Erich Grädel, Phokion G Kolaitis, and Moshe Y Vardi. On the decision

problem for two-variable first-order logic. Bulletin of symbolic logic,

3(1):53–69, 1997.

154

[GO99] Erich Grädel and Martin Otto. On logics with two variables. Theoret-

ical computer science, 224(1-2):73–113, 1999.

[GO07] Valentin Goranko and Martin Otto. Model theory of modal logic. In

Studies in Logic and Practical Reasoning, volume 3, pages 249–329.

Elsevier, 2007.

[Göd33] Kurt Gödel. Zum entscheidungsproblem des logischen funktio-

nenkalküls. Monatshefte für Mathematik und Physik, 40(1):433–443,

1933.

[Gro95] Adam J Grove. Naming and identity in epistemic logic part ii: a first-

order logic for naming. Artificial Intelligence, 74(2):311–350, 1995.

[HC96] MJ Hughes and GE Cresswell. A New Introduction to Modal Logic.

Routledge. 1996. Routledge, 1996.

[Koo07] Barteld Kooi. Dynamic term-modal logic. In A Meeting of the Minds,

pages 173–186, 2007.

[KP18] Md Aquil Khan and Vineeta Singh Patel. A formal study of a gen-

eralized rough set model based on relative approximations. In Inter-

national Joint Conference on Rough Sets, pages 502–510. Springer,

2018.

[Kri62] Saul A. Kripke. The undecidability of monadic modal quantification

theory. Mathematical Logic Quarterly, 8(2):113–116, 1962.

[Mor75] Michael Mortimer. On languages with two variables. Mathematical

Logic Quarterly, 21(1):135–140, 1975.

[OC17] Eugenio Orlandelli and Giovanna Corsi. Decidable term-modal logics.

In 15th European Conference on Multi-Agent Systems, 2017.

155

[OR94] Martin J Osborne and Ariel Rubinstein. A course in game theory.

MIT press, 1994.

[PG92] Wolfram Pohlers and Thomas Glaß. An introduction to mathemat-

ical logic. Westf. Wilh.-Univ. Münster, Institut für Math. Logik u.

Grundlagenforschung, 1992.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1977), pages 46–57.

IEEE, 1977.

[PR14] Soumya Paul and R Ramanujam. Subgames within large games and

the heuristic of imitation. Studia Logica, 102(2):361–388, 2014.

[PR17] Anantha Padmanabha and R. Ramanujam. Model checking a logic

over systems with regular sets of processes. Developmental Aspects of

Intelligent Adaptive Systems (Innovations in Software Engineering),

CEUR Workshop Proceedings, Vol. 1819, 2017.

[PR19a] Anantha Padmanabha and R. Ramanujam. The monodic fragment of

propositional term modal logic. Studia Logica, 107(3):533–557, Jun

2019.

[PR19b] Anantha Padmanabha and R. Ramanujam. Propositional modal logic

with implicit modal quantification. In Indian Conference on Logic and

Its Applications, pages 6–17. Springer, 2019.

[PR19c] Anantha Padmanabha and R. Ramanujam. Two variable fragment of

Term Modal Logic. In 44th International Symposium on Mathematical

Foundations of Computer Science (MFCS 2019), volume 138 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 30:1–30:14,

Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik.

156

[PRW18] Anantha Padmanabha, R. Ramanujam, and Yanjing Wang. Bun-

dled fragments of first-order modal logic: (un)decidability. In 38th

IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018,

Ahmedabad, India, pages 43:1–43:20, 2018.

[RS17] Mikhail Rybakov and Dmitry Shkatov. Undecidability of first-order

modal and intuitionistic logics with two variables and one monadic

predicate letter. Studia Logica, pages 1–23, 2017.

[Sht18] Gennady Shtakser. Propositional epistemic logics with quantification

over agents of knowledge. Studia Logica, 106(2):311–344, 2018.

[Sip06] Michael Sipser. Introduction to the Theory of Computation, volume 2.

Thomson Course Technology Boston, 2006.

[vDvdHK07] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic

Epistemic Logic: 337 (Synthese Library). Springer Netherlands, 2007.

[Wan17] Yanjing Wang. A new modal framework for epistemic logic. In Pro-

ceedings Sixteenth Conference on Theoretical Aspects of Rationality

and Knowledge, TARK 2017, Liverpool, UK, 24-26 July 2017., pages

515–534, 2017.

[WS18] Yanjing Wang and Jeremy Seligman. When names are not commonly

known: Epistemic logic with assignments. In Advances in Modal Logic

Vol. 12 (2018): 611-628, College Publications, 2018.

[WZ01] Frank Wolter and Michael Zakharyaschev. Decidable fragments of

first-order modal logics. The Journal of Symbolic Logic, 66(3):1415–

1438, 2001.

157

	80_recommendation
	02_certificate
	03_prelim
	content
	tabfiglist
	summary
	chap1
	chap2
	chap3
	chap4
	chap5
	chap6
	chap7
	chap8
	summary
	misc

