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Chapter 1

Introduction

1.1 Preamble

Graph editing problems are one of the central problems in graph theory that have received

lot of attention in theoretical computer science. Some of the important graph editing

operations are vertex deletion, edge deletion, edge addition and edge contraction. For

a family of graphs F , the F -EDITING problem takes as an input a graph G and an

integer k, and the objective is to decide if at most k edit operations on G can result in a

graph that belongs to F . The contraction of edge uv in graph G deletes vertices u and

v from G, and replaces them by a new vertex, which is made adjacent to vertices that

were adjacent to either u or v. In this thesis, we explore F -EDITING problem when edit

operation is restricted to edge contraction for various graph classes from the viewpoints of

parameterized complexity, lossy kernelization and exact algorithms.

Various graph editing problems have been considered in the literature with restriction on

allowed edit operations and it generalizes many NP-Hard problems. For instance, the

F -EDITING problems encompasses problems such as VERTEX COVER [22], FEEDBACK

VERTEX SET [19, 66], PLANAR F -DELETION [41, 65], INTERVAL EDITING [17, 21,

18, 11], CHORDAL EDITING [42, 78, 20], ODD CYCLE TRANSVERSAL [86], CLUSTER
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EDITING [40], TREE CONTRACTION [55], SPLIT EDITING [45], PERFECT GRAPHS

EDITING [54], TRIVIALLY PERFECT GRAPH EDITING [34, 36], PROPER INTERVAL

COMPLETION [10], PLANAR EDITING [59], THRESHOLD EDITING [35], etc. Most of

the studies regarding F -EDITING have been restricted to combination of vertex deletion,

edge deletion or edge addition. Only recently, edge contraction as an edit operation has

started to gain attention.

When we restrict the operations to only vertex/edge deletion then the corresponding

problem is called F -VERTEX/EDGE DELETION problem. On the other hand if we only

allow edge contraction then the corresponding problem is called F -CONTRACTION. Edge

contraction problems generally turn out to be more difficult compared to their vertex/edge

deletion/addition counterparts. For instance, the problem of determining whether one

can delete at most k edges from a connected input graph to obtain a tree, also known as

FEEDBACK EDGE SET, is polynomial time solvable. Whereas, the problem of determining

whether one can contract at most k edges from a connected input graph to obtain a tree,

also known as TREE CONTRACTION, is NP-Hard [6]. In fact, even determining whether

a given graph can be contracted to a path on four vertices turns out to be NP-Hard [14].

Early papers showed that F -CONTRACTION is NP-Hard even for several simple and well

structured graph classes such as paths, stars, trees, etc. [6, 14, 93, 94].

In parameterized complexity, each instance of problem P is accompanied by a parameter,

usually denoted by k. A central notion in this field is fixed parameter tractable (FPT)

problems. A parameterized problem P is said to be FPT if for a given instance (I,k),

one can decide whether or not it is a YES instance of P in time f (k)|I|O(1) where f is

some computable function of k. Every parameterized problem need not be fixed-parameter

tractable for given parameter. For now, consider following subset relation among classes

of problems: FPT✓W[1]✓W[2] · · · . Each class is believed to be properly contained in

its superclass.

In the framework of FPT algorithms, edge contraction problems exhibit properties that are



quite different than those of problems where we only delete or add vertices and edges. A

well-known result by Cai [15] states that in case F is a hereditary family of graphs with a

finite set of forbidden induced subgraphs, then the graph editing problem defined by F

and the edit operations restricted to vertex deletion, edge deletion and edge addition admits

an FPT algorithm. Results of such favor does not exist in the case of edge contraction.

Consider an example of split graphs. A graph is called split graph if it can be partitioned

into two sets, one of which induces a clique and another one is an independent set. A graph

is split graph if and only if it does not contain an induced graph in {C4,C5,2K2}, leading

to a finite forbidden characterization of this graph class. Note that SPLIT VERTEX/EDGE

DELETION/ADDITION admits an FPT algorithm running in time 5k ·nO(1) (See [46] for

improved algorithms) but SPLIT CONTRACTION is W[1]-Hard [2].

Other important notion in parameterized complexity is kernelization, which captures the

efficiency of data reduction techniques. A parameterized problem P admits a kernel of

size g(k) (or g(k)-kernel) if there is a polynomial time algorithm (called kernelization

algorithm) which takes as an input (I,k), and returns an instance (I0,k0) of P such that:

(i) (I,k) is a YES instance if and only if (I0,k0) is a YES instance; and (ii) |I0|+ k0  g(k),

where g(·) is a computable function whose value depends only on k. Depending on whether

the function g(·) is linear, polynomial or exponential, the problem is said to admit a linear,

polynomial or exponential kernel, respectively. It is easy to see that any problem that

admits a kernel is also FPT. The converse also turned out to be true. Any problem that

is fixed-parameter tractable admits an exponential kernel [25]. This makes linear and

polynomial kernels more interesting from the kernelization perspective. Researchers have

developmented the framework for ruling out existence of certain types of kernel under

some complexity theoretic assumptions [12, 28, 43, 68]. With this results, a new direction

of research in the recent years have been proving optimality of the kernel sizes and ruling

out existence of kernels of some types for a parameterized problem at hand.

Not surprisingly, edge contraction problems exhibit different behavior as compare to their



counter part when it comes to admitting a kernel. Consider a case when target graph class

is set of acyclic graphs. If the edit operation is deletion of vertex then the problem is

known as FEEDBACK VERTEX SET which admits a kernel with O(k2
) vertices [58, 91].

On the other hand, TREE CONTRACTION is known not to have a polynomial kernel under

a widely believed complexity theoretical conjecture [55].

The notion of polynomial kernels turns out to be a bit stringent, and it has been discovered

that many problems do not admit a polynomial kernel under well-known complexity

theoretic conjectures. On the other hand this notion turns out to be too lax as the instances

(I,k) and (I0,k0) are not as tightly-coupled as one would like them to be. For example, in

general, it may not be possible to translate an approximate solution to the instance (I0,k0),

into an approximate solution to the original instance (I,k). Given anything but an optimal

solution (or a solution of size k0) to (I0,k0), it is impossible to conclude anything about

the original instance (I,k). These issues, among others, have led to the development of a

framework for approximation preserving kernelization or lossy kernelization. Informally,

an a-approximate kernelization algorithm ensures that given any c-approximate solution

to the kernel (I0,k0), it can be converted into a (c ·a)-approximate solution to the original

instance (I,k) in polynomial time. This notion was formally introduced by Lokshtanov et

al. [75].

Almost all combinatorial problems are solvable in finite time by examining all of its

candidate solutions i.e. by brute-force search method. For NP-Hard problems, the number

of candidate solutions is exponential in the size of input. One of the most important

question in theoretical computer sciences is to find whether enumeration of solutions is the

only approach to solve NP-Hard problems in general. While this long last problem remains

difficult to tackle, there has been interest in developing exact exponential algorithms

which are specific to a problem at hands. First question while designing exact exponential

algorithms for a particular problem is: can be avoid brute-force search?



1.2 Known Results about Graph Contraction

The complexity of edge contraction problems has been studied in the literature, but it has

not received as much attention as other graph editing problems. In the limited body of work,

F -CONTRACTION has been analyzed in various dimension. It has been studied for various

graph classes. There are attempts to understand the complexity of F -CONTRACTION

problems depending on finite forbidden characterization of F . The problem turned out to

be hard even when F is finite or even if it contains one graph. Another line of research is

to study F -CONTRACTION with restrictions on input graph. In recent time, there is new

line of research where F is defined in parameterized way with respect to input graph. In

some graph contraction problems, the task is to determine size of largest graph in F to

which an input graph can be contracted.

Watanabe et al. [93, 94] showed that F -CONTRACTION is NP-Hard if F is finitely

characterizable by 3-connected graphs. Their result was generalized by Asano and Hirata

[6] who showed that F -CONTRACTION is NP-Hard whenever F is a graph class that

fulfills the following three conditions. (i) F is be closed under contractions, which is

to say, if a graph G is in F then any graph obtained from G by edge contractions is

also in F . (ii) F is not a trivial graph class. There are infinitely many graphs which

are contained in F and there are infinitely many graphs which are not. (iii) A graph

belongs to F if and only if each of its 2-connected components belong to F . This result

implies that F -CONTRACTION is NP-Hard when F is family of planar graphs, outerplanar

graphs, series-parallel graphs, forests, chordal graphs, or more generally, graphs with no

cycles of length at least ` for some fixed integer `≥ 3. Martin and Paulusma showed that

F -CONTRACTION is NP-Hard when F is the class of bicliques Kp,q with p,q ≥ 2 [76].

In the realm of parameterized complexity, F -CONTRACTION has been studied with

parameter being the size of solution. A well-known result by Cai [15] states that in case

F is a hereditary family of graphs with a finite set of forbidden induced subgraphs, the

problem of modifying an input graph into a graph in F when the allowed edit operations



are vertex deletion, edge deletion and edge addition admits an FPT algorithm. Central idea

in Cai’s argument is: to destroy a structure which forbids the input graph from being in F ,

one needs to include at least one vertex (or edge) from that structure into a solution. This is

not necessarily true in the case of contractions. A forbidden structure may be destroyed by

contracting edges which are not contained in the structure. Hence the classical branching

technique does not work even for graph classes that have a finite forbidden structure

characterization. There are concrete examples for the fact that results of similar flavor

as that of Cai [15] do not hold when the edit operation is edge contraction. Lokshtanov

et al. [73] and Cai and Guo [16] independently showed that if F is either the family of

P̀ +1-free graphs or the family of C`-free graphs for some `≥ 4, then F -CONTRACTION

is W[1]-Hard.

In rest of this section, we use n and m to denote the number of vertices and edges,

respectively, in an input graph. The size of solution, i.e. the maximum number of edges we

are allowed to contracted in input graph to obtain graph in target graph class, is denoted by

k. Unless otherwise specified, in all the problems mentioned below, the parameter is the

size of solution. Whenever we mention a problem does not have a polynomial kernel, it is

under the assumption that NP 6✓ coNP/poly.

To best of our knowledge, Hergerners et al. [55] were the first to explicitly study edge

contraction problems in the realm of parameterized complexity. They presented a 4knO(1)

algorithm for TREE CONTRACTION based on a variant of the color coding technique of

Alon et al. [5] and using an algorithm for CONNECTED VERTEX COVER [24] as subroutine.

They also presented an algorithm running in time O(2k+o(k)
+m) for PATH CONTRAC-

TION. The authors presented a parameter preserving reduction from an instance of RED

BLUE DOMINATING SET (defined later) problem to an instance of TREE CONTRACTION

to rule out polynomial kernel. They presented a kernel with 5k+ 3 vertices for PATH

CONTRACTION. This kernel was later improved to 3k+4 by Li et al. [72]. A subset of

others (from [55]) proved that if the input graph is chordal then TREE CONTRACTION and



PATH CONTRACTION can be solved in time O(n+m) and O(nm), respectively [53].

Golovach et al. [50] proved that PLANAR CONTRACTION is FPT. Their algorithm starts by

finding a set S of at most k vertices whose deletion transforms G into a planar graph [63, 80].

This is a recurring theme in designing an FPT algorithm for F -CONTRACTION problems.

We first solve F -VERTEX DELETION problem to get structural insight of input graph and

exploit it to obtain an FPT algorithm for contraction version of the problem. The authors

showed that if the input graph has large treewidth then one can find an edge which can

safely be contracted. This yields a smaller equivalent instance. They use the irrelevant

vertex technique developed in the graph minors project of Robertson and Seymour [88, 87]

to find such edge. After repeatedly contracting such irrelevant edges, which results in

graph of bounded treewidth, authors used Courcelle’s Theorem [23] to solve the remaining

instance in linear time.

Heggernes et al. [56] proved that BIPARTITE CONTRACTION is FPT using, first of its

kind, a combination of the irrelevant vertex technique and important sets or separators.

Important sets and the closely related notion of important separators were introduced in

[77] to prove the fixed-parameter tractability of multiway cut problems. The algorithm

starts by finding treewidth of input graph. If the treewidth is small then it solves instance

using Courcelle’s Theorem. If the treewidth is large, then it identify an irrelevant edge that

can be deleted without affecting the outcome. The algorithm crucially deviates from most

of the work in which finding irrelevant edge is crucial. While most works has rely on large

minor models as obstructions to small treewidth, this algorithm uses the fact that any graph

of high treewidth contains a large p-connected set X [30]. A vertex set X is p-connected

if, for any two subsets X1 and X2 of X with |X1|= |X2| p, there are |X1| vertex-disjoint

paths with one endpoint in X1 and the other in X2.

Marx et al. [79] observed that a simple corollary of their result immediately proved

that BIPARTITE CONTRACTION is almost linear time FPT. Guillemot and Marx [51]

presented a new FPT algorithm for BIPARTITE CONTRACTION, which is both conceptually



simpler and faster then the one mentioned previous paragraph. Their algorithm reduces an

instance of BIPARTITE CONTRACTION to several instances of an auxiliary cut problem.

These instance are then solved using the notion of important separators together with the

randomized coloring technique [5]. They presented a randomized FPT algorithm with

running time 2O(k2
)nm and a deterministic algorithm with running time 2O(k2

)nO(1).

Cai and Gua [16] and Lokshtanov et al. [74], independently, initiated the study to deter-

mine the parameterized complexity of F -CONTRACTION in terms of forbidden induced

subgraphs characterization of F . We say F is F -FREE if F is one of the forbidden

induced subgraphs of F . In other words, a graph G is contained in F if and only if G does

not contain F as an induced subgraph. Let Kt denote a complete graph on t vertices. If F is

Kt -FREE then F -CONTRACTION is FPT as the only way to destroy a copy of Kt is to con-

tract some edges in the copy. This implies an FPT algorithm by the branching technique.

This need not be the case for any other forbidden induced subgraphs. They proved that if

F is P̀ -FREE for ` 4 then F -CONTRACTION is FPT but admits no polynomial kernel.

They complimented this result by showing that P̀ -FREE CONTRACTION is W[2]-Hard

for every fixed path P̀ with ` ≥ 5. They also proved that C3-FREE CONTRACTION is

FPT but admits no polynomial kernel and C`-FREE CONTRACTION is W[2]-Hard for

every fixed cycle C` with ` ≥ 4. Last result implies that CHORDAL CONTRACTION is

W[2]-Hard. Cai and Gua gave a complete charaterization of F -FREE GRAPHS when F is

3-connected. They proved that, apart from being a 3-connected graph, if F is a complete

graph then F -FREE CONTRACTION is FPT but admits no polynomial kernel otherwise

F -FREE CONTRACTION is W[2]-Hard.

If input graph is connected then P3-FREE CONTRACTION problem is same as that

that of CLIQUE CONTRACTION. Cai and Gua presented an algorithm running in time

O(27kk2k+5
+m) to solve this problem [16]. Their algorithm first finds a large seed

clique in the input graph using an algorithm for VERTEX COVER [22], and then uses a

branch-and-search algorithm to contract other edges into the clique.



Belmonte et al. [8] studied F -CONTRACTION problem when F is the family of degree

constrained graphs like bounded degree, regular graphs and degenerate graphs. For any

integer d ≥ 0, let Fd denote the class of graphs that have maximum degree at most d;

F=d denote the class of d-regular graphs and Fd-deg denote the class of d-degenerate

graphs. Belmonte et al. completely characterized the parameterized complexity for F -

CONTRACTION problems with respect to the parameters k, d, and d + k, where F 2

{Fd,F=d,Fd-deg}. They proved that Fd -CONTRACTION and F=d -CONTRACTION

can be solved in time O((d + k)2k
(n+m)). When parameterized by only k, they showed

that F=d -CONTRACTION is W[1]-Hard, while Fd -CONTRACTION is W[2]-Hard even

when input is restricted to split graphs. In case of Fd-DEG-CONTRACTION, they proved

that this problem is not fixed-parameter tractable when parameterized by d + k. When

d = 2, authors showed that Fd -CONTRACTION and F=d -CONTRACTION admit O(k)

vertex kernels on connected graphs and hence quadratic vertex kernels on general graphs.

In other words, they proved that the F -CONTRACTION problem admits a linear vertex

kernel when F is the class of cycles or when F is the class of paths and cycles. This

complements the fact that PATH CONTRACTION admits a linear vertex kernel [55].

Let F≥d be the family of graphs whose minimum degree is at least d. Golovach et

al. [49] proved that F≥d -CONTRACTION is NP-complete even when d = 14. They proved

that this problem is FPT when parameterized by both k and d but it is W[1]-Hard when

parameterized by k alone.

Agarwal et al. [2] studied SPLIT CONTRACTION under various parameters. They proved

that SPLIT CONTRACTION is W[1]-Hard parameterized by the size of the solution. They

also studied this problem when parameter is the size of a minimum vertex cover (`) of the

input graph. To the best of our knowledge, this is the only study regarding graph contraction

problems when parameter is not a solution size. Gua and Cai’s work [52] implied that

there exists an algorithm running in time 2O(`2
) · nO(1) to solve SPLIT CONTRACTION.

Agarwal et al. proved that unless the Exponential Time Hypothesis (ETH) [57] fails, SPLIT



CONTRACTION can not have an algorithm running in time 2o(`2
) ·nO(1). This is the first

tight lower bound of this form for problems parameterized by the vertex cover number of

the input graph.

F -CONTRACTION problems has be been proved to be NP-Hard even for finite graph

classes. When F contains only one graph, say F , we call F -CONTRACTION as F -

CONTRACTIBILITY. Brouwer and Veldman proved that P4-CONTRACTIBLITY and C4-

CONTRACTIBLITY is NP-Hard [14]. They also proved that if F is a connected graph

other than a star which does not contain a triangle then F -CONTRACTIBLITY is NP-Hard.

Levin et al. [71] followed by showing that for every fixed graph F on at most 5 vertices,

F -CONTRACTIBLITY can be solved in polynomial time if F has a dominating vertex, and

it is NP-Hard otherwise. In addition, Hof et al. [92] presented an infinite family of graphs

with a dominating vertex, the smallest having 69 vertices, such that for any graph F in this

family F -CONTRACTIBLITY is NP-Hard.

F -CONTRACTIBLITY problems has been studied with restriction on input graphs. Kamin-

ski et al. [61] showed that for every fixed graph F , there exists a polynomial-time algorithm

for deciding whether a given planar graph can be contracted to F . Kaminski and Thilikos

[62] improved this result by showing that given a graph F and a planar graph G, the

problem of deciding whether G can be contracted to F is fixed-parameter tractable when

parameterized by |V (F)|. Belmonte et al. [9] showed that for any fixed graph F , the

F -CONTRACTIBLITY problem is polynomial solvable in the input graph is a split graph.

Golovach et al. [48] proved that if F is a split graph or a tree then F -CONTRACTIBLITY

is polynomial solvable if the input graph is chordal. Belmonte et al. [7] generalized this

result by showing that F -CONTRACTIBLITY on chordal graphs is polynomial solvable for

any fixed F .

In the results mentioned until now, graph class F is specified either by some property

or by finite forbidden characterization or by explicitly stating it. Instead of specifying a

target graph class we can specify a graph parameter that needs to be reduced by certain



threshold using edge contractions. For example, for a specified graph parameter p and

integer q, given a graph G, and an integer k, one can ask whether G can be transformed

into a graph G0 by using at most k edge contractions such that p(G0
) p(G)−q? Such

problems are called BLOCKER PROBLEMS. In general, blocker problems can have other

graph modification operations apart from edge contraction. Blocker problems when edit

operation is edge contraction have been studied in the recent literature [31, 84]. Several

problems mentioned so far can be thought of blocker problems for appropriate parameter

p and threshold `. We mention two new problems. In HADWIGER NUMBER problem, the

input is graph G and integer ` and the question is to determine whether G can be contracted

to K`, a clique on ` vertices. This problem is parametric dual of CLIQUE CONTRACTION.

Consider diameter as our parameter, this problem can be thought of as: can we contract at

most k (= n− `) edges to reduce the diameter of input graph by q (= diam(G)−1). With

this definition, it is easy to generalize HADWIGER NUMBER to s-CLUB CONTRACTION.

In this problem, we determine whether one can contract at most k edges in input graph G

to reduce its diameter by diam(G)− s.

We end this section with few known results regarding P̀ -CONTRACTIBILITY for a fixed

`. There has been interest in strengthening the result of Brouwer and Veldman which

prove that P4-CONTRACTIBILITY is NP-Hard. This problem was proved to be NP-Hard

even for P6-FREE graphs [85]. Heggernes et al. [53] showed that P6-CONTRACTIBILITY

is NP-Hard for bipartite graphs. This result was improved to k = 5 in [27]. Moreover,

P7-CONTRACTIBILITY is NP-Hard for line graphs [38]. On the positive side, if input

is P5-FREE graphs then we can decide the length of longest path it can be contracted in

polynomial time [85]. In very recent paper, authors [64] prove that Pk-CONTRACTIBILITY,

for some suitable value of k, is NP-Hard for bipartite graphs of large girth strengthening

the result of [53]. Cygan et al. [26] gave an algorithm running in time O(1.933n ·nO(1)
) to

solved P4-CONTRACTIBILITY. Telle and Villanger [90] presented an improved algorithm

to solve the same problem in time O(1.7804n ·nO(1)
).



1.3 Scope of this thesis

In this thesis, we extend the known boundaries about graph contraction problems in

several ways. We consider F -CONTRACTION problems which do not have a polynomial

kernels when parameterized by solution size. We compliment this negative result in

two ways. Firstly, we present a polynomial kernel when parameterized by solution size

and an additional parameter. In other words, we identify new graph classes for which

there is a polynomial kernel. We also prove that these kernels are optimal under certain

complexity conjecture. Secondly, we present a lossy kernel of polynomial size for all

these problems. We present two FPT algorithms to append the list of graph classes F for

which F -CONTRACTION parameterized by solution size is FPT. We end this thesis with

a non-trivial exact algorithm to determine what is the largest size of graph in a specific F

to which an input graph can be contracted. To best of our knowledge, this is first such kind

of algorithm in case of graph contraction problems.

Starting point of this thesis is the result of Heggernes et al. [55] who studied F -CONTRACTION

when F is the family of paths and trees. They showed that PATH CONTRACTION admits

a polynomial kernel but TREE CONTRACTION does not. The natural question here is to

identify properties of paths that separate it from trees and allows PATH CONTRACTION to

have a polynomial kernel. This question can be formulated in the following way.

− What additional parameter we can associate with TREE CONTRACTION to make sure

that it admits a polynomial kernel?

One of the possible candidates is the number of leaves in resulting graphs. In Chapter 3, we

prove that this is indeed is the case by designing a polynomial kernel TREE-CONTRACTION

when parameters are solution size and number of leaves in resultant graph. We also prove

that this kernel is optimal under certain complexity assumption.

From the point of view of lossy kernelization, another natural question regarding TREE

CONTRACTION is:



− If we are allowed to have small loss in accuracy then does TREE CONTRACTION admits

a polynomial kernel?

In the same chapter, we address this question by presenting a lossy kernel of polynomial

size for this problem.

At this point, for TREE CONTRACTION, we know how to get a polynomial kernel with

two parameters; a lossy kernel and an FPT algorithm (due to [55]). We want to understand

how far can we generalize methods used to obtain these results. We consider following

two characterization of trees.

− A tree is a connected graph in which every edge is a part of zero cycles.

− A tree is a connected graph which can be made acyclic by deleting zero edges.

A connected graph is called a cactus if every edge in the graph is part of at most one cycle.

In Chapter 4, we study CACTUS CONTRACTION. We show that this problem does not

admit a polynomial kernel when parameterized by solution size but does admit a lossy

kernel of polynomial size. We define notion of cactus with bounded leaves and present a

polynomial kernel for this problem when parameterized by solution size and number of

leaves in resultant cactus. We prove that this kernel is optimal under certain complexity

assumption. We also present an FPT algorithm for this problem running in time ck ·nO(1).

Let T` is a set of connected graphs which can be made acyclic by deleting at most `

edges or, equivalently, any graph in T` have a feedback edge set of size at most `. In

Chapter 5, we study T`-CONTRACTION problem. We prove that this problem does not

have a polynomial kernel when parameterized by solution size for any fixed `. In other

words, solution size with ` as an additional parameter do not give us polynomial kernel.

However, this additional parameter is crucial in getting a lossy kernel of polynomial size

and an FPT algorithm for this problem. This FPT algorithm can be seen as generalization

of the FPT algorithm for TREE CONTRACTION.

Heggernes et al. [55] showed that TREE CONTRACTION is FPT which implies an FPT



algorithm for F3-CONTRACTION where F3 is a collection of C3-free graphs. Lokshtanov

et al. [73] and Cai and Guo [16] independently showed that F4-CONTRACTION is not FPT

where F4 is a collection of C4-free graphs. As the number of leaves in resultant graph is

crucial to understand the gap between existence of polynomial kernel for PATH CONTRAC-

TION and non-existence for TREE CONTRACTION; feedback edge set of resultant graph is

crucial to understand the gap between existence of FPT algorithm for F3-CONTRACTION

and non-existence for F4-CONTRACTION.

In Chapter 6, we study OUT-TREE CONTRACTION. A digraph is called an out-tree if its un-

derlying undirected graph is a tree and every vertex in digraph has at most one in-neighbor.

We address this problem to illustrate the fact that with some modification, techniques

developed to obtain lossy kernelization for undirected graph contraction problems can

be applied to directed graph contractions. We show that this problem does not admit a

polynomial when parameterized by solution size. We are able to get similar results as in

case of TREE CONTRACTION with slightly bigger size of kernel. We present an optimal

polynomial kernel for OUT-TREE CONTRACTION when parameterized by solution size

and number of leaves in resultant out-tree. We also describe a lossy kernel of polynomial

size for this problem.

Effectiveness of lossy kernelization is not limited to a case when target graph class is close

to trees. In Chapter 7, we present a lossy kernel for CLIQUE CONTRACTION. Recall

that CLIQUE CONTRACTION parameterized by solution size does not admit a polynomial

kernel under certain complexity assumption [16, 73]. We generalize this problem to s-

CLUB CONTRACTION in which the objective to obtain a graph of diameter at most s. We

prove that even when s = 2, there is no lossy kernel of polynomial size for this problem

unless NP✓ coNP/poly.

In Chapter 8, we present an exact algorithm for PATH CONTRACTION. Any connected

graph can be contracted to a path on two vertices. In this chapter, we address the question

of determining the highest integer ` such that an input graph can be contracted to a path on



` vertices. We observe that there is a simple brute force algorithm to find such integer. Our

main contribution is the fact that this brute force search can be avoided.



Chapter 2

Preliminaries

In this chapter, we define notations which we use in rest of the thesis. We start with graph

theoretical notations with separate section for graph contraction operations and related

observations. We then present definitions and main results from Parameterized Complexity

theory. We devote Section 2.4 for Lossy Kernelization.

We denote the set of natural numbers by N (including 0). For k 2 N, by [k] we denote the

set {1,2, . . . ,k}. Let X ,Y be two sets. For a function j : X ! Y and y 2 Y , by j
−1(y) we

denote the set {x 2 X | j(x) = y}.

2.1 Graph Theory

In this thesis, we consider simple graphs with finite number of vertices. We use standard

notation from graph theory [29]. For an undirected graph G, sets V (G) and E(G) denote

the set of vertices and edges respectively. Two vertices u,v in V (G) are said to be adjacent

if there is an edge uv in E(G). The neighborhood of a vertex v, denoted by NG(v), is the

set of vertices adjacent to v and its degree dG(v) is |NG(v)|. The subscript in the notation

for neighborhood and degree is omitted if the graph under consideration is clear. For a set
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of edges F , set V (F) denotes the collection of endpoints of edges in F . For a subset S of

V (G), we denote the graph obtained by deleting S from G by G−S and the subgraph of

G induced on set S by G[S]. For two subsets S1,S2 of V (G), we say S1,S2 are adjacent if

there exists an edge with one end point in S1 and other in S2.

Two non-adjacent vertices u and v are called false twins of each other if N(u) = N(v). A

path P = (v1, . . . ,vl) is a sequence of distinct vertices where every consecutive pair of

vertices is adjacent. The vertices of P is the set {v1, . . . ,vl} and is denoted by V (P). A

path P in a graph G is called a simple path of G, if every internal vertex of P has degree

exactly equal to two in G. For a path P in G, let N(P) denote the neighborhood of P, i.e.

the set of vertices in V (G)\V (P) that are adjacent to a vertex in P. The endpoints of the

path P are the only vertices with a neighbor in G\P. A cycle is a sequence (v1, . . . ,vl,v1)

of vertices such that (v1, . . . ,vl) is a path and vlv1 is an edge.

A graph is called connected if there is a path between every pair of distinct vertices. It is

called disconnected otherwise. A component of a graph is a maximal connected subgraph.

A cut-vertex in G is a vertex v such that the number of components in G−{v} is strictly

more than the number of connected components in G. A graph that has no cut-vertex is

called a 2-connected graph. An edge uv of a graph G is called a cut-edge if the number

of connected components in G−{uv} is more than the number of connected components

in G. We note that the number of connected components after removal of an edge can

increase by at most one.

A vertex of degree one is called as pendant vertex. A graph is called a forest or an acyclic

graph if it does not contain any cycle. A tree is a connected acyclic graph. A pendant

vertex in a tree is called leaf. The vertices in a tree which are not leaves are internal vertices.

A star is a tree in which there is a path of length at most two between any two vertices. A

vertex that is adjacent to every other vertex in a star is called center. A connected graph

is called a cactus if every edge is a part of at most one cycle. We use following result to

bound the summation of degrees of vertices with degree 3 or more in a tree. Following



proposition also implies that in a tree, the number of vertices with degree at least 3 is upper

bounded by number of vertices with degree 1.

Proposition 2.1.1 (Lemma 3 [67]). For a tree T on at least two vertices, if V1,V2,V3 are the

set of vertices of degree 1, degree 2 and at least 3 respectively, then Âv2V3 degT (v) 3|V1|.

Proof. By definition, |V (T )| = |V1|+ |V2|+ |V3|. Since there are no isolated vertices,

Âv2V (T ) degT (v)= 2|E(T )|. Since T is a tree, |E(T )|< |V (T )|. This implies Âv2V (T ) degT (v)<

2(|V1|+ |V2|+ |V3|). Substituting lower bounds of degrees for each set, we get |V1|+

2|V2|+ 3|V3|  Âv2V1 degT (v) +Âv2V2 degT (v) +Âv2V3 degT (v) = Âv2V (T ) degT (v). Us-

ing the two equations we get |V1|+ 2|V2|+ 3|V3|  2(|V1|+ |V2|+ |V3|) which implies

|V3|  |V1|. Adding the degree of vertices only in V3 we get Âv2V3 degT (v) = 2|V (T )|−

(Âv2V1 degT (v)+Âv2V2 degT (v)) = 2(|V1|+ |V2|+ |V3|)−(|V1|+2|V2|) |V1|+2|V3|. Us-

ing the bound of |V3|, Âv2V3 degT (v) 3|V1|.

A vertex subset S ✓V (G) is said to cover an edge uv 2 E(G) if S\{u,v} 6= /0. A vertex

subset S ✓V (G) is called a vertex cover in G if it covers all the edges in G. A minimum

vertex cover is a set S ✓V (G) such that S is a vertex cover and for all S0 ✓V (G) such that S0

is a vertex cover, we have |S| |S0|. A vertex cover S in G is said to be a connected-vertex

cover if G[S] is a connected graph. A set I ✓ V (G) of pairwise non-adjacent vertices is

called an independent set. A set S of vertices is said to dominate another set S0 of vertices

if for every vertex v in S0, N(v)\S 6= /0.

We mention an FPT algorithm and a 2-factor approximation algorithm to compute con-

nected vertex cover of given graph.

Proposition 2.1.2 ([24]). Given a graph on n vertices and an integer k, there exists an

algorithm which runs in time 2knO(1) and either outputs a connected vertex cover of size

at most k or correctly concluded that no such connected vertex cover exists.

Proposition 2.1.3 ([89]). Let T be a depth-first search spanning tree of G with NL(T )

being set of non leaves in T and vc(G) (resp. cvc(G)) be minimum (resp. connected) vertex



cover of G. Then NT (L) is a (connected) vertex cover of G and |NL(T )|  2 · vc(G) 

2 · cvc(G).

2.2 Graph Contraction

The contraction of edge uv in G deletes vertices u and v from G, and adds a new vertex,

which is made adjacent to vertices that were adjacent to either u or v. Any parallel edges

added in the process are deleted so that the graph remains simple. The resulting graph is

denoted by G/e. For a given graph G and edge e = uv, we define G/e in the following

way.

V (G/e) = (V (G)[{w})\{u,v}

E(G/e) = {xy | x,y 2V (G)\{u,v},xy 2 E(G)}[{wx| x 2 NG(u)[NG(v)}

Every edge contraction reduces the number of vertices in graph by exactly one. Several

edges might disappear due to one edge contraction. For a subset of edges F in G, graph

G/F denotes the graph obtained from G by repeatedly contracting edge in F until no such

edges remains.

We say graph G is contractible to graph H if there exists an onto function y : V (G)!V (H)

such that following properties hold.

• For any vertex h in V (H), graph G[W (h)] is connected, where set W (h) := {v 2

V (G) | y(v) = h}.

• For any two vertices h,h0 in V (H), edge hh0 is present in H if and only if there exists

an edge in G with one end point in W (h) and another in W (h0).

For example, see Figure 2.1. For a vertex h in H, set W (h) is called a witness set associated

with h. We define H-witness structure of G, denoted by W , as collection of all witness set.

Formally, W = {W (h) | h 2V (H)}. Witness structure W is a partition of vertices in G. If
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Figure 2.1: Graph contraction operation

a witness set contains more than one vertex then we call it big witness-set, otherwise it is

small/singleton witness set.

If graph G has a H-witness structure then graph H can be obtained from G by series of

edge contractions. For a fixed H-witness structure, let F be union of spanning trees of all

witness sets. By convention, spanning tree of a singleton set is an empty set. To obtain

graph H from G, it is sufficient to contract edges in F . If such witness structure exists then

we say graph G is contractible to H. We say graph G is k-contractible to H if cardinality

of F is at most k. In other words, H can be obtained from G by at most k edge contractions.

Following observation are immediate consequences of definitions.

Observation 2.2.1. If graph G is k-contractible to graph H then following statements are

true.

• |V (G)| |V (H)|+ k.

• For any witness set W in a H-witness structure of G, cardinality of W is at most

k+1.

• Any H-witness structure of G has at most k big witness sets.

• For a fixed H-witness structure, the number of vertices in G which are contained in

big witness sets is at most 2k.



2.3 Parameterized Complexity

Many computational problems arising from real-world problems are NP-Hard, and we do

not expect any efficient algorithms for solving them optimally. Parameterized complexity

is an algorithm paradigm to tackle NP-Hard problems. Central notions in this paradigm

are fixed parameter tractability and kernelization. The former notion is developed to

identify NP-Hard problems which can be solved by restricting unavoidable exponential

factor in running time to a parameter which is expected to be smaller then entire input.

Kernelization has been developed as a mathematical framework to study data reduction

rules and to quantify their efficacy.

A parameterized problem is a classical problem with an additional integer associated with

each (classical) instance of the problem. Formally, it is defined as follows.

Definition 2.3.1 (Parameterized Problem). A parameterized problem is a language P✓

S⇤ ⇥N, where S is a fixed, finite alphabet. For an instance (I,k) 2 S⇤ ⇥N, integer k is

called the parameter.

For a parameterized problem P ✓ S⇤ ⇥N, the derived classical problem Pc is the set

{I1k
|(I,k) 2P}, where 1 62 S. Typically, parameter k reflects some structural property of

the instance. A common parameter is a bound on the size of an optimum solution to the

problem instance.

Definition 2.3.2 (Fixed Parameter Tractable (FPT)). A parameterized problem P✓ S⇤ ⇥

N is called fixed parameter tractable if there exists an algorithm A (called a fixed

parameter algorithm), a computable function f : N! N, and a constant c such that, given

(I,k) 2 S⇤ ⇥N, the algorithm A correctly decides whether (I,k) 2P in time bounded by

f (k) · (|I|+ k)c.

The complexity class containing all fixed-parameter tractable problems is called FPT.

Every parameterized problem need not be fixed-parameter tractable for given parameter.



Downey and Fellows introduced W-hierarchy in an attempt to classify parameterized

problems according to their hardness (See [33]). We restrain from specifying exact

definition of these classes. To understand results in this thesis it is sufficient to know

following containment relationship among these classes: FPT✓W[1]✓W[2] · · · . Each

class is believed to be properly contained in its superset. We mention that problems

CLIQUE and DOMINATING SET parameterized by solution size are W[1]-Complete and

W[2]-Complete, respectively.

One can obtain finer classification of FPT problems by examining the efficiency with

which instances of these problems can be reduced to smaller instances without changing

the answer. To quantify efficiency of such reductions, we define kernelization algorithm.

Definition 2.3.3 (Kernelization Algorithm). A kernelization algorithm, or simply kernel,

of a parameterized language P✓ S⇤ ⇥N is an algorithm that takes as input an instance

(I,k) 2 S⇤⇥N, and in time polynomial in |I|+k returns another instance (I0,k0) such that:

• |I0|+ k0  g(k) for some computable function g(·), and

• (I,k) 2P if and only if (I0,k0) 2P.

If the function g(·) is linear, polynomial or exponential, the problem is said to admit a

linear, polynomial or exponential kernel, respectively. If there is a kernel for given problem

then it is clearly FPT but, interestingly, the converse is also true. Any FPT problem admits

an exponential kernel (See [25, Lemma 2.2]). This makes linear and polynomial kernels

more interesting from the kernelization perspective. Every problem which is FPT by

specified parameter may not have a polynomial kernel. An interesting line of research was

started to rule out existence of polynomial kernels under reasonable complexity theoretic

assumptions [12, 43]. Before stating results regarding non-existence of polynomial kernel,

we mention definition of polynomial compression which generalizes the notion of kernels.

Definition 2.3.4 (Polynomial Compression). A polynomial compression of a parameterized

language P✓ S⇤⇥N into a language L✓ S⇤ is an algorithm that takes as input an instance

(I,k) 2 S⇤ ⇥N, and in time polynomial in |I|+ k returns a string y such that:



• |y| p(k) for some polynomial p(·), and

• y 2 L if and only if (I,k) 2P.

If |S|= 2, the polynomial p(·) is called bit-size of the compression. Note that a polynomial

kernel is also a polynomial compression by treating the output kernel as the instance of

un-parameterized version of P.

Let P1 be a problem for which we already know that it does not admit a polynomial

compression. To be able to transfer this hardness to other problems, we need following

notion of reduction.

Definition 2.3.5 (Polynomial Parameter Transformation). Let P1,P2 ✓ S⇤ ⇥N be two

parameterized problems. An algorithm A is called a polynomial parameter transformation

from P1 to P2 if given an instance (I1,k1) of P1, A works in polynomial time and outputs

an instance (I2,k2) of P2 such that:

• |k2| p(k1) for some polynomial p(·), and

• (I1,k1) 2P1 if and only if (I2,k2) 2P2.

In the following theorem, we formalize the notation of transfer of hardness.

Theorem 2.3.1 ([25] Theorem 15.15). Let P1,P2 ✓S⇤⇥N be two parameterized problems

and assume that there exits a polynomial parameter transformation from P1 to P2. Then,

if P1 does not admit a polynomial compression, neither does P2.

Note that Theorem 2.3.1 uses the notion of compression instead of kernelization. If we

liked to prove an analogous statement for polynomial kernelization, we would need to

provide a way to reduce back Pc
2 to Pc

1. This requires some additional assumptions on

complexity of Pc
1 and P2

2. We mention following result by Bodlaender et al. which we use

to rule out polynomial kernels.

Proposition 2.3.1 ([13]). Let P1 and P2 be parameterized problems such that Pc
1 is NP-

complete and Pc
2 is in NP; if there is a polynomial parameter transformation from P1 to



P2 and P2 has a polynomial kernel, then P1 has a polynomial kernel.

Until now, we mentioned results that can be used to establish that for a particular problem,

there is no polynomial sized compression. These results, with more involved treatments,

can be used to argue that for a particular problem a certain sized compression is optimal.

We mention one problem for which compression lower bound is known to be optimal

under standard complexity assumptions. The problem DOMINATING SET takes as an

input a graph and an integer k, and the goal is to decide whether the input graph con-

tains a dominating set of size at most k. Any instance can be encoded with O(n2) bits

where n is the number of vertices in the input graph. Jansen and Pieterse proved that

DOMINATING SET does not admit a compression of bit-size O(n2−e), for any e > 0

unless NP✓ coNP/poly [60]. We use this result to obtain compression lower bound for

another problems which is more useful in reduction. The input instance for RED-BLUE

DOMINATING SET (RBDS) is a bipartite graph G with bi-partition (R,B) and an integer t.

The question is whether R has a subset of at most t vertices that dominates B.

Proposition 2.3.2. RED-BLUE DOMINATING SET does not admit a polynomial compres-

sion of bit size O(n2−e), for any e > 0 unless NP✓ coNP/poly. Here, n is the number of

vertices in the input graph.

Proof. Assuming a contradiction, suppose RBDS admits a compression into L ✓ S⇤

with bit-size in O(n2−e) for some e > 0, where n is the number of vertices in the input

graph for RBDS. This implies that there exists an algorithm A which takes an instance

I = (G,R,B,k) of RBDS and in time nO(1) returns an equivalent instance I0 of L with

|I0| 2 O(n2−e).

Let (G,k) be an instance of DOMINATING SET and n = |V (G)|. We construct as instance

(G0,R,B,k0) of RBDS as the following. For each v 2V (G), we add vertices vR and vB to

R and B, respectively. Further, for each vR 2 R we make it adjacent to the corresponding

copies in B of vertices in NG[v]. Finally, we set k0 = k. It is easy to see that (G,k) is



a YES instance of DOMINATING SET if and only if (G0,R,B,k0) is a YES instance of

RBDS. Furthermore, the reduction takes polynomial time and |V (G0)| 2 O(n). But then

DOMINATING SET admits a compression into P with bit-size O(n2−e), a contradiction.

For more details on parameterized complexity, we refer the reader to the books of Downey

and Fellows [33], Flum and Grohe [39], Niedermeier [83], and the more recent book by

Cygan et al. [25].

2.4 Lossy Kernelization

As the goal in parameterized algorithms is to eventually solve the given instance of a

problem, the application of a kernelization algorithm is typically followed by an exact or

approximation algorithm that finds a solution to a reduced instance. However, the definition

of kernel mentioned in Section 2.3 provides no insight into how this solution relates to a

solution to the original instance. For instance, consider a parameterized problem P, an

instance (I,k) of P, and a kernelization algorithm A of P. Let (I0,k0) be the instance

returned by A on the input (I,k). Given an approximate solution to (optimization version

of) P in (I0,k0), using the (classical) notion of polynomial kernels we can say nothing

about a solution to the instance (I,k). Many state of the art approximation algorithms used

to tackle NP-Hard problems are extremely sophisticated and it is infeasible to apply them

to large problem instances. It is far more practical to reduce a large instance to a small

kernel, then obtain a good approximate solution to this kernel, and finally transform it into

an approximate solution to the original instance. Lokshtanov et al. [75] introduced the

notion of lossy kernelization, which provides a framework for “approximation preserving

kernelization”. Building on the notion of classical kernelization, this framework combines

well with approximation algorithms and heuristics.

In lossy kernelization, we work with optimization analogue of parameterized problem.



Along with an instance and a parameter, optimization analogue of the problem also

has a string called solution. We start with a definition of a parameterized optimization

problem, which is the parameterized analogue of an optimization problem in the theory of

approximation algorithms.

Definition 2.4.1 (Parameterized Optimization Problem). A parameterized Optimization

problem is a computable function P◦ : S⇤ ⇥N⇥S⇤ 7! R[{±•}. The instances of P◦ are

pairs (I,k) 2 S⇤⇥N and a solution to (I,k) is simply a string S 2 S⇤ such that |S| |I|+k.

In this thesis, all optimization problems are minimization problems. We present rest of

section with respect to parameterized minimization problem as parameterized maximization

problem can be defined in a similar way. We treat decision version of problem (P) and

optimization version of problem (P◦) in separate sections. In chapters, we denote decision

version and optimzation version of a problem by same notation.

The value of a solution S is P◦(I,k,S). The optimum value of (I,k) is defined as:

OPTP(I,k) = minS2S⇤, |S||I|+kP
◦(I,k,S), and an optimum solution for (I,k) is a solu-

tion S such that P◦(I,k,S) = OPTP◦(I,k). For a constant c > 1, S is c-factor approximate

solution for (I,k) if P◦(I,k,S)
OPTP◦(I,k)  c. We omit the subscript P◦ in the notation for opti-

mum value if the problem under consideration is clear from the context. We define an

a-approximate polynomial-time preprocessing algorithm for a parameterized minimization

problem P◦.

Definition 2.4.2 (a-Approximate Polynomial-time Preprocessing Algorithm). Let a ≥ 1

be a real number and P◦ be a parameterized minimization problem. An a-approximate

polynomial-time preprocessing algorithm is defined as a pair of polynomial-time algo-

rithms, called the reduction algorithm and the solution lifting algorithm, that satisfy the

following properties.

• Given an instance (I,k) of P◦, the reduction algorithm computes an instance (I0,k0)

of P◦.



• Given the instances (I,k) and (I0,k0) of P◦, and a solution S0 to (I0,k0), the solution

lifting algorithm computes a solution S to (I,k) such that P◦(I,k,S)
OPT(I,k)  a ·

P◦(I0,k0,S0)
OPT(I0,k0) .

We sometimes refer a-approximate polynomial-time preprocessing algorithm kernel as a-

lossy rule or a-reduction rule. A reduction rule is the reduction algorithm of a polynomial

time preprocessing algorithm. We say that a reduction rule is applicable on an instance

(I,k) if the result (I0,k0) obtained by applying reduction rule on it is different from (I,k).

It is applicable on an instance if the output is different from the input instance.

Definition 2.4.3 (a-Approximate Kernel). An a-approximate kernelization (or a-approximate

kernel) for P◦ is an a-approximate polynomial-time preprocessing algorithm A such that

sizeA (k) = sup{|I0|+ k0 : (I0,k0) = RA (I,k), I 2 S⇤}, is upper bounded by a computable

function g : N ! N, where RA is the reduction algorithm in A .

We sometimes refer a-approximate kernel as a-lossy kernel. In classical kernelization, of-

ten we apply reduction rules several times to reduce the given instance. This however breaks

down in lossy kernelization. Each application of a reduction rule could potentially increase

the “gap” between (i) the approximation quality of the solution to the kernel on the one

hand, and (ii) the approximation quality of solution to the original instance that is computed

by the solution lifting algorithm, on the other. Let (G,k)! (G0,k0)! (G00,k00) be a series

of instance obtained after applying a-reduction rules. In other words, (G0,k0),(G00,k00) are

instances obtained by applying a-reduction rule on (G,k),(G0,k0) respectively. Given a

c-factor approximate solution S00 for (G00,k00), solution lifting algorithm can obtain (a2
·c)-

factor approximate solution S for (G,k). To remedy this shortcoming, we require the

notion of a-strict kernelization and a-safe reduction rules.

Definition 2.4.4 (Strict Kernel). An a-approximate kernelization is said to be strict if

P◦(I,k,s)
OPT(I,k)  max{P◦(I0,k0,s0)

OPT(I0,k0) ,a}.

Definition 2.4.5 (Safe reduction rule). A reduction rule is said to be a-safe for P◦ if there

is a solution lifting algorithm, such that the rule together with this algorithm constitutes a

strict a-approximate polynomial-time preprocessing algorithm for P◦.



In the above example, if reduction rules are a-safe, we can obtain max{a,c}-factor

(instead of a2c-factor) approximate solution for (G,k) from c-factor approximate solution

for (G00,k00). A (lossy) reduction rule being 1-safe is more strict than (classical) reduction

rule begin safe. To prove the correctness of reduction rule in classical kernelization, we

prove that for an input instance is a YES instance if and only if output instance is a YES

instance. In case of lossy kernelization, we need to argue that for any c-factor approximate

solution for an output instance, one can obtain c-factor approximate solution for input

instance.

We mentioned a-approximate kernelization algorithms for given problem P◦. We now

define family of algorithms, one for every a , to compute approximate kernel.

Definition 2.4.6 (PSAKS). A polynomial-size approximate kernelization scheme (PSAKS)

for P◦ is a family of a-approximate polynomial kernelization algorithms for each a > 1.

The size of an output instance of a PSAKS, when run on (I,k) with approximation

parameter a , is upper bounded by f (a) · kg(a) for some functions f and g independent of

|I| and k.

We briefly discuss the importance of the parameter k in this framework. For the sake of

simplicity imagine that we are considering a parameterized problem with solution size as

parameter. In classical settings, the question is to determine whether there exists a solution

of size at most k. Assuming that there always exists a trivial solution of large size, the

question is to differentiate solutions of size at most k from solutions of size at least k+1.

To reflect this, parameterized minimization problem is defined in the following way.

P◦(I,k,S) =

8

>

<

>

:

• if S is not a solution

min{|S|,k+1} otherwise

Above definition allows us to design solution lifting algorithms which consider all of

solutions of value more than k+1 are equally bad. Consider a case when input of solution



lifting algorithm is (I,k, I0,k0,S0) where S0 is a solution for (I0,k0). Let k0 = k; k > a ; k > 2

and P◦(I0,k0,S0) = k100. Since the solution lifting algorithm runs in polynomial time and

we are dealing with NP-hard problem, it is unlikely that we find solution S for (I,k) of

size at most k. By definition of solution lifting algorithm, it needs to find a solution for

(G,k) which is at least max{k99,a}= k99 times the size of optimum solution. It is futile

to compel a solution lifting algorithm to find a k99-factor approximate solution. Present

definition of P◦ allows solution lifting algorithm to return a feasible solution S of any

cardinality. Notice that above definition ensures both P◦(I0,k0,S0) and P◦(I,k,S) are equal.

We define a notion of a polynomial time reduction appropriate for obtaining lower bounds

for a-approximate kernels. This is very similar to the definition of a-approximate polyno-

mial time pre-processing algorithm (Definition 2.4.2).

Definition 2.4.7. Let a ≥ 1 be a real number. Let P and P0 be two parameterized

minimization problems. An a-approximate polynomial parameter transformation (a-appt

for short) A from P to P0 is a pair of polynomial time algorithms, called reduction

algorithm RA and solution lifting algorithm. Given as input an instance (I,k) of P the

reduction algorithm outputs an instance (I0,k0) of P0. The solution lifting algorithm takes

as input an instance (I,k) of P, the output instance (I0,k0) = RA (I,k) of P0, and a solution

s0 to the instance I0 and outputs a solution s0 to (I,k) such that

P(I,k,s)
OPTP(I,k)


P(I0,k0,s0)

OPTP0(I0,k0)

In the standard kernelization setting lower bounds machinery rules out existence of com-

pression algorithms. Similar to this, lower bound machinery in lossy kernelization rules

out existence of compression algorithms. Towards that we need to generalize the definition

of a-approximate kernel to a-approximate compression. The only difference is that in

the later case the reduced instance can be an instance of any parameterized optimization

problem.



Definition 2.4.8. Let a ≥ 1 be a real number. Let P and P0 be two parameterized

optimization problems. An a-approximate compression from P to P0 is an a-appt A

from P to P0 such that sizeA (k) = sup{|I0|+ k0 : (I0,k0) = RA (I,k), I 2 S⇤}, is upper

bounded by a computable function g : N ! N, where RA is the reduction algorithm in A .

In [75], authors proved that parameterized optimization version of SET COVER parameter-

ized by universe size does not admit an a-approximate compression of polynomial size for

any a ≥ 1 unless NP✓ coNP/poly. The input of SET COVER is a family S of subsets of

a universe U and the objective is to choose a minimum sized subfamily F of S such that
S

S2F S =U . Such a set F is called a set cover of (S ,U). Since the parameter used here

is a structural parameter, its parameterized version SET COVER/n (SC/n) can be defined

as follows.

SC/n((S ,U), |U |,F ) =

8

>

<

>

:

• if F is a set cover

|F | otherwise

Theorem 2.4.1. SET COVER/n does not have a polynomial size a-approximate compres-

sion for any a ≥ 1, unless NP ✓ coNP/poly.

Parameterized version of SET COVER is generally associated with parameter k which is

size of solution. We can define it in the following way.

SC/k((S ,U),k,F ) =

8

>

<

>

:

min{|F |,k+1} if F is a set cover

• otherwise

Without loss of generality, we can assume that we are working with an instance in which

k  n. If k ≥ n then we can select a private set to cover each element in universe and hence

the instance can be solved in polynomial time. Suppose there exists a polynomial size

a-approximate compression of SET COVER/k for some a . We can use this compression

algorithm to get a lossy compression for SET COVER/n by substituting k = n. This is a



contradiction to Theorem 2.4.1. This leads to following corollary.

Corollary 2.4.1. SET COVER/k does not have a polynomial size a-approximate compres-

sion for any a ≥ 1, unless NP ✓ coNP/poly.

We encourage the reader to see [75] for more comprehensive discussion of these ideas

and definitions. The authors presented lossy kernels for several problems which do not

admit a classical kernelization, such as CONNECTED VERTEX COVER, DISJOINT CYCLE

PACKING, DISJOINT FACTORS, etc. They also develop a lower bound framework for

lossy kernels, by extending the lower bound framework of classical kernelization. They

show that LONGEST PATH does not admit a lossy kernel of polynomial size unless NP ✓

coNP/poly.

In this thesis, we investigate several graph contraction problems in the framework of lossy

kernelization. We design lossy polynomial kernels for some graph contraction problems

which do not admit classical polynomial kernels NP ✓ coNP/poly.



Chapter 3

Tree Contraction

3.1 Introduction

In this chapter, we study problem of contracting given graph to a tree. PATH CONTRAC-

TION and TREE CONTRACTION were first problems studied in parameterized setting

by Heggernes et al. [55]. They proved that when parameterized by solution size, PATH

CONTRACTION admits a linear vertex kernel but TREE CONTRACTION does not admit a

polynomial kernel unless NP✓ coNP/poly. Difference in sizes of kernels for these two

closely related problems is starting point of work presented in this chapter. We formally

define TREE CONTRACTION.

TREE CONTRACTION Parameter: k

Input: A graph G and an integer k

Question: Is it possible to obtain a tree from G with at most k edge contractions?

Other problems mentioned in this section are defined in similar way. Heggernes et al.

presented a parameter preserving reduction from an instance of RED BLUE DOMINATION

problem to an instance of TREE CONTRACTION [55, Theorem 2]. This reduction also

holds for STAR CONTRACTION. It is interesting that when parameterized by solution size

PATH CONTRACTION admits a polynomial kernel but STAR CONTRACTION does not. One

55



of the structural difference between path and star is number of leaves. While path has at

most two leaves, a star graph can have unbounded number of leaves. This hints that number

of leaves can be a additional parameter one needs to consider to change the parameterized

complexity of STAR CONTRACTION problem. To formalize the question: does the bound

on the number of leaves makes the difference in kernelization complexity of these two

problems? We prove that indeed this is the case. We show that when parameterized by

addition parameter l, number of leaves, we do get polynomial kernels. In fact, what we get

is an uniform kernel i.e. the kernel which is polynomial both in terms of k and l. Formally,

the problem is defined below.

BOUNDED TREE CONTRACTION (BOUNDED TC) Parameter: k + `

Input: A graph G and integers k, `

Question: Is it possible to obtain a tree with at most ` leaves from G with at most k

edge contractions?

We prove that there exists a polynomial kernel with O(k`) vertices and O(k2 + k`) edges

in Section 3.3. In Section 3.4, we prove that these kernels are optimal unless NP ✓

coNP/poly.

We know that TREE CONTRACTION does not have a polynomial kernel when parameterized

by solution size. Next natural question is: does it have a lossy kernel of polynomial size

when parameterized by solution size?. We prove that given a graph G on n vertices, an

integer k and an approximation parameter a > 1, there is an algorithm that runs in nO(1)

time and outputs a graph G0 on O(kd+2 + k3) vertices and an integer k0 such that for every

c > 1, a c-approximate solution for (G0
,k0) can be turned into a (ca)-approximate solution

for (G,k) in nO(1). Here, d = d
a

a−1e.

Results presented in Section 3.3 and 3.4 are from [1]. Lossy kernel for TREE CONTRAC-

TION is based on [69].



3.2 Preliminaries

Let G be a connected graph and F is a set of edges in G such that G/F = T is a tree. Let

W be a T -witness structure of G. We start with following observation on neighbors of

vertices which are contained in W (t) for some leaf t in T .

Observation 3.2.1. Let t be a leaf in T and t 0 be its unique neighbor. Then, for every

vertex v in W (t), its neighborhood is contained in W (t 0)[W (t).

Proof. For the sake of contradiction, assume that there exists a vertex v in W (t) which has

neighbors outside W (t) and W (t 0). Let W (t 00) be a witness set such that N(v) intersects

with W (t 00) and t 00 is not equal to t or t 0. Since G is contractible to T , there exists an edge

between t and t 00. This implies that t has at least two neighbors in T contradicting the fact

that it is a leaf.

For every integer `≥ 2, consider a set of trees which has at most ` leaves. For ` = 2, this

set is a collection of all paths. Following observation states that this set of graphs is closed

under edge contraction.

Observation 3.2.2. Let T be a tree and T 0 be the graph obtained from T by contracting

an edge v1v2 in E(T ). If T has at most ` leaves then T 0 is a tree with at most ` leaves.

This set is also closed under an operation of uncontracting an edge with some additional

conditions. We first formally define such operation. Consider a tree T and one of its

internal vertex, say v. Let L,R be a partition of N(v) such that none of them is an empty

set. We define operation SPLIT(T,v,L,R) as follows. See Figure 3.1 for illustration.

SPLIT(T,v,L,R): Remove vertex v and add two vertices v1 and v2. Make v1 adjacent

with every vertex in L and v2 adjacent with every vertex in R. Add edge v1v2. If T 0 is

the graph obtained from T by this operation then V (T 0) = (V (T ) \ {v})[{v1,v2} and

E(T 0) = (E(T )\ ({vu | u 2 N(v)}))[{v1u | u 2 L}[{v2u | u 2 R}[{v1v2}.



Figure 3.1: Operation SPLIT(T,v,L,R) with L = {x3} and R = {x1,x2}.

The following lemma proves that this operation on a tree results into another tree with

same number of leaves.

Lemma 3.2.1. Let T be a tree, v be an internal vertex of T and N(v) is partitioned

into two non-empty sets L and R. Let T 0 is the graph obtained from T after applying

SPLIT(T,v,L,R). If T has at most ` leaves then T 0 is a tree with at most ` leaves.

Proof. First, we prove that T 0 is a tree. Suppose not, then there exists a cycle in T 0. Let C0

be an induced cycle in T 0. If C0 contains at most one of v1,v2, then we can obtain a cycle C

in T by replacing v1 or v2 by v. Otherwise, C contain both v1 and v2. Since, C0 is an induced

cycle and v1v2 2 E(T 0), vertices v1,v2 appear consecutively in C0. Again, by replacing

v1v2 by vertex v, we obtain a cycle in T which is a contradiction. Hence, T 0 is acyclic.

Note that v1v2 is an edge in T 0 with NT 0(v1)\{v2} = L 6= /0 and NT 0(v2)\{v1} = R 6= /0,

therefore v1,v2 are not leaves in T 0. All leaves in T 0 remains as leaf vertices in T 0. This

implies that number of leaves in T 0 is no more than the number of leaves in T .

We mention following simplifying assumption which is used in designing a lossy kernel

for TREE CONTRACTION. It helps us to concentrate on 2-connected components of input

graph.

Lemma 3.2.2 ([55]). A connected graph is k-contractible to a tree if and only if each of its

2-connected components is contractible to a tree using at most k edge contractions in total.

We make an observation on a tree witness structure of a 2-connected graph.



Figure 3.2: Modifying big witness sets which are leafs. All but one vertex in W (ti) has
been moved to W (t j). See Observation 3.2.3.

Observation 3.2.3. Consider a 2-connected graph G and let F be a set of edges in G

such that G/F is a tree with at least three vertices. Then there exists a set F 0 of at most

|F | many edges such that G/F 0 is a tree and corresponding G/F 0-witness structure W 0

satisfies following property: Witness set W 0(t 0) in W 0 is singleton if and only if t 0 is a leaf

in G/F 0.

Proof. Let W be a T -witness structure of G where T = G/F . We first show that every

vertex t in V (T ) for which W (t) is singleton, is a leaf in T . Assume there exists a non-leaf

t in T such that W (t) = {u} for some vertex u in V (G). Since t is not a leaf, T −{t} has

at least two non-empty subtrees, say T1 and T2. Define two sets U1 :=
S

t2V (T1)
W (t) and

U2 :=
S

t2V (T2)
W (t). As W is a T -witness structure of G, there is no edge between a vertex

in U1 and a vertex in U2 in G−{u}. This contradicts the fact that G is 2-connected. Hence

our assumption is wrong and every singleton witness set corresponds to a leaf.

Consider a leaf ti in T such that W (ti) is not a singleton set. Let t j be the unique neighbor

of ti in T . Since T has at least three nodes, t j is not a leaf. As tit j 2 E(T ), there exists an

edge in G with one end-point in W (ti) and another in W (t j). Hence, G[W (ti)[W (t j)] is

connected (See Figure 3.2). We argue that G[W (ti)[W (t j)] has a spanning tree which has



a leaf in W (ti). Observe that as |W (ti)|> 1, any spanning tree of G[W (ti)] has at least two

leaves. If there is a spanning tree of G[W (ti)] that has a leaf u which is not adjacent to any

vertex in W (t j), then G[(W (ti)[W (t j)) \ {u}] is connected and u is the required vertex.

Otherwise every leaf in every spanning tree of G[W (ti)] is adjacent to some vertex in W (t j)

and hence G[(W (ti)[W (t j)) \ {u}] is connected for each vertex u 2 W (ti). Therefore,

G[W (ti)[W (t j)] has a spanning tree which has a leaf u from W (ti).

Define sets Wu := {u} and Wi j := (W (t j)[W (ti)) \ {u}. Let W 0 be a witness structure

obtained from W by removing W (ti),W (t j) and adding Wu,Wi j. Formally, W 0 = (W [

{Wu,Wi j}) \ {W (ti),W (t j)}. Note that W 0 partitions V (G) and for every witness sets

W 0 in W 0, G[W 0] is connected. Let T 0 is the graph obtained from G by contracting all

witness sets in W 0. In other words, W 0 is T 0-witness structure of G. We argue that T 0

is a tree. By Observation 3.2.1, for every vertex in v in W (ti), neighborhood of v is

contained in W (ti)[W (t j). Moreover, W (t j) is a subset of Wi j. Hence witness set W in

W 0
\ {Wu,Wi j} = W \{W (ti),W (t j)} is adjancent with Wi j if and only if W is adjancent

with Wj. By construction, Wu is adjancent with only Wi j. Hence T 0 can be obtained from

T by renaming t j to ti j and ti to tu. This implies T 0 is a tree and it has same number of

vertices as that of T . Note that the number of edges needed to contract all witness sets in

W is same as the number of edges needed to contract all witness sets in W 0.

Recall that T has at least three vertices and hence every leaf vertex is adjacent to some

non-leaf vertex. We repeat the above process for every non-singleton leaf until every

witness set corresponding to a leaf is a singlton witness set. If F 0 is union of spanning trees

of this modified witness structure then the number of edges in F 0 and F are same. This

concludes proof of the lemma.
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Figure 3.3: An illustration of Reduction Rule 3.3.1.

3.3 Kernel for BOUNDED TREE CONTRACTION

In this section we design a kernelization algorithm for BOUNDED TREE CONTRACTION

(BOUNDED TC). Our algorithm is inspired by kernelization algorithm for PATH CON-

TRACTION presented in [55]. Let (G,k, `) be an instance of BOUNDED TC. It is safe to

assume that the input graph G is connected otherwise it is a trivial NO instance.

Kernelization algorithm has only one reduction rule which finds an contracts an irrelevant

edge. We argue that a cut edge whose removal results in two large connected components

is an irrelevant edge.

Reduction Rule 3.3.1. Let uv be a cut-edge in G and C1,C2 be the connected components

in G− {uv}. If |V (C1)|, |V (C2)| ≥ k + 2 then contract uv. The resulting instance is

(G0
,k, `), where G0 = G/{uv}.

Informally speaking, since edge uv is a cut-edge, it is not a part of any cycle. We do

not need to contract it to destroy any cycle. The only reason we might include it in a

solution is to reduce the number of leaves in resultant tree. As the sizes of both connected

components of G−{uv} is at least k+2, contracting at most k edges can not destroy either

of connected component. Hence no end points of uv can be part of leaf in resulting graph.

In other words, uv is irrelevant with respect to any solution of size at most k and can safely

be contracted.



Lemma 3.3.1. Reduction rule 3.3.1 is safe.

Proof. We argue that (G,k, `) is a YES instance of BOUNDED TC if and only if (G0
,k, `)

is a YES instance of BOUNDED TC.

To prove forward direction, let (G,k, `) be a YES instance of BOUNDED TC. Let F be a

set of at most k edges such that G/F be a tree with at most ` leaves. By Observation 3.2.2,

graph G/(F [ {uv}) is also a tree with at most ` leaves. Note that G/(F [ {uv}) =

(G/{uv})/(F \ {uv}) = G0
/(F \ {uv}). Hence G0

/(F \ {uv}) is a tree with at most `

leaves. Since |F \ {uv}|  |F |  k, we can conclude that (G0
,k, `) is a YES instance of

BOUNDED TC.

To prove reverse direction, let (G0
,k, `) be a YES instance of BOUNDED TC. Let F 0 be a

set of at most k edges such that G0
/F 0 = T 0 is a tree with at most ` leaves. We first argue

that G is (|F 0
|+1)-contractible to a tree, say T1, which has at most ` leaves. Using SPLIT

operation on T1 we argue that G is actually |F 0
|-contractible to a tree with at most ` leaves.

Let W 0 be a T 0-witness structure of G0. Let u⇤ be the vertex resulting while contracting

edge uv in G to get G0. Consider vertex t⇤ in V (T 0) such that u⇤ is in W (t⇤). Define

set W (t1) := (W (t⇤)\{u⇤})[{u,v}. Let W1 be the witness structure obtained from W 0

by removing W (t⇤) and adding W (t1). Note that W1 partitions V (G) and for each W in

W1, G[W ] is connected. Let T1 be a graph obtained from G by contracting witness sets

in W1. In other words, W is a T1-witness structure of G. Note that T1 can be obtained

from G by contracting all edges in F 0
[{uv}. This implies T1 can be obtained from G0 by

contracting all edges in F 0 and hence it is a tree with at most ` leaves. We conclude that G

is (|F 0
|+1)-contractible to a tree with at most ` leaves.

Since uv is a cut-edge in G, it is also a cut-edge in G[W (t1)]. Let Cu and Cv be the connected

components of G[W (t1)]−{uv} containing u and v, respectively. Further, let Wu = V (Cu),

Wv = V (Cv). Consider a witness structure W of G obtained from W1 by removing W (t1)

and adding Wu and Wv. Notice that W partitions V (G) and for each W in W , G[W ] is



connected. Moreover, we need |F 0
| many edges to contract all witness sets in W . Let T be

a graph obtained by contracting all witness sets in W . In other words, W is a T -witness

structure of G. Note that G is |F 0
|-contractible to T . The only thing which remains to

prove is that T is a tree with at most ` leaves. We prove this by showing that T can be

obtained from T1 by SPLIT operation at vertex t1.

We start with proving that t1 is an internal vertex in T1 by showing that it has at least two

neighbors.

Claim. Vertex t1 in T1 has at least two neighbors.

Proof. Each witness set in W1 is of size at most k+2 and hence |W (t1)| k+2. If t1 is the

only vertex in T1, then all the vertices in (V (C1)[V (C2))\{u,v} are in W (t1). This implies

that |W (t1)|≥ 2k +3 which is a contradiction. If t1 has unique neighbor, say t̂, in V (T1),

then V (C1)\W (t̂) and V (C2)\W (t̂) are both non empty as |V (C1)|, |V (C2)|≥ k +2 and

|W (t1) \ {u,v}|  k. Since uv is a cut-edge, any path connecting vertices in V (C1) and

V (C2) must contain an edge uv. Both sets V (C1)\W (t̂) and V (C2)\W (t̂) are not empty

but W (t̂) does not contain u,v. This implies that G0[W (t̂)] is not connected contradicting

the fact that it is a witness set. Hence t1 has at least two neighbors in T1. ⇧

Consider a vertex t in T1 which is adjacent with t1. From above arguments, we know that

exactly one of V (C1)\W (t) and V (C2)\W (t) is an empty set. Partition vertices in NT 0(t1)

into two sets L and R depending on whether corresponding witness sets intersect C1 or C2.

Formally, L := {t | t 2 NT 0(t) and W (t)\V (C1) 6= /0} and R := {t | t 2 NT 0(t) and W (t)\

V (C2) 6= /0}. Note that (L,R) is a partition of NT1(t) and none of this set is empty. Let T

be the graph obtained after operation SPLIT(T1, t1,L,R). By Lemma 3.2.1, T is a a tree

with at most ` many leaves.

Hence, if there exist a set of edges F 0 in G0 such that G/F 0 is tree with at most ` leaves

then G is |F 0
|-contractible to a tree with at most ` leaves. This concludes the proof of

reverse direction.



Figure 3.4: Parts of a longest path from root to a leaf. See Lemma 3.3.2.

We now argue that exhaustive application of Reduction Rule 3.3.1 either returns a reduced

instance of bounded size or we can conclude that original instance is a NO instance.

Lemma 3.3.2. Let (G,k, `) be an instance of BOUNDED TC on which Reduction Rule 3.3.1

is not applicable. If (G,k, `) is a YES instance of BOUNDED TC, then G has at most

O(k`) vertices and O(k2 + k`) edges.

Proof. Let (G,k, `) be a YES instance of BOUNDED TC and F ✓ E(G) be a solution

such that T = G/F is a tree with at most ` leaves. Fix an arbitrary vertex of the tree

T as its root. Let W be a T -witness structure of G. As T is obtained using at most k

edge contractions from G, |V (G)|  |V (T )|+ k. Note that |V (T )| is upper bounded by

the number of different paths from the root to leaves times the maximum length of a path.

Since the number of leaves in T is bounded by `, the number of paths from the root to

leaves is also bounded by `.

Let P = {t1, t2, . . . , tq} be a longest path from the root to a leaf in T . If q  2k + 5 then

|V (T )| O(k`). Consider a case when q > 2k +5. We argue that there does not exist i in

{k +2, . . . ,q− k−2} such that both W (ti) and W (ti+1) are of cardinality one. Define two

sets X := [ j2{1,2,...,k+2}W (t j) and Y := [ j2{q−(k+2),...,q}W (t j) of V (G). See Figure 3.4.

Notice that |X |, |Y |≥ k +2. If there exists i in {k +3, . . . ,q−k−1} such that W (ti) = {u}

and W (ti+1) = {v} then uv is a cut-edge in G. Moreover, X ,Y are in two different connected

components of G−{uv}. Hence both the connected components of G−{uv} are of size

at least k + 2. In this case, Reduction rule 3.3.1 is applicable. This contradicts the fact

that (G,k, `) is a reduced instance. Hence for i in {k +2, . . . ,q− k−2}, if W (ti) is a small



witness set then W (ti+1) is a big witness set. Since there are at most k big witness sets, the

number of vertices in path P is at most 2k + 2(k + 2) = 4k + 4. This implies q  4k + 4

and |V (T )| `(4k +4). Hence |V (G)| is at most O(k`).

We now bound the number of edges in the graph G. Notice that the maximum degree of a

vertex t in the tree T is bounded by `. Since, every edge contraction reduces the number

of vertices by 1, the maximum degree of a vertex in G is at most `+ k. If G/F is a tree

then G−V (F) is a forest. Since the size of the solution F is at most k, |V (F)| 2k. As

G is a simple graph, the number of edges of G with both of its end-points contained in

V (F) is at most O(k2). Since G−V (F) is a forest on at most O(k`) many vertices, the

number of edges of G whose both end points are in V (G) \V (F) is bounded by O(k`).

The number of edges which has exactly one end point in V (F) is upper bounded by the

maximum degree of G multiplied by the cardinality of V (F) which is at most O(k2 + k`).

Hence the bound on number of edges in G follows.

We are now ready to prove the main theorem of this section.

Theorem 3.3.1. BOUNDED TREE CONTRACTION has a kernel with O(k`) vertices and

O(k2 + k`) edges.

Proof. Given an instance (G,k, `), the algorithm applies Reduction Rule 3.3.1 as long as it

is applicable. If the number of vertices and number of edges in reduced instance are upper

bounded by O(k`) and O(k2 + k`), then algorithm returns reduced instance. If either of

this upper bounds fails then the algorithm returns a trivial NO instance.

We now argue running time and correctness of this algorithm. To apply Reduction Rule

3.3.1, algorithm needs to find a cut edge and check the number of vertices in connected

components after removing that edge. This step can be performed in polynomial time.

Each application of the reduction rule decreases the number of edges and thus it can be

applied at most |E(G)| many times. This implies that kernelization algorithm terminates

in polynomial time. Lemma 3.3.1 implies that Reduction Rule 3.3.1 is safe. Let (G0
,k, `)



Figure 3.5: Kernel lower bound for BOUNDED TC.

be a reduced instance on which Reduction Rule 3.3.1 is not applicable. If G0 does not have

at most O(k`) vertices and O(k2 + k`) edges edges, algorithm correctly concludes that it

is a NO instance. The correctness of this step follows from Lemma 3.3.2. Otherwise the

algorithm returns a reduced instance as kernel.

3.4 Kernel Lower Bound for BOUNDED TREE CONTRAC-

TION

In this section we show that the kernelization algorithm presented in Section 3.3 for

BOUNDED TC is optimal assuming NP 6✓ coNP/poly. To prove this, we present a parame-

ter preserving reduction which given an instance (G,R,B,k) of RED BLUE DOMINATING

SET (RBDS), creates an instance (G0
,k0, `0) of BOUNDED TC. Recall that in RBDS, given

a bipartite graph G(R,B) and an integer k, the task it to determine whether there exists a

set of at most k vertices in R which dominates B.

Reduction. Let (G,R,B,k) be an instance of RBDS. We construct graph G0 in the

following way. See Figure 4.4. Initialize V (G0) = V (G) and E(G0) = {br | b 2 B,r 2



R and br 2 E(G)}. Add a vertex a in V (G0) and for every vertex r in R, add an edge ar to

E(G0). For every vertex bi in B, add three new vertices xi,yi,zi to V (G0) and edges bixi,

biyi, bizi to E(G0) ⇤. Define set X := {xi,yi,zi | bi 2 B}. For every vertex x in X , add an

edge ax to E(G0). Set k0 = |B|+ k and `
0 = |R|+3|B|− k.

In the following lemma, we prove some structural properties of a solution for (G0
,k0, `0).

Lemma 3.4.1. Let (G0
,k0, `0) be a YES instance of BOUNDED TC. There exists a solution

F⇤ ✓ E(G0) of size at most k0 such that for each bi in B one of the following holds.

1. bi is in W (ta) or

2. xi,yi,zi are in W (ta).

Here, W (ta) is the witness set containing a in (G0
/F⇤)-witness structure of G0.

Proof. Let F be a set of edges of size at most k in G0 such that G0
/F is a tree with at most

` leaves. Let W be a T -witness structure of G0 where T = G0
/F . Let ta be the vertex in

V (T ) such that W (ta) contains vertex a. For a vertex bi in B, if bi is in W (ta) then the

lemma holds. Consider a case when bi is not in W (ta). There exists a vertex tb, different

from ta, such that bi is contained in W (tb). Similarly, consider vertices tx, ty and tz such

that xi,yi and zi are contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two vertices in {tx, ty, tz} can be

same as only neighbors of xi,yi,zi are a and bi, and a witness set needs to be connected.

But then, by construction, T [{ta, tx, ty, tz, tb}] is a cycle, contradicting the fact that T is a

tree. Therefore, at least one of {tx, ty, tz} is same as ta or tb. Without loss of generality, let

tx 2 {ta, tb}. This implies there is an edge tatb is in T . If ty or tz is not equal to ta or tb then

there exist a cycle contradicting that T is a tree. Suppose, all tx, ty, tz are same as ta, then

the second condition of the lemma is satisfied. Consider a case when at least one of tx, ty, tz,

say tx, is not same as ta, that is tx = tb. The only edges incident to xi in G0 are axi and bxi.

⇤It is sufficient to add two vertices for each bi in B. We add three vertices so that this proof can be re-used
to prove similar results in case of CACTUS CONTRACTION problem in Chapter 4



This implies that bxi 2 F and W (t 0b) = W (tb)\{xi} is connected. Since axi 2 E(G0), set

W (t 0a) = W (ta)[{xi} is connected. Thus, replacing W (tb) by W (t 0b) and W (ta) by W (t 0a)

in W yields another T -witness structure of G0. Furthermore, the spanning forest of the

new witness structure, F 0 = (F \{bxi})[{axi} which has same cardinality as that of F . A

similar swap can be carried out if ty = tb or tz = tb. This concludes the proof.

In the following lemma, we argue that the reduction is safe.

Lemma 3.4.2. (G,R,B,k) is a YES instance of RBDS if and only if (G0
,k0, `0) is a YES

instance of BOUNDED TC.

Proof. Let (G,R,B,k) be a YES instance of RBDS and S be a subset of R of size k such

that S dominates every vertex in B. If S contains less than k vertices, then we take any

of its superset of size exactly k. For each vertex b in B, we fix a vertex rb in S such that

b is neighbor of rb in G. If there are multiple options for selecting rb then we arbitrarily

choose one of them. Let F = {brb | b 2 B}[{ar | r 2 S}. Note that |F | = |B|+ k = k0

and G0[V (F)] is connected. Let T be the graph obtained from G0 by contracting F . Let

W be a T -witness structure of G0. Consider a vertex ta such that a is in W (ta). Since

all the edges in F are contracted to one vertex, set S[B is also contained in W (ta). By

construction, R[X is an independent set in G0. No vertex in (R[X)\S is incident on edge

which has been contracted. In other words, these vertices form singleton witness sets in

W . Since R[X is an independent set in G0, it follows that set TRX = {tv | v 2 (R[X)\S}

is an independent set in T of size |R|+3|B|− k = `
0. Moreover, for all v in X 0, av 2 E(T ).

Therefore, T is a star (which is a tree) with `
0 leaves. This implies that F is a solution to

(G0
,k0, `0).

In the reverse direction, let (G0
,k0, `0) be a YES instance of BOUNDED TC. By Lemma 3.4.1,

there exists a solution F⇤ of size at most k0 such that for every bi in B, either bi is in W (ta)

or all of xi,yi,zi are in W (ta). Here, W is the G0
/F⇤-witness structure of G0 and ta in

V (G0
/F⇤) such that vertex a is contained in witness set W (ta) in W .



We partition vertices of B into two parts depending on whether they belong to W (ta) or

not. Define Bg = {bi 2 B | bi 2 W (ta)}. Let Ra = R\W (ta). Partition Bg into B1 and

B2, depending on whether or not they have a neighbor in Ra. Formally, B1 = {bi 2 Bg |

N(bi)\Ra 6= /0} and B2 = Bg \B1. For a vertex bi in B2 at least one of xi,yi,zi is present

in W (ta) as there is no edge between bi and a. Note that, by construction, xi,yi,zi is not

adjacent with b j for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB2 be set of vertices in X \W (ta)

which provides adjacency between a and bi for some bi in B2. For every bi which is in

B\Bg, by Lemma 3.4.1, xi,yi,zi are present in W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B (captured by Bg);

vertices in R (captured by Ra); vertices in X which are present because corresponding

bi is not present (captured by B\Bg); and vertices in X which are present because they

are needed to provide connectivity between bi and a (captured by XB2). This implies

|Bg|+3|B\Bg|+ |Ra|+ |XB2|+ |{a}| |W (ta)|.

We construct a solution S for RBDS by taking vertices in Ra and two more sets Sg and Sw.

Informally, Sg dominates vertices in B2 and Sw dominates vertices in B\Bg. We construct

Sg in following way. For every vertex bi in B2, arbitrary pick one of its neighbor in R

and add it to Sg. Note that |Sg|  |XB2|. We create another set Sw in the following way.

Initialize Sw to an empty set. For each b in B\Bg, we add an arbitrary neighbor of b in R

to Sw. This implies |Sw| |B\Bg|. As cardinality of F⇤ is at most k + |B|, size of W (ta) is

at most |W (ta)| k + |B|+1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw|  k and every vertex in B is

dominated some vertex in Ra [Sg [Sw. This concludes the proof.

We are now in position to present main result of this section.

Theorem 3.4.1. BOUNDED TREE CONTRACTION does not admit a compression of size

O((k2 + k`)1−e), for any e > 0 unless NP✓ coNP/poly.



Proof. Assuming a contradiction, suppose BOUNDED TC admits a compression into

P✓ S
⇤ with bitsize in O((k2 + k`)1−e), for some e > 0. This implies that there exists an

algorithm A which takes an instance I = (G,k, `) of BOUNDED TC and in polynomial

time returns an equivalent instance I0 of P with |I0| 2 O((k2 + k`)1−e).

Let (G,R,B,k) be an instance of RBDS, where G is a graph on n vertices. Using the re-

duction described, we create an instance (G,k0, `0) of BOUNDED TC with |V (G0
D)| 2O(n),

|E(G0
D)| 2O(n2), k0 = k  |R| 2O(n) and `

0 = |B|+ k 2 O(n). On the instance (G,k0, `0)

we run the algorithm A to obtain an instance I of P such that |I| 2 O((k02 + k0`0)1−e).

But then we have obtained a compression of size O(n2−e) for RBDS, contradicting

Proposition 2.3.2.

Corollary 3.4.1. BOUNDED TREE CONTRACTION does not admit a kernel of size O((k2 +

k`)1−e), for any e > 0 unless NP✓ coNP/poly.

3.5 Lossy Kernel for TREE CONTRACTION

In this section, we present an a-lossy kernel of polynomial size for TREE CONTRACTION.

We define parameterized minimization version of TREE CONTRACTION problem in the

following way.

TC(G,k,F) =

8

>
<

>
:

• if G/F is not a tree

min{|F |,k +1} otherwise

We assume that input graph is connected as otherwise one can not obtain a tree only by

contractions. If G has at most k + 3 vertices then we already have a kernel of desired

size. We assume that input graph has at least k +3 vertices. By definition of optimization

problem, for a set of edges F , if G/F is a tree then maximum value TC(G,k,F) is k +1.

Hence any spanning tree of G is a solution of cost k +1. We call it a trivial solution for



given instance. We denote a complete graph on four vertices by K4. One need to contract

at least two edges to obtain a tree from K4. We call (K4,1) as trivial instance of TREE

CONTRACTION. If OPT(G,k) = k + 1 then we can return (K4,1) as its a-lossy kernel.

Note that for any c-factor solution of (K4,1), solution lifting algorithm can return a trivial

solution for original problem which is of cost k +1.

Lemma 3.2.2 states that a connected graph G is k-contractible to a tree if and only if each

of its 2-connected components is contractible to a tree using at most k edge contractions in

total. Cycles in different 2-connected components are edge-disjoints and hence contracting

an edge in one component does not eliminate cycles in another component. If the number

of 2-connected components in the input graph which are not a tree (more specifically, an

edge) is more than k + 1 then we can safely conclude that optimum solution for given

instance is at least k +1. In this case we can return a trivial instance. Note that we do not

guess the number of edges that needs to be contracted in each 2-connected component.

We compute kernel for each 2-connected component using the budget of k. The output of

our kernelization algorithm is a union of the kernels for each 2-connected component. We

present first reduction rule which eliminate long path connecting two different 2-connected

components.

Reduction Rule 3.5.1. If uv is a cut-edge in G then contract the edge uv. The resulting

instance is (G0
,k), where G0 = G/{uv}.

Informally speaking, since edge uv is a cut-edge, it is not a part of any cycle. We do not

need to contract uv to destroy any cycle. This implies that edge uv is irrelevant with respect

to any solution and can safely be contracted.

Lemma 3.5.1. Reduction rule 3.5.1 is 1-safe.

Proof. Consider a solution F 0 for (G0
,k). If |F 0

|≥ k +1, solution lifting algorithm returns

a spanning tree F of G. If |F 0
|  k then solution lifting algorithm returns F = F 0. If

|F 0
| ≥ k + 1 then for a spanning tree F of G, TC(G,k,F) = k + 1. Hence in this case,



TC(G,k,F) = k + 1 = TC(G0
,k,F 0). Consider a case when |F 0

|  k. Let W 0 be a T 0-

witness structure of G0 where T 0 = G0
/F 0. Let u⇤ be the vertex new vertex added while

contracting edge uv. Consider vertex t⇤ in V (T 0) such that u⇤ in W (t⇤). Define set

W (t) := (W (t⇤) \ {u⇤})[ {u,v}. Let W1 be a witness strucure obtained from W 0 by

removing W (t⇤) and adding W (t). Notice that W1 partitions V (G) and for each W in W1,

G[W ] is connected. Let T1 be a graph such that W is a T1-witness structure of G. Note that

T1 can be obtained from G by contracting all edges in F 0
[ {uv}. This implies T1 can be

obtained from G0 by contracting all edges in F 0. Hence T1 is a tree. This implies that G is

(|F 0
|+1)-contractible to a tree. We argue that G is in fact |F 0

|-contractible to a tree.

Note that uv is a cut-edge in G[W (t)]. Let Cu and Cv be the connected components in

G[W (t)]− {uv} containing u and v, respectively. Further, let Wu = V (Cu), Wv = V (Cv).

Consider a witness structure W of G obtained from W1 by removing W (t) and adding Wu

and Wv. Notice that W partitions V (G) and for each W in W , G[W ] is connected. Let T

be a graph obtained by contracting all witness sets in W . In other words, W is a T -witness

structure of G. Note that G is |F 0
|-contractible to T . Let tu, tv in V (T ) to be the vertices

such that W (tu) = Wu and W (tu) = Wu. Note that T is obtained from T1 by removing t

and adding two vertices tu, tv. Edges incident on tu, tv are determined by witness structure

W of G. We now argue that T is a tree. We claim that for any t 0 in NT1(t), at most one

of tut 0 and tvt 0 is present in E(T ). Assume that both these edges exists for some t 0. Let

w be a vertex in W (t 0). There exist a path between w and u which is entirely contained

in W (t 0)[W (tu) and hence does not contain v. There also exists a path between w and v

which is contained in W (t 0)[W (tu) and hence does not contain u. This contradicts the

fact that uv is a cut-edge in G. Hence, T is a tree as no cycle has been introduced while

removing t and adding tu, tv. This implies that G can be contracted to a tree by contracting

all edges in F 0. Hence, TC(G,k,F) = TC(G0
,k,F 0).

We now argue that OPT(G0
,k) OPT(G,k). Let F be an optimum solution for (G,k). By

Observation 3.2.2, G/(F [{uv}) is also a tree. Note that G/(F [{uv}) = (G/{uv})/(F \



{uv}) = G0
/(F \{uv}). Hence G0

/F is a tree. Since |F \{uv}|  |F |, we can conclude

that OPT(G0
,k)  OPT(G,k).

Combining these two inequalities, we get TC(G,k,F)

OPT(G,k) 
TC(G0

,k,F 0)

OPT(G0,k) which concludes the

proof.

Exhaustive application of above reduction rule eliminates all cut edges in G. In rest of

the section, we focus on 2-connected component of G. We assume that the input graph is

2-connected.

We now present a relationship between TREE CONTRACTION and CONNECTED VERTEX

COVER. Consider a 2-connected graph G is contracted to a tree T . If every leaf corresponds

to singleton witness set and vice-versa, the vertices in witness sets of non-singleton witness

sets forms a connected vertex cover of graph.

Lemma 3.5.2. If a 2-connected graph G is k-contractible to a tree, then G has a connected

vertex cover of size at most 2k.

Proof. As G is k-contractible to a tree, there exists a (minimal) set of edges F such that

|F | k and T = G/F is a tree. Let W be a T -witness structure of G and W 0 denote a set

of non-singleton sets in W . Let X denote the set of vertices of G which are contained

in W (t) for some t in W 0. By Observation 3.2.3, we can assume that every leaf of T

corresponds to a singleton witness set, and vice versa. Let L be the set of leaves of T . Then,

I = {v 2V (G) | v 2W (t), t 2 L} is an independent set in G. Thus, X is a vertex cover of

G. We have |X |  2k as every vertex in X has an edge incident on it which is in F and

|F | k. Finally, since the set of non-leaves of a tree induces a subtree, it follows that G[X ]

is connected.

We present following reduction rule which quickly returns a lossy kernels for graph which

has large connected vertex cover.



Reduction Rule 3.5.2. Given an instance (G,k), apply 2-factor approximation algorithm

to compute a connected vertex cover X of G. If size of X is greater than 4k then return

(K4,1).

Lemma 3.5.3. Reduction Rule 3.5.2 is 1-safe.

Proof. Let (G,k) be an instance such that Reduction Rule 3.5.2 returns (K4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if K4/F 0 is a tree then F 0 contains at least two edges. This

implies TC(K4,1,F 0) = 2 and OPT(K4,1) = 2.

Since a 2-factor approximation algorithm returns a set of size strictly more than 4k, size

of minimum connected vertex cover of G is at least 2k. But by Lemma 3.5.2, if G is

k-contractible to a tree than it has a connected vertex cover of size at most 2k. Hence

for any set of edges F⇤ if G/F⇤ is a tree than size of F⇤ is at least k + 1. This implies

OPT(G,k) = k +1. For a spanning tree F of G, TC(G,k,F) = k +1.

Combining these values, we get TC(G,k,F)

OPT(G,k) =
k+1
k+1 =

2
2 =

TC(K4,1,F 0)

OPT(K4,1)
. This implies if F 0 is

c-factor approximate solution for (K4,1) then F is 1-factor approximate solution for (G,k).

This concludes the proof.

We partition vertices of G into the following three parts: high degree vertices (H), in-

dependent set (I) and rest of the graph (R) (See Figure 3.6). These sets are defined as

follows.

H = {u 2V (G) | d(u) ≥ 2k +1}

I = {v 2V (G)\H | N(v) ✓ H}

R = V (G)\ (H [ I)

By constructing H, we identify vertices which are in any connected vertex of size at most

2k. Upper bound on connected vertex cover also provides upper bound on size of H.



Figure 3.6: Partition of input graph. Please see Reduction 3.5.3

Set I contains vertices whose open neighborhood is contained in H and hence G[I] is an

independent set. Size of rest of the graph, G[R], can be bounded by polynomial function

of k. Inability to bound the number of vertices in I can be seen as a reason that TREE

CONTRACTION does not have a polynomial kernel. We use lossy reduction rules to bound

the cardinality of I.

Two vertices are said to be false twins if their open neighbourhood is same.

Reduction Rule 3.5.3. If there is a vertex v in I that has at least k + 1 false twins, then

delete v. The resultant instance is (G−{v},k).

In the following lemma, we argue that v and its k +1 false twins forces some vertices to be

in one witness set. By applying Reduction Rule 3.5.3, we ensure that we store only enough

number of vertices in I which enforces such condition and delete rest of the vertices.

Lemma 3.5.4. Reduction Rule 3.5.3 is 1-safe.

Proof. Consider a solution F 0 of reduced instance (G0
,k) i.e. F 0 is a set of edges such that

G0
/F 0 = T 0 is a tree. If |F 0

|≥ k +1, then the solution lifting algorithm returns a spanning

tree F of G, otherwise it returns F = F 0. We show that this solution lifting algorithm

with the reduction rule constitutes a strict 1-approximate polynomial time preprocessing



algorithm. If |F 0
|≥ k+1 then TC(G0

,k,F 0) = k+1 and TC(G,k,F) = k+1 for a spanning

tree F of G. In this case, TC(G,k,F) = TC(G0
,k,F 0) = k + 1. Consider a case when

|F 0
| k. Let W 0 be a T 0-witness structure of G0. Without loss of generality, we assume

that F 0 satisfies the property mentioned in Observation 3.2.3. Notice that each edge in F 0

can be incident on at most one false twins of v. As v has at least k + 1 false twins, one

of these twins, say u, is not in V (F 0). In other words, there is a vertex t in T 0 such that

W 0(t) = {u}. By Observation 3.2.3, t is a leaf in T 0. Let t 0 denote the unique neighbor

of t in T 0. By Observation 3.2.1, NG0(u) ✓ W 0(t 0). Since NG0(u) = NG(u) = NG(v), all

the vertices in NG(v) are in W 0(t 0). Define the partition W of V (G) obtained from W 0 by

adding a new set {v}. Let T be a graph obtained from G by contracting all edges in F .

In other words, W is a T -witness structure of G. Note that T can be obtained from T 0

by adding a new vertex tv as a leaf adjacent to t 0. This implies that G/F is a tree. Hence,

TC(G,k,F)  TC(G0
,k0,F 0).

Consider an optimum solution F⇤ for (G,k). If |F⇤
| ≥ k + 1 then OPT(G,k) = k + 1 ≥

OPT(G0
,k0). Otherwise, |F⇤

| k and let T = G/F⇤. Let W ⇤ be a T -witness structure of

G. If there is a leaf t in T such that W ⇤(t) = {v}, then F⇤ is also a solution for (G0
,k0)

and OPT(G0
,k0)  OPT(G,k). Otherwise, as v has at least k +1 false twins, one of these

twins, say u, is not in V (F⇤). That is, there is a leaf t in T such that W ⇤(t) = {u}. Define

the partition W 0 of V (G) obtained from W ⇤ by replacing u by v and v by u. Then, the set

F 0 of edges of G, obtained from F by replacing the edge xv with the edge xu for each x,

is also an optimum solution for (G,k). Further, it is a solution for (G0
,k0) and therefore,

OPT(G0
,k0)  OPT(G,k). Hence, TC(G,k,F)

OPT(G,k) 
TC(G0

,k0,F 0)

OPT(G0,k0) .

We now present the reduction rule which introduces lossy-ness. Given a > 1, let d be the

minimum integer such that d
d−1  a . In other words, d = d

a
a−1e. If we add an extra edge

for every d −1 edges in a solution, we obtain another solution which has cardinality at

most d
d−1  a time the cardinality of original solution. We now state our next reduction

rule.



Figure 3.7: Please refer to Lemma 3.5.5

Reduction Rule 3.5.4. If there are vertices v1,v2, . . . ,vk+2 2 I and h1,h2, . . . ,hd 2 H such

that {h1, . . . ,hd}✓ N(vi) for each i 2 [k+2] then contract all edges in Ẽ = {v1hi | i 2 [d]}

and reduce the parameter by d −1. The resulting instance is (G/Ẽ,k−d +1).

The above rule can be applied in O(|H|
d
·nO(1)) time, by considering each subset of H

of cardinality at most d. As discussed in the paragraph following Reduction Rule 3.5.4,

set of vertices {v1,v2, . . . ,vk+2} forces the vertices {h1,h2, . . . ,hd} to be in one witness set.

But subgraph of G which induced on set H 0 = {h1,h2, . . . ,hd} may not be connected. We

provide this connectivity by adding the vertex v1 to set H 0. To simplify G, we contract

H 0
[ {v1} into a single vertex and reduce the budget by d − 1. Notice that we contract

d many edges and reduce the budget by d −1. In other words, for every d −1 edges in

optimum solution, we are using d edges. For every solution S0 of modified graph, we can

obtain a solution S of original graph which has cardinality at most d
d−1 times that of S0. We

prove these things formally in the following lemma.

Lemma 3.5.5. Reduction Rule 3.5.4 is a-safe.

Proof. Consider a solution F 0 of the reduced instance (G0
,k0). If |F 0

| ≥ k0 + 1, then the

solution lifting algorithm returns a spanning tree F of G, otherwise it returns F = F 0
[ Ẽ.

We show that this solution lifting algorithm with the reduction rule constitutes a strict a-

approximate polynomial time preprocessing algorithm. First, we prove that TC(G,k,F) 

TC(G0
,k0,F 0)+d. If |F 0

|≥ k0+1 then TC(G0
,k0,F 0) = k0+1. In this case, F is a spanning



tree of G and TC(G,k,F) = k + 1 = k0 + d = TC(G0
,k0,F 0)+ d − 1. Consider the case

when |F 0
|  k0. Let W 0 be a G0

/F 0-witness structure of G0. Let w denote the vertex in

V (G0)\V (G) obtained by contracting Ẽ. Let W 0(t1) be a witness set in W 0 which contains

w. Define W1 = (W 0(t1)[{v1,h1,h2, . . . ,hd})\{w}. Let W be a witness structure obtained

from W 0 by removing W 0(t1) and adding W1. Formally, W = (W 0
[ {W1}) \ {W 0(t1)}.

Note that V (G) \ {v1,h1,h2, . . . ,hd} = V (G0) \ {w} and hence W is partition of V (G).

Further, G[W1] is connected as G0[W 0(t1)] is connected as a spanning tree of G0[W 0(t1)]

along with Ẽ is a spanning tree of G[W1]. Also, |W1| = |W 0(t1)|+d and any vertex which

is adjacent to w in G0 is adjacent to at least one vertex in {v1,h1,h2, . . . ,hd} in G. Thus,

G/F = G0
/F 0. Note that the size of F is at most |F 0

|+d  k0 +d = k−d +1+d = k +1.

Hence TC(G,k,F) = |F |. This implies, TC(G,k,F) = |F | = k0 +d  TC(G0
,k0,F 0)+d.

We now show that OPT(G0
,k0)  OPT(G,k)− (d −1). Let F⇤ be an optimum solution

for (G,k) and W be a T -witness structure of G, where T = G/F⇤. If |F⇤
| ≥ k + 1, then

OPT(G,k) = k+1 = k0+d ≥ OPT(G0
,k0)+d−1. Now consider the case when |F⇤

| k.

Notice that every edge in F⇤ can be incident on at most one vertex in {v1,v2, . . . ,vk+2}.

There is at least one vertex, say vq, in {v1,v2, . . . ,vk+2} which is not in V (F⇤). In other

words, there exists a vertex in T such that W (tq) = {vq}. By Observation 3.2.3, tq is

a leaf in T . Let ti be the unique neighbhor of tq in T . By Observation 3.2.1, N(vq) is

in a witness set W (ti). This implies that {h1,h2, . . . ,hd} are in W (ti). See Figure 3.7. If

v1 2W (ti) then F 0 = F⇤
\ Ẽ is a solution to (G0

,k0) and so OPT(G0
,k0) |F 0

|= |F⇤
|−d =

OPT(G,k)−d. Consider the case when v1 is not W (ti) and let t j 2V (T ) be the vertex such

that v1 2W (t j). By definition of witness sets, ti and t j are adjacent in T . Define another

partition W 0 =W [{W (ti j)}\{W (ti),W (t j)} of V (G) where W (ti j) = W (ti)[W (t j). Let

F be a solution associated with this witness structure. Graph G[W (ti j)] is connected as ti, t j

are adjacent in T . As |W (ti)|−1+ |W (t j)|−1 = (|W (ti j)|−1)−1, W 0 is a G/F-witness

structure of G and |F | = |F⇤
|+ 1. In particular, G/F is the tree obtained from G/F⇤

by contracting the edge tit j. Graph induced on vertices which are end points of edges

in Ẽ is a star. Hence we can find spanning tree of G[W (ti)] which contains Ẽ. Hence,



without loss of generality Ẽ ✓ F and thus F 0 = F \ Ẽ is a solution to (G0
,k0). Therefore,

OPT(G0
,k0)  |F 0

| = |F⇤
|+ 1− d = OPT(G,k)− d + 1. Combining these bounds, we

have TC(G,k,F)

OPT(G,k) 
TC(G0

,k0,F 0)+d
OPT(G0,k0)+(d−1)

 max
n

TC(G0
,k0,F 0)

OPT(G0,k0) ,a
o

.

We now prove that if G is k-contractible to a tree and none of the Reduction Rules

mentioned above are applicable on instance (G,k), then the number of vertices in G is

bounded by a function of k.

Lemma 3.5.6. Let (G,k) be an instance of TREE CONTRACTION on which none of Re-

duction Rules 3.5.2; 3.5.3 and 3.5.4 are applicable. If G is 2-connected and k-contractible

to a tree then the number of vertices in G is at most O((2k)d+1 + k2).

Proof. We bound cardinalities of sets H, I and R separately in order to bound V (G). By

Lemma 3.5.2, G has a connected vertex cover S of size at most 2k. As H is the set of

vertices of degree at least 2k +1, H ✓ S and so |H| 2k. Every vertex in R has degree at

most 2k. As S\R is a vertex cover of G[R], number of edges in G[R] is O(k2). Also, by

the definition of I, every vertex in R has a neighbor in R and hence there are no isolated

vertices in G[R]. Thus, size of R is O(k2). Finally, we bound the size of I. For every set

H 0 ✓ H of cardinality less than d, there are at most k + 1 vertices in I which have H 0 as

their neighborhood. Otherwise, Reduction Rule 3.5.3 would have been applied. Hence,

there are at most (k +1) ·
� 2k

d−1

�

vertices in I which have degree less than d. Further, for

a d-size subset H 0 of H, there are at most k + 1 vertices in I which contain H 0 in their

neighborhood. Otherwise, Reduction Rule 3.5.4 would have been applied. As a vertex in I

of degree at least d is adjacent to all vertices in at least one such subset of H, there are at

most (k +1)
�2k

d

�

vertices of I of degree at least d. Therefore, |I| is O((2k)d+1).

We now present main result of this section.

Theorem 3.5.1. TREE CONTRACTION admits a strict PSAKS with O((2k)d
a

a−1 e+2
+ k3)

vertices.



Proof. For a given instance (G,k), kernelization algorithm exhaustively apply Reduction

Rule 3.5.1. If number of 2-connected components which contains a cycle is more than

k +1 then the algorithm returns a trivial instance as a lossy kernel. Otherwise, algorithm

computes a-lossy kernel for each of 2-connected components separately. If algorithm

finds trivial instance as lossy kernel for any of 2-connected component then it returns a

trivial instance as a lossy kernel for entire graph.

For a 2-connected component, say C, the algorithm creates an instance (G[C],k). Let

I,H,R be partition of V (C) as defined before Reduction Rule 3.5.3. It is possible that cut

vertices in C are part of I and may get deleted while computing a lossy kernel. We avoid

this by marking these vertices. Since there are at most k many 2-connected components

in G, C has at most k−1 many cut vertices. Marking these vertices increase the size of

reduced instance by O(k).

Given a > 1, the algorithm fixes d = d
a

a−1e. It applies Reduction Rule 3.5.2; 3.5.3; and

3.5.4 exhaustively on instance (G[C],k). If reduced graph G0 has more than O((2k)d+1 +

k2) vertices, then by Lemma 3.5.6, graph G0 is not k-contractible to a tree. This implies

that OPT(G[C],k) is k + 1. In this case the algorithm returns trivial instance as a lossy

kernel. Otherwise the reduced graph has O((2k)d+1 + k2) vertices. There are at most k

many 2-connected components, and summing over each component, the reduced graph

has at most O((2k)d+2 + k3) vertices. The correctness of the algorithm follows from

Lemma 3.5.1; 3.5.3; 3.5.4; and 3.5.5

3.6 Conclusion

In this chapter, we analyse the structure of the family of paths that allows PATH CONTRAC-

TION to admit a polynomial kernel but forbids TREE CONTRACTION. Apart from solution

size k, we make number of leaves, `, as additional parameter to bridge the gap between

kernels of these two problem. We call this problem as BOUNDED TREE CONTRACTION.



We present a polynomial kernel for this problem. We also prove that this kernel is optimal

under certain complexity assumption. In this chapter, we also present a lossy kernel of

polynomial size for TREE CONTRACTION problem.





Chapter 4

Cactus Contraction

4.1 Introduction

In this chapter, we study a problem of contracting given graph into a graph class which is

superset of trees. A cactus is a connected graph in which every edge is a part of at most

one cycle. We generalize techniques used in Chapter 3 to present a lossy kernel and an

FPT algorithm for following problem.

CACTUS CONTRACTION Parameter: k

Input: A graph G and an integer k

Question: Is it possible to obtain a cactus from G with at most k edge contractions?

We prove that this problem is NP-Complete by presenting a reduction from RED BLUE

DOMINATING SET. This reduction also implies that CACTUS CONTRACTION does not

have a polynomial kernel when parameterized by solution size. This raises two questions

similar to the ones which we addressed in Chapter 3 regarding TREE CONTRACTION.

−What are the additional parameter we need to add to obtain a polynomial kernel for

CACTUS CONTRACTION?

−If we allow small loss in accuracy, can we get a polynomial kernel for CACTUS CON-
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TRACTION?

In case of TREE CONTRACTION, we answered first question by describing polynomial

kernel parameterized by solution size and the number of leaves in resulting tree. We deploy

similar approach for CACTUS CONTRACTION. In case of cactus, we define number of

leaves using block decomposition of given cactus. (Formal definitions are in Section 4.2.)

A block is a maximal 2-connected subgraph. A block in a cactus can be either a cycle or

an edge or an isolated vertex. Block decomposition is an auxiliary graph which encodes

how blocks and cut vertices of graph intersects. This auxiliary graph of any connected

graph is a tree. The number of leaves in a cactus is defined as the number of leaves in its

block decomposition. We formally define BOUNDED CACTUS CONTRACTION problem in

the following way.

BOUNDED CACTUS CONTRACTION(BOUNDED CC) Parameter: k + `

Input: A graph G and integers k, `

Question: Is it possible to obtain a cactus with at most ` leaves from graph G with at

most k edge contractions?

In Section 4.3, we present a kernel of size O(k2 + k`) for this problem. Although the

approach involved in designing this kernel is similar to that of BOUNDED TREE CON-

TRACTION, technical analysis is considerably more in this case. In Section 4.4, we prove

that this kernel is optimal under certain complexity assumption.

We answer the second question by designing lossy kernel of polynomial size for CACTUS

CONTRACTION. We prove that given a graph G on n vertices, an integer k and an

approximation parameter a > 1, there is an algorithm that runs in nO(1) time and outputs

a graph G0 on O((2k)2d a
a−1 e+1

+ k5) vertices and an integer k0 such that for every c > 1,

a c-approximate solution for (G0,k0) can be turned into a (ca)-approximate solution for

(G,k) in nO(1).

Heggerners et al. presented FPT algorithms for TREE-CONTRACTION and PATH-CONTRACTION.



We present an FPT algorithm for CACTUS-CONTRACTION additing it to the small list

of graph classes F for which F -CONTRACTION is known to be FPT. We present an

algorithm running in time cknO(1), where c is a fixed constant. Our algorithm builds upon

ideas presented in [55], but requires a more involved structural analysis of the graph.

Results presented in Section 4.3 and 4.4 are from [1]. Lossy kernel presented in Section 4.5

for CACTUS CONTRACTION is based on [69]. The FPT algorithm described in Section 4.6

can be found in [70].

4.2 Preliminaries

In this section, we mention some known properties of cactus. As in case of tree contraction,

we define graph class called bounded cactus contraction. We mention some property of

these graph classes. We later mention simplifying assumption that helps us to concen-

trate on 2-connected components of while finding a lossy kernel and designing an FPT

algorithm.

A block is a connected maximal connected subgraph which is 2-connected. A block in a

graph is either an induced maximal 2-connected subgraph or an edge or an isolated vertex.

Two distinct blocks in graph can intersect in at most one vertex. A vertex contained in

at least two block must be a cut-vertex in graph. Let K be the set of cut-vertices and B

be the set of blocks in G. A block-decomposition of G is a bipartite graph D with the

vertex set K]B. Furthermore, aB 2 E(D) for a 2 K and B 2B if and only if a 2V (B).

Here, we slightly abuse the notation, and use B to denote the set of blocks in G as well as

vertices corresponding to the blocks of G in D . It is known that a block decomposition of

a connected graph is unique and is a tree [29, Proposition 3.1.2]. For the sake of clarity,

we call vertices in D as nodes. See Figure 4.1. The number of leaves of cactus is defined

as the number of leaves in its block decomposition.

Since every edge in cactus is part of at most one cycle, if G is a cactus then a block of G is



Figure 4.1: Cactus graph and its block decomposition.

either a cycle or an edge. We define pendant cycle in cactus.

Definition 4.2.1 (Pendant Cycle). For a cactus T , a cycle C is called a pendant cycle if it

contains exactly one cut vertex.

For example, in Figure 4.1, cycles {v1,v2,v3} and {v12,v13,v14} are pendent cycles.

Observation 4.2.1. The following statements hold for a cactus T .

1. |E(T )| 2|V (T )|

2. The vertices of T can be properly colored using 3 colors.

3. Every vertex of degree at least 3 is a cut-vertex.

Proof. For a given cactus T , let D be its block decomposition.

(1) We prove this using the induction on number of blocks in cactus graph. Our induction

hypothesis is: if number of blocks in T is strictly less than q then |E(T )| 2|V (T )|. For



base case, consider when T has exactly one block. In this case, T is either an edge or a

cycle. In either case, |E(T )| 2|V (T )|.

Consider T which has q blocks. Let a block B corresponds to a leaf in D . For this block,

|E(B)|  2|V (B)|− 2 as B is either an edge or a cycle. Let u be the unique cut vertex

in B. Consider a cactus T1 = T − (V (B)\{u}). Since T1 has q−1 blocks, by induction

hypothesis, |E(T1)| 2|V (T1)|.

Any edge in T is present in exactly one block. Hence |E(T )| = |E(T1)|+ |E(B)|. By

construction, |V (T )| = |V (T1)|+ |V (B)|− 1 as u is counted in V (T1) and also in V (B).

Substituting upper bounds for |E(T1)| and |E(B)|, we get |E(T )| 2|V (T )|.

(2) We again use induction on number of blocks in cactus to prove the statement. Our

induction hypothesis is: if number of blocks in T is strictly less than q then T can be

properly colored using at most 3 colors. For base case, consider a case when T has exactly

one block. In this case, T is either an edge or a cycle. In either case, T can be properly

colored using at most 3 colors.

Consider a cactus T which has q blocks. Let a block B corresponds to a leaf in D . Let u

be the unique cut vertex in B. Consider a cactus T1 = T − (V (B)\{u}). Since T1 has q−1

blocks, by induction hypothesis, we can properly color T1 using at most 3 colors. Since B

is a block in cactus, it is either a cycle or an edge. One can properly color vertices in B

using at most 3 colors when color of u is fixed. Hence T can be colored with at most 3

colors.

(3) Consider a vertex u which has degree at least three. Since any block B is cycle or an

edge, any vertex u has at most 2 neighbors in B. Since u has degree at least 3, u is present

in at least two block. This implies that u is a cut vertex.

The operation of subdividing an edge uv results in the graph obtained by deleting uv and

adding a new vertex w adjacent to both u and v.

Observation 4.2.2. Consider a cactus T with at most ` leaves. Let T 0 be the graph



obtained from T by one of the following operations.

1. subdividing an edge;

2. contracting an edge;

3. deleting a cut-edge uv and add two vertex disjoint path between u,v.

Then, T 0 is a cactus with at most ` leaves.

Proof. Let D being the block decomposition of T with B being the set of block and K

being the set of cut-vertices in T .

(1) Let T 0 be the graph obtained by subdividing an edge uv in T and w be the resulting

vertex after subdivision. Since degree of w is 2 in T 0, any cycle which contains w must

contain its neighbors u and v. Assume that T 0 is not a cactus then, there exists two distinct

cycles C01,C
0
2 in T 0 such that E(C01)\E(C02) 6= /0. But then, by replacing w with the edge

uv in C01,C
0
2 (if present), we obtain cycles Ĉ1 and Ĉ2 in T with at least one common edge,

contradicting that T is cactus.

Consider the case when the edge uv is a block, say B in T . In D , by replacing B by

B1,B2, each containing the edges uw,wv respectively, and adding w to K, we obtain a

block decomposition of D 0 of T 0. Since block decomposition of a connected graph is a

tree, notice that D 0 can be obtained from D by sub-dividing an edge twice. In a tree, a

sub-division of an edge does not increase the number of leaves. Hence follows that T 0 is a

cactus with at most ` leaves. The remaining case is when the edge uv not a block. Let B be

a block containing the edge uv in D . Then, by replacing B by B[{w}, we obtain a block

decomposition of T 0 with exactly the same number of leaves. This concludes the proof.

(2) Let T 0 be the graph obtained by contracting an edge uv in T and u⇤ be the resulting

vertex. Suppose T 0 is not a cactus then there exists two distinct cycles C01,C
0
2 in T 0 such

that E(C01)\E(C02) 6= /0. But then, by replacing w with the edge uv in C01,C
0
2 (if present),

we obtain cycles Ĉ1 and Ĉ2 in T with at least one common edge, contradicting that T is

cactus.



Let B be the block containing the edge uv. Consider the case when B is just the edge

uv. In this case u,v must be in K. But then, by contracting the edges uB,Bv 2 E(D) we

can obtain a block decomposition of T 0. Notice that contracting an edge in a tree (block

decomposition) cannot increase the number of leaves. Hence, it follows that T 0 is a cactus

with at most ` leaves. The remaining case is when B contains some other vertex. Notice

that if u,v /2 K, then by replacing B by B0 = (B \ {u,v})[{u⇤} in D we obtain a block

decomposition of T 0, with exactly same number of leaves. If u 2 K and v /2 K, then by

contracting the edge uB 2 E(D) we obtain a block decomposition of T 0 with exactly the

same number of leaves.

(3) Let T 0 be the graph obtained from T by deleting a cut-edge uv and replacing it by two

vertex disjoint paths. Let C be the cycle obtained by adding these two vertex disjoint paths

between u,v. Assume that T 0 is not a cactus then there exists two distinct cycles C01,C
0
2 in

T 0 such that E(C01)\E(C02) 6= /0. Since u,v are cut-vertices in graph T 0, any cycle which

is different from C, intersect with C in at most one vertex. Hence both C01,C
0
2 are distinct

from C which implies C01 and C02 are two distinct cycles with at least one edge common

in T which contradicts that it is cactus. Since uv is a cut-edge it is a block with u,v as

cut-vertices. Let B be the block containing the edge uv, then we have uB,Bv 2 E(D). By

replacing B with V (C) we can obtain a block decomposition D 0 of T 0 with same number

of leaves. This concludes the proof.

We define operation SPLIT on cactus in similar way as we defined for trees with one

additional condition. Consider a cactus T and one of its cut vertex, say v. Let L,R be

a partition of N(v) such that none of them is an empty set and there is no path between

vertices of L and R in G−{v}.

SPLIT(T,v,L,R): Remove vertex v and add two vertices v1 and v2. Make v1 adjacent

with every vertex in L and v2 adjacent with every vertex in R. Add edge v1v2. If T 0 is

the graph obtained from T by this operation then V (T 0) = (V (T ) \ {v})[{v1,v2} and

E(T 0) = (E(T )\ ({vu | u 2 N(v)}))[{v1u | u 2 L}[{v2u | u 2 R}[{v1v2}.



Figure 4.2: Operation SPLIT(T,v,L,R) with L = {w,x3} and R = {x1,x2}.

See Figure 4.2 for illustration. Second condition on (L,R) ensures that v1v2 is not a part

of any cycle in new graph. The following observation, we prove that this operation on a

cactus results into another cactus with same number of leaves.

Observation 4.2.3. Let T be a cactus, v be a cut vertex of T and N(v) is partitioned into

two non-empty sets L and R such that there is no path between L and R in T − v. Let T 0 is

the graph obtained from T after applying SPLIT(T,v,L,R). If T has at most ` leaves then

T 0 is a cactus with at most ` leaves.

Proof. For a cactus T and cut-vertex v, let Bv be set of blocks in T which contains

a vertex v. Since v is a cut-vertex, there are at least two blocks in Bv. Let L0 and

R0 be the partition of Bv which vertices vertices from L and R respectively. Formally,

L0 = {B| x 2 NT (v)\B for some x 2 L} and R0 = {B| y 2 NT (v)\B for some y 2 R}. As

there is no path between vertices of L,R in T −{v}, if block B is in L0 then it can not be in

R0.

Let T 0 be the graph obtained from T by deleting a cut-vertex v and adding an edge v1v2

such that NT 0(v1) = L[{v2} and NT 0(v2) = R[{v1}. Notice that v1v2 is an cut edge in

T 0. We can get a block decomposition D 0 of T 0 from the block decomposition D of T by

following operations : (a) Delete v from K and adding v1,v2 to K. (b) Replace every B in

L0 by (B[v1)\{v} and add edge v1B in E(D 0). (c) Replace every B in R0 by (B[v2)\{v}

and add edge v2B in E(D 0) (d) Add new block B = {v1,v2} and add edges v1B and v2B in

E(D 0). It is easy to see that D 0 is a block decomposition of T 0. Since every block is either

an edge or a cycle, T 0 is a cactus. Moreover, the number of leaves in D 0 is equal to the



number of leaves in D as newly added block is adjacent to two vertices in K.

We make few observations regarding a cactus witness structure of a graph. Let T be a

cactus obtained by contracting a set of edges in the graph G and W be a T -witness structure

of G. Consider a pendant cycle (uPu) in cactus T where u is the unique cut vertex, and

for every other vertex t in V (P), witness set W (t) is singleton. Then P corresponds to a

simple path in G. With a slight abuse of notation let us use P to denote the path in G as

well. We observe the following.

Observation 4.2.4. If (u1P1u1) and (u1P2u1) are two pendant cycles in T , corresponding

to simple paths P1 and P2 in G, then V (P1)\V (P2) = /0.

We say that a simple path P in G forms a pendant cycle in T if there is a cut vertex u in T

such that uPu is a pendant cycle in T .

Following lemma says that if input graph contains a long induced path then we can find an

edge which can be safely contracted.

Lemma 4.2.1. Suppose graph G has a path P = (u0,u1, . . . ,uq) with q ≥ k +1 such that

all its internal vertices are of degree two. If F ✓ E(G) is a minimal set of edges of size at

most k such that G/F is a cactus then F does not contain an edge in E(P).

Proof. Assume on the contrary that F contains an edge in E(P). As there are at least k +1

edges in E(P) and |F | k, therefore there exists a vertex ui in V (P)\{u0,uq} such that

exactly one out of the two edges incident on it is contained in solution. Without loss of

generality assume that ui−1ui 2 F and uiui+1 /2 F . Let T = G/F and W be a T -witness

structure of G. Let t, t 0 2V (T ) such that ui−1,ui 2W (t) and ui+1 2W (t 0). Consider the

case when t = t 0. F must contain all the edges in some spanning tree of G[W (t)]. Since

uiui+1 62 F , any spanning tree of G[W (t)] not containing uiui+1 must contains all the edges

in E(P) \ {uiui+1}. But this implies |W (t)| ≥ k + 2 which is a contradiction to fact that

each witness set is of size at most k + 1. Therefore, we have that t 6= t 0 which implies



that tt 0 2 E(T ). Recall that ui is a degree two vertex in G. This implies that ui is not a

cut-vertex in G[W (t)] as there is exactly one edge incident to it in G[W (t)]. Therefore,

G[W (t)\{ui}] is connected. Let W 0 = (W \{W (t)})[{ui}[{W (t)\{ui}}. Observe that

W 0 is a partition of V (G) which is a G/F 0-witness structure of G where F 0 = F \{ui−1ui}.

Notice that G/F 0 is the graph obtained by subdividing the edge tt 0 in the cactus T and by

Observation 4.2.2(1) it follows that G/F 0 is a cactus. This contradicts the minimality of

F .

We need to work with witness structures which has certain properties.

Observation 4.2.5. Consider a graph G and let F be a set of edges in G such that G/F is

a cactus with at least three vertices. Then there exists a set F 0 of at most |F | many edges

such that G/F 0 is a cactus and G/F 0-witness structure satisfies following property: if t 0 is

a leaf in G/F 0 then W 0(t 0) is a singleton witness set.

Proof. Let W be a T -witness structure of G, where T = G/F . Consider a leaf ti in T

such that |W (ti)| > 1. Let t j be the unique neighbor of ti and note that t j is not a leaf in

T . As tit j 2 E(T ), there exists an edge in G between a vertex in W (ti) and a vertex in

W (t j). Therefore, G[W (ti)[W (t j)] is connected. We claim that G[W (ti)[W (t j)] has a

spanning tree which has a leaf from W (ti). Observe that as |W (ti)|> 1, any spanning tree

of G[W (ti)] has at least two leaves. If there is a spanning tree of G[W (ti)] that has a leaf u

which is not adjacent to any vertex in W (t j), then G[(W (ti)[W (t j))\{u}] is connected

too and u is the required vertex. Otherwise, every leaf in every spanning tree of G[W (ti)] is

adjacent to some vertex in W (t j) and hence G[(W (ti)[W (t j))\{u}] is connected for any

vertex u 2W (ti). Therefore, as claimed, G[W (ti)[W (t j)] has a spanning tree which has a

leaf v from W (ti). Now consider the partition W 0 = (W [{Wv,Wi j})\{W (ti),W (t j)} of

G where Wv = {v} and Wi j = (W (t j)[W (ti))\{v}. Since t j is the only vertex adjacent to

ti, N(u) ✓ W (ti)[W (t j) for every vertex in u in W (ti). Hence W 0 is another T -witness

structure of G. This leads to a set F 0 of at most |F | edges of G such that T = G/F 0



is a cactus. We repeat this process to ensure that the each leaf of the resulting cactus

corresponds to singleton witness sets.

Since K3,2 can not be an induced subgraph of cactus, for any three vertices which are

singleton witness sets, intersection of their neighborhood should be in one witness set.

Observation 4.2.6. Consider a graph G and let F be a set of edges in G such that

G/F = T is a cactus with at least three vertices. For any three vertices u1,u2 and u3

such that, W (t1) = {u1},W (t2) = {u2},W (t3) = {u3}, there is a vertex t 2V (T ) such that

(N(u1)\N(u2)\N(u3)) ✓W (t). Similarly, for any three simple paths P1,P2 and P3 in G,

such that each of them form a pendant cycle in T , there is a vertex t 2 V (T ) such that

NG(P1)\NG(P2)\NG(P3) ✓W (t).

Proof. Let X = N(u1)\N(u2)\N(u3). If there exists t 6= t 0 such that X \W (t) and

X \W (t 0) are non-empty, T contains two cycles (t1, t, t2, t 0, t1) and (t1, t, t3, t 0, t1) that share

more than one vertex leading to a contradiction. We argue the case of simple paths that

form pendant cycles in T in a similar way. Let X = NG(P1)\NG(P2)\NG(P3). We claim

that there is a vertex ti in T 0 such that X ✓W 0(ti). If not, then there are two vertices, ti and

t j in T 0 such that X \W 0(ti) 6= /0 and X \W 0(t j) 6= /0. Therefore, both ti and t j are adjacent

to P1, P2 and P3 in T 0. This implies that there are two cycles in T 0 with more than one

common vertex, which contradicts the fact that T 0 is a cactus.

We list the following simplifying assumption analogous to Lemma 3.2.2 in case of TREE

CONTRACTION.

Lemma 4.2.2. A connected graph is k-contractible to a cactus if and only if each of its

2-connected components is contractible to a cactus using at most k edge contractions in

total.

Proof. We prove the claim by induction on the number of vertices in the graph. The claim

holds for a graph on a single vertex and assume that it holds for graphs with less than n



vertices. Consider a connected graph G on n vertices. Suppose G is k-contractible to a

cactus. Then, there is a set F ✓ E(G) of size at most k such that T = G/F is a cactus.

Let W be the corresponding T -witness structure of G. Let v be a cut vertex in G and

let C be a connected component of G− {v}. Let G1 denote the subgraph of G induced

on V (C)[ {v} and G2 denote the subgraph of G induced on V (G) \V (C). Then, G1

and G2 are connected graphs satisfying V (G1)\V (G2) = {v}. Further, the sets E(G1)

and E(G2) partition E(G). We claim that G1/(F \E(G1)) and G2/(F \E(G2)) are both

cactus graphs. Consider the vertex t0 2 V (T ) such that v 2W (t0). As the deletion of a

vertex in G2−{v} cannot disconnect G1, every set in W1 = {W (t)\V (G2) | t 6= t0,W (t) 2

W }[{W (t0)\ (V (G2)\{v})} induces a connected subgraph of G. Then, F \E(G1) is the

associated set of solution edges and G1/(F \E(G1)) is the subgraph of G/F induced on

{t 2V (T ) |W (t)\V (G1) 6= /0}. Since an induced subgraph of a cactus is also a cactus, it

follows that G1/(F\E(G1)) is a cactus. A similar argument holds for G2/(F\E(G2)). As

E(G1) and E(G2) form a partition of E(G), |F \E(G1)|+ |F \E(G2)| k. By induction

hypothesis, the required claim holds for G1 and G2 and the result follows.

Conversely, let G1,G2, . . .Gl be the 2-connected components of G and let Fi ✓ E(Gi) be

a set of edges such that Gi/Fi is a cactus and Âi2[l] |Fi| k. Let Wi be the Gi/Fi-witness

structure of Gi. Define W =
S

i2[l]Wi. Now, W is made into a partition of V (G) as follows:

if a vertex v is contained in W (t1) and in W (t2) then add W (t12) = W1[W2 to W and delete

both W (t1) and W (t2). Then, F =
S

i2[l] Fi contains the edges of a spanning tree of every

witness set in W and |F |  k. It remains to argue that G/F is a cactus. If G/F is not a

cactus, then there exists two cycles C1,C2 which share at least two vertices. As any cycle

can have vertices from only a single 2-connected component of a graph, C1,C2 are both in

some 2-connected component of G leading to a contradiction.

Following observation, which is analogous to Observation 3.2.3, helps us utilise the fact

that input graph is 2-connected while designing a lossy kernel and an FPT algorithm.

Observation 4.2.7. Consider a 2-connected graph G and let F be a set of edges in G such



that G/F is a cactus. If t is a cut vertex in G/F then witness set W (t), in G/F-witness

structure, contains at least two vertices.

Proof. For sake of contradiction, assume that t is a cut-vertex in T = G/F and W (t) is a

singleton set in T -witness structure. Let W (t) = {u}. We argue that u is a cut-vertex in

G. Let T1 and T2 be any two connected components obtained by removing t from cactus

T . Consider a set V1 which is collection of vertices present in witness sets corresponding

to vertices in T1. Formally, V1 = {u| u 2W (t1) for some t1 2V (T1)}. We define set V2 in

similar way. Since T1,T2 are non-empty, so are V1,V2. There is no edge between T1,T2 in

T and since T is obtained from graph G by contracting edges, there is no edge between

V1,V2 in G. This implies that G− v has at least two connected component viz V1,V2. This

contradicts the fact that G is a 2-connected graph. Hence for every cut vertex t in T ,

associated witness sets W (t) contains at least two vertices.

If v is high degree vertex in G and v is contained in W (t) then t is a cut vertex in T .

Observation 4.2.8. Let F be a minimal set of edges of a 2-connected graph G such that

G/F = T is a cactus and W be a T -witness structure of G. Consider a vertex v in G and

let t be a vertex in T such that v is in witness set W (t). If |F | k and d(v) ≥ k +3, then

W (t) is not a singleton witness set.

Proof. For the sake of contradiction, assume that W (t) is a singleton witness set. Note that

every edge contraction reduces the number of vertices by exact one. Since, |F | k, degree

of t is at least three in T . By Observation 4.2.1(3), t is a cut vertex. But this is contradiction

to Observation 4.2.7 which says that witness set corresponding to a cut vertex in T is a

big witness set. Hence our assumption is wrong and W (t) can not be a singleton witness

set.



4.3 Kernel for BOUNDED CACTUS CONTRACTION

In this section, we design a kernelization algorithm for BOUNDED CACTUS CONTRAC-

TION. We assume that input graph is a connected otherwise we can return a trivial NO

instance. Exhaustive application of first reduction rule contracts an induced path of

arbitrarily large length to a path of length O(k).

Reduction Rule 4.3.1. If G has a path P = (u0,u1, . . . ,uk+1,uk+2) such that all of its

internal vertex are of degree two, then contract uk+1uk+2. The resulting instance is

(G0,k, `) where G0 = G/{uk+1uk+2}.

We prove that this reduction rule is safe using Lemma 4.2.1.

Lemma 4.3.1. Reduction Rule 4.3.1 is safe.

Proof. Let u⇤k+1 be the resulting vertex after contraction of the edge uk+1uk+2. Given an

instance (G,k, `), one can find a path P which satisfies required property, in one exists, and

apply reduction rule in polynomial time. We need to prove that (G,k, `) is a YES instance

of BOUNDED CC if and only if (G0,k, `) is a YES instance of BOUNDED CC.

Let (G,k, `) be a YES instance of BOUNDED CC and F ✓ E(G) such that |F |  k

and G/F is a cactus with at most ` leaves. From Observation 4.2.2 (2), we know

that G/(F [{uk+1uk+2}) is also a cactus with at most ` leaves. This implies, G/(F [

{uk+1uk+2}) = (G/{uk+1uk+2})/(F \ {uk+1uk+2}) = G0/(F \ {uk+1uk+2}) is a cactus

with at most ` leaves. Also, |F \{uk+1uk+2}| |F| k. Hence, it follows that (G0,k, `) is

a YES instance of BOUNDED CC.

Let (G0,k, `) be a YES instance of BOUNDED CC and F 0 ✓ E(G0) of size at most k be a

minimal set such that T 0 = G0/F 0 is a cactus with at most ` leaves. Let W 0 be a T 0-witness

structure of G0. Notice that in path (u0,u1, . . . ,uk,u⇤k+1) every internal vertex is of degree

exactly two. From Lemma 4.2.1, F 0 does not contain any edge incident to a vertex in

{u1,u2, . . . ,uk}, in particular to uk. There exists t 0k, t
0
k+1 2 T 0 such that t 0kt 0k+1 2 E(T ) and



W (t 0k) = {uk} and u⇤k+1 2W (t 0k+1). Let W = (W 0 \W (t 0k+1))[{W (tk+1),W (tk+2)}, where

W (tk+1) = {uk+1} and W (tk+2) = (W (t 0k+1)[{uk+2})\{u⇤k+1}. Since NG0(u⇤k+1)\{uk}=

NG(uk+2) \ {uk+1}, G[W (tk+2)] is connected. Let T be the graph obtained from G by

contracting each witness set to a vertex. In other words, W is T -witness structure of

graph G. Note that T can be obtained from T 0 by subdividing an edge t 0kt 0k+1. From

Observation 4.2.2 (1) it follows that T is also a cactus with at most ` leaves. Since

F 0 ✓ E(G) and it is also a spanning forest for W , we can conclude that (G,k, `) is also a

YES instance of BOUNDED CC.

Reduction Rule 4.3.1 can be applied in polynomial time. After exhaustive application of

Reduction Rule 4.3.1 in the resulting graph G any induced path with internal vertices of

degree 2 is of length at most k +2.

Suppose input graph G has a cut-edge uv. An optimal solution may contract one of the

connected components of G−{uv}, along with edge uv, to reduce the number of leaves

in the resulting cactus. Consider the case when both connected components of G−{uv}

are large enough that neither of them is contained entirely in one witness set. In this

case, no minimal solution contains the edge uv. Following reduction rule is based on this

observation.

Reduction Rule 4.3.2. If G has a cut-edge uv with C1,C2 being two connected components

in G− {uv} and |V (C1)|, |V (C2)| ≥ k + 2, then contract uv. The resulting instance is

(G0,k, `) where G0 = G/{uv}.

Lemma 4.3.2. Reduction Rule 4.3.2 is safe.

Proof. Let u⇤ be the vertex obtained by contracting the edge uv. Given an instance

(G,k, `), one can find a cut-edge uv which satisfies required property, if one exists, and

apply reduction rule in polynomial time. We need to prove that (G,k, `) is a YES instance

of BOUNDED CC if and only if (G0,k, `) is a YES instance of BOUNDED CC.



Let (G,k, `) be a YES instance of BOUNDED CC and F ✓ E(G) of size at most k such

that G/F is a cactus T with at most ` leaves. As a consequence of Observation 4.2.2

(2), G/(F [ {uv}) is also a cactus. Hence, G/(F [ {uv}) = (G/{uv})/(F \ {uv}) =

G0/(F \{uv}) is a cactus with at most ` leaves. Also |(F \{uv}| |F | k. This concludes

that (G0,k, `) is a YES instance of BOUNDED CC.

To prove reverse direction, let (G0,k, `) be a YES instance of BOUNDED CC. Let F 0 be

a set of at most k edges such that G0/F 0 = T 0 is a cactus with at most ` leaves. We first

argue that G is (|F 0|+1)-contractible to a cactus, say T1, which has at most ` leaves. Using

SPLIT operation on T1 we argue that G is actually |F 0|-contractible to a cactus with at most

` leaves.

Let W 0 be a T 0-witness structure of G0. Let u⇤ be the vertex resulting while contracting

edge uv in G to get G0. Consider vertex t⇤ in V (T 0) such that u⇤ is in W (t⇤). Define set

W (t1) := (W (t⇤) \ {u⇤})[{u,v}. Let W1 be the witness structure obtained from W 0 by

removing W (t⇤) and adding W (t1). Note that W1 partitions V (G) and for each W in W1,

G[W ] is connected. Let T1 be a graph obtained from G by contracting witness sets in W1.

In other words, W is a T1-witness structure of G. Note that T1 can be obtained from G by

contracting all edges in F 0 [{uv}. This implies T1 can be obtained from G0 by contracting

all edges in F 0 and hence it is a cactus with at most ` leaves. We conclude that G is

(|F 0|+1)-contractible to a cactus with at most ` leaves.

Since uv is a cut-edge in G, it is also a cut-edge in G[W (t1)]. Let Cu and Cv be the connected

components of G[W (t1)]−{uv} containing u and v, respectively. Further, let Wu = V (Cu),

Wv = V (Cv). Consider a witness structure W of G obtained from W1 by removing W (t1)

and adding Wu and Wv. Notice that W partitions V (G) and for each W in W , G[W ] is

connected. Moreover, we need |F 0| many edges to contract all witness sets in W . Let T be

a graph obtained by contracting all witness sets in W . In other words, W is a T -witness

structure of G. Note that G is |F 0|-contractible to T . The only thing which remains to

prove is that T is a cactus with at most ` leaves. We prove this by showing that T can be



obtained from T1 by SPLIT operation at vertex t1. We start with following claim.

Claim. Vertex t1 is a cut vertex in T1.

Proof. Each witness set in W1 is of size at most k+2 and hence |W (t1)| k+2. If t1 is the

only vertex in T1, then all the vertices in (V (C1)[V (C2))\{u,v} are in W (t1). This implies

that |W (t1)|≥ 2k +3 which is a contradiction. If t1 has unique neighbor, say t̂, in V (T1),

then V (C1)\W (t̂) and V (C2)\W (t̂) are both non empty as |V (C1)|, |V (C2)|≥ k +2 and

|W (t1)\{u,v}| k. Since uv is a cut-edge in G, any path connecting vertices in V (C1) and

V (C2) must contain an edge uv. Both sets V (C1)\W (t̂) and V (C2)\W (t̂) are not empty

but W (t̂) does not contain u,v. This implies that G0[W (t̂)] is not connected contradicting

the fact that it is a witness set. Hence, t1 has at least two neighbors, say t̂1, t̂2 in T 0 such

that V (C1)\W (t̂1) 6= /0 and V (C2)\W (t̂2) 6= /0. Assume that t1 is not a cut vertex in T1.

There exist a path between t̂1 and t̂2 in T1 −{t1}. This implies there exists a path between

V (C1) and V (C2) which does not contains an edge uv. This contradicts the fact that uv is

an cut edge in G. Hence our assumption is wrong and t1 is a cut vertex in T1. ⇧

Consider a vertex t in T1 which is adjacent with t1. From above arguments, we know that

exactly one of V (C1)\W (t) and V (C2)\W (t) is an empty set. Partition vertices in NT 0(t1)

into two sets L and R depending on whether corresponding witness sets intersect C1 or C2.

Formally, L := {t | t 2 NT 0(t) and W (t)\V (C1) 6= /0} and R := {t | t 2 NT 0(t) and W (t)\

V (C2) 6= /0}. Note that (L,R) is a partition of NT1(t) and none of this set is empty. Moreover,

there is no path between vertices in L and R. Let T be the graph obtained after operation

SPLIT(T1, t1,L,R). By Observation 4.2.3, T is a cactus with at most ` many leaves.

Hence, if there exist a set of edges F 0 in G0 such that G/F 0 is tree with at most ` leaves

then G is |F 0|-contractible to a tree with at most ` leaves. This concludes the proof of

reverse direction.

We generalize notion of cut-edge to cycle whose removal disconnects the graph.

Definition 4.3.1 (Cut-Cycle). For a cycle C in graph G, C is a cut-cycle if in the block
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Figure 4.3: An illustration of Reduction Rule 4.3.3.

decomposition of G, there exists a block B such that B = V (C) that contains exactly two

cut-vertices.

For example, in Figure 4.1, {v3,v4,v5,v6} is a cut-cycle. Let C be a cut-cycle in G and

u,v be the cut-vertices that it contains. Observe that G−E(C) has exactly two non-trivial

connected components (components with at least two vertices), one containing u and

another containing v. Following reduction rule states that it is safe to contract certain

cut-cycles.

Reduction Rule 4.3.3. Let C be a cut-cycle in G containing cut-vertices u,v and C1,C2 be

the non-trivial components of G−E(C) such that |V (C1)|, |V (C2)|≥ k +2, then contract

edges in E(C). The resulting instance is (G0,k, `), where G0 = G/E(C).

Lemma 4.3.3. Reduction Rule 4.3.3 is safe.

Proof. We prove the safeness of this reduction rule using an intermediate instance. Reduc-

tion Rule 4.3.3 can be applied in two steps. In first step, we delete all edges in E(C) and

add edge uv. In second step, we apply Reduction Rule 4.3.3 on cut edge uv. Let E1 be set

of edges in E(C) which are not incident on u. Then, first step is equivalent to contracting

all edges E1 in G and renaming new vertex to v. Let G̃ be the graph obtained from G by

contracting edges in E1. To prove the lemma, we only need to argue that (G,k, `) is an



YES instance if and only if (G̃,k, `) is an YES instance. The correctness of second step is

implied by Lemma 4.3.2.

In the forward direction, let (G,k, `) be a YES instance of BOUNDED CC and F ✓ E(G)

of size at most k such that G/F is a cactus T , with at most ` leaves. As a consequence

of Observation 4.2.2(2) it follows that G/(F [E1) is also a cactus with at most ` leaves.

Hence G/(F [E1) = (G/E1)/(F \E1) = G̃/(F \E1) is a cactus with at most ` leaves.

Also, |(F \E1)| |F| k. This implies that (G̃,k, `) is a YES instance of BOUNDED CC.

Let (G̃,k, `) is a YES instance of BOUNDED CC. There exists F̃ ✓ E(G̃) such that G̃/F̃ is

a cactus T̃ with at most ` leaves. Let W̃ be T̃ -witness structure of G̃ such that u 2W (t̃u)

and v 2W (t̃v). Consider a witness structure W obtained from W̃ by adding a singleton

witness set for every vertex in V (C)\{u,v}. Formally, W = W̃ [{{x} | x 2V (C)\{u,v}}.

Notice that W partitions V (G) and for each W 2 W , G[W ] is connected. Let T be the

graph obtained from G by contracting witness sets in W . In other words, W is T -witness

structure of G. Notice that T is a graph obtained by replacing a cut-edge t̃ut̃v in cactus T̃

by pair of vertex disjoint paths between vertices t̃u, t̃v. Hence, from Observation 4.2.2(3),

T is a cactus with at most ` leaves. This concludes the proof of reverse direction.

Hence, if there exist a set of edges F 0 in G0 such that G/F 0 is tree with at most ` leaves

then G is |F 0|-contractible to a tree with at most ` leaves.

We say (G,k, `) is a reduced instance of BOUNDED CC if none of the Reduction Rules 4.3.1,

4.3.2 and 4.3.3 are applicable.

Lemma 4.3.4. Let (G,k, `) be a reduced instance of BOUNDED CC. If (G,k, `) is a YES

instance of BOUNDED CC, then the number of vertices and edges in G is bounded by

O(k2 + k`).

Proof. Suppose G is k-contractible to a cactus T with at most ` leaves. Let W be the

T -witness structure of G and D be the block decomposition of T . By definition of cactus,



every block of T is either an edge or a cycle. We use the bound on the number of nodes

in D and upper bound on size of a block to bound the number of vertices in T . Let B be

a block in T . If B is an edge in T , then it contains exactly two vertices. Otherwise, B

contains at least 2 vertices. Let BC,BW are two subsets of B, defined as follows: BC be

the set of cut-vertices in T that belongs to B and BW be the set of vertices t 2 B such that

|W (t)|> 1. We bound the size of a block using following claim.

Claim 1: |B| (k +3)|BC[BW |.

Proof. Since the number of vertices in block B is more than 2, B induces a cycle in T .

By Observation 4.2.1 and construction, for every vertex t in B\ (BC [BW ), degT (t) = 2

and |W (t)|= 1. Consider a path P = (tx, t1, t2, . . . , tq, ty) in T between two vertices tx, ty 2

BC[BW such that {t1, t2 . . . , tq}\ (BC[BW ) = /0. Let ui 2W (ti) for i 2 {1,2, . . . ,q}. Note

that |W (ti)|= 1, for all i 2 {1,2, . . . ,q}. Then, there exists a path P0 = (x,u1,u2, . . . ,uq,y)

in G such that x 2W (tx), y 2W (ty) and degG(ui) = 2 for all i 2 [q]. Since Reduction

Rule 4.3.1 is not applicable, therefore, q  k. Since B induces a cycle in T , there are at

most |BC [BW | such path and each path contains at most k + 3 many vertices. Hence

|B| (k +3)|BC[BW |. ⇧

By the property of block decomposition of a graph, a node tB corresponding to block B in

D has degree equal to |BC|. Let V1,V2,V3 be the set of nodes of D which corresponds to a

block in T and are of degree at most 1, degree 2 and degree at least 3 respectively. Since D

has at most ` leaves, |V1| ` which in turn implies that |V3| `. From Proposition 2.1.1,

it follows that the number of cut-vertices present in blocks with at least 3 cut-vertices is

bounded by the following.

Â
tB2V3

|BC| 3` (4.1)

Note that the number of vertices in T corresponds to big witness set is at most k therefore

we have the following inequality.

Â
tB2V1[V2[V3

|BW | k (4.2)



We fix an arbitrary vertex as the root of D (preferable vertex of degree at least 2). For

counting purpose, we apply the following marking scheme to the nodes in D . We start by

marking all the leaves in D . For a leaf tB, keep marking the nodes on path from the leaf to

the root of that tree until the total number of vertices in T from the marked blocks is at least

k+2. We say these marked vertices are close to the leaf tB. Also mark all the nodes tB in D

for which BW is not empty. This completes the marking procedure. For leaf node tB, let tB⇤

be the last node marked by above marking scheme to ensure that we have covered at least

k +2 many vertices of T . Hence there are at most k +1+ |B⇤| many vertices marked for

the leaf tB. Let L0 = {tB⇤ | tB 2V1}, i.e. the set of all the nodes which were the last marked

node corresponding to some leaf. Notice that |L0| |V1|. Consider the subgraph D 0 of D

induced on the vertices in V1[L0 and the cut-vertices their corresponding block contains.

Note that in a block decomposition no two cut-vertices or two vertices corresponding to

blocks are adjacent. This implies that the number number of vertices in D 0 is bounded by

O(`). This helps us in establishing the following.

Â
tB⇤2L0

|B⇤
C|= Â

tB⇤2L0
degT (tB⇤) 2 O(`)

Using the above relation, Claim 1 and Equation 4.2, we have the following.

Â
tB⇤2L0

|B⇤| Â
tB2L0

(|B⇤
C|+ |B

⇤
W |)(k +2) 2 O(k2

+ k`)

Hence the total number of marked vertices which are close to leaf nodes are,

Â
tB2V1

((k +1)+ |B⇤|)  Â
tB2V1

(k +1)+ Â
tB⇤2L0

|B⇤| 2 O(k2
+ k`)

Let VM be set of nodes tB which are marked because BW is not empty. By Equation 4.2,

|VM| k. For tB 2VM \ (V1[V2), |BC| 2 which implies ÂtB2VM\(V1[V2) |BC| 2k.

Â
tB2VM\(V1[V2)

|B| Â
tB2VM\(V1[V2)

(|BC|+ |BW |)(k +2) 2 O(k2
)



For tB 2V3 \VM, we use Equation 4.1 to obtain following bound.

Â
tB2V3\VM

|B| Â
tB2V3\VM

(|BC|+ |BW |)(k +2) 2 O(k2
+ k`)

We now count the number of vertices in blocks corresponding to unmarked nodes. We first

argue that every unmarked node, associated block contains at least three cut-vertices. In

other words, all the nodes in V1,V2 have been marked.

Claim 2: If tB is not marked by above marking scheme, then tB 2V3.

Proof. We prove this by contradiction. Since all the nodes in V1 are marked, assume that

there exists unmarked node tB in V2 such that |BW |= 0. Since B contains exactly two cut-

vertices, T −E(B) has exactly two non-trivial connected components, say T1,T2. Notice

that each T1,T2 contains marked vertices corresponding to at least one leaf node and hence

|V (T1)|, |V (T2)|≥ k+2. Since B does not contain any vertex t such that |W (t)|> 1, vertex

set X =
S

t2BW (t) is either a cut-edge or a cut-cycle in graph G. Moreover, G−E(X)

has two non-trivial connected components C1,C2 such that V (C1) =
S

t2V (T1)
W (t) and

V (C2) =
S

t2V (T2)
W (t) which implies |V (C1)|, |V (C2)|≥ k+2. But in this case, Reduction

Rule 4.3.2 or 4.3.3 is applicable on the instance. This contradicts that (G,k, `) is a reduced

instance. ⇧

Let U be the set of nodes which are unmarked. By Claim 2, U ✓V3. By Equation 4.1 and

using the fact that |BW |= 0 for tB 2U ,

Â
tB2U
|B|= Â

tB2U
(k +3)|BC|= (k +3) · Â

tB2U
|BC| 2 O(k`)

Combining all these upper bounds, we get |V (T )| O(k2 + k`). Since T is obtained from

G with at most k edge contractions, it follows that |V (G)| |V (T )|+ k. This implies the

desired bound on the vertices of input graph. We now bound the number of edges in G.

Notice that maximum degree of a node in D is at most ` as the number of leaves in D is

at most `. This implies that any cut-vertex in T can be part of at most ` blocks. Since,



every vertex can be adjacent to at most 2 vertices in a block, maximum degree of a vertex

t in cactus T is at most 2`. Every edge contraction can reduce the number of vertices

by 1 hence the maximum degree of a vertex in G is at most 2`+ k. If G/F is a cactus

then each component in G−V (F) is also a cactus. Since the size of solution F is at most

k, |V (F)|  2k. As G is a simple graph, the number of edges of G with both of its end

points in V (F) is at most O(k2). G−V (F) is cactus on at most O(k2 + k`) many vertices

and hence by Observation 4.2.1, the number of edges of G whose both end points are in

V (G)\V (F) is at most O(k2 + k`). The number of edges which has exactly one end point

in V (F) is upper bounded by maximum degree of G multiplied by cardinality of F which

is at most O(k2 + k`). Hence the bound on number of edges in G follows.

We are now ready to prove the main theorem of this section.

Theorem 4.3.1. BOUNDED CACTUS CONTRACTION admits a kernel of size O(k2 + k`).

Proof. Given an instance (G,k, `) of BOUNDED CC the kernelization algorithm exhaus-

tively applies Reduction Rules 4.3.1, 4.3.2 or 4.3.2. If the number of vertices and edges in

reduced graph is not upper bounded by O(k2 + k`) then it returns a trivial no instance.

By Lemma 4.3.1; 4.3.2; and 4.3.3, these reduction rules are safe and can be applied in

polynomial time. Each application of reduction rule decreases the number of edges thus

it can be applied only |E(G)| times. If none of the reduction rules are applicable then

then either the size of the instance is bounded by O(k2 + k`), in which case we return a

kernel of desired size. Otherwise, the algorithm correctly concludes that the instance is

a NO instance of BOUNDED CC. Lemma 4.3.4 proves the correctness of this step of the

algorithm.



4.4 Kernel Lower Bound for BOUNDED CACTUS CON-

TRACTION

In this section, we present a parameter preserving reduction from a given instance

(G,R,B,k) of RBDS to an instance (G0,k0, `0) of BOUNDED CACTUS CONTRACTION.

This reduction is same as the one presented in Section 3.4. We use this reduction to

prove three things. First, we show that CACTUS CONTRACTION is NP-Hard. Second,

CACTUS CONTRACTION parameterized by solution size k does not admit a polynomial

kernel assuming NP 6✓ coNP/poly. Third, the kernel presented for BOUNDED CACTUS

CONTRACTION in Section 4.3 is optimal under the same assumption. Recall that in RBDS,

given a bipartite graph G(R,B) and an integer k, the task it to determine whether there

exists a set of at most k vertices in R which dominates B.

Reduction. Let (G,R,B,k) be an instance of RBDS. We construct graph G0 in the

following way. See Figure 4.4. Initialize V (G0) = V (G) and E(G0) = {br | b 2 B,r 2

R and br 2 E(G)}. Add a vertex a in V (G0) and for every vertex r in R, add an edge ar to

E(G0). For every vertex bi in B, add three new vertices xi,yi,zi to V (G0) and edges bixi,

biyi, bizi to E(G0). Define set X := {xi,yi,zi | bi 2 B}. For every vertex x in X , add an edge

ax to E(G0). Set k0 = |B|+ k and `
0 = |R|+3|B|− k.

Following the same spirit of proof as described in Section 3.3, we prove following lemmas.

Note that lemma implies if bi is not present in W (ta) then at least two vertices in {xi,yi,zi}

are present in W (ta) unlike in case of TREE CONTRACTION where all three were present.

Lemma 4.4.1. Let (G0,k0, `0) be a YES instance of BOUNDED CC. There exists a solution

F⇤ ✓ E(G0) of size at most k0 such that for each bi 2 B one of the following holds.

• bi is in W (ta) or

• at least two of {xi,yi,zi} are in W (ta).



Figure 4.4: Kernel lower bound for BOUNDED CC.

Here, W (ta) is the witness set containing a in (G0/F⇤)-witness structure of G0.

Proof. Let F be a set of edges of size at most k in G0 such that G0/F is a tree with at most

` leaves. Let W be a T -witness structure of G0 where T = G0/F . Let ta be the vertex in

V (T ) such that W (ta) contains a. For a vertex bi in B, if bi is in W (ta) then the lemma

holds. Consider a case when bi is not in W (ta). There exists a vertex tb, different from ta,

such that bi is in W (tb). Similarly, consider vertices tx, ty and tz such that xi,yi and zi are

contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two vertices in {tx, ty, tz} can be

same as only neighbors of xi,yi,zi are a and bi, and a witness set needs to be connected.

But then, by construction, T [{ta, tx, ty, tz, tb}] has at least two cycles which share an edge,

contradicting that F is a solution. Without loss of generality, let tx 2 {ta, tb}. This implies

there is an edge tatb is in T . If ta and tb not equal to ty or tz then, T [{ta, ty, tz, tb}] has at

least two cycles which share tatb, contradicting that F is a solution. Therefore, at most

one of tx, ty, tz can be different from ta or tb. Without loss of generality, assume that

{tx, ty} is a subset of {ta, tb}. If both tx, ty are same as ta, then the second condition of the

lemma is satisfied. Therefore, we assume that at least one of tx, ty, say tx, is not same as

ta which implies tx = tb. By construction, the only edges incident to xi in G are axi and



bxi. This implies that bxi 2 F and W (t 0b) = W (tb)\{xi} is connected. Since axi 2 E(G),

W (t 0a) = W (ta)[{xi} is connected. Thus, replacing W (tb) by W (t 0b) and W (ta) by W (t 0a)

in W yields another T -witness structure of G. Furthermore, the spanning forest of the

new witness structure, F 0 = (F \{bxi})[{axi} which has same cardinality as that of F .

A similar swap can be carried out if ty = tb. Hence there a witness structure such that for

each bi 2 B if bi is not in W (ta) then at least two of {xi,yi,zi} are in W (ta).

In the following lemma, we argue that the reduction is safe.

Lemma 4.4.2. (G,R,B,k) is a YES instance of RBDS if and only if (G,k0, `0) is a YES

instance of BOUNDED CC.

Proof. Let (G,R,B,k) be a YES instance of RBDS and S be a subset of R of size k such

that S dominates every vertex in B. If S contains less than k vertices, then we take any

of its superset of size exactly k. For each vertex b in B, we fix a vertex rb in S such that

b is neighbor of rb in G. If there are multiple options for selecting rb then we arbitrarily

choose one of them. Let F = {brb | b 2 B}[{ar | r 2 S}. Note that |F | = |B|+ k = k0

and G0[V (F)] is connected. Let T be the graph obtained from G0 by contracting F . Let

W be a T -witness structure of G0. Consider a vertex ta such that a is in W (ta). Since

all the edges in F are contracted to one vertex, set S[B is also contained in W (ta). By

construction, R[X is an independent set in G0. No vertex in (R[X)\S is incident on edge

which has been contracted. In other words, these vertices form singleton witness sets in

W . Since R[X is an independent set in G0, it follows that set TRX = {tv | v 2 (R[X)\S}

is an independent set in T of size |R|+3|B|− k = `
0. Moreover, for all v in X 0, av 2 E(T ).

Therefore, T is a star (which is a cactus) with `
0 leaves. This implies that F is a solution to

(G0,k0, `0).

In the reverse direction, let (G,k0, `0) be a YES instance of BOUNDED CC and F ✓ E(G)

be one of its solution. Then by Lemma 4.4.1, there exists a solution F⇤ of size at most k0

such that for all bi 2 B, either bi 2W (ta) or at least two of xi,yi,zi are in W (ta). Here, W



is a G/F⇤-witness structure of G and ta 2V (G/F⇤) such that a 2W (ta).

We partition vertices of B into two parts depending on whether they belong to W (ta) or

not. Define Bg = {bi 2 B | bi 2W (ta)}. Let Ra = R\W (ta). Partition Bg into B1 and

B2, depending on whether or not they have a neighbor in Ra. Formally, B1 = {bi 2 Bg |

N(bi)\Ra 6= /0} and B2 = Bg \B1. For a vertex bi in B2 at least one of xi,yi,zi is present

in W (ta) as there is no edge between bi and a. Note that, by construction, xi,yi,zi are not

adjacent with b j for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB2 be set of vertices in X \W (ta)

which provides adjacency between a and bi for some bi in B2. For every bi which is in

B\Bg, by Lemma 4.4.1, at least two of vertices in {xi,yi,zi} are present in W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B (captured by Bg);

vertices in R (captured by Ra); vertices in X which are present because corresponding

bi is not present (captured by B\Bg); and vertices in X which are present because they

are needed to provide connectivity between bi and a (captured by XB2). This implies

|Bg|+2|B\Bg|+ |Ra|+ |XB2|+ |{a}| |W (ta)|.

We construct a solution S for RBDS by taking vertices in Ra and two more sets Sg and Sw.

Informally, Sg dominates vertices in B2 and Sw dominates vertices in B\Bg. We construct

Sg in following way. For every vertex bi in B2, arbitrary pick one of its neighbor in R

and add it to Sg. Note that |Sg|  |XB2|. We create another set Sw in the following way.

Initialize Sw to an empty set. For each b in B\Bg, we add an arbitrary neighbor of b in R

to Sw. This implies |Sw| |B\Bg|.

As cardinality of F⇤ is at most k + |B|, size of W (ta) is at most |W (ta)|  k + |B|+ 1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw|  k and every vertex in B is

dominated some vertex in Ra[Sg[Sw. This concludes the proof.

RED BLUE DOMINATING SET is NP-complete [44] and it does not have a polynomial

kernel when parameterized by (|B|,k) [32]. The existence of the polynomial parameter



transformation described above and Proposition 2.3.1 implies that CACTUS CONTRACTION

does not have a kernel with size polynomial in k, unless NP✓ coNP/poly.

Theorem 4.4.1. CACTUS CONTRACTION does not have a polynomial kernel unless NP✓

coNP/poly.

We are now in position to present main result of this section.

Theorem 4.4.2. BOUNDED CACTUS CONTRACTION does not admit a compression of

size O((k2 + k`)1−e), for any e > 0 unless NP✓ coNP/poly.

Proof. Assuming a contradiction, suppose BOUNDED CC admits a compression into

P ✓ S⇤ with bitsize in O((k2 + k`)1−e), for some e > 0. This implies that there exists an

algorithm A which takes an instance I = (G,k, `) of BOUNDED CC and in polynomial

time returns an equivalent instance I0 of P with |I0| 2 O((k2 + k`)1−e).

Let (G,R,B,k) be an instance of RBDS, where G is a graph on n vertices. Using the reduc-

tion described, we create an instance (G,k0, `0) of BOUNDED CC with |V (G0D)| 2 O(n),

|E(G0D)| 2O(n2), k0 = k  |R| 2O(n) and `
0 = |B|+ k 2 O(n). On the instance (G,k0, `0)

we run the algorithm A to obtain an instance I of P such that |I| 2 O((k02 + k0`0)1−e).

But then we have obtained a compression of size O(n2−e) for RBDS, contradicting

Proposition 2.3.2.

Corollary 4.4.1. BOUNDED CACTUS CONTRACTION does not admit a kernel of size

O((k2 + k`)1−e), for any e > 0 unless NP✓ coNP/poly.

4.5 Lossy Kernel for CACTUS CONTRACTION

In previous section, we established that CACTUS CONTRACTION does not admit polyno-

mial kernel under standard complexity assumption (Theorem 4.4.1). In this section, we

compliment that result by providing a lossy kernel of polynomial size for the problem. We



define parameterized minimization version of CACTUS CONTRACTION in the following

way.

CC(G,k,F) =

8

><

>:

• if G/F is not a cactus

min{|F |,k +1} otherwise

If G has at most k +3 vertices then we already have a kernel of desired size. We assume

that input graph has at least k +3 vertices. By definition of optimization problem, for a set

of edges F , if G/F is a cactus then maximum value of CC(G,k,F) is k + 1. Hence any

spanning tree of G is a solution of cost k+1. We call it a trivial solution for given instance.

We denote a complete graph on five vertices by K5. One need to contract at least two edges

to obtain a cactus from K5. We call (K5,1) as trivial instance of CACTUS CONTRACTION.

If OPT(G,k) = k +1 then we can return trivial instance as its a-lossy kernel. Note that

for any c-factor solution for trivial instance, solution lifting algorithm can return a trivial

solution for original instance which is of cost k +1. Since OPT(G,k) is equal to k +1, it

is 1-factor solution. We assume that input graph is connected as otherwise one can not

obtain a cactus only by edge contractions.

Lemma 4.2.2 implies that a connected graph G is k-contractible to a cactus if and only

if each of its 2-connected components is contractible to a cactus using at most k edge

contractions in total. If a 2-connected component of graph is not a cactus then there exists

an edge which is part of at least two cycles. Cycles in each of 2-connected component are

edge-disjoints and hence contracting an edge in one component does not eliminate cycles

in another component. If the number of 2-connected components in the input graph which

are not cactus are more than k +1 then we can safely conclude that optimum solution for

given instance is at least k + 1. In this case we can return trivial instance otherwise we

consider each 2-connected component separately. Note that we do not guess the number

of edges needs to be contracted in each 2-connected component. We compute a kernel

for each 2-connected component using the budget of k. The output of our kernelization



algorithm is disjoint union of kernels for each 2-connected component. We present first

reduction rule which eliminate long chain of paths and/or cycles which connects two

different 2-connected components. Let K be the set of cut-vertices and B be the set of

blocks in G.

Reduction Rule 4.5.1. If B is a block in G which is an edge or a cycle then contract all

edges in E(B). The resulting instance is (G0,k), where G0 = G/E(B).

Informally speaking, since no edges in E(B) is part of more than one cycle, we do not

need to contract any edge in it to construct a cactus. This implies that edges in E(B) are

irrelevant with respect to any solution and can safely be contracted.

Lemma 4.5.1. Reduction rule 4.5.1 is 1-safe.

Proof. Consider a solution F 0 for (G0,k). If |F 0|≥ k +1, solution lifting algorithm returns

a spanning tree F of G. If |F 0|  k then solution lifting algorithm returns F = F 0. If

|F 0| ≥ k + 1 then for a spanning tree F of G, CC(G,k,F) = k + 1. Hence in this case,

CC(G,k,F) = k + 1 = CC(G0,k,F 0). Consider a case when |F 0|  k. Let W 0 be a T 0-

witness structure of G0 where T 0 = G0/F 0. Since B is a block, when all edges in E(B) are

contracted, there is a unique new vertex. Let u⇤ be the new vertex added after contracting

all edges in E(B). Consider vertex t⇤ in V (T 0) such that u⇤ in W (t⇤). Define set W (t) :=

(W (t⇤)\{u⇤})[V (B). Let W1 be a witness structure of G obtained from W 0 by removing

W (t⇤) and adding W (t). Notice that W1 partitions V (G) and for each W in W1, G[W ] is

connected. Let T1 be a graph such that W is a T1-witness structure of G. Note that T1

can be obtained from G by contracting all edges in F 0 [E(B). This implies T1 can be

obtained from G0 by contracting all edges in F 0. Hence T1 is a cactus. This implies that G

is (|F 0|+ |E(B)|)-contractible to a cactus. We argue that G is in fact |F 0|-contractible to a

cactus.

Consider a witness structure W obtained from W1 by removing W (t) and adding each

connected component in G[W (t)]−E(B). All vertices in B which are not cut vertices are



now singleton witness sets. Cut vertices in B are either singleton witness sets or present in

witness set which has vertices from other blocks containing that cut vertex. Notice that W

partitions V (G) and for each W in W , G[W ] is connected. Let T be a graph obtained by

contracting all witness sets in W . In other words, W is a T -witness structure of G.

For a vertex u in V (B), let tu be the V (T ) such that W (tu) = {u}. Define set BT as set of

vertices in tu whose corresponding witness set is singleton and it contains vertices in V (B).

Edges incident on vertices in BT are determined by witness structure W of G. We now

argue that T is a cactus.

Assume that T is not a cactus for the sake of contradiction. By construction, T/E(BT ) = T1

and T1 is a cactus. This implies that if T is not a cactus then there exists an edge tutv

in E(BT ) which is contained in two cycles. Since no edge in E(B) is contracted while

constructing T , T [BT ] is a cycle. Let CT be the another cycle which contains tutv. Let X be

a union of witness sets corresponding to vertices in BT [CT . Formally, X =
S

t2BT[CT
W (t).

Note that B is a proper subset of X . For any two vertices in X , there exists at least two

paths connecting these two vertices. Hence X is a 2-connected set. This contradicts the

fact that B is a block which is maximal 2-connected set in G. Hence, our assumption is

wrong and T is a cactus. This implies that G can be contracted to a cactus by contracting

all edges in F 0. Hence, CC(G,k,F) = CCC(G0,k,F 0).

We now argue that OPT(G0,k)  OPT(G,k). Let F be an optimum solution for (G,k).

By Observation 4.2.2(2), G/(F [ E(B)) is also a cactus. Note that G/(F [ E(B)) =

(G/E(B))/(F \E(B)) = G0/(F \E(B)). Hence G0/F is a cactus. Since |F \E(B)| |F |,

we can conclude that OPT(G0,k)  OPT(G,k).

Combining these two inequalities, we get CC(G,k,F)

OPT(G,k) 
CC(G0,k,F 0)
OPT(G0,k) which concludes the

proof.

Exhaustive application of above reduction rule eliminates all blocks in G which are already

a cactus. In rest of the section, we focus on 2-connected component of G. We assume that



the input graph is 2-connected.

Following reduction rules states that we can replace long path in input graph by shorter

paths.

Reduction Rule 4.5.2. If G has a path P = (u0,u1, . . . ,uk+1,uk+2) such that all of its

internal vertex are of degree 2, then contract uk+1uk+2. The resulting instance is (G0,k, `)

where G0 = G/{uk+1uk+2}.

We observe that this rule can be applied in polynomial time by considering each simple

path in the graph of length more than k +1.

Lemma 4.5.2. Reduction Rule 4.5.2 is 1-safe.

Proof. Consider a minimal set F 0 ✓ E(G) such that T 0 = G0/F 0 is a cactus. If |F 0|≥ k0+1,

then the solution lifting algorithm a spanning tree F of G. In this case, CC(G,k,F) =

k +1 = CC(G0,k0,F 0). In case |F 0| k0, the solution lifting algorithm returns F = F 0. Let

W 0 denote a T 0-witness structure of G0 where T 0 = G0/F 0. Let u0k+1 be the new vertex

added while contracting uk+1uk+2. Let P0 be the path obtained from P by contracting

uk+1uk+2. By Lemma 4.2.1, F 0 has no edge incident on V (P0)\{u0,uk+2}. Hence, every

vertex in V (P0) \ {u0,uk+2} is in a singleton set of W 0. Let W to a witness structure

obtained from W 0 by removing {u0k+1} and adding two sets {uk+1},{uk+2}. Note that W

is a partition of G and for every W in W , G[W ] is connected. Let T be the graph obtained

from G by contracting witness sets in W . In other words, W is a T -witness structure of G.

Note that T can be obtained from T 0 by subdividing edge uku0k+1. By Observation 4.2.1(1),

T is a cactus as T 0 is a cactus. Hence, CC(G,k,F)  CC(G0,k0,F 0).

We now argue that OPT(G0,k) OPT(G,k). Let F be an optimum solution for (G,k). By

Observation 4.2.1(2), G/(F[{uk+1uk+2}) is also a cactus. Note that G/(F[{uk+1uk+2}) =

(G/{uk+1uk+2})/(F \ {uk+1uk+2}) = G0/(F \ {uk+1uk+2}). Hence G0/F is a cactus.

Since |F \{uv}| |F |, we can conclude that OPT(G0,k)  OPT(G,k).



Figure 4.5: Partition of input graph.

Combining two inequalities, we get CC(G,k,F)

OPT(G,k) 
CC(G0,k0,F 0)
OPT(G0,k0) . This concludes the proof.

We apply Reduction Rule 4.5.2 exhaustively to the input graph. Any simple path in resulting

graph contains at most k +4 vertices. We partition vertices of G into the following four

parts: high degree vertices (H), independent set (I), collections of simple paths (Ip) and

rest of the graph (R). See Figure 4.5. These sets are defined as follows.

H = {u 2V (G) | d(u) ≥ k +3}

Iv = {v 2V (G)\H | NG(v) ✓ H}

Ip = {V (P) | P is a simple path in G\ Iv and NG(P) ✓ H}

R = V (G)\ (H [ Iv[ Ip)

With a slight abuse of notation, we say that a path P is contained in Ip (i.e. P 2 Ip) if

V (P) ✓ IP. Let us make the following observation.

Observation 4.5.1. For any two paths P1,P2 2 Ip, we have V (P1)\V (P2) = /0.

We construct graph G0 from G by contracting each path P in Ip to a single vertex. All the



vertices present in H[R are contained in V (G0). We use this graph to bound the cardinality

of set H [R. By construction, if G is 2-connected than G0 is also a 2-connected graph. We

mention few simple observations which directly follows from construction of G0.

Observation 4.5.2. There is no simple path in G0 which is an isolated path in G0 \H.

Observation 4.5.3. If G is k-contractible to cactus then G0 is also k-contractible to a

cactus.

Our main aim of constructing G0 is to bound the number of pendent cycles in G−H.

Lemma 4.5.3. If G0 is k-contractible to a cactus T 0, then the number of pendant cycles in

T 0 is bounded by 2k(k +2).

Proof. Let the graph G0 be k-contractible to the cactus T 0 via a solution set F , and let

RF =V (F)\R. Since the number of edges in F is at most k, |RF | |V (F)| 2k. Consider

a pendant cycle (uPu) in T 0. It follows that V (P) ✓ R and let x,y be the endpoints P. See

Figure 4.5. Observe that N(x) ✓V (F 0)[{x2} and N(y) ✓V (F 0)[{y2}, where x2 and y2

are the respective neighbors of x and y on the path P in G0. We show that at least one of x

and y is neighbor to a vertex in RF . If this is not the case, then the neighborhoods of both x

and y, except for x2 and y2 respectively, are contained in V (F)\RF = H. Hence, P is a

simple path in G0 which is an isolated path in G0 \H, which is a contradiction.

We conclude that each pendant cycle in T 0 corresponds to a simple path in G0, which has

at least one is incident on at least one vertex in RF . Furthermore, the simple paths in G0

corresponding to any two pendant cycles in T 0 are vertex disjoint (Observation 4.5.1).

Hence, the number of simple paths is upper bounded by total number of neighbors of the

vertices in RF . Since |RF | 2k and each vertex in R has degree at most k + 2 in G0, the

lemma follows.

We now argue that if G0 is k-contractible to a cactus then its connected vertex cover is

bounded. Define f (k) = (2k2
+9k +2)(k +4) for all integers k.



Figure 4.6: Construction of G00 from G0 by adding cycles C1,C2 and C3. Dotted boundary
denotes big witness set in T 0-witness structure of G0.

Lemma 4.5.4. If G0 is k-contractible to a cactus and Reduction Rule 4.5.2 is not applicable

on (G0,k), then G0 has a connected vertex cover of size f (k).

Proof. Suppose G0 is k-contractible to the cactus T 0 via a solution set F where W 0 is the

corresponding T 0-witness structure of G0. Consider the graph G00 obtained from graph G0,

by adding new vertices and edges as follows. For each t 2 T 0 such that |W 0(t)| > 1, we

arbitrarily choose an edge utvt 2 G[W 0(t)] and add a path of length k + 2 between these

two vertices. Observe that, G00 is 2-connected, and furthermore, G00/F is a cactus T 00 that

is obtained from T 0 by adding a pendant cycle of length k + 2 to each t 2 T 0 such that

|W 0(t)|> 1. See Figure 4.6. Furthermore, T 00 has at most k additional pendant cycles, as

compared to T 0. Let W 00 be a T 00-witness structure of G00. We construct G00 to ensure that

this graph has following two properties. (1) If |W 00(t)| > 1, then t is a cut-vertex in T 00.

(2) In any pendant cycle (tPt) of T 00 where t is the cut-vertex, |W (t 0)|= 1 for every t 0 2 P,

and |W 00(t)|> 1. We show that G00 has a connected vertex cover S00 of size f (k) such that

S = V (G0)\S00 is a connected vertex cover of G0.

Let V1,V3 be the set of vertices of T 00 of degree 1 and at least 3 respectively. Let V 02 =

{t 2 V (T 00) | d(t) = 2 and t is part of pendant cycle in T 00}. Now, since any simple path

corresponding to a pendant cycle in T 00 has at most k+4 vertices in G00, and by Lemma 4.5.3



in G0 and the construction of G00, there are at most 2k2 + 5k pendant cycles in T 00, we

conclude that |V 02| (2k2 +5k)(k +4). Since every vertex of V 02 corresponds to a singleton

witness set in T 00, we abuse notation slightly to denote the set of corresponding vertices in

G00 by V 02 as well. Next, let V2 denote the set of degree 2 vertices in T which are not part

of a pendant cycle, and note that V2[V 02 cover the set of all degree 2 vertices in T 00. We

claim that S00 =
S

t2V2[V 02[V3
W (t) is a connected vertex cover of G00. As T 00[V2[V 02[V3]

is connected, S00 is a connected set in G00. Without loss of generality, we assume that F

follows the property mentioned in Observation 4.2.5. Hence, if ti 2V1 then |W 00(ti)|= 1.

Consider two vertices ti and t j in V1. Let W 00(ti) = {u} and W 00(t j) = {v}. Then, as

tit j 62 E(T 00), we have that uv 62 E(G00). Hence S00 is a vertex cover of G00.

We now argue that |S00| is at most f (k). For every vertex t 2V3, by Observation 4.2.1 and

4.2.7, we have |W 00(t)| > 1. Then, there are at most 2k vertices in V3. i.e.
S

t2V3
W 00(t)

is upper bounded by 2k. Further note that, by construction of G00 and T 00, for any vertex

t 2 V (T 00) \V3, |W 00(t)| = 1. We have a bound of (2k2 + 5k)(k + 4) on the number of

vertices in V 02. It remains to bound the number of vertices in G00 corresponding to V2.

Again, since V2 corresponds to singleton witness sets in W 00, we slightly abuse notation,

and denote the set of these vertices in G00 by V2 as well. Now, let Ts be the graph obtained

from T 00 by short-circuiting all vertices in V2. By Observation 4.2.1, Ts is a cactus with

|V3|  k vertices. Since no vertex in V2 is contained in a pendant cycle in T 00, short-

circuiting a maximal path in with all internal vertices in V2 results in an edge with two

distinct endpoints in the cactus Ts. Furthermore, there can be at most two paths in T 00 such

that contracting them gives the same edge of Ts. By Observation 4.2.1(1), the number of

edges in Ts is bounded by 2|V (Ts)| 2k. Hence, Vb can be partitioned into a collection of

4k simple paths in G0, and recall that each one contains at most k +2 vertices. Therefore,

|V2| 4k(k +4). Putting together all these bounds we have |S00| f (k).

Finally, observe that S = S00\V (G0) is a connected set in G0, and S is a vertex cover of G0.

This completes the proof of this lemma.



We present following reduction rule which returns a lossy kernels for graph which has

large connected vertex cover.

Reduction Rule 4.5.3. Given an instance (G,k), let G0 be the graph obtained from G by

contracting each path P in Ip to a single vertex. Apply 2-factor approximation algorithm to

compute a connected vertex cover X of G0. If size of X is greater than 2 · f (k) then return

(K5,1).

Lemma 4.5.5. Reduction Rule 4.5.3 is 1-safe.

Proof. Let (G,k) be an instance such that Reduction Rule 4.5.3 returns (K5,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if K5/F 0 is a tree then F 0 contains at least two edges. This

implies CC(K5,1,F 0) = 2 and OPT(K5,1) = 2.

Since a 2-factor approximation algorithm returns a set of size strictly more than 2 · f (k),

size of minimum connected vertex cover of G0 is strictly more than f (k). By Lemma 4.5.4,

if G0 is k-contractible to a cactus than it has a connected vertex cover of size at most f (k).

By Observation 4.5.3, if G is k-contractible to a cactus then G0 is also k-contractible to a

catus. Hence for any set of edges F⇤ if G/F⇤ is a cactus than size of F⇤ is at least k +1.

This implies OPT(G,k) = k +1. For a spanning tree F of G, CC(G,k,F) = k +1.

Combining these values, we get CC(G,k,F)

OPT(G,k) =
k+1
k+1 =

2
2 =

CC(K5,1,F 0)
OPT(K5,1)

. This implies if F 0 is

c-factor approximate solution for (K5,1) then F is 1-factor approximate solution for (G,k).

This concludes the proof.

For our next reduction rule, we extend the notion of false twins to simple paths. We call

two paths, P1 and P2 in Ip, false twins if N(P1) = N(P2). The reduction rule states that we

can delete all but 2k +3 vertices (respectively paths) in Iv (respectively in Ip) which has

identical neighborhood.



Reduction Rule 4.5.4. If there is a vertex v 2 Iv that has at least 2k +3 false twins, then

delete v. That is, the resultant instance is (G−{v},k). Similarly, if there is a path P in Ip

that has at least 2k +3 false twins, then delete P.

This reduction rule can be applied in polynomial time. The rationale behind this reduction

rule is same as we have mentioned in case of TREE-CONTRACTION.

Lemma 4.5.6. Reduction Rule 4.5.4 is 1-safe.

Proof. Let us consider the case of a path P 2 Ip that has at least 2k +3 false twins. The

case of a vertex v 2 Iv can be argued similarly. Consider a solution F 0 of the reduced

instance (G0,k0). If |F 0|≥ k0+1, then the solution lifting algorithm returns a spanning tree

F of G, and CC(G,k,F) = k +1 = CC(G0,k,F 0). In other case |F 0| k, and the solution

lifting algorithm returns F = F 0 as a solution for the instance (G,k). Let T 0 denote the

cactus G0/F 0 and W 0 denote the corresponding T 0-witness structure of G0. Then, as P has

at least 2k + 3 false twins, at least three of these twins, say P1,P2,P3, are disjoint from

V (F 0). Let X = NG0(P1) = NG0(P2) = NG0(P3), and note that X is also the neighborhood

the paths P,P1,P2 and P3 in G. By Observation 4.2.6, there exists ti 2 V (T 0) such that

X ✓ W 0(ti). Now, let T be the cactus obtained from T 0 by adding P as a pendant cycle

adjacent to ti. Define the partition W of V (G) obtained from W 0 by adding the new witness

set {v} for every vertex v 2 V (P). Then T is G/F and W is a T -witness structure of G.

Hence, CC(G,k,F)  CC(G0,k0,F 0).

We now show that OPT(G0,k0) OPT(G,k). Consider an optimum solution F⇤ for (G,k).

If |F⇤| ≥ k + 1 then by definition, OPT(G0,k0)  k0+ 1 = k + 1 = OPT(G,k). In case

|F⇤| k, let T be the cactus G/F⇤. Let W ⇤ denote the corresponding T -witness structure

of G. By a similar argument as above, we know that there exists t j 2 V (T ) such that

NG(P)✓W (t j). It follows that P is disjoint from V (F⇤), and it forms a pendant cycles in T

attached at t j. Hence F⇤ is also a solution to the instance (G0,k). Therefore, OPT(G0,k0)

OPT(G,k). Finally, by combining the above, we conclude that, CC(G,k,F)

OPT(G,k) 
CC(G0,k0,F 0)
OPT(G0,k0) .



This concludes the proof of this lemma.

Given a > 1, let d be the minimum integer such that d
d−1  a . In other words, d = d a

a−1e.

For every simple path P 2 Ip, such that N(P) contains at least 2d vertices of H, pick one

of its endpoints, that is adjacent to at least d vertices of H, into the set Ĩp. We apply the

following reduction rule to the set I = Iv[ Ĩp.

Reduction Rule 4.5.5. If there are vertices v1,v2, . . . ,v2k+3 2 I and h1,h2, . . . ,hd 2H such

that {h1, . . . ,hd}✓ N(vi) for all i 2 [2k +3] then contract all edges in Ẽ = {v1hi | i 2 [d]}

and reduce the parameter by d −1. The resulting instance is (G/Ẽ,k−d +1).

The above rule can be applied in O((2k)d ·n3) time, by considering each subset of H of

cardinality at most d.

Lemma 4.5.7. Reduction Rule 4.5.5 is a-safe.

Proof. Consider a solution F 0 of the reduced instance (G0,k0). If |F 0| ≥ k0+ 1, then the

solution lifting algorithm returns a spanning tree F of G, otherwise it returns F = F 0 [ Ẽ.

If |F 0| ≥ k0+ 1 then CC(G0,k0,F 0) = k0+ 1 = k− d. In this case, F is a spanning tree

of G and CC(G,k,F)  k +1 = k0+d = CC(G0,k0,F 0)+d −1. Now, consider the case

when |F 0| k0 and let W 0 be a G0/F 0-witness structure of G. Let w denote the vertex in

V (G0)\V (G) obtained by contracting Ẽ. Let W 0(t1) be the witness set in W 0 which contains

w. Define W1 = (W 0(t1)[{v1,h1,h2, . . . ,hd})\{w}. Let W be a witness structure obtained

from W 0 by removing W 0(t1) and adding W1. Formally, W = (W 0 [ {W1}) \ {W 0(t1)}.

Note that V (G) \ {v1,h1,h2, . . . ,hd} = V (G0) \ {w} and hence W is a partition of V (G).

Further, G[W1] is connected as G0[W 0(t1)] is connected and a spanning tree of G0[W 0(t1)]

along with Ẽ is a spanning tree of G[W1]. Also, |W1|= |W 0(t1)|+d and any vertex which

is adjacent to w in G0 is adjacent to at least one vertex in {v1,h1,h2, . . . ,hd} in G. Thus,

G/F = G0/F 0. Size of F is at most |F 0|+ d  k0+ d = k− d + 1 + d = k + 1. Hence

CC(G,k,F) = |F |. This implies, CC(G,k,F) = |F |= k0+d  CC(G0,k0,F 0)+d.



We now show that OPT(G0,k0)  OPT(G,k)− (d −1). Let F⇤ be an optimum solution

for (G,k) and W be the T -witness structure of G where T = G/F⇤. If |F⇤|≥ k +1, then

OPT(G,k) = k + 1 = k0+ d = OPT(G0,k0)+ d − 1. In case |F⇤|  k, there are at least

3 vertices, say vp,vq,vr in {v1,v2, . . . ,v2k+3} which are not in V (F⇤). That is, they are

in singleton witness sets of W . Then, by Observation 4.2.6, {h1,h2, . . . ,hd}, which is

a subset of the common neighborhood of these three vertices, is a subset of the same

witness set, say W (ti) where ti 2 V (T ). Suppose that v1 2W (ti), and hence we can

assume that Ẽ = {v1hi | i 2 [d]} ✓ F⇤. Then, F 0 = F⇤ \ Ẽ is solution to (G0,k0) and so

OPT(G0,k0)  |F 0| |F⇤|−d = OPT(G,k)−d. Otherwise v1 62W (ti), and let t j 2V (T )

be the vertex such that v1 2W (t j). Then observe that ti and t j are adjacent in T . Let

T 0 denote the cactus obtained from T by contracting the edge (ti, t j) and let ti j denote

the vertex so formed. Define another partition W 0 = W [{W (ti j)} \ {W (ti),W (t j)} of

V (G) where W (ti j) = W (ti)[W (t j). Clearly, G[W (ti j)] is connected, and hence W 0 is

a T 0-witness structure of G. From W 0 we can obtain a solution F that contains Ẽ, and

note that |F | = |F⇤|+ 1. Now observe that, F 0 = F \ Ẽ is solution to (G0,k0) leading to

OPT(G0,k0)  |F 0|= |F⇤|+1−d = OPT(G,k)−d +1.

Combining these bounds, we have, CC(G,k,F)

OPT(G,k) 
CC(G0,k0,F 0)+d

OPT(G0,k0)+(d−1)
 max

n
CC(G0,k0,F 0)
OPT(G0,k0) ,a

o

.

This concludes the proof.

We now prove that if G is k-contractible to a cactus and none of the reduction rules

mentioned above are applicable, then the number of vertices in G is bounded by a function

of k.

Lemma 4.5.8. Let (G,k) be an instance of CACTUS CONTRACTION on which none of

the Reduction Rules 4.5.2; 4.5.3; 4.5.4 and 4.5.5 are applicable. If G is 2-connected and

k-contractible to a cactus then the number of vertices in G is at most O((2k)2d + k4).

Proof. We first bound the size of H [R. The set H consists of only vertices of degree at

least k +3 and by Observation 4.2.1(3) and 4.2.7, every vertex in H is incident on some



solution edge hence |H| 2k. Since Reduction Rule 4.5.2 is not applicable on graph G,

it is also not applicable on graph G0. By Lemma 4.5.4, G0 has connected vertex cover S

of size O(k3). Notice that V (G) \ (Iv[ Ip) = V (G0) \ (Iv[ I0p) and hence it is suffices to

bound the size of R in graph G0. By construction, every vertex in R has degree at most

k + 2. Therefore, S\R is a vertex cover of G[R]. The number of edges with both end

points in R is at most O(k4). Also every vertex in R has a neighbor in R and hence there

are no isolated vertices in G[R]. Thus, number of vertices in R is O(k4).

We now bound the size of Iv[ Ip. For every set H 0 ✓ H of cardinality less than d, there are

at most 2k +3 vertices in Iv which have H 0 as their neighborhood. Otherwise, Reduction

Rule 4.5.4 would have been applicable. Hence, there are at most (2k+3) ·
� 2k

d−1

�

vertices in

Iv which have degree less than d. Similarly, there are at most 2k +3 paths in Ip which have

a subset H 0 of H as their neighborhood, where H 0 has cardinality at most 2d −1 Hence it

follows that the number of such paths is at most (2k +3) ·
� 2k

2d−1

�

.

Now, any path in P, such that |N(P)| ≥ 2d, has an endpoint in the set I = Iv [ Ĩp, and

this endpoint has at least d neighbors in H. Observe that, any vertex in I, with at least d

neighbors in H, is adjacent to all vertices in of a subset H 0 of H, of cardinality d. For such

a subset H 0, there are at most 2k + 3 vertices in I which have H 0 in their neighborhood.

Otherwise, Reduction Rule 4.5.5 would have been applied. Thus, there are at most

(2k + 3)
�2k

d

�

vertices of I with d or more neighbors in H. Hence, |I| is O((2k)d+1), and

this also bounds the number of paths in Ip which has an endpoint in I. Combining the

above, we obtain that the number of paths contained in Ip is O((2k)2d−1). By Reduction

Rule 4.5.2, the length of any path in Ip is k+4 and hence, the total number of vertices in Ip

is O((2k)2d). Similarly it follows that the number of vertices in Iv is bounded by O((2k)d).

Since (Iv, IP,H,R) is a partition of G, this concludes proof of the lemma.

Now, we put things together to present a PSAKS for CACTUS CONTRACTION.

Theorem 4.5.1. CACTUS CONTRACTION admits a strict PSAKS with O((2k)2d a
a−1 e+1

+

k5) vertices.



Proof. For a given instance (G,k), kernelization algorithm exhaustively apply Reduction

Rule 4.5.1. If number of 2-connected components which are not cactus is more than

k +1 then the algorithm returns a trivial instance as a lossy kernel. Otherwise, algorithm

computes a-lossy kernel for each of 2-connected components separately. If algorithm

finds trivial instance as lossy kernel for any of 2-connected component then it returns a

trivial instance as a lossy kernel for entire graph.

For a 2-connected component, say C, the algorithm creates an instance (G[C],k). Let

Iv, IP,H,R be partition of V (C) as defined after 4.5.2. It is possible that cut vertices in C

are part of Iv[ IP and may get deleted while computing a lossy kernel. We avoid this by

marking these vertices. Since there are at most k many 2-connected components in G,

C has at most k− 1 many cut vertices. Since each path in IP is of length at most k + 4,

marking these vertices increase the size of reduced instance by at most O(k2).

Given a > 1, the algorithm fixes d = d a
a−1e. It applies Reduction Rule 4.5.2; 4.5.3;

4.5.4; and 4.5.5 exhaustively on instance (G[C],k). If reduced graph G⇤ has more than

O((2k)2d + k4) vertices then by Lemma 4.5.8, graph G⇤ is not k-contractible to a cactus.

This implies OPT(G[C],k) is k + 1. In this case, the algorithm returns a trivial instance

as a lossy kernel. Otherwise reduced graph has at most O((2k)2d + k4) vertices. There

are at most k many 2-connected components, and summing over each component, the

reduced graph has at most O((2k)2d+1 + k5). The correctness of algorithm follows from

Lemma 4.5.1; 4.5.2; 4.5.5; 4.5.6; and 4.5.7.

4.6 An FPT Algorithm for CACTUS CONTRACTION

We start with outline of the algorithm. We can think of graph contraction problem as

partition problem. The task is to find a partition where each part, also called witness set,

is connected and contracting each part to a vertex leads to a graph with desired property.

Towards this, we color the input graph such that every colored component contains at most



one big witness set. A witness set, or a set which is equally good, is then extracted from

color class via structural properties of the graph. See Figure 4.7. In first phase, we color

V (G) using three colors {1,2,3} with hope that all vertices of a big witness set receive the

same color and that two big witness sets are separated. We then identify some vertices that

are not part of any big witness set and recolor them using new colors 4 and 5. For instance,

we identify certain induced paths that do not intersect with any minimal solution and are

adjacent to only one big witness set (Lemma 4.6.3). The vertices of such paths are colored

4 (Ex. v1,v2 in Figure 4.7). After this we identify vertices that are not part of any big

witness set and lie on a path between two big witness sets (Lemma 4.6.4) and re-color them

to 5 (Ex. v4,v5,v6,v10 in Figure 4.7). This completes the first phase. In the second phase,

we extract the big witness sets from the components highlighted in the first phase (Ex. in

a color component with color 3, identifying v8,v9 as vertices not included in the witness

set). For this purpose, we define the notion of a connected core (Definition 4.6.2) which

can be thought of as generalization of connected vertex cover. For every monochromatic

component colored with {1,2,3} by the first phase, we find connected core containing

certain boundary vertices. The desired solution is the set of edges of spanning forests of

connected cores.

Rest of the chapter is organized as follows. Following the approach of [55], we first give a

randomized algorithm for the problem on 2-connected graphs, which is then used to give

an algorithm in general graphs. Algorithm can be divided into two phases viz coloring

phase (Subsection 4.6.1) and extracting a solution from colored graph (Subsection 4.6.2).

Finally, in Subsection 4.6.3, we present overall algorithm and illustrate how this algorithm

can be derandomized via (n,k)-universal sets. We remark that the main goal of this work

is to provide a cknO(1) algorithm for CACTUS CONTRACTION, where c is a fixed constant.

For the sake of simplicity, we do not attempt to optimize the running time.



Figure 4.7: Coloring and Re-coloring of input graph. Dashed boundaries denote big
witness sets while dotted boundaries corresponds to color classes.

4.6.1 Phase 1: The Coloring Phase

In this phase, we assign one of colors {1,2,3} to vertices of input graph uniformly at

random. Once we obtain a coloring, we identify certain vertices of the graph which are

contained in small witness sets. We re-color them using new colors {4,5} and move on to

Phase 2 of algorithm to extract a solution from components of G which are colored 1,2 or

3.

We need notion of compatible coloring to argue the correctness of coloring step. Consider

a 2-connected graph G and a minimal set of edges F in E(G) such that G/F = T is a

cactus. Fix a T -witness structure W of G. We define a compatible coloring of G with

respect to W . Informally speaking, for each big witness set, a compatible coloring assign

same color to every vertex in it. It separates two big witness sets which are adjacent with

each other. If two big witness sets are connected by a path then the color of an end point is



Figure 4.8: A compatible coloring of input graph. Dotted boundaries denote big witness
sets. Please refer to Definition 4.6.1

different then the color of big witness set it is adjacent with. See Figure 4.8.

Definition 4.6.1 (Compatible Coloring). A coloring f of G is compatible with a fixed

T -witness structure W of G if following three conditions are satisfied.

1. For all W (t) in W , W (t) is monochromatic. Hence f(W (t)) is a well defined.

2. For all tx, ty in V (T ), tx 6= ty, such that W (tx),W (ty) are big witness sets and txty is

an edge in T , we have f(W (tx)) 6= f(W (ty)).

3. For all tx, ty in V (T ), such that W (tx),W (ty) are big witness sets and there exists a

simple path P = (tx, t1, t2, . . . , tq, ty) in T such that W (ti) is small witness set for all

1  i  q, we have f(W (tx)) 6= f(W (t1)) and f(W (ty)) 6= f(W (tq)).

In Figure 4.8, all three big witness sets, W (tx),W (ty),W (tz) are monochromatic. Since tx

and ty are adjacent and W (tx),W (ty) are big witness sets, these two have different colors.

Note the path between W (tx) and W (tz) whose internal vertices corresponds to singleton

witness sets. Coloring of this path satisfy third property of the definition. Notice the path

which starts and ends in W (tx) and all internal vertices corresponds to singleton witness

sets. Definition of compatible coloring allows all vertices in this path to have same color

as that of W (tx).

We say that f is compatible with set of edges F if G/F is a cactus and f is compatible with

a G/F-witness structure of G. We later argue that if (G,k) is a YES instance of CACTUS



CONTRACTION than any random 3-coloring is compatible coloring with respect to an

optimum solution with high probability (Observation 4.6.4). For this section, we assume

that we are given a 3-coloring f of G which is compatible with an optimum solution.

A subset X of V (G) is called a colored component of f , if X is a maximal connected set

of vertices that have the same color in f . Let X be the set of all colored components

of f . Given a coloring f , we are only interested in finding an optimum solution which

is compatible with this coloring. Hence, for any two components X ,Y in X , no edge

with one end point in X and another in Y is in an optimum solution. We prune coloring

components and re-color them in order to move closer to an optimum solution. We note

few properties of colored components in X .

Observation 4.6.1. For every color component X in X , either all vertices of X are in

small bags or X contains exactly one big witness set.

Lemma 4.6.1. If a colored component X in X is a simple path in G then either all vertices

of X are in small bags or X is a big witness set in W .

Proof. Let X be a simple path P = (v1,v2 . . . ,v`). If X does not contain any big witness

set then the lemma is true. By Observation 4.6.1, there exists at most one big witness set

in X . We consider a case when X contains a big witness set W (t). We argue that, in this

case, W (t) = X . For the sake of contradiction assume that there exists a vertex in X \W (t).

Since W (t) is a connected subgraph and it is entirely contained in X , either v1 or v` are

not contained in W (t). Without loss of generality, let v1 be a vertex not contained in W (t).

Let vi+1 be the smallest indexed vertex which is in W (t). Since a color class contains at

most one big witness set, which in this case W (t), each vertex in {v1,v2, . . . ,vi} are part of

singleton witness sets.

Since W (t) is a big witness set, vi+1,vi+2 are in W (t). Notice that vi+1 is a vertex in W (t)

such that dG(vi+1) = 2 and it has exactly one neighbor, vi+2, in W (t). The other neighbor

of vi+1, vi, is not in W (t). There is no neighbor of vi in W (t) apart from vi+1, as X is a



simple path.

We now argue that such situation is not possible in a witness structure associated with

a minimal solution. Let F be a minimal solution associated with witness structure W .

Since F contains a spanning tree for each big witness set, there is unique edge vi+1vi+2 in

G[W (t)] which is incident on vi+1. The edge vi+1vi+2 is present in F . Consider a witness

structure W 0 obtained from W by removing W (t) and adding two new sets {vi+1} and

W (t)\{vi+1}. Let T 0 be the graph from G by contracting all witness sets in W 0. In other

words, W 0 is a T 0-witness structure of G. Moreover, F \ {vi+1vi+2} contains spanning

trees of witness sets in W 0.

We now argue that T 0 is a cactus. For a vertex u in V (G), let tu denotes the vertex of T

such that u 2W (tu). In graph T , consider edge tvitvi+1 . Graph T 0 can be obtained from

cactus T by subdividing the edge tvitvi+1 . By Observation 4.2.2(1), T 0 is also a cactus. This

contradicts to the fact that F is a minimal solution. Hence our assumption was wrong and

X = W (t). This concludes the proof of lemma.

Identifying Few Vertices in Pendant Cycles and Leaves

We specify the criteria to identify few vertices in G that are contained singleton witness

sets which corresponds to vertices in pendant cycles or are leaves in T . Note that we can

not identify all such vertices in G.

Consider a pendent cycle CT in T such that t is a unique cut vertex in CT and all vertices

CT \ {t} corresponds to singleton witness sets. Let X be the colored component which

contains W (t). Let V1 be the vertices in G−X which are contained in singleton witness

sets corresponding to vertices in CT . It is easy to see that V1 induces a simple path in G.

Following re-coloring is based on this observation. Later, we argue that all vertices in V1

are re-colored in this step (Lemma 4.6.5).

Re-coloring I: For any colored component X in X , if G−X contains a vertex or a simple



path as its connected component then recolor vertices in that connected component with

color 4.

For example, in Figure 4.7, path v1v2 is a connected component of G−X where X is a

colored component with color 1. Similarly, v7 is re-colored in this step. Note that we can

not identify v3 or v8 in this step.

For a colored component X , let a simple path P be a connected component of G−X . In

Lemma 4.6.3, we argue that all vertices in V (P) are singleton witness sets in W or we are

dealing with simple instance mentioned in Lemma 4.6.2. See Figure 4.9.

Lemma 4.6.2. If G is a 2-connected graph such that V (G) can be partitioned into two sim-

ple paths P and Q in G, then we can solve the instance (G,k) of CACTUS CONTRACTION

in polynomial time.

Proof. Let p1, p2 and q1,q2 be the endpoints of the simple paths P and Q, respectively.

Observe that G has a hamiltonian cycle, as G is 2 connected and p1, p2,q1,q2 are the only

vertices that can have degree greater than two. If G is an induced cycle, then the optimal

solution is the empty set. Otherwise, G is a cycle with either one or two additional edges

between p1, p2 and q1,q2. It follows that any optimal solution requires at most 3 edge

contractions.

We assume that instance we are working with does not satisfy the premise of Lemma 4.6.2.

Lemma 4.6.3. For a colored component X in X , let P be a connected component of

G−X. If P is a simple path in G whose neighborhood is contained in X then the all the

vertices of P lie in small witness sets.

Above lemma holds when P contains only one vertex. For a colored component X in X ,

suppose there is an isolated vertex v which is connected component of G−X . Since f is

compatible with optimum solution, all big witness sets are monochromatic. This implies v

can not be part of any big witness set and remains as singleton witness set.



Proof. (of Lemma 4.6.3) For the sake of contradiction assume the lemma is false. There-

fore there is some big witness set in W that contains a vertex of P. Let Y 2X be a colored

component that contains this witness set. As f is a compatible coloring, and NG(P) ✓ X ,

we have Y ✓V (P). Hence Y is a simple path in G, and by Lemma 4.6.1, color component

Y is a big witness set.

We argue that Y = V (P). Let P = (v1,v2, . . . ,v`). Suppose that Y is proper subset of V (P)

then at least one of v1 or v` is not present in Y . Without loss of generality, let v1 62 Y . Let

vi+1 be the smallest indexed vertex in Y . Let ti be the vertex in T such that vi 2W (ti).

Observe that W (ti) ✓ P. There is no edge between Y and W (ti) except for vivi+1. Consider

a witness structure W 0 obtained from W by replacing Y with Y \{vi+1} and {vi+1}. Let

T 0 is the graph obtained from G by contracting all witness sets in W 0. In other words, W 0

is a T 0-witness structure of G. Note that T 0 can be obtained from T by sub-dividing titY ,

where W (tY ) = Y . Hence by Observation 4.2.2(1), T 0 is a cactus. By similar arguments to

that of proof of Lemma 4.6.1, this contradicts the minimality of solution associated with

W

Hence no proper subset of edges in P is contained in the minimal solution, say F , associated

with witness structure W . Since all the edges of P are in F , this implies that P 2X . Let

tP be the vertex corresponding to P in T . It is adjacent to t 2 T if and only if W (t) contains

a vertex from NG(P) which is a subset of X . We consider two cases depending on the

number of edges across P and X . If |EG(P,X)|  2, then either ti is adjacent with one

vertex, say ti or two vertices ti, t j in T . By subdividing edge titP, we get another cactus

(Observation 4.2.2(1)). This contradicts the minimality of F

For rest of the proof, we assume that |EG(P,X)|≥ 3. By Observation 4.6.1, X contains at

most one big witness set. We consider two cases depending on whether X contains a big

witness set or not.

Case 1. X does not contain a big witness set



Let TX denote vertices in T which corresponds to singleton witness set containing vertices

in X . If NG(P) corresponds to at least 3 vertices in X , then T [TX [ tP] contains two cycles

with a common edge, i.e. T is not a cactus, which is a contradiction. Hence, NG(P)

contains exactly two vertices, x1 and x2, of X and EG(P,X) contains either 3 or 4 edges.

See Figure 4.9. By Observation 4.2.7, no vertex of TX is a cut-vertex in T . As X is a

connected set, there exists a path, say Q, between x1 and x2 which is contained in X . Let

TQ denote vertices in T which corresponds to singleton witness set containing vertices in

Q. Observe that C = T [TQ[ tP] is a cycle in T with tP being the only vertex corresponding

to a big witness set in C. We claim that there is no other vertex in T apart from vertices C

i.e. T = C. If this is the case then G = P]Q and both P and Q are simple paths in G. This

contradicts our assumption that instance under consideration does not satisfy premise of

Lemma 4.6.2.

We now argue that T = C. Assume this is not the case, then V (T ) \ (tP[V (Q)) is non-

empty. There is a vertex ty 2 V (T ) \ (V (P)[V (Q)), such that there are two internally

vertex disjoint paths between ty and tP in T . Indeed, we can start with a arbitrarily chosen

ty, and consider a minimum separator between ty and tP in T . If the minimum separator is a

single vertex t 0y, then observe that y0 /2V (Q), as vertices of Q are not cut-vertices in T . We

substitute ty with t 0y and start over. Since the shortest path between t 0y and tP in T is strictly

shorter than the shortest path between ty and tP, we obtain the vertex ty in finitely many

iterations. See Figure 4.9. Let TR1 and TR2 be two internally vertex disjoint paths in T

between ty and tP. Paths TR1 and TR2 contains vertices tx1 , tx2 . Without loss of generality, let

tx1 2 TR1 and tx2 2 TR2 , and hence TR1 [TR2 contains a path between tx1 and tx2 , say TR in T .

The path is distinct from the path TQ, as Q1 = V (TQ)\V (TR1) and Q2 = V (TQ)\V (TR2)

are disjoint and therefore at least one edge of TQ is absent from TR. This implies that T

contains three distinct paths between tx1 and tx2 , namely PT = (x1, tP,x2),TQ and TR1 [TR2 .

This contradicts the fact that T is a cactus. Hence our assumption is wrong and T = C.

Case 2. X contains a big witness set



Figure 4.9: Please refer to Lemma 4.6.3

Let Z be the big witness set contained in X and let tZ be the vertex in T obtained by

contracting Z. We claim that NG(P) is a subset of Z. If this is not the case, consider a

vertex v in NG(P)\Z. Note that v is contained in singleton witness set, say W (tv). In T ,

vertex tv lies on a path between tZ and tP. As tZ , tP are big witness sets, f(tv) = f(tZ)

contradicts the fact that f is a compatible coloring (Definition 4.6.1 (3)). Hence NG(P)✓ Z

which implies NT (tP) = tZ in T . Hence G/(F \E(P)) is also a cactus contradicting the

minimality of F .

In either case, we derive a contradiction. Hence our assumption is wrong and lemma is

true.

Identifying All Vertices in Simple Paths Between Two Big Witness Sets

Recall that in simple path no internal vertex is adjacent to any vertex outside this path.

A simple path is maximal if it is not contained in any other simple path. In other words,

in maximal simple path every internal vertex has degree exactly two and end points have

degree strictly greater than two. Since we are working with a 2-connected graph, we do

not have to consider the case when end points of maximal simple path have degree one.

Consider a simple path P = (tx, t1, t2, . . . , tq, ty) in T such that W (ti) is singleton witness set



for all 1 i q, and W (tx),W (ty) are big witness sets. Let X ,Y are the colored components

containing W (tX),W (tY ), respectively. Since coloring f is compatible with W , we know

that t1, tq are not contained in X and Y , respectively. Let V1 be the vertices in G which are

contained in W (ti) for 1  i  q. It is easy to see that V1 induces a maximal simple path

in G. Moreover, V1 is a connected component of G− (X [Y ). Following re-coloring is

based on this observation. Later, we argue that all vertices in V1 are re-colored in this step

(Lemma 4.6.5).

We mention that we exhaustively apply Re-coloring I before starting Re-coloring II. Also,

once a vertex is re-colored to 4, we do not re-color it to 5. This ensures that for two

colored components Y and Z, a vertex or simple path which is a connected component of

G− (Y [Z) is not a vertex or simple path in G−Y or G−Z.

Re-coloring II: For any two colored component Y,Z in X , if G− (Y [ Z) contains a

vertex or a maximal simple path as its connected component then recolor vertices in that

connected component with color 5.

For example, in Figure 4.7, path v5v6 is a maximal path when two colored components are

deleted from graph. These two vertices are recolored to 5 in this step.

We state following lemma when P is maximal simple path but it also holds for a vertex.

Lemma 4.6.4. For two colored components Y,Z in X , let P be a connected component of

G− (Y [Z). Suppose that P is a maximal simple path in G such that P = (v1,v2, . . . ,v`);

NG(v1) ✓ Y [{v2} and NG(v`) ✓ Z[{v`−1}. Then all vertices of P lie in small witness

sets. Furthermore, both Y and Z contain big witness sets.

We mention that maximality of P is used to prove second part of the lemma.

Proof. (of Lemma 4.6.4) For the sake of contradiction, assume first part of lemma is false,

i.e there is a big witness set that contains a vertex of P. Let A 2X be a colored component

that contains this witness set. As f is a compatible coloring, and NG(P) ✓ Y [Z, we have



A ✓ P. Therefore, for any A 2X which intersects P, we have A ✓ P. This implies A

is a simple path in G. Since A contains a big witness set, by Lemma 4.6.1, A itself is a

big-witness set.

We now argue that A = V (P). Suppose that A is proper subset of V (P) then at least

one of v1,v` is not present in Y . Without loss of generality, let v1 62 A. Let vi+1 be the

smallest indexed vertex in A, and let ti be the vertex in T such that vi 2W (Ti). Observe

that W (ti) ✓ P. There is only one edge, vivi+1, between A and W (ti). Consider a witness

structure W 0 obtained from W by replacing A with A\{vi+1} and {vi+1}. Let T 0 is the

graph obtained from G by contracting all witness sets in W 0. In other words, W 0 is a

T 0-witness structure of G. Note that T 0 can be obtained from T by sub-dividing titY , where

W (tY ) = Y . Hence by Observation 4.2.2(1). This contradicts the minimality of solution

associated with W by similar arguments to that of proof of Lemma 4.6.1.

Hence no proper subset of edges in P is contained in the minimal solution, say F , associated

with witness structure W . Since all the edges of P are in F , this implies that P 2X .

Let tP be the vertex corresponding to P in T . Let Y P = Y \ N(P) = Y \ N(v1) and

ZP = Z \N(P) = Z \N(v`). First, we claim that Y P is in one witness set of W . Suppose

that W (t1),W (t2) are in two different witness sets in W which contains vertices from Y P.

See Figure 4.10. As G is a 2-connected graph and P is a simple path in G, the graph

G−V (P) is connected. As G is a 2-connected graph, there exists a path, say P1, between

Y P and ZP which does not contains v1. Since v1 is part of simple path P, path P1 does not

contain any vertex in V (P). This implies that there exists path between any two vertices

among {t1, t2, tZP} in T −{tP}, where tZP is a vertex in T such that W (tZP)\ZP 6= /0. Since

tP is adjacent to t1, t2 and tZP, there exists two cycles that have a common edge in T . This

is a contradiction to the fact that T is a cactus. Hence, all of Y P lies in one witness set in

W . By similar arguments, we can show that ZP is contained in one witness set in W .

Consider vertices tP, tY P, tZP in T where and Y P ✓ W (tY P) and ZP ✓ W (tZP). Clearly

(tY PtP) and (tPtZP) are edges in T , and tP is a vertex of degree 2 in T . Consider a witness



Figure 4.10: Refer to Lemma 4.6.4.

structure W 0 obtained from W by removing W (tP) and adding two new sets {v1} and

W (tP)\{v1}. Let T 0 be the graph from G by contracting all witness sets in W 0. In other

words, W 0 is a T 0-witness structure of G. Moreover, F \{v1v2} contains spanning trees

of witness sets in W 0. We now argue that T 0 is a cactus. Graph T 0 can be obtained from

cactus T by subdividing the edge tY PtP. By Observation 4.2.2 (1), T 0 is also a cactus. This

contradicts to the fact that F is a minimal solution. Hence our assumption was wrong and

first part of lemma is true.

Next, we argue that Y contain a big witness set in W as argument for Z are symmetric. If

v1 has at least two neighbors in Y then the above arguments imply that all these vertices

are in a single witness set of Y and therefore Y contain a big witness set. Otherwise, v1

only has only one neighbor, say y1 in Y . This contradicts the maximality of P in G. Hence

v1 is adjancent with at least two vertices in Y which are contained in one big witness set.

By similar arguments, we conclude that Z contains a big witness set. This concludes the

proof of the lemma.

Properties of Recoloring

By definition of compatible coloring, every colored component contains at most one big

witness set. In Lemma 4.6.5, we argue that after re-coloring, all colored components



which contains at least two vertices and are colored with {1,2,3} contain a big witness

set. We can think of Lemma 4.6.5 as completeness part for Lemma 4.6.3 and 4.6.4. In

Lemma 4.6.5, we claim that all vertices in colored component which do not contain a big

witness set, satisfies the premise of Lemma 4.6.3 or 4.6.4.

Lemma 4.6.5. If a colored component X in X which contains at least two vertices and is

monochromatic with color from {1,2,3} after exhaustive application of two re-coloring

rules then X contains a big witness set.

Proof. Let TB and TS are set of vertices in T which corresponds to big witness sets and

singleton witness set respectively. By Observation 4.2.1 (3) and 4.2.7, any vertex in TS has

degree at most two in T . Hence T −TB is a collection of isolated vertices and simple paths.

Let X be a colored component in X which has not been re-colored. If for some t in TB,

W (t) is contained in X then the lemma is true. Assume that there exists X which is not

been re-colored and it does not contain any vertex from TB. Let TX be the set of vertices in

T such that corresponding witness set contains vertices in X .

Any vertex in TS, and hence in TX , is either a leaf or part of path starting and ending at same

vertex in TB (in other words, part of pendent cycle) or part of path connecting two different

vertices in TB. Consider a vertex t 0 in TX and t1, t2 in TB. Let x0 = W (t 0) and X 0,X1,X2 be

the color components containing W (t 0),W (t1),W (t2), respectively. If t 0 is a leaf adjacent

to t1 then X 0 is a connected component of G−X1 and hence it was re-colored to 4. If t 0 is a

part of path starting and ending at t1 then x0 is part of simple path in G−X1 and hence it

was re-colored to 4. Similarly, if t 0 is a part of path connected t1, t2 then x0 is part of simple

path in G− (X1[X2) and re-colored to 5.

This also implies exhaustive application of re-coloring identify almost all the vertices in

G that form small bags in T . The only exceptions being those vertices that are contained

in some colored component X in X which also contains a big witness set. In the next

section, we see how to identify those singleton witness sets.



Figure 4.11: Square represents a connected component in graph. Consider a colored
component X in graph G on right hand side. Instead of contracting all of X to a vertex tX
(left side graph), we contract connected core Z of G[Ĥ] to a single vertex which require
smaller edges to be contracted. We replace X by Z and singleton set for every vertex in
X̂ \Z in X .

4.6.2 Phase 2: Identifying Big Witness Sets

By Lemma 4.6.5, any colored component in X which is not recolored and is of size at

least two, contains a big witness set. For a colored component X in X , let W (t) be the

big witness set contained in X . Our objective in this section is to find subset X 0 of X

which is at least as good as W (t) (See Figure 4.13). Informally speaking, this means we

can replace edges in spanning tree of G[W (t)] by edges in spanning tree of G[X 0] in an

optimum solution F , compatible with f , and get another optimum solution F 0.

We examine the properties of W (t) in graph G[X ]. In fact, we consider a superset X̂ of X

and examine the properties of W (t) with respect to graph G[X̂ ]. Let X̂ be the superset of

X which contains vertices in the connected components of G−X that are either isolated

vertices or a simple path in G and whose neighborhood is contained in X . We now define

the notion of connected core. See Figure 4.11.

Definition 4.6.2 (Core). A core of a graph G is a subset Z of V (G) such that every

connected component of G−Z is either an isolated vertex or a simple path whose neigh-

borhood is contained in Z. If a core Z is a connected set in G, then we call it a connected

core of G.



Following observation is a direct consequence of the definition.

Observation 4.6.2. For a given graph G and its connected core Z, let S be a spanning tree

of G[Z]. Then, G/S is a cactus.

Notice that any superset of a connected-core which induces a connected subgraph is also a

connected core. In the following lemma, we claim that W (t) is a connected core of G[X̂ ].

Lemma 4.6.6. For a colored component X in X , if W (t) is the big witness set contained

in X then W (t) is a connected core of G[X̂ ].

Proof. Since W (t) is a witness set, by definition G[W (t)] is connected. For the sake

of contradiction assume that W (t) is not a core of G[X̂ ]. This implies that at least one

connected component C of G[X̂ ] \W (t) is neither a simple path nor a isolated vertex.

Hence, C contains at least 3 vertices and there exists a vertex x in C such that dG[X̂ ]
(x) is at

least 3 and it is adjacent to at least two vertices in C. If x is in X̂ \X , then by Lemma 4.6.3,

it is contained in a small bag. Otherwise, x is in X \W (t) and it is again contained in a

small bag. This implies that there exits a vertex tx in T such that W (tx) = {x} and dT (tx)

is at least 3. By Observation 4.2.1 (3), x is a cut-vertex in T . However, this contradicts

Observation 4.2.7 which states that that every cut-vertex in T corresponds to big witness

set. Hence our assumption is wrong and W (t) is a connected core of G[X̂ ].

We point out that there might exists a proper subset of W (t) which is a connected core of

G[X̂ ]. In other words, every vertex in W (t) is either part of a connected core of G[X ] and/or

it is in W (t) because of external constraints. Lemma 4.6.7 and 4.6.8 states that if vertices

in X specify certain conditions then they are part of W (t) because of external constraints.

Lemma 4.6.7. If there exists v in NG(X) such that v is colored 5 then NG(v)\ X is

contained in a big witness set of X.

Proof. If v is colored 5 then by Lemma 4.6.4, v is contained in a simple path P in G

between two components X ,X 0 in X , such that all the vertices of P are in small witness



Figure 4.12: Please refer to Lemma 4.6.7 and 4.6.8.

sets in W . Furthermore, both X and X 0 contain big witness sets in W . Let W (t 0) be the

big witness set contained in X 0. Assume that there exists x in W (t)\N(v). Consider a path

Q from W (t) to x which is contained entirely in G[X ]. Let Q0 be a path from W (t 0) to an

endpoint of P, whose internal vertices are in X 0. See Figure 4.12. Since xv is an edge in

G, we know that Q along with edge xv and paths P, P0 form a path from W (t) to W (t 0) in

G. This path in G gives a path between t and t 0 in T , such that all the internal vertices of

this path correspond to small witness sets in W . Notice that every vertex on the path from

W (t) to x, has same color as that of W (t). All these vertices are in small bags. This is a

contradiction to the fact that f is compatible coloring with W . Hence our assumption is

wrong and all vertices in N(v)\X are contained in W (t). This concludes the proof of the

lemma.

Lemma 4.6.8. Let X ,Y be two colored component in X which contain big witness sets,

say WX and WY , respectively. Then, N(X)\Y and N(Y )\X are contained in WY and WX

respectively.

Proof. If E(X ,Y ) is empty then the statement is vacuously true. Assume that there is

a vertex x in (N(Y ) \WX)\X , and let t, t 0 be the vertices of T corresponding to the big

witness sets WX ,WY respectively. See Figure 4.12. Since X is connected, there exists a

path between WX and x which is entirely contained in X . As X may contain only one big

witness set, x lies in a small bag in W . This implies that there is path between t and t 0



in T (via x) such that the neighbor of t has the same color as vertices in WX . This is a

contradiction to the fact that f is compatible coloring with W .

We point out that these conditions for including vertices in X in big witness set depend on

other color components and not on big witness set contained in them. Hence, given X

we can mark all vertices which are part of big witness set in each colored component. We

introduce following marking scheme to mark vertices which are in big witness set because

of external constraints.

Marking Scheme 4.6.1. For a colored component X in X ,

1. If there exists y in N(X) such that f(y) = 5 then mark all the vertices in N(y)\X.

2. For a colored component Y in X , if f(Y ) 2 {1,2,3} and it contains at least two

vertices then mark all vertices in N(Y )\X

We note that Re-coloring-I indirectly contributes to second point in marking scheme.

Because of Re-coloring-I and Lemma 4.6.5, we can be sure that any colored component

colored with 1,2 or 3 contains a big witness sets.

Once we mark vertices which are present in big witness set because of external constraints,

we find any connected core of minimum cardinality which contains these vertices. We

argue that this connected core is as good as the big witness set for our purposes. For

example, consider Figure 4.13 and let R = {x1,x2,x5,x6,x7}. Set W (t) = R[{x3} is the

unique big witness set in X . Our objective is to find a set which is as good was W (t). In

this case, apart from W (t) itself, set Z = R[{x4} is as good as W (t). Note that vertices

x5,x6,x7 need not be included in any minimal connected core of G[X̂ ]. Vertices x6,x7 are

marked because of first point in Marking Scheme while x5 is marked because of second

point. We formally prove these things in rest of the section. We postpone discussion on

how to find a connected core of minimum size for a given graph to last part of this section.

Recall that X̂ is the superset of X which contains vertices in the connected components of

G−X that are either isolated vertices or a simple path in G and whose neighborhood is



Figure 4.13: Replacing W (tx) by Z in X . Please refer to Lemma 4.6.9.

contained in X .

Pruning Operation: For a colored component X in X which contains a big witness set,

let MX be set of marked vertices in X by Marking Scheme 4.6.1. Let ZX be a connected

core of G[X̂ ] of minimum cardinality which contains set MX . In X , remove X and add ZX

along with {v} for every vertex v in X̂ \ZX .

We stop the pruning operation when no colored component is replaced in X . Since

pruning operation consider a colored component at most once, it stops in at most |V (G)|

many steps. As final lemma in this section, we argue that if we start applying pruning

operation on set of colored classes obtained from compatible coloring f , we end up with a

witness structure corresponding with an optimum solution. Recall that F is a minimum

set of edges such that G/F is a cactus and W is a G/F-witness structure of G. Also, f is

coloring of V (G) which is compatible with W . Set X is collection of colored components

of f .



Lemma 4.6.9. Let set X ⇤ be obtained from X by exhaustive application of Pruning

Operations. If F⇤ is a union of spanning trees of graph induced on colored component in

X ⇤ then G/F⇤ is a cactus and |F⇤| |F|.

Proof. For the sake of simplicity, we consider a case when pruning operation replaces

exactly one colored component in X . Let X be a colored component in X ; MX are

marked vertices in X and Z is a connected core of G[X̂ ] which contains all marked vertices.

Let W (tx) be the unique big witness set contained in X . This implies that a spanning tree,

say St , of G[W (tx)] is contained in F . Let SZ be a spanning tree of G[Z]. Consider a set

of edges F 0 obtained from F by removing St and adding SZ . By Lemma 4.6.6; 4.6.7;

and 4.6.8, W (tx) is a connected core of G[X̂ ] which contains MX . Since Z is a minimum

sized connected core which contains MX , |Z| |W (tx)| which implies |F 0| |F|. In the

remaining proof, we argue that G/F 0 is a cactus.

Let W 0 be a T 0-witness structure of G where T 0 = G/F 0. We argue that W 0 can be obtained

from a T -witness structure W of G. We first claim that if a witness set in W intersects X̂

then it is a subset of X̂ . Assume that there exists a witness set W (t) which intersects X̂

and contains a vertex y in W \ X̂ . As W (t) is a connected set, there is a path in G[W (t)]

between y and x. Since, X is a separator between X̂ \X and V (G)\ X̂ , this path intersects

X . This implies that there exists a witness set with one vertex in X and another outside

X . Since every witness set is monochromatic, no such witness set exists. Hence, there is

no witness set which contains X̂ and vertex outside X̂ . This implies W 0 can be obtained

from W by removing all witness sets which are contained in X̂ and adding Z and singleton

witness set for every vertex in X̂ \Z. For a witness structure W , let WX̂ be set of all witness

set contained in X̂ . Formally, W 0 = (W \WX̂)[W 0
1 where W 0

1 = {Z}[{{v}| v 2 X̂ \Z}.

We consider two resulting graph T and T 0. See Figure 4.13. Let TX be the induced

subgraph on vertices in T whose corresponding witness sets are contained in X̂ . Formally,

V1 = {t| t 2 V (T ) and W (t) ✓ X̂} and TX = T [V1]. We similarly define T 0X . Since W

and W 0 are T -witness structure and T 0-witness structure of G, graphs T −V (TX) and



T 0−V (T 0X) are isomorphic to each other.

Recall that W (tx) is the big witness set in X . Let tz be the vertex in T 0 such that W 0(tz) = Z.

We now argue that T − (V (TX) \ {tx}) and T 0− (V (T 0X) \ {tz}) are isomorphic as well.

It is sufficient to prove that neighbors of tx in T −V (TX) are identical to that of t 0x in

T 0−V (T 0X), or formally, NT 0(tz)\V (T 0X) = NT (tx)\V (TX). Consider a vertex x in X̂ which

has a neighbor y in V (G) \ X̂ . Let ty be a vertex in T such that y is in W (ty). There are

three possibilities for ty in T : (1) ty is part of a path between tx and some other vertex in

T which corresponds to a big witness set; (2) ty is part pendent cycle in which tx is the

unique (cut) vertex which corresponds to a big witness set; or (3) ty is a leaf adjacent to

tx. In first case, y is colored to 5 and hence x is in MX . In second and third case, y is a

isolated vertex or part of simple path in G−W (t) and hence in G−X . This would imply

y is part of X̂ . Since we started with assumption that y is in V (G)\ X̂ , these cases do not

occur. Hence MX contains every vertex in X that has a neighbor in V (G)\ X̂ . This implies

both W (tx) and Z contains every vertex in X that has a neighbor in V (G)\ X̂ , and therefore

NT 0(tz) \V (T 0X) = NT (t) \V (TX). Hence T − (V (TX) \ {tx}) and T 0− (V (T 0X) \ {tz}) are

isomorphic with each other.

By Observation 4.6.2, both G[X̂ ]/St and G[X̂ ]/SZ are cactus. Once again, since Mx (hence

W (tx) and Z) contains all vertices in X̂ which has neighbors outside, tx and tz are the only

vertices in T and T 0 which has neighbors outside TX and T 0X . Graph T 0− (V (T 0X)\{tz}) is

cactus as it is isomorphic to T − (V (TX)\{tx}) which is a cactus. Since T 0X is also a cactus

and tz is the only vertex which has neighbors outside T 0X , T 0 is a cactus. This concludes the

proof that G/F 0 is a cactus.

Next, we consider all the sets X 2X and fix an arbitrary order among them. Now, starting

with a given solution F , we apply the above arguments for each X in X one by one.

Here, we update the set F to F 0 each time, before proceeding to the next X . Observe that

F 0 obtained at the end of the process, say F⇤, is a solution, i.e. G/F⇤ is a cactus, and

|F⇤| |F|. Since F was optimum solution it follows that |F | |F⇤| which concludes the



proof.

Finding Connected Cores

Recall that a connected-core of a graph G is a subset Z of vertices such that, G[Z] is

connected and each connected component of G−Z is either an isolated vertex or a simple

path whose both end points have neighbors in Z. Here we present a simple branching

algorithm that determines if G has a connected core of size at most k or not. We use

algorithm for STEINER TREE problem as subroutine. In STEINER TREE problem, we are

given a graph G and set of vertices, called terminals, and a positive integer `. The goal is

to determine whether there is a tree with at most ` edges that connects all the terminals.

We present the following lemma in the form which we use it later on.

Lemma 4.6.10. There is an algorithm that given a connected graph G on n vertices, a

subset X of its vertices and an integer k, either computes a minimum connected core of G

which contains X and is of size at most k or correctly concludes that no such connected

core exists in 6k ·nO(1) time.

Proof. We first construct a core of G via a branching algorithm. At each leaf of the

branching tree, we extend the core constructed by the branching algorithm to a connected

set by applying an algorithm for the STEINER TREE problem.

Let Z denote a partial solution to the instance. Initialize Z to X and decrease k by |X |. The

following branching rule is derived from the observation that if (u,v,w) is a path outside

connected core of G then degree of v is two in G.

Branching Rule 1. If there is a path (u,v,w) in G−Z such that |NG(v)|≥ 3, then branch

into three cases where each of u or v or w is added to Z. Decrease k by one in each of the

branches.

Observe that when this rule is no longer applicable, all vertices of G−Z have degree at



most two. Hence the components of G−Z are simple paths in G, or isolated vertices.

Next, we have the following reduction rule that follows from observation that if (x,y) is

an isolated edge obtained by removing minimum connected core of G, then x and y have

degree two or more in G.

Reduction Rule 4.6.1. If there is an edge uv in G−Z such that u is an unique neighbor

of v then add u into Z and reduce k by one.

Since the only neighbor of v is u, the edge uv cannot be part of a simple path in G whose

both endpoints have neighbours in Z. Now, if there exists an optimal solution Z⇤ that does

not contain u, then v 2 Z⇤ and Z0 = (Z⇤ \{v})[{u} is also a connected core of G. This

justifies the correctness of the rule.

We apply the above rules exhaustively, and consider the search tree constructed. Note

that each node of the search tree is labeled with either a triple (u,v,w) indicating that the

Branching rule 1 was applied, or an edge (x,y) indicating that Reduction rule 4.6.1 was

applied at this node. If at any node in the search tree, k is 0 and the set Z is not a connected

core of G, we abort that node. If all the leaves of the current search tree are aborted, then

we output NO as a solution to this instance.

Next, we claim that if none of the rules are applicable at a leaf of the search tree, then

the corresponding Z is a core of G. Assume to the contrary that Z is not a core of G.

Then there is a component C of G−Z that is neither an isolated vertex, nor it is a simple

path in G whose both endpoints have neighbours in Z. Hence such a C has at least two

vertices. Furthermore recall that the branching-rule is not applicable at this node of the

search tree, and therefore all vertices in G−Z have maximum degree 2. Consider the

case when C is a cycle in G−Z. As G is connected, C has a vertex v that has a neighbour

in Z. Let u and w be the neighbours of v in C. Then, it follows that (u,v,w) is a path in

G−Z with |NG(v)|≥ 3. However, this leads to a contradiction as Branching rule 1 is not

applicable. Now, consider the case when C is a path in G−Z with end-points u and v. If

there is an internal vertex on this path that has a neighbor in Z, then as before, we obtain a



contradiction. Hence, C is a simple path in G, with end-points u and v. As Z is not a core

of the connected graph G, one of u or v has no neighbour in Z, i.e. it is a vertex of degree 1

in G. But then, Reduction rule 4.6.1 is applicable, which is a contradiction. Hence Z is a

core of the graph G.

However, as Z may not be connected in G, we may have to add additional vertices to

ensure connectivity. Observe that this can be achieved by computing a minimum STEINER

TREE for Z in G. Given a graph G and a set S of vertices of G, the STEINER TREE

problem is the task of computing a minimum cardinality connected subgraph that contains

S. This problem is known to admit an algorithm with O⇤(2|S|) running time [82]. The

above algorithm computes a minimum cardinality connected set of vertices, Z0 ◆ Z, in

time O(2k). Observe that Z0 is a connected-core of G, as G−Z is a collection of isolated

vertices and simple paths in G. Let Z̄ be the minimum cardinality connected-core over all

the leaves of the search-tree. If |Z̄| k, we output Z̄ and otherwise we output NO as the

solution to the instance.

Let us now argue the correctness of this algorithm. Assume Z⇤ is an optimal solution of

size at most k. We claim that above algorithm finds a connected core Z̄ such that |Z̄| |Z⇤|.

To argue this, we associate a path on the search tree of branching algorithm to the set Z⇤.

Now consider an internal node in search tree that is labeled with (a,b,c). Since Branching

rule 1 is applied at this node, we have that (a,b,c) is a path in G−Z and |NG(b)| ≥ 3.

As Z⇤ is a core of G, at least one of a,b,c must be present in it. Similarly, for any node

labeled with an edge (x,y), one of these vertices, say y, is of degree 1 in G, and hence Z⇤

must contain one of them. Recall that, by previous arguments, we may assume x 2 Z⇤.

Hence, we start from the root of the search tree and navigate to a leaf along the choices

consistent with Z⇤. If more than one choices are consistent with Z⇤, we arbitrarily pick

one of the them and proceed. Consider the set Z̃ obtained at the leaf via this navigation

consistent with Z⇤ from the root-node of the search tree. Clearly Z̃ ✓ Z⇤ and Z̃ is a core

(not necessarily connected) of G. Let T be an optimal solution for an instance of (H, Z̃) of



STEINER TREE as defined above. Since Z⇤ is a connected core of G and Z̃ ✓ Z⇤ we know

that Z⇤ \ Z̃ is a solution to this Steiner Tree instance. By the optimality of T , |T | |Z⇤ \ Z̃|

and hence Z̄ = Z̃[T is a desired solution.

Let us now consider the running time of this algorithm. At each application of the

Branching rule 1, we have a three-way branch and the measure drops by 1 branching vector

is (1,1,1). This leads to the recurrence T (k) 3T (k−1) which solution is 3k ·nO(1). Next,

at each leaf of the search tree, we run the algorithm for finding a minimum Steiner tree,

which runs in time 2k ·nO(1). If Steiner tree obtained is of size strictly more than k then we

discard this node. Therefore, the overall running time is 6k ·nO(1).

4.6.3 Putting it all Together: The Overall Algorithm

Recall that a connected graph is k-contractible to a cactus if and only if each of its 2-

connected components is contractible to a cactus using at most k edge contractions in

total (Lemma 4.2.2). In this section, we first present a randomized algorithm for CACTUS

CONTRACTION when input graph is 2-connected (Theorem 4.6.1). Using the arguments

presented in [55], we present a randomized algorithm to solve CACTUS CONTRACTION on

connected graphs (Theorem 4.6.2). Finally, we describe how to derandomize this algorithm

using (n,k)-universal sets.

Consider a 2-connected graph G which is contractible to a cactus T . Let W be a T -

witness structure of G. By Observation 4.2.7, if t is a cut-vertex in T then W (t) is a big

witness set. Without loss of generality, we assume W satisfy the property mentioned in

Observation 4.2.5, i.e. if t is a leaf in T then W (t) is a singleton witness set. We use

following observation to bound the vertices in G which are adjacent to big witness sets;

contained in singleton witness sets and are part of a path between two big witness sets.

Observation 4.6.3. For a given cactus T , let TB be the set of vertices in T that correspond

to big-witness sets. Then, there are at most 4|TB| vertices which lie on a path between two



different vertices in TB and are adjacent to vertices in TB.

Proof. Formally, TB = {t| t 2 V (T ) such that W (t) is a big witness set.}. Let V1 be the

set of vertices t in V (T ) such that there exists t1 6= t2 2 TB; t 2 N(t1); and there exists a

path between between t1 and t2 which contains t. Delete all vertices in T which are not

contained in path between two different vertices in TB to get a graph T1. Since all cut

vertices in T are in TB, resultant graph is still connected and hence a cactus. Moreover, no

vertex in V1 is deleted.

If |TB|= 1 then the statement is vacuously true. We consider a case when |TB|≥ 2. Let D

be the block decomposition of T1. We prove the bound using the induction on number of

blocks in cactus graph. Our induction hypothesis is: if number of blocks in T1 is strictly

less than q then |V1| 4|TB|. For base case, consider a case when T1 has exactly one block.

In this case, T1 is either an edge or a cycle. In either case, |V1| 4|TB|. In fact, in this case,

|V1| 4(|TB|−1) as |TB|≥ 2.

Consider cactus T1 which has q blocks. Let D be a block corresponding to a leaf in D .

Let t be the unique cut vertex in this block. There exists at least one vertex in D, apart

from t, which corresponds to a big witness set. If this is not the case then all vertices in

D\{t} would have been deleted while obtaining T1 from T . Consider cactus T 01 induced

on V (T )\ (D\{t}). Since T 01 has q−1 blocks in its block decomposition, by induction

hypothesis, |V 01|  4|T 0B| where V 01 = V1 \V (T 01) and T 0B = TB \D. Now, consider the

cactus T 00 induced on D. Since it is either an edge or cycle, |V 001 |  4(|T 00B |− 1) where

V 001 = V1 \V (T 001 ) and T 00B = TB \D.

As t is not in V1 and it is the only vertex in both V (T 01) and V (T 001 ). Hence, we have

|V1|= |V 01|+ |V
00
1 | and |TB|= |T 0B|+ |T

00
B |−1. Substitute the values, we get desired bound

for T1.

Since every vertex in N(TB) is correspond to singleton witness set, this bound also applies

to the number of desired vertices in G. We present following observation which states that



if (G,k) is an YES instance of CACTUS CONTRACTION then any random 3-coloring of is

good with certain probability.

Observation 4.6.4. Consider a 2-connected graph G which is k-contractible to a cactus T .

Fix a T -witness structure W of G. If f : V (G)!{1,2,3} is a coloring where colors are

chosen uniformly at random for each vertex then f is compatible with W with probability

at least 1/36k.

Proof. Let S be the set of all vertices in V (G) which are either a part of big witness sets in

W or are adjacent to a big witness set and are part of paths between two big witness sets.

Since G is k-contractible to T , there are at most k big witness sets. This implies the total

number of vertices in S is at most 2k + 4k = 6k (by Observation 4.6.3). We can ensure

|S| = 6k by arbitrarily adding some extra vertices to it. By the definition of compatible

coloring (Definition 4.6.1), to determine whether a random coloring f is a compatible with

W or not, we only need to check color of vertices in S.

Let y be a 3-coloring of G which is compatible with W . For a random coloring f and

a vertex v in S, probability that f(v) = y(v) is 1/3. Since colors are chosen uniformly

at random for each vertex while constructing f , the probability that y and f color S

identically is at least 1/36k. Hence f is compatible with W with probability at least

1/36k.

We are now in a position to present first algorithm in this section.

Theorem 4.6.1. Let (G,k) be an instance of CACTUS CONTRACTION where G is a 2-

connected graph on n vertices. There is an one-sided error Monte Carlo algorithm with

false negatives which determines whether (G,k) is a YES instance or not in time cknO(1).

It returns correct answer with constant probability.

Proof. Consider an algorithm which uses Algorithm 4.6.1 as subroutine and runs it 34k

many times. If any of these runs return a solution F , then the algorithm returns F otherwise



Algorithm 4.6.1: Randomized Algorithm for Cactus Contraction
Input: A 2-connected graph G and an integer k
Output: Return a set of edges F such that G/F is a cactus and |F | k if such set

exists otherwise return NO.
1 Generate a random coloring f : V (G)!{1,2,3} and let X be the set of colored

components.
2 for each X 2X do
3 if P is a simple path or a isolated vertex in G−X then
4 for all u 2 P : set color of u to 4

5 for each pair X1,X2 2X do
6 if P is a simple maximal path or an isolated vertex in G− (X1[X2) then
7 for all u 2 P : set color of u to 5

8 for each X 2X do
9 Apply Pruning Operation to obtain marked vertices MX in X

10 ZX  minimum connected core of G[X̂ ] containing MX
11 Replace X by ZX & singleton set for every vertex in X \ZX in X .

12 if a spanning forest F of X has at most k edges then
13 return F

14 else
15 return NO

after all iterations are over, it returns NO. This finishes the description of the algorithm.

We first argue the correctness of this algorithm. Since Algorithm 4.6.1 returns a solution

only if it has found a witness structure with desired properties, it never returns false

positives. We argue that if these is a solution then the algorithm returns it with constant

probability. Consider a graph G which is k-contractible to a cactus T . Fix a T -witness

structure W of G.

To argue the correctness, we first claim that given graph G and a compatible coloring f

compatible with W , Algorithm 4.6.1 returns a correct answer. By Lemma 4.6.3, every

vertex which is re-colored to 4 in Step 3, is a singleton witness set in W . By Lemma 4.6.4,

every vertex which is re-colored to 5 in Step 6, is a singleton witness set in W . At

Step 8, each colored component which contains at least two vertices also contains a big

witness set (Lemma 4.6.5). This fact allows algorithm to perform Pruning Operation. The

correctness of replacement step follows from Lemma 4.6.9. Hence given a coloring f



which is compatible with W , Algorithm 4.6.1 returns a correct answer.

By Observation 4.6.4, any random 3-coloring of G is compatible with W with probability

at least 1/36k. Since the algorithm runs 36k many iterations of Algorithm 4.6.1, probability

that none of these colorings (which are generated uniformly at random) is compatible with

W is at most (1− 1
36k )

36k
< 1/e. Hence Algorithm 4.6.1 returns a solution on positive

instances with probability at least 1−1/e.

By Lemma 4.6.10, each iteration of Algorithm 4.6.1 takes 6k ·nO(1) time and hence the

total running time of the algorithm is ck ·nO(1) for a fixed constant c. This concludes the

proof of the theorem.

We apply the arguments presented in [55] to extend above theorem to solve CACTUS

CONTRACTION on general graphs.

Theorem 4.6.2. Let (G,k) be an instance of CACTUS CONTRACTION where G is a

connected graph on n vertices. There is an one-sided error Monte Carlo algorithm with

false negatives which determines whether (G,k) is a YES instance or not in time cknO(1).

It returns correct answer with constant probability.

Proof. Let G1,G2, . . . ,Gq be 2-connected components of G such that Gi is not a cactus

for all i in [q]. If q  1 then we use algorithm presented in Theorem 4.6.1. If q ≥ k + 1

then we return NO as at least one edge needs to be contracted in each of these 2-connected

components. We now consider the case when 2  q  k.

For each Gi and each possible values k j between 1 and k, we run algorithm in Theorem 4.6.1

on instance (Gi,k j). We repeat each run 3logk times on each instance. Since there are

at most k2 such pairs, algorithm in Theorem 4.6.1 has been ran at most 3k2 logk time. If

algorithm returns NO for all the values of k j for some Gi then we return NO. Otherwise

let k0i be the smallest value for which algorithm returns a solution for Gi. Since algorithm

in Theorem 4.6.1 returns no false positive, Gi is k0i-contractible to a cactus. On the other



hand if (Gi,ki) is a YES instance of CACTUS CONTRACTION then probability that no

run will output right answer is at most (
1
e )

3logk =
1
k3 . Since there are at most k2 pairs

(Gi,k j), and by the union bound on probabilities, the probability that there is a pair (Gi,k j)

for which the algorithm returns false negative is upper bounded by k2 · 1
k3 ≥

1
k . If such a

failure does not occur, then for every i we have that k0i is the smallest value of k j such that

Gi is ki-contractible to a cactus. Finally, the algorithm answers YES only if Â
q
i=1 k0i  k,

and answers NO otherwise. The correctness of this algorithm follows from Lemma 4.2.2.

Consequently, the algorithm cannot give false positives, and it may give false negatives

with probability at most 1/k  1/q  1/2, where the two inequalities follows from the

assumption that 2  q  k.

Derandomization

We can derandomize our algorithms by constructing a family of coloring functions that is

derived from a universal set.

Definition 4.6.3 (Universal Set). A (n,k)-universal set is a family H of subsets of [n] such

that for any S ✓ [n] of size at most k, {S\H | H 2H } contains all subsets of S.

Given integers n,k, one can construct a (n,k)-universal set using following result.

Proposition 4.6.1 ([81]). For any n,k ≥ 1, we can construct a (n,k)-universal set of size

2kkO(logk) logn in time 2kkO(logk)n logn.

We use this (n,k)-universal set to construct a 3-coloring family of V (G).

Lemma 4.6.11. Consider a graph G and a subset S of V (G) of size 6k. There is a family of

3-coloring functions, F , such that for a given 3-coloring f of V (G), there exists coloring

y in F that agrees with f on S. This family has size 46kkO(logk) log2 n and it can be

constructed in time 46kkO(logk)n log2 n.



Proof. Let coloring f partitions S into 3 parts, say S1,S2,S3. Let H be a (n,6k)-universal

set, that is constructed by Proposition 4.6.1. We define a family of partitions of V (G) as

follows.

F 0 = {(A,B,C) | A 2H , B = Y \A where Y 2H ,C = V (G)\Y}

Observe that F 0 can be constructed by considering each pair of sets in H . We claim that

there is a triple (A,B,C) 2F 0 such that S\A = S1, S\B = S2 and S\C = S3. Since H is

a (n,6k)-universal-set, there is some set Y 2H such that S\Y = S1[S2, and there is some

A 2H such that A\S = S1. Hence, S\ (Y −A) = (S\Y )\ (S\A) = S2. We can easily

convert the family F 0 into a family of coloring functions, where for each (A,B,C) 2F 0

maps all vertices in A,B,C to 1,2,3 respectively. Hence if f partitions S into S1,S2,S3,

then there is a function y 2F , which also partitions S into S1,S2,S3. Since the family H

has size 26kkO(logk) logn, size of F is at most 46kkO(logk) log2 n and it can be constructed

in time 46kkO(logk)n log2 n

In the algorithm mentioned in Theorem 4.6.2, instead of repeatedly generating random a

random coloring, we use coloring family mentioned in Lemma 4.6.11, to get following

result.

Theorem 4.6.3. Let (G,k) be an instance of CACTUS CONTRACTION where G is a

connected graph on n vertices. There is a deterministic algorithm which determines

whether (G,k) is a YES instance or not in time cknO(1).

4.7 Conclusion

In this chapter, we take a closer look at methods developed for TREE CONTRACTION

problems and generalize it for CACTUS CONTRACTION. We prove that CACTUS CON-

TRACTION does not have a polynomial kernel when parameterized by solution size. We



compliment this result in two ways. We present a polynomial kernel for CACTUS CON-

TRACTION using solution size and number of leaves in resulting cactus as combined

parameter. We argue that this kernel is optimal under certain polynomial complexity

assumption. We also present a lossy kernel of polynomial size for this problem. We end

this chapter with an FPT algorithm running in time cknO(1) for this problem.





Chapter 5

Contraction to Generalization of Trees

5.1 Introduction

As in Chapter 4, we study a problem of contracting an input graph to a graph class which

is superset of trees. We define this graph class in a “parameterized way”. Let T` be a

collection of graph which can be made into a tree by deleting at most ` edges. In other

words, T` is a set of connected graph whose feedback edge set is of size at most `. We

study T`-CONTRACTION problem which is formally defined as follows.

T`-CONTRACTION Parameter: k

Input: A graph G and an integer k.

Question: Is it possible to obtain a graph in T` from G with at most k edge contractions?

Note that for `= 0, problem T`-CONTRACTION is same as TREE CONTRACTION. In Sec-

tion 5.3, we show that the problem does not admit a polynomial kernel when parameterized

by k (alone). In fact, this reduction proves that the problem does not admit a polynomial

kernel when parameterized by k for any (fixed) integer `. This implies that, unlike in case of

BOUNDED TREE CONTRACTION, we can not get a polynomial kernel when parameterized

by k and additional parameter `. Inspired by this negative result for kernelization, we
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design an a-lossy kernel for T`-CONTRACTION of size O([k(k+2`)](d+1)) in Section 5.4,

where d = d a

a−1e. Note that this lossy kernel has polynomial dependency on both k and `.

In Section 5.5, we design an FPT algorithm for T`-CONTRACTION running in time

(2
p
`+ 2)O(k+`) · nO(1). Our algorithm follows the general approach of designing the

algorithm for TREE CONTRACTION by Heggernes et al. [55]. They presented a randomized

algorithm for the problem and then derandomize it using (n,k)-universal sets. A (n,k)-

universal sets is a collection F of functions from [n] to [2] such that for each subset S of

[n] of size k and a function f : S ! [q], there exists function f in F such that f restricted

on set S is identical with f . We rename (n,k)-universal sets to (n,k,2)-universal family. In

Section 5.6, we present an algorithm to compute (n,k,q)-universal family for any integer

q ≥ 2. We use these families to de-randomize our algorithm for T`-CONTRACTION.

The work presented in this chapter is based on [3].

5.2 Preliminaries

For a given graph, feedback edge set is defined as set of edges whose removal deletes all

cycles in the graph. For an integer `, by T` we denote collection of all connected graphs

which has a feedback edge set of size at most `. It can also be defined as collection of

graphs which can be obtain from a tree by adding at most ` edges. For any graph G in T`,

we have |E(G)|  |V (G)|−1+ `. For a connected graph H, if |E(H)|  |V (H)|−1+ `

then H is in T`.

A k-coloring of a graph G is a function f : V (G)! [k]. A k-coloring f of G is a proper

coloring if for all uv in E(G) we have f(u) 6= f(v). The chromatic number of a graph is the

minimum number of colors needed for its proper coloring. For a k-coloring f of G, a subset

S of V (G) is said to be monochromatic with respect to f if for all s,s0 in S, f(s) = f(s0).

Observe that f partitions V (G) into (at most) k pairwise disjoint sets. A subset S of V (G)

is said to be monochromatic component with respect to f if S is monochromatic and G[S]



is connected.

We start with few observation regarding the graph class T`.

Observation 5.2.1. For each T 2 T` the following statements hold.

1. The chromatic number of T is at most 2
p
`+2.

2. If T 0 is a graph obtained by subdividing an edge in T then T 0 2 T`.

3. If T 0 is a graph obtained by contracting an edge in T then T 0 2 T`.

Proof. (Proof of Part 1.) We first prove that for any graph G with at least one edge, its

chromatic number is upper bounded by 2
p

|E(G)|. Let C1,C2, . . . ,Cq be the color classes

in a proper coloring of G which uses the minimum number of colors. Observe that there

is at least one edge between Ci,Cj, where i, j 2 [q], i 6= j. This implies that
�q

2

�

 |E(G)|,

which proves the claim. Next, consider T` 2 T`, and fix a spanning tree T of T`. Let

T 0 = E(T`) \E(T ). If ` > 0 then from the claim above, we can properly color graph

T`[V (T 0)] using at most 2
p
` many colors. Since T`−T 0 is a tree, we can properly color T`

by coloring the vertices in T`−V (T 0) using two new colors.

(Proof of Part 2.) For any connected graph T if |E(T )| |V (T )|−1+` then T is contained

in T`. Subdividing an edge adds a new vertex and an edge and hence this inequality is

satisfied while maintaining the connectivity of graph. This implies T 0 2 T`, where T 0 is

obtained from T by sub-dividing an edge in T .

(Proof of Part 3.) Similar to the proof of part 2, contracting an edge decreases the number of

vertices by one and number of edges by at least one. This implies |E(T 0)| |V (T 0)|−1+`.

Contracting an edge maintains the connectivity of the graph and hence T 0 2 T`.

Observation 5.2.2. For a graph T 2 T`, the graph T 0 2 T` whenever T 0 is obtained

from T as follows. Consider a vertex v 2 V (T ), and a partition N1,N2 of NT (v). Let

V (T 0) = (V (T )\{v})[{v1,v2} and E(T 0) = E(T −{v})[{(v1,u) | u 2 N1}[{(v2,u) |

u 2 N2}[{(v1,v2)}.



Proof. Consider a vertex v 2V (T ), and a partition N1,N2 of NT (v). Let V (T 0) = (V (T )\

{v})[{v1,v2} and E(T 0)=E(T −{v})[{(v1,u) | u2N1}[{(v2,u) | u2N2}[{(v1,v2)}.

Notice that T 0 is a connected graph. We have |V (T 0)|= |V (T )|+1 and |E(T 0)|= |E(T )|+

1  |V (T )|−1+ `+1 = |V (T 0)|−1+ `. This concludes the proof.

Following lemma helps us find an edge which can safely be contracted.

Lemma 5.2.1. Let (G,k) be an instance of T`-CONTRACTION and P=(u0,u1, . . . ,uq,uq+1)

be a path in G, where q ≥ k+2, and for each i 2 [q] we have deg(ui) = 2. Then no mini-

mal solution F to T`-CONTRACTION in (G,k) with |F | k contains an edge incident to

V (P)\{u0,uq+1}.

Proof. Assume the contrary that F contains at least one such edge. Observe that there

are at least k+1 edges with endpoints in V (P)\{u0,uq+1}. Therefore, there exists i 2 [q]

such that ui−1ui 2 F and uiui+1 /2 F , or ui−1ui /2 F and uiui+1 2 F . Let us assume that

there exists i 2 [q] such that ui−1ui 2 F and uiui+1 /2 F (other case is symmetric). Let

T = G/F with V (T ) = {t1, · · · , tp}, and W be the T -witness structure of G. Furthermore,

let t and t 0 be the vertices in T such that ui−1,ui 2 W (t) and ui+1 2 W (t 0). If t = t 0

then consider the following. Notice that G[W (t)] is connected, ui−1,ui,ui+1 2W (t), and

uiui+1 /2 F . Therefore, W (t) must contain the vertices of the sub-path (ui+1, . . . ,uq,uq+1)

and the vertices of the subpath (u0,u1, . . . ,ui−1,ui). But then, we have |W (t)|> k+1, a

contradiction. Therefore, we have t 6= t 0. Notice that ui is not a cut vertex in G[W (t)],

as there is exactly one edge incident on it. Therefore, G[W (t) \ {ui}] is connected. Let

W 0 = (W \{W (t)})[{ui}[{W (t)\{ui}}. Observe that W 0 is a partition of V (G) which

is a G/F 0-witness structure of G, where F 0 = F \ {ui−1ui}. Here, G/F 0 is the graph

obtained by subdividing the edge tt 0 in T , and by Observation 5.2.1, G/F 0 is also a graph

in T`, which contradicts the minimality of F .

We end this section with two lemmas regarding witness structure of input graph.



Lemma 5.2.2. Let F be a set of edges in a graph G such that T = G/F is in T` and

|V (G/F)|≥ 3, and W be a T -witness structure of G. Then, there exists a set F 0 of at most

|F | edges in G such that G/F 0 is in T` and the G/F 0-witness structure W 0 of G satisfies

the property that for every leaf t in G/F 0, witness set W 0(t) in W 0 is a singleton set.

Proof. If for each leaf t 2 V (T ) we have |W (t)| = 1 then F 0 = F is a desired solution.

Otherwise, consider a leaf t in T such that |W (t)|> 1. Let t 0 be the unique neighbour of

t in T . Notice that W (t) and W (t 0) are adjacent in G, and G[W (t)[W (t 0)] is connected.

Fix a spanning tree Q of G[W (t)], and (arbitrarily) choose a vertex u⇤ 2 V (Q) that is

adjacent to a vertex in W (t 0), which exists since tt 0 2 E(T ). Furthermore, choose a

leaf v⇤ 2 V (Q) \ {u⇤}, which exists as |V (Q)| > 1. Let W 0(t 0) = (W (t 0)[W (t)) \ {v⇤},

W 0(t) = {v⇤}, and W 0 = (W \ {W (t),W (t 0)})[{W 0(t),W 0(t 0)}. Notice that W 0 is a T -

witness structure of G, and the number of leaves corresponding to singleton witness sets is

strictly more than that of W . Hence, by repeating this argument for each (non-adjacent)

leaves in T and their corresponding witness set in W , we can obtain the desired result.

Lemma 5.2.3. Let F be a set of edges in a graph G such that T = G/F is in T`, and W

be a T -witness structure of G. If G is 2-connected and t is cut vertex in T then witness set

W (t) in W is not a singleton set.

Proof. Let t be a cut vertex in T such that W (t) = {u}, where u 2 V (G). Notice that

T − {t} has at least two components, say T1 and T2. Consider U1 =
S

t2V (T1)W (t) and

U2 =
S

t2V (T2)W (t). As W is a T -witness structure of G, it follows that there is no

edge between a vertex in U1 and a vertex in U2 in G. This contradicts the fact that G is

2-connected.



Figure 5.1: Reduction from TREE CONTRACTION to T`-CONTRACTION.

5.3 Hardness results for T`-CONTRACTION

Following reduction shows that T`-CONTRACTION is NP-Hard. Moreover, it implies that

the problem does not admit a polynomial kernel when parameterized by k unless NP ✓

coNP/poly. We present a parameter preserving reduction from TREE CONTRACTION

which as we have mentioned does not admit a polynomial kernel under same complexity

assumption [55].

Reduction. Let (G,k) be an instance of TREE CONTRACTION. We create an instance

(G0
,k0) of T`-CONTRACTION as follows. Initially, we have G = G0. Let v⇤ be an arbitrarily

chosen vertex in V (G). For each i 2 [`], we add a cycle (v⇤,wi
1,w

i
2, . . . ,w

i
k+1) on k+ 2

vertices to G0, which pairwise intersect at v⇤, and we set k0 = k. This completes the

description of the reduction. See Figure 5.1.

In the following lemma we establish equivalence between the two instances.

Lemma 5.3.1. (G,k) is a YES instance of TREE CONTRACTION if and only if (G0
,k0) is

a YES instance of T`-CONTRACTION.

Proof. In the forward direction, let (G,k) be a YES instance of TREE CONTRACTION,

and S be one of its solution. Notice that G0
/S 2 T`, and |S| k0 = k. Therefore, (G0

,k0)



is a YES instance of T`-CONTRACTION. In the reverse direction, let (G0
,k0) be a YES

instance of T`-CONTRACTION, and S be one of its (minimal) solution. Recall that for

each i 2 [`] we have a cycle Ci = (v⇤,wi
1,w

i
2, . . . ,w

i
k+1) on k + 2 vertices in G0, which

pairwise intersect at v⇤. This together with minimality of |S| implies that S\E(Ci) = /0.

Furthermore, G0[{v⇤}[ ([i2[`]V (Ci))] belongs to T` \T`−1. Therefore, G0[V (G)]/S must

be a tree.

Following theorem follows from construction of an instance (G0
,k0) of T`-CONTRACTION

for a given instance (G,k) of TREE CONTRACTION and Lemma 5.3.1.

Theorem 5.3.1. T`-CONTRACTION does not admit a polynomial kernel parameterized by

solution size unless NP ✓ coNP/poly.

5.4 Lossy Kernel for T`-CONTRACTION

To complement the result that T`-CONTRACTION does not admit a polynomial kernel

assuming NP 6✓ coNP/poly (Section 5.3) we design a PSAKS for T`-CONTRACTIONin

this section. For a given graph G, a set of edges F in G is said to a solution if G/F is in

T`. We define parameterized minimization version of T`-CONTRACTION problem in the

following way.

T`C(G,k,F) =

8

>

<

>

:

• if F is not a solution

min{|F |,k+1} otherwise

If G has at most k+3 vertices then we already have a kernel of desired size. We assume

that input graph has at least k+3 vertices. By definition of optimization problem, for a

set of edges F , if G/F is a graph in T` then maximum value TC(G,k,F) is k+1. Hence

any spanning tree of G is a solution of cost k+1. We call it a trivial solution for given

instance. Consider complete graph K`+4. One need to contract at least two edges from this



graph to obtain a graph in T`. Hence any solution for instance (K`+4,1) is of cost two. We

call this instances as trivial instance for T`C problem. If we are able to conclude that an

optimum solution for instance (G,k) is of size at least k+1 then we can return this trivial

instance as its lossy kernel. Note that for any c-factor solution of this trivial instance, we

can return of a trivial solution for original problem which is of cost k+1. If input graph is

not connected, we can not obtain a tree by edge contraction operations only. We assume

that input graph is connected.

The algorithm starts by applying Reduction Rules 5.5.1 to 5.5.4 (if applicable, in that

order). Next, we state the following lemma which prove that we can shorten long induced

paths without changing the value of optimum solution.

In following reduction rule we find an edge, if exists, which can be safely contracted.

Reduction Rule 5.4.1. If G has a path P = (u0,u1, . . . ,uq,uq+1) such that q > k+2 and

for all i 2 [q], we have deg(ui) = 2. Then contract the edge uq−1uq, i.e. the resulting

instance is (G/{uq−1uq},k).

Note that Reduction Rule 5.4.1 can be applied in polynomial time by searching for such a

path (if it exists) in the subgraph induced on the vertices of degree 2 in G. In the following

lemma, we show that Reduction Rule 5.4.1 is safe.

Lemma 5.4.1. Reduction Rule 5.4.1 is 1-safe.

Proof. Let P = (u0,u1, . . . ,uq,uq+1) be a path in G such that q > k+2 and for all i 2 [q],

we have deg(ui) = 2. Furthermore, let G0 = G/{uq−1uq}, P0 = (u0,u1, . . . ,uq−2,u⇤,uq+1),

where u⇤ is the vertex resulting after contracting the edge uq−1uq. We consider the

instances (G,k) and (G0
,k) of T`-CONTRACTION, and show that T`C(G,k,F)

OPT(G,k) 
T`C(G0

,k0,F 0)
OPT(G0,k0) .

Here, T`C is a shorthand notation for the parameterized minimization problem for T`-

CONTRACTION.

Consider a minimal set F 0 ✓ E(G0) such that T 0 = G0
/F 0 is in T`. If |F 0|≥ k+1, then the

solution lifting algorithm returns E(G), otherwise it returns F = F 0. If |F 0|≥ k+1 then



T`C(G,k,F) k+1 = T`C(G0
,k,F 0). Otherwise, let V (T 0) = {t1, · · · , tr} and W 0 denote

the T 0-witness structure of G0. By Lemma 5.2.1, F 0 has no edge incident on vertices in

V (P)\{u0,uq+1}. Therefore, every vertex in V (P0)\{u0,uq+1} is in a singleton set of W 0.

Let W = (W 0 \ {u⇤})[{{uq−1},{uq}} to be a partition of V (G). Then, W is a T -witness

structure of G where T is G/F , which is obtained from T 0 by subdividing an edges. From

Observation 5.2.1, T is in T`. Therefore, T`C(G,k,F) T`C(G0
,k,F 0).

Next, consider an optimum solution F⇤ to T`-CONTRACTION in (G,k). If |F⇤|≥ k+1 then

OPT(G,k) = k+1 and by definition, OPT(G0
,k)  k+1 = OPT(G,k). Otherwise, we

have |F⇤| k. Let T =G/F⇤, and W be the T -witness structure of G. By Lemma 5.2.1, F⇤

has no edge incident on V (P)\{u0,uq+1}. Therefore, every vertex in V (P)\{u0,uq+1} is

in a singleton set in W . Let W 0 = (W \{{uq−1},{uq}})[{{u⇤}} be a partition of V (G0).

Then, W 0 is a T 0-witness structure of G0, where T 0 = G0
/F⇤. Finally, T 0 is the graph

obtained from T by contracting an edge. Hence, T 0 2 T`, and OPT(G0
,k) OPT(G,k).

Hence, we have T`C(G,k,F)
OPT(G,k) 

T`C(G0
,k0,F 0)

OPT(G0,k0) .

Let (G,k) be an instance obtained by exhaustively applying Reduction Rule 5.4.1 on input

instance. At this stage, we derive a structural property of graph G which is k-contractible

to a graph in T`. In the following lemma, we argue that such graphs should have a small

connected vertex cover.

Lemma 5.4.2. Consider an instance (G,k) of T`-CONTRACTION on which Reduction

Rule 5.4.1 is not applicable. If G is k-contractible to a graph in T` then G has a connected

vertex cover of size at most 2(k+3)(k+2`).

Proof. Let (G,k) be a instance of T`-CONTRACTION such that G is k-contractible to a

graph in T`. Let F be one of its solution, T = G/F , where T 2T`, and W be the T -witness

structure of G. Let L be the set of leaves in T , and X = V (T ) \L. If |V (T )|  2 then

the claim trivially holds since |F |  k. Otherwise, we have |V (T )| ≥ 3. In this case, by

Lemma 5.2.2 we can assume that each vertex in L belongs to a singleton witness set in



W . Notice that for ti, t j 2 L, where ti 6= t j, and W (ti) = {u} and W (t j) = {v} we have

tit j 62 E(T ) (since |V (T )|≥ 3), and therefore uv 62 E(G). As T [X ] is connected, it follows

that S =
S

t2X W (t) is a connected vertex cover of G. We now argue that |S| is at most

2(k+3)(k+2`).

Let X1 ✓ X be the set comprising of vertices in T such that for each t 2 X1 we have

|W (t)|> 1, and X2 = X \X1. Since Reduction Rule 5.5.4 is not applicable on G, we can

assume that every leaf in T is adjacent to a vertex in X1. Notice that any connected induced

subgraph of T is in T`. Fix a spanning tree of T −L, and let F be the set of edges which

are not in this spanning tree. Since, T −L 2 T` therefore, we have |F |  `. Next, we

create a set of marked vertices M. We add both the endpoints of edges in F to M, and add

vertices in X1 to M. Consider a graph T 0 obtained from T −L by deleting edges in F and

contracting all vertices with degree exactly two in the graph T −L. It is easy to see that T 0

is a tree with all its leaves marked and every internal vertex of degree at least 3. Hence the

number of vertices in T 0 is at most twice the number of marked vertices. Since there are at

most k+2` marked vertices, we get |V (T 0)| 2(k+2`). Every edge in E(T 0) corresponds

to a simple path (or an edge) in T . Recall that the number of internal vertices in each such

path is bounded by k+2 as Reduction Rule 5.4.1 is not applicable. Hence, |X2| is at most

2(k+2)(k+2`). Since, there are at most k more vertices in W (t) for t 2 X1, |S| is at most

2(k+2)(k+2`)+ k. This concludes the proof of lemma.

Using Lemma 5.4.2, we can identify graphs which are not k-contractible to a graph in T`.

Note that we have 2-factor approximation algorithm to find a connected vertex cover of

input graph. It is easy to see that following reduction rule is 1-safe.

Reduction Rule 5.4.2. Given an instance (G,k), apply 2-factor approximation algorithm

to compute a connected vertex cover X of G. If size of X is greater than 4(k+3)(k+2`)

then return the trivial instance (K`+4,1).

Lemma 5.4.3. Reduction Rule 5.4.2 is 1-safe.



Proof. Let (G,k) be an instance such that Reduction Rule 5.4.2 returns (K`+4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if K`+4/F 0 is a graph in T` then F 0 contains at least two

edges. This implies T`C(K`+4,1,F 0) = 2 and OPT(K`+4,1) = 2.

Since a 2-factor approximation algorithm returns a set of size strictly more than 4(k+

3)(k+2`), size of minimum connected vertex cover of G is at least 2(k+3)(k+2`). But

by Lemma 5.4.2, if G is k-contractible to a graph in T` than it has a connected vertex

cover of size at most 2(k+3)(k+2`). Hence for any set of edges F⇤ if G/F⇤ is in T` than

size of F⇤ is at least k+1. This implies OPT(G,k) = k+1. For a spanning tree F of G,

TC(G,k,F) = k+1.

Combining these values, we get T`C(G,k,F)
OPT(G,k) = k+1

k+1 = 2
2 =

T`C(K`+4,1,F 0)
OPT(K`+4,1)

. This implies if F 0

is c-factor approximate solution for (K`+4,1) then F is 1-factor approximate solution for

(G,k). This concludes the proof.

For the remaining section, we assume that above reduction rule did not return the trivial

instance. In other words, we assume that graph has connected vertex cover of size at most

4(k+3)(k+2`). Before describing the next reduction rule, we define a partition of V (G)

into the following sets.

H = {u 2V (G) | deg(u)≥ 2(k+3)(k+2`)+1}

I = {v 2V (G)\H | N(v)✓ H}

R =V (G)\ (H [ I)

Vertices v,u are said to be false twins if N(v) = N(u). We use Lemma 5.4.4 to reduce the

number of vertices in I which have many false twins. Let G be k-contractible to a graph T

in T` and W be the T -witness structure of G.



Lemma 5.4.4. Consider sets X ,U ✓V (G) such that U is an independent set in G and for

all v 2U we have X ✓ N(v). If |U |≥ k+ `+2 then there is a vertex t 2V (T ) such that

X ✓W (t).

Proof. We prove this by contradiction. Assume there exists t 6= t 0 such that X \W (t)

and X \W (t 0) are non-empty. Since U is an independent set and |U | ≥ k+ `+ 2, there

are at least `+ 2 vertices in U which are not contained in any big witness sets. Con-

sider the subgraph of T (on at least `+ 4 vertices) induced on the vertices {t, t 0} [

{ti | W (ti) is a singleton witness set containing a vertex in U}. After deleting any set of

` edges in T , there still exists a cycle in T . This is a contradiction the fact that T 2 T`.

Recall that two vertices are said to be false twins of each other if their open neighbourhoods

are same. Following reduction rule removes a vertex in I which has too many false twins.

Reduction Rule 5.4.3. If there is a vertex v 2 I that has at least k+ `+2 false twins in I

then delete v, i.e. the resulting instance is (G−{v},k).

In the following lemma we prove that this reduction rule is 1-safe.

Lemma 5.4.5. Reduction Rule 5.4.3 is 1-safe.

Proof. Let v 2 I such that v has at least k+ `+ 2 false twins in I, and let G0 = G− {v}.

We consider instances (G,k) and (G0
,k) of T`-CONTRACTION, and show that T`C(G,k,F)

OPT(G,k) 

T`C(G0
,k,F 0)

OPT(G0,k) . Here, T`C is a shorthand notation for the parameterized minimization problem

for T`-CONTRACTION.

Consider a solution F 0 to T`-CONTRACTION in (G0
,k). If |F 0| ≥ k + 1 then the solu-

tion lifting algorithm returns E(G), otherwise it returns F = F 0. If |F 0| ≥ k + 1 then

T`C(G,k,F)  k+ 1 = T`C(G0
,k,F 0). Otherwise, |F 0|  k, and let T 0 = G0

/F , where

T 0 2 T` with W 0 being the T 0-witness structure of G0. Let U be set of false twins of

v in I. Recall that |U | ≥ k + `+ 2. From Lemma 5.4.4, there exists ti 2 V (T 0) such



that NG0(u1) ✓ W 0(ti) for u1 in U . Let T be the graph obtained from T 0 by adding

a new vertex tv as a leaf adjacent to ti. Notice that T 2 T`, which follows from the

fact that NG0(u1) = NG(u1) = NG(v), and NG(u1) ✓ W 0(ti). Let W = W 0 [ {{v}} be

a partition of V (G). Then, T is G/F and W is the T -witness structure of G. Hence,

T`C(G,k,F) T`C(G0
,k,F 0).

Next, consider an optimum solution F⇤ to T`-CONTRACTION in (G,k). If |F⇤| ≥ k+1

then by definition, OPT(G,k)  k+1 = OPT(G,k). Otherwise, we have |F⇤|  k. Let

T = G/F⇤, and W ⇤ denote the T -witness structure of G. By an argument analogous to

the proof of T`C(G,k,F) T`C(G0
,k0,F 0), we know that there exists t j 2V (T ) such that

N(v)✓W (t j). Let t 2V (T ) such that v 2W (t). If W (t) = {v} then t is a leaf in T , which

implies that F⇤ is also a solution to T`-CONTRACTION in (G0
,k), thus giving the desired

relation. Otherwise, consider the following. Recall that v has at least k+ `+2 false twins,

and at least one of them, say u, belongs to a singleton witness set. That is, there exists a

vertex t 0 in T such that W (t 0) = {u}. Let W 0 be the partition of V (G) obtained from W ⇤ by

swapping the appearances of u and v. Furthermore, let F 0 be the set of edges obtained from

F by replacing each edge xv with the edge xu, where for each xv 2 F . Notice that F 0 is also

an optimal solution to T`-CONTRACTION in (G,k), and a solution to T`-CONTRACTION

in (G0
,k). Therefore, OPT(G0

,k) OPT(G,k). Hence, T`C(G,k,F)
OPT(G,k) 

T`C(G0
,k,F 0)

OPT(G0,k) .

For a > 1, let d be the smallest integer such that d+1
d  a . This implies d = d a

a−1e.

Reduction Rule 5.4.4. If there are vertices v1,v2, · · · ,vk+`+2 2 I and h1,h2, · · · , hd 2 H

such that for all i 2 [k+ `+ 2], we have {h1, . . . ,hd} ✓ N(vi) then contract all edges in

Ẽ = {v1hi | i 2 [d]}, and decrease k by d −1. The resulting instance is (G/Ẽ,k−d +1).

We note that the lossy-ness is introduced only in the Reduction Rule 5.4.4. We have

determined that H 0 = {h1,h2, . . . ,hd} need to be in one witness bag but G[H 0] may not

be connected. To simplify the graph, we introduce additional vertex v1 to the bag which

contains H 0. By doing this we are able to contract H 0 [ {v1} into a single vertex. In the



following lemma, we argue that the number of extra edge contracted in this process is a

times that of the optimum solution.

Lemma 5.4.6. Reduction Rule 5.4.4 is a-safe.

Proof. Let v1,v2, · · · ,vk+`+2 2 I and h1,h2, · · · , hd 2 H such that for all i 2 [k+ `+ 2],

we have {h1, . . . ,hd} ✓ N(vi). Furthermore, let Ẽ = {v1hi | i 2 [d]}, G0 = G/Ẽ, and

k0 = k−d +1. We consider instances (G,k) and (G0
,k0) of T`-CONTRACTION, and show

that T`C(G,k,F)
OPT(G,k)  max

n

T`C(G0
,k0,F 0)

OPT(G0,k0) ,a

o

.

Consider a solution F 0 of T`-CONTRACTION in (G0
,k0). If |F 0| ≥ k0+ 1, then the so-

lution lifting algorithm returns E(G), otherwise it returns F = F 0 [ Ẽ. If |F 0| ≥ k0+ 1

then T`C(G0
,k0,F 0) = k0+ 1 = k − d. In this case, F = E(G) and T`C(G,k,F)  k +

1 = k0 + d = T`C(G0
,k0,F 0) + d − 1. Next, consider the case when |F 0|  k0, and let

W 0 = {W 0(t1),W 0(t2), . . . ,W 0(tq)} be the G0
/F 0-witness structure of G. Let w denote

the vertex in V (G0) \V (G) obtained by contracting the edges in Ẽ. Without loss of

generality, assume that w 2 W 0(t1). Let W = (W 0 \ {W 0(t1)})[ {W1}, where W1 =

(W 0(t1) \ {w})[{v1,h1,h2, . . . ,hd}. Note that V (G) \ {v1,h1,h2, . . . ,hd} = V (G0) \ {w}

and hence W is partition of V (G). Furthermore, G[W1] is connected as G0[W 0(t1)] is

connected, and therefore, E(G0[W1 \{w}])[ Ẽ contains a spanning tree of G[W1]. Also,

|W1| = |W 0(t1)|+ d, and any vertex which is adjacent to w in G0 is adjacent to at least

one vertex in {v1,h1,h2, . . . ,hd} in G. Thus, W 0 is a G/F-witness structure of G, where

G/F 2 T`. Therefore, T`C(G,k,F) T`C(G0
,k0,F 0)+d.

Next, consider an optimum solution F⇤ to T`-CONTRACTION in (G,k), and let T be G/F⇤

with W being the T -witness structure of G. If |F⇤| ≥ k+ 1, then OPT(G,k) = k+ 1 =

k0+ d = OPT(G0
,k0)+ d − 1. Otherwise, we have |F⇤|  k, and there are at least `+ 3

vertices, in {v1,v2, . . . ,vk+`+2} (✓ I) which are not in V (F⇤). That is, they are in singleton

witness sets of W . Then, by Lemma 5.4.4, {h1,h2, . . . ,hd} are in the same witness set, say

W (ti) where ti 2V (T ). Consider the case when v1 2W (ti). Let F̃ be the edge set obtained

from F by replacing each edge uv by uw, where v2{v1,h1, · · · ,vd} and u /2{v1,h1, · · · ,vd}.



Furthermore, let F 0 = F̃ \ Ẽ. Notice that |F 0|  |F⇤|− d, and F 0 is solution to (G0
,k0).

Therefore, OPT(G0
,k0)  |F⇤|− d = OPT(G,k)− d. Next, we consider the case when

v1 62W (ti), and let t j 2V (T ) be the vertex such that v1 2W (t j). Then, ti and t j are adjacent

in T . Let W 0 = W [{W (ti j)} \ {W (ti),W (t j)} of V (G), where W (ti j) = W (ti)[W (t j).

Clearly, G[W (ti j)] is connected. Thus, W 0 is a G/F-witness structure of G, where |F |=

|F⇤|+1 as |W (ti)|−1+ |W (t j)|−1 = (|W (ti j)|−1)−1. Furthermore, F can be assumed

to contain Ẽ, and therefore F 0 = F \ Ẽ is solution to T`-CONTRACTION in (G0
,k0). This

implies that OPT(G0
,k0)  |F 0| = |F⇤|+ 1− d = OPT(G,k)− d + 1. Thus, we have ⇤

T`C(G,k,F)
OPT(G,k) 

T`C(G0
,k0,F 0)+d

OPT(G0,k0)+(d−1)  max
n

T`C(G0
,k0,F 0)

OPT(G0,k0) ,a

o

.

In the following lemma we argue that if after applying all these reduction rules exhaustively,

if the number of vertices in resulting graph is large, we can safely conclude that given

instance can not be contracted to a graph in T` with at most k edge contractions.

Lemma 5.4.7. Let (G,k) be an instance of T`-CONTRACTION where none of the Reduction

Rules 5.4.1 to 5.4.4 are applicable. If G is k-contractible to a graph in T` then number of

vertices in G is at most O(k(k+2`)]d+1).

Proof. Since Reduction Rule 5.4.1 and 5.4.2 are not applicable, from Lemma 5.4.2 it

follows that G has a connected vertex cover S of size at most 2(k+3)(k+2`). The set H

consists of vertices of degree at least 2(k+3)(k+2`)+1, and hence every vertex in H is

included in any connected vertex cover of G, which is of size at most 2(k+3)(k+2`). This

implies that |H| 2(k+3)(k+2`). Every vertex in R has degree at most 2(k+3)(k+2`).

Therefore, if S\R is a vertex cover of G[R], then |E(G[R])| is bounded by 4(k+3)2(k+

2`)2. Also, by the definitions of I and R, every vertex in R has a neighbour in R. Therefore,

there are no isolated vertices in G[R]. Thus, |R| is bounded by 8(k+3)2(k+2`)2. Now,

we bound the size of I. For every set H 0 ✓ H of size at most d, there are at most k+ `+2

vertices in I which have H 0 as their neighbourhood. Otherwise, Reduction Rule 5.4.3

would have been applicable. Hence, there are at most (k+ `+2) ·
�2(k+3)(k+2`)

d−1

�

vertices in

⇤We use the bound, x+p
y+q  max{ x

y ,
p
q} for any positive real numbers x,y, p,q.



I which have degree at most d. A vertex in I which is of degree at least d +1, is adjacent

to all vertices in at least one subset of size d of H. For a such a subset H 0 of H, there

are at most k+ `+2 vertices in I which have H 0 in their neighbourhood since Reduction

Rule 5.4.4 is not applicable. Thus, there are at most (k+ `+2)
�2(k+3)(k+2`)

d

�

vertices in

I of degree at least d. Hence, |I|  c0[k(k+ 2`)](d+1), for some fixed c0. Since H [R is

ĉk2(k+2`)2 (where ĉ is a constant) and d > 1, the claim follows.

We are now in position to state main theorem of this section.

Theorem 5.4.1. T`-CONTRACTION admits a strict PSAKS, where the number of vertices

is bounded by O([k(k+2`)](d
a

a−1 e+1)).

Proof. For given a > 1, kernelization algorithm fix d = d a

a−1e and apply Reduction Rules

5.4.1; 5.4.2; 5.4.3; and 5.4.4 on the instance as long as they are applicable. If Reduction

Rule 5.4.2 returns a trivial instance then statement is true. Otherwise, we know that there

exists a connected vertex cover of size at most 2(k+3)(k+2`). This implies size of H is

at most 2(k+3)(k+2`). If the number of vertices in graph is more than O([k(k+2`)]d+1)

then the reduction rules can be applied in O([k(k+2`)](d+1)nO(1)) = nO(1) time, where n

is the number of vertices in the input graph. If the number of vertices in resulting graph is

more than O([k(k+2`)]d+1), then by Lemma 5.4.7 we have OPT(G,k) = k+1 and the

algorithm returns a spanning tree of (K`+4,1) as a reduced instance. Otherwise, reduced

instance has O([k(k+2`)](d
a

a−1 e+1)) vertices. The correctness of algorithm follows from

Lemma 5.4.1; 5.4.3; 5.4.5; and 5.4.6.

5.5 Randomized FPT Algorithm for T`-CONTRACTION

In this section, we design an FPT algorithm for T`-CONTRACTION. Our algorithm

proceeds as follows. We start by applying some simple reduction rules. Then by branching

we ensure that the resulting graph is 2-connected. Finally, we give an FPT algorithm



running in time O((2
p
`+2)O(k+`) ·nO(1)) on 2-connected graphs. The approach we use

for designing the algorithm for the case when the input graph is 2-connected follows the

approach of Heggernes et al. [55] for designing an FPT algorithm for contracting to trees.

Also, whenever we are dealing with an instance of T`-CONTRACTION we assume that we

have an algorithm running in time O((2
p
`0+ 2)O(k+`

0) · nO(1)) for T`0-CONTRACTION,

for every `
0
< `. That is, we give family of algorithms inductively for each `

0 2 N, where

the algorithm for TREE CONTRACTION by Heggernes et al. forms the base case of our

inductive hypothesis.

Let (G,k) be an instance of T`-CONTRACTION. The measure we use for analyzing the

running time of our algorithm is µ = µ(G,k) = k. We start by applying some simple

reduction rules.

Reduction Rule 5.5.1. If k< 0 then return that (G,k) is a NO instance of T`-CONTRACTION.

Reduction Rule 5.5.2. If k = 0 and G 2 T` then return that (G,k) is a YES instance of

T`-CONTRACTION.

Reduction Rule 5.5.3. If G is a disconnected, or k = 0 and G /2 T` then return that (G,k)

is a NO instance.

We assume that the input graph is 2-connected, and design an algorithm for input restricted

to 2-connected graphs. Later, we will show how we can remove this constraint. The key

idea behind the algorithm is to use a coloring of V (G) with at most 2
p
`+2 colors to find

a T -witness structure (if it exists) of G, where G is contractible to T 2 T` using at most k

edge contractions. Moreover, if such a T does not exist then we must correctly conclude

that (G,k) is a NO instance of T`-CONTRACTION. If such T exists then T can be colored

with 2
p
`+2 (Observation 5.2.1.1). Fix one such coloring of T . When we uncontract a

vertex, say t, in T , all the vertices in G which has been contracted to t gets same color.

Proper coloring of T insures that vertices obtained by uncontracting adjacent vertices, say

t1, t2 in T have different colors in G and are easy to differentiate. We will see that the
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Figure 5.2: Compatible coloring

before mentioned property holds only when each of t1, t2 are obtained by contracting at

least two vertices in G. We make this notion more formal in definition.

Definition 5.5.1 (Compatible Coloring). Let G be a connected graph, T be a graph in

T`, W be a T -witness structure of G, and f : V (G)! [2
p
`+2] be a coloring of V (G).

Furthermore, let TS be a (fixed) spanning tree of T , M = {t, t 0 | tt 0 2 E(T )\E(TS)}[{t 2

V (T ) | dT (t) ≥ 3}, and B = {t 2 V (T ) | |W (t)| ≥ 2}. We say that f is W -compatible if

the following conditions are satisfied.

1. For all W 2 W , and w,w0 2W we have f(w) = f(w0).

2. For all t, t 0 2 M[B such that tt 0 2 E(T ) we have f(W (t)) 6= f(W (t 0)).

3. For all t, t 0 2 M[B (not necessarily distinct), and a path P = (t, t1, . . . , tz, t 0), where

z 2 N such that for all i 2 [z] we have ti /2 M [B then f(W (t)) 6= f(W (t1)) and

f(W (tz)) 6= f(W (t 0)).



We refer to the set M[B as the set of marked vertices.

Consider an example in Figure 5.2. Input graph G is contractible to a tree T in T1. Let W

be a T -witness structure of G. We fix a spanning tree Ts in T which excludes edge t4t7 in

graph T . Coloring of vertices of V (G) is W -compatible for fixed spanning tree TS.

Assume that (G,k) is a YES instance of T`-CONTRACTION, and F be one of its (inclusion-

wise) minimal solution. Furthermore, let T = G/F , and W be the T -witness structure of G.

Suppose we are given G and a W -compatible coloring f : V (G)! [2
p
`+2] of G, but we

are neither given W nor T . We will show how we can compute a T 0-witness structure W 0

of G such that |V (T 0)|≥ |V (T )|, where T 0 2 T`. Informally, we will find such a witness

structure by either concluding that none of the edges are part of the solution, some specific

set of edges are part of the solution, or finding a star-like structure of the monochromatic

components of size at least 2 in G, with respect to f . Towards this, we will employ the

algorithm for CONNECTED VERTEX COVER (CVC) by Cygan [24] which runs in time

2knO(1). Here, k is the size of a solution and n is the number of vertices in the input graph.

Consider the case when G is k-contractable to a graph, say T 2 T`, and let W be a T -

witness structure of G. Furthermore, let f : V (G)! [2
p
`+2] be a W -compatible coloring

of G, and X be the set of monochromatic components of f . We prove some lemmata

showing useful properties of X .

Lemma 5.5.1. Let T 0 be the graph with X as the T 0-witness structure of G. Then T 0 2 T`

and |V (T 0)| |V (T )|.

Proof. Every witness set of W is monochromatic with respect to f (see item 1 of Defini-

tion 5.5.1). Therefore, for every W 2 W there exists X 2 X such that W ✓ X . Moreover,

by the definition of X , G[X ] is connected. There exists Y ✓V (T ) such that T [Y ] is a con-

nected subgraph of T and X = [y2YW (y). Graph T 0 can beobtained from T by contracting

spanning tree in X for every such X . Since T` is closed under edge contraction (item 3 of

Observation 5.2.1), T 0 is also in T` with |V (T 0)| |V (T )|.



(a) Please refer to Lemma 5.5.2. (b) Please refer to Lemma 5.5.4.

Figure 5.3: Set X ,X 0 are monochromatic components. Rectagular box represents big
witness sets in W .

Next, we proceed to show how we can partition each X 2 X into many smaller witness

sets such that either we obtain W or a T 0-witness structure of G for some T 0 2 T` which

has at least as many vertices as T . Towards this, we introduce the following notions.

For X 2 X , by X̂ we denote the set of vertices that have a neighbor outside of X , i.e.

X̂ = N(V (G)\X). A shatter of X is a partition of X into sets such that one of them is a

connected vertex cover C of G[X ] containing all the vertices in X̂ and all other sets are of

size 1. The size of a shatter of X is the size of C. Furthermore, a shatter of X is minimum

if there is no other shatter with strictly smaller size.

From Definition 5.5.1, it follows that each X 2 X is union of some witness sets in W .

Formally, for every X 2 X , there is WX ✓ W such that X = [Y2WXY . Following lemma

says that if X has some particular structure then X is a big witness in itself. In other words,

WX contains only one witness set.

Lemma 5.5.2. Consider X 2 X with |X |≥ 2, WX ✓ W such that X = [Y2WXY , and all

of the following conditions are satisfied.

• G[X ] = (u,v1, . . . ,vq,v) is an induced path, where q 2 N.



• For each i 2 [q] we have deg(vi) = 2.

• There exists X 0 2 X \{X} such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0.

Then |WX |= 1.

Proof. Let X = (u,v1,v2, . . . ,vq,v), where for each i 2 [q] we have degG(vi) = 2. Also,

let X 0 2 X \{X} such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0. Assume that |WX |≥ 2. Let

Y1 and Y2 be the witness sets containing u and v, respectively. See Figure 5.3a. Since,

|WX |≥ 2, and each of the witness sets are connected therefore, we have Y1 6= Y2. Notice

that in T , for which W is a T -witness structure of G there is a cycle C containing tY1 , tY2 ,

and vertices corresponding to some of the witness sets included in X 0 [ (X \ (Y1 [Y2)).

Here, tY1 and tY2 are vertices in T such that W (tY1) = Y1 and W (tY2) = Y2. Notice that C

must contain at least two marked vertices which are adjacent (see Definition 5.5.1). By

definition, X and X 0 are monochromatic, and therefore, these marked vertices can not

belong to X or X 0. Without loss of generality assume that tY1 is one of the marked vertex

and one of its neighbor, say t 0, such that W (t 0)✓ X 0 is another marked vertex on this cycle.

This implies that tY2 is contained in a path between two marked vertices namely, tY1 and t 0.

But all the nodes on the path between tY1 and tY2 have the same color. This contradicts the

fact that f is a W -compatible coloring of G (see item 3 of Definition 5.5.1).

Following lemma says that if X has particular structure than all vertices in X are part of

singleton witness sets in W .

Lemma 5.5.3. Consider X 2 X with |X |≥ 2, WX ✓ W such that X = [Y2WXY , and all

the following conditions are satisfied.

• G[X ] = (u,v1, . . . ,vq,v) is an induced path, where q 2 N.

• For each i 2 [q] we have deg(vi) = 2.

• There exists no X 0 2 X \X such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0.

Then |WX |= |X |.



Proof. Recall that F is a (inclusion wise) minimal solution corresponding to the witness

structure W . Assume that |WX | < |X |. This implies that there exists Y 2 WX such that

|Y | ≥ 2. Let tY be a vertex in T such that Y = W (tY ). Also, let vi be the smallest i such

that vi 2 Y . Since |Y |≥ 2, vi+1 is also present in Y . We can partition neighbors of tY into

N1 and N2 such that N1 is adjacent to vi and N2 is adjacent to Y \{vi}. Since there is no

X 0 in X \X such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0, N1 and N2 are different. If graph

G obtained by spanning tree of Y is in T` then by Observation 5.2.2, G/(F \{(vi,vi+1)})

is also a graph in T`. This contradicts the minimality of F . Notice that if N1,N2 are not

different then G/(F \{(vi,vi+1)}) may have one more cycle than the graph G/F .

Next, we show that each X 2 X for which Lemma 5.5.2 and 5.5.3 are not applicable must

contain exactly one big witness set. Moreover, the unique big witness set (together with

other vertices as singleton sets) forms one of its shatters.

Lemma 5.5.4. For X 2X with |X |≥ 2, let WX ✓W such that X =[Y2WXY . Furthermore,

the set X does not satisfy the conditions of Lemma 5.5.2 or 5.5.3. Then there is exactly one

big witness set in WX .

Proof. Consider X 2 X with |X |≥ 2. Assuming a contradiction, suppose WX contains

two big witness sets say Y and Y 0. Notice that there cannot be an edge between a vertex in

Y and a vertex in Y 0 (see item 2 of Definition 5.5.1). This together with the connectedness

of X implies that there is a path from a vertex in y2Y and a vertex in y0 2Y 0 which contains

a neighbor of y in some Z 2 WX \{Y,Y 0}. But then from item 2 and 3 of Definition 5.5.1

we have f(Y ) 6= f(Z), a contradiction. Therefore, X can contain at most one big witness

set from W .

Suppose X does not contain any big witness set. Consider the case when degG(v) = 2

for all v 2 X and X = V (G). Since all the witness sets in X are singleton, there exists a

cycle in T such that all the vertices on this cycle have same color. This contradicts the

fact that f is W -compatible (see item 3 Definition 5.5.1). We now consider case when X



is a proper subset of V (G) or it contains a vertex of degree 3. Since X does not satisfies

conditions of Lemma 5.5.2 or 5.5.3, it is not an induced path or it is an induced path but

one of its internal vertex has degree other than 2. Since X is connected, in either case

there exists v 2 X such that degG(v) ≥ 3. If X contains all singleton witness set then

degT (tv) ≥ 3 where W (tv) = {v}. Let u 2 X be a vertex adjacent to v and W (tu) = {u}.

Since |W (tv)| = |W (tu)| = 1, neither tv nor tu is a cut vertex in T (Lemma 5.2.3) which

implies degT (tu)> 1. Let tv, t1 are two neighbors of tu. There exists a path between tv, t1

which does not contain vertex tu. This implies there exists a cycle in T containing tv, tu, t1.

There are at least two vertices marked on this cycle. Hence, either tu is marked or tu is

contained between two marked vertices. In either case, it contradicts the fact that X is

color class of a coloring which is W -compatible (see item 2, 3 Definition 5.5.1).

Lemma 5.5.5. Consider X 2 X such that |X |≥ 2 and it contains a big witness set, and it

does not satisfy conditions of Lemma 5.5.2 or 5.5.3. Let WX ✓ W such that X = [Y2WXY ,

and W ⇤ be the (unique) big witness set in X. Then W ⇤ is a connected vertex cover of G[X ]

and it contains X̂ .

Proof. Suppose X contains a big witness set, say W ⇤. From Lemma 5.5.4, for each

Y 2 WX \{W ⇤} we have |Y |= 1. We first prove that W ⇤ is a vertex cover of G[X ]. Assume

that W ⇤ is not a vertex cover of G[X ], then there is an edge y1y2 such that y1,y2 /2W ⇤. For

i 2 {1,2}, let {yi} = Yi = W (ti) . Since G[X ] is connected, there exists a path between

y1,y2 and a vertex in W ⇤, which is contained in X . Without loss of generality, assume that

there exist a path P1 in X from y1 to W ⇤ which does not contain y2. Since G is 2-connected,

there exists a path, say P2 from y2 to a vertex in W ⇤, which does not contain y1. Notice

that there is a cycle in T containing nodes t⇤, t1, t2, where W ⇤ =W (t⇤). At least two nodes

of the vertices from this cycle must be marked, and have different colors from each other.

Hence, the path P2 can not be contained in X . We know that t⇤ is contained in M [B.

Let the other marked vertex in this cycle be t. The vertex t is obtained by contracting

some vertices on the path P2. Notice that t1 is vertex contained in the path between two



vertices in M[B and all the nodes in path from t⇤ to t1 has the same color. This contradicts

the fact that X is a color class in a coloring which is W -compatible (see item 2, 3 of

Definition 5.5.1). Hence our assumption was wrong and no such edge y1y2 exits. Since,

W ⇤ is a witness set, by definition, it is connected and therefore W ⇤ is a connected vertex

cover of G[X ]. Notice that all the above argument still holds if the path P1 is simply an

edge and y2 is outside X . In other words, if there exists y1 in X \W ⇤ there is no edge y1y2

such that y2 is not contained in X . This implies that X̂ is contained in W ⇤.

Using Lemma 5.5.3 to Lemma 5.5.5 we show how we can replace each X 2 X with the

sets of its shatter. Recall that we are given only G and f , and therefore we know X , but

we do not know W . In the Lemma 5.5.6, we show how we can find a T 0-witness structure

of G for some T 0 2 T`, which has at least as many vertices as T (without knowing W ).

Lemma 5.5.6. Given X , we can obtain a T 0-witness structure of G in time 2knO(1) time,

where T 0 2 T` and |V (T 0)|≥ |V (T )|.

Proof. Consider X 2 X . If |X | = 1 then we let WX = {X}, which is the unique shatter

of X . We now consider X 2 X such that |X |≥ 2. If there is X 2 X which satisfies the

premise of Lemma 5.5.2 then contract all edges in X and reduce k by |X |− 1. If there

exists X 2 X which satisfies the premise of Lemma 5.5.3 then replace X in X with |X |

many singleton sets {v} for each v 2 X . If there exists X 2 X which does not satisfy the

conditions of Lemma 5.5.2 and 5.5.3 then from Lemma 5.5.4 we know that X contains

exactly one big-witness set, say Ŵ . Moreover, Lemma 5.5.5 implies that Ŵ is a connected

vertex cover of G[X ] containing X̂ . In this case, we will find a shatter W ⇤ of X , which has

size at most |Ŵ | as follows. Let G0 be the graph obtained from G[X ] by adding a (new)

vertex v⇤ for each vertex v 2 X̂ , and adding the edge (v,v⇤). Then we find a minimum

sized connected vertex cover of C of G0 by using the algorithm given by Proposition 2.1.2.

Notice that a minimum connected vertex cover of a graph does not contain any degree

one vertex therefore, X̂ ✓C. From the definition of minimum shatter and the minimality

of set C, it follows that WX = {C}[{{x} | x 2 X \C} is a minimum shatter of X . Notice



that apart from computing connected vertex cover, all other steps can be performed in

polynomial time. Since the size of each witness set in W is bounded by k+1, therefore

there exists a connected vertex cover of size at most k+ 1. Moreover, we can compute

connected vertex cover in time 2k+1nO(1) (Proposition 2.1.2), and there are at most n sets

in X . Therefore, the overall running time is bounded by 2knO(1).

Now we are ready to present our randomized algorithm for T`-CONTRACTION when input

graph is 2-connected.

Theorem 5.5.1. There is a Monte Carlo algorithm for solving T`-CONTRACTION on

2-connected graphs running in time O((2
p
`+2)O(k+`) ·nO(1)), where n is the number of

vertices in the input graph. It does not return false positive and returns correct answer

with probability at least 1−1/e.

Proof. Let (G,k) be an instance of T`-CONTRACTION, where G is a 2-connected graph.

Furthermore, the Reduction Rules 5.5.1 and 5.5.3 are not applicable, otherwise we can

correctly decide whether or not (G,k) is a YES instance. The algorithm starts by computing

a random coloring f : V (G)! [2
p
`+2], by choosing a color for each vertex uniformly

and independently at random. Let X be the set of monochromatic connected components

with respect to f in G. The algorithm applies Lemma 5.5.6 in time 2knO(1) and tries to

compute T 0 such that T 0 2 T` and G is k-contractible to T 0. It runs (2
p
`+2)6k+8` many

iterations of two steps mentioned above. If for any such iteration it obtains a desired

T 0-witness structure of G then it returns YES. If none of the iterations yield YES then the

algorithm returns NO. This completes the description of the algorithm.

Observe that the algorithm returns YES only if it has found a T 0 2 T` such that G is

contractible to T 0 using at most k edge contractions. Therefore, when it outputs YES, then

indeed (G,k) is a YES instance of T`-CONTRACTION. We now argue that if (G,k) is a YES

instance then using a random coloring the algorithm (correctly) returns the answer with

sufficiently high probability. Let T be a graph in T`, such that G is k-contractible to T , and



W be a T -witness structure of G. Furthermore, let TS be a (fixed) spanning tree of T , and

vertex set M, B are set of vertices defined in Definition 5.5.1. Let y : V (G)! [2
p
`+2]

be a coloring where colors are chosen uniformly at random for each vertex. The total

number of vertices contained in big witness sets of W is at most 2k. By our assumption,

every leaf is a singleton witness set and it is adjacent to a big witness set. Here, we

assume that the number of vertices in T is at least 3, otherwise we can solve the problem

in polynomial time. This implies that no leaf is in M[B. Consider graph T 0 obtained from

T by deleting all the leaves and deleting edges in E(T`)\E(TS). All the marked vertices

of T` and all the paths connecting two marked vertices are also present in T 0. Notice

that T 0 is tree with at most k+ 2` leaves. Since the number of vertices of degree three

is at most the number of leaves in any tree, there are at most k+ 2` vertices of degree

at least 3. There are at most k vertices in T which are big witness sets and at most 2`

vertices incident to edges in E(T`) \E(TS). Hence the total number of marked vertices

is at most 2k+ 4`. Since T 0 is a tree, there are at most 2k+ 4` vertices which lie on a

path between two vertices in M [B and are adjacent to one of these. The number of

vertices of G which are marked vertices or vertices which are adjacent to it in T 0 is at

most 2(2k+4`)+2k. Therefore, the probability that y is compatible with W is at least

1/(2
p
`+2)6k+8`. Since the algorithm runs (2

p
`+2)6k+8` many iterations, probability

that none of these colorings which is generated uniformly at random is compatible with W

is at most (1−1/(2
p
`+2)6k+8`)(2

p
`+2)6k+8`

< 1/e. Hence, algorithm returns a solution

on positive instances with probability at least 1−1/e. Each iteration takes 2k ·nO(1) time

and hence the total running time of the algorithm is O((2
p
`+2)O(k+`) ·nO(1)).

Next, we design reduction rules and a branching rule whose (exhaustive) application will

ensure that the instance of T`-CONTRACTION we are dealing with is 2-connected. Either

we apply one of these reduction rules or branching rule, or we resolve the instance using

the algorithm for T`0-CONTRACTION, where `
0
< `. This together with Theorem 5.5.1

gives us an algorithm for T`-CONTRACTION on general graphs.



Lemma 5.5.7. If for some 0  `
0
< `, (G,k) is a YES instance of T`0-CONTRACTION then

return that (G,k) is a YES instance of T`-CONTRACTION.

Our next reduction rule deals with vertices of degree of 1.

Reduction Rule 5.5.4. If there is v 2V (G) such that d(v) = 1 then delete v from G. The

resulting instance is (G−{v},k).

If a connected graph G is not 2-connected graph then there is a cut vertex say, v in G. Let

C1,C2, . . . ,Ct be the components of G−{v}. Furthermore, let G1 = G[V (C1)[{v}] and

G2 = G−V (C1). Next, we try to resolve the instance (if possible) using the following

lemma.

Lemma 5.5.8. If there exists `1 and `2 with `1 + `2 = `, where `1, `2 > 0, and k1 and k2

with k1 + k2 = k such that (G1,k1) is a YES instance of T`1-CONTRACTION and (G2,k2)

is a YES instance of T`2-CONTRACTION then return that (G,k) is a YES instance of

T`-CONTRACTION.

Notice that if Lemma 5.5.8 is not applicable then one of G1 or G2 must be contracted to a

tree. Let k1 be the smallest integer such that (G1,k1) is a YES instance of T-CONTRACTION,

and k2 be the smallest integer such that (G2,k2) is a YES instance of T-CONTRACTION.

Notice that k1 and k2 can be computed in (deterministic) time 4knO(1) using the algorithm

for T-CONTRACTION [55]. We next proceed with the following branching rule.

Branching Rule 2. We branch depending on which of the graphs among G1 and G2 are

contracted to a tree. Therefore, we branch as follows.

• Contract G1 to a tree, and the resulting instance is (G2,k− k1).

• Contract G2 to a tree, and the resulting instance is (G1,k− k2).

Note that the measure strictly decreases in each of the branches of the Branching Rule 2

since Reduction Rule 5.5.4 is not applicable. If we are unable to resolve the instance using



Lemma 5.5.7 and 5.5.8, and Reduction Rules 5.5.3 and 5.5.4 and Branching Rule 2 are not

applicable then the input graph is 2-connected. And, then we resolve the instance using

Theorem 5.5.1.

Theorem 5.5.2. For each ` 2 N, there is a Monte Carlo algorithm for solving T`-

CONTRACTION with running in time O((2
p
`+2)O(k+`) ·nO(1)). It does not return false

positive and returns correct answer with probability at least 1−1/e.

Proof. Let (G,k) be an instance of T`-CONTRACTION. If G is 2-connected then we

resolve the instance using Theorem 5.5.1 with the desired probability bound. If G is not

connected then we correctly resolve the instance using Reduction Rule 5.5.3. Moreover,

the Reduction Rule 5.5.3 can be applied in polynomial time. Hereafter, we assume that G

is connected, but not 2-connected.

In this case, we proceed by either resolving the instance using Lemma 5.5.7 or Lemma 5.5.8,

or applying the Reduction Rule 5.5.4, or applying the Branching Rule 2. We prove the

claim by induction on the measure µ = µ(G,k) = k.

If ` = 0 then we can resolve the instance using the (deterministic) algorithm for T`-

CONTRACTION in [55] in time 4knO(1). We note here that though the deterministic

algorithm presented in [55] has been mentioned to run in time 4.98knO(1) but, it uses the

algorithm for CONNECTED VERTEX COVER as a black-box, which has been improved

in [24]. This also improves the running time of the deterministic algorithm in [55].

Hereafter, we inductively assume that whenever we are dealing with an instance of T`-

CONTRACTION, we have an algorithm for T`0-CONTRACTION with the desired runtime

and success probability bound, where 0  `
0
< `. We note that this does not interfere with

the probability computation since the only randomized step (recursively) in our algorithm

is when we employ Theorem 5.5.1, in which case we directly resolve the instance.

If k  0 then we correctly resolve the instance using Reduction Rules 5.5.1 and 5.5.2. If

(G,k) is a YES instance of T`0-CONTRACTION, for some 0  `
0
< ` then we correctly



conclude that (G,k) is a YES instance of T`-CONTRACTION. Moreover, we obtain the

desired probability and runtime bound using the assumption of existence of an algorithm

with desired properties for every 0  `
0
< `. If k > 0, and there is a vertex of degree 1

then we remove this vertex (in polynomial time) to obtain an equivalent instance using

Reduction Rule 5.5.4. If none of the above are applicable the G has a cut vertex say.

We consider the following case. If Lemma 5.5.8 is applicable then we correctly resolve the

instance in allowed running time with the desired success probability. This again relies on

the existence of an algorithm for T`0-CONTRACTION with desired properties, for every

0  `
0
< `. Otherwise, we know that Branching Rule 2 must be applicable, where the

measure drops at least by 1 in each of the branches since Reduction Rule 5.5.4 is not

applicable. Moreover, when none of the Reduction Rules 5.5.1 to 5.5.4 are applicable, we

cannot resolve the instance using one of Lemma 5.5.7 and Lemma 5.5.8, and Branching

Rule 2 is not applicable then the graph is 2-connected, and we resolve the instance using

Theorem 5.5.1. Notice the number of nodes in the search tree is bounded by 2O(k), all

the reduction rules can be applied in polynomial time, and at the leaves of the search tree

and at the internal nodes we require time which is bounded by O((2
p
`+2)O(k+`) ·nO(1)).

Thus, we obtain the desired running time and probability bound.

5.6 Derandomization of the FPT Algorithm

In this section, we derandomize the algorithm presented in Section 5.5. Before proceeding

forward we define the following important object of this section.

Definition 5.6.1 (Universal Family). A (n,k,q)-universal family is a collection F , of

functions from [n] to [q] such that for each S ✓ [n] of size k and a function f : S ! [q], there

exists function f 2 F such that f |S ⌘ f .

Here, f |S denotes the function f when restricted to the elements of S. For q = 2, the

universal family defined above is called an (n,k)-universal set [81]. Hence, (n,k,q)-



universal family is a generalization of (n,k)-universal set. The main result of this section

is the following theorem (Theorem 5.6.1), which we use to derandomize the algorithm

presented in Section 5.5.

Theorem 5.6.1. For any n,k,q ≥ 1, one can construct an (n,k,q)-universal family of size

O(qk · kO(k) · logn) in time O(qk · kO(k) ·n logn).

Before proceeding to the proof of Theorem 5.6.1, we state how we use it to derandomize

the algorithm presented in Section 5.5. Let (G,k) be an instance of T`-CONTRACTION.

Assume that (G,k) is a YES instance of T`-CONTRACTION, and let F be one of its solution.

Furthermore, let T = G/F , where T 2 T` and W be the T -witness structure of G, and

f : V (G) ! [2
p
`+ 2] be a W -compatible coloring of G. Recall that our randomized

algorithm starts by coloring vertices in G uniformly and independently at random, and then

uses this coloring to extract a witness structure out of each color classes. We then argued

that any random coloring is “equally good” as that of f with sufficiently high probability,

which is given by a function of k (and `). To derandomize this algorithm, we construct a

family F of (coloring) functions from [n] to [2
p
`+2]. We argue that one of the colorings

in the family that we compute is “equally good” as that of f . Recall that the number of

vertices which we need to be colored in a specific way for a coloring to be W -compatible

is bounded by 6k+8` (see Definition 5.5.1 and Theorem 5.5.1). Let S be the set of vertices

in G which needs to be colored in a specific way as per the requirements of Definition 5.5.1.

We can safely assume that |S|= 6k+8`. If this is not the case we can add arbitrary vertices

in S to ensure this. Notice that any coloring f of G such that f |S = f |S also satisfies

the requirements of Definition 5.5.1. Let F be an (n,6k+8`,2
p
`+2)-universal family

constructed using Theorem 5.6.1. Instead of using random coloring in the algorithm

presented in Section 5.5, we can iterate over functions in F . Notice that we do not know S

but for any such S, we are guaranteed to find an appropriate coloring in one of the functions

in F , which gives us the desired derandomization of the algorithm.

In rest of the section, we focus on the prove of Theorem 5.6.1. Overview of the proof is



as follows: Let S be a set of size k in an n-sized universe U . We first reduce this universe

U to another universe U 0 whose size is bounded by k2. We ensure that all elements of S

are mapped to different elements of U 0 during this reduction. Let Y be the range of S in

U 0. We further partition U 0 into logk parts such that Y is almost equally divided among

these partition. In other words, each partition contains (roughly) k/ logk many elements

of Y . For each of these parts, we explicitly store functions which represents all possible

q-coloring of elements of Y in this partition. Finally, we “pull back” these functions to

obtain a coloring of S.

Definition 5.6.2 (Splitter [81]). An (n,k,q)-splitter F is a family of functions from [n] to

[q] such that for every set S ✓ [n] of size k there exists a function f 2 F that splits S evenly.

That is, for every 1  z,z0  q, | f−1(z)\S| and | f−1(z0)\S| differ by at most 1.

Lemma 5.6.1. For every 1  k,q  n there is a family of (n,k,q)-splitter of size O(nO(q))

which can be constructed in the same time.

Proof. Let x0 = 0 and xq = n. For every choice of q−1 elements in [n] such that 1  x1 <

x2 < · · ·< xq−1  n define a function f : [n]! [q] as follows. For x 2 [n] we set f (x) = j

if x j−1 < x  x j where j 2 [q]. This family has size
� n

q−1

�

, and can be constructed in time

O(nO(q)).

Following is another well known result for construction of splitter when q = k2. We use

this result to reduce the size of the universe.

Proposition 5.6.1 ([81]). For any n,k ≥ 1 one can construct an (n,k,k2)-splitter of size

O(kO(1) logn) in time O(kO(1)n logn).

Next, we look at the k-RESTRICTION problem defined by Naor et al. [81]. Before defining

the problem, we define some terminologies that will be useful. For a fixed set of alphabets,

say {1,2, . . . ,b} and a vector vector V , which is an ordered collection of alphabets, the

length of V is the size of the collection. We represent n length vector V as (v1,v2, . . . ,vn).



For a positive integer i 2 [n], V [i] denotes the alphabet at the ith position of V . Similarly,

for an (index) set S ✓ [n], V [S] denotes the |S| sized vector obtained by taking alphabet at

ith position in V , for each i 2 S. In other words, if S = {i1, i2, . . . , ik} for i1 < i2 < · · ·< ik,

then V [S] = (V [i1],V [i2], . . . ,V [ik]). An input to the k-RESTRICTION problem is a set

C = {C1,C2, . . . ,Cm} called as a k-restrictions, where Cj ✓ [b]k for j 2 [m] and an integer

n. Here, [b]k denotes the set of all possible vectors of length k over [b], and m denotes the

size of the k-restrictions. We say that a collection V of vectors obeys C if for all S ✓ [n]

which is of size k and for all Cj 2 C , there exists V 2 V such that V [S] 2 Cj. The goal

of k-RESTRICTION problem is to find a collection V of as small cardinality as possible,

which obeys C . Let c = min j2[m] |Ci|, and let T be the time needed to check whether or

not the vector V is in Cj. We next state the result of Naor et al. [81], which will be useful

for proving Theorem 5.6.1.

Proposition 5.6.2 (Theorem 1 [81]). For any k-RESTRICTION problem with b  n, there

is a deterministic algorithm that outputs a collection obeying k-restrictions, which has

size at most (k logn+ logm)/ log(bk
/(bk − c)). Moreover, the algorithm runs in time

O
�bk

c

�n
k

�

·m ·T ·nk�. Here, b is the size of the alphabet set, m is the size of the k-restrictions,

n is the size of the vectors in the output set, and c is the size of the smallest collection in

the k-restrictions.

Notice that a function from [n] to [q] can be seen as an n-length vector over the alphabet

set [q]. Consider the case when each Cj contains exactly one vector of length k over [q],

i.e. C = {{C} |C 2 [q]k}, m = qk, c = 1, and T = O(n). The output of k-RESTRICTION

on this input is exactly an (n,k,q)-universal family. Therefore, we obtain the following

corollary.

Corollary 5.6.1. For any n,k,q ≥ 1, one can construct an (n,k,q)-universal family of size

O(qk · k · (logn+ logq)) in time O(qk ·nO(k)).

Notice that we can not directly employ Corollary 5.6.1 to construct the desired family,



since its running time is O(qk ·nO(k)). Therefore, we carefully use splitter to construct an

(n,k,q)-universal family to obtain the desired running time.

Proof of Theorem 5.6.1. For the sake of clarity in the notations, we assume that logk

and k/ logk are integers. Let A be a (n,k,k2)-splitter obtained by Proposition 5.6.1.

Let B be a (k2
,k, logk)-splitter obtained by Lemma 5.6.1. Let D be a (k2

,k/ logk,q)-

universal family obtained by Corollary 5.6.1. We construct F as follows. For every

function fa in A , fb in B, and logk functions g1,g2, . . . ,glogk in D , we construct a tuple

f = ( fa, fb,g1,g2, . . . ,glogk), and add it to F . We note here that g1,g2, . . . ,glogk need not

be different functions. For f 2 F , we define f : [n]! [q] as follows. For x 2 [n], we have

f (x) = gr( fb( fa(x))), where r = fb( fa(x)).

We first argue about the size of F and the time needed to construct it. Notice that |F |

|A ||B||D |logk. We know |A | kO(1) logn, |B|O(kO(logk)) and |D | qk/ logkkO(k/ logk)

by Proposition 5.6.1, Lemma 5.6.1, and Corollary 5.6.1, respectively. This implies that

|F | 2O(qk ·kO(logk) ·logn). Note that A ,B,D can be constructed in time O(kO(1)n logn),

O(kO(logk)), and O(qk · kO(k/ logk)), respectively. This implies that time required to con-

struct F is bounded by O(qk · kO(k) ·n logn).

It remains to argue that F has the desired properties. Consider S ✓ [n] of size k and

f : S! [q]. We prove that there exists a function f 2F such that f |S ⌘ f . By the definition

of splitter, there exists fa 2 A such that fa evenly splits S (see Definition 5.6.2). Since

|S|< k2, for every y 2 [k2], | f−1
a (y)\S| is either 0 or 1. Let Y = {y1,y2, . . . ,yk} be a subset

of [k2] such that y1 < y2 < · · ·< yk and | f−1
a (yi)\S|= 1, for all i 2 [k]. For j = k/ logk,

we mark every jth element in set Y marking logk−1 indices altogether. In other words,

construct a subset Y 0 of Y of cardinality logk−1 such that Y 0 = {y1 j,y2 j,y3 j . . . ,y(logk−1) j}.

We use the set Y 0 to partition [k2] in a way that every partition contains almost k/ logk many

elements of Y . Let y0 = 0 and y(logk) j = k2 and define set Yr = {y 2 Y | yr−1 < y  yr} for

r 2 [logk]. Recall that a B is (k2
,k, logk)-splitter family obtained by Lemma 5.6.1. By

construction, there exists a function fb which corresponds to subset Y 0 of logk−1 many



indices. In other words, there is a function fb such that f−1
b (r) contains all the elements in

Yr, for each r in [logk]. We note that size of f−1
b (r) could be as large as k2. Recall that D is

a (k2
,k/ logk,q)-universal family. Therefore, for every r 2 [logk] there exists gr 2 D such

that gr|Yr ⌘ f |Yr . Consider a function f = ( fa, fb,g1,g2, . . . ,glogk) in F where fa, fb and

gr satisfies the property mentioned above. The function fa is bijective on S and f (S) = Y .

The function fb partitions Y into logk many parts by mapping Y into Y1,Y2, . . . ,Ylogk. For

each Yr there exists a function gr which gives the desired coloring of elements in Yr and

hence for the elements in S. Since we considering all possible combinations of fa, fb

and logk functions in D , there exists a function f such that f |S ⌘ f , which proves the

theorem.

5.7 Conclusion

We continue the study of a problem of contracting given graph into a graph class which

is generalization of trees. For an integer `, we define superclass of trees, denoted by T`,

as collection of graphs which can be obtained from a tree by adding at most ` edges. We

prove that T`-CONTRACTION does not admit a polynomial kernel when parameterized by

solution size. We also proved that the additional parameter ` is not useful to get polynomial

kernel for this problem. But this parameter is useful to get an a-lossy kernel of polynomial

size. We presented an FPT algorithm to solve this problem.



Chapter 6

Out-Tree Contraction

6.1 Introduction

In this chapter, we study contraction problem on directed graphs. An out-tree, informally

speaking, is a rooted tree in which each edge is directed away from root. We study the

problem of contracting a given directed graphs into an out-tree. Formally, the problem is

defined as follows.

OUT-TREE CONTRACTION Parameter: k

Input: A digraph D and an integer k

Question: Is it possible to obtain an out-tree from G with at most k edge contractions?

In Section 6.4, we show that this problem is NP-Hard. This reduction also implies that

it does not admit a polynomial kernel when parameterized by k. As in case of TREE

CONTRACTION and CACTUS CONTRACTION, we study this problem with number of

leaves in resultant out-tree as additional paramter. For the following problem, we present a

kernel with O(k2 + k`) vertices and arcs and prove that this kernel is optimal.
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BOUNDED OUT-TREE CONTRACTION (BOUNDED OTC) Parameter: k + `

Input: A digraph D and integers k, `

Question: Is it possible to obtain an out-tree which has at most ` leaves, from G with

at most k edge contractions?

We address OUT-TREE CONTRACTION as a candidate problem to show an example of

lossy kernelization for contractions in directed graphs contractions. Given a digraph D

on n vertices, an integer k and an approximation parameter a > 1, we present an a-lossy

kernel which runs in time nO(1) time and outputs a digraph D0 on O(k2d+1) vertices and

an integer k0 such that for every c > 1, a c-approximate out-tree contraction solution for

(D0
,k0) can be turned into a (ca)-approximate out-tree contraction solution for (G,k) in

nO(1). Here d = d a
a−1e.

Kernel presented in this chapter for BOUNDED OUT-TREE CONTRACTION is based work

in [1] whereas lossy kernel for OUT-TREE CONTRACTION is presented in [69].

6.2 Preliminaries

For a directed graph (or digraph) D, by V (D) and A(D) we denote the sets of vertices

and directed edges (arcs) in D, respectively. Vertex u is said to be adjacent with vertex

v in D if there is an arc uv 2 A(D) and u,v are said to be endpoints of the arc uv. For

v 2 V (D), N−
D (v) denotes the set {u 2 V (D) | uv 2 A(D)} of its in-neighbors and N+

D (v)

denotes the set {u 2 V (D) | vu 2 A(D)} of its out-neighbors. The neighbourhood of a

vertex v 2V (D) is the set ND(v) = N+

D (v)[N−
D (v). The closed neighbourhood of a vertex

is NG[v] = NG(v)[{v}. The in-degree and out-degree of a vertex v, denoted by d−
D (v),

d+

D (v), is |N−
D (v)| and |N+

D (v)| respectively. The (total) degree of v, denoted by dG(v), is

the sum of its in-degree and out-degree. The subscripts in the notation for neighbourhood

and degree is omitted if the context is clear. For F ✓ A(D), V (F) denotes the set of

endpoints of arcs in F .



For every digraph we associate an underdirected graph, called underlying graph obtained

by forgetting the direction of arcs. Formally, for a digraph D, underlying graph GD is

defined as V (GD) = V (D) and E(GD) = {uv| uv 2 A(D) or vu 2 A(D)}. A digraph is

connected (disconnected, 2-connected) if its underlying undirected graph is connected

(disconnected, 2-connected). A spanning tree of a digraph is defined as set of arcs F

such that V (F) = V (G) and unerlying graph induced on V (F) is a tree. A sequence

P = (v1, · · · ,vq) of distinct vertices of D is called a directed path in D if v1v2, · · · ,vq−1vq 2

A(D). Path P is called induced path if d−(vi) = 1 for all i 2 {2,3, . . . ,q} and d+(vi) = 1

for all i 2 {1,2, . . . ,q−1}.

An out-tree T is a digraph where each vertex has in-degree at most one and underlying

undirected graph is a tree. A vertex v of an out-tree is called a leaf if d−(v) = 1 and

d+(v) = 0. The root of an out-tree is the unique vertex that has no in-neighbour. The

number of leaves in an out-tree is the number of vertices whose out-degree is zero.

For a digraph D, contracting an arc e = uv in D is deletion of vertices u,v in D and

the addition of a new vertex w and adding arcs to w from in-neighbors of u and v apart

from u,v, and from w to out-neighbors of u and v apart from u,v. The resulting graph is

denoted by D/e. Formally V 0 = (V (D)\{u,v})[{w} with A(D/e) = {xy | x,y 2V 0
,xy 2

A(D)}[{wx| x 2 (N+

D (u)[N+

D (v))\{u,v}}[{xw| x 2 (N−
D (u)[N−

D (v))\{u,v}}.

The notion of witness structures and witness sets are extended to digraphs as follows. We

say digraph D is contractible to digraph H if there exists an onto function y : V (D)!V (H)

such that following properties hold.

• For any vertex h in V (H), underlying graph GD[W (h)] is connected, where set

W (h) := {v 2V (G) | y(v) = h}.

• For any two vertices h,h0 in V (H), arc hh0 is present in H if and only if there exists

an arc in D with one end point in W (h) and another in W (h0).

For a vertex h in H, set W (h) is called witness set associated with vertex h. We define



H-witness structure of D, denoted by W , as collection of all witness set. Formally,

W = {W (h) | h 2 V (H)}. Witness structure W is a partition of vertices in D. If a

witness set contains more than one vertex then we call it big witness-set, otherwise it is

small/singleton witness set. For a fixed H-witness structure, let F be union of spanning

trees of all witness sets. We say digraph D is k-contractible to H if cardinality of F is at

most k. Following observation is direction consequence of definitions.

Observation 6.2.1. If digraph D is k-contractible to digraph H then following statements

are true.

• |V (D)| |V (H)|+ k.

• For any witness set W in a H-witness structure of G, cardinality of W is at most

k +1.

• Any H-witness structure of D has at most k big witness sets.

• For a fixed H-witness structure, the number of vertices in D which are contained in

big witness sets is at most 2k.

Digraph obtained by subdividing an arc of an out-tree results in another out-tree. The

operation of subdividing an arc uv in D is consists of deletion of the arc uv and addition of

a new vertex w as an out-neighbor of u and an in-neighbor of v.

Observation 6.2.2. Consider an out-tree T with at most ` leaves. Let T 0 be the out-tree

obtained from T by one of the following operations.

1. subdividing an arc;

2. contracting an arc;

Then, T 0 is an out-tree with at most ` leaves.

Proof. Proof of Part (1) Let t1t2 be an arc in T which is subdivided to obtain graph T 0.

Let t⇤ be newly added vertex while subdividing arc t1t2. Note that d−
T (t) = d−

T 0(t) and

d+

T (t) = d+

T 0(t) for any vertex in t in V (T 0)\{t⇤} = V (T ). Also, d−

T 0(t⇤) = d+

T 0(t⇤). This



also implies that t⇤ is not a leaf in T 0. Hence the number of leaves in T and T 0 is same.

Every vertex in T 0 has in-degre at most one. If there exists a cycle in GT 0 which passes

through t⇤ then the same cycle passes through t1, t2. This implies there exists a cycle in GT

which passes through t1, t2. This contradicts the fact that GT is an underlying graph of an

out-tree. Hence T 0 is an out-tree with at most ` leaves.

Proof of Part (2) Let t1t2 be an arc in T which is contracted to obtain graph T 0. Let t⇤

be newly added vertex while contracting arc t1t2. Note that no vertex in T is has an arc

to or from both t1 and t2. This implies d−
T (t) = d−

T 0(t) and d+

T (t) = d+

T 0(t) for any vertex

in t in V (T 0) \ {t⇤} = V (T ) \ {t1, t2}. Moreover, by contruction, d−
T (t1) = d−

T 0(t⇤) and

d+

T (t2) = d+

T 0(t⇤). Hence T 0 is an out-tree. Also, t⇤ is a leaf in T 0 if and only if t2 is a leaf

in T . This implies T 0 is an out-tree with at most ` leaves.

In the following lemma, we argue that if D is k-contractible to an out-tree and there exists

a long induced path then no minimal solution is incident on any vertex of this path.

Lemma 6.2.1. Suppose D has a directed path P = (v0,v1, . . . ,vq,vq+1) with q > k+1 and

d−(v) = d+(v) = 1 for each i 2 [q]. Let F be a set of arcs of D such that |F | k and D/F

is an out-tree with at most ` vertices. If F is minimal then it does not contain an edge

incident on V (P)\{v0,vq+1}.

Proof. Assume that F contains at least one such arc. There are at least k + 1 arcs with

endpoints in V (P)\{v0,vq+1}. Since |F | k, there exists vi in {v0,v1, . . . ,vq,vq+1} such

that vi−1vi 2 F and vivi+1 /2 F . Let W denote the corresponding T -witness structure of

D where T = D/F . Now, let t and t 0 denote the vertices of T such that {vi−1,vi}✓W (t)

and vi+1 2 W (t 0). If t = t 0 then vi−1,vi,vi+1 2 W (t) and vivi+1 /2 F . As GD[W (t)] is

connected, there must be a path connecting vi,vi+1 in GD which is entirely contained in

W (t). Any path between vi,vi+1 which does not contain edges vivi+1 must contain a path

from vi to v0 and the path from vq+1 to vi+1. It implies that W (t) contains the vertices of

the subpath (vi+1, . . . ,vq,vq+1) and the vertices of the subpath (v0,v1, . . . ,vi−1,vi). This



implies |W (t)| > k + 1 which is a contradiction to the fact that T is obtained from D

by contracting at most k edges. Hence t 6= t 0. We now focus on W (t) which, as argued

above, does not contain vi+1. Vertex vi is not a cut vertex in GD[W (t)] as there is exactly

one edge incident on it. This implies GD[W (t) \ vi] is a connected graph. Define W 0 =

(W \{W (t)})[{{vi}}[{W (t)\{vi}}. Graph D/(F \{vi−1vi}) is isomorphic to graph

obtained by subdividing the arc tt 0 in the out-tree T . Thus, W 0 is an out-tree witness

structure of D leading to the solution F \ {vi−1vi} which contradicts the minimality of

F .

Note that in the above proof, we did not use the fact that T has at most ` leaves. Hence this

claim is true for any out-tree. We mention the result explicitely in the following lemma.

Lemma 6.2.2. Suppose D has a directed path P = (v0,v1, . . . ,vq,vq+1) with q > k + 1

and d−(v) = d+(v) = 1 for each i 2 [q]. Let F be a set of arcs of D such that |F |  k

and D/F is an out-tree. If F is minimal then it does not contain an edge incident on

V (P)\{v0,vq+1}.

6.3 Kernel for BOUNDED OUT-TREE CONTRACTION

In this section we design a polynomial kernel for BOUNDED OUT-TREE CONTRACTION.

Our algorithm is inspired by kernelization algorithm for PATH CONTRACTION presented

in [55].

Let (D,k, `) be an instance of BOUNDED OTC. Without loss of generality we assume that

D is connected, else (D,k, `) is a NO instance. Recall that D is connected if its underlying

undirected graph GD is connected.

The algorithm has only one reduction rule.

Reduction Rule 6.3.1. Let P = (v0,v1, . . . ,vq,vq+1) be an indueced path in D with q >

k + 3 and d−(v) = d+(v) = 1 for each i 2 [q]. Then contract the arc vq−1vq and let the



Figure 6.1: Different between reduction rules in case of directed and un-directed graphs.

resulting instance be (D0
,k, `), where D0 = D/{vq−1vq}.

We note that unlike in case of undirected graph (Reduction Rule 3.3.1), it is not enough to

find an cut arc whose remove results into two connected components of size at least k +1.

We might still have to contract this edge because of direction constraints. See Figure 6.1.

Lemma 6.3.1. Reduction rule 6.3.1 is safe and can be applied in polynomial time.

Proof. We need to show that (D,k, `) is a YES instance of BOUNDED OTC if and only

if (D0
,k, `) is a YES instance of BOUNDED OTC. Clearly, given D and P one can apply

Reduction Rule 6.3.1 in polynomial time.

In the forward direction, let (D,k, `) be a YES instance of BOUNDED OTC and let

F ✓ A(D) such that |F |  k and T = D/F is an out-tree with at most ` leaves. By

Observation 6.2.2, we know that D/(F [{vq−1vq}) is also an out-tree with at most ` leaves.

However, D/(F [{vq−1vq}) = (D/{vq−1vq})/(F \{vq−1vq}) = D0
/(F \{vq−1vq}). This

implies that D0
/(F \{vq−1vq}) is an out-tree with at most ` leaves and |F \{vq−1vq}|

|F | k. Hence, it follows that (D0
,k, `) is a YES instance of BOUNDED OTC.

In the reverse direction, let (D0
,k, `) be a YES instance of BOUNDED OTC and let F 0 ✓

A(D0) of size at most k such that T 0 = D0
/F 0 is an out-tree with at most ` leaves. Let

W 0 be a T 0-witness structure of D0. Let v⇤q−1 be the vertex obtained after contracting

the arc vq−1vq. Let P⇤ be the path from v0 to vq+1 in graph D0. In other words, P⇤ is a

path obtained from P by contracting edge vq−1vq. Since P⇤ is a path of size k + 2, by

Lemma 6.2.1, no edge in F 0 is incident on vertices in P⇤. This implies that if W (t⇤) is the



Figure 6.2: For left figure, please refer to Lemma 6.3.2. Vertices ta, td are marked as they
are part of T1 [T3. Vertices tc, td are marked because they are end-points of a path. Vertex
te marked as W (te) is a big witness set. For figure on right, please refer to Lemma 6.3.3.

witness set in W 0 which contains v⇤q−1 then W (t⇤) is a singleton witness set. Moreover,

every vertex in V (P)\{vq−1,vq} is in singlton witness set in W 0. Let t1, t2 be two vertices

in T 0 which are in-neighor and out-neighor, respectively, of t⇤.

Consider a witness structure W obtained from W 0 by removing {v⇤q−1} and adding two

sets {vq−1},{vq}. Formally, W = (W 0 \{v⇤q−1})[{{vq−1},{vq}}. Note that W partitions

V (D) and for each W 2W , D[W ] is connected. Let T be the digraph for which W is a

T -witness structure of D. We argue that T is an out-tree with at most ` edges. Note that T

can be obtained from T 0 by subdividing edge t⇤t2. By Observation 6.2.2, T is an out-tree

with at most ` leaves. This completes the proof of the lemma.

For simplicity, by (D,k, `) we denote an instance of BOUNDED OTC on which the Reduc-

tion Rule 6.3.1 is not applicable.

Lemma 6.3.2. Let (D,k, `) be a YES instance of BOUNDED OTC on which Reduction

Rule 6.3.1 is not applicable. Then, D has at most O(k2 + k`) vertices.

Proof. Let (D,k, `) be a YES instance and F ✓ A(D) be a solution such that T = D/F is an

out-tree with at most ` leaves. Let W be a T -witness structure of a digraph D. For counting

the number of vertices in D, we first count the vertices in T . Towards this we employ a

miarking scheme. By M we denote the set of vertices in T that have been marked by our



scheme. Let X be the set of vertices in T which corresponds to big witness sets in W . We

mark all the vertices in X . Let T1,T3 denote the set of vertices in T which have total degree

exactly one and at least three, respectively in T . We mark all the vertices in T1 and T3.

Note that |T1| `+1. Here, we have |T1| `+1, rather than |T1| `, to take into account

the case when the root of T has total degree 1. Also, |X | k and |T3| |T1|. Therefore,

it follows that currently the number of vertices in M is upper bounded by k +2`+2. See

Figure 6.2.

Let P be the set of induced maximal (directed) paths in T [V (T )\M]. Observe that, by

viewing each path in P as an edge between vertices in M we get a tree on M. Thus,

|P| |M|−1. For each P 2P , we additionally mark two of the endpoints in P. Clearly,

this increases the size of M by at most 2|P|. However, even now the size of |M|=O(k+`).

Note that each of the unmarked vertices have in-degree and out-degree exactly one. Since

Reduction Rule 6.3.1 is not applicable, therefore length of each of the maximal paths

comprising of unmarked vertices is bounded by O(k). But then, the number of vertices in T

is bounded by O(k2 +k`). As T is obtained using at most k edge contractions from digraph

D, it follows from Observation 6.2.1 that |V (D)| |V (T )|+k. Since |V (T )|=O(k2 +k`),

this implies that |V (D)| = O(k2 + k`).

Lemma 6.3.3. Let (D,k, `) be a YES instance of BOUNDED OTC on which Reduction

Rule 6.3.1 is not applicable. Then, D has at most O(k2 + k`) arcs.

Proof. Let (D,k, `) be a YES instance and F ✓ A(D) be a set of edges such that T = D/F

is an out-tree with at most ` leaves. Let W be a T -witness structure of a digraph D. Let X

be the set of vertices in D to which an edge in F is incident to. Notice that |X | 2k. The

number of arcs with both endpoints in X is bounded by O(k2). Observe that the underlying

undirected graph of D−X is a forest with at most O(k2 + k`) vertices. This implies the

number of arcs in D that have both endpoints in D−X is bounded by O(k2 +k`). The only

arcs that remain to be counted are those with one endpoint in D−X and other in X . For a

vertex x 2 X , let tx be the vertex in V (T ) such that x 2W (tx). Also let N̂ be the neighbors



of tx in T . Observe that |N̂|  `+ 1. This together with Observation 6.2.1 implies that

| [t2N̂ W (t)| is bounded by 2k + `+1. Therefore, the maximum degree of a vertex in X

is bounded by O(k + `). This implies that the number of arcs with one end point in X

and other in D−X is bounded by O(k2 + k`). We have counted all types of arcs in D and

hence, we conclude that the number of arcs in D is bounded by O(k2 + k`).

We are now ready to prove the main theorem of this section.

Theorem 6.3.1. BOUNDED OTC admits a kernel of size O(k2 + k`).

Proof. Given an instance (D,k, `), the algorithm repeatedly applies Reduction Rule 6.3.1,

if applicable. By Lemma 6.3.1, we know that Reduction Rule 6.3.1 is safe and can be

applied in polynomial time. Each application of reduction rule decreases the number of

arcs and thus it can be applied only |A(D)| times. If Reduction Rule 6.3.1 is not applicable

then either the size of the instance is bounded by O(k2 + k`), in which case we return a

kernel of desired size. Otherwise, the algorithm correctly concludes that the instance is a

NO instance of BOUNDED OTC. The correctness of this step follows by Lemmas 6.3.2

and 6.3.3.

6.4 Kernel Lower Bound for BOUNDED OUT-TREE CON-

TRACTION

In this section we present a parameter preserving reduction from given an instance

(G,R,B,k) of RBDS to an instance (D0
,k0, `0) of BOUNDED OUT-TREE CONTRACTION.

This reduction is same as the one presented in Section 3.4. We use this reduction to

prove three things. First, we show that OUT-TREE CONTRACTION is NP-Hard. Second,

OUT-TREE CONTRACTION parameterized by solution size k does not admit a polynomial

kernel assuming NP 6✓ coNP/poly. Third, the kernel presented for BOUNDED OTC in

Section 6.3 is optimal under the same assumption.



Figure 6.3: Kernel lower bound for BOUNDED OTC. For the sake of clarity, figure does
not show directions for all arcs.

Reduction. Let (G,R,B,k) be an instance of RBDS. We construct graph G0 in the

following way. See Figure 6.3. Initialize V (G0) = V (G) and E(G0) = {br | b 2 B,r 2

R and br 2 E(G)}. Add a vertex a in V (G0) and for every vertex r in R, add an edge ar to

E(G0). For every vertex bi in B, add three new vertices xi,yi,zi to V (G0) and arcs bixi, biyi,

bizi to E(G0). Define set X := {xi,yi,zi | bi 2 B}. We construct diagraph D0 from G0 by

adding directions to edegs. For every vertex x in X , add an edge ax to E(G0). For every

edge incident on a, add direction from a to other end point. Similarly, for any end incident

on vertices in B, add direction from vertex in B to other end point. Set k0 = |B|+ k and

`
0 = |R|+3|B|− k.

In the following lemma, we prove some structural properties of a solution to instance

(D0
,k0, `0).

Lemma 6.4.1. Let (D0
,k0, `0) be a YES instance of BOUNDED OUT-TREE CONTRACTION.

There exists a solution F⇤ ✓ E(D0) of size at most k0 such that for each bi in B one of the

following holds.

1. bi is in W (ta) or

2. xi,yi,zi are in W (ta).



Here, W (ta) is the witness set containing a in (D0
/F⇤)-witness structure of D0.

Proof. Let F be a set of arcs of size at most k in D0 such that D0
/F is an out-tree with

at most ` leaves. Let W be a T -witness structure of D0 where T = D0
/F . Recall that TG

denotes the underlying undirected graph of T . Since T is an out-tree, TG is a tree. Let

ta be the vertex in V (T ) such that W (ta) contains a. For a vertex bi in B, if bi is in W (ta)

then the lemma holds. Consider a case when bi is not in W (ta). There exists a vertex tb,

different from ta, such that bi is contained in W (tb). Similarly, consider vertices tx, ty and tz

such that xi,yi and zi are contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two of {tx, ty, tz} can be same

as only neighbors of xi,yi,zi are a and bi, and by definition, a witness set needs to be

connected. But then, by construction, TG[{ta, tx, ty, tz, tb}] is a cycle, contradicting the

fact that TG is a tree. Therefore, at least one of {tx, ty, tz} is same as ta or tb. Without

loss of generality, let ts 2 {ta, tb}. This implies there is an edge tatb in TG. If ty or tz is

not equal to ta or tb then there exist a cycle contradicting that TG is a tree. Suppose, all

tx, ty, tz are same as ta, then the second condition of the lemma is satisfied. Consider a

case when at least one of tx, ty, tz, say tx, is not same as ta, which implies tx = tb. By

construction, the only arcs incident to xi in D0 are axi and bxi. This implies that bxi 2 F

and W (t 0b) = W (tb) \ {xi} is connected. Since axi 2 A(D0), set W (t 0a) = W (ta)[{xi} is

connected. Thus, replacing W (tb) by W (t 0b) and W (ta) by W (t 0a) in W yields another

T -witness structure of D0. Furthermore, the spanning forest of the new witness structure,

F 0 = (F \{bxi})[{axi} has same cardinality as that of F . A similar swap can be carried

out if ty = tb or tz = tb. This concludes the proof.

In the following lemma, we argue that the reduction is safe.

Lemma 6.4.2. (G,R,B,k) is a YES instance of RBDS if and only if (D0
,k0, `0) is a YES

instance of BOUNDED OTC.

Proof. Let (G,R,B,k) be a YES instance of RBDS and S be a subset of R of size k such



that S dominates every vertex in B. If S contains less than k vertices, then we take any

of its superset of size exactly k. For each vertex b in B, we fix a vertex rb in S such that

b is neighbor of rb in G. If there are multiple options for selecting rb then we arbitrarily

choose one of them. Let F = {brb | b 2 B}[{ar | r 2 S}. Note that |F | = |B|+ k = k0

and D0[V (F)] is connected. Let T be the digraph obtained from D0 by contracting edges

in F . Let W be a T -witness structure of D0. Consider a vertex ta such that a is in W (ta).

Since all the edges in F are contracted to one vertex, set S[B is also contained in W (ta).

Recall that R[X is an independent set in GD0 . No vertex in (R[X)\S is incident on edge

which has been contracted. In other words, these vertices form singleton witness sets in

W . Since R[X is an independent set in GD0 , it follows that set TRS = {tv | v 2 (R[X)\S}

is an independent set in GT of size |R|+3|B|− k = `
0. Moreover, for all v in X 0, arc av is

present in A(T ). Therefore, T is a out-tree with `
0 leaves. This implies that F is a solution

to (D0
,k0, `0).

In the reverse direction, let (D0
,k0, `0) be a YES instance of BOUNDED OUT-TREE CON-

TRACTION. By Lemma 3.4.1, there exists a solution F⇤ of size at most k0 such that for every

bi in B, either bi is in W (ta) or all of xi,yi,zi are in W (ta). Here, W is the D0
/F⇤-witness

structure of D0 and ta in V (D0
/F⇤) such that vertex a is contained in witness set W (ta) in

W .

We partition vertices of B into two parts depending on whether they belong to W (ta) or

not. Define set Bg = {bi 2 B | bi 2W (ta)}. Let Ra = R\W (ta). Partition Bg into B1 and

B2, depending on whether or not they have a neighbor in Ra. Formally, B1 = {bi 2 Bg |

N(bi)\Ra 6= /0} and B2 = Bg \B1. For a vertex bi in B2 at least one of xi,yi,zi is present

in W (ta) as there is no arc between bi and a. Note that, by construction, xi,yi,zi is not

adjacent with b j for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB2 be set of vertices in X \W (ta)

which provides adjacency between a and bi for some bi in B2. For every bi which is in

B\Bg, by Lemma 6.4.1, xi,yi,zi are present in W (ta).



We can partition W (ta) \ {a} into following four parts: vertices in B (captured by Bg);

vertices in R (captured by Ra); vertices in X which are present because corresponding

bi is not present (captured by B\Bg); and vertices in X which are present because they

are needed to provide connectivity between bi and a (captured by XB2). This implies

|Bg|+3|B\Bg|+ |Ra|+ |XB2|+ |{a}| |W (ta)|.

We construct a solution S for RBDS by taking vertices in Ra and two more sets Sg and Sw.

Informally, Sg dominates vertices in B2 and Sw dominates vertices in B\Bg. We construct

Sg in following way. For every vertex bi in B2, arbitrary pick one of its neighbor in R

and add it to Sg. Note that |Sg|  |XB2|. We create another set Sw in the following way.

Initialize Sw to an empty set. For each b in B\Bg, we add an arbitrary neighbor of b in R

to Sw. This implies |Sw| |B\Bg|. As cardinality of F⇤ is at most k + |B|, size of W (ta) is

at most |W (ta)| k + |B|+1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw|  k and every vertex in B is

dominated some vertex in Ra [Sg [Sw. This concludes the proof.

RED BLUE DOMINATING SET is NP-Complete [44] and it does not have a polynomial ker-

nel when parameterized by (|B|,k) [32]. This implies that classical problem of OUT-TREE

CONTRACTION is NP-Complete. The existence of the polynomial parameter transforma-

tion described above and Proposition 2.3.1 implies following theorem.

Theorem 6.4.1. OUT-TREE CONTRACTION does not have a polynomial kernel unless

NP ✓ coNP/poly.

We now argue that kernel presented for BOUNDED OTC is optimal.

Theorem 6.4.2. BOUNDED OUT-TREE CONTRACTION does not admit a compression of

size O((k2 + k`)1−e), for any e > 0 unless NP✓ coNP/poly.

Proof. Assuming a contradiction, suppose BOUNDED OUT-TREE CONTRACTION admits

a compression into P ✓ S
⇤ with bitsize in O((k2 + k`)1−e), for some e > 0. This implies



that there exists an algorithm A which takes an instance I = (G,k, `) of BOUNDED OUT-

TREE CONTRACTION and in polynomial time returns an equivalent instance I0 of P with

|I0| 2 O((k2 + k`)1−e).

Let (G,R,B,k) be an instance of RBDS, where G is a graph on n vertices. Using the reduc-

tion described, we create an instance (G,k0, `0) of BOUNDED OUT-TREE CONTRACTION

with |V (G0
D)| 2 O(n), |E(G0

D)| 2 O(n2), k0 = k  |R| 2 O(n) and `
0 = |B|+ k 2 O(n).

On the instance (G,k0, `0) we run the algorithm A to obtain an instance I of P such that

|I| 2 O((k02 + k0`0)1−e). But then we have obtained a compression of size O(n2−e) for

RBDS, contradicting Proposition 2.3.2.

Corollary 6.4.1. BOUNDED OUT-TREE CONTRACTION does not admit a kernel of size

O((k2 + k`)1−e), for any e > 0 unless NP✓ coNP/poly.

6.5 Lossy Kernel for OUT-TREE CONTRACTION

In this section, we describe a PSAKS for OUT-TREE CONTRACTION. We define param-

eterized minimization version of OUT-TREE CONTRACTION problem in the following

way.

OTC(D,k,F) =

8
><

>:

• if D/F is not an out-tree

min{|F |,k +1} otherwise

We note that the simplifying assumptions in TREE CONTRACTION, such as working with

2-connected components or the fact that leaves correspond to singleton witness sets, do

not hold anymore. At this place, our treatment of directed and un-directed graph differs.

If D has at most k +3 vertices then we already have a kernel of desired side. We assume

that input digraph has at least k +3 vertices. By definition of optimization problem, for a

set of arcs F , if D/F is an out-tree then maximum value of OTC(D,F) is k + 1. Hence

any spanning tree of D is a solution of size k + 1. We call it a trivial solution for given



instance. We denote a directed cycle on four vertices by C4. One need to contract at least

two edge to get an out-tree from C4. We call (C4,1) as trivial instance of OUT-TREE

CONTRACTION. If OPT(D,k) = k + 1 then we can return (C4,1) as its a-lossy kernel.

Note that for any c-factor solution of (C4,1), solution lifting algorithm can return a trivial

solution for (G,k) which is of size k +1. If underlying undirected graph of input digraph

is not connected then we can not obtain an out-tree by edge contraction operations only.

We assume underlying undirected input graph is connected.

First reduction rule states that it is safe to remove vertices which has one in-neighbor and

zero out-neighbors. After applying this rule exhaustively, if digraph is contracted to an

out-tree then for each leaf, either it or its unique neighbor correspond to a big witness set.

Reduction Rule 6.5.1. If there is a vertex v 2V (D) with d−(v) = 1 and d+(v) = 0 then

delete v. The resulting instance is (D0
,k0) where D0 = D−{v} and k0 = k.

This reduction rule can be applied in time polynomial time. Correctness of this reduction

rule is based on the observation that the digraph obtained from an out-tree by adding a new

vertex as an out-neighbor of any vertex is an out-tree.

Lemma 6.5.1. Reduction Rule 6.5.1 is 1-safe.

Proof. Consider a set F 0 ✓ A(D0) such that T 0 = D0
/F 0 is an out-tree. If |F 0|≥ k0+1, then

the solution lifting algorithm returns a spanning tree F of D, otherwise it returns F = F 0.

If |F 0|≥ k0 +1 then OTC(D,k,A(D))  k +1 = OTC(D0
,k0,F 0). In case |F 0| k +1, let

W 0 denote the corresponding T 0-witness structure of D0. There exists a vertex ti 2V (T 0)

such that the unique neighbor of v in D is in W (ti). Define the partition of V (D) as

W = W 0 [ {{v}}. No vertex in any set W (t) 2 W 0 with t 6= ti contains a vertex that is

adjacent to v. Thus W is a D/F-witness structure of D, where D/F is the out-tree obtained

from T 0 by adding a new vertex, say tv, as out-neighbor of ti where W (tv) = {v}. Hence,

OTC(D,k,F)  OTC(D0
,k0,F 0).



Consider an optimum solution F⇤ to (D,k). If |F⇤|≥ k+1, then OPT(D,k) = k+1 and by

definition, OPT(D0
,k0)  k0 +1 = k +1 = OPT(D,k). Consider the case when |F⇤| k.

Let W ⇤ denote the corresponding T -witness structure of D where T = D/F⇤. There exists

t 2V (T ) such that v 2W (t). If W (t) is a singleton set, then F⇤ is also a solution to (D0
,k0)

and OPT(D0
,k0)  OPT(D,k). If W (t) is not a singleton set, there exists an arc, say e in

F which is incident on v. As v is a vertex of degree 1, the underlying undirected subgraph

of D[W (t)\{v}] is connected. Since d−(v) = 1 and d+(v) = 0, F⇤ \ e is also a solution to

(D,k) contradicting the fact that F⇤ is an optimal solution. Hence the second case does not

occur. This implies OPT(D0
,k0)  OPT(D,k)

Putting together two inequalities, we get OTC(D,k,F)

OPT(D,k) 
OTC(D0

,k0,F 0)

OPT(D0,k0) which concludes the

proof.

Second reduction rule states if there exists a long induced path in digraph then we can find

an edge which can be safely contracted.

Reduction Rule 6.5.2. If D has a directed path P = (v0,v1, . . . ,vq,vq+1) with q > k + 2

and d−(v) = d+(v) = 1 for each i 2 [q], then contract edge vq−1uq. The resulting instance

is (D0
,k0) where D0 = D/{vq−1vq} and k0 = k.

This rule can be applied in polynomial time by searching for a path in the subgraph induced

on the vertices of degree two.

Lemma 6.5.2. Reduction Rule 6.5.2 is 1-safe.

Proof. Consider a minimal set F 0 ✓ A(D0) such that T 0 = D0
/F 0 is an out-tree. If |F 0|≥

k0 + 1, then the solution lifting algorithm returns a spanning tree F of D, otherwise it

returns F = F 0. If |F 0|≥ k0 +1 then OTC(D,k,F)  k +1 = OTC(D0
,k,F 0). Otherwise,

let W 0 be a T 0-witness structure of D0. Let v⇤q−1 be the new vertex added while contracting

edge vq−1vq. Let P0 be the path obtained from P by this contraction. By Lemma 6.2.2, F 0

has no arc incident on V (P0)\{v0,vq+1}. Therefore, every vertex in V (P0)\{v0,vq+1} is



in a singleton set of W 0. Let W be a witness structure obtained from W 0 by removing

{v⇤q−1} and adding {vq−1},{vq}. If W is a T -witness structure of D then T is obtained

from T 0 by subdividing one of its edges, namely tq−1tq+1 where W (tq−1) = {v⇤q−1} and

W (tq+1) = {vq+1}. By Observation 6.2.2, T is an out-tree. Therefore, OTC(D,k,F) 

OTC(D0
,k0,F 0).

Next, consider a minimal optimum solution F⇤ to (D,k). If |F⇤|≥ k+1 then OPT(D,k) =

k + 1 and by definition, OPT(D0
,k0)  k0 + 1 = k + 1 = OPT(D,k). Otherwise, |F⇤| 

k and let T = D/F⇤. Let W denote the corresponding T -witness structure of D. By

Lemma 6.2.2, F⇤ has no edge incident on V (P) \ {v0,vq+1}. Therefore, every vertex

in V (P) \ {v0,vq+1} is a singleton set of W . Let v⇤q−1 be the new vertex added while

contracting edge vq−1vq. Define W 0 be a witness set obtained from W by removing

{vq−1},{vq} and adding {v⇤q−1}. If W 0 is a T 0-witness structure of D then T 0 can be

obtained from T by contracting an edge tq−1tq where W (tq−1) = {vq−1} and W (tq) = {vq}.

By Observation 6.2.2, T 0 is an out-tree. Thus, OPT(D0
,k0)  OPT(D,k).

Combining two inequalities, we get OTC(D,k,F)

OPT(D,k) 
OTC(D0

,k0,F 0)

OPT(D0,k0) which concludes the proof.

Before applying following reduction rules, we partition V (D) into two parts. Consider a

set of vertices with out-degree zero, denoted by I. Note that there is no arc with both end

points in I. Let H = V (G)\ I. See Figure 6.4. Formally,

I = {v 2V (D) | d+
(v) = 0}

H = V (D)\ I

We argue that for an instance (D,k), if D is k-contractible to an out-tree T and none of

the reduction rules mentioned above are applicable, then the number of vertices in D is

bounded by some function of k. If Reduction Rule 6.5.1 is not applicable then for every



Figure 6.4: Partition of Digraph D. See Reduction Rule 6.5.4.

leaf t in T , either t or its neighbor corresponds to big witness set. If Reduction Rule 6.5.2

is not applicable then for every path of length at least k +1 in T there exists a vertex in this

path which corresponds to a big witness set.

Lemma 6.5.3. Let (D,k) be an instance of OUT-TREE CONTRACTION where Reduction

Rules 6.5.1 and 6.5.2 are not applicable. If D is k-contractible to an out-tree then the

number of vertices in H is at most O(k2).

Proof. We first sketch proof of the Lemma. Suppose D is contractible to an out-tree T .

Let L denote the set of leaves in T . Define LS as set leaves corresponding to singleton

witness sets. By construction, every vertex in H has out-degree at least one and hence

no vertex in H is a singleton witness set corresponding to a leaf in LS. All vertices in H

(and few from I) are contained in witness sets W (t) such that t is in V (T )\LS. We bound

number of vertices in H by upper bounding the cardinality of V (T ) \Ls. Consider the

tree T 0 obtained from T by removing Ls. All leaves in T 0 corresponds to big witness sets.

There are at most k many big-witness sets. This implies upper bound on number of leaves

in T 0 and subsequently on vertices of degree at least 3 in T 0. Every vertex t of degree two

in T 0 is contained in path between ti, t j such that degrees of ti, t j are one or at least three.

We argue that these number of such paths paths and length of each path is not large. This

implies upper bound on vertices of degree two in T 0. We use these upper bounds on V (T 0)

to bound the vertices in H.



We partition vertices of an out-tree T in three parts depending on their degrees. Ver-

tices with degree one, two and at least three are contained in V1(T ),V2(T ) and V3(T ),

respectively. Formally, V1(T ) = {t 2 V (T ) | d(t) = 1}, V2(T ) = {t 2 V (T ) | d(t) = 2}

and V3(T ) = {t 2 V (T ) | d(t) ≥ 3}. Suppose D is contractible to an out-tree T . Let W

be a T -witness structure. If a vertex t is L and t 0 is its neighbour then either |W (t)| > 1

or |W (t 0)| > 1 as otherwise Reduction Rule 6.5.1 would have been applied. Let Ls de-

note a set of leaves of T that correspond to singleton witness sets in W . Formally,

LS = {t 2 L | |W (t)| = 1}. By definition, out-degree of every vertex v 2 H is at least one.

Since for any t 2 Ls, |W (t)| = 1 and out-degree of t is zero, no vertex in H intersects

W (t). Consider a tree T 0 obtained from T by deleting all vetices in Ls. Let H 0 be set

of vertices in V (D) which are containd in W (t) for some t in V (T 0). In other words,

H 0 = {v 2V (D) | 9t 2V (T 0),v 2W (t)}. It follows that H ✓ H 0. We bound cardinality of

set H by bounding cardinality of set H 0. Recall that there are at most k big witness set in

T -witness structure of G. As |W (t)|> 1 for every leaf t in T 0, and thus |V1(T 0)| k. As

the number of vertices of at least three in a tree is upper bounded by the number of leaves,

we have |V3(T 0)| k.

Let V2 = {t 2 V2(T 0) | |W (t)| = 1}. Every vertex in V2(T 0) \V2 corresponds with a big

witness set and hence |V2(T 0) \V2|  k. Let U = V1(T 0)[V3(T 0)[ (V2(T 0) \V2). The

number of vertices in H 0 which are contained in a witness set W (t) such that t is U is

at most O(k). We now bound cardinality of V2. Every vertex t 2V2 is either the root or

an internal vertex of a path between two vertices in V1(T 0)[V3(T 0)[ (V2(T 0)\V2). The

number of such paths is at most O(k). The interval vertices of these paths have degree two

in digraph D. As the Reduction Rule 6.5.2 is not applicable, lengths of each paths are at

most k + 2 which implies that |V2| is O(k2). Summarizing these bounds, the number of

vertices in H 0 and hence in H is upper bounded by O(k2).

Using Lemma 6.5.3, we can identify digraphs which are not k-contractible to an out-tree.

Reduction Rule 6.5.3. Given an instance (D,k), partition V (D) into (I,H) such that



I = {v 2 V (D) | d+(v) = 0} and H = V (D) \ I. If size of H is greater than O(k2) then

return the trivial instance (C4,1).

Lemma 6.5.4. Reduction Rule 6.5.3 is 1-safe.

Proof. Let (D,k) be an instance such that Reduction Rule 6.5.3 returns (C4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of D.

Note that for a set of edges F 0, if C4/F 0 is an out-tree then F 0 contains at least two edges.

This implies OTC(C4,1,F 0) = 2 and OPT(C4,1) = 2.

Lemma 6.5.3, if D is k-contractible to an out-tree than size of H is at most O(k2). Hence

for any set of edges F⇤ if D/F⇤ is an out-tree than size of F⇤ is at least k +1. This implies

OPT(D,k) = k +1. For a spanning tree F of D, OTC(D,k,F) = k +1.

Combining these values, we get OTC(D,k,F)

OPT(D,k) =
k+1
k+1 =

2
2 =

OTC(C4,1,F 0)

OPT(C4,1)
. This implies if F 0 is

c-factor approximate solution for (C4,1) then F is 1-factor approximate solution for (D,k).

This concludes the proof.

We argue that vertex v and its k+1 false twins in I forces some vertices to be in one witness

set. By applying Reduction Rule 6.5.4, we ensure that we store just enough vertices which

enforces such condition. Following reduction rule states that we can delete all but k +1

vertices in D which has identical neighborhood.

Reduction Rule 6.5.4. If there are vertices v,v1,v2, . . . ,vk+1 2 I such that N−(v) =

N−(v1) = · · · = N−(vk+1), then delete v. The resulting instance is (D0
,k0) where D0 =

D−{v} and k0 = k.

This reduction rule can be applied in polynomial time.

Lemma 6.5.5. Reduction Rule 6.5.4 is 1-safe.

Proof. Consider a set F 0 ✓ A(D0) such that T 0 = D0
/F 0 is an out-tree. If |F 0|≥ k0+1, then

the solution lifting algorithm returns a spanning tree F of D, otherwise it returns F = F 0.



If |F 0| ≥ k0 + 1 then OTC(D,k,F)  k + 1 = OTC(D0
,k0,F 0). Otherwise, let W 0 denote

a T 0-witness structure of D0. As |F 0| k and an arc in F 0 can be incident on at most one

vertex in I, there exists a vertex vi which is a singleton witness set in W 0 for some i in

[k +1]. Let ti 2V (T ) be a vertex in T such that W (ti) = {vi}. As v j has no out-neighbor

in D0, ti is a leaf in T . If t j is the unique neighbor of ti in T then N−(vi) ✓W (t j). Let W

be a witness structure of D obtained from W by adding a singlton witness set {v}. If W is

a T -witness structure of D then T can be obtained from T 0 by adding an out-neighbor tv to

ti. Since T 0 is an out-tree, T is also an out-tree. Hence, OTC(D,k,F)  OTC(D0
,k0,F 0).

Consider an optimal solution F⇤ of (D,k). If |F⇤| ≥ k + 1 then OPT(D,k) = k + 1 and

by definition, OPT(D0
,k0)  k0 + 1 = k + 1 = OPT(D,k). Otherwise, let T = G/F⇤

and let W ⇤ be a T -witness structure of D. There exists a vertex t 2 V (T ) such that

v 2 W (t). If t is a leaf and W (t) is a singleton set, then F⇤ is also a solution to (D0
,k0)

where D0
/F⇤ is an out-tree obtained from D/F⇤ by deleting one of its leaf. This implies

OPT(D0
,k0)  OPT(D,k). Otherwise, as there are at least k + 1 vertices with the same

neighborhood as v, there exists a vertex vi which is a singlton witness set in W for some i

in [k +1]. Let t 0 be a vertex in V (T ) such that W (t 0) = {vi}. As vi has no out-neighbors,

t 0 is a leaf. Let W 0 is a witness structure of D obtained from W ⇤ by swapping vi and v.

This defines a set of arcs F 0 obtained from F by replacing the arc xv with the arc xvi for

each x. Since vi and v have identical open neighborhood, if W 0 is a T 0-witness structure

of D then T 0 = T . Since F 0 is an optimum solution for (D,k) and there exists a leaf in

D/F 0 which is singleton witness set containing v, it is a solution for (D0
,k). Therefore,

OPT(D0
,k)  OPT(D,k).

Putting two inequalities together, we get OTC(D,k,F)

OPT(D,k) 
OTC(D0

,k0,F 0)

OPT(D0,k0) which concludes the

proof.

We describe the final reduction rule. Given a > 1, let d be the minimum integer such

that d
d−1  a . In other words, fix d = d a

a−1e. Following reduction rules state that we can

contract d vertices in H if all of them sees k +1 vertices in I.



Reduction Rule 6.5.5. If there are vertices v1,v2, . . . ,vk+1 2 I and h1,h2, . . . ,hd 2 H such

that {h1, . . . ,hd}✓ N−(vi) for each i 2 [k +1], then contract arcs in Ã = {(hiv1) | i 2 [d]}

and reduce the parameter by d −1. The resulting instance is (D0
,k0) where D = D/Ã and

k0 = k− (d −1)).

This reduction rule can be applied in time |H|d ·nO(1).

Lemma 6.5.6. Reduction Rule 6.5.5 is a-safe.

Proof. Let w denote the vertex in V (D0)\V (D) obtained by contracting Ã in D. Consider

a solution F 0 to the reduced instance (D0
,k0). If |F 0| ≥ k0 + 1, then the solution lifting

algorithm returns a spanning tree F of D, otherwise it returns F = F 0 [ Ã. If |F 0|≥ k0 +1

then OTC(D0
,k0,F 0) = k0 +1 = k−d. As F is a spanning tree, OTC(D,k,F) = k +1 =

k0 + d = OTC(D0
,k0,F 0) + d − 1. Consider the case when |F 0|  k0 and let W 0 be a

D0
/F 0-witness structure of digraph D0. Let W 0(t1) be a witness set in W such that w 2

W 0(t1). Define W = (W 0 [{W1})\{W 0(t1)} where W1 = (W 0(t1)[{v1,h1,h2, . . . ,hd})\

{w}. Note that V (D) \ {v1,h1,h2, . . . ,hd} = V (D0) \ {w} and hence W is a partition

of V (D). Further, GD[W1] is connected as G0
D[W 0(t1)] is connected. A spanning tree

of the latter along with edges {v1hi| 8i 2 [d]} is a spanning tree of the former. Also,

|W1| = |W 0(t1)|+d and any vertex which is adjacent to w in D0 is adjacent to at least one

vertex in {v1,h1,h2, . . . ,hd} in D. Thus, W is a D/F-witness structure of D where D/F

is an out-tree. In this case, OTC(D,k,F)  OTC(D0
,k0,F 0) + d. Therefore, we know

OTC(D,k,F)  OTC(D0
,k0,F 0)+d.

Let F⇤ be an optimum solution for (D,k) and T = D/F⇤. Let W be a T -witness structure of

D. If |F⇤|≥ k+1, then OPT(D,k) = k+1 = k0+d ≥ OPT(D0
,k0)+d−1. If |F⇤| k then

there is at least one vertex, say vq in {v1,v2, . . . ,vk+1} which is not in V (F⇤). Consider

the vertex ti 2 V (D/F⇤) such that W (ti) = {vq}. Vertex ti is a leaf as vq has no out-

neighbors and there is no other vertex in W (ti). This implies that there exists a witness

set, say W (t j), that contains all vertices in N(vq). Hence {h1,h2, . . . ,hd} are contained



in W (t j). We consider two cases based on whether v1 is in W (t j) or not. Suppose

v1 2W (t j). Let Ã = {v1hi| 8 i 2 [d]}. Then, F 0 = F⇤ \ Ã is a solution to (D0
,k0) and hence

OPT(D0
,k0)  |F 0| = |F⇤|− d = OPT(D,k)− d. Otherwise, v1 62 W (t j) and then there

exists a vertex t1 2 V (T ) adjacent to t j such that v1 2 W (t1). Define another partition

W 0 = (W [{W (t j1)}) \ {W (t j),W (t1)} of V (D) where W (t j1) = W (t j)[W (t1). Graph

GD[W (t j1)] is connected as both GD[W (t j)] and GD[W (t1)] are connected and there is

an edge with one end point in W (t j) and another in W (t1). Thus, W 0 is a D/F-witness

structure of D where |F | = |F⇤|+ 1 as |W (ti)|− 1 + |W (t j)|− 1 = (|W (ti j)|− 1)− 1. In

other words, we needed one more edge than |F⇤| to contract all witness sets in W 0.

Further F can be assumed to contain Ã and F 0 = F \ Ã is solution to (D0
,k0) leading to

OPT(D0
,k0)  |F 0| = |F⇤|+1−d = OPT(D,k)−d +1.

Combining these bounds, we have OTC(D,k,F)

OPT(D,k) 
OTC(D0

,k0,F 0)+d
OPT(D0,k0)+(d−1)

 max
n

OTC(D0
,k0,F 0)

OPT(D0,k0) ,a
o

.

This concludes the proof.

We now argue that if digraph D is k-contractible to an out-tree and none of reduction rule

mentioned so far is applicable on (D,k) then the number of vertices in D is bounded.

Lemma 6.5.7. Let (D,k) be an instance of OUT-TREE CONTRACTION where none of

Reduction Rules 6.5.1; 6.5.2; 6.5.3; 6.5.4; and 6.5.5 are applicable. If D is k-contractible

to an out-tree then the number of vertices in H is at most O(k2d+1 + k2).

Proof. Recall the partition I,H of V (D) defined before stating Reduction Rule 6.5.3. Set I

is a collection of vertices which has no in-degree and H is set of remaining vertices in D. If

Reduction Rule 6.5.3 return a trivial instance then statement is vacuously true. Otherwise,

cardinality of H is at most O(k2). Using this upper bound and the fact that Reduction

Rules 6.5.4 and 6.5.5 are not applicable, we bound vertices in I.

For every set H 00 ✓ H of cardinality less than d, there are at most k + 1 vertices in I

which have H 00 as their neighborhood. Otherwise, Reduction Rule 6.5.4 would have been

applicable. Hence, there are at most (k + 1) ·
� 2k

d−1

�

vertices in I which have degree less



than d. Every vertex in I of degree at least d is adjacent to all vertices in at least one

d-sized subset of H. For such a subset H 00 of H, there are at most k +1 vertices in I which

contain H 00 in their neighborhood. Otherwise, Reduction Rule 6.5.5 would have been

applied. Thus, there O((k +1)
�k2

d

�

) vertices in I of degree at least d. Hence, |I| is upper

bounded by O(k2d+1). This concludes the proof.

We now present main result in this session.

Theorem 6.5.1. OUT-TREE CONTRACTION admits a PSAKS with O(k2d a
a−1 e+1

+ k2)

vertices.

Proof. For given a > 1, kernelization algorithm fix d = d a
a−1e and apply Reduction Rules

6.5.1; 6.5.2; 6.5.3; 6.5.4; and 6.5.5 exhaustively on given instance (D,k). Kernelization

algorithm applies least indexed applicable reduction rule. If Reduction Rule 6.5.3 returns

a trivial instance then statement is true. Otherwise there exists a partition (I,H) of V (D)

such that I is set of all vertices with in-degree zero; H = V (D)\ I and number of vertices

in H is at most O(k2). Let (D,k) be a reduced instance after applying all reduction rules

exhaustively. If the number of vertices in D is at most O(k2d+1 + k2) by Lemma 6.5.7,

OPT(D,k) is at least k +1 and the algorithm outputs (C4,1) as a reduced instance. Note

that Reduction Rule 6.5.5 is applied only when the number of vertices in digraph as more

than O(k2k+1 + k2) and hence it can be applied in nO(1) time. Hence all reduction rules

can be applied in time nO(1). The correctness of this algorithm follows from Lemma 6.5.1;

Lemma 6.5.2; Lemma 6.5.4; Lemma 6.5.5; and Lemma 6.5.6.

6.6 Conclusion

In this chapter, we study contraction problem on directed graphs. We consider OUT-TREE

CONTRACTION problem. We show that this problem does not have a polynomial kernel

when parameterized by solution size. To complement this negative result, we present



a polynomial kernel when parameterized by solution size and the number of leaves in

resultant out-tree. We also present a lossy kernel of polynomial size when parameterized

by solution size. We note that treatment of OUT-TREE CONTRACTION is different than

that of TREE CONTRACTION. Many simplifying assumptions which work in undirected

settings do not work when input graph is directed.



Chapter 7

Clique Contraction

7.1 Introduction

In this chapter, we study a problem of contraction to cliques. A graph is called complete

if any two vertices are adjacent with each other. A set of vertices is said to be clique if it

induces a complete graph.

CLIQUE CONTRACTION Parameter: k

Input: A graph G and an integer k

Question: Is it possible to obtain a clique from G with at most k edge contractions?

Cai and Guo presented an FPT algorithm running in time 2O(k logk)
· nO(1) [16]. Inde-

pendent works of Lokshtanov et al. [73] and Cai and Guo [16] implies that there is no

polynomial kernel for this problem when parameterized by k. In full version of the paper

Lokshtanov et al. explicitly mentioned kernel with O(4kk) vertices. In this chapter, we

design an a-lossy kernel of polynomial size for this problem. We prove that given a

graph G on n vertices, an integer k and an approximation parameter a > 1, there is an

algorithm that runs in nO(1) time and outputs a graph G0 on O(kd+1) vertices and an integer

k0 such that for every c > 1, a c-approximate solution for (G0,k0) can be turned into a
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(ca)-approximate solution for (G,k) in nO(1). Here d = d
p
a/(

p
a−1)e.

We mention parametric dual of this problem which is known as HADWIGER NUMBER and

has enjoyed more attention in literature.

HADWIGER NUMBER Parameter: `

Input: A graph G and an integer `

Question: Is it possible to obtain a clique with ` vertices from G by contracting edges?

Hadwiger’s conjecture states that chromatic number of graph is at least its Hadwiger num-

ber. This conjecture makes determining Hadwiger number is well studied problem in graph

theory. Surprisingly, complexity of this problem, and hence of CLIQUE CONTRACTION,

was not resolved until 2009 when Eppisten proved that this problem is NP-Complete [37].

We say graph H is a minor of graph G if H can be obtained from G by series of vertex

deletions, edge deletions and edge contractions. If clique K` is minor of connected graph

G then we can obtain K` from G without deleting any edge. Similarly, instead of deleting a

vertex, we can contract it to one of its neighbors. This implies that one can obtain clique

K` from graph G by series of edge contraction if and only if K` is a minor of graph G.

By deep result of Robertson and Seymour [88], there exists an algorithm running in time

f (`) · nO(1) to check whether K` is a minor of G. This implies that there exist an FPT

algorithm for HADWIGER NUMBER. This relation was first noted by Alon et al. [4]. We

mention, without proof, that there exists a simple cross composition of unparameterized

version of HADWIGER NUMBER into its parameterized version. This cross composition,

along with results in [43], state that HADWIGER NUMBER does not have a polynomial

kernel unless NP ✓ coNP/poly. See [25, Theorem 15] for quick reference.

We study generalization of CLIQUE CONTRACTION problem called s-CLUB CONTRAC-

TION. A graph is called s-club if the diameter of graph is at most s. We formally define the

problem as follows.



s-CLUB CONTRACTION Parameter: k

Input: A graph G and integers k,s

Question: Is it possible to obtain a graph of diameter at most s from G with at most k

edge contractions?

Clearly, 1-CLUB CONTRACTION problem is identical to that of CLIQUE CONTRACTION.

We prove that s-CLUB CONTRACTION does not admit a lossy kernel of polynomial size

unless NP✓ coNP/poly even when s = 2 and input is restricted to a split graph.

7.2 Preliminaries

We start with following observation which is useful to find large induced clique in input

graph. Note that we can assume that input graph is connected as otherwise we know it can

not be converted into a clique by edge contraction only.

Observation 7.2.1. If graph G is k-contractible to a clique then G can be converted into a

clique by deleting at most 2k vertices.

Proof. Let F be a set of edges of size at most k such that G/F is a clique. Let W be a

G/F-witness structure of G. Let X be set of all vertices which are contained in big witness

sets in W . Since every vertex in X is incident on some edge in F , size of X is at most

2k. Any any two vertices in V (G)\X , are adjacent with each other as these vertices form

a singleton sets which are adjacent in G/F . Hence G can be converted into a clique by

deleting vertices in X .

For a given graph G, its compliment graph, denoted by Ḡ, is defined on same set of vertices

and edge uv is present in Ḡ if vertices u,v are not adjacent in graph G.

Observation 7.2.2. There exists a 2-factor approximation algorithm to compute set of

vertices whose deletion results in a clique.



Proof. For a given graph G, consider its complement graph Ḡ. For a set of vertices X in G,

G−X is a complete graph if and only if X is a vertex cover of Ḡ. As there exists a 2-factor

approximation algorithm to compute a vertex cover of given graph, we get a 2-factor

approximation algorithm to compute set of vertices whose deletion results in clique.

Consider a connected graph G which is k-contractible to clique K`. Let W be a K`-witness

structure of G. Following observation proves that given a graph with its witness structure,

we can merge two witness set and delete a vertex to obtain a witness structure for smaller

graph.

Observation 7.2.3. Let W be a clique witness structure of a graph G. If there exists two

different witness sets W (t1),W (t2) in W and a vertex v in W (t1) such that set W (t) =

(W (t1)[W (t2))\{v} is a connected set in G−{v} then W 0 is a clique witness structure

of G−{v} where W 0 is obtained from W be removing W (t1),W (t2) and adding W (t).

Proof. Let G0 = G − {v}. Note that W 0 is a partition of vertices in G0. Any set in

W 0
\ {W (t)} is a witness set in W and does not contain v. Hence it is a connected set in

G0. Since G0[W (t)] is connected, all sets in W 0 are connected in G0.

Consider any two witness sets W (t 0),W (t 00) in W 0. If none of these two is equal to W (t)

then both of these sets are present in W . Since none of these witness sets contains vertex v,

they are adjacent with each other in G0. Now, consider a case when one of them, say W (t 00),

is equal to W (t). As witness sets W (t 0) and W (t2) are present in W , there exists an edge

with one end point in W (t 0) and another in W (t2). The same edge is present in graph G0 as

it is not incident on v. Since W (t2) is subset of W (t), sets W (t 0) and W (t) are adjacent in

G0. Hence any two witness sets in W 0 are adjacent with each other. This implies that W 0

is a clique witness structure of graph G−{v}.



7.3 Lossy Kernel for CLIQUE CONTRACTION

In this section, we present a lossy kernel for CLIQUE CONTRACTION. As mentioned

earlier, as assume that input graph G is connected. We define optimization problem in the

following way.

CLC(G,k,F) =

8

>
<

>
:

• if G/F is not a clique

min{|F |,k+1} otherwise

If number of vertices in input graph is at most k+3 then we can return same instance as

kernel for given problem. We only consider inputs which has at least k+3 vertices. By

the definition of optimization problem, for any set of edges F if G/F is a clique then the

maximum value of CLC(G,k,F) is k+1. Hence any spanning tree of G is a solution of

cost k+ 1. We call it a trivial solution for given instance. Consider an instance (P4,1)

where P4 is a path on four vertices. One need to contract at least two edges to convert P4

into a clique. We say (P4,1) as trivial instance for this problem.

We start with first reduction rule which says if the minimum number of vertices that needs

to be deleted from input graph is large then we can return trivial instance as lossy kernel.

Reduction Rule 7.3.1. Given an instance (G,k), apply the algorithm mentioned in Ob-

servation 7.2.2 to find set X such that such that G−X is a complete graph. If size of X is

greater than 4k then return (P4,1).

Lemma 7.3.1. Reduction Rule 7.3.1 is 1-safe.

Proof. Let (G,k) be an instance such that Reduction Rule 7.3.1 returns (P4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if P4/F 0 is a clique then F 0 contains at least two edges. This

implies CLC(P4,1,F 0) = 2 and OPT(P4,1) = 2.



Since a 2-factor approximation algorithm returns a set of size strictly more than 4k, for any

set X 0 of size at most 2k, G−X 0 is not a complete graph. But by Observation 7.2.1, if G

is k-contractible to a clique then G can be converted into a clique by deleting at most 2k

vertices. Hence for any set of edges F⇤ if G/F⇤ is a clique than size of F⇤ is at least k+1.

This implies OPT(G,k) = k+1. For a spanning tree F of G, CLC(G,k,F) = k+1.

Combining these values, we get CLC(G,k,F)
OPT(G,k) = k+1

k+1 = 2
2 = CLC(P4,1,F 0)

OPT(P4,1)
. This implies if F 0 is

c-factor approximate solution for (P4,1) then F is 1-factor approximate solution for (G,k).

This concludes the proof.

For a given graph G, let (X ,Y ) be a partition of V (G) such that G−X = G[Y ] is a complete

graph. For a > 1, let b 2 = a . Find a smallest integer d such that d+1
d  b . Or in other

words, fix d = d
b

b−1e. Given an instance (G,k) and partition (X ,Y ) of G, we deploy

following two marking schemes.

Marking Scheme 7.3.1. For a subset A of X, let M1(A) be a collection of vertices in Y

whose neighborhood contains A. For every subset A of X which is of size at most d, mark

a vertex in M1(A).

Formally, M1(A) = {y| y2Y such that A✓N(y)}. If M1(A) is empty then marking scheme

does not mark any vertex. If it is not empty then marking scheme arbitrary chooses a vertex

and marks it.

Marking Scheme 7.3.2. For a subset A of X, let M2(A) be a collection of vertices in Y

whose neighborhood does not intersect A. For every subset A of X which is of size at most

d, mark 2k+1 vertex in M2(A).

Formally, M2(A) = {y| y 2 Y such that N(y)\A = /0}. If the number of vertices in M2(A)

is at most 2k+ 1 then marking scheme marks all vertices in M2(A). If it is larger than

2k+1 then it arbitrary chooses 2k+1 vertices and marks them.



Figure 7.1: Straight lines (Ex. within W (t)) represent edges in original solution F . Dashed
lines (Ex. across W (t) and W (t 0)) represents extra edges added to solution F . Please refer
to Lemma 7.3.2.

Reduction Rule 7.3.2. For a given instance (G,k), and partition (X ,Y ) of V (G), applying

Marking Scheme 7.3.1 and 7.3.2. Let G0 be the graph obtained from G by deleting

unmarked vertices in Y . Return instance (G0,k).

Above reduction rule can be applied in time |X |
d
·nO(1). Let Y 0 be a subset of Y which has

been marked in Marking Scheme 7.3.1 or 7.3.2. Note that G0 is an induced subgraph of

G. In the following lemma, we argue that given a solution for (G0,k) we can construct a

solution of almost the same size for (G,k).

Lemma 7.3.2. Let (G0,k) be the instance returned by Reduction Rule 7.3.2 when applied

on an instance (G,k). If there exists a set of edges of size at most k, say F 0, such that G0/F 0

is a clique then there exists a set of edges F such that G/F is a clique and cardinality of F

is at most b · |F 0
|.

Proof. If no vertex in Y has been deleted than G0 and G are identical graphs and statement

is true. We assume that at least one vertex in Y has been deleted. Let Y 0 be a set of vertices

in Y which has been marked. Sets X ,Y 0 forms a partition of V (G0) such that G0−X is a

complete graph and Y 0 is a proper subset of Y . Let W 0 be a G0/F 0-witness structure of



G0. We construct a clique witness structure W of G from W 0 by adding singleton witness

set {y} for every vertex y in Y \Y 0. Since G[Y \Y 0] is a clique in G, any two newly added

witness sets are adjacent with each other. Moreover, any witness set in W 0 which intersects

Y 0 is adjacent with newly added witness sets. We now consider witness sets in W 0 which

do not intersect Y 0.

Let W ⇤ be a collection of witness set W (t) in W 0 such that W (t) is contained in X and there

exists a vertex y in Y \Y 0 whose neighborhood does not intersects W (t). See Figure 7.1. We

argue that every witness set in W ⇤ has at least d+1 vertices. For the sake of contradiction,

assume that there exists a witness set W (t) in W ⇤ which contains at most d vertices. Since

Marking Scheme 7.3.2 iterated over all sets of size at most d, it also considered W (t) while

marking. Note that vertex y belongs to set M2(W (t)). Since y is unmarked, there are 2k+1

vertices in M2(W (t)) which has been marked. All these marked vertices are in G0. Since

cardinality of F is at most k, the number of vertices in V (F) is at most 2k. This implies at

least one marked vertex in M2(W (t)) is a singleton witness set in W 0. But there is no edge

between this singleton witness set and W (t). This contradicts the fact that any two witness

sets in W 0 are adjacent with each other in G0. Hence our assumption is wrong and W (t)

has at least d +1 many vertices.

Fix a witness set, say W (t 0), in G0/F 0-witness structure which intersects Y 0. Because of

Marking Scheme 7.3.1, we have at least one such witness set.

We note that W (t 0) is adjacent with every vertex in Y \Y 0. Let W (t) be a witness set in W ⇤.

Since W (t 0) and W (t) are two witness sets in G0/F 0-witness structure, there exists an edge

with one end point in W (t 0) and another in W (t). Set W (t 0)[W (t) is adjacent with every

other witness set in W .

We now describe how to obtain F from F 0. We initialize F = F 0. For every witness set

W (t) in W ⇤ add an edge between W (t) and W (t 0) to set F 0. Equivalently, we construct a

new witness set by taking a union of W (t 0) and all witness sets W (t) in W ⇤. This witness

set is adjacent with every vertex in Y \Y 0 and hence G/F is a clique. We now argue the



Figure 7.2: Straight lines (Ex. y4y5) represent edges in original solution F . Dotted lines
(Ex. y4y6) represents edges which are replaced for some edges in F . Dashed lines (Ex.
y1y2) represents extra edges added to solution F . Please refer to Lemma 7.3.3.

size bound on F . Note that we have added one extra edge for every witness set W (t) in

W ⇤. We know that every such witness set has at least d+1 vertices. Hence we have added

one extra edge for at least d edges in solution F . Moreover, since witness sets in W ⇤ are

vertex disjoint, no edge in F can be part of two witness sets. This implies number of edges

in F is at most d+1
d |F | b |F |.

In the following lemma, we argue that value of optimum solution for reduced instance can

be upper bounded by value of optimum solution for original instance.

Lemma 7.3.3. Let (G0,k) be the instance returned by Reduction Rule 7.3.2 when applied

on an instance (G,k). If OPT(G,k) k then OPT(G0,k) b ·OPT(G,k).

Proof. Let F be a set of at most k edges in G such that OPT(G,k) = CLC(G,k,F) and

W be a G/F-witness structure of G. Since we are working with minimization problem,



to prove the lemma it is sufficient to find a solution for G0 which is of size b · |F |. Recall

that (X ,Y ) is a partition of V (G) such that G−X = G[Y ] is a complete graph. Set of

vertices marked by either of marking schemes is denoted by Y 0. In other words, (X ,Y 0) is

a partition of G0 such that G0−X = G0[Y ] is a complete graph. We proceed as follows. At

each step, we construct graph G⇤ from G by deleting one or more vertices in Y \Y 0. We

also construct a set of edges F⇤ from F by replacing existing edges and/or adding extra

edges to F . At any intermediate state, we ensure that G⇤/F⇤ is a clique and the number of

edges in F⇤ is at most b · |F |. Let F◦ = F is an optimum solution for input instance (G,k).

To obtain G⇤ and F⇤, we delete witness sets which are subsets of Y \Y 0 (Condition (1))

and modify the ones which intersect with Y \Y 0. Every witness set of later type intersects

with Y 0 or X or both. We partition these big witness sets in W into two groups depending

on whether they intersects X (Condition (2)) or not (Condition (3)). We modify witness

sets which satisfy least indexed condition. If there exist no witness set which satisfy either

of these three conditions then Y \Y 0 is an empty set and the lemma is vacuously true.

Condition (1): There exists a witness set W (t) in W which is a subset of Y \Y 0.

Construct G⇤ from G by deleting witness sets W (t) in W . Let F⇤ = F . Since class of

complete graphs is closed under vertex deletion, G⇤/F⇤ is a clique. We repeat this process

until there exists a witness set which satisfy Condition (1).

At this stage we rename G⇤ to G and F⇤ to F for notational convenience.

Condition (2): There exists a witness set W (t) in W which contains vertices from Y \Y 0

but does not intersects X .

Note that W (t) must intersects with Y 0. See Figure 7.2. Let y4 and y5 be vertices in

W (t)\Y 0 and W (t)\ (Y \Y 0). Let W (t1) be a witness set which intersects Y 0. Let y6 be a

vertex in set W (t1)\Y 0. Consider witness sets W (t),W (t1) and vertex y5 in W (t) in graph

G. These satisfies the premise of Observation 7.2.3. This implies W ⇤ is a clique witness

structure of G−{y5} where W ⇤ is obtained from W be removing W (t),W (t1) and adding



(W (t)[W (t1))\{y5}. This corresponding to replacing an edge in F which was incident

on y5 with the one across W (t) and W (t1). For example, in Figure 7.2, we replace edge

y4y5 in set F with an edge y4y6 to obtain a solution for G−{y5}. An edge in F has been

replaced with another edge and one vertex in Y \Y 0 is deleted. The size of F⇤ is same

as that of F and G⇤/F⇤ is a clique. We repeat this process until there exist a witness set

which satisfy Condition (2).

At this stage we rename G⇤ to G and F⇤ to F for notational convenience.

Condition (3): There exists a witness set W (t) in W which contains vertices from Y \Y 0

and intersects X .

Let y be a vertex in W (t)\ (Y \Y 0) and Xt be vertices in W (t)\X which are adjacent with

y via edges in F . We find a substitute for y in Y \Y 0. We consider two cases based on

cardinality of Xt .

Condition (3.a): There exists a witness set W (t) which contains y from Y \Y 0 whose

neighborhood via edges in F in W (t)\X is of size at most d.

In this case, Xt have been considered by Marking Scheme 7.3.1. Since y is adjacent

with every vertex in Xt , set M1(Xt) is not empty. As y is in Y \Y 0, and hence unmarked,

there is another vertex, say y1, in M1(X1) which has been marked. Let W (t1) be the

witness set containing y1. Witness sets W (t),W (t1) and y in W (t) satisfies the premise

of Observation 7.2.3. This implies W ⇤ is a clique witness structure of G− {y5} where

W ⇤ is obtained from W be removing W (t),W (t1) and adding (W (t)[W (t1))\{y}. This

corresponding to replacing edge xy in F by xy1 for every x in Xt . A set of edges in F has

been replaced with another set of edges of same size and a vertex in Y \Y 0 is deleted. The

size of F⇤ is same as that of F and G⇤/F⇤ is a clique. We repeat this process until there

exists a witness set which satisfy Condition (3.a).

At this stage we rename G⇤ to G and F⇤ to F for notational convenience.

Condition (3.b): There exists a witness set W (t) which contains y from Y \Y 0 whose



neighborhood via edges in F in W (t)\X is of size at least d +1.

Since Marking Scheme 7.3.1 iterated over subset of X of cardinality at most d, it may

not have marked any vertex in M1(Xt). In this case, we partition W (t) \ {y} into sets

W1,W2, . . . ,Wp such that the number of vertices in Wi for i in [p−1] is exactly d and the

number of vertices in Wp is at most d. See Figure 7.2. Since y is adjacent with every

vertex in Xt , and hence every vertex in Wi, set M1(Wi) is not empty for any Wi. Since y is in

Y \Y 0 and hence unmarked, there is a vertex in M1(Wi), say yi, different from y which has

been marked for each i in [p]. We assume that all vertices in {y1,y2, . . . ,yp} are different

to obtain the upper bound. We construct F⇤ from F by following operation: For every i

in [p−1], replace an edge xy in F by an edge xyi and for every i in [p−2] add an edge

yiyi+1. We first argue about the cardinality of F⇤. Note that we have added an extra edge

corresponding to Wi for each i in [p− 1]. These sets are of size d. We did not add an

extra edge corresponding to Wp whose cardinality may be smaller than d. This implies

that we have added an extra edge for d edges in F . Moreover, since Wis are pairwise

disjoints, no edge in F can be part of two sets of edges corresponding to which new edge

has been added. Hence size of F⇤ is at most d+1
d |F |= b · |F|. We now argue that if G⇤ is

obtained from G by deleting y then G⇤/F⇤ is a clique. For every i in [p], let W (yi) be the

witness set containing yi. Let Z be the union of W (t)\{y} and W (yi) for all i in [p]. Let

W ⇤ be a witness structure of G⇤ obtained from W by removing W (t),W (y1), . . . ,W (yt)

and adding Z. Since all other witness sets remains same and we only replaced or added

edges incident on vertices in Z [{y}, union of all spanning trees of witness sets in W ⇤ is

contained in F⇤. Any two witness sets in W ⇤ which are part of W are adjacent with each

other. As Z contains W (y1), any witness set in W ⇤ which is not contained in Z is adjacent

with Z. Hence any two witness sets in W ⇤ are adjacent with each other. This implies that

G⇤/F⇤ is a clique. We repeat this process until there exists a witness set which satisfy

Condition (3.b). We argue that |F⇤
| b · |F◦

| even after repeating this process. Consider

a witness set W (t) in W which satisfy Condition (3.b) and which has been replaced by

set Z. If Z does not intersect Y \Y 0 then it does not satisfy any condition and hence never



been modified again. If it intersects Y \Y 0 then it also intersects Y 0 and hence satisfy

Condition (2). This implies that any witness set in W is replaced by this process at most

once. In other words, if an edge xy in F◦ which has been replaced with edge xyi before

adding extra edge yiyi+1 for some i in [p− 1] then edge xy is never considered by the

process again.

Any vertex in Y \Y 0 must be part of some some witness set in W and any witness set in W

satisfies at least one of the conditions mentioned above. If there is no witness sets which

satisfy any condition then Y \Y 0 is empty. This implies G⇤ = G0 and there exists a solution

F⇤ of size b · |F◦
|. This concludes the proof of the lemma.

We are now in position to prove following lemma.

Lemma 7.3.4. Reduction Rule 7.3.2, along with a solution lifting algorithm, is an a-

reduction rule.

Proof. Let (G0,k) be the instance returned by Reduction Rule 7.3.2 when applied on an

instance (G,k). We present a solution lifting algorithm. For a solution F 0 for (G,k) if

CLC(G0,k,F 0) = k+1 then solution lifting algorithm returns a spanning tree F of G (a

trivial solution) as solution for (G,k). In this case, CLC(G,k,F) = CLC(G0,k,F 0). If

CLC(G0,k,F 0)  k then size of F 0 is at most k and G0/F 0 is a clique. Solution lifting

algorithm uses Lemma 7.3.2 to construct a solution F for (G,k) such that cardinality of

F is at most b · |F 0
|. In this case, CLC(G0,k,F 0) b ·CLC(G,k,F). Hence there exists

a solution lifting algorithm which given a solution F 0 for (G0,k0) returns a solution F for

(G,k) such that CLC(G,k,F) b ·CLC(G,k,F).

If OPT(G,k)  k then there exists a set of edges of cardinality at most k, say F⇤, such

that G/F⇤ is a clique. By Lemma 7.3.3 we know that OPT(G0,k)  b · OPT(G,k).

If OPT(G,k) = k + 1 then OPT(G0,k)  k + 1 = OPT(G,k). Hence in either case,

OPT(G0,k) b ·OPT(G,k).



Combining two inequalities, we get CLC(G,k,F)
b ·OPT(G,k) 

b ·CLC(G0,k,F 0)
OPT(G0,k) . This implies if F 0 is c-

factor approximate solution for (G0,k) then F is (c ·b 2)-factor approximate solution for

(G,k). As a = b
2, this concludes the proof.

We present main result of the chapter.

Theorem 7.3.1. CLIQUE CONTRACTION parameterized by size of solution k, admits a

time efficient PSAKS with O(kd+1) vertices, where d = d

p
a

p
a−1e.

Proof. For a given instance (G,k), a kernelization algorithm applies Reduction Rule 7.3.1.

If it returns a trivial instance than statement is vacuously true. If it does not return a trivial

instance then the algorithm partition V (G) in two sets (X ,Y ) such that G−X = G[Y ] is

a complete graph and size of X is at most 4k. The algorithm apply Reduction Rule 7.3.2

on instance (G,k) with partition (X ,Y ). The algorithm returns the reduced instance as

a-lossy kernel for (G,k).

The correctness of the algorithm follows from Lemma 7.3.1, and Lemma 7.3.4 combined

with the fact that Reduction Rule 7.3.2 is applied at most once. By Observation 7.2.2,

Reduction Rule 7.3.1 can be applied in polynomial time. The size of instance returned by

Reduction Rule 7.3.2 is at most O((4k)d
· (2k+1)+4k) =O(kd+1). Reduction Rule 7.3.2

can be applied in time nO(1) if number of the vertices in (G,k) is more O(kd+1).

7.4 (No) Lossy Kernel for s-CLUB CONTRACTION

In this section, we argue that there is no lossy kernel for s-CLUB CONTRACTION. We can

safely assume that input graph G is connected. We define optimization problem in the

following way.

s-CLUBC(G,k,F) =

8

>
<

>
:

min{|F |,k+1} if diameter of G/F is at most s

• otherwise



To prove that s-CLUBC(G,k,F) does not have a lossy kernel of polynomial size, it is

sufficient to prove that there is no a-appt from a problem for which similar kind of

results are known. In [47], Golovach et al. presented a reduction from an instance of

HITTING SET to an instance of s-CLUBC(G,k,F). They proved that for any s ≥ 2, the

s-CLUB CONTRACTION problem on chordal graphs is NP-Hard as well as W[2]-Hard

when parameterized by k. Moreover, 2-CLUB CONTRACTION is NP-Hard and W[2]-Hard

when parameterized by k even on split graphs. We use similar ideas to prove a 1-appt

from SET COVER/k to 2-CLUB CONTRACTION. We present following lemma for s = 2

and briefly mention how to generalize the lemma for any fixed s.

Lemma 7.4.1. There exists an 1-appt from SET COVER/k to 2-CLUB CONTRACTION

even input graph is restricted to a split graph.

Proof. To prove the lemma, present a reduction algorithm, say RA , which given an instance

((U,S ),k) of SC/k outputs an instance (G,k0) of s-CLUBC. We also present a solution

lifting algorithm that takes as input an instance ((U,S ),k) of SC/k, the output instance

(G,k0) = RA ((U,S ),k) of s-CLUBC, and a solution F to the instance (G,k0) and outputs

a solution F to ((U,S ),k) such that SC/k((U,S ),k,F ) = s-CLUBC(G,k,F).

We first present a reduction algorithm.

Reduction Algorithm : Given an instance ((U,S ),k) of the SET COVER problem with

U = {u1, . . . ,un} and S = {S1, . . . ,Sm}, we create a split graph G as follows. Create a

vertex si for each Si 2 S . Let VS be set of all vertices corresponding to some S in S .

Add edges in G to convert VS into a clique. For every u j 2 U , we create k+1 vertices

u1
j , . . . ,u

k+1
j that are made adjacent to vertex si if and only if u j 2 Si. Add a vertex a and

make it adjacent with every vertex in VS . Add k+ 1 vertices b1,b2, . . . ,bk+1 and make

them adjacent with a only. This completes the construction of G. See Figure 7.3.

Note that the vertex set of G can be partitioned into a clique S [{x} and an independent

set V (G) \ (VS [{a}), so G is a split graph. Also observe that the diameter of G is 3.



Figure 7.3: Reduction from a set cover instance ((U,S ),k) to an instance of s-CLUB

CONTRACTION. Here U = {u1,u2,u3};S = {S1,S2,S3} where S1 = {u1,u2},S2 =
{u1,u2,u3},S3 = {u2,u3} and k = 2.

Informally speaking, all the paths of length of 3 are between one of the vertices of type bq

and uq
j for some q 2 {1, . . . ,k}. To shorten all these paths with at most k edge contraction,

one need to find a set cover of original instance of size k and vice versa.

Solution Lifting Algorithm : Let F a solution for (G,k). If |F | ≥ k + 1 then return

F = S as a solution. Otherwise, let W (ta) be the witness set in (G/F)-witness structure

of G which contains a. Let F be the collection of set Si in S for all si in W (ta). Return

F .

For any subset F of S , let FF be the set of edges in G which are incident on a and si for

some s in F .

Claim 1: If F is a set cover of instance (U,S ,k) then the diameter of G/FF is at most 2.

Proof : Let T be the graph obtained from G by contracting all edges in FF . Let ta be the

vertex in T which corresponds to the unique big witness set. Note that W (ta) contains a

and all vertices corresponding to sets in F . The fact that F is a set cover implies that in T ,

vertex uq
j is adjacent to some vertex in W (ta) for every j 2 {1, . . . ,n} and q 2 {1, . . . ,k+1}.

Hence ta is a universal vertex in T , implying that T has diameter at most 2. ⇧

Let F be a set of edges in G such that G/F has diameter at most 2. Let W (ta) be the

witness set in T -witness structure of G which contains a, where T = G/F . Let FF be a

collection of set Si in S such that si is in W (ta).



Claim 2: If F has size at most k then FF is a set cover of ((U,S ),k).

Proof : For any element u j of universe, vertices u1
j , . . . ,u

k+1
j forms an independent set in

G. Since size of F is at most k, edges in F can be incident on at most k vertices in this set.

Without loss of generality, let u1
j be a vertex such that there is no solution edge is incident

on it. By same arguments for set b1, . . . ,bk+1, we can assume that there is no edge incident

on b1. Consider a shortest path from u1
j to b1 in graph G. Every such path is of the form

(u1
j ,si,a,b1) where Si is a set which contains u j. Since the diameter of T is at most 2, for

every vertex u j there exists a path from u j to b1 which has been shortened by an edge

contraction. Since no edge in F is incident on u j
1 or on b1, edge sia has been contracted

for some Si which contains u j. Hence for every vertex u1
j there exists a vertex si in W (ta)

which is adjacent to u1
j . Since F has at most k edges, the number of vertices in W (ta) apart

from a is at most k. Hence FF has at most k sets and for every vertex in U there exists a

set in FF which contains that element. This implies that FF is a set cover for (U,S ,k). ⇧

By Claim 1 and 2, OPTSC/k((U,S ),k) = OPTs-CLUBC(G,k). Moreover, if |F | ≥ k+ 1

then solution lifting algorithm return F =S and in this case, s-CLUBC(G,k,F) = k+1=

SC/k((U,S ),k,S ). If |F | k then by Claim 2, s-CLUBC(G,k,F)= SC/k((U,S ),k,F ).

This implies that there exists a 1-appt from SET COVER/k to 2-CLUB CONTRACTION

even input graph is restricted to a split graph.

Arguments to generalise this lemma to higher value of s is identical to those presented in

[47]. We present them here briefly for the sake of completeness. To show above lemma

holds for 3-CLUB CONTRACTION, we modify the reduction algorithm as follows. Instead

of adding b1, . . . ,bk+1 adjacent to a, we crate k+1 vertices z1, . . . ,zk+1 and make the set

{z1, . . . ,zk+1,a} into a clique. Now we construct b1, . . . ,bk+1 and make bi adjacent to zi

for i 2 {1, . . . ,k+ 1}. By similar arguments, we can show that OPTSC/k((U,S ),k) =

OPTs-CLUBC(G,k). Moreover, s-CLUBC(G,k,F) = SC/k((U,S ),k,FF). For s ≥ 4,

consider a graph G and denote by G0 the graph obtained from G by adding k+1 pendant

vertices adjacent to v for each vertex v of G. It is straightforward to observe that G0 is



k-contractible to a graph of diameter at most s if and only if G is k-contractible to a graph

of diameter at most s− 2. As we have proved that the lemma holds for s 2 {2,3}, this

observation immediately implies the lemma for every fixed s ≥ 2. By Corollary 2.4.1 and

Lemma 7.4.1, we get following result.

Theorem 7.4.1. s-CLUBC(G,k,F) does not have a polynomial size a-approximate com-

pression for any a ≥ 1, unless NP ✓ coNP/poly.

7.5 Conclusion

In this chapter we present a lossy kernel of polynomial size for CLIQUE CONTRACTION

when parameterized by solution size. This compliments the known results that the problem

does not have a polynomial (classical) kernel. Our kernelization algorithm depends on

the fact that in a large instance solution edges affect very few vertices. Remaining set of

vertices are adjacent with each other and most of affected vertices. If large number of

unaffected vertices have same neighbors and non-neighbors in affected vertices then we

can delete one of these vertices with slight loss of accuracy. It is interesting to see whether

these methods can be generalized to get lossy kernel for SPLIT CONTRACTION.



Chapter 8

Path Contraction

8.1 Introduction

Any connected graph can be contracted to an edge which is a path on two vertices. In this

chapter, we address a question of determining the largest integer ` for given graph such

that it can be contracted to P̀ , path on ` vertices. Formally, we study following problem.

PATH CONTRACTION

Input: Graph G

Output: Largest integer ` such that G can be contracted to P̀

Early paper of Brouwer and Veldman states that we can determine whether a given graph

can be contracted to P3 or not in polynomial time but it is NP-Hard to determine whether it

can be contracted to P4 or not [14]. This implies that we can not expect an algorithm for

the problem which runs in time O(n f (`)
). However, there is a simple algorithm running

in time O?
(2n

)
⇤ algorithm (See Observation 8.2.3). Algorithm with better running time

are known for special case. Cygan et al. [26] observed that P4-CONTRACTION is same as

partitioning given graph into two disjoint connected subgraphs which contain specified

terminals. They called it 2-DISJOINT CONNECTED SUBGRAPHS problem and gave an

⇤O? notation hides factors which are polynomial in size of input.
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algorithm running in time O(1.933n
). Telle and Villanger [90] presented an algorithm to

solve the same problem in time O(1.7804n
).

We generalize the approach presented by Telle and Villanger [90] to solve 3-DISJOINT

CONNECTED SUBGRAPHS problem (precise definition follows) which is idential to P5-

CONTRACTION problem (Section 8.4). We present an algorithm running in time O(1.877n
).

We use this and Telle and Villanger’s algorithm as subroutine in our main algorithm. The

main algorithm, presented in Section 8.5, is based on four different methods to attack the

problem. We argue that for any graph, at least one of these methods returns an optimum

value. In one methods, key component is to enumerate all connected supersets of given set

of vertices which are of size at most a and boundary b, where a,b are two fixed integers.

We present an algorithm to enumerate all such connected sets in Section 8.3 which may be

of independent interest.

We mention that parameterized version of this problem, with number of edges, k, allowed

to contract to obtain a path as parameter has been studied by Hergerners et al. They

presented an algorithm running in time 2k+o(k)nO(1) and kernel of size 5k+3 [55].

8.2 Preliminaries

In this chapter, we slightly abuse the notation of set brackets when writing a Pt-witness

structure of graph. When we say W = {W1,W2, . . . ,Wt} is a Pt-witness structure of graph

G, we treat W as ordered set. In other words, we assume that one end point in path Pt is

designated as first vertex and witness sets W1,W2, . . . corresponds to first, second, and so

on vertices in Pt . We start with few simple observations.

Observation 8.2.1. Any connected graph can be contracted to P2.

Observation 8.2.2. Consider a graph G which can be contracted to Pt. There exists a

Pt-witness structure W = {W1, . . . ,Wt} of G such that W1,Wt are singleton sets.



Proof. Let {W 01, . . . ,W
0

t } be a Pt-witness structure of G. We modify witness sets W 01,W
0

t to

ensure that they satisfy desired property. There exists an edge, say u1u2 in graph G where

u1,u2 are contained in sets W 01,W
0

2. Assume that witness set W 01 is not a singleton set. Fix a

spanning tree of graph G[W 01] which is rooted at u1 and let v be one of its leaf. Since v is

leaf in a spanning tree of G[W 01], set W 01 \{v} is connected. Moreover, set (W 01[W 02)\{v} is

also connected. It is easy to check that {{v},(W 01[W 02)\{v}, . . . ,W
0

t } is also a Pt-witness

structure of G. Applying similar arguments on witness set W 0t , we obtain a Pt-witness

structure in which both end points are singleton sets.

We present a simple algorithm for PATH CONTRACTION.

Observation 8.2.3. There exists an algorithm that solves PATH CONTRACTION problem

in O?
(2n

) time where n is the number of vertices in an input graph.

Proof. Algorithm A starts with initialising an integer t to 2. For a given graph G, the

algorithm runs over all possible 2-colorings of vertices of G. For every coloring, the

algorithm contracts each monochromatic connected component of the coloring to a vertex.

If the resulting graph is a path then the algorithm updates value of t to length of this path.

Algorithm returns value of t after iterating over all 2-colorings.

Running time of the algorithm is O?
(2n

) as contracting edges and checking whether a

graph is a path or not is polynomial time process. Any connected graph can be contracted

to P2.The algorithm returns an integer t which is strictly greater then two only if had found

a Pt-witness structure of G. It remains to argue that if ` is the largest integer such that G

can be contracted to P̀ then algorithm returns `. Let W = {W1,W2, . . . ,W`} be a P̀ -witness

structure of G. Since algorithm A iterates over all 2-coloring of V (G), it also consider a

coloring where all vertices in odd indexed witness sets in W are colored with one color and

all vertices in even indexed witness sets are colored with another color. For this particular

coloring, W1,W2, . . . ,W` are monochromatic connected components of G. Contracting each

of them to a vertex results in path of length `. Hence algorithm returns a value which is at



least `.

We end this section with an observation which is used to bound the number of subsets of

universal set U which are of size size at most d |U | for a fixed fraction d . We start with

following inequality for integers n and k such that k  n.

✓

n
k

◆



h⇣k
n

⌘−
k
n
·
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k
n−1in

Using above inequality we get following upper bound on summand for k < n/2.
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For a positive constant d < 1/2, assume that dn is an integer for the sake of clarity. Above

inequalities can be written as:
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= dn[g(d )]n

where function g(d ) is defined as:

g(d ) =
1

dd
· (1−d )(1−d )

Following observation is implied by above inequalities.

Observation 8.2.4. For a universe U of n elements and a constant d < 1/2, the number

of subsets of U of size at most dn is O?
([g(d )]n) and all these subsets can be enumerated

in same time.



Algorithm 8.3.1: Enum-Conn-Sets: Enumeration Algorithm for (Q,a,b)-
connected sets

Input: A graph G, a non-empty set Q ✓V (G), and integers a,b 2 N.
Output: The set of all (Q,a,b)-connected sets in G.

1 if |Q|> a or |N[Q]|> a+b then
2 return /0

3 if |Q|= a and G[Q] is connected then
4 return {Q}
5 if |Q|= a and G[Q] is not connected then
6 return /0

7 Consider a vertex v 2 N(Q);
8 return

Enum-Conn-Sets(G,Q[{v},a−1,b)[Enum-Conn-Sets(G−{v},Q,a,b−1)

8.3 Enumeration of Connected Sets

A graph is called connected if there is a path between every pair of vertices. A maximal

connected subgraph is called a connected component or a component in a graph. A set

A ✓V (G) is a connected set in G if G[A] is a connected graph. For a graph G, a non-empty

set Q ✓V (G), and integers a,b 2 N, a connected set A in G is a (Q,a,b)-connected set if

Q ✓ A, |A| a, and |N(A)| b.

Lemma 8.3.1. For a graph G, a non-empty set Q ✓ V (G), and integers a,b 2 N the

number of (Q,a,b)-connected sets in G is at most 2a+b−|Q|. Moreover, we can enumerate

all (Q,a,b)-connected sets in G in time O(2a+b−|Q|
·nc

).

Proof. We give an algorithmic (constructive) proof for the lemma. The algorithm Enum-

Conn-Sets, for enumerating all (Q,a,b)-connected sets in G is given in Algorithm 8.3.1.

Next, we prove the correctess and the desired running time bound for the algorithm

Enum-Conn-Sets.

Correctness. Let I = (G,Q,a,b) be an instance for the algorithm Enum-Conn-Sets. The

objective is to show that the algorithm outputs all the (Q,a,b)-connected sets in G. We

proof the correctness by induction on µ = µ(I) = a− |Q|+b.



• Base Cases: The base case occurs when one of the following conditions hold.

1. |Q|> a or |N[Q]|> a+b. In this case, Step 1 of the algorithm returns /0 as the

output. If |Q|> a, then there is no (Q,a,b)-connected set in G, and hence the

output of the algorithm is correct. Otherwise, we have |N[Q]|> a+b. Consider

a (Q,a,b)-connected set A (if it exists) in G. Notice that for a vertex v 2 N(Q)

is either in A or in N(A). Moreover, N[A] has size at most a+b. This imples

that such a connected set cannot exist. Therefore, the output of the algorithm is

correct.

2. |Q|= a and G[Q] is connected. Since Base Case 1 is not applicable, we have

that |N(Q)|  b. Furthermore, Step 3 of the algorithm is applicable, which

output {Q} as the set of all (Q,a,b)-connected sets in G. Since |Q|= a, and

any (Q,a,b)-connected set in G must contain all the vertices in Q, therefore Q

is the only potential candiate for a (Q,a,b)-connected set in G. Moreover, Q is

a (Q,a,b)-connected sets in G as it satisfies all the conditions of the definition

(including |N(Q)| b). Hence, the output of the algorithm is correct.

3. |Q|= a and G[Q] is not connected. Similar to the previous case we have that

|N(Q)| b. Furthermore, Step 5 of the algorithm is applicable, which output

/0 as the set of of all (Q,a,b)-connected sets in G. Since |Q| = a, and any

(Q,a,b)-connected set in G must contain all the vertices in Q, therefore Q is

the only potential candiate for a (Q,a,b)-connected set in G. But, G[Q] is not

connected, and therefore, Q cannot be a connected set. Hence, the output of

the algorithm is correct.

4. µ = 0, which occurs when |Q| = a and b = 0. In this case, one of previous

base cases must be applicable. Therefore, from item 1 and 2 of the base cases

it follows that the output of the algorithm is correct.

• Induction Hypothesis: We assume that the output of the algorithm is correct for

all µ  t, where t 2 N. Next, we show that the output of the algorithm is correct

when µ = t + 1. Since the base cases are not applicable, we have |Q| < a and



|N[Q]|  a+ b. Consider a vertex v 2 N(Q). We can partition the set S , of all

(Q,a,b)-connected sets in G into two sets S v
1 and S v

2 , where S v
1 = {A2S | v2A}

and S v
2 = S \S v

1 . Notice that S v
1 is the set of all (Q[{v},a,b)-connected sets

in G and S v
2 is the set of all (Q,a,b−1)-connected sets in G−{v}. By induction

hypothesis we correctly obtain the set S v
1 , of all (Q[{v},a,b)-connected sets in

G for the input instance I1 = (G,Q[{v},a− 1,b) to the algorithm. This follows

from the fact that µ(I1) = a− (|Q|+1)+b  t < µ . Similarly, we correctly obtain

the set S v
2 , of all (Q,a,b− 1)-connected sets in G− {v} for the input instance

I2 = (G−{v},Q,a,b−1) to the algorithm, which follows from the fact that µ(I2) =

a− |Q|+(b− 1)  t < µ . Hence, the output S = S v
1 [S v

2 of the algorithm is

correct.

Number of (Q,a,b)-connected sets. Let I = (G,Q,a,b) be an instance for the algorithm

Enum-Conn-Sets. We use the measure µ = µ(I) = a− |Q|+b for counting the number of

(Q,a,b)-connected sets in G. Observe that Step 1 to Step 7 (in total) output at most 1 set.

At Step 8, we make two recursive calls to the algorithm. Let K(G,a− |Q|,b) denote the

number of (Q,a,b)-connected sets in G. The recurrence for the number of the connected

sets is given by the following recurrence.

K(G,a− |Q|,b) K(G,a− |Q|−1,b)+K(G−{v},a− |Q|,b−1)

Solving the above recurrence we obtain that the number of (Q,a,b)-connected sets in a

graph is bounded by 2a+b−|Q|.

Runtime Analysis. Let I = (G,Q,a,b) be an instance for the algorithm Enum-Conn-Sets.

We use the measure µ = µ(I) = a− |Q|+b for analysing the running time of the algorithm.

Observe that Step 1 to Step 7 of the algorithm can be executed in polynomial time. At Step

8, we make two recursive calls to the algorithm. Let T (n,a− |Q|,b) denote the running

time required for an instance where the graph comprises of n vertices. The recurrence for



the runtime of the algorithm is as follows.

T (n,a− |Q|,b) T (n,a− |Q|−1,b)+T (n,a,b−1)+nc

We note that in the above recurrence c is some (fixed) constant. Solving the recurrence we

obtain that the running time of the algorithm is bounded by 2a+b−|Q|nc.

For a graph G and integers a,b 2 N, a connected set A in G is a (a,b)-connected set if

|A| a, and |N(A)| b.

Lemma 8.3.2. For a graph G and integers a,b 2 N the number of (a,b)-connected sets

in G is at most 2a+b. Moreover, we can enumerate all (a,b)-connected sets in G in time

O(2a+b
·nc

).

Proof. Note that every non empty (a,b)-connected set is ({v},a,b)-connected sets for

somve vertex v in G. Hence proof of this lemma follows from Lemma 8.3.1.

8.4 3-DISJOINT CONNECTED SUBGRAPH

In this section, we define a generalization of 2-DISJOINT CONNECTED SUBGRAPHS

(2-DCS), called 3-DISJOINT CONNECTED SUBGRAPHS (3-DCS), and present an exact

algorithm to solve it. This algorithm runs in time O?
(1.877n

), where n is number of vetices

in input graph. Apart from using this algorithm as subroutine in an algorithm for PATH

CONTRACTION we use this algorithm to solve P5-CONTRACTION. We start with formal

definition of 2-DISJOINT CONNECTED SUBGRAPHS (2-DCS) problem.



2-DISJOINT CONNECTED SUBGRAPHS (2-DCS)

Input: Connected graph G and two disjoint terminal sets Z1 and Z2

Question: Do there exist two subsets V1,V2 of V (G) which satisfies following proper-

ties?

1. Tuple (V1,V2) is a partition of V (G).

2. Sets V1,V2 are supersets of Z1,Z2, respectively.

3. Graphs G[V1] and G[V2] are connected.

In 3-DCS problem, an input is same but we are intersected in tri-partition of V (G). The

third part separates two subgraphs containing terminal sets. We formally define it as

follows.

3-DISJOINT CONNECTED SUBGRAPHS (3-DCS)

Input: Connected graph G and two disjoint terminal sets Z1 and Z2

Question: Doe there exist three subsets V1,U,V2 of V (G) which satisfies following

properties?

1. Tuple (V1,U,V2) is a partition of V (G).

2. Sets V1,V2 are supersets of Z1,Z2, respectively.

3. Graphs G[V1],G[V2] and G[U ] are connected.

4. Graph G−U has exactly two connected components viz V1,V2.

Any tri-partition (V1,U,V2) which satisfies these condition is called a solution tri-partition.

To solve this problem efficiently, we try to find special kind of tri-partition called immovable

tri-partition. Informally, this is a solution partition in which no vertex in V1 or V2 can

be moved to U . We use notion of terminal-separator to formally define these special

partitions. For a given graph G and set of terminals Z, a vertex v is called Z-separator if Z

intersects with at least two connected components of G− v.

Definition 8.4.1 (Immovable Tri-partition). A solution tri-partition (V1,U,V2) is said to

be immovable tri-partition if any vertex v in V1 \Z1 (resp. V2 \Z2) which has at least one

neighbor in U is a Z1-separator (resp. Z2-separator) in graph G[V1] (resp. in G[V2]).



Following claim guarantees existence of such tri-partition for a YES instances.

Claim 8.4.1. If instance (G,Z1,Z2) is a YES instance of 3-DCS then there exists an

immovable tri-partition of G.

Proof. Let (V1,U,V2) be a solution tri-partition of V (G). If this is an immovable tri-

partition then we are done. Otherwise, without loss of generality, assume that there exists

a vertex in V1 \Z1 which has neighbors in U and is not a Z1-separator in graph G[V1]. Let

C1,C2, . . . ,Cd be connected components of G[V1]− v. Note that d can be equal to 1. Since

v is not a Z1-separator, we know that Z1 is contained in one of the connected components.

Let C1 be the connected component which contains Z1. Consider tri-partition (V 01,U
0
,V2)

of V (G) where V 01 = C1 = V1 \ ({v1}[C2 [ ·· · [Cd) and U 0 = U [{v1}[C2 [ ·· · [Cd .

This tri-partition is also a solution partition as both V 01 =C1 and U 0 are connected and V 01

contains Z1. For a given tri-partition we can either find a vertex to move from V1[V2 to

U or conclude that it is an immovable tri-partition Since every step reduces the number

of vertices in V1[V2 and we never add any vertex in V1[V2 this process terminates in at

most n steps and returns an immovable tri-partition.

We soon see that one can compute immovable tri-partitions in graph G using minimal

terminal connectors in the graph obtained by adding a specific edge in G.

Definition 8.4.2 (Minimal Z-connector). Given a graph G and a set of terminal vertices Z,

a superset S of Z is called Z-connector if S induces a connected graph. Moreover, if no

strict subset of S is Z-connector then it is called minimal Z-connector.

We use terms Z-connecting and Z-connector interchangeably.

Claim 8.4.2. Let (G,Z1,Z2) be a YES instance of 3-DCS and (V1,U,V2) be an immovable

tri-partition of V (G). Consider a minimal Z1-connecting set S1 in graph G[V1] and a

minimal Z2-connecting set S2 in graph G[V2]. Then, no connected component of G[V1]−S1

or G[V2]−S2 is adjacent with U.



Figure 8.1: Consider an instance (G,Z1,Z2) with Z1 = {z1,z3,z5} and Z2 = {z2,z4}. Dotted
line is added in graph G to obtain G0. Tuple (V1,U,V2) is an immovable tri-partition of
V (G). Set S1 = Z1[{a,b} and S2 = Z2[{y} are minimal Z1-connector and Z2-connector
in G[V1] and G[V2], respectively. Set S = S1[S2 is minimal (Z1[Z2)-connector in graph
G0. Please refer to Claim 8.4.3.

Proof. Assume that there exists a connected component C of G[V1]−S1 which is adjacent

with U . Let v be a vertex in C which has neighbor in U . Note that since S1 is a connected

and v is outside S1, vertex v is not Z1-separator in G[V1]. This contradicts the fact that

(V1,U,V2) is an immovable partition. Hence no vertex in any connected component of

G[V1]−S1 has neighbors in U . Similar argument holds for any connected component of

G[V2]−S leads to the same contradiction. Hence no connected component of G[V1]−S1

or G[V2]−S2 is adjacent with U .

Note that above claim implies that in graph G− S1, there exists a unique connected

component which is U [V2 and all other connected components of same as that of G[V1]−

S1.

For given instance (G,Z1,Z2), we assume that there does not exists an edge with one end

point in Z1 and another in Z2 as otherwise it is a NO instance. Fix vertices z1 and z2 in set

Z1 and Z2, respectively. Let G0 be the graph obtained by adding an edge z1z2 in G. In the

following claim, we relate an immovable tri-partition of G with minimal separators in G0.

See Figure 8.1.



Claim 8.4.3. Let (G,Z1,Z2) be a YES instance of 3-DCS and (V1,U,V2) be an immovable

tri-partition of V (G). Consider a minimal Z1-connecting set S1 in graph G[V1] and a

minimal Z2-connecting set S2 in graph G[V2]. Then, set S = S1[S2 is a minimal (Z1[Z2)-

connecting set in graph G0.

Proof. Let cc(G) denotes the number of connected components in graph G. Consider

any two sets X1 and X2 which are subsets of V1 and V2 respectively. Since we have added

only one edge between V1 and V2 while constructing graph G0, we get cc(G0[X1[X2])≥

cc(G[X1])+ cc(G[X2])−1.

We first argue that S is a (Z1[Z2)-connector in G0. As G0[S1] and G0[S2] are connected and

there is an edge z1z2 with one end point in S1 and another in S2, graph G0[S] is connected.

Since S contains Z1[Z2, it is a (Z1[Z2)-connector.

It remains to argue that no proper subset of S is a (Z1[Z2)-connector. For the sake of

contradiction, assume that there exists a proper subset of S, say S0, which is a (Z1[Z2)-

connector in graph G0. Let S01 = S0\V1 and S02 = S0\V2. Consider a case when S0 does

not contain all vertices in S1 \Z1. In other words, S01 is a proper subset of S1. Recall that

S1 is a minimal Z1-connector in G[V1] and S01 contains Z1. By minimality of S1, graph

G[S01] is not connected and hence cc(G[S01]) ≥ 2. This implies G0[S0] = G0[S01 [ S02] ≥

G[S01]+G[S01]−1 ≥ 2 as cc(G[S02])≥ 1. This contradicts the fact that G0[S0] is a connected

graph. By symmetric arguments, assuming S02 is a proper subset of S2 leads to same the

contradiction. Hence our assumption is wrong and no proper subset of S is a (Z1[Z2)-

connector.

We say a minimal (Z1 [ Z2)-connector S in graph G0 is realized by an immovable tri-

partition (V1,U,V2) of V (G) if S can be partitioned into S1,S2 such that S1 is a minimal

Z1-connector in G[V1] and S2 is a minimal Z2-connector in G[V2]. Claim 8.4.3 implies that

every immovable tri-partition of V (G) realizes at least one minimal (Z1[Z2)-connector in

G0.



Given a minimal (Z1 [ Z2)-separator S of G0, we want to construct an immovable tri-

partition of V (G), if exits, which realizes it. Note that if S is realized by some immovable

tri-partition of V (G) then G[S] has two connected components containing Z1 and Z2. If

this is not the case then we can conclude that this minimal separator is not realized by any

immovable tri-partition. Let S1,S2 are two connected components of G[S] which contains

Z1 and Z2 respctively. If S is realized by an immovable tri-partition (V1,U,V2) then, by

Claim 8.4.2, every connected component of G−S1 which is not U [V2 is also a connected

component of G[V1]−S1. We do not know U [V2 in advace. But connected component of

G−S1 which is U [V2 contains S2. Hence, V1 consists of S1 together with all connected

components of G−S1 which do not intersect S2.

We illutrate this idea with an example. Consider the graph drawn in Figure 8.1. Set

S = Z1[{a,b}[Z2[{y} is a minimal (Z1[Z2)-connector in G0. Set S can be partitioned

into two sets, S1 = Z1 [ {a,b} and S2 = Z2 [ {y} such that both G[S1] and G[S2] are

connected and they contain Z1 and Z2. Note that connected component of G−S1 which

does not intersects S2, vertex c, is contained in V1.

We enumerate all minimal (Z1[Z2)-connector S in G0 and try to construct a tri-partition

(V1,U,V2) of V (G) as described above for every S. If we find such tri-partition we return

it as solution or conclude that no such tri-partition exists. We use following result to

enumerate all minimal (Z1[Z2)-connecting subsets in G0.

Proposition 8.4.1 ([90]). For an n vertex graph G and a terminal set T ⇢ V (G) where

|T | n/3 there are at most
�n−|T |
|T |−2

�

·3(n−|T |)/3 minimal T -connecting vertex sets and those

can be enumerated in time O?
(
�n−|T |
|T |−2

�

·3(n−|T |)/3
).

We now state the following lemma which solves 3-DCS when number of terminals are

small as compare to number of vertices in graph. The reason to choose specific value of d

will be clear in Theorem 8.4.1.

Lemma 8.4.1. There exists an algorithm that solves the 3-DISJOINT CONNECTED SUB-

GRAPHS problem in O?
(1.877n

) time if the number of terminals is at most dn. Here n is



number of vertices in input graph and d = 0.092.

Proof. Let (G,Z1,Z2) be an input instance where G is graph on n vertices and |Z1[Z2|

dn. The algorithm arbitrarily fixes terminals z1,z2 in Z1,Z2, respectively and adds an

edge z1z2 to obtain graph G0. It enumerates all minimal (Z1[Z2)-connector in G0. For

every minimal connector S, the algorithm checks whether there are exactly two connected

component of G[S], say S1,S2, containing Z1 and Z2, respectively. If such connected

component exists then the algorithm construct a tri-partition of V (G) in the following

way. Initialize sets V1,U,V2 to S1, /0,S2, respectively. Any connected component of G−S1

which does not contain V2 is added to V1. The algorithm expands V2 in similar way. All

vertices which are not added in V1 or V2 are added to U . If (V1,U,V2) is a solution tri-

partition then the algorithm returns it and terminates otherwise moves on to next minimal

(Z1[Z2)-connector of G0. The algorithm concludes that solution exists if it can not find a

solution tri-partition for any minimal (Z1[Z2)-connector in graph G0.

We argue correctness of the algorithm. Note that the algorithm returns a tri-partition only

if it has found one. By Claim 8.4.1, if (G,Z1,Z2) is a YES instance then there exists

an immovable tri-partition (V1,U,V2) of V (G). By Claim 8.4.3, there exists a minimal

(Z1 [ Z2)-connector in G0 which is realized by (V1,U,V2). Since algorithm considers

all minimal (Z1 [ Z2)-connector, it also considers the one realized by (V1,U,V2). By

Claim 8.4.2, if S is a minimal (Z1[Z2)-connector realized (V1,U,V2), then V1 is union of

S1 with connected components of G−S1 which do not contain S2. Similar statement holds

for V2. Hence if given instance is a YES instance, the algorithm considers the minimal

terminal connector realized by an immovable tri-partition and constructs the tri-partition

associated with it.

Note that d = 0.092 < 1/3 and hence we can use Proposition 8.4.1 to enumerate all

minimal (Z1[Z2)-connector in time O?
(
�n−|Z1[Z2|
|Z1[Z2|−2

�

·3(n−|Z1[Z2|)/3
) which is O?

(
�

(1−d )n
dn

�

·

3(1−d )n/3
). Using µ = 1−d and Stirling approximation, we can bound

�

µn
dn

�

by O?
((

µ
µ

dd
·(µ−d )

(µ−d )
)

n
)

or O?
((

(1−d )
(1−d )

dd
·(1−2d )(1−2d ) )

n
). Using computer we can verify that maximum value of (( (1−d )

(1−d )

dd
·(1−2d )(1−2d ) )·



31/3
) for 0< d  0.092 occurs when d = 0.092 and it is 1.877. This implies the mentioned

running time of the algorithm.

We are now in position to present main theorem of this section.

Theorem 8.4.1. There exists an algorithm that solves the 3-DISJOINT CONNECTED

SUBGRAPHS problem in O?
(1.877n

) time where n is number of vertices in input graph.

Proof. Let (G,Z1,Z2) be an input instance. We consider two cases depending on number of

terminals. If |Z1[Z2|> dn where d = 0.092 then enumerate all subsets in V (G)\(Z1[Z2)

to determine middle portion of tri-partition. For every set U of size (1−d )n, we check

in polynomial time whether G(U) is connected and G−U has exactly two connected

components, say V1,V2 which contain Z1 and Z2, respectively. If there exists such set then

we return (V1,U,V2) as tri-partition. The correctness of algorithm follows from the fact

that we are doing exhaustive search in this process. Total time to complete the process

is O?
(2(1−d )n

) = O?
(2(1−0.092)n

) = O?
(1.877n

). If |Z1[Z2| dn then, by Lemma 8.4.1,

there exists an algorithm running in time O?
(1.877n

).

P5-Contraction

We use Theorem 8.4.1 to check whether given graph G can be contracted to P5 or not. By

Observation 8.2.2, if graph G is contractible to P5 then there exists a P5-witness structure

W = {W1, . . . ,W5} of G such that W1,W5 are singleton sets. We guess the pair of vertices

which are in these singleton witness set. There are at most O(n2
) many choices for such

pairs. Let {x},{y} be guess for W1,W5 respectively. Sets N(x),N(y) must be contained

in witness set W (t2),W (t4) respectively. In graph G− {x,y}, we use N(x),N(y) as set

of terminals to find a tri-partition (V1,U,V2). If exists, these three sets can work as

witness structures corresponding to W2,W3,W4 respectively. This simple algorithm implies

following corollary of Theorem 8.4.1.



Corollary 8.4.1. Given a graph on n vertices, one can decide whether it can be contracted

to P5 or not in time O?
(1.877n

).

8.5 Exact Algorithm for Path Contraction

We start with overview of the algorithm for PATH CONTRACTION which consists of four

methods. We elaborate on each method in separate subsections and present entire algorithm

with proof of correctness in Subsection 8.5.5. Let a,b ,g be positive constants which are

strictly less than one.

• In Subsection 8.5.1, we enumerate all subsets of size less than nb/2 and for every subset

check whether is it a union of all odd or even indexed witness sets for some witness

structure corresponding to a path.

• In Subsection 8.5.2, we use dynamic programming to build partial witness structure

for some subgraphs of given graph. To do this, we store the the maximum length of path

that can obtain from a subgraph with additional constraint that all boundary vertices of

the subgraph are in one of end bags. Once we have this value, we enumerate all possible

sets which can be added as next bag to this partially contracted graph. We perform these

operation until cardinality of closed neighborhood of subgraph under consideration is at

most an.

• In Subsection 8.5.3, we iterate over all set of vertices of size at most (1− g)n. If a graph

induced on a subset has exactly two connected components, say C1,C2, and graph obtained

by removing this set has exactly one connected component, say C, then we consider this set

for further checks. We use dynamic programming to get path structure for graph induced

on C1 and C2. We use the algorithm for 2-DISJOINT CONNECT SUBGRAPHS problem to

check whether we can partition C into two parts with desired properties.

• In Subsection 8.5.4, we iterate over all subsets of size en where e = 1− b/2− g/2



and check whether a set can be union of almost all odd or even indexed sets. For each

connected component of graph obtained by removing the set, we check whether connected

component can be partitioned into three parts with desired properties. To do this, we use

the algorithm to solve 3-DISJOINT CONNECT SUBGRAPHS mentioned in Section 8.4.

Each subsections contains pseudo-code for an algorithm, its proof of correctness and time

require to complete it. For each method, we argue that for a given graph if there exists

a witness structure which satisfies certain conditions then PATH CONTRACTION can be

solved in time better than O(2n
) using this method. Clearly, we do not know any witness

structure for a given graph corresponding to maximum length of path to which it can

be contracted. All these conditions on witness structure are existential. We specify the

conditions in forms which are most useful in Subsection 8.5.5 and hence a priory it may

not be obvious that these conditions are exhaustive.

Let ` be the largest integer such that given graph can be contracted to P̀ . In Subsection 8.5.5,

we argue that there exists a P̀ -witness structure of graph which satisfy at least one of

the conditions mentioned in subsections. We now present a brief overview of proof of

correctness. Since any connected graph can be contracted to a path of length two, such

integer exists. If there exists a P̀ -witness structure for given graph in which number of

vertices in odd or even indexed witness sets is at most bn/2 then method in Subsection 8.5.1

correctly identifies this witness structure. We now consider the case when number of

vertices are almost equally divided into odd and even numbered witness sets for all P̀ -

witness structures. We subdivide this case based on number of large witness sets in

witness structure. We quantify large in such a way that there are at most two large bags

in any P̀ -witness structure. If there exists a witness structure which does not contain any

large witness set then we can build a P̀ -witness structure using dynamic programming

mentioned in Sub-section 8.5.2. If exactly one large bag then we argue that either earlier

step returns an optimum solution or we can solve the problem using method mentioned in

Sub-section 8.5.4. Consider a case when there are exactly two large bags. If these two bags



Algorithm 8.5.1: Solving PATH CONTRACTION by enumerating subsets
Input: Connected graph G and a positive fraction b

Output: An integer t such that G can be contracted to Pt
1 Initialize t = 2;
2 B Collection of all subsets of V (G) which are of size at most bn/2−1;
3 for each S in B do
4 W  witness structure obtained by consider each connected component of

G[S] and G−S as a witness set;
5 G0  graph obtained from G by contracting witness sets in W ;
6 if G0 is a path then
7 t = max{t, length of path G0};

8 return t;

are adjacent then we obtain a witness structure by method mentioned in Sub-section 8.5.3.

If these two large bags are not adjacent then we get optimum solution from method in

Subsection 8.5.2.

8.5.1 Method Using Enumeration of Subsets

In this sub-section we explain the method of enumerating subsets and specify the criteria

in which this method returns an optimum solution.

Lemma 8.5.1. For a given connected graph G on n vertices and a positive constant b ,

Algorithm 8.5.1 returns an integer t such that G can be contracted to Pt and it terminates

in time O?
(cn

) where c = g(b/2).

Proof. If algorithm returns 2 then it is correct by Observation 8.2.1. If algorithm returns

an integer which is greater than 2 then there exists a set S such that connected components

of G[S] and G−S are witness sets in a Pt-witness structure. The running time of algorithm

follows from Observation 8.2.4 and the fact that for a given set S, algorithm can obtained

graph G0 and check whether it is a path or not in polynomial time.

For a Pt-witness structure W = {W1,W2, . . . ,Wt}, we define odd sets (OS) and even sets



(ES) as union of odd and even indexed sets respectively. Formally, these sets are defined as:

OS =

bt/2c
[

x=0

W2x+1 and ES =

bt/2c
[

x=1

W2x

.

Definition 8.5.1 (b -Equally Partitioned). For a positive constant b , a Pt-witness structure

W = {W1,W2, . . . ,Wt} is said to be b -equally partitioned if the number of vertices in both

of sets OS and ES are greater than or equal to bn/2.

We note that {OS,ES} is a partition of V (G). Lower bound on sizes of both these sets also

implies upper bound of (1−b/2)n on their sizes. Following lemma states that for a given

graph if there exists a witness structure such that size of one of sets OS or ES is at most

bn/2 then Algorithm 8.5.1 is effective on this graph.

Lemma 8.5.2. For a given connected graph G and a positive constant b , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is not b -equally partitioned then Algorithm 8.5.1 returns `.

Proof. Consider a case when size of OS is strictly less than bn/2. Since Algorithm 8.5.1

enumerates all subsets of V (G) of size strictly less than bn/2, set OS is also enumerated

by it. For this set, algorithm obtains a graph G0 which is a path on ` vertices. Similar

arguement holds when size of ES is strictly less than bn/2. Hence algorithm returns value

which is greater than or equal to `.

8.5.2 Method Using Dynamic Programming

In this sub-section, we explain a method to build partial witness structures for given graph

using dynamic programming. Our aim is to construct a witness structure of a connected

set corresponding to a path that can be extended in remaining graph. For set S of V (G),



we define d (S) as the set of vertices in S which have at least one neighbor outside S.

Formally, d (S) = {v| v 2 S and N(v)\S 6= /0}. For every connected set S, let T [S] denotes

the largest integer q such that G[S] can be contracted to Pq with property that d (S) is

contained in an end bag in Pq-witness structure. To compute T [S], we iterate over all

possible sets which can potentially be last bag containing d (S). Note that if set B is the

witness set corresponding with one of the end bags in path contraction of G[S] then both

G[B] and G[S\B] are connected. For a given set S, we enumerate all sets which are possible

candidates for B. For a given set S, let Z [S] denotes collection of sets which can be witness

sets corresponding with one of end bags. Formally,

Z [S] = {B ✓ S| d (S)✓ B and G[B],G[S\B] are connected}

We initialize T [{u}] = 1 for all vertex u in V (G) which is correct by definition. We

compute T [S] using following recurrence.

T [S] = max
B2Z [S]

{T [S\B]}+1 (8.1)

We now prove that the above recurrence is correct.

Claim 8.5.1. Recurrence 8.1 correctly computes T [S] for every connected subset S of

V (G).

Proof. For a subset S, let B0 be the set in Z [S] where maximum value for right hand side of

the equation is achieved. Notice that since B0 is in Z [S], graph G[S\B0] is connected and

hence T [S\B0] is well defined. Let {W1,W2, . . . ,Wq} be a Pq-witness structure of G[S\B0]

associated with T [S\B0]. Set Wq+1 = B0. We argue that {W1,W2, . . . ,Wq,Wq+1} is one of

candidate witness structure of G[S]. By the property of T [S\B0], set d (S\B0) is contained

in Wq and hence there is no edge between Wi and Wq+1 for any i in [q−1]. Moreover, there

is at least one edge between Wq and Wq+1 since S is connected. As B0 =Wq+1 is in Z [S],



it is connected and contains d (S). Hence T [S]≥ T [S\B0]+1.

Let {W1,W2, . . . ,Wq+1} be a Pq-witness structure of G[S] corresponding to the value T [S].

We argue that if there is only one witness set in witness structure, i.e. q = 0, then every

vertex s in S has either one of the following two properties: it is a cut vertex in G[S]

or it is in d (S). If there exists a vertex in S which does not satisfy either of these two

properties then we can construct another witness structure by creating separate witness

set containing only this vertex. This contradicts maximality of T [S]. This implies that

any non-empty proper subset B of S, either G[B] is not connected or B does not contain all

boundary vertices. Hence Z [S] is empty and recurrence is true. For q ≥ 1, let B =Wq+1.

To prove the recurrence, we need to argue that B is in Z [S]. By the property of witness

structure, G[B] and G[S\B] are connected. By definition of T [S], set d (S) is contained in

B. Since {W1,W2, . . . ,Wq} is a Pq-witness structure of G[S \B], set d (S \B) is contained

in Wq. Hence {W1,W2, . . . ,Wq} is one of candidate witness structures corresponding to

value of T [S\B]. This implies T [S]−1  T [S\B] for some B in Z . This completes the

proof.

Notice that T [V (G)] is equal to the largest integer ` such that G can be contracted to P̀ .

We can use the Recurrence 8.1, exactly as stated above, to compute the value of T [V (G)].

The running time of such algorithm is O?
(3n

). To avoid this, we compute T [S] only for

connected sets S whose closed neighborhood has at most an vertices for some constant

fraction a . We calculate values corresponding to entries in bottom-up fashion but instead

of looking backward while computing the values, we look forward and update values in

the table. At each table entry S, we do not iterate over all its proper subsets to update the

value of T [S]. Instead we assume that the optimum value for T [S] is known and update

values of some of its supersets. Since we are interested in values of T [S] only for set S

which are connected and for which N[S] is at most an, we only consider super sets of S

which are of size at most an. We prove that the number of such sets is smaller than 2n−|S|.

These savings at each iterations results in overall running time of O?
(2an

).



Figure 8.2: Dotted border denotes the set under consideration while updating value in
dynamic programming table. In first figure, algorithm consider B as element in Z [S].
In second figure, algorithm consider B as an element in Aa,b[S \B] where a = |B| and
b = |N(S)|. See Claim 8.5.2

For a connected set S, let A [S] be a collection of all potential witness sets in G−S which

can be appended to contracted path corresponding to T [S]. At each table entry S, we

update value of T [S[A] for every A in A [S]. For tight upper bounds, we define Aa,b[S]

where a,b are two fixed integers. Set Aa,b[S] is a collection of connected set of size exactly

a in G−S which is superset of N(S) and size of neighbors of A in G−S is at most b. In

other words, size of neighbors of A[S in G is at most b. Formally,

Aa,b[S] = {A| N(S)✓ A; |A|= a, |N(A)\S|= b and set A is connected in G−S}

In the follow claim, we argue that instead of computing Z [S], it is sufficient to compute

Aa,b[S\B] for some subset B of S and specific values of a and b.

Claim 8.5.2. For a connected set S and its non empty subset B, let a = |B| and b = |N(S)|.

Set B is in Z [S] if and only if G[S\B] is connected and B is in Aa,b[S\B].

Proof. ()) Definition of Z [S] implies that G[B], G[S\B] are connected and d (S) is subset

of B or N(S\B) is contained in B. Since G[S\B] is connected, Aa,b[S\B] is well defined

for two integers a,b. It is easy to verify that B is connected set in G− (S\B) and hence B

is in Aa,b[S\B] for a = |B| and b = |N(S)|.

(() Definition of Aa,b[S \ B] implies that cardinality of set B is a; G[B]− (S \ B) is



Algorithm 8.5.2: Solving PATH CONTRACTION using Dynamic Programming
Input: Connected graph G and a positive fraction a

Output: An integer t such that G can be contracted to Pt
1 Initialize t = 2;
2 Sa  Set of all connected subset S of V (G) such that |N[S]| an;
/* T [S] denotes maximum number of bags in path contraction of

G[S] which contains d (S) in an end bag. */
3 for S in Sa do
4 T [S] = 1;

5 for S in Sa do
6 x = |N(S)|; y = |S|;
7 for every pair (a,b) of positive integers s.t. y+a+b  an and x  b do
8 Compute Aa,b[S] using Lemma 8.3.1;

/* Aa,b[S] is a collection of connected set A in G−S such
that N(S)✓ A, |A|= a and |N(A)\ (G−S)| b. */

9 for A in Aa,b[S] do
10 T [S[A] = max{T [S[A],T [S]+1} ;

11 for S in Sa do
12 if V (G)\S is also in Sa then
13 t = max{t,T [S]+T [V (G)\S]};

14 return t;

connected and d (S\B) is contained in B. This implies that set N(S) is identical to N(B)\S

or in other words, d (S) is a subset of B. This together with fact that G[B], G[S \B] are

connected implies that B is in Z [S].

We use Claim 8.5.2 to obtain improvement in running time while computing values in T .

Lemma 8.5.3. For a given connected graph G on n vertices and a positive constant a ,

Algorithm 8.5.2 returns an integer t such that G can be contracted to Pt and it terminates

in time O?
(cn

) where c = 2a .

Proof. The correctness of the recurrence used in Step 10 of the algorithm is implied by

Claim 8.5.1 and Claim 8.5.2. Condition y+ a+ b  an ensures that we only consider

sets S,A such that |N[S[A]| is at most an. Hence T [S[A] is well defined. If algorithm

returns 2 then it is correct by Observation 8.2.1. If algorithm returns an integer which



is larger than 2 then there exists a set S such that sets S and V (G)\S are connected and

their closed neighborhood is at most an. Let {W1,W2, . . . ,Wj} be a Pj-witness structure

corresponding to value T [S] with d (S)✓Wj and {W 01,W
0

2, . . . ,W
0

k} is the witness structure

corresponding to T [V (G) \ S] with d (V (G) \ S) is contained in W 01. It is easy to see

that {W1, . . . ,Wj,W 01, . . . ,W
0

k} is Pj+k0-witness structure of G. Hence algorithm returns an

integer whose value is more than two only if it had found a Pt-witness structure.

We now argue about the running time of this algorithm. Recall that y = |S| and x = |N(S)|.

At table entry corresponding to a set S, algorithm computes Aa,b[S] in time O?
(2a+b−x

)

(by Lemma 8.3.1). The number of sets in Aa,b[S] is upper bounded by O?
(2a+b−x

). For

each set A in Aa,b[S], algorithm updates the value of T [S[A] in polynomial time. Hence

total time spent at each entry is at most O?
(2a+b−x

). By Lemma 8.3.2, the number of

connected sets of size y whose neighborhood is of size x is upper bounded by O?
(2y+x

)

and all of those can be enumerated in same time. This implies there O?
(2y+x

) entries

where set S is of size y and N(S) is of size x. Hence total time to compute the table is

O?
(2x+y

·2a+b−x
) = O?

(2y+a+b
) = O?

(2an
).

For a given Pt-witness structure W = {W1,W2, . . .W`} of a graph we define Qi,Ri as :

Qi =
i
S

x=1
Wx and Ri =

S̀

x=i
Wx for all i in [t]. Note that (Qi,Ri+1) is a partition of V (G) for

all i in [t −1]. Moreover, sets Qi,Ri are connected for all i.

Definition 8.5.2 (a-Balanced Bi-partition). For a positive constant a , a Pt-witness struc-

ture W = {W1,W2, . . . ,Wt} is said to be a-balanced bi-partitioned if there exists an integer

i in [t −1] such that cardinality of sets Qi+1 and Ri are less than or equal to an.

We now specifies the types of graphs on which Algorithm 8.5.2 is effective.

Lemma 8.5.4. For a given connected graph G and a positive constants a , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is a-balanced bi-partitioned then Algorithm 8.5.2 returns `.



Proof. Let W = {W1,W2, . . . ,W`} be a a-balanced bi-partitioned P̀ -witness structure of

G. By definition, there exists i in [t −1] such that cardinality of Qi+1 and Ri are less than or

equal to an. Note that, N[Qi]✓ Qi+1 and N[Ri+1]✓ Ri. Since Algorithm 8.5.2 computes

T value for all connected sets S whose closed neighborhood is at most an, it computes

values for Qi and Ri+1. Moreover, T [Qi] and T [Ri+1] is at least i and `− i, respectively.

Hence in this case, the integer returned by Algorithm 8.5.2 is greater than or equal to `.

8.5.3 Method using an algorithm for 2-DISJOINT CONNECTED SUB-

GRAPHS

Recall that an input of 2-DISJOINT CONNECTED SUBGRAPHS (2-DCS) consists of a

connected graph H and two disjoint terminal sets Z1,Z2. The task is to check whether is it

possible to partition V (H) into V1,V2 such that Z1,Z2 are contained in V1,V2, respectively,

and both H[V1], H[V2] are connected. We use the algorithm presented by Telle and

Villanger [90] as black-box in our algorithm.

Proposition 8.5.1 ([90] Theorem 3). There exists an algorithm that solves 2-DISJOINT

CONNECTED SUBGRAPHS problem in O?
(1.7804n

) time where n is number of vertices in

input graph.

Algorithm 8.5.3 divides input graph into three parts with middle one containing bulk of

vertices. See Figure 8.3. Corner parts contains at most (1− g)n many vertices and hence

algorithm can afford to guess it. For every such guess of corner parts, algorithm finds

a suitable path contraction using method specified in Sub-Section 8.5.2. For the middle

part, algorithm checks whether it can be partitioned into two connected subgraphs using

Proposition 8.5.1.

Lemma 8.5.5. For a given connected graph G on n vertices and a positive constant g ,

Algorithm 8.5.3 returns an integer t such that G can be contracted to Pt and it terminates

in time O?
(2(1−g/2)n

+ cn
) where c = maxgd1

�

1.7804d ·g(1−d )
 

.



Figure 8.3: Guessing vertices in Methods described in Subsections 8.5.3 and 8.5.4. Dotted
region denotes S, set of vertices guessed by algorithms. In Subsection 8.5.3, middle part
into divided into two witness sets while in Subsection 8.5.4, we partition it into three
witness sets.

Proof. The algorithm computes T [S] for all connected set S in G whose closed neighbor-

hood is of size at most (1− g/2)n. It enumerates all subsets of size at most (1− g)n. Out

of these sets, the algorithm considers set S which satisfies following four properties.

1. Graph G−S is connected,

2. Graph G[S] has exactly two connected components, say S1,S2,

3. Cardinality of closed neighborhoods of sets S1,S2 are at most (1− g/2)n, and

4. Instance ((G−S);N(S1)\C;N(S2)\C) is a YES instance of 2-DCS.

Algorithm returns maximum of T [S1]+T [S2]+2 over all sets S which satisfies above

properties.

We argue the correctness of algorithm. If algorithm returns 2 then it is correct by Observa-

tion 8.2.1. If algorithm returns an integer which is larger than 2 then there exists a set S

which satisfies above conditions. Let {W 001 , . . . ,W
00

j } be a Pj-witness structure correspond-



Algorithm 8.5.3: Solving PATH CONTRACTION using the algorithm for 2-
DISJOINT CONNECT SUBGRAPH (2-DCS)

Input: Graph G and a positive constant g
Output: An integer t such that G can be contracted to Pt

1 Initialize t = 2;
2 Run Algorithm 8.5.2 on input (G,1− g/2) to compute table T ;
3 C all subsets of size at most (1− g)n;
4 for S in C do
5 S1,S2 connected components of G[S];

/* Continue if G[S] do not have two connected components */
/* Continue if |N[S1]| or |N[S2]| are not at most (1− g/2)n */

6 if (G− (S1[S2);N(S1);N(S2)) is a YES instance of 2-DCS then
7 t = max{t,T [S1]+T [S2]+2}

8 return t;

ing to T [S1] such that d (S1) is a subset of W 00j and {W 01, . . . ,W
0

k} be a Pk-witness structure

corresponding to T [S2] such that d (S2) is a subset of W 01. Let (V1,V2) be a partition of

G−S such that terminal sets N(S1),N(S2) are contained in V1,V2, respectively, and both

V1,V2 are connected sets in G−S. It is easy to see that {W 001 , . . . ,W
00

j ,V1,V2,W 01, . . . ,W
0

k} is

a Pj+k+2-witness structure of graph G.

By Lemma 8.5.3, the algorithm can compute the table in time O?
(2(1−g/2)n

). For every

set S, conditions (1),(2) and (3) can be checked in polynomial time and condition (4) can

be checked in time O?
(1.7804n−|S|

) using Proposition 8.5.1. By Observation 8.2.4, the

number of sets of cardinality at most (1−d )n are upper bounded by O?
([g(1−d )]

n
) which

can be enumerated in same time. Hence the running time of algorithm is O?
(2(1−g/2)n

+cn
)

where c = maxgd1
�

1.7804d ·g(1−d )
 

.

We present a lemma which specifies the types of graphs on which Algorithm 8.5.3 is

effective. To specify such graph, we need to define certain kind of witness structure.

Definition 8.5.3 (g-Bi-large). For a positive constant g , a Pt-witness structure W =

{W1,W2, . . . ,Wt} is said to be g-bi-large if there exists an integer i in [t − 1] such that

cardinality of sets Wi and Wi+1 are greater than or equal to gn/2.



Before stating the lemma, we recall that for a given Pt-witness structure W we defined

Qi,Ri as : Qi =
i
S

x=1
Wx and Ri =

S̀

x=i
Wx for all i in [t].

Lemma 8.5.6. For a given connected graph G and a positive constant g , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is g-bi-large then Algorithm 8.5.3 returns `.

Proof. Let W = {W1,W2, . . . ,W`} be a g-bi-large P̀ -witness structure of G. Consider two

adjacent witness sets Wi,Wi+1 such that |Wi|, |Wi+1| are greater than or equal to gn/2. To

prove that the algorithm returns the optimum value, we argue that Qi−1[Ri+2 is one of

the sets considered by algorithm while updating value of t. Since (Qi−1,Wi,Wi+1,Ri+2)

is a partition of V (G), we have |Qi−1|+ |Wi|+ |Wi+1|+ |Ri+2|= n which implies |Qi−1[

Ri+1| (1−g)n. Hence Qi−1[Ri+ j is one of sets considered while enumerating all vertex

sets of size at most (1− g)n. We argue that it satisfies all four conditions mentioned in

proof of Lemma 8.5.5. By the properties of P̀ -witness structure, set Qi−1[Ri+1 satisfies

conditions (1) and (2). To see that it satisfies (3), notice that N[Qi−1] does not intersects

with Wi+1 and hence cardinality of N[Qi−1] is upper bounded by n− |Wi+1| (1− g/2)n.

By similar argument, size of N[Ri+1] is at most (1− g/2)n. By the property of P̀ -witness

structure, N(Qi−1),N(Ri+2) are two disjoint vertex sets. Let G0 is the subgraph of G

induced on Wi[Wi+1. Notice that (G0,N(Qi−1),N(R j+1)) is a YES instance of 2-DCS as

V (G0) can be partitioned into Wi,Wi+1 such that these sets contains N(Qi−1) and N(R j+2)

respectively and both are connected sets in graph G0. This implies that Algorithm 8.5.3

returns an integer which is greater than or equal to `.

8.5.4 Method using an algorithm for 3-DISJOINT CONNECTED SUB-

GRAPH

In this sub-section, we present a method used to solve PATH CONTRACTION using the algo-

rithm for 3-DCS presented in Section 8.4. In the method mentioned in Sub-section 8.5.3,



Algorithm 8.5.4: Solving PATH CONTRACTION using the algorithm for 3-
DISJOINT CONNECT SUBGRAPH (3-DCS)

Input: Connected graph G and a positive constant e
Output: An integer t such that G can be contracted to Pt

1 Initialize t = 2;
2 C all subsets of size at most en;
3 for S in C do
4 W  witness structure obtained by consider each connected component of

G[S] and G−S as a witness set;
5 G0  graph obtained from G by contracting witness sets in W ;
6 if G0 is not a path then
7 Continue with next set in C;

8 for C in connected component of G−S do
9 C1,C2 Connected components of G[S] which are adjacent with C;

10 if (G[C];N(C1)\C;N(C2)\C) is a YES instance of 3-DCS then
11 t = max{t, length of path G0+2}

12 return t;

algorithm divides input graph into three parts by guessing all vertices in corner parts.

Algorithm then checks whether middle part can be partitioned into two bags and corner

bags can be contracted to a path using Algorithm 8.5.2. In this method, instead of guessing

all vertices in corner parts, algorithm guesses some vertices in corner parts which partition

it different witness sets. See Figure 8.3. We consider guess S for which connected compo-

nents of G[S] and G−S corresponds to a witness structure corresponding to a path. For

each connected component of G−S, we check whether it can be tri-partitioned to get two

more witness sets. Following lemma asserts the correctness of Algorithm 8.5.4.

Lemma 8.5.7. For a given connected graph G on n vertices and a positive constant e ,

Algorithm 8.5.4 returns an integer t such that G can be contracted to Pt and it terminates

in time O?
(cn

) where c = max0de

�

1.877(1−d )
· g(d )

 

.

Proof. If algorithm returns 2 then it is correct by Observation 8.2.1. If algorithm returns an

integer which is greater than 2 then there exists a set S which satisfies following conditions:

Graph obtained by contracting connected components of G[S] and G−S to vertices is a

path. There exists connected components C of G−S, and C1,C2 of G[S] such that C is ad-



jacent with C1,C2 and instance (G[C];N(C1)\C;N(C2)\C) is a YES instance of 3-DCS.

Let (V1,U,V2) be a partition of V (C) such that vertices of N(C1)\C and N(C2)\C are con-

tained in V1,V2 respectively, sets V1,U,V2 are connected sets in G[C] and V1,V2 are the only

two connected components of G[C]−U . If {W1, . . . ,Wj−1,C1,C,C2,W 01, . . . ,W
0

k−1} is a

Pj+k+1-witness structure of a graph G then {W1, . . . ,Wj−1,C1,V1,U,V2,C2,W 01, . . . ,W
0

k−1}

is a Pj+k+3-witness structure of G. Hence, the algorithm returns an integer greater than 2

only if it has found a witness structure of path of that length.

We now argue the running time of the algorithm. By Observation 8.2.4, the number of sets

of cardinality at most en are upper bounded by O?
([g(e)]n) which can be enumerated in

same time. For every set S, conditions mentioned in previous paragraph can be checked

in time O?
(1.877n−|S|

) using Theorem 8.4.1. Hence the running time algorithm is O?
(cn

)

where c = max0de

�

1.877(1−d )
· g(d )

 

.

We define a type of witness structure used to specify graphs for which this method is

effective.

Definition 8.5.4 (e-Partition Concentrated). For a positive constant e , a Pt-witness struc-

ture W = {W1,W2, . . . ,Wt} is said to be e-partition concentrated if there exists an integer i

in {2, . . . , t −1} such that cardinality of either OS \Wi or ES \Wi is at most en (depending

on whether i is odd or even integer).

In above definition, we insist that witness set Wi is does not corresponds with end point of

Pt to avoid dealing with corner cases in following lemma. In Subsection 8.5.5, we argue

that these corner cases do not occur.

Lemma 8.5.8. For a given connected graph G and a positive constant e , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is e-partition concentrated then Algorithm 8.5.4 returns `.

Proof. Let W = {W1,W2, . . . ,W`} be a P̀ -witness structure of G which is e-partition

concentrated. Without loss of generality, we can assume that OS is a concentrated partition.



In other words, there exists an odd integer i in {2, . . . , t −1} such that |OS \Wi| is upper

bounded by en. We argue that OS \Wi is one of sets considered by algorithm while

updating the value of t. Note that connected components of G[OS \Wi] and G− (OS \

Wi) are W1, . . . ,Wi−2,C,Wi+2, . . . ,W` where C = Wi−1 [Wi [Wi+1. Together these sets

forms a P̀ −2-witness structure of G as W is a P̀ -witness structure of G. Moreover,

(G[C];N(Wi−2)\C;N(Wi+2)\C) is a YES instance of 3-DCS as C can be partitioned

into (Wi−1,Wi,Wi+1) which satisfies the desired properties. Hence the value of t has

been updated to ` when considering set OS \Wi by the algorithm. This implies that

Algorithm 8.5.4 returns an integer which is greater than or equal to `.

8.5.5 Algorithm for PATH CONTRACTION

We fix values of a,b ,g such that they satisfies following inequalities: (1) 2+g/2−b/2 

2a (used in Case 1); (2) 1− g  b/2 (used in Case 3); (3) 1− g/2  a (used in Case 3).

Following theorem is the main result of this paper.

Theorem 8.5.1. There exists an algorithm that solves PATH CONTRACTION problem in

O?
(1.99987n

) time where n is the number of vertices in an input graph.

Proof. Let G be input graph. Fix a = 0.9996;b = 0.9885;g = 0.9864. Main algorithm

runs Algorithm 8.5.1, Algorithm 8.5.2, Algorithm 8.5.3, Algorithm 8.5.4 with input (G,b ),

(G,a), (G,g) and (G,1−b/2− g/2), respectively. It returns the maximum among values

obtained by these four algorithms. By Lemma 8.5.1, Lemma 8.5.3, Lemma 8.5.5 and

Lemma 8.5.7 the running time for these algorithms for specified values of a,b ,g are

O?
(1.99987n

), O?
(1.9994n

), O?
(1.8983n

) and O?
(1.9921n

) respectively. These lemmas

also implies that if algorithm returns an integer t then input graph can be contracted to

Pt . To argue the correctness of main algorithm, it remains to argue that if ` is the largest

integer such that G can be contracted to P̀ than there exists a P̀ -witness structure of G

which satisfies premises of either one of Lemma 8.5.2, Lemma 8.5.4, Lemma 8.5.6, or



Lemma 8.5.8.

Recall that for a Pt-witness structure {W1,W2, . . . ,Wt} of a graph we have defined set ES

(resp. OS) as collection of vertices in G which are present in even (resp. odd) numbered

witness sets. For all i in [t], set Qi (resp. Ri) is union all witness sets indexed less than or

equal (resp. greater than or equal) to i. Formally these sets are defined as follows.

OS=
bt/2c
[

x=0

W2x+1 ; ES=
bt/2c
[

x=1

W2x ; Qi =

i
[

x=1

Wx ; Ri =

t
[

x=i

Wx

It is clear from the definition that N(Qi) (resp. N(Ri)) is contained in Qi+1 (resp. N(Ri−1)).

We use this observation frequently in the remaining proof.

If there exists a P̀ -witness structure of G which is not b -equally partitioned (Defini-

tion 8.5.1) then premise of Lemma 8.5.2 is satisfied and hence the algorithm returns

optimum value. For rest of the proof we assume that all P̀ -witness structures of G are

b -equally partitioned. In other words, for any P̀ -witness structure, cardinalities of both

sets OS and ES are strictly greater than bn/2. This lower bound also implies upper bound

of (1−b/2)n on cardinalities both these sets. Any P̀ -witness structure of G contains at

most two witness sets of size greater than or equal to gn/2. We consider three cases based

on existence of witness structure containing certain number of witness sets of size greater

than or equal to gn/2.

Case 1: There exists a P̀ -witness structure, say W = {W1,W2, . . . ,W`}, which contains no

witness set of size greater than or equal to gn/2.

We prove that W is a-balanced bi-partitioned (Definition 8.5.2) and hence premise of
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j = k. Without loss of generality, assume that k is an odd integer. Since cardinality of

OS is upper bounded by (1−b/2)n and that of Wj is lower bounded by gn/2, we have

|OS \Wj|  (1−b/2− g/2)n. By Observation 8.2.2, we know k is not equal to 1 or `

which implies W is a (1−b/2− g/2)-partition concentrated set.

Case 3: There exists a P̀ -witness structure, say W = {W1,W2, . . . ,W`}, which contains

exactly two witness sets of size greater than or equal to gn/2.



We first prove that these two witness sets are of different parity. If these two large witness

sets are adjacent then W is g-bi-large witness structure (Definition 8.5.3). If they are not

adjacent then we argue that W is a a-balanced bi-partitioned. In first case, premise of

Lemma 8.5.6 is satisfied and algorithm returns optimum value. In later case, proof of

correctness is similar to that of Case 1.

Let Wj,Wk be two witness sets whose cardinality is strictly greater than gn/2. Without

loss of generality, assume that j < k. Since Wj,Wk are disjoint, if j,k has same parity then

gn < |Wj[Wk| (1−b/2)n which implies g < 1−b/2 contradicting Equation 2. This

implies j,k are of different parity. If k = j+1 then two large witness sets are adjacent and

W is g-bi-large witness structure. We now handle the case when k ≥ j+3. We argue that

cardinalities of both Q j+2 and R j+1 are bounded above by an. Since k ≥ j+3, set Wk does

not intersect with Q j+2. This implies that the cardinality of Q j+2 is at most n− gn/2  an

(by Equation 3). By symmetric argument, cardinality of R j+1 is upper bounded by an.

This implies that W is a a-balanced bi-partitioned witness structure.

Since g = 0.9864, no P̀ -witness structure can have more than two witness sets of size g/2.

Hence above three cases are exhaustive. This completes the proof of the theorem.

8.6 Conclusion

In this chapter we presented an algorithm which given a graph G and a connected set Q,

enumerates all connected supersets of Q which are of size at most a and has at most b

neighbors. We generalized 2-DISJOINT CONNECTED SUBGRAPHS problem and gave an

exact exponential algorithm to solve it. We use both these techniques, along with others, to

give an algorithm for PATH CONTRACTION which breaks O?
(2n

) barrier.
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For a family of graphs F , the F -EDITING problem takes as an input a graph G and an

integer k, and the objective is to decide if at most k edit operations on G can result in a

graph that belongs to F . Various graph editing problems have been considered in the

literature. These graph editing problems generalize many NP-Hard problems. Most of the

studies regarding F -EDITING have been restricted to combination of vertex deletion, edge

deletion or edge addition. Only recently, edge contraction as an edit operation has started

to gain attention.

The contraction of edge uv in graph G deletes vertices u and v from G, and replaces

them by a new vertex, which is made adjacent to vertices that were adjacent to either

u or v. In this thesis, we explore F -CONTRACTION for various graph classes from the

viewpoints of parameterized complexity, lossy kernelization and exact algorithms. We

extend the known boundaries about graph contraction problems in several ways. We

consider F -CONTRACTION problems which do not have a polynomial kernels when

parameterized by solution size. We compliment this negative result in two ways. Firstly,

we present a polynomial kernel when parameterized by solution size and an additional

parameter. In other words, we identify new graph classes for which there is a polynomial

kernel. We also prove that these kernels are optimal under certain complexity conjecture.

Secondly, we present a lossy kernel of polynomial size for all these problems. We present

two FPT algorithms to append the list of graph classes F for which F -CONTRACTION

parameterized by solution size is FPT. We end this thesis with a non-trivial exact algorithm
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to determine what is the largest size of graph in a specific F to which an input graph can

be contracted. To best of our knowledge, this is first such kind of algorithm in case of

graph contraction problems.
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Summary
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integer k, and the objective is to decide if at most k edit operations on G can result in a

graph that belongs to F . Various graph editing problems have been considered in the

literature. These graph editing problems generalize many NP-Hard problems. Most of the

studies regarding F -EDITING have been restricted to combination of vertex deletion, edge

deletion or edge addition. Only recently, edge contraction as an edit operation has started

to gain attention.

The contraction of edge uv in graph G deletes vertices u and v from G, and replaces

them by a new vertex, which is made adjacent to vertices that were adjacent to either

u or v. In this thesis, we explore F -CONTRACTION for various graph classes from the

viewpoints of parameterized complexity, lossy kernelization and exact algorithms. We

extend the known boundaries about graph contraction problems in several ways. We

consider F -CONTRACTION problems which do not have a polynomial kernels when

parameterized by solution size. We compliment this negative result in two ways. Firstly,

we present a polynomial kernel when parameterized by solution size and an additional

parameter. In other words, we identify new graph classes for which there is a polynomial

kernel. We also prove that these kernels are optimal under certain complexity conjecture.

Secondly, we present a lossy kernel of polynomial size for all these problems. We present

two FPT algorithms to append the list of graph classes F for which F -CONTRACTION

parameterized by solution size is FPT. We end this thesis with a non-trivial exact algorithm
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to determine what is the largest size of graph in a specific F to which an input graph can

be contracted. To best of our knowledge, this is first such kind of algorithm in case of

graph contraction problems.



List of Figures

2.1 Graph contraction operation . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Operation SPLIT(T,v,L,R) with L = {x3} and R = {x1,x2}. . . . . . . . . 58

3.2 Modifying big witness sets which are leafs. All but one vertex in W (ti)

has been moved to W (t j). See Observation 3.2.3. . . . . . . . . . . . . . 59

3.3 An illustration of Reduction Rule 3.3.1. . . . . . . . . . . . . . . . . . . 61

3.4 Parts of a longest path from root to a leaf. See Lemma 3.3.2. . . . . . . . 64

3.5 Kernel lower bound for BOUNDED TC. . . . . . . . . . . . . . . . . . . 66

3.6 Partition of input graph. Please see Reduction 3.5.3 . . . . . . . . . . . . 75

3.7 Please refer to Lemma 3.5.5 . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Cactus graph and its block decomposition. . . . . . . . . . . . . . . . . 86

4.2 Operation SPLIT(T,v,L,R) with L = {w,x3} and R = {x1,x2}. . . . . . . 90

4.3 An illustration of Reduction Rule 4.3.3. . . . . . . . . . . . . . . . . . . 100

4.4 Kernel lower bound for BOUNDED CC. . . . . . . . . . . . . . . . . . . 107

4.5 Partition of input graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

19



4.6 Construction of G00 from G0 by adding cycles C1,C2 and C3. Dotted

boundary denotes big witness set in T 0-witness structure of G0. . . . . . . 117

4.7 Coloring and Re-coloring of input graph. Dashed boundaries denote big

witness sets while dotted boundaries corresponds to color classes. . . . . 126

4.8 A compatible coloring of input graph. Dotted boundaries denote big

witness sets. Please refer to Definition 4.6.1 . . . . . . . . . . . . . . . . 127

4.9 Please refer to Lemma 4.6.3 . . . . . . . . . . . . . . . . . . . . . . . . 133

4.10 Refer to Lemma 4.6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.11 Square represents a connected component in graph. Consider a colored

component X in graph G on right hand side. Instead of contracting all of

X to a vertex tX (left side graph), we contract connected core Z of G[Ĥ] to
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Chapter 1

Introduction

1.1 Preamble

Graph editing problems are one of the central problems in graph theory that have received

lot of attention in theoretical computer science. Some of the important graph editing

operations are vertex deletion, edge deletion, edge addition and edge contraction. For

a family of graphs F , the F -EDITING problem takes as an input a graph G and an

integer k, and the objective is to decide if at most k edit operations on G can result in a

graph that belongs to F . The contraction of edge uv in graph G deletes vertices u and

v from G, and replaces them by a new vertex, which is made adjacent to vertices that

were adjacent to either u or v. In this thesis, we explore F -EDITING problem when edit

operation is restricted to edge contraction for various graph classes from the viewpoints of

parameterized complexity, lossy kernelization and exact algorithms.

Various graph editing problems have been considered in the literature with restriction on

allowed edit operations and it generalizes many NP-Hard problems. For instance, the

F -EDITING problems encompasses problems such as VERTEX COVER [22], FEEDBACK

VERTEX SET [19, 66], PLANAR F -DELETION [41, 65], INTERVAL EDITING [17, 21,

18, 11], CHORDAL EDITING [42, 78, 20], ODD CYCLE TRANSVERSAL [86], CLUSTER
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EDITING [40], TREE CONTRACTION [55], SPLIT EDITING [45], PERFECT GRAPHS

EDITING [54], TRIVIALLY PERFECT GRAPH EDITING [34, 36], PROPER INTERVAL

COMPLETION [10], PLANAR EDITING [59], THRESHOLD EDITING [35], etc. Most of

the studies regarding F -EDITING have been restricted to combination of vertex deletion,

edge deletion or edge addition. Only recently, edge contraction as an edit operation has

started to gain attention.

When we restrict the operations to only vertex/edge deletion then the corresponding

problem is called F -VERTEX/EDGE DELETION problem. On the other hand if we only

allow edge contraction then the corresponding problem is called F -CONTRACTION. Edge

contraction problems generally turn out to be more difficult compared to their vertex/edge

deletion/addition counterparts. For instance, the problem of determining whether one

can delete at most k edges from a connected input graph to obtain a tree, also known as

FEEDBACK EDGE SET, is polynomial time solvable. Whereas, the problem of determining

whether one can contract at most k edges from a connected input graph to obtain a tree,

also known as TREE CONTRACTION, is NP-Hard [6]. In fact, even determining whether

a given graph can be contracted to a path on four vertices turns out to be NP-Hard [14].

Early papers showed that F -CONTRACTION is NP-Hard even for several simple and well

structured graph classes such as paths, stars, trees, etc. [6, 14, 93, 94].

In parameterized complexity, each instance of problem P is accompanied by a parameter,

usually denoted by k. A central notion in this field is fixed parameter tractable (FPT)

problems. A parameterized problem P is said to be FPT if for a given instance (I,k),

one can decide whether or not it is a YES instance of P in time f (k)|I|O(1) where f is

some computable function of k. Every parameterized problem need not be fixed-parameter

tractable for given parameter. For now, consider following subset relation among classes

of problems: FPT✓W[1]✓W[2] · · · . Each class is believed to be properly contained in

its superclass.

In the framework of FPT algorithms, edge contraction problems exhibit properties that are



quite different than those of problems where we only delete or add vertices and edges. A

well-known result by Cai [15] states that in case F is a hereditary family of graphs with a

finite set of forbidden induced subgraphs, then the graph editing problem defined by F

and the edit operations restricted to vertex deletion, edge deletion and edge addition admits

an FPT algorithm. Results of such favor does not exist in the case of edge contraction.

Consider an example of split graphs. A graph is called split graph if it can be partitioned

into two sets, one of which induces a clique and another one is an independent set. A graph

is split graph if and only if it does not contain an induced graph in {C4,C5,2K2}, leading

to a finite forbidden characterization of this graph class. Note that SPLIT VERTEX/EDGE

DELETION/ADDITION admits an FPT algorithm running in time 5k ·nO(1) (See [46] for

improved algorithms) but SPLIT CONTRACTION is W[1]-Hard [2].

Other important notion in parameterized complexity is kernelization, which captures the

efficiency of data reduction techniques. A parameterized problem P admits a kernel of

size g(k) (or g(k)-kernel) if there is a polynomial time algorithm (called kernelization

algorithm) which takes as an input (I,k), and returns an instance (I0,k0) of P such that:

(i) (I,k) is a YES instance if and only if (I0,k0) is a YES instance; and (ii) |I0|+ k0  g(k),

where g(·) is a computable function whose value depends only on k. Depending on whether

the function g(·) is linear, polynomial or exponential, the problem is said to admit a linear,

polynomial or exponential kernel, respectively. It is easy to see that any problem that

admits a kernel is also FPT. The converse also turned out to be true. Any problem that

is fixed-parameter tractable admits an exponential kernel [25]. This makes linear and

polynomial kernels more interesting from the kernelization perspective. Researchers have

developmented the framework for ruling out existence of certain types of kernel under

some complexity theoretic assumptions [12, 28, 43, 68]. With this results, a new direction

of research in the recent years have been proving optimality of the kernel sizes and ruling

out existence of kernels of some types for a parameterized problem at hand.

Not surprisingly, edge contraction problems exhibit different behavior as compare to their



counter part when it comes to admitting a kernel. Consider a case when target graph class

is set of acyclic graphs. If the edit operation is deletion of vertex then the problem is

known as FEEDBACK VERTEX SET which admits a kernel with O(k2) vertices [58, 91].

On the other hand, TREE CONTRACTION is known not to have a polynomial kernel under

a widely believed complexity theoretical conjecture [55].

The notion of polynomial kernels turns out to be a bit stringent, and it has been discovered

that many problems do not admit a polynomial kernel under well-known complexity

theoretic conjectures. On the other hand this notion turns out to be too lax as the instances

(I,k) and (I0,k0) are not as tightly-coupled as one would like them to be. For example, in

general, it may not be possible to translate an approximate solution to the instance (I0,k0),

into an approximate solution to the original instance (I,k). Given anything but an optimal

solution (or a solution of size k0) to (I0,k0), it is impossible to conclude anything about

the original instance (I,k). These issues, among others, have led to the development of a

framework for approximation preserving kernelization or lossy kernelization. Informally,

an a-approximate kernelization algorithm ensures that given any c-approximate solution

to the kernel (I0,k0), it can be converted into a (c ·a)-approximate solution to the original

instance (I,k) in polynomial time. This notion was formally introduced by Lokshtanov et

al. [75].

Almost all combinatorial problems are solvable in finite time by examining all of its

candidate solutions i.e. by brute-force search method. For NP-Hard problems, the number

of candidate solutions is exponential in the size of input. One of the most important

question in theoretical computer sciences is to find whether enumeration of solutions is the

only approach to solve NP-Hard problems in general. While this long last problem remains

difficult to tackle, there has been interest in developing exact exponential algorithms

which are specific to a problem at hands. First question while designing exact exponential

algorithms for a particular problem is: can be avoid brute-force search?



1.2 Known Results about Graph Contraction

The complexity of edge contraction problems has been studied in the literature, but it has

not received as much attention as other graph editing problems. In the limited body of work,

F -CONTRACTION has been analyzed in various dimension. It has been studied for various

graph classes. There are attempts to understand the complexity of F -CONTRACTION

problems depending on finite forbidden characterization of F . The problem turned out to

be hard even when F is finite or even if it contains one graph. Another line of research is

to study F -CONTRACTION with restrictions on input graph. In recent time, there is new

line of research where F is defined in parameterized way with respect to input graph. In

some graph contraction problems, the task is to determine size of largest graph in F to

which an input graph can be contracted.

Watanabe et al. [93, 94] showed that F -CONTRACTION is NP-Hard if F is finitely

characterizable by 3-connected graphs. Their result was generalized by Asano and Hirata

[6] who showed that F -CONTRACTION is NP-Hard whenever F is a graph class that

fulfills the following three conditions. (i) F is be closed under contractions, which is

to say, if a graph G is in F then any graph obtained from G by edge contractions is

also in F . (ii) F is not a trivial graph class. There are infinitely many graphs which

are contained in F and there are infinitely many graphs which are not. (iii) A graph

belongs to F if and only if each of its 2-connected components belong to F . This result

implies that F -CONTRACTION is NP-Hard when F is family of planar graphs, outerplanar

graphs, series-parallel graphs, forests, chordal graphs, or more generally, graphs with no

cycles of length at least ` for some fixed integer `� 3. Martin and Paulusma showed that

F -CONTRACTION is NP-Hard when F is the class of bicliques Kp,q with p,q� 2 [76].

In the realm of parameterized complexity, F -CONTRACTION has been studied with

parameter being the size of solution. A well-known result by Cai [15] states that in case

F is a hereditary family of graphs with a finite set of forbidden induced subgraphs, the

problem of modifying an input graph into a graph in F when the allowed edit operations



are vertex deletion, edge deletion and edge addition admits an FPT algorithm. Central idea

in Cai’s argument is: to destroy a structure which forbids the input graph from being in F ,

one needs to include at least one vertex (or edge) from that structure into a solution. This is

not necessarily true in the case of contractions. A forbidden structure may be destroyed by

contracting edges which are not contained in the structure. Hence the classical branching

technique does not work even for graph classes that have a finite forbidden structure

characterization. There are concrete examples for the fact that results of similar flavor

as that of Cai [15] do not hold when the edit operation is edge contraction. Lokshtanov

et al. [73] and Cai and Guo [16] independently showed that if F is either the family of

P̀ +1-free graphs or the family of C`-free graphs for some `� 4, then F -CONTRACTION

is W[1]-Hard.

In rest of this section, we use n and m to denote the number of vertices and edges,

respectively, in an input graph. The size of solution, i.e. the maximum number of edges we

are allowed to contracted in input graph to obtain graph in target graph class, is denoted by

k. Unless otherwise specified, in all the problems mentioned below, the parameter is the

size of solution. Whenever we mention a problem does not have a polynomial kernel, it is

under the assumption that NP 6✓ coNP/poly.

To best of our knowledge, Hergerners et al. [55] were the first to explicitly study edge

contraction problems in the realm of parameterized complexity. They presented a 4knO(1)

algorithm for TREE CONTRACTION based on a variant of the color coding technique of

Alon et al. [5] and using an algorithm for CONNECTED VERTEX COVER [24] as subroutine.

They also presented an algorithm running in time O(2k+o(k) +m) for PATH CONTRAC-

TION. The authors presented a parameter preserving reduction from an instance of RED

BLUE DOMINATING SET (defined later) problem to an instance of TREE CONTRACTION

to rule out polynomial kernel. They presented a kernel with 5k+ 3 vertices for PATH

CONTRACTION. This kernel was later improved to 3k+4 by Li et al. [72]. A subset of

others (from [55]) proved that if the input graph is chordal then TREE CONTRACTION and



PATH CONTRACTION can be solved in time O(n+m) and O(nm), respectively [53].

Golovach et al. [50] proved that PLANAR CONTRACTION is FPT. Their algorithm starts by

finding a set S of at most k vertices whose deletion transforms G into a planar graph [63, 80].

This is a recurring theme in designing an FPT algorithm for F -CONTRACTION problems.

We first solve F -VERTEX DELETION problem to get structural insight of input graph and

exploit it to obtain an FPT algorithm for contraction version of the problem. The authors

showed that if the input graph has large treewidth then one can find an edge which can

safely be contracted. This yields a smaller equivalent instance. They use the irrelevant

vertex technique developed in the graph minors project of Robertson and Seymour [88, 87]

to find such edge. After repeatedly contracting such irrelevant edges, which results in

graph of bounded treewidth, authors used Courcelle’s Theorem [23] to solve the remaining

instance in linear time.

Heggernes et al. [56] proved that BIPARTITE CONTRACTION is FPT using, first of its

kind, a combination of the irrelevant vertex technique and important sets or separators.

Important sets and the closely related notion of important separators were introduced in

[77] to prove the fixed-parameter tractability of multiway cut problems. The algorithm

starts by finding treewidth of input graph. If the treewidth is small then it solves instance

using Courcelle’s Theorem. If the treewidth is large, then it identify an irrelevant edge that

can be deleted without affecting the outcome. The algorithm crucially deviates from most

of the work in which finding irrelevant edge is crucial. While most works has rely on large

minor models as obstructions to small treewidth, this algorithm uses the fact that any graph

of high treewidth contains a large p-connected set X [30]. A vertex set X is p-connected

if, for any two subsets X1 and X2 of X with |X1|= |X2| p, there are |X1| vertex-disjoint

paths with one endpoint in X1 and the other in X2.

Marx et al. [79] observed that a simple corollary of their result immediately proved

that BIPARTITE CONTRACTION is almost linear time FPT. Guillemot and Marx [51]

presented a new FPT algorithm for BIPARTITE CONTRACTION, which is both conceptually



simpler and faster then the one mentioned previous paragraph. Their algorithm reduces an

instance of BIPARTITE CONTRACTION to several instances of an auxiliary cut problem.

These instance are then solved using the notion of important separators together with the

randomized coloring technique [5]. They presented a randomized FPT algorithm with

running time 2O(k2)nm and a deterministic algorithm with running time 2O(k2)nO(1).

Cai and Gua [16] and Lokshtanov et al. [74], independently, initiated the study to deter-

mine the parameterized complexity of F -CONTRACTION in terms of forbidden induced

subgraphs characterization of F . We say F is F -FREE if F is one of the forbidden

induced subgraphs of F . In other words, a graph G is contained in F if and only if G does

not contain F as an induced subgraph. Let Kt denote a complete graph on t vertices. If F is

Kt -FREE then F -CONTRACTION is FPT as the only way to destroy a copy of Kt is to con-

tract some edges in the copy. This implies an FPT algorithm by the branching technique.

This need not be the case for any other forbidden induced subgraphs. They proved that if

F is P̀ -FREE for ` 4 then F -CONTRACTION is FPT but admits no polynomial kernel.

They complimented this result by showing that P̀ -FREE CONTRACTION is W[2]-Hard

for every fixed path P̀ with ` � 5. They also proved that C3-FREE CONTRACTION is

FPT but admits no polynomial kernel and C`-FREE CONTRACTION is W[2]-Hard for

every fixed cycle C` with ` � 4. Last result implies that CHORDAL CONTRACTION is

W[2]-Hard. Cai and Gua gave a complete charaterization of F -FREE GRAPHS when F is

3-connected. They proved that, apart from being a 3-connected graph, if F is a complete

graph then F -FREE CONTRACTION is FPT but admits no polynomial kernel otherwise

F -FREE CONTRACTION is W[2]-Hard.

If input graph is connected then P3-FREE CONTRACTION problem is same as that

that of CLIQUE CONTRACTION. Cai and Gua presented an algorithm running in time

O(27kk2k+5 +m) to solve this problem [16]. Their algorithm first finds a large seed

clique in the input graph using an algorithm for VERTEX COVER [22], and then uses a

branch-and-search algorithm to contract other edges into the clique.



Belmonte et al. [8] studied F -CONTRACTION problem when F is the family of degree

constrained graphs like bounded degree, regular graphs and degenerate graphs. For any

integer d � 0, let Fd denote the class of graphs that have maximum degree at most d;

F=d denote the class of d-regular graphs and Fd-deg denote the class of d-degenerate

graphs. Belmonte et al. completely characterized the parameterized complexity for F -

CONTRACTION problems with respect to the parameters k, d, and d + k, where F 2

{Fd,F=d,Fd-deg}. They proved that Fd -CONTRACTION and F=d -CONTRACTION

can be solved in time O((d + k)2k(n+m)). When parameterized by only k, they showed

that F=d -CONTRACTION is W[1]-Hard, while Fd -CONTRACTION is W[2]-Hard even

when input is restricted to split graphs. In case of Fd-DEG-CONTRACTION, they proved

that this problem is not fixed-parameter tractable when parameterized by d + k. When

d = 2, authors showed that Fd -CONTRACTION and F=d -CONTRACTION admit O(k)

vertex kernels on connected graphs and hence quadratic vertex kernels on general graphs.

In other words, they proved that the F -CONTRACTION problem admits a linear vertex

kernel when F is the class of cycles or when F is the class of paths and cycles. This

complements the fact that PATH CONTRACTION admits a linear vertex kernel [55].

Let F�d be the family of graphs whose minimum degree is at least d. Golovach et

al. [49] proved that F�d -CONTRACTION is NP-complete even when d = 14. They proved

that this problem is FPT when parameterized by both k and d but it is W[1]-Hard when

parameterized by k alone.

Agarwal et al. [2] studied SPLIT CONTRACTION under various parameters. They proved

that SPLIT CONTRACTION is W[1]-Hard parameterized by the size of the solution. They

also studied this problem when parameter is the size of a minimum vertex cover (`) of the

input graph. To the best of our knowledge, this is the only study regarding graph contraction

problems when parameter is not a solution size. Gua and Cai’s work [52] implied that

there exists an algorithm running in time 2O(`2) · nO(1) to solve SPLIT CONTRACTION.

Agarwal et al. proved that unless the Exponential Time Hypothesis (ETH) [57] fails, SPLIT



CONTRACTION can not have an algorithm running in time 2o(`2) ·nO(1). This is the first

tight lower bound of this form for problems parameterized by the vertex cover number of

the input graph.

F -CONTRACTION problems has be been proved to be NP-Hard even for finite graph

classes. When F contains only one graph, say F , we call F -CONTRACTION as F -

CONTRACTIBILITY. Brouwer and Veldman proved that P4-CONTRACTIBLITY and C4-

CONTRACTIBLITY is NP-Hard [14]. They also proved that if F is a connected graph

other than a star which does not contain a triangle then F -CONTRACTIBLITY is NP-Hard.

Levin et al. [71] followed by showing that for every fixed graph F on at most 5 vertices,

F -CONTRACTIBLITY can be solved in polynomial time if F has a dominating vertex, and

it is NP-Hard otherwise. In addition, Hof et al. [92] presented an infinite family of graphs

with a dominating vertex, the smallest having 69 vertices, such that for any graph F in this

family F -CONTRACTIBLITY is NP-Hard.

F -CONTRACTIBLITY problems has been studied with restriction on input graphs. Kamin-

ski et al. [61] showed that for every fixed graph F , there exists a polynomial-time algorithm

for deciding whether a given planar graph can be contracted to F . Kaminski and Thilikos

[62] improved this result by showing that given a graph F and a planar graph G, the

problem of deciding whether G can be contracted to F is fixed-parameter tractable when

parameterized by |V (F)|. Belmonte et al. [9] showed that for any fixed graph F , the

F -CONTRACTIBLITY problem is polynomial solvable in the input graph is a split graph.

Golovach et al. [48] proved that if F is a split graph or a tree then F -CONTRACTIBLITY

is polynomial solvable if the input graph is chordal. Belmonte et al. [7] generalized this

result by showing that F -CONTRACTIBLITY on chordal graphs is polynomial solvable for

any fixed F .

In the results mentioned until now, graph class F is specified either by some property

or by finite forbidden characterization or by explicitly stating it. Instead of specifying a

target graph class we can specify a graph parameter that needs to be reduced by certain



threshold using edge contractions. For example, for a specified graph parameter p and

integer q, given a graph G, and an integer k, one can ask whether G can be transformed

into a graph G0 by using at most k edge contractions such that p(G0) p(G)�q? Such

problems are called BLOCKER PROBLEMS. In general, blocker problems can have other

graph modification operations apart from edge contraction. Blocker problems when edit

operation is edge contraction have been studied in the recent literature [31, 84]. Several

problems mentioned so far can be thought of blocker problems for appropriate parameter

p and threshold `. We mention two new problems. In HADWIGER NUMBER problem, the

input is graph G and integer ` and the question is to determine whether G can be contracted

to K`, a clique on ` vertices. This problem is parametric dual of CLIQUE CONTRACTION.

Consider diameter as our parameter, this problem can be thought of as: can we contract at

most k (= n� `) edges to reduce the diameter of input graph by q (= diam(G)�1). With

this definition, it is easy to generalize HADWIGER NUMBER to s-CLUB CONTRACTION.

In this problem, we determine whether one can contract at most k edges in input graph G

to reduce its diameter by diam(G)� s.

We end this section with few known results regarding P̀ -CONTRACTIBILITY for a fixed

`. There has been interest in strengthening the result of Brouwer and Veldman which

prove that P4-CONTRACTIBILITY is NP-Hard. This problem was proved to be NP-Hard

even for P6-FREE graphs [85]. Heggernes et al. [53] showed that P6-CONTRACTIBILITY

is NP-Hard for bipartite graphs. This result was improved to k = 5 in [27]. Moreover,

P7-CONTRACTIBILITY is NP-Hard for line graphs [38]. On the positive side, if input

is P5-FREE graphs then we can decide the length of longest path it can be contracted in

polynomial time [85]. In very recent paper, authors [64] prove that Pk-CONTRACTIBILITY,

for some suitable value of k, is NP-Hard for bipartite graphs of large girth strengthening

the result of [53]. Cygan et al. [26] gave an algorithm running in time O(1.933n ·nO(1)) to

solved P4-CONTRACTIBILITY. Telle and Villanger [90] presented an improved algorithm

to solve the same problem in time O(1.7804n ·nO(1)).



1.3 Scope of this thesis

In this thesis, we extend the known boundaries about graph contraction problems in

several ways. We consider F -CONTRACTION problems which do not have a polynomial

kernels when parameterized by solution size. We compliment this negative result in

two ways. Firstly, we present a polynomial kernel when parameterized by solution size

and an additional parameter. In other words, we identify new graph classes for which

there is a polynomial kernel. We also prove that these kernels are optimal under certain

complexity conjecture. Secondly, we present a lossy kernel of polynomial size for all

these problems. We present two FPT algorithms to append the list of graph classes F for

which F -CONTRACTION parameterized by solution size is FPT. We end this thesis with

a non-trivial exact algorithm to determine what is the largest size of graph in a specific F

to which an input graph can be contracted. To best of our knowledge, this is first such kind

of algorithm in case of graph contraction problems.

Starting point of this thesis is the result of Heggernes et al. [55] who studied F -CONTRACTION

when F is the family of paths and trees. They showed that PATH CONTRACTION admits

a polynomial kernel but TREE CONTRACTION does not. The natural question here is to

identify properties of paths that separate it from trees and allows PATH CONTRACTION to

have a polynomial kernel. This question can be formulated in the following way.

�What additional parameter we can associate with TREE CONTRACTION to make sure

that it admits a polynomial kernel?

One of the possible candidates is the number of leaves in resulting graphs. In Chapter 3, we

prove that this is indeed is the case by designing a polynomial kernel TREE-CONTRACTION

when parameters are solution size and number of leaves in resultant graph. We also prove

that this kernel is optimal under certain complexity assumption.

From the point of view of lossy kernelization, another natural question regarding TREE

CONTRACTION is:



� If we are allowed to have small loss in accuracy then does TREE CONTRACTION admits

a polynomial kernel?

In the same chapter, we address this question by presenting a lossy kernel of polynomial

size for this problem.

At this point, for TREE CONTRACTION, we know how to get a polynomial kernel with

two parameters; a lossy kernel and an FPT algorithm (due to [55]). We want to understand

how far can we generalize methods used to obtain these results. We consider following

two characterization of trees.

� A tree is a connected graph in which every edge is a part of zero cycles.

� A tree is a connected graph which can be made acyclic by deleting zero edges.

A connected graph is called a cactus if every edge in the graph is part of at most one cycle.

In Chapter 4, we study CACTUS CONTRACTION. We show that this problem does not

admit a polynomial kernel when parameterized by solution size but does admit a lossy

kernel of polynomial size. We define notion of cactus with bounded leaves and present a

polynomial kernel for this problem when parameterized by solution size and number of

leaves in resultant cactus. We prove that this kernel is optimal under certain complexity

assumption. We also present an FPT algorithm for this problem running in time ck ·nO(1).

Let T` is a set of connected graphs which can be made acyclic by deleting at most `

edges or, equivalently, any graph in T` have a feedback edge set of size at most `. In

Chapter 5, we study T`-CONTRACTION problem. We prove that this problem does not

have a polynomial kernel when parameterized by solution size for any fixed `. In other

words, solution size with ` as an additional parameter do not give us polynomial kernel.

However, this additional parameter is crucial in getting a lossy kernel of polynomial size

and an FPT algorithm for this problem. This FPT algorithm can be seen as generalization

of the FPT algorithm for TREE CONTRACTION.

Heggernes et al. [55] showed that TREE CONTRACTION is FPT which implies an FPT



algorithm for F3-CONTRACTION where F3 is a collection of C3-free graphs. Lokshtanov

et al. [73] and Cai and Guo [16] independently showed that F4-CONTRACTION is not FPT

where F4 is a collection of C4-free graphs. As the number of leaves in resultant graph is

crucial to understand the gap between existence of polynomial kernel for PATH CONTRAC-

TION and non-existence for TREE CONTRACTION; feedback edge set of resultant graph is

crucial to understand the gap between existence of FPT algorithm for F3-CONTRACTION

and non-existence for F4-CONTRACTION.

In Chapter 6, we study OUT-TREE CONTRACTION. A digraph is called an out-tree if its un-

derlying undirected graph is a tree and every vertex in digraph has at most one in-neighbor.

We address this problem to illustrate the fact that with some modification, techniques

developed to obtain lossy kernelization for undirected graph contraction problems can

be applied to directed graph contractions. We show that this problem does not admit a

polynomial when parameterized by solution size. We are able to get similar results as in

case of TREE CONTRACTION with slightly bigger size of kernel. We present an optimal

polynomial kernel for OUT-TREE CONTRACTION when parameterized by solution size

and number of leaves in resultant out-tree. We also describe a lossy kernel of polynomial

size for this problem.

Effectiveness of lossy kernelization is not limited to a case when target graph class is close

to trees. In Chapter 7, we present a lossy kernel for CLIQUE CONTRACTION. Recall

that CLIQUE CONTRACTION parameterized by solution size does not admit a polynomial

kernel under certain complexity assumption [16, 73]. We generalize this problem to s-

CLUB CONTRACTION in which the objective to obtain a graph of diameter at most s. We

prove that even when s = 2, there is no lossy kernel of polynomial size for this problem

unless NP✓ coNP/poly.

In Chapter 8, we present an exact algorithm for PATH CONTRACTION. Any connected

graph can be contracted to a path on two vertices. In this chapter, we address the question

of determining the highest integer ` such that an input graph can be contracted to a path on



` vertices. We observe that there is a simple brute force algorithm to find such integer. Our

main contribution is the fact that this brute force search can be avoided.





Chapter 2

Preliminaries

In this chapter, we define notations which we use in rest of the thesis. We start with graph

theoretical notations with separate section for graph contraction operations and related

observations. We then present definitions and main results from Parameterized Complexity

theory. We devote Section 2.4 for Lossy Kernelization.

We denote the set of natural numbers by N (including 0). For k 2 N, by [k] we denote the

set {1,2, . . . ,k}. Let X ,Y be two sets. For a function j : X ! Y and y 2 Y , by j�1(y) we

denote the set {x 2 X | j(x) = y}.

2.1 Graph Theory

In this thesis, we consider simple graphs with finite number of vertices. We use standard

notation from graph theory [29]. For an undirected graph G, sets V (G) and E(G) denote

the set of vertices and edges respectively. Two vertices u,v in V (G) are said to be adjacent

if there is an edge uv in E(G). The neighborhood of a vertex v, denoted by NG(v), is the

set of vertices adjacent to v and its degree dG(v) is |NG(v)|. The subscript in the notation

for neighborhood and degree is omitted if the graph under consideration is clear. For a set
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of edges F , set V (F) denotes the collection of endpoints of edges in F . For a subset S of

V (G), we denote the graph obtained by deleting S from G by G�S and the subgraph of

G induced on set S by G[S]. For two subsets S1,S2 of V (G), we say S1,S2 are adjacent if

there exists an edge with one end point in S1 and other in S2.

Two non-adjacent vertices u and v are called false twins of each other if N(u) = N(v). A

path P = (v1, . . . ,vl) is a sequence of distinct vertices where every consecutive pair of

vertices is adjacent. The vertices of P is the set {v1, . . . ,vl} and is denoted by V (P). A

path P in a graph G is called a simple path of G, if every internal vertex of P has degree

exactly equal to two in G. For a path P in G, let N(P) denote the neighborhood of P, i.e.

the set of vertices in V (G)\V (P) that are adjacent to a vertex in P. The endpoints of the

path P are the only vertices with a neighbor in G\P. A cycle is a sequence (v1, . . . ,vl,v1)

of vertices such that (v1, . . . ,vl) is a path and vlv1 is an edge.

A graph is called connected if there is a path between every pair of distinct vertices. It is

called disconnected otherwise. A component of a graph is a maximal connected subgraph.

A cut-vertex in G is a vertex v such that the number of components in G�{v} is strictly

more than the number of connected components in G. A graph that has no cut-vertex is

called a 2-connected graph. An edge uv of a graph G is called a cut-edge if the number

of connected components in G�{uv} is more than the number of connected components

in G. We note that the number of connected components after removal of an edge can

increase by at most one.

A vertex of degree one is called as pendant vertex. A graph is called a forest or an acyclic

graph if it does not contain any cycle. A tree is a connected acyclic graph. A pendant

vertex in a tree is called leaf. The vertices in a tree which are not leaves are internal vertices.

A star is a tree in which there is a path of length at most two between any two vertices. A

vertex that is adjacent to every other vertex in a star is called center. A connected graph

is called a cactus if every edge is a part of at most one cycle. We use following result to

bound the summation of degrees of vertices with degree 3 or more in a tree. Following



proposition also implies that in a tree, the number of vertices with degree at least 3 is upper

bounded by number of vertices with degree 1.

Proposition 2.1.1 (Lemma 3 [67]). For a tree T on at least two vertices, if V1,V2,V3 are the

set of vertices of degree 1, degree 2 and at least 3 respectively, then Âv2V3 degT (v) 3|V1|.

Proof. By definition, |V (T )| = |V1|+ |V2|+ |V3|. Since there are no isolated vertices,

Âv2V (T ) degT (v)= 2|E(T )|. Since T is a tree, |E(T )|< |V (T )|. This implies Âv2V (T ) degT (v)<

2(|V1|+ |V2|+ |V3|). Substituting lower bounds of degrees for each set, we get |V1|+

2|V2|+ 3|V3|  Âv2V1 degT (v) +Âv2V2 degT (v) +Âv2V3 degT (v) = Âv2V (T ) degT (v). Us-

ing the two equations we get |V1|+ 2|V2|+ 3|V3|  2(|V1|+ |V2|+ |V3|) which implies

|V3|  |V1|. Adding the degree of vertices only in V3 we get Âv2V3 degT (v) = 2|V (T )|�

(Âv2V1 degT (v)+Âv2V2 degT (v)) = 2(|V1|+ |V2|+ |V3|)�(|V1|+2|V2|) |V1|+2|V3|. Us-

ing the bound of |V3|, Âv2V3 degT (v) 3|V1|.

A vertex subset S ✓V (G) is said to cover an edge uv 2 E(G) if S\{u,v} 6= /0. A vertex

subset S✓V (G) is called a vertex cover in G if it covers all the edges in G. A minimum

vertex cover is a set S✓V (G) such that S is a vertex cover and for all S0 ✓V (G) such that S0

is a vertex cover, we have |S| |S0|. A vertex cover S in G is said to be a connected-vertex

cover if G[S] is a connected graph. A set I ✓ V (G) of pairwise non-adjacent vertices is

called an independent set. A set S of vertices is said to dominate another set S0 of vertices

if for every vertex v in S0, N(v)\S 6= /0.

We mention an FPT algorithm and a 2-factor approximation algorithm to compute con-

nected vertex cover of given graph.

Proposition 2.1.2 ([24]). Given a graph on n vertices and an integer k, there exists an

algorithm which runs in time 2knO(1) and either outputs a connected vertex cover of size

at most k or correctly concluded that no such connected vertex cover exists.

Proposition 2.1.3 ([89]). Let T be a depth-first search spanning tree of G with NL(T )

being set of non leaves in T and vc(G) (resp. cvc(G)) be minimum (resp. connected) vertex



cover of G. Then NT (L) is a (connected) vertex cover of G and |NL(T )|  2 · vc(G) 

2 · cvc(G).

2.2 Graph Contraction

The contraction of edge uv in G deletes vertices u and v from G, and adds a new vertex,

which is made adjacent to vertices that were adjacent to either u or v. Any parallel edges

added in the process are deleted so that the graph remains simple. The resulting graph is

denoted by G/e. For a given graph G and edge e = uv, we define G/e in the following

way.

V (G/e) = (V (G)[{w})\{u,v}

E(G/e) = {xy | x,y 2V (G)\{u,v},xy 2 E(G)}[{wx| x 2 NG(u)[NG(v)}

Every edge contraction reduces the number of vertices in graph by exactly one. Several

edges might disappear due to one edge contraction. For a subset of edges F in G, graph

G/F denotes the graph obtained from G by repeatedly contracting edge in F until no such

edges remains.

We say graph G is contractible to graph H if there exists an onto function y : V (G)!V (H)

such that following properties hold.

• For any vertex h in V (H), graph G[W (h)] is connected, where set W (h) := {v 2

V (G) | y(v) = h}.

• For any two vertices h,h0 in V (H), edge hh0 is present in H if and only if there exists

an edge in G with one end point in W (h) and another in W (h0).

For example, see Figure 2.1. For a vertex h in H, set W (h) is called a witness set associated

with h. We define H-witness structure of G, denoted by W , as collection of all witness set.

Formally, W = {W (h) | h 2V (H)}. Witness structure W is a partition of vertices in G. If
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Figure 2.1: Graph contraction operation

a witness set contains more than one vertex then we call it big witness-set, otherwise it is

small/singleton witness set.

If graph G has a H-witness structure then graph H can be obtained from G by series of

edge contractions. For a fixed H-witness structure, let F be union of spanning trees of all

witness sets. By convention, spanning tree of a singleton set is an empty set. To obtain

graph H from G, it is sufficient to contract edges in F . If such witness structure exists then

we say graph G is contractible to H. We say graph G is k-contractible to H if cardinality

of F is at most k. In other words, H can be obtained from G by at most k edge contractions.

Following observation are immediate consequences of definitions.

Observation 2.2.1. If graph G is k-contractible to graph H then following statements are

true.

• |V (G)| |V (H)|+ k.

• For any witness set W in a H-witness structure of G, cardinality of W is at most

k+1.

• Any H-witness structure of G has at most k big witness sets.

• For a fixed H-witness structure, the number of vertices in G which are contained in

big witness sets is at most 2k.



2.3 Parameterized Complexity

Many computational problems arising from real-world problems are NP-Hard, and we do

not expect any efficient algorithms for solving them optimally. Parameterized complexity

is an algorithm paradigm to tackle NP-Hard problems. Central notions in this paradigm

are fixed parameter tractability and kernelization. The former notion is developed to

identify NP-Hard problems which can be solved by restricting unavoidable exponential

factor in running time to a parameter which is expected to be smaller then entire input.

Kernelization has been developed as a mathematical framework to study data reduction

rules and to quantify their efficacy.

A parameterized problem is a classical problem with an additional integer associated with

each (classical) instance of the problem. Formally, it is defined as follows.

Definition 2.3.1 (Parameterized Problem). A parameterized problem is a language P✓

S⇤ ⇥N, where S is a fixed, finite alphabet. For an instance (I,k) 2 S⇤ ⇥N, integer k is

called the parameter.

For a parameterized problem P ✓ S⇤ ⇥N, the derived classical problem Pc is the set

{I1k|(I,k) 2P}, where 1 62 S. Typically, parameter k reflects some structural property of

the instance. A common parameter is a bound on the size of an optimum solution to the

problem instance.

Definition 2.3.2 (Fixed Parameter Tractable (FPT)). A parameterized problem P✓ S⇤ ⇥

N is called fixed parameter tractable if there exists an algorithm A (called a fixed

parameter algorithm), a computable function f : N! N, and a constant c such that, given

(I,k) 2 S⇤ ⇥N, the algorithm A correctly decides whether (I,k) 2P in time bounded by

f (k) · (|I|+ k)c.

The complexity class containing all fixed-parameter tractable problems is called FPT.

Every parameterized problem need not be fixed-parameter tractable for given parameter.



Downey and Fellows introduced W-hierarchy in an attempt to classify parameterized

problems according to their hardness (See [33]). We restrain from specifying exact

definition of these classes. To understand results in this thesis it is sufficient to know

following containment relationship among these classes: FPT✓W[1]✓W[2] · · · . Each

class is believed to be properly contained in its superset. We mention that problems

CLIQUE and DOMINATING SET parameterized by solution size are W[1]-Complete and

W[2]-Complete, respectively.

One can obtain finer classification of FPT problems by examining the efficiency with

which instances of these problems can be reduced to smaller instances without changing

the answer. To quantify efficiency of such reductions, we define kernelization algorithm.

Definition 2.3.3 (Kernelization Algorithm). A kernelization algorithm, or simply kernel,

of a parameterized language P✓ S⇤ ⇥N is an algorithm that takes as input an instance

(I,k) 2 S⇤⇥N, and in time polynomial in |I|+k returns another instance (I0,k0) such that:

• |I0|+ k0  g(k) for some computable function g(·), and

• (I,k) 2P if and only if (I0,k0) 2P.

If the function g(·) is linear, polynomial or exponential, the problem is said to admit a

linear, polynomial or exponential kernel, respectively. If there is a kernel for given problem

then it is clearly FPT but, interestingly, the converse is also true. Any FPT problem admits

an exponential kernel (See [25, Lemma 2.2]). This makes linear and polynomial kernels

more interesting from the kernelization perspective. Every problem which is FPT by

specified parameter may not have a polynomial kernel. An interesting line of research was

started to rule out existence of polynomial kernels under reasonable complexity theoretic

assumptions [12, 43]. Before stating results regarding non-existence of polynomial kernel,

we mention definition of polynomial compression which generalizes the notion of kernels.

Definition 2.3.4 (Polynomial Compression). A polynomial compression of a parameterized

language P✓ S⇤⇥N into a language L✓ S⇤ is an algorithm that takes as input an instance

(I,k) 2 S⇤ ⇥N, and in time polynomial in |I|+ k returns a string y such that:



• |y| p(k) for some polynomial p(·), and

• y 2 L if and only if (I,k) 2P.

If |S|= 2, the polynomial p(·) is called bit-size of the compression. Note that a polynomial

kernel is also a polynomial compression by treating the output kernel as the instance of

un-parameterized version of P.

Let P1 be a problem for which we already know that it does not admit a polynomial

compression. To be able to transfer this hardness to other problems, we need following

notion of reduction.

Definition 2.3.5 (Polynomial Parameter Transformation). Let P1,P2 ✓ S⇤ ⇥N be two

parameterized problems. An algorithm A is called a polynomial parameter transformation

from P1 to P2 if given an instance (I1,k1) of P1, A works in polynomial time and outputs

an instance (I2,k2) of P2 such that:

• |k2| p(k1) for some polynomial p(·), and

• (I1,k1) 2P1 if and only if (I2,k2) 2P2.

In the following theorem, we formalize the notation of transfer of hardness.

Theorem 2.3.1 ([25] Theorem 15.15). Let P1,P2✓S⇤⇥N be two parameterized problems

and assume that there exits a polynomial parameter transformation from P1 to P2. Then,

if P1 does not admit a polynomial compression, neither does P2.

Note that Theorem 2.3.1 uses the notion of compression instead of kernelization. If we

liked to prove an analogous statement for polynomial kernelization, we would need to

provide a way to reduce back Pc
2 to Pc

1. This requires some additional assumptions on

complexity of Pc
1 and P2

2. We mention following result by Bodlaender et al. which we use

to rule out polynomial kernels.

Proposition 2.3.1 ([13]). Let P1 and P2 be parameterized problems such that Pc
1 is NP-

complete and Pc
2 is in NP; if there is a polynomial parameter transformation from P1 to



P2 and P2 has a polynomial kernel, then P1 has a polynomial kernel.

Until now, we mentioned results that can be used to establish that for a particular problem,

there is no polynomial sized compression. These results, with more involved treatments,

can be used to argue that for a particular problem a certain sized compression is optimal.

We mention one problem for which compression lower bound is known to be optimal

under standard complexity assumptions. The problem DOMINATING SET takes as an

input a graph and an integer k, and the goal is to decide whether the input graph con-

tains a dominating set of size at most k. Any instance can be encoded with O(n2) bits

where n is the number of vertices in the input graph. Jansen and Pieterse proved that

DOMINATING SET does not admit a compression of bit-size O(n2�e), for any e > 0

unless NP✓ coNP/poly [60]. We use this result to obtain compression lower bound for

another problems which is more useful in reduction. The input instance for RED-BLUE

DOMINATING SET (RBDS) is a bipartite graph G with bi-partition (R,B) and an integer t.

The question is whether R has a subset of at most t vertices that dominates B.

Proposition 2.3.2. RED-BLUE DOMINATING SET does not admit a polynomial compres-

sion of bit size O(n2�e), for any e > 0 unless NP✓ coNP/poly. Here, n is the number of

vertices in the input graph.

Proof. Assuming a contradiction, suppose RBDS admits a compression into L ✓ S⇤

with bit-size in O(n2�e) for some e > 0, where n is the number of vertices in the input

graph for RBDS. This implies that there exists an algorithm A which takes an instance

I = (G,R,B,k) of RBDS and in time nO(1) returns an equivalent instance I0 of L with

|I0| 2 O(n2�e).

Let (G,k) be an instance of DOMINATING SET and n = |V (G)|. We construct as instance

(G0,R,B,k0) of RBDS as the following. For each v 2V (G), we add vertices vR and vB to

R and B, respectively. Further, for each vR 2 R we make it adjacent to the corresponding

copies in B of vertices in NG[v]. Finally, we set k0 = k. It is easy to see that (G,k) is



a YES instance of DOMINATING SET if and only if (G0,R,B,k0) is a YES instance of

RBDS. Furthermore, the reduction takes polynomial time and |V (G0)| 2 O(n). But then

DOMINATING SET admits a compression into P with bit-size O(n2�e), a contradiction.

For more details on parameterized complexity, we refer the reader to the books of Downey

and Fellows [33], Flum and Grohe [39], Niedermeier [83], and the more recent book by

Cygan et al. [25].

2.4 Lossy Kernelization

As the goal in parameterized algorithms is to eventually solve the given instance of a

problem, the application of a kernelization algorithm is typically followed by an exact or

approximation algorithm that finds a solution to a reduced instance. However, the definition

of kernel mentioned in Section 2.3 provides no insight into how this solution relates to a

solution to the original instance. For instance, consider a parameterized problem P, an

instance (I,k) of P, and a kernelization algorithm A of P. Let (I0,k0) be the instance

returned by A on the input (I,k). Given an approximate solution to (optimization version

of) P in (I0,k0), using the (classical) notion of polynomial kernels we can say nothing

about a solution to the instance (I,k). Many state of the art approximation algorithms used

to tackle NP-Hard problems are extremely sophisticated and it is infeasible to apply them

to large problem instances. It is far more practical to reduce a large instance to a small

kernel, then obtain a good approximate solution to this kernel, and finally transform it into

an approximate solution to the original instance. Lokshtanov et al. [75] introduced the

notion of lossy kernelization, which provides a framework for “approximation preserving

kernelization”. Building on the notion of classical kernelization, this framework combines

well with approximation algorithms and heuristics.

In lossy kernelization, we work with optimization analogue of parameterized problem.



Along with an instance and a parameter, optimization analogue of the problem also

has a string called solution. We start with a definition of a parameterized optimization

problem, which is the parameterized analogue of an optimization problem in the theory of

approximation algorithms.

Definition 2.4.1 (Parameterized Optimization Problem). A parameterized Optimization

problem is a computable function P� : S⇤ ⇥N⇥S⇤ 7! R[{±•}. The instances of P� are

pairs (I,k) 2 S⇤⇥N and a solution to (I,k) is simply a string S 2 S⇤ such that |S| |I|+k.

In this thesis, all optimization problems are minimization problems. We present rest of

section with respect to parameterized minimization problem as parameterized maximization

problem can be defined in a similar way. We treat decision version of problem (P) and

optimization version of problem (P�) in separate sections. In chapters, we denote decision

version and optimzation version of a problem by same notation.

The value of a solution S is P�(I,k,S). The optimum value of (I,k) is defined as:

OPTP(I,k) = minS2S⇤, |S||I|+k P�(I,k,S), and an optimum solution for (I,k) is a solu-

tion S such that P�(I,k,S) = OPTP�(I,k). For a constant c > 1, S is c-factor approximate

solution for (I,k) if P�(I,k,S)
OPTP�(I,k)

 c. We omit the subscript P� in the notation for opti-

mum value if the problem under consideration is clear from the context. We define an

a-approximate polynomial-time preprocessing algorithm for a parameterized minimization

problem P�.

Definition 2.4.2 (a-Approximate Polynomial-time Preprocessing Algorithm). Let a � 1

be a real number and P� be a parameterized minimization problem. An a-approximate

polynomial-time preprocessing algorithm is defined as a pair of polynomial-time algo-

rithms, called the reduction algorithm and the solution lifting algorithm, that satisfy the

following properties.

• Given an instance (I,k) of P�, the reduction algorithm computes an instance (I0,k0)

of P�.



• Given the instances (I,k) and (I0,k0) of P�, and a solution S0 to (I0,k0), the solution

lifting algorithm computes a solution S to (I,k) such that P�(I,k,S)
OPT(I,k)  a · P�(I0,k0,S0)

OPT(I0,k0) .

We sometimes refer a-approximate polynomial-time preprocessing algorithm kernel as a-

lossy rule or a-reduction rule. A reduction rule is the reduction algorithm of a polynomial

time preprocessing algorithm. We say that a reduction rule is applicable on an instance

(I,k) if the result (I0,k0) obtained by applying reduction rule on it is different from (I,k).

It is applicable on an instance if the output is different from the input instance.

Definition 2.4.3 (a-Approximate Kernel). An a-approximate kernelization (or a-approximate

kernel) for P� is an a-approximate polynomial-time preprocessing algorithm A such that

sizeA (k) = sup{|I0|+ k0 : (I0,k0) = RA (I,k), I 2 S⇤}, is upper bounded by a computable

function g : N! N, where RA is the reduction algorithm in A .

We sometimes refer a-approximate kernel as a-lossy kernel. In classical kernelization, of-

ten we apply reduction rules several times to reduce the given instance. This however breaks

down in lossy kernelization. Each application of a reduction rule could potentially increase

the “gap” between (i) the approximation quality of the solution to the kernel on the one

hand, and (ii) the approximation quality of solution to the original instance that is computed

by the solution lifting algorithm, on the other. Let (G,k)! (G0,k0)! (G00,k00) be a series

of instance obtained after applying a-reduction rules. In other words, (G0,k0),(G00,k00) are

instances obtained by applying a-reduction rule on (G,k),(G0,k0) respectively. Given a

c-factor approximate solution S00 for (G00,k00), solution lifting algorithm can obtain (a2 ·c)-

factor approximate solution S for (G,k). To remedy this shortcoming, we require the

notion of a-strict kernelization and a-safe reduction rules.

Definition 2.4.4 (Strict Kernel). An a-approximate kernelization is said to be strict if
P�(I,k,s)
OPT(I,k) max{P�(I0,k0,s0)

OPT(I0,k0) ,a}.

Definition 2.4.5 (Safe reduction rule). A reduction rule is said to be a-safe for P� if there

is a solution lifting algorithm, such that the rule together with this algorithm constitutes a

strict a-approximate polynomial-time preprocessing algorithm for P�.



In the above example, if reduction rules are a-safe, we can obtain max{a,c}-factor

(instead of a2c-factor) approximate solution for (G,k) from c-factor approximate solution

for (G00,k00). A (lossy) reduction rule being 1-safe is more strict than (classical) reduction

rule begin safe. To prove the correctness of reduction rule in classical kernelization, we

prove that for an input instance is a YES instance if and only if output instance is a YES

instance. In case of lossy kernelization, we need to argue that for any c-factor approximate

solution for an output instance, one can obtain c-factor approximate solution for input

instance.

We mentioned a-approximate kernelization algorithms for given problem P�. We now

define family of algorithms, one for every a , to compute approximate kernel.

Definition 2.4.6 (PSAKS). A polynomial-size approximate kernelization scheme (PSAKS)

for P� is a family of a-approximate polynomial kernelization algorithms for each a > 1.

The size of an output instance of a PSAKS, when run on (I,k) with approximation

parameter a , is upper bounded by f (a) · kg(a) for some functions f and g independent of

|I| and k.

We briefly discuss the importance of the parameter k in this framework. For the sake of

simplicity imagine that we are considering a parameterized problem with solution size as

parameter. In classical settings, the question is to determine whether there exists a solution

of size at most k. Assuming that there always exists a trivial solution of large size, the

question is to differentiate solutions of size at most k from solutions of size at least k+1.

To reflect this, parameterized minimization problem is defined in the following way.

P�(I,k,S) =

8
><

>:

• if S is not a solution

min{|S|,k+1} otherwise

Above definition allows us to design solution lifting algorithms which consider all of

solutions of value more than k+1 are equally bad. Consider a case when input of solution



lifting algorithm is (I,k, I0,k0,S0) where S0 is a solution for (I0,k0). Let k0 = k; k > a ; k > 2

and P�(I0,k0,S0) = k100. Since the solution lifting algorithm runs in polynomial time and

we are dealing with NP-hard problem, it is unlikely that we find solution S for (I,k) of

size at most k. By definition of solution lifting algorithm, it needs to find a solution for

(G,k) which is at least max{k99,a}= k99 times the size of optimum solution. It is futile

to compel a solution lifting algorithm to find a k99-factor approximate solution. Present

definition of P� allows solution lifting algorithm to return a feasible solution S of any

cardinality. Notice that above definition ensures both P�(I0,k0,S0) and P�(I,k,S) are equal.

We define a notion of a polynomial time reduction appropriate for obtaining lower bounds

for a-approximate kernels. This is very similar to the definition of a-approximate polyno-

mial time pre-processing algorithm (Definition 2.4.2).

Definition 2.4.7. Let a � 1 be a real number. Let P and P0 be two parameterized

minimization problems. An a-approximate polynomial parameter transformation (a-appt

for short) A from P to P0 is a pair of polynomial time algorithms, called reduction

algorithm RA and solution lifting algorithm. Given as input an instance (I,k) of P the

reduction algorithm outputs an instance (I0,k0) of P0. The solution lifting algorithm takes

as input an instance (I,k) of P, the output instance (I0,k0) = RA (I,k) of P0, and a solution

s0 to the instance I0 and outputs a solution s0 to (I,k) such that

P(I,k,s)
OPTP(I,k)

 P(I0,k0,s0)
OPTP0(I0,k0)

In the standard kernelization setting lower bounds machinery rules out existence of com-

pression algorithms. Similar to this, lower bound machinery in lossy kernelization rules

out existence of compression algorithms. Towards that we need to generalize the definition

of a-approximate kernel to a-approximate compression. The only difference is that in

the later case the reduced instance can be an instance of any parameterized optimization

problem.



Definition 2.4.8. Let a � 1 be a real number. Let P and P0 be two parameterized

optimization problems. An a-approximate compression from P to P0 is an a-appt A

from P to P0 such that sizeA (k) = sup{|I0|+ k0 : (I0,k0) = RA (I,k), I 2 S⇤}, is upper

bounded by a computable function g : N! N, where RA is the reduction algorithm in A .

In [75], authors proved that parameterized optimization version of SET COVER parameter-

ized by universe size does not admit an a-approximate compression of polynomial size for

any a � 1 unless NP✓ coNP/poly. The input of SET COVER is a family S of subsets of

a universe U and the objective is to choose a minimum sized subfamily F of S such that
S

S2F S =U . Such a set F is called a set cover of (S ,U). Since the parameter used here

is a structural parameter, its parameterized version SET COVER/n (SC/n) can be defined

as follows.

SC/n((S ,U), |U |,F ) =

8
><

>:

• if F is a set cover

|F | otherwise

Theorem 2.4.1. SET COVER/n does not have a polynomial size a-approximate compres-

sion for any a � 1, unless NP ✓ coNP/poly.

Parameterized version of SET COVER is generally associated with parameter k which is

size of solution. We can define it in the following way.

SC/k((S ,U),k,F ) =

8
><

>:

min{|F |,k+1} if F is a set cover

• otherwise

Without loss of generality, we can assume that we are working with an instance in which

k n. If k� n then we can select a private set to cover each element in universe and hence

the instance can be solved in polynomial time. Suppose there exists a polynomial size

a-approximate compression of SET COVER/k for some a . We can use this compression

algorithm to get a lossy compression for SET COVER/n by substituting k = n. This is a



contradiction to Theorem 2.4.1. This leads to following corollary.

Corollary 2.4.1. SET COVER/k does not have a polynomial size a-approximate compres-

sion for any a � 1, unless NP ✓ coNP/poly.

We encourage the reader to see [75] for more comprehensive discussion of these ideas

and definitions. The authors presented lossy kernels for several problems which do not

admit a classical kernelization, such as CONNECTED VERTEX COVER, DISJOINT CYCLE

PACKING, DISJOINT FACTORS, etc. They also develop a lower bound framework for

lossy kernels, by extending the lower bound framework of classical kernelization. They

show that LONGEST PATH does not admit a lossy kernel of polynomial size unless NP ✓

coNP/poly.

In this thesis, we investigate several graph contraction problems in the framework of lossy

kernelization. We design lossy polynomial kernels for some graph contraction problems

which do not admit classical polynomial kernels NP ✓ coNP/poly.



Chapter 3

Tree Contraction

3.1 Introduction

In this chapter, we study problem of contracting given graph to a tree. PATH CONTRAC-

TION and TREE CONTRACTION were first problems studied in parameterized setting

by Heggernes et al. [55]. They proved that when parameterized by solution size, PATH

CONTRACTION admits a linear vertex kernel but TREE CONTRACTION does not admit a

polynomial kernel unless NP✓ coNP/poly. Difference in sizes of kernels for these two

closely related problems is starting point of work presented in this chapter. We formally

define TREE CONTRACTION.

TREE CONTRACTION Parameter: k

Input: A graph G and an integer k

Question: Is it possible to obtain a tree from G with at most k edge contractions?

Other problems mentioned in this section are defined in similar way. Heggernes et al.

presented a parameter preserving reduction from an instance of RED BLUE DOMINATION

problem to an instance of TREE CONTRACTION [55, Theorem 2]. This reduction also

holds for STAR CONTRACTION. It is interesting that when parameterized by solution size

PATH CONTRACTION admits a polynomial kernel but STAR CONTRACTION does not. One

55



of the structural difference between path and star is number of leaves. While path has at

most two leaves, a star graph can have unbounded number of leaves. This hints that number

of leaves can be a additional parameter one needs to consider to change the parameterized

complexity of STAR CONTRACTION problem. To formalize the question: does the bound

on the number of leaves makes the difference in kernelization complexity of these two

problems? We prove that indeed this is the case. We show that when parameterized by

addition parameter l, number of leaves, we do get polynomial kernels. In fact, what we get

is an uniform kernel i.e. the kernel which is polynomial both in terms of k and l. Formally,

the problem is defined below.

BOUNDED TREE CONTRACTION (BOUNDED TC) Parameter: k+ `

Input: A graph G and integers k,`

Question: Is it possible to obtain a tree with at most ` leaves from G with at most k

edge contractions?

We prove that there exists a polynomial kernel with O(k`) vertices and O(k2 + k`) edges

in Section 3.3. In Section 3.4, we prove that these kernels are optimal unless NP ✓

coNP/poly.

We know that TREE CONTRACTION does not have a polynomial kernel when parameterized

by solution size. Next natural question is: does it have a lossy kernel of polynomial size

when parameterized by solution size?. We prove that given a graph G on n vertices, an

integer k and an approximation parameter a > 1, there is an algorithm that runs in nO(1)

time and outputs a graph G0 on O(kd+2 + k3) vertices and an integer k0 such that for every

c > 1, a c-approximate solution for (G0,k0) can be turned into a (ca)-approximate solution

for (G,k) in nO(1). Here, d = d a
a�1e.

Results presented in Section 3.3 and 3.4 are from [1]. Lossy kernel for TREE CONTRAC-

TION is based on [69].



3.2 Preliminaries

Let G be a connected graph and F is a set of edges in G such that G/F = T is a tree. Let

W be a T -witness structure of G. We start with following observation on neighbors of

vertices which are contained in W (t) for some leaf t in T .

Observation 3.2.1. Let t be a leaf in T and t 0 be its unique neighbor. Then, for every

vertex v in W (t), its neighborhood is contained in W (t 0)[W (t).

Proof. For the sake of contradiction, assume that there exists a vertex v in W (t) which has

neighbors outside W (t) and W (t 0). Let W (t 00) be a witness set such that N(v) intersects

with W (t 00) and t 00 is not equal to t or t 0. Since G is contractible to T , there exists an edge

between t and t 00. This implies that t has at least two neighbors in T contradicting the fact

that it is a leaf.

For every integer `� 2, consider a set of trees which has at most ` leaves. For `= 2, this

set is a collection of all paths. Following observation states that this set of graphs is closed

under edge contraction.

Observation 3.2.2. Let T be a tree and T 0 be the graph obtained from T by contracting

an edge v1v2 in E(T ). If T has at most ` leaves then T 0 is a tree with at most ` leaves.

This set is also closed under an operation of uncontracting an edge with some additional

conditions. We first formally define such operation. Consider a tree T and one of its

internal vertex, say v. Let L,R be a partition of N(v) such that none of them is an empty

set. We define operation SPLIT(T,v,L,R) as follows. See Figure 3.1 for illustration.

SPLIT(T,v,L,R): Remove vertex v and add two vertices v1 and v2. Make v1 adjacent

with every vertex in L and v2 adjacent with every vertex in R. Add edge v1v2. If T 0 is

the graph obtained from T by this operation then V (T 0) = (V (T ) \ {v})[ {v1,v2} and

E(T 0) = (E(T )\ ({vu | u 2 N(v)}))[{v1u | u 2 L}[{v2u | u 2 R}[{v1v2}.



Figure 3.1: Operation SPLIT(T,v,L,R) with L = {x3} and R = {x1,x2}.

The following lemma proves that this operation on a tree results into another tree with

same number of leaves.

Lemma 3.2.1. Let T be a tree, v be an internal vertex of T and N(v) is partitioned

into two non-empty sets L and R. Let T 0 is the graph obtained from T after applying

SPLIT(T,v,L,R). If T has at most ` leaves then T 0 is a tree with at most ` leaves.

Proof. First, we prove that T 0 is a tree. Suppose not, then there exists a cycle in T 0. Let C0

be an induced cycle in T 0. If C0 contains at most one of v1,v2, then we can obtain a cycle C

in T by replacing v1 or v2 by v. Otherwise, C contain both v1 and v2. Since, C0 is an induced

cycle and v1v2 2 E(T 0), vertices v1,v2 appear consecutively in C0. Again, by replacing

v1v2 by vertex v, we obtain a cycle in T which is a contradiction. Hence, T 0 is acyclic.

Note that v1v2 is an edge in T 0 with NT 0(v1)\{v2} = L 6= /0 and NT 0(v2)\{v1} = R 6= /0,

therefore v1,v2 are not leaves in T 0. All leaves in T 0 remains as leaf vertices in T 0. This

implies that number of leaves in T 0 is no more than the number of leaves in T .

We mention following simplifying assumption which is used in designing a lossy kernel

for TREE CONTRACTION. It helps us to concentrate on 2-connected components of input

graph.

Lemma 3.2.2 ([55]). A connected graph is k-contractible to a tree if and only if each of its

2-connected components is contractible to a tree using at most k edge contractions in total.

We make an observation on a tree witness structure of a 2-connected graph.



Figure 3.2: Modifying big witness sets which are leafs. All but one vertex in W (ti) has
been moved to W (t j). See Observation 3.2.3.

Observation 3.2.3. Consider a 2-connected graph G and let F be a set of edges in G

such that G/F is a tree with at least three vertices. Then there exists a set F 0 of at most

|F | many edges such that G/F 0 is a tree and corresponding G/F 0-witness structure W 0

satisfies following property: Witness set W 0(t 0) in W 0 is singleton if and only if t 0 is a leaf

in G/F 0.

Proof. Let W be a T -witness structure of G where T = G/F . We first show that every

vertex t in V (T ) for which W (t) is singleton, is a leaf in T . Assume there exists a non-leaf

t in T such that W (t) = {u} for some vertex u in V (G). Since t is not a leaf, T �{t} has

at least two non-empty subtrees, say T1 and T2. Define two sets U1 :=
S

t2V (T1)W (t) and

U2 :=
S

t2V (T2)W (t). As W is a T -witness structure of G, there is no edge between a vertex

in U1 and a vertex in U2 in G�{u}. This contradicts the fact that G is 2-connected. Hence

our assumption is wrong and every singleton witness set corresponds to a leaf.

Consider a leaf ti in T such that W (ti) is not a singleton set. Let t j be the unique neighbor

of ti in T . Since T has at least three nodes, t j is not a leaf. As tit j 2 E(T ), there exists an

edge in G with one end-point in W (ti) and another in W (t j). Hence, G[W (ti)[W (t j)] is

connected (See Figure 3.2). We argue that G[W (ti)[W (t j)] has a spanning tree which has



a leaf in W (ti). Observe that as |W (ti)|> 1, any spanning tree of G[W (ti)] has at least two

leaves. If there is a spanning tree of G[W (ti)] that has a leaf u which is not adjacent to any

vertex in W (t j), then G[(W (ti)[W (t j)) \ {u}] is connected and u is the required vertex.

Otherwise every leaf in every spanning tree of G[W (ti)] is adjacent to some vertex in W (t j)

and hence G[(W (ti)[W (t j)) \ {u}] is connected for each vertex u 2W (ti). Therefore,

G[W (ti)[W (t j)] has a spanning tree which has a leaf u from W (ti).

Define sets Wu := {u} and Wi j := (W (t j)[W (ti)) \ {u}. Let W 0 be a witness structure

obtained from W by removing W (ti),W (t j) and adding Wu,Wi j. Formally, W 0 = (W [

{Wu,Wi j}) \ {W (ti),W (t j)}. Note that W 0 partitions V (G) and for every witness sets

W 0 in W 0, G[W 0] is connected. Let T 0 is the graph obtained from G by contracting all

witness sets in W 0. In other words, W 0 is T 0-witness structure of G. We argue that T 0

is a tree. By Observation 3.2.1, for every vertex in v in W (ti), neighborhood of v is

contained in W (ti)[W (t j). Moreover, W (t j) is a subset of Wi j. Hence witness set W in

W 0 \{Wu,Wi j}= W \{W (ti),W (t j)} is adjancent with Wi j if and only if W is adjancent

with Wj. By construction, Wu is adjancent with only Wi j. Hence T 0 can be obtained from

T by renaming t j to ti j and ti to tu. This implies T 0 is a tree and it has same number of

vertices as that of T . Note that the number of edges needed to contract all witness sets in

W is same as the number of edges needed to contract all witness sets in W 0.

Recall that T has at least three vertices and hence every leaf vertex is adjacent to some

non-leaf vertex. We repeat the above process for every non-singleton leaf until every

witness set corresponding to a leaf is a singlton witness set. If F 0 is union of spanning trees

of this modified witness structure then the number of edges in F 0 and F are same. This

concludes proof of the lemma.



u v

|V (C1)| � k + 2 |V (C2)| � k + 2

C1 C2

(G, k, `)

|V (C1)| � k + 2 |V (C2)| � k + 2

...

... u⇤u⇤

C1 \ {u} C2 \ {v}
(G/{uv}, k, `)

...

...

Figure 3.3: An illustration of Reduction Rule 3.3.1.

3.3 Kernel for BOUNDED TREE CONTRACTION

In this section we design a kernelization algorithm for BOUNDED TREE CONTRACTION

(BOUNDED TC). Our algorithm is inspired by kernelization algorithm for PATH CON-

TRACTION presented in [55]. Let (G,k,`) be an instance of BOUNDED TC. It is safe to

assume that the input graph G is connected otherwise it is a trivial NO instance.

Kernelization algorithm has only one reduction rule which finds an contracts an irrelevant

edge. We argue that a cut edge whose removal results in two large connected components

is an irrelevant edge.

Reduction Rule 3.3.1. Let uv be a cut-edge in G and C1,C2 be the connected components

in G� {uv}. If |V (C1)|, |V (C2)| � k + 2 then contract uv. The resulting instance is

(G0,k,`), where G0 = G/{uv}.

Informally speaking, since edge uv is a cut-edge, it is not a part of any cycle. We do

not need to contract it to destroy any cycle. The only reason we might include it in a

solution is to reduce the number of leaves in resultant tree. As the sizes of both connected

components of G�{uv} is at least k+2, contracting at most k edges can not destroy either

of connected component. Hence no end points of uv can be part of leaf in resulting graph.

In other words, uv is irrelevant with respect to any solution of size at most k and can safely

be contracted.



Lemma 3.3.1. Reduction rule 3.3.1 is safe.

Proof. We argue that (G,k,`) is a YES instance of BOUNDED TC if and only if (G0,k,`)

is a YES instance of BOUNDED TC.

To prove forward direction, let (G,k,`) be a YES instance of BOUNDED TC. Let F be a

set of at most k edges such that G/F be a tree with at most ` leaves. By Observation 3.2.2,

graph G/(F [ {uv}) is also a tree with at most ` leaves. Note that G/(F [ {uv}) =

(G/{uv})/(F \ {uv}) = G0/(F \ {uv}). Hence G0/(F \ {uv}) is a tree with at most `

leaves. Since |F \ {uv}|  |F |  k, we can conclude that (G0,k,`) is a YES instance of

BOUNDED TC.

To prove reverse direction, let (G0,k,`) be a YES instance of BOUNDED TC. Let F 0 be a

set of at most k edges such that G0/F 0 = T 0 is a tree with at most ` leaves. We first argue

that G is (|F 0|+1)-contractible to a tree, say T1, which has at most ` leaves. Using SPLIT

operation on T1 we argue that G is actually |F 0|-contractible to a tree with at most ` leaves.

Let W 0 be a T 0-witness structure of G0. Let u⇤ be the vertex resulting while contracting

edge uv in G to get G0. Consider vertex t⇤ in V (T 0) such that u⇤ is in W (t⇤). Define

set W (t1) := (W (t⇤)\{u⇤})[{u,v}. Let W1 be the witness structure obtained from W 0

by removing W (t⇤) and adding W (t1). Note that W1 partitions V (G) and for each W in

W1, G[W ] is connected. Let T1 be a graph obtained from G by contracting witness sets

in W1. In other words, W is a T1-witness structure of G. Note that T1 can be obtained

from G by contracting all edges in F 0 [{uv}. This implies T1 can be obtained from G0 by

contracting all edges in F 0 and hence it is a tree with at most ` leaves. We conclude that G

is (|F 0|+1)-contractible to a tree with at most ` leaves.

Since uv is a cut-edge in G, it is also a cut-edge in G[W (t1)]. Let Cu and Cv be the connected

components of G[W (t1)]�{uv} containing u and v, respectively. Further, let Wu =V (Cu),

Wv =V (Cv). Consider a witness structure W of G obtained from W1 by removing W (t1)

and adding Wu and Wv. Notice that W partitions V (G) and for each W in W , G[W ] is



connected. Moreover, we need |F 0| many edges to contract all witness sets in W . Let T be

a graph obtained by contracting all witness sets in W . In other words, W is a T -witness

structure of G. Note that G is |F 0|-contractible to T . The only thing which remains to

prove is that T is a tree with at most ` leaves. We prove this by showing that T can be

obtained from T1 by SPLIT operation at vertex t1.

We start with proving that t1 is an internal vertex in T1 by showing that it has at least two

neighbors.

Claim. Vertex t1 in T1 has at least two neighbors.

Proof. Each witness set in W1 is of size at most k+2 and hence |W (t1)| k+2. If t1 is the

only vertex in T1, then all the vertices in (V (C1)[V (C2))\{u,v} are in W (t1). This implies

that |W (t1)|� 2k+3 which is a contradiction. If t1 has unique neighbor, say t̂, in V (T1),

then V (C1)\W (t̂) and V (C2)\W (t̂) are both non empty as |V (C1)|, |V (C2)|� k+2 and

|W (t1) \ {u,v}|  k. Since uv is a cut-edge, any path connecting vertices in V (C1) and

V (C2) must contain an edge uv. Both sets V (C1)\W (t̂) and V (C2)\W (t̂) are not empty

but W (t̂) does not contain u,v. This implies that G0[W (t̂)] is not connected contradicting

the fact that it is a witness set. Hence t1 has at least two neighbors in T1. ⇧

Consider a vertex t in T1 which is adjacent with t1. From above arguments, we know that

exactly one of V (C1)\W (t) and V (C2)\W (t) is an empty set. Partition vertices in NT 0(t1)

into two sets L and R depending on whether corresponding witness sets intersect C1 or C2.

Formally, L := {t | t 2 NT 0(t) and W (t)\V (C1) 6= /0} and R := {t | t 2 NT 0(t) and W (t)\

V (C2) 6= /0}. Note that (L,R) is a partition of NT1(t) and none of this set is empty. Let T

be the graph obtained after operation SPLIT(T1, t1,L,R). By Lemma 3.2.1, T is a a tree

with at most ` many leaves.

Hence, if there exist a set of edges F 0 in G0 such that G/F 0 is tree with at most ` leaves

then G is |F 0|-contractible to a tree with at most ` leaves. This concludes the proof of

reverse direction.



Figure 3.4: Parts of a longest path from root to a leaf. See Lemma 3.3.2.

We now argue that exhaustive application of Reduction Rule 3.3.1 either returns a reduced

instance of bounded size or we can conclude that original instance is a NO instance.

Lemma 3.3.2. Let (G,k,`) be an instance of BOUNDED TC on which Reduction Rule 3.3.1

is not applicable. If (G,k,`) is a YES instance of BOUNDED TC, then G has at most

O(k`) vertices and O(k2 + k`) edges.

Proof. Let (G,k,`) be a YES instance of BOUNDED TC and F ✓ E(G) be a solution

such that T = G/F is a tree with at most ` leaves. Fix an arbitrary vertex of the tree

T as its root. Let W be a T -witness structure of G. As T is obtained using at most k

edge contractions from G, |V (G)|  |V (T )|+ k. Note that |V (T )| is upper bounded by

the number of different paths from the root to leaves times the maximum length of a path.

Since the number of leaves in T is bounded by `, the number of paths from the root to

leaves is also bounded by `.

Let P = {t1, t2, . . . , tq} be a longest path from the root to a leaf in T . If q  2k+ 5 then

|V (T )| O(k`). Consider a case when q > 2k+5. We argue that there does not exist i in

{k+2, . . . ,q� k�2} such that both W (ti) and W (ti+1) are of cardinality one. Define two

sets X := [ j2{1,2,...,k+2}W (t j) and Y := [ j2{q�(k+2),...,q}W (t j) of V (G). See Figure 3.4.

Notice that |X |, |Y |� k+2. If there exists i in {k+3, . . . ,q�k�1} such that W (ti) = {u}

and W (ti+1) = {v} then uv is a cut-edge in G. Moreover, X ,Y are in two different connected

components of G�{uv}. Hence both the connected components of G�{uv} are of size

at least k+ 2. In this case, Reduction rule 3.3.1 is applicable. This contradicts the fact

that (G,k,`) is a reduced instance. Hence for i in {k+2, . . . ,q� k�2}, if W (ti) is a small



witness set then W (ti+1) is a big witness set. Since there are at most k big witness sets, the

number of vertices in path P is at most 2k+2(k+2) = 4k+4. This implies q  4k+4

and |V (T )| `(4k+4). Hence |V (G)| is at most O(k`).

We now bound the number of edges in the graph G. Notice that the maximum degree of a

vertex t in the tree T is bounded by `. Since, every edge contraction reduces the number

of vertices by 1, the maximum degree of a vertex in G is at most `+ k. If G/F is a tree

then G�V (F) is a forest. Since the size of the solution F is at most k, |V (F)| 2k. As

G is a simple graph, the number of edges of G with both of its end-points contained in

V (F) is at most O(k2). Since G�V (F) is a forest on at most O(k`) many vertices, the

number of edges of G whose both end points are in V (G) \V (F) is bounded by O(k`).

The number of edges which has exactly one end point in V (F) is upper bounded by the

maximum degree of G multiplied by the cardinality of V (F) which is at most O(k2 + k`).

Hence the bound on number of edges in G follows.

We are now ready to prove the main theorem of this section.

Theorem 3.3.1. BOUNDED TREE CONTRACTION has a kernel with O(k`) vertices and

O(k2 + k`) edges.

Proof. Given an instance (G,k,`), the algorithm applies Reduction Rule 3.3.1 as long as it

is applicable. If the number of vertices and number of edges in reduced instance are upper

bounded by O(k`) and O(k2 + k`), then algorithm returns reduced instance. If either of

this upper bounds fails then the algorithm returns a trivial NO instance.

We now argue running time and correctness of this algorithm. To apply Reduction Rule

3.3.1, algorithm needs to find a cut edge and check the number of vertices in connected

components after removing that edge. This step can be performed in polynomial time.

Each application of the reduction rule decreases the number of edges and thus it can be

applied at most |E(G)| many times. This implies that kernelization algorithm terminates

in polynomial time. Lemma 3.3.1 implies that Reduction Rule 3.3.1 is safe. Let (G0,k,`)



Figure 3.5: Kernel lower bound for BOUNDED TC.

be a reduced instance on which Reduction Rule 3.3.1 is not applicable. If G0 does not have

at most O(k`) vertices and O(k2 + k`) edges edges, algorithm correctly concludes that it

is a NO instance. The correctness of this step follows from Lemma 3.3.2. Otherwise the

algorithm returns a reduced instance as kernel.

3.4 Kernel Lower Bound for BOUNDED TREE CONTRAC-

TION

In this section we show that the kernelization algorithm presented in Section 3.3 for

BOUNDED TC is optimal assuming NP 6✓ coNP/poly. To prove this, we present a parame-

ter preserving reduction which given an instance (G,R,B,k) of RED BLUE DOMINATING

SET (RBDS), creates an instance (G0,k0,`0) of BOUNDED TC. Recall that in RBDS, given

a bipartite graph G(R,B) and an integer k, the task it to determine whether there exists a

set of at most k vertices in R which dominates B.

Reduction. Let (G,R,B,k) be an instance of RBDS. We construct graph G0 in the

following way. See Figure 4.4. Initialize V (G0) = V (G) and E(G0) = {br | b 2 B,r 2



R and br 2 E(G)}. Add a vertex a in V (G0) and for every vertex r in R, add an edge ar to

E(G0). For every vertex bi in B, add three new vertices xi,yi,zi to V (G0) and edges bixi,

biyi, bizi to E(G0) ⇤. Define set X := {xi,yi,zi | bi 2 B}. For every vertex x in X , add an

edge ax to E(G0). Set k0 = |B|+ k and `0 = |R|+3|B|� k.

In the following lemma, we prove some structural properties of a solution for (G0,k0,`0).

Lemma 3.4.1. Let (G0,k0,`0) be a YES instance of BOUNDED TC. There exists a solution

F⇤ ✓ E(G0) of size at most k0 such that for each bi in B one of the following holds.

1. bi is in W (ta) or

2. xi,yi,zi are in W (ta).

Here, W (ta) is the witness set containing a in (G0/F⇤)-witness structure of G0.

Proof. Let F be a set of edges of size at most k in G0 such that G0/F is a tree with at most

` leaves. Let W be a T -witness structure of G0 where T = G0/F . Let ta be the vertex in

V (T ) such that W (ta) contains vertex a. For a vertex bi in B, if bi is in W (ta) then the

lemma holds. Consider a case when bi is not in W (ta). There exists a vertex tb, different

from ta, such that bi is contained in W (tb). Similarly, consider vertices tx, ty and tz such

that xi,yi and zi are contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two vertices in {tx, ty, tz} can be

same as only neighbors of xi,yi,zi are a and bi, and a witness set needs to be connected.

But then, by construction, T [{ta, tx, ty, tz, tb}] is a cycle, contradicting the fact that T is a

tree. Therefore, at least one of {tx, ty, tz} is same as ta or tb. Without loss of generality, let

tx 2 {ta, tb}. This implies there is an edge tatb is in T . If ty or tz is not equal to ta or tb then

there exist a cycle contradicting that T is a tree. Suppose, all tx, ty, tz are same as ta, then

the second condition of the lemma is satisfied. Consider a case when at least one of tx, ty, tz,

say tx, is not same as ta, that is tx = tb. The only edges incident to xi in G0 are axi and bxi.

⇤It is sufficient to add two vertices for each bi in B. We add three vertices so that this proof can be re-used
to prove similar results in case of CACTUS CONTRACTION problem in Chapter 4



This implies that bxi 2 F and W (t 0b) =W (tb)\{xi} is connected. Since axi 2 E(G0), set

W (t 0a) =W (ta)[{xi} is connected. Thus, replacing W (tb) by W (t 0b) and W (ta) by W (t 0a)

in W yields another T -witness structure of G0. Furthermore, the spanning forest of the

new witness structure, F 0 = (F \{bxi})[{axi} which has same cardinality as that of F . A

similar swap can be carried out if ty = tb or tz = tb. This concludes the proof.

In the following lemma, we argue that the reduction is safe.

Lemma 3.4.2. (G,R,B,k) is a YES instance of RBDS if and only if (G0,k0,`0) is a YES

instance of BOUNDED TC.

Proof. Let (G,R,B,k) be a YES instance of RBDS and S be a subset of R of size k such

that S dominates every vertex in B. If S contains less than k vertices, then we take any

of its superset of size exactly k. For each vertex b in B, we fix a vertex rb in S such that

b is neighbor of rb in G. If there are multiple options for selecting rb then we arbitrarily

choose one of them. Let F = {brb | b 2 B}[ {ar | r 2 S}. Note that |F | = |B|+ k = k0

and G0[V (F)] is connected. Let T be the graph obtained from G0 by contracting F . Let

W be a T -witness structure of G0. Consider a vertex ta such that a is in W (ta). Since

all the edges in F are contracted to one vertex, set S[B is also contained in W (ta). By

construction, R[X is an independent set in G0. No vertex in (R[X)\S is incident on edge

which has been contracted. In other words, these vertices form singleton witness sets in

W . Since R[X is an independent set in G0, it follows that set TRX = {tv | v 2 (R[X)\S}

is an independent set in T of size |R|+3|B|� k = `0. Moreover, for all v in X 0, av 2 E(T ).

Therefore, T is a star (which is a tree) with `0 leaves. This implies that F is a solution to

(G0,k0,`0).

In the reverse direction, let (G0,k0,`0) be a YES instance of BOUNDED TC. By Lemma 3.4.1,

there exists a solution F⇤ of size at most k0 such that for every bi in B, either bi is in W (ta)

or all of xi,yi,zi are in W (ta). Here, W is the G0/F⇤-witness structure of G0 and ta in

V (G0/F⇤) such that vertex a is contained in witness set W (ta) in W .



We partition vertices of B into two parts depending on whether they belong to W (ta) or

not. Define Bg = {bi 2 B | bi 2W (ta)}. Let Ra = R\W (ta). Partition Bg into B1 and

B2, depending on whether or not they have a neighbor in Ra. Formally, B1 = {bi 2 Bg |

N(bi)\Ra 6= /0} and B2 = Bg \B1. For a vertex bi in B2 at least one of xi,yi,zi is present

in W (ta) as there is no edge between bi and a. Note that, by construction, xi,yi,zi is not

adjacent with b j for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB2 be set of vertices in X \W (ta)

which provides adjacency between a and bi for some bi in B2. For every bi which is in

B\Bg, by Lemma 3.4.1, xi,yi,zi are present in W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B (captured by Bg);

vertices in R (captured by Ra); vertices in X which are present because corresponding

bi is not present (captured by B\Bg); and vertices in X which are present because they

are needed to provide connectivity between bi and a (captured by XB2). This implies

|Bg|+3|B\Bg|+ |Ra|+ |XB2|+ |{a}| |W (ta)|.

We construct a solution S for RBDS by taking vertices in Ra and two more sets Sg and Sw.

Informally, Sg dominates vertices in B2 and Sw dominates vertices in B\Bg. We construct

Sg in following way. For every vertex bi in B2, arbitrary pick one of its neighbor in R

and add it to Sg. Note that |Sg|  |XB2|. We create another set Sw in the following way.

Initialize Sw to an empty set. For each b in B\Bg, we add an arbitrary neighbor of b in R

to Sw. This implies |Sw| |B\Bg|. As cardinality of F⇤ is at most k+ |B|, size of W (ta) is

at most |W (ta)| k+ |B|+1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw|  k and every vertex in B is

dominated some vertex in Ra[Sg[Sw. This concludes the proof.

We are now in position to present main result of this section.

Theorem 3.4.1. BOUNDED TREE CONTRACTION does not admit a compression of size

O((k2 + k`)1�e), for any e > 0 unless NP✓ coNP/poly.



Proof. Assuming a contradiction, suppose BOUNDED TC admits a compression into

P✓ S⇤ with bitsize in O((k2 + k`)1�e), for some e > 0. This implies that there exists an

algorithm A which takes an instance I = (G,k,`) of BOUNDED TC and in polynomial

time returns an equivalent instance I0 of P with |I0| 2 O((k2 + k`)1�e).

Let (G,R,B,k) be an instance of RBDS, where G is a graph on n vertices. Using the re-

duction described, we create an instance (G,k0,`0) of BOUNDED TC with |V (G0D)| 2O(n),

|E(G0D)| 2O(n2), k0 = k  |R| 2O(n) and `0 = |B|+ k 2 O(n). On the instance (G,k0,`0)

we run the algorithm A to obtain an instance I of P such that |I| 2 O((k02 + k0`0)1�e).

But then we have obtained a compression of size O(n2�e) for RBDS, contradicting

Proposition 2.3.2.

Corollary 3.4.1. BOUNDED TREE CONTRACTION does not admit a kernel of size O((k2+

k`)1�e), for any e > 0 unless NP✓ coNP/poly.

3.5 Lossy Kernel for TREE CONTRACTION

In this section, we present an a-lossy kernel of polynomial size for TREE CONTRACTION.

We define parameterized minimization version of TREE CONTRACTION problem in the

following way.

TC(G,k,F) =

8
><

>:

• if G/F is not a tree

min{|F |,k+1} otherwise

We assume that input graph is connected as otherwise one can not obtain a tree only by

contractions. If G has at most k+ 3 vertices then we already have a kernel of desired

size. We assume that input graph has at least k+3 vertices. By definition of optimization

problem, for a set of edges F , if G/F is a tree then maximum value TC(G,k,F) is k+1.

Hence any spanning tree of G is a solution of cost k+1. We call it a trivial solution for



given instance. We denote a complete graph on four vertices by K4. One need to contract

at least two edges to obtain a tree from K4. We call (K4,1) as trivial instance of TREE

CONTRACTION. If OPT(G,k) = k+ 1 then we can return (K4,1) as its a-lossy kernel.

Note that for any c-factor solution of (K4,1), solution lifting algorithm can return a trivial

solution for original problem which is of cost k+1.

Lemma 3.2.2 states that a connected graph G is k-contractible to a tree if and only if each

of its 2-connected components is contractible to a tree using at most k edge contractions in

total. Cycles in different 2-connected components are edge-disjoints and hence contracting

an edge in one component does not eliminate cycles in another component. If the number

of 2-connected components in the input graph which are not a tree (more specifically, an

edge) is more than k+ 1 then we can safely conclude that optimum solution for given

instance is at least k+1. In this case we can return a trivial instance. Note that we do not

guess the number of edges that needs to be contracted in each 2-connected component.

We compute kernel for each 2-connected component using the budget of k. The output of

our kernelization algorithm is a union of the kernels for each 2-connected component. We

present first reduction rule which eliminate long path connecting two different 2-connected

components.

Reduction Rule 3.5.1. If uv is a cut-edge in G then contract the edge uv. The resulting

instance is (G0,k), where G0 = G/{uv}.

Informally speaking, since edge uv is a cut-edge, it is not a part of any cycle. We do not

need to contract uv to destroy any cycle. This implies that edge uv is irrelevant with respect

to any solution and can safely be contracted.

Lemma 3.5.1. Reduction rule 3.5.1 is 1-safe.

Proof. Consider a solution F 0 for (G0,k). If |F 0|� k+1, solution lifting algorithm returns

a spanning tree F of G. If |F 0|  k then solution lifting algorithm returns F = F 0. If

|F 0| � k+ 1 then for a spanning tree F of G, TC(G,k,F) = k+ 1. Hence in this case,



TC(G,k,F) = k+ 1 = TC(G0,k,F 0). Consider a case when |F 0|  k. Let W 0 be a T 0-

witness structure of G0 where T 0 = G0/F 0. Let u⇤ be the vertex new vertex added while

contracting edge uv. Consider vertex t⇤ in V (T 0) such that u⇤ in W (t⇤). Define set

W (t) := (W (t⇤) \ {u⇤})[ {u,v}. Let W1 be a witness strucure obtained from W 0 by

removing W (t⇤) and adding W (t). Notice that W1 partitions V (G) and for each W in W1,

G[W ] is connected. Let T1 be a graph such that W is a T1-witness structure of G. Note that

T1 can be obtained from G by contracting all edges in F 0 [{uv}. This implies T1 can be

obtained from G0 by contracting all edges in F 0. Hence T1 is a tree. This implies that G is

(|F 0|+1)-contractible to a tree. We argue that G is in fact |F 0|-contractible to a tree.

Note that uv is a cut-edge in G[W (t)]. Let Cu and Cv be the connected components in

G[W (t)]� {uv} containing u and v, respectively. Further, let Wu = V (Cu), Wv = V (Cv).

Consider a witness structure W of G obtained from W1 by removing W (t) and adding Wu

and Wv. Notice that W partitions V (G) and for each W in W , G[W ] is connected. Let T

be a graph obtained by contracting all witness sets in W . In other words, W is a T -witness

structure of G. Note that G is |F 0|-contractible to T . Let tu, tv in V (T ) to be the vertices

such that W (tu) = Wu and W (tu) = Wu. Note that T is obtained from T1 by removing t

and adding two vertices tu, tv. Edges incident on tu, tv are determined by witness structure

W of G. We now argue that T is a tree. We claim that for any t 0 in NT1(t), at most one

of tut 0 and tvt 0 is present in E(T ). Assume that both these edges exists for some t 0. Let

w be a vertex in W (t 0). There exist a path between w and u which is entirely contained

in W (t 0)[W (tu) and hence does not contain v. There also exists a path between w and v

which is contained in W (t 0)[W (tu) and hence does not contain u. This contradicts the

fact that uv is a cut-edge in G. Hence, T is a tree as no cycle has been introduced while

removing t and adding tu, tv. This implies that G can be contracted to a tree by contracting

all edges in F 0. Hence, TC(G,k,F) = TC(G0,k,F 0).

We now argue that OPT(G0,k) OPT(G,k). Let F be an optimum solution for (G,k). By

Observation 3.2.2, G/(F [{uv}) is also a tree. Note that G/(F [{uv}) = (G/{uv})/(F \



{uv}) = G0/(F \{uv}). Hence G0/F is a tree. Since |F \{uv}|  |F |, we can conclude

that OPT(G0,k) OPT(G,k).

Combining these two inequalities, we get TC(G,k,F)
OPT(G,k) 

TC(G0,k,F 0)
OPT(G0,k) which concludes the

proof.

Exhaustive application of above reduction rule eliminates all cut edges in G. In rest of

the section, we focus on 2-connected component of G. We assume that the input graph is

2-connected.

We now present a relationship between TREE CONTRACTION and CONNECTED VERTEX

COVER. Consider a 2-connected graph G is contracted to a tree T . If every leaf corresponds

to singleton witness set and vice-versa, the vertices in witness sets of non-singleton witness

sets forms a connected vertex cover of graph.

Lemma 3.5.2. If a 2-connected graph G is k-contractible to a tree, then G has a connected

vertex cover of size at most 2k.

Proof. As G is k-contractible to a tree, there exists a (minimal) set of edges F such that

|F | k and T = G/F is a tree. Let W be a T -witness structure of G and W 0 denote a set

of non-singleton sets in W . Let X denote the set of vertices of G which are contained

in W (t) for some t in W 0. By Observation 3.2.3, we can assume that every leaf of T

corresponds to a singleton witness set, and vice versa. Let L be the set of leaves of T . Then,

I = {v 2V (G) | v 2W (t), t 2 L} is an independent set in G. Thus, X is a vertex cover of

G. We have |X |  2k as every vertex in X has an edge incident on it which is in F and

|F | k. Finally, since the set of non-leaves of a tree induces a subtree, it follows that G[X ]

is connected.

We present following reduction rule which quickly returns a lossy kernels for graph which

has large connected vertex cover.



Reduction Rule 3.5.2. Given an instance (G,k), apply 2-factor approximation algorithm

to compute a connected vertex cover X of G. If size of X is greater than 4k then return

(K4,1).

Lemma 3.5.3. Reduction Rule 3.5.2 is 1-safe.

Proof. Let (G,k) be an instance such that Reduction Rule 3.5.2 returns (K4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if K4/F 0 is a tree then F 0 contains at least two edges. This

implies TC(K4,1,F 0) = 2 and OPT(K4,1) = 2.

Since a 2-factor approximation algorithm returns a set of size strictly more than 4k, size

of minimum connected vertex cover of G is at least 2k. But by Lemma 3.5.2, if G is

k-contractible to a tree than it has a connected vertex cover of size at most 2k. Hence

for any set of edges F⇤ if G/F⇤ is a tree than size of F⇤ is at least k+ 1. This implies

OPT(G,k) = k+1. For a spanning tree F of G, TC(G,k,F) = k+1.

Combining these values, we get TC(G,k,F)
OPT(G,k) = k+1

k+1 = 2
2 = TC(K4,1,F 0)

OPT(K4,1)
. This implies if F 0 is

c-factor approximate solution for (K4,1) then F is 1-factor approximate solution for (G,k).

This concludes the proof.

We partition vertices of G into the following three parts: high degree vertices (H), in-

dependent set (I) and rest of the graph (R) (See Figure 3.6). These sets are defined as

follows.

H = {u 2V (G) | d(u)� 2k+1}

I = {v 2V (G)\H | N(v)✓ H}

R =V (G)\ (H [ I)

By constructing H, we identify vertices which are in any connected vertex of size at most

2k. Upper bound on connected vertex cover also provides upper bound on size of H.



Figure 3.6: Partition of input graph. Please see Reduction 3.5.3

Set I contains vertices whose open neighborhood is contained in H and hence G[I] is an

independent set. Size of rest of the graph, G[R], can be bounded by polynomial function

of k. Inability to bound the number of vertices in I can be seen as a reason that TREE

CONTRACTION does not have a polynomial kernel. We use lossy reduction rules to bound

the cardinality of I.

Two vertices are said to be false twins if their open neighbourhood is same.

Reduction Rule 3.5.3. If there is a vertex v in I that has at least k+1 false twins, then

delete v. The resultant instance is (G�{v},k).

In the following lemma, we argue that v and its k+1 false twins forces some vertices to be

in one witness set. By applying Reduction Rule 3.5.3, we ensure that we store only enough

number of vertices in I which enforces such condition and delete rest of the vertices.

Lemma 3.5.4. Reduction Rule 3.5.3 is 1-safe.

Proof. Consider a solution F 0 of reduced instance (G0,k) i.e. F 0 is a set of edges such that

G0/F 0 = T 0 is a tree. If |F 0|� k+1, then the solution lifting algorithm returns a spanning

tree F of G, otherwise it returns F = F 0. We show that this solution lifting algorithm

with the reduction rule constitutes a strict 1-approximate polynomial time preprocessing



algorithm. If |F 0|� k+1 then TC(G0,k,F 0) = k+1 and TC(G,k,F) = k+1 for a spanning

tree F of G. In this case, TC(G,k,F) = TC(G0,k,F 0) = k+ 1. Consider a case when

|F 0| k. Let W 0 be a T 0-witness structure of G0. Without loss of generality, we assume

that F 0 satisfies the property mentioned in Observation 3.2.3. Notice that each edge in F 0

can be incident on at most one false twins of v. As v has at least k+ 1 false twins, one

of these twins, say u, is not in V (F 0). In other words, there is a vertex t in T 0 such that

W 0(t) = {u}. By Observation 3.2.3, t is a leaf in T 0. Let t 0 denote the unique neighbor

of t in T 0. By Observation 3.2.1, NG0(u) ✓W 0(t 0). Since NG0(u) = NG(u) = NG(v), all

the vertices in NG(v) are in W 0(t 0). Define the partition W of V (G) obtained from W 0 by

adding a new set {v}. Let T be a graph obtained from G by contracting all edges in F .

In other words, W is a T -witness structure of G. Note that T can be obtained from T 0

by adding a new vertex tv as a leaf adjacent to t 0. This implies that G/F is a tree. Hence,

TC(G,k,F) TC(G0,k0,F 0).

Consider an optimum solution F⇤ for (G,k). If |F⇤| � k+ 1 then OPT(G,k) = k+ 1 �

OPT(G0,k0). Otherwise, |F⇤| k and let T = G/F⇤. Let W ⇤ be a T -witness structure of

G. If there is a leaf t in T such that W ⇤(t) = {v}, then F⇤ is also a solution for (G0,k0)

and OPT(G0,k0) OPT(G,k). Otherwise, as v has at least k+1 false twins, one of these

twins, say u, is not in V (F⇤). That is, there is a leaf t in T such that W ⇤(t) = {u}. Define

the partition W 0 of V (G) obtained from W ⇤ by replacing u by v and v by u. Then, the set

F 0 of edges of G, obtained from F by replacing the edge xv with the edge xu for each x,

is also an optimum solution for (G,k). Further, it is a solution for (G0,k0) and therefore,

OPT(G0,k0) OPT(G,k). Hence, TC(G,k,F)
OPT(G,k) 

TC(G0,k0,F 0)
OPT(G0,k0) .

We now present the reduction rule which introduces lossy-ness. Given a > 1, let d be the

minimum integer such that d
d�1  a . In other words, d = d a

a�1e. If we add an extra edge

for every d�1 edges in a solution, we obtain another solution which has cardinality at

most d
d�1  a time the cardinality of original solution. We now state our next reduction

rule.



Figure 3.7: Please refer to Lemma 3.5.5

Reduction Rule 3.5.4. If there are vertices v1,v2, . . . ,vk+2 2 I and h1,h2, . . . ,hd 2H such

that {h1, . . . ,hd}✓ N(vi) for each i 2 [k+2] then contract all edges in Ẽ = {v1hi | i 2 [d]}

and reduce the parameter by d�1. The resulting instance is (G/Ẽ,k�d +1).

The above rule can be applied in O(|H|d ·nO(1)) time, by considering each subset of H

of cardinality at most d. As discussed in the paragraph following Reduction Rule 3.5.4,

set of vertices {v1,v2, . . . ,vk+2} forces the vertices {h1,h2, . . . ,hd} to be in one witness set.

But subgraph of G which induced on set H 0 = {h1,h2, . . . ,hd} may not be connected. We

provide this connectivity by adding the vertex v1 to set H 0. To simplify G, we contract

H 0 [ {v1} into a single vertex and reduce the budget by d� 1. Notice that we contract

d many edges and reduce the budget by d�1. In other words, for every d�1 edges in

optimum solution, we are using d edges. For every solution S0 of modified graph, we can

obtain a solution S of original graph which has cardinality at most d
d�1 times that of S0. We

prove these things formally in the following lemma.

Lemma 3.5.5. Reduction Rule 3.5.4 is a-safe.

Proof. Consider a solution F 0 of the reduced instance (G0,k0). If |F 0| � k0+1, then the

solution lifting algorithm returns a spanning tree F of G, otherwise it returns F = F 0 [ Ẽ.

We show that this solution lifting algorithm with the reduction rule constitutes a strict a-

approximate polynomial time preprocessing algorithm. First, we prove that TC(G,k,F)

TC(G0,k0,F 0)+d. If |F 0|� k0+1 then TC(G0,k0,F 0) = k0+1. In this case, F is a spanning



tree of G and TC(G,k,F) = k+ 1 = k0+ d = TC(G0,k0,F 0)+ d� 1. Consider the case

when |F 0|  k0. Let W 0 be a G0/F 0-witness structure of G0. Let w denote the vertex in

V (G0)\V (G) obtained by contracting Ẽ. Let W 0(t1) be a witness set in W 0 which contains

w. Define W1 = (W 0(t1)[{v1,h1,h2, . . . ,hd})\{w}. Let W be a witness structure obtained

from W 0 by removing W 0(t1) and adding W1. Formally, W = (W 0 [ {W1}) \ {W 0(t1)}.

Note that V (G) \ {v1,h1,h2, . . . ,hd} = V (G0) \ {w} and hence W is partition of V (G).

Further, G[W1] is connected as G0[W 0(t1)] is connected as a spanning tree of G0[W 0(t1)]

along with Ẽ is a spanning tree of G[W1]. Also, |W1|= |W 0(t1)|+d and any vertex which

is adjacent to w in G0 is adjacent to at least one vertex in {v1,h1,h2, . . . ,hd} in G. Thus,

G/F = G0/F 0. Note that the size of F is at most |F 0|+d  k0+d = k�d +1+d = k+1.

Hence TC(G,k,F) = |F |. This implies, TC(G,k,F) = |F |= k0+d  TC(G0,k0,F 0)+d.

We now show that OPT(G0,k0) OPT(G,k)� (d�1). Let F⇤ be an optimum solution

for (G,k) and W be a T -witness structure of G, where T = G/F⇤. If |F⇤| � k+1, then

OPT(G,k) = k+1 = k0+d � OPT(G0,k0)+d�1. Now consider the case when |F⇤| k.

Notice that every edge in F⇤ can be incident on at most one vertex in {v1,v2, . . . ,vk+2}.

There is at least one vertex, say vq, in {v1,v2, . . . ,vk+2} which is not in V (F⇤). In other

words, there exists a vertex in T such that W (tq) = {vq}. By Observation 3.2.3, tq is

a leaf in T . Let ti be the unique neighbhor of tq in T . By Observation 3.2.1, N(vq) is

in a witness set W (ti). This implies that {h1,h2, . . . ,hd} are in W (ti). See Figure 3.7. If

v1 2W (ti) then F 0= F⇤\ Ẽ is a solution to (G0,k0) and so OPT(G0,k0) |F 0|= |F⇤|�d =

OPT(G,k)�d. Consider the case when v1 is not W (ti) and let t j 2V (T ) be the vertex such

that v1 2W (t j). By definition of witness sets, ti and t j are adjacent in T . Define another

partition W 0 = W [{W (ti j)}\{W (ti),W (t j)} of V (G) where W (ti j) =W (ti)[W (t j). Let

F be a solution associated with this witness structure. Graph G[W (ti j)] is connected as ti, t j

are adjacent in T . As |W (ti)|�1+ |W (t j)|�1 = (|W (ti j)|�1)�1, W 0 is a G/F-witness

structure of G and |F | = |F⇤|+ 1. In particular, G/F is the tree obtained from G/F⇤

by contracting the edge tit j. Graph induced on vertices which are end points of edges

in Ẽ is a star. Hence we can find spanning tree of G[W (ti)] which contains Ẽ. Hence,



without loss of generality Ẽ ✓ F and thus F 0 = F \ Ẽ is a solution to (G0,k0). Therefore,

OPT(G0,k0)  |F 0| = |F⇤|+ 1� d = OPT(G,k)� d + 1. Combining these bounds, we

have TC(G,k,F)
OPT(G,k) 

TC(G0,k0,F 0)+d
OPT(G0,k0)+(d�1) max

n
TC(G0,k0,F 0)
OPT(G0,k0) ,a

o
.

We now prove that if G is k-contractible to a tree and none of the Reduction Rules

mentioned above are applicable on instance (G,k), then the number of vertices in G is

bounded by a function of k.

Lemma 3.5.6. Let (G,k) be an instance of TREE CONTRACTION on which none of Re-

duction Rules 3.5.2; 3.5.3 and 3.5.4 are applicable. If G is 2-connected and k-contractible

to a tree then the number of vertices in G is at most O((2k)d+1 + k2).

Proof. We bound cardinalities of sets H, I and R separately in order to bound V (G). By

Lemma 3.5.2, G has a connected vertex cover S of size at most 2k. As H is the set of

vertices of degree at least 2k+1, H ✓ S and so |H| 2k. Every vertex in R has degree at

most 2k. As S\R is a vertex cover of G[R], number of edges in G[R] is O(k2). Also, by

the definition of I, every vertex in R has a neighbor in R and hence there are no isolated

vertices in G[R]. Thus, size of R is O(k2). Finally, we bound the size of I. For every set

H 0 ✓ H of cardinality less than d, there are at most k+1 vertices in I which have H 0 as

their neighborhood. Otherwise, Reduction Rule 3.5.3 would have been applied. Hence,

there are at most (k+1) ·
� 2k

d�1
�

vertices in I which have degree less than d. Further, for

a d-size subset H 0 of H, there are at most k+ 1 vertices in I which contain H 0 in their

neighborhood. Otherwise, Reduction Rule 3.5.4 would have been applied. As a vertex in I

of degree at least d is adjacent to all vertices in at least one such subset of H, there are at

most (k+1)
�2k

d
�

vertices of I of degree at least d. Therefore, |I| is O((2k)d+1).

We now present main result of this section.

Theorem 3.5.1. TREE CONTRACTION admits a strict PSAKS with O((2k)d
a

a�1 e+2 + k3)

vertices.



Proof. For a given instance (G,k), kernelization algorithm exhaustively apply Reduction

Rule 3.5.1. If number of 2-connected components which contains a cycle is more than

k+1 then the algorithm returns a trivial instance as a lossy kernel. Otherwise, algorithm

computes a-lossy kernel for each of 2-connected components separately. If algorithm

finds trivial instance as lossy kernel for any of 2-connected component then it returns a

trivial instance as a lossy kernel for entire graph.

For a 2-connected component, say C, the algorithm creates an instance (G[C],k). Let

I,H,R be partition of V (C) as defined before Reduction Rule 3.5.3. It is possible that cut

vertices in C are part of I and may get deleted while computing a lossy kernel. We avoid

this by marking these vertices. Since there are at most k many 2-connected components

in G, C has at most k�1 many cut vertices. Marking these vertices increase the size of

reduced instance by O(k).

Given a > 1, the algorithm fixes d = d a
a�1e. It applies Reduction Rule 3.5.2; 3.5.3; and

3.5.4 exhaustively on instance (G[C],k). If reduced graph G0 has more than O((2k)d+1 +

k2) vertices, then by Lemma 3.5.6, graph G0 is not k-contractible to a tree. This implies

that OPT(G[C],k) is k+ 1. In this case the algorithm returns trivial instance as a lossy

kernel. Otherwise the reduced graph has O((2k)d+1 + k2) vertices. There are at most k

many 2-connected components, and summing over each component, the reduced graph

has at most O((2k)d+2 + k3) vertices. The correctness of the algorithm follows from

Lemma 3.5.1; 3.5.3; 3.5.4; and 3.5.5

3.6 Conclusion

In this chapter, we analyse the structure of the family of paths that allows PATH CONTRAC-

TION to admit a polynomial kernel but forbids TREE CONTRACTION. Apart from solution

size k, we make number of leaves, `, as additional parameter to bridge the gap between

kernels of these two problem. We call this problem as BOUNDED TREE CONTRACTION.



We present a polynomial kernel for this problem. We also prove that this kernel is optimal

under certain complexity assumption. In this chapter, we also present a lossy kernel of

polynomial size for TREE CONTRACTION problem.





Chapter 4

Cactus Contraction

4.1 Introduction

In this chapter, we study a problem of contracting given graph into a graph class which is

superset of trees. A cactus is a connected graph in which every edge is a part of at most

one cycle. We generalize techniques used in Chapter 3 to present a lossy kernel and an

FPT algorithm for following problem.

CACTUS CONTRACTION Parameter: k

Input: A graph G and an integer k

Question: Is it possible to obtain a cactus from G with at most k edge contractions?

We prove that this problem is NP-Complete by presenting a reduction from RED BLUE

DOMINATING SET. This reduction also implies that CACTUS CONTRACTION does not

have a polynomial kernel when parameterized by solution size. This raises two questions

similar to the ones which we addressed in Chapter 3 regarding TREE CONTRACTION.

�What are the additional parameter we need to add to obtain a polynomial kernel for

CACTUS CONTRACTION?

�If we allow small loss in accuracy, can we get a polynomial kernel for CACTUS CON-
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TRACTION?

In case of TREE CONTRACTION, we answered first question by describing polynomial

kernel parameterized by solution size and the number of leaves in resulting tree. We deploy

similar approach for CACTUS CONTRACTION. In case of cactus, we define number of

leaves using block decomposition of given cactus. (Formal definitions are in Section 4.2.)

A block is a maximal 2-connected subgraph. A block in a cactus can be either a cycle or

an edge or an isolated vertex. Block decomposition is an auxiliary graph which encodes

how blocks and cut vertices of graph intersects. This auxiliary graph of any connected

graph is a tree. The number of leaves in a cactus is defined as the number of leaves in its

block decomposition. We formally define BOUNDED CACTUS CONTRACTION problem in

the following way.

BOUNDED CACTUS CONTRACTION(BOUNDED CC) Parameter: k+ `

Input: A graph G and integers k,`

Question: Is it possible to obtain a cactus with at most ` leaves from graph G with at

most k edge contractions?

In Section 4.3, we present a kernel of size O(k2 + k`) for this problem. Although the

approach involved in designing this kernel is similar to that of BOUNDED TREE CON-

TRACTION, technical analysis is considerably more in this case. In Section 4.4, we prove

that this kernel is optimal under certain complexity assumption.

We answer the second question by designing lossy kernel of polynomial size for CACTUS

CONTRACTION. We prove that given a graph G on n vertices, an integer k and an

approximation parameter a > 1, there is an algorithm that runs in nO(1) time and outputs

a graph G0 on O((2k)2d a
a�1 e+1 + k5) vertices and an integer k0 such that for every c > 1,

a c-approximate solution for (G0,k0) can be turned into a (ca)-approximate solution for

(G,k) in nO(1).

Heggerners et al. presented FPT algorithms for TREE-CONTRACTION and PATH-CONTRACTION.



We present an FPT algorithm for CACTUS-CONTRACTION additing it to the small list

of graph classes F for which F -CONTRACTION is known to be FPT. We present an

algorithm running in time cknO(1), where c is a fixed constant. Our algorithm builds upon

ideas presented in [55], but requires a more involved structural analysis of the graph.

Results presented in Section 4.3 and 4.4 are from [1]. Lossy kernel presented in Section 4.5

for CACTUS CONTRACTION is based on [69]. The FPT algorithm described in Section 4.6

can be found in [70].

4.2 Preliminaries

In this section, we mention some known properties of cactus. As in case of tree contraction,

we define graph class called bounded cactus contraction. We mention some property of

these graph classes. We later mention simplifying assumption that helps us to concen-

trate on 2-connected components of while finding a lossy kernel and designing an FPT

algorithm.

A block is a connected maximal connected subgraph which is 2-connected. A block in a

graph is either an induced maximal 2-connected subgraph or an edge or an isolated vertex.

Two distinct blocks in graph can intersect in at most one vertex. A vertex contained in

at least two block must be a cut-vertex in graph. Let K be the set of cut-vertices and B

be the set of blocks in G. A block-decomposition of G is a bipartite graph D with the

vertex set K]B. Furthermore, aB 2 E(D) for a 2 K and B 2B if and only if a 2V (B).

Here, we slightly abuse the notation, and use B to denote the set of blocks in G as well as

vertices corresponding to the blocks of G in D . It is known that a block decomposition of

a connected graph is unique and is a tree [29, Proposition 3.1.2]. For the sake of clarity,

we call vertices in D as nodes. See Figure 4.1. The number of leaves of cactus is defined

as the number of leaves in its block decomposition.

Since every edge in cactus is part of at most one cycle, if G is a cactus then a block of G is



Figure 4.1: Cactus graph and its block decomposition.

either a cycle or an edge. We define pendant cycle in cactus.

Definition 4.2.1 (Pendant Cycle). For a cactus T , a cycle C is called a pendant cycle if it

contains exactly one cut vertex.

For example, in Figure 4.1, cycles {v1,v2,v3} and {v12,v13,v14} are pendent cycles.

Observation 4.2.1. The following statements hold for a cactus T .

1. |E(T )| 2|V (T )|

2. The vertices of T can be properly colored using 3 colors.

3. Every vertex of degree at least 3 is a cut-vertex.

Proof. For a given cactus T , let D be its block decomposition.

(1) We prove this using the induction on number of blocks in cactus graph. Our induction

hypothesis is: if number of blocks in T is strictly less than q then |E(T )| 2|V (T )|. For



base case, consider when T has exactly one block. In this case, T is either an edge or a

cycle. In either case, |E(T )| 2|V (T )|.

Consider T which has q blocks. Let a block B corresponds to a leaf in D . For this block,

|E(B)|  2|V (B)|� 2 as B is either an edge or a cycle. Let u be the unique cut vertex

in B. Consider a cactus T1 = T � (V (B)\{u}). Since T1 has q�1 blocks, by induction

hypothesis, |E(T1)| 2|V (T1)|.

Any edge in T is present in exactly one block. Hence |E(T )| = |E(T1)|+ |E(B)|. By

construction, |V (T )| = |V (T1)|+ |V (B)|� 1 as u is counted in V (T1) and also in V (B).

Substituting upper bounds for |E(T1)| and |E(B)|, we get |E(T )| 2|V (T )|.

(2) We again use induction on number of blocks in cactus to prove the statement. Our

induction hypothesis is: if number of blocks in T is strictly less than q then T can be

properly colored using at most 3 colors. For base case, consider a case when T has exactly

one block. In this case, T is either an edge or a cycle. In either case, T can be properly

colored using at most 3 colors.

Consider a cactus T which has q blocks. Let a block B corresponds to a leaf in D . Let u

be the unique cut vertex in B. Consider a cactus T1 = T � (V (B)\{u}). Since T1 has q�1

blocks, by induction hypothesis, we can properly color T1 using at most 3 colors. Since B

is a block in cactus, it is either a cycle or an edge. One can properly color vertices in B

using at most 3 colors when color of u is fixed. Hence T can be colored with at most 3

colors.

(3) Consider a vertex u which has degree at least three. Since any block B is cycle or an

edge, any vertex u has at most 2 neighbors in B. Since u has degree at least 3, u is present

in at least two block. This implies that u is a cut vertex.

The operation of subdividing an edge uv results in the graph obtained by deleting uv and

adding a new vertex w adjacent to both u and v.

Observation 4.2.2. Consider a cactus T with at most ` leaves. Let T 0 be the graph



obtained from T by one of the following operations.

1. subdividing an edge;

2. contracting an edge;

3. deleting a cut-edge uv and add two vertex disjoint path between u,v.

Then, T 0 is a cactus with at most ` leaves.

Proof. Let D being the block decomposition of T with B being the set of block and K

being the set of cut-vertices in T .

(1) Let T 0 be the graph obtained by subdividing an edge uv in T and w be the resulting

vertex after subdivision. Since degree of w is 2 in T 0, any cycle which contains w must

contain its neighbors u and v. Assume that T 0 is not a cactus then, there exists two distinct

cycles C01,C
0
2 in T 0 such that E(C01)\E(C02) 6= /0. But then, by replacing w with the edge

uv in C01,C
0
2 (if present), we obtain cycles Ĉ1 and Ĉ2 in T with at least one common edge,

contradicting that T is cactus.

Consider the case when the edge uv is a block, say B in T . In D , by replacing B by

B1,B2, each containing the edges uw,wv respectively, and adding w to K, we obtain a

block decomposition of D 0 of T 0. Since block decomposition of a connected graph is a

tree, notice that D 0 can be obtained from D by sub-dividing an edge twice. In a tree, a

sub-division of an edge does not increase the number of leaves. Hence follows that T 0 is a

cactus with at most ` leaves. The remaining case is when the edge uv not a block. Let B be

a block containing the edge uv in D . Then, by replacing B by B[{w}, we obtain a block

decomposition of T 0 with exactly the same number of leaves. This concludes the proof.

(2) Let T 0 be the graph obtained by contracting an edge uv in T and u⇤ be the resulting

vertex. Suppose T 0 is not a cactus then there exists two distinct cycles C01,C
0
2 in T 0 such

that E(C01)\E(C02) 6= /0. But then, by replacing w with the edge uv in C01,C
0
2 (if present),

we obtain cycles Ĉ1 and Ĉ2 in T with at least one common edge, contradicting that T is

cactus.



Let B be the block containing the edge uv. Consider the case when B is just the edge

uv. In this case u,v must be in K. But then, by contracting the edges uB,Bv 2 E(D) we

can obtain a block decomposition of T 0. Notice that contracting an edge in a tree (block

decomposition) cannot increase the number of leaves. Hence, it follows that T 0 is a cactus

with at most ` leaves. The remaining case is when B contains some other vertex. Notice

that if u,v /2 K, then by replacing B by B0 = (B \ {u,v})[ {u⇤} in D we obtain a block

decomposition of T 0, with exactly same number of leaves. If u 2 K and v /2 K, then by

contracting the edge uB 2 E(D) we obtain a block decomposition of T 0 with exactly the

same number of leaves.

(3) Let T 0 be the graph obtained from T by deleting a cut-edge uv and replacing it by two

vertex disjoint paths. Let C be the cycle obtained by adding these two vertex disjoint paths

between u,v. Assume that T 0 is not a cactus then there exists two distinct cycles C01,C
0
2 in

T 0 such that E(C01)\E(C02) 6= /0. Since u,v are cut-vertices in graph T 0, any cycle which

is different from C, intersect with C in at most one vertex. Hence both C01,C
0
2 are distinct

from C which implies C01 and C02 are two distinct cycles with at least one edge common

in T which contradicts that it is cactus. Since uv is a cut-edge it is a block with u,v as

cut-vertices. Let B be the block containing the edge uv, then we have uB,Bv 2 E(D). By

replacing B with V (C) we can obtain a block decomposition D 0 of T 0 with same number

of leaves. This concludes the proof.

We define operation SPLIT on cactus in similar way as we defined for trees with one

additional condition. Consider a cactus T and one of its cut vertex, say v. Let L,R be

a partition of N(v) such that none of them is an empty set and there is no path between

vertices of L and R in G�{v}.

SPLIT(T,v,L,R): Remove vertex v and add two vertices v1 and v2. Make v1 adjacent

with every vertex in L and v2 adjacent with every vertex in R. Add edge v1v2. If T 0 is

the graph obtained from T by this operation then V (T 0) = (V (T ) \ {v})[ {v1,v2} and

E(T 0) = (E(T )\ ({vu | u 2 N(v)}))[{v1u | u 2 L}[{v2u | u 2 R}[{v1v2}.



Figure 4.2: Operation SPLIT(T,v,L,R) with L = {w,x3} and R = {x1,x2}.

See Figure 4.2 for illustration. Second condition on (L,R) ensures that v1v2 is not a part

of any cycle in new graph. The following observation, we prove that this operation on a

cactus results into another cactus with same number of leaves.

Observation 4.2.3. Let T be a cactus, v be a cut vertex of T and N(v) is partitioned into

two non-empty sets L and R such that there is no path between L and R in T � v. Let T 0 is

the graph obtained from T after applying SPLIT(T,v,L,R). If T has at most ` leaves then

T 0 is a cactus with at most ` leaves.

Proof. For a cactus T and cut-vertex v, let Bv be set of blocks in T which contains

a vertex v. Since v is a cut-vertex, there are at least two blocks in Bv. Let L0 and

R0 be the partition of Bv which vertices vertices from L and R respectively. Formally,

L0 = {B| x 2 NT (v)\B for some x 2 L} and R0 = {B| y 2 NT (v)\B for some y 2 R}. As

there is no path between vertices of L,R in T �{v}, if block B is in L0 then it can not be in

R0.

Let T 0 be the graph obtained from T by deleting a cut-vertex v and adding an edge v1v2

such that NT 0(v1) = L[{v2} and NT 0(v2) = R[{v1}. Notice that v1v2 is an cut edge in

T 0. We can get a block decomposition D 0 of T 0 from the block decomposition D of T by

following operations : (a) Delete v from K and adding v1,v2 to K. (b) Replace every B in

L0 by (B[v1)\{v} and add edge v1B in E(D 0). (c) Replace every B in R0 by (B[v2)\{v}

and add edge v2B in E(D 0) (d) Add new block B = {v1,v2} and add edges v1B and v2B in

E(D 0). It is easy to see that D 0 is a block decomposition of T 0. Since every block is either

an edge or a cycle, T 0 is a cactus. Moreover, the number of leaves in D 0 is equal to the



number of leaves in D as newly added block is adjacent to two vertices in K.

We make few observations regarding a cactus witness structure of a graph. Let T be a

cactus obtained by contracting a set of edges in the graph G and W be a T -witness structure

of G. Consider a pendant cycle (uPu) in cactus T where u is the unique cut vertex, and

for every other vertex t in V (P), witness set W (t) is singleton. Then P corresponds to a

simple path in G. With a slight abuse of notation let us use P to denote the path in G as

well. We observe the following.

Observation 4.2.4. If (u1P1u1) and (u1P2u1) are two pendant cycles in T , corresponding

to simple paths P1 and P2 in G, then V (P1)\V (P2) = /0.

We say that a simple path P in G forms a pendant cycle in T if there is a cut vertex u in T

such that uPu is a pendant cycle in T .

Following lemma says that if input graph contains a long induced path then we can find an

edge which can be safely contracted.

Lemma 4.2.1. Suppose graph G has a path P = (u0,u1, . . . ,uq) with q� k+1 such that

all its internal vertices are of degree two. If F ✓ E(G) is a minimal set of edges of size at

most k such that G/F is a cactus then F does not contain an edge in E(P).

Proof. Assume on the contrary that F contains an edge in E(P). As there are at least k+1

edges in E(P) and |F | k, therefore there exists a vertex ui in V (P)\{u0,uq} such that

exactly one out of the two edges incident on it is contained in solution. Without loss of

generality assume that ui�1ui 2 F and uiui+1 /2 F . Let T = G/F and W be a T -witness

structure of G. Let t, t 0 2V (T ) such that ui�1,ui 2W (t) and ui+1 2W (t 0). Consider the

case when t = t 0. F must contain all the edges in some spanning tree of G[W (t)]. Since

uiui+1 62 F , any spanning tree of G[W (t)] not containing uiui+1 must contains all the edges

in E(P) \ {uiui+1}. But this implies |W (t)| � k+ 2 which is a contradiction to fact that

each witness set is of size at most k+ 1. Therefore, we have that t 6= t 0 which implies



that tt 0 2 E(T ). Recall that ui is a degree two vertex in G. This implies that ui is not a

cut-vertex in G[W (t)] as there is exactly one edge incident to it in G[W (t)]. Therefore,

G[W (t)\{ui}] is connected. Let W 0 = (W \{W (t)})[{ui}[{W (t)\{ui}}. Observe that

W 0 is a partition of V (G) which is a G/F 0-witness structure of G where F 0 = F \{ui�1ui}.

Notice that G/F 0 is the graph obtained by subdividing the edge tt 0 in the cactus T and by

Observation 4.2.2(1) it follows that G/F 0 is a cactus. This contradicts the minimality of

F .

We need to work with witness structures which has certain properties.

Observation 4.2.5. Consider a graph G and let F be a set of edges in G such that G/F is

a cactus with at least three vertices. Then there exists a set F 0 of at most |F | many edges

such that G/F 0 is a cactus and G/F 0-witness structure satisfies following property: if t 0 is

a leaf in G/F 0 then W 0(t 0) is a singleton witness set.

Proof. Let W be a T -witness structure of G, where T = G/F . Consider a leaf ti in T

such that |W (ti)| > 1. Let t j be the unique neighbor of ti and note that t j is not a leaf in

T . As tit j 2 E(T ), there exists an edge in G between a vertex in W (ti) and a vertex in

W (t j). Therefore, G[W (ti)[W (t j)] is connected. We claim that G[W (ti)[W (t j)] has a

spanning tree which has a leaf from W (ti). Observe that as |W (ti)|> 1, any spanning tree

of G[W (ti)] has at least two leaves. If there is a spanning tree of G[W (ti)] that has a leaf u

which is not adjacent to any vertex in W (t j), then G[(W (ti)[W (t j))\{u}] is connected

too and u is the required vertex. Otherwise, every leaf in every spanning tree of G[W (ti)] is

adjacent to some vertex in W (t j) and hence G[(W (ti)[W (t j))\{u}] is connected for any

vertex u 2W (ti). Therefore, as claimed, G[W (ti)[W (t j)] has a spanning tree which has a

leaf v from W (ti). Now consider the partition W 0 = (W [{Wv,Wi j})\{W (ti),W (t j)} of

G where Wv = {v} and Wi j = (W (t j)[W (ti))\{v}. Since t j is the only vertex adjacent to

ti, N(u) ✓W (ti)[W (t j) for every vertex in u in W (ti). Hence W 0 is another T -witness

structure of G. This leads to a set F 0 of at most |F | edges of G such that T = G/F 0



is a cactus. We repeat this process to ensure that the each leaf of the resulting cactus

corresponds to singleton witness sets.

Since K3,2 can not be an induced subgraph of cactus, for any three vertices which are

singleton witness sets, intersection of their neighborhood should be in one witness set.

Observation 4.2.6. Consider a graph G and let F be a set of edges in G such that

G/F = T is a cactus with at least three vertices. For any three vertices u1,u2 and u3

such that, W (t1) = {u1},W (t2) = {u2},W (t3) = {u3}, there is a vertex t 2V (T ) such that

(N(u1)\N(u2)\N(u3))✓W (t). Similarly, for any three simple paths P1,P2 and P3 in G,

such that each of them form a pendant cycle in T , there is a vertex t 2 V (T ) such that

NG(P1)\NG(P2)\NG(P3)✓W (t).

Proof. Let X = N(u1)\N(u2)\N(u3). If there exists t 6= t 0 such that X \W (t) and

X \W (t 0) are non-empty, T contains two cycles (t1, t, t2, t 0, t1) and (t1, t, t3, t 0, t1) that share

more than one vertex leading to a contradiction. We argue the case of simple paths that

form pendant cycles in T in a similar way. Let X = NG(P1)\NG(P2)\NG(P3). We claim

that there is a vertex ti in T 0 such that X ✓W 0(ti). If not, then there are two vertices, ti and

t j in T 0 such that X \W 0(ti) 6= /0 and X \W 0(t j) 6= /0. Therefore, both ti and t j are adjacent

to P1, P2 and P3 in T 0. This implies that there are two cycles in T 0 with more than one

common vertex, which contradicts the fact that T 0 is a cactus.

We list the following simplifying assumption analogous to Lemma 3.2.2 in case of TREE

CONTRACTION.

Lemma 4.2.2. A connected graph is k-contractible to a cactus if and only if each of its

2-connected components is contractible to a cactus using at most k edge contractions in

total.

Proof. We prove the claim by induction on the number of vertices in the graph. The claim

holds for a graph on a single vertex and assume that it holds for graphs with less than n



vertices. Consider a connected graph G on n vertices. Suppose G is k-contractible to a

cactus. Then, there is a set F ✓ E(G) of size at most k such that T = G/F is a cactus.

Let W be the corresponding T -witness structure of G. Let v be a cut vertex in G and

let C be a connected component of G� {v}. Let G1 denote the subgraph of G induced

on V (C)[ {v} and G2 denote the subgraph of G induced on V (G) \V (C). Then, G1

and G2 are connected graphs satisfying V (G1)\V (G2) = {v}. Further, the sets E(G1)

and E(G2) partition E(G). We claim that G1/(F \E(G1)) and G2/(F \E(G2)) are both

cactus graphs. Consider the vertex t0 2 V (T ) such that v 2W (t0). As the deletion of a

vertex in G2�{v} cannot disconnect G1, every set in W1 = {W (t)\V (G2) | t 6= t0,W (t) 2

W }[{W (t0)\ (V (G2)\{v})} induces a connected subgraph of G. Then, F \E(G1) is the

associated set of solution edges and G1/(F \E(G1)) is the subgraph of G/F induced on

{t 2V (T ) |W (t)\V (G1) 6= /0}. Since an induced subgraph of a cactus is also a cactus, it

follows that G1/(F\E(G1)) is a cactus. A similar argument holds for G2/(F\E(G2)). As

E(G1) and E(G2) form a partition of E(G), |F \E(G1)|+ |F \E(G2)| k. By induction

hypothesis, the required claim holds for G1 and G2 and the result follows.

Conversely, let G1,G2, . . .Gl be the 2-connected components of G and let Fi ✓ E(Gi) be

a set of edges such that Gi/Fi is a cactus and Âi2[l] |Fi| k. Let Wi be the Gi/Fi-witness

structure of Gi. Define W =
S

i2[l]Wi. Now, W is made into a partition of V (G) as follows:

if a vertex v is contained in W (t1) and in W (t2) then add W (t12) =W1[W2 to W and delete

both W (t1) and W (t2). Then, F =
S

i2[l]Fi contains the edges of a spanning tree of every

witness set in W and |F |  k. It remains to argue that G/F is a cactus. If G/F is not a

cactus, then there exists two cycles C1,C2 which share at least two vertices. As any cycle

can have vertices from only a single 2-connected component of a graph, C1,C2 are both in

some 2-connected component of G leading to a contradiction.

Following observation, which is analogous to Observation 3.2.3, helps us utilise the fact

that input graph is 2-connected while designing a lossy kernel and an FPT algorithm.

Observation 4.2.7. Consider a 2-connected graph G and let F be a set of edges in G such



that G/F is a cactus. If t is a cut vertex in G/F then witness set W (t), in G/F-witness

structure, contains at least two vertices.

Proof. For sake of contradiction, assume that t is a cut-vertex in T = G/F and W (t) is a

singleton set in T -witness structure. Let W (t) = {u}. We argue that u is a cut-vertex in

G. Let T1 and T2 be any two connected components obtained by removing t from cactus

T . Consider a set V1 which is collection of vertices present in witness sets corresponding

to vertices in T1. Formally, V1 = {u| u 2W (t1) for some t1 2V (T1)}. We define set V2 in

similar way. Since T1,T2 are non-empty, so are V1,V2. There is no edge between T1,T2 in

T and since T is obtained from graph G by contracting edges, there is no edge between

V1,V2 in G. This implies that G� v has at least two connected component viz V1,V2. This

contradicts the fact that G is a 2-connected graph. Hence for every cut vertex t in T ,

associated witness sets W (t) contains at least two vertices.

If v is high degree vertex in G and v is contained in W (t) then t is a cut vertex in T .

Observation 4.2.8. Let F be a minimal set of edges of a 2-connected graph G such that

G/F = T is a cactus and W be a T -witness structure of G. Consider a vertex v in G and

let t be a vertex in T such that v is in witness set W (t). If |F | k and d(v)� k+3, then

W (t) is not a singleton witness set.

Proof. For the sake of contradiction, assume that W (t) is a singleton witness set. Note that

every edge contraction reduces the number of vertices by exact one. Since, |F | k, degree

of t is at least three in T . By Observation 4.2.1(3), t is a cut vertex. But this is contradiction

to Observation 4.2.7 which says that witness set corresponding to a cut vertex in T is a

big witness set. Hence our assumption is wrong and W (t) can not be a singleton witness

set.



4.3 Kernel for BOUNDED CACTUS CONTRACTION

In this section, we design a kernelization algorithm for BOUNDED CACTUS CONTRAC-

TION. We assume that input graph is a connected otherwise we can return a trivial NO

instance. Exhaustive application of first reduction rule contracts an induced path of

arbitrarily large length to a path of length O(k).

Reduction Rule 4.3.1. If G has a path P = (u0,u1, . . . ,uk+1,uk+2) such that all of its

internal vertex are of degree two, then contract uk+1uk+2. The resulting instance is

(G0,k,`) where G0 = G/{uk+1uk+2}.

We prove that this reduction rule is safe using Lemma 4.2.1.

Lemma 4.3.1. Reduction Rule 4.3.1 is safe.

Proof. Let u⇤k+1 be the resulting vertex after contraction of the edge uk+1uk+2. Given an

instance (G,k,`), one can find a path P which satisfies required property, in one exists, and

apply reduction rule in polynomial time. We need to prove that (G,k,`) is a YES instance

of BOUNDED CC if and only if (G0,k,`) is a YES instance of BOUNDED CC.

Let (G,k,`) be a YES instance of BOUNDED CC and F ✓ E(G) such that |F |  k

and G/F is a cactus with at most ` leaves. From Observation 4.2.2 (2), we know

that G/(F [ {uk+1uk+2}) is also a cactus with at most ` leaves. This implies, G/(F [

{uk+1uk+2}) = (G/{uk+1uk+2})/(F \ {uk+1uk+2}) = G0/(F \ {uk+1uk+2}) is a cactus

with at most ` leaves. Also, |F \{uk+1uk+2}| |F | k. Hence, it follows that (G0,k,`) is

a YES instance of BOUNDED CC.

Let (G0,k,`) be a YES instance of BOUNDED CC and F 0 ✓ E(G0) of size at most k be a

minimal set such that T 0 = G0/F 0 is a cactus with at most ` leaves. Let W 0 be a T 0-witness

structure of G0. Notice that in path (u0,u1, . . . ,uk,u⇤k+1) every internal vertex is of degree

exactly two. From Lemma 4.2.1, F 0 does not contain any edge incident to a vertex in

{u1,u2, . . . ,uk}, in particular to uk. There exists t 0k, t
0
k+1 2 T 0 such that t 0kt 0k+1 2 E(T ) and



W (t 0k) = {uk} and u⇤k+1 2W (t 0k+1). Let W = (W 0 \W (t 0k+1))[{W (tk+1),W (tk+2)}, where

W (tk+1) = {uk+1} and W (tk+2) = (W (t 0k+1)[{uk+2})\{u⇤k+1}. Since NG0(u⇤k+1)\{uk}=

NG(uk+2) \ {uk+1}, G[W (tk+2)] is connected. Let T be the graph obtained from G by

contracting each witness set to a vertex. In other words, W is T -witness structure of

graph G. Note that T can be obtained from T 0 by subdividing an edge t 0kt 0k+1. From

Observation 4.2.2 (1) it follows that T is also a cactus with at most ` leaves. Since

F 0 ✓ E(G) and it is also a spanning forest for W , we can conclude that (G,k,`) is also a

YES instance of BOUNDED CC.

Reduction Rule 4.3.1 can be applied in polynomial time. After exhaustive application of

Reduction Rule 4.3.1 in the resulting graph G any induced path with internal vertices of

degree 2 is of length at most k+2.

Suppose input graph G has a cut-edge uv. An optimal solution may contract one of the

connected components of G�{uv}, along with edge uv, to reduce the number of leaves

in the resulting cactus. Consider the case when both connected components of G�{uv}

are large enough that neither of them is contained entirely in one witness set. In this

case, no minimal solution contains the edge uv. Following reduction rule is based on this

observation.

Reduction Rule 4.3.2. If G has a cut-edge uv with C1,C2 being two connected components

in G� {uv} and |V (C1)|, |V (C2)| � k + 2, then contract uv. The resulting instance is

(G0,k,`) where G0 = G/{uv}.

Lemma 4.3.2. Reduction Rule 4.3.2 is safe.

Proof. Let u⇤ be the vertex obtained by contracting the edge uv. Given an instance

(G,k,`), one can find a cut-edge uv which satisfies required property, if one exists, and

apply reduction rule in polynomial time. We need to prove that (G,k,`) is a YES instance

of BOUNDED CC if and only if (G0,k,`) is a YES instance of BOUNDED CC.



Let (G,k,`) be a YES instance of BOUNDED CC and F ✓ E(G) of size at most k such

that G/F is a cactus T with at most ` leaves. As a consequence of Observation 4.2.2

(2), G/(F [ {uv}) is also a cactus. Hence, G/(F [ {uv}) = (G/{uv})/(F \ {uv}) =

G0/(F \{uv}) is a cactus with at most ` leaves. Also |(F \{uv}| |F | k. This concludes

that (G0,k,`) is a YES instance of BOUNDED CC.

To prove reverse direction, let (G0,k,`) be a YES instance of BOUNDED CC. Let F 0 be

a set of at most k edges such that G0/F 0 = T 0 is a cactus with at most ` leaves. We first

argue that G is (|F 0|+1)-contractible to a cactus, say T1, which has at most ` leaves. Using

SPLIT operation on T1 we argue that G is actually |F 0|-contractible to a cactus with at most

` leaves.

Let W 0 be a T 0-witness structure of G0. Let u⇤ be the vertex resulting while contracting

edge uv in G to get G0. Consider vertex t⇤ in V (T 0) such that u⇤ is in W (t⇤). Define set

W (t1) := (W (t⇤) \ {u⇤})[ {u,v}. Let W1 be the witness structure obtained from W 0 by

removing W (t⇤) and adding W (t1). Note that W1 partitions V (G) and for each W in W1,

G[W ] is connected. Let T1 be a graph obtained from G by contracting witness sets in W1.

In other words, W is a T1-witness structure of G. Note that T1 can be obtained from G by

contracting all edges in F 0 [{uv}. This implies T1 can be obtained from G0 by contracting

all edges in F 0 and hence it is a cactus with at most ` leaves. We conclude that G is

(|F 0|+1)-contractible to a cactus with at most ` leaves.

Since uv is a cut-edge in G, it is also a cut-edge in G[W (t1)]. Let Cu and Cv be the connected

components of G[W (t1)]�{uv} containing u and v, respectively. Further, let Wu =V (Cu),

Wv =V (Cv). Consider a witness structure W of G obtained from W1 by removing W (t1)

and adding Wu and Wv. Notice that W partitions V (G) and for each W in W , G[W ] is

connected. Moreover, we need |F 0| many edges to contract all witness sets in W . Let T be

a graph obtained by contracting all witness sets in W . In other words, W is a T -witness

structure of G. Note that G is |F 0|-contractible to T . The only thing which remains to

prove is that T is a cactus with at most ` leaves. We prove this by showing that T can be



obtained from T1 by SPLIT operation at vertex t1. We start with following claim.

Claim. Vertex t1 is a cut vertex in T1.

Proof. Each witness set in W1 is of size at most k+2 and hence |W (t1)| k+2. If t1 is the

only vertex in T1, then all the vertices in (V (C1)[V (C2))\{u,v} are in W (t1). This implies

that |W (t1)|� 2k+3 which is a contradiction. If t1 has unique neighbor, say t̂, in V (T1),

then V (C1)\W (t̂) and V (C2)\W (t̂) are both non empty as |V (C1)|, |V (C2)|� k+2 and

|W (t1)\{u,v}| k. Since uv is a cut-edge in G, any path connecting vertices in V (C1) and

V (C2) must contain an edge uv. Both sets V (C1)\W (t̂) and V (C2)\W (t̂) are not empty

but W (t̂) does not contain u,v. This implies that G0[W (t̂)] is not connected contradicting

the fact that it is a witness set. Hence, t1 has at least two neighbors, say t̂1, t̂2 in T 0 such

that V (C1)\W (t̂1) 6= /0 and V (C2)\W (t̂2) 6= /0. Assume that t1 is not a cut vertex in T1.

There exist a path between t̂1 and t̂2 in T1�{t1}. This implies there exists a path between

V (C1) and V (C2) which does not contains an edge uv. This contradicts the fact that uv is

an cut edge in G. Hence our assumption is wrong and t1 is a cut vertex in T1. ⇧

Consider a vertex t in T1 which is adjacent with t1. From above arguments, we know that

exactly one of V (C1)\W (t) and V (C2)\W (t) is an empty set. Partition vertices in NT 0(t1)

into two sets L and R depending on whether corresponding witness sets intersect C1 or C2.

Formally, L := {t | t 2 NT 0(t) and W (t)\V (C1) 6= /0} and R := {t | t 2 NT 0(t) and W (t)\

V (C2) 6= /0}. Note that (L,R) is a partition of NT1(t) and none of this set is empty. Moreover,

there is no path between vertices in L and R. Let T be the graph obtained after operation

SPLIT(T1, t1,L,R). By Observation 4.2.3, T is a cactus with at most ` many leaves.

Hence, if there exist a set of edges F 0 in G0 such that G/F 0 is tree with at most ` leaves

then G is |F 0|-contractible to a tree with at most ` leaves. This concludes the proof of

reverse direction.

We generalize notion of cut-edge to cycle whose removal disconnects the graph.

Definition 4.3.1 (Cut-Cycle). For a cycle C in graph G, C is a cut-cycle if in the block



u v

|V (C1)| � k + 2 |V (C2)| � k + 2

C1 C2

(G, k, `)

...

...

...C

...
u⇤u⇤

C1 \ {u} C2 \ {v}
(G/E(C), k, `)

...

...

Figure 4.3: An illustration of Reduction Rule 4.3.3.

decomposition of G, there exists a block B such that B =V (C) that contains exactly two

cut-vertices.

For example, in Figure 4.1, {v3,v4,v5,v6} is a cut-cycle. Let C be a cut-cycle in G and

u,v be the cut-vertices that it contains. Observe that G�E(C) has exactly two non-trivial

connected components (components with at least two vertices), one containing u and

another containing v. Following reduction rule states that it is safe to contract certain

cut-cycles.

Reduction Rule 4.3.3. Let C be a cut-cycle in G containing cut-vertices u,v and C1,C2 be

the non-trivial components of G�E(C) such that |V (C1)|, |V (C2)|� k+2, then contract

edges in E(C). The resulting instance is (G0,k,`), where G0 = G/E(C).

Lemma 4.3.3. Reduction Rule 4.3.3 is safe.

Proof. We prove the safeness of this reduction rule using an intermediate instance. Reduc-

tion Rule 4.3.3 can be applied in two steps. In first step, we delete all edges in E(C) and

add edge uv. In second step, we apply Reduction Rule 4.3.3 on cut edge uv. Let E1 be set

of edges in E(C) which are not incident on u. Then, first step is equivalent to contracting

all edges E1 in G and renaming new vertex to v. Let G̃ be the graph obtained from G by

contracting edges in E1. To prove the lemma, we only need to argue that (G,k,`) is an



YES instance if and only if (G̃,k,`) is an YES instance. The correctness of second step is

implied by Lemma 4.3.2.

In the forward direction, let (G,k,`) be a YES instance of BOUNDED CC and F ✓ E(G)

of size at most k such that G/F is a cactus T , with at most ` leaves. As a consequence

of Observation 4.2.2(2) it follows that G/(F [E1) is also a cactus with at most ` leaves.

Hence G/(F [E1) = (G/E1)/(F \E1) = G̃/(F \E1) is a cactus with at most ` leaves.

Also, |(F \E1)| |F | k. This implies that (G̃,k,`) is a YES instance of BOUNDED CC.

Let (G̃,k,`) is a YES instance of BOUNDED CC. There exists F̃ ✓ E(G̃) such that G̃/F̃ is

a cactus T̃ with at most ` leaves. Let W̃ be T̃ -witness structure of G̃ such that u 2W (t̃u)

and v 2W (t̃v). Consider a witness structure W obtained from W̃ by adding a singleton

witness set for every vertex in V (C)\{u,v}. Formally, W = W̃ [{{x} | x 2V (C)\{u,v}}.

Notice that W partitions V (G) and for each W 2 W , G[W ] is connected. Let T be the

graph obtained from G by contracting witness sets in W . In other words, W is T -witness

structure of G. Notice that T is a graph obtained by replacing a cut-edge t̃ut̃v in cactus T̃

by pair of vertex disjoint paths between vertices t̃u, t̃v. Hence, from Observation 4.2.2(3),

T is a cactus with at most ` leaves. This concludes the proof of reverse direction.

Hence, if there exist a set of edges F 0 in G0 such that G/F 0 is tree with at most ` leaves

then G is |F 0|-contractible to a tree with at most ` leaves.

We say (G,k,`) is a reduced instance of BOUNDED CC if none of the Reduction Rules 4.3.1,

4.3.2 and 4.3.3 are applicable.

Lemma 4.3.4. Let (G,k,`) be a reduced instance of BOUNDED CC. If (G,k,`) is a YES

instance of BOUNDED CC, then the number of vertices and edges in G is bounded by

O(k2 + k`).

Proof. Suppose G is k-contractible to a cactus T with at most ` leaves. Let W be the

T -witness structure of G and D be the block decomposition of T . By definition of cactus,



every block of T is either an edge or a cycle. We use the bound on the number of nodes

in D and upper bound on size of a block to bound the number of vertices in T . Let B be

a block in T . If B is an edge in T , then it contains exactly two vertices. Otherwise, B

contains at least 2 vertices. Let BC,BW are two subsets of B, defined as follows: BC be

the set of cut-vertices in T that belongs to B and BW be the set of vertices t 2 B such that

|W (t)|> 1. We bound the size of a block using following claim.

Claim 1: |B| (k+3)|BC[BW |.

Proof. Since the number of vertices in block B is more than 2, B induces a cycle in T .

By Observation 4.2.1 and construction, for every vertex t in B\ (BC [BW ), degT (t) = 2

and |W (t)|= 1. Consider a path P = (tx, t1, t2, . . . , tq, ty) in T between two vertices tx, ty 2

BC[BW such that {t1, t2 . . . , tq}\ (BC[BW ) = /0. Let ui 2W (ti) for i 2 {1,2, . . . ,q}. Note

that |W (ti)|= 1, for all i 2 {1,2, . . . ,q}. Then, there exists a path P0 = (x,u1,u2, . . . ,uq,y)

in G such that x 2W (tx), y 2W (ty) and degG(ui) = 2 for all i 2 [q]. Since Reduction

Rule 4.3.1 is not applicable, therefore, q  k. Since B induces a cycle in T , there are at

most |BC [BW | such path and each path contains at most k+ 3 many vertices. Hence

|B| (k+3)|BC[BW |. ⇧

By the property of block decomposition of a graph, a node tB corresponding to block B in

D has degree equal to |BC|. Let V1,V2,V3 be the set of nodes of D which corresponds to a

block in T and are of degree at most 1, degree 2 and degree at least 3 respectively. Since D

has at most ` leaves, |V1| ` which in turn implies that |V3| `. From Proposition 2.1.1,

it follows that the number of cut-vertices present in blocks with at least 3 cut-vertices is

bounded by the following.

Â
tB2V3

|BC| 3` (4.1)

Note that the number of vertices in T corresponds to big witness set is at most k therefore

we have the following inequality.

Â
tB2V1[V2[V3

|BW | k (4.2)



We fix an arbitrary vertex as the root of D (preferable vertex of degree at least 2). For

counting purpose, we apply the following marking scheme to the nodes in D . We start by

marking all the leaves in D . For a leaf tB, keep marking the nodes on path from the leaf to

the root of that tree until the total number of vertices in T from the marked blocks is at least

k+2. We say these marked vertices are close to the leaf tB. Also mark all the nodes tB in D

for which BW is not empty. This completes the marking procedure. For leaf node tB, let tB⇤

be the last node marked by above marking scheme to ensure that we have covered at least

k+2 many vertices of T . Hence there are at most k+1+ |B⇤| many vertices marked for

the leaf tB. Let L0 = {tB⇤ | tB 2V1}, i.e. the set of all the nodes which were the last marked

node corresponding to some leaf. Notice that |L0| |V1|. Consider the subgraph D 0 of D

induced on the vertices in V1[L0 and the cut-vertices their corresponding block contains.

Note that in a block decomposition no two cut-vertices or two vertices corresponding to

blocks are adjacent. This implies that the number number of vertices in D 0 is bounded by

O(`). This helps us in establishing the following.

Â
tB⇤2L0

|B⇤C|= Â
tB⇤2L0

degT (tB⇤) 2 O(`)

Using the above relation, Claim 1 and Equation 4.2, we have the following.

Â
tB⇤2L0

|B⇤| Â
tB2L0

(|B⇤C|+ |B⇤W |)(k+2) 2 O(k2 + k`)

Hence the total number of marked vertices which are close to leaf nodes are,

Â
tB2V1

((k+1)+ |B⇤|) Â
tB2V1

(k+1)+ Â
tB⇤2L0

|B⇤| 2 O(k2 + k`)

Let VM be set of nodes tB which are marked because BW is not empty. By Equation 4.2,

|VM| k. For tB 2VM \ (V1[V2), |BC| 2 which implies ÂtB2VM\(V1[V2) |BC| 2k.

Â
tB2VM\(V1[V2)

|B| Â
tB2VM\(V1[V2)

(|BC|+ |BW |)(k+2) 2 O(k2)



For tB 2V3\VM, we use Equation 4.1 to obtain following bound.

Â
tB2V3\VM

|B| Â
tB2V3\VM

(|BC|+ |BW |)(k+2) 2 O(k2 + k`)

We now count the number of vertices in blocks corresponding to unmarked nodes. We first

argue that every unmarked node, associated block contains at least three cut-vertices. In

other words, all the nodes in V1,V2 have been marked.

Claim 2: If tB is not marked by above marking scheme, then tB 2V3.

Proof. We prove this by contradiction. Since all the nodes in V1 are marked, assume that

there exists unmarked node tB in V2 such that |BW |= 0. Since B contains exactly two cut-

vertices, T �E(B) has exactly two non-trivial connected components, say T1,T2. Notice

that each T1,T2 contains marked vertices corresponding to at least one leaf node and hence

|V (T1)|, |V (T2)|� k+2. Since B does not contain any vertex t such that |W (t)|> 1, vertex

set X =
S

t2BW (t) is either a cut-edge or a cut-cycle in graph G. Moreover, G�E(X)

has two non-trivial connected components C1,C2 such that V (C1) =
S

t2V (T1)W (t) and

V (C2) =
S

t2V (T2)W (t) which implies |V (C1)|, |V (C2)|� k+2. But in this case, Reduction

Rule 4.3.2 or 4.3.3 is applicable on the instance. This contradicts that (G,k,`) is a reduced

instance. ⇧

Let U be the set of nodes which are unmarked. By Claim 2, U ✓V3. By Equation 4.1 and

using the fact that |BW |= 0 for tB 2U ,

Â
tB2U

|B|= Â
tB2U

(k+3)|BC|= (k+3) · Â
tB2U

|BC| 2 O(k`)

Combining all these upper bounds, we get |V (T )| O(k2 + k`). Since T is obtained from

G with at most k edge contractions, it follows that |V (G)| |V (T )|+ k. This implies the

desired bound on the vertices of input graph. We now bound the number of edges in G.

Notice that maximum degree of a node in D is at most ` as the number of leaves in D is

at most `. This implies that any cut-vertex in T can be part of at most ` blocks. Since,



every vertex can be adjacent to at most 2 vertices in a block, maximum degree of a vertex

t in cactus T is at most 2`. Every edge contraction can reduce the number of vertices

by 1 hence the maximum degree of a vertex in G is at most 2`+ k. If G/F is a cactus

then each component in G�V (F) is also a cactus. Since the size of solution F is at most

k, |V (F)|  2k. As G is a simple graph, the number of edges of G with both of its end

points in V (F) is at most O(k2). G�V (F) is cactus on at most O(k2 + k`) many vertices

and hence by Observation 4.2.1, the number of edges of G whose both end points are in

V (G)\V (F) is at most O(k2 + k`). The number of edges which has exactly one end point

in V (F) is upper bounded by maximum degree of G multiplied by cardinality of F which

is at most O(k2 + k`). Hence the bound on number of edges in G follows.

We are now ready to prove the main theorem of this section.

Theorem 4.3.1. BOUNDED CACTUS CONTRACTION admits a kernel of size O(k2 + k`).

Proof. Given an instance (G,k,`) of BOUNDED CC the kernelization algorithm exhaus-

tively applies Reduction Rules 4.3.1, 4.3.2 or 4.3.2. If the number of vertices and edges in

reduced graph is not upper bounded by O(k2 + k`) then it returns a trivial no instance.

By Lemma 4.3.1; 4.3.2; and 4.3.3, these reduction rules are safe and can be applied in

polynomial time. Each application of reduction rule decreases the number of edges thus

it can be applied only |E(G)| times. If none of the reduction rules are applicable then

then either the size of the instance is bounded by O(k2 + k`), in which case we return a

kernel of desired size. Otherwise, the algorithm correctly concludes that the instance is

a NO instance of BOUNDED CC. Lemma 4.3.4 proves the correctness of this step of the

algorithm.



4.4 Kernel Lower Bound for BOUNDED CACTUS CON-

TRACTION

In this section, we present a parameter preserving reduction from a given instance

(G,R,B,k) of RBDS to an instance (G0,k0,`0) of BOUNDED CACTUS CONTRACTION.

This reduction is same as the one presented in Section 3.4. We use this reduction to

prove three things. First, we show that CACTUS CONTRACTION is NP-Hard. Second,

CACTUS CONTRACTION parameterized by solution size k does not admit a polynomial

kernel assuming NP 6✓ coNP/poly. Third, the kernel presented for BOUNDED CACTUS

CONTRACTION in Section 4.3 is optimal under the same assumption. Recall that in RBDS,

given a bipartite graph G(R,B) and an integer k, the task it to determine whether there

exists a set of at most k vertices in R which dominates B.

Reduction. Let (G,R,B,k) be an instance of RBDS. We construct graph G0 in the

following way. See Figure 4.4. Initialize V (G0) = V (G) and E(G0) = {br | b 2 B,r 2

R and br 2 E(G)}. Add a vertex a in V (G0) and for every vertex r in R, add an edge ar to

E(G0). For every vertex bi in B, add three new vertices xi,yi,zi to V (G0) and edges bixi,

biyi, bizi to E(G0). Define set X := {xi,yi,zi | bi 2 B}. For every vertex x in X , add an edge

ax to E(G0). Set k0 = |B|+ k and `0 = |R|+3|B|� k.

Following the same spirit of proof as described in Section 3.3, we prove following lemmas.

Note that lemma implies if bi is not present in W (ta) then at least two vertices in {xi,yi,zi}

are present in W (ta) unlike in case of TREE CONTRACTION where all three were present.

Lemma 4.4.1. Let (G0,k0,`0) be a YES instance of BOUNDED CC. There exists a solution

F⇤ ✓ E(G0) of size at most k0 such that for each bi 2 B one of the following holds.

• bi is in W (ta) or

• at least two of {xi,yi,zi} are in W (ta).



Figure 4.4: Kernel lower bound for BOUNDED CC.

Here, W (ta) is the witness set containing a in (G0/F⇤)-witness structure of G0.

Proof. Let F be a set of edges of size at most k in G0 such that G0/F is a tree with at most

` leaves. Let W be a T -witness structure of G0 where T = G0/F . Let ta be the vertex in

V (T ) such that W (ta) contains a. For a vertex bi in B, if bi is in W (ta) then the lemma

holds. Consider a case when bi is not in W (ta). There exists a vertex tb, different from ta,

such that bi is in W (tb). Similarly, consider vertices tx, ty and tz such that xi,yi and zi are

contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two vertices in {tx, ty, tz} can be

same as only neighbors of xi,yi,zi are a and bi, and a witness set needs to be connected.

But then, by construction, T [{ta, tx, ty, tz, tb}] has at least two cycles which share an edge,

contradicting that F is a solution. Without loss of generality, let tx 2 {ta, tb}. This implies

there is an edge tatb is in T . If ta and tb not equal to ty or tz then, T [{ta, ty, tz, tb}] has at

least two cycles which share tatb, contradicting that F is a solution. Therefore, at most

one of tx, ty, tz can be different from ta or tb. Without loss of generality, assume that

{tx, ty} is a subset of {ta, tb}. If both tx, ty are same as ta, then the second condition of the

lemma is satisfied. Therefore, we assume that at least one of tx, ty, say tx, is not same as

ta which implies tx = tb. By construction, the only edges incident to xi in G are axi and



bxi. This implies that bxi 2 F and W (t 0b) =W (tb)\{xi} is connected. Since axi 2 E(G),

W (t 0a) =W (ta)[{xi} is connected. Thus, replacing W (tb) by W (t 0b) and W (ta) by W (t 0a)

in W yields another T -witness structure of G. Furthermore, the spanning forest of the

new witness structure, F 0 = (F \{bxi})[{axi} which has same cardinality as that of F .

A similar swap can be carried out if ty = tb. Hence there a witness structure such that for

each bi 2 B if bi is not in W (ta) then at least two of {xi,yi,zi} are in W (ta).

In the following lemma, we argue that the reduction is safe.

Lemma 4.4.2. (G,R,B,k) is a YES instance of RBDS if and only if (G,k0,`0) is a YES

instance of BOUNDED CC.

Proof. Let (G,R,B,k) be a YES instance of RBDS and S be a subset of R of size k such

that S dominates every vertex in B. If S contains less than k vertices, then we take any

of its superset of size exactly k. For each vertex b in B, we fix a vertex rb in S such that

b is neighbor of rb in G. If there are multiple options for selecting rb then we arbitrarily

choose one of them. Let F = {brb | b 2 B}[ {ar | r 2 S}. Note that |F | = |B|+ k = k0

and G0[V (F)] is connected. Let T be the graph obtained from G0 by contracting F . Let

W be a T -witness structure of G0. Consider a vertex ta such that a is in W (ta). Since

all the edges in F are contracted to one vertex, set S[B is also contained in W (ta). By

construction, R[X is an independent set in G0. No vertex in (R[X)\S is incident on edge

which has been contracted. In other words, these vertices form singleton witness sets in

W . Since R[X is an independent set in G0, it follows that set TRX = {tv | v 2 (R[X)\S}

is an independent set in T of size |R|+3|B|� k = `0. Moreover, for all v in X 0, av 2 E(T ).

Therefore, T is a star (which is a cactus) with `0 leaves. This implies that F is a solution to

(G0,k0,`0).

In the reverse direction, let (G,k0,`0) be a YES instance of BOUNDED CC and F ✓ E(G)

be one of its solution. Then by Lemma 4.4.1, there exists a solution F⇤ of size at most k0

such that for all bi 2 B, either bi 2W (ta) or at least two of xi,yi,zi are in W (ta). Here, W



is a G/F⇤-witness structure of G and ta 2V (G/F⇤) such that a 2W (ta).

We partition vertices of B into two parts depending on whether they belong to W (ta) or

not. Define Bg = {bi 2 B | bi 2W (ta)}. Let Ra = R\W (ta). Partition Bg into B1 and

B2, depending on whether or not they have a neighbor in Ra. Formally, B1 = {bi 2 Bg |

N(bi)\Ra 6= /0} and B2 = Bg \B1. For a vertex bi in B2 at least one of xi,yi,zi is present

in W (ta) as there is no edge between bi and a. Note that, by construction, xi,yi,zi are not

adjacent with b j for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB2 be set of vertices in X \W (ta)

which provides adjacency between a and bi for some bi in B2. For every bi which is in

B\Bg, by Lemma 4.4.1, at least two of vertices in {xi,yi,zi} are present in W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B (captured by Bg);

vertices in R (captured by Ra); vertices in X which are present because corresponding

bi is not present (captured by B\Bg); and vertices in X which are present because they

are needed to provide connectivity between bi and a (captured by XB2). This implies

|Bg|+2|B\Bg|+ |Ra|+ |XB2|+ |{a}| |W (ta)|.

We construct a solution S for RBDS by taking vertices in Ra and two more sets Sg and Sw.

Informally, Sg dominates vertices in B2 and Sw dominates vertices in B\Bg. We construct

Sg in following way. For every vertex bi in B2, arbitrary pick one of its neighbor in R

and add it to Sg. Note that |Sg|  |XB2|. We create another set Sw in the following way.

Initialize Sw to an empty set. For each b in B\Bg, we add an arbitrary neighbor of b in R

to Sw. This implies |Sw| |B\Bg|.

As cardinality of F⇤ is at most k + |B|, size of W (ta) is at most |W (ta)|  k + |B|+ 1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw|  k and every vertex in B is

dominated some vertex in Ra[Sg[Sw. This concludes the proof.

RED BLUE DOMINATING SET is NP-complete [44] and it does not have a polynomial

kernel when parameterized by (|B|,k) [32]. The existence of the polynomial parameter



transformation described above and Proposition 2.3.1 implies that CACTUS CONTRACTION

does not have a kernel with size polynomial in k, unless NP✓ coNP/poly.

Theorem 4.4.1. CACTUS CONTRACTION does not have a polynomial kernel unless NP✓

coNP/poly.

We are now in position to present main result of this section.

Theorem 4.4.2. BOUNDED CACTUS CONTRACTION does not admit a compression of

size O((k2 + k`)1�e), for any e > 0 unless NP✓ coNP/poly.

Proof. Assuming a contradiction, suppose BOUNDED CC admits a compression into

P✓ S⇤ with bitsize in O((k2 + k`)1�e), for some e > 0. This implies that there exists an

algorithm A which takes an instance I = (G,k,`) of BOUNDED CC and in polynomial

time returns an equivalent instance I0 of P with |I0| 2 O((k2 + k`)1�e).

Let (G,R,B,k) be an instance of RBDS, where G is a graph on n vertices. Using the reduc-

tion described, we create an instance (G,k0,`0) of BOUNDED CC with |V (G0D)| 2 O(n),

|E(G0D)| 2O(n2), k0 = k  |R| 2O(n) and `0 = |B|+ k 2 O(n). On the instance (G,k0,`0)

we run the algorithm A to obtain an instance I of P such that |I| 2 O((k02 + k0`0)1�e).

But then we have obtained a compression of size O(n2�e) for RBDS, contradicting

Proposition 2.3.2.

Corollary 4.4.1. BOUNDED CACTUS CONTRACTION does not admit a kernel of size

O((k2 + k`)1�e), for any e > 0 unless NP✓ coNP/poly.

4.5 Lossy Kernel for CACTUS CONTRACTION

In previous section, we established that CACTUS CONTRACTION does not admit polyno-

mial kernel under standard complexity assumption (Theorem 4.4.1). In this section, we

compliment that result by providing a lossy kernel of polynomial size for the problem. We



define parameterized minimization version of CACTUS CONTRACTION in the following

way.

CC(G,k,F) =

8
><

>:

• if G/F is not a cactus

min{|F |,k+1} otherwise

If G has at most k+3 vertices then we already have a kernel of desired size. We assume

that input graph has at least k+3 vertices. By definition of optimization problem, for a set

of edges F , if G/F is a cactus then maximum value of CC(G,k,F) is k+1. Hence any

spanning tree of G is a solution of cost k+1. We call it a trivial solution for given instance.

We denote a complete graph on five vertices by K5. One need to contract at least two edges

to obtain a cactus from K5. We call (K5,1) as trivial instance of CACTUS CONTRACTION.

If OPT(G,k) = k+1 then we can return trivial instance as its a-lossy kernel. Note that

for any c-factor solution for trivial instance, solution lifting algorithm can return a trivial

solution for original instance which is of cost k+1. Since OPT(G,k) is equal to k+1, it

is 1-factor solution. We assume that input graph is connected as otherwise one can not

obtain a cactus only by edge contractions.

Lemma 4.2.2 implies that a connected graph G is k-contractible to a cactus if and only

if each of its 2-connected components is contractible to a cactus using at most k edge

contractions in total. If a 2-connected component of graph is not a cactus then there exists

an edge which is part of at least two cycles. Cycles in each of 2-connected component are

edge-disjoints and hence contracting an edge in one component does not eliminate cycles

in another component. If the number of 2-connected components in the input graph which

are not cactus are more than k+1 then we can safely conclude that optimum solution for

given instance is at least k+ 1. In this case we can return trivial instance otherwise we

consider each 2-connected component separately. Note that we do not guess the number

of edges needs to be contracted in each 2-connected component. We compute a kernel

for each 2-connected component using the budget of k. The output of our kernelization



algorithm is disjoint union of kernels for each 2-connected component. We present first

reduction rule which eliminate long chain of paths and/or cycles which connects two

different 2-connected components. Let K be the set of cut-vertices and B be the set of

blocks in G.

Reduction Rule 4.5.1. If B is a block in G which is an edge or a cycle then contract all

edges in E(B). The resulting instance is (G0,k), where G0 = G/E(B).

Informally speaking, since no edges in E(B) is part of more than one cycle, we do not

need to contract any edge in it to construct a cactus. This implies that edges in E(B) are

irrelevant with respect to any solution and can safely be contracted.

Lemma 4.5.1. Reduction rule 4.5.1 is 1-safe.

Proof. Consider a solution F 0 for (G0,k). If |F 0|� k+1, solution lifting algorithm returns

a spanning tree F of G. If |F 0|  k then solution lifting algorithm returns F = F 0. If

|F 0| � k+ 1 then for a spanning tree F of G, CC(G,k,F) = k+ 1. Hence in this case,

CC(G,k,F) = k+ 1 = CC(G0,k,F 0). Consider a case when |F 0|  k. Let W 0 be a T 0-

witness structure of G0 where T 0 = G0/F 0. Since B is a block, when all edges in E(B) are

contracted, there is a unique new vertex. Let u⇤ be the new vertex added after contracting

all edges in E(B). Consider vertex t⇤ in V (T 0) such that u⇤ in W (t⇤). Define set W (t) :=

(W (t⇤)\{u⇤})[V (B). Let W1 be a witness structure of G obtained from W 0 by removing

W (t⇤) and adding W (t). Notice that W1 partitions V (G) and for each W in W1, G[W ] is

connected. Let T1 be a graph such that W is a T1-witness structure of G. Note that T1

can be obtained from G by contracting all edges in F 0 [E(B). This implies T1 can be

obtained from G0 by contracting all edges in F 0. Hence T1 is a cactus. This implies that G

is (|F 0|+ |E(B)|)-contractible to a cactus. We argue that G is in fact |F 0|-contractible to a

cactus.

Consider a witness structure W obtained from W1 by removing W (t) and adding each

connected component in G[W (t)]�E(B). All vertices in B which are not cut vertices are



now singleton witness sets. Cut vertices in B are either singleton witness sets or present in

witness set which has vertices from other blocks containing that cut vertex. Notice that W

partitions V (G) and for each W in W , G[W ] is connected. Let T be a graph obtained by

contracting all witness sets in W . In other words, W is a T -witness structure of G.

For a vertex u in V (B), let tu be the V (T ) such that W (tu) = {u}. Define set BT as set of

vertices in tu whose corresponding witness set is singleton and it contains vertices in V (B).

Edges incident on vertices in BT are determined by witness structure W of G. We now

argue that T is a cactus.

Assume that T is not a cactus for the sake of contradiction. By construction, T/E(BT ) = T1

and T1 is a cactus. This implies that if T is not a cactus then there exists an edge tutv

in E(BT ) which is contained in two cycles. Since no edge in E(B) is contracted while

constructing T , T [BT ] is a cycle. Let CT be the another cycle which contains tutv. Let X be

a union of witness sets corresponding to vertices in BT [CT . Formally, X =
S

t2BT[CT W (t).

Note that B is a proper subset of X . For any two vertices in X , there exists at least two

paths connecting these two vertices. Hence X is a 2-connected set. This contradicts the

fact that B is a block which is maximal 2-connected set in G. Hence, our assumption is

wrong and T is a cactus. This implies that G can be contracted to a cactus by contracting

all edges in F 0. Hence, CC(G,k,F) = CCC(G0,k,F 0).

We now argue that OPT(G0,k)  OPT(G,k). Let F be an optimum solution for (G,k).

By Observation 4.2.2(2), G/(F [ E(B)) is also a cactus. Note that G/(F [ E(B)) =

(G/E(B))/(F \E(B)) = G0/(F \E(B)). Hence G0/F is a cactus. Since |F \E(B)| |F |,

we can conclude that OPT(G0,k) OPT(G,k).

Combining these two inequalities, we get CC(G,k,F)
OPT(G,k) 

CC(G0,k,F 0)
OPT(G0,k) which concludes the

proof.

Exhaustive application of above reduction rule eliminates all blocks in G which are already

a cactus. In rest of the section, we focus on 2-connected component of G. We assume that



the input graph is 2-connected.

Following reduction rules states that we can replace long path in input graph by shorter

paths.

Reduction Rule 4.5.2. If G has a path P = (u0,u1, . . . ,uk+1,uk+2) such that all of its

internal vertex are of degree 2, then contract uk+1uk+2. The resulting instance is (G0,k,`)

where G0 = G/{uk+1uk+2}.

We observe that this rule can be applied in polynomial time by considering each simple

path in the graph of length more than k+1.

Lemma 4.5.2. Reduction Rule 4.5.2 is 1-safe.

Proof. Consider a minimal set F 0 ✓ E(G) such that T 0 = G0/F 0 is a cactus. If |F 0|� k0+1,

then the solution lifting algorithm a spanning tree F of G. In this case, CC(G,k,F) =

k+1 = CC(G0,k0,F 0). In case |F 0| k0, the solution lifting algorithm returns F = F 0. Let

W 0 denote a T 0-witness structure of G0 where T 0 = G0/F 0. Let u0k+1 be the new vertex

added while contracting uk+1uk+2. Let P0 be the path obtained from P by contracting

uk+1uk+2. By Lemma 4.2.1, F 0 has no edge incident on V (P0)\{u0,uk+2}. Hence, every

vertex in V (P0) \ {u0,uk+2} is in a singleton set of W 0. Let W to a witness structure

obtained from W 0 by removing {u0k+1} and adding two sets {uk+1},{uk+2}. Note that W

is a partition of G and for every W in W , G[W ] is connected. Let T be the graph obtained

from G by contracting witness sets in W . In other words, W is a T -witness structure of G.

Note that T can be obtained from T 0 by subdividing edge uku0k+1. By Observation 4.2.1(1),

T is a cactus as T 0 is a cactus. Hence, CC(G,k,F) CC(G0,k0,F 0).

We now argue that OPT(G0,k) OPT(G,k). Let F be an optimum solution for (G,k). By

Observation 4.2.1(2), G/(F[{uk+1uk+2}) is also a cactus. Note that G/(F[{uk+1uk+2})=

(G/{uk+1uk+2})/(F \ {uk+1uk+2}) = G0/(F \ {uk+1uk+2}). Hence G0/F is a cactus.

Since |F \{uv}| |F |, we can conclude that OPT(G0,k) OPT(G,k).



Figure 4.5: Partition of input graph.

Combining two inequalities, we get CC(G,k,F)
OPT(G,k) 

CC(G0,k0,F 0)
OPT(G0,k0) . This concludes the proof.

We apply Reduction Rule 4.5.2 exhaustively to the input graph. Any simple path in resulting

graph contains at most k+4 vertices. We partition vertices of G into the following four

parts: high degree vertices (H), independent set (I), collections of simple paths (Ip) and

rest of the graph (R). See Figure 4.5. These sets are defined as follows.

H = {u 2V (G) | d(u)� k+3}

Iv = {v 2V (G)\H | NG(v)✓ H}

Ip = {V (P) | P is a simple path in G\ Iv and NG(P)✓ H}

R =V (G)\ (H [ Iv[ Ip)

With a slight abuse of notation, we say that a path P is contained in Ip (i.e. P 2 Ip) if

V (P)✓ IP. Let us make the following observation.

Observation 4.5.1. For any two paths P1,P2 2 Ip, we have V (P1)\V (P2) = /0.

We construct graph G0 from G by contracting each path P in Ip to a single vertex. All the



vertices present in H[R are contained in V (G0). We use this graph to bound the cardinality

of set H [R. By construction, if G is 2-connected than G0 is also a 2-connected graph. We

mention few simple observations which directly follows from construction of G0.

Observation 4.5.2. There is no simple path in G0 which is an isolated path in G0 \H.

Observation 4.5.3. If G is k-contractible to cactus then G0 is also k-contractible to a

cactus.

Our main aim of constructing G0 is to bound the number of pendent cycles in G�H.

Lemma 4.5.3. If G0 is k-contractible to a cactus T 0, then the number of pendant cycles in

T 0 is bounded by 2k(k+2).

Proof. Let the graph G0 be k-contractible to the cactus T 0 via a solution set F , and let

RF =V (F)\R. Since the number of edges in F is at most k, |RF | |V (F)| 2k. Consider

a pendant cycle (uPu) in T 0. It follows that V (P)✓ R and let x,y be the endpoints P. See

Figure 4.5. Observe that N(x)✓V (F 0)[{x2} and N(y)✓V (F 0)[{y2}, where x2 and y2

are the respective neighbors of x and y on the path P in G0. We show that at least one of x

and y is neighbor to a vertex in RF . If this is not the case, then the neighborhoods of both x

and y, except for x2 and y2 respectively, are contained in V (F)\RF = H. Hence, P is a

simple path in G0 which is an isolated path in G0 \H, which is a contradiction.

We conclude that each pendant cycle in T 0 corresponds to a simple path in G0, which has

at least one is incident on at least one vertex in RF . Furthermore, the simple paths in G0

corresponding to any two pendant cycles in T 0 are vertex disjoint (Observation 4.5.1).

Hence, the number of simple paths is upper bounded by total number of neighbors of the

vertices in RF . Since |RF | 2k and each vertex in R has degree at most k+2 in G0, the

lemma follows.

We now argue that if G0 is k-contractible to a cactus then its connected vertex cover is

bounded. Define f (k) = (2k2 +9k+2)(k+4) for all integers k.



Figure 4.6: Construction of G00 from G0 by adding cycles C1,C2 and C3. Dotted boundary
denotes big witness set in T 0-witness structure of G0.

Lemma 4.5.4. If G0 is k-contractible to a cactus and Reduction Rule 4.5.2 is not applicable

on (G0,k), then G0 has a connected vertex cover of size f (k).

Proof. Suppose G0 is k-contractible to the cactus T 0 via a solution set F where W 0 is the

corresponding T 0-witness structure of G0. Consider the graph G00 obtained from graph G0,

by adding new vertices and edges as follows. For each t 2 T 0 such that |W 0(t)| > 1, we

arbitrarily choose an edge utvt 2 G[W 0(t)] and add a path of length k+2 between these

two vertices. Observe that, G00 is 2-connected, and furthermore, G00/F is a cactus T 00 that

is obtained from T 0 by adding a pendant cycle of length k+ 2 to each t 2 T 0 such that

|W 0(t)|> 1. See Figure 4.6. Furthermore, T 00 has at most k additional pendant cycles, as

compared to T 0. Let W 00 be a T 00-witness structure of G00. We construct G00 to ensure that

this graph has following two properties. (1) If |W 00(t)| > 1, then t is a cut-vertex in T 00.

(2) In any pendant cycle (tPt) of T 00 where t is the cut-vertex, |W (t 0)|= 1 for every t 0 2 P,

and |W 00(t)|> 1. We show that G00 has a connected vertex cover S00 of size f (k) such that

S =V (G0)\S00 is a connected vertex cover of G0.

Let V1,V3 be the set of vertices of T 00 of degree 1 and at least 3 respectively. Let V 02 =

{t 2 V (T 00) | d(t) = 2 and t is part of pendant cycle in T 00}. Now, since any simple path

corresponding to a pendant cycle in T 00 has at most k+4 vertices in G00, and by Lemma 4.5.3



in G0 and the construction of G00, there are at most 2k2 + 5k pendant cycles in T 00, we

conclude that |V 02| (2k2+5k)(k+4). Since every vertex of V 02 corresponds to a singleton

witness set in T 00, we abuse notation slightly to denote the set of corresponding vertices in

G00 by V 02 as well. Next, let V2 denote the set of degree 2 vertices in T which are not part

of a pendant cycle, and note that V2[V 02 cover the set of all degree 2 vertices in T 00. We

claim that S00 =
S

t2V2[V 02[V3
W (t) is a connected vertex cover of G00. As T 00[V2[V 02[V3]

is connected, S00 is a connected set in G00. Without loss of generality, we assume that F

follows the property mentioned in Observation 4.2.5. Hence, if ti 2V1 then |W 00(ti)|= 1.

Consider two vertices ti and t j in V1. Let W 00(ti) = {u} and W 00(t j) = {v}. Then, as

tit j 62 E(T 00), we have that uv 62 E(G00). Hence S00 is a vertex cover of G00.

We now argue that |S00| is at most f (k). For every vertex t 2V3, by Observation 4.2.1 and

4.2.7, we have |W 00(t)| > 1. Then, there are at most 2k vertices in V3. i.e.
S

t2V3
W 00(t)

is upper bounded by 2k. Further note that, by construction of G00 and T 00, for any vertex

t 2 V (T 00) \V3, |W 00(t)| = 1. We have a bound of (2k2 + 5k)(k+ 4) on the number of

vertices in V 02. It remains to bound the number of vertices in G00 corresponding to V2.

Again, since V2 corresponds to singleton witness sets in W 00, we slightly abuse notation,

and denote the set of these vertices in G00 by V2 as well. Now, let Ts be the graph obtained

from T 00 by short-circuiting all vertices in V2. By Observation 4.2.1, Ts is a cactus with

|V3|  k vertices. Since no vertex in V2 is contained in a pendant cycle in T 00, short-

circuiting a maximal path in with all internal vertices in V2 results in an edge with two

distinct endpoints in the cactus Ts. Furthermore, there can be at most two paths in T 00 such

that contracting them gives the same edge of Ts. By Observation 4.2.1(1), the number of

edges in Ts is bounded by 2|V (Ts)| 2k. Hence, Vb can be partitioned into a collection of

4k simple paths in G0, and recall that each one contains at most k+2 vertices. Therefore,

|V2| 4k(k+4). Putting together all these bounds we have |S00| f (k).

Finally, observe that S = S00 \V (G0) is a connected set in G0, and S is a vertex cover of G0.

This completes the proof of this lemma.



We present following reduction rule which returns a lossy kernels for graph which has

large connected vertex cover.

Reduction Rule 4.5.3. Given an instance (G,k), let G0 be the graph obtained from G by

contracting each path P in Ip to a single vertex. Apply 2-factor approximation algorithm to

compute a connected vertex cover X of G0. If size of X is greater than 2 · f (k) then return

(K5,1).

Lemma 4.5.5. Reduction Rule 4.5.3 is 1-safe.

Proof. Let (G,k) be an instance such that Reduction Rule 4.5.3 returns (K5,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if K5/F 0 is a tree then F 0 contains at least two edges. This

implies CC(K5,1,F 0) = 2 and OPT(K5,1) = 2.

Since a 2-factor approximation algorithm returns a set of size strictly more than 2 · f (k),

size of minimum connected vertex cover of G0 is strictly more than f (k). By Lemma 4.5.4,

if G0 is k-contractible to a cactus than it has a connected vertex cover of size at most f (k).

By Observation 4.5.3, if G is k-contractible to a cactus then G0 is also k-contractible to a

catus. Hence for any set of edges F⇤ if G/F⇤ is a cactus than size of F⇤ is at least k+1.

This implies OPT(G,k) = k+1. For a spanning tree F of G, CC(G,k,F) = k+1.

Combining these values, we get CC(G,k,F)
OPT(G,k) = k+1

k+1 = 2
2 = CC(K5,1,F 0)

OPT(K5,1)
. This implies if F 0 is

c-factor approximate solution for (K5,1) then F is 1-factor approximate solution for (G,k).

This concludes the proof.

For our next reduction rule, we extend the notion of false twins to simple paths. We call

two paths, P1 and P2 in Ip, false twins if N(P1) = N(P2). The reduction rule states that we

can delete all but 2k+3 vertices (respectively paths) in Iv (respectively in Ip) which has

identical neighborhood.



Reduction Rule 4.5.4. If there is a vertex v 2 Iv that has at least 2k+3 false twins, then

delete v. That is, the resultant instance is (G�{v},k). Similarly, if there is a path P in Ip

that has at least 2k+3 false twins, then delete P.

This reduction rule can be applied in polynomial time. The rationale behind this reduction

rule is same as we have mentioned in case of TREE-CONTRACTION.

Lemma 4.5.6. Reduction Rule 4.5.4 is 1-safe.

Proof. Let us consider the case of a path P 2 Ip that has at least 2k+3 false twins. The

case of a vertex v 2 Iv can be argued similarly. Consider a solution F 0 of the reduced

instance (G0,k0). If |F 0|� k0+1, then the solution lifting algorithm returns a spanning tree

F of G, and CC(G,k,F) = k+1 = CC(G0,k,F 0). In other case |F 0| k, and the solution

lifting algorithm returns F = F 0 as a solution for the instance (G,k). Let T 0 denote the

cactus G0/F 0 and W 0 denote the corresponding T 0-witness structure of G0. Then, as P has

at least 2k+ 3 false twins, at least three of these twins, say P1,P2,P3, are disjoint from

V (F 0). Let X = NG0(P1) = NG0(P2) = NG0(P3), and note that X is also the neighborhood

the paths P,P1,P2 and P3 in G. By Observation 4.2.6, there exists ti 2 V (T 0) such that

X ✓W 0(ti). Now, let T be the cactus obtained from T 0 by adding P as a pendant cycle

adjacent to ti. Define the partition W of V (G) obtained from W 0 by adding the new witness

set {v} for every vertex v 2 V (P). Then T is G/F and W is a T -witness structure of G.

Hence, CC(G,k,F) CC(G0,k0,F 0).

We now show that OPT(G0,k0) OPT(G,k). Consider an optimum solution F⇤ for (G,k).

If |F⇤| � k+ 1 then by definition, OPT(G0,k0)  k0+ 1 = k+ 1 = OPT(G,k). In case

|F⇤| k, let T be the cactus G/F⇤. Let W ⇤ denote the corresponding T -witness structure

of G. By a similar argument as above, we know that there exists t j 2 V (T ) such that

NG(P)✓W (t j). It follows that P is disjoint from V (F⇤), and it forms a pendant cycles in T

attached at t j. Hence F⇤ is also a solution to the instance (G0,k). Therefore, OPT(G0,k0)

OPT(G,k). Finally, by combining the above, we conclude that, CC(G,k,F)
OPT(G,k) 

CC(G0,k0,F 0)
OPT(G0,k0) .



This concludes the proof of this lemma.

Given a > 1, let d be the minimum integer such that d
d�1  a . In other words, d = d a

a�1e.

For every simple path P 2 Ip, such that N(P) contains at least 2d vertices of H, pick one

of its endpoints, that is adjacent to at least d vertices of H, into the set Ĩp. We apply the

following reduction rule to the set I = Iv[ Ĩp.

Reduction Rule 4.5.5. If there are vertices v1,v2, . . . ,v2k+3 2 I and h1,h2, . . . ,hd 2H such

that {h1, . . . ,hd}✓ N(vi) for all i 2 [2k+3] then contract all edges in Ẽ = {v1hi | i 2 [d]}

and reduce the parameter by d�1. The resulting instance is (G/Ẽ,k�d +1).

The above rule can be applied in O((2k)d ·n3) time, by considering each subset of H of

cardinality at most d.

Lemma 4.5.7. Reduction Rule 4.5.5 is a-safe.

Proof. Consider a solution F 0 of the reduced instance (G0,k0). If |F 0| � k0+1, then the

solution lifting algorithm returns a spanning tree F of G, otherwise it returns F = F 0 [ Ẽ.

If |F 0| � k0+ 1 then CC(G0,k0,F 0) = k0+ 1 = k� d. In this case, F is a spanning tree

of G and CC(G,k,F) k+1 = k0+d = CC(G0,k0,F 0)+d�1. Now, consider the case

when |F 0| k0 and let W 0 be a G0/F 0-witness structure of G. Let w denote the vertex in

V (G0)\V (G) obtained by contracting Ẽ. Let W 0(t1) be the witness set in W 0 which contains

w. Define W1 = (W 0(t1)[{v1,h1,h2, . . . ,hd})\{w}. Let W be a witness structure obtained

from W 0 by removing W 0(t1) and adding W1. Formally, W = (W 0 [ {W1}) \ {W 0(t1)}.

Note that V (G) \ {v1,h1,h2, . . . ,hd} = V (G0) \ {w} and hence W is a partition of V (G).

Further, G[W1] is connected as G0[W 0(t1)] is connected and a spanning tree of G0[W 0(t1)]

along with Ẽ is a spanning tree of G[W1]. Also, |W1|= |W 0(t1)|+d and any vertex which

is adjacent to w in G0 is adjacent to at least one vertex in {v1,h1,h2, . . . ,hd} in G. Thus,

G/F = G0/F 0. Size of F is at most |F 0|+ d  k0+ d = k� d + 1+ d = k+ 1. Hence

CC(G,k,F) = |F |. This implies, CC(G,k,F) = |F |= k0+d  CC(G0,k0,F 0)+d.



We now show that OPT(G0,k0) OPT(G,k)� (d�1). Let F⇤ be an optimum solution

for (G,k) and W be the T -witness structure of G where T = G/F⇤. If |F⇤|� k+1, then

OPT(G,k) = k+ 1 = k0+ d = OPT(G0,k0)+ d� 1. In case |F⇤|  k, there are at least

3 vertices, say vp,vq,vr in {v1,v2, . . . ,v2k+3} which are not in V (F⇤). That is, they are

in singleton witness sets of W . Then, by Observation 4.2.6, {h1,h2, . . . ,hd}, which is

a subset of the common neighborhood of these three vertices, is a subset of the same

witness set, say W (ti) where ti 2 V (T ). Suppose that v1 2W (ti), and hence we can

assume that Ẽ = {v1hi | i 2 [d]} ✓ F⇤. Then, F 0 = F⇤ \ Ẽ is solution to (G0,k0) and so

OPT(G0,k0) |F 0| |F⇤|�d = OPT(G,k)�d. Otherwise v1 62W (ti), and let t j 2V (T )

be the vertex such that v1 2W (t j). Then observe that ti and t j are adjacent in T . Let

T 0 denote the cactus obtained from T by contracting the edge (ti, t j) and let ti j denote

the vertex so formed. Define another partition W 0 = W [ {W (ti j)} \ {W (ti),W (t j)} of

V (G) where W (ti j) = W (ti)[W (t j). Clearly, G[W (ti j)] is connected, and hence W 0 is

a T 0-witness structure of G. From W 0 we can obtain a solution F that contains Ẽ, and

note that |F | = |F⇤|+ 1. Now observe that, F 0 = F \ Ẽ is solution to (G0,k0) leading to

OPT(G0,k0) |F 0|= |F⇤|+1�d = OPT(G,k)�d +1.

Combining these bounds, we have, CC(G,k,F)
OPT(G,k) 

CC(G0,k0,F 0)+d
OPT(G0,k0)+(d�1) max

n
CC(G0,k0,F 0)
OPT(G0,k0) ,a

o
.

This concludes the proof.

We now prove that if G is k-contractible to a cactus and none of the reduction rules

mentioned above are applicable, then the number of vertices in G is bounded by a function

of k.

Lemma 4.5.8. Let (G,k) be an instance of CACTUS CONTRACTION on which none of

the Reduction Rules 4.5.2; 4.5.3; 4.5.4 and 4.5.5 are applicable. If G is 2-connected and

k-contractible to a cactus then the number of vertices in G is at most O((2k)2d + k4).

Proof. We first bound the size of H [R. The set H consists of only vertices of degree at

least k+3 and by Observation 4.2.1(3) and 4.2.7, every vertex in H is incident on some



solution edge hence |H| 2k. Since Reduction Rule 4.5.2 is not applicable on graph G,

it is also not applicable on graph G0. By Lemma 4.5.4, G0 has connected vertex cover S

of size O(k3). Notice that V (G) \ (Iv[ Ip) = V (G0) \ (Iv[ I0p) and hence it is suffices to

bound the size of R in graph G0. By construction, every vertex in R has degree at most

k+ 2. Therefore, S\R is a vertex cover of G[R]. The number of edges with both end

points in R is at most O(k4). Also every vertex in R has a neighbor in R and hence there

are no isolated vertices in G[R]. Thus, number of vertices in R is O(k4).

We now bound the size of Iv[ Ip. For every set H 0 ✓ H of cardinality less than d, there are

at most 2k+3 vertices in Iv which have H 0 as their neighborhood. Otherwise, Reduction

Rule 4.5.4 would have been applicable. Hence, there are at most (2k+3) ·
� 2k

d�1
�

vertices in

Iv which have degree less than d. Similarly, there are at most 2k+3 paths in Ip which have

a subset H 0 of H as their neighborhood, where H 0 has cardinality at most 2d�1 Hence it

follows that the number of such paths is at most (2k+3) ·
� 2k

2d�1
�
.

Now, any path in P, such that |N(P)| � 2d, has an endpoint in the set I = Iv [ Ĩp, and

this endpoint has at least d neighbors in H. Observe that, any vertex in I, with at least d

neighbors in H, is adjacent to all vertices in of a subset H 0 of H, of cardinality d. For such

a subset H 0, there are at most 2k+ 3 vertices in I which have H 0 in their neighborhood.

Otherwise, Reduction Rule 4.5.5 would have been applied. Thus, there are at most

(2k+3)
�2k

d
�

vertices of I with d or more neighbors in H. Hence, |I| is O((2k)d+1), and

this also bounds the number of paths in Ip which has an endpoint in I. Combining the

above, we obtain that the number of paths contained in Ip is O((2k)2d�1). By Reduction

Rule 4.5.2, the length of any path in Ip is k+4 and hence, the total number of vertices in Ip

is O((2k)2d). Similarly it follows that the number of vertices in Iv is bounded by O((2k)d).

Since (Iv, IP,H,R) is a partition of G, this concludes proof of the lemma.

Now, we put things together to present a PSAKS for CACTUS CONTRACTION.

Theorem 4.5.1. CACTUS CONTRACTION admits a strict PSAKS with O((2k)2d a
a�1 e+1 +

k5) vertices.



Proof. For a given instance (G,k), kernelization algorithm exhaustively apply Reduction

Rule 4.5.1. If number of 2-connected components which are not cactus is more than

k+1 then the algorithm returns a trivial instance as a lossy kernel. Otherwise, algorithm

computes a-lossy kernel for each of 2-connected components separately. If algorithm

finds trivial instance as lossy kernel for any of 2-connected component then it returns a

trivial instance as a lossy kernel for entire graph.

For a 2-connected component, say C, the algorithm creates an instance (G[C],k). Let

Iv, IP,H,R be partition of V (C) as defined after 4.5.2. It is possible that cut vertices in C

are part of Iv[ IP and may get deleted while computing a lossy kernel. We avoid this by

marking these vertices. Since there are at most k many 2-connected components in G,

C has at most k� 1 many cut vertices. Since each path in IP is of length at most k+ 4,

marking these vertices increase the size of reduced instance by at most O(k2).

Given a > 1, the algorithm fixes d = d a
a�1e. It applies Reduction Rule 4.5.2; 4.5.3;

4.5.4; and 4.5.5 exhaustively on instance (G[C],k). If reduced graph G⇤ has more than

O((2k)2d + k4) vertices then by Lemma 4.5.8, graph G⇤ is not k-contractible to a cactus.

This implies OPT(G[C],k) is k+1. In this case, the algorithm returns a trivial instance

as a lossy kernel. Otherwise reduced graph has at most O((2k)2d + k4) vertices. There

are at most k many 2-connected components, and summing over each component, the

reduced graph has at most O((2k)2d+1 + k5). The correctness of algorithm follows from

Lemma 4.5.1; 4.5.2; 4.5.5; 4.5.6; and 4.5.7.

4.6 An FPT Algorithm for CACTUS CONTRACTION

We start with outline of the algorithm. We can think of graph contraction problem as

partition problem. The task is to find a partition where each part, also called witness set,

is connected and contracting each part to a vertex leads to a graph with desired property.

Towards this, we color the input graph such that every colored component contains at most



one big witness set. A witness set, or a set which is equally good, is then extracted from

color class via structural properties of the graph. See Figure 4.7. In first phase, we color

V (G) using three colors {1,2,3} with hope that all vertices of a big witness set receive the

same color and that two big witness sets are separated. We then identify some vertices that

are not part of any big witness set and recolor them using new colors 4 and 5. For instance,

we identify certain induced paths that do not intersect with any minimal solution and are

adjacent to only one big witness set (Lemma 4.6.3). The vertices of such paths are colored

4 (Ex. v1,v2 in Figure 4.7). After this we identify vertices that are not part of any big

witness set and lie on a path between two big witness sets (Lemma 4.6.4) and re-color them

to 5 (Ex. v4,v5,v6,v10 in Figure 4.7). This completes the first phase. In the second phase,

we extract the big witness sets from the components highlighted in the first phase (Ex. in

a color component with color 3, identifying v8,v9 as vertices not included in the witness

set). For this purpose, we define the notion of a connected core (Definition 4.6.2) which

can be thought of as generalization of connected vertex cover. For every monochromatic

component colored with {1,2,3} by the first phase, we find connected core containing

certain boundary vertices. The desired solution is the set of edges of spanning forests of

connected cores.

Rest of the chapter is organized as follows. Following the approach of [55], we first give a

randomized algorithm for the problem on 2-connected graphs, which is then used to give

an algorithm in general graphs. Algorithm can be divided into two phases viz coloring

phase (Subsection 4.6.1) and extracting a solution from colored graph (Subsection 4.6.2).

Finally, in Subsection 4.6.3, we present overall algorithm and illustrate how this algorithm

can be derandomized via (n,k)-universal sets. We remark that the main goal of this work

is to provide a cknO(1) algorithm for CACTUS CONTRACTION, where c is a fixed constant.

For the sake of simplicity, we do not attempt to optimize the running time.



Figure 4.7: Coloring and Re-coloring of input graph. Dashed boundaries denote big
witness sets while dotted boundaries corresponds to color classes.

4.6.1 Phase 1: The Coloring Phase

In this phase, we assign one of colors {1,2,3} to vertices of input graph uniformly at

random. Once we obtain a coloring, we identify certain vertices of the graph which are

contained in small witness sets. We re-color them using new colors {4,5} and move on to

Phase 2 of algorithm to extract a solution from components of G which are colored 1,2 or

3.

We need notion of compatible coloring to argue the correctness of coloring step. Consider

a 2-connected graph G and a minimal set of edges F in E(G) such that G/F = T is a

cactus. Fix a T -witness structure W of G. We define a compatible coloring of G with

respect to W . Informally speaking, for each big witness set, a compatible coloring assign

same color to every vertex in it. It separates two big witness sets which are adjacent with

each other. If two big witness sets are connected by a path then the color of an end point is



Figure 4.8: A compatible coloring of input graph. Dotted boundaries denote big witness
sets. Please refer to Definition 4.6.1

different then the color of big witness set it is adjacent with. See Figure 4.8.

Definition 4.6.1 (Compatible Coloring). A coloring f of G is compatible with a fixed

T -witness structure W of G if following three conditions are satisfied.

1. For all W (t) in W , W (t) is monochromatic. Hence f(W (t)) is a well defined.

2. For all tx, ty in V (T ), tx 6= ty, such that W (tx),W (ty) are big witness sets and txty is

an edge in T , we have f(W (tx)) 6= f(W (ty)).

3. For all tx, ty in V (T ), such that W (tx),W (ty) are big witness sets and there exists a

simple path P = (tx, t1, t2, . . . , tq, ty) in T such that W (ti) is small witness set for all

1 i q, we have f(W (tx)) 6= f(W (t1)) and f(W (ty)) 6= f(W (tq)).

In Figure 4.8, all three big witness sets, W (tx),W (ty),W (tz) are monochromatic. Since tx

and ty are adjacent and W (tx),W (ty) are big witness sets, these two have different colors.

Note the path between W (tx) and W (tz) whose internal vertices corresponds to singleton

witness sets. Coloring of this path satisfy third property of the definition. Notice the path

which starts and ends in W (tx) and all internal vertices corresponds to singleton witness

sets. Definition of compatible coloring allows all vertices in this path to have same color

as that of W (tx).

We say that f is compatible with set of edges F if G/F is a cactus and f is compatible with

a G/F-witness structure of G. We later argue that if (G,k) is a YES instance of CACTUS



CONTRACTION than any random 3-coloring is compatible coloring with respect to an

optimum solution with high probability (Observation 4.6.4). For this section, we assume

that we are given a 3-coloring f of G which is compatible with an optimum solution.

A subset X of V (G) is called a colored component of f , if X is a maximal connected set

of vertices that have the same color in f . Let X be the set of all colored components

of f . Given a coloring f , we are only interested in finding an optimum solution which

is compatible with this coloring. Hence, for any two components X ,Y in X , no edge

with one end point in X and another in Y is in an optimum solution. We prune coloring

components and re-color them in order to move closer to an optimum solution. We note

few properties of colored components in X .

Observation 4.6.1. For every color component X in X , either all vertices of X are in

small bags or X contains exactly one big witness set.

Lemma 4.6.1. If a colored component X in X is a simple path in G then either all vertices

of X are in small bags or X is a big witness set in W .

Proof. Let X be a simple path P = (v1,v2 . . . ,v`). If X does not contain any big witness

set then the lemma is true. By Observation 4.6.1, there exists at most one big witness set

in X . We consider a case when X contains a big witness set W (t). We argue that, in this

case, W (t) = X . For the sake of contradiction assume that there exists a vertex in X \W (t).

Since W (t) is a connected subgraph and it is entirely contained in X , either v1 or v` are

not contained in W (t). Without loss of generality, let v1 be a vertex not contained in W (t).

Let vi+1 be the smallest indexed vertex which is in W (t). Since a color class contains at

most one big witness set, which in this case W (t), each vertex in {v1,v2, . . . ,vi} are part of

singleton witness sets.

Since W (t) is a big witness set, vi+1,vi+2 are in W (t). Notice that vi+1 is a vertex in W (t)

such that dG(vi+1) = 2 and it has exactly one neighbor, vi+2, in W (t). The other neighbor

of vi+1, vi, is not in W (t). There is no neighbor of vi in W (t) apart from vi+1, as X is a



simple path.

We now argue that such situation is not possible in a witness structure associated with

a minimal solution. Let F be a minimal solution associated with witness structure W .

Since F contains a spanning tree for each big witness set, there is unique edge vi+1vi+2 in

G[W (t)] which is incident on vi+1. The edge vi+1vi+2 is present in F . Consider a witness

structure W 0 obtained from W by removing W (t) and adding two new sets {vi+1} and

W (t)\{vi+1}. Let T 0 be the graph from G by contracting all witness sets in W 0. In other

words, W 0 is a T 0-witness structure of G. Moreover, F \ {vi+1vi+2} contains spanning

trees of witness sets in W 0.

We now argue that T 0 is a cactus. For a vertex u in V (G), let tu denotes the vertex of T

such that u 2W (tu). In graph T , consider edge tvitvi+1 . Graph T 0 can be obtained from

cactus T by subdividing the edge tvitvi+1 . By Observation 4.2.2(1), T 0 is also a cactus. This

contradicts to the fact that F is a minimal solution. Hence our assumption was wrong and

X =W (t). This concludes the proof of lemma.

Identifying Few Vertices in Pendant Cycles and Leaves

We specify the criteria to identify few vertices in G that are contained singleton witness

sets which corresponds to vertices in pendant cycles or are leaves in T . Note that we can

not identify all such vertices in G.

Consider a pendent cycle CT in T such that t is a unique cut vertex in CT and all vertices

CT \ {t} corresponds to singleton witness sets. Let X be the colored component which

contains W (t). Let V1 be the vertices in G�X which are contained in singleton witness

sets corresponding to vertices in CT . It is easy to see that V1 induces a simple path in G.

Following re-coloring is based on this observation. Later, we argue that all vertices in V1

are re-colored in this step (Lemma 4.6.5).

Re-coloring I: For any colored component X in X , if G�X contains a vertex or a simple



path as its connected component then recolor vertices in that connected component with

color 4.

For example, in Figure 4.7, path v1v2 is a connected component of G�X where X is a

colored component with color 1. Similarly, v7 is re-colored in this step. Note that we can

not identify v3 or v8 in this step.

For a colored component X , let a simple path P be a connected component of G�X . In

Lemma 4.6.3, we argue that all vertices in V (P) are singleton witness sets in W or we are

dealing with simple instance mentioned in Lemma 4.6.2. See Figure 4.9.

Lemma 4.6.2. If G is a 2-connected graph such that V (G) can be partitioned into two sim-

ple paths P and Q in G, then we can solve the instance (G,k) of CACTUS CONTRACTION

in polynomial time.

Proof. Let p1, p2 and q1,q2 be the endpoints of the simple paths P and Q, respectively.

Observe that G has a hamiltonian cycle, as G is 2 connected and p1, p2,q1,q2 are the only

vertices that can have degree greater than two. If G is an induced cycle, then the optimal

solution is the empty set. Otherwise, G is a cycle with either one or two additional edges

between p1, p2 and q1,q2. It follows that any optimal solution requires at most 3 edge

contractions.

We assume that instance we are working with does not satisfy the premise of Lemma 4.6.2.

Lemma 4.6.3. For a colored component X in X , let P be a connected component of

G�X. If P is a simple path in G whose neighborhood is contained in X then the all the

vertices of P lie in small witness sets.

Above lemma holds when P contains only one vertex. For a colored component X in X ,

suppose there is an isolated vertex v which is connected component of G�X . Since f is

compatible with optimum solution, all big witness sets are monochromatic. This implies v

can not be part of any big witness set and remains as singleton witness set.



Proof. (of Lemma 4.6.3) For the sake of contradiction assume the lemma is false. There-

fore there is some big witness set in W that contains a vertex of P. Let Y 2X be a colored

component that contains this witness set. As f is a compatible coloring, and NG(P)✓ X ,

we have Y ✓V (P). Hence Y is a simple path in G, and by Lemma 4.6.1, color component

Y is a big witness set.

We argue that Y =V (P). Let P = (v1,v2, . . . ,v`). Suppose that Y is proper subset of V (P)

then at least one of v1 or v` is not present in Y . Without loss of generality, let v1 62 Y . Let

vi+1 be the smallest indexed vertex in Y . Let ti be the vertex in T such that vi 2W (ti).

Observe that W (ti)✓ P. There is no edge between Y and W (ti) except for vivi+1. Consider

a witness structure W 0 obtained from W by replacing Y with Y \{vi+1} and {vi+1}. Let

T 0 is the graph obtained from G by contracting all witness sets in W 0. In other words, W 0

is a T 0-witness structure of G. Note that T 0 can be obtained from T by sub-dividing titY ,

where W (tY ) = Y . Hence by Observation 4.2.2(1), T 0 is a cactus. By similar arguments to

that of proof of Lemma 4.6.1, this contradicts the minimality of solution associated with

W

Hence no proper subset of edges in P is contained in the minimal solution, say F , associated

with witness structure W . Since all the edges of P are in F , this implies that P 2X . Let

tP be the vertex corresponding to P in T . It is adjacent to t 2 T if and only if W (t) contains

a vertex from NG(P) which is a subset of X . We consider two cases depending on the

number of edges across P and X . If |EG(P,X)|  2, then either ti is adjacent with one

vertex, say ti or two vertices ti, t j in T . By subdividing edge titP, we get another cactus

(Observation 4.2.2(1)). This contradicts the minimality of F

For rest of the proof, we assume that |EG(P,X)|� 3. By Observation 4.6.1, X contains at

most one big witness set. We consider two cases depending on whether X contains a big

witness set or not.

Case 1. X does not contain a big witness set



Let TX denote vertices in T which corresponds to singleton witness set containing vertices

in X . If NG(P) corresponds to at least 3 vertices in X , then T [TX [ tP] contains two cycles

with a common edge, i.e. T is not a cactus, which is a contradiction. Hence, NG(P)

contains exactly two vertices, x1 and x2, of X and EG(P,X) contains either 3 or 4 edges.

See Figure 4.9. By Observation 4.2.7, no vertex of TX is a cut-vertex in T . As X is a

connected set, there exists a path, say Q, between x1 and x2 which is contained in X . Let

TQ denote vertices in T which corresponds to singleton witness set containing vertices in

Q. Observe that C = T [TQ[ tP] is a cycle in T with tP being the only vertex corresponding

to a big witness set in C. We claim that there is no other vertex in T apart from vertices C

i.e. T =C. If this is the case then G = P]Q and both P and Q are simple paths in G. This

contradicts our assumption that instance under consideration does not satisfy premise of

Lemma 4.6.2.

We now argue that T = C. Assume this is not the case, then V (T ) \ (tP[V (Q)) is non-

empty. There is a vertex ty 2 V (T ) \ (V (P)[V (Q)), such that there are two internally

vertex disjoint paths between ty and tP in T . Indeed, we can start with a arbitrarily chosen

ty, and consider a minimum separator between ty and tP in T . If the minimum separator is a

single vertex t 0y, then observe that y0 /2V (Q), as vertices of Q are not cut-vertices in T . We

substitute ty with t 0y and start over. Since the shortest path between t 0y and tP in T is strictly

shorter than the shortest path between ty and tP, we obtain the vertex ty in finitely many

iterations. See Figure 4.9. Let TR1 and TR2 be two internally vertex disjoint paths in T

between ty and tP. Paths TR1 and TR2 contains vertices tx1 , tx2 . Without loss of generality, let

tx1 2 TR1 and tx2 2 TR2 , and hence TR1 [TR2 contains a path between tx1 and tx2 , say TR in T .

The path is distinct from the path TQ, as Q1 =V (TQ)\V (TR1) and Q2 =V (TQ)\V (TR2)

are disjoint and therefore at least one edge of TQ is absent from TR. This implies that T

contains three distinct paths between tx1 and tx2 , namely PT = (x1, tP,x2),TQ and TR1 [TR2 .

This contradicts the fact that T is a cactus. Hence our assumption is wrong and T =C.

Case 2. X contains a big witness set



Figure 4.9: Please refer to Lemma 4.6.3

Let Z be the big witness set contained in X and let tZ be the vertex in T obtained by

contracting Z. We claim that NG(P) is a subset of Z. If this is not the case, consider a

vertex v in NG(P)\Z. Note that v is contained in singleton witness set, say W (tv). In T ,

vertex tv lies on a path between tZ and tP. As tZ , tP are big witness sets, f(tv) = f(tZ)

contradicts the fact that f is a compatible coloring (Definition 4.6.1 (3)). Hence NG(P)✓ Z

which implies NT (tP) = tZ in T . Hence G/(F \E(P)) is also a cactus contradicting the

minimality of F .

In either case, we derive a contradiction. Hence our assumption is wrong and lemma is

true.

Identifying All Vertices in Simple Paths Between Two Big Witness Sets

Recall that in simple path no internal vertex is adjacent to any vertex outside this path.

A simple path is maximal if it is not contained in any other simple path. In other words,

in maximal simple path every internal vertex has degree exactly two and end points have

degree strictly greater than two. Since we are working with a 2-connected graph, we do

not have to consider the case when end points of maximal simple path have degree one.

Consider a simple path P = (tx, t1, t2, . . . , tq, ty) in T such that W (ti) is singleton witness set



for all 1 i q, and W (tx),W (ty) are big witness sets. Let X ,Y are the colored components

containing W (tX),W (tY ), respectively. Since coloring f is compatible with W , we know

that t1, tq are not contained in X and Y , respectively. Let V1 be the vertices in G which are

contained in W (ti) for 1 i q. It is easy to see that V1 induces a maximal simple path

in G. Moreover, V1 is a connected component of G� (X [Y ). Following re-coloring is

based on this observation. Later, we argue that all vertices in V1 are re-colored in this step

(Lemma 4.6.5).

We mention that we exhaustively apply Re-coloring I before starting Re-coloring II. Also,

once a vertex is re-colored to 4, we do not re-color it to 5. This ensures that for two

colored components Y and Z, a vertex or simple path which is a connected component of

G� (Y [Z) is not a vertex or simple path in G�Y or G�Z.

Re-coloring II: For any two colored component Y,Z in X , if G� (Y [ Z) contains a

vertex or a maximal simple path as its connected component then recolor vertices in that

connected component with color 5.

For example, in Figure 4.7, path v5v6 is a maximal path when two colored components are

deleted from graph. These two vertices are recolored to 5 in this step.

We state following lemma when P is maximal simple path but it also holds for a vertex.

Lemma 4.6.4. For two colored components Y,Z in X , let P be a connected component of

G� (Y [Z). Suppose that P is a maximal simple path in G such that P = (v1,v2, . . . ,v`);

NG(v1) ✓ Y [{v2} and NG(v`) ✓ Z[{v`�1}. Then all vertices of P lie in small witness

sets. Furthermore, both Y and Z contain big witness sets.

We mention that maximality of P is used to prove second part of the lemma.

Proof. (of Lemma 4.6.4) For the sake of contradiction, assume first part of lemma is false,

i.e there is a big witness set that contains a vertex of P. Let A 2X be a colored component

that contains this witness set. As f is a compatible coloring, and NG(P)✓ Y [Z, we have



A ✓ P. Therefore, for any A 2X which intersects P, we have A ✓ P. This implies A

is a simple path in G. Since A contains a big witness set, by Lemma 4.6.1, A itself is a

big-witness set.

We now argue that A = V (P). Suppose that A is proper subset of V (P) then at least

one of v1,v` is not present in Y . Without loss of generality, let v1 62 A. Let vi+1 be the

smallest indexed vertex in A, and let ti be the vertex in T such that vi 2W (Ti). Observe

that W (ti)✓ P. There is only one edge, vivi+1, between A and W (ti). Consider a witness

structure W 0 obtained from W by replacing A with A\{vi+1} and {vi+1}. Let T 0 is the

graph obtained from G by contracting all witness sets in W 0. In other words, W 0 is a

T 0-witness structure of G. Note that T 0 can be obtained from T by sub-dividing titY , where

W (tY ) = Y . Hence by Observation 4.2.2(1). This contradicts the minimality of solution

associated with W by similar arguments to that of proof of Lemma 4.6.1.

Hence no proper subset of edges in P is contained in the minimal solution, say F , associated

with witness structure W . Since all the edges of P are in F , this implies that P 2X .

Let tP be the vertex corresponding to P in T . Let Y P = Y \N(P) = Y \N(v1) and

ZP = Z\N(P) = Z\N(v`). First, we claim that Y P is in one witness set of W . Suppose

that W (t1),W (t2) are in two different witness sets in W which contains vertices from Y P.

See Figure 4.10. As G is a 2-connected graph and P is a simple path in G, the graph

G�V (P) is connected. As G is a 2-connected graph, there exists a path, say P1, between

Y P and ZP which does not contains v1. Since v1 is part of simple path P, path P1 does not

contain any vertex in V (P). This implies that there exists path between any two vertices

among {t1, t2, tZP} in T �{tP}, where tZP is a vertex in T such that W (tZP)\ZP 6= /0. Since

tP is adjacent to t1, t2 and tZP, there exists two cycles that have a common edge in T . This

is a contradiction to the fact that T is a cactus. Hence, all of Y P lies in one witness set in

W . By similar arguments, we can show that ZP is contained in one witness set in W .

Consider vertices tP, tY P, tZP in T where and Y P ✓W (tY P) and ZP ✓W (tZP). Clearly

(tY PtP) and (tPtZP) are edges in T , and tP is a vertex of degree 2 in T . Consider a witness



Figure 4.10: Refer to Lemma 4.6.4.

structure W 0 obtained from W by removing W (tP) and adding two new sets {v1} and

W (tP)\{v1}. Let T 0 be the graph from G by contracting all witness sets in W 0. In other

words, W 0 is a T 0-witness structure of G. Moreover, F \{v1v2} contains spanning trees

of witness sets in W 0. We now argue that T 0 is a cactus. Graph T 0 can be obtained from

cactus T by subdividing the edge tY PtP. By Observation 4.2.2 (1), T 0 is also a cactus. This

contradicts to the fact that F is a minimal solution. Hence our assumption was wrong and

first part of lemma is true.

Next, we argue that Y contain a big witness set in W as argument for Z are symmetric. If

v1 has at least two neighbors in Y then the above arguments imply that all these vertices

are in a single witness set of Y and therefore Y contain a big witness set. Otherwise, v1

only has only one neighbor, say y1 in Y . This contradicts the maximality of P in G. Hence

v1 is adjancent with at least two vertices in Y which are contained in one big witness set.

By similar arguments, we conclude that Z contains a big witness set. This concludes the

proof of the lemma.

Properties of Recoloring

By definition of compatible coloring, every colored component contains at most one big

witness set. In Lemma 4.6.5, we argue that after re-coloring, all colored components



which contains at least two vertices and are colored with {1,2,3} contain a big witness

set. We can think of Lemma 4.6.5 as completeness part for Lemma 4.6.3 and 4.6.4. In

Lemma 4.6.5, we claim that all vertices in colored component which do not contain a big

witness set, satisfies the premise of Lemma 4.6.3 or 4.6.4.

Lemma 4.6.5. If a colored component X in X which contains at least two vertices and is

monochromatic with color from {1,2,3} after exhaustive application of two re-coloring

rules then X contains a big witness set.

Proof. Let TB and TS are set of vertices in T which corresponds to big witness sets and

singleton witness set respectively. By Observation 4.2.1 (3) and 4.2.7, any vertex in TS has

degree at most two in T . Hence T �TB is a collection of isolated vertices and simple paths.

Let X be a colored component in X which has not been re-colored. If for some t in TB,

W (t) is contained in X then the lemma is true. Assume that there exists X which is not

been re-colored and it does not contain any vertex from TB. Let TX be the set of vertices in

T such that corresponding witness set contains vertices in X .

Any vertex in TS, and hence in TX , is either a leaf or part of path starting and ending at same

vertex in TB (in other words, part of pendent cycle) or part of path connecting two different

vertices in TB. Consider a vertex t 0 in TX and t1, t2 in TB. Let x0 =W (t 0) and X 0,X1,X2 be

the color components containing W (t 0),W (t1),W (t2), respectively. If t 0 is a leaf adjacent

to t1 then X 0 is a connected component of G�X1 and hence it was re-colored to 4. If t 0 is a

part of path starting and ending at t1 then x0 is part of simple path in G�X1 and hence it

was re-colored to 4. Similarly, if t 0 is a part of path connected t1, t2 then x0 is part of simple

path in G� (X1[X2) and re-colored to 5.

This also implies exhaustive application of re-coloring identify almost all the vertices in

G that form small bags in T . The only exceptions being those vertices that are contained

in some colored component X in X which also contains a big witness set. In the next

section, we see how to identify those singleton witness sets.



Figure 4.11: Square represents a connected component in graph. Consider a colored
component X in graph G on right hand side. Instead of contracting all of X to a vertex tX
(left side graph), we contract connected core Z of G[Ĥ] to a single vertex which require
smaller edges to be contracted. We replace X by Z and singleton set for every vertex in
X̂ \Z in X .

4.6.2 Phase 2: Identifying Big Witness Sets

By Lemma 4.6.5, any colored component in X which is not recolored and is of size at

least two, contains a big witness set. For a colored component X in X , let W (t) be the

big witness set contained in X . Our objective in this section is to find subset X 0 of X

which is at least as good as W (t) (See Figure 4.13). Informally speaking, this means we

can replace edges in spanning tree of G[W (t)] by edges in spanning tree of G[X 0] in an

optimum solution F , compatible with f , and get another optimum solution F 0.

We examine the properties of W (t) in graph G[X ]. In fact, we consider a superset X̂ of X

and examine the properties of W (t) with respect to graph G[X̂ ]. Let X̂ be the superset of

X which contains vertices in the connected components of G�X that are either isolated

vertices or a simple path in G and whose neighborhood is contained in X . We now define

the notion of connected core. See Figure 4.11.

Definition 4.6.2 (Core). A core of a graph G is a subset Z of V (G) such that every

connected component of G�Z is either an isolated vertex or a simple path whose neigh-

borhood is contained in Z. If a core Z is a connected set in G, then we call it a connected

core of G.



Following observation is a direct consequence of the definition.

Observation 4.6.2. For a given graph G and its connected core Z, let S be a spanning tree

of G[Z]. Then, G/S is a cactus.

Notice that any superset of a connected-core which induces a connected subgraph is also a

connected core. In the following lemma, we claim that W (t) is a connected core of G[X̂ ].

Lemma 4.6.6. For a colored component X in X , if W (t) is the big witness set contained

in X then W (t) is a connected core of G[X̂ ].

Proof. Since W (t) is a witness set, by definition G[W (t)] is connected. For the sake

of contradiction assume that W (t) is not a core of G[X̂ ]. This implies that at least one

connected component C of G[X̂ ] \W (t) is neither a simple path nor a isolated vertex.

Hence, C contains at least 3 vertices and there exists a vertex x in C such that dG[X̂ ](x) is at

least 3 and it is adjacent to at least two vertices in C. If x is in X̂ \X , then by Lemma 4.6.3,

it is contained in a small bag. Otherwise, x is in X \W (t) and it is again contained in a

small bag. This implies that there exits a vertex tx in T such that W (tx) = {x} and dT (tx)

is at least 3. By Observation 4.2.1 (3), x is a cut-vertex in T . However, this contradicts

Observation 4.2.7 which states that that every cut-vertex in T corresponds to big witness

set. Hence our assumption is wrong and W (t) is a connected core of G[X̂ ].

We point out that there might exists a proper subset of W (t) which is a connected core of

G[X̂ ]. In other words, every vertex in W (t) is either part of a connected core of G[X ] and/or

it is in W (t) because of external constraints. Lemma 4.6.7 and 4.6.8 states that if vertices

in X specify certain conditions then they are part of W (t) because of external constraints.

Lemma 4.6.7. If there exists v in NG(X) such that v is colored 5 then NG(v)\ X is

contained in a big witness set of X.

Proof. If v is colored 5 then by Lemma 4.6.4, v is contained in a simple path P in G

between two components X ,X 0 in X , such that all the vertices of P are in small witness



Figure 4.12: Please refer to Lemma 4.6.7 and 4.6.8.

sets in W . Furthermore, both X and X 0 contain big witness sets in W . Let W (t 0) be the

big witness set contained in X 0. Assume that there exists x in W (t)\N(v). Consider a path

Q from W (t) to x which is contained entirely in G[X ]. Let Q0 be a path from W (t 0) to an

endpoint of P, whose internal vertices are in X 0. See Figure 4.12. Since xv is an edge in

G, we know that Q along with edge xv and paths P, P0 form a path from W (t) to W (t 0) in

G. This path in G gives a path between t and t 0 in T , such that all the internal vertices of

this path correspond to small witness sets in W . Notice that every vertex on the path from

W (t) to x, has same color as that of W (t). All these vertices are in small bags. This is a

contradiction to the fact that f is compatible coloring with W . Hence our assumption is

wrong and all vertices in N(v)\X are contained in W (t). This concludes the proof of the

lemma.

Lemma 4.6.8. Let X ,Y be two colored component in X which contain big witness sets,

say WX and WY , respectively. Then, N(X)\Y and N(Y )\X are contained in WY and WX

respectively.

Proof. If E(X ,Y ) is empty then the statement is vacuously true. Assume that there is

a vertex x in (N(Y ) \WX)\X , and let t, t 0 be the vertices of T corresponding to the big

witness sets WX ,WY respectively. See Figure 4.12. Since X is connected, there exists a

path between WX and x which is entirely contained in X . As X may contain only one big

witness set, x lies in a small bag in W . This implies that there is path between t and t 0



in T (via x) such that the neighbor of t has the same color as vertices in WX . This is a

contradiction to the fact that f is compatible coloring with W .

We point out that these conditions for including vertices in X in big witness set depend on

other color components and not on big witness set contained in them. Hence, given X

we can mark all vertices which are part of big witness set in each colored component. We

introduce following marking scheme to mark vertices which are in big witness set because

of external constraints.

Marking Scheme 4.6.1. For a colored component X in X ,

1. If there exists y in N(X) such that f(y) = 5 then mark all the vertices in N(y)\X.

2. For a colored component Y in X , if f(Y ) 2 {1,2,3} and it contains at least two

vertices then mark all vertices in N(Y )\X

We note that Re-coloring-I indirectly contributes to second point in marking scheme.

Because of Re-coloring-I and Lemma 4.6.5, we can be sure that any colored component

colored with 1,2 or 3 contains a big witness sets.

Once we mark vertices which are present in big witness set because of external constraints,

we find any connected core of minimum cardinality which contains these vertices. We

argue that this connected core is as good as the big witness set for our purposes. For

example, consider Figure 4.13 and let R = {x1,x2,x5,x6,x7}. Set W (t) = R[{x3} is the

unique big witness set in X . Our objective is to find a set which is as good was W (t). In

this case, apart from W (t) itself, set Z = R[{x4} is as good as W (t). Note that vertices

x5,x6,x7 need not be included in any minimal connected core of G[X̂ ]. Vertices x6,x7 are

marked because of first point in Marking Scheme while x5 is marked because of second

point. We formally prove these things in rest of the section. We postpone discussion on

how to find a connected core of minimum size for a given graph to last part of this section.

Recall that X̂ is the superset of X which contains vertices in the connected components of

G�X that are either isolated vertices or a simple path in G and whose neighborhood is



Figure 4.13: Replacing W (tx) by Z in X . Please refer to Lemma 4.6.9.

contained in X .

Pruning Operation: For a colored component X in X which contains a big witness set,

let MX be set of marked vertices in X by Marking Scheme 4.6.1. Let ZX be a connected

core of G[X̂ ] of minimum cardinality which contains set MX . In X , remove X and add ZX

along with {v} for every vertex v in X̂ \ZX .

We stop the pruning operation when no colored component is replaced in X . Since

pruning operation consider a colored component at most once, it stops in at most |V (G)|

many steps. As final lemma in this section, we argue that if we start applying pruning

operation on set of colored classes obtained from compatible coloring f , we end up with a

witness structure corresponding with an optimum solution. Recall that F is a minimum

set of edges such that G/F is a cactus and W is a G/F-witness structure of G. Also, f is

coloring of V (G) which is compatible with W . Set X is collection of colored components

of f .



Lemma 4.6.9. Let set X ⇤ be obtained from X by exhaustive application of Pruning

Operations. If F⇤ is a union of spanning trees of graph induced on colored component in

X ⇤ then G/F⇤ is a cactus and |F⇤| |F |.

Proof. For the sake of simplicity, we consider a case when pruning operation replaces

exactly one colored component in X . Let X be a colored component in X ; MX are

marked vertices in X and Z is a connected core of G[X̂ ] which contains all marked vertices.

Let W (tx) be the unique big witness set contained in X . This implies that a spanning tree,

say St , of G[W (tx)] is contained in F . Let SZ be a spanning tree of G[Z]. Consider a set

of edges F 0 obtained from F by removing St and adding SZ . By Lemma 4.6.6; 4.6.7;

and 4.6.8, W (tx) is a connected core of G[X̂ ] which contains MX . Since Z is a minimum

sized connected core which contains MX , |Z| |W (tx)| which implies |F 0| |F |. In the

remaining proof, we argue that G/F 0 is a cactus.

Let W 0 be a T 0-witness structure of G where T 0 = G/F 0. We argue that W 0 can be obtained

from a T -witness structure W of G. We first claim that if a witness set in W intersects X̂

then it is a subset of X̂ . Assume that there exists a witness set W (t) which intersects X̂

and contains a vertex y in W \ X̂ . As W (t) is a connected set, there is a path in G[W (t)]

between y and x. Since, X is a separator between X̂ \X and V (G)\ X̂ , this path intersects

X . This implies that there exists a witness set with one vertex in X and another outside

X . Since every witness set is monochromatic, no such witness set exists. Hence, there is

no witness set which contains X̂ and vertex outside X̂ . This implies W 0 can be obtained

from W by removing all witness sets which are contained in X̂ and adding Z and singleton

witness set for every vertex in X̂ \Z. For a witness structure W , let WX̂ be set of all witness

set contained in X̂ . Formally, W 0 = (W \WX̂)[W 0
1 where W 0

1 = {Z}[{{v}| v 2 X̂ \Z}.

We consider two resulting graph T and T 0. See Figure 4.13. Let TX be the induced

subgraph on vertices in T whose corresponding witness sets are contained in X̂ . Formally,

V1 = {t| t 2 V (T ) and W (t) ✓ X̂} and TX = T [V1]. We similarly define T 0X . Since W

and W 0 are T -witness structure and T 0-witness structure of G, graphs T �V (TX) and



T 0 �V (T 0X) are isomorphic to each other.

Recall that W (tx) is the big witness set in X . Let tz be the vertex in T 0 such that W 0(tz) = Z.

We now argue that T � (V (TX) \ {tx}) and T 0 � (V (T 0X) \ {tz}) are isomorphic as well.

It is sufficient to prove that neighbors of tx in T �V (TX) are identical to that of t 0x in

T 0 �V (T 0X), or formally, NT 0(tz)\V (T 0X) = NT (tx)\V (TX). Consider a vertex x in X̂ which

has a neighbor y in V (G) \ X̂ . Let ty be a vertex in T such that y is in W (ty). There are

three possibilities for ty in T : (1) ty is part of a path between tx and some other vertex in

T which corresponds to a big witness set; (2) ty is part pendent cycle in which tx is the

unique (cut) vertex which corresponds to a big witness set; or (3) ty is a leaf adjacent to

tx. In first case, y is colored to 5 and hence x is in MX . In second and third case, y is a

isolated vertex or part of simple path in G�W (t) and hence in G�X . This would imply

y is part of X̂ . Since we started with assumption that y is in V (G)\ X̂ , these cases do not

occur. Hence MX contains every vertex in X that has a neighbor in V (G)\ X̂ . This implies

both W (tx) and Z contains every vertex in X that has a neighbor in V (G)\ X̂ , and therefore

NT 0(tz) \V (T 0X) = NT (t) \V (TX). Hence T � (V (TX) \ {tx}) and T 0 � (V (T 0X) \ {tz}) are

isomorphic with each other.

By Observation 4.6.2, both G[X̂ ]/St and G[X̂ ]/SZ are cactus. Once again, since Mx (hence

W (tx) and Z) contains all vertices in X̂ which has neighbors outside, tx and tz are the only

vertices in T and T 0 which has neighbors outside TX and T 0X . Graph T 0 � (V (T 0X)\{tz}) is

cactus as it is isomorphic to T � (V (TX)\{tx}) which is a cactus. Since T 0X is also a cactus

and tz is the only vertex which has neighbors outside T 0X , T 0 is a cactus. This concludes the

proof that G/F 0 is a cactus.

Next, we consider all the sets X 2X and fix an arbitrary order among them. Now, starting

with a given solution F , we apply the above arguments for each X in X one by one.

Here, we update the set F to F 0 each time, before proceeding to the next X . Observe that

F 0 obtained at the end of the process, say F⇤, is a solution, i.e. G/F⇤ is a cactus, and

|F⇤| |F |. Since F was optimum solution it follows that |F | |F⇤| which concludes the



proof.

Finding Connected Cores

Recall that a connected-core of a graph G is a subset Z of vertices such that, G[Z] is

connected and each connected component of G�Z is either an isolated vertex or a simple

path whose both end points have neighbors in Z. Here we present a simple branching

algorithm that determines if G has a connected core of size at most k or not. We use

algorithm for STEINER TREE problem as subroutine. In STEINER TREE problem, we are

given a graph G and set of vertices, called terminals, and a positive integer `. The goal is

to determine whether there is a tree with at most ` edges that connects all the terminals.

We present the following lemma in the form which we use it later on.

Lemma 4.6.10. There is an algorithm that given a connected graph G on n vertices, a

subset X of its vertices and an integer k, either computes a minimum connected core of G

which contains X and is of size at most k or correctly concludes that no such connected

core exists in 6k ·nO(1) time.

Proof. We first construct a core of G via a branching algorithm. At each leaf of the

branching tree, we extend the core constructed by the branching algorithm to a connected

set by applying an algorithm for the STEINER TREE problem.

Let Z denote a partial solution to the instance. Initialize Z to X and decrease k by |X |. The

following branching rule is derived from the observation that if (u,v,w) is a path outside

connected core of G then degree of v is two in G.

Branching Rule 1. If there is a path (u,v,w) in G�Z such that |NG(v)|� 3, then branch

into three cases where each of u or v or w is added to Z. Decrease k by one in each of the

branches.

Observe that when this rule is no longer applicable, all vertices of G�Z have degree at



most two. Hence the components of G�Z are simple paths in G, or isolated vertices.

Next, we have the following reduction rule that follows from observation that if (x,y) is

an isolated edge obtained by removing minimum connected core of G, then x and y have

degree two or more in G.

Reduction Rule 4.6.1. If there is an edge uv in G�Z such that u is an unique neighbor

of v then add u into Z and reduce k by one.

Since the only neighbor of v is u, the edge uv cannot be part of a simple path in G whose

both endpoints have neighbours in Z. Now, if there exists an optimal solution Z⇤ that does

not contain u, then v 2 Z⇤ and Z0 = (Z⇤ \{v})[{u} is also a connected core of G. This

justifies the correctness of the rule.

We apply the above rules exhaustively, and consider the search tree constructed. Note

that each node of the search tree is labeled with either a triple (u,v,w) indicating that the

Branching rule 1 was applied, or an edge (x,y) indicating that Reduction rule 4.6.1 was

applied at this node. If at any node in the search tree, k is 0 and the set Z is not a connected

core of G, we abort that node. If all the leaves of the current search tree are aborted, then

we output NO as a solution to this instance.

Next, we claim that if none of the rules are applicable at a leaf of the search tree, then

the corresponding Z is a core of G. Assume to the contrary that Z is not a core of G.

Then there is a component C of G�Z that is neither an isolated vertex, nor it is a simple

path in G whose both endpoints have neighbours in Z. Hence such a C has at least two

vertices. Furthermore recall that the branching-rule is not applicable at this node of the

search tree, and therefore all vertices in G�Z have maximum degree 2. Consider the

case when C is a cycle in G�Z. As G is connected, C has a vertex v that has a neighbour

in Z. Let u and w be the neighbours of v in C. Then, it follows that (u,v,w) is a path in

G�Z with |NG(v)|� 3. However, this leads to a contradiction as Branching rule 1 is not

applicable. Now, consider the case when C is a path in G�Z with end-points u and v. If

there is an internal vertex on this path that has a neighbor in Z, then as before, we obtain a



contradiction. Hence, C is a simple path in G, with end-points u and v. As Z is not a core

of the connected graph G, one of u or v has no neighbour in Z, i.e. it is a vertex of degree 1

in G. But then, Reduction rule 4.6.1 is applicable, which is a contradiction. Hence Z is a

core of the graph G.

However, as Z may not be connected in G, we may have to add additional vertices to

ensure connectivity. Observe that this can be achieved by computing a minimum STEINER

TREE for Z in G. Given a graph G and a set S of vertices of G, the STEINER TREE

problem is the task of computing a minimum cardinality connected subgraph that contains

S. This problem is known to admit an algorithm with O⇤(2|S|) running time [82]. The

above algorithm computes a minimum cardinality connected set of vertices, Z0 ◆ Z, in

time O(2k). Observe that Z0 is a connected-core of G, as G�Z is a collection of isolated

vertices and simple paths in G. Let Z̄ be the minimum cardinality connected-core over all

the leaves of the search-tree. If |Z̄| k, we output Z̄ and otherwise we output NO as the

solution to the instance.

Let us now argue the correctness of this algorithm. Assume Z⇤ is an optimal solution of

size at most k. We claim that above algorithm finds a connected core Z̄ such that |Z̄| |Z⇤|.

To argue this, we associate a path on the search tree of branching algorithm to the set Z⇤.

Now consider an internal node in search tree that is labeled with (a,b,c). Since Branching

rule 1 is applied at this node, we have that (a,b,c) is a path in G�Z and |NG(b)| � 3.

As Z⇤ is a core of G, at least one of a,b,c must be present in it. Similarly, for any node

labeled with an edge (x,y), one of these vertices, say y, is of degree 1 in G, and hence Z⇤

must contain one of them. Recall that, by previous arguments, we may assume x 2 Z⇤.

Hence, we start from the root of the search tree and navigate to a leaf along the choices

consistent with Z⇤. If more than one choices are consistent with Z⇤, we arbitrarily pick

one of the them and proceed. Consider the set Z̃ obtained at the leaf via this navigation

consistent with Z⇤ from the root-node of the search tree. Clearly Z̃ ✓ Z⇤ and Z̃ is a core

(not necessarily connected) of G. Let T be an optimal solution for an instance of (H, Z̃) of



STEINER TREE as defined above. Since Z⇤ is a connected core of G and Z̃ ✓ Z⇤ we know

that Z⇤ \ Z̃ is a solution to this Steiner Tree instance. By the optimality of T , |T | |Z⇤ \ Z̃|

and hence Z̄ = Z̃[T is a desired solution.

Let us now consider the running time of this algorithm. At each application of the

Branching rule 1, we have a three-way branch and the measure drops by 1 branching vector

is (1,1,1). This leads to the recurrence T (k) 3T (k�1) which solution is 3k ·nO(1). Next,

at each leaf of the search tree, we run the algorithm for finding a minimum Steiner tree,

which runs in time 2k ·nO(1). If Steiner tree obtained is of size strictly more than k then we

discard this node. Therefore, the overall running time is 6k ·nO(1).

4.6.3 Putting it all Together: The Overall Algorithm

Recall that a connected graph is k-contractible to a cactus if and only if each of its 2-

connected components is contractible to a cactus using at most k edge contractions in

total (Lemma 4.2.2). In this section, we first present a randomized algorithm for CACTUS

CONTRACTION when input graph is 2-connected (Theorem 4.6.1). Using the arguments

presented in [55], we present a randomized algorithm to solve CACTUS CONTRACTION on

connected graphs (Theorem 4.6.2). Finally, we describe how to derandomize this algorithm

using (n,k)-universal sets.

Consider a 2-connected graph G which is contractible to a cactus T . Let W be a T -

witness structure of G. By Observation 4.2.7, if t is a cut-vertex in T then W (t) is a big

witness set. Without loss of generality, we assume W satisfy the property mentioned in

Observation 4.2.5, i.e. if t is a leaf in T then W (t) is a singleton witness set. We use

following observation to bound the vertices in G which are adjacent to big witness sets;

contained in singleton witness sets and are part of a path between two big witness sets.

Observation 4.6.3. For a given cactus T , let TB be the set of vertices in T that correspond

to big-witness sets. Then, there are at most 4|TB| vertices which lie on a path between two



different vertices in TB and are adjacent to vertices in TB.

Proof. Formally, TB = {t| t 2 V (T ) such that W (t) is a big witness set.}. Let V1 be the

set of vertices t in V (T ) such that there exists t1 6= t2 2 TB; t 2 N(t1); and there exists a

path between between t1 and t2 which contains t. Delete all vertices in T which are not

contained in path between two different vertices in TB to get a graph T1. Since all cut

vertices in T are in TB, resultant graph is still connected and hence a cactus. Moreover, no

vertex in V1 is deleted.

If |TB|= 1 then the statement is vacuously true. We consider a case when |TB|� 2. Let D

be the block decomposition of T1. We prove the bound using the induction on number of

blocks in cactus graph. Our induction hypothesis is: if number of blocks in T1 is strictly

less than q then |V1| 4|TB|. For base case, consider a case when T1 has exactly one block.

In this case, T1 is either an edge or a cycle. In either case, |V1| 4|TB|. In fact, in this case,

|V1| 4(|TB|�1) as |TB|� 2.

Consider cactus T1 which has q blocks. Let D be a block corresponding to a leaf in D .

Let t be the unique cut vertex in this block. There exists at least one vertex in D, apart

from t, which corresponds to a big witness set. If this is not the case then all vertices in

D\{t} would have been deleted while obtaining T1 from T . Consider cactus T 01 induced

on V (T )\ (D\{t}). Since T 01 has q�1 blocks in its block decomposition, by induction

hypothesis, |V 01|  4|T 0B| where V 01 = V1 \V (T 01) and T 0B = TB \D. Now, consider the

cactus T 00 induced on D. Since it is either an edge or cycle, |V 001 |  4(|T 00B |� 1) where

V 001 =V1\V (T 001 ) and T 00B = TB\D.

As t is not in V1 and it is the only vertex in both V (T 01) and V (T 001 ). Hence, we have

|V1|= |V 01|+ |V 001 | and |TB|= |T 0B|+ |T 00B |�1. Substitute the values, we get desired bound

for T1.

Since every vertex in N(TB) is correspond to singleton witness set, this bound also applies

to the number of desired vertices in G. We present following observation which states that



if (G,k) is an YES instance of CACTUS CONTRACTION then any random 3-coloring of is

good with certain probability.

Observation 4.6.4. Consider a 2-connected graph G which is k-contractible to a cactus T .

Fix a T -witness structure W of G. If f : V (G)! {1,2,3} is a coloring where colors are

chosen uniformly at random for each vertex then f is compatible with W with probability

at least 1/36k.

Proof. Let S be the set of all vertices in V (G) which are either a part of big witness sets in

W or are adjacent to a big witness set and are part of paths between two big witness sets.

Since G is k-contractible to T , there are at most k big witness sets. This implies the total

number of vertices in S is at most 2k+ 4k = 6k (by Observation 4.6.3). We can ensure

|S| = 6k by arbitrarily adding some extra vertices to it. By the definition of compatible

coloring (Definition 4.6.1), to determine whether a random coloring f is a compatible with

W or not, we only need to check color of vertices in S.

Let y be a 3-coloring of G which is compatible with W . For a random coloring f and

a vertex v in S, probability that f(v) = y(v) is 1/3. Since colors are chosen uniformly

at random for each vertex while constructing f , the probability that y and f color S

identically is at least 1/36k. Hence f is compatible with W with probability at least

1/36k.

We are now in a position to present first algorithm in this section.

Theorem 4.6.1. Let (G,k) be an instance of CACTUS CONTRACTION where G is a 2-

connected graph on n vertices. There is an one-sided error Monte Carlo algorithm with

false negatives which determines whether (G,k) is a YES instance or not in time cknO(1).

It returns correct answer with constant probability.

Proof. Consider an algorithm which uses Algorithm 4.6.1 as subroutine and runs it 34k

many times. If any of these runs return a solution F , then the algorithm returns F otherwise



Algorithm 4.6.1: Randomized Algorithm for Cactus Contraction
Input: A 2-connected graph G and an integer k
Output: Return a set of edges F such that G/F is a cactus and |F | k if such set

exists otherwise return NO.
1 Generate a random coloring f : V (G)! {1,2,3} and let X be the set of colored

components.
2 for each X 2X do
3 if P is a simple path or a isolated vertex in G�X then
4 for all u 2 P : set color of u to 4

5 for each pair X1,X2 2X do
6 if P is a simple maximal path or an isolated vertex in G� (X1[X2) then
7 for all u 2 P : set color of u to 5

8 for each X 2X do
9 Apply Pruning Operation to obtain marked vertices MX in X

10 ZX  minimum connected core of G[X̂ ] containing MX
11 Replace X by ZX & singleton set for every vertex in X \ZX in X .

12 if a spanning forest F of X has at most k edges then
13 return F

14 else
15 return NO

after all iterations are over, it returns NO. This finishes the description of the algorithm.

We first argue the correctness of this algorithm. Since Algorithm 4.6.1 returns a solution

only if it has found a witness structure with desired properties, it never returns false

positives. We argue that if these is a solution then the algorithm returns it with constant

probability. Consider a graph G which is k-contractible to a cactus T . Fix a T -witness

structure W of G.

To argue the correctness, we first claim that given graph G and a compatible coloring f

compatible with W , Algorithm 4.6.1 returns a correct answer. By Lemma 4.6.3, every

vertex which is re-colored to 4 in Step 3, is a singleton witness set in W . By Lemma 4.6.4,

every vertex which is re-colored to 5 in Step 6, is a singleton witness set in W . At

Step 8, each colored component which contains at least two vertices also contains a big

witness set (Lemma 4.6.5). This fact allows algorithm to perform Pruning Operation. The

correctness of replacement step follows from Lemma 4.6.9. Hence given a coloring f



which is compatible with W , Algorithm 4.6.1 returns a correct answer.

By Observation 4.6.4, any random 3-coloring of G is compatible with W with probability

at least 1/36k. Since the algorithm runs 36k many iterations of Algorithm 4.6.1, probability

that none of these colorings (which are generated uniformly at random) is compatible with

W is at most (1� 1
36k )

36k
< 1/e. Hence Algorithm 4.6.1 returns a solution on positive

instances with probability at least 1�1/e.

By Lemma 4.6.10, each iteration of Algorithm 4.6.1 takes 6k ·nO(1) time and hence the

total running time of the algorithm is ck ·nO(1) for a fixed constant c. This concludes the

proof of the theorem.

We apply the arguments presented in [55] to extend above theorem to solve CACTUS

CONTRACTION on general graphs.

Theorem 4.6.2. Let (G,k) be an instance of CACTUS CONTRACTION where G is a

connected graph on n vertices. There is an one-sided error Monte Carlo algorithm with

false negatives which determines whether (G,k) is a YES instance or not in time cknO(1).

It returns correct answer with constant probability.

Proof. Let G1,G2, . . . ,Gq be 2-connected components of G such that Gi is not a cactus

for all i in [q]. If q  1 then we use algorithm presented in Theorem 4.6.1. If q � k+1

then we return NO as at least one edge needs to be contracted in each of these 2-connected

components. We now consider the case when 2 q k.

For each Gi and each possible values k j between 1 and k, we run algorithm in Theorem 4.6.1

on instance (Gi,k j). We repeat each run 3logk times on each instance. Since there are

at most k2 such pairs, algorithm in Theorem 4.6.1 has been ran at most 3k2 logk time. If

algorithm returns NO for all the values of k j for some Gi then we return NO. Otherwise

let k0i be the smallest value for which algorithm returns a solution for Gi. Since algorithm

in Theorem 4.6.1 returns no false positive, Gi is k0i-contractible to a cactus. On the other



hand if (Gi,ki) is a YES instance of CACTUS CONTRACTION then probability that no

run will output right answer is at most (1
e )

3logk = 1
k3 . Since there are at most k2 pairs

(Gi,k j), and by the union bound on probabilities, the probability that there is a pair (Gi,k j)

for which the algorithm returns false negative is upper bounded by k2 · 1
k3 � 1

k . If such a

failure does not occur, then for every i we have that k0i is the smallest value of k j such that

Gi is ki-contractible to a cactus. Finally, the algorithm answers YES only if Âq
i=1 k0i  k,

and answers NO otherwise. The correctness of this algorithm follows from Lemma 4.2.2.

Consequently, the algorithm cannot give false positives, and it may give false negatives

with probability at most 1/k  1/q  1/2, where the two inequalities follows from the

assumption that 2 q k.

Derandomization

We can derandomize our algorithms by constructing a family of coloring functions that is

derived from a universal set.

Definition 4.6.3 (Universal Set). A (n,k)-universal set is a family H of subsets of [n] such

that for any S✓ [n] of size at most k, {S\H | H 2H } contains all subsets of S.

Given integers n,k, one can construct a (n,k)-universal set using following result.

Proposition 4.6.1 ([81]). For any n,k � 1, we can construct a (n,k)-universal set of size

2kkO(logk) logn in time 2kkO(logk)n logn.

We use this (n,k)-universal set to construct a 3-coloring family of V (G).

Lemma 4.6.11. Consider a graph G and a subset S of V (G) of size 6k. There is a family of

3-coloring functions, F , such that for a given 3-coloring f of V (G), there exists coloring

y in F that agrees with f on S. This family has size 46kkO(logk) log2 n and it can be

constructed in time 46kkO(logk)n log2 n.



Proof. Let coloring f partitions S into 3 parts, say S1,S2,S3. Let H be a (n,6k)-universal

set, that is constructed by Proposition 4.6.1. We define a family of partitions of V (G) as

follows.

F 0 = {(A,B,C) | A 2H , B = Y \A where Y 2H ,C =V (G)\Y}

Observe that F 0 can be constructed by considering each pair of sets in H . We claim that

there is a triple (A,B,C) 2F 0 such that S\A = S1, S\B = S2 and S\C = S3. Since H is

a (n,6k)-universal-set, there is some set Y 2H such that S\Y = S1[S2, and there is some

A 2H such that A\S = S1. Hence, S\ (Y �A) = (S\Y )\ (S\A) = S2. We can easily

convert the family F 0 into a family of coloring functions, where for each (A,B,C) 2F 0

maps all vertices in A,B,C to 1,2,3 respectively. Hence if f partitions S into S1,S2,S3,

then there is a function y 2F , which also partitions S into S1,S2,S3. Since the family H

has size 26kkO(logk) logn, size of F is at most 46kkO(logk) log2 n and it can be constructed

in time 46kkO(logk)n log2 n

In the algorithm mentioned in Theorem 4.6.2, instead of repeatedly generating random a

random coloring, we use coloring family mentioned in Lemma 4.6.11, to get following

result.

Theorem 4.6.3. Let (G,k) be an instance of CACTUS CONTRACTION where G is a

connected graph on n vertices. There is a deterministic algorithm which determines

whether (G,k) is a YES instance or not in time cknO(1).

4.7 Conclusion

In this chapter, we take a closer look at methods developed for TREE CONTRACTION

problems and generalize it for CACTUS CONTRACTION. We prove that CACTUS CON-

TRACTION does not have a polynomial kernel when parameterized by solution size. We



compliment this result in two ways. We present a polynomial kernel for CACTUS CON-

TRACTION using solution size and number of leaves in resulting cactus as combined

parameter. We argue that this kernel is optimal under certain polynomial complexity

assumption. We also present a lossy kernel of polynomial size for this problem. We end

this chapter with an FPT algorithm running in time cknO(1) for this problem.





Chapter 5

Contraction to Generalization of Trees

5.1 Introduction

As in Chapter 4, we study a problem of contracting an input graph to a graph class which

is superset of trees. We define this graph class in a “parameterized way”. Let T` be a

collection of graph which can be made into a tree by deleting at most ` edges. In other

words, T` is a set of connected graph whose feedback edge set is of size at most `. We

study T`-CONTRACTION problem which is formally defined as follows.

T`-CONTRACTION Parameter: k

Input: A graph G and an integer k.

Question: Is it possible to obtain a graph in T` from G with at most k edge contractions?

Note that for `= 0, problem T`-CONTRACTION is same as TREE CONTRACTION. In Sec-

tion 5.3, we show that the problem does not admit a polynomial kernel when parameterized

by k (alone). In fact, this reduction proves that the problem does not admit a polynomial

kernel when parameterized by k for any (fixed) integer `. This implies that, unlike in case of

BOUNDED TREE CONTRACTION, we can not get a polynomial kernel when parameterized

by k and additional parameter `. Inspired by this negative result for kernelization, we
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design an a-lossy kernel for T`-CONTRACTION of size O([k(k+2`)](d+1)) in Section 5.4,

where d = d a
a�1e. Note that this lossy kernel has polynomial dependency on both k and `.

In Section 5.5, we design an FPT algorithm for T`-CONTRACTION running in time

(2
p
`+ 2)O(k+`) · nO(1). Our algorithm follows the general approach of designing the

algorithm for TREE CONTRACTION by Heggernes et al. [55]. They presented a randomized

algorithm for the problem and then derandomize it using (n,k)-universal sets. A (n,k)-

universal sets is a collection F of functions from [n] to [2] such that for each subset S of

[n] of size k and a function f : S! [q], there exists function f in F such that f restricted

on set S is identical with f . We rename (n,k)-universal sets to (n,k,2)-universal family. In

Section 5.6, we present an algorithm to compute (n,k,q)-universal family for any integer

q� 2. We use these families to de-randomize our algorithm for T`-CONTRACTION.

The work presented in this chapter is based on [3].

5.2 Preliminaries

For a given graph, feedback edge set is defined as set of edges whose removal deletes all

cycles in the graph. For an integer `, by T` we denote collection of all connected graphs

which has a feedback edge set of size at most `. It can also be defined as collection of

graphs which can be obtain from a tree by adding at most ` edges. For any graph G in T`,

we have |E(G)|  |V (G)|�1+ `. For a connected graph H, if |E(H)|  |V (H)|�1+ `

then H is in T`.

A k-coloring of a graph G is a function f : V (G)! [k]. A k-coloring f of G is a proper

coloring if for all uv in E(G) we have f(u) 6= f(v). The chromatic number of a graph is the

minimum number of colors needed for its proper coloring. For a k-coloring f of G, a subset

S of V (G) is said to be monochromatic with respect to f if for all s,s0 in S, f(s) = f(s0).

Observe that f partitions V (G) into (at most) k pairwise disjoint sets. A subset S of V (G)

is said to be monochromatic component with respect to f if S is monochromatic and G[S]



is connected.

We start with few observation regarding the graph class T`.

Observation 5.2.1. For each T 2 T` the following statements hold.

1. The chromatic number of T is at most 2
p
`+2.

2. If T 0 is a graph obtained by subdividing an edge in T then T 0 2 T`.

3. If T 0 is a graph obtained by contracting an edge in T then T 0 2 T`.

Proof. (Proof of Part 1.) We first prove that for any graph G with at least one edge, its

chromatic number is upper bounded by 2
p
|E(G)|. Let C1,C2, . . . ,Cq be the color classes

in a proper coloring of G which uses the minimum number of colors. Observe that there

is at least one edge between Ci,Cj, where i, j 2 [q], i 6= j. This implies that
�q

2
�
 |E(G)|,

which proves the claim. Next, consider T` 2 T`, and fix a spanning tree T of T`. Let

T 0 = E(T`) \E(T ). If ` > 0 then from the claim above, we can properly color graph

T`[V (T 0)] using at most 2
p
` many colors. Since T`�T 0 is a tree, we can properly color T`

by coloring the vertices in T`�V (T 0) using two new colors.

(Proof of Part 2.) For any connected graph T if |E(T )| |V (T )|�1+` then T is contained

in T`. Subdividing an edge adds a new vertex and an edge and hence this inequality is

satisfied while maintaining the connectivity of graph. This implies T 0 2 T`, where T 0 is

obtained from T by sub-dividing an edge in T .

(Proof of Part 3.) Similar to the proof of part 2, contracting an edge decreases the number of

vertices by one and number of edges by at least one. This implies |E(T 0)| |V (T 0)|�1+`.

Contracting an edge maintains the connectivity of the graph and hence T 0 2 T`.

Observation 5.2.2. For a graph T 2 T`, the graph T 0 2 T` whenever T 0 is obtained

from T as follows. Consider a vertex v 2 V (T ), and a partition N1,N2 of NT (v). Let

V (T 0) = (V (T )\{v})[{v1,v2} and E(T 0) = E(T �{v})[{(v1,u) | u 2 N1}[{(v2,u) |

u 2 N2}[{(v1,v2)}.



Proof. Consider a vertex v 2V (T ), and a partition N1,N2 of NT (v). Let V (T 0) = (V (T )\

{v})[{v1,v2} and E(T 0)=E(T�{v})[{(v1,u) | u2N1}[{(v2,u) | u2N2}[{(v1,v2)}.

Notice that T 0 is a connected graph. We have |V (T 0)|= |V (T )|+1 and |E(T 0)|= |E(T )|+

1 |V (T )|�1+ `+1 = |V (T 0)|�1+ `. This concludes the proof.

Following lemma helps us find an edge which can safely be contracted.

Lemma 5.2.1. Let (G,k) be an instance of T`-CONTRACTION and P=(u0,u1, . . . ,uq,uq+1)

be a path in G, where q� k+2, and for each i 2 [q] we have deg(ui) = 2. Then no mini-

mal solution F to T`-CONTRACTION in (G,k) with |F | k contains an edge incident to

V (P)\{u0,uq+1}.

Proof. Assume the contrary that F contains at least one such edge. Observe that there

are at least k+1 edges with endpoints in V (P)\{u0,uq+1}. Therefore, there exists i 2 [q]

such that ui�1ui 2 F and uiui+1 /2 F , or ui�1ui /2 F and uiui+1 2 F . Let us assume that

there exists i 2 [q] such that ui�1ui 2 F and uiui+1 /2 F (other case is symmetric). Let

T = G/F with V (T ) = {t1, · · · , tp}, and W be the T -witness structure of G. Furthermore,

let t and t 0 be the vertices in T such that ui�1,ui 2W (t) and ui+1 2W (t 0). If t = t 0

then consider the following. Notice that G[W (t)] is connected, ui�1,ui,ui+1 2W (t), and

uiui+1 /2 F . Therefore, W (t) must contain the vertices of the sub-path (ui+1, . . . ,uq,uq+1)

and the vertices of the subpath (u0,u1, . . . ,ui�1,ui). But then, we have |W (t)|> k+1, a

contradiction. Therefore, we have t 6= t 0. Notice that ui is not a cut vertex in G[W (t)],

as there is exactly one edge incident on it. Therefore, G[W (t) \ {ui}] is connected. Let

W 0 = (W \{W (t)})[{ui}[{W (t)\{ui}}. Observe that W 0 is a partition of V (G) which

is a G/F 0-witness structure of G, where F 0 = F \ {ui�1ui}. Here, G/F 0 is the graph

obtained by subdividing the edge tt 0 in T , and by Observation 5.2.1, G/F 0 is also a graph

in T`, which contradicts the minimality of F .

We end this section with two lemmas regarding witness structure of input graph.



Lemma 5.2.2. Let F be a set of edges in a graph G such that T = G/F is in T` and

|V (G/F)|� 3, and W be a T -witness structure of G. Then, there exists a set F 0 of at most

|F | edges in G such that G/F 0 is in T` and the G/F 0-witness structure W 0 of G satisfies

the property that for every leaf t in G/F 0, witness set W 0(t) in W 0 is a singleton set.

Proof. If for each leaf t 2 V (T ) we have |W (t)| = 1 then F 0 = F is a desired solution.

Otherwise, consider a leaf t in T such that |W (t)|> 1. Let t 0 be the unique neighbour of

t in T . Notice that W (t) and W (t 0) are adjacent in G, and G[W (t)[W (t 0)] is connected.

Fix a spanning tree Q of G[W (t)], and (arbitrarily) choose a vertex u⇤ 2 V (Q) that is

adjacent to a vertex in W (t 0), which exists since tt 0 2 E(T ). Furthermore, choose a

leaf v⇤ 2 V (Q) \ {u⇤}, which exists as |V (Q)| > 1. Let W 0(t 0) = (W (t 0)[W (t)) \ {v⇤},

W 0(t) = {v⇤}, and W 0 = (W \ {W (t),W (t 0)})[ {W 0(t),W 0(t 0)}. Notice that W 0 is a T -

witness structure of G, and the number of leaves corresponding to singleton witness sets is

strictly more than that of W . Hence, by repeating this argument for each (non-adjacent)

leaves in T and their corresponding witness set in W , we can obtain the desired result.

Lemma 5.2.3. Let F be a set of edges in a graph G such that T = G/F is in T`, and W

be a T -witness structure of G. If G is 2-connected and t is cut vertex in T then witness set

W (t) in W is not a singleton set.

Proof. Let t be a cut vertex in T such that W (t) = {u}, where u 2 V (G). Notice that

T � {t} has at least two components, say T1 and T2. Consider U1 =
S

t2V (T1)W (t) and

U2 =
S

t2V (T2)W (t). As W is a T -witness structure of G, it follows that there is no

edge between a vertex in U1 and a vertex in U2 in G. This contradicts the fact that G is

2-connected.



Figure 5.1: Reduction from TREE CONTRACTION to T`-CONTRACTION.

5.3 Hardness results for T`-CONTRACTION

Following reduction shows that T`-CONTRACTION is NP-Hard. Moreover, it implies that

the problem does not admit a polynomial kernel when parameterized by k unless NP ✓

coNP/poly. We present a parameter preserving reduction from TREE CONTRACTION

which as we have mentioned does not admit a polynomial kernel under same complexity

assumption [55].

Reduction. Let (G,k) be an instance of TREE CONTRACTION. We create an instance

(G0,k0) of T`-CONTRACTION as follows. Initially, we have G = G0. Let v⇤ be an arbitrarily

chosen vertex in V (G). For each i 2 [`], we add a cycle (v⇤,wi
1,w

i
2, . . . ,w

i
k+1) on k+ 2

vertices to G0, which pairwise intersect at v⇤, and we set k0 = k. This completes the

description of the reduction. See Figure 5.1.

In the following lemma we establish equivalence between the two instances.

Lemma 5.3.1. (G,k) is a YES instance of TREE CONTRACTION if and only if (G0,k0) is

a YES instance of T`-CONTRACTION.

Proof. In the forward direction, let (G,k) be a YES instance of TREE CONTRACTION,

and S be one of its solution. Notice that G0/S 2 T`, and |S| k0 = k. Therefore, (G0,k0)



is a YES instance of T`-CONTRACTION. In the reverse direction, let (G0,k0) be a YES

instance of T`-CONTRACTION, and S be one of its (minimal) solution. Recall that for

each i 2 [`] we have a cycle Ci = (v⇤,wi
1,w

i
2, . . . ,w

i
k+1) on k + 2 vertices in G0, which

pairwise intersect at v⇤. This together with minimality of |S| implies that S\E(Ci) = /0.

Furthermore, G0[{v⇤}[ ([i2[`]V (Ci))] belongs to T` \T`�1. Therefore, G0[V (G)]/S must

be a tree.

Following theorem follows from construction of an instance (G0,k0) of T`-CONTRACTION

for a given instance (G,k) of TREE CONTRACTION and Lemma 5.3.1.

Theorem 5.3.1. T`-CONTRACTION does not admit a polynomial kernel parameterized by

solution size unless NP ✓ coNP/poly.

5.4 Lossy Kernel for T`-CONTRACTION

To complement the result that T`-CONTRACTION does not admit a polynomial kernel

assuming NP 6✓ coNP/poly (Section 5.3) we design a PSAKS for T`-CONTRACTIONin

this section. For a given graph G, a set of edges F in G is said to a solution if G/F is in

T`. We define parameterized minimization version of T`-CONTRACTION problem in the

following way.

T`C(G,k,F) =

8
><

>:

• if F is not a solution

min{|F |,k+1} otherwise

If G has at most k+3 vertices then we already have a kernel of desired size. We assume

that input graph has at least k+3 vertices. By definition of optimization problem, for a

set of edges F , if G/F is a graph in T` then maximum value TC(G,k,F) is k+1. Hence

any spanning tree of G is a solution of cost k+1. We call it a trivial solution for given

instance. Consider complete graph K`+4. One need to contract at least two edges from this



graph to obtain a graph in T`. Hence any solution for instance (K`+4,1) is of cost two. We

call this instances as trivial instance for T`C problem. If we are able to conclude that an

optimum solution for instance (G,k) is of size at least k+1 then we can return this trivial

instance as its lossy kernel. Note that for any c-factor solution of this trivial instance, we

can return of a trivial solution for original problem which is of cost k+1. If input graph is

not connected, we can not obtain a tree by edge contraction operations only. We assume

that input graph is connected.

The algorithm starts by applying Reduction Rules 5.5.1 to 5.5.4 (if applicable, in that

order). Next, we state the following lemma which prove that we can shorten long induced

paths without changing the value of optimum solution.

In following reduction rule we find an edge, if exists, which can be safely contracted.

Reduction Rule 5.4.1. If G has a path P = (u0,u1, . . . ,uq,uq+1) such that q > k+2 and

for all i 2 [q], we have deg(ui) = 2. Then contract the edge uq�1uq, i.e. the resulting

instance is (G/{uq�1uq},k).

Note that Reduction Rule 5.4.1 can be applied in polynomial time by searching for such a

path (if it exists) in the subgraph induced on the vertices of degree 2 in G. In the following

lemma, we show that Reduction Rule 5.4.1 is safe.

Lemma 5.4.1. Reduction Rule 5.4.1 is 1-safe.

Proof. Let P = (u0,u1, . . . ,uq,uq+1) be a path in G such that q > k+2 and for all i 2 [q],

we have deg(ui) = 2. Furthermore, let G0 = G/{uq�1uq}, P0 = (u0,u1, . . . ,uq�2,u⇤,uq+1),

where u⇤ is the vertex resulting after contracting the edge uq�1uq. We consider the

instances (G,k) and (G0,k) of T`-CONTRACTION, and show that T`C(G,k,F)
OPT(G,k) 

T`C(G0,k0,F 0)
OPT(G0,k0) .

Here, T`C is a shorthand notation for the parameterized minimization problem for T`-

CONTRACTION.

Consider a minimal set F 0 ✓ E(G0) such that T 0 = G0/F 0 is in T`. If |F 0|� k+1, then the

solution lifting algorithm returns E(G), otherwise it returns F = F 0. If |F 0|� k+1 then



T`C(G,k,F) k+1 = T`C(G0,k,F 0). Otherwise, let V (T 0) = {t1, · · · , tr} and W 0 denote

the T 0-witness structure of G0. By Lemma 5.2.1, F 0 has no edge incident on vertices in

V (P)\{u0,uq+1}. Therefore, every vertex in V (P0)\{u0,uq+1} is in a singleton set of W 0.

Let W = (W 0 \{u⇤})[{{uq�1},{uq}} to be a partition of V (G). Then, W is a T -witness

structure of G where T is G/F , which is obtained from T 0 by subdividing an edges. From

Observation 5.2.1, T is in T`. Therefore, T`C(G,k,F) T`C(G0,k,F 0).

Next, consider an optimum solution F⇤ to T`-CONTRACTION in (G,k). If |F⇤|� k+1 then

OPT(G,k) = k+1 and by definition, OPT(G0,k)  k+1 = OPT(G,k). Otherwise, we

have |F⇤| k. Let T =G/F⇤, and W be the T -witness structure of G. By Lemma 5.2.1, F⇤

has no edge incident on V (P)\{u0,uq+1}. Therefore, every vertex in V (P)\{u0,uq+1} is

in a singleton set in W . Let W 0 = (W \{{uq�1},{uq}})[{{u⇤}} be a partition of V (G0).

Then, W 0 is a T 0-witness structure of G0, where T 0 = G0/F⇤. Finally, T 0 is the graph

obtained from T by contracting an edge. Hence, T 0 2 T`, and OPT(G0,k) OPT(G,k).

Hence, we have T`C(G,k,F)
OPT(G,k) 

T`C(G0,k0,F 0)
OPT(G0,k0) .

Let (G,k) be an instance obtained by exhaustively applying Reduction Rule 5.4.1 on input

instance. At this stage, we derive a structural property of graph G which is k-contractible

to a graph in T`. In the following lemma, we argue that such graphs should have a small

connected vertex cover.

Lemma 5.4.2. Consider an instance (G,k) of T`-CONTRACTION on which Reduction

Rule 5.4.1 is not applicable. If G is k-contractible to a graph in T` then G has a connected

vertex cover of size at most 2(k+3)(k+2`).

Proof. Let (G,k) be a instance of T`-CONTRACTION such that G is k-contractible to a

graph in T`. Let F be one of its solution, T = G/F , where T 2T`, and W be the T -witness

structure of G. Let L be the set of leaves in T , and X = V (T ) \L. If |V (T )|  2 then

the claim trivially holds since |F |  k. Otherwise, we have |V (T )| � 3. In this case, by

Lemma 5.2.2 we can assume that each vertex in L belongs to a singleton witness set in



W . Notice that for ti, t j 2 L, where ti 6= t j, and W (ti) = {u} and W (t j) = {v} we have

tit j 62 E(T ) (since |V (T )|� 3), and therefore uv 62 E(G). As T [X ] is connected, it follows

that S =
S

t2X W (t) is a connected vertex cover of G. We now argue that |S| is at most

2(k+3)(k+2`).

Let X1 ✓ X be the set comprising of vertices in T such that for each t 2 X1 we have

|W (t)|> 1, and X2 = X \X1. Since Reduction Rule 5.5.4 is not applicable on G, we can

assume that every leaf in T is adjacent to a vertex in X1. Notice that any connected induced

subgraph of T is in T`. Fix a spanning tree of T �L, and let F be the set of edges which

are not in this spanning tree. Since, T �L 2 T` therefore, we have |F |  `. Next, we

create a set of marked vertices M. We add both the endpoints of edges in F to M, and add

vertices in X1 to M. Consider a graph T 0 obtained from T �L by deleting edges in F and

contracting all vertices with degree exactly two in the graph T �L. It is easy to see that T 0

is a tree with all its leaves marked and every internal vertex of degree at least 3. Hence the

number of vertices in T 0 is at most twice the number of marked vertices. Since there are at

most k+2` marked vertices, we get |V (T 0)| 2(k+2`). Every edge in E(T 0) corresponds

to a simple path (or an edge) in T . Recall that the number of internal vertices in each such

path is bounded by k+2 as Reduction Rule 5.4.1 is not applicable. Hence, |X2| is at most

2(k+2)(k+2`). Since, there are at most k more vertices in W (t) for t 2 X1, |S| is at most

2(k+2)(k+2`)+ k. This concludes the proof of lemma.

Using Lemma 5.4.2, we can identify graphs which are not k-contractible to a graph in T`.

Note that we have 2-factor approximation algorithm to find a connected vertex cover of

input graph. It is easy to see that following reduction rule is 1-safe.

Reduction Rule 5.4.2. Given an instance (G,k), apply 2-factor approximation algorithm

to compute a connected vertex cover X of G. If size of X is greater than 4(k+3)(k+2`)

then return the trivial instance (K`+4,1).

Lemma 5.4.3. Reduction Rule 5.4.2 is 1-safe.



Proof. Let (G,k) be an instance such that Reduction Rule 5.4.2 returns (K`+4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if K`+4/F 0 is a graph in T` then F 0 contains at least two

edges. This implies T`C(K`+4,1,F 0) = 2 and OPT(K`+4,1) = 2.

Since a 2-factor approximation algorithm returns a set of size strictly more than 4(k+

3)(k+2`), size of minimum connected vertex cover of G is at least 2(k+3)(k+2`). But

by Lemma 5.4.2, if G is k-contractible to a graph in T` than it has a connected vertex

cover of size at most 2(k+3)(k+2`). Hence for any set of edges F⇤ if G/F⇤ is in T` than

size of F⇤ is at least k+1. This implies OPT(G,k) = k+1. For a spanning tree F of G,

TC(G,k,F) = k+1.

Combining these values, we get T`C(G,k,F)
OPT(G,k) = k+1

k+1 = 2
2 = T`C(K`+4,1,F 0)

OPT(K`+4,1)
. This implies if F 0

is c-factor approximate solution for (K`+4,1) then F is 1-factor approximate solution for

(G,k). This concludes the proof.

For the remaining section, we assume that above reduction rule did not return the trivial

instance. In other words, we assume that graph has connected vertex cover of size at most

4(k+3)(k+2`). Before describing the next reduction rule, we define a partition of V (G)

into the following sets.

H = {u 2V (G) | deg(u)� 2(k+3)(k+2`)+1}

I = {v 2V (G)\H | N(v)✓ H}

R =V (G)\ (H [ I)

Vertices v,u are said to be false twins if N(v) = N(u). We use Lemma 5.4.4 to reduce the

number of vertices in I which have many false twins. Let G be k-contractible to a graph T

in T` and W be the T -witness structure of G.



Lemma 5.4.4. Consider sets X ,U ✓V (G) such that U is an independent set in G and for

all v 2U we have X ✓ N(v). If |U |� k+ `+2 then there is a vertex t 2V (T ) such that

X ✓W (t).

Proof. We prove this by contradiction. Assume there exists t 6= t 0 such that X \W (t)

and X \W (t 0) are non-empty. Since U is an independent set and |U | � k+ `+ 2, there

are at least `+ 2 vertices in U which are not contained in any big witness sets. Con-

sider the subgraph of T (on at least `+ 4 vertices) induced on the vertices {t, t 0}[

{ti | W (ti) is a singleton witness set containing a vertex in U}. After deleting any set of

` edges in T , there still exists a cycle in T . This is a contradiction the fact that T 2 T`.

Recall that two vertices are said to be false twins of each other if their open neighbourhoods

are same. Following reduction rule removes a vertex in I which has too many false twins.

Reduction Rule 5.4.3. If there is a vertex v 2 I that has at least k+ `+2 false twins in I

then delete v, i.e. the resulting instance is (G�{v},k).

In the following lemma we prove that this reduction rule is 1-safe.

Lemma 5.4.5. Reduction Rule 5.4.3 is 1-safe.

Proof. Let v 2 I such that v has at least k+ `+ 2 false twins in I, and let G0 = G� {v}.

We consider instances (G,k) and (G0,k) of T`-CONTRACTION, and show that T`C(G,k,F)
OPT(G,k) 

T`C(G0,k,F 0)
OPT(G0,k) . Here, T`C is a shorthand notation for the parameterized minimization problem

for T`-CONTRACTION.

Consider a solution F 0 to T`-CONTRACTION in (G0,k). If |F 0| � k + 1 then the solu-

tion lifting algorithm returns E(G), otherwise it returns F = F 0. If |F 0| � k + 1 then

T`C(G,k,F)  k+ 1 = T`C(G0,k,F 0). Otherwise, |F 0|  k, and let T 0 = G0/F , where

T 0 2 T` with W 0 being the T 0-witness structure of G0. Let U be set of false twins of

v in I. Recall that |U | � k + `+ 2. From Lemma 5.4.4, there exists ti 2 V (T 0) such



that NG0(u1) ✓ W 0(ti) for u1 in U . Let T be the graph obtained from T 0 by adding

a new vertex tv as a leaf adjacent to ti. Notice that T 2 T`, which follows from the

fact that NG0(u1) = NG(u1) = NG(v), and NG(u1) ✓W 0(ti). Let W = W 0 [ {{v}} be

a partition of V (G). Then, T is G/F and W is the T -witness structure of G. Hence,

T`C(G,k,F) T`C(G0,k,F 0).

Next, consider an optimum solution F⇤ to T`-CONTRACTION in (G,k). If |F⇤| � k+1

then by definition, OPT(G,k)  k+ 1 = OPT(G,k). Otherwise, we have |F⇤|  k. Let

T = G/F⇤, and W ⇤ denote the T -witness structure of G. By an argument analogous to

the proof of T`C(G,k,F) T`C(G0,k0,F 0), we know that there exists t j 2V (T ) such that

N(v)✓W (t j). Let t 2V (T ) such that v 2W (t). If W (t) = {v} then t is a leaf in T , which

implies that F⇤ is also a solution to T`-CONTRACTION in (G0,k), thus giving the desired

relation. Otherwise, consider the following. Recall that v has at least k+ `+2 false twins,

and at least one of them, say u, belongs to a singleton witness set. That is, there exists a

vertex t 0 in T such that W (t 0) = {u}. Let W 0 be the partition of V (G) obtained from W ⇤ by

swapping the appearances of u and v. Furthermore, let F 0 be the set of edges obtained from

F by replacing each edge xv with the edge xu, where for each xv 2 F . Notice that F 0 is also

an optimal solution to T`-CONTRACTION in (G,k), and a solution to T`-CONTRACTION

in (G0,k). Therefore, OPT(G0,k) OPT(G,k). Hence, T`C(G,k,F)
OPT(G,k) 

T`C(G0,k,F 0)
OPT(G0,k) .

For a > 1, let d be the smallest integer such that d+1
d  a . This implies d = d a

a�1e.

Reduction Rule 5.4.4. If there are vertices v1,v2, · · · ,vk+`+2 2 I and h1,h2, · · · , hd 2 H

such that for all i 2 [k+ `+ 2], we have {h1, . . . ,hd} ✓ N(vi) then contract all edges in

Ẽ = {v1hi | i 2 [d]}, and decrease k by d�1. The resulting instance is (G/Ẽ,k�d +1).

We note that the lossy-ness is introduced only in the Reduction Rule 5.4.4. We have

determined that H 0 = {h1,h2, . . . ,hd} need to be in one witness bag but G[H 0] may not

be connected. To simplify the graph, we introduce additional vertex v1 to the bag which

contains H 0. By doing this we are able to contract H 0 [{v1} into a single vertex. In the



following lemma, we argue that the number of extra edge contracted in this process is a

times that of the optimum solution.

Lemma 5.4.6. Reduction Rule 5.4.4 is a-safe.

Proof. Let v1,v2, · · · ,vk+`+2 2 I and h1,h2, · · · , hd 2 H such that for all i 2 [k+ `+ 2],

we have {h1, . . . ,hd} ✓ N(vi). Furthermore, let Ẽ = {v1hi | i 2 [d]}, G0 = G/Ẽ, and

k0 = k�d +1. We consider instances (G,k) and (G0,k0) of T`-CONTRACTION, and show

that T`C(G,k,F)
OPT(G,k) max

n
T`C(G0,k0,F 0)

OPT(G0,k0) ,a
o

.

Consider a solution F 0 of T`-CONTRACTION in (G0,k0). If |F 0| � k0+ 1, then the so-

lution lifting algorithm returns E(G), otherwise it returns F = F 0 [ Ẽ. If |F 0| � k0+ 1

then T`C(G0,k0,F 0) = k0+ 1 = k� d. In this case, F = E(G) and T`C(G,k,F)  k +

1 = k0+ d = T`C(G0,k0,F 0) + d � 1. Next, consider the case when |F 0|  k0, and let

W 0 = {W 0(t1),W 0(t2), . . . ,W 0(tq)} be the G0/F 0-witness structure of G. Let w denote

the vertex in V (G0) \V (G) obtained by contracting the edges in Ẽ. Without loss of

generality, assume that w 2 W 0(t1). Let W = (W 0 \ {W 0(t1)})[ {W1}, where W1 =

(W 0(t1) \ {w})[ {v1,h1,h2, . . . ,hd}. Note that V (G) \ {v1,h1,h2, . . . ,hd} = V (G0) \ {w}

and hence W is partition of V (G). Furthermore, G[W1] is connected as G0[W 0(t1)] is

connected, and therefore, E(G0[W1 \{w}])[ Ẽ contains a spanning tree of G[W1]. Also,

|W1| = |W 0(t1)|+ d, and any vertex which is adjacent to w in G0 is adjacent to at least

one vertex in {v1,h1,h2, . . . ,hd} in G. Thus, W 0 is a G/F-witness structure of G, where

G/F 2 T`. Therefore, T`C(G,k,F) T`C(G0,k0,F 0)+d.

Next, consider an optimum solution F⇤ to T`-CONTRACTION in (G,k), and let T be G/F⇤

with W being the T -witness structure of G. If |F⇤| � k+ 1, then OPT(G,k) = k+ 1 =

k0+ d = OPT(G0,k0)+ d� 1. Otherwise, we have |F⇤|  k, and there are at least `+ 3

vertices, in {v1,v2, . . . ,vk+`+2} (✓ I) which are not in V (F⇤). That is, they are in singleton

witness sets of W . Then, by Lemma 5.4.4, {h1,h2, . . . ,hd} are in the same witness set, say

W (ti) where ti 2V (T ). Consider the case when v1 2W (ti). Let F̃ be the edge set obtained

from F by replacing each edge uv by uw, where v2 {v1,h1, · · · ,vd} and u /2 {v1,h1, · · · ,vd}.



Furthermore, let F 0 = F̃ \ Ẽ. Notice that |F 0|  |F⇤|� d, and F 0 is solution to (G0,k0).

Therefore, OPT(G0,k0)  |F⇤|� d = OPT(G,k)� d. Next, we consider the case when

v1 62W (ti), and let t j 2V (T ) be the vertex such that v1 2W (t j). Then, ti and t j are adjacent

in T . Let W 0 = W [ {W (ti j)} \ {W (ti),W (t j)} of V (G), where W (ti j) = W (ti)[W (t j).

Clearly, G[W (ti j)] is connected. Thus, W 0 is a G/F-witness structure of G, where |F |=

|F⇤|+1 as |W (ti)|�1+ |W (t j)|�1 = (|W (ti j)|�1)�1. Furthermore, F can be assumed

to contain Ẽ, and therefore F 0 = F \ Ẽ is solution to T`-CONTRACTION in (G0,k0). This

implies that OPT(G0,k0)  |F 0| = |F⇤|+ 1� d = OPT(G,k)� d + 1. Thus, we have ⇤

T`C(G,k,F)
OPT(G,k) 

T`C(G0,k0,F 0)+d
OPT(G0,k0)+(d�1) max

n
T`C(G0,k0,F 0)

OPT(G0,k0) ,a
o

.

In the following lemma we argue that if after applying all these reduction rules exhaustively,

if the number of vertices in resulting graph is large, we can safely conclude that given

instance can not be contracted to a graph in T` with at most k edge contractions.

Lemma 5.4.7. Let (G,k) be an instance of T`-CONTRACTION where none of the Reduction

Rules 5.4.1 to 5.4.4 are applicable. If G is k-contractible to a graph in T` then number of

vertices in G is at most O(k(k+2`)]d+1).

Proof. Since Reduction Rule 5.4.1 and 5.4.2 are not applicable, from Lemma 5.4.2 it

follows that G has a connected vertex cover S of size at most 2(k+3)(k+2`). The set H

consists of vertices of degree at least 2(k+3)(k+2`)+1, and hence every vertex in H is

included in any connected vertex cover of G, which is of size at most 2(k+3)(k+2`). This

implies that |H| 2(k+3)(k+2`). Every vertex in R has degree at most 2(k+3)(k+2`).

Therefore, if S\R is a vertex cover of G[R], then |E(G[R])| is bounded by 4(k+3)2(k+

2`)2. Also, by the definitions of I and R, every vertex in R has a neighbour in R. Therefore,

there are no isolated vertices in G[R]. Thus, |R| is bounded by 8(k+3)2(k+2`)2. Now,

we bound the size of I. For every set H 0 ✓ H of size at most d, there are at most k+ `+2

vertices in I which have H 0 as their neighbourhood. Otherwise, Reduction Rule 5.4.3

would have been applicable. Hence, there are at most (k+ `+2) ·
�2(k+3)(k+2`)

d�1
�

vertices in

⇤We use the bound, x+p
y+q max{ x

y ,
p
q} for any positive real numbers x,y, p,q.



I which have degree at most d. A vertex in I which is of degree at least d +1, is adjacent

to all vertices in at least one subset of size d of H. For a such a subset H 0 of H, there

are at most k+ `+2 vertices in I which have H 0 in their neighbourhood since Reduction

Rule 5.4.4 is not applicable. Thus, there are at most (k+ `+2)
�2(k+3)(k+2`)

d
�

vertices in

I of degree at least d. Hence, |I|  c0[k(k+ 2`)](d+1), for some fixed c0. Since H [R is

ĉk2(k+2`)2 (where ĉ is a constant) and d > 1, the claim follows.

We are now in position to state main theorem of this section.

Theorem 5.4.1. T`-CONTRACTION admits a strict PSAKS, where the number of vertices

is bounded by O([k(k+2`)](d
a

a�1 e+1)).

Proof. For given a > 1, kernelization algorithm fix d = d a
a�1e and apply Reduction Rules

5.4.1; 5.4.2; 5.4.3; and 5.4.4 on the instance as long as they are applicable. If Reduction

Rule 5.4.2 returns a trivial instance then statement is true. Otherwise, we know that there

exists a connected vertex cover of size at most 2(k+3)(k+2`). This implies size of H is

at most 2(k+3)(k+2`). If the number of vertices in graph is more than O([k(k+2`)]d+1)

then the reduction rules can be applied in O([k(k+2`)](d+1)nO(1)) = nO(1) time, where n

is the number of vertices in the input graph. If the number of vertices in resulting graph is

more than O([k(k+2`)]d+1), then by Lemma 5.4.7 we have OPT(G,k) = k+1 and the

algorithm returns a spanning tree of (K`+4,1) as a reduced instance. Otherwise, reduced

instance has O([k(k+2`)](d
a

a�1 e+1)) vertices. The correctness of algorithm follows from

Lemma 5.4.1; 5.4.3; 5.4.5; and 5.4.6.

5.5 Randomized FPT Algorithm for T`-CONTRACTION

In this section, we design an FPT algorithm for T`-CONTRACTION. Our algorithm

proceeds as follows. We start by applying some simple reduction rules. Then by branching

we ensure that the resulting graph is 2-connected. Finally, we give an FPT algorithm



running in time O((2
p
`+2)O(k+`) ·nO(1)) on 2-connected graphs. The approach we use

for designing the algorithm for the case when the input graph is 2-connected follows the

approach of Heggernes et al. [55] for designing an FPT algorithm for contracting to trees.

Also, whenever we are dealing with an instance of T`-CONTRACTION we assume that we

have an algorithm running in time O((2
p
`0+ 2)O(k+`0) · nO(1)) for T`0-CONTRACTION,

for every `0 < `. That is, we give family of algorithms inductively for each `0 2 N, where

the algorithm for TREE CONTRACTION by Heggernes et al. forms the base case of our

inductive hypothesis.

Let (G,k) be an instance of T`-CONTRACTION. The measure we use for analyzing the

running time of our algorithm is µ = µ(G,k) = k. We start by applying some simple

reduction rules.

Reduction Rule 5.5.1. If k< 0 then return that (G,k) is a NO instance of T`-CONTRACTION.

Reduction Rule 5.5.2. If k = 0 and G 2 T` then return that (G,k) is a YES instance of

T`-CONTRACTION.

Reduction Rule 5.5.3. If G is a disconnected, or k = 0 and G /2 T` then return that (G,k)

is a NO instance.

We assume that the input graph is 2-connected, and design an algorithm for input restricted

to 2-connected graphs. Later, we will show how we can remove this constraint. The key

idea behind the algorithm is to use a coloring of V (G) with at most 2
p
`+2 colors to find

a T -witness structure (if it exists) of G, where G is contractible to T 2 T` using at most k

edge contractions. Moreover, if such a T does not exist then we must correctly conclude

that (G,k) is a NO instance of T`-CONTRACTION. If such T exists then T can be colored

with 2
p
`+2 (Observation 5.2.1.1). Fix one such coloring of T . When we uncontract a

vertex, say t, in T , all the vertices in G which has been contracted to t gets same color.

Proper coloring of T insures that vertices obtained by uncontracting adjacent vertices, say

t1, t2 in T have different colors in G and are easy to differentiate. We will see that the
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Figure 5.2: Compatible coloring

before mentioned property holds only when each of t1, t2 are obtained by contracting at

least two vertices in G. We make this notion more formal in definition.

Definition 5.5.1 (Compatible Coloring). Let G be a connected graph, T be a graph in

T`, W be a T -witness structure of G, and f : V (G)! [2
p
`+2] be a coloring of V (G).

Furthermore, let TS be a (fixed) spanning tree of T , M = {t, t 0 | tt 0 2 E(T )\E(TS)}[{t 2

V (T ) | dT (t) � 3}, and B = {t 2 V (T ) | |W (t)| � 2}. We say that f is W -compatible if

the following conditions are satisfied.

1. For all W 2W , and w,w0 2W we have f(w) = f(w0).

2. For all t, t 0 2M[B such that tt 0 2 E(T ) we have f(W (t)) 6= f(W (t 0)).

3. For all t, t 0 2M[B (not necessarily distinct), and a path P = (t, t1, . . . , tz, t 0), where

z 2 N such that for all i 2 [z] we have ti /2 M [B then f(W (t)) 6= f(W (t1)) and

f(W (tz)) 6= f(W (t 0)).



We refer to the set M[B as the set of marked vertices.

Consider an example in Figure 5.2. Input graph G is contractible to a tree T in T1. Let W

be a T -witness structure of G. We fix a spanning tree Ts in T which excludes edge t4t7 in

graph T . Coloring of vertices of V (G) is W -compatible for fixed spanning tree TS.

Assume that (G,k) is a YES instance of T`-CONTRACTION, and F be one of its (inclusion-

wise) minimal solution. Furthermore, let T = G/F , and W be the T -witness structure of G.

Suppose we are given G and a W -compatible coloring f : V (G)! [2
p
`+2] of G, but we

are neither given W nor T . We will show how we can compute a T 0-witness structure W 0

of G such that |V (T 0)|� |V (T )|, where T 0 2 T`. Informally, we will find such a witness

structure by either concluding that none of the edges are part of the solution, some specific

set of edges are part of the solution, or finding a star-like structure of the monochromatic

components of size at least 2 in G, with respect to f . Towards this, we will employ the

algorithm for CONNECTED VERTEX COVER (CVC) by Cygan [24] which runs in time

2knO(1). Here, k is the size of a solution and n is the number of vertices in the input graph.

Consider the case when G is k-contractable to a graph, say T 2 T`, and let W be a T -

witness structure of G. Furthermore, let f : V (G)! [2
p
`+2] be a W -compatible coloring

of G, and X be the set of monochromatic components of f . We prove some lemmata

showing useful properties of X .

Lemma 5.5.1. Let T 0 be the graph with X as the T 0-witness structure of G. Then T 0 2 T`

and |V (T 0)| |V (T )|.

Proof. Every witness set of W is monochromatic with respect to f (see item 1 of Defini-

tion 5.5.1). Therefore, for every W 2W there exists X 2X such that W ✓ X . Moreover,

by the definition of X , G[X ] is connected. There exists Y ✓V (T ) such that T [Y ] is a con-

nected subgraph of T and X = [y2YW (y). Graph T 0 can beobtained from T by contracting

spanning tree in X for every such X . Since T` is closed under edge contraction (item 3 of

Observation 5.2.1), T 0 is also in T` with |V (T 0)| |V (T )|.



(a) Please refer to Lemma 5.5.2. (b) Please refer to Lemma 5.5.4.

Figure 5.3: Set X ,X 0 are monochromatic components. Rectagular box represents big
witness sets in W .

Next, we proceed to show how we can partition each X 2X into many smaller witness

sets such that either we obtain W or a T 0-witness structure of G for some T 0 2 T` which

has at least as many vertices as T . Towards this, we introduce the following notions.

For X 2X , by X̂ we denote the set of vertices that have a neighbor outside of X , i.e.

X̂ = N(V (G)\X). A shatter of X is a partition of X into sets such that one of them is a

connected vertex cover C of G[X ] containing all the vertices in X̂ and all other sets are of

size 1. The size of a shatter of X is the size of C. Furthermore, a shatter of X is minimum

if there is no other shatter with strictly smaller size.

From Definition 5.5.1, it follows that each X 2X is union of some witness sets in W .

Formally, for every X 2X , there is WX ✓W such that X = [Y2WXY . Following lemma

says that if X has some particular structure then X is a big witness in itself. In other words,

WX contains only one witness set.

Lemma 5.5.2. Consider X 2X with |X |� 2, WX ✓W such that X = [Y2WXY , and all

of the following conditions are satisfied.

• G[X ] = (u,v1, . . . ,vq,v) is an induced path, where q 2 N.



• For each i 2 [q] we have deg(vi) = 2.

• There exists X 0 2X \{X} such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0.

Then |WX |= 1.

Proof. Let X = (u,v1,v2, . . . ,vq,v), where for each i 2 [q] we have degG(vi) = 2. Also,

let X 0 2X \{X} such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0. Assume that |WX |� 2. Let

Y1 and Y2 be the witness sets containing u and v, respectively. See Figure 5.3a. Since,

|WX |� 2, and each of the witness sets are connected therefore, we have Y1 6= Y2. Notice

that in T , for which W is a T -witness structure of G there is a cycle C containing tY1 , tY2 ,

and vertices corresponding to some of the witness sets included in X 0 [ (X \ (Y1 [Y2)).

Here, tY1 and tY2 are vertices in T such that W (tY1) = Y1 and W (tY2) = Y2. Notice that C

must contain at least two marked vertices which are adjacent (see Definition 5.5.1). By

definition, X and X 0 are monochromatic, and therefore, these marked vertices can not

belong to X or X 0. Without loss of generality assume that tY1 is one of the marked vertex

and one of its neighbor, say t 0, such that W (t 0)✓ X 0 is another marked vertex on this cycle.

This implies that tY2 is contained in a path between two marked vertices namely, tY1 and t 0.

But all the nodes on the path between tY1 and tY2 have the same color. This contradicts the

fact that f is a W -compatible coloring of G (see item 3 of Definition 5.5.1).

Following lemma says that if X has particular structure than all vertices in X are part of

singleton witness sets in W .

Lemma 5.5.3. Consider X 2X with |X |� 2, WX ✓W such that X = [Y2WXY , and all

the following conditions are satisfied.

• G[X ] = (u,v1, . . . ,vq,v) is an induced path, where q 2 N.

• For each i 2 [q] we have deg(vi) = 2.

• There exists no X 0 2X \X such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0.

Then |WX |= |X |.



Proof. Recall that F is a (inclusion wise) minimal solution corresponding to the witness

structure W . Assume that |WX | < |X |. This implies that there exists Y 2 WX such that

|Y | � 2. Let tY be a vertex in T such that Y = W (tY ). Also, let vi be the smallest i such

that vi 2 Y . Since |Y |� 2, vi+1 is also present in Y . We can partition neighbors of tY into

N1 and N2 such that N1 is adjacent to vi and N2 is adjacent to Y \{vi}. Since there is no

X 0 in X \X such that N(u)\X 0 6= /0 and N(v)\X 0 6= /0, N1 and N2 are different. If graph

G obtained by spanning tree of Y is in T` then by Observation 5.2.2, G/(F \{(vi,vi+1)})

is also a graph in T`. This contradicts the minimality of F . Notice that if N1,N2 are not

different then G/(F \{(vi,vi+1)}) may have one more cycle than the graph G/F .

Next, we show that each X 2X for which Lemma 5.5.2 and 5.5.3 are not applicable must

contain exactly one big witness set. Moreover, the unique big witness set (together with

other vertices as singleton sets) forms one of its shatters.

Lemma 5.5.4. For X 2X with |X |� 2, let WX ✓W such that X =[Y2WXY . Furthermore,

the set X does not satisfy the conditions of Lemma 5.5.2 or 5.5.3. Then there is exactly one

big witness set in WX .

Proof. Consider X 2X with |X |� 2. Assuming a contradiction, suppose WX contains

two big witness sets say Y and Y 0. Notice that there cannot be an edge between a vertex in

Y and a vertex in Y 0 (see item 2 of Definition 5.5.1). This together with the connectedness

of X implies that there is a path from a vertex in y2Y and a vertex in y0 2Y 0 which contains

a neighbor of y in some Z 2WX \{Y,Y 0}. But then from item 2 and 3 of Definition 5.5.1

we have f(Y ) 6= f(Z), a contradiction. Therefore, X can contain at most one big witness

set from W .

Suppose X does not contain any big witness set. Consider the case when degG(v) = 2

for all v 2 X and X = V (G). Since all the witness sets in X are singleton, there exists a

cycle in T such that all the vertices on this cycle have same color. This contradicts the

fact that f is W -compatible (see item 3 Definition 5.5.1). We now consider case when X



is a proper subset of V (G) or it contains a vertex of degree 3. Since X does not satisfies

conditions of Lemma 5.5.2 or 5.5.3, it is not an induced path or it is an induced path but

one of its internal vertex has degree other than 2. Since X is connected, in either case

there exists v 2 X such that degG(v) � 3. If X contains all singleton witness set then

degT (tv) � 3 where W (tv) = {v}. Let u 2 X be a vertex adjacent to v and W (tu) = {u}.

Since |W (tv)| = |W (tu)| = 1, neither tv nor tu is a cut vertex in T (Lemma 5.2.3) which

implies degT (tu)> 1. Let tv, t1 are two neighbors of tu. There exists a path between tv, t1

which does not contain vertex tu. This implies there exists a cycle in T containing tv, tu, t1.

There are at least two vertices marked on this cycle. Hence, either tu is marked or tu is

contained between two marked vertices. In either case, it contradicts the fact that X is

color class of a coloring which is W -compatible (see item 2, 3 Definition 5.5.1).

Lemma 5.5.5. Consider X 2X such that |X |� 2 and it contains a big witness set, and it

does not satisfy conditions of Lemma 5.5.2 or 5.5.3. Let WX ✓W such that X = [Y2WXY ,

and W ⇤ be the (unique) big witness set in X. Then W ⇤ is a connected vertex cover of G[X ]

and it contains X̂ .

Proof. Suppose X contains a big witness set, say W ⇤. From Lemma 5.5.4, for each

Y 2WX \{W ⇤} we have |Y |= 1. We first prove that W ⇤ is a vertex cover of G[X ]. Assume

that W ⇤ is not a vertex cover of G[X ], then there is an edge y1y2 such that y1,y2 /2W ⇤. For

i 2 {1,2}, let {yi} = Yi = W (ti) . Since G[X ] is connected, there exists a path between

y1,y2 and a vertex in W ⇤, which is contained in X . Without loss of generality, assume that

there exist a path P1 in X from y1 to W ⇤ which does not contain y2. Since G is 2-connected,

there exists a path, say P2 from y2 to a vertex in W ⇤, which does not contain y1. Notice

that there is a cycle in T containing nodes t⇤, t1, t2, where W ⇤ =W (t⇤). At least two nodes

of the vertices from this cycle must be marked, and have different colors from each other.

Hence, the path P2 can not be contained in X . We know that t⇤ is contained in M [B.

Let the other marked vertex in this cycle be t. The vertex t is obtained by contracting

some vertices on the path P2. Notice that t1 is vertex contained in the path between two



vertices in M[B and all the nodes in path from t⇤ to t1 has the same color. This contradicts

the fact that X is a color class in a coloring which is W -compatible (see item 2, 3 of

Definition 5.5.1). Hence our assumption was wrong and no such edge y1y2 exits. Since,

W ⇤ is a witness set, by definition, it is connected and therefore W ⇤ is a connected vertex

cover of G[X ]. Notice that all the above argument still holds if the path P1 is simply an

edge and y2 is outside X . In other words, if there exists y1 in X \W ⇤ there is no edge y1y2

such that y2 is not contained in X . This implies that X̂ is contained in W ⇤.

Using Lemma 5.5.3 to Lemma 5.5.5 we show how we can replace each X 2X with the

sets of its shatter. Recall that we are given only G and f , and therefore we know X , but

we do not know W . In the Lemma 5.5.6, we show how we can find a T 0-witness structure

of G for some T 0 2 T`, which has at least as many vertices as T (without knowing W ).

Lemma 5.5.6. Given X , we can obtain a T 0-witness structure of G in time 2knO(1) time,

where T 0 2 T` and |V (T 0)|� |V (T )|.

Proof. Consider X 2X . If |X | = 1 then we let WX = {X}, which is the unique shatter

of X . We now consider X 2X such that |X |� 2. If there is X 2X which satisfies the

premise of Lemma 5.5.2 then contract all edges in X and reduce k by |X |� 1. If there

exists X 2X which satisfies the premise of Lemma 5.5.3 then replace X in X with |X |

many singleton sets {v} for each v 2 X . If there exists X 2X which does not satisfy the

conditions of Lemma 5.5.2 and 5.5.3 then from Lemma 5.5.4 we know that X contains

exactly one big-witness set, say Ŵ . Moreover, Lemma 5.5.5 implies that Ŵ is a connected

vertex cover of G[X ] containing X̂ . In this case, we will find a shatter W ⇤ of X , which has

size at most |Ŵ | as follows. Let G0 be the graph obtained from G[X ] by adding a (new)

vertex v⇤ for each vertex v 2 X̂ , and adding the edge (v,v⇤). Then we find a minimum

sized connected vertex cover of C of G0 by using the algorithm given by Proposition 2.1.2.

Notice that a minimum connected vertex cover of a graph does not contain any degree

one vertex therefore, X̂ ✓C. From the definition of minimum shatter and the minimality

of set C, it follows that WX = {C}[{{x} | x 2 X \C} is a minimum shatter of X . Notice



that apart from computing connected vertex cover, all other steps can be performed in

polynomial time. Since the size of each witness set in W is bounded by k+1, therefore

there exists a connected vertex cover of size at most k+ 1. Moreover, we can compute

connected vertex cover in time 2k+1nO(1) (Proposition 2.1.2), and there are at most n sets

in X . Therefore, the overall running time is bounded by 2knO(1).

Now we are ready to present our randomized algorithm for T`-CONTRACTION when input

graph is 2-connected.

Theorem 5.5.1. There is a Monte Carlo algorithm for solving T`-CONTRACTION on

2-connected graphs running in time O((2
p
`+2)O(k+`) ·nO(1)), where n is the number of

vertices in the input graph. It does not return false positive and returns correct answer

with probability at least 1�1/e.

Proof. Let (G,k) be an instance of T`-CONTRACTION, where G is a 2-connected graph.

Furthermore, the Reduction Rules 5.5.1 and 5.5.3 are not applicable, otherwise we can

correctly decide whether or not (G,k) is a YES instance. The algorithm starts by computing

a random coloring f : V (G)! [2
p
`+2], by choosing a color for each vertex uniformly

and independently at random. Let X be the set of monochromatic connected components

with respect to f in G. The algorithm applies Lemma 5.5.6 in time 2knO(1) and tries to

compute T 0 such that T 0 2 T` and G is k-contractible to T 0. It runs (2
p
`+2)6k+8` many

iterations of two steps mentioned above. If for any such iteration it obtains a desired

T 0-witness structure of G then it returns YES. If none of the iterations yield YES then the

algorithm returns NO. This completes the description of the algorithm.

Observe that the algorithm returns YES only if it has found a T 0 2 T` such that G is

contractible to T 0 using at most k edge contractions. Therefore, when it outputs YES, then

indeed (G,k) is a YES instance of T`-CONTRACTION. We now argue that if (G,k) is a YES

instance then using a random coloring the algorithm (correctly) returns the answer with

sufficiently high probability. Let T be a graph in T`, such that G is k-contractible to T , and



W be a T -witness structure of G. Furthermore, let TS be a (fixed) spanning tree of T , and

vertex set M, B are set of vertices defined in Definition 5.5.1. Let y : V (G)! [2
p
`+2]

be a coloring where colors are chosen uniformly at random for each vertex. The total

number of vertices contained in big witness sets of W is at most 2k. By our assumption,

every leaf is a singleton witness set and it is adjacent to a big witness set. Here, we

assume that the number of vertices in T is at least 3, otherwise we can solve the problem

in polynomial time. This implies that no leaf is in M[B. Consider graph T 0 obtained from

T by deleting all the leaves and deleting edges in E(T`)\E(TS). All the marked vertices

of T` and all the paths connecting two marked vertices are also present in T 0. Notice

that T 0 is tree with at most k+ 2` leaves. Since the number of vertices of degree three

is at most the number of leaves in any tree, there are at most k+ 2` vertices of degree

at least 3. There are at most k vertices in T which are big witness sets and at most 2`

vertices incident to edges in E(T`) \E(TS). Hence the total number of marked vertices

is at most 2k+ 4`. Since T 0 is a tree, there are at most 2k+ 4` vertices which lie on a

path between two vertices in M [B and are adjacent to one of these. The number of

vertices of G which are marked vertices or vertices which are adjacent to it in T 0 is at

most 2(2k+4`)+2k. Therefore, the probability that y is compatible with W is at least

1/(2
p
`+2)6k+8`. Since the algorithm runs (2

p
`+2)6k+8` many iterations, probability

that none of these colorings which is generated uniformly at random is compatible with W

is at most (1�1/(2
p
`+2)6k+8`)(2

p
`+2)6k+8`

< 1/e. Hence, algorithm returns a solution

on positive instances with probability at least 1�1/e. Each iteration takes 2k ·nO(1) time

and hence the total running time of the algorithm is O((2
p
`+2)O(k+`) ·nO(1)).

Next, we design reduction rules and a branching rule whose (exhaustive) application will

ensure that the instance of T`-CONTRACTION we are dealing with is 2-connected. Either

we apply one of these reduction rules or branching rule, or we resolve the instance using

the algorithm for T`0-CONTRACTION, where `0 < `. This together with Theorem 5.5.1

gives us an algorithm for T`-CONTRACTION on general graphs.



Lemma 5.5.7. If for some 0 `0 < `, (G,k) is a YES instance of T`0-CONTRACTION then

return that (G,k) is a YES instance of T`-CONTRACTION.

Our next reduction rule deals with vertices of degree of 1.

Reduction Rule 5.5.4. If there is v 2V (G) such that d(v) = 1 then delete v from G. The

resulting instance is (G�{v},k).

If a connected graph G is not 2-connected graph then there is a cut vertex say, v in G. Let

C1,C2, . . . ,Ct be the components of G�{v}. Furthermore, let G1 = G[V (C1)[{v}] and

G2 = G�V (C1). Next, we try to resolve the instance (if possible) using the following

lemma.

Lemma 5.5.8. If there exists `1 and `2 with `1 + `2 = `, where `1,`2 > 0, and k1 and k2

with k1 + k2 = k such that (G1,k1) is a YES instance of T`1-CONTRACTION and (G2,k2)

is a YES instance of T`2-CONTRACTION then return that (G,k) is a YES instance of

T`-CONTRACTION.

Notice that if Lemma 5.5.8 is not applicable then one of G1 or G2 must be contracted to a

tree. Let k1 be the smallest integer such that (G1,k1) is a YES instance of T-CONTRACTION,

and k2 be the smallest integer such that (G2,k2) is a YES instance of T-CONTRACTION.

Notice that k1 and k2 can be computed in (deterministic) time 4knO(1) using the algorithm

for T-CONTRACTION [55]. We next proceed with the following branching rule.

Branching Rule 2. We branch depending on which of the graphs among G1 and G2 are

contracted to a tree. Therefore, we branch as follows.

• Contract G1 to a tree, and the resulting instance is (G2,k� k1).

• Contract G2 to a tree, and the resulting instance is (G1,k� k2).

Note that the measure strictly decreases in each of the branches of the Branching Rule 2

since Reduction Rule 5.5.4 is not applicable. If we are unable to resolve the instance using



Lemma 5.5.7 and 5.5.8, and Reduction Rules 5.5.3 and 5.5.4 and Branching Rule 2 are not

applicable then the input graph is 2-connected. And, then we resolve the instance using

Theorem 5.5.1.

Theorem 5.5.2. For each ` 2 N, there is a Monte Carlo algorithm for solving T`-

CONTRACTION with running in time O((2
p
`+2)O(k+`) ·nO(1)). It does not return false

positive and returns correct answer with probability at least 1�1/e.

Proof. Let (G,k) be an instance of T`-CONTRACTION. If G is 2-connected then we

resolve the instance using Theorem 5.5.1 with the desired probability bound. If G is not

connected then we correctly resolve the instance using Reduction Rule 5.5.3. Moreover,

the Reduction Rule 5.5.3 can be applied in polynomial time. Hereafter, we assume that G

is connected, but not 2-connected.

In this case, we proceed by either resolving the instance using Lemma 5.5.7 or Lemma 5.5.8,

or applying the Reduction Rule 5.5.4, or applying the Branching Rule 2. We prove the

claim by induction on the measure µ = µ(G,k) = k.

If ` = 0 then we can resolve the instance using the (deterministic) algorithm for T`-

CONTRACTION in [55] in time 4knO(1). We note here that though the deterministic

algorithm presented in [55] has been mentioned to run in time 4.98knO(1) but, it uses the

algorithm for CONNECTED VERTEX COVER as a black-box, which has been improved

in [24]. This also improves the running time of the deterministic algorithm in [55].

Hereafter, we inductively assume that whenever we are dealing with an instance of T`-

CONTRACTION, we have an algorithm for T`0-CONTRACTION with the desired runtime

and success probability bound, where 0 `0 < `. We note that this does not interfere with

the probability computation since the only randomized step (recursively) in our algorithm

is when we employ Theorem 5.5.1, in which case we directly resolve the instance.

If k  0 then we correctly resolve the instance using Reduction Rules 5.5.1 and 5.5.2. If

(G,k) is a YES instance of T`0-CONTRACTION, for some 0  `0 < ` then we correctly



conclude that (G,k) is a YES instance of T`-CONTRACTION. Moreover, we obtain the

desired probability and runtime bound using the assumption of existence of an algorithm

with desired properties for every 0  `0 < `. If k > 0, and there is a vertex of degree 1

then we remove this vertex (in polynomial time) to obtain an equivalent instance using

Reduction Rule 5.5.4. If none of the above are applicable the G has a cut vertex say.

We consider the following case. If Lemma 5.5.8 is applicable then we correctly resolve the

instance in allowed running time with the desired success probability. This again relies on

the existence of an algorithm for T`0-CONTRACTION with desired properties, for every

0  `0 < `. Otherwise, we know that Branching Rule 2 must be applicable, where the

measure drops at least by 1 in each of the branches since Reduction Rule 5.5.4 is not

applicable. Moreover, when none of the Reduction Rules 5.5.1 to 5.5.4 are applicable, we

cannot resolve the instance using one of Lemma 5.5.7 and Lemma 5.5.8, and Branching

Rule 2 is not applicable then the graph is 2-connected, and we resolve the instance using

Theorem 5.5.1. Notice the number of nodes in the search tree is bounded by 2O(k), all

the reduction rules can be applied in polynomial time, and at the leaves of the search tree

and at the internal nodes we require time which is bounded by O((2
p
`+2)O(k+`) ·nO(1)).

Thus, we obtain the desired running time and probability bound.

5.6 Derandomization of the FPT Algorithm

In this section, we derandomize the algorithm presented in Section 5.5. Before proceeding

forward we define the following important object of this section.

Definition 5.6.1 (Universal Family). A (n,k,q)-universal family is a collection F , of

functions from [n] to [q] such that for each S✓ [n] of size k and a function f : S! [q], there

exists function f 2F such that f |S ⌘ f .

Here, f |S denotes the function f when restricted to the elements of S. For q = 2, the

universal family defined above is called an (n,k)-universal set [81]. Hence, (n,k,q)-



universal family is a generalization of (n,k)-universal set. The main result of this section

is the following theorem (Theorem 5.6.1), which we use to derandomize the algorithm

presented in Section 5.5.

Theorem 5.6.1. For any n,k,q� 1, one can construct an (n,k,q)-universal family of size

O(qk · kO(k) · logn) in time O(qk · kO(k) ·n logn).

Before proceeding to the proof of Theorem 5.6.1, we state how we use it to derandomize

the algorithm presented in Section 5.5. Let (G,k) be an instance of T`-CONTRACTION.

Assume that (G,k) is a YES instance of T`-CONTRACTION, and let F be one of its solution.

Furthermore, let T = G/F , where T 2 T` and W be the T -witness structure of G, and

f : V (G)! [2
p
`+ 2] be a W -compatible coloring of G. Recall that our randomized

algorithm starts by coloring vertices in G uniformly and independently at random, and then

uses this coloring to extract a witness structure out of each color classes. We then argued

that any random coloring is “equally good” as that of f with sufficiently high probability,

which is given by a function of k (and `). To derandomize this algorithm, we construct a

family F of (coloring) functions from [n] to [2
p
`+2]. We argue that one of the colorings

in the family that we compute is “equally good” as that of f . Recall that the number of

vertices which we need to be colored in a specific way for a coloring to be W -compatible

is bounded by 6k+8` (see Definition 5.5.1 and Theorem 5.5.1). Let S be the set of vertices

in G which needs to be colored in a specific way as per the requirements of Definition 5.5.1.

We can safely assume that |S|= 6k+8`. If this is not the case we can add arbitrary vertices

in S to ensure this. Notice that any coloring f of G such that f |S = f |S also satisfies

the requirements of Definition 5.5.1. Let F be an (n,6k+8`,2
p
`+2)-universal family

constructed using Theorem 5.6.1. Instead of using random coloring in the algorithm

presented in Section 5.5, we can iterate over functions in F . Notice that we do not know S

but for any such S, we are guaranteed to find an appropriate coloring in one of the functions

in F , which gives us the desired derandomization of the algorithm.

In rest of the section, we focus on the prove of Theorem 5.6.1. Overview of the proof is



as follows: Let S be a set of size k in an n-sized universe U . We first reduce this universe

U to another universe U 0 whose size is bounded by k2. We ensure that all elements of S

are mapped to different elements of U 0 during this reduction. Let Y be the range of S in

U 0. We further partition U 0 into logk parts such that Y is almost equally divided among

these partition. In other words, each partition contains (roughly) k/ logk many elements

of Y . For each of these parts, we explicitly store functions which represents all possible

q-coloring of elements of Y in this partition. Finally, we “pull back” these functions to

obtain a coloring of S.

Definition 5.6.2 (Splitter [81]). An (n,k,q)-splitter F is a family of functions from [n] to

[q] such that for every set S✓ [n] of size k there exists a function f 2F that splits S evenly.

That is, for every 1 z,z0  q, | f�1(z)\S| and | f�1(z0)\S| differ by at most 1.

Lemma 5.6.1. For every 1 k,q n there is a family of (n,k,q)-splitter of size O(nO(q))

which can be constructed in the same time.

Proof. Let x0 = 0 and xq = n. For every choice of q�1 elements in [n] such that 1 x1 <

x2 < · · ·< xq�1  n define a function f : [n]! [q] as follows. For x 2 [n] we set f (x) = j

if x j�1 < x x j where j 2 [q]. This family has size
� n

q�1
�
, and can be constructed in time

O(nO(q)).

Following is another well known result for construction of splitter when q = k2. We use

this result to reduce the size of the universe.

Proposition 5.6.1 ([81]). For any n,k � 1 one can construct an (n,k,k2)-splitter of size

O(kO(1) logn) in time O(kO(1)n logn).

Next, we look at the k-RESTRICTION problem defined by Naor et al. [81]. Before defining

the problem, we define some terminologies that will be useful. For a fixed set of alphabets,

say {1,2, . . . ,b} and a vector vector V , which is an ordered collection of alphabets, the

length of V is the size of the collection. We represent n length vector V as (v1,v2, . . . ,vn).



For a positive integer i 2 [n], V [i] denotes the alphabet at the ith position of V . Similarly,

for an (index) set S✓ [n], V [S] denotes the |S| sized vector obtained by taking alphabet at

ith position in V , for each i 2 S. In other words, if S = {i1, i2, . . . , ik} for i1 < i2 < · · ·< ik,

then V [S] = (V [i1],V [i2], . . . ,V [ik]). An input to the k-RESTRICTION problem is a set

C = {C1,C2, . . . ,Cm} called as a k-restrictions, where Cj ✓ [b]k for j 2 [m] and an integer

n. Here, [b]k denotes the set of all possible vectors of length k over [b], and m denotes the

size of the k-restrictions. We say that a collection V of vectors obeys C if for all S✓ [n]

which is of size k and for all Cj 2 C , there exists V 2 V such that V [S] 2Cj. The goal

of k-RESTRICTION problem is to find a collection V of as small cardinality as possible,

which obeys C . Let c = min j2[m] |Ci|, and let T be the time needed to check whether or

not the vector V is in Cj. We next state the result of Naor et al. [81], which will be useful

for proving Theorem 5.6.1.

Proposition 5.6.2 (Theorem 1 [81]). For any k-RESTRICTION problem with b n, there

is a deterministic algorithm that outputs a collection obeying k-restrictions, which has

size at most (k logn+ logm)/ log(bk/(bk � c)). Moreover, the algorithm runs in time

O
�bk

c
�n

k
�
·m ·T ·nk�. Here, b is the size of the alphabet set, m is the size of the k-restrictions,

n is the size of the vectors in the output set, and c is the size of the smallest collection in

the k-restrictions.

Notice that a function from [n] to [q] can be seen as an n-length vector over the alphabet

set [q]. Consider the case when each Cj contains exactly one vector of length k over [q],

i.e. C = {{C} |C 2 [q]k}, m = qk, c = 1, and T = O(n). The output of k-RESTRICTION

on this input is exactly an (n,k,q)-universal family. Therefore, we obtain the following

corollary.

Corollary 5.6.1. For any n,k,q� 1, one can construct an (n,k,q)-universal family of size

O(qk · k · (logn+ logq)) in time O(qk ·nO(k)).

Notice that we can not directly employ Corollary 5.6.1 to construct the desired family,



since its running time is O(qk ·nO(k)). Therefore, we carefully use splitter to construct an

(n,k,q)-universal family to obtain the desired running time.

Proof of Theorem 5.6.1. For the sake of clarity in the notations, we assume that logk

and k/ logk are integers. Let A be a (n,k,k2)-splitter obtained by Proposition 5.6.1.

Let B be a (k2,k, logk)-splitter obtained by Lemma 5.6.1. Let D be a (k2,k/ logk,q)-

universal family obtained by Corollary 5.6.1. We construct F as follows. For every

function fa in A , fb in B, and logk functions g1,g2, . . . ,glogk in D , we construct a tuple

f = ( fa, fb,g1,g2, . . . ,glogk), and add it to F . We note here that g1,g2, . . . ,glogk need not

be different functions. For f 2F , we define f : [n]! [q] as follows. For x 2 [n], we have

f (x) = gr( fb( fa(x))), where r = fb( fa(x)).

We first argue about the size of F and the time needed to construct it. Notice that |F |

|A ||B||D |logk. We know |A | kO(1) logn, |B|O(kO(logk)) and |D | qk/ logkkO(k/ logk)

by Proposition 5.6.1, Lemma 5.6.1, and Corollary 5.6.1, respectively. This implies that

|F |2O(qk ·kO(logk) ·logn). Note that A ,B,D can be constructed in time O(kO(1)n logn),

O(kO(logk)), and O(qk · kO(k/ logk)), respectively. This implies that time required to con-

struct F is bounded by O(qk · kO(k) ·n logn).

It remains to argue that F has the desired properties. Consider S ✓ [n] of size k and

f : S! [q]. We prove that there exists a function f 2F such that f |S⌘ f . By the definition

of splitter, there exists fa 2A such that fa evenly splits S (see Definition 5.6.2). Since

|S|< k2, for every y2 [k2], | f�1
a (y)\S| is either 0 or 1. Let Y = {y1,y2, . . . ,yk} be a subset

of [k2] such that y1 < y2 < · · ·< yk and | f�1
a (yi)\S|= 1, for all i 2 [k]. For j = k/ logk,

we mark every jth element in set Y marking logk�1 indices altogether. In other words,

construct a subset Y 0 of Y of cardinality logk�1 such that Y 0= {y1 j,y2 j,y3 j . . . ,y(logk�1) j}.

We use the set Y 0 to partition [k2] in a way that every partition contains almost k/ logk many

elements of Y . Let y0 = 0 and y(logk) j = k2 and define set Yr = {y 2 Y | yr�1 < y yr} for

r 2 [logk]. Recall that a B is (k2,k, logk)-splitter family obtained by Lemma 5.6.1. By

construction, there exists a function fb which corresponds to subset Y 0 of logk�1 many



indices. In other words, there is a function fb such that f�1
b (r) contains all the elements in

Yr, for each r in [logk]. We note that size of f�1
b (r) could be as large as k2. Recall that D is

a (k2,k/ logk,q)-universal family. Therefore, for every r 2 [logk] there exists gr 2D such

that gr|Yr ⌘ f |Yr . Consider a function f = ( fa, fb,g1,g2, . . . ,glogk) in F where fa, fb and

gr satisfies the property mentioned above. The function fa is bijective on S and f (S) = Y .

The function fb partitions Y into logk many parts by mapping Y into Y1,Y2, . . . ,Ylogk. For

each Yr there exists a function gr which gives the desired coloring of elements in Yr and

hence for the elements in S. Since we considering all possible combinations of fa, fb

and logk functions in D , there exists a function f such that f |S ⌘ f , which proves the

theorem.

5.7 Conclusion

We continue the study of a problem of contracting given graph into a graph class which

is generalization of trees. For an integer `, we define superclass of trees, denoted by T`,

as collection of graphs which can be obtained from a tree by adding at most ` edges. We

prove that T`-CONTRACTION does not admit a polynomial kernel when parameterized by

solution size. We also proved that the additional parameter ` is not useful to get polynomial

kernel for this problem. But this parameter is useful to get an a-lossy kernel of polynomial

size. We presented an FPT algorithm to solve this problem.



Chapter 6

Out-Tree Contraction

6.1 Introduction

In this chapter, we study contraction problem on directed graphs. An out-tree, informally

speaking, is a rooted tree in which each edge is directed away from root. We study the

problem of contracting a given directed graphs into an out-tree. Formally, the problem is

defined as follows.

OUT-TREE CONTRACTION Parameter: k

Input: A digraph D and an integer k

Question: Is it possible to obtain an out-tree from G with at most k edge contractions?

In Section 6.4, we show that this problem is NP-Hard. This reduction also implies that

it does not admit a polynomial kernel when parameterized by k. As in case of TREE

CONTRACTION and CACTUS CONTRACTION, we study this problem with number of

leaves in resultant out-tree as additional paramter. For the following problem, we present a

kernel with O(k2 + k`) vertices and arcs and prove that this kernel is optimal.
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BOUNDED OUT-TREE CONTRACTION (BOUNDED OTC) Parameter: k+ `

Input: A digraph D and integers k,`

Question: Is it possible to obtain an out-tree which has at most ` leaves, from G with

at most k edge contractions?

We address OUT-TREE CONTRACTION as a candidate problem to show an example of

lossy kernelization for contractions in directed graphs contractions. Given a digraph D

on n vertices, an integer k and an approximation parameter a > 1, we present an a-lossy

kernel which runs in time nO(1) time and outputs a digraph D0 on O(k2d+1) vertices and

an integer k0 such that for every c > 1, a c-approximate out-tree contraction solution for

(D0,k0) can be turned into a (ca)-approximate out-tree contraction solution for (G,k) in

nO(1). Here d = d a
a�1e.

Kernel presented in this chapter for BOUNDED OUT-TREE CONTRACTION is based work

in [1] whereas lossy kernel for OUT-TREE CONTRACTION is presented in [69].

6.2 Preliminaries

For a directed graph (or digraph) D, by V (D) and A(D) we denote the sets of vertices

and directed edges (arcs) in D, respectively. Vertex u is said to be adjacent with vertex

v in D if there is an arc uv 2 A(D) and u,v are said to be endpoints of the arc uv. For

v 2 V (D), N�D (v) denotes the set {u 2 V (D) | uv 2 A(D)} of its in-neighbors and N+
D (v)

denotes the set {u 2 V (D) | vu 2 A(D)} of its out-neighbors. The neighbourhood of a

vertex v 2V (D) is the set ND(v) = N+
D (v)[N�D (v). The closed neighbourhood of a vertex

is NG[v] = NG(v)[ {v}. The in-degree and out-degree of a vertex v, denoted by d�D (v),

d+
D (v), is |N�D (v)| and |N+

D (v)| respectively. The (total) degree of v, denoted by dG(v), is

the sum of its in-degree and out-degree. The subscripts in the notation for neighbourhood

and degree is omitted if the context is clear. For F ✓ A(D), V (F) denotes the set of

endpoints of arcs in F .



For every digraph we associate an underdirected graph, called underlying graph obtained

by forgetting the direction of arcs. Formally, for a digraph D, underlying graph GD is

defined as V (GD) = V (D) and E(GD) = {uv| uv 2 A(D) or vu 2 A(D)}. A digraph is

connected (disconnected, 2-connected) if its underlying undirected graph is connected

(disconnected, 2-connected). A spanning tree of a digraph is defined as set of arcs F

such that V (F) = V (G) and unerlying graph induced on V (F) is a tree. A sequence

P = (v1, · · · ,vq) of distinct vertices of D is called a directed path in D if v1v2, · · · ,vq�1vq 2

A(D). Path P is called induced path if d�(vi) = 1 for all i 2 {2,3, . . . ,q} and d+(vi) = 1

for all i 2 {1,2, . . . ,q�1}.

An out-tree T is a digraph where each vertex has in-degree at most one and underlying

undirected graph is a tree. A vertex v of an out-tree is called a leaf if d�(v) = 1 and

d+(v) = 0. The root of an out-tree is the unique vertex that has no in-neighbour. The

number of leaves in an out-tree is the number of vertices whose out-degree is zero.

For a digraph D, contracting an arc e = uv in D is deletion of vertices u,v in D and

the addition of a new vertex w and adding arcs to w from in-neighbors of u and v apart

from u,v, and from w to out-neighbors of u and v apart from u,v. The resulting graph is

denoted by D/e. Formally V 0 = (V (D)\{u,v})[{w} with A(D/e) = {xy | x,y 2V 0,xy 2

A(D)}[{wx| x 2 (N+
D (u)[N+

D (v))\{u,v}}[{xw| x 2 (N�D (u)[N�D (v))\{u,v}}.

The notion of witness structures and witness sets are extended to digraphs as follows. We

say digraph D is contractible to digraph H if there exists an onto function y : V (D)!V (H)

such that following properties hold.

• For any vertex h in V (H), underlying graph GD[W (h)] is connected, where set

W (h) := {v 2V (G) | y(v) = h}.

• For any two vertices h,h0 in V (H), arc hh0 is present in H if and only if there exists

an arc in D with one end point in W (h) and another in W (h0).

For a vertex h in H, set W (h) is called witness set associated with vertex h. We define



H-witness structure of D, denoted by W , as collection of all witness set. Formally,

W = {W (h) | h 2 V (H)}. Witness structure W is a partition of vertices in D. If a

witness set contains more than one vertex then we call it big witness-set, otherwise it is

small/singleton witness set. For a fixed H-witness structure, let F be union of spanning

trees of all witness sets. We say digraph D is k-contractible to H if cardinality of F is at

most k. Following observation is direction consequence of definitions.

Observation 6.2.1. If digraph D is k-contractible to digraph H then following statements

are true.

• |V (D)| |V (H)|+ k.

• For any witness set W in a H-witness structure of G, cardinality of W is at most

k+1.

• Any H-witness structure of D has at most k big witness sets.

• For a fixed H-witness structure, the number of vertices in D which are contained in

big witness sets is at most 2k.

Digraph obtained by subdividing an arc of an out-tree results in another out-tree. The

operation of subdividing an arc uv in D is consists of deletion of the arc uv and addition of

a new vertex w as an out-neighbor of u and an in-neighbor of v.

Observation 6.2.2. Consider an out-tree T with at most ` leaves. Let T 0 be the out-tree

obtained from T by one of the following operations.

1. subdividing an arc;

2. contracting an arc;

Then, T 0 is an out-tree with at most ` leaves.

Proof. Proof of Part (1) Let t1t2 be an arc in T which is subdivided to obtain graph T 0.

Let t⇤ be newly added vertex while subdividing arc t1t2. Note that d�T (t) = d�T 0(t) and

d+
T (t) = d+

T 0(t) for any vertex in t in V (T 0)\{t⇤} = V (T ). Also, d�T 0(t
⇤) = d+

T 0(t
⇤). This



also implies that t⇤ is not a leaf in T 0. Hence the number of leaves in T and T 0 is same.

Every vertex in T 0 has in-degre at most one. If there exists a cycle in GT 0 which passes

through t⇤ then the same cycle passes through t1, t2. This implies there exists a cycle in GT

which passes through t1, t2. This contradicts the fact that GT is an underlying graph of an

out-tree. Hence T 0 is an out-tree with at most ` leaves.

Proof of Part (2) Let t1t2 be an arc in T which is contracted to obtain graph T 0. Let t⇤

be newly added vertex while contracting arc t1t2. Note that no vertex in T is has an arc

to or from both t1 and t2. This implies d�T (t) = d�T 0(t) and d+
T (t) = d+

T 0(t) for any vertex

in t in V (T 0) \ {t⇤} = V (T ) \ {t1, t2}. Moreover, by contruction, d�T (t1) = d�T 0(t
⇤) and

d+
T (t2) = d+

T 0(t
⇤). Hence T 0 is an out-tree. Also, t⇤ is a leaf in T 0 if and only if t2 is a leaf

in T . This implies T 0 is an out-tree with at most ` leaves.

In the following lemma, we argue that if D is k-contractible to an out-tree and there exists

a long induced path then no minimal solution is incident on any vertex of this path.

Lemma 6.2.1. Suppose D has a directed path P = (v0,v1, . . . ,vq,vq+1) with q > k+1 and

d�(v) = d+(v) = 1 for each i 2 [q]. Let F be a set of arcs of D such that |F | k and D/F

is an out-tree with at most ` vertices. If F is minimal then it does not contain an edge

incident on V (P)\{v0,vq+1}.

Proof. Assume that F contains at least one such arc. There are at least k+ 1 arcs with

endpoints in V (P)\{v0,vq+1}. Since |F | k, there exists vi in {v0,v1, . . . ,vq,vq+1} such

that vi�1vi 2 F and vivi+1 /2 F . Let W denote the corresponding T -witness structure of

D where T = D/F . Now, let t and t 0 denote the vertices of T such that {vi�1,vi}✓W (t)

and vi+1 2W (t 0). If t = t 0 then vi�1,vi,vi+1 2W (t) and vivi+1 /2 F . As GD[W (t)] is

connected, there must be a path connecting vi,vi+1 in GD which is entirely contained in

W (t). Any path between vi,vi+1 which does not contain edges vivi+1 must contain a path

from vi to v0 and the path from vq+1 to vi+1. It implies that W (t) contains the vertices of

the subpath (vi+1, . . . ,vq,vq+1) and the vertices of the subpath (v0,v1, . . . ,vi�1,vi). This



implies |W (t)| > k + 1 which is a contradiction to the fact that T is obtained from D

by contracting at most k edges. Hence t 6= t 0. We now focus on W (t) which, as argued

above, does not contain vi+1. Vertex vi is not a cut vertex in GD[W (t)] as there is exactly

one edge incident on it. This implies GD[W (t) \ vi] is a connected graph. Define W 0 =

(W \{W (t)})[{{vi}}[{W (t)\{vi}}. Graph D/(F \{vi�1vi}) is isomorphic to graph

obtained by subdividing the arc tt 0 in the out-tree T . Thus, W 0 is an out-tree witness

structure of D leading to the solution F \ {vi�1vi} which contradicts the minimality of

F .

Note that in the above proof, we did not use the fact that T has at most ` leaves. Hence this

claim is true for any out-tree. We mention the result explicitely in the following lemma.

Lemma 6.2.2. Suppose D has a directed path P = (v0,v1, . . . ,vq,vq+1) with q > k+ 1

and d�(v) = d+(v) = 1 for each i 2 [q]. Let F be a set of arcs of D such that |F |  k

and D/F is an out-tree. If F is minimal then it does not contain an edge incident on

V (P)\{v0,vq+1}.

6.3 Kernel for BOUNDED OUT-TREE CONTRACTION

In this section we design a polynomial kernel for BOUNDED OUT-TREE CONTRACTION.

Our algorithm is inspired by kernelization algorithm for PATH CONTRACTION presented

in [55].

Let (D,k,`) be an instance of BOUNDED OTC. Without loss of generality we assume that

D is connected, else (D,k,`) is a NO instance. Recall that D is connected if its underlying

undirected graph GD is connected.

The algorithm has only one reduction rule.

Reduction Rule 6.3.1. Let P = (v0,v1, . . . ,vq,vq+1) be an indueced path in D with q >

k+ 3 and d�(v) = d+(v) = 1 for each i 2 [q]. Then contract the arc vq�1vq and let the



Figure 6.1: Different between reduction rules in case of directed and un-directed graphs.

resulting instance be (D0,k,`), where D0 = D/{vq�1vq}.

We note that unlike in case of undirected graph (Reduction Rule 3.3.1), it is not enough to

find an cut arc whose remove results into two connected components of size at least k+1.

We might still have to contract this edge because of direction constraints. See Figure 6.1.

Lemma 6.3.1. Reduction rule 6.3.1 is safe and can be applied in polynomial time.

Proof. We need to show that (D,k,`) is a YES instance of BOUNDED OTC if and only

if (D0,k,`) is a YES instance of BOUNDED OTC. Clearly, given D and P one can apply

Reduction Rule 6.3.1 in polynomial time.

In the forward direction, let (D,k,`) be a YES instance of BOUNDED OTC and let

F ✓ A(D) such that |F |  k and T = D/F is an out-tree with at most ` leaves. By

Observation 6.2.2, we know that D/(F[{vq�1vq}) is also an out-tree with at most ` leaves.

However, D/(F [{vq�1vq}) = (D/{vq�1vq})/(F \{vq�1vq}) = D0/(F \{vq�1vq}). This

implies that D0/(F \{vq�1vq}) is an out-tree with at most ` leaves and |F \{vq�1vq}|

|F | k. Hence, it follows that (D0,k,`) is a YES instance of BOUNDED OTC.

In the reverse direction, let (D0,k,`) be a YES instance of BOUNDED OTC and let F 0 ✓

A(D0) of size at most k such that T 0 = D0/F 0 is an out-tree with at most ` leaves. Let

W 0 be a T 0-witness structure of D0. Let v⇤q�1 be the vertex obtained after contracting

the arc vq�1vq. Let P⇤ be the path from v0 to vq+1 in graph D0. In other words, P⇤ is a

path obtained from P by contracting edge vq�1vq. Since P⇤ is a path of size k+ 2, by

Lemma 6.2.1, no edge in F 0 is incident on vertices in P⇤. This implies that if W (t⇤) is the



Figure 6.2: For left figure, please refer to Lemma 6.3.2. Vertices ta, td are marked as they
are part of T1[T3. Vertices tc, td are marked because they are end-points of a path. Vertex
te marked as W (te) is a big witness set. For figure on right, please refer to Lemma 6.3.3.

witness set in W 0 which contains v⇤q�1 then W (t⇤) is a singleton witness set. Moreover,

every vertex in V (P)\{vq�1,vq} is in singlton witness set in W 0. Let t1, t2 be two vertices

in T 0 which are in-neighor and out-neighor, respectively, of t⇤.

Consider a witness structure W obtained from W 0 by removing {v⇤q�1} and adding two

sets {vq�1},{vq}. Formally, W = (W 0 \{v⇤q�1})[{{vq�1},{vq}}. Note that W partitions

V (D) and for each W 2W , D[W ] is connected. Let T be the digraph for which W is a

T -witness structure of D. We argue that T is an out-tree with at most ` edges. Note that T

can be obtained from T 0 by subdividing edge t⇤t2. By Observation 6.2.2, T is an out-tree

with at most ` leaves. This completes the proof of the lemma.

For simplicity, by (D,k,`) we denote an instance of BOUNDED OTC on which the Reduc-

tion Rule 6.3.1 is not applicable.

Lemma 6.3.2. Let (D,k,`) be a YES instance of BOUNDED OTC on which Reduction

Rule 6.3.1 is not applicable. Then, D has at most O(k2 + k`) vertices.

Proof. Let (D,k,`) be a YES instance and F ✓ A(D) be a solution such that T = D/F is an

out-tree with at most ` leaves. Let W be a T -witness structure of a digraph D. For counting

the number of vertices in D, we first count the vertices in T . Towards this we employ a

miarking scheme. By M we denote the set of vertices in T that have been marked by our



scheme. Let X be the set of vertices in T which corresponds to big witness sets in W . We

mark all the vertices in X . Let T1,T3 denote the set of vertices in T which have total degree

exactly one and at least three, respectively in T . We mark all the vertices in T1 and T3.

Note that |T1| `+1. Here, we have |T1| `+1, rather than |T1| `, to take into account

the case when the root of T has total degree 1. Also, |X | k and |T3| |T1|. Therefore,

it follows that currently the number of vertices in M is upper bounded by k+2`+2. See

Figure 6.2.

Let P be the set of induced maximal (directed) paths in T [V (T )\M]. Observe that, by

viewing each path in P as an edge between vertices in M we get a tree on M. Thus,

|P| |M|�1. For each P 2P , we additionally mark two of the endpoints in P. Clearly,

this increases the size of M by at most 2|P|. However, even now the size of |M|=O(k+`).

Note that each of the unmarked vertices have in-degree and out-degree exactly one. Since

Reduction Rule 6.3.1 is not applicable, therefore length of each of the maximal paths

comprising of unmarked vertices is bounded by O(k). But then, the number of vertices in T

is bounded by O(k2+k`). As T is obtained using at most k edge contractions from digraph

D, it follows from Observation 6.2.1 that |V (D)| |V (T )|+k. Since |V (T )|=O(k2+k`),

this implies that |V (D)|= O(k2 + k`).

Lemma 6.3.3. Let (D,k,`) be a YES instance of BOUNDED OTC on which Reduction

Rule 6.3.1 is not applicable. Then, D has at most O(k2 + k`) arcs.

Proof. Let (D,k,`) be a YES instance and F ✓ A(D) be a set of edges such that T = D/F

is an out-tree with at most ` leaves. Let W be a T -witness structure of a digraph D. Let X

be the set of vertices in D to which an edge in F is incident to. Notice that |X | 2k. The

number of arcs with both endpoints in X is bounded by O(k2). Observe that the underlying

undirected graph of D�X is a forest with at most O(k2 + k`) vertices. This implies the

number of arcs in D that have both endpoints in D�X is bounded by O(k2+k`). The only

arcs that remain to be counted are those with one endpoint in D�X and other in X . For a

vertex x 2 X , let tx be the vertex in V (T ) such that x 2W (tx). Also let N̂ be the neighbors



of tx in T . Observe that |N̂|  `+ 1. This together with Observation 6.2.1 implies that

|[t2N̂ W (t)| is bounded by 2k+ `+1. Therefore, the maximum degree of a vertex in X

is bounded by O(k+ `). This implies that the number of arcs with one end point in X

and other in D�X is bounded by O(k2 + k`). We have counted all types of arcs in D and

hence, we conclude that the number of arcs in D is bounded by O(k2 + k`).

We are now ready to prove the main theorem of this section.

Theorem 6.3.1. BOUNDED OTC admits a kernel of size O(k2 + k`).

Proof. Given an instance (D,k,`), the algorithm repeatedly applies Reduction Rule 6.3.1,

if applicable. By Lemma 6.3.1, we know that Reduction Rule 6.3.1 is safe and can be

applied in polynomial time. Each application of reduction rule decreases the number of

arcs and thus it can be applied only |A(D)| times. If Reduction Rule 6.3.1 is not applicable

then either the size of the instance is bounded by O(k2 + k`), in which case we return a

kernel of desired size. Otherwise, the algorithm correctly concludes that the instance is a

NO instance of BOUNDED OTC. The correctness of this step follows by Lemmas 6.3.2

and 6.3.3.

6.4 Kernel Lower Bound for BOUNDED OUT-TREE CON-

TRACTION

In this section we present a parameter preserving reduction from given an instance

(G,R,B,k) of RBDS to an instance (D0,k0,`0) of BOUNDED OUT-TREE CONTRACTION.

This reduction is same as the one presented in Section 3.4. We use this reduction to

prove three things. First, we show that OUT-TREE CONTRACTION is NP-Hard. Second,

OUT-TREE CONTRACTION parameterized by solution size k does not admit a polynomial

kernel assuming NP 6✓ coNP/poly. Third, the kernel presented for BOUNDED OTC in

Section 6.3 is optimal under the same assumption.



Figure 6.3: Kernel lower bound for BOUNDED OTC. For the sake of clarity, figure does
not show directions for all arcs.

Reduction. Let (G,R,B,k) be an instance of RBDS. We construct graph G0 in the

following way. See Figure 6.3. Initialize V (G0) = V (G) and E(G0) = {br | b 2 B,r 2

R and br 2 E(G)}. Add a vertex a in V (G0) and for every vertex r in R, add an edge ar to

E(G0). For every vertex bi in B, add three new vertices xi,yi,zi to V (G0) and arcs bixi, biyi,

bizi to E(G0). Define set X := {xi,yi,zi | bi 2 B}. We construct diagraph D0 from G0 by

adding directions to edegs. For every vertex x in X , add an edge ax to E(G0). For every

edge incident on a, add direction from a to other end point. Similarly, for any end incident

on vertices in B, add direction from vertex in B to other end point. Set k0 = |B|+ k and

`0 = |R|+3|B|� k.

In the following lemma, we prove some structural properties of a solution to instance

(D0,k0,`0).

Lemma 6.4.1. Let (D0,k0,`0) be a YES instance of BOUNDED OUT-TREE CONTRACTION.

There exists a solution F⇤ ✓ E(D0) of size at most k0 such that for each bi in B one of the

following holds.

1. bi is in W (ta) or

2. xi,yi,zi are in W (ta).



Here, W (ta) is the witness set containing a in (D0/F⇤)-witness structure of D0.

Proof. Let F be a set of arcs of size at most k in D0 such that D0/F is an out-tree with

at most ` leaves. Let W be a T -witness structure of D0 where T = D0/F . Recall that TG

denotes the underlying undirected graph of T . Since T is an out-tree, TG is a tree. Let

ta be the vertex in V (T ) such that W (ta) contains a. For a vertex bi in B, if bi is in W (ta)

then the lemma holds. Consider a case when bi is not in W (ta). There exists a vertex tb,

different from ta, such that bi is contained in W (tb). Similarly, consider vertices tx, ty and tz

such that xi,yi and zi are contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two of {tx, ty, tz} can be same

as only neighbors of xi,yi,zi are a and bi, and by definition, a witness set needs to be

connected. But then, by construction, TG[{ta, tx, ty, tz, tb}] is a cycle, contradicting the

fact that TG is a tree. Therefore, at least one of {tx, ty, tz} is same as ta or tb. Without

loss of generality, let ts 2 {ta, tb}. This implies there is an edge tatb in TG. If ty or tz is

not equal to ta or tb then there exist a cycle contradicting that TG is a tree. Suppose, all

tx, ty, tz are same as ta, then the second condition of the lemma is satisfied. Consider a

case when at least one of tx, ty, tz, say tx, is not same as ta, which implies tx = tb. By

construction, the only arcs incident to xi in D0 are axi and bxi. This implies that bxi 2 F

and W (t 0b) = W (tb) \ {xi} is connected. Since axi 2 A(D0), set W (t 0a) = W (ta)[ {xi} is

connected. Thus, replacing W (tb) by W (t 0b) and W (ta) by W (t 0a) in W yields another

T -witness structure of D0. Furthermore, the spanning forest of the new witness structure,

F 0 = (F \{bxi})[{axi} has same cardinality as that of F . A similar swap can be carried

out if ty = tb or tz = tb. This concludes the proof.

In the following lemma, we argue that the reduction is safe.

Lemma 6.4.2. (G,R,B,k) is a YES instance of RBDS if and only if (D0,k0,`0) is a YES

instance of BOUNDED OTC.

Proof. Let (G,R,B,k) be a YES instance of RBDS and S be a subset of R of size k such



that S dominates every vertex in B. If S contains less than k vertices, then we take any

of its superset of size exactly k. For each vertex b in B, we fix a vertex rb in S such that

b is neighbor of rb in G. If there are multiple options for selecting rb then we arbitrarily

choose one of them. Let F = {brb | b 2 B}[ {ar | r 2 S}. Note that |F | = |B|+ k = k0

and D0[V (F)] is connected. Let T be the digraph obtained from D0 by contracting edges

in F . Let W be a T -witness structure of D0. Consider a vertex ta such that a is in W (ta).

Since all the edges in F are contracted to one vertex, set S[B is also contained in W (ta).

Recall that R[X is an independent set in GD0 . No vertex in (R[X)\S is incident on edge

which has been contracted. In other words, these vertices form singleton witness sets in

W . Since R[X is an independent set in GD0 , it follows that set TRS = {tv | v 2 (R[X)\S}

is an independent set in GT of size |R|+3|B|� k = `0. Moreover, for all v in X 0, arc av is

present in A(T ). Therefore, T is a out-tree with `0 leaves. This implies that F is a solution

to (D0,k0,`0).

In the reverse direction, let (D0,k0,`0) be a YES instance of BOUNDED OUT-TREE CON-

TRACTION. By Lemma 3.4.1, there exists a solution F⇤ of size at most k0 such that for every

bi in B, either bi is in W (ta) or all of xi,yi,zi are in W (ta). Here, W is the D0/F⇤-witness

structure of D0 and ta in V (D0/F⇤) such that vertex a is contained in witness set W (ta) in

W .

We partition vertices of B into two parts depending on whether they belong to W (ta) or

not. Define set Bg = {bi 2 B | bi 2W (ta)}. Let Ra = R\W (ta). Partition Bg into B1 and

B2, depending on whether or not they have a neighbor in Ra. Formally, B1 = {bi 2 Bg |

N(bi)\Ra 6= /0} and B2 = Bg \B1. For a vertex bi in B2 at least one of xi,yi,zi is present

in W (ta) as there is no arc between bi and a. Note that, by construction, xi,yi,zi is not

adjacent with b j for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB2 be set of vertices in X \W (ta)

which provides adjacency between a and bi for some bi in B2. For every bi which is in

B\Bg, by Lemma 6.4.1, xi,yi,zi are present in W (ta).



We can partition W (ta) \ {a} into following four parts: vertices in B (captured by Bg);

vertices in R (captured by Ra); vertices in X which are present because corresponding

bi is not present (captured by B\Bg); and vertices in X which are present because they

are needed to provide connectivity between bi and a (captured by XB2). This implies

|Bg|+3|B\Bg|+ |Ra|+ |XB2|+ |{a}| |W (ta)|.

We construct a solution S for RBDS by taking vertices in Ra and two more sets Sg and Sw.

Informally, Sg dominates vertices in B2 and Sw dominates vertices in B\Bg. We construct

Sg in following way. For every vertex bi in B2, arbitrary pick one of its neighbor in R

and add it to Sg. Note that |Sg|  |XB2|. We create another set Sw in the following way.

Initialize Sw to an empty set. For each b in B\Bg, we add an arbitrary neighbor of b in R

to Sw. This implies |Sw| |B\Bg|. As cardinality of F⇤ is at most k+ |B|, size of W (ta) is

at most |W (ta)| k+ |B|+1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw|  k and every vertex in B is

dominated some vertex in Ra[Sg[Sw. This concludes the proof.

RED BLUE DOMINATING SET is NP-Complete [44] and it does not have a polynomial ker-

nel when parameterized by (|B|,k) [32]. This implies that classical problem of OUT-TREE

CONTRACTION is NP-Complete. The existence of the polynomial parameter transforma-

tion described above and Proposition 2.3.1 implies following theorem.

Theorem 6.4.1. OUT-TREE CONTRACTION does not have a polynomial kernel unless

NP ✓ coNP/poly.

We now argue that kernel presented for BOUNDED OTC is optimal.

Theorem 6.4.2. BOUNDED OUT-TREE CONTRACTION does not admit a compression of

size O((k2 + k`)1�e), for any e > 0 unless NP✓ coNP/poly.

Proof. Assuming a contradiction, suppose BOUNDED OUT-TREE CONTRACTION admits

a compression into P✓ S⇤ with bitsize in O((k2 + k`)1�e), for some e > 0. This implies



that there exists an algorithm A which takes an instance I = (G,k,`) of BOUNDED OUT-

TREE CONTRACTION and in polynomial time returns an equivalent instance I0 of P with

|I0| 2 O((k2 + k`)1�e).

Let (G,R,B,k) be an instance of RBDS, where G is a graph on n vertices. Using the reduc-

tion described, we create an instance (G,k0,`0) of BOUNDED OUT-TREE CONTRACTION

with |V (G0D)| 2 O(n), |E(G0D)| 2 O(n2), k0 = k  |R| 2 O(n) and `0 = |B|+ k 2 O(n).

On the instance (G,k0,`0) we run the algorithm A to obtain an instance I of P such that

|I| 2 O((k02 + k0`0)1�e). But then we have obtained a compression of size O(n2�e) for

RBDS, contradicting Proposition 2.3.2.

Corollary 6.4.1. BOUNDED OUT-TREE CONTRACTION does not admit a kernel of size

O((k2 + k`)1�e), for any e > 0 unless NP✓ coNP/poly.

6.5 Lossy Kernel for OUT-TREE CONTRACTION

In this section, we describe a PSAKS for OUT-TREE CONTRACTION. We define param-

eterized minimization version of OUT-TREE CONTRACTION problem in the following

way.

OTC(D,k,F) =

8
><

>:

• if D/F is not an out-tree

min{|F |,k+1} otherwise

We note that the simplifying assumptions in TREE CONTRACTION, such as working with

2-connected components or the fact that leaves correspond to singleton witness sets, do

not hold anymore. At this place, our treatment of directed and un-directed graph differs.

If D has at most k+3 vertices then we already have a kernel of desired side. We assume

that input digraph has at least k+3 vertices. By definition of optimization problem, for a

set of arcs F , if D/F is an out-tree then maximum value of OTC(D,F) is k+1. Hence

any spanning tree of D is a solution of size k+1. We call it a trivial solution for given



instance. We denote a directed cycle on four vertices by C4. One need to contract at least

two edge to get an out-tree from C4. We call (C4,1) as trivial instance of OUT-TREE

CONTRACTION. If OPT(D,k) = k+ 1 then we can return (C4,1) as its a-lossy kernel.

Note that for any c-factor solution of (C4,1), solution lifting algorithm can return a trivial

solution for (G,k) which is of size k+1. If underlying undirected graph of input digraph

is not connected then we can not obtain an out-tree by edge contraction operations only.

We assume underlying undirected input graph is connected.

First reduction rule states that it is safe to remove vertices which has one in-neighbor and

zero out-neighbors. After applying this rule exhaustively, if digraph is contracted to an

out-tree then for each leaf, either it or its unique neighbor correspond to a big witness set.

Reduction Rule 6.5.1. If there is a vertex v 2V (D) with d�(v) = 1 and d+(v) = 0 then

delete v. The resulting instance is (D0,k0) where D0 = D�{v} and k0 = k.

This reduction rule can be applied in time polynomial time. Correctness of this reduction

rule is based on the observation that the digraph obtained from an out-tree by adding a new

vertex as an out-neighbor of any vertex is an out-tree.

Lemma 6.5.1. Reduction Rule 6.5.1 is 1-safe.

Proof. Consider a set F 0 ✓ A(D0) such that T 0 = D0/F 0 is an out-tree. If |F 0|� k0+1, then

the solution lifting algorithm returns a spanning tree F of D, otherwise it returns F = F 0.

If |F 0|� k0+1 then OTC(D,k,A(D)) k+1 = OTC(D0,k0,F 0). In case |F 0| k+1, let

W 0 denote the corresponding T 0-witness structure of D0. There exists a vertex ti 2V (T 0)

such that the unique neighbor of v in D is in W (ti). Define the partition of V (D) as

W = W 0 [ {{v}}. No vertex in any set W (t) 2 W 0 with t 6= ti contains a vertex that is

adjacent to v. Thus W is a D/F-witness structure of D, where D/F is the out-tree obtained

from T 0 by adding a new vertex, say tv, as out-neighbor of ti where W (tv) = {v}. Hence,

OTC(D,k,F) OTC(D0,k0,F 0).



Consider an optimum solution F⇤ to (D,k). If |F⇤|� k+1, then OPT(D,k) = k+1 and by

definition, OPT(D0,k0) k0+1 = k+1 = OPT(D,k). Consider the case when |F⇤| k.

Let W ⇤ denote the corresponding T -witness structure of D where T = D/F⇤. There exists

t 2V (T ) such that v 2W (t). If W (t) is a singleton set, then F⇤ is also a solution to (D0,k0)

and OPT(D0,k0) OPT(D,k). If W (t) is not a singleton set, there exists an arc, say e in

F which is incident on v. As v is a vertex of degree 1, the underlying undirected subgraph

of D[W (t)\{v}] is connected. Since d�(v) = 1 and d+(v) = 0, F⇤ \ e is also a solution to

(D,k) contradicting the fact that F⇤ is an optimal solution. Hence the second case does not

occur. This implies OPT(D0,k0) OPT(D,k)

Putting together two inequalities, we get OTC(D,k,F)
OPT(D,k) 

OTC(D0,k0,F 0)
OPT(D0,k0) which concludes the

proof.

Second reduction rule states if there exists a long induced path in digraph then we can find

an edge which can be safely contracted.

Reduction Rule 6.5.2. If D has a directed path P = (v0,v1, . . . ,vq,vq+1) with q > k+2

and d�(v) = d+(v) = 1 for each i 2 [q], then contract edge vq�1uq. The resulting instance

is (D0,k0) where D0 = D/{vq�1vq} and k0 = k.

This rule can be applied in polynomial time by searching for a path in the subgraph induced

on the vertices of degree two.

Lemma 6.5.2. Reduction Rule 6.5.2 is 1-safe.

Proof. Consider a minimal set F 0 ✓ A(D0) such that T 0 = D0/F 0 is an out-tree. If |F 0|�

k0+ 1, then the solution lifting algorithm returns a spanning tree F of D, otherwise it

returns F = F 0. If |F 0|� k0+1 then OTC(D,k,F) k+1 = OTC(D0,k,F 0). Otherwise,

let W 0 be a T 0-witness structure of D0. Let v⇤q�1 be the new vertex added while contracting

edge vq�1vq. Let P0 be the path obtained from P by this contraction. By Lemma 6.2.2, F 0

has no arc incident on V (P0)\{v0,vq+1}. Therefore, every vertex in V (P0)\{v0,vq+1} is



in a singleton set of W 0. Let W be a witness structure obtained from W 0 by removing

{v⇤q�1} and adding {vq�1},{vq}. If W is a T -witness structure of D then T is obtained

from T 0 by subdividing one of its edges, namely tq�1tq+1 where W (tq�1) = {v⇤q�1} and

W (tq+1) = {vq+1}. By Observation 6.2.2, T is an out-tree. Therefore, OTC(D,k,F) 

OTC(D0,k0,F 0).

Next, consider a minimal optimum solution F⇤ to (D,k). If |F⇤|� k+1 then OPT(D,k) =

k+ 1 and by definition, OPT(D0,k0)  k0+ 1 = k+ 1 = OPT(D,k). Otherwise, |F⇤| 

k and let T = D/F⇤. Let W denote the corresponding T -witness structure of D. By

Lemma 6.2.2, F⇤ has no edge incident on V (P) \ {v0,vq+1}. Therefore, every vertex

in V (P) \ {v0,vq+1} is a singleton set of W . Let v⇤q�1 be the new vertex added while

contracting edge vq�1vq. Define W 0 be a witness set obtained from W by removing

{vq�1},{vq} and adding {v⇤q�1}. If W 0 is a T 0-witness structure of D then T 0 can be

obtained from T by contracting an edge tq�1tq where W (tq�1) = {vq�1} and W (tq) = {vq}.

By Observation 6.2.2, T 0 is an out-tree. Thus, OPT(D0,k0) OPT(D,k).

Combining two inequalities, we get OTC(D,k,F)
OPT(D,k) 

OTC(D0,k0,F 0)
OPT(D0,k0) which concludes the proof.

Before applying following reduction rules, we partition V (D) into two parts. Consider a

set of vertices with out-degree zero, denoted by I. Note that there is no arc with both end

points in I. Let H =V (G)\ I. See Figure 6.4. Formally,

I = {v 2V (D) | d+(v) = 0}

H =V (D)\ I

We argue that for an instance (D,k), if D is k-contractible to an out-tree T and none of

the reduction rules mentioned above are applicable, then the number of vertices in D is

bounded by some function of k. If Reduction Rule 6.5.1 is not applicable then for every



Figure 6.4: Partition of Digraph D. See Reduction Rule 6.5.4.

leaf t in T , either t or its neighbor corresponds to big witness set. If Reduction Rule 6.5.2

is not applicable then for every path of length at least k+1 in T there exists a vertex in this

path which corresponds to a big witness set.

Lemma 6.5.3. Let (D,k) be an instance of OUT-TREE CONTRACTION where Reduction

Rules 6.5.1 and 6.5.2 are not applicable. If D is k-contractible to an out-tree then the

number of vertices in H is at most O(k2).

Proof. We first sketch proof of the Lemma. Suppose D is contractible to an out-tree T .

Let L denote the set of leaves in T . Define LS as set leaves corresponding to singleton

witness sets. By construction, every vertex in H has out-degree at least one and hence

no vertex in H is a singleton witness set corresponding to a leaf in LS. All vertices in H

(and few from I) are contained in witness sets W (t) such that t is in V (T )\LS. We bound

number of vertices in H by upper bounding the cardinality of V (T ) \Ls. Consider the

tree T 0 obtained from T by removing Ls. All leaves in T 0 corresponds to big witness sets.

There are at most k many big-witness sets. This implies upper bound on number of leaves

in T 0 and subsequently on vertices of degree at least 3 in T 0. Every vertex t of degree two

in T 0 is contained in path between ti, t j such that degrees of ti, t j are one or at least three.

We argue that these number of such paths paths and length of each path is not large. This

implies upper bound on vertices of degree two in T 0. We use these upper bounds on V (T 0)

to bound the vertices in H.



We partition vertices of an out-tree T in three parts depending on their degrees. Ver-

tices with degree one, two and at least three are contained in V1(T ),V2(T ) and V3(T ),

respectively. Formally, V1(T ) = {t 2 V (T ) | d(t) = 1}, V2(T ) = {t 2 V (T ) | d(t) = 2}

and V3(T ) = {t 2 V (T ) | d(t) � 3}. Suppose D is contractible to an out-tree T . Let W

be a T -witness structure. If a vertex t is L and t 0 is its neighbour then either |W (t)| > 1

or |W (t 0)| > 1 as otherwise Reduction Rule 6.5.1 would have been applied. Let Ls de-

note a set of leaves of T that correspond to singleton witness sets in W . Formally,

LS = {t 2 L | |W (t)|= 1}. By definition, out-degree of every vertex v 2 H is at least one.

Since for any t 2 Ls, |W (t)| = 1 and out-degree of t is zero, no vertex in H intersects

W (t). Consider a tree T 0 obtained from T by deleting all vetices in Ls. Let H 0 be set

of vertices in V (D) which are containd in W (t) for some t in V (T 0). In other words,

H 0 = {v 2V (D) | 9t 2V (T 0),v 2W (t)}. It follows that H ✓ H 0. We bound cardinality of

set H by bounding cardinality of set H 0. Recall that there are at most k big witness set in

T -witness structure of G. As |W (t)|> 1 for every leaf t in T 0, and thus |V1(T 0)| k. As

the number of vertices of at least three in a tree is upper bounded by the number of leaves,

we have |V3(T 0)| k.

Let V2 = {t 2 V2(T 0) | |W (t)| = 1}. Every vertex in V2(T 0) \V2 corresponds with a big

witness set and hence |V2(T 0) \V2|  k. Let U = V1(T 0)[V3(T 0)[ (V2(T 0) \V2). The

number of vertices in H 0 which are contained in a witness set W (t) such that t is U is

at most O(k). We now bound cardinality of V2. Every vertex t 2V2 is either the root or

an internal vertex of a path between two vertices in V1(T 0)[V3(T 0)[ (V2(T 0)\V2). The

number of such paths is at most O(k). The interval vertices of these paths have degree two

in digraph D. As the Reduction Rule 6.5.2 is not applicable, lengths of each paths are at

most k+2 which implies that |V2| is O(k2). Summarizing these bounds, the number of

vertices in H 0 and hence in H is upper bounded by O(k2).

Using Lemma 6.5.3, we can identify digraphs which are not k-contractible to an out-tree.

Reduction Rule 6.5.3. Given an instance (D,k), partition V (D) into (I,H) such that



I = {v 2 V (D) | d+(v) = 0} and H = V (D) \ I. If size of H is greater than O(k2) then

return the trivial instance (C4,1).

Lemma 6.5.4. Reduction Rule 6.5.3 is 1-safe.

Proof. Let (D,k) be an instance such that Reduction Rule 6.5.3 returns (C4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of D.

Note that for a set of edges F 0, if C4/F 0 is an out-tree then F 0 contains at least two edges.

This implies OTC(C4,1,F 0) = 2 and OPT(C4,1) = 2.

Lemma 6.5.3, if D is k-contractible to an out-tree than size of H is at most O(k2). Hence

for any set of edges F⇤ if D/F⇤ is an out-tree than size of F⇤ is at least k+1. This implies

OPT(D,k) = k+1. For a spanning tree F of D, OTC(D,k,F) = k+1.

Combining these values, we get OTC(D,k,F)
OPT(D,k) = k+1

k+1 = 2
2 = OTC(C4,1,F 0)

OPT(C4,1)
. This implies if F 0 is

c-factor approximate solution for (C4,1) then F is 1-factor approximate solution for (D,k).

This concludes the proof.

We argue that vertex v and its k+1 false twins in I forces some vertices to be in one witness

set. By applying Reduction Rule 6.5.4, we ensure that we store just enough vertices which

enforces such condition. Following reduction rule states that we can delete all but k+1

vertices in D which has identical neighborhood.

Reduction Rule 6.5.4. If there are vertices v,v1,v2, . . . ,vk+1 2 I such that N�(v) =

N�(v1) = · · · = N�(vk+1), then delete v. The resulting instance is (D0,k0) where D0 =

D�{v} and k0 = k.

This reduction rule can be applied in polynomial time.

Lemma 6.5.5. Reduction Rule 6.5.4 is 1-safe.

Proof. Consider a set F 0 ✓ A(D0) such that T 0 = D0/F 0 is an out-tree. If |F 0|� k0+1, then

the solution lifting algorithm returns a spanning tree F of D, otherwise it returns F = F 0.



If |F 0| � k0+1 then OTC(D,k,F)  k+1 = OTC(D0,k0,F 0). Otherwise, let W 0 denote

a T 0-witness structure of D0. As |F 0| k and an arc in F 0 can be incident on at most one

vertex in I, there exists a vertex vi which is a singleton witness set in W 0 for some i in

[k+1]. Let ti 2V (T ) be a vertex in T such that W (ti) = {vi}. As v j has no out-neighbor

in D0, ti is a leaf in T . If t j is the unique neighbor of ti in T then N�(vi)✓W (t j). Let W

be a witness structure of D obtained from W by adding a singlton witness set {v}. If W is

a T -witness structure of D then T can be obtained from T 0 by adding an out-neighbor tv to

ti. Since T 0 is an out-tree, T is also an out-tree. Hence, OTC(D,k,F) OTC(D0,k0,F 0).

Consider an optimal solution F⇤ of (D,k). If |F⇤| � k+ 1 then OPT(D,k) = k+ 1 and

by definition, OPT(D0,k0)  k0+ 1 = k + 1 = OPT(D,k). Otherwise, let T = G/F⇤

and let W ⇤ be a T -witness structure of D. There exists a vertex t 2 V (T ) such that

v 2W (t). If t is a leaf and W (t) is a singleton set, then F⇤ is also a solution to (D0,k0)

where D0/F⇤ is an out-tree obtained from D/F⇤ by deleting one of its leaf. This implies

OPT(D0,k0)  OPT(D,k). Otherwise, as there are at least k+ 1 vertices with the same

neighborhood as v, there exists a vertex vi which is a singlton witness set in W for some i

in [k+1]. Let t 0 be a vertex in V (T ) such that W (t 0) = {vi}. As vi has no out-neighbors,

t 0 is a leaf. Let W 0 is a witness structure of D obtained from W ⇤ by swapping vi and v.

This defines a set of arcs F 0 obtained from F by replacing the arc xv with the arc xvi for

each x. Since vi and v have identical open neighborhood, if W 0 is a T 0-witness structure

of D then T 0 = T . Since F 0 is an optimum solution for (D,k) and there exists a leaf in

D/F 0 which is singleton witness set containing v, it is a solution for (D0,k). Therefore,

OPT(D0,k) OPT(D,k).

Putting two inequalities together, we get OTC(D,k,F)
OPT(D,k) 

OTC(D0,k0,F 0)
OPT(D0,k0) which concludes the

proof.

We describe the final reduction rule. Given a > 1, let d be the minimum integer such

that d
d�1  a . In other words, fix d = d a

a�1e. Following reduction rules state that we can

contract d vertices in H if all of them sees k+1 vertices in I.



Reduction Rule 6.5.5. If there are vertices v1,v2, . . . ,vk+1 2 I and h1,h2, . . . ,hd 2H such

that {h1, . . . ,hd}✓ N�(vi) for each i 2 [k+1], then contract arcs in Ã = {(hiv1) | i 2 [d]}

and reduce the parameter by d�1. The resulting instance is (D0,k0) where D = D/Ã and

k0 = k� (d�1)).

This reduction rule can be applied in time |H|d ·nO(1).

Lemma 6.5.6. Reduction Rule 6.5.5 is a-safe.

Proof. Let w denote the vertex in V (D0)\V (D) obtained by contracting Ã in D. Consider

a solution F 0 to the reduced instance (D0,k0). If |F 0| � k0+ 1, then the solution lifting

algorithm returns a spanning tree F of D, otherwise it returns F = F 0 [ Ã. If |F 0|� k0+1

then OTC(D0,k0,F 0) = k0+1 = k�d. As F is a spanning tree, OTC(D,k,F) = k+1 =

k0+ d = OTC(D0,k0,F 0) + d � 1. Consider the case when |F 0|  k0 and let W 0 be a

D0/F 0-witness structure of digraph D0. Let W 0(t1) be a witness set in W such that w 2

W 0(t1). Define W = (W 0 [{W1})\{W 0(t1)} where W1 = (W 0(t1)[{v1,h1,h2, . . . ,hd})\

{w}. Note that V (D) \ {v1,h1,h2, . . . ,hd} = V (D0) \ {w} and hence W is a partition

of V (D). Further, GD[W1] is connected as G0D[W
0(t1)] is connected. A spanning tree

of the latter along with edges {v1hi| 8i 2 [d]} is a spanning tree of the former. Also,

|W1|= |W 0(t1)|+d and any vertex which is adjacent to w in D0 is adjacent to at least one

vertex in {v1,h1,h2, . . . ,hd} in D. Thus, W is a D/F-witness structure of D where D/F

is an out-tree. In this case, OTC(D,k,F)  OTC(D0,k0,F 0)+ d. Therefore, we know

OTC(D,k,F) OTC(D0,k0,F 0)+d.

Let F⇤ be an optimum solution for (D,k) and T =D/F⇤. Let W be a T -witness structure of

D. If |F⇤|� k+1, then OPT(D,k) = k+1= k0+d�OPT(D0,k0)+d�1. If |F⇤| k then

there is at least one vertex, say vq in {v1,v2, . . . ,vk+1} which is not in V (F⇤). Consider

the vertex ti 2 V (D/F⇤) such that W (ti) = {vq}. Vertex ti is a leaf as vq has no out-

neighbors and there is no other vertex in W (ti). This implies that there exists a witness

set, say W (t j), that contains all vertices in N(vq). Hence {h1,h2, . . . ,hd} are contained



in W (t j). We consider two cases based on whether v1 is in W (t j) or not. Suppose

v1 2W (t j). Let Ã = {v1hi| 8 i 2 [d]}. Then, F 0 = F⇤ \ Ã is a solution to (D0,k0) and hence

OPT(D0,k0)  |F 0| = |F⇤|� d = OPT(D,k)� d. Otherwise, v1 62W (t j) and then there

exists a vertex t1 2 V (T ) adjacent to t j such that v1 2W (t1). Define another partition

W 0 = (W [ {W (t j1)}) \ {W (t j),W (t1)} of V (D) where W (t j1) = W (t j)[W (t1). Graph

GD[W (t j1)] is connected as both GD[W (t j)] and GD[W (t1)] are connected and there is

an edge with one end point in W (t j) and another in W (t1). Thus, W 0 is a D/F-witness

structure of D where |F | = |F⇤|+ 1 as |W (ti)|� 1+ |W (t j)|� 1 = (|W (ti j)|� 1)� 1. In

other words, we needed one more edge than |F⇤| to contract all witness sets in W 0.

Further F can be assumed to contain Ã and F 0 = F \ Ã is solution to (D0,k0) leading to

OPT(D0,k0) |F 0|= |F⇤|+1�d = OPT(D,k)�d +1.

Combining these bounds, we have OTC(D,k,F)
OPT(D,k) 

OTC(D0,k0,F 0)+d
OPT(D0,k0)+(d�1) max

n
OTC(D0,k0,F 0)

OPT(D0,k0) ,a
o

.

This concludes the proof.

We now argue that if digraph D is k-contractible to an out-tree and none of reduction rule

mentioned so far is applicable on (D,k) then the number of vertices in D is bounded.

Lemma 6.5.7. Let (D,k) be an instance of OUT-TREE CONTRACTION where none of

Reduction Rules 6.5.1; 6.5.2; 6.5.3; 6.5.4; and 6.5.5 are applicable. If D is k-contractible

to an out-tree then the number of vertices in H is at most O(k2d+1 + k2).

Proof. Recall the partition I,H of V (D) defined before stating Reduction Rule 6.5.3. Set I

is a collection of vertices which has no in-degree and H is set of remaining vertices in D. If

Reduction Rule 6.5.3 return a trivial instance then statement is vacuously true. Otherwise,

cardinality of H is at most O(k2). Using this upper bound and the fact that Reduction

Rules 6.5.4 and 6.5.5 are not applicable, we bound vertices in I.

For every set H 00 ✓ H of cardinality less than d, there are at most k + 1 vertices in I

which have H 00 as their neighborhood. Otherwise, Reduction Rule 6.5.4 would have been

applicable. Hence, there are at most (k+1) ·
� 2k

d�1
�

vertices in I which have degree less



than d. Every vertex in I of degree at least d is adjacent to all vertices in at least one

d-sized subset of H. For such a subset H 00 of H, there are at most k+1 vertices in I which

contain H 00 in their neighborhood. Otherwise, Reduction Rule 6.5.5 would have been

applied. Thus, there O((k+1)
�k2

d
�
) vertices in I of degree at least d. Hence, |I| is upper

bounded by O(k2d+1). This concludes the proof.

We now present main result in this session.

Theorem 6.5.1. OUT-TREE CONTRACTION admits a PSAKS with O(k2d a
a�1 e+1 + k2)

vertices.

Proof. For given a > 1, kernelization algorithm fix d = d a
a�1e and apply Reduction Rules

6.5.1; 6.5.2; 6.5.3; 6.5.4; and 6.5.5 exhaustively on given instance (D,k). Kernelization

algorithm applies least indexed applicable reduction rule. If Reduction Rule 6.5.3 returns

a trivial instance then statement is true. Otherwise there exists a partition (I,H) of V (D)

such that I is set of all vertices with in-degree zero; H =V (D)\ I and number of vertices

in H is at most O(k2). Let (D,k) be a reduced instance after applying all reduction rules

exhaustively. If the number of vertices in D is at most O(k2d+1 + k2) by Lemma 6.5.7,

OPT(D,k) is at least k+1 and the algorithm outputs (C4,1) as a reduced instance. Note

that Reduction Rule 6.5.5 is applied only when the number of vertices in digraph as more

than O(k2k+1 + k2) and hence it can be applied in nO(1) time. Hence all reduction rules

can be applied in time nO(1). The correctness of this algorithm follows from Lemma 6.5.1;

Lemma 6.5.2; Lemma 6.5.4; Lemma 6.5.5; and Lemma 6.5.6.

6.6 Conclusion

In this chapter, we study contraction problem on directed graphs. We consider OUT-TREE

CONTRACTION problem. We show that this problem does not have a polynomial kernel

when parameterized by solution size. To complement this negative result, we present



a polynomial kernel when parameterized by solution size and the number of leaves in

resultant out-tree. We also present a lossy kernel of polynomial size when parameterized

by solution size. We note that treatment of OUT-TREE CONTRACTION is different than

that of TREE CONTRACTION. Many simplifying assumptions which work in undirected

settings do not work when input graph is directed.



Chapter 7

Clique Contraction

7.1 Introduction

In this chapter, we study a problem of contraction to cliques. A graph is called complete

if any two vertices are adjacent with each other. A set of vertices is said to be clique if it

induces a complete graph.

CLIQUE CONTRACTION Parameter: k

Input: A graph G and an integer k

Question: Is it possible to obtain a clique from G with at most k edge contractions?

Cai and Guo presented an FPT algorithm running in time 2O(k logk) · nO(1) [16]. Inde-

pendent works of Lokshtanov et al. [73] and Cai and Guo [16] implies that there is no

polynomial kernel for this problem when parameterized by k. In full version of the paper

Lokshtanov et al. explicitly mentioned kernel with O(4kk) vertices. In this chapter, we

design an a-lossy kernel of polynomial size for this problem. We prove that given a

graph G on n vertices, an integer k and an approximation parameter a > 1, there is an

algorithm that runs in nO(1) time and outputs a graph G0 on O(kd+1) vertices and an integer

k0 such that for every c > 1, a c-approximate solution for (G0,k0) can be turned into a
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(ca)-approximate solution for (G,k) in nO(1). Here d = d
p

a/(
p

a�1)e.

We mention parametric dual of this problem which is known as HADWIGER NUMBER and

has enjoyed more attention in literature.

HADWIGER NUMBER Parameter: `

Input: A graph G and an integer `

Question: Is it possible to obtain a clique with ` vertices from G by contracting edges?

Hadwiger’s conjecture states that chromatic number of graph is at least its Hadwiger num-

ber. This conjecture makes determining Hadwiger number is well studied problem in graph

theory. Surprisingly, complexity of this problem, and hence of CLIQUE CONTRACTION,

was not resolved until 2009 when Eppisten proved that this problem is NP-Complete [37].

We say graph H is a minor of graph G if H can be obtained from G by series of vertex

deletions, edge deletions and edge contractions. If clique K` is minor of connected graph

G then we can obtain K` from G without deleting any edge. Similarly, instead of deleting a

vertex, we can contract it to one of its neighbors. This implies that one can obtain clique

K` from graph G by series of edge contraction if and only if K` is a minor of graph G.

By deep result of Robertson and Seymour [88], there exists an algorithm running in time

f (`) · nO(1) to check whether K` is a minor of G. This implies that there exist an FPT

algorithm for HADWIGER NUMBER. This relation was first noted by Alon et al. [4]. We

mention, without proof, that there exists a simple cross composition of unparameterized

version of HADWIGER NUMBER into its parameterized version. This cross composition,

along with results in [43], state that HADWIGER NUMBER does not have a polynomial

kernel unless NP ✓ coNP/poly. See [25, Theorem 15] for quick reference.

We study generalization of CLIQUE CONTRACTION problem called s-CLUB CONTRAC-

TION. A graph is called s-club if the diameter of graph is at most s. We formally define the

problem as follows.



s-CLUB CONTRACTION Parameter: k

Input: A graph G and integers k,s

Question: Is it possible to obtain a graph of diameter at most s from G with at most k

edge contractions?

Clearly, 1-CLUB CONTRACTION problem is identical to that of CLIQUE CONTRACTION.

We prove that s-CLUB CONTRACTION does not admit a lossy kernel of polynomial size

unless NP✓ coNP/poly even when s = 2 and input is restricted to a split graph.

7.2 Preliminaries

We start with following observation which is useful to find large induced clique in input

graph. Note that we can assume that input graph is connected as otherwise we know it can

not be converted into a clique by edge contraction only.

Observation 7.2.1. If graph G is k-contractible to a clique then G can be converted into a

clique by deleting at most 2k vertices.

Proof. Let F be a set of edges of size at most k such that G/F is a clique. Let W be a

G/F-witness structure of G. Let X be set of all vertices which are contained in big witness

sets in W . Since every vertex in X is incident on some edge in F , size of X is at most

2k. Any any two vertices in V (G)\X , are adjacent with each other as these vertices form

a singleton sets which are adjacent in G/F . Hence G can be converted into a clique by

deleting vertices in X .

For a given graph G, its compliment graph, denoted by Ḡ, is defined on same set of vertices

and edge uv is present in Ḡ if vertices u,v are not adjacent in graph G.

Observation 7.2.2. There exists a 2-factor approximation algorithm to compute set of

vertices whose deletion results in a clique.



Proof. For a given graph G, consider its complement graph Ḡ. For a set of vertices X in G,

G�X is a complete graph if and only if X is a vertex cover of Ḡ. As there exists a 2-factor

approximation algorithm to compute a vertex cover of given graph, we get a 2-factor

approximation algorithm to compute set of vertices whose deletion results in clique.

Consider a connected graph G which is k-contractible to clique K`. Let W be a K`-witness

structure of G. Following observation proves that given a graph with its witness structure,

we can merge two witness set and delete a vertex to obtain a witness structure for smaller

graph.

Observation 7.2.3. Let W be a clique witness structure of a graph G. If there exists two

different witness sets W (t1),W (t2) in W and a vertex v in W (t1) such that set W (t) =

(W (t1)[W (t2))\{v} is a connected set in G�{v} then W 0 is a clique witness structure

of G�{v} where W 0 is obtained from W be removing W (t1),W (t2) and adding W (t).

Proof. Let G0 = G� {v}. Note that W 0 is a partition of vertices in G0. Any set in

W 0 \{W (t)} is a witness set in W and does not contain v. Hence it is a connected set in

G0. Since G0[W (t)] is connected, all sets in W 0 are connected in G0.

Consider any two witness sets W (t 0),W (t 00) in W 0. If none of these two is equal to W (t)

then both of these sets are present in W . Since none of these witness sets contains vertex v,

they are adjacent with each other in G0. Now, consider a case when one of them, say W (t 00),

is equal to W (t). As witness sets W (t 0) and W (t2) are present in W , there exists an edge

with one end point in W (t 0) and another in W (t2). The same edge is present in graph G0 as

it is not incident on v. Since W (t2) is subset of W (t), sets W (t 0) and W (t) are adjacent in

G0. Hence any two witness sets in W 0 are adjacent with each other. This implies that W 0

is a clique witness structure of graph G�{v}.



7.3 Lossy Kernel for CLIQUE CONTRACTION

In this section, we present a lossy kernel for CLIQUE CONTRACTION. As mentioned

earlier, as assume that input graph G is connected. We define optimization problem in the

following way.

CLC(G,k,F) =

8
><

>:

• if G/F is not a clique

min{|F |,k+1} otherwise

If number of vertices in input graph is at most k+3 then we can return same instance as

kernel for given problem. We only consider inputs which has at least k+3 vertices. By

the definition of optimization problem, for any set of edges F if G/F is a clique then the

maximum value of CLC(G,k,F) is k+1. Hence any spanning tree of G is a solution of

cost k+ 1. We call it a trivial solution for given instance. Consider an instance (P4,1)

where P4 is a path on four vertices. One need to contract at least two edges to convert P4

into a clique. We say (P4,1) as trivial instance for this problem.

We start with first reduction rule which says if the minimum number of vertices that needs

to be deleted from input graph is large then we can return trivial instance as lossy kernel.

Reduction Rule 7.3.1. Given an instance (G,k), apply the algorithm mentioned in Ob-

servation 7.2.2 to find set X such that such that G�X is a complete graph. If size of X is

greater than 4k then return (P4,1).

Lemma 7.3.1. Reduction Rule 7.3.1 is 1-safe.

Proof. Let (G,k) be an instance such that Reduction Rule 7.3.1 returns (P4,1) when

applied on it. Solution lifting algorithm returns a spanning tree F of G.

Note that for a set of edges F 0, if P4/F 0 is a clique then F 0 contains at least two edges. This

implies CLC(P4,1,F 0) = 2 and OPT(P4,1) = 2.



Since a 2-factor approximation algorithm returns a set of size strictly more than 4k, for any

set X 0 of size at most 2k, G�X 0 is not a complete graph. But by Observation 7.2.1, if G

is k-contractible to a clique then G can be converted into a clique by deleting at most 2k

vertices. Hence for any set of edges F⇤ if G/F⇤ is a clique than size of F⇤ is at least k+1.

This implies OPT(G,k) = k+1. For a spanning tree F of G, CLC(G,k,F) = k+1.

Combining these values, we get CLC(G,k,F)
OPT(G,k) = k+1

k+1 = 2
2 = CLC(P4,1,F 0)

OPT(P4,1)
. This implies if F 0 is

c-factor approximate solution for (P4,1) then F is 1-factor approximate solution for (G,k).

This concludes the proof.

For a given graph G, let (X ,Y ) be a partition of V (G) such that G�X = G[Y ] is a complete

graph. For a > 1, let b 2 = a . Find a smallest integer d such that d+1
d  b . Or in other

words, fix d = d b
b�1e. Given an instance (G,k) and partition (X ,Y ) of G, we deploy

following two marking schemes.

Marking Scheme 7.3.1. For a subset A of X, let M1(A) be a collection of vertices in Y

whose neighborhood contains A. For every subset A of X which is of size at most d, mark

a vertex in M1(A).

Formally, M1(A) = {y| y2Y such that A✓N(y)}. If M1(A) is empty then marking scheme

does not mark any vertex. If it is not empty then marking scheme arbitrary chooses a vertex

and marks it.

Marking Scheme 7.3.2. For a subset A of X, let M2(A) be a collection of vertices in Y

whose neighborhood does not intersect A. For every subset A of X which is of size at most

d, mark 2k+1 vertex in M2(A).

Formally, M2(A) = {y| y 2 Y such that N(y)\A = /0}. If the number of vertices in M2(A)

is at most 2k+ 1 then marking scheme marks all vertices in M2(A). If it is larger than

2k+1 then it arbitrary chooses 2k+1 vertices and marks them.



Figure 7.1: Straight lines (Ex. within W (t)) represent edges in original solution F . Dashed
lines (Ex. across W (t) and W (t 0)) represents extra edges added to solution F . Please refer
to Lemma 7.3.2.

Reduction Rule 7.3.2. For a given instance (G,k), and partition (X ,Y ) of V (G), applying

Marking Scheme 7.3.1 and 7.3.2. Let G0 be the graph obtained from G by deleting

unmarked vertices in Y . Return instance (G0,k).

Above reduction rule can be applied in time |X |d ·nO(1). Let Y 0 be a subset of Y which has

been marked in Marking Scheme 7.3.1 or 7.3.2. Note that G0 is an induced subgraph of

G. In the following lemma, we argue that given a solution for (G0,k) we can construct a

solution of almost the same size for (G,k).

Lemma 7.3.2. Let (G0,k) be the instance returned by Reduction Rule 7.3.2 when applied

on an instance (G,k). If there exists a set of edges of size at most k, say F 0, such that G0/F 0

is a clique then there exists a set of edges F such that G/F is a clique and cardinality of F

is at most b · |F 0|.

Proof. If no vertex in Y has been deleted than G0 and G are identical graphs and statement

is true. We assume that at least one vertex in Y has been deleted. Let Y 0 be a set of vertices

in Y which has been marked. Sets X ,Y 0 forms a partition of V (G0) such that G0 �X is a

complete graph and Y 0 is a proper subset of Y . Let W 0 be a G0/F 0-witness structure of



G0. We construct a clique witness structure W of G from W 0 by adding singleton witness

set {y} for every vertex y in Y \Y 0. Since G[Y \Y 0] is a clique in G, any two newly added

witness sets are adjacent with each other. Moreover, any witness set in W 0 which intersects

Y 0 is adjacent with newly added witness sets. We now consider witness sets in W 0 which

do not intersect Y 0.

Let W ⇤ be a collection of witness set W (t) in W 0 such that W (t) is contained in X and there

exists a vertex y in Y \Y 0 whose neighborhood does not intersects W (t). See Figure 7.1. We

argue that every witness set in W ⇤ has at least d+1 vertices. For the sake of contradiction,

assume that there exists a witness set W (t) in W ⇤ which contains at most d vertices. Since

Marking Scheme 7.3.2 iterated over all sets of size at most d, it also considered W (t) while

marking. Note that vertex y belongs to set M2(W (t)). Since y is unmarked, there are 2k+1

vertices in M2(W (t)) which has been marked. All these marked vertices are in G0. Since

cardinality of F is at most k, the number of vertices in V (F) is at most 2k. This implies at

least one marked vertex in M2(W (t)) is a singleton witness set in W 0. But there is no edge

between this singleton witness set and W (t). This contradicts the fact that any two witness

sets in W 0 are adjacent with each other in G0. Hence our assumption is wrong and W (t)

has at least d +1 many vertices.

Fix a witness set, say W (t 0), in G0/F 0-witness structure which intersects Y 0. Because of

Marking Scheme 7.3.1, we have at least one such witness set.

We note that W (t 0) is adjacent with every vertex in Y \Y 0. Let W (t) be a witness set in W ⇤.

Since W (t 0) and W (t) are two witness sets in G0/F 0-witness structure, there exists an edge

with one end point in W (t 0) and another in W (t). Set W (t 0)[W (t) is adjacent with every

other witness set in W .

We now describe how to obtain F from F 0. We initialize F = F 0. For every witness set

W (t) in W ⇤ add an edge between W (t) and W (t 0) to set F 0. Equivalently, we construct a

new witness set by taking a union of W (t 0) and all witness sets W (t) in W ⇤. This witness

set is adjacent with every vertex in Y \Y 0 and hence G/F is a clique. We now argue the



Figure 7.2: Straight lines (Ex. y4y5) represent edges in original solution F . Dotted lines
(Ex. y4y6) represents edges which are replaced for some edges in F . Dashed lines (Ex.
y1y2) represents extra edges added to solution F . Please refer to Lemma 7.3.3.

size bound on F . Note that we have added one extra edge for every witness set W (t) in

W ⇤. We know that every such witness set has at least d+1 vertices. Hence we have added

one extra edge for at least d edges in solution F . Moreover, since witness sets in W ⇤ are

vertex disjoint, no edge in F can be part of two witness sets. This implies number of edges

in F is at most d+1
d |F | b |F |.

In the following lemma, we argue that value of optimum solution for reduced instance can

be upper bounded by value of optimum solution for original instance.

Lemma 7.3.3. Let (G0,k) be the instance returned by Reduction Rule 7.3.2 when applied

on an instance (G,k). If OPT(G,k) k then OPT(G0,k) b ·OPT(G,k).

Proof. Let F be a set of at most k edges in G such that OPT(G,k) = CLC(G,k,F) and

W be a G/F-witness structure of G. Since we are working with minimization problem,



to prove the lemma it is sufficient to find a solution for G0 which is of size b · |F |. Recall

that (X ,Y ) is a partition of V (G) such that G�X = G[Y ] is a complete graph. Set of

vertices marked by either of marking schemes is denoted by Y 0. In other words, (X ,Y 0) is

a partition of G0 such that G0 �X = G0[Y ] is a complete graph. We proceed as follows. At

each step, we construct graph G⇤ from G by deleting one or more vertices in Y \Y 0. We

also construct a set of edges F⇤ from F by replacing existing edges and/or adding extra

edges to F . At any intermediate state, we ensure that G⇤/F⇤ is a clique and the number of

edges in F⇤ is at most b · |F |. Let F� = F is an optimum solution for input instance (G,k).

To obtain G⇤ and F⇤, we delete witness sets which are subsets of Y \Y 0 (Condition (1))

and modify the ones which intersect with Y \Y 0. Every witness set of later type intersects

with Y 0 or X or both. We partition these big witness sets in W into two groups depending

on whether they intersects X (Condition (2)) or not (Condition (3)). We modify witness

sets which satisfy least indexed condition. If there exist no witness set which satisfy either

of these three conditions then Y \Y 0 is an empty set and the lemma is vacuously true.

Condition (1): There exists a witness set W (t) in W which is a subset of Y \Y 0.

Construct G⇤ from G by deleting witness sets W (t) in W . Let F⇤ = F . Since class of

complete graphs is closed under vertex deletion, G⇤/F⇤ is a clique. We repeat this process

until there exists a witness set which satisfy Condition (1).

At this stage we rename G⇤ to G and F⇤ to F for notational convenience.

Condition (2): There exists a witness set W (t) in W which contains vertices from Y \Y 0

but does not intersects X .

Note that W (t) must intersects with Y 0. See Figure 7.2. Let y4 and y5 be vertices in

W (t)\Y 0 and W (t)\ (Y \Y 0). Let W (t1) be a witness set which intersects Y 0. Let y6 be a

vertex in set W (t1)\Y 0. Consider witness sets W (t),W (t1) and vertex y5 in W (t) in graph

G. These satisfies the premise of Observation 7.2.3. This implies W ⇤ is a clique witness

structure of G�{y5} where W ⇤ is obtained from W be removing W (t),W (t1) and adding



(W (t)[W (t1))\{y5}. This corresponding to replacing an edge in F which was incident

on y5 with the one across W (t) and W (t1). For example, in Figure 7.2, we replace edge

y4y5 in set F with an edge y4y6 to obtain a solution for G�{y5}. An edge in F has been

replaced with another edge and one vertex in Y \Y 0 is deleted. The size of F⇤ is same

as that of F and G⇤/F⇤ is a clique. We repeat this process until there exist a witness set

which satisfy Condition (2).

At this stage we rename G⇤ to G and F⇤ to F for notational convenience.

Condition (3): There exists a witness set W (t) in W which contains vertices from Y \Y 0

and intersects X .

Let y be a vertex in W (t)\ (Y \Y 0) and Xt be vertices in W (t)\X which are adjacent with

y via edges in F . We find a substitute for y in Y \Y 0. We consider two cases based on

cardinality of Xt .

Condition (3.a): There exists a witness set W (t) which contains y from Y \Y 0 whose

neighborhood via edges in F in W (t)\X is of size at most d.

In this case, Xt have been considered by Marking Scheme 7.3.1. Since y is adjacent

with every vertex in Xt , set M1(Xt) is not empty. As y is in Y \Y 0, and hence unmarked,

there is another vertex, say y1, in M1(X1) which has been marked. Let W (t1) be the

witness set containing y1. Witness sets W (t),W (t1) and y in W (t) satisfies the premise

of Observation 7.2.3. This implies W ⇤ is a clique witness structure of G� {y5} where

W ⇤ is obtained from W be removing W (t),W (t1) and adding (W (t)[W (t1))\{y}. This

corresponding to replacing edge xy in F by xy1 for every x in Xt . A set of edges in F has

been replaced with another set of edges of same size and a vertex in Y \Y 0 is deleted. The

size of F⇤ is same as that of F and G⇤/F⇤ is a clique. We repeat this process until there

exists a witness set which satisfy Condition (3.a).

At this stage we rename G⇤ to G and F⇤ to F for notational convenience.

Condition (3.b): There exists a witness set W (t) which contains y from Y \Y 0 whose



neighborhood via edges in F in W (t)\X is of size at least d +1.

Since Marking Scheme 7.3.1 iterated over subset of X of cardinality at most d, it may

not have marked any vertex in M1(Xt). In this case, we partition W (t) \ {y} into sets

W1,W2, . . . ,Wp such that the number of vertices in Wi for i in [p�1] is exactly d and the

number of vertices in Wp is at most d. See Figure 7.2. Since y is adjacent with every

vertex in Xt , and hence every vertex in Wi, set M1(Wi) is not empty for any Wi. Since y is in

Y \Y 0 and hence unmarked, there is a vertex in M1(Wi), say yi, different from y which has

been marked for each i in [p]. We assume that all vertices in {y1,y2, . . . ,yp} are different

to obtain the upper bound. We construct F⇤ from F by following operation: For every i

in [p�1], replace an edge xy in F by an edge xyi and for every i in [p�2] add an edge

yiyi+1. We first argue about the cardinality of F⇤. Note that we have added an extra edge

corresponding to Wi for each i in [p� 1]. These sets are of size d. We did not add an

extra edge corresponding to Wp whose cardinality may be smaller than d. This implies

that we have added an extra edge for d edges in F . Moreover, since Wis are pairwise

disjoints, no edge in F can be part of two sets of edges corresponding to which new edge

has been added. Hence size of F⇤ is at most d+1
d |F |= b · |F |. We now argue that if G⇤ is

obtained from G by deleting y then G⇤/F⇤ is a clique. For every i in [p], let W (yi) be the

witness set containing yi. Let Z be the union of W (t)\{y} and W (yi) for all i in [p]. Let

W ⇤ be a witness structure of G⇤ obtained from W by removing W (t),W (y1), . . . ,W (yt)

and adding Z. Since all other witness sets remains same and we only replaced or added

edges incident on vertices in Z[{y}, union of all spanning trees of witness sets in W ⇤ is

contained in F⇤. Any two witness sets in W ⇤ which are part of W are adjacent with each

other. As Z contains W (y1), any witness set in W ⇤ which is not contained in Z is adjacent

with Z. Hence any two witness sets in W ⇤ are adjacent with each other. This implies that

G⇤/F⇤ is a clique. We repeat this process until there exists a witness set which satisfy

Condition (3.b). We argue that |F⇤| b · |F�| even after repeating this process. Consider

a witness set W (t) in W which satisfy Condition (3.b) and which has been replaced by

set Z. If Z does not intersect Y \Y 0 then it does not satisfy any condition and hence never



been modified again. If it intersects Y \Y 0 then it also intersects Y 0 and hence satisfy

Condition (2). This implies that any witness set in W is replaced by this process at most

once. In other words, if an edge xy in F� which has been replaced with edge xyi before

adding extra edge yiyi+1 for some i in [p� 1] then edge xy is never considered by the

process again.

Any vertex in Y \Y 0 must be part of some some witness set in W and any witness set in W

satisfies at least one of the conditions mentioned above. If there is no witness sets which

satisfy any condition then Y \Y 0 is empty. This implies G⇤ = G0 and there exists a solution

F⇤ of size b · |F�|. This concludes the proof of the lemma.

We are now in position to prove following lemma.

Lemma 7.3.4. Reduction Rule 7.3.2, along with a solution lifting algorithm, is an a-

reduction rule.

Proof. Let (G0,k) be the instance returned by Reduction Rule 7.3.2 when applied on an

instance (G,k). We present a solution lifting algorithm. For a solution F 0 for (G,k) if

CLC(G0,k,F 0) = k+1 then solution lifting algorithm returns a spanning tree F of G (a

trivial solution) as solution for (G,k). In this case, CLC(G,k,F) = CLC(G0,k,F 0). If

CLC(G0,k,F 0)  k then size of F 0 is at most k and G0/F 0 is a clique. Solution lifting

algorithm uses Lemma 7.3.2 to construct a solution F for (G,k) such that cardinality of

F is at most b · |F 0|. In this case, CLC(G0,k,F 0) b ·CLC(G,k,F). Hence there exists

a solution lifting algorithm which given a solution F 0 for (G0,k0) returns a solution F for

(G,k) such that CLC(G,k,F) b ·CLC(G,k,F).

If OPT(G,k)  k then there exists a set of edges of cardinality at most k, say F⇤, such

that G/F⇤ is a clique. By Lemma 7.3.3 we know that OPT(G0,k)  b · OPT(G,k).

If OPT(G,k) = k + 1 then OPT(G0,k)  k + 1 = OPT(G,k). Hence in either case,

OPT(G0,k) b ·OPT(G,k).



Combining two inequalities, we get CLC(G,k,F)
b ·OPT(G,k) 

b ·CLC(G0,k,F 0)
OPT(G0,k) . This implies if F 0 is c-

factor approximate solution for (G0,k) then F is (c ·b 2)-factor approximate solution for

(G,k). As a = b 2, this concludes the proof.

We present main result of the chapter.

Theorem 7.3.1. CLIQUE CONTRACTION parameterized by size of solution k, admits a

time efficient PSAKS with O(kd+1) vertices, where d = d
p

ap
a�1e.

Proof. For a given instance (G,k), a kernelization algorithm applies Reduction Rule 7.3.1.

If it returns a trivial instance than statement is vacuously true. If it does not return a trivial

instance then the algorithm partition V (G) in two sets (X ,Y ) such that G�X = G[Y ] is

a complete graph and size of X is at most 4k. The algorithm apply Reduction Rule 7.3.2

on instance (G,k) with partition (X ,Y ). The algorithm returns the reduced instance as

a-lossy kernel for (G,k).

The correctness of the algorithm follows from Lemma 7.3.1, and Lemma 7.3.4 combined

with the fact that Reduction Rule 7.3.2 is applied at most once. By Observation 7.2.2,

Reduction Rule 7.3.1 can be applied in polynomial time. The size of instance returned by

Reduction Rule 7.3.2 is at most O((4k)d · (2k+1)+4k) =O(kd+1). Reduction Rule 7.3.2

can be applied in time nO(1) if number of the vertices in (G,k) is more O(kd+1).

7.4 (No) Lossy Kernel for s-CLUB CONTRACTION

In this section, we argue that there is no lossy kernel for s-CLUB CONTRACTION. We can

safely assume that input graph G is connected. We define optimization problem in the

following way.

s-CLUBC(G,k,F) =

8
><

>:

min{|F |,k+1} if diameter of G/F is at most s

• otherwise



To prove that s-CLUBC(G,k,F) does not have a lossy kernel of polynomial size, it is

sufficient to prove that there is no a-appt from a problem for which similar kind of

results are known. In [47], Golovach et al. presented a reduction from an instance of

HITTING SET to an instance of s-CLUBC(G,k,F). They proved that for any s � 2, the

s-CLUB CONTRACTION problem on chordal graphs is NP-Hard as well as W[2]-Hard

when parameterized by k. Moreover, 2-CLUB CONTRACTION is NP-Hard and W[2]-Hard

when parameterized by k even on split graphs. We use similar ideas to prove a 1-appt

from SET COVER/k to 2-CLUB CONTRACTION. We present following lemma for s = 2

and briefly mention how to generalize the lemma for any fixed s.

Lemma 7.4.1. There exists an 1-appt from SET COVER/k to 2-CLUB CONTRACTION

even input graph is restricted to a split graph.

Proof. To prove the lemma, present a reduction algorithm, say RA , which given an instance

((U,S ),k) of SC/k outputs an instance (G,k0) of s-CLUBC. We also present a solution

lifting algorithm that takes as input an instance ((U,S ),k) of SC/k, the output instance

(G,k0) = RA ((U,S ),k) of s-CLUBC, and a solution F to the instance (G,k0) and outputs

a solution F to ((U,S ),k) such that SC/k((U,S ),k,F ) = s-CLUBC(G,k,F).

We first present a reduction algorithm.

Reduction Algorithm : Given an instance ((U,S ),k) of the SET COVER problem with

U = {u1, . . . ,un} and S = {S1, . . . ,Sm}, we create a split graph G as follows. Create a

vertex si for each Si 2S . Let VS be set of all vertices corresponding to some S in S .

Add edges in G to convert VS into a clique. For every u j 2U , we create k+1 vertices

u1
j , . . . ,u

k+1
j that are made adjacent to vertex si if and only if u j 2 Si. Add a vertex a and

make it adjacent with every vertex in VS . Add k+ 1 vertices b1,b2, . . . ,bk+1 and make

them adjacent with a only. This completes the construction of G. See Figure 7.3.

Note that the vertex set of G can be partitioned into a clique S [{x} and an independent

set V (G) \ (VS [ {a}), so G is a split graph. Also observe that the diameter of G is 3.



Figure 7.3: Reduction from a set cover instance ((U,S ),k) to an instance of s-CLUB
CONTRACTION. Here U = {u1,u2,u3};S = {S1,S2,S3} where S1 = {u1,u2},S2 =
{u1,u2,u3},S3 = {u2,u3} and k = 2.

Informally speaking, all the paths of length of 3 are between one of the vertices of type bq

and uq
j for some q 2 {1, . . . ,k}. To shorten all these paths with at most k edge contraction,

one need to find a set cover of original instance of size k and vice versa.

Solution Lifting Algorithm : Let F a solution for (G,k). If |F | � k + 1 then return

F = S as a solution. Otherwise, let W (ta) be the witness set in (G/F)-witness structure

of G which contains a. Let F be the collection of set Si in S for all si in W (ta). Return

F .

For any subset F of S , let FF be the set of edges in G which are incident on a and si for

some s in F .

Claim 1: If F is a set cover of instance (U,S ,k) then the diameter of G/FF is at most 2.

Proof : Let T be the graph obtained from G by contracting all edges in FF . Let ta be the

vertex in T which corresponds to the unique big witness set. Note that W (ta) contains a

and all vertices corresponding to sets in F . The fact that F is a set cover implies that in T ,

vertex uq
j is adjacent to some vertex in W (ta) for every j 2 {1, . . . ,n} and q2 {1, . . . ,k+1}.

Hence ta is a universal vertex in T , implying that T has diameter at most 2. ⇧

Let F be a set of edges in G such that G/F has diameter at most 2. Let W (ta) be the

witness set in T -witness structure of G which contains a, where T = G/F . Let FF be a

collection of set Si in S such that si is in W (ta).



Claim 2: If F has size at most k then FF is a set cover of ((U,S ),k).

Proof : For any element u j of universe, vertices u1
j , . . . ,u

k+1
j forms an independent set in

G. Since size of F is at most k, edges in F can be incident on at most k vertices in this set.

Without loss of generality, let u1
j be a vertex such that there is no solution edge is incident

on it. By same arguments for set b1, . . . ,bk+1, we can assume that there is no edge incident

on b1. Consider a shortest path from u1
j to b1 in graph G. Every such path is of the form

(u1
j ,si,a,b1) where Si is a set which contains u j. Since the diameter of T is at most 2, for

every vertex u j there exists a path from u j to b1 which has been shortened by an edge

contraction. Since no edge in F is incident on u j
1 or on b1, edge sia has been contracted

for some Si which contains u j. Hence for every vertex u1
j there exists a vertex si in W (ta)

which is adjacent to u1
j . Since F has at most k edges, the number of vertices in W (ta) apart

from a is at most k. Hence FF has at most k sets and for every vertex in U there exists a

set in FF which contains that element. This implies that FF is a set cover for (U,S ,k). ⇧

By Claim 1 and 2, OPTSC/k((U,S ),k) = OPTs-CLUBC(G,k). Moreover, if |F | � k+ 1

then solution lifting algorithm return F =S and in this case, s-CLUBC(G,k,F) = k+1=

SC/k((U,S ),k,S ). If |F | k then by Claim 2, s-CLUBC(G,k,F)= SC/k((U,S ),k,F ).

This implies that there exists a 1-appt from SET COVER/k to 2-CLUB CONTRACTION

even input graph is restricted to a split graph.

Arguments to generalise this lemma to higher value of s is identical to those presented in

[47]. We present them here briefly for the sake of completeness. To show above lemma

holds for 3-CLUB CONTRACTION, we modify the reduction algorithm as follows. Instead

of adding b1, . . . ,bk+1 adjacent to a, we crate k+1 vertices z1, . . . ,zk+1 and make the set

{z1, . . . ,zk+1,a} into a clique. Now we construct b1, . . . ,bk+1 and make bi adjacent to zi

for i 2 {1, . . . ,k+ 1}. By similar arguments, we can show that OPTSC/k((U,S ),k) =

OPTs-CLUBC(G,k). Moreover, s-CLUBC(G,k,F) = SC/k((U,S ),k,FF). For s � 4,

consider a graph G and denote by G0 the graph obtained from G by adding k+1 pendant

vertices adjacent to v for each vertex v of G. It is straightforward to observe that G0 is



k-contractible to a graph of diameter at most s if and only if G is k-contractible to a graph

of diameter at most s� 2. As we have proved that the lemma holds for s 2 {2,3}, this

observation immediately implies the lemma for every fixed s� 2. By Corollary 2.4.1 and

Lemma 7.4.1, we get following result.

Theorem 7.4.1. s-CLUBC(G,k,F) does not have a polynomial size a-approximate com-

pression for any a � 1, unless NP ✓ coNP/poly.

7.5 Conclusion

In this chapter we present a lossy kernel of polynomial size for CLIQUE CONTRACTION

when parameterized by solution size. This compliments the known results that the problem

does not have a polynomial (classical) kernel. Our kernelization algorithm depends on

the fact that in a large instance solution edges affect very few vertices. Remaining set of

vertices are adjacent with each other and most of affected vertices. If large number of

unaffected vertices have same neighbors and non-neighbors in affected vertices then we

can delete one of these vertices with slight loss of accuracy. It is interesting to see whether

these methods can be generalized to get lossy kernel for SPLIT CONTRACTION.



Chapter 8

Path Contraction

8.1 Introduction

Any connected graph can be contracted to an edge which is a path on two vertices. In this

chapter, we address a question of determining the largest integer ` for given graph such

that it can be contracted to P̀ , path on ` vertices. Formally, we study following problem.

PATH CONTRACTION

Input: Graph G

Output: Largest integer ` such that G can be contracted to P̀

Early paper of Brouwer and Veldman states that we can determine whether a given graph

can be contracted to P3 or not in polynomial time but it is NP-Hard to determine whether it

can be contracted to P4 or not [14]. This implies that we can not expect an algorithm for

the problem which runs in time O(n f (`)). However, there is a simple algorithm running

in time O?(2n) ⇤ algorithm (See Observation 8.2.3). Algorithm with better running time

are known for special case. Cygan et al. [26] observed that P4-CONTRACTION is same as

partitioning given graph into two disjoint connected subgraphs which contain specified

terminals. They called it 2-DISJOINT CONNECTED SUBGRAPHS problem and gave an
⇤O? notation hides factors which are polynomial in size of input.
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algorithm running in time O(1.933n). Telle and Villanger [90] presented an algorithm to

solve the same problem in time O(1.7804n).

We generalize the approach presented by Telle and Villanger [90] to solve 3-DISJOINT

CONNECTED SUBGRAPHS problem (precise definition follows) which is idential to P5-

CONTRACTION problem (Section 8.4). We present an algorithm running in time O(1.877n).

We use this and Telle and Villanger’s algorithm as subroutine in our main algorithm. The

main algorithm, presented in Section 8.5, is based on four different methods to attack the

problem. We argue that for any graph, at least one of these methods returns an optimum

value. In one methods, key component is to enumerate all connected supersets of given set

of vertices which are of size at most a and boundary b, where a,b are two fixed integers.

We present an algorithm to enumerate all such connected sets in Section 8.3 which may be

of independent interest.

We mention that parameterized version of this problem, with number of edges, k, allowed

to contract to obtain a path as parameter has been studied by Hergerners et al. They

presented an algorithm running in time 2k+o(k)nO(1) and kernel of size 5k+3 [55].

8.2 Preliminaries

In this chapter, we slightly abuse the notation of set brackets when writing a Pt-witness

structure of graph. When we say W = {W1,W2, . . . ,Wt} is a Pt-witness structure of graph

G, we treat W as ordered set. In other words, we assume that one end point in path Pt is

designated as first vertex and witness sets W1,W2, . . . corresponds to first, second, and so

on vertices in Pt . We start with few simple observations.

Observation 8.2.1. Any connected graph can be contracted to P2.

Observation 8.2.2. Consider a graph G which can be contracted to Pt. There exists a

Pt-witness structure W = {W1, . . . ,Wt} of G such that W1,Wt are singleton sets.



Proof. Let {W 01, . . . ,W
0

t } be a Pt-witness structure of G. We modify witness sets W 01,W
0

t to

ensure that they satisfy desired property. There exists an edge, say u1u2 in graph G where

u1,u2 are contained in sets W 01,W
0
2. Assume that witness set W 01 is not a singleton set. Fix a

spanning tree of graph G[W 01] which is rooted at u1 and let v be one of its leaf. Since v is

leaf in a spanning tree of G[W 01], set W 01 \{v} is connected. Moreover, set (W 01[W 02)\{v} is

also connected. It is easy to check that {{v},(W 01[W 02)\{v}, . . . ,W 0t } is also a Pt-witness

structure of G. Applying similar arguments on witness set W 0t , we obtain a Pt-witness

structure in which both end points are singleton sets.

We present a simple algorithm for PATH CONTRACTION.

Observation 8.2.3. There exists an algorithm that solves PATH CONTRACTION problem

in O?(2n) time where n is the number of vertices in an input graph.

Proof. Algorithm A starts with initialising an integer t to 2. For a given graph G, the

algorithm runs over all possible 2-colorings of vertices of G. For every coloring, the

algorithm contracts each monochromatic connected component of the coloring to a vertex.

If the resulting graph is a path then the algorithm updates value of t to length of this path.

Algorithm returns value of t after iterating over all 2-colorings.

Running time of the algorithm is O?(2n) as contracting edges and checking whether a

graph is a path or not is polynomial time process. Any connected graph can be contracted

to P2.The algorithm returns an integer t which is strictly greater then two only if had found

a Pt-witness structure of G. It remains to argue that if ` is the largest integer such that G

can be contracted to P̀ then algorithm returns `. Let W = {W1,W2, . . . ,W`} be a P̀ -witness

structure of G. Since algorithm A iterates over all 2-coloring of V (G), it also consider a

coloring where all vertices in odd indexed witness sets in W are colored with one color and

all vertices in even indexed witness sets are colored with another color. For this particular

coloring, W1,W2, . . . ,W` are monochromatic connected components of G. Contracting each

of them to a vertex results in path of length `. Hence algorithm returns a value which is at



least `.

We end this section with an observation which is used to bound the number of subsets of

universal set U which are of size size at most d |U | for a fixed fraction d . We start with

following inequality for integers n and k such that k  n.

✓
n
k

◆

h⇣k

n

⌘� k
n ·
⇣

1� k
n

⌘ k
n�1in

Using above inequality we get following upper bound on summand for k < n/2.
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For a positive constant d < 1/2, assume that dn is an integer for the sake of clarity. Above

inequalities can be written as:

dn

Â
i=1
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 dn ·
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d�d · (1�d )d�1

in

dn
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i=1
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n
i
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 dn ·

h 1
d d · 1

(1�d )1�d

in
= dn[g(d )]n

where function g(d ) is defined as:

g(d ) = 1
d d · (1�d )(1�d )

Following observation is implied by above inequalities.

Observation 8.2.4. For a universe U of n elements and a constant d < 1/2, the number

of subsets of U of size at most dn is O?([g(d )]n) and all these subsets can be enumerated

in same time.



Algorithm 8.3.1: Enum-Conn-Sets: Enumeration Algorithm for (Q,a,b)-
connected sets

Input: A graph G, a non-empty set Q✓V (G), and integers a,b 2 N.
Output: The set of all (Q,a,b)-connected sets in G.

1 if |Q|> a or |N[Q]|> a+b then
2 return /0

3 if |Q|= a and G[Q] is connected then
4 return {Q}
5 if |Q|= a and G[Q] is not connected then
6 return /0

7 Consider a vertex v 2 N(Q);
8 return

Enum-Conn-Sets(G,Q[{v},a�1,b)[Enum-Conn-Sets(G�{v},Q,a,b�1)

8.3 Enumeration of Connected Sets

A graph is called connected if there is a path between every pair of vertices. A maximal

connected subgraph is called a connected component or a component in a graph. A set

A✓V (G) is a connected set in G if G[A] is a connected graph. For a graph G, a non-empty

set Q✓V (G), and integers a,b 2 N, a connected set A in G is a (Q,a,b)-connected set if

Q✓ A, |A| a, and |N(A)| b.

Lemma 8.3.1. For a graph G, a non-empty set Q ✓ V (G), and integers a,b 2 N the

number of (Q,a,b)-connected sets in G is at most 2a+b�|Q|. Moreover, we can enumerate

all (Q,a,b)-connected sets in G in time O(2a+b�|Q| ·nc).

Proof. We give an algorithmic (constructive) proof for the lemma. The algorithm Enum-

Conn-Sets, for enumerating all (Q,a,b)-connected sets in G is given in Algorithm 8.3.1.

Next, we prove the correctess and the desired running time bound for the algorithm

Enum-Conn-Sets.

Correctness. Let I = (G,Q,a,b) be an instance for the algorithm Enum-Conn-Sets. The

objective is to show that the algorithm outputs all the (Q,a,b)-connected sets in G. We

proof the correctness by induction on µ = µ(I) = a� |Q|+b.



• Base Cases: The base case occurs when one of the following conditions hold.

1. |Q|> a or |N[Q]|> a+b. In this case, Step 1 of the algorithm returns /0 as the

output. If |Q|> a, then there is no (Q,a,b)-connected set in G, and hence the

output of the algorithm is correct. Otherwise, we have |N[Q]|> a+b. Consider

a (Q,a,b)-connected set A (if it exists) in G. Notice that for a vertex v 2 N(Q)

is either in A or in N(A). Moreover, N[A] has size at most a+b. This imples

that such a connected set cannot exist. Therefore, the output of the algorithm is

correct.

2. |Q|= a and G[Q] is connected. Since Base Case 1 is not applicable, we have

that |N(Q)|  b. Furthermore, Step 3 of the algorithm is applicable, which

output {Q} as the set of all (Q,a,b)-connected sets in G. Since |Q|= a, and

any (Q,a,b)-connected set in G must contain all the vertices in Q, therefore Q

is the only potential candiate for a (Q,a,b)-connected set in G. Moreover, Q is

a (Q,a,b)-connected sets in G as it satisfies all the conditions of the definition

(including |N(Q)| b). Hence, the output of the algorithm is correct.

3. |Q|= a and G[Q] is not connected. Similar to the previous case we have that

|N(Q)| b. Furthermore, Step 5 of the algorithm is applicable, which output

/0 as the set of of all (Q,a,b)-connected sets in G. Since |Q| = a, and any

(Q,a,b)-connected set in G must contain all the vertices in Q, therefore Q is

the only potential candiate for a (Q,a,b)-connected set in G. But, G[Q] is not

connected, and therefore, Q cannot be a connected set. Hence, the output of

the algorithm is correct.

4. µ = 0, which occurs when |Q| = a and b = 0. In this case, one of previous

base cases must be applicable. Therefore, from item 1 and 2 of the base cases

it follows that the output of the algorithm is correct.

• Induction Hypothesis: We assume that the output of the algorithm is correct for

all µ  t, where t 2 N. Next, we show that the output of the algorithm is correct

when µ = t + 1. Since the base cases are not applicable, we have |Q| < a and



|N[Q]|  a+ b. Consider a vertex v 2 N(Q). We can partition the set S , of all

(Q,a,b)-connected sets in G into two sets S v
1 and S v

2 , where S v
1 = {A2S | v2A}

and S v
2 = S \S v

1 . Notice that S v
1 is the set of all (Q[{v},a,b)-connected sets

in G and S v
2 is the set of all (Q,a,b�1)-connected sets in G�{v}. By induction

hypothesis we correctly obtain the set S v
1 , of all (Q[{v},a,b)-connected sets in

G for the input instance I1 = (G,Q[ {v},a� 1,b) to the algorithm. This follows

from the fact that µ(I1) = a� (|Q|+1)+b t < µ . Similarly, we correctly obtain

the set S v
2 , of all (Q,a,b� 1)-connected sets in G� {v} for the input instance

I2 = (G�{v},Q,a,b�1) to the algorithm, which follows from the fact that µ(I2) =

a� |Q|+(b� 1)  t < µ . Hence, the output S = S v
1 [S v

2 of the algorithm is

correct.

Number of (Q,a,b)-connected sets. Let I = (G,Q,a,b) be an instance for the algorithm

Enum-Conn-Sets. We use the measure µ = µ(I) = a� |Q|+b for counting the number of

(Q,a,b)-connected sets in G. Observe that Step 1 to Step 7 (in total) output at most 1 set.

At Step 8, we make two recursive calls to the algorithm. Let K(G,a� |Q|,b) denote the

number of (Q,a,b)-connected sets in G. The recurrence for the number of the connected

sets is given by the following recurrence.

K(G,a� |Q|,b) K(G,a� |Q|�1,b)+K(G�{v},a� |Q|,b�1)

Solving the above recurrence we obtain that the number of (Q,a,b)-connected sets in a

graph is bounded by 2a+b�|Q|.

Runtime Analysis. Let I = (G,Q,a,b) be an instance for the algorithm Enum-Conn-Sets.

We use the measure µ = µ(I) = a� |Q|+b for analysing the running time of the algorithm.

Observe that Step 1 to Step 7 of the algorithm can be executed in polynomial time. At Step

8, we make two recursive calls to the algorithm. Let T (n,a� |Q|,b) denote the running

time required for an instance where the graph comprises of n vertices. The recurrence for



the runtime of the algorithm is as follows.

T (n,a� |Q|,b) T (n,a� |Q|�1,b)+T (n,a,b�1)+nc

We note that in the above recurrence c is some (fixed) constant. Solving the recurrence we

obtain that the running time of the algorithm is bounded by 2a+b�|Q|nc.

For a graph G and integers a,b 2 N, a connected set A in G is a (a,b)-connected set if

|A| a, and |N(A)| b.

Lemma 8.3.2. For a graph G and integers a,b 2 N the number of (a,b)-connected sets

in G is at most 2a+b. Moreover, we can enumerate all (a,b)-connected sets in G in time

O(2a+b ·nc).

Proof. Note that every non empty (a,b)-connected set is ({v},a,b)-connected sets for

somve vertex v in G. Hence proof of this lemma follows from Lemma 8.3.1.

8.4 3-DISJOINT CONNECTED SUBGRAPH

In this section, we define a generalization of 2-DISJOINT CONNECTED SUBGRAPHS

(2-DCS), called 3-DISJOINT CONNECTED SUBGRAPHS (3-DCS), and present an exact

algorithm to solve it. This algorithm runs in time O?(1.877n), where n is number of vetices

in input graph. Apart from using this algorithm as subroutine in an algorithm for PATH

CONTRACTION we use this algorithm to solve P5-CONTRACTION. We start with formal

definition of 2-DISJOINT CONNECTED SUBGRAPHS (2-DCS) problem.



2-DISJOINT CONNECTED SUBGRAPHS (2-DCS)

Input: Connected graph G and two disjoint terminal sets Z1 and Z2

Question: Do there exist two subsets V1,V2 of V (G) which satisfies following proper-

ties?

1. Tuple (V1,V2) is a partition of V (G).

2. Sets V1,V2 are supersets of Z1,Z2, respectively.

3. Graphs G[V1] and G[V2] are connected.

In 3-DCS problem, an input is same but we are intersected in tri-partition of V (G). The

third part separates two subgraphs containing terminal sets. We formally define it as

follows.

3-DISJOINT CONNECTED SUBGRAPHS (3-DCS)

Input: Connected graph G and two disjoint terminal sets Z1 and Z2

Question: Doe there exist three subsets V1,U,V2 of V (G) which satisfies following

properties?

1. Tuple (V1,U,V2) is a partition of V (G).

2. Sets V1,V2 are supersets of Z1,Z2, respectively.

3. Graphs G[V1],G[V2] and G[U ] are connected.

4. Graph G�U has exactly two connected components viz V1,V2.

Any tri-partition (V1,U,V2) which satisfies these condition is called a solution tri-partition.

To solve this problem efficiently, we try to find special kind of tri-partition called immovable

tri-partition. Informally, this is a solution partition in which no vertex in V1 or V2 can

be moved to U . We use notion of terminal-separator to formally define these special

partitions. For a given graph G and set of terminals Z, a vertex v is called Z-separator if Z

intersects with at least two connected components of G� v.

Definition 8.4.1 (Immovable Tri-partition). A solution tri-partition (V1,U,V2) is said to

be immovable tri-partition if any vertex v in V1 \Z1 (resp. V2 \Z2) which has at least one

neighbor in U is a Z1-separator (resp. Z2-separator) in graph G[V1] (resp. in G[V2]).



Following claim guarantees existence of such tri-partition for a YES instances.

Claim 8.4.1. If instance (G,Z1,Z2) is a YES instance of 3-DCS then there exists an

immovable tri-partition of G.

Proof. Let (V1,U,V2) be a solution tri-partition of V (G). If this is an immovable tri-

partition then we are done. Otherwise, without loss of generality, assume that there exists

a vertex in V1 \Z1 which has neighbors in U and is not a Z1-separator in graph G[V1]. Let

C1,C2, . . . ,Cd be connected components of G[V1]� v. Note that d can be equal to 1. Since

v is not a Z1-separator, we know that Z1 is contained in one of the connected components.

Let C1 be the connected component which contains Z1. Consider tri-partition (V 01,U
0,V2)

of V (G) where V 01 = C1 = V1 \ ({v1}[C2 [ · · ·[Cd) and U 0 = U [ {v1}[C2 [ · · ·[Cd .

This tri-partition is also a solution partition as both V 01 =C1 and U 0 are connected and V 01

contains Z1. For a given tri-partition we can either find a vertex to move from V1[V2 to

U or conclude that it is an immovable tri-partition Since every step reduces the number

of vertices in V1[V2 and we never add any vertex in V1[V2 this process terminates in at

most n steps and returns an immovable tri-partition.

We soon see that one can compute immovable tri-partitions in graph G using minimal

terminal connectors in the graph obtained by adding a specific edge in G.

Definition 8.4.2 (Minimal Z-connector). Given a graph G and a set of terminal vertices Z,

a superset S of Z is called Z-connector if S induces a connected graph. Moreover, if no

strict subset of S is Z-connector then it is called minimal Z-connector.

We use terms Z-connecting and Z-connector interchangeably.

Claim 8.4.2. Let (G,Z1,Z2) be a YES instance of 3-DCS and (V1,U,V2) be an immovable

tri-partition of V (G). Consider a minimal Z1-connecting set S1 in graph G[V1] and a

minimal Z2-connecting set S2 in graph G[V2]. Then, no connected component of G[V1]�S1

or G[V2]�S2 is adjacent with U.



Figure 8.1: Consider an instance (G,Z1,Z2) with Z1 = {z1,z3,z5} and Z2 = {z2,z4}. Dotted
line is added in graph G to obtain G0. Tuple (V1,U,V2) is an immovable tri-partition of
V (G). Set S1 = Z1[{a,b} and S2 = Z2[{y} are minimal Z1-connector and Z2-connector
in G[V1] and G[V2], respectively. Set S = S1[S2 is minimal (Z1[Z2)-connector in graph
G0. Please refer to Claim 8.4.3.

Proof. Assume that there exists a connected component C of G[V1]�S1 which is adjacent

with U . Let v be a vertex in C which has neighbor in U . Note that since S1 is a connected

and v is outside S1, vertex v is not Z1-separator in G[V1]. This contradicts the fact that

(V1,U,V2) is an immovable partition. Hence no vertex in any connected component of

G[V1]�S1 has neighbors in U . Similar argument holds for any connected component of

G[V2]�S leads to the same contradiction. Hence no connected component of G[V1]�S1

or G[V2]�S2 is adjacent with U .

Note that above claim implies that in graph G� S1, there exists a unique connected

component which is U [V2 and all other connected components of same as that of G[V1]�

S1.

For given instance (G,Z1,Z2), we assume that there does not exists an edge with one end

point in Z1 and another in Z2 as otherwise it is a NO instance. Fix vertices z1 and z2 in set

Z1 and Z2, respectively. Let G0 be the graph obtained by adding an edge z1z2 in G. In the

following claim, we relate an immovable tri-partition of G with minimal separators in G0.

See Figure 8.1.



Claim 8.4.3. Let (G,Z1,Z2) be a YES instance of 3-DCS and (V1,U,V2) be an immovable

tri-partition of V (G). Consider a minimal Z1-connecting set S1 in graph G[V1] and a

minimal Z2-connecting set S2 in graph G[V2]. Then, set S = S1[S2 is a minimal (Z1[Z2)-

connecting set in graph G0.

Proof. Let cc(G) denotes the number of connected components in graph G. Consider

any two sets X1 and X2 which are subsets of V1 and V2 respectively. Since we have added

only one edge between V1 and V2 while constructing graph G0, we get cc(G0[X1[X2])�

cc(G[X1])+ cc(G[X2])�1.

We first argue that S is a (Z1[Z2)-connector in G0. As G0[S1] and G0[S2] are connected and

there is an edge z1z2 with one end point in S1 and another in S2, graph G0[S] is connected.

Since S contains Z1[Z2, it is a (Z1[Z2)-connector.

It remains to argue that no proper subset of S is a (Z1[Z2)-connector. For the sake of

contradiction, assume that there exists a proper subset of S, say S0, which is a (Z1[Z2)-

connector in graph G0. Let S01 = S0 \V1 and S02 = S0 \V2. Consider a case when S0 does

not contain all vertices in S1 \Z1. In other words, S01 is a proper subset of S1. Recall that

S1 is a minimal Z1-connector in G[V1] and S01 contains Z1. By minimality of S1, graph

G[S01] is not connected and hence cc(G[S01]) � 2. This implies G0[S0] = G0[S01 [ S02] �

G[S01]+G[S01]�1� 2 as cc(G[S02])� 1. This contradicts the fact that G0[S0] is a connected

graph. By symmetric arguments, assuming S02 is a proper subset of S2 leads to same the

contradiction. Hence our assumption is wrong and no proper subset of S is a (Z1[Z2)-

connector.

We say a minimal (Z1 [ Z2)-connector S in graph G0 is realized by an immovable tri-

partition (V1,U,V2) of V (G) if S can be partitioned into S1,S2 such that S1 is a minimal

Z1-connector in G[V1] and S2 is a minimal Z2-connector in G[V2]. Claim 8.4.3 implies that

every immovable tri-partition of V (G) realizes at least one minimal (Z1[Z2)-connector in

G0.



Given a minimal (Z1 [ Z2)-separator S of G0, we want to construct an immovable tri-

partition of V (G), if exits, which realizes it. Note that if S is realized by some immovable

tri-partition of V (G) then G[S] has two connected components containing Z1 and Z2. If

this is not the case then we can conclude that this minimal separator is not realized by any

immovable tri-partition. Let S1,S2 are two connected components of G[S] which contains

Z1 and Z2 respctively. If S is realized by an immovable tri-partition (V1,U,V2) then, by

Claim 8.4.2, every connected component of G�S1 which is not U [V2 is also a connected

component of G[V1]�S1. We do not know U [V2 in advace. But connected component of

G�S1 which is U [V2 contains S2. Hence, V1 consists of S1 together with all connected

components of G�S1 which do not intersect S2.

We illutrate this idea with an example. Consider the graph drawn in Figure 8.1. Set

S = Z1[{a,b}[Z2[{y} is a minimal (Z1[Z2)-connector in G0. Set S can be partitioned

into two sets, S1 = Z1 [ {a,b} and S2 = Z2 [ {y} such that both G[S1] and G[S2] are

connected and they contain Z1 and Z2. Note that connected component of G�S1 which

does not intersects S2, vertex c, is contained in V1.

We enumerate all minimal (Z1[Z2)-connector S in G0 and try to construct a tri-partition

(V1,U,V2) of V (G) as described above for every S. If we find such tri-partition we return

it as solution or conclude that no such tri-partition exists. We use following result to

enumerate all minimal (Z1[Z2)-connecting subsets in G0.

Proposition 8.4.1 ([90]). For an n vertex graph G and a terminal set T ⇢ V (G) where

|T | n/3 there are at most
�n�|T |
|T |�2

�
·3(n�|T |)/3 minimal T -connecting vertex sets and those

can be enumerated in time O?(
�n�|T |
|T |�2

�
·3(n�|T |)/3).

We now state the following lemma which solves 3-DCS when number of terminals are

small as compare to number of vertices in graph. The reason to choose specific value of d

will be clear in Theorem 8.4.1.

Lemma 8.4.1. There exists an algorithm that solves the 3-DISJOINT CONNECTED SUB-

GRAPHS problem in O?(1.877n) time if the number of terminals is at most dn. Here n is



number of vertices in input graph and d = 0.092.

Proof. Let (G,Z1,Z2) be an input instance where G is graph on n vertices and |Z1[Z2|

dn. The algorithm arbitrarily fixes terminals z1,z2 in Z1,Z2, respectively and adds an

edge z1z2 to obtain graph G0. It enumerates all minimal (Z1[Z2)-connector in G0. For

every minimal connector S, the algorithm checks whether there are exactly two connected

component of G[S], say S1,S2, containing Z1 and Z2, respectively. If such connected

component exists then the algorithm construct a tri-partition of V (G) in the following

way. Initialize sets V1,U,V2 to S1, /0,S2, respectively. Any connected component of G�S1

which does not contain V2 is added to V1. The algorithm expands V2 in similar way. All

vertices which are not added in V1 or V2 are added to U . If (V1,U,V2) is a solution tri-

partition then the algorithm returns it and terminates otherwise moves on to next minimal

(Z1[Z2)-connector of G0. The algorithm concludes that solution exists if it can not find a

solution tri-partition for any minimal (Z1[Z2)-connector in graph G0.

We argue correctness of the algorithm. Note that the algorithm returns a tri-partition only

if it has found one. By Claim 8.4.1, if (G,Z1,Z2) is a YES instance then there exists

an immovable tri-partition (V1,U,V2) of V (G). By Claim 8.4.3, there exists a minimal

(Z1 [ Z2)-connector in G0 which is realized by (V1,U,V2). Since algorithm considers

all minimal (Z1 [ Z2)-connector, it also considers the one realized by (V1,U,V2). By

Claim 8.4.2, if S is a minimal (Z1[Z2)-connector realized (V1,U,V2), then V1 is union of

S1 with connected components of G�S1 which do not contain S2. Similar statement holds

for V2. Hence if given instance is a YES instance, the algorithm considers the minimal

terminal connector realized by an immovable tri-partition and constructs the tri-partition

associated with it.

Note that d = 0.092 < 1/3 and hence we can use Proposition 8.4.1 to enumerate all

minimal (Z1[Z2)-connector in time O?(
�n�|Z1[Z2|
|Z1[Z2|�2

�
·3(n�|Z1[Z2|)/3) which is O?(

�(1�d )n
dn

�
·

3(1�d )n/3). Using µ = 1�d and Stirling approximation, we can bound
�µn

dn

�
by O?(( µµ

d d ·(µ�d )(µ�d ) )
n)

or O?(( (1�d )(1�d )

d d ·(1�2d )(1�2d ) )
n). Using computer we can verify that maximum value of (( (1�d )(1�d )

d d ·(1�2d )(1�2d ) ) ·



31/3) for 0< d  0.092 occurs when d = 0.092 and it is 1.877. This implies the mentioned

running time of the algorithm.

We are now in position to present main theorem of this section.

Theorem 8.4.1. There exists an algorithm that solves the 3-DISJOINT CONNECTED

SUBGRAPHS problem in O?(1.877n) time where n is number of vertices in input graph.

Proof. Let (G,Z1,Z2) be an input instance. We consider two cases depending on number of

terminals. If |Z1[Z2|> dn where d = 0.092 then enumerate all subsets in V (G)\(Z1[Z2)

to determine middle portion of tri-partition. For every set U of size (1�d )n, we check

in polynomial time whether G(U) is connected and G�U has exactly two connected

components, say V1,V2 which contain Z1 and Z2, respectively. If there exists such set then

we return (V1,U,V2) as tri-partition. The correctness of algorithm follows from the fact

that we are doing exhaustive search in this process. Total time to complete the process

is O?(2(1�d )n) = O?(2(1�0.092)n) = O?(1.877n). If |Z1[Z2| dn then, by Lemma 8.4.1,

there exists an algorithm running in time O?(1.877n).

P5-Contraction

We use Theorem 8.4.1 to check whether given graph G can be contracted to P5 or not. By

Observation 8.2.2, if graph G is contractible to P5 then there exists a P5-witness structure

W = {W1, . . . ,W5} of G such that W1,W5 are singleton sets. We guess the pair of vertices

which are in these singleton witness set. There are at most O(n2) many choices for such

pairs. Let {x},{y} be guess for W1,W5 respectively. Sets N(x),N(y) must be contained

in witness set W (t2),W (t4) respectively. In graph G� {x,y}, we use N(x),N(y) as set

of terminals to find a tri-partition (V1,U,V2). If exists, these three sets can work as

witness structures corresponding to W2,W3,W4 respectively. This simple algorithm implies

following corollary of Theorem 8.4.1.



Corollary 8.4.1. Given a graph on n vertices, one can decide whether it can be contracted

to P5 or not in time O?(1.877n).

8.5 Exact Algorithm for Path Contraction

We start with overview of the algorithm for PATH CONTRACTION which consists of four

methods. We elaborate on each method in separate subsections and present entire algorithm

with proof of correctness in Subsection 8.5.5. Let a,b ,g be positive constants which are

strictly less than one.

• In Subsection 8.5.1, we enumerate all subsets of size less than nb/2 and for every subset

check whether is it a union of all odd or even indexed witness sets for some witness

structure corresponding to a path.

• In Subsection 8.5.2, we use dynamic programming to build partial witness structure

for some subgraphs of given graph. To do this, we store the the maximum length of path

that can obtain from a subgraph with additional constraint that all boundary vertices of

the subgraph are in one of end bags. Once we have this value, we enumerate all possible

sets which can be added as next bag to this partially contracted graph. We perform these

operation until cardinality of closed neighborhood of subgraph under consideration is at

most an.

• In Subsection 8.5.3, we iterate over all set of vertices of size at most (1� g)n. If a graph

induced on a subset has exactly two connected components, say C1,C2, and graph obtained

by removing this set has exactly one connected component, say C, then we consider this set

for further checks. We use dynamic programming to get path structure for graph induced

on C1 and C2. We use the algorithm for 2-DISJOINT CONNECT SUBGRAPHS problem to

check whether we can partition C into two parts with desired properties.

• In Subsection 8.5.4, we iterate over all subsets of size en where e = 1� b/2� g/2



and check whether a set can be union of almost all odd or even indexed sets. For each

connected component of graph obtained by removing the set, we check whether connected

component can be partitioned into three parts with desired properties. To do this, we use

the algorithm to solve 3-DISJOINT CONNECT SUBGRAPHS mentioned in Section 8.4.

Each subsections contains pseudo-code for an algorithm, its proof of correctness and time

require to complete it. For each method, we argue that for a given graph if there exists

a witness structure which satisfies certain conditions then PATH CONTRACTION can be

solved in time better than O(2n) using this method. Clearly, we do not know any witness

structure for a given graph corresponding to maximum length of path to which it can

be contracted. All these conditions on witness structure are existential. We specify the

conditions in forms which are most useful in Subsection 8.5.5 and hence a priory it may

not be obvious that these conditions are exhaustive.

Let ` be the largest integer such that given graph can be contracted to P̀ . In Subsection 8.5.5,

we argue that there exists a P̀ -witness structure of graph which satisfy at least one of

the conditions mentioned in subsections. We now present a brief overview of proof of

correctness. Since any connected graph can be contracted to a path of length two, such

integer exists. If there exists a P̀ -witness structure for given graph in which number of

vertices in odd or even indexed witness sets is at most bn/2 then method in Subsection 8.5.1

correctly identifies this witness structure. We now consider the case when number of

vertices are almost equally divided into odd and even numbered witness sets for all P̀ -

witness structures. We subdivide this case based on number of large witness sets in

witness structure. We quantify large in such a way that there are at most two large bags

in any P̀ -witness structure. If there exists a witness structure which does not contain any

large witness set then we can build a P̀ -witness structure using dynamic programming

mentioned in Sub-section 8.5.2. If exactly one large bag then we argue that either earlier

step returns an optimum solution or we can solve the problem using method mentioned in

Sub-section 8.5.4. Consider a case when there are exactly two large bags. If these two bags



Algorithm 8.5.1: Solving PATH CONTRACTION by enumerating subsets
Input: Connected graph G and a positive fraction b
Output: An integer t such that G can be contracted to Pt

1 Initialize t = 2;
2 B Collection of all subsets of V (G) which are of size at most bn/2�1;
3 for each S in B do
4 W  witness structure obtained by consider each connected component of

G[S] and G�S as a witness set;
5 G0  graph obtained from G by contracting witness sets in W ;
6 if G0 is a path then
7 t = max{t, length of path G0};

8 return t;

are adjacent then we obtain a witness structure by method mentioned in Sub-section 8.5.3.

If these two large bags are not adjacent then we get optimum solution from method in

Subsection 8.5.2.

8.5.1 Method Using Enumeration of Subsets

In this sub-section we explain the method of enumerating subsets and specify the criteria

in which this method returns an optimum solution.

Lemma 8.5.1. For a given connected graph G on n vertices and a positive constant b ,

Algorithm 8.5.1 returns an integer t such that G can be contracted to Pt and it terminates

in time O?(cn) where c = g(b/2).

Proof. If algorithm returns 2 then it is correct by Observation 8.2.1. If algorithm returns

an integer which is greater than 2 then there exists a set S such that connected components

of G[S] and G�S are witness sets in a Pt-witness structure. The running time of algorithm

follows from Observation 8.2.4 and the fact that for a given set S, algorithm can obtained

graph G0 and check whether it is a path or not in polynomial time.

For a Pt-witness structure W = {W1,W2, . . . ,Wt}, we define odd sets (OS) and even sets



(ES) as union of odd and even indexed sets respectively. Formally, these sets are defined as:

OS =
bt/2c[

x=0
W2x+1 and ES =

bt/2c[

x=1
W2x

.

Definition 8.5.1 (b -Equally Partitioned). For a positive constant b , a Pt-witness structure

W = {W1,W2, . . . ,Wt} is said to be b -equally partitioned if the number of vertices in both

of sets OS and ES are greater than or equal to bn/2.

We note that {OS,ES} is a partition of V (G). Lower bound on sizes of both these sets also

implies upper bound of (1�b/2)n on their sizes. Following lemma states that for a given

graph if there exists a witness structure such that size of one of sets OS or ES is at most

bn/2 then Algorithm 8.5.1 is effective on this graph.

Lemma 8.5.2. For a given connected graph G and a positive constant b , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is not b -equally partitioned then Algorithm 8.5.1 returns `.

Proof. Consider a case when size of OS is strictly less than bn/2. Since Algorithm 8.5.1

enumerates all subsets of V (G) of size strictly less than bn/2, set OS is also enumerated

by it. For this set, algorithm obtains a graph G0 which is a path on ` vertices. Similar

arguement holds when size of ES is strictly less than bn/2. Hence algorithm returns value

which is greater than or equal to `.

8.5.2 Method Using Dynamic Programming

In this sub-section, we explain a method to build partial witness structures for given graph

using dynamic programming. Our aim is to construct a witness structure of a connected

set corresponding to a path that can be extended in remaining graph. For set S of V (G),



we define d (S) as the set of vertices in S which have at least one neighbor outside S.

Formally, d (S) = {v| v 2 S and N(v)\S 6= /0}. For every connected set S, let T [S] denotes

the largest integer q such that G[S] can be contracted to Pq with property that d (S) is

contained in an end bag in Pq-witness structure. To compute T [S], we iterate over all

possible sets which can potentially be last bag containing d (S). Note that if set B is the

witness set corresponding with one of the end bags in path contraction of G[S] then both

G[B] and G[S\B] are connected. For a given set S, we enumerate all sets which are possible

candidates for B. For a given set S, let Z [S] denotes collection of sets which can be witness

sets corresponding with one of end bags. Formally,

Z [S] = {B✓ S| d (S)✓ B and G[B],G[S\B] are connected}

We initialize T [{u}] = 1 for all vertex u in V (G) which is correct by definition. We

compute T [S] using following recurrence.

T [S] = max
B2Z [S]

{T [S\B]}+1 (8.1)

We now prove that the above recurrence is correct.

Claim 8.5.1. Recurrence 8.1 correctly computes T [S] for every connected subset S of

V (G).

Proof. For a subset S, let B0 be the set in Z [S] where maximum value for right hand side of

the equation is achieved. Notice that since B0 is in Z [S], graph G[S\B0] is connected and

hence T [S\B0] is well defined. Let {W1,W2, . . . ,Wq} be a Pq-witness structure of G[S\B0]

associated with T [S\B0]. Set Wq+1 = B0. We argue that {W1,W2, . . . ,Wq,Wq+1} is one of

candidate witness structure of G[S]. By the property of T [S\B0], set d (S\B0) is contained

in Wq and hence there is no edge between Wi and Wq+1 for any i in [q�1]. Moreover, there

is at least one edge between Wq and Wq+1 since S is connected. As B0 =Wq+1 is in Z [S],



it is connected and contains d (S). Hence T [S]�T [S\B0]+1.

Let {W1,W2, . . . ,Wq+1} be a Pq-witness structure of G[S] corresponding to the value T [S].

We argue that if there is only one witness set in witness structure, i.e. q = 0, then every

vertex s in S has either one of the following two properties: it is a cut vertex in G[S]

or it is in d (S). If there exists a vertex in S which does not satisfy either of these two

properties then we can construct another witness structure by creating separate witness

set containing only this vertex. This contradicts maximality of T [S]. This implies that

any non-empty proper subset B of S, either G[B] is not connected or B does not contain all

boundary vertices. Hence Z [S] is empty and recurrence is true. For q� 1, let B =Wq+1.

To prove the recurrence, we need to argue that B is in Z [S]. By the property of witness

structure, G[B] and G[S\B] are connected. By definition of T [S], set d (S) is contained in

B. Since {W1,W2, . . . ,Wq} is a Pq-witness structure of G[S \B], set d (S \B) is contained

in Wq. Hence {W1,W2, . . . ,Wq} is one of candidate witness structures corresponding to

value of T [S\B]. This implies T [S]�1T [S\B] for some B in Z . This completes the

proof.

Notice that T [V (G)] is equal to the largest integer ` such that G can be contracted to P̀ .

We can use the Recurrence 8.1, exactly as stated above, to compute the value of T [V (G)].

The running time of such algorithm is O?(3n). To avoid this, we compute T [S] only for

connected sets S whose closed neighborhood has at most an vertices for some constant

fraction a . We calculate values corresponding to entries in bottom-up fashion but instead

of looking backward while computing the values, we look forward and update values in

the table. At each table entry S, we do not iterate over all its proper subsets to update the

value of T [S]. Instead we assume that the optimum value for T [S] is known and update

values of some of its supersets. Since we are interested in values of T [S] only for set S

which are connected and for which N[S] is at most an, we only consider super sets of S

which are of size at most an. We prove that the number of such sets is smaller than 2n�|S|.

These savings at each iterations results in overall running time of O?(2an).



Figure 8.2: Dotted border denotes the set under consideration while updating value in
dynamic programming table. In first figure, algorithm consider B as element in Z [S].
In second figure, algorithm consider B as an element in Aa,b[S \B] where a = |B| and
b = |N(S)|. See Claim 8.5.2

For a connected set S, let A [S] be a collection of all potential witness sets in G�S which

can be appended to contracted path corresponding to T [S]. At each table entry S, we

update value of T [S[A] for every A in A [S]. For tight upper bounds, we define Aa,b[S]

where a,b are two fixed integers. Set Aa,b[S] is a collection of connected set of size exactly

a in G�S which is superset of N(S) and size of neighbors of A in G�S is at most b. In

other words, size of neighbors of A[S in G is at most b. Formally,

Aa,b[S] = {A| N(S)✓ A; |A|= a, |N(A)\S|= b and set A is connected in G�S}

In the follow claim, we argue that instead of computing Z [S], it is sufficient to compute

Aa,b[S\B] for some subset B of S and specific values of a and b.

Claim 8.5.2. For a connected set S and its non empty subset B, let a = |B| and b = |N(S)|.

Set B is in Z [S] if and only if G[S\B] is connected and B is in Aa,b[S\B].

Proof. ()) Definition of Z [S] implies that G[B], G[S\B] are connected and d (S) is subset

of B or N(S\B) is contained in B. Since G[S\B] is connected, Aa,b[S\B] is well defined

for two integers a,b. It is easy to verify that B is connected set in G� (S\B) and hence B

is in Aa,b[S\B] for a = |B| and b = |N(S)|.

(() Definition of Aa,b[S \ B] implies that cardinality of set B is a; G[B]� (S \ B) is



Algorithm 8.5.2: Solving PATH CONTRACTION using Dynamic Programming
Input: Connected graph G and a positive fraction a
Output: An integer t such that G can be contracted to Pt

1 Initialize t = 2;
2 Sa  Set of all connected subset S of V (G) such that |N[S]| an;
/* T [S] denotes maximum number of bags in path contraction of

G[S] which contains d (S) in an end bag. */

3 for S in Sa do
4 T [S] = 1;

5 for S in Sa do
6 x = |N(S)|; y = |S|;
7 for every pair (a,b) of positive integers s.t. y+a+b an and x b do
8 Compute Aa,b[S] using Lemma 8.3.1;

/* Aa,b[S] is a collection of connected set A in G�S such

that N(S)✓ A, |A|= a and |N(A)\ (G�S)| b. */

9 for A in Aa,b[S] do
10 T [S[A] = max{T [S[A],T [S]+1} ;

11 for S in Sa do
12 if V (G)\S is also in Sa then
13 t = max{t,T [S]+T [V (G)\S]};

14 return t;

connected and d (S\B) is contained in B. This implies that set N(S) is identical to N(B)\S

or in other words, d (S) is a subset of B. This together with fact that G[B], G[S \B] are

connected implies that B is in Z [S].

We use Claim 8.5.2 to obtain improvement in running time while computing values in T .

Lemma 8.5.3. For a given connected graph G on n vertices and a positive constant a ,

Algorithm 8.5.2 returns an integer t such that G can be contracted to Pt and it terminates

in time O?(cn) where c = 2a .

Proof. The correctness of the recurrence used in Step 10 of the algorithm is implied by

Claim 8.5.1 and Claim 8.5.2. Condition y+ a+ b  an ensures that we only consider

sets S,A such that |N[S[A]| is at most an. Hence T [S[A] is well defined. If algorithm

returns 2 then it is correct by Observation 8.2.1. If algorithm returns an integer which



is larger than 2 then there exists a set S such that sets S and V (G)\S are connected and

their closed neighborhood is at most an. Let {W1,W2, . . . ,Wj} be a Pj-witness structure

corresponding to value T [S] with d (S)✓Wj and {W 01,W
0
2, . . . ,W

0
k} is the witness structure

corresponding to T [V (G) \ S] with d (V (G) \ S) is contained in W 01. It is easy to see

that {W1, . . . ,Wj,W 01, . . . ,W
0
k} is Pj+k0-witness structure of G. Hence algorithm returns an

integer whose value is more than two only if it had found a Pt-witness structure.

We now argue about the running time of this algorithm. Recall that y = |S| and x = |N(S)|.

At table entry corresponding to a set S, algorithm computes Aa,b[S] in time O?(2a+b�x)

(by Lemma 8.3.1). The number of sets in Aa,b[S] is upper bounded by O?(2a+b�x). For

each set A in Aa,b[S], algorithm updates the value of T [S[A] in polynomial time. Hence

total time spent at each entry is at most O?(2a+b�x). By Lemma 8.3.2, the number of

connected sets of size y whose neighborhood is of size x is upper bounded by O?(2y+x)

and all of those can be enumerated in same time. This implies there O?(2y+x) entries

where set S is of size y and N(S) is of size x. Hence total time to compute the table is

O?(2x+y ·2a+b�x) = O?(2y+a+b) = O?(2an).

For a given Pt-witness structure W = {W1,W2, . . .W`} of a graph we define Qi,Ri as :

Qi =
iS

x=1
Wx and Ri =

S̀

x=i
Wx for all i in [t]. Note that (Qi,Ri+1) is a partition of V (G) for

all i in [t�1]. Moreover, sets Qi,Ri are connected for all i.

Definition 8.5.2 (a-Balanced Bi-partition). For a positive constant a , a Pt-witness struc-

ture W = {W1,W2, . . . ,Wt} is said to be a-balanced bi-partitioned if there exists an integer

i in [t�1] such that cardinality of sets Qi+1 and Ri are less than or equal to an.

We now specifies the types of graphs on which Algorithm 8.5.2 is effective.

Lemma 8.5.4. For a given connected graph G and a positive constants a , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is a-balanced bi-partitioned then Algorithm 8.5.2 returns `.



Proof. Let W = {W1,W2, . . . ,W`} be a a-balanced bi-partitioned P̀ -witness structure of

G. By definition, there exists i in [t�1] such that cardinality of Qi+1 and Ri are less than or

equal to an. Note that, N[Qi]✓ Qi+1 and N[Ri+1]✓ Ri. Since Algorithm 8.5.2 computes

T value for all connected sets S whose closed neighborhood is at most an, it computes

values for Qi and Ri+1. Moreover, T [Qi] and T [Ri+1] is at least i and `� i, respectively.

Hence in this case, the integer returned by Algorithm 8.5.2 is greater than or equal to `.

8.5.3 Method using an algorithm for 2-DISJOINT CONNECTED SUB-

GRAPHS

Recall that an input of 2-DISJOINT CONNECTED SUBGRAPHS (2-DCS) consists of a

connected graph H and two disjoint terminal sets Z1,Z2. The task is to check whether is it

possible to partition V (H) into V1,V2 such that Z1,Z2 are contained in V1,V2, respectively,

and both H[V1], H[V2] are connected. We use the algorithm presented by Telle and

Villanger [90] as black-box in our algorithm.

Proposition 8.5.1 ([90] Theorem 3). There exists an algorithm that solves 2-DISJOINT

CONNECTED SUBGRAPHS problem in O?(1.7804n) time where n is number of vertices in

input graph.

Algorithm 8.5.3 divides input graph into three parts with middle one containing bulk of

vertices. See Figure 8.3. Corner parts contains at most (1� g)n many vertices and hence

algorithm can afford to guess it. For every such guess of corner parts, algorithm finds

a suitable path contraction using method specified in Sub-Section 8.5.2. For the middle

part, algorithm checks whether it can be partitioned into two connected subgraphs using

Proposition 8.5.1.

Lemma 8.5.5. For a given connected graph G on n vertices and a positive constant g ,

Algorithm 8.5.3 returns an integer t such that G can be contracted to Pt and it terminates

in time O?(2(1�g/2)n + cn) where c = maxgd1
�

1.7804d ·g(1�d )
 

.



Figure 8.3: Guessing vertices in Methods described in Subsections 8.5.3 and 8.5.4. Dotted
region denotes S, set of vertices guessed by algorithms. In Subsection 8.5.3, middle part
into divided into two witness sets while in Subsection 8.5.4, we partition it into three
witness sets.

Proof. The algorithm computes T [S] for all connected set S in G whose closed neighbor-

hood is of size at most (1� g/2)n. It enumerates all subsets of size at most (1� g)n. Out

of these sets, the algorithm considers set S which satisfies following four properties.

1. Graph G�S is connected,

2. Graph G[S] has exactly two connected components, say S1,S2,

3. Cardinality of closed neighborhoods of sets S1,S2 are at most (1� g/2)n, and

4. Instance ((G�S);N(S1)\C;N(S2)\C) is a YES instance of 2-DCS.

Algorithm returns maximum of T [S1]+T [S2]+2 over all sets S which satisfies above

properties.

We argue the correctness of algorithm. If algorithm returns 2 then it is correct by Observa-

tion 8.2.1. If algorithm returns an integer which is larger than 2 then there exists a set S

which satisfies above conditions. Let {W 001 , . . . ,W
00
j } be a Pj-witness structure correspond-



Algorithm 8.5.3: Solving PATH CONTRACTION using the algorithm for 2-
DISJOINT CONNECT SUBGRAPH (2-DCS)

Input: Graph G and a positive constant g
Output: An integer t such that G can be contracted to Pt

1 Initialize t = 2;
2 Run Algorithm 8.5.2 on input (G,1� g/2) to compute table T ;
3 C all subsets of size at most (1� g)n;
4 for S in C do
5 S1,S2 connected components of G[S];

/* Continue if G[S] do not have two connected components */

/* Continue if |N[S1]| or |N[S2]| are not at most (1� g/2)n */

6 if (G� (S1[S2);N(S1);N(S2)) is a YES instance of 2-DCS then
7 t = max{t,T [S1]+T [S2]+2}

8 return t;

ing to T [S1] such that d (S1) is a subset of W 00j and {W 01, . . . ,W
0
k} be a Pk-witness structure

corresponding to T [S2] such that d (S2) is a subset of W 01. Let (V1,V2) be a partition of

G�S such that terminal sets N(S1),N(S2) are contained in V1,V2, respectively, and both

V1,V2 are connected sets in G�S. It is easy to see that {W 001 , . . . ,W
00
j ,V1,V2,W 01, . . . ,W

0
k} is

a Pj+k+2-witness structure of graph G.

By Lemma 8.5.3, the algorithm can compute the table in time O?(2(1�g/2)n). For every

set S, conditions (1),(2) and (3) can be checked in polynomial time and condition (4) can

be checked in time O?(1.7804n�|S|) using Proposition 8.5.1. By Observation 8.2.4, the

number of sets of cardinality at most (1�d )n are upper bounded by O?([g(1�d )]n) which

can be enumerated in same time. Hence the running time of algorithm is O?(2(1�g/2)n+cn)

where c = maxgd1
�

1.7804d ·g(1�d )
 

.

We present a lemma which specifies the types of graphs on which Algorithm 8.5.3 is

effective. To specify such graph, we need to define certain kind of witness structure.

Definition 8.5.3 (g-Bi-large). For a positive constant g , a Pt-witness structure W =

{W1,W2, . . . ,Wt} is said to be g-bi-large if there exists an integer i in [t � 1] such that

cardinality of sets Wi and Wi+1 are greater than or equal to gn/2.



Before stating the lemma, we recall that for a given Pt-witness structure W we defined

Qi,Ri as : Qi =
iS

x=1
Wx and Ri =

S̀

x=i
Wx for all i in [t].

Lemma 8.5.6. For a given connected graph G and a positive constant g , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is g-bi-large then Algorithm 8.5.3 returns `.

Proof. Let W = {W1,W2, . . . ,W`} be a g-bi-large P̀ -witness structure of G. Consider two

adjacent witness sets Wi,Wi+1 such that |Wi|, |Wi+1| are greater than or equal to gn/2. To

prove that the algorithm returns the optimum value, we argue that Qi�1[Ri+2 is one of

the sets considered by algorithm while updating value of t. Since (Qi�1,Wi,Wi+1,Ri+2)

is a partition of V (G), we have |Qi�1|+ |Wi|+ |Wi+1|+ |Ri+2|= n which implies |Qi�1[

Ri+1| (1�g)n. Hence Qi�1[Ri+ j is one of sets considered while enumerating all vertex

sets of size at most (1� g)n. We argue that it satisfies all four conditions mentioned in

proof of Lemma 8.5.5. By the properties of P̀ -witness structure, set Qi�1[Ri+1 satisfies

conditions (1) and (2). To see that it satisfies (3), notice that N[Qi�1] does not intersects

with Wi+1 and hence cardinality of N[Qi�1] is upper bounded by n� |Wi+1| (1� g/2)n.

By similar argument, size of N[Ri+1] is at most (1� g/2)n. By the property of P̀ -witness

structure, N(Qi�1),N(Ri+2) are two disjoint vertex sets. Let G0 is the subgraph of G

induced on Wi[Wi+1. Notice that (G0,N(Qi�1),N(R j+1)) is a YES instance of 2-DCS as

V (G0) can be partitioned into Wi,Wi+1 such that these sets contains N(Qi�1) and N(R j+2)

respectively and both are connected sets in graph G0. This implies that Algorithm 8.5.3

returns an integer which is greater than or equal to `.

8.5.4 Method using an algorithm for 3-DISJOINT CONNECTED SUB-

GRAPH

In this sub-section, we present a method used to solve PATH CONTRACTION using the algo-

rithm for 3-DCS presented in Section 8.4. In the method mentioned in Sub-section 8.5.3,



Algorithm 8.5.4: Solving PATH CONTRACTION using the algorithm for 3-
DISJOINT CONNECT SUBGRAPH (3-DCS)

Input: Connected graph G and a positive constant e
Output: An integer t such that G can be contracted to Pt

1 Initialize t = 2;
2 C all subsets of size at most en;
3 for S in C do
4 W  witness structure obtained by consider each connected component of

G[S] and G�S as a witness set;
5 G0  graph obtained from G by contracting witness sets in W ;
6 if G0 is not a path then
7 Continue with next set in C;

8 for C in connected component of G�S do
9 C1,C2 Connected components of G[S] which are adjacent with C;

10 if (G[C];N(C1)\C;N(C2)\C) is a YES instance of 3-DCS then
11 t = max{t, length of path G0+2}

12 return t;

algorithm divides input graph into three parts by guessing all vertices in corner parts.

Algorithm then checks whether middle part can be partitioned into two bags and corner

bags can be contracted to a path using Algorithm 8.5.2. In this method, instead of guessing

all vertices in corner parts, algorithm guesses some vertices in corner parts which partition

it different witness sets. See Figure 8.3. We consider guess S for which connected compo-

nents of G[S] and G�S corresponds to a witness structure corresponding to a path. For

each connected component of G�S, we check whether it can be tri-partitioned to get two

more witness sets. Following lemma asserts the correctness of Algorithm 8.5.4.

Lemma 8.5.7. For a given connected graph G on n vertices and a positive constant e ,

Algorithm 8.5.4 returns an integer t such that G can be contracted to Pt and it terminates

in time O?(cn) where c = max0de
�

1.877(1�d ) · g(d )
 

.

Proof. If algorithm returns 2 then it is correct by Observation 8.2.1. If algorithm returns an

integer which is greater than 2 then there exists a set S which satisfies following conditions:

Graph obtained by contracting connected components of G[S] and G�S to vertices is a

path. There exists connected components C of G�S, and C1,C2 of G[S] such that C is ad-



jacent with C1,C2 and instance (G[C];N(C1)\C;N(C2)\C) is a YES instance of 3-DCS.

Let (V1,U,V2) be a partition of V (C) such that vertices of N(C1)\C and N(C2)\C are con-

tained in V1,V2 respectively, sets V1,U,V2 are connected sets in G[C] and V1,V2 are the only

two connected components of G[C]�U . If {W1, . . . ,Wj�1,C1,C,C2,W 01, . . . ,W
0
k�1} is a

Pj+k+1-witness structure of a graph G then {W1, . . . ,Wj�1,C1,V1,U,V2,C2,W 01, . . . ,W
0
k�1}

is a Pj+k+3-witness structure of G. Hence, the algorithm returns an integer greater than 2

only if it has found a witness structure of path of that length.

We now argue the running time of the algorithm. By Observation 8.2.4, the number of sets

of cardinality at most en are upper bounded by O?([g(e)]n) which can be enumerated in

same time. For every set S, conditions mentioned in previous paragraph can be checked

in time O?(1.877n�|S|) using Theorem 8.4.1. Hence the running time algorithm is O?(cn)

where c = max0de
�

1.877(1�d ) · g(d )
 

.

We define a type of witness structure used to specify graphs for which this method is

effective.

Definition 8.5.4 (e-Partition Concentrated). For a positive constant e , a Pt-witness struc-

ture W = {W1,W2, . . . ,Wt} is said to be e-partition concentrated if there exists an integer i

in {2, . . . , t�1} such that cardinality of either OS \Wi or ES \Wi is at most en (depending

on whether i is odd or even integer).

In above definition, we insist that witness set Wi is does not corresponds with end point of

Pt to avoid dealing with corner cases in following lemma. In Subsection 8.5.5, we argue

that these corner cases do not occur.

Lemma 8.5.8. For a given connected graph G and a positive constant e , if ` is the largest

integer such that G can be contracted to P̀ and there exists a P̀ -witness structure of G

which is e-partition concentrated then Algorithm 8.5.4 returns `.

Proof. Let W = {W1,W2, . . . ,W`} be a P̀ -witness structure of G which is e-partition

concentrated. Without loss of generality, we can assume that OS is a concentrated partition.



In other words, there exists an odd integer i in {2, . . . , t�1} such that |OS \Wi| is upper

bounded by en. We argue that OS \Wi is one of sets considered by algorithm while

updating the value of t. Note that connected components of G[OS \Wi] and G� (OS \

Wi) are W1, . . . ,Wi�2,C,Wi+2, . . . ,W` where C = Wi�1 [Wi [Wi+1. Together these sets

forms a P̀ �2-witness structure of G as W is a P̀ -witness structure of G. Moreover,

(G[C];N(Wi�2)\C;N(Wi+2)\C) is a YES instance of 3-DCS as C can be partitioned

into (Wi�1,Wi,Wi+1) which satisfies the desired properties. Hence the value of t has

been updated to ` when considering set OS \Wi by the algorithm. This implies that

Algorithm 8.5.4 returns an integer which is greater than or equal to `.

8.5.5 Algorithm for PATH CONTRACTION

We fix values of a,b ,g such that they satisfies following inequalities: (1) 2+g/2�b/2

2a (used in Case 1); (2) 1� g  b/2 (used in Case 3); (3) 1� g/2 a (used in Case 3).

Following theorem is the main result of this paper.

Theorem 8.5.1. There exists an algorithm that solves PATH CONTRACTION problem in

O?(1.99987n) time where n is the number of vertices in an input graph.

Proof. Let G be input graph. Fix a = 0.9996;b = 0.9885;g = 0.9864. Main algorithm

runs Algorithm 8.5.1, Algorithm 8.5.2, Algorithm 8.5.3, Algorithm 8.5.4 with input (G,b ),

(G,a), (G,g) and (G,1�b/2� g/2), respectively. It returns the maximum among values

obtained by these four algorithms. By Lemma 8.5.1, Lemma 8.5.3, Lemma 8.5.5 and

Lemma 8.5.7 the running time for these algorithms for specified values of a,b ,g are

O?(1.99987n), O?(1.9994n), O?(1.8983n) and O?(1.9921n) respectively. These lemmas

also implies that if algorithm returns an integer t then input graph can be contracted to

Pt . To argue the correctness of main algorithm, it remains to argue that if ` is the largest

integer such that G can be contracted to P̀ than there exists a P̀ -witness structure of G

which satisfies premises of either one of Lemma 8.5.2, Lemma 8.5.4, Lemma 8.5.6, or



Lemma 8.5.8.

Recall that for a Pt-witness structure {W1,W2, . . . ,Wt} of a graph we have defined set ES

(resp. OS) as collection of vertices in G which are present in even (resp. odd) numbered

witness sets. For all i in [t], set Qi (resp. Ri) is union all witness sets indexed less than or

equal (resp. greater than or equal) to i. Formally these sets are defined as follows.

OS=
bt/2c[

x=0
W2x+1 ; ES=

bt/2c[

x=1
W2x ; Qi =

i[

x=1
Wx ; Ri =

t[

x=i
Wx

It is clear from the definition that N(Qi) (resp. N(Ri)) is contained in Qi+1 (resp. N(Ri�1)).

We use this observation frequently in the remaining proof.

If there exists a P̀ -witness structure of G which is not b -equally partitioned (Defini-

tion 8.5.1) then premise of Lemma 8.5.2 is satisfied and hence the algorithm returns

optimum value. For rest of the proof we assume that all P̀ -witness structures of G are

b -equally partitioned. In other words, for any P̀ -witness structure, cardinalities of both

sets OS and ES are strictly greater than bn/2. This lower bound also implies upper bound

of (1�b/2)n on cardinalities both these sets. Any P̀ -witness structure of G contains at

most two witness sets of size greater than or equal to gn/2. We consider three cases based

on existence of witness structure containing certain number of witness sets of size greater

than or equal to gn/2.

Case 1: There exists a P̀ -witness structure, say W = {W1,W2, . . . ,W`}, which contains no

witness set of size greater than or equal to gn/2.

We prove that W is a-balanced bi-partitioned (Definition 8.5.2) and hence premise of

Lemma 8.5.4 is satisfied and main algorithm returns optimum value.

Let j be the largest integer such that the cardinality of Q j is at most an. By Observa-

tion 8.2.2, integer j is not equal to 1 or `. As j is largest such integer, cardinality of Q j+1 is

strictly greater than an and hence |Q j|+ |Wj+1|> an which can be written as |Q j|> an�



|Wj+1|. As (Q j,R j+1) is a partition of V (G), we have |Q j|+ |R j+1|= n. This implies car-

dinality of R j+1 is strictly less than n�an+ |Wj+1|. We use this to obtain upper bound on

cardinality of R j�1. By definition, |R j�1|= |Wj�1|+ |Wj|+ |R j+1| and hence cardinality of

R j�1 is strictly less than |Wj�1|+ |Wj|+n�an+ |Wj+1|= n�an+ |Wj�1|+ |Wj|+ |Wj+1|.

Since j�1, j+1 has same parity and are disjoint with each other, |Wj�1|+ |Wj+1| is at

most (1� b/2)n. There is no witness set of size strictly greater than gn/2 and hence

cardinality of Wj is at most gn/2. Plugging these upper bounds we get that cardinality of

R j�1 is upper bounded by n�an+(1�b/2)n+ g/2n = (2�a�b/2+ g/2)n an (by

Equation 1). This implies cardinalities of set Q j and R j�1 are upper bounded by an and

hence W is a a-balanced bi-partitioned witness structure.

Case 2: There exists a P̀ -witness structure, say W = {W1,W2, . . . ,W`}, which contains

exactly one witness set of size greater than or equal to gn/2.

We prove that either W is a-balanced bi-partitioned or it is (1� b/2� g/2)-partition

concentrated (Definition 8.5.4) witness structure. In first case, proof of correctness is

similar to that of previous case. In second case, premise of Lemma 8.5.8 is satisfied and

hence the algorithm returns optimum value.

Let Wk be the unique witness whose cardinality is strictly greater than gn/2. Let j be the

largest integer such that cardinality of Q j is at most an. We know that, as in previous case,

|Wj�1|+ |Wj+1| is at most (1�b/2)n. If j 6= k then upper bound on cardinality of Wj is

still valid and arguments are similar as in previous case. We now consider a case when

j = k. Without loss of generality, assume that k is an odd integer. Since cardinality of

OS is upper bounded by (1�b/2)n and that of Wj is lower bounded by gn/2, we have

|OS \Wj|  (1�b/2� g/2)n. By Observation 8.2.2, we know k is not equal to 1 or `

which implies W is a (1�b/2� g/2)-partition concentrated set.

Case 3: There exists a P̀ -witness structure, say W = {W1,W2, . . . ,W`}, which contains

exactly two witness sets of size greater than or equal to gn/2.



We first prove that these two witness sets are of different parity. If these two large witness

sets are adjacent then W is g-bi-large witness structure (Definition 8.5.3). If they are not

adjacent then we argue that W is a a-balanced bi-partitioned. In first case, premise of

Lemma 8.5.6 is satisfied and algorithm returns optimum value. In later case, proof of

correctness is similar to that of Case 1.

Let Wj,Wk be two witness sets whose cardinality is strictly greater than gn/2. Without

loss of generality, assume that j < k. Since Wj,Wk are disjoint, if j,k has same parity then

gn < |Wj[Wk| (1�b/2)n which implies g < 1�b/2 contradicting Equation 2. This

implies j,k are of different parity. If k = j+1 then two large witness sets are adjacent and

W is g-bi-large witness structure. We now handle the case when k � j+3. We argue that

cardinalities of both Q j+2 and R j+1 are bounded above by an. Since k� j+3, set Wk does

not intersect with Q j+2. This implies that the cardinality of Q j+2 is at most n� gn/2 an

(by Equation 3). By symmetric argument, cardinality of R j+1 is upper bounded by an.

This implies that W is a a-balanced bi-partitioned witness structure.

Since g = 0.9864, no P̀ -witness structure can have more than two witness sets of size g/2.

Hence above three cases are exhaustive. This completes the proof of the theorem.

8.6 Conclusion

In this chapter we presented an algorithm which given a graph G and a connected set Q,

enumerates all connected supersets of Q which are of size at most a and has at most b

neighbors. We generalized 2-DISJOINT CONNECTED SUBGRAPHS problem and gave an

exact exponential algorithm to solve it. We use both these techniques, along with others, to

give an algorithm for PATH CONTRACTION which breaks O?(2n) barrier.
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[61] Marcin Kamiński, Daniël Paulusma, and Dimitrios M Thilikos. Contractions of

planar graphs in polynomial time. In European Symposium on Algorithms, pages

122–133. Springer, 2010.

[62] Marcin Kaminski and Dimitrios M Thilikos. Contraction checking in graphs on

surfaces. In LIPIcs-Leibniz International Proceedings in Informatics, volume 14.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.



[63] Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In

Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium

on, pages 639–648. IEEE, 2009.

[64] Walter Kern and Daniel Paulusma. Contracting to a longest path in H-free graphs.

arXiv preprint arXiv:1810.01542, 2018.

[65] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith,

Ignasi Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms

via protrusion decompositions. In Automata, Languages, and Programming - 40th

International Colloquium, ICALP, pages 613–624, 2013.

[66] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set.

Information Processing Letters, 114(10):556–560, 2014.

[67] Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Quick but

Odd Growth of Cacti. In 10th International Symposium on Parameterized and Exact

Computation, IPEC, pages 258–269, 2015.

[68] Stefan Kratsch. Kernelization, Preprocessing for Treewidth. Encyclopedia of Algo-

rithms, 2016.

[69] R. Krithika, Pranabendu Misra, Ashutosh Rai, and Prafullkumar Tale. Lossy kernels

for graph contraction problems. In 36th IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science, FSTTCS 2016, pages

23:1–23:14, 2016.

[70] R Krithika, Pranabendu Misra, and Prafullkumar Tale. An FPT algorithm for con-

traction to cactus. In International Computing and Combinatorics Conference, pages

341–352. Springer, 2018.



[71] Asaf Levin, Daniel Paulusma, and Gerhard J Woeginger. The computational complex-

ity of graph contractions i: Polynomially solvable and np-complete cases. Networks:

An International Journal, 51(3):178–189, 2008.

[72] Wenjun Li, Qilong Feng, Jianer Chen, and Shuai Hu. Improved kernel results for

some FPT problems based on simple observations. Theor. Comput. Sci., 657:20–27,

2017.

[73] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of elim-

inating small induced subgraphs by contracting edges. In IPEC, pages 243–254,

2013.

[74] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of elimi-

nating small induced subgraphs by contracting edges. In International Symposium

on Parameterized and Exact Computation, pages 243–254. Springer, 2013.

[75] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy

kernelization. In Proceedings of the 49th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2017, pages 224–237, 2017.

[76] Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected

cut and 2k2-partition. Journal of combinatorial theory, series B, 111:17–37, 2015.

[77] Dániel Marx. Parameterized graph separation problems. Theoretical Computer

Science, 351(3):394–406, 2006.

[78] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–

768, 2010.

[79] Dániel Marx, Barry O’sullivan, and Igor Razgon. Finding small separators in linear

time via treewidth reduction. ACM Transactions on Algorithms (TALG), 9(4):30,

2013.



[80] Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion.

Algorithmica, 62(3-4):807–822, 2012.

[81] Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal

derandomization. In Foundations of Computer Science, 1995. Proceedings., 36th

Annual Symposium on, pages 182–191. IEEE, 1995.

[82] Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algo-

rithmica, 65(4):868–884, 2013.

[83] Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series

in Mathematics and Its Applications. Oxford University Press, 2006.

[84] Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Reducing the clique

and chromatic number via edge contractions and vertex deletions. In International

Symposium on Combinatorial Optimization, pages 38–49. Springer, 2016.

[85] Pim Pim van’t Hof, Daniël Paulusma, and Gerhard J Woeginger. Partitioning graphs

into connected parts. Theoretical Computer Science, 410(47-49):4834–4843, 2009.

[86] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals.

Operations Research Letters, 32(4):299–301, 2004.

[87] Neil Robertson and Paul Seymour. Graph minors. xxii. irrelevant vertices in linkage

problems. Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012.

[88] Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem.

Journal of combinatorial theory, Series B, 63(1):65–110, 1995.

[89] Carla Savage. Depth-first search and the vertex cover problem. Information Process-

ing Letters, 14(5):233–235, 1982.

[90] Jan Arne Telle and Yngve Villanger. Connecting terminals and 2-disjoint connected

subgraphs. In International Workshop on Graph-Theoretic Concepts in Computer

Science, pages 418–428. Springer, 2013.



[91] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on

Algorithms, 6(2), 2010.
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The contraction of edge uv in graph G deletes vertices u and v from G, and replaces them by a new 

vertex adjacent to vertices adjacent to either u or v. In this thesis, we explore FF-Contraction for various 

graph classes FF from the viewpoints of parameterized complexity, lossy kernelization and exact 

algorithms. 

In FF-Contraction problem, the input is a graph G and an integer k, and the objective is to determine 

whether one can contract at most k edges in G such that the resulting graph is in FF. 

 

Heggernes et al. (Algorithmica 2014) showed that Path Contraction admits a polynomial kernel, but Tree 

Contraction does not. We investigate properties of paths that separate it from trees and allows Path 

Contraction to have a polynomial kernel. We show that when parameterized by additional parameter l, 

number of leaves, we get polynomial kernels.  We compliment this result by proving a lower bound on 

the kernel under a standard complexity assumption.  We prove similar results for Cactus Contraction 

and Out-Tree Contraction. 

 

We present an (alpha)-lossy kernel for the Tree Contraction problem of polynomial size. Formally, we 

prove that given a graph G on n vertices, an integer k and an approximation parameter (alpha) > 1, there 

is an algorithm that runs in polynomial time and outputs graph  G1  and integer k such that for every c > 

1, a c-approximate solution for (G1 , k1 ) can be turned into (c x (alpha))-approximate solution for (G, k) 

in polynomial time . Moreover, the number of vertices in G1 is bounded by a polynomial function of k. 

We prove similar results for Cactus Contraction and Out-Tree Contraction. 

 

We present an FPT algorithm, with running time single exponential in k, for Cactus-Contraction. 

 

Let T(q) be a collection of graphs which can be converted into a tree by deleting at most q edges. For q = 

0, problem T(q) -Contraction is the same as Tree Contraction. We design an (alpha)-lossy kernel for 

T(q)-Contraction problem. We design an FPT algorithm for T(q)-Contraction. 

 

It was known that Clique Contraction does not admit a polynomial kernel. We design an (alpha)-lossy 

kernel of polynomial size for this problem. We study generalization of Clique Contraction problem called 

s-Club Contraction. A graph is called s-club if the diameter of the graph is at most s. We prove that for 

any s >= 2, s-Club Contraction does not admit a lossy kernel of polynomial size under a standard 

complexity assumption.  

 

We address a question of determining the length of the largest path to which a given graph can be 

contracted. We present a non-trivial exact exponential algorithm that breaks the 2n-barrier. 
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