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Summary

In this thesis, we undertake a systematic study of m-systems of symmetrizable
Kac-Moody algebras and regular subalgebras of affine Kac-Moody algebras. A
m-system . is a finite subset of the real roots of a Kac-Moody algebra g satisfying
the property that pairwise differences of elements of ¥ are not roots of g. As part
of his classification of regular semisimple subalgebras of semisimple Lie algebras,
Dynkin introduced and studied the notion of m-systems. These precisely form the
simple systems of such subalalgebras. We generalize the definition of 7-systems
and regular subalgebras and establish their fundamental properties. We show that
m-systems, regular subalgebras and closed subroot systems of affine Kac-Moody
algebras are in one-to-one correspondence. We completely classify and give explicit
descriptions of the maximal closed subroot systems (or maximal 7-systems in
other words) of affine Kac-Moody algebras. As an application we describe a
procedure to get the classification of all regular subalgebras of affine Kac Moody
algebras in terms of their root systems. We also study the orbits of the Weyl group
action on m-systems of symmetrizable Kac-Moody algebras, showing that for many
m-systems of interest in physics, the action is transitive (up to negation). Finally,
we formulate general principles for constructing m-systems and criteria for the
non-existence of m-systems of certain types and use these to determine the set of
maximal hyperbolic diagrams in ranks 3-10 relative to the partial order of

admitting a m-system.
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Chapter 1

Maximal Closed subroot systems

of real affine root systems

1.1 Preliminaries

We denote the set of complex numbers by C and, respectively, the set of integers,

non-negative integers, and positive integers by Z, Z,, and N.

We refer to [15] for the general theory of affine Lie algebras and we refer to [1, 19]
for the general theory of affine root systems. Throughout, A will denote an
indecomposable affine Cartan matrix, and S will denote the corresponding Dynkin
diagram with the labeling of vertices as in Table Aff2 from [15, pg.54-55]. Let S
be the Dynkin diagram obtained from .S by dropping the zero node and let A be

the Cartan matrix, whose Dynkin diagram is S.

Let g and g be the affine Lie algebra and the finite-dimensional simple Lie algebra

associated to A and A over C, respectively. We shall realize g as a subalgebra of g.
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We fix Ij C b Cartan subalgebras of g and respectively g. Then we have
h=HhoCK @ Cd.

where K is the canonical central element, and d is the derivation. Consider Ij* as a
subspace of h* by setting A(K) = A(d) = 0 for all A € h* Let 0 € b be given by
d(d) = ag, where aq is 2 if g is of type A2 and 1 otherwise, and 5(h®CK) = 0. Let

(, ) be a standard symmetric non-degenerate invariant bilinear form on h*.

1.1.1 Affine root system

We denote by A(g) the set of roots of g with respect to b, and the set of real roots
of g by Ar(g) =: ® and the set of imaginary roots of g by Ay, (g). We call  as
affine root systems here. By abuse of notations, we say that ® is of affine type X
(resp. untwisted or twisted) if and only if A(g) is of affine type X (resp. untwisted
or twisted). The set of roots of g with respect to b is denoted by ® and note that
® can be identified as a subroot system of ®. Let &, and P, (resp. ®, and CIDS)
denote respectively the subsets of ® (resp. @) consisting of the long and short

roots. We set

1, if & is of untwisted type

2)

m =42 if ®is of type Agi) (n>1), Agn_l (n> 3),DI(12JZ1 (n>2)or Eéz)

3, if @ is of type DELS).

\

We have (see [15, Page no. 83])) ® = {a+rd:ac ®,r € Z} if m =1 and

d={a+rd:aed,reZ}U{a+mré:acd,rez}
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it m =2 or 3, but ® is not of type Agi) and else

®={i(a+(2r-1)0: € dpr € ZW{a+rd :a € &, r € ZYU{a42r8 1 v € By, 1 € Z}.

1.1.2 Weyl group

Given a € ®, we denote by o € b the coroot associated to o. Then we set

(B,a") = pB(aY) = % Define reflections s, : h* — b* for a € @ as follows:

sa(B) =B —(B,a")a

where 5 € h*. For a € &3, S, restricts to the reflection in « on h* We let
W = (s, : @ € @) denote the Weyl group of g and denote by W= (sq 1 € CI>>

the Weyl group of g generated by those reflections.

1.1.3 Definitions

In this section, we recall some general definitions and facts about finite and affine

root systems.

Definition 1.1.1. A proper non—empty subset ¥ of ¢ (resp., <I>) is called

1. a subroot system of ® (resp., (ID), if s,(8) € U for all a, 8 € V;
2. closed in @ (resp., (ID), if , € U and a+ 5 € P (resp., <I>) implies a+ 3 € V;
3. closed subroot system of ® (resp., <I>), if it is both subroot system and closed.

Definition 1.1.2. A proper closed subroot system W of & (resp., <I>) is said to be a
maximal closed subroot system of ® (resp., <I>) it 0 CAC P (resp., @) implies

A =V for any closed subroot system A of ® (resp., <I>)
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Definition 1.1.3. Let ¥ < ® be a subroot system. The gradient root system

associated with W is defined to be
Gr(V) := {(a +70)lgra+rd€ \Il} :

where recall that f) is the Cartan subalgebra of g. Since ¢ |5 = 0, we have

(a+71d)|; = al; = a for a +rd € . In particular we have

U %Cbg if § is of type AL
Gr(®) =
d otherwise.

The definition of Gr(¥) is dependent on the ambient root system ®. But we do
not want to put ® as an additional parameter in the notation. Note that Gr(¥)
does not need be a reduced root system in general. For example, Gr(®) is
non-reduced finite root system of type BC, when g is of type Agi). It is easy to see
that the gradient root system associated with ¥ is a subroot system of Gr(®) in
the sense of Definition 1.1.1(1). We say Gr(¥) is reduced if Gr(¥) does not
contain a subroot system of type BC, for any r > 1. The Weyl group of Gr(¥)

generated by {s, : a € Gr(¥)} is denoted by Wew).
Definition 1.1.4. Let ¥ < Gr(®) be a subroot system. The lift of ¥ in & is

defined to be

U= U {a+7rd: for all r such that a +rd € ®}

acV¥
It is easy to see that the lift U of U is a subroot system of ®.

Definition 1.1.5. Let ¥ be an irreducible subroot system of ®. We say that W is
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of type Xr(lr) if there exists a vector space isomorphism ¢ : RU — RI such that

(W) =T and (B,a") = (o(B),o(a")) forall a,B €V,

where I is a real root system of type X&) and RY (resp., RT') denotes the vector

space spanned by ¥ (resp., I') over R.

Let ¥ be a reducible subroot system of ®. We say that ¥ is of type
Xl(lfi) e Xr(f) DB ng) fU =0, BUyd---P Uy, such that U, is irreducible for all

1 <1 <k, ¥; are mutually orthogonal and ¥, is of type Xr(lrii) forall 1 <i¢<k.

Remark 1.1.6. Notice that the vector space sum of the irreducible components of a
reducible root system need not be direct. For example, consider the affine root
system A of type Ggl) and its real roots ® = {a+nd: a € <i>, n € Z} where d is of
type Gy. Let {1, s} be the simple system of ®, such that as is a short root. Then
define

U={tay+nd:neZU{td+nd:nec2j,

where 6 is the long root of P, Clearly, V¥ is a closed subroot system of type
A(il) & Agl) but the sum of vector spaces spanned by each component is not direct.
The following Lemma is immediate from the above definitions.

Lemma 1.1.7. Let ® be an irreducible affine root system and let Gr(P) be its
corresponding gradient root system. If W is a closed subroot system of Gr(®) then

the lift U s also a closed subroot system of .
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1.2 Maximal closed subroot systems of an
irreducible finite crystallographic root

system

We make the following conventions throughout this chapter B; = C; = Dy = A4,
By = Cy, Dy = A @ Ay, Dy = Ag, ALY = B{Y = ¢{V BV = ¢V, D{V =AY @ AV,

Agl) = Dgl), A§2) = Agl) and Af) = fo). Below we list all maximal closed subroot
systems of an irreducible finite crystallographic root system of rank n from [16,

Page 136].

Table 1.1: Types of maximal closed subroot systems of irreducible finite root systems

Type Reducible Irreducible
An Ar b An—r—l (O S r S n— 2) An—l

B, |B:®Dp, (1<r<n-2) Bn_1, D
Cn C:®Chr (1<r<n-1) A,y
)

Dy D, ®Dp_+ (2 <r<n-2 Ap_1, Dny
Es As DA, Ay DA DAy Ds

E7 As D Ay, Ay B De Es, A7
Eg Ay ©E7, Eg © Ay, Ay D Ay Dg, Ag
Fy Ay B Ay, C3D A, B,

Go AL DA Ay

1.2.1 Characterization of closed subroot systems

We will closely follow the arguments in [7] (see also [6]) to complete the
classification of maximal closed subroot systems of affine root systems. The
authors of [7] considered only the untwisted affine root systems or more generally
considered real root systems of loop algebras of Kac-Moody algebras in [7]. Here
in this chapter we will deal with both untwisted and twisted affine root systems.

We leave out the proofs of most of the results presented in this section as it closely
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follows the arguments of [7].

Recall that ® is the set of real roots of the irreducible affine Kac-Moody Lie

algebra g. Let ¥ be a subroot system of ®. Define

Zo(W) ={r:a+rd € ¥}, for a € Gr(V).

It is easy to see that U = {a+ 1 : a € Gr(V),r € Z,(¥)}. We immediately have

(see, Lemma 8 in [7])

(1.2.1) Z(¥) — (B, ") Zo (V) C Zs,(5)(V), for all o, 8 € Gr(¥).

Lemma 1.2.1 ([7], Lemma 13). Let ® be an irreducible affine root system and let
U be a subroot system of ® and assume that Gr(¥) is reduced. Let I be a simple
system of Gr(W) and let p: ' — Z be an arbitrary function. Then there exists a
unique Z-linear extension p to Gr(¥), which we denote again by p for simplicity,

p: Gr(V) — Z given by a — p, satisfying

(1.2.2) ps — (B, 0" )Pa = Psai)

for all o, B € Gr(V).

The following proposition is very crucial.

Proposition 1.2.2. Let ® be an irreducible affine root system and let ¥ be a
subroot system of ®. Then there exists a function p¥ : Gr(¥) — Z, o — pY, and
non-negative integers nY for each o € Gr(W) such that Zo(¥) = pY + n2Z.

Moreover the function p¥ is Z—linear if Gr(¥) is reduced.

Proof. We will first assume that Gr(¥) is reduced. Let I" be a simple system of

Gr(¥) and choose arbitrary elements py € Z,(¥) for each a € I'. Define a function
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pY : T — Z given by a +— pY. Now, fix the unique Z-linear extension of p¥ to

Gr(V) as in Lemma 1.2.1. Define
Z'(U) = Z,(0) — pY ={r —pL :r € Z,(V)} for a € Gr().

Since each root of Gr(¥) is conjugate to some simple root by an element in Wey(w),

we get py € Z,(0), for all a € Gr(¥) and
Z/ﬁ<\11) - <67QV>Z;£(\II> g Zé&(ﬁ)(\lj)J for all Oéaﬂ € Gr(\Ij)7

using the equation (1.2.1) and (1.2.2). One can easily see that Z/ (¥) are
subgroups for all a € Gr(¥), since 0 € Z/ (V), Z/ (V) = Z" (¥) and

ZN(U)+2Z (V) = Z(¥) for all @ € Gr(V) (proof of this fact is same as the proof
of Lemma 22 in [7]). Hence there exists nY € Z, for each o € Gr(¥) such that

Z! (W) =nYZ. This completes the proof in this case.

We are now left with the case Gr(V) is non-reduced. Since the sets Z,(¥) depends
only on the individual irreducible components of W, we can assume that ¥ is

irreducible. In particular, Gr(¥) is of type BC, for some r > 1. So, we have
Gr(V) ={ e, £2,+6 e : 1 <i#j<r}

if r >2or Gr(¥) = {£e;, 126} if r = 1 (see [4, Page no. 547]). Write

Gr(V), ={£e:1<i<r}, Gr(V)m ={Fe £¢:1<i#j<r}and

Gr(¥), = {£2¢; : 1 <i <r}. By convention, we have Gr(¥);,, = 0 if » = 1. Let
F={a; =€ —€, -+ 01 = €,_1 — €,, = €.} be the simple system of Gr(¥)
and here by convention we have I' = {¢;} when r = 1. Choose arbitrary elements
pa € Zo() for each o € T' and define the function p¥ : I' — 1Z, o — pY as before.
Fix the unique Z—linear extension of p¥ to Gr(¥) as in Lemma 1.2.1. Since the

long roots of Gr(¥) are not Weyl group conjugate to simple roots, we will not have
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pY € Z,(T) for all long roots a € Gr(¥), as before in reduced case. But this is the
only obstruction that we have in this case. To overcome this issue, first fix a
Z—linear extension of p¥ : T'— 1Z to p¥ : Gr(¥), U Gr(¥);,, = 3Z and choose

pY € Z, (V) arbitrarily for the positive roots of Gr(¥),. Then we see that

—pY € Z_o(¥) for a € Gr(¥),. So, we take p¥, := —p? for the negative roots of

Gr(¥), and define a natural extension
v 1 v 1
p: Gr(¥) — 52 of p* : Gr(¥), U Gr(¥)iy, — §Z

by assigning these arbitrarily chosen pY to a for each long root a. Now, note that
this new extension p¥ : Gr(¥) — %Z is no longer Z—linear map. As before, we
define Z! (V) = Z,(¥) — p? for all @« € Gr(¥). Then by definition of Z/,(¥), we
have 0 € Z/ (V) for all « € Gr(¥). Note that Z, (V) satisfies the equation (1.2.1),

which implies that

Z5(0) = (B,a") Z, (V) € Z, 5 (V) + (s, 5)— (05 — (B, ")), for all o, B € Gr(P).

Since pY = —pY¥ for all a € Gr(¥), we get Z/ (V) — 27/ (V) C Z' (V) for all

a € Gr(¥). This implies 2’ (V) = Z/ (V) and Z/ (V) + 22! (V) = Z/ (V) for all

a € Gr(V). Precisely this fact and 0 € Z/(V), « € Gr(¥) used in the proof of |7,
Lemma 22] to prove that Z’ (V) is a subgroup of Z for all & € Gr(¥). Note that
for o, 8 € Gr(W) we have s, 15(6 + p3d) = sa(8) + (p5 — (8,")pa )0, which
implies that pg — (3,a")py € Zs,(s)(¥). Hence (p;pa(ﬁ) — (pj — (B, a")py)) must be
in Z; 5(¥) for all a, f € Gr(V). Thus, we have

Z5(W) = (B,a") Z1, (W) C ZL (5)(¥) for all a, f € Gr(V).

— S

as before. Since the sets Z/(¥) are subgroups of Z, there exists ny € Z, such that

Zo(W) = pY + nYZ for all @ € Gr(¥). This completes the proof in this case. O
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From the Proposition 1.2.2, it is clear that a subroot system ¥ of ® is completely
determined by the gradient subroot system Gr(¥) and the cosets

Zo(W) =pY +nYZ, o € Gr(¥). Naturally if ¥ is closed in @, then the “closedness
property of ¥ in ®” will give us some more restrictions on the gradient subroot
systems and the cosets Z, (V). We will completely characterize these restrictions
on the gradient subroot systems Gr(¥) and the cosets Z,(¥) corresponding to
“closedness property of W in ®” in Proposition 1.2.6, 1.2.7, 1.2.8, 1.3.1, 1.4.2 and

use this information to determine all possible maximal closed subroot systems ¥ of

®. The following lemma tells us about the relationships between the integers nyY .
Proof of this lemma closely follows the arguments of [7, Lemma 14] and only uses

the fact that

Z4(0) — (8,a") Z,(V) C ZL 5(¥) for all a, § € Gr(®),

so we will omit the proof.

Lemma 1.2.3. [Lemma 14, [7]] Let U be a subroot system of ® and let nY be
defined as above. We have (,aV)n¥Z C ng’Z for all o, B € Gr(¥), and nY = ng’
for all a, B € Gr(V) with € Weewye. In particular if ny =0 for some o € Gr()

then ng =0 for all B € Warya.

Note that when ng # 0, we have (6, a")nyZ C njZ if and only if ny divides

(B, a")ny.

1.2.2 Reducible gradient

Suppose Gr(¥) is reducible say Gr(¥) = ¥y @ - -+ @ Wy, then by Lemma 1.2.3 for
each 1 < i < k we have ny] = ny for all a, 8 € (¥;), (vesp. for all a, 8 € (¥;), and
for all o, 3 € (¥;)im), denote this unique number by n; (¥) (resp. n¥i(¥) and

nyi(0)). We drop W in n)*(¥) (resp. in n¥+(¥) and in n.i(¥)) and simply denote

1m
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it by nzp (resp. n¥i and nl\fn) if the underlying subroot system W is understood.
Note that long roots (or short roots or intermediate roots) of Gr(¥) from the
different components are not conjugate under the action of Wgyy). In particular

v v v v :
nyt, oo,y (vesp. n¥t - ,nYk or nyl, -+ ny*) may not be equal. If Gr(¥) is

S m
irreducible, we denote ny™™) and (resp. nT™) by n¥ and n¥ (resp. n¥,) or
simply by n, and ng (resp. nyy) if the underlying subroot system ¥ is understood.

By convention, we have ng = ny, in case Gr(¥) is of type BCy. Sometimes we will

N4

denote n; as ny to emphasize its importance. We also simply denote Z,(¥), p?

and nY by Zu, Pa, Ne if the underlying subroot system ¥ is understood.

1.2.3 Properties of n,

The following Lemma compares the cosets Z, of two subroot systems of ®.

Lemma 1.2.4. Let V C A C ® be two subroot systems of ®.

1. Then we have Gr(¥) C Gr(A).

2. The cosets satisfy Z, (V) C Zo(A) for all o € Gr(V) and in particular

nYZ CniZ for all o € Gr(V).

8. If Gr(¥) = Gr(A) and n5 =nY for all « € Gr(A), then we have ¥ = A,

Proof. By the definition of gradient, we have Gr(¥) C Gr(A) and by the definition

of Z,(¥), we have Z,(V) C Z,(A) for all @ € Gr(¥). In particular, we have
pY +n¥Z C pt +ntZ, for a € Gr(0).

This implies (p2 —p¥) € nZ and n¥Z C (p5 — p¥) +n5Z = n5Z. This proves the

Statement (2). Finally for the last part, assume that Gr(¥) = Gr(A) and ng = nY

67
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for all @ € Gr(A). For a € Gr(A), we have (p5 — pY) € n2Z, and hence
Py +n5Z =ps +nSZ.

This implies that Z,(¥) = Z,(A) for all a € Gr(A) since n5 = nY. Thus, we have

U =Asince V={a+rd:acGr(V),re Z,(¥)} and
A={a+7rd:aeGr(A),r e Z,(A)}. This completes the proof. O

We record the following lemma for the future use.

Lemma 1.2.5. Let ® be an irreducible affine root system and let ¥ < ® be a
closed subroot system with an irreducible gradient subroot system Gr(¥). Then

nY =0 for some a € Gr(V) implies that n‘g =0 for all 5 € Gr(¥)

Proof. Suppose ny = 0 for some a € Gr(®). Then, since Gr(¥) is irreducible,
given any f € Gr(V) there exists a finite sequence of roots 8; = «,- -+ , 5, = [ such
that (5;, Bix1) # 0 for all 1 <i <7 — 1. Then by Lemma 1.2.3, we have

(B, BY1)ng,,, Z S ngZ for all 1 <i <r — 1. From this it is clear that

nglzo — ng’Q:O — . = ng’T:O. Thus,wehaven%zOforall

B € Gr(®). This completes the proof.

1.2.4 Closed subroot systems of untwisted affine root

systems

The following proposition determines the integers n,, for the closed subroot

systems of untwisted affine root systems.

Proposition 1.2.6. Let ® be an irreducible untwisted affine root system.
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1. Suppose V¥ is a closed subroot system of ® with an irreducible gradient
subroot system Gr(W), then n, = ng for all a, f € Gr(¥). Denote this unique

number by ny.

2. Suppose ¥ is a mazimal closed subroot system of ® with Gr(W¥) = ®, then ny

must be a prime number.

Proof. Suppose n, = 0 for some a € Gr(¥), then by Lemma 1.2.5, we have ng =0
for all § € Gr(¥). Hence, the Statement (1) is clear in this case. So, assume that
ne # 0 for all & € Gr(¥). Suppose Gr(¥) is simply laced, then we have n, = ng
for all o, 5 € Gr(V¥) by Lemma 1.2.3. Hence, the Statement (1) is immediate in
this case. So, we assume that Gr(¥) is non simply-laced irreducible root system.
We can choose two short roots oy and s in Gr(W) such that their sum oy + ay is a
long root in Gr(¥). Then from Lemma 1.2.3, we have n,, = n,, = ns and

Mg = Nay+ay- As U is closed we have

Zoq + Za2 - Za1+oz2-

/

Since Paytas = Pay + Pasy, WE get Z;l + Z;Q = Z o, +ayy Which implies that ny | ms.
On the other hand (3, a¥) = %1 for short root 8 and long root «, see [14, Page no.
45]. Using this and by Lemma 1.2.3, we get ns | ny and hence ny = ng. This

completes the proof of Statement (1).

For the second part, it follows from 1.2.2 and Statement (1) that there exists p,

such that Z, = p, + ngZ for all a € 3. Suppose nyg = 0, then we have
U={a+pld:acGr(d)}CA,

where A is a proper closed subroot system of ® given by

A={a+ (pY+2r)d:a e Gr(P),r € Z}. This is a contradiction to our
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assumption that W is maximal closed subroot system in ®, so we must have
ny # 0. Suppose ny = 1, then it is immediate that Z, = Z for all a € P, Hence,
U = & which is again a contradiction. So, we must have ny # 1. Suppose ny is not

a prime number and let ny = uv be a nontrivial factorization of ny, then we have
Q= {oz+(pa+ur)5:a€(i>,rez}

is a closed subroot system of ® since the function o — p, is Z—linear and satisfies

the Equation (1.2.2) and

Sa+(pa+ur)5(ﬂ + (pg + ur')o) = s (B) + (psa(g) + ur’ — ur(f, Oz\/))é

for a, 3 € ® and r,7’ € Z. But ¥ G QG @, which contradicts the fact that ¥ is
maximal closed subroot system in ®. This completes the proof of Statement

(2). O

1.2.5 Closed subroot systems of twisted affine root
systems not of type Aéi)

We have the following proposition which is similar to Proposition 1.2.6 for twisted

affine root systems not of type Agi). Recall the definition of m from Section 1.1.1.

Proposition 1.2.7. Let ® be an irreducible twisted affine root system not of type
Agi) and let O < @ be a subroot system with an irreducible gradient subroot system

Gr(V). Let ny and ng be defined as in Section 1.2.2.

1. Suppose VU is a closed subroot system of ® such that Gr(V) is simply laced,

then we get n, = ng for all o, B € Gr(W¥). Denote this unique number by ny.

2. Suppose ¥ is a closed subroot system of ® such that Gr(¥) is non
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simply-laced, then we get ny = ng if mlns and we get ny, = mng if m fn.

Denote ng by ny.

3. Suppose ¥ is a maximal closed subroot system of ® with Gr(¥) = (i), then ny

s a prime number.

Proof. Suppose n, = 0 for some a € Gr(¥), then by Lemma 1.2.5, we have ng =0
for all € Gr(¥). Hence, the Statements (1) and (2) are clear in this case. So, we
assume that n, # 0 for all & € Gr(¥). Suppose Gr(V) is simply laced, then we
have n, = ng for all a, f € Gr(¥) by Lemma 1.2.3. Hence, the Statement (1)
follows. So, we assume that Gr(®) is non-simply laced and irreducible to prove the
Statement (2). Since Gr(W) is irreducible and non simply-laced, we can choose two
short roots a; and oy in Gr(¥) such that their sum «a; + «s is a long root in
Gr(V). Again using Lemma 1.2.3, we have n,, = na, = ns and ny = Ng,1a,- As ¥
is closed, we have

(Zal + Zoéz) NmZ = Za1+a2'

Since pa,+as = Pay + Paz a0d Payta, € mZ, we get (Z, + Z,,) (\mZ = Z,

altag?

which implies that

nsZ NmZ = nyZ.

Thus, we get ny = ng if m|ng and ny = mny if m fn,. This proves the Statement

(2) of the proposition.

For the last part, observe that ¥ < ® is properly contained in ® since V¥ is a
maximal closed subroot system of ®. We know that there exists p, such that

Zo = Pa + noZ for all a € P, Suppose nyg = 0, then we have
U={a+pld:acGr(d)} A,
where A is a proper closed subroot system of ® given by
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A={a+ (pY+mr)d:ae Gr(®),r € Z}. This is a contradiction to our
assumption that ¥ is maximal closed subroot system in ®, so we must have

ny # 0. If ng = 1, then it is immediate that n, = m and n, = 1. This implies that
Z, = Z for short roots o and Z, = mZ for long roots a. Hence, we get ¥ = &
since Gr(V) = P, again a contradiction. Suppose ny is not a prime number, then

let ny = uv be a nontrivial factorization of ny such that m|u if m|ny. Let
Q={a+ (pa+ur)d:acdrez}
if Gr(W) is simply laced or m | ny. Otherwise let
Q=A{a+ (pa +mur)d, f+ (ps+ur)d: ac &)g,ﬁ € (i)s,r € Z}.

We claim that € is a closed subroot system of ®. Note that the function o — p,, is
Z—linear and satisfies the Equation (1.2.2). Let a € ®y, B € dy, then for r,r' € Z

we have
S5+ (pa-+un)s (@ + (Pa + mur’)d) = sg(a) + ((pa +mur’) — (pg +ur){e, 5))d.
Since ps;(a) = Pa — (@, 8Y)ps, we have
S8+ (patur)s (@ + (pa +mur’)d) = sg(a) + (psy) + mur’ —ur(a, BY))6.

Now, since (a, 8¥) = (8, a”)m and sg(«) is a long root, we have
S5+ (py+ur)s (@ + (Pa + mur’)0) € Q. Similarly, for a € d,, 8 € by and r, 1’ € Z we

have

Sa+(pa+mur’)5(ﬁ + (pﬁ + UT')5> = Sa(ﬂ) + (psa(ﬁ) +ur — mur,<57 a\/>)5 €

since s, () is a short root. Remaining cases are similarly done, so it proves that
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is a subroot system. Since sum of a short root and long root from ® can not be a
long root again, we get (2 is closed subroot system in ®. But ¥ ;Cé Q ; ®, which
contradicts the fact that W is a maximal closed subroot system in ®. This

completes the proof of Statement (3). O

1.2.6 Closed subroot systems of Agi)
We have the following result which is analogues to the Propositions 1.2.6 and 1.2.7

in the Agi) setting.

Proposition 1.2.8. Let ® be an irreducible twisted affine root system of type A(Qfl)

and let W < ® be a subroot system with an irreducible gradient subroot system

Gr(W). Let ng, nim and ng be defined as in Section 1.2.2.

1. Suppose VU is a closed subroot system of ® such that Gr(V) is simply laced,

then we get n, = ng for all o, B € Gr(W).

2. Suppose ¥ is a closed subroot system of ® such that Gr(WV) is non-simply
laced and does not contain any short root, then we get ny = Ny if 2|nim and

we get ng = 2y if 2 My,

3. Suppose V is a closed subroot system of ® such that Gr(¥) is non-simply

laced and does not contain any long root, then we get ng = Nyy,.

4. Suppose VU is a closed subroot system of ® with Gr(¥) containing short,
intermediate and long roots, then ng = Ny, ne = 2n, and ng is an odd

number. Denote ng by ny.

5. Suppose ¥ is a maximal closed subroot system of ® with Gr(¥) = Gr(®),

then ng must be a prime number.
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Proof. Suppose n, = 0 for some a € Gr(W¥), then by Lemma 1.2.5, we have ng =0
for all § € Gr(¥). Hence, the Statements (1), (2), (3) and (4) are clear in this
case. So, we assume that n, # 0 for all & € Gr(¥). Suppose Gr(¥) is simply laced,
then we have n, = ng for all o, 8 € Gr(¥) by Lemma 1.2.3. Hence, the Statement
(1) follows. Suppose VU is a closed subroot system of ® such that Gr(¥) does not
contain any short root, then W is a closed subroot system of Agi)_l. Hence, the
Statement (2) follows from Proposition 1.2.7. Suppose V is a closed subroot
system of ® such that Gr(¥) does not contain any long root. By Lemma 1.2.3,

N | Nim and niy, | 2ns. Then by Proposition 1.2.2 and Lemma 1.2.5, we have

ne € N and p, € Z,(¥) such that Z,(V) = p, + noZ for all o € Gr(®). If there is
only one short root in Gr(V), then we have ng, = ny, by convention. So assume
that we can choose two short roots a, f € Gr(V) such that o + (3 is an

intermediate root. Then since W is closed, we have

(pa + nsz) + (pﬁ + nsz) - pa—i—ﬁ + nsz g pa+6 + nim27

which implies that nsZ C n;,Z and ny, | ns and hence ngy = ny,. This completes

proof of Statement (3).

Suppose WV is a closed subroot system of ® such that Gr(¥) contains short,
intermediate and long roots, then ng = ny, as before. By Lemma 1.2.3, ny, | ng
and ny | 2n;y,. Then by Proposition 1.2.2 and Lemma 1.2.5, we have n, € N and
Pa € Zo(¥) such that Z, (V) = p, + n,Z for all a € Gr(®). Since V¥ is closed, we
have Z5o (V) — Z,(¥) C Z, (V) for a short root a € Gr(W¥). This implies that

(an - poc) + néz - Do + nsz and hence D2a + néZ - (2pa + ’I’LSZ) n 227

since pay + nyZ C 2Z. From this, we conclude that ng must be odd since 2p,, is
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odd. Since (2py + nsZ) N 2Z C Z9o(¥) = paq + neZ we have
Doa + M = (2po + nsZ) N 2Z = (2p,, + ng) + 2nZ.

This implies, we must have n, = 2n,. This completes proof of Statement (4).

Suppose ¥ is a maximal closed subroot system with Gr(¥) = Gr(®) and n, =0
for some a € Gr(®), then by Lemma 1.2.5, we have ng = 0 for all § € Gr(®). This
implies that ¥ = {a + pYd : o € Gr(®)} C A, where A is a proper closed subroot

system of ® given by
A = {a+(pl+3r)6 : a € Gr(®) UGr(®)i, r € Z}U{a+(pr +6r)d : a € Cr(®),,r € Z}.

Then ¥ can not be maximal closed subroot system in ®, a contradiction to our
assumption. Hence, n, # 0 for all & € Gr(®). Suppose ny = 1, then we get ¥ = &
from Statement (4), a contradiction. So, ny # 1. Now suppose ny is a composite
number and ny = pq. Since ng is an odd integer, without loss of generality we can
assume that p is an odd integer. Then ¥ C A, where A is a proper closed subroot

system of ® given by
A = {a+(pY+pr)é : a € Gr(®)UGr(P)im, r € Z}U{a+(pr +2pr)s : a € Gr(®),, 7 € Z}.

Hence, ny must be a prime number. This completes the proof. O

1.3 Untwisted Case

Throughout this section we assume that ® is an irreducible untwisted affine root

system. Note that Gr(®) = & and & = ®.

We need the following simple result to complete the classification of maximal
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closed subroot systems in this case. The Statement (2) of the following proposition

already appears in the proof of [11, Lemma 4.1].

Proposition 1.3.1. Let ® be an irreducible untwisted affine root system and let

U < O be a subroot system.

1. If W < ® is a closed subroot system, then Gr(¥) < ® is a closed subroot

system.

2. If W < ® is a mazimal closed subroot system, then either Gr(¥) = d or
Gr(V) C & is a mazimal closed subroot system. In particular we get

U= @ when Gr(¥) C &,

Proof. Statement (1) is immediate from the definition. Now, suppose Gr(¥) # P,
then we claim that Gr(¥) C & is a maximal closed subroot system. Otherwise,
there exist a closed subroot system € such that Gr(¥) S Q & & which immediately

implies that ¥ & O G ®. This leads to a contradiction as Q is closed in @ by

—

Lemma 1.1.7. Since Gr(¥) is a proper closed subroot system which contains ¥, we

—

must have ¥ = Gr(W). This completes the proof of Statement (2). O

1.3.1 Main theorem for untwisted case

Now, we are ready to state our main theorem for untwisted case.

Theorem 1.3.2. Let ¥ be a mazximal closed subroot system of ®.

1. If Gr(V) = ®, then there exists a Z-linear function p : Gr(V) — Z satisfying

(1.2.2) and a prime number ny such that

U ={a+ (po +rny)d:a € Gr(V),reZ}.
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Conversely, given a Z—-linear function p : d—2Z satisfying (1.2.2) and a
prime number ny the subroot system ¥ defined above gives a maximal subroot

system of ®. The affine type of V is same as affine type of P.

2. If Gr(V) C & is a mazimal closed subroot system, then

UV={a+ri:aecGr(V),rez}.

-~

Conversely, zf\I/ s a proper mazimal subroot system ofCiD then the lift U is a
mazimal subroot system of ®. The affine type of\il is XV if U s of finite type

Xy

Proof. Forward part of Statement (1) follows from the Proposition 1.2.6. For the
converse part let ¥ = {a + (po +7mny)0 : @ € Gr(¥),r € Z}, where the function
p: Gr(¥) — Z is Z-linear and satisfying (1.2.2) and ny is a prime number. It is
easy to verify that ¥ is a closed subroot system of ® since p is Z-linear and
satisfying (1.2.2). Now, suppose ¥ C A C &, then Gr(A) = & since Gr(¥) = .
Now, by part (2) of Lemma 1.2.4, we have na divides ng. This implies np =1 or
na = ny since ny is a prime number. If nao = ny, then by part (3) of Lemma
1.2.4, we get ¥ = A, a contradiction. So, we must get na = 1, this implies that

A = ®. This completes the proof of Statement (1).

Forward part of Statement (2) follows from the part (2) of Proposition 1.3.1 and
the converse part is straightforward from the part (2) of Proposition 1.3.1 and the

Lemma 1.2.4. N

Remark 1.3.3. Our main classification theorem for the untwisted case is indeed an
immediate corollary of the results of [7], see also [6]. Essentially all the machineries
were developed in [7] to complete the classification of maximal closed subroot
system of untwisted affine root system. Since the purpose of their paper is to

classify all the subroot systems in terms of the admissible subgroups of the
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coweight lattice of a root system W, and the scaling functions on ¥, the authors do
not write Theorem 1.3.2 as a corollary of their results. The main purpose of this
chapter is to get a similar classification theorem of maximal subroot systems for

the twisted affine root system case as well.

We end this section by listing out all possible types of maximal closed subroot
systems of irreducible untwisted affine root systems and give few examples to

demonstrate how one gets the this list from Theorem 1.3.2 and Table 1.1.

Example 1.3.4. Let & = BL". Then & = B, = {zxe, te; £ : 1 <i#j<n}
The root system B, has a maximal closed subroot system A of type B,_; with a
simple system {es — €3,€3 — €4, , €41 — €, €, } (see [16, Page 136]). By Theorem
1.3.2, A is a maximal closed subroot system of ® and by Definition 1.1.5, the type
of A is Br(ll,)l.

Example 1.3.5. Let & = G(Ql). Then

d=0q,= {e; —€j,£(6; +€ —2¢;) : 1 <i,j,k <3,i# j}. The root system G, has a
maximal closed subroot system A of type A; & A; with a simple system

{e1 — €2, €1 + €3 — 2e3} (sce [16, Page 136]). By Theorem 1.3.2, A is a maximal

closed subroot system of ® and the type of Ais Agl) &) Agl).

Example 1.3.6. Let ® =D\"”. Then ¢ =D, = {xe; € :1<i#j<n}. The
root system D, has a maximal closed subroot system A of type D,_; with a simple
system {€y — €3,€3 — €4, ,€n_1 — €n, €n_1 + €,} (see [16, Page 136]). By Theorem

1.3.2, A is a maximal closed subroot system of ® and the type of Ais Dr(ll_)l.

The following table is immediate from Theorem 1.3.2 and Table 1.1.

Remark 1.3.7. The Table 1.2 has already appeared in [11] and note that the
authors of [11] have omitted the possibility of a maximal closed subroot system

Dr(ll_)1 c DY in their list.
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Table 1.2: Types of maximal closed subroot systems of irreducible untwisted affine
root systems

Type Reducible Irreducible
AV | AP eaY (0<r<n-1) A
B | B @D, (1<r<n-2) |BWY, d" BY
Vol e, 1<r<n-1) A, eV
P pWenl, 2<r<n-2) |aY, Y, bl
Y | Al @al Al @al @al i, EV
Y A @l A @l S, A, £
Y [ AV oW BN ol AV oal? | oY, all B
FY A @Al A e e B, F(V
o AM @Al A, ot

1.4 Twisted Case not of type Agi)

Throughout this section we assume that ® is an irreducible twisted affine root
system which is not of type Agi). Let ¥ < & be a closed subroot system. Unlike in
untwisted case, we have three choices for Gr(V) in this case. Indeed because of this
fact, the classification of maximal closed subroot systems of twisted affine root
systems becomes more technical. We begin with the definition of the third possible

case.

Definition 1.4.1. A subroot system U of d is said to be semi-closed if

1. ¥ is not closed in ® and

2. ifa, B € W such that o + B e CID\\I/, then o and 8 must be short roots and

a + B must be a long root.

The condition (1) in Definition 1.4.1 implies that there must exist two roots
a, 8 € U such that o+ 3 € &\ ¥ and the condition (2) ensures that a and 3 are

short roots and a + f is a long root. Thus, if U is semi-closed in &), then there

47



exists short roots a and [ such that their sum « + § is a long root and

a+fed\.

Proposition 1.4.2. Let ® be an irreducible twisted affine root system not of type
Agi) and let W < ® be a subroot system. If U < ® is a closed subroot system, then

either

1. Gr(V) = Gr(®) or
2. Gr(V) is a proper closed subroot system of Gr(®) or

3. Gr(WV) is a proper semi-closed subroot system of Gr(®).

Proof. Let Gr(¥) neither be equal to Gr(®) nor be a proper closed subroot system
of Gr(®). Then there must exist two roots oy, g € Gr(¥) such that

ay + ag € Gr(®) \ Gr(V¥). We claim that the roots ay, oy must be short roots and

their sum «a; + ap must be a long root. Since «y, s € Gr(¥), there exists u,v € Z
such that a; + ud, as +vd € U. As V¥ is closed and a; + ay € Gr(®) \ Gr(V), we

have o + ag + (u +v)d ¢ ®. This implies that a; + s is a long root.

Suppose that both a; and ay are long roots. Then both u and v are integer
multiples of m, and hence so is u + v, which contradicts the fact that

a4+ ag+ (u+v)d ¢ . So, they can not be both long. Since a sum of a short root
and a long root can not be a long root, we have both a; and ay are short roots.

This proves that Gr(¥) must be a proper semi-closed subroot system of Gr(®). O

1.4.1 Main theorem for twisted case not of type Agi)

Now, we assume that ¥ < & is a maximal closed subroot system. Then by
Proposition 1.4.2, we have three choices for Gr(¥). First two cases of Proposition

1.4.2 are easier to study and they are similar to the untwisted affine root systems.
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The case (3) of Proposition 1.4.2 requires a case-by-case analysis. In this section,
we study the easier cases (1) and (2) and in Sections 1.5.3, 1.6, 1.7 and 1.8 we will
treat the case (3) for all affine root systems ® distinct from Agi). Root systems of

type Agi) will be considered separately in Section 1.9 for n > 2 and in Section 1.10

for n = 1.

Proposition 1.4.3. Let &,V as before. If ¥ < & is a maximal closed subroot
system and Gr(V) is a proper closed subroot system of Gr(®), then Gr(V¥) < Gr(P)
15 a maximal closed subroot system such that it contains at least one short root. In

—

this case, we have ¥ = Gr(WV).

Proof. The proof that Gr(¥) < Gr(®) is a maximal closed subroot system follows
immediately from the part (2) of Proposition 1.3.1. Now, suppose that Gr(¥)
contains only long roots. Then it is easy to see that ¥ < (i)g. But

v < Ci)g cC Q= {a +mrd:ac€ (GID, re Z} and € is a closed subroot system of &,

which is a contradiction to the fact that ¥ is maximal closed. O

Now, we present our main classification theorem for the maximal closed subroot

systems of twisted affine root system ® (which is not of type Agi)) whose gradient

subroot system is equal to d oris a proper closed subroot system of P,

Theorem 1.4.4. Let ® be an irreducible twisted affine root system which is not of

type Agi) and let ¥ be a maximal closed subroot system of ®.

1. If Gr(W) = &, then there exists a Z-linear function p : Gr(¥) — Z and a
prime number ny such that p satisfies the condition (1.2.2), p, € mZ for

long roots o and

{a+ (pa +7m1)d, B+ (pg + mrng)d : a € és,ﬁ € CiDg,r € Z} if m # ny,

{a+(pa+7’nq,)(5:0z€(i>, reZ}if m=ny.
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Conversely, given a prime number ny and a Z-linear function p : b7
satisfying p, € mZ for long roots a € &, and (1.2.2), the subroot system W

defined above gives us a mazximal closed subroot system of ®.

2. If Gr(V) C  is a proper closed subroot system, then Gr(¥) < & is a
maximal closed subroot system such that it contains at least one short root
and in this case ¥V = Gr(¥). Conversely, if U - & is a mazimal closed

subroot system with a short root then U is a mazimal closed subroot system.

Remark 1.4.5. For Case (1) i.c., Gr(¥) = &, the type of ¥ is %) if the type of ® is
X, and m # ny and the type of W is %Y if the type of ® is X, and m = ng. For
Case (2), the type of U is @ X, where Xy, ’s are irreducible components

of Gr(V) and r; = 1 if X,, is simply-laced else it is 2.

Proof of Statement (1). The forward part of Statement (1) is clear from the parts
(2) and (3) of Proposition 1.2.7. Converse part of Statement (1) will be proved

case by case.

Case (1.1). First assume that ng is a prime number such that ng # m and
U ={a+ (po +119)d, B+ (pg + mrng)d : a € d,,8€ b1 € Z} where p, satisfies
the condition (1.2.2) and p, € mZ for long roots a. It is easy to verify that W is a

closed subroot system of ®. By the definition of ¥, we have
Zo(V) = po + ngZ for a € <i>s and Z,(V) = p, + mngZ for a € (i)g.

Now, we will prove that ¥ is a maximal closed subroot system of ®. Suppose

U C A C & for some closed subroot system A of ®. Then we claim that A must be
equal to ®. Since ¥ C A, we have Gr(¥) = Gr(A) = &. By part (2) of Proposition
1.2.7, na determines the subgroups Z! (A) and hence the cosets Z,(A). But by
part (2) Lemma 1.2.4, we get na divides ny. This implies that either ny =1 or

na = nyg since nyg is a prime number. Assume first that na = ny, then we get
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nY = n2 for all a € & by part (2) of Proposition 1.2.7. Since Gr(¥) = Gr(A) and
nY = ns for all a € Gr(A), we have ¥ = A using part (3) of Lemma 1.2.4, a
contradiction. So, na must be equal to 1. In this case, we get n3 = n2 for all

o € ® again using the part (2) of Proposition 1.2.7. This immediately implies that
A = ® by part (3) of Lemma 1.2.4, since Gr(A) = Gr(®).

Case (1.2). Now assume that ny =m and ¥ = {a + (po +rm)d : a € &, r € Z}.
One easily sees that U is a closed subroot system of ®. So, it remains to show that
¥ is a maximal closed subroot system of ®. Suppose ¥ C A C ¢ for some closed
subroot system A of ®. Then we need to prove that A must be equal to ®. Since
U C A, we get Gr(A) = & and by part (2) of Lemma 1.2.4, we get ny = m or

na = 1. If nao = m, then by part (2) of Proposition 1.2.7, we get n5 = nY for all
o € ®. This forces A = U, a contradiction. So, this case does not arise. Hence we
must have na = 1 which implies that A = ® as before in Case 1.1. This completes

the proof of Statement (1).

Proof of Statement (2). The forward part of Statement (2) is clear from the
Proposition 1.4.3. Conversely, suppose ¥ is a maximal closed subroot system in ®
such that it contains at least one short root, say g € \il, then we claim that the lift
\f/ in ® must be a maximal closed subroot system. Let A be a closed subroot

system in ® such that
U CACS.

Then we need to prove that A must be equal to ®. We observe the following facts

first.

1. By considering respective gradients, we have U C Gr(A) C $. This implies

o

that rank(¥) < rank(Gr(A)) < rank(®).

2. By Proposition 1.4.2, we know that Gr(A) is either closed in ® or

semi-closed in ®.
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3. Since ¥ contains the short root B, we have f+rd € U CAforalreZ

4. W can be both irreducible and reducible subroot system of & (see Table 1.1

and [16, Page 136]).

Now, we will deal with all possible cases of A. We begin with the easiest case.

Case (2.1). Assume that Gr(A) is closed in ®. Then we claim that Gr(A) = &.
Since ¥ is maximal closed in ® and ¥ C Gr(A) C &, we must have either
Gr(A) = U or Gr(A) = &. If Gr(A) = U, then we have A C \/OI;, a contradiction.
So, we must have Gr(A) = ®. Since na = 1, we get n® = m by part (2)

Proposition 1.2.7. Hence, we get A = ® by part (3) of Lemma 1.2.4.

Case (2.2). Now, we are left with the case that Gr(A) is not closed but semi-closed
in ®. We will prove that this case also can not arise. Let Gr(A) be not closed but
semi-closed in ®. By Proposition 1.4.2, there exists short roots ay, ay € Gr(A)
such that oy + ay is a long root and oy + as € &J\Gr(A), fix these short roots oy
and oo € Gr(A). First we observe that Gr(A) can not be irreducible. Otherwise,
Gr(A) is irreducible and 4 rd € A for all » € Z would imply na = 1 and hence
n2 = m by part (2) of Proposition 1.2.7. Since we have a; + 79, ay + 16 € A for all
r € Z, which implies that (ay + a2) + md = (a1 + (m —1)0) + (ae +0) € A, a
contradiction to the fact that a; + ay ¢ Gr(A). So, Gr(A) must be reducible. Let
Gr(A) =A; & --- & Ay be the decomposition of Gr(A) into irreducible

components. Then it is immediate that rank(Gr(A)) = rank(A;) + - - - + rank(Ag).

Case (2.2.1). We now consider the case when U is irreducible. Since W is
irreducible, it must be contained in one of components of Gr(A). Without loss of

generality we can assume that ¥ C A;. We have either

o o o o

rank(¥) = rank(®) or rank(V) = rank(®) — 1
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since W is irreducible maximal closed subroot system of & (see Table 1.1 and [16,
Page 136]). If rank(¥) = rank(®), then we get rank(A;) =0, forall i =2,---  k
which is a contradiction to the fact that Gr(A) is reducible. So, we get

o o

rank(V) = rank(®) — 1. Since

° o

rank(Ag) + - - - + rank(Ag) < rank(®) — rank(V) = 1,

we must have k£ = 2 and rank(Ay) = 1. This implies that Gr(A) = A; & A; with
U C Ay. Since S+76 € A for all r € Z and A, is irreducible, we have n21(A) = 1.
In particular a4+ rd € A for all the short roots a € Ay and r € Z. Clearly, one of
the short roots «;, j = 1,2 must be in Ay, say a; € Ay. Since ay € Gr(A), there
exists r € Z such that as + 170 € A. Now,

(a1 4+ o) +md = (g +10) + (o + (m —1r)d) € A since A is closed and

(a1 + (m —r)d) € A because nst = 1. This is again contradicting the fact that

ag + ay ¢ Gr(A).

Case (2.2.2). We are now left with the case ¥ is reducible. Recall that & is non
simply-laced irreducible finite crystallographic root system. So, by the
classification of maximal closed subroot systems of the finite root systems (see
Table 1.1 and [16, Page 136]), we know that we must have rank(¥) = rank(®) and
U = W, @ Uy, where Wy, Uy are irreducible components of U except in the case
that when ® = B, and (U1, Wy) = (By_o, Ay B A;y). We will treat the cases d =B,
and (U, U,) = (By_s, A @ A;) separately. Since rank(¥) = rank(Gr(A)) = rank(®)

and Gr(A) is reducible, ¥ can not be contained in one single irreducible

component of Gr(A).

Subcase 1. Assume that Uy, U, are irreducible, i.e., (W1, W) # (By_o, A; @ Ay).

Since W can not be contained in one single irreducible component of Gr(A) and

23



Uy, Uy are irreducible, we may assume that ¥y C Ay, U5 C Ay, Then
rank(®) = rank(¥;) 4 rank(¥,) < rank(A;) + - - - + rank(Ay) < rank(®)

implies that k& = 2 and rank(¥;) = rank(A;), rank(¥,) = rank(A,). Since § € W,
it must be either in ¥, or in ¥,. Assume that $ € ¥y, then as before in the Case
2.2.1 we get n21(A) = 1. Hence, by previous arguments which appear in the Case
2.2.1, we observe that A, must contain those short roots a; and as. Now, since Ag
contains the short roots a; and ay we observe that ¥, must contain only long
roots. Otherwise, we will get n52(A) =1 (since W C A) which will again lead to
the contradiction oy + s € Gr(A). Hence, Ay must be non simply-laced. Again
by the classification, see Table 1.1 and [16, Page no. 136], we can have only the

following possibilities of (<I>, \If) such that U = U, & U, with simply laced Ws:
(Bna anl @Al)a (Bna ani ®Di)7 3 S i S n_27 <F4a C3®A1)7 <F47 A2@A2)7 (G27A1 @Al)

We will prove that these possibilities can not occur. Hence, the case “ is
reducible” is not possible and hence the case Gr(A) is semi-closed in $ is not

possible. Recall that U5 C A, satisfying the following properties:

o rank(W,) = rank(A,), U, is simply laced and ¥, contains only long roots

e A, is non simply-laced

e A, contains the short roots a; and ay whose sum a; + as is a long root in d.
This immediately implies that the cases (&, ¥) = (B, Ba_1 @ A1), (Fa, Cs ® A;), and
(G, Ay @ Ay) are not possible. If (<I>, \I!) = (F4, Ay @ Ay), then Ay must contain A,

properly which implies that A, must be G,. But G, can not be a subroot system of

F4, so this case also does not occur.
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Now, consider the case (<I>, \If) = (By,By_; @ D;) with 3 <i <n — 2. Then we have
VU, =B,_; and ¥, = D;. Since A, is non simply-laced irreducible finite root
system, the only possibilities of Ay are B, C;,Fq and Gy. We will directly prove that
these possibilities can not occur. By counting the number of short roots in

B, 4 @ F4 and By, one can easily see that B, 4 ¢ F4 can not occur as a subroot
system of B,. Similarly, B,_, @ G, does not occur as a subroot system of B,. Since
B, 4 ® F4 and B, 5 @ G, can not occur as subroot systems of B,, we can not have
Ay = Gy or Fq. So, we are left with the cases Ay, = B; or C;. The D; can not occur
as subroot system of C; with only consisting of long roots, hence A, can not be Cj.
Thus A, = B; is the only case remaining, in this case D; must be the subroot
system of B; consisting of all long roots of B;. Since Ay = B; and a; + a» is a long

root in (i), we have a; + as € D; C Gr(A), a contradiction.

Subcase 2. Finally we are left with the case d = B, and (U1, Uy) = (Bu_o, Ay D Ay).
Since ¥ can not be contained in one single irreducible component of Gr(A), we

may have two cases.

(i) 3 =B, 2 € Ay and Wy = A; @ Ay C Ay. In this case, k = 2,
rank(A;) = n — 2 and rank(A,) = 2. Since 8 € ¥, we have either 3 € ¥, or
B € W,. Let B € Uy. This implies that n2(A) = 1 which implies that
ag,an ¢ Ay. Hence, ag, as € Ay and ¥y can not have short roots and must
contain only long roots. Thus, Ay = B, or G, not possible like in Subcase 1.
So, B €U, = n2(A)=1 = ay,ay € A;. This implies that ¥; can not
contain short roots and only contain long roots and A; must be non
simply-laced. But ¥, = B, 5 is non simply-laced for n > 4, so it contains a
short root of ®. If n = 3 then rank(A;) = 1, which implies that ¥; = A;. So
A can not be non simply-laced in this case, again a contradiction. So this

case is not possible.

(ii) Uy =By 5 C Ay and ¥y C Ay @ As. In this case, k = 3, rank(A;) =n — 2
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and Ay = A3 = A,. Since sum of two roots from Ay & A3z = A; @ Ay can not
be a root again, we must have one of the a;, 7 = 1,2 in A;. So, 5 can not be

in ;. Thus, 8 € ¥y. But this can not happen like in the case (i).

This completes the proof. O

1.4.2 Examples and Table

In this section we list out all possible types of maximal closed subroot systems of
irreducible twisted affine root systems which has closed gradient subroot systems

and we demonstrate how to get this list from the Theorem 1.4.4 by a few examples.

Example 1.4.6. Let & = Dﬁl. Then & =B, = {*e;, te; €51 <i#j<n}
The root system B, has a maximal closed subroot system A of type B,_; with a
simple system {es — €3, €3 — €4, - €41 — €5, €, } (s€€ [16, Page 136]). Note that A
contains short roots. By Theorem 1.4.4, A is a maximal closed subroot system of

® and the type of A is D).

Example 1.4.7. Let ® = E. Then

d=F, = { +¢;, e L, %()\161 + Aoeo + Aze3 + Mgey) N =11 <i#£ 5 < 4}.
The root system F, has maximal closed subroot system A; of type A, & A, with a
simple system {e; + €9, €3 — €3, €4, %(61 — €3 — €3 — €4)} and Ay of type By with a
simple system {€; + €3, €3 — €3, €3 — €4, €4} (see [16, Page 136]). Note that Ay, Ay
both contains short roots. By Theorem 1.4.4, 1\1 is a maximal closed subroot
system of @ of type Aél) ® Agl) and A\Q is a maximal closed subroot system of ® of

type Dg).

The following table is immediate from the Theorem 1.4.4 and Table 1.1.

Remark 1.4.8. Note that the Table 1.3 gives us only the part of the classification.

The list in the Table 1.3 has already appeared in [11] (see [11, Table 1 & 2]) and
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Table 1.3: Types of maximal closed subroot systems of irreducible twisted affine

root systems (not of type Agi)) with closed gradient subroot systems

Type Reducible Irreducible

.y | plienl, 2<r<n-2) |&Y 07, DY

Al | A @), (P<r<n-1) A, 6l Y,

B¢ AV @Al Al @ ag B¢, K, DY
D;” A @ g D", G5, A"

note that the authors of [11] have omitted the possibility of a maximal closed

subroot system Agl) &) Aéi) C Eéz) and Déz) C Eéz) in their list.

We are now left with the case (3) of Proposition 1.4.2 (in twisted affine root

systems which is not of type Agi)) and the type Agi) in completing the classification

theorem. The aim of the remaining part of this chapter is to consider the case (3)

(2)

of Proposition 1.4.2 and the type A;,). The case (3) of Proposition 1.4.2 requires a

type by type analysis so, in Section 1.5, 1.6, 1.7, 1.8 we consider the types Dl(jzl,

Agi)_l,Df’) and Eéz) separately. Finally we will deal the types Agi),n # 1 and Af) n

Sections 1.9 and 1.10. We will denote I, = {1,--- ,n} in what follows next.

1.5 The case Dl(izl

Throughout this section we assume that & is of type Dgl. In particular, the

gradient root system of Dr(izl is of type B,. We have the following explicit
description of Dr(jzi, see [4, Page no. 545, 579]:

O ={de,+7rd,te; e, +2r6:reZ,1<i#j<n}

and

é:{iei,ieiiejzlgi#jgn}.
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We need the following definition.

Definition 1.5.1. For a subset I C I,,, we define

Uof)) ={+te+200:sel,reZyU{te,+(2r+1)5:5¢ [,reZ}

U{j:esj:et—l—Zr(S:s#t, s,telorstél, TGZ}.
Lemma 1.5.2. \III(Dﬁl) 1s a closed subroot system of ® for any subset I C I,,.

Proof. Set J = I,\I. Write U = { +e,+2rd0:s€ I,r € Z},

U9 ={+e,+(2r+1)6:s¢ I,r €Z} and

Usen ={tete+2rd:s#t, s,te€lorsté¢l, reZ}. Since the integers
appear in the § part of elements of ¥$*" and U944 have different parities, their
sum can not be a root in ® again. It is clear that if the sum of two roots

o, € U (or € U94) is again a root in ® then o + 3 must be in W,
Similarly, if o € U8 3 € Usver (resp. B € U94) and o+ 3 € D1(12+)1 then we must

have o + 3 € U (resp. a + [ € U9dd).

Finally consider the case «, 8 € U§;. Write a = +e€5 £ ¢, + 2rd and

f = +te, £ €, + 2r'd. Suppose a + 3 € Dfli)i, then we must have [{s,t} N {u,v}| =1
and in this case the sign of this common element in o and S must be opposite.
Since either both s,¢ € I or both s,¢ € J (and it is true for u, v as well), we must

have oo + 8 € W§ET. O

Proposition 1.5.3. Suppose ® is of type Dx(l2+)1 and ¥ < @ is a mazimal closed

subroot system with proper semi-closed gradient subroot system Gr(V¥) < &), then

there exist a set I C I,, such that ¥ = \IJI(DI(jzl).

Proof. Since Gr(¥) is a semi-closed subroot system, there exist ¢,j € I,, such that
€i,€; € Gr(¥) but ¢ +¢; ¢ Gr(¥). We claim that elements of Z,(¥) and Z, (V)

can not have same parities. Suppose Z, (V) and Z, (V) contain same parity
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elements, say 2r +1 € Z.(V),2s +1 € Z., (V). Then we have
€ +¢€ +2(r+s+1)0 € U since VU is closed, a contradiction to the choices of i, j.

Proof is same for even integers. Hence, without loss of generality we can assume

that Z,(¥) C 2Z and Z, (W) C 2Z + 1.

Now, we claim that for each ¢, € Gr(WV) either Z,, (¥) C 2Z or Z,, (¥) C 2Z + 1.
Suppose there exists s,r € Z such that €, + 250, e + (2r +1)0 € ¥ with k # 4, 5.
Then one immediately sees that e, + €;,¢; — €, € Gr(¥) since V is closed and
Ze,(V) € 2Z and Z, (V) C 2Z + 1. This implies that ¢; + ¢; € Gr(V), a
contradiction. Hence, either Z,, (V) C 2Z or Z,, (V) C 2Z + 1 for each ¢, € Gr(¥).
Define

I={kel,:Z, (V) C2Z}.

Since j ¢ I, we have \III(Dgl) C ®. We claim that ¥ C \III(DI(ﬁl). Suppose, we
have +e, + ¢ + 2r0 € U with s € I and t ¢ I. Since s € I, we have Fez + 21’0 € ¥

for some ' € Z. Then we get
(es £ & +2r0) + (Fes + 217') € @ implies that e + 2(r +1')d € ¥

since VU is closed. This implies that 2(r +1') € Z,,(¥), a contradiction to the
choice of ¢. Since ¥ is maximal closed subroot system, we have ¥ = ¥ I(Dgl). This

completes the proof.

Conversely, given a proper subset [ C I,,, we will show that ¥ I(Dgl) defined above

in the Definition 1.5.1 must be a maximal closed subroot system of ®.
Proposition 1.5.4. Suppose ® is of type D,(ﬁl. For I C I, we have \IJI(DSZl) is a

1

mazimal closed subroot system of ®. The type of \III(DI(ﬁl) is B @ BI(1 )r, where

|[I| =r.
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Proof. We have already seen in Lemma 1.5.2 that ¥ I(D,(12+)1) is a closed subroot

system of ®. So, it only remains to prove that ¥ [(Dgl) is maximal closed in ®.

Suppose (2 is a closed subroot system of ® such that ¥ I(Dgl) C Q C P, then we
claim that 2 = ®. Since ¥ I(Dﬁzl) C €, there are three possibilities for elements of

Q\W;(Dﬁl). We have either

1. e+ (2r+1)d € Q for some r € Z and s € [ or
2. €5+ 2rd € Q for somer € Zand s ¢ [ or

3. este+2rd € QforsomereZ, selandt ¢ 1.

In each of the cases, we repeatedly use the fact that €2 is closed in ® and

\IJI(Dl(izl) C Q and prove that Q2 = ®.

Case (1). Suppose there exists €; + (2r + 1) € Q for some r € Z and s € I. By

adding
€s+ (2r+1)0 with e, + (2Z + 1)d for ¢t ¢ I, we get €5+ €, +220 C Q for all t & I.

And by adding —e, — 216 € Q with €, + ¢, + 220 for t ¢ I, we get €, + 225 C Q for
all t ¢ I which implies that ¢, + Z0 C Q2 for all ¢ ¢ I. Similarly, by adding

—€s— (2r +1)6 € Q with e, + ¢, + 225 C Q) for t € I, where s # t, we get

e+ (2Z+1)0 CQfor all t € T with s # t. Now, fix t ¢ I and by adding

—&— (2r+1)§ € Q with €, + €, + 220 C Q, we get €5 + (2Z + 1) C Q. This
implies that ¢, + Z6 C Q for all t € I. Thus, we have ¢, + Z§ C Q for all t € I,,.

Since 2 is closed subroot system, this immediately implies that ) = ®.

Case (2). Suppose there exists €5 + 2rd € € for some r € Z and s ¢ I. By adding
€s + 2rd with ¢, + 2Z6 for t € I, we get €, + ¢, +2Z0 C Q for all t € I. And by

adding —e; — (2r + 1)0 € Q with €, + €, + 220 for t € I, we get ¢ + (2Z+1)6 C Q
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for all t € I. This implies that ¢, +Zd C Q for all ¢t € I. Similarly, by adding

—€s —2rd € Q with e, + ¢, + 225 C Q for t ¢ I, where s # t, we get ¢, + 226 C )
for all t ¢ I with s # t. Now, fix t € I such that ¢ # s and by adding —¢;, — 21 € Q
with €5 + ¢, + 2Z0 C Q) we get €, + 2Z0 C (). This implies that ¢, + Zd C 2 for all
t ¢ I. Thus, we proved ¢ + Z6 C ) for all ¢ € I,,. Since € is closed subroot system,

we immediately get ) = ®.

Case (3). Finally assume that €5 + ¢, +2rd € Q for some r € Z, s € [ and t ¢ I.
Add Fe;, — (2r +1)6 € Q with €, £ €, + 2rd € Q then we get €, + 6 € Q. Thus, we

are back to the Case (1). This completes the proof. O

Remark 1.5.5. The authors of [11] have omitted the possibility of a maximal closed

subroot system B @ Bl(ll,)r - D1(12+)1 in their classification list, see [11, Table 1 & 2].

1.6 The case A(Q?_l

Throughout this section we assume that & is of type Agi),l. In particular, the

gradient root system of Agi)_l is of type C,. We have the following explicit

description of Agi)_l, see [4, Page no. 547, 573]:
O = {42+ 2rd, e, e, +16:r€Z,1<i#j<n}

and & = {£2¢;, +e; £, : 1 <i#j<n}.

Consider ¢, = { tete i, 7€ 1 F# j} =: D,,. Clearly, the short roots o, for a

root system of type D, (see [4, Page no. 146]) and

Fn - {041 =€ — €2, ,0p1 = €1 — €, Oy = €1 +€n}
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is a simple root system of D,,. It is easy to see that ¢, — ¢, = ay+ -+ + a;_1 and

Oés+"'+&t72+&t lft:n,
€s + € =

ot + 2+ ap o)t +a, ift<n.

Let p:T',, — {0, 1} be a function such that p,, , and p,, have different parity and
let p: D,, — Z be its Z-linear extension given by e, £ €; — pic 1. Since the

map p is Z-linear, we have

Pes—er — Paz_1 T Pay if t = n,
p€s+€t —

Pes—er + 2(Day + -+ + Pan_s) + Pap_s + Pa, it <n.

This implies pe,_., and pe, .., have different parity for s < ¢. Since p.,_¢, = —Pe;—e.»

we conclude that p.,_., and p, ., also have different parity for s > ¢. Now, define
\pr(Aéi),l) = { test e+ (Prete +2r)0:1<t#s<n,re Z}.

Lemma 1.6.1. Let p: D, = Z be a Z—linear function such that pe,—., and pe, i,
have different parity for each 1 < s #t <n. Then ‘I/p(Agi)_l) s @ maximal closed

subroot system of ®.

Proof. Since p is Z-linear, we have

Sa+(pa+2r)5(5 + (pﬁ + QT/)(S) = Sa(ﬁ) + (psa(ﬁ) + Q(TI - T<B> av>))5

for o, B € D,, and r,r’" € Z, where s, is the reflection with respect to « defined in

Section 1.1.2. This implies that \I/p(Agi),l) is a subroot system of ®. For s,t € I,,,
t # s, we can not have 2¢5 + (pe,—¢, + De.te, +21)0 € ® for any r € Z, since p,_,
and pe, ., have different parity. This implies that \pr(Agi)_ 1) is a closed subroot

system of ®. Now, suppose there is a closed subroot system A of ® such that
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\Ilp(Agi),l) C A C ®. Then we claim that A = ®. Since \I/p(A(Qfl),l) C A, we have

two possibilities for elements of A\\pr(Agi)_l). We have either

1. 2¢5+ 2rd € A for some s € I, and r € Z or

2. €5t €+ (Pere, +2r+1)5 € A for some s At € I, and r € Z.

Case (1). Suppose there exists s € I,, such that 2e5 + 2rd € A for some r € Z.

Then since €; — €5+ (pe,—, +22Z)0 C A for any ¢ # s, we have
€+ €5+ (Pey—e, +22)0 = (265 +219) + €4 — €5+ (Pe,—e, +22)0 C A.

forall t € I,, with ¢t # 5. As € + €5 + (Pe,+e, +22)5 C \I/p(A(Qi),l) and pe, 4., and
PDe,—e. have different parity, we get (e, + €5) + Z0 C A for all ¢ # s. This in turn

implies that
(€t + €5+ Pey—e.0) + € — €5+ (Dey—e, +22)0 = 26, + 220 C A

for all t € I,, with t # s. Now, €, — €5 + Z0 = (2¢; + 2Z5) — (e, + €5 + Z5) C A for
all t # s. So far we have proved that 2¢, + 2rd € A implies that +e, + ¢, + Z6,
+2¢, + 226 C A for all t € I, such that t # s. By repeating the earlier arguments

with all possible ¢ € I, such that ¢t # s, we see that A = ®.

Case (2). Now, assume that there exists s,t € I,, such that
€s £ € + (Pete, +2r +1)0 € A for some r € Z. Since €5 F € + (Pe, ¢, +217)0 € A
for all 7" € Z and pe, ie,, Pe,z¢, have different parity, we have 2¢, + 2ré € A. So, we

are back to the Case (1) and hence A = ®. This completes the proof.

]

Proposition 1.6.2. Let ® be an irreducible affine root system of type Agi)_i. Then

U < @ s a mazimal closed subroot system with a proper semi-closed gradient

63



subroot system Gr(¥) < d if and only if there exist Z—linear function p : D, — Z

such that pe,—e, and pe i, have different parity for each 1 < s #t <n and
U= \I/p(Agi),i) ={tete+ Prese+2r)0:1<t#s<nrezZ}
The affine type of \I/p(Agi)_l) is DSV,

Proof. Let ¥ < ® be a maximal closed subroot system with a proper semi-closed
gradient subroot system Gr(W¥) < d. By Proposition 1.4.2, there exist s,t € I,
such that €, + ¢, €, — ¢, € Gr(¥) but 2¢5 ¢ Gr(¥). Define

I'={iel,:2¢eGr(V)}

Then it is immediate that I C I,, by previous observation. Suppose that I # ().

Then we will prove that ¥ C W; C ¢, where
U, = {426+ 210, te, L ep+ 1, dep tep+rd:ielk#0el, K #£0 ¢&1,reZ}.
It is easy to see that W; is the lift of the closed subroot system

{26, +ep *ep,tep ep i€, kel k#0 K 0 &Ik #0}

of ®. So, U is a closed subroot system of ® by Lemma 1.1.7 and since I C I,,, it is
proper if I # (). Suppose that ¢; +¢; +rd € U, for some i € I,j ¢ I,r € Z. Then

since ¢ € I, we have 2¢; + 2r'0 € U for some ' € Z. Since V is closed, we have
& Fe+(2r —r)0 =26+ 2r"0 — (e, £ ¢+ 1d) € .

This implies that that

+(2¢; +2(r —1")0) = (6, £ €, +76) — (e, Fe; + (2" —r)d) € U, a contradiction to
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the fact that j ¢ I. So, we have ¥ C W;. Since WU, is a closed subroot system, we
must have ¥ = W, which is absurd as the gradient root system of ¥; is closed. So,

we must have [ = ().

Since 2¢; ¢ Gr(¥) for all i € I,,, the elements in Z. ., (V) and Z,_.,(¥) must have
different parity for all 1 < ¢ # j < n. Otherwise, we will get

2¢;+ (r+1")0 = (e, +€; +10) + (6, — ¢, +1'0) € U for some r,r" € Z such that

r = r'mod 2. This is contradicting the fact that 2¢; ¢ Gr(¥) for all ¢ € I,,. Hence,
by 1.2.2, there exists Z—linear function p¥ : D,, — Z such that for each

1 <i#j<n,wehave Z,, (V) Cp!_  +2Z and Z,

pg_q e = pZJrE]_ (mod 2) and

(W) Cp?., +2Z with

—€;

UCU,(A2) ) = {£e e+ (plo, +2)0: 1<i,j<ni#jreZ}

Since Vv (Agi)_l) is a closed subroot system in ® by Lemma 1.6.1, we have the

equality ¥ = W v (Agi),i) Converse part is immediate from the Lemma 1.6.1. This

completes the proof. O

Remark 1.6.3. The authors of [11] have omitted the possibility of a maximal closed

subroot system D Agi)_l in their classification list, see [11, Table 1 & 2].

1.7 The case DEL?’)

Throughout this section we assume that & is of type Df). In particular, the

gradient root system of ® is of type G,. We have the following explicit description
of DZ(LS), see [4, Page no. 559, 608]:

(I):{Ei—€j+ré,i(€i+€j—2€]€)+3T(53’i,j,kE[3,2'%‘]', TEZ}

and & = {ei —€;, k(e +€ —2€;) 14,5,k € 13,1 #j}

65



Lemma 1.7.1. Suppose ® is of type Df’) and ¥ < O is a mazrimal closed subroot

system with a proper semi-closed gradient subroot system, then Gr(W¥) = D,

Proof. Since Gr(¥) is semi-closed, then by Proposition 1.4.2 there exists two short
roots «, f € Gr(¥) such that a + 8 ¢ Gr(V). Since s,(5) € Gr(¥) and is another
short root different from o and 8, we have &, C Gr(¥). Since ®, is a maximal

subroot system of G5 and Gr(W) # ®, we get Gr(V) = D, ]

Let {i,7,k} be a permutation of I3 = {1,2,3} and ¢ € Z. Define
Ut(i, 5, k() = {ei — € +3rd,¢;j — e+ (3r+0)0,¢; — e, + (3r+ )6 : 1 € Z}

and W(i, j, k; €) := WH(3, j, k; £) U (=0 (4, 5, k; £)).

Lemma 1.7.2. U (i, 7, k;{) is a subroot system of ® for any permutation {i, j, k}
of Is and ¢ € Z.

Proof. Write aq = €; — €j, ap = €; — ¢, and a3 = €¢; — €. Then (a1, a2) = —1 and
(a1, a3) = (g, a3) = 1. This implies that

Saytars(ao + (3r' +0)0) = az + (3(r + 1) + £)0,

Saq13rs(ag + (31" +£)0) = ag + (3(r' —r) + £)6 and

Sas+@ros(0s + (3" +0)0) = oq + 3(r" — r)d are in V(i, j, k; £). Similarly, we see
that s, (8) € V(i,7,k; 0) for all a, B € (3, j, k; £). This proves that VU(i, j, k; /) is a

subroot system of ®. O

Proposition 1.7.3. V(i, j, k; {) is a maximal closed subroot system of WU for any

permutation {i,j,k} of I3 and ¢ € Z such that £ =1 or 2 (mod 3).

Proof. Lemma 1.7.2 implies that W(i, 7, k; £) is a subroot system of ®. Since
¢=1or 2 (mod 3), we have

(€ —ex+ (Br+£)0) + (6 — ex + (3" +£)0) = (i + €5 — 2e. + (3(r +17) + 20)0) ¢ P.
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It is easy to check that a + 5 € ® for o, 5 € W(i, 7, k; ¢) implies that

a+ [ € V(i,j, k;¢) in remaining cases. This proves that (i, j, k; ¢) is a closed
subroot system of ® when ¢ =1 or 2 (mod 3). So, it remains to prove that it is
maximal closed subroot system in ®. Let A be a closed subroot system of ® such
that (i, j,k;¢) C A C ®. Observe that A\W(i, 7, k; ¢) may contain a short root or
a long root. There are three possibilities for short roots of A\W (i, j, k; ¢) and it
will be considered in the Cases (1), (2) and (3). The possibility of A\W (i, j, k; ¢)

containing a long root is considered in Case (4).

Case (1). Let ¢, —€; + (3r +1")0 € A for some r,r" € Z such that " # 0 (mod 3).

This implies that

(i —€;+Br+1)0)+ (¢ —e, + ({+32)0) =€ — e+ (L + 1" +3Z)0 C A,

So, (e, — €+ (L +1"+3Z)6) + (e —€j+ (—0+32Z)0) =€, —€; + (' +32)5 C A, and

(€j— € +320)+ (s —ex+ (L+71"+32)0) =¢; —ex + ({+ 1" +32)6 C A.

Summing these two we have ¢; — ¢, + ({ + 21’ +3Z)6 C A. This implies that
€ — e +2Z6 C A and using this we get a4+ rd € A for all short roots a and r € Z.

Since any long root of GG, can be written as sum of two short roots, we have A = ®.

Case (2). Let €; — e + (3r + 1"+ £)d € A for some r, " € Z such that
r" # 0 (mod 3). Then

(i —er+00)+ (ex —€;— Br+7r"+0)0) =¢ —€¢;+ (=3r—1r")d € A.

So, we are back to Case (1). Thus, we get A = ®.

Case (3). Let ¢, — e, + (3r + 1" + £)0 € A for some r,r" € Z such that
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" # 0 (mod 3). Then
(i —ex+@Br+r"+00)+ (e, — €, —00) =€, —€; + (3r+1")d € A.

Again we are back to Case (1). Thus, we get A = O.

Case (4). Finally assume that A contains a long root and let
€s + € — 26, + 3rd € A for some r € Z and a permutation {s,t,u} of I3. Then
subtracting a suitable short root from €, 4+ ¢, — 2¢, + 3rd will bring us back to one

of the three previous cases and we get A = ®.

Hence, (i, j, k; ¢) is a maximal closed subroot system of ®. O

Conversely, we prove that any maximal closed subroot system ¥ of ® must be of
the form ¥ = W(i, 7, k; £) for some permutation {i, j, k} of I3 and ¢ € Z satisfying
¢=1or 2 (mod 3).

Proposition 1.7.4. Let ® be the affine root system of type Df’). Then ¥ < ® is a
mazimal closed subroot system with a proper semi-closed gradient subroot system
Gr(W) if and only if Gr(¥) = &, and ¥ = W (i, j, k;£) for some permutation {i, ], k}
of I3 and ¢ € Z satisfying £ = 1 or 2 (mod 3). The type of V(i,j, k; () is Agl).

Proof. Let ¥ be a maximal closed subroot system of ®. Then by Lemma 1.7.1, we
get Gr(W¥) = &, and it is irreducible. This also implies that ¥ can not contain any

long root of ®. From the Proposition 1.2.2, we see that ¥ must contain the roots
{er — e+ (p1 +ner)d, &2 — €5+ (p2 + ns7)0, 61 — €3+ (ps +ner)d : 7 € Z}

for some py, po, p3 € Z and ngy € Z. Since V¥ is closed and does not contain any long
roots, we get p; — py # 0 (mod 3) as

€1+ €3 — 2€e5+ (p1 — p2)d = (€1 — €2 + p10) + (63 — €2 — p2d) ¢ V. Similarly, we get
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pa + p3 Z 0 (mod 3) and p; + p3 # 0 (mod 3). This implies that p;(mod 3),
pa(mod 3) and —ps(mod 3) are distinct elements. Hence, one of the p; must be

= 0 (mod 3). We claim that there exists a permutation {i, 7, k} of I3 such that
U = {+(e—€j+(q+nsr)d), £(ej— €+ (qo+nsr)d), £(e;— e+ (g3 +n,7)0) : 7 € Z},

where ¢1, g2 and g3 satisfy ¢ = 0 (mod 3), ¢2 = g3 (mod 3) and g3 #Z 0 (mod 3). If
p1 = 0 (mod 3), then take (q1, q2,93) = (p1, p2, p3s) and take the permutation to be
identity. If po = 0 (mod 3), then take (q1, g2, q3) = (p2, —p3, —p1) and take the
permutation to be they cycle (1 2 3) and if p3 = 0 (mod 3), then take

(g1, q2,q3) = (p3, —p2, p1) and take the permutation to be the cycle (2 3).

Now, we claim that ny = 0 (mod 3). Suppose not, then there exists r € Z such
that rng = ¢2 (mod 3) which implies that

€i+er—26+(r+rns—q)d= (6 — €+ (@1 +1n5)0) + (ex — €, —@2d) € ¥, a
contradiction. Thus, there exists a permutation {i, j, k} of I3 and

¢=1or 2 (mod 3) such that ¥ C Ut (i, 5, k; £). Since V(i j, k; () is closed, we get
that W = W(4, 4, k; ¢). This proves the forward part. The converse is clear from the

Proposition 1.7.3. O

1.8 The case E((f)

Throughout this section we assume that & is of type Eéz). In particular, the

gradient root system d of Eéz) is of type F4. We have the following explicit

description of ng), see [4, Page no. 557, 604]:

b = {:tei—{—ré, :|:€i:|:€j—|—27“(5, %()\161+>\2€2+)\3€3+>\464)+7‘5,I )\Z = :|:1, 1 S 1 7&] S 4,7“ € Z}
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The short roots of ® form a root system of type Ds ([4, Page no. 147]). We set
D4 = Ci)s = { + €, %(/\161 + /\262 + )\363 + /\464) 11 € ]4, )‘j = :l:].,Vj S ]4} and

[y = {e9, €3, €4, %(61 — €9 — €3 — €4)} is a simple root system of Dj.
Let p: 'y — Z be a function and let p : Dy — Z be its Z-linear extension, such
that exactly two p., are even and the rest two are odd. Define

U, (ES)) == {a+(pa+2r)8 : 0 € Dyyr € ZYU{ +ei%¢;+2r8 < pei+pe, € 22,7 € Z)}.

Note that p_., = —p., and p, + p,, € 2Z if and only if p,, p;; have the same parity.

Lemma 1.8.1. \pr(EéQ)) is a closed subroot system of ®.

Proof. First we prove that \pr(EéZ)) is a subroot system of ®. Since p is Z-linear

and satisfies the equation 1.2.2, we have

Sat(patars(B + (5 + 21")8) = 8a(B) + (Deu () + 2" — 1(B,0")))d € W,(ED).

Suppose *¢€; £¢; € \pr(Eéz)), we have p,, and p,; have the same parity since
Pe; + Pe; € 2Z. This implies p, and p., also have the same parity by our choice of
p, where {k, ¢} = I4\{i,7}. So, pe, + pe, € 2Z, and hence +e; £ ¢, + 2r0 € \pr(EéQ))

for all »r € Z. We have
Sat (pator)s(£€ £ €5 + 2r'0) = so(te; £ €) + 2(r" — (L€ £ €5, @) (pa + 21))0,
for a € Dy and r, 7" € Z. Now, since

:l:Ei + €5 if = :iZGk
So(E€; £ €;) is a root of the form

4
te;, te;or et ifa=) Ne,
r=1

where {k, 0} = I,\{i, j}, we have Sq(p,+2r)s(Ee £ €5 +2r'6) € \pr(EéQ)). It is easy
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to see that,
Stepteorors(€i £ € +21°0) = te; e, +2r'0 € \I/p(E((f)).
Since pi., and p.; have the same parity, we have
Pa—(a,te;te))(+ete;) = Pa — (@, £€ £ €;)(Pie, + Pte;) = Do (mod 2).
This implies that
Sicive, pors (A (Pat2r')8) = (a—(a, e£¢;) (Fe6;)) +(Pat2(r —(a, 2ete,)r))d € W, (ES)

for « € Dy and r,r’" € Z since (a — (o, £¢; £ ¢;)(+e; £¢5)) € Dy for a € Dy. This
proves that \I’p(E?)) is a subroot system of ®. Now, we prove that \I/p(E((f)) is

closed in ®. We have the following cases.

Case (1). Let = (a4 (pa +27)0) + (B + (pg + 21")6) € @ for some «, f € Dy. If
a+ 5 € Dy, then it is easy to see that © = (a+ ) + (Pass + 2(r +717))d € \pr(Eéz)).
If a4+ 8 ¢ Dy, then p, and ps are of the same parity. We have the following

possibilities when o+ 5 ¢ Dy:

o if « = %¢;, 5 = £¢; € Dy, then
T = (x6x€) + (pa+ps+2(r+17))d € \I/p(E((f)) since p, = pe, (mod 2) and

ps = pe, (mod 2) have the same parity.

o if = %()\,-ei + Aje;) + %(Akek + \eeg) and = %(/\iq + Ajej) — %(/\kek + Ao€o),
then we have oo — (g€, + A\veg) = [ which implies that
Pa — (APe, + Aepe,) = ps. Since p, = pg (mod 2), we must have
Pe. = P, (mod 2). Hence, p, and p., are of the same parity by our choice of
the function p. This implies

z = (N + Ajej) + (Do + 1 +2(r +77))8 € U, (ES).
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Case (2). Let x = (v + (pa + 27)9) + (£e; £ €+ 2r'0) € @ for some o € D, and
(£e; e +2r70) € \pr(EéQ)). Since a + (£e; £ ¢;) € Gr(P), we have

o+ (+€; £ ¢;) € Dy. Since pe, and p,, have the same parity, we have

Pa—(tete;) = Pa — (D¢, + Pte;) = Do (mod 2). This implies that

r=a+ (£ £ €)+ (pa+2(r+1"))d € O, since o + (£¢; £¢;) € Dy.

Case (3). Let x = (a4 2r0) + (8 + 2r'0) € ® for some a + 2rd, 5 + 21’0 € \pr(Eéz))
with «, 5 ¢ D,. Then we must have a = +¢; £ ¢; and § = Fe; * ¢, for some

i # j,J # k € Iy. Since p,, and p; have the same parity and p.; and p,, have the
same parity, we have ¢ = k by our choice of the function p. In this case, x can not

be in ®, so this case is not possible. This completes the proof. O

Note that Z,(V,(ES)) = pa + 2Z for all @ € Dy and Zy. 1, (V,(EY)) = 2Z for
+e;, te; € Gr(\pr(Eé2))), in particular Za(\lfp(EéQ))) = 2Z or 1+ 2Z depending on p,

being even or odd.

Lemma 1.8.2. ‘Ilp(EéQ)) is a maximal closed subroot system of ®.
Proof. Suppose there is a closed subroot system A of ® such that
U,(E?)) € A C ®. This implies that that Gr(¥,(E)) € Gr(A) and

Zo(U,(EP)) C Zo(A). Note that Za(U,(ES)) = Za(A) = 2Z for

a = +¢ + ¢; € Gr(U,(EP)).

So, there are three possibilities for elements of A\\pr(Eéz)).

Case (1). Suppose Za(\llp(EéQ))) C Z4(A) for some o = €5. Then there exists
r1,79 € Z such that e, + 16, e, + 190 € A and 71, ro have different parity. Then
either (p, +71) € 2Z or (p,, + 1r2) € 2Z for each t € I, with ¢ # s. Hence,

€1+ €s+225 =€+ (pe, +22)5 + €5+ 1;0 C A for i = 1 or 2. Similarly, one sees that

+e e, +2Z0 C Aforallt € Iy, t # s.

72



Choose t € I such that p., and p., have different parity. Then
€s — (P, +22)0 = €, + €5 + 220 — (¢4 + p,0) € A. This implies that e, + Z6 C A.
This implies €, + Z6 = (¢, + €5 + 2Z6) + (—€s + Z5) C A for all t # s. Hence, we

have ¢; + Z6 C A for all t € I,. From this it is easy to see that A = .

Case (2). Suppose Za(\llp(EéQ))) C Z,(A) for some a = Zle Ai€;. Then there
exists 71,y € Z with different parity such that %(Zle )\iei) + 710,
%(Zle >\i€i> + 190 € A. So, we have

Mer + (1, + 5)0 ZAeZ ) + 76 + 5 )\161—1-2 ) +s6eA

for k=1,2and s =p . Since (11 + s) and (73 + s) have different

4
1 (A151+_:ZQ(*>\¢)61‘)
parity, we are back to Case (1) and hence A = &.
Case (3). Suppose Gr(\llp(Eéz))) C Gr(A). Then there exists 4, j € Iy,i # j, such
that p,, and p; have different parity and ¢; & ¢; + 2rd € A for some r € Z. Since
Fej + pxe,0 € \pr(Eéz)), we get € + (px¢; +27)d € A. Since p.,, px¢; + 2r have
different parity and ¢; + p,0 € A, we are back to the Case (1) again and hence

A = ®. This completes the proof.

Proposition 1.8.3. Suppose ® is of type EéZ). Then ¥ < ® is a maximal closed

subroot system with a proper semi-closed gradient subroot system if and only if
there exists a Z—linear function p : Dy — Z such that ¥ = \I/p(Eg)) and ezxactly two

of p., are even. The type of \I/p(EéQ)) is CS).

Proof. Since V¥ is a maximal closed subroot system in ¢ and not contained in the
proper closed subroot system W, of ®, where

Uy = {xe + 10, £e; £€; +2rd,: 1 <i#j<4,reZ} thereis a short root of the
form 1(32%_, v¢;) in Gr(W), fix this short root in Gr(¥). Now, define

2 7=1
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I:={iely:¢ € Gr(¥)}.

First, we prove that I must be non-empty subset of I,. Assume that I = (). Since
Gr(WV) is semi-closed, there exist short roots a; and ay such that a; 4+ s is a long
root and a; + ay € P\Gr(W). Since I = 0, we can take

a1 = 2(Niy €, F Aig€ip + Aig€iy + Aig€i,) and an = $(=Ni €, — Aigeiy + Nig€sy + Aiy€iy).
Since €; ¢ Gr(W) for all i € I, and W is a closed subroot system, the only short
roots that Gr(¥) can contain are o, o, a3 = 3(=Ni €, + Xiy€i, — Niy€ig + Aiy€iy)
and ay = $(—N; €, + Nig€i, + Niy€i, — Aiy€;,) along with their negatives. For
example, if 8 = 3(—Xi, €, + Nig€iy + Nig€iy + Aiy€y,) € Gr(T), then

ay + (—=08) = N €, € Gr(¥) since o + (—f) is a short root and Gr(¥) is
semi-closed. This is clearly a contradiction to our assumption that I = (). So,
Gr(¥) C A= {£a; :i € I;} Ud,. But A is a closed subroot system of & and
hence A is a closed subroot system in ®. Since ¥ C 3, we must have U = A and
Gr(¥) = A, a contradiction to the fact that Gr(¥) is a proper semi-closed subroot
system of ®. This proves that I must be non-empty. Indeed we will prove that |/

must be 4, hence I = I,. We will rule out all other possibilities one by one.

Case (1). We claim that we must have || > 2, hence |I| # 1. Let ¢ € I. As before,
since Gr(W) is semi-closed there exist short roots @ and 8 such that o + 3 is a long
root and o + 3 € ®\Gr(¥). Now, both these short roots must lie in

{% 2?21 Aj€j 1 A = il}, otherwise we are done. So, without loss of generality we
assume that o = $(Aj, €, + Aiy€i, + Nig€i, + Aiy€i,) and

B = 3(=Xi€i — Nig€iy + Nig€iy + Ni€iy). If i3 =4, then

se, (@) = a — A& = S(Niy€i, + Nig€iy — Niy€iy + Aiy€i,). Since Gr(¥) is semi-closed,
we have f+s., (a) = N\, €, € Gr(¥). Similarly, if iy = 4, then we get A\, ¢;, € Gr(¥).
Now, if i; = 4, then s, (o) + (=) = A€, € Gr(¥). Similarly, if i, = 4, then we get

i€, € Gr(¥). This proves that we must have |I| > 2 in all cases.
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Case (2). Now, we claim that |I| # 3. Suppose that |I| =3 and [ = I,\{k} for

some k € I;. Recall that we have a short root of the form %(Z?:l vj€;) in Gr(W).

For j € I, such that j # k, there exists r; € Z such that v;e; +r;0 € ¥ since
vje; € Gr(¥). Since || = 3, there exists ji,j2 € I such that r;, +r;, € 2Z. This
implies that 37, (vj,¢;, +7;,0) € W since ¥ is closed in ®. Now, since

(ijl vj€e;) +rd € ¥ for some r € Z and WV is closed, we have

2
(=Vjr€jy = Vjp€j, + Vjs€js + Vier) + (T - > sz) 6=
/=1

NI= N

4 2
: (Z l/jéj) + 76 — > (v,€, +rj0) € V. Adding
j=1 =1
5 (e — Vpeg Vi€, Fvrer) + (1 — 0L, 75,)8 and 3(325, vie;) + 16 € W we
2
get (vj €5 + vger) + (2r — Y rj,)0 € V. Again adding —vj,€j, — 75,0 with

(=1
2 3

(Vjs€55 + Vker) + (2r — > 15,)0 € U, we get vye, + (2r — > rj, )0 € U which
=1 k=1
contradicts the assumption that k& ¢ I. This proves that |I| # 3. So, we proved

that |I| = 2 or 4 are the only possibilities.

Case (3). Now, assume that |I| =4, hence I = I,. In this case, we claim that there
exists a Z—linear function p : Dy — Z with the property that exactly two p,, are
even and the rest two are odd such that ¥ = \I/p(EéQ)). Since Gr(¥) contains

+¢;,1 <1 <4, and a short root of the form %ijl vj€e;, Gr(V) must contain all
the short roots of F;. We now claim that for each short root o € Gr(V), Z,(¥)
contains either only odd integers or even integers, i.e., it can not contain integers

with different parity. We will do this case by case.

e Suppose there is ¢ € I, such that 2ry,2ry +1 € Z, (V) for some 11,75 € Z.
Using this, one easily sees that there exist 3;? € Z such that

€ £ €+ 2s;;0 €U for all j # i, since I = I, and W is closed. Hence,
e F e+ (255 — 255)0 = € €5+ 25,0 — (e £ e + 25;,0) € ¥

for all j # k contradicting our assumption on Gr(¥) that it is semi-closed.
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This proves that Z,, (V) contains either only odd integers or only even

integers.

e Now, assume that Z, (W) contains both odd and even integers for some

= %(2?21 pi€;), ie. 3 ry,ry € Z with different parity such that

Q

%(Z?Zl Wi€j) + 110, %(Z?zl pi€j) +r20 € W. Then this implies that

%(Mlel — fo€s + iz€s + pla€q) + (11 — ka)0 = %(il pi€;) +110 — (poes + k20) € U,
where ky € Z,, (V). Similarly, we get "

%(MQ — fi2€s — fi3€3 — fig€q) + (r1 — ko — k3 — ky)d € ¥, where k; € Z (V).

Which in turn implies that

4 4 4
(04—1-7’15)4— (%(,ulel — Z/LjEj) + (7"1 - Z l{?j>(5) = ,u1€1+<27”1 —Z kj)(g S \I/,
j=2

Jj=2 Jj=2

4
since U is closed in ®. Similarly, we have piey + (r1 +72 — > k;)d € 0.
=2

j
Which means Z, (V) contains integers of different parity which by Case(1) is

impossible. This proves our claim.

Let p a function p : I'y — Z such that ps € Zg(V) for each 5 in I'y, where I'y is a
simple root system of D, defined in 1.8. Extend the function p to D, Z—linearly,
denote this extension again by p. We now claim that exactly two p., are even.
Suppose all p., have the same parity, then “W is closed in ®” would imply that
Gr(¥) = &. This is a contradiction to our assumption that Gr(¥) is semi-closed.
So, all p., can not have the same parity. Now, assume that there exists k& € I, such
that p., have the same parity for all ¢ # k, and p,, has different parity. Let

pr = %(Z#k €+ €x) + 19 € W for some r € Z. Since V¥ is closed, we have

fo = %(Z(—Q) +ep) + (r — qu)d ev

ik ik

and hence we get 1 + 2 = €, + (2r — > p,;)0 € V. This implies that p., and
i#k
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(2r — 32,41, Pe;) are in Z (V). But p, and (2r — >, pe,) have different parity,
which is a contradiction to our previous observation that Z, (V) contains only
either odd integers or even integers. Thus, we proved that exactly two p., are even
and the rest are odd. Now, using the arguments in the proof of Case (3) in Lemma
1.8.2, we see that there is no 4, j € Iy with i # j such that p., and p,, have different
parity and +e¢; &+ €; € Gr(¥). This implies that ¥ C \pr(EéQ)). Since ¥ is maximal

closed, we have ¥ = \pr(EéQ)).

Case (4). Finally assume that |I| =2 and I = {i,j}. Since Gr(¥) is semi-closed,

then we claim that we have
4
Gr(V)ND,y = { + €, £¢j, j:%(z Wr€r) &y = Upy T 3 i,j}.
r=1

Since a = %(Zle vr€,) € Gr(¥), we have s, (@) = a — v;¢; € Gr(¥) and

s¢,(a) = a —ve; € Gr(¥). This proves that

Gr(v)ND, 2 { + €, %€, j:%(Zle Wr€r) oy = Vpy T F i,j}. Suppose

f= %(Zle prer) € Gr(W) such that uy # vy for some k # i, 5. Let £ € [,\{4,j, k}.
If pg # vy, then —f satisfies the required condition, i.e., —ur = v and —puy = vyp.
So, assume that u, = vy, then %(—,uie,- — 11i€; — pg€x + feeg) € Gr(W¥) and U is

closed, so we have ¢, € Gr(¥). This is clearly a contradiction to our assumption

that I = {7, 7}. This proves that

4
GI‘(\I/> N D4 = { + €, :|:€j7 i%(z /lrfr) ey = Ve, T 7& Z?.]}
r=1

From this one easily sees that the only long roots Gr(¥) can contain are +e¢; £ ¢;
and +e;, + ¢, where {k, (} = I,\{¢,7}. Note that +¢, and 4, can not be written
as sum of elements from Gr(¥) N D,. We now claim that Z,(¥) does not contain
elements of different parity for each short root @ in Gr(¥). Assume this claim for

time being. Then for each a € Gr(V) N Dy, we have Z,(¥) C p, + 2Z for some
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Pa € Zo(¥). Note that p, is determined by ¥ for a € Gr(¥) N D,. Now we extend
this function p : Gr(¥) N Dy, — Z to entire Dy, Z-linearly by defining p,, in the

following way:

e If both p, and p,, have the same parity, then define p, to be an integer with

different parity than p,,.

o If p., and p; have different parity, then define p, arbitrarily.

The extended function p : Dy — Z, then satisfies the conditions that (1) exactly
two p,, are even and the rest two p.. are odd and (2) it takes the same values p,
which was determined by ¥ for v € Gr(W¥) N Dy4. Note that the parity of p, is

completely determined by the parity of pc,, pe;, pe, and p 15 . By the choice

ff:1 Urer)

of p, we have U C \I/p(Eéz)). This proves that W can not be maximal closed subroot

system in ®. Hence, the case |I| = 2 is not possible.

Proof of the claim: Now, we will complete the proof of the claim that Z,(¥) does
not contain elements of different parity for each short root o in Gr(V). Let aq, o
be two short roots in Gr(V¥) such that a; + s is a long root and

a1 + oy € ®\Gr(V). We now prove that if Z3(¥) contains elements of different
parity for some short root 5 in Gr(¥), then Z,(¥) must contain elements of
different parity for all short roots v in Gr(W¥). This will contradict the fact that

a1 + oy € ®\Gr(), hence the claim follows.

e Assume that Z, (V) contains elements of different parity, then we have
te;+¢; € Gr(¥) as VU is closed. This implies that Z, (V) also contains
4
clements of different parity. Let oo = $(3° pi,6,) € Gr(¥). We have
r=1

%(Zr# pr€r — pses) € Gr(¥) for s =4, 5. Since for s =, j,

1
5(2 Ur€r — Jis€s) + 110 + fis€s + 120 = ac+ (11 +72)0
r#s

78



and Z. (V) contains elements of different parity, we have Z,(¥) also contains

elements of different parity.

e Now, assume that Z,(¥) contains elements of different parity for
a= %(Ele fr€r) With p, = v, r # i, j. Since we have
%(Z prer — pi€;) € Gr(W¥), we get Z, (V) contains elements of different

parity. So, we are back to previous case.

This completes the proof. n

1.9 The case Agi)

Throughout this section we assume that ® is of type Agi) and n > 2. In particular,

the gradient root system Gr(®) of Agi) is of type BC,. We have the following

explicit description of Aéi), see [4, Page no. 547, 583]:
d={te+(r+1)0,+2+2rd,te+te;+10,:1<i#j<nrezZ}

and Gr(® { +e, 2, F€6, €, : 1 <i#5 < n} dU CDZ In particular, we
have three root lengths in Gr(®) and we denote the short, intermediate and long
roots of Gr(®) by Gr(®)s, Gr(®)im and Gr(P), respectively. Let

F={ag =€ —€," ,y_1 = €,_1 — €n, 0, = €, } be the simple system for Gr(P).

Before we proceed further we fix some notations. For I C I,,, we set

L=Adea+@r+3)6 (ex+e)+ (2r+1)08, (e —e) +2r0 ik, L€ k£, r € Z},
Ho={e+2r+2)8, (ex+e)+ (2r+1)8, (e — ) +2rd ik, L € [,k #(, r € Z} and

Ut(1,0,1) := {(6k+6g)+2r(5,(ek—Eg)+(27“+1)5:kE ],EEIn\],TEZ}.

Now, define
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U (AL =
W1, 5) V(=T (1, 3)) VWt (L,0, YU(=WH(T,0, 1)) UWH (LA, 5) V(=0 (L], 5))-
Note that Gr(\III(Agi))) ={te,tex L e i,k 0 € I,k # (} for a root system of

type B,.

Proposition 1.9.1. For I C I,, \IJ[(Agi)) is a mazximal closed subroot system of ®.
Proof. 1t is easy to check that ¥ I(Agi)) is a closed subroot system of ®. We prove
that it is a maximal closed subroot system in ®. Let A be a closed subroot system

of ® such that ¥ I(Agi)) C A C ®. The following are the possibilities for elements

of A\\III(Agi)): if o € A\\IJI(AE?), then o must be equal to either

e+ (2r+3)0 € Aor2¢+2rd, whereiel, reZ

€+ (2r+3)0 € Aor2¢+2rd € A, wherei ¢ I, reZ

(ex +€0) +2rd € Aor (e —e) +(2r+1)6 € A, where k,f € [ and r € Z

(ex +e)+2rd € Aor (e, —€) + (2r+1)0 € A, where k,{ ¢ [ and r € Z

(ex+e)+2r+1)0 € Aor (e —e)+2r0 € A, whereke I, (¢ andreZ

Suppose there exists i € I such that € + (2r + 2)§ € A for some r € Z. Then since
€+ (2Z+ 1)8 C A, we have (& + (2Z+ 3)8) + (e + (2r + 2)0 = 2¢; + 225 C A,
This implies that (2¢; + 2Z8) — (¢; + (2r 4+ 2)8) =& + (Z+ 3)0 C A. For j € I,
Sci—e; (2€; +2Z6) = 2¢; +2Z6 C A. Similarly, for j ¢ I we have

Scite; (26; +2Z6) = —2¢; +2Z65 C A. As before this implies that €; + %(5 € A for
all 7 € I,,. Hence, A = ®. Suppose there exists i € I such that 2¢; + 2rd € A for
some r € Z. Then ¢; + 30 = (2¢; + 2rd) + (—&; — (2(r — 1) + 3)0) € A, so we are

back to the first case. Hence, A = ®.

All the remaining cases are done similarly. For example, if (e; + €,) + 2rd € A for

some r € Z and k, ¢ € I, then we have
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e+ 20 = (ex+€)+2rd+ (—ee — (2(r — 1) + 3)6) € A, so we are back to first case.

This completes the proof.

1.9.1 Certain type of maximal closed subroot systems of

A5

We now see another type of maximal closed subroot systems of ®. For J C I,,,

define
Ay = {:I:QEZ-,:i:eSj:et e l\J, s#£te In\J}U{j:QEj,j:ej,:i:ekiq jed k£l e J}

and denote by //1; the lift of A; in ®. Here we make the convention that

(

{iZEi,iesiet:iEIn, s%teln}iszﬂ
{+2€,+e;:i€l,,jeJ}if |[J|=1andn=2

{i2€i,i€j,ﬂzesi6tli€fn, s#tE[n\J} if J={j} andn >2

{ £26,xe;,te,te:i€l,, jEJ, k#Le JLif [L\J]=1
\

Note that A, is a proper closed subroot system of BC,, for any J C [, and it is of
type C,,—, ® BC, if |J| = r. Hence, the lift Z] of Aj is a closed subroot system in

®. We have,

Proposition 1.9.2. The lift ;l; of Ay in ® is a maximal closed subroot system P

for J C 1,.

Proof. Let A be a closed subroot system of ® such that ;1; C A C ®. Then there

are three possibilities for elements of A\ZL\]

Case(1). Suppose €; + (r 4+ 3)d € A for some i ¢ J and r € Z. Then since
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+e; e, +2Z6 C A forall s ¢ J with i # s, we have

(4 (r+2)0)+(—ete+20)=+e,+(Z+3)0 C Aforall s ¢ J,i#s.

If J =0, then we get +¢; + (Z+ )8 C A by repeating the earlier argument with
the choice of s € I, which is different from 4. If J # (), then €; 4+ (Z + $)d C A for
all j € J. Fix j € J. Then we have

(64 (r+2)0)+ (6 +(Z+3)d) =€ + ¢;+ 25 C A. Now,

&+ (Z+3)0=(—€+(Z+21)0)+ (6 + ¢ +25) CA.

This proves that e, + (Z + 3)6 C A for all s ¢ J. Hence, we have

+e, + (Z+3)6 C Afor all s € I,,. This implies that A = ®.

Case(2). Suppose €; + € +1rd € A for some j € J, k ¢ J and r € Z. Then since

—€;+ (Z+1)0 C A, we have

e+ (Z+3)0= (¢ +ex+710)+ (—€;+ (Z+ 3)) C A

So, we are back to the Case (1), hence A = .

Case(3). Suppose €, —€; + 16 € A for some j € J. k ¢ J and r € Z. Then since

¢j+(Z+3)6 C A, we have

ek+(Z—|—%)6:(ek—e]+7‘5)+(e]+(z+%)5)QA

So, we are back to the Case (1), hence A = ®. O
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1.9.2 Main theorem for Aéi)

Let ¥ < & be a maximal subroot system. Now, we are ready to state our final

classification theorem for the case Agi).

Theorem 1.9.3. Suppose ® is of type Agi) and ¥ < @ is a mazrimal closed subroot
system. Then

(i) ¥ = the lift of A; for some J C I, = A; or

(ii) W = \IJI(Agi)) for some I C I, or

(11i) there exist an odd prime number ng and a Z-linear function

p: Gr(®), UGr(®)im — 32 satisfying the equation (1.2.2) such that

U(p,ng) :={ £ & % (pe, +10)0, £2¢; &+ (2pe, + ns + 2rn,)d 1 i € I, r € Z}

U{:I:ez-:l:ej—k(:l:pei:i:pej—l—rns)é:i,jefn,i#j, T’GZ}.

Conversely, all the subroot systems defined above are maximal closed subroot

systems of P.

Proof. Define J = {i € I,, : ¢, € Gr(¥)}. Now, two cases are possible: J C I, or

J =1,

Case (1). First consider the case J C I,,. In this case, we claim that ¥ = A;. This
is immediate if we prove that Gr(¥) C A;. Suppose Gr(¥) ¢ A, then there must
exist k € J and ¢ ¢ J such that ¢; £+ ¢, € Gr(¥). This means that there exists

r, 7’ € Z such that e, e, +15 € U, e + (77 + %)5 € W. Since V is closed in ®, we get

(erte+710)+ (—e— (' +2))0 =Fe+ (r—r'—3)d € ¥,
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which contradicts the fact that ¢ ¢ J. So, Gr(¥) C A; and hence W C A;. Since

;L\] is closed in @, we have ¥ = ;L\]

Case (2). Now, consider the case J = I,,. Since ¥ is closed, we have
+e; £ ¢, € Gr(V¥) for all 1 <i# j <n. It is easy to see that if Gr(V) contains 2¢;
for some 7 € I,,, then it contains +2¢; for all j € I,, as sei_ej(Qei) = 2¢;. So, we get

either Gr(V) = {£e;, £e; £¢;: 4,5 € I,,,1 # j} or Gr(V) = Gr(P).

Case (2.1). Suppose Gr(V) = {£e;, £¢; £ € : 4,5 € I,,,1 # j}, then we claim that

U= \I/[(AEQ)) for some I C I,,. By Proposition 1.2.2, we have

3 k; € Z such that Z, (V) = (k; + %) + n,Z, for each i € I,.

Since Z,, (V) + Z., (V) = (2k; + 1) + nsZ and 2¢; ¢ Gr(V), we must have n, € 2Z.
Set I = {i € I, : k; € 2Z}, then we immediately get ¥ C \IJI(AgQ)). Since ‘IJI(Agi)) is

n

closed, we have ¥ = \III(Agi)).

Case (2.2). Finally assume that J = I,, and Gr(¥) = Gr(®). Then by Proposition
1.2.2, we have n,, € N and p,, € Z,(¥) such that Z,(¥) = p, + n,Z for all

a € Gr(®). By Proposition 1.2.8, we have ng = ny,, ny = 2n, and ng is an odd
prime number. Conversely, let ns be a given odd prime number and

p: Gr(®), UGr(®)u, — 3Z be a given Z—linear map satisfying the condition 1.2.2.
It is a straightforward checking that W(p,ny) is a closed subroot system of ®. Now,
we prove that ¥(p,ns) must be a maximal closed subroot system in ®. Suppose
there is a maximal subroot system A such that W(p,ns,) € A C ®. Then since
Gr(A) = Gr(®) (by earlier arguments) A must be of the form V(p’,n’) for some

function p’ : Gr(®); U Gr(®)i, — 3Z and odd prime number n,. Now,

Zo(W) C Zo(A),a € Gr(D)
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implies that ns = n and p, = p/,(mod ny) for all @ € Gr(®). Hence, U(p, ns) = A.
This proves that ¥(p, n,) is a maximal subroot system of ®. This completes the

proof.

Remark 1.9.4. One can easily check that the type of Ay is Agi)_l if J =10 else

Agi) ® Agi)_gr_i, where |J| = r, the type of \I/[(Agi)

is Agfl). Clearly, the root systems of type DM @ Agi),m, do not occur as a maximal

) is B\Y and the type of ¥ (p, ns)

closed subroot system of AY? as it is stated in [11, Table 1 & 2|. In [11], the
authors do not give any description of the closed subroot systems of type

DM & Agi)_zr of Aéi). But we presume that it must be the lift A of
A:{:I:ekzl:q:1§k:7é£§7‘}u{:|:6i,:l:26,;,:|:ei:|:6j:T+1§i7éj§n}.

It is easy to see that A is a closed subroot system of BC, of type D, & BC,_ .
Hence, A is a closed subroot system of Agi) of type DM & Agi)_h. But this is not

maximal aSAQZ]forJ:{qul,--- M}

1.10 The case AéQ)

Throughout this section we assume that ® is of type Ag). We have the following

explicit description of AéQ), see [4, Page no. 565]:
d={te+(r+1)5,+2+2r5:rcZ}

and Gr(®) = {£e, £2¢,}.
We have the following classification theorem for the case Af).

Theorem 1.10.1. Suppose ® is of type A(QQ) and ¥ is a mazrimal closed subroot
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system of ®. Then one of the following holds:

1. U =Uk,q)={te £ (k+1+rqd+2e+(2k+142r+1)q)d:r ez}

for some k € Z, and odd prime number q and Gr(¥V) = {+e;, +2¢, }.

2.0 ={x(e, + 2r+1)0) :r€Z} or {£(e1+ (2r +2)6) : r € Z} and
Gr(¥) = {+e}

3. U ={+(2¢; 4+ 2rd) : r € Z} and Gr(¥) = {£2¢,}.
If U = V(k,q), then the type of ¥ is Agz), otherwise it is Agl).

Proof. Let ¥ be a maximal closed subroot system. Then we have three possibilities

for Gr(W): either Gr(¥) = {£e1} or Gr(V) = {£2¢;,} or Gr(V) = {%e1, £2¢; }.

Case (1). First let Gr(¥) = {£e€1,+2¢; }. Then by Proposition 1.2.2, we have
Z1e, (V) = £pe, + 1,2 C 2+ Z and Zio., (V) = £poe, +neZ C 2Z.
for some p,, € % + Z and po, € 2Z. As V is closed and poe, + nyZ C 2Z, we have
(P2e, — Pey) + eZ C pey + nsZ and hence poe, + nyZ C (2pe, + nsZ) N 2Z.

From this we conclude that n, must be an odd integer since 2p,, is an odd integer.
Since for all r € Z such that 2p,, + ngr € 2Z, we have 2p., + ngr € Zs, (V). This
implies

Pae, + 1 = (2pe, +nsZ) N2Z = (2pe, + ns) + 2n,Z.

This implies, we must have n, = 2n,. So, ¥ must be equal to ¥(k,n,), where
k=pe, —3 € Z4 and n, is an odd integer. One can easily see that ¥(k,n,) is

maximal if and only if n, is an odd prime number.
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Case (2). Now, let Gr(¥) = {+£€;}. Then we claim that

U ={+(e; + (2r+3)d) : 7 € Z} or {£(e1 + (2r + 2)6) : r € Z}. Suppose

+(e1 4 (r+1)d), £(e1 + (s + 1)) € W for some r, s € Z, then we claim that r and s
are of the same parity. If they have different parity, then (r + s + 1) € 2Z which

implies that +2¢; € Gr(V), a contradiction. This proves that

either ¥ C {£(e; + (2r 4+ 3)8) : 7 € Z} or ¥ C {x(e1 + (2r + 2)0) : r € Z}.

Since both sets on the right hand side are closed in ®, we get the equality. Now,
we prove that both sets {#(e; 4+ (2r 4+ 3)0) : v € Z} and {£(e; + (2r + 3)8) : 7 € Z}

are maximal closed in ®. Let A < ® be a closed subroot system such that either

{xle+@r+2)0):reZy CAor {£(a + (2r+32)d):reZ} C A

This implies that {£e¢;} C Gr(A) and hence either Gr(A) = {£e;} or

Gr(A) = {£e1, £2¢, }. If Gr(A) = {=£e;}, then by previous argument, we get

cither A C {£(e; + (2r +3)0) : r € Z} or A C {x(e1 + (2r + 2)0) : r € Z},

which is not possible. So, we must have Gr(A) = {+£e;, £2¢;}. Then from the
proof of Case (1) we get A = WU(k,q) for some k € Z, and an odd integer g € Z.

But since

{xe+@r+2)0):rezZy CAor {£(a+ (2r+3)d):reZ} C A

we have either 1 +2Z C k+1+gZ or 3 +2Z C k+ 1 4 ¢Z which implies that

2Z C gZ. This implies that ¢ = 1 and A = ®.

Case (3). Finally assume that Gr(¥) = {£2¢,}. Then it is clear that

U C {+(2¢; +2rd) : v € Z}. Since {£(2¢; + 2rd) : r € Z} is closed, we have
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U = {£(2¢; +2r6) : r € Z}. Conversely, {£(2¢; + 2r0) : r € Z} must be closed in
®. Let A be a closed subroot system of ® such that {4(2¢; + 2rd) : r € Z} C A.
Then we have {+2¢;} C Gr(A) and it immediately implies that

Gr(A) = {xe1, 261} as {£(2¢; +2r9) : r € Z} C A. Then from the proof of Case
(1) we get A = W(k,q) for some k € Z; and an odd integer ¢ € Z. This implies
that 2Z C 2k 4+ 1 + g + 2¢Z which implies that 2Z C 2¢Z. Since q is an odd

integer, we get ¢ = 1 and A = ®. This completes the proof.

1.11 Final table

Now, we are ready to state our final classification theorem for irreducible twisted

affine root systems.

Table 1.4: Types of maximal subroot system of irreducible twisted affine root sys-
tems

Type With closed gradient With semi-closed gradient
Agz) Agz) Agl)
| A enn) . (1<r<n—1), AR AR, By
Dy | D@D, (1<r<n-2), B 0,0 |BY®BY, (2<r<n-2)
a0 Al el (1<r<a—1),a8 o Al 3
ES AV @l A eal B FY, DY ciV
DY AV @ o e, A A

We end this section with the following remark.

Remark 1.11.1. As we pointed out in the introduction the authors of [11] have

omitted a few possible cases in their classification list for the twisted case. We list

out all the differences between our classification list and their classification list.

The following possible cases are omitted in twisted case, see [11, Table 1, Table 2,
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Theorem 5.8]:

A @Ay c e

o c £

B @B, c p?,

DY c A,

The root systems of type DM & Agi),h does not occur as a maximal closed subroot

system in Agi), in contrast to what is stated in [11, Table 2].

1.12 Closed subroot systems and Regular

subalgebras

In this section we will describe a procedure to classify all the regular subalgebras
of affine Kac—Moody subalgebras both in untwisted and twisted case. We follow

the same notations as in the preliminary section.

Recall that ® denotes the set of real roots of the affine Lie algebra g and A(g)
denotes the roots of g. We will record the following fact from [18, Remark 3.1]. It

is fairly standard, but we give a proof for this fact for completeness.

Lemma 1.12.1. Let ¥ be a closed subset of ® such that ¥V = —V and s,(5) € ¥
for all a, f € U with f+ « € Aj(g) or f+2a € Ay(g). Then ¥ must be a closed

subroot system of ®.

Proof. We only need to prove that WU is a subroot system. Note that all root
strings in @ are unbroken. Let «, 8 € ¥ such that (5,a") € Z,. If

B — sa € Ay, (g) for some s € Z, we must have s € {1,2} and hence s,(5) € V.
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Otherwise  — sa € @ for all 0 < s < (,a"). Since —a € ¥ we get by the
closedness of ¥ that § — sa € . Thus s,(8) € V. The case —(f5,a") € Z, works

similarly and we omit the details. [l

Lemma 1.12.2. Let ¢’ be a h—invariant subalgebra of g and let A(g') C A(g) be
the set of roots of ¢ with respect to ty. Let W(g') = A(g') NP be the set of real roots

of g'. Suppose A(g') = —A(g'), then U(g') must be a closed subroot system of ®.

Proof. First recall that dim(g,) =1 for all & € ®. Since & = —&, we have
U(g') = —VU(g). Suppose «, 5 € ¥(g') and a + S € ® then it is immediate that
a+ [ € Y(g), since [ga, 93] = gats. This implies ¥(g’) is closed in ®. So, by
Lemma 1.12.1 it remains to prove that, s,(5) € ¥ for all a, f € ¥(g') with
B+ ae Am(g) or +2a € Ain(g).

Case (1). Assume that g is not of type A2 Let o, 8 € U(g') such that = a+1rd

for some r € Z. We have s,(f) = —a + rd. The finite dimensional subspace
V= Ya+rs s> 9rs ©® 9—a+rs C g is a 5[2 = Ba S¥ [gaa Q—a] S gfamedlﬂe

since [gao, gatrs] = 0 and [g_q, §—a+rs] = 0 and it decomposes as

V 2, V(2) @ V(0)®*, where V(\) denotes the finite dimensional irreducible
sls—module corresponding to the non—negative integer A € Z, and

k = dim(g,s) — 1. In particular, we have [gg, g_o] # 0 and

[958, 9-a)s 9—a] = 9—atrs = Gs.(8), since dim(gs,(3)) = 1. Since gg, g C ¢’, we have
Os.(5 < ¢'. This implies s,(f) € ¥(g'). Similarly we get s, (3) € ¥(g') if

B =—a+ro.

Case (2). Assume that g is of type Agi). Let a, f € U(g') such that = 2a + ¢ for

some r € Z. We have s,(3) = —2a + rd. The finite dimensional subspace

V= d2a+rs N> Ha+rs s> 9rs S¥ J—a+rs @ g-—2a+rs g g Is a 5[2 = fa S% [Qm g—a] ¥ g—ocmedule
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and it decomposes as V 22, V(4) @ V(0)®*, where k = dim(g,s) — 1. In particular,

we have (g3, 0-a)] = Ga+rs € ¢’ and ¢’ D [[g5,0-a); 0-a] = [a+rs; 8-a] # 0 and
g, 2 [[gﬁa g—a]7 g—a]a g—oc] - [[ga+r(5> g—a]a g—a] = g—a+rd;

since dim(g_q+r5) = 1 and gg, g_o C ¢’. This immediately implies that
Os.(8) = [0—a+rs, 0—a] C @'. Hence we have s,(8) € ¥(g'). The cases f = +a + 10

or —2a+rd and g is of type Agi) follows using similar ideas, so we omit the details.

]

In [8], E. B. Dynkin introduced a notion of regular semi-simple subalgebras in
order to classify all the semi-simple subalgebras of finite dimensional complex
semi-simple Lie algebras. As a natural generalization of Dynkin’s definition, one
can give a constructive definition of regular subalgebras in the context of affine

Kac-Moody algebras as well (see for example [11]).

Definition 1.12.3. Let ¥ be a closed subroot system of ®. The subalgebra g(V)

of g generated by g, for a € U, is called the regular subalgebra associated with W.

One can easily see that the definition of regular subalgebras works well for all
Kac—Moody algebras. Clearly g(¥) is invariant under the adjoint action of b (the

Cartan subalgebra of g). Moreover we have,

o) =b(¥) e P (5. Na(V)),

acA(g)

where h(¥) = C—span of {a¥ : @ € U}. Denote the roots of g(¥) with respect to b
by A(V) :={a € A(g) : g Ng(V) # 0}. Then it is immediate that ¥ C A(¥) N .
Note that for real roots «, we have g, N g(V) = g,, but for imaginary roots we
may not necessarily have equality. As we have mentioned in the introduction, we

have a bijective correspondence between regular subalgebras and closed subroot
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systems of ®. We need the following proposition in order to prove this bijective

Correspondence.

Proposition 1.12.4. Let ¥ be a closed subroot system of ® and let
V=" @D Yy be its direct sum decomposition of irreducible components. Let

B € A(Y), then there exists y, -+, B, € ¥ such that the following holds:

(1) B =014+ B and we have By + --- + ; € A(V), for each 1 <i <.
(2) There exists 1 < iy < k such that 31,--- , . € ;.

(8) Suppose py + -+ B; € A(W)ND for some 1 <i <r, then we get

Bit-t B € Uy

Proof. Since g, o € U generates g(\V), it is easy to see that the right normed Lie

words

{[Iﬁr7[x5r717[..' 7[1'527%51“ S g(\ll) :B :ﬁl +"'+ﬁr75i € \1171 <i:<nrre N}

spans g(¥)g. Thus if € A(V), then there exists r € N and 3; € ¥,1 <i <,

such that 8 = 81 +--- + (3, and the right normed Lie word

(25, [xs, 4, [ -+ [Tp,, Tp]] # 0 for some x5, € g, 1 <1 <r. Fix these xg,’s. Now
it is easy to see that [xg,, [zs, ,,[ -, [¥s,, ¥5,]] # O only if
LBy # 0 and [IIBH [ ) [$52,$ﬂ1” #0foral2<i<r

and hence we have 51 +---+ 3; € A(V),1 <i < r. This completes the proof of

Statement (1).

To prove Statement (2) and (3), first observe that the irreducible components

Wy, .-+, Uy of U are closed in ®.
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Case (1). Suppose By +---+ 3; € @ for all 1 < i <r, then the Statement (2) and
(3) follows from induction and the fact that a + 5 ¢ ® if « € ¥, and 5 € ¥, for
1 <p# q < k. In this case we have, f, € ¥;, = (1, -+ ,0, € ¥;, and

i+ + B €W, forall 1 <i<r.

Case (2). Suppose 81 + -+ + 3; ¢ @ for some 2 <i <r. Let i € {1,---r} be the
minimum such that 5 +--- + 5; ¢ ®, in particular we have §; +--- + 3; € ® for
all 1 < j <. Then by previous argument, there exists ig € {1,--- , k} such that
Bi,- ,Bic1 €V and By +---+ B € ¥, for all 1 < 7 < ¢. Write

1+ -+ Picy = a+sd € V¥, where a € Gr(V;,). Since 51 +---+ 3; ¢ O, we
must have 3; = —a + s’'6. Observe that (5; + -+ Bi—1,8;) = —(a,a) # 0. So we
immediately get 5; = —a+ s'6 € ¥;, and 51 + -+ + Bi_1 + 5; = (s + ')d. Suppose
Biy1 = B+ "0 ¢ W, then we get [Ts1575, Tatss] = 0 and [Ts4576, Toatss) = 0 as
(B+5"0)+ (a+s0) ¢ A(¥) and (5 + ") + (—a+ §'0) ¢ A(V). This immediately

implies that

[x5i+17 [mﬁw ['rﬁifl7 [ ) [xﬁza xﬁl“ = [x5+8"57 [xa+857 x*a+8’5“ =0

which is a contradiction to our choice of xg,, -+, 23, ,. Thus we must have

Bit1 =0+ "6 € ¥,;,. Now induction completes the proof of Statement (2).

We only need to prove that 5y + -+ 5, + Bi1 € ¥, in order to complete the
proof of Statement (3). First recall from the Proposition 1.2.2 that there exists
neg € Z for o € Gr(¥) such that Z,(V;,) = pa + naZ.

Case (2.1). Suppose n, = 0 for some o € Gr(¥,,), then ng = 0 for all § € Gr(¥,,)
by Lemma 1.2.5. Then we have 3 +--- + 8; € ® for all 1 < j <r in this case, so

the Statement (3) is immediate in this case.

Case (2.2). So assume that n, # 0 for all « € Gr(¥;,). Write
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Bit -+ Bimt = a+ (pa +n0ka)d, Bi = —a+ (—pa + naky)d and
Biv1 = B+ (ps + ngks)d Then we have 81 + -+ + 8; = no(ka + £,,)0. We need to

prove that 8y + -+ + B + Biv1 = B+ (ps + ngks + na(ka + k,))d must be in U, .

Case (2.2.1). Assume that ¢ is not of type Agi). Suppose both o and 3 are long or
short then we have n, = ng by Lemma 1.2.3, hence 8; + --- 4+ 8; + Bit1 € ¥y,
since Z3(V;,) = ps + naoZ. If (5 is short and « is long then we have ng = n, or

ne, = mng by Statement (2) of Proposition 1.2.7, hence we have

f1+ -+ Bi + Biy1 € ¥y, Now assume that « is short and § is long then we have
ng = ng if m|n, and ng = mn,, if m { n,. Again the claim follows easily when

ng = Nq. So we are left with case ng = mn,. Recall that m = 2 or 3 in this case,
so it is prime number. Now note that ps + ngks = 0 (mod m) and

(pg + ngks + na (ko + £.,)) =0 (mod m) together implies,

Na(ka + kL) =0 (mod m). Since m { n,, we get ko + k., = 0 (mod m). This implies
we have n, (ko + k,) = 0 (mod ng) and hence we have 51 + -+ - + 5; + Biy1 € Uy,

This completes the proof of Statement (3) in this case.

Case (2.2.2). Assume that @ is of type Agi). Suppose both «a and § are long or
short or intermediate then we have n, = ng by Lemma 1.2.3, hence

B+ -+ Bi + Biy1 € Uy, since Zg(V;,) = pg + noZ. If B is short (resp.
intermediate) and « is intermediate (resp. short) then we have ng = n, by
Proposition 1.2.8, hence we have 3y + --- + 3; + Bi11 € U;,. If 8 is short or
intermediate and « is long then we have ng = n, or n, = 2ng by Proposition 1.2.7,
hence we have 51 +--- + 3; + Bi11 € ¥;,. Now assume that « is short or
intermediate and f is long then we have ng = n, if 2|n, and ng = 2n, if m { n,.
Again the claim follows easily when ng = n,. So we are left with case ng = 2n,.
Now note that pg + ngks = 0 (mod 2) and (ps + ngks + na (ko + k) =0 (mod 2)
together implies, ngy (ko + kL) = 0 (mod 2). Since 2 t n,, we get

ko + k., =0 (mod 2). This implies we have n, (ks + k) = 0 (mod ng) and hence
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we have 81 + -+ + B; + Bit1 € V,,. This completes the proof of Statement (3) in

this case.

]

Corollary 1.12.5. Let ¥ be a closed subroot system of ® and let A(V) be the set
of roots of g(V) with respect to . Then we have ¥V = A(V) N ®. Thus the map
U — g(V) is a one-to-one correspondence between the set of closed subroot systems

of ® and the set of reqular subalgebras of g.

Proof. Immediate from Proposition 1.12.4. O]

1.12.1 Connection to m-system

E. B. Dynkin showed that linearly independent w-systems arise precisely as simple
systems of regular subalgebras of finite dimensional semi-simple algebras. So it is
natural to expect to define regular subalgebras in terms of m—systems in our
context. Now we give equivalent definition of regular subalgebras in terms of
m—systems. A m—system X is a finite subset of ® satisfying the property that for
each a, f € X, we have a — 3 is not a root (i.e., « — 8 ¢ A(g)). Note that we do
not demand ¥ to be linearly independent in the definition of m—systems. Let g(X)
be the subalgebra of g generated by {g, : « € ¥ U (—=X)} and let A(X) be the set
of roots of g(X) with respect to h. Denote by Wy, the Weyl group generated by the
reflections {s, : @ € X}. We refer to [3] for more details and historical remarks
about m—systems. We have a natural choice of m—system for each closed subroot

system of P.

Lemma 1.12.6. Let ¥ be a closed subroot system of ® and let V=V @ --- B Uy,
be its direct sum decomposition of irreducible components. Let ¥; be a simple

system of U; for each 1 <1 < k. Then ¥ = Uf:l Y 1S a m—system.
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Proof. Let a € ¥; and 8 € X;, we need show that a — 3 is not a root of g. If i = j,
then clearly o — [ is not a root of g. Assume that i # j and a — 3 is a root. Since
(ar, B) = 0, we have (o — B,ac — ) > 0. So,  — (3 is a real root of g. Since ¥ is
closed in @, we have a — 8 € W. But we have (o — §,«) > 0 and (o — 3, 5) <0,
which demands oo — 8 € ¥, N E;. This is clearly a contradiction and it completes

the proof. O

Suppose X is a m—system then X U —X is closed under multiplication by —1. So it
motivates us to define symmetric subsets of real roots. More precisely, a subset 3,
of @ is said to be symmetric if ¥; = —,. Let g(X;) be the subalgebra of g
generated by {g, : a € ¥;}. We are now ready to state our equivalent definitions

of regular subalgebras of g.

Theorem 1.12.7. Let g an affine Kac-Moody algebra and let g’ be its subalgebra.

Then the following definitions are equivalent:

1. there exists a closed subroot system W of ® such that ¢’ = g(¥),
2. there exists a m—system X of ® such that g’ = g(%),

3. there exists a symmetric subset ¥ of ® such that g’ = g(3;).

Proof. First assume that g’ = g(V) for some closed subroot system ¥ of ®. Then
by Lemma 1.12.6, we have the m—system > which is a union of simple systems of
corresponding irreducible components of W. Since ¥ is reduced, we have

U = Wx(X). Since A(X) = —A(X) and g(¥) is h-invariant, we have

U = Wg(X) € A(X) by Lemma 1.12.2. This implies that g, C g(X) for all a« € U,
hence we have g(¥) C g(X). Since ¥ C ¥, we have g(X) C g(¥). So, we have the
equality g(¥) = g(X). This also implies that A(¥) = A(X) and we have
A(X)N® =V from Corollary 1.12.5. This proves (1) implies (2). The fact (2)

implies (3) follows immediately if we take X3 = ¥ U —3.
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Now we prove (3) implies (1). Suppose g’ = g(3;) for some symmetric subset ¥ of
®. It is easy to see that A(X;) = —A(X). Let ¥ = A(3;) N ®. Again by Lemma
1.12.2, ¥ is a closed subroot system of ®. Clearly g(¥) C g(Xs) since g, C g(Xs)
for all & € W. Since X3 C A(X,) N ® = U, we have g(X;) C g(V). So, we have the

equality g(V) = g(X5). This completes the proof. O

Corollary 1.12.8. The association ¥ +— A(X) NP gives a bijective correspondence

between the set of m—systems of ® and the closed subroot systems of ®.

Remark 1.12.9. One can easily see that our definition of regular subalgebras is
little different from the regular subalgebras which appears in [20, Section 2|, see
[21] for its generalization. Suppose the closed subroot system has a simple system
(i.e., the corresponding m—system is linearly independent) then our definition of
regular subalgebra matches up with the definition of Naito’s, see [21], indeed in
this case our regular subalgebra is the derived subalgebra of Naito’s regular
subalgebra which is a Kac-Moody algebra by definition. Note that the closed
subroot systems of an affine root system does not need to have simple systems in
general. For example, consider the affine root system A = Ggi) and

A ={a+nd:a€GyneZ}. Let {a1,as} be the simple system of G,, such that

vy 1s a short root. Then define
U={tas+nd:neZUu{xtd+nd:nec2},

where 6 is the long root of G,. Clearly, U is a closed subroot system of type
Agl) b Agl) which has no linearly independent simple system by rank comparison.
So, here in this chapter we are dealing with a much bigger class of subalgebras of

affine Kac—-Moody algebras.
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1.12.2 Existence of finite chain

We have the following explicit description for the closed subroot systems of

untwisted affine root systems.

Proposition 1.12.10. Let ® be an untwisted affine root system. We have, ¥
(does not need to be of affine type) is a closed subroot system of ® if and only if

there exists

e nmutually orthogonal irreducible closed subroot systems Wy, --- , Uy of d and
e n; € Z and Z-linear function p': W; — Z, « s pl,, satisfying the equation
1.2.2, for each 1 <1< k
such that

(1.12.1) V=06 @,

where U; = {a+ @, +m)d €V :ae VU, reZ}, 1 <i<k. The subroot system

\/I/\i 1s of finite type if and only if the integer n; associated to Ef\z 18 zero.

Proof. Let ¥ be a closed subroot system of untwisted affine root system ®. Then

by Proposition 1.3.1, we know that Gr(¥) is a closed subroot system of ®. Let
Gr(V) =", - & Yy

be the decomposition of Gr(¥) into irreducible components. Then each V; is an
irreducible finite subroot system of $. Since Gr(¥) is closed in @, we see that each
W, is closed in ®. Let (If\l denote the lift of ¥; in W. Then for each 1 <1 < k, by
Proposition 1.2.6, there exists n; € Z and a Z-linear function p’ : ¥; — Z, o+ p,

—~

satisfying the equation 1.2.2 such that for each o € U;, Z,(¥;) = p!, + n;Z. This
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implies that ¥; = {a+ (P, +rn;)0 €V :ae VY, reZ}, 1<i<k. Notice that if
n; = 0, then the lift of ¥; must be of finite type and the types of \/II\Z and U, are

same. Converse part is straightforward. This completes the proof.

Let @ be an affine root system and ¥ be a closed subroot system of ® as before.
Write ¥ = ¥, & Uy where ¥, (resp. Wy) is the affine (resp. finite) part of W. Since
V¥ is closed, we have the subroot systems W, and W are closed in ® and i)
respectively. Since we know the classification of all the closed subroot systems in
the finite type (see [1, 8]), we only need to classify all the closed subroot systems of
® which are of affine type. It can be done using the following theorem and the
information about maximal closed subroot systems which appears in previous

sections.

Theorem 1.12.11. Let ® be an affine root system and ¥ be a closed subroot
system in ® of affine type. Then there exists a finite chain of closed subroot
systems in ®, & =Py D Py D --- D & = U such that ; is maximal closed in ;4

for1 <i<k.

First we fix a notation. For a closed subroot system A of ® with decomposition

into indecomposable components Gr(A) = A; @ - - - @ Ay, we denote by

k
hH(A) = D n () + D ni(A) + Yo n(a)

Here it is understood that niAHf(A) = 0 if there is no intermediate roots and so on.

We need the following lemma to prove the theorem 1.12.11.

Lemma 1.12.12. Let ® be an affine root system and W C A C & be closed subroot
systems of ® of affine type. Let Gr(V) = ¥y @ --- @ Yy be the decomposition of

Gr(V) into irreducible components. Then we have
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(i) either Gr(V) C Gr(A) or

(ii) Gr(¥) = Gr(A) and ht(A) < ht(¥).

Proof. Suppose Gr(¥) C Gr(A), then there is nothing to prove. So, assume that
Gr(¥) = Gr(A). Tt is easy to see that for each 1 <i < ¢ we have nYi(A) is a
divisor of nYi(¥), in particular n¥i(A) < n¥:(¥). Similarly, we have

nyi(A) < nti(U) and ny*(A) < ny (V) for all 1 <4 < £. This immediately implies

that ht(A) < ht(D).

If ht(A) = ht(¥), then we must have nYi(A) = n¥:(¥), ni(A) = nii (V) and
ny (A) = n) () for all 1 < i < . This implies that p¥ +nYZ C p4 + nSZ for all
a € Gr(¥). Since nY =n2, we get pY = pS(mod nY) for all @ € Gr(¥). This

immediately implies that ¥ must be equal to A which is a contradiction to the

assumption.

Theorem 1.12.11 is an immediate corollary of the following proposition.

Proposition 1.12.13. Let ® be an affine root system and ¥ be a closed subroot
system in @ of affine type. Then there is no infinite chain of closed subroot

systems in ®, such that

V=0C P C- - CP C P &--- C O

Proof. We prove this result by contradiction. Assume that there is an infinite

chain of closed subroot systems in ®, such that

V=0 TP &SP C Py &G-S O

Then we have Gr(V) = Gr(®y) C Gr(®y) C --- C Gr(Pg) C --- C Gr(®P). Since
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Gr(®) is finite, there must exists a k € Z such that Gr(®;) = Gr(®;) for all ¢ > k.

Since ¢, C ®; C @;, by lemma 1.12.12, we have

ht(®;) < ht(®;) < ht(Py) forall bk < j <i

which is absurd. This completes the proof. O
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Chapter 2

Weyl group action on m-system

2.1 preliminaries

An integer matrix A = (a;;) of size n X n, where n is a positive integer, is called a

generalized Cartan matriz, GCM for short, if the following conditions are satisfied:

1. a;=2foralll1 <i:<n
2. a;; <0 whenever 1 <i#j<n

3. a;;=0ifa; =0for1 <4,7<n

Given a GCM A of size n, we let g(A) denote the Kac-Moody Lie algebra
associated to A [15, §1.3], with Cartan subalgebra h(A) and Chevalley generators
e;, fi for 1 <7 < n. Let g'(A) denote the derived subalgebra [g(A), g(A)] of g(A).
Let a;(A),1 < i < n denote the simple roots of g(A) and let Q(A) be its root
lattice, i.e., the free abelian group generated by the «;(A). Both g(A) and g'(A)
are ()(A)-graded Lie algebras, with dege; = a;(A) = —deg f; and degh = 0 for all
h € h(A) [15, Chapter 1]. We let A, A", A" denote the sets of roots, real roots

and imaginary roots respectively. For a root a, we let g(A), denote the
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corresponding root space. Each real root « defines a reflection s, of h* by

Sa(A) = A= (A, a") a where o € h(A) is the coroot corresponding to «. The
Weyl group W (A) is the subgroup of GL(h*) generated by the s,, a € A™. We
use terminology and notation as in the early chapters of [15] without any further

comment.

2.1.1 Multisets of real roots

Let A be a GCM, and let ¥ = {81, B2, -+ , B} be a collection of real roots of g(A)

(possibly with repetitions). We define the m x m matrix

M(X) = [(8;,5/ >]Z=1

We note that this is not a GCM in general. We let XV := {3, 55,---, 5"} be the
corresponding multiset of coroots. Viewing these as real roots of g(AT), we observe

M) = M(D)T.

A reordering of the elements of ¥ corresponds to a simultaneous permutation of
the rows and columns of the matrix: M(X) — P M(X) PT for some m x m
permutation matrix P. We will most often identify two such matrices without

explicit mention.

2.1.2 m-systems

Definition 2.1.1. Let A be a GCM. A 7w-system in A is a finite collection of
distinct real roots {f;}12; of g(A) such that 5; — f; is not a root for any

1<i#j5<m.

This definition is essentially due to Dynkin [8] (for A of finite type) and Morita

[20] (in general), both of whom require that the {5;}7, be linearly independent;
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Morita calls such sets fundamental subsets of roots. The following proposition is
stated in Morita (for the linearly independent case) without proof (see also Naito

[21]). We supply the easy details.

Proposition 2.1.2. Let A be a GCM, and ¥ = {B;}", be a w-system in A. Then
the matriz M(X) is a GCM.

PROOF: For any real root 5 we have (Y, ) = 2. Indeed, letting 5 = wa for a
simple root a and w an element of the Weyl group, we have ¥ = w(a"), and
(BY,B) = (w(a"),wa) = (¥, a) = 2. Suppose [ and v are distinct real roots such
that v — 3 is not a root. Consider {y — pS,...,v+ ¢5} the “S-string through ~”
([15, Prop. 5.1]). Clearly p =0 and (5Y,~v) =p —q < 0.

With 8 and v as in the previous paragraph, if (8Y,~) = 0, then ¢ = 0, so that
£+ v is not a root, so the v-string {5 — p'y,..., 3+ ¢} through /3 consists only

of 5, and so (vV,5) =p' — ¢ = 0. O

We call B := M (%) the type of ¥, and refer to X as a w-system of type B in A.

In Dynkin and Morita’s original definitions, a 7w-system was required to be linearly
independent. Dynkin does however mention 7-systems of finite-dimensional simple
Lie algebras with this condition relaxed [8] . In the symmetrizable Kac-Moody
context, Morita [20] and Naito [21] obtained the key initial results. A decade later,
Feingold-Nicolai [10] rediscovered the definition of w-systems , but imposed the
restriction that all roots of a m-system be positive. They did not require linear
independence, but as was pointed out by Henneaux et al [[12], x4.3], their main
theorem on embeddings arising out of 7-systems is false unless this condition is
imposed. Our Theorem 2.1.3 is the corrected statement, in the more general
setting of m-systems that are not necessarily subsets of the positive real roots. Our

Theorem 2.2.1 serves as a link between the definitions of Morita and
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Feingold-Nicolai.

2.1.3 Symmetrizable GCMs and 7-systems

An n x n GCM A is symmetrizable if there exists a diagonal n X n matrix D with
positive rational diagonal entries such that DA is symmetric. Let

Y ={p;i:1<i<m} bea m-system of type B in A. We note that if A is a
symmetrizable GCM, then so is B. Fix a choice of diagonal matrix D which

symmetrizes A, and let (- | -) denote the corresponding symmetric bilinear form on

Q(A) ®z C, defined by:

(2.1.1) (ai(A) | aj(A)) = Dii ai

Since the (; are real roots of g(A), we know by [Kac, Chapter 5] that:

v oy 2061 85)
by = 500 = 51 )

Thus, D' = diag((5; | 5;) /2) is a diagonal matrix with positive rational entries
that symmetrizes B. This choice of symmetrization defines a symmetric bilinear
form on Q(B) ®z C. As in equation (2.1.1) above, this is given by

(a;(B) | aj(B)) = Dj; bjj = (Bi | ;). In other words, given the compatible choices

of symmetrizations (D, D) as above, the C-linear map

(2.1.2) ¢ - Q(B)®zC = Q(A)®zC, «a;(B)— f;iforl1<i<m

is form preserving. Given a € Q(A) ®z C with (a | &) # 0, the corresponding

reflection s, is given by:
2(7 | a)

sal7) =7 — @la)
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for v € Q(A) ®z C. We note that ¢.(s.(83)) = sa (') where o, 8 € Q(B) ®z C and

o/, " are their images under g,..

Theorem 2.1.3. Let A be an n X n symmetrizable GCM and ¥ = {p;}*, a
m-system of type B in A. Let eg,, e_a, be non-zero elements in the root spaces
9(A)p, and g(A)_p, respectively, such that [eg,,e_p,] = B;/. Then there ezists a
unique Lie algebra homomorphism iy, : ¢'(B) — ¢'(A) such that e; — eg,,

firre_g, hi— B

PROOF: Since A is symmetrizable, so is B, and g/(B) is generated by e;, fi, hi,

1 <i < m subject to the relations [15, Theorem 9.11]:

(2.1.3) [hises] = bj e [hi, fi] = =bij [;
(2.1.4) [hi, hyj] =0

(2.1.5) les, £i] = i Iy and
(2.1.6) (ade;)'"ie; = (ad f;)' " f; = 0

Any Lie algebra homomorphism from g/'(B) is thus determined by the images of
e;, fi and h; (1 <4 <m). Thus there is at most one Lie algebra homomorphism

with the requisite properties.

To show that there exists such a homomorphism, we need only verify that the
relations in (2.1.3) through (2.1.6) are satisfied. Relations (2.1.3) and (2.1.4) are
clearly satisfied. As for (2.1.5) we consider two cases: if j = 4, then it follows since
les;, e—p,] = 55 if j # ¢, then it follows since f5; — §; is not a root of g(A) by the
definition of m-system . As for (2.1.6), it follows from the fact [15, Prop. 5.1] that

the f;-string through §; consists of 8;, 8, + 5, ..., B; + kB;, where k = (8, 5;). O

The following proposition is equivalent to that of Naito [21, Theorem 3.6], though

his proof is different (without using the Serre relations). In the interest of
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completeness, we give an (slightly simpler) argument.

Proposition 2.1.4. With notation as in the above theorem, if ¥ is linearly
independent (in Q(A) ®z C), one can extend the map i to a map from g(B) to

g(A). Further, this map is injective.

Proof. Suppose that {h;ay,...,a);a1,...,a,} is a realization of A [15, Chapter
1]. Let € be any subspace of b of smallest possible dimension such that (i) €
contains Ay, ..., 5, and (ii) the restrictions of 5y, ..., 8, to ¢ are linearly
independent as elements of £* (this is possible since we are given that the (; are

linearly independent). Then

1. (6,87,...,0%; Biles- -, Bmle) s a realization of B.

2. rank B > rank A — 2(n — m).

Assertion (1) follows easily from the definition of realization. As for assertion (2),
observe that {3}, is in the span of {«; };: this follows from the definition of
BY for a real root [ as w(q;’) where w is an element of the Weyl group such that
f =w(a;). We have B =Y AX, where X = (x;;) is the n x m matrix such that
B = > i wija; and Y = (y;;) is the m x n matrix such that 3/ = Y77 | yj:07.
The matrices X and Y are both of rank m. The assertion now follows easily from

elementary linear algebra.

Now, g(B) is generated by &, e;, f; subject to the relations specified in the proof of

Theorem 2.1.3 together with the following;:

[k}ei] = Bi(k)e; [k7fi] = —Bi(k) fi [k'h k’z] =0 for k, ki, ky in €

We map € to h via the natural inclusion; e;, f; are mapped to eg,, e_g, as before. We

only need to check that the additional relations above hold. But these are obvious.
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Finally, we show that the homomorphism is an embedding. The kernel of the
homomorphism being an ideal of g(B), it either contains the derived algebra g'(B)
or is contained in the center [15, §1.7(b)]. Since e; — e, (and e; is contained in
g'(B) by (2.1.3)) the first possibility is ruled out. Thus the kernel is contained in
the center. But the center is contained in the subspace € ([15, Prop. 1.6]) and on ¢

the homomorphism is an inclusion. Thus the kernel is zero.

Remark 2.1.5. The following easy observations are often useful:

1. If ¥ is linearly independent, then g, is an injection.
2. If det B # 0, then ¥ is linearly independent.

Example 2.1.6. (i) Let A be a GCM of finite type. Dynkin [8] showed that if
m is a regular semisimple subalgebra of g(A), then there exists a GCM B of

finite type and a m-system X of type B in A such that m = i_(g(B)).

(ii) Let us take A = [2], so that g(A) = g/(A) = slC. Let
Y =A{aj,—a1} = A(A). This is clearly a m-system in A, of type
B = 2 . The corresponding Kac-Moody algebra g(B) is the affine
-2 2
Lie algebra sl,C. We then have [15, Chapter 7], ¢'(B) = sl,C ® C[t,t '] & Cc,
the universal central extension of the loop algebra of sl,. The generators of

g(B)aree; =X, fi=Y,ea=Y ®t, fo=X®t", where X = (J}) and

Y = (99) are the standard generators of sl,C.

The map defined in Theorem 2.1.3 is thus:

er—= X, fimY Y, o= X
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(iii) More generally, let A be any finite type GCM and g(A) the corresponding
finite dimensional simple Lie algebra, with highest root §. Consider the
m-system ¥ consisting of the simple roots of g(A) together with —f. This has
type B, the GCM of the untwisted affinization of g(A). The map defined by

Theorem 2.1.3 coincides with the evaluation map at t = 1:

g (B) =g(A) ®C[t,t™'] & Cc — g(A)

c— 0and ¢ ® f(t) — f(1)¢ for all ¢ € g(A), f € C[t,t™}]

a

Lemma 2.1.7. Let A be an n x n GCM. Let I be an ideal of g'(A) that does not
contain any simple root vectors, i.e., e;, fi € I for alli. Then I does not contain

any root vectors, i.e., g'(A)o NI = (0) for all roots a.

Proof. Suppose « is a positive, non-simple root. Assume e, € I for some nonzero
eo € ¢'(A)s. By [Kac, Lemma 1.5], there exists 4; such that [fi,,e.] # 0. If @ — o
is not a simple root, find iy such that [f;,, [fi,, €a]] # 0. Proceeding this way, after
finitely many steps we get [fi [ - fis [fir» €a)] -+ -] = €; € I, which contradicts the

hypothesis on I. If a were a negative root to begin with, the proof is

analogous. O

Remark 2.1.8. 1. Let I be an ideal of g’(A). We observe that if I contains one

of e;, fi, @, then it contains all three.

2. If A is an indecomposable GCM, then any proper ideal of g'(A) satisfies the
hypothesis of lemma 2.1.7. To see this, suppose e; is in I. Then, so are f;
and «. Since A is indecomposable, for each fixed j, there exist iy, iz, - - - i
such that a;;,a;,i, - -~ a;,; # 0. Since, [, €;,] = ai;, €;,, we conclude I contains

eiy, and hence also f;, o, Proceeding in this manner, we get e;, fj, af € I.
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Since this holds for all j, we obtain I = g’(A), a contradiction.

While the map 4, of Theorem 2.1.3 need not be injective when ¥ is linearly
dependent, we nevertheless have the following useful result which states that it is

injective on each root space.

Corollary 2.1.9. The map i, : ¢'(B) — ¢g'(A) defined in Theorem 2.1.3 is
injective when restricted to ¢'(B)a for a € A(B). Further, the image of ¢'(B)4 is

contained in g'(A)q_(a)-
Corollary 2.1.10. 1. q.(A™(B)) C A™(A) and q,(A"™(B)) Cc A"™(A) U {0}.

2. If further 3 is linearly independent, then q,(A™(B)) C A™(A).

Proof. Corollary 2.1.9 implies that if « is a root of g'(B), then ¢, («) is either 0 or a
root of g’(A). Further, since (a | &) = (¢ () | ¢-()), real roots map to real roots
and imaginary roots to imaginary roots or 0; since real roots are precisely those
roots of positive norm. The second part is obvious from the linear independence

assumption, since an imaginary root is nonzero, it cannot map to zero. ]

The above corollary, for linearly independent ¥ was first obtained by Naito [21,

Theorem 3.8]. Next, we have the converse to Theorem 2.1.3:

Proposition 2.1.11. Let A, xn, Binxm be symmetrizable GCMs. Suppose
¢:9¢'(B) — g'(A) is a Lie algebra homomorphism satisfying 0 # ¢(e;) € ¢'(A)gs,,
0+# o(fi) € g'(A)_p, for all 1 <i <m, for some real roots {;}7*1 of g (A). Then,

the set ¥ = {p;}™, is a w-system of type B in A.

Proof. Given a real root  and any root 7 of g'(A), it follows from elementary sls

theory (applied to the S-string through ~y) that

(2.1.7) [0'(A)g, g'(A),] #0iff 3+ ~is a root of g'(A)
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Now, since [e;, f;] = 0 for 1 <i # j < m, we apply ¢ to conclude that
[0'(A)g,, 9'(A)—s,] = 0. Hence 3; — f3; is not a root of g’(A), and ¥ is thus a

T-System .

Next, we show that the type of this m-system is exactly B. Note that [(8, 5;)] is
the largest integer k for which f; + k'S, is a root of g'(A) for 0 < k' < k. Let oy(B)
denote the simple roots of g'(B); their images under g, are the ;. We have

¢ = |b;;| is the largest integer for which o;(B) 4+ ¢'a;(B) is a root of g'(B) for

0 < ¢ </ Infact v = a;(B)+ lo;(B) € A™(B), and by corollary 2.1.10,

q. () € A™(A). Thus, k > (.

By (2.1.7) above, [¢'(B)a,(B), §'(B),] = 0, and since these two real root spaces map
isomorphically to the corresponding real root spaces of g’'(A), we conclude

[0'(A)g,s '(B)g, (] = 0. By (2.1.7) again, 8; + ¢, (7) = 8; + (£ + 1)5; is not a root
of g'(A). Hence k < ¢, and we obtain (5, §;) = b;; as required. ]

Corollary 2.1.12. If A has a m-system of type B and B has a w-system of type

C, then A has a w-system of type C.

PROOF: Theorem 2.1.3 gives us Lie algebra morphisms g'(C') — ¢'(B) — ¢'(A).
By corollary 2.1.9, both these maps are injective on real root spaces. The
generators e;, f; of g’(C') map to real root vectors of g'(B). Thus, under the
composition of these two morphisms, e;, f; map to non-zero real root vectors of
g'(A). The corresponding roots are clearly negatives of each other.

Proposition 2.1.11 now completes the proof. O

If 31,35 denote the m-systems of the above corollary, of types B and C'
respectively, then the m-system of type C' in A that one obtains from the proof
above is just g, (32).

As mentioned in the introduction, 7w-systems were first defined by Dynkin in his
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study of regular semisimple subalgebras of semisimple Lie algebras. In this setting,
any set of simple roots of a closed subroot system of the root system (of a
semisimple Lie algebra) is a m-system . The converse is also true, as can be seen

from theorem 2.1.3.

In the infinite dimensional setting, Naito [21] defined a reqular subalgebra of a
Kac-Moody algebra g(A) to be any subalgebra of the form ix(g(B)) for ¥ a
linearly independent 7-system of type B in A, where B varies over all GCMs (cf.

Proposition 2.1.4).

2.2 Weyl group action on m-systems

Let A be a symmetrizable GCM. Let W (A) denote the Weyl group of A. It acts on
the set of roots of A, preserving each of the subsets of real and imaginary roots.
Further this action preserves the bilinear invariant form. Thus, there is an induced

action of W(A) on the set of all m-systems in A of a given type B.

When A is of finite type, it is easy to see that every linearly independent 7-system
in A is W(A)-conjugate to a m-system contained in the set of positive roots of A.
To see this, take an element v € hi which has positive inner product with the
elements of the m-system . The element w € W(A) which maps v into the
dominant Weyl chamber will clearly also map the 7-system to a subset of the

positive roots.

This proof fails in the general case; such w does not exist unless « is in the Tits
cone. For instance, the negative simple roots of A form a 7-system of type A in A.
This set cannot be W (A)-conjugated to a subset of positive roots if A is not of
finite type; this can be seen using for instance [15, Theorem 3.12¢|. The next

theorem shows that this is essentially the only obstruction.
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Theorem 2.2.1. Let A, B be symmetrizable GCMs and ¥ a linearly independent
mw-system of type B in A. If B is indecomposable, then:

1. There exists w € W(A) such that w¥ C AT(A) or wX C AT(A).

2. There exist wy, wy € W(A) such that w12 C A°(A) and w3 C AT(A) if

and only if B is of finite type.

The proof occupies the next subsection.

2.2.1 Proof of theorem

The proof of theorem 2.2.1 closely follows that of [15, Proposition 5.9]. The first
part of this theorem, in the special case |3| = 2 was proved by Naito in [21]. We
first recall some relevant facts about the roots of a Kac-Moody algebra. Let B be
an indecomposable GCM, and let g(B) denote the corresponding Kac-Moody
algebra. Let Q(B) denote its root lattice. We use the notation introduced already
for the sets of roots, real roots, positive roots etc. Let R, denote the set of

non-negative reals. Define:

We then have the following result due to Kac [15, §5.8]:

Proposition 2.2.2. (Kac) In the metric topology on the real span of Q(B), Cm
15 the convex hull of the set of limit points of C*. In particular, it is a convex cone.
Now suppose Q(B) C E for some real vector space E. Let {¢;}"_, be a basis of E.
Define E, to be the R, span of the ¢;, and let E_ = —E,..

Lemma 2.2.3. If A(B) C Ey UE_, then AT"(B) C E4 or A7"(B) C E_.
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Proof. Consider the set Ci™; it has the following properties: (i) It is convex, by
Proposition 2.2.2. (ii) It is contained in E; UE_, by the given hypothesis. (iii) It
does not contain a line (i.e., for nonzero « € E, both 2 and —z cannot belong to

this set), because C™m C R, (A, (B)).

Suppose there exists & € A7"(B) NE_ and § € A7 (B) NE4. Then there exists a
point on the line joining o and S which does not belong to E_ or E, because of
property (iii). This point belongs to C™ by property (i) but this is not possible
beacuse of property (ii). Hense C'™ must be entirely contained either in E or in

E_. ]

Under the same hypothesis as lemma 2.2.3, we have:

Lemma 2.2.4. If AY"(B) C E,, then all but finitely many real roots of B lie in

E,.

Proof. First, we define an inner product on E by requiring the ¢; to be an

orthonormal basis. This defines the standard metric topology on E, and thereby on

the R-span of Q(B).

Let M := AT*(B) NE_, and M = {a/||la]| : « € M}. Here, the norm is that of the
Euclidean space E. Observe that M is a subset of C*NE_NS , where S is the unit
sphere in E. If M is an infinite set, then, it has a limit point, say (. Now

¢ € E_N S, and by Proposition 2.2.2, ¢ € C'™. But C'm C E, by hypothesis. This

contradiction establishes the lemma. OJ

Proposition 2.2.5. Let A(B) C EL UE_. There exists w € W(B) such that
wA(B) C Ey orwAL(B) C E_.

Proof. By lemma 2.2.3, the positive imaginary roots are all contained in E, or in
E_; we may suppose (replacing the ¢; with their negatives if need be) that

A'™(B) C E. Consider F' := A’¢(B) NE_; this is finite by lemma 2.2.4. If this set
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is non-empty, it contains some simple root a of g(B). Since the simple reflection s,
defines a bijective self-map of A’¢(B)\{a}, it is clear that F' := s, (A%(B)) NE_
contains one fewer element than F'. Iterating this procedure, we can find w, a

product of simple reflections, such that w A%(B) N E_ is empty, as required. O

Finally, we are in a position to prove theorem 2.2.1. With notation as in the
theorem, observe that the linear independence of ¥ implies that ¢, : Q(B) — Q(A)
is injective. By corollary 2.1.10, ¢ (A(B)) C A(A) = AL (A) UA_(A). We define
E to be the R-span of A(A) and take {¢;} to be the basis of simple roots of g(A).
Then, clearly, ¢.(A(B)) C Ey UE_. Identifying A(B) with its image under ¢,

and appealing to proposition 2.2.5 completes the proof of part (1).

To prove part (2), since w1 X C A(A), we have w (g, (AL (B))) C AL (A).
Consider the set R := ¢, (A7"(B)). We have (i) R C A"™(A), by corollary 2.1.10,
and (i) w1 R C A, (A). Since the sets AY"(A) are both W (A)-invariant, this
implies R C A”7"(A). Similarly, from ws3 C A™(A), we conclude R C A™(A).

This means R is empty, or in other words, that B is of finite type.

Conversely, if B is of finite type, then A, (B) is finite. Hence its intersections with
A, (A) and A_(A) are both finite sets. The proof of Proposition 2.2.5 shows that
there exist elements of W (A) which map A, (B) to subsets of Ay(A). O

As is evident from Example 2.1.6(ii), the conclusion of theorem 2.2.1 is false if ¥ is

not assumed to be linearly independent, even when A is of finite type.

Let A, B be symmetrizable GCMs. A 7w-system X of type B in A is said to be
positive (resp. negative) if it is W (A)-conjugate to a m-system all of whose
elements are positive (respectively negative) roots. Theorem 2.2.1 implies that if
is linearly independent and B is indecomposable and not of finite type, then ¥ is
either positive or negative. We record below a simple criterion to determine the

sign that was obtained in the course of the proof of theorem 2.2.1.
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Proposition 2.2.6. Let A, B be symmetrizable GCMs, with B indecomposable and
not of finite type. Let 3 be a linearly independent w-system of type B in A. Then

the following are equivalent:

1. X is positive (resp. negative).
2. q,(a) € AT(A) (resp. A™(A)) for every o € AT™(B).

8. gy (o) € ATY(A) (resp. A" (A)) for some o € AT™(B).
]

Let m(B, A) denote the number of W (A)-orbits of m-systems of type B in A (this
could be infinity in general). When A, B are of finite type, Borel-de Siebenthal and
Dynkin determined the pairs for which m(B, A) > 0. Dynkin went further, and
also determined the values of m(B, A); these turn out to be 1 for almost all cases,

except for a few where it is 2 [8, Tables 9-11]

2.3 m-systems of affine type

Let S(A) denote the Dynkin diagram associated to the GCM A [15]. Any subset of
the vertices of S(A) together with the edges between them will be called a
subdiagram of S(A) (and we will use C to denote the relation of being a
subdiagram). Given ao =Y | ¢;o;, we define supp a to be the set {i : ¢; # 0} and
view it as a subset of the vertices of S(A). Given a subdiagram Y of S(A), we say
« is supported in Y if supp « is contained in the set of vertices of Y. We also let
Y+ denote the set of vertices of S(A) that are not connected by an edge to any

vertex of Y.

Lemma 2.3.1. Let A be a symmetrizable GCM and Y a subdiagram of S(A) of
affine type. Let 8y denote the null root of Y. If B € A(A) is such that
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(B]dy) =0, thensuppB C Y UYL,

Proof. We write g = Zpe 5(4) CpO%; where all the coefficients are non-negative, or
all non-positive. Let supp 3 denote the set of p for which ¢, is nonzero. Now,
(g | 0y) is 0 for p € Y, and < 0 when p € Y. Since all coeflicients are of the same

sign, every p € supp  must be either in Y or in Y. O

Theorem 2.3.2. Let A be a symmetrizable GCM and B be a GCM of affine type.

Suppose Y3 is a linearly independent m-system of type B in A. Then,

1. There exists an affine subdiagram'Y of S(A) and w € W(A) such that every

element of w is supported in'Y .

2. Suppose (Y',w') is another such pair, i.e., with Y’ a subdiagram of affine
type, w' € W(A) such that w'y is supported in'Y'. ThenY =Y’ and

ww e WY UY?t).

3. m(B,A) = 0.

Proof. Let ¥ = {B;}". Let {c,;(B)}]"* denote the simple roots of g(B) and let dp
denote its null root. Let dy. = ¢.(dp). By corollary 2.1.10(2) and the fact that g,
preserves forms, we obtain that dy is an isotropic root of g(A). By [15, Proposition
5.7], there exists w € W(A) such that w(dy) is supported on an affine subdiagram
Y of S(A) and w(dx) = kdy for some nonzero integer k, where dy is the null root

of Y.

Now, 0 = (o,;(B) | 0) = (6 | ds) = k (wp; | d0y) for alli =1,---  m. We conclude

suppwf; C Y UYL, by lemma 2.3.1. Since wf; is a root, its support is connected,
and hence contained entirely in Y or entirely in Y*. However, wY is a m-system of
type B, an indecomposable GCM. So, wY cannot be written as a disjoint union of

two mutually orthogonal subsets. This means that either suppwf; C Y for all 7, or
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suppwf; C Y+ for all i. The latter is impossible since kdy = w(dx) is a positive

integral combination of the w/;. This proves part (1).

Now, if (Y, w’) is another such pair, then since the only isotropic roots of g(A)
supported on subsets of Y’ are the multiples of dy+, we obtain w'(dy) = k'dy- for

k' # 0. Define 0 = w'w™?, so o(kdy) = k' dy,. Since dy is a positive imaginary root
of g(A), so is ody; thus k and k' have the same sign. We may suppose k, k' > 0.
Now kdéy and k'dy are antidominant weights (i.e., their negatives are dominant
weights) of g(A), which are W (A)-conjugate. By [15, Proposition 5.2b], we get
kdéy = k'0y:,. Thus, Y =Y’ k =k and 00y = dy.

Since dy is antidominant, the simple reflections that fix dy generate the stabilizer
of dy. By lemma 2.3.1, this stabilizer is just W(Y UY"1). Thus o € W(Y LUY4),

proving part (2).

Finally, let ¥ = wX denote the m-system of part (1). Now Y is of affine type,
untwisted or twisted. In either case, from the description of the real roots of an
affine Kac-Moody algebra [15, Chap 6], the following holds:

A™(Y) + 6pdy C A™(Y) for all p € Z. Consider

Y, ={a+6pdy :aeX}forpeZ

Since dy is orthogonal to every root of g(Y), it is clear that X, is a linearly
independent m-system of type B in A, supported in Y. From the proof of part (1),
we know ¢, (0p) = kéy for some nonzero integer k. From the definition of 3, we

obtain

(231) qu ((53) = (]{7 + 6ph)(5y

where h is the Coxeter number of the affine Kac-Moody algebra g(B). We claim

that the ¥, are pairwise W (A)-inequivalent. Suppose ¥, and 3, are in the same
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W (A)-orbit. Then, from part (2), we obtain %,, = 0(%,) for some
o€ W(Y UY™). In particular, this means ¢, (6p) = 0(q, (65)). Since o fixes dy,

equation (2.3.1) implies m = n. This completes the proof of part (3).

Corollary 2.3.3. Let A be a symmetrizable GCM such that S(A) has no

subdiagrams of affine type. Then A contains no linearly independent mw-systems of

affine type.

This follows immediately from the proposition. We remark that Figure 2.4.2

contains examples of such S(A).

Remark 2.3.1. 1. The conclusion of theorem 2.3.2 is false without the linear

independence assumption, as in Example 2.1.6 (ii), (iii).

2. Let A, B be symmetrizable GCMs, with B of affine type. Suppose A contains
a linearly independent m-system of type B. Theorem 2.3.2 implies that some
affine type subdiagram Y of S(A) also contains a linearly independent
m-system of type B. This allows us to determine the possible set of such B in
two steps: (i) find all affine subdiagrams Y of S(A), and (ii) for each such Y,
list out all the B’s which occur as GCMs of linearly independent 7-systems

of Y.

3. We note that step (ii) above can in-principle be carried out using the results
of [23] (see also [21, 11, 7]).
2.4 Hyperbolics and Overextensions

Let A be a symmetrizable GCM and X = S(A) be its Dynkin diagram. If A is

symmetric, we will call X simply-laced.
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Definition 2.4.1. Let Z be a simply-laced Dynkin diagram. We say that Z is an
overextension or of Ext type if there exists a vertex p in Z such that the

subdiagram Y = Z\{p} is of affine type and (dy | o)) = —1.

We let Ext denote the set of overextensions. It is easy to see that the following is

the complete list of overextensions, up to isomorphism:
ATt (n>1), DIt (n>4), Ef* (n=6,7,8)

(see Figure 2.4.1). Here, X, * has n + 2 vertices. We remark that the
corresponding GCMs are all nonsingular; hence a m-system of Ext type is
necessarily linearly independent.

P ++
“——e 9 A

,,I,,,, ++
® Eg
,,,I,,,,, ++
® E?
,,I,,,,,,, ++
® Eg

Figure 2.4.1: Ext type diagrams

2.4.1 Finite and affine part of overextension

From figure 2.4.1, one makes the important observation (via case-by-case check)
that if Z is an overextension, then the vertex p satisfying the condition in

definition 2.4.1 is unique. This vertex is marked by a dashed circle in figure 2.4.1.
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We will call p the overeztended vertexr of Z, and Y the affine part of Z.

We had (dy | ) = —1. Let 0y = >,y cqa, With ¢, € Z for all g. Observing that

qeY
cq (g | @) <0 for all g, it follows that: (i) There is a unique vertex ¢ of Y such
that (o | ;) # 0, (ii) For this vertex, we have ¢, = 1 and (o | ;) = —1, (iii) In
particular, this means ¢ is a special vertex of the affine diagram Y (in the

terminology of Kac, Chapter 6). Let Z° denote the finite type diagram obtained

from Y by deleting q. We will call it the finite part of Z. We note that:
(SY = Oy + (QZO

where 6z. denotes the highest root of Z°. It will be convenient to denote Y by Ze,

The following trivial observation is useful: let X be a simply-laced Dynkin

diagram and Z a diagram of Ext type. Suppose there exists 7, a m-system of type
Z in X; we let 7°, 7° denote the subsets of = corresponding to the finite and affine
parts of Z respectively. For any w € W(X), wr is a mw-system of type Z in X and

(wr)® = w(r®), wre = w(7).

2.4.2 Hyperbolics

We recall that an indecomposable, symmetrizable GCM A is said to be of
Hyberbolic type if it is not of finite or affine type and every proper principal

submatrix of A is a direct sum of finite or affine type GCMs.

There are finitely many GCMs of hyperbolic type in ranks 3-10 and infinitely
many in rank 2. The former were enumerated, to varying degrees of completeness
and detail, in [24, 5, 17]. More recently, this list was organized and independently
verified in [2]. We will use this latter reference as our primary source for the

Dynkin diagrams of hyperbolic type. Note that [2] does not require
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symmetrizability in the definition of a hyperbolic type GCM, so it contains 142
symmetrizable and 96 non-symmetrizable ones. We let Hyp denote the set of all

symmetrizable GCMs of hyperbolic type of rank > 3.

We recall from §2.3 the subdiagram partial order on the set of symmetrizable
GCMs. We write B C A if the Dynkin diagram S(B) is a subdiagram of S(A);
equivalently B is a principal submatrix of A, possibly after a simultaneous
permutation of its rows and columns. This is clearly a partial order, once we

identify the matrices { PAPT : P is a permutation matrix} with each other.

2.4.3 Simply laced hyperbolics

We now isolate the symmetric GCMs of hyperbolic type. By checking the
classification case-by-case (see for instance [25, Tables 1,2] or [2]), one finds that

these are either (i) of Ext type:
(2.4.1) AT (1<n<7), DM, (4<n<8), EI (6<n<3y)

or (ii) one of the diagrams in Figure 2.4.2; or (iii) one of the rank 2 symmetric

2 a
GCMs for a > 3. We observe by inspection of figure 2.4.1 that the
—a 2

diagrams in (ii) and (iii) do not contain a subdiagram of Ext type.

— A A A
B P >

Figure 2.4.2: Simply-laced hyperbolics (ranks 3-10) that are not of Ext type.

The next lemma underscores the special role played by the hyperbolic

overextensions. These are precisely the minimal elements of the set of
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overextensions relative to the partial order C.

Lemma 2.4.1.

min(Ext, C) = Ext N Hyp

Proof. Observe that BT C Af+ forn > 8 and Eg* C D for n > 9. We are
thus left with the diagrams of equation (2.4.1) as possible candidates for minimal
elements. Now, each of these diagrams except Dg ™ contains a unique subdiagram
of affine type, obtained by removing a single vertex. So these diagrams cannot
contain a proper subdiagram of Ext type. As for the diagram Z = Dg ", it
contains two subdiagrams of affine type, Y] = Eél) and Yy = Dél), obtained by
deleting appropriate vertices py, p2, but only the former satisfies (dy | o) = —1

(this is —2 for the latter). Thus, Dg* is also minimal. O

2.5 Weyl group orbits of m-systems of type A{"

In this section, we focus on the diagram A{ . The corresponding Kac-Moody

algebra was first studied by Feingold and Frenkel [9].

We consider the problem of determining m(A; ™, X) for a simply-laced Dynkin
diagram X. This is an important special case of the more general result of the
next section. The latter result will be obtained by arguments similar to the ones

used here, albeit with more notational complexity.

We begin with the following lemma which asserts that every Dynkin diagram of

Ext type has a “canonical” m-system of type Af .

Lemma 2.5.1. Given a Dynkin diagram Z of Ext type, define:

W(Z) = {920,5)/ — QZO,CYP}

124



(notations Z°,Y, p, 0z are as defined in §2.4.1). Then n(Z) is a linearly

independent, positive T-system of type Af™.

Proof. We only need to show that the type of 7(Z) is AT, the other assertions
following from the observation that the three roots in 7(Z) are real, positive and
have disjoint supports (cf. §2.4.1). Since Z is simply-laced, we normalize the form

such that all real roots have norm 2. Thus

(05

Sy — Oz0) = — (00

QZO) == —2

It is clear from §2.4.1 that (6. | opy) = 0 and (dy | ;) = —1. This completes the

verification. O

Theorem 2.5.2. Let X be a simply-laced Dynkin diagram. Then:

1. X has a w-system of type ATt if and only if it contains a subdiagram of Ext

type.

2. The number of W (X)-orbits of w-systems of type AT in X is twice the

number of such subdiagrams (and is, in particular, finite).

Proof. In light of Theorem 2.2.1, any m-system of type A" in X is

W (X)-equivalent to a positive or a negative m-system , but not both. Thus, to
prove the above theorem, it is sufficient to construct a bijection from the set of Ext
type subdiagrams of X to W (X)-equivalence classes of positive m-systems of type

Af" in X. We claim that the following map defines such a bijection:

Z = [7(2)]

We will first establish the injectivity. Suppose Z;, Z5 are Ext type subdiagrams of

X, with affine parts Y7, Y, and overextended vertices py, po respectively. Suppose
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7(Z1) ~ w(Zy) i.e., there exists o € W(X) such that o(m(Z1)) = 7(Z,). Consider
the m-systems :

71']':{(92;,53/].—(949}, j:1,2.

We note that:

1. m; is of type Agl).
2. 7; is supported in the affine subdiagram Y; of X.

3. o(m) = m.

Now, it follows from part (2) of theorem 2.3.2 that Y; = Y5 and o € W (Y, LUYh).
Since p; € Y7 U YIL, we can only have ooy, = ay, if p1 = py. Thus, Z; = Z5 as

required.

Next, we turn to the surjectivity of this map. Let {f_1, By, 81} be a positive
m-system of X of type AT, Since {5, 51} form a m-system of type A(ll), which is
affine, it follows from theorem 2.3.2 that there is a unique affine type subdiagram
Y of X and an element w € W (X)) such that wp; is supported in Y for i =0, 1.
Further (as in the proof of theorem 2.3.2), since w(fy + f1) is an isotropic root of
9(X), we must have w(fy + 1) = kdy for some nonzero integer k. Since

(Bo+ P1] B-1) = —1, we conclude k = +1. But 5y + 81 € Q. (X) by proposition

2.2.6, and w!(dy) € A" since dy is a positive imaginary root. This implies k = 1.
Let B8] = wp;; thus ), f] are supported in Y, their sum equals dy and
(dy | B~1) = —1. We now need the following lemma:

Lemma 2.5.3. Let X be a simply-laced Dynkin diagram, Y an affine subdiagram
of X and B a real root of X satisfying (0y | 8) = —1. Then there exists

o€ W(Y UY™) such that o3 is a simple root of X.
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We defer the proof of this lemma to the next subsection. Here, we use it to
complete the proof of Theorem 2.5.2. We take § = /' ; in lemma 2.5.3. We obtain
o€ W(Y UY?) such that 08" | = a, for some vertex p of X. Define Z := Y U {p}.

Since o stabilizes dy, we have (dy | o)) = —1; thus Z is of Ext type.

Since ), f; are supported in Y, so are o3, o5}; further o5, + o] = dy. Now

(Uﬁiﬂap) = (Uﬂi,aﬂl_l) =0.

This implies that ¢ is supported in Z°. Since Z° is a simply-laced finite type
diagram, all its real roots are conjugate under its Weyl group. Thus, there exists
T € W(Z°) such that 708} = 0z.. Since 7 stabilizes both dy and «,,, we conclude

that {rop}:i=—1,0,1} = n(Z), as required. O

2.5.1 Proof of lemma

We now turn to the proof of Lemma 2.5.3. We use the notations of the lemma.
Since dy is an antidominant weight of X, § must be a positive root. Further it is

clear from (dy | B) = —1 that 8 must have the form:

(2.5.1) B=op+ Y cBay
geyuy L
where p is a vertex of X such that (dy | ) = —1, and ¢,(3) are non-negative

integers. Consider the W (Y U Y*)-orbit of 8. Since the coefficient of o, remains
the same, any element v of this orbit is a positive root that has the same form as
the right hand side of (2.5.1) for some non-negative coefficients c,(7y). Let v be a
minimal height element of this orbit, i.e., one for which __c,(v) is minimal. Then,
we have: (i) (] a,) <0 forall ¢ € YUY since otherwise s,y would have strictly

smaller height, (ii) (v | v) = (o, | ) since all real roots have the same norm (X is
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simply-laced). We compute:

O=0"v+op|7v—0oyp) = Z cg(7) (v + oy | ag)

geyYuy L

Since (o, | og) < 0, we conclude from (i) above that either ¢,(y) =0 or
(7] ay) = (ay | @) = 0 for each ¢ € Y LY. If some ¢,(7) # 0, it would imply
that v has disconnected support, which is impossible since v is a root. Thus,

7 = a, and the proof of the lemma is complete.

2.5.2 Generalisation of lemma

We note that the key step in the proof above was showing that the set of all real
roots § which have the form of equation (2.5.1) forms a single orbit under the
standard parabolic subgroup W (Y UY ") of W. In fact, those very same

arguments prove a strengthened assertion. We formulate this below.

Given a Dynkin diagram X with simple roots «; and given any « in its root

lattice, we define the coefficients ¢;(«) by:

If J is a subdiagram of X, we define oy = Y., ¢;(«) a; and af, = Ziw ci(a) a;.

Proposition 2.5.4. Let X be a symmetrizable Dynkin diagram with invariant
bilinear form (- | -) and simple roots a;. Let J be a subdiagram of X, and fix a

nonzero element ¢ = Ziw b; a; of the root lattice of X\J. Consider the set
O={BeA“(X): 8y =Cand (8|5)=(C|O}
Then:
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1. If ¢ is a root of g(X\J), then O = W; ( where W is the standard parabolic

subgroup (s; : j € J) of W.

2. If ¢ is not a root of g(X\J), then O is empty.

Proof. Suppose O is non-empty, then ¢ or —( lies in Q4 (X\J). We may assume
the former case holds, so in fact O C A’¢(X). Since O is W-stable, it decomposes
into W ;-orbits. Let O denote one such orbit. let 5 denote an element of minimal
height in @’; as in the proof of Lemma 2.5.3, this implies (5 | ;) <0 for all j € J;
hence (8 | a) < 0 for all elements o € Q4 (J). We now have

0=(B+C|p—-¢) = (ﬁ + 53 | /BJ). But as observed already, (8 | ;) < 0; further
(5} | BJ) < 0 since these elements have disjoint supports. This implies

(B18s)= (@TJ | BJ) = 0. Suppose [ is nonzero, the latter implies that

B =P8+ ﬂ} has disconnected support. Hence it cannot be a root. This
contradiction shows #; =0, i.e., § = ﬁf] = (. In particular, ¢ is a root, and belongs

to any W orbit in O. Hence O = W, (. ]

Remark 2.5.1. 1. If X is simply-laced and J is a singleton, say J = {p}, and
¢ = oy, then O consists precisely of those real roots 8 of X which have the

form of equation (2.5.1).

2. If X is of finite type and ( is a root of X\J, then Proposition 2.5.4 is a

consequence of Oshima’s lemma [22, Lemma 4.3], [7, Lemma 1.2].

2.5.3 Corollaries

We now have the following corollary of Theorem 2.5.2.

Corollary 2.5.5. Let X be a Dynkin diagram of Ext type. Then:
1. If X € Hyp, then there are exactly two w-systems of type AT in X, up to
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W (X)-equivalence. In other words:

mATX)=2for X =A7"(1<n<7), Dy (4<n<8), E;" (n=6,7,8).

2. m(Af T ATT) =6, m(A7 T, AFT) =10 forn > 9.
8. m(AT, D) =6, m(A7 T, D) =4 forn > 10.

ProOOF: The first part follows from Lemma 2.4.1 and Theorem 2.5.2. For parts
(2), (3), we need to count the number of subdiagrams of the ambient diagram
which are of Ext type. We list these out in each case, leaving the easy verification

to the reader.

1. A$™: one subdiagram of type A" and two of type ES ™.

2. AT (n >9): one subdiagram of type A" and two each of types Eft and

EfT.
3. Dg™": one subdiagram of type Dy ™ and two of type Eg ™.

4. D (n > 10): one subdiagram of type D+ and one of type EJ ™.

We also have the following result concerning the simply-laced hyperbolic diagrams

not included in the previous corollary.

Corollary 2.5.6. Let X be a simply-laced hyperbolic Dynkin diagram. If X ¢ Ext,

then X does not contain a w-system of type AT,

Proor: This follows from the observation made in 2.4.3 that such diagrams do

not contain subdiagrams of Ext type. O
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Finally, we remark that Theorem 2.5.2 can be applied just as easily even when X
is neither in Ext nor Hyp. For example, the diagram X = FE;, obtained by further
extension of EJ " [13] contains a unique subdiagram of Ext type, namely EJ ™.

ThllS, m(A{“J“, Ell) = 2.

2.6 The general case

Theorem 2.6.1. Let X be a simply-laced Dynkin diagram and let K be a diagram

of Ext type. Then:

1. There exists a w-system in X of type K if and only if there exists an Ext

type subdiagram Z of X such that Z° has a mw-system of type K°.

2. The number of W(X) orbits of m-systems of type K in X is given by:

(2.6.1) m(K,X)=2Y m(K° 2

ZCX
ZcExt

where K°, Z° denote their finite parts.

We remark that equation (2.6.1) reduces the computation of the multiplicity of K
in X to a sum of multiplicities involving only finite type diagrams. The latter, as

mentioned earlier, are completely known [8]. Observe also that for K = A" K° is
of type A;. Since any Z° occurring on the right hand side of (2.6.1) is simply-laced,

we have m(K°, Z°) = 1. So this reduces exactly to Theorem 2.5.2 in this case.

Corollary 2.6.2. Let K be a Dynkin diagram of Ext type. Then,
1. m(K, X) is finite for all simply-laced diagrams X .
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2. m(K,X)=2m(K° X°) for all X € Hyp N Ext.
We now prove theorem 2.6.1.

Proof. 1t is enough to prove the second part of the theorem. Now, by
Theorem 2.2.1, any 7-system in X of type K is either positive or negative, but not

both. Consider the sets:
e A: the set of W (X)-orbits of positive m-systems of type K in X;

e B: the set of all pairs (Z,%) where Z is an Ext type subdiagram of X and X

is a positive m-system of type K° in Z°.

e B=8 /~, the equivalence classes of B under the equivalence relation defined

by: (Z,%) ~ (Z',¥') it Z = 7' and ¥’ is in the W (Z°)-orbit of X.

Since 2|.A| and 2|B| are the two sides of equation (2.6.1), it is sufficient to
construct a bijection from the set B to .A. We first define a map from B to A. Let
(Z,%) € B. Let Z° and Z° denote the finite and affine parts of Z, and let p denote
its overextended vertex. Since X is a m-system of type K° in Z°, we identify
A(K°) with a subset of A(Z°) via corollary 2.1.10. Let 05 denote the highest root
in A(K°) (identified with its image in A(Z°) C Q(Z)). Consider the set

7(Z2.5) = {ap, 0~ — 05} US

It is straighforward to see that this is a m-system . Further, it is of type K.

We now claim that the map: B — A, (Z,%) — [7(Z,%)] factors through B and

defines a bijection between B and A.

Firstly, suppose (Z,%) ~ (Z,Y), i.e., w3 = ¥’ for some w € W(Z°). Since clearly

way, = oy, Wz = 07 and Oy = why;, we conclude that 7(Z,%') = wn(Z,%). So
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the map does indeed factor through B. We will now show it is an injection.

Suppose (Z;,%;) € B, i = 1,2 are such that [7(Z1, 21)] = [7(Z2, 3)], i.c., there
exists o € W(X) such that o(n(Z1,%1)) = 7(Zs,3s). Let p; denote the

overextended vertex of Z;.

Consider the m-systems :
Wj:{égj\o—egj}uzj', j:1,2

We note that: (i) 7; is of type K°, (ii) m; is supported in the affine subdiagram Z}’

of X, and (iii) o(m) = ma.

Now, it follows from part (2) of theorem 2.3.2 that 21\" = ZQ\O and
oeW(Z,°UZ® ). Since py ¢ Z,° U Z,° , we can only have o, = a, if p1 = po.

— —1
Thus, Z; = Zy. We write 0 = 77/ with 7 € W(Z,°) and 7" € W(Z,° ).

Since om; = my, we obtain 7%y = X5 (in fact, 7 = my) since 7’ fixes each element
of m, pointwise. Further, ca,, = a,, implies that o € W ({p;}*). In particular,
T E W(El\o) NW({p1}+) = W(Z,°). Hence we obtain (Z;,31) ~ (Zs, 39), in other

words, the map defined above is injective on B.

Next, we show surjectivity of the map. Let 7w be a positive w-system in X of type
K; we will show that [r] is in the image of the map. Let 7°,7° be the subsets of 7
corresponding to the finite and affine parts of K respectively. Now, 7° is a positive
m-system of type K°in X. By theorem 2.3.2, there is an affine type subdiagram Y
of X, and an element w € W(X) such that every element of (the positive m-system
) w(r®) = W is supported in Y. Since [r] = [wr], let us replace m with wm in
what follows. Thus, 7 is a positive 7-system of type K such that 7° is supported

in Y. Let B € 7 correspond to the overextended vertex of K, and let 0~ denote

the null oot of K°, identified with its image in A(m°) € A(X). Thus 6 (i) is a
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positive imaginary root of X (by corollary 2.1.10), (i) is supported in Y, and (iii)
satisfies (0 | B) = —1. The first two conditions imply d— = rdy for some r > 1,

while the third implies r = 1.

As in the proof of Theorem 2.5.2, we now appeal to Lemma 2.5.3 to find an
element o € W(Y UY") such that 03 = o, for some vertex p of X. Define

Z =Y U{p}; this is clearly an Ext type subdiagram of X. Consider the positive
m-system & = o of type K. We have:

(a) oy €&, (b) £° is supported in Y and (c) 6p = dy.

Further, (o | 8) =0 for all a € 7° gives us (ca | 05) =0, i.e., (¢ | o) = 0 for all
o/ € £°. This in turn implies that: (d) £° is supported in Z°.

From (a), (c¢) and (d) we conclude & = w(Z,£°). Since [r] = [¢] and £° is of type

K°, the proof is complete.
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Chapter 3

The partial order =<

Let A, B be GCMs. We define B < A if there is a linearly independent 7-system of
type B in A. We now show that < defines a partial order on the set of
symmetrizable hyperbolic GCMs (where we identify two GCMs that differ only by
a simultaneous permutation of rows and columns). Clearly this relation is
reflexive. By corollary 2.1.12 this relation is transitive. We now prove that this

relation is anti-symmetric.

Lemma 3.0.1. Let A be ann x n GCM (not necessarily symmetrizable). Let
{a;}_, be the simple roots of g(A). Let {f;}!, be any set of real roots of g(A).
Let o), 8) denote the corresponding coroots. Consider the integer matriz:

B =[(B/,B8);;- Then:

1. det A divides det B.

2. Further if A, B are invertible with |det A| = | det B|, then {B;}!, and
{87}y, form Z-bases of Q(A) and QY (A) respectively.
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PROOF: We write:

n
v v
@ = E Usk O,
k=1

n
5;‘ = E Vjp Oy
=1

where u;, v;, are integers. Using the equations above, we compute:
B=UAV"

where U = [u;;] and V = [v;j] are integer matrices. Taking determinants, we obtain
det B = det U det V det A, proving the first assertion. For the second assertion, the
given condition implies |det U| = |det V| =1, i.e., U and V are in GL,(Z). This is

clearly equivalent to what needs to be shown. O

Proposition 3.0.2. Let A, B be n x n symmetrizable GCMs of hyperbolic type,
with det A = det B. Suppose ¥ = {B;}, is a w-system of type B in A. Then ¥ is
W (A)-conjugate to II(A) or —II(A), where I1(A) is the set of simple roots of g(A).
In particular, A and B are equal up to a simultaneous permutation of rows and

columnes.

Proor: Consider the map ¢, : Q(B) — Q(A) of equation (2.1.2), defined by
a;(B) — B; for all i, where II(B) = {a;(B) : 1 <1i < n} is the set of simple roots of
g(B). We assume for convenience that the symmetric bilinear forms on Q(A) and
Q(B) are chosen compatibly as in §2.1.3, so that ¢ is form preserving (the
arguments below will still work for any choices of standard invariant forms, since

they only differ by scaling by positive rationals).

Using the given hypothesis and the fact that hyperbolic GCMs are necessarily

invertible, we obtain from the second part of lemma 3.0.1 that: (i) ¥ is a Z-basis
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of Q(A) and (i) XV = {8}, is a Z-basis of QY (A).

1=

We observe from (i) above that ¢ is a form preserving lattice isomorphism of
Q(B) onto Q(A). We now claim that ¢.(A(B)) = A(A). Corollary 2.1.10 implies
that ¢.(A(B)) C A(A). We only need to prove the reverse inclusion. Towards this
end, we recall the following description of the set of roots of a symmetrizable

Kac-Moody algebra g(C) of Finite, Affine or Hyperbolic type [15, Prop 5.10]:

(3.0.1)
A"(C) ={a= Z kia;j(C) € Q(C) : |af* > 0 and k; |o;(O)|?/]a|® € Z for all 5}

(3.0.2)
A™(0) = {a € QO)\{0} : |af* < 0}

forms where «;(C') are the simple roots, Q(C') is the root lattice, and we fix any

standard invariant form on g(C'). We apply this when C' = A, B below.

Since |q,,(a)]* = |a]? for all @ € Q(B), it is clear from equation (3.0.2) that
45 (A"™(B)) = A" (A). Now let 3 € A™(A) and define a = ¢ ' (). We need to
prove that a € A™(B). Let 8 = Zj k;B; for some integers k;; thus

a =3 kja;(B). Since f is a real root, [af* = |3|* > 0. Define
¢j = kj lay(B)[*/lal® = k; 18;%/|6]*

Equation (3.0.1) implies that « is a real root of g(B) iff ¢; € Z for all j. Consider
BY € QV(A); by (ii) above, we know that XV forms a Z-basis of the coroot lattice
QV(A). Now vV = 2v71()/|v|? for any real root v of g(A) [15, Prop. 5.1], where v

is the linear isomorphism from the Cartan subalgebra of g(A) to its dual induced
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by the form. A simple computation now shows :

BY=> ¢ By
J

This proves the integrality of the ¢;, and hence our claim.

Thus, ¢.(A(B)) = A(A). Since ¢ (II(B)) = X, this means that ¥ is a root basis of
A(A) [15, 85.9], i.e., ¥ is a Z-basis of Q(A) such that every element of A(A) can
be expressed as an integral linear combination of ¥ with all coefficients of the same

sign. By [15, Proposition 5.9], we conclude that ¥ is W (A)-conjugate to +I1(A).

Finally, since I1(A) is a m-system of type A in A, we conclude that A = B, up to a

simultaneous permutation of rows and columns. O

Proposition 3.0.3. Let A, «, and B,,xm be symmetrizable GCMs of hyperbolic
type such that A X B and B < A. Then, m = n, and there exists a permutation

matriz P such that PAPT = B.

PROOF: Since A < B, there exists a linearly independent m-system of type A in B;
in particular, this implies n < m. Similarly, m < n, so we obtain m = n. Applying
lemma 3.0.1, we conclude that det A | det B and det B | det A, so in fact

det A = £det B. Since hyperbolic GCMs have strictly negative determinant, we

must have det A = det B. Proposition 3.0.2 completes the proof. |

In other words, < is a partial order on the set of equivalence classes of hyperbolic
GCMs, where we identify GCMs that differ by a simultaneous reordering of rows
and columns. We restrict ourselves to the set Hyp comprising hyperbolic GCMs of
rank > 3. Then, we will determine the maximal elements of Hyp with respect to

this partial order (up to equivalence).
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3.1 Construction of m-systems

In this section we will develop some principles for constructing m-systems in a
given Dynkin diagram. These are generalizations of the principles developed in [25]

for simply-laced diagrams.

In fact, all our principles below are instances of the following simple, but powerful

method of constructing m-systems .

General principle: Let X be the Dynkin diagram of a symmetrizable GCM. Let
A denote a proper subdiagram of X and let A’ be the subdiagram formed by the
vertices not in A. Let X, Y be w-systems in A, A’ respectively, consisting of positive

real roots. Then ¥ U ¥’ is a m-system in X.

This principle follows from the observations that (i) the (real) roots of a
subdiagram are precisely the (real) roots of the ambient diagram that are
supported on the subdiagram, (ii) the difference of two positive roots with disjoint
supports will have coefficients of mixed sign, and can therefore not be a root. In all
our applications below, we will always take >’ to consist of the set of all simple

roots of A’.

Observe that the GCM of ¥ U Y is of the form

B x
(3.1.1)

x B
where B, B" are the GCMs of 3, ¥/ respectively. The terms denoted x are of the
form 2(5y | B2)/(B2 | B2) where 51 € A, B2 € A’ or vice versa. We now isolate some
special instances of this general principle, which will be used repeatedly in the

sequel.
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3.1.1 Principle A:

Let Y be an affine Dynkin diagram, twisted or untwisted, but Y # Ag). Let
{ag, -+, ap} denote the simple roots of Y. Let Y denote the underlying finite type

diagram, obtained from Y by deleting the node corresponding to «y.

Let X be the diagram obtained by adding an extra vertex to Y, which is
connected only to ag, and by a single edge. Since Y is symmetrizable, so is X. We
denote the simple root corresponding to this vertex a_;. Let A = (a;;) denote the

GCM of X; thus a;; = 2 (o | ;) /(e | o) for =1 < 4,5 < n.

We note in passing that when Y is simply-laced, X is of Ext type. Let dy denote
the null root of Y, so dy = Z?:o a;co; with a; € N. We let s; denote the reflection

corresponding to the simple root «;.

Since Y is an affine diagram other than Ag), we have ag = 1 [15, Chapter 4, Tables
Aff 1-3]. In the general principle, we take the subdiagram A =Y and A’ to be the
singleton set containing the vertex (—1). Define ¥ to be the m-system in Y of type

Y comprising the roots {sp7; : 0 <i < n} where the 7; are given by:
Yo=ap+dy, v =q;(j>1)

We note that when Y is twisted, aq is a short root and hence o + dy is a root in
this case; it is of course a root when Y is untwisted. Define ¥’ = {a_;}; this is

clearly of finite type A;.

Welet YUY ={8;: =1 <i<n} with f_1 =a_; and §; = soy; for i > 1. All the
hypotheses of the general principle are satisfied. As observed in equation (3.1.1),
to find the type of ¥ U Y/, it only remains to compute the numbers

bij =2(Bi | B;)/(Bi | Bi) where i = —1,7 > 0 or vice-versa.

Now: (i) (81| B;) = (s B-1 | 7;) = (ap | @) for 7 > 1, since spa_; = ag + a_y
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and a_; is orthogonal to all roots of Y. (i) |8_1]* = |a_1|? = |ap|?. This gives us:

bj7_1 = Q50 and b—Lj = Qpj fOI'j Z 1.

Finally, we compute: (5_1 | Bo) = (a_1 | so(co + dy)). But
so(ao + d0y) = —ap + dy = 0, where 0 is the highest long (respectively short) root
of Y if Y is untwisted (respectively twisted). But (a_; | ) = 0 since as before a_;

is orthogonal to all roots of Y. In other words by _; = b_1 9 = 0.

The Dynkin diagram S(B) is thus obtained from X = S(A) by removing the edge
between vertices 0 and —1, and instead connecting the vertex —1 to every

neighbour of 0 with the same edge labels, i.e., such that b; 1 = a;o and b_;; = ay;.

3.1.2 Principle B:

Let X be the Dynkin diagram of a symmetrizable GCM A and let Y denote a
subset of its vertices such that Y forms a subdiagram of affine type. We set r =1
if Y is untwisted, » = 3 if Y if of type Df’) and r = 2 for all other twisted types.
Let dy denote the null root of the diagram Y. In the general principle, we choose
A =Y. For each p € Y, fix a non-negative integer k,; if o, is a long root of Y, we
require further that r|k, (for Y of type Agi) this requirement only applies to the
longest root length). Let 5, = oy, + k, 0y and define ¥ = {f, : p € Y'}; this is a
m-system of type Y in Y. For ¢ ¢ Y, let 5, = o, and define ¥’ = {f,: ¢ € Y'}.
Then, by the general principle, ¥ UY' is a m-system in X. Let B = (b;;)ijex
denote its type. As above, b;; = a;; whenever 4, j are both in ¥ or both not in Y.

To compute b,, and by, for p € Y, q € Y, we have:

(Bps By) = (ap, ) + kyp(dy, )

Hence by = apq + kp% and by, = agp + kp%. These can be explicitly

computed in each case of interest.

141



While we will have occassion to use this principle in its full generality, we give

below some special instances of it which occur often. Since Y is affine, we assume
that the vertices of Y have the standard labelling 0,1, -+ ,n as in [15, Chapter 4].
Suppose X\Y contains only a single vertex (labelled —1) which is connected by a

single edge to the vertex 0 of Y.

(i) First let us suppose that Y is untwisted. Fix p such that 1 < p < n. Choose
kp,=1and ks =0 for all 0 < s < n, s # p. We only need to compute b;; for
i = —1,7 > 0 or vice-versa. Now, clearly b_;; =a_;; and b; 1 = a; _; for j >0,

j # p. Further,

(B B0) = (0, 002) + Gy 00) = (ag,000) = —1 298
Since |5;]* = |au|? for all 4, we conclude that b_; , = —|ag|*/|a_1|* = —1 and
by -1 = —|apn|?/|ap|®. Now since ayg is a long root of Y, we obtain
r
—1 if o, is a long root of Y
bp-1=9 -2 ifY # Ggl), and «,, is a short root of Y
-3 Y= Ggl), and a,, is a short root of Y’

In terms of Dynkin diagrams, the diagram S(B) coincides with S(A) except that
there is a single, double or triple edge joining vertices —1 and p (with an arrow

pointing towards p) depending on the three cases above.

(i) I Y is twisted, fix a vertex 1 < p < n and define (i) ks =0for 0 < s<n,s#p
(ii) k, = r if «, is a long root (longest root in case of Agi)) and k, = 1 otherwise.
As above we have: (a) b;; = a;; for i, j # p, (b) bjj = a;; for i,j # —1, (c)

by_1=—1and (d) b_1, = —|a,|*/|ag|*. Since ap is a short root of Y, we have:
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—1 if a; is not a long root of ¥

boip=9-2 ifY #* Df’), and «,, is a long root of Y

-3 Y= Df), and «,, is a long root of Y’

\

As before, this implies that the diagram S(B) coincides with S(A) except that
there is a single, double or triple edge joining vertices —1 and p (with an arrow

pointing away from p) depending on the three cases above.

(iii) If instead of 1 < p < n, we choose the vertex p =0 in (i) or (ii) above, we
obtain by _1 = b_19 = —2, and b;; = a;; for all other pairs (7, ). In the Dynkin
diagram S(B), this would be denoted by a double edge between vertices 0 and —1,

marked with two arrows, one pointing toward each vertex.

For principles C, D, E, we let X denote the Dynkin diagram of any

symmetrizable GCM.

Principle C: (Shrinking) Suppose [ is a subset of the vertices of X such that [
forms a (connected) subdiagram of Finite type. It is well known that £, = Y., a;
is a root of g(I). Since I is of finite type, this root is real. In the general principle,
we choose the subset A = I and the m-system ¥ = {f,}. Let ¥’ = {o; : j & I}. Let
B denote the GCM of ¥ U X/. We have for j & I,

(B, ) N (4, 05)

(g, 05) = (a5,05)

Further, letting k; = |a;|?/[B|* for i € I, we have

(Bo, ) (i, )
(B, Be) 2 h (ai, o)

el
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Thus,

(3.1.2) bje = Z aji, bej = Z ki aig

el el

We note that k; is the ratio of root lengths in a finite type diagram, and is

therefore one of %, %, 1,2,3. If no two vertices of I have a common neighbour j & I,
then the Dynkin diagram S(B) may be thought of as being obtained from X by
contracting the vertices of I to a single “fat” vertex e. The edges in X between

i €1 and j ¢ I are now drawn between e and j in S(B) (with possibly new edge

weights). The rest of the diagram X is carried over unchanged.

Principle D: (Deletion) If we delete any subset of vertices from the vertex set of
X and define X to be the set of remaining {c;}, then ¥ is a m-system in X. Its

Dynkin diagram is clearly a subdiagram of X.

Principle E:

(i) Let the vertices of X be labelled 1,2,---  n. Suppose X contains a subdiagram
of finite type Bs, i.e., there are vertices p,q in X joined by a double bond directed
(say) towards p. In other words, a,, = —2,a,, = —1. In the general principle, we
take A to be this subdiagram of type By and define ¥ = {f3,, 5,} to be the

m-system of type A; X Ay in A given by:

By = splag) = ag+ 20, By =ay.
Define 3; = o for 1 < j < n, j # p,q and let X' be the set of these ;. Let B
denote the GCM of XU Y = {f; : 1 < i < n}; clearly b;; = a;; for i,j # p. Now,

(Bp, Bi) _ (agia) | (ap, o))
(8;,8;)  (aj, ) +2(Oéjaaj)

, Le., bjp = ajq + 2Cljp
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Since |a,|? = 2]a,|?, we have

By B) _(00r05) 4 (00205) 5yt

(Bps Bp) (g ) 2(ay, o)

Note in particular that since X has type A; x A;, we have by, = by, = 0, i.e., the

double edge between p, g in X has been removed in S(B).

(ii) Now suppose the Dynkin diagram X has a subdiagram of finite type Ga, i.e.,
there are vertices p, ¢ in X joined by a triple bond directed towards p. As above,
choose A to be this subdiagram of type G5 and define ¥ = {f,, 5,} to be the

m-system of type A, in A given by:
By = splay) = ag +3ap, By = ay.

Choose Y as above, to consist of all the simple roots «; of X other than i = p,q.
A similar computation establishes that b;, = a;, + 3a,,, b,; = a,; + a,,; and

bi; = a;; for all other pairs (¢, j). Note in particular that since X is of type As, one
has by, = by, = —1, i.e., the triple edge between p, ¢ in X has now been replaced by

a single edge in S(B).

(iii) Suppose X contains a subdiagram of type Ag), i.e., there are vertices p,q in X
with a,, = —4, a,, = —1 (depicted in the Dynkin diagram by four bonds directed

towards p). We choose ¥ = {f,, 3,} to be the m-system of type Agl) in A given by:
By = splag) = ag + 4oy, By =ay

Reasoning as before, we deduce b;, = ajq +4a;p, by; = aq; + a,; and b;; = a;; for all
other pairs (i, 7). Here, since 3 has type Agl), the quadruple edge from ¢ to p has

been replaced by a two-way double edge.
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3.2 Non-Maximal Hyperbolic Diagrams

In Tables 3.1-3.10, we have listed the 142 symmetrizable hyperbolic Dynkin
diagrams in ranks 3-10. We will denote by 'y the hyperbolic Dynkin diagram
occurring with serial number k in these tables. These diagrams are taken from
Tables 1-23 of [2] which contain the full list of 238 hyperbolic diagrams without
the assumption of symmetrizability. The diagram I'y occurs as item number k in
Tables 1-23 of [2]. Since we only consider the 142 symmetrizable hyperbolic
diagrams rather than all 238 of them, there are “gaps” in the serial numbers that

occur in our tables.

The entries in our tables contain the following information: for each serial number
k, the second column is the corresponding Dynkin diagram, the third column is
another serial number, say ¢ such that I'y < I'; and the fourth column indicates
the principle(s) used to construct a m-system of type I'y in ;. We note that ¢ is
not unique in general, but since our primary goal is to identify the maximal

diagrams relative to <, we will be content with finding one value of ¢.

The diagrams I'y, for which we are unable to find a suitable ¢ using any of our
principles are candidates for maximal elements. We show in §3.4 that each of these
diagrams is indeed maximal. The entries corresponding to these diagrams are
indicated by ‘Max’ in the third column while the fourth column contains the value

of the determinant of the GCM of the diagram.

In this section we give a few examples to illustrate the Principles A-E developed in
the previous section. The other entries of the table may be verified by similar

arguments.

Principle A: Taking X =159 and Y = Ff) in principle A, we obtain a 7-system
of type I'yp7 in ['g19. Similarly, choosing X =T'159 and Y = Ggl), we obtain

50 = T'iso.
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Principle B: Let X =159, Y = Ggl) and «, be the long simple root of G.
Applying principle B allows us to construct a m-system of type ['1o9 in ['j59.
Similarly, taking X = I'y49, Y to be the twisted affine diagram Dflg) and «,, to be

the short simple root of (G5, we conclude that I'139 < I'160.

Principle C: Principle C' allows us to shrink diagrams in a specified manner. For

instance, one readily obtains from this principle that: I'gos < I'gog < I'a37 < I'agg.

Principle D: Typically the deletion principle D is used in conjunction with one of
the other principles. For instance, first applying principle B to X = I'43, Y = D§2)
and p = 0 (i.e., the affine simple root of Y') one obtains the rank 4 diagram

obtained from I';43 by replacing its single edge by the two-way double edge <.

Now applying principle D to delete the node at the other end gives us I'ygg.

Principle E: This principle only applies when the ambient diagram has a double,
triple or quadruple edge. For example, an application of this principle shows there

exists a m-system of type ['y9g in I'9;3 and one of type ['1g1 in ['ig9.

We close this subsection with the example of I'y93 > I'915 which requires a

sequential application of the three principles B,C and E:
B c E
- @ - \Qy - @

3.2.1 The exceptions : principle (*)

As mentioned above, for each non-maximal diagram I'j, Principles A-E can
typically be used to exhibit a diagram I'y such that I'y, < I',. However, there are
four non-maximal diagrams which are not directly amenable to any of these

principles. We give below special constructions in these cases.
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(i) T'91 X I'157: Consider the Dynkin diagram I'y57:
Qg

(651 (67) (0%

The m-system ¥ = {1 + ag, a3, a1 + as + 2ay} is of type T'g;.

(ii) I'158 = T'191: Consider the Dynkin diagram I'jg;:
Q5

a; Qg Q3 Oy

The m-system ¥ = {ay, a1 + 29, a5 + s + as, au } is of type I'iss.
(iii) 179 = T'160: Consider the Dynkin diagram I'jg0:

O——O0—O&=0
Q1 Qg Q3 Oy

The m-system ¥ = {a; + s + a3, aq, a4 + 3ag, as} is of type I'iro.

(iv) T'914 = I'y15: Consider the Dynkin diagram T'g1s:

o X—0O——0
;. Qg G3 Q04 OG5 Op

The m-system ¥ = {a1, as, as + 204 + 23, ag, a5, g} is of type [oyy.

3.3 Non-existence of m-systems

In this section, we give a few simple criteria that can be used to demonstrate the

non-existence of m-systems of certain types in an ambient Lie algebra.
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The following is an immediate corollary of the discussion of §2.1.3, together with
the fact that a real root is Weyl conjugate to some simple root, and therefore has

the same length.

Lemma 3.3.1. (Root length criterion) Let A, B be indecomposable symmetrizable
GCMs such that B < A. For each pair of simple roots of B, the ratio of their
lengths equals that of some pair of simple roots of A (with respect to any choices of

standard invariant forms on g(A) and g(B)).

For instance, this implies that there doesn’t exist a m-system of type G5 in any

other finite type GCM.

The next result follows directly from lemma 3.0.1, proposition 3.0.2 and the fact
that hyperbolic GCMs have strictly negative determinant. It has been extracted

here as a separate statement on account of its wider applicability.

Lemma 3.3.2. (Determinant criterion) Let A, B be symmetrizable hyperbolic
GCMs of the same size. If B < A and B # A (up to simultaneous reordering of

rows and columns), then det B = kdet A for some k > 2.

Let X be the Dynkin diagram of a symmetrizable Kac-Moody algebra and let W
denote its Weyl group. We define X4 to be the subdiagram formed by the

simple roots of shortest length, i.e,
Xehort = {p € X 1 |ap| = min |oy|}
i€X

Similarly Xjong is the subdiagram formed by the simple roots of longest length. We
also let

Agﬁort(X) = {Oé € ATE(X) : ‘Oél = IZIEH)? |Oézl} =W- Xshort

and AT¢ (X) =W-. Xlong'

long
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We say X is doubly-laced if X contains only single or double edges (with arrows)
and triply-laced if it contains only single and triple edges (with arrows). The next

lemma is a direct consequence of these definitions.

Lemma 3.3.3. Let X be a doubly- or triply-laced Dynkin diagram (we set d =2 in

the former case, d = 3 in the latter). Then:

1. d| (o), ;) for all i € Xehorts J € X\ Xshont-

2. d| (o), a;) for all i € Xiong, j € X\ Xiong-

Now consider m-systems X in X such that 3 C AL or X C Af5 .. We seek to
understand the possible types of such . The proposition of the next subsection is
the important result that will enable us to answer this question. This proposition

is vastly more general and can be applied to a wide variety of settings.

Proposition 3.3.4. Let X be the Dynkin diagram of a symmetrizable Kac-Moody

algebra, Y a subdiagram of X and d > 2 an integer. Suppose that either:

(3.3.1) d](aj,a;) foralli€Y, je X\Y, or

(3.3.2) d| (e ;) forallieY, je X\Y.

Let ¥ = {B;: 1 <i < m} be a multiset with 5; € W - A™(Y'). Then, there exists a

multiset ¥ = {3; : 1 <1i < m} with B, € A™(Y) such that

M(X)=M(E) (mod d)

PROOF: Let s; denote the simple reflection corresponding to the vertex ¢ € X and
let W(Y") be the (standard parabolic) subgroup of W generated by the
{s; : 1 € Y}. The given hypothesis implies by [15, Prop 3.13] that for each

ieY,jeX\Y, (s;s;)™ =1 where m;; = 2,4,6 or co. Since these are even (or
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00), it follows that the map W — W(Y') defined on the generators by:

S; 1eY
S;

1 ieX\Y

extends to a group homomorphism. We denote it w — w.

Let Q(X), @Y(X) denote the root and coroot lattices of X. We define sublattices

R, RY as follows. If (3.3.1) holds, then R :=dQ(X), and
R :=dQ"(Y)®Q'(X\Y) =P Z(da)) & P Zo)
i€y ey

If (3.3.2) holds, then

R:=dQY)®Q(X\Y) and RY=dQ"(X)

The given hypotheses readily imply that R and RY are W-invariant. We now make
the following important observation:
(3.3.3)

Given (w, ) € W x A™(Y), we have wa € wa + R and w(a") € w(a’) + RY
It is enough to prove this on the generators w = s, of W. This is obvious when
k €Y and follows from equations (3.3.1), (3.3.2) when k£ € X\Y.

Now, given g € W - A™(Y), say 8 = o« for some (0,a) € W x A™(Y), we define
B := a. This is a real root of Y, and in view of (3.3.3) above, the association
B+ (3 is well-defined modulo R. Further, if ¥ = 7@’ is another root in the WW-orbit
of A™(Y"), then

(3.3.4) (B . 7)=(5a"), 7a' ) = (o(a), 7/} (mod d)
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The congruence modulo d in this equation is an easy consequence of

equation (3.3.3), together with the observations that

(Q'(X), R)
(RY, QX))

(RY,Q(Y))=0 (mod d) if equation (3.3.1) holds.

(Q'(Y), R)

0 (mod d) if equation (3.3.2) holds.

Finally, if ¥ = {f; : 1 <i < m} is a multi-subset of W - A™(Y), define
¥ ={B,:1<1i<m}. Equation (3.3.4) now implies M (X) = M(¥) (mod d) as

required. O

We obtain several useful corollaries.

Corollary 3.3.5. Let X be a doubly-laced Dynkin diagram. Suppose that Xgport
(respectively Xiong) is of type Ay, i.e., is a single vertex, then there is no mw-system

of type Ay in X contained wholly in A (X) (respectively Afs, (X)).

Corollary 3.3.6. Let X be a doubly-laced Dynkin diagram. Suppose that Xgport
(respectively Xiong) is of type As, then there is no m-system of type Ay x Ay in X

contained wholly in A% (X) (respectively AS (X)).

Corollary 3.3.7. Let X be a triply-laced Dynkin diagram. Suppose that Xgnort
(respectively Xiong) is of type Ay, then there is no w-system of type Ay x Ay in X

contained wholly in A%, (X) (respectively Ajs (X)).

We indicate how to prove Corollary 3.3.6, the others being similar. Lemma 3.3.3
allows us to apply Proposition 3.3.4 with Y = Xt (0r Xiong) and d = 2. The set
of shortest (or longest) real roots of X is nothing but W - A™(Y"). Given any
m-system (in fact any multiset of real roots) 3 of X contained wholly in the Weyl
group orbit of A™(Y'), we obtain the multisubset ¥ of A™(Y") such that M (X)

coincides with M (X) modulo d = 2. For Y of type Aj, it only remains to verify

152



that no such multisubset exists if we take M (X) to be the GCM of type Ay x A,

i.e., the matrix

2 -1 0
M=|-1 2 0
0 0 2

So let ¥ = {f3,, B5, B3} be such that M(X) is congruent to M mod 2. We observe
that the root system of type A; has the property that given two (real) roots «, 3,
we have (¥, ) is even iff § = +a. Since the third row and column of M is zero
mod 2, we conclude that 5, and 3, must both be of the form 4/3,. But this would

imply (3Y, B2) is also even, which is a contradiction. H

The following two lemmas are more restrictive in scope, in that they only apply
when the ambient Lie algebra is of finite, affine or (symmetrizable) hyperbolic

type, and only to the case of shortest roots.

Lemma 3.3.8. Suppose X is a triply-laced Dynkin diagram of finite, affine or
hyperbolic type. Suppose Xqnort 1S of type A1, then there is no mw-system of type As

in X contained wholly in AL (X).

Proof. Let p denote the vertex of X such that X, = {p}. We normalize the
standard invariant form on X such that |a,|* = glél)l(l la;]* = 1. Since X is
triply-laced, |a;|? is a nonzero power of 3 for all j # p. Now suppose ¥ = {f31, B2}
is a m-system of type Ay in X such that ¥ C A (X) = Wa, (the Weyl group
orbit of «,). Applying an element of W if necessary, we can assume 5 = «,. By
the arguments used in the proof of Proposition 3.3.4, specifically equation (3.3.3),
we obtain:

BQZZEOCP_'_W/

for some v € R, where R = Z (3c,) ® @, Za;. Thus

J#p

(B2, BY) = :l:<ap7a;,/> + (%ap c+2+3Z
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since (aj,ay) =0 or =3 for all j # p. Now ¥ has type Ay, so (B2, 8)) = —1. We

must have 3, = o, + 7, with (y,a,) = —3. We compute:
1Bol? = lap | + [7[* + 2 (ap | ) = lap|* + [V + (7,0 )

since |a,|* = 1. Since S5 is W-conjugate to a, their norms coincide, and we obtain

7]? = —(7,q) ) = 3. We write

’Y:?)k'pOép—FijOéj

J#p
where the k, are integers. We observe that 3k’|’ oy ” =k, e Z. For j#p,
% — kiloil ¢ 7 gince 3 divides |oj|?. Since X is of finite, affine or hyperbolic

type, we use equation (3.0.1) to conclude that v is a real root of X. But

v = By — By, which contradicts the fact that X is a w-system . n

Lemma 3.3.9. Suppose X is a doubly-laced Dynkin diagram of finite, affine or
hyperbolic type. Suppose Xgnore @5 of type Ao, then there is no m-system of type

Ay x Ay in X contained wholly in AL (X).

Proof. Let Xgort = {p, ¢} and let {f1, f2} be two elements in the W-orbit of
{ayp, a,} which form a m-system of type A; x A;. Applying an element of W and
interchanging p, ¢ if necessary, we can assume 3; = a,. By the arguments used in

the proof of Proposition 3.3.4, we obtain:

fo=a+7

for some @ € A™(Xgport) and v € R where R = 2 Q(Xghort) D Q(X\ Xshort). We

have

0= (B, 8) =(a,op )+ (7.05) € (@, ) +2Z
As in the proof of Corollary 3.3.6, we note that (a, ay ) is even iff o = +a,. Since

154



ap = —a, (mod R), we may assume 3, = o, +7. We conclude (v, ) ) = —2.
Normalizing the standard invariant form such that |a,|? = |o,|* = 1, we compute:

Ba]* = |apl® + [7|* + (7, @) ). As before, this implies |v]* = —(~,a; ) = 2. Letting:

v =2k, oy + 2kg g + Z kjaj

J#p.q

< 2kplapl? o\ 2kglagl? oy kjlogl? kjlag)?
we obtain: (i) Tvtlép =k, € Z, (ii) m;q =k, € Z, and (iii) =5 ez
for each j # p, ¢, since in this case |a;|? is a nonzero power of 2. Equation (3.0.1)

implies 7 is a real root of X, contradicting the fact that {51, f2} was a m-system to

begin with. O

3.3.1 Remark

We note that both the above lemmas do not hold if ‘short’ is replaced by ‘long’.

For example:

1. If X = Gy, then Xy is of type A;. But the set of all long roots forms a
closed subroot system isomorphic to As; a m-system of type As in Go
consisting entirely of long roots is {ay, a; + 3an} where ay, g are

respectively the long and short simple roots of Gb.

2. If X = Bs, then Xjone = {p, ¢} (say) is of type A,. Consider
Y ={-0} U{a,, a,} where 6 is the highest root of X. This forms a m-system
consisting entirely of long roots; it has type Asz, and hence contains a

subsystem of type A; x Aj.
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3.4 Maximal Hyperbolic diagrams

In this section, we consider the 22 symmetrizable hyperbolic diagrams 'y which
cannot be exhibited as 7-systems of other diagrams using Principles A-E. Such
diagrams only exist in ranks 3, 4, 6 and 10 and there are 5, 9, 5 and 3 such
diagrams (respectively) in those ranks. We will prove that these are all in fact
maximal diagrams relative to the partial order <. As mentioned in §3.2, the
entries corresponding to these diagrams are labelled ‘Max’ in the third column and

contain the determinant of their GCMs in the fourth.

3.4.1 Rank 10

Since det o33 = —1, it is maximal by the determinant criterion (lemma 3.3.2). The
same lemma shows that ['936 and I'y37 are not < comparable. Both these latter
diagrams have two root lengths, while I'y33 has only one, so the root length
criterion (lemma 3.3.1) shows that neither of them can be < I'y3g. Thus all three

are maximal diagrams of rank 10.

3.4.2 Rank 6

Since I'y15 and I'y19 have determinant —1, they are both maximal among rank 6
diagrams by the determinant criterion. The root length criterion ensures that
neither of these is < I'y35, so to show maximality of these two diagrams, it only
remains to prove that neither of them can be realized as m-systems of I'y36 or I'as7.

But this follows readily from corollary 3.3.5.

Diagrams I'y16 and I'y17 have three root lengths. By the root length criterion they
cannot be realized as m-systems of any of the rank 10 maximal diagrams or of the

other candidate diagrams I'y (k = 215,218,219) in rank 6. Since each of these two
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diagrams have determinant —2, they are mutually incomparable by the

determinant criterion. This establishes maximality of 516 and I'gq7.

Finally to show maximality of I'9;5, we observe that it cannot be realized as a
m-system of: (i) T’y for k = 236,237 by corollary 3.3.5 (ii) I'a35 by the root length
criterion (iii) I'y for k = 216,217 by the determinant criterion (iv) I'y;g by
corollary 3.3.6 (v) I'y19 by lemma 3.3.9.

3.4.3 Rank 4

Since det ['159 = det I'150 = —1, they are maximal amongst rank 4 diagrams. Since
both these diagrams are triply laced, they contain a pair of simple roots «;, ; such
that |a;)?/|a;|* = 3. However none of the maximal diagrams in rank 6 or 10 have
triple edges, so the root length criterion ensures that neither of I'59, ['149 occur as

m-systems of those diagrams. Hence I'159 and I'149 are maximal.

The root length criterion shows that I'y73 is maximal since it contains 4 root
lengths. It also shows that none of the I'y for 166 < k < 170 can be realized as
m-systems of I'159 or ['1g9 or of any of the maximal diagrams of ranks 6 or 10. Since
detI'y, = —2 or —3 for 166 < k < 170, the determinant criterion implies they are

pairwise incomparable. This establishes their maximality.

Finally to show maximality of I';7;, we observe that it cannot be realized as a
m-system of: (i) any of the maximal diagrams of rank 6 or 10, by the root length
criterion (ii) [y for 166 < k < 170, by the determinant criterion (iii) I';60 by

corollary 3.3.7 (iv) I';59 by lemma 3.3.8.
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3.4.4 Rank 3

The determinant criterion ensures that 'y, 117 < k < 121 are pairwise
incomparable. By the root length criterion, these diagrams cannot be realized as

m-systems of any diagram of rank > 4. Thus, they are all maximal.

3.4.5 Remarks

This completes the verification that all 22 candidate diagrams in ranks 3-10 are in

fact maximal. We make the following interesting observation:

I" is a maximal hyperbolic diagram # I'7 is maximal

where I'" is the dual diagram, obtained by reversing all the arrows in I'
(corresponds to taking the transpose of the GCM). Examples (in fact the only

ones) of such diagrams are:

1. I'= F215 is maximal, while FT = F214 j Fglg.

2. 1'= F171 is maximal, while FT = F172 j F160-

We note that the proof of maximality of these two diagrams involves lemmas 3.3.8
and 3.3.9, neither of which holds when “dualized” (as remarked in §3.3.1). In
particular, the above examples show that the operation of taking duals is not an
automorphism of the partial order <, i.e., if A, B are GCMs such that B < A,

then it is not necessarily true that BT < AT,
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Table 3.1: Rank 3 diagrams

159

_No| Dynkin Diagram | — | Principle S. No Dynkin Diagram — | Principle
11 v 140 C 80. @/@ 103 B
25 | o==0—=>0 | 166 C 83 W 113 B
26 C=="=<=0 167 C

84. 114 B
27 | =<0 | 168 C

'i 7 123 E
28 C===0—=>0 169 C 20
CO==C===0

29 170 C o1 - .
30 === 171 C

103 OE=SO—0O 126 B,D
31 C==C=>=0 172 C

104 ===0—0 164 C
32 % 103 B 105| =00 | 165 C
40 v 103 B 106| O<>0=<=O | 163 | B,D

107 OO 162 B,D
49 W 164 | B,C

108 O—=>—C==D 173 C
50 W 165 | B,C 109 O==C===0 173 C



Table 3.2: Rank 3 diagrams (continued)

S.No| Dynkin Diagram | = | Principle S.No | Dynkin Diagam | — | Principle
110, &0<0 |174| 117 | O=<=0=<=0 | Max | det=-6
111 &===0—>=0 | 175 C 118 | O=">==0 | Max | det=-6
112| O<=>C<=>0O |103 B 119 | O==C==0 | Max | det=-6
113| O<>C==>=0O |159| B,C 120 | === | Max | det=-6
114, O<>C==0O |160| B,C 121 | o===>=0 | Max | det=-8
115| (=== |158| D,E 122 | CO====0 | 158 C
116| C==0<=0 | 157 C 123 | &==——==0 | 157 D,E

Table 3.3: Rank 4 diagrams
S. No| Dynkin Diagram j Principle S. No Dynkin Diagram ‘j Principle
124 % 126 B 130 | ¥ e o 160 B
125 O<i>© 126 B 134 E;E 162 B
f )i 135 E;E 163 B
126 177 C
136 E:E 180 C
127 178 C
140 m 171 B
128 A;,:Q 179 C
146 @ 174 B
129 i : 159 B

160




Table 3.4: Rank 4 diagrams (continued)

S.No | DynkinDiagam | — |principle
148 @ 176 B
150 159 A
151 - [ - 160 A
152 191 C
153 189 C
154 190 C
155 g 163 A
156 ﬁ 162 A
157 E 173 E
158 ﬁ 191 *
159 | 0— 00— 0= | Max | det=-1
160 O—O—CO==0 Max det=-1
161 | o—o==0—0] 160 E
162 | o—o»>o<xo| 197 C
163 | 0—O0=<=0=>0| 198 C

161

.No| DynkinDiagam | — | principle
164 O 0020 | 195 C
165 O O0=<=C0=<=0 | 196 C
166| 0 >C | Max | det=-2
167 o=%=0—C=<—0 | Max | det=-2
168 >0 =0 | Max | det=-2
169| —<O0—C==0 | Max | det=-2
170| &==0—"0==0 | Max | det=-3
171 &=>=0—C=<=0 | Max | det=-3
172 &==0—""3C==0 | 160 *
173| OG> 0>0>0 | Max | det=-4
174| C>0=<C=<0 [ 217 | B,D
175| OO0 1516 | B, D
176| 0=>0—<-0=>0 | 214 | B,C,D




Table 3.5: Rank 5 diagrams

S. No| Dynkin Diagram j Principle
177 199 C
178 188 B
179 187 B
180 @ 200 C
181 @ 200 C
184 E 177 A
185 Q—g—o 206 C
186 ©—§—© 205 C
187 o—o—ﬁ—o 209 C

162

S. No Dynkin Diagram '_< Principle
188 O_Q_g_g 210 C
189 o:to—ii@ 212, C
190 o:c:o—i:to 211 C
191 s I S 213 C
192 oj:i—o:co 213 C
194 207 C
195 | 0—O0=>0—0C>0| 217 C
196 | o0—o<x0—0o=x0|216 C
197 | 0—O0=>0—C0=<0|215 C
198 | o—0o=<x0—0o=>0|214 C




Table 3.6: Rank 6 diagrams

A

S.No Dynkin Diagram j Principle S.No Dynkin Diagram Principle

o—o—i—o:to 222| ¢
199 Ci:f:}>——0 - C 210

211 oj:o—i—o:xo 214 E
200 @{::2:::@ 214| B

i 212 e i e 223/ B,C, E

203 221| A,C

213 216 E
204 o 2@42 O O 221 C

214 @ —< O 1 ! :’ O 218 *
205 o %o oy 210) A

2150 —>—0—=O —<—0O | Max| det=-2

206 o0 o2 e | 209 A
216 > O0O—O0—C—=>10—~0 Max| det=-2

207o—i—o:>:o—o 219 A 217 C=X0O0—0O0—C=X0—">0 Max| det=-2

i O—O0—0—C=<0—0|p¥m -
208 518 A 218 ax| det=-1

219 O0—O0—O0—C=>=0—"0| Max| det=-1

209/c - i O=0 | 223 c 2200 —> O|218 E
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Table 3.7: Rank 7 diagrams

A

S. No| Dynkin Diagram j Principle S. No| Dynkin Diagram Principle

221 o—o—ii—o 225 C 223 O—O—g—o—ozco 227 C

Table 3.8: Rank 8 diagrams

S. No Dynkin Diagram j Principle S. No Dynkin Diagram j Principle
225| OO i O i O 1230 C

228 233 C
226 Q—Q—g—o—o—@:ﬁo 231 C

229 Q_Q_dopo oo | 238 B,D
227 O—Q—g—o—o—oxto 232 C

Table 3.9: Rank 9 diagrams

S.No|  DykinDiagam | = |principle S. No Dyrkin Diagam | > |Principle
230 | 5 o EMO 235| C

233 238 B,C

231W236 c
232 237| C

234 W%&%@—o 238 B,D
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Table 3.10: Rank 10 diagrams

S.No Dynkin Diagram j Principle
235 O—O—E—O—O—O—E—O 238 A

236 : Max det=-2
237 o—o—i—@—o—o—o—oxto Max det=-2
238 O—O—O—O—O—O—E—O—O Max det=-1
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Pi-systems of symmetrizable Kac-Moody algebras

Abstract

In this thesis, we undertake a systematic study of w-systems of symmetrizable Kac-
Moody algebras and regular subalgebras of affine Kac-Moody algebras. A m-system X
is a finite subset of the real roots of a Kac-Moody algebra g satisfying the property
that pairwise differences of elements of ¥ are not roots of g.

As part of his classification of regular semisimple subalgebras of semisimple Lie alge-
bras, Dynkin introduced and studied the notion of m-systems. These precisely form
the simple systems of such subalalgebras. We generalize the definition of m-systems
and regular subalgebras and establish their fundamental properties. We show that -
systems, regular subalgebras and closed subroot systems of affine Kac-Moody algebras
are in one-to-one correspondence. We completely classify and give explicit descriptions
of the maximal closed subroot systems (or maximal 7-systems in other words) of affine
Kac-Moody algebras. As an application we describe a procedure to get the classifi-
cation of all regular subalgebras of affine Kac Moody algebras in terms of their root
systems.

We also study the orbits of the Weyl group action on m-systems of symmetrizable Kac-
Moody algebras, showing that for many 7-systems of interest in physics, the action is
transitive. The main results of this thesis are follows:

e We give explicit descriptions of the maximal closed subroot systems of affine root
systems.

e We address the Weyl group action on 7-systems.

e We formulate general principles for constructing w-systems and criteria for the
non-existence of m-systems of certain types and use these to determine the set
of maximal hyperbolic diagrams in ranks 3-10 relative to the partial order of
admitting a m-system.
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In this thesis, we undertake a systematic study of pi-systems of symmetrizable Kac-Moody algebras
and regular subalgebras of affine Kac-Moody algebras. A pi-system is a finite subset of the real roots
of a Kac-Moody algebra satisfying the property that pairwise differences of elements of this subset
are not roots of the Kac-Moody algebras.

As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin
introduced and studied the notion of pi-systems. These precisely form the simple systems of such
subalalgebras. We generalize the definition of pi-systems and regular subalgebras and establish their
fundamental properties. We show that pi-systems, regular subalgebras and closed subroot systems
of affine Kac-Moody algebras are in one-to-one correspondence. We completely classify and give
explicit descriptions of the maximal closed subroot systems (or maximal pi-systems in other words)
of affine Kac-Moody algebras. As an application we describe a procedure to get the classification of
all regular subalgebras of affine Kac Moody algebras in terms of their root systems.

We also study the orbits of the Weyl group action on pi-systems of symmetrizable Kac-Moody
algebras, showing that for many pi-systems of interest in physics, the action is transitive. The main
results of this thesis are follows:

1) We give explicit descriptions of the maximal closed subroot systems of affine root systems.

2) We address the Weyl group action on pi-systems.

3) We formulate general principles for constructing pi-systems and criteria for the non-existence

of pi-systems of certain types and use these to determine the set of maximal hyperbolic
diagrams in ranks 3-10 relative to the partial order of admitting a pi-system.
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