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Summary

Motivated by Halász’s theorem, one would like to find the asymptotic behaviour

of the following so called k-point correlation function.

Mk(x) :=
∑
n≤x

g1(F1(x)) . . . gk(Fk(x))(1)

where gj’s are multiplicative functions with modulus less than or equal to 1 and

Fj(x)’s are polynomials with integer coefficients. We divide this thesis into two

parts.

In the first part of this thesis, by using a work of Warlimont and using a variant

of the Turán-Kubilius inequality, we study the asymptotic behaviour of the k-point

correlation function (1), where gj’s are multiplicative functions with values in the

unit disc and Fj’s are square-free and relatively co-prime polynomials.

The estimation of (1) is used to get information on the behaviour of the distribution

of the sum of additive functions

f1(F1(x)) + . . .+ fk(Fk(x)),

where f1, f2, . . . , fk are real-valued additive functions.

In the final part of this thesis, we study the asymptotic behaviour of the correlation

functions over polynomial ring Fq[x].
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Consider the polynomial ring Fq[x] over a field with q elements. LetMn,q denote the

set of monic polynomials of degree n over Fq, so that |Mn,q| = qn. Let Pn,q be the

set of monic irreducible polynomials of degree n over Fq . Our arithmetical functions

are complex valued functions ψ on the monic polynomials Mq = ∪∞n=1Mn,q.

From a general point of view, Our goal is to find an asymptotic formula for the

following correlations of arithmetical functions ψ1, . . . , ψk on Mq at (h1, . . . , hk) ∈

Fq[x]k,

Sk(n, q) :=
∑

f∈Mn,q

ψ1(f + h1) . . . ψk(f + hk)

and

Rk(n, q) :=
∑

P∈Pn,q

ψ1(P + h1) . . . ψk(P + hk)

when the parameter qn = |Mn,q| is large (and n > deg(hi) for all i to avoid technical

difficulties). This parameter can be large, in particular, either when n→∞, which

we call the large degree limit, or when q → ∞, which we call the large finite field

limit.

In this thesis, by using Selberg sieve and Turán-Kubilius inequality over function

fields, we study the asymptotic behaviour of the correlation functions S2(n, q) and

R2(n, q) in the large degree limit. As an application, we prove a truncated variant

of Chowla’s conjecture over function field in large degree limit.
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Notations

• N Set of all natural numbers.

• Z Set of all integers.

• R Set of all real numbers.

• C Set of all complex numbers.

• ℘ Set of all prime numbers.

• π(x) = #{p ∈ ℘ : p ≤ x}.

• U = {z ∈ C : |z| = 1}.

• For x ∈ R, we write e(x) := e2πix.

• <(s) Real part of the complex number s.

• ∈ Belongs to.

• 3 Such that.

• 6∈ Does not belong to.

• ∃ There exists.

• [, ] Least common multiple.

• (, ) Greatest common divisor.
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• f |g f divides g.

• f - g f does not divide g.

• pm‖n pm|n but pm+1 - n.

• dxe The least integer greater than or equal to x.

• =⇒ Implies.

• card(A) or #A or |A| Cardinality of a set A.

• Fq Field with q elements.

• F∗q Group of units in Fq.

• Fq[x] Set of all polynomials over Fq.

• f ∗ g Convolution of functions f and g.

• deg(f) Degree of the polynomial f .

• Mn,q Set of all monic polynomials of degree n over Fq.

• M≤n,q Set of all monic polynomials of degree ≤ n over Fq.

• Pn,q Set of all monic irreducible polynomials of degree n over Fq.

• Mq :=
⋃∞
n=1Mn,q and Pq :=

⋃∞
n=1Pn,q.

• |f | Norm of the polynomial f , where f ∈ Fq[x].

• πA(n) = #Pn,q, where A := Fq[x].

• f(x) = o(g(x)) if and only if limx→∞
f(x)
g(x)

= 0.

• f(x) ∼ g(x) if f(x)
g(x)
− 1 = o(1).

• f(x) = O(g(x)) or f � g Means that there exists an absolute constant

C > 0 and some large xo ∈ R such that |f(x)| ≤ C|g(x)| for all x ≥ xo.

22



Chapter 1

Introduction

1.1 Background of multiplicative number theory

The set of positive integers N is a semigroup under both addition and multiplication.

The interaction between these two operations create many difficult problems in

analytic number theory.

A function f : N → C is said to be multiplicative if f(mn) = f(m)f(n) whenever

(m,n) = 1. Such functions are completely determined by their values at prime pow-

ers. One of the classical objective of analytic number theory is understanding mean

value of multiplicative functions. Determining the mean values of multiplicative

functions is of considerable importance due to several applications to fundamental

problems.

1.1.1 The distribution of primes

Many of the oldest problems in number theory concern the distribution of prime

numbers. The prime number theorem (PNT) counts the number of primes less than

or equal to a given positive integer. This was first conjectured in the late 18th
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century by Gauss and Legendre, and proven independently by Hadamard and de la

Vallée-Poussin in 1896.

Theorem 1.1.1 (Prime Number Theorem). Let x ≥ 2 and π(x) denote the number

of primes p ≤ x. Then there is a constant c > 0 such that

π(x) =

∫ x

2

dt

log t
+O

(
xe−c

√
log x
)
.

Riemann’s approach to prime number theorem (PNT) was based upon considering

what is now called Riemann zeta-function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, <(s) > 1.

One can extend ζ analytically to the whole complex plane except for a simple pole

at s = 1. The prime number theorem is a consequence of zero free region to the left

of line <(s) = 1.

It was believed that any proof of the prime number theorem must use the theory

of complex variables until Erdös [12] and Selberg [30] independently discovered an

elementary proof in 1949.

One way to proceed to prove the prime number theorem is via the identity

1

ζ(s)
=
∏
p

(
1− 1

ps

)
=
∑
n≥1

µ(n)

ns
, <(s) > 1,

where µ is the Möbius function. It turns out that absence of zeros of ζ(s) on the line

<(s) = 1 and thus the prime number theorem in the form π(x) ∼ x
log x

, x→∞ is

easily seen to be equivalent to

∑
n≤x

µ(n) = o(x), x→∞.
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Landau proved the following in his thesis which demonstrates a concrete link between

the theory of multiplicative functions and the theory of primes.

Theorem 1.1.2 (Landau). The PNT is equivalent to the statement that

∑
n≤x

µ(n) = o(x).

The Möbius function is a particular example of multiplicative function. So given a

multiplicative function f such that |f(n)| ≤ 1 for all n ∈ N, it is natural to ask that

under which condition the mean value

Mf (x) :=
1

x

∑
n≤x

f(n)

is large, namely Mf (x) � 1 for all x. There are some obvious examples, such as

f(n) = 1. For f(n) = nit,

Mf (x) :=
1

x

∑
n≤x

nit ∼
xit

1 + it
.

Thus limx→∞ |Mf (x)| exists but limx→∞Mf (x) does not. Motivated by this, we will

discuss about the mean value of multiplicative functions in the following section.

1.1.2 Mean value of multiplicative functions

Definition 1.1.1. Let f : N → U be a multiplicative function, and let x > 1 be a

real number. Recall that

Mf (x) :=
1

x

∑
n≤x

f(n).

The mean value of f is defined as Mf := limx→∞Mf (x), should this limit exists.
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The basic heuristic suggests that when x→∞, we have

Mf (x)→Mf

where

Mf :=
∏
p≥2

(
1− 1

p

)(∑
k≥0

f(pk)

pk

)
.

Erdös and Wintner conjectured this to be true when f : N → [−1, 1]. In 1967,

Wirsing [42] settled this conjecture. As a consequence, Wirsing’s theorem implies

prime number theorem in a non quantitative form.

Definition 1.1.2. An arithmetic function f : N→ U is said to be close to 1 if

∑
p

1− f(p)

p
<∞.(1.1)

Following Granville and Soundararajan [14], we define the “distance” between two

multiplicative functions f, g : N→ U

D(f, g; y;x) :=

( ∑
y<p≤x

1−<(f(p)g(p))

p

)1/2

where U = {z ∈ C : |z| ≤ 1}. We would also use D(f, g;x) := D(f, g; 1;x). We

remark that, D(f, f ;∞) = 0 if and only if |f(p)| = 1 for all prime p ≥ 2. The

importance of this “distance” is that it satisfies the triangle inequality

D(f, g; y;x) + D(g, h; y;x) ≥ D(f, h; y;x)

for any multiplicative functions f, g, h : N→ U.

Definition 1.1.3. Let f, g : N → U be multiplicative functions. The function f

pretends to be g if D(f, g;∞) <∞ .
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Note that, if f is close to 1 then f pretends to be 1. In this way, Wirsing’s theorem

says that the mean value of real valued multiplicative function f is zero unless f

“pretends” to be 1. Wirsing’s theorem was generalized by Halász [16] in the following

way.

Theorem 1.1.3 (Halász, 1971). Let f : N→ U be multiplicative. Then

∑
n≤x

f(n) = o(x)

unless there exist t ∈ R such that D(f, nit,∞) < ∞ in which case, as x → ∞ we

have

Mf (x) =
xit

1 + it

∏
p≤x

(
1− 1

p

)(∑
k≥0

f(pk)p−kit

pk

)
+ o(1).

The quantitative improvements of Halász’s and Wirsing’s theorem have been ob-

tained by several authors (for example [14]).

1.2 Correlation of multiplicative functions

The theme of the above discussion in Section 1.1 was the estimation of mean value

of a multiplicative function f satisfies various mild constraints. A further natural

question in the same vein concerns simultaneous values of f along an interval [1, x].

Motivated by Halász’s theorem, one would like to find the asymptotic behaviour of

the following so called k-point correlation function:

Mk(x) :=
1

x

∑
n≤x

g1(F1(x)) . . . gk(Fk(x))(1.2)

where gj’s are multiplicative functions with modulus less than or equal to 1 and

Fj(x)’s are polynomials with integer coefficients.

The k-point correlation problem is natural and significant. Let λ be the Liouville
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function and hj’s are distinct non-negative integers. In particular, if gj = λ and

Fj(x) = x+ hj, j = 1, 2, . . . , k ≥ 2 then we have the following famous conjecture of

Chowla.

Conjecture 1.2.1 (Chowla, [4]). For any distinct natural number h1, . . . , hk, one

has ∑
n≤x

λ(n+ h1) . . . λ(n+ hk) = o(x) as x→∞.

As a particular case of Chowla conjecture one expects that

∑
n≤x

λ(n)λ(n+ 1) = o(x) as x→∞.(1.3)

Twin prime conjecture states that there are infinitely many primes p such that p+2

is also prime. Hildebrand [17] writes that “ It is possible that (1.3) lies as deep as the

the twin prime conjecture, for it amounts to resolving, the ‘parity problem’ in sieve

theory, which constitutes the main obstacle to proving the twin prime conjecture by

sieve methods ([13], [19]) ”.

In the same paper [17], Hildebrand also writes that “ One would naturally expect

the above conjecture (1.3), but even the much weaker relation

lim inf
x→∞

1

x

∑
n≤x

λ(n)λ(n+ 1) < 1

is not known and seems to be beyond reach of the present methods ”. Recently,

Matomäki and Radziwill [24] settle this conjecture in a stronger form.

Theorem 1.2.1 (Matomäki and Radziwill, 2015). For every integer h ≥ 1, there

exists δ(h) > 0 such that

1

x

∣∣∣∣∑
n≤x

λ(n)λ(n+ h)

∣∣∣∣ ≤ 1− δ(h)
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for large enough x > 1. In fact the same results holds for any completely multiplica-

tive function f : N→ [−1, 1] such that f(n) < 0 for some n > 0.

On the basis of this work of Matomäki and Radziwill [24], Tao [38] established the

following logarithmically averaged version of Chowla conjecture.

Theorem 1.2.2 (Tao, 2016). Let a1, a2 be natural numbers, and let b1, b2 be integers

such that a1b2 − a2b1 6= 0. Let 1 ≤ w(x) ≤ x be a quantity depending on x that goes

to infinity as x→∞. Then one has

∑
x/w(x)<n≤x

λ(a1n+ b1)λ(a2n+ b2)

n
= o(logw(x))

as n→∞.

Chowlas conjecture remains open for any h1, . . . , hk with k ≥ 2, although there are

a number of partial results available. See [24], [26], [25], [37], [38] for some recent

results in this direction.

In [20], Kátai studied the asymptotic behaviour of the sum (1.2) when Fj(x)’s are

special polynomials and some assumptions on gj’s but did not provide any error

term. In [36], Stepanauskas studied the asymptotic formula for sum (1.2) with

explicit error term when Fj(x)’s are linear polynomials and gj’s are close to 1 (see

(1.1)). Recently, Klurman [21] studied the 2-point correlation function. In the

following section we study 3-point correlation function.

1.2.1 Triple correlation of multiplicative functions

From now onwards, let F (n);F1(n), F2(n), F3(n) be positive integer-valued polyno-

mials with integer coefficients and these are not divisible by the square of any irre-

ducible polynomial. Also suppose that Fj(n), Fk(n) are relatively prime for j 6= k

and for all n. Let v and vj denote the degree of the polynomials F (n) and Fj(n)
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respectively.

Let %(d1, d2, d3) be the number of solutions of the congruence system

Fj(n) ≡ 0 (mod dj) j = 1, 2, 3.

Let %(d) and %j(d) denote the number of solutions of the congruences

F (n) ≡ 0 (mod d) and Fj(n) ≡ 0 (mod d)

respectively.

Suppose gj : N→ U and hj : N→ C be multiplication functions such that hj = µ∗gj,

j = 1, 2, 3. For x ≥ r ≥ 2, We also define

P (x) :=
∏
p≤x

wp and P (r, x) :=
∏
r<p≤x

wp(1.4)

where

wp :=
∞∑

m1=0

∞∑
m2=0

∞∑
m3=0

h1(pm1)h2(pm2)h3(pm3)

[pm1 , pm2 , pm3 ]
%(pm1 , pm2 , pm3)

In [6], we find an asymptotic formula for M3(x) with explicit error term which is

stated as follows.

Theorem 1.2.3. Let Fj(x), j = 1, 2, 3 be polynomials as above of degree vj ≥ 2.

Let g1, g2 and g3 be multiplicative functions close to 1 and whose modulus does not

exceed 1. Then there exists a positive absolute constant c and a natural number γ

depending on polynomials F1(x), F2(x) and F3(x) such that for all x ≥ r ≥ γ and

for all 1− 1
v1+v2+v3

< α < 1, we have

x−1M3(x)− P (x)� 1

x
(F1(x)F2(x)F3(x))1−α exp

(
crα

log r

)
+ (r log r)−

1
2

+
3∑
j=1

(D(gj, 1; r;x) + D(gj, 1;x;Fj(x))) +
1

x
C(r, x) +

1

log x
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where P (x) is defined by (1.4) and

C(r, x) =
3∑
j=1

vj−1∑
m=1

∑
pm≤Fj(x)

p>r

|gj(pm)− 1|%j(pm).

Remark 1.2.1. Theorem 1.2.3 can be extended for Mk(x), k ≥ 4. We have replaced

the notations S1(r, x) and T (x) in the article [6] by “distance” functions.

Remark 1.2.2. For any γ ≥ 2, let Dγ denote the set of those tuples {d1, d2, d3}

of natural numbers for which all the prime factors of di do not exceed γ. Since the

congruence system

F1(n) ≡ 0 (mod a), F2(n) ≡ 0 (mod a), F3(n) ≡ 0 (mod a)

have common solution for finitely many values of a (See [39], Lemma 2.1) then we

can choose γ so that %(d1, d2, d3) = 0 if {d1, d2, d3} 6∈ Dγ and
(∏

p>γ p,
∏

i 6=j(di, dj)
)
>

1. Therefore we have

P (x) = P1(γ)P2(γ, x)

where

P1(γ) =
∏
p≤γ

wp and P2(γ, x) =
∏

γ<p≤x

(
1 +

3∑
j=1

∞∑
m=1

hj(p
m)

pm
%j(p

m)

)
.(1.5)

For example, consider the linear polynomials F1(x) = x, F2(x) = x+2, F3(x) = x+4.

We see that the above congruence system have a common solution (mod 2) only.

In this case γ = 2. We observe that γ should depend on the polynomials.

Remark 1.2.3. The Theorem 1.2.3 is true for all x ≥ r ≥ γ but to get a good error

term we will chose r = (log x)
1
α , where α is defined as in Theorem 1.2.3.

Corollary 1.2.1 is a polynomial version with the degree of the polynomial greater

than or equal to 2, of a theorem of Kátai ([20], Theorem 5).
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Corollary 1.2.1. Let Fj(n) and gj(j = 1, 2, 3) be as in Theorem 1.2.3.

∑
p

(gj(p)− 1)%j(p)

p
<∞.

Suppose that

(gj(p
α)− 1) %j(p

α)→ 0, as p→∞

for α = 1, when vj ≥ 2 and for α = 1, 2, · · · , vj − 2, when vj ≥ 3, then there exist a

natural number γ depending on polynomials F1, F2 and F3 such that we have

Mx(g1, g2, g3)→ P1(γ)P2(γ), as x→∞

where P1(γ) is defined by (1.5) and

P2(γ) :=
∏
p>γ

(
1 +

∞∑
m=1

3∑
j=1

hj(p
m)%j(p

m)

pm

)
, hj = µ ∗ gj.(1.6)

As an application of the Theorem 1.2.3, we get the following corollary.

Corollary 1.2.2. Let φ(n) = n
∏

p|n

(
1− 1

p

)
, be Euler’s totient function and σ(n) =∑

d|n d. Let F1(x) = x2 + a1, F2(x) = x2 + a2, F3(x) = x2 + a3, 0 < t < 1, where

a1, a2, a3 are taken such that Fj(x), j = 1, 2, 3 satisfies the assumption of Theorem

1.2.3. Then there exist a natural number γ depending on a1, a2 and a3 such that for

all x ≥ γ,

1

x

∑
n≤x

φ(n2 + a1)φ(n2 + a2)φ(n2 + a3)

σ(n2 + a1)σ(n2 + a2)σ(n2 + a3)
= P ′1(γ)

∏
p>γ

w′p +O

(
1

(log x)t

)
,

1

x

∑
n≤x

φ(n2 + a1)φ(n2 + a2)φ(n2 + a3)

(n2 + a1)(n2 + a2)(n2 + a3)
= P ′′1 (γ)

∏
p>γ

w′′p +O

(
1

(log x)t

)
,
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where

w′p =

(
1−

3∑
j=1

(
aj
p

)
%j(p)

p2
+

(
1− 1

p

)2 3∑
j=1

∞∑
m=1

(
aj
p

)
%j(p)

1 + p+ · · ·+ pm

)
,

w′′p =

(
1−

3∑
j=1

(
aj
p

)
%j(p)

p2

)
,

(
aj
p

)
is the Legendre symbol of aj and p,

P ′1(γ) and P ′′2 (γ) are defined by (1.5) in which gj(n), j = 1, 2, 3 are replaced by

φ(n)/σ(n) and φ(n)/n respectively.

In [6], we also studied the mean value of the following triple correlation functions

with various assumption on gj’s:

Mx(g1, g2, g3) :=
1

x

∑
n≤x

g1(n+ 2)g2(n+ 1)g3(n).(1.7)

Definition 1.2.1. A multiplicative function g is called good function if there exists

κ ∈ C such that for each u > 0

∑
p≤x

|g(p)− κ| � x

(log x)u
.

We also define for τ ∈ R and r ≥ 1

θτ (n) =
∏
p|n

(
1 +

∞∑
m=1

g3(pm)

pm(1+iτ)

)−1

, Mx(g3) :=
1

x

∑
n≤x

g3(n)

Qτ (r) =
∏
p≤r

(
1− 2θτ (p)

p− 1
+ θτ (p)

∞∑
m=1

g1(pm) + g2(pm)

pm

)
,

P3(r, x) =
∏
r<p≤x

(
1− 2

p
+

(
1− 1

p

) ∞∑
m=1

g1(pm) + g2(pm)

pm

)
.

The following theorem gives an asymptotic formula with explicit error term of the

sum (1.7) when g1, g2 are close to 1 (see definition 1.1) and g3 is a good function

(see definition 1.2.1).
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Theorem 1.2.4. Let g1, g2 and g3 be multiplicative functions whose modulus does

not exceed 1 and g3 be a good function. Assume further that there exist a positive

constant c1 such that

∣∣∣∣1 +
∞∑
k=1

g3(2k)

2k(1+iξ)

∣∣∣∣ ≥ c1

for ξ = 0, if g3 is real valued and for all ξ ∈ R, if g3 is not real valued. Then there

exist positive absolute constants c, c′ and a real τ, |τ | ≤ (log x)1/19, such that for all

x ≥ r ≥ 2 and for all 1
2
< α < 5

9
, we have

Mx(g1, g2, g3)−Mx(g3)P3(r, x)Qτ (r)� x1−2α exp

(
c
rα

log r

)
+

(log r)c

(log x)c
′

+
exp (c(log log r)2)

(log x)1/19
+

2∑
j=1

D(gj, 1; r;x− 4 + j) + (r log r)−
1
2 .

For real-valued g3, we may set τ = 0 in the expression of Qτ (r).

The following theorem tells us that if g3 is Möbius function then under certain

hypothesis on g1, g2, the mean value of triple correlation function (1.7) is zero.

Theorem 1.2.5. Let g1 and g2 be multiplicative functions which does not exceed 1

and

∑
p

2∑
j=1

|gj(p)− 1|2

p
<∞.

Then as x→∞,

Mx(g1, g2, µ) =
1

x

∑
n≤x

g1(n+ 2)g2(n+ 1)µ(n) = o(1).

Assumption 1.2.6. For every given A > 0,

∑
n≤x

µ(n+ 1)µ(n) exp(2πinα) = O

(
x

(log x)A

)
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holds uniformly for all real α and implied constant depends only on A.

Theorem 1.2.7. Let g1 be a multiplicative function such that |g1(n)| ≤ 1 for all n

and

∑
p

|g1(p)− 1|2

p
<∞.

Suppose that Assumption 1.2.6 holds. Then as x→∞,

Mx(g1, µ, µ) =
1

x

∑
n≤x

g1(n+ 2)µ(n+ 1)µ(n) = o(1).

The following corollary is a direct application of the Theorem 1.2.5.

Corollary 1.2.3. If φ, µ and σ are as above then as x→∞, we have

∑
n≤x

φ(n+ 2)

(n+ 2)

φ(n+ 1)

(n+ 1)
µ(n) = o(x),

∑
n≤x

φ(n+ 2)

σ(n+ 2)

φ(n+ 1)

σ(n+ 1)
µ(n) = o(x).

1.3 Probabilistic number theory

Let ΩN := {n : 1 ≤ n ≤ N} be equipped with the probability measure νN on ΩN

obtained by assigning the uniform probability 1/N to each element. An arithmetic

function may be viewed as a sequence of random variable

fN = (f, νN) (N = 1, 2, . . .)

taking the values f(n), 1 ≤ n ≤ N , with probability 1/N .

From classical probability theory we recall that a distribution function is a non-

decreasing function F : R→ [0, 1], which is right-continuous and satisfies F (−∞) =
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0, F (+∞) = 1. Therefore F has only countably many jump discontinuities.

The set D(F ) of points of discontinuities of F is thus at most countable and only

contains jump discontinuities. We denote by C(F ) the complement of D(F ).

A sequence {Fn}∞n=1 of distribution functions is said to converge weakly to a function

F if we have

lim
n→∞

Fn(z) = F (z) (z ∈ C(F )).

1.3.1 Limiting distributions of arithmetic functions

Let us consider a real valued arithmetic function f . For each N ≥ 1 the function

FN(z) := νN{n : f(n) ≤ z} =
1

N
|{n ≤ N : f(n) ≤ z}|(1.8)

is a distribution function.

Definition 1.3.1. A real arithmetical function f is said to possess a (limiting)

distribution function F (or is said to have a limit law with distribution function F )

if the sequences FN defined by (1.8) converges weakly to a distribution function F .

In the probabilistic study of an arithmetic function, a natural normalization is ob-

tained by introducing the expectation and variance of f relative to νN , namely

EN(f) :=

∫ +∞

−∞
zdFN(z) =

1

N

∑
n≤N

f(n),

and

VN(f) = DN(f)2 :=

∫ +∞

−∞
{z − EN(f)}2dFN(z)

=
1

N

∑
n≤N

{f(n)− EN(f)}2.
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This suggests a different approach to the problem of the distribution of values of

an arithmetic function. Instead of studying the asymptotic behaviour of FN(z), we

consider that of

GN(z) := νN{n : f(n) ≤ EN(f) + zDN(f)}.

This perspective may be considered as central in the probabilistic theory of numbers.

The sequence of distribution functions FN(z) or GN(z) contains all the information

concerning the arithmetic function f .

1.3.2 Distribution of the sum of additive functions

We will start with the following definitions of additive function and characteristic

function of a distribution function.

Definition 1.3.2. A function f : N→ C is said to be additive if f(mn) = f(m) +

f(n) whenever (m,n) = 1.

Definition 1.3.3. The characteristic function of a distribution function F is the

Fourier transform of the Stieltjes measure dF (z), defined as

φ(τ) :=

∫ +∞

−∞
eiτzdF (z) (τ ∈ R).

It is a uniformly continuous function on the real line, satisfying

|φ(τ)| ≤ 1 = φ(0) (τ ∈ R).

In this section, we will discuss the behaviour of the distribution of the sum

f1(F1(n)) + f2(F2(n)) + f3(F3(n)),(1.9)
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where f1, f2 and f3 are real-valued additive functions and F1(x), F2(x), F3(x) are

polynomials with integer coefficients.

The following theorem gives the behaviour of the distribution of the sum (1.9) when

Fj’s are polynomial of degree greater than or equal to 2. This is an application of

the Theorem 1.2.3.

Theorem 1.3.1. Let t, z ∈ R. Suppose that f1, f2 and f3 be real-valued additive

functions and Fj(n) be as in Theroem 1.2.3 of degree vj ≥ 2 for all j = 1, 2, 3.

Assume that

∑
|fj(p)|≤1

f 2
j (p)

p
%j(p) <∞, j = 1, 2, 3,

∑
|fj(p)|>1

%j(p)

p
<∞, j = 1, 2, 3,

3∑
j=1

∑
|fj(p)|≤1

fj(p)%j(p)

p
<∞,

fj(p
m)%j(p

m)→ 0,

for m = 1, when vj ≥ 2 and for m = 1, 2, · · · , vj − 2, when vj ≥ 3. Then the

distribution function

Gx(z) :=
1

x
# {n|n ≤ x, f1(F1(n)) + f2(F2(n)) + f3(F3(n)) ≤ z}

converges weakly to a limit distribution as x→∞, and there exist a natural number

γ depending on polynomials F1, F2 and F3 such that the characteristic function say

φ(t) of this limit distribution is equal to P1(γ)P2(γ), where P1(γ) and P2(γ) are

defined by (1.5) and (1.6) respectively with gj is replaced by exp(itfj), j = 1, 2, 3.
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1.4 Multiplicative number theory over Fq[x]

We begin this section with some preliminaries on Number Theory over Function

Fields. We will use [28] as a general reference.

1.4.1 Polynomials over finite field

Let Fq denote a finite field with q elements. We will denote by A = Fq[x] the

polynomial ring over Fq. For a detailed discussion of the similarities between A and

Z, see Rosen’s book ([28], Chapter 1). Let

f(x) = anx
n + an−1x

n−1 + . . .+ a0 ∈ Fq[x].

Definition 1.4.1. If an 6= 0 we say f has degree n, i.e., deg f = n and in this case

we define the sign of f to be an ∈ F∗q, (sgn(f) = an). We have that sgn(0) = 0 and

deg(0) = −∞.

We now present some properties of degree and sign.

Proposition 1.4.1. Let, f, g ∈ A be non-zero polynomials. Then

(i) deg(fg) = deg(f) + deg(g),

(ii) sgn(fg) = sgn(f) sgn(g),

(iii) deg(f + g) ≤ max(deg(f), deg(g)) and equality holds if deg(f) 6= deg(g).

(iv) A/fA is a finite ring with qdeg(f) elements.

A polynomial f ∈ A is called monic if sgn(f) = 1. LetMn,q be the set of all monic

polynomials of degree n over Fq. Let M≤n,q be the set of all monic polynomials of

degree ≤ n over Fq. Also let Mq =
⋃∞
n=1Mn,q. A polynomial f ∈ A is reducible if
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we can write f(x) = g(x)h(x) with deg(f) > 0 and deg(g) > 0, otherwise it is called

irreducible. A monic irreducible polynomial is called a prime polynomial. Let Pn,q

denote the set of all prime polynomials of degree n over Fq. Also let Pq =
⋃∞
n=1Pn,q.

Now we have the following important definition associated with f ∈ A.

Definition 1.4.2. For f ∈ A, we define its norm by

|f | =


qdeg(f) if f 6= 0

0 if f = 0.

The letters P and Q will be used for a prime polynomial in A. The next proposition

is the Chinese remainder Theorem for Fq[x].

Proposition 1.4.2 ([28]). Let m1, . . . ,mt be elements of A which are pairwise co-

prime. Let m = m1 . . .mt and Ψi be the natural homomorphism from A/mA to

A/miA. Then the map Ψ : A/mA→ A/m1A⊕ . . .⊕ A/mtA is given by

Ψ(a) = (Ψ1(a), . . . ,Ψt(a))

is a ring isomorphism.

We can also define the analogue of the Möbius function and Euler totient function

for Fq[x] as follows

µ(f) =


(−1)t if f = αP1 . . . Pt, α ∈ F∗q, Pi 6= Pj, ∀i 6= j

0 otherwise ,

where each Pj is a distinct monic irreducible polynomial and

Φ(f) =
∑

g monic
deg g<deg f

(f,g)=1

1 = | (A/fA)∗ |.(1.10)
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Definition 1.4.3. A function Ψ fromMq to C is called an arithmetic function. An

arithmetic function Ψ is called even if

Ψ(cf) = Ψ(f), ∀f ∈Mq and ∀c ∈ F∗q.

and an arithmetic function Ψ is called multiplicative if

Ψ(fg) = Ψ(f)Ψ(g), whenever f and g are coprime.

Definition 1.4.4. The zeta function of A = Fq[x], denoted by ζA(s), is defined by

the infinite series

ζA(s) :=
∑
f∈Mq

1

|f |s
=
∏
P∈Pq

(1− |P |−s)−1, <(s) > 1.

And it is easy to show that

ζA(s) =
1

1− q1−s .

1.4.2 Prime Number Theorem in Fq[x]

Let x be a real number and π(x) be the number of positive prime numbers less than

or equal to x. The classical prime number theorem states that π(x) is asymptotic to

x/ log(x). We now present the analogue of this theorem for polynomials over finite

fields.

Theorem 1.4.1 (Prime Polynomial Theorem). Let πA(n) denote the number of

monic irreducible polynomials in A of degree n. Then we have

πA(n) =
qn

n
+O

(
qn/2

n

)
.(1.11)
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Remark 1.4.1. If we denote x = qn, then we have

πA(n) =
x

logq x
+O

( √
x

logq x

)
,(1.12)

which analogous to the conjectured form of classical prime number theorem.

1.4.3 Mean value of multiplicative functions over Fq[x]

One of the fruitful analogies in number theory is the one between the integers Z

and the polynomial ring Fq[x]. Thus, for instance prime numbers correspond to the

monic irreducible polynomials over Fq[x] and the fundamental theorem of arithmetic

applies. In the recent paper [15], Granville, Harper, and Soundararajan initiated

the study of mean values of multiplicative functions over the function field Fq[x] by

proving a quantitative analog of the celebrated theorem of Halasz. We begin by

introducing the objects of study, borrowing the notations from [15].

Let U denote the unit disc. For a multiplicative function ψ :Mq → U, we write

σ(n;ψ) :=
1

qn

∑
f∈Mn,q

ψ(f).

The mean value of ψ is defined as σψ := limn→∞ σ(n;ψ), should this limit exist.

As pointed out in [15], a direct analog of Wirsings theorem is however false in the

function field setting. Indeed, consider the function ψ(f) = (−1)deg(f) for which

σ(n;ψ) = (−1)n clearly oscillates and hence σψ does not exist. In [22], Klurman

proved the following Wirsing’s theorem over function field.

Theorem 1.4.2. Let ψ : Mq → U be a multiplicative function. Then either ψ(f)

or (−1)deg(f)ψ(f) has a mean value.

Let e(α) = exp(2πiα). A natural function field analog of the function ht(n) =

nit, t ∈ R is the function hθ(M) = exp(θ deg(M)),M ∈Mq and θ ∈ [0, 1).
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Definition 1.4.5. A multiplicative function ψ :Mq → U is said to be close to 1 if

∑
P∈Pq

1− ψ(P )

qdegP
<∞.

Following Klurman [22], we define the “distance” between two multiplicative func-

tion ψ1, ψ2 :Mq → U by

D2(ψ1, ψ2;m,n) =
∑

m≤degP≤n
P∈Pq

1−<(ψ1(P )ψ2(P ))

qdegP
.

We also write D(ψ1, ψ2;n) := D(ψ1, ψ2; 1, n). Usually, the distance D(ψ1, ψ2;∞) is

infinite. However, in the case D(ψ1, ψ2;∞) <∞ we say that ψ1 “pretends” to be ψ2.

Also observe that, if ψ is close to 1 then ψ pretends to be 1. For any multiplicative

function ψ :Mq → U we define

P(ψ, n) :=
∏

deg(P )≤n
P∈Pq

(
1− 1

qdegP

)(∑
k≥0

ψ(P k)

qk degP

)
.

In [22], Klurman established the following explicit version of Halász’s theorem.

Theorem 1.4.3. For a multiplicative function ψ : Mq → U one of the following

holds:

• If D(ψ(P ), e(θ deg(P ));∞) =∞ for all θ ∈ [0, 1), then

lim
n→∞

1

qn

∑
f∈Mn,q

ψ(f) = 0.
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• If D(ψ(P ), e(θ0 deg(P );∞)) <∞ for some θ0 ∈ [0, 1), then for any given ε > 0

1

qn

∑
f∈Mn,q

ψ(f) = e(nθ0)P(ψ(P )e(−θ0 deg(P )), n)

+Oε

(
D(ψ(P ), e(−θ0 degP );m;n) +

1

n1−ε

)

where m = d(1− ε) logn
log q
e.

1.5 Selberg sieve over Fq[x]

In 1947 Selberg [29] introduced a new approach to sieving which is based on global

optimization. In this chapter, we will discuss Selberg sieve for polynomial ring over

finite fields and an application of it which will be used in Chapter 5.

The Selberg sieve is a technique for estimating the size of “sifted sets” of positive

integers which satisfy a set of conditions expressed by congruences. In this section,

we will extend Selberg sieve ([9], Lemma 2.1) to polynomials over finite fields and

give an application of it which also appears in [8]. The main theorem of this section

is as follows.

Theorem 1.5.1. Let us consider the following set of polynomials

A = {aM ∈Mq : M ∈Mn,q}.

Also let r and z be positive integers such that

Q̃ =
∏

degP≤r

P and D = {D : D|Q̃, deg(D) ≤ z}.

Let Ψ be a real-valued non-negative arithmetic function on Mq. Suppose that there

exist a multiplicative function η supported on square-free polynomials with irreducible
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factors of degree atmost r such that

0 ≤ η(P ) < 1, P ∈ Pq

and for D ∈ D,

∑
M∈Mn,q

aM≡0(D)

Ψ(M) = η(D)X +RD(n),

where X,RD(n) are real numbers, X ≥ 0. Now consider the following sum

S(n, Q̃) =
∑

M∈Mn,q

aM∈A
(aM ,Q̃)=1

Ψ(M).

If h(D) = 1
η(D)

∏
P |D

(1− η(P )), for D ∈ D, then we have

S(n, Q̃) ≤ X.L−1 +
∑
D|Q̃

deg(D)≤2z

3ω(D)|RD(n)|,

where L =
∑
M∈D

1

h(M)
.

In [8], we prove the following application of the Theorem 1.5.1, which is useful to

prove a variant of Turán-Kubilius inequality over function field.

Theorem 1.5.2 ([8], Lemma 6). Given two coprime polynomials B,M ∈ Fq[x],

let πA(n;M,B) denotes the number of primes P ∈ Pn,q which satisfies P ≡ B

(mod M). Then for any n > degB we have

Θ(n) :=
∑

n
2
<degQ≤n
Q∈Pq

Φ(Q)π2
A(n;Q,B)� |Pn,q|2

where Φ is defined by (1.10).
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1.6 Correlation of multiplicative functions over

Fq[x]

Our goal here is to study asymptotic behaviour of the correlations of arithmetic

functions ψ1, . . . , ψk on Mq at (h1, . . . , hk) ∈ Fq[x]k. Let

Sk(n, q) :=
∑

f∈Mn,q

ψ1(f + h1) . . . ψk(f + hk)(1.13)

and

Rk(n, q) :=
∑

P∈Pn,q

ψ1(P + h1) . . . ψk(P + hk)(1.14)

This parameter can be large, in particular, either when n is much larger than q,

which we call the large degree limit, or when q is much larger than n, which we call

the large finite field limit.

In the large degree limit, one knows no more than what is known in number fields as-

suming the Generalized Riemann Hypothesis (which is a theorem in function fields).

In the large finite field limit one can often go much further than what can be done in

the number field setting or in the large degree limit. An extensive study by several

authors ([1], [3], [5]) has led to a complete understanding of (1.13) in this limit for

the family of arithmetic functions depending on cycle structure.

1.6.1 Correlation of multiplicative functions in the large fi-

nite field limit

In [5], Carmon and Rudnick prove the following function field analog of Chowlas

conjecture on the correlation of the Möbius function in the large finite field limit.
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To formulate it, we recall that the Möbius function of a non-zero polynomial Fq[x]

is defined by µ(f) = (−1)r if f = cP1 . . . Pr with 0 6= c ∈ Fq and P1, . . . , Pr are

distinct monic irreducible polynomials, and µ(f) = 0 otherwise.

Theorem 1.6.1. Fix r > 1 and assume that n > 1 and q is odd prime power. Then

for any choice of distinct polynomials α1, . . . , αr ∈ Fq[x], with max degαj < n, and

εi ∈ {1, 2}, not all even,

∑
f∈Mn,q

µ(f + α1)ε1 . . . µ(f + αr)
εr �r,n q

n− 1
2 .

Thus for fixed r, n > 1,

lim
q→∞

1

|Mn,q|
∑

f∈Mn,q

µ(f + α1)ε1 . . . µ(f + αr)
εr = 0.

It has been conjectured that there are infinitely many twin primes, and a more

general quantitative form, due to Hardy and Littlehood, asserts that given distinct

integers a1, . . . , ar, the number π(x; a1, . . . , ar) of integers n ≤ x for which n +

a1, . . . , n+ ar are simultaneously prime is asymptotically

π(x; a1, . . . , ar) ∼ Ca1,...,ar
x

(log x)r
, x→∞,

for a certain constant Ca1,...,qr , which is positive whenever there are no local congru-

ence obstructions.

Bary-Soroker [32] proved that for given n, r, any sequence of finite fields Fq of odd

cardinality q, and distinct polynomials h1, . . . , hr ∈ Fq[x] of degree less than n, the

number πq(n;h1, . . . , hr) of monic polynomials f ∈Mn,q such that f+h1, . . . , f+hr

are simultaneously irreducible satisfies

πq(n;h1, . . . , hr) ∼
qn

nr
, q →∞.
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1.6.2 Correlation of multiplicative functions in the large de-

gree limit

Let ψj :Mq → U and αj :Mq → C be multiplicative functions such that αj = µ∗ψj

for all j = 1, 2. For fixed polynomials hj ∈ Fq[x] with deg(hj) < n for all j = 1, 2

and n ≥ r, we define

Q(n) :=
∏

degP≤n

υP and Q(r, n) =
∏

r<degP≤n

υP ,(1.15)

Q
′
(n) :=

∏
degP≤n

υ′P and Q′(r, n) =
∏

r<degP≤n

υ′P(1.16)

where

υP :=
∞∑

m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|(h2−h1)

α1(Pm1)α2(Pm2)

qdeg([pm1 ,Pm2 ])
, υ′P :=

∞∑
m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|(h2−h1)

α1(Pm1)α2(Pm2)

Φ[Pm1 , Pm2 ]
.

In [8], we investigate the asymptotic behaviour of the above sums (1.13) and (1.14)

for k = 2, i.e. S2(n, q) and R2(n, q) in large degree limit. The following theorem

gives the asymptotic behaviour of S2(n, q) with explicit error term in large degree

limit.

Theorem 1.6.2. Let ψ1 and ψ2 be multiplicative functions onMq with modulus less

than or equal to 1. Suppose that ψ1 and ψ2 are close to 1 and γ := deg(h2 − h1) ≥⌈
log 9
log q

⌉
. Then there exists a positive absolute constant c such that for all n ≥ r ≥ γ

and for all 1
2
< α < 1, we have

S2(n, q)

qn
−Q(n)� D(ψ1, 1; r, n) + D(ψ2, 1; r, n) + q(1−2α)n exp

(cqαr
r

)
+ (rqr)−

1
2

where Q(n) is defined by (1.15).

The following theorem gives the asymptotic behaviour of R2(n, q) with explicit error
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term in large degree limit.

Theorem 1.6.3. Let ψ1 and ψ2 be multiplicative functions onMq with modulus less

than or equal to 1. Suppose that both ψ1 and ψ2 are close to 1 and γ := deg(h2−h1) ≥⌈
log 17
log q

⌉
. Then there exists a positive absolute constant c such that for all n ≥ r ≥ γ

and for all 1
2
< α < 1, we have

R2(n, q)

|Pn,q|
−Q′(n)� D(ψ1, 1; r, n) + D(ψ2, 1; r, n) + n−A exp

(cqαr
r

)
+ (rqr)−

1
2

where A > 0 is arbitrary constant and Q′(n) is as defined in (1.16).

Remark 1.6.1. Note that γ is fixed here since the polynomials h1 and h2 are fixed.

Also we write

Q(n) = Q1(γ)Q2(γ, n) and Q′(n) = Q′1(γ)Q′2(γ, n)

where

Q1(γ) =
∏

degP≤γ

υP , Q′1(γ) =
∏

degP≤γ

υ′P ,(1.17)

Q2(γ, n) =
∏

γ<degP≤n

(
1 +

2∑
j=1

∞∑
m=1

ψj(P
m)− ψj(Pm−1)

qm degP

)
,(1.18)

Q2(γ) := Q2(γ,∞),

Q′2(γ, n) =
∏

γ<degP≤n

(
1 +

2∑
j=1

∞∑
m=1

ψj(P
m)− ψj(Pm−1)

Φ(Pm)

)
,(1.19)

Q′2(γ) := Q′2(γ,∞).

The following corollary is a direct application of Theorem 1.6.2 and Theorem 1.6.3.

Corollary 1.6.1. Let γ = deg(h2−h1) for fixed polynomials h1, h2 in Fq[x]. Assume

that ψ1 and ψ2 be multiplicative functions on Mq with modulus less than or equal to
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1. Suppose that ψ1 and ψ2 are close to 1. Then we have, as n→∞

S2(n, q)

qn
→ Q1(γ)Q2(γ) and

R2(n, q)

|Pn,q|
→ Q′1(γ)Q′2(γ)

where Q1(γ), Q′1(γ) are defined by (1.17) and Q2(γ), Q′2(γ) are defined by (1.18) and

(1.19) respectively.

Remark 1.6.2. Theorem 1.6.2 and Theorem 1.6.3 can be extended for Sk(n, q) and

Rk(n, q) for k ≥ 3.

We define the truncated Liouville function over function field by

λy(P
α) =


(−1)α (= λ(Pα)) if degP ≤ y

1 if degP > y.

It is very interesting to establish

∑
f∈Mn,q

λy(f)λy(f + h) = o(qn), as n→∞.

Note that, if y = n then the above problem is an analog of Chowla’s conjecture over

function fields in large degree limit. The following is an weaker result for smaller

value of y.

Theorem 1.6.4. There is a positive absolute constant C such that if n ≥ 2, 2 ≤

y ≤ log n and a fixed h ∈ Fq[x] with deg h ≤ y, then

∣∣∣∣ ∑
f∈Mn,q

λy(f)λy(f + h)

∣∣∣∣ < C
log4 y

y4
qn.

As a direct application of Theorem 1.6.2, we get an asymptotic formula for simul-

taneously k-free monic polynomials.
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Corollary 1.6.2. For a fixed a ∈ F∗q and natural number k ≥ 2, let us consider

Fk =
{
f ∈Mn,q : f and f + a are both k- free polynomial of degree n

}
.

Then we have

1

qn

∑
f∈Mn,q

f∈Fk

1 =
∏
P

(
1− 2

qk degP

)
+O

(
1

nB

)

for any B < 1.

The following corollary is a direct application of Theorem 1.6.2 and Theorem 1.6.3.

Corollary 1.6.3. For a fixed a ∈ F∗q, we define Euler Phi function over function

field by

Φ(f) = |f |
∏
P |f

(
1− 1

|P |

)
.

Then we have

1

qn

∑
f∈Mn,q

Φ(f)Φ(f + a)

|f ||f + a|
=
∏
P

(
1− 2

q2 degP

)
+O

(
1

nB

)

and

1

|Pn,q|
∑

P∈Pn,q

Φ(P )Φ(P + a)

|P ||P + a|
=
∏
P

(
1− 2

qdegP (qdegP − 1)

)
+

1

(log n)B

for any B < 1.

1.7 Probabilistic number theory over Fq[x]

Definition 1.7.1. A function ψ :Mq → C is called additive if

ψ(fg) = ψ(f) + ψ(g), whenever f and g are coprime.
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Let ψ : Mq → R be a real valued additive function. Define Ω := Mn,q, which is

a finite set of qn elements. Let ψn(f) := {x1, . . . , xl} . The subset Ai := {f ∈ Ω :

ψn(f) = xi}, i = 1, . . . , t, of Ω are pairwise disjoint and form a partition of Ω. The

σ-field F generated by this partition consists of union of a finite number of subsets

Ai.

Consider a real-valued additive function ψ on Mq. For a positive integer n and a

real number x, write

νn(ψ, x) =
∑

f∈Mn,q

ψ(f)≤x

1.

Definition 1.7.2. If there exists a distribution function Ψ such that 1
qn
νn(ψ, x)

converges point-wise to Ψ(x) as n→∞ , then we say that ψ has the limit distribution

function Ψ(x).

For A ∈ F, let ν(A) = |A|
qn

, where |A| is the cardinality of A. Then ν is a probability

measure on F and (Ω,F, ν) is a finite probability space. Now ψn is a random variable

on (Ω,F, ν) and measurable on F. The distribution function of ψn is

ν[ψn ≤ x] =
1

qn
|{f ∈Mn,q : ψn(f) ≤ x}| = νn(ψ, x)

qn
.

In the above setup, one can ask the following question.

Question 1.7.1. For any two real-valued additive function ψ and ψ̃ on Mq does

there exist a distribution function Ψ(x) such that as n→∞

1

qn
νn

(
f ∈Mn,q : ψ(f + h1) + ψ̃(f + h2) ≤ x

)
→ Ψ(x) ∀x as n→∞

for any two fixed h1, h2 ∈ Fq[x] with deg(hi) < n for all i = 1, 2.

As an application of Theorem 1.6.2, the following theorem gives an answer of the
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Question 1.7.1.

Theorem 1.7.1. Let t, x ∈ R and h1, h2 be fixed polynomials in Fq[x]. We define

γ := deg(h2 − h1). Assume that ψ̃1 and ψ̃2 be real-valued additive functions on Mq

and the following series converges:

∑
|ψ̃i(P )|≤1

ψ̃i(P )

qdegP
,

∑
|ψ̃i(P )|≤1∀i

ψ̃1(P ) + ψ̃2(P )

qdegP
,

∑
|ψ̃i(P )|>1

q− degP ∀i = 1, 2.

Then the distribution function

Fn(x) :=
1

|Mn,q|

∣∣∣{f ∈Mn,q : ψ̃1(f + h1) + ψ̃2(f + h2) ≤ x
}∣∣∣

converges weekly towards a limit distribution as n→∞ whose characteristic function

say G(t) is equal to Q1(γ)Q2(γ), where Q1(γ) and Q2(γ) are defined (1.17) and

(1.18) respectively with ψj is replaced by exp(itψ̃j),∀j = 1, 2.

Theorem 1.7.2. Let t, x ∈ R and h1, h2 be fixed polynomials in Fq[x]. We define

γ := deg(h2−h1)Assume that ψ̃1 and ψ̃2 be real-valued additive functions onMq and

series in the Hypothesis of Theorem 1.7.1 converges. Then the distribution function

F ′n(x) :=
1

|Pn,q|

∣∣∣{P ∈ Pn,q : ψ̃1(P + h1) + ψ̃2(P + h2) ≤ x
}∣∣∣

converges weekly towards a limit distribution as n→∞ whose characteristic function

say H(t) is equal to Q′1(γ)Q′2(γ), where Q′1(γ) and Q′2(γ) are defined (1.17) and

(1.19) respectively with ψj is replaced by exp(itψ̃j),∀j = 1, 2.

As a direct consequence of Theorem 1.7.1 and Theorem 1.7.2, we get the following

corollary.

Corollary 1.7.1. Let z, t ∈ R and a ∈ F∗q. The distribution functions

1

qn

∣∣∣{f ∈Mn,q :
Φ(f)Φ(f + a)

|f ||f + a|
≤ ez

∣∣∣
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and

1

|Pn,q|

∣∣∣{P ∈ Pn,q :
Φ(P )Φ(P + a)

|P ||P + a|
≤ ez

∣∣∣
converge weakly towards limit distribution , as n→∞. The characteristic functions

of these limit distributions are

∏
degP

(
1+

2
((

1− q− degP
)it − 1

)
qdegP

)
and

∏
degP

(
1+

2

Φ(P )

((
1− q− degP

)it−1

))

respectively.
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Chapter 2

Correlation of multiplicative

functions

In this chapter, we prove results regarding mean values of correlation functions over

integers. These results of this chapter are contained in [6].

Let gj : N → C denotes multiplicative functions such that |gj(n)| ≤ 1 for all n.

Let F (n);F1(n), F2(n), F3(n) be positive integer-valued polynomials with integer

coefficients and these are not divisible by the square of any irreducible polynomial.

Also suppose that Fj(n), Fk(n) are relatively prime for j 6= k and for all n. Let

v and vj denote the degree of the polynomials F (n) and Fj(n) respectively. Let

%(d1, d2, d3) be the number of solutions of the system of congruence

Fj(n) ≡ 0 (mod dj) j = 1, 2, 3.

Let %(d) and %j(d) denote the number of solutions of the congruences

F (n) ≡ 0 (mod d) and Fj(n) ≡ 0 (mod d)

respectively.
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Suppose gj : N→ U and hj : N→ C be multiplication functions such that hj = µ∗gj,

j = 1, 2, 3. For x ≥ r ≥ 2, We also define

P (x) :=
∏
p≤x

wp and P (r, x) :=
∏
r<p≤x

wp(2.1)

where

wp :=
∞∑

m1=0

∞∑
m2=0

∞∑
m3=0

h1(pm1)h2(pm2)h3(pm3)

[pm1 , pm2 , pm3 ]
%(pm1 , pm2 , pm3).

Let us consider the following triple correlation function:

Mx(g1, g2, g3) :=
1

x

∑
n≤x

g1(F1(n))g2(F2(n))g3(F3(n)).(2.2)

In [6], we find an asymptotic formula for Mx(g1, g2, g3) with explicit error term which

is stated as follows.

Theorem 2.0.1. Let Fj(x), j = 1, 2, 3 be polynomials as above of degree vj ≥ 2.

Let g1, g2 and g3 be multiplicative functions close to 1 and whose modulus does not

exceed 1. Then there exists a positive absolute constant c and a natural number γ

depending on polynomials F1(x), F2(x) and F3(x) such that for all x ≥ r ≥ γ and

for all 1− 1
v1+v2+v3

< α < 1, we have

x−1M3(x)− P (x)� 1

x
(F1(x)F2(x)F3(x))1−α exp

(
crα

log r

)
+ (r log r)−

1
2

+
3∑
j=1

(D(gj, 1; r;x) + D(gj, 1;x;Fj(x))) +
1

x
C(r, x) +

1

log x

where P (x) is defined by (2.1) and

C(r, x) =
3∑
j=1

vj−1∑
m=1

∑
pm≤Fj(x)

p>r

|gj(pm)− 1|%j(pm).

Remark 2.0.1. For any γ ≥ 2, let Dγ denote the set of those tuples {d1, d2, d3}
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of natural numbers for which all the prime factors of di do not exceed γ. Since the

congruence system

F1(n) ≡ 0 (mod a), F2(n) ≡ 0 (mod a), F3(n) ≡ 0 (mod a)

have common solution for finitely many values of a (See [39]) then we can choose

γ so that %(d1, d2, d3) = 0 if {d1, d2, d3} 6∈ Dγ and
(∏

p>γ p,
∏

i 6=j(di, dj)
)
> 1.

Therefore we have

P (x) = P1(γ)P2(γ, x)

where

P1(γ) =
∏
p≤γ

wp and P2(γ, x) =
∏

γ<p≤x

(
1 +

3∑
j=1

∞∑
m=1

hj(p
m)

pm
%j(p

m)

)
.(2.3)

Remark 2.0.2. The Theorem 2.0.1 is true for all x ≥ r ≥ γ but to get an good

error term we will chose r = (log x)
1
α , where α is defined as in Theorem 2.0.1.

2.1 Proof of Theorem 2.0.1

We begin with some lemmas. The following lemma gives that the number of solution

of a congruence is bounded over any power of primes.

Lemma 2.1.1 ([11], Lemma 3). Let F (m) be arbitrary primitive polynomial of

degree v with integer coefficients and with discriminant D. Let D 6= 0. Then the

number of solution of the congruence F (m) ≡ 0 (mod pα) is %(p) when p 6 |D, and

smaller than vD2 when p|D. Further, % is a multiplicative function and %(pα) ≤ c,

c depends only on F.

The following lemma ensures the existence of γ in Theorem 2.0.1.
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Lemma 2.1.2 ([39], Lemma 2.1). If F1(m) and F2(m) are relatively prime polyno-

mials with integer coefficients, then the congruences

F1(m) ≡ 0 (mod a), F2(m) ≡ 0 (mod a)

have common roots for atmost finitely many values of a.

Now we prove a polynomial version of classical Turán-Kubilius inequality which is

one of the main tool to prove Theorem 2.0.1.

Lemma 2.1.3. Let f(pm) be the sequence of complex numbers for all primes p,

m ≥ 1 and let F (n) is a polynomial as above of degree v. Then we have

∑
n≤x

|K(F (n))− A(x)| � xB(F (x)) +
v−1∑
m=1

∑
pm≤F (x)

|f(pm)| %(pm) +
x

log x
,

where

K(n) :=
∑
pm‖n

f(pm), A(x) :=
∑
pm≤x

f(pm)%(pm)

pm
, B2(x) :=

∑
pm≤x

|f(pm)|2%(pm)

pm
.

Proof. We write K(F (n)) =
∑

pm‖F (n) f(pm) = gx(F (n)) + hx(F (n)),

where

gx(F (n)) =
∑

pm‖F (n)

pm≤x
1
2

f(pm) and hx(F (n)) =
∑

pm‖F (n)

pm>x
1
2

f(pm).

Now

∑
n≤x

|K(F (n))− A(x)| ≤
∑
n≤x

∣∣gx(F (n))− A(x1/2)
∣∣+
∑
n≤x

|hx(F (n))|

+
∑
n≤x

∣∣A(x1/2)− A(x)
∣∣ .
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From Turán-Kubilius inequality ([9], Lemma 4.11), we have

∑
n≤x

∣∣gx(F (n))− A(x1/2)
∣∣� xB(x1/2).

From Lemma 2.1.1 and Cauchy-Schwarz inequality, we obtain

∣∣A(x)− A(x1/2)
∣∣ ≤ ∑

x1/2<pm≤x

|f(pm)| %(pm)

pm

≤
( ∑
x1/2<pm≤x

|f(pm)|2 %(pm)

pm

)1/2( ∑
x1/2<pm≤x

%(pm)

pm

)1/2

= O(B(x)).

Again by Cauchy-Schwarz inequality, we have

∑
n≤x

|hx(F (n))| =
∑
n≤x

∣∣∣∣ ∑
pm‖F (n)

pm>x1/2

f(pm)

∣∣∣∣
� x

∑
x1/2<pm≤F (x)

|f(pm)|%(pm)

pm
+

∑
x1/2<pm≤F (x)

|f(pm)| %(pm)

� x

( ∑
x1/2<pm≤F (x)

|f(pm)|2%(pm)

pm

)1/2( ∑
x1/2<pm≤F (x)

%(pm)

pm

)1/2

+
∑

x1/2<pm≤F (x)

|f(pm)| %(pm)

� xB(F (x)) +
v−1∑
m=1

∑
pm≤F (x)

|f(pm)| %(pm) +
x

log x
,

which proves the lemma.

Proof of Theorem 2.0.1. For an integer r ≥ 3, we define multiplicative

functions gj,r and g∗j,r, j = 1, 2, 3 by

gj,r(p
m) =


gj(p

m) if p ≤ r

1 if p > r,

g∗j,r(p
m) =


1 if p ≤ r

gj(p
m) if p > r
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and multiplicative function hj,r, j = 1, 2, 3 by

hj,r(p
m) =


gj(p

m)− gj(pm−1) if p ≤ r

0 if p > r

so that, gj,r = 1 ∗ hj,r, j = 1, 2, 3.

We can write

Mx(g1, g2, g3)− P ′(x) = P ′(r, x)

(
1

x

∑
n≤x

g1,r(F1(n))g2,r(F2(n))g3,r(F3(n))− P ′(r)
)

+
1

x

∑
n≤x

3∏
j=1

gj,r(Fj(n))
(
g∗1,r(F1(n))g∗2,r(F3(n))g∗3,r(F3(n))− P ′(r, x)

)
.

Set

ηj(p) :=
∞∑
m=1

(gj(p
m))− gj(pm−1)) %j(p

m)

pm
, j = 1, 2, 3.

From Lemma 2.1.1, we have

|ηj(p)| ≤ 2cFj
1

p− 1
≤ 1

6
if p ≥ 1 + 12cFj =: pj.

Let p4 := max(p1, p2, p3). If r ≥ p4, then using hypothesis of the theorem we obtain

that for any x ≥ r ≥ p4

P ′(r, x) =
∏
r<p≤x

(
1 +

3∑
j=1

ηj(p)

)
= exp

( ∑
r<p≤x

3∑
j=1

(
ηj(p) +O

(
|ηj(p)|2

)))

= exp

( ∑
r<p≤x

3∑
j=1

(gj(p)− 1)%j(p)

p
+O

( ∑
r<p≤x

1

p2

))
� 1.

So

|Mx(g1, g2, g3)− P ′(x)| �
∣∣∣1
x

∑
n≤x

g1,r(F1(n))g2,r(F2(n))g3,r(F3(n))− P ′(r)
∣∣∣
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+
1

x

∑
n≤x

∣∣g∗1,r(F1(n))g∗2,r(F2(n))g∗3,r(F3(n))− P ′(r, x)
∣∣ =: E1 + E2.

Estimation of E1. We have

1

x

∑
n≤x

3∏
j=1

gj,r(Fj(n)) =
1

x

∑
dj≤Fj(x)
j=1,2,3

3∏
j=1

hj,r(dj)
∑
n≤x

dj |Fj(n)
j=1,2,3

1

=
1

x

∑
d1≤F1(x)

∑
d2≤F2(x)

∑
d3≤F3(x)

h1,r(d1)h2,r(d2)h3,r(d3)
x

[d1, d2, d3]
%(d1, d2, d3)

+O

(
1

x

∑
dj≤Fj(x)
j=1,2,3

3∏
j=1

hj,r(dj)%(d1, d2, d3)

)
=: P ′1 + E3.

Now we observe that

∞∑
dj=1

|hj,r(dj)|%j(dj)
dj

≤ exp

(
cFj
∑
p≤r

1

p

)
� (log r)cFj

and for 0 < α < 1,

∞∑
dj=1

|hj,r(dj)|%j(dj)
d1−α
j

≤
∏
p≤r

(
1 +

∞∑
m=1

|hj,r(pm)|%j(pm)

pm(1−α)

)
≤ exp

(
cFj

rα

log r

)
.

So we can say that

E3 �
1

x

∑
dj≤Fj(x)
j=1,2,3

3∏
j=1

|hj,r(dj)|%j(dj)�
1

x

(
3∏
j=1

Fj(x)

)1−α ∞∑
dj=1
j=1,2,3

3∏
j=1

|hj,r(dj)|
d1−α
j

%j(dj)

� 1

x
(F1(x)F2(x)F3(x))1−α exp(cF

rα

log r
).

Now

P ′1 = P ′(r) +O

(
3∑

k=1

∞∑
dj=1
j=1,2,3
dk>Fk(x)

|h1,r(d1)h2,r(d2)h3,r(d3)|
[d1, d2, d3]

%(d1, d2, d3)

)
=: P ′(r) + E4.
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Again from the above observations, we have

E4 �
3∑

k=1

∞∑
dj=1
j=1,2,3
dk>Fk(x)

|h1,r(d1)h2,r(d2)h3,r(d3)|
d1d2d3

%1(d1)%2(d2)%3(d3)

�
(
F1(x)−α + F2(x)−α + F3(x)−α

)
exp

(
cF

rα

log r

)
.

Estimation of E2. We will use a technique of R.Warlimont [41]. Let

N ′r =

{
n ≤ x| ∃k ∈ {1, 2, 3} and ∃p > r such that pm‖Fk(n), |1− gk(pm)| > 1

2

}
.

Decompose E2 into

E2 =
1

x

∑
n∈N ′r

∣∣g∗1,r(F1(n))g∗2,r(F2(n))g∗3,r(F3(n))− P ′(r, x)
∣∣

+
1

x

∑
n/∈N ′r

∣∣g∗1,r(F1(n))g∗2,r(F2(n))g∗3,r(F3(n))− P ′(r, x)
∣∣ =: E5 + E6.

Now

E5 �
1

x

∑
n∈N ′r

1� 1

x

∑
pm≤Fj(x)

|1−gj(pm)|>1/2
p>r

(
x%j(p

m)

pm
+ %j(p

m)

)

�
∑

pm≤Fj(x)
|1−gj(x)|>1/2

p>r

%j(p
m)

pm
+

1

x

∑
pm≤Fj(x)

|1−gj(pm)|>1/2
p>r

%j(p
m)

�
∑

r<p≤Fj(x)

|1− gj(p)|2%j(p)
p

+
∑
p>r

1

p2
+

1

x

∑
pm≤Fj(x)
p>r,m<vj

|1− gj(pm)|%j(pm)

+
1

log x
�

3∑
j=1

(D2(gj, 1; r;x) + D2(gj, 1;x;Fj(x))) + (r log r)−1 +
1

x
C(r, x) +

1

log x
.
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Since we know that if <(u) ≤ 0,<(v) ≤ 0, then

|exp(u)− exp(v)| ≤ |u− v| and(2.4)

log(1 + z) = z +O(|z|2), if |z| ≤ 1, | arg(z)| ≤ π

2
(2.5)

We obtain

E6 �
1

x

∑
n≤x

3∑
j=1

∣∣∣∣∣ ∑
pm‖Fj(n)
p>r

(gj(p
m)− 1)−

∑
pm≤x
p>r

gj(p
m)− 1

pm
%j(p

m)

∣∣∣∣∣
+

1

x

∑
n≤x

∣∣∣∣∣∑
pm≤x
p>r

3∑
j=1

(gj(p
m)− 1)%j(p

m)

pm
− logP ′(r, x)

∣∣∣∣∣
+O

(
1

x

∑
n≤x

3∑
j=1

∑
pm‖Fj(n)
p>r

|gj(pm)− 1|2
)

=: E61 + E62 + E63.

From Lemma 2.1.3, we have

E61 �
3∑
j=1

( ∑
pm≤Fj(x)

p>r

|gj(pm)− 1|2 %j(pm)

pm

)1/2

+
1

x
C(r, x) +

1

log x

�
3∑
j=1

(D(gj, 1; r;x) + D(gj, 1;x;Fj(x))) + (r log r)−1/2 +
1

x
C(r, x) +

1

log x
,

E62 =

∣∣∣∣ 3∑
j=1

∑
r<p≤x

(gj(p)− 1)%j(p)

p
+O

(∑
p>r

1

p2

)
−
∑
r<p≤x

3∑
j=1

(gj(p)− 1) %j(p)

p

∣∣∣∣
�
∑
p>r

1

p2
� (r log r)−1

and

E63 �
3∑
j=1

∑
pm≤Fj(x)

p>r

|gj(pm)− 1|2 %j(pm)

pm
+

1

x
C(r, x) +

1

log x
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�
3∑
j=1

(D2(gj, 1; r;x) + D2(gj, 1;x;Fj(x))) + (r log r)−1 +
1

x
C(r, x) +

1

log x
.

Combining all these estimates for all 1− 1
v1+v2+v3

< α < 1, we have

Mx(g1, g2, g3)− P ′(x)� 1

x
(F1(x)F2(x)F3(x))1−α exp

(
c
rα

log r

)
+

3∑
j=1

(D(gj, 1; r;x) + D(gj, 1;x;Fj(x))) + (r log r)−1/2 +
1

x
C(r, x) +

1

log x
,

which proves the theorem.

2.1.1 Application of Theorem 2.0.1

As an application of the Theorem 2.0.1, we get the following corollary.

Corollary 2.1.1. Let φ(n) = n
∏

p|n

(
1− 1

p

)
, be Euler’s totient function and σ(n) =∑

d|n d. Let F1(x) = x2 + a1, F2(x) = x2 + a2, F3(x) = x2 + a3, 0 < t < 1, where

a1, a2, a3 are taken such that Fj(x), j = 1, 2, 3 satisfies the assumption of Theorem

2.0.1. Then there exist a natural number γ depending on a1, a2 and a3 such that for

all x ≥ γ,

1

x

∑
n≤x

φ(n2 + a1)φ(n2 + a2)φ(n2 + a3)

σ(n2 + a1)σ(n2 + a2)σ(n2 + a3)
= P ′1(γ)

∏
p>γ

w′p +O

(
1

(log x)t

)
,

1

x

∑
n≤x

φ(n2 + a1)φ(n2 + a2)φ(n2 + a3)

(n2 + a1)(n2 + a2)(n2 + a3)
= P ′′1 (γ)

∏
p>γ

w′′p +O

(
1

(log x)t

)
,

where

w′p =

(
1−

3∑
j=1

(
aj
p

)
%j(p)

p2
+

(
1− 1

p

)2 3∑
j=1

∞∑
m=1

(
aj
p

)
%j(p)

1 + p+ · · ·+ pm

)
,

w′′p =

(
1−

3∑
j=1

(
aj
p

)
%j(p)

p2

)
,

(
aj
p

)
is the Legendre symbol of aj and p,
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P ′1(γ) and P ′′2 (γ) are defined by (2.3) in which gj(n), j = 1, 2, 3 are replaced by

φ(n)/σ(n) and φ(n)/n respectively.

Proof. To prove Corollary 2.1.1, we will use the following standard congruence

lemma.

Lemma 2.1.4. Let p be an odd prime and (a, p) = 1, then x2 ≡ a (mod pk) has

exactly two solutions if a is a quadratic residue of p, and no solution if a is quadratic

non-residue of p. Further, if a is odd, then the congruence x2 ≡ a (mod 2) is always

solvable and has exactly one solution.

Proof of Corollary 2.1.1. We see that by Lemma 2.1.4, as p→∞

∑
p

1− (gj(p))%j(p)

p
≤
∑
p

2

p(p+ 1)
<∞, (1− gj(p))%j(p) ≤

2

p+ 1
→ 0,

where gj(n) = φ(n)/σ(n), j = 1, 2, 3, and as p→∞

∑
p

1− (gj(p))%j(p)

p
≤
∑
p

2

p2
<∞, (1− gj(p))%j(p) ≤

2

p
→ 0,

where gj(n) = φ(n)/n, j = 1, 2, 3.

The remainder term for both sum are estimated from the remainder term of Theorem

2.0.1 by choosing

α =
5 + c21

6
and r = c22(log x log log x)1/α,

for sufficiently small c21, c22 > 0.

Hence by Theorem 2.0.1, the corollary is proved.

Corollary 2.1.2 is a polynomial version with the degree of the polynomial greater

than or equal to 2, of a theorem of Kátai ([20], Theorem 5).
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Corollary 2.1.2. Let Fj(n) and gj(j = 1, 2, 3) be as in Theorem 2.0.1.

∑
p

(gj(p)− 1)%j(p)

p
<∞.(2.6)

Suppose that

(gj(p
α)− 1) %j(p

α)→ 0, as p→∞(2.7)

for α = 1, when vj ≥ 2 and for α = 1, 2, · · · , vj − 2, when vj ≥ 3, then we have

Mx(g1, g2, g3)→ P1(γ)P2(γ), as x→∞

where P1(γ) is defined by (2.3) and

P2(γ) :=
∏
p>γ

(
1 +

∞∑
m=1

3∑
j=1

hj(p
m)%j(p

m)

pm

)
, hj = µ ∗ gj.(2.8)

Proof. We need the following lemmas.

Lemma 2.1.5 ([40]). Let {un}∞n=1 and {vn}∞n=1 be two complex sequences such that

∞∑
n=1

(
|un|2 + |vn|

)
<∞.

Then we have

∞∏
n=1

(1 + un + vn) <∞ if and only if
∞∑
n=1

un <∞.

Lemma 2.1.6 ([20], Lemma 6). Let F (n) be a polynomial as above of degree v ≥ 2.

we have the relation:

card
{
n ≤ x : F (n) ≡ 0 (mod pv−1), y1(x) < p

}
= o(x),
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when y1 = y1(x) tends to infinity as x→∞.

Proof of Corollary 2.1.2. Since |gj(p) − 1|2 ≤ 2(1 − <(gj(p))), from (2.6) and

Lemma 2.1.1 we have

D(gj, 1;∞) <∞, j = 1, 2, 3.(2.9)

From (2.6) and Lemma 2.1.5, we have P1(γ) and P2(γ) are convergent.

From Lemma 2.1.6, it is easy to see that as p→∞,

(
1− gj(pvj−1)

)
%j(p

vj−1)→ 0, j = 1, 2, 3.(2.10)

So by setting r = (log x)
1
α and from (2.7), (2.9), (2.10), the error term in Theorem

2.0.1 is o(1) as x→∞. Hence by Theorem 2.0.1, the corollary is proved.

In [6], we also studied the mean value of the following triple correlation functions

with various assumption on gj’s.

M ′
x(g1, g2, g3) :=

1

x

∑
n≤x

g1(n+ 2)g2(n+ 1)g3(n).(2.11)

The following theorem tells us that if g3 is Möbius function then under certain

hypothesis on g1, g2, the mean value of triple correlation function (2.11) is zero.

Theorem 2.1.1. Let g1, g2 : N→ U be multiplicative functions and

∑
p

2∑
j=1

|gj(p)− 1|2

p
<∞.(2.12)

Then as x→∞,

M ′
x(g1, g2, µ) =

1

x

∑
n≤x

g1(n+ 2)g2(n+ 1)µ(n) = o(1).

67



2.2 Proof of Theorem 2.1.1

Proof. We begin with the following lemma.

Lemma 2.2.1 ([7], Theorem 1). Define e(y) := e2πiy. For any given K > 0,

∑
n≤x

µ(n)e(nθ) = O

(
x

(log x)K

)

uniformly in θ, where the implied constant depends on K.

Proof of Theorem 2.1.1. We set

R(r, x) =
∏
r<p≤x

{
1− 2

p
+

(
1− 1

p

) ∞∑
m=1

g1(pm) + g2(pm)

pm

}
,

where r will be chosen later. It is easy to see that |R(r, x)| ≤ 1. Therefore

M ′
x(g1, g2, µ) = R(r, x)

1

x

∑
n≤x

g1,r(n+ 2)g2,r(n+ 1)µ(n)+

+
1

x

∑
n≤x

g1,r(n+ 2)g2,r(n+ 1)µ(n)
(
g∗1,r(n+ 2)g∗2,r(n+ 1)−R(r, x)

)
.

So

|M ′
x(g1, g2, µ)| ≤ |M ′

x(g1,r, g2,r, µ)|+ 1

x

∑
n≤x

∣∣∣∣ 2∏
j=1

g∗j,r(n+ 3− j)−R(r, x)

∣∣∣∣
=: T1 + T2.

Estimation of T1. Recall that hj,r = µ ∗ gj,r. So we have

∑
n≤x

g1,r(n+ 2)g2,r(n+ 1)µ(n) =
∑
n≤x

∑
d1|n+2

∑
d2|n+1

h1,r(d1)h2,r(d2)µ(n)

=
∑

d1≤x+2
d2≤x+1

h1,r(d1)h2,r(d2)
∑
n≤x
d1|n+2
d2|n+1

µ(n) =
∑

d1≤x+2
d2≤x+1

(d1,d2)=1

h1,r(d2)h2,r(d2)
∑
n≤x

n≡v(d1d2)

µ(n)
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=
∑
d1≤y
d2≤y

(d1,d2)=1

2∏
j=1

hj,r(dj)
∑
n≤x

n≡v(d1d2)

µ(n) +
2∑

k=1

∑
dj≤x+3−j
j=1,2
dk>y

(d1,d2)=1

2∏
j=1

hj,r(dj)
∑
n≤x

n≡v(d1d2)

µ(n),

where v is the unique solution of the system of linear congruence n ≡ −2(d1),

n ≡ −1(d2), 0 ≤ v ≤ d1d2 − 1 and y := log x.

So

xT1 �
∑
dj≤y
j=1,2

|h1,r(d1)h2,r(d2)|
∣∣∣∣ ∑

n≤x
n≡v(d1d2)

µ(n)

∣∣∣∣+
2∑

j,k=1

∑
dj≤x+3−j
dk>y

|hj,r(dj)|
(

x

d1d2

+ 1

)

=: T11 + T12.

From Lemma 2.2.1, we have

∑
n≤x

n≡v(d1d2)

µ(n) =
∑
n≤x

µ(n)
1

d1d2

d1d2∑
l=1

e

(
(n− v)l

d1d2

)

=
1

d1d2

d1d2∑
l=1

e

(
−vl
d1d2

)∑
n≤x

µ(n)e

(
nl

d1d2

)
� x

(log x)K
.

So

T11 �
x

(log x)K

∑
d1,d2≤y

|h1,r(d1)h2,r(d2)|

� x

(log x)K
y4

∞∑
d1,d2=1

|h1,r(d1)h2,r(d2)|
d2

1d
2
2

� x

log x
, if K ≥ 5.

Let 0 < α < 1. Now from the following two estimates

∞∑
dj=1

|hj,r(dj)|
dαj

=
∏
p≤r

(
1 +

∞∑
m=1

|hj,r(pm)|
pmα

)
≤
∏
p≤r

(
1 +

2

pα − 1

)
(2.13)

≤ exp

(
c1

∑
p≤r

1

pα

)
≤ exp

(
c2
r1−α

log r

)
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and

∞∑
dj=1

|hj,r(dj)|
dj

≤ exp

(
c3

∑
p≤r

1

p

)
� (log r)c4 .(2.14)

Also for 0 < γ < 1 we obtain

T12 � x
∑

dj≤x+3−j
j=1,2
dk>y

|h1,r(d1)h2,r(d2)|
d1d2

+
∑

dj≤x+3−j
j=1,2
dk>y

|h1,r(d1)h2,r(d2)|

� xy−γ exp

(
c2

rγ

log r

)
(log r)c4 + x2α exp

(
2c2

r1−α

log r

)
� xy−γ exp

(
c5

rγ

log r

)
+ x2α exp

(
2c2

r1−α

log r

)
.

Taking 1− α = γ = 2
3

we have,

T12 � xy−
2
3 exp

(
c5
r2/3

log r

)
+ x2/3 exp

(
2c2

r2/3

log r

)
.

Setting r = (log log x)3/2 we have

T12 �
x

y2/3
(log x)1/6 + xx−1/3(log x)1/6 � x

(log x)1/2
.

So T1 = o(1) as x→∞.

Estimation of T2. We closely follow the method of R.Warlimont [41]. Let

Nr =

{
n ≤ x| ∃j ∈ {1, 2} and ∃p > r such that pm‖n+ 3− j, |1− gj(pm)| > 1

2

}

Decompose T2 as

T2 =
1

x

∑
n∈Nr

∣∣g∗1,r(n+ 2)g∗2,r(n+ 1)−R(r, x)
∣∣

+
1

x

∑
n/∈Nr

∣∣g∗1,r(n+ 2)g∗2,r(n+ 1)−R(r, x)
∣∣ =: T5 + T6.

70



Now

T5 �
1

x

2∑
j=1

∑
r<p≤x+3−j

x+ 3− j
p

|1− gj(p)|2 +
2∑
j=1

∑
p>r

∑
m≥2

1

pm

�
2∑
j=1

D2(gj, 1; r;x+ 3− j) + (r log r)−1.

From (2.4) and (2.5), we have

T6 ≤
1

x

2∑
j=1

∑
n≤x

∣∣∣∣ ∑
pm‖n+3−j

p>r

(gj(p
m)− 1)−

∑
pm≤x
p>r

gj(p
m)− 1

pm

∣∣∣∣
+

1

x

∣∣∣∣∑
pm≤x
p>r

2∑
j=1

gj(p
m)− 1

pm
− logR(r, x)

∣∣∣∣+O

(
1

x

∑
n≤x

∑
pm‖n+3−j
j=1,2,p>r

|gj(pm)− 1|2
)

=: T7 + T8 + T9.

Now by Cauchy-Schwarz inequality and Turán-Kubilius inequality ( [9], Lemma 4.4),

we have

T7 �
( 2∑

j=1

∑
pm≤x+3−j

p>r

|gj(pm)− 1|2
) 1

2

+
1

x
�
( 2∑
j=1

∑
r<p≤x+3−j

|gj(p)− 1|2
) 1

2

+

(∑
p>r

1

p2

) 1
2

+
1

x
�

2∑
j=1

D(gj, 1; r;x+ 3− j) + (r log r)−
1
2 + x−1.

Now similar to estimation of E62, we have

T8 �
∣∣∣∣∑
pm≤x
p>r

2∑
j=1

gj(p
m)− 1

pm
− logR(r, x)

∣∣∣∣�∑
p>r

1

p2
� (r log r)−1

and

T9 �
1

x

{ 2∑
j=1

∑
pm≤x+3−j

p>r

|gj(pm)− 1|2

pm

}
�

2∑
j=1

D2(gj, 1; r;x+ 3− j) + (r log r)−1.
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Combining above calculations, we have

T2 � (r log r)−1/2 +
2∑
j=1

D(gj, 1; r;x+ 3− j).

By the above choice of r and from (2.12), we have T2 = o(1) as x→∞.

Which proves the required theorem.

The following theorem gives an asymptotic formula with explicit error term for

M ′
x(g1, g2, g3) as in (2.11) when g1, g2 are close to 1 (see definition 1.1) and g3 is a

good function (see definition 1.2.1). Recall that

θτ (n) =
∏
p|n

(
1 +

∞∑
m=1

g3(pm)

pm(1+iτ)

)−1

, τ ∈ R, Mx(g3) =
1

x

∑
n≤x

g3(n),

Qτ (r) =
∏
p≤r

(
1− 2θτ (p)

p− 1
+ θτ (p)

∞∑
m=1

g1(pm) + g2(pm)

pm

)
,

P3(r, x) =
∏
r<p≤x

(
1− 2

p
+

(
1− 1

p

) ∞∑
m=1

g1(pm) + g2(pm)

pm

)
.

Theorem 2.2.1. Let g1, g2 and g3 be multiplicative functions whose modulus does

not exceed 1 and g3 be a good function. Assume further that there exist a positive

constant c1 such that

∣∣∣∣1 +
∞∑
k=1

g3(2k)

2k(1+iξ)

∣∣∣∣ ≥ c1(2.15)

for ξ = 0 if g3 is real valued, and for all ξ ∈ R, if g3 is not real valued. Then there

exist positive absolute constants c, c′ and a real τ, |τ | ≤ (log x)1/19, such that for all

x ≥ r ≥ 2 and for all 1
2
< α < 5

9
, we have

M ′
x(g1, g2, g3)−Mx(g3)P3(r, x)Qτ (r)� x1−2α exp

(
c
rα

log r

)
+

(log r)c

(log x)c
′

+
exp (c(log log r)2)

(log x)1/19
+

2∑
j=1

D(gj, 1; r;x− 4 + j) + (r log r)−
1
2 .
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For real-valued g3 we may set τ = 0 in the expression of Qτ (r).

2.3 Proof of Theorem 2.2.1

Lemma 2.3.1 ([10], Theorem 2). Let g be a multiplicative function whose modulus

does not exceed 1. Then there is a real τ with |τ | ≤ (log x)1/19 such that

∑
n≤x

(n,D)=1

g(n) = θτ (D)
∑
n≤x

g(n) +O

(
x(log log 3D)2

(log x)1/19

)
(2.16)

holds uniformly for x ≥ 2 and odd integers D. If in addition, the condition (2.15)

is satisfied then (2.16) holds for even integers as well. For real-valued g we may set

τ = 0.

The following lemma is a special case of a theorem of Wolke [43].

Lemma 2.3.2 ([43], Theorem 1). Let g be a good function which is multiplicative

with modulus ≤ 1. Then for given any A > 0 there is a corresponding A1 > 0,

possibly depending on g, such that for x ≥ 2 and Q = x1/2(log x)−A1 , we have

∑
d≤Q

max
(l,d)=1

max
u≤x

∣∣∣∣∣ ∑
n≤u
n≡l(d)

g(n)− 1

φ(d)

∑
n≤u

(n,d)=1

g(n)

∣∣∣∣∣� x

(log x)A
.

In case −τ ∈ N or τ = 0 then

∑
d≤Q

max
l

max
u≤x

∣∣∣∣∣ ∑
n≤u
n≡l(d)

g(n)

∣∣∣∣∣� x

(log x)A
.

The following lemma is a two dimensional version of standard Cauchy-Schwarz in-

equality.

Lemma 2.3.3. Let 1 ≤ i, j, k ≤ y. If xj, xk and cjk are non-negative real numbers,
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then ∑
j≤y

∑
k≤y

xjxkcjk ≤
(∑
j≤y

∑
k≤y

x2
jx

2
kcjk

)1/2(∑
j≤y

∑
k≤y

cjk

)1/2

.

Proof. By applying Cauchy-Schwarz inequality, we have

∑
j≤y

∑
k≤y

xjxkcjk ≤
∑
j≤y

(∑
k≤y

x2
jx

2
kcjk

)1/2(∑
k≤y

cjk

)1/2

=:
∑
j≤y

ajbj.

Applying Cauchy-Schwarz inequality again, we have

∑
j≤y

ajbj ≤
(∑
j≤y

a2
j

)1/2(∑
j≤y

b2
j

)1/2

=

(∑
j,k≤y

x2
jx

2
kcjk

)1/2(∑
j,k≤y

cjk

)1/2

which completes the proof.

Proof of Theorem 2.2.1. We set

R := M ′
x(g1, g2, g3)−Mx(g3)P3(r, x)Qτ (r)

= P3(r, x) (M ′
x(g1,r, g2,r, g3)−Mx(g3)Qτ (r))

+
1

x

∑
n≤x

g1,r(n+ 2)g2,r(n+ 1)g3(n)
(
g∗1,r(n+ 2)g∗2,r(n+ 1)− P3(r, x)

)
.

It is easy to see that |P3(r, x)| ≤ 1. Therefore

R� |M ′
x(g1,r, g2,r, g3)−Mx(g3)Qτ (r)|

+
1

x

∑
n≤x

∣∣g∗1,r(n+ 2)g∗2,r(n+ 1)− P3(r, x)
∣∣ =: U1 + U2.

Estimation of U1. We have

M ′
x(g1,r, g2,r, g3) =

1

x

∑
n≤x

∑
d1|n+2

∑
d2|n+1

h1,r(d1)h2,r(d2)g3(n)
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=
1

x

∑
d1≤x+2

h1,r(d1)
∑

d2≤x+1
(d1,d2)=1

h2,r(d2)
∑
n≤x

n≡v(d1d2)

g3(n)

=
1

x

∑
dj≤y
j=1,2

(d1,d2)=1

h1,r(d1)h2,r(d2)
∑
n≤x

n≡v(d1d2)

g3(n)

+
1

x

2∑
k=1

∑
dj≤x+3−j
j=1,2
dk>y

h1,r(d1)h2,r(d2)

(
x

d1d2

+ 1

)
=: P2 + U11,

where v is the unique solution of the system n ≡ −2(d1), n ≡ −1(d2) and y :=

x1/4(log x)−
β
2 , β > 0.

From (2.13), (2.14) for 0 < α, γ < 1, we have

U11 � y−γ exp

(
c6

rγ

log r

)
+ x1−2α exp

(
2c2

rα

log r

)
� x−γ/4(log x)

γβ
2 exp

(
c6

rγ

log r

)
+ x1−2α exp

(
2c2

rα

log r

)
.

We also obtain

P2 =
1

x

∑
d1≤y

∑
d2≤y

(d1,d2)=1

h1,r(d1)h2,r(d2)

φ(d1d2)

∑
n≤x

(n,d1d2)=1

g3(n) +O

(
1

x

∑
dj≤y
j=1,2

|hjr(dj)|

)

+O

(
1

x

∑
dj≤y
j=1,2

|h1,r(d1)h2,r(d2)|

∣∣∣∣∣ ∑
n≤x

n≡v(d1d2)

g3(n)− 1

φ(d1d2)

∑
n≤x

(n,d1d2)=1

g3(n)

∣∣∣∣∣
)

=: P3 + U12 + U13.

By Lemma 2.3.2 and Lemma 2.3.3, we have

U13 �
1

x

(∑
l≤y2

∣∣∣∣∣ ∑
n≤x
n≡v(l)

g3(n)− 1

φ(l)

∑
n≤x

(n,l)=1

g3(n)

∣∣∣∣∣
)1/2

×

(∑
dj≤y
j=1,2

|h1,r(d1)|2|h2,r(d2)|2
∣∣∣∣∣ ∑

n≤x
n≡v(d1d2)

g3(n)− 1

φ(d1d2)

∑
n≤x

(n,d1d2)=1

g3(n)

∣∣∣∣∣
)1/2
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� 1

(log x)A/2

(∑
dj≤y
j=1,2

|h1,r(d1)|2|h2,r(d2)|2

φ(d1)φ(d2)

)1/2

.

Observe that ∑
d≤y

|h(d)|2

φ(d)
≤ exp

(
c7

∑
p≤r

1

p

)
≤ (log r)c8 .

Hence we have

U13 �
(log r)c8

(log x)A/2
.

Now from (2.13), we get

U12 �
y2(1−α)

x

∞∑
dj=1
j=1,2

|h1,r(d1)h2,r(d2)|
d1−α

1 d1−α
2

� x−
1
2

(1+α)(log x)−β(1−α) exp

(
2c2r

α

log r

)
.

Using Lemma 2.3.1, there exist a real τ with |τ | ≤ (log x)
1
19 such that

P3 =
1

x

∑
d1≤y

∑
d2≤y

(d1,d2)=1

h1,r(d1)h2,r(d2)

φ(d1d2)
θτ (d1d2)

∑
n≤x

g3(n)

+O

( ∑
dj≤y
j=1,2

(d1,d2)=1

|h1,r(d1)h2,r(d2)|
φ(d1)φ(d2)

(log log 3d1d2)2

(log x)1/19

)
=: P4τ + U14.

Now,

∑
d1,d2≤y

(d1,d2)=1

h1,r(d1)h2,r(d2)

φ(d1)φ(d2)
θτ (d1)θτ (d2) =

∞∑
d1,d2=1

(d1,d2)=1

h1,r(d1)h2,r(d2)

φ(d1)φ(d2)
θτ (d1)θτ (d2)

+O

(
2∑

k=1

∑
d1,d2≤y
dk>y

h1,r(d1)h2,r(d2)

φ(d1)φ(d2)
θτ (d1)θτ (d2)

)
=: P5τ + U15.

Now from the following two estimates

∑
d>y

|hj,r(d)θτ (d)|
φ(d)

≤ y−α exp

(
c9

∑
p≤r

1

p1−α

)
� x−

1−α
4 (log x)

β(1−α)
2 exp

(
c10

rα

log r

)
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and
∞∑
d=1

|hj,r(d)θτ (d)|
φ(d)

≤ exp

(
c11

∑
p≤r

1

p

)
≤ (log r)c12 .

We deduce that

U15 � x−
1−α
4 (log x)

β(1−α)
2 exp

(
c13

rα

log r

)
,

P5τ =
∏
p≤r

(
1 +

∞∑
m=1

(h1(pm) + h2(pm)) θτ (p
m)

φ(pm)

)

=
∏
p≤r

(
1− 2θτ (p)

p− 1
+ θτ (p)

∞∑
m=1

g1(pm) + g2(pm)

pm

)
= Qτ (r).

Observe that

∞∑
d=1

|hj,r(d)| log log d

φ(d)
=
∏
p≤r

(
1 +

∞∑
α=1

|hj,r(pα)|α log log p

φ(pα)

)
�
∏
p≤r

(
1 +

2p log log p

(p− 1)2

)
� exp

(
c14

∑
p≤r

log log p

p

)
� exp

(
c15(log log r)2

)
.

Hence

U14 �
exp (2c15(log log r)2)

(log x)1/19
.

Using the same method as in estimation of T2, we have

U2 �
2∑
j=1

D(gj, 1; r;x+ 3− j) + (r log r)−1/2.

Combining these results, we get

R�
(
x−

γ
4 (log x)γβ + x

α−1
4 (log x)

β(1−α)
2

)
exp

(
c16

rγ

log r

)
+ x1−2α exp

(
c17

rα

log r

)
+

(log r)c8

(log x)
A
2

+ x−
(1+α)

2 (log x)β(1−α) exp

(
c18

rα

log r

)
+

exp (2c15(log log r)2)

(log x)1/19
+

2∑
j=1

D(gj, 1; r;x+ 3− j) + (r log r)−
1
2 .
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By choosing α = γ, we get the required theorem.

We recall the following assumption related to 2-point Chowla type conjecture.

Assumption 2.3.1. For every given A > 0,

∑
n≤x

µ(n+ 1)µ(n)e(nα) = O

(
x

(log x)A

)

holds uniformly for all real α and implied constant depends on A.

Theorem 2.3.2. Let g1 be a multiplicative function such that |g1(n)| ≤ 1 for all n

and

∑
p

|g1(p)− 1|2

p
<∞.(2.17)

Suppose that Assumption 2.3.1 holds. Then as x→∞,

M ′
x(g1, µ, µ) =

1

x

∑
n≤x

g1(n+ 2)µ(n+ 1)µ(n) = o(1).

Proof. Set

T (r, x) =
∏
r<p≤x

{
1− 1

p
+

(
1− 1

p

) ∞∑
m=1

g1(pm)

pm

}
,

where r will be chosen later. Now

∑
n≤x

g1(n+ 2)µ(n+ 1)µ(n) = T (r, x)
∑
n≤x

g1,r(n+ 2)µ(n+ 1)µ(n)

+
∑
n≤x

g1,r(n+ 2)µ(n+ 1)µ(n)
(
g∗1,r(n+ 2)− T (r, x)

)
.
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It is easy to see that |T (r, x)| ≤ 1. Therefore

∣∣∣∑
n≤x

g1(n+ 2)µ(n+ 1)µ(n)
∣∣∣ ≤ ∣∣∣∑

n≤x

g1,r(n+ 2)µ(n+ 1)µ(n)
∣∣∣

+
∑
n≤x

∣∣g∗1,r(n+ 2)− T (r, x)
∣∣ =: V1 + V2.

Estimation of V1. We have

V1 =

∣∣∣∣∑
n≤x

∑
d|n+2

h1,r(d)µ(n+ 1)µ(n)

∣∣∣∣
≤
∣∣∣∣∑
d≤y

h1,r(d)
∑
n≤x

n≡−2(d)

µ(n+ 1)µ(n)

∣∣∣∣
+

∣∣∣∣ ∑
y<d≤x+2

h1,r(d)
∑
n≤x

n≡−2(d)

µ(n+ 1)µ(n)

∣∣∣∣ =: V11 + V12,

where y := log x. Under Assumption 2.3.1, we have

∑
n≤x

n≡−2(d)

µ(n+ 1)µ(n) =
∑
n≤x

µ(n+ 1)µ(n)
1

d

d∑
l=1

e

(
(n− 2)l

d

)

=
1

d

d∑
l=1

e

(
−2l

d

)∑
n≤x

µ(n+ 1)µ(n)e

(
nl

d

)
� x

(log x)A
.

By choosing A = 3, we get

V11 �
x

(log x)3

∑
d≤y

|h1,r(d)| � xy2

(log x)3

∞∑
d=1

|h1,r(d)|
d2

� x

log x
.

Now using (2.13), for 0 < α < 1, we have

V12 �
∑

y<d≤x+2

|h1,r(d)|
(x
d

+ 1
)
� (x+ 2)

∑
d>y

|h1,r(d)|
d

� (x+ 2)

yα

∞∑
d=1

|h1,r(d)|
d1−α � x

yα
exp

(
c2

rα

log r

)
.
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By taking r = (log log x)
1
α , we have

V12 � xy−αy
α
2 =

x

(log x)
α
2

.

So as x→∞ we have, V1 = o(x). From a similar calculation as in the estimation of

T2, we have

V2 � x(r log r)−
1
2 + x

( ∑
r<p≤x+2

|g1(p)− 1|2

p

)1/2

.

From (2.17) and r = (log log x)
1
α we have as x→∞, V2 = o(x)

which proves the required theorem.
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Chapter 3

Distribution of the sum of additive

functions

In this chapter, we will discuss about the behaviour of distributions of the sum of

additive functions. The result of this chapter is contained in [6].

In this chapter, we will discuss the behaviour of the distribution of the sum

f1(F1(n)) + f2(F2(n)) + f3(F3(n)),(3.1)

where f1, f2 and f3 are real-valued additive functions and F1(x), F2(x), F3(x) are

special polynomials with integer coefficients.

The following theorem gives the behaviour of the distribution of the sum (3.1) when

Fj’s are polynomial of degree greater than or equal to 2, which is an application of

Theorem 2.0.1.

Suppose that gj : N → U and hj : N → C be multiplication functions such that
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hj = µ ∗ gj, j = 1, 2, 3. We recall that

P1(γ) :=
∏
p≤γ

∞∑
m1=0

∞∑
m2=0

∞∑
m3=0

h1(pm1)h2(pm2)h3(pm3)

[pm1 , pm2 , pm3 ]
%(pm1 , pm2 , pm3),(3.2)

P2(γ) :=
∏
p>γ

(
1 +

∞∑
m=1

3∑
j=1

hj(p
m)%j(p

m)

pm

)
.(3.3)

Theorem 3.0.1. Let z, t ∈ R. Let f1, f2 and f3 be real-valued additive functions

and Fj(n), j = 1, 2, 3 are as above of degree vj ≥ 2. Assume that

∑
|fj(p)|≤1

f 2
j (p)

p
%j(p) <∞, j = 1, 2, 3,(3.4)

∑
|fj(p)|>1

%j(p)

p
<∞, j = 1, 2, 3,(3.5)

3∑
j=1

∑
|fj(p)|≤1

fj(p)%j(p)

p
<∞,(3.6)

fj(p
m)%j(p

m)→ 0,(3.7)

for m = 1, when vj ≥ 2 and for m = 1, 2, · · · , vj − 2, when vj ≥ 3. Then the

distribution function

Gx(z) :=
1

x
# {n|n ≤ x, f1(F1(n)) + f2(F2(n)) + f3(F3(n)) ≤ z}(3.8)

converges weakly towards a limit distribution as x → ∞, and there exist a natural

number γ depending on polynomials F1(x), F2(x) and F3(x) such that the charac-

teristic function say φ(t) of this limit distribution is equal to P1(γ)P2(γ), where

P1(γ) and P2(γ) are defined by (3.2) and (3.3) respectively with gj is replaced by

exp(itfj), j = 1, 2, 3.
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3.1 Proof of Theorem 3.0.1

Proof. We begin with some lemmas which are often used in probabilistic theory. The

famous continuity theorem of Paul Lévy connects weak convergence of distribution

functions to point-wise convergence of characteristic functions.

Lemma 3.1.1 ([40], Theroem 2.4). Let {Fn}∞n=1 be a sequence of distribution func-

tions and {φn}∞n=1 the sequence of their characteristic functions. Then Fn converges

weakly to a distribution function F if, and only if, φn converges point-wise on R to

a function φ which is continuous at 0. Furthermore, in this case, φ is the charac-

teristic function of F , and the convergence of φn to φ is uniform on any compact

subset.

The continuity theorem immediately provides the following criterion.

Lemma 3.1.2 ([40], Theorem 2.6). Let f be a real arithmetic function. Then f

possesses a distribution function F if, and only if, the sequence of functions

φN(τ) :=
1

N

∑
n≤N

eiτf(n)

converges point-wise on R to a function φ(τ) which is continuous at 0. In this case,

φ is the characteristic function of F .

Proof of Theorem 3.0.1. We will use Lemma 3.1.1 and Lemma 2.1.5 to prove

this application. The characteristic functions of the distribution (3.8) equal

φx(t) :=
1

x

∑
n≤x

exp (it (f1(F1(n)) + f2(F2(n)) + f3(F3(n)))) .(3.9)
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Since

∑
p

3∑
j=1

(exp (itfj(p))− 1) %j(p)

p
= it

3∑
j=1

∑
|fj(p)|≤1

fj(p)%j(p)

p

+O

(
t2

3∑
j=1

∑
|fj(p)|≤1

f 2
j (p)%j(p)

p

)
+O

( 3∑
j=1

∑
|fj(p)|>1

%j(p)

p

)

then from the convergence of the series (3.4), (3.5), (3.6) and from Lemma 2.1.5 we

deduce that P1(γ) and P2(γ) are convergent for every real t. Further, the infinite

product P1(γ)P2(γ) is continuous at t = 0 because it converges uniformly for |t| ≤ T

where T > 0 is arbitrary.

Since for j = 1, 2, 3

∑
p

(1−<(exp(itfj(p))))%j(p)

p
� t2

∑
|fj(p)|≤1

|fj(p)|2%j(p)
p

+
∑

|fj(p)|>1

%j(p)

p
,

then from the convergence of (3.4) and (3.5) it follows that D(exp(itfj), 1; r;x) and

D(exp(itfj), 1;x;Fj(x)) tends to zero when r, x→∞.

Now from (3.7) and Lemma 2.1.6, it is easy to see that

(exp (itfj(p
m)− 1) %j(p

m))→ 0 when p→∞,m < vj, j = 1, 2, 3.

Then 1
x
C(r, x) → 0 as r, x → ∞. Choosing r = log x in our Theorem 2.0.1 we get

that the remainder term disappears when x→∞.

Thus the characteristic function φx(t) has the limit φ(t) = P1(γ)P2(γ) for every real

t and this limit is continuous at t = 0.

Therefore by Lemma 3.1.1, the corollary is proved.
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Chapter 4

Selberg sieve over Fq[x]

We begin this chapter with some background on Number Theory over Function

Fields. In 1947 Selberg [29] introduced a new approach to sieving which is based

on global optimization. In this chapter, we will discuss Selberg sieve for polynomial

ring over finite fields and an application of it which will be used in Chapter 5.

4.1 Basic summation estimates over Fq[x]

In this section, we present some useful estimates for polynomials over finite fields,

which also appears in [8].

Lemma 4.1.1. i) Let q > 1 and γ > 0. For n ≥ 2 log(n/2)
log q

, we have

∑
m≤n

qmm−γ = O(qnn−γ).

ii) We have

∑
P∈Pq

degP≤n

q− degP = log n+ c1 +O(1/n),

85



where c1 is an absolute constant.

iii) Also we have

∑
m degP≤n/2

m≥1

qm degP = O

(
qn

n

)
and

∑
m degP≤n

m≥1

q−(m+1) degP = O(1).

Proof. i)
∑
m≤n

qmm−γ � qn/2
∑
m≤n/2

m−γ + n−γ
∑

n/2<m≤n

qm � qnn−γ.

ii) Using (1.11), we have

∑
degP≤n

q− degP =
∑
m≤n

q−m|Pm,q| =
∑
m≤n

q−m
(
qm

m
+O

(
qm/2

m

))
= log n+ c1 +O(1/n).

iii) Using i) and (1.11) we have

∑
m degP≤n/2

qm degP =
∑

degP≤n/2

qdegP +
∑

m degP≤n/2
m≥2

qm degP

=
∑
m≤n/2

qm|Pm,q|+O

(
q3n/4

n

)

=
∑
m≤n/2

q2m

m
+O

(
q3n/4

n

)
= O

(
qn

n

)

and

∑
m degP≤n

m≥1

q−(m+1) degP =
∑

degP≤n

q−2 degP +
∑

m degP≤n
m≥2

q−(m+1) degP

=
∑
m≤n

q−2m|Pm,q|+O(1) = O(1).
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4.2 Selberg sieve over Fq[x]

The Selberg sieve provides majorants for cardinality of certain arithmetic sequences,

such as the primes and the twin primes. In other words, it is a technique for estimat-

ing the size of “sifted sets” of positive integers which satisfy a set of congruence. In

this section, we will extend Selberg sieve ([9], Lemma 2.1) to polynomials over finite

fields and give an application of it which also appears in [8]. The main theorem of

this section is as follows.

Theorem 4.2.1. Let us consider the following set of polynomials

A = {aM ∈Mq : M ∈Mn,q}.

Also let r and z be positive integers such that

Q̃ =
∏

degP≤r

P and D = {D : D|Q̃, deg(D) ≤ z}.

Let Ψ be a real-valued non-negative arithmetic function on Mq. Suppose that there

exist a multiplicative function η supported on square-free polynomials with irreducible

factors of degree atmost r satisfying

0 ≤ η(P ) < 1, for all P ∈ Pq

such that for all D ∈ D,

∑
M∈Mn,q

aM≡0(D)

Ψ(M) = η(D)X +RD(n),(4.1)
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where X,RD(n) are real numbers and X ≥ 0. Now consider the following sum

S(n, Q̃) =
∑

M∈Mn,q

aM∈A
(aM ,Q̃)=1

Ψ(M).

If h(D) = 1
η(D)

∏
P |D

(1− η(P )), for D ∈ D, then we have

S(n, Q̃) ≤ X.L−1 +
∑
D|Q̃

deg(D)≤2z

3ω(D)|RD(n)|,

where L =
∑
M∈D

1

h(M)
.

Proof. Let λD be real numbers supported on monic polynomials D with D ∈ D such

that λ1 = 1. Since Ψ is non-negative arithmetic function, so we have

S(n, Q̃) ≤
∑

M∈Mn,q

aM∈A

Ψ(M)

( ∑
D|(aM ,Q̃)

λD

)2

.

Using hypothesis (4.1), expanding the square and interchanging the order of sum-

mation, we have

S(n, Q̃) ≤
∑
D1∈D

∑
D2∈D

λD1λD2

∑
M∈Mn,q

aM≡0([D1,D2])

Ψ(M)

= X
∑
D1∈D

∑
D2∈D

λD1λD2η([D1, D2]) +
∑
D1∈D

∑
D2∈D

λD1λD2R[D1,D2](n)

≤ X
∑
D1∈D

∑
D2∈D

λD1λD2η([D1, D2]) +
∑
D|Q̃

|µ+
D(D)RD(n)|

=: XΓ + E,
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where

µ+
D(D) =

∑
D1,D2∈D

[D1,D2]=D

λD1λD2 , Γ =
∑
D1∈D

∑
D2∈D

λD1λD2η([D1, D2]),

E =
∑
D|Q̃

|µ+
D(D)RD(n)|.

We need to choose the parameters λD to minimize Γ, consistent with the requirement

that λ1 = 1. We note that h(D) is multiplicative on the divisors D of Q̃ and satisfies

∑
M |D

h(M) =
1

η(D)
.

Hence

η([D1, D2]) =
η(D1)η(D2)

η((D1, D2))
= η(D1)η(D2)

∑
M |(D1,D2)

h(M)

and

Γ =
∑
D1∈D

∑
D2∈D

λD1λD2η(D1)η(D2)
∑

M |(D1,D2)

h(M)

=
∑
M∈D

h(M)

{ ∑
D∈D

D≡0 (mod M)

η(D)λD

}2

.

We make the change of variable

yM =
∑
D∈D

D≡0(M)

η(D)λD (M ∈ D)

in order to diagonalize Γ. By Möbius inversion formula [[23], Prop. 5.2], we have

λDη(D) =
∑
M∈D

M≡0 (mod D)

yMµ(M/D).
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Also observe that, if λ1 = 1 then

∑
M∈D

µ(M)yM = 1.(4.2)

So, we have

Γ =
∑
M∈D

h(M)

(
yM −

µ(M)

h(M)
L−1

)2

+ L−1

where

L =
∑
M∈D

1

h(M)
.

It is now clear that to minimize Γ we should choose the yM as

yM =
µ(M)

h(M)
L−1(4.3)

which also satisfies (4.2). Therefore we obtain

S(n, Q̃) ≤ XL−1 + E.

Using (4.3), we see that for any D ∈ D,

λD =
1

η(D)

∑
M∈D

M≡0(D)

yMµ(M/D) =
1

η(D)

∑
W∈D

deg(W )≤z−degD
(W,D)=1

µ(W )yDW

=
µ(D)

Lh(D)η(D)

∑
W∈D

deg(W )≤z−degD
(W,D)=1

µ(W )

h(W )
.

Since h(D) is multiplicative function Q̃, then we have

∑
M |D

1

h(M)
=

1

h(D)η(D)
, D ∈ D
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and |λD| ≤ 1 for any D ∈ D. This bound implies that for any D|Q̃,

|µ+
D(D)| ≤ 1{degP≤2z}3

ω(D).

Combining all of the above, we conclude the proof of the theorem.

4.2.1 Application of Theorem 4.2.1

Now we give an application of the Theorem 4.2.1, which is useful to prove a variant

of Turán-Kubilius inequality over function field in chapter 5.

Theorem 4.2.2 ([8], Lemma 6). Given a modulus M ∈ Fq[x] of positive degree and

a polynomial h co-prime to M , let πA(n;M,h) denotes the number of primes P ≡ h

(mod M), where P ∈ Pn,q. Then we have

Θ(n) :=
∑

n
2
<degQ≤n
Q∈Pq

Φ(Q)π2
A(n;Q, h)� |Pn,q|2(4.4)

where h is a fixed polynomial with deg(h) < n.

We start with the following lemma.

Lemma 4.2.1. Let ∆ be a polynomial in Fq[x]. Then we have

∑
M∈M≤n,q
(M,∆)=1

µ2(M)3ω(M)

|M |
≥ cn3

∏
P |∆

(
1 +

3

|P |

)−1

,

where c is an absolute constant.

Proof. Let us consider

F (s) =
∑
M

µ2(M)3ω(M)

|M |s+1
, <(s) > 0.
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We can write

F (s) =
∞∑
n=1

H(n)

qns
, where H(n) =

∑
M∈Mn,q

µ2(M)3ω(M)

|M |
.

Putting u = q−s, we define

F̃ (u) =
∞∑
n=1

H(n)un, |u| < 1.

On the other hand, from Euler product we get

F̃ (u) =
G̃(u)

(1− u)3
, where G̃(u) = G(s) =

∏
P

(
1 +

3

|P |s+1

)(
1− 1

|P |s+1

)3

.

It is easy to see that G(u) is bounded and therefore converges for |u| < 1. Comparing

the coefficient of F̃ (u) we have H(n) ≥ c1n
2, where c1 > 0 is an absolute constant.

Using this, we observe that

∏
P |∆

(
1 +

3

|P |

) ∑
M∈M≤n,q
(M,∆)=1

µ2(M)3ω(M)

|M |
≥

∑
M∈M≤n,q

µ2(M)3ω(M)

|M |
=
∑
m≤n

H(m) ≥ cn3

which completes the proof of the lemma.

Proof of Theorem 4.2.2. Expanding square of L.H.S of (4.4), we obtain

Θ(n) =
∑

n
2
<degQ≤n

Φ(Q)

( ∑
P∈Pn,q
P≡h(Q)

1

)
×
( ∑

P ′∈Pn,q
P ′≡h(Q)

1

)
=

∑
A,B∈M≤n2 ,q
degA=degB

S(A,B),

where

S(A,B) :=
∑

n
2
<degQ≤n

AQ+h∈Pn,q
BQ+h∈Pn,q

Φ(Q).
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Now we have to find upper bound of the set S(A,B). We define the following sets.

A = {aM := M(AM + h)(BM + h) : deg(M) = n− deg(A)}

and ℘M = {P ∈ Pq : deg(P ) < [n/2], P -M},

where M:= AB(Ah−Bh).

Let us define

%(D) = #{M (mod D) : aM ≡ 0 (mod D)}

for monic polynomial D ∈ Fq[x]. Also let

Q̃ =
∏
P∈℘M

degP≤n
2

P and D = {D : D|Q̃, deg(D) ≤ n

4
}.

Observe that

S(A,B) ≤
∑

M∈Mn−deg(A),q

aM∈A
(aM ,Q̃)=1

|M |.(4.5)

Now we are ready to apply Theorem 4.2.1 to the R.H.S of the inequality (4.5).

We see that |M | is a real valued non-negative arithmetic function and

∑
M∈Mn−deg(A),q

aM≡0(D)

|M | = qn−deg(A)
∑

M∈Mn−deg(A),q

aM≡0(D)

1 = q2(n−deg(A))η(D)

where η(D) = %(D)
|D| .

Therefore using Theorem 4.2.1, we have

S(A,B) ≤ XL−1,
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where

X = q2n−2 deg(A) and L =
∑
M∈D

1

h(M)
.

Note that, for D ∈ D

h(D) =
1

η(D)

∏
P |D

(1− η(P )).

Note that %(D) = 3ω(D) for all D ∈ D. Therfore using Lemma 4.2.1, we obtain

L =
∑
M∈D

1

h(M)
≥
∑
M∈D

η(M) =
∑

M∈M≤n4 ,q
(M,∆)=1

µ2(M)3ω(M)

|M |
≥ cn3

∏
P |M

(
1 +

3

|P |

)−1

where c > 0 is an absolute constant. Combining above results we get

S(A,B)� q2n−2 deg(A)

n3

∏
P |∆

(
1 +

3

|P |

)
.

Therefore we have

Θ(n)� q2n

n3

∑
A,B∈M≤n2 ,q
degA=degB

q−2 degA
∏

P |AB(A−B)h

(
1 +

3

|P |

)
.

Now we write

∑
A,B∈M≤n2 ,q
degA=degB

q−2 degA
∏

P |AB(A−B)h

(
1 +

3

|P |

)

=
∑

A,B∈M≤n2 ,q
degA=degB

q−2 degA
∏
P |A

(
1 +

3

|P |

) ∏
P |B(A−B)

(
1 +

3

|P |

)∏
P |h

(
1 +

3

|P |

)
.

Since h is a fixed polynomial then we have

∏
P |h

(
1 +

3

|P |

)
� 1
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with constant depending on q and h. So it is enough to consider the following sum:

∑
A,B∈M≤n2 ,q
degA=degB

q−2 degA
∏
P |A

(
1 +

3

|P |

) ∏
P |B(A−B)

(
1 +

3

|P |

)

=
∑

A∈M≤n2 ,q

q−2 degA
∏
P |A

(
1 +

3

|P |

) ∑
B

degB=degA

∏
P |B(A−B)

(
1 +

3

|P |

)
.

Now inner sum becomes

∑
B

degB=degA

∏
P |B(A−B)

(
1 +

3

|P |

)
≤

∑
B

degB=degA

∏
P |B

(
1 +

3

|P |

) ∏
P |(A−B)

(
1 +

3

|P |

)

=
∑
B

degB=degA

∑
D1|B

µ2(D1)3ω(D1)

|D1|
∑

D2|A−B

µ2(D2)3ω(D2)

|D2|

=
∑
D1,D2

µ2(D1)µ2(D2)3ω(D1)3ω(D2)

|D1D2|
∑

B∈MdegA,q

B≡0(D1)
B≡A(D2)

1.

We observe that (D1, D2)|A. Let D = (D1, D2) and Di = DFi. Here (Fi, D) =

1, (F1, F2) = 1 and ω(Di) = ω(D) + ω(Fi) for all i = 1, 2.

So we have

∑
B

degB=degA

∏
P |B(A−B)

(
1 +

3

|P |

)

≤
∑
D|A

µ2(D)3ω(D)

|D|2
∑

Fi∈M≤degA−degD,q

(F1,F2)=1
(Fi,D)=1

µ2(F1)µ2(F2)3ω(F1)+ω(F2)

|F1F2|
∑

B′∈MdegA−degD,q

B′≡0(F1)

B′≡A
D

(F2)

1

=
∑
D|A

µ2(D)3ω(2D)

|D|2
∑

Fi∈M≤degA−degD,q

(F1,F2)=1
(Fi,D)=1

µ2(F1)µ2(F2)3ω(F1)+ω(F2)

|F1F2|

(
qdegA−degD

|F1F2|
+O(1)

)
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= qdegA
∑
D|A

µ2(D)3ω(2D)

|D|3
∑

Fi∈M≤degA−degD,q

(F1,F2)=1
(Fi,D)=1

µ2(F1)µ2(F2)3ω(F1)+ω(F2)

|F1F2|2

+O

(∑
D|A

µ2(D)3ω(2D)

|D|2
∑

Fi∈M≤degA−degD,q

(F1,F2)=1
(Fi,D)=1

µ2(F1)µ2(F2)3ω(F1)+ω(F2)

|F1F2|

)

� qdegA.

Hence we obtain

Θ(n)� q2n

n3

∑
A∈Mn

2 ,q

q−degA
∏
P |A

(
1 +

3

|P |

)

=
q2n

n3

∑
A∈Mn

2 ,q

∑
D|A

µ2(D)3ω(D)

|D|
� q2n

n2

which completes proof of the lemma.
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Chapter 5

Correlation of multiplicative

functions over Fq[x]

In this chapter, we will study the mean value of correlation of multiplicative functions

over function field in large degree limit. More precisely, for multiplicative functions

ψ1, ψ2 : Mq → U, our aim is to study the asymptotic behaviour of the following

correlation functions for a fixed q and n→∞:

S2(n, q) :=
∑

f∈Mn,q

ψ1(f + h1)ψ2(f + h2)(5.1)

and

R2(n, q) :=
∑

P∈Pn,q

ψ1(P + h1)ψ2(P + h2),(5.2)

where h1, h2 are fixed polynomials of degree < n over Fq. The results of this chapter

are contained in [8].

Let ψj : Mq → U and αj : Mq → C be multiplicative functions such that

αj = µ ∗ ψj for all j = 1, 2. For fixed polynomials hj ∈ Fq[x] with deg(hj) < n for
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all j = 1, 2 and n ≥ r, we define

Q(n) :=
∏

degP≤n

υP and Q(r, n) =
∏

r<degP≤n

υP .(5.3)

where

υP :=
∞∑

m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|(h2−h1)

α1(Pm1)α2(Pm2)

qdeg([pm1 ,Pm2 ])
.

In [8], we investigate the asymptotic behaviour of the above sums (5.1) and (5.2) for

k = 2, i.e. S2(n, q) and R2(n, q) in large degree limit. The following theorem gives

the asymptotic behaviour of S2(n, q) with explicit error term in large degree limit.

Theorem 5.0.1. Let ψ1 and ψ2 be multiplicative functions onMq with modulus less

than or equal to 1. Suppose that ψ1 and ψ2 are close to 1 and γ := deg(h2 − h1) ≥⌈
log 9
log q

⌉
. Then there exists a positive absolute constant c such that for all n ≥ r ≥ γ

and for all 1
2
< α < 1, we have

S2(n, q)

qn
−Q(n)� D(ψ1, 1; r, n) + D(ψ2, 1; r, n) + q(1−2α)n exp

(cqαr
r

)
+ (rqr)−

1
2

where Q(n) is defined by (5.3).

Remark 5.0.1. Note that γ is fixed here since the polynomials h1 and h2 are fixed.

Also we write

Q(n) = Q1(γ)Q2(γ, n)

where

Q1(γ) =
∏

degP≤γ

υP ,(5.4)

Q2(γ, n) =
∏

γ<degP≤n

(
1 +

2∑
j=1

∞∑
m=1

ψj(P
m)− ψj(Pm−1)

qm degP

)
.(5.5)
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5.1 Proof of Theorem 5.0.1

The following lemma is a version of standard Chinese remainder theorem over func-

tion fields.

Lemma 5.1.1. Let, h1, h2, g1, g2 ∈ Fq[x]. The congruence system

f + hj ≡ 0 (mod gj) j = 1, 2

has a solution if and only if (g1, g2)|(h2 − h1). If the solution exists, it is unique

modulo [g1, g2].

We recall the following lemma from Chapter 4 which collects some useful estimation

over function field.

Lemma 5.1.2. We have the following:

a) Let q > 1 and γ > 0. Then we obtain

∑
m≤n

qmm−γ = O(qnn−γ).

b) We have

∑
P∈Pq

degP≤n

q− degP = log n+ c1 +O(1/n)

where c1 is a absolute constant.

c)
∑

m degP≤n/2
m≥1

qm degP = O

(
qn

n

)
and

∑
m degP≤n

m≥1

q−(m+1) degP = O(1).

The following lemma is a version of Turán-Kubilius inequality over function field in

large degree limit.

99



Lemma 5.1.3. For a sequence of complex numbers ψ(Pm), supported on powers

Pm of irreducible polynomials P and m ≥ 1, we have

∑
f∈Mn,q

∣∣∣∣ ∑
Pm‖f+h

ψ(Pm)−
∑

mdegP≤n

ψ(Pm)

qm degP

(
1− q− degP

) ∣∣∣∣2 � qn
∑

m degP≤n

|ψ(Pm)|2

qm degP

where h is some fixed polynomial with deg(h) < n.

Proof. First we assume that ψ(Pm) = 0 for all irreducible polynomials P with

m deg(P ) > n
2
. By simplifying square of modulus on left hand side of the above

inequality, the coefficient of ψ(Pm)ψ(Qr), where P and Q are distinct irreducible

polynomials, is

∑
f∈Mn,q

∑
Pm,Qr‖f+h

1−
∑

f∈Mn,q

∑
Pm‖f+h
r degQ≤n

1− q− degQ

qr degQ
−

∑
f∈Mn,q

∑
Qr‖f+h
m degP≤n

1− q− degP

qm degP

+
∑

f∈Mn,q

∑
m degP≤n
r degQ≤n

(
1− q− degP

) (
1− q− degQ

)
qm degP+r degQ

.

Observe that

∑
f∈Mn,q

∑
Pm,Qr‖f+h

1 = qn
∑

m degP≤n
r degQ≤n

(
1− q− degP

) (
1− q− degQ

)
qm degP+r degQ

.

By treating all three other sums analogously, we find that the coefficient of ψ(Pm)ψ(Qr)

is zero if P 6= Q. Therefore the coefficients of only diagonal terms will have non-zero

coefficients. Using Lemma 5.1.2 and Cauchy-Schwarz inequality the rest of the sum

gives

∑
f∈Mn,q

∑
degP≤n/2

∣∣∣∣ψ (P vP (f+h)
)
−

∑
m degP≤n

ψ(Pm)

qm degP

(
1− q− degP

) ∣∣∣∣2
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�
∑

f∈Mn,q

∑
degP≤n/2

∣∣∣∣ψ (P vP (f+h)
) ∣∣∣∣2 +

∑
f∈Mn,q

∑
m;m degP≤n

degP≤n/2

∣∣∣∣ψ(Pm)

qm degP

(
1− q− degP

) ∣∣∣∣2

� qn
∑

m degP≤n

|ψ(Pm)|2

qmdegP
+ qn

( ∑
m;m degP≤n

degP≤n/2

|ψ(Pm)|2

qm degP

∑
m;mdegP≤n

degP≤n/2

1

qm degP

(
1− q− degP

)2
)

� qn
∑

m degP≤n

|ψ(Pm)|2

qmdegP
,

where vP (f) is the highest power of P dividing f .

Now we will assume that ψ(Pm) = 0 for all monic irreducible polynomials P with

m degP ≤ n/2. Note that f + h ∈ Mn,q. Therefore, if f ∈ Mn,q and ψ(f + h) 6= 0

then there exist at most one irreducible monic polynomial power Pm‖f + h and

ψ(Pm) 6= 0. So by using Cauchy-Schwarz inequality, we have

∑
f∈Mn,q

∣∣∣∣ ∑
Pm‖f+h

ψ(Pm)−
∑

m degP≤n

ψ(Pm)

qm degP

(
1− q− degP

) ∣∣∣∣2 � qn
∑

m degP≤n

|ψ(Pm)|2

qm degP
.

Finally we write ψ as ψ1+ψ2, where ψ1(Pm) = 0 for all monic irreducible polynomials

with m degP > n/2 and ψ2(Pm) = 0 with m degP ≤ n/2 and combining above

calculation we get the required result.

As a direct consequence of Lemma 5.1.3, using Lemma 5.1.2 and Cauchy-Schwarz

inequality twice, we get the following version of Turán-Kubilius inequality over func-

tion field.

Lemma 5.1.4. For a sequence of complex numbers {ψ(Pm) : P ∈ Pq,m ≥ 1}, we

have

∑
f∈Mn,q

∣∣∣∣ ∑
Pm‖f+h

ψ(Pm)−
∑

m degP≤n

ψ(Pm)

qm degP

∣∣∣∣� qn
( ∑
m degP≤n

|ψ(Pm)|2

qm degP

)1/2

where h is some fixed polynomial with deg h < n.
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Proof of Theorem 5.0.1. For r ≥ 1 and j = 1, 2, we define multiplicative functions

ψj,r and ψ∗j,r, by

ψj,r(P
m) =


ψj(P

m) if degP ≤ r

1 if degP > r

and ψ∗j,r(P
m) =


1 if degP ≤ r

ψj(p
m) if degP > r

and multiplicative function αj,r by

αj,r(P
m) =


ψj(P

m)− ψj(Pm−1) if degP ≤ r

0 if degP > r

so that ψj,r = 1 ∗ αj,r, j = 1, 2.

We write

S2(n, q)

qn
−Q(n) = Q(r, n)

(
1

qn

∑
f∈Mn,q

ψ1,r(f + h1)ψ2,r(f + h2)−Q(r)

)
+

1

qn

∑
f∈Mn,q

ψ1,r(f + h1)ψ2,r(f + h2)
(
ψ∗1,r(f + h1)ψ∗2,r(f + h2)−Q(r, n)

)
.

We observe that

∣∣∣∣ ∞∑
m=1

ψj(P
m)− ψj(Pm−1)

qm degP

∣∣∣∣ ≤ ∞∑
m=1

2

qm degP
≤ 1

4
, if degP ≥ log 9

log q
.

Using Hypothesis that both ψ1 and ψ2 are close to 1 and using Lemma 5.1.2, if

r ≥
⌈

log 9
log q

⌉
, it is easy to see that Q(r, n)� 1. Therefore, we have

S2(n, q)

qn
−Q(n)�

∣∣∣ 1

qn

∑
f∈Mn,q

ψ1,r(f + h1)ψ2,r(f + h2)−Q(r)
∣∣∣(5.6)

+
1

qn

∑
f∈Mn,q

∣∣∣ψ∗1,r(f + h1)ψ∗2,r(f + h2)−Q(r, n)
∣∣∣.
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Now we see that

∑
f∈Mn,q

ψ1,r(f + h1)ψ2,r(f + h2) =
∑

f∈Mn,q

∑
g1|f+h1

α1,r(g1)
∑

g2|f+h2

α2,r(g2)

=
∑

g1∈M≤n,q
g2∈M≤n,q

α1,r(g1)α2,r(g2)
∑

f∈Mn,q

g1|f+h1
g2|f+h2

1.

By using Lemma 5.1.1, we have

∣∣{f ∈Mn,q : f ≡ −h1 (mod g1), f ≡ −h2 (mod g2)}
∣∣ =

qn

|[g1, g2]|
+O(1)

whenever (g1, g2)|(h2 − h1).

Therefore we obtain

∑
f∈Mn,q

ψ1,r(f + h1)ψ2,r(f + h2) = qn
∑

gj∈M≤n,q∀j
(g1,g2)|(h2−h1)

α1,r(g1)α2,r(g2)

|[g1, g2]|
+

+O

( ∑
gj∈M≤n,q
∀j=1,2

|α1,r(g1)α2,r(g2)|
)

=: M1 + E1.

Now we have

M1 = qn
∑

gj∈Fq [x]∀j
(g1,g2)|(h2−h1)

α1,r(g1)α2,r(g2)

|[g1, g2]|
+O

(
qn

∑
deg(g1)>n

∑
g2∈Fq [x]

|α1,r(g1)α2,r(g2)|
|[g1, g2]|

)

= qnQ(r) + E2.

Since (g1, g2)|(h2 − h1) and (h2 − h1) is a fixed polynomial we have |(g1, g2)| � 1

with constant depending on q, h1 and h2. By writing [g1, g2] = g1g2
(g1,g2)

we get

E2 � qn
∑

deg(g1)>n

|α1r(g1)|
|g1|

∑
g2∈Fq [x]

|α2r(g2)|
|g2|

.
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Using Lemma 5.1.2 (b), we observe that

∑
g∈Fq [x]

|αj,r(g)|
|g|

=
∏

degP≤r

(
1 +

∞∑
k=1

|αj,r(P k)|
qk degP

)
≤

∏
degP≤r

(
1 +

2

qdegP − 1

)
� exp

(
c
∑

degP≤r

q−degP
)
� rc1

for some constant c, c1 > 0. For 0 < α < 1, using Lemma 5.1.2 (a), we have

∑
deg(g)>n

|αj,r(g)|
|g|

≤ 1

qnα

∑
g∈Fq [x]

|αj,r(g)|
q(1−α) deg(g)

� 1

qnα
exp

(
c2

∑
degP≤r

1

q(1−α) degP

)
� 1

qnα
exp

(
c3

∑
m≤r

qmα

m

)
� 1

qnα
exp

(
c4
qrα

r

)

for absolutely constant c3 > 0 and c4 > 0. Using these estimates, we get

E1 � q(2−2α)n exp
(
c
qrα

r

)
and E2 � q(1−α)n exp

(
c
qrα

r

)
.

Therefore finally we have to calculate the following sum

E3 :=
∑

f∈Mn,q

∣∣∣ψ∗1,r(f + h1)ψ∗2,r(f + h2)−Q(r, n)
∣∣∣.

For a fixed f ∈Mq and k = 1, 2, we define

Pf (k) :=
{
P : Pm‖f + hk and |1− ψk(Pm)| > 1

2

}
.

Now we consider the following set

Nr =
{
f ∈Mn,q : ∃k ∈ {1, 2} and ∃P ∈ Pf (k) with degP > r

}
.
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On the basis of the set Nr we decompose E3 into

E3 =
∑
f∈Nr

∣∣∣ψ∗1,r(f + h1)ψ∗2,r(f + h2)−Q(r, n)
∣∣∣+

∑
f 6∈Nr

∣∣∣ψ∗1,r(f + h1)ψ∗2,r(f + h2)−Q(r, n)
∣∣∣

=: E4 + E5.

Using Lemma 5.1.2, we see that

E4 �
2∑
j=1

∑
f∈Mn,q

Pm‖f+hj
|1−ψj(Pm)|>1/2

degP>r

1� qn
2∑
j=1

∑
m degP≤n

|1−ψj(Pm)|>1/2
degP>r

1

qm degP

� qn
2∑
j=1

∑
r<degP≤n

|1− ψj(P )|
qdegP

+ qn
∑

degP>r

q−2 degP

� qn(D(ψ1, 1; r, n) + D(ψ2, 1; r, n)) +
qn−r

r
.

We recall that if <(u) ≤ 0,<(v) ≤ 0, then

|exp(u)− exp(v)| ≤ |u− v| and(5.7)

log(1 + z) = z +O(|z|2), if |z| ≤ 1, | arg(z)| ≤ π

2
.(5.8)

Note that

logQ(r, n) =
∑

r<degP≤n

log

(
1 +

2∑
j=1

∞∑
m=1

ψj(P
m)− ψj(Pm−1)

qm degP

)
.

Using (5.8), we get

logψ∗j,r(f + hj) =
∑

Pm‖f+hj
degP>r

(ψj(P
m)− 1) +O

( ∑
Pm‖f+hj
degP>r

|ψj(Pm)− 1|2
)
.
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Therefore again using (5.7) and (5.8), we have

E5 �
2∑
j=1

∑
f∈Mn,q

∣∣∣∣ ∑
Pm‖f+hj
degP>r

(ψj(P
m)− 1)−

∑
m degP≤n

degP>r

ψj(P
m)− 1

qm degP

∣∣∣∣
+

∑
f∈Mn,q

∣∣∣∣ 2∑
j=1

∑
m degP≤n

degP>r

ψj(P
m)− 1

qm degP
− logQ(r, n)

∣∣∣∣+O

( ∑
f∈Mn,q

∑
Pm‖f+hj
degP>r

|ψj(Pm)− 1|2
)

=: E6 + E7 + E8.

Now we obtain

E8 � qn
2∑
j=1

∑
m degP≤n
m≥1;degP>r

|ψj(Pm)− 1|2

qm degP
� qn

2∑
j=1

∑
r<degP≤n

|ψj(P )− 1|2

qdegP
+
qn−r

r

� qn
(
D2(ψ1, 1; r, n) + D2(ψ2, 1; r, n)

)
+
qn−r

r
,

E7 = qn
∣∣∣∣ 2∑
j=1

∑
r<degP≤n

ψj(P )− 1

qdegP
+O

( ∑
degP>r

q−2 degP

)
−

2∑
j=1

∑
r<degP≤n

ψj(P )− 1

qdegP

∣∣∣∣
� qn

∑
degP>r

q−degP � qn−r

r
.

Using Lemma 5.1.4, we have

E6 � qn
( 2∑

j=1

∑
m degP≤n
m≥1;degP>r

|ψj(Pm)− 1|2

qm degP

)1/2

� qn
2∑
j=1

D(ψj, 1; r, n) +
qn

(rqr)
1
2

.

Combining the above estimates, we get the theorem.

The following theorem gives an asymptotic formula of the sum (5.2) in large degree

limit (when q is fixed and n → ∞). For fixed polynomials h1, h2 ∈ Fq[x] with

deg(hj) < n for all j = 1, 2 and n ≥ r, we define

Q
′
(n) :=

∏
degP≤n

υ′P and Q′(r, n) =
∏

r<degP≤n

υ′P(5.9)
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where

υ′P :=
∞∑

m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|(h2−h1)

α1(Pm1)α2(Pm2)

Φ[Pm1 , Pm2 ]
.

Theorem 5.1.1. Let ψ1 and ψ2 be multiplicative functions onMq with modulus less

than or equal to 1. Suppose that ψ1 and ψ2 are close to 1 and γ := deg(h2 − h1) ≥⌈
log 17
log q

⌉
. Then there exists a positive absolute constant c such that for all n ≥ r ≥ γ

and for all 1
2
< α < 1, we have

R2(n, q)

|Pn,q|
−Q′(n)� D(ψ1, 1; r, n) + D(ψ2, 1; r, n) + n−A exp

(cqαr
r

)
+ (rqr)−

1
2

where A > 0 is arbitrary constant and Q′(n) is as defined in (??).

Remark 5.1.1. Note that γ is fixed here since the polynomials h1 and h2 are fixed.

Also we write

Q′(n) = Q′1(γ)Q′2(γ, n)

where

Q′1(γ) =
∏

degP≤γ

υ′P ,(5.10)

Q′2(γ, n) =
∏

γ<degP≤n

(
1 +

2∑
j=1

∞∑
m=1

ψj(P
m)− ψj(Pm−1)

Φ(Pm)

)
.(5.11)

We use this decomposition of Q′(n) in the applications.

5.2 Proof of Theorem 5.1.1

Recall that for a given modulus M ∈ Fq[x] of positive degree and a polynomial

B coprime to M, let πA(n;M,B) denotes the number of primes P ≡ B (mod M),

107



where P ∈ Pn,q. The prime polynomial theorem for arithmetic progression says that

πA(n;M,B) =
qn

nΦ(M)
+O

(
qn/2

n

)
.(5.12)

As in classical case, we want to allow deg(M) to grow with n. The interesting range

of parameter is deg(M) < n because if deg(M) ≥ n there is at most one monic

prime polynomial in arithmetic progression h ≡ B (mod M) of degree n. From

(5.12) we see that if n/2 ≤ deg(M) < n then error term becomes larger than main

term. Therefore, we must assume that deg(M) < n/2.

The following lemma is analog of Brun-Titchmarsh inequality over function field

which is a special case of a theorem of Chin-Nung Hsu.

Lemma 5.2.1 ([18], Theorem 4.3). Let πA(n;M,B) be defines as above and Φ(M)

denotes the number of coprime residues modulo M . Then for deg(M) < n, we have

πA(n;M,B) ≤ 2qn

Φ(M)(n− deg(M) + 1)
.

Remark 5.2.1. The inequality in Lemma 5.2.1 is stronger than (5.12) if n/2 <

deg(M) < n.

We recall the following lemma from Chapter 4 which is used in next lemma to prove

shifted version of Turán-Kubilius inequality over irreducible polynomials.

Lemma 5.2.2. Using the above notations, we have

Θ(n) :=
∑

n
2
<degQ≤n
Q∈Pq

Φ(Q)π2
A(n;Q,−h)� |Pn,q|2,

where h is a fixed polynomial with deg(h) < n.

Lemma 5.2.3. Let h be a fixed polynomial with deg h < n. For a sequence of
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complex numbers {ψ(Pm) : P ∈ Pq,m ≥ 1}, we have

∑
P∈Pn,q

∣∣∣ ∑
Qk‖P+h

ψ(Qk)− A(n)
∣∣∣� |Pn,q| ×B(n)

where A(n) :=
∑
Q∈Pq

k degQ≤n

ψ(Qk)

Φ(Qk)

(
1− 1

qdeg(Q)

)
and B2(n) :=

∑
Q∈Pq

k degQ≤n

|ψ(Qk)|2

Φ(Qk)
.

Proof. Using triangle inequality, we have

∑
P∈Pn,q

∣∣∣ ∑
Qk‖P+h

ψ(Qk)− A(n)
∣∣∣ ≤ ∑

P∈Pn,q

∣∣∣ ∑
Qk‖P+h

k deg(Q)≤m

ψ(Qk)− A(m)
∣∣∣

+
∑

P∈Pn,q

∣∣∣ ∑
Qk‖P+h

k deg(Q)≤m

ψ(Qk)
∣∣∣+

∑
P∈Pn,q

|A(n)− A(m)| =: L1 + L2 + L3,

where m < n will be chosen later. Using Cauchy-Schwarz inequality and (1.11), we

get

L1 ≤
( ∑
P∈Pn,q

1

) 1
2
( ∑
P∈Pn,q

∣∣∣ ∑
Qk‖P+h

ψ(Qk)− A(m)
∣∣∣2) 1

2

≤ q
n
2

n
1
2

× L
1
2
4 ,

where

L4 :=
∑

P∈Pn,q

∣∣∣ ∑
Qk‖P+h

ψ(Qk)− A(m)
∣∣∣2.

Note that

∑
P∈Pn,q
Qk‖P+h

1 = πA(n,Qk,−h)− πA(n,Qk+1,−h)

and

∑
P∈Pn,q

Q
k1
1 ,Q

k2
2 ‖P+h

1 = πA(n,Qk1
1 Q

k2
2 ,−h)− πA(n,Qk1+1

1 QK2
2 ,−h)

− πA(n,Qk1
1 Q

k2+1
2 ,−h) + πA(n,Qk1+1

1 Qk2+1
2 ,−h).

109



Using these estimates, (5.12) and by simplifying square of modulus of L4, we observe

that

L4 =
qn

n

∑
k degQ≤m

|ψ(Qk)|2

Φ(Qk)

(
1− 1

qdegQ

)(
1− 1

qk degQ

)

+O

(
q
n
2

n
logm

∑
k degQ≤m

|ψ(Qk)|2

Φ(Qk)
+
q
n
2

+m(logm)
1
2

nm
1
2

∑
k degQ≤m

|ψ(Qk)|2

Φ(Qk)

)
.

By choosing m = n
2
, we have L4 � qn

n
× B2(n). Using Lemma 5.2.1, Lemma 5.2.2

and Cauchy-Schwarz inequality, we have

L2 =
∑

P∈Pn,q

∣∣∣∣ ∑
Qk‖P+h

n
2
<k degQ≤n

ψ(Qk)

∣∣∣∣ ≤ ∑
n
2
<k degQ≤n

|ψ(Qk)|πA(n;Qk,−h)

�
( ∑

n
2
<k degQ≤n

k≥1

|ψ(Qk)|2

Φ(Qk)

) 1
2

×
( ∑

n
2
<k degQ≤n

k≥1

Φ(Qk)π2
A(n;Qk,−h)

) 1
2

� B(n)× (Θ(n))
1
2 +B(n)× qn

( ∑
n
2
<k degQ≤n

k≥2

1

Φ(Qk)

) 1
2

� B(n)× (Θ(n))
1
2 +B(n)× |Pn,q| ×

n
1
2

qn/8
� |Pn,q| ×B(n)

and for m = n
2

we get

L3 =
∑

P∈Pn,q

|A(n)− A(m)| � |Pn,q|
∑

n
2
<k degQ≤n

|ψ(Qk)|
Φ(Qk)

� |Pn,q| ×B(n)

where Θ(n) is defined as in Lemma 5.2.2. This completes the proof of the lemma.

Proof of Theorem 5.1.1. We write

R2(n, q)

|Pn,q|
−Q′(n) = Q′(r, n)

(
1

|Pn,q|
∑

P∈Pn,q

ψ1,r(P + h1)ψ2,r(P + h2)−Q′(r)
)

+
1

|Pn,q|
∑

P∈Pn,q

ψ1,r(P + h1)ψ2,r(P + h2)

(
ψ∗1,r(P + h1)ψ∗2,r(P + h2)−Q′(r, n)

)
.
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where ψj,r and ψ∗j,r, j = 1, 2 are defined as in the proof of the Theorem 5.0.1.

Observe that Q′(r, n)� 1. Therefore we have

∣∣∣R2(n, q)

|Pn,q|
−Q′(n)

∣∣∣� ∣∣∣ 1

|Pn,q|
∑

P∈Pn,q

ψ1,r(P + h1)ψ2,r(P + h2)−Q′(r)
∣∣∣(5.13)

+
1

|Pn,q|
∑

P∈Pn,q

∣∣ψ∗1,r(P + h1)ψ∗2,r(P + h2)−Q′(r, n)
∣∣ =: E9 + E10

Using Lemma 5.1.1, we have

∑
P∈Pn,q

ψ1,r(P + h1)ψ2,r(P + h2) =
∑

P∈Pn,q

∑
g1|P+h1

α1,r(g1)
∑

g2|P+h2

α2,r(g2)

=
∑′

gj∈M≤n,q
j=1,2

α1,r(g1)α2,r(g2)πA(n; [g1, g2],M)

=
∑′

gj∈M≤z,q
j=1,2

α1,r(g1)α2,r(g)

(
πA(n; [g1, g2],M)− qn

nΦ([g1, g2])

)
+
qn

n

∑′

gj∈M≤z,q
j=1,2

α1,r(g1)α2,r(g2)

Φ([g1, g2])

+O

( ∑
g1∈M≤n,q
z<deg(g2)≤n

|α1,r(g1)α2,r(g2)|πA(n; [g1, g2],M)

)

where M is the monic polynomial for which M ≡ −hj (mod gj), j = 1, 2 and

0 ≤ deg(M) < deg([g1, g2]), and
∑′ means the summation over g1, g2 satisfying

(g1, g2)|(h2 − h1), αj,r, j = 1, 2 are defined as in the proof of the Theorem 5.0.1 and

r ≤ z < n will be chosen later.

Therefore we have

E9 ≤
1

|Pn,q|
∑′

gj∈M≤z,q
j=1,2

|α1,r(g1)α2,r(g2)|
∣∣∣πA(n; [g1, g2],M)− qn

nΦ([g1, g2])

∣∣∣
+O

(
1

|Pn,q|
∑

g1∈M≤n,q
z<deg(g2)≤n

|α1,r(g1)α2,r(g2)|πA(n; [g1, g2],M)

)
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+O

( ∑
g1∈Fq [x]

deg(g2)>z

|α1,r(g1)α2,r(g2)|
Φ([g1, g2])

)
=: E11 + E12 + E13.

Using Lemma 5.1.2, for 0 < α < 1, we have

∑
deg(f)>z

|αj,r(f)|
Φ(f)

≤ 1

qαz

∑
f∈Fq [x]

|αj,r(f)|qα deg(f)

Φ(f)

≤ 1

qαz

∏
deg(P )≤r

(
1 +

2qαdegP

(qdegP − 1)(1− q(α−1) degP )

)
≤ 1

qαz
exp

(
c1

∑
degP≤r

1

q(1−α) degP

)
≤ q−αz exp

(
c2
qαr

r

)
.

Similarly for 0 < α < 1, we get

∑
f∈Fq [x]

|αj,r(f)|
qαdeg(f)

≤
∏

degP≤r

(
1 +

∞∑
t=1

|αj,r(P t)|
qtαdegP

)
≤ exp

(
c3
q(1−α)r

r

)
.

Using these estimates and (5.12), we have

E11 ≤
q2zα

|Pn,q|
max

[g1,g2]∈M≤z,q
([g1,g2],M)=1

∣∣∣πA(n; [g1, g2],M)− qn

nΦ([g1, g2])

∣∣∣× ∑
gj∈Fq [x]
j=1,2

|α1,r(g1)α2,r(g2)|
|g1|α|g2|α

≤ q2zα

|Pn,q|
max

[g1,g2]∈M≤z,q
([g1,g2],M)=1

∣∣∣πA(n; [g1, g2],M)− qn

nΦ([g1, g2])

∣∣∣× exp
(

2c3
qr(1−α)

r

)

� q2zα

|Pn,q|
× q

n
2

n
× exp

(
2c3

qr(1−α)

r

)
,

and

E13 �
1

|Pn,q|
∑

g1∈M≤n,q
z<deg(g2)≤n

|α1,r(g1)α2,r(g2)|
( qn

|[g1, g2]|
+ 1
)

� qn

|Pn,q|
q−αzrc1 exp

(
c4
qαr

r

)
+

q2nα

|Pn,q|
× exp

(
c5
qr(1−α)

r

)
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and also we have

E12 � q−αzrc1 × exp
(
c6
qαr

r

)
� q−αz exp

(
c7
qαr

r

)
.

For a fixed P ∈ Pq and k = 1, 2, we define

PP (k) :=
{
Q : Qm‖P + hk and |1− ψk(Qm)| > 1

2

}
.

Now we consider the following set

Qr =
{
P ∈ Pn,q : ∃k ∈ {1, 2} and ∃Q ∈ PP (k) with degQ > r

}
.

Therefore we write

E10 =
1

|Pn,q|
∑
P∈Qr

∣∣ψ∗1,r(P + h1)ψ∗2,r(P + h2)−Q′(r, n)
∣∣

+
1

|Pn,q|
∑
P 6∈Qr

∣∣ψ∗1,r(P + h1)ψ∗2,r(P + h2)−Q′(r, n)
∣∣

=:
1

|Pn,q|
(E14 + E15).

We see that

E14 �
2∑
j=1

∗∑
P∈Qr

Qk‖P+hj

1 =
2∑
j=1

∗∑
k degQ≤n

k≥1

πA(n;Qk,−hj) =
2∑
j=1

∗∑
degQ≤n

πA(n;Q,−hj)

+
2∑
j=1

∗∑
k degQ≤n

k≥2

πA(n;Qk,−hj) =: E16 + E17,

where
∑∗ means the summation varies over conditions in the definition of Qr.
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Using Lemma 5.2.1 and Cauchy-Schwarz inequality, we have

E16 �
qn

n

∗∑
r<degQ≤n

2

1

Φ(Q)
+

( ∗∑
n
2
<degQ≤n

1

Φ(Q)

) 1
2
( ∗∑

n
2
<degQ≤n

Φ(Q)π2
A(n;Q,−hj)

) 1
2

� qn

n

∑
r<degQ≤n

2

|1− ψj(Q)|2

Φ(Q)
+

( ∑
n
2
<degQ≤n

|1− ψj(Q)|2

Φ(Q)

) 1
2

× (Θ(n))
1
2

� |Pn,q| ×
2∑
j=1

D2(ψj, 1; r,
n

2
) + (Θ(n))

1
2 ×

2∑
j=1

D(ψj, 1;
n

2
, n).

Using Lemma 5.1.2 and Lemma 5.2.1, we get

E17 �
qn

n

∑
k degQ≤n

2
degQ>r;k≥2

1

Φ(Qk)
+ qn

∑
n
2
<k degQ≤n

k≥2

1

Φ(Qk)

� |Pn,q| ×
1

rqr
+ |Pn,q| ×

1

q
n
4

.

Using Lemma 5.2.2 and combining these estimates, we obtain

E14 � |Pn,q| ×
2∑
j=1

D(ψj, 1; r, n) +
|Pn,q|
rqr

+ |Pn,q| ×
1

q
n
4

.

Observe that

Q′(r, n) =
∏

r<degP≤n

(
1− 2

Φ(P )
+
∞∑
k=1

ψ1(P k) + ψ2(P k)

qk degP

)
.(5.14)

Using (5.7) and (5.8), we have

∣∣ψ∗1,r(P + h1)ψ∗2,r(P + h2)−Q′(r, n)
∣∣ ≤ ∣∣∣∣ 2∑

j=1

∑
Qk‖P+hj
degQ>r

(
ψj(Q

k)− 1
)
− logQ′(r, n)

∣∣∣∣
+O

( 2∑
j=1

∑
Qk‖P+hj
degQ>r

∣∣ψj(Qk)− 1
∣∣2).
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Therefore we get

E10 ≤
∑
P∈Qr

2∑
j=1

∣∣∣∣ ∑
Qk‖P+hj
degQ>r

(
ψj(Q

k)− 1
)
−

∑
k degQ≤n
degQ>r

ψj(Q
k)− 1

Φ(Qk)

∣∣∣∣
+
∑
P∈Qr

∣∣∣∣ ∑
k degQ≤n
degQ>r

ψ1(Qk) + ψ2(Qk)− 2

Φ(Qk)
− logQ′(r, n)

∣∣∣∣
+O

( ∑
P∈Qr

∑
Qk‖P+hj
degQ>r

∣∣ψj(Qk)− 1
∣∣2) =: E18 + E19 + E20.

From (5.14), we see that

E19 = |Pn,q| ×
∣∣∣∣ 2∑
j=1

∑
r<degQ≤n

ψj(Q)− 1

Φ(Q)
−

∑
r<degQ≤n

(
− 2

Φ(Q)
+

2∑
j=1

∞∑
k=1

ψj(Q
k)

qk degQ

)∣∣∣∣
+O

(
|Pn,q|

∑
degQ>r

q−2 degQ

)
� O

(
|Pn,q|

∑
degQ>r

q−2 degQ

)
� |Pn,q| ×

1

rqr
.

Similar to estimation of E14, we get

E20 � |Pn,q| ×
2∑
j=1

D(ψj, 1; r, n) +
|Pn,q|
rqr

+ |Pn,q| ×
1

q
n
4

.

Using Lemma 5.2.3, we have

E18 � |Pn,q| ×
( ∑

k degQ≤n
k≥1;degQ>r

|ψj(Qk)− 1|2

Φ(Qk)

) 1
2

� |Pn,q| ×
2∑
j=1

D(ψj, 1; r, n) +
|Pn,q|
(rqr)

1
2

.

Choosing z = A logq n, A > 0 and combining all these estimates, we get the required

theorem.

Now we recall the truncated Liouville function over function field by

λy(P
t) =


(−1)t (= λ(P t)) if degP ≤ y

1 if degP > y.
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For very small choice of y the following theorem gives a truncated variant of Chowla’s

conjecture in large degree limit, which is an application of Theorem 5.0.1.

Theorem 5.2.1. There is a positive absolute constant C such that if n ≥ 2, 2 ≤

y ≤ log n and fixed h ∈ Fq[x] with deg(h) ≤ y, then

∣∣∣∣ ∑
f∈Mn,q

λy(f)λy(f + h)

∣∣∣∣ < C
log4 y

y4
qn.

5.3 Proof of Theorem 5.2.1

Proof. We start with the following lemma. The following lemma gives an upper

bound of a product over those irreducible polynomials which divides a certain fixed

polynomial.

Lemma 5.3.1 ([2], Lemma 2.2). Let f ∈ Fq[x]. Then we have

∏
P |f

(
1 +

1

|P |

)
= O(log(deg(f))).

Proof of Theorem 5.2.1. Choose r = y and ψj = λy, j = 1, 2. Let αj = µ ∗ λy,

j = 1, 2.

Observe that D (λy(P ), 1; r, n) = 0 and

αj(P
t) =


2(−1)t if degP ≤ y

0 if degP > y.

Using Theorem 5.0.1, we have

1

qn

∣∣∣∣ ∑
f∈Mn,q

λy(f)λy(f + h)

∣∣∣∣ ≤ |Q(n)|+O

(
(yqy)−

1
2 + q(1−2α)n exp

(
cqαy

y

))
.
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where Q(n) = Q1(y)Q2(y, n) is defined by (5.4).

Since deg(h) ≤ y then we obtain

Q1(y) =
∏

degP≤y

∞∑
m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|h

α1(Pm1)α2(Pm2)

q[m1,m2] degP
=:

∏
degP≤y

WP .

Now if degP > y, then we have Q2(y, n) = 1. Also note that α1 = α2 = α3 (say).

We define the non-negative integer k(P ) such that P k(P )‖h. So for degP ≤ y, we

get

WP =

k(P )∑
m=0

α3(Pm)2

qm degP
+ 2

k(P )∑
m=0

α3(Pm)
∞∑

l=m+1

α3(P l)

ql degP

(
1 + 4

k(P )∑
m=0

1

qm degP

)
+ 4

∞∑
l=1

(−1)l

ql degP

+ 8

k(P )∑
m=1

(−1)2m+1

q(m+1) degP

∞∑
j=0

(−1)j

qj degP
= 1− 4

qk(P ) degP (qdegP + 1)
.

Finally using Lemma 5.1.2 and Lemma 5.3.1 and the hypothesis that deg(h) ≤ y,

we have

Q(n) =
∏

degP≤y

(
1− 4

qdegP + 1

) ∏
degP≤y
P |h

(
1− 4

qk(P ) degP (qdegP + 1)

)(
1− 4

qdegP + 1

)−1

≤ C1 exp

(
− 4

∑
degP≤y

q−degP + 4
∑

degP≤y
P‖h

q− degP

)
≤ C

(log y)4

y4
.

Using the Hypothesis that 2 ≤ y ≤ log n, we have

q(1−2α)n exp

(
cqαy

y

)
� (y log y)−1

Combining the above estimates we conclude the proof.
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Chapter 6

Distribution of the sum of additive

functions over Fq[x]

In this chapter, we will discuss about the behaviour of distributions of the sum of

additive functions over function field in large degree limit. More precisely, our main

goal is to study the asymptotic behaviour of the following sum:

ψ̃1(f + h1) + ψ̃2(f + h2),(6.1)

where ψ̃1, ψ̃2 are additive functions on Mq and h1, h2 are fixed polynomials with

deg(hj) < n for all j. The results of this chapter are contained in [8].

The following theorem gives the behaviour of the distribution of the sum (6.1) over

monic polynomials, which is an application of Theorem 5.0.1.

Let ψj :Mq → U and αj :Mq → C be multiplicative functions such that αj = µ∗ψj

for all j = 1, 2. For fixed polynomials hj ∈ Fq[x] with deg(hj) < n for all j = 1, 2
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and n ≥ r, we define

Q1(γ) :=
∏

degP≤γ

∞∑
m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|(h2−h1)

α1(Pm1)α2(Pm2)

qdeg([pm1 ,Pm2 ])
,(6.2)

Q′1(γ) :=
∞∑

m1=0

∞∑
m2=0

(Pm1 ,Pm2 )|(h2−h1)

α1(Pm1)α2(Pm2)

Φ[Pm1 , Pm2 ]
,(6.3)

Q2(γ) =
∏

degP>γ

(
1 +

2∑
j=1

∞∑
m=1

ψj(P
m)− ψj(Pm−1)

qm degP

)
,(6.4)

Q′2(γ) =
∏

degP>γ

(
1− 2

Φ(P )
+

2∑
j=1

∞∑
k=1

ψj(P
k)

qk degP

)
.(6.5)

Theorem 6.0.1. Let t, x ∈ R and γ = deg(h2 − h1) for fixed polynomials h1, h2

in Fq[x]. Assume that ψ̃1 and ψ̃2 be real-valued additive functions on Mq and the

following series converges:

∑
|ψ̃i(P )|≤1

ψ̃i(P )

qdegP
,

∑
|ψ̃i(P )|≤1∀i

ψ̃1(P ) + ψ̃2(P )

qdegP
,

∑
|ψ̃i(P )|>1

q− degP ∀i = 1, 2.

Then the distribution function

Fn(x) :=
1

|Mn,q|

∣∣∣{f ∈Mn,q : ψ̃1(f + h1) + ψ̃2(f + h2) ≤ x
}∣∣∣

converges weekly towards a limit distribution as n→∞ whose characteristic function

say G(t) is equal to Q1(γ)Q2(γ), where Q1(γ) and Q2(γ) are defined (6.2) and (6.4)

respectively with ψj is replaced by exp(itψ̃j),∀j = 1, 2.

Theorem 6.0.2. Let t, x ∈ R and γ = deg(h2 − h1) for fixed polynomials h1, h2 in

Fq[x]. Assume that ψ̃1 and ψ̃2 be real-valued additive functions on Mq and series in

the Hypothesis of Theorem ?? converges. Then the distribution function

F ′n(x) :=
1

|Pn,q|

∣∣∣{P ∈ Pn,q : ψ̃1(P + h1) + ψ̃2(P + h2) ≤ x
}∣∣∣
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converges weekly towards a limit distribution as n→∞ whose characteristic function

say H(t) is equal to Q′1(γ)Q′2(γ), where Q′1(γ) and Q′2(γ) are defined (6.3) and (6.5)

respectively with ψj is replaced by exp(itψ̃j),∀j = 1, 2.

6.1 Proof of Theorem 6.0.1 and Theorem 6.0.2

Proof. We recall the following lemma from Chapter 3.

Lemma 6.1.1 ([40], Theroem 2.4). Let {Fn}∞n=1 be a sequence of distribution func-

tions and {φn}∞n=1 the sequence of their characteristic functions. Then Fn converges

weakly to a distribution function F if, and only if, φn converges point-wise on R to

a function φ which is continuous at 0. Furthermore, in this case, φ is the charac-

teristic function of F , and the convergence of φn to φ is uniform on any compact

subset.

Proof of Theorem 6.0.1. The distribution function is

Fn(x) =
1

qn
νn
{
f ;ψ1(f + h1) + ψ2(f + h2) ≤ x

}
and the corresponding characteristic function is

Gn(t) =
1

qn

∑
f∈Mn,q

exp (it (ψ1(f + h1) + ψ2(f + h2))) .

We observe that

∑
P

exp(itψj(P ))− 1

qdegP
= it

∑
|ψj(P )|≤1

ψj(P )

qdegP
+O

(
t2

∑
|ψj(P )|≤1

ψ2
j (P )

qdegP
+

∑
ψj(P )>1

q− degP

)
.

Therefore, from the hypothesis of the theorem we can say that G(t) is convergent

for every real t. Further, the infinite product G(t) is continuous at t = 0 because it
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converges uniformly for |t| ≤ T where T > 0 is arbitrary.

Also notice that, for j = 1, 2 we have

D(ψj, 1;∞)� t2
∑

|ψj(P )|≤1

ψ2
j (P )

qdegP
+

∑
|ψj(P )|>1

q− degP .

So, using the hypothesis of the theorem we see that ψj is pretend to 1 and choosing

r = log n in Theorem 5.0.1 we get that the remainder term disappears when n→∞.

Thus by Theorem 5.0.1, the characteristic function Gn(t) has the limit G(t) for every

real t and this limit is continuous at t = 0. Therefore, by Lemma 6.1.1 we get the

required Theorem 6.0.1.

Proof of Theorem 6.0.2. The distribution function is

F ′n(x) =
1

|Pn,q|
νn
{
P ;ψ1(P + h1) + ψ2(P + h2) ≤ x

}
and the corresponding characteristic function is

Hn(t) =
1

|Pn,q|
∑

P∈Pn,q

exp (it (ψ1(P + h1) + ψ2(P + h2))) .

By following the similar argument as in the proof of Theorem 6.0.1, we get the

required Theorem 6.0.2.

122



Bibliography

[1] J. C. Andrade, L. Bary-Soroker and Z. Rudnick Shifted convolution and the

Titchmarsh divisor problem over Fq[t], Phil.Trans. R. Soc. A, 373: 20140308.

[2] J. C. Andrade, A. Shamesaldeen and C. Summersby On elementary estimates of

arithmetic sums for polynomial rings over finite fields, J. Number Theory, 199

(2019), pp. 49-62.

[3] D. Carmon The autocorrelation of the Möbius function and Chowlas conjecture
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