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Summary

This thesis is divided into two parts. In the first part, we consider a ruled sur-

face X = PC(E) over a smooth irreducible projective curve C defined over an

algebraically closed field k of characteristic 0 , and let π : X = PC(E) −→ C

be the ruling. We fix a polarization L on X. The numerical equivalence class

of a divisor D on X will be denoted by
[
D
]
. We show that pullback π∗(V) of a

(semi)stable Higgs bundle V = (V, θ) on C under the map π is an L-(semi)stable

Higgs bundle on X. Conversly, if (V, θ) is an L-(semi)stable Higgs bundle on X with

first Chern class c1(V ) = π∗
(
[d]
)

for some divisor d of degree d on C and second

Chern class c2(V ) = 0, then there exists a (semi)stable Higgs bundle W = (W,ψ)

of degree d on C such that V ∼= π∗(W). Consequently, we prove that the corre-

sponding moduli spacesMHiggs
X

(
r, df, 0, L

)
andMHiggs

C

(
r, d
)

are isomorphic, where

MHiggs
X

(
r, df, 0, L

)
deontes the moduli space of semistable Higgs bundles V = (V, θ)

of rank r on X having first Chern class c1(V ) = π∗
(
[d]
)

for some divisor d of degree

d on C and second Chern class c2(V ) = 0, andMHiggs
C

(
r, d
)

denotes the semistable

Higgs bundles of rank r and degree d on C.

In the second part of this thesis, we consider the fibre product PC(E1)×CPC(E2)

of two projective bundles PC(E1) and PC(E2) over a smooth irreducible complex

projective curve C. Consider the following commutative fibred diagram :

X = PC(E1)×C PC(E2) PC(E2)

PC(E1) C

p2

p1 π2

π1
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We fix the following notations in the real Néron-Severi groups,

η1 =
[
OP(E1)(1)

]
∈ N1

(
P(E1)

)
R

, η2 =
[
OP(E2)(1)

]
∈ N1

(
P(E2)

)
R
,

ζ1 = p∗1(η1) , ζ2 = p∗2(η2) ∈ N1(X)R.

Let F be the numerical equivalence classes of the fibres of the map π1◦p1 = π2◦p2.

We calculate nef cone Nef(X) and pseudoeffective cone Eff(X) of the fibre product

X = PC(E1)×C PC(E2) in the following three cases :

Case I : Assume both E1 and E2 are slope semistable bundles of rank r1 and r2

respectively with slopes µ1 and µ2 . Then

Nef(X) = Eff(X) =
{
aλ1 + bλ2 + cF | a, b, c ∈ R≥0

}
,

where λ1 = ζ1 − µ1F and λ2 = ζ2 − µ2F .

Case II : Assume neither E1 nor E2 is slope semistable, and both E1 and E2

are normalized rank 2 bundles. Then

Nef(X) =
{
aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}
,

Eff(X) =
{
aζ1 + bζ2 + cF | a, b, c ∈ R≥0

}
,

where l1 = deg(E1) , l2 = deg(E2) and τ1 = ζ1 − l1F and τ2 = ζ2 − l2F.

Case III : Assume E1 is slope semistable with slope µ1 and E2 is not slope

semistable, and both E1 and E2 are normalized rank 2 bundles. Then

Nef(X) =
{
aγ1 + bγ2 + cF | a, b, c ∈ R≥0

}
,

Eff(X) =
{
a(ζ1 − µ1F ) + bζ2 + cF | a, b, c ∈ R≥0

}
,

where l2 = deg(E2) , γ1 = ζ1 − µ1F and γ2 = ζ2 − l2F.

In particular, if both E1 and E2 are of rank 2 bundles on C, then nef cone and

pseudoeffective cone of X = PC(E1)×C PC(E2) both coincide if and only if both E1

and E2 are slope semistable.
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Notations

Symbol Description

Z The ring of integers

Q The field of rational numbers

R The field of real numbers

R>0 The set of positive real numbers

R≥0 The set of non-negative real numbers

C The field of complex numbers

Pnk Projective n-space over an algebraically closed field k

OPn
k
(1) Serre bundle on Pnk

ci(E) i-th Chern class of a coherent sheaf E

Div(X) The set of all divisors on a variety X

OX(D) The line bundle associated to the divisor D on X

[
D
]

Numerical equivalence class of a divisor D

N1(X)R The real Néron-Severi group of X

ρ(X) The Picard rank of X

Pic(X) The Picard group of X
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Pic0(X) The subgroup of Pic(X) of numerically trivial line bundles

multxC multiplicity at x of a curve C passing through x

Fx The stalk of a coherent sheaf F at x

End(V ) The set of endomorphisms of a vector bundle V

H i(X,F) i-th cohomology group of a coherent sheaf F

Rif∗ Higher direct image functor

Ω1
X The cotangent sheaf on X

Ω1
X|C The relative cotangent sheaf of a curve C in a surface X.
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Chapter 1

Introduction

In this chapter, we give a brief description of the historical background of the central

topics discussed in this thesis. We also state our main results in the subsequent

section and outline the arrangement of this thesis.

1.1 Historical Background

A Higgs bundle on a smooth irreducible projective variety defined over an alge-

braically closed field k, is a pair (V, θ) where V is a vector bundle on X and

θ ∈ H0
(
X,End(V ) ⊗ Ω1

X

)
is a section satisfying θ ∧ θ = 0. Higgs bundles on

Riemann surfaces were first introduced by Nigel Hitchin in [Hit] to study the Yang-

Mills equation on Riemann surfaces. Later, in [Sim1],[Sim2],[Sim3], Simpson ex-

tended the notion of Higgs bundle to higher dimensional varieties and related them

to the fundamental group of the base variety. Consequently, a lot of applications

of these objects are found in many areas of Mathematics and Theoretical Physics.

Higgs bundle comes with a natural stability condition ( see Section 2.4 for the def-

inition ), which allows one to study the moduli problems. Semistabilty of Higgs

bundles over smooth projective varieties has been studied by many authors ( see
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[Hit],[Sim1],[Nit],[FPN], [Sch] ). Given a Higgs bundle E = (E, φ) of rank r on a

smooth polarized projective variety (X,L) of dimension n, one can associate a nu-

merical invariant, its discriminant 4(E) := 2rc2(E)− (r− 1)c2
1(E). If E = (E, θ) is

L-semistable, then 4(E) ·Ln−2 ≥ 0. This is called the Bogomolov’s inequality. It is

interesting to classify all such semistable Higgs bundles E = (E, θ) with 4(E) = 0.

In the first part of this thesis, we classify some particular type of semistable Higgs

bundles E = (E, θ) over ruled surfaces with 4(E) = 0.

The study of divisors on a projective variety X is a very important tool in

algebraic geometry to understand the geometry of X. From the last century, the

sheaf-theoretic approach brought the importance of ample divisors. In the last

few decades, a number of notions of positivity have been used to understand the

geometry of the higher dimensional projective varieties. Most of the developments

in this direction has been successfully summarized in [Laz1], [Laz2].

We denote the intersection product of a divisor D on a smooth projective variety

X and a curve C ⊆ X by D·C. Two divisors D1 and D2 on X are said to numerically

equivalent, denoted by D1 ≡ D2 , if D1 ·C = D2 ·C for all irreducible curves C ⊆ X.

It is a fact that Div(X)/ ≡ is a free abelian group of finite rank ( see Proposition

1.1.16 in [Laz1] ). Consider the finite dimensional real vector space

N1(X)R :=
(
Div(X)/ ≡

)
⊗ R

In this space, one can talk about different convex cones, each corresponding to

different notion of positivity. Let us consider an element D =
∑
i

mi

[
Di] ∈ N1(X)R,

mi ∈ R, Di ∈ Div(X). We say :

(i) D is ample if ai > 0 and Di is ample for each i ( i.e., for each i , there is a

positive integer li such that liDi gives a projective embedding of X ).

(ii) D is big if each ai > 0 and Di is big for each i ( i.e., Kodaira dimension of
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each Di is equal to dimension of X).

The open convex cone generated by ample classes in N1(X)R is called the ample

cone, denoted by Amp(X) and its closure is called the nef cone, denoted by Nef(X).

Similarly, the open convex cone generated by big classes in N1(X)R is called the big

cone, denoted by Big(X) and its closure is called the pseudoeffective cone, denoted

by Eff(X). These cones are related by the following commutative diagram :

Amp(X) Nef(X)

Big(X) Eff(X)

The nef cone Nef(X) ⊆ N1(X)R of divisors of a projective variety X is an impor-

tant invariant that encodes information about all the projective embeddings of X.

The nef cones and pseudoeffective cones of different smooth irreducible projective

varieties has been studied by many authors in the last few decades ( see [Laz1] (Sec-

tion 1.5), [Miy], [Fulg], [BP], [MOH] for more details). In his paper [Miy], Miyaoka

found that in characteristic 0, the nef cone of PC(E) is determined by the smallest

slope of any nonzero torsion free quotient of E. He also gave a numerical criterion

for semistability of E in terms of nefness of the normalized hyperplane class λE on

PC(E), and showed that E is a semistable bundle over the curve C if and only if

the nef cone and pseudoeffective cone of PC(E) coincide. Later in [BR], more gener-

ally, it is shown that a vector bundle E with vanishing discriminant over a smooth

projective variety X is slope-semistable if and only if the normalized hyperplane

class in PC(E) is nef. [Fulg] generalized Miyaoka’s result to arbitrary codimension

cycles showing that the effective cones of cycles ( and their duals ) on PC(E) are

determined by the numerical data in the Harder-Narasimhan filtration of E. [BP]

studied the nef cone of divisors on Grassmann bundles Grs(E) and flag bundles over

smooth curves and extended Miyaokas result to characteristic p. More specifically,

in [BP] and [BHP], the nef cone and pseudoeffective cone of the Grassmannian bun-
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dle Grs(E) parametrizing all the s dimensional quotients of the fibres of E where

1 ≤ s ≤ r − 1, has been studied. However, in most of these cases, the Picard rank

of the space X is 2, and hence the nef cones are generated by two extremal rays in

a two dimensional space. When the Picard rank is at least 3, there are very few

examples where the nef cone and the pseudoeffective cone are computed.

1.2 About this thesis

In Chapter 2 of this thesis, we recall some definitions, basic and known results,

which are used to prove our main results in the subsequent chapters.

In Chapter 3 of this thesis, we consider a smooth irreducible projective curve C

of genus g(C) ≥ 0 over an algebraically closed field k of characteristic 0, and a ruled

surface π : X = PC(E) −→ C. We fix a polarization L on X. Let σ and f be the

numerical classes of a section and a fibre of the ruling π : X −→ C respectively.

We discuss about the (semi)stability of pullback of a Higgs bundle on C under the

ruling π. Our main results are the following :

Theorem 1.2.1. Let π : X −→ C be a ruled surface with a fixed polarization L on

X. Let V = (V, θ) be a semistable Higgs bundle of rank r on C. Then, the pullback

π∗(V) =
(
π∗(V ), dπ(θ)

)
is L-semistable Higgs bundle on X.

Theorem 1.2.2. Let L be a fixed polarization on a ruled surface π : X −→ C. Let

V = (V, θ) be an L-semistable Higgs bundle of rank r on X with c1(V ) = π∗
(
[d]
)
,

for some divisor d of degree d on C, then c2(V ) ≥ 0 and c2(V ) = 0 if and only

if there exists a semistable Higgs bundle W = (W,ψ) on C such that π∗(W) =(
π∗(W ), dπ(ψ)

) ∼= V on X.

Theorem 1.2.3. Let L be a fixed polarization on a ruled surface π : X −→ C.

Then, for any stable Higgs bundle W = (W,ψ) on C, the pullback Higgs bundle

π∗(W) is L-stable Higgs bundle on X. Conversely, if V = (V, θ) is an L-stable

24



Higgs bundle on X with c1(V ) = π∗
(
[d]
)

for some divisor d of degree d on C and

c2(V ) = 0, then V ∼= π∗(W) for some stable Higgs bundle W = (W,ψ) on C.

According to Simpson ( See [Sim2], [Sim3] ), the moduli space of S-equivalence

classes of semistable Higgs bundles of rank n with vanishing Chern classes on any

complex projective variety X can be identified with the space of isomorphism classes

of representations of π1(X, ∗) in GL(n,C). For a ruled surface π : X = PC(E) −→ C

over C, there is an isomorphism of fundamental groups π1(X, ∗) ∼= π1(C, ∗). Hence,

in this case, we have a natural algebraic isomorphism of the corresponding moduli

of semistable Higgs bundles on X and C respectively with vanishing Chern classes

( when the base field is C ).

As an application of Theorem 1.2.1, Theorem 1.2.2 and Theorem 1.2.3, we prove

a similar kind of algebraic isomorphism between the corresponding moduli spaces

of Higgs bundles when the Chern classes are not necessarily vanishing and the base

field is any algebraically closed field k of characteristic 0. More precisely, we prove

that,

Theorem 1.2.4. The moduli spaces MHiggs
X

(
r, df, 0, L

)
and MHiggs

C

(
r, d
)

are iso-

morphic as algebraic varieties, where MHiggs
C

(
r, d
)

denotes the moduli space of S-

equivalence classes of semistable Higgs bundles of rank r and degree d on C and

MHiggs
X

(
r, df, 0, L

)
denotes the moduli space of S-equivalence classes of L-semistable

Higgs bundles V = (V, θ) of rank r on X, having first Chern class c1(V ) = π∗
(
[d]
)

for some divisor d of degree d on C, and second Chern class c2(V ) = 0.

In [Var], similar kind of questions are discussed for a relatively minimal non-

isotrivial elliptic surfaces ϕ : X −→ C over a smooth curve C of genus g(C) ≥ 2

defined over C.

Next, in Chapter 4 of this thesis, we consider two vector bundles E1 and E2

of rank r1 and r2 respectively over a smooth irreducible curve C defined over C,
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and the fibre product X = PC(E1) ×C PC(E2). Note that, in this case, the cones

are 3-dimensional while the literature abounds with 2-dimensional examples ( e.g.

PC(E) , Grs(E) etc. ). Consider the following commutative diagram :

X = P(E1)×C P(E2) P(E2)

P(E1) C

p2

p1 π2

π1

We first fix the following notations :

η1 =
[
OP(E1)(1)

]
∈ N1

(
P(E1)

)
R

, η2 =
[
OP(E2)(1)

]
∈ N1

(
P(E2)

)
R
,

ζ1 = p∗1(η1) , ζ2 = p∗2(η2) ∈ N1(X)R.

Let F be the numerical equivalence classes of the fibres of the map π1◦p1 = π2◦p2.

In Chapter 4, we calculate nef cone and pseudoeffective cone of X in the following

three cases :

Case I : Assume both E1 and E2 are slope semistable bundles of rank r1 and r2

respectively with slopes µ1 and µ2 . Then

Nef(X) = Eff(X) =
{
aλ1 + bλ2 + cF | a, b, c ∈ R≥0

}
,

where λ1 = ζ1 − µ1F and λ2 = ζ2 − µ2F .

Case II : Assume neither E1 nor E2 is slope semistable, and both E1 and E2

are normalized rank 2 bundles. Then

Nef(X) =
{
aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}

Eff(X) =
{
aζ1 + bζ2 + cF | a, b, c ∈ R≥0

}

where l1 = deg(E1) , l2 = deg(E2) and τ1 = ζ1 − l1F and τ2 = ζ2 − l2F.
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Case III : Assume E1 is slope semistable with slope µ1 and E2 is not slope

semistable, and both E1 and E2 are normalized rank 2 bundles. Then

Nef(X) =
{
aγ1 + bγ2 + cF | a, b, c ∈ R≥0

}
Eff(X) =

{
a(ζ1 − µ1F ) + bζ2 + cF | a, b, c ∈ R≥0

}
where l2 = deg(E2) , γ1 = ζ1 − µ1F and γ2 = ζ2 − l2F.

These results show that if both E1 and E2 are of rank 2 bundles on C, then nef

cone and pseudoeffective cone of X = P(E1) ×C P(E2) both coincide if and only if

both E1 and E2 are slope semistable.

1.3 Conventions

Throughout this thesis, a variety is always assumed to be reduced and irreducible .

A divisor on a projective variety X will mean a Cartier divisor on X. We will use

the canonical isomorphism between the divisor class group and the Picard group

of a projective variety X over an algebraically closed field. For a divisor D on X,

OX(D) will denote the corresponding line bundle on X. Also, The words vector

bundles and locally free sheaf will be used interchangeably, and so is the case with

line bundle and invertible sheaf.
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Chapter 2

Preliminaries

2.1 Chern classes of Coherent sheaves

In this section, we recall the definition and well known properties of Chern classes

of a coherent sheaf on a smooth projective variety. See [Ful] for more details.

Let X be a nonsingular projective variety of dimension s over an arbitrary field

k. A l-cycle on X is a finite formal sum
∑
i

niWi, where Wi’s are l-dimensional

subvarieties of X and ni ∈ Z for all i. The group of l-cycles on X will be denoted

by Zl(X) . The group of l-cycles modulo rational equivalence will be denoted by

Al(X). We define, Al(X) := As−l(X). Since X is smooth, the intersection product

Am(X)× An(X) −→ Am+n(X) for all 0 ≤ m, n ≤ s ,

gives a graded ring structure on A∗(X) :=
s⊕
l=0

Al(X).

Let V be a vector bundle of rank r on X. Then, ∧rV is a line bundle on X

corresponding to a divisor class, say D on X. The first Chern class of V is defined

as

c1(V ) := c1(∧rV ) := D ∈ A1(X).
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In general, to define higher Chern classes ci(V ) ∈ Ai(V ), one first defines it for a

vector bundle V of rank r, which admits a filtration by subbundles

0 = V0 ( V1 ( V2 ( V3 ( · · · · · · · · · ( Vm = V

such that Mi := Vi/Vi−1 is a line bundle for each i. In this case,

c(V ) := 1 + c1(V ) + c2(V ) + · · ·+ cr(V ) =
r∏
i=1

(
1 + ci(Mi)

)
and the actual formula for ci(V ) ∈ Ai(X) is obtained by equating the terms lying

in Ai(X) from both sides. c(V ) is called the total Chern class of V .

2.1.1 Splitting Principle

More generally, if V is any vector bundle of rank r on X, then there is a projective

variety Y together with a flat morphism f : Y −→ X such that

(i) f ∗ : A∗(X) −→ A∗(Y ) is injective, and

(ii) f ∗(V ) has a filtration by subbundles

0 = W0 ( W1 ( W2 ( · · · · · · ( Wl−1 ( Wl = f ∗(V )

with Li := Wi/Wi−1 is a line bundle for each i. We then define ci(f
∗V ) as above,

and one can show that these classes are in the image of the map f ∗. Then, one

define ci(V ) to be the unique class in Ai(X) such that f ∗
(
ci(V )

)
= ci

(
f ∗(V )

)
.

The Chern classes constructed as above are functorial, i.e., if g : X −→ Y is a

morphism, then ci(g
∗V ) = g∗

(
ci(V )

)
for each vector bundle V on Y , and for each i.

They also satisfy the Whitney product formula :
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If

0 −→ V1 −→ V2 −→ V3 −→ 0

is an exact sequence of vector bundles on X, then c(V2) = c(V1) · c(V3).

One can also define the Chern classes of any coherent sheaf F on X. By a

theorem due to Serre, every coherent sheaf F admits a finite resolution of locally

free sheaves

0 −→ V n −→ V n−1 −→ · · · · · · −→ V 0 −→ F −→ 0

( see 1.1.17 in [HL] or Chapter III, Ex. 68,69 in [Har] ). We then define the Chern

classes of F by the formula

c(F) =
∏
i

c(V i)(−1)i

One can show that this definition is independent of the choice of the resolution, and

the Chern classes so defined satisfy the Whitney product formula.

2.2 Positive Cones in N 1(X)R

In this section, we discuss about different notions of positivity of a line bundle

on a projective variety, and various convex cones in its real Néron Severi group,

corresponding to each of these notions of positivity. We follow [Laz1],[Laz2] for the

notations in this section.

Definition 2.2.1. A line bundle L on a projective variety X over a field k is said

to be very ample if L = φ∗
(
OPN (1)

)
for some closed embedding φ : X ↪→ PN for

some positive integer N . A line bundle L is called ample if some integral multiple
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L⊗m of it is very ample. A divisor D on X is said to be ample ( resp. very ample ),

if the corresponding line bundle OX(D) is ample ( resp. very ample ).

There are very few numerical criteria to check very ampleness or ampleness of a

given line bundle on a projective variety. We mention a few of them here. However,

all these criteria may not be easy to check in practical situations.

Theorem 2.2.2. ( Nakai-Moishezon-Kleiman criterion ) Let L be a line bun-

dle on a projective variety X. Then L is ample if and only if LdimV ·V > 0 for every

positive-dimensional irreducible subvariety V ⊆ X.

Theorem 2.2.3. ( Seshadri’s criterion ) A line bundle L on a projective variety

X is ample if and only if there exists a positive number ε > 0 such that

L · C
multxC

≥ ε

for every point x ∈ X and every irreducible curve C ⊆ X passing through x.

Two divisors D1 and D2 on X are said to be numerically equivalent, denoted

by D1 ≡ D2 , if D1 · C = D2 · C for every irreducible curve C in X. The Néron

Severi group of X is the quotient N1(X)Z := Div(X)/ ≡. It is a basic fact that the

Néron-Severi group N1(X)Z is a free abelian group of finite rank ( see Proposition

1.1.16 in [Laz1] ). The rank of N1(X)Z is called the Picard number of X, and is

denoted by ρ(X). The real vector space DivR(X) := Div(X)⊗ R is called the space

of R-divisors on X. An element D =
∑
i

ciAi ∈ DivR(X) is called numerically trivial

if
∑
i

ci(Ai · C) = 0 for all irreducible curve C ⊆ X. Let Div0
R(X) be the subspace

of DivR(X) consisting of numerically trivial R-divisors on X. The real Néron Severi

group , denoted by N1(X)R is defined as follows :

N1(X)R := DivR(X)/Div0
R(X)
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Note that there is an isomorphism N1(X)R
∼= N1(X)Z ⊗ R as real vector spaces.

Thus, N1(X)R is a finite dimensional real vector space. We view N1(X)R as a topo-

logical space equipped with its standard Euclidean topology. Also, the numerical

equivalence class of an integral divisor D on X will be denoted by
[
D
]
∈ N1(X)R.

Definition 2.2.4. An R-divisor D on X is ample if it can be expressed as a finite

sum D =
∑
i

ciAi, where each ci > 0 is a positive real number and each Ai is an

ample integral divisor.

It can be shown that if two R-divisors D1 and D2 ∈ DivR(X) are numerically

equivalent, then D1 is ample if and only if D2 is ample. Hence, one can talk about

an ample class in N1(X)R . The convex cone of all ample classes in N1(X)R is called

the Ample cone , and is denoted by Amp(X) ⊆ N1(X)R.

2.2.1 Nef Cone and Pseudoeffective Cone

Definition 2.2.5. A line bundle L over a projective variety X is called numerically

effective or nef , if L · C ≥ 0 for every irreducible curve C ⊆ X. A Cartier divisor

D on X is called nef if the corresponding line bundle OX(D) is nef. Similarly, an

R-divisor D on X is called nef , if D · C ≥ 0 for all irreducible curve C ⊆ X.

The intersection product being independent of numerical equivalence class, one

can talk about nef classes in the Néron-Severi group N1(X)Z and N1(X)R . The

convex cone of all nef classes in N1(X)R is called the Nef cone , and is denoted

by Nef(X) ⊆ N1(X)R. We have the following characterization of nef cone due to

S.L.Kleiman ( see [K] ).

Theorem 2.2.6. ( see Theorem 1.4.23 in [Laz1] ) Amp(X) = Nef(X) and

int
(
Nef(X)

)
= Amp(X) in N1(X)R.
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Definition 2.2.7. An integral divisor D on X is called big if there is an ample

divisor A on X, a positive integer m > 0 and an effective divisor N on X such that

mD is numerically equivalent to A+N .

An R-divisor D on X is big if it can be expressed as a finite sum D =
∑
ciAi,

where each ci > 0 is a positive real number and each Ai is a big integral divisor.

One can show that bigness of an R-divisor only depends on its numerical equivalence

class. The convex cone of all big classes in N1(X)R is called the Big cone , and is

denoted by Big(X) ⊆ N1(X)R.

Definition 2.2.8. A numerical equivalence class c in N1(X)R is called effective if

c =
[
OX(D)

]
∈ N1(X)R for some effective divisor D on X.

The Pseudoeffective cone , Eff(X) ⊆ N1(X)R is the closure of the convex cone

generated by the set of all effective classes in N1(X)R.

Theorem 2.2.9. ( see Theorem 2.2.26 in [Laz1] ) Big(X) = int
(
Eff(X)

)
and

Eff(X) = Big(X) in N1(X)R.

As a corollary to Theorem 2.2.6 and Theorem 2.2.9, we get, Nef(X) ⊆ Eff(X).

2.2.2 Duality Theorems

A finite formal sum γ =
∑
i

ai ·Ci, where ai ∈ R and Ci ⊆ X is an irreducible curve

in X, is called a real 1-cycle on X, and the R-vector space of real 1-cycles on X is

denoted by Z1(X)R. Two 1-cycles γ1, γ2 ∈ Z1(X)R are called numerically equivalent,

denoted by γ1 ≡ γ2 if (D · γ1) = (D · γ2) for every D ∈ DivR(X). Let N1(X)R :=

Z1(X)R/ ≡. We also have a perfect pairing

N1(X)R ×N1(X)R −→ R ; (δ, γ) 7−→ (δ · γ)(2.1)
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The cone of curves , NE(X) ⊆ N1(X)R is the cone spanned by the classes of all

effective real 1-cycles on X i.e.,

NE(X) =
{ ∑

i

ai ·
[
Ci
]
| Ci ⊆ X an irreducible curve, ai ∈ R≥0

}

Its closure NE(X) ⊆ N1(X)R is the closed cone of curves on X.

Theorem 2.2.10. ( Kleiman ; 1966 ) The closed cone of curves is dual to Nef

cone, i.e.

NE(X) =
{
γ ∈ N1(X)R | (δ · γ) ≥ 0 for all δ ∈ Nef(X)

}
.

( see Proposition 1.4.28. in [Laz1] for the proof )

Definition 2.2.11. A class γ ∈ N1(X)R is called a movable curve, if there ex-

ists a projective bi-rational mapping µ : X ′ → X, together with ample classes

a1, ......, an−1 ∈ N1(X ′)R such that γ = µ∗(a1 · a2 · · · · · · an−1) where dim(X) = n.

The movable cone of X is the closed convex cone spanned by all movable classes

in N1(X)R, and is denoted by Mov(X).

Note that if X is a 3 - fold and L1,L2 ∈ Nef(X), then L1 · L2 ∈ Mov(X).

Theorem 2.2.12. ( Boucksom-Demailly-Paun-Peternall ; 2004 ) Movable

cone of curves is dual to Pseudoeffective cone, i.e.

Mov(X) =
{
γ ∈ N1(X)R | (δ · γ) ≥ 0 for all δ ∈ Eff(X)

}
.

( see Theorem 11.4.19. in [Laz2] for the proof ).
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2.3 Stable and Semistable sheaves

In this section, we recall some basic and well known results on stability and semista-

bility of torsion free sheaves on a smooth irreducible projective variety from [HL],[Fri],

and [OSS].

Let X be a smooth irreducible projective variety over an arbitrary field k of

dimension s. If F is a coherent sheaf on X, then rank of F is defined as the rank

of the Oξ-vector space Fξ, where ξ is the unique generic point of X. Moreover, if F

is torsion-free i.e. Fx is torsion-free OX,x-module for every x ∈ X, then there is an

open dense subset U ⊆ X containing all points of codimension 1, such that F|U is

locally free. The rank of F , in that case, is equal to the rank of F|U . Recall that,

if the invertible sheaf ∧r(F|U) corresponds to a divisor class D on U , then the first

Chern class of F|U on U is given by

c1(F|U) := c1

(
∧r(F|U)

)
= D.

As divisors are determined at points of codimension 1, one can consider D as a

divisor class on whole of X. Using the functorial property of Chern classes applied

to the open immersion U ↪→ X, we define

c1(F) := c1(F|U) = D.

By a polarization on X, we mean, a ray R>0 ·L, where L is in the ample cone inside

the real Néron-Severi group N1(X)R. We will say (X,L) is a polarized projective

variety if we fix a particular polarization L on X. Now, we define the degree of a

nonzero torsion-free coherent sheaf F of rank r with respect to a fixed polarization

L on X, by

degL(F) :=
(
c1(F) · Ls−1

)
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and, the slope of F with respect to L is defined by

µL(F) :=
c1(F) · Ls−1

r
.

Definition 2.3.1. A non-zero torsion free sheaf F is said to be slope L-semistable

( resp. slope L-stable ) if for any coherent subsheaf G of F with 0 < rank(G) <

rank(F), µL(G) ≤ µL(F)
(

resp. µL(G) < µL(F)
)
.

Lemma 2.3.2. ( see [Fri], Chapter 4, Lemma 2 ) Let (X,L) be a polarized smooth

projective variety over a field k and

0 −→ F1 −→ F2 −→ F3 −→ 0

be an exact sequence of non-zero coherent torsion-free sheaves on X. Then,

min
{
µL(F1), µL(F3)

}
≤ µL(F2) ≤ max

{
µL(F1), µL(F3)

}
and equality holds if and only if µL(F1) = µL(F2) = µL(F3).

Lemma 2.3.3. ( see [8], Chapter 4, Lemma 6 ) Let

0 −→ F1 −→ F2 −→ F3 −→ 0

be an exact sequence of non-zero coherent torsion-free sheaves on a polarized smooth

projective variety (X,L) with µL(F1) = µL(F2) = µL(F3). Then F2 is slope L-

semistable if and only if both F1 and F3 are slope L-semistable. In particular, F2 is

slope L-semistable if rank(F1) = rank(F3) = 1. Also, in this situation, F2 is never

slope L-stable.

Lemma 2.3.4. Let F1,F2 be two coherent torsion-free sheaves on a polarized

smooth projective variety (X,L). If both F1,F2 are slope L-semistable and µL(F1) >

µL(F2), then Hom(F1,F2) = {0}.

37



Proof. Let φ ∈ Hom(F1,F2) be a non-zero homomorphism and let G :=Image(φ).

Since F1 and F2 both are L-semistable, µL(F1) ≤ µL(G) ≤ µL(F2), which contra-

dicts the given assumption. This proves the lemma.

2.4 Higgs bundles and their moduli

In this section, we recall the definition of semistability of a Higgs bundle on a

smooth irreducible projective variety X over an algebraically closed field k, and

the functorial representation of their moduli spaces. More details can be found in

[Sim1],[Sim2],[Sim3].

2.4.1 Semistability of Higgs bundles

Definition 2.4.1. A Higgs sheaf E on X is a pair (E, θ), where E is a coherent

sheaf on X and θ : E −→ E ⊗ Ω1
X is a morphism of OX-module such that θ ∧ θ =

0, where Ω1
X is the cotangent sheaf to X and θ ∧ θ is the composition map

E −→ E ⊗ Ω1
X −→ E ⊗ Ω1

X ⊗ Ω1
X −→ E ⊗ Ω2

X .

A Higgs bundle is a Higgs sheaf V = (V, θ) such that V is a locally-free OX-module.

If E = (E, φ) and G = (G,ψ) are Higgs sheaves, a morphism f : (E, φ) −→

(G,ψ) is a morphism of OX-modules f : E −→ G such that the following diagram

commutes.

E G

E ⊗ Ω1
X G⊗ Ω1

X

f

φ ψ

f⊗id

E and G are said to isomorphic if there is a morphism f : E −→ G such that f as
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an OX-module map is an isomorphism.

Definition 2.4.2. A Higgs sheaf E = (E, θ) is said to be L-semistable
(

resp.

L-stable
)

if E is a non-zero torsion-free coherent sheaf and for every θ-invariant

subsheaf G of E
(

i.e. θ(G) ⊆ G ⊗ Ω1
X

)
with 0 < rank(G) < rank(E), one has

µL(G) ≤ µL(E)
(

resp. µL(G) < µL(E)
)
.

Remark 1. (i) Moreover, when X is a smooth projective curve or a surface, in the

definition of semistability(resp. stability) for a Higgs bundle V = (V, θ), it is enough

to consider θ-invariant subbundles G of V with 0 < rank(G) < rank(V ) for which

the quotient V/G is torsion-free.

(ii) It is clear from the definition that, for a L-semistable ( resp. stable ) Higgs

bundle E = (V, θ) with zero Higgs field ( i.e. θ = 0 ), the underlying vector bundle V

itself slope L-semistable ( resp. stable ). Also, a slope L-semistable ( resp. stable)

vector bundle on X is Higgs semistable ( resp. stable ) with respect to any Higgs

field θ defined on it.

(iii) If X is a smooth projective curve, then for a torsion-free sheaf F of rank

r, µL(F) is independent of the choice of the polarization L. Hence, whenever

(semi)stability of bundles is considered on a curve, the polarization will not be

mentioned.

For a smooth map φ : X −→ Y between two smooth projective varieties X and

Y , and a Higgs bundle V = (V, θ) on Y , its pullback φ∗(V) under φ is defined as the

Higgs bundle
(
φ∗(V ), dφ(θ)

)
, where dφ(θ) is the composition map

φ∗(V ) −→ φ∗(V )⊗ φ∗(Ω1
Y ) −→ φ∗(V )⊗ Ω1

X

Lemma 2.4.3. ( see Lemma 3.3 in [BR] ) If φ : X −→ Y is a finite separable

morphism of smooth projective curves defined over an algebraically closed field of

characteristic 0, then a Higgs bundle V is semistable on Y if and only if φ∗(V) is
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semistable on X.

2.4.2 Moduli of Higgs bundles

For an L-semistable Higgs bundle (V, θ) on X, there is a filtration of θ-invariant

Higgs subsheaves

0 = (V0, θ0) ( (V1, θ1) ( (V2, θ2) ( · · · · · · ( (Vn−1, θn−1) ( (Vn, θn) = (V, θ)

called the Jordan-Hölder filtration , where for each i ∈ {1, ...., n}, µL
(
Vi/Vi−1

)
=

µL(V ) and the induced Higgs sheaves
(
Vi/Vi−1, θi

)
are L-stable. This filtration is

not unique, but the graded Higgs sheaf GrL(V, θ) :=
( n⊕
i=1

Vi/Vi−1,
n⊕
i=1

θi

)
is unique

up to isomorphism. Two L-semistable Higgs bundles are said to be S-equivalent if

they admit filtrations such that their corresponding graded sheaves are isomorphic.

Hence, two L-stable Higgs bundles are S-equivalent if and only if they are isomorphic

as Higgs bundles.

We denote the moduli of S-equivalence classes of L-semistable Higgs bundles V =

(V, θ) of rank r on X with Chern classes c1, c2, ...., cs by MHiggs
X

(
r, c1, c2, ..., cs, L

)
.

There is a functorial representation for these moduli spaces. We denote the category

of finite type schemes over Spec(k) by Sch , and the category of sets by Sets . Let

T ∈ ob(Sch). A family of L-semistable Higgs bundles on X of rank r and with Chern

classes c1, c2, ...., cs, parametrized by T is a pair
(
V , ψ

)
, where V is a coherent sheaf

on X × T , flat over T and ψ ∈ Hom
(
V ,V ⊗OX×T

p∗1(Ω1
X)
)
. ( Here p1 : X × T −→ X

is the first projection map ) such that, for each closed point t ∈ T , under the natural

embedding t : X 7−→ X×T , the pair
(
Vt, ψt

)
:=
(
t∗V , t∗ψ

)
is an L-semistable Higgs

bundle on X of rank r having Chern classes c1, c2, ....., cs respectively. Moreover,

two such families
(
V1, ψ1

)
and

(
V2, ψ2

)
are said to be equivalent if there is a line
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bundle N on T , and an isomorphism of vector bundles on X × T

Φ : V1 −→ V2 ⊗ p∗2(N)

such that ψ1 = Φ∗
(
ψ2 ⊗ idp∗2N

)
. ( Here p2 : X × T −→ T is the second projection

map ). Now, consider the following functor :

MHiggs
X

(
r, c1, c2, ...., cs, L

)
: Sch −→ Sets

given by

MHiggs
X

(
r, c1, c2, ...., cs, L

)
(T ) =



Equivalent classes of families of

L-semistable Higgs bundles

of rank r having Chern classes

c1, c2, ....., cs and parametrized by T .


Theorem 2.4.4. ( see [HL] ) The moduli space MHiggs

X

(
r, c1, c2, ...., cs, L

)
corepre-

sents the functor MHiggs
X

(
r, c1, c2, ....., cs, L

)
.

2.5 Projective Bundle

In this section, we recall the definition and basic properties of projective bundle

on a projective variety from [Har], Chapter II, Section 7. We also discuss about

the known results on nef cone and pseudoeffective cone of projective bundles over a

smooth curve.

Let X be an irreducible projective variety over a field k and E be a vector bundle

of rank r on X. Consider the symmetric algebra of E , Sym(E) :=
⊕
m≥0

Symm(E).

Then, Sym(E) is a sheaf of graded OX-algebras such that Sym0(E) = OX , Sym1(E)

is a coherent OX-module, and Sym(E) is locally generated by Sym1(E) as an OX-
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algebra. The projective bundle PX(E) associated to E over X is defined as

PX(E) := Proj
(
Sym(E)

)
together with a projection morphism π : PX(E) −→ X, and a line bundle OPX(E)(1)

such that OPX(E)(1) restricted to each fibre of the map over a closed point of X

is isomorphic to Pr−1
k . Moreover, if E|U ∼= OrU over an affine open subset U ∼=

Spec(A) of X, then π−1(U) ∼= Pr−1
U , so PX(E) is relative projective space over X. If

rank(E) > 1, then Sym(E) ∼=
⊕
n∈Z

π∗
(
OPX (E)(n)

)
as graded OX-algebras. ( Here, the

grading in the right hand side is given by n ). In particular,

π∗
(
OPX(E)(n)

)
=

 0 if n < 0

Symn(E) if n ≥ 0

We will use the short hand notation Sn(E) for Symn(E).

Proposition 2.5.1. Let E be a vector bundle of rank r on X, and π : PX(E) −→ X

be the corresponding projective bundle. Then, there is a natural 1-1 correspondence

between invertible sheaves E −→M −→ 0 of E and sections of π ( i.e., morphisms

s : X −→ PX(E) such that π ◦ s = idX ).

We recall the following well-known facts from [Ful] or [EH].

(1) A∗
(
PX(E)

)
is a free A∗(X)-module generated by 1, ξ, ξ2, ........., ξr−1, where

ξ ∈ A1
(
PX(E)

)
is the class of the divisor corresponding to OPX(E)(1). More specifi-

cally, A∗
(
PX(E)

) ∼= A∗(X)[ξ]
<f(ξ)>

, where f(ξ) =
r∑
i=0

(−1)iπ∗ci(E) · ξr−i.

(2) Pic
(
PX(E)

)
= π∗

(
Pic(X)

)⊕
Z · OPX(E)(1).

(3) ρ
(
PX(E)

)
= ρ(X) + 1.
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2.5.1 Nef and pseudoeffective cones of Projective bundle

Let E be a vector bundle of rank r on a smooth irreducible projective curve C, and

π : PC(E) −→ C be the corresponding projective bundle. We denote the numerical

equivalence classes of the tautological line bundle OPC(E)(1) and a fibre of the map

π by η and f respectively. The normalized hyperplane class, denoted by λE , is

defined as λE := η−µ(E)f , where µ(E) is the slope of the vector bundle E . In [Miy],

Miyaoka studied the nef cone Nef
(
PC(E)

)
under the assumption that the base field

has characteristic 0. More precisely, he showed the following ,

Theorem 2.5.2. ( see Theorem 3.1 in [Miy] ) Let π : PC(E) −→ C be a projective

bundle on a smooth irreducible projective curve C over a field k of characteristic 0.

Then, the following are equivalent :

(i) E is slope semistable.

(ii) The normalized hyperplane class λE is nef.

(iii) Nef
(
PC(E)

)
=
{
aλE + bf | a, b ∈ R≥0

}
.

(iv) NE(X) =
{
aλr−1
E + bλr−2

E | a, b ∈ R≥0

}
, where r is the rank of E .

(v) Every effective divisor on PC(E) is nef, i.e., Nef
(
PC(E)

)
= Eff

(
PC(E)

)
.

Later, in his paper [Fulg], Fulger completed the calculation of Nef
(
PC(E)

)
with-

out any restriction on E . For every vector bundle E over C, there is a unique

filtration

0 = El ( El−1 ( · · · · · · ( E1 ( E0 = E

called the Harder-Narasimhan filtration, such that Ei/Ei+1 is slope semistable for

each i ∈ {0, 1, ......, l − 1} and µ(Ei/Ei+1) > µ(Ei−1/Ei) for all i ∈ {1, 2, ...., l − 1}.

Theorem 2.5.3. ( see Lemma 2.1 in [Fulg] ) Let E be a vector bundle of rank r
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on a smooth irreducible complex projective curve C having the Harder-Narasimhan

filtration as above. Then,

Nef
(
PC(E)

)
=
{
a(η − µ1f) + bf | a, b ∈ R≥0

}
where µ1 = µ(Q1) = µ(E0/E1).

Theorem 2.5.4. ( see Lemma 2 in [MSC] or Proposition 1.3 in [Fulg] ) Let E

be a vector bundle of rank r on a smooth irreducible complex projective curve C

having the Harder-Narasimhan filtration as above. Futher, assume that rank(Q1) :=

rank(E0/E1) = r − 1, so that we can consider PC(Q1) as a divisor in X = PC(E).

Let q1 =
[
PC(Q1)

]
∈ N1(X)R. Then,

Eff
(
PC(E)

)
=
{
aq1 + bf | a, b ∈ R≥0

}
Sometimes, we will write P(E) instead of PX(E) whenever the base space X is clear

from the context.

2.5.2 Ruled Surface

Definition 2.5.5. Let C be a smooth projective algebraic curve of genus g over an

algebraically closed field k. A geometrically ruled surface or simply a ruled surface ,

is a smooth projective surface X, together with a surjective morphism π : X −→ C

such that the fibre Xy is isomorphic to P1
k for every closed point y ∈ C, and π admits

a section ( i.e. a morphism σ : C −→ X such that π ◦ σ = idC ).

Ruled surfaces are characterized by the following theorem.

Theorem 2.5.6. ( see Proposition 2.2, Chapter V in [Har] ) If π : X −→ C is

a ruled surface, then X ∼= PC(E) over C for some vector bundle E of rank 2 on

C. Conversely, every such PC(E) is a ruled surface over C. Moreover, E1 and E2
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are two vector bundles of rank 2 on C such that X ∼= PC(E1) ∼= PC(E2) as ruled

surfaces over C if and only if there is a line bundle N on C such that E1
∼= E2⊗N .

Let σ and f be the numerical class of a section and a fibre of the ruling π :

X −→ C. Then,

(i) Pic(X) ∼= Z · OX(1)⊕ π∗
(
Pic(C)

)
, and

(ii) N1(X) ∼= Z · σ ⊕ Z · f satisfying σ · f = 1, f 2 = 0.

We mention the following theorem from [Har] ( Chapter V, Section 2 ).

Theorem 2.5.7. ( see Proposition 2.8, Chapter V in [Har] ) If π : X −→ C is a ruled

surface, then there is a vector bundle F of rank 2 on C such that X ∼= PC(F ) as ruled

surfaces over C, and F have the property : H0(C,F ) 6= 0, but H0(F ⊗L) = {0} for

all line bundles L on C with deg(L) < 0.

In this case, e = − deg(F ) is an invariant of X. Further, in this case there is a

section σ0 : C −→ X, called the normalized section, such that Image(σ0) = C0 and

OX(C0) ∼= OX(1).

Motivated by the above theorem, one define the following :

Definition 2.5.8. A vector bundle E of rank 2 on a smooth irreducible projective

curve C is said to be normalized if H0(E) 6= 0, but H0(E ⊗ N) = {0} for all line

bundle N on C with deg(N) < 0.

In this context, we recall the following theorem from [Har].

Theorem 2.5.9. ( see Proposition 2.12, Chapter V in [Har] ) Let π : X −→ C

be a ruled surface over a smooth irreducible curve C of genus g, determined by a

normalized vector bundle E.

(i) If E is decomposable ( i.e., a direct sum of two line bundles ), then E =
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OC ⊕M for some line bundle M with deg(M) ≥ 0. Therefore, e = − deg(E) ≥ 0.

In this case, e can take all non-negative integral value.

(ii) If E is indecomposable, then −2g ≤ e ≤ 2g − 2.

As a corollary to the above theorem, we get the following :

Corollary 2.5.10. In the above theorem, if g = 0, then e ≥ 0, and for each e ≥ 0,

there is exactly one rational ruled surface PP1

(
OC ⊕O(−e)

)
with invariant e, over

C = P1
k.

When the base curve C of a ruled surface X is an elliptic curve ( i.e., a smooth

curve of genus 1 ), there are further restriction on the possible values of the invariant

e.

Theorem 2.5.11. ( see Proposition 2.15, Chapter V in [Har] ) If X is a ruled

surface over an elliptic curve C, determined by an indecomposable normalized rank

2 bundle E, then e = 0 or −1, and there is exactly one such ruled surface over C

corresponding to each of these two values of e.

(i) When e = 0, E is the unique nonsplit extension of OC by OC .

(ii) When e = 1, E is the unique nonsplit extension of the form

0 −→ OC −→ E −→ OC(p) −→ 0

for some closed point p ∈ C.
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Chapter 3

Higgs Bundle on Ruled Surfaces

In this chapter, we consider a smooth irreducible projective curve C over an alge-

braically closed field k of characteristic 0, and a ruled surface π : X = PC(E) −→ C.

We fix a polarization L on X, and discuss about the (semi)stability of pullback of

a Higgs bundle on C under the ruling π ( see [Mis] ). From now onwards, we will

write P(E) instead of PX(E) whenever the base space X is clear from the context.

3.1 Change of Polarization

Let F be a coherent sheaf on a smooth irreducible projective variety X over an

algebraically closed field k of dimension n ≥ 2, having Chern classes ci and rank r.

The discriminant of F by definition is the characteristic class

4(F ) = 2rc2 − (r − 1)c2
1

Let E = (E, θ) be a semistable Higgs sheaf with respect to a fixed polarization L on

X. Then, Bogomolov’s inequality says that 4(E) · Ln−2 ≥ 0 . In his paper [Sim1]

( see Proposition 3.4 in [Sim1] ), Simpson proved Bogomolov’s inequality for semistable
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Higgs bundle over a smooth complex irreducible projective variety. More generally,

later in [Lan], it is shown that Bogomolov’s inequality holds true for semistable

Higgs sheaves on smooth projective varieties defined over an algebraically closed

field k of characteristic 0 as well.

For a Higgs bundle V = (V, θ) of rank r on a smooth irreducible complex projec-

tive variety X, let Grm(V) be the schemes parametrizing locally free quotients of V

of rank m whose kernels are θ-invariant. Let πm : Grm(V) −→ X be the projection

maps, and Qm = (Qm,Φm) be the universal quotient Higgs bundle on them. We

define,

λm,V = c1(OPQm)− 1

r
π∗mc1(V )

We recall the following result from [BR]

Theorem 3.1.1. ( see Theorem 1.3 in [BR] ) Let V = (V, θ) be a Higgs bundle of

rank r on a smooth irreducible complex projective variety. Then, the following are

equivalent

(i) All classes λm,V are nef, for 0 < m < r.

(ii) V is semistable and 4(V ) = 0.

Moreover, if V = (V, θ) is semistable with 4(V ) = 0, then for every smooth

curve C and for every smooth morphism φ : C −→ X, φ∗(V) is Higgs semistable

on C. However, the converse is not true in general ( see [BG] ). Note that nefness

does not depend on the choice of a polarization on X, hence by the Theorem 3.1.1,

the semistability of V = (V, θ) is independent of the choice of the polarization if it

is semistable with 4(V ) = 0.

We prove a similar result for Higgs bundles on a smooth irreducible algebraic

surface over any algebraically closed field of characteristic 0.
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Proposition 3.1.2. If V = (V, θ) is L1-semitable Higgs bundle on a smooth irre-

ducible algebraic surface X defined over an algebraically closed field k of character-

istic 0, with a fixed polarization L1 on X and 4(V ) = 0, then the semistability of

the Higgs bundle V = (V, θ) is independent of the polarization chosen.

Proof. Suppose there is a polarization L2 such that V = (V, θ) is not L2-semistable

Higgs bundle. Then there exist a saturated θ-invariant subsheaf V0 ⊆ V with

µL2(V0) > µL2(V ). Let V ′ is any θ-invariant saturated subsheaf with this prop-

erty. We define

r(V ′) :=
µL1(V )− µL1(V

′)

µL2(V
′)− µL2(V )

.

Then µL1+r(V ′)L2(V
′) = µL1+r(V ′)L2(V ). We note that L0 := L1 + r(V0)L2 is a

polarization on X. If r(V ′) < r(V0), then µL0(V
′) > µL0(V ). By Grothendieck’s

Lemma ( See Lemma in 1.7.9 in [HL] ) , the family of saturated subsheaves V ′ with

µL0(V
′) > µL0(V ) is bounded. So, there are only finitely many numbers r(V ′) which

are smaller than r(V ). We can further choose V0 in such a way that r(V0) is minimal.

Then, V and V0 are L0-Higgs semistable with µL0(V0) = µL0(V ). So, we have an

exact sequence of torsion free Higgs sheaves

0 −→ V0 −→ V −→ V1 −→ 0(3.1)

with µL0(V0) = µL0(V ) = µL0(V1). Let θ : V1 −→ V1 ⊗ Ω1
X be the induced map.

Our claim is that (V1, θ) is also a L0-semistable Higgs sheaf. Now, let W 1 be a

θ-invariant subsheaf of V1. Then we have an exact sequence of torsion-free sheaves

0 −→ V0 −→ W1 −→ W 1 −→ 0(3.2)

where W1 is θ-invariant subsheaf of V containing V0. Using the L0-semistability of
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V , we get, µL0(W1) ≤ µL0(V ) = µL0(V0). From the exact sequence (3.2) ( using

Lemma 2, Chapter 4 in [Fri] ), we also have

min
{
µL0(V0), µL0(W 1)

}
≤ µL0(W1) ≤ max

{
µL0(V0), µL0(W 1)

}
Hence, µL0(W 1) ≤ µL0(W1) ≤ µL0(V0) = µL0(V ) = µL0(V1). This proves our claim.

Therefore, by Bogomolov’s inequality, 4(V0) ≥ 0 , 4(V1) ≥ 0.

We denote ξ ≡
(
r · c1(V0) − r0 · c1(V )

)
∈ N1(X)R where r and r0 denotes the

ranks of V and V0 respectively. Hence, ξ ·L0 = 0 and ξ ·L2 > 0. So, by Hodge Index

Theorem, ξ2 < 0. On the other hand, from the exact sequence (3.1) we have,

0 = 4(V ) =
r

r1

4(V0) +
r

r − r1

4(V1)− ξ2

r1(r − r1)

Since 4(V0) ≥ 0 and 4(V1) ≥ 0, we have, ξ2 ≥ 0 which is a contradiction. This

proves our result.

Remark 2. A similar argument as in Proposition 3.1.2 will prove that if V = (V, θ) is

an L-stable Higgs bundle on a smooth algebraic surface X with a fixed polarization L

on X and4(V ) = 0, then the stability of the Higgs bundle V = (V, θ) is independent

of the polarization chosen.

3.2 Semistability under pullback

Theorem 3.2.1. Let π : X −→ C be a ruled surface with a fixed polarization L on

X. Let V = (V, θ) be a semistable Higgs bundle of rank r on C. Then, the pullback

π∗(V) =
(
π∗(V ), dπ(θ)

)
is L-semistable Higgs bundle on X.

Proof. Let H be a very ample line bundle on X. By Bertini’s Theorem, there exist

a smooth projective curve B in the linear system |H|. Let us consider the induced
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map between the two smooth projective curves

πB : B ↪→ X −→ C.

Since B ·f = H ·f > 0 , B is not contained in any fibre of the map π. Hence, πB is a

finite separable morphism between two smooth projective curves and by Lemma 3.3

in [BR], π∗B(V) is a semistable Higgs bundle on B. Now, our claim is that π∗(V) is

H-semistable Higgs bundle on X. If not, then there exist dπ(θ)-invariant subbundle

W of π∗(V ) with µH(W ) > µH
(
π∗(V )

)
. Hence, we have

µ
(
W |B

)
> µ

(
π∗(V )|B

)
But, W |B is a dπB(θ)-invariant subbundle of π∗B(V ) = π∗(V )|B. Thus, π∗B(V) =(
π∗B(V ), dπB(θ)

)
is not a semistable Higgs bundle on B, which is a contradiction.

Therefore, π∗(V) =
(
π∗(V ), dπ(θ)

)
is an H-semistable Higgs bundle on X. Now,

the discriminant of π∗(V ),

4
(
π∗(V )

)
= 2rc2

(
π∗(V )

)
− (r − 1)c2

1

(
π∗(V )

)
= 2rc2

(
π∗(V )

)
− (r − 1)df · df , where d = deg

(
∧r(V )

)
in C.

= 0 , ( Since df · df = d2 · f 2 = 0 ) .

Hence, by Proposition 3.1.2, π∗(V) =
(
π∗(V ), dπ(θ)

)
is an L-semistable Higgs

bundle on X for any polarization L on X.

Proposition 3.2.2. Let π : X = P(E) −→ C be a ruled surface on C. Then, the

natural map, Ω1
C

η−→ π∗(Ω
1
X) is an isomorphism.

Proof. Consider the exact sequence

0 −→ π∗(Ω1
C) −→ Ω1

X −→ Ω1
X|C −→ 0(3.3)
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Applying π∗ to the exact sequence (3.3), we get the following long exact sequence,

0 −→ Ω1
C −→ π∗(Ω

1
X) −→ π∗(Ω

1
X|C) −→ Ω1

C ⊗R1π∗(OX) −→ ...(3.4)

We also have

0 −→ Ω1
X|C −→ π∗(E)⊗OP(E)(−1) −→ OP(E) −→ 0(3.5)

Since π is a smooth map of relative dimension 1 between two nonsingular varieties,

by Proposition 10.4 in [Har], Ω1
X|C is a locally free sheaf of rank 1 on X. Applying

π∗ to exact sequence (3.5), we get

0 −→ π∗(Ω
1
X|C) −→ π∗

(
(π∗(E))⊗OP(E)(−1)

)
−→ ..(3.6)

By the projection formula, π∗
(
π∗(E) ⊗ OP(E)(−1)

)
= E ⊗ π∗

(
OP(E)(−1)

)
= 0.

Therefore, from exact sequence (3.6), we get, π∗(Ω
1
X|C) = 0 and hence from exact

sequence (3.3), we have, the natural map Ω1
C

η−→ π∗(Ω
1
X) is an isomorphism.

We recall the following lemma, which we will use repeatedly in the proofs of our

main results.

Lemma 3.2.3. ( see Lemma 2.2 in [Su] ) Let F be a torsion free sheaf of rank r

on a ruled surface π : X −→ C and F|f ∼= O⊕rf for a generic fibre f of the map π.

Then c2(F) ≥ 0 and c2(F) = 0 if and only if F ∼= π∗(V ) for some vector bundle V

on C.

Theorem 3.2.4. Let L be a fixed polarization on a ruled surface π : X −→ C. Let

V = (V, θ) be an L-semistable Higgs bundle of rank r on X with c1(V ) = π∗
(
[d]
)
,

for some divisor d of degree d on C. Then c2(V ) ≥ 0 and c2(V ) = 0 if and only

if there exists a semistable Higgs bundle W = (W,ψ) on C such that π∗(W) =(
π∗(W ), dπ(ψ)

) ∼= V on X.
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Proof. By Bogomolov’s inequality, 2rc2(V ) ≥ (r − 1)c2
1(V ) = 0. Hence, c2(V ) ≥ 0.

If c2(V ) = 0, then 4(V ) = 0. Our claim is that, in this case, V |f is a slope

semistable vector bundle on a generic fibre f of the map π, and hence , V |f ∼= O⊕rf

( as deg(V |f ) = c1(V ) · f = 0 ). If not, then, V |f = Of (a1)⊕Of (a2)⊕ · · · ⊕Of (ar)

for some integers a1, a2, .., ar such that not all of them are zero. Without loss of

generality, we assume that a1 ≥ a2 ≥ a3 ≥ · · · ≥ ar. As deg(V |f ) =
∑
j

aj = 0, one

can further assume that a1 > 0 . Let a1 = a2 = · · · = ai > ai+1 for some 1 ≤ i < r.

Consider Wf = Of (a1)⊕ · · · ⊕Of (ai). Then Wf is a slope semistable vector bundle

on f and deg(Wf ) > 0. Consider the exact sequence

0 −→ π∗(Ω1
C) −→ Ω1

X −→ Ω1
X|C −→ 0

Restricting the above exact sequence to a generic fibre f , we get

0 −→ Of −→ Ω1
X |f −→ Ω1

X|C |f −→ 0

Now, the canonical divisor KX ≡ −2C0 + (2g − 2 − e)f , where C0 is the nor-

malized section of π ( see Corollary 2.11, Chapter 5 in [Har]). Hence, deg(Ω1
X |f ) =

deg(KX |f ) = −2. We also have Ω1
X|C |f ∼= Of (−2). Therefore, Ω1

X |f = Of⊕Of (−2).

Note that µ
(
Wf

)
> µ

(
Of (al)

)
and µ

(
Wf

)
> µ

(
Of (al − 2)

)
for every l satisfying

(i+ 1) ≤ l ≤ r.

Now, V |f ⊗ Ω1
X |f =

{
Wf ⊕Of (ai+1)⊕ · · · ⊕ Of (ar)

}
⊗ Ω1

X |f

=
{
Wf ⊗ Ω1

X |f
}
⊕
{
Of (ai+1)⊗ Ω1

X |f
}
⊕ · · · ⊕

{
Of (ar)⊗ Ω1

X |f
}
.

As Wf is slope semistable, this implies that for each i satisfying (i+ 1) ≤ l ≤ r,

there does not exists any non-zero map from Wf to Of (al) ⊗ Ω1
X |f . Hence, θ|f :

Wf −→ Wf⊗Ω1
X |f . We extend Wf to a θ-invariant subbundle W ↪→ V such that the

quotient is also torsion-free. Since θ|f preserves Wf , W is also preserved by θ. Note
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that, c1(W ) · f = deg(Wf ) > 0. Hence, for a large m� 0, µL+mf (W ) > µL+mf (V ).

Since 4(V ) = 0, this contradicts that (V, θ) is (L + mf)-semistable Higgs bundle.

Hence, our claim is proved.

Therefore, V |f ∼= O⊕rf for a generic fibre f . As c2(V ) = 0, by Lemma 3.2.3,

V ∼= π∗(W ) for some vector bundle W on C. Note that by projection formula, we

have

H0
(
X,End(V )⊗ π∗(Ω1

C)
) ∼= H0

(
X,End(V )⊗ Ω1

X

) ∼= H0
(
C,End(W )⊗ Ω1

C

)
.

Hence, the natural inclusion map

H0
(
X,End(V )⊗ π∗(Ω1

C)
)
↪→ H0

(
X,End(V )⊗ Ω1

X

)
is also surjective i.e. every Higgs-field on V factors through V ⊗π∗(Ω1

C). We con-

sider the following Higgs-field ψ on C defined using Proposition 3.2.2 and projection

formula

ψ := π∗(θ) : π∗
(
π∗(W )

) ∼= W −→ π∗
(
π∗(W )⊗ Ω1

X

) ∼= W ⊗ Ω1
C

Since C is a curve, The condition ψ ∧ ψ = 0 is automatically satisfied. Hence

W := (W,ψ) is a well-defined Higgs bundle on C. Now, consider the following

commutative diagram.

V V ⊗ π∗(Ω1
C) V ⊗ Ω1

X

π∗(W ) π∗(W )⊗ π∗(Ω1
C) π∗(W )⊗ Ω1

X

θ

∼=

id⊗η

∼= ∼=

π∗(ψ) id⊗η

From the above commutative diagram, we have, π∗(W) ∼= E .

Our claim is that (W,ψ) is Higgs semistable on C. If not, then there is a ψ-

invariant subbundle, say, W1 of W such that µ(W1) > µ(W ). This implies

µL
(
π∗(W1)

)
= µ(W1)(L · f) > µ(W )(L · f) = µL(V )
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But, π∗(W1) is a θ-invariant subbundle of V , and hence it contradicts that (V, θ) is

L-semistable Higgs bundle. This completes the proof of the theorem.

3.3 Stability under pullback

Theorem 3.3.1. Let L be a fixed polarization on a ruled surface π : X −→ C.

Then for any stable Higgs bundle W = (W,ψ) on C, the pullback Higgs bundle

π∗(W) is L-stable Higgs bundle on X. Conversely, if V = (V, θ) is an L-stable Higgs

bundle on X with c1(V ) = π∗
(
[d]
)

for some divisor d on C and c2(V ) = 0, then

V ∼= π∗(W) for some stable Higgs bundle W = (W,ψ) on C.

Proof. By Theorem 3.2.4, π∗(W) is an L-semistable Higgs bundle on X. If π∗(W) is

strictly L-semistable Higgs bundle, then there is a short exact sequence of torsion-

free sheaves

0 −→ V1 −→ π∗(W ) −→ V2 −→ 0(3.7)

where V1 is a dπ(ψ)-invariant subbundle of V of rank m (say), V2 is a torsion-free

sheaf of rank n (say) on X such that V2 is a locally-free sheaf V2 on the complement

a closed subscheme Z = {x1 , x2 , ...., xd} (say) of codimension 2 in X, and

µL(V1) = µL
(
π∗(W )

)
= µL(V2).

Restricting the above exact sequence (3.7) to a generic fibre f of the map π such

that Z
⋂

f = ∅ ,we have

0 −→ V1|f −→ π∗(W )|f −→ V2|f −→ 0(3.8)

Since π∗(W ) |f∼= O⊕rf , it is a slope semistable bundle of degree 0 on f ∼= P1 and hence
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deg(V2 |f ) ≥ 0. Our claim is that deg(V2|f ) > 0. If not, let deg(V2|f ) = 0. Hence,

from the above exact sequence (3.8), for a generic fibre f , we get, deg(V1|f ) = 0 ,

deg(V2|f ) = 0 and V1|f , V2|f are semistable on f ∼= P1. Therefore, for a generic fibre

f , V1|f ∼= O⊕mf and V2|f ∼= O⊕nf . By Lemma 3.2.3, we have c2(V1) ≥ 0, c2(V2) ≥ 0.

Using the Whitney sum formula to the exact sequence (3.7), we get

π∗
(
c2(W )

)
= c2

(
π∗(W )

)
= 0 = c2(V1) + c2(V2)

which implies c2(V1) = c2(V2) = 0 . Hence by the Lemma 3.2.3, V1
∼= π∗(W1) and

V2
∼= V2

∼= π∗(W2) for some vector bundle W1 and W2 on C and Z = ∅ in the exact

sequence (3.7). Note that since V1 is dπ(ψ)-invariant, it will imply W1 is ψ-invariant.

Note that, in this case,

µL(V1) = µ(W1)(L · f) = µL
(
π∗(W )

)
= µ(W )(L · f)

This implies µ(W1) = µ(W ) for the ψ-invariant subbundle W1 −→ W , which con-

tradicts the Higgs stability of W . Thus, our claim is proved i.e. deg(V2|f ) > 0 and

hence deg(V1|f ) < 0.

Now choose a positive integer i � 0 such that Li := L + if is ample. We then

have, for all dπ(ψ)-invariant subbundle 0 −→M −→ π∗(W ) of π∗(W),

µLi
(M) < µLi

(
π∗(W )

)
Hence, π∗(W) is Li-stable Higgs bundle and the discriminant of π∗(W ) being 0, by

Remark 2, π∗(W) is L-stable Higgs bundle on X for any polarization L on X.

Conversely, if V = (V, θ) is a L-stable Higgs bundle on X with c1(V ) = π∗
(
[d]
)

for some divisor d on C and c2(V ) = 0, then by Theorem 3.3.1, V ∼= π∗(W) for

some semistable Higgs bundle W = (W,ψ) on C. If W is strictly semistable Higgs
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bundle, then there is an exact sequence of ψ-invariant subbundle of W

0 −→ W1 −→ W −→ W2 −→ 0(3.9)

such that µ(W1) = µ(W ) = µ(W2). The exact sequence (3.9) will then pullback to

an exact sequence

0 −→ π∗(W1) −→ V −→ π∗(W2) −→ 0

of θ-invariant subbundles of V such that µL
(
π∗(W1)

)
= µL(V ) = µL

(
π∗(W2)

)
. This

contradicts the is L-stability of the Higgs bundle V . Therefore, W is stable Higgs

bundle on C such that π∗(W) ∼= V .

As a corollary to Theorem 3.3.1, we have the following result which generalizes

the results of Takemoto and Marian Aprodu for rank 2 ordinary vector bundles

( see Proposition 3.4, Proposition 3.6 in [Tak] and Corollary 3 in [AB] ).

Corollary 3.3.2. Let L be a fixed polarization on a ruled surface π : X −→ C.

Then, for any stable bundle W of rank r on C, the pullback bundle π∗(W ) is slope

L-stable bundle on X . Conversely, if V is a slope L-stable vector bundle of rank r

on X with c1(V ) = π∗
(
[d]
)

for some divisor d on C and c2(V ) = 0, then V ∼= π∗(W )

for some slope stable vector bundle W on C.

3.4 An Example

Consider the following example from [BG]. Let C be a smooth complex projective

curve of genus g(C) ≥ 2. Let E = K
1
2
C ⊕ K

− 1
2

C , where K
1
2
C is a square root of the

canonical bundle KC . Note, K2
C
∼= Hom(K

− 1
2

C , K
1
2
C ⊗KC). Then, we obtain a Higgs
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field ψ on E by setting,

ψ =

0 ω

1 0


where ω 6= 0 ∈ Hom (C,K2

C) and 1 is the identity section of trivial bundle

Hom(K
1
2
C , K

− 1
2

C ⊗KC). Now, (E,ψ) is a stable Higgs bundle, as K
1
2
C is not ψ-invariant

and there is no subbundle of positive degree which is preserved by ψ. However,

E is not slope semistable. Let π : X −→ C be a ruled surface. In such cases,

by Theorem 3.3.1, the pullback of these non-trivial stable Higgs bundle on C will

prove the existence of non-trivial stable Higgs bundles on the ruled surface X whose

underlying vector bundles are not slope stable.

3.5 Isomorphism of Moduli spaces

Let d be a degree d divisor on a curve C and π : X −→ C be a ruled surface on

C with a fixed polarization L on X. Recall that the moduli space of S-equivalence

classes of Higgs L-semistable bundles V = (V, θ) of rank r on X, having c1(V ) =

π∗
(
[d]
)

and c2(V ) = 0, is denoted byMHiggs
X

(
r, df, 0, L

)
. We also denote the moduli

space of S-equivalence classes of semistable Higgs bundles of rank r and degree d on

C by MHiggs
C

(
r, d
)
.

We have the following theorem which is a corollary to the theorems proved in

previous sections in this chapter.

Theorem 3.5.1. The moduli spaces MHiggs
X

(
r, df, 0, L

)
and MHiggs

C

(
r, d
)

are iso-

morphic as algebraic varieties.

Proof. Let MHiggs
X

(
r, df, 0, L

)
and MHiggs

C

(
r, d
)

denote the moduli functors whose

corresponding coarse moduli spaces areMHiggs
X

(
r, df, 0, L

)
andMHiggs

C

(
r, d
)

respec-

tively. For a given finite-type scheme T over k, MHiggs
X

(
r, df, 0, L

)
(T ) is the set of
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equivalence classes of flat families of L-semistable Higgs Bundles on X of rank r

with c1(V ) = π∗
(
[d]
)

and c2(V ) = 0 parametrized by T . A family parametrized by

T corresponding to MHiggs
X

(
r, df, 0, L

)
is a pair (F , ψ) where F is a coherent sheaf

on X×T , flat over T and ψ ∈ Hom
(
F ,F ⊗OX×T

p∗1(Ω1
X)
)
, where p1 denotes the first

projection map from X × T to X. Further, for every closed point t ∈ T , we have

for the natural embedding t : X ↪→ X × T , the pair
(
Ft, ψt

)
:=
(
t∗(F ), t∗(ψ)

)
is

an L-semistable Higgs bundle of rank r with c1

(
Ft
)

= π∗
(
[d]
)

and c2

(
Ft
)

= 0. Let

πT := π ⊗ idT : X × T −→ C × T . Then, from Theorem 3.2.4, we get a flat family(
G, φ

)
:=
(
(πT )∗(F), (πT )∗(ψ)

)
parametrized by T corresponding to MHiggs

C

(
r, d
)

such that
(
Ft, ψt

) ∼= (
π∗(Gt), dπ(φt)

)
with deg

(
Gt
)

= d and
(
Gt, φt

)
is a semistable

Higgs bundle for every closed point t ∈ T .
[

Here for every closed point t ∈ T and

for the natural embedding t̃ : C −→ C × T , we define
(
Gt, φt

)
:=
(
t̃∗(G), t̃∗(φ)

) ]
.

So, we get a natural transformation of functors

π∗ : MHiggs
X

(
r, df, 0, L) −→ M Higgs

C

(
r , d
)

Similarly, starting from a flat family (G, φ) of semistable Higgs bundles parametrized

by T with deg
(
Gt
)

= d and rank
(
Gt
)

= r for every closed point t of T , and by using

Theorem 3.2.1, we can get a flat family (F , ψ) of L-semistable Higgs bundles on

X parametrized by T such that for every closed point t in T , c1

(
Ft
)

= π∗
(
[d]
)
,

c2

(
Ft
)

= 0 and
(
Ft, ψt

) ∼= (
π∗(Gt), dπ(φt)

)
. So, we get a natural transformation of

functors

π∗ : MHiggs
C

(
r, d
)
−→MHiggs

X

(
r, df, 0, L

)
By construction, π∗ ◦ π∗ and π∗ ◦ π∗ are identity transformations on MHiggs

C

(
r, d
)

and MHiggs
X

(
r, df, 0, L

)
respectively. Hence, the corresponding coarse moduli spaces

are also isomorphic.
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Chapter 4

Nef cone and Pseudoeffective cone

of the fibre product

4.1 Geometry of products of projective bundles

over curves

In this chapter, we compute the nef cones Nef
(
P(E1)×C P(E2)

)
and pseudoeffective

cones Eff
(
P(E1) ×C P(E2)

)
under the assumption that both E1 and E2 are slope

semistable, and in a few other cases, e.g.; rank(E1) =rank(E2) = 2 ( see [KMR] ).

Let E1 and E2 be two vector bundles over a smooth curve C of rank r1, r2 and

degrees d1, d2 respectively. Let P(E1) and P(E2) be the associated projective bundle

together with the projection morphisms π1 : P(E1) −→ C and π2 : P(E2) −→ C

respectively. Let X = P(E1) ×C P(E2) be the fibre product over C. Consider the

following commutative diagram:

X = P(E1)×C P(E2) P(E2)

P(E1) C

p2

p1 π2

π1
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Note that, X ∼= P
(
π∗1(E2)

) ∼= P
(
π∗2(E1)

)
. Let f1, f2, g1, g2 and F be the numerical

equivalence classes of the fibres of the maps π1, π2, p1, p2 and π1 ◦ p1 = π2 ◦ p2 re-

spectively. We first fix the following notations for the numerical equivalence classes,

η1 =
[
OP(E1)(1)

]
∈ N1

(
P(E1)

)
R

, η2 =
[
OP(E2)(1)

]
∈ N1

(
P(E2)

)
R

,

ξ1 =
[
OP(π∗1(E2))(1)

]
, ξ2 =

[
OP(π∗2(E1))(1)

]
∈ N1(X)R ,

ζ1 = p∗1(η1) , ζ2 = p∗2(η2) ∈ N1(X)R .

It is a well known fact that ( see [Har], Chapter II )

Pic
(
P(E1)

)
= π∗1

(
Pic(C)

)
⊕ ZOP(E1)(1) , Pic

(
P(E2)

)
= π∗2

(
Pic(C)

)
⊕ ZOP(E2)(1),

N1
(
P(E1)

)
R

= Rη1 ⊕ Rf1 , N1
(
P(E2)

)
R

= Rη2 ⊕ Rf2.

From these facts, it can be easily concluded that

Pic(X) = p∗1
(
Pic(P(E1))

)
⊕ ZOX(1) = p∗1

(
π∗1((Pic(C))

)
⊕ Zp∗1

(
OP(E)(1)

)
⊕ ZOX(1),

N1(X)R = Rξ1 ⊕ Rζ1 ⊕ RF.

From the Chern polynomial of ζ1 , we get

ηr11 −
(
deg(E1)

)
f1 · ηr1−1

1 = 0 , =⇒ ζr11 =
(
deg(E1)

)
F · ζr1−1

1(4.1)

Similarly, from the Chern class of ζ2 , we get

ηr22 −
(
deg(E2)

)
f2 · ηr2−1

2 = 0 , =⇒ ζr22 =
(
deg(E2)

)
F · ζr2−1

2(4.2)

We also have OP(E1)(1)|π−1
1 (x)

∼= OPr1−1(1) and OP(E2)(1)|π−1
2 (x)

∼= OPr2−1(1) for any

x ∈ C. Note that each fibre Γ of the map π1 ◦ p1 = π2 ◦ p2 is isomorphic to
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Pr1−1 × Pr2−1. Hence, Pic(Γ) ∼= Z⊕ Z, N1(Γ)Z
∼= Z⊕ Z, and

p∗1
(
OP(E1)(1)

)
|Γ ∼= (1, 0) ∈ Pic(Γ) , p∗2

(
OP(E2)(1)

)
|Γ ∼= (0, 1) ∈ Pic(Γ)

Note that according to our notations, the numerical equivalence class of each fibre,

[Γ] = F ∈ N1(X)R. Let i : Γ ↪→ X be the inclusion. Then, i∗(ζ1) =
[
i∗
(
p∗1(OP(E1)(1)

)]
=[

p∗1
(
OP(E1)(1)

)
|Γ
]

=
[
(1, 0)

]
∈ N1(Γ)Z. Similarly, i∗(ζ2) =

[
(0, 1)

]
∈ N1(Γ)Z.

From (4.1), we get,

ζr11 · ζr2−1
2 =

(
deg(E1)

)
F · ζr1−1

1 · ζr2−1
2 = deg(E1)

(
i∗(ζr1−1

1 )
)
·
(
i∗(ζr2−1

2 )
)
,

= deg(E1)
[
(1, 0)

]r1−1 ·
[
(0, 1)

]r2−1
= deg(E1)

Similarly,ζr22 · ζr1−1
1 = deg(E2), and F 2 = F · F = p∗1(f1) · p∗1(f1) = p∗1(f1 · f1) =

p∗1(f 2
1 ) = 0.

We know, OP(π∗1(E2))(1)|p−1
1 (x)

∼= OPr2−1(1) for any x ∈ P(E1). Considering the

Chern polynomial of ξ1, we get,

ξr21 − deg(E2)F · ξr2−1
1 = 0(4.3)

From (4.3) we get, ξr21 · F = deg(E2)F 2 · ξr2−1
1 = 0 and using this, we have

ξr2+1
1 = deg(E2)ξr2 · F = 0.

A similar calculation will show that, ξr12 · F = 0, ξr1+1
2 = 0.

From (4.3) we also get, ξr1+r2−2
1 · F = deg(E2)F 2 · ξr1+r2−3

1 = 0.

Assume OP(π∗1(E2))(1)|Γ ∼= (a, 1) ∈ Pic(Γ) . Then

ξr1+r2−2
1 · F =

(
i∗(ξr1−1

1 )
)
·
(
i∗(ξr2−1

1 )
)
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=
[
(a, 1)

]r1−1 ·
[
(a, 1)

]r2−1
=
[
(a, 1)

]r1+r2−2
.

Therefore, a = 0 , =⇒ OP(π∗1(E2))(1)|Γ ∼= (0, 1) ∈ Pic(Γ).

A similar calculation will show that, OP(π∗2(E1))(1)|Γ ∼= (1, 0) ∈ Pic(Γ).

We here summarize all the intersection product that has been discussed above:

ξr21 · F = 0 , ξr2+1
1 = 0 , ξr12 · F = 0 , ξr1+1

2 = 0 , F 2 = 0,

ζr11 =
(
deg(E1)

)
F · ζr1−1

1 , ζr22 =
(
deg(E2)

)
F · ζr2−1

2 ,

ζr11 · ζr2−1
2 = deg(E1) , ζr22 · ζr1−1

1 = deg(E2).

ζr11 · F = 0 , ζr22 · F = 0 .

Theorem 4.1.1. With the notations as above, ξ1 = ζ2 and ξ2 = ζ1 in N1(X)R.

Proof. Let ζ2 = xξ1 + yζ1 + zF for x, y, z ∈ R.

Multiplying both sides by F · ξr2−2
1 · ζr1−1

1 and using the fact that F 2 = 0, we get

F · ξr2−2
1 · ζr1−1

1 · ζ2 = x
(
F · ξr2−1

1 · ζr1−1
1

)
+ y
(
F · ξr2−2

2 · ζr11

)
,

=⇒ i∗
(
ξr2−2

1

)
· i∗
(
ζ2

)
· i∗
(
ζr1−1

1

)
= x

{
i∗
(
ξr2−1

1

)
· i∗
(
ζr1−1

1

)}
+ y
(
ξr2−2

2 · F · ζr11

)
,

=⇒
[
(0, 1)

]r2−2 ·
[
(0, 1)

]
·
[
(1, 0)

]r1−1
= x

{[
(0, 1)

]r2−1 ·
[
(1, 0)

]r1−1}
,

=⇒ x = 1.

Similarly, multiplying both sides of ζ2 = xξ1 + yζ1 + zF by F · ξr2−1
1 · ζr1−2

1 and

using F 2 = 0, we get

F · ξr2−1
1 · ζr1−2 · ζ2 = x

(
F · ξr21 · ζr1−2

1

)
+ y
(
F · ξr2−1

1 · ζr1−1
1

)
,

=⇒ i∗
(
ξr2−1

1

)
· i∗
(
ζ2

)
· i∗
(
ζr1−2

1

)
= y,

=⇒
[
(0, 1)

]r2 · [(1, 0)
]r1−2

= y,

=⇒ y = 0.
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Now, from (4.2) we have ζr22 =
(
deg(E2)

)
F · ζr2−1

2 ,

=⇒ ζr22 · ξr1−1
2 =

(
deg(E2)

)
F · ζr2−1

2 · ξr1−1
2 ,

=⇒ ζr22 · ξr1−1
2 =

(
deg(E2)

){[
(0, 1)

]r2−1 ·
[
(1, 0)

]r1−1}
= deg(E2).

Similarly, from (4.3) we get ξr21 =
(
deg(E2)

)
F · ξr2−1

1 ,

=⇒ ξr21 · ξr1−1
2 =

(
deg(E2)

)
F · ξr2−1

1 · ξr1−1
2 ,

=⇒ ξr21 · ξr1−1
2 =

(
deg(E2)

){[
(0, 1)

]r2−1 ·
[
(1, 0)

]r1−1}
= deg(E2).

Hence, we have ζr22 =
(
ξ1 + zF

)r2 = ξr21 + r2z
(
F · ξr2−1

1

)
,

=⇒ ζr22 · ξr1−1
2 =

(
ξr21 · ξr1−1

2

)
+ r2z

(
F · ξr2−1

1 ξr1−1
2

)
=⇒ deg(E2) = deg(E2) + r2z

{[
(0, 1)

]r2−1 ·
[
(1, 0)

]r1−1}
= deg(E2) + r2z,

=⇒ z = 0 .

This proves our result i.e. ζ2 = ξ1 ∈ N1(X)R. A similar calculation will also

show that ζ1 = ξ2 ∈ N1(X)R.

Theorem 4.1.2. With the notations as above, the dual basis ofN1(X)R is
{
δ1, δ2, δ3

}
where δ1 = F · ζr1−2

1 · ζr2−1
2 , δ2 = F · ζr1−1

1 · ζr2−2
2 and

δ3 = ζr1−1
1 · ζr2−1

2 − deg(E1)F · ζr1−2
1 · ζr2−1

2 − deg(E2)F · ζr1−1
1 · ζr2−2

2 .

4.2 Nef cones of the fibre Product

Let C be a smooth irreducible curve over C. Recall that for a vector bundle E of

rank r on C, slope of E is defined as,

µ(E) :=
deg(E)

r
∈ Q
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A vector bundle E on C is said to be slope semistable if µ(F ) ≤ µ(E) for all

subbundle F ⊆ E. E is called slope unstable if it is not slope semistable.

4.2.1 Case I : When both E1 and E2 are slope semistable

Theorem 4.2.1. Let E1 and E2 be two slope semistable vector bundles on a smooth

irreducible projective curve C over C with slopes µ1 and µ2 respectively. Consider

the following commutative diagram:

X = P(E1)×C P(E2) P(E2)

P(E1) C

p2

p1 π2

π1

We use the same notations as in Section 4.1. Then,

Nef(X) = Eff(X) =
{
aλ1 + bλ2 + cF | a, b, c ∈ R≥0

}
,

where λ1 = ζ1 − µ1F and λ2 = ζ2 − µ2F .

Proof. From the discussions in Section 4.1, N1(X)R = Rξ1 ⊕ Rζ1 ⊕ RF . As E1

and E2 both are slope semistable vector bundles on C, by Theorem 3.1 in [Miy],

ν1 = η1 − µ1f1 and ν2 = η2 − µ2f2 both are nef classes. Since pullback of a nef

class under a proper map is also nef ( see Example 1.4.4 in [Laz1] ), λ1 = p∗1(ν1) =

ζ1 − µ1F, λ2 = p∗2(ν2) = ζ2 − µ2F and F = p∗1(f1) are all nef classes in N1(X)R.

Hence,

{
aλ1 + bλ2 + cF | a, b, c ∈ R≥0

}
⊆ Nef(X)

Let D = OP(π∗1(E2))(l)⊗ p∗1OP(E1)(m)⊗ p∗1
(
π∗1(M)

)
be an integral effective divisor on
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X, where M is a line bundle of degree n on C. Hence,

H0
(
X,OP(π∗1(E2))(l)⊗ p∗1OP(E1)(m)⊗ p∗1(π∗1(M))

)
6= 0.

Note that this implies l,m ≥ 0. Now, by projection formula, we have

H0
(
X,OP(π∗1(E2))(l)⊗ p∗1OP(E1)(m)⊗ p∗1(π∗1(M))

)
= H0

(
P(E1), Sl(π∗1(E2))⊗OP(E1)(m)⊗ π∗1(M)

)
= H0

(
P(E1), π∗1(Sl(E2))⊗OP(E1)(m)⊗ π∗1(M)

)
= H0

(
C, Sl(E2)⊗ Sm(E1)⊗M

)
6= 0.

Consider the following exact sequence given by a non-zero global section of

Sl(E2)⊗ Sm(E1)⊗M,

0 −→ OC −→ Sl(E2)⊗ Sm(E1)⊗M

Since E1 and E2 both are slope semistable and the ground field C has characteristic

zero, Sl(E2)⊗ Sm(E1)⊗M is also slope semistable ( see Corollary 3.2.10 in [HL] ).

Hence,

deg
(
Sl(E2)⊗ Sm(E1)⊗M

)
≥ 0.

Also, note that rank
(
Sm(E1)

)
=
(
m+r1−1
r1−1

)
and det

(
Sm(E1)

)
= det(E1)

⊗(m+r1−1
r1

).

Hence, deg
(
Sm(E1)

)
=
(
m+r1−1

r1

)
· deg(E1) = rank

(
Sm(E1)

)
mµ1.

Similarly, deg
(
Sl(E2)

)
=
(
l+r2−1
r2

)
· deg(E2) = rank

(
Sl(E2)

)
lµ2.

Therefore, deg
(
Sl(E2)⊗ Sm(E1)⊗M

)
= rank

(
Sm(E1)

)
deg
(
Sl(E2)

)
+ rank

(
Sl(E2)

){
deg
(
Sm(E1)

)
⊗M

}
,

= rank
(
Sm(E1)

)
rank

(
Sl(E2)

)
lµ2+rank

(
Sl(E2)

){
rank

(
Sm(E1)

)
mµ1+rank

(
Sm(E1)

)
deg(M)

}
,
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= rank
(
Sm(E1)

)
rank

(
Sl(E2)

){
lµ2 +mµ1 + n

}
≥ 0.

Hence, we have, l ≥ 0,m ≥ 0,
(
lµ2 +mµ1 + n

)
≥ 0 . Now, using Theorem 4.1.1

we also get,

[
D
]

= lξ1 +mζ1 + nF = lζ2 +mζ1 + nF ∈ N1(X)R,

= l(ζ2 − µ2F ) +m(ζ1 − µ1F ) +
(
lµ2 +mµ1 + n

)
F

= mλ1 + lλ2 +
(
lµ2 +mµ1 + n

)
F ∈ Nef(X).

Hence, Eff(X) ⊆
{
aλ1 + bλ2 + cF | a, b, c ∈ R≥0

}
⊆ Nef(X).

Since Nef(X) ⊆ Eff(X), taking closure we get,

Eff(X) =
{
aλ1 + bλ2 + cF | a, b, c ∈ R≥0

}
= Nef(X).(4.4)

Corollary 4.2.2. With the same hypothesis as in Theorem 4.2.1, the closed cone

of curves in X is given by,

NE(X) =
{
xδ1 + yδ2 + zδ3 ∈ N1(X)R | x, y, z ∈ R, (x− µ1z) ≥ 0, (y − µ2z) ≥ 0, z ≥ 0

}
where δ1, δ2, δ3 are as in Theorem 4.1.2.

4.2.2 Case II : When neither E1 nor E2 is slope semistable

and rank(E1) = rank(E2) = 2

Recall that a vector bundle E of rank 2 on an algebraic curve C is said to be

normalized if H0(E) 6= 0, but H0(E ⊗ L) = 0 for all line bundle L on C with

deg(L) < 0.

Lemma 4.2.3. Let E be a normalized vector bundle of rank 2 on a smooth irre-

ducible complex curve C. Then, E is slope semistable if and only if deg(E) ≥ 0.
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Proof. Let E be a slope semistable normalized rank 2 bundle on C. Hence, H0
(
C,E

)
6=

0 implies that OC is a subbundle of E of slope 0 . E being slope semistable,

deg(E) ≥ µ(E) ≥ 0.

Conversely, let E be a rank 2 normalized bundle on C with deg(E) ≥ 0. Suppose

E is unstable bundle and it admits the following Harder-Narasimhan filtration

0 (M ( E

where M is a sub-line bundle of E with deg(E/M) = µ(E/M) < µ(M) = deg(M).

Our claim is that deg(M) = 0. If not, then either deg(M) > 0 or deg(M) < 0.

Case (i) : Let deg(M) > 0 so that deg(M−1) < 0. Consider the following exact

sequence

0 −→M −→ E −→ E/M −→ 0

Tensoring the above exact sequence by M−1, we get

0 −→ OC −→ E ⊗M−1 −→
(
E/M

)
⊗M−1 −→ 0

which implies H0(C,E ⊗M−1
)
6= 0. This gives a contradiction as E is normalized.

Case (ii) : Let deg(M) < 0. Then, deg(E/M) < deg(M) < 0 which implies

H0(C,E/M) = H0(C,M) = 0. From the exact sequence

0 −→M −→ E −→ E/M −→ 0

we then get H0(C,E) = 0 which contradicts the fact that E is normalized.

Combining both the cases, we prove our claim i.e. deg(M) = 0. Now, from the

Harder-Narasimhan filtration of E, we have deg(E) = deg(M) + deg(E/M) < 0
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which contradicts our hypothesis. Hence, E is slope semistable.

Remark 3. By Theorem 2.5.11, any indecomposable normalized rank 2 bundle E

over an elliptic curve C is one of the following type :

either (i) 0 −→ OC −→ E −→ OC −→ 0

or (ii) 0 −→ OC −→ E −→ OC(p) −→ 0 for some closed point p ∈ C.

In both cases, deg(E) ≥ 0. Hence, by Lemma 4.2.3, the above bundles are slope

semistable normalized bundles over the elliptic curve C.

Recall that, for every vector bundle E over C, there is a unique filtration

0 = El ( El−1 ( El−2 ( · · · · · · ( E1 ( E0 = E

called the Harder-Narasimhan filtration , such that Ei/Ei+1 is slope semistable for

each i ∈ {0, 1, ...., l − 1} and µ(Ei/Ei+1) > µ(Ei−1/Ei) for all i ∈ {1, 2, ...., l − 1}.

Theorem 4.2.4. Let E1 and E2 be two normalized rank 2 vector bundles on a

smooth irreducible complex projective curve C such that neither E1 nor E2 is

semistable. Consider the following commutative diagram:

X = P(E1)×C P(E2) P(E2)

P(E1) C

p2

p1 π2

π1

We use the same notations as in Section 4.1. Then

Nef(X) =
{
aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}
where l1 = deg(E1), l2 = deg(E2) and τ1 = ζ1 − l1F and τ2 = ζ2 − l2F ∈ N1(X)R .

Proof. Let 0 ( Li ( Ei be the Harder-Narasimhan filtration of Ei such that Ei/Li =
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Qi for i = 1, 2. Since P(Ei) = P(Ei ⊗ Li−1) for each i, we can consider

0 −→ OC −→ E1 −→ Q1 −→ 0(4.5)

0 −→ OC −→ E2 −→ Q2 −→ 0(4.6)

Hence, li = deg(Ei) = deg(Qi) < 0. for each i. By Lemma in [Fulg],

Nef
(
P(Ei)

)
=
{
a(ηi − lifi) + bfi | a, b ∈ R≥0

}
for i = 1, 2.

Again, using the fact that pullback of a nef class under a proper map is nef, we get

τ1 = p∗1(η1) − l1F = ζ1 − l1F , τ2 = p∗2(η2) − l2F = ζ2 − l2F , F are all nef classes.

Hence,

{
aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}
⊆ Nef(X).

For each i ∈ 1, 2, let P(Qi) ↪→ P(Ei) be the canonical embeddings corresponding to

Ei −→ Qi −→ 0.

We also know that NE
(
P(Ei)

)
= Eff

(
P(Ei)

)
=
{
ai + bfi | a, b ∈ R≥0

}
for each

i ∈ {1, 2}. Now, consider the following numerical equivalence class of a 1-cycle in

X,

C1 = p∗1(η1) · p∗2(η2) = P(Q1)×C P(Q2) ∈ NE(X)

Note that, p1 and p2 are proper, flat morphisms, and as the base space is smooth,

p1, p2 are also smooth. Hence, numerical pullbacks of cycles are well defined (see

[Ngu]) and preserve the pseudo-effectivity. Now, as τ1 · C1 = 0 , τ2 · C1 = 0 and

F 2 = 0 ( using the intersection products discussed in Section 4.1 ) ; τ1, τ2 and F are
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in the boundary of Nef(X).

Let aτ1 +bτ2 +cF ∈ Nef(X) ⊆ Eff(X). Then
(
aτ1 +bτ2 +cF

)
·C1 = c ≥ 0. Also,

F ·τ2 and F ·τ1 are intersections of nef divisor classes. So, intersecting aτ1 +bτ2 +cF

with them, we get a ≥ 0 , b ≥ 0. Hence,

Nef(X) =
{
aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}
(4.7)

Corollary 4.2.5. With the same hypothesis as in Theorem 4.2.4, the closed cone

of curves in X,

NE(X) =
{
xδ1 + yδ2 + zδ3 ∈ N1(X)R | x, y, z ∈ R, (x− l1z) ≥ 0, (y − l2z) ≥ 0, z ≥ 0

}
.

where δ1, δ2, δ3 are as in Theorem 4.1.2.

4.2.3 Case III : When E1 is slope semistable and E2 is slope

unstable and rank(E1) = rank(E2) = 2

Theorem 4.2.6. Let E1 is a normalized slope semistable bundle of rank 2 with slope

µ1 and E2 is slope unstable normalized bundle of rank 2 on a smooth irreducible

complex projective curve C. Consider the following commutative diagram:

X = P(E1)×C P(E2) P(E2)

P(E1) C

p2

p1 π2

π1

We use the same notations as in Section 4.1. Then

Nef(X) =
{
aγ1 + bγ2 + cF | a, b, c ∈ R≥0

}
72



where l2 = deg(E2) and γ1 = ζ1 − µ1F and γ2 = ζ2 − l2F.

Proof. Let 0 ( L2 ( E2 be the Harder-Narasimhan filtration of E2 such that

E2/L2 = Q2. Since P(E2) = P(E2 ⊗ L2
−1), with out loss of generality, we can

consider,

0 −→ OC −→ E2 −→ Q2 −→ 0(4.8)

so that l2 = deg(E2) = deg(Q2) < 0. Since E1 is slope semistable, by Theorem 3.1

in [Miy],

Nef
(
P(E1)

)
=
{
a(η1 − µ1f1) + bf1 | a, b ∈ R≥0

}
Also, by Lemma 2.1 in [Fulg], Nef

(
P(E2)

)
=
{
a(η2− l2f2) + bf2 | a, b ∈ R≥0

}
Hence,

γ1 = p∗1(η1) − µ1F = ζ1 − µ1F , γ2 = p∗2(η2) − l2F = ζ2 − l2F , F = p∗1(f1) are all

nef, so that

{
aγ1 + bγ2 + cF | a, b, c ∈ R≥0

}
⊆ Nef(X)

Since E1 is slope semistable, NE
(
P(E1)

)
= Eff

(
P(E1)

)
=
{
a(η1−µ1f1)+ bf1 | a, b ∈

R≥0

}
Also, NE

(
P(E2)

)
= Eff

(
P(E2)

)
=
{
aη2 + bf2 | a, b ∈ R≥0

}
. By the same

argument as in Theorem 4.2.4, we get

C2 = p∗1(η1 − µ1f1) · p∗2(η2) ∈ NE(X)

Also, γ1 · C2 = deg(E1) · (µ1 − µ1) = 0 , γ2 · C2 = deg(E2)− l2 = 0 . Hence, γ1 and

γ2 are not ample, and they are in the boundary of the nef cone. Therefore,

Nef(X) =
{
aγ1 + bγ2 + cF | a, b, c ∈ R≥0

}
(4.9)
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Corollary 4.2.7. With the same hypothesis as in Theorem 4.2.6, the closed cone

of curves in X

NE(X) =
{
xδ1 + yδ2 + zδ3 ∈ N1(X)R | x, y, z ∈ R, (x− µ1z) ≥ 0, (y − l2z) ≥ 0, z ≥ 0

}
.

where δ1, δ2, δ3 are as in Theorem 4.1.2.

4.3 Pseudoeffective cones of the fibre product

Theorem 4.3.1. With the same hypothesis as in Theorem 4.2.4, the pseudoeffective

cone of X

Eff(X) =
{
aζ1 + bζ2 + cF | a, b, c ∈ R≥0

}
(4.10)

Proof. let D = OP(π∗1(E2))(l) ⊗ p∗1OP(E1)(m) ⊗ p∗1
(
π∗1(N )

)
be an integral effective

divisor on X, where N is a line bundle of degree n on C. Hence, H0(X,D) 6= 0,

which will imply l ≥ 0,m ≥ 0. A similar calculation as in Theorem 4.2.1 will show,

H0
(
X,OP(π∗1(E2))(l)⊗ p∗1OP(E1)(m)⊗ p∗1

(
π∗1(N

))
= H0

(
C, Sl(E2)⊗ Sm(E1)⊗OC

(
N
))

.

Now, our claim is that n ≥ 0 also. To prove this, let L1, L2 ∈ Nef(X). From the

definition of movable cone, it is clear that L1 · L2 ∈ Mov(X). By Theorem 4.2.4,

τ1 = ζ1 − l1F and τ2 = ζ2 − l2F ∈ Nef(X). Hence, we have

D1 = τ1 · τ2 =
(
ζ1 · ζ2

)
− l1

(
F · ζ2

)
− l2

(
F · ζ1

)
∈ Mov(X).

But, [D] · D1 = n ≥ 0 ( by using the calculations in Section 4.1 ). Hence, the

claim is proved. Therefore, Eff(X) ⊆
{
aζ1 + bζ2 + cF | a, b, c ∈ R≥0

}
.
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Conversely, let D′ = OP(π∗1(E2))(a)⊗p∗1OP(E1)(b)⊗p∗1(π∗1
(
R)
)

be an integral divisor

on X such that [D′] = aζ1 + bζ2 + cF where a, b, c ≥ 0 and deg(R) = c. As Ei’s

are normalized, OC is subsheaf of Ei’s and hence OC is also subsheaf of Sk(Ei) for

k ≥ 0 and i = 1, 2. Also, for some divisor R with deg(R) ≥ 0, OC ↪→ OC(R). This

implies OC ↪→ Sl(E2)⊗ Sm(E1)⊗OC(R) for a, b, c ≥ 0. Hence,

H0
(
X,OP(π∗1(E2))(a)⊗ p∗1OP(E1)(b)⊗ p∗1

(
π∗1(R)

))
,

= H0
(
C, Sa(E2)⊗ Sb(E1)⊗OC(R)

)
6= 0.

Thus, D′ is an effective divisor. This proves the result.

Theorem 4.3.2. With the same hypothesis as in Theorem 4.2.6, the pseudoeffective

cone of X

Eff(X) =
{
a(ζ1 − µ1F ) + bζ2 + cF | a, b, c ∈ R≥0

}
(4.11)

Proof. In this case, γ1 = ζ1 − µ1F is one of the nef boundary. Hence, ζ2, F ,

ζ1 − µ1F ∈ Eff(X). So,

{
a(ζ1 − µ1F ) + bζ2 + cF | a, b, c ∈ R≥0

}
⊆ Eff(X).

By the similar argument as given in Theorem 4.2.6, if [D] = a(ζ1− µ1F ) + bζ2 + cF

is the numerical equivalence class of an effective divisor, then a, b ≥ 0. Now, our

claim is that c ≥ 0. From Theorem 4.2.6, we have ζ1 − µ1F , ζ2 − l2F ∈ Nef(X).

Hence, C3 =
(
ζ1 − µ1F

)
·
(
ζ2 − l2F

)
=
(
ζ1 · ζ2

)
− l2

(
F · ζ1

)
− µ1

(
ζ2 · F

)
∈ Mov(X),

so that C3 · [D] = c ≥ 0. This proves the result.

Remark 4. If both E1 and E2 are of rank 2 bundles on C, then nef cone and

pseudoeffective cone of X = P(E1)×C P(E2) coincide if and only if both E1 and E2

are slope semistable.
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