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Summary

Classical Dold manifolds were defined as the orbit space of Z2 action on the product of

a sphere and a complex projective space where Z2 acts on the sphere by antipodal

involution and the complex projective space by complex conjugation. Dold has given

the description of Z2- cohomology ring of Dold manifolds. He also obtained the formula

for Stiefel- Whitney polynomial of Dold manifolds. He used these manifolds to obtain

generators for unoriened cobordism ring in odd dimesions. Ucci obtained the formula

for stable tangent bundle of Dold manifolds. Korbaš obtained the criterion for

parallelizability and stable parallelizability of Dold manifolds.

In this thesis, we obtain a generalization of the Dold manifolds where we replace the

complex projective space by an almost complex manifold admitting a complex

conjugation. We call them as generalized Dold manifolds. We obtain a description of

the tangent bundle, under a mild hypothesis a formula for Stiefel-Whitney polynomial

of generalized Dold manifolds, a criteria for orientability and spin structures as an

applications of simple compuations of first and second Stiefel-Whitney classes. Using

the description of tangent bundle, we also obtain estimates for span and stable span of

generalized Dold manifolds. We obtain a very general criterion for (non) vanishing of

cobordism classes of generalized dold manifolds. We applied our results by taking

almost complex manifolds as complex Grassmann manifolds, more generally as complex

flag manifolds.

Our proof to determine estimates for span and stable span of generalized Dold
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manifolds involves Bredon-Kosiński’s theorem, certain functor introduced by Lam to

study the immersions of flag manifolds.

We apply Stefiel-Whitney numbers argument to determine the (non) vanishing of

cobordism classes of generalized Dold manifolds. We also use the theory of Clifford

algebras, a result of Conner and Floyd concerning cobordism of manifolds admitting

stationary point free action of elementary abelian 2-group actions to obtain the results

of (non) vanishing of cobordism classes of generalized Dold manifolds corresponding to

Grassmann manifolds.
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Chapter 1

Preleminaries

The aim of this thesis is to study the topology of generalized Dold manifolds P (m,X).

Specifically we shall describe the tangent bundle of the generalized Dold manifolds,

obtain (i) a formula for their Stiefel-Whitney classes, (ii) results on their (stable)

parallelizability and estimates for span and stable span when X is a complex flag

manifold, and, (iii) results on non(vanishing) of the unoriented cobordism class of

P (m,X) when X is a complex Grassmann manifold.

In this section, we will briefly recall various well-known definitions, results which will be

used later in this thesis.

1.1 Span and stable span

Next, we begin by recalling the notions of span and stable span of a smooth connected

manifold and general results yielding estimates for span and stable span.

Let M be a connected smooth manifold. A vector field on M is a section s : M → TM

of its tangent bundle τM . A set of vector fields s1, . . . , sr is said to be everywhere

linearly independent if the tangent vectors s1(x), s2(x), . . . , sr(x) ∈ TxM are linearly

independent ∀x ∈M . The maximum number r of eveywhere linearly independent
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vector fields that exist on M is called the span of M and is denoted Span(M).

The notion of span can be extended to an arbitary vector bundle ξ over a finite

dimensional CW-complex B as follows: Span of ξ is defined to be the largest

non-negative integer r such that ξ admits r cross-sections s1, . . . , sr : B → E(ξ) such

that s1(x), s2(x), . . . , sr(x) are linearly independent ∀x ∈ B: is denoted by Span(ξ).

The stable span of ξ, denoted Span0(ξ) is defined as Span(ξ ⊕ kε)− k where k ≥ 1 is

any integer such that rank(ξ) + k > dimB. It turns out that the definition of Span0(ξ)

is independent of k so long as rank(ξ) + k > dimB. This follows from the fact that if

the rank of a real vector bundle η be n and B is a CW complex of dimension d ≤ n,

then span(η) ≥ n− d. See [11, Theorem 1.1, Ch. 9]. It follows that if n > d, then

Span(η) = Span0(η).

We define the stable span of M to be the integer Span(TMn ⊕ ε)− 1 and it is denoted

by Span0(M). Note that 0 ≤ Span(M) ≤ Span0(M) ≤ dim(M).

A manifold Mn is called parallelizable if its tangent bundle τM is trivial and stably

parallelizable if its tangent bundle is stably trivial, that is, τM ⊕ sε ∼= (n+ s)εR. In fact,

we can choose s = 1.

It is easily seen that all spheres are stably parallelizable. However, Bott, Milnor [4] and

Kervaire [12] showed that the only spheres which are parallelizable are S1, S3 and S7.

From the work of Radon [24] and Hurwitz [10] one has the lower bound

Span(Sn) ≥ ρ(n+ 1)− 1 where ρ is the Radon-Hurwitz function defined as follows.

Write n = 24a+b × (2c+ 1) then ρ(n) := 8a+ 2b where a, c ≥ 0 and 0 ≤ b ≤ 3. Using

K-theory and Adams operations Adams [1] showed that Span(Sn) ≤ ρ(n+ 1)− 1,

thereby determining the span of spheres. We will need to use the Adams ϕ-function in

the thesis. It is defined as follows ϕ(n) := #{j|j ≡ 0, 1, 2, 4 mod 8; 1 ≤ j ≤ n}. The

significance of ϕ(n) is that 2ϕ(n)([ξ]− 1) = 0 in KO(RPm) where ξ is the Hopf line

bundle over RPm.
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We will now recall results concerning estimates for the span of a smooth compact

connected manifolds.

The following is a useful observation. Let π : E → B be a smooth fibre bundle, then

τE = π∗(τB)⊕ η, where η is a bundle tangential along the fibres. Hence

Span0(E) ≥ Span0(B) and Span(E) ≥ Span(B).

If the fibre of π : E → B is connected and i : F → E denotes the inclusion, then

i∗(τE) = εdimB ⊕ τF ; hence

Span0(B) ≤ Span0(E) ≤ Span0(F ) + dimB.

In particular, stable parallelizability of total space E implies stable parallelizability of

the fibre F .

The following result in full generality is due to Hopf.

Theorem 1.1.1. (H. Hopf [9]) Let M be a compact connected smooth manifold. Then

Span(M) ≥ 1 if and only if the Euler-Poincaré characteristic χ(M) of M is zero.

If G be a compact connected Lie group, T be a maximal torus, N(T ) denotes the

normalizer of T in G, W = N(T )/T be the Weyl group of G. Then χ(G/T ) = |W |. So

Span(G/T ) = 0. It can be shown that G/T is stably parallelizable.

Bredon and Kosiński gave a criterion for determining the span of stably parallelizable

manifolds as follows:

Theorem 1.1.2. (G. Bredon and A. Kosiński [5]) Let Mn be a smooth compact

manifold of dimension n. Suppose Mn is stably parallelizable. Then

(i) Mn is parallelizable or Span(Mn) = Span(Sn) = ρ(n+ 1)− 1.

(ii) If n is even, Mn is parallelizable if and only if Euler characteristic χ(M) = 0.

(iii)If n = 2m+ 1 is odd and n 6= 1, 3, 7; Mn is parallelizable if and only if χ̂2(M) = 0

where χ̂2(M) :=
∑

0≤j≤m dimZ2 H
2j(M ; Z2) mod 2 is Kervaire mod 2

semi-characteristic of Mn.
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Atiyah and Dupont [3] defined the twisted Kervaire semi-characteristic, denoted RL(M)

as follows:

Let M be an n-dimensional closed connected manifold and M̃ be an orientation double

cover. Assume that w1
2(M) = 0 or equivalently β2(w1(M)) = 0 where β2 = Sq1 is the

Bockstein homomorphism coming from the exact sequence of the cofficient

0→ Z2 → Z4 → Z2 → 0. Existence of such an element determines a covering projection

Γ→M with deck transformation group Z4. Let L be the line bundle associated to this

covering projection whose total space is Γ×Z4C where Z4 acts on C just multiplication

by i. The cohomology H∗(M,L) denotes the de Rham cohomology with coefficients in

L. It admits a non-degenerate Poincaré-duality paring

Hn−p(M ;L)×Hp(M ;L)→ Hn(M ; Ωn ⊗ C) ∼= C in view of the isomorphism

L⊗ L ∼= Ωn ⊗ C. Here Ωn is the determinant of the cotangent bundle of M . Then the

twisted semi-characteristic is defined as RL(M) = (1/2)(
∑

0≤k≤n dimC(Hk(M ;L)))

mod 2. When w1(M) = 0, that is, when M is orientable, then L and Ωn are trivial and

we have RL(M) = κ(M).

Theorem 1.1.3. (U. Koschorke [15, §20]) Let M be a smooth compact connected

manifold of dimension d.

(a) If d ≡ 0 mod 2, and χ(M) = 0, then Span0(M) = Span(M).

(b) If d ≡ 1 mod 4 and if w1(M)2 = 0, then Span0(M) = Span(M) if the twisted

Kervaire semi-characteristic RL(M) vanishes; if RL(M) 6= 0, then Span(M) = 1.

(c) If d ≡ 3 mod 8 and w1(M) = w2(M) = 0, then Span0(M) = Span(M) if

χ̂2(M) = 0; if χ̂2(M) 6= 0, then Span(M) = 3.

1.2 Tangent bundle of complex flag manifolds

Consider Cn with its standard Hermitian inner product. Suppose that n1, n2, . . . nr are

sequence of positive integers such that
∑

1≤j≤r nj = n. By an (n1, n2, . . . , nr)-complex
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flag we mean a sequence (V1, V2, . . . , Vr) mutually orthogonal C-vector subspaces of Cn

such that dimVi = ni. The space of all such flags can be identified as the homogenous

space U(n)/(U(n1)× · · · × U(nr)), denoted by CG(n1, . . . , nr). It is a complex manifold

of complex dimension 1
2
(n2 −

∑
1≤j≤r n

2
j) =

∑
1≤i<j≤r ninj . Clearly CG(n1, n2) is the

complex Grassmann manifold CGn,n1 . Lam [16] has given the following description of

tangent bundle of flag manifolds.

Let ξj denote the canonical nj-plane bundle over CG(µ) whose fibre over a flag

V = (V1, . . . , Vr) ∈ CG(µ) is the vector space Vj. Then obviously we have the C-bundle

isomorphism ξ1 ⊕ · · · ⊕ ξr ∼= nεC. The tangent bundle of the complex flag manifolds has

the following description:

τCG(µ) ∼= ⊕1≤i<j≤rHomC(ξi, ξj) ∼= ⊕1≤i<j≤rξi ⊗C ξj.

In particular, τCGn,k = HomC(γn,k, γ
⊥
n,k) where γn,k denotes the canonical k-plane

bundle over CGn,k.

The only complex Grassmann manifold that is stably parallelizable as real manifolds is

G2,1
∼= CP 1 ∼= S2. This was settled by Trew and Zvengrowski [31]. The case of stable

parallelizability of complex flag manifolds was completely determined by Sankaran and

Zvengrowski [28] and they obtained the following:

Theorem 1.2.1. (Sankaran and Zvengrowski [28]) Let µ = (n1, . . . , nr) where

n1 ≥ . . . ≥ nr ≥ 1, r ≥ 3, and let n :=
∑

1≤j≤r nj. Then CG(µ) is stably parallelizable if

and only if nj = 1 for all j.

We recall a certain functor µ2 introduced by Lam [16, §4-5]. The functor µ2 = µ2
C

associates a real vector bundle to a complex vector bundle. We assume the base space

to be paracompact so that every complex vector bundle over it admits a Hermitian

metric. If V is any complex vector space µ2(V ) is defined as µ2(V ) = V ⊗C V/Fix(θ)

where θ : V ⊗ V → V ⊗ V is the conjugate complex linear automorphism defined as
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θ(u⊗ v) = −v ⊗ u. As with any continuous functor ([18, §3(f)]), µ2 is determined by its

restriction to the category of finite dimensional complex vector spaces.

The functor µ2 has the following properties where ω, ω1, ω2 are all complex vector

bundles over a base space X. Lam proved these properties and used them to obtain

upper bounds on immersion codimensions of complex flag manifolds.

(i) rank(µ2(ω)) = n2 where n is the rank of ω as a complex vector bundle.

(ii) µ2(ω) ∼= εR if ω is a complex line bundle. Indeed, choosing a positive Hermitian

metric on ω, the map E(µ2(ω)) 3 [u⊗ zu] 7→ (pω(u), Re(z).||u||2) ∈ X × R, z ∈ C is a

well-defined, R-linear non-zero homomorphism. Since the ranks agree, it is a bundle

isomorphism.

(iii) µ2(ω1 ⊕ ω2) = µ2(ω1)⊕ (ω1 ⊗C ω2)⊕ µ2(ω2).

1.3 Cobordism

Let M and N be two closed n-dimensional smooth manifold. A cobordism from M to N

is a smooth compact (n+ 1) manifold W with boundary such that ∂W is diffeomorphic

to the disjoint union M tN . Two manifolds are said to be cobordant if there exists a

cobordism between them. Note that cobordism is an equivalence relation on the set of

all diffeomorphism classes of compact smooth manifolds. The set of equivalence classes-

called the cobordism classes forms a ring where addition corresponds to disjoint union

and multiplication corresponds to cartesian product of two manifolds.

In fact, it is a Z2-polynomial algebra with one generator xn in each dimension n not of

the form 2k − 1 for k ≥ 1. A smooth compact manifold M is said to be indecomposable

if xn as taken to be [M ]. Equivalently, M is indecomposable if it is not cobordant to

disjoint union of products of strictly lower dimensional manifolds.

Let X be a smooth compact manifold of dimension 2n with an almost complex

structure J . Let σ be a complex conjugation, that is, Tσ : TX → TX is a conjugate
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linear isomorphism on each fibre, Tσ ◦ J = −J ◦ Tσ. The following theorem is due to

Conner and Floyd [7].

Theorem 1.3.1. Let σ be a conjugation on a almost complex manifold X2n and

F = Fix(σ) ⊂ X. Then F is an n-dimensional manifold if it is nonempty and

[X2n]2 = [F × F ]2

For example, CGn,k is unoriented cobordant to RGn,k × RGn,k.

Stiefel-Whitney numbers: Let M be a closed n-dimensional manifold and

µM ∈ Hn(M ; Z2) denote mod 2 fundamental class. Let I = i1, i2, · · · , in denote a

partition of n, that is, n = i1 + i2 + · · ·+ in with i1 ≥ · · · ≥ in ≥ 0. We denote by

wI(M) the class wi1(M) ^ · · ·^ win(M) and by wI [M ] the mod 2 integer

〈wi1(M) ^ · · ·^ win(M), µM〉 ∈ Z2. The element wI [M ] ∈ Z2 is called the I-th

Stiefel-Whitney number of M .

The following theorem gives a necessary and sufficient condition for a manifold to

bound.

Theorem 1.3.2. (Thom-Pontrjagin [18]) A smooth closed n-dimensional manifold is a

boundary of an (n+ 1)-dimensional compact smooth manifold with boundary if and only

if all Stiefel-Whitney numbers of M are zero.

Here the necessity part is due to Pontrjagin and sufficient part is a very deep result of

Thom [30]. From this theorem, we can conclude that two manifolds are unoriented

cobordant if and only if they have the same Stiefel-Whitney numbers.

(Z2)
r action and unoriented cobordism: We begin by recalling the following result

due to Conner and Floyd.

Theorem 1.3.3. (Conner and Floyd [7, Theorem 30.1]) If (Z2)
r acts on a smooth

compact manifold M without stationary points, then [M ]2 = 0 in N∗.
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In his paper, Sankaran [25] considered certain (Z2)
r action on RGn,k without stationary

points and using the fact that [CGn,k] = [RGn,k]
2, he obtained the following results:

Theorem 1.3.4. CGn,k bounds if and only if ν2(k) < ν2(n).

As for cobordism of complex flag manifolds, we have the following results

Theorem 1.3.5. (Sankaran and Varadaranjan [27]) Let n = n1 + · · ·+ nr, r ≥ 3, The

flag manifolds CG(n1, . . . , nr) is an unoriented boundary in the following cases:

(i) ni = nj, for some i 6= j, 1 ≤ i, j ≤ r,

(ii) for some i, ν2(ni) < ν2(n), where ν2(n) denotes the highest exponent of 2 that

divides n.

Equivariant cobordism: Let G = (Z2)
k. Let Rn(G) denote the vector space over Z2

with basis the set of isomorphism classes of G- real representation of dimension n. Then

R∗(G) = ⊕n≥0Rn(G) is a graded commutative algebra over Z2 with a unit where

multiplication in R∗(G) is given by [V1].[V2] = [V1 ⊕ V2]. In fact, R∗(G) is a graded

polynomial algebra over Z2 where the algebra generators are elements of

Ĝ = HomZ2(G,Z2).

Consider a smooth G-action on ϕ on M with finite stationary point set S. For each

x ∈ S, we have a real linear representation of G on TxM , the tangent space at x ∈M .

We denote the tangential representation class by [TxM ] ∈ Rn(G). Then the map

[Md, ϕ] 7→
∑

x∈S[TxM ] an algebra homomorrphism η∗ : Z∗(G)→ R∗(G). By a result of

Stong, η∗ is in fact a monomorphism.

(Z2)
n-Action on Grassmann manifolds: Let Dn ⊂ O(n) denote the diagonal

subgroup of the orthogonal group. Then Dn
∼= (Z2)

n acts on Rk and on Ck in the

obvious manner. Therefore we have an action of (Z2)
n on CGn,k. and the stationary

points of this action are 〈ei1 , ei2 , . . . , eik〉 := Eλ where λ := 1 ≤ i1 < i2 < · · · ik ≤ n. So

there are
(
n
k

)
stationary points of this action. We will denote the above action by ϕ.
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The following theorem may be obtained from the result of Mukherjee [19] who

considered equivariant cobordism of RGn,k.

Theorem 1.3.6. (Mukherjee [19]) (i) (CGn,k, ϕ) bounds equivariantly if n = 2k

(ii) (CGn,k, ϕ) does not bound equivariantly if n 6= 2k.
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Chapter 2

Vector bundles over P (m,X, σ)

Let σ : X → X be an involution of a path connected paracompact Hausdorff topological

space and let ω be a complex vector bundle over X. Denote by ω∨ the dual vector

bundle HomC(ω, εC). Here εF (or more briefly ε when there is no danger of confusion)

denotes the trivial F-line bundle over X where F = R,C. Note that, since X is

paracompact, ω admits a Hermitian metric and so ω∨ is isomorphic to the conjugate

bundle ω. Here ω is the complex conjugate of ω. In this chapter we introduce the

notion of a σ-conjugate vector bundle, we associate to a σ-conjugate vector bundle ω

over X a real vector bundle ω̂ over P (m,X, σ). We obtain a splitting principle, which

will be used in §2.4 to obtain a formula for the Stiefel-Whitney classes of ω̂ under some

mild restrictions on X.

2.1 Notion of σ-conjugate vector bundles

The following definition generalises simultaneously the notion of a complex vector

bundle being isomorphic to its conjugate and that of an involution of an almost

complex manifold being a ‘conjugation’, in the sense of Conner and Floyd [7, §24].

Definition 2.1.1. Let σ : X → X be an involution and let ω be a complex vector bundle
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over X. We say that ω is a σ-conjugate bundle (or more briefly σ-conjugate) if there

exists an involutive bundle map σ̂ : E(ω)→ E(ω) that covers σ and is conjugate

complex linear on the fibres of E(ω)→ X.

In view of the requirement that σ̂ be an involution, σ-conjugacy is stronger than merely

requiring that ω ∼= σ∗(ω).

Example 2.1.2. (i) Let σ be any involution on X. When ω = nεC, the trivial complex

vector bundle of rank n, we have E(ω) = X × Cn. Then (x,
∑
zjej) 7→ (σ(x),

∑
zjej)

defines an involutive bundle map σ̂ which is conjugate complex linear on each fibre and

so nεC is σ-complex conjugate to itself.

(ii) Let X = CGn,k and let σ : X → X be the involution L 7→ L. Then the canonical

k-plane bundle γn,k over X is σ-conjugate to itself. Indeed v 7→ v, v ∈ L ∈ CGn,k, is the

required involutive bundle map E(γn,k)→ E(γn,k) that covers σ. Similarly the

orthogonal complement βn,k := γ⊥n,k is also σ-conjugate to itself.

(iii) If X ⊂ CPN is a complex projective manifold defined over R and σ : X → X is the

restriction of complex conjugation [z] 7→ [z], then the tangent bundle τX of X is a

σ-conjugate bundle. Indeed the differential of σ, namely Tσ : TX → TX, is the required

bundle map σ̂ of τX that covers σ. As mentioned above, this classical case was

generalized by Conner and Floyd [7, §24] to the case when X is an almost complex

manifold.

(iv) If ω, η are σ-conjugate complex vector bundles over X, then so are Λr(ω),

HomC(ω, η), ω ⊗ η, and ω ⊕ η. For example, if σ̂ and σ̃ are complex conjugate bundle

involutions of E(ω) and E(η) respectively, both covering σ, then

Hom(ω, η) 3 f 7→ σ̃ ◦ f ◦ σ̂ ∈ Hom(ω, η) is verified to be a conjugate complex linear

bundle involution that covers σ.

(v) Any subbundle η of a σ-conjugate complex vector bundle ω over X is also

σ-conjugate provided σ̂ : E(ω)→ E(ω) satisfies σ̂(E(η)) = E(η).
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2.2 Vector bundle associated to (η, σ̂)

Let η be a real vector bundle over X with projection pη : E(η)→ X and let

σ̂ : E(η)→ E(η) be an involutive bundle isomorphism that covers σ. We obtain a real

vector bundle, denoted η̂, over P (m,X, σ). Indeed (v, e) 7→ (−v, σ̂(e)) defines a fixed

point free involution of Sm × E(η) with orbit space P (m,E(η), σ̂). The map

pη̂ : P (m,E(η), σ̂)→ P (m,X, σ) defined as [v, e] 7→ [v, pη(e)] is the projection of the

bundle η̂.

This construction is applicable when η is the underlying real vector bundle, denoted

ρ(ω), of a σ-conjugate complex vector bundle ω with σ̂ as in Definition 2.1.1.

If β is a subbundle of η such that σ̂(E(β)) = E(β), then the restriction of σ̂ to E(β)

defines a bundle β̂ which is evidently a subbundle of η̂.

We shall denote by ξ the real line bundle over P (m,X, σ), often referred to as the Hopf

bundle, associated to the double cover Sm ×X → P (m,X, σ). Its total space has the

description Sm ×X ×Z2 R consisting of elements

[v, x, t] = {(v, x, t), (−v, σ(x),−t) | v ∈ Sm, x ∈ X, t ∈ R}. Denote by

π : P (m,X, σ)→ RPm the map [v, x] 7→ [v]. Then π is the projection of a fibre bundle

with fibre X. The map E(ξ)→ E(ζ) defined as [v, x, t] 7→ [v, t] is a bundle map that

covers the projection π : P (m,X, σ)→ RPm and so ξ ∼= π∗(ζ) where ζ is the Hopf line

bundle over RPm.

If σ(x0) = x0 ∈ X, then we have a cross-section s : RPm → P (m,X) defined as

[v] 7→ [v, x0]. Note that s∗(ξ) = ζ.
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2.3 Dependence of ω̂ on σ̂

It should be noted that the definition of η̂ depends not only on the real vector bundle η

but also on the bundle map σ̂ that covers σ. For example, let k, l ≥ 0 be integers and

let n = k + l ≥ 1. Denote by ε̂k,l : X × Rn → X × Rn the involutive bundle map of nεR

covering σ defined as (x, t1, . . . , tn) = (σ(x),−t1, . . . ,−tk, tk+1, . . . , tn). Then the bundle

over P (m,X, σ) associated to (nεR, ˆεk,l) is isomorphic to kξ ⊕ lεR.

When ω = τX is the tangent bundle over an almost complex manifold X and

σ : X → X is a smooth involution such that the differential Tσ : TX → TX is a

conjugate complex morphism (i.e. satisfies Jσ(x) ◦ Txσ = −Txσ ◦ Jx ∀x ∈ X where J is

the almost complex structure on X), we always take σ̂ to be Tσ. The bundle τ̂X is

thus defined with respect to Tσ. Also in the case of a trivial complex vector bundle dεC,

it is understood that σ̂ : X × Cd → X × Cd is the conjugation (x, u) 7→ (σ(x), u). We

shall refer to this σ̂ as the standard conjugation on dεC. Note that ρ(dεC) = 2dεR and σ̂

may be identified with εd,d.

Let ω be a σ-conjugate complex vector bundle and let σ̂ : E(ω)→ E(ω) be a bundle

involution that cover σ. Let η be a real vector bundle which is isomorphic to the real

vector bundle ρ(ω) underlying ω. Suppose that f : ρ(ω)→ η is a bundle isomorphism

that covers the identity map of X. Set σ̃ := f ◦ σ̂ ◦ f−1. Then σ̃ is an involution of η

that covers σ and hence defines a vector bundle η̂ over P (m,X, σ).

Lemma 2.3.1. We keep the above notations.

(i) The real vector bundles ω̂ and η̂ over P (m,X, σ) associated to the pairs (ω, σ̂) and

(η, σ̃) are isomorphic. In particular ω̂ ∼= ω̂.

(ii) Suppose that ρ(ω) = η0 ⊕ η1 where ηj, j = 0, 1 are real vector bundles. Suppose that

σ̂(E(ηj)) = E(ηj), then ω̂ is isomorphic to η̂0 ⊕ η̂1 where η̂j is defined with respect to the

pair (ηj, σ̂|E(ηj)), j = 0, 1.

(iii) Let n = k + l ≥ 1. Suppose that ρ(ω)⊕ nεR
∼= NεR, where N := 2d+ n, and that
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the involutive bundle map (σ̂, εk,l) on ρ(ω)⊕ nεR covering σ equals εd+k,d+l, then

ω̂ ⊕ kξ ⊕ lεR
∼= (d+ k)ξ ⊕ (d+ l)εl.

Proof. We will only prove (i). Consider the map ϕ : Sm ×E(ω)→ Sm ×E(η) defined as

ϕ(v, e) = (v, f(e)) ∀v ∈ Sm, e ∈ E(ω). The

ϕ((−v, σ(e))) = (−v, f(σ̂(e))) = (−v, σ̃(f(e))). Thus ϕ is Z2-equivariant and so induces

a vector bundle homomorphism ϕ : P (m,E(ω), σ̂)→ P (m,E(η), σ̃) that covers the

identity map of P (m,X, σ). Restricted to each fibre, the map ϕ is an R-linear

isomorphism since this is true for f . Thus ϕ is a bundle map that covers the identity

map of P (m,X, σ). Therefore ω̂ and η̂ are isomorphic vector bundles. Finally, let

η = ω. Taking f : E(ω)→ E(η) to be e 7→ e, we see that ω̂ ∼= ω̂.

Example 2.3.2. (i) Since εC
∼= 2εR and the complex conjugation on εC corresponds to

[v, x; s, t] 7→ [v, x, s,−t] on εR ⊕ εR, the above lemma yields ε̂C
∼= εR ⊕ ξ.

(ii) Consider the Riemann sphere S2 = CP 1. Let γ ⊂ 2εC be the tautological (complex)

line bundle over CP 1 and let β be its orthogonal complement. As complex line bundles

one has the isomorphism β ∼= γ. It follows that from the above lemma that γ̂ ∼= β̂.

(iii) Suppose that X = CGn,k and let σ : X → X be the conjugation L→ L. As seen in

Example 2.1.2(ii), v 7→ v define conjugations of γn,k, βn,k that cover σ. Note that

γn,k ⊕ βn,k = nεC. By the above lemma we obtain that γ̂n,k ⊕ β̂n,k ∼= dε̂C
∼= dεR ⊕ dξ.

Also, the conjugations on γn,k, βn,k induce an involution, denoted σ̂, on Hom(γn,k, βn,k)

as in Example 2.1.2(iv). But this latter bundle is isomorphic to the tangent bundle

τCGn,k. The bundle map σ̂ corresponds to the bundle involution Tσ : TCGn,k → TCGn,k

under the identification of Hom(γn,k, βn,k) with τCGn,k.

2.4 Splitting principle

Denote by Flag(Cr) the complete flag manifold CG(1, . . . , 1). Let ω be a complex vector

bundle over X of rank r ≥ 1 endowed with a Hermitian metric and let q : Flag(ω)→ X
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be the Flag(Cr)-bundle associated to ω. Thus the fibre over an x ∈ X is the space

{(L1, . . . , Lr) | L1 + · · ·+ Lr = p−1ω (x), Lj ⊥ Lk, 1 ≤ j < k ≤ r, dimC Lj = 1} ∼= Flag(Cr)

of complete flags in p−1ω (x) ⊂ E(ω). The vector bundle q∗(ω) splits as a Whitney sum

q∗(ω) = ⊕1≤j≤rωj of complex line bundles ωj over Flag(ω) with projection

pj : E(ωj)→ Flag(ω). The fibre over a point L = (L1, . . . , Lr) ∈ Flag(ω) of the bundle

ωj is the vector space Lj ⊂ p−1ω (q(L)).

Suppose that σ : X → X is an involution and that ω is a σ-conjugate bundle. Let

σ̂ : E(ω)→ E(ω) be the σ-conjugation on ω. We shall write e for σ̂(e), e ∈ E(ω). One

has the involution θ : Flag(ω)→ Flag(ω) defined as

L = (L1, . . . , Lr) 7→ (L1, . . . , Lr) =: L. Here V denotes the subspace σ̂(V ) ⊂ p−1ω (σ(x))

when V ⊂ p−1ω (x). The bundle q∗(ω) is a θ-conjugate bundle where bundle involution θ̂

is defined by σ̂: that is, θ̂(L, e) = (L, e).

We define θ̂j : E(ωj)→ E(ωj) as θ̂j(L, e) = (L, e). Evidently θ̂j is an involution, covers

θ, and is conjugate linear when restricted to any fibre. Thus ωj is a θ-conjugate bundle.

Recall from §2.2 that ω̂ is the real vector bundle with projection

pω̂ : P (m,E(ω), ω̂)→ P (m,X, σ). Likewise, we have the real 2-plane bundle ω̂j over

P (m,F lag(ω), θ) with projection pω̂j
: P (m,E(ωj), θ̂j)→ P (m,F lag(ω), θ). Since

q ◦ θ = σ ◦ q, we have the induced map q̂ : P (m,F lag(ω), θ)→ P (m,X, σ) defined as

[v,L] 7→ [v, q(L)]. The map q̂ is in fact the projection of a fibre bundle with fibre the

flag manifold Flag(Cr). Since θ̂ = (θ̂1, . . . , θ̂r), applying Lemma we see that

q̂∗(ω̂) ∼= ⊕1≤j≤rω̂j.

Recall that the first Chern classes mod 2 of the canonical complex line bundles ξj over

Flag(Cr), 1 ≤ j ≤ r, generate the Z2-cohomology algebra H∗(Flag(Cr); Z2). In fact

H∗(Flag(Cr); Z) ∼= Z[c1, . . . , cr]/I where I is the ideal generated by the elementary

symmetric polynomials in c1, . . . , cr. Here the generators cj + I may be identified with

the (integral) Chern class c1(ξj). In particular

H∗(Flag(Cr); Z)Sr = H0(Flag(Cr); Z) ∼= Z.
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Since ω̂j restricts to the (real) 2-plane bundle ρ(ξj), we have c1(ξj) = i∗(w2(ωj)) where

i : Flag(Cr) ∼= q̂−1([v,L])→ P (m,F lag(ω), θ) is fibre inclusion, we see that the

Flag(Cr)-bundle is Z2-totally non-cohomologous to zero. By Leray-Hirsch theorem, we

have H∗(P (m,F lag(ω), θ); Z2) ∼= H∗(P (m,X, σ); Z2)⊗H∗(Flag(Cr); Z2). In particular,

H∗(P (m,F lag(ω), θ); Z2) is a free module over the algebra H∗(P (m,X, σ); Z2) of rank

dimZ2 H
∗(Flag(Cr); Z2) = r!. It follows that q̂ induces a monomorphism in mod 2

cohomology.

The symmetric group Sr operates on Flag(ω) by permuting the components of each flag

L = (L1, . . . , Lr) and the projection q : Flag(ω)→ X is constant on the Sr-orbits.

Moreover, θ ◦ λ = λ ◦ θ for each λ ∈ Sr. This implies that the Sr action on Flag(ω)

extends to an action on P (m,F lag(ω), θ) where λ([v,L]) = [v, λ(L)]. The projection

q̂ : P (m,F lag(ω), θ)→ P (m,X, σ) is constant on Sr-orbits. It follows that the image of

the ring homomorphism q̂∗ : H∗(P (m,X, σ); Z2)→ H∗(P (m,F lag(ω), θ); Z2) is

contained in the subring H∗(P (m,F lag(ω), θ); Z2)
Sr of elements fixed by the induced

action of Sr on H∗(P (m,F lag(ω), θ); Z2). As the Sr-action induces the identity map of

P (m,X, σ), we see that it acts as H∗(P (m,X, σ); Z2)-module automorphisms on

H∗(P (m,F lag(ω), θ); Z2). We summarise the above discussion in the proposition below.

Proposition 2.4.1. Let ω be a σ-conjugate complex vector bundle of rank r and let

q∗ : Flag(ω)→ X be the associated Flag(Cr)-bundle over X. Then:

(i) the ωj are θ-conjugate line bundles for 1 ≤ j ≤ r, and, q̂∗(ω̂) = ⊕1≤j≤rω̂j.

(ii) q̂ : P (m,F lag(ω), θ)→ P (m,X, σ) induces monomorphism in cohomology,

moreover, H∗(P (m,F lag(ω), θ); Z2) is isomorphic, as an H∗(P (m,X, σ); Z2)-module, to

a free module with basis a Z2-basis of H∗(Flag(Cr); Z2).

(iii) The image of q̂∗ is contained in the subalgebra invariant under the action of the

symmetric group Sr on H∗(P (m,F lag(ω), θ); Z2).

We end this section with the following lemma which will be used in the sequel.

Lemma 2.4.2. We keep the above notations. Let ω be a σ-conjugate complex vector
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bundle over X. Suppose that Fix(σ) 6= ∅ and that H1(X; Z2) = 0. Then Fix(θ) 6= ∅ and

H1(P (m,F lag(ω), θ); Z2) ∼= H1(P (m,X, σ); Z2) ∼= Z2.

Proof. Let σ(x) = x ∈ X and set V := p−1ω (x). Then σ̂ restricts to a conjugate complex

isomorphism σ̂x of V onto itself. Thus V ∼= V . Then, setting Fix(σ̂x) =: U ⊂ V , we see

that V is the C-linear extension of U , that is, V = U ⊗R C. The Hermitian product on

V restricts to a (real) inner product on U . Let (K1, . . . , Kr) be a complete real flag in U

and define Lj := Kj ⊗R C ⊂ V . Then it is readily seen that L = (L1, . . . , Lr) belongs to

Flag(ω) and is fixed by θ.

Since H1(X; Z2) = 0, we have H1(P (m,X, σ); Z2) ∼= H1(RPm; Z2) ∼= Z2, using the Serre

spectral sequence of the X-bundle with projection π : P (m,X, σ)→ RPm. The same

argument applied to the Flag(Cr)-bundle with projection q : Flag(ω)→ X yields that

H1(Flag(ω); Z2) ∼= H1(X; Z2) = 0. Now using the Flag(ω)-bundle with projection

q̂ : P (m,F lag(ω), θ)→ P (m,X, σ), we obtain that

H1(P (m,F lag(ω), θ); Z2) ∼= H1(P (m,X, σ); Z2) ∼= Z2.
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Chapter 3

A formula for Stiefel-Whitney

classes of ω̂

Denote the Stiefel-Whitney polynomial
∑

0≤i≤q wi(η)ti of a rank q real vector bundle η

by w(η; t) and similarly the Chern polynomial
∑

0≤i≤q cj(α)tj of a complex vector

bundle α of rank q by c(α; t). Recall that when α is regarded as a real vector bundle, we

have w(α; t) = c(α; t2) mod 2. (See [18].) In this chapter we obtain a formula for the

Stiefel-Whitney classes of the vector bundle E(ω̂)→ P (m,X, σ) associated to a

σ-conjugate vector bundle over X under a mild hypothesis on X (See Proposition

3.2.4). In Lemma 3.2.2, we first consider the case where ω is a line bundle.

We shall make no notational distinction between cj(α) ∈ H2j(X; Z) and its reduction

mod 2 in H2j(X; Z2). We will mostly be working with the coefficient ring Z2.

Since ω̂ restricted to any fibre of π : P (m,X, σ)→ RPm is isomorphic to ω (regarded as

a real vector bundle), we obtain that, the total Stiefel-Whitney polynomial

j∗(w(ω̂; t)) = w(ω; t) = c(ω, t2) where j : X → P (m,X, σ) is the typical fibre inclusion.

Suppose that z1, . . . , zq are the Chern roots of α, that is, cj(α) is formally the j-th

elementary symmetric polynomial ej(z1, . . . , zq) in the indeterminates z1, . . . , zq. Thus
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we have a formal factorization c(α; t) =
∏

1≤j≤q(1 + zjt). Similarly, we have a formal

factorization w(η; t) =
∏

1≤j≤q(1 + yjt) where yj, 1 ≤ j ≤ q, are the ‘Stiefel-Whitney

roots’ of the real vector bundle η. Lemma 3.1.1 yields the Stiefel-Whitney classes of ω̂

when ω is a complex line bundle. Using this and the splitting principle, we will obtain a

formula for the Stiefel-Whitney classes when ω is of arbitrary rank. The lemma was

obtained in the special case of Dold manifolds in [32, Prop. 1.4].

3.1 The vector bundles ω̂ and ξ ⊗ ω̂

Recall that ξ is the line bundle associated to the double cover Sm ×X → P (m,X, σ)

and is isomorphic to π∗(ζ) where ζ is the Hopf line bundle over RPm.

Lemma 3.1.1. Let σ : X → X be an involution with non-empty fixed point set and let

ω be a complex vector bundle of rank r over X. With the above notations, we have

ω̂ ∼= ξ ⊗ ω̂.

Proof. The total space of the bundle ξ ⊗ ω̂ has the description

E(ξ ⊗ ω̂) = {[v, x; t⊗ e] | [v, x] ∈ P (m,X;σ), t ∈ R, e ∈ p−1ω (x)} where

[v, x; t⊗ e] = {(v, x; t⊗ e), (−v, σ(x);−t⊗ σ̂(e))}; here σ̂ : E(ω)→ E(ω) is an involutive

bundle map that covers σ and is conjugate linear isomorphism on each fibre. Thus we

have the equality σ̂(
√
−1te) = −

√
−1tσ̂(e). Observe that

[v, x;
√
−1te] = [−v, σ(x); σ̂(

√
−1te)] = [−v, σ(x),−

√
−1tσ̂(e)] and so the map

h : E(ξ ⊗ ω̂)→ E(ω̂), [v, x; t⊗ e] 7→ [v, x;
√
−1te] = [−v, σ(x);−

√
−1tσ̂(e)] is a

well-defined isomorphism of real vector bundles.

Remark 3.1.2. Recall from §1.2 the functor µ2 defined by Lam. The following

properties of µ2 will be used in the Chapter 4.

(i) If σ̂ : E(ω)→ E(ω) is a complex conjugation of ω covering an involution

σ : X → X, then µ2(σ̂) : E(µ2(ω))→ E(µ2(ω)) is a bundle map covering σ. In

particular µ2(ω) ∼= µ2(ω).
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(ii) If σ̂ is a conjugation of a complex line bundle ω with a Hermitian metric 〈., .〉

covering an involution σ such that 〈u, v〉x = 〈σ̂(u), σ̂(v)〉σ(x), u, v ∈ p−1ω (x), x ∈ X, then

µ2(σ̂) : µ2(ω)→ µ2(ω) is the identity on each fibre since ||σ̂(u)|| = ||u||. Note that

µ2(ω) ∼= εR since ω is a line bundle.

3.2 Stiefel-Whitney classes of ω̂

We shall make the following simplifying assumptions.

(a) σ : X → X has a fixed point. As observed already, the X-bundle

π : P (m,X, σ)→ RPm admits a cross-section s : RPm → P (m,X, σ). It follows that

π∗ : H∗(RPm; Z2)→ H∗(P (m,X, σ); Z2) is a monomorphism. We shall identify

H∗(RPm; Z2) with its image under π∗.

(b) H1(X; Z2) = 0. This implies that H2(X; Z)→ H2(X; Z2) induced by the

homomorphism Z→ Z2 of the coefficient rings is surjective.

Example 3.2.1. (i) Let X be the complex flag manifold CG(n1, . . . , nr) and let

σ : X → X be defined by the complex conjugation on Cn, n =
∑
nj. Then Fix(σ) is the

real flag manifold RG(n1, . . . , nr) = O(n)/(O(n1)× · · · ×O(nr)) so assumption (a)

holds. Since X is simply connected,(b) also holds. .

(ii) Let ω be a σ-conjugate complex vector bundle of rank r. Suppose that Fix(σ) 6= and

that H1(X; Z2) = 0. Let θ : Flag(ω)→ Flag(ω) be the associated involution of the

Flag(Cr) manifold bundle over X. (See §2.4.) Then Fix(θ) 6= ∅ and

H1(Flag(ω); Z2) = 0.

In the Serre spectral sequence of the bundle (P (m,X),RPm, X, π), we have

E0,k
2 = H0(RPm;Hk(X; Z2)) where Hk(X; Z2) denotes the local coefficient system on

RPm. The action of the fundamental group Z2 (respectively Z when m = 1) of RPm on

H∗(X; Z2) is generated by the involution σ∗ : H∗(X; Z2)→ H∗(X; Z2). Hence
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E0,2
2 = H2(X; Z2)

Z2 = Fix(σ∗). In order to emphasise the dimension, we shall write

H2(σ; Z2) instead of σ∗. Also (b) implies that E0,2
3 = E0,2

2 and (a) implies that the

transgression E0,2
3 = H2(X; Z2)→ E3,0

3 = H3(RPm; Z2) is zero. It follows that

E0,2
3 = E0,2

∞ and that the image j∗ : H2(P (m,X); Z2)→ H2(X; Z2) equals

Fix(H2(σ; Z2)), where j : X ↪→ P (m,X) is the fibre inclusion.

We have the exact sequence for all m ≥ 1:

0→ H2(RPm; Z2)
π∗
→ H2(P (m,X, σ); Z2)

j∗→ Fix(H2(σ; Z2))→ 0.

The homomorphism s∗ yields a splitting and allows us to identify Fix(H2(σ; Z2)) as a

subspace of H2(P (m,X, σ); Z2), namely the kernel of s∗. We shall denote the image of

an element u ∈ Fix(H2(σ; Z2)) by ũ.

Part (iii) of the lemma was obtained in the special case of Dold manifolds in [32, Prop.

1.4]. Recall that ζ is the Hopf bundle over RPm.

Lemma 3.2.2. Suppose that σ(x0) = x0 and H1(X; Z2) = 0. Let s : RPm → P (m,X, σ)

be defined as v 7→ [v, x0] and let ω be a σ-conjugate complex vector bundle over X of

rank r. Then (i) s∗(ω̂) = rε⊕ rζ, (ii) ck(ω) ∈ Fix(H2k(σ; Z2)), k ≤ r, and, (iii) if

r = 1, then w(ω̂) = 1 + w1(ξ) + c̃1(ω).

Proof. (i) Since σ(x0) = x0, σ̂ restricts to a conjugate complex linear automorphism σ̂0

of V := p−1ω (x0). Let U ⊂ V is the eigenspace of σ̂0 corresponding to eigenvalue 1 of σ̂0.

Then
√
−1U is the −1 eigenspace. The vector bundle s∗(ω̂) is isomorphic to the

Whitney sum of the bundles Sm ×Z2 U → RPm and Sm ×Z2

√
−1U → RPm. Evidently

these bundles are isomorphic to rεR and rξ respectively.

(ii) Since σ̂ : E(ω)→ E(ω) is a conjugate complex linear bundle map covering σ, we

have σ∗(ω) ∼= ω. So σ∗(ck(ω)) = ck(σ
∗(ω)) = (ck(ω)) = (−1)kck(ω) ∈ H2k(X; Z).

Therefore ck(ω) ∈ Fix(H2k(σ; Z2)), k ≤ r.
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(iii) Since c1(ω) ∈ Fix(H2(σ; Z2)), the element c̃1(ω) is meaningful. It remains to show

that w2(ω̂) = c̃1(ω). Since j∗(ω̂) = ω, we see that

j∗(w2(ω̂)) = w2(ω) = c1(ω) ∈ Fix(H2(σ; Z2)). On the other hand, w2(s
∗(ω̂)) = 0. So,

under our identification of Fix(H2(σ; Z2)) with the kernel of s∗, we have

w2(ω̂) = c̃1(ω).

Remark 3.2.3. The above lemma shows that the element of c̃1(ω) ∈ H2(P (m,X); Z2)

is independent of the choice of the fixed point x0 ∈ X (used in the definition s∗) since it

equals w2(ω̂).

Suppose that ω is a σ-conjugate complex vector bundle of rank r over X. Since q∗(ω)

splits as a Whitney sum q∗(ω) = ⊕1≤j≤rωj, where q : Flag(ω)→ X is the

Flag(Cr)-bundle, in view of Example 3.2.1, we have c1(ωj) ∈ Fix(H2(θ; Z2)). Therefore

we obtain their ‘lifts’ c̃1(ωj) ∈ H2(P (m,F lag(ω); θ); Z2). The bundle q̂∗(ω̂)) splits as

q̂∗(ω̂) = ⊕1≤j≤rω̂j, where q̂ : P (m,F lag(ω), θ)→ P (m,X, σ) is the projection of the

Flag(Cr)-bundle.

Therefore ej(c̃1(ω1), . . . , c̃1(ωr)) = ej(w2(ω̂1), . . . , w2(ω̂r)) = wj(ω̂) is in

H2j(P (m,X, σ); Z2). Here ej stands for the j-th elementary symmetric polynomial.

Notation: Set c̃j(ω) := ej(w2(ω̂1), . . . , w2(ω̂r)) ∈ H2j(P (m,X, σ); Z2), 1 ≤ j ≤ r.

When j > r, c̃j = 0. Observe that c̃j(ω) restricts to cj(ω) ∈ H2j(X; Z2) on any fibre of

π : P (m,X, σ); Z2)→ RPm.

We have the following formula for the Stiefel-Whitney classes of ω̂.

Proposition 3.2.4. We keep the above notations. Let ω be a σ-conjugate complex

vector bundle over X. Suppose that H1(X; Z2) = 0 and that Fix(σ) 6= ∅. Then

w(ω̂; t) =
∑

0≤j≤r

(1 + xt)r−j c̃j(ω)t2j,

where x = w1(ξ).

41



Proof. The case when ω is a line bundle was settled in Lemma 3.2.2. In the more

general case, it follows from the case of line bundles by the splitting principle, namely

Proposition 2.4.1. We omit the routine details.

It is more convenient to rewrite the above formula using the bundle isomorphism

q̂∗(ω̂) = ω̂1 ⊕ · · · ω̂r. This leads to the formula

w(ω̂; t) =
∏

1≤j≤r

(1 + xt+ c̃1(ωj)t
2).
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Chapter 4

Tangent bundle of generalized Dold

manifolds

In this chapter we describe Stiefel-Whitney classes of P (m,X) and obtain bounds for

span and stable span of P (m,X). When X is a complex flag manifolds and we obtain

results on (stable) parallelizability of P (m,X).

4.1 Stiefel-Whitney classes of P (m,X)

Let X be an almost complex manifold and let σ : X → X be a complex conjugation.

the complex vector bundle τX is σ-conjugate. The manifold P (m,X, σ) will be more

briefly denoted P (m,X). We assume that Fix(σ) is non-empty and hence a smooth

manifold of dimension d = (1/2)dimX. Also assume that H1(X; Z2) = 0. The tangent

bundle of P (m,X) admits a Whitney sum decomposition

τP (m,X) = π∗(τRPm)⊕ τ̂X.
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Using the fact that w(RPm) = (1 + x)m+1 where x = w1(ξ), and applying Proposition

3.2.4, we have the following expression for the Stiefel-Whitney polynomial of P (m,X).

Note that H1(P (m,X); Z2) ∼= H1(RPm; Z2) ∼= Z2, since H1(X; Z2) = 0. For the

definition of c̃j(X), see §3.2.

Theorem 4.1.1. Let X be a 2d-dimensional connected almost complex manifold with

complex conjugation σ. Suppose that Fix(σ) 6= ∅ and that H1(X; Z2) = 0. Then:

w(P (m,X); t) = (1 + xt)m+1.
∑

0≤j≤d

(1 + xt)d−j c̃j(X)t2j,

where x = w1(ξ). 2

Remark 4.1.2. Proposition 3.2.4 can be used to obtain Dold’s formula for w(P (m,n))

as follows. Since τP (m,n) = π∗(τRPm)⊕ τ̂CP n, adding 2εR on both sides, we get

τP (m,n)⊕2εR = π∗(τRPm⊕εR)⊕τ̂CP n⊕εR = (m+1)ξ⊕τ̂CP n⊕εR = mξ⊕τ̂CP n⊕εR⊕ξ.

Note that τ̂CP n ⊕ εR ⊕ ξ = τ̂CP n ⊕ ε̂C = ̂τCP n ⊕ εC = (n+ 1)γ̂ = (n+ 1)γ̂ where γ

denotes the Hopf line bundle over CP n. By Proposition 3.2.4, w(γ̂) = (1 + x+ d) where

d = c̃1(γ). Therefore, using the above bundle isomorphism

w(P (m,n)) = (1 + x)m(1 + x+ d)n+1 which is the formula of Dold.

The same formula can also be obtained from Theorem 4.1.1 using c̃j(CP n) =
(
n+1
j

)
dj

and the relation dn+1 = 0.

Corollary 4.1.3. (i) P (m,X) is orientable if and only if m+ d is odd.

(ii) m ≥ 2, P (m,X) admits a spin structure if and only if X admits a spin structure

and m+ 1 ≡ d mod 4.

Proof. (i) Since P (m,X) = Sm ×X/Z2, it is readily seen that P (m,X) is orientable if

and only if the antipodal map of Sm and the conjugation involution σ on X are

simultaneously either orientation preserving or orientation reversing. The last condition

is equivalent to m+ 1 ≡ d mod 2.

44



Alternatively, from Theorem 4.1.1, we obtain that w1(P (m,X)) = (m+ 1 + d)x, which

is zero precisely if m+ d is odd.

(ii) Using the same formula, we have w2(P (m,X)) = (
(
m+1
2

)
+
(
d
2

)
)x2 + c̃1(X). The

existence of a spin structure being equivalent to vanishing of the first and the second

Stiefel-Whitney classes, we see that P (m,X) admits a spin structure if and only if

m+ 1 ≡ d mod 2, c̃1(X) = 0 and
(
m+1
2

)
≡
(
d
2

)
mod 2. Equivalently, X admits a spin

structure and m+ 1 ≡ d mod 4.

4.2 Results of span and stable span of P (m,X)

The notions of stable parallelizability and parallelizability were recalled in §1.1. Recall

that εk,n−k : X × Rn → X × Rn is the involutive bundle map of nεR covering σ defined

as (x, t1, . . . , tn) 7→ (σ(x),−t1, . . . ,−tk, tk+1, . . . , tn).

Recall that ϕ(m) is the number of positive integers j ≤ m such that j ≡ 0, 1, 2, or 4

mod 8. Also ρ(ω) denotes the underlying real vector bundle of the complex vector

bundle ω.

Theorem 4.2.1. Let σ be a conjugation on a connected almost complex manifold X

and let dimR X = 2d. Suppose that Fix(σ) 6= ∅. Then:

(i) If P (m,X) is stably parallelizable, then X is stably parallelizable and (m+ 1 + d) is

divisible by 2ϕ(m).

(ii) Suppose that ρ(τX)⊕ nεR
∼= (2d+ n)εR as real vector bundle. Suppose that the

bundle map εd+k,d+n−k of (2d+ n)εR covering σ restricts to σ̂ = Tσ on TX and to εk,n−k

on nεR. If (m+ 1 + d) is divisible by 2ϕ(m), then P (m,X) is stably parallelizable.

(iii) Suppose that m is even and that P (m,X) is stably parallelizable. Then P (m,X) is

parallelizable if and only if χ(X) = 0.

Proof. (i) Suppose that P (m,X) is stably parallelizable. As π : P (m,X)→ RPm is the

projection of a smooth fibre bundle with fibre X, the bundle τP (m,X) restricts to
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mεR ⊕ τX on the fibre X. It follows that, X is stably parallelizable.

Let x0 ∈ Fix(σ) and let s : RPm → P (m,X) be the corresponding cross-section defined

as [v] 7→ [v, x0]. In view of Proposition 3.1.1, we see that

s∗(τP (m,X)) = s∗(π∗τRPm ⊕ τ̂X) = τRPm ⊕ s∗(dε⊕ dξ) = (τRPm ⊕ dε)⊕ dζ ∼=

(m+ 1 + d)ζ ⊕ (d− 1)ε. Thus the stable parallelizability of P (m,X) implies that

(m+ 1 + d)([ζ]− 1) = 0 in KO(RPm). By the result of Adams [1] (recalled in §1) it

follows that 2ϕ(m) divides (m+ 1 + d).

(ii) Our hypothesis implies, using Lemma 2.3.1, that

τ̂X ⊕ (kξ + (n− k)εR) ∼= (d+ n− k)εR ⊕ (d+ k)ξ. Therefore

τP (m,X)⊕ kξ ⊕ (n− k + 1)εR
∼= kξ ⊕ (n− k + 1)εR ⊕ π∗(τRPm)⊕ τ̂X ∼=

(m+ 1)ξ ⊕ τ̂X ⊕ kξ + (n− k)εR
∼= (m+ 1)ξ + (d+ k)ξ + (d+ n− k)εR. Since

dimP (m,X) = 2d+m < 2d+ n+ 1 +m, we may cancel the factor kξ + (n− k)εR on

both sides, leading to an isomorphism τP (m,X)⊕ εR
∼= (d+m+ 1)ξ ⊕ dεR. Since

ξ = π∗(ζ), again using Adams’ result it follows that P (m,X) is stably parallelizable if

2ϕ(m) divides (m+ d+ 1).

(iii) Note that P (m,X) is even dimensional. By Bredon-Kosiński’s theorem 1.1.2, it

follows that P (m,X) is parallelizable if and only if its span is at least 1. By Hopf’s

theorem, span P (m,X) ≥ 1 if and only if χ(P (m,X)) vanishes. Since

χ(P (m,X)) = χ(RPm).χ(X) = χ(X) as m is even, the assertion follows.

Remark 4.2.2. (i) Suppose that P (m,X) is stably parallelizable. If m is odd, then

χ(P (m,X)) = 0 as χ(RPm) = 0. Consequently we obtain no information about χ(X)

from the equality χ(P (m,X)) = χ(RPm)χ(X). Let us suppose that χ(X) 6= 0. Since

Span(RPm) = Span(Sm), we obtain the lower bound

Span(P (m,X)) ≥ Span(Sm) = ρ(m+ 1)− 1, where ρ(m+ 1) is the Hurwitz-Radon

function (See §1.1). From Bredon-Kosiński’s theorem 1.1.2, we obtain that P (m,X) is

parallelizable if ρ(m+ 1) > ρ(m+ 2d+ 1). For example if m = (2c+ 1)2r − 1 and

d = 2s(2k + 1) with s < r − 1 then m+ 1 + 2d = ((2c+ 1)2r−1−s + 2k + 1)2s+1 and so
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ρ(m+ 1) = ρ(2r) > ρ(2s+1) = ρ(m+ 2d+ 1); consequently P (m,X) is parallelizable.

(ii) The following bounds for the span and stable span of P (m,X) are easily obtained.

• ρ(m+ 1) ≤ Span0(P (m,X)) ≤ min{d+ Span(m+ d+ 1)ζ,m+ Span0(X)},

• Span(P (m,X)) ≥ Span(RPm).

If m is even and χ(X) = 0, then χ(P (m,X)) = 0 and so by Theorem 1.1.3(a), we have

Span(P (m,X)) = Span0(P (m,X)).

We shall now illustrate Theorem 4.2.1 in the case when X is the complex flag manifold

CG(n1, . . . , nr) = U(n)/(U(n1)× · · · × U(nr)), where the nj ≥ 1 are positive integers

and n =
∑

1≤j≤r nj, with its standard U(n)-invariant complex structure. We assume,

without loss of generality, that n1 ≥ · · · ≥ nr. We denote by P (m;n1, . . . , nr) the space

P (m,CG(n1, . . . , nr)). Note that CG(1, . . . , 1) is the complete flag manifold Flag(Cn).

The case of the classical Dold manifold corresponds to r = 2 and n1 ≥ n2 = 1. The

result is then due to J. Korbaš [13]. (Cf. [32], [17].)

Theorem 4.2.3. Let m ≥ 1 and r ≥ 2.

(i) The manifold P (m;n1, . . . , nr) is stably parallelizable if and only if nj = 1 for all j

and 2ϕ(m) divides (m+ 1 +
(
n
2

)
) where ϕ(m) is the number of positive integers j ≤ m

such that j ≡ 0, 1, 2, or 4 mod 8.

(ii) Suppose that P := P (m; 1, . . . , 1) is stably parallelizable. Then it is parallelizable if

ρ(m+ 1) > ρ(m+ 1 + n(n− 1)). In particular, P is not parallelizable if m is even.

Proof: When nj > 1 for some j, the flag manifold X = CG(n1, . . . , nr) is well-known to

be not stably parallelizable; see, for example, [28]. So the non-trivial part of the above

theorem concerns the case when the flag manifold is stably parallelizable, namely,

nj = 1 for all j. It remains to determine which of the P (m; 1, . . . , 1) are stably

parallelizable. This will be done in Proposition 4.2.4 below.

When nj = 1 for all j, the corresponding complex flag manifold has non-vanishing Euler
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characteristic; in fact, χ(X) = n!, the order of the Weyl group of U(n). When m is

even, it follows that the Euler characteristic of P = P (m; 1, . . . , 1) also equals n! and so

its span is zero.

Then Span(P ) ≥ Span(RPm) ≥ ρ(m+ 1)− 1 whereas span of the sphere of dimension

dimP = m+ 2d = m+ n(n− 1) equals ρ(m+ 1 + n(n− 1))− 1. By Bredon-Kosiński

theorem, P is parallelizable if it is stably parallelizable and

ρ(m+ 1) > ρ(m+ 1 + n(n− 1)). 2

The proof of the following proposition will require the functor µ2 defined by Lam. The

definition of functor µ2 was recalled in §1.2. Specifically we use property that

µ2(ω1 ⊕ ω2) = µ2(ω1)⊕ (ω1 ⊗C ω2)⊕ µ2(ω2) as real vector bundles where ω1 and ω2 are

complex vector bundles. Also we will use the properties of µ2 given in Remark 3.1.2.

Proposition 4.2.4. The manifold P (m; 1, . . . , 1) = P (m,F lag(Cn)) is stably

parallelizable if and only if 2ϕ(m) divides (m+ 1 +
(
n
2

)
).

Proof. Recall from §1.2 that τCG(n1, . . . , nr) ∼= ⊕1≤i<j≤rγi ⊗ γj where γj is the j-th

canonical bundle of rank nj whose fibre over (L1, . . . , Lr) ∈ CG(n1, . . . , nr) is the

complex vector space Lj. We have

γ1 ⊕ · · · ⊕ γr ∼= nεC.

Applying µ2 and using the above description of τCG(n1, . . . , nr) we obtain the following

isomorphism of real vector bundles by repeated use of property (iii) of µ2 listed above:

⊕
µ2(γj)⊕ τ(CG(n1, . . . , nr)) ∼= nεR ⊕ (

⊕
1≤i<j≤n

εC(ei ⊗ ej)) ∼= n2εR. (1)

(Cf. [16, Theorem 5.1].) Specialising to the case of X = Flag(Cn) we have µ2(γj) ∼= εR.

The involution σ : X → X defined as L 7→ L induces a complex conjugation of σ̂ = Tσ

on τX which preserves the summands ωij := γi ⊗ γj, i < j, yielding a conjugation σ̂ij on
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it. The bundle involution εd,d (covering σ) on the summand on the right ⊕1≤i<j≤nρ(εC),

defined with respect to the basis ei ⊗ ej, ei ⊗
√
−1ej, 1 ≤ i < j ≤ n, and ε0,n on the

summand ⊕1≤i≤nεR(ei ⊗ ei) defined with respect to ei ⊗ ei, 1 ≤ i ≤ n, together define an

involution, denoted ε, that covers σ. Under the isomorphism, ε restricts to Tσ on τX

and to ε0,n on ⊕1≤i≤nµ
2(γi) defined with respect to a basis ui ⊗ ui, 1 ≤ i ≤ n, where

ui ∈ Li with ||ui|| = 1. It follows, by using property (ii) of µ2 given in Remark 3.1.2 and

Lemma 2.3.1, that

nεR ⊕ τ̂F lag(Cn) ∼= nεR ⊕
(
n

2

)
(εR ⊕ ξ).

Therefore (n+ 1)εR ⊕ τP ∼= (m+ 1)ξ ⊕ τ̂F lag(Cn)⊕ nεR
∼= (m+ 1 +

(
n
2

)
)ξ ⊕ nεR. Hence

τP is stably trivial if and only if (m+ 1 +
(
n
2

)
)ξ is stably trivial if and only if

(m+ 1 +
(
n
2

)
)ζ on RPm is stably trivial if and only if 2ϕ(m) divides (m+ 1 +

(
n
2

)
). This

completes the proof.

Remark 4.2.5. It is clear that for a given n ≥ 2, there are only finitely many values

m ≥ 1 for which P = P (m,F lag(Cn)) is parallelizable. In fact, since 2ϕ(m) ≥ 2m for

m ≥ 8, we must have m ≤ max{8,
(
n
2

)
}. However the required values of m are highly

restricted. For example when n = 2s, s ≥ 4, P is parallelizable only when m ∈ {1, 3, 7}

and when n = 2s − 2, s ≥ 5, m ∈ {2, 6}. When n = 6, P is not parallelizable for any m.

49



50



Chapter 5

Unoriented cobordism

In this chapter we will obtain results concerning unoriented cobordism classes of

P (m,X).

Recall from the work of Thom and Pontrjagin (See Theorem 1.3.2) that the (unoriented)

cobordism class of a smooth closed manifold is determined by its Stiefel-Whitney

numbers. Proposition 3.2.4 makes it possible to compute certain Stiefel-Whitney

numbers of P (m,X) in terms of those of X where X is an almost complex manifold.

We assume that complex conjugation σ has a fixed point and that H1(X; Z2) = 0.

5.1 Transversality argument

Let s : RPm → P (m,X) be the cross-section corresponding to an x0 ∈ Fix(σ). We

identify RPm with its image under s and X with the fibre over [em+1] ∈ RPm. Then

X ∩ RPm = {[em+1, x0]} and the intersection is transverse. Denoting the Poincaré dual

of a submanifold M by [M ], we have [RPm] ^ [X] = [RPm ∩X] = [{[em+1, x0]}], which

is the generator of the top cohomology group Hm+2d(P (m,X); Z2) ∼= Z2.

We claim that the class [X] ∈ Hm(P (m,X); Z2) equals xm. To see this, let
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Sj ⊂ Sm, 1 ≤ j ≤ m, be the sphere consisting of unit vectors whose j-th coordinate is

zero and let Xj be the submanifold {[v, x] | v ∈ Sj, x ∈ X} ∼= P (m− 1, X). Let

u0 = (e1 + . . .+ em)/
√
m. Then C := {[cos(t)u0 + sin(t)em+1, x0] ∈ P (m,X) | 0 ≤ t ≤ π}

meets Xj transversally at [em+1, x0]. So [C][Xj] 6= 0. It follows that

[Xj] = x, 1 ≤ j ≤ m, since H1(P (m,X); Z2) = Z2x. Now (i) ∩i<jXi intersects Xj

transversely for each j ≤ m, and (ii) ∩1≤j≤mXj
∼= X is the fibre of P (m,X)→ RPm

over [em+1]. It follows that [X] = [X1] ^ · · ·^ [Xm] = xm as claimed.

Denote by µX , µP (m,X) the mod 2 fundamental classes of X,P (m,X) respectively. Note

that w2j(P (m,X)) is of the form

w2j(P (m,X)) = c̃j(X) + a1x
2c̃j−1(X) + . . .+ atx

2tc̃j−t(X) for suitable

ai ∈ {0, 1}, 1 ≤ i ≤ t where t = min{m/2, j}. Similarly

w2j+1(P (m,X)) = b0xc̃j(X) + b1x
3c̃j−1(X) + . . .+ btx

2t+1c̃j−t, bi ∈ {0, 1}, 0 ≤ i ≤ t with

t = min{m/2, j}. A straightforward calculation using Theorem 4.1.1 reveals that

b0 = m+ 1 + d− j. Let J = j1, . . . , jr be a sequence of positive integers with

|J | := j1 + · · ·+ jr = m+ 2d. Then wJ(P (m,X)) := wj1(P (m,X)) . . . wjr(P (m,X)) is a

polynomial in x over the subring Z2[c̃1(X), . . . , c̃d(X)] ⊂ H∗(P (m,X); Z2). Since

xm+1 = 0, we see that wJ(P (m,X)) = 0 if the number of odd numbers among

jk, 1 ≤ k ≤ r, exceeds m.

Suppose that I = i1, . . . , ik; J = 1m.2I = 1m, 2i1, . . . , 2ik, (i.e., jt = 1, 1 ≤ t ≤ m) and

P (m,X) is non-orientable, so that w1(P (m,X)) = x, we have

wJ(P (m,X)) = xm.c̃I(X)). Therefore, using j∗(c̃I(X)) = cI(X) = w2I(X), the

Stiefel-Whitney number wJ [P (m,X)] := 〈wJ(P (m,X)), µP (m,X)〉 =

〈xm.w2I(P (m,X)), µP (m,X)〉 = 〈w2I(X), µX〉 = w2I [X] ∈ Z2.

Theorem 5.1.1. Suppose that H1(X; Z2) = 0 and that Fix(σ) 6= ∅.

(i) Assume that m ≡ d mod 2. If [X] 6= 0 in N, then [P (m,X)] 6= 0.

(ii) If [P (1, X)] 6= 0, then [X] 6= 0.
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Proof. (i) Since m ≡ d mod 2, we have w1(P (m,X)) = x. Since the odd

Stiefel-Whitney classes w2i+1(X) vanish (as X is an almost complex manifold), [X] 6= 0

implies that we must have that w2I [X] 6= 0 for some I with |I| = d. Then, by our above

discussion wJ [P (m,X)] 6= 0 where J = 1m.2I. This proves the first assertion.

(ii) Let m = 1. Then dimP (m,X) = 1 + 2d is odd. Using x2 = 0, we have, from the

above discussion, that w2j(P (m,X)) = c̃j(X) and w2j+1(P (m,X)) = (d− j)xc̃j(X).

Suppose that wJ [P (m,X)] 6= 0. Then we see that exactly one term, say jk, in J must

be odd. Write jk = 2s+ 1 where s ≥ 0. If d− s is even, then wJ [P (m,X)] = 0. So d− s

is odd and we have wJ(P (1, X)) = xc̃I(X) where 2I is obtained from J by replacing jk

by jk − 1. Therefore w2I [X] = wJ [P (1, X)] 6= 0. This completes the proof.

We now state our results on the cobordism class of generalized Dold manifolds P (m,X)

with X a complex Grassmann manifold.

Theorem 5.1.2. Let 1 ≤ k ≤ n/2 and let m ≥ 1.

(i) If ν2(k) < ν2(n), then [P (m,CGn,k)] = 0 in N∗.

(ii) If m ≡ 0 mod 2 and if ν2(k) ≥ ν2(n), then [P (m,CGn,k)] 6= 0.

We now turn to the proof of above theorem. The proof will make use of how certain

units in a complex Clifford algebra act on its simple modules. We shall now recall the

description and certain properties of real and complex Clifford algebras.

We shall use the structure of real and complex Clifford algebras to obtain an action of

G := (Z2)
r on P (m,X) with X := CGn,k such that P (m,X) has no G-fixed points.

This implies, by 1.3.3, that [P (m,X)] = 0.
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5.2 Complex Clifford algebras

Let Cr (resp. C ′r) be the Clifford algebra associated to (Rr,−|| · ||2) (resp. (Rr, || · ||2)).

Thus Cr is generated as an R-algebra by the elements ϕ1, · · · , ϕr which satisfy the

relations ϕ2
i = −id ∀i, and ϕi ◦ ϕj = −ϕj ◦ ϕi, 1 ≤ i < j ≤ r. Similarly C ′r is generated

as an R-algebra by ψ1, . . . , ψr which satisfy the relations ψ2
i = id ∀i, and

ψiψj = −ψjψi, 1 ≤ i < j ≤ r. We shall denote by Cc
r the complex Clifford algebra

Cr ⊗R C. Note that Cc
r
∼= C ′r ⊗R C under an isomorphism that sends ϕj to

√
−1ψj.

Following the notation in Husemoller’s book [11], we denote the matrix algebra Mm(A)

over a division ring A by A(m). It is known that Cc
r is isomorphic to C(2p) or

C(2p)× C(2p) according as r = 2p or r = 2p+ 1.

It is well known that Cr, C
′
r are isomorphic to algebras of the form A(2t) or

A(2s)× A(2s) where A = R,C, or the quaternions H. The value of t is such that

2r = 22t dimR A by comparing the dimensions. The value of s is determined similarly.

Since A⊗R C ∼= C,C× C,C(2) according as A = R,C,H respectively, we see that Cc
r is

isomorphic to one of the algebras C(2p)× C(2p) or C(2p) according as r = 2p+ 1 or 2p

respectively. For our purposes we will only need to consider even Clifford algebras and

so we shall ignore further discussions on odd Clifford algebras.

We consider C2p as a module over Cc
r where r = 2p. For our purposes, it is important to

know whether the elements ϕi ∈ Cc
r , 1 ≤ i ≤ r, or ψi ∈ Cc

r , 1 ≤ i ≤ r, act on C2p as real

transformations, that is if the elements are matrices with real entries in Cc
r = C(2p).

This is guaranteed to be the case if at least one of the algebras Cr or C ′r is isomorphic

to R(2p). We have isomorphisms of R-algebras C ′2
∼= R(2), C6

∼= R(8), C8
∼= R(16). Also,

we have the isomorphisms of algebras Cr+8
∼= Cr ⊗ R(16), C ′r+8

∼= C ′r ⊗ R(16). Since

R(k)⊗ R(l) = R(kl) and R(k)⊗R C ∼= C(k), using the isomorphism

Cr ⊗R C ∼= Cc
r
∼= C ′r ⊗R C, we see that when r ≡ 2 mod 8, the elements

ψi ∈ Cc
r , 1 ≤ i ≤ r, are represented by real matrices and that when r ≡ 6, 8 mod 8, the
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same property holds for ϕi ∈ Cc
r , 1 ≤ i ≤ r. Therefore, we see that when p is a positive

integer such that p ≡ 3, 4 mod 4 (resp. p ≡ 1 mod 4) C2p has the structure of a simple

Cc
2p-module on which ϕi, 1 ≤ i ≤ 2p, (resp. ψi, 1 ≤ i ≤ 2p) acts as a real transformation,

that is, via matrices with real entries.

Let p ≡ 2 mod 4. One may regard C2p as a module over Cc
r -module where r = 2p or

2p+ 1. However, the corresponding real Clifford algebras Cr, C
′
r are not matrix algebras

over the reals. In this case we proceed as follows. Write r = 2p = 8q + 4. We have the

isomorphisms C ′8q+2
∼= R(24q+1) with its generators ψi, 1 ≤ i ≤ r − 2. Consider the

R-algebra C generated by the elements θi ∈ Cc
r , 1 ≤ i ≤ r, expressed below as 2× 2

block matrices with block sizes 2p−1 as follows:

θi =


(

0 ψi

−ψi 0

)
, 1 ≤ i ≤ r − 2,(

I 0
0 −I

)
, i = r − 1,(

0 I
I 0

)
, i = r.

Then the following relations are readily verified: (i) θiθj = −θjθi if 1 ≤ i < j ≤ r, and,

(ii) θ2i = −1 if 1 ≤ i ≤ r− 2 and θ2i = 1 if i = r− 1, r. Moreover, it is easily verified that

R-algebra generated by the θi equals R(2p). Therefore C ⊗R C = C(2p) ∼= Cc
r . In

particular, the elements θi, 1 ≤ i ≤ r, act as real transformations on the simple module

C2p of Cc
r .

Notation: For 1 ≤ i ≤ r, we shall denote by θi ∈ Cc
r the element ψi (resp. ϕi) when

r ≡ 2 mod 8 (resp. r ≡ 6, 8 mod 8). When r ≡ 4 mod 8, the θi ∈ Cc
r are as defined

above.

The above discussion establishes the validity of the following lemma.

Lemma 5.2.1. Let r = 2p be any even positive number. With the above notations, the

elements θi ∈ Cc
r
∼= C(2p), 1 ≤ i ≤ r, satisfy the following conditions:

Thus C is the real Clifford algebra associated to the indefinite (non-degenerate) quadratic form with
signature (2, r − 2). See [23, Chapter 13].
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(i) θiθj = −θjθi, i 6= j and θ2i = ±1 for i ≤ r,

(ii) the R-subalgebra of Cc
r generated by θi, 1 ≤ i ≤ r, is isomorphic to R(2p),

(iii) the θi ∈ Cc
r act as a real transformation on the simple Cc

r module C2p . 2

We are now ready to prove the Theorem 5.1.2.

Proof. (i). Write n = 2pn0 where n0 is odd and p ≥ 1. Suppose that 2p does not divide

k.

Now let r = 2p. We regard Cn as a sum of n0 copies of the simple Cc
r -module C2p . With

notations as in Lemmas 5.2.1, let ti, 1 ≤ i ≤ r, denote the smooth map of the complex

Grassmann manifold CGn,k defined as V 7→ θi(V ), 1 ≤ i ≤ r. Then t2i = id for i ≤ r

since θ2i = ±1. Also titj = tjti for 1 ≤ i < j ≤ r since θiθj = −θjθi. So, the ti define a

smooth action of the group (Z/2Z)r. Any stationary point V of this action is a complex

vector space of dimension k such that θi(V ) = V ∀i ≤ r. This means that V is a module

of over the C-algebra generated by the θi, 1 ≤ i ≤ r, that is, V is a Cc
r -module. In

particular the (Z/2Z)r-action on CGn,k is stationary point free since k is not divisible by

2p.

The fact that the θi are real transformations implies that the ti commute with complex

conjugation σ, defined as σ(V ) = V . This means that the ti define involutions, again

denoted ti, on the generalized Dold manifold P (m,CGn,k). Explicitly,

ti([u, V ]) = [u, ti(V )] is meaningful since (−u, ti(V )) = (−u, ti(V )) ∼ (u, ti(V )).

We claim that the action of (Z/2Z)r has no stationary points. Indeed,

[u, V ] = ti([u, V ]) = [u, ti(V )] implies that ti(V ) = V and so if [u, V ] ∈ P (m,CGn,k) is a

stationary point, then V ∈ CGn,k would be a stationary point, contrary to what was

just observed. Now, by 1.3.3, it follows that [P (m,CGn,k)] = 0.

(ii) Suppose that ν2(n) = ν2(k). Then [CGn,k] 6= 0 by the main theorem of [26]. (See

also [25].) Note that dimC CGn,k is even in this case. If m is also even, then it follows

56



that [P (m,CGn,k)] 6= 0 by Theorem 5.1.1(i).

Let Dk ⊂ O(k) denote the diagonal subgroup of the orthogonal group. Then

Dk
∼= (Z2)

k acts on Rk and on Ck in the obvious manner. This leads to an action of

Dm+1 on Sm ⊂ Rm+1 and an action of Dn on CGn,k. The set of antipodal points

{ej,−ej} ⊂ Sm is stable under the action of Dm+1 for all j ≤ m+ 1. This induces an

action of Dm+1 ×Dn
∼= (Z2)

m+n+1 on P (m,CGn,k) with (m+ 1)
(
n
k

)
stationary points.

We consider the (Z2)
m+n+1-equivariant cobordism classes of these manifolds.

We will now turn to the proof of following theorem .

Theorem 5.2.2. The manifold P (m,CGn,k) bounds equivariantly under the above

action of (Z2)
m+n+1 if n = 2k.

Proof. Let n = 2k. Define α : Sm × CGn,k → Sm × CGn,k as α(v, L) = (v, L⊥). Then α

is a fixed point free involution. Note that α(−v, L) = (−v, L⊥) = (−v, L⊥). So α defines

a fixed point free involution, denoted β, on P (m,CGn,k) by passing to the quotient.

Our claim is that β is (Z2)
m+n+1-equivariant. It is enough to check this on the

generators Ti ∈ (Z2)
m+n+1, 1 ≤ i ≤ m+ n+ 1. It is trivial to check that βTi = Tiβ for

1 ≤ i ≤ m+ 1. For m+ 2 ≤ i ≤ m+ n+ 1, since Ti is real orthogonal transformation

Tiβ(V ) = Ti(V
⊥) = (Ti(V ))⊥ = β(Ti(V )) ∀V ∈ CGn,k. Using this, it follows that

βTi = Tiβ for m+ 2 ≤ i ≤ m+ n+ 1. Therefore β is (Z2)
m+n+1-equivariant.

Let M = P (m,CGn,k) and G = (Z2)
m+n+1. Consider the Z2-action generated by the

involution η on M × [−1, 1] , defined as η(z, s) = (β(z),−s). It is fixed point free and

G-equivariant. Let W be the quotient of M × [−1, 1] by the Z2-action. Then W is a

G-manifold with boundary ∂W ∼= M = P (m,CGn,k) where the G-action on ∂W

coincides with P (m,CGn,k) . Hence P (m,CGn,k) bounds G-equivariantly.

Remark 5.2.3. It appears to be unknown precisely which (real or complex) flag

manifolds are unoriented boundaries. Let n1, . . . , nr ≥ 1 be integers and let

n =
∑

1≤j≤r nj. Proceeding as in the case of the P (m,CGn,k) it is readily seen that
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[CG(n1, . . . , nr)] and [P (m;n1, . . . , nr)] in N are zero if ν2(n) > ν2(nj) for some j.

Also, if ni = nj for some i 6= j, then CG(n1, . . . , nr) admits a fixed point free involution,

namely the one that swaps the i-th and the j-component of each flag in CG(n1, . . . , nr).

This involution commutes with complex conjugation and so defines an involution of

P (m;n1, . . . , nr) which is again fixed point free. It follows that P (m;n1, . . . , nr) = 0 in

this case. If m ≡ d mod 2 where d = dimC CG(n1, . . . , nr) =
∑

1≤i<j≤r ninj and if

[CG(n1, . . . , nr)] 6= 0, then [P (m;n1, . . . , nr)] 6= 0 by Theorem 5.1.1. For example, it is

known that χ(CG(n1, . . . , nr)) = n!/(n1!. . . . .nr!). So if m and d are even and if

n!/(n1!. . . . .nr!) is odd, then χ(P (m;n1, . . . , nr) is also odd and so

[P (m;n1, . . . , nr)] 6= 0.
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