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Chapter 1

Introduction

This chapter is divided into three sections. In each section we begin with a brief

discussion of the historical advancement of the central topics in this thesis and

describe our main results at the end.

Throughout this thesis, a variety will be assumed to be reduced and irreducible.

A divisor on a projective variety will mean a Cartier divisor. The canonical isomor-

phism between the Picard group and the divisor class group of a projective variety

will be used whenever necessary.

1.1 Nef cones of divisors

Let X be a complex projective variety. The nef cone Nef1(X) � N
1(X) and the

ample cone Amp(X) � N
1(X) of divisors on X have long stood in the centre of the

theory of positivity in algebraic geometry. Over the last few decades these cones

have been studied extensively by various authors( see [Laz1] (Section 1.5), [Miy], [F],

[BP], [MOH] etc.). We discuss some of these important results about the positive

cones of divisors according to the relevance of our treatise here.
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Yoichi Miyaoka in 1987 started studying nef and e⇥ective divisors on a projective

bundle P(E) over a smooth curve C, where E is a vector bundle of rank r over C.

In his paper [Miy], he had shown that semi-stability of E is characterised by the

nefness of the normalized hyperplane class ⇤E. We examine the result precisely in

the theorem below.

Theorem 1.1.1 ([Miy], Theorem 3.1). Let E be a vector bundle on C and ⌅ :

P(E) ⇤⌅ C be the associated projective bundle. OP(E)(1) denotes the tautological

line bundle and ⇤E is the numerical class of c1(OP(E)(1)) ⇤ ⌅⇤
µ(E), where µ(E) =

c1(E)
rank(E) . Then the following conditions are equivalent:

(i) E is semi-stable.

(ii) ⇤E is nef.

(iii) NE(P(E)) = R+⇤
r⌅1
E +R+⇤

r⌅2
E ⌅⇤

d where d is a positive generator of N1(C)Z

(iv) Nef(P(E)) = R+⇤E + R+⌅⇤
d.

(v) Every e�ective divisor on P(E) if numerically e�ective i.e. nef.

Later in 2006, U. Bruzzo and D. Hernández in [BH] proved that the slope-

semistability of a vector bundle E with ⇤(E) = 0 on a projective variety X is

equivalent to the nefness of the normalized hyperplane class in P(E). This result

shows that nefness of a divisor plays an important role in determining the geometry

of a vector bundle on a projective variety.

Theorem 1.1.2 ([BH] Theorem 1.3). Let E be a vector bundle of rank r on a

projective variety X. Then the following conditions are equivalent:

(i) The normalized hyperplane class c1(OP(E)(1))⇤ 1
rank(E)⌅

⇤(c1(E)) is nef.

(ii) E is semistable and ⇤(E) = 0.

Where µ(E) is the slope of E, ⌅ : P(E) ⇤⌅ X is the projection map and ⇤(E)
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is the characteristic class of E defined as

⇤(E) = c2(E)⇤ r ⇤ 1

2r
c1(E)2

In 2011, Mihai Fulger generalized Miyaoka’s results and showed that pseudo-

e⇥ective cones of cycles E⇥i(P(E)) are determined by all the numerical data in the

Harder-Narasimhan filtration of E. We draw up this particular result in more details

in Section 1.3.

I. Biswas and A. J. Parameswaran in 2014 studied the nef cones of the Grassmann

bundle Grr(E), parameterizing r dimensional quotients of E.

Let C be a smooth complex projective curve. Let E be a vector bundle over C

and ⇧ : Grr(E) ⇤⌅ C be the corresponding Grassmann bundle, parameterizing all

r dimensional quotients in the fibres of E for 1 ⇧ r ⇧ rank(E)⇤1 and let OGrr(E)(1)

be the tautological line bundle on Grr(E). Let

0 = E0 ⌃ E1 ⌃ ... ⌃ El = E

be the Harder-Narasimhan filtration of E. Let t ⇥ [1, l] be the unique largest integer

such that

l⇤

i=t

rank(Ei/Ei⌅1) ⌥ r.

Define

⌃E,r := (r ⇤ rank(E/Et))µ(Et/Et⌅1) + deg(E/Et).

Theorem 1.1.3 ([BP]). (i) ⌃E,r > 0 =� OGrr(E)(1) is ample.

(ii) ⌃E,r < 0 =� OGrr(E)(1) is not nef.
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(iii) ⌃E,r = 0 =� OGrr(E)(1) is nef but not ample.

(iv) The boundary of the nef cone in N
1(Grr(E)) is given by L and OGrr(E)(1) 

L
⌅�E,r , where L is the class of a fibre of the projection map ⇧ : Grr(E) ⇤⌅ C.

The above theorem in [BP] is proved for a curve C over an algebraically closed

field of arbitrary characteristic. Since we don’t work with the fields of positive

characteristic here, we only stated the theorem in characteristic zero.

Let E1 and E2 be two vector bundles over a complex curve C and let X =

P(E1)◊C P(E2) be the fibre product over C. Consider the following diagram:

X = P(E1)◊C P(E2) P(E2)

P(E1) C

p2

p1 ⇥2

⇥1

Let,

⌥1 =
⌅
OP(E1)(1)

⇧
⇥ N

1(P(E1)) , ⌥2 =
⌅
OP(E2)(1)

⇧
⇥ N

1(P(E2)),

�1 = p
⇤
1(⌥1), �2 = p

⇤
2(⌥2), F is the fibre of ⌅1 ⌦ p1.

Motivated by [F] and [BP] in this thesis we compute the nef cone of nef line bundles

on X.

Theorem 1.1.4. Let E1 and E2 be two vector bundles on a smooth complex projec-

tive curve C and let X = P(E1)◊C P(E2) as discussed earlier. Then,

Nef(P(E1)◊C P(E2)) =
�
a 1 + b 2 + cF | a, b, c ⇥ R⇥0

⇥
.

where  1 = �1 ⇤ µ11F and  2 = �2 ⇤ µ21F and µ11 and µ21 are the smallest slopes of

any torsion-free quotients of E1 and E2 respectively.
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1.2 Seshadri constants

The Seshadri constant measures the local positivity of a line bundle on a projective

variety around a given point. It was introduced by Demailly in 1992 and gradu-

ally it grew on its own as an important invariant in algebraic geometry. Several

expositions on this topic can be found in the literature of the last two decades( see

[Ba], [BDHKKSS], [CN], [Gar], [BHNN] etc.). We talk about some of these works

relevant to our study.

A ruled surface X is a P1-bundle over a smooth curve C. It corresponds to

a rank 2 normalized( in terms of Hartshorne [H]) vector bundle E over C and is

denoted by ⌅ : (X := P(E)) ⇤⌅ C with fibre f . Let X0 be the section of minimum

self-intersection and let
⌃2

E ↵= OX(e) and e = ⇤ deg(e). The Néron-Severi group

N
1(X) is generated by X0 and f .

In 2005, L. F. Garcia( see [Gar]) studied Seshadri constants of nef line bundles

on ruled surfaces. We summarize his main results in following two theorems. But

before going into that we recall an important definition.

Definition 1.2.1. An irreducible curve C0 on X passing through a point x ⇥ X with

multiplicity m ⌥ 1 and C
2
< m

2 is said to be a Seshadri exceptional curve based at

x.

For a Seshadri exceptional curve based at x we define a continuous function

qC0 : Nef(X) ⇤⌅ R, qC0(L, x) =
L · C

multx C0
.

Theorem 1.2.1 ([Gar], Theorem 4.14). Let X be a ruled surface with invariant

e > 0. Let L � aX0 + bf be a nef divisor on X. Then

(i) If x ⇥ X0, then the Seshadri constant �(X,L, x) = min{qf (L.x), qX0(L, x)} =

min{a, b⇤ ae}.
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(ii) If x /⇥ X0, then �(X,L, x) = qf (L, x) = a.

Theorem 1.2.2 ([Gar], Theorem 4.16). Let X be a ruled surface with invariant

e ⇧ 0. Let L � aX0 + bf be a nef divisor on X. Then

(i) If e = 0 and x lies on a curve numerically equivalent to X0, then

�(X,L, x) = min{qf (L.x), qX0(L, x)} = min{a, b}.

(ii) In other case:

(a) If b⇤ 1
2ae ⌥

1
2a, then

�(X,L, x) = a.

(b) If 0 ⇧ b⇤ 1
2ae ⇧

1
2a, then

2
⌥
b⇤ 1

2ae
�
⇧ �(X,L, x) ⇧ 2

�
L =
 
2a
⌥
b⇤ 1

2ae
�
.

More recently in 2018, I.Biswas, K. Hanumanthu, D.S. Nagaraj and P. E. New-

stead studied Seshadri constants on Grassmann bundles over smooth curves under

the assumption that the corresponding vector bundle is unstable. This generalizes

L. F. Garcia’s( see [Gar]) result and explores much more.

Assume that E is an unstable vector bundle over C. Let Grr(E) be the corre-

sponding Grassmann bundle over C. We follow the notations used in Section 1.1.

Let us fix an integer 1 ⇧ m ⇧ l and define

s := rank(E/Em⌅1), d := deg(E/Em⌅1)

The closed cone of curves NE(Grr(E)) is generated by classes of ⌅l and ⌅t, where

⌅l is the class of a line in the fibre L of the projection map ⇧ : Grr(E) ⇤⌅ C and
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⌅t denote the image of the section

t : C ⇤⌅ Grr(E)

corresponding to the s-dimensional quotients E ⇤⌅ E/Em⌅1.

Theorem 1.2.3 ([BHNN], Theorem 3.1). Assume that there exists an integer c < l

such that rank(Ec) = s and that deg(Ec) is an integral multiple of s. Let L �

aOGrr(E)(1) + bL be an ample line bundle on Grr(E). Then the Seshadri constants

of L are given by the following:

(1) �(X,L, x) ⌥ min{a, b} for all x ⇥ Grr(E).

(2) If b ⇧ a, then �(X,L, x) = b for all x ⇥ Grr(E).

(3) If a < b, then:

(i) if x does not belong to the base locus of the linear system | OGrr(E)(1) |, then

�(X,L, x) = b;

(ii) if x belongs to the base locus of | OGrr(E)(1) |, then a ⇧ �(X,L, x) ⇧ b;

(iii) if x ⇥ ⇤t,then �(X,L, x) = a.

Theorem 1.2.4 ([BHNN], Theorem 3.3). Assume that µ(Em/Em⌅1)⇤µ(Em⌅1/Em⌅2) ⇧

⌃. With the same hypothesis as of the previous theorem, the Seshadri constants of

L is given by the following:

�(X,L, x) =

⌦
↵↵�

↵↵�

b if b ⇧ a or x /⇥ ⌅t

a if a < b and x ⇥ ⌅t

Let E1 and E2 be two vector bundle over a complex smooth projective curve and

let X = P(E1)◊C P(E2) as discussed earlier in Section 1.1. Motivated by [Gar] and

[BHNN] in this thesis we study the Seshadri constants of nef line bundles on X.
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Theorem 1.2.5. Let E1 and E2 be two vector bundles on a smooth curve C with

µ11 and µ21 being the smallest slopes of any torsion-free quotient of E1 and E2

respectively and let X = P(E1) ◊C P(E2). Let L be an ample line bundle on X

numerically equivalent to a 1 + b 2 + cF ⇥ N
1(X). Then, the Seshadri constants of

L,

�(X,L, x) ⌥ min{a, b, c}, �x ⇥ X.

Moreover,

(4.1.1) if a = min{a, b, c}, then �(X,L, x) = a, �x ⇥ X

(4.1.2) if b = min{a, b, c}, then �(X,L, x) = b, �x ⇥ X.

In the above theorem when c = min{a, b, c} more can be said about the Seshadri

constants of ample line bundles on X if E1 and E2 are unstable vector bundles over

C.

Theorem 1.2.6. Let E1 and E2 be two unstable vector bundles over a smooth curve

C of rank r1 and r2 respectively and X = P(E1) ◊C P(E2). Let L be an ample line

bundle on X numerically equivalent to a 1+b 2+cF ⇥ N
1(X).When c = min{a, b, c}

the Seshadri constants of L have the following properties.

(i) Assume c ⇧ a ⇧ b, rank(E1) = 2 and E1 is normalised.

If x is a point outside B⌅(�1), then �(X,L, x) = a.

If x belongs to B⌅(�1), then c ⇧ �(X,L, x) ⇧ a.

(ii) Assume c ⇧ b ⇧ a, rank(E2) = 2 and E2 is normalised.

If x is a point outside B⌅(�2), then �(X,L, x) = b.

If x belongs to B⌅(�2), the c ⇧ �(X,L, x) ⇧ b.

(iii) If x is on some curve whose class is proportional to ⌦3, then �(X,L, x) =
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c, where ⌦3 = ⌦3 + µ11⌦1 + µ21⌦2.

1.3 E�ective cones of cycles

For the past few years various positive cones of higher co-dimension cycles have

gained much attention amongst fellow geometers. At the fag end of the last decade

Claire Voisin in [V] used the cones of e⇥ective cycles to study the generalized Hodge

conjecture for coniveau 2 complete intersections and stated a conjecture about the

the cones of e⇥ective cycles in intermediate dimensions. She showed that generalized

Hodge conjecture for coniveau 2 complete intersections follows from this e⇥ectiveness

conjecture. Around the same time Thomas Peternell in [P] worked with cones of

e⇥ective cycles to study Robin Hartshorne’s conjecture, which says that

For a projective manifold Z and submanifolds X and Y with ample normal bun-

dles, if dimX + dimY ⌥ dimZ, then X ✏ Y ⇣= ⇧.

Later there has been significant progress in the theoretical understanding of such

cycles due to [FL1] and [FL2] and others. Although similar in nature, these cycles

do not share all the important properties of divisors or curves( see [DELV], [F],

[DJV], [CC], [FL1], [FL2]) for details.

Let E be a vector bundle over a complex smooth projective curve C and let

⌅ : P(E) ⇤⌅ C be the projective bundle associated to it. Let ↵ be the class of the

tautological bundle O(1) on P(E) and let f be the class of a fibre of the projection

⌅. E admits the unique Harder-Narasimhan filtration

E = E0 ⌘ E1 ⌘ ...El = 0.

Denote Qi := Ei⌅1/Ei, ri := rankQi, di := degQi and µi = µ(Qi) :=
di
ri
.

In 2011 M. Fulger([F]) computed e⇥ective cones of cycles E⇥
i
(P(E)) on P(E).
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We describe the results below.

Theorem 1.3.1 ([F], Lemma 2.2). If E is semistable of rank n and slope µ, then

for all i ⇥ {1, 2, ..., n⇤ 1}

E⇥
i
(P(E)) = ✓(↵ ⇤ µf)i, ↵i⌅1

f◆

Assume that E is an unstable vector bundle over C. From Harder-Narasimhan

filtration of E we get the following exact sequence

0 ⇤⌅ E1 ⇤⌅ E ⇤⌅ Q1 ⇤⌅ 0

Let i : P(Q1) ⇤⌅ P(E) be the canonical inclusion. Then

Theorem 1.3.2 ([F], Lemma 2.3). For all i ⇥ {1, 2, ..., r1}

E⇥i(P(E)) =
�
[P(Q1)](↵ ⇤ µf)r1⌅i

, ↵n⌅i⌅1
f
✏

In particular i⇤ induces an isomorphism E⇥i(P(Q1)) ↵= E⇥i(P(E)) for i < r1.

Now the projection map

q : P(E) \ P(Q1) ⇤⌅ P(E1)

can be seen as a rational map whose indeterminacies are resolved by blowing up

P(Q1). As a result of the blow up we have the following commutative diagram:

BlP(Q1)P(E) P(E1)

P(E) C

⇤

B p

⇥

The next theorem shows that pseudo-e⇥ective cycles of dimension bigger than

rank(Q1) can be tied down to pseudo-e⇥ective cycles of P(E1).
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Theorem 1.3.3 ([F], Lemma 2.7). The map B⇤⌥⇤|E�i
(P(E1))

is an isomorphism onto

E⇥
i
(P(E1)) for i < n⇤ r1.

There are few other examples known in literature where people have studied

pseudo e⇥ective cones of higher co-dimension cycles. In 2011, O. debarre, L. Ein, R.

Lazarsfeld and C. Voisin studied nef and pseudo-e⇥ective cones of cycles of higher

co-dimension on the self products of elliptic curves with complex multiplication and

on the product of a very general abelian surface with itself([DELV]). In 2016, I.

Coskun, J. Lesieutre and J. C. Ottem studied pseudo-e⇥ective cones of higher co-

dimension cycles on point blow-ups of projective spaces. They provided bounds

on the number of points blown up for which these cones are linearly generated

and for which these cones are finitely generated([CLO]). In 2018, N. Pintye and

A. Prendergast-Smith([PP]) studied pseudo-e⇥ective cones of cycles on some linear

blow-ups of projective spaces.

Let E1 and E2 be two vector bundles over a smooth complex projective curve

C. Let X = P(E1) ◊C P(E2) as discussed earlier in Section 1.1. Motivated by [F]

we compute the pseudo-e⇥ective cones of cycles on X.

Theorem 1.3.4. Let E1 and E2 be two semistable vector bundles over C of rank

r1 and r2 respectively with r1 ⇧ r2 and X = P(E1) ◊C P(E2). Then for all k ⇥

{1, 2, ..., r1 + r2 ⇤ 1}

E⇥
k
(X) is generated by complete intersections of nef divisor classes in X.

Let Ei(i = 1, 2) be two unstable bundles on X, having the following H-N filtra-

tions.

Ei = Ei0 ⌘ Ei1 ⌘ ... ⌘ Eili = 0

for i = 1, 2. Write Q11 = E1/E11, Q21 = E2/E21, n11 = rank(Q11) andn21 =
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rank(Q21).

Theorem 1.3.5. Let E1 and E2 be two unstable bundle of rank r1 and r2 and degree

d1 and d2 respectively over a smooth curve C and X = P(E1) ◊C P(E2). Then for

all k ⇥ {1, 2, ...,n} (n := n11 + n21 ⇤ 1)

E⇥k([P(Q11)◊C P(Q21)]) is isomorphic to E⇥k(X) for k ⇧ n.

Theorem 1.3.6. E⇥
k
(X) ↵= E⇥

k
(Z ⇧) and E⇥

k
(Z ⇧) ↵= E⇥

k
(Z ⇧⇧). So, E⇥

k
(X) ↵=

E⇥
k
(Z ⇧⇧) for k < r1 + r2 ⇤ 1⇤ n

where Z
⇧ = P(E11)◊C P(E2) and Z

⇧⇧ = P(E11)◊C P(E21).
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Notations

• Z The ring of integers

• Q The field of rational numbers

• R The field of real numbers

• R>0 The set of positive real numbers

• R⇥0 The set of all non-negetive real numbers

• C The field of complex numbers

• Pn
k Projective n-space over an algebraically closed field k

• ci(E) i-th Chern class of a vector bundle E

• Div(X) The set of all divisors on a variety X

• [D] Numerical equivalence class of a divisor D on X.

• ⇥(X) The Picard rank of X

• Pic(X) The Picard group of X

• multx C Multiplicity at the point x of a curve C passing through x

• N
1(X) Real Néron-Severi group of X.
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Summary

Let E1 and E2 be two vector bundles over a smooth complex projective curve C

and let P(E1) ◊C P(E2) be the fibre product of projective bundles associated with

them. In this thesis, we study various positive cones of cycles and Seshadri constants

of nef line bundles on P(E1)◊C P(E2).

(I) The nef cone Nef(X) � N
1(X) of divisors on a projective variety X is an

important invariant which gives useful information about the projective embeddings

ofX. The nef cone of various smooth irreducible projective varieties has been studied

by many authors in the last few decades ( See [Laz1] (Section 1.5), [Miy], [F], [BP],

[MOH], [KMR] for more details ). In this thesis we compute Nef(PC(E1)◊C PC(E2))

without restriction on the rank or semistability of E1 and E2.

(II) Let X be a smooth complex projective variety and let L be a nef line

bundle on X. The Seshadri constant of L at x ⇥ X is defined as

�(X,L, x) := inf
x�C

� L · C

multx C

⇥

where the infimum is taken over all the closed curves in X passing through x having

the multiplicity multx C at x.

Seshadri constants on ruled surfaces PC(E) (rank(E) = 2) over a smooth curve C

have been studied by many authors (see [Gar], [HM] etc. ). More generally, [BHNN]

computes the Seshadri constants of ample line bundles on the Grassmann bundle
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Grr(E) over a smooth curve C under the assumption that E is an unstable bundle

on C. In particular, under some suitable conditions on the Harder-Narasimhan

filtration of E, [BHNN] computes the Seshadri constants of ample line bundles on

PC(E) , whenever E is an unstable vector bundle over a smooth curve C.

Motivated by this, in this thesis we study the Seshadri constants of ample line

bundles on P(E1) ◊C P(E2), where E1 and E2 are vector bundles over a smooth

irreducible curve C of rank r1 and r2 respectively, under some assumptions on E1

and E2, and have given bounds in some other cases.

(III) Recently the theory of cones of cycles of higher dimension has been

the subject of increasing interest( see [F], [DELV], [DJV], [CC] etc). Lately, there

has been significant progress in the theoretical understanding of such cycles, due to

[FL1], [FL2] and others. But the the number of examples where the cone of e⇥ective

cycles have been explicitly computed is relatively small till date( see [F], [CLO] etc).

Let E1 and E2 be two vector bundles over a smooth curve C and consider the

fibre product P(E1)◊C P(E2). In this thesis, we compute the cones of e⇥ective cycles

on P(E1)◊C P(E2) in the following cases.

(i) When both E1 and E2 are semistable vector bundles of rank r1 and r2

respectively over C.

(ii) When Neither E1 nor E2 is semistable vector bundles of rank r1 and r2

respectively over C.
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Summary

Let E1 and E2 be two vector bundles over a smooth complex projective curve C

and let P(E1) ◊C P(E2) be the fibre product of projective bundles associated with

them. In this thesis, we study various positive cones of cycles and Seshadri constants

of nef line bundles on P(E1)◊C P(E2).

(I) The nef cone Nef(X) � N
1(X) of divisors on a projective variety X is an

important invariant which gives useful information about the projective embeddings

ofX. The nef cone of various smooth irreducible projective varieties has been studied

by many authors in the last few decades ( See [Laz1] (Section 1.5), [Miy], [F], [BP],

[MOH], [KMR] for more details ). In this thesis we compute Nef(PC(E1)◊C PC(E2))

without restriction on the rank or semistability of E1 and E2.

(II) Let X be a smooth complex projective variety and let L be a nef line

bundle on X. The Seshadri constant of L at x ⇥ X is defined as

�(X,L, x) := inf
x�C

� L · C

multx C

⇥

where the infimum is taken over all the closed curves in X passing through x having

the multiplicity multx C at x.

Seshadri constants on ruled surfaces PC(E) (rank(E) = 2) over a smooth curve C

have been studied by many authors (see [Gar], [HM] etc. ). More generally, [BHNN]

computes the Seshadri constants of ample line bundles on the Grassmann bundle
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Grr(E) over a smooth curve C under the assumption that E is an unstable bundle

on C. In particular, under some suitable conditions on the Harder-Narasimhan

filtration of E, [BHNN] computes the Seshadri constants of ample line bundles on

PC(E) , whenever E is an unstable vector bundle over a smooth curve C.

Motivated by this, in this thesis we study the Seshadri constants of ample line

bundles on P(E1) ◊C P(E2), where E1 and E2 are vector bundles over a smooth

irreducible curve C of rank r1 and r2 respectively, under some assumptions on E1

and E2, and have given bounds in some other cases.

(III) Recently the theory of cones of cycles of higher dimension has been

the subject of increasing interest( see [F], [DELV], [DJV], [CC] etc). Lately, there

has been significant progress in the theoretical understanding of such cycles, due to

[FL1], [FL2] and others. But the the number of examples where the cone of e⇥ective

cycles have been explicitly computed is relatively small till date( see [F], [CLO] etc).

Let E1 and E2 be two vector bundles over a smooth curve C and consider the

fibre product P(E1)◊C P(E2). In this thesis, we compute the cones of e⇥ective cycles

on P(E1)◊C P(E2) in the following cases.

(i) When both E1 and E2 are semistable vector bundles of rank r1 and r2

respectively over C.

(ii) When Neither E1 nor E2 is semistable vector bundles of rank r1 and r2

respectively over C.
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Chapter 2

Preliminaries

2.1 Nef and ample line bundles

Let X be an irreducible projective variety over the field of complex numbers C. L

and D denote a line bundle and a Cartier divisor on X respectively. We denote by

Div(X) the group of all cartier divisors on X.

Definition 2.1.1. L is said to be very ample if there exists a closed embedding of

X into some projective space PN such that

L = OX(1) := OPN (1)|X

Definition 2.1.2. L is said to be ample if there exists an integer ñ(F ) such that

for every coherent sheaf F and for every n ⌥ ñ(F ), the sheaf F  L
⌃n is generated

by its global sections.

A Cartier divisor D is said to be very ample or ample if the associated line bundle

OX(D) is so.

The relation between ample and very ample line bundles on X is given by the
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following theorem.

Theorem 2.1.1 (see [H], Chapter II Theorem 7.6). Let X be a scheme of finite

type over a noetherian ring A and L be a line bundle on X. Then L is ample if and

only if L⌃n is very ample over SpecA for some n > 0.

Definition 2.1.3. {Numerical equivalence} Two Cartier divisors D1 and D2 are

numerically equivalent if D1 · C = D2 · C for all irreducible curves C � X.

Numerical equivalence of line bundles is defined analogously. A divisor is numer-

ically trivial if it is numerically equivalent to zero divisor and the subgroup of all nu-

merically trivial divisors is named Num(X). The groupN
1(X)Z := Div(X)/Num(X)

of numerical equivalence classes of divisors is called the Néron-Severi group. It is a

free abelian group of finite rank and we call the rank of N1(X)Z the Picard number

of X, ⇥(X).

Next we recall the notion of Q-divisors and R- divisors on a variety.

Definition 2.1.4. Let X be an irreducible projective variety over C. An Q- divisor

on X is an element of the vector space

DivQ(X) := Div(X) Z Q

An Q-divisor D can be written as a finite sum

D =
⇤

ciBi,

where ci ⇥ Q and Bi ⇥ Div(X).

Similarly a R-divisor on X is an element of the real vector space

DivR(X) := Div(X) Z R
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A R-divisor D can be written as a finite sum

D =
⇤

djBj,

where dj ⇥ R and Bj ⇥ Div(X)

Equivalences and operations on Q-divisors and R- divisors are mostly analogous

to the integral counterpart. We are not going to discuss those in details. See ([Laz1])

for more details.

Let D be an Q-divisor on X. The stable base locus of D is

B(D) :=
⇣

m�N

Bs(| mD |)red,

where the intersection is taken over all m such that mD is an integral divisor

and the base locus Bs(|D|) of a complete linear system |D| of Cartier divisors on X

is the set of common zeros of all sections of the associated line bundle L(D). This is

an interesting invariant but some well known pathologies associated to linear series

made it’s study not so fruitful and discouraging in many cases. For example it can

happen that the stable base locus B(D) does not depend only on the numerical

equivalence class of D. However this problem can be avoided by considering the

following approximation of B(D).

The restricted base locus of a R-divisor D on X is defined to be

B⌅(D) :=
⌘

A

B(D + A),

where the union is taken over all ample divisors A such that D + A is a Q-divisor.

It follows easily from the definition that B⌅(D) depends only on the numerical

equivalence class of D. See [ELMNP] for further details.
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Let N1(X) be the real vector space of numerical equivalence classes of R- divisors.

Then there is an isomorphism

N
1(X) = N

1(X)Z  Z R

The following two theorems state two very important phenomena about the ampli-

tude of a divisor(or a line bundle). One says that the amplitude can be detected

cohomologically and the other deals with the numerical characterisation of ample

line bundles.

Theorem 2.1.2 (see [Laz1], Theorem 1.2.6). Let L be a line bundle on a complete

scheme X. Then the following conditions are equivalent:

(i) L is ample

(ii) For every coherent sheaf F there exists an integer m0(F ) such that for all i > 0

and all m ⌥ m0(F ), H i(X,F  L
⌃m) = 0.

The statement (ii) of the above theorem is often called Serre’s vanishing theorem.

Theorem 2.1.3 (Nakai- Moishezon - Kleiman criterion, see [Laz1] Theorem 1.2.23).

Let L be a line bundle on a projective variety X. Then L is ample if and only if

✓

V

c1(L)
dim(V )

> 0

for every positive-dimensional irreducible subvariety of X.

An analogous statement of the above theorem can be stated for R- divisors and

the credit for that goes to Campana and Peternell. We recall the statement below.

Theorem 2.1.4 (Nakai criterion for R- divisors, see [Laz1] Theorem 2.3.18). Let X

be a projective scheme and ⌦ be a class of R- divisors in N
1(X)R. Then ⌦ is ample
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if and only if

⌥
⌦dimV

· V
�
> 0

for every irreducible subvariety of X of positive dimension.

We now move into another very important notion in the theory of positivity of

line bundles, the nefness or the numerical e�ectiveness of line bundles. Let us begin

with the definition.

Definition 2.1.5. Let X be a complete variety. A line bundle L on X(or a Cartier

divisor with Z or R coe⇤cients) is nef if

✓

C

c1(L) ⌥ 0
⌥
or (D · C) ⌥ 0

�

for all irreducible curves C in X.

The introduction of some important cones in N
1(X) was pioneered by Kleiman.

Let X be a complete complex variety. Let V be a finite-dimensional vector space. A

cone in V is a set W � V stable under the multiplication by positive scalars. The

ample cone Amp(X) ⌃ N
1(X) is the cone of ample R- divisor classes on X. The

nef cone Nef(X) ⌃ N
1(X) is the convex cone of all nef R-divisor classes on X.

Theorem 2.1.5 (Kleiman, see [Laz1] Theorem 1.4.23). Let X be a projective vari-

ety. The nef cone is the closure of the ample cone and the ample cone is the interior

of the nef cone.

Nef(X) = Amp(X), Amp(X) = int
⌥
Nef(X)

�

Let X be a complete variety. We denote by Z1(X) the real vector space of real

one-cycles on X, consisting of R-linear combinations of all irreducible curves on X.

37



So, an element ⇤ ⇥ Z1(X) can be written as

⇤ =
⇤

biCi

where bi ⇥ R and Ci’s are irreducible curves on X. Two one-cycles ⇤1, ⇤2 ⇥ Z1(X)

are said to be numerically equivalent if

⌥
D · ⇤1

�
=
⌥
D · ⇤2

�

for all D ⇥ DivR(X). The real vector space of all numerical equivalence classes of

one-cycles is denoted by N1(X) and we have the following perfect pairing

N
1(X)◊N1(X) ⇤⌅ R, (⌦, ⇤) ⌅ (⌦ · ⇤)

Definition 2.1.6. The cone of curves NE(X) is the cone spanned by all real e�ective

one-cycles on X. More precisely

NE(X) =
◆

bi[Ci]|Ci ⌃ X is an irreducible curve and bi ⇥ R⇥0

�

The closure NE(X) ⌃ N
1(X)R is called the closed cone of curves.

It’s a fact that NE(X) is dual to Nef(X) which will be discussed in Section 2.3

in a more general set up.

2.2 Seshadri constants

The Seshadri constant measures the local positivity of a line bundle. It was first

introduced by Demailly , mainly to use with the aim to solve the Fujita conjecture.

Gradually it became clear that they are considerably rich and fascinating invariants
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in their own rights. before going into the definition of Seshadri constants we recall

the Seshadri criterion for ampleness where it all began.

Theorem 2.2.1. Let X be a projective variety and D be a divisor on X. Then D

is ample if and only if there is a positive number � such that for every point x ⇥ X

and for every irreducible curve C ⌃ X passing through x

D · C ⌥ �multx C

What comes naturally from the above theorem is the optimality question of �.

That leads us to the following definition of Demailly.

Definition 2.2.1 (Seshadri constants at a point). Let X be a smooth projective

variety and L be a line bundle on X. the Seshadri constants of L at a point x ⇥ X

if defined as

�(X,L, x) := inf
x�C

� L · C

multx C

⇥

where the infimum is taken over all irreducible curves C ⌃ X passing through X.

Definition 2.2.2. We say that a curve C computes the Seshadri constant �(X,L, x)

if

�(X,L, x) =
L · C

multx C

In that case the curve C is called a Seshadri curve.

It is unknown if a Seshadri curve exists in general. We have an alternate definition

of the Seshadri constants as expressed below.
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Proposition 2.2.1. Let X be an irreducible projective variety and

µ : X ⇧ = BlxX ⇤⌅ X

be the blow up of X at a point x ⇥ X with the exceptional divisor E � X
⇧. Also

assume L to be a nef divisor on X. Then the Seshadri constant of L at x is defined

as

�(X,L, x) := max{� ⌥ 0 |µ
⇤
L⇤ �.E is nef}

It can be proved easily that the two definitions of Seshadri constants mentioned

above are actually same. See ( [Laz1]), Theorem 5.1.5.

Now we list some of the important properties of the Seshadri constants.

Proposition 2.2.2 (see [Laz1]). (i) The Seshadri constant �(X,L, x) depends only

on the numerical equivalence class of L.

(ii) If L is very ample, then �(X,L, x) ⌥ 1 for every x ⇥ X.

(iii) If W � X is an irreducible subvariety of positive dimension containing

x ⇥ X, then

�(X,L, x) ⇧
�
L
dimW

·W

multx W

⌫ 1
dimW

In particular, one has the trivial bound

�(X,L, x) ⇧ n

⇠
Ln

multx X

when n is the dimension of X.
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2.3 Positive cones of higher-dimension cycles

In Section 2.1 we have discussed various positive cones of divisors(Co-dimension one

cycles) on a projective variety. In this section we will talk about some positive cones

of higher co-dimension cycles on a projective variety.

Let X be a smooth projective variety. For a closed subscheme V � X we define

its fundamental integral cycle as in [[Ful],1.5]. A k-cycle is a finite formal sum

⇤
ni[Vi]

where Vi’s are k-dimensional subvarieties of X and ni ⇥ Z. The group of integral

k-cycles on X denoted by Zk(X) is a free abelian group of k-dimensional subvarieties

on X. Similarly, we can use the denominations rational or real when the coe⇧cients

are Q or R respectively. Many equivalence relations have been introduced on Zk(X)

(or Zk(X)Q or Zk(X)R) to study the cycles on X. Here we focus on the numerical

equivalence of cycles which suits our need.

Let E be a vector bundle on X. Then for any integar i, W. Fulton in ([Ful])

constructs the Chern class ci(X) of E which maps a class � ⇥ Ak(X) to ci(X)✏� ⇥

Ak⌅iX. Since the operation is commutative and associative, we can define P (EI) ✏

[Z] for any finite collection of vector bundles Eii�I and any weighted homogenous

polynomial P (EI) of weight i on the Chern classes of these vector bundles.

Definition 2.3.1. A k-cycle Z on X is said to be numerically trivial if

deg(P (EI) ✏ Z) = 0

where P (EI) is a weighted homogenous polynomial of weight k in Chern classes of

a finite set of vector bundles on X.

The set of numerically trivial k-cycles form a group called Numk(X). See ([Ful],
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Chapter 19) and ([FL1]) for more details.

We denote Nk(X)Z to be the quotient of Zk(X) by numerically trivial cycles.

Nk(X)Z is a lattice inside Nk(X)Q := Nk(X)Z Q and Nk(X) := Nk(X)Z R. Nk(X)

is a free abelian group of finite rank and called the numerical group. It’s abstract

dual Nk(X) is called the numerical dual group. We have the formal identification

N
k(X) =

homogenous Chern polynomials with real coe⇧cients with weight k

Chern polynomialsP such thatP ✏ � = 0 for all� ⇥ Nk(X)R

However if X is a non-singular variety of dimension n, we set

N
k(X)Z = Nn⌅k(X)Z, N

k(X)Q = Nn⌅k(X)Q, N
k(X) = Nn⌅k(X)

Definition 2.3.2. A class � ⇥ Nk(X) is said to be e�ective if there are subvarieties

V1, V2, ..., Vm and non-negetive real numbers n1, n2, ..., nm such that � can be written

as � =


ni[Vi]. The pseudo-e�ective cone E⇥k(X) � Nk(X) is the closure of the

cone generated by classes of e�ective cycles. The pseudo-e�ective dual classes also

form a closed cone in N
k(X) that we denote by E⇥

k
(X).

We list some of the basic properties of the pseudo-e⇥ective cone in the following

proposition.

Proposition 2.3.1 (see [FL1], [FL2]). (i) E⇥k(X) span Nk(X) and do not contain

lines.

(ii) For a morphism f : X ⇤⌅ Y of projective varieties f⇤(E⇥k(X)) � E⇥k(Y ).

Equality holds, if ⌅ is surjective.

(iii) f ⇤(E⇥k(Y ) ⌃ E⇥k+r(X) if f is flat of relative dimension r and f
⇤ exists.

(iv) Suppose t1, t2, ..., tk are ample classes in N
1(X). Then t1 · t2 · ... · tk ✏ [X]

belongs to the interior of E⇥
k
(X).

Definition 2.3.3. The nef cone Nefk(X) is the dual cone of E⇥k(X) in N
k(X).
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More precisely

Nefk(X) =
◆
� ⇥ N

k(X) |� · � ⌥ 0 �� ⇥ E⇥k(X)
�

Proposition 2.3.2 (see [FL1], [FL2]). (i) Nefk(X) generates Nk(X) and only con-

tain half lines.

(ii) For a dominant morphism g : X ⇤⌅ Y of projective varieties, g⇤� ⇥ Nefk(Y )

implies � ⇥ Nefk(X).

(iii) If t1, t2, ..., tk are ample classes in N
1(X), then t1 · t2 · ... · tk belongs to the

interior of Nefk(X).
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Chapter 3

Nef cone of ample line bundles

3.1 Geometry of products of projective bundles

over curves

Let E1 and E2 be two vector bundles over a smooth complex projective curve C

of rank r1, r2 and degrees d1, d2 respectively. Let P(E1) = Proj (�d⇥0Sym
d(E1))

and P(E2) = Proj (�d⇥0Sym
d(E2)) be the associated projective bundles together

with the projection morphisms ⌅1 : P(E1) ⇤⌅ C and ⌅2 : P(E2) ⇤⌅ C respectively.

Let X = P(E1) ◊C P(E2) be the fibre product over C. Consider the following

commutative diagram:

X = P(E1)◊C P(E2) P(E2)

P(E1) C

p2

p1 ⇥2

⇥1

Let f1, f2 and F denote the numerical equivalence classes of the fibres of the maps

⌅1, ⌅2 and ⌅1 ⌦ p1 = ⌅2 ⌦ p2 respectively. Note that X ↵= P(⌅⇤
1(E2)) ↵= P(⌅⇤

2(E1)). We

first fix the following notations for the numerical equivalence classes in N
1(X),
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⌥1 =
⌅
OP(E1)(1)

⇧
⇥ N

1(P(E1)) , ⌥2 =
⌅
OP(E2)(1)

⇧
⇥ N

1(P(E2)),

�1 = p
⇤
1(⌥1), �2 = p

⇤
2(⌥2)

We here summarise some results that have been discussed in [KMR] ( See Section 3

in [KMR] for more details) :

F = p
⇤
1(f1) = p

⇤
2(f2) , F

2 = 0 , N
1(X) = R(�1)� R(�2)� RF ,

�r22 · F = 0 , �r2+1
2 = 0 , �r11 · F = 0 , �r1+1

1 = 0 ,

�r11 = (deg(E1))F · �r1⌅1
1 , �r22 = (deg(E2))F · �r2⌅1

2 ,

�r11 · �r2⌅1
2 = deg(E1) , �r22 · �r1⌅1

1 = deg(E2) .

Also, the dual basis of N1(X) is {⌦1, ⌦2, ⌦3} where,

⌦1 = F · �r1⌅2
1 · �r2⌅1

2 , ⌦2 = F · �r1⌅1
1 · �r2⌅2

2 ,

⌦3 = �r1⌅1
1 · �r2⌅1

2 ⇤ deg(E1)F · �r1⌅2
1 · �r2⌅1

2 ⇤ deg(E2)F · �r1⌅1
1 · �r2⌅2

1 .

Let C be a smooth curve over the field of complex numbers C and let E be a

vector bundle over C. The slope of E is defined as

µ(E) := degE
r ⇥ Q

A vector bundle E over C is said to be semistable if µ(F ) ⇧ µ(E) for all non-zero

subbundles F � E. For every vector bundle E, there is a unique filtration

E = E0 ⌘ E1 ⌘ · · · ⌘ El⌅1 ⌘ El = 0

called the Harder-Narasimhan filtration, such that Ei/Ei+1 is semistable for each

i ⇥ {0, 1, · · ··, l ⇤ 1} and µ(Ei/Ei+1) > µ(Ei⌅1/Ei) for all i ⇥ {1, 2, · · ·, l ⇤ 1}.
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Let E1 and E2 be two vector bundles of rank r1 and r2 and degree d1 and d2

respectively over a smooth curve C.

Let E1 admits the unique Harder-Narasimhan filtration

E1 = E10 ⌘ E11 ⌘ ... ⌘ E1l1 = 0

with Q1i := E1(i⌅1)/E1i being semistable for all i ⇥ [1, l1 ⇤ 1]. Denote n1i =

rank(Q1i),

d1i = deg(Q1i) and µ1i = µ(Q1i) :=
d1i
n1i

for all i.

Similarly, let E2 also admits the unique Harder-Narasimhan filtration

E2 = E20 ⌘ E21 ⌘ ... ⌘ E2l2 = 0

with Q2i := E2(i⌅1)/E2i being semistable for i ⇥ [1, l2 ⇤ 1]. Denote n2i = rank(Q2i),

d2i = deg(Q2i) and µ2i = µ(Q2i) :=
d2i
n2i

for all i.

Theorem 3.1.1. Let E1 and E2 be two vector bundles on a smooth complex projec-

tive curve C and let X = P(E1)◊C P(E2) as discussed earlier. Then,

Nef(P(E1)◊C P(E2)) =
�
a 1 + b 2 + cF | a, b, c ⇥ R⇥0

⇥
.

where  1 = �1 ⇤ µ11F and  2 = �2 ⇤ µ21F and µ11 and µ21 are the smallest slopes

of any torsion-free quotients of E1 and E2 respectively, with the same notation as

above.

3.2 Proof of Theorem 3.1.1

Proof. By the result of [F], Nef(P(Ei)) =
�
ai(⌥i ⇤ µi1fi) + bifi | ai, bi ⇥ R⇥0

⇥

for i = 1, 2. Since pullback of nef line bundles are nef, we get ,  1 = �1 ⇤ µ11F ,
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 2 = �2 ⇤ µ21F and F are nef.

Now, from the Harder-Narasimhan filtration of Ei’s (i = 1, 2) as described above,

we get the following short exact sequences

0 ⇤⌅ Ei1 ⇤⌅ Ei ⇤⌅ Qi1 ⇤⌅ 0

for i = 1, 2.

Let ji : P(Qi1) ⇤⌅ P(Ei) denote the canonical embeddings for i = 1, 2.

We now proceed along the lines of [Section 2, [F]]. The result in [Example 3.2.17,

[Ful]] adjusted to bundles of quotients over curves shows that

⌅
P(Q11)

⇧
= ⌥r1⌅n11

1 + (d11 ⇤ d1)⌥
r1⌅n11⌅1
1 f1 ⇥ Nn11(P(E1))

and

⌅
P(Q21)

⇧
= ⌥r2⌅n21

2 + (d21 ⇤ d2)⌥
r2⌅n21⌅1
2 f2 ⇥ Nn21(P(E2))

where n11 = rank(Q11), n21 = rank(Q21), d11 = deg(Q11) and d21 = deg(Q21).

As (⌥1 ⇤ µ11f1) and (⌥2 ⇤ µ21f2) are both nef divisors, we have

⌃11 :=
⌅
P(Q11)

⇧
·
⌥
⌥1 ⇤ µ11f1

�n11⌅1

=
�
⌥r1⌅n11
1 + (d11 ⇤ d1)⌥

r1⌅n11⌅1
1 f1

⇥
·
⌥
⌥1 ⇤ µ11f1

�n11⌅1 ⇥ E⇥1(P(E1))

and

⌃21 :=
⌅
P(Q21)

⇧
·
⌥
⌥2 ⇤ µ21f2

�n21⌅1

=
�
⌥r2⌅n21
2 + (d21 ⇤ d2)⌥

r2⌅n21⌅1
2 f2

⇥
·
⌥
⌥2 ⇤ µ21f2

�n21⌅1 ⇥ E⇥1(P(E2)).

Note that, p1 and p2 are proper, flat morphisms, and as the base space is smooth,
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p1, p2 are also smooth. Hence, numerical pullbacks of cycles are well defined and

the flatness of p1 and p2 ensure that pullbacks of numerical classes preserve the

pseudo-e⇥ectivity. We consider D := p
⇤
1(⌃11) · p

⇤
2(⌃21), which is equal to

p
⇤
1

⌅
P(Q11)

⇧
· p

⇤
2

⌅
P(Q21)

⇧
·
�
�1 ⇤ µ11F

⇥n11⌅1
·
�
�2 ⇤ µ21F

⇥n21⌅1

By using the above descriptions of ⌃11 and ⌃21, D can be written as

D =
�
�r1⌅n11
1 + (d11 ⇤ d1)F · �r1⌅n11⌅1

1

⇥
·
�
�r2⌅n21
2 + (d21 ⇤ d2)F · �r2⌅n21⌅1

2

⇥
·

�
�1 ⇤ µ11F

⇥n11⌅1
·
�
�2 ⇤ µ21F

⇥n21⌅1

=
�
�r1⌅1
1 + (µ11 ⇤ d1)F · �r1⌅2

1

⇥
·
�
�r2⌅1
2 + (µ21 ⇤ d2)F · �r2⌅2

2

⇥

= �r1⌅1
1 · �r2⌅1

2 + (µ11 ⇤ d1)F · �r1⌅2
1 · �r2⌅1

2 + (µ21 ⇤ d2)F · �r2⌅2
2 · �r1⌅1

1

which is clearly a 1-cycle in X. Now, p⇤1
⌅
P(Q11)

⇧
· p

⇤
2

⌅
P(Q21)

⇧
=
⌅
P(Q11) ◊C

P(Q21)
⇧
is an e⇥ective cycle in X , and �1 ⇤ µ11F, �2 ⇤ µ21F are nef divisors in X.

Hence, D ⇥ E⇥1(X).

Since  1 ·D =
�
�1 ⇤ µ11F

⇥
·D = 0,  2 ·D =

�
�2 ⇤ µ21F

⇥
·D = 0 and F

2 = 0 ,

 1,  2, F are in the boundary of Nef(X).

If a 1 + b 2 + cF is any element in Nef(X), then (a 1 + b 2 + cF ) ·D ⌥ 0 , which

implies that c ⌥ 0. Also, F ·  r1⌅2
1 ·  r2⌅1

2 and F ·  r1⌅1
1 ·  r2⌅2

2 are intersections of nef

divisors. Now

(a 1 + b 2 + cF ) · (F ·  r1⌅2
1 ·  r2⌅1

2 ) = aF ·  r1⌅1
1 ·  r2⌅1

2 + bF ·  r1⌅2
1 ·  r2

2 + cF
2
·  r1⌅2

1 ·  r2⌅1
2

= aF · �r1⌅1
1 · �r2⌅1

2 + bF · �r1⌅2
1 · �r22 + 0

= a+ 0 + 0

= a
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and

(a 1 + b 2 + cF ) · (F ·  r1⌅1
1 ·  r2⌅2

2 ) = aF ·  r1
1 ·  r2⌅2

2 + bF ·  r1⌅1
1 ·  r2⌅1

2 + cF
2
·  r1⌅1

1 ·  r2⌅2
2

= b+ 0 + 0

= b

Since, a 1+ b 2+ cF ⇥ Nef(X), we have a ⌥ 0, b ⌥ 0. This completes the proof.

Corollary 3.2.1. Assume that the hypotheses of Theorem 3.1.1 holds. Then, the

closed cone of curves of X is given by

NE(X) =
�
p⌦1 + q⌦2 + r(⌦3 + µ11⌦1 + µ21⌦2) | p, q, r ⇥ R⇥0

⇥
.

Remark 3.2.1. If E1 and E2 both are semistable bundles in Theorem 3.1.1 , then

for each i ⇥ {1, 2}, P(Qi1) ⌃ P(Ei) becomes an equality and by putting µ1 and

µ2, (µi = µ(Ei), i = 1, 2) in place of µ11 and µ21 in the description above, we recover

an earlier result in [KMR] ( see Theorem 4.1 in [KMR]). Similar alterations can be

made if one of the vector bundles is semistable and the other is unstable.
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Chapter 4

Seshadri constants

4.1 Seshadri constants of ample line bundles on

X = P(E1)◊C P(E2)

In this section, we will compute the Seshadri constants of ample line bundles on

X = P(E1)◊C P(E2) in certain cases and will give bounds in some other cases. See

the introduction for the definition of Seshadri constant.

Theorem 4.1.1. Let E1 and E2 be two vector bundles on a smooth curve C with

µ11 and µ21 being the smallest slopes of any torsion-free quotient of E1 and E2

respectively and let X = P(E1)◊C P(E2). Let L be an ample line bundle on X which

is numerically equivalent to a 1 + b 2 + cF ⇥ N
1(X). Then, the Seshadri constants

of L satisfy,

�(X,L, x) ⌥ min{a, b, c}, �x ⇥ X.

Moreover,

(i) if a = min{a, b, c}, then �(X,L, x) = a, �x ⇥ X
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(ii) if b = min{a, b, c}, then �(X,L, x) = b, �x ⇥ X.

Theorem 4.1.2. Let E1 and E2 be two unstable vector bundles over a smooth curve

C of rank r1 and r2 respectively and X = P(E1) ◊C P(E2). Let L be an ample line

bundle on X numerically equivalent to a 1+b 2+cF ⇥ N
1(X).When c = min{a, b, c}

the Seshadri constants of L have the following properties.

(i) Assume c ⇧ a ⇧ b, rank(E1) = 2 and E1 is normalised.

If x is a point outside B⌅(�1), then �(X,L, x) = a.

If x belongs to B⌅(�1), then c ⇧ �(X,L, x) ⇧ a.

(ii) Assume c ⇧ b ⇧ a, rank(E2) = 2 and E2 is normalised.

If x is a point outside B⌅(�2), then �(X,L, x) = b.

If x belongs to B⌅(�2), the c ⇧ �(X,L, x) ⇧ b.

(iii) If x is on some curve whose class is proportional to ⌦3, then �(X,L, x) =

c, where ⌦3 = ⌦3 + µ11⌦1 + µ21⌦2.

4.2 Proof of Theorem 4.1.1

Before going into the proof of the Theorem 4.1.1, we will prove the following useful

lemma.

Lemma 4.2.1. Let L be an R-divisor of type (a, b) on Pn
◊ Pm, with a, b ⇥ R⇥0.

Then,

�(Pn
◊ Pm

, L, p) = min{a, b} �p ⇥ Pn
◊ Pm

Proof. Let B be an irreducible curve in Pn
◊ Pm. Then, B can be written as

B = x(1, 0)n⌅1+ y(0, 1)m⌅1 for some x, y ⇥ R⇥0. Also, for any p ⇥ Pn
◊Pm, we have
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degB ⌥ multp B. Hence,

L · B

multp B
=

ay + bx

multp B
⌥ min{a, b} ·

y + x

multp B
⌥ min{a, b}

Now, for any point p ⇥ Pn
◊ Pm, write p = (p1, p2), with p1 ⇥ Pn and p2 ⇥ Pm.

Then, p ⇥ p1 ◊ l2 and p ⇥ l1 ◊ p2, where l1 and l2 are classes of lines in Pn and Pm

respectively. This gives us

�(Pn
◊ Pm

, L, p) ⇧ L · (p1 ◊ l2)

1
= a and �(Pn

◊ Pm
, L, p) ⇧ L · (l1 ◊ p2)

1
= b

which implies �(Pn
◊ Pm

, L, p) ⇧ min{a, b}. This proves the lemma.

Proof. of Theorem 4.1.1 : By Theorem 3.1.1 and Corollary 3.2.1,

Nef(X) =
�
a 1 + b 2 + cF | a, b, c ⇥ R⇥0

⇥

and

NE(X) =
�
p⌦1 + q⌦2 + r⌦3 ⇥ N1(X) | p, q, r ⇥ R⇥0

⇥
,

where ⌦3 = ⌦3 + µ11⌦1 + µ21⌦2.

Let B be a reduced and irreducible curve passing through x ⇥ X with multiplicity

m at x ⇥ X. Then B can be written as B = p⌦1 + q⌦2 + r⌦3 ⇥ NE(X) � N1(X) .

Two cases can occur :
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Case I

Assume that B is not contained in any fibre of the map (⌅1 ⌦ p2) over the curve C.

Hence, by Bézout’s Theorem :

F · B ⌥ multx B = m(4.1)

This implies, r ⌥ m. Since L is ample, a, b, c > 0. Hence,

L · B

multx B
=

L · B

m
=

(a 1 + b 2 + cF ) · (p⌦1 + q⌦2 + r⌦3)

m

=
ap+ bq

m
+ c ·

r

m
⌥ c ·

r

m
⌥ c.

Case II

Assume that B is contained in some fibre F of the map (⌅1 ⌦ p1) over the curve C.

Hence, F ·B = 0 which implies r = 0. We know that the fibres of the map (⌅1 ⌦ p1)

are isomorphic to Pr1⌅1
◊ Pr2⌅1. Since B is curve in Pr1⌅1

◊ Pr2⌅1 passing through

x of multiplicity m, then from Lemma 4.2.1 , L·B
multx B ⌥ min{a, b}.

Combining both cases, we have, �(X,L, x) := inf
x�C

{
L·C

multx C} ⌥ min{a, b, c} , �x ⇥

X.

Now, a point x ⇥ X can be written as x = (x1, x2), where x1 ⇥ P(E1), x2 ⇥

P(E2). Take the class of a line l2 in the fibre f2 of ⌅2 passing through x2. Then,

x ⇥ x1 ◊ l2 = ⌦1{= F · �r1⌅2
1 · �r2⌅1

2 } in N1(X). So,

�(X,L, x) ⇧ L · ⌦1
1

= a.
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When a = min{a, b, c}, using the above inequality and the fact that �(X,L, x) ⌥

min{a, b, c}, we conclude that �(X,L, x) = a.

Similarly, take the class of a line l1 in the fibre f1 of ⌅1 passing through x1. Then,

x ⇥ l1 ◊ x2 = ⌦2{= F · �r1⌅1
1 · �r2⌅2

2 } in N1(X). So,

�(X,L, x) ⇧ L · ⌦2
1

= b.

So, if b = min{a, b, c}, the above inequality and �(X,L, x) ⌥ min{a, b, c} implies

that �(X,L, x) = b. This proves (i) and (ii).

4.3 Proof of Theorem 4.1.2

Proof. Let B � X be a reduced and irreducible curve passing through x ⇥ X and

m be the multiplicity of B at x. Let B = p⌦1 + q⌦2 + r⌦3 ⇥ NE(X) � N1(X), where

p, q, r are in R⇥0 and ⌦3 = ⌦3 + µ11⌦1 + µ21⌦2.

First, assume that c ⇧ a ⇧ b. Let x be a point outside of B⌅(�1). Then, B is

also not contained in B⌅(�1). Hence, p⇤2⌥1 · B ⌥ 0 i.e,

�1 · (p⌦1 + q⌦2 + r⌦3) ⌥ 0.

which implies, p+ rµ11 ⌥ 0.

Now if B is not contained in the fibre, then by Case(I) in the proof of Theorem

4.1.1, we get , r ⌥ m. Hence,

�(X,L, x) =
ap+ bq + cr

m
⌥ r

m
(c⇤ aµ11) +

bq

m
⌥ r

m
(c⇤ aµ11) ⌥ (c⇤ aµ11) ⌥ ⇤aµ11 ⌥ a.

( since rank(E1) = 2 and E1 is normalised, µ(Q11) = µ11 = deg(Q11) ⇧ ⇤1).
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And if B is contained in the fibre, then by Case (II) in the proof of Theorem

4.1.1, we get, (p+ q) ⌥ m. Hence,

�(X,L, x) =
ap+ bq

m
⌥ a(p+ q)

m
⌥ a

as our assumption is b ⌥ a ⌥ c. We already know that �(X,L, x) ⇧ a from the

proof of (4.1.1). So, �(X,L, x) = a. If x belongs to B⌅(�1), then it is obvious that

c ⇧ �(X,L, x) ⇧ a. This completes the proof of (i). A similar kind of argument will

prove (ii).

To prove (iii), observe that L · ⌦3 = c. So,

�(X,L, x) ⇧ L · ⌦3
multx ⌦3

⇧ c

multx ⌦3
⇧ c.

Therefore, by the above inequality and first part of theorem 4.1.1, we get, �(X,L, x) =

c.

Corollary 4.3.1. Assume the hypotheses of Theorem 4.1.2 holds and let L be an

ample line bundle on X numerically equivalent to a 1 + b 2 + cF ⇥ N
1(X). Then,

we have,

(i) �(X ,L) = min{a, b, c}.

(ii) �(X ,L, 1 ) ⇧ min{a, b}.

Proof. Since �(X,L, x) ⌥ min{a, b, c}, for all x ⇥ X, we have,

�(X,L) = inf
x�X

�(X,L, x) ⌥ min{a, b, c}.

Now, if min{a, b, c} = a, �(X,L, x) = �(X,L) = min{a, b, c} = a, �x ⇥ X. Sim-

ilarly, if min{a, b, c} = b, �(X,L, x) = �(X,L) = min{a, b, c} = b, �x ⇥ X. Also,

when min{a, b, c} = c, then, �(X,L, x) = min{a, b, c} = c ⌥ �(X,L), if x is on some
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curve of class proportional to ⌦3. Therefore, combining all three cases, we have,

�(X,L) = min{a, b, c}.

In the proof of Theorem 4.1.1 we have shown that for all x ⇥ X, �(X,L, x) ⇧

min{a, b}. So, this implies that �(X,L, 1) ⇧ min{a, b}.

Theorem 4.3.1. Let E1 be a semistable vector bundle of rank r1 and E2 be an

unstable vector bundle of rank r2 over a smooth curve C and let X = P(E1)◊CP(E2).

Let L be an ample bundle on X numerically equivalent to a 1 + b 2 + cF ⇥ N
1(X).

When c = min{a, b, c} the Seshadri constants of L have the following properties.

Assume that c ⇧ b ⇧ a, rank(E2) = 2 and E2 is normalised.

(i) if x is a point outside B⌅(�2), then �(X,L, x) = b.

(ii) if x belongs to B⌅(�2), then c ⇧ �(X,L, x) ⇧ b.

Proof. The proof is similar to the proof of the Theorem 4.1.2.
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Chapter 5

Pseudo-e�ective cone of cycles

5.1 Pseudo-e�ective cone of cycles on X = P(E1)◊C

P(E2)

In this section we compute the pseudo-e⇥ective cone of cycles on X = P(E1) ◊C

P(E2), where E1 and E2 are two vector bundles over a smooth curve C.

Theorem 5.1.1. Let r1 = rank(E1) and r2 = rank(E2) and without loss of generality

assume that r1 ⇧ r2. Then the bases of Nk(X) are given by

N
k(X) =

⌦
↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

�
{� i1 · �

k⌅i
2 }

k
i=0, {F · �j1 · �

k⌅j⌅1
2 }

k⌅1
j=0

⌫
if k < r1

�
{� i1 · �

k⌅i
2 }

r1⌅1
i=0 , {F · �j1 · �

k⌅j⌅1
2 }

r1⌅1
j=0

⌫
if r1 ⇧ k < r2

�
{� i1 · �

k⌅i
2 }

r1⌅1
i=t+1, {F · �j1 · �

k⌅j⌅1
2 }

r1⌅1
j=t

⌫
if k = r2 + t where t ⇥ {0, 1, 2, ..., r1 ⇤ 2}.

Proof. To begin with consider the case where k < r1. We know that X ↵= P(⌅⇤
2E1)
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and the natural morphism P(⌅⇤
2E1) ⇤⌅ P(E2) can be identified with p2. With the

above identifications in place the chow group of X has the following isomorphism

[see Theorem 3.3 , page 64 [Ful]]

A(X) ↵=
r1⌅1⇡

i=0

� i1A(P(E2))(5.1)

Choose i1, i2 such that 0 ⇧ i1 < i2 ⇧ k. Consider the k- cycle � := F · �r1⌅i1⌅1
1 ·

�r2+i1⌅k⌅1
2 .

Then � i11 · �k⌅i1
2 · � = 1 but � i21 · �k⌅i2

2 · � = 0. So, {� i11 · �k⌅i1
2 } and {� i21 · �k⌅i2

2 }

can not be numerically equivalent.

Similarly, take j1, j2 such that 0 ⇧ j1 < j2 ⇧ k and consider the k-cycle

� := �r1⌅j1⌅1
1 · �r2+j1⌅k

2 .

Then as before it happens that F · �j11 · �k⌅j1⌅1
2 ·� = 1 but F · �j21 · �k⌅j2⌅1

2 ·� = 0.

So {F · �j11 · �k⌅j1⌅1
2 } and {F · �j21 · �k⌅j2⌅1

2 } can not be numerically equivalent.

For the remaining case let’s assume 0 ⇧ i ⇧ j ⇧ k and consider the k-cycle

⇤ := F · �r1⌅i⌅1
1 · �r2+i⌅1⌅k

2 .

Then {� i1 ·�
k⌅i
2 }·⇤ = 1 and {F ·�j1 ·�

k⌅j⌅1
2 }·⇤ = 0. So, they can not be numerically

equivalent. From these observations and 5.1 we obtain a basis of Nk(X) which is

given by

N
k(X) =

�
{� i1 · �

k⌅i
2 }

k
i=0, {F · �j1 · �

k⌅j⌅1
2 }

k⌅1
j=0

⌫

For the case r1 ⇧ k < r2 observe that �r1+1
1 = 0, F · �r11 = 0 and �r21 = deg(E1)F ·

�r1⌅1
1 .

When k ⌥ r2 we write as k = r2 + t where t ranges from 0 to r1 ⇤ 1. In that

case the observations like �r2+1
2 = 0, F · �r22 = 0 and �r22 = deg(E2)F · �r2⌅1

2 proves
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our case.

Now we are ready to treat the case where both E1 and E2 are semistable vector

bundles over C.

Theorem 5.1.2. Let E1 and E2 be two semistable vector bundles over C of rank

r1 and r2 respectively with r1 ⇧ r2 and X = P(E1) ◊C P(E2). Then for all k ⇥

{1, 2, ..., r1 + r2 ⇤ 1}

E⇥
k
(X) =

⌦
↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

⇢◆
(�1 ⇤ µ1F )i(�2 ⇤ µ2F )k⌅i

�k
i=0

,

◆
F · �j1 · �

k⌅j⌅1
2

�k⌅1

j=0

�
if k < r1

⇢◆
(�1 ⇤ µ1F )i(�2 ⇤ µ2F )k⌅i

�r1⌅1

i=0
,

◆
F · �j1 · �

k⌅j⌅1
2

�r1⌅1

j=0

�
if r1 ⇧ k < r2

⇢◆
(�1 ⇤ µ1F )i(�2 ⇤ µ2F )k⌅i

�r1⌅1

i=t+1
,

◆
F · �j1 · �

k⌅j⌅1
2

�r1⌅1

j=t

�

if k = r2 + t, t = 0, ..., r1 ⇤ 1.

where µ1 = µ(E1) and µ2 = µ(E2).

5.2 Proof of Theorem 5.1.2

Proof. Firstly, (�1 ⇤ µ1F )i · (�2 ⇤ µ2F )k⌅i and F · � i1 · �
k⌅j⌅1
2 [= F · (�1 ⇤ µ1F )i ·

(�2 ⇤ µ2F )k⌅j⌅1] are intersections of nef divisors. So, they are pseudo-e⇥ective for

all i ⇥ {0, 1, 2, ..., k}. conversely, when k < r1 notice that we can write any element

C of E⇥
k
(X) as

C =
k⇤

i=0

ai(�1 ⇤ µ1F )i · (�2 ⇤ µ2F )k⌅i +
k⇤

j=0

bjF · �j1 · �
k⌅j⌅1
2
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where ai, bi ⇥ R.

For a fixed i1 intersect C with Di1 := F · (�1 ⇤ µ1F )r1⌅i1⌅1
· (�2 ⇤ µ2F )r2⌅k+i1⌅1

and for a fixed j1 intersect C with Dj1 := (�1⇤µ1F )r1⌅j1⌅1
·(�2⇤µ2F )r2+j1⌅k. These

intersections lead us to

C ·Di1 = ai1 and C ·Dj1 = bj1

Since C ⇥ E⇥
k
(X) and Di1 , Dj1 are intersection of nef divisors, ai1 and bj1 are non-

negetive. Now running i1 andj1 through {0, 1, 2, ..., k} we get all the ai’s and bi’s

are non-negetive and that proves our result for k < r1. The cases where r1 ⇧ k < r2

and k ⌥ r2 can be proved very similarly after the intersection products involving �1

and �2 in Section 1 of Chapter 3 are taken into count.

Next we study the more interesting case where E1 and E2 are two unstable vector

bundles of rank r1 and r2 and degree d1 and d2 respectively over a smooth curve C.

Let E1 be the unique Harder-Narasimhan filtration

E1 = E10 ⌘ E11 ⌘ ... ⌘ E1l1 = 0

with Q1i := E1(i⌅1)/E1i being semistable for all i ⇥ [1, l1 ⇤ 1]. Denote n1i =

rank(Q1i),

d1i = deg(Q1i) and µ1i = µ(Q1i) :=
d1i
n1i

for all i.

Similarly, E2 also admits the unique Harder-Narasimhan filtration

E2 = E20 ⌘ E21 ⌘ ... ⌘ E2l2 = 0

with Q2i := E2(i⌅1)/E2i being semistable for i ⇥ [1, l2 ⇤ 1]. Denote n2i = rank(Q2i),

d2i = deg(Q2i) and µ2i = µ(Q2i) :=
d2i
n2i

for all i.
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Consider the natural inclusion i = i1◊i2 : P(Q11)◊C P(Q21) ⇤⌅ P(E1)◊C P(E2),

which is induced by natural inclusions i1 : P(Q11) ⇤⌅ P(E1) and i2 : P(Q21) ⇤⌅

P(E2). In the next theorem we will see that the cycles of P(E1)◊CP(E2) of dimension

at most n11 + n21 ⇤ 1 can be tied down to cycles of P(Q11)◊C P(Q21) via i.

Theorem 5.2.1. Let E1 and E2 be two unstable bundle of rank r1 and r2 and degree

d1 and d2 respectively over a smooth curve C and r1 ⇧ r2 without loss of generality

and X = P(E1)◊C P(E2).

Then for all k ⇥ {1, 2, ...,n} (n := n11 + n21 ⇤ 1)

Case(1): n11 ⇧ n21

E⇥k(X) =

⌦
↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

⇢◆
[P(Q11)◊C P(Q21)](�1 ⇤ µ11F )i(�2 ⇤ µ21F )n⌅k⌅i

�n11⌅1

i=t+1
,

◆
F · �r1⌅n11+j

1 · �r2+n11⌅k⌅j⌅2
2

�n11⌅1

j=t

�

if k < n11 and t = 0, 1, 2, ..., n11 ⇤ 2

⇢◆
[P(Q11)◊C P(Q21)](�1 ⇤ µ11F )i(�2 ⇤ µ21F )n⌅k⌅i

�n11⌅1

i=0
,

◆
F · �r1⌅n11+j

1 · �r2+n11⌅k⌅j⌅2
2

�n11⌅1

j=0

�

if n11 ⇧ k < n21.

⇢◆
[P(Q11)◊C P(Q21)](�1 ⇤ µ11F )i(�2 ⇤ µ21F )n⌅k⌅i

�n⌅k

i=0
,

◆
F · �r1⌅n11+j

1 · �r2+n11⌅k⌅j⌅2
2

�n⌅k

j=0

�

if k ⌥ n21.
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Case(2): n21 ⇧ n11

E⇥k(X) =

⌦
↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵↵�

⇢◆
[P(Q11)◊C P(Q21)](�2 ⇤ µ21F )i(�1 ⇤ µ11F )n⌅k⌅i

�n21⌅1

i=t+1
,

◆
F · �r2⌅n21+j

2 · �r1+n21⌅k⌅j⌅2
1

�n21⌅1

j=t

�

if k < n21 and t = 0, 1, 2, ..., n21 ⇤ 2

⇢◆
[P(Q11)◊C P(Q21)](�2 ⇤ µ21F )i(�1 ⇤ µ11F )n⌅k⌅i

�n21⌅1

i=0
,

◆
F · �r2⌅n21+j

2 · �r1+n21⌅k⌅j⌅2
1

�n21⌅1

j=0

�

if n21 ⇧ k < n11.

⇢◆
[P(Q11)◊C P(Q21)](�2 ⇤ µ21F )i(�1 ⇤ µ11F )n⌅k⌅i

�n⌅k

i=0
,

◆
F · �r2⌅n21+j

2 · �r1+n21⌅k⌅j⌅2
1

�n⌅k

j=0

�

if k ⌥ n11.

Thus in both cases i⇤ induces an isomorphism between E⇥k([P(Q11)◊C P(Q21)]) and

E⇥k(X) for k ⇧ n.

5.3 Proof of Theorem 5.2.1

Proof. to begin with consider Case(1) and then take k ⌥ n21. Since (�1 ⇤ µ11F )

and (�2 ⇤ µ21F ) are nef

⇧i := [P(Q11)◊C P(Q21)](�1 ⇤ µ11F )i(�2 ⇤ µ21F )n⌅k⌅i ⇥ E⇥k(X).
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for all i ⇥ {0, 1, 2, ...,n⇤ k}.

Now The result in [Example 3.2.17, [Ful]] adjusted to bundles of quotients over

curves shows that

[P(Q11)] = ⌥r1⌅n11
1 + (d11 ⇤ d1)⌥

r1⌅n11⌅1
1 f1

and

[P(Q21)] = ⌥r2⌅n21
2 + (d21 ⇤ d2)⌥

r2⌅n21⌅1
2 f2

Also, p⇤1[P(Q11)] · p⇤2[P(Q21)] = [P(Q11) ◊C P(Q21)] . With little calculations it can

be shown that

⇧i · (�1 ⇤ µ11F )n11⌅i
· (�2 ⇤ µ21F )k+i+1⌅n11

= (�r1⌅n11
1 +(d11⇤d1)F · �r1⌅n11⌅1

1 )(�r2⌅n21
2 +(d21⇤d2)F · �r2⌅n21⌅1

2 )(�1⇤µ11F )n11⌅i
·

(�2 ⇤ µ21F )k+i+1⌅n11

= (�r11 ⇤ d1F · �r1⌅1
1 )(�r22 ⇤ d2F · �r2⌅1

2 ) = 0.

So, ⇧i ’s are in the boundary of E⇥k(X) for all i ⇥ {0, 1, ...,n⇤k}. The fact that

F ·�r1⌅n11+j
1 ·�r2+n11⌅k⌅j⌅2

2 ’s are in the boundary of E⇥k(X) for all i ⇥ {0, 1, ...,n⇤k}

can be deduced from the proof of Theorem 5.1.2. The other cases can be proved

similarly.

The proof of Case(2) is similar to the proof of Case(1).

Now, to show the isomorphism between pseudo-e⇥ective cones induced by i⇤

observe thatQ11 andQ21 are semi-stable bundles over C. So, Theorem 5.1.2 gives the

expressions for E⇥k([P(Q11) ◊C P(Q21)]). Let �11 = OP(⇥̃�
2(Q11))(1) = p̃

⇤
1(OP(Q11)(1))

and �21 = OP(⇥̃�
1(Q21)(1) = p̃

⇤
2(OP(Q21)(1)), where ⌅̃2 = ⌅2|P(Q21), ⌅̃1 = ⌅1|P(Q11) and

p̃1 : P(Q11) ◊C P(Q21) ⇤⌅ P(Q11), p̃2 : P(Q11) ◊C P(Q21) ⇤⌅ P(Q21) are the

projection maps. Also notice that i
⇤
�1 = �11 and i

⇤
�1 = �21.
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Using the above relations and projection formula the isomorphism between E⇥k([P(Q11)◊C

P(Q21)]) and E⇥k(X) for k ⇧ n can be proved easily.

Next we want to show that higher dimension pseudo e⇥ective cycles on X can be

related to the pseudo e⇥ective cycles on P(E11)◊C P(E21). More precisely there is a

isomorphism between E⇥
k
(X) and E⇥

k
([P(E11)◊C P(E21)]) for k < r1 + r2⇤ 1⇤n.

Useing the coning construction as in [F] we show this in two steps, first we establish

an isomorphism between E⇥
k
([P(E1) ◊C P(E2)]) and E⇥

k
([P(E11) ◊C P(E2)]) and

then an isomorphism between E⇥
k
([P(E11)◊C P(E2)]) and E⇥

k
([P(E11)◊C P(E21)])

in similar fashion. But before proceeding any further we need to explore some more

facts.

Let E be an unstable vector bundle over a non-singular projective variety V .

There is a unique filtration

E = E
0 ⌘ E

1 ⌘ E
2 ⌘ ... ⌘ E

l = 0

which is called the Harder-Narasimhan filtration of E with Q
i := E

i⌅1
/E

i being

semistable for i ⇥ [1, l ⇤ 1]. Now the following short-exact sequence

0 ⇤⌅ E
1 ⇤⌅ E ⇤⌅ Q

1 ⇤⌅ 0

induced by the Harder-Narasimhan filtration of E gives us the natural inclusion

j : P(Q1) �⌅ P(E). Considering P(Q1) as a subscheme of P(E) we obtain the

commutative diagram below by blowing up P(Q1).
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(5.2)

Ỹ = BlP(Q1)P(E) P(E1) = Z

Y = P(E) V

⇥

⇤ q

p

where ⌥ is blow-down map.

The following theorem is reverberation of a similar result in [F]. We provide the

details of the proof to cover every aspect of the result.

Theorem 5.3.1. With the above notation, there exists a locally free sheaf G on Z

such that Ỹ � PZ(G) and ✏ : PZ(G) ⇤⌅ Z it’s corresponding bundle map.

In particular if we place V = P(E2), E = ⌅⇤
2E1, E1 = ⌅⇤

2E11 and Q
1 = ⌅⇤

2Q11

then the above commutative diagram becomes

(5.3)

Ỹ ⇧ = BlP(⇥�
2Q11)P(⌅

⇤
2E1) P(⌅⇤

2E11) = Z
⇧

Y
⇧ = P(⌅⇤

2E1) P(E2)

⇥⇥

⇤⇥ p2

p2

where p2 : P(⌅⇤
2E1) ⇤⌅ P(E2) and p2 : P(⌅⇤

2E11) ⇤⌅ P(E2) are projection maps.

and there exists a locally free sheaf G⇧ on Z
⇧ such that Ỹ ⇧ � PZ⇥(G⇧) and ✏ ⇧ :

PZ⇥(G⇧) ⇤⌅ Z
⇧ it’s bundle map.

Now let �Z⇥ = OZ⇥(1), ⇤ = OPZ⇥ (G⇥)(1), F the numerical equivalence class of a

fibre of ⌅2 ⌦ p2, F1 the numerical equivalence class of a fibre of ⌅2 ⌦ p2, Ẽ the class

of the exceptional divisor of ⌥⇧ and �1 = p
⇤
1(⌥1) = OP(⇥�

2E1)(1). Then we have the

following relations:
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⇤ = (⌥⇧)⇤ �1, (�⇧)⇤ �Z⇥ = (⌥⇧)⇤ �1 ⇤ Ẽ, (�⇧)⇤F1 = (⌥⇧)⇤F(5.4)

Ẽ · (⌥⇧)⇤ (�1 ⇤ µ11F )n11 = 0(5.5)

Additionally, if we also denote the support of the exceptional divisor of Ỹ ⇧ by Ẽ

, then Ẽ ·N(Ỹ ⇧) = (jẼ)⇤N(Ẽ), where jẼ : Ẽ ⇤⌅ Ỹ ⇧ is the canonical inclusion.

5.4 Proof of Theorem 5.3.1

Proof. With the above hypothesis the following commutative diagram is formed:

0 q
⇤
E

1
q
⇤
E q

⇤
Q

1 0

0 OP(E1)(1) G q
⇤
Q

1 0

whereG is the push-out of morphisms q⇤E1 ⇤⌅ q
⇤
E and q

⇤
E

1 ⇤⌅ OP(E1)(1) and the

first vertical map is the natural surjection. Now let W = PZ(G) and ✏ : W ⇤⌅ Z

be it’s bundle map. So there is a canonical surjection ✏⇤
G ⇤⌅ OPZ(G)(1). Also

note that q⇤E ⇤⌅ G is surjective by snake lemma. Combining these two we obtain

a surjective morphism ✏⇤
q
⇤
E ⇤⌅ OPZ(G)(1) which determines ⇣ : W ⇤⌅ Y . We

claim that we can identify (Ỹ ,�,⌥) and (W, ✏,⇣). Now Consider the following

commutative diagram:
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(5.6)

W = PZ(G)

Y ◊V Z = PZ(q⇤E) P(E1) = Z

Y = P(E) V

⌅

⇧

i

pr2

pr1 q

p

where i is induced by the universal property of the fiber product. Since i can also

be obtained from the surjective morphism q
⇤
E ⇤⌅ G it is a closed immersion. Let

T be the OY algebra OY � I � I
2 � ..., where I is the ideal sheaf of P(Q1) in Y .

We have an induced map of OY - algebras Sym(p⇤E1) ⇤⌅ T ⌫OY (1) which is onto

because the image of the composition p
⇤
E

1 ⇤⌅ p
⇤
E ⇤⌅ OY (1) is T  OY (1). This

induces a closed immersion

i⇧ : Ỹ = Proj(T ⌫OY (1)) ⇤⌅ Proj(Sym(p⇤E1) = Y ◊V Z.

i⇧ fits to a similar commutative diagram as (5) and as a result � and ⌥ factor through

pr2 and pr1. Both W and Ỹ lie inside Y ◊V Z and ⇣ and ⌥ factor through pr1 and

✏ and � factor through pr2. So to prove the identification between (Ỹ ,�,⌥) and

(W, ✏,⇣) , it is enough to show that Ỹ ↵= W . This can be checked locally. So, after

choosing a suitable open cover for V it is enough to prove Ỹ ↵= W restricted to each

of these open sets. Also we know that p
⌅1(U) ↵= Prk(E)⌅1

U when E|U is trivial and

Pn
U = Pn

C ◊ U . Now the the isomorphism follows from [proposition 9.11, [EH]] after

adjusting the the definition of projectivization in terms of [H].

We now turn our attention to the diagram (5.2). observe that if we fix the

notations W
⇧ = P⇧

Z(G
⇧) with ⇣⇧ : W ⇧ ⇤⌅ Y

⇧ as discussed above then we have an
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identification between (Ỹ ⇧
,�⇧

,⌥⇧) and (W ⇧
, ✏ ⇧

,⇣⇧).

⇣⇧ : W
⇧ ⇤⌅ Y

⇧ comes with (⇣⇧)⇤OY ⇥(1) = OPZ⇥ (G⇥)(1). So, ⇤ = (⌥⇧)⇤ �1 is

achieved. (�⇧)⇤F1 = (⌥⇧)⇤F follows from the commutativity of the diagram (5.2).

The closed immersion i⇧ induces a relation between the O(1) sheaves of Y ◊V Z

and Ỹ . For Y ◊V Z the O(1) sheaf is pr⇤2OZ(1) and for Proj(T ⌫ OY (1) the O(1)

sheaf is OỸ (⇤Ẽ) (⌥)⇤OY (1). Since � factors through pr2, (�)⇤OZ(1) = OỸ (⇤Ẽ) 

(⌥)⇤OY (1). In the particular case (see diagram (5.2)) (�⇧)⇤OZ⇥(1) = OỸ ⇥(⇤Ẽ)  

(⌥⇧)⇤OY ⇥(1) i. e. (�⇧)⇤ �Z⇥ = (⌥⇧)⇤ �1 ⇤ Ẽ.

Next consider the short exact sequence:

0 ⇤⌅ OZ⇥(1) ⇤⌅ G
⇧ ⇤⌅ p

⇤
2⌅

⇤
2Q11 ⇤⌅ 0

We wish to calculate below the total Chern class of G⇧ through the Chern class

relation obtained from the above short exact sequence.

c(G⇧) = c(OZ⇥(1)) · c(p⇤2⌅
⇤
2Q11) = (1 + �Z⇥) · p⇤2⌅

⇤
2(1 + d11[pt]) = (1 + ↵Z⇥)(1 + d11F1)

From the Grothendieck relation for G⇧ we have

⇤n11+1 ⇤ �⇧⇤(�Z⇥ + d11F1) · ⇤n11 + �⇧⇤(d11F1 · �Z⇥) · ⇤n11⌅1 = 0

� ⇤n11+1 ⇤ (⌥⇧⇤�1 ⇤ Ẽ) + d11⌥⇧⇤
F ) · ⇤n11 + d11(⌥⇧⇤�1 ⇤ Ẽ) ·⌥⇧⇤

F ) · ⇤n11⌅1 = 0

� Ẽ · ⇤n11 ⇤ d11Ẽ ·⌥⇧⇤
F · ⇤n11⌅1 = 0

� Ẽ ·⌥⇧⇤(�1 ⇤ µ11F )n11 = 0

For the last part note that Ẽ = P(⌅⇤
2Q11) ◊P(E2) Z

⇧. Also N(Ỹ ⇧) and N(Ẽ) are

free N(Z ⇧)-module. Using these informations and projection formula, the identity

Ẽ ·N(Ỹ ⇧) = (jẼ)⇤N(Ẽ) is obtained easily.
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Now we are in a position to prove the next theorem.

Theorem 5.4.1. E⇥
k
(X) ↵= E⇥

k
(Y ⇧) ↵= E⇥

k
(Z ⇧) and E⇥

k
(Z ⇧) ↵= E⇥

k
(Z ⇧⇧). So,

E⇥
k
(X) ↵= E⇥

k
(Z ⇧⇧) for k < r1 + r2 ⇤ 1⇤ n

where Z
⇧ = P(E11)◊C P(E2) and Z

⇧⇧ = P(E11)◊C P(E21)

5.5 Proof of Theorem 5.4.1

Proof. Since Y
⇧ = P(⌅⇤

2E1) ↵= P(E1) ◊C P(E2) = X, E⇥
k
(X) ↵= E⇥

k
(Y ⇧) is fol-

lowed at once. To prove that E⇥
k
(X) ↵= E⇥

k
(Z ⇧) we first define the the map:

⌃k : Nk(X) ⇤⌅ N
k(Z ⇧) by

� i1 · �
k⌅i
2 ⌅ �̄1

i
· �̄2

k⌅i
, F · �j1 · �

k⌅j⌅1
2 ⌅ F1 · �̄

j
1 · �̄

k⌅j⌅1
2

where �̄1 = p
⇤
1(OP(E11)(1)) and �̄2 = p

⇤
2(OP(E2)(1)). p1 : P(E11)◊C P(E2) ⇤⌅ P(E11)

and p2 : P(E11)◊C P(E2) ⇤⌅ P(E2) are respective projection maps.

It is evident that the above map is in isomorphism of abstract groups. We claim

that this induces an isomorphism between E⇥
k
(X) and E⇥(Z ⇧). First we construct

an inverse for ⌃k. Define  k : Nk(Z ⇧) ⇤⌅ N
k(X) by

 k(l) = ⌥⇧
⇤�⇧⇤(l)

 k is well defined since �⇧ is flat and ⌥⇧ is birational.  k is also pseudo-e⇥ective.

Now we need to show that  k is the inverse of ⌃k.
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 k(�̄1
i
· �̄2

k⌅i
) = ⌥⇧

⇤((�
⇧⇤�̄1)

i
· (�⇧⇤�̄2)

k⌅i)

= ⌥⇧
⇤((�

⇧⇤�Z⇥)i · (�⇧⇤�̄2)
k⌅i)

= ⌥⇧
⇤((⌥

⇧⇤�1 ⇤ Ẽ)i · (⌥⇧⇤�2)
k⌅i)

= ⌥⇧
⇤((
⇤

0⌥c⌥i

(⇤1)iẼc(⌥⇧⇤�1)
i⌅c) · (⌥⇧⇤�2)

k⌅i)

Similarly,

 k(F1 · �̄1
j
· �̄2

k⌅j⌅1
) = ⌥⇧

⇤((
⇤

0⌥d⌥j

(⇤1)jẼd(⌥⇧⇤�1)
j⌅d) · (⌥⇧⇤�2)

k⌅j⌅1)

So,

 k

�
i ai �̄1

i
· �̄2

k⌅i
+


j bj F1 · �̄1
j
· �̄2

k⌅j⌅1
⌫

=
�⇤

i

ai �1
i
· �2

k⌅i +
⇤

j

bj F · �1
j
· �2

k⌅j⌅1
⌫
+⌥⇧

⇤

�⇤

i

⇤

1⌥c⌥i

Ẽ
c⌥⇧⇤(�i,c) +

⇤

j

⇤

1⌥d⌥j

Ẽ
d⌥⇧⇤(�j,d)

⌫

for some cycles �i,c, �j,d ⇥ N(X). But, ⌥⇧⇤(Ẽt) = 0 for all 1 ⇧ t ⇧ i ⇧ r1+r2⇤1⇤n

for dimensional reasons. Hence, the second part in the right hand side of the above

equation vanishes and we make the conclusion that  k = ⌃⌅1
k .

Next we seek an inverse of  k which is pseudo-e⇥ective and meet our demand of

being equal to ⌃k. Define ⌥k : Nk(X) ⇤⌅ N
k(Z ⇧) by

⌥k(s) = �⇧
⇤(⌦ ·⌥

⇧⇤
s)

where ⌦ = ⌥⇧⇤(↵2 ⇤ µ11F )n11 .

By the relations (5.4) and (5.5) , ⌥⇧⇤((� i1 · �
k⌅i
2 ) is �⇧⇤(�̄1

i
· �̄2

k⌅i
) modulo Ẽ and
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⌦ · Ẽ = 0. Also ⇧⇧
⇤⌦ = [Z ⇧] which is derived from the fact that �⇧

⇤⇤n11 = [Z ⇧] and

the relations (5.4) and (5.5). Therefore

⌥k(�
i
1 · �

k⌅i
2 ) = �⇧

⇤(⌦ · �
⇧⇤(�̄1

i
· �̄2

k⌅i
)) = (�̄1

i
· �̄2

k⌅i
) · [Z ⇧] = �̄1

i
· �̄2

k⌅i

In a similar way, ⌥⇧⇤(F · �j1 · �
k⌅j⌅1
2 ) is �⇧⇤(F1 · �̄1

j
· �̄2

k⌅j⌅1
) modulo Ẽ and as a result

of this

⌥k(F · �j1 · �
k⌅j⌅1
2 ) = F1 · �̄1

j
· �̄2

k⌅j⌅1

So, ⌥k = ⌃k.

Next we need to show that ⌥k is a pseudo- e⇥ective map. Notice that ⌥⇧⇤
s =

s̄+ j⇤s⇧ for any e⇥ective cycle s on X, where s̄ is the strict transform under ⌥⇧ and

hence e⇥ective. Now ⌦ is intersection of nef classes. So, ⌦ · s̄ is pseudo-e⇥ective.

Also ⌦ · j⇤s⇧ = 0 from theorem 5.3.1 and �⇧
⇤ is pseudo-e⇥ective. Therefore ⌥k is

pseudo-e⇥ective and first part of the theorem is proved. We will sketch the prove

for the second part i.e. E⇥
k
(Z ⇧) ↵= E⇥

k
(Z ⇧⇧) which is similar to the proof of the first

part. Consider the following diagram:

(5.7)

Z
⇧⇧ = P(E11)◊C P(E21) P(E21)

P(E11) C

p̂2

p̂1 ⇥̂2

⇥̂1

Define ⌃̂k : Nk(Z ⇧) ⇤⌅ N
k(Z ⇧⇧) by

�̄1
i
· �̄2

k⌅i ⌅ �̂1
i
· �̂2

k⌅i
, F · �̄1

j
· �̄2

k⌅j⌅1 ⌅ F2 · �̂1
j
· �̂2

k⌅j⌅1
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where �̂1 = p̂1
⇤(OP(E11)(1)), �̂2 = p̂2

⇤(OP(E21)(1)) and F2 is the class of a fibre of

⌅̂1 ⌦ p̂1.

This is a isomorphism of abstract groups and behaves exactly the same as ⌃k.

The methods applied to get the result for ⌃k can also be applied successfully here.
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In this thesis, we study various positive cones of cycles and Seshadri constants of nef line 

bundles on products of projective bundles X over smooth complex projective curves. 

 

The nef cone of divisors of a projective variety X is an important invariant which gives useful 

information about the projective embeddings of X. The nef cone of various smooth irreducible 

projective varieties has been studied by many authors in the last few decades. 

In this thesis, we compute the nef cones of nef divisors on products of projective bundles 

without any restriction on the rank or semistability of the associated vector bundles. 

The Seshadri constant measures the local positivity of a line bundle on a projective variety 

around a given point. It was introduced by Demailly in 1992 and gradually it grew on its own as 

an important invariant in algebraic geometry. Several expositions on this topic can be found in 

the literature of the last two decades. 

In this thesis, we study the Seshadri constants of nef line bundles on products of projective 

bundles over smooth complex projective curves. We compute the Seshadri constants under 

some assumptions on the associated vector bundles and provide bounds in some other cases. 

For the past few years various positive cones of higher co-dimension cycles have gained much 

attention amongst fellow geometers with significant progress in the theoretical understanding of 

such cycles. Although similar in nature, these cycles do not share all the important properties of 

divisors or curves. 

In this thesis, we compute the pseudo-effective cones of higher-codimension cycles on products 

of projective bundles over smooth complex projective curves, when both the vector bundles are 

semistable and when both the vector bundles are unstable. 
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