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Synopsis

The thesis centers around the following question:

Question. Given two Siegel cusp forms F and G of same degree and weights k1

and k2 respectively, how do we determine whether F = G ?

For elliptic modular forms which are Siegel modular forms of degree one, the

above question has been addressed by several authors, namely W. Kohnen, J. Sen-

gupta [39], E. Kowalski, Y. K. Lau, K. Soundararajan, J. Wu [41], W. Luo [52], D.

Ramakrishnan [51], K. Matomäki [57], M. R. Murty [64] among others. In this doc-

toral thesis, we address the above question by appealing to the arithmetic properties

of the Hecke eigenvalues of Siegel cusp forms of degree one and two. In particular,

our focus is to derive bounds for these eigenvalues, their non-vanishing as well as

quantitative sign changes and to exploit these as essential tools to distinguish cusp

forms of degree one and two.

Let us begin by setting up the notions and notations relevant to our purpose.

For integers g ≥ 1 and k ≥ 0, let Γg := Spg(Z) be the Siegel modular group of

degree g and Sk(Γg) be the space of cuspidal Siegel modular forms of weight k and

degree g for Γg. For a positive integer n, recall the n-th Hecke operator Tg(n) on

the space Sk(Γg) is given by

Tg(n)F := ngk−
g(g+1)

2

∑
γ∈Γg\Og,n

F | γ,
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where

Og,n :=
{
γ ∈M2g(Z) | γtJγ = nJ

}
, J :=

 0 1g

−1g 0

 .

It is known that the complex vector space Sk(Γg) has a basis consisting of eigen-

vectors of all the Hecke operators Tg(n). Let F ∈ Sk(Γg) be such an eigenvector of

Tg(n) with eigenvalue µF (n), that is, Tg(n)F = µF (n)F for all n ∈ N. Then one

knows that µF is a multiplicative function.

Note that for degree g = 1, the space Sk(Γ1) is nothing but the space of elliptic

cusp forms of level 1 and weight k. In this case, by a celebrated work of P. Deligne,

one knows that the Ramanujan-Petersson conjecture is true, i.e. for any prime p,

one has

|µF (p)| ≤ 2p(k−1)/2.

One natural question to ask is whether this upper-bound is optimal. In other words,

one asks for an Omega result. In 1983, M. R. Murty [64] proved that

µF (n) = Ω±

(
n(k−1)/2 exp

(
c log n

log log n

))

for some positive constant c. Here for any arithmetic functions f and g with g(n) > 0

for all n ∈ N, the symbol f(n) = Ω±(g(n)) means

lim sup
n→∞

f(n)

g(n)
> 0 and lim inf

n→∞

f(n)

g(n)
< 0.

Note that this also shows that the sequence {µF (n)}n∈N changes sign infinitely often.

The recent works of E. Kowalski, Y. K. Lau, K. Soundararajan and J. Wu [41] and

of K. Matomäki [57] prove that any normalized Hecke eigenform f ∈ Snewk (N) is

uniquely determined by the signs of its Hecke eigenvalues at primes. Here Snewk (N)

denotes the space of newforms of weight k for Γ0(N).

We now briefly describe our results in this context. In [28], we investigate simul-
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taneous sign change and non-vanishing of Hecke eigenvalues of newforms which are

normalized Hecke eigenforms. More precisely, for z ∈ H := {z ∈ C | =(z) > 0 },

q := e2πiz, let

(0.0.1) f(z) =
∞∑
n=1

af (n)qn ∈ Snewk1
(N1) and g(z) =

∞∑
n=1

ag(n)qn ∈ Snewk2
(N2)

be normalized Hecke eigenforms. In this case, normalization ensures that

µf (n) = af (n) and µg(n) = ag(n)

for all n ∈ N. Then we have the following theorem.

Theorem 0.0.1. Let N1, N2 be square-free, N := lcm[N1, N2] and f ∈ Snewk1
(N1), g ∈

Snewk2
(N2) be two distinct normalized Hecke eigenforms with Fourier expansions as

in (0.0.1). Then there exists a prime power pα, α ≤ 2 with

pα �ε max

{
exp (c log2(

√
q(f) +

√
q(g))),

[
N2

(
1 +
|k2 − k1|

2

)(
k1 + k2

2

)]1+ε
}

such that af (p
α)ag(p

α) < 0. Here c > 0 is an absolute constant and q(f), q(g) are

analytic conductors of the Rankin-Selberg L-functions of f and g respectively. Note

that

q(f)� k2
1N

2
1 log logN1 and q(f)� k2

2N
2
2 log logN2.

This can be thought of as sign change analogue of the classical Sturm’s bound.

A. Ghosh and P. Sarnak [24], in their study of distribution of real zeros of Hecke

eigenforms, relate the question of sign changes of Fourier coefficients of Hecke eigen-

forms to the question of distribution of real zeros of those forms. In a recent work

[30] with S. Gun, we relate the question of simultaneous sign changes of Fourier co-

efficients of primitive cusp forms to multiplicity one theorem for those forms. More

precisely, for any f ∈ Sk(N) which is a normalized Hecke eigenform with Fourier

23



coefficients af (n), let us set

λf (n) :=
af (n)

n(k−1)/2
.

With this notation in place, we show the following.

Theorem 0.0.2. Let f ∈ Sk1(N1) and g ∈ Sk2(N2) be normalized Hecke eigen-

forms and p be a prime such that (p,N1N2) = 1. Then the following conditions are

equivalent;

• there exist infinitely many m ≥ 1 such that λf (p
m)λg(p

m) > 0 and infinitely

many m ≥ 1 such that λf (p
m)λg(p

m) < 0;

• one has λf (p) 6= λg(p).

This theorem allows us to estimate the density of the set of primes p for which

the sequence {af (pm)ag(p
m)}m∈N changes sign infinitely often.

In order to state our next theorem, we shall need the notion of CM forms which

we recall.

Definition 0.0.3. Let f ∈ Snewk (N) be a normalized Hecke eigenform.

• We say that f has complex multiplication (or of CM type) if there exists a

non-trivial Dirichlet character χ modulo D such that

af (p)χ(p) = af (p)

for all primes p lying in a set of density 1.

• A form is called a non-CM form or of non-CM type if it is not of CM type.

We also need the following notion of natural density of a subset of the set of

primes.
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Definition 0.0.4. Let A be a subset of the set of primes P. We say that the natural

density of the set A is d(A) if the limit

lim
x→∞

#{p ≤ x | p ∈ A}
#{p ≤ x | p ∈ P}

exists and is equal to d(A).

Let f ∈ Snewk (N) be a CM form. Then by a work of K. Ribet [82], one knows

that there exists a Hecke character χ of an imaginary quadratic field K such that the

Fourier coefficients of f are determined by χ. In this case, we shall say that the form

f has CM by the imaginary quadratic field K. Now by applying Theorem 0.0.2, we

have

Theorem 0.0.5. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized Hecke

eigenforms with Fourier expansions as in (0.0.1) and S be the set of primes p for

which the sets

{m ∈ N | af (pm)ag(p
m) > 0} and {m ∈ N | af (pm)ag(p

m) < 0}

are infinite. Then,

1. if at least one of f or g is a non-CM form, then

• the natural density of S is 1 provided f 6= g⊗χ for any Dirichlet character

χ;

• the natural density of S is 1/2 if f = g⊗χ for some Dirichlet character

χ.

2. if both f and g are of CM type, then

• the lower natural density of S is greater than or equal to 1/2 if either

k1 6= k2 or f and g have CM by different quadratic fields;
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• the lower natural density of S is greater than or equal to 1/8 if k1 = k2

and the forms f and g have CM by the same field.

Theorem 0.0.5 improves a recent result of S. Gun, W. Kohnen and P. Rath [27,

Theorem 3]. If we assume that at least one of f or g is non-CM, then we can prove

the following stronger result.

Theorem 0.0.6. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized Hecke

eigenforms with Fourier expansions as in (0.0.1) and not both of CM type. For any

positive integer j, let Sj be the set of primes p such that

{
m ∈ N | af (pjm)ag(p

jm) > 0
}

and
{
m ∈ N | af (pjm)ag(p

jm) < 0
}

are infinite. Then,

1. if f 6= g ⊗ χ for any Dirichlet character χ, then the natural density of Sj is

equal to one for any j ∈ N.

2. when f = g ⊗ χ for some Dirichlet character χ, then

• if j is odd, then the natural density of Sj is equal to 1/2;

• if j is even, then the natural density of Sj is equal to zero.

The above theorem can be thought of as a generalization of the following result

of W. Kohnen and Y. Martin [40].

Theorem 0.0.7. [W. Kohnen and Y. Martin] Let f ∈ Sk(1) be a normalized Hecke

eigenform. Then for any integer j ≥ 1 and for almost all primes p, the sequence

{af (pnj)}n∈N changes sign infinitely often.

As mentioned in Remark 3.1 of [17], their proof is not complete for natural

numbers j that are divisible by 4. In [30], along with S. Gun we proved the following

theorem.
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Theorem 0.0.8. Let f ∈ Snewk (N) be a normalized Hecke eigenform and j ≥ 1 be

a natural number. Consider the set Sj of primes p for which the sets

{
m ∈ N | af (pjm) > 0

}
and

{
m ∈ N | af (pjm) < 0

}
are infinite. Then,

1. if f is a non-CM form, then the natural density of Sj is 1;

2. if f is of CM type and

• 4|j, then the natural density of Sj is 1/2;

• 4 - j, then the natural density of Sj is 1.

The following theorem helps us to derive the previous one.

Theorem 0.0.9. Let f ∈ Snewk (N) be a normalized Hecke eigenform and j be a pos-

itive integer. Then for almost all primes p, the following conditions are equivalent;

1. there exists infinitely many natural numbers m ≥ 1 such that λf (p
jm) > 0 and

infinitely many natural numbers m ≥ 1 such that λf (p
jm) < 0;

2. one has

λf (p) 6∈


{2} for j is odd;

{2,−2} for j ≡ 2 (mod 4);

{−2, 0, 2} for j ≡ 0 (mod 4).

Further, when k ≥ 4 or j = 1, then the above equivalence is true for all primes p

with (p,N) = 1.

We now address the question of non-vanishing of Hecke eigenvalues of newforms.

The study of non-vanishing of Hecke eigenvalues of newforms is inspired by the
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folklore conjecture of D. H. Lehmer which predicts that τ(n) 6= 0 for all n ∈ N. Here

τ is the Ramanujan τ -function defined by the formal identity:

∞∑
n=1

τ(n)xn := x

∞∏
n=1

(1− xn)24.

It is well known that the above formal sum determines the unique normalized Hecke

eigenform of weight 12 of degree one for the full modular group. One of the most

notable results in this direction is due to J-P. Serre [91, 92] which states that the

set of primes p such that τ(p) = 0 has natural density zero. In fact, his result (see

also [91]) characterizes non-CM forms as follows: a Hecke eigen newform is non-CM

if and only if the set of primes p for which the p-th Hecke eigenvalue vanishes has

natural density zero.

While the above results on sign changes of Hecke eigenvalues imply non-vanishing

of the same, one can prove stronger results in this direction. In a joint work with

S. Gun and B. Kumar [28], we investigate the non-vanishing nature of the sequence

{af (pm)ag(p
m)}m∈N. Our first result in this set-up is the following.

Theorem 0.0.10. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be two distinct normalized

Hecke eigenforms with Fourier expansion as in (0.0.1). Then for all primes p with

(p,N1N2) = 1, the set

{m ∈ N | af (pm)ag(p
m) 6= 0}

has positive density.

We now state our next theorem which strengthens a recent result (namely The-

orem 1.2) of M. Kumari and M. R. Murty [45].

Theorem 0.0.11. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized non-

CM Hecke eigenforms with Fourier expansion as in (0.0.1). Then there exists a set

S of primes with natural density one such that for any p ∈ S and integers m,m′ ≥ 1,
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we have

af (p
m)ag(p

m′) 6= 0.

Now we address the question of first simultaneous non-vanishing, analogous to

that considered in Theorem 0.0.1. In particular, we have the following theorem.

Theorem 0.0.12. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be two distinct normalized

Hecke eigenforms with Fourier expansion as in (0.0.1). Also assume that N :=

lcm [N1, N2] > 12. Then there exists a positive integer 1 < n ≤ (2 logN)4 with

(n,N) = 1 such that

af (n)ag(n) 6= 0.

Further, when N is odd, then there exists an integer 1 < n ≤ 16 with (n,N) = 1

such that

af (n)ag(n) 6= 0.

Note that while af (1)ag(1) = 1, our goal is to find the first n > 1 with (n,N) = 1

for which af (n)ag(n) 6= 0; in other words to determine the first non-trivial simulta-

neous non-vanishing.

Now we investigate similar questions for higher degree Siegel cusp forms. In this

direction the generalized Ramanujan-Petersson conjecture, as formulated in [73]

implies that for any prime p and ε > 0, one has

|µF (p)| �g,ε p
gk/2−g(g+1)/4+ε.

However when g = 2, this is known to hold for all Hecke eigenforms except for those

lying in the Maass subspace S∗k of Sk(Γ2). In fact, the Hecke eigenforms in S∗k do

not satisfy the above predicted Ramanujan-Petersson bound. This is a deep result

due to R. Weissauer [99].
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The above result motivates us to study the arithmetic properties such as bounds,

growth, non-vanishing nature and distribution of Hecke eigenvalues of the eigen-

forms which are in the Maass subspace S∗k of Sk(Γ2) and hence inaccessible vis-a-vis

Ramanujan-Petersson bounds.

In a joint work with S. Gun and J. Sengupta [31], we proved the following

theorems.

Theorem 0.0.13. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there exists

an absolute constant c > 0 such that

µF (n) = Ω

(
nk−1exp

(
c

√
log n

log log n

))
.

This gives an improvement of an earlier result of S. Das and J. Sengupta [16].

We next show that the above Omega result is not too far from an upper bound one

can derive. In particular, we have the following theorem.

Theorem 0.0.14. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there exists

an absolute constant c1 > 0 such that

µF (n) ≤ nk−1exp

(
c1

√
log n

log log n

)

for all n ∈ N with n ≥ 3.

Theorem 0.0.14 improves an earlier result of A. Pitale and R. Schmidt (see page

101 of [75]). We also prove the following lower bound.

Theorem 0.0.15. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there exist

absolute constants c2, c3 > 0 such that

µF (n) ≥ c2n
k−1exp

(
−c3

√
log n

log log n

)
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for all positive integers n ≥ 3.

As a corollary, we derive the following result of S. Breulmann [12] whose proof

is rather different from ours.

Corollary 0.0.16. If F ∈ S∗k is a non-zero Hecke eigenform with Hecke eigenvalues

µF (n), then µF (n) > 0.

Note that µF (n)/nk−1 > 0. One might wonder whether it is possible to improve

the above lower bound, that is, whether there exists a real number c > 0 such that

µF (n)/nk−1 > c for all n ∈ N. Our next theorem precludes such a possibility.

Theorem 0.0.17. Let F ∈ S∗k be a non-zero Hecke eigenform. Then we have

lim inf
n→∞

µF (n)

nk−1
= 0.

In particular, 0 is a limit point of the sequence {µF (n)/nk−1}n∈N. This motivated

us to investigate the set of limit points of the sequence {µF (n)/nk−1}n∈N. In this

direction, we have the following result.

Theorem 0.0.18. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there are

infinitely many limit points of the sequence {µF (n)/nk−1}n∈N in (1,∞) and infinitely

many limit points in (0, 1).

This summarizes our study of arithmetic properties of Hecke eigenvalues of eigen-

forms lying in the Maass space S∗k . Unlike the Hecke eigenvalues of elliptic cusp

forms, these Hecke eigenvalues are always positive. Note that since the Maass space

is isomorphic to the space of elliptic cusp forms, multiplicity one theorem holds good

for the Hecke eigenforms in this space.

On the contrary, multiplicity one theorem is not known in the orthogonal com-

plement of the Maass space. In this case, along with S. Gun and W. Kohnen [26]
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we show the existence of infinitely many n ∈ N such that µF (n) 6= µG(n) when F

and G lie in different eigenspaces. More precisely, we prove the following theorem.

Theorem 0.0.19. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms ly-

ing in the orthogonal complement of the Maass space and having Hecke eigenval-

ues {µF (n)}n∈N and {µG(n)}n∈N respectively. Also let F and G lie in different

eigenspaces. Then for any ε > 0, one has

# {n ≤ x | µF (n) 6= µG(n)} � x1−ε

where the constant � depends on F,G and ε.

In particular, the above theorem shows that at least one of F or G has infinitely

many non-zero Hecke eigenvalues. This motivated us to the question whether F

and G have simultaneous non-zero Hecke eigenvalues. In this context, we have the

following theorem;

Theorem 0.0.20. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms lying in

the orthogonal complement of the Maass space with Hecke eigenvalues {µF (n)}n∈N

and {µG(n)}n∈N respectively. Also let F and G lie in different eigenspaces. Then

for any prime p, there exists an integer n with 1 ≤ n ≤ 14 such that

µF (pn)µG(pn) 6= 0.

We also investigate the question of Hecke eigenvalues which are of different sign.

This in turn would ensure simultaneous non-zero Hecke eigenvalues. In this direction

we first investigate the question of different signs at primes.

Theorem 0.0.21. Let F ∈ Sk1(Γ2) be a Hecke eigenform lying in the orthogonal

complement of the Maass space and having Hecke eigenvalues {µF (n)}n∈N. Also

assume that there exist 0 < c < 4 and a Hecke eigenform G ∈ Sk2(Γ2) lying in the
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orthogonal complement of the Maass space with Hecke eigenvalues {µG(n)}n∈N such

that

#
{
p ≤ x | |µG(p)| > cpk2−

3
2

}
≥ 16

17
· x

log x

for sufficiently large x. Also assume that F and G lie in different eigenspaces. Then

there exists a set of primes p of positive lower density such that µF (p)µG(p) ≷ 0.

Applying above theorem, we have the following theorem;

Theorem 0.0.22. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be as in Theorem 0.0.21. Then

half of the non-zero coefficients of the sequence {µF (n)µG(n)}n∈N are positive and

half of them are negative.

33



34



Notations

Symbol Description

N The set of natural numbers

Z The ring of rational integers

Q The field of rational numbers

P The set of all rational prime numbers

R The field of real numbers

C The field of complex numbers

H The complex upper-half plane

Mn(Z) The set of all n× n integer matrices.

Mn,m(Z) The set of all n×m integer matrices.

SL2(Z) The group of all 2× 2 integer matrices with determinant 1.

1g The g × g identity matrix

M t The transpose of the matrix M

Y ≥ 0 The matrix Y is positive semi definite

(a, b) The greatest common divisor of two natural numbers a and b

[a, b] The least common multiple of two natural numbers a and b

a | b a divides b

Γ The gamma function

ζ(s) The Riemann zeta function

<(s) The real part of a complex number s

=(s) The imaginary part of a complex number s
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p prime number

[x] The greatest integer n ≤ x

#A Number of elements in the set A

z Conjugate of the complex number z

We also use the following notations frequently.

1. Let f, g : R → C be functions such that g(x) > 0 for all x ∈ R. We shall say

that f = O(g) or f � g if there exists a constant C > 0 such that

|f(x)| ≤ Cg(x).

Further, if there exist constants C1, C2 > 0 such that

C1g(x) ≤ |f(x)| ≤ C2g(x)

then we write f � g. By f = o(g) and f(x) ∼ g(x), we shall denote

lim
x→+∞

|f(x)|
g(x)

= 0 and lim
x→+∞

f(x)

g(x)
= 1

respective. We use the symbol f(x) = Ω(g(x)) to indicate that

lim sup
x→∞

|f(x)|
g(x)

> 0.

Whereas, the symbol f(x) = Ω±(g(x)) means that

lim sup
x→∞

f(x)

g(x)
> 0 and lim inf

x→∞

f(x)

g(x)
< 0.

2. Let A be a subset of P . We say that the lower natural density of A is greater
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than or equal to d(S) ∈ R if

lim inf
x→∞

#{p ∈ A | p ≤ x}
#{p ∈ P | p ≤ x}

≥ d(S).

Further, we shall say that a subset A of P has natural density α ∈ R if

lim
x→∞

#{p ∈ A | p ≤ x}
#{p ∈ P | p ≤ x}

exists and is equal to α. We shall denote the natural density of A ⊂ P by

d(A) if it exists.

3. We say that the density of A ⊂ N is d(A) if

lim
x→∞

#{n ≤ x | n ∈ A}
#{n ≤ x | n ∈ N}

exists and is equal to the real number d(A).
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Chapter 1

Introduction

”There are five basic operations in arithmetic: addition, subtraction, multiplication,

division, and modular forms.”

Martin Eichler

In this chapter, we shall give a brief history of the theme around which this thesis

is centered. Further, we state our main results and outline the arrangement of the

chapters of this thesis.

1.1 History

Modular forms are one of the most fundamental objects in mathematics. They

appear in several branches of mathematics such as number theory, arithmetic geom-

etry, representation theory, Riemann surface theory and so on. Thus the theory of

modular forms has fascinated mathematicians for a long time.

The theory of modular forms can be traced back to the works of Jacobi on

elliptic functions. However, the seeds of a comprehensive study of the theory of
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modular forms were hidden in the seminal paper ”On certain arithmetical functions”

of Ramanujan where he introduced the arithmetic function τ as the coefficients of

the following formal power series

(1.1.1)
∞∑
n=1

τ(n)xn := x
∞∏
n=1

(1− xn)24.

This is now called the Ramanujan τ -function. They also appear in the study of the

number of representations of an odd integer n as a sum of 24 squares in the following

manner

r(x2
1 + · · ·+ x2

24, n) =
16

691
σ11(n) +

33152

691
τ(n),

where r(x2
1+· · ·+x2

24, n) denotes the number of integral solutions of x2
1+· · ·+x2

24 = n

and σk(n) :=
∑

d|n d
k. Ramanujan [79] predicted the following properties of τ -

function:

1. τ(mn) = τ(m)τ(n) when (m,n) = 1;

2. τ(pn+2) = τ(p)τ(pn+1)− p11τ(pn) for any prime p and n ∈ N;

3. |τ(p)| ≤ 2p11/2 for all primes p.

The first two assertions of Ramanujan were proved by Mordell [62] in 1917. But

the third assertion remained unsolved till 1974 when Deligne [19] proved it as a

consequence of his proof of Weil’s conjectures.

Hecke, in a series of papers, explained why Ramanujan’s conjectures are ex-

pected to be true. The theory developed by Hecke is now known as Hecke theory

for modular forms. In particular, τ(n) can be interpreted as eigenvalues of certain

linear operators which are known as Hecke operators acting on the space of mod-

ular forms. Unfortunately, this theory could not provide a proof of Ramanujan’s

third conjecture; it only suggested a general conjecture. For a proof of Ramanu-

jan’s third conjecture, we had to wait for the subsequent works of Deligne, Eichler,
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Shimura, Weil among others which revealed fundamental relations between Hecke

theory and algebraic geometry. In particular, the eigenvalues of Hecke operators

were interpreted in terms of the zeros of the zeta functions of suitable algebraic va-

rieties over finite fields. This finally led to the proof of Ramanujan’s third conjecture

by Deligne [19].

In an attempt to resolve Ramanujan conjecture, Rankin and Selberg indepen-

dently developed a theory of L-functions known as ”Rankin-Selberg theory” of L-

functions. In fact, they obtained significant results towards Ramanujan conjecture.

Around 1950’s and 1960’s, Harish-Chandra and subsequently Langlands reformu-

lated the notion of modular forms in the larger framework of representation theory.

These works eventually led to the development of Langlands program in the theory

of automorphic representations.

On the other hand, while studying the analytic theory of quadratic forms, Siegel

[95, 96] developed the theory of modular forms in several variables which are now

called Siegel modular forms. In his own words: ”Von der analytischen Theorie

der quadratischen Formen her ist man neuerdings zu Funktionen von n(n + 1)/2

Variabeln geführt worden, die für ein beliebiges algebraisches Gebilde vom Geschlecht

n dasselbe leisten wie die elliptischen Modulfunktionen im Falle n = 1 und die

deshalb Modulfunktionen n-ten Grades genannt werden. Diese Funktionen sind von

Interesse wegen verschiedenartiger Anwendungen auf Algebra und Arithmetik, und

ihre analytischen Eigenschaften lassen sich ziemlich weit verfolgen.” This translates

as follows: From the analytic theory of quadratic forms, we have recently been led to

functions of n(n+1)/2 variables which perform the same for any algebraic structure

of genus n as the elliptic modular functions in the case n = 1 and which are therefore

called the modular functions of n-th degree. These functions are of interest because

of various applications to algebra and arithmetic and their analytical properties can

be tracked quite widely. The theory of Siegel modular forms generalizes the theory
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of elliptic modular forms.

Soon after the work of Hecke, attempts were made to develop the theory of Hecke

operators for Siegel modular forms. Hecke theory provided a framework to interlink

the theory of Siegel modular forms with algebraic geometry, representation theory

and Galois theory. The theory of Siegel modular forms was further developed by

Andrianov, Eichler, Kohnen, Maass, Shimura, Zagier and others. Still in the case

of degree n > 1, the study of the theory of Siegel modular forms is far from being

complete.

The main arithmetic application of modular forms had been the analytical theory

of integral quadratic forms till mid twentieth century when Shimura and Taniyama

proposed the famous modularity conjecture relating modular forms of weight 2 to

elliptic curves over Q. The Taniyama-Shimura conjecture predicts that the zeta

function associated to an elliptic curve over Q can be realized as the zeta function of

a cusp form. In 1985, Frey made the remarkable observation that the conjecture of

Taniyama-Shimura would imply Fermat’s last theorem. The precise relations among

these two were formulated by Serre [93] and established later by Ribet, which allowed

Wiles in 1995 to prove Fermat’s last theorem. This is one of the biggest achievements

of mathematics.

One would expect that the relation between zeta functions of elliptic curves and

zeta functions of elliptic modular forms described by Taniyama-Shimura conjecture

is only a particular case of some general relations between zeta functions of algebraic

varieties and zeta functions of automorphic forms. It is believed that zeta functions

of abelian varieties should be related to zeta functions of Siegel modular forms. Thus

the theory of Hecke operators and L-functions of the Siegel modular forms are an

integral part of the theory of Siegel modular forms. All these make the theory rich

and motivate us to investigate the following question around which this thesis is

centered.
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Question 1. Given two Siegel modular forms F and G of weights k1 and k2 respec-

tively, how do we determine whether F = G ?

For elliptic modular forms which are Siegel modular forms of degree one, the

above question has been addressed by several authors, namely Kohnen, Sengupta

[39], Kowalski, Lau, Soundararajan, Wu [41], Luo [52], Ramakrishnan [51], Matomäki

[57], R. Murty [64] among others. In this doctoral thesis, we address Question 1 by

appealing to the arithmetic properties of the Hecke eigenvalues of Siegel cusp forms

of degree one and two. In particular, our focus is to exploit arithmetic properties

of these Hecke eigenvalues as essential tools to distinguish cusp forms of degree one

and degree two.

1.2 Main results

For integers k, g ≥ 1, let Γg := Spg(Z) be the Siegel modular group of degree g and

Sk(Γg) be the space of cuspidal Siegel modular forms of weight k and degree g for

Γg. For a positive integer n, recall that the n-th Hecke operator Tg(n) on the space

Sk(Γg) is given by

Tg(n)F := ngk−
g(g+1)

2

∑
γ∈Γg\Og,n

F | γ,

where

Og,n :=
{
γ ∈M2g(Z) | γtJgγ = nJg

}
, Jg :=

 0 1g

−1g 0


and

F | γ := det (CZ +D)−kF ((AZ +B)(CZ +D)−1), γ :=

A B

C D

 .
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It is known that the complex vector space Sk(Γg) has a basis consisting of eigen-

vectors of all the Hecke operators Tg(n). Let F ∈ Sk(Γg) be such an eigenvector of

Tg(n) with eigenvalue µF (n), that is, Tg(n)F = µF (n)F for all n ∈ N. Then one

knows that µF is a multiplicative function.

Note that for degree g = 1, the space Sk(Γ1) is nothing but the space of elliptic

cusp forms of level 1 and weight k. In this case, by a celebrated work of Deligne,

one knows that the Ramanujan-Petersson conjecture is true, that is, for any prime

p, one has

|µF (p)| ≤ 2p(k−1)/2.

It is natural to ask whether this upper-bound is optimal. One way to answer this

question is to derive an omega result. In 1983, R. Murty [64] proved the following

theorem.

Theorem 1.2.1. [R. Murty] Let f ∈ Sk(Γ1) be a normalized Hecke eigenform. Then

there exists a constant c > 0 such that

µF (n) = Ω±

(
n(k−1)/2 exp

(
c log n

log log n

))
.

Here for any arithmetic functions f and g with g(n) > 0 for all n ∈ N, the

symbol f(n) = Ω±(g(n)) means

lim sup
n→∞

f(n)

g(n)
> 0 and lim inf

n→∞

f(n)

g(n)
< 0.

The above result shows that the sequence {µF (n)}n∈N changes sign infinitely often.

The question of sign changes of Hecke eigenvalues of modular forms has been ad-

dressed by many mathematicians (for example see [13], [27], [36], [38], [41], [57], [59]).

The recent works of Kowalski, Lau, Soundararajan and Wu [41] and of Matomäki

[57] prove that any normalized Hecke eigenform f ∈ Snewk (N) is uniquely determined
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by the signs of its Hecke eigenvalues at primes. (See Kohnen and Sengupta [39], Gun,

Kohnen and Rath [27] and Kumari and R. Murty [45] for the analogous results for

arbitrary cusp form f ∈ Sk(N) in terms of the signs of Fourier coefficients.) Here

Snewk (N) denotes the space of newforms of weight k for Γ0(N) (see section 2.1.3 for

a precise definition). More precisely, for z ∈ H := {z ∈ C | =(z) > 0}, q := e2πiz,

let

(1.2.1) f(z) =
∞∑
n=1

af (n)qn ∈ Snewk1
(N1) and g(z) =

∞∑
n=1

ag(n)qn ∈ Snewk2
(N2)

be normalized Hecke eigenforms. In this case, the normalization ensures that

µf (n) = af (n) and µg(n) = ag(n)

for all (n,N1N2) = 1. To state the result of Kowalski, Lau, Soundararajan and

Wu, we need the following definitions of analytic density of a subset of the set P of

primes and of CM forms.

Definition 1.2.2. A subset E of the set P of primes has analytic density κ > 0 if

lim
σ→1+

∑
p∈E 1/pσ∑
p∈P 1/pσ

= κ.

Definition 1.2.3. Let f ∈ Snewk (N) be a normalized Hecke eigenform.

• We say that f has complex multiplication (or of CM type) if there exists a

non-trivial Dirichlet character χ modulo D such that

af (p)χ(p) = af (p)

for all but finitely many primes p.

• A form is called a non-CM form or of non-CM type if it is not of CM type.
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If f ∈ Snewk (N) is a CM form and χ is as in the above definition, then af (p) = 0

for all primes p such that χ(p) = −1. Further, by [83, Corollary 3.10], we know that

there are no CM forms of level N if N is square free.

With these notations in place, we can state the theorem of Kowalski, Lau,

Soundararajan and Wu [41, Theorem 4].

Theorem 1.2.4. [Kowalski, Lau, Soundararajan and Wu] Let f ∈ Snewk1
(N1) and

g ∈ Snewk2
(N2) be normalized Hecke eigenforms with Fourier expansions as in (1.2.1).

1. If af (p) and ag(p) have same sign for every prime p except those in a set E of

analytic density zero, then f = g.

2. Also assume that both f and g are non-CM forms. If af (p) and ag(p) have

same sign for every prime p except those in a set E of analytic density ≤ 1/32,

then f = g.

Shortly after this result, Matomäki [57, Theorem 2] strengthen the second part

of above theorem by showing the following.

Theorem 1.2.5. [Matomäki] Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized

Hecke eigenforms with Fourier expansions as in (1.2.1). Also assume that both f

and g are non-CM forms. If af (p) and ag(p) have same sign for every prime p except

those in a set E of analytic density ≤ 6/25, then f = g.

We now briefly describe our results in this context. In [28], we investigate simul-

taneous sign change and non-vanishing of Hecke eigenvalues of newforms which are

normalized Hecke eigenforms. In particular, we have the following theorem.

Theorem 1.2.6. Let N1, N2 be square-free, N := lcm[N1, N2] and f ∈ Snewk1
(N1), g ∈

Snewk2
(N2) be two distinct normalized Hecke eigenforms with Fourier expansions as
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in (1.2.1). Then there exists a prime power pα, α ≤ 2 with

pα �ε max

{
exp (c log2(

√
q(f) +

√
q(g))),

[
N2

(
1 +
|k2 − k1|

2

)(
k1 + k2

2

)]1+ε
}

such that af (p
α)ag(p

α) < 0. Here c > 0 is an absolute constant and q(f), q(g) are

analytic conductors of the Rankin-Selberg L-functions of f and g respectively. Note

that

q(f)� k2
1N

2
1 log logN1 and q(f)� k2

2N
2
2 log logN2.

This can be thought of as sign change analogue of the classical Sturm’s bound.

Ghosh and Sarnak [24], in their study of distribution of real zeros of Hecke eigen-

forms, relate the question of sign changes of Fourier coefficients of Hecke eigenforms

to the question of distribution of real zeros of those forms. (Also see the recent paper

of Matomäki [58] in this context.) In a recent work [30] with Gun, we relate the

question of simultaneous sign changes of Fourier coefficients of primitive cusp forms

to multiplicity one theorem for those forms. More precisely, for any f ∈ Sk(N)

which is a normalized Hecke eigenform with Fourier coefficients af (n), let us set

λf (n) :=
af (n)

n(k−1)/2
.

With this notation in place, we show the following.

Theorem 1.2.7. Let f ∈ Sk1(N1) and g ∈ Sk2(N2) be normalized Hecke eigen-

forms and p be a prime such that (p,N1N2) = 1. Then the following conditions are

equivalent;

1. there exist infinitely many m ≥ 1 such that λf (p
m)λg(p

m) > 0 and infinitely

many m ≥ 1 such that λf (p
m)λg(p

m) < 0;

2. one has λf (p) 6= λg(p).
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This theorem allows us to estimate the density of the set of primes p for which

the sequence {af (pm)ag(p
m)}m∈N changes sign infinitely often. In order to state our

next theorem, we shall need the following notion of natural density of a subset of

the set of primes.

Definition 1.2.8. Let A be a subset of the set of primes P. We say that the natural

density of the set A is d(A) if the limit

lim
x→∞

#{p ≤ x | p ∈ A}
#{p ≤ x | p ∈ P}

exists and is equal to d(A).

Let f ∈ Snewk (N) be a CM form. Then by a work of Ribet [82], one knows that

there exists a Hecke character χ of an imaginary quadratic field K such that the

Fourier coefficients of f are determined by χ. In this case, we shall say that the form

f has CM by the imaginary quadratic field K. Now by applying Theorem 1.2.7, we

have

Theorem 1.2.9. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized Hecke

eigenforms with Fourier expansions as in (1.2.1) and S be the set of primes p for

which the sets

{m ∈ N | af (pm)ag(p
m) > 0} and {m ∈ N | af (pm)ag(p

m) < 0}

are infinite. Then,

1. if at least one of f or g is a non-CM form, then

• the natural density of S is 1 provided f 6= g ⊗ χ for any Dirichlet

character χ;

• the natural density of S is 1/2 if f = g⊗χ for some Dirichlet character χ.
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2. if both f and g are of CM type, then

• the lower natural density of S is greater than or equal to 1/2 if either

k1 6= k2 or f and g have CM by different quadratic fields;

• the lower natural density of S is greater than or equal to 1/8 if k1 = k2

and the forms f and g have CM by the same field.

Theorem 1.2.9 improves the following result of Gun, Kohnen and Rath [27, The-

orem 3].

Theorem 1.2.10. [Gun, Kohnen and Rath] Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be

distinct normalized Hecke eigenforms with Fourier expansions as in (1.2.1). Then

there exists an infinite set S of primes p such that the sets

{m ∈ N | af (pm)ag(p
m) > 0} and {m ∈ N | af (pm)ag(p

m) < 0}

are infinite.

If we assume that at least one of f or g is a non-CM form, then we can prove

the following stronger result.

Theorem 1.2.11. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized Hecke

eigenforms with Fourier expansions as in (1.2.1) and not both of CM type. For any

positive integer j, let Sj be the set of primes p such that

{
m ∈ N | af (pjm)ag(p

jm) > 0
}

and
{
m ∈ N | af (pjm)ag(p

jm) < 0
}

are infinite. Then,

1. if f 6= g ⊗ χ for any Dirichlet character χ, then the natural density of Sj is

equal to one for any j ∈ N.
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2. when f = g ⊗ χ for some Dirichlet character χ, then

• if j is odd, then the natural density of Sj is equal to 1/2;

• if j is even, then the natural density of Sj is equal to zero.

The above theorem can be thought of as a generalization of the following result

of Kohnen and Martin [40].

Theorem 1.2.12. [Kohnen and Martin] Let f ∈ Sk(1) be a normalized Hecke

eigenform. Then for any integer j ≥ 1 and for almost all primes p, the sequence

{af (pnj)}n∈N changes sign infinitely often.

As mentioned in Remark 3.1 of [17], their proof does not work for natural num-

bers j that are divisible by 4. In [30], along with Gun we proved the following

theorem.

Theorem 1.2.13. Let f ∈ Snewk (N) be a normalized Hecke eigenform and j ≥ 1 be

a natural number. Consider the set Sj of primes p for which the sets

{
m ∈ N | af (pjm) > 0

}
and

{
m ∈ N | af (pjm) < 0

}
are infinite. Then,

1. if f is a non-CM form, then the natural density of Sj is 1;

2. if f is of CM type and

• 4|j, then the natural density of Sj is 1/2;

• 4 - j, then the natural density of Sj is 1.

The following theorem leads to the proof of the previous one.
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Theorem 1.2.14. Let f ∈ Snewk (N) be a normalized Hecke eigenform and j be a

positive integer. Then for almost all primes p, the following conditions are equiva-

lent;

1. there exists infinitely many natural numbers m ≥ 1 such that λf (p
jm) > 0 and

infinitely many natural numbers m ≥ 1 such that λf (p
jm) < 0;

2. one has

λf (p) 6∈


{2} for j is odd;

{2,−2} for j ≡ 2 (mod 4);

{−2, 0, 2} for j ≡ 0 (mod 4).

Further, when k ≥ 4 or j = 1, then the above equivalence is true for all primes p

with (p,N) = 1.

We now address the question of non-vanishing of Hecke eigenvalues of newforms.

The study of non-vanishing of Hecke eigenvalues of newforms is inspired by the

folklore conjecture of Lehmer [49] which predicts that τ(n) 6= 0 for all n ∈ N. Here τ

is the Ramanujan τ -function defined by the formal identity (1.1.1). It is well known

that the formal sum in (1.1.1) determines unique normalized Hecke eigenform of

weight 12 of degree one for the full modular group. One of the most notable results

in this direction is due to Serre [91, 92] which states that the set of primes p such

that τ(p) = 0 has natural density zero. In fact, his result (see also [91]) characterizes

non-CM forms as follows: a Hecke eigen newform is non-CM if and only if the set

of primes p for which the p-th Hecke eigenvalue vanishes has natural density zero.

While the above results on sign changes of Hecke eigenvalues imply non-vanishing

of the same, one can prove stronger results in this direction. In a joint work

with Gun and Kumar [28], we investigate the non-vanishing nature of the sequence

{af (pm)ag(p
m)}m∈N. Our first result in this set-up is the following.
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Theorem 1.2.15. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be two distinct normalized

Hecke eigenforms with Fourier expansion as in (1.2.1). Then for all primes p with

(p,N1N2) = 1, the set

{m ∈ N | af (pm)ag(p
m) 6= 0}

has positive density.

We now state our next theorem which strengthens a recent result (namely The-

orem 1.2) of Kumari and R. Murty [45].

Theorem 1.2.16. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized non-

CM Hecke eigenforms with Fourier expansions as in (1.2.1). Then there exists a set

S of primes with natural density one such that for any p ∈ S and integers m,m′ ≥ 1,

we have

af (p
m)ag(p

m′) 6= 0.

Now we address the question of first simultaneous non-vanishing, analogous to

that considered in Theorem 1.2.6. In particular, we have the following theorem.

Theorem 1.2.17. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be two distinct normalized

Hecke eigenforms with Fourier expansions as in (1.2.1). Also assume that N :=

lcm [N1, N2] > 12. Then there exists a positive integer 1 < n ≤ (2 logN)4 with

(n,N) = 1 such that

af (n)ag(n) 6= 0.

Further, when N is odd, then there exists an integer 1 < n ≤ 16 with (n,N) = 1

such that

af (n)ag(n) 6= 0.

Note that while af (1)ag(1) = 1, our goal is to find the first n > 1 with (n,N) = 1

for which af (n)ag(n) 6= 0; in other words to determine the first non-trivial simulta-

neous non-vanishing.
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Now we investigate similar questions for higher degree Siegel cusp forms. In this

direction the generalized Ramanujan-Petersson conjecture, as formulated in [73]

implies that for any prime p and ε > 0, one has

(1.2.2) |µF (p)| �g,ε p
gk/2−g(g+1)/4+ε.

However when g = 2, this is known to hold for all Hecke eigenforms except for those

lying in the Maass subspace S∗k of Sk(Γ2). In fact, the Hecke eigenforms in S∗k do

not satisfy the Ramanujan-Petersson bound (1.2.2). This is a deep result due to

Weissauer [99].

The above result motivates us to study the arithmetic properties such as bounds,

growth, non-vanishing nature and distribution of Hecke eigenvalues of the eigen-

forms which are in the Maass subspace S∗k of Sk(Γ2) and hence inaccessible vis-a-vis

Ramanujan-Petersson bounds.

In a joint work with Gun and Sengupta [31], we proved the following theorems.

Theorem 1.2.18. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there exists

an absolute constant c > 0 such that

µF (n) = Ω

(
nk−1exp

(
c

√
log n

log log n

))
.

This gives an improvement of the following result of Das and Sengupta [16].

Theorem 1.2.19. [Das and Sengupta] Let F ∈ S∗k be a non-zero Hecke eigenform.

Then

µF (n) = Ω

(
nk−1

√
log n

log log n

)
.

We next show that the omega result proved in Theorem 1.2.18 is not too far

from an upper bound one can derive. In particular, we have the following theorem.
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Theorem 1.2.20. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there exists

an absolute constant c1 > 0 such that

µF (n) ≤ nk−1exp

(
c1

√
log n

log log n

)

for all n ∈ N with n ≥ 3.

Theorem 1.2.20 improves an earlier result of Pitale and Schmidt (see page 101

of [75]). We also prove the following lower bound.

Theorem 1.2.21. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there exist

absolute constants c2, c3 > 0 such that

µF (n) ≥ c2n
k−1exp

(
−c3

√
log n

log log n

)

for all positive integers n ≥ 3.

As a corollary, we derive the following result of Breulmann [12] whose proof is

rather different from ours.

Corollary 1.2.22. If F ∈ S∗k is a non-zero Hecke eigenform with Hecke eigenvalues

µF (n), then µF (n) > 0.

Note that µF (n)/nk−1 > 0. One might wonder whether it is possible to improve

the above lower bound, that is, whether there exists a real number c > 0 such that

µF (n)/nk−1 > c for all n ∈ N. Our next theorem precludes such a possibility.

Theorem 1.2.23. Let F ∈ S∗k be a non-zero Hecke eigenform. Then we have

lim inf
n→∞

µF (n)

nk−1
= 0.

In particular, zero is a limit point of the sequence {µF (n)/nk−1}n∈N. This moti-

vated us to investigate the set of limit points of the sequence {µF (n)/nk−1}n∈N. In
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this direction, we have the following result.

Theorem 1.2.24. Let F ∈ S∗k be a non-zero Hecke eigenform. Then there are

infinitely many limit points of the sequence {µF (n)/nk−1}n∈N in (1,∞) and infinitely

many limit points in (0, 1).

This summarizes our study of arithmetic properties of Hecke eigenvalues of Hecke

eigenforms lying in the Maass subspace S∗k . Unlike the Hecke eigenvalues of elliptic

Hecke eigenforms, these Hecke eigenvalues are always positive. Note that the Maass

subspace is isomorphic to the space of elliptic cusp forms by the Saito-Kurokawa

lift which was constructed in a series of papers by Maass [54, 55, 56], Andrianov [4]

and Zagier [103] (also see [20]). Hence multiplicity one theorem holds good for the

Hecke eigenforms lying in this subspace.

On the contrary, multiplicity one theorem is not known for the Hecke eigenforms

in the orthogonal complement of the Maass subspace with respect to Petersson inner

product (see section 2.2.1 for definition). In fact one has the following conjecture

(see Saha [86]).

Conjecture 1.2.25. Let F and G be two Hecke eigenforms in Sk(Γ2) such that

for all primes p, we have an equality of Hecke eigenvalues µF (p) = µG(p) and

µF (p2) = µG(p2). Then there exists a constant c such that F = cG.

By a recent work of Saha [86], one knows that the above conjecture follows from

a version of generalised Böcherer’s conjecture (see [86, 11] for further details). In

this context, along with Gun and Kohnen [26] we show the existence of infinitely

many n ∈ N such that µF (n) 6= µG(n) when F and G lie in different eigenspaces.

More precisely, we prove the following theorem.

Theorem 1.2.26. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms lying

in the orthogonal complement of the Maass subspace and having Hecke eigenval-

ues {µF (n)}n∈N and {µG(n)}n∈N respectively. Also let F and G lie in different
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eigenspaces. Then for any ε > 0, one has

# {n ≤ x | µF (n) 6= µG(n)} � x1−ε

where the constant � depends on F,G and ε.

In particular, the above theorem shows that at least one of F or G has infinitely

many non-zero Hecke eigenvalues. This motivated us to investigate the question

whether an Hecke eigenform F has infinitely many non-zero eigenvalues. In fact,

we investigate whether F and G have infinitely many simultaneous non-zero Hecke

eigenvalues. In this context, we have the following theorem;

Theorem 1.2.27. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms ly-

ing in the orthogonal complement of the Maass subspace with Hecke eigenvalues

{µF (n)}n∈N and {µG(n)}n∈N respectively. Also let F and G lie in different eigenspaces.

Then for any prime p, there exists an integer n with 1 ≤ n ≤ 14 such that

µF (pn)µG(pn) 6= 0.

We also investigate the question of Hecke eigenvalues which are of different sign.

This in turn would ensure simultaneous non-zero Hecke eigenvalues. In this direction

we first investigate the question of different signs at primes.

Theorem 1.2.28. Let F ∈ Sk1(Γ2) be a Hecke eigenform lying in the orthogonal

complement of the Maass subspace and having Hecke eigenvalues {µF (n)}n∈N. Also

assume that there exist 0 < c < 4 and a Hecke eigenform G ∈ Sk2(Γ2) lying in the

orthogonal complement of the Maass subspace with Hecke eigenvalues {µG(n)}n∈N

such that

#
{
p ≤ x | |µG(p)| > cpk2−

3
2

}
≥ 16

17
· x

log x

for sufficiently large x. Also assume that F and G lie in different eigenspaces. Then
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there exists a set of primes p of positive lower density such that µF (p)µG(p) ≷ 0.

Applying above theorem, we have the following theorem;

Theorem 1.2.29. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be as in Theorem 1.2.28. Then

half of the non-zero coefficients of the sequence {µF (n)µG(n)}n∈N are positive and

half of them are negative.

1.3 Arrangement of the Thesis

The thesis is organized as follows. In the next chapter, we shall list some basic

definitions and results from various branches of number theory. We shall use these

notions and results in the subsequent chapters of this thesis. The third and fourth

chapters are devoted to the study of arithmetic properties of Hecke eigenvalues of

elliptic cuspforms.

More precisely in chapter 3, we shall investigate sign changes of Hecke eigenval-

ues of elliptic modular forms in details. Our results in this context suggest some

approach to determine normalized Hecke eigenforms lying in newform subspace

uniquely. We shall first address a question which can be thought of as a variant

of classical Sturm’s theorem. Next we consider simultaneous sign changes in short

intervals. Finally, we establish a relation between simultaneous sign change and

multiplicity one theorem which allows us to derive some quantitative sign change

results. Some of the main ingredients to prove these results are Hecke relation,

Deligne’s bound, Rankin-Selberg method, Sato-Tate conjecture / theorem, joint

Sato-Tate distribution and properties of Hecke characters.

In Chapter 4, we shall study simultaneous non-vanishing of Hecke eigenvalues of

elliptic modular forms. We also study non-vanishing of the coefficients of symmetric

power L-functions attached to a normalized Hecke eigenforms lying in the newforms
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space. Some important ingredients to prove these theorems are Deligne’s bound,

Hecke relation and properties of B-free numbers.

In the last two chapters, we shall investigate arithmetic properties of Hecke

eigenvalues of Siegel modular forms of degree two. In the penultimate chapter,

we shall discuss our results on Hecke eigenvalues of cuspidal Siegel modular forms

of degree two which lie in the Maass subspace. For these eigenvalues, we shall

investigate bounds, omega results, existence and distribution of limit points of these

eigenvalues. One of the main ingredients to prove these theorems is the Saito-

Kurokawa lift.

In the last chapter of the thesis, we shall investigate arithmetic properties like

multiplicity one, non-vanishing, sign changes of Hecke eigenvalues of Siegel cusp-

forms which do not lie in the Maass subspace. Some of the results in this chapter

are under some mild conditions. Important ingredients to prove these theorems are

Hecke relation and the analytic properties of the Rankin-Selberg L-function attached

to Siegel cuspforms which are Hecke eigenforms.
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Chapter 2

Preliminaries

In this chapter, we list some basic results which are required for this thesis. To keep

the exposition simple, we shall discuss elliptic modular forms and Siegel modular

forms of degree two separately. In the first section, we discuss necessary definitions

and results required from the theory of elliptic modular forms. The second section

is devoted to the definitions and results from the theory of Siegel modular forms of

degree two. For the exposition of these two sections we mainly rely on Andrianov [3],

Cohen and Stromberg [14] and Shimura [94]. In the last section, we shall discuss

some properties of B-free numbers.

2.1 Modular forms

We start this section by recalling the definition of elliptic modular forms. Then

we introduce the concepts of Petersson inner product, Hecke operators, theory of

oldforms and newforms. For the results quoted in the last topic we follow Atkin

and Lehner [6] (also see Li [50]). Finally, we discuss analytic properties of various

L-functions attached to newforms. Let us start with the following notations.
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Let H := {z ∈ C | =(z) > 0} be the complex upper-half plane and

SL2(Z) :=


a b

c d

 ∈M2(Z)
∣∣ ad− bc = 1

 .

For any positive integer N , let Γ0(N) be the subgroup of SL2(Z) defined as follows:

Γ0(N) :=


a b

c d

 ∈ SL2(Z)
∣∣ N | c

 .

Note that Γ0(1) = SL2(Z). The group Γ0(N) acts on H as follows:

Γ0(N)×H → H(2.1.1) 
a b

c d

 , z

 7→ az + b

cz + d
.

With these notations in place, we are now ready to define elliptic modular forms.

Definition 2.1.1. A holomorphic function f : H → C is called a modular form of

weight k (k ∈ Z) and for the group Γ0(N) if it satisfies the following properties:

1. for any γ =

a b

c d

 ∈ Γ0(N) and z ∈ H, we have

f(γz) = (cz + d)kf(z).

2. for any γ =

a b

c d

 ∈ SL2(Z), the function (cz + d)−kf(γz) is bounded in

any domain of the form {z ∈ C | =(z) > c1} for any c1 > 0.

Let Mk(N) be the set of modular forms of weight k and of level N , that is, for

the group Γ0(N). One can show that Mk(N) is a finite dimensional complex vector
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space. For any f ∈Mk(N), we have its Fourier expansion as follows:

f(z) =
∞∑
n=0

af (n)qn,

where q := e2πiz. Then the space of cusp forms which will be denoted by Sk(N) is

defined by

Sk(N) :=
{
f ∈Mk(N)

∣∣ af (0) = 0
}
.

Note that Sk(N) is a vector subspace of Mk(N). Rest of the section is devoted to

find a basis of this space which is good for our purpose. We also discuss some of the

properties of this basis.

2.1.1 Petersson inner product

Recall that the action of the group Γ0(N) on H is defined by (2.1.1). Note that the

measure

dµ(z) :=
dxdy

y2
,

where x := <(z) and y := =(z) on H is invariant under this action. That is, for

any Borel set A of H, we have dµ(αA) = dµ(A) for α ∈ SL2(Z). Thus for any

f, g ∈Mk(N), we see that

f(z)g(z)yk
dxdy

y2

is Γ0(N)-invariant. Here g(z) denotes the complex conjugate of g(z). Therefore we

can define

(2.1.2) 〈f, g〉 :=
1

[SL2(Z) : Γ0(N)]

∫
Γ0(N)\H

f(z)g(z)yk
dxdy

y2

provided the integral converges absolutely. Since a cusp form f has exponential

decay with respect to y, the above integral converges absolutely if at least one of
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f or g is a cusp form. Observe that the integral defined by (2.1.2) gives an inner

product on the space Sk(N). This inner product is called the Petersson inner

product. Thus Sk(N) is a finite dimensional Hilbert space with respect to this inner

product.

2.1.2 Hecke operators

We now define Hecke operators on the space of modular forms Mk(N). There

are many approaches to Hecke operators. Here we follow the book of Cohen and

Stromberg [14]. For positive integers m and N , consider the set

Om(N) :=

A :=

a b

c d

 ∈M2(Z)
∣∣ (a,N) = 1, N | c, det A = m

 .

Note that the group Γ0(N) acts on the set Om(N) by left multiplication of matrices.

Definition 2.1.2. Let f ∈Mk(N). For (m,N) = 1, the m-th Hecke operator T (m)

on the space Mk(N) is defined by

T (m)f := mk−1
∑

γ∈Γ0(N)\Om(N)

f | γ,

where (f | γ)(z) := (cz + d)−kf(γz) if γ :=

a b

c d

.

The spaces Mk(N) and Sk(N) behaves well under the action of these operators.

More precisely, the following theorem holds.

Theorem 2.1.3. The following statements are true.

1. The spaces Mk(N) and Sk(N) are stable under the action of Hecke operators

T (m) for all (m,N) = 1.

62



2. For positive integers (n,N) = 1 = (m,N), we have T (m)T (n) = T (n)T (m).

Further, if (n,m) = 1 then T (mn) = T (m)T (n). Moreover, for any prime

(p,N) = 1 we have T (pn+1) = T (p)T (pn)− pk−1T (pn−1) for any n ∈ N.

3. For any (m,N) = 1, the Hecke operator T (m) is a Hermitian operator on

the space Sk(N) with respect to the Petersson inner product. That is, for any

f, g ∈ Sk(N) and (m,N) = 1, we have 〈T (m)f, g〉 = 〈f, T (m)g〉.

Before proceeding further let us recall the following theorem from linear algebra.

Theorem 2.1.4. Let V be a finite dimensional vector space over a field F and

{Aα}α be a family of diagonalizable operators on V such that they commute with

each other. Then there exists a basis of V consisting of eigenvectors of all Aα.

Proof. Since V is a finite dimensional vector space, the space of linear operators

on V is also finite dimensional vector space over F . Let {A1, A2, · · · , Ar} be a

generating set of the subspace generated by {Aα}α. First note that it is sufficient

to prove the statement for the set {Ai}1≤i≤r. We shall use induction on r to prove

the statement.

For r = 1, it is clear. For r ≥ 2, let λ be an eigenvalue of Ar with eigenspace

Eλ, that is,

Eλ :=
{
v ∈ V | Arv = λv

}
.

By commutativity, we have Ar(Aiv) = Ai(Arv) = λAiv for all v ∈ Eλ. This shows

that AiEλ ⊂ Eλ. Now consider the set of operators {Ai|Eλ | 1 ≤ i ≤ r−1}. Observe

that the operators in this set are diagonalizable and commute with each other.

Hence by induction hypothesis, there is a basis of Eλ consisting of eigenvectors of

all {Ai|Eλ | 1 ≤ i ≤ r} as every vector in Eλ is an eigenvector of Ar. Note that the

space V can be written as

V =
⊕
λ

Eλ,
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where λ varies over the set of all distinct eigenvalues of Ar and each Eλ has a basis

consisting of eigenvectors of all operators {Ai|Eλ | 1 ≤ i ≤ r}. Hence the space

V has a basis consisting of eigenvectors of all operators {Ai | 1 ≤ i ≤ r}. This

completes the proof.

Remark 2.1.5. In fact, if V is a finite dimensional Hilbert space, then one can

show that there exists an orthogonal basis of V consisting of eigenvectors of all

operators {Aα}α.

We also need spectral theorem from linear algebra.

Theorem 2.1.6. Let V be a finite dimensional real or complex vector space which

is an inner product space. Also let A be a Hermitian operator on V . Then there

exists an orthogonal basis of V consisting of eigenvectors of A.

Thus if A is a Hermitian operator on an inner product space V , then one can

write

V =
⊕
λ

Vλ.

Here the summation runs over the distinct eigenvalues of A and eigenspace Vλ is

defined by

Vλ :=
{
v ∈ V | Av = λv

}
.

For a proof of the spectral theorem, one can see Lang [47, page 268].

As an immediate consequence of Theorem 2.1.3, Theorem 2.1.4 and Theorem 2.1.6,

one can derive the following important theorem.

Theorem 2.1.7. The space of cusp forms Sk(N) has an orthogonal basis consisting

of eigenfunctions of T (m) for all (m,N) = 1.

Definition 2.1.8. A cusp form f ∈ Sk(N) is said to be a Hecke eigenform if it is

an eigenfunction for each T (m) with (m,N) = 1.
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Note that the basis in Theorem 2.1.7 need not be unique. In the next subsection,

we shall discuss how to find a natural basis for the space Sk(N).

2.1.3 Oldforms and Newforms

In this subsection, we shall discuss newform theory developed by Atkin and Lehner

[6]. Let f(z) =
∑∞

n=1 af (n)qn ∈ Sk(N) be a Hecke eigenform with Hecke eigenvalues

{λ(m)}(m,N)=1, that is, for any (m,N) = 1, we have T (m)f = λ(m)f . Then by

Theorem 2.1.3, for any (m,N) = 1, we have

λ(m)af (n) =
∑
d|(m,n)

dk−1af (nm/d
2).

Thus for n = 1, we have λ(m)af (1) = af (m) for any (m,N) = 1. From this, we can

not deduce that af (1) 6= 0. In fact, there are eigenforms f 6= 0 such that af (1) = 0.

These are the forms which come from lower levels. More precisely, for any positive

integer M | N and f ∈ Sk(M), we see that

f ∈ Sk(N) and f(dz) ∈ Sk(N) for any d | (N/M).

Thus for any d | (N/M), we have a well defined map

Bd : Sk(M) → Sk(N)

f(z) 7→ f(dz)

Now we define the subspace of oldforms Soldk (N) of Sk(N) as follows:

Soldk (N) :=
∑

dM | N,
M 6=N

Bd(Sk(M)).

Definition 2.1.9. The subspace of newforms of level N is defined to be the orthog-
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onal complement of the space Soldk (N) in Sk(N) with respect to the Petersson inner

product. We shall denote the subspace of newforms of level N by Snewk (N). Thus we

have

Sk(N) = Soldk (N)
⊕

Snewk (N).

We first note the following.

Theorem 2.1.10. The spaces Soldk (N) and Snewk (N) are stable under the action of

Hecke operators T (m) for all (m,N) = 1. Further, both the spaces Soldk (N) and

Snewk (N) have orthogonal basis consisting of Hecke eigenforms.

The following theorem captures the essential properties of Hecke eigenforms lying

in the newform space.

Theorem 2.1.11. Let f(z) =
∑∞

n=1 af (n)qn ∈ Snewk (N) be a Hecke eigenform.

Then we have the following:

1. af (1) 6= 0.

2. If af (1) = 1, then T (m)f = af (m)f for all (m,N) = 1.

3. Further assume that M | N and g(z) =
∑∞

m=1 ag(n)qn ∈ Sk(M) is an eigen-

form for all Hecke operators T (p) with (p,N) = 1. Now if the eigenvalues of

g are af (p) for all but finitely many primes p, then either M < N and g = 0

or M = N and g = λf for some λ ∈ C.

As an immediate corollary, we have the following.

Corollary 2.1.12. The space

Sk(N) =
⊕
M |N

⊕
d|(N/M)

Bd(S
new
k (M)).

Further, let H be an operator on the space Sk(N) which commutes with T (m) for

all (m,N) = 1. Then any Hecke eigenform is also an eigenfunction of H.
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2.1.4 Hecke eigenvalues and L-functions

Let

f(z) :=
∑
n≥1

af (n)qn ∈ Snewk (N)

be a normalized Hecke eigenform. Then Ramanujan-Petersson conjecture predicts

|af (p)| ≤ 2p(k−1)/2

for any prime (p,N) = 1. This was proved by Deligne [19] in 1974 as a consequence

of his proof of Weil’s conjecture. Note that the above Ramanujan-Petersson bound

implies that

|af (n)| ≤ d(n)n(k−1)/2 for all (n,N) = 1,

where d(n) denotes the number of positive divisors of n. Therefore we normalize

these eigenvalues as follows:

λf (n) :=
af (n)

n(k−1)/2
.

Thus the Ramanujan-Petersson bounds tells us

(2.1.3) |λf (n)| ≤ d(n) for all (n,N) = 1.

In this notation, Hecke relations turn out to be

(2.1.4) λf (1) = 1 and λf (m)λf (n) =
∑

d|(m,n),
(d,N)=1

λf

(mn
d2

)
.

Using (2.1.3), for any prime (p,N) = 1 one can write

(2.1.5) λf (p) := 2 cos θf (p),

where θf (p) ∈ [0, π].
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Thus for any m ∈ N, by the identity (2.1.4), we have

(2.1.6) λf (p
m) =


m+ 1 if θf (p) = 0,

(−1)m(m+ 1) if θf (p) = π,

sin[(m+1)θf (p)]

sin θf (p)
if θf (p) ∈ (0, π).

Note that λf (p
n) = 0 for some n ∈ N if and only if θf (p)/π ∈ Q \ {0, 1}. In fact, one

knows the following.

Lemma 2.1.13. Let f ∈ Snewk (N) be a normalized Hecke eigenform. Then for all

but finitely many primes p, one has either θf (p) ∈ {0, π/2, π} or θf (p)/π /∈ Q.

Further, if k ≥ 4 then we have either θf (p) ∈ {0, π/2, π} or θf (p)/π /∈ Q for all

primes p with (p,N) = 1.

Proof. The first part of the Lemma was proved in [68, Lemma 2.5] (also in [43,

Lemma 2.2]) whereas the second part follows from [68, Lemma 2.4].

Note that the above lemma does not tell us how often θf (p) = π/2, that is,

λf (p) = 0. This was studied extensively by Serre [91]. To state his result, we need

the following notions of CM and non-CM forms in the sense of Ribet [82].

Definition 2.1.14. Let f ∈ Snewk (N) be a normalized Hecke eigenform.

• We say that f has complex multiplication (or, of CM type) if there exists a

non-trivial Dirichlet character χ modulo D such that

af (p)χ(p) = af (p)

for all but finitely many primes p.

• A form is said to be a non-CM form or of non-CM type if it is not of CM type.
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One can show that if the level N is square-free, then there are no CM forms (see

[82], Section 3 and [83], Theorem 3.9 for details). With this notion of CM forms,

Serre [91] proved the following theorem.

Theorem 2.1.15. Let f(z) :=
∑

n≥1 af (n)qn ∈ Snewk (N) be a normalized Hecke

eigenform which is a non-CM form. Then for any 0 < δ < 1/2, we have

# {p ≤ x | (p,N) = 1, λf (p) = 0} � x

(log x)1+δ
.

In fact, one knows the following stronger statement.

Theorem 2.1.16. Let f(z) :=
∑

n≥1 af (n)qn ∈ Snewk (N) be a normalized Hecke

eigenform which is a non-CM form. For integer n ≥ 1, let

Pf,n :=
{
p ∈ P

∣∣ p - N and λf (p
n) = 0

}
.

Then for any x ≥ 2 and 0 < δ < 1/2, we have

#(Pf,n ∩ [1, x]) �f,δ
x

(log x)1+δ
.

Further, if Pf := ∪n∈NPf,n, then for any x ≥ 2 and 0 < δ < 1/2, we have

#(Pf ∩ [1, x]) �f,δ
x

(log x)1+δ
.

Here the implied constants depend on f and δ.

Proof of Theorem 2.1.16. For a proof of this theorem, we refer to Lemma

2.3 of Kowalski, Robert and Wu [43] (see also R. Murty and K. Murty [68, Lemma

2.5]).

Now we shall introduce Rankin-Selberg L-function associated to normalized

Hecke eigenforms f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) and list some of its analytic

69



properties which will be required to prove the theorems in the later chapters. Let

(2.1.7)

f(z) :=
∞∑
n=1

af (n)qn ∈ Snewk1
(N1) and g(z) :=

∞∑
n=1

ag(n)qn ∈ Snewk2
(N2)

be normalized Hecke eigenforms. Then the Rankin-Selberg L-function of f and g,

denoted by R(f, g; s), is defined as follows

R(f, g; s) :=
∑
n≥1

λf (n)λg(n)n−s.

It follows from (2.1.3) that R(f, g; s) is absolutely convergent for <(s) > 1. Let us set

M := gcd(N1, N2) and N := lcm[N1, N2]. Also assume that M,N are square-free.

By the works of Rankin [80] and Ogg [70, page 304], one knows that the function

ζN(2s)R(f, g; s) is entire if f 6= g, where ζN(s) is defined by

(2.1.8) ζN(s) :=
∏
p-N

(
1− p−s

)−1
for <(s) > 1.

We also have the completed Rankin-Selberg L-function

R∗(f, g; s) := (2π)−2sΓ(s+
k2 − k1

2
)Γ(s+

k1 + k2

2
−1)

∏
p|M

(1−cpp−s)−1ζN(2s)R(f, g; s)

with cp = ±1 depending on the forms f and g. By the works of Ogg (see [70,

Theorem 6]) and Li (see [50, Theorem 2.2]), one has

(2.1.9) R∗(f, g; s) = N1−2sR∗(f, g; 1− s).

2.2 Siegel modular forms

In this section, we shall list some definitions and properties of Siegel modular forms.

For this section, we shall follow the approach of Andrianov [3]. For simplicity of
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exposition we shall restrict ourselves in the case of degree g = 1, 2. Let us start by

defining Siegel modular forms.

For positive integer g = 1, 2, let Hg be the Siegel upper half-space of degree g

which is defined as follows:

Hg :=
{
Z ∈Mg(C) | Zt = Z, =(Z) > 0

}
.

Here the notation Y > 0 means that the real symmetric matrix Y is positive definite,

that is, for any non-zero column vector x, we have xtY x > 0. Note that the space

Hg is a g(g+1)/2-dimensional complex manifold. The Siegel modular group Spg(Z)

is defined by

Spg(Z) :=
{
M ∈M2g(Z) | M tJgM = Jg

}
,

where Jg :=

 0 1g

−1g 0

 and 1g is the g× g identity matrix. From now on, we shall

denote the Siegel modular group Spg(Z) by Γg.

Remark 2.2.1. Note that when g = 1, the Siegel upper half-space H1 denotes the

complex upper half-plane H. Also note that

Γ1 =


a b

c d

 ∈M2(Z)
∣∣
a c

b d


 0 1

−1 0


a b

c d

 =

 0 1

−1 0




=


a b

c d

 ∈M2(Z)
∣∣ ad− bc = 1

 .

Thus Γ1 is the full modular group Γ0(1).

Now we are ready to define Siegel modular form.

Definition 2.2.2. A holomorphic function F : Hg → C is said to be a Siegel modular

form of weight k for the group Γg if it satisfies the following properties:
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1. for any

A B

C D

 ∈ Γg and Z ∈ Hg, we have

F ((AZ +B)(CZ +D)−1) = det (CZ +D)kF (Z).

2. for any

A B

C D

 ∈ Γg, the function det(CZ+D)−kf((AZ+B)(CZ+D)−1) is

bounded in any domain of the form {Z ∈ Hg | =(Z)− c1g > 0} for any c > 0.

Remark 2.2.3. It is clear from the definition that the Siegel modular forms of degree

one are nothing but elliptic modular forms which were discussed in the previous

section. Thus the notion of Siegel modular form generalizes the notion of elliptic

modular form.

As in the case of elliptic modular forms, one can show that the set of all Siegel

modular forms of weight k for the group Γg is a finite dimensional complex vector

space. We shall denote this vector space by Mk(Γg).

Example 2.2.4. Let A be a symmetric positive definite integral matrix with even

diagonal entries and det A = 1. Also assume that the order m of A is divisible by

8. Then for every g = 1, 2, ...,m, the theta series of A is defined as follows:

Θ
(g)
A (Z) :=

∑
X∈Mm,g(Z)

exp(πitr(X tAXZ)) =
∑
B

rA(B)exp(πitr(BZ)).

Here Z ∈ Hg and B ranges over all integral g×g matrices with even diagonal entries

satisfying Bt = B, B ≥ 0 and rA(B) is defined as follows:

rA(B) := #

{
G ∈Mm,g(Z)

∣∣ 1

2
GtAG = B

}
.

It can be shown that this is a Siegel modular form of degree g and weight m/2 for Γg.
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Like elliptic modular forms, any F ∈Mk(Γg) has Fourier expansion as follows:

F (z) =
∑
M≥0

aF (M)e2πitr(Mz),

where the summation runs over the set of all symmetric g× g half-integral matrices

M with integral diagonal entries satisfying M ≥ 0, that is, the summation runs over

the set {
M ∈Mg(Q) | M t = M, mii, 2mij ∈ Z, M ≥ 0

}
.

Similarly, we define the space Sk(Γg) of Siegel cusp forms of weight k and of degree

g as follows:

Sk(Γg) := {F ∈Mk(Γg) | aF (M) = 0 unless M > 0} .

As in the previous section, we shall investigate a basis of the space Sk(Γg) which is

good for our purpose.

2.2.1 Petersson inner product

On the space of Siegel modular forms, we shall define an invariant inner product

such that the space of cusp forms Sk(Γg) will be a Hilbert space. For F,G ∈ Sk(Γg),

consider the following differential form on Hg:

ωk(F,G)(Z) := F (Z)G(Z) det(=(Z))kd∗Z,

where d∗Z is the invariant measure on Hg and is defined by

d∗Z := det(=(Z))−(g+1)
∏
α≤β

dxαβdyαβ, Z = (xαβ) + i(yαβ).
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It can be shown that ωk(F,G)(Z) is invariant under the action of Γg. Thus on the

space Sk(Γg), we have the following inner product

(2.2.1) 〈F,G〉 :=

∫
Γg\Hg

ωk(F,G)(Z).

Note that if we restrict ourselves to g = 1, the above inner product coincides with

the inner product defined by (2.1.2) when N = 1. Also note that as in the case of

elliptic modular forms the integral (2.2.1) converges absolutely if at least one of F

or G is a cusp form. The inner product defined above is known as the Petersson

inner product.

2.2.2 Hecke operators on Mk(Γg)

Let us start by defining the Hecke operators on the space of Siegel modular forms

Mk(Γg).

Definition 2.2.5. For any positive integer n and g = 1, 2, the Hecke operator Tg(n)

on the space Sk(Γg) is defined by

Tg(n)F := ngk−
g(g+1)

2

∑
γ∈Γg\Og,n

F | γ,

where

Og,n :=
{
γ ∈M2g(Z) | γtJgγ = nJg

}
, Jg :=

 0 1g

−1g 0


and

F | γ := det (CZ +D)−kF ((AZ +B)(CZ +D)−1), γ :=

A B

C D

 .

Here we have
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Theorem 2.2.6. Following statements are true.

1. The spaces Mk(Γg) and Sk(Γg) are stable under the action of all Hecke opera-

tors Tg(n).

2. For n,m ∈ N, we have Tg(n)Tg(m) = Tg(m)Tg(n). Further, if (n,m) = 1, we

have Tg(n)Tg(m) = Tg(mn).

3. For any F,G ∈ Sk(Γg) and any m ∈ N, we have 〈Tg(m)F,G〉 = 〈F, Tg(m)G〉.

Using Theorem 2.1.4, as an immediate corollary, we have the following.

Corollary 2.2.7. The space Sk(Γg) has a basis consisting of eigenfunctions of Hecke

operators Tg(m) for all m ≥ 1.

Definition 2.2.8. A cusp form F ∈ Sk(Γg) is said to be a Hecke eigenform if it is

an eigenfunction of all Hecke operators Tg(m), m ≥ 1.

One can define Siegel modular forms of higher levels in a similar way. As com-

mented in [74, page 2], there is no good theory of oldforms and newforms in this

context. Hence we restrict ourselves to level one in this thesis.

2.2.3 Hecke eigenvalues and L-functions

In this subsection, we shall restrict ourselves to the case g = 2. Let F ∈ Sk(Γ2) be a

Hecke eigenform with eigenvalues {µF (m)}m∈N, that is, T2(m)F = µF (m)F for all

m ∈ N. Now by Theorem 2.2.6, we know that µF is a multiplicative function. In the

space Sk(Γ2), there is a canonically defined subspace S∗k which is known as Maass

subspace. One knows that the subspace S∗k and its orthogonal complement are stable

under the action of all Hecke operators. Here we restrict ourselves in the orthogonal

complement of the Maass subspace and we shall discuss the properties of Hecke

eigenvalues of an eigenform lying in the Maass subspace in the next subsection.
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If F ∈ Sk(Γ2) is a Hecke eigenform which does not lie in the Maass subspace,

by an important work of Weissauer [99], one knows that F satisfies the generalized

Ramanujan-Petersson conjecture, that is, for any ε > 0, one has

µF (n) �ε nk−3/2+ε.

We shall normalize these eigenvalues as follows:

λF (n) :=
µF (n)

nk−3/2
for any n ∈ N.

The normalized Hecke eigenvalues satisfies the following relation: for any prime p

and any integer n ≥ 3, we have

λF (pn) = λF (p)λF (pn−1)−
[
λ2
F (p)− λF (p2)− 1

p

]
λF (pn−2) + λF (p)λF (pn−3)

−λF (pn−4)

with the assumption that λF (pn−m) = 0 for n < m. Following Andrianov [3], to each

Hecke eigenform F ∈ Sk(Γ2), we shall attach an L-function which is now known as

Andrianov L-function or Spinor zeta function as follows:

(2.2.2) ZF (s) := ζ(2s+ 1)
∞∑
n=1

µF (n)

ns+k−3/2
= ζ(2s+ 1)

∞∑
n=1

λF (n)

ns
.

The analytic properties of this function were studied by Andrianov [3] and Oda [71].

More precisely by their works we have the following theorem.

Theorem 2.2.9. Let F ∈ Sk(Γ2) be a Hecke eigenform with normalized Hecke eigen-

values {λF (m)}m∈N. Define ZF (s) as in (2.2.2). Then the completed L-function

Z∗F (s) := (2π)−2sΓ(s+ 1/2)Γ(s+ k − 3/2)ZF (s)
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can be continued as a meromorphic function in C having at most finitely many poles.

Also it satisfies the functional equation Z∗F (1− s) = (−1)kZ∗F (s). Further, if F does

not lie in the Maass subspace then the function Z∗F (s) is entire; otherwise, Z∗F (s)

has simple poles only at s = 3/2,−1/2.

Next we consider the Rankin-Selberg L-function associated to Siegel Hecke eigen-

forms. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms with the normalized

Hecke eigenvalues {λF (n)}n∈N and {λG(n)}n∈N respectively. Also assume that both

F and G do not lie in the Maass subspace. Further, let ZF (s) and ZG(s) be the

Spinor zeta functions associated to F and G respectively. We write

ZF (s) :=
∏
p∈P

4∏
i=1

(
1− αp,ip−s

)−1
(2.2.3)

and ZG(s) :=
∏
p∈P

4∏
i=1

(
1− βp,ip−s

)−1
.

By the work of Weissauer [99], one knows that |αp,i| = 1 = |βp,j| for 1 ≤ i, j ≤ 4.

The Rankin-Selberg L-function L(F ×G, s) associated to F and G is now defined as

follows:

(2.2.4) L(F ×G, s) :=
∏
p∈P

∏
1≤i,j≤4

(
1− αp,iβp,jp−s

)−1
.

This Euler product is absolutely convergent for <(s) > 1. In fact, by the work of

Pitale, Saha and Schmidt [74, Theorem C, p. 14], we have the following theorem.

Theorem 2.2.10. Let F ∈ Sk1(Γ2), G ∈ Sk2(Γ2), ZF (s), ZG(s) and L(F × G, s) be

as above. Then the infinite product in (2.2.4) converges absolutely in the region

<(s) > 1, the function L(F ×G, s) can be continued analytically as a meromorphic

function to C and does not vanish on the line <(s) = 1. Moreover, the function

L(F × G, s) is entire except in the case when k1 = k2 and µF (n) = µG(n) for all

n ∈ N. In the last case, the function L(F ×G, s) has a simple pole at s = 1.

77



One can define a naive Rankin-Selberg L-function as follows:

(2.2.5) L(F,G; s) :=
∞∑
n=1

λF (n)λG(n)

ns
.

Note that this series L(F,G; s) is also absolutely convergent for <(s) > 1. In fact,

Das, Kohnen and Sengupta [18] proved the following.

Theorem 2.2.11. Let F ∈ Sk(Γ2) be a Hecke eigenform with normalized Hecke

eigenvalues {λF (n)}n∈N. Further assume that F does not lie in the Maass sub-

space. Then the function L(F, F ; s) can be continued as a meromorphic function to

<(s) > 1/2 with only a simple pole at s = 1. Moreover, for sufficiently large x and

any ε > 0, we have

∑
n≤x

λ2
F (n) = cFx+O

(
k5/16x31/32+ε

)
,

where cF > 0 is the residue of the L-function L(F, F ; s) at s = 1.

This suggests that the Hecke eigenvalues do not vanish often. In fact, as in the

case elliptic modular forms, by a work of Kowalski and Saha [85, Appendix], we

have the following.

Theorem 2.2.12. Let F ∈ Sk(Γ2) be a Hecke eigenform with eigenvalues µF (n) for

n ∈ N. Also assume that F lies in the orthogonal complement of Maass subspace.

Then there exists δ > 0 such that

# {p ≤ x | µF (p) = 0} � x

(log x)1+δ
.

2.2.4 Maass subspace

In this subsection, we shall consider the Maass subspace and the Hecke eigenvalues

of an eigenform lying in this subspace.
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For g = 1 and a normalized Hecke eigenform f(z) =
∑∞

n=1 af (n)qn ∈ Sk(Γ1), by

a theorem of Deligne [19], we know that |af (p)| ≤ 2p(k−1)/2 for any prime p. For

g = 2, the generalized Ramanujan-Petersson conjecture predicts that

µF (p) � pk−3/2.

But in 1978, Kurokawa [46] and Saito independently found examples of Siegel Hecke

eigenforms which contradicts this expectation. Kurokawa explicitly worked out nine

counterexamples to the generalized Ramanujan-Petersson conjecture. Based on his

computation, Kurokawa [46] suggested the following conjecture.

Conjecture 2.2.13. Let k ≥ 10 be an even integer. Then there exists a one-one C-

linear map ψk : S2k−2(Γ1) → Sk(Γ2) with the following properties: if f ∈ S2k−2(Γ1)

is a normalized Hecke eigenform with eigenvalues {af (n)}n∈N, then F := ψk(f) is

a Hecke eigenform (with the eigenvalues {µF (n)}n∈N) which satisfies the following:

(2.2.6) ζ(2s− 2k + 4)
∞∑
n=1

µF (n)

ns
= ζ(s− k + 2)ζ(s− k + 1)

∞∑
n=1

af (n)

ns
.

Soon after this work, Maass [54, 55, 56] studied a subspace S∗k of the space Sk(Γ2)

which is defined as follows:

S∗k :=

F ∈ Sk(Γ2)
∣∣ aF

 n r/2

r/2 m

 =
∑

d|(n,m,r)

dk−1aF

nm/d2 r/2d

r/2d 1


∀

 n r/2

r/2 m

 > 0

 ,

where aF (M) is the Fourier coefficient of F ∈ Sk(Γ2). In his works, the space S∗k was

called as Spezialschar but now it is known as Maass subspace. He also established

a relation between the Maass subspace S∗k and the image of the conjectural map

ψk : S2k−2 → Sk(Γ2). More precisely, by the works of Maass [54, 55, 56], Andrianov
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[4] and Zagier [103] (also see [20]), we have the following theorem.

Theorem 2.2.14. The Maass subspace S∗k is stable under the action of Hecke op-

erators T2(m) for all m ∈ N and is spanned by Hecke eigenforms. These are in

one-to-one correspondence with normalized Hecke eigenforms f ∈ S2k−2(Γ1), the

correspondence being such that (2.2.6) holds.

2.3 A Comparison

Here we give a table indicating similarities and differences between the theories of

elliptic modular forms and of Siegel modular forms of degree two.

Elliptic modular forms Siegel modular forms of degree two

1. The full modular group SL2(Z) is The full Siegel modular group Sp2(Z)

defined as is defined as
a b

c d

 ∈M2(Z)
∣∣ ad− bc = 1

 .

M :=

A B

C D

 ∈M4(Z)
∣∣ M tJ2M = J2

 ,

where A,B,C,D ∈M2(Z).

2. The upper half plane H is defined The Siegel upper half space of degree

as follows: two is defined as follows:

H :=
{
z ∈ C | =(z) > 0

}
. H2 := {Z ∈M2(C) | Zt = Z, =(Z) > 0} .

Here Y > 0 means that it is positive

definite.

3. The action of SL2(Z) on H is The group Sp2(Z) acts on H2 in a

defined as follows: similar way:

SL2(Z)×H → H Sp2(Z)×H2 → H2
a b

c d

 , z

 7→ az+b
cz+d

.


A B

C D

 , Z

 7→ (AZ +B)(CZ +D)−1.
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Elliptic modular forms Siegel modular forms of degree two

4. The set of modular forms Mk(SL2(Z)) The space of Siegel modular forms

of weight k for SL2(Z) is a finite Mk(Sp2(Z)) of weight k for Sp2(Z)

dimensional complex vector space. is a finite dimensional complex vector

space.

5. Let f ∈Mk(SL2(Z)). Then it has Any F ∈Mk(Sp2(Z)) has Fourier

Fourier expansion as follows: expansion as follows:

f(z) :=
∑∞

n=0 af (n)e2πinz. F (Z) :=
∑

N≥0 aF (N)e2πitr(NZ).

Here the above summation runs over

the set of all 2× 2 symmetric positive

semi-definite half-integral matrices

having integral diagonal entries.

6. The space of cups forms Sk(SL2(Z)) One can define the space of cups forms

can be defined as follows: Sk(Sp2(Z)) by

{f ∈Mk(SL2(Z)) | af (0) = 0} . {F ∈Mk(Sp2(Z)) | aF (N) = 0

if N is not positive definite} .

7. One has well defined Hecke operators One has the notion of Hecke operators

on the space Mk(SL2(Z)). Both the on the space Mk(Sp2(Z)). As in the case

spaces Mk(SL2(Z)) and Sk(SL2(Z)) of elliptic modular forms, both the

are stable under the action of Hecke spaces Mk(Sp2(Z)) and Sk(Sp2(Z)) are

operators. stable under the action of Hecke

operators.

8. The space Sk(SL2(Z)) is a finite dim- One can define an inner product known

ensional Hilbert space with respect to as Petersson inner product on the space

the Petersson inner product. Also the Sk(Sp2(Z)). Also in this case the Hecke

Hecke operators are Hermitian and operators are Hermitian and commute

commute with each other. Hence with each other. Hence there exists a
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there exists a basis of Sk(SL2(Z)) basis of Sk(Sp2(Z)) consisting of

consisting of eigenvectors of all eigenvectors of all Hecke operators.

Hecke operators.

9. For higher level elliptic modular For higher level Siegel modular forms,

forms, the theory of newforms is well there is also a theory of newforms. For

developed. Further, strong multiplicity the status of multiplicity one theorem

one theorem holds for Hecke eigen- see Schmidt [89] and Atobe [7].

forms which are newforms.

10. For a normalized Hecke eigenform There are no good relation between

Fourier coefficients and Hecke Fourier coefficients and Hecke eigen-

eigenvalues are equal. values. The Fourier coefficients are

indexed by certain matrices, hence

we do not know what would be

the analogue of the notion of

multiplicative function here.

11. Hecke eigenvalues satisfy Ramanujan- These Hecke eigenvalues also satisfy

Petersson bound. Further, Hecke the generalised Ramanujan-Petersson

eigenvalues are multiplicative and bound if the corresponding eigenforms

satisfy a recurrence relation of degree do not lie in the Maass subspace. In

two. this case, Hecke eigenvalues are

multiplicative but they satisfy a

recurrence relation of degree four.

12. With each normalized Hecke eigen- In this context, one can attach an

form, one can attach an L-function. L-function with a Hecke eigenform.

It is known that the completed L- This L-function is known as spinor zeta

function satisfies functional equation function or Andrianov L-function. One
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and can be extended analytically also knows that the completed spinor

to C as an entire function. zeta function satisfies functional equa-

tion and can be extended analytically

to C as a meromorphic function with

at most finitely many poles. Further, it

is entire if and only if Hecke eigenform

does not lie in the Maass subspace.

13. Analytic properties of Rankin-Selberg Analytic properties of Rankin-Selberg

L-function attached to two normalized L-function are known only for level

Hecke eigenforms f and g are known one.

for arbitrary level.

14. It is known that the Hecke eigenvalues The Hecke eigenvalues of a Hecke

change sign infinitely often and satisfy eigenform lying in the Maass subspace

Sato-Tate distribution. are always positive. Further, if a Hecke

eigenform does not lie in the Maass

subspace, then its Hecke eigenvalues

change sign infinitely often. But we do

not know analogous Sato-Tate

distribution in this context.

2.4 B-free numbers

In order to estimate the gap between two consecutive square-free integers, Erdös [22]

introduced the notion of B-free numbers as follows:

Definition 2.4.1. Let B := {bk ∈ N | 1 < b1 < b2 < · · · } be an infinite set such
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that

(bi, bj) = 1 for i 6= j and
∑
i≥1

1

bi
< ∞.

We say that a number n ∈ N is B-free if it is not divisible by any element of the

set B.

In the same paper, he proved the existence of an absolute constant θ < 1 such

that for sufficiently large x > 0 every intervals [x, x+xθ) contains a B-free number.

Further, he conjectured the following:

Conjecture 2.4.2. For any θ > 0, there exists NB such that for any x > NB the

interval [x, x+ xθ) contains at least one B-free number.

A lot of work has been done to improve the values of θ. For instance [θ > 1/2,

[97]], [θ > 9/20, [9]], [θ > 17/41, [100]], [θ > 33/80, [104]] and [θ > 40/97, [87]]

to name a few. In this direction, Granville [25] showed that Conjecture 2.4.2 is

true in the case of square-free integers if one assumes that ABC Conjecture is true.

Unconditionally, Filaseta and Trifonov [23] proved that θ can be chosen to be any

number > 1/5 in the case of square-free numbers.

One of the most interesting applications of B-free numbers is in the study of

non-vanishing of Hecke eigenvalues of modular forms. In this connection, Kowalski,

Robert and Wu [43] considered a special set of B-free numbers which occurs in the

study of non-vanishing of Hecke eigenvalues of modular forms. We discuss it briefly

here.

Let P be a subset of P such that

(2.4.1) # (P ∩ [1, x]) �P
xρ

(log x)η

where ρ ∈ [0, 1] and η is non-negative real numbers with the assumption that η > 1
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when ρ = 1. We define

(2.4.2) BP := P ∪
{
p2 | p ∈ P −P

}
.

Write BP = {bi | i ∈ N}. Note that (bi, bj) = 1 for all bi, bj ∈ BP with bi 6= bj. To

show
∑

i∈N 1/bi <∞, it is enough to show that
∑

p∈P 1/p <∞. Applying equation

(2.4.1) and partial summation formula, we have

∑
p≤x,
p∈P

1

p
=

1

x

∑
p≤x,
p∈P

1 +

∫ x

2

1

t2
(
∑
p≤t,
p∈P

1)dt �P
xρ−1

(log x)ηρ
+

∫ x

2

tρ−2

(log t)ηρ
dt �P 1.

With these notations, Kowalski, Robert and Wu (see Corollary 10 of [43]) proved

the following theorem.

Theorem 2.4.3. Let P and BP be as above. Then for any ε > 0 there exists

x0(P, ε) > 0 such that

# {x < n ≤ x+ y | n is BP-free} �P,ε y

for any x > x0(P, ε) and y ≥ xθ(ρ)+ε, where

(2.4.3) θ(ρ) :=



1
4

if 0 ≤ ρ ≤ 1
3
;

10ρ
19ρ+7

if 1
3
< ρ ≤ 9

17
;

3ρ
4ρ+3

if 9
17
< ρ ≤ 15

28
;

5
16

if 15
28
< ρ ≤ 5

8
;

22ρ
24ρ+29

if 5
8
< ρ ≤ 9

10
;

7ρ
9ρ+8

if 9
10
< ρ ≤ 1.

In 2005, Alkan and Zaharescu [1] considered B-free numbers in arithmetic pro-

gressions and proved the existence of B-free numbers in short arithmetic progres-
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sions. In order to study non-vanishing of Hecke eigenvalues of modular forms, Wu

and Zhai (see Proposition 4.1 of [102]) have considered the set BP and studied the

properties of BP-free numbers in short arithmetic progression. In particular, they

proved the following theorem.

Theorem 2.4.4. Let BP be as in (2.4.2). Then for any ε > 0 there exists x0(P, ε) >

0 such that for any x ≥ x0(P, ε), y ≥ xψ(ρ)+ε and 1 ≤ a ≤ q ≤ xε with (a, q) = 1,

we have

# {x < n ≤ x+ y | n is BP-free and n ≡ a (mod q)} �P,ε
y

q
,

where

(2.4.4) ψ(ρ) :=


29ρ

46ρ+19
if 190

323
< ρ ≤ 166

173
;

17ρ
26ρ+12

if 166
173

< ρ ≤ 1.
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Chapter 3

Sign changes of Hecke eigenvalues

of modular forms

Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigenforms with Fourier

expansions as follows:

f(z) :=
∞∑
n=1

af (n)qn =
∞∑
n=1

n(k1−1)/2λf (n)qn(3.0.1)

and g(z) :=
∞∑
n=1

ag(n)qn =
∞∑
n=1

n(k2−1)/2λg(n)qn.

The question of sign changes of {af (n)}n∈N has been studied extensively by several

mathematicians (see for example [13], [38], [39], [41], [48], [57], [64]). In this chapter,

we shall investigate sign changes of {af (n)ag(n)}n∈N when f 6= g.

We start by proving a variant of classical Sturm’s theorem. The simultaneous

sign changes of Hecke eigenvalues in short intervals are considered in section 3.2.

In sections 3.3 and 3.4, we shall study distribution of Hecke eigenvalues of non-CM

forms and CM forms respectively. In these two sections, we shall list some of the

results from the literature regarding the distribution of these Hecke eigenvalues and

derive certain variants of these results which are required to prove our theorems.
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Moreover, we shall derive some new results in these sections. In the last section,

we link the question of sign changes to multiplicity one theorem and use this in the

study of sign changes of Hecke eigenvalues. This chapter is based on two joint works;

first one is joint paper with Gun and Kumar [28] and second one is joint paper with

Gun [30].

3.1 A variant of Sturm’s theorem

As mentioned in the introduction of this thesis, we know that the signs of the Hecke

eigenvalues determine normalized Hecke eigenforms uniquely. Here we address the

following question.

Question: Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-

forms with eigenvalues {af (n)}n∈N and {ag(n)}n∈N respectively. Can we determine

whether f = g by the signs of their first few Hecke eigenvalues?

We answer this question positively by proving the following theorem.

Theorem 3.1.1. Let N1, N2 be square-free integers, N := lcm [N1, N2] and f ∈

Snewk1
(N1), g ∈ Snewk2

(N2) be two distinct normalized Hecke eigenforms with the

Fourier expansions as in (3.0.1). Then for any ε > 0, there exists a prime power

pα, α ≤ 2 with

pα �ε max
{

exp
[
c log2

(√
q(f) +

√
q(g)

)]
,
[
N2 (1 + |k2 − k1|) (k1 + k2)

]1+ε
}

such that af (p
α)ag(p

α) < 0. Here c > 0 is an absolute constant and q(f), q(g) are

analytic conductors of the Rankin-Selberg L-functions of f and g respectively.

To prove this theorem, we rely on an idea of Iwaniec, Kohnen and Sengupta

[36], analytic properties of Rankin-Selberg L-functions associated to f and g and
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the prime number theorem for these L-functions. The above theorem can be com-

pared with the results of Lau, Liu and Wu [48], Kohnen [37], Kowalski, Michel and

Vanderkam [42], R. Murty [65] and Sengupta [90].

3.1.1 Proof of Theorem 3.1.1

Through out we assume N1, N2, N are as in Theorem 3.1.1, M := (N1, N2) and

1 < k1 ≤ k2 are positive integers. We start by proving the following propositions.

Proposition 3.1.2. Let N1, N2, N,M, k1 and k2 be as before. Also let f ∈ Snewk1
(N1)

and g ∈ Snewk2
(N2) be distinct normalized Hecke eigenforms. Then for any t ∈ R and

ε > 0, one has

ζN(2 + 2ε+ 2it)R(f, g; 1 + ε+ it) �ε 1,

ζN(−2ε+ 2it)R(f, g;−ε+ it)�ε

[
N2

(
1 +

k2 − k1

2

)(
k1 + k2

2

)
|1 + it|2

](1+2ε)

where ζN(s) is defined in (2.1.8).

Proof of Proposition 3.1.2. Since

|ζN(2 + 2ε+ 2it)| ≤ ζ(2 + 2ε) ·
∏
p

(1 + p−2−2ε) =
ζ2(2 + 2ε)

ζ(4 + 4ε)
� 1

and |R(f, g; 1 + ε+ it)| ≤
∑
n≥1

∣∣∣∣λf (n)λg(n)

n1+ε+it

∣∣∣∣ ≤ ∑
n≥1

d(n)2

n1+ε
�ε 1,

we have the first inequality. To derive the second inequality, we use functional

equation. From the functional equation (2.1.9), we have

ζN(2− 2s) ·R(f, g; 1− s) =

(
N

4π2

)2s−1

·
Γ(s+ k2−k1

2
)

Γ(1− s+ k2−k1
2

)
(3.1.1)

·
Γ(s+ k1+k2

2
− 1)

Γ(−s+ k1+k2
2

)
·
∏
p|M

(
1− cpps−1

1− cpp−s

)
· ζN(2s) ·R(f, g; s).
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Using Stirling’s formula (see page 57 of [34]), for any t ∈ R, we have

∣∣∣∣∣Γ(1 + k2−k1
2

+ ε+ it)

Γ(k2−k1
2
− ε+ it)

∣∣∣∣∣ �ε

(
1 +

k2 − k1

2

)1+2ε

|1 + it|1+2ε

and

∣∣∣∣∣ Γ(k1+k2
2

+ ε+ it)

Γ(k1+k2
2
− 1− ε+ it)

∣∣∣∣∣ �ε

(
k1 + k2

2

)1+2ε

|1 + it|1+2ε.

For all t ∈ R, we also have

∣∣∣∣∣∣
∏
p|M

(1− cpp−1−ε−it)−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏
p|M

∑
m≥0

(cpp
−1−ε−it)m

∣∣∣∣∣∣ ≤
∏
p|M

∑
m≥0

(p−1−ε)m �ε 1

and∣∣∣∣∣∣
∏
p|M

(1− cppε+it)

∣∣∣∣∣∣ =
∏
p|M

∣∣1− cppε+it∣∣ ≤ ∏
p|M

(1 + pε) ≤
∏
p|M

p1+ε = M1+ε.

Putting s = 1 + ε− it in equation (3.1.1) and using the above estimates along with

the first inequality, we get the second inequality.

The next proposition provides convexity bound for the Rankin-Selberg L-function

R(f, g; s).

Proposition 3.1.3. Let N1, N2, N,M, k1, k2, f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be as

in Proposition 3.1.2. Then for any t ∈ R, ε > 0 and 1/2 < σ < 1, one has

R(f, g;σ + it) �ε N2(1−σ+ε)

(
1 +

k2 − k1

2

)1−σ+ε(
k1 + k2

2

)1−σ+ε (
3 + |t|

)2(1−σ)+ε
.

To prove this proposition, we shall use the following strong convexity principle

due to Rademacher [76].

Proposition 3.1.4. Let g be a continuous function on the closed strip a ≤ σ ≤ b,
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holomorphic and of finite order on a < σ < b. Further suppose that

|g(a+ it)| ≤ E|P + a+ it|α, |g(b+ it)| ≤ F |P + b+ it|β

where E,F are positive constants and P, α, β are real constants satisfying

P + a > 0, α ≥ β.

Then for all a < σ < b and for all t ∈ R, we have

|g(σ + it)| ≤
(
E|P + σ + it|α

) b−σ
b−a
(
F |P + σ + it|β

)σ−a
b−a .

We are now ready to prove Proposition 3.1.3.

Proof of Proposition 3.1.3. We apply Proposition 3.1.4 with

a = − ε, b = P = 1 + ε, F = C2,

E = C1N
2+4ε

(
1 +

k2 − k1

2

)1+2ε(
k1 + k2

2

)1+2ε

, α = 2 + 4ε, β = 0,

where C1, C2 are absolute constants depending only on ε. Thus for any −ε < σ <

1 + ε, we have

ζN(2σ + 2it)R(f, g;σ + it) �ε

[
N

2+4ε
1+2ε

(
1 +

k2 − k1

2

)(
k1 + k2

2

)]1−σ+ε

·
(
1 + σ + ε+ |t|

)2(1−σ+ε)
.

Note that for 1/2 < σ < 1 + ε, one knows

|ζN(2σ + 2it)|−1 �ε log log(N + 2) · |1 + it|ε.

Combining all together, we get Proposition 3.1.3.
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As an immediate corollary, we have the following.

Corollary 3.1.5. Let N1, N2, N,M, k1, k2, f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be as in

Proposition 3.1.3. Then for any t ∈ R and any ε > 0, one has

R(f, g; 3/4 + it) �ε

[
N2

(
1 +

k2 − k1

2

)(
k1 + k2

2

)]1/4+ε (
3 + |t|

)1/2+ε
.

Proposition 3.1.6. Let N1, N2, N,M, k1 and k2 be as in Proposition 3.1.3. Also

assume that f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) are distinct normalized Hecke eigen-

forms. Then for any ε > 0, one has

(3.1.2)∑
n≤x,

(n,N)=1
n square-free

λf (n)λg(n) log2(x/n) �ε

[
N2

(
1 +

k2 − k1

2

)(
k1 + k2

2

)]1/4+ε

x3/4.

Proof of Proposition 3.1.6. Using Deligne’s bound, we know that

λf (n)λg(n) �ε nε

for any ε > 0. Hence by Perron’s summation formula (see page 56 and page 67 of

[66]), we have

∑
n≤x

(n,N)=1
n square-free

λf (n)λg(n) log2(x/n) =
1

πi

∫ 1+ε+i∞

1+ε−i∞
R[(f, g; s)

xs

s3
ds

where

R[(f, g; s) =
∏
p-N

(
1 +

λf (p)λg(p)

ps

)
, <(s) > 1.

Further, we have

(3.1.3) H(s)R(f, g; s) = R[(f, g; s),
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where H(s) is a Dirichlet series which converges normally in <(s) > 1/2. Now we

shift the line of integration to <(s) = 3/4. Observing that there are no singularities

in the vertical strip bounded by the lines with <(s) = 1 + ε and <(s) = 3/4 and

using Proposition 3.1.3 along with the identity (3.1.3), we have

∣∣∣∣ 1

πi

∫ 1+ε+iT

3/4+iT

R[(f, g; s)
xs

s3
ds

∣∣∣∣ � x1+ε

T 3

∫ 1+ε

3/4

|R[(f, g;σ + iT )|dσ

=
x1+ε

T 3

∫ 1+ε

3/4

|H(σ + iT )R(f, g;σ + iT )|dσ

�N,k1,k2

x1+ε

T 3
· T 2(1−3/4)+ε

∫ 1+ε

3/4

dσ → 0,

as T →∞ and similarly

∣∣∣∣∣ 1

πi

∫ 3/4−iT

1+ε−iT
R[(f, g; s)

xs

s3
ds

∣∣∣∣∣→ 0

as T →∞. Hence we have

∑
n≤x,

(n,N)=1
n square-free

λf (n)λg(n) log2(x/n) =
1

πi

∫ 3/4+i∞

3/4−i∞
R[(f, g; s)

xs

s3
ds.

The above observations combined with Corollary 3.1.5 then imply that

∑
n≤x,

(n,N)=1
n square-free

λf (n)λg(n) log2(x/n) �ε N
1/2+ε

(
1 +

k2 − k1

2

)1/4+ε(
k1 + k2

2

)1/4+ε

x3/4.

This completes the proof of the proposition.

Our next proposition will play a key role in proving Theorem 3.1.1.

Proposition 3.1.7. For square-free integers N1, N2, let f ∈ Snewk1
(N1) and g ∈

Snewk2
(N2) be normalized Hecke eigenforms such that f 6= g and N := lcm [N1, N2].

Further for any positive integer α ≤ 2, let us assume that λf (p
α)λg(p

α) ≥ 0 for all
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pα ≤ x. Then for any x ≥ exp[c log2(
√
q(f) +

√
q(g))], we have

∑
n≤x,

(n,N)=1
n square-free

λf (n)λg(n) � x

log2 x
,

where c > 0 is an absolute constant and q(f), q(g) are analytic conductors of the

L-functions of f ⊗ f and g ⊗ g respectively.

Remark 3.1.8. Using the functional equation (2.1.9), we see that

(3.1.4) q(f) � k2
1N

2
1 log logN1 and q(g) � k2

2N
2
2 log logN2.

Proof of Proposition 3.1.7. Using Hecke relation (2.1.4), for any prime (p,N) = 1,

we know that

λf (p
2)λg(p

2) = [λf (p)λg(p)]
2 − λf (p)

2 − λg(p)
2 + 1.

By hypothesis, one has λf (p
2)λg(p

2) ≥ 0 for all p ≤
√
x. Hence for any p ≤

√
x and

(p,N) = 1, we have

λf (p)
2λg(p)

2 ≥ λf (p)
2 + λg(p)

2 − 1.

This implies that

∑
p≤
√
x,

(p,N)=1

λf (p)
2λg(p)

2 ≥
∑
p≤
√
x,

(p,N)=1

λf (p)
2 +

∑
p≤
√
x,

(p,N)=1

λg(p)
2 −

∑
p≤
√
x,

(p,N)=1

1.

We would like to apply the prime number theorem to the L-functions of f ⊗ f and

g⊗ g respectively (see [35], pages 94-95, 110-111 for further details). In order to do

this, we need to verify that there is no zero of L(s, f ⊗ f) := ζN(2s)R(f, f ; s) in
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the region

(3.1.5) <(s) ≥ 1 − c2

log [q(f)(|=(s)|+ 3)]
,

where c2 > 0 is an absolute constant with at most one exceptional real zero βf⊗f in

this region. Further, we need to verify the estimate

(3.1.6)
∑
n≤x

|Λf⊗f (n)|2 � x log2 (xq(f)),

where the implied constant is absolute. We see that the identity (3.1.5) holds by

Theorem 5.44 of [35] (see pages 139-140 of [35] for further details) and the fact that

the Riemann zeta function has the following zero-free region

<(s) ≥ 1− c′

log [|=(s)|+ 3]
,

where c′ > 0 is an absolute constant with no exceptional real zero. Using the

Ramanujan-Petersson bound, we can easily deduce the identity (3.1.6). Now by

applying the prime number theorem to the L-functions of f⊗f and g⊗g respectively,

we see that ∑
p≤
√
x,

(p,N)=1

λf (p)
2λg(p)

2 ≥
√
x

log x

provided x ≥ exp(c log2(
√
q(f) +

√
q(g))), where c > 0 is an absolute constant and

q(f), q(g) are as in equation (3.1.4). Using the hypothesis

λf (p)λg(p) ≥ 0 and λf (p
2)λg(p

2) ≥ 0
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for all p, p2 ≤ x and assuming that x ≥ exp(c log2(
√

q(f) +
√

q(g))), we have

∑
n≤x,

(n,N)=1
n square-free

λf (n)λg(n) ≥ 1

2

∑
p,q≤

√
x,

(pq,N)=1,
p6=q

λf (pq)λg(pq)

=
1

2

 ∑
p≤
√
x,

(p,N)=1

λf (p)λg(p)


2

− 1

2

∑
p≤
√
x,

(p,N)=1

λf (p)
2λg(p)

2.

Now using Deligne’s bound, we get

∑
n≤x,

(n,N)=1
n square-free

λf (n)λg(n) ≥ 1

2

 ∑
p≤
√
x,

(p,N)=1

λf (p)λg(p)
λf (p)λg(p)

4


2

− 8
∑
p≤
√
x,

(p,N)=1

1

=
1

32

 ∑
p≤
√
x,

(p,N)=1

λf (p)
2λg(p)

2


2

+ O

( √
x

log x

)

� x

log2 x
.

This completes the proof of the proposition.

We are now in a position to complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Assume that λf (p
α)λg(p

α) ≥ 0 for all pα ≤ x with

α ≤ 2. By Proposition 3.1.7, we see that

(3.1.7)
∑
n≤x/2,

(n,N)=1,
n square-free

λf (n)λg(n) log2(x/n) �
∑
n≤x/2,

(n,N)=1,
n square-free

λf (n)λg(n) � x

log2 x

provided x ≥ exp(c log2(
√

q(f) +
√

q(g))), where c > 0, q(f) and q(g) are as in

Proposition 3.1.7. Now comparing (3.1.2) and (3.1.7), for any ε > 0, we have

x �ε max

{
exp
(
c log2(

√
q(f) +

√
q(g))

)
,

[
N2

(
1 +

k2 − k1

2

)(
k1 + k2

2

)]1+ε
}
.
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Here we have used Lemma 4 of Choie and Kohnen [13]. This completes the proof of

Theorem 3.1.1.

3.2 Sign changes in short intervals

In this section, we investigate sign changes of the sequence {af (n)ag(n
2)}n∈N in short

intervals. The question of sign changes of the sequence {af (n)ag(n)}n∈N in short

intervals was studied by Kumari and R. Murty (see [45, Theorem 1.6]). In fact, they

proved the following theorem.

Theorem 3.2.1. For any integer k ≥ 2, let

f(z) =
∞∑
n=1

af (n)qn ∈ Snewk (N) and g(z) =
∞∑
n=1

ag(n)qn ∈ Snewk (N)

be two distinct normalized Hecke eigenforms. For any sufficiently large x and any

δ > 7/8, the sequence {af (n)ag(n)}n∈N has at least one sign change in (x, x + xδ].

In particular, the number of sign changes for n ≤ x is � x1−δ.

Here we investigate sign changes of the sequence {af (n)ag(n
2)}n∈N in short in-

tervals. In particular, we prove the following theorem.

Theorem 3.2.2. For integers k1, k2 ≥ 2, let

f(z) =
∞∑
n=1

af (n)qn ∈ Sk1(1) and g(z) =
∞∑
n=1

ag(n)qn ∈ Sk2(1)

be two distinct normalized Hecke eigenforms. For any sufficiently large x and any

δ > 17/18, the sequence {af (n)ag(n
2)}n∈N changes sign at least once in (x, x+ xδ].

In particular, the number of sign changes for n ≤ x is � x1−δ.
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3.2.1 A lemma

We shall use the following lemma to prove Theorem 3.2.2.

Lemma 3.2.3. Let {an}n∈N and {bm}m∈N be two sequences of real numbers such

that

1. an = O(nα1), bm = O(mα2),

2.
∑

n,m≤x anbm � xβ,

3.
∑

n,m≤x a
2
nb

2
m = cx+O(xγ),

where α1, α2, β, γ ≥ 0 and c > 0 such that max{α1 + α2 + β, γ} < 1. Then for any

r satisfying

max{α1 + α2 + β, γ} < r < 1,

there exists a sign change among the elements of the sequence {anbm}n,m∈N for any

n,m ∈ [x, x+xr]. Consequently, for sufficiently large x, the number of sign changes

among the elements of the sequence {anbm}n,m∈N with n,m ≤ x are � x1−r.

Proof of Lemma 3.2.3. Suppose that for any r ∈ R satisfying

max{α1 + α2 + β, γ} < r < 1,

the elements of the sequence {anbm}n,m∈N have same signs in [x, x+xr]. This implies

that

xr �
∑

x≤n,m≤x+xr

a2
nb

2
m � xα1+α2

∑
x≤n,m≤x+xr

anbm � xα1+α2+β,

which is a contradiction. This completes the proof of the lemma.

Lemma 3.2.3 can be thought of as a generalization of a theorem of Meher and

R. Murty (see [60, Theorem 1.1]) when b1 = 1 and bm = 0 for all m > 1.
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3.2.2 Proof of Theorem 3.2.2

We shall apply Lemma 3.2.3 to prove Theorem 3.2.2. In order to apply Lemma 3.2.3,

we need to verify following conditions for elements of the sequence {λf (n)λg(n
2)}n.

Note that

1. by Ramanujan-Petersson bound, for any ε > 0 and any n ∈ N, we have

λf (n)λg(n
2) = Oε(n

ε).

2. by a recent work of Lü [53, Theorem 1.2(2)], one has

∑
n≤x

λf (n)λg(n
2) � x5/7(log x)−θ/2,

where θ = 1− 8
3π

= 0.1512 . . .

3. in the same paper, Lü (see [53, Lemma 2.3(iii)]) also proved that

∑
n≤x

λf (n)2λg(n
2)2 = cx + O(x

17
18

+ε),

where c > 0.

Now Theorem 3.2.2 follows from Lemma 3.2.3 by choosing an = λf (n) and

bm = λg(m
2) for all m,n ∈ N and considering the sequence {anbn}n∈N.

3.3 Hecke eigenvalues of non-CM forms

In this section, we briefly review some of the recent results about distribution of

the Hecke eigenvalues of newforms which are not of CM type and establish some of

its variants. We shall use these results to prove our theorems in upcoming sections.
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One of the deepest result in the theory of non-CM forms is the famous conjecture

predicted independently by Sato and Tate about equidistribution of Hecke eigen-

values of a non-CM form. This is now a theorem due to Barnet-Lamb, Geraghty,

Harris and Taylor (see [10, Theorem B(3)]). Before stating their theorem, let us

introduce the notion of equidistribution / uniform distribution.

Definition 3.3.1. Let µ̃ be a non-negative regular Borel measure on a compact

Hausdorff space X such that µ̃(X) = 1. A sequence {xn}n∈N ⊂ X is said to be

µ̃-equidistributed or µ̃-uniformly distributed in X if for any continuous function

f : X → R, one has

lim
N→∞

1

N

∑
1≤n≤N

f(xn) =

∫
X

f dµ̃.

In the special case, when X := [0, 1] and µ̃ is the usual Lebesgue measure, one

has the following equivalent criterion due to Weyl.

Theorem 3.3.2. The sequence {xn}n∈N is uniformly distributed in [0, 1] if and only

if

lim
N→∞

1

N

N∑
n=1

e2πimxn = 0 for all integers m 6= 0.

For a proof of Weyl’s criterion on uniform distribution, see page 7 of Kuipers

and Niederreiter [44]. One can also see R. Murty [66].

Now we are in a position to state the Sato-Tate theorem.

Theorem 3.3.3. Let f ∈ Snewk (N) be a normalized Hecke eigenform which is a

non-CM form. If we write λf (p) = 2 cos θf (p) with θf (p) ∈ [0, π], then θf (p) is

µST -uniformly distributed in [0, π], where µST := (2/π) sin2 θdθ is the Sato-Tate

measure.

Another important result in this direction is the following theorem of R. Murty

and Pujahari [69, Theorem 1.1] (also see Patankar and Rajan [72]).
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Theorem 3.3.4. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-

forms. If at least one of f or g is a non-CM form and

lim sup
x→∞

# {p ≤ x | λf (p) = λg(p)}
x/ log x

> 0,

then f = g ⊗ χ for some Dirichlet character χ.

As an immediate corollary, we have the following.

Corollary 3.3.5. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be as in Theorem 3.3.4.

Moreover, if f 6= g⊗χ for any Dirichlet character χ, then the natural density of the

set

{p ∈ P | λf (p) 6= λg(p)}

exists and is equal to one.

Here we have the following variant of Theorem 3.3.4.

Theorem 3.3.6. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-

forms. Also let at least one of f or g be of non-CM type and write

λf (p) := 2 cos θf (p) and λg(p) := 2 cos θg(p)

with θf (p), θg(p) ∈ [0, π]. For any fixed α ∈ [−π, π], if one has

lim sup
x→∞

# {p ≤ x | θf (p) − θg(p) = α}
x/ log x

> 0,

then f = g ⊗ χ for some Dirichlet character χ.

In order to prove this theorem, we follow the course of action adopted in [69].

We start with the following propositions.
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Proposition 3.3.7. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke

eigenforms, not both CM. If f 6= g ⊗ χ for any Dirichlet character χ, then for any

m,n ∈ N, one has

∑
p≤x

sin[(m+ 1)θf (p)] sin[(n+ 1)θg(p)]

sin θf (p) sin θg(p)
= o

(
x

log x

)

as x tends to infinity.

For a proof of this proposition see [32, 69]. Before we state the next proposition,

we need to introduce the following function;

Definition 3.3.8. For any 0 < δ < π, let fδ : [−π, π]→ R be defined by

fδ(x) :=


1− |x|

δ
if |x| ≤ δ;

0 otherwise.

We then extend the function fδ to whole of R as a periodic function with period 2π.

Proposition 3.3.9. Let fδ be as in Definition 3.3.8. Then for any natural number

M , we have

fδ(x) =
δ

2π
+ 2

M∑
n=1

1− cos[nδ]

πn2δ
cos[nx] + O

(
1

Mδ

)
,

where the implied constant is absolute.

Proof of this proposition can be found in [69].

Proof of Theorem 3.3.6. First suppose that at least one of θf (p), θg(p) is either 0

or π. In this case the other one takes the value ±α or π±α. Applying Theorem 3.3.3

in these cases, we get

# {p ≤ x | θf (p)− θg(p) = α} = o

(
x

log x

)
.
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Thus from now onwards we can assume that neither θf (p) nor θg(p) take the values

0 or π. Using the definition of the function fδ, one can write

# {p ≤ x | θf (p)− θg(p) = α} ≤
∑
p≤x

fδ
(
θf (p)− θg(p)− α

)
+
∑
p≤x

fδ
(
θf (p) + θg(p) + α

)
+
∑
p≤x

fδ
(
θf (p)− θg(p) + α

)
+
∑
p≤x

fδ
(
θf (p) + θg(p)− α

)
.

Now by applying Proposition 3.3.9, the right hand side of the above inequality can

be written as

2δπ(x)

π
+ 8

M∑
n=1

1− cos[nδ]

πn2δ
cos[nα]

∑
p≤x

cos[nθf (p)] cos[nθg(p)] + O

(
π(x)

Mδ

)
,

where

π(x) := # {p ∈ P | p ≤ x} .

When n = 1, by the theory of Rankin-Selberg L-functions, one has

(3.3.1)
∑
p≤x

cos θf (p) cos θg(p) = o
(
π(x)

)
as x tends to infinity. For n ≥ 2, one can write

4 cos[nθf (p)] cos[nθg(p)] =

(
sin[(n+ 1)θf (p)]

sin θf (p)
− sin[(n− 1)θf (p)]

sin θf (p)

)
×
(

sin[(n+ 1)θg(p)]

sin θg(p)
− sin[(n− 1)θg(p)]

sin θg(p)

)
.

Now suppose that f 6= g ⊗ χ for any Dirichlet character χ. Then by using (3.3.1)

and Proposition 3.3.7, we get

∑
p≤x

cos[nθf (p)] cos[nθg(p)] = o
(
π(x)

)
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as x tends to infinity. Thus

lim sup
x→∞

# {p ≤ x | θf (p)− θg(p) = α}
π(x)

≤ 2δ

π
+ O

(
1

Mδ

)
.

As M tends to infinity, we get

lim sup
x→∞

# {p ≤ x | θf (p)− θg(p) = α}
π(x)

≤ 2δ

π
.

Since δ can be chosen arbitrarily small, we have

lim sup
x→∞

# {p ≤ x | θf (p)− θg(p) = α}
π(x)

= 0,

as required. This completes the proof of Theorem 3.3.6.

We shall need another variant of Theorem 3.3.4 which is stated below.

Theorem 3.3.10. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-

forms. Also assume that at least one of f or g is of non-CM type and

λf (p) = 2 cos θf (p) and λg(p) = 2 cos θg(p)

with θf (p), θg(p) ∈ [0, π]. For any fixed α ∈ [0, 2π], if one has

lim sup
x→∞

# {p ≤ x | θf (p) + θg(p) = α}
x/ log x

> 0,

then f = g ⊗ χ for some Dirichlet character χ.

The proof follows exactly along the lines of the proof of Theorem 3.3.6 and hence

we omit the proof here.

104



3.4 Hecke eigenvalues of CM Forms

In this section, we shall recall various well-known properties of Hecke eigenvalues of

newforms which are CM forms. We use these properties to study joint equidistribu-

tion of non-zero Hecke eigenvalues of two distinct newforms which are of CM type.

These joint equidistribution results might be known to the experts but we could not

find any reference in the literature. Hence we investigate these properties here as

we shall need them to prove our theorems in the next section. We shall start with

some notations and definitions.

Let K be an imaginary quadratic field and OK be its ring of integers. For any

ideal M ⊂ OK , let I(M) be the set of fractional ideals of K which are coprime to

M and

P (M) :=
{

(a) ∈ I(M) | a ∈ K×, a ≡ 1 mod × M
}
,

where a ≡ 1 mod × M implies that vP(a − 1) ≥ vP(M) for all P | M. Note that

P (M) is a subgroup of I(M).

Definition 3.4.1. A character χ : I(M) → S1 is called a Hecke character mod M

if for all (a) ∈ P (M), we have

(3.4.1) χ ((a)) =

(
a

|a|

)u
,

where u ∈ Z. Further, a Hecke character χ mod M is called primitive if it is not a

Hecke character for any N | M. In this case, we call M to be the conductor of χ.

Remark 3.4.2. If the integer u in Definition 3.4.1 is non-zero, then the Hecke

character χ is not of finite order, that is, there does not exist any integer m ∈ Z\{0}

such that χm is the trivial Hecke character. As otherwise, for all a ∈ K× with a ≡ 1

mod ×M, we have (
a

|a|

)mu
= 1.
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This implies that the set {a ∈ K× | a ≡ 1 mod ×M} is contained in the union of

finitely many lines in C×. This is not true as by approximation theorem, the set

{a ∈ K× | a ≡ 1 mod ×M} is dense in C×.

In this set-up, one has the following characterization theorem of CM forms.

Theorem 3.4.3. Let K = Q(
√
d) be an imaginary quadratic field with discriminant

d. Also let M be an integral ideal of K and χ mod M be a Hecke character with u

as in (3.4.1) is assumed to be positive. For z ∈ H, define

(3.4.2) f(z) :=
∑
a

χ(a)N(a)u/2qN(a),

where a varies over ideals of OK which are coprime to M and N(a) denotes the

absolute norm of a. Then f ∈ Su+1(M, χ̃), where M := |d|N(M) and χ̃ is a

Dirichlet character defined as follows:

χ̃(m) :=

(
d

m

)
χ((m)) sgn(m)u, for all m ∈ Z.

Moreover f ∈ Snewu+1(M, χ̃) is a normalized Hecke eigenform of CM type if χ is a

primitive character mod M. Conversely, any f ∈ Snewu+1(M, χ̃), which is a Hecke

eigenform of CM type, is obtained from a primitive Hecke character of an imaginary

quadratic field in this way.

For a proof of above theorem one can see [61, Theorem 4.8.2 ] and [82, Theorem

4.5].

From now on, we say that a newform f of CM type has CM by an imaginary

quadratic field K if f comes from a primitive Hecke character of the field K in the

sense of Theorem 3.4.3. It is clear from the identity (3.4.2) that for any prime p
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with (p,M) = 1, we have the following:

λf (p) =


χ(P) + χ(P) if pOK = PP, P 6= P;

0 if pOK is inert.

The study of equidistribution of the values of a Hecke character goes back to Hecke

[33] (see also Rajan [77]); these equidistribution results will imply the following

equidistribution result for a CM newform which is a normalized Hecke eigenform.

Theorem 3.4.4. Let f ∈ Snewk (N) be a normalized Hecke eigenform of CM type.

Also let I ⊂ [0, π] be such that π/2 /∈ I and I be a union of finitely many disjoint

intervals. Now if we write λf (p) = 2 cos θf (p), then we have

lim
x→∞

# {p ≤ x | p ∈ P , θf (p) ∈ I}
#{p ≤ x | p ∈ P}

=
|I|
2π
.

Further, the set {p ∈ P | θf (p) = π/2} has natural density 1/2.

A proof of this theorem can be found in [5, Theorem 3.1.1]. In this set-up, we

prove the following theorem;

Theorem 3.4.5. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-

forms of CM type. If k1 6= k2, then

lim sup
x→∞

# {p ≤ x | λf (p) = λg(p)}
x/ log x

≤ 1

2
.

In order to prove this theorem, we need the following lemmas.

Lemma 3.4.6. Let K be an imaginary quadratic field and M,N be integral ideals

of K. Also let χ mod M and ψ mod N be primitive Hecke characters of K. Then

the sequence

{(χ(P), ψ(P))}P ,
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where P varies over all prime ideals of OK with (P,MN) = 1 is equidistributed in

S1 × S1 if and only if χm 6= ψn for any (m,n) ∈ Z2 \ {(0, 0)}.

Proof of Lemma 3.4.6. For any prime ideal P in OK with (P,MN) = 1, let us

write

χ(P) = e2πiθχ(P) and ψ(P) = e2πiθψ(P)

with −1/2 < θχ(P), θψ(P) ≤ 1/2. Then by Weyl’s uniform distribution criterion,

one knows that the sequence {(θχ(P), θψ(P))}P is equidistributed in [−1/2, 1/2] ×

[−1/2, 1/2] if and only if for any (m,n) ∈ Z2 \ {(0, 0)}

∑
NP≤x

(P,MN)=1

e2πi(mθχ(P)+nθψ(P)) = o
(
πK(x)

)
⇐⇒

∑
NP≤x

(P,MN)=1

χ(P)mψ(P)n = o
(
πK(x)

)
,

where πK(x) denotes the number of prime ideals P of K with NP ≤ x.

For any complex number s ∈ C with <(s) > 1, let us consider the Hecke L-

function

L(s, χmψn) :=
∑
a

χ(a)mψ(a)n

N(a)s
,

where the summation is over all non-zero integral ideals a of K which are coprime to

MN. This defines a holomorphic function in the region <(s) > 1. It is well known

that the function L(s, χmψn) can be analytically continued to the entire complex

plane if and only if χmψn is not the trivial character. When χmψn is equal to the

trivial character, then L(s, χmψn) has a simple pole at s = 1. Further, L(s, χmψn)

is non-vanishing on the line <(s) = 1. Hence by the Wiener-Ikehara Tauberian

theorem (see [67, page 7]) and the partial summation formula, one has

∑
NP≤x

(P,MN)=1

χ(P)mψ(P)n = o
(
πK(x)

)

if and only if χmψn is not the trivial character, that is, if χm 6= ψ−n. This completes
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the proof of Lemma 3.4.6.

We also need the following lemma to prove Theorem 3.4.5.

Lemma 3.4.7. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigenforms

of CM type. If

lim sup
x→∞

# {p ≤ x | λf (p) = λg(p)}
x/ log x

>
1

2
,

then both f and g have CM by the same field.

Proof of Lemma 3.4.7. Let f and g have CM by the fields Kf and Kg respectively.

Also let ψf mod M and ψg mod N be primitive Hecke characters corresponding

to f and g respectively. Then for any prime p with (p,N1N2) = 1, we have

λf (p) =


ψf (P) + ψf (P) if pOKf = PP, P 6= P;

0 if pOKf is inert;

and

λg(p) =


ψg(q) + ψg(q) if pOKg = qq, q 6= q;

0 if pOKg is inert.

Set N := N1N2 and

• PN :=
{
p ∈ P | (p,N) = 1

}
;

• Pf,g := {p ∈ PN | λf (p) = λg(p)};

• Ps,s := {p ∈ PN | p splits both in Kf and Kg};

• Ps,n := {p ∈ PN | p splits in Kf but not in Kg};

• Pn,s := {p ∈ PN | p splits in Kg but not in Kf};

• Pn,n := {p ∈ PN | p does not split in both Kf and Kg}.
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Now assume that Kf 6= Kg. Then by Chebotarev density theorem, natural density

of each of the sets Ps,s, Ps,n, Pn,s, Pn,n is 1/4. Since both f and g are CM forms,

we know that λf (p) = 0 (respectively λg(p) = 0) if and only if p is inert in the

imaginary quadratic field Kf (respectively Kg) (see Serre [91, page 180]). Thus we

have

Pf,g ∩ Pn,s = ∅ and Pf,g ∩ Ps,n = ∅,

a contradiction to our hypothesis. This completes the proof of Lemma 3.4.7.

Proof of Theorem 3.4.5. Let χ mod M and ψ mod N be the primitive Hecke

characters corresponding to f and g respectively. Suppose that

lim sup
x→∞

# {p ≤ x | λf (p) = λg(p)}
x/ log x

>
1

2

as otherwise there is nothing to prove. Hence by applying Lemma 3.4.7, we can

conclude that the CM forms f and g have CM by the same field, say K.

For any prime p with (p,N1N2) = 1, it follows from (3.4.2) that if pOK = PP,

P 6= P, then

λf (p) = χ(P) + χ(P) and λg(p) = ψ(P) + ψ(P)

and if p is inert, then λf (p) = 0 = λg(p). For any prime ideal P in OK with

(P,MN) = 1, let us write

χ(P) = e2πiθχ(P) and ψ(P) = e2πiθψ(P)

with −1/2 < θχ(P), θψ(P) ≤ 1/2. Note that if pOK = PP with P 6= P, then as f

and g have trivial Nebentypus, we have

(3.4.3) χ(P) = χ(P) and ψ(P) = ψ(P).
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Now by Lemma 3.4.6, we know that {(θχ(P), θψ(P))}P is equidistributed in

[−1/2, 1/2]× [−1/2, 1/2] if and only if χm 6= ψn for any (m,n) ∈ Z2 \ {(0, 0)}.

First suppose that the sequence {(θχ(P), θψ(P))}P is equidistributed in

[−1/2, 1/2]× [−1/2, 1/2]. This implies that the set

(3.4.4) # {NP ≤ x | θχ(P) = ±θψ(P)} = o
(
πK(x)

)
as x tends to infinity. Since

{p ∈ P | (p,N1N2) = 1, λf (p) = λg(p)} =
{
p ∈ P | (p,N1N2) = 1, p is inert in K

}
∪
{
p ∈ P | (p,N1N2) = 1, pOK = PP, P 6= P, θχ(P) = ±θψ(P)

}
,

then by equations (3.4.3), (3.4.4) and the fact that the set {p ∈ P | p is inert in K}

has natural density 1/2, we get

d ({p ∈ P | λf (p) = λg(p)}) =
1

2
,

which contradicts our assumption.

Now suppose that {(θχ(P), θψ(P))}P is not equidistributed in [−1/2, 1/2] ×

[−1/2, 1/2], then by Lemma 3.4.6, there exists a pair of integers (m,n) ∈ Z2\{(0, 0)}

such that χm = ψn. Note that by Remark (3.4.2), neither χ nor ψ is of finite order

and hence m 6= 0 as well as n 6= 0. Without loss of generality we can choose a pair

of integers (m,n) with smallest m > 0 such that χm = ψn. Since both χ and ψ

correspond to CM forms, m > 0 implies that n > 0. Using binomial theorem and

induction on t ∈ N, one can write

(
χ(P) + χ(P)

)t
= χ(P)t + χ(P)

t
+ Pt−2

(
λf (p)

)
,

where Pt−2 is a polynomial of degree less than or equal to t − 2. This implies that
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there exist polynomials Pm and Qn of degrees m and n respectively such that

(3.4.5) Pm
(
λf (p)

)
= Qn

(
λg(p)

)
for all split primes p with (p,N1N2) = 1. If λf (p) = λg(p) = α, say, then from

equation (3.4.5), it follows that α is a root of the polynomial Pm −Qn.

Now if m 6= n, then the polynomial Pm−Qn is a non-zero polynomial. Note that

α 6= 0 as p splits in K. Applying Theorem 3.4.4, we know that the set of primes

p for which λf (p) = α′ for any α′ 6= 0 has density zero. Since α can take at most

finitely many values, we have

d ({p ∈ P | p splits in K, λf (p) = λg(p)}) = 0.

When m = n, then χψ−1 has finite order. This is a contradiction to Remark (3.4.2)

as by hypothesis, we have k1 6= k2.

The above observations along with the fact that

d ({p ∈ P | λf (p) = λg(p) = 0}) =
1

2

implies that the set {p ∈ P | λf (p) = λg(p)} has natural density 1/2, a contradiction

to our assumption. This completes the proof of Theorem 3.4.5.

3.5 Sign change and multiplicity one theorem

In this section, we first relate the question of simultaneous sign change of Hecke

eigenvalues to that of multiplicity one theorem. Then we use this to prove some

quantitative sign change results of Hecke eigenvalues.

Theorem 3.5.1. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-
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forms and p be a prime such that (p,N1N2) = 1. Then the following conditions are

equivalent;

1. there exist infinitely many m ≥ 1 such that λf (p
m)λg(p

m) > 0 and infinitely

many m ≥ 1 such that λf (p
m)λg(p

m) < 0;

2. one has λf (p) 6= λg(p).

The above theorem then enables us to estimate the density of primes p for which

the sequence {af (pm)ag(p
m)}m∈N changes sign infinitely often. In particular, we

prove the following theorem.

Theorem 3.5.2. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized Hecke

eigenforms and S be the set of primes p for which the sets

{m ∈ N | af (pm)ag(p
m) > 0} and {m ∈ N | af (pm)ag(p

m) < 0}

are infinite. Then the density of the set S is as follows:

1. if at least one of f or g is a non-CM form, then

• the natural density of S is 1 provided f 6= g ⊗ χ for any Dirichlet char-

acter χ;

• the natural density of S is 1/2 if f = g⊗χ for some Dirichlet character χ.

2. if both f, g are of CM type, then

• the lower natural density of S is greater than or equal to 1/2 provided

k1 6= k2 or f, g have CM by different fields;

• the lower natural density of S is greater than or equal to 1/8 provided

k1 = k2 and both f and g have CM by the same field.
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Theorem 3.5.2 improves a recent result of Gun, Kohnen and Rath [27, Theorem

3]. If we assume that at least one of f or g is non-CM form, then we can prove the

following stronger result.

Theorem 3.5.3. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be distinct normalized Hecke

eigenforms and at least one of f or g be not of CM type. For any positive integer

j ≥ 1, let Sj be the set of primes p such that

{
m ∈ N | af (pjm)ag(p

jm) > 0
}

and
{
m ∈ N | af (pjm)ag(p

jm) < 0
}

are infinite. Then the natural density d(Sj) of the set Sj is as follows;

1. if f 6= g ⊗ χ for any Dirichlet character χ, then d(Sj) = 1 for any j ∈ N.

2. when f = g ⊗ χ for some Dirichlet character χ, then

• d(Sj) = 1/2 if j is odd;

• d(Sj) = 0 otherwise.

The above theorem can be thought of as a generalization of the following result

of Kohnen and Martin [40].

Theorem 3.5.4. Let f ∈ Sk(1) be a normalized Hecke eigenform. Then for any

integer j ≥ 1 and for almost all primes p, the sequence {af (pnj)}n∈N changes sign

infinitely often.

As mentioned in Remark 3.1 of [17], the proof of above theorem does not work

for natural numbers j with 4 | j. Here we prove the following theorem.

Theorem 3.5.5. Let f ∈ Snewk (N) be a normalized Hecke eigenform and j ≥ 1 be

an integer. Consider the set Sj of primes p for which the sets

{
m ∈ N | af (pjm) > 0

}
and

{
m ∈ N | af (pjm) < 0

}
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are infinite. Then

1. if f is a non-CM form, then the natural density of Sj is 1;

2. if f is of CM type and

• 4 | j, then the natural density of Sj is 1/2;

• 4 - j, then the natural density of Sj is 1.

To prove the above theorem, we need the following one.

Theorem 3.5.6. Let f ∈ Snewk (N) be a normalized Hecke eigenform and j ≥ 1

be a natural number. Then for almost all primes p, the following conditions are

equivalent;

1. there exists infinitely many integers m ≥ 1 such that λf (p
jm) > 0 and infinitely

many natural numbers m ≥ 1 such that λf (p
jm) < 0;

2. one has

λf (p) 6∈


{2} for j is odd;

{2,−2} for j ≡ 2 (mod 4);

{−2, 0, 2} for j ≡ 0 (mod 4).

Furthermore, when k ≥ 4 or j = 1, then the above equivalence is true for all primes

p with (p,N) = 1.

3.5.1 Proof of Theorem 3.5.1

Recall that for any prime p with (p, N1N2) = 1, one can write

λf (p) := 2 cos θf (p) and λg(p) := 2 cos θg(p),
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where θf (p), θg(p) ∈ [0, π]. Then for any integer m ≥ 1, we have

λf (p
m) =


m+ 1 if θf (p) = 0;

(−1)m(m+ 1) if θf (p) = π;

sin[(m+1)θf (p)]

sin θf (p)
otherwise;

and

λg(p
m) =


m+ 1 if θg(p) = 0;

(−1)m(m+ 1) if θg(p) = π;

sin[(m+1)θg(p)]

sin θg(p)
otherwise.

Let us first assume that λf (p) = λg(p). Then for any m ≥ 1, we have

λf (p
m) = λg(p

m) and hence λf (p
m)λg(p

m) ≥ 0 for all m ∈ N.

Now we assume that λf (p) 6= λg(p), that is, θf (p) 6= θg(p). Further if

θf (p), θg(p) ∈ {0, π},

then λf (p
m)λg(p

m) is equal to (−1)m(m+ 1)2 which changes sign infinitely often.

Now suppose that at least one of θf (p), θg(p) is equal to 0 or π and the other

one lies in (0, π). Without loss of generality, we assume that θf (p) = 0 or π and

θg(p) ∈ (0, π). Then for any integer m ≥ 1, we have

λf (p
m)λg(p

m) =


(m+1) sin[(m+1)θg(p)]

sin θg(p)
if θf (p) = 0 and θg(p) ∈ (0, π);

(m+1) sin[(m+1)(π−θg(p))]

sin[π−θg(p)]
if θf (p) = π and θg(p) ∈ (0, π).

Since both θg(p) and π − θg(p) lie in (0, π), the functions sin[mθg(p)] and

sin[m(π − θg(p))] change sign infinitely often as m varies.

116



Finally assume that both θf (p), θg(p) ∈ (0, π). In this case, we can write

sin[mθf (p)] sin[mθg(p)]

sin θf (p) sin θg(p)
=

cosmu− cosmv

2 sin θf (p) sin θg(p)
,

where u := θf (p)− θg(p), v := θf (p) + θg(p). Note that

u 6≡ 0 mod 2π, v 6≡ 0 mod 2π, u 6≡ v mod 2π, u 6≡ −v mod 2π

as θf (p) 6= θg(p) and θf (p), θg(p) ∈ (0, π). We are done if we show that (cosmu −

cosmv) changes sign infinitely often as m ∈ N varies. On the contrary, we assume

that it does not change sign infinitely often. Then there exists m0 ∈ N such that

(
cosmu− cosmv

)
≥ 0 or

(
cosmu− cosmv

)
≤ 0 for all m ≥ m0.

First assume that

(3.5.1)
(

cosmu− cosmv
)
≥ 0

for all m ≥ m0. Then for any m′ ≥ m0, one has

m′∑
m=m0

(
cosmu− cosmv

)2 ≤ 2
m′∑

m=m0

(
cosmu− cosmv

)
.

The above identity along with (3.5.1) implies that

lim
N→∞

1

N

N∑
m=1

(
cosmu− cosmv

)2 ≤ lim
N→∞

2

N

N∑
m=1

(
cosmu− cosmv

)
.

But on the other hand, we will show that

lim
N→∞

1

N

N∑
m=1

(
cosmu−cosmv

)2 ≥ 1 and lim
N→∞

1

N

N∑
m=1

(
cosmu−cosmv

)
= 0,
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a contradiction. Indeed, for any real x 6≡ 0 mod 2π, using the identity

1

2
+ cos x + cos 2x + · · · + cosnx =

sin(n+ 1
2
)x

2 sin(x
2
)

,

one finds that

(3.5.2) lim
N→∞

1

N

N∑
m=1

cosmx = lim
N→∞

1

N

(
sin(N + 1

2
)x

2 sin(x
2
)

− 1

2

)
= 0.

Since u 6≡ 0 mod 2π and v 6≡ 0 mod 2π, using the identity (3.5.2), we have

lim
N→∞

1

N

N∑
m=1

(
cosmu − cosmv

)
= 0.

Note that

lim
N→∞

N∑
m=1

(cosmu − cosmv)2

N

= lim
N→∞

1

N

N∑
m=1

(
cos2mu + cos2mv

)
− lim

N→∞

1

N

N∑
m=1

(
cos[m(u+ v)] + cos[m(u− v)]

)
.

Using the facts u 6≡ v mod 2π and u 6≡ −v mod 2π and the identity (3.5.2), we

have

lim
N→∞

1

N

N∑
m=1

(
cos[m(u+ v)] + cos[m(u− v)]

)
= 0.

Also we have

(3.5.3)

lim
N→∞

1

N

N∑
m=1

(
cos2mu + cos2mv

)
= 1 + lim

N→∞

1

2N

N∑
m=1

(
cos 2mu + cos 2mv

)
.

By our assumptions, we have 2u 6≡ 0 mod 2π. Also note that 2v ≡ 0 mod 2π if

and only if v = π. Thus the summation in the left hand side of the identity (3.5.3)

is equal to 1 or 3/2 depending on v 6= π or v = π. This completes the proof under
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assumption (3.5.1). Now if

(3.5.4)
(

cosmu− cosmv
)
≤ 0

for all m ≥ m0, then consider the identity

m′∑
m=m0

(
cosmv − cosmu

)2 ≤ 2
m′∑

m=m0

(
cosmv − cosmu

)
.

Proceeding as in the previous case, this leads to a contradiction. This completes the

proof of Theorem 3.5.1.

3.5.2 An elementary approach to strong multiplicity one

theorem

We use the Rankin-Selberg L-functions associated to f and g to deduce the following

proposition which is required to complete the proof of Theorem 3.5.2.

Proposition 3.5.7. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke

eigenforms. If f 6= g, then

lim inf
x→∞

# {p ≤ x | λf (p) 6= λg(p)}
x/ log x

≥ 1

8
.

Proof of Proposition 3.5.7. Let us define

S̃ := {p ∈ P | (p,N1N2) = 1 and λf (p) 6= λg(p)} .

Consider the sum

T (x) : =
∑
p≤x,
p∈S̃

(λf (p)− λg(p))λf (p).
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Note that

T (x) =
∑
p≤x,

(p,N1N2)=1

(λf (p)− λg(p))λf (p)

=
∑
p≤x,

(p,N1N2)=1

λf (p)
2 −

∑
p≤x,

(p,N1N2)=1

λf (p)λg(p).

It is well known that

∑
p≤x,

(p,N1N2)=1

λf (p)
2 =

x

log x
+ o

(
x

log x

)
and

∑
p≤x,

(p,N1N2)=1

λg(p)λf (p) = o

(
x

log x

)
,

as x→∞. Thus we have

(3.5.5) T (x) =
x

log x
+ o

(
x

log x

)
.

Now if we put

P+ := {p ∈ P | (λf (p)− λg(p))λf (p) > 0} ,

then we have

(3.5.6) T (x) ≤
∑
p≤x,

p∈P+∩S̃

(λf (p)− λg(p))λf (p) ≤ 8 #
{
p ≤ x | p ∈ P+ ∩ S̃

}
,

where the last inequality follows from the fact that |λf (p)| ≤ 2. Combining equations

(3.5.5) and (3.5.6), we now have

#
{
p ≤ x | p ∈ S̃

}
≥ x

8 log x
+ o

(
x

log x

)
.

This proves that the lower natural density of the set S̃ is greater than or equal to

1/8.

Note that this gives an elementary proof of a result of Ramakrishnan [78, The-
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orem 1] in this context.

3.5.3 Proof of Theorem 3.5.2

In this subsection, we shall provide a proof of Theorem 3.5.2. Note that sign changes

of the sequence {af (pm)ag(p
m)}m∈N is equivalent to the sign changes of the sequence

{λf (pm)λf (p
m)}m∈N. Using Theorem 3.5.1, we see that the set S contains a subset

S̃ defined by

S̃ := {p ∈ P | (p,N1N2) = 1 and λf (p) 6= λg(p)} .

Now assume that at least one of f or g is a non-CM form and f 6= g⊗χ for any

Dirichlet character χ. Then using Theorem 3.3.4, we conclude that the set S̃ has

natural density one and hence d(S) = 1 as S \ S̃ is finite.

Next we assume that at least one of f or g is not of CM type and f = g ⊗ χ

for some Dirichlet character χ. Note that χ is a non-trivial quadratic character as

f 6= g and af (n) and ag(n)’s are real for all n. In this case, S̃ is equal to

{p ∈ P | (p,N1N2) = 1 and χ(p) 6= 1} .

Since the set

{p ∈ P | χ(p) = −1}

has natural density 1/2, the set S̃ and hence S has natural density d(S) = 1/2.

Finally, we assume that both f and g are of CM type. If k1 6= k2, then we use

Theorem 3.4.5 to conclude that the lower natural density of the set S̃ and hence

that of S is greater than or equal to 1/2 as f 6= g. Now suppose that k1 = k2.

In this set-up, if f and g have CM by different fields, then we use Lemma 3.4.7 to
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get the conclusion of Theorem 3.5.2. When f and g have CM by the same field,

then we use Proposition 3.5.7 to conclude our result. This completes the proof of

Theorem 3.5.2.

3.5.4 Proof of Theorem 3.5.6

Recall that λf (p) = 2 cos θf (p), where θf (p) ∈ [0, π]. Then for integers j ≥ 1,m ≥ 1

and primes p with (p,N) = 1, using the equation (2.1.6), one can write

(3.5.7) λf (p
jm) =


jm+ 1 if θf (p) = 0;

(−1)jm(jm+ 1) if θf (p) = π;

sin[(jm+1)θf (p)]

sin θf (p)
otherwise.

When j = 1, the above relation (3.5.7) implies that {λf (pm)}m∈N changes sign

infinitely often if and only if λf (p) 6= 2 for all primes p with (p,N) = 1.

From now on, we shall assume that j > 1. By Theorem 2.1.13, one knows that

for almost all primes p, if λf (p) /∈ {2, 0,−2}, then θf (p)/π /∈ Q. The phenomena

λf (p) /∈ {2, 0,−2} implies that θf (p)/π /∈ Q is true for all primes p with (p,N) = 1

when k ≥ 4.

Now if λf (p) /∈ {2, 0,−2}, then by applying Weyl’s criterion for uniform distri-

bution, we conclude that the sequence {(jm+ 1)θf (p)}m∈N is uniformly distributed

in [0, 2π]. Thus, in this case, {λf (pjm)}m∈N changes sign infinitely often for all j.

If λf (p) = 2, that is, if θf (p) = 0, then using (3.5.7), we see that the set

{
m ∈ N | λf (pjm) < 0

}
= ∅

for all j.
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If λf (p) = −2, that is, if θf (p) = π, then again using (3.5.7), we have

{
m ∈ N | λf (pjm) < 0

}
= ∅

or the sequence {λf (pjm)}m∈N changes sign infinitely often depending on j is even

or j is odd.

Next assume that λf (p) = 0, that is, θf (p) = π/2. Then the sequence {λf (pjm)}m

changes sign infinitely often if and only if 4 - j. This completes the proof of Theo-

rem 3.5.6.

3.5.5 Proof of Theorem 3.5.5

Note that sign changes of the sequence {af (pjm)}m∈N is equivalent to the sign

changes of the sequence {λf (pjm)}m∈N. Now by Theorem 3.5.6, there exists a natural

number M , such that Sj contains a subset S̃j defined by

S̃j :=


{p ∈ P | (p,M) = 1, λf (p) 6= 2} if j is odd;

{p ∈ P | (p,M) = 1, λf (p) /∈ {2,−2}} if j ≡ 2 mod 4;

{p ∈ P | (p,M) = 1, λf (p) /∈ {2, 0,−2}} if j ≡ 0 mod 4.

Further when k ≥ 4 or j = 1, one can take M = N . Since Sj \ S̃j is a finite set, the

natural density of Sj \ S̃j is zero.

Now if f is of non-CM type, then by the Sato-Tate conjecture which is now a

theorem (see Theorem 3.3.3), we see that the set S̃j has natural density one.

Next assume that f is a CM form. Then by Theorem 3.4.4, we have the natural

density of the set S̃j is one if 4 - j and the natural density of the set S̃j is 1/2 if

4 | j.
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This along with the fact that d(Sj \ S̃j) = 0 implies that Sj has the desired

natural densities depending on j.

3.5.6 Proof of Theorem 3.5.3

To prove Theorem 3.5.3, we shall follow the line of action of the proof of Theo-

rem 3.5.1. As in the proof of Theorem 3.5.1, for any prime p with (p, N1N2) = 1,

one can write

λf (p) := 2 cos θf (p) and λg(p) := 2 cos θg(p)

with θf (p), θg(p) ∈ [0, π]. Then for any natural numbers m, j ∈ N, we have

λf (p
jm) =


jm+ 1 if θf (p) = 0;

(−1)jm(jm+ 1) if θf (p) = π;

sin[(jm+1)θf (p)]

sin θf (p)
otherwise;

and

λg(p
jm) =


jm+ 1 if θg(p) = 0;

(−1)jm(jm+ 1) if θg(p) = π;

sin[(jm+1)θg(p)]

sin θg(p)
otherwise.

Note that if λf (p) = λg(p), that is, if θf (p) = θg(p), then λf (p
jm) = λg(p

jm)

for all m, j ∈ N. Thus for any j ∈ N, the sequence {λf (pjm)λg(p
jm)}m∈N does not

change sign.

Now assume that λf (p) 6= λg(p), that is, θf (p) 6= θg(p). Further if θf (p), θg(p) ∈

{0, π}, then we have

λf (p
jm)λg(p

jm) = (−1)jm(jm+ 1)2
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for all m, j ∈ N and hence the sequence {λf (pjm)λg(p
jm)}m∈N changes sign infinitely

often if and only if j is odd. Henceforth, without loss of generality, we can assume

that at least one of θf (p) or θg(p), say θg(p) lies inside the interval (0, π). Now for

any m, j ∈ N, we have

λf (p
jm)λg(p

jm) =


(jm+1) sin[(jm+1)θg(p)]

sin θg(p)
if θf (p) = 0 and θg(p) ∈ (0, π);

(jm+1) sin[(jm+1)(π−θg(p))]

sin[π−θg(p)]
if θf (p) = π and θg(p) ∈ (0, π).

Note that both θg(p) and π − θg(p) lie inside (0, π). Arguing as in Theorem 3.5.6,

there exists a natural number M such that for any prime p with (p,M) = 1, the

sequence {λf (pjm)λg(p
jm)}m∈N changes sign infinitely often if and only if 4 - j or

θg(p) 6= π/2.

Next assume that both θf (p) and θg(p) lie inside (0, π). Then we can write

sin[(jm+ 1)θf (p)] sin[(jm+ 1)θg(p)]

sin θf (p) sin θg(p)
=

cos[(jm+ 1)u]− cos[(jm+ 1)v]

2 sin θf (p) sin θg(p)
,

where u := θf (p)− θg(p), v := θf (p) + θg(p) and

u 6≡ 0 mod 2π, v 6≡ 0 mod 2π, u 6≡ v mod 2π, u 6≡ −v mod 2π.

We claim that {cos[(jm+ 1)u]− cos[(jm+ 1)v]}m∈N changes sign infinitely often if

(3.5.8) u 6= nπ

j
and v 6= mπ

j

for any integers n,m with −j < n < j, n 6= 0 and 1 ≤ m < 2j. Suppose not. Then

there exists m0 ∈ N such that

(3.5.9)
(

cos[(jm+ 1)u]− cos[(jm+ 1)v]
)
≥ 0

for all m ≥ m0. The case (cos[(jm+ 1)u]− cos[(jm+ 1)v]) ≤ 0 for all m ≥ m0 can
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be treated similarly. Using (3.5.9), for any m′ ≥ m0, we have

(3.5.10)
m′∑

m=m0

(
cos[(jm+1)u]−cos[(jm+1)v]

)2 ≤ 2
m′∑

m=m0

(
cos[(jm+1)u]−cos[(jm+1)v]

)
.

For any j ∈ N and x ∈ R with jx 6≡ 0 mod 2π, one knows that

cos(jx) + cos(2jx) + · · ·+ cos(jnx) = cos(jnx/2)
sin[(n+ 1)jx/2]

sin(jx/2)
− 1(3.5.11)

and sin(jx) + sin(2jx) + · · · + sin(jnx) = sin(jnx/2)
sin[(n+ 1)jx/2]

sin(jx/2)
.

Using (3.5.11), one can easily deduce that

(3.5.12) lim
N→∞

1

N

N∑
m=1

cos[(jm+ 1)x] = 0

provided jx 6≡ 0 mod 2π. Thus if ju 6≡ 0 mod 2π and jv 6≡ 0 mod 2π, we have

(3.5.13) lim
N→∞

1

N

N∑
m=1

(
cos[(jm+ 1)u] − cos[(jm+ 1)v]

)
= 0.

On the other hand, one has

lim
N→∞

1

N

N∑
m=1

(
cos[(jm+ 1)u] − cos[(jm+ 1)v]

)2

= 1 + lim
N→∞

1

2N

N∑
m=1

(
cos[(jm+ 1)2u] + cos[(jm+ 1)2v]

)
− lim

N→∞

1

N

N∑
m=1

(
cos[(jm+ 1)(u+ v)] + cos[(jm+ 1)(v − u)]

)
.

Note that u+v = 2θf (p) and v−u = 2θg(p) and by Theorem 2.1.13, for all sufficiently

large p ∈ P , either θf (p)/π or θg(p)/π are not in Q except when θf (p) = π/2 or

θg(p) = π/2. Now using the assumption (3.5.8) and the identity (3.5.12), we see
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that

lim
N→∞

1

N

N∑
m=1

(
cos[(jm+ 1)u]− cos[(jm+ 1)v]

)2 ≥ 1.

This together with (3.5.13) contradicts (3.5.10) and hence proves our claim. In other

words, the sequence {λf (pjm)λg(p
jm)}m∈N changes sign infinitely often when both

θf (p) and θg(p) lie inside (0, π) and satisfy the assumption (3.5.8).

Recall that both f and g are not of CM type. First suppose that f 6= g ⊗ χ for

any Dirichlet character χ. For any j ∈ N, consider the set S̃j defined by

S ′j := {p ∈ P | (p,M) = 1, λf (p) 6= λg(p) and u, v satisfy condition (3.5.8)} ,

where M is defined as before. We will show that a subset S̃j of S ′j ∩ Sj has natural

density one and hence d(Sj) = 1. Set

S̃j :=



S ′j if j is odd;{
p ∈ S ′j | at least one of θf (p), θg(p) ∈ (0, π)

}
if j ≡ 2 mod 4;{

p ∈ S ′j | one of θf (p), θg(p) ∈ (0, π) \
{
π
2

}
or both θf (p), θg(p) ∈ (0, π)} if j ≡ 0 mod 4.

We have already shown that if p ∈ S̃j, then the sequence {λf (pjm)λg(p
jm)}m∈N

changes sign infinitely often. Now using Theorem 3.3.6 and Theorem 3.3.10, we see

that the set P \ S ′j has natural density zero and hence d(S ′j) = 1. Since by the

Sato-Tate Theorem 3.3.3, d(S̃j \ S ′j) = 0, we have d(S̃j) = 1 and hence d(Sj) = 1.

Now if f = g⊗χ for some Dirichlet character χ, then by the given assumptions,

it follows that χ is a non-trivial quadratic character. Also for any j ∈ N and p ∈ P ,

one has

λf (p
jm) = χ(pjm)λg(p

jm) = χ(p)jmλg(p
jm).

Thus the sequence {λf (pjm)λg(p
jm)}m∈N changes sign infinitely often if and only if
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j is odd. When j is odd, then λf (p
jm)λg(p

jm) changes sign if and only if χ(p) = −1.

Thus, in this case, the set of primes for which λf (p
jm)λg(p

jm) changes sign has

natural density 1/2. This completes the proof of Theorem 3.5.3.

Remark 3.5.8. We note that arguing as in Theorem 3.5.1 and Theorem 3.5.3, one

can also show that;

Theorem 3.5.9. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized Hecke eigen-

forms and p be a prime such that (p,N1N2) = 1. Then the following conditions are

equivalent;

1. the sequence {λf (p2m)λg(p
2m)}m∈N changes sign infinitely often.

2. one has λf (p) 6= ± λg(p).
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Chapter 4

Non-vanishing of Hecke

eigenvalues of modular forms

The main aim of this chapter is to study simultaneous non-vanishing of Hecke eigen-

values of elliptic modular forms. Here we consider modular forms of level one as well

as higher level. Recall that for integers k ≥ 2, N ≥ 1, the space of cusp forms of

weight k for the congruence subgroup Γ0(N) is denoted by Sk(N) and the subspace

of newforms is denoted by Snewk (N). Let

(4.0.1)

f(z) :=
∞∑
n=1

af (n)qn ∈ Snewk1
(N1) and g(z) :=

∞∑
n=1

ag(n)qn ∈ Snewk2
(N2)

be distinct normalized Hecke eigenforms. As mentioned earlier, in this case, the

normalization ensures that n-th Hecke eigenvalue µf (n) = af (n) and µg(n) =

ag(n) for (n,N1N2) = 1. In this chapter, we study non-vanishing of the sequence

{af (n)ag(n)}n∈N.

The next section is devoted to the study of first non-vanishing of the above

sequence. In the penultimate section, we shall study simultaneous non-vanishing and

derive some quantitative results. In the last section, we shall use the properties of
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B-free numbers to investigate non-vanishing of Hecke eigenvalues in short intervals.

This chapter is based on a joint work with Gun and Kumar [28].

4.1 First simultaneous non-vanishing

In this section, we shall prove the following theorem.

Theorem 4.1.1. Let f and g be as in (4.0.1). Also let N := lcm [N1, N2] > 12.

Then there exists a positive integer 1 < n ≤ (2 logN)4 with (n,N) = 1 such that

af (n)ag(n) 6= 0.

Moreover, when N is odd, then there exists an integer 1 < n ≤ 16 with (n,N) = 1

such that

af (n)ag(n) 6= 0.

Note that af (1)ag(1) = 1 but we are trying to find the first natural number n > 1

with (n,N) = 1 for which af (n)ag(n) 6= 0. We shall call this the first non-trivial

simultaneous non-vanishing.

4.1.1 An intermediate lemma

Proposition 4.1.2. Let f and g be as in (4.0.1). Then for any prime p with

(p,N1N2) = 1, there exists an integer m with 1 ≤ m ≤ 4 such that af (p
m)ag(p

m) 6= 0.

Proof of Proposition 4.1.2. Recall from section 2.1.4 that af (p) = p
(k1−1)

2 cos θf (p)

and ag(p) = p(k2−1)/2 cos θg(p) with 0 ≤ θf (p), θg(p) ≤ π for any prime (p,N1N2) = 1.

Hence for any m ∈ N using the identity (2.1.6) we see that af (p
m)ag(p

m) 6= 0 is

equivalent to sin[(m+1)θf (p)] sin[(m+1)θg(p)] 6= 0. Now if af (p)ag(p) 6= 0, then we

are done. Thus we suppose that af (p)ag(p) = 0, then either af (p) = 0 or ag(p) = 0.
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Case (1): If af (p) = 0 = ag(p), then θf (p) = θg(p) = π/2. Hence we have

af (p
2)ag(p

2) = pk1+k2−2 6= 0.

Case (2): Suppose that at least one of af (p) or ag(p) is not zero. Without

loss of generality assume that af (p) = 0 and ag(p) 6= 0, that is, θf (p) = π/2 and

θg(p) 6= π/2. Now if θg(p) = 0 or π, then ag(p
2) = 3pk2−1. Hence we have

af (p
2)ag(p

2) = − 3pk1+k2−2 6= 0.

If θg(p) /∈ {0, π/2, π}, then this implies that ag(p
2) = p(k2−1) sin[3θg(p)]/ sin θg(p).

Now if af (p
2)ag(p

2) = 0, then θg(p) ∈ {π/3, 2π/3} as 0 < θg(p) < π. Then we have

af (p
4)ag(p

4)

p2(k1+k2−2)
=

2√
3

sin
5π

2
sin

5π

3
or

af (p
4)ag(p

4)

p2(k1+k2−2)
=

2√
3

sin
5π

2
sin

10π

3
.

Since neither sin(5π/2) sin(5π/3) nor sin(5π/2) sin(10π/3) is equal to zero, this com-

pletes the proof of Proposition 4.1.2.

4.1.2 Proof of Theorem 4.1.1

To complete the proof of the first part of Theorem 4.1.1, we first show the existence

of a prime p ≤ 2 logN with (p,N) = 1. By a theorem of Rosser and Schoenfeld (see

[84, p. 70]), we know that

∑
p≤x

log p > 0.73x for all x ≥ 41.

Using this, one can easily check that

∑
p≤x

log p >
x

2
for all x ≥ 5.
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Now consider the following product

∏
p≤2 logN

p = exp

( ∑
p≤2 logN

log p

)
> N,

which confirms the existence of a prime p ≤ 2 logN such that (p,N) = 1. Now

we apply Proposition 4.1.2 to complete the proof of the first part of Theorem 4.1.1.

The second part of Theorem 4.1.1 follows immediately from Proposition 4.1.2 and

the fact that 2 - N .

4.2 Some quantitative results

In this section, we shall state and prove some quantitative non-vanishing results

about the sequence {af (pm)ag(p
m)}m∈N and our first theorem in this direction is

stated below.

Theorem 4.2.1. Let f and g be as in (4.0.1). Then for any prime (p,N1N2) = 1,

the set

(4.2.1) {m ∈ N | af (pm)ag(p
m) 6= 0}

has positive density.

Note that Theorem 3 of Gun, Kohnen and Rath [27] showed that for infinitely

many primes p, the sequence Ap := {af (pm)ag(p
m)}m∈N has infinitely many sign

changes and hence in particular, Ap has infinitely many non-zero elements. But

Theorem 4.2.1 shows that for all primes p with (p,N1N2) = 1, the non-zero elements

of the sequence Ap has positive density and hence Theorem 4.2.1 does not follow

from Theorem 3 of [27]. Our next theorem strengthens Theorem 1.2 of Kumari and

R. Murty [45].
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Theorem 4.2.2. Let f and g be as in (4.0.1). Further assume that f and g are

non-CM forms. Then there exists a set S of primes with natural density one such

that for any p ∈ S and integers m,m′ ≥ 1, we have

af (p
m)ag(p

m′) 6= 0.

4.2.1 Proof of Theorem 4.2.1

We start by recalling (see Section 2.1.4 for details) that

λf (p) :=
af (p)

p(k1−1)/2
and λg(p) :=

ag(p)

p(k1−1)/2

and for any prime (p,N1N2) = 1, we have

λf (p) = 2 cos θf (p) and λg(p) = 2 cos θg(p), where 0 ≤ θf (p), θg(p) ≤ π.

Further, for any prime (p,N1N2) = 1, we have

λf (p
m) =


(−1)m(m+ 1) if θf (p) = π;

m+ 1 if θf (p) = 0;

sin[(m+1)θf (p)]

sin θf (p)
otherwise

(4.2.2)

and

λg(p
m) =


(−1)m(m+ 1) if θg(p) = π;

m+ 1 if θg(p) = 0;

sin[(m+1)θg(p)]

sin θg(p)
otherwise.

Now Theorem 4.2.1 follows from the following four cases.
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Case (1): When θf (p) = 0 or π and θg(p) = 0 or π, then by (4.2.2), we see that

{m ∈ N | af (pm)ag(p
m) 6= 0} = N.

In this case all elements of the sequence {af (pm)ag(p
m)}m∈N are non-zero.

Case (2): Suppose that at least one of θf (p), θg(p), say θf (p) = 0 or π and

θg(p) ∈ (0, π). If θg(p)/π 6∈ Q, there is nothing to prove. Now if θg(p)/π = r/s with

(r, s) = 1, then we have

# {m ≤ x | af (pm)ag(p
m) 6= 0} = # {m ≤ x | ag(pm) 6= 0} = [x]−

[
x+ 1

s

]
.

Hence the set {m | af (pm)ag(p
m) 6= 0} has postive density.

Case (3): Suppose that θf (p) = θg(p) ∈ (0, π), that is, θf (p)/π = θg(p)/π ∈ (0, 1).

Now if θf (p)/π /∈ Q, then af (p
m)ag(p

m) 6= 0 for all m ∈ N as sinmθf (p) 6= 0 for all

m ∈ N . If θf (p)/π ∈ Q, say θf (p)/π = r/s, where r, s ∈ N with (r, s) = 1, then we

have sinmθf (p) = 0 if and only if m is an integer multiple of s and hence

# {m ≤ x | af (pm)ag(p
m) 6= 0} = [x]−

[
x+ 1

s

]
.

Hence the set in (4.2.1) has positive density.

Case (4): Assume that θf (p), θg(p) ∈ (0, π) with θf (p) 6= θg(p). If both θf (p)/π and

θg(p)/π are not rational, then there is nothing to prove. Next suppose that one of

them, say θf (p)/π is rational with θf (p)/π = r/s where (r, s) = 1 and θg(p)/π /∈ Q.

Then we have

# {m ≤ x | af (pm)ag(p
m) 6= 0} = # {m ≤ x | af (pm) 6= 0} = [x]−

[
x+ 1

s

]
.

Hence the set in (4.2.1) has positive density.
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Now assume both θf (p)/π, θg(p)/π ∈ Q. If θf (p)/π = r1/s1 and θg(p)/π = r2/s2

with (ri, si) = 1, for 1 ≤ i ≤ 2, then

# {m ≤ x | af (pm)ag(p
m) 6= 0} = # [{m ≤ x|af (pm) 6= 0} ∩ {m ≤ x | ag(pm) 6= 0}] .

Since 0 < |ri/si| < 1 for i = 1, 2 and θf (p) 6= θg(p), hence both s1, s2 can not be 2.

Otherwise, we have r1 = r2 = 1 and hence θf (p) = θg(p). Now note that

# {m ≤ x | af (pm)ag(p
m) = 0} = # [{m ≤ x |af (pm) = 0} ∪ {m ≤ x | ag(pm) = 0}]

≤
[
x+ 1

s1

]
+

[
x+ 1

s2

]
.

Hence the set in (4.2.1) has positive density. This completes the proof of Theo-

rem 4.2.1.

4.2.2 Proof of Theorem 4.2.2

For any real x ≥ 2 and 0 < δ < 1/2, using Theorem 2.1.16, we have

# {p ≤ x | af (pm) = 0 for some m ≥ 1} �f,δ
x

(log x)1+δ
,

where the implied constant depends only on f and δ. We have the same estimate

for the eigenform g as well. Therefore for any x ≥ 2 and 0 < δ < 1/2, we have

(4.2.3) #
{
p ≤ x | af (pm)ag(p

m′) = 0 for some m,m′ ≥ 1
}
�f,g,δ

x

(log x)1+δ
,

where the implied constant depends on f, g and δ. Hence

#
{
p ≤ x | af (pm)ag(p

m′) 6= 0 for all m,m′ ≥ 1
}

= π(x) − #
{
p ≤ x | af (pm)ag(p

m′) = 0 for some m,m′ ≥ 1
}
,
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where π(x) denotes the number of primes up to x. Now using prime number theorem

as well as the identity (4.2.3), we have

#
{
p ≤ x | af (pm)ag(p

m′) 6= 0 for all m,m′ ≥ 1
}
∼ x

log x
.

Hence the set

{
p ∈ P | af (pm)ag(p

m′) 6= 0 for any integers m,m′ ≥ 1
}

has natural density one.

4.3 Simultaneous non-vanishing and B-free num-

bers

In this section, we shall use known properties of B-free numbers to study simulta-

neous non-vanishing of Hecke eigenvalues of two distinct Hecke eigenforms which lie

in the newform space. Motivated by the study of non-vanishing of the Ramanujan

τ -function, Serre [91, page 383] initiated the study of estimating the size of possible

gaps in Hecke eigenvalues (more generally, Fourier coefficients). In this connection,

for any f ∈ Sk(N), he defined the gap function as follows:

if (n) := max
{
m ∈ N

∣∣ af (n+ j) = 0 for all 0 < j ≤ m
}
.

He proved that if (n) = O(n) if f ∈ Sk(N) is a non-CM form and asked for an

estimate of type if (n) = O(nθ) for some θ < 1. A stronger form of this question is

to find the smallest θ < 1 such that

#
{
x < n < x+ xθ

∣∣ af (n) 6= 0
}
� xθ.
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These questions have venerable history. Right after the result of Serre, K. Murty

[63] showed that if (n) = O(n3/5). Balog and Ono [8] were the first to use properties

of B-free numbers to study these questions. Alkan and Zaharescu [2] proved that

i∆(n) �∆ n1/4+ε

for the Ramanujan ∆-function. Kowalski, Robert and Wu [43], using distribution

of B-free numbers in short intervals showed that

if (n) �f n7/17+ε

where f ∈ Snewk (N) is a non-CM normalized Hecke eigenform. Recently, Das and

Ganguly [15] showed that

if (n) �f n1/4+ε

for any f ∈ Sk(1).

In this section, for any f ∈ Sk1(N1) and g ∈ Sk2(N2), we shall consider the

question of estimating of the following generalized gap function

if,g(n) := max
{
m ∈ N

∣∣ af (n+ j)ag(n+ j) = 0 for all 0 < j ≤ m
}

and its stronger form, that is, the question of finding the smallest θ < 1 such that

#
{
x < n < x+ xθ

∣∣ af (n)ag(n) 6= 0
}
� xθ.

These questions were first considered by Kumari and R. Murty [45]. Here we first

consider a generalization of the above question. More precisely, we show the follow-

ing.

Theorem 4.3.1. Let h : N → C be a multiplicative function and N ≥ 1 be an
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integer. Define

(4.3.1) Ph,N :=
{
p ∈ P

∣∣ h(p) = 0
}
∪
{
p ∈ P

∣∣ p | N}.
Also assume that Ph,N satisfies condition (2.4.1). Then

1. for any ε > 0 there exists x0(Ph,N , ε) > 0 such that for all x ≥ x0(Ph,N , ε)

and y ≥ xθ(ρ)+ε, we have

#
{
x < n ≤ x+ y

∣∣ (n,N) = 1, n square-free and h(n) 6= 0
}
�Ph,N , ε y,

where θ(ρ) is as in (2.4.3).

2. for any ε > 0 there exists x0(Ph,N , ε) > 0 such that for all x ≥ x0(Ph,N , ε),

y ≥ xψ(ρ)+ε and 1 ≤ a ≤ q ≤ xε with (a, q) = 1, we have

# {x < n ≤ x+ y | (n,N) = 1, n square-free, n ≡ a(mod q) and h(n) 6= 0}

�Ph,N , ε
y

q
,

where ψ(ρ) is as in (2.4.4).

Proof of Theorem 4.3.1. Let us define

BPh,N := Ph,N ∪
{
p2 | p ∈ P \Ph,N

}
.

Then the first part of Theorem 4.3.1 follows from Theorem 2.4.3. Applying Theo-

rem 2.4.4, we get the second part of Theorem 4.3.1.

As an immediate corollary, we have the following.

Corollary 4.3.2. Let E1/Q and E2/Q be two non-CM elliptic curves which have
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the same conductor N . Let

L(Ei, s) =
∞∑
n=1

aEi(n)n−s, i = 1, 2

be their Hasse-Weil L-functions. Then

1. for any ε > 0 there exists x0(E1, E2, ε) > 0 such that

# {x < n < x+ y | n is square-free and aE1(n)aE2(n) 6= 0} �E1,E2,ε y

for all x > x0(E1, E2, ε) and y ≥ x33/94+ε.

2. for any ε > 0 there exists x0(E1, E2, ε) > 0 such that for any x ≥ x0(E1, E2, ε),

y ≥ x87/214+ε and 1 ≤ a ≤ q ≤ xε with (a, q) = 1, we have

# {x < n ≤ x+ y | (n,N) = 1, n is square-free and n ≡ a mod q and

aE1(n)aE2(n) 6= 0} �E1,E2,ε
y

q
.

Proof of Corollary 4.3.2. By a work of Elkies [21] , we have

#
{
p ≤ x | aE(p) = 0

}
�E x3/4.

Considering h(n) := aE1(n)aE2(n), one easily sees that Ph,N satisfies condition

(2.4.1) with ρ = 3/4 and η = 0. We now apply Theorem 4.3.1 to conclude the

Corollary.

Recently, Kumari and R. Murty [45, Theorem 1.3] proved similar results for non-

CM normalized Hecke eigenforms which are newforms of weight k > 2. But here

we prove the theorem for non-CM elliptic curves which is equivalent to proving the

same for the non-CM normalized Hecke eigenforms of weight 2 lying in the newform

spaces.
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Another application of the Theorem 4.3.1, we have the following simultaneous

non-vanishing of coefficients of symmetric power L-functions in short intervals. To

state the result, we need to introduce few more notations. Let f ∈ Snewk (N) be a

normalized Hecke eigenform with the Fourier coefficients {af (n)}n∈N. Set λf (n) =

af (n)/n(k−1)/2 and suppose that for prime p - N , the Satake p-parameter of f are

αf,p, βf,p. Then the un-ramified m-th symmetric power L-function of f is defined as

follows:

Lunr(sym
mf, s) :=

∏
p-N

∏
0≤j≤m

(1− αjf,pβ
m−j
f,p p−s)−1 :=

∑
n≥1

λ
(m)
f (n)n−s.

With these notations in place, we now have the following corollary.

Corollary 4.3.3. Let f ∈ Snewk1
(N1) and g ∈ Snewk2

(N2) be normalized non-CM Hecke

eigenforms. Let N := lcm[N1, N2]. Then

1. for any ε > 0 there exists x0(f, g, ε) > 0 such that

#
{
x < n ≤ x+ y | (n,N) = 1, n is square-free and λ

(m)
f (n)λ(m)

g (n) 6= 0
}

�f,g,m,N,ε y

for all x ≥ x0(f, g, ε) and y ≥ x7/17+ε.

2. for any ε > 0 there exists x0(f, g, ε) > 0 such that for all x ≥ x0(f, g, ε),

y ≥ x17/38+ε and 1 ≤ a ≤ q ≤ xε with (a, q) = 1, we have

#
{
x < n ≤ x+ y | (n,N) = 1, n square-free, n ≡ a(mod q)

and λ
(m)
f (n)λ(m)

g (n) 6= 0
}
�f,g,m,N,ε

y

q
.

Proof of Corollary 4.3.3. Let us assume that

Pf,g,m,N :=
{
p ∈ P

∣∣ p | N or λ
(m)
f (p)λ(m)

g (p) = 0
}
.
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Since λ
(m)
f (p) = λf (p

m), by Theorem 2.1.16 (also see Theorem 2.1.15) we see that

Pf,g,m,N satisfies condition (2.4.1). Note that h(n) := λ
(m)
f (n)λ

(m)
g (n) is a multi-

plicative function and hence we can apply Theorem 4.3.1 to complete the proof of

Corollary 4.3.3.

Remark 4.3.4. Note that Corollary 4.3.3 implies simultaneous non-vanishing of

Hecke eigenvalues in sparse sequences. More precisely, let f ∈ Snewk1
(N1) and g ∈

Snewk2
(N2) be normalized non-CM Hecke eigenforms. Also let N := lcm[N1, N2].

Then

1. for any ε > 0 there exists x0(f, g, ε) > 0 such that

# {x < n ≤ x+ y | (n,N) = 1, n is square-free and λf (n
m)λg(n

m) 6= 0}

�f,g,m,N,ε y

for all x ≥ x0(f, g, ε) and y ≥ x7/17+ε.

2. for any ε > 0 there exists x0(f, g, ε) > 0 such that for all x ≥ x0(f, g, ε),

y ≥ x17/38+ε and 1 ≤ a ≤ q ≤ xε with (a, q) = 1, we have

#
{
x < n ≤ x+ y | (n,N) = 1, n square-free, n ≡ a(mod q)

and λf (n
m)λg(n

m) 6= 0
}
�f,g,m,N,ε

y

q
.
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Chapter 5

Hecke eigenvalues of Siegel

modular forms of degree two: I

5.1 Introduction

This chapter is devoted to the study of arithmetic properties of Hecke eigenvalues of

Hecke eigenforms which lie in the Maass subspace of the space of Siegel cusp forms

degree two. Recall that the Maass subspace is defined by

S∗k :=

F ∈ Sk(Γ2)
∣∣ aF

 n r/2

r/2 m

 =
∑

d|(n,m,r)

dk−1aF

nm/d2 r/2d

r/2d 1


∀

 n r/2

r/2 m

 > 0

 ,

where aF (M) is the Fourier coefficient of F ∈ Sk(Γ2). Here, as before, Γ2 := Sp2(Z)

and Sk(Γ2) denote the Siegel modular group of degree two and the space of cuspidal

Siegel modular forms of weight k and degree two respectively. When f is an elliptic

cuspform which is a Hecke eigenform of weight k with Hecke eigenvalues µf (n), then
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by a celebrated result of Deligne [19, Theorem 8.2], we know that for any positive

integer n ∈ N

|µf (n)| ≤ d(n) n(k−1)/2,

where d(n) is the number of divisors of n.

Now one would like to know the optimality of the above result, that is, an omega

result for the sequence {µf (n)/n(k−1)/2}n∈N. This has been researched extensively.

In 1973, Rankin [81] showed that

lim sup
n→∞

µf (n)

n(k−1)/2
= +∞.

In 1983, R. Murty [64] showed that

µf (n) = Ω±

(
n(k−1)/2exp

(
c log n

log log n

))
,

where c > 0 is an absolute constant.

In case of Siegel modular forms of degree two, the generalised Ramanujan-

Petersson conjecture (see [73]) predicts that

(5.1.1) µF (p) �ε pk−3/2+ε

for any prime p and ε > 0. It is known that the elements lying the Maass subspace

of Sk(Γ2) are the ones which fail to satisfy equation (5.1.1). Thus these Hecke eigen-

values are inaccessible via the Ramanujan-Petersson bounds. Hence we investigate

upper and lower bounds, omega result and distributions of these Hecke eigenvalues,

that is, the Hecke eigenvalues of an eigenform lying in the Maass subspace.

In this direction, the best known upper bound for these Hecke eigenvalues are
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due to Pitale and Schmidt [75], which states that for any ε > 0, we have

µF (n) �ε nk−1+ε.

On the other hand, Das and Sengupta [16] proved an omega result for these Hecke

eigenvalues. But there is a considerable gap between the known upper bound and

the known omega result. In our study, we improve upper bound and omega result

for these Hecke eigenvalues. This chapter is based on a joint work with Gun and

Sengupta [31].

5.2 Statement of the Theorems

Let S∗k be the Maass subspace of Sk(Γ2). We first investigate the upper bound for

the Hecke eigenvalues µF (n), where F ∈ S∗k is a Hecke eigenform.

Theorem 5.2.1. Let F ∈ S∗k be a non-zero Hecke eigenform with Hecke eigenvalues

{µF (n)}n∈N. Then there exists an absolute constant c1 > 0 such that

µF (n) ≤ nk−1exp

(
c1

√
log n

log log n

)

for all integer n ≥ 3.

Remark 5.2.2. Theorem 5.2.1 improves an earlier result of Pitale and Schmidt (see

page 101 of [75]).

Our next theorem shows that the above upper bound is not far from being

optimal.

Theorem 5.2.3. Let F ∈ S∗k be a non-zero Hecke eigenform with Hecke eigenvalues
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{µF (n)}n∈N. Then there exists an absolute constant c > 0 such that

µF (n) = Ω

(
nk−1exp

(
c

√
log n

log log n

))
.

Theorem 5.2.3 strengthens an earlier result of Das and Sengupta [16]. We also

have the following lower bound.

Theorem 5.2.4. Let F ∈ S∗k be a non-zero Hecke eigenform with Hecke eigenvalues

{µF (n)}n∈N. Then there exist absolute constants c2, c3 > 0 such that

µF (n) ≥ c2n
k−1exp

(
−c3

√
log n

log log n

)

for all integers n ≥ 3.

As a corollary, we have an alternative proof of the following result of Breul-

mann [12].

Corollary 5.2.5. If F ∈ S∗k is a non-zero Hecke eigenform with Hecke eigenvalues

µF (n), then µF (n) > 0.

Since µF (n)/nk−1 > 0, one might wonder whether this result is optimal, that is,

ask for a constant d > 0 such that µF (n)/nk−1 ≥ d for all n ∈ N. Our next theorem

precludes such a possibility.

Theorem 5.2.6. Let F ∈ S∗k be a non-zero Hecke eigenform with Hecke eigenvalues

µF (n). Then

lim inf
n→∞

µF (n)

nk−1
= 0.

Finally, we investigate distributions of limit points of the sequence {µF (n)/nk−1}n.

Theorem 5.2.7. Let F ∈ S∗k be a non-zero Hecke eigenform with Hecke eigenvalues

µF (n). Then there are infinitely many limit points of the sequence {µF (n)/nk−1}n∈N

in (1,∞) and infinitely many of them are in (0, 1).
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5.3 Some requisites

We shall need the following lemma to prove Theorem 5.2.3 and Theorem 5.2.6.

Lemma 5.3.1. Let f(z) =
∑∞

n=1 a(n)qn ∈ S1
k be a normalised Hecke eigenform.

Then there exist absolute constants β, β1 satisfying 0 < β, β1 < 2 such that both

the sets

{
p ∈ P | a(p) < −β1 · p(k−1)/2

}
and

{
p ∈ P | a(p) > β · p(k−1)/2

}
have positive lower density.

Proof of Lemma 5.3.1. A proof of this lemma can be found in [64, Corollary 2]

and in [16, Lemma 3.1]. For the sake of completeness, we give a proof here.

Let b(p) := a(p)/p(k−1)/2. Then for any absolute constant β̃ satisfying 0 < β̃ < 2,

consider the sums

S(x) :=
∑
p≤x

(
b(p) + β̃

) (
b(p)− 2

)
and S+(x) :=

∑
p≤x,

b(p)<−β̃

(
b(p) + β̃

) (
b(p)− 2

)
.

By Deligne’s bound |b(p)| ≤ 2, we have

S(x) ≤ S+(x) ≤ 16 #
{
p ∈ P | b(p) < −β̃

}
.

Now using the estimates (see pages 43 and 135 of [35] and Theorem 2 of [80])

∑
p≤x

b(p) log p � x exp(−κ
√

log x),
∑
p≤x

b2(p) log p ∼ x and
∑
p≤x

1 ∼ x

log x
,

where κ > 0 is an absolute constant, we have

#
{
p ∈ P | b(p) < −β̃

}
≥ 1

16
S(x) ≥ 1

32

(
1− 2β̃

) x

log x
+ o

(
x

log x

)
.
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Therefore, there exists an absolute constant β1 satisfying 0 < β1 < 2 such that

{
p ∈ P | a(p) < −β1 · pk−3/2

}
has positive lower density. Using similar arguments one can show that the other set

also has positive lower density.

One can use the Sato-Tate conjecture (now a theorem due to Barnet-Lamb,

Geraghty, Harris and Taylor [10]) to get the above result. But the proof of the

lemma avoids this deep theorem.

We recall that by Theorem 2.2.14, if F ∈ S∗k is a Hecke eigenform corresponding

to the eigenvalues {µF (n)}n∈N, then there exists a normalized Hecke eigenform f ∈

S2k−2(Γ1) with the eigenvalues {a(n)}n∈N such that

(5.3.1) ζ(2s− 2k + 4)
∞∑
n=1

µF (n)

ns
= ζ(s− k + 1)ζ(s− k + 2)

∞∑
n=1

a(n)

ns
.

5.4 Proof of the Theorems

5.4.1 Proof of Theorem 5.2.1

From the identity (5.3.1), for all m ∈ N and any p ∈ P , one can easily deduce that

µF (pm)

pm(k−1)
= 1 +

1

p
+

(
1 +

1

p

)m−1∑
`=1

a(p`)

p`(k−1)
+

a(pm)

pm(k−1)

with the convention that an empty sum is zero. Note that for any |λ| < 1, we have

∞∑
n=2

(n+ 1)λn =
∞∑
n=3

nλn−1 =
3λ2 − 2λ3

(1− λ)2
.
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This can be seen by considering the power series

h(x) =
∑
n≥3

xn =
1

1− x
− 1− x− x2

and noting that

h′(x) =
3x2 − 2x3

(1− x)2
,

where h′ is the derivative of h. For any p ∈ P , let us set

αp :=
∞∑
n=2

n+ 1

pn/2
=

3p1/2 − 2

p1/2(p1/2 − 1)2
.

By the work of Deligne [19], one knows that

a(n)

nk−3/2
≤ d(n),

where d(n) denotes the number of divisors of n. This shows that for any p ∈ P and

m ∈ N with m ≥ 2, we have

µF (pm)

pm(k−1)
≤ 1 +

1

p
+

(
1 +

1

p

)
2

p1/2
+

(
1 +

1

p

)
αp.

Note that αp � 1/p. Hence there exists an absolute constant c7 > 0 such that

µF (pm)

pm(k−1)
≤ 1 +

c7

p1/2

for all m ∈ N. Let n ≥ 3 be an arbitrary natural number and let t = ν(n) be its

number of distinct prime divisors. Then we can write n as

n = pm1
1 · · · pmtt
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where p1 < · · · < pt andmi > 0 for 1 ≤ i ≤ t. Now using the fact that log(1+x) ≤ x

for any x > 0, we have

µF (n)

nk−1
≤

∏
1≤i≤t

(
1 +

c7

p
1/2
i

)
= exp

(∑
1≤i≤t

log

(
1 +

c7

p
1/2
i

))
≤ exp

(
c7

∑
1≤i≤t

1

p
1/2
i

)
.

Since i < pi, we have

µF (n)

nk−1
≤ exp

(
c7

∑
1≤i≤t

1

i1/2

)
≤ exp

(
c8 t

1/2
)
,

where c8 > 0 is an absolute constant. Note that t = ν(n) � log n/ log log n for

n� 1 (see [98], page 83 for details). Thus for any n ≥ 3, we have

µF (n)

nk−1
≤ exp

(
c1

√
log n

log log n

)
,

where c1 > 0 is an absolute constant. This completes the proof of the theorem.

5.4.2 Proof of Theorem 5.2.3

Using the identity (5.3.1), for any prime p, one has

µF (p) = pk−1

(
1 +

1

p
+
a(p)

pk−1

)
.

Note that by Lemma 5.3.1, there exists an absolute constant 0 < β < 2 such that

the set

A :=
{
p ∈ P | a(p) > β · pk−3/2

}
has positive lower density. For any real x > 0, let

nx :=
∏

5≤p≤x,
p∈A

p
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with the convention that an empty product is 1. Then for sufficiently large real

number x > 0, we have

µF (nx)

nk−1
x

=
∏

5≤p≤x,
p∈A

(
1 +

1

p
+
a(p)

pk−1

)
≥

∏
5≤p≤x,
p∈A

(
1 +

a(p)

pk−1

)

≥ exp

 ∑
5≤p≤x,
p∈A

log

(
1 +

β

p1/2

)
≥ exp

c4

∑
5≤p≤x,
p∈A

1

p1/2

 ,

where c4 > 0 is an absolute constant. Since the set A has positive lower density,

using partial summation formula, one can easily see that

∑
5≤p≤x,
p∈A

1

p1/2
�

√
x

log x
,

where the implied constant is absolute. Further for any positive real x, we have

log(nx) =
∑

5≤p≤x,
p∈A

log p � x.

Note that
√
x/ log x is an increasing function for x ≥ 8. Thus for sufficiently large

x, we have

µF (nx)

nk−1
x

≥ exp

(
c5

√
x

log x

)
≥ exp

(
c

√
log nx

log log nx

)
,

where c, c5 > 0 are absolute constants. This shows that given any natural number

M , there exists a natural number n with n > M such that

µF (n)

nk−1
≥ exp

(
c

√
log n

log log n

)
.
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This completes the proof of Theorem 5.2.3.

5.4.3 Proof of Theorem 5.2.4

As earlier by the identity (5.3.1) for any p ∈ P , we know that

µF (pm)

pm(k−1)
= 1 +

1

p
+

(
1 +

1

p

)m−1∑
`=1

a(p`)

p`(k−1)
+

a(pm)

pm(k−1)
.

Proceeding as in subsection 5.4.1, for any p ∈ P and m ∈ N with m ≥ 2, we see

that

µF (pm)

pm(k−1)
≥ 1 +

1

p
+

(
1 +

1

p

)
a(p)

pk−1
−
(

1 +
1

p

)
αp.

Since for any prime p ≥ 11, one has αp < 6/p and hence for any integer m ≥ 1, we

have

µF (pm)

pm(k−1)
≥ 1− 1

p1/2

(
2 +

5

p1/2
+

2

p
+

6

p3/2

)
.

Thus except for finitely many primes p, there exists an absolute constant c10 > 0

such that for all m ∈ N, we have

µF (pm)

pm(k−1)
≥ 1− c10

p1/2
with

c10

p1/2
< 1.(5.4.1)

It is easy to see that one can choose c10 = 3 · 5 and hence the inequality (5.4.1) is

true for any prime p ≥ 17. Let

T := {p ∈ P | the inequality (5.4.1) holds}

and n ∈ N be any natural number whose prime divisors are in T . As in subsection

5.4.1, writing

n =
∏

1≤i≤t

pmii
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with mi > 0 and p1 < · · · < pt, we have

µF (n)

nk−1
≥

∏
1≤i≤t

(
1− c10

p
1/2
i

)
= exp

(∑
1≤i≤t

log

(
1− c10

p
1/2
i

))

≥ exp

(
−c11

∑
1≤i≤t

1

p
1/2
i

)

≥ exp

(
−c11

∑
1≤i≤t

1

i1/2

)
≥ exp

(
−c12 t

1/2
)
,

where c11, c12 > 0 are absolute constants. Again since t = ν(n) � log n/ log log n

for n� 1, hence for such n ∈ N with n ≥ 3, we have

(5.4.2)
µF (n)

nk−1
≥ exp

(
−c3

√
log n

log log n

)
,

where c3 > 0 is an absolute constant. Note that (5.4.2) holds if all the prime divisors

of n are in the set T . Now if n ∈ N is such that p|n ⇒ p /∈ T , then we use Hecke

relation

a(pn+1) = a(p)a(pn)− p2k−3a(pn−1)

for n ∈ N and explicit calculations using Mathematica. In particular, we have

(5.4.3)
µF (n)

nk−1
≥ c2,

where c2 > 0 is an explicit constant. Combining (5.4.2) and (5.4.3), we now get

µF (n) ≥ c2n
k−1exp

(
−c3

√
log n

log log n

)

for any natural number n ∈ N with n ≥ 3.
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5.4.4 Proof of Corollary 5.2.5

Since µF is a non-zero multiplicative function (see [3], [71]), we have µF (1) = 1 > 0.

Further note that

µF (2) ≥ 3

2
−
√

2 > 0.

Now by applying Theorem 5.2.4, we conclude the corollary.

5.4.5 Proof of Theorem 5.2.6

Again we start by noting that for any prime p, we have

µF (p) = pk−1

(
1 +

1

p
+
a(p)

pk−1

)
.

By Lemma 5.3.1, there exists an absolute constant 0 < β1 < 2 such that the set

B :=
{
p | a(p) < −β1 · pk−3/2

}
has positive lower density. Let us take

nx =
∏

x<p≤2x
p∈B

p,

where x is sufficiently large so that 2/
√
x < β1. Then we have

µF (nx)

nk−1
x

=
∏

x<p≤2x,
p∈B

(
1 +

1

p
+
a(p)

pk−1

)
≤

∏
x<p≤2x,
p∈B

(
1 +

1

p
+
−β1

p1/2

)

≤ exp

 ∑
x<p≤2x,
p∈B

log

(
1− β1

2p1/2

)
≤ exp

−c13

∑
x<p≤2x,
p∈B

1

p1/2

 ,
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where c13 > 0 is an absolute constant. Since the set B has positive lower density, as

in subsection 5.4.2, we get

µF (nx)

nk−1
x

≤ exp

(
−c15

√
x

log x

)
≤ exp

(
−c4

√
log nx

log log nx

)
,

where c15 > 0 is an absolute constant. Thus for given any natural number M , there

exists a natural number n with n > M such that

µF (n)

nk−1
≤ exp

(
−c4

√
log n

log log n

)
.

Hence we have the result.

5.4.6 Proof of Theorem 5.2.7

Recall that for any m ∈ N and any prime p, by (5.3.1) we have

µF (pm)

pm(k−1)
= 1 +

1

p
+

(
1 +

1

p

)m−1∑
`=1

a(p`)

p`(k−1)
+

a(pm)

pm(k−1)
.

Note that the series
∞∑
`=1

a(p`)

p`(k−1)

is absolutely convergent (see section 5.4.1 for details). This implies that the sequence

{
µF (pm)

pm(k−1)

}
m∈N

is convergent. Further, there exist absolute constants e1, e2 > 0 such that

1 +
e1

p1/2
≤ µF (pm)

pm(k−1)
≤ 1 +

e2

p1/2
(5.4.4)
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holds for all but finitely many primes p ∈ A. Indeed, the upper bound is a con-

sequence of subsection 5.4.1 whereas the lower bound follows from the fact that

αp ≤ 6/p for p ≥ 11 and primes p ∈ A has the property that a(p) > β · pk−3/2 with

absolute constant β (see subsection 5.4.1, subsection 5.4.2 and subsection 5.4.3).

Let us choose a prime p1 ∈ A such that (5.4.4) holds. Since (5.4.4) is true for all

but finitely many p ∈ A, we can choose p2 ∈ A such that p2 > p1 and

1 +
e1

p
1/2
2

≤ µF (pm2 )

p
m(k−1)
2

≤ 1 +
e2

p
1/2
2

< 1 +
e1

2p
1/2
1

.

Proceeding in this way, we get a sequence {pn}n∈N such that

lim
m→∞

µF (pmn )

p
m(k−1)
n

> 1 and lim
m→∞

µF (pmi )

p
m(k−1)
i

6= lim
m→∞

µF (pmj )

p
m(k−1)
j

for any i 6= j. This shows that there are infinitely many limit points of the sequence

{µF (n)/nk−1}n∈N which are in the interval (1,∞).

Considering the set B (see subsection 5.4.5) and arguing as above, one can show

that there is a sequence {pn}n∈N ⊂ B for which

lim
m→∞

µF (pmn )

p
m(k−1)
n

< 1 and lim
m→∞

µF (pmi )

p
m(k−1)
i

6= lim
m→∞

µF (pmj )

p
m(k−1)
j

for any i 6= j. This completes the proof.
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Chapter 6

Hecke eigenvalues of Siegel

modular forms of degree two: II

6.1 Introduction

Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms with Hecke eigenvalues

{µF (n)}n∈N and {µG(n)}n∈N respectively. In this chapter, we investigate arithmetic

properties of the sequence {µF (n)µG(n)}n∈N when both F andG lie in the orthogonal

complement of Maass subspace. Unlike elliptic modular forms, it is not known

whether Hecke eigenforms F and G with F 6= cG for some constant c ∈ C× implies

that µF (n) 6= µG(n) for some n ∈ N (see [11, 86], see also [7] for recent progress).

This phenomenon is known as multiplicity one theorem and it is known to be true

under generalized Böcherer’s conjecture (see [86]). On the other hand, it is known

(see [103]) that the Maass subspace S∗k of Sk(Γ2) is generated by the Saito-Kurokawa

lifts of Hecke eigenforms which are cuspidal elliptic modular forms of weight 2k− 2.

Since multiplicity one theorem is known to be true for elliptic modular forms and

the Maass subspace S∗k is isomorphic to the space S2k−2(Γ1), hence multiplicity one

theorem holds good for the forms lying in the Maass subspace S∗k .
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Henceforth, we shall assume that F and G are Siegel Hecke eigenforms of degree

two which do not lie in the Maass subspace S∗k . We also assume that they lie in

different eigenspaces. Under this hypothesis, we first investigate the number of

positive integers n such that µF (n) 6= µG(n). We then investigate the questions

of simultaneous non-vanishing and sign changes of the sequence {µF (n)µG(n)}n∈N.

The content of this chapter is taken from a joint work with Gun and Kohnen [26].

6.2 Statement of the theorems

We first show the following theorem.

Theorem 6.2.1. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms lying in the

orthogonal complement of the Maass subspace and having eigenvalues {µF (n)}n∈N

and {µG(n)}n∈N respectively. Also let F and G lie in different eigenspaces. Then

for any ε > 0, one has

# {n ≤ x | µF (n) 6= µG(n)} � x1−ε,

where the constant � depends on F,G and ε.

In particular, this theorem shows that at least one of F or G has infinitely many

non-zero Hecke eigenvalues. This motivates us to investigate the non-vanishing of

Hecke eigenvalues at prime powers. Here we have the following theorem.

Theorem 6.2.2. Let F ∈ Sk1(Γ2), G ∈ Sk2(Γ2), µF (n) and µG(n) be as in Theo-

rem 6.2.1. Then for any prime p, there exists an integer n with 1 ≤ n ≤ 14 such

that

µF (pn)µG(pn) 6= 0.

Next we investigate the question of Hecke eigenvalues which are of different sign.
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More precisely, we have the following theorem.

Theorem 6.2.3. Let F ∈ Sk1(Γ2) be a Hecke eigenform lying in the orthogonal

complement of the Maass subspace and having Hecke eigenvalues {µF (n)}n∈N. Also

assume that there exist 0 < c < 4 and a Hecke eigenform G ∈ Sk2(Γ2) lying in the

orthogonal complement of the Maass subspace with Hecke eigenvalues {µG(n)}n∈N

such that

(6.2.1) #
{
p ≤ x | |µG(p)| > cpk2−

3
2

}
≥ 16

17
· x

log x

for sufficiently large x. If F and G lie in different eigenspaces, then half of the

non-zero coefficients of the sequence {µF (n)µG(n)}n∈N are positive and half of them

are negative.

First note that the subset {p | µG(p) = 0} of primes has natural density zero (see

appendix of [85]). Further, the generalized Ramanujan-Petersson bound implies that

for any prime p, we have |µG(p)| ≤ 4pk2−
3
2 . Thus the hypothesis in (6.2.1) is not

an unreasonable one (especially if one believes an analogous Sato-Tate conjecture in

this setup). If we restrict to eigenvalues at primes, we have the following theorem.

Theorem 6.2.4. Let F ∈ Sk1(Γ2), G ∈ Sk2(Γ2), µF (n) and µG(n) be as in Theo-

rem 6.2.3. Then there exists a set of primes p of positive lower density such that

µF (p)µG(p) ≷ 0.

6.3 Some requisites

In order to study analytic properties of L(F,G; s), we shall make use of the following

result on the formal power series by Gun and R. Murty [29, Theorem 2].

Theorem 6.3.1. Let Pi(T ) and Qi(T ) be non-zero polynomials over C such that
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degree of Pi is strictly less than the degree of Qi for i = 1, 2. Also let

Q1(T ) :=
r∏
i=1

(1− αiT )`i and Q2(T ) :=
t∏

j=1

(1− βjT )mj ,

where αi’s are distinct for 1 ≤ i ≤ r and βj’s are distinct for 1 ≤ j ≤ t and

`i,mj ∈ N. Let us also assume that

∑
n≥0

anT
n =

P1(T )

Q1(T )
and

∑
n≥0

bnT
n =

P2(T )

Q2(T )

where an, bn ∈ C for all n ≥ 0. Then we have

∑
n≥0

anbnT
n =

R(T )∏
i,j(1− αiβjT )`imj

,

where R(T ) ∈ C[T ]. Now if a0 = 1 = b0, then R(0) = 1. Further if we have

P ′1(0) = 0 = P ′2(0), then R′(0) = 0. Here P ′ denotes the derivative of P (T ) with

respect to T .

To prove Theorem 6.2.3, we will need the following result on the sign changes of

multiplicative functions by Matomäki and Radziwi l l [59, Lemma 2.4].

Lemma 6.3.2. Let K,L : R+ → R+ be functions such that K(x)→ 0 and L(x)→∞

as x→∞. Let g : N→ R be a multiplicative function such that for every x ≥ 2, we

have ∑
p≥x,
g(p)=0

1

p
≤ K(x) and

∑
p≤x,
g(p)<0

1

p
≥ L(x).

Then we have

#
{
n ≤ x | g(n) > 0

}
= (1 + o(1)) ·#

{
n ≤ x | g(n) < 0

}
=

(
1

2
+ o(1)

)
x
∏
p∈P

(
1− 1

p

)(
1 +

h(p)

p
+
h(p2)

p2
+ · · ·

)
,

where h is the characteristic function of the set {n ∈ N | g(n) 6= 0}.
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Let us recall that for any Hecke eigenform F ∈ Sk(Γ2) lying in the orthogo-

nal complement of the Maass subspace and having Hecke eigenvalues µF (n), we

normalized the Hecke eigenvalues as follows:

λF (n) :=
µF (n)

nk−3/2
for any n ∈ N.

We shall call λF (n) as normalized Hecke eigenvalue.

6.4 Proof of the Theorems

6.4.1 Proof of Theorem 6.2.1

In this subsection, we shall complete the proof of Theorem 6.2.1. Let us start with

the following proposition.

Proposition 6.4.1. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms lying

in the orthogonal complement of the Maass subspace and having normalized Hecke

eigenvalues {λF (n)}n∈N and {λG(n)}n∈N respectively. Also let F and G lie in dif-

ferent eigenspaces. Then for sufficiently large x and any ε > 0, one has

∑
m≤x

λF (m)λG(m) �ε max{k1, k2}3/8x31/32+ε,

where the constant in �ε depends only on ε.

To prove Proposition 6.4.1, we first establish a relation between the functions

L(F,G; s) and L(F ×G, s). More precisely, we show the following.

Lemma 6.4.2. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be as in Proposition 6.4.1. Then

for <(s) > 1, one has

(6.4.1) L(F,G; s) = g(s)L(F ×G; s),
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where

(6.4.2) g(s) :=
∏
p∈P

gp(p
−s).

Here gp(X)’s are polynomials of degree ≤ 15 and the Euler product on the right

hand side of (6.4.2) is absolutely convergent for <(s) > 1/2. Further, there exists

an absolute constant A > 0 such that

g(s) � σA
(
σ − 1

2

)−A

holds uniformly for any σ := <(s) > 1/2.

Proof of Lemma 6.4.2. Consider the L-functions

L(F, s) :=
∞∑
n=1

λF (n)

ns
and L(G, s) :=

∞∑
n=1

λG(n)

ns
.

These L-functions are absolutely convergent for <(s) > 1 and by (2.2.2), we have

L(F, s) =
ZF (s)

ζ(2s+ 1)
and L(G, s) =

ZG(s)

ζ(2s+ 1)
.

Here ZF (s), ZG(s) are the spinor zeta functions associated to F and G respectively.

Since λF (n) and λG(n) are multiplicative, for any prime p, by (2.2.3), we can write

∞∑
n=0

λF (pn)T n =
1− 1

p
T 2∏

1≤i≤4(1− αp,iT )
and

∞∑
n=0

λG(pn)T n =
1− 1

p
T 2∏

1≤i≤4(1− βp,iT )
.

Now by Theorem 6.3.1, one has

∞∑
n=0

λF (pn)λG(pn)T n =
gp(T )∏

1≤i,j≤4(1− αp,iβp,jT )
,

where gp(T ) ∈ C[T ] is a polynomial of degree at most 15. Also gp(0) = 1 and
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g′p(0) = 0, where g′p is the derivative of gp. The fact |αp,i| = |βp,j| = 1 for 1 ≤ i, j ≤ 4

implies that the coefficients of gp(T ) are bounded by an absolute constant. Since

gp(0) = 1, the coefficients of T in the polynomial gp(T ) is zero and other coefficients

are bounded by an absolute constant, it is easy to conclude that

∏
p∈P

gp(p
−s)

is absolutely convergent for <(s) > 1/2. This shows that for σ > 1, we have

L(F,G; s) = L(F ×G; s)g(s).

It remains to show that g(s) has the required bound. Let

gp(T ) := 1 + a(p2)T 2 + · · ·+ a(p15)T 15,

where a(pi) ∈ C and a(pi) are bounded by an absolute constant for all 2 ≤ i ≤ 15

and for all primes p. Let A > 0 be an integer such that |a(p2)| ≤ A for all p ∈ P .

Thus

|gp(p−s)| =

∣∣∣∣∣1 +
∑

2≤n≤15

a(pn)p−ns

∣∣∣∣∣ ≤ hp(σ),

where

hp(s) := 1 + Ap−2s + |a(p3)|p−3s + · · ·+ |a(p15)|p−15s.

Now note that

(6.4.3)
(
1− p−2s

)A
hp(s) = 1 +O

(
p−3σ

)
.

The left hand side of (6.4.3) is nothing but the p-th Euler factor of the Dirichlet

series

ζ(2s)−Ah(s), where h(s) :=
∏
p∈P

hp(s).
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Hence for all σ > 1/2, we have

g(s) �
(

σ

σ − 1/2

)A
.

This completes the proof of Lemma 6.4.2.

As an application of the above lemma, one can derive the following analytic

properties of the L-function L(F,G; s).

Lemma 6.4.3. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be as in Proposition 6.4.1. Then

the function L(F,G; s) admits an analytic continuation to <(s) > 1/2.

Proof of Lemma 6.4.3. We know from Lemma 6.4.2 that for any σ > 1, we have

L(F,G; s) = g(s)L(F ×G, s).

Now holomorphicity of g(s) to <(s) > 1/2 along with the fact that L(F × G, s)

has analytic continuation to C (see Theorem 2.2.10) imply that L(F,G; s) can be

continued analytically upto σ > 1/2.

To prove Proposition 6.4.1, we also need the following convexity bound.

Lemma 6.4.4. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be as in Proposition 6.4.1. Then

for any ε > 0 and 0 < δ < 1, one has

(6.4.4) L(F ×G, δ + it) �ε max{k1, k2}6(1−δ+ε)|3 + it |8(1−δ+ε).

To prove Lemma 6.4.4 we shall use the following strong convexity principle due

to Rademacher [76] which we recall here.

Proposition 6.4.5. Let g(s) be holomorphic and of finite order in a < <(s) < b,
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and continuous on the closed strip a ≤ <(s) ≤ b. Also let

|g(a+ it)| ≤ E|P + a+ it|α and |g(b+ it)| ≤ F |P + b+ it|β,

where E,F are positive constants and P, α, β are real constants satisfying

P + a > 0, α ≥ β.

Then for a < σ < b, we have

|g(s)| ≤
(
E|P + s|α

) b−σ
b−a
(
F |P + s|β

)σ−a
b−a .

We now complete the proof of Lemma 6.4.4.

Proof of Lemma 6.4.4. Without loss of generality, let us assume that k1 ≥

k2 > 2. It is known by [74, sec. 5.1] that F (also G) can be associated to a

cuspidal, automorphic representation π (resp. π′) of GSp4(A) such that π (resp.

π′) has trivial central character, the archimedean component π∞ (resp. π′∞) is

a holomorphic discrete series representation with scalar minimal K-type (k1, k1)

[resp. (k2, k2)] and for each finite place p, the local representation πp [resp. π′p] is

unramified. Here A is the ring of adeles of Q. The real Weil group WR is given

by C× t jC× such that j2 = −1 and jzj−1 = z for z ∈ C×. Then the real Weil

group representations underlying Siegel modular forms F and G of weights k1 and

k2 respectively are given by (see page 90 of [74] and page 2397 of [88]) ϕ2k1−3 ⊕ ϕ1

and ϕ2k2−3 ⊕ ϕ1, where for k ∈ N, ϕk is defined by

ϕk : C× 3 reiθ 7→

eikθ
e−ikθ

 , j 7→

 (−1)k

1

 .
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Then the parameter of π∞ × π′∞ is

(ϕ2k1−3 ⊕ ϕ1)⊗ (ϕ2k2−3 ⊕ ϕ1) =



ϕ2k1+2k2−6 ⊕ ϕ2(k1−k2) ⊕ ϕ2k1−2

⊕ ϕ2k1−4 ⊕ ϕ2k2−2 ⊕ ϕ2k2−4

⊕ ϕ2 ⊕ ϕ+ ⊕ ϕ− if k1 > k2

ϕ4k1−6 ⊕ ϕ+ ⊕ ϕ− ⊕ ϕ2k1−2

⊕ ϕ2k1−4 ⊕ ϕ2k1−2 ⊕ ϕ2k1−4

⊕ ϕ2 ⊕ ϕ+ ⊕ ϕ− if k1 = k2.

Here ϕ+ and ϕ− are given by

ϕ+ : reiθ 7→ 1, j 7→ 1;

ϕ− : reiθ 7→ 1, j 7→ −1.

Now from [88, Table 2], one can easily see that the gamma factors of L(F × G, s)

are as follows:

L∞(F ×G, s) :=



ΓC(s+ k1 + k2 − 3)ΓC(s+ k1 − k2)ΓC(s+ k1 − 1)

ΓC(s+ k1 − 2)ΓC(s+ k2 − 1)ΓC(s+ k2 − 2)

ΓC(s+ 1)ΓR(s)ΓR(s+ 1) if k1 > k2,

ΓC(s+ 2k1 − 3)Γ2
C(s+ k1 − 1)Γ2

C(s+ k1 − 2)

ΓC(s+ 1)Γ2
R(s)Γ2

R(s+ 1) if k1 = k2,

where ΓR(s) := π−s/2Γ(s/2) and ΓC(s) := 2(2π)−sΓ(s). Again by [74, Theorem

5.2.3], we know that the completed L-function

L∗(F ×G, s) := L∞(F ×G, s)L(F ×G, s)
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satisfies the functional equation

L∗(F ×G, 1− s) = ε(F ×G, s)L∗(F ×G, s),

where ε(F ×G, s) ∈ C and has absolute value 1. Thus for any s ∈ C with σ > 1, we

have

|L(F ×G, 1− s)| =

∣∣∣∣ L∞(F ×G, s)
L∞(F ×G, 1− s)

∣∣∣∣ · |L(F ×G, s)| .

Note that for s = c+ it with 1 < c < 3/2, we have

∣∣∣∣ L∞(F ×G, c+ it)

L∞(F ×G, 1− c− it)

∣∣∣∣ � k
6(2c−1)
1 |1 + it|8(2c−1).

Let c = 1 + ε with 0 < ε < 1/2. Since |L(F ×G, 1 + ε+ it)| �ε 1, for any 0 < δ < 1,

using Proposition 6.4.5, we have

|L(F ×G, δ + it)| � k
6(1−δ+ε)
1 |3 + it|8(1−δ+ε).

This completes the proof of the lemma.

Now we are ready to prove Proposition 6.4.1.

Proof of Proposition 6.4.1. From the work of Weissauer [99] one knows that

the generalized Ramanujan-Petersson conjecture is true for F and G, that is, for

any ε > 0, one has

λF (n)λG(n) � nε.

Hence by the Perron’s summation formula, we have

∑
n≤x

λF (n)λG(n) =
1

2πi

∫ 1+ε+iT

1+ε−iT
L(F,G; s)

xs

s
ds + O

(
x1+2ε

T

)
.

Now we shift the line of integration to 1/2 < <(s) := δ < 1 (to be chosen later).
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Since there are no singularities of the function L(F,G; s)xs/s in the region bounded

by the lines joining the points 1 + ε− iT, 1 + ε+ iT, δ + iT and δ − iT , we have

∑
n≤x

λF (n)λG(n) = I1 + I2 + I3 + O

(
x1+2ε

T

)
,

where

I1 :=
1

2πi

∫ δ+iT

δ−iT
L(F,G; s)

xs

s
ds, I2 :=

1

2πi

∫ 1+ε+iT

δ+iT

L(F,G; s)
xs

s
ds

and I3 :=
1

2πi

∫ δ−iT

1+ε−iT
L(F,G; s)

xs

s
ds.

Using Lemma 6.4.2 and Lemma 6.4.4, one can easily get

I1 �ε (δ − 1/2)−Ak6(1−δ+ε)xδT 8(1−δ+ε),

where k = max(k1, k2). Similarly, one can get

I2, I3 �ε (δ − 1/2)−Ak6(1−δ+ε)x1+εT 8(1−δ+ε)−1.

We shall put T = xα, where α > 0 is a real number (to be chosen later). Thus we

have

∑
n≤x

λF (n)λG(n) �ε (δ−1/2)−Ak6(1−δ+ε) (x8α(1−δ+ε)+δ + x1+8α(1−δ+ε)−α+ε + x1−α+ε
)
.

Choosing α = 1/16 and δ = 15/16, one has

∑
n≤x

λF (n)λG(n) �ε k3/8+εx31/32+ε.

This completes the proof of Proposition 6.4.1.

Proof of Theorem 6.2.1. We know from Theorem 2.2.11 and Proposition 6.4.1
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that ∑
n≤x

λ2
F (n) = cFx+O(x

31
32 ) and

∑
n≤x

λF (n)λG(n) = O(x
31
32 ),

where cF > 0. Suppose that k2 ≤ k1. Using partial summation, we get

∑
n≤x

µ2
F (n) = cx2k1−2 +O

(
x2k1−2− 1

32

)
(6.4.5)

and
∑
n≤x

µF (n)µG(n) = O
(
xk1+k2−2− 1

32

)
,

where c = cF/2k1 − 2. Now let

S(x) :=
∑
n≤x

[
µF (n)− µG(n)

]
µF (n).

Note that for any ε > 0, we have

S(x) ≤ c(ε) ·# {n ∈ N | n ≤ x, µF (n) 6= µG(n)}x2k1−3+ε,

where c(ε) > 0 is a constant depending only on ε > 0. Now by applying (6.4.5), we

conclude that

# {n ∈ N | n ≤ x, µF (n) 6= µG(n)} �F,G,ε x1−ε.

When k1 ≤ k2, we consider the sum
∑

n≤x[µG(n) − µF (n)]µG(n) and proceed as

above to get the result. This completes the proof of Theorem 6.2.1.

Remark 6.4.6. To prove Theorem 6.2.1, we have only used the property

∑
n≤x

λF (n)λG(n) = o(x),

as x → ∞ but Proposition 6.4.1 gives an explicit upper bound and hence it is of

independent interest.
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6.4.2 Proof of Theorem 6.2.2

In this subsection, we shall give a proof of Theorem 6.2.2. We start by recalling that

for any prime p and any natural number n ≥ 3, one has

λF (pn) = λF (p)λF (pn−1) −
[
λ2
F (p)− λF (p2)− 1

p

]
λF (pn−2)(6.4.6)

+ λF (p)λF (pn−3)− λF (pn−4),

with the assumption that λF (pn−m) = 0 for n < m are natural numbers. Similar

relations hold among the Hecke eigenvalues λG(pn) for n ≥ 3. We use these relations

to derive some important consequences which will help us to prove our result. We

start with a general result which might be of independent interest.

Lemma 6.4.7. Let f0(x) = −1 and f1(x) = −x be polynomials over Z. Define a

family of polynomials {fn}n∈N by

(6.4.7) fn+1(x) = xfn(x)− fn−1(x).

Then for any α ∈ Q \ Z, we have fn(α) 6= 0 for all n ∈ N.

Proof of Lemma 6.4.7. We first show by induction on n ∈ N that

(6.4.8) fn(x) = − xn + an,n−1x
n−1 + an,n−2x

n−2 + · · ·+ an,1x+ an,0,

where an,i ∈ Z for 0 ≤ i ≤ n− 2. Note that this is true for n = 0, 1. Using (6.4.7),

we get

fn+1(x) = − xn+1 + an,n−1x
n + (an,n−2 + 1)xn−1 + · · ·+ (an,0 − an−1,1)x− an−1,0.

Hence by induction we have (6.4.8). Since Z is integrally closed, any solution in Q

of fn(x) for any n will be an integer. This completes the proof of the lemma.
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Lemma 6.4.8. Let F ∈ Sk(Γ2) be a Hecke eigenform which lies in the orthogonal

complement of the Maass subspace with normalized Hecke eigenvalues λF (n) for

n ∈ N. Then

1. If λF (p2m) = 0 for some m ≥ 2, then at least one of λF (p), λF (p2) is non-zero.

2. There does not exist t ∈ N such that

λF (pm) = 0 for t+ 1 ≤ m ≤ t+ 4.

Proof of Lemma 6.4.8. Suppose that λF (p) = 0 = λF (p2). Then for any n ≥ 0,

λF (p2n+4) = fn

(
1

p

)
,

where fn’s are polynomials in Z[x] satisfying the hypothesis of Lemma 6.4.7. Hence

by Lemma 6.4.7, we have λF (p2m) 6= 0 for all m ≥ 2, a contradiction to our hypoth-

esis. This completes the proof of the first part of the lemma.

To prove the second part of the lemma, let us assume that λF (pm) = 0 for

t+ 1 ≤ m ≤ t+ 4. Using (6.4.6), we have

λF (pt) = − λF (pt+4) = 0.

Using induction and the identity (6.4.6), we get that λF (pm) = 0 for 1 ≤ m ≤ t+ 4.

This implies that λF (p) = 0 = λF (p2), a contradiction to the first part of the

lemma.

Lemma 6.4.9. Let F ∈ Sk(Γ2) be a Hecke eigenform which lies in the orthogonal

complement of the Maass subspace with normalized Hecke eigenvalues λF (n) for

n ∈ N. Then

1. For some m ≥ 0, λF (p2m+1) 6= 0 implies that λF (p) 6= 0.
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2. If λF (p) 6= 0, then for any m ∈ N, there exists 0 ≤ i ≤ 3 such that

λF (p2(m+i)+1) 6= 0.

Proof of Lemma 6.4.9. We shall show by induction on m that λF (p) = 0 implies

that λF (p2m+1) = 0 for all m ≥ 0. It is clearly true for m = 0, 1. Using (6.4.6), we

get

λF (p2m+1) =

[
λF (p2) +

1

p

]
λF (p2m−1)− λF (p2m−3).

By induction hypothesis, one knows that

λF (p2m−1) = 0 = λF (p2m−3)

and hence λF (p2m+1) = 0. This completes the proof of the first part.

To prove the second part, assume that there exist m0 ∈ N such that

(6.4.9) λF (p2(m0+i)+1) = 0

for all 0 ≤ i ≤ 3. Using (6.4.6) and (6.4.9) for i = 2, 3, we have

λF (p2m0+6) = − λF (p2m0+4) = λF (p2m0+2)

as λF (p) 6= 0. Again using (6.4.6) and (6.4.9), we get

λF (p2m0+6) = −
[
λ2
F (p)− λF (p2)− 1

p

]
λF (p2m0+4)− λF (p2m0+2).

Hence

0 = λF (p2m0+6) + λF (p2m0+4) = −
[
λ2
F (p)− λF (p2)− 1

p
− 1

]
λF (p2m0+4)

− λF (p2m0+2)

= −
[
λ2
F (p)− λF (p2)− 1

p
− 2

]
λF (p2m0+2).
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This implies that

λ2
F (p)− λF (p2)− 1

p
= 2

as λF (p2m0+2) 6= 0 by second part of Lemma 6.4.8. Replacing

λF (p2m0+4) = − 2λF (p2m0+2)− λF (p2m0)

in the relation

0 = λF (p2m0+5) = λF (p)
[
λF (p2m0+4) + λF (p2m0+2)

]
,

we get λF (p2m0+2) + λF (p2m0) = 0 as λF (p) 6= 0. Then

0 = λF (p2m0+3) = λF (p)
[
λF (p2m0+2) + λF (p2m0)

]
− λF (p2m0−1) = − λF (p2m0−1).

This shows that if λF (p) 6= 0 and λF (p2(m0+i)+1) = 0 for some m0 ∈ N and for all

0 ≤ i ≤ 3, then λF (p2m0−1) = 0. Arguing similarly and using induction, we can

now show that λF (p2m+1) = 0 for all 1 ≤ m ≤ m0 + 3. Note that

0 = λF (p5) = λF (p)
[
λF (p4) + λF (p2)− 1

]
= λF (p)

[
− λF (p2) + λ2

F (p)− 2
]

=
1

p
λF (p),

a contradiction to our hypothesis. This completes the proof of Lemma 6.4.9.

Remark 6.4.10. Let F ∈ Sk(Γ2) be a Hecke eigenform which lies in the orthogonal

complement of the Maass subspace with normalized Hecke eigenvalues λF (n) for

n ∈ N. If λF (p) 6= 0, then there does not exist m ∈ N such that λF (p2(m+i)) = 0 for

all 0 ≤ i ≤ 3.
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Proof of Remark (6.4.10). Suppose that there exists m0 ∈ N such that

λF (p2(m0+i)) = 0, for 0 ≤ i ≤ 3.

Arguing as in Lemma 6.4.9, then we have 2 + 1/p + λF (p2) − λ2
F (p) = 0 and

λF (p2m) = 0 for 1 ≤ m ≤ m0 + 3 as λF (p) 6= 0. This implies that λ2
F (p) = 2 + 1/p

and hence λF (p4) = −1, a contradiction.

Proof of Theorem 6.2.2. Without loss of generality, we can assume that

λF (p)λG(p) = 0 and λF (p2)λG(p2) = 0, otherwise we are done.

First suppose that λF (p) = λG(p) = λF (p2) = λG(p2) = 0. Then using the

identity (6.4.6), we see that λF (p4)λG(p4) = 1. Hence we are done.

Now we assume that λF (p) = λG(p) = λF (p2) = 0 but λG(p2) 6= 0. Then

λG(p6) =

[
λG(p2) +

1

p

]
λG(p4) − λG(p2)

implies that either λG(p4) 6= 0 or λG(p6) 6= 0. Now using Lemma 6.4.8, we are done.

Next assume that λF (p) = 0 = λF (p2) and λG(p) 6= 0. Using Lemma 6.4.8, we

know that λF (p2n) 6= 0 for all n ≥ 2. Since λG(p) 6= 0, by Remark (6.4.10), we have

at least one of

λG(p4), λG(p6), λG(p8), λG(p10)

is non-zero. Hence we are done in this case.

Finally, we assume that λF (p) = 0, λF (p2) 6= 0 and λG(p) 6= 0, λG(p2) = 0. Since

λF (p) = 0 we know by Lemma 6.4.9 that λF (p2n−1) = 0 for all n ∈ N.

We first consider the case when λF (p4) = 0. Then using (6.4.6), we have

λF (pn) 6= 0 for n = 6, 8, 10, 12. Since λG(p) 6= 0, using Remark (6.4.10) we are

done.
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Now assume that λF (p4) 6= 0 and λG(p4) = 0, otherwise we are done. We will

show in this case that λG(p6) 6= 0 except when p = 2. Since λG(p4) = 0, we get

(6.4.10)
[
2 + 1/p− λ2

G(p)
]
λ2
G(p) = 1.

Using (6.4.10) and (6.4.6), we have

λG(p6) = −λ2
G(p) + λG(p)λG(p3)

[
1 +

1

p
− λ2

G(p)

]
= −λ2

G(p) + λ2
G(p3) =

1

p
− λ2

G(p).

Again using (6.4.10), we see that 1/p− λ2
G(p) = 0 only when p = 2. If λF (p6) 6= 0,

we are done except when p = 2. So without loss of generality, we can assume that

λF (p6) = 0 when p 6= 2. Then

1 + λF (p4) =

[
λF (p2) +

1

p

]
λF (p2), λF (p2) =

[
λF (p2) +

1

p

]
λF (p4)

and hence

λF (p8) = − λF (p4), λF (p10) = − λF (p2), λF (p12) = − 1, λF (p14) = − 1

p
.

We are now done by Remark (6.4.10).

It only remains to prove the case when p = 2 and λ2
G(2) = 1/2. In this case,

λG(28) = −1 and λG(210) = −1/2.

Now note that either λF (28) 6= 0 or λF (28) = 0 and λF (210) = −λF (26) 6= 0. This

completes the proof of Theorem 6.2.2.
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6.4.3 An intermediate lemma

Aim of subsection is to prove the following lemma which is required to complete the

proof of Theorem 6.2.3 and Theorem 6.2.4.

Lemma 6.4.11. Let F ∈ Sk1(Γ2) and G ∈ Sk2(Γ2) be Hecke eigenforms which do

not lie in the Maass subspace and having normalized eigenvalues {λF (n)}n∈N and

{λG(n)}n∈N respectively. Also assume that F and G lie in different eigenspaces and

there exists 0 < c < 4 such that

#
{
p ≤ x

∣∣ |λG(p)| > c
}
≥ 16

17
· x

log x

for sufficiently large x. Then we have

∑
p≤x

λ2
F (p)λ2

G(p) � x

log x
.

Proof of Lemma 6.4.11. By [74, Theorem 5.1.2], one knows that the transfers

of F and G are irreducible unitary cuspidal and self-contragredient automorphic

representations of GL4(A). Hence by [101, Theorem 3], we have

∑
p≤x

λ2
F (p) =

x

log x
+ o

(
x

log x

)
and

∑
p≤x

λ2
G(p) =

x

log x
+ o

(
x

log x

)
,

as x→∞. Let S be the set of primes p such that |λG(p)| > c. Thus for sufficiently

large x, we have ∑
p≤x

λ2
F (p)λ2

G(p) > c2
∑
p≤x,
p∈S

λ2
F (p).

Now by the given hypothesis, one has

∑
p≤x,
p/∈S

λ2
F (p) ≤ 16 ·#

{
p ≤ x | p /∈ S

}
≤ 16

17
· x

log x
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for sufficiently large x. This implies that

∑
p≤x

λ2
F (p)λ2

G(p) � x

log x

for sufficiently large x. This completes the proof of Lemma 6.4.11.

In next subsection, we complete the proof of Theorem 6.2.4 and then use Theo-

rem 6.2.4 to complete the proof of Theorem 6.2.3.

6.4.4 Proof of Theorem 6.2.4

Using [74, Theorem 5.1.2], we know that the transfers of F and G are irreducible

unitary cuspidal and self-contragredient automorphic representations of GL4(A).

Hence by [101, Theorem 3], we have

(6.4.11)
∑
p≤x

λF (p)λG(p) = o

(
x

log x

)
,

as x→∞. Consider the sum

S+(x) :=
∑
p≤x

[
λF (p)λG(p) + 16

]
λF (p)λG(p).

Observe that

S+(x) ≤
∑
p≤x,

λF (p)λG(p)>0

[
λF (p)λG(p) + 16

]
λF (p)λG(p)(6.4.12)

≤ 512 ·#
{
p ≤ x | λF (p)λG(p) > 0

}
.

On the other hand, using Lemma 6.4.11 and (6.4.11) for sufficiently large x, we have

(6.4.13) S+(x) =
∑
p≤x

λ2
F (p)λ2

G(p) + 16
∑
p≤x

λF (p)λG(p) � x

log x
.
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Thus by (6.4.12) and (6.4.13), we conclude that there exists a set of primes p having

positive density such that λF (p)λG(p) > 0. Similarly, by considering the sum

S−(x) :=
∑
p≤x

[
λF (p)λG(p)− 16

]
λF (p)λG(p)

and arguing as above one can conclude that there exists a set of primes p having

positive density such that λF (p)λG(p) < 0.

6.4.5 Proof of Theorem 6.2.3

It follows from Theorem 2.2.12 that there exists δ > 0 such that

#
{
p ≤ x | λF (p)λG(p) = 0

}
≤ #

{
p ≤ x | λF (p) = 0

}
+ #

{
p ≤ x | λG(p) = 0

}
= O

(
x

(log x)1+δ

)

for sufficiently large x. Also note that by Theorem 6.2.4, the set

{p ∈ P | λF (p)λG(p) < 0}

has positive lower density. Hence the multiplicative function λF (n)λG(n) satisfies

the hypothesis of Lemma 6.3.2. We now apply Lemma 6.3.2 to complete the proof

of Theorem 6.2.3.

Remark 6.4.12. Let F,G be non-CM Siegel cusp forms of degree one, of weights

k1, k2 and levels N1, N2 respectively. Also let F and G be distinct Hecke eigenforms

with eigenvalues {µF (n)}n∈N and {µG(n)}n∈N respectively. Then the method adopted

here for Theorem 6.2.3 can be applied to prove unconditionally that half of the non-

zero coefficients of the sequence {µF (n)µG(n)}n∈N are positive and half of them are

negative. One can also show unconditionally that there exists a set of primes p of

positive lower density such that µF (p)µG(p) ≷ 0.
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[59] K. Matomäki and M. Radziwi l l, Sign changes of Hecke eigenvalues, Geom.

Funct. Anal. 25 (2015), 1937–1955.

[60] J. Meher and M. R. Murty, Sign changes of Fourier coefficients of half-integral

weight cusp forms, Int. J. Number Theory, 10 (2014), No. 4, 905–914.

[61] T. Miyake, Modular Forms, Springer Monographs in Mathematics, Springer-

Verlag, Berlin, 2006.

[62] J. L. Mordell, On Mr. Ramanujan’s empirical expansions of modular functions,

Proc. Cambridge Philos. Soc. 19 (1917), 117–124.

[63] K. Murty, Lacunarity of modular forms, J. Indian Math. Soc. (N.S.) 52 (1987),

127–146 (1988).

[64] M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math.

Annalen 262 (1983), no 4, 431–446.

[65] M. R. Murty, Congruences between modular forms, Analytic Number The-

ory, Kyoto, (1996), 309–320, London Math., Soc., Lecture Notes, Ser., 247,

Cambridge University Press, Cambridge, (1997).

184



[66] M. R. Murty, Problems in analytic number theory, Graduate Texts in Math-

ematics 206, Springer-Verlag, New York, 2001.

[67] M. R. Murty and V. K. Murty, Non-vanishing of L-functions and applications,
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[92] J-P. Serre, Sur la lacunarité des puissances de η, Glasgow Math. J. 27 (1985),

203–221.

[93] J-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke
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