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Synopsis

Introduction

The study of growth and distribution of class numbers of number fields constitutes

a venerable theme in number theory. The origin of this theory can be traced to

Gauss’s Disquisitiones Arithmeticae [11].

One is immediately led to the following questions (and meta questions) listed

presumably in decreasing order of difficulty:

• Are there infinitely many real quadratic number fields with class number 1?

• Whether the distribution of class numbers/p-torsion elements in class groups

is more uniform among the lower degree number fields, say among quadratic

and cubic fields?

• Whether the ring of integers of number fields with class number 1 are “generic”

or “special”?

In this thesis we will introduce an open problem pertaining to the last question,

witness its extension to the second question and finally state our results in this

context. The first question of course still remains far from our reach. As we shall see,

these seemingly algebraic questions force or lead us to deep arithmetic and analytic
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issues which are intricately linked to the distribution of prime ideals in number fields.

Hence, they naturally lead us to the Holy Grail: the Riemann hypothesis, not just

over rationals, but over number fields.

We begin by addressing the last question: Is the ring of integers of a number field

of class number one “generic” or “special”? By “special” we refer to the property

of being a Euclidean domain. It is known that any Euclidean domain is a principal

ideal domain. But does the converse hold? As it turns out, this question needs to

be addressed in a case wise fashion. It follows from the work of Motzkin [28] that

in the case of imaginary quadratic fields there exist fields whose rings of integers

are principal ideal domains but not Euclidean domains. But for fields where the

ring of integers has infinitely many units this appears not to be the case. In fact

Weinberger in 1972 [36] proved, under the extended Riemann hypothesis, that if the

ring of integers has infinitely many units, it is a principal ideal domain if and only

if it is a Euclidean domain. A lot of work has gone into trying to make this result

unconditional, for instance [4], [18], [19] and [31], to cite a few. However we are

more interested in non trivial class groups which brings us to question two.

In order to address the second question, we observe that working with Euclidean

domains is no longer enough. If our principal motivation is to study class groups,

then we need to generalise the idea of Euclidean domains. In his seminal paper of

1979, Lenstra did exactly this. He introduced the notion of Euclidean ideal classes

(see [26]) in order to study cyclic class groups.

In this paper, Lenstra proves, under the extended Riemann hypothesis, that

if the ring of integers of a number field has infinitely many units, then it has a

Euclidean ideal class if and only if the class group is cyclic. There are some partial

unconditional results towards this question by Graves and Murty [14] when the unit

rank (rank of the free part of O×K) of a number field is at least 4. This thesis centers

around improvements that can be made on these results. In the next section we will

20



look at the preliminaries required to expand on our results in the above context.

Preliminaries

A field extension K of Q of finite degree inside C is called a number field. If this

extension is Galois over Q and the Galois group of K over Q is abelian, we say

that the field K is an abelian number field. The set of all elements of K which

are solutions of monic polynomials over Z form a ring and this ring is called the

ring of integers of K, denoted by OK. Any finitely generated OK submodule of K

is called a fractional ideal. One can define the notion of product of two fractional

ideals. Under this operation, it is well known that every non-zero fractional ideal of

OK is invertible. Therefore the set of all non-zero fractional ideals of OK forms a

group under multiplication with OK acting as unity. This brings us to the notion of

class groups. Consider the quotient group of non-zero fractional ideals modulo the

subgroup of non-zero principal fractional ideals. This is known as the class group

of OK (note that this notion can be defined more generally for Dedekind domains).

In case of OK the cardinality of this group is known to be finite and it is called

the class number of OK. The class number can be considered as a measure for the

deviation of OK from being a principal ideal domain. The ring OK is a principal

ideal domain if and only if it has class number 1.

We are interested in studying these class groups. We will do so by studying what

are known as “Euclidean ideal classes”. In order to describe Euclidean ideal classes,

we begin with the notion of Euclidean domains.

Definition 0.0.1. An integral domain R is said to be Euclidean if there exists a

function

φ : R \ {0} → N ∪ {0}

such that given any b 6= 0 and a in R, there exist q and r in R such that a = bq+ r,
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where either r = 0 or φ(r) < φ(b). Here N is used to denote the set of all positive

integers. We will refer to such functions as Euclidean functions.

We comment here that if φ is a Euclidean function on R, then there exists a

Euclidean function φ̃ on R such that for any a ∈ R \ {0},

φ̃(a) = φ̃(au) for all units u of R.

Further it is well known that if a ring is a Euclidean domain then it is a principal

ideal domain. Using these facts we can redefine Euclidean domains in the following

way.

Definition 0.0.2. Let R be an integral domain, E be the monoid of all non-zero

integral ideals of R and N the set of all positive integers. Suppose that ψ is a map

from E to N. We say that R is Euclidean for ψ if R is a principal ideal domain and

for each non-zero ideal b of E and any x ∈ Rb−1 \R, there exists y ∈ R such that

ψ(b(x− y)) < ψ(b).

However, in 1979, Lenstra generalised this notion of Euclidean domains. In this

thesis, we will only consider the definition in the case of Dedekind domains for ease

of exposition.

Definition 0.0.3. Let R be a Dedekind domain, E be the set of all non-zero integral

ideals of R and N, the set of all positive integers. Suppose that ψ is a map from E

to N. We say that a non-zero fractional ideal a of R is Euclidean for ψ if for each

non- zero ideal b of E and any x ∈ ab−1 \ a, there exists y ∈ a such that

ψ
(
a−1b(x− y)

)
< ψ(b).

Further we say that the class of a in the class group of R is a Euclidean ideal class.
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Lenstra was also able to prove that if a Euclidean ideal class exists then the

class group is always cyclic. This gives us a generalisation of Euclidean domains

which correspond to non trivial class groups. In fact Lenstra defined the idea of

Euclidean ideal classes for integral domains and showed that if an integral domain

has a Euclidean ideal class, it is automatically a Dedekind domain with cyclic class

group. However we will restrict ourselves to the rings of integers of number fields.

So the existence of a Euclidean ideal class is a sufficient condition for the class

group to be cyclic. We would like to know if this is also necessary. This question

was also addressed by Lenstra in the same paper, albeit conditionally, as mentioned

earlier in the introduction.

Lenstra proved, under the extended Riemann hypothesis, that if the unit rank

of OK is at least 1 then OK has a Euclidean ideal class if and only if it has cyclic

class group. The main subject of this thesis is to explore the possibilities of making

this statement unconditional.

Our results

Large unit rank

In 2013, Graves and Murty, in [14], proved the following.

Theorem 0.0.4 ([14]). Suppose that K is a number field with unit rank at least 4

and the Hilbert class field H(K) is abelian over Q. Also suppose that the conductor

of H(K) is f and Q(ζf ) over K is cyclic. Then K has a Euclidean ideal class.

This was done using techniques developed in [13] and [19]. In a joint work with

Deshouillers and Gun [6], we were able to extend this to number fields whose unit

rank is 3. We prove the following.
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Theorem 0.0.5 ([6]). Suppose that K is a number field with unit rank at least 3

and the Hilbert class field H(K) is abelian over Q. Also suppose that the conductor

of H(K) is f and Q(ζf ) over K is cyclic. Then K has a Euclidean ideal class.

Under the conjecture of Elliott and Halberstam, we can derive the following.

Theorem 0.0.6 ([6]). Let K be a number field such that the Hilbert class field

H(K) is abelian over Q and the Galois group Gal(Q(ζf )/K) is cyclic where f is the

conductor of H(K). Now if the Elliott and Halberstam conjecture is true and the

unit rank of K is at least 2, then K has a Euclidean ideal class.

The main idea in proving Theorem 0.0.5 was to strengthen the sieve lemma in

[14] by interjecting the use of “well factorable” weights as introduced by Iwaniec [24]

and the use of a theorem of Bombieri, Friedlander and Iwaniec [2] to estimate the

error term in the sieve. This helps us decrease the bound on the rank from 4 to

3 by improving the “Level of distribution.” Note however that even the Elliott-

Halberstam conjecture does not give us the result for the case of rank 1 whilst the

result for unit rank one is known under the extended Riemann hypothesis. We

observe here that our result is actually stronger than Theorem 0.0.5, as seen below.

Theorem 0.0.7 ([6]). Let K be a number field with unit rank at least 3 and suppose

that its Hilbert class field H(K) is abelian over Q. Further let Q(ζd) be the maximal

cyclotomic subextension inside K. Consider the diagram

Q(ζf )

H(K)

K

Q(ζd)

Q

G1

G3

G2
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Let G3 be the Galois group of Q(ζf ) over Q. Then

G3 = {σa : 1 ≤ a ≤ n, (a, f) = 1},

where σa : Q(ζf ) → Q(ζf ) is such that σa(ζf ) = ζaf . If G1 is the Galois group of

Q(ζf ) over K, G2 the Galois group of H(K) over K, the class group of OK is cyclic

and

{
σa ∈ G1 : G2 = 〈σa|H(K)〉

}⋂{
σa ∈ G3 : a ≡ 1 mod d,

(
a− 1

d
,
f

d

)
= 1

}
6= ∅,

then it has a Euclidean ideal class. Here the notation G2 = 〈σa|H(K)〉 means that

σa|H(K) generates G2.

Note that our theorem will provide alternate proofs for statements such as the

following result of Hsu.

Theorem 0.0.8 ([23]). Let q, k, r ≡ 1 mod 4, q, k, r ≥ 29 be distinct rational primes.

If K is of the form Q(
√
q,
√
kr) and if the class number of OK is 2, then K has a

non-principal Euclidean ideal.

This concludes our section on number fields with large unit rank.

Small unit rank

We also made some progress on the subject of number fields with lower unit rank.

Before we state our results, we introduce a few notations. Let K1,K2 and K3

be number fields with Hilbert class fields H(K1),H(K2) and H(K3) respectively,

all abelian over Q. Also let f1, f2 and f3 be their conductors, i.e. Q(ζf1),Q(ζf2)

and Q(ζf3) be the smallest cyclotomic fields containing H(K1),H(K2) and H(K3)

respectively. Set f to be the least common multiple of 16, f1, f2, f3 if K1,K2,K3 are

25



real quadratic and the least common multiple of 16, f1, f2 if K1,K2 are real cubic.

However, in case of Theorem 0.0.11, we set f to be the least common multiple of

16, f1 and f2. Further, F := Q(ζf ). In this set up, we have the following theorems.

Theorem 0.0.9 ([15]). Let K1,K2 be distinct real cubic fields with prime class

numbers and H(K1),H(K2),F, f be as above. Also let G be the Galois group of F

over K1K2, G` be the Galois group of F over Q(ζ`), where either ` is an odd prime

dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group of F/H(Ki) for i = 1, 2.

If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)),

then at least one of K1,K2 has a Euclidean ideal class.

We also have an analogous result in the quadratic case.

Theorem 0.0.10 ([15]). Let K1,K2 and K3 be distinct real quadratic fields with

prime class numbers and H(K1), H(K2), H(K3),F, f be as above. Also let G be

the Galois group of F over K1K2K3, G` be the Galois group of F over Q(ζ`), where

either ` is an odd prime dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group

of F/H(Ki) for i = 1, 2, 3. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2))

⋃
Gal(F/H(K3)),

then at least one of K1,K2,K3 has a Euclidean ideal class.

Now if we assume the Elliott and Halberstam conjecture, we can strengthen

Theorem 0.0.10 in the following manner.

Theorem 0.0.11 ([15]). Let K1 and K2 be distinct real quadratic fields with prime

class numbers and H(K1), H(K2),F and f be as above. Also let G be the Galois

group of F over K1K2, G` be the Galois group of F over Q(ζ`), where either ` is an

odd prime dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group of F/H(Ki)
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for i = 1, 2. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)),

then at least one of K1,K2 has a Euclidean ideal class provided the Elliott and

Halberstam conjecture holds.

Further using Theorem 0.0.10 we obtain the following corollary.

Corollary 0.0.12 ([15]). Let p1, q1, p2, q2, p3, q3 be six distinct primes which are

congruent to 1 mod 4. For j ∈ {1, 2, 3}, if each Kj := Q(
√
pjqj) has class number

2, then at least one of them has a Euclidean ideal class.

An analogous corollary holds for the cubic case. In this work, we use the tech-

niques of Narkiewicz [31] and the sieve of Heath-Brown [20] as seen in his work on

Artin’s primitive root conjecture. Even though Narkiewicz’s work was with respect

to Euclidean domains we were able to generalise the same and apply it to the case

of Euclidean ideal classes.

Bound on unit rank

During our study of these results, we realised that the linear sieve which is used

repeatedly to prove the above theorems can be replaced by a modified version of

Brun’s sieve [1], provided we compromise on the effectiveness of the bound on the

unit rank. Using this new idea, we provide a short proof of the following fact.

Given a number field K with unit rank at least r, under certain conditions, K

will have a Euclidean ideal class if its class group is cyclic. More precisely, our

theorem is the following.

Theorem 0.0.13 ([34]). Let K be a number field and H(K) its Hilbert class field.

Suppose that the Hilbert class field is abelian over Q. Let f be the smallest even
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positive integer such that Q(ζf ) contains H(K). Further, suppose that the Galois

group of Q(ζf ) over K is cyclic. Then there exists a natural number r such that if

K has unit rank at least r, it has a Euclidean ideal class.

With this we conclude our synopsis of all the results that will appear in this

thesis.
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Notations

Symbol Description

∅ The empty set.

N The set of natural numbers.

Z The ring of rational integers.

Q The field of rational numbers.

R The field of real numbers.

C The field of complex numbers.

<(s) The real part of the complex number s.

K A number field.

OK The ring of integers associated to K.

H(K) The Hilbert class field of K.

ζn An n-th primitive root of unity in C.

Q(ζn) The n-th cyclotomic field.

ϕ(n) The Euler-totient function.

µ(n) The Möbius function.

N(a) The absolute norm of an ideal a.

Li(x) The logarithmic integral from 2 to x.
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We also use the following notations frequently.

1. For f, g : R→ R with g(x) > 0 for all x ∈ R, we shall say f = o(g) if

lim
x→+∞

|f(x)|
g(x)

= 0.

2. For f, g : R→ R with g(x) > 0, for all x ∈ R, we shall say g(x)� f(x) if

|f(x)|
g(x)

≤M

for some positive constant M and all x ≥ x0 for some x0.
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Chapter 1

Introduction

1.1 Euclidean domains

The Euclidean algorithm was first introduced by the Greek mathematician Euclid

(300 B.C.) in his book Elements. In fact, it seems to have been independently

discovered by Chinese and Indian mathematicians such as Aryabhata who discussed

the linear equation ax + by = c in his treatise Aryabhatiya [35]. The primary

usage of this algorithm is to find the greatest common divisor of two integers. We

recall that this algorithm only depends on the property of the set of integers which

allows us to divide a number by another non-zero number and produce a remainder

with smaller absolute value than the divisor. It was observed that the concept of

such an algorithm can be generalized to integral domains where certain “Euclidean

functions” can be defined.

Definition 1.1.1. An integral domain R is said to be a Euclidean domain if there

exists a function

φ : R \ {0} → N ∪ {0}

with the following property. Given any a and b 6= 0 in R, there exist q and r in
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R such that a = bq + r, where either r = 0 or φ(r) < φ(b). We will refer to such

functions as Euclidean functions.

It is known that the remainder and quotient are both unique if and only if the

domains under consideration are fields or the ring of univariate polynomials over

a field [25]. Some authors insist on an extra condition that for any a ∈ R and

b ∈ R\{0}, φ(ab) ≥ φ(b). For the sake of completeness, we note that this second

condition can be dispensed with. Indeed, given the existence of a Euclidean function

on an integral domain it is possible to construct another function which is Euclidean

and satisfies this extra condition. For example, given the existence of a Euclidean

function, we claim that the following function will satisfy both conditions,

φ̃ : R \ {0} → N ∪ {0}

r → minφ φ(r).

where φ ranges over all Euclidean functions on R.

Proposition 1.1.2. The map φ̃ is a Euclidean function on R such that φ̃(ab) ≥ φ̃(b)

for all a ∈ R and b ∈ R\{0}.

Proof. We first prove that this map is Euclidean. Observe that, given any non-zero

b, there exists a function φ for which φ(b) = φ̃(b). Now for any a ∈ R, there exist

q and r such that a = bq + r and φ(r) < φ(b) when r 6= 0. But this implies that

φ̃(r) ≤ φ(r) < φ(b) = φ̃(b). Therefore, we know that φ̃ is a Euclidean function.

It remains to check whether φ̃(ab) ≥ φ̃(b) for any a ∈ R and b in R\{0}. To prove

this, we suppose otherwise. Then, there exist a and b( 6= 0) such that φ̃(ab) < φ̃(b).

Now let φ′ be defined as follows:

φ′(c) =


φ̃(c); c 6= b

φ̃(ab); c = b.
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We will now show that φ′ is a Euclidean function, thereby contradicting the mini-

mality of φ̃ at b. This will be done in a case-wise fashion.

• Case 1: If c 6∈ {b, 0} then for any d ∈ R, there exist q and r in R such that

d = cq + r with either r = 0 or φ̃(r) < φ̃(c). If r = 0, the condition of the

Euclidean function is already satisfied. Otherwise there are two cases based

on whether r is equal to b or not. If r 6= b,

φ′(r) = φ̃(r) < φ̃(c) = φ′(c).

Otherwise r = b and, again, we have

φ′(r) = φ′(b) = φ̃(ab) < φ̃(b) = φ̃(r) < φ̃(c) = φ′(c).

• Case 2: Suppose that c = b. In this case we will divide by ab instead of c.

For any d in R, there exist q and r in R such that d = abq + r where either

r = 0 or φ̃(r) < φ̃(ab) < φ̃(b). If r = 0 the case is trivial as seen above.

Otherwise, if 0 6= r = b then b | d in which case the remainder on division by

c is 0 and condition for a Euclidean function is automatically satisfied. But if

r 6= b, then

φ′(r) = φ̃(r) < φ̃(ab) = φ′(b).

This proves that φ′ is a Euclidean function such that φ′(b) < φ̃(b). Hence the

contradiction.

We now give few examples of Euclidean domains below.

Example 1.1.3. The ring Z[
√

2] is Euclidean as seen by the following map:

φ : Z[
√

2]→ N ∪ {0}

a+
√

2b→ |a2 − 2b2|.
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Proof. Let α = a +
√

2b and β = c +
√

2d 6= 0. Consider the element α/β in the

fraction field of Z[
√

2], namely Q[
√

2]. We rewrite this element as shown below:

α

β
= m+

√
2n; m,n ∈ Q

= ||m||+
√

2||n||+m′ +
√

2n′,

where ||m|| denotes the integer closest to m and ||n|| denotes integer closest to n.

One immediately observes that,

β(m′ +
√

2n′) ∈ Z[
√

2].

Further φ(m′+n′
√

2) < 3
4
< 1. Therefore φ(β(m′+

√
2n′)) < φ(β), thus completing

the proof of our claim.

Note that the similar arguments may be applied to several other rings such as

Z[i], Z[ω] where ω is a primitive cube root of unity, etc. to establish the existence of

a Euclidean function. But such a question of existence of a Euclidean function may

also be answered without explicitly finding the map. One such non trivial example

is the following.

Example 1.1.4. The ring Z[
√

14] is a Euclidean domain.

For a proof of the above claim, we refer the reader to [18]. This is more subtle

and involves deep theorems such as those of Bombieri, Friedlander and Iwaniec on

primes in arithmetic progressions [2] and the linear sieve with well factorable weights

[24].
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1.2 The work of Motzkin

A venerable problem in number theory is determining how many number fields have

class number one. In other words how many number fields have rings of integers

which are principal ideal domains. But as it turns out, to prove that the ring of

integers is a principal ideal domain it is often easy to prove the same by showing that

it is a Euclidean domain. But to prove that the ring of integers is Euclidean, it is

sufficient to show the existence of a Euclidean function. Sometimes it is the absolute

norm map which works as a Euclidean function, as seen in the case of Z[
√

2]. But

this need not always be the case.

The ring of integers of a number field which is Euclidean for the norm map is

said to be norm Euclidean. Not every Euclidean number field is norm-Euclidean.

However, if the ring of integers is not norm-Euclidean, it may still be Euclidean with

respect to a different Euclidean function. In fact, the rings of integers of number

fields may be divided into the following categories:

1. Those that are not Euclidean, such as the ring of integers of Q(
√
−5), given

by Z[
√
−5] (reference to a proof provided below);

2. Those that are Euclidean but not norm-Euclidean, such as the ring of integers

of Q(
√

69), given by Z
[

1+
√

69
2

]
(see [3] for a proof);

3. Those that are norm-Euclidean, such as Z[
√

2].

The problem of classifying number fields into these categories has been a subject

of interest for a very long time. One of the first results in this direction was given

by Dedekind in V orlesungen über Zahlentheorie (“Lectures on Number Theory”),

in the year 1863, based on the lectures of Dirichlet. In these notes, he proved that

the rings of integers of certain quadratic fields are norm-Euclidean and showed the

existence of principal ideal domains which are not norm-Euclidean.
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Theorem 1.2.1 (Dirichlet and Dedekind [7]). For d ∈ {−1,−2,−3,−7,−11, 2, 3, 5, 13},

the ring of integers of Q(
√
d) is norm-Euclidean. The ring of integers of Q(

√
d) is

a principal ideal domain but not norm-Euclidean for d = −19.

It is also known that the ring of integers of Q(
√
d) is a principal ideal domain

and not norm-Euclidean for d ∈ {−43,−67, −163}. Further a result of Heilbronn

[21] shows that there are only finitely many norm Euclidean real quadratic fields.

In fact the complete list is now known.

The next question, of course, is whether it is possible for a domain to be Euclidean

but not norm-Euclidean. This was addressed in a paper of Motzkin, published in

1949. Motzkin gave a new criterion to examine the property of an integral domain

being Euclidean. He gave a constructive criterion for the existence of a Euclidean

algorithm. First he introduced the concept of a product ideal and its derived set in

the following manner.

Definition 1.2.2. Given two subsets S and T of an integral domain R, define their

product as,

S · T := {st : s ∈ S, t ∈ T}.

A subset S of an integral domain R is called a product ideal if

S · (R \ {0}) ⊆ S.

The derived set of a subset S of R is given by the set

S ′ := {a ∈ S : ∃ b ∈ R such that b+ aR ⊆ S}.

Note that if S is a product ideal then S ′ is also a product ideal. Further one can

inductively define the n-th derived set of S. It will henceforth be denoted by S(n).
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Having defined the notion of product ideals, Motzkin proved a criterion to show

exactly when an integral domain is Euclidean. He showed that there exists a bi-

jection between the set of all possible Euclidean functions on an integral domain

and the set of certain sequences of product ideals. More precisely, he showed the

following.

Theorem 1.2.3 (Motzkin [28]). In any integral domain R, the set of all Euclidean

functions is in bijection with a sequence of product ideals (Pi)
∞
i=0 satisfying the fol-

lowing properties:

1. P0 = (R \ {0}) ⊇ P1 ⊇ . . .

2. P ′i ⊆ Pi+1

3.
⋂∞
i=0 Pi = ∅.

Motzkin also gave a natural notion of comparing two distinct Euclidean functions

which exist on the same ring.

Definition 1.2.4. Given two sequences of product ideals (Pi) and (Qi) corresponding

to two distinct algorithms, we say that the first algorithm is faster than the second

if

Pi ⊆ Qi, ∀i ∈ N.

Therefore, note that the ‘fastest’ or ‘minimal’ algorithm must correspond to the

sequence,

P0 ⊇ P ′0 ⊇ . . . .

So in order to check if a ring is Euclidean, one might as well check if this uniquely

defined fastest sequence gives rise to an algorithm. In other words, to check if a ring

is Euclidean it suffices to check if
⋂∞
n=1 P

(n)
0 = ∅, where P

(n)
0 denotes the n-th derived

set of P0. As a corollary, Motzkin was able to show the following.

37



Corollary 1.2.5. For d < 0 and square free, the ring of integers of Q(
√
d) is not

Euclidean for any map unless

d ∈ {−1,−2,−3,−7,−11}.

Remark 1.2.6. Another interesting application of this criterion is that the ring

Z
[

1+
√
−19

2

]
is not Euclidean for any map, not just the norm map. The same holds

for the other three examples that appeared after Theorem 1.2.1.

However Weinberger [36] observed that these definitions take a more natural

interpretation if one looks at the complements of the product ideals.

Lemma 1.2.7. For an integral domain R, let

E0 = {0};

Ei = R \ P (i)
0 .

Then if
⋃∞
i=0 Ei = R, then R is a Euclidean domain. Here P

(i)
0 is the i-th derived

set of P0 as defined above.

Note that the converse of Lemma 1.2.7 also holds. That is, if R is Euclidean,

then
⋃∞
i=0Ei = R. In this language, it is easy to check that the criterion based on

the fastest algorithm translates in the following fashion.

Lemma 1.2.8 (Weinberger [36]). Let R be an integral domain and let E0 = {0}.

We inductively define

En = {a ∈ R : En−1 → R/aR is onto}∪ En−1.

The map indicated above is the restriction of the canonical projection of R to R/aR

to En−1. Then if
⋃∞
i=0Ei = R then R is a Euclidean domain.
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Under this interpretation it is easy to see that when R is a Euclidean domain,

one Euclidean function is given by the map

φ(α) = i if α ∈ Ei \ Ei−1.

Further it follows that

(1.2.1) φ(α) = φ(αu) when u ∈ R×.

1.3 Generalising the Euclidean algorithm

As we saw earlier, the ring of integers OK of an arbitrary number field K is not a

principal ideal domain. It is however a Dedekind domain and in a Dedekind domain,

we are only ensured of factorisation of ideals into a product of prime ideals. So if one

has to produce a generalisation of the Euclidean algorithm, the first step would be to

define a map on the set ideals as opposed to elements of OK. The final observation

from equation (1.2.1) lets us accomplish exactly that.

We can now see that our first definition of Euclidean domains can now be seen

as a notion related to the set of ideals instead of elements. This was first observed

by Lenstra [26]. Before we state this observation more precisely let us define the

notion of inverse of a fractional ideal for a Dedekind domain. Let b be a fractional

ideal of an Dedekind domain R and F (R) be the fraction field of R, then

b−1 := {x ∈ F (R) : xb ⊆ R}.

We can now give the precise formulation of our observation.

Definition 1.3.1. Let R be an integral domain, J be the set of all non-zero ideals

of R. Suppose that ψ is a map from J to N . We say that R is Euclidean for ψ if R

39



is a principal ideal domain and for each b in J and any x ∈ Rb−1 \ R, there exists

y ∈ R such that

ψ(b(x− y)R) < ψ(b).

To prove that Definition 1.1.1 implies Definition 1.3.1 , we first observe, by the

last comment of the previous section, that there exists a Euclidean map φ on R such

that

φ(α) = φ(αu), u ∈ R×.

Without loss of generality, we will assume that φ denotes this specific Euclidean

map. We now set ψ(b) = φ(b) and we put a = bx. Then there exists a q such that

φ(bx− bq) < φ(b)

Thus for y = q, we have Definition 1.3.1. Conversely to prove that Definition 1.3.1

implies Definition 1.1.1, we set φ(b) = ψ(bR), then for any a ∈ R we put x = ab−1

and choose y according to Definition 1.3.1 and put q = y. Therefore the equivalence

of the definitions is now clear. We can now generalise the definition of Euclidean

domains in the following manner. In this thesis, we will only consider the definition

in the case of Dedekind domains for ease of exposition.

Definition 1.3.2 (Lenstra [26]). Let R be a Dedekind domain, J be the set of all

non-zero integral ideals of R. Suppose that ψ is a map from J to N . We say that

a non-zero fractional ideal a of R is Euclidean for ψ if for each non- zero ideal b of

J and any x ∈ ab−1 \ a, there exists y ∈ a such that

ψ
(
a−1b(x− y)

)
< ψ(b).

Note that the last line of the above definition implies that the definition is in-

variant if a is replaced by αa for some non-zero α in R and this is in fact the case.

40



Therefore we can now state the following definition.

Definition 1.3.3. If R is a Dedekind domain and a is a Euclidean ideal of R, then

the class of a in the class group of R is called a Euclidean ideal class.

Remark 1.3.4. If K is a number field and OK its ring of integers with a Euclidean

ideal class, then at times, by abuse of notation we shall say that K has a Euclidean

ideal class.

Before we go further, we would like to explain what makes this definition in-

teresting. We know that any Euclidean domain is a Principal ideal domain. This

means that the class group of a Euclidean domain is trivial. Therefore if one wants

to study class groups, one must consider Dedekind domains with non trivial class

groups and the first step towards this would be the case of Dedekind domains with

cyclic class groups. It turns out that Dedekind domains with Euclidean ideal classes

have cyclic class groups. We indicate a proof of the same below.

Lemma 1.3.5 (Lenstra [26]). Let R be a Dedekind domain. If a is a Euclidean ideal

for ψ, then for any b ∈ E, there exists an n ∈ N ∪ {0} such that

[b] = [a]n for some 0 ≤ n ≤ ψ(b).

Proof. We first observe that in a Dedekind domain every class of the class group

contains an integral ideal. We can now prove this lemma by induction on the value of

ψ(b). If ψ(b) = 1, then ab−1 \a must be empty. This implies that b = R. Therefore

the lemma holds trivially for n = 0. Now suppose that ψ(b) is strictly greater than

0. For any x ∈ ab−1 \ a, there exists y ∈ a such that ψ (a−1b(x− y)) < ψ(b). By

the induction hypothesis, we have

[a−1b(x− y)] = [a]m for some 0 ≤ m ≤ ψ(b)− 1
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This immediately implies that

[b] = [a]n for some 0 ≤ n ≤ ψ(b).

One would like to know about the converse. More precisely, one asks the following

question.

Question : If the class group of a Dedekind domain is cyclic, then does it contain

a Euclidean ideal class?

This is the very question that forms the central motivation towards this thesis.

However, we only address this question in the context of rings of integers of number

fields.

1.4 History

In the August of 1966, Hooley published a paper [22] proving, under the extended

Riemann hypothesis, Artin’s primitive root conjecture holds. A hallmark paper

was published in 1971 by Samuel [33]. In this paper, Samuel listed various basic

properties of Euclidean rings. But most notable of all, he pointed out the link

between Artin’s primitive root conjecture and the existence of Euclidean functions

in number fields.

Shortly afterwards, in 1973, Weinberger [36] revamped Motzkin’s criterion and

used Hooley’s method to link the existence of Euclidean functions in number fields

with infinitely many units, to an extension of the Riemann hypothesis for Dedekind

zeta functions for certain number fields. More precisely,
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Theorem 1.4.1 (Weinberger [36]). Let K be an algebraic number field whose ring

of integers is a principal ideal domain and has a fundamental unit ε. Then the

extended Riemann hypothesis implies the following :

1. Given any prime ideal p of OK, let ClKp be the ray class group mod p. Then

every class of ClKp contains infinitely many prime ideals for which ε is a prim-

itive root.

2. Every prime element of OK is in E3 (defined as in Lemma 1.2.7) and therefore

OK is Euclidean.

Note that part 1 of Theorem 1.4.1 is essentially Artin’s primitive root conjecture

for number fields. In 1974, Queen [32] proved a statement analogous to Weinberger’s

in the function field setup. We however do not go into that for now. In 1977, Lenstra

generalised the result of Weinberger to the set of S integers where |S| ≥ 2 and S

contains all the infinite places, for all global fields. This essentially combines the

work of Weinberger and Queen but we state the number field version here for the

sake of completeness.

Theorem 1.4.2 (Lenstra [27]). Let K be a number field and OK be its ring of

integers. Also let S be a set of places of K containing the infinite places. If OK,S

were to denote the ring of S integers, with |S| ≥ 2, and, if we assume that for every

square free integer n and every finite subset S ′ ⊂ S, the zeta-function of the field

K(ζn, (O×K,S′)1/n) satisfies the Riemann hypothesis for number fields, then OK,S is

Euclidean. Furthermore, its fastest algorithm θ is given by

θ(x) =
∑
p/∈S

vp(x) · np, ∀ x ∈ OK,S, x 6= 0,

where the sum is over all primes of K which are not in S, and

1. np = 1, if the natural map from the unit group O×K,S to the group of units of
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the residue field is surjective.

2. np = 2, otherwise.

Meanwhile, Cooke and Weinberger [5] proved that the extended Riemann hy-

pothesis (defined in the preliminaries) implies that the natural density of primes

p of OK, for which the map from O×K to (OK/p)× is surjective, is positive. In

particular, there are infinitely many primes in E2 (defined in Lemma 1.2.7). In

1988, following Cooke and Weinberger, Narkiewicz was able to prove the following

statement unconditionally, as a consequence of a more general result.

Theorem 1.4.3 (Narkiewicz [29]). If K 6= Q is a real abelian algebraic number

field, then there exist infinitely many totally split primes p such that every non-zero

residue class modulo p contains infinitely many units, with the exception of at most

two fields. If there are two exceptional fields (presumably fictitious), then both are

necessarily quadratic. The lone (presumably fictitious) exceptional field is necessarily

cubic.

The proof of this theorem again follows from a special application of the lower

bound sieve using the usual form of the Bombieri-Vinogradov theorem for rational

primes.

For the rest of this chapter we will assume that OK is a principal ideal domain. In

1995, Clark and Murty were able to reformulate Motzkin’s criterion purely in terms

of the prime ideals of OK. In 2004, Harper added to this variant a special application

of the large sieve inequality. This application essentially gives us a quantitative

condition under which OK is Euclidean. Before we go into the application, we need

the following definition.

Definition 1.4.4. Let B1 denote the set of all primes π of OK such that the natural

map from O×K → (OK/πOK)× is surjective. Further, define

B1(x) := {b ∈ B1 : |N(b)| ≤ x}.
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Having stated the above definition, we now present Harper’s theorem.

Theorem 1.4.5 (Harper [18]). If B1(x)� x
log2 x

, then OK is Euclidean.

In the same paper Harper published a proof of the fact that Z[
√

14] is Euclidean.

The proof crucially depends on a lemma of Heath-Brown which in turn follows from

Iwaniec’s linear sieve with a bilinear error term as well as earlier work of Gupta

and Murty [14]. In the same year, Harper and Murty published the following result

for all abelian extensions of unit rank at least 3, using similar techniques. More

precisely, they showed the following.

Theorem 1.4.6 (Harper and Murty [19]). Let K/Q be an abelian extension of degree

n and let r be the rank of the unit group of OK. If r ≥ 3, then OK is Euclidean if

and only if it is a principal ideal domain.

In 2007, Narkiewicz [31] generalised Harper and Murty’s method to all real

quadratic fields with at most two exceptions and all Galois cubic extensions with at

most one exception. He showed that:

Theorem 1.4.7 (Narkiewicz [31]). Let K be a finite Galois extension of Q with OK

having class number one.

1. If K is a real quadratic then OK is Euclidean, except for at most two fields.

2. If K is a cubic extension then OK is Euclidean, except for at most one field.

With this we will conclude the history on the Euclidean domain front since these

are the results we will be generalising in this thesis.

We can now look at the analogous work that has been carried out on the Eu-

clidean ideal class front. The seminal work that started the study of Euclidean ideal

classes was written by Lenstra ([26]) in the year 1979. Lenstra defined the notion of

Euclidean ideal classes on integral domains and showed that if an integral domain
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has a Euclidean ideal class it is automatically a Dedekind domain with cyclic class

group. However, as mentioned earlier, we will restrict our definitions and exposition

to Dedekind domains and in particular to rings of integers of number fields. One of

the most notable results of this paper is the following.

Theorem 1.4.8 (Lenstra [26]). Under the extended Riemann hypothesis, a number

field with unit rank at least one has cyclic class group if and only if it has a Euclidean

ideal class.

There have been some works in trying to find a family of fields with Euclidean

ideal classes such as in [23], [12], etc. But to the best of our knowledge there is only

one which attempts at making the above theorem unconditional.

Theorem 1.4.9 (Graves and Murty [14]). Suppose that the unit rank of a number

field K is at least 4 and that the Hilbert class field of K is abelian over Q. Further

suppose that Q(ζf )/K is cyclic where f is the conductor of the Hilbert class field.

Then the class group of K is cyclic if and only if there is a Euclidean ideal class.

The main objective of this thesis is to improve this result to unit rank 3 along

the lines of the work of Harper and Murty and prove results analogous to that of

Narkiewicz in Euclidean ideal class setup. In the next section we give a detailed

summary of our results obtained in the context of Euclidean ideal classes.

1.5 Our results

1.5.1 Bound on unit rank

The first result that will be appearing in this thesis is about the existence of Eu-

clidean ideal classes when the rank of the free part of OK is sufficiently large. From

the section on history, one gathers that the unit rank plays an important role in the
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context of this problem of existence of Euclidean ideal classes. We first show that

for a family of number fields, there exists a lower bound on the unit rank r such that

whenever the unit rank exceeds r, these number fields have Euclidean ideal classes.

More precisely, we prove the following.

Theorem 1.5.1 ([34]). Let K be a number field and H(K) its Hilbert class field.

Suppose that the H(K) is abelian over Q. Let f be the smallest even positive integer

such that H(K) ⊆ Q(ζf ). If the Galois group of Q(ζf ) over K is cyclic, then there

exists a finite natural number r such that if K has unit rank at least r, K has a

Euclidean ideal class.

The proof of this theorem will appear in Chapter 3.

1.5.2 Large unit rank

The next result is an improvement of Theorem 1.4.9. In a joint work with Deshouillers

and Gun [6], we were able to extend the aforementioned result to number fields whose

unit rank is 3. More precisely, we prove the following.

Theorem 1.5.2 ([6]). Suppose that K is a number field with unit rank at least 3

and that the Hilbert class field H(K) of K is abelian over Q. Also suppose that the

conductor of K is f and Q(ζf ) over K is cyclic. Then K has a Euclidean ideal class.

Now if we assume the conjecture of Elliott and Halberstam, we can derive a

stronger result. In particular, we have the following theorem.

Theorem 1.5.3 ([6]). Let K be a number field such that the Hilbert class field

H(K) is abelian over Q and the Galois group Gal(Q(ζf )/K) is cyclic where f is the

conductor of K. Now if the Elliott and Halberstam conjecture is true and the unit

rank of K is at least 2, then K has a Euclidean ideal class.
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The detailed proof of this statement can be found in Chapter 4. We note here

that our result is actually stronger than Theorem 1.5.2. The result in full generality

is stated below.

Theorem 1.5.4 ([6]). Let K be a number field with unit rank at least 3 and suppose

that its Hilbert class field H(K) is abelian over Q. Further let Q(ζd) be the maximal

cyclotomic subextension inside K. Consider the diagram :

Q(ζf )

H(K)

K

Q(ζd)

Q

G1

G3

G2

Let G3 be the Galois group of Q(ζf ) over Q. Then

G3 = {σa : 1 ≤ a ≤ n, (a, f) = 1},

where σa : Q(ζf ) → Q(ζf ) is such that σa(ζf ) = ζaf . If G1 is the Galois group of

Q(ζf ) over K, G2 the Galois group of H(K) over K, the class group of K is cyclic

and

{
σa ∈ G1 : G2 = 〈σa|H(K)〉

}⋂{
σa ∈ G3 : a ≡ 1 mod d,

(
a− 1

d
,
f

d

)
= 1

}
6= φ,

then it has a Euclidean ideal class. Here the notation G2 = 〈σa|H(K)〉 means that

σa|H(K) generates G2.

This concludes our section on number fields with large unit rank.
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1.5.3 Small unit rank

The next result we state is a partial generalisation of the work of Narkiewicz as

stated in Theorem 1.4.7. This is a joint work with Gun. Before we state our

results, we introduce few notations. Let K1,K2 and K3 be number fields with

Hilbert class fields H(K1),H(K2) and H(K3) respectively, all abelian over Q. Also

let f1, f2 and f3 be their conductors, i.e. Q(ζf1),Q(ζf2) and Q(ζf3) be the smallest

cyclotomic fields containing H(K1),H(K2) and H(K3) respectively. Set f to be the

least common multiple of 16, f1, f2, f3 if K1,K2,K3 are real quadratic and the least

common multiple of 16, f1, f2 if K1,K2 are real cubic. Further, F := Q(ζf ). In this

set up, we have the following theorems.

Theorem 1.5.5 ([15]). Let K1,K2 be distinct real cubic fields with prime class

numbers and H(K1),H(K2),F, f be as above. Also let G be the Galois group of F

over K1K2, G` be the Galois group of F over Q(ζ`), where either ` is an odd prime

dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group of F/H(Ki) for i = 1, 2.

If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)),

then at least one of K1,K2 has a Euclidean ideal class.

We also have an analogous result in the quadratic case.

Theorem 1.5.6 ([15]). Let K1,K2 and K3 be distinct real quadratic fields with

prime class numbers and H(K1), H(K2), H(K3),F, f be as above. Also let G be

the Galois group of F over K1K2K3, G` be the Galois group of F over Q(ζ`), where

either ` is an odd prime dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group

of F/H(Ki) for i = 1, 2, 3. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2))

⋃
Gal(F/H(K3)),
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then at least one of K1,K2,K3 has a Euclidean ideal class.

Now if we assume the Elliott and Halberstam conjecture, we can strengthen

Theorem 1.5.6.

Theorem 1.5.7 ([15]). Let K1 and K2 be distinct real quadratic fields with prime

class numbers and H(K1), H(K2),F and f be as above. Also let G be the Galois

group of F over K1K2, G` be the Galois group of F over Q(ζ`), where either ` is an

odd prime dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group of F/H(Ki)

for i = 1, 2. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)),

then at least one of K1,K2 has a Euclidean ideal class provided the Elliott and

Halberstam conjecture holds.

Theorem 1.5.6 allows us to prove the following corollary.

Corollary 1.5.8 ([15]). Let p1, q1, p2, q2, p3, q3 be six distinct primes which are con-

gruent to 1 mod 4. For j ∈ {1, 2, 3}, if each Kj := Q(
√
pjqj) has class number 2,

then at least one of them has a Euclidean ideal class.

As a concrete example, we can show that one of Q(
√

221),Q(
√

305) or Q(
√

1073)

has a Euclidean ideal class. Details about these results can be found in Chapter 5.

With this we conclude our section on the results that will appear in this thesis.

1.6 Organisation of the thesis

The second chapter will deal with some preliminaries required for our work. The

third chapter will explore the effect of varying the sieves used in the context of this

50



problem. The fourth chapter extends the result of Graves and Murty ([14]). Finally

chapter five will deal with a generalisation of the theorem of Narkiewicz to Euclidean

ideal classes ([31]).
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Chapter 2

Preliminaries

In this chapter we set the notations and introduce the preliminaries required for this

thesis. Throughout this thesis, N denotes the set of natural numbers, Z denotes the

ring of rational integers, Q denotes the field of rational numbers and C denotes the

field of complex numbers. This chapter is partitioned into three parts, namely the

algebraic part (Section 2.1), the sieve-theoretic part (Section 2.2) and the arithmetic

part (Section 2.3).

We begin with the first part.

2.1 Algebraic number theory

We start with definitions of some basic objects.

Definition 2.1.1. A number field K is a field extension of Q inside C, of finite

degree.

Some examples of number fields are Q(i), Q(
√
−5), Q(21/3), Q(

√
−7,
√

17) and

Q(ζn) where ζn is a primitive n-th root of unity.
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Analogous to the ring of integers Z in Q, we can define a ring of “integral”

elements for a number field K. More precisely,

Definition 2.1.2. An element b in a number field K is said to be integral over Z

if it satisfies a monic polynomial over Z. The set of integral elements in K form a

ring, and this ring is called the ring of integers of K. We shall henceforth denote it

by OK.

We now consider the rings of integers associated to the examples of number fields

mentioned above. They are as follows: Z[i], Z[
√
−5], Z[21/3], Z[1+

√
−7

2
, 1+

√
17

2
] and

Z[ζn]. We will see some nice properties of OK. However, before we state them, we

need some technical definitions which we introduce now.

Definition 2.1.3. Let R be an integral domain and F (R) its fraction field. Then a

fractional ideal is any finitely generated R-submodule of F (R).

Let us consider the case when R = Z, then F (R) = Q. The modules 2Z and 1
2
Z

are both fractional ideals of Z. We will now try to attribute structure to the set of

all fractional ideals of the integral domain R.

Definition 2.1.4. Given two R submodules of F (R), say M and N , we define the

product MN as follows:

MN :=

{
n∑
i=1

xiyi : xi ∈M, yi ∈ N

}
.

One can show that MN is also a fractional ideal. Therefore the set of all frac-

tional ideals of the integral domain R form a monoid with R acting as identity. This

brings us naturally to the next definition.

Definition 2.1.5. An R-submodule M of F (R) is said to be invertible if there exists

another R-submodule N of F (R) such that MN = R.
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Having defined the notion of invertibility, we now consider the setup where the

monoid of fractional ideals becomes invertible.

Definition 2.1.6. An integral domain whose every non-zero fractional ideal is in-

vertible is called a Dedekind domain.

We note that such rings do exist. For example: Z[i], Fp[X] where Fp is the finite

field of p elements, etc. Let us briefly look at some properties of Dedekind domains.

1. Every non-zero fractional ideal of a Dedekind domain can be factorized into a

finite product of prime ideals (possibly with negative exponents).

2. Given a number field K, OK is a Dedekind domain and K is the fraction field

of OK. This gives us an infinite family of examples of Dedekind domains.

3. Every principal ideal domain is a Dedekind domain while the converse does

not hold. For instance, Z[
√
−5] is a Dedekind domain but it is not a principal

ideal domain.

4. (Dirichlet’s unit theorem) The multiplicative group of units of OK, denoted

by O×K, is a finitely generated abelian group. Further the rank of the free part

of O×K is called the unit rank of OK (or by abuse of notation, unit rank of K).

If we consider a minimal generating set of the free part of O×K, any element of

this set is called a fundamental unit.

We would also like to state the definition of the Dedekind zeta function at this stage.

Definition 2.1.7. Given a number field K, we can associate to it a zeta function

in the following manner. For s ∈ C, let

ζK(s) :=
∑
a 6=(0);

a integral ideal of OK

1

N(a)s
in <(s) > 1
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where N(a) is used to denote the cardinality of OK/a (known as the absolute norm

of the integral ideal a) and ζK is called the Dedekind zeta function associated to the

number field K.

It is known that the Dedekind zeta function has a meromorphic continuation to

the entire complex plane.

Conjecture 2.1.8 (Extended Riemann hypothesis). The zeroes of the above men-

tioned extension of ζK in the strip 0 < <(s) < 1 lie on the line <(s) = 1
2
.

Now coming back to Dedekind domains, since the set of all fractional ideals forms

an abelian group, we can talk about a structure on quotients of this abelian group.

This brings us to the next subsection on class groups and ray class groups.

2.1.1 Class groups and ray class groups

The set of all non-zero fractional ideals of OK forms a group and the set of non-zero

principal fractional ideals forms a subgroup. This brings us to the notion of class

groups.

Definition 2.1.9. The quotient group of the group of all non-zero fractional ideals

of a Dedekind domain R modulo the subgroup of non-zero principal fractional ideals

is called the class group of R. This will be denoted by ClR. The cardinality of this

group, if finite, is called the class number and is denoted by hR.

The class group of R measures how far R is from being a principal ideal domain.

It is easy to see that a Dedekind domain is a principal ideal domain if and only if it

has trivial class group. However another fundamental theorem of algebraic number

theory states that even if OK is not a principal ideal domain it is, in some sense,

not far from it. More precisely,
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Theorem 2.1.10. Given a number field K, the class number of OK is finite.

The study of growth of class numbers and the distribution of p-torsion elements

in class groups corresponding to rings of integers of number fields is a subject of

great interest to number theorists. In order to study such properties of class groups,

we resort to the techniques of class field theory. Class field theory generalises the

notion of class groups and connects them to Galois groups of abelian extensions of

number fields. As a special case it allows us to study class groups as Galois groups

of certain distinguished extensions. For the sake of completeness, we will provide

below a short account of “ray class groups” and the theorems that associate them

to Galois groups.

Let us begin with the definition of a modulus. For the following discussion, we

fix a number field K.

Definition 2.1.11. A modulus m of K is a formal product m = m0m∞ where m0 is

a non-zero integral ideal of OK and m∞ is a subset (possibly empty) of the set of all

real places on K (set of all embeddings of K into R ). Further, we say that a prime

ideal divides m if it divides m0 in the usual sense and that a real place divides m if

it belongs to m∞.

Using this idea of modulus we generalise the idea of class groups in the following

fashion.

Definition 2.1.12. Given a modulus m, let IKm denote the set of all non-zero frac-

tional ideals of the number field K co-prime to m0. Suppose that

Km,1 := {α ∈ K∗ : vp(α− 1) ≥ ep, σ(α) > 0 ∀ σ ∈ m∞},

where ep denotes the power of the prime ideal p in the ideal m0 for p|m0, vp(x) is
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the power of p appearing in the prime factorisation of xOK and

PK
m := {(α) : α ∈ Km,1}.

Then ClKm := IKm /P
K
m is known as the ray class group modulo m.

Remark 2.1.13. We observe that the group ClKOK
= ClOK

.

Let us first compute the ray class group of the field Q corresponding to the

modulus (m)m∞ for some m ∈ Z \ {0}, where m∞ contains the unique real place

corresponding to Q.

We first note that

IQ
(m)m∞

= {(a/b) : (|a|, |m|) = (|b|, |m|) = 1}

and

PQ
(m)m∞

= {(a/b) ∈ IQ
(m)m∞

: a ≡ b mod m, a and b are of the same sign }.

Now consider the following map:

IQ
(m)m∞

→ (Z/(|m|Z))×

(a/b) → ab−1

where we choose a positive generator for (a/b). This homomorphism is obviously

surjective because for each c mod |m| (c chosen to be positive), we can just look

at the ideal generated by c on the left. Further, the kernel is exactly PQ
(m)m∞

. So

for a modulus with the infinite place the ray class group of Q is isomorphic to

(Z/|m|Z)×. Similarly for the modulus m = (m) for some m ∈ Z \ {0}, we consider

the homomorphism from IQ
(m)to (Z/|m|Z)×/{±1}. This will show that the ray class
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group in this case is isomorphic to (Z/|m|Z)×/{±1}.

As mentioned earlier, class field theory helps us characterise abelian extensions

of a number field K using ray class groups. But in order to demonstrate this phe-

nomenon, we need to define ramified and split primes corresponding to arbitrary

extensions of a number field K of finite degree over K.

Definition 2.1.14. Given a field extension of number fields L over K, let p be a

non-zero prime ideal of OK. Consider the factorisation of pOL, the ideal generated

by p in OL. Let

pOL = qe11 . . . qenn ,

where qi are prime ideals of OL. We say that the prime ideals qi lie above the prime

p. If any of the e′is are greater than one, the prime is said to be ramified. The

dimension of OL/qi as a OK/p vector space is called the residual degree or degree of

qi with respect to the extension L/K and is denoted by fi. In addition if ei = fi = 1

for all i, we say that the prime ideal of K is totally split in L . A real place of K is

said to ramify if it extends to an embedding of L into C such that the image is not

contained in R.

We would now like to know if there is an easy way to find all the ramified primes

of an extension L/K. This brings us to the next subsection : Discriminant.

2.1.2 Discriminant

Given an extension of number fields L/K, let W = (w1, . . . wn) be a basis of L/K.

We define the discriminant of W in the following manner:

DL/K(W ) = det((σiwj){i,j})
2
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where σi ranges over the distinct K embeddings of L into C. We can now define the

discriminant ideal of OL/OK as follows.

Definition 2.1.15. The OK module generated by all the DL/K(W ) where W ranges

over all the bases of L/K contained in OL is called the discriminant of OL/OK,

denoted dL/K.

It is immediate that the discriminant is an ideal of OK. But what is really

interesting is that a prime ideal p of OK ramifies in L if and only if it divides the

discriminant.

Example 2.1.16. Given a quadratic field K = Q(
√
d). One can show that

dK/Q =


(d) if d ≡ 1 mod 4;

(4d) if d ≡ 2, 3 mod 4.

Another useful example is the following.

Example 2.1.17. For a cyclotomic field K = Q(ζn), the discriminant

dK/Q =

(
nϕ(n)∏

p|n p
ϕ(n)/(p−1)

)
.

where ϕ is used to denote the Euler totient function.

Remark 2.1.18. We should, at this juncture, remark that the discriminant of a

number field K over Q may also be defined as the discriminant of a Z basis of OK.

In this case, the discriminant becomes an integer. Further the ideal generated by

this integer will coincide with the discriminant ideal as defined above.

Another important property of discriminants which we will use later is the fol-

lowing.
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Theorem 2.1.19. Let L1 and L2 be two extensions of Q such that L1 ∩ L2 =

Q. Further if the discriminants dL1 and dL2 are relatively prime, then dL1L2 =

d
[L2:K]
L1

d
[L1:K]
L2

.

Now that we have a way of finding ramified primes, the next step would be to

do the same for split primes.

2.1.3 Artin symbol and its properties

Now we come to a key ingredient which associates a Galois element of the extension

L of K, provided L/K is Galois, to a prime ideal of OK.

Theorem 2.1.20. Given a Galois extension L/K of number fields, an unramified

prime ideal p in OK and a prime ideal q above it in OL, there is a unique Galois

element σ in the Galois group of L/K such that

σ(a) ≡ aN(p) mod q for all a ∈ OL.

Such an element is called the Artin symbol corresponding to q and the extension

L/K. It is denoted by
(

L/K
q

)
. Here N(p) denotes the absolute norm of the ideal p.

One can show that for each prime p in K, the set of Artin symbols of the prime

ideals above p is a conjugacy class in the Galois group of L/K. If the extension is

abelian, this conjugacy class is nothing but an element of the Galois group of L/K.

Therefore if L/K is abelian, the Artin symbol of any prime above (in OL) can

be determined without ambiguity by the prime below (in OK). From now onwards,

we will only consider abelian extensions and by abuse of notation we will talk about(
L/K
p

)
where p is a prime ideal in OK. As an example let us compute the Artin

symbol of a prime ideal in Z with respect to a cyclotomic field Q(ζn).
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Example 2.1.21. Consider a prime p ∈ Z and the field Q(ζn) such that (p, n) = 1.

We know that the prime ideal pZ does not ramify in Q(ζn), so the Artin symbol(
Q(ζn)/Q
pZ

)
is well defined. Let q be any prime ideal above pZ in Q(ζn). Consider the

element σ ∈ Gal(Q(ζn)/Q) which takes ζn to ζ
|p|
n . An immediate application of the

Binomial expansion will show that

σ(a) ≡ a|p| mod q for all a ∈ Z[ζn].

We state below two other notable properties of the Artin symbol.

Lemma 2.1.22. Given an abelian extension of number fields K ⊂ F ⊂ L (i.e. L/K

is abelian) and a prime ideal p in OK,

(
L/K

p

) ∣∣∣∣
F

=

(
F/K

p

)
.

Further, suppose that p0 is a prime ideal above p in OF, then

(
L/K

p

)f(p0/p)

=

(
L/F

p0

)

where f(p0/p) is the residual degree of the ideal p0 with respect to the extension F

over L.

Proof. Let P be a prime ideal above p in OL and P0 = P
⋂

F and let σ =
(

L/K
p

)
.

For any a ∈ OF, we have, by the definition of the Artin symbol,

σ(a)− aN(p) ∈ P.

But this implies that

σ|F (a)− aN(p) ∈ P0,

thereby proving the first assertion of our lemma. For the second assertion, let

62



σ =
(

L/K
p

)
, σ0 =

(
L/F
p0

)
and P be a prime ideal of OL above p and p0. By the

definition of Artin symbol, we now have for all a ∈ OL,

σ(a) ≡ aN(p) mod P and σ0(a) ≡ aN(p0) mod P.

We now obtain the second assertion from the fact that N(p)f(p0/p) = N(p0).

Finally we state the result that motivates this subsection.

Lemma 2.1.23. Given an extension of abelian number fields L/K and a prime ideal

p in OK. The prime ideal p splits completely in L if and only if the Artin symbol(
L/K
p

)
is trivial in the Galois group.

Example 2.1.24. Using Lemma 2.1.23, it is easy to see that a prime pZ ⊂ Z splits

in Q(ζn) if and only if |p| ≡ 1 mod n.

With the above information on ramified and split primes, we will see now that

class field theory allows us to characterise all abelian extensions of a number field

K.

2.1.4 Artin’s map and reciprocity law

Having defined the Artin symbol, we can now look at the map that maps ideals

from certain subgroups of the group of non-zero fractional ideals of K to the Galois

groups of abelian extensions of K.

Definition 2.1.25. Given an abelian extension L/K of number fields and a modulus

m = m0m∞ of K. Suppose that every prime ideal of OK and real place of K which

ramifies in L divides m. Then, we can define a map from IKm to Gal(L/K) in the
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following manner :

IKm → Gal(L/K)∏
p-m0

p prime ideal of OK

pnp →
∏
p-m0

p prime ideal of OK

(
L/K

p

)np

.

Here np is non-zero only for finitely many prime ideals in the product. This is known

as the Artin map with respect to the modulus m for the extension L/K. It is denoted

by ψ
L/K
m .

We would now like to prove that this map is in fact surjective. In order to do

so, we require few definitions and deep theorems of class field theory. Let us begin

with the definition of natural density of a set of primes.

Definition 2.1.26. Let S be a set of non-zero prime ideals of a number field K.

Then the limit

d(S) = lim
x→∞

{p ∈ S : N(p) ≤ x}
{p : N(p) ≤ x}

,

provided it exists, is called the natural density of S.

A special case of the Chebotarev density theorem states the following.

Theorem 2.1.27 (Chebotarev density theorem). Let L/K be an abelian extension

of number fields with Galois group G. For each σ in G, let

S(σ) :=

{
p ⊆ OK : p prime ideal, unramified and

(
L/K

p

)
= σ

}
,

then

d(S(σ)) =
1

|G|
.

As a corollary to the Chebotarev density theorem, one can show the following.
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Corollary 2.1.28. Consider an extension of abelian number fields L/K. Let e be

the trivial element in the Galois group of L/K. If d(S(e)) = 1, then L = K.

We are now in a position to prove the surjectivity of the Artin map.

Theorem 2.1.29. Given an abelian extension L/K of number fields and a modulus

m = m0m∞ of K. Suppose that every prime ideal of OK and real place of K which

ramifies in L divides m, then ψ
L/K
m is surjective.

Proof. Let H be the image of ψ
L/K
m . Let F = LH , that is the subfield of L fixed

by H. Therefore for each p in IKm , we have that ψ
L/K
m (p) acts trivially on F. This

implies that all but finitely many prime ideals of K split in F. Thus the natural

density of the set of all prime ideals of K which split in F is one. Therefore F = K

and the Artin map, ψ
L/K
m , is surjective.

Another useful corollary to Theorem 2.1.27 is the following.

Corollary 2.1.30. Let L and M be two finite abelian extensions of K. If the set of

prime ideals of OK which split in L were contained in the set of prime ideals which

split in M, then M ⊆ L.

Proof. A prime ideal splits in L and M if and only if it splits in LM. Therefore

1

[LM : K]
≥ 1

[L : K]
.

This implies that M ⊆ L.

We can now shift our attention to the kernel of the map from the subgroup of

fractional ideals to the Galois group. This will lead us to what is known as Artin’s

reciprocity theorem.

Definition 2.1.31. A subgroup H of IKm which contains PK
m is called a congruence

subgroup.
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We can now state Artin’s reciprocity law.

Theorem 2.1.32 (Artin’s reciprocity law). Let L/K be an abelian extension of

number fields. Then there exists a modulus m such that

1. all the prime ideals of OK and real places of K which ramify in L divide m,

and

2. the kernel of the Artin map, ψ
L/K
m , is a congruence subgroup of modulus m.

The “smallest” such modulus (in terms of divisibility) is called the conductor of

the extension L/K. Another important theorem of class field theory is the existence

of the ray class field of modulus m.

Theorem 2.1.33. Given a number field K and a modulus m, there exists a unique

abelian extension L of K such that

1. all the prime ideals of OK and the real places of K which ramify in L divide

m, and

2. the kernel of ψ
L/K
m = PK

m .

This is known as the ray class field of K corresponding to the modulus m. This field

will be denoted by K(m).

For K = Q and modulus m = (m)m∞, where m ∈ Z \ {0} and m∞ contains

the unique real place of Q, the ray class field is immediately seen to be Q(ζ|m|)

by Example 2.1.24 and Corollary 2.1.28. And for m = (m), the split prime ideals

correspond to the rational primes p ∈ N which are either 1 mod m or −1 mod m,

which means that the ray class field is Q
(
ζ|m| +

1
ζ|m|

)
. By the above discussion and

an application of Theorem 2.1.32, it is clear that any abelian extension of Q lies in

a cyclotomic field. This is known as the Kronecker-Weber Theorem. Further the
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smallest m ∈ N for which K ⊆ Q(ζm) is called the conductor of K. One can check

that this will coincide with the notion of the conductor ideal of K/Q, up to the real

place, as defined above. Coming now to the last subsection on the algebraic part,

we would like to talk about a special kind of ray class field, namely the Hilbert class

field.

2.1.5 Hilbert class field

In this section we will deal with a very special kind of ray class field known as the

Hilbert class field. This will help us study the usual class group of a number field

K.

Definition 2.1.34. The ray class field of K corresponding to m = OK is called the

Hilbert class field of K, denoted by H(K).

Note that if OK were a principal ideal domain, then H(K) = K. Using the

definition of the Hilbert class field one can show the following.

Theorem 2.1.35. The maximal unramified abelian extension of K is the Hilbert

class field of K.

Proof. Since the modulus is trivial, the Hilbert class field is unramified. Further

given any abelian unramified extension, it will be contained in K(OK) by Theo-

rem 2.1.32 and Corollary 2.1.30. This implies that it must be contained in the

Hilbert class field.

An immediate corollary is the following.

Corollary 2.1.36. The set of prime ideals which split in H(K)/K is exactly the

set of principal ideals of OK.
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We have already seen trivial examples of Hilbert class fields. Now let us look

at one which requires some ramification theory to show that it is the Hilbert class

field.

Example 2.1.37. For K = Q(
√

65), the Hilbert class field is easy to compute using

the theory of ramification. The class number of K is known to be 2. Consider the

following diagram :

Q(
√

13,
√

5)

Q(
√

13) Q(
√

5) K

Q

By Theorem 2.1.19, the only prime ideals that can ramify in Q(
√

13,
√

5) are 13Z

and 5Z. However 13Z does not ramify in Q(
√

5). Therefore its ramification index in

Q(
√

13,
√

5) is 2. The same argument holds for 5Z. This implies that Q(
√

13,
√

5)

over K is unramified. It is maximal simply because the class number of K is 2.

Therefore, the Hilbert class field of Q(
√

65) is Q(
√

13,
√

5).

2.2 Sieve theory

In this section, we will look at some preliminaries pertaining to sieve theory. This

will be divided into three sections in increasing order of complexity. The first section

will talk about a modified version of the Brun’s sieve (Section 2.2.1). The second

about the lower bound linear sieve (Section 2.2.2) and the last about a combination

of the lower and upper bound linear sieves (Section 2.2.3).
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2.2.1 Modified Brun’s sieve

The main theorem we state in this subsection is a modified version of Brun’s sieve

as stated in [1]. We begin with a few definitions. Let Σ be a finite set of positive

rational primes. Let

PrΣ(z) :=
∏
p<z
p/∈Σ

p.

When Σ = ∅, the empty set, we denote the product by Pr(z). Consider the linear

forms Li(n) = ain+ bi where ai 6= 0 and bi belong to N for 1 ≤ i ≤ k. We further

suppose that (ai, bi) = 1 for all i and that aibj − ajbi 6= 0 for 1 ≤ i < j ≤ k. Let

Ω(∗)(x, z) := {n ≤ x : (L1(n) · · ·Lk−1(n), P rΣ(z)) = 1, Lk(n) prime} .

Here (t1, t2) denotes the greatest common divisor of the numbers t1 and t2. Further

we assume that all the prime divisors of

(2.2.1) (2k)!
k∏
i=1

ai
∏

1≤i<j≤k

(aibj − ajbi)

belong to Σ. We now give the statement of the sieve.

Theorem 2.2.1 (Bilu, Deshouillers, Gun and Luca [1]). Under the above notation

and assumption (2.2.1) , we have for 2 ≤ z ≤ x

|Ω(∗)(x, z)| = Li(|ak|x)

ϕ(|ak|)
W

(∗)
k−1(z)(1 +O(E(∗)(x, z)))

where ϕ denotes the Euler totient function,

E(∗)(x, z) = exp(−(u/3)(log u− log log u− log(k − 1)− 3)) +
1

log z
,

u =
log x

log z
and W

(∗)
` (z) =

∏
p|PrΣ(z)

(
1− `

p− 1

)
.
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As a convention, we assume that the empty product is 1.

This sieve will be applied in Chapter 3 to prove Theorem 1.5.1. The next section

will deal with the more complicated linear lower bound sieve.

2.2.2 Linear lower bound sieve

We will now provide the details of the linear lower bound sieve which will be used

in the proofs of the theorems in Chapter 4. To give the precise statement of this

sieve we again start with some notations and definitions. Let P be a subset of the

set of positive rational primes, z a real number and

(2.2.2) P(z) :=
∏
p∈P,
p≤z

p.

Given a finite subset of non-negative integers A, let Ad := {a ∈ A : d|a}, where d

is a square free natural number with all it prime divisors in P . Suppose that ω is a

multiplicative function such that

(2.2.3) |Ad| =
ω(d)

d
|A| + rd,

for some rd. Further, set

(2.2.4) V (z) :=
∏
p<z,
p∈P

(
1− ω(p)

p

)

and

(2.2.5) S(A,P , z) := {a ∈ A : (a,P(z)) = 1},
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where (a,P(z)) denotes the gcd of a and P(z). We now introduce the notion of a

well factorable function as defined by Iwaniec [24] (see also page 255 of [10]).

Definition 2.2.2. Let D ≥ 1 be a real number and λ(q) be an arithmetic function

with support [1, D]. We say that λ is a well factorable function of level D if for any

real numbers M,N ≥ 1 with MN = D, one can write

λ(q) :=
∑
mn=q,
m≤M,
n≤N

α(m)β(n), where 1 ≤ q ≤MN

for some arithmetic functions α and β which depend on M,N and |α(m)|, |β(n)| ≤ 1.

In this set-up, one has the following lower bound sieve.

Theorem 2.2.3 (Friedlander and Iwaniec (see page 256 of [10], see also Iwaniec

[24])). Let D ≥ 1, s ≥ 2 be real numbers and z = D1/s. Also let A be a subset of

non-negative integers satisfying

∏
u≤p<z,
p∈P

(
1− ω(p)

p

)−1

≤ T

(
log z

log u

)
,

where u ≥ 2 is an integer and T > 0 is an absolute constant. Then for sufficiently

large D and for any real number ε > 0, we have

S(A,P , z) ≥ XV (z){g(s)− ε}+
∑
d|P(z)

λ(d) rd.

Here |A| ∼ X, P(z) and V (z) are as in (2.2.2) and (2.2.4), respectively. Finally, λ

is some well factorable function of level D and g is a continuous function on [2,∞)

satisfying

g(s) = 2eγ log(s− 1)/s,

for s ∈ [2, 4]. Also γ is the Euler and Mascheroni constant.
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One will notice that to use the above sieve, we need a way to estimate the sum

of rd and show that it is dominated by the main term. In order to do this, one may

use the following theorem, as we shall see in Chapter 4.

Theorem 2.2.4 (Bombieri, Friedlander and Iwaniec (see [2], see also [9, 20])). Let

a, k be positive natural numbers with (a, k) = 1. For any positive natural number q

with (q, k) = 1, let

uq ≡ a mod k and uq ≡ 1 mod q.

Fix a positive integer A > 0 and a real number θ < 4/7. Then, for every well

factorable function λ of level xθ, one has

∑
q≤xθ

(q,k)=1

λ(q)

(
π(x, qk, uq)−

Li(x)

ϕ(qk)

)
� x

logA x
.

The constant in � depends on a,A, k and θ.

As the reader will observe during the course of the proof, the exponent 4/7, also

known as the level of distribution, will play a major role in determining the lower

bound on the unit rank. So it is natural to expect that better exponents will yield

better results. This line of thought led us to examine the consequences of the Elliott

and Halberstam conjecture on this problem. In order to do this, we use an older

version of the linear sieve, developed before the emergence of the theory of well

factorable weights.

Theorem 2.2.5 (Halberstam and Richert (see page 236 of [17])). Let P be a subset

of the set of positive rational primes, z be a real number and P(z), ω, rd, V (z) and

S(A,P , z) be as in (2.2.2), (2.2.3), (2.2.4) and (2.2.5). Suppose that
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1. there exists a constant A1 ≥ 1 such that

(2.2.6) 0 ≤ ω(p)

p
≤ 1− 1

A1

for all p ∈ P;

2. there exist constants L and A2, independent of z and integer g1 with 2 ≤ g1 ≤ z

such that

(2.2.7) −L ≤
∑
g1≤p≤z
p∈P

ω(p) log p

p
− log

(
z

g1

)
≤ A2 ;

3. there exists a real number α with 0 < α ≤ 1 such that

(2.2.8)
∑

p|d =⇒ p∈P,

d< Xα

logF X

µ2(q) 3ν(d)| rd| ≤
G1X

log2X

for some positive constants F and G1. Here µ is the Möbius function and ν(d)

denotes the number of distinct prime divisors of d.

Then for X ≥ z,

S(A,P , z) ≥ XV (z)

{
g

(
α

logX

log z

)
− B

log1/14X

}
,

where B is an absolute constant, g and X are as in Theorem 2.2.3.

This time, since the terms rd appear with an absolute value, we can estimate the

sum in Equation (2.2.8) if we assume the following conjecture.

Conjecture 2.2.6 (Elliott and Halberstam conjecture [8]). Let a, q be natural num-

bers, π(y, q, a) := {p ≤ y : p prime in N, p ≡ a mod q}. For every real number
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θ < 1 and for every positive integer e > 0, one has

∑
q≤xθ

max
y≤x

max
(a,q)=1

∣∣∣∣π(y, q, a)− Li(y)

ϕ(q)

∣∣∣∣ � x

loge x

for all real numbers x > 2.

With these we conclude the subsection on the linear lower bound sieve which will

be applied to deduce the results in Chapter 4. We now move on to the next section

where we quote an application of a combination of the linear lower and upper bound

sieve.

2.2.3 Application of lower and upper bound sieve

In this section, instead of speaking about the lower bound linear sieve and its counter

part, the upper bound linear sieve, in detail, we will directly look at a useful lemma

which was derived by Heath-Brown using these sieves. This lemma will be a major

tool used in the proofs of Chapter 5. The lemma is as follows.

Lemma 2.2.7 (Heath-Brown [20], [29]). Suppose that u and v are natural numbers

with the following properties

(u, v) = 1, v ≡ 0 mod 16 and

(
u− 1

2
, v

)
= 1.

Then there exist a, b ∈ (1
4
, 1

2
) with a < b such that for any ε > 0, the cardinality of

the set

P (x) := {p ≡ u mod v : p ∈ (x1−ε, x) such that
p− 1

2
is either prime or

is a product of primes q1q2 with xa ≤ q1 ≤ xb}

is � x
log2 x

.
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With this theorem we conclude this subsection and the section on the sieve-

theoretic preliminaries of this chapter.

2.3 Arithmetic preliminaries

Finally we come to the last section of this chapter on preliminaries. Here we state

certain arithmetic prerequisites which we will be required for all the chapters that

follow. Throughout this section, we fix a number field K. In Chapter 1 we saw

Motzkin’s criterion and later partially generalised the notion of Euclidean domains.

We did not however speak about generalisations of Motzkin’s criterion to this new

setup. This was done in a paper by Graves in [13]. We begin this section with this

generalisation.

Definition 2.3.1. For a non-zero integral ideal a of K, let us define

B0,a := {OK} and for i ≥ 1,

Bi,a := {p : p prime ,∀x ∈ p−1a \ a, ∃ y ∈ a such that a−1p(x− y) ∈ Bi−1,a}

∪Bi−1,a

Note that Bi,a \Bi−1,a ⊂ [ai], the class of ai.

In this set-up, Graves [13] proved the following theorem.

Theorem 2.3.2. (Graves [13]) If a is a non-zero integral ideal of K, then

B1,a = {p : p is prime, [p] = [a], O×K → (OK/p)× is surjective } ∪ {OK}.

Further let Ba =
⋃
iBi,a. If Ba contains all prime ideals of OK, then a is a Euclidean

ideal.

The first part of the above theorem will prove to be a very useful observation
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and the second part of the above theorem can be thought of as a generalization of

a result of Clark and Murty [4] or as a variant of Weinberger’s version of Motzkin’s

theorem. Now let

B1,a(x) := {p ∈ B1,a : N(p) ≤ x} ∪ {OK}.

Graves [13] showed that to prove Theorem 2.3.2, it is sufficient to prove that that

the cardinality of B1,a(x), denoted by |B1,a(x)|, is large. More precisely,

Theorem 2.3.3. (Graves [13]) Suppose K is a number field with unit rank at least

one. Further suppose that OK has cyclic class group and that a is an integral ideal

of OK such that [a] generates the class group. If

|B1,a(x)| � x/ log2 x,

then a is a Euclidean ideal.

The above theorem is a generalisation of a result of Harper [18], which appeared

in Section 1.4. In most of the major proofs in this thesis, we will try to show that

the set B1,a is large in the sense indicated by Theorem 2.3.3. In order to do this we

will consider the complement set and show that it is negligible by using the following

result of Gupta and Murty (as given in the paper of Harper and Murty [19]).

Lemma 2.3.4 (Gupta and Murty [16]). Let K be a number field and r be the unit

rank of OK. For p, a prime ideal of OK, if lp denotes the cardinality of the set

{α mod p : α ∈ O×K},

then

|{p : p prime ideal of OK, lp ≤ y}| � y1+ 1
r .

Here |S| is used to denote the cardinality of a set S.
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In Chapter 5, we will observe that the techniques of Graves and Murty ([14])

will no longer be able to help us. In that chapter we will resort to the techniques of

Heath-Brown [20] and Narkiewicz [31]. In this case one of the essential ingredients

is the following lemma by Narkiewicz [31] which revolves around primitive roots.

Lemma 2.3.5 (Narkiewicz [31]). Let a1, a2 and a3 be multiplicatively independent

elements of K×, T be a set of prime ideals of degree 1 in OK and N(p) be as in

Definition 2.1.7 . Suppose that T has the following properties;

1. there exists a constant c > 0 and an unbounded increasing sequence {xn}n∈N

such that

|T (xn) := {p ∈ T : N(p) ≤ xn}| > cxn/ log2 xn for all n.

2. there exist α, β ∈ (1/4, 1/2) with α < β such that if p ∈ T and p := N(p),

then either p − 1 = 2q or p − 1 = 2q1q2 where q, q1 and q2 are primes and

pα < q1 < pβ.

3. the numbers a1, a2 and a3 are quadratic non-residues with respect to every

prime in T .

Then for any 0 < ε < c, there exists a subsequence {ym}m∈N of {xn}n∈N such that

one of the ai’s is a primitive root for at least (c− ε)ym/ log2 ym elements of T (ym).

In order to use Lemma 2.3.5 along with the ideas of Theorem 2.3.3 we will need

to deduce a sequential variant of Lemma 2.3.3 in the later chapters. To do that we

need to introduce a few more definitions and results from [13].

Definition 2.3.6. Suppose that a is a non-zero integral ideal of K such that [a]

generates the class group of K. Let A ⊂ E be a finite set of ideals in the same

equivalence class of the class group. If p is a prime ideal such that [p] = [Ia] for any
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I ∈ A and if x ∈ p−1a, we define

(2.3.1)

ZA(x, p, a) :=



|{H ∈ A : there exists some y ∈ a such that (x− y)pa−1 = H}|

if x /∈ a;

lp × |{H ∈ A : there exists some y ∈ a such that (x− y)pa−1 = H}|

if x ∈ a.

where lp is as defined in Lemma 2.3.4

Another theorem which will be handy in proving the sequential variant of Lemma 2.3.3

is the following variant of Dirichlet’s theorem on primes in arithmetic progressions.

Theorem 2.3.7 (Graves [13]). Suppose that a is a fractional ideal of K and b

is a non-zero integral ideal of K with b 6= OK. If x is an element of ab−1 and

x+ a = ab−1, then there is a set of primes p with positive density such that

p = b(x− y)a−1,

for some y in a.

Further, we will require the following isomorphism to help us with some counting

arguments in the proof of the variant of Theorem 2.3.3

Lemma 2.3.8 (Graves [13]). For a number field K, let us assume that OK has

cyclic class group. Further p, a are ideals in K with p prime such that [p] = [a2] and

[a] generates the class group of K. Also suppose that xp is a generator of pa(hOK
−2),

where hOK
is the class number of OK. Then the map φ : p−1a/a→ ahOK

−1/pahOK
−1

defined by α + a 7→ αxp + pahOK
−1 is an isomorphism.

Finally we list some consequences of the large sieve inequality as proved by
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Graves in [13]. Note that all these theorems are essentially tools used by Graves

to prove Theorem 2.3.3. We will use the same to prove a stronger form of Theo-

rem 2.3.3.

Definition 2.3.9. Let K be a number field with cyclic class group and a be a non-

zero integral ideal of K such that [a] generates the class group of OK. For some

natural number n let

Aa ⊂ {I : I ∈ E and [I] = [an]}

be a finite set. Then we define for p ∈ [an+1]

(2.3.2) λ(p, a, Aa) := |{[α] ∈ p−1a/a : ZAa(α, p, a) = 0}|.

Having defined the above we can now state the consequence of the large sieve

inequality.

Lemma 2.3.10 (Graves [13]). Let K be a number field with cyclic class group and

a an integral ideal of K such that [a] generates the class group of OK. Also let A

and P be finite sets of integral ideals with A ⊂ E
⋂
{I : I ∈ [an]} and

P ⊂ {p : p is prime , [p] = [an+1]},

where n is a natural number. If X = maxI∈AN(I) and Q = maxp∈P N(p), then

∑
p∈P

λ(p, a, A)

N(p)
� Q2 +X

|A|
,

where the implied constant depends only on K,a and n. Once again N(p) is as

defined in Definition 2.1.7

This concludes our chapter on the preliminaries required to show the results that

will appear in this thesis. In the next chapter we begin with our results.
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Chapter 3

Lower bound on unit rank

3.1 Introduction

Let us first set the central theme of this chapter. We have a Galois number field K

with ring of integers OK. Standing assumption throughout the chapter is that the

class group of OK is cyclic and we are given a generator [a] of the class group.

Under the extended Riemann hypothesis we know that there exists a Euclidean

ideal class in the class group of OK. Our goal is to prove the existence of such an

ideal class unconditionally at least for some special class of fields.

The results stated in Chapter 1 indicate that the existence of a large unit group

is amenable to detect a Euclidean ideal class. In order to quantify the previous

statement we begin by recalling the following theorem of Graves.

Theorem 3.1.1 (Graves [13]). If a is a non-zero integral ideal of OK, then

B1,a =
{
p : p is a prime ideal of OK, [p] = [a],O×K → (OK/p)× is surjective

}⋃
{OK} .

For a definition of B1,a see Definition 2.3.1. Let us consider the following set
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B1,a(x) := {p ∈ B1,a : N(p) ≤ x}. We have already seen by Theorem 2.3.3 that if

|B1,a(x)| � x

log2 x
,

then [a] is a Euclidean ideal class. Since the above characterization of B1,a involves

a surjective map from O×K to (OK/p)×, one suspects that as the unit rank of OK

grows larger, at least in principle, it will be easier to find Euclidean ideal classes (of

course assuming that the class group is cyclic).

We note that for a number field K, in order to show that the number of primes

B1,a(x) is large, it is sufficient to count the rational primes that lie below the prime

ideals in B1,a(x).

For a non-zero prime ideal p of OK, we note that if the set
{
α mod p : α ∈ O×K

}
does not cover all of (OK/p)×, then it is a proper subgroup of (OK/p)× and we can

compute the index of this subgroup. This index, by Lagrange’s theorem, divides

the cardinality of (OK/p)×. We would like to find this cardinality. To do so, we

observe the following. Given a prime ideal pZ which does not split or ramify in OK,

the norm of a prime above pZ in OK is at least p2. Therefore the contribution of

these primes to the cardinality of B1,a(x) is at most
√
x/ log x which is negligible

compared to the lower bound we require on the cardinality of B1,a(x). Thus, we have

now reduced the problem of counting the number of elements in B1,a(x) to counting

the number of split primes with norm less than x in the class of [a] for which O×K

surjects onto (OK/p)×.

It will be shown in due course of the proof that with the help of Lemma 2.3.4

one can reduce the problem of finding Euclidean ideal classes to counting rational

primes, p ∈ N, which split in K and for which p− 1 has a few large prime divisors.

To be more precise, let us consider an arbitrary number field K. Suppose further

that d = max{n ∈ N : Q(ζn) ⊆ K}. Consider a prime p in N which splits in K,
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it is immediate that d divides p − 1. Therefore one can only hope to show that

B1,a(x) consists of a set of x/ log2 x primes for which all the prime divisors of p−1
d

are greater than some power of x. It appears that this is a reasonable target and

can be approached in at least two ways, one of which will be elaborated on in this

chapter.

We will apply sieve-theoretic techniques to sets containing elements of the form

p−1 for some set of primes p. In order to do this we need more arithmetic information

about the distribution of these primes in arithmetic progressions. This puts natural

conditions on the kind of number fields to which our arguments can be applied.

The first condition one needs to impose is that the extension H(K)/Q is abelian.

This will allow us to characterise split primes through congruence relationships.

The other restriction pertains to an obstruction we have already come across. If

p ∈ N is a prime which splits in K and d = max{n ∈ N : Q(ζn) ⊆ K}, then d divides

(p − 1). We would like to show that the index of
{
α mod p : α ∈ O×K

}
(which will

turn out to be a divisor of N(p)−1
d

) is co-prime to d. In order to achieve this, we

shall need that Q(ζf )/K is cyclic, where f is the smallest even number such that

H(K) ⊆ Q(ζf ).

In this chapter we show that one can navigate around these obstructions under

the above conditions. As a result one can give an ineffective lower bound on the

unit rank such that whenever the unit rank of the number field exceeds this bound,

the class group of OK will have a Euclidean ideal class for a specific family of fields.

More precisely, the main result proved in this chapter is the following.

Theorem 3.1.2. Let K be a number field and H(K) its Hilbert class field. Suppose

that the Hilbert class field is abelian over Q. Let f be the smallest even positive

integer such that H(K) ⊆ Q(ζf ). Further, suppose that the Galois group of Q(ζf )

over K is cyclic, then there exists a finite natural number r such that if K has unit

rank at least r, it has a Euclidean ideal class.
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We can deduce the following corollary from the above theorem for number

fields K with class number one.

Corollary 3.1.3. Let K be an abelian number field with class number one. Let f

be the smallest even positive integer such that Q(ζf ) contains H(K). If Q(ζf ) over

K is cyclic, then there exists a finite natural number r such that if unit rank of K

is greater than or equal to r, OK is a Euclidean domain.

The sieve which we will be using to prove the above theorem is a modified version

of Brun’s sieve as stated in Theorem 2.2.1.

3.2 Application of Brun’s sieve

We now state and prove the sieve-theoretic result required to show Theorem 3.1.2.

Proposition 3.2.1. Let K be a number field. Suppose that the Hilbert class field

H(K) of K is abelian over Q and let f be the smallest even integer such that H(K)

is contained in Q(ζf ). Now suppose that Q(ζf ) over K is cyclic and generated by

ζf → ζbf . Further, let d = max(n : Q(ζn) ⊆ K). For η > 0 define

A(x)(η) :=

`− 1

d
: ` ∈ N prime , ` ≤ x , ` ≡ b mod f and

`− 1

d
,
∏

2≤p<xη
p prime

p

 = 1


where (a, b) is used to denote the greatest common divisor of two positive integers a

and b. Then, there exists η > 0 such that

|A(x)(η)| � x

log2 x
.

The implied constant depends on η and K. Here |S| is used to denote the cardinality

of a set S.

84



Proof. Let Σ1 = {p ∈ N : p prime and p | 3f}. Let G1 be the Galois group of

Q(ζf ) over K, G2 be the Galois group of Q(ζf ) over H(K) and G3 be the Galois

group of Q(ζf )/Q. Consider the diagram.

Q(ζf )

H(K)

K

Q(ζd)

Q

G2

G1

G3

Then G3 = {σa : 1 ≤ a ≤ n, (a, f) = 1}, where σa : Q(ζf ) → Q(ζf ) ∈ G3 is

such that σa(ζf ) = ζaf and G1 ⊂ {σa ∈ G3 : a ≡ 1 mod d} . By assumption, G1 is

cyclic and Q(ζd) is the maximal cyclotomic field inside K. Since f is assumed to be

even, d|f . We claim that

G1

⋂{
σa ∈ G3 : a ≡ 1 mod d,

(
a− 1

d
,
f

d

)
= 1

}
6= ∅.

Suppose that our claim is not true i.e., we have ((b− 1)/d, f/d) = h 6= 1, where G1

is generated by σb. Using the binomial theorem, we then have

G1 ⊂ {σa ∈ G3 : a ≡ 1 mod dh} .

This implies that Q(ζdh) ⊂ K, a contradiction to the maximality of d.

Let m = (b − 1)/d. Further, let n0 ∈ N be such that m + n0f/d is a prime

co-prime to 3f and 1 + dm + n0f is co-prime to 3df . We claim that such an n0

exists. To prove the existence of n0, we break the argument into two cases. Case 1

will deal with the possibility that 3|f . In this case we just need to choose a prime
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congruent to m mod f/d co-prime to 3f to satisfy both these conditions. In case

2, we have 3 - f , then we use the Chinese remainder theorem to choose a prime

congruent to m mod f/d co-prime to 3f and not congruent to −d−1 mod 3.

We recall that

Σ1 = {p ∈ N : p prime, p | 3f} and PrΣ1(z) =
∏
p<z
p/∈Σ1

p.

We can now define the set

A′(x, z) := {y ≤ x : 1+dm+n0f+3ydf is prime and (m+n0(f/d)+3yf, PrΣ1(z)) = 1}.

Then by Theorem 2.2.1

(3.2.1) |A′(x, z)| = Li(3dfx)

ϕ(3df)

∏
p|PrΣ1

(z)

(
1− 1

p− 1

)
(1 +O(E(∗)(x, z))),

where

E(∗)(x, z) = exp(−(u/3)(log u− log log u− 3)) +
1

log z
,

u = log x
log z

and ϕ is used to denote the Euler-totient function. Since the O constant

in Equation (3.2.1) is absolute, if we put u = 1/η for small η and large x we get,

|A′(x, xη)| � x

log x

∏
p<xη

p/∈Σ1

(
1− 1

p− 1

)
,

� x

(log x)
(

exp
(∑

p<xη,
p 6=2

(
1
p−1

+ 1
2(p−1)2 · · ·

))) ,
� x

(log x)
(

exp
(∑

p<xη

p6=2

(
1/(p−1)

1−1/(p−1)

))) ,
� x

(log x)
(

exp
(∑

p<xη,
p 6=2

(
1
p

+ 2
p(p−2)

))) ,
� x

log2 x
.
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Note that for any

l = 1 + dm+ n0f + 3ydf, y ∈ A′(x, xη),

the term l−1
d

is co-prime to 3f . Therefore, there exists η > 0 such that

|A(x)(η)| � x

log2 x
.

With this we conclude this section on application of the modified Brun’s sieve.

We note that the hypothesis of Proposition 3.2.1 allows us to avoid all the obstruc-

tions stated out in the introduction. In the last section of this chapter, we will

formalize the initial part of the argument mentioned in the introduction.

3.3 Proof of Theorem 3.1.2

In this last section of Chapter 3, we use Theorem 3.2.1 and complete the proof of

Theorem 3.1.2.

Proof. Let [a] be a generator of the class group ClOK
of OK. Then for any real

number x > 0, we have

(3.3.1)

B1,a(x) =
{
p : p prime ideal of OK, N(p) ≤ x, [p] = [a],O×K → (OK/p)× is surjective

}
.

In order to complete the proof of Theorem 3.1.2, by Lemma 2.3.3, it suffices to show

that

|B1,a(x)| � x

log2 x
.

By our assumption Q(ζf )/K is cyclic. Therefore, we can talk about a generator of
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the Galois group of Q(ζf )/K. Let ζf → ζbf be a generator of Q(ζf ) over K. By

Proposition 3.2.1, we have

∣∣∣∣A(x)(γ) =

{
`− 1

d
: ` ∈ N prime , ` ≤ x , ` ≡ b mod f and

(
`− 1

d
,Q (xγ)

)
= 1

} ∣∣∣∣
� x

log2 x
,

for all real γ < η. Let

B(x)(γ) :=

{
` :

`− 1

d
∈ A(x)(γ)

}
,

lp :=
∣∣{α mod p : α ∈ O×K

}∣∣ , Sp := (N(p)− 1) /lp,

J1(x) := {p : p prime ideal of OK, N(p) ∈ B(x)(γ), Sp = 1} and

J2(x) := {p : p prime ideal of OK, N(p) ∈ B(x)(γ), Sp > 1} .

Consider the following setup : Q ⊆ K ⊆ H(K) ⊆ Q(ζf ). Let p ∈ A(x)(γ) and let P

be a prime above it in Q(ζf ). Suppose that p = P ∩K. From the properties of the

Frobenius, we observe that

(
Q(ζf )/Q

p

)
=

(
Q(ζf )/K

p

)

and that (
Q(ζf )/K

p

) ∣∣∣∣
H(K)

=

(
H(K)/K

p

)
where

( ·
·

)
is used to denote the Artin symbol, as defined in Chapter 2. This allows

us to conclude that J1(x) ⊆ B1,a(x). So, it suffices to show that

|J2(x)| = o

(
x

log2 x

)
.

Note that N(p) ∈ B(γ)(x) implies that (N(p), d) = 1. Since d =
∏d−1

i=1 (1−ζ id), where

ζd is a primitive d-th root of unity, the elements ζ id for 1 ≤ i ≤ d − 1 are distinct
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modulo p and hence they are distinct in (OK/p)×. Thus

Sp

∣∣∣∣N(p)− 1

d
=⇒ Sp = 1 or Sp > xγ.

Now if p ∈ J2, then Sp > xγ. Using Lemma 2.3.4, we then have

∣∣{p : p prime ideal of OK, lp ≤ x1−γ}∣∣ � x(1−γ)(1+ 1
r ),

where r is the unit rank of K. Now we choose γ = 1/r, then

(1− γ)

(
1 +

1

r

)
< 1 =⇒

∣∣{p : p prime ideal of OK, lp ≤ x1−γ}∣∣ = o

(
x

log2 x

)
.

This implies that

|J2(x)| ≤
∣∣{p : p prime ideal of OK, lp ≤ x1−γ}∣∣ = o

(
x

log2 x

)
.

and hence

|B1,a(x)| � x

log2 x

whenever r > 1/η. Since, we only have the existence of an η > 0 the bound

on r is ineffective. Now, an application of Theorem 2.3.3 completes the proof of

Theorem 3.1.2.

With this we conclude the chapter on our results regarding ineffective lower

bounds on the unit rank to find Euclidean ideal classes.
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Chapter 4

Large unit rank

4.1 Introduction

Let K be a Galois number field with ring of integers OK. We will always assume

that the class group of OK is cyclic.

Having produced an ineffective bound on the unit rank in Chapter 3, our next

aim is to get an effective lower bound such that whenever the unit rank exceeds this

bound, we have a Euclidean ideal class for a specific family of fields. As mentioned

in the introduction, the first step towards making Lenstra’s result (Theorem 1.4.8

[26]) unconditional was taken by Graves and Murty [14]. More precisely, their result

is the following.

Theorem 4.1.1 (Graves and Murty [14]). Suppose that the unit rank of a number

field K is at least 4 and that the Hilbert class field of K is abelian over Q. Further

suppose that f is the conductor of the Hilbert class field and Q(ζf )/K is cyclic. Then

ClOK
is cyclic if and only if there is a Euclidean ideal class in ClOK

.

Graves and Murty proved the above by using the linear lower bound sieve and

the Bombieri and Vinogradov theorem. The lower bound required by Graves and
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Murty, as mentioned above, is 4. The main aim of this section is to extend this

result to the case where the unit rank is 3 and consider the consequences of the

Elliott and Halberstam conjecture on this particular result. More precisely, in this

chapter, we will prove the following theorems.

Theorem 4.1.2. Suppose that K is a number field with unit rank at least 3 and

its Hilbert class field H(K) is abelian over Q. Also suppose that the conductor of

H(K) is f and Q(ζf ) over K is cyclic. Then ClOK
is cyclic if and only if it has a

Euclidean ideal class.

We know that the proof of Graves and Murty depends on the Bombieri and

Vinogradov theorem. So it is natural to investigate the implications of the Elliott

and Halberstam conjecture on this problem. Under the Elliott and Halberstam

conjecture, we have the following result.

Theorem 4.1.3. Let K be a number field such that the Hilbert class field H(K) is

abelian over Q and the Galois group Gal(Q(ζf )/K) is cyclic where f is the conductor

of H(K). Now if the Elliott and Halberstam conjecture is true and the unit rank of

K is at least two, then ClOK
is cyclic if and only if it has a Euclidean ideal class.

We recall here that under the extended Riemann hypothesis, Lenstra [26] was

able to prove this result for unit rank at least one. However under the Elliott and

Halberstam conjecture, our methods only allow us to prove this result for unit rank

at least two.

To prove Theorem 4.1.2 we use the linear lower bound sieve with well factorable

weights (Theorem 2.2.3 [24]) as opposed to the modified version of Brun’s sieve

which was used in Chapter 3. We add here that this new ingredient allows us to

improve upon the work of Graves and Murty. We replace their application of the

lower bound sieve (Theorem 2.2.5) with the more modern lower bound sieve with

well factorable weights. Further the process of estimating the error term will be done
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by using a theorem of Bombieri, Friedlander and Iwaniec on primes in arithmetic

progressions (Theorem 2.2.4 [2, 9, 20]), instead of the Bombieri and Vinogradov

theorem as used by Graves and Murty.

To prove Theorem 4.1.3, on the other hand, we use Theorem 2.2.5 and the Elliott

and Halberstam conjecture (Conjecture 2.2.6).

4.2 Applications of the linear lower bound sieve

In this section, using Theorem 2.2.3 and Theorem 2.2.4, we deduce the following sieve

theoretic result which plays a key role in the proof of Theorem 4.1.2. Later, we will

also prove an analogous sieve theoretic result (Theorem 4.2.3), using Theorem 2.2.5,

which will be used in the proof of Theorem 4.1.3

Theorem 4.2.1. Let K be a number field and its Hilbert class field H(K) be abelian

over Q. Also let f be the smallest even integer such that H(K) is contained in Q(ζf )

and Q(ζf ) over K be cyclic. Set d := max{n : Q(ζn) ⊆ K} and

A(x) :=

{
`− 1

d
: ` ∈ N, ` prime, ` ≤ x, and ` ≡ b mod f

}
,

where ζf → ζbf is a generator of Q(ζf ) over K. Let P := {p ∈ N : p prime}. Then

for any real number η < 16/63, one has

S(A(x),P , xη)� x

log2 x
.

Remark 4.2.2. Here we point out that Theorem 4.2.1 is explicit as opposed to

Theorem 3.2.1. More precisely, it gives an explicit bound on the exponent η which

is not possible with the techniques used in the proof of Theorem 3.2.1.

Proof. Let G1 be the Galois group of Q(ζf ) over K, G2 be the Galois group of Q(ζf )
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over H(K) and G3 be the Galois group of Q(ζf )/Q. Consider the diagram

Q(ζf )

H(K)

K

Q(ζd)

Q

G2

G1

G3

Then

G3 = {σa : 1 ≤ a ≤ n, (a, f) = 1},

where σa : Q(ζf )→ Q(ζf ) ∈ G3 is such that σa(ζf ) = ζaf and

G1 ⊂ {σa ∈ G3 : a ≡ 1 mod d} .

By assumption, G1 is cyclic and Q(ζd) is the maximal cyclotomic field inside K.

Since f is assumed to be even, d|f . We claim that

G1 ∩
{
σa ∈ G3 : a ≡ 1 mod d,

(
a− 1

d
,
f

d

)
= 1

}
6= ∅.

Suppose not. Now if G1 is generated by σb, where ((b − 1)/d, f/d) = h 6= 1, then

every element of G1 is of the form

σb ◦ · · · ◦ σb︸ ︷︷ ︸
r times

= σbr .

Using the binomial theorem, we then have

G1 ⊂ {σa ∈ G3 : a ≡ 1 mod dh} .
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This implies that

Q(ζdh) ⊂ K,

a contradiction to the maximality of d. Let m = (b− 1)/d. Now choose n0 > 0 such

that

m+ n0f/d is prime and (m+ n0f/d, f) = 1.

For any real number x > 0, define

A′(x) := {`− 1 ≤ x : ` ∈ N is prime and ` ≡ 1 + dm+ n0f mod df}.

Then we have

|A′(x)| ∼ Li(x)

ϕ(df)

as x→∞. Set P1 := {p : p - f}. Then for any p ∈ P1, we have

|A′p(x) := {u ∈ A′(x) : p|u}| ∼ Li(x)

ϕ(pdf)

as x → ∞. Therefore for any square-free number q with prime divisors in P1, we

have

|A′q(x)| =
ω(q)

q
|A′(x)| + rq(x).

Here

ω(q)

q
=

1

ϕ(q)
and rq(x) =

(
π(x, qdf, uq)−

Li(x)

ϕ(qdf)

)
,

where uq satisfies

uq ≡ 1 mod q and uq ≡ 1 + dm+ n0f mod df.
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Since 2|f , for any integer w ≥ 2, one has

∏
w≤p<z
p∈P1

(
1− ω(p)

p

)−1

= exp

− ∑
w≤p<z
p∈P1

log

(
1− 1

p− 1

)  ,

= exp

 ∑
w≤p<z
p∈P1

(
1

p− 1
+

1

2(p− 1)2
+ · · ·

)  ,

≤ exp

 ∑
w≤p<z
p∈P1

1/(p− 1)

1− 1/(p− 1)

 ,

≤ exp

 ∑
w≤p<z
p∈P1

1

p
+

2

p(p− 2)

 � log z

logw
.

Therefore using Merten’s theorem and Theorem 2.2.3, there exists an absolute con-

stant C1 > 0 such that

(4.2.1) S(A(x),P1, D
1/s) ≥ C1x

log2 x
+

∑
(q,df)=1

λn(q) rq(x),

for some well factorable function λn of level D ≥ 1 and for any s ≥ 2. Now let

D = x4/7−ε where 0 < ε < 4/7 is a real number. Then applying Theorem 2.2.4 with

k = df , we have

(4.2.2)
∑
q≤D,

(q,df)=1

λn(q) rq(x) � x

logA x

for any positive integer A. Finally by choosing s = 9/4 and using equations (4.2.1),

(4.2.2), we get that

S(A′(x),P1, x
4−7ε
15.75 )� x

log2 x
.

Set

A′′(x) :=

{
`− 1

d
: for all `− 1 ∈ A′(x)

}
.
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Clearly S(A′′(x),P1, x
η)� x/ log2 x for any real number η < 16/63

(
= 4

15.75

)
. Since

every element of A′′(x) is co-prime to f and A′′(x) ⊂ A(x), we have

S(A(x),P , xη) ≥ S(A′′(x),P , xη)� x

log2 x
.

Now if we assume the conjecture of Elliott and Halberstam (see Conjecture 2.2.6),

we can prove the following statement using Theorem 2.2.5. We use the older linear

lower bound sieve as opposed to Theorem 2.2.3 because we only have an estimate

for sums of absolute values of the error terms rq(x) appearing in the sieve.

Theorem 4.2.3. Suppose that the Elliott and Halberstam conjecture is true. Let K

be a number field and its Hilbert class field H(K) be abelian over Q. Also let f be

the smallest even integer such that H(K) is contained in Q(ζf ) and Q(ζf ) over K be

cyclic. Set d := max{n : Q(ζn) ⊆ K} and

A(x) :=

{
`− 1

d
: ` ∈ N, ` ≤ x, ` prime and ` ≡ b mod f

}
,

where b mod f is a generator of Q(ζf ) over K. Let P := {p ∈ N : p prime }. Then

for any positive real number η < 1/2, one has

S(A(x),P , xη)� x

log2 x

where the constant implied in the symbol � depends on η.

Remark 4.2.4. We now highlight the difference between the above theorem and

Theorem 4.2.1. The bound for the exponent η here (< 1/2), is better than that in

Theorem 4.2.1(< 16/63). But we hasten to add that Theorem 4.2.1 is unconditional.

Proof. As in the proof of Theorem 4.2.1, we can show that there exists a b mod f

which generates Q(ζf ) over K such that b = 1 + dm with (m, f/d) = 1. As before,
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choose an n0 such that m+ n0f/d is a prime co-prime to f . Now let

A′(x) := {`− 1 ≤ x : ` ∈ N, ` prime and ` ≡ 1 + dm+ n0f mod df}

and P1 = {p : p - f} be as in the proof of Theorem 4.2.1. Using Theorem 2.2.5,

we would like to estimate S(A′(x), P1, x
1/2−δ) for any δ > 0. In order to apply

Theorem 2.2.5, we need A′(x) and P1 to satisfy the conditions of Theorem 2.2.5.

Note that for all p ∈ P1, one has ω(p)/p = 1/ϕ(p) and

|rq(x)| ≤ max
y≤x

max
(a,qdf)=1

∣∣∣∣π(y, qdf, a)− Li(y)

ϕ(qdf)

∣∣∣∣ ,
where q is any square-free number with prime divisors in P1. Since f is always

even, Condition 1 (Equation (2.2.6)) of Theorem 2.2.5 will be trivially satisfied by

choosing A1 = 2. To check Condition 2 (Equation (2.2.7)), we consider

∑
g1≤p≤z
p∈P1

ω(p) log p

p
=

∑
g1≤p≤z

p
p−1

log p

p
−

∑
g1≤p≤z,
p|df

p
p−1

log p

p
.

Since the second term in the above equality is bounded by a constant, we have

∑
g1≤p≤z
p∈P1

ω(p) log p

p
− log(z/g1) =

∑
g1≤p≤z

log p

p
+

∑
g1≤p≤z

log p

p(p− 1)
− log(z/g1) + O(1)

= O(1).

In order to check Condition 3 (Equation (2.2.8)), we observe by Cauchy and Schwarz

inequality that

∑′
µ2(q) 3ν(q) |rq(x)| ≤

√∑′
9ν(q) |rq(x)|

√∑′
|rq(x)|

where the sum
∑′ is over the positive integers q which are less than Xα/ logF X and

are divisible only by primes in P1. Note that for any q with all its prime divisors in
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P1, we have

|rq(x)| ≤ |A′q(x)| +

∣∣∣∣ Li(x)

ϕ(qdf)

∣∣∣∣ ≤ 2x

ϕ(q)

and
∑′ 9ν(q)

ϕ(q)
≤

∑
1≤q< Xα

(logX)F
,

q square free

9ν(q)

ϕ(q)

≤
∏

p< Xα

(logX)F

(
1 +

1

p− 1

)9

≤
∏

p< Xα

(logX)F

(
1− 1

p

)−9

� log9 x ,

where in the last step, we have used Merten’s theorem. Hence

∑′
9ν(q) |rq(x)| � x log9 x.

We now use Elliott and Halberstam conjecture to see that

∑
p|q =⇒ p∈P1,

q≤x
1−ε1

logB x

|rq(x)| ≤
∑

q≤ (dfx)1−ε1
logB(dfx)

max
y≤x

max
(a,q)=1

∣∣∣∣π(y, q, a)− Li(y)

ϕ(q)

∣∣∣∣� x

log3 x

for any ε1 > 0. Therefore by applying Theorem 2.2.5 and choosing z = x1/2−ε with

ε < 1/2, we have

S(A′(x), P1, x
1/2−ε) ≥ Li(x)

ϕ(df)
V (x1/2−ε)

{
g

(
(1− ε1) logX

(1
2
− ε) log x

)
− B

log14X

}
.

Choose max(0, 4ε− 1) < ε1 < 2ε. Then we get

(1− ε1) logX

(1
2
− ε) log x

≤ (2− 2ε1)(log(Li(x)))

(1− 2ε) log x
≤ 2− 2ε1

1− 2ε
≤ 4.

Similarly, for ε′ > 0 such that

ε′ <
2ε− ε1

1− ε1

,
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and sufficiently large x, we get

(1− ε1) logX

(1
2
− ε) log x

≥ (2− 2ε1)(log x− log log x+ log(1/ϕ(df)))

(1− 2ε) log x
≥ (2− 2ε1)(1− ε′)

1− 2ε
> 2.

Thus there exists a constant Z > 0 such that for any real number η < 1/2 and x

sufficiently large, we have

(4.2.3) S(A′(x),P1, x
η) ≥ Zx

log2 x
.

Using arguments similar to the proof of Theorem 4.2.1, we now have

S(A(x),P , xη) � x

log2 x
,

where

A(x) :=

{
`− 1

d
: ` ∈ N, ` prime , ` ≤ x and ` ≡ b mod f

}
,

and P = {p ∈ N : p prime}.

We now formalise the algebraic arguments required to complete the proof.

4.3 Proof of Theorem 4.1.2 and Theorem 4.1.3

In this final section of Chapter 4, we complete the proofs of Theorem 4.1.2 and

Theorem 4.1.3.

4.3.1 Proof of Theorem 4.1.2

In this subsection we give in detail the proof Theorem 4.1.2.
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Proof. Let [a] be a generator of the class group ClOK
of OK. Then for any real

number x > 0, set

(4.3.1)

B1,a(x) = {p : p prime ideal in OK, N(p) ≤ x, [p] = [a], O×K → (OK/p)× is surjective}.

In order to complete the proof of Theorem 4.1.2, by Lemma 2.3.3, it suffices to show

that

|B1,a(x)| � x

log2 x
.

Applying Theorem 4.2.1 to

A(x) =

{
p− 1

d
: p ≤ x, p ∈ N, p prime , p ≡ b mod f

}
,

where b mod f is a generator of the Galois group G := Gal(Q(ζf )/K), we get

S(A(x),P , xη) = |{ u ∈ A(x) : `|u, ` ∈ N, ` prime =⇒ ` > xη}| � x

log2 x

for any positive real number η < 16/63, where P = {p ∈ N : p prime}. Set

B(x) := {u ∈ A(x) : `|u, ` ∈ N, ` prime =⇒ ` > xη}

and C(x) := {p ∈ N : p prime ,
p− 1

d
∈ B(x)}.

Also let

lp := |{α mod p : α ∈ O×K}|, Sp := (N(p)− 1)/lp,

J1(x) := {p : prime ideal of OK, N(p) ∈ C(x), Sp = 1} and

J2(x) := {p : prime ideal of OK, N(p) ∈ C(x), Sp > 1}.

Since every prime which is equivalent to b mod f splits completely in K, it suffices
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to show that

|J2(x)| = o

(
x

log2 x

)
.

By the same argument as in proof of Theorem 3.1.2, one can show that if N(p) ∈

C(x),

Sp

∣∣∣∣N(p)− 1

d
=⇒ Sp = 1 or Sp > xη.

Now if p ∈ J2(x), then Sp > xη. Using Lemma 2.3.4, we then have

∣∣{p : p prime ideal in OK, lp ≤ x1−η}∣∣ � x(1−η)(1+ 1
r

),

where r is the unit rank of K. If the unit rank r of K is greater than or equal to 3

and η = 251/1000, then

(1− η)

(
1 +

1

r

)
< 1 =⇒

∣∣{p : p prime ideal in OK, lp ≤ x1−η}∣∣ = o

(
x

log2 x

)
.

This implies that

|J2(x)| ≤
∣∣{p : p prime ideal in OK, lp ≤ x1−η}∣∣ = o

(
x

log2 x

)
.

and hence

|B1,a(x)| � x

log2 x
.

This completes the proof of Theorem 4.1.2.

Therefore one can see that with the use of well factorable weights, we can im-

prove the result of Graves and Murty [14], to the case of unit rank 3. In the next

section, we outline the proof of Theorem 4.1.3 by highlighting the modifications

required in the proof of Theorem 4.1.2.
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4.3.2 Proof of Theorem 4.1.3

Suppose that the Elliott and Halberstam conjecture is true. Then by Theorem 4.2.3,

we have S(A(x),P , xη) � x
log2 x

, for any real η < 1/2. Let

B(x) := { u ∈ A(x) : `|u, ` ∈ N, ` prime =⇒ ` > xη},

C(x) :=

{
p ∈ N : p prime ,

p− 1

d
∈ B(x)

}
,

lp := |{α mod p : α ∈ O×K}|, Sp := (N(p)− 1)/lp,

J1(x) := {p : p prime ideal in OK, N(p) ∈ C(x), Sp = 1} and

J2(x) := {p : p prime ideal in OK, N(p) ∈ C(x), Sp > 1}.

Then proceeding as in the proof of Theorem 4.1.2, we have

∣∣{p : p prime ideal in OK, lp ≤ x1−η}∣∣ � x(1−η)(1+ 1
r

),

where r is the unit rank of K and η := 1/2 − ε. If the unit rank r of K is greater

than or equal to 2 and η = 5/14, then

(1− η)

(
1 +

1

r

)
< 1 =⇒ |J2(x)| = o

(
x

log2 x

)
=⇒ |B1,a(x)| � x

log2 x
,

where B1,a(x) is as defined in Equation (4.3.1). This completes the proof of Theo-

rem 4.1.3 when the unit rank of K is strictly greater than 1.

4.4 Concluding remarks

In the final section of this chapter, we note that the proof of Theorem 4.1.2 actually

yields a result that is stronger. We state the stronger result below.

As in the previous sections, let K be a number field with unit rank greater than
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or equal to 3 and let its Hilbert class field H(K) be abelian over Q. Consider the

diagram

Q(ζf )

H(K)

K

Q(ζd)

Q

G1

G3

G2

Let G3 be the Galois group of Q(ζf ) over Q. Then G3 = {σa : 1 ≤ a ≤ n, (a, f) =

1}, where σa : Q(ζf ) → Q(ζf ) ∈ G3 is such that σa(ζf ) = ζaf . If G1 is the Galois

group of Q(ζf ) over K, ClOK
is cyclic and

{
σa ∈ G1 : G2 = 〈σa|H(K)〉

}⋂{
σa ∈ G3 : a ≡ 1 mod d,

(
a− 1

d
,
f

d

)
= 1

}
6= φ,

then it has a Euclidean ideal class. Here the notation G2 = 〈σa|H(K)〉 denotes that

σa|H(K) generates G2. Now if we assume the Elliott and Halberstam conjecture, then

one can improve the unit rank up to 2. These results are stronger than Theorem 4.1.2

and Theorem 4.1.3 as they also include number fields

K ⊂ Q(ζ2k), for all k ≥ 1

whose ring of integers OK is a principal ideal domain. Here ζ2k is a 2k-th primitive

root of unity. One can also adapt Theorem 4.2.3, to the set up where one has the

above co-primality condition. This will be useful in the Chapter 5. More precisely,

one can show the following.

Theorem 4.4.1. Suppose that the Elliott and Halberstam conjecture is true. Let K

be a number field such that its Hilbert class field H(K) is abelian over Q. Also let f
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be the conductor of H(K) and d := max{n : Q(ζn) ⊆ K}. Set

A(x) :=

{
`− 1

d
: ` ∈ N, ` prime , ` ≤ x and ` ≡ b mod f

}
,

where ζf → ζbf is an element of the Galois group of Q(ζf ) over K such that ((b− 1)/d, f/d) = 1

(provided it exists). Then for any real number η < 1/2, one has

|{u ∈ A(x) : p prime, p|u =⇒ p > xη}| � x

log2 x
,

where the implied constant depends on η and K.

Remark 4.4.2. Observe that we assumed that f is the conductor of K. However

the proof holds if f is replaced by any multiple of f , say for 16f , in the above

statement. Further Theorem 4.4.1 is stronger than Theorem 4.2.3 since the co-

primality condition is weaker than that of cyclicity of Q(ζf )/K.

With this we conclude the chapter on number fields with large unit rank and

move on to the case of lower unit rank in the next chapter.
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Chapter 5

Small unit rank

5.1 Introduction

In the last chapter of this thesis we will prove results on Galois number fields of

small unit rank. As we saw in Chapters 3 and 4, whenever the unit rank of OK

is large, one can show that the class group of OK has a Euclidean ideal class for

certain number fields. However in the case of real quadratic and Galois cubic fields,

the unit rank will not be large enough. To address this situation we use an idea of

Narkiewicz (see [29], [31]). The idea is to look at the compositum of number fields

with lower unit rank to generate a new field of larger unit rank.

Let us first briefly recall a theorem of Graves here in order to put the next step

in perspective.

Theorem 5.1.1 (Graves [13]). If a is a non-zero integral ideal of OK, then

B1,a =
{
p : p is a prime ideal of OK, [p] = [a],O×K → (OK/p)× is surjective

}⋃
{OK} .

Further, B1,a(X) = {p ∈ B1,a : N(p) ≤ X}.
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Coming back to our strategy; we use a lemma of Narkiewicz (Lemma 2.3.5,

[29]) and the sieve of Heath-brown (Lemma 2.2.7, [20]) to show that there exists a

sequence of positive real numbers (xn)n∈N tending to infinity such that

(5.1.1) |B1,p(xn)| � xn

log2 xn

for some prime ideal p in the compositum. The set B1,p considered in Equa-

tion (5.1.1) is a subset of the set of prime ideals in the compositum of either the

quadratic or cubic fields as the case may be.

We then use the pigeonhole principle to show that at least one class from the

ideal class group of at least one of the cubic or quadratic fields will have yn/ log2 yn

prime ideals for which O×K surjects onto (OK/p)× (where (yn)n∈N is a subsequence of

(xn)n∈N again going to infinity). We pause now to recall another theorem of Graves

that we have used time and again in this thesis.

Theorem 5.1.2. (Graves [13]) Suppose K is a number field with unit rank at least

one. Further suppose that OK has cyclic class group and that a is an integral ideal

of OK such that [a] generates the class group. If

|B1,a(x)| � x/ log2 x,

then a is a Euclidean ideal.

We would like to use Theorem 5.1.2 to detect a Euclidean ideal class. But since

the bound we get holds only for a sequence of yn ∈ R and not all y ∈ R, we develop

a sequential analog of Theorem 5.1.2 or Theorem 2.3.3 (See Theorem 5.2.1). But

Theorem 5.2.1, like Theorem 5.1.2 or Theorem 2.3.3, will require that the class with

x/ log2 x ideals must generate the class group. This will be ensured by using two

conditions. These conditions are as follows:
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1. None of the prime ideals thus obtained split in the Hilbert class field of the

cubic or quadratic field. Therefore by Theorem 2.1.36, the class cannot be

principal.

2. Assume that the class numbers of the cubic or quadratic fields are prime. This

will ensure that any non-principal class is a generator.

Before we state the results, we introduce some notation. Let K1,K2 and K3 be

number fields with Hilbert class fields H(K1),H(K2) and H(K3) respectively, all of

which are abelian over Q. Also let f1, f2 and f3 be their conductors, i.e. Q(ζf1),Q(ζf2)

and Q(ζf3) be the smallest cyclotomic fields containing H(K1),H(K2) and H(K3)

respectively. Here ζf1 , ζf2 and ζf3 are primitive f1, f2 and f3th roots of unity respec-

tively. Set f to be the least common multiple of 16, f1, f2 and f3 if K1,K2,K3 are

three real quadratic fields, the least common multiple of 16, f1 and f2 if K1,K2 are

two real quadratic fields or the least common multiple of 16, f1 and f2 if K1,K2 are

real cubic fields. Further put F := Q(ζf ), where ζf is a primitive fth root of unity.

We will now state the main results which have been proved in this chapter.

Theorem 5.1.3. Let K1,K2 be distinct real cubic fields with prime class numbers

and H(K1),H(K2),F, f be as above. Also let G be the Galois group of F over K1K2,

G` be the Galois group of F over Q(ζ`), where either ` is an odd prime dividing f

or ` = 4 and Gal(F/H(Ki)) be the Galois group of F/H(Ki) for i = 1, 2. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)),

then at least one of the Ki (i = 1, 2) has a Euclidean ideal class.

We also have an analogous result in the quadratic case.

Theorem 5.1.4. Let K1,K2 and K3 be distinct real quadratic fields with prime

class numbers and H(K1), H(K2), H(K3),F, f be as above. Also let G be the
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Galois group of F over K1K2K3, G` be the Galois group of F over Q(ζ`), where

either ` is an odd prime dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group

of F/H(Ki) for i = 1, 2, 3. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2))

⋃
Gal(F/H(K3)),

then at least one of the Ki (i = 1, 2, 3) has a Euclidean ideal class.

Now if we assume the Elliott and Halberstam conjecture, we can strengthen

Theorem 5.1.4 in the following manner.

Theorem 5.1.5. Let K1 and K2 be distinct real quadratic fields with prime class

numbers and H(K1), H(K2),F and f be as above. Also let G be the Galois group

of F over K1K2, G` be the Galois group of F over Q(ζ`), where either ` is an odd

prime dividing f or ` = 4 and Gal(F/H(Ki)) be the Galois group of F/H(Ki) for

i = 1, 2. If

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)),

then at least one of the Ki (i = 1, 2) has a Euclidean ideal class provided the Elliott

and Halberstam conjecture holds.

In the next section we begin with a generalisation of Theorem 5.1.2 required for

our proof.

5.2 Generalisation of Theorem 5.1.2

In this section we prove a sequential variant of the criterion given by Graves in [13].

This criterion can be thought of as a generalization of Narkiewicz’s result (see page

338, Lemma 2 of [31]).
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Theorem 5.2.1. Suppose that K is a number field with unit rank at least one

and its class group ClK = 〈[a]〉. If there exists an unbounded increasing sequence

{xn}n∈N such that

∣∣{p : p prime ideal, [p] = [a], N(p) ≤ xn, O×K → (OK/p)× is surjective
}∣∣ � xn

log2 xn
,

then [a] is a Euclidean ideal class.

Proof. We will apply Theorem 2.3.2 to prove Theorem 5.2.1. Since every ideal class

[a] contains infinitely many prime ideals, to show that [a] is a Euclidean ideal class,

it is sufficient to show that any prime ideal in [a] is a Euclidean ideal. From now

onwards, we shall assume that a is a prime ideal.

For i ∈ N, let Bi,a and Ba be as in Chapter 2 (Theorem 2.3.2). In order to

complete the proof of Theorem 5.2.1, we need to show that all prime ideals of OK

are in Ba. We start with the following definition. For i ∈ N, let Bi,a(X) := {p ∈

Bi,a : N(p) ≤ X}. We claim that for any i ≥ 1 and for any prime ideal p of OK,

(5.2.1) if p ∈ [ai+2], then p ∈ Bi+2,a.

We will prove this claim by induction on i. Set

A := B1,a(x
2
n) \B0,a, W := {p : p ∈ [a2]} \B2,a

and W (xn) := {p : p ∈ [a2] , N(p) ≤ xn} \B2,a(xn).

By given hypothesis, we have |B1,a(x
2
n)| � x2

n

log2(x2
n)
. Let λ(p, a, A) be as in Equa-

tion (2.3.2). Then applying Lemma 2.3.10, we get

∑
p∈W (xn)

λ(p, a, A)

N(p)
� x2

n

|A|
� x2

n
x2
n

log2(x2
n)

� log2 xn.
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If p ∈ W , then there exists an x ∈ p−1a\a such that a−1b(x− q) /∈ B1,a, for all q ∈ a.

This implies that ZA(x, p, a) = 0 for ZA(x, p, a) be as defined in Equation (2.3.1).

Therefore for any unit u of OK, we have

a−1b(ux− q′) /∈ B1,a,

for all q′ ∈ a. This implies that for any unit u ∈ O×K, one has ZA(ux, p, a) = 0. Now

suppose that u1, u2 ∈ O×K. We now show that if u1 and u2 are distinct modulo p,

then xu1 and xu2 are distinct elements in p−1a/a. Let hOK
be the order of ClOK

.

Then pa(hOK
−2) is a principal ideal as p ∈ W ⊂ [a2]. Let xp be a generator of

pa(hOK
−2). For the rest of this proof, we will denote hOK

by h for ease of notation.

Consider the map

ψ1 : p−1a/a → ah−1/ah−1p

α mod a 7→ αxp mod ah−1p,

which is well defined since xpa = pah−2 · a = ah−1p. Also consider the map

ψ2 : ah−1/ah−1p → OK/p

β mod ah−1p 7→ β mod p,

which is well defined since a is an integral ideal, and hence ah−1p ⊂ p. We know

by Lemma 2.3.8 that ψ1 is an isomorphism. Also it is easy to check that ψ2 is an

injective group homomorphism as a is a prime ideal which is co-prime to p. Since

x ∈ p−1a \ a, we see that xpx mod p is a non-zero element in OK/p, i.e. xpx /∈ p.

This implies that xpx(u1 − u2) ∈ p if and only if u1 − u2 ∈ p, as required. Let

lp := |{α mod p : α ∈ O×K}|.
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Thus if p ∈ W , then λ(p, a, A) ≥ lp. Therefore

log2 xn �
∑

p∈W (xn)

λ(p, a, A)

N(p)
≥

∑
p∈W (xn)

lp
N(p)

≥
∑

p∈W (xn)

lp≥N(p)
1
2−ε

1

N(p)
1
2

+ε

>
|{p ∈ W (xn) : lp > N(p)

1
2
−ε}|

x
1
2

+ε
n

.

Multiplying both sides by x
1
2

+ε
n , we get that

|{p ∈ W (xn) : lp > N(p)
1
2
−ε}| = o

(
xn

log xn

)
.

On the other hand, by the Lemma 2.3.4, we have

|{p ∈ W (xn) : lp ≤ N(p)
1
2
−ε}| � x1−2ε

n .

Hence

(5.2.2) |W (xn)| = o

(
xn

log xn

)
.

Now for any p ∈ [a3] and any x ∈ p−1a\a, we have (x) = p−1aa1 for some integral

ideal a1. Note that a1 6⊂ p as x /∈ a and hence

(x) + a = p−1a(p + a1) = p−1a.

Then by Theorem 2.3.7, the set W of prime ideals q in OK such that

q = (x− y)pa−1

for some y ∈ a has positive density. Note that W ⊂ [a2] and it has positive density.

Since by Equation (5.2.2), W has zero density, it follows that W cannot be contained
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in W . Therefore there exists y0 ∈ a such that

q0 = (x− y0)pa−1 ∈ B2,a.

This implies that p ∈ B3,a and hence by definition all prime ideals p for which

[p] = [a3] are in B3,a. This proves the claim (5.2.1) for i = 1. For the induction

hypothesis, suppose that the claim is true for i = m. This implies that if p ∈ [am+2]

then p ∈ Bm+2,a. Now let p ∈ [am+3]. Then arguing exactly as before we see that

for any x ∈ p−1a \ a, we have (x) + a = p−1a. Now by Theorem 2.3.7, there exists a

prime ideal q such that

q = (x− y)pa−1

for some y ∈ a. Since p ∈ [am+3], we have q ∈ [am+2]. Then by induction hypothesis,

we have q ∈ Bm+2,a and hence by definition p ∈ Bm+3,a, as required. This implies

that every prime ideal of OK is in Bh+2,a and hence in Ba. Thus a is a Euclidean

ideal.

With the above generalisation in hand, we can now use Lemma 2.3.5 to prove

Theorem 5.1.3 and Theorem 5.1.4.

5.3 Proof of Theorem 5.1.3 and Theorem 5.1.4

In this section, we give a proof for Theorem 5.1.3 and then outline a proof for

Theorem 5.1.4 as the arguments are similar.

5.3.1 Proof of Theorem 5.1.3

We start by proving some lemmas which are required to prove Theorem 5.1.3.

Throughout this subsection, let K1 and K2 be abelian cubic fields with Hilbert

114



class fields H(K1) and H(K2), both of which are abelian over Q. Also let f1 and

f2 be their conductors. Set f to be the least common multiple of 16, f1, f2 and

F := Q(ζf ), where ζf is a primitive f -th root of unity.

Lemma 5.3.1. Suppose that the Galois group G of F over K1K2 satisfies the hy-

pothesis of Theorem 5.1.3. Then there exists a co-prime residue class modulo f ,

say t mod f , such that any rational prime that belongs to this residue class splits

completely in K1K2 but does not split completely in H(K1) and H(K2). Further,

there exist a, b ∈ (1
4
, 1

2
) such that for any X, ε > 0, we have |Jε(X)| � X

log2(X)
, where

Jε(X) :=
{
p ≡ t mod f : p rational prime, p ∈ (X1−ε, X) such that

p− 1

2
is either a rational prime or a product of rational

primes q1q2 with Xa < q1 < Xb
}
.

Proof. By the given hypothesis, we have

G 6⊂
⋃
`

G`

⋃
Gal(F/H(K1))

⋃
Gal(F/H(K2)).

This implies that there exists a co-prime residue class modulo f , say t mod f , such

that ((t − 1)/2, f) = 1 and every rational prime in this class splits completely in

K1K2 but not in H(K1) and H(K2).

We can now apply Lemma 2.2.7 for u = t and v = f , which gives us that for

some a, b ∈ (1
4
, 1

2
) and any ε > 0,

|Jε(X)| � X

log2X
.

This completes the proof of the lemma.

Next let K = K1K2 and t mod f be as in Lemma 5.3.1. Since we know that
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(t, f) = 1 and ((t− 1)/2, f) = 1, it follows that t ≡ 3 mod 4. For a and b as in the

previous lemma, choose ε such that a < b
1−ε <

1
2
. Consider the set

Mε := {p : p is a prime ideal, N(p) = p rational prime , p ≡ t mod f,

p− 1

2
is either a rational prime or a product of rational primes

q1q2 with pa < q1 < p
b

1−ε}

and also the set Mε(X) := {p ∈ Mε : N(p) ≤ X} for any real number X > 0.

With this notation, we have the following lemma.

Lemma 5.3.2. Let K be as above and e1, e2, e3 be multiplicatively independent

elements in O×K. Then for some i ∈ {1, 2, 3}, either ei or −ei is a primitive root

mod p for infinitely many ideals in the set Mε. Let this set of prime ideals be called

V and let V (X) denote the set of elements in V of norm less than or equal to X.

Then there exists an increasing unbounded sequence {xn}n∈N such that

|V (xn)| � xn

log2 xn
.

Proof. For any real number X > 0, let Jε(X) be as in Lemma 5.3.1. Since for every

rational prime p ∈ Jε, there exists a prime ideal p ∈Mε such that N(p) = p and by

Lemma 5.3.1, we know that

|Jε(X)| � X/ log2X.

It follows that

(5.3.1) |Mε(X)| � X

log2X
.

For any multiplicatively independent elements e1, e2 and e3 in O×K, we can partition

the set Mε = ∪8
j=1Mj, where each Mj correspond to a tuple (c1, c2, c3) with entries
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in {±1} such that (
ei
p

)
= −ci

for all p ∈Mj. See page 394 of [30] for the definition of second power residue symbol(
ei
p

)
. We now claim that there exists an increasing unbounded sequence {xn}n∈N

and 1 ≤ j0 ≤ 8 such that

|Mj0(xn)| � xn/ log2 xn.

Suppose our claim is not true, i.e. none of the Mj have such a sequence. Then

lim sup
X→∞

|Mj(X)|/(X/ log2X) = 0.

However since

lim inf
X→∞

|Mj(X)|/(X/ log2X) = 0,

we have

|Mj(X)| = o

(
X

log2X

)
,

for all 1 ≤ j ≤ 8. This implies that

|Mε(X)| = o

(
X

log2X

)
,

a contradiction to Equation (5.3.1). Since t ≡ 3 mod 4, any p ∈Mε has the property

that
(
−1
p

)
= −1. Now by applying Lemma 2.3.5 with T = Mj0 and noting that

for any i ∈ {1, 2, 3}, the elements ciei are quadratic non-residues modulo any prime

ideal p ∈Mj0 , we get our lemma.

Remark 5.3.3. Note that ±1 cannot be a subset of a multiplicatively independent

set. Also both ei mod p and −ei mod p for any p ∈ Mε cannot simultaneously be

quadratic residues as
(
−1
p

)
= −1. Therefore the usual exclusion of ±1 and perfect

squares for Artin’s primitive root conjecture does not appear in Lemma 5.3.2.
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We now complete the proof of Theorem 5.1.3. Since K1 and K2 are real cubic,

their compositum K contains three multiplicatively independent units, say ε1, ε2

and ε3. Let V be as in Lemma 5.3.2 and η be one of the elements ±ε1,±ε2,±ε3

which generates (OK/p)× for all p ∈ V . Then η ∈ Ks, where s ∈ {1, 2} and by

Lemma 5.3.2, we have a sequence {xn}n∈N such that

|V (xn)| ≥ cxn/ log2 xn.

Since every p ∈ V has degree 1, η generates (OKs/r)
× where r = p∩Ks. Since there

are only finitely many ideal classes, arguing as in Lemma 5.3.2, there exists some

ideal class [f] in the class group of Ks so that

|{q ∩Ks ∈ [f] : q ∈ V, N(q ∩Ks) ≤ yn}| �
yn

hOKs
log2 yn

,

for a subsequence {yn}n∈N of {xn}n∈N. Here hOKs
denotes the class number of OKs .

Since V ⊂Mε, our choice of t (see Lemma 5.3.1) ensures that none of the elements

of V lie above any ideal in the trivial class of Ks. Since hOKs
is prime, the ideal

class [f] must generate the ideal class group. Therefore by Theorem 5.2.1, we see

that [f] is a Euclidean ideal class. This completes the proof of Theorem 5.1.3.

5.3.2 Proof of Theorem 5.1.4

In this subsection, we outline the proof of Theorem 5.1.4. Throughout this sub-

section, let K1,K2 and K3 be real quadratic fields with abelian Hilbert class fields

H(K1),H(K2) and H(K3) respectively. Also let f1, f2 and f3 be their conductors.

Set f to be the least common multiple of 16, f1, f2, f3 and F := Q(ζf ), where ζf is a

primitive f -th root of unity. Also set K = K1K2K3. For the sake of completeness,

we now state two lemmas required to prove Theorem 5.1.4. Their proofs follow by

arguing exactly as in Lemma 5.3.1 and Lemma 5.3.2.
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Lemma 5.3.4. Suppose that the Galois group G of F over K satisfies the hypothesis

of Theorem 5.1.4. Then there exists a co-prime residue class modulo f , say t mod f ,

such that any rational prime that belongs to this residue class splits completely in

K but does not split completely in H(K1),H(K2) and H(K3). Further, there exist

a, b ∈ (1
4
, 1

2
) such that for any X, ε > 0, we have |Jε(X)| � X

log2 X
, where

Jε(X) :=
{
p ≡ t mod f : p ∈ N, p prime, p ∈ (X1−ε, X) such that

p− 1

2
is either a rational prime or a product of rational

primes q1q2 with Xa < q1 < Xb
}
.

We modify the definition of Mε as follows. For a and b as in Lemma 5.3.4, choose

ε > 0 such that a < b
1−ε <

1
2
. Consider the sets

Mε := {p : p is a prime ideal, N(p) = p ∈ N, p prime , p ≡ t mod f,

p− 1

2
is either a rational prime or a product of rational primes

q1q2 with pa < q1 < p
b

1−ε}

and Mε(X) := {p ∈ Mε : N(p) ≤ X} for any real number X > 0. We have the

following lemma.

Lemma 5.3.5. Let e1, e2 and e3 be multiplicatively independent elements in O×K.

Then for some i ∈ {1, 2, 3}, either ei or −ei is a primitive root mod p for infinitely

many ideals in the set Mε. Let this set of prime ideals be called V and let V (X)

denote the set of elements in V of norm less than or equal to X. Then there exists

an increasing unbounded sequence {xn}n∈N such that

|V (xn)| � xn

log2 xn
.

This completes the proof of Theorem 5.1.4. In the next section of this chapter, we
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investigate the implications of the Elliott and Halberstam conjecture on the problem

of finding Euclidean ideal classes in real quadratic fields with cyclic class groups.

5.4 Consequences of Elliott and Halberstam con-

jecture

As seen in chapter 4, we would like to examine the improvements that can be

obtained on Theorem 5.1.3 and Theorem 5.1.4, under the Elliott and Halberstam

conjecture (Conjecture 2.2.6).

We first note the following improvement of Lemma 2.3.5.

Lemma 5.4.1. Let a1 and a2 be multiplicatively independent elements of K×, T

be a set of prime ideals of degree 1 in K and N(p) denotes the absolute norm of a

prime ideal p of OK. Suppose that T has the following properties,

1. there exists a constant c > 0 and an unbounded increasing sequence {xn}n∈N

such that

|T (xn) := {p ∈ T : N(p) ≤ xn}| � xn/ log2 xn,

2. there exist α < β in the open interval (1/3, 1/2) such that if p is an element

of T and p = N(p), then (p− 1)/2 is either a prime q or a product of primes

q1q2, with pα < q1 < pβ,

3. the numbers a1 and a2 are both quadratic non-residues with respect to every

prime in T .

Then for any c > ε > 0, there exists a subsequence {ym}m∈N of {xn}n∈N such that

one of the ais is a primitive root for at least (c− ε)ym/ log2 ym elements of T (ym).
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Proof. If the order of a1 or a2 is two in (OK/p)× (the multiplicative group of units

of OK/p), then a2
i − 1 ∈ p and hence there are only finitely many such prime ideals

p in OK. Without loss of generality, we can assume that neither a1 nor a2 has order

2 in (OK/p)× with N(p) sufficiently large.

From now onwards assume that p ∈ T with N(p) = p such that neither a1 nor a2

has order 2 in (OK/p)×. Also we shall denote the order of any element a in (OK/p)×

by op(a). By the given hypothesis, p = 1+2q for a prime q or p = 1+2q1q2, with q1, q2

primes such that pα < q1 < pβ. If both a1 and a2 are not primitive roots modulo

p, then they have order q when p − 1 = 2q or they have order q1, q2, 2q1, 2q2, or

q1q2 when p− 1 = 2q1q2. Again by the hypothesis, a1, a2 are quadratic non-residues

modulo p and hence op(a1), op(a2) must be divisible by 2. This implies that there

are no primes p with p − 1 = 2q for which both a1 and a2 are not primitive roots

modulo p. When p− 1 = 2q1q2 and both a1 and a2 are not primitive roots modulo

p, then op(a1) is equal to 2q1 or 2q2 and same is true for op(a2). Now suppose that

at least one of op(ai) (i = 1, 2) is equal to 2q1. Then for any i = 1, 2, we have

|{p ∈ T : N(p) ≤ X, op(ai) := e ≤ 2Xβ}| ≤
∑
e≤2Xβ

|{p ∈ T : N(p) ≤ X, p|(aei − 1)}|,

where β is as in the hypothesis. Taking norms, we get

∑
e≤2Xβ

|{p ≤ X : p|N(aei − 1)}| �
∑
e≤2Xβ

log |N(aei − 1)|,

=
∑
e≤2Xβ

log

(∏
σ

|σ(aei )− 1|

)
,

�
∑
e≤2Xβ

log

(∏
σ

(|σ(ai)|+ 1)e

)
,

�
∑
e≤2Xβ

e� X2β = o

(
X

log2X

)
.

Here, σ varies over all the embeddings of K into C. If both op(a1) and op(a2) are
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equal to 2q2, we claim that

|{p ∈ T : N(p) ≤ X, op(a1) = 2q2 = op(a2)}| = o

(
X

log2X

)
.

To prove this, we will show that there exists a set S of tuples (r, s) ∈ N × N such

that

{p ∈ T : N(p) ≤ X, op(a1) = 2q2 = op(a2)}

⊂ {p ∈ T : N(p) := p ≤ X, p|N(ar1a
s
2 − 1) for some (r, s) ∈ S}.(5.4.1)

Consider the set

S̃ := {(r, s) ∈ N× N : 0 ≤ r, s ≤ 2X(1−α)/2}.

Note that when op(a1) = 2q2 = op(a2) for some p ∈ T , then (ar1a
s
2)2q2 ≡ 1 mod p for

any (r, s) ∈ S̃. Since |S̃| is 4X1−α ≥ 4p1−α ≥ 4q2 and the fact that the polynomial

Y 2q2 − 1 over OK/p can have at most 2q2 roots, we have by the pigeonhole principle

that there exists (r, s) ∈ S, where S := {(r, s) ∈ Z × Z : (|r|, |s|) ∈ S̃} such that

ar1a
s
2 − 1 ∈ p. Let the numerator of ar1a

s
2 − 1 be Mr,s. Clearly Mr,s 6= 0 as a1

and a2 are multiplicatively independent. Then the number of prime divisors of the

numerator N(Mr,s) is log |N(Mr,s)| � X(1−α)/2. Hence,

|{p ≤ X : p|N(Mr,s) for some (r, s) ∈ S}| � X1−α ×X(1−α)/2 = o

(
X

log2X

)
,

as α > 1/3. Thus

|{p ∈ T : N(p) := p ≤ X, p|N(ar1a
s
2 − 1) for some (r, s) ∈ S}| = o

(
X

log2X

)
.

Therefore there exists a subsequence {ym}m∈N such that one of the ais is a primitive

root for at least (c− ε)ym/ log2 ym primes for any ε > 0.
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We now complete the proof of Theorem 5.1.5.

Proof. Let K := K1K2 be the compositum of the real quadratic fields K1 and K2

and let f be the least common multiple of 16, f1 and f2, where f1 and f2 denote the

conductors of K1 and K2 respectively. By the hypothesis, there exists an element

b mod f in the Galois group of Q(ζf ) over K such that ((b − 1)/2, f/2) = 1. Since

16|f , we have b ≡ 3 mod 4. Using the Theorem 4.4.1, it is easy to see that the set

T̃ (X) := {` ≤ X : ` ∈ N, ` prime, ` ≡ b mod f,
`− 1

2
is either a rational prime

or a product of rational primes q1q2 with X1/2−δ < q1 < X1/2}

has cardinality � X
log2X

for any δ < 1/6. If we set

T (X) := {p ⊂ OK : p is a prime ideal of degree one ,N(p) ∈ T̃ (X)},

then we have |T (X)| � X
log2 X

. Let a1 ∈ K1 and a2 ∈ K2 be two fundamental units.

By arguing as in Theorem 5.3.2, it follows that there exists an increasing unbounded

sequence {xn}n∈N, and a choice of tuple (c1, c2) with entries in {±1} such that

(
ai
p

)
= −ci,

for at least � xn/ log2 xn primes in T (xn). Let the set of these primes be called

A1(xn). Since b ≡ 3 mod 4, each ciai is a quadratic non-residue modulo all primes

in A1(xn), n ≥ 1. Now by applying Lemma 5.4.1, there exists a ∈ {±a1,±a2} in

Ks for s ∈ {1, 2} which is a primitive root for every element of a subset V1(xn) of

A1(xn). Further there exists an unbounded increasing sequence {ym}m∈N such that

|V1(ym)| � ym

log2 ym
.

Since p ∈ V1(ym) is of degree one, a generates (OKs/q)×, where q = p ∩Ks. Since
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there are only finitely many ideal classes in Ks, by arguing as in Theorem 5.3.2,

there exists an ideal class [f] and a subsequence {zr}r∈N of {ym}m∈N such that

|{q ∩Ks ∈ [f] : q ∈ V1(zr)}| �
zr

log2 zr
.

By the given hypothesis, none of the primes in V1(zr) split completely in H(Ks).

Thus [f] must generate the ideal class group Ks. Therefore by Theorem 5.2.1, we

see that [f] is a Euclidean ideal class.

With this we have covered the proofs of all the statements claimed in the intro-

duction of this chapter. In the last and final section we would like to provide some

concrete examples of fields for which our theorems are applicable.

5.5 Concluding remarks

In this section, we construct some explicit examples for which the hypotheses of our

main theorems hold. We start with real quadratic fields.

Corollary 5.5.1. Let p1, q1, p2, q2, p3, q3 be six distinct primes which are congruent

to 1 mod 4. For j ∈ {1, 2, 3}, if each Kj := Q(
√
pjqj) has class number 2, then at

least one of them has a Euclidean ideal class.

Proof. Since pj and qj are all congruent to 1 mod 4, we note that the conductor

of Kj is pjqj for all j ∈ {1, 2, 3}. To see this, we first observe that if Q(ζr) is the

conductor, then r must be a multiple of pj and qj since both of these numbers

ramify in Kj. However Q(ζpjqj) contains Q(ζpj) and Q(ζqj). Since both pj and qj

are congruent to 1 mod 4, we have Q(
√
pj) and Q(

√
qj) are contained in Q(ζpj) and

Q(ζqj) respectively. Therefore Q(ζpjqj) is the smallest cyclotomic field containing Kj.

The next observation we would like to make is that H(Kj) = Q(
√
pj,
√
qj).
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Since the class number of the quadratic field Kj is two, degree of the extension

Q(
√
pj,
√
qj) over Q is four and both these fields are totally real, it suffices to show

that Q(
√
pj,
√
qj) is an unramified extension of Kj. Consider the following diagram.

Q(
√
pj,
√
qj)

Q(
√
pj) Q(

√
qj) Kj

Q

The prime pj does not ramify in Q(
√
qj) and hence its ramification index in Q(

√
pj,
√
qj)

is 2. Similarly the ramification index of qj in Q(
√
pj,
√
qj) is also 2. Note that the

discriminant of Kj is equal to pjqj (as pj, qj are 1 mod 4) and hence both pj and qj

ramify in Kj. Since both pj and qj have ramification index 2 in Q(
√
pj,
√
qj), the

primes in Kj lying above pj and those above qj do not ramify in Q(
√
pj,
√
qj). Thus

Q(
√
pj,
√
qj) is unramified over Kj as the discriminant of Q(

√
pj,
√
qj) is p2

jq
2
j .

Note that f = 16p1p2p3q1q2q3 and K := Q(
√
p1q1,

√
p2q2,

√
p3q3) is the composi-

tum of Kj for j ∈ {1, 2, 3}. We claim that there exists an element σ in the Galois

group of Q(ζf ) over K such that

σ(ι) = −ι, σ(
√
pj) = −√pj and σ(

√
qj) = −√qj

for j = 1, 2, 3. Here ι ∈ C is such that ι2 = −1. To see this, we first observe that

since the discriminant of Q(ι,
√
p2, · · · ,

√
q3) is co-prime to p1,

√
p1 is not contained

in Q(ι,
√
p2, · · · ,

√
q3). So there exists a Galois element in Q(ζf )/Q which takes

√
p1

to −√p1 while fixing the other six elements. The same argument can be applied

to the other six elements. The composition of all these Galois isomorphisms will

give us the required isomorphism σ. This isomorphism in fact belongs to the Galois

group of Q(ζf ) over K. Since σ does not fix the unique quadratic subfield of Q(ζ`)
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for any odd prime `|f or ` = 4, it follows that σ does not belong to the Galois group

of Q(ζf ) over Q(ζ`) for all odd primes `|f or ` = 4. Also σ does not belong to the

Galois group of Q(ζf ) over H(Kj) for j ∈ {1, 2, 3}. This is because it does not fix

the quadratic subfields Q(
√
pj) or Q(

√
qj) of H(Kj) for all j ∈ {1, 2, 3}. Therefore

we can now apply Theorem 5.1.4 to this set of three real quadratic fields to conclude

that at least one of them must have a Euclidean ideal class.

Let p1 = 5,q1 = 41, p2 = 17, q2 = 13, p3 = 29 and q3 = 37 . Using SAGE we can

show that the class numbers of Q(
√
piqi) are all 2. Then one of the fields Q(

√
piqi)

has a Euclidean ideal class by Corollary 5.5.1. Arguing exactly as in Corollary 5.5.1

and using Theorem 5.1.5, we get the following corollary.

Corollary 5.5.2. Let p1, q1, p2, q2 be distinct primes which are congruent to 1 mod 4.

If Q(
√
pjqj) for j ∈ {1, 2} have class number 2, then at least one of them must

contain a Euclidean ideal class provided the Elliott and Halberstam conjecture is

true.

To provide an example for the real Galois cubic fields, we consider the fol-

lowing construction. Let p1, q1, p2, q2 be four distinct primes which are congru-

ent to 1 mod 12. Let K1,K2,K3, K4 denote the unique degree three subfields of

Q(ζp1),Q(ζq1),Q(ζp2) and Q(ζq2), respectively. Consider a degree three subfield of

K1K2 which is distinct from K1 and K2. This is possible since the Galois group of

K1K2 over Q is Z/3Z× Z/3Z and this group contains more than two subgroups of

order 3. Let us denote this field by K. Similarly, we consider a degree three subfield

of K3K4, distinct from K3 and K4. We denote it by K̃.

Corollary 5.5.3. If K and K̃ have class number 3, then one of K or K̃ must have

a Euclidean ideal class.

Proof. We note that K is not contained in Q(ζp1) or Q(ζq1), but it is contained in

Q(ζp1q1). Therefore, the conductor of K must be p1q1. Similarly the conductor of
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K̃ is p2q2. If K and K̃ have class number 3, then the Hilbert class field of H(K) of

K and the Hilbert class field of H(K̃) of K̃ are K1K2 and K3K4 respectively. This

follows from an argument similar to that of Corollary 5.5.1 and the fact that the

conductors of K and K̃ are p1q1 and p2q2, respectively. Now let K1 = Q(α1) and

K3 = Q(α̃1). We first claim that α1 /∈ KK̃(α̃1, ι,
√
p1,
√
q1,
√
p2,
√
q2). Suppose not,

then

KK̃(α1) ⊂ KK̃(α̃1, ι,
√
p1,
√
q1,
√
p2,
√
q2).

This implies that

KK̃K1 ⊂ KK̃K3(ι,
√
p1,
√
q1,
√
p2,
√
q2).

Note that KK1 = K1K2 and K̃K3 = K3K4. So we have

K̃K1K2 ⊂ KK3K4(ι,
√
p1,
√
q1,
√
p2,
√
q2).

We first note that K,K3 and K4 have co-prime conductors. Therefore the degree of

the field KK3K4(ι,
√
p1,
√
q1,
√
p2,
√
q2) is 27× 2n for some positive natural number

n. But since the Galois group of this field is abelian, it has a unique Sylow-2

subgroup. Therefore it has a unique subfield of degree 27. This implies that

K1K2K̃ = KK3K4.

But composing with K3 on both sides, we get

K1K2K3K4 = KK3K4

which is not possible as seen by a degree argument and the fact that all the Kis have

distinct prime conductors. Further ι /∈ KK̃(α̃1, α1,
√
p1,
√
q1,
√
p2,
√
q2) since the

field under consideration is totally real. And finally
√
p1 /∈ KK̃(α̃1, α1, ι,

√
q1,
√
p2,
√
q2).
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To see this consider the following diagram.

KK̃(α̃1, α1, ι,
√
q1,
√
p2,
√
q3)

KK̃(α1, α̃1) Q(ι,
√
q1,
√
p2,
√
q2)

Q

The degree of KK̃(α1, α̃1) = K1K2K3K4 is a power of three. Note that p does not

ramify in Q(ι,
√
q1,
√
p2,
√
q2). Since the degree of

KK̃(α̃1, α1, ι,
√
q1,
√
p2,
√
q3)

over

Q(ι,
√
q1,
√
p2,
√
q2)

is a power of three, the ramification index of p1 in KK̃(α̃1, α1, ι,
√
q1,
√
p2,
√
q2)

is a power of three but the ramification index of p1 in Q(
√
p1) is divisible by two.

Therefore
√
p1 /∈ KK̃(α̃1, α1, ι,

√
q1,
√
p2,
√
q2). Similar arguments work for

√
q1,
√
p2

and
√
q2. Arguing as in Corollary 5.5.1, we can choose a Galois isomorphism of Q(ζf )

over Q, where f = 16p1q1p2q2, which fixes KK̃ but not any of α1, α̃1, ι,
√
p1,
√
q1,
√
p2

and
√
q2. This shows that

Gal(Q(ζf )/KK̃) 6⊂
⋃
`

G`

⋃
Gal(Q(ζf )/K1K2)

⋃
Gal(Q(ζf )/K3K4),

where ` is either an odd prime dividing f or 4 and G` is the Galois group of

Q(ζf )/Q(ζ`). Now applying Theorem 5.1.3 we have that one of K or K̃ has a Eu-

clidean ideal class.

Let p1 = 13, q1 = 37, p2 = 61 and q2 = 73. For each of these primes we can

associate the cyclotomic field Q(ζpi) or Q(ζqi). Further each such cyclotomic field
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contains a unique cubic subfield. Using SAGE, it can be shown that the compositum

of the cubic fields corresponding to p1 and q1 contains a cubic subfield (distinct from

the ones contained in the cyclotomic field) of class number three. Similarly, there

exists a class number three subfield corresponding to p2 andq2. By Corollary 5.5.3,

one of these two subfields must contain a Euclidean ideal class.

Remark 5.5.4. Let p1, q1, p2, q2 be distinct primes. Corollary 5.5.3 is also true if

we assume that some of the primes p1, q1, p2, q2 are congruent to 1 mod 12 and some

of them are congruent to 7 mod 12. It can be seen by replacing Q(
√
pi) or Q(

√
qi)

for i = 1, 2 by Q(
√
−pi) or Q(

√
−qi) when pi or qi are congruent to 7 mod 12 in the

proof of Corollary 5.5.3.

With this we would like to conclude the last chapter on the results included in

this thesis.
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Chapter 6

Conclusion

In conclusion, we would like to touch upon two specific aspects of the problem of

finding Euclidean ideal classes.

We begin by noting that the case of fields with lower unit rank is far from being

solved. As we have seen for a family of real quadratic fields having cyclic class

groups, with the exception of at most two fields, the class group will always have

a Euclidean ideal class. One would like to extend this result to all real quadratic

fields. Similarly, one would like to extend our results on a family of Galois cubic

fields to all Galois cubic fields. However, it appears to us that such an extension

might not be possible with the techniques mentioned in this thesis. It seems to

us that proving such results will require some non-trivial developments in the sieve

theoretic techniques involving well factorable weights.

Moreover all our results speak only of number fields whose Hilbert class field

is abelian. Therefore, one would like to extend these results to the case of arbi-

trary Galois extensions. Such an extension would require both the aforementioned

improvements in the sieve theoretic techniques and perhaps some new results analo-

gous to those of class field theory for non-abelian extensions. Both of which, apriori,

seem to be very difficult situations to handle.
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The second aspect we would like to touch upon is the relationship with Artin’s

primitive root conjecture. In 1972, Weinberger ([36]) proved, under the extended

Riemann hypothesis, that a fundamental unit (provided it exists) is a primitive root

for infinitely many primes p. He then used this to show that the ring of integers

with unit rank at least one is a principal ideal domain if and only if it is a Euclidean

domain. Even the result of Harper and Murty ([19]), that one can go upto a lower

bound of 3 on the unit rank for abelian extensions, is closely related to the works of

Gupta and Murty ([14]) and Heath-Brown ([20]) on Artin’s conjecture (as observed

in [18]). For example Gupta and Murty’s work on Artin’s primitive root conjecture

considers the possibility of a surjection from a monoid generated by finitely many

primes (distinct from p) to (Z/pZ)× which is analogous to considering the surjection

from O×K to (OK/p)×. Further the number of primes generating the monoid, in the

case of Artin’s primitive root conjecture, can be seen as analogous to the unit rank

in the problem of finding Euclidean ideal classes.

One is therefore hopeful that any further progress with respect to Artin’s primi-

tive root conjecture will provide new insights into the problem of finding Euclidean

ideal classes.
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