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Chapter 1

Introduction

This thesis is devoted to study the weighted Hardy, the weighted Hardy-Rellich, and
the weighted logarithmic Sobolev inequality. More precisely, for an open set {2 in

RY, we look for g € L} () for which one of the following inequalities hold:

loc

(1) Weighted Hardy inequality:

/ lg||ul? dx < C/ |Vul? dz, Yu € CL(Q),where p € (1, N),
Q Q
(17) Weighted Hardy-Rellich inequality:
/ glluf? de < c/ Auf? dz, Yu € C2(Q),
Q Q
(1i1) Weighted logarithmic-Sobolev inequality:
[ bllutog o < y1og (Cla) [ (9ul o) e )
RN RN

with / lg||ulP dx = 1, where p € (1, N).
RN

Further, we discuss the sufficient conditions on the weight functions that ensure the

best constants in these inequalities are achieved.



1.1 The optimal space of Hardy potentials

For p € (1, N) and an open set 2 in RY, recall the classical Hardy inequality due to
G. H. Hardy [43]:

(1.1.1) Mdm<( P )p/\vu\m ue ClQ)
olzlr " T \N-p Q ’ ¢

For a more detailed discussion on this inequality, we refer to [46]. Inequality (1.1.1)
has been extended and generalised in several directions. One of which is the im-
proved Hardy inequality, and it concerns with replacing the Hardy potential ﬁ
with # + lower-order radial weights, see [19, 2, 38] and the references therein. On

the other hand, many authors have shown interest in producing more general weight
loc

functions in (1.1.1) in place of # i.e., g € Li.(Q) for which the following weighted

Hardy inequality holds:
(1.1.2) / lg||u|P dx < C/ |VulP dz, Y ue CLQ),
Q Q

for some C > 0. Let

H,(Q) = {g € L. (Q) : g satisfies (1.1.2)} :

We call a function g € H,(2) as Hardy potential. If Q is bounded in one di-
rection, then the Poincaré inequality implies that L>(2) C H,(£2). Next we see
how the various embeddings of the Beppo-Levi space Dj*(Q) (the completion of
C(Q) with respect to the norm ||u||D(1),p = [ [, [VulP dz] %) provide other classes of
function spaces in H,(Q). The Sobolev embedding Dy* () — LP" (Q) (p* := NN—SD)
ensures that L%(Q) C H,(Q). Further, one may use finer embeddings of Dy” ()

to produce larger space in H,(2). For instance, using the Lorentz-Sobolev embed-

ding DL?(Q) — L22(Q), Visciglia [71, Theorem 1.1] show that L2°°(€2) C Ha ().



Moreover, for p € (1, N), one can use the embedding Dy?(Q) < LP"?(Q) and follow
Visciglia’s arguments to show that L%’OO(Q) C H,(2). Indeed, it is known that
L%"X’(Q) does not exhaust H,(€2). For instance, for Q = B;(0)°, there are Hardy

potentials in certain weighted Lebesgue space that do not belong to L%’OO(Q), where

B1(0)° denotes the exterior of the closed unit ball centered at the origin, see [10,

Theorem 1.1].

In [57], Maz'ya has given a necessary and sufficient condition for the Hardy
potentials using the notion of p-capacity. For FFCC(), the p-capacity of F' relative

to  is defined as

Cap, (F,Q) = inf {/ |Vul? dz :u e ./\/;,(F)} :
Q

where N,(F) = {u € Dy*(2) : u > 1 in a neighbourhood of F}. Notice that, for
g € H,(Q2) and w € N,(F), we have

/\g\ dacﬁ/\gHw\p dx§0/|Vw]p dx.
ja Q Q

By taking the infimum over N,(F) and as F' is arbitrary, we get a necessary condi-

tion:

[ gl dx
sup ——— < (.
reco Cap (F,Q) =

Maz’ya proved that the above condition is also sufficient for g to be in #,(€2) [57,

Section 2.3.2, page 111]. Motivated by this, for g € L}, (Q), we define,

loc

[ lgl dz

= FccQ; |F .
o, = s { G0 < PecauFl £0f



Therefore, H,(£2) can be identified as

Hy(€2) = {g € LLA(Q): lglln, < oo} |

In fact, ||.|[%, is a Banach function norm, and #,(€2) is the Banach function space
with respect to this norm (see Section 2.2.1 for the precise definition of Banach

function space).

For g € H,(Q?), let B, be the best constant in (1.1.2) i.e., B, is the least possible

constant so that (1.1.2) holds. Therefore, for g € H,(2), we have

(1.1.3) B, = inf {/ \VulP do:u e Dé’p(Q),/ lg||ul? dx = 1} :
Q Q

It is clear that if the above minimisation problem admits a solution w € Dy*(Q),
then the equality holds in (1.1.2) with C' = B, and v = w. In this case, we say B, is
attained at w. Now we are interested in identifying the weight functions g € #,(£2)
for which B, is attained in Dy*(€). It is worth mentioning that this problem has
been extensively studied in the context of finding the first (least) positive eigenvalue

of the following problem:
(1.1.4) —Aju = MNg||ulP2u in Q; ue D).

This weighted non-linear eigenvalue problem arises in the mathematical modelling of
the population distribution of certain species, where the weight function g represents
the distribution of resources on the domain. It is natural to expect that g is not
uniformly distributed throughout the domain. This motivates us to find g € L}, ()
such that (1.1.4) admits a positive solution. Using variational methods, it is not

difficult to see that (1.1.4) admits a positive solution if (1.1.3) has a minimizer in

Dy?(Q) or equivalently the best constant B, in (1.1.2) is attained in Dy*(£2).



One of the simplest conditions that guarantees a minimizer for (1.1.3) is the

compactness of the map

G,(u) = / gllul” dz on DE(Q)

(i.e., for u, — u in Dy (Q), Gy(u,) — Gp(u) as n — o0). Many authors have given
various sufficient conditions for the compactness of the map G,. For example, for
p = 2 and 2 bounded, the compactness of G, is proved for g € L"(£2) with r > %
in [55] and r = & in [4], and for p € (1,00) and general domain Q, g € L%’d(Q)

1t < 0 ,and g € SN = mn i . Motivated by this, we
with d 71 d Fn (0 CX(Q) in L»°(Q) [6]. Moti d by thi

consider

FHp(2) := Ce(Q2) in H,p(Q) .

The following theorem extends and unifies all the existing sufficient conditions for
the compactness of G,. Moreover, we prove that FH,(€2) is the optimal space for

the compactness of G,,.

Theorem 1.1.1. [8, Theorem 1] G, is compact on Dy*(Q) if and only if g €
FH, ().

Next, we give a characterisation of F#,(2) by using the notion of the absolutely

continuous norm in H,(€2).

Definition 1.1.2 (Absolute continuous norm). Let (X (), |.][x) be a Banach func-
tion space. We say g € X(Q) has absolutely continuous norm in X (), if for any
sequence of measurable subsets (A,) of Q0 with x4, converges to 0 a.e. in €, we have

llgxa, |lx converges to 0.

Now we have the following result.

Theorem 1.1.3. [8, Theorem 2] g € FH,(Q?) if and only if g has absolute contin-

uous norm in H,y(2).



As we mentioned before, the compactness of G, ensures that the best constant

B, in (1.1.2) is attained in Dy”(Q). Indeed, the best constant B, may attain in
Dy (Q) without G, being compact. Such cases are treated by Tertikas [69] for
=2, Q = RY, and Smets [67] for p € (1, N) and general Q. In [69, 67], authors

have considered the following concentration function of g

r—0

Sy(z) = liminf{/ \Vul? dz - u € DYP(QN B, (x /|g||u|p dx—l}

R—o00

Sy(00) = lim inf{/Q \VaulP dz : u € DyP(QN BS), /Q|g||u|p de = 1} ,

and defined the singular set of g as E; = {x ceN:S,(z) < oo} Under the as-
sumption that E_’g is countable ((H) of [69] and (H1) of [67]), they have provided
a sufficient condition on the concentration function S, so that B, is attained in

Dy (Q). In this thesis, we introduce a new concentration function using the norm
on H,(2).
Definition 1.1.4 (Concentration function C,). For g € H,(S2), we define the con-

centration function of g as

Cyl) = lmllgx, e, Yo €T 5 Cy(00) = Jim llgxecorll,.

Observe that, our concentration function C, captures the local behaviour of g
in terms of the norm in #,(2). Next we give another characterisation for the

compactness of the map G, using the concentration function C,.

Theorem 1.1.5. [8, Theorem 3] G, is compact on Dy”(Q) if and only if C; = 0.

We define the singular set of C, as

Zg::{xeﬁzcg($)>0}.

Indeed, > , coincides with the singular set considered by Tertikas and Smets i.e.,

6



D= Z; (see (3.1.12)). Here, we provide a sufficient condition for the existence of
minimiser for (1.1.3) under the assumption that the closure of the singular set is of

Lebesgue measure zero (relaxing the countability assumption on %, of [67, 69]).

Theorem 1.1.6. [8, Theorem 4] Let g € H,(Q) be such that

5,| =0 and
CuCy(x) < By, Vo € QU {0},

where By is the best constant in (1.1.2) and Cy = p?(p—1)*"P. Then B, is attained
in Dy (9).

Remark 1.1.7. (i) We provide cylindrical Hardy potentials g for which [}_ | =
0, but > is not countable (see Remark 3.1.22). Such cylindrical weights were
considered by Badiale and Tarantello in [12] (for N = 3), Mancini et. al in [54] (for
N > 3) to study certain semi-linear PDE involving Sobolev critical exponent. In
astrophysics, such critical exponent problems with cylindrical weights often arises

in the dynamics of galaxies [17, 24].

(i7) For a cylindrical Hardy potential g € #,(2) with \Z| = 0, one can consider
its perturbation § := g + ¢ by a suitable ¢ € C°(£2) and apply the above theorem
to ensure By is attained in Dy (Q) (see Remark 3.1.22 for a precise example). Tt is
worth noticing that ]Z\ = 0 but not countable. Indeed, the results of [69, 67] are

not applicable for such Hardy potentials.



1.2 The Hardy-Rellich and the Hardy-Hessian po-

tentials

For N > 5 and an open subset Q of RY, Rellich [65, Section 7, Chapter 2, page
90-101] has proved the following second order generalization of (1.1.1):

|u|? 16
1.2.1 —dr < | ——"——
(1.2.1) =N (v =)

Q |x\4

} / |Aul? dz, Yu € C2(Q).
Q

This inequality is known as Hardy-Rellich inequality. The above inequality is later

extended for any p € (1, 3) as follows [28]:

2

(1.2.2) /Q ”;“‘; dr < [N(p - &N — 2p)r/g |AulP de, Yu € C2(Q).

In this thesis, we look for g € L}, () for which the following weighted Hardy-Rellich

loc

inequality holds:
(1.2.3) /Q|g||u|p dzx < C’/Q |AulP dz ¥V u € C2(Q),
for some C' > 0. Let

HR,(Q) = {g € L, () : g satisfies (1.2.3)} .

We call the functions in HR,(2) as Hardy-Rellich potentials. Unlike the Hardy
potentials, the Maz'ya type characterisation is not available for Hardy-Rellich poten-
tials in general domain. However, we are able to provide certain weighted Lebesgue

spaces and Lorentz spaces in HR,(12).

Using the Muckenhoupt necessary and sufficient conditions for the one dimen-
sional weighted Hardy inequalities [60, Theorem 1 and Theorem 2| and a pointwise

inequality for the symmetrization obtained in [23], we prove the following theorem.



Theorem 1.2.1. Let Q be an open set in RN with N > max{2p, 2p'}.

(i) (A sufficient condition) L%’OO(Q) CHR,(Q).

(ii) (A necessary condition) Let Q be a ball centered at the origin or entire RY

and g be radial, radially decreasing. Then g € HR,(2), only if g belongs to
L2(Q).

For p = 2, the above theorem is proved in our article [9, Theorem 1.2].

Next we consider the particular case: p = 2 and N = 4. For a measurable
function g, we denote its one-dimensional decreasing rearrangement by ¢* and we
define g**(t) = % fg g*(s)ds. For a bounded domain 2, we consider the following

t

space introduced in [7]

Q
Mlog L(Q2) := {g measurable : sup t log (|_t|> g (t) < oo} )

0<t<|Q|
Now, for p =2 and N = 4, we have the following results:

Theorem 1.2.2. [9, Theorem 1.4]. Let Q be a bounded domain in R*. Then

(i) Mlog L(2) C HR2(Q).

(11) Let Q = Br(0) with R € (0,00). Let g € HR2(2) be radial, radially decreasing.
Then g must belong to Mlog L(S).

As a consequence of Theorem 1.2.1 and Theorem 1.2.2, we could give a simple
proof for the Lorentz-Sobolev embedding D;?(Q) < L*"2(Q) (N > 5, Q is a general
domain, [59]) and the Hansson embedding D;(Q) < L %(log L)~1(Q) (N =4, Q
is a bounded domain, [42]) respectively, where Dg*(2) is the completion of C2(Q)

1
with respect to the norm [juflpz2 := [, [V?ul? dz]?, where V?u is the Hessian
N s \2 3
matrix of u and |VZu| = (Zi,atl (ﬁ) ) .

9



Next we consider the weighted Hardy-Hessian inequality, namely, we are in-

terested to identify g € L} () so that the following weighted Hardy-Hessian

loc

inequality holds

(1.2.4) / gllul? dz < C’/ VPul? dr, Yu € CX(Q).
Q Q

Let

H,(Q) = {g € L,,.(Q) : g satisfies (1.2.4)} .

We call the functions in H,(£2) as Hardy-Hessian potentials. Notice that the
right hand side of (1.2.4) involves the Hessian and that of (1.2.3) involves the Lapla-
cian, and in general / |Aul? dx < / |V2u|P dz. Therefore,

Q Q

HR,(Q) C H, ().

Using the integration by parts, we also have / |V2ul? dr < C/ |Au|? dx, Yu €
Q Q
C%(Q). Therefore, for p = 2, the Hardy-Rellich potentials are same as the Hardy-

Hessian potentials i.e.,

[Hz(Q) = HR2(Q)

In this thesis, we identify certain weighted Lebesgue spaces in H,(2). For an

open set © in RV and a radial, non-negative function w on RY, we define

Ll

rad

(RN, w) = {g € L'(RY,w): gis radial} :

L) = { g€ Liad<RN,w>} .

Also, for an open subset S of S¥~! and a,b € [0,00] with b > a, we consider the

10



sectorial open set
(1.2.5) Qaps ={z €RY 1a < |z| <b, ;—’ €S}.
We have the following theorem. For p = 2, the following theorem appears in our

work [9, Theorem 1.3, Theorem 1.5].

Theorem 1.2.3. Let Q be an open subset in RN with N > 2p. For 2 < N < 2p,
assume that Q = Qup5 with a >0 and S is an open subset of SV~1. Let g € L}, ()

be such that

rad(Q |‘T‘2p ) N > 2p
Q, |x|P p <N <2p;b= 00
g e Xom(Q) = Loa(, |2]?),
Lt [z log(2)P-1), N =pib= o0
\ rad( ) 2§N§2p,b<00

Then g € H,(£2).

Notice that, for p = 2 and N > 5, Theorem 1.2.1 implies L7°(Q) C HR,(€),
and Theorem 1.2.3 implies L _,(Q, |x[*™") C HR2(2). Indeed, we show that these

two spaces are not contained in one another.

1.3 The logarithmic-Sobolev potentials

For N > 3 and p € (1, N), recall the Sobolev inequality

[

ie., D(l]’p([RN) — LP"(RN). Since p* — p as N — oo, the gain in the integrability

1

<c {/ |Vul? dx}p NYue DyP(RY),
RN

]

of u disappears as N — oo. Thus, it is natural to look for an inequality that is
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dimension independent and plays the role of Sobolev inequality. One such inequality

is the Gross’s logarithmic Sobolev inequality [41]:
(1.3.1) / |u|? log |u|? du < 2/ |Vul* du, Yu € CLRY),
RN RN

|2
where 1 is a probability measure given by du(x) = (27r)’%e"7| dx and / lu|?dp =
N

R
1. This shows that the Sobolev space H(l)([RN ,du) is embedded into the Orlicz space
L*(LogL)(RY,du) and the gain in the integrability of u does not depend on N. An
analogue of (1.3.1) for the Lebesgue measure is obtained in [72] (for p = 2) and in

[30] (for general p), namely,
N Lp/pN
(1.3.2) |ulPlog |u|? de < —log | C |Vul|P dx |, Yu € Dy?(RY)
RN p RN

with / |ulP dx = 1, for some C > 0. Unlike (1.3.1), the integrability of u (with
RN

respect to Lebesgue measure) follows from (1.3.2) is not dimension independent.

This form of logarithmic Sobolev inequality arises in the study of heat-diffusion

semigroup, see [72].

We are interested to identify a general class of weight functions g € L (RY)

such that the following weighted logarithmic Sobolev inequality:

(1.3.3) /[RN lg||u|Plog |ul? dz < ~log (Cv /[RN |VulP dx) . Yu € DyP(RY)

with [y |g]|u[’ = 1 holds for some v, C;; > 0. We define the space H,, ,(R") consist-

1
loc

ing of all g € L} _(RY) such that the following weighted Hardy-Sobolev inequality

holds:

(1.3.4) {/ 9] ul? dx} "<c V |VulP dx} " Vue DIP(RY).
RN RN

We call a function g € H,,(RY) as a (p, q)-Hardy potential. Now, analogous to

12



the norm ||.[|3, on H,(Q2), for 1 < p < g < p*, we define

/ gl do
gl = sup

rccry | [Cap,(F )]%
By Maz'ya’s result [58, Theorem 8.5], it follows that

M, (RY) = {g e LL(RY) : lglh,. < oo} -

H,.4(RY) is a Banach function space. For g € H,,(RY), we prove the following

result.

Theorem 1.3.1. [27, Theorem 1.1] Let N > 3, p € (1,N) and q € (p,p*]. If

g € Hpq(RY), then

(1.3.5) / lg||ul? log |ul? dx <
RN q

4 1og(cH|rg||;;M / VP da:),
—p ’ RN

for all u € Dé7p(|RN) with f[RN \gl|ulP dz = 1, where Cyr = pP(p — 1)(17P),

Notice that, for g € H,,(RY), inequality (1.3.3) holds for y > > . Let Cp(g,7)

be the best constant in (1.3.3). Then,

1 Vul? d
):inf{ 1(f[RN| ul dz :uEDé’p(IRN),/RN\gHmpdle}.

CB(gu Y ev J&n 1gllulP log |ulP dx)

It is clear that Cp(g,7y) < CHHgH?iM for g € H,(RY) with v > > 4. Next we would
like to find g € H,(Q) and values of  for which C(g,y) is attained in Dy (RY). In

this context, we define the closed sub-space
FHpo(RY) = C(RN) in H,0(RY).

Now we have the following result:

13



Theorem 1.3.2. [27, Theorem 1.2] Let N > 3, p € (1,N) and q € (p,p*]. If

g€ HpgRN) N FH,,(RY) and v > -L, then Cp(g,7) is attained in Dy”(RN).

q—p’

1.4 The logarithmic-Hardy potentials

In this thesis, we discuss another inequality called logarithmic Hardy inequality. In

[31] authors obtained the following logarithmic Hardy inequality:

2 N
(1.4.1) / ‘u—|210g (Jz[Y?|ul?) dz < —log C’/ (Vul* dz | |
Ry || 2 RN
2
for all u € CL(RY) with / % dr = 1. Instead of |x|, we consider distance from
RN |T

a general closed set E in RY and generalise this inequality. In this regard, we recall

the notion of Assouad dimension of a set.

Definition 1.4.1 (Assouad dimension). For a subset E of RY, n(E,r) denotes the
minimal number of open balls of radius r with centers in E that are needed to cover

the set . Let
A= {)\ >0:3C)y > 0so that n(E N Bg(z),r) < C)\ (£>_)\ ,
Vre E,0<r<R< diam(E)}.
The inf A is called the Assouad dimension of E and it is denoted by dim4(FE).

Now we state our result.

Theorem 1.4.2. [27, Theorem 1.3] Let N > 3, p € (1, N) and E be a closed set

in RY with dima(E) =d < N. Then, for a € (—(N_dz))(p_l), (N_%;N_d)), there exists
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C > 0 such that

|U|p N-—p—pa P N |Vu|p
(1.4.2) /[RN 5%(%1) log <5E [ul ) dr < ;log C o O dz | ,
for all u € CLRN) with [ul dr =1
c RN 5%(a+1) ’

We also obtained a second order analogue of (1.4.2) as in the following theorem.

Theorem 1.4.3. [27, Theorem 1.4] Let N >3, p € (1,Y) and E be a closed set in

2

, _ N(N— N—d)(p—1) (N—p)(N—d
RN with dima(E) = d < ((N7p2)p)’ Then, for each a € (1 — ( ;(p 1);( pjzf(p ))

there exists C' > 0 such that

p o N V2P
(1.4.3) / ]lgflh»l) log <(5g P Pa’u‘p> dr < —log C/ |(azf)|p dx
P

for all u € C(RN) with / % dr = 1, where V*u denotes the Hessian matriz

RN O

N 2
0*u
2,12 _

of u and |V2ul|* = Z (6%8%) .

,j=1
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Chapter 2

Preliminaries

2.1 Symmetrization

For a domain © in RY, let M(Q) be the set of all extended real valued Lebesgue
measurable functions that are finite a.e. in Q. For f € M(Q) and for s > 0, we

define the one dimensional decreasing rearrangement f* of f as below:

ess supf, t=0
JH(t) =
inf {s>0: [{z:|f(z) >s} <t}, t>0,

where |A] denotes the Lebesgue measure of a set A C RY. Here we have used the
convention that inf ¢ = oo. The map f — f* is not sub-additive i.e., (f + g)* £

f* =+ g*. However, we define a sub-additive function using f* as below:

1 t
() = 2/ f*(r)dr, t>0.
0
The sub-additivity of f** with respect to f helps us to define norms in certain

function spaces. We refer to [34, 45] for more details on symmetrization.

In the next proposition, we enlist some properties of f*, see [45] or [34] for proof.
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Proposition 2.1.1. For f,g € M(R), the following statements are true.
(i) f* is non-negative and decreasing,

(i1) f* is right continuous,

(iii) |f| < |g| implies f* < g7,

(i) (cf)" =lelf*, ceR,

(v) [ and f* are equimeasurable i.e., for all s > 0
{z e Q:|f(x)] > s}t = [{t €[0,19) : f*(t) > s}],

(vi) forp € [1,00] and f € LP(Q2), f* € LP((0,192))), and || fllr@) = If* || zr (0,100

The Schwarz symmetrization of f is defined by
fr@) = frlonlal), Vaeqr

where wy is the measure of the unit ball in RY and * is the open ball centered
at the origin with same measure as §2. Next, we state two important inequalities

concerning the Schwarz symmetrization.

Proposition 2.1.2. Let N > 2.

(i) Hardy-Littlewood inequality [34, Theorem 3.2.10]: Let f and g be nonnegative

measurable functions on ). Then

€2

/Qf(l“)g(%) dr < . [ (z)g*(z) doe = () g*(t) dt.

0

1) Polya-Szeqo inequality [63]: Let 1 < p < oo. Then
(i) Pélya-Szeg y

Vo @) do < [ Vo) do, V6 e D).
Q* Q
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The Pélya-Szego type inequality does not hold for the second-order derivatives.

In general, the Schwarz symmetrization of a D(Q)

P(RY) function does not admit the
second-order weak derivatives; even if they do, the second-order derivatives may not
satisfy the Pélya-Szegd type inequality, see [59, 22] for more discussion on this. Next,
we state an inequality (1.14 of [23]) that plays the role of Pélya-Szegé inequality for

the second-order derivatives. This inequality is obtained using the rearrangement

inequality for the convolution due to O’Neil [61].

Lemma 2.1.3 (A point-wise rearrangement inequality). For u € C®(RN) with

N > 3, let u* be the decreasing rearrangement of u. Then the following inequality

holds:
(2.1.1)
1 2 s o 2
u'(s) L ——— (s_1+N/ |Aul*(t) dt +/ |Aul*(t)t 1w dt) , Vs> 0.
2(N —2)wy 0 s

2.2 The Banach function spaces

Definition 2.2.1 (Banach function space). A normed linear space (X (Q2),|.||x) of
functions in M(Q) is called a Banach function space if the following conditions are

satisfied:

LAlfllx = I 1f] [x, for all f € X(9),

2. if (fn) is a non-negative sequence of function in X (), increases to f, then

| fullx increases to || f|x-

The norm ||.|[x is called a Banach function space norm on X () [73, Section 30,
Chapter 6]. Indeed, the Banach function spaces are complete [73, Theorem 2, Section
30, Chapter 6]. Corresponding to a Banach function space (X (2),].]|x), we also

have a notion of ‘associated Banach function space’.
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Definition 2.2.2 (Associate space). Let (X(Q2),]|.]|x) be a Banach function space.
For u € M(Q), define

Jullx: =sup{ [ 17ul: 7 € x(@), 171x <1},
Q
Then the associate space X ()" of X(Q) is given by

X(Q) ={ueM(@Q) : |lulx < oo}

Indeed, X (2)" is also a Banach function space with respect to the norm ||.||x. We

refer to [73, 16] for further readings on Banach function spaces.

The Lebesgue spaces, Lorentz spaces, and Lorentz-Zygmund spaces are classical

examples of Banach function space. Next, we discuss these spaces in detail.

2.2.1 The Lorentz spaces

The Lorentz spaces are two parameter family of function spaces introduced by
Lorentz in [52] that refine the classical Lebesgue spaces. Let €2 be an open set in

RY and f € M(Q). For (p,q) € (0,00) x (0, 00] we consider the following quantity:

(2.2.1)
a1, q i
o (/ (tp qf(t)) dt) , 0<g<oc;
| fleea = (t2" 2 f* ()| a0, 100)) = o
suptr (), q = oo.
t>0

The Lorentz space LP?(€2) is defined as

LPUQ) == {f € M(Q) : |f|rra < 00},
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where | f|zr.q is a complete quasi norm on L»4(). For (p,q) € (1,00] x (0, 00], let

lfl E 3
[ fllzea = 1It2 "2 f** ()] Lago, 1))

Then || f||ra is a norm on LP4(Q2) and it is equivalent to | f|zre [34, Lemma 3.4.6].
Note that LPP(Q2) = LP(Q) for p € [1,00). For a detailed study on the Lorentz

spaces, we refer to [1, 34].
In the following proposition we list some properties of the Lorentz spaces.

Proposition 2.2.3. Let p,q,p,q € [1,00].

(1) Fora >0, [If1* 2.4 = If1Zoa-

(1) Generalized Hélder inequality: Let f € LPv9(Q) and g € LP>%(Q), where

(pi,qi) € (1,00) x [1,00] fori = 1,2. If (p,q) be such that % = p% + piz and

Q=

1 1
= + o then
[fgllzra < Cllfllzovar [|gllzeoiaz,

where C = C(p) > 0 is a constant such that C' =1, if p =1 and C = p/, if

p> 1.

(iii) If ¢ < q, then LP9(Q) — LP9(Q), i.e., there exists a constant C' > 0 such that

(2.2.2) | fllpa < Ol flleea, VY f e LPIQ).

(iv) If p < p, then LPI(Q) — LP9(Q).

loc

(v) Let 1 <p<ooandl < q<oo (orp=q=1). Then the dual space of LP*(2)
is, up to equivalence of norms, the Lorentz space L7 (Q), where % + z% =1

1, 1 _
and;—i-?—l.
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Proof. Proof of (i) directly follows using the definition of the Lorentz space. Proof
of (ii) follows using [44, Theorem 4.5]. For the proof of (i7i) and (iv), see [34,
Proposition 3.4.3 and Proposition 3.4.4] and a proof of (v) can be found in [16,

Corollary 4.8, page 221]. O

Next proposition identifies the associate space of Lorentz spaces, see [16, Theorem

4.7, page 220].

Proposition 2.2.4. Let 1 <p< oo and1 <g< oo (orp=qg=1o0orp=q=0o0).
Then the associate space of LP1(2) is, up to equivalence of norms, the Lorentz space

'.q' 1, 1 1, 1 __
LP1 (), wherep—i—p,—landq—i-q/—l.

Notice that, for 1 < p < oo and 1 < ¢ < oo (or p = g = 1), the associate space of
LP1(Q)) is same as the dual space (by Proposition 2.2.3-(v) and Proposition 2.2.4).
This is not just a mere coincidence. In general, we have the following result [16,

Theorem 4.1, Chapter 1, page 20].

Proposition 2.2.5. Let (X(Q),||.|x) be a Banach function space which is an or-
dered ideal of M(R) i.e., if |f| < |g] a.e. in Q and g € X(Q), then f € X(Q).
Further, assume that X () contains all the simple functions. Then X (Q)* = X(Q)’

if and only if every function in X (Q2) has absolute continuous norm.

2.2.2 The Lorentz-Zygmund spaces

The Lorentz-Zygmund spaces refine the Lorentz spaces. For more information on
Lorentz-Zygmund spaces, we refer to [14]. Let Q C RY be a bounded open set and let
I1(t) = log <6|Q|>. Given a function f € M() and for (p, ¢, @) € (0, 00] % (0, 00] X R,

t
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we consider the following quantity:

| floragogrye = 11770 ()% £*(8)] oo

</|Q| (t%’%ll() fr (t))q dt)q, 0<q < o

sup t%ll(t)af*(t), q = oo.
0<t< ||

Then the Lorentz-Zygmund space LP4(log L)*(Q2) is defined as
LP(log L)*() := {f € M(Q) : |f|rragogr)e < 0},

where | f|pa(iog 1) is the quasi norm on LF""1¢ 1) (Q)). Observe that, if a = 0, then
LP9(log L)*(§2) coincide with the Lorentz space LP(Q2). For (p,q,a) € (1,00) x

[1,00] x R,

(2.2.3) 1 llzraog mye = I1E7 013 (8 £ (8) | oo,y

is a norm in L”%(log L)*(€2) equivalent to |f|zr.a(og )« [14, Corollary 8.2]. The next
proposition provides the equivalence of the quasinorm |u|ze2(10g £)-1 and the norm

||| o210 )-1- We adapt the proof of Theorem 6.4 of [15] to our case.

Proposition 2.2.6. Let Q be a bounded subset of RY and u :  — R be a measurable

function. Then there exist a constant C' > 0 such that

& (t) o)\ de
/ <log<e“>) o (log(e'“')> B

Tt
Proof. Choose 0 < § < 1 and write u*(s) = [s°u*(s)][s'™°]s~!. Using the Holder’s

inequality we obtain,

/Ot u*(s)ds

(2.2.4)




1
1o+ (log(<))

» | 1 ety 4
e o s ([t §

o q 2| 1 dt\ ds

e / [ (5)] ( / m7>_
o ()] ) ds
01/0 s(a=13| log(42)|a (/5 t1+5> s

The last two inequalities of (2.2.5) follows from Fubini’s theorem and monotonic
1

(@19 log(
hand side of (2.2.5) as below,

Multiplying by ( ) and integrating over (0, |€2|) we get

P

log(%)

IN

(2.2.5)

IN

respectively. Further, we estimate the right

decreasing property of ]

=)

(2.2.6)
/Ol ‘ st E)5|10(f:’§<)l o </S| |t%> % SCZ/()' | st E)5|lo(g(>1 21)a <516) Cis

Hence by combining (2.2.5) and (2.2.6) we have the following inequality as required

o] e o]
| 750 |
0 t 0

log ()

In the following proposition we discuss some important properties of the Lorentz-

Zygmund spaces.
Proposition 2.2.7. Let p,q,G € [1,00] and a, 5 € (—00, 00).

(i) Let p,q € (1,00, € R, and v > 0. Then there exists C > 0 such that

171, 2 < Ol 2nagog nye ¥ € L7(log L)*(2).

L’Y ’Y(logL)""Y -

i) If either g < G and o> B or, ¢ > G and o+ > B+ 1 then LP9(log L)*(§)) —
q q
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LPi(log L) (), i.e., there exists C' > 0 such that

1A llragogys < Cllfllragogry, ¥ f & L (log L)*(42).

Proof. (i) This assertion immediately follows from the definition of the Lorentz-

Zygmund spaces.

(1) Proof follows using [14, Theorem 9.3]. O

2.3 p-capacity and Maz'ya’s condition

Definition 2.3.1 (p-capacity). For FCCS), the p-capacity of F relative to Q is
defined as

Cap,(F,2) = inf {/Q VulP dz :u € Np(F)} :
where N,(F) = {u € Dy"(Q) : u > 1 in a neighbourhood of F'}.
If Q = RY, we write Cap,(F, RY) = Cap,(F). Here we enlist some properties of
capacity that will be used in the subsequent chapters.
Proposition 2.3.2. (a) IfQ; C Qy are open in RN, then Cap,(.,22) < Cap,(., ).
(b) Cap, is an outer measure on RN,
(¢c) For A >0 and FCCRY, Cap,(AF) = AN"PCap,(F).
(d) For FCCRY, 3C > 0 depending on p, N such that |F| < C’Capp(F)NL—p.
(e) For N > p, Cap,(B1) = Nun (%)p_l, where By is the unit ball in RN

(f) Cap,(L(F)) = Cap,(F), for any affine isometry L : RN — RN,

Proof. (a) Follows easily from the definition of capacity.
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(b) See Theorem 4.14 of [35](page 174).
(¢), (d), (f) See Theorem 4.15 of [35](page 175).

(e) Section 2.2.4 of [57] (page 106). O

Remark 2.3.3. If a set A is measurable with respect to Cap, then Cap,(A) must
be 0 or oo [35, Theorem 4.14, Page 174].

Next, we prove an interesting property of capacity, which allows us to localize

the norm on H,(Q2).

Lemma 2.3.4. There exists Cy,Cy > 0 such that for each x € Q and FCCQ,

(i) Cap,(F N B,.(x), 2N By (7)) < C1Cap,(F' N By.(x),8), Vr > 0.

(i) Cap,(F N Bsk, QN Bg") < CoCap,(F N Bsy, Q), VR > 0.

Proof. (i) Let ® € C(RY) be such that 0 < & < 1, ® = 1 on B;(0) and Supp(®) C
B5(0). Take ®,.(2) = ®(**). Let € > 0 be given. Then for FCCQ, Ju € N,(F N
B,(x)) such that [, [Vu[? dz < Cap,(FNB,(x),Q)+e If we set w,(z) = O, (2)u(z),
then it is easy to see that w, € Dy*(QN By, (r)) and w, > 1 on F N B,(z). Further,

we have the following estimate:

/ \Vw, [P de < C [/ |D,.|P| Vul? d:v—i—/ |ulP|VO,|? dx]
0 0 0

p/p* p/N
/ |Vul? dx + (/ |ul?* d:v) (/ Vo, |V dx) :
Q Q Q

By noticing [, [V®, | dz < [ [V®|Y dz and then using the Sobolev embedding,

<C

we obtain

/ |Vw, [P dx < 01/ |Vul|P de,
0 Q

where (] is a constant independent of F,r and e. Therefore,

Cap,(F' N B,(x), 2N By (1)) < C1Cap,(F N B,(x),2) + Cie.

26



Now as € > 0 is arbitrary we obtain the desired result.
(i) For ® € C3°(RY) with 0 < ® < 1, ® = 0 on B;(0) and ® = 1 on By(0)°, we

take ®r(2) = ®(%). The rest of the proof is similar to the proof of (). O

Let us recall that the space of (p,q)-Hardy potentials #,,(€2) consists of all
g € L},.(Q) such that

loc

{/{RN lg||u|? dx]q <C [/D?N|Vu|p d:}c]p, VUeDé”’(RN).

If g € H,4(92), it can be easily verified that

d
sup —fF|g| < <C

reca [Cap, (F,Q)]r ~

Furthermore, Maz’ya proved that the above condition is also sufficient for g to be

in H,,(Q) [58, Theorem 8.5]. Motivated by this, for g € L} (), we define

d
1913,., = sup {M . FCCQ; |F| # 0} .
[Cap, (F', Q)]

hSES

Now we state the Mazya’s condition as follows.

Theorem 2.3.5. [58, Theorem 8.5. MaZya’s condition.] Let 1 < p < q < oco. Then
g € H,4(Q) if and only if

(2.3.1) L/NgHchmﬂ < Chngn;nﬂg>L/W<h4pdx], Vu € DI(Q),
Q Q
where Cy = pP(p — 1)(17P),

The above theorem immediately identifies the space of (p, ¢)-Hardy potentials as

Ha(@) = {3 € L) s g, < oo
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In fact, H, () is a Banach function space with respect to the norm |||/, ,. It is

worth mentioning that H,,(2) = H, ().

Consider the associate space H,(£2)" of H,(2) as defined below:

lullag = sup { / ful de: feX, [fln, < 1} |

1) = {u e M) : fuly <o }.

Now, we define

Ep(Q) = {ue M(Q) : [ulf € H,(Q)'}

equipped with the norm

RS

lulle, = (Il1ul”lls,@)? -

Clearly v € &,(Q) if and only if |v]” € H,(Q)". Later we show that Dy”(Q) < &,(Q)
which is finer than the Lorentz-Sobolev embedding Dy”(Q) < L™ *(1).

2.4 Assouad dimension

In this section, we recall the notion of the Assouad dimension of a set.

Definition 2.4.1 (Assouad dimension). Let (X, d) be a metric space. For a subset
E of X, n(E,r) denotes the minimal number of open balls of radius r with centers

in F that are needed to cover the set E. Let
Y
A:{)\20:3C,\>Osothat77(EﬂBR(x),r)gC’A(L) :
Vee E,0<r<R< diam(E)}.

The Assouad dimension is denoted by dim4(FE) and is defined by dima(E) = inf A.
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In the case when diam(E) = 0, we remove the restriction R < diam(F) from
above definition. By this convention one can see that, if E = {x} for some zq € X
then dima(E) = 0. We refer to [53] for a historical background of the Assouad
dimension and its basic properties. More recent results on this can be found in [39].
Here, we enlist some of its basic properties in the following proposition; for proof,

see [53].

Proposition 2.4.2. Let (X, d) be a metric space. Then the following statements

are true:

(1) X has finite Assouad dimension if and only if it is a doubling space, i.e. there
exists a finite constant C' > 0 such that every ball of radius r can be covered

r

by no more than C' balls of radius 3

(#3) If Y C X, then dim(Y) < dim4(X). Equality holds if Y = X.
(737) dimpy(X) < dima(X), where dimy denotes the Hausdroff dimension of X.

(iv) Let X = RY with usual metric and E C RY. Then dima(F) < N if and
only if E is porous in RY i.e. there is a constant a € (0,1) such that for
every v € E and all 0 < r < diam(FE) there exists a point y € RY such that

Bar(y) C By(z) \ E.

Remark 2.4.3. Let X = RY with usual metric. Notice that, for + € 0B; and
r € (0,2) we can find y € B,(z) such that Br(y) C B,(z) \ 0B;. Hence, by the
definition of porousity, it follows that the boundary of a unit ball is porous in RY.
Hence, dim4(0B;) < N. Similarly, it can be seen that RY¥=! x {0} is porous in RV.

Hence, dim4(RY~1 x {0}) < N.
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2.5 Some important results

In this section, we recall two important results: (i) Muckenhoupt condition, (i)

Brézis-Lieb lemma, which will be used extensively in the subsequent chapters.

2.5.1 Muckenhoupt condition

For p € (1,00), we denote its Holder conjugate by p’ which is defined by % + 1% =1.
In this sub-section, we recall the Muckenhoupt necessary and sufficient conditions

[60, Theorem 1 and Theorem 2| for the one-dimensional weighted Hardy inequalities.

Lemma 2.5.1. Let u,v be nonnegative measurable functions such that v > 0. Then

for any a € (0, oo],

(i) the inequality

(2.5.1) /O /0 £(t) dt

holds for all measurable function f on (0,a) if and only if

(2.5.2) Ay i= sup </tau(5) ds>’l’ </Otv(s)1pl ds) < .

(i) the dual inequality

u(s) ds < C’/Oa |f(s)|Pu(s) ds,

e

Cu(s) ds < C [ it as

(2.5.3) /0 /:f(t) dt

holds for all measurable function f on (0,a) if and only if

(2.5.4) Ay 1= sup (/Otu(s) ds); (/t“v(s)l_p/ ds) " < .
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Remark 2.5.2. Let By, By be the best constants in (2.5.1) and (2.5.3) respectively.

Then,

A< B < (p)r(p)7A;, i=1,2.

2.5.2 Brézis-Lieb lemma

Let J : R — R be a continuous function with J(0) = 0 such that, for every ¢ > 0

there exist two continuous, non-negative functions ¢, ¥, satisfying
(2.5.5) |J(a+b) — J(a)| < epe(a) + 1(b), Ya,b e R.

Now we state a lemma proved by Brézis and Lieb in [18].

Lemma 2.5.3. Let J : R — R satisfies (2.5.5) and f, = [ + g, be a sequence of

measurable functions on € to R such that

(i) g — 0 a.e.,
(ii) J(f) € L'(%),

(111) / be(gn(x)) du(z) < C < oo, for some C > 0 independent of n, e,
0

(iv) /Qwe(f(x)) du(x) < oo, for all e > 0.

lim QIJ(ergn) = J(gn) = J(f)| dp=0.

n—oo

We require the following inequality (see [51], page 22) that played an important role

in the proof of Brésiz-Lieb lemma: for a,b € C,
(2.5.6) |la + 0" — |al?| < €|al” + C(e, p)lol

valid for each ¢ > 0 and 0 < p < o0.
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Remark 2.5.4. If J is convex on R, then J satisfies (2.5.5). In particular, if
J(t) = |t|’; p € (1,00), then (2.5.5) is valid with ¢.(t) = [t|? and ¥.(t) = C|t|P

for sufficiently large C., see [18].

Using the above remark, we have the following special case of Lemma 2.5.3.

Lemma 2.5.5. Let (2, A, u) be a measure space and (f,) be a sequence of real -
valued measurable functions which are uniformly bounded in LP(SY, 1) for some 0 <

p < 00. Moreover, if (f,) converges to f a.e., then

nh_{{.lo |an“(p,u) - an - f”(lh#)| - HfH(p,,u)'

Example 2.5.6. Let J(t) = t?logt, fort > 0. Then J is continuous and J(0) = 0.

Further, for a,b > 0, using mean value theorem we obtain

[J(a+b) = J(a)] < (a+b)[(a+0)"" +pla+b) " log(a+b)]

(a+0b)P, ifa+b<1,

IN

(p+1)(a+bP, ifat+b>1.

Thus, it follows from Remark 2.5.4 that J satisfies (2.5.5).
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Chapter 3

The compactness and the
concentration compactness via

p-capacity

In this chapter, we study the optimal space of Hardy potentials in detail. Here we
prove Theorem 1.1.1, Theorem 1.1.3, Theorem 1.1.5 and Theorem 1.1.6. Maz'ya’s
p-capacity condition helps us to define the Banach function space norm |5, on
the space of Hardy potentials 7,(€2). We identify FH,(€2) as the optimal space of
Hardy potentials for which the map G,(u) = / |g||ulP dz is compact on Dy ().
Further, using the notion of absolute continuouz norm on H,(2), we characterize
the space FH,(£2). We derive a variation of the concentration compactness lemma
to give a sufficient condition on g € H,(€2) so that the best constant in the above
inequality is attained in Dy*(€). Also, we establish an embedding Dy () < £,(Q)

which is finer that the Lorentz-Sobolev embedding Dy () < LP"?(Q).

As we have pointed out in the introduction, various inequalities and embeddings
of Dy*(€) helps us to provide many classes of function spaces in H,(Q2). We list

them again here:
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o L>(Q2) C H,(R2) if Q is bounded in one direction (using Poincaré inequality),

N Np

o L7 (Q) C H,y(Q) [4] (using the Sobolev embedding DyP(Q) — L7 (Q)),

o L(%’OO)(Q) C H,(Q) [71] (using the Lorentz-Sobolev embedding Dy* () —
LED(Q)).

Further, if 2 = B{ (the exterior of the closed unit ball centered at the origin) then
examples of Hardy potentials outside the L(%’Oo)(Q) are provided in [10]. For an

open set © in RY and a radial, non-negative function w on RY, let us recall that

Liad(lRva) = {g € Ll([RN,w) g is radial} ,

L) oa(Qw) = { glo g € L}”ad(lRva)} :

In [10], authors have shown that L}

rad

(B, |z|P~N) C H,(B¢) and the next example

shows that L! ,(BS,|z|P~") and L(%’Oo)(Bf) are not contained in one another.

rad

Example 3.0.1. (i) Forp =2, N > 3and 8 € (£,1) consider the following function

(lz] =1)=°, 1< |z] <2,
g(x) =

0, otherwise.

It can be verified that g € L! (B¢, |z|>~V) and ¢ ¢ L(2°9(B¢) (Example 3.8 of [9]).

rad

(ii) Let go(z) = 5, ¢ € B¢ with N > 3. By Example 4.1.4, g, € L2°°(BS). On

||

the other hand

J

Thus g> ¢ Lyoa(Bf, o).

rad

g () |z do = NwN/ g(r)r dr > NcuN/ 2 x rdr = c0.
1 1

c
1
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3.0.1 Some embeddings

In this subsection, we provide several embedding theorems concerning the spaces
H,(Q) and DyP(€). The next proposition can be obtained from Lorentz-Soboley
embedding and the generalised Holder’s inequality. However, we give a direct proof

using the norm in #H,(£2).

Proposition 3.0.2. Let p € (1,N) and an open subset Q in RN. Then L%’OO(Q) is

continuously embedded in H,(S2).

Proof. Observe that, Cap,(F™) < Cap,(F*, Q) < Cap,(F,2). The first inequality
comes from (a)-th property of Proposition 2.3.2 and the latter one follows from
Polya-Szego inequality. Cap,(F*) = N wN(%)pflRN P where R is the radius of

F* (by (e)-th property of Proposition 2.3.2). Now, for a relatively compact set F,

Jelgl@de  _ [pg@de _ [Tgdt Rrg(wnRY)
Cap,(F,Q) — Cap,(F*,RN) NwN(%)pflRpr N(%)pﬂ '

By setting wyRY =t we get,

fF\g\(x)dx
J N7 KL N N .
Ca p(F,Q> — C( 7p)HgHL*pyoo

Now take the supremum over F'CCf) to obtain,

19113, < C(N,p)llgll, x o with C(N,p) =

As we mentioned before, our proof of Proposition 3.0.2 does not use the Lorentz-
Sobolev embedding of D(l)’p (©). In fact, using the above proposition, we give an
alternate proof for the Lorentz-Sobolev embedding of Dé’p (©). The idea is similar
to that of Corollary 3.6 of [9].
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Theorem 3.0.3. Let p € (1,N) and an open subset Q in RN. Then DyP(Q) is

continuously embedded in LP ().

Proof. Without loss of generality we may assume 2 = RY (for a general domain (2,
the result will follow by considering the zero extension to RY). Let g € H,(Q2) be

such that g* € H,(£2). Then, using Lemma 2.3.5 we have,

[ othwran < Culg' b, [ 1P de < Culg'l, [ 1Vl de, v € DY (RY)
RN RN RN

——, ¢*(s) = = and one can compute [|g*|lx, =
w]<,v|x|1’ sN

]\,(é”];i—f);,il. NOW/ g |u*|Pdx :/ g (s)|u*(s)[Pds. Thus from the above inequal-
RN 0

In particular, for g(z) =

ity we obtain,

(o] * P

/ @ ds < C(N,p)/ \VulP dz, Vu € DyP(Q).
0 SN RN

The left hand side of the above inequality is \u|§p*,p, a quasi-norm equivalent to the

norm ||ul| in LP"P(Q). This completes the proof. O

p
Lp*p

Corollary 3.0.4. Let p € (1,N) and an open subset Q in RN. Then DyP(Q) is

compactly embedded in LY (Q).

Proof. Clearly Dy”(Q) is continuously embedded into W,27(2). Since W,2P(Q) is

loc

p
loc

compactly embedded in L7 (2), we have the required embedding. ]

L

o to obtain the Lorentz-Sobolev

Notice that we used just one Hardy potential
embedding in Theorem 3.0.3. Instead, if we consider the entire H,(2), then we get

an embedding finer than the above one.

Theorem 3.0.5. Let 1 < p < N and ) be open in RN. Then

a ’ 15 continuously embedded into ,
Dy? (0 ly embedded into E,(Q
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(b) E,(Q) is a proper subspace of LP"P(Q).

Proof. (a) For g € H,(?), by Theorem 2.3.5,

/Wmmvdxé(hmmmp/WVquavueI%%ny
9] [9]

Now taking the supremum over the unit ball in H,(€2) we obtain,

1
lulle, < Cfllullpgr. Y € DEP().

(b) Clearly v € &,(Q) if and only if [v[? € H,(Q)'. Further, L%’OO(Q) C H,(Q)
and hence H,(Q)" € L'71(Q) (by Proposition 2.2.4). Therefore, there exists w €
L'%1(Q) such that w ¢ H, (). Hence, v := |w|i € L7 ?(Q) such that v ¢ &,(9).

This shows that £,(Q) C LP"*(Q). O

Remark 3.0.6. Let p € (1, N) and Q2 = By \Fc with 0 < ¢ < d < 0o. Then the

weighted Lebesgue space L!,;(€, [x[P~™) is continuously embedded in H,(Q2). To

rad

see this, we use [10, Lemma 2.1] to obtain

Ammséwwmy%w%mmwéwwmwwam

where C' depends only on N, p. Taking the infimum over N,(F') and then the supre-

mum over F' we obtain [|g[lx, < Cullgllr: (@ ep-)-

3.1 On the best constant

Recall that, the best constant B, in (1.1.2) is given by

(3.1.1) Bi = inf {/ |VulP de:u € Dé’p(Q),/ lg||ul? dx = 1} :
0 Q

g
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It is easy to see that the following inequalities hold:

(3.1.2) 9ll2, < By < Cullglln, -

In this section, we are interested in finding the Hardy potentials for which B, is

attained in Dy” (). Towards this, we recall the map

Gp(u) = /Q lg||u|P dz on Dé’p(Q).

The next proposition shows that B, is attained if G, is compact.

Proposition 3.1.1. Let G, be compact on Dy*(Q). Then B, is attained in Dy ().

Proof. 1t is easy to see that any minimising sequence (u,) of (3.1.1) is bounded

in DyP(Q). Hence u, — u in DyP(Q) (upto a sub-sequence) and / VulP dx <
Q

lim [ |Vu,|P dz = B,. Now, in addition, since the map G, is compact on Dj*(2),
n—oo Q
we have G,(u) = lim Gp(u,) = 1. This implies that B, is attained at u € Dy?(Q).
n—oo
Thus, by the definition of By, we get / |VulP dx > B,. Hence, / |Vul? dx = B,
0 0

i.e., B, is attained in Dy”(Q). O

In this chapter, we use the Banach function space structure of #,(2) to char-
acterise the set of Hardy potentials for which the map &), is compact. We also
treat the cases when G, is not compact using a version of g depended concentration

compactness lemma.

3.1.1 A g depended concentration compactness lemma

Let M(RY) be the space of all regular, finite, Borel signed-measures on RY. Then

M(RY) is a Banach space with respect to the norm ||u|| = |u|(RY) (total variation
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of the measure p1). A sequence (u,) is said to be weak* convergent to p in M(RY), if

B | S dp asn 00V e Co(RY),

where Co(RY) := C.(RN) in L>(RY). In this case we denote j, — u. By the
Reisz Representation theorem [3, Theorem 14.14, Chapter 14], M(RY) is the dual of

Co(RM).

The following proposition is a consequence of the Banach-Alaoglu theorem [25,
Chapter 5, Section 3] which states that for any normed linear space X, the closed

unit ball in X* is weak* compact.

Proposition 3.1.2. Let (u1,,) be a bounded sequence in M(RY), then there ewists

1 € M(RN) such that i, — p up to a subsequence.

Proof. Recall that, if X = Co(RY), then by the Reisz Representation theorem |3,
Theorem 14.14, Chapter 14] X* = M(RY). Thus, the proof follows from the Banach-

Alaoglu theorem [25, Chapter 5, Section 3]. O

The next proposition follows from the uniqueness part of the Riesz representation

theorem.

Proposition 3.1.3. Let u € M(RY) be a positive measure. Then for an open V C ,

(V) = sup{ 6 du:0<6<1,6eCERY) with Supp(g) C v} ,

RN

and for any Borel set E C RN, u(E) :=inf {u(V): E CV and Vis open }.

A function in Di?(Q) can be considered as a function in DyP(RY) by extending

by zero outside Q. With this convention, for u,,u € Dy?(Q) and a Borel set E in
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RY, we denote

un(E):/g\un—u\p dr | Fn(E):/ IV — )P da, fn(E):/Wun\p dr.
E FE E

If u, — u in DLP(Q), then v,, u, and I, have weak* convergent sub-sequences

(Proposition 3.1.2) in M(RY). Without loss of generality assume that

* ~ ~

Up =1, r,>r, [, =T in M(RY).

We develop a g-depended concentration compactness lemma using our concentration
function C, (see for the definition). Our results are analogous to the results of

Tertikas [69] and Smets [67].

First, we prove the absolute continuity of v with respect to I'.

Lemma 3.1.4. Let u, — u in Dy*(Q). Then the following statements are true.

(i) Let ® € CL(Q) be such that V® has compact support. Then

lim [ |[V((up, —u)®)|P do = lim / IV (u, —u)P|®|P dz.
0 n—oo [¢)

n—o0

i) Let g € H,(Q) with g > 0. Then for any Borel set E in RY,
P

v(E) < Cy C,I(E), where C; = supCy(x) .

z€Q

Proof. (i) Let € > 0 be given. Using (2.5.6),

[ 19t~ worp e~ [ 190, el

< e/ |V (U, — u)P| PP dx+C’(e,p)/ [, — ulP|VOP dx.
0 Q

Since V& is compactly supported, the second term in the right-hand side of the
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above inequality goes to 0 as n — oo ( by Rellich compactness theorem). Further,

as (u,) is bounded in DyP(Q) and € > 0 is arbitrary, we obtain the desired result.

(i1) As u, — u in DyP(Q), u, — u in L’ (Q) (by Rellich compactness theorem).

loc

For & € C(RY), (u, —u)® € Dy*(Q) and thus by Theorem 2.3.5,

L 198 dv = [ altw, —uaP v < Culglh, [ [9((u — @) do

= Cullglh, [ 1V((w, ~ )P do.
RN
Take n — oo and use part (i) to obtain
(3.1.3) |12 dv < Culgl, [ 1o ar
RN RN
Now, by Proposition 3.1.3, we get
(3.1.4) v(E) < Cillgllu,T(E) ,VE Borel in RY.
In particular, v < I'" and hence by Radon-Nikodym theorem,
dv oN
(3.1.5) v(E)= | —= dI' ,VYE Borel in R".
g dl
Further, by Lebesgue differentiation theorem (page 152-168 of [37]) we have
dv v(B,(z))

(3.1.6) @ = Im

Now replacing g by gxa,(») and proceeding as before,

v(By(x)) < Cullgxs, @ llw, T'(Br(x)).
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Thus from (3.1.6) we get

(3.1.7) Z—;(:L‘) < CpCy(x)

and hence [|%||,, < CyxC;. Now from (3.1.5) we obtain v(E) < CyC;T(E) for all
Borel subsets E of RY. O

Remark 3.1.5. As we have already mentioned in the introduction, Tertikas [69] (for
p=2and Q =R"Y) and Smets [67] (for p € (1, N) and Q C R") have considered the
concentration function S,(.) and assumed that the closure of the singular set i
(which is same as Z) is at most countable (see (H) of [69] and (H1) of [67]). The
countability assumption allowed them to describe v as a countable sum of Dirac
measures located on Z;, and then they have obtained the absolute continuity of v
with respect to I' (see Lemma 2.1 of [67] and Lemma 3.1 of [69]). Whereas, we use
the Radon-Nikodym theorem and the Lebesgue differentiation theorem to prove the
absolute continuity of v with respect to I'. It is worth pointing out that we do not
need the countability assumption on the closure of the singular set in order to show

the absolute continuity of v with respect to I'.

The next lemma gives a lower estimate for the measure I. Similar estimate is
obtained in Lemma 2.1 of [67]. We make a weaker assumption, Z is of Lebesgue

measure 0, than the assumption Z is countable.

Lemma 3.1.6. Let g € H,(Q) be such that g > 0 and ]Z| =0. Ifu, = uin
Dy (Q), then

- Valf + e, i C; #0,

|VulP,  otherwise.

Proof. Our proof splits in to three steps.

Step 1: T > |Vul’. Let ¢ € C®(RY) with 0 < ¢ < 1, we need to show that
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Jan @ dU > [ ¢|Vul? da. Notice that,

¢ dl' = lim/ ¢ dl, = lim /¢\Vun]p dz = lim /F(x,Vun(x)) dz,
RN n—0oo [o n—0o0 [q

RN n—o0

where F': Q x RY — R is defined as F'(z, 2) = ¢(z)|z|P. Clearly, F is a Caratheodory
function and F(z,.) is convex for almost every x. Hence, by [66, Theorem 2.6, page

28], we have lim /¢|Vun|p dx > /¢|Vu]p dr = / ¢|Vul? dx and this proves
Q Q RN

n—oo

our claim 1.

Step 2: I =T, on Z. Let & C Z be a Borel set. Thus, for each m € N, there
exists an open subset O,, containing E such that [O,,| = |0, \ E| < L. Let € > 0

be given. Then, for any ¢ € C°(0,,) with 0 < ¢ < 1, using (2.5.6) we have

/¢|V(un—u)|p dx—/¢\vun|p di
Q Q

/¢drndx—/¢>dfn dx
Q Q
§e/¢|Vun]p dx—l—C(e,p)/gb[Vu]pd:E
Q Q

<L+ Cle,p) / Vul? dr,

O’rn

where L = sup, { [, [Vu,|P dz}. Letting n — oo, we obtain ‘fﬂ ¢ dl — [, df) <
eL +C(e,p) Jo, [Vul? dz. Therefore,

’F(Om) — f(Om)‘ = sup{

/¢dr—/¢ df‘:gbecg%om),oggbg}
Q Q

< eL—i—C(e,p)/ |Vul|P dz,

m

Now as m — 00, |Op| — 0 and hence |I(E) — T'(E)| < eL. Since ¢ > 0 is arbitrary,

we conclude T'(E) = T['(E).

Step 3: r> |VulP + CIZC*’ if C; # 0. Let C; # 0. Then from Lemma 3.1.4 we have

r> CH”C;. Furthermore, (3.1.7) and (3.1.5) ensures that v is supported on » .
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Hence Step 1 and Step 2 yields the following;:

I
(3.1.8) ps ) Ve

_v__
CHC; :

Since |Z| = 0, the measure |Vul? is supported inside ZC and hence from (3.1.8)

we easily obtain I' > |Vul? + o O
g9

Lemma 3.1.7. Let g € H,(Q), g > 0 and u, — u in Dy*(Q) and & € CL(RY)

with0 < ®p <1, p =0 on Bg and P =1 on B ,. Then,

() B B e Ol e = i B (00 B ) = i g | P e
R
(B) lim Tim IVu,|P de = lim Tm ,(QNBg) = lim Iim [ ®p dl,.
R—o00 n—o0 QH?RC R—00 n—o00 R—00 n—o00 Q

Proof. By Brezis-Lieb lemma,

lim
n—oo

v,(QN BR) —/ glu,|P dx

QNBRr"

/ glun — ul|P dz — / glun|? dx
QNBgr* QNBR*

= / glul? dx.
QNBR*

As gluP € LY(Q), the right-hand side integral goes to 0 as R — oo. Thus, we get

= lim
n—o0

the first equality in (A). For the second equality, it is enough to observe that

/ glu, —ul? de < / glun — ulPOR dx < / glu, —ul? dz.
QNBryi1' Q QNBR"°

Now by taking n, R — oo respectively we get the required equality. Now we proceed
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to prove (B). For € > 0, there exists C(¢,p) > 0 (by (2.5.6)) such that

lim [,,(QNBg) — / |V, [P dx

n—00 QNBR*

= lim / |V (up, — )P do —/ |Vu,|P dx
n=o0 | JoNBR® QNBg*

< elim \Vu,|? de + C(e,p)/ \Vul? dx
=0 JOnBr* QNBg*

<eL+Clep) [ |VuPds.

QNBr

where L > [, [Vu,|? dz for all n. Thus, by taking R — oo and then € — 0, we
obtain the first equality of (B). The second equality of part (B) follows from the

same argument as that of part (A). O

Now we prove a g-depended concentration compactness principle as in [67].
Lemma 3.1.8 (Concentration compactness principle). Let g € H,(Q2) with g > 0.

Also assume that u, — u in Dy (). Set

Voo = lim lim 1, (Q ﬂB_RC) and Ty = lim lim I, (Q OB_RC).

R—00n—o0 R—o00n—00

Then

(i) Vo < CCy(00)Tuc,

(i) mnw/gywp dxz/g|u|p dz + ||| + v,
(9] Q

(i1i) Further, if |Z| =0, then we have

Vul? dr + (/M + T if CO#0
mn%o/ \Vu,|P de > Q Hyg
Q

|\VulP de + T,  otherwise.
o)
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Proof. (i) For R > 0, choose ®5 € Ci(RY) satisfying 0 < &z < 1, &g = 0 on Bp
and ®z = 1 on By ,. Clearly, (u, —u)®g € Dy*(QN Bg'). Since lgxz< 2, < oo,

by Theorem 2.3.5,

| ol = w®ap do < Cu o, [ V(= @) e
QﬂBR QQBR

By part (i) of Lemma 3.1.8 we have,

lim \V((up, —u)®pg)|P de = lim |Dg|P dT,, .

n—00 QNBR" n—00 QNBR"

Therefore, letting n — oo, R — oo and using Lemma 3.1.7 successively in the above

inequality we obtain v, < CyCy(00) .

(77) By choosing ®r as above and using Brézis-Lieb lemma together with part (A)

of Lemma 3.1.7 we have,

lim [ glu,|? dz
n—oo 0]

= lim [/ glunP(1 — @p) dx—i—/g|un|p¢>3 dx]
0 0

n—oo

= lim {/ glulP(1 — ®g) dm+/g|un—u|p(1—(I>R) d:p+/g|un|p<b3 d:p}
Q Q Q

n—oo

_/gw dz + ||| + v,
Q

(7i1) Notice that

lim [ |Vu,|’ de = lim [/ |Vu,[P(1 — $g) da:+/ |Vu,|[P®r daj}

n—oo Q

=T(1 — ®g) + lim / |Vu,|PPg dx
n—oQ [¢)
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By taking R — oo and using part (B) Lemma 3.1.7 we get

Tim / (Vi |? dz = || T + Toe.
Q

n—o0

Now, using Lemma 3.1.6, we obtain

/|Vu|p dg:+CHV£*+FOO, it Cr £ 0
MTHOO/ |Vu,|P de > {79 Hbyg
Q

|IVulP de + T, otherwise.
Q

3.1.2 The compactness

In this subsection, we discuss the compactness of the map

Gp(u) = /[RN g|[u|P dz on Dy ().

As we have mentioned in the introduction, many authors proved the compactness

of G, under various assumptions on g. Here we list those results:

e For p =2 and €2 bounded, the compactness of G, is proved for g € L"(£2) with

r> I in [55] and r = & in [4],

e For p € (1,00) and for general domain €2, the compactness of G, has been

proved if g € L%’d(Q) with d < oo [71],

e The result has been further extended for g € Fu () := C°(Q) in L%’OO(Q)
11, for p = 2], [6, for p € (1, )],

e In [10], authors obtained the compactness for g € L. (B, |z[P~N).

rad

47



Recall that

FH,(Q) = C.(Q) in H,().

Proposition 3.1.9. Let p € (1, N) and an open subset Q in RN. Then the following

statements are true.

(a) Fn(Q) C FH,y(Q) for any open subset Q in RV,

(b) L, (Q, |z|P™N) C FH,(Q) for Q= By \ B;; 0 <c<d< 0.

rad

Proof. (a) From the definition of Fx (2) and FH,(2), we have Fu (€2) is the closure
of C°(€2) in L%"X’(Q) and FH, () is closure of C.(Q2) in H,(€2). Furthermore, since

-3, < C

< ||, v «, it is immediate that Fu (£2) is contained in FH,(€2). This proves
Ly
().

P

(b) Observe that, it is enough to show C°(Q) is dense in L!

rad

(Q, |z[P~N). For this,
let g € L 4(Q, |z[P~") and € > 0 be arbitrary. Since g € L!_;(€, |x[P~), there exists
g € L'((¢c,d),r?~1) such that g(x) = g(|z|). As C°((c,d)) is dense in L*((c,d), P~ 1),
there exists ¢ € C°((¢,d)) such that ||§g — ¢||11((c,a) 1) < €. Now, for x € Q, let

Y(x) == ¢(|z]). By denoting, h = g — 1) we have, h(r) = §(r) — ¢(r). Therefore,

”9 —¢”L1

rad

d
(@fefe=) = / [A|(r)r? dr

=117 = ol 21 (0,00)77-1) = |17 = Dl L1 ((c;0) 1) < €.

]

Remark 3.1.10. In [6, Lemma 3.5, authors have shown that F (Q2) contains the

P

Hardy potentials that have faster decay than ﬁ at all points a € Q and at

infinity. Such Hardy potentials arise in the work of Szulkin and Willem [68]. Above

proposition assures that they belong to F#,(£2).

In the following proposition, we approximate F7H,(2) functions using certain
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L>(€2) functions. A similar result is obtained for Fu (€2) in [11, Proposition 3.2].

P

Proposition 3.1.11. g € FH,(2) if and only if for every e > 0, 3g. € L>(§2) such

that |Supp(g.)| < oo and ||g — g€||Hp < €.

Proof. Let g € FH,(2) and € > 0 be given. By definition of FH,(f2), Jg. € C.(Q)
such that ||g — gc||», < e. This g, fulfils our requirements. For the converse part,
take a ¢ satisfying the hypothesis. Let ¢ > 0 be arbitrary. Then 3g. € L>(Q2) such
that [Supp(ge)| < oo and ||g — ge|l», < 5. Thus, g. € L%(Q) and hence there exists

o € C.(Q) such that ||g. — ¢E||L% < 35, where C is the embedding constant for the
embedding Ly (2) into H,(2). Now by triangle inequality, we obtain ||g — ¢ ||y, < €

as required. O

Next we show that FH,(§2) is the optimal space for the compactness of G, and
this will unify and extend all the existing results that guarantee the compactness
of G,. Furthermore, we characterise this space using the Banach function space
structure of #,(12). First we prove the following lemma which gives a sufficient

condition for the compactness of G.

Lemma 3.1.12. Let g € H,(Q) and G, : Di*(Q) — R is compact. Then,

(i) if (A,) is a sequence of bounded measurable subsets such that x a, decreases to

0, then [|gxa,lln, — 0 as n — oo.

(ii) ||lgxBg |2, — 0 as n — oo.

Proof. (i) Let (A,) be a sequence of bounded measurable subsets such that ya,
decreases to 0. If [|gxa,|/#, - 0, then Ja > 0 such that ||gxa, |l», > a,Vn (by the

monotonicity of the norm). Thus, 3F,CCQ and u, € N,(F,) such that

1 1
(3.1.9) / |Vu,|P de < —/ 9| dx < —/ 9] [un]” d.
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Since A, ’s are bounded and x 4, decreases to 0, it follows that |A,,| — 0, as n — oc.

Further, as g € L'(A;), we also have [, . |g| dv — 0. Hence from the above
|un|?
(] + €)= Hun | pyv

One can check that for each n, wS € DyP(Q) and it is bounded uniformly (with

inequalities, u, — 0 in Dy (). For 0 < € < 1, consider w¢, =

respect to n) in Dé’p (©2). Thus up to a sub sequence, wf, converges weakly to w in

Dy (Q) as n — co. Now using the embedding of Dy” () into LP"(Q) we obtain that

el

g(p_l)

. Thus HUJ;HLﬁ — 0 as n — oo and hence w =01ie. w, =0
p P
in Dy?(Q) as n — oo. By the compactness of G, we infer lim,, Jo, lgl|ws P dz = 0.

On the other hand, for each n € N and 0 < € < 1,

gl gl unl”
lg||ws|P de = / dx > dx
el o (ol + Ty % o Gl il

1 lg]|unl? a
T 9p*-p /{ dz > op*—p

[un|>€} ||un||§)ép

which is a contradiction.

(ii) If [[gxBe||l%, = 0, as n — oo, then there exists F,, CCS2 such that

gl dx gl dx

anmBg anmeL gl dx < CanmB;;
Cap,(Fn,2) — Cap,(F, N B, Q) = Cap,(F, N BS, QN EC%)

for some a > 0 and C' > 0. Last inequality follows from the part (i7) of Proposition

2.3.4. Thus, for each n there exists z, € Dy (Q QFC%) with 2z, > 1 on F,, N By, such

that
/ Vel dz < & gl dz < 9/ gl da.
Q a JF,nBe a Ja
By taking w,, = ﬁ and following a same argument as in (i) we contradict the
compactness of Gp.n o O]

Next, we prove that C, vanishes for all g € C.(€2).
Proposition 3.1.13. Let ¢ € C.(Q). Then Cy(x) =0, Yo € QU {oo}.

20



Proof. Observe that, for ¢ € C.(£2),

fFﬂBT(:c) 9] dx
Capp(F, Q)

oy [0 1
~ reco | Cap,((F'N B,)*)

léXB, @) |, = sup
FccQ

If d is the radius of (F'N B,)* then

(FNB) | wyd™ B
Cap,((FNB,)*) NwN(%)p—ld(N—m B

C(N,p)d” < C(N,p)r’.

Thus, Cy(x) = lirr&H(bXa@)HH,, = 0. Also, one can easily see that C4(c0) = 0 as ¢
r—
has compact support . In fact, one can see that, if ¢ € L*°(Q2) with compact support

then Cy = 0. O

Now we are in a position to state the chareterization theorem for the compactness
of G,. The next theorem combines the results stated in Theorem 1.1.1, Theorem

1.1.3, and Theorem 1.1.5 together.

Theorem 3.1.14. Let g € H,(S2). Then the following statements are equivalent:

(i) G, : Dy"() — R is compact,

(ii) g has the absolute continuous norm in H,(£2),
(iii) g € FHy(Q),
(iv) C; = 0= Cy(c0).

Proof. (i) = (it) : Let G, be compact. Take a sequence of measurable subsets

(A;,) of Q such that x4, decreases to 0 a.e. in €. Part (i) of Lemma 3.1.12 gives

lgxBelln, — 0, as n — oco. Choose € > 0 arbitrarily. There exists Ny € N, such

that [|gx e [|2, < §5.Vn > No. Now A, = (A, N By,) U (A, NBg, ), for each n. Thus,

€

lgxallr, < llgxansy, la, + laxa.nsg I, < llgxa.nsy, llx, + 5
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By part (i) of Lemma 3.1.12, there exists Ni(> Np) € N such that [[gxa,nsy, 1, <

5, Vn > N and hence HgXAnHHp < € for all n > N;. Therefore, g has absolutely

continuous norm.

(it) = (7i) : Let g has absolute continuous norm in #H,(€2). Then, |gxse |l#,

converge to 0 as m — oo. Let € > 0 be arbitrary. We choose m. € N such that

lgxse %, <€ Ym > m. Now for any n € N,

9 = 9X{lgl<m}nBm, + IX{lgl>n}NBm, + IXB;,, = Gn + han.

where g, = gX{lgj<n}nB.,, and hn = gX{jg>n}nB... + 9XB;, - Clearly, g, € L*(2) and

|Supp(gn)| < co. Furthermore,

1, < Nl9X11g15n3nBm, 17, + 119X Bg, 13, < 1l9X{g/5n3nBm. I, + €

Now, g € L},.(Q) ensures that x{g>n}np,,. — 0 as n — co. As g has absolutely

continuous norm, [|gx{ig/>ninBm, |2, < € for large n. Therefore, ||h,[j3, < 2¢ for

large n. Hence, Proposition 3.1.11 concludes that g € FH,(12).

(i11) = () : Let g € FH,(Q2) and € > 0 be arbitrary. Then there exists g. €
C.(€) such that ||g — ge|ls, < €. Thus, Proposition 3.1.13 infers that C, vanishes.
Now as g = ge + (9 — ge), it follows that Co(z) < Cy, () + Co—g (2) < ||lg — gellpe, <€

and hence C; = 0. By a similar argument one can show C,(c0) = 0.

(iv) = (i) : Assume that C; = 0 = Cy(oc). Let (u,) be a bounded sequence in

Dé’p (©2). Then by Lemma 3.1.8, up to a sub-sequence we have,

Voo S CHCg(OO)FOO,
vl < CuCylIT|l,

lim/|g||un|p der = /|g||u]p de + ||| + Voo-
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As C; = 0 = Cy(00) we immediately conclude that lim / lg||unl? dx = / lg||ul? dz

and hence G, : Dy”(Q) — R is compact.

]

Remark 3.1.15. Let N > p and g(z) = & in RY. Then for any r > 0, using

\wlp

Proposition 2.3.2 we get

fBr TP (p - 1)p71

Cap,(B:(0)) (N —p)r’

Thus C,(0) = & l)p and hence g ¢ FH,(RY).

(N—p

Remark 3.1.16. Let X = (X(Q),||.|lx) be a Banach function space and f € X.
Then f is said to have continuous norm in X, if for each « € Q, || fx B, (2)|| x converges
to 0, as r — 0. Observe that by Theorem 3.1.14, the set of all functions having
continuous norm and the set of all function having absolute continuous norm are
one and the same on #,(2). However, in [47], authors constructed a Banach function

space where these two sets are different.

3.1.3 A concentration compactness criteria

Recall that, for g € H,(€2), the best constant B, in (1.1.2) is given by

1
(3.1.10) — = inf / \Vul? d.
By uecy'rJa

In this subsection, first we prove Theorem 1.1.6. Then we give several ways to

produce Hardy potentials for which B, is attained in Dé’p () but G, is not compact.

Proof of Theorem 1.1.6. Let (u,) € G, '{1} minimizes/ |Vul? dz over G, ' {1}.
Q
Then up to a sub-sequence we can assume that w,, — u in Dé’p (Q) and u,, — u a.e.

in Q. Further, [Vu, — Vul? =T, |g||lu, — u[’ — v in M(Q). Since u, € G, {1},
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using Lemma 3.1.8 we have

1 :/\gHu\p dz + [V + veo.
Q

Suppose |[I'|| or I'y, is nonzero. Then using Hardy-Sobolev inequality, part (i) of

Lemma 3.1.8 and Lemma 3.1.4, we obtain the following estimate:

/ gl[ul? dz+ v + V]| < B, / Vul? do + Cir (C2IT]| + Cy(00)Twc)
9] 9]

< B, (/ Vul? dz+ [T + roo)
Q
< B, x E,Hoo/ |V, | dx.
Q

- 1
A contradiction, as limn_m/ |Vu,|P de = B Thus ||I'|| = 0 = I'w. Consequently,
Q g

|v]| = 0 = v (by part (i) of Lemma 3.1.8 and Lemma 3.1.4) and / lg||ulP dx = 1.
Q

Therefore, B, is attained at w. O

Remark 3.1.17. For g(z) = - in RY, it is well known that B, is not attained in

=P

Dy?(Q). Further, C,(0) = (=1)"' 1 d hence CyC: = B,.

(N—p)P

Corollary 3.1.18. Let g € H,(Q2) and ]Z\ =0. If
Culdist(g, FHp(2)] < |9,
then By is attained in Dy ().

Proof. For g,h € L}, (Q) and FCCQ,

loc

Jr19IxB, () dx < Jrlg = hlxs. ) dz [ |hIxB, ) do
Cap,(F,Q2) — Cap,(F, ) Cap,(F, Q)

By taking the supremum over all such F' and r tends to 0 respectively, we obtain
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Cy(x) < Cyp(x) + Cp(z) and hence
(3.1.11) C, <C, ,+Cj.

Now as Cy[dist(g, FHy(2))] < |lgll2,, J¢ € FH,(2) such that Cyllg — ¢[ln, <
1gl[3,- Thus by (3.1.11), CuC; < CuC;_y < Chllg — ¢lln, < llglln, < B, and

similarly CyC,4(00) < B,. Now the result follows from Theorem 1.1.6. O

Theorem 1.1.6 helps us to produce Hardy potentials for which the map G}, is not
compact, however, B, is attained. The following theorem is an analogue of Theorem

1.3 of [69]:

Theorem 3.1.19. Let h € H,(2) and ‘E’ = 0. Then for any non-zero, non-
negative ¢ € FH,(Q), there exists e¢ > 0 such that B, is attained in Dy (Q) for

g=h+e€op, for all € > €.

Proof. Let h € H,(£2) be such that |Z| = 0. Take a non-zero, non-negative

2CH—1)||ln,

¢ € FHy(2) and €y = ( ol then for € > €, let g = h+€¢. Clearly, ]Z| =0

and

1Al32, + €l 4,

CHC; = CHCZ—i—eqb = CHCZ < CHHhHHp < 5

< [lglls, < By-

Similarly, we can show C'yCy(00) < ||g||ln, < By Therefore, by Theorem 1.1.6, By is
attained. O
Remark 3.1.20. Recall the definition of S,(z), z € Q U {oo}. In [67], author also

considered the following quantities :

S, = supSy(z),

z€N
S, = inf {/ |VulP de:u e Dé’p(Q), / lg||ul? dx = 1} .
Q Q
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Since S,(.) captures the best constant in the Hardy inequality locally at the points

of Q and at the infinity, by (3.1.2), we have

1 1
(3.112) o, < = < Cullgln,: €} < = < CuC;.
5, S;
1
1.1 < < .
(3 3) Cg(OO) = Sg(OO) = CHCQ(OO)

Therefore, if CuC;; < [|g|l#, and CuCy(00) < [|g[[#, then Sy < Sy and S, < Sy(o0).
Thus, if in addition Z (= flg) is countable, then Theorem 1.1.6 follows from [67,
Theorem 3.1]. Therefore, our sufficient condition is slightly weaker than that of
[67]. This is mainly because of the gap in the Hardy inequality given in (2.3.5) (see

(3.1.2)). However, on the other hand, our sufficient condition assumes |Z| =0

instead of its countability.

Example 3.1.21. For 2 < k < N and for z € R, we write 7 = (y, 2) € RF x RN 7F.
Now consider g(z) = g(y, 2) = ¢ ‘p in R¥ xRNV=*. By Theorem 2.1 of [12], g € H,(RY).
Next we show that - = {0} x R¥*. For any (0,2) € R* x R""* and r > 0, using

the translation invariance of both the integral and the Cap,, we have

fB"(O’Z)g(x) dz fB (0,0) yL
Cap,(B,(0,2))  Cap,(B,(0,

Now by taking » — 0 we have C,(0, z) > Cﬁ((0,0)) > 0 and hence Zg 2 {0} x
RN=k. Next for xog = (yo,20) ¢ {0} x R¥N=% let 0 < 7 < |yo.| Then by Proposition

2.3.2 we obtain
1 1 _
Jorton) 0F . _ Tt S B (p— 1 )p 1 ( r ) .
Cap,(B,(z0)) —  Cap,(B(z0)) N—p N(lyol — )

Now by taking  — 0, we obtain Cy(xo) = 0. Hence, > = {0} x RN=F,

Remark 3.1.22. We consider g(z) = for z = (y,2) € RE x RN"F (2 < k < N).

\I’”

In Example 3.1.21, we have seen that g € H,(Q2) with > is uncountable and
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\Z! = 0. Now choose any ¢ € FH,(Q2) and consider § := g + €p. Then, there
exists €y > 0 such that B; is attained if € > ¢, (by Theorem 3.1.19). Further, in
Example 3.1.21, we have seen that . is also uncountable and |Z\ = 0. Thus, g

lies outside the class of functions considered in [67, 69].
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Chapter 4

The Hardy-Rellich and

Hardy-Hessian potentials

In this chapter, we study the Hardy-Rellich potentials and the Hardy-Hessian po-

tentials in detail. Here we prove Theorem 1.2.1, Theorem 1.2.2, and Theorem 1.2.3.

Let us recall

e the space of Hardy-Rellich potentials
HR,(Q) = {g € L, () : g satisfies (1.2.3)} ,
e the space of Hardy-Hessian potentials
H,(Q) = {g € L,,.(Q) : g satisfies (1.2.4)} :

Also, we have observed that HR,(2) C H,(f2), and for p = 2, they are the same
i.e., HR2(2) = Ho(£2). The Poincaré inequality ensures that L>(2) C HR,(Q?) if
2 is bounded in one direction. Whereas, (1.2.2) assures that ﬁ € HR,(£2) even

if €2 contains the origin. Unlike the Hardy potentials, Maz'ya type characterisation
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(Theorem 2.3.5) for Hardy-Rellich potentials and Hardy-Hessian potentials are not
known. Although, Maz'ya has given a necessary and sufficient condition (using
higher-order capacity) on g so that (1.2.3) holds for all non-negative u € C%(Q);
however, this can not be extended for sign-changing functions, see [57, Section 8.2.1,
page 363]. In this chapter, we provide several function spaces that lie in HR,(§2) or
H,(€2).

4.1 Lorentz spaces in H,(2) and HR,(?)

In this section, we prove Theorem 1.2.1. Our aim is to identify certain Lorentz
spaces in HR,(Q) and H,(Q). One may use various embeddings of Dy”(Q) (the
completion of C?(Q) with respect to the norm [ull pzr = [y IV2ul]?), to show
certain Lebesgue and Lorentz space are contained in H,(£2). For instance, using the

Lorentz-Sobolev embedding D7 (Q) < LP"?(Q), one can deduce the following:

/Q|9||U|p dr <9Il g0 o lllul”ll we s = N9l o ol s

P

(4.11) < Cllgl, 3 Il = Clal . [ 172" ds.

This inequality clearly shows that L%’OO(Q) C H,(€2). Now, for any p € (1,3), we
prove L%’OO(Q) C HR,(2) (which is Theorem 1.2.1-(3)) by using the Muckenhoupt
necessary and sufficient conditions (Lemma 2.5.1) for the one dimensional weighted

Hardy inequalities and a pointwise inequality for the symmetrization (Lemma 2.1.3)

obtained in [23].

First, we prove the following lemma which is an immediate consequence of the

Muckenhoupt conditions (Lemma 2.5.1).

Lemma 4.1.1. For N > max{2p, 2p'}, let Q be an open set in RN and g € L%’OO(Q).

Then, there exists a constant C' = C(N) > 0 such that the following two inequalities
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hold:

1 0 s p €2
(4.1.2) /0 g (s)s Pt (/0 |f(t)] dt) ds < CHgHL%,OO/O |f(s)|P ds,

o] [ , b 1]
(4.1.3) /0 9 (s) (/ ViG] dt) ds < C||g||L%,oo/O | f(s)[P ds,

for any measurable function f on (0,[€]).

Proof. For proving (4.1.2), we set a = |Q|,u(s) = g*(s)s‘erQWp and v(s) = 1 in

(2.5.1). Thus fotv(s)l_p/ ds = fot ds = t. Further, since N > 2p/, we can get

a 0] . o,
/ u(s) ds :/ g (s)s PV ds < g*(t)/ s PR ds

t t t
N

2p
S —— g A (A
SN -2 -N g°{0)

Therefore,

a % t »
Ay = sup (/ u(s) d8> (/ U(3>1*p’ dS) < CHngﬂ L <
o<t<a \J¢ 0 Lep

and hence (4.1.2) follows from part (i) of Lemma 2.5.1.

[un

To prove (4.1.3) we set a = |Q],u(s) = ¢*(s) and v(s) = sP~% in (2.5.3). Now

fot u(s) ds = fot g*(s) ds = tg**(t) and since N > 2p, we get

o & N
A (p—22)(1-p) (p—22)(1-p')+1
v(s ds = s\PTN ds < t\PTN .
/t (%) /t “pP(N-2)-N

Therefore,
1

t a I
Ay = sup (/ u(s) ds> (/ v(s)tP ds) <Olgl)f v = < 0.
o<t<a \Jo t L2

Hence (4.1.3) follows from part (ii) of Lemma 2.5.1. O

=
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Now we prove Theorem 1.2.1.

Proof of Theorem 1.2.1. (i) Let u € C2(Q). Then by the Hardy-Littlewood

inequality (Proposition 2.1.2-(i)) we have

2]
(4.1.4) / 9o [uz)P dz < / g (s (s)" ds.

Furthermore, Lemma 2.1.3 gives

[ rewer as< et [Tt ([ auwa) o
(4.1.5) + 2P 1 /Om g (s) (/OO |Aul*(t)t dt)p ds.

Since g € L%’OO(Q), using Lemma 4.1.1 we can estimate each term in the right hand

side of the inequality by

12|
CHgHLZJ;,OO/O (JAu|* ()" dt.

Noting that |||Aul*||zr0,10)) = [|Au| tr(q), (4.1.4) and (4.1.5) yields

@o) [ lo@llu@p de <Clgl . [ 18uP do. vae @),
Q P 0

Hence g € HR, ().

(ii) Let R € (0,00] and let Q@ = B(0; R) C RY. Let g : Q — [0,00) be a radial and
radially decreasing function in HR,(€2). We will show that ¢ € L%’OO(Q). For each
r € (0, R), consider the following function:

(r=lz)* |z[ <,

up(z) =
0 otherwise.
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By differentiating twice, we get

2N — (2N - 2)1 o <7,
Au,(z) =

0 otherwise.

Now
r p
/ |Au, P dz :/ |Au,|P dx :/ [2]\7— (2N — Q)W] dx
Q ™ r
< ov ! [QPprNrN + (2N — 2)prp/ L d:v]
B, |zf?
(4.1.7) <y {TN + rp/ gNp1 ds} < Cor?,
0

where C},Cy are constants that depends only on N. Thus for each r € (0, R),
u, € DyP(Q). Furthermore, since g € HR,(2) and C%(Q) is dense in D” (), we

have

(4.1.8) /Q|g(x)|]ur(x)|p de < C/Q Au P dz, Vr € (0, R).

Since g is radial and radially decreasing, the left hand side of the above inequality

can be estimated as below:

[ ls@lu@p de= [ lgtabllu@r de= (r=5)" [ lglla)] do

)N

(4.1.9) - (2)2” /B g (z) dr = (g)Qp /meg g*(s) ds.
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Now by setting wy (%)™ = ¢ and since 0 < r < R is arbitrary, we conclude that

sup tQng**(t) < Cs.
te(o,‘%)

As tQng**(t) is bounded on (%, 1€2]), g must belong to L%’OO(Q). O
Remark 4.1.2. Recall that Hy(2) = HR2(2). Thus, by taking p=2and N > 5
in Theorem 1.2.1, we have the following:

(i) (A sufficient condition) LT(Q) C HRy(Q).

(i) (A necessary condition) Let € be a ball centered at the origin or entire RY
and ¢ be radial, radially decreasing. Then g € HR»(2), only if g belongs to
LT(0).

Remark 4.1.3. Let p =2 and N > 5. Let Cg be the best constant in (1.2.3). Then

from (2.1.1), Remark 2.5.2 and Lemma 4.1.1 one can deduce that

Cr

IN

1
g(x) 7 ,x € Bg(0). It is easy to calculate
€T «
) (25)¥ 0<t<wyRY, . N () g <t <wyRY,
gi(t) = g(t) =
0 t Z CONRN. 0 t Z wNRN.
Therefore,

~ . R < oo if and only if o <4
g € L'°°(Bg(0)) with

R = oo if and only if o =4.

Remark 4.1.5. A similar computation as in Example 4.1.4 shows that, if N > 2p,
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¥

Zp
then g(x) = ﬁ belongs to L%’Oo([RN) and HgHL% = Neo

Ny This verifies that g is
a Hardy-Rellich potential (by Theorem 1.2.2-(7)).

As a consequence of Theorem 1.2.1-(7), we have a simple proof for the Lorentz-
Sobolev embedding:

Corollary 4.1.6. Let Q C RY is an open set and N > max{2p,2p'}. Then we have
the following embedding:

5k N
Dy (Q) — LPP(Q), where p™* = I p2 .
— 4P

Proof. Without loss of generality we may assume Q = RY (for a general domain €,

the result will follow by considering the zero extension to RY). Using the density of

C2(RY) in DX*(RN), for each g € L% (RY) we have

| s or < cgl g [ 180 dz, v DR

. . 1 % WN %p ij,ﬁp
In particular, if we choose g(z) = 1z, then g*(f) = (X)) N and HgHL%"’O N
Substituting this in the above inequality, we get

/ X dt < Gy / | Auf” dz, Vu € Dg"(RY),
0 RY

p

where (] is a constant that depends only on N. Since / % lu*(t)|P dt = |u (0 )

0
is equivalent to [[u]|" .. ,, we obtain the required embedding

Jwll? o, < Co /RN |AulPdz, Vu € ng([RN).

This proves the corollary.
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4.2 Weighted Lebesgue spaces in H,(2)

In this section, we prove Theorem 1.2.3. We use the fundamental theorem of integral

calculus to identify certain weighted Lebesgue spaces in H,(2).
We commence with the following proposition.

Proposition 4.2.1. Let p € (1,00). Foru € C2(RY), the following inequality holds:

L

Proof. Observe that

p
(r,w)| dS, dr §/ IV2ul? dz .
RN

Further, have the following inequality for an N x N real matrix A = (a;;) and

xRN

N N N N N
(421)  [(Az,z)? <) aymg]® < (ZZa]> (Z ) (ng).
i=1 j=1 i=1 j=1 i=1 =1
Now by writing z = (r,w) € (0,00) x SN~ for z € R \ {0}, and using (4.2.1), we

obtain
o] @2
/0 /SN 1 87” 2

—(r, w) r

and this concludes our proof. O]

66



For N > 2p, in Theorem 1.2.3, we exhibit a weighted Lebesgue space in H,(£2).
A similar result for the Hardy potentials is obtained in [33, Lemma 1.1]. Let us

recall that, for an open set 2 in RY and a radial, non-negative function w on R¥,

Liad([RNﬂU) = {g € L1<|RN7’UJ) °g is radial} )

rad(Q UJ) { g’Q - g S L}’ad(RN7w)} .

Now we prove Theorem 1.2.3 for N > 2p.

Proof of Theorem 1.2.3 (for N > 2p). For z € RV \ {0}, using the polar coordi-

nates, we write r = (r,w) € (0,00) x S¥~1. Thus for u € CZ(R"Y),

> du du * 0%u
u(r,w) = — E(t,w) dt = —ra(r, w) —i—/r tﬁ(t,w) dt

(4.2.2) :/°°<t_r>f;§< W) dt.

T

Hence

< 9% ® i~ ~na1|0%u
|u(r,w)|§/r |5t ) dt:/r P T
Now by Holder inequality, we get
e =4 o 2 P
lu(r,w)|P < (/ e dt) (/ AR gTZ(t,w) dt)
1 o0 0*u P
4.2. =¥ N N (¢ dt.
(423) N — 2pr /T 8t2( @)

Since g € Ll ;(,]|z|?*~), there exists g : [0,00) — [0, 00) such that |g(x)| = g(|z|)

and [on g(|z])|2[*~" dx < co. Multiply both sides of (4.2.3) by g(r) and integrate
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over SV—1 to obtain

~ ’ pd8w< 2p NN / /
L, ot s, < 5= »

1
4.2.4 < —— 2 NG(r </ VulP da:) ,
(124) i ([ el

where the last inequality follows from Lemma 4.2.1. Finally, multiplying both the

p

ds, dt

8t2 t (t,w)

sides of (4.2.4) by Nwyr¥~! and integrating over (0, 00) with respect to r yields:

[ atabiutor e < 2 ([ atiabiar ae) ([ 192 as).

Thus, we have

/Q lg(2)||u(z) P dz < C(N,p) (/[RN 9(x)|zPN dx) (/Q |V 2ulP dx) , Yu € C3(Q).

Hence g € H,(€2). O

Remark 4.2.2. We would like to remark that, for an open subset € in RY with
N > 2p, if g € L}, .(Q) is such that |g(z)] < w(|z|) for some measurable function
w : [0,00) = [0,00) and /OO r?#~Lw(r) dr < oo, then Theorem 1.2.3 infers that
g € Hy(Q). 0

Remark 4.2.3. Since Hy(€2) = HR(f2), by taking p = 2 and N > 5 in Theorem

1.2.3, we conclude that L}

loc

(2, [2]*V) € HR,(Q).

Next, we show that the spaces identified in Theorem 1.2.2 and the spaces iden-

tified in Theorem 1.2.3 are not contained in each other.

Example 4.2.4. Let p =2, Q = RY with N > 5 and let 8 € (+,1). Consider

(lz| =177, 1 <z| <2,
gi(z) =
0, otherwise.
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We can compute the distribution function «, and the one dimensional decreasing

rearrangement gj as below:

wn2N — wy, 0<s«1
agl(s) = < 1 N
wN(S_E—kl) —wy, s§>1.

0, t > WN(QN — ].)

91(t) = | (<ﬁ+1>

Hence, for t < wy(2Y — 1),

t¥ gi (1) :t;\l’((i—i-l);] —1)B >t <(£+1) —1)ﬂ= t;@(%)é

)t%gf(t) — 0o and hence g ¢ L1°°(RM).

Z|=

-8
—1) , t<wy(2Y -1).

z|

. 4
Since [ > ¥ SUPie(0,00

Let w(r) = (r — 1)™Px@2)(r). Clearly gi(z) < w(|z|),Vz € RY and since § < 1,

o] 2 1
/ w(r)r® dr = / (r—1)Prd dr < 8/ 577 ds < .
0 1 0

Thus g; is a Hardy-Rellich potential by Theorem 1.2.3.

Example 4.2.5. Let p = 2, go(z) = =1, € RY with N > 5. By Example 4.1.4,

|z

g2 € L%OO(IRN) and hence go € HRo(RY) by Theorem 1.2.1. Let w be a function

on (0, 00) such that g(z) < w(|z|). Then

/ w(r)r® dr > / r~ x 3 dr = .
0 0

Thus go does not satisfy the assumptions of Theorem 1.2.3.

Remark 4.2.6. The above examples shows that the the sufficient conditions given
by Theorem 1.2.2 and Theorem 1.2.3 are independent. The question whether these

spaces exhaust all the Hardy-Rellich potentials is open.
Remark 4.2.7. There are Hardy-Rellich potentials whose Schwarz symmetrizations
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are not Hardy-Rellich potentials. For example, the Schwarz symmetrization g7 of
. (in Example 4.2.4) does not belong to L1 °(Q*) and hence by part of (i) of

Theorem 1.2.2, g7 can not be an Hardy-Rellich potentials.

Next we prove Theorem 1.2.3 for 2 < N < 2p. In this case, we assume 2 = (), g,

where S is an open subset of SV~ and a, b € (0, 00| with b > a, and

Qabg—{xEIRN a<|z| <b — ESlfx%O}

Proof of Theorem 1.2.3 (for 2 < N < 2p). Let Q = Qup ¢ with a > 0. As be-
fore, for x € €, we write v = (r,w) € (a,b) x S. For u € C*(Q), we use the

fundamental theorem of calculus to get

As in the proof of Theorem 1.2.3 for N > 2p, we deduce

2 N—1 N-1 82u

u(r,w) = /r(r - t)g (t,w) dt = /r(r — T oo (tw) d.

Now Holder inequality yields

ro p—1 r 2
lu(r,w)|P < 7“”(/ o1 dt) (/ Nt gu

oz ()

p
dt) |

Since g € X,qa(€2), there exists g : [0,00) — [0,00) such that |g(z)| = g(|z]).
Multiply the above inequality by Nwyr¥~1g(r) and integrate over S x (a,b) and

use Lemma 4.2.1 to obtain

/Q 3l u()P da

(L[] arrma) ([ 2
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b T p—1
Let A = ( / pNTP=l [ / 1 dt} g(r) dr). Then the above inequality yields

(4.2.5) /Qg(|x|)|u(x)|p dr < NwNA(/Q V202 dx) .

Notice that

Jo 9(Jz]) |z [P dz, p< N<2b=oco
(4.26) A= Jodllelallog(5h)~" do, N =pib= oo
fgﬁ(lxl) dz, 2 <N <2p;b < oo.

Now the assumptions on g together with (4.2.5) and (4.2.6) infers that g € H,().
[l

Remark 4.2.8. Let p = 2 and Q = Q,, 5 (with a > 0) be a sectorial open set in
RY with 2 < N < 4. Let g € L}, (Q) be such that

rad(Q ’.T|) N:374ab:OO
g€ LLa(Q |z)*log(4)), N=2ib=0c
Ll

rad

(Q), 2< N <4;b < o0.

Then Theorem 1.2.3 infers that g € HR2(Q) (as HR2(2) = Ha(2)).

4.3 The critical case (N =4, p = 2)

In this section, we consider the particular case: p = 2 and N = 4 and prove Theorem
1.2.2. In this case, we assume that the domain €2 is bounded. Recall that, for a

bounded domain 2, we define

0<t<|Q

Q
Mlog L(Q2) = {g measurable : sup t log (%) g7 (t) < oo} :
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Mlog L(2) is a rearrangement invariant Banach function space with the norm

Q kk
ol = s t1ox (52) 470,

0<t<|Q|

First we show that, as a vector space Mlog L(2) is nothing but the Lorentz-
Zygmund sapce L *°(log L)?(Q2).

Proposition 4.3.1. Let @ C RN be a bounded open set. Then LY >(log L)*(Q2) =
Mlog L(2).

Proof. First we prove that |[|f|smiogr < |f]rt cpogry2- For f € M(Q) and t €
(0,1€2]), we have

0= [ 1= [ e o (] ')TW@
< o 0 Jos ()] m g

|f|L1= > (log L)2

log (121)

This yields || fl|miogz < |f]r1 co(0g )2 and hence
LY (log L)*(R2) € M log L(Q).

If the above inclusion is strict, then 3f € Mlog L(Q2) \ L' *(log L)*(Q), i.e.,

2
sup (i)t {log (M)} <oo; sup fr(i)t {log (Mﬂ = 0.
0<t<|Q| 3 0<t<|Q t

Now consider the function
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Claim: lim g(t) = oo.

t—0

2
If the claim is not true, then 3ty > 0 such that sup,,, g(t) = oco. Since ¢ [1og (#)}
is bounded, we must have f*(¢) = oo for t < ty. A contradiction as f € Mlog L({2)
hence claim must be true.

Now by the claim, there exists a decreasing sequence (t,,) in (0, |€2|) such that (¢,)

converging to 0 and ¢(t) > n, for t € (0,t,). Consequently,

tn t tn 1
tnf**(tn):/ 9(0) thzn/ Sdt > ”lm .
(" e ()
Therefore,
1
0 lOg —n
lim ¢, f**(t,) log (u) > lim nM = 00.
n—00 tn n—0o0 IOg <M>
A contradiction as f € Mlog L(Q). Hence L*>°(log L)*(Q2) = Mlog L(Q). O

Remark 4.3.2. From the above proposition, one can observe that the quasi-norm
| flL1 > (og )2 and the norm || f{|s110¢ 2 defines the same vector space, however, they
are not equivalent. To see this, let Q = B(0; R) C RY and for each n € N, consider

the function {f,} on €2 defined as

1 n+1
, = € B0, Re="%))
Fulw) = 4 |2 log((F)Ve)m+
0, otherwise.
Let T = |B(0; Re="3"))|. Then, we have
WN
— N e (0,T)
£ty = 4 tllog(<FH)n2
0, te[T,19),
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and

s - 1€(0,T]
() = (n + L)t[log(<)]"*
(), t e (T,19f).
Therefore,
e|Q\ 17 1
o= os ()] 0=
0<t<|Q| t 0<t<T [log (@)]

Now, notice that t [log <‘Q|>] @) <T [log (%)} fi2(T) for t > T. Thus,

T

- WN 1
t) < su -
fo®) < =4 i [log <e|mﬂ

Q
Vol stiogr, = sup ¢ [log (uﬂ
0<t<| t

Hence (n + 1)|| fullmiog 2 < | fnl,00,2)-

Now we prove an analogue of Lemma 4.1.1 for N = 4.

Lemma 4.3.3. Let Q be a bounded open set in R* and g € M log L(Q). Then, there

exists a constant C' = C(N) > 0 such that the following two inequalities hold:

asy " g (s)s! ( [ s dt)2 s < Cllgllatios: O'Q' F(s)? ds.

€2

2
| 2 1
IEC e ( Floye dt) ds < Cllglauss [ F(5)? ds.
0 s 0
for any measurable function f on (0,]9]).

Proof. For proving (4.3.1), we set a = |Q|,u(s) = ¢g*(s)s™! and v(s) = 1 in (2.5.1).
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Thus [)v(s)~" ds = [} ds =t and

a 1 1]
/t u(s) ds = /t g (s)s™! ds < g*(t)/t st ds = log(@)g*(t).

Therefore,

a t
A, = sup (/ u(s) ds> (/ v(s)’1 ds) < Cllgl|miogr < 00
o<t<a t 0

and hence (4.3.1) follows from part (i) of Lemma 2.5.1.
To prove (4.3.2) we set a = |Q,u(s) = ¢*(s) and v(s) = s in (2.5.3). Now

fot u(s) ds = Otg*(s) ds = tg*™(t) and

/tav(s)_1 ds = /tfll st ds = log(@)

t

Therefore,

t a
&:sw(/u@d§(/v@*w)smmme<w
o<t<a 0 t

Hence (4.1.3) follows from part (i) of Lemma 2.5.1. O

Now we prove Theorem 1.2.2 (for N = 4). An analogue of this theorem for

Hardy potentials is proved in [7].

Proof of Theorem 1.2.2. (i) Our proof follows in the same line as in the proof
of Theorem 1.2.1. Let u € CX(2). Then, by the Hardy-Littlewood inequality

(Proposition 2.1.2-(i)) we have

2]
(43.3) 4mwmwm%msA g (s)u*(s)? ds.
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Further, using (2.1.3) we have

Amg%@wwfdsgzémbwﬁs1(47Amwwﬁ)2%
+ 2/0|Q| 4" (s) (/OO Aul* ()t dt)2 ds

€]
(4.3.4) gcmwm3/<mwwfﬁ,
0

where the last inequality follows from Lemma 4.3.3 (as ¢ € Mlog L(f2).) From
(4.3.3) and (4.3.4), we get

19]
LM@M@FWS/‘f@W@Vﬁéﬂwwm{AmwdmwﬁCﬂm.
0

Hence, g € HR2(Q2).

(i1) Let R € (0,00) and let 2 = Bg(0) C R*. Let g be aradial and radially decreasing
Hardy-Rellich potential on Q. To show g € Mlog L(2), for each r € (0, R), we

consider the following test function:

2
fz(log(%)) , lz| <r

up () = 2
(log(%)) Q. (z), r<lz|<R
210g(‘7R|) . . —
where ®,.(z) = exp | — sy |- In our computations we use the notation D; =
2 and D;; = %. For r < |z| < R, noting that D;®,(z) = M}%@T(I) and
D, log(%) = —T,fz» we compute the derivatives of u, as below:
i R\ [los(i)
Dju,(z) = 2®,(z)— log <—> — 1.
]2 21/ | log(£)
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Furthermore,

Di-ur (z) =

422 log (1) 212 1 R\ 222 [los(i)
>, i o2t f = og [ =) — 2L 1
@{w log(8) (i o) e ()~ tog(E)
20 (2) x? log(‘%)
) e Tog(B)

Thus for r < |z| < R,

Observe that @, (z) < 1, log(£) <log(£) and 1 <log(£) for r < £. Hence

||

\Au(x)|<16lo i +4+210 i <18lo o +4
ST ) T e T e B el T el B el T e

Thus for r < %, we have

1 S|
[P <o [ (ﬁ) M
Q O\B(0,r) |z] || ||

(4.3.5) < { {log (?)} " log (?)} <c [log (?)} |

where C} is a positive constant independent of r. Notice that u, is a C' function

dx

such that wu, and Vu, vanish when |z| = R, hence u, € H2(Q). Further, as g is

radial, radially decreasing, we easily obtain the following estimate:

(4.3.6)
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The assumption that g is a Hardy-Rellich potential together with (4.3.5) and (4.3.6)
yields

4

log (E) / g'(s)ds < C, Vre(0, E)
0

T €

By taking t = wyr?*, we get

— - < - — .
4log< ; )/0 g (s) ds < C, Vt ((), o

1
t

12|

Since tg**(t)log(5") is bounded on 7 < t < |Q], from the above inequality we

conclude that
€]

sup tg™*(t)log(—) < 0.
te(o.j2) t

Hence g € Mlog L(£2). O

As a corollary of our previous theorem, we give a simple, alternate proof for the
embedding of H3(Q) into the Lorentz-Zygmund space L 2?(log L)~!(f2) obtained
independently by Brezis and Wainger [20], and Hansson [42] (one can also see [26]

for an alternate proof).

Corollary 4.3.4. Let Q C R* is an open bounded set. Then we have the following

embedding:
H3(Q) — L= %(log L) '(Q).

Proof. First, assume that €2 is a ball of radius R and centred at the origin i.e.,

2 = Br(0). Let X(Q2) = Mlog L(Q2). For each g € X(Q2), (4.3.4) gives,

2]
(4.3.7) /O g () (1) dt < Cllgllx /Q |Auf? dz, Yu € HX(Q).
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Let

\x!210g((£)4e)] L x€B, 4(0):=0

|z

g1(x) =

147 :L'EQ\@

4|z

A straight forward calculation gives that

W4y ~
. t(l 5|Q‘)2’ te (07 ‘QD
gl(t) t _
0t ¢ € (|9, 19)).

Thus, g1 € LY*(log L)*(?) and hence, g; € Mlog L(Q2) (by Proposition 4.3.1).

Now, by using (4.3.7), we have

L e A
/Ot[ (40) I s (1)) b

log < t log ‘T
1 Iﬁl * * 2 4 1 * * 2
=— [ gi@®)@ (@) dt+— [ gi(t)(u(t)) dt
Wy Jo Wa J19)
4 1 * * 2
< — g () (u(t))” dt
Wa Jo

< C’l/ |Au|? dz, Yu € Hj(Q).
Q

The left hand side of the above inequality is equivalent to [|u| . 2(10g 1)-1 (DY Propo-
sition 2.2.6). Therefore,

Jul2 e 210g 1)1 < C /Q Al da, Yu € H2(9).

Now for a general bounded set €2, there exists R > 0 such that Q C Bg(0). In this
case, we obtain the required embedding by considering the above inequality for the

zero extension to Bgr(0). O
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Chapter 5

The logarithmic-Sobolev and the

logarithmic-Hardy potentials

This chapter is devoted to the study of the weighted logarithmic-Sobolev and the
weighted logarithmic-Hardy inequalities. In this chapter, we give a proof of Theorem

1.3.1, Theorem 1.3.2, and Theorem 1.4.2.

5.1 A weighted logarithmic Sobolev inequality

In this section, we look for a general class of weight functi