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Chapter 1

Introduction

1.1 Kac-Moody Lie algebras

We recall some basic definitions and results concerning Kac-Moody algebras and

their representations, following Kac’s book [7].

1.1.1 Generalized Cartan matrix (GCM)

An n x n complex matrix A is called a generalized Cartan matriz if it satisfies the

following conditions:

1. a;=2fori=1,2,....n.
2. a;; are nonpositive integers for i # j.
3. a;; = 0 implies a;; = 0.

A generalized Cartan matrix A = (ay;)7,—, is called symmetrizable it A = DB for

some invertible diagonal matrix D = diag{ds, ds, ..., d,} and a symmetric matrix B.
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Let b be a complex vector space such that dim h —n = n — £, where £ is the rank
of A. Let IT = {ay, ag, ...,a,} C b* and IIY = {af, a3, ..., '} C b be linearly
independent such that (o}, ;) = a;; for i,j € {1,2,...,n}, where (,) : h* x h = C

denotes the pairing (a, h) = a(h).
Let A = (a;;);;—; be an n x n symmetrizable generalized Cartan matrix and
(h,I1,11V) as above. The symmetrizable Kac-Moody algebra g(A) is a Lie algebra
generated by {e;, fi|i = 1,2,...,n}, b subject to the following relations:

L. [e;, fi] = d;50, for all i, j =1,2,...,n.

2. [h, W] =0, for all h,h' € b.

3. [h,ei] = {ay, h)e; for i =1,2,....,n;h € b.

4. [h,fl] = —<Oéi, h>f1 for i = 1,2, .y 1S h e h

5. (ad e;)'"%ie; =0, for i,j =1,2,...,n;1 # J.

&

(CLd fi)l_aijfj =0, for 1,7 =1,2,...,ni 7& J-

The subalgebra b of g(A) is the called Cartan subalgebra. 11 is called the root basis
and its elements are called simple roots. 11V is called the coroot basis and its
elements are called simple coroots following the same terminology as in the theory

of finite dimensional simple Lie algebras.

Theorem 1.1.1. The symmetrizable Kac-Moody Lie alebra g(A) has the

following triangular decomposition:

g(A)=n_dbhdn,

where ny(resp n_) denotes the subalgebra of g(A), which is generated by
{e;li=1,2,...,n} (resp {fili =1,2,...,n}).
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1.1.2 The Weyl group

Consider the map s; : h* — b* for all © = 1,2, ..., n defined by:

si(A) = A — (N, o) )ay

We can immediately observe that s;(a;) = —a;; s = 1, this shows that s; is a
reflection along hyperplane {h € h*|(\, ) = 0}. Reflections s; are called simple

reflections.

The Weyl group W is the group of automorphisms of h* generated by simple

reflections {sy, sa, ..., S, }.

1.1.3 Integrable module

A g(A)-module V is called h-diagonalizable if:

V:@vA

Ach*

where V) = {u € V]h(v) = (X, h)v;Vh € h}. We say V) is a weight space, and if
Vi # 0 then A is called a weight, and dim V), is called the multiplicity of A and is

denoted by mult V).

Definition 1.1.2. An h-diagonalizable module V' over a Kac-Moody Lie algebra

9(A) is called integrable if all e; and f; for i =1,2,...,n are locally nilpotent on V.

Note that the adjoint module of a Kac-Moody Lie algebra is an integrable module.

1.1.4 Highest weight module

Let U(g(A)) denote the universal enveloping algebra of g(A).
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Definition 1.1.3. A g(A)-module V is called a highest weight module with
highest weight A € h* if there exist a non-zero vector vy € V' such that following
holds:

ni(va) = 0; h(vy) = A(h)ua for h€h

Ug(A))(va) =V
The vector vy s called a highest weight vector of V.

Proposition 1.1.4. Let V' be a highest weight module with highest weight vector

vp and highest weight A € b*, then:

V:@VA; VA:CUA

A<A

and also dimV, < co. Where A < A means A — X is a non-negative linear

combination of simple roots.

We will mention some examples of highest weight modules.

Verma module:- Let A € h* and K, be the left ideal of U(g(A)) generated by n,
and h — A(h) for all h € h. Thus

The module M(X) = U(g(A))/K is a highest weight U(g(A))-module called the

Verma module with highest weight .

Irreducible highest weight module:- The Verma module M (\) has a unique
maximal submodule J(\), the module is V/(\) = M (A)/J(A) is an irreducible

highest weight module with highest weight \ € b*.

Formal Character:- Let V' be a highest weight g(A)-module. We define the
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formal character of V' by:

char(V') = Z dim(Vy)e
AEP(V)

where P(V) is the set of weights of V and e* are formal exponentials, satisfying
the following rules:

e =M AN ep): =1

1.1.5 Integrable highest weight modules

Let A be an n x n symmetrizable GCM. Let V' be a highest weight g(A)-module.

An element A € h* is called an integral weight if (A, ) € Z for all i =1,2,...,n.
Let P denote the additive group of all integral weights. An element A € P called a
dominant integral weight if (A, o) > 0 for all i = 1,2,...,n. Let P™ denote the set

of all dominant integral weights.

Proposition 1.1.5. The irreducible highest weight g(A)-module V (A) is integrable
if and only if A € P,

Proposition 1.1.6. The tensor product of a finite number of integrable highest

weight modules is a direct sum of modules V(A) with A € PT.

1.1.6 Demazure module

Let A € Pt and V(A) be the irreducible highest weight integrable module.
Lemma 1.1.7. Let X be a weight of V(A), and w be an element in the Weyl group
W. Then w(X) also is a weight of V(A) and dimV (A),) = dimV (A)s.

Let b = b @ n, be the Borel subalgebra contaning b, and U(b) the universal
enveloping algebra of b. Fix a Weyl group element w and A € P*. Let
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Vw(ny € V(A) be a non zero weight vector of weight w(A). The Demazure module

Dy (A) is defined by:

1.2 Lakshmibai-Seshadri paths (LS paths)

Let g be a symmetrizable Kac-Moody algebra, with Cartan subalgebra § and let P
denote its weight lattice. A path is piecewise linear map 7 : [0,1] — P ®z R such

that 7(0) = 0.

Let P denote the dominant weight lattice and W the Weyl group. For A € PT,

stabilizer of A denoted by W,. Let “>” be the Bruhat order on W/W,.

a-chain

Let w > w' be two elements of W/W) and let 0 < a < 1 be a rational number. By

an a-chain for the pair (w,w’) we mean a sequence of cosets in W/Wj:
Up =W > Up = SgW > U 1= S, S, W > ... > Uy 1= Sp,...85,S5,W = W
where (4, Bs, ..., Bs are positive real roots such that for all : = 1,2, ..., s:
O(u;) = l(u;—y) — 1; and alu;_1(N\), 8 € Z.
Definition 1.2.1. Let A € P*. A sequence
T=(w >wy>..>w;0<a <ay<..<a, =1)

where w; € W/Wy and 0 < a; < 1 are rational numbers for alli =1,2,...,7. We

say 7 is a LS path of shape X\ if, for alli =1,2,....7 — 1 there exists an a;-chain
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for the pair (w;, wiy1).

We identify this with the path 7 : [0,1] — P ®z R given by:

—

m(t) == ) (ai — ai-)wi(A) + (t — aj—1)w;(A); fort € [a;-1, a4

=1

By the above definition we can see that the end point of path 7(1) € P.

We let P, denote the set of all LS paths of shape .

Theorem 1.2.2. [14] Let g be a symmetrizable Kac-Moody Lie algebra and V()

be the integrable highest weight g-module with highest weight X € PT. Then:

char(V(N)) = Z e™W
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Summary

Let g be a symmetrizable Kac-Moody Lie algebra. For each dominant integral
weight A\ of g, let V) denote the corresponding irreducible integrable highest weight
g-module and let vy be a highest weight vector in V). Given dominant integral
weights A, 4 and an element w of the Weyl group of g, the Kostant-Kumar (KK)
module K (A, w, i) is the cyclic g-submodule of V) ® V,, generated by vy & vy,
where v,,, is a nonzero vector in the one-dimensional weight space of weight w

in V,.

Littelmann has given a path model for the tensor product V) ® V,,. We give, in the
spirit of Littelmann, a path model for Kostant-Kumar modules in terms of
Lakshmibai-Seshadri (LS) paths. Littelmann’s path model gives a generalized
Littlewood-Richardson rule for decomposing tensor products into irreducibles. An
analogous rule for Kostant-Kumar modules was given by Joseph under the
hypothesis that the Kac-Moody algebra is symmetric. We extend Joseph result to
finite type Lie algebras and use this rule to study Parthasarathy-Ranga
Rao-Varadarajan (PRV) components and generalized PRV components in

Kostant-Kumar modules.

At the end, we discuss Kostant-Kumar modules for the finite dimensional Lie
algebras g of type A. In this case, it is well known that the semistandard Young
tableaux are very useful to study representations theory. We gave a procedure to

associate a permutation w(7T) to semistandard Young tableau T'. Permuatation

19



w(T) corresponds to the right key of T introduced by Lascoux-Schiitzenberger.

It is well known that Littlewood-Richardson (LR) tableaux count multiplicities of
irreducible modules in the tensor product. Given a LR tableaux S of type pu, we
can easily associate a semi standard Young tableau T of shape u. We associate a
permutation w(S) to LR tableau S, by simply defining w(S) := w(7T). Then
Littlewood-Richardson tableaux S such that w(S) < w count multiplicities of

irreducible modules in the KK module K (A, w, ).
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Chapter 1

Introduction

1.1 Kac-Moody Lie algebras

We recall some basic definitions and results concerning Kac-Moody algebras and

their representations, following Kac’s book [7].

1.1.1 Generalized Cartan matrix (GCM)

An n x n complex matrix A is called a generalized Cartan matriz if it satisfies the

following conditions:

1. a;=2fori=1,2,....n.
2. a;; are nonpositive integers for i # j.
3. a;; = 0 implies a;; = 0.

A generalized Cartan matrix A = (ay;)7,—, is called symmetrizable it A = DB for

some invertible diagonal matrix D = diag{ds, ds, ..., d,} and a symmetric matrix B.
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Let b be a complex vector space such that dim h —n = n — £, where £ is the rank
of A. Let IT = {ay, ag, ...,a,} C b* and IIY = {af, a3, ..., '} C b be linearly
independent such that (o}, ;) = a;; for i,j € {1,2,...,n}, where (,) : h* x h = C

denotes the pairing (a, h) = a(h).
Let A = (a;;);;—; be an n x n symmetrizable generalized Cartan matrix and
(h,I1,11V) as above. The symmetrizable Kac-Moody algebra g(A) is a Lie algebra
generated by {e;, fi|i = 1,2,...,n}, b subject to the following relations:

L. [e;, fi] = d;50, for all i, j =1,2,...,n.

2. [h, W] =0, for all h,h' € b.

3. [h,ei] = {ay, h)e; for i =1,2,....,n;h € b.

4. [h,fl] = —<Oéi, h>f1 for i = 1,2, .y 1S h e h

5. (ad e;)'"%ie; =0, for i,j =1,2,...,n;1 # J.

&

(CLd fi)l_aijfj =0, for 1,7 =1,2,...,ni 7& J-

The subalgebra b of g(A) is the called Cartan subalgebra. 11 is called the root basis
and its elements are called simple roots. 11V is called the coroot basis and its
elements are called simple coroots following the same terminology as in the theory

of finite dimensional simple Lie algebras.

Theorem 1.1.1. The symmetrizable Kac-Moody Lie alebra g(A) has the

following triangular decomposition:

g(A)=n_dbhdn,

where ny(resp n_) denotes the subalgebra of g(A), which is generated by
{e;li=1,2,...,n} (resp {fili =1,2,...,n}).
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1.1.2 The Weyl group

Consider the map s; : h* — b* for all © = 1,2, ..., n defined by:

si(A) = A — (N, o) )ay

We can immediately observe that s;(a;) = —a;; s = 1, this shows that s; is a
reflection along hyperplane {h € h*|(\, ) = 0}. Reflections s; are called simple

reflections.

The Weyl group W is the group of automorphisms of h* generated by simple

reflections {sy, sa, ..., S, }.

1.1.3 Integrable module

A g(A)-module V is called h-diagonalizable if:

V:@vA

Ach*

where V) = {u € V]h(v) = (X, h)v;Vh € h}. We say V) is a weight space, and if
Vi # 0 then A is called a weight, and dim V), is called the multiplicity of A and is

denoted by mult V).

Definition 1.1.2. An h-diagonalizable module V' over a Kac-Moody Lie algebra

9(A) is called integrable if all e; and f; for i =1,2,...,n are locally nilpotent on V.

Note that the adjoint module of a Kac-Moody Lie algebra is an integrable module.

1.1.4 Highest weight module

Let U(g(A)) denote the universal enveloping algebra of g(A).
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Definition 1.1.3. A g(A)-module V is called a highest weight module with
highest weight A € h* if there exist a non-zero vector vy € V' such that following
holds:

ni(va) = 0; h(vy) = A(h)ua for h€h

Ug(A))(va) =V
The vector vy s called a highest weight vector of V.

Proposition 1.1.4. Let V' be a highest weight module with highest weight vector

vp and highest weight A € b*, then:

V:@VA; VA:CUA

A<A

and also dimV, < co. Where A < A means A — X is a non-negative linear

combination of simple roots.

We will mention some examples of highest weight modules.

Verma module:- Let A € h* and K, be the left ideal of U(g(A)) generated by n,
and h — A(h) for all h € h. Thus

The module M(X) = U(g(A))/K is a highest weight U(g(A))-module called the

Verma module with highest weight .

Irreducible highest weight module:- The Verma module M (\) has a unique
maximal submodule J(\), the module is V/(\) = M (A)/J(A) is an irreducible

highest weight module with highest weight \ € b*.

Formal Character:- Let V' be a highest weight g(A)-module. We define the
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formal character of V' by:

char(V') = Z dim(Vy)e
AEP(V)

where P(V) is the set of weights of V and e* are formal exponentials, satisfying
the following rules:

e =M AN ep): =1

1.1.5 Integrable highest weight modules

Let A be an n x n symmetrizable GCM. Let V' be a highest weight g(A)-module.

An element A € h* is called an integral weight if (A, ) € Z for all i =1,2,...,n.
Let P denote the additive group of all integral weights. An element A € P called a
dominant integral weight if (A, o) > 0 for all i = 1,2,...,n. Let P™ denote the set

of all dominant integral weights.

Proposition 1.1.5. The irreducible highest weight g(A)-module V (A) is integrable
if and only if A € P,

Proposition 1.1.6. The tensor product of a finite number of integrable highest

weight modules is a direct sum of modules V(A) with A € PT.

1.1.6 Demazure module

Let A € Pt and V(A) be the irreducible highest weight integrable module.
Lemma 1.1.7. Let X be a weight of V(A), and w be an element in the Weyl group
W. Then w(X) also is a weight of V(A) and dimV (A),) = dimV (A)s.

Let b = b @ n, be the Borel subalgebra contaning b, and U(b) the universal
enveloping algebra of b. Fix a Weyl group element w and A € P*. Let
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Vw(ny € V(A) be a non zero weight vector of weight w(A). The Demazure module

Dy (A) is defined by:

1.2 Lakshmibai-Seshadri paths (LS paths)

Let g be a symmetrizable Kac-Moody algebra, with Cartan subalgebra § and let P
denote its weight lattice. A path is piecewise linear map 7 : [0,1] — P ®z R such

that 7(0) = 0.

Let P denote the dominant weight lattice and W the Weyl group. For A € PT,

stabilizer of A denoted by W,. Let “>” be the Bruhat order on W/W,.

a-chain

Let w > w' be two elements of W/W) and let 0 < a < 1 be a rational number. By

an a-chain for the pair (w,w’) we mean a sequence of cosets in W/Wj:
Up =W > Up = SgW > U 1= S, S, W > ... > Uy 1= Sp,...85,S5,W = W
where (4, Bs, ..., Bs are positive real roots such that for all : = 1,2, ..., s:
O(u;) = l(u;—y) — 1; and alu;_1(N\), 8 € Z.
Definition 1.2.1. Let A € P*. A sequence
T=(w >wy>..>w;0<a <ay<..<a, =1)

where w; € W/Wy and 0 < a; < 1 are rational numbers for alli =1,2,...,7. We

say 7 is a LS path of shape X\ if, for alli =1,2,....7 — 1 there exists an a;-chain
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for the pair (w;, wiy1).

We identify this with the path 7 : [0,1] — P ®z R given by:

—

m(t) == ) (ai — ai-)wi(A) + (t — aj—1)w;(A); fort € [a;-1, a4

=1

By the above definition we can see that the end point of path 7(1) € P.

We let P, denote the set of all LS paths of shape .

Theorem 1.2.2. [14] Let g be a symmetrizable Kac-Moody Lie algebra and V()

be the integrable highest weight g-module with highest weight X € PT. Then:

char(V(N)) = Z e™W
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Chapter 2

Some results on extremal elements

in Coxeter groups

2.1 Generalities on extremal elements in

Coxeter groups

The purpose of this section is to formulate and prove the required result about
these minimal elements—Corollary 2.1.19 below—in the more natural context of
Coxeter groups. The arguments leading up to the result are all elementary. The
reader willing to accept it at face value without proof may want to skip this

section at a first pass.

The results in §2.1.3, 2.1.4, and 2.1.5 are well known (e.g., from [2, 12] as
specifically indicated in a few places below), but we have included them because
we need them and it is easier to prove them ab initio in our set up than to refer to
sources. It not only makes the thesis more self-contained but also more readable

with these results stated and proved rather than just quoted.
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2.1.1 Notation for this section

Let (W, S) be a Coxeter system. Let < denote the (strong) Bruhat order on W.
For a subset K of the Coxeter group W, we let min K and max K denote
respectively the unique minimal and unique maximal elements of K in the Bruhat
order (if they do exist). For w in W and s in S, the elements v and su
(respectively u and wus) are comparable. Thus min {u, su}, max {u, su},

min {u, us}, and max {u, us} make sense. We denote these respectively by u A su,

wV su, u Aus, and u V us.

2.1.2 The results

The following basic fact is repeatedly applied in this section:
(*)

For elements © < v in W and s in S, we have u A su < v Asv and u V su < vV sv.

The “right analogue” of the above fact asserts: u Aus < v Awvs and uVus < vVus
(under the same hypothesis). Only the left analogues of the “one sided” results

below are explicitly stated. Their right analogues hold good too.

Remark 2.1.1. Suppose that u < v is a covering relation in W (that is,
length(u) = length(v) — 1 and u = tv for some reflection ¢ in W). Then, if for s
in S, we have sv < v and u < su, then t = s. Indeed, it follows from (*) that

u < sv, but then equality is forced since v and sv have the same length.

A simple application of (*) gives:

Proposition 2.1.2. Suppose that a subset K of the Cozeter group W has a unique
minimal element u under <. Then, for any s in S, the subset K U sK also has a

unique minimal element under <, namely, u A su. Analogously, if K admits a
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unique maximal element v under <, then vV sv is the unique maximal element of

KUsK.

Corollary 2.1.3. Let s: s1, S, ... be a (possibly infinite) sequence of simple
reflections (elements of S). For s': s;, Si,, ..., S, a finite subsequence of s, let
w(s') denote the element s;, s; ,---S; of the Coxeter group (note the order
reversal). Let K be a subset of W with a unique minimal element u with respect
to <. Then Ugw(s') K, where the union runs over all finite subsequences §' of s,
has a unique minimal element u, the stable value of u; as j — oo, where u; is

recursively defined: wy = u, and uj1 = u; A sjpu; for j > 0.

PRrROOF: For j a non-negative integer, let s; denote the subsequence sq, s9, ..., s;
of 5. By a repeated application of Proposition 2.1.2, we see that u; is the unique
minimal element of K; := Uyw(s') K, where the union runs over subsequences

of 5;. Since the subsets K increase with j, it follows that u;;; < u;. Since any
decreasing sequence in the Bruhat order stabilizes, we conclude that u; is constant

for j sufficiently large. ]

Remark 2.1.4. What about the maximal analogue of Corollary 2.1.37 Let K be a
subset of W that has a unique maximal element v. With notation as in the proof
just above, we conclude analogously that v, is the unique maximal element of K},
where vy, is defined recursively as follows: vy = v, and v, 1 = v V s; v for 0 <.
Since the K} increase with k, we have v > vg. If the vy stabilize to a stable
value vy, as k — 0o (which in general need not happen), then vy, is the unique
maximal element of UK. In particular, the maximal analogue holds if the

sequence s is finite.

We now apply Corollary 2.1.3 (and its right analogue) in two special cases. First,

let o be an element of W and, with notation as in the corollary, choose the
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sequence §: Si, So, ..., Sy of elements of S to be such that s,,s,_1---s1 is a
reduced expression for 0. Then {w(s') | §' is a subsequence of s} equals

I(o) := {0’ € W |0’ <o}. We conclude that I(¢)K has a unique minimal element
and further that this element is the unique minimal element in I(o)u. Now

applying the right analogue of this argument, we obtain:

Corollary 2.1.5. Let K be a subset of the group W that admits a unique minimal
element u. Then, for any two elements o1 and oo of W, the set I(o1)KI(03) has a

unique minimal element, and this element is the unique minimal element in

I(o1)ul(oy).

The special case of the above result (as also its maximal analogue, namely,
Corollary 2.1.8) when K is a singleton and o9 is the identity element appears

in [12, Lemma 11 (i)].

Corollary 2.1.6. Let o and ¢ be elements of W, and s an element of S. Suppose
that 0s < o. Then min I(o)¢ equals either min I(o)sp or min I(os)p accordingly

as sp < @ or ¢ < sp.

Proor: Choose a sequence s: s = si, S, ..., S, such that s,,8,_1---s1 is a
reduced expression for o. Let ¢;, ¢}, and ¢! be sequences defined recursively as

follows:

e o=, and i1 = ©; A sip1p; for 0 < i <m
* ¢y =sp, and i = p; Asip; for 0 <i<m
b golll =¥, and QOHJrl == SO;/ A 52'+130;, for 1 S < m
By Corollary 2.1.3, min I(0)p, min I(0)se, and min I(os)y are equal respectively

t0 Ym, @, and ¢ .
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First suppose that s¢ < ¢. Then p; = ¢}: indeed, ¢1 = p A s = sp, and

o) = sp As(sp)) = sp. Thus p; = ¢} for all 1 <4, and in particular for i = m.

.

Now suppose that ¢ < sp. Then ¢ = ¢7: indeed, p; = Y A sp = ¢, and ¢} = ¢

by definition. Thus ¢; = ¢! for all 1 <4, and in particular for i = m. O

Towards a second application of Corollary 2.1.3, let S; be a subset of S and W,
the subgroup of W generated by S;. Recall that such a subgroup of W is called a
standard parabolic subgroup. With notation as in Corollary 2.1.3, choose the
sequence §: si, So, ... to consist of elements of S; and such that every element

of W) arises as w(s’) for some finite subsequence s’ of s. Then

{w(s") | ¢’ is a subsequence of s} equals W;. We conclude that W; K has a unique

minimal element. Now applying the right analogue of this argument, we obtain:

Corollary 2.1.7. Let K be a subset of the group W that admits a unique minimal
element u. Then, for any two standard parabolic subgroups Wy and Wy of W, the
set Wi KWy has a unique minimal element, and this element is the unique minimal
element in WiuWs. In particular, any double coset of a pair of standard parabolic

subgroups has a unique minimal element.

Of course, when the subgroups W; and W are finite, Corollary 2.1.7 is a special
case of Corollary 2.1.5. Indeed, letting w; and wy be the unique maximal elements

of Wy and W, respectively, we have Wy = I(w;) and Wy = I(wy).
As the maximal analogues of the above two corollaries, we have:

Corollary 2.1.8. Let K be a subset of W having a unique mazimal element v.
Then, for any two elements o1 and oo of W, the set I(01)KI(02) has a unique
mazximal element, namely, the unique such element in I(oy)vl(o9). In particular,
for any two finite standard parabolic subgroups Wy and Wy of W, the union

W1 KWs of double cosets has a unique mazimal element, namely, the unique such
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element in WivWs.

Remark 2.1.9. (RELATION TO DEODHAR’S * OPERATION.) In [2, Lemma 2.4],
Deodhar states: there exists a unique associative binary operation x on W such
that wxid = w and wx s = w V ws for all w € W and s € S. The uniqueness is
clear. For the proof of the existence, we define w x z := max I (w)I(z) for all w
and z in W (max I (w)I(z) exists by Corollary 2.1.8). It is easy to verify, using
Corollary 2.1.8, that this operation has the requisite properties:

max [ (w)I(id) = max I (w) = w; max [ (w)I(s) = maxwl(s) = w V ws; and

max [ (w)I(max I(x)I(y)) = max I (w)max (I(z)I(y)) = max [ (w)I(x)I(y)

= max (max [ (w)[(z))I(y) = max I (max (I(w)I(z)))I(y),

so associativity holds.

We have:

e The unique maximal element of I(o7)KI(03) in Corollary 2.1.8 is o1 * v * 0.
o [(w)I(z)=I(wxz) for all w and x in W.

e Let K be a subset of W with a unique maximal element v. For any collection
Oy vy Osy T1, ..., Tt Of elements in W, the set I(oy) -+ I(0os)KI(my) - I(T)
equals I(oy x+--*0s) KI(1 *---x 1) and admits a unique maximal element,

namely, 01 x -+ -k Tg % U x Ty * - -+ % Ty.

Remark 2.1.10. Consider the specialized Hecke algebra H defined as the
associative algebra with identity (over say a field k) generated by variables Ty,

s € S, and subject to the relations T? = T, (for all s in S) and the braid relations.
For w € W, let T, be the element T§, T, ---Ts, of H where s; s;, -+ s;, is a

reduced expression for w: this definition does not depend on the choice of reduced

expression because the braid relations are satisfied. The algebra H is just the
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semigroup algebra of the semigroup W with respect to the x operation as in

Remark 2.1.9: {T,, |w € W} is a basis for H and T, T, = Ty for all w and z in W.

Let kKW be the free k-vector space with elements of W as a basis. We can make
EW to be H-H bimodule as follows. For s in S, let Ay denote the (left) operator
on W defined by Asw := sw A w and sA the right operator on W defined by

wsA :=w A ws (for win W). The linear extensions of the operators sA and A to

kW are denoted by the same symbols. We have, for s, ¢t in .S and w in W:

o Ns(Asw) = Asw and (wsA)SA = wsA.
o (Nsw)iA = Ag(wiA).

e Let s1, ..., s, be a sequence of elements of S such that s,,8,_1---51 is a
reduced expression for an element ¢ of W. Then A, --- Ay (w) = min I (o)w
(see the paragraph preceding Corollary 2.1.5) and analogously
w Ay - Ay = minwl (o7, where A; and jA stand for Ns; and s;A
respectively. Thus the operators sA (respectively Ag), s € S, satisfy the braid

relations.

Thus, letting Ty, s € S, act on kW on the left by Ay and on the right by sA, we get

a bimodule structure on kW.

2.1.3 Bruhat order on double coset spaces

Let W7 and W5 be standard parabolic subgroups of W. It is convenient to identify
the coset space W1 \W /W, as a subset of W via the association
WiuWs — min WiuWs,. The Bruhat order on W7 \W /W5 is the restriction to this

subset of the Bruhat order on W.

Corollary 2.1.11. Given two elements WiuWsy, WioWs in W\W /Wy, we have

WiuWy < WioWsy in Bruhat order if and only if there exist u' in WiuWsy and v’
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in WioWsy such that o' < v'. In particular, if min WiuW,y < o' for some v’ in

WivWs, then min WiuWy < 0" for every v € WioWs.

PROOF: For the only if part, just take ' = min WiuWs and v' = min Wi0Ws.
For the if part, apply Corollary 2.1.7 with K = {u/,v"}. Since «’ < v’, we conclude
that min Wiu/'Wy = min W, KW,. But min Wiu/'Wy = min WiuW,y and

min W, KW, < min Wiv'Wy = min WioW, since v’ € K. O

Corollary 2.1.12. For u an element of W and s an element of S, suppose that
suWy < uWi. Then for every v in uWy, we have sv < v. Conversely, if su < u for
the unique minimal element u in uWy, then sulWy < uWi, and su is the unique

minimal element in sulVj.

PRroOF: For the first statement, observe the following: if v < sv, then, by
Corollary 2.1.11, ulW; = vW; < soW; = sulW;, a contradiction. For the first part
of the converse, observe that sulV; < uW; by Corollary 2.1.11, and that equality
cannot hold (if su were to belong to uV; the minimality of v in uWW; would be
contradicted). For the second part of the converse, suppose that = € sul¥;. Then

sx € uWq, and so u < sx, which means su =u A su < sz Az < . O

Remark 2.1.13. For v in W and s in S, it is possible that usW; < uW; but there

exists v in uW; with vs > v. For example, let

2 2 2
W = (s1,82,83|s7 =5 =55 =1, 518981 = S25152, $28352 = 35253, S1S3 = S351)

Wi = (s1,83), u = 8152, and s = 9. Then ulWW; = {159, $15251, $15253, $1525153 },
the minimal element in uW; is u, and usW; = Wy < uWjy, but vs > v for

U = 818283 in ulVj.
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Proposition 2.1.14. Suppose that WiuWy < WioWsy. Then, given v’ in WiuWs,

there exists v’ in WioWsy with v/ <v'.

PROOF: Proceed by induction on the length of u’. Let uy be the minimal element
in WiuWs,. We have ug < u'. If v/ = ug, then v’ <o’ for any v’ in WjvWs (since
ug < vy by definition, where vy is the minimal element of WjvW5;). Now suppose
that ug < u/. Then there exists either s € S N W such that su’ </, ort € SNW,
such that u't < u’. Let us suppose that the former condition holds (the case when
the latter holds is handled analogously). Observe that su’ belongs to WiulWs,. By
induction, there exists v" in WivWs such that su’ < v'. By (*) at the beginning of

this section, we have v’ < su’ Vu' < v'V sv'. But v/ V sv’ belongs to WioWs. O

2.1.4 Deodhar’s Lemma

Let W; be a standard parabolic subgroup of W and let o, w be elements of W. Set

Jow, (W) :={v € W) |w < v}.

Proposition 2.1.15. Let s be in S.

1. Jew, (W) 2 Jew, (W) forw < w'.

2. Jow, (W) C sdsow, (w A sw)

3. Jow, (w) is non-empty if and only if wWy < oWj.

PROOF: Statement (1) is immediate. For (2), just observe that w < z implies
wAsw < xzAsr<sz. Asfor (3), the only if part is trivial, and the if part follows

from Proposition 2.1.14. O
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Lemma 2.1.16. Suppose that o is the minimal element of oW1, and let s € S be

such that so < o. Then

1. sx <z for any x in Jyw,(w); and v < sv for any v in Jw, (W A sw).

2. Jow, (W) = sJsow, (W A sw). In particular,

Jow, (W) = Jow, (W A sw) = Jyw, (w V sw).

3. If either Jow, (w) or Jyow, (w A sw) has a unique minimal element u, then so

does the other and su s that unique minimal element.

PROOF: (1): We have soW; < oW by the second part of Corollary 2.1.12. From
the first part of that corollary, it follows that sz < x for any x in ¢Wj. Since
Jow, (w) C oWy by definition, the first statement follows. The second statement

too follows from the first assertion in Corollary 2.1.12.

(2): For the first assertion, given item (2) of Proposition 2.1.15, it is enough to
show that Jow, (w) 2 sJsow, (w A sw). Suppose = belongs to Jsow, (w A sw). Then
evidently sx belongs to cWj. By item (1) (of the present lemma), we have

sx =x V sx. Since x > w A sw by hypothesis, we have

st=xVsr>(wAsw)Vs(wAsw) > w.

To see that J,w, (w) = Jow, (w A sw) (respectively, J,w, (w) = Jyw, (w V sw)), put
v =w A sw (respectively, v = w V sw). Then v A sv = w A sw, and so, by the first

assertion, Jow, (v) = sdsowy (v A s0) = sJsow, (W A sw) = Jow, (w).

(3) Suppose u is the unique minimal element in Jsow, (w A sw). Then su belongs to
Jow, (w) by (2). Let x be any element in J,w, (w). We have 2 V sx = x by (1), and

st € Jsow, (w A sw) by (2), so u < sx. Thus su < uVsu < szVs(sr)=sxVr=uz.

Suppose u is the unique minimal element in J,w, (w). Then su belongs to
Jsow, (W A sw) by (2). Let y be any element in Jsouw, (w A sw). We have

u A su= su by (1), and sy € J,w, (w) by (2), so u < sy. Thus
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su=uNsu<syNs(sy)=syANy <uy. O

Proposition 2.1.17. (“DEODHAR’S LEMMA”, see e.g. [13, Lemma 5.8]) Suppose

that Jyw, (w) is not empty. Then it contains a unique minimal element. Moreover,
this element can be constructed recursively as follows: let o be the minimal element
i its coset oWy and let s1, ..., s, be a sequence of elements of S such that

51+ 8m 18 a reduced expression for o; put vo = w and v; = v_1 A 8;v;_1 for

1 < j <'m; then v, belongs Wi, and the minimal element of Jyw, (w) is just ovy,.

PROOF: By repeated application of Lemma 2.1.16 (2), we have

Jow, (w) = o Jw, (V). Since Jyw, (w) is non-empty, it follows that Jy, (vy,) is
non-empty as well, which means v,, belongs to W; and is the unique minimal
element in Jy, (vy,). That ov,, is the unique minimal element of J,w, (w) follows

by a repeated application of Lemma 2.1.16 (3). a

Remark 2.1.18. We make a few remarks regarding the construction in

Proposition 2.1.17.

1. The element v,, in the statement of Proposition 2.1.17 is min I(c~1)w (see
the third item in the list in Remark 2.1.10). Thus J,w, (w) is non-empty if
and only if min /(c~!)w belongs to W, and in this case its unique minimal

element is o(min I (o~ )w).

2. Given a double coset Wio0Ws,, where Wj is also a standard parabolic
subgroup, there need not be a unique minimal element among those in the
double coset that are > w. Consider for instance the following simple
example. Let W be the Weyl group of type As: S = {s1,s2} and
W = (81,80 |82 = 82 =1,81508] = 895189). Put Wy = Wy = (1) = {1, 51},

0 = $9, and w = s1. Observe that among the elements in
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WisoWo = {59, 5152, S251, S15251 } that are > s1, there are two minimal ones,

namely, s15o and s957.

. Let w’ be an element of w such that w < w’. Then, evidently,

min J,p, (w) < min J,w, (w') (assuming that both sets are non-empty).

. Let ¢’ be an element of W such that oW, < ¢'W;. Suppose that Jou, (w) is
non-empty. Then J,yy, (w) is non-empty too: for any u in oW (and in
particular for any w in J,w, (w)), there exists, by Proposition 2.1.14, u’

in o'W such that v < u/, and evidently «’ belongs to J,w, (w") when u
belongs to Jyw, (w). However, it need not be true that

min J,p, (w) < min J,y, (w), as the following simple example shows. Let W

be the Weyl group of type As:

(51,82,83 |82 = 52 = 52 = (5159)° = (5083)° = (5183)% = 1)

Let W; be the parabolic subgroup (s9) = {1, 52}, w = s9, 0 = 5153, and
o' = s158953. Then J,w, (w) is non-empty, and

min J,p, (w) = 15350 £ min Joy, (w) = s15283.

. (DEODHAR’S FUNCTIONS f AND g [2]) Suppose that o is the least element
in the coset cWj. Let ¢’ be an element of the Weyl group that is the least in

its coset o'W; and suppose that oW, < o'W; (equivalently o < o’).

Given x in W, there exists 2’ in W; such that ox < 0’2’ (see

Proposition 2.1.14). Deodhar in [2, Lemma 2.2] states that there is a
function f’: Wy, — W; (depending upon ¢ and ¢’) such that, for x and «’

in Wy, oz < o'z’ if and only if f'z < 2’. (Deodhar writes g for f’.) In the
notation of Remark 2.1.10, this function is given by f'x = Ay—10x. Indeed it

follows from Proposition 2.1.17 that A,-10z has the required property.
Deodhar also asserts the existence of a function f : W; — W, (depending
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upon o and ¢’) such that, for x and 2’ in Wy, ox < o’2’ if and only if

x < fa’. To describe this function, let sq, ..., s,, be a sequence of elements
of S such that sy --- s, is a reduced expression for ¢’. Put vy = o, and

vit1 = v; A s;v; inductively for 1 <7 < m. Let p be least, 0 < p < m, such
that v, = id: such a p exists because o < ¢'. Let s;,, ..., s;, be the
subsequence of s,11, ..., S, consisting precisely of those elements that
belong to Wi. Putting 2z := s;, x -+ % s, , Deodhar’s function f is given by
fr' = zxw'. We omit the justification (which is not difficult) since we have

no use in what follows for this function f.

6. (see [12, Lemma 11 (ii)]) Put K,p, (w) :={v € W |v < w} (= I[(w) NaWh).
If K,w,(w) is non-empty (or, equivalently, 0 < w) then it has a unique
maximal element. Indeed, writing w as o'z’ where ¢’ is the minimal element
in wW; and 2’ is in W7, this unique maximal element is o fz’, where f is

Deodhar’s function of the previous item.

Let W be the group of permutations of [n] with S as the set of simple
transpositions (1,2), ..., (n — 1,n). For r, 1 <r < n, let W, be the standard
maximal parabolic subgroup generated by all simple transpositions except

(r,7 4+ 1). Let o be a permutation of [n] with one-line notation oy03...0,. For o
to be of minimal length in its coset oW, it is necessary and sufficient that the
sequences 07 ...0, and 0,.1 ...0, are both increasing. Suppose that this is the

case.

Let w be another permutation. For J,y, (w) to be non-empty, it is necessary and
sufficient that w] <oy, ..., w,. < 0,, where w] < ... < w, are the elements wy,

..., w, arranged in increasing order. Suppose that this is the case.

Let us suppose further that the wy, ..., w, were themselves in increasing order, so
that w] = wy, ..., w] = w,. In this case, 7 := min J,, (w) is determined as

follows. Put 7; = o; for 1 < j <r. For j > r, an induction on j determines 7; as
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1

i 1 .. .
follows. Let 7/~ < ... <7/7 ber, ..., 7,1 in increasing order and

wi < ... < w} be wy, ..., w; in increasing order. Then 7; = wj}, where k is the

1

largest, 1 < k < j, such that Tgill < wi; (we put Tgf = —00).

As an example, let n =6, r = 3, w = 145362, and ¢ = 246135. Then, by the recipe

above, 7 = 246153.

Justification for the recipe appears later: see Example 5.2.2 in §5.2.2. O

2.1.5 Standard tuples and standard lifts

Let Wh, ..., W,, be a sequence of standard parabolic subgroups of W and let
= (T1y. oy Tim) € W/Wy x -+« x W/W,,,. We call 6 standard if there exists a chain
T > ... > Ty of elements in W such that 7,W; = 7; for 1 < j < m. Such a chain is

called a standard lift of 6.

Fix a standard tuple 6 of cosets and a standard lift of it as above. Put

Om = min7,,. Observe that 7,,_1 > 7, > 0,,. This means that J, _ (0,,) is not
empty, and so it has a unique minimal element by Proposition 2.1.17. Put
Om—1 =minJ,  (0,). Proceeding this way, choose inductively

o; = min J. (0;41) for j equal to m —2, m —3, ..., 1. We call the chain

o1 > ... > 0, the minimal standard lift of 6. We denote by w(6) the initial

element oy of the minimal standard lift of 6.

Let 09 > ... > 0, be the minimal standard lift of 6 (for some standard tuple 6 of
cosets). As is easily observed (by a downward induction on j), o; < 7; for
1 < 5 <m for any standard lift 77 > ... > 7, of 6. Furthermore, this property

characterises the minimal standard lift.
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2.1.6 The takeaway from this section

Finally, we isolate the takeaway from this section in its (admittedly strange and

whimsical) specific form that will be invoked later.

Corollary 2.1.19. Let (W, S) be a Cozeter system, T, ¢ be elements of W, and
Wy, Wy be standard parabolic subgroups of W. Let I(T_l) be the Bruhat interval

{weW|w< 77t} Then:

1. If 7', ¢ are elements of W such that TWy = 7'Wy and oWy = @'Ws, then:

WAI(7' ™)' Wo = WiI (77 )W,

2. There exists a unique minimal element in WiI(771)oW,, denoted

min Wi I(771)oWs.

3. Let s be an element of S such that sT < 7 and seWsy > oWs. Then

min Wi I(1 )W, = min Wi I(77's) oW,

4. Let s be an element of S such that sp < ¢ and stWy < 7W;. Then

min Wi I(77 )Wy = min Wi (77 )spWs

PROOF: For (1), it being evident that Wy I(77 Y)Wy = WiI(77 1)@ Wy, it is
enough to show that WiI(77!) = W I(7'~1). By Corollary 2.1.7, Wyr—1 = W7/~1
has a unique minimal element, say o~!. It is enough to show that
Wil(o™') = WiI(r71). Since o= < 771 it follows that I(c~') C I(77!) and so

1 1_-1

WiI(oc™') C WiI(r~'). To prove the other way containment, write 77! = ™ 'o

with w € Wy and £(7) = {(u) + ¢(0), where ¢ stands for “length”. Suppose that
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p~t <771 Then p~! = v~ 1p/~! with v < u (hence v € W;) and p’ < ¢. Thus

Wip™t =Wy tp =t =W;p'~1 and we are done.
Assertion (2) follows from Corollaries 2.1.5 and 2.1.7.

Proof of (3): By Corollary 2.1.5, min I(771)¢ exists. First suppose that sp > ¢.
Then, by Corollary 2.1.6, min I(77)¢ = min I(77's)g, and, by Corollary 2.1.7,
the desired equality follows. Next suppose that s < . Then, by Corollary 2.1.11,
spWy < W5 and, given our hypothesis that spWWs > ©W,, we conclude that
seWsy = W, Put ¢ := sp. Then ¢ = s¢’ > ¢’ = sp, and, by the first case, we
have min Wi I(771) ' Wy = min Wi I(771s)s@'W,. But, since o'Wy = pWs, this is

exactly the desired equality.

Proof of (4): This is analogous to the proof of (3). By Corollary 2.1.5,

min I(771)y exists. First suppose that st < 7. Then, by Corollary 2.1.6,

min I(771)o = min I(771)sp, and, by Corollary 2.1.7, the desired equality follows.
Next suppose that st > 7. Then, by Corollary 2.1.11, stW; > 7W; and, given our
hypothesis that s7W; < 7W;, we conclude that stW; = 7W;. Put 7 := s7. Then

st =7 < st =7/, and, by the first case, we have

min Wi I(7'1) Wy = min Wi I(7'71)spW,. But, since 7/W; = 7W;, we have, by

part (1), WiI(7'~1) = WiI(7~!), and the desired equality follows. O
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Chapter 3

The Kostant-Kumar filtration

3.1 The KK filtration on concatenated LS paths

In this section, we introduce the two key elements that underpin this entire thesis,

namely:

e the definition of Kostant-Kumar (KK) sets of concatenated

Lakshmibai-Seshadri (LS) paths (Equation (3.1.2)).

e the result that such a KK set is invariant under the action of root operators

(Proposition 3.1.3)

The following notation remains fixed throughout this thesis: g denotes a
symmetrizable Kac-Moody algebra; A and p are fixed dominant integral weights;

W is the Weyl group and Wy, W, are respectively the stabilizers in W of A, p.

We assume familiarity with the basic notions and results of Littelmann’s
theory [14, 15] of paths. Let Py, P, be respectively the sets of
Lakshmibai-Seshadri (LS) paths of shape A, u. Let

Pk Py :={mxn"|me Py, 7 €P,}, where x denotes concatenation.

47



Recall that a path 7 in P, consists of a sequence 7 > 7 > ... > 7, of elements
in W/W, and a sequence 0 = ag < a; < ... < a,_1 < a, = 1 of rational numbers
(subject to some integrality conditions as in [14, §2], the details of which are not so
relevant for the moment). We call 7y the initial direction and 7, the final direction

of 7.

3.1.1 Definition of a KK set in P, x P,

Given a path 7+ 7" in Py « P,,, we define, using Corollary 2.1.19, part (2), its

associated Weyl group element to(m * 7’) by:

(3.1.1) (') == min Wy I (77 1)oW,

where 7 and ¢ are lifts in W respectively of the final direction of 7 and the initial
direction of 7’. Part (1) of Corollary 2.1.19 says that to (7 * 7’) is independent of

the choice of the lifts 7 and .

Given an element ¢ = W \wW), of the double coset space W \\W /W, we define the

associated KK set by:

(3.1.2) PN o, p) ={m*xn" € PxxP,|o(rx7") <w}

The choice of the lift w in W of ¢ does not matter (see Corollary 2.1.11), and we

often write P(\, w, 1) in place of P(A, ¢, p).

Clearly P(\, o, 1) € P\, ¢, ) if ¢ < ¢'. Thus the KK sets form an increasing
filtration of the space P, = P, of concatenated LS paths, with underlying poset
being the double coset space W)\\W/W, with its Bruhat order. We call this the

KK filtration on paths.

Remark 3.1.1. For this remark alone, we suppose that W is finite. Let wy be the
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longest element of W. For w and = in W, let w (%) x := (wwy * zwp)wy, where * is
Deodhar’s operation on the Weyl group discussed in §2.1.9. Let 7 in P\ comprise
the sequence 11 > 79 > ... > 7, of elements in W/W, and the sequence
O=ap<a; <...<ay_1 <a, =1 of rational numbers. Let 7 be the path in P,
comprising wo, > ... > wor; and

0O=1—-a,<1—a_1<...<1l—a; <1=1-—ag. Then

o(m ') = g(nh)™! *) o(7")

where ¢(n) for an LS path 7 is the minimal lift in W of the initial direction of 7.

3.1.2 Stability of KK sets under root operators

For o a simple root, let e, and f, be the root operators on paths as defined in [15].
Although this definition differs from the earlier one in [14], it is
“backwards-compatible”: as explained in [15, Corollary 2 on page 512], the results

of [14] are unaffected and we can freely quote them.

Let 7 be a path in P,. Recall from [14]:

1. The straight line path 7, from the origin to A belongs to P,.
2. 7 is piece-wise linear and its end point (1) is an integral weight.

3. For a simple root «, if e, () (respectively f,(m)) does not vanish, then it
belongs to Py, its end point is 7(1) + « (respectively 7(1) — a), and

falea(m)) (respectively e, (fo(m))) equals 7.
4. Let a be a simple root and 7 the initial (respectively, final) direction of 7. If

eqom does not vanish, then its initial (respectively, final) direction is either 7

or s,7. The same holds for f, in place of e,.
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5. m is obtained from 7, by applying a suitable finite sequence of the root
operators f,, as « varies. In particular, the end point of 7 is of the form A — k

where x is a non-negative integral linear combination of the simple roots.

6. Every value that is a local minimum of the function AZ(t) := (7(t), ") on
t € [0, 1] is an integer, for every simple root . (A value hZ(to) is called a
local minimum if h7(ty) < hZ(t) for 0 < |t — o] < € for some € > 0.) This
follows from the proof of [15, Lemma 4.5, part (d)] although the definition of

local minimum there is less inclusive.

7. If e, (m) vanishes for every simple root «, then m = 7, [14, Corollary in §3.5].
In particular, if (the image of) 7 lies entirely in the dominant Weyl chamber,

then m = m).

Lemma 3.1.2. Let m* 7' be a path in Py x P, and a a simple root. Then:

1. Bvery local minimum value of the function h™™ (t) := (7« ') (t),a") is an

integer.

Suppose that e, (m * ') does not vanish. Then:

2. eq(mx ') equals either e,m* 7' or m* ey’

3. w(mx ') =w(ey(mx7)).

PROOF: Statement (1) holds because 7(1) is an integral weight (item 2 above) and

local minima of both functions h™ and h7 are integers (item 6 above).

Item (2) appears as [15, Lemma 2.7]. At any rate, it follows readily from the
definition of e, once we know that the absolute minima of the functions A7 and h7

are both integers, which is guaranteed by item 6 above.

To prove (3), let 7 be the final direction of 7 and ¢ the initial direction of 7’. First

suppose that e, (7 x ') = e,m * 7'. By item 4 above, the final direction of e, is
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either 7 or s,7. If it is 7, then there is nothing for us to do. In case it is s,7, then,
from the definition of e, and properties of 7 and #’, it follows that s,7 < 7 and

Sa = . The assertion now follows from part 3 of Corollary 2.1.19.

Now suppose that e, (7 x ') = m * e,n’. By item 4 above, the initial direction of
e, is either ¢ or s,p. If it is ¢, then there is nothing for us to do. In case it is
Satp, then, from the definition of e, and properties of = and #’, it follows

that s, < ¢ and s,7 < 7. The assertion now follows from part 4

of Corollary 2.1.19. O

The equivalence relation on Py x P, defined by root operators

Given 7+ 7" and o % ¢’ paths in Py« P, let us say mx 7’ is related to o x o’ if w7’
equals either e, (0 x o’) or f, (o x0’) for some simple root a. This relation is
symmetric since m x 1’ = e, (0 * ¢’) if and only if f,(m *7") = 0 % ¢’. Denote by ~
the reflexive and transitive closure of this relation (as we vary over all simple

roots).

As an immediate consequence of the item (3) of Lemma 3.1.2, we have:

Proposition 3.1.3. The association ™ 7' +— to(m x ') is constant on equivalence
classes of the equivalence relation ~. In particular, for any ¢ € W\\W/W,, the

KK set P(\, ¢, 1) is a union of such equivalence classes.

In other words, each KK set is stable under the root operators. We will show

in §4.3 that a KK set provides a path model for the corresponding KK module.
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3.2 More Preliminaries

Notation is fixed as in §3.1: g is a symmetrizable Kac-Moody algebra; A, i are
dominant integral weights; W is the Weyl group; and W), W, are the stabilisers in

W of A\, u respectively.

3.2.1 Geometric interpretation of minimal representatives

in W\\W/W,

We now give a geometric interpretation of the unique minimal element in a given
double coset in W \W/W,. The association w <> wp (for w € W) gives a bijection
of the coset space W/W, with the set Wy of W-conjugates of . We identify the
sets W/W,, and W via this bijection. The double coset space W) \W/W, may

then be identified with the set of Wy-orbits of W p.

Proposition 3.2.1. Every W-orbit of the set W of W-conjugates of p contains

a unique element wy such that A\ + twu is dominant for some real number t > 0.

PRrROOF: Each such orbit contains a unique wy that is Wy-dominant. The
Wy-dominance means precisely that (wu, ") > 0 for every simple root v in Wy. It
is easily verified that wyu has the desired property. Conversely, if wu is not
Wy-dominant, then (wu, ") < 0 for some simple root « in W), and so

(A + twp, ¥y = t{wp, o) <0 for t > 0. O

The double coset space W) \W/W, may thus be identified with the set of those
Weyl conjugates wp of p such that A + twp is dominant for some positive t. We
illustrate this by means of an example. Let g be of type Bs. Let e; and ey be the
standard basis vectors in R? with its standard inner product. We may take

a1 = e; and g := ey — e; to be the simple roots. Then the set of all positive roots
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is {aw, oy, a9 + ag, as + 2a4 }, and the fundamental weights are w; = %(61 + €9) and

wy = €3. The Weyl group consists of 8 elements:

W = {17 81, S2, 8152, 5251, S25152, S15251, S1525152 = 82818281}

where s; and sy are the reflections in the hyperplanes perpendicular to o and as

respectively. The shaded portion in the figure is the dominant Weyl chamber.

Take A = 2wy and p = 2wy 4+ wo. The stabilizers of A\ and p are respectively:
Wy ={1,s2} and W, = {1}. The set of double cosets W)\W/W,, is:

{{1, 32}, {31, 8281}, {31827 523182}, {818251, 32315281}}

As is clear from Figure 3.2.1, u, siu, S1so4, and sys9s1 are all the conjugates of
for which the line segment joining A to the conjugate lies for some positive distance

in the dominant Weyl chamber. O

Proposition 3.2.2. Given a double coset in W\\W/W,, let w be the unique
minimal element in it with respect to the Bruhat order (as guaranteed by

Corollary 2.1.7). Then wy is such that A+ twu is dominant for all small positive t.

ProOF: From the proof of Proposition 3.2.1, it is enough to show that wy is
Wy-dominant. Suppose that this is not so. Then there exists simple root a with s,,
in Wy such that (wu, ") < 0. We then have s,w < w, which contradicts the

hypothesis that w is the minimal element in its double coset. O

3.2.2 Two key propositions

An LS path 7 of shape p is said to be A-dominant if A + w(t) belongs to the

dominant Weyl chamber for every ¢ € [0, 1]. The set of A-dominant paths of
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Figure 3.2.1: Illustration of Propositions 3.2.1, 3.2.2; see Example 3.2.1

shape p is denoted by 'Pﬁ‘. For w an element of the Weyl group, Pﬁ‘(w) denotes the

elements of 73;\ whose initial direction is < wW,.

Proposition 3.2.3. Let 0 be a path in Py xP,. Then there exists a unique path n
in the equivalence class (of the relation ~ defined in §3.1.2) containing 0 such that

ean vanishes on n for all simple roots . Moreover, n has the following properties:

1. n lies entirely in the dominant Weyl chamber.
2. n=myxm for some T in 73;‘.

3. w(f) = w(n) = v where v is minimal in the Weyl group such that vy is the
initial direction of w. In particular, if 0 € P(A\,w, pn) (for some w in W),

then m € P (w).

PRrROOF: For the existence of 7, there is the following standard argument.

Construct by induction a sequence 6y, 61, ... of elements in the equivalence class
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of 6 as follows. Choose #, to be 0. Given 6;, if e,0; vanishes for all simple roots «,
then set n = #; and we are done. If not, then choose o simple root arbitrarily such
that e,0; does not vanish and put 6,1 = e,#;. By induction 6;,; belongs to the
equivalence class of 8. We will eventually find an n this way, for this process must
terminate at some point. In fact, the length of the sequence is bounded by the sum
of the coefficients of k where k is the non-negative integral linear combination of

the simple roots such that the end point of 6 equals A + y — &.

Since e,n vanishes for all simple a and since the absolute minimum of the function
h1(t) is an integer for every simple « (see item (1) in Lemma 3.1.2 above), it

follows from the definition of e, that 7 lies entirely in the dominant Weyl chamber.
The uniqueness of 7 now follows from [15, Corollary 1 (b) of §7].

Write n = ¢« 7 with ¢ € Py and 7 € P,. Since 7 lies entirely in the dominant
Weyl chamber, clearly so does (. Thus ¢ = 7, by item 7 in §3.1.2 above, and 7

belongs to 77;).

The equality w(f) = w(n) follows from Proposition 3.1.3. Since 7 lies entirely in
the dominant Weyl chamber, it follows that \ 4 tvu is dominant for sufficiently
small ¢ > 0. By Proposition 3.2.2, the unique minimal element of WvW, lies in

vW,, and hence equals v. But w(n) = min WyvW, by its definition. O

Proposition 3.2.4. With notation as in Proposition 3.2.3, write 0 = 71 x Ta.
Then the following conditions are equivalent:

1. n=my*m, (that is, T = m,)

2. 1o(0) = identity

3. there exist T and @ in W such that 7 > ¢, TW) is the final direction of m,

and oW, is the initial direction of my.
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PROOF: Let v be as defined in item (3) of Proposition 3.2.3. Observe that
condition (1) is equivalent to saying that v is identity. Since () = v by

Proposition 3.2.3 (3), we have (1)<(2).

(2)=(3): Let 7 and ¢ be arbitrary elements in W such that 7W), is the final
direction of 7 and ¢W), is the initial direction of m5. Condition (2) says that
min W, I (7~ )pW, equals identity. Let u € Wy, 0 < 7 in W, and v € W, be such
that v~ o~ lpv = identity, or v = ou. We have oW, < 7W, (by

Corollary 2.1.11). By Proposition 2.1.14, there exists 7 in 7W, such that ocu < 7.

Taking ¢ = v = ou, (3) is proved.

(3)=>(2): Since ¢ < 7, it follows that ¢! belongs to I(7~'). This implies that
min Wy I(771)¢W, equals identity. But ro(f) = min W,I(71)gW, by definition.

O

3.2.3 Extremal paths

Let 6 be a path in Py x P, and let 7 be as in Proposition 3.2.3 above. Following

Montagard [20], we call § extremal if the dominant Weyl conjugate 0(1) of the end

point of # equals the end point A + 7(1) of 7.

The following observation [20, Theorem 2.2 (i)] applied to the path m * 7y, is
already used in Littelmann’s proof [14, §7] of the PRV conjecture (here u denotes

an element of W and m,, the straight line path to the extremal weight up in V),):

Proposition 3.2.5. If a path 6 € P\ x P, lies entirely in the dominant Weyl
chamber except perhaps for a portion of its last straight line segment, then 6 is

extremal in the above sense.
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Chapter 4

A path model for Kostant-Kumar

modules

4.1 The KK (sub)modules of V), ® V,

In this section we recall the definition of Kostant-Kumar (KK) modules and two

basic results about them (Propositions 4.1.1 and 4.1.2).

Let g be a symmetrizable Kac-Moody algebra. Let A, i be dominant integral
weights. Let V), V), be the irreducible integrable g-modules with respective highest

weights A, 1. Let Wy, W, be the respective stabilizers of A, p in the Weyl group W.

4.1.1 Filtration by KK modules of V), ® V,

Fix an element w of the Weyl group. Let vy be a highest weight vector in V). Let
Uy, be a non-zero vector in the (one-dimensional) weight space V,,,, of weight wpu

in V,,. The Kostant-Kumar module, or simply KK module, K (X, w, p1) is defined to
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be the cyclic submodule of the tensor product V) ® V,, generated by vy ® v,:
(4.1.1) K\ w, p) :=Ug (v) ® Uyy)

where Ug denotes the universal enveloping algebra of g.

Proposition 4.1.1. Let u and w be elements of the Weyl group such that
WiuW,, = WyxwW,. Then K\, u, p) = K(\ w, ).

PROOF: For the proof, we will first recall a basic result from [7, §3.8]. Let V' be an
integrable representation of g. For a simple reflection s, there is a corresponding

linear automorphism 7" of V' (defined in [7, Lemma 3.8]) such that:

1. For v € V a weight vector of weight 1, ¥ (v) is a weight vector of weight s(n).
2. 7V =V @V for V' an integrable representation.

3. For v € V, there exists x, € Ug such that r¥ (v) = z,(v).

It suffices to show that K(A,u, ) € K(\ w, ), for then the other containment
also holds by interchanging the roles of w and w. Write u = Twe with 7 € W, and
¢ € W,. We have up = Twop = Twu. Let 7= s;, -+ s;, be a reduced expression

for 7. Note that all s;; belong to W). Consider the operator r;, -+ -7, on V) ® V,

k

Vi@V,

where r;; = ri; is the linear automorphism corresponding to s;; (as recalled

above).

On the one hand, by properties (1) and (2) above, we have:
\7
Tip (V) @ Uyy) = r}? (vy) ® rik”(vw#) =€ Vg A ® Vsy wp = €+ Ux @ Vs, up
where c¢ is a non-zero scalar. By a chain of similar calculations, we get

(412) Ty o Ty, (UA ® Uw#> =c. Uy & Vrwp = d - Uy @ Uy
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where ¢ is a non-zero scalar.

On the other hand, by property (3), there exist elements x;,, ..., z;, of Ug such
that
(4.1.3) iy Tip (UN @ V) = Ty -+ - iy (VA @ Vg

From (4.1.2) and (4.1.3) we get

/—1 /—1

Uy @ Uy = 1y i (Un @ Uyp) =77 - @y - - 24, (Un © Vyp)

and thus K (A, u, 1) = Ug(vy ® vy,) C Ug(vx @ vyy) = KA, w, p). O

Proposition 4.1.2. For elements u and w of the Weyl group W such that
WiuW,, < WyxwW, in the Bruhat order on W\\W /W, (see §2.1.8), we have
K (A u,p) € KA w, ).

PROOF: By Proposition 4.1.1, we may assume u = min W uWW, and
w = min WywW,, so that u < w. Let Ub(v,,) be the Demazure module generated
by V. Since u < w, we have vy, € Ub(v,). Thus

V) ® Uy € Ub(Uy @ vyy) C UG(0) ® vy, and Ug(vy ® vy,) C Ug(vy & vyyp)- O

Remark 4.1.3. The KK module K (), 1, 1) = Ug(vy ® v,) corresponding to the
identity element 1 of the Weyl group is the copy of the irreducible representation
Vit in VA ® V,. When g is of finite type, the KK module K (X, wy, )
corresponding to the longest element wy of the Weyl group is the whole tensor

product V) ® V,,. Indeed, letting b, and b_ denote respectively the positive and
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negative Borel subalgebras, we have

Ug(vy @ Vyop) = Ub_ - Ub(Ux ® V) = Ub_ (v @ Ubivy,,)

—Ub_ (1 ®V,) = (Ub_v) @V, =1 ®V,

4.2 Recall of a decomposition rule for

Kostant-Kumar (KK) modules

The decomposition rule (Theorem 4.2.1 below) that gives the break up of a KK
module into a direct sum of irreducibles is well known. For example, at least in the
case when g is symmetric (i.e., has a symmetric generalized Cartan matrix), it
follows immediately from Joseph’s results [6, Theorems 5.25, 5.22]. Our purpose in
this section is to state the theorem and also give, for the sake of readability and
completeness, a proof in the case when g is of finite type. The restrictive
hypothesis on g (namely that it be of finite type or symmetric) is imposed only
due to the use of a positivity result of Lusztig [16, 22.1.7] by Joseph in [6] and is

possibly not required: see [6, §1.4].

Theorem 4.2.1. (Joseph [6]) Let g be a symmetrizable Kac-Moody Lie algebra
that is either of finite type or symmetric. Let A\, u be dominant integral weights and
w an element of the Weyl group. Then the decomposition of the KK

module K(\,w, 1) as a direct sum of irreducible g-modules is given by
(4.2.1) K\ w,p) = @ Vitra) where the sum is over 7 € Pﬁ(w)

where Pﬁ(w) denotes the set of \-dominant LS paths of shape p with initial

direction < wW,, (A-dominance of a path is defined in §3.2.2).

In the case when g is symmetric, the theorem follows from Joseph’s results as
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already indicated (see also Naoi [22, Remark 2.12]). In the finite type case, a proof
is recorded below (§4.2.2). For this proof, we need a result of Lakshmibai,
Littelmann, and Magyar [12], which is a combinatorial analogue of the existence of
“excellent filtrations”, a la Joseph [3], Mathieu [18, 19], Polo [24], and van der

Kallen [25]. We first recall this result.

4.2.1 A result of Lakshmibai-Littelmann-Magyar

In order to state the result, we introduce some notation. The term path in this
section means a piecewise linear path whose endpoint lies in the weight lattice (for
instance, a concatenation of LS paths of various shapes). Let P be a set of paths.
We define its character, denoted char P, by: char P := ZneP " If 7 is any
path, we let m x P denote the set of paths {m xn:n € P}. Suppose 7 is a path
such that 7(t) belongs to the dominant Weyl chamber for all ¢ € [0, 1]. Fix a

reduced word w = sg, s, - - - 5g,: here §3; are simple roots. Define
C(m,w) == {fg' f3} -~ fzFm: ni >0 for all i}
This set is independent of the reduced word chosen, and has character:
char C(m,w) = A, (e™™V)

where A, is the Demazure operator corresponding to w (see, e.g., [14, §5.1]).
Further, when = is the straight line path m,, we have C(m,,w) = P,(w), the set of
LS paths of shape p with initial direction < wW,. The following key result

appears in [12, Proposition 12] (see also [5, Theorem in §2.11, also §3.5]).

Proposition 4.2.2. With notation as above, there exists a Weyl group valued
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function ™ — w(r) on P)(w) such that

(4.2.2) ok Clm,w) = || Clmxmw(r))

71'679;) (w)

(The precise form of the function m — w(n) is immaterial for our purposes.)

Computing characters of both sides in (4.2.2), we obtain:

(4.2.3) char 7y x C (7, w Z Ay (€XF7D)

TEP) (w)
4.2.2 Proof of Theorem 4.2.1 for g of finite type

By a result of Kumar [9, Theorem 2.14], the character of the KK module

K (A, w, ) is given by
(4.2.4) char K (\ w, j1) = Ay, (e* - Ay(e"))

where wy is the longest Weyl group element. Since A, (e*) is the character of

C(m,, w), we obtain
(4.2.5) char K(\, w, u) = Ay, (char my x C(7,, w))
Substituting from (4.2.3) into (4.2.4), we obtain:

char K (\, w, ) Z AwOA (m (e Z Ay (M0

TEP) (w TEP) (w)

since Ay A, = Ay, for all o € W. This latter fact follows from the following
well-known property of the Demazure operators: if « is a simple root, then A A,

equals A, _,, or A, according as s,w is > w or < w.
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But now A, (e*™1) is the character of the g-module Vit=) (by the Demazure
character formula applied to wg). Thus the modules on both sides of (4.2.1) have

the same character, and the proof is complete. O

Example 4.2.3. Consider the situation of Example 3.2.1 and Figure 3.2.1. The
A-dominant paths of shape p, colour coded by their initial directions, are all listed

below and depicted in Figure 4.2.1:

Initial direction | Colour Coding | Path data
identity violet 1; 0<1
S1 red s1; 0<1
$1 red s1>1; 0<1/2<1
5189 cyan $182 > 89; 0<1/4<1
5189 cyan $180 > s9; 0<1/2<1
515951 orange 818981 > 8281 > 51> 1; 0<1/4<1/3<1/2<1
515951 orange $18281 > 8981 > 51; 0<1/4<1/3<1
515951 orange $18281 > S981 > 51; 0<1/2<2/3<1
5189871 orange 818281 > s9; 0<1/2< 1

Thus the KK modules decompose as follows:

K(Av 17 :u) = V)\+,u'

[ .Z(()\7 S1, ,Uz> = V)\—i-u ¥ ‘/2w1+2w2 S¥ ‘/3772‘

L4 K(A7 5189, H’) = V>\+u SY ‘/2w1+2wz ¥ ‘/éwz ¥ ‘/4121 s> ‘/2w1+wz-

o K()\7 515251, ,LL) = V/\Jr,u EB‘/2w1+2w2 S %wz > V;lwl @%61‘;214-132@‘/2121 S sz S¥ ‘/2172-
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Figure 4.2.1: Decomposition of KK modules of Var,, ® Vo, 1w, for g of type Ba: see
Example 4.2.3. The orange coloured path ending at A\ = 2w, is shown separately
for clarity.

4.3 A path model for Kostant-Kumar (KK)

modules

We deduce a path model for KK modules by combining the decomposition rule
(Theorem 4.2.1) with the invariance under the root operators (Proposition 3.1.3)
of the association (3.1.1) of the Weyl group element to(7 x 7’) to a
concatenation m x 7’ of two LS paths. The restriction on g (namely, that it be of
finite type or symmetric) in the theorem is only because of the use of the

decomposition rule, and is possibly not required.

Theorem 4.3.1. Let g be a symmetrizable Kac-Moody algebra that is either of
finite type or symmetric (as in Theorem 4.2.1). Let A\, p be dominant integral
weights and w an element of the Weyl group. Let Py and P, respectively be the
sets of Lakshmibai-Seshadri paths of shapes X\ and . For m € Py and m € P, let

o (m ') be the Weyl group element associated as in (3.1.1) in §3.1.1 to the
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concatenated path ©x . Then the KK set
PAw,pu) ={n* 7' |m e Py,n" € P,ro(r*n") <w}
is a path model for the KK module K(\ w, p) in the sense that

(4.3.1) char K(\,w, p) = Z expn(l)

NEP(Aw,p)

PrRoOOF: From Theorem 4.2.1, we have:

(4.3.2) char K(\,w, p) = Z char V) ()

TEP) (w)
where P (w) is the set of \-dominant LS paths of shape y with initial
direction < w. For 7 € Pﬁ‘(w), let Py, . be the equivalence class in Py x P,
containing 7, *  (under the equivalence relation ~ defined by the root
operators—see §3.1.2), where ) denotes the straight line path from the origin to
A. Since 7y + 7 lies entirely in the dominant Weyl chamber (this is what it means
for 7 to be A-dominant), it follows from the “Isomorphism Theorem” in [15,

Theorem 7.1] that

(4.3.3) Z expo(l) = Z expo(l)

O'E’PWA*W Jepz\JrW(l)

(where of course Py (1) denotes the set of LS paths of shape A 4 7(1)). By the
“Character formula” [14, page 330], the right hand side of (4.3.3) equals

char V), »(1), so putting together (4.3.2) and (4.3.3) gives

(4.3.4) char K(\, w,pu) = Z Z expo(l)

TEP) (w) 0EPry xn
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Thus, for the proof of the theorem, it suffices to show the following:
(4.3.5) PAw, 1) = Urepa(uw)Prysr (disjoint union)

To prove (4.3.5), first let 7w € Pﬁ(w). Let u be an element of the Weyl group such
that up is the initial direction of w. From our assumption that uWW, < wW,, it
follows that W uW, < WywW, (see Corollary 2.1.11) and to(my x ) < w
(evidently w(my x 7) is the minimal element in W uW,). By Proposition 3.1.3, it
follows that the Weyl group elements associated via to to elements of Py, .. are all

the same. This proves P(\, w, i) 2O Prysr-

Now let ¢ be an element in P(\ w, u). Apply Proposition 3.2.3 to ¢ and let n be
as in the conclusion. Then 1 = 7y x 7 for some m € P (w), and the containment C

is proved.

That the union on the right hand side of (4.3.5) is disjoint follows from the
uniqueness of 7 in Proposition 3.2.3 (which in turn rests on [15, Corollary 1 (b)
of §7]): m\ » 7 is the unique path in Py, ., on which e, vanishes for all simple

roots o. O

4.4 PRV components and generalised PRV

components in KK modules

We show how the decomposition rule (Theorem 4.2.1) leads easily to results about
the existence of PRV components (Theorem 4.4.1) and generalised PRV
components (Theorem 4.4.3) in KK modules. The arguments are well known: see
e.g. those by Joseph in [4, §2.7]. In fact, Theorem 4.4.1 for the finite case follows

from items (i) and (iii) of the theorem in [4, §2.7].
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Theorem 4.4.1 is at once a generalisation of two results: the so called refined PRV

and KPRV theorems:

e Its special case when g is of finite type and w = wq (the longest element of
the Weyl group) is due to Kumar [10, Theorem 1.2], who refers to his result
as “a refinement of the PRV conjecture” and says that it was conjectured by

D.-N. Verma.

e The special case when o = w was proved by Kumar [9, page 117] and
independently Mathieu [17, Corollaire 3]. Kumar calls it “the strengthened
PRV conjecture (due to Kostant)”. We have called it “KPRV” following
Khare [8].

Theorem 4.4.3 is a KK version of Montagard’s result [20, Theorem 3.1] about

generalised PRV components.

4.4.1 The map ¢

Let g be a symmetrizable Kac-Moody algebra, and fix dominant integral weights A
and p. Let Wy and W, denote respectively the stabilizers in the Weyl group W of

A and p.

Consider the map from the Weyl group W to the set A* of dominant integral
weights given by o — X + ou, where A\ + oy denotes the dominant Weyl conjugate
of the weight A\ + ou. This map factors through the natural quotient map from W
to W)\W/W,. We denote by ® the map W,\W/W, — A given by

WixoW, = A+ op.
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4.4.2 PRV components in KK modules

The restrictive hypothesis on g in the following theorem (as also in
Theorem 4.4.3), namely that it be either of finite type or symmetric, is inherited

from the decomposition rule (Theorem 4.2.1) and is possibly not required.

Theorem 4.4.1. Let g be a symmetrizable Kac Moody algebra that is either of
finite type or symmetric (as in Theorem 4.2.1). Let A, p be dominant integral
weights and w, o be elements of the Weyl group. Let v be the dominant Weyl
conjugate of the weight X\ + op. Then the irreducible g-module V,, occurs in the
decomposition into irreducible g-modules of the KK module K(\,w, ) at least as
many times as there are elements T € W\\W/W, such that 7 < W\wW, and

O(7) =v.

PrOOF: We describe a map ® from Wy\W/W, to the set P, of A-dominant LS
paths of shape p. Given 7 € W) \W/W,, let v be the unique minimal element in 7.
Consider the path ¢ = 7y x m,, in P x P, where 7\ and 7,, are the straight line
paths from the origin to A and vu respectively. Note that to(p) = v. Apply
Proposition 3.2.3 to ¢ and let 1 be as in its conclusion. Then n = m) x 7 for some
7 € P and w(n) = v. We define ®(7) := 7. Since 7 determines 7 from which we

can recover v and in turn 7, it follows that ® is injective.

It follows from Proposition 3.2.5 that ¢ as above is extremal, which means that

n(1) = p(1) = X+ vp = ®(7). Thus ® is a “lift” to P, of ®, meaning that ®(7) is
the end point of ®(7) shifted by A for any 7 in Wx\W/W,. Combining this fact
and the injectivity of ® with the decomposition rule (Theorem 4.2.1), we

immediately obtain the theorem. O
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4.4.3 KPRV recovered

It follows immediately from the theorem that V,, occurs at least once in K (A, o, p).
We now observe that it occurs at most once by repeating the following elementary
argument from [9, §2.7]. Indeed in any g-homomorphism from K (A, o, 1) module
to V,, the vector vy ® v,, has to map to an element of weight A 4 op. But the
dimension of the A 4+ ou-weight space in V), is clearly one, since A 4+ ou is a Weyl
conjugate of v. Thus the space of g-homomorphisms from K(\, o, 1) to V,, is one

dimensional, and we have:

Corollary 4.4.2. Let g, A\, u, o, and v be as in Theorem 4.4.1. Then the
wrreducible g-module V,, occurs exactly once in the decomposition into irreducible

g-modules of the KK module K(\, o, ).

Put A = p. Let w be an element of the Weyl group such that

WiwWy # Wiw W, (e.g., when \ is regular and w # w™!). Since X\ + w\ and

A 4+ w'\ are Weyl conjugates, it follows that V,, where v = XA + w\ appears
uniquely in K(\, w, A) and in K (A, w™! \) (by Corollary 4.4.2) and at least twice

in the tensor product V), ® V) (by Theorem 4.4.1). O

4.4.4 Generalised PRV components in KK modules

Importing to our context a result of Montagard [20, Theorem 3.1], we prove the

following;:

Theorem 4.4.3. Let g, A\, and p be as in Theorem 4.4.1. Let v, u be elements in
the Weyl group and B a positive root such that either v='5 or =13 is a simple
root. Let k be an integer such that 0 < k < min{(vA, 8Y), (up, 8Y)} and the integral
weight v = v\ + up — kB is dominant. Then the irreducible g-module V,, occurs in

the decomposition of the KK module K (X, w, ) into irreducibles where w = v~'sgu.
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PROOF: First suppose that v=!4 is simple. Since k < (v"tuu,v=13Y), it follows
that ff,lﬁmflw does not vanish. Consider the path ¢ = ) % ff,lﬂﬁvflw

in Py x P,. As is easily verified, the dominant Weyl conjugate of ¢(1) is v and
ro(p) is either min Wyv'sgul¥,, or min W v~ 'ul¥V, depending upon whether
k>0 or k =0. An easy verification (using the hypothesis that (uu, 5") > 0)

shows that w = v tsgu > v~'u. Thus w > w(p) in either case, and ¢ € P(\, w, ).

Apply Proposition 3.2.3 to the path ¢ and let n be as in its conclusion. Then 7 is
of the form 7 « 7 with 7 € P)(w). By the decomposition rule (Theorem 4.2.1),
v

L) oceurs in K (A, w, p). But Montagard [20, Proof of Theorem 3.1] shows that ¢

is extremal, which means that v = ¢(1) = (1), and the proof is done in this case.

Now suppose that © =13 is simple. Then, applying the result in the previous case,
we conclude that V,, occurs in the KK submodule K (u,w™, \) of V, ® V;. But
under the g-isomorphism a ® b <+ b ® a of V, ® V with V) ® V,,, the submodules

K(p,w™, \) and K (X, w, ) map isomorphically to each other. O

Remark 4.4.4. 1. In the set up of the theorem, let g be of finite type. In place
of the hypothesis that either v='3 or «™! is simple, let us assume that £ is
simple. In this case too [20, Theorem 3.1] says that V,, occurs in the full

tensor product V\ ® V,,. We have not handled this case.

2. Suppose that g is a negative root such that the hypothesis is satisfied: either
v71B or w1 is simple, 0 < k < min {(vA, BY), (up, 8V)}, and
v =v\+ up — kB is dominant. Then (v, 3Y) = 0 (by the dominance of v)
and the hypothesis is also satisfied if we put sg8 = —f3, sgv, sgu, k, and v in

place respectively of 5, v, u, k, and v.

3. In the proof of the first case (when v~!3 is simple), the hypothesis that
kE < (v, ") is not explicitly used, but it is implicitly used in the invocation

of Montagard’s criterion for a path to be extremal.
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In response to a question of the referee, we identify certain cases in which the

multiplicity of the generalised PRV component in Theorem 4.4.3 is precisely one:

Corollary 4.4.5. Fiz notation and hypothesis as in Theorem 4.4.3.

1. Suppose that k = 0. Then V, occurs precisely once in K(\, v u, u).

2. Suppose that k is equal either to (v, V) or (uu, 5Y). Then V, occurs

precisely once in K (X w, ).

3. Suppose that (3 is simple. Then V,, occurs precisely once in K (X, w, ).

PROOF: (1) In this case, we have v = v\ + up = A + v—lup, and so the result
follows from KPRV (Corollary 4.4.2).

(2) Suppose that (vA, 8¥) = k (the case when (up, 8Y) = k is similar). Then

v =v\+up—kB = X+ wpu, and the result follows once again from Corollary 4.4.2.
(3) The proof in this case is similar to that of Corollary 4.4.2. By Theorem 4.4.3,
V,, occurs at least once in K (X, w, p). It is therefore enough to show that the space
of g-homomorphisms from K (X, w, u) to V, is at most one dimensional. The
generator vy ® vy, of the Ug-module K (A, w, 1) has weight A+ wp. Since weight is
preserved under a g-homomorphism, it is enough to show that A + wpu has
multiplicity at most one in V,,. A small calculation shows that

A wp=v (v — ({(up, BY) — k)B). Since 8 is assumed to be simple, the
multiplicity of v — ({up, 3Y) — k)3 (and so also of its v~! translate) in V,, is at

most one, and we are done. |

We illustrate the result of Theorem 4.4.3 and also the idea behind its proof by
means of an example borrowed from Montagard [20]. Let the root system of g be
Gs. Let e; and ey be the standard basis vectors of R? with its standard inner

V3

product. We may take o := e; and ap := —%el + *5°e2 to be the simple roots. The
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™
/ N
SO >
UK Famy ¥
LAY = 6ay + 20
E=1 , /WA = 6wy — 4wy
= g Cup = —2w + 4we
u S1 Ty—1 S
UV = $951598 Y <A, BV >=2
= 52515251 B , ; Vo
8 =30 + ay B faflomiu | TN ) <up, B’ >=2
U_l B = Q9 7 W= min W,\’U_l SB’LLW'M
A = 2t09 N = 815951825159
W= 2w + 2wy Y Y Y V=1 + ws
Wy ={L s} W, ={1}

Figure 4.4.1: V, € K(\,w, u1): see Example 4.4.4

set of all positive roots is:

{aa, 0, a0 + a1, 9 + 201, a9 + 309, 202 + 30 }

Let s1 = 54,, S2 = Sa, be the simple reflections and w;, wy the fundamental
weights. The dominant integral weights A, u, v, the Weyl group elements u, v, w,
the root 3, and the integer k£ are all as shown in Figure 4.4.1. The path 1 ending
at v appears in bold. O Consider the situation of Example 4.2.3 and Figure 4.2.1.
The decompositions of the KK modules K (A, w, i) are given there. The PRV and

generalised PRV components, identified by their highest weights, are listed below
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against the smallest KK modules to which they belong.

KK modules | PRV Components | Generalised PRV components

KAL) | A+p=dw + wy

K\, s1, 1) 3wy 2t01 + 2w,
K (A, 5189, 1) 2wy + W 4oy
K()\, 515251, IM) () QWQ, 2w1

The only component that is not listed above is the second copy of Vo, +w,, the one
which belongs to the full tensor product but not to any smaller KK module. It is
not captured by the theorems in this section: it is not a PRV or generalised PRV

component.

The multiplicities of the listed components are all 1 in the respective smallest KK
modules to which they belong. For the PRV components, this follows from
Corollary 4.4.2. For 2wy + 2wy (A + 1 — aq) and 4wy (A + sop0 — aq), this follows
from Corollary 4.4.5 (3), but not for 2wy (s1A + sept — (1 + ) or 2wy

(soA + s10 — (a1 + ). O Let g be of type A,. Let ay, as be the simple roots
and w; = €1, wy = €1 + €5 the corresponding fundamental weights. Let

A = w; + 2w, and p = 2wy + wsy. The decomposition into irreducibles of the
tensor product Vy ® V), is depicted in Figure ??. Except for one copy of Vo, t20,
which belongs to K (A, sgs1, i1), every component occurs as a PRV or generalised

PRV component. These, identified by their highest weights, are listed below
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against the smallest KK modules to which they belong.

KK modules | PRV Components | Generalised PRV components
K\ 1, p) A+ = 3wy + 3wy
K (A, s1, 1) w + 4wy
K(\, so, 1) 4wy + o
K (X, s189, 1) 201 + 20y
K (X, s281, 1) W, + s 3wy, 3w
K (), 518951, 1) 0 w1 + o

Except for the generalised PRV component w; 4+ ws (which is contained in the full
tensor product but not in any smaller KK module), the other components occur
with multiplicity 1 in the respective smallest KK modules to which they belong.
For the PRV components, this follows from Corollary 4.4.2. For 3w,

(= soA 4+ 1 — ay) and 3wy (= A+ sy — ), this follows from Corollary 4.4.5 (3).
The generalised PRV component @ + @y (= s1A + sou — (1 + a2)) shows that

the hypothesis of simplicity of 5 in Corollary 4.4.5 (3) cannot be omitted. a
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Chapter 5

A Tableau Decomposition rule for

Kostant-Kumar modules

5.1 Tableau decomposition rule for

Kostant-Kumar (KK) modules

Fix an integer d > 2. Let g = sl,, the simple Lie algebra of traceless complex d x d
matrices. There is, in this special case, the classical Littlewood-Richardson (LR for
short) rule (see e.g. [26, 27]) that gives, in terms of tableaux, the decomposition
into irreducibles of the tensor product of two finite dimensional irreducible
representations of g. The multiplicities of the irreducibles in this rule are called
“LR coefficients” and they count certain “LR tableaux”. Our purpose in this
section is to deduce, from the general decomposition rule (Theorem 4.2.1), a
version of this classical rule, which we call the “refined LR rule”, for decomposing
as a direct sum of irreducibles any KK submodule of the tensor product: see §5.1.4
for the statement. We call the multiplicities of the irreducibles in this refined rule

the “refined LR coefficients”.
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The refined LR coefficients also count certain LR tableaux. The identification of
the set of LR tableaux to be counted is based upon the association of a
permutation to each LR tableau (§5.1.6). There is a very natural association of a
semi-standard Young tableau (SSYT) to an LR tableau (§5.1.6) and the
permutation is just the initial element of the minimal standard lift when the SSYT

is interpreted as a standard concatenation of LS paths (§6.1.2).

In the light of this last mentioned fact, it is noteworthy that the procedure we give
for determining the permutation (§5.1.5) from the SSYT is not a repeated
application of Deodhar’s lemma (Proposition 2.1.17): it seems to be more efficient
than that. Lascoux and Schiitzenberger [28] associate to each SSYT a “right key”
(which by definition is another SSYT) from which the permutation can be read off.
Willis [29] gives an alternative method—“the scanning method”—for finding the

right key of an SSYT. Our procedure is different from those in [28, 29].

5.1.1 Preliminaries

The choices involved (Cartan subalgebra b, Borel subalgebra b, etc.) are fixed as
usual: the subalgebra of diagonal (respectively, upper triangular) traceless complex
d x d matrices is taken to be b (respectively, b). We denote by ¢; the linear

functional on h that maps a matrix to its entry in position (7, 7).

Recall that a partition is a weakly decreasing sequence \; > Ay > ... (sometimes
also written A\; + Ay + - -+ ) of non-negative integers that is eventually zero. The
non-zero elements of the sequence are called the parts. We tacitly identify
partitions with their (Young) shapes. To a partition A: Ay > ... > X\; > 0> ...
with at most d parts, we attach the dominant integral weight A\je; 4+ - - - + A\geg. A
second such partition \j > ... > X, > 0> ... corresponds to the same weight as A

if and only if Ay — N] =--- = X; — X} (since €; + ...+ ¢4 = 0 is evidently the only
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linear dependence relation up to scaling on €1, ..., €;). Thus partitions with less
than d parts are in one-to-one correspondence with dominant integral weights. We
will abuse notation and use the same symbol for both a partition with less than d

parts and the corresponding dominant integral weight.

Let [j] :=={1,...,j} for any integer j > 1. The Weyl group is identified with the
group of permutations of the set [d]. The one line notation for a permutation w

of [d] is wy ... wq, where w; == w(j) (for 1 < j < d).

5.1.2 Semi-standard Skew tableaux (SSST for short)

Let v and X be two partitions with the shape of v containing the shape of A\. A
(semi-standard) skew tableauw, SSST for short, of shape v/\ is a filling up by
positive integers of those boxes that are in the shape of v but not in the shape of A
such that the entries in each row are weakly increasing rightward and those in each
column are strictly increasing downward. Here are two examples with

v=T7+5+4+3+1land A\=4+4+1+1:

(5.1.1) 131315 l1]2]3

Reverse reading words and ballot sequences

Let T be a SSST of shape v/A. Its reverse reading word, denoted Wiy (1), is
defined as follows: read the entries of T from right to left in every row, scanning

the rows from top to bottom. For the two SSSTs in the display above, the reverse
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reading words respectively are:

(5.1.2) 3227533641 1112321431

The word Wio(7") (or, more generally, any word in the positive integers) is said to
be a ballot sequence if for any integer j > 1 the number of times j occurs up to any
point in the word (while scanning it from left to right) is at least the number of

times j + 1 occurs up to that point. In (5.1.2), the word on the left is not a ballot

sequence but the one on the right is.

Type and weight of a word and of a SSST

The type of any word w in the positive integers is the sequence p: py, o, ...,
where f1; denotes the number of occurrences of j in w. The type of the word on
the left in (5.1.2) is 1, 2, 3,1, 1, 1, 1, 0, 0, .... Evidently, permuting the letters of
a word does not change its type. If w is a word in [d], then we may further
associate to it the integral weight pi€q + - -+ + pgeq of g = sly. This is called the

weight of the word and denoted wt(w).

The type and weight of a SSST T are defined respectively to be the type and

weight of its reverse reading word woy (7').!

If the word w is a ballot sequence, then its type is a partition: puy > us > ..., and
in this case we use the notation for partitions to denote types. For example, the
type of the word on the right in (5.1.2) is u =5+ 2 + 2 + 1. The weight of such a

word in [d] is dominant.

Later on we will introduce the “column word” wee(7T) of T, which being a permutation
of Wyow(T) shares its type and weight.
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5.1.3 Littlewood-Richardson (LR for short) tableaux and

coefficients

An LR tableau (LR is short for Littlewood-Richardson) is a SSST T whose reverse
reading word wyy(7') is a ballot sequence. Let A\ and p be partitions. Let 7:?
denote the set of LR tableau of shape v/\ and type u—here v is allowed to vary.
If T in 7 has shape v/X, we write v/(T)) for v. As is well-known, 7} has
representation theoretic and geometric significance. For example (see e.g. [26, 27])
S8, = ZTeﬁ} Sy(1), Where s, denotes the Schur function associated to a

partition 7.

For a fixed partition v, the number of 7" in 77} with v(T") = v is usually denoted
X, The numbers ¢, are called LR coefficients. In terms of these, we may write

the the above rule for multiplication of Schur functions as sys, =, XS

Bruhat order on permutations

Any permutation u of [j] (for some integer j > 1) can naturally be considered as a
permutation of [k], for any integer k > j. Given two permutations u and v’ (of [j]
and [j'] respectively), we write v < u’ if that is so in the Bruhat order on

permutations of [k] for some k£ > both 7 and j'. If u <« for one such k, then it is

so for all such k.

Refined Littlewood-Richardson coefficients: their definition

In §5.1.6 below, we specify a procedure that assigns a permutation u to a given

SSST T'.2 Fix a permutation w and let 7?(11)) denote the subset of 7? consisting

2Tt is easy to associate to T a SSYT S of shape j—see §5.1.6. Interpreting S as a standard
concatenation of LS paths in the sense of Proposition 6.1.3 in the appendix, the associated per-
mutation w is just the initial element of the minimal standard lift of S, as will be proved in §5.2.
Observe that, if as in §5.1.4 the number of parts in v is at most d, then the entries in S and the
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of those elements for which the associated permutation u satisfies v < w (in the
Bruhat order as defined in §5.1.3 above). The result (5.1.3) below ascribes

representation theoretic meaning to 7, (w).

For a fixed partition v, we denote by ¢, (w) the number of T in 7}(w) with
v(T) = v. We call the numbers c§ (w) refined LR coefficients.

5.1.4 Tableau decomposition rule for KK modules

Suppose that A, u are partitions with less than d parts (or, equivalently, dominant
integral weights for g = sl;) and that w is a permutation of [d] (or, equivalently, an
element of the Weyl group). Then the decomposition of the Kostant-Kumar
module K (A, w, ) (defined in §4.1.1) as a direct sum of irreducible g-modules is

given by:

(5.1.3) K(\ w, ) EB Vi

where V,(ry is interpreted to be zero in case v(7T") has more than d parts. (Recall
from §5.1.1 that to any partition with at most d parts there is associated a

dominant integral weight of g.)

Here is an alternative way to express the above decomposition rule:

(5.1.4) KX\ w, ) @V@CA“(M

where the sum runs over all partitions 7 with less than d parts, and v depending

number of parts in p are also bounded above by d, so that the interpretation of S as a concatenation
of LS paths associated to g = sl is possible, and u is a permutation of [d].
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on 7 denotes the unique partition with at most d parts (if it exists) such that

vi=vi—ygfor 1<j<d and wvi+--+vyg=M++Aar) F (oo )

The proof of (5.1.3) will be given below in §5.1.9.

The statement for polynomial representations of GL,4(C)

For convenience of reference, we now state, without proof, a version of the
decomposition rule (5.1.3) for polynomial representations of the general linear
group GL4(C). Suppose that A, p are partitions with at most d parts and V), V,
the corresponding irreducible polynomial representations. Let w be a permutation
of [d]. Then the decomposition of the Kostant-Kumar module K (X, w, i) (defined
similarly as in §4.1.1) as a direct sum of irreducible polynomial representations is

given by:

(5.1.5) KO\ w, 1) = @ v ™

where the sum runs over all partitions v with at most d parts.

An example

Here is a simple example illustrating the rules (5.1.3) and (5.1.4). Let d = 3,
A=2+1,and =3+ 1. As the reader can readily verify, there are 7 elements T’

in 72 with v(T") having at most 3 parts. These are listed below along with the
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permutations of [3] attached to them (as in §5.1.6):

< 231

And so we have:

K()\J 1237 /’l’> = ‘/:5+2

KA 231, 0) = V31 ®@Vyi® Vi ® Vi

<123

K (A, 213, 1) = Viys @ Vo

> 312

213

< 312

KA\32L,p) =Vi @ Voro @ Va1 @ Va1 @ V& Vs @ Vg

5.1.5 SSYT and permutations attached to them

Let i be a partition. A semi-standard Young tableau, SSYT for short, of shape
is just a (semi-standard) skew tableau of shape p/empty in the sense of §5.1.2.

Here is an example of a SSYT of shape p=4+2+ 1:

(5.1.6)
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< 132

K(A 132, 1) = Vi@ Viyo

321

KA\ 312, 1) = Voo ® Vi @ Vi @& Vigs @ Vo



Associating a permutation to a given SSYT

Let S be a SSYT of shape 1 and let m be the largest entry of S. We associate to S
a permutation u of [m], as follows. Let pj be the number of parts in u. Observe
that m > ) since the entries in every column of S are strictly increasing

downwards.

Let wjus ... u,, be the one-line notation for u. We will describe below an inductive
procedure to produce the sequence uy, ..., u, . Asfor w1, ..., up, we take

these to be just the elements of [m] \ {uy,...,u,, } arranged in increasing order.

It is easy to produce u;: it is just the largest (right most) entry in the first row
of S. Suppose that uy, us, ..., u,—1 have been produced (with 1 < p < p}). We

now describe a procedure to determine .

Let b be a box in S. Suppose that a box b’ in S is weakly to the Northeast of b
and has an entry that is less than that of b. Then we write b = b’. For example,
in the SSYT of (5.1.6), if b is the one with entry 7, then b’ could be any of those
containing 1, 2, 3, 4, or 6; if b is the one with entry 4, then b’ could only be the

one containing 3.

The b-depth of such a box b’ is defined to be the largest § such that there is a

chain b > by = by = ... = bs = b’. The b-depth of b itself is defined to be 0.

Let b? denote the right most box in row p. We write p-depth for bP-depth. For
1 <j <p, we let y; be maximal possible entry in a box whose p-depth is p — j.
(The box in row j in the same column as b? has p-depth p — j, so y; exists.) By
definition, y, is the entry in the box bP. As is easily seen, y; < ... < y,. We call

this the p-depth sequence of S.

Let a; < ... < ap—1 be the elements u,, ..., u,_; arranged in increasing order. Let

k, 1 <k < p, be the largest such that a;_1 < yx (ag = —o0 by convention).
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Take u, to be yj.

Proposition 5.1.1. With notation as above, we evidently have:

o a1 < ... <Op1 <Y <ap<...<0p1-
o u, is distinct from uy, ..., Up_;. |

Remark 5.1.2. The element y; in the p-depth sequence of S is just the entry in
the right most box of p-depth p — j: “right most box” means box in the right most
column; since no two boxes in the same column have the same p-depth, this is well
defined. Indeed let b be that box and e its entry. Clearly e < y;. To show y; <e,
first observe that no column to the right of the one containing b has a box of
p-depth p — j (by choice of b); secondly that e dominates the entry in any box that
is weakly to the Northwest of b (since S is a SSYT); and finally that any box of
p-depth p — j strictly South and weakly West of b can only have an entry that is

at most e (for otherwise the p-depth of b would exceed p — j).

[llustration of the procedure above

Let S be the SSYT in (5.1.6). The permutation associated to it is 83612457 in
one-line notation. Evidently u; = 8 and u} = 3; the 2-depth sequence is 3 < 4 and

us = 3; the 3-depth sequence is 3 < 6 < 7 and ug = 6.

A technical result that will be used later

The following lemma will be invoked later on, in Example 5.2.2.

Lemma 5.1.3. Let S be a SSYT and q the number of boxes in its right most
column. Let S" be the SSYT obtained from S by deleting its last column. Fixp > q.

If in the procedure for producing u, (where u is the permutation associated to S),
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we use the p-sequence of S" in place of that of S, it makes no difference (that is, we

still get the same ).

PROOF: Let y; < ... <y, and y; <... <y, be the p-depth sequences of S and S
respectively, and suppose that u, = y;. Since the entries in the last column of S all
belong to {ui, ..., u,—1} but, by Proposition 5.1.1, yx does not belong to that set,

it follows that any box of S with y; as its entry belongs to S’. Thus y; = ;.

On the other hand, y; < y; < a; for all j > k (where a; < ... < a,; is the
arrangement in increasing order of s, ..., u,_1), so k is the largest such that

ag—1 < Yp.. ]

5.1.6 Association of permutations to LR tableaux

Recall that the definition in §5.1.3 of refined LR coefficients refers to a certain
association of permutations to LR tableaux. We describe this association now,

after first associating SSYTs to LR tableaux.

Let T be an LR tableau of shape v/ and type p. If v has at most d parts, then so

has p, for each entry on row j of T is at most j (for all j > 1).

The SSYT associated to T’

We associate to T"a SSYT S of shape p as follows. The entries in row j of S from
left to right are just the row numbers of 7" in which the entry j appears, counted
with multiplicity and arranged in weakly increasing order. That the entries in
every column of S are strictly increasing downward follows readily from the
assumption that the reverse reading word of 7" is a ballot sequence: indeed, for

integers k > 1 and j > 2, if the k' appearance of j (as we read the reverse reading
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word from left to right) is in row 7, then the k'™ appearance of j — 1 is in some row

strictly above the r*".

The permutation associated to 7T

Consider the permutation u associated as in §5.1.5 to the SSYT S. We associate u
to T itself. For example, for the skew tableau on the right in (5.1.1), the associated

SSYT is the one shown below and the associated permutation is 51324:

1(1]1]3(5

213

(5.1.7)

3
4
5.1.7 p-dominance of words

Let p: p1 > py > ... be a partition. We denote by w(p) the word (in the positive
integers) that has p; ones, ps twos, ... in succession: this is just the reverse
reading word of the SSYT of shape p all of whose entries in row j are j (for all j).

Note that w(p) is a ballot sequence.

A word (in the positive integers) is said to be p-dominant if when preceded by

w(p) the resulting word is a ballot sequence.

Proposition 5.1.4. For a given word w there is a unique smallest partition py
such that w is py-dominant (py is the smallest in the sense that its shape is

contained in the shape of any partition p for which w is p-dominant).

PRrOOF: A letter e > 1 of the given word w is said to be a wviolator if the number
of e — 1 occurring before it does not exceed the number of e occurring before it.

For j a positive integer, let p; be the number of violators in w that exceed j. (For
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example, p; is the total number of violators.) It is elementary to see that the

partition p; > po > ... is the unique smallest one for which w is p-dominant. a

Weights of words in [d]

Let w be a word in [d]. The weight of w, denoted wt(w), is defined to be the weight

The words w,q,, and w, attached to a SSST

Let T be a SSST. We have already defined its reverse reading word wyoy (7)
in §5.1.2. We now define its reverse column word, denoted w.,(7T'), as follows: we
read the entries top to bottom in every column beginning with the right most

column and ending with the left most. For the SSST in (5.1.1), the reverse column

words respectively are 3227536341 and 1112324131.

For the SSST on the left in (5.1.1), the partitions py, attached (as in
Proposition 5.1.4) to its words W, and wee turn out to be the same, namely
543+2+2+ 1+ 1. For the SSST on the right in (5.1.1), both w,o, and w., are

ballot sequences (so py, is empty for both). Indeed we have:

Proposition 5.1.5. Let T' be a SSST and p a partition. Then Wy (T) is

p-dominant if and only if Weo(T) is so.

Remark 5.1.6. This statement is well known at least in the case of a SSYT (see,
e.g., [30, Exercise 5.2.4]). A proof from first principles is given below for the sake

of completeness.

PROOF: For boxes by and by of T', the phrase by “occurs before” by in W, (7)
(respectively Wyow(7')) has the obvious meaning. We let b be an arbitrary box

in T. Tts position is denoted by (7, ¢) and entry by e.
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1. Let b’ be a box that occurs before b in W, (1) but not in W, (7). Let its
position be denoted by (', ¢’) and entry by ¢’. Then r </, ¢ < ¢ and, since

T is semi-standard, e < ¢’.

2. Let b” be a box that occurs before b in W,y (7)) but not in we, (7). Let its
position be denoted by (r”,¢”) and entry by €”. Then " < r, ¢’ < ¢ and,

since T' is semi-standard, ¢’ < e.

The following figure depicts the situation:

Region of b”

Region of b’

Suppose first that we,(7') is p-dominant. Consider the contributions to the words
Wiow(1') and we,(T') of an arbitrarily fixed box b in 7. With notation as above,
observe that no box b’ has e — 1 as an entry and no box b” has e as an entry.
Thus, letting m, and n, (respectively m. and n.) denote respectively the number
of occurrences of e and e — 1 (strictly) before b in W, (T') (respectively weo (7)),
we have m, < m, and n. < n,. Since m. < n, by p-dominance of w.,(T"), we have

my < me < ne < Nypy 80 Wiy (7)) is p-dominant too.

Now suppose that Wyo(7') is p-dominant. By way of contradiction, suppose that
Weol(T) is not p-dominant. Choose a box b in T which “violates” the p-dominance
of Weo1(T), meaning that (with notation as above) n. < m.. Since no box of type b’

or b” can have an entry equal to e—we have ¢’ < e < ¢/—it follows that m, = m,..

Consider a box of type b” with entry equal to e — 1. Let us denote by b} any such

box and suppose that there are k such boxes. Then n, = n. + k, since ¢’ > e. The
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entry in the box just below a box b{ must be e (since such a box is weakly North
and strictly West of b on the one hand, but on the other hand its entry must be

strictly larger than e — 1). Thus all the k& boxes b{ must occur in row r — 1, and T

looks like:
Region of b” f=e—1
<
EI7- 7 9=t
el--lele
P
b, Region of b’

Now let by be the box in 71" that is k boxes to the left of b. Let us count the
number of entries equal to e (respectively e — 1) that occur before by in wyoy (7).
This count equals m, + k = m. + k (respectively, n, = n. + k). We have

ne + k < m.+ k (since n. < m. by choice of b). But this means that the box by

violates the p-dominance of Wi (7), a contradiction. O

5.1.8 Deconstructing a SSST

Let T be a SSST of shape v/A. As before, we think of A as being fixed and v as

varying. For k a positive integer:

e Let n,.(k) denote the number of times k appears in row r.

e Consider the boxes of T' belonging to A and those with entries not
exceeding k. Together they form a Young shape. Denote by A\* this shape as
well as the corresponding partition. It is convenient to set A° = X. Observe

that

(5.1.8) A= C A C A

N
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where C between shapes means that the former is contained in the latter.

We have \F — M=t = n, (k).

e Denote by wy(T") the word comprising the row numbers of 7" in which &
appears, listed with multiplicity and in weakly decreasing order. In terms of

the integers n,.(k), we have wy(T) = ... 2n2(k)  m(k),

The hypothesis that T is semistandard puts a constraint on the sequence of shapes
that can possibly arise as (5.1.8). Indeed, the fact that an of entry of 7" is strictly
larger than the one vertically just above it (if the latter happens to exist) means

precisely that no two boxes in A¥ \ A*~! are in the same column, or, in other words:

(5.1.9) MNo<ANL w1 VeE>1

In terms of A and n,.(k), this can also be expressed as the following set of
conditions:
(5.1.10)

A+ () 4+ 40 (k) < Mg+ ne (D) + - +ne(k—1) Vr>1 ViE>1

The position word wyes and its A-dominance

To see what (5.1.10) translates to in terms of the words wy(7'), let us define the
position word of T', denoted Wpos(T'), to be the concatenation wy(k)ws(k). ... For
example, the position words of the SSST in (5.1.1) are, respectively, 5111334342
and 5311132434. It is readily seen that (5.1.10) is equivalent to the A-dominance of

the word wpes(7) (in the sense of §5.1.7).
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Recovering the SSST T

Evidently the SSST T can be recovered from the collection of integers n,.(k)
(presuming knowledge of the fixed partition A). Thus it can be recovered either
from the sequence (5.1.8) of increasing shapes or from the sequence wy(T"), wo(T),

. of words. Moreover, if either the sequence (5.1.8) satisfies the constraint (5.1.9)
or, equivalently, if the sequence w1 (T"), wo(T'), ... is such that wp(T) is

A-dominant, then there exists a corresponding 7.

Bijection between 7} (w)[d] and S, (w)][d]

As preparation for the proof in §5.1.9 below of the tableau version of the
decomposition rule (5.1.3) of KK modules, we apply the observations above to the

case when T is LR.

Fix notation as in §5.1.4. Let 7;[\ [d] denote the subset of 7;;\ consisting of those
elements 7" such that v(7T") has at most d parts. Let Sl;\ denote those SSYT of
shape p whose column word is A-dominant (in the sense of §5.1.7), and let S} (w)
be the subset of those elements of S/;\ for which the associated permutation u (as

in §5.1.5) satisfies u < w. Put:
A o A A . QA A
S,ld] == {S € & |no entry of S exceeds d} S, (w)[d] == S (w) N S;[d]

The weight of a SSYT with entries from [d] is its weight thought of as a SSST
(see 5.1.2).

Proposition 5.1.7. Let T be an element of 7;)‘ and S the SSYT attached to T as
in §5.1.6. The association T — S gives a bijection between ’72 and Sﬁ‘, under
which v(T) = X+ wt(S), and which also restricts to a bijection between the pairs

T (w), Sp(w) and TN w)[d], Sp(w)ld].

93



ProoFr: We first show that 7"+ S gives a bijection between ’7;’\ and S 2 From
Proposition 5.1.5 it follows that the A-dominance of W,y (S) and we,(S) are

equivalent, so
A . . .
S, = {5 is a SSYT of shape 1| Wy (S) is A-dominant }

It is easy to see from their definitions that the words Wiyoy (S) and wps(7) are the

same. Thus, from §5.1.8, we conclude:

® Wyos(T) = Wiow(S) is A-dominant, so S belongs to S).

e The sequence wi(T"), wo(T'), ... defined in §5.1.8 and hence T itself can be
recovered readily from S by reading the entries in every row of S from right

to left. This shows that 7" — S is one-to-one.

e Given §’ in S}, the A-dominance of Wioy(S’) means that there exists a skew
tableau T” of shape v/\ (for some v) that corresponds to it (in the sense
of §5.1.8). The fact that the entries along any column of S’ are strictly
increasing downwards translates to the fact that the corresponding 7" as
above is LR, so T" belongs to ’7;;\ and T" — S’. This shows that T+ S is

surjective.

This finishes the proof that T+ S gives a bijection from 7;’\ to Sﬁ‘.

It is clear from the description of the association 7'+ S that S has type p and
that A+ v(T') = wt(95).

The association of a permutation to an LR tableau proceeds via the SSYT attached

to it, so it immediately follows that 7" — S gives a bijection from 7} (w) to S (w).

Finally, the number of parts of v(7T') on the one hand and the maximum value of

an entry in .S on the other are upper bounds for each other under 7'+ S, so we
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get a bijection between T} (w)[d] and Sy (w)[d]. O

5.1.9 Proof of the tableau KK decomposition rule of §5.1.4

The decomposition rule (5.1.3) in terms of tableaux can be derived, as we now
show, from the general decomposition rule (4.2.1) for KK-modules in §4.2. The

derivation consists of stringing together three bijections that preserve invariants.

The first of these is the bijection between T)[d] and S}[d] of Proposition 5.1.7.
The second and third bijections are from the appendix: by Corollary 6.1.4, we may
identify S,[d], the set of SSYT of shape p with entries from [d], with Psq, the set
of standard concatenations of LS paths as in §6.1.2; and, finally, there is the crystal

isomorphism I' of §6.1.4 between the set P, of LS paths of shape p and Pyq.

In the subsection below, the good properties required of the second bijection are
established. For the first bijection, this was done in Proposition 5.1.7. As for the
crystal isomorphism I, it preserves end points and A-dominance as shown in
Proposition 6.1.6; and the minimal element in the initial direction of 7 in P, is the

initial element of the minimal standard lift of I'r as shown in Proposition 6.1.7.

The final upshot is a bijection 7" <+ m between 7:} [d] on the one hand and 732 on
the other such that (a) v(T") equals the end point (1) and (b) the permutation u
attached to T as in §5.1.6 equals the minimal element in the initial direction of .

This will finish the proof of the tableau decomposition rule (5.1.3).

Good properties of the bijection of Corollary 6.1.4

Proposition 5.1.8. Under the identification between S,[d] and Psa of

Corollary 6.1.4, let S in S,[d] correspond to 0 in Psq. Then:
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1. The weight wt(S) of S equals the end point 6(1) of the path 6.

2. The permutation u associated to S by the procedure of §5.1.5 equals the

wnitial element of the minimal standard lift of 6.

3. The column word Weo(S) of S is A-dominant (in the sense of §5.1.7) if and

only if the path 6 is A-dominant.

PRrOOF: Item (1) is immediate from the definitions. As for item (2), the whole

of §5.2 is devoted to its proof.

Turning to item (3), we first prove the “only if part”. Let ¢ denote the number of
columns in the shape of S, let r; denote the number of boxes in column j of S (for
1 <j <e¢), and let w} denote the word sy;...s,,; (where, as for a matrix, s
denotes the entry of S in row a and column b). The word w(S) is, by definition,
w.w/_, ---wi. Its A-dominance clearly implies that of any left subword of it, in
particular that of the subwords w’,, w/w’_,, ..., wiw._,---w), and

WW, - WHW] = Weoi(S). This in turn implies that the weights A + wt(w’,),

A+ wt(Wowl_y), ..., A+ wt(wlwl_, ---w}), and

A+ wt(wWiw!_; - Whw]) = A + wt(weo(S5)) are all dominant. But the dominance

of these ¢ weights is, as is readily seen, precisely equivalent to the A-dominance

of 6.

For the “if part”, we first make an observation (whose elementary proof we skip).
Suppose that a word w in [d] is a concatenation w;wy of words w; and wy such
that wy is A-dominant, wy is weakly increasing (left to right), and A + wt(w) is

dominant. Then w is A-dominant.

The A-dominance of # implies that A + wt(w.), A + wt(w.w._,), ...,
A+ wt(wiw!_; .- wh), and A + wt(wlwl_; - - - whw)) = A + wt(weo1(S)) are all
dominant. Since each w’; is strictly increasing, we conclude using the observation

that we(S) is A-dominant. O
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5.2 An important property of the procedure

of §5.1.5

Let S be an SSYT (see §5.1.5) none of whose entries exceeds d, and u the
permutation of [d] obtained by application to S of the procedure of §5.1.5. As
explained in §6.1.2 (see, in particular, Corollary 6.1.4) such SSYTs may be
identified as certain standard concatenations of LS paths whose shapes are
fundamental weights (for g = sl;). In what follows, we will use the notation for an
SSYT to denote also the corresponding standard concatenation of paths. Let v be

the initial element of the minimal standard lift of S (§2.1.5).

The purpose of this section is to show that © = v. The proof is given in §5.2.5

and §5.2.7 after preparations in the earlier subsections.

The procedure of §5.1.5 seems to be quite different from and more efficient than a
repeated application of Deodhar’s lemma (Example 2.1.4) to compute the initial
element of the minimal standard lift v. Besides, the justification we give in
Example 5.2.2 of the recipe of Example 2.1.4 is itself based on the result of this

section (that u = v).

5.2.1 Notation relating to permutations

Let x be a permutation and let z x5 ... denote its one-line notation.

We call {i|x; > x;11} the descent set of x. We say that x has only r significant
elements if its descent set is contained in [r], or, in other words, if the sequence

Tpi1Tryo ... is increasing. E.g., the only permutation that has zero significant
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elements is the identity.

For s an integer, let 2° denote the sequence z] < ... < x% of the first s elements

of z (namely z1, ..., xs) arranged in increasing order.

On the tableau criterion for Bruhat order

Recall the following “tableau criterion” for comparability in Bruhat order of two
permutations: x < z if and only if x° < 2° for all s, where 2° < 2° is short hand for

xjgzjforalllgjgs.

Lemma 5.2.1. ([1, Corollary (5)]) For x < z, it suffices that z° < z* holds for

either (a) all s in the descent set of z, or (b) all s not in the descent set of z.

5.2.2 An example

For x a permutation, we denote by () the permutation obtained from x by
rearranging the first r elements in its one-line notation in increasing order. In

other words, () is the permutation whose one-line notation is ' ... ;2,41 %42 . . ..

Lemma 5.2.2. o < o2 < yr=x fors>r > 1.

PROOF: Put y = (57 and z = (,)x. The descent set of y is contained in
{s,s41,...}. For any t > s, we have y* = 2, so it follows from Lemma 5.2.1 that

y < z. Observe that 1z = . O

Given a permutation z of [n] and an integer r < n, we let S(r,z) denote the SSYT
constructed as follows: it has n —r + 1 columns; column j (counting from the left)
has n + 1 — j boxes and its entries are the first n + 1 — j entries of x arranged in

increasing order. E.g., if x is the permutation of [5] with one-line notation 45312,
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then S(x,3) is:

Lemma 5.2.3. The initial element of the minimal standard lift of S(r,x) is .

PROOF: Let a be this initial element. By an induction argument, we may assume
that (5« is the initial element of the minimal standard lift of S(s, x) for s > 7.
Thus z := .41y < a. Since the first  elements of a match the respective ones of
Y := (T, it follows in particular that y" < a". Since the descent set of y is
contained in {r,r +1,...}, and y* = 2° < @° for s > r, it follows from Lemma 5.2.1

that y < a.

On the other hand, evidently ,yz < ,—nz < ... < (o is a standard lift of S(r, z),
soa < (nT =Y. a
Let notation be fixed as in Example 2.1.4. We described there a procedure for
determining 7 := J,u. (w) without however providing a justification for it. We now
provide such a justification as an application of the main result of this section

(u=v).

Let S’ denote the SSYT S(r,w) and S the SSYT obtained by attaching to S’ on
the right a column with r boxes whose entries from top to bottom are o4, ..., o,.

For the values n =6, r = 3, 0 = 246135, and w = 145362 used as an illustration in
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Example 2.1.4, S is:

1[1)1]1]2
103344
3144|5/6
(5.2.1)
4155
506
6

By Lemma 5.2.3, the initial element of the minimal standard lift of 5" is yw = w,
so the initial element v of the minimal standard lift of S is the least element
having the following two properties: w < v and the first r elements of v (in its

one-line notation) are oy, ..., 0., in that order.

Now, 7 is the least element having the two properties: w < 7 and 7W, = oW,.
Evidently (w7W, = 7W, = oW, and, by Lemma 5.2.2, w = (yw < (77 < 7. So
(nT = 7 and the first r elements of 7 are o1, ..., 0,, in that order. This means

T =".

Thus, by the main result of this section, the element u obtained by applying the
procedure of 85.1.5 to S equals 7. It is easily seen that u; = o;, for 1 < j <r. For
J > r, to determine u;, we may use, by Lemma 5.1.3, the j-depth sequence

Yy < ...<uy;of §" instead of that of S. The entries in the column with j boxes

of S’ being w] < ... < wj:, it is clear that w! <y for 1 <4 < j. On the other
hand, since each y, must be an entry in one of the columns of S’ with at most j

boxes, it follows that w! =y for every i.

This completes the justification of the recipe of Exercise 2.1.4 to compute Jyy, (w).

O
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5.2.3 Truncations of permutations and SSYTs

For r an integer, let (") denote the permutation obtained from z by rearranging
its elements in position r + 1 and beyond in increasing order. We call () the
r-truncation of . Evidently (" has only r significant elements. As an easy

consequence of Lemma 5.2.1, we have:

Lemma 5.2.4. Suppose that v < z. Then 2" < 2(7) < 2.

For r an integer, let S denote the SSYT obtained by taking the first r rows of S:
if S has at most r rows, then S is all of S. We call S the r-truncation of S.

Let v(r) denote the initial element of the minimal standard lift of S,

Proposition 5.2.5. Every permutation in the minimal standard lift of S) has
only r significant elements. In particular, if S has at most r rows, then v has only

r significant elements: v = v.

PrRoOOF: We use Lemma 5.2.4 to observe that the r-truncation of any standard lift
of S continues to be a standard lift, and moreover that the r-truncation of the

minimal standard lift is itself. O

Proposition 5.2.6. v(r) = v".

Proor: Using Lemma 5.2.4 again, we observe that the r-truncation of any

standard lift of S gives a standard lift of S). Thus v(r) < v,

Let 0y < ... < 0 = v(r) be the minimal standard lift of S™. By
Proposition 5.2.5, there are only r significant elements in every o;. We will
construct a standard lift 6; < ... < g of S whose r-truncation is o7 < ... < og3. It

will then follow that v < &3, and so, by Lemma 5.2.4, v(") < 5,(;) = o = v(r).

To construct ¢;, proceed as follows. The first r elements of 7; are the same as those

of o;. The first entries of ¢; also match the entries top-downwards in column j of S
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(until the latter entries are exhausted). The remaining entries of &; are arranged in

decreasing order. Criterion (b) of Lemma 5.2.1 is useful to verify ¢; < 7,41. a

5.2.4 The main part of the proof (that u = v)

Let k& be the number of columns in S. For ¢, 1 < i < k, let S[i] denote the SSYT
consisting only of the first ¢ columns (from the left) of S, and u[i] the permutation
obtained by running the procedure of §5.1.5 on S[i]. By the description of the

procedure, it is clear that running the procedure on S[i]® yields ul[i]®).

Let p denote a positive integer. We proceed by induction on p to show the

following three assertions.?

a. u[l]® <u2)® <. < ulk]® =y
Consider a rectangular grid of boxes with p boxes in every column and k& boxes
in every row. Suppose we fill the boxes in column ¢ of this grid by the first p
entries of u[i] in increasing order. It is clear from item (a) above that we then
get a SSYT (see Lemma 5.2.1). Let S, be the SSYT whose first p rows are this
rectangular SSYT and whose rows p + 1 and beyond are the same as the
corresponding ones of S. For 4, 1 <i <k, we let S,[i] denote the SSYT

consisting of only the first ¢ columns of 5,.

For example, on the left in the following display is shown S for S as in (5.1.6);

31t is only assertion (a) that we are really interested in. Once we have it, it follows rather easily
that v < u (see §5.2.5). The other two assertions are technical devices that facilitate the proof
of (a).
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and on the right is shown Sy for S as in (5.2.1):

11111112

21313313
1131313

314141414
2141618

415]15(5]6
7
— 216

6

b. Fix i, 1 <1i < k. For any r > p, the r-depth of sequence of S[i] equals the

r-depth sequence of S[i].

c. Fixi,1<i<k. Let a; <...<a, be the the first p entries arranged in

increasing order of wl[i].

Let y; < ... <yps1 be the (p + 1)-depth sequence of S[i]. Let s, 1 <s <p+1,
be such that a; < ... <as_1 <ys <as <...<a, is the arrangement in
increasing order of the first p 4+ 1 elements of u[i] (see Proposition 5.1.1 and the

sentence preceding it).

Then y3 = ay, ..., Ys—1 = as_1, and ys occurs in row s of Sy[i] and in a column
weakly to the right of that in which bP*! occurs (b?*! is the right most box in

row p+ 1 of .S).

Base case of the induction

The assertions are easily verified in case p = 1. Indeed, for every 7, 1 <1 < k,
u[i]™™) has only one significant element and its first element is the entry in the first
row in column ¢ of S. This proves (a). Assertion (b) is immediate since S; = S.
Assertion (c) is vacuous in case s = 1. In case s = 2, we have a; < ys, where a; is

the entry in the first row and column 7 of S[i] and ys is the right most entry in
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row 2 of S[i]. It follows that the box in row 1 and column ¢ has 2-depth 2, so
a; < yp. Since a; is the largest entry in the first row and y; occurs as an entry in

the first row, it follows that y; < a;. Thus y; = a;.

Proof of assertion (a)

To simplify notation, write g and h for ui] and u[i + 1] respectively. We need to
prove that gj < b7 for all j < p (Lemma 5.2.1). By the induction hypothesis, we
know this to be true for j < p, so it remains to be proved only for j = p. Let us

write a; < ... < a,_ for g_]p*1 and by < ... < b,_; for WPt

Let e; < ...<e,and f; <...< f, be the p-depth sequences of S[i] and S[i + 1]

respectively. We have, evidently, e; < f;. Let s and ¢, 1 < s,¢ < p, be such that
a < ... <1 <e<a;<...<ap; and b <...<b 1 < fi<b <...<bp

are the sequences g¥ and h”.

In the case s < t,* the desired conclusion g’ < h? follows rather easily from

gp_l < hP~!. Indeed we have, in the case s < t:

¢ =a; <bj = for1<j<s—1
g§:€s<a5§b5:h€

gy =aj1 <bj g =hi_, <hi fors+1<j<t
gf = a1 < by < fy=h

g?zaj—lgbj—lzh? fort<j<p

For s = t, the three middle lines in the display above should be replaced by

gg’:esgfs:hls’.

So let us assume s > t. The cases 1 < j <t and s < j < p, are similar respectively

4The case s < t never actually occurs, but that does not concern us here.
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to the first and last cases above. It is for j in the range t < j < s that we need
some care. The key observation here is that a; = e; for j < s. This follows from
assertion (c) with p replaced by p — 1 (which we may assume to be true by

induction). Indeed, using this, we are done as follows:

g?:aj:ejéfjgb]_lzhg) fOI't<j§S

F=a1=e<fr=h O

Proof of assertion (b)

Fix r > p. By induction, we know the statement for p — 1 in place p, so the
r-depth sequences of S[i] and S,_1[i] are the same. It is therefore enough to prove
that the r-depth sequences of S,_1[i] and S,[i] are the same. It is convenient to
omit the “[i]” and just write S,_; and S, for S,_1[i] and S,[i] respectively.

Assertion (b) follows immediately from Corollaries 5.2.9 and 5.2.11 below.

We denote by 7y the column number in which the right most box b? in row p

of S,—1 (equivalently S) occurs. The entries in any column of S,_; are also entries
in that same column of S,. For every box b of S,_1, we denote by b’ the (unique)
box of S, in the same column as b and having the same entry. The association

b — b’ is evidently one-to-one. Either b’ is in the same row as b or in the next

lower row.

We classify boxes of S, as follows:

e Old boxes are those that are in the image of the above map b — b’. New

boxes are those that are not old.

e An unmoved box is an old box b’ that is in the same row as its preimage b.
We write b’ = b in this case. A moved box is an old one that is not unmoved,

or, in other words, an old one that is in a row one lower than its preimage.
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A box b of S,_; is moved or unmoved accordingly as its image b’ in S, is so.

As an illustration, shown on the left in the display below is S5 and on the right is
S, in a particular case: p = 3 and iy = 2. The entries in all the new boxes are in
bold and underlined; those in unmoved boxes are in red; those in moved boxes are
in blue. The 4-depth sequences for S;[3] and S;[4] respectively are 7, 5, 2, 1 and 7,
5, 4, 2; those for Ss[l] for [ > 5 are all 7, 6, 4, 3.

1l1]1]2(3[3]4|7 11123333
202|2]4|6|7/8]8 21212444l 4]|7
313/5/5(8/8/9/9 313/5(5/6|7]8]8

(5.2.2)
6|7 6/7|7|7!18(/8]9]9
7 7
9 9

Proposition 5.2.7. 1. In any column i of S,_1 (respectively S,) with i < iy, all
bozes are unmoved (respectively old and unmoved). In particular, the right

most box b" in row r (with r > p) of S, is old and unmoved.

2. Let n be a new box. Then, to the left of n and in the same row, in a column

with number i > ig, there is an old box carrying the same entry as n.’

PROOF: Item (1) is clear. Indeed S,_; and S, are identical in columns i < .

To prove item (2), suppose that n occurs in column ¢ of S,. Then S,_1[c] has p —1
boxes in its last column. Let a; < ... < a,—; be the entries in that column (top to
bottom). Let y; < ... <y, be the p-depth sequence of S[c| (or, what amounts to
the same by the induction hypothesis, of S,_1[c|) and let s, 1 < s < p, be such that
a; < ...<as1 <yYs <as<...<a, are the entries in the last column of S,[c].

The box with y, as its entry is n, and n occurs in row s of Sy[c|. We may assume

5Any such box is actually unmoved, but we don’t need that bit of detail.
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by induction that assertion (c) of §5.2.4 is true with p — 1 in place of p, and
conclude that ys appears as an entry in row s of S,_;[c] in a column with number

i > ip. 0

Proposition 5.2.8. Let by and by be boxes of S,_1. Then by > by if and only
if b} > bl.

PRrROOF: Neither the entry nor the column number changes on passage from b to
b’. While the row number could increase by at most 1 on this passage, consider
the facts that both S,_; and S, are SSYTs and that by (respectively b)) is weakly
to the East of by (respectively b)) and carries an entry which is strictly less.
Together these imply that by (respectively b)) occurs in a higher row than by

(respectively bf). O

Corollary 5.2.9. Fiz r > p. Suppose that b" = by = ... > bs is a chain of bozes
in Sp—1. Then b" =bj, = ... > b} is a chain of boxes in S,. In particular, the

r-depth sequence of S,_1 is term for term dominated by the r-depth sequence of S,.

PROOF: That we get a chain on passing from b to b’ is clear from
Proposition 5.2.8. That b = b’ follows from Proposition 5.2.7 (1). It is clear
from the description of the association b +— b’ that the entries of bs and bj are the

same. O

Proposition 5.2.10. Fix r > p. Giwen a chain b" = by > ... bg of boxes in S,
there exists a chain b” = by > ... > bs of bozes in S,_1 with bs having the same
entry as bs and being weakly to the Northwest of it (meaning, the row and column

numbers of bs each is at most that of the corresponding number of f)g).
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PROOF: Proceed by induction on §. For § = 0, the statement is easily seen to be

true since b” = b" is old and unmoved (Proposition 5.2.7 (1)). Suppose that § > 1.

First suppose that by is an old box. Let bs be the unique box in Sp—1 such that
5= f)g. Note that by shares its entry and column number with E)(; and is weakly
to the North of it. By induction, choose b” = by > ... > bs_; with bs_; being
weakly to the Northwest of bs_1 and having the same entry. Since bs_; is weakly
to the West of bs with a strictly larger entry, it follows that it is on a strictly lower

row, and so bs_; = bs.

Now suppose that bs is a new box. Using Proposition 5.2.7 (2), replace it by an
old and unmoved box having the same entry and being to the left in the same row.
Suppose that the new by is in column c. If any f)j for 7 < 0 has a column number
higher than ¢, replace it by the one in the same row in column number ¢. We now
get a chain with bs being old, so we are reduced to the case settled in the previous

paragraph. O

Corollary 5.2.11. Fiz r > p. The r-depth sequence of S,_1 dominates term for

term the r-depth sequence of S,.

Proof of assertion (c)

By assertion (b), we may take y; < ... < y,4+1 to be the (p + 1)-depth sequence

of Sp[i]. Fix j < s. We would like to show that y; = a;. In what follows, we write
just “depth” to mean “(p + 1)-depth”. Recall that, by definition, y; is the maximal
entry in a box of depth p+ 1 — j; and a; occurs as the entry in row j and column ¢
of Sp[i]. Any box of depth p + 1 — j occurs in row j or above, and a; dominates all
the entries in those rows. Thus it is enough to show that the box in row j and
column 7 of Sy[i] has depth p+ 1 — j. Further, since any box in row j has depth at

most p+ 1 — j, it is enough to show that the depth of that box is at least p+ 1 — j.
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Further, it is enough to show this for j = s — 1, since it follows then for the other

Jj < s as well.

By definition, ys occurs as an entry in a box b of S,[i] of depth p+1—s. Such a b
can only appear in row s or above. But since a,_1 < ys, it follows that b cannot
occur in row s — 1 or above. So it appears in row s, and so b > ¢ where c is the

box in row s — 1 and column 7 of S,[i], which means that ¢ has depth p+2 —s. O

5.2.5 Proof that v <u

It follows from assertion (a) that u[1]®) < ... < u[k]® is a standard lift of S®).
Since v®) = v(p) is the initial element of the minimal lift of S® (by
Proposition 5.2.6), it follows that v < u[k]® = u®). Since v = v® and u = u®

for large p, it follows that v < u. O

5.2.6 A technical lemma (that is invoked in §5.2.7)

Lemma 5.2.12. Let 01 < ... < 0y be a standard lift of S. Consider any box of

bP-depth 6 in S, for some positive integer p. (Recall that b denotes the right most
box in row p of S.) Let y be the entry in that box and ¢ be the serial number (from
the left) of the column in which that box appears. Then, among the first p elements

of 0. (in its one-line notation), there are at least § + 1 that are at least y.

PROOF: Proceed by induction on §. Suppose first that 6 = 0. The only box with
bP-depth 0 is the box b” itself. Since b” occurs on row p, the conclusion is easily

verified to be true.

Now suppose that § > 1. From the hypothesis (and the definition of b”-depth),
there exists, for some ¢’ < ¢, a box in the column ¢ of S with entry 3 > y and of

bP-depth 6 — 1. By the induction hypothesis, there exist, among the first p
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elements of o, ¢ that are at least ¢'. Since o < 0., the same assertion holds with
ox replaced by .. Now, y too occurs in the first p elements of o.. Thus there are

at least 0 + 1 among the first p elements of o. that are at least y. a

Corollary 5.2.13. Let y; < ... <y, be the p-depth sequence of S (this was used
in the procedure in §5.1.5 to determine u,). Then, for every j, 1 < j <p, among

the first p elements of v, there occur at least p+ 1 — j elements that are at least y;.

PRroor: By definition, y; occurs as an entry in some box of .S of bP-depth p — j.
Suppose ¢ is the column number in which such a box appears. Choose the
standard lift in the lemma above to be the minimal one. Then, by the lemma,
among the first p elements of o, there occur at least p+ 1 — j that are at least y;.

Since 0. < v, the same assertion holds with v in place of o.. O

5.2.7 Proof that u <wv

For p a positive integer, we prove, by induction on p, that u® < v® . Since

u® =y and v = v for large p, it will follow that u < v. First consider the case
p = 1. Let the right most entry in the first row of S be a. From the description of
the procedure to produce u in §5.1.5, it is clear that u; = a. On the other hand,
evidently, the initial element of any standard lift of S has a as its first element (in

its one-line notation), so in particular v; = a. This proves u(") = v,

Now let p > 1. By the induction hypothesis, we have (=1 < v~1 Tt is enough

therefore to prove that u, < v,.

Since we have proved that v < u (§5.2.5), it follows that that v® " = 4~ Let
y1 < ... <y, be the p-depth sequence of S and let 5, 1 < j < p, be such that

u, = y;. Then there are exactly p — j elements among uy, ..., u,—; that are at
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least y;. Corollary 5.2.13 guarantees that among the first p elements of v, there are
at least p +1 — j that are at least y;. Since u; = v; for j < p — 1, it follows that

up = Y; < vp, and we are done. 0
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Chapter 6

On the concatenation of LS paths

6.1 Multiple concatenations of LS paths

The immediate provocation for this appendix comes from the need to quote its
results (Propositions 6.1.2 and 6.1.7) in the proof of the tableau decomposition
rule for KK modules (§5.1.9). These results are part of folklore. They are already
hinted at by Littelmann in [14]: see the “precise combinatorial criterion” alluded
to in the paragraph preceding the theorem in §8.1 of that paper. They are also
later stated in [31, §11] with a sketch of proofs. However, we could not find a
suitable reference with complete proofs. This appendix aims to provide precisely
such a reference, presupposing knowledge of (a) Littelmann’s basic definitions and
results on paths as in [15] and (b) the results recalled and proved from scratch

in §2.1 above.

6.1.1 Standard concatenations

Let g be symmetrizable Kac-Moody algebra. Let A1, ..., A, be dominant integral

weights. For 7, 1 < j < n, let P; denote the set of LS paths of shape A;. Consider
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the set P:=Prx---*x Py :={m *---«m,|m; € P; for 1 <j <n} of paths. For
paths 6 and €' in P, let us write 8 ~ 6§ if either e, 0 = ¢ or f,0 = ' for some
simple root . This is a symmetric relation. Let us continue to denote by ~ the

reflexive and transitive closure of this relation on P.

The path 7(0)

Fixa 0 =m x---xm, in P. As in Proposition 3.2.3, which is the special case n = 2

of the present set up, it follows that:

e In the equivalence class of P containing 6, there exists a unique path 7(0)

that is killed by e, for every simple root a.

e The 7(0) as above lies entirely in the dominant chamber.

Standard concatenations

We want to characterize those 6 for which n(f) = 7y, - - - x my,, where as usual 7y,
denotes the straight line path from the origin to A;. Towards this, put W; := W,
the stabiliser of \; in the Weyl group W, and let 71; > ... > 7., ; be the chain of

elements in W/W; forming the LS path 7; (for 1 < j < n). Consider the tuple

(611) (7'1’1,...7}171, ,TL]',...,TT].J‘, 77—1,717”-’7—7“”,71)
which is an element of
(6.1.2) (W/Wl)x r1 times X oeee X (W/W])X T times X X (W/Wn)x Ty, times

We call the path 0 standard if the tuple (6.1.1) is standard in the sense of §2.1.5.

A standard lift (respectively, a minimal standard lift) in the sense of §2.1.5 of the
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tuple (6.1.1) is called a standard lift (respectively, minimal standard lift) of . We

denote by r(#) the initial element of the minimal standard lift of 6.

We denote by Psiq the subset of P consisting of standard paths.

Example 6.1.1. The path 7, x--- x ), is standard, for (identity, ... identity) is
its minimal standard lift. Moreover, it is the only standard path in P with identity

as the initial element of its minimal standard lift. Thus:

(6.1.3) {0 € Psa [0(0) <identity} = {my, *---x 7y, }

Here is a characterization of the paths 6 in P for which n(0) = ), x -+ * ),

Proposition 6.1.2. (see [14, §8.1]) n(0) = my, * -+ * 7wy, if and only if 0 is

standard.

The proof of this proposition is given in §6.1.3.

6.1.2 Specializing to a classical case: the case of the

special linear Lie algebra

Preserve the notation of the previous subsection and specialize to the situation

of §5.1: an integer d > 2 is fixed, g = sly, etc. Let p be a dominant integral weight,
or, equivalently a partition with less than d parts. Write u as

1> e > o> g1 > 02> Let wy =€, wy =€ + €9, ...,

wWy_1 = €1 + -+ + €4_1 be the fundamental weights. Let W 1< < d, denote the

stabiliser in W of w;.

Put my = 1 — p2, ..., Ma—2 = fla—2 — fla—1, Md—1 = fta—1 — ftd = Pd—1, and
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n=my+mg+---+mg_ (note that n = uy). Let A, ..., A\, be:

W1,...,W17...,Wj7...,w]',...7wg,...7W€
%,—/ N - 2 -~
m1 times m; times my times

so that =Xy +--- 4+ \,.

The elements of W/W,, are parametrized by subsets of cardinality j of [d]. Each
such subset is written as {1 <14y < ... <14; < d}. Given two such subsets
Zz{lgil<...<z'j§d}and§':{1§i'1<...<i;§d},wehaveg§g’inthe
Bruhat order on W/Wo, if and only if i; <4}, ..., ;-1 < i;fl, and i; < 2; For a
permutation o of [d] whose one line notation is oy . .. 04, the coset oWs,

corresponds to {1 <i; < ... <i; <d}, where iy, ..., i; are the elements oy, ...,

o; arranged in increasing order.

For permutations o and 7 of [d] with respective one-line notations oy . ..oy and
Ti...Tq, we have 0 < 7 in the Bruhat order if and only if oW, < 7W, for every

j, 1 < j < d: see, for example, [1].

The LS paths of shape w; are all straight lines, so they too are parametrized by
elements of W/W,,. Thus a path in P can be represented by a “tableau”, where a
tableau consists of my_1 + ...+ my top-justified columns of boxes, where each of
the first my_; columns (from the left) has d — 1 boxes, each of the next mg -
columns has d — 2 boxes, and so on; the boxes are filled with numbers between 1

and d, the entries in each column being strictly increasing downwards.!

Let, for example, d =5 and u =6+ 3+ 3+ 2. Then m; =3, my =0, m3 =1,
my = 2;n =06, and A\, ..., A\¢ equals wy, w1, wi, w3, ws, ws. And the paths in P
can be identified with tableaux consisting of 6 top-justified columns of boxes, the

first two columns having 4 boxes each, the next column having 3 boxes, and the

IThe reversal of order, which is admittedly annoying, is necessary to preserve entrenched con-
ventions.
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last three columns having 1 box each. Here are two examples of such tableaux:

1/1(2/1(4]3 1112|345

31214 2134
(6.1.4)

1035 3145

5|5 5|5

For § = 1 x --- x 75 in P, the entries in the first column of the corresponding
tableau define 7¢ (which is a path of shape A5 = wy), the entries in the second

column define 75, and so on, until the entries in the last column define 7.

Proposition 6.1.3. A path 6 in P is standard as defined earlier in this section
(§6.1.1) if and only if the entries in the tableau corresponding to it are weakly

icreasing i every row from left to right.

PROOF: Proposition 2.1.15 (3) is relevant here. In particular, we could use it prove
the if part, but instead we directly construct an explicit standard lift. Let j be such
that 1 < j <d,andlet h = {1 < h; <... < h; <d} be an element in W/W, .
Denote by I the permutation whose one line notation is hy ... h;R, ... hj_ ;j» where
hy, ..., hy_; are the elements of [d] \ {hy, ..., h;} arranged in decreasing order.
Clearly, EWWJ. =h. Let k<jandlet i ={1<i; <...<i; <d} be an element of
W /Wy, such that hy <4y, ..., hy—1 <ig_1, and hy < ij. Let 1 be defined from i

(as h is from h). Then, as is not to hard to see, h < i. This proves the if part.

Let 7, k be integers such that 1 < k < j < d. Let o, 7 be permutations of [d] with
respective one line notations oy ...04 and 7y ...745. Then

oWg, =1{h1 <...<h;} = h where hy, ..., hj are just oy, ..., 0; arranged in
increasing order, and 7Wy,, = {i; < ... < iy} =i where iy, ..., iy are just 7, ...,
7, arranged in increasing order. Suppose that o < 7. Then b} <1y, ..., h) <,
where hY, ..., h} are oy, ..., o) arranged in increasing order. It follows that

hy <y, ..., hi <y, since evidently hy < hf, ..., hy < h}. This proves the only if
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part of the assertion. O

Corollary 6.1.4. The set Pyq of standard paths in P may be identified with the
set S,[d] of SSYT of shape pu (in the sense of §5.1.5) with entries from [d].

The path represented by the tableau on the left in (6.1.4) is not standard whereas
the one represented by the tableau on the right is standard: the tableau on the left

is not a SSYT whereas the tableau on the right is.

6.1.3 Proof of Proposition 6.1.2

Towards the proof, we first prove a lemma.

Lemma 6.1.5. If 0 is standard, then so is every element in the equivalence class

of P containing 6.

PROOF: Let 0 be standard and a be a simple root. We will presently show that
fa0 is standard in case it does not vanish. The proof that e,f is also standard,
which we omit, is analogous. This will suffice to prove the lemma. Let us write
W/Wy, x - x W/Wy,  for the Cartesian product (6.1.2), and denote by

(T1y ..., Tm) the tuple (6.1.1).

Suppose that f,0 does not vanish. From the definition of f,, it follows that, by
increasing m and replacing 7; by 7;, 7; for some choices of j, 1 < j < m, as
necessary, we may assume that the tuple as in (6.1.1) corresponding to f,0 is

(11,...,7),) where for every j, 1 < j < m, we have

(6.1.5) TJ/- is either 7; or s,7;, depending upon certain conditions.

To exploit these conditions, it is useful to introduce the following terminology. Let
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7 be an integer, 1 < 7 < m. We call j

changing if 77 = 547 # 7T
changeable (but not changing) if 7/ =7; < s,7;
(6.1.6)
resisting if 5,7 < 7;
flat if sa7; =175

Using this terminology, we record some simple observations ((6.1.7)), (6.1.8),
and (6.1.11) below) that we need for the proof. All of these follow readily from the

definition of f, as in [15]. To begin with:

j is changing only if 7; < s,7;,
(6.1.7) ’ !

so the cases in (6.1.6) are exhaustive and mutually exclusive.

In particular this means that 7; = 7; if j is resisting. So we have:

(6.1.8)  If j is resisting or flat or changeable (but not changing), then 7; = 7.

We call 7, 1 < 7 < m, unobstructed if there exists k, j < k < m, such that k is
changing and there does not exist j* with j’ resisting and 7 < j' < k. We call j

obstructed if it is not unobstructed. Evidently:

(6.1.9)  j is unobstructed if it is changing, and j is obstructed if it is resisting.

so, from (6.1.8):

(6.1.10) If j is obstructed, then 7; = 7;.
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We also have (from the definition of the operator f,):

(6.1.11) If j is changeable (but not changing), then j is obstructed.

Let now 71 > ... > 7, be a standard lift of 6. For j, 1 < j < m, define %j’- by:

SqT; if j is changing
(6.1.12) 7= !
7; if j is obstructed

and, when j is flat and unobstructed, by a downward induction as required:

(6.1.13) 7; := the smaller of 7; and s,7; that is larger than or equal to 7},

Since 7, is either 7,1 or 5,741 (by downward induction), it follows (by an
application of the basic observation (*) in §2.1.2 applied to the hypothesis that

7-j Z 7~—j+1) that

(6.1.14) TV saTi > Ty

so at least one of 7; and s,7; is larger than or equal to 7/, and (6.1.13) makes

sense.

We now argue that 7/ > 7, for all 1 < j < m. If j is flat and unobstructed, then
this follows from the definition (6.1.13) of 7. If j is either changing or resisting,
then 7} = 7; V s,7; (from (6.1.6), (6.1.7), and (6.1.8)), so it follows from (6.1.14)
that 7/ > 77, ;. By the mutual exclusivity of the cases in (6.1.6) (which follows
from (6.1.7) as already remarked) and (6.1.11), we may assume that j is
obstructed but not resisting. But then j + 1 is also obstructed, and so 7/, ; = 711
by (6.1.12), and 7} = 7; > 7j41 =

=/
j+1

We claim that 7{ > ... > 7, is a standard lift of f,6. It remains only to verify that
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%]/'WAZ-J- = 7; for every j, 1 < j < m. This is easily done, as follows:

e j changing: 7; = 5,7; by (6.1.12), so %J{W,\ij = 8a7~'Wxij = 847j. But s,7; = 7;

by (6.1.6).

e j obstructed: 7; = 7; by (6.1.12), so %]'-W,\ij =7TW,, =1 But 7; =7

v

by (6.1.10).

. e . - - . ' ‘ o o
o j flat: 7; 18 either 7; or s,7;, so TjW)\ij is either 7; or s,7;. But 7; = s,7; = T;

by (6.1.8). O

Proposition 6.1.2 Write n for n(0). If n = my, x - - - x m, , then 7 is standard and so
0 is standard by the previous lemma. Now suppose that # is standard. Then so
is 7 by the lemma. Let us write W/Wy, x - x W/W), = for the Cartesian

product (6.1.2), and denote by (o1, ..., 0,,) the minimal standard lift of 7.

Let a be any simple root. We claim that there cannot exist k£, 1 < k < m, such

that:
(6.1.15) Sa0% < O and saajW)\ij = O'jW)\ij forall1 <j <k

To prove the claim, we suppose such a k exists and arrive at a contradiction. We
have saakW,\ik < O'kW)\ik. If strict inequality holds here, then e,n does not vanish,
a contradiction, so equality holds. If s,0511 > 0%41, then

Sa0k = O N\ Sq0k > Oki1 A Sq0ki1 = Oki1, a contradiction to the hypothesis that
(01,...,04) is a minimal standard lift of  (because then s,o; would work as a lift
in place of oy). Thus (6.1.15) holds with k replaced by k + 1. Repeating these
arguments sufficiently many times, we conclude that s,o,, < o, and

saajW,\ij = ajW,\ij for all 1 < 7 < m. But then o, is not the minimal element in

the coset 0,,W,, , which contradicts the hypothesis that (o1, ...,0p) is the
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minimal standard lift of 7.

To show that n = my, x--- x ), it suffices to show that oy is the identity element
of the Weyl group W. If o7 is not the identity element, let o be a simple root such

that s,01 < 1. Then (6.1.15) holds with k£ = 1, a contradiction.

6.1.4 The crystal isomorphism

Fix notation as in the beginning of §6.1.1. Let Pyq denote the set of all standard
paths in P. By Proposition 6.1.2, Pyq is precisely the set of paths 6 in P for which
n(0) = my, x -+ *my,. Thus, by [15, Theorem 7.1], there is a (unique) crystal
isomorphism? I' : Py — Psq, where P, denotes the set of LS paths of shape

A=A+ A

Proposition 6.1.6. The isomorphism I' has the following properties:

e The straight line path 7 (from the origin to \) is mapped under I' to

Tay * -t % Ty, -
e The end point of m in Py is the same as that of its image I'm.

e 7 is A-dominant if and only I'm is so.

PROOF: The first item is because 7y (respectively 7y, x -+ xmy, ) is the unique
path in P, (respectively Pyq) on which e, vanishes for every simple . The second
is because (a) my and my, x - - - x 7y, both have A as end point, (b) every path in P,
(respectively Pyq) can be obtained by acting a sequence of f, operators on
(respectively my, *---xmy, ), (c) the first item, and finally (d) if f, does not vanish
on any path o (in either Py or Psq) then f,o(1) = (1) — a. As for the third item,

we make two observations from which it follows that I' preserves A-dominance:

24Crystal isomorphism” just means a bijection that commutes with the action of the root
operators f, and e,.
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e a path o in Py U Pgq is A-dominant if and only if e, (7 * o) vanishes for all

simple roots a.

e For paths m and 7 in Py U Py, €q(m * ) equals either e,m * m or
T * e,y depending precisely upon whether or not ¢ > 5 where ¢
(respectively j) is the maximum non-negative integer k such that f*m

(respectively e*m,) does not vanish. O

Proposition 6.1.7. For an LS path © of shape X\, the minimal element in the

initial direction of w equals the initial element vo(I'm) of the standard minimal lift

of I'm.

The proposition follows by combining Corollary 6.1.10 with Lemma 6.1.11.

A useful observation (Corollary 6.1.10)

Let p be a dominant integral weight. For a Weyl group valued function
S : P, — W on the set P, of LS paths of shape i, and v an element of W, put
Pus(§) = {m € Pu[S(7) < v}

Lemma 6.1.8. Suppose that the following conditions hold for m an arbitrary path
in P, and w := §(m):

1. If a a simple root with s,w < w, then e,m does not vanish.

2. Suppose fom does not vanish. Then either (a) §(fom) =w or

(b) §(fam) = sqw > w and e,m vanishes.
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Then, for v in W and B simple such that sgv < v:

Puo(§) = {fgﬂ | € Pusso(S), k>0, f§7r does not vanish}

PROOF: Since P,,s,4(§) € Puo(S) and, by (2), P,..(F) is closed under the action
of fq, it follows that the right hand side is contained in P, ,(§). To prove the other
containment, let o be in P, ,(§). Let & > 0 be maximal such that ega does not

vanish, and put 7 := ega. Then fgﬂ' = 0, so0 it is enough to show that 7 is

in Pusso(F)-

Put w := §(7). On the one hand, since f§7 = o, it follows from (2) that F(o)
equals either w or sgw, so that w < w V sgw = §(0) V s5F(0) < vV sgv = v. But,
on the other, if ssw < w, then egm does not vanish by (1), a contradiction to the

maximality of k. Thus we have w < sgw and w = w A sgw < v A sV = s50. O

Corollary 6.1.9. Let v : P, — W be the function that maps each path to the
manimal element in its initial direction. Then, for v in W and B simple such that

SV < v

Pouow(t) = {f57 |7 € Pusyo(t), k=0, fim does not vanish}

Proor: It follows easily from the definition of the operators e, and f, that the

hypothesis of the lemma are satisfied for the function ¢. (See also [14, Lemma in

§5.3].) O

Corollary 6.1.10. Suppose in addition to the conditions (1) and (2)

of Lemma 6.1.8 the function § satisfies the following: P, identity(§) = {mr}. Then
5=
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PRrROOF: We proceed by induction on v to show that P, ,(F) = Pp..(¢). This will
suffice. If v = identity, then both sets are equal to {m\} and the result holds. So
suppose that v > identity. Choose a simple root « such that w := s,v < v. By the

induction hypothesis, P, ., (§) = Puw(t). But, by Lemma 6.1.8, we have

Po(F) = {fjﬁ |7 € Puw(§), k>0, féfw does not vanish}

and, by Corollary 6.1.9, we have

Puo(t) = {fin |7 € Puw(t), k>0, fix does not vanish},

so it is clear that P, ,(F) = P (¢). O

The above corollary together with the following lemma proves Proposition 6.1.7.

The proof of the lemma occupies §6.1.5

Lemma 6.1.11. Fiz notation as in the first paragraph of §6.1.4. Let §: Py — W
be the Weyl group valued function on Py given by §(rw) := w(L'(7)). Then
Paidentity(§) = {mr} and § satisfies the conditions (1) and (2) of Lemma 6.1.8.

6.1.5 Proof of Proposition 6.1.7: and Lemma 6.1.11

We first prove:

Lemma 6.1.12. With notation as in the statement and proof of Lemma 6.1.5,

suppose that 7, > ... > T,, be the minimal standard lift of 6. Then

1. Suppose that 7, > s,7,. Then p is either resisting or flat. If p is flat, then

there exists v, p < r < m, with r resisting and every q such that p < q <r is

flat.
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2. 7,27 forall j, 1< j<m.
8. Suppose that j is changing and j < m. Then T/, N SaTj\ 1 = Tj41-

4. T > ...> 7 is the minimal standard lift of f,0

ProoF: (1) If pis changing or changeable (but not changing), then 7, < s,7,, so
it would mean that 7, < s,7, (Corollary 2.1.12). This proves that p can only be
either flat or resisting. Suppose now that p is flat. Let r be the least integer,

p <r <m, (if it exists) such that r is not flat. If such an r doesn’t exist, put
r=m+1. Forall ¢, p <gq <7, put o, := 7, A 5,7,. Then o, = 5,7,. We have

op, > ... > 0,1 (by the basic fact (*) in §2.1.2). If » < m and r is not resisting,
then 7, = 7, A 547, so that 0,_y > 7,. Thus o, > ... 0,1 > 7, > ... > 7, would
be a standard lift of (7,, ..., 7,), which we could complete to a standard lift of 6.
But then o, = 5,7, < 7,, which contradicts the hypothesis that 7, > ... > 7,,, is

the minimal standard lift.

(2) Proceed by downward induction on j. Since 7; = 7; in case j is obstructed,
and 7; = s,7; > 7; in case j is changing, we may assume that j is flat and
unobstructed, so j < m and 7/ = 7;. We have, by the induction hypothesis,

741 = Tjt1, and so by (3) of Remark 2.1.18:

7; > min o (i) = min J, (77,,) > min J. (7;41) = 7.

(3) Since by definition 77, is either 711 or 4711, and 7, > 7;4; by item (2), it
is enough to show that 7/, < s,7;,;. If not, then, by item (1), there exists r such
that 7 < r < m with r resisting and every ¢ such that j < g < r is flat. But this

cannot happen since j is changing, by the definition of the operator f,.

(4) Let 7 > ... > 7/ be another standard lift of f,0. It suffices to show that

~1 ~/ - . . . . .
7; > 7} for every j, 1 < j < m. Proceed by downward induction on j. It is
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convenient to put 7,41 = 7, = 7,41 = identity. By the induction hypothesis,

=1 ~/
Tjt1 2 Tj1-

In case j is obstructed, 7; = 7; by (6.1.10), and we have

7 > minJ (7)) = min J; (7)) > min J; (7j41) = 75 = 7

Suppose now that j is changing. Then 7; < s,7; = 7} by (6.1.6) and (6.1.7). By (3)

of Remark 2.1.18, Corollary 2.1.12 and Lemma 2.1.16 (2), and item (3) above:

7 >minJ, ., (7)) > min J, . (7] 1) =semin J. (7}, A 867}, 1)

. ~ ~ ~1
=somin J. (Tj11) = saTj = 7

The only remaining case is when j is flat and unobstructed. We then have j < m
and 7; = 7;. By the induction hypothesis and item (2) above, we have

T/\1 2 Tiy1 2 Tjr1, 80 by (3) of Remark 2.1.18:

~// . ~/! _ . ~I
7 2 min J (7)) = min J, (7]

J—l—l) > min Jr) <7-]/'+1) > min Jo; (Tjx1) =75

This means we would be done in case 7; > 7; (which by item (2) is equivalent to
7j = 7;). But, 7} is by definition the smaller of 7; and s,7; that is larger than 7/, ,.
So it only remains to consider the case when 7; < s,7; and 7; 2 7;,,. In this
situation, 7j41 < 84Tj41 = %gl'+1 (for 7~'j’~Jrl is by definition either s,7;1; or 7j;1, and
7; > Tj+1). This implies by item (1) that j + 1 is obstructed and therefore j is also

obstructed, a contradiction. O

Lemma 6.1.11 That Py identity(§) = 7 follows from (6.1.3).

Now Put 0 = I'r and w(f) = w. Let 0 = (71,...,7,) and let (71,...,7,) be the

minimal standard lift of € (so that w = 7).
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Proof of condition (1) of Lemma 6.1.8: Let v be a simple root such that s,w < w.
To show that e,m does not vanish, it is enough to show that e,f does not vanish,
and for this it is enough to show that there exists r, 1 < r < m, such that

50Ty < T, and s,7; = 7; for all j, 1 < j < r. By way of contradiction, suppose that
SaT; > T, for the least r such that s,7,. # 7, (the case when s,7; = 7; for all

1 <7 < m is included in the consideration: we put r = m + 1 in this case). For j,
1 <j <, set o) :=1T; A\saT;. Observe that (oy,...,0, 1,7,...,Tn) is also a
standard lift of 6. But then o] = s,w < w = 7y, which contradicts the choice of

(71,...,7m) as the minimal standard lift of 6.

Proof of condition (2) of Lemma 6.1.8: Suppose that f,7m does not vanish. Then
fab does not vanish either. By Lemma 6.1.5, f,0 is standard. Moreover, by
Lemma 6.1.12 (77, ...,7/,) is the minimal standard lift of §. Since 7| is either 7; or
871 by its definition, it follows that §(f,7) is either w or s,w. Suppose that
§(fam) # 71 = w. Then, since 7{ > 7 by item (2) of Lemma 6.1.12, it follows that
§(fam) = sqw > w. Moreover, this happens only if 1 is unobstructed, which means

that minimum is 0 of the function ¢ — (7 (t),@") on the interval [0, 1], and so e,m

vanishes.
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Thesis Title :
A Study of Kostant -Kumar modules via Littelmann paths.

In this thesis we study about Kostant-Kumar modules (KK module for short). KK modules are the certain
cyclic submodules of the tensor product of two integrable irriducible modules of symmetrizable Kac-
Moody Lie algebras.

Figure 1: Decomposition KK modules of tensor product in Lie algebra

of type B2

We extends Joseph decomposition rules of KK modules for finite type Lie algebra. Above figure
is graphic of decomposition of KK modules in Lie algebra of type B2. We also give, in the spirit
of Littelmann, a path model for KK modules for symmetrizable Kac-Moody Lie algebras
provided it is symmetric or of finite type.
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