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Chapter 1

Introduction

1.1 Kac-Moody Lie algebras

We recall some basic definitions and results concerning Kac-Moody algebras and

their representations, following Kac’s book [7].

1.1.1 Generalized Cartan matrix (GCM)

An n× n complex matrix A is called a generalized Cartan matrix if it satisfies the

following conditions:

1. aii = 2 for i = 1, 2, ..., n.

2. aij are nonpositive integers for i 6= j.

3. aij = 0 implies aji = 0.

A generalized Cartan matrix A = (aij)
n
i,j=1 is called symmetrizable if A = DB for

some invertible diagonal matrix D = diag{d1, d2, ..., dn} and a symmetric matrix B.
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Let h be a complex vector space such that dim h− n = n− `, where ` is the rank

of A. Let Π = {α1, α2, ..., αn} ⊂ h∗, and Π∨ = {α∨1 , α∨2 , ..., α∨n} ⊂ h be linearly

independent such that 〈α∨i , αj〉 = aij for i, j ∈ {1, 2, ..., n}, where 〈, 〉 : h∗ × h→ C

denotes the pairing 〈α, h〉 = α(h).

Let A = (aij)
n
i,j=1 be an n× n symmetrizable generalized Cartan matrix and

(h,Π,Π∨) as above. The symmetrizable Kac-Moody algebra g(A) is a Lie algebra

generated by {ei, fi|i = 1, 2, ..., n}, h subject to the following relations:

1. [ei, fi] = δijα
∨
i , for all i, j = 1, 2, ..., n.

2. [h, h′] = 0, for all h, h′ ∈ h.

3. [h, ei] = 〈αi, h〉ei for i = 1, 2, ..., n;h ∈ h.

4. [h, fi] = −〈αi, h〉fi for i = 1, 2, ..., n;h ∈ h.

5. (ad ei)
1−aijej = 0, for i, j = 1, 2, ..., n; i 6= j.

6. (ad fi)
1−aijfj = 0, for i, j = 1, 2, ..., n; i 6= j.

The subalgebra h of g(A) is the called Cartan subalgebra. Π is called the root basis

and its elements are called simple roots. Π∨ is called the coroot basis and its

elements are called simple coroots following the same terminology as in the theory

of finite dimensional simple Lie algebras.

Theorem 1.1.1. The symmetrizable Kac-Moody Lie alebra g(A) has the

following triangular decomposition:

g(A) = n− ⊕ h⊕ n+

where n+(resp n−) denotes the subalgebra of g(A), which is generated by

{ei|i = 1, 2, ..., n} (resp {fi|i = 1, 2, ..., n}).
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1.1.2 The Weyl group

Consider the map si : h∗ → h∗ for all i = 1, 2, ..., n defined by:

si(λ) = λ− 〈λ, α∨i 〉αi

We can immediately observe that si(αi) = −αi; s2
i = 1, this shows that si is a

reflection along hyperplane {h ∈ h∗|〈λ, α∨i 〉 = 0}. Reflections si are called simple

reflections.

The Weyl group W is the group of automorphisms of h∗ generated by simple

reflections {s1, s2, ..., sn}.

1.1.3 Integrable module

A g(A)-module V is called h-diagonalizable if:

V =
⊕
λ∈h∗

Vλ

where Vλ = {u ∈ V |h(v) = 〈λ, h〉v; ∀h ∈ h}. We say Vλ is a weight space, and if

Vλ 6= 0 then λ is called a weight, and dim Vλ is called the multiplicity of λ and is

denoted by mult Vλ.

Definition 1.1.2. An h-diagonalizable module V over a Kac-Moody Lie algebra

g(A) is called integrable if all ei and fi for i = 1, 2, ..., n are locally nilpotent on V .

Note that the adjoint module of a Kac-Moody Lie algebra is an integrable module.

1.1.4 Highest weight module

Let U(g(A)) denote the universal enveloping algebra of g(A).
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Definition 1.1.3. A g(A)-module V is called a highest weight module with

highest weight Λ ∈ h∗ if there exist a non-zero vector vΛ ∈ V such that following

holds:

n+(vΛ) = 0; h(vΛ) = Λ(h)vΛ for h ∈ h

U(g(A))(vΛ) = V

The vector vΛ is called a highest weight vector of V .

Proposition 1.1.4. Let V be a highest weight module with highest weight vector

vΛ and highest weight Λ ∈ h∗, then:

V =
⊕
λ≤Λ

Vλ; VΛ = CvΛ

and also dimVλ <∞. Where λ ≤ Λ means Λ− λ is a non-negative linear

combination of simple roots.

We will mention some examples of highest weight modules.

Verma module:- Let λ ∈ h∗ and Kλ be the left ideal of U(g(A)) generated by n+

and h− λ(h) for all h ∈ h. Thus

Kλ = U(g(A))n+ +
∑
h∈h∗

U(g(A))(h− λ(h))

The module M(λ) = U(g(A))/Kλ is a highest weight U(g(A))-module called the

Verma module with highest weight λ.

Irreducible highest weight module:- The Verma module M(λ) has a unique

maximal submodule J(λ), the module is V (λ) = M(λ)/J(λ) is an irreducible

highest weight module with highest weight λ ∈ h∗.

Formal Character:- Let V be a highest weight g(A)-module. We define the
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formal character of V by:

char(V ) =
∑

λ∈P (V )

dim(Vλ)e
λ

where P (V ) is the set of weights of V and eλ are formal exponentials, satisfying

the following rules:

eλ · eλ′ = eλ+λ′ (λ, λ′ ∈ h∗) ; e0 = 1

1.1.5 Integrable highest weight modules

Let A be an n× n symmetrizable GCM. Let V be a highest weight g(A)-module.

An element λ ∈ h∗ is called an integral weight if 〈λ, α∨i 〉 ∈ Z for all i = 1, 2, ..., n.

Let P denote the additive group of all integral weights. An element λ ∈ P called a

dominant integral weight if 〈λ, α∨i 〉 ≥ 0 for all i = 1, 2, ..., n. Let P+ denote the set

of all dominant integral weights.

Proposition 1.1.5. The irreducible highest weight g(A)-module V (Λ) is integrable

if and only if Λ ∈ P+.

Proposition 1.1.6. The tensor product of a finite number of integrable highest

weight modules is a direct sum of modules V (Λ) with Λ ∈ P+.

1.1.6 Demazure module

Let Λ ∈ P+ and V (Λ) be the irreducible highest weight integrable module.

Lemma 1.1.7. Let λ be a weight of V (Λ), and w be an element in the Weyl group

W . Then w(λ) also is a weight of V (Λ) and dimV (Λ)w(λ) = dimV (Λ)λ.

Let b = h⊕ n+ be the Borel subalgebra contaning h, and U(b) the universal

enveloping algebra of b. Fix a Weyl group element w and Λ ∈ P+. Let

27



vw(Λ) ∈ V (Λ) be a non zero weight vector of weight w(Λ). The Demazure module

Dw(Λ) is defined by:

Dw(Λ) := U(b)(vw(Λ))

1.2 Lakshmibai-Seshadri paths (LS paths)

Let g be a symmetrizable Kac-Moody algebra, with Cartan subalgebra h and let P

denote its weight lattice. A path is piecewise linear map π : [0, 1]→ P ⊗Z R such

that π(0) = 0.

Let P+ denote the dominant weight lattice and W the Weyl group. For λ ∈ P+,

stabilizer of λ denoted by Wλ. Let “≥” be the Bruhat order on W/Wλ.

a-chain

Let w > w′ be two elements of W/Wλ and let 0 < a < 1 be a rational number. By

an a-chain for the pair (w,w′) we mean a sequence of cosets in W/Wλ:

u0 := w > u1 := sβ1w > u2 := sβ2sβ1w > ... > us := sβs ...sβ2sβ1w = w′

where β1, β2, ..., βs are positive real roots such that for all i = 1, 2, ..., s:

`(ui) = `(ui−1)− 1; and a〈ui−1(λ), β∨i 〉 ∈ Z.

Definition 1.2.1. Let λ ∈ P+. A sequence

π = (w1 > w2 > ... > wr; 0 < a1 < a2 < ... < ar = 1)

where wi ∈ W/Wλ and 0 < ai < 1 are rational numbers for all i = 1, 2, ..., r. We

say π is a LS path of shape λ if, for all i = 1, 2, ..., r − 1 there exists an ai-chain
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for the pair (wi, wi+1).

We identify this with the path π : [0, 1]→ P ⊗Z R given by:

π(t) :=

j−1∑
i=1

(ai − ai−1)wi(λ) + (t− aj−1)wj(λ); for t ∈ [aj−1, aj]

By the above definition we can see that the end point of path π(1) ∈ P .

We let Pλ denote the set of all LS paths of shape λ.

Theorem 1.2.2. [14] Let g be a symmetrizable Kac-Moody Lie algebra and V (λ)

be the integrable highest weight g-module with highest weight λ ∈ P+. Then:

char(V (λ)) =
∑
π∈Pλ

eπ(1)
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Summary

Let g be a symmetrizable Kac-Moody Lie algebra. For each dominant integral

weight λ of g, let Vλ denote the corresponding irreducible integrable highest weight

g-module and let vλ be a highest weight vector in Vλ. Given dominant integral

weights λ, µ and an element w of the Weyl group of g, the Kostant-Kumar (KK)

module K(λ,w, µ) is the cyclic g-submodule of Vλ ⊗ Vµ generated by vλ ⊗ vwµ,

where vwµ is a nonzero vector in the one-dimensional weight space of weight wµ

in Vµ.

Littelmann has given a path model for the tensor product Vλ ⊗ Vµ. We give, in the

spirit of Littelmann, a path model for Kostant-Kumar modules in terms of

Lakshmibai-Seshadri (LS) paths. Littelmann’s path model gives a generalized

Littlewood-Richardson rule for decomposing tensor products into irreducibles. An

analogous rule for Kostant-Kumar modules was given by Joseph under the

hypothesis that the Kac-Moody algebra is symmetric. We extend Joseph result to

finite type Lie algebras and use this rule to study Parthasarathy-Ranga

Rao-Varadarajan (PRV) components and generalized PRV components in

Kostant-Kumar modules.

At the end, we discuss Kostant-Kumar modules for the finite dimensional Lie

algebras g of type A. In this case, it is well known that the semistandard Young

tableaux are very useful to study representations theory. We gave a procedure to

associate a permutation w(T ) to semistandard Young tableau T . Permuatation
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w(T ) corresponds to the right key of T introduced by Lascoux-Schützenberger.

It is well known that Littlewood-Richardson (LR) tableaux count multiplicities of

irreducible modules in the tensor product. Given a LR tableaux S of type µ, we

can easily associate a semi standard Young tableau T of shape µ. We associate a

permutation w(S) to LR tableau S, by simply defining w(S) := w(T ). Then

Littlewood-Richardson tableaux S such that w(S) ≤ w count multiplicities of

irreducible modules in the KK module K(λ,w, µ).
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Chapter 1

Introduction

1.1 Kac-Moody Lie algebras

We recall some basic definitions and results concerning Kac-Moody algebras and

their representations, following Kac’s book [7].

1.1.1 Generalized Cartan matrix (GCM)

An n× n complex matrix A is called a generalized Cartan matrix if it satisfies the

following conditions:

1. aii = 2 for i = 1, 2, ..., n.

2. aij are nonpositive integers for i 6= j.

3. aij = 0 implies aji = 0.

A generalized Cartan matrix A = (aij)
n
i,j=1 is called symmetrizable if A = DB for

some invertible diagonal matrix D = diag{d1, d2, ..., dn} and a symmetric matrix B.
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Let h be a complex vector space such that dim h− n = n− `, where ` is the rank

of A. Let Π = {α1, α2, ..., αn} ⊂ h∗, and Π∨ = {α∨1 , α∨2 , ..., α∨n} ⊂ h be linearly

independent such that 〈α∨i , αj〉 = aij for i, j ∈ {1, 2, ..., n}, where 〈, 〉 : h∗ × h→ C

denotes the pairing 〈α, h〉 = α(h).

Let A = (aij)
n
i,j=1 be an n× n symmetrizable generalized Cartan matrix and

(h,Π,Π∨) as above. The symmetrizable Kac-Moody algebra g(A) is a Lie algebra

generated by {ei, fi|i = 1, 2, ..., n}, h subject to the following relations:

1. [ei, fi] = δijα
∨
i , for all i, j = 1, 2, ..., n.

2. [h, h′] = 0, for all h, h′ ∈ h.

3. [h, ei] = 〈αi, h〉ei for i = 1, 2, ..., n;h ∈ h.

4. [h, fi] = −〈αi, h〉fi for i = 1, 2, ..., n;h ∈ h.

5. (ad ei)
1−aijej = 0, for i, j = 1, 2, ..., n; i 6= j.

6. (ad fi)
1−aijfj = 0, for i, j = 1, 2, ..., n; i 6= j.

The subalgebra h of g(A) is the called Cartan subalgebra. Π is called the root basis

and its elements are called simple roots. Π∨ is called the coroot basis and its

elements are called simple coroots following the same terminology as in the theory

of finite dimensional simple Lie algebras.

Theorem 1.1.1. The symmetrizable Kac-Moody Lie alebra g(A) has the

following triangular decomposition:

g(A) = n− ⊕ h⊕ n+

where n+(resp n−) denotes the subalgebra of g(A), which is generated by

{ei|i = 1, 2, ..., n} (resp {fi|i = 1, 2, ..., n}).
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1.1.2 The Weyl group

Consider the map si : h∗ → h∗ for all i = 1, 2, ..., n defined by:

si(λ) = λ− 〈λ, α∨i 〉αi

We can immediately observe that si(αi) = −αi; s2
i = 1, this shows that si is a

reflection along hyperplane {h ∈ h∗|〈λ, α∨i 〉 = 0}. Reflections si are called simple

reflections.

The Weyl group W is the group of automorphisms of h∗ generated by simple

reflections {s1, s2, ..., sn}.

1.1.3 Integrable module

A g(A)-module V is called h-diagonalizable if:

V =
⊕
λ∈h∗

Vλ

where Vλ = {u ∈ V |h(v) = 〈λ, h〉v; ∀h ∈ h}. We say Vλ is a weight space, and if

Vλ 6= 0 then λ is called a weight, and dim Vλ is called the multiplicity of λ and is

denoted by mult Vλ.

Definition 1.1.2. An h-diagonalizable module V over a Kac-Moody Lie algebra

g(A) is called integrable if all ei and fi for i = 1, 2, ..., n are locally nilpotent on V .

Note that the adjoint module of a Kac-Moody Lie algebra is an integrable module.

1.1.4 Highest weight module

Let U(g(A)) denote the universal enveloping algebra of g(A).
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Definition 1.1.3. A g(A)-module V is called a highest weight module with

highest weight Λ ∈ h∗ if there exist a non-zero vector vΛ ∈ V such that following

holds:

n+(vΛ) = 0; h(vΛ) = Λ(h)vΛ for h ∈ h

U(g(A))(vΛ) = V

The vector vΛ is called a highest weight vector of V .

Proposition 1.1.4. Let V be a highest weight module with highest weight vector

vΛ and highest weight Λ ∈ h∗, then:

V =
⊕
λ≤Λ

Vλ; VΛ = CvΛ

and also dimVλ <∞. Where λ ≤ Λ means Λ− λ is a non-negative linear

combination of simple roots.

We will mention some examples of highest weight modules.

Verma module:- Let λ ∈ h∗ and Kλ be the left ideal of U(g(A)) generated by n+

and h− λ(h) for all h ∈ h. Thus

Kλ = U(g(A))n+ +
∑
h∈h∗

U(g(A))(h− λ(h))

The module M(λ) = U(g(A))/Kλ is a highest weight U(g(A))-module called the

Verma module with highest weight λ.

Irreducible highest weight module:- The Verma module M(λ) has a unique

maximal submodule J(λ), the module is V (λ) = M(λ)/J(λ) is an irreducible

highest weight module with highest weight λ ∈ h∗.

Formal Character:- Let V be a highest weight g(A)-module. We define the
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formal character of V by:

char(V ) =
∑

λ∈P (V )

dim(Vλ)e
λ

where P (V ) is the set of weights of V and eλ are formal exponentials, satisfying

the following rules:

eλ · eλ′ = eλ+λ′ (λ, λ′ ∈ h∗) ; e0 = 1

1.1.5 Integrable highest weight modules

Let A be an n× n symmetrizable GCM. Let V be a highest weight g(A)-module.

An element λ ∈ h∗ is called an integral weight if 〈λ, α∨i 〉 ∈ Z for all i = 1, 2, ..., n.

Let P denote the additive group of all integral weights. An element λ ∈ P called a

dominant integral weight if 〈λ, α∨i 〉 ≥ 0 for all i = 1, 2, ..., n. Let P+ denote the set

of all dominant integral weights.

Proposition 1.1.5. The irreducible highest weight g(A)-module V (Λ) is integrable

if and only if Λ ∈ P+.

Proposition 1.1.6. The tensor product of a finite number of integrable highest

weight modules is a direct sum of modules V (Λ) with Λ ∈ P+.

1.1.6 Demazure module

Let Λ ∈ P+ and V (Λ) be the irreducible highest weight integrable module.

Lemma 1.1.7. Let λ be a weight of V (Λ), and w be an element in the Weyl group

W . Then w(λ) also is a weight of V (Λ) and dimV (Λ)w(λ) = dimV (Λ)λ.

Let b = h⊕ n+ be the Borel subalgebra contaning h, and U(b) the universal

enveloping algebra of b. Fix a Weyl group element w and Λ ∈ P+. Let
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vw(Λ) ∈ V (Λ) be a non zero weight vector of weight w(Λ). The Demazure module

Dw(Λ) is defined by:

Dw(Λ) := U(b)(vw(Λ))

1.2 Lakshmibai-Seshadri paths (LS paths)

Let g be a symmetrizable Kac-Moody algebra, with Cartan subalgebra h and let P

denote its weight lattice. A path is piecewise linear map π : [0, 1]→ P ⊗Z R such

that π(0) = 0.

Let P+ denote the dominant weight lattice and W the Weyl group. For λ ∈ P+,

stabilizer of λ denoted by Wλ. Let “≥” be the Bruhat order on W/Wλ.

a-chain

Let w > w′ be two elements of W/Wλ and let 0 < a < 1 be a rational number. By

an a-chain for the pair (w,w′) we mean a sequence of cosets in W/Wλ:

u0 := w > u1 := sβ1w > u2 := sβ2sβ1w > ... > us := sβs ...sβ2sβ1w = w′

where β1, β2, ..., βs are positive real roots such that for all i = 1, 2, ..., s:

`(ui) = `(ui−1)− 1; and a〈ui−1(λ), β∨i 〉 ∈ Z.

Definition 1.2.1. Let λ ∈ P+. A sequence

π = (w1 > w2 > ... > wr; 0 < a1 < a2 < ... < ar = 1)

where wi ∈ W/Wλ and 0 < ai < 1 are rational numbers for all i = 1, 2, ..., r. We

say π is a LS path of shape λ if, for all i = 1, 2, ..., r − 1 there exists an ai-chain
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for the pair (wi, wi+1).

We identify this with the path π : [0, 1]→ P ⊗Z R given by:

π(t) :=

j−1∑
i=1

(ai − ai−1)wi(λ) + (t− aj−1)wj(λ); for t ∈ [aj−1, aj]

By the above definition we can see that the end point of path π(1) ∈ P .

We let Pλ denote the set of all LS paths of shape λ.

Theorem 1.2.2. [14] Let g be a symmetrizable Kac-Moody Lie algebra and V (λ)

be the integrable highest weight g-module with highest weight λ ∈ P+. Then:

char(V (λ)) =
∑
π∈Pλ

eπ(1)
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Chapter 2

Some results on extremal elements

in Coxeter groups

2.1 Generalities on extremal elements in

Coxeter groups

The purpose of this section is to formulate and prove the required result about

these minimal elements—Corollary 2.1.19 below—in the more natural context of

Coxeter groups. The arguments leading up to the result are all elementary. The

reader willing to accept it at face value without proof may want to skip this

section at a first pass.

The results in §2.1.3, 2.1.4, and 2.1.5 are well known (e.g., from [2, 12] as

specifically indicated in a few places below), but we have included them because

we need them and it is easier to prove them ab initio in our set up than to refer to

sources. It not only makes the thesis more self-contained but also more readable

with these results stated and proved rather than just quoted.
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2.1.1 Notation for this section

Let (W,S) be a Coxeter system. Let ≤ denote the (strong) Bruhat order on W .

For a subset K of the Coxeter group W , we let minK and maxK denote

respectively the unique minimal and unique maximal elements of K in the Bruhat

order (if they do exist). For u in W and s in S, the elements u and su

(respectively u and us) are comparable. Thus min {u, su}, max {u, su},

min {u, us}, and max {u, us} make sense. We denote these respectively by u ∧ su,

u ∨ su, u ∧ us, and u ∨ us.

2.1.2 The results

The following basic fact is repeatedly applied in this section:

(*)

For elements u ≤ v in W and s in S, we have u ∧ su ≤ v ∧ sv and u ∨ su ≤ v ∨ sv.

The “right analogue” of the above fact asserts: u∧ us ≤ v ∧ vs and u∨ us ≤ v ∨ vs

(under the same hypothesis). Only the left analogues of the “one sided” results

below are explicitly stated. Their right analogues hold good too.

Remark 2.1.1. Suppose that u ≤ v is a covering relation in W (that is,

length(u) = length(v)− 1 and u = tv for some reflection t in W ). Then, if for s

in S, we have sv < v and u < su, then t = s. Indeed, it follows from (*) that

u ≤ sv, but then equality is forced since u and sv have the same length.

A simple application of (*) gives:

Proposition 2.1.2. Suppose that a subset K of the Coxeter group W has a unique

minimal element u under ≤. Then, for any s in S, the subset K ∪ sK also has a

unique minimal element under ≤, namely, u ∧ su. Analogously, if K admits a
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unique maximal element v under ≤, then v ∨ sv is the unique maximal element of

K ∪ sK.

Corollary 2.1.3. Let s: s1, s2, . . . be a (possibly infinite) sequence of simple

reflections (elements of S). For s′: si1, si2, . . . , sim a finite subsequence of s, let

w(s′) denote the element simsim−1 · · · si1 of the Coxeter group (note the order

reversal). Let K be a subset of W with a unique minimal element u with respect

to ≤. Then ∪s′w(s′)K, where the union runs over all finite subsequences s′ of s,

has a unique minimal element u∞, the stable value of uj as j →∞, where uj is

recursively defined: u0 = u, and uj+1 = uj ∧ sj+1uj for j ≥ 0.

Proof: For j a non-negative integer, let sj denote the subsequence s1, s2, . . . , sj

of s. By a repeated application of Proposition 2.1.2, we see that uj is the unique

minimal element of Kj := ∪s′w(s′)K, where the union runs over subsequences

of sj. Since the subsets Kj increase with j, it follows that uj+1 ≤ uj. Since any

decreasing sequence in the Bruhat order stabilizes, we conclude that uj is constant

for j sufficiently large. 2

Remark 2.1.4. What about the maximal analogue of Corollary 2.1.3? Let K be a

subset of W that has a unique maximal element v. With notation as in the proof

just above, we conclude analogously that vk is the unique maximal element of Kk,

where vk is defined recursively as follows: v0 = v, and vi+1 = v ∨ si+1v for 0 ≤ i.

Since the Kk increase with k, we have vk+1 ≥ vk. If the vk stabilize to a stable

value v∞ as k →∞ (which in general need not happen), then v∞ is the unique

maximal element of ∪k≥0Kk. In particular, the maximal analogue holds if the

sequence s is finite.

We now apply Corollary 2.1.3 (and its right analogue) in two special cases. First,

let σ be an element of W and, with notation as in the corollary, choose the
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sequence s: s1, s2, . . . , sm of elements of S to be such that smsm−1 · · · s1 is a

reduced expression for σ. Then {w(s′) | s′ is a subsequence of s} equals

I(σ) := {σ′ ∈ W |σ′ ≤ σ}. We conclude that I(σ)K has a unique minimal element

and further that this element is the unique minimal element in I(σ)u. Now

applying the right analogue of this argument, we obtain:

Corollary 2.1.5. Let K be a subset of the group W that admits a unique minimal

element u. Then, for any two elements σ1 and σ2 of W , the set I(σ1)KI(σ2) has a

unique minimal element, and this element is the unique minimal element in

I(σ1)uI(σ2).

The special case of the above result (as also its maximal analogue, namely,

Corollary 2.1.8) when K is a singleton and σ2 is the identity element appears

in [12, Lemma 11 (i)].

Corollary 2.1.6. Let σ and ϕ be elements of W , and s an element of S. Suppose

that σs < σ. Then min I(σ)ϕ equals either min I(σ)sϕ or min I(σs)ϕ accordingly

as sϕ < ϕ or ϕ < sϕ.

Proof: Choose a sequence s: s = s1, s2, . . . , sm such that smsm−1 · · · s1 is a

reduced expression for σ. Let ϕi, ϕ
′
i, and ϕ′′i be sequences defined recursively as

follows:

• ϕ0 = ϕ, and ϕi+1 = ϕi ∧ si+1ϕi for 0 ≤ i < m

• ϕ′0 = sϕ, and ϕ′i+1 = ϕ′i ∧ si+1ϕ
′
i for 0 ≤ i < m

• ϕ′′1 = ϕ, and ϕ′′i+1 = ϕ′′i ∧ si+1ϕ
′′
i for 1 ≤ i < m

By Corollary 2.1.3, min I(σ)ϕ, min I(σ)sϕ, and min I(σs)ϕ are equal respectively

to ϕm, ϕ′m, and ϕ′′m.
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First suppose that sϕ < ϕ. Then ϕ1 = ϕ′1: indeed, ϕ1 = ϕ ∧ sϕ = sϕ, and

ϕ′1 = sϕ ∧ s(sϕ)) = sϕ. Thus ϕi = ϕ′i for all 1 ≤ i, and in particular for i = m.

Now suppose that ϕ < sϕ. Then ϕ1 = ϕ′′1: indeed, ϕ1 = ϕ ∧ sϕ = ϕ, and ϕ′′1 = ϕ

by definition. Thus ϕi = ϕ′′i for all 1 ≤ i, and in particular for i = m. 2

Towards a second application of Corollary 2.1.3, let S1 be a subset of S and W1

the subgroup of W generated by S1. Recall that such a subgroup of W is called a

standard parabolic subgroup. With notation as in Corollary 2.1.3, choose the

sequence s: s1, s2, . . . to consist of elements of S1 and such that every element

of W1 arises as w(s′) for some finite subsequence s′ of s. Then

{w(s′) | s′ is a subsequence of s} equals W1. We conclude that W1K has a unique

minimal element. Now applying the right analogue of this argument, we obtain:

Corollary 2.1.7. Let K be a subset of the group W that admits a unique minimal

element u. Then, for any two standard parabolic subgroups W1 and W2 of W , the

set W1KW2 has a unique minimal element, and this element is the unique minimal

element in W1uW2. In particular, any double coset of a pair of standard parabolic

subgroups has a unique minimal element.

Of course, when the subgroups W1 and W2 are finite, Corollary 2.1.7 is a special

case of Corollary 2.1.5. Indeed, letting w1 and w2 be the unique maximal elements

of W1 and W2 respectively, we have W1 = I(w1) and W2 = I(w2).

As the maximal analogues of the above two corollaries, we have:

Corollary 2.1.8. Let K be a subset of W having a unique maximal element v.

Then, for any two elements σ1 and σ2 of W , the set I(σ1)KI(σ2) has a unique

maximal element, namely, the unique such element in I(σ1)vI(σ2). In particular,

for any two finite standard parabolic subgroups W1 and W2 of W , the union

W1KW2 of double cosets has a unique maximal element, namely, the unique such

35



element in W1vW2.

Remark 2.1.9. (Relation to Deodhar’s ? operation.) In [2, Lemma 2.4],

Deodhar states: there exists a unique associative binary operation ? on W such

that w ? id = w and w ? s = w ∨ ws for all w ∈ W and s ∈ S. The uniqueness is

clear. For the proof of the existence, we define w ? x := max I(w)I(x) for all w

and x in W (max I(w)I(x) exists by Corollary 2.1.8). It is easy to verify, using

Corollary 2.1.8, that this operation has the requisite properties:

max I(w)I(id) = max I(w) = w; max I(w)I(s) = maxwI(s) = w ∨ ws; and

max I(w)I(max I(x)I(y)) = max I(w)max (I(x)I(y)) = max I(w)I(x)I(y)

= max (max I(w)I(x))I(y) = max I(max (I(w)I(x)))I(y),

so associativity holds.

We have:

• The unique maximal element of I(σ1)KI(σ2) in Corollary 2.1.8 is σ1 ? v ? σ2.

• I(w)I(x) = I(w ? x) for all w and x in W .

• Let K be a subset of W with a unique maximal element v. For any collection

σ1, . . . , σs, τ1, . . . , τt of elements in W , the set I(σ1) · · · I(σs)KI(τ1) · · · I(τt)

equals I(σ1 ? · · · ? σs)KI(τ1 ? · · · ? τt) and admits a unique maximal element,

namely, σ1 ? · · · ? σs ? v ? τ1 ? · · · ? τt.

Remark 2.1.10. Consider the specialized Hecke algebra H defined as the

associative algebra with identity (over say a field k) generated by variables Ts,

s ∈ S, and subject to the relations T 2
s = Ts (for all s in S) and the braid relations.

For w ∈ W , let Tw be the element Tsi1Tsi2 · · ·Tsir of H where si1si2 · · · sir is a

reduced expression for w: this definition does not depend on the choice of reduced

expression because the braid relations are satisfied. The algebra H is just the
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semigroup algebra of the semigroup W with respect to the ? operation as in

Remark 2.1.9: {Tw |w ∈ W} is a basis for H and TwTx = Tw?x for all w and x in W .

Let kW be the free k-vector space with elements of W as a basis. We can make

kW to be H-H bimodule as follows. For s in S, let ∧s denote the (left) operator

on W defined by ∧sw := sw ∧ w and s∧ the right operator on W defined by

ws∧ := w ∧ ws (for w in W ). The linear extensions of the operators s∧ and ∧s to

kW are denoted by the same symbols. We have, for s, t in S and w in W :

• ∧s(∧sw) = ∧sw and (ws∧)s∧ = ws∧.

• (∧sw)t∧ = ∧s(wt∧).

• Let s1, . . . , sm be a sequence of elements of S such that smsm−1 · · · s1 is a

reduced expression for an element σ of W . Then ∧m · · · ∧1 (w) = min I(σ)w

(see the paragraph preceding Corollary 2.1.5) and analogously

w ∧1 · · · ∧m = minwI(σ−1), where ∧j and j∧ stand for ∧sj and sj∧

respectively. Thus the operators s∧ (respectively ∧s), s ∈ S, satisfy the braid

relations.

Thus, letting Ts, s ∈ S, act on kW on the left by ∧s and on the right by s∧, we get

a bimodule structure on kW .

2.1.3 Bruhat order on double coset spaces

Let W1 and W2 be standard parabolic subgroups of W . It is convenient to identify

the coset space W1\W/W2 as a subset of W via the association

W1uW2 7→minW1uW2. The Bruhat order on W1\W/W2 is the restriction to this

subset of the Bruhat order on W .

Corollary 2.1.11. Given two elements W1uW2, W1vW2 in W1\W/W2, we have

W1uW2 ≤ W1vW2 in Bruhat order if and only if there exist u′ in W1uW2 and v′
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in W1vW2 such that u′ ≤ v′. In particular, if minW1uW2 ≤ v′ for some v′ in

W1vW2, then minW1uW2 ≤ v′′ for every v′′ ∈ W1vW2.

Proof: For the only if part, just take u′ = minW1uW2 and v′ = minW1vW2.

For the if part, apply Corollary 2.1.7 with K = {u′, v′}. Since u′ ≤ v′, we conclude

that minW1u
′W2 = minW1KW2. But minW1u

′W2 = minW1uW2 and

minW1KW2 ≤minW1v
′W2 = minW1vW2 since v′ ∈ K. 2

Corollary 2.1.12. For u an element of W and s an element of S, suppose that

suW1 � uW1. Then for every v in uW1, we have sv < v. Conversely, if su < u for

the unique minimal element u in uW1, then suW1 � uW1, and su is the unique

minimal element in suW1.

Proof: For the first statement, observe the following: if v < sv, then, by

Corollary 2.1.11, uW1 = vW1 ≤ svW1 = suW1, a contradiction. For the first part

of the converse, observe that suW1 ≤ uW1 by Corollary 2.1.11, and that equality

cannot hold (if su were to belong to uW1 the minimality of u in uW1 would be

contradicted). For the second part of the converse, suppose that x ∈ suW1. Then

sx ∈ uW1, and so u ≤ sx, which means su = u ∧ su ≤ sx ∧ x ≤ x. 2

Remark 2.1.13. For u in W and s in S, it is possible that usW1 � uW1 but there

exists v in uW1 with vs > v. For example, let

W = 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = 1, s1s2s1 = s2s1s2, s2s3s2 = s3s2s3, s1s3 = s3s1〉

W1 = 〈s1, s3〉, u = s1s2, and s = s2. Then uW1 = {s1s2, s1s2s1, s1s2s3, s1s2s1s3},

the minimal element in uW1 is u, and usW1 = W1 � uW1, but vs > v for

v = s1s2s3 in uW1.
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Proposition 2.1.14. Suppose that W1uW2 ≤ W1vW2. Then, given u′ in W1uW2,

there exists v′ in W1vW2 with u′ ≤ v′.

Proof: Proceed by induction on the length of u′. Let u0 be the minimal element

in W1uW2. We have u0 ≤ u′. If u′ = u0, then u′ ≤ v′ for any v′ in W1vW2 (since

u0 ≤ v0 by definition, where v0 is the minimal element of W1vW2). Now suppose

that u0 � u′. Then there exists either s ∈ S ∩W1 such that su′ < u′, or t ∈ S ∩W2

such that u′t < u′. Let us suppose that the former condition holds (the case when

the latter holds is handled analogously). Observe that su′ belongs to W1uW2. By

induction, there exists v′ in W1vW2 such that su′ ≤ v′. By (*) at the beginning of

this section, we have u′ ≤ su′ ∨ u′ ≤ v′ ∨ sv′. But v′ ∨ sv′ belongs to W1vW2. 2

2.1.4 Deodhar’s Lemma

Let W1 be a standard parabolic subgroup of W and let σ, w be elements of W . Set

JσW1(w) := {v ∈ σW1 |w ≤ v}.

Proposition 2.1.15. Let s be in S.

1. JσW1(w) ⊇ JσW1(w
′) for w ≤ w′.

2. JσW1(w) ⊆ sJsσW1(w ∧ sw)

3. JσW1(w) is non-empty if and only if wW1 ≤ σW1.

Proof: Statement (1) is immediate. For (2), just observe that w ≤ x implies

w ∧ sw ≤ x ∧ sx ≤ sx. As for (3), the only if part is trivial, and the if part follows

from Proposition 2.1.14. 2
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Lemma 2.1.16. Suppose that σ is the minimal element of σW1, and let s ∈ S be

such that sσ < σ. Then

1. sx < x for any x in JσW1(w); and v < sv for any v in JsσW1(w ∧ sw).

2. JσW1(w) = sJsσW1(w ∧ sw). In particular,

JσW1(w) = JσW1(w ∧ sw) = JσW1(w ∨ sw).

3. If either JσW1(w) or JsσW1(w ∧ sw) has a unique minimal element u, then so

does the other and su is that unique minimal element.

Proof: (1): We have sσW1 � σW1 by the second part of Corollary 2.1.12. From

the first part of that corollary, it follows that sx < x for any x in σW1. Since

JσW1(w) ⊆ σW1 by definition, the first statement follows. The second statement

too follows from the first assertion in Corollary 2.1.12.

(2): For the first assertion, given item (2) of Proposition 2.1.15, it is enough to

show that JσW1(w) ⊇ sJsσW1(w ∧ sw). Suppose x belongs to JsσW1(w ∧ sw). Then

evidently sx belongs to σW1. By item (1) (of the present lemma), we have

sx = x ∨ sx. Since x ≥ w ∧ sw by hypothesis, we have

sx = x ∨ sx ≥ (w ∧ sw) ∨ s(w ∧ sw) ≥ w.

To see that JσW1(w) = JσW1(w ∧ sw) (respectively, JσW1(w) = JσW1(w ∨ sw)), put

v = w ∧ sw (respectively, v = w ∨ sw). Then v ∧ sv = w ∧ sw, and so, by the first

assertion, JσW1(v) = sJsσW1(v ∧ sv) = sJsσW1(w ∧ sw) = JσW1(w).

(3) Suppose u is the unique minimal element in JsσW1(w ∧ sw). Then su belongs to

JσW1(w) by (2). Let x be any element in JσW1(w). We have x ∨ sx = x by (1), and

sx ∈ JsσW1(w∧ sw) by (2), so u ≤ sx. Thus su ≤ u∨ su ≤ sx∨ s(sx) = sx∨ x = x.

Suppose u is the unique minimal element in JσW1(w). Then su belongs to

JsσW1(w ∧ sw) by (2). Let y be any element in JsσW1(w ∧ sw). We have

u ∧ su = su by (1), and sy ∈ JσW1(w) by (2), so u ≤ sy. Thus
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su = u ∧ su ≤ sy ∧ s(sy) = sy ∧ y ≤ y. 2

Proposition 2.1.17. (“Deodhar’s lemma”, see e.g. [13, Lemma 5.8]) Suppose

that JσW1(w) is not empty. Then it contains a unique minimal element. Moreover,

this element can be constructed recursively as follows: let σ be the minimal element

in its coset σW1 and let s1, . . . , sm be a sequence of elements of S such that

s1 · · · sm is a reduced expression for σ; put v0 = w and vj = vj−1 ∧ sjvj−1 for

1 ≤ j ≤ m; then vm belongs W1, and the minimal element of JσW1(w) is just σvm.

Proof: By repeated application of Lemma 2.1.16 (2), we have

JσW1(w) = σJW1(vm). Since JσW1(w) is non-empty, it follows that JW1(vm) is

non-empty as well, which means vm belongs to W1 and is the unique minimal

element in JW1(vm). That σvm is the unique minimal element of JσW1(w) follows

by a repeated application of Lemma 2.1.16 (3). 2

Remark 2.1.18. We make a few remarks regarding the construction in

Proposition 2.1.17.

1. The element vm in the statement of Proposition 2.1.17 is min I(σ−1)w (see

the third item in the list in Remark 2.1.10). Thus JσW1(w) is non-empty if

and only if min I(σ−1)w belongs to W1 and in this case its unique minimal

element is σ(min I(σ−1)w).

2. Given a double coset W1σW2, where W2 is also a standard parabolic

subgroup, there need not be a unique minimal element among those in the

double coset that are ≥ w. Consider for instance the following simple

example. Let W be the Weyl group of type A2: S = {s1, s2} and

W = 〈s1, s2 | s2
1 = s2

2 = 1, s1s2s1 = s2s1s2〉. Put W1 = W2 = 〈s1〉 = {1, s1},

σ = s2, and w = s1. Observe that among the elements in
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W1s2W2 = {s2, s1s2, s2s1, s1s2s1} that are ≥ s1, there are two minimal ones,

namely, s1s2 and s2s1.

3. Let w′ be an element of w such that w ≤ w′. Then, evidently,

min JσW1(w) ≤min JσW1(w
′) (assuming that both sets are non-empty).

4. Let σ′ be an element of W such that σW1 ≤ σ′W1. Suppose that JσW1(w) is

non-empty. Then Jσ′W1(w) is non-empty too: for any u in σW1 (and in

particular for any u in JσW1(w)), there exists, by Proposition 2.1.14, u′

in σ′W1 such that u ≤ u′, and evidently u′ belongs to JσW1(w
′) when u

belongs to JσW1(w). However, it need not be true that

min JσW1(w) ≤min Jσ′W1(w), as the following simple example shows. Let W

be the Weyl group of type A3:

〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)3 = (s2s3)3 = (s1s3)2 = 1〉

Let W1 be the parabolic subgroup 〈s2〉 = {1, s2}, w = s2, σ = s1s3, and

σ′ = s1s2s3. Then JσW1(w) is non-empty, and

min JσW1(w) = s1s3s2 6≤min Jσ′W1(w) = s1s2s3.

5. (Deodhar’s functions f and g [2]) Suppose that σ is the least element

in the coset σW1. Let σ′ be an element of the Weyl group that is the least in

its coset σ′W1 and suppose that σW1 ≤ σ′W1 (equivalently σ ≤ σ′).

Given x in W1, there exists x′ in W1 such that σx ≤ σ′x′ (see

Proposition 2.1.14). Deodhar in [2, Lemma 2.2] states that there is a

function f ′ : W1 → W1 (depending upon σ and σ′) such that, for x and x′

in W1, σx ≤ σ′x′ if and only if f ′x ≤ x′. (Deodhar writes g for f ′.) In the

notation of Remark 2.1.10, this function is given by f ′x = ∧σ′−1σx. Indeed it

follows from Proposition 2.1.17 that ∧σ′−1σx has the required property.

Deodhar also asserts the existence of a function f : W1 → W1 (depending
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upon σ and σ′) such that, for x and x′ in W1, σx ≤ σ′x′ if and only if

x ≤ fx′. To describe this function, let s1, . . . , sm be a sequence of elements

of S such that s1 · · · sm is a reduced expression for σ′. Put v0 = σ, and

vi+1 := vi ∧ sivi inductively for 1 ≤ i ≤ m. Let p be least, 0 ≤ p ≤ m, such

that vp = id: such a p exists because σ ≤ σ′. Let si1 , . . . , siq be the

subsequence of sp+1, . . . , sm consisting precisely of those elements that

belong to W1. Putting z := si1 ? · · · ? siq , Deodhar’s function f is given by

fx′ = z ? w′. We omit the justification (which is not difficult) since we have

no use in what follows for this function f .

6. (see [12, Lemma 11 (ii)]) Put KσW1(w) := {v ∈ σW1 | v ≤ w} (= I(w)∩ σW1).

If KσW1(w) is non-empty (or, equivalently, σ ≤ w) then it has a unique

maximal element. Indeed, writing w as σ′x′ where σ′ is the minimal element

in wW1 and x′ is in W1, this unique maximal element is σfx′, where f is

Deodhar’s function of the previous item.

Let W be the group of permutations of [n] with S as the set of simple

transpositions (1, 2), . . . , (n− 1, n). For r, 1 ≤ r < n, let Wr be the standard

maximal parabolic subgroup generated by all simple transpositions except

(r, r + 1). Let σ be a permutation of [n] with one-line notation σ1σ2 . . . σn. For σ

to be of minimal length in its coset σWr, it is necessary and sufficient that the

sequences σ1 . . . σr and σr+1 . . . σn are both increasing. Suppose that this is the

case.

Let w be another permutation. For JσWr(w) to be non-empty, it is necessary and

sufficient that wr1 ≤ σ1, . . . , wrr ≤ σr, where wr1 < . . . < wrr are the elements w1,

. . . , wr arranged in increasing order. Suppose that this is the case.

Let us suppose further that the w1, . . . , wr were themselves in increasing order, so

that wr1 = w1, . . . , wrr = wr. In this case, τ := min JσWr(w) is determined as

follows. Put τj = σj for 1 ≤ j ≤ r. For j > r, an induction on j determines τj as
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follows. Let τ j−1
1 < . . . < τ j−1

j−1 be τ1, . . . , τj−1 in increasing order and

wj1 < . . . < wjj be w1, . . . , wj in increasing order. Then τj = wjk, where k is the

largest, 1 ≤ k ≤ j, such that τ j−1
k−1 < wjk (we put τ j−1

0 = −∞).

As an example, let n = 6, r = 3, w = 145362, and σ = 246135. Then, by the recipe

above, τ = 246153.

Justification for the recipe appears later: see Example 5.2.2 in §5.2.2. 2

2.1.5 Standard tuples and standard lifts

Let W1, . . . , Wm be a sequence of standard parabolic subgroups of W and let

θ = (τ1, . . . , τm) ∈ W/W1 × · · · ×W/Wm. We call θ standard if there exists a chain

τ̃1 ≥ . . . ≥ τ̃m of elements in W such that τ̃jWj = τj for 1 ≤ j ≤ m. Such a chain is

called a standard lift of θ.

Fix a standard tuple θ of cosets and a standard lift of it as above. Put

σm = min τm. Observe that τ̃m−1 ≥ τ̃m ≥ σm. This means that Jτm−1(σm) is not

empty, and so it has a unique minimal element by Proposition 2.1.17. Put

σm−1 = min Jτm−1(σm). Proceeding this way, choose inductively

σj = min Jτj(σj+1) for j equal to m− 2, m− 3, . . . , 1. We call the chain

σ1 ≥ . . . ≥ σm the minimal standard lift of θ. We denote by w(θ) the initial

element σ1 of the minimal standard lift of θ.

Let σ1 ≥ . . . ≥ σn be the minimal standard lift of θ (for some standard tuple θ of

cosets). As is easily observed (by a downward induction on j), σj ≤ τ̃j for

1 ≤ j ≤ m for any standard lift τ̃1 ≥ . . . ≥ τ̃m of θ. Furthermore, this property

characterises the minimal standard lift.
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2.1.6 The takeaway from this section

Finally, we isolate the takeaway from this section in its (admittedly strange and

whimsical) specific form that will be invoked later.

Corollary 2.1.19. Let (W,S) be a Coxeter system, τ , ϕ be elements of W , and

W1, W2 be standard parabolic subgroups of W . Let I(τ−1) be the Bruhat interval

{w ∈ W |w ≤ τ−1}. Then:

1. If τ ′, ϕ′ are elements of W such that τW1 = τ ′W1 and ϕW2 = ϕ′W2, then:

W1I(τ ′
−1

)ϕ′W2 = W1I(τ−1)ϕW2

2. There exists a unique minimal element in W1I(τ−1)ϕW2, denoted

minW1I(τ−1)ϕW2.

3. Let s be an element of S such that sτ < τ and sϕW2 ≥ ϕW2. Then

minW1I(τ−1)ϕW2 = minW1I(τ−1s)ϕW2

4. Let s be an element of S such that sϕ < ϕ and sτW1 ≤ τW1. Then

minW1I(τ−1)ϕW2 = minW1I(τ−1)sϕW2

Proof: For (1), it being evident that W1I(τ−1)ϕW2 = W1I(τ−1)ϕ′W2, it is

enough to show that W1I(τ−1) = W1I(τ ′−1). By Corollary 2.1.7, W1τ
−1 = W1τ

′−1

has a unique minimal element, say σ−1. It is enough to show that

W1I(σ−1) = W1I(τ−1). Since σ−1 ≤ τ−1, it follows that I(σ−1) ⊆ I(τ−1) and so

W1I(σ−1) ⊆ W1I(τ−1). To prove the other way containment, write τ−1 = u−1σ−1

with u ∈ W1 and `(τ) = `(u) + `(σ), where ` stands for “length”. Suppose that
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ρ−1 ≤ τ−1. Then ρ−1 = v−1ρ′−1 with v ≤ u (hence v ∈ W1) and ρ′ ≤ σ. Thus

W1ρ
−1 = W1v

−1ρ′−1 = W1ρ
′−1, and we are done.

Assertion (2) follows from Corollaries 2.1.5 and 2.1.7.

Proof of (3): By Corollary 2.1.5, min I(τ−1)ϕ exists. First suppose that sϕ > ϕ.

Then, by Corollary 2.1.6, min I(τ−1)ϕ = min I(τ−1s)ϕ, and, by Corollary 2.1.7,

the desired equality follows. Next suppose that sϕ < ϕ. Then, by Corollary 2.1.11,

sϕW2 ≤ ϕW2 and, given our hypothesis that sϕW2 ≥ ϕW2, we conclude that

sϕW2 = ϕW2. Put ϕ′ := sϕ. Then ϕ = sϕ′ > ϕ′ = sϕ, and, by the first case, we

have minW1I(τ−1)ϕ′W2 = minW1I(τ−1s)sϕ′W2. But, since ϕ′W2 = ϕW2, this is

exactly the desired equality.

Proof of (4): This is analogous to the proof of (3). By Corollary 2.1.5,

min I(τ−1)ϕ exists. First suppose that sτ < τ . Then, by Corollary 2.1.6,

min I(τ−1)ϕ = min I(τ−1)sϕ, and, by Corollary 2.1.7, the desired equality follows.

Next suppose that sτ > τ . Then, by Corollary 2.1.11, sτW1 ≥ τW1 and, given our

hypothesis that sτW1 ≤ τW1, we conclude that sτW1 = τW1. Put τ ′ := sτ . Then

sτ ′ = τ < sτ = τ ′, and, by the first case, we have

minW1I(τ ′−1)ϕW2 = minW1I(τ ′−1)sϕW2. But, since τ ′W1 = τW1, we have, by

part (1), W1I(τ ′−1) = W1I(τ−1), and the desired equality follows. 2
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Chapter 3

The Kostant-Kumar filtration

3.1 The KK filtration on concatenated LS paths

In this section, we introduce the two key elements that underpin this entire thesis,

namely:

• the definition of Kostant-Kumar (KK) sets of concatenated

Lakshmibai-Seshadri (LS) paths (Equation (3.1.2)).

• the result that such a KK set is invariant under the action of root operators

(Proposition 3.1.3)

The following notation remains fixed throughout this thesis: g denotes a

symmetrizable Kac-Moody algebra; λ and µ are fixed dominant integral weights;

W is the Weyl group and Wλ, Wµ are respectively the stabilizers in W of λ, µ.

We assume familiarity with the basic notions and results of Littelmann’s

theory [14, 15] of paths. Let Pλ, Pµ be respectively the sets of

Lakshmibai-Seshadri (LS) paths of shape λ, µ. Let

Pλ ? Pµ := {π ? π′ | π ∈ Pλ, π′ ∈ Pµ}, where ? denotes concatenation.
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Recall that a path π in Pλ consists of a sequence τ1 > τ2 > . . . > τr of elements

in W/Wλ and a sequence 0 = a0 < a1 < . . . < ar−1 < ar = 1 of rational numbers

(subject to some integrality conditions as in [14, §2], the details of which are not so

relevant for the moment). We call τ1 the initial direction and τr the final direction

of π.

3.1.1 Definition of a KK set in Pλ ? Pµ

Given a path π ? π′ in Pλ ? Pµ, we define, using Corollary 2.1.19, part (2), its

associated Weyl group element w(π ? π′) by:

(3.1.1) w(π ? π′) := minWλI(τ−1)ϕWµ

where τ and ϕ are lifts in W respectively of the final direction of π and the initial

direction of π′. Part (1) of Corollary 2.1.19 says that w(π ? π′) is independent of

the choice of the lifts τ and ϕ.

Given an element ϕ = WλwWµ of the double coset space Wλ\W/Wµ, we define the

associated KK set by:

(3.1.2) P(λ, ϕ, µ) := {π ? π′ ∈ Pλ ? Pµ |w(π ? π′) ≤ w}

The choice of the lift w in W of ϕ does not matter (see Corollary 2.1.11), and we

often write P(λ,w, µ) in place of P(λ, ϕ, µ).

Clearly P(λ, ϕ, µ) ⊆ P(λ, ϕ′, µ) if ϕ ≤ ϕ′. Thus the KK sets form an increasing

filtration of the space Pλ ? Pλ of concatenated LS paths, with underlying poset

being the double coset space Wλ\W/Wµ with its Bruhat order. We call this the

KK filtration on paths.

Remark 3.1.1. For this remark alone, we suppose that W is finite. Let w0 be the
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longest element of W . For w and x in W , let w ?○x := (ww0 ? xw0)w0, where ? is

Deodhar’s operation on the Weyl group discussed in §2.1.9. Let π in Pλ comprise

the sequence τ1 > τ2 > . . . > τr of elements in W/Wλ and the sequence

0 = a0 < a1 < . . . < ar−1 < ar = 1 of rational numbers. Let π† be the path in Pλ

comprising w0τr > . . . > w0τ1 and

0 = 1− ar < 1− ar−1 < . . . < 1− a1 < 1 = 1− a0. Then

w(π ? π′) = φ(π†)−1 ?○φ(π′)

where φ(η) for an LS path η is the minimal lift in W of the initial direction of η.

3.1.2 Stability of KK sets under root operators

For α a simple root, let eα and fα be the root operators on paths as defined in [15].

Although this definition differs from the earlier one in [14], it is

“backwards-compatible”: as explained in [15, Corollary 2 on page 512], the results

of [14] are unaffected and we can freely quote them.

Let π be a path in Pλ. Recall from [14]:

1. The straight line path πλ from the origin to λ belongs to Pλ.

2. π is piece-wise linear and its end point π(1) is an integral weight.

3. For a simple root α, if eα(π) (respectively fα(π)) does not vanish, then it

belongs to Pλ, its end point is π(1) + α (respectively π(1)− α), and

fα(eα(π)) (respectively eα(fα(π))) equals π.

4. Let α be a simple root and τ the initial (respectively, final) direction of π. If

eαπ does not vanish, then its initial (respectively, final) direction is either τ

or sατ . The same holds for fα in place of eα.

49



5. π is obtained from πλ by applying a suitable finite sequence of the root

operators fα, as α varies. In particular, the end point of π is of the form λ−κ

where κ is a non-negative integral linear combination of the simple roots.

6. Every value that is a local minimum of the function hπα(t) := 〈π(t), α∨〉 on

t ∈ [0, 1] is an integer, for every simple root α. (A value hπα(t0) is called a

local minimum if hπα(t0) ≤ hπα(t) for 0 ≤ |t− t0| < ε for some ε > 0.) This

follows from the proof of [15, Lemma 4.5, part (d)] although the definition of

local minimum there is less inclusive.

7. If eα(π) vanishes for every simple root α, then π = πλ [14, Corollary in §3.5].

In particular, if (the image of) π lies entirely in the dominant Weyl chamber,

then π = πλ.

Lemma 3.1.2. Let π ? π′ be a path in Pλ ? Pµ and α a simple root. Then:

1. Every local minimum value of the function hπ?π
′

α (t) := 〈(π ? π′)(t), α∨〉 is an

integer.

Suppose that eα(π ? π′) does not vanish. Then:

2. eα(π ? π′) equals either eαπ ? π
′ or π ? eαπ

′.

3. w(π ? π′) = w(eα(π ? π′)).

Proof: Statement (1) holds because π(1) is an integral weight (item 2 above) and

local minima of both functions hπα and hπ
′
α are integers (item 6 above).

Item (2) appears as [15, Lemma 2.7]. At any rate, it follows readily from the

definition of eα once we know that the absolute minima of the functions hπα and hπ
′
α

are both integers, which is guaranteed by item 6 above.

To prove (3), let τ be the final direction of π and ϕ the initial direction of π′. First

suppose that eα(π ? π′) = eαπ ? π
′. By item 4 above, the final direction of eαπ is
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either τ or sατ . If it is τ , then there is nothing for us to do. In case it is sατ , then,

from the definition of eα and properties of π and π′, it follows that sατ < τ and

sαϕ ≥ ϕ. The assertion now follows from part 3 of Corollary 2.1.19.

Now suppose that eα(π ? π′) = π ? eαπ
′. By item 4 above, the initial direction of

eαπ
′ is either ϕ or sαϕ. If it is ϕ, then there is nothing for us to do. In case it is

sαϕ, then, from the definition of eα and properties of π and π′, it follows

that sαϕ < ϕ and sατ ≤ τ . The assertion now follows from part 4

of Corollary 2.1.19. 2

The equivalence relation on Pλ ? Pµ defined by root operators

Given π ? π′ and σ ? σ′ paths in Pλ ?Pµ, let us say π ? π′ is related to σ ? σ′ if π ? π′

equals either eα(σ ? σ′) or fα(σ ? σ′) for some simple root α. This relation is

symmetric since π ? π′ = eα(σ ? σ′) if and only if fα(π ? π′) = σ ? σ′. Denote by ∼

the reflexive and transitive closure of this relation (as we vary over all simple

roots).

As an immediate consequence of the item (3) of Lemma 3.1.2, we have:

Proposition 3.1.3. The association π ? π′ 7→ w(π ? π′) is constant on equivalence

classes of the equivalence relation ∼. In particular, for any ϕ ∈ Wλ\W/Wµ, the

KK set P(λ, ϕ, µ) is a union of such equivalence classes.

In other words, each KK set is stable under the root operators. We will show

in §4.3 that a KK set provides a path model for the corresponding KK module.
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3.2 More Preliminaries

Notation is fixed as in §3.1: g is a symmetrizable Kac-Moody algebra; λ, µ are

dominant integral weights; W is the Weyl group; and Wλ, Wµ are the stabilisers in

W of λ, µ respectively.

3.2.1 Geometric interpretation of minimal representatives

in Wλ\W/Wµ

We now give a geometric interpretation of the unique minimal element in a given

double coset in Wλ\W/Wµ. The association w ↔ wµ (for w ∈ W ) gives a bijection

of the coset space W/Wµ with the set Wµ of W -conjugates of µ. We identify the

sets W/Wµ and Wµ via this bijection. The double coset space Wλ\W/Wµ may

then be identified with the set of Wλ-orbits of Wµ.

Proposition 3.2.1. Every Wλ-orbit of the set Wµ of W -conjugates of µ contains

a unique element wµ such that λ+ twµ is dominant for some real number t > 0.

Proof: Each such orbit contains a unique wµ that is Wλ-dominant. The

Wλ-dominance means precisely that 〈wµ, α∨〉 ≥ 0 for every simple root α in Wλ. It

is easily verified that wµ has the desired property. Conversely, if wµ is not

Wλ-dominant, then 〈wµ, α∨〉 < 0 for some simple root α in Wλ, and so

〈λ+ twµ, α∨〉 = t〈wµ, α∨〉 < 0 for t > 0. 2

The double coset space Wλ\W/Wµ may thus be identified with the set of those

Weyl conjugates wµ of µ such that λ+ twµ is dominant for some positive t. We

illustrate this by means of an example. Let g be of type B2. Let e1 and e2 be the

standard basis vectors in R2 with its standard inner product. We may take

α1 := e1 and α2 := e2 − e1 to be the simple roots. Then the set of all positive roots
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is {α2, α1, α2 + α1, α2 + 2α1}, and the fundamental weights are $1 = 1
2
(ε1 + ε2) and

$2 = ε2. The Weyl group consists of 8 elements:

W = {1, s1, s2, s1s2, s2s1, s2s1s2, s1s2s1, s1s2s1s2 = s2s1s2s1}

where s1 and s2 are the reflections in the hyperplanes perpendicular to α1 and α2

respectively. The shaded portion in the figure is the dominant Weyl chamber.

Take λ = 2ω1 and µ = 2ω1 + ω2. The stabilizers of λ and µ are respectively:

Wλ = {1, s2} and Wµ = {1}. The set of double cosets Wλ\W/Wµ is:

{{1, s2}, {s1, s2s1}, {s1s2, s2s1s2}, {s1s2s1, s2s1s2s1}}

As is clear from Figure 3.2.1, µ, s1µ, s1s2µ, and s1s2s1µ are all the conjugates of µ

for which the line segment joining λ to the conjugate lies for some positive distance

in the dominant Weyl chamber. 2

Proposition 3.2.2. Given a double coset in Wλ\W/Wµ, let w be the unique

minimal element in it with respect to the Bruhat order (as guaranteed by

Corollary 2.1.7). Then wµ is such that λ+ twµ is dominant for all small positive t.

Proof: From the proof of Proposition 3.2.1, it is enough to show that wµ is

Wλ-dominant. Suppose that this is not so. Then there exists simple root α with sα

in Wλ such that 〈wµ, α∨〉 < 0. We then have sαw < w, which contradicts the

hypothesis that w is the minimal element in its double coset. 2

3.2.2 Two key propositions

An LS path π of shape µ is said to be λ-dominant if λ+ π(t) belongs to the

dominant Weyl chamber for every t ∈ [0, 1]. The set of λ-dominant paths of
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α2

α1

$2

$1

origin

λ+ µ

λ+ s2µ

λ+ s2s1µ

λ+ s1µ

λ+ s2s1s2s1µ λ+ s2s1s2µ

λ+ s1s2µ

λ+ s1s2s1µ

Figure 3.2.1: Illustration of Propositions 3.2.1, 3.2.2; see Example 3.2.1

shape µ is denoted by Pλµ . For w an element of the Weyl group, Pλµ(w) denotes the

elements of Pλµ whose initial direction is ≤ wWµ.

Proposition 3.2.3. Let θ be a path in Pλ ? Pµ. Then there exists a unique path η

in the equivalence class (of the relation ∼ defined in §3.1.2) containing θ such that

eαη vanishes on η for all simple roots α. Moreover, η has the following properties:

1. η lies entirely in the dominant Weyl chamber.

2. η = πλ ? π for some π in Pλµ .

3. w(θ) = w(η) = v where v is minimal in the Weyl group such that vµ is the

initial direction of π. In particular, if θ ∈ P(λ,w, µ) (for some w in W ),

then π ∈ Pλµ(w).

Proof: For the existence of η, there is the following standard argument.

Construct by induction a sequence θ0, θ1, . . . of elements in the equivalence class
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of θ as follows. Choose θ0 to be θ. Given θi, if eαθi vanishes for all simple roots α,

then set η = θi and we are done. If not, then choose α simple root arbitrarily such

that eαθi does not vanish and put θi+1 = eαθi. By induction θi+1 belongs to the

equivalence class of θ. We will eventually find an η this way, for this process must

terminate at some point. In fact, the length of the sequence is bounded by the sum

of the coefficients of κ where κ is the non-negative integral linear combination of

the simple roots such that the end point of θ equals λ+ µ− κ.

Since eαη vanishes for all simple α and since the absolute minimum of the function

hηα(t) is an integer for every simple α (see item (1) in Lemma 3.1.2 above), it

follows from the definition of eα that η lies entirely in the dominant Weyl chamber.

The uniqueness of η now follows from [15, Corollary 1 (b) of §7].

Write η = ζ ? π with ζ ∈ Pλ and π ∈ Pµ. Since η lies entirely in the dominant

Weyl chamber, clearly so does ζ. Thus ζ = πλ by item 7 in §3.1.2 above, and π

belongs to Pλµ .

The equality w(θ) = w(η) follows from Proposition 3.1.3. Since η lies entirely in

the dominant Weyl chamber, it follows that λ+ tvµ is dominant for sufficiently

small t ≥ 0. By Proposition 3.2.2, the unique minimal element of WλvWµ lies in

vWµ and hence equals v. But w(η) = minWλvWµ by its definition. 2

Proposition 3.2.4. With notation as in Proposition 3.2.3, write θ = π1 ? π2.

Then the following conditions are equivalent:

1. η = πλ ? πµ (that is, π = πµ)

2. w(θ) = identity

3. there exist τ̃ and ϕ̃ in W such that τ̃ ≥ ϕ̃, τ̃Wλ is the final direction of π1,

and ϕ̃Wµ is the initial direction of π2.
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Proof: Let v be as defined in item (3) of Proposition 3.2.3. Observe that

condition (1) is equivalent to saying that v is identity. Since w(θ) = v by

Proposition 3.2.3 (3), we have (1)⇔(2).

(2)⇒(3): Let τ and ϕ be arbitrary elements in W such that τWλ is the final

direction of π1 and ϕWµ is the initial direction of π2. Condition (2) says that

minWλI(τ−1)ϕWµ equals identity. Let u ∈ Wλ, σ ≤ τ in W , and v ∈ Wµ be such

that u−1σ−1ϕv = identity, or ϕv = σu. We have σWλ ≤ τWλ (by

Corollary 2.1.11). By Proposition 2.1.14, there exists τ̃ in τWλ such that σu ≤ τ̃ .

Taking ϕ̃ = ϕv = σu, (3) is proved.

(3)⇒(2): Since ϕ̃ ≤ τ̃ , it follows that ϕ̃−1 belongs to I(τ̃−1). This implies that

minWλI(τ̃−1)ϕ̃Wµ equals identity. But w(θ) = minWλI(τ̃−1)ϕ̃Wµ by definition.

2

3.2.3 Extremal paths

Let θ be a path in Pλ ? Pµ and let η be as in Proposition 3.2.3 above. Following

Montagard [20], we call θ extremal if the dominant Weyl conjugate θ(1) of the end

point of θ equals the end point λ+ π(1) of η.

The following observation [20, Theorem 2.2 (i)] applied to the path πλ ? πuµ is

already used in Littelmann’s proof [14, §7] of the PRV conjecture (here u denotes

an element of W and πuµ the straight line path to the extremal weight uµ in Vµ):

Proposition 3.2.5. If a path θ ∈ Pλ ? Pµ lies entirely in the dominant Weyl

chamber except perhaps for a portion of its last straight line segment, then θ is

extremal in the above sense.
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Chapter 4

A path model for Kostant-Kumar

modules

4.1 The KK (sub)modules of Vλ ⊗ Vµ

In this section we recall the definition of Kostant-Kumar (KK) modules and two

basic results about them (Propositions 4.1.1 and 4.1.2).

Let g be a symmetrizable Kac-Moody algebra. Let λ, µ be dominant integral

weights. Let Vλ, Vµ be the irreducible integrable g-modules with respective highest

weights λ, µ. Let Wλ, Wµ be the respective stabilizers of λ, µ in the Weyl group W .

4.1.1 Filtration by KK modules of Vλ ⊗ Vµ

Fix an element w of the Weyl group. Let vλ be a highest weight vector in Vλ. Let

vwµ be a non-zero vector in the (one-dimensional) weight space Vwµ of weight wµ

in Vµ. The Kostant-Kumar module, or simply KK module, K(λ,w, µ) is defined to
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be the cyclic submodule of the tensor product Vλ ⊗ Vµ generated by vλ ⊗ vwµ:

(4.1.1) K(λ,w, µ) := Ug (vλ ⊗ vwµ)

where Ug denotes the universal enveloping algebra of g.

Proposition 4.1.1. Let u and w be elements of the Weyl group such that

WλuWµ = WλwWµ. Then K(λ, u, µ) = K(λ,w, µ).

Proof: For the proof, we will first recall a basic result from [7, §3.8]. Let V be an

integrable representation of g. For a simple reflection s, there is a corresponding

linear automorphism rV of V (defined in [7, Lemma 3.8]) such that:

1. For v ∈ V a weight vector of weight η, rV (v) is a weight vector of weight s(η).

2. rV⊗V
′
= rV ⊗ rV ′ for V ′ an integrable representation.

3. For v ∈ V , there exists xv ∈ Ug such that rV (v) = xv(v).

It suffices to show that K(λ, u, µ) ⊆ K(λ,w, µ), for then the other containment

also holds by interchanging the roles of u and w. Write u = τwϕ with τ ∈ Wλ and

ϕ ∈ Wµ. We have uµ = τwϕµ = τwµ. Let τ = si1 · · · sik be a reduced expression

for τ . Note that all sij belong to Wλ. Consider the operator ri1 · · · rik on Vλ ⊗ Vµ

where rij = r
Vλ⊗Vµ
ij

is the linear automorphism corresponding to sij (as recalled

above).

On the one hand, by properties (1) and (2) above, we have:

rik(vλ ⊗ vwµ) = rVλik (vλ)⊗ rVµik (vwµ) = c · vsikλ ⊗ vsikwµ = c · vλ ⊗ vsikwµ

where c is a non-zero scalar. By a chain of similar calculations, we get

(4.1.2) ri1 · · · rik(vλ ⊗ vwµ) = c′ · vλ ⊗ vτwµ = c′ · vλ ⊗ vuµ
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where c′ is a non-zero scalar.

On the other hand, by property (3), there exist elements xi1 , . . . , xik of Ug such

that

(4.1.3) ri1 · · · rik(vλ ⊗ vwµ) = xi1 · · ·xik(vλ ⊗ vwµ)

From (4.1.2) and (4.1.3) we get

vλ ⊗ vuµ = c′−1 · ri1 · · · rik(vλ ⊗ vwµ) = c′−1 · xi1 · · ·xik(vλ ⊗ vwµ)

and thus K(λ, u, µ) = Ug(vλ ⊗ vuµ) ⊆ Ug(vλ ⊗ vwµ) = K(λ,w, µ). 2

Proposition 4.1.2. For elements u and w of the Weyl group W such that

WλuWµ ≤ WλwWµ in the Bruhat order on Wλ\W/Wµ (see §2.1.3), we have

K(λ, u, µ) ⊆ K(λ,w, µ).

Proof: By Proposition 4.1.1, we may assume u = minWλuWµ and

w = minWλwWµ, so that u ≤ w. Let Ub(vwµ) be the Demazure module generated

by vwµ. Since u ≤ w, we have vuµ ∈ Ub(vwµ). Thus

vλ ⊗ vuµ ∈ Ub(vλ ⊗ vwµ) ⊆ Ug(vλ ⊗ vwµ), and Ug(vλ ⊗ vuµ) ⊆ Ug(vλ ⊗ vwµ). 2

Remark 4.1.3. The KK module K(λ, 1, µ) = Ug(vλ ⊗ vµ) corresponding to the

identity element 1 of the Weyl group is the copy of the irreducible representation

Vλ+µ in Vλ ⊗ Vµ. When g is of finite type, the KK module K(λ,w0, µ)

corresponding to the longest element w0 of the Weyl group is the whole tensor

product Vλ ⊗ Vµ. Indeed, letting b+ and b− denote respectively the positive and
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negative Borel subalgebras, we have

Ug(vλ ⊗ vw0µ) = Ub− · Ub+(vλ ⊗ vw0µ) = Ub−(vλ ⊗ Ub+vw0µ)

= Ub−(vλ ⊗ Vµ) = (Ub−vλ)⊗ Vµ = Vλ ⊗ Vµ

4.2 Recall of a decomposition rule for

Kostant-Kumar (KK) modules

The decomposition rule (Theorem 4.2.1 below) that gives the break up of a KK

module into a direct sum of irreducibles is well known. For example, at least in the

case when g is symmetric (i.e., has a symmetric generalized Cartan matrix), it

follows immediately from Joseph’s results [6, Theorems 5.25, 5.22]. Our purpose in

this section is to state the theorem and also give, for the sake of readability and

completeness, a proof in the case when g is of finite type. The restrictive

hypothesis on g (namely that it be of finite type or symmetric) is imposed only

due to the use of a positivity result of Lusztig [16, 22.1.7] by Joseph in [6] and is

possibly not required: see [6, §1.4].

Theorem 4.2.1. (Joseph [6]) Let g be a symmetrizable Kac-Moody Lie algebra

that is either of finite type or symmetric. Let λ, µ be dominant integral weights and

w an element of the Weyl group. Then the decomposition of the KK

module K(λ,w, µ) as a direct sum of irreducible g-modules is given by

(4.2.1) K(λ,w, µ) =
⊕

Vλ+π(1) where the sum is over π ∈ Pλµ(w)

where Pλµ(w) denotes the set of λ-dominant LS paths of shape µ with initial

direction ≤ wWµ (λ-dominance of a path is defined in §3.2.2).

In the case when g is symmetric, the theorem follows from Joseph’s results as
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already indicated (see also Naoi [22, Remark 2.12]). In the finite type case, a proof

is recorded below (§4.2.2). For this proof, we need a result of Lakshmibai,

Littelmann, and Magyar [12], which is a combinatorial analogue of the existence of

“excellent filtrations”, a la Joseph [3], Mathieu [18, 19], Polo [24], and van der

Kallen [25]. We first recall this result.

4.2.1 A result of Lakshmibai-Littelmann-Magyar

In order to state the result, we introduce some notation. The term path in this

section means a piecewise linear path whose endpoint lies in the weight lattice (for

instance, a concatenation of LS paths of various shapes). Let P be a set of paths.

We define its character , denoted charP , by: charP :=
∑

η∈P e
η(1). If π is any

path, we let π ? P denote the set of paths {π ? η : η ∈ P}. Suppose π is a path

such that π(t) belongs to the dominant Weyl chamber for all t ∈ [0, 1]. Fix a

reduced word w = sβ1sβ2 · · · sβk : here βi are simple roots. Define

C(π,w) := {fn1
β1
fn2
β2
· · · fnkβk π : ni ≥ 0 for all i}

This set is independent of the reduced word chosen, and has character:

charC(π,w) = Λw(eπ(1))

where Λw is the Demazure operator corresponding to w (see, e.g., [14, §5.1]).

Further, when π is the straight line path πµ, we have C(πµ, w) = Pµ(w), the set of

LS paths of shape µ with initial direction ≤ wWµ. The following key result

appears in [12, Proposition 12] (see also [5, Theorem in §2.11, also §3.5]).

Proposition 4.2.2. With notation as above, there exists a Weyl group valued
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function π 7→ w(π) on Pλµ(w) such that

(4.2.2) πλ ? C(πµ, w) =
⊔

π∈Pλµ (w)

C(πλ ? π, w(π))

(The precise form of the function π 7→ w(π) is immaterial for our purposes.)

Computing characters of both sides in (4.2.2), we obtain:

(4.2.3) charπλ ? C(πµ, w) =
∑

π∈Pλµ (w)

Λw(π)(e
λ+π(1))

4.2.2 Proof of Theorem 4.2.1 for g of finite type

By a result of Kumar [9, Theorem 2.14], the character of the KK module

K(λ,w, µ) is given by

(4.2.4) charK(λ,w, µ) = Λw0(e
λ · Λw(eµ))

where w0 is the longest Weyl group element. Since Λw(eµ) is the character of

C(πµ, w), we obtain

(4.2.5) charK(λ,w, µ) = Λw0(charπλ ? C(πµ, w))

Substituting from (4.2.3) into (4.2.4), we obtain:

charK(λ,w, µ) =
∑

π∈Pλµ (w)

Λw0Λw(π)(e
λ+π(1)) =

∑
π∈Pλµ (w)

Λw0(e
λ+π(1))

since Λw0Λσ = Λw0 for all σ ∈ W . This latter fact follows from the following

well-known property of the Demazure operators: if α is a simple root, then ΛsαΛw

equals Λsαw or Λw according as sαw is > w or < w.
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But now Λw0(e
λ+π(1)) is the character of the g-module Vλ+π(1) (by the Demazure

character formula applied to w0). Thus the modules on both sides of (4.2.1) have

the same character, and the proof is complete. 2

Example 4.2.3. Consider the situation of Example 3.2.1 and Figure 3.2.1. The

λ-dominant paths of shape µ, colour coded by their initial directions, are all listed

below and depicted in Figure 4.2.1:

Initial direction Colour Coding Path data

identity violet 1; 0 < 1

s1 red s1; 0 < 1

s1 red s1 > 1; 0 < 1/2 < 1

s1s2 cyan s1s2 > s2; 0 < 1/4 < 1

s1s2 cyan s1s2 > s2; 0 < 1/2 < 1

s1s2s1 orange s1s2s1 > s2s1 > s1 > 1; 0 < 1/4 < 1/3 < 1/2 < 1

s1s2s1 orange s1s2s1 > s2s1 > s1; 0 < 1/4 < 1/3 < 1

s1s2s1 orange s1s2s1 > s2s1 > s1; 0 < 1/2 < 2/3 < 1

s1s2s1 orange s1s2s1 > s2; 0 < 1/2 < 1

Thus the KK modules decompose as follows:

• K(λ, 1, µ) = Vλ+µ.

• K(λ, s1, µ) = Vλ+µ ⊕ V2$1+2$2 ⊕ V3$2 .

• K(λ, s1s2, µ) = Vλ+µ ⊕ V2$1+2$2 ⊕ V3$2 ⊕ V4$1 ⊕ V2$1+$2 .

• K(λ, s1s2s1, µ) = Vλ+µ⊕V2$1+2$2⊕V3$2⊕V4$1⊕V ⊕2
2$1+$2

⊕V2$1⊕V$2⊕V2$2 .
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Figure 4.2.1: Decomposition of KK modules of V2$1 ⊗V2$1+$2 for g of type B2: see
Example 4.2.3. The orange coloured path ending at λ = 2$1 is shown separately
for clarity.

4.3 A path model for Kostant-Kumar (KK)

modules

We deduce a path model for KK modules by combining the decomposition rule

(Theorem 4.2.1) with the invariance under the root operators (Proposition 3.1.3)

of the association (3.1.1) of the Weyl group element w(π ? π′) to a

concatenation π ? π′ of two LS paths. The restriction on g (namely, that it be of

finite type or symmetric) in the theorem is only because of the use of the

decomposition rule, and is possibly not required.

Theorem 4.3.1. Let g be a symmetrizable Kac-Moody algebra that is either of

finite type or symmetric (as in Theorem 4.2.1). Let λ, µ be dominant integral

weights and w an element of the Weyl group. Let Pλ and Pµ respectively be the

sets of Lakshmibai-Seshadri paths of shapes λ and µ. For π ∈ Pλ and π ∈ Pµ, let

w(π ? π′) be the Weyl group element associated as in (3.1.1) in §3.1.1 to the
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concatenated path π ? π′. Then the KK set

P(λ,w, µ) = {π ? π′ | π ∈ Pλ, π′ ∈ Pµ,w(π ? π′) ≤ w}

is a path model for the KK module K(λ,w, µ) in the sense that

(4.3.1) charK(λ,w, µ) =
∑

η∈P(λ,w,µ)

exp η(1)

Proof: From Theorem 4.2.1, we have:

(4.3.2) charK(λ,w, µ) =
∑

π∈Pλµ (w)

charVλ+π(1)

where Pλµ(w) is the set of λ-dominant LS paths of shape µ with initial

direction ≤ w. For π ∈ Pλµ(w), let Pπλ?π be the equivalence class in Pλ ? Pµ

containing πλ ? π (under the equivalence relation ∼ defined by the root

operators—see §3.1.2), where πλ denotes the straight line path from the origin to

λ. Since πλ ? π lies entirely in the dominant Weyl chamber (this is what it means

for π to be λ-dominant), it follows from the “Isomorphism Theorem” in [15,

Theorem 7.1] that

(4.3.3)
∑

σ∈Pπλ?π

expσ(1) =
∑

σ∈Pλ+π(1)

expσ(1)

(where of course Pλ+π(1) denotes the set of LS paths of shape λ+ π(1)). By the

“Character formula” [14, page 330], the right hand side of (4.3.3) equals

charVλ+π(1), so putting together (4.3.2) and (4.3.3) gives

(4.3.4) charK(λ,w, µ) =
∑

π∈Pλµ (w)

∑
σ∈Pπλ?π

expσ(1)
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Thus, for the proof of the theorem, it suffices to show the following:

(4.3.5) P(λ,w, µ) = tπ∈Pλµ (w)Pπλ?π (disjoint union)

To prove (4.3.5), first let π ∈ Pλµ(w). Let u be an element of the Weyl group such

that uµ is the initial direction of π. From our assumption that uWµ ≤ wWµ, it

follows that WλuWµ ≤ WλwWµ (see Corollary 2.1.11) and w(πλ ? π) ≤ w

(evidently w(πλ ? π) is the minimal element in WλuWµ). By Proposition 3.1.3, it

follows that the Weyl group elements associated via w to elements of Pπλ?π are all

the same. This proves P(λ,w, µ) ⊇ Pπλ?π.

Now let ϕ be an element in P(λ,w, µ). Apply Proposition 3.2.3 to ϕ and let η be

as in the conclusion. Then η = πλ ? π for some π ∈ Pλµ(w), and the containment ⊆

is proved.

That the union on the right hand side of (4.3.5) is disjoint follows from the

uniqueness of η in Proposition 3.2.3 (which in turn rests on [15, Corollary 1 (b)

of §7]): πλ ? π is the unique path in Pπλ?π on which eα vanishes for all simple

roots α. 2

4.4 PRV components and generalised PRV

components in KK modules

We show how the decomposition rule (Theorem 4.2.1) leads easily to results about

the existence of PRV components (Theorem 4.4.1) and generalised PRV

components (Theorem 4.4.3) in KK modules. The arguments are well known: see

e.g. those by Joseph in [4, §2.7]. In fact, Theorem 4.4.1 for the finite case follows

from items (i) and (iii) of the theorem in [4, §2.7].
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Theorem 4.4.1 is at once a generalisation of two results: the so called refined PRV

and KPRV theorems:

• Its special case when g is of finite type and w = w0 (the longest element of

the Weyl group) is due to Kumar [10, Theorem 1.2], who refers to his result

as “a refinement of the PRV conjecture” and says that it was conjectured by

D.-N. Verma.

• The special case when σ = w was proved by Kumar [9, page 117] and

independently Mathieu [17, Corollaire 3]. Kumar calls it “the strengthened

PRV conjecture (due to Kostant)”. We have called it “KPRV” following

Khare [8].

Theorem 4.4.3 is a KK version of Montagard’s result [20, Theorem 3.1] about

generalised PRV components.

4.4.1 The map Φ

Let g be a symmetrizable Kac-Moody algebra, and fix dominant integral weights λ

and µ. Let Wλ and Wµ denote respectively the stabilizers in the Weyl group W of

λ and µ.

Consider the map from the Weyl group W to the set Λ+ of dominant integral

weights given by σ 7→ λ+ σµ, where λ+ σµ denotes the dominant Weyl conjugate

of the weight λ+ σµ. This map factors through the natural quotient map from W

to Wλ\W/Wµ. We denote by Φ the map Wλ\W/Wµ → Λ+ given by

WλσWµ 7→ λ+ σµ.
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4.4.2 PRV components in KK modules

The restrictive hypothesis on g in the following theorem (as also in

Theorem 4.4.3), namely that it be either of finite type or symmetric, is inherited

from the decomposition rule (Theorem 4.2.1) and is possibly not required.

Theorem 4.4.1. Let g be a symmetrizable Kac Moody algebra that is either of

finite type or symmetric (as in Theorem 4.2.1). Let λ, µ be dominant integral

weights and w, σ be elements of the Weyl group. Let ν be the dominant Weyl

conjugate of the weight λ+ σµ. Then the irreducible g-module Vν occurs in the

decomposition into irreducible g-modules of the KK module K(λ,w, µ) at least as

many times as there are elements τ ∈ Wλ\W/Wµ such that τ ≤ WλwWµ and

Φ(τ) = ν.

Proof: We describe a map Φ̃ from Wλ\W/Wµ to the set Pλµ of λ-dominant LS

paths of shape µ. Given τ ∈ Wλ\W/Wµ, let v be the unique minimal element in τ .

Consider the path ϕ = πλ ? πvµ in P ? Pµ, where πλ and πvµ are the straight line

paths from the origin to λ and vµ respectively. Note that w(ϕ) = v. Apply

Proposition 3.2.3 to ϕ and let η be as in its conclusion. Then η = πλ ? π for some

π ∈ Pλµ and w(η) = v. We define Φ̃(τ) := π. Since π determines η from which we

can recover v and in turn τ , it follows that Φ̃ is injective.

It follows from Proposition 3.2.5 that ϕ as above is extremal, which means that

η(1) = ϕ(1) = λ+ vµ = Φ(τ). Thus Φ̃ is a “lift” to Pλµ of Φ, meaning that Φ(τ) is

the end point of Φ̃(τ) shifted by λ for any τ in Wλ\W/Wµ. Combining this fact

and the injectivity of Φ̃ with the decomposition rule (Theorem 4.2.1), we

immediately obtain the theorem. 2
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4.4.3 KPRV recovered

It follows immediately from the theorem that Vν occurs at least once in K(λ, σ, µ).

We now observe that it occurs at most once by repeating the following elementary

argument from [9, §2.7]. Indeed in any g-homomorphism from K(λ, σ, µ) module

to Vν , the vector vλ ⊗ vσµ has to map to an element of weight λ+ σµ. But the

dimension of the λ+ σµ-weight space in Vν is clearly one, since λ+ σµ is a Weyl

conjugate of ν. Thus the space of g-homomorphisms from K(λ, σ, µ) to Vν is one

dimensional, and we have:

Corollary 4.4.2. Let g, λ, µ, σ, and ν be as in Theorem 4.4.1. Then the

irreducible g-module Vν occurs exactly once in the decomposition into irreducible

g-modules of the KK module K(λ, σ, µ).

Put λ = µ. Let w be an element of the Weyl group such that

WλwWλ 6= Wλw
−1Wλ (e.g., when λ is regular and w 6= w−1). Since λ+ wλ and

λ+ w−1λ are Weyl conjugates, it follows that Vν where ν = λ+ wλ appears

uniquely in K(λ,w, λ) and in K(λ,w−1, λ) (by Corollary 4.4.2) and at least twice

in the tensor product Vλ ⊗ Vλ (by Theorem 4.4.1). 2

4.4.4 Generalised PRV components in KK modules

Importing to our context a result of Montagard [20, Theorem 3.1], we prove the

following:

Theorem 4.4.3. Let g, λ, and µ be as in Theorem 4.4.1. Let v, u be elements in

the Weyl group and β a positive root such that either v−1β or u−1β is a simple

root. Let k be an integer such that 0 ≤ k ≤ min{〈vλ, β∨〉, 〈uµ, β∨〉} and the integral

weight ν = vλ+ uµ− kβ is dominant. Then the irreducible g-module Vν occurs in

the decomposition of the KK module K(λ,w, µ) into irreducibles where w = v−1sβu.
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Proof: First suppose that v−1β is simple. Since k ≤ 〈v−1uµ, v−1β∨〉, it follows

that fkv−1βπv−1uµ does not vanish. Consider the path ϕ := πλ ? f
k
v−1βπv−1uµ

in Pλ ? Pµ. As is easily verified, the dominant Weyl conjugate of ϕ(1) is ν and

w(ϕ) is either minWλv
−1sβuWµ or minWλv

−1uWµ depending upon whether

k > 0 or k = 0. An easy verification (using the hypothesis that 〈uµ, β∨〉 ≥ 0)

shows that w = v−1sβu ≥ v−1u. Thus w ≥ w(ϕ) in either case, and ϕ ∈ P(λ,w, µ).

Apply Proposition 3.2.3 to the path ϕ and let η be as in its conclusion. Then η is

of the form πλ ? π with π ∈ Pλµ(w). By the decomposition rule (Theorem 4.2.1),

Vη(1) occurs in K(λ,w, µ). But Montagard [20, Proof of Theorem 3.1] shows that ϕ

is extremal, which means that ν = ϕ(1) = η(1), and the proof is done in this case.

Now suppose that u−1β is simple. Then, applying the result in the previous case,

we conclude that Vν occurs in the KK submodule K(µ,w−1, λ) of Vµ ⊗ Vλ. But

under the g-isomorphism a⊗ b↔ b⊗ a of Vµ ⊗ Vλ with Vλ ⊗ Vµ, the submodules

K(µ,w−1, λ) and K(λ,w, µ) map isomorphically to each other. 2

Remark 4.4.4. 1. In the set up of the theorem, let g be of finite type. In place

of the hypothesis that either v−1β or u−1β is simple, let us assume that β is

simple. In this case too [20, Theorem 3.1] says that Vν occurs in the full

tensor product Vλ ⊗ Vµ. We have not handled this case.

2. Suppose that β is a negative root such that the hypothesis is satisfied: either

v−1β or u−1β is simple, 0 ≤ k ≤ min {〈vλ, β∨〉, 〈uµ, β∨〉}, and

ν = vλ+ uµ− kβ is dominant. Then 〈ν, β∨〉 = 0 (by the dominance of ν)

and the hypothesis is also satisfied if we put sββ = −β, sβv, sβu, k, and ν in

place respectively of β, v, u, k, and ν.

3. In the proof of the first case (when v−1β is simple), the hypothesis that

k ≤ 〈vλ, β∨〉 is not explicitly used, but it is implicitly used in the invocation

of Montagard’s criterion for a path to be extremal.
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In response to a question of the referee, we identify certain cases in which the

multiplicity of the generalised PRV component in Theorem 4.4.3 is precisely one:

Corollary 4.4.5. Fix notation and hypothesis as in Theorem 4.4.3.

1. Suppose that k = 0. Then Vν occurs precisely once in K(λ, v−1u, µ).

2. Suppose that k is equal either to 〈vλ, β∨〉 or 〈uµ, β∨〉. Then Vν occurs

precisely once in K(λ,w, µ).

3. Suppose that β is simple. Then Vν occurs precisely once in K(λ,w, µ).

Proof: (1) In this case, we have ν = vλ+ uµ = λ+ v−1uµ, and so the result

follows from KPRV (Corollary 4.4.2).

(2) Suppose that 〈vλ, β∨〉 = k (the case when 〈uµ, β∨〉 = k is similar). Then

ν = vλ+ uµ− kβ = λ+ wµ, and the result follows once again from Corollary 4.4.2.

(3) The proof in this case is similar to that of Corollary 4.4.2. By Theorem 4.4.3,

Vν occurs at least once in K(λ,w, µ). It is therefore enough to show that the space

of g-homomorphisms from K(λ,w, µ) to Vν is at most one dimensional. The

generator vλ⊗ vwµ of the Ug-module K(λ,w, µ) has weight λ+wµ. Since weight is

preserved under a g-homomorphism, it is enough to show that λ+ wµ has

multiplicity at most one in Vν . A small calculation shows that

λ+ wµ = v−1(ν − (〈uµ, β∨〉 − k)β). Since β is assumed to be simple, the

multiplicity of ν − (〈uµ, β∨〉 − k)β (and so also of its v−1 translate) in Vν is at

most one, and we are done. 2

We illustrate the result of Theorem 4.4.3 and also the idea behind its proof by

means of an example borrowed from Montagard [20]. Let the root system of g be

G2. Let e1 and e2 be the standard basis vectors of R2 with its standard inner

product. We may take α1 := e1 and α2 := −3
2
e1 +

√
3

2
e2 to be the simple roots. The
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πλ ∗ fα2πv−1uµ

α1

α2

πλ

ν

πv−1uµ

fα2πv−1uµ

$1

$2

k = 1
u = s1

v = s2s1s2s1

β = 3α1 + α2

v−1β = α2

λ = 2$2

µ = 2$1 + 2$2

Wλ = {1, s1};Wµ = {1}

β∨ = 6α1 + 2α2

vλ = 6$1 − 4$2

uµ = −2$1 + 4$2

< vλ, β∨ >= 2
< uµ, β∨ >= 2

w = minWλv
−1sβuWµ

= s1s2s1s2s1s2

ν = $1 +$2

Figure 4.4.1: Vν ∈ K(λ,w, µ): see Example 4.4.4

set of all positive roots is:

{α2, α1, α2 + α1, α2 + 2α1, α2 + 3α1, 2α2 + 3α1}

Let s1 = sα1 , s2 = sα2 be the simple reflections and $1, $2 the fundamental

weights. The dominant integral weights λ, µ, ν, the Weyl group elements u, v, w,

the root β, and the integer k are all as shown in Figure 4.4.1. The path η ending

at ν appears in bold. 2 Consider the situation of Example 4.2.3 and Figure 4.2.1.

The decompositions of the KK modules K(λ,w, µ) are given there. The PRV and

generalised PRV components, identified by their highest weights, are listed below
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against the smallest KK modules to which they belong.

KK modules PRV Components Generalised PRV components

K(λ, 1, µ) λ+ µ = 4$1 +$2

K(λ, s1, µ) 3$2 2$1 + 2$2

K(λ, s1s2, µ) 2$1 +$2 4$1

K(λ, s1s2s1, µ) $2 2$2, 2$1

The only component that is not listed above is the second copy of V2$1+$2 , the one

which belongs to the full tensor product but not to any smaller KK module. It is

not captured by the theorems in this section: it is not a PRV or generalised PRV

component.

The multiplicities of the listed components are all 1 in the respective smallest KK

modules to which they belong. For the PRV components, this follows from

Corollary 4.4.2. For 2$1 + 2$2 (λ+ µ− α1) and 4$1 (λ+ s2µ− α1), this follows

from Corollary 4.4.5 (3), but not for 2$1 (s1λ+ s2µ− (α1 + α2)) or 2$2

(s2λ+ s1µ− (α1 + α2)). 2 Let g be of type A2. Let α1, α2 be the simple roots

and $1 = ε1, $2 = ε1 + ε2 the corresponding fundamental weights. Let

λ = $1 + 2$2 and µ = 2$1 +$2. The decomposition into irreducibles of the

tensor product Vλ ⊗ Vµ is depicted in Figure ??. Except for one copy of V2$1+2$2

which belongs to K(λ, s2s1, µ), every component occurs as a PRV or generalised

PRV component. These, identified by their highest weights, are listed below
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against the smallest KK modules to which they belong.

KK modules PRV Components Generalised PRV components

K(λ, 1, µ) λ+ µ = 3$1 + 3$2

K(λ, s1, µ) $1 + 4$2

K(λ, s2, µ) 4$1 +$2

K(λ, s1s2, µ) 2$1 + 2$2

K(λ, s2s1, µ) $1 +$2 3$1, 3$2

K(λ, s1s2s1, µ) 0 $1 +$2

Except for the generalised PRV component $1 +$2 (which is contained in the full

tensor product but not in any smaller KK module), the other components occur

with multiplicity 1 in the respective smallest KK modules to which they belong.

For the PRV components, this follows from Corollary 4.4.2. For 3$1

(= s2λ+ µ− α1) and 3$2 (= λ+ s1µ− α2), this follows from Corollary 4.4.5 (3).

The generalised PRV component $1 +$2 (= s1λ+ s2µ− (α1 + α2)) shows that

the hypothesis of simplicity of β in Corollary 4.4.5 (3) cannot be omitted. 2
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Chapter 5

A Tableau Decomposition rule for

Kostant-Kumar modules

5.1 Tableau decomposition rule for

Kostant-Kumar (KK) modules

Fix an integer d ≥ 2. Let g = sld, the simple Lie algebra of traceless complex d× d

matrices. There is, in this special case, the classical Littlewood-Richardson (LR for

short) rule (see e.g. [26, 27]) that gives, in terms of tableaux, the decomposition

into irreducibles of the tensor product of two finite dimensional irreducible

representations of g. The multiplicities of the irreducibles in this rule are called

“LR coefficients” and they count certain “LR tableaux”. Our purpose in this

section is to deduce, from the general decomposition rule (Theorem 4.2.1), a

version of this classical rule, which we call the “refined LR rule”, for decomposing

as a direct sum of irreducibles any KK submodule of the tensor product: see §5.1.4

for the statement. We call the multiplicities of the irreducibles in this refined rule

the “refined LR coefficients”.
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The refined LR coefficients also count certain LR tableaux. The identification of

the set of LR tableaux to be counted is based upon the association of a

permutation to each LR tableau (§5.1.6). There is a very natural association of a

semi-standard Young tableau (SSYT) to an LR tableau (§5.1.6) and the

permutation is just the initial element of the minimal standard lift when the SSYT

is interpreted as a standard concatenation of LS paths (§6.1.2).

In the light of this last mentioned fact, it is noteworthy that the procedure we give

for determining the permutation (§5.1.5) from the SSYT is not a repeated

application of Deodhar’s lemma (Proposition 2.1.17): it seems to be more efficient

than that. Lascoux and Schützenberger [28] associate to each SSYT a “right key”

(which by definition is another SSYT) from which the permutation can be read off.

Willis [29] gives an alternative method–“the scanning method”—for finding the

right key of an SSYT. Our procedure is different from those in [28, 29].

5.1.1 Preliminaries

The choices involved (Cartan subalgebra h, Borel subalgebra b, etc.) are fixed as

usual: the subalgebra of diagonal (respectively, upper triangular) traceless complex

d× d matrices is taken to be h (respectively, b). We denote by εj the linear

functional on h that maps a matrix to its entry in position (j, j).

Recall that a partition is a weakly decreasing sequence λ1 ≥ λ2 ≥ . . . (sometimes

also written λ1 + λ2 + · · · ) of non-negative integers that is eventually zero. The

non-zero elements of the sequence are called the parts. We tacitly identify

partitions with their (Young) shapes. To a partition λ : λ1 ≥ . . . ≥ λd ≥ 0 ≥ . . .

with at most d parts, we attach the dominant integral weight λ1ε1 + · · ·+ λdεd. A

second such partition λ′1 ≥ . . . ≥ λ′d ≥ 0 ≥ . . . corresponds to the same weight as λ

if and only if λ1 − λ′1 = · · · = λd − λ′d (since ε1 + . . .+ εd = 0 is evidently the only
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linear dependence relation up to scaling on ε1, . . . , εd). Thus partitions with less

than d parts are in one-to-one correspondence with dominant integral weights. We

will abuse notation and use the same symbol for both a partition with less than d

parts and the corresponding dominant integral weight.

Let [j] := {1, . . . , j} for any integer j ≥ 1. The Weyl group is identified with the

group of permutations of the set [d]. The one line notation for a permutation w

of [d] is w1 . . . wd, where wj := w(j) (for 1 ≤ j ≤ d).

5.1.2 Semi-standard Skew tableaux (SSST for short)

Let ν and λ be two partitions with the shape of ν containing the shape of λ. A

(semi-standard) skew tableau, SSST for short, of shape ν/λ is a filling up by

positive integers of those boxes that are in the shape of ν but not in the shape of λ

such that the entries in each row are weakly increasing rightward and those in each

column are strictly increasing downward. Here are two examples with

ν = 7 + 5 + 4 + 3 + 1 and λ = 4 + 4 + 1 + 1:

(5.1.1)

· · · · 2 2 3

· · · · 7

· 3 3 5

· 4 6

1

· · · · 1 1 1

· · · · 2

· 1 2 3

· 3 4

1

Reverse reading words and ballot sequences

Let T be a SSST of shape ν/λ. Its reverse reading word , denoted wrow(T ), is

defined as follows: read the entries of T from right to left in every row, scanning

the rows from top to bottom. For the two SSSTs in the display above, the reverse
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reading words respectively are:

(5.1.2) 3 2 2 7 5 3 3 6 4 1 1 1 1 2 3 2 1 4 3 1

The word wrow(T ) (or, more generally, any word in the positive integers) is said to

be a ballot sequence if for any integer j ≥ 1 the number of times j occurs up to any

point in the word (while scanning it from left to right) is at least the number of

times j + 1 occurs up to that point. In (5.1.2), the word on the left is not a ballot

sequence but the one on the right is.

Type and weight of a word and of a SSST

The type of any word w in the positive integers is the sequence µ: µ1, µ2, . . . ,

where µj denotes the number of occurrences of j in w. The type of the word on

the left in (5.1.2) is 1, 2, 3, 1, 1, 1, 1, 0, 0, . . . . Evidently, permuting the letters of

a word does not change its type. If w is a word in [d], then we may further

associate to it the integral weight µ1ε1 + · · ·+ µdεd of g = sld. This is called the

weight of the word and denoted wt(w).

The type and weight of a SSST T are defined respectively to be the type and

weight of its reverse reading word wrow(T ).1

If the word w is a ballot sequence, then its type is a partition: µ1 ≥ µ2 ≥ . . ., and

in this case we use the notation for partitions to denote types. For example, the

type of the word on the right in (5.1.2) is µ = 5 + 2 + 2 + 1. The weight of such a

word in [d] is dominant.

1Later on we will introduce the “column word” wcol(T ) of T , which being a permutation
of wrow(T ) shares its type and weight.
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5.1.3 Littlewood-Richardson (LR for short) tableaux and

coefficients

An LR tableau (LR is short for Littlewood-Richardson) is a SSST T whose reverse

reading word wrow(T ) is a ballot sequence. Let λ and µ be partitions. Let T λµ

denote the set of LR tableau of shape ν/λ and type µ—here ν is allowed to vary.

If T in T λµ has shape ν/λ, we write ν(T ) for ν. As is well-known, T λµ has

representation theoretic and geometric significance. For example (see e.g. [26, 27])

sλsµ =
∑

T∈T λµ
sν(T ), where sτ denotes the Schur function associated to a

partition τ .

For a fixed partition ν, the number of T in T λµ with ν(T ) = ν is usually denoted

cνλµ. The numbers cνλµ are called LR coefficients . In terms of these, we may write

the the above rule for multiplication of Schur functions as sλsµ =
∑

ν c
ν
λµsν .

Bruhat order on permutations

Any permutation u of [j] (for some integer j ≥ 1) can naturally be considered as a

permutation of [k], for any integer k ≥ j. Given two permutations u and u′ (of [j]

and [j′] respectively), we write u ≤ u′ if that is so in the Bruhat order on

permutations of [k] for some k ≥ both j and j′. If u ≤ u′ for one such k, then it is

so for all such k.

Refined Littlewood-Richardson coefficients: their definition

In §5.1.6 below, we specify a procedure that assigns a permutation u to a given

SSST T .2 Fix a permutation w and let T λµ (w) denote the subset of T λµ consisting

2It is easy to associate to T a SSYT S of shape µ—see §5.1.6. Interpreting S as a standard
concatenation of LS paths in the sense of Proposition 6.1.3 in the appendix, the associated per-
mutation u is just the initial element of the minimal standard lift of S, as will be proved in §5.2.
Observe that, if as in §5.1.4 the number of parts in ν is at most d, then the entries in S and the
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of those elements for which the associated permutation u satisfies u ≤ w (in the

Bruhat order as defined in §5.1.3 above). The result (5.1.3) below ascribes

representation theoretic meaning to T λµ (w).

For a fixed partition ν, we denote by cνλµ(w) the number of T in T λµ (w) with

ν(T ) = ν. We call the numbers cνλµ(w) refined LR coefficients .

5.1.4 Tableau decomposition rule for KK modules

Suppose that λ, µ are partitions with less than d parts (or, equivalently, dominant

integral weights for g = sld) and that w is a permutation of [d] (or, equivalently, an

element of the Weyl group). Then the decomposition of the Kostant-Kumar

module K(λ,w, µ) (defined in §4.1.1) as a direct sum of irreducible g-modules is

given by:

(5.1.3) K(λ,w, µ) =
⊕

T∈T λµ (w)

Vν(T )

where Vν(T ) is interpreted to be zero in case ν(T ) has more than d parts. (Recall

from §5.1.1 that to any partition with at most d parts there is associated a

dominant integral weight of g.)

Here is an alternative way to express the above decomposition rule:

(5.1.4) K(λ,w, µ) =
⊕
ν

V
⊕cνλµ(w)

ν

where the sum runs over all partitions ν with less than d parts, and ν depending

number of parts in µ are also bounded above by d, so that the interpretation of S as a concatenation
of LS paths associated to g = sld is possible, and u is a permutation of [d].
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on ν denotes the unique partition with at most d parts (if it exists) such that

νj = νj − νd for 1 ≤ j < d and ν1 + · · ·+ νd = (λ1 + · · ·+ λd−1) + (µ1 + · · ·+ µd−1)

The proof of (5.1.3) will be given below in §5.1.9.

The statement for polynomial representations of GLd(C)

For convenience of reference, we now state, without proof, a version of the

decomposition rule (5.1.3) for polynomial representations of the general linear

group GLd(C). Suppose that λ, µ are partitions with at most d parts and Vλ, Vµ

the corresponding irreducible polynomial representations. Let w be a permutation

of [d]. Then the decomposition of the Kostant-Kumar module K(λ,w, µ) (defined

similarly as in §4.1.1) as a direct sum of irreducible polynomial representations is

given by:

(5.1.5) K(λ,w, µ) =
⊕
ν

V
⊕cνλµ(w)
ν

where the sum runs over all partitions ν with at most d parts.

An example

Here is a simple example illustrating the rules (5.1.3) and (5.1.4). Let d = 3,

λ = 2 + 1, and µ = 3 + 1. As the reader can readily verify, there are 7 elements T

in T λµ with ν(T ) having at most 3 parts. These are listed below along with the
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permutations of [3] attached to them (as in §5.1.6):

· · 1 1 1

· 2
↔ 123

· · 1 1

· 1 2
↔ 213

· · 1 1 1

·

2

↔ 132

· · 1 1

· 1

2

↔ 231

· · 1 1

· 2

1

↔ 312

· · 1

· 1 2

1

↔ 312

· · 1

· 1

1 2

↔ 321

And so we have:

K(λ, 123, µ) = V5+2 K(λ, 213, µ) = V4+3 ⊕ V5+2 K(λ, 132, µ) = V4 ⊕ V5+2

K(λ, 231, µ) = V3+1 ⊕ V4 ⊕ V4+3 ⊕ V5+2 K(λ, 312, µ) = V2+2 ⊕ V3+1 ⊕ V4 ⊕ V4+3 ⊕ V5+2

K(λ, 321, µ) = V1 ⊕ V2+2 ⊕ V3+1 ⊕ V3+1 ⊕ V4 ⊕ V4+3 ⊕ V5+2

5.1.5 SSYT and permutations attached to them

Let µ be a partition. A semi-standard Young tableau, SSYT for short, of shape µ

is just a (semi-standard) skew tableau of shape µ/empty in the sense of §5.1.2.

Here is an example of a SSYT of shape µ = 4 + 2 + 1:

(5.1.6)

1 3 6 8

2 4

7
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Associating a permutation to a given SSYT

Let S be a SSYT of shape µ and let m be the largest entry of S. We associate to S

a permutation u of [m], as follows. Let µ′1 be the number of parts in µ. Observe

that m ≥ µ′1 since the entries in every column of S are strictly increasing

downwards.

Let u1u2 . . . um be the one-line notation for u. We will describe below an inductive

procedure to produce the sequence u1, . . . , uµ′1 . As for uµ′1+1, . . . , um, we take

these to be just the elements of [m] \ {u1, . . . , uµ′1} arranged in increasing order.

It is easy to produce u1: it is just the largest (right most) entry in the first row

of S. Suppose that u1, u2, . . . , up−1 have been produced (with 1 < p ≤ µ′1). We

now describe a procedure to determine up.

Let b be a box in S. Suppose that a box b′ in S is weakly to the Northeast of b

and has an entry that is less than that of b. Then we write b � b′. For example,

in the SSYT of (5.1.6), if b is the one with entry 7, then b′ could be any of those

containing 1, 2, 3, 4, or 6; if b is the one with entry 4, then b′ could only be the

one containing 3.

The b-depth of such a box b′ is defined to be the largest δ such that there is a

chain b � b1 � b2 � . . . � bδ = b′. The b-depth of b itself is defined to be 0.

Let bp denote the right most box in row p. We write p-depth for bp-depth. For

1 ≤ j ≤ p, we let yj be maximal possible entry in a box whose p-depth is p− j.

(The box in row j in the same column as bp has p-depth p− j, so yj exists.) By

definition, yp is the entry in the box bp. As is easily seen, y1 < . . . < yp. We call

this the p-depth sequence of S.

Let a1 < . . . < ap−1 be the elements u1, . . . , up−1 arranged in increasing order. Let

k, 1 ≤ k ≤ p, be the largest such that ak−1 < yk (a0 = −∞ by convention).
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Take up to be yk.

Proposition 5.1.1. With notation as above, we evidently have:

• a1 < . . . < ak−1 < yk < ak < . . . < ap−1.

• up is distinct from u1, . . . , up−1. 2

Remark 5.1.2. The element yj in the p-depth sequence of S is just the entry in

the right most box of p-depth p− j: “right most box” means box in the right most

column; since no two boxes in the same column have the same p-depth, this is well

defined. Indeed let b be that box and e its entry. Clearly e ≤ yj. To show yj ≤ e,

first observe that no column to the right of the one containing b has a box of

p-depth p− j (by choice of b); secondly that e dominates the entry in any box that

is weakly to the Northwest of b (since S is a SSYT); and finally that any box of

p-depth p− j strictly South and weakly West of b can only have an entry that is

at most e (for otherwise the p-depth of b would exceed p− j).

Illustration of the procedure above

Let S be the SSYT in (5.1.6). The permutation associated to it is 83612457 in

one-line notation. Evidently u1 = 8 and µ′1 = 3; the 2-depth sequence is 3 < 4 and

u2 = 3; the 3-depth sequence is 3 < 6 < 7 and u3 = 6.

A technical result that will be used later

The following lemma will be invoked later on, in Example 5.2.2.

Lemma 5.1.3. Let S be a SSYT and q the number of boxes in its right most

column. Let S ′ be the SSYT obtained from S by deleting its last column. Fix p > q.

If in the procedure for producing up (where u is the permutation associated to S),
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we use the p-sequence of S ′ in place of that of S, it makes no difference (that is, we

still get the same up).

Proof: Let y1 < . . . < yp and y′1 < . . . < y′p be the p-depth sequences of S and S ′

respectively, and suppose that up = yk. Since the entries in the last column of S all

belong to {u1, . . . , up−1} but, by Proposition 5.1.1, yk does not belong to that set,

it follows that any box of S with yk as its entry belongs to S ′. Thus yk = y′k.

On the other hand, y′j ≤ yj ≤ aj−1 for all j > k (where a1 < . . . < ap−1 is the

arrangement in increasing order of u1, . . . , up−1), so k is the largest such that

ak−1 < y′k. 2

5.1.6 Association of permutations to LR tableaux

Recall that the definition in §5.1.3 of refined LR coefficients refers to a certain

association of permutations to LR tableaux. We describe this association now,

after first associating SSYTs to LR tableaux.

Let T be an LR tableau of shape ν/λ and type µ. If ν has at most d parts, then so

has µ, for each entry on row j of T is at most j (for all j ≥ 1).

The SSYT associated to T

We associate to T a SSYT S of shape µ as follows. The entries in row j of S from

left to right are just the row numbers of T in which the entry j appears, counted

with multiplicity and arranged in weakly increasing order. That the entries in

every column of S are strictly increasing downward follows readily from the

assumption that the reverse reading word of T is a ballot sequence: indeed, for

integers k ≥ 1 and j ≥ 2, if the kth appearance of j (as we read the reverse reading
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word from left to right) is in row r, then the kth appearance of j − 1 is in some row

strictly above the rth.

The permutation associated to T

Consider the permutation u associated as in §5.1.5 to the SSYT S. We associate u

to T itself. For example, for the skew tableau on the right in (5.1.1), the associated

SSYT is the one shown below and the associated permutation is 51324:

(5.1.7)

1 1 1 3 5

2 3

3 4

4

5.1.7 p-dominance of words

Let p: p1 ≥ p2 ≥ . . . be a partition. We denote by w(p) the word (in the positive

integers) that has p1 ones, p2 twos, . . . in succession: this is just the reverse

reading word of the SSYT of shape p all of whose entries in row j are j (for all j).

Note that w(p) is a ballot sequence.

A word (in the positive integers) is said to be p-dominant if when preceded by

w(p) the resulting word is a ballot sequence.

Proposition 5.1.4. For a given word w there is a unique smallest partition pw

such that w is pw-dominant (pw is the smallest in the sense that its shape is

contained in the shape of any partition p for which w is p-dominant).

Proof: A letter e > 1 of the given word w is said to be a violator if the number

of e− 1 occurring before it does not exceed the number of e occurring before it.

For j a positive integer, let pj be the number of violators in w that exceed j. (For
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example, p1 is the total number of violators.) It is elementary to see that the

partition p1 ≥ p2 ≥ . . . is the unique smallest one for which w is p-dominant. 2

Weights of words in [d]

Let w be a word in [d]. The weight of w, denoted wt(w), is defined to be the weight

The words wrow and wcol attached to a SSST

Let T be a SSST. We have already defined its reverse reading word wrow(T )

in §5.1.2. We now define its reverse column word , denoted wcol(T ), as follows: we

read the entries top to bottom in every column beginning with the right most

column and ending with the left most. For the SSST in (5.1.1), the reverse column

words respectively are 3227536341 and 1112324131.

For the SSST on the left in (5.1.1), the partitions pw attached (as in

Proposition 5.1.4) to its words wrow and wcol turn out to be the same, namely

5 + 3 + 2 + 2 + 1 + 1. For the SSST on the right in (5.1.1), both wrow and wcol are

ballot sequences (so pw is empty for both). Indeed we have:

Proposition 5.1.5. Let T be a SSST and p a partition. Then wrow(T ) is

p-dominant if and only if wcol(T ) is so.

Remark 5.1.6. This statement is well known at least in the case of a SSYT (see,

e.g., [30, Exercise 5.2.4]). A proof from first principles is given below for the sake

of completeness.

Proof: For boxes b1 and b2 of T , the phrase b1 “occurs before” b2 in wcol(T )

(respectively wrow(T )) has the obvious meaning. We let b be an arbitrary box

in T . Its position is denoted by (r, c) and entry by e.
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1. Let b′ be a box that occurs before b in wcol(T ) but not in wrow(T ). Let its

position be denoted by (r′, c′) and entry by e′. Then r < r′, c < c′ and, since

T is semi-standard, e < e′.

2. Let b′′ be a box that occurs before b in wrow(T ) but not in wcol(T ). Let its

position be denoted by (r′′, c′′) and entry by e′′. Then r′′ < r, c′′ < c and,

since T is semi-standard, e′′ < e.

The following figure depicts the situation:

b

Region of b′

Region of b′′

Suppose first that wcol(T ) is p-dominant. Consider the contributions to the words

wrow(T ) and wcol(T ) of an arbitrarily fixed box b in T . With notation as above,

observe that no box b′ has e− 1 as an entry and no box b′′ has e as an entry.

Thus, letting mr and nr (respectively mc and nc) denote respectively the number

of occurrences of e and e− 1 (strictly) before b in wrow(T ) (respectively wcol(T )),

we have mr ≤ mc and nc ≤ nr. Since mc ≤ nc by p-dominance of wcol(T ), we have

mr ≤ mc ≤ nc ≤ nr, so wrow(T ) is p-dominant too.

Now suppose that wrow(T ) is p-dominant. By way of contradiction, suppose that

wcol(T ) is not p-dominant. Choose a box b in T which “violates” the p-dominance

of wcol(T ), meaning that (with notation as above) nc < mc. Since no box of type b′

or b′′ can have an entry equal to e—we have e′′ < e < e′—it follows that mc = mr.

Consider a box of type b′′ with entry equal to e− 1. Let us denote by b′′1 any such

box and suppose that there are k such boxes. Then nr = nc + k, since e′ > e. The
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entry in the box just below a box b′′1 must be e (since such a box is weakly North

and strictly West of b on the one hand, but on the other hand its entry must be

strictly larger than e− 1). Thus all the k boxes b′′1 must occur in row r − 1, and T

looks like:

ee. . .e

b1

f. . .fg

Region of b′

Region of b′′ f := e− 1
g < f

Now let b1 be the box in T that is k boxes to the left of b. Let us count the

number of entries equal to e (respectively e− 1) that occur before b1 in wrow(T ).

This count equals mr + k = mc + k (respectively, nr = nc + k). We have

nc + k < mc + k (since nc < mc by choice of b). But this means that the box b1

violates the p-dominance of wrow(T ), a contradiction. 2

5.1.8 Deconstructing a SSST

Let T be a SSST of shape ν/λ. As before, we think of λ as being fixed and ν as

varying. For k a positive integer:

• Let nr(k) denote the number of times k appears in row r.

• Consider the boxes of T belonging to λ and those with entries not

exceeding k. Together they form a Young shape. Denote by λk this shape as

well as the corresponding partition. It is convenient to set λ0 = λ. Observe

that

(5.1.8) λ = λ0 ⊆ λ1 ⊆ λ2 ⊆ . . .
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where ⊆ between shapes means that the former is contained in the latter.

We have λkr − λk−1
r = nr(k).

• Denote by wk(T ) the word comprising the row numbers of T in which k

appears, listed with multiplicity and in weakly decreasing order. In terms of

the integers nr(k), we have wk(T ) = . . . 2n2(k)1n1(k).

The hypothesis that T is semistandard puts a constraint on the sequence of shapes

that can possibly arise as (5.1.8). Indeed, the fact that an of entry of T is strictly

larger than the one vertically just above it (if the latter happens to exist) means

precisely that no two boxes in λk \ λk−1 are in the same column, or, in other words:

(5.1.9) λkr ≤ λk−1
r−1 ∀r > 1 ∀k ≥ 1

In terms of λ and nr(k), this can also be expressed as the following set of

conditions:

(5.1.10)

λr + nr(1) + · · ·+ nr(k) ≤ λr−1 + nr−1(1) + · · ·+ nr−1(k − 1) ∀r > 1 ∀k ≥ 1

The position word wpos and its λ-dominance

To see what (5.1.10) translates to in terms of the words wk(T ), let us define the

position word of T , denoted wpos(T ), to be the concatenation w1(k)w2(k) . . .. For

example, the position words of the SSST in (5.1.1) are, respectively, 5111334342

and 5311132434. It is readily seen that (5.1.10) is equivalent to the λ-dominance of

the word wpos(T ) (in the sense of §5.1.7).
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Recovering the SSST T

Evidently the SSST T can be recovered from the collection of integers nr(k)

(presuming knowledge of the fixed partition λ). Thus it can be recovered either

from the sequence (5.1.8) of increasing shapes or from the sequence w1(T ), w2(T ),

. . . of words. Moreover, if either the sequence (5.1.8) satisfies the constraint (5.1.9)

or, equivalently, if the sequence w1(T ), w2(T ), . . . is such that wpos(T ) is

λ-dominant, then there exists a corresponding T .

Bijection between T λµ (w)[d] and Sλµ(w)[d]

As preparation for the proof in §5.1.9 below of the tableau version of the

decomposition rule (5.1.3) of KK modules, we apply the observations above to the

case when T is LR.

Fix notation as in §5.1.4. Let T λµ [d] denote the subset of T λµ consisting of those

elements T such that ν(T ) has at most d parts. Let Sλµ denote those SSYT of

shape µ whose column word is λ-dominant (in the sense of §5.1.7), and let Sλµ(w)

be the subset of those elements of Sλµ for which the associated permutation u (as

in §5.1.5) satisfies u ≤ w. Put:

Sλµ [d] := {S ∈ Sλµ | no entry of S exceeds d} Sλµ(w)[d] := Sλµ(w) ∩ Sλµ [d]

The weight of a SSYT with entries from [d] is its weight thought of as a SSST

(see 5.1.2).

Proposition 5.1.7. Let T be an element of T λµ and S the SSYT attached to T as

in §5.1.6. The association T 7→ S gives a bijection between T λµ and Sλµ , under

which ν(T ) = λ+ wt(S), and which also restricts to a bijection between the pairs

T λµ (w), Sλµ(w) and T λµ (w)[d], Sλµ(w)[d].
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Proof: We first show that T 7→ S gives a bijection between T λµ and Sλµ . From

Proposition 5.1.5 it follows that the λ-dominance of wrow(S) and wcol(S) are

equivalent, so

Sλµ = {S is a SSYT of shape µ |wrow(S) is λ-dominant}

It is easy to see from their definitions that the words wrow(S) and wpos(T ) are the

same. Thus, from §5.1.8, we conclude:

• wpos(T ) = wrow(S) is λ-dominant, so S belongs to Sλµ .

• The sequence w1(T ), w2(T ), . . . defined in §5.1.8 and hence T itself can be

recovered readily from S by reading the entries in every row of S from right

to left. This shows that T 7→ S is one-to-one.

• Given S ′ in Sλµ , the λ-dominance of wrow(S ′) means that there exists a skew

tableau T ′ of shape ν/λ (for some ν) that corresponds to it (in the sense

of §5.1.8). The fact that the entries along any column of S ′ are strictly

increasing downwards translates to the fact that the corresponding T ′ as

above is LR, so T ′ belongs to T λµ and T ′ 7→ S ′. This shows that T 7→ S is

surjective.

This finishes the proof that T 7→ S gives a bijection from T λµ to Sλµ .

It is clear from the description of the association T 7→ S that S has type µ and

that λ+ ν(T ) = wt(S).

The association of a permutation to an LR tableau proceeds via the SSYT attached

to it, so it immediately follows that T 7→ S gives a bijection from T λµ (w) to Sλµ(w).

Finally, the number of parts of ν(T ) on the one hand and the maximum value of

an entry in S on the other are upper bounds for each other under T 7→ S, so we
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get a bijection between T λµ (w)[d] and Sλµ(w)[d]. 2

5.1.9 Proof of the tableau KK decomposition rule of §5.1.4

The decomposition rule (5.1.3) in terms of tableaux can be derived, as we now

show, from the general decomposition rule (4.2.1) for KK-modules in §4.2. The

derivation consists of stringing together three bijections that preserve invariants.

The first of these is the bijection between T λµ [d] and Sλµ [d] of Proposition 5.1.7.

The second and third bijections are from the appendix: by Corollary 6.1.4, we may

identify Sµ[d], the set of SSYT of shape µ with entries from [d], with Pstd, the set

of standard concatenations of LS paths as in §6.1.2; and, finally, there is the crystal

isomorphism Γ of §6.1.4 between the set Pµ of LS paths of shape µ and Pstd.

In the subsection below, the good properties required of the second bijection are

established. For the first bijection, this was done in Proposition 5.1.7. As for the

crystal isomorphism Γ, it preserves end points and λ-dominance as shown in

Proposition 6.1.6; and the minimal element in the initial direction of π in Pµ is the

initial element of the minimal standard lift of Γπ as shown in Proposition 6.1.7.

The final upshot is a bijection T ↔ π between T λµ [d] on the one hand and Pλµ on

the other such that (a) ν(T ) equals the end point π(1) and (b) the permutation u

attached to T as in §5.1.6 equals the minimal element in the initial direction of π.

This will finish the proof of the tableau decomposition rule (5.1.3).

Good properties of the bijection of Corollary 6.1.4

Proposition 5.1.8. Under the identification between Sµ[d] and Pstd of

Corollary 6.1.4, let S in Sµ[d] correspond to θ in Pstd. Then:
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1. The weight wt(S) of S equals the end point θ(1) of the path θ.

2. The permutation u associated to S by the procedure of §5.1.5 equals the

initial element of the minimal standard lift of θ.

3. The column word wcol(S) of S is λ-dominant (in the sense of §5.1.7) if and

only if the path θ is λ-dominant.

Proof: Item (1) is immediate from the definitions. As for item (2), the whole

of §5.2 is devoted to its proof.

Turning to item (3), we first prove the “only if part”. Let c denote the number of

columns in the shape of S, let rj denote the number of boxes in column j of S (for

1 ≤ j ≤ c), and let w′j denote the word s1j . . . srjj (where, as for a matrix, sab

denotes the entry of S in row a and column b). The word wcol(S) is, by definition,

w′cw
′
c−1 · · ·w′1. Its λ-dominance clearly implies that of any left subword of it, in

particular that of the subwords w′c, w′cw
′
c−1, . . . , w′cw

′
c−1 · · ·w′2, and

w′cw
′
c−1 · · ·w′2w′1 = wcol(S). This in turn implies that the weights λ+ wt(w′c),

λ+ wt(w′cw
′
c−1), . . . , λ+ wt(w′cw

′
c−1 · · ·w′2), and

λ+ wt(w′cw
′
c−1 · · ·w′2w′1) = λ+ wt(wcol(S)) are all dominant. But the dominance

of these c weights is, as is readily seen, precisely equivalent to the λ-dominance

of θ.

For the “if part”, we first make an observation (whose elementary proof we skip).

Suppose that a word w in [d] is a concatenation w1w2 of words w1 and w2 such

that w1 is λ-dominant, w2 is weakly increasing (left to right), and λ+ wt(w) is

dominant. Then w is λ-dominant.

The λ-dominance of θ implies that λ+ wt(w′c), λ+ wt(w′cw
′
c−1), . . . ,

λ+ wt(w′cw
′
c−1 · · ·w′2), and λ+ wt(w′cw

′
c−1 · · ·w′2w′1) = λ+ wt(wcol(S)) are all

dominant. Since each w′j is strictly increasing, we conclude using the observation

that wcol(S) is λ-dominant. 2
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5.2 An important property of the procedure

of §5.1.5

Let S be an SSYT (see §5.1.5) none of whose entries exceeds d, and u the

permutation of [d] obtained by application to S of the procedure of §5.1.5. As

explained in §6.1.2 (see, in particular, Corollary 6.1.4) such SSYTs may be

identified as certain standard concatenations of LS paths whose shapes are

fundamental weights (for g = sld). In what follows, we will use the notation for an

SSYT to denote also the corresponding standard concatenation of paths. Let v be

the initial element of the minimal standard lift of S (§2.1.5).

The purpose of this section is to show that u = v. The proof is given in §5.2.5

and §5.2.7 after preparations in the earlier subsections.

The procedure of §5.1.5 seems to be quite different from and more efficient than a

repeated application of Deodhar’s lemma (Example 2.1.4) to compute the initial

element of the minimal standard lift v. Besides, the justification we give in

Example 5.2.2 of the recipe of Example 2.1.4 is itself based on the result of this

section (that u = v).

5.2.1 Notation relating to permutations

Let x be a permutation and let x1x2 . . . denote its one-line notation.

We call {i |xi > xi+1} the descent set of x. We say that x has only r significant

elements if its descent set is contained in [r], or, in other words, if the sequence

xr+1xr+2 . . . is increasing. E.g., the only permutation that has zero significant
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elements is the identity.

For s an integer, let xs denote the sequence xs1 < . . . < xss of the first s elements

of x (namely x1, . . . , xs) arranged in increasing order.

On the tableau criterion for Bruhat order

Recall the following “tableau criterion” for comparability in Bruhat order of two

permutations: x ≤ z if and only if xs ≤ zs for all s, where xs ≤ zs is short hand for

xsj ≤ zsj for all 1 ≤ j ≤ s.

Lemma 5.2.1. ([1, Corollary (5)]) For x ≤ z, it suffices that xs ≤ zs holds for

either (a) all s in the descent set of x, or (b) all s not in the descent set of z.

5.2.2 An example

For x a permutation, we denote by (r)x the permutation obtained from x by

rearranging the first r elements in its one-line notation in increasing order. In

other words, (r)x is the permutation whose one-line notation is xr1 . . . x
r
rxr+1xr+2 . . ..

Lemma 5.2.2. (s)x ≤ (r)x ≤ (1)x = x for s ≥ r ≥ 1.

Proof: Put y = (s)x and z = (r)x. The descent set of y is contained in

{s, s+ 1, . . .}. For any t ≥ s, we have yt = zt, so it follows from Lemma 5.2.1 that

y ≤ z. Observe that (1)x = x. 2

Given a permutation x of [n] and an integer r ≤ n, we let S(r, x) denote the SSYT

constructed as follows: it has n− r + 1 columns; column j (counting from the left)

has n+ 1− j boxes and its entries are the first n+ 1− j entries of x arranged in

increasing order. E.g., if x is the permutation of [5] with one-line notation 45312,
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then S(x, 3) is:

1 1 3

2 3 4

3 4 5

4 5

5

Lemma 5.2.3. The initial element of the minimal standard lift of S(r, x) is (r)x.

Proof: Let a be this initial element. By an induction argument, we may assume

that (s)x is the initial element of the minimal standard lift of S(s, x) for s > r.

Thus z := (r+1)x ≤ a. Since the first r elements of a match the respective ones of

y := (r)x, it follows in particular that yr ≤ ar. Since the descent set of y is

contained in {r, r + 1, . . .}, and ys = zs ≤ as for s > r, it follows from Lemma 5.2.1

that y ≤ a.

On the other hand, evidently (n)x ≤ (n−1)x ≤ . . . ≤ (r)x is a standard lift of S(r, x),

so a ≤ (r)x = y. 2

Let notation be fixed as in Example 2.1.4. We described there a procedure for

determining τ := JσWr(w) without however providing a justification for it. We now

provide such a justification as an application of the main result of this section

(u = v).

Let S ′ denote the SSYT S(r, w) and S the SSYT obtained by attaching to S ′ on

the right a column with r boxes whose entries from top to bottom are σ1, . . . , σr.

For the values n = 6, r = 3, σ = 246135, and w = 145362 used as an illustration in
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Example 2.1.4, S is:

(5.2.1)

1 1 1 1 2

1 3 3 4 4

3 4 4 5 6

4 5 5

5 6

6

By Lemma 5.2.3, the initial element of the minimal standard lift of S ′ is (r)w = w,

so the initial element v of the minimal standard lift of S is the least element

having the following two properties: w ≤ v and the first r elements of v (in its

one-line notation) are σ1, . . . , σr, in that order.

Now, τ is the least element having the two properties: w ≤ τ and τWr = σWr.

Evidently (r)τWr = τWr = σWr, and, by Lemma 5.2.2, w = (r)w ≤ (r)τ ≤ τ . So

(r)τ = τ and the first r elements of τ are σ1, . . . , σr, in that order. This means

τ = v.

Thus, by the main result of this section, the element u obtained by applying the

procedure of §5.1.5 to S equals τ . It is easily seen that uj = σj, for 1 ≤ j ≤ r. For

j > r, to determine uj, we may use, by Lemma 5.1.3, the j-depth sequence

y′1 < . . . < y′j of S ′ instead of that of S. The entries in the column with j boxes

of S ′ being wj1 < . . . < wjj , it is clear that wji ≤ y′i for 1 ≤ i ≤ j. On the other

hand, since each y′i must be an entry in one of the columns of S ′ with at most j

boxes, it follows that wji = y′i for every i.

This completes the justification of the recipe of Exercise 2.1.4 to compute JσWr(w).

2
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5.2.3 Truncations of permutations and SSYTs

For r an integer, let x(r) denote the permutation obtained from x by rearranging

its elements in position r + 1 and beyond in increasing order. We call x(r) the

r-truncation of x. Evidently x(r) has only r significant elements. As an easy

consequence of Lemma 5.2.1, we have:

Lemma 5.2.4. Suppose that x ≤ z. Then x(r) ≤ z(r) ≤ z.

For r an integer, let S(r) denote the SSYT obtained by taking the first r rows of S:

if S has at most r rows, then S(r) is all of S. We call S(r) the r-truncation of S.

Let v(r) denote the initial element of the minimal standard lift of S(r).

Proposition 5.2.5. Every permutation in the minimal standard lift of S(r) has

only r significant elements. In particular, if S has at most r rows, then v has only

r significant elements: v(r) = v.

Proof: We use Lemma 5.2.4 to observe that the r-truncation of any standard lift

of S(r) continues to be a standard lift, and moreover that the r-truncation of the

minimal standard lift is itself. 2

Proposition 5.2.6. v(r) = v(r).

Proof: Using Lemma 5.2.4 again, we observe that the r-truncation of any

standard lift of S gives a standard lift of S(r). Thus v(r) ≤ v(r).

Let σ1 ≤ . . . ≤ σk = v(r) be the minimal standard lift of S(r). By

Proposition 5.2.5, there are only r significant elements in every σj. We will

construct a standard lift σ̃1 ≤ . . . ≤ σ̃k of S whose r-truncation is σ1 ≤ . . . ≤ σk. It

will then follow that v ≤ σ̃k, and so, by Lemma 5.2.4, v(r) ≤ σ̃
(r)
k = σk = v(r).

To construct σ̃j, proceed as follows. The first r elements of σ̃j are the same as those

of σj. The first entries of σ̃j also match the entries top-downwards in column j of S
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(until the latter entries are exhausted). The remaining entries of σ̃j are arranged in

decreasing order. Criterion (b) of Lemma 5.2.1 is useful to verify σ̃j ≤ σ̃j+1. 2

5.2.4 The main part of the proof (that u = v)

Let k be the number of columns in S. For i, 1 ≤ i ≤ k, let S[i] denote the SSYT

consisting only of the first i columns (from the left) of S, and u[i] the permutation

obtained by running the procedure of §5.1.5 on S[i]. By the description of the

procedure, it is clear that running the procedure on S[i](p) yields u[i](p).

Let p denote a positive integer. We proceed by induction on p to show the

following three assertions.3

a. u[1](p) ≤ u[2](p) ≤ . . . ≤ u[k](p) = u(p).

Consider a rectangular grid of boxes with p boxes in every column and k boxes

in every row. Suppose we fill the boxes in column i of this grid by the first p

entries of u[i] in increasing order. It is clear from item (a) above that we then

get a SSYT (see Lemma 5.2.1). Let Sp be the SSYT whose first p rows are this

rectangular SSYT and whose rows p+ 1 and beyond are the same as the

corresponding ones of S. For i, 1 ≤ i ≤ k, we let Sp[i] denote the SSYT

consisting of only the first i columns of Sp.

For example, on the left in the following display is shown S2 for S as in (5.1.6);

3It is only assertion (a) that we are really interested in. Once we have it, it follows rather easily
that v ≤ u (see §5.2.5). The other two assertions are technical devices that facilitate the proof
of (a).
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and on the right is shown S4 for S as in (5.2.1):

1 3 3 3

2 4 6 8

7

1 1 1 1 2

2 3 3 3 3

3 4 4 4 4

4 5 5 5 6

5 6

6

b. Fix i, 1 ≤ i ≤ k. For any r > p, the r-depth of sequence of S[i] equals the

r-depth sequence of Sp[i].

c. Fix i, 1 ≤ i ≤ k. Let a1 < . . . < ap be the the first p entries arranged in

increasing order of u[i].

Let y1 < . . . < yp+1 be the (p+ 1)-depth sequence of S[i]. Let s, 1 ≤ s ≤ p+ 1,

be such that a1 < . . . < as−1 < ys < as < . . . < ap is the arrangement in

increasing order of the first p+ 1 elements of u[i] (see Proposition 5.1.1 and the

sentence preceding it).

Then y1 = a1, . . . , ys−1 = as−1, and ys occurs in row s of Sp[i] and in a column

weakly to the right of that in which bp+1 occurs (bp+1 is the right most box in

row p+ 1 of S).

Base case of the induction

The assertions are easily verified in case p = 1. Indeed, for every i, 1 ≤ i ≤ k,

u[i](1) has only one significant element and its first element is the entry in the first

row in column i of S. This proves (a). Assertion (b) is immediate since S1 = S.

Assertion (c) is vacuous in case s = 1. In case s = 2, we have a1 < y2, where a1 is

the entry in the first row and column i of S[i] and y2 is the right most entry in
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row 2 of S[i]. It follows that the box in row 1 and column i has 2-depth 2, so

a1 ≤ y1. Since a1 is the largest entry in the first row and y1 occurs as an entry in

the first row, it follows that y1 ≤ a1. Thus y1 = a1.

Proof of assertion (a)

To simplify notation, write g and h for u[i] and u[i+ 1] respectively. We need to

prove that gj ≤ hj for all j ≤ p (Lemma 5.2.1). By the induction hypothesis, we

know this to be true for j < p, so it remains to be proved only for j = p. Let us

write a1 < . . . < ap−1 for gp−1 and b1 < . . . < bp−1 for hp−1.

Let e1 < . . . < ep and f1 < . . . < fp be the p-depth sequences of S[i] and S[i+ 1]

respectively. We have, evidently, ej ≤ fj. Let s and t, 1 ≤ s, t ≤ p, be such that

a1 < . . . < as−1 < es < as < . . . < ap−1 and b1 < . . . < bt−1 < ft < bt < . . . < bp−1

are the sequences gp and hp.

In the case s ≤ t,4 the desired conclusion gp ≤ hp follows rather easily from

gp−1 ≤ hp−1. Indeed we have, in the case s < t:

gpj = aj ≤ bj = hpj for 1 ≤ j ≤ s− 1

gps = es < as ≤ bs = hps

gpj = aj−1 ≤ bj−1 = hpj−1 < hpj for s+ 1 ≤ j < t

gpt = at−1 ≤ bt−1 < ft = hpt

gpj = aj−1 ≤ bj−1 = hpj for t < j ≤ p

For s = t, the three middle lines in the display above should be replaced by

gps = es ≤ fs = hps.

So let us assume s > t. The cases 1 ≤ j < t and s < j ≤ p, are similar respectively

4The case s < t never actually occurs, but that does not concern us here.
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to the first and last cases above. It is for j in the range t ≤ j ≤ s that we need

some care. The key observation here is that aj = ej for j < s. This follows from

assertion (c) with p replaced by p− 1 (which we may assume to be true by

induction). Indeed, using this, we are done as follows:

gpj = aj = ej ≤ fj ≤ bj−1 = hpj for t < j ≤ s

gpt = at−1 = et < ft = hpt 2

Proof of assertion (b)

Fix r > p. By induction, we know the statement for p− 1 in place p, so the

r-depth sequences of S[i] and Sp−1[i] are the same. It is therefore enough to prove

that the r-depth sequences of Sp−1[i] and Sp[i] are the same. It is convenient to

omit the “[i]” and just write Sp−1 and Sp for Sp−1[i] and Sp[i] respectively.

Assertion (b) follows immediately from Corollaries 5.2.9 and 5.2.11 below.

We denote by i0 the column number in which the right most box bp in row p

of Sp−1 (equivalently S) occurs. The entries in any column of Sp−1 are also entries

in that same column of Sp. For every box b of Sp−1, we denote by b′ the (unique)

box of Sp in the same column as b and having the same entry. The association

b 7→ b′ is evidently one-to-one. Either b′ is in the same row as b or in the next

lower row.

We classify boxes of Sp as follows:

• Old boxes are those that are in the image of the above map b 7→ b′. New

boxes are those that are not old.

• An unmoved box is an old box b′ that is in the same row as its preimage b.

We write b′ = b in this case. A moved box is an old one that is not unmoved,

or, in other words, an old one that is in a row one lower than its preimage.
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A box b of Sp−1 is moved or unmoved accordingly as its image b′ in Sp is so.

As an illustration, shown on the left in the display below is S3 and on the right is

S4 in a particular case: p = 3 and i0 = 2. The entries in all the new boxes are in

bold and underlined; those in unmoved boxes are in red; those in moved boxes are

in blue. The 4-depth sequences for S3[3] and S3[4] respectively are 7, 5, 2, 1 and 7,

5, 4, 2; those for S3[l] for l ≥ 5 are all 7, 6, 4, 3.

(5.2.2)

1 1 1 2 3 3 4 7

2 2 2 4 6 7 8 8

3 3 5 5 8 8 9 9

6 7

7

9

1 1 1 2 3 3 3 3

2 2 2 4 4 4 4 7

3 3 5 5 6 7 8 8

6 7 7 7 8 8 9 9

7

9

Proposition 5.2.7. 1. In any column i of Sp−1 (respectively Sp) with i ≤ i0, all

boxes are unmoved (respectively old and unmoved). In particular, the right

most box br in row r (with r > p) of Sp is old and unmoved.

2. Let n be a new box. Then, to the left of n and in the same row, in a column

with number i ≥ i0, there is an old box carrying the same entry as n.5

Proof: Item (1) is clear. Indeed Sp−1 and Sp are identical in columns i ≤ i0.

To prove item (2), suppose that n occurs in column c of Sp. Then Sp−1[c] has p− 1

boxes in its last column. Let a1 < . . . < ap−1 be the entries in that column (top to

bottom). Let y1 < . . . < yp be the p-depth sequence of S[c] (or, what amounts to

the same by the induction hypothesis, of Sp−1[c]) and let s, 1 ≤ s ≤ p, be such that

a1 < . . . < as−1 < ys < as < . . . < ap−1 are the entries in the last column of Sp[c].

The box with ys as its entry is n, and n occurs in row s of Sp[c]. We may assume

5Any such box is actually unmoved, but we don’t need that bit of detail.
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by induction that assertion (c) of §5.2.4 is true with p− 1 in place of p, and

conclude that ys appears as an entry in row s of Sp−1[c] in a column with number

i ≥ i0. 2

Proposition 5.2.8. Let b1 and b2 be boxes of Sp−1. Then b1 � b2 if and only

if b′1 � b′2.

Proof: Neither the entry nor the column number changes on passage from b to

b′. While the row number could increase by at most 1 on this passage, consider

the facts that both Sp−1 and Sp are SSYTs and that b2 (respectively b′2) is weakly

to the East of b1 (respectively b′1) and carries an entry which is strictly less.

Together these imply that b2 (respectively b′2) occurs in a higher row than b1

(respectively b′1). 2

Corollary 5.2.9. Fix r > p. Suppose that br = b0 � . . . � bδ is a chain of boxes

in Sp−1. Then br = b′0 � . . . � b′δ is a chain of boxes in Sp. In particular, the

r-depth sequence of Sp−1 is term for term dominated by the r-depth sequence of Sp.

Proof: That we get a chain on passing from b to b′ is clear from

Proposition 5.2.8. That br ′ = br follows from Proposition 5.2.7 (1). It is clear

from the description of the association b 7→ b′ that the entries of bδ and b′δ are the

same. 2

Proposition 5.2.10. Fix r > p. Given a chain br = b̃0 � . . . � b̃δ of boxes in Sp,

there exists a chain br = b0 � . . . � bδ of boxes in Sp−1 with bδ having the same

entry as b̃δ and being weakly to the Northwest of it (meaning, the row and column

numbers of bδ each is at most that of the corresponding number of b̃δ).
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Proof: Proceed by induction on δ. For δ = 0, the statement is easily seen to be

true since br = br ′ is old and unmoved (Proposition 5.2.7 (1)). Suppose that δ ≥ 1.

First suppose that b̃δ is an old box. Let bδ be the unique box in Sp−1 such that

b′δ = b̃δ. Note that bδ shares its entry and column number with b̃δ and is weakly

to the North of it. By induction, choose br = b0 � . . . � bδ−1 with bδ−1 being

weakly to the Northwest of b̃δ−1 and having the same entry. Since bδ−1 is weakly

to the West of bδ with a strictly larger entry, it follows that it is on a strictly lower

row, and so bδ−1 � bδ.

Now suppose that b̃δ is a new box. Using Proposition 5.2.7 (2), replace it by an

old and unmoved box having the same entry and being to the left in the same row.

Suppose that the new b̃δ is in column c. If any b̃j for j < δ has a column number

higher than c, replace it by the one in the same row in column number c. We now

get a chain with b̃δ being old, so we are reduced to the case settled in the previous

paragraph. 2

Corollary 5.2.11. Fix r > p. The r-depth sequence of Sp−1 dominates term for

term the r-depth sequence of Sp.

Proof of assertion (c)

By assertion (b), we may take y1 < . . . < yp+1 to be the (p+ 1)-depth sequence

of Sp[i]. Fix j < s. We would like to show that yj = aj. In what follows, we write

just “depth” to mean “(p+ 1)-depth”. Recall that, by definition, yj is the maximal

entry in a box of depth p+ 1− j; and aj occurs as the entry in row j and column i

of Sp[i]. Any box of depth p+ 1− j occurs in row j or above, and aj dominates all

the entries in those rows. Thus it is enough to show that the box in row j and

column i of Sp[i] has depth p+ 1− j. Further, since any box in row j has depth at

most p+ 1− j, it is enough to show that the depth of that box is at least p+ 1− j.

108



Further, it is enough to show this for j = s− 1, since it follows then for the other

j < s as well.

By definition, ys occurs as an entry in a box b of Sp[i] of depth p+ 1− s. Such a b

can only appear in row s or above. But since as−1 < ys, it follows that b cannot

occur in row s− 1 or above. So it appears in row s, and so b � c where c is the

box in row s− 1 and column i of Sp[i], which means that c has depth p+ 2− s. 2

5.2.5 Proof that v ≤ u

It follows from assertion (a) that u[1](p) ≤ . . . ≤ u[k](p) is a standard lift of S(p).

Since v(p) = v(p) is the initial element of the minimal lift of S(p) (by

Proposition 5.2.6), it follows that v(p) ≤ u[k](p) = u(p). Since v = v(p) and u = u(p)

for large p, it follows that v ≤ u. 2

5.2.6 A technical lemma (that is invoked in §5.2.7)

Lemma 5.2.12. Let σ1 ≤ . . . ≤ σk be a standard lift of S. Consider any box of

bp-depth δ in S, for some positive integer p. (Recall that bp denotes the right most

box in row p of S.) Let y be the entry in that box and c be the serial number (from

the left) of the column in which that box appears. Then, among the first p elements

of σc (in its one-line notation), there are at least δ + 1 that are at least y.

Proof: Proceed by induction on δ. Suppose first that δ = 0. The only box with

bp-depth 0 is the box bp itself. Since bp occurs on row p, the conclusion is easily

verified to be true.

Now suppose that δ ≥ 1. From the hypothesis (and the definition of bp-depth),

there exists, for some c′ < c, a box in the column c′ of S with entry y′ > y and of

bp-depth δ − 1. By the induction hypothesis, there exist, among the first p
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elements of σc′ , δ that are at least y′. Since σc′ ≤ σc, the same assertion holds with

σc′ replaced by σc. Now, y too occurs in the first p elements of σc. Thus there are

at least δ + 1 among the first p elements of σc that are at least y. 2

Corollary 5.2.13. Let y1 < . . . < yp be the p-depth sequence of S (this was used

in the procedure in §5.1.5 to determine up). Then, for every j, 1 ≤ j ≤ p, among

the first p elements of v, there occur at least p+ 1− j elements that are at least yj.

Proof: By definition, yj occurs as an entry in some box of S of bp-depth p− j.

Suppose c is the column number in which such a box appears. Choose the

standard lift in the lemma above to be the minimal one. Then, by the lemma,

among the first p elements of σc, there occur at least p+ 1− j that are at least yj.

Since σc ≤ v, the same assertion holds with v in place of σc. 2

5.2.7 Proof that u ≤ v

For p a positive integer, we prove, by induction on p, that u(p) ≤ v(p). Since

u(p) = u and v(p) = v for large p, it will follow that u ≤ v. First consider the case

p = 1. Let the right most entry in the first row of S be a. From the description of

the procedure to produce u in §5.1.5, it is clear that u1 = a. On the other hand,

evidently, the initial element of any standard lift of S has a as its first element (in

its one-line notation), so in particular v1 = a. This proves u(1) = v(1).

Now let p > 1. By the induction hypothesis, we have u(p−1) ≤ v(p−1). It is enough

therefore to prove that up ≤ vp.

Since we have proved that v ≤ u (§5.2.5), it follows that that v(p−1) = u(p−1). Let

y1 < . . . < yp be the p-depth sequence of S and let j, 1 ≤ j ≤ p, be such that

up = yj. Then there are exactly p− j elements among u1, . . . , up−1 that are at
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least yj. Corollary 5.2.13 guarantees that among the first p elements of v, there are

at least p+ 1− j that are at least yj. Since uj = vj for j ≤ p− 1, it follows that

up = yj ≤ vp, and we are done. 2

111



Chapter 6

On the concatenation of LS paths

6.1 Multiple concatenations of LS paths

The immediate provocation for this appendix comes from the need to quote its

results (Propositions 6.1.2 and 6.1.7) in the proof of the tableau decomposition

rule for KK modules (§5.1.9). These results are part of folklore. They are already

hinted at by Littelmann in [14]: see the “precise combinatorial criterion” alluded

to in the paragraph preceding the theorem in §8.1 of that paper. They are also

later stated in [31, §11] with a sketch of proofs. However, we could not find a

suitable reference with complete proofs. This appendix aims to provide precisely

such a reference, presupposing knowledge of (a) Littelmann’s basic definitions and

results on paths as in [15] and (b) the results recalled and proved from scratch

in §2.1 above.

6.1.1 Standard concatenations

Let g be symmetrizable Kac-Moody algebra. Let λ1, . . . , λn be dominant integral

weights. For j, 1 ≤ j ≤ n, let Pj denote the set of LS paths of shape λj. Consider
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the set P := P1 ? · · · ? Pn := {π1 ? · · · ? πn |πj ∈ Pj for 1 ≤ j ≤ n} of paths. For

paths θ and θ′ in P , let us write θ ∼ θ′ if either eαθ = θ′ or fαθ = θ′ for some

simple root α. This is a symmetric relation. Let us continue to denote by ∼ the

reflexive and transitive closure of this relation on P .

The path η(θ)

Fix a θ = π1 ? · · · ? πn in P . As in Proposition 3.2.3, which is the special case n = 2

of the present set up, it follows that:

• In the equivalence class of P containing θ, there exists a unique path η(θ)

that is killed by eα for every simple root α.

• The η(θ) as above lies entirely in the dominant chamber.

Standard concatenations

We want to characterize those θ for which η(θ) = πλ1 ? · · · ? πλn , where as usual πλj

denotes the straight line path from the origin to λj. Towards this, put Wj := Wλj ,

the stabiliser of λj in the Weyl group W , and let τ1,j > . . . > τrj ,j be the chain of

elements in W/Wj forming the LS path πj (for 1 ≤ j ≤ n). Consider the tuple

(6.1.1)
(
τ1,1, . . . τr1,1, . . . , τ1,j, . . . , τrj ,j, . . . , τ1,n, . . . , τrn,n

)
which is an element of

(6.1.2) (W/W1)× r1 times × · · · × (W/Wj)
× rj times × · · · × (W/Wn)× rn times

We call the path θ standard if the tuple (6.1.1) is standard in the sense of §2.1.5.

A standard lift (respectively, a minimal standard lift) in the sense of §2.1.5 of the
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tuple (6.1.1) is called a standard lift (respectively, minimal standard lift) of θ. We

denote by w(θ) the initial element of the minimal standard lift of θ.

We denote by Pstd the subset of P consisting of standard paths.

Example 6.1.1. The path πλ1 ? · · · ? πλn is standard, for (identity, . . . , identity) is

its minimal standard lift. Moreover, it is the only standard path in P with identity

as the initial element of its minimal standard lift. Thus:

(6.1.3) {θ ∈ Pstd |w(θ) ≤ identity} = {πλ1 ? · · · ? πλn}

Here is a characterization of the paths θ in P for which η(θ) = πλ1 ? · · · ? πλn :

Proposition 6.1.2. (see [14, §8.1]) η(θ) = πλ1 ? · · · ? πλn if and only if θ is

standard.

The proof of this proposition is given in §6.1.3.

6.1.2 Specializing to a classical case: the case of the

special linear Lie algebra

Preserve the notation of the previous subsection and specialize to the situation

of §5.1: an integer d ≥ 2 is fixed, g = sld, etc. Let µ be a dominant integral weight,

or, equivalently a partition with less than d parts. Write µ as

µ1 ≥ µ2 ≥ . . . ≥ µd−1 ≥ 0 ≥ . . .. Let $1 = ε1, $2 = ε1 + ε2, . . . ,

$d−1 = ε1 + · · ·+ εd−1 be the fundamental weights. Let W$j , 1 ≤ j < d, denote the

stabiliser in W of $j.

Put m1 = µ1 − µ2, . . . , md−2 = µd−2 − µd−1, md−1 = µd−1 − µd = µd−1, and
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n = m1 +m2 + · · ·+md−1 (note that n = µ1). Let λ1, . . . , λn be:

$1, . . . , $1︸ ︷︷ ︸
m1 times

, . . . , $j, . . . , $j︸ ︷︷ ︸
mj times

, . . . , $`, . . . , $`︸ ︷︷ ︸
m` times

so that µ = λ1 + · · ·+ λn.

The elements of W/W$j are parametrized by subsets of cardinality j of [d]. Each

such subset is written as {1 ≤ i1 < . . . < ij ≤ d}. Given two such subsets

i = {1 ≤ i1 < . . . < ij ≤ d} and i′ = {1 ≤ i′1 < . . . < i′j ≤ d}, we have i ≤ i′ in the

Bruhat order on W/W$j if and only if i1 ≤ i′1, . . . , ij−1 ≤ i′j−1, and ij ≤ i′j. For a

permutation σ of [d] whose one line notation is σ1 . . . σd, the coset σW$j

corresponds to {1 ≤ i1 < . . . < ij ≤ d}, where i1, . . . , ij are the elements σ1, . . . ,

σj arranged in increasing order.

For permutations σ and τ of [d] with respective one-line notations σ1 . . . σd and

τ1 . . . τd, we have σ ≤ τ in the Bruhat order if and only if σW$j ≤ τW$j for every

j, 1 ≤ j < d: see, for example, [1].

The LS paths of shape $j are all straight lines, so they too are parametrized by

elements of W/W$j . Thus a path in P can be represented by a “tableau”, where a

tableau consists of md−1 + . . .+m1 top-justified columns of boxes, where each of

the first md−1 columns (from the left) has d− 1 boxes, each of the next md−2

columns has d− 2 boxes, and so on; the boxes are filled with numbers between 1

and d, the entries in each column being strictly increasing downwards.1

Let, for example, d = 5 and µ = 6 + 3 + 3 + 2. Then m1 = 3, m2 = 0, m3 = 1,

m4 = 2; n = 6, and λ1, . . . , λ6 equals $1, $1, $1, $3, $4, $4. And the paths in P

can be identified with tableaux consisting of 6 top-justified columns of boxes, the

first two columns having 4 boxes each, the next column having 3 boxes, and the

1The reversal of order, which is admittedly annoying, is necessary to preserve entrenched con-
ventions.
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last three columns having 1 box each. Here are two examples of such tableaux:

(6.1.4)

1 1 2 1 4 3

3 2 4

4 3 5

5 5

1 1 2 3 4 5

2 3 4

3 4 5

5 5

For θ = τ1 ? · · · ? τ6 in P , the entries in the first column of the corresponding

tableau define τ6 (which is a path of shape λ5 = $4), the entries in the second

column define τ5, and so on, until the entries in the last column define τ1.

Proposition 6.1.3. A path θ in P is standard as defined earlier in this section

(§6.1.1) if and only if the entries in the tableau corresponding to it are weakly

increasing in every row from left to right.

Proof: Proposition 2.1.15 (3) is relevant here. In particular, we could use it prove

the if part, but instead we directly construct an explicit standard lift. Let j be such

that 1 ≤ j < d, and let h = {1 ≤ h1 < . . . < hj ≤ d} be an element in W/W$j .

Denote by h̃ the permutation whose one line notation is h1 . . . hjh
′
1 . . . h

′
d−j, where

h′1, . . . , h′d−j are the elements of [d] \ {h1, . . . , hj} arranged in decreasing order.

Clearly, h̃W$j = h. Let k ≤ j and let i = {1 ≤ i1 < . . . < ik ≤ d} be an element of

W/W$k such that h1 ≤ i1, . . . , hk−1 ≤ ik−1, and hk ≤ ik. Let ĩ be defined from i

(as h̃ is from h). Then, as is not to hard to see, h̃ ≤ ĩ. This proves the if part.

Let j, k be integers such that 1 ≤ k ≤ j < d. Let σ, τ be permutations of [d] with

respective one line notations σ1 . . . σd and τ1 . . . τd. Then

σW$j = {h1 < . . . < hj} = h where h1, . . . , hj are just σ1, . . . , σj arranged in

increasing order, and τW$k = {i1 < . . . < ik} = i where i1, . . . , ik are just τ1, . . . ,

τk arranged in increasing order. Suppose that σ ≤ τ . Then h′1 ≤ i1, . . . , h′k ≤ ik,

where h′1, . . . , h′k are σ1, . . . , σk arranged in increasing order. It follows that

h1 ≤ i1, . . . , hk ≤ ik, since evidently h1 ≤ h′1, . . . , hk ≤ h′k. This proves the only if
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part of the assertion. 2

Corollary 6.1.4. The set Pstd of standard paths in P may be identified with the

set Sµ[d] of SSYT of shape µ (in the sense of §5.1.5) with entries from [d].

The path represented by the tableau on the left in (6.1.4) is not standard whereas

the one represented by the tableau on the right is standard: the tableau on the left

is not a SSYT whereas the tableau on the right is.

6.1.3 Proof of Proposition 6.1.2

Towards the proof, we first prove a lemma.

Lemma 6.1.5. If θ is standard, then so is every element in the equivalence class

of P containing θ.

Proof: Let θ be standard and α be a simple root. We will presently show that

fαθ is standard in case it does not vanish. The proof that eαθ is also standard,

which we omit, is analogous. This will suffice to prove the lemma. Let us write

W/Wλi1
× · · · ×W/Wλim

for the Cartesian product (6.1.2), and denote by

(τ1, . . . , τm) the tuple (6.1.1).

Suppose that fαθ does not vanish. From the definition of fα, it follows that, by

increasing m and replacing τj by τj, τj for some choices of j, 1 ≤ j ≤ m, as

necessary, we may assume that the tuple as in (6.1.1) corresponding to fαθ is

(τ ′1, . . . , τ
′
m) where for every j, 1 ≤ j ≤ m, we have

(6.1.5) τ ′j is either τj or sατj, depending upon certain conditions.

To exploit these conditions, it is useful to introduce the following terminology. Let
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j be an integer, 1 ≤ j ≤ m. We call j

(6.1.6)

changing if τ ′j = sατj 6= τj

changeable (but not changing) if τ ′j = τj < sατj

resisting if sατj < τj

flat if sατj = τj

Using this terminology, we record some simple observations ((6.1.7)), (6.1.8),

and (6.1.11) below) that we need for the proof. All of these follow readily from the

definition of fα as in [15]. To begin with:

(6.1.7)
j is changing only if τj < sατj,

so the cases in (6.1.6) are exhaustive and mutually exclusive.

In particular this means that τ ′j = τj if j is resisting. So we have:

(6.1.8) If j is resisting or flat or changeable (but not changing), then τ ′j = τj.

We call j, 1 ≤ j ≤ m, unobstructed if there exists k, j ≤ k ≤ m, such that k is

changing and there does not exist j′ with j′ resisting and j ≤ j′ < k. We call j

obstructed if it is not unobstructed. Evidently:

(6.1.9) j is unobstructed if it is changing, and j is obstructed if it is resisting.

so, from (6.1.8):

(6.1.10) If j is obstructed, then τ ′j = τj.
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We also have (from the definition of the operator fα):

If j is changeable (but not changing), then j is obstructed.(6.1.11)

Let now τ̃1 ≥ . . . ≥ τ̃m be a standard lift of θ. For j, 1 ≤ j ≤ m, define τ̃ ′j by:

(6.1.12) τ̃ ′j =

 sατ̃j if j is changing

τ̃j if j is obstructed

and, when j is flat and unobstructed, by a downward induction as required:

(6.1.13) τ̃ ′j := the smaller of τ̃j and sατ̃j that is larger than or equal to τ̃ ′j+1

Since τ̃ ′j+1 is either τ̃j+1 or sατ̃j+1 (by downward induction), it follows (by an

application of the basic observation (*) in §2.1.2 applied to the hypothesis that

τ̃j ≥ τ̃j+1) that

(6.1.14) τ̃j ∨ sατ̃j ≥ τ̃ ′j+1

so at least one of τ̃j and sατ̃j is larger than or equal to τ̃ ′j+1 and (6.1.13) makes

sense.

We now argue that τ̃ ′j ≥ τ̃ ′j+1 for all 1 ≤ j < m. If j is flat and unobstructed, then

this follows from the definition (6.1.13) of τ̃ ′j. If j is either changing or resisting,

then τ̃ ′j = τ̃j ∨ sατ̃j (from (6.1.6), (6.1.7), and (6.1.8)), so it follows from (6.1.14)

that τ̃ ′j ≥ τ̃ ′j+1. By the mutual exclusivity of the cases in (6.1.6) (which follows

from (6.1.7) as already remarked) and (6.1.11), we may assume that j is

obstructed but not resisting. But then j + 1 is also obstructed, and so τ̃ ′j+1 = τ̃j+1

by (6.1.12), and τ̃ ′j = τ̃j ≥ τ̃j+1 = τ̃ ′j+1.

We claim that τ̃ ′1 ≥ . . . ≥ τ̃ ′m is a standard lift of fαθ. It remains only to verify that
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τ̃ ′jWλij
= τ ′j for every j, 1 ≤ j ≤ m. This is easily done, as follows:

• j changing: τ̃ ′j = sατ̃j by (6.1.12), so τ̃ ′jWλij
= sατ̃Wλij

= sατj. But sατj = τ ′j

by (6.1.6).

• j obstructed: τ̃ ′j = τ̃j by (6.1.12), so τ̃ ′jWλij
= τ̃Wλij

= τj. But τj = τ ′j

by (6.1.10).

• j flat: τ̃ ′j is either τ̃j or sατ̃j, so τ̃ ′jWλij
is either τj or sατj. But τj = sατj = τ ′j

by (6.1.8). 2

Proposition 6.1.2 Write η for η(θ). If η = πλ1 ? · · · ? πλn , then η is standard and so

θ is standard by the previous lemma. Now suppose that θ is standard. Then so

is η by the lemma. Let us write W/Wλi1
× · · · ×W/Wλim

for the Cartesian

product (6.1.2), and denote by (σ1, . . . , σm) the minimal standard lift of η.

Let α be any simple root. We claim that there cannot exist k, 1 ≤ k ≤ m, such

that:

(6.1.15) sασk < σk and sασjWλij
= σjWλij

for all 1 ≤ j < k

To prove the claim, we suppose such a k exists and arrive at a contradiction. We

have sασkWλik
≤ σkWλik

. If strict inequality holds here, then eαη does not vanish,

a contradiction, so equality holds. If sασk+1 > σk+1, then

sασk = σk ∧ sασk > σk+1 ∧ sασk+1 = σk+1, a contradiction to the hypothesis that

(σ1, . . . , σm) is a minimal standard lift of η (because then sασk would work as a lift

in place of σk). Thus (6.1.15) holds with k replaced by k + 1. Repeating these

arguments sufficiently many times, we conclude that sασm < σm and

sασjWλij
= σjWλij

for all 1 ≤ j ≤ m. But then σm is not the minimal element in

the coset σmWλim
, which contradicts the hypothesis that (σ1, . . . , σm) is the
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minimal standard lift of η.

To show that η = πλ1 ? · · · ? πλn , it suffices to show that σ1 is the identity element

of the Weyl group W . If σ1 is not the identity element, let α be a simple root such

that sασ1 < σ1. Then (6.1.15) holds with k = 1, a contradiction.

6.1.4 The crystal isomorphism

Fix notation as in the beginning of §6.1.1. Let Pstd denote the set of all standard

paths in P . By Proposition 6.1.2, Pstd is precisely the set of paths θ in P for which

η(θ) = πλ1 ? · · · ? πλn . Thus, by [15, Theorem 7.1], there is a (unique) crystal

isomorphism2 Γ : Pλ → Pstd, where Pλ denotes the set of LS paths of shape

λ = λ1 + · · ·+ λn.

Proposition 6.1.6. The isomorphism Γ has the following properties:

• The straight line path πλ (from the origin to λ) is mapped under Γ to

πλ1 ? · · · ? πλn.

• The end point of π in Pλ is the same as that of its image Γπ.

• π is λ-dominant if and only Γπ is so.

Proof: The first item is because πλ (respectively πλ1 ? · · · ? πλn) is the unique

path in Pλ (respectively Pstd) on which eα vanishes for every simple α. The second

is because (a) πλ and πλ1 ? · · · ? πλn both have λ as end point, (b) every path in Pλ

(respectively Pstd) can be obtained by acting a sequence of fα operators on πλ

(respectively πλ1 ? · · · ? πλn), (c) the first item, and finally (d) if fα does not vanish

on any path σ (in either Pλ or Pstd) then fασ(1) = σ(1)− α. As for the third item,

we make two observations from which it follows that Γ preserves λ-dominance:

2“Crystal isomorphism” just means a bijection that commutes with the action of the root
operators fα and eα.
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• a path σ in Pλ ∪ Pstd is λ-dominant if and only if eα(πλ ? σ) vanishes for all

simple roots α.

• For paths π1 and π2 in Pλ ∪ Pstd, eα(π1 ? π2) equals either eαπ1 ? π2 or

π1 ? eαπ2 depending precisely upon whether or not i ≥ j where i

(respectively j) is the maximum non-negative integer k such that fkαπ1

(respectively ekαπ2) does not vanish. 2

Proposition 6.1.7. For an LS path π of shape λ, the minimal element in the

initial direction of π equals the initial element w(Γπ) of the standard minimal lift

of Γπ.

The proposition follows by combining Corollary 6.1.10 with Lemma 6.1.11.

A useful observation (Corollary 6.1.10)

Let µ be a dominant integral weight. For a Weyl group valued function

F : Pµ → W on the set Pµ of LS paths of shape µ, and v an element of W , put

Pµ,v(F) := {π ∈ Pµ |F(π) ≤ v}.

Lemma 6.1.8. Suppose that the following conditions hold for π an arbitrary path

in Pµ and w := F(π):

1. If α a simple root with sαw < w, then eαπ does not vanish.

2. Suppose fαπ does not vanish. Then either (a) F(fαπ) = w or

(b) F(fαπ) = sαw > w and eαπ vanishes.
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Then, for v in W and β simple such that sβv < v:

Pµ,v(F) = {fkβπ |π ∈ Pµ,sβv(F), k ≥ 0, fkβπ does not vanish}

Proof: Since Pµ,sβv(F) ⊆ Pµ,v(F) and, by (2), Pµ,v(F) is closed under the action

of fα, it follows that the right hand side is contained in Pµ,v(F). To prove the other

containment, let σ be in Pµ,v(F). Let k ≥ 0 be maximal such that ekβσ does not

vanish, and put π := ekβσ. Then fkβπ = σ, so it is enough to show that π is

in Pµ,sβv(F).

Put w := F(π). On the one hand, since fkβπ = σ, it follows from (2) that F(σ)

equals either w or sβw, so that w ≤ w ∨ sβw = F(σ) ∨ sβF(σ) ≤ v ∨ sβv = v. But,

on the other, if sβw < w, then eβπ does not vanish by (1), a contradiction to the

maximality of k. Thus we have w < sβw and w = w ∧ sβw ≤ v ∧ sβv = sβv. 2

Corollary 6.1.9. Let ι : Pµ → W be the function that maps each path to the

minimal element in its initial direction. Then, for v in W and β simple such that

sβv < v:

Pµ,v(ι) = {fkβπ | π ∈ Pµ,sβv(ι), k ≥ 0, fkβπ does not vanish}

Proof: It follows easily from the definition of the operators eα and fα that the

hypothesis of the lemma are satisfied for the function ι. (See also [14, Lemma in

§5.3].) 2

Corollary 6.1.10. Suppose in addition to the conditions (1) and (2)

of Lemma 6.1.8 the function F satisfies the following: Pµ,identity(F) = {πλ}. Then

F = ι.
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Proof: We proceed by induction on v to show that Pµ,v(F) = Pµ,v(ι). This will

suffice. If v = identity, then both sets are equal to {πλ} and the result holds. So

suppose that v > identity. Choose a simple root α such that w := sαv < v. By the

induction hypothesis, Pµ,w(F) = Pµ,w(ι). But, by Lemma 6.1.8, we have

Pµ,v(F) = {fkαπ | π ∈ Pµ,w(F), k ≥ 0, fkαπ does not vanish}

and, by Corollary 6.1.9, we have

Pµ,v(ι) = {fkαπ | π ∈ Pµ,w(ι), k ≥ 0, fkαπ does not vanish},

so it is clear that Pµ,v(F) = Pµ,v(ι). 2

The above corollary together with the following lemma proves Proposition 6.1.7.

The proof of the lemma occupies §6.1.5

Lemma 6.1.11. Fix notation as in the first paragraph of §6.1.4. Let F : Pλ → W

be the Weyl group valued function on Pλ given by F(π) := w(Γ(π)). Then

Pλ,identity(F) = {πλ} and F satisfies the conditions (1) and (2) of Lemma 6.1.8.

6.1.5 Proof of Proposition 6.1.7: and Lemma 6.1.11

We first prove:

Lemma 6.1.12. With notation as in the statement and proof of Lemma 6.1.5,

suppose that τ̃1 ≥ . . . ≥ τ̃m be the minimal standard lift of θ. Then

1. Suppose that τ̃p > sατ̃p. Then p is either resisting or flat. If p is flat, then

there exists r, p < r ≤ m, with r resisting and every q such that p < q < r is

flat.
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2. τ̃ ′j ≥ τ̃j for all j, 1 ≤ j ≤ m.

3. Suppose that j is changing and j < m. Then τ̃ ′j+1 ∧ sατ̃ ′j+1 = τ̃j+1.

4. τ̃ ′1 ≥ . . . ≥ τ̃ ′m is the minimal standard lift of fαθ

Proof: (1) If p is changing or changeable (but not changing), then τp < sατp, so

it would mean that τ̃p < sατ̃p (Corollary 2.1.12). This proves that p can only be

either flat or resisting. Suppose now that p is flat. Let r be the least integer,

p < r ≤ m, (if it exists) such that r is not flat. If such an r doesn’t exist, put

r = m+ 1. For all q, p ≤ q < r, put σq := τ̃q ∧ sατ̃q. Then σp = sατ̃p. We have

σp ≥ . . . ≥ σr−1 (by the basic fact (*) in §2.1.2). If r < m and r is not resisting,

then τ̃r = τ̃r ∧ sατ̃r, so that σr−1 ≥ τ̃r. Thus σp ≥ . . . σr−1 ≥ τ̃r ≥ . . . ≥ τ̃m would

be a standard lift of (τp, . . . , τm), which we could complete to a standard lift of θ.

But then σp = sατ̃p < τ̃p, which contradicts the hypothesis that τ̃1 ≥ . . . ≥ τ̃m is

the minimal standard lift.

(2) Proceed by downward induction on j. Since τ̃ ′j = τ̃j in case j is obstructed,

and τ̃ ′j = sατ̃j > τ̃j in case j is changing, we may assume that j is flat and

unobstructed, so j < m and τ ′j = τj. We have, by the induction hypothesis,

τ̃ ′j+1 ≥ τ̃j+1, and so by (3) of Remark 2.1.18:

τ̃ ′j ≥min Jτ ′j(τ̃
′
j+1) = min Jτj(τ̃

′
j+1) ≥min Jτj(τ̃j+1) = τ̃j.

(3) Since by definition τ̃ ′j+1 is either τ̃j+1 or sατ̃j+1, and τ̃ ′j+1 ≥ τ̃j+1 by item (2), it

is enough to show that τ̃ ′j+1 < sατ̃
′
j+1. If not, then, by item (1), there exists r such

that j < r ≤ m with r resisting and every q such that j < q < r is flat. But this

cannot happen since j is changing, by the definition of the operator fα.

(4) Let τ̃ ′′1 ≥ . . . ≥ τ̃ ′′m be another standard lift of fαθ. It suffices to show that

τ̃ ′′j ≥ τ̃ ′j for every j, 1 ≤ j ≤ m. Proceed by downward induction on j. It is
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convenient to put τ̃m+1 = τ̃ ′m+1 = τ̃ ′′m+1 = identity. By the induction hypothesis,

τ̃ ′′j+1 ≥ τ̃ ′j+1.

In case j is obstructed, τ ′j = τj by (6.1.10), and we have

τ̃ ′′j ≥min Jτ ′j(τ̃
′′
j+1) = min Jτj(τ̃

′′
j+1) ≥min Jτj(τ̃j+1) = τ̃j = τ̃ ′j

Suppose now that j is changing. Then τj < sατj = τ ′j by (6.1.6) and (6.1.7). By (3)

of Remark 2.1.18, Corollary 2.1.12 and Lemma 2.1.16 (2), and item (3) above:

τ̃ ′′j ≥min Jsατj(τ̃
′′
j+1) ≥min Jsατj(τ̃

′
j+1) =sα min Jτj(τ̃

′
j+1 ∧ sατ ′j+1)

=sα min Jτj(τ̃j+1) = sατ̃j = τ̃ ′j

The only remaining case is when j is flat and unobstructed. We then have j < m

and τ ′j = τj. By the induction hypothesis and item (2) above, we have

τ̃ ′′j+1 ≥ τ̃ ′j+1 ≥ τ̃j+1, so by (3) of Remark 2.1.18:

τ̃ ′′j ≥min Jτ ′j(τ̃
′′
j+1) = min Jτj(τ̃

′′
j+1) ≥min Jτj(τ̃

′
j+1) ≥min Jτj(τ̃j+1) = τ̃j

This means we would be done in case τ̃j ≥ τ̃ ′j (which by item (2) is equivalent to

τ̃j = τ̃ ′j). But, τ̃ ′j is by definition the smaller of τ̃j and sατ̃j that is larger than τ̃ ′j+1.

So it only remains to consider the case when τ̃j < sατ̃j and τ̃j 6≥ τ̃ ′j+1. In this

situation, τ̃j+1 < sατ̃j+1 = τ̃ ′j+1 (for τ̃ ′j+1 is by definition either sατ̃j+1 or τ̃j+1, and

τ̃j ≥ τ̃j+1). This implies by item (1) that j + 1 is obstructed and therefore j is also

obstructed, a contradiction. 2

Lemma 6.1.11 That Pλ,identity(F) = πλ follows from (6.1.3).

Now Put θ = Γπ and w(θ) = w. Let θ = (τ1, . . . , τm) and let (τ̃1, . . . , τ̃m) be the

minimal standard lift of θ (so that w = τ̃1).
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Proof of condition (1) of Lemma 6.1.8: Let α be a simple root such that sαw < w.

To show that eαπ does not vanish, it is enough to show that eαθ does not vanish,

and for this it is enough to show that there exists r, 1 ≤ r ≤ m, such that

sατr < τr, and sατj = τj for all j, 1 ≤ j < r. By way of contradiction, suppose that

sατr > τr for the least r such that sατr 6= τr (the case when sατj = τj for all

1 ≤ j ≤ m is included in the consideration: we put r = m+ 1 in this case). For j,

1 ≤ j < r, set σ′j := τ̃j ∧ sατ̃j. Observe that (σ′1, . . . , σ
′
r−1, τ̃r, . . . , τ̃m) is also a

standard lift of θ. But then σ′1 = sαw < w = τ̃1, which contradicts the choice of

(τ̃1, . . . , τ̃m) as the minimal standard lift of θ.

Proof of condition (2) of Lemma 6.1.8: Suppose that fαπ does not vanish. Then

fαθ does not vanish either. By Lemma 6.1.5, fαθ is standard. Moreover, by

Lemma 6.1.12 (τ̃ ′1, . . . , τ̃
′
m) is the minimal standard lift of θ. Since τ̃ ′1 is either τ̃1 or

sατ̃1 by its definition, it follows that F(fαπ) is either w or sαw. Suppose that

F(fαπ) 6= τ̃1 = w. Then, since τ̃ ′1 ≥ τ1 by item (2) of Lemma 6.1.12, it follows that

F(fαπ) = sαw > w. Moreover, this happens only if 1 is unobstructed, which means

that minimum is 0 of the function t 7→ 〈π(t), α∨〉 on the interval [0, 1], and so eαπ

vanishes.
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Thesis Title :  

A Study of Kostant -Kumar modules via Littelmann paths. 

 

In this thesis we study about Kostant-Kumar modules (KK module for short). KK modules are the certain 

cyclic submodules of the tensor product of two integrable irriducible modules of symmetrizable Kac-

Moody Lie algebras. 

 

We extends Joseph decomposition rules of KK modules for finite type Lie algebra. Above figure 

is graphic of decomposition of KK modules in Lie algebra of type B2. We also give, in the spirit 

of Littelmann, a path model for KK modules for symmetrizable Kac-Moody Lie algebras 

provided it is symmetric or of finite type. 

 

Figure 1: Decomposition KK modules of tensor product in Lie algebra  

of type B2 


	ttp_6480
	cp_6480
	pp_6480
	cntnt_6480
	tbl_fgr_6480
	smry_6480
	synp_6480
	chp1_6480
	chp2_6480
	chp3_6480
	chp4_6480
	chp5_6480
	chp6_6480
	othr_inf_6480
	ths_hglts_6480

