
Parameterized Complexity of Conflict-Free Solutions

By

Lawqueen Kanesh

MATH10201504008

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

July, 2020

IIOMI BIIABIIA NATIONAL INSTITUTE
Training School Complex, 2nd Floor, Anushaktinagar, Mumbai 400 094

Tel. :022-25597627
Tele-Fax :022-25503384

Ref.:- HBNI/ROl 201818
31st January, 2019

CIRCULAR

ln continuation to the circular dated 20tn August 2018, regarding the "Guidelines on
Promotion of Academic lntegrity and Prevention of Plagiarism" in the Higher Educational
lnstitutions as notified by the UGC, Govt. of lndia.

It was notified that the thesis will be accompanied by a Certificate signed by the student
and duly endorsed by the Thesis Supervisor in a prescribed format.

It is henceforth informed that the students shall submit the thesis with a Certificate
enclosing an undertaking along with the thesis document, that the thesis has been duly
checked through a plagiarism detection tool. The PhD Supervisor shall also endorse the
certificate indicating that the work done by the researcher under him/ her is plagiarism
free.

The format for the undertaking/ Certificate given earlier shall be replaced with the one
given in Annexure - l.

This shall come into force immediately.

h
Dr. B. Chandrasekar

Registrar
The Vice Chancellor, HBNI
Allthe Deans (Academics), Cls/OCC
Prof. D.K. Maity, Associate Dean, & Dean (Officiating), HBNI

HBNI Enrolment No.
undertake

Annexure I

name of the

that, the Thesis titled

CERTIFICATION ON ACADEMIC INTEGRITY

1. I

student)
hereby

(bold & italics) is prepared by me and is the original work undertaken by me and
free of any plagiarism. That the document has been duly checked through a
plagiarism detection tool and the document is plagiarism free.

2. I am aware and undertake that if plagiarism is detected in my thesis at any stage
in future, suitable penalty will be imposed as per the applicable guidelines of the
lnstitute / UGC.

Signature of the Student
(with date)

Endorsed by the Thesis Supervisor:
(l certify that the work done by the Researcher is plagiarism free)

Signature (with date)

Name:
Designation:
DepartmenU Centre:
Name of the Cl/ OCC

Showoff
261011204

Saket Saurabh
Professor

Lawqueen Kanesh
Parameterized Complexity of Conflict-Free Solutions

Stamp

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library

to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgement of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may be

granted by the Competent Authority of HBNI when in his or her judgement the proposed

use of the material is in the interests of scholarship. In all other instances, however,

permission must be obtained from the author.

Lawqueen Kanesh

DECLARATION

I hereby declare that the investigation presented in the thesis has been carried out by

me. The work is original and has not been submitted earlier as a whole or in part for a

degree / diploma at this or any other Institution / University.

Lawqueen Kanesh

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Journal

1. Conflict Free Version of Covering Problems on Graphs: Classical and Parame-

terized : Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, Theory of Computing

Systems, 2020 (An extended abstract appeared in CSR 2018).

2. Parameterized Complexity of Conflict-Free Matchings and Paths : Akanksha

Agrawal, Pallavi Jain, Lawqueen Kanesh, Saket Saurabh, Algorithmica, 2020 (An

extended abstract appeared in MFCS 2019).

Conferences

1. Conflict Free Version of Covering Problems on Graphs: Classical and Parame-

terized : Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, in the proceedings of

Computer Science - Theory and Applications - 13th International Computer Science

Symposium in Russia, (CSR 2018).

2. Conflict Free Feedback Vertex Set: A Parameterized Dichotomy : Akanksha

Agrawal, Pallavi Jain, Lawqueen Kanesh, Daniel Lokshtanov, Saket Saurabh, in

the proceedings of 43rd International Symposium on Mathematical Foundations of

Computer Science, (MFCS 2018).

3. Exploring the Kernelization Borders for Hitting Cycles : Akanksha Agrawal,

Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, Saket Saurabh, in the proceed-

ings of 13th International Symposium on Parameterized and Exact Computation,

(IPEC 2018).

4. Parameterized Complexity of Conflict-Free Matchings and Paths : Akanksha

Agrawal, Pallavi Jain, Lawqueen Kanesh, Saket Saurabh, in the proceedings of

44th International Symposium on Mathematical Foundations of Computer Science,

(MFCS 2019).

5. Feedback Vertex Sets in Hypergraphs : Pratibha Choudhary, Lawqueen Kanesh,

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, in the proceedings of 40th

IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, (FSTTCS 2020).

Lawqueen Kanesh

DEDICATIONS

This thesis is dedicated to my mother. Thank you for always believing in me.

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Saket

Saurabh. Without his guidance and utmost support, this journey would have been very

difficult. He did not just teach me research but also helped me grow as a person. He always

stood by me as a friend and a great advisor during academic and non-academic difficulties.

He always inspired me and motivated me to never give up. I thank him with all my heart.

Besides my advisor, I thank my doctoral committee members and reviewers. I am

grateful to the Theoretical Computer Science group at IMSc for their great teaching. I

thank Prof. R. Ramanujam for mentoring me during my first year of Ph.D. I am also

thankful to all the members of the IMSc staff, for all the support they provided.

I am thankful to all my co-authors—Akanksha, Pallavi, Daniel, Pranabendu, Fahad, and

Pratibha. I would like to specially thank Akanksha, Pallavi, and Fahad for their patience

with me during our long discussions. I thank Parameterized Complexity group at IMSc.

I want to thank all my dear friends at IMSc, without them, IMSc would not be the

same. I want to specially thank Sanjukta, Oorna, Shivani, Aditi, Deeksha, Jayakrishnan,

Abhishek, Pallavi, Akanksha, Roohani, and Pratik for their great friendship. I also want to

thank my friends from IISc, MANIT, CTC, and Ainthinai.

Last but not least I am thankful to my parents, Resham Kanesh and Magan Singh

Kanesh for their unconditional love and support. I thank them for providing me a great

education and supporting my dreams. I am also thankful to my sister Vidhi and brother

Vidhan for their love and friendship. I am forever indebted to my family for their immense

love and care.

Contents

Summary i

List of Figures iii

I Introduction 1

1 Introduction 3

1.1 Conflict-Free Problems . 6

1.1.1 Properties With Finite Forbidden Characterization 8

1.1.2 Properties Without finite Forbidden Characterization 10

1.1.3 SHORTEST PATH and MAXIMUM MATCHING 13

1.2 Feedback Vertex Set on Hypergraphs . 14

2 Preliminaries 17

2.1 Graphs and sets: . 17

2.2 Parameterized Complexity . 19

2.3 Tools and Techniques . 23

2.3.1 k-Independence Covering Family 23

2.3.2 Branching . 26

2.3.3 Iterative Compression . 27

II Conflict-Free Problems 29

3 Conflict-free Version of Covering Problems on Graphs 31

3.1 Preliminaries . 35

3.2 Conflict-free Version of Properties with Forbidden Set Characterizations . 36

3.2.1 Properties with Finite Forbidden Set Characterizations 36

3.2.2 A Polynomial Kernel for CF-FINITE Π-VD 37

3.2.3 Properties that do not admit finite forbidden characterization . . . 40

3.2.4 Results on properties without finite forbidden characterization . . 42

3.2.5 CONFLICT FREE ODD CYCLE TRANSVERSAL 46

3.2.6 CONFLICT FREE CHORDAL VERTEX DELETION 47

3.2.7 CONFLICT FREE INTERVAL VERTEX DELETION 48

3.2.8 Nowhere Dense Graphs . 51

3.3 Well Studied Special Cases of CF-FINITE Π-VD 52

3.3.1 CONFLICT FREE VERTEX COVER 52

3.3.2 CONFLICT FREE d-HITTING SET 57

3.3.3 CONFLICT FREE SPLIT VERTEX DELETION 58

3.3.4 CONFLICT FREE FEEDBACK VERTEX SET IN TOURNAMENTS . 60

3.4 Conclusion . 63

4 Conflict-Free Feedback Vertex Set: A Parameterized Dichotomy 65

4.1 Introduction . 65

4.2 Preliminaries . 68

4.3 W-hardness of F -CF-FVS Problems . 69

4.3.1 F+CLUSTER IS to F -CF-FVS 70

4.3.2 W[1]-hardness on Bipartite Graphs 71

4.3.3 W[1]-hardness on Graphs with Sub-quadratic Edges 73

4.4 FPT algorithms for F -CF-FVS for Restricted Conflict Graphs 74

4.4.1 FPT Algorithm for F -DCF-FVS 77

4.5 FPT Algorithm for Ki, j-free+CLUSTER IS 86

4.5.1 Polynomial Time Algorithm for LARGE Ki, j-free+CLUSTER IS . 88

4.6 Conclusion . 92

5 Exploring the Kernelization Borders for Hitting Cycles 93

5.1 Introduction . 93

5.2 Preliminaries . 98

5.3 A Tool for Our Kernelization Algorithm 99

5.4 A Polynomial Kernel for Dd-CF-FVS 103

5.5 Kernelization Complexity of P??
≤3-CF-OCT 111

5.5.1 NP-hardness of P≤3-CF-s-t CUT 112

5.5.2 Lower bound for Kernel of P?
≤3-CF-s-t CUT 114

5.5.3 Lower Bound for Kernel of P??
≤3-CF-OCT 117

5.6 Conclusion . 119

6 Parameterized Complexity of Conflict-Free Matchings and Paths 121

6.1 Introduction . 121

6.2 Preliminaries . 124

6.3 W[1]-hardness Results . 130

6.3.1 W[1]-hardness of CF-MM . 131

6.3.2 W[1]-hardness of CF-SP . 132

6.3.3 W[1]-hardness of UNIT 2-TRACK MIS. 133

6.3.4 W[1]-hardness of UNIT INTERVAL CF-SP 134

6.4 FPT Algorithm for CF-MM with Chordal Conflict 136

6.4.1 FPT algorithm for CCBM . 137

6.4.2 FPT algorithm for CHORDAL CONFLICT MATCHING. 144

6.5 FPT algorithms for CF-MM and CF-SP with matroid constraints 145

6.5.1 FPT algorithm for MATROID CF-MM 145

6.5.2 FPT algorithm for MATROID CF-SP 149

6.6 FPT Algorithm for d-degenerate Conflict Graphs 153

6.6.1 Algorithms for ANNOTATED CF-MM and ANNOTATED CF-SP . 153

6.7 Conclusion . 157

III FVS in Hypergraphs 159

7 Feedback Vertex Set in Hypergraphs 161

7.1 Introduction . 161

7.2 Preliminaries . 167

7.3 Feedback Vertex Sets on General Hypergraphs 168

7.4 Equivalence between HFVS and DFVSB 169

7.5 Feedback Vertex Sets on d-Hypergraphs: Proof of Theorem 7.1.2 170

7.6 Feedback Vertex Sets on Linear Hypergraphs 181

7.7 Conclusion . 200

IV Conclusion 201

8 Conclusion and Open Problems 203

Bibliography 217

List of Figures

4.1 The cases handled by Branching Rule 2, (a) T is a connected component

in G[W], similarly in (b) T1,T2 are connected components in G[W]. 83

4.2 The cases handled by Branching Rule 3, In (a) T is a connected component

in G[W], similarly in (b) T1,T2 are connected components in G[W]. 85

5.1 An illustration of construction of graph G and H in NP-hardness of P≤3-

CF-s-t CUT for C = {(x1, x̄2,x2),(x̄1, x̄2,x3),(x̄1,x2, x̄3),(x1,x2, x̄3)}. . . . 113

5.2 An illustration of construction of graph G and H in cross-composition

from P≤3-CF-s-t CUT to P?
≤3-CF-s-t CUT 117

5.3 An illustration of construction of graph G and H in reduction from P?
≤3-

CF-s-t CUT to P??
≤3-CF-OCT. 118

6.1 An illustration of the construction of G′ in W[1]-hardness of UNIT INTER-

VAL CF-SP. 135

7.1 (a) is an illustration of Reduction Rule 33, (b) and (c) are illustrations of

two cases of Reduction Rule 34, (d) is an illustration of Reduction Rule 35.

In (a), (b) and (c) blue vertices denote easy vertices, and in (d) green

vertices denote trivial vertices. 188

iii

Part IV

Conclusion

201

Chapter 8

Conclusion and Open Problems

In this thesis we studied two generalizations (variants) of classical problems in the Graph

Algorithms and Parameterized Complexity. In the first part of the thesis, we introduced

and studied conflict-free variant of some of the classical problems, and in the second part,

we extended the FVS problem to Hypergraphs. We explored both the variants in the realm

of Parameterized complexity and obtained various algorithmic and hardness results.

Our work on conflict-free variant of classical problems opens up a whole new area of

research in obtaining dichotomy results. For every property Π, where CF-Π-VD is W[1]-

hard, it is a natural question to ask for which families of graphs G,H does the problem

becomes FPT. In particular, for which graph classes G ,H , the problem (G ,H)-CF-Q

admit FPT algorithms and polynomial kernels, where Q could be any classical problem in

Graph Algorithms and Parameterized Complexity. Two most interesting questions that still

remain open for CF-FVS and CF-OCT form our work are following: (a) does CF-FVS

admit uniform polynomial kernel on graphs of bounded expansion; and (b) does CF-OCT

admit a polynomial kernel when H is disjoint union of paths of length at most 2. For

properties Π with finite forbidden characterization one direction of research is to obtain

faster running time algorithms. Another interesting question is to obtain (parameterized)

dichotomy results for CF-MM and CF-SP, based on the families of graphs where the

203

input graphs belong to. Another direction could be studying kernelization complexity for

different families of graphs, and also to see what all FPT problems remain FPT with the

conflicting constraints.

FVS on Hypergraphs: In the second part of the thesis, we initiated the study of

FEEDBACK VERTEX SET problem on hypergraphs. We showed that the problem is W[2]-

hard on general hypergraphs and admits FPT algorithms when the input is restricted to

d-hypergraphs, and linear hypergraphs. We believe that this opens up a new direction in the

study of parameterized algorithms. That is, extending the study of other graph problems,

in the realm of Parameterized Complexity, to hypergraphs. Designing substantially faster

algorithms for HFVS on linear hypergraphs and designing polynomial kernels remain

interesting questions for the future.

204

Summary

The thesis is divided into two parts. In the first part of the thesis we introduce a new

variant for some of the classical problems in Graph Algorithms, we call it conflict-free

version. We study them from the viewpoint of classical and Parameterized Complexity. In

the second part of the thesis we extend the FEEDBACK VERTEX SET (FVS) problem to

hypergraphs and study from the view point of Parameterized Complexity.

We begin by studying conflict-free versions of vertex deletion problems. Let Π be a

family of graphs (or property) – such as edgeless graphs, forests, cluster graphs, chordal

graphs, interval graphs, bipartite graphs, split graphs or planar graphs. In the vertex

deletion problem corresponding to Π (Π-VD), given a graph G, and a non-negative

integer k, the goal is to delete a set S of at most k vertices such that G− S is in Π. In

the conflict-free version of vertex deletion problem corresponding to Π CF-Π-VD, we

are given a conflict graph H together with the graph G and integer k, and the goal is

to find a set S ⊆ V (G) of size at most k, such that S is a solution to (G,k) of Π-VD

and S is an independent set in H. We study the complexity of CF-Π-VD based on

the forbidden set characterization of the property Π. For graph properties with finite

forbidden characterization, we show that CF-Π-VD is FPT and admits a polynomial

kernel. For graph properties without finite forbidden characterization, we show that if

Π is characterized by a “well-behaved” infinite family of forbidden induced subgraphs,

then CF-Π-VD is W[1]-hard. In particular, we show that conflict-free version of FVS

(CF-FVS) is W[1]-hard even when G is disjoint union of cycles. A similar result holds

i

for conflict-free version of ODD CYCLE TRANSVERSAL (CF-OCT), CHORDAL VERTEX

DELETION (CF-CVD) and INTERVAL VERTEX DELETION (CF-IVD). We also show

that, CF-FVS, CF-OCT, CF-CVD, and CF-IVD are FPT, when H belongs to the family

of d-degenerate graphs or nowhere dense graphs. For this purpose we use the notion of “k-

independence covering family” introduced in [81]. We obtain a complete dichotomy result

on the Parameterized Complexity of the problem H -CF-FVS, where the conflict-free

graph H belongs to graph class H (for hereditary H), in terms of the INDEPENDENT

SET problem. We show that H -CF-FVS is in FPT if and only if H +CLUSTER IS is

in FPT, where H +CLUSTER IS is the INDEPENDENT SET problem on the edge union

graph of a cluster graph and a graph in H .

We obtain a polynomial kernel for CF-FVS and show that CF-OCT does not admit

a polynomial kernel, when H belongs to the family of d-degenerate graphs. We also

study conflict-free (parameterized) versions of the MAXIMUM MATCHING (CF-MM)

and SHORTEST PATH (CF-SP) problems. We show that both CF-MM and CF-SP are

W[1]-hard, when parameterized by the solution size. For the CF-MM problem, we give

an FPT algorithm, when the conflict graph belongs to the family of chordal graphs. For

conflict graphs being d-degenerate and nowhere dense graphs, we obtain FPT algorithms

for both CF-MM and CF-SP. We study a variant of CF-MM and CF-SP, where instead

of conflicting conditions being imposed by independent sets in a conflict graph, they are

imposed by independence constraints in a (representable) matroid. We give FPT algorithms

for the above variant of both CF-MM and CF-SP.

Finally, we extend our study from problems on graphs to hypergraphs. In particular,

we study the FEEDBACK VERTEX SET problem on hypergraphs. We show that FVS on

hypergraphs is W[2]-hard, when parameterized by the solution size. We obtain FPT algo-

rithms for FVS on hypergraphs, when the input hypergraph is restricted to d-hypergraphs

and linear hypergraphs.

ii

Part I

Introduction

1

Chapter 1

Introduction

Graphs are mathematical structure that model pairwise relations between various objects.

Vertices of a graph represents objects and edges represents relations between vertices.

Graph theory is the field that study graphs and their properties. It came into light long

back in the early seventeenth century. In 1736 Leonhard Euler wrote a paper on, the

historically remarkable problem, Seven Bridges of Königsberg [12], which is considered

to be the first paper in Graph Theory. On the other hand, the class of algorithms that study

computational complexity of problem arising in Graph Theory is Graph Algorithms. A

major sub-field in Graph Algorithms are graph-modification problems, where the goal is

to delete a set of vertices, or a set of edges, or add a set of edges of minimum or maximum

size such that the resulting graph satisfies certain properties or becomes a member of some

well-understood graph class. However, most of these problems are NP-complete [111, 76].

Apart from these NP-hard problem there are also many polynomial time solvable problems

that are of major importance and have been extensively studied in Graph Algorithms. Some

examples are MINIMUM CUT, MAXIMUM MATCHING and SHORTEST PATH. To cope

with NP-completeness [54, 84, 51], it is a common practice to find efficient algorithms for

restricted classes of inputs, or find approximation algorithms, or explore Parameterized

Complexity of the problem. In this thesis we introduce a new variant and generalization of

3

some of the above mentioned classical problems. We call it conflict-free version, where

together with the input of the classical problem, we are also given pairs which are in

conflicts (impossible pairs), that is, a pair cannot go into a solution together if they are

in conflict. We present the conflict constraints using graphs or matroids. We study the

classical and Parameterized Complexity of these problems. When we are not interested in

the exact value of the polynomial factor in the running time, then we use the O? -notation,

which suppresses factors polynomial in the input size.

One of the graph modification problem that is studied more extensively than others in

the thesis is FEEDBACK VERTEX SET. In the parameterized FEEDBACK VERTEX SET

(FVS) problem, given a graph G, and an integer k, the goal is to find a set S ⊆V (G) of

size at most k such that S hits all the cycles in G, that is, after deleting the set S from

G, the remaining graph G− S is a forest (acyclic). The optimization version of FVS

is one of the Karp’s 21 NP-complete problems and it is NP-hard even on the graphs

with maximum degree at most four. It remains NP-complete on directed graphs (edges

have orientation). We refer to the problem in directed graphs as DIRECTED FEEDBACK

VERTEX SET. In the parameterized DIRECTED FEEDBACK VERTEX SET problem,

given a directed graph D, and an integer k, the goal is to find a set S ⊆ V (G) of size

at most most k such that S hits all the directed cycles in D, that is, after deleting the

set S from D, the remaining graph D− S is a directed acyclic graph. FVS is a central

problem in the ream of Parameterized Complexity [29, 23, 26, 31, 59, 70, 77]. This

problem is known to be in FPT, and the fastest known (randomized) algorithm for it

runs in time O?(2.7k) for undirected graphs [77]. For directed graphs Chen et al. gave a

O(4kk!k4nm) running time algorithm [26] and Lokshtanov et al gave a O(4kk!k5(n+m))

time algorithm [83], which are currenlty the fastest known algorithms. Several variant

and generalizations of FEEDBACK VERTEX SET and DIRECTED FEEDBACK VERTEX

SET such as WEIGHTED FEEDBACK VERTEX SET [3, 26], INDEPENDENT FEEDBACK

VERTEX SET [2, 90], CONNECTED FEEDBACK VERTEX SET [91], SIMULTANEOUS

FEEDBACK VERTEX SET [4, 20], and DIRECTED SUBSET FEEDBACK VERTEX SET [28]

4

have been studied from the viewpoint of Parameterized Complexity. FVS and DIRECTED

FEEDBACK VERTEX SET on restricted classes of inputs have also been vastly studied

in literature. In the first part of the thesis we study conflict-free variants of FVS and

DIRECTED FEEDBACK VERTEX SET. We also study them on some restricted classes of

inputs such as graphs of bounded degeneracy, nowhere dense graphs, and tournaments. In

the second part of the thesis we study a generalization of FVS in hypergraphs and also

study it on some restricted classes of hypergraphs.

A parameterized problem Π is a subset of Σ∗×N, where Σ is a finite alphabet set.

An instance of a parameterized problem is a tuple (x,k), where x is a classical problem

instance and k is an integer, called the parameter. A central notion in Parameterized

Complexity is fixed-parameter tractability (or in FPT) which means, for a given instance

(x,k), decidability in time f (k) ·poly(|x|), where f (·) is an arbitrary computable function

and poly(·) is a polynomial function. To prove that a problem is FPT, it is possible to

give an explicit algorithm, called a parameterized algorithm, which solves it in time

f (k) · poly(|x|). On the other hand, to show that a problem is unlikely to be in FPT,

it is possible to use FPT time reductions analogous to the polynomial time reductions

employed in classical complexity. Here, the concept of W[t]-hardness replaces the concept

of NP-hardness, and we need not only construct an equivalent instance in FPT time, but

also ensure that the size of the parameter in the new instance depends only on the size

of the parameter in the original instance. For more details on Parameterized Complexity,

we refer the reader to the books of Downey and Fellows [44], Flum and Grohe [49],

Niedermeier [96], and the recent book by Cygan et al. [29].

Reducing the input data, in polynomial time, without altering the answer is one of the

popular ways in dealing with intractable problems in practice. While such polynomial

time heuristics cannot solve NP-hard problems exactly, they work well on input instances

arising in real-life. It is a challenging task to assess the effectiveness of such heuristics

theoretically. Parameterized Complexity, via kernelization, provides a natural way to

5

quantify the performance of such algorithms. A parameterized problem is said to admit a

polynomial kernel if there is a polynomial time algorithm, called a kernelization algorithm,

that reduces the input instance down to an instance with size bounded by a polynomial

p(k) in k, while preserving the answer. The reduced instance is called a p(k) kernel for the

problem.

1.1 Conflict-Free Problems

In the past, the conflict-free versions of some classical problems have been studied, e.g.

for SHORTEST PATH [66], MAXIMUM FLOW [98, 99], KNAPSACK [100], BIN PACKING

[45], SCHEDULING [46], MAXIMUM MATCHING and MINIMUM WEIGHT SPANNING

TREE [36, 35]. It is interesting to note that some of these problems are NP-hard even

when their non-conflicting version is polynomial time solvable. The study of conflict-free

problems has also been recently initiated in computational geometry motivated by various

applications (see [5, 6, 7]).

Motivated by these works, we studied the conflict-free versions of several classical

problems in Graph Theory and Parameterized Complexity. In any classical problem Q,

given an input I, the goal is to output a set S which satisfy certain properties specific to

the problem Q. In the conflict-free version of Q, namely CONFLICT-FREE Q (CF-Q, in

short), together with the input I, we are also given a conflict graph H, and we require that

the output set S satisfy two constraints. First, S is a solution to Q, and second, S is an

independent set in the graph H.

We initiated the study of the conflict-free versions of several well studied vertex deletion

problems in Parameterized Complexity. A typical parameterized vertex deletion problem

on graphs is of the following form. Let Π be a family of graphs (or property) – such as

edgeless graphs, forests, cluster graphs, chordal graphs, interval graphs, bipartite graphs,

split graphs or planar graphs. The vertex deletion problem corresponding to Π is formally

6

stated as follows.

Π-VERTEX DELETION Parameter: k

Input: An undirected graph G and a non-negative integer k.

Question: Does there exist S⊆V (G), such that |S| ≤ k and G−S is in Π?

That is, given a graph G, can we delete at most k vertices such that the resulting graph

belongs to Π? The set S is called a Π-deletion set. The conflict-free vertex deletion

problem corresponding to Π is formally stated as follows.

CONFLICT-FREE Π-VERTEX DELETION (CF-Π-VD) Parameter: k

Input: An undirected graph G, a conflict graph H on vertex set V (G) and a non-

negative integer k.

Question: Does there exist a set S⊆V (G), such that |S| ≤ k, G−S is in Π and S is an

independent set in H?

We define CF-Π-VD, when both the graphs G,H are directed graphs (hypergraphs),

appropriately. Where, the notion of independent set in directed graph is similar to that

of undirected graphs. In hypergraphs, a set S of vertices in a hypergraph G is called

independent if no two vertices in S are contained in an edge in G. Observe that when

H is the edgeless graph, CF-Π-VD is the same as Π-VERTEX DELETION and thus it

generalizes the non-conflict-free version of the problem. Furthermore, when H is the

same as G it corresponds to independent version of these problems which are also well

studied, such as INDEPENDENT FEEDBACK VERTEX SET [90, 81]. Thus, CF-Π-VD is a

generalization of well studied problems in algorithms and complexity.

A graph property Π is a set of graphs, and a graph in Π is called a Π-graph. We say

that Π is hereditary if for any graph G in Π, every induced subgraph of G is also in Π. A

graph property Π has a forbidden set characterization if there is a set F of graphs such

that a graph is a Π-graph if and only if it does not contain any graph in F as an induced

subgraph, and further, it has a finite forbidden characterization if F is a finite set. We study

the complexity of CF-Π-VD based on the forbidden set characterization of the property

7

Π.

1.1.1 Properties With Finite Forbidden Characterization

The problem CF-Π-VD is FPT whenever Π has a finite forbidden set characterization.

Indeed, this problem admits an algorithm with running time O?(αk), where α is the size of

a largest graph in the finite forbidden subgraphs in Π and k is the parameter. Furthermore,

it also admits a polynomial vertex kernel. See Chapter 3 for these results. For several

well-studied cases of Π-VERTEX DELETION, where Π is characterized by the finite

family of forbidden induced subgraphs we can obtained algorithms with improved running

time than the generic result stated above. We studied conflict-free versions of VERTEX

COVER, d-HITTING SET, SPLIT VERTEX DELETION and FEEDBACK VERTEX SET IN

TOURNAMENTS problems and obtained improved results.

1.1.1.1 VERTEX COVER

When Π is the family of edgeless graphs, then the Π-VERTEX DELETION is known as

VERTEX COVER (VC). It is one of the Karp’s 21 NP-complete problems and is a very

well studied problem in Parameterized Complexity [27]. The fastest known algorithm for

VC runs in time O?(1.2738k) [27]. We studied its conflict-free version namely CONFLICT

FREE VERTEX COVER (CF-VC), where given two graphs G,H and an integer k, the goal

is to find a set S ⊆ V (G) such that G− S is edgeless and S is an independent set in H.

While VC is polynomial time solvable on graphs of degree at most 2, the CF-VC problem

is NP-complete even when the graph G is of degree at most 2. This holds even when

G is the disjoint union of P3s (P̀ denotes the path on ` vertices). CF-VC is polynomial

time solvable when G has degree at most one, or when both G and H have a perfect

matching. Analogous to VC, the CF-VC problem admits a 2k-vertex kernel, a factor

2-approximation algorithm and an O?(1.1996n) exact algorithm. It is easy to obtain a

O?(2k) FPT algorithm for CF-VC as the forbidden subgraph is an edge. However, CF-VC

8

admits a faster FPT algorithm of running time O?(1.2738k). These results can be found in

Chapter 3.

1.1.1.2 d-HITTING SET

HITTING SET problem can be viewed as VC in hypergraphs. In HITTING SET, given

a universe U and a family F of subsets of U as input, the aim is to find a set S ⊆U of

size at most k such that S intersects with every set in F . When the size of each set in

F is bounded by d then the problem is known as d-HITTING SET. It is well known that

the HITTING SET problem is W[2]-complete, when parameterized by solution size, while

the d-HITTING SET problem is FPT parameterized by the solution size and d [1, 49].

The fastest running algorithm known for d-HITTING SET to the best of our knowledge

runs in time O?((d−0.7262)k) [107]. In this thesis we study the conflict-free version of

d-HITTING SET, namely CONFLICT FREE d-HITTING SET (d-CF-HS). It is easy to see

that by exploiting the forbidden subgraph characterization of d-CF-HS, we immediately

get a O?(dk) FPT algorithm for d-CF-HS. We use the algorithm in [107] as subroutine

and obtain a faster algorithm for d-CF-HS running in O?(((d−1)+0.2738)k) =O?((d−

0.7262)k) time. These results can be found in Chapter 3.

1.1.1.3 SPLIT VERTEX DELETION

An undirected graph is split graph if its vertex set can be partitioned into two sets, where

one set induces a complete graph as a subgraph and the other set induces an independent

set (edgless graph) as subgraph. The forbidden induced subgraph for split graphs are

a cycle on four vertices (C4) , a cycle on five vertices (C5), and a pair of disjoint edges

(2K2) [50]. The problem deletion to split graph is known as SPLIT VERTEX DELETION

(SVD) and the fastest known algorithm for SVD to the best of our knowledge runs in

time O?(1.2738kkO(logk)) [32]. In this thesis, we study the conflict-free version of SVD,

namely CONFLICT FREE SPLIT VERTEX DELETION (CF-SVD). It is easy to see that

9

by exploiting the forbidden subgraph characterization of CF-SVD, we immediately get a

O?(5k) time FPT algorithm for CF-SVD. We use approach similar to [32] and obtain a

faster algorithm for CF-SVD running in O?(1.2738kkO(logk)) time and polynomial space.

These results can be found in Chapter 3.

1.1.1.4 FEEDBACK VERTEX SET IN TOURNAMENTS

A directed graph is tournamnet if every pair of vertices is connencted by a directed

edge.CONFLICT FREE DIRECTED FEEDBACK VERTEX SET on tournaments is very well

studied in the ream of Parameterized Complexity [42, 74]. The problem is refereed as

FEEDBACK VERTEX SET IN TOURNAMENTS (FVST). The forbidden induced subgraph

for tournaments is a directed cycle on three vertices (triangle). The fastest known algorithm

for FVST to the best of our knowledge runs in time O?(1.618k) [74]. In this thesis, we

study the conflict-free version of FVST, namely CONFLICT FREE FEEDBACK VERTEX

SET IN TOURNAMENTS (CF-FVST). It is easy to see that by exploiting the forbidden

subgraph characterization of CF-FVST, we immediately get a O?(3k) time FPT algorithm

for CF-FVST. We obtain a faster algorithm for CONFLICT FREE FEEDBACK VERTEX

SET IN TOURNAMENTS running in O?(2k) time using iterative compression technique.

These results can be found in Chapter 3.

1.1.2 Properties Without finite Forbidden Characterization

For graph properties that are not characterized by a finite family of forbidden induced sub-

graphs and if Π is characterized by a “well-behaved” infinite family of forbidden induced

subgraphs, then CF-Π-VD is W[1]-hard. This motivates to restrict input graph classes. In

this thesis we consider conflict-free variants of FEEDBACK VERTEX SET, ODD CYCLE

TRANSVERSAL, CHORDAL VERTEX DELETION and INTERVAL VERTEX DELETION

problems. Note that all these problems do not admit finite forbidden characterization.

We explore their Parameterized Complexity for some restricted input graphs. Mainly

10

we study classes of bounded degeneracy graphs and nowhere dense graphs. We use the

computation of an independence covering family, a notion which was recently introduced

by Lokshtanov et al. [81] to design FPT algorithms for these classes (See Chapter 3). It

is worth noting that these classes include trees, graphs of bounded degree, planar graphs,

graphs that exclude a fixed graph as a minor (or a topological minor) and graphs of bounded

expansion.

1.1.2.1 FEEDBACK VERTEX SET

We refer to the conflict-free variant of FVS as CF-FVS. We studied CF-FVS when the

conflict graph is restricted to a graph class F . We call it as F -CF-FEEDBACK VERTEX

SET (F -CF-FVS, for short). In contrast to FVS, F -CF-FVS is W[1]-hard on general

graphs and admits an FPT algorithm if F is the family of graphs of bounded degeneracy

or nowhere dense graphs. See Chapter 3 for these results. F -CF-FVS admits polynomial

kernel when F is the family of graphs of bounded degeneracy. The main tool that we use to

obtain polynomial kernel is a combinatorial tool of k-independence preserver. Informally,

given a graph G, a set X ⊆V (G), and an integer k, it is a set of important vertices that is

enough to capture the independent set property in G. We show that for d-degenerate graph

independence preserver of size kO(d) exists, and can be used in designing polynomial

kernel. We believe that the tool can be useful for several other combinatorial problems. See

Chapter 5 for these result. The problem F -CF-FVS can be related to the INDEPENDENT

SET problem on special classes of graphs, which gives a complete dichotomy result on

the Parameterized Complexity of the problem F -CF-FVS, when F is a hereditary graph

family. In particular, F -CF-FVS is FPT parameterized by the solution size if and only if

F+CLUSTER IS is FPT parameterized by the solution size. Here, F+CLUSTER IS is

the INDEPENDENT SET problem in the (edge) union of a graph G ∈F and a cluster graph

H (G and H are explicitly given). The problem F+CLUSTER IS is FPT when F is the

family of Ki, j-free graphs. For the family of bipartite graph B, B-CF-FVS is W[1]-hard,

when parameterized by the solution size. For the family of graphs Fε , which comprise of

11

graphs G such that |E(G)| ≤ |V (G)|2−ε , for each 0 < ε < 1, Fε -CF-FVS is W[1]-hard,

when parameterized by the solution size, for every 0 < ε < 1. These results can be found

in Chapter 4.

1.1.2.2 ODD CYCLE TRANSVERSAL and s-t CUT

In the ODD CYCLE TRANSVERSAL problem, given a graph G and an integer k, the aim

is to find a subset S of vertices of G of size at most k such that S hits every cycle of odd

length in G, that is, the graph G−S is bipartite. The paramaterized complexity of ODD

CYCLE TRANSVERSAL was a major open problem for a long time, until Reed et. al gave

an FPT algorithm in 2003 [102] and later faster algorithms were designed [68, 80, 62, 63].

Kratsch and Wahlström [71] gave a randomized polynomial kernel for ODD CYCLE

TRANSVERSAL using matroid theory. In contrast to ODD CYCLE TRANSVERSAL, the

directed variant (DIRECTED ODD CYCLE TRANSVERSAL) is W[1]-hard parameterized by

solution size. In this thesis we study conflict-free variant of ODD CYCLE TRANSVERSAL,

namely CONFLICT FREE ODD CYCLE TRANSVERSAL (CF-OCT). Unlike, ODD CYCLE

TRANSVERSAL, the problem CONFLICT FREE ODD CYCLE TRANSVERSAL is W[1]-hard

on general graphs. It admits an FPT algorithm when the conflict graph belongs to the

family of graphs of bounded degeneracy or nowhere dense graphs. See Chapter 3 for

these results. CF-OCT does not admit polynomial kernel even when the conflict graph

belongs to the class of disjoint union of paths of length at most three and at most two star

graphs. To study kernelization complexity of CF-OCT, we study conflict-free variant

of the s-t-CUT problem, namely CF-s-t-CUT. In the s-t-CUT problem, given a graph G

and two vertices s, t, the aim is to find a set S of minimum size such that S hits every s

to t path in G, that is, s, t are not reachable from each other in the graph G−S. It can be

solved in polynomial time [34, 40]. In contrast to the classical version, the CF-s-t-CUT

problem is NP-hard even when the conflict graph belongs to the class of disjoint union of

paths of length at most three. To show no polynomail kernel for CONFLICT FREE ODD

CYCLE TRANSVERSAL, we use the technique of cross-composition using CF-s-t-CUT.

12

See Chapter 5 for these results.

1.1.2.3 CHORDAL VERTEX DELETION and INTERVAL VERTEX DELETION

A graph is chordal if it does not contain any induced cycle on at least 4 vertices, that is,

every cycle of length four or more vertices have a chord. The class of interval graphs

is a proper subset of chordal graphs. A graph is interval graph if it is chordal and does

not contain any asteroidal triple (a set of three vertices such that each pair of them is

connected by a path which avoids the neighbors of the third one). In the CHORDAL

VERTEX DELETION (INTERVAL VERTEX DELETION) problem, given a graph G, the

aim is to find a subset S of vertices of G of size at most k such that the graph G− S is

chordal (interval). The problem CHORDAL VERTEX DELETION and INTERVAL VERTEX

DELETION are known to be in FPT [25, 21]. In this thesis we study their conflict-free

variants. In contrast to their classical versions the conflict-free variants of CHORDAL

VERTEX DELETION and INTERVAL VERTEX DELETION are W[1]-hard on general graphs.

They admit FPT algorithms when the conflict graph belongs to the family of graphs of

bounded degeneracy or nowhere dense graphs. These results can be found in Chapter 3.

1.1.3 SHORTEST PATH and MAXIMUM MATCHING

MAXIMUM MATCHING and SHORTEST PATH are among the classical graph problems

which are extensively studied for theoretical and practical purposes in Graph Theory. In the

MAXIMUM MATCHING problem, give a graph G, the goal is to compute a maximum sized

subset X of edges such that no two edges in X have a common vertex. This problem is

known to be solvable in polynomial time [47, 88]. In the SHORTEST PATH problem, given

a graph G and two vertices s, t, the goal is to compute a path of minimum length (minimum

number of vertices) between s and t. The SHORTEST PATH problem, together with its

variants such as all-pair shortest path, single-source shortest path, weighted shortest path,

etc. are known to be solvable in polynomial time [41, 9].

13

Darmann et al. [36] (among other problems) studied the conflict-free variants of

MAXIMUM MATCHING and SHORTEST PATH and showed that the conflict-free variant

of MAXIMUM MATCHING is NP-hard even when the conflict graph is a disjoint union

of edges (matching). Moreover, for the conflict-free variant of SHORTEST PATH, they

showed that the problem is APX-hard, even when the conflict graph belongs to the family

of 2-ladders. In this thesis we study the conflict-free variants of MAXIMUM MATCHING

and SHORTEST PATH, called as CF-MM and CF-SP, respectively, from the view point of

paramterized complexity. We show that both CF-MM and CF-SP are W[1]-hard, when

parameterized by the solution size. CF-MM is W[1]-hard even when the graph where

we want to compute a matching is itself a matching and CF-SP is W[1]-hard even when

the conflict graph belongs to the class of unit interval graphs. Both the problems are FPT

when the conflict graph belongs to the class of bounded degeneracy graphs and nowhere

dense graphs. While CF-MM admit FPT algorithm, when the conflict graph belongs

to the family of chordal graphs, CF-SP problem is W[1]-hard even when the conflict

graph belongs to the class of unit-interval graphs. We also study CF-MM and CF-SP,

when instead of conflicting conditions being imposed by independent sets in a conflict

graph, they are imposed by independence constraints in a (representable) matroid. Both

the problems admit FPT algorithms for the above variant. These results can be found in

Chapter 6.

1.2 Feedback Vertex Set on Hypergraphs

Hypergraphs are a generalization of graphs, where an edge can connect more than two

vertices. While in graphs each edge contains exactly two vertices, in hypergrapgs each

edge is a subset of vertices. Hypergraphs are essentially a set family H: we have a universe

V (H) and a family of hyperedges E(H), where each hyperedge (or an edge) is a subset of

V (H). When every hyperedge in E(H) is of size at most d, it is known as a d-hypergraph.

Extension of concepts and ideas from Graph Theory to Hypergraph Theory is widely been

14

studied in recent decades [17, 108]. In fact it is a folklore that the theory of hypergraphs

was invented for generalizing Graph Theory. The problem VERTEX COVER is extended

as HITTING SET in Gypergraph Theory and for d-hypergraphs the problems is known as

d-HITTING SET, which are extensively studied [107]. However, there is almost no study

of FVS on hypergraphs. The only known result is a factor d approximation for FVS on

d-hypergraphs [55]. To fill this gap, in this thesis we study hypergraph variant of the FVS

problem from the view point of Parameterized Complexity

One of the main reasons for the lack of study of FVS on hypergraphs is that it is not

quite as natural to define the generalization of FVS in hypergraphs, as it is for the case of

VC (generalizing to HITTING SET and d-HITTING SET) in hypergraphs. To generalize the

notion of FVS to hypergraphs, we need to have notions of cycles and forests in hypergraphs.

For cycles, we use the same notion as that in Graph Theory [39]: a cycle in a hypergraph

H is a sequence (v0,e0,v1, . . . ,v`,e`,v0) such that v0, . . . ,v` are distinct vertices, e0, . . . ,e`

are distinct hyperedges, `≥ 1 and vi,v(i+1) mod (`+1) ∈ ei for any i ∈ {0, . . . , `}. Given the

above definition of cycle, a subset S of vertices in a hypergraph H is called a feedback

vertex set, if there does not exist a cycle in the hypergraph obtained after deleting vertices

in S. The next natural question is what do we mean by deletion of a vertex in a hypergraph.

Again, there are two natural ways to define the vertex deletion operation in hypergraphs:

1. One way to define the operation of deletion of a vertex v is to delete the vertex v

and all the hyperedges containing the vertex v – this is termed as strong deletion or

simply deletion.

2. Other way is to delete only the vertex v, without deleting the hyperedges that contain

v; this is termed as weak deletion. That is, the hypergraph H ′ obtained after weak

deletion of a vertex v from H has vertex set V (H) and edge set {e ∈ E(H) : v /∈

e}∪{e\{v} : e ∈ E(H),v ∈ e, |e|> 2}.

Observe that both the notions of cycles and deletion of vertices naturally generalize similar

notions from graphs. For a hypergraph H we use the notation H−S to denote the graph

15

obtained after (strong) deletion of the vertices in S. Consequently, there are two ways one

may define the FVS problem – WEAK FVS and STRONG FVS. The idea of studying

STRONG FVS on hypergraphs is our main conceptual contribution.

Given a hypergraph H, the incidence bipartite graph G corresponding to H is a bipartite

graph with bipartition V (G) = A]B where A =V (H) and B = E(H), and for any v∈V (H)

and e ∈ E(H), ve is an edge in G if v ∈ e in H. Observe that WEAK FVS corresponds to

finding a fvs S of size at most k, such that S ⊆ A and G− S is a forest. Thus, using the

best known algorithm for WEIGHTED FVS we can solve WEAK FVS by transforming the

problem to WEIGHTED FVS. To transform WEAK FVS to WEIGHTED FVS we assign

every vertex in B a weight of k+1, every vertex in A a weight of 1. Now the problem of

finding an fvs of weight at most k will be equivalent to solving WEAK FVS for the original

hypergraph. We consider FVS on hypergraphs with respect to strong deletion. FVS on

general hypergraphs is W[2]-hard when parameterized by k, which is not surprising as

HITTING SET is W[2]-hard. We study the problem for the cases when the input is restricted

to d-hypergraphs and linear hypergraphs. A hypergraph H is linear if |e∩ e′| ≤ 1 for any

two distinct hyperedges e,e′ ∈ E(H). For both these families FVS admits FPT algorithms.

Our main result is a randomized algorithm for the case when the input hypergraph is linear,

and the size of the hyperedges is not bounded. These results can be found in Chapter 7.

16

Chapter 2

Preliminaries

2.1 Graphs and sets:

Throughout the thesis, we use the following notions. For the notations related to graphs

that are not explicitly stated here, we refer to the book [40].

Sets: We denote the set of natural numbers, real numbers and integers by N, R and Z,

respectively. For t ∈ N, by [t] and [0, t], we denote the sets {1,2, · · · , t} and {0,1,2, · · · , t},

respectively. For two sets X and Y , by X \Y we mean the set {v|v ∈ X ,v /∈ Y}.

Graphs: For a (directed) graph G, we use V (G) to denote the vertex set and E(G) to

denote the (arc) edge set of the (directed) graph G. When the graph is clear from the context,

we use n and m to denote the number of vertices and edges in the graph, respectively. Let G

and H be graphs, V (H)⊆V (G) and E(H)⊆ E(G), then we say that H is a subgraph of G.

For a graph G and a set X ⊆V (G), by G[X] we mean the graph G induced on X , that is, the

subgraph of G with vertex set X and edge set {uv ∈ E(G) | u,v ∈ X}. Moreover, by G−X

we mean the graph G[V (G)\X], that is, the graph with the vertex set V (G) and the edge

set E(G)\X . Let E ′ be a subset of edges of the graph G, by G[E ′] we mean the graph with

17

vertex set V (G) and edge set E ′. For a graph G and a subset of vertices U ⊆V (G), NG(U)

and NG[U] denote the open neighborhood and closed neighborhood of U , respectively.

That is, NG(U) = {v ∈ V (G) : u ∈ U and uv ∈ E(G)} \U and NG[U] = NG(U)∪U . If

U = {u}, then we write NG(u) = NG(U) and NG[u] = NG[U]. In particular, for u ∈V (G),

NG(u) denotes the set of vertices which have at least one edge incident on u in G. Let Y

be a set of edges on vertex set V (G), then G∪Y is graph with the vertex set V (G) and the

edge set E(G)∪Y . Degree of a vertex v in graph G is denoted by degG(v), that is, degG(v)

denotes the size of NG(v). The subscript from the notations are ommited when it is clear

from the context.

For v1,v` ∈V (G), a v1v`-path P = (v1,v2, · · · ,v`−1,v`) in G is a sequence of (distinct)

vertices, such that the set of vertices in P (V (P)) is a subset of V (G) and for each i∈ [`−1],

we have vivi+1 ∈ E(G). Moreover, the edges in E(P) = {vivi+1 | i ∈ [`−1]} are called set

of edges in P and v1,vn are endpoints of P. The length of a path is the number of edges in it.

A shortest uv-path is a uv-path with minimum number of edges. A cycle C = (v1, . . . ,vn)

is a path with the edge v1vn. Consider graphs G and H. We say that G is an H-free graph

if no subgraph of G is isomorphic to H. We define a degree two induced path in G or a

degree two path as an induced path of maximal length such that all vertices in path are of

degree exactly two in G. An isolated cycle in graph G is defined as an induced cycle whose

all the vertices are of degree exactly two in G.

Let G be a graph. An independent set in G is a set X ⊆ V (G) such that for every

u,v ∈ X , uv /∈ E(G). A matching in G is a set Y ⊆ E(G) such that no two distinct edges in

Y have a common vertex. A matching M in G is a maximum matching if for any matching

Y in G, |M| ≥ |Y |. A matching M in G saturates a set X ⊆V (G), if every vertex in X is an

end point of an edge in M.

A triangle is a cycle consisting of exactly 3 edges. A chordal graph is a graph with

no induced cycles of length at least four. An interval graph is an intersection graph of

line segments (intervals) on the real line, that is, its vertex set is a set of intervals, and two

18

vertices are adjacent if and only if their corresponding intervals intersect. A unit-interval

graph is an intersection graph of intervals of unit length on the real line. A clique K in

G is an (induced) subgraph, such that for any two distinct vertices u,v ∈ V (K) we have

uv ∈ E(G). A vertex set S ⊆ V (G) is a clique in G if G[S] is a clique. A connected

component of an undirected graph is a (vertex) maximal induced subgraph in which every

two vertices are connected by a path. If a graph has only one connected component

then it is called a connected graph. A graph is a cluster graph if each of its connected

components are cliques. For k ∈ N, a k-cluster graph is cluster graph with exactly k

connected components. A complete graph is an undirected simple graph in which every

pair of vertices is connected by an edge. A graph G is a complete bipartite graph if

its vertex set can be partitioned into two disjoint (independent) sets X and Y , such that

E(G) = {xy | x ∈ X ,y ∈ Y}. For x,y ∈ N, by Kxy we denote the complete bipartite graph

on x+ y vertices which admits a vertex bipartition into sets X and Y of sizes x and y,

respectively, such that E(Kxy) = {xy | x ∈ X ,y ∈ Y}. A tournament is a directed graph

obtained by assigning a direction to each edge of a complete graph.

2.2 Parameterized Complexity

We define common notion in Parameterized Complexity here. For the notations that are

not explicitly stated here, we refer to the books [29, 53].

NP-hard problems are considered computationally hard problems for which we do not

expect to get algorithms faster than exponential in the input. The paradigm of Parameterized

Complexity is a way to cope with NP-hard problems. In Parameterized Complexity each

problem is accompanied by a parameter together with the classical input of the problem.

The key idea is to select a parameter (or combination of parameters) which is typically

small on input instances in some application and find efficient algorithms where the

combinatorial explosion is restricted to the parameter(s). A parameterized problem is

19

formally defined as follows.

Definition 1 (Definition 1.1, [29]). A parameterized problem is a language L⊆ Σ∗×N,

where Σ is finite alphabet. For an instance (x,k) ∈ Σ∗×N, k is called the parameter.

The size of an instance (x,k) of a parameterized problem is defined as |x|+ k.

Fixed Parameter Tractability: A central notion in this field is of the fixed-parameter

tractability (FPT). It is formally defined as follows.

Definition 2 (Definition 1.2,[29]). A parameterized problem L ⊆ Σ∗×N is called fixed

parameterized tractable (FPT) if there exists an algorithm A (called a fixed parameter

algorithm), a (non decreasing) computable function f : N→ N, and a constant c such that,

given (x,k) ∈ Σ∗×N as input, the algorithm A correctly outputs whether (x,k) ∈ L. The

algorithm A runs in time bounded by f (k) · |(x,k)|c.

The complexity class containing all fixed-parameter tractable problems is called FPT.

Analogous to the notion of NP-hardness and polynomial time reductions in classical com-

plexity, there exists a notion of hardness and reductions in the framework of Parameterized

Complexity. Let us first recall the notion of polynomial time reductions that is used in the

proofs of NP-hardness. A polynomial time many-one reduction from a problem A⊆ Σ∗

to a problem A ⊆ Σ∗ is an algorithm that, given an instance x of A, runs in polynomial

and outputs an instance x′ of B such that x is a yes-instance of A if and only if x′ is a

yes-instance of B. If there exists such a reduction from a problem A to a problem B,

then if B is polynomial time solvable then A is also polynomial time solvable. As the

polynomial time many one reduction algorithm can be composed with the algorithm of

B and a polynomial time algorithm for A can be obtained. In the following, we define an

analogous notion for parameterized problems to transfer fixed parameterized tractability,

Definition 3 (Definition 13.1, [29]). Let A,B⊆ Σ∗×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm that, given an instance (x,k) of A,

outputs an instance (x′,k′) of B such that:

20

• (x,k) is a yes-instance of A if and only if (x′,k′) is a yes-instance of B)

• k′ ≤ g(k) for some (non-decreasing) computable function g, and

• the running time is f (k) · |x|O(1) for some (non-decreasing) computable function f .

If there is a parameterized reduction from A to B, and B is FPT, then A is also FPT

(Theorem 13.2, [29]).

W-hardness: To classify parameterized problems according to their hardness, Downey

and Fellows [44] introduced the notion of W-hierarchy. It is not required to introduce

formal definitions of these classes. For our purposes in the thesis it is sufficient to say that

we have the following hierarchy: FPT ⊆W[1] ⊆W[2] ⊆ ·· · . Similar to the NP-hardness,

if there is a parameterized reduction from a W[t]-hard problem A to a parameterized

problem B, then B is W[t]-hard. Under the assumption that FPT 6= W[1], we can conclude

that a W[1]-hard problem is not FPT. We refer the reader to [29, Chapter 13] for more

details on W-hardness theory.

Kernelization: Other commonly used notion in paramterized complexity is kernelization.

It is a polynomial time data reduction algorithm. Two instances of a parameterized problem

L are called equivalent if (x,k) ∈ L if and only if (x′,k′) ∈ L. A Reduction Rule for a

parameterized problem L is a polynomial time algorithm which takes an instance (x,k) of

L and returns an instance (x′,k′) of L. If (x,k) and (x′,k′) are equivalent then we say that

reduction rule is safe or correct. The notion of kernelization (kernel) is defined formally as

follows.

Definition 4 (Definition 2.1, [29]). Let L ⊆ Σ∗×N be a parameterized problem. A

kernelization algorithm, or simply kernel for L is an algorithm that given an instance (x,k)

as an input, runs in time polynomial in |x|+ k and returns another instance (x′,k′) such

that:

21

• |x′|+ k′ ≤ g(k) for some computable function g→ N×N, and

• The instances (x,k) and (x′,k′) are equivalent.

If the upper bound g(·) is a polynomial function of the parameter, then we say that L

admits a polynomial kernel.

If we have a kernelization algorithm for a problem, then clearly the problem is FPT.

However, the converse is also true.

Proposition 1. [Lemma 2.2, [29]] A parameterized problem L is FPT if and only if it

admits a kernelization algorithm.

Kernel lower bound: Every problem in FPT need not admit a polynomial kernel. Next,

we define the notion of polynomial compression, which is a generalization of kernels and

is useful to show non existence of polynomial kernels.

Definition 5 (Definition 15.8,[29]). A polynomial compression of a parameterized language

Q⊆ Σ∗×N into a language R⊆ Σ∗ is an algorithm that takes as input an instance (x,k) ∈

Σ∗×N, runs in time polynomial in |x|+ k, and returns a string y such that:

• |y| ≤ p(k) for some polynomial p(·), and

• y ∈ R if and only if (x,k) ∈ Q.

If |Σ|= 2, the polynomial p(·) is called the bit-size of the compression.

Observe that a polynomial kernel is also a polynomial compression by treating the

output kernel as an unparamterized version of A. To show kernel lower bounds, there exists

a notion of polynomial parameter transformation. It is formally defined as follows.

Definition 6 (Definition 15.14,[29]). Let A,B⊆ Σ∗×N be two parameterized problems.

An algorithm A is called a polynomial parameter transformation from A to B if given an

22

instance (x,k) of A, A works in polynomial time and outputs an equivalent instance (x′,k′)

of B, that is, (x,k) ∈ A if and only if (x′,k′) ∈ B, such that |k′| ≤ p(k) for some polynomial

p(·).

The following theorem formalizes the notation of transfer of hardness.

Theorem 2.2.1 (Theorem 15.15,[29]). Let A,B⊆ Σ∗×N be two parameterized problems

and assume that there exits a polynomial parameter transformation from A to B. Then, if A

does not admit a polynomial compression, neither does B.

2.3 Tools and Techniques

In this section we give some commonly used tools and techniques in the thesis.

2.3.1 k-Independence Covering Family

Definition 7 (k-independence covering family). For a graph G and an integer k, a k-

independence covering family, denoted by F (G,k), is a family of independent sets of the

graph G such that for any independent set X in G of size at most k there exists a set Y in

F (G,k) such that X ⊆ Y .

In the following, we give algorithms to construct a k-independence covering family for

a d-degenerate graph and nowhere dense graph.

d-degenerate graph: A graph G has degeneracy d if every subgraph of G has a vertex of

degree at most d. An ordering of vertices σ : V (G)→{1, · · · ,n} is is called a d-degeneracy

sequence of graph G, if every vertex v has at most d neighbors u with σ(u) > σ(v). A

graph G is d-degenerate if and only if it has a d-degeneracy sequence. For a vertex v in

d-degenerate graph G, the neighbors of v which comes after (before) v in d-degeneracy

23

sequence are called forward (backward) neighbors of v in the graph G. Given a d-

degenerate graph, we can find d-degeneracy sequence in linear time [87].

The following propositions give algorithms to construct a k-independence covering

family for a d-degenerate graph.

Proposition 2. [Lemma 1.1,[81]] There exists a linear time randomized algorithm, that

given as input a d-degenerate graph H? and k ∈ N, outputs an independent set Y , such

that for every independent set X in H? of size at most k the probability that X is a subset of

Y is at least (
(k(d+1)

k

)
k(d +1))−1.

Proposition 3. [Lemmas 3.2 and 3.3, [81]] There are two deterministic algorithms,

that given a d-degenerate graph H? and k ∈ N, outputs independence covering

families F1(H?,k) of size at most
(k(d+1)

k

)
2o(k(d+1)) logn and F2(H?,k) of size

at most
(k2(d+1)2

k

)
(k(d + 1))O(1) logn, respectively. These algorithms run in time

O(|F1(H?,k)|(n+m)) and O(|F2(H?,k)|(n+m)), respectively.

Nowhere dense graph: Towards defining the class of nowhere dense graphs, firstly we

need to define the following.

Definition 8 (Shallow minor). A graph M is an r-shallow minor of a graph G, where r is

an integer, if there exists a set of disjoint subsets V1, . . . ,V|V (M)| of V (G) such that

1. each graph G[Vi] is connected and has radius at most r, and

2. there is a bijection ψ : V (M)→{V1, . . . ,V|V (M)|} such that for every edge uv∈ E(M)

there is an edge in G with one endpoint in ψ(u) and other endpoint in ψ(v).

The set of all r-shallow minors of a graph G is denoted by GOr. Similarly, the set of all

r-shallow minors of all the members of a graph class G is denoted by G Or =
⋃

G∈G (GOr).

Next, we introduce the definition of a nowhere dense graph class; let ω(G) denote the

size of the largest clique in G and ω(G) = supG∈G ω(G).

24

Definition 9 (Nowhere dense). A graph class G is nowhere dense if there exists a function

fω : N→ N such that for all r we have that ω(G Or)≤ fω(r).

We will mostly rely on the low treedepth colorings of nowhere dense graph classes.

Towards that, we first define the notion of treedepth.

Definition 10 (Treedepth of a graph). A treedepth decomposition of a graph G is a rooted

forest F on the vertex set V (G), that is, V (F) =V (G), such that for every edge uv ∈ E(G),

the endpoints u and v are in ancestor-descendant relation. The height of the rooted forest

F , denoted by height(F), is the maximum number of vertices on a simple path from the

root of F to a leaf in F . The treedepth of G, denoted td(G), is the least d ∈ N such that

there exists a treedepth decomposition F of G with height(F) = d.

Next, we define the notion of treedepth colorings and state a result that shows that

nowhere dense graph classes admit low treedepth colorings.

Definition 11 (Treedepth coloring). An r-treedepth colouring of G is a colouring such that

any r′ ≤ r color classes induce a subgraph with treedepth at most r′+1. The minimum

number of colors of such a coloring of G is denoted by tdcolrr(G).

Proposition 4. [Theorem 5.6,[94]] Let G be a nowhere dense graph class. Then there is

a function f (r,ε) such that tdcolrr(G)≤ f (r,ε) ·nε for every integer r ≥ 0, G ∈ G , and

real ε > 0. Furthermore, a f (r,ε) ·nε -treedepth colouring of G can be obtained in time

O(f (r,ε) ·n1+o(1)).

We refer the reader to the book by Nesetril and Ossona de Mendez [95] for a detailed

exposition on nowhere dense classes of graphs, their alternate characterization and several

interesting properties.

The following proposition give algorithms to construct a k independence covering

family for a nowhere dense graph.

25

Proposition 5. [Lemmas 3.2 and 3.3, [81]]

Let H be a graph such that H ∈N , where N is a class of nowhere dense graphs. For

any k ∈ N, there are two deterministic algorithms that run in time

O

(
f (k,

1
k
) ·n1+o(1)+g(k)

(
k(1+d)

k

)
2o(k(1+d))n(n+m) logn

)

and

O

(
f (k,

1
k
)n1+o(1)+g(k)

(
k2(1+d)2

k

)
(k(1+d))O(1)n(n+m) logn

)
,

and output a k-independence covering family for (H,k) of size

O(g(k)
(k(1+d)

k

)
2o(k(1+d))n logn) and O(g(k)

(k2(1+d)2

k

)
(k(1+d))O(1)n logn), respec-

tively, where f is a function defined in Proposition 4 and g(k) = (f (k, 1
k))

k
.

2.3.2 Branching

Branching (or Bounded search tree) is one of the most commonly used technique in

Parameterized Complexity which use the idea of backtracking. A typical branching

scheme works as follows. In each branch step, algorithm identifies a small (constant size

or bounded by a function of parameter) set S of eligible candidates of solution. Then the

algorithm builds a partial solutions by selecting elements from S and branching into |S|

many subproblems with respect to each element in S. In each such step, the algorithm

investigates some bounded possibilities of decisions and branches into subproblems. It

can also be viewed as a search tree, which the algorithm traverses. In order to show the

correctness of the algorithm it is enough to show that if the given input is a yes-instance,

then a feasible solution to the problem can be discovered at one of the leaves. If the size of

the search tree is bounded by a function of parameter and each branching step takes time

polynomial in the input size, then the given problem is FPT.

More precisely, a branching algorithm works as follows. Let L⊆ Σ∗×N be a parame-

26

terized problem and (I,k) be an instance of L. Firstly we assign an appropriate measure

µ(I,k) with (I,k), which should be bounded by a function of k. In each step the algorithm

takes polynomial time and branches into simpler instances, say (I1,k1), . . . ,(I`,k`) of L

such that (`≥ 2), ` is bounded by µ(I,k), (I,k) is a yes-instance of L if and only if one

of the instance (I1,k1), . . . ,(I`,k`) is a yes-instance of L, and each branch measure strictly

decreases, that is, for all j ∈ ` µ(I j,k j)≤ µ(I,k)− c, for some constant c > 0. The algo-

rithm recursively apply branching steps to instances (I1,k1), . . . ,(I`,k`) and stops when

each instance can be trivially solved. The correctness follows from the fact that if the input

instance is a yes-instance then one of the branch generates a yes-instance. Since µ(I,k) is

bounded by a function of k and in each branch µ strictly decreases which bounds the size

of the search tree by a function of k and hence the algorithm runs in FPT time. For more

details on branching technique we refer the reader to Chapter 3 of [29].

2.3.3 Iterative Compression

The iterative compression technique was invented by Reed, Smith and Vetta in 2004

[102]. The method was invented in order to design an FPT algorithm for the ODD CYCLE

TRANSVERSAL problem. Later it became a commonly used technique in Parameterized

Complexity to design FPT algorithms. The center of the iterative compression method is

the compression routine. A compression routine is an algorithm, which takes an instance

together with a solution of the parameterized problem as an input and either returns

a solution of smaller size or return that there does not exist a solution of smaller size

than the given solution. The technique iteratively builds up the input structure and find

a solution at each iteration in FPT time. Then compresses the current solution using

the compression routine. Generally the main goal is to use the given solution which

carries some important information about the structure of the instance and design an FPT

algorithm for compression routine. For more details on iterative compression technique

we refer the reader to Chapter 4 of [29].

27

Part II

Conflict-Free Problems

29

Chapter 3

Conflict-free Version of Covering

Problems on Graphs

Graph-modification by either deleting vertices, or deleting edges, or adding edges such

that the resulting graph satisfies certain properties or becomes a member of some well-

understood graph class is one of the basic problems in Graph Theory and computer science.

However, most of these problems are NP-complete [111, 76], and therefore they have

been extensively studied in various algorithmic paradigms that are meant to cope with NP-

completeness [54, 84, 51], such as restricted classes of inputs, approximation algorithms

and Parameterized Complexity. In this chapter we introduce the conflict-free variant of

these classical problems and study them from the viewpoint of classical and Parameterized

Complexity.

In the past, the conflict-free version of some classical problems have been studied, e.g.

for SHORTEST PATH [66], MAXIMUM FLOW [98, 99], KNAPSACK [100], BIN PACKING

[45], SCHEDULING [46], MAXIMUM MATCHING and MINIMUM WEIGHT SPANNING

TREE [36, 35]. It is interesting to note that some of these problems are NP-hard even

when their non-conflicting version is polynomial time solvable. The study of conflict-free

problems has also been recently initiated in computational geometry motivated by various

31

applications (see [5, 6, 7]). Motivated by these works, we initiate the study of the conflict-

free versions of several well studied vertex deletion problems in Parameterized Complexity.

This is our main conceptual contribution in this chapter.

In the following we recall the definitions of a parameterized vertex deletion problem

on graphs and their conflict-free variant. Let Π be a family of graphs (or property) – such

as edgeless graphs, forests, cluster graphs, chordal graphs, interval graphs, bipartite graphs,

split graphs or planar graphs. The vertex deletion problem corresponding to Π is formally

stated as follows.

Π-VERTEX DELETION Parameter: k

Input: An undirected graph G and a non-negative integer k.

Question: Does there exist S⊆V (G), such that |S| ≤ k and G−S is in Π?

That is, given a graph G, can we delete at most k vertices such that the resulting graph

belongs to Π? The set S is called a Π-deletion set. The study of parameterized graph

deletion problems together with their various restrictions and generalizations have been an

active area of research recently.

To formulate the conflict-free version of these classical problems, let us begin with an

example. Consider SET COVER, that has the following conflict-free version. We are given

a universe U and a family S of subsets of U , a positive integer k and a graph H (with

V (H) = S). The objective is to check whether there exists a S ′ ⊆S of size at most k

whose union is U and H[S ′] is edgeless. Now, we may similarly combine the classical

vertex deletion problems on graphs, with the conflict-free model described in [5, 6, 7] and

arrive at the following generic conflict-free problem. Let Π be a family of graphs. The

conflict-free vertex deletion problem corresponding to Π is formally stated as follows.

32

CONFLICT-FREE Π-VERTEX DELETION (CF-Π-VD) Parameter: k

Input: An undirected graph G, a conflict graph H on vertex set V (G) and a non-

negative integer k.

Question: Does there exist a set S⊆V (G), such that |S| ≤ k, G−S is in Π and S is an

independent set in H?

We define CF-Π-VD, when both the graphs G,H are directed graphs (hypergraphs),

appropriately. Where, the notion of independent set in directed graph is similar to that

of undirected graphs. In hypergraphs, a set S of vertices in a hypergraph G is called

independent if no two vertices in S are contained in an edge in G. In this chapter, we focus

on CF-Π-VD problems corresponding to several well studied problems in Parameterized

Complexity, namely VERTEX COVER, d-HITTING SET, SPLIT VERTEX DELETION,

FEEDBACK VERTEX SET IN TOURNAMENTS (FVST) and FEEDBACK VERTEX SET

(FVS). Observe that when H is the edgeless graph, CF-Π-VD is the same as Π-VERTEX

DELETION and thus it generalizes the non-conflict-free version of the problem. Further-

more, when H is the same as G it corresponds to independent version of these problems

which are also well studied, such as INDEPENDENT FEEDBACK VERTEX SET [90, 81].

Thus, CF-Π-VD is a generalization of well studied problems in algorithms and complexity.

Apart from introducing an interesting family of problems, we obtain the following

results in the realm of parameterized and classical complexity. We note that several of

these results are in sharp contrast to the non-conflict version of the same problem.

A graph property Π is a set of graphs, and a graph in Π is called a Π-graph. We say

that Π is hereditary if for any graph G in Π, every induced subgraph of G is also in Π. A

graph property Π has a forbidden set characterization if there is a set F of graphs such

that a graph is a Π-graph if and only if it does not contain any graph in F as an induced

subgraph, and further, it has a finite forbidden characterization if F is a finite set. We

study the complexity of CF-Π-VD based on the forbidden set of the property Π.

33

Graph properties with finite forbidden characterization. The starting point of our results

is a generic result by Cai [19] about graph properties which have a finite forbidden

characterization. We show an analogous result for CF-Π-VD. In particular we show that

CF-Π-VD is FPT whenever Π has a finite forbidden set characterization. Indeed, we

show that this problem admits an algorithm with running time O(αk ·n ·T (m,n)), where

T (m,n) is time to recognize a graph in Π and α is the size of largest graph in the finite

forbidden set F . Furthermore, it also admits a kernel with O(α2α!kα) vertices.

Next, we study the conflict-free version of several well-studied cases of Π-VERTEX

DELETION, where Π is characterized by the finite family of forbidden induced subgraphs.

For a problem Q, we call its conflict-free version as CONFLICT-FREE Q (CF-Q, in short).

These results improve upon the generic result stated above.

1. CONFLICT FREE VERTEX COVER (CF-VC) admits a 2k-vertex kernel, a factor

2-approximation algorithm, an O?(1.2738k) FPT algorithm1 and an O?(1.1996n)

exact algorithm. Furthermore, CF-VC is NP-complete even when graph G is of

degree at most 2. This holds even when G is disjoint union of P3 (P̀ denotes the path

on ` vertices). Furthermore, CF-VC is polynomial time solvable when G has degree

at most one, or when both G and H have a perfect matching.

2. The CONFLICT FREE d-HITTING SET (d-CF-HS) problem can be solved in

O?(((d−1)+0.2738)k) = O?((d−0.7262)k) time.

3. CONFLICT FREE SPLIT VERTEX DELETION (CF-SVD) can be solved in

O?(1.2738kkO(logk)) time and polynomial space.

4. CONFLICT FREE FEEDBACK VERTEX SET IN TOURNAMENTS (CF-FVST) can be

solved in O?(2k) time.

Let us note that given the graphs G,H, we can test whether there exists a conflict-free

vertex cover (of any size) of the pair (G,H) in polynomial time by a reduction to the
1O? suppresses the polynomial factor in the running time.

34

2-SAT problem (Lemma 11). However, one can show that testing whether there exists a

conflict-free feedback vertex set (of any size) is NP-complete.

Graph properties without finite forbidden characterization. Next, we consider those graph

properties that are not characterized by a finite family of forbidden induced subgraphs. We

show that if Π is characterized by a “well-behaved” infinite family of forbidden induced

subgraphs, then CF-Π-VD is W[1]-hard. In particular, we show that CONFLICT FREE

FEEDBACK VERTEX SET (CF-FVS) is W[1]-hard even when G is disjoint union of

cycles. A similar result holds for CONFLICT FREE ODD CYCLE TRANSVERSAL (CF-

OCT), CONFLICT FREE CHORDAL VERTEX DELETION (CF-CVD) and CONFLICT

FREE INTERVAL VERTEX DELETION (CF-IVD).

This motivates us to consider some special cases of (G ,H)-Π-VD. Here, (G ,H)

denotes that the graph G belongs to the graph class G and the graph H belongs to the

graph class H . We will use ? to denote that the graph is arbitrary. We show that, (?,H)-

CF-FVS (H -CF-FVS), H -CF-OCT, H -CF-CVD, H -CF-IVD are FPT, when H

belongs to the family of d-degenerate graphs (Dd), or nowhere dense graphs (N). It is

worth noting that the families of d-degenerate graphs and nowhere dense graphs include

trees, graphs of bounded degree, planar graphs, graphs that exclude a fixed graph H as a

minor (or a topological minor) and graphs of bounded expansion. These algorithms are

based on the notion of “k-independence covering family” introduced in [81].

3.1 Preliminaries

Throughout this chapter, we use the following notions. For a (directed) graph G, we

use V (G) to denote the vertex set and E(G) to denote the (arc) edge set of the (directed)

graph G. A conflict graph of a graph G is a graph H, where the vertex sets of G and H

are same but edge sets may be different. For two sets X and Y , by X \Y we mean the

set {v|v ∈ X ,v /∈ Y}. For a graph G and a set X ⊆ V (G), by G[X] we mean the graph G

35

induced on X and by G−X we mean the graph G[V (G)\X]. Let E ′ be a subset of edges

of the graph G, by G[E ′] we mean the graph with vertex set V (G) and edge set E ′. For a

graph G and a vertex v ∈V (G), by NG(v) we denote the neighborhood of v in G, that is,

the set of vertices which have at least one edge incident on v in G. By NG[v] we denote the

set NG(v)∪{v}. The subscript from the notations are ommited when it is clear from the

context. Throughout the chapter given a graph G, n and m denote the number of vertices

and the edges of G, respectively.

A graph is chordal if every cycle of length greater than 3 has a chord (an edge connecting

two vertices of cycle but not part of the cycle). A complete graph is an undirected simple

graph in which every pair of vertices is connected by an edge. A tournament is a directed

graph obtained by assigning a direction to each edge of a complete graph.

3.2 Conflict-free Version of Properties with Forbidden Set

Characterizations

3.2.1 Properties with Finite Forbidden Set Characterizations

In this subsection, we study the CF-FINITE Π-VD problem when Π is hereditary and

admits a finite forbidden set characterization.

FPT Algorithm for CF-FINITE Π-VD. Let F be the finite forbidden set corresponding to

the property Π. Cai [19] showed that the FINITE Π-VD is FPT. That is, given a graph G,

testing whether there exists a set S⊆V (G) of size at most k such that G−S is a Π-graph

is FPT. The algorithm works as follows. It starts by finding a forbidden vertex set X in G;

among which we know that at least one vertex must go in the solution set S. Therefore, we

branch on this collection of vertices, and for each vertex v ∈ X , we recursively apply the

algorithm to solve the instance (G−v,k−1). If one of these branches returns a Π-deletion

36

set S, then clearly S∪{v} is of size at most k and it is a Π-deletion set in G. Else, we

return that the given instance is a no-instance. At every recursive call we decrease the

parameter by 1, and thus, the height of the search tree does not exceed k. At every step,

we branch in at most α subproblems; where α is the size of largest graph in F . Hence,

the number of nodes in the search tree does not exceed αk. Observe that, the algorithm

actually enumerates all the minimal Π-deletion sets of size at most k. Thus, for CF-FINITE

Π-VD, all we need to do in addition, is to check whether H[S] is edgeless or not. We will

also need the following result for the above algorithm.

Proposition 6. [Theorem 1,[19]] For any hereditary property Π, if Π is recognizable in

time T (m,n), then for any graph G that is not a Π-graph, a minimal forbidden induced

subgraph of Π in G can be found in O(n ·T (m,n)) time.

With the above theorem in hand, we obtain the following theorem.

Theorem 3.2.1. CF-FINITE Π-VD is FPT and admits an algorithm with running time

O(αk ·n ·T (m,n)), where T (m,n) is the time to recognize a graph in Π and α is the size

of largest graph in the finite forbidden set F .

3.2.2 A Polynomial Kernel for CF-FINITE Π-VD

In this section, we design a polynomial kernel for CF-FINITE Π-VD. Towards that, we

define following reduction rules. The first reduction rule is based on a simple observation

that the vertices that do not participate in any forbidden induced subgraph of G can be

deleted.

Reduction Rule 1. Let (G,H,k) be an instance of CF-FINITE Π-VD. If G contains a

vertex v, which is not part of any forbidden induced subgraph in G, delete v from G and H.

The new instance is (G− v,H− v,k).

Safeness of Reduction Rule 1 follows from the fact that G and G− v have the same

family of forbidden sets that needs to be hit. Also, we can test whether a vertex v is part

37

of any forbidden induced subgraph or not by enumerating all subsets X of size α−1 and

testing whether G[X ∪{v}] is a forbidden set or not. This implies that we can apply this

reduction rule in polynomial time. Next reduction rule is based on the classical Sunflower

Lemma. A sunflower with k petals and a core Y is collection of k disjoint sets S1, · · · ,Sk

such that Si 6= S j for all i 6= j, and they intersect exactly at Y . The sets Si \Y are called

petals and are non empty. The set Y is called the core.

Lemma 1. [29, Theorem 2.25] Let A be the family of sets of size exactly d over a universe

U . If |A |> d!(k−1)d , then A contains a sunflower with k petals, and such a sunflower

can be computed in time polynomial in |A |, |U | and k.

Given a graph G and a set of finite forbidden graphs F = {F1, . . . ,Fq}, we first

enumerate all forbidden induced subgraphs of G in polynomial time. Let A be the family

of vertex sets of induced forbidden subgraphs of G and η denotes the size of maximum

sized set in A . We start with the following simple but useful observation.

Observation 3.2.2. (G,H,k) is a yes-instance of CF-FINITE Π-VD if and only if there

exists a vertex subset S ⊆V (G) of size at most k such that S intersects all the sets in A

and H[S] is edgeless.

For a family A ∗ of subsets of sets of V (G), by U(A ∗), we denote the union of set of

vertices in all sets in A ∗.

Observation 3.2.3. Suppose that, A contains a sunflower S1, . . . ,Sk+2 with k+2 petals

and a core Y . Let A ′ =A \{Sk+2} and H ′ = H[U(A ′)]. Then, there exists a vertex subset

S⊆U(A) of size at most k such that S intersects all the sets in A and H[S] is edgeless if

and only if there exists a vertex subset S′ ⊆V (A ′) of size at most k such that S′ intersects

all the sets in A ′ and H ′[S′] is edgeless.

Proof. In the forward direction, assume that there exists a vertex subset S⊆U(A) of size

at most k such that S intersects all the sets in A and S is an independent set in H. Let

38

S′ = S∩U(A ′). The only vertices that appears in S but do not appear in S′ are those which

are present in Sk+2 but do not appear in any other set of A . This implies that S′ intersects

all the sets in A ′. Furthermore, since S′ ⊆ S, we have that H ′[S′] is edgeless.

In the reverse direction, assume that there exists a vertex subset S′ ⊆U(A ′) of size at

most k such that S′ intersects all the sets in A ′ and S′ is an independent set in H ′. We will

show that S′ itself intersects all the sets in A . Suppose not then S′ does not hit Sk+2 ∈A .

Since A ′ contains sunflower S1, . . . ,Sk+1, S′ must contain a vertex from Y , otherwise S′

contains a vertex from each Si \Y , i ∈ [k+ 1] which is a contradiction to the size of S′.

However, a vertex from Y hits Sk+2 in A . Hence, S′ intersects all the sets in A . Observe

that, since H ′ is an induced subgraph of H, we have that H[S′] is edgeless. This completes

the proof.

Next, we apply the following procedure to reduce the family A . If A contains a

sunflower S1, . . . ,Sk+2 with k+2 petals and a core Y , then delete Sk+2 from A and repeat

on A = A \Sk+2. Otherwise, return A . Let A ′ be the resultant family. Using Lemma 1,

the above procedure can be applied in polynomial time.

Reduction Rule 2. Let v be a vertex in G such that v is not in V (A ′), then delete v from

G and H. The new instance is (G− v,H− v,k).

Lemma 2. Reduction Rule 2 is safe.

Proof. The proof follows from Observations 3.2.2,3.2.3 and the construction of the family

A ′.

Theorem 3.2.4. CF-FINITE Π-VD admits a kernel with at most O(η2η!kη) vertices,

where η is the size of largest graph in the finite forbidden set F corresponding to Π.

Proof. Given an instance (G,H,k) of CF-FINITE Π-VD, the kernelization algorithm

works as follows. Firstly, the algorithm applies Reduction Rule 1 exhaustively. Next, the

algorithm constructs a family A of vertex sets of induced forbidden subgraphs of G and

39

applies Reduction Rule 2 exhaustively and get the reduced family A ′. Let V ′ denotes

the set of vertices present in any forbidden set in A ′. Let (G′ = G[V ′],H ′ = H[V ′],k) be

the reduced instance. By safeness of Reduction Rule 1, Observations 3.2.2,3.2.3, and

Lemma 2 it follows that, (G,H,k) is a yes-instance of CF-FINITE Π-VD if and only

if (G′,H ′,k) is a yes-instance of CF-FINITE Π-VD. Since V (G′) is same as the set of

vertices present in any set in A ′, it is sufficient to bound size of family A ′ to bound the

size of the graph G′. If for some η ′ ∈ {1, . . . ,η}, the number of sets in A ′ of size exactly

η ′ is more than η ′!(k+1)η ′ , then by Lemma 1, we can find a sunflower with k+2 petals

and apply Reduction Rule 2. Since, each set can be of size at most η in A ′, therefore

|V (G′)| ≤ η2η!(k+1)η . This completes the proof of theorem.

3.2.3 Properties that do not admit finite forbidden characterization

It is well know that a property Π is hereditary if and only if Π admits a forbidden set

characterization [19]. Let F denote the forbidden set corresponding to Π. Following the

previous section, a natural question that arises is what happens when F is infinite. We

call the corresponding vertex deletion problem as CONFLICT FREE INFINITE Π-VERTEX

DELETION (CF-INFINITE Π-VD). For example, suppose that Π is a family of forests, or

chordal graphs, or interval graphs, or bipartite graphs. Then, the corresponding classical

problems of Π-VERTEX DELETION (Π-VD) problems are known as FEEDBACK VERTEX

SET (FVS), CHORDAL VERTEX DELETION (CVD), INTERVAL VERTEX DELETION

(IVD) and ODD CYCLE TRANSVERSAL (OCT) and these problems are known to be

FPT [24, 70, 86, 102]. However, we will show now that conflict-free version of these

problems is W[1]-hard. Indeed, CONFLICT FREE FEEDBACK VERTEX SET (CF-FVS) is

W[1]-hard, when parameterized by solution size, even when the graph G belongs to the

class of graphs of disjoint union of cycles (C).

Towards this, we give a parameter preserving reduction from MULTICOLORED IN-

DEPENDENT SET (MCIS) problem to (C ,?)-CF-FVS (C -CF-FVS). It is well known

40

that the MCIS problem is W[1]-hard. See [29] for further details on the notion of W[1]-

hardness and for the fact that MCIS is W[1]-hard. The MCIS problem is formally defined

as follows.

MULTICOLORED INDEPENDENT SET (MCIS) Parameter: k

Input: A graph G, an integer k, and a partition of V (G) into k sets V1, . . . ,Vk.

Question: Does there exist a set X ⊆V (G), such that X ∩Vi = 1, ∀i ∈ [k] and G[X] is

edgeless?

Given an instance (G,(V1, . . . ,Vk),k) of MCIS, we construct an instance (G′,H,k)

of CF-FVS as follows. We let H = G. Next, we construct the graph G′. Vertices in

V (G′) = V (H) = V (G). For each set Vi, i ∈ [k], we construct a cycle C|Vi| (Cl denotes

cycle on l vertices) on vertex set Vi in G′. Clearly, this construction can be carried out in

polynomial time, and graph G ∈ C .

Lemma 3. (G,(V1, . . . ,Vk),k) is a yes-instance of MCIS if and only if (G′,H,k) is a

yes-instance of C -CF-FVS.

Proof. In the forward direction, let (G,(V1, . . . ,Vk),k) is a yes-instance of MCIS and let

S be its solution of size at most k. We claim that, S is also a solution to (G′,H,k) of

C -CF-FVS. Observe that, S∩Vi = 1 for each i ∈ [k]. By our construction, the graph G′ is

disjoint union of cycles C|Vi| on vertex set Vi, for each i ∈ [k]. This implies that, S hits all

cycles in G′. On the other hand, since H is isomorphic to the graph G and G[S] is edgeless,

we have that H[S] is also edgeless.

Conversely, let (G′,H,k) is a yes-instance of C -CF-FVS and let S′ be its solution

of size at most k. We claim that, S′ is also a solution to (G,(V1, . . . ,Vk),k) of MCIS. By

the construction of G′, there exist k disjoint cycles in G′ on each set Vi, i ∈ [k]. Hence,

S′∩Vi = 1. Also, H[S′] is edgeless and graph G is isomorphic to graph H, therefore G[S′]

is also edgeless. This completes the proof.

We obtain the following theorem using construction, Lemma 3 and W[1]-hardness of

41

MCIS.

Theorem 3.2.5. C -CF-FVS is W[1]-hard, when parameterized by the solution size, where

C is the family of graphs which are disjoint union of cycles.

The proof of Theorem 3.2.5 requires nothing specific about C -CF-FVS, except that

G is a disjoint union of forbidden sets where each forbidden set is identified with a color

class Vi. If F is infinite and well behaved in the following sense: given an integer n we

can output a forbidden set F of size polynomial in n (in fact, size f (k) · nO(1) will also

work for our purpose) in time τ(k) ·nO(1), then we can mimic the proof of Theorem 3.2.5

and show that the corresponding CF-Π-VD is W[1]-hard. Let us note that in certain cases,

e.g. for bipartite graphs where the family of forbidden subgraphs are odd cycles, we may

need to augment a color class Vi with additional vertices to obtain a forbidden set in F

in the graph G. This is easily handled by making the additional vertices adjacent to all

vertices in the conflict graph H, which ensures that they cannot be selected in any solution

of cardinality greater than one. In particular, this holds for Π being the family of chordal

graphs, or interval graphs, or bipartite graphs. Here, f and τ are computable functions.

3.2.4 Results on properties without finite forbidden characterization

In Section 3.2.3, we have shown that if F is infinite, CF-Π-VD is W[1]-hard in general,

even though the corresponding classical problem is FPT, e.g. CF-FVS, CF-OCT, CF-

CVD etc. In light of this, a natural question that arises is what happens if H is restricted to

certain graph classes. In this section, we show that CF-INFINITE Π-VD is FPT when H is

restricted to the class of d-degenerate graphs or no-where dense graphs. We refer to these

restricted variants of problem as Dd -CF-Π-VD and N -CF-Π-VD, respectively.

The degeneracy of an n-vertex graph G? is defined as the minimum integer d such

that there exists an ordering σ : V (G?)→ {1 , · · · , n} where every vertex v has at most d

neighbors u for which σ(u)> σ(v). Such an ordering σ is called a d-degeneracy sequence

42

of the graph G?. We fix one such sequence, and then for any vertex v ∈V (G?), we define

its forward and backward neighbors in G? with respect to this ordering. Our algorithm

is based on the construction of a k-independence covering family of a graph, using the

Independence Covering Lemma of [81]. We recall the notion of k-independence covering

family and Independence Covering Lemma here. For a graph H? and an integer k, a

k-independence covering family, denoted by F (H?,k), is a family of independent sets of

the graph H? such that for any independent set X in H? of size at most k there exists a

set Y in F (H?,k) such that X ⊆ Y . We will use the following propositions to construct a

k-independence covering family for H.

Proposition 7. [Lemma 1.1,[81]] There exists a linear time randomized algorithm, that

given as input a d-degenerate graph H? and k ∈ N, outputs an independent set Y , such

that for every independent set X in H? of size at most k the probability that X is a subset of

Y is at least (
(k(d+1)

k

)
k(d +1))−1.

Proposition 8. [Lemmas 3.2 and 3.3,[81]] There are two deterministic algorithms,

that given a d-degenerate graph H? and k ∈ N, outputs independence covering

families F1(H?,k) of size at most
(k(d+1)

k

)
2o(k(d+1)) logn and F2(H?,k) of size

at most
(k2(d+1)2

k

)
(k(d + 1))O(1) logn, respectively. These algorithms run in time

O(|F1(H?,k)|(n+m)) and O(|F2(H?,k)|(n+m)), respectively.

In the following, we present an FPT algorithm for Dd -CF-Π-VD problems. The

algorithm is based on the observation that, given an independence covering family of

conflict graph, the conflict-free solution of the problem lies inside one of the sets in this

family. By construction, each set in this family is an independent set in H, and therefore

the problem of finding a solution to the given instance of Dd -CF-Π-VD boils down to

finding a solution of Π-VD in the graph G that also lies in a chosen set in the family. In

particular, it reduces to solving the following annotated version of Π-VD.

43

ANNOTATED-Π-VD (A-Π-VD) Parameter: k

Input: A graph G, Y ⊆V (G) and an integer k.

Question: Does there exist S⊆ Y of size at most k such that G−S is in Π?

Theorem 3.2.6. Let Π be a property such that A-Π-VD admits an algorithm with run-

ning time τ(k)nO(1). Then, Dd -CF-Π-VD admits a randomized algorithm with run-

ning time
(k(d+1)

k

)
k(d + 1)τ(k)nO(1), and a deterministic algorithm with running time

min
{(k(d+1)

k

)
2o(k(d+1)) logn,

(k2(d+1)2

k

)
(k(d +1))O(1) logn

}
τ(k)nO(1).

Proof. First, we give the randomized algorithm. Given an instance (G,H,k) of Dd -CF-Π-

VD we do as follows. Run the following two step procedure (
(k(1+d)

k

)
k(d +1)) times.

1. Run the algorithm in Proposition 7 on (H,k), and obtain the set Y .

2. Solve A-Π-VD on the instance (G,Y,k), using the algorithm running in time

τ(k)nO(1).

The algorithm outputs yes, if Step 2 returns yes at least once, else algorithm returns

no. Now we prove the correctness of algorithm. Since in Step 1, the output set Y is an

independent set in the conflict graph H, if the algorithm returns yes, then the input instance

is a yes-instance. Now suppose that the input instance is a yes-instance, and X be its

solution. By Proposition 7, probability that X ⊆ Y is at least p = (
(k(d+1)

k

)
k(d + 1))−1.

We repeat the procedure 1/p times, so the probability that in all executions X * Y is at

most (1− p)1/p ≤ 1/e. Therefore, algorithm returns yes with probability at least 1−1/e.

Running time follows from Proposition 7, and the assumed running time of the algorithm

for A-Π-VD.

Next, we give the deterministic algorithm. Given an instance (G,H,k) of Dd -CF-Π-

VD, the algorithm works as follows. Algorithm first constructs k-independence covering

family F (H,k) of the conflict graph H, using Proposition 8. Then, for all sets Y ∈F (H,k),

algorithm solves A-Π-VD on instance (G,Y,k), using the algorithm assumed in the

44

statement of the theorem. The algorithm outputs yes if for some set Y ∈F (H,k), the

A-Π-VD returns yes, otherwise returns no. The correctness of the algorithm follows

from the definition of k-independence covering family. The running time follows from

Proposition 8, and the assumed running time of the algorithm for A-Π-VD. This completes

the proof.

The above theorem naturally leads to the question of when can A-Π-VD be FPT. We

give an affirmative answer for several cases when the integer weighted version (W-Π-VD)

of the corresponding Π-VD is FPT. For a graph G, a weight function w : V (G)→ N, and

a set S⊆V (G), we define the weight of S as ∑v∈S w(v). The W-Π-VD problem is defined

formally as follows.

WEIGHTED Π-VD (W-Π-VD) Parameter: k

Input: A graph G, a weight function w : V (G)→ N, and an integer k.

Question: Does there exist S⊆V (G) of weight at most k, such that G−S is in Π?

We give a polynomial time reduction from A-Π-VD to W-Π-VD. Towards this, given

an instance (G,Y,k) of A-Π-VD, we construct an instance (G′,w,k) of W-Π-VD as

follows. We take the graph G′ identical to the graph G. The weight function w is defined

as follows. We assign w(v) = k+1 if v ∈V (G)\Y , otherwise w(v) = 1.

Lemma 4. (G,Y,k) is a yes-instance of A-Π-VD if and only if (G′,w,k) is a yes-instance

of W-Π-VD.

Proof. In the forward direction, let (G,Y,k) is a yes-instance of A-Π-VD, and let S be

its minimal solution of size at most k. We claim that, S is also a solution to (G′,w,k) of

W-Π-VD. Since S⊆ Y , we have that w(v) = 1, for every v ∈ S. Therefore, the weight of S

is at most k. Since G′ is isomorphic to G, G′−S is also a Π-graph.

Conversely, let (G′,w,k) is a yes-instance of W-Π-VD, and let S′ be its solution of

weight at most k. We claim that, S′ is also a solution to (G,Y,k) for A-Π-VD. Observe

45

that, all the vertices in V (G′)\Y have weight k+1, therefore, S′ ⊆ Y . Since, every vertex

in S′ has weight 1, |S′| ≤ k. Furthermore, since the graph G is isomorphic to the graph G′,

we have that G−S′ is in Π. This completes the proof.

Using construction and Lemma 4, we obtain the following lemma.

Lemma 5. Let Π be a property such that W-Π-VD admits an algorithm with running time

γ(k)nO(1). Then, A-Π-VD also admits an algorithm with running time γ(k)nO(1).

It is known that WEIGHTED FEEDBACK VERTEX SET (WFVS) can be solved in time

O(3.618knO(1)) [26] and thus, by Lemma 5, we have that A-FVS can be solved in time

O(3.618knO(1)). By applying Theorem 3.2.6, we obtain the following corollary.

Corollary 1. Dd -CF-FVS either admits a randomized algorithm with running

time
(k(d+1)

k

)
k(d + 1)τ(k)nO(1), or a deterministic algorithm with running time

min
{(k(d+1)

k

)
2o(k(d+1)) logn,

(k2(d+1)2

k

)
(k(d + 1))O(1) logn

}
τ(k)nO(1). Here, τ(k) =

3.618k.

3.2.5 CONFLICT FREE ODD CYCLE TRANSVERSAL

Let Π be the family of bipartite graphs. Then, the corresponding CF-Π-VD is a conflict-

free version of OCT, namely, CONFLICT FREE ODD CYCLE TRANSVERSAL (CF-OCT).

In the following, we design an FPT algorithm for Dd -CF-OCT. Towards this, we use the

result for ANNOTATED-OCT (A-OCT) problem. It is known that A-OCT can be solved

in time O(4kk6(n+m)) [81]. Thus, by applying Theorem 3.2.6, we obtain the following

corollary.

Corollary 2. Dd -CF-OCT either admits a randomized algorithm with running

time
(k(d+1)

k

)
k(d + 1))τ(k)nO(1), or a deterministic algorithm with running time

min
{(k(d+1)

k

)
2o(k(d+1)) logn,

(k2(d+1)2

k

)
(k(d +1))O(1) logn

}
τ(k)nO(1). Here, τ(k) =

4kk6.

46

3.2.6 CONFLICT FREE CHORDAL VERTEX DELETION

Let Π be the family of chordal graphs. Then, the corresponding CF-Π-VD is a conflict-free

version of CVD, namely, CONFLICT FREE CHORDAL VERTEX DELETION (CF-CVD).

In the following, we design an FPT algorithm for Dd -CF-CVD. Towards this, we give a

polynomial time parameter preserving reduction from ANNOTATED-CVD (A-CVD) to

the CVD problem. Given an instance (G,Y,k) of A-CVD, in the following, we give a

construction to generate an instance (G′,k) of CVD.

Construction 1. To construct the graph G′, we replace each vertex v ∈V (G)\Y with a

k+1 sized vertex set Xv = {v1, . . . ,vk+1}. The vertex set of G′ is ∪v∈V (G)\Y Xv∪Y . If uv is

an edge in G such that u,v ∈ Y , then we add uv to G′. Next, for each vertex v ∈V (G)\Y ,

we introduce edges viv j, for all vi,v j ∈ Xv, i 6= j. Furthermore, for each edge vu ∈ E(G)

such that u ∈ Y , we introduce edges viu in G′ for all vi ∈ Xv, and when u ∈V (G)\Y , we

introduce edges viu j in G′ such that vi ∈ Xv,u j ∈ Xu,1≤ i, j ≤ k+1. Observe that, for a

vertex v ∈ V (G) \Y , G′[Xv] is a clique of size k+ 1 in G′. Let Su be the set of vertices

added in G′ corresponding to a vertex u in G. Observe that, for an edge uv ∈ E(G), we

make a complete bipartite graph between vertices of sets Su,Sv in G′.

Lemma 6. (G,Y,k) is a yes-instance of A-CVD if and only if (G′,k) is a yes-instance of

CVD.

Proof. In the forward direction, let (G,Y,k) is a yes-instance of A-CVD, and let S be its

solution of size at most k. We claim that S is also a solution to (G′,k) for CVD. For a

contradiction, assume that there exists a chordless induced cycle C in G′−S of length at

least 4. Observe that, C can contain at most one vertex from a set Sv. Indeed, since C has

at least 4 vertices, if two vertices, say vi,v j ∈ Sv are present in C, and let uvi is an edge in

C then, by construction of G′, we have that edges viv j,uv j ∈ E(G′) and it contradicts the

assumption that C is an induced cycle of length at least 4. This implies that, we can now

replace a vertex vi in C by the corresponding vertex v in G and get a chordless cycle in

47

G−S. This contradicts that G−S is a chordal graph.

Conversely, let (G′,k) is a yes-instance of CVD and let S′ be its solution of size at most

k. We claim that S′ is also a solution of A-CVD in (G,Y,k). Observe that, for a vertex

v ∈ V (G)\Y , the neighborhood of vertices in the set Sv is same in G′. Thus, if a vertex

vi ∈ Sv participates into a chordless induced cycle C, then replacing vi by a different vertex

v j ∈ Sv, we get another chordless induced cycle C′. Therefore, if a minimal solution S′

contains a vertex vi ∈ Sv, it must contain all the vertices in Sv, which would contradict the

size of S′. Therefore, S′ does not contain any vertex from Sv, v ∈V (G)\Y . Thus, S′ ⊆ Y

and is of size at most k. Also, observe that, G is an induced subgraph of G′ and chordal

graphs are closed under induced subgraphs. This implies that, G− S is also a chordal

graph.

Lemma 6 implies that, it is sufficient to solve CVD on (G′,k) to solve A-CVD on

(G,Y,k). It is well known that CVD can be solved in time O(2O(k logk)nO(1)) [25]. Hence,

we obtain the following result.

Lemma 7. A-CVD can be solved in time O(2O(k logk)nO(1)).

Combining Theorem 3.2.6 and Lemma 7, we obtain the following corollary.

Corollary 3. Dd -CF-CVD either admits a randomized algorithm with running

time
(k(d+1)

k

)
k(d + 1))τ(k)nO(1), or a deterministic algorithm with running time

min
{(k(d+1)

k

)
2o(k(d+1)) logn,

(k2(d+1)2

k

)
(k(d +1))O(1) logn

}
τ(k)nO(1). Here, τ(k) =

2O(k logk).

3.2.7 CONFLICT FREE INTERVAL VERTEX DELETION

Let Π be the family of interval graphs. Then, the corresponding CF-Π-VD is a conflict-

free version of IVD, namely, CONFLICT FREE INTERVAL VERTEX DELETION (CF-IVD).

In the following, we design an FPT algorithm for Dd -CF-IVD. Towards this, we give a

48

polynomial time parameter preserving reduction from ANNOTATED-IVD (A-IVD) to the

IVD problem.

We use the characterization that a graph is an interval graph if and only if it is chordal

and AT-free. Three vertices form an asteroidal triple in a graph G, if every two of them are

connected by a path avoiding the neighborhood of the third. A graph is AT-free if it has no

asteroidal triple. Given an instance (G,Y,k) of A-IVD, we construct an instance (G′,k) of

IVD, using Construction 1 described in Section 3.2.6.

Lemma 8. (G,Y,k) is a yes-instance of A-IVD if and only if (G′,k) is a yes-instance of

IVD.

Proof. In the forward direction, let (G,Y,k) is a yes-instance of A-IVD, and let S be its

solution of size at most k. We claim that S is also a solution to (G′,k) of IVD. Observe

that, G′−S is chordal using arguments similar to the proof of Lemma 7. Now it is only

remaining to prove that G′− S is also AT-free. For a contradiction, assume that there

exists an asteroidal triple A = {u,v,w} in G′−S. Observe that for a vertex, say u in A, if

u∈V (G)\Y then v,w cannot belong to the set Su. For contradiction, assume that v belongs

to Su. Since neighbours of u and v are same, all paths from u to w passes through neighbour

of v, which is contradiction to the fact that A is an asteroidal triple. Therefore, all three

vertices in A correspond to different vertices in G. Observe that, a minimal path P between

any two vertices, say between u and v, that avoids neighborhood of the third vertex w,

cannot contain a vertex from Sw if w ∈V (G)\Y , since w is adjacent to all the vertices in

Sw. If u or v belongs to V (G)\Y , then since P is a minimal path it cannot contain any other

vertices from Su or Sv apart from u and v, since the neighborhood of all the vertices in Su

and Sv are same. Therefore, we can replace vertices in P with corresponding vertices in G,

and we get an asteroidal triple corresponding to {u,v,w} in G, which is a contradiction to

the fact that S is a solution to (G,Y,k) of A-IVD.

Conversely, let (G′,k) is a yes-instance of IVD, and let S′ be its minimal solution

of size at most k. We claim that S′ is also a solution to (G,Y,k) of A-IVD. Observe

49

that, G− S is chordal using arguments similar to proof of Lemma 7. Now it is only

remaining to prove that G−S is also AT-free. Observe that, to delete an asteroidal triple

either we have to delete a vertex from asteroidal triple or we have to delete all paths

between at least two vertices of asteroidal triple that does not passes through third vertex

or neighborhood of third vertex. We claim that, S′ does not contain any vertex from Sv,

v ∈ V (G) \Y . For contradiction, assume that there exist a vertex vi corresponding to a

vertex v ∈V (G)\Y in S′ and participates into an asteroidal triple {vi,u,w} then replacing

vi by a vertex v j ∈ Sv, i 6= j we get another asteroidal triple {v j,u,w}. Therefore, if S′

contains a vertex vi ∈ Sv, it will contain all vertices in Sv, which would contradict that S′

is of size at most k. Now consider the case when the vertex vi does not participate in any

asteroidal triple, then vi is in S′ to delete a path between vertices of an asteroidal triple but

then replacing vi by a vertex v j ∈ Sv, i 6= j, we get another path and there will be k+1 such

paths. Therefore, taking vi in S′ contradicts that S′ is minimal. This implies that S′ ⊆ Y

and is of size at most k. Also, observe that, G is an induced subgraph of G′ and interval

graphs are closed under induced subgraph. Therefore, G−S is also an interval graph. This

completes the proof.

Lemma 8 implies that, it is sufficient to solve IVD on (G′,k) to solve A-IVD on

(G,Y,k). It is known that IVD can be solved in time O(8k(n+m)) [21]. Hence, we obtain

the following result.

Lemma 9. A-IVD can be solved in time O(8kk2(n+m)).

Combining Theorem 3.2.6 and Lemma 9, we obtain the following corollary.

Corollary 4. Dd -CF-IVD either admits a randomized algorithm with running

time
(k(d+1)

k

)
k(d + 1))τ(k)nO(1), or a deterministic algorithm with running time

min
{(k(d+1)

k

)
2o(k(d+1)) logn,

(k2(d+1)2

k

)
(k(d +1))O(1) logn

}
τ(k)nO(1). Here, τ(k) = 8k.

50

3.2.8 Nowhere Dense Graphs

In this section, we present an FPT algorithm for CF-INFINITE Π-VD when H belongs to

nowhere dense class of graphs (N -CF-Π-VD). This class of graphs is a generalization

of bounded tree-depth classes, bounded local tree-width classes, planar graphs, bounded

genus, excluded minors, excluded topological minor and bounded local expansion classes

[95]. The algorithms is again based on the fact that these classes of graphs also admit

independence covering family. See Section 2.3.1 for the definition of the class of nowhere

dense graphs. We recall the following result to find a k-independence covering family for

nowhere dense graphs.

Proposition 9. [Lemmas 3.2 and 3.3,[81]] Let H be a graph such that H ∈N , where N

is a class of nowhere dense graphs. For any k ∈ N, there are two deterministic algorithms

that run in time

O

(
f (k,

1
k
) ·n1+o(1)+g(k)

(
k(1+d)

k

)
2o(k(1+d))n(n+m) logn

)

and

O

(
f (k,

1
k
)n1+o(1)+g(k)

(
k2(1+d)2

k

)
(k(1+d))O(1)n(n+m) logn

)
,

and output a k-independence covering family for (H,k) of size

O(g(k)
(k(1+d)

k

)
2o(k(1+d))n logn) and O(g(k)

(k2(1+d)2

k

)
(k(1+d))O(1)n logn), respec-

tively, where f is a function defined in Proposition 4 and g(k) = (f (k, 1
k))

k
.

Then, analogous to Theorem 3.2.6, we can obtain Theorem 3.2.7 and it’s corollaries.

Theorem 3.2.7. Let Π be a property such that A-Π-VD admits an algo-

rithm with running time τ(k)nO(1). Then, N -CF-Π-VD admit deterministic

algorithms with running time O
((

f (k, 1
k)+g(k)

(k(1+d)
k

)
2o(k(1+d))

)
τ(k)nO(1)

)
and

O
((

f (k, 1
k)+g(k)

(k2(1+d)2

k

)
(k(1+d))O(1)

)
τ(k)nO(1)

)
. Here, f is a function defined

in Proposition 4 and g(k) = (f (k, 1
k))

k
.

51

Corollary 5. N -CF-FVS, N -CF-OCT, N -CF-CVD and N -CF-IVD admit FPT

algorithms.

3.3 Well Studied Special Cases of CF-FINITE Π-VD

We can obtain improved algorithms for the conflict-free version of several well-studied

cases of Π-VERTEX DELETION whenever Π is characterized by the finite family of

forbidden induced subgraphs. In this section, we give improved algorithms for CONFLICT

FREE VERTEX COVER, CONFLICT FREE d-HITTING SET, CONFLICT FREE SPLIT

VERTEX DELETION and CONFLICT FREE FEEDBACK VERTEX SET IN TOURNAMENTS.

3.3.1 CONFLICT FREE VERTEX COVER

In this section, we study the conflict-free version of the classical VERTEX COVER, namely

CONFLICT FREE VERTEX COVER (CF-VC). In particular, we study the following prob-

lem.

CONFLICT FREE VERTEX COVER (CF-VC) Parameter: k

Input: A graph G = (V,E), a conflict graph H, and an integer k.

Question: Does there exist X ⊆V (G) of size at most k, such that X is a vertex cover

of G, and an independent set of H ?

We call the set X as a conflict-free vertex cover. Next, we show that CF-VC can

be solved as fast as the classical VERTEX COVER problem. Towards this, we present

a polynomial time reduction from CF-VC to MIN ONES 2-SAT which preserves both

the parameter k and the number of variables n. For a 2-CNF formula Φ and a satisfying

assignment τ of Φ, if τ sets ` variables in Φ to 1, then we say that weight of τ is `. The

MIN ONES 2-SAT problem is defined formally as follows.

52

MIN ONES 2-SAT

Input: A 2-CNF formula Φ and an integer k.

Question: Does there exist a satisfying assignment τ of Φ where at most k variables

are set to 1?

Construction 2. Given a 2-CNF formula Φ, let V (Φ) and C(Φ) denote the set of variables

and clauses of Φ, respectively. Given an instance (G,H,k) of CF-VC, we construct an

instance (Φ,k) of MIN ONES 2-SAT as follows. For every edge uv ∈ E(G), introduce

a clause (u∨ v) and for every edge uv ∈ E(H), introduce a clause (ū∨ v̄) in Φ. More

precisely, given the graphs G and H, the CF-VC is formulated as the following instance

of MIN ONES 2-SAT.

Φ = (
∧

uv∈E(G)

(u∨ v))
∧
(
∧

uv∈E(H)

(ū∨ v̄)).

Lemma 10. (G,H,k) is a yes-instance of CF-VC if and only if (Φ,k) is a yes-instance of

MIN ONES 2-SAT. Furthermore, |V (Φ)|= |V (G)|= |V (H)|.

Proof. For the forward direction, let (G,H,k) be a yes-instance of CF-VC and let X be its

solution of size at most k. We construct a truth assignment τ of Φ as follows. If x ∈ X then

τ(x) = 1, otherwise it is 0. Clearly, this satisfies the formula Φ and it is of weight at most

k. Conversely, let τ be a satisfying assignment of Φ of weight at most k. We construct a set

X as follows. If τ(u) = 1, add the vertex u to X . For the clause (u∨ v), at least one of τ(u)

or τ(v) is 1. This ensures that every edge of G is incident to some vertex u ∈ X . For the

clause (ū∨ v̄), at least one of τ(u) or τ(v) is 0. This ensures that H[X] is edgeless. Clearly,

the size of X is at most k. This completes the proof.

Using Lemma 10, we obtain the following lemma.

Lemma 11. Let G be a graph and H be a conflict graph of G. Then, in polynomial time

we can test whether there exists a conflict-free vertex cover of the pair (G,H).

53

Proof. We construct a 2-SAT formula, Φ using Construction 2. Similar, to the arguments

of the proof of Lemma 10, we can show that (G,H) has a conflict-free vertex cover (of

any size) if and only if Φ has a satisfying assignment. We know that 2-SAT is polynomial

time solvable [73]. This implies that, testing whether the pair (G,H) has a conflict-free

vertex cover can be done in polynomial time.

Misra et al. [89] have shown that MIN ONES 2-SAT is equivalent to VERTEX COVER

in both the parameterized and optimization settings. In Lemma 10, we have shown that

CF-VC is equivalent to MIN ONES 2-SAT. In our reduction from CF-VC to MIN ONES

2-SAT we preserve the parameter and the number of vertices in the graphs in CF-VC is

equal to the number of variables in the formula in MIN ONES 2-SAT. This implies that the

best known algorithms for VERTEX COVER can be employed to CF-VC incurring only an

additional polynomial cost. Using results from [27, 60, 110], we obtain the following.

Theorem 3.3.1. CF-VC admits a 2k-vertex kernel, a factor 2-approximation algorithm,

an O?(1.2738k) FPT algorithm, and a O?(1.1996n) exact algorithm.

It is well known that VERTEX COVER is NP-complete in general and polynomial time

solvable for graphs with maximum degree at most two. In the following, we prove that,

(P3,?)-CF-VC is NP-complete, where P3 denotes the class of disjoint union of P3s

(P̀ denotes path on ` vertices). Towards this, we present a polynomial time reduction

from the MIN ONES 2-SAT problem to (P3,?)-CF-VC. Let (Φ,k) be an instance of

MIN ONES 2-SAT and let V (Φ) and C(Φ) denote the set of variables and clauses of Φ,

respectively. Given an instance (Φ,k) of MIN ONES 2-SAT, we construct an instance

(G,H,k′) of (P3,?)-CF-VC as follows. For each variable x ∈ V (Φ), introduce three

vertices x1, x2 and x3 in G and H such that x1 and x2 corresponds to the positive literal

and x3 corresponds to the negative literal of x. Add edges x1x3 and x2x3 in both G and H.

Note that G is collection of P3’s and there is a P3, (x1,x3,x2) in G corresponding to each

variable x ∈V (Φ). For each clause (l1∨ l2) ∈C(Φ), where l1, l2 are literals of the variable

x1,x2, respectively, add edges between the vertices corresponding to l̄1 literal of x1 and the

54

vertices corresponding to l̄2 literal of x2 in H. Let |V (Φ)|= n. Set k′ = n+ k. Clearly, this

construction can be carried out in polynomial time.

Lemma 12. (Φ,k) is a yes-instance of MIN ONES 2-SAT if and only if (G,H,k′ = n+ k)

is a yes-instance of (P3,?)-CF-VC.

Proof. In the forward direction, let (Φ,k) be a yes-instance of MIN ONES 2-SAT and let τ

be a satisfying assignment of Φ of weight at most k. We construct a set X corresponding to

the truth assignment τ as follows. If τ(x) = 1, add vertices x1,x2 to X otherwise add x3 to

X . Clearly X is a vertex cover of G. We will now prove that H[X] is edgeless. Suppose for

a contradiction that H[X] is not edgeless and suppose there exists an edge uv in H[X]. By

the construction of H, either u and v corresponds to the positive and the negative literal of

a variable x in V (Φ), respectively, or there exists a clause ū∨ v̄ in C(Φ), which contradicts

the fact that τ is a truth assignment of Φ. Since weight of τ is at most k, at least n− k

variables are set to 0. This implies that |X | ≤ 2k+n− k = n+ k.

Conversely, let (G,H,k′ = n+ k) be a yes-instance of (P3,?)-CF-VC and let X be its

minimal solution of size at most n+ k. We assign a truth assignment τ to Φ corresponding

to the conflict-free vertex cover X as follows. If for a P3 corresponding to a variable x

both the endpoints are in X , set τ(x) = 1, otherwise 0. We now show that τ is a satisfying

assignment of Φ. Suppose for a contradiction there exists a clause (x∨ y) ∈C(Φ) that

is not satisfied by τ . This implies that τ(x̄) = τ(ȳ) = 1. By the construction of H, there

exists an edge uv in H[X] where u and v corresponds to x̄ and ȳ, respectively, which is a

contradiction to the assumption that X is conflict-free vertex cover. Since X is minimal,

for each P3 either both the endpoints or the central vertex is in X . Therefore, from at most

k number of P3’s both the endpoints are selected in X . This implies that the weight of τ is

at most k.

Using construction and Lemma 12 we obtain the following result.

Theorem 3.3.2. (P3,?)-CF-VC is NP-complete.

55

However, certain special cases of CF-VC are polynomial time solvable.

Theorem 3.3.3. (G≤1,?)-CF-VC is polynomial time solvable, where G≤1 is class of

graphs with degree at most one.

Proof. Let G be a graph in the graph class G≤1 and H be a conflict graph. We construct a

2-SAT formula, Φ as described in Construction 2. We will prove that using a satisfying

assignment of Φ, it is possible to obtain an optimal conflict-free vertex cover, X , of (G,H).

We know that 2-SAT is polynomial time solvable [73]. If Φ is not satisfiable then we

return that the pair (G,H) has no conflict-free vertex cover. So, now we assume that

Φ is satisfiable. Let τ be a truth assignment of Φ. We construct a set X as follows. If

τ(x) = 1, add x to X . Clearly, in the satisfying assignment of Φ, for each edge uv ∈ E(G)

at least one of τ(u) or τ(v) is 1 and for each edge uv ∈ H at least one of τ(u) or τ(v)

is 0. In this manner, X is a conflict-free vertex cover. Now the aim is to minimize the

size of resulting X . Trivially, if for any edge uv ∈ E(G) both the endpoints of it belong

to X , then we can safely delete one of them. Since, we need to pick at least one vertex

from each edge, we have that the resulting X ′ is of the minimum size. Since it is a subset

of a conflict-free vertex cover, we have that X ′ is also a conflict-free vertex cover. This

concludes the proof.

Theorem 3.3.4. (M ,M)-CF-VC is polynomial time solvable, where M is class of

graphs with perfect matching.

Proof. Let G, H (conflict graph) be the graphs in the graph class M . We construct a 2-sat

formula, Φ as described in Construction 2. If Φ is not satisfiable, then we return that the

pair (G,H) has no conflict vertex cover. So, now we assume that Φ is satisfiable. Let

τ be a truth assignment of Φ. We construct a set X as follows. If τ(x) = 1, add x to X .

Clearly, in the satisfying assignment of Φ, for each edge uv ∈ E(G) at least one of τ(u) or

τ(v) is 1 and for each edge uv ∈ H at least one of τ(u) or τ(v) is 0. In this manner, X is a

conflict-free vertex cover. Since G has a perfect matching, at least n/2 variables are set to

56

true and since H also has a perfect matching at least n/2 variables are set to false. This

implies that, exactly n/2 variables are set to true. Hence, the corresponding conflict-free

vertex cover is of size n/2. This shows that, if there exists a satisfying assignment τ of Φ,

then the resulting X is optimal.

3.3.2 CONFLICT FREE d-HITTING SET

The HITTING SET (HS) problem is a generalization of VERTEX COVER. In HS, given

a family of sets, S , over a ground set U of n elements and an integer k, the objective is

to check whether there exists a subset of U of size at most k which intersects (or hits)

every set of the family. In d-HITTING SET (d-HS), every set in the family has at most

d elements. By
(U
≤d

)
, we denote the set of all the subsets of U of size at most d. The

conflict-free version of d-HS, namely CONFLICT FREE d-HITTING SET (d-CF-HS), is

defined as follows.

CONFLICT FREE d-HITTING SET (d-CF-HS) Parameter: k

Input: A family (U,S), S ⊆
(U
≤d

)
, a conflict graph H with V (H) =U , and an integer

k.

Question: Does there exist a subset X ⊆U of size at most k, such that Si∩X 6= φ for

all Si ∈S and H[X] is edgeless?

We call the set X as a conflict-free hitting set. Observe that, CF-FINITE Π-VD is

a special case of d-CF-HS and thus, a faster algorithm for d-CF-HS implies a faster

algorithm for CF-FINITE Π-VD. In the following, we give an O?((d−0.7262)k) FPT

algorithm for d-CF-HS using iterative compression and the algorithm for CF-VC given

in Theorem 3.3.1.

Firstly, we propose an algorithm for 3-CF-HS, later we generalize it for d-CF-HS.

Given an instance (S ,U,k) of 3-CF-HS, the algorithm first checks whether there exists a

hitting set of (S ,U,k) of size at most k using FPT algorithm for 3-HS in O?(2.0755k)

57

time [107]. If it returns no, then (S ,U,H,k) does not have a conflict-free hitting set of

size at most k and the algorithm returns no. Otherwise, it returns a hitting set, Y , of size

at most k. The algorithm now passes (S ,U,H,Y,k) to a search routine, described below,

which either finds a conflict-free hitting set, X , of size at most k or returns no.

Next, we describe the search routine. The search routine iterates over all the choices

of the set W = Y ∩X , where 0≤ |W | ≤ k. In an iteration, if H[W] is not edgeless then the

routine proceeds to the next choice of W . Otherwise, let N = Y \W and C ⊆S be the set

of all the sets which are hit by W . Let S ′ = S \C and U ′ = ∪S∈S ′S. The aim is to find a

conflict-free hitting set, Z ⊆ (U ′ \N) of (S ′,U ′,H,k′) of size at most k′ = k−|W | such

that H[Z∪W] is edgeless. Towards this, the algorithm first marks all the vertices in S ∈S ′

which are either in N or neighbors of W in H, to signify that these vertices cannot be

picked in the solution. Since, the marked vertices cannot be part of any solution, if a set in

S ′ contains all marked vertices, then the algorithm returns no and stop. Otherwise, deletes

all the marked vertices from each S ∈S ′. It is to be noted here that the problem is reduced

to 2-CF-HS and thus to CF-VC which can be solved in O?(1.2738k) time. Let us analyze

the running time of this algorithm. For a given choice of the set W ; |W |= i, 0≤ i≤ k, the

search routine takes O?(1.2738k−i) time to find the solution. The running time of search

routine taken over all choices of the set W is thus ∑
k
i=0
(k

i

)
(1.2738)k−i = O?(2.2738k).

One can easily extend this algorithm to an algorithm for d-CF-HS, by using an algorithm

for d-HS, which runs in time O?((d−0.7262)k) [107] and by using (d−1)-CF-HS, as a

subroutine. Hence, we obtain the following result.

Theorem 3.3.5. The d-CF-HS problem can be solved in O?(((d−1)+0.2738)k) =

O?((d−0.7262)k) time.

3.3.3 CONFLICT FREE SPLIT VERTEX DELETION

In this section, we give a faster FPT algorithm for conflict-free version of SPLIT VERTEX

DELETION(SVD) problem, namely CONFLICT FREE SPLIT VERTEX DELETION (CF-

58

SVD). A split graph is a graph whose vertices can be partitioned into a clique and an

independent set. The problem CF-SVD is defined formally as follows.

CONFLICT FREE SPLIT VERTEX DELETION (CF-SVD) Parameter: k

Input: A graph G, a conflict graph H, and an integer k.

Question: Does there exist a subset S ⊆V (G) of size at most k, such that G−S is a

split graph and H[S] is an independent set?

A family of split graphs has 2K2,C4,C5 as finite forbidden induced subgraph [50] and

thus by Theorem 3.2.1, CF-SVD admits O?(5k) algorithm. In the following, we describe

a faster algorithm for CF-SVD. We first state the following result, that will be used later.

Proposition 10. [Theorem 1.3,[32]] For any graph G on n-vertices, there exists a family

P of partitions (VC,VI) of the vertex set V (G), of size at most 4(2n)2blognc, such that for

any set X ⊆V (G), G[X] is a split graph, and any partition (XC,XI) of X such that G[XC]

is a clique and G[XI] is an independent set, there exists a partition (VC,VI) ∈P such

that XC ⊆VC and XI ⊆VI . Such a family can be generated in time O∗(nO(logn)) time and

polynomial space.

Next, we prove the following result using Proposition 10.

Theorem 3.3.6. If CF-VC on n vertex graph, parameterized by the solution size k can be

solved in time T (k,n), then the CF-SVD problem can be solved in time O?(T (k,n)kO(logk)).

Proof. Let (G,H,k) be an instance of CF-SVD. We first apply the polynomial time ker-

nelization algorithm given in Theorem 3.2.4 to find a O(k5) vertex kernel. Let (G′,H ′,k′)

be the reduced instance. Next, we use the partitioning algorithm given by Proposition 10 to

find a family of partitions (VC,VI) for the reduced graph G′. Since, number of vertices are

bounded by O(k5), by Proposition 10, enumerating the family of such partitions will take

O∗(kO(logk)) time and polynomial space. For a partition (VC,VI) of V (G′), the goal is to

find a set X ⊆V (G′) such that G′[VC∩X] is a clique and G′[VI ∩X] is an independent set,

and if S =V (G′)\X , then |S| ≤ k and H ′[S] is edgeless. Observe that, if there are vertices

59

u,v ∈ VC which are not adjacent, then we have to either delete u or v to make G′[VC] a

clique. Similarly, if there are vertices u,v ∈VI which are adjacent, then we have to either

delete u or v to make G′[VI] an independent set. Also, the deleted vertices should form an

independent set in the graph H ′. Let EC be the edges in complement graph of G′[VC] and

EI be the edges in graph G′[VI]. Our problem now reduces to an instance of CF-VC in

the graph with vertex set V (G′) and the edge set EC∪EI , with the conflict graph H ′ and

parameter k. Therefore, for a fixed partition the problem can be solved in the same time as

the CF-VC problem. This concludes the proof.

We obtain the following corollary using Theorems 3.3.1 and 3.3.6.

Corollary 6. CF-SVD can be solved in O?(1.2738kkO(logk)) time and polynomial space.

3.3.4 CONFLICT FREE FEEDBACK VERTEX SET IN TOURNAMENTS

In this section, we give a faster FPT algorithm for conflict-free version of FEEDBACK

VERTEX SET IN TOURNAMENTS (FVST), namely CONFLICT FREE FEEDBACK VERTEX

SET IN TOURNAMENTS (CF-FVST). Our FPT algorithm uses iterative compression

technique. A simple algorithm for FVST is based on the following well known result.

Lemma 13. [29] Let G be a tournament. G has a directed cycle if and only if G has a

directed triangle. Otherwise, G is acyclic and it has a unique topological ordering.

This lemma will be useful to prove further results in this section. CF-FVST is defined

formally as follows.

CONFLICT FREE FEEDBACK VERTEX SET IN TOURNAMENTS (CF-FVST)

Input: A tournament G, a conflict graph H, and an integer k.

Parameter: k

Question: Does there exist a subset X ⊆ V (G) such that |X | ≤ k, G−X is directed

acyclic graph (dag) and X is an independent set in H?

60

A set X is called as a conflict-free fvst. Next, we describe our algorithm. The algorithm

first checks whether there exists a feedback vertex set of G of size at most k using FPT

algorithm for FVST in O?(1.618k) time [74]. If it returns no, then, (G,H,k) cannot have

conflict-free fvst of size at most k and the algorithm returns no. Otherwise, it returns a

feedback vertex set, F of size at most k. The algorithm now passes (G,H,F,k) to a search

routine, described below, which either finds conflict-free fvst, X of (G,H,k) of size at most

k or returns no.

Next, we describe the search routine. It iterates over all choices of the set Y ⊆ F where

0≤ |F | ≤ k. Let N = F \Y and W =V (G)\F . The routine rejects Y if either H[Y] is not

edgeless or G[N] is not acyclic. Now, the objective is to find a subset Z ⊆W such that

G[(W ∪N)\Z] is acyclic and H[Y ∪Z] is edgeless. The algorithm marks all the neighbors

of Y in W in the graph H to signify that they cannot be picked into a solution. Let R be the

set of marked vertices. In the following, we state some reduction rules.

Reduction Rule 3. If G[W ∪N] has a directed triangle (x,y,z) such that x,y,z ∈ (N∪R),

return no.

Reduction Rule 4. If G[W ∪N] has a directed triangle (x,y,z) with exactly one vertex

from W \R, say x, delete x and reduce parameter k by 1.

It is easy to see that Reduction rules 3 and 4 are safe. The algorithm first applies

Reduction Rules 3 and 4 exhaustively. Since G[N] and G[W] are acyclic, by Lemma 13,

both have unique topological ordering. Nect, we define an ordering π of vertices of G[W].

Let σ and ρ be the topological orderings of G[N] and G[W], respectively. Since Reduction

Rule 4 is no longer applicable, G[N ∪{v}] is acyclic for all v ∈W . This implies that,

G[N∪{v}] has a unique topological ordering σ ′, by Lemma 13. Observe that, σ ′ preserves

σ , that is, σ ′ restricted to N is same as the ordering σ . Let σ = {u1, . . . ,uq}. Then, there

exists a unique integer p(v) such that for all i < p(v), there is an arc (ui,v) in G and for all

i≥ p(v), there is an arc (v,ui) in G. Observe that, p(v) is uniquely defined for all v ∈W

and p(v) ∈ [q+1]. Next, we construct an ordering π of W as follows: for all u,v ∈W , the

61

position of u is before v in π iff p(u)< p(v), or p(u) = p(v) and the position of u is before

v in ρ . Clearly, there is a cycle in G[N ∪W] iff there exists an arc uv in G[W] such that

ρ(u)≺ ρ(v) and π(u)� π(v). This observation leads to following lemma.

Lemma 14 ([42], Lemma 4.1). Consider that, B⊆W. G[B∪N] is acyclic iff the vertices

of B form a common subsequence of ρ and π .

Next, given a set U and two sequences S1,S2 of U , where every element of U occurs

exactly once in S1 and S2, we present an algorithm to find all maximal subsequences

in S1,S2. We assign a pair (τu,γu) to each element u ∈U , where τu and γu denote po-

sition of u in S1 and S2, respectively. Next, we construct a digraph D = (V,A), where

V (D) = {(τu,γu),∀u∈U}. We add an arc ((τu,γu),(τv,γv)) if τu < τv and γu < γv. Clearly,

D is directed acyclic graph. Next, we run the well known depth-first search (DFS) al-

gorithm on the digraph D starting from the smallest vertex in lexicographic ordering

of vertices. In DFS, we will always visit the smallest vertex first according to lexico-

graphic ordering. DFS returns all maximal paths in D in polynomial time. Suppose

that, ((τu,γu),(τv,γv), · · · ,(τw,γw)) is a maximal path in D then u,v, · · · ,w is a maximal

subsequence in S1 and S2. Next, we prove a lemma which formalizes this statement.

Lemma 15. There exists a maximal common subsequence u,v, · · · ,w of S1 and S2 if and

only if ((τu,γu),(τv,γv), · · · ,(τw,γw)) is a maximal path in D.

Proof. Suppose that, there exists a common subsequence u,v, · · · ,w of S1 and S2. This

implies that, τu ≺ τv ≺ ·· · ≺ τw and γu ≺ γv ≺ ·· · ≺ γw. By the construction of D, there

is a path between ((τu,γu),(τv,γv), · · · ,(τw,γw)) in D. Conversely, let there exists a maxi-

mal path between ((τu,γu),(τv,γv), · · · ,(τw,γw)) in D then similar to argument as above

u,v, · · · ,w is a common subsequence of S1 and S2.

For sequences of W with respect to the orderings ρ and π , we find a longest subsequence

Z among all maximal subsequences such that G[(N ∪Z)] is directed acyclic graph and

H[Y ∪ (W \Z)] is edgeless. Using Lemmas 14 and 15, we obtain the following result.

62

Theorem 3.3.7. CF-FVST can be solved in O?(2k) time.

3.4 Conclusion

In this chapter, we introduced a new variant, called the conflict-free version, of classical

vertex deletion problems that are studied in graph algorithms. We studied these problems

in the realm of Parameterized Complexity and obtained several results that classify the

complexity of these problems in various graph classes. Our work opens up a whole new

area of research in obtaining dichotomy results. For every property Π, where CONFLICT

FREE Π-VERTEX DELETION is W[1]-hard, it is a natural question to ask for which family

of graphs H does the problem becomes FPT. As a concrete question in this direction, for

which graph classes G ,H , the problems (G ,H)-CF-FVS and (G ,H)-CF-OCT admit

FPT algorithms and polynomial kernels.

63

Chapter 4

Conflict-Free Feedback Vertex Set: A

Parameterized Dichotomy

4.1 Introduction

FEEDBACK VERTEX SET (FVS) is one of the classical NP-hard problems that has been

subjected to intensive study in algorithmic paradigms that are meant for coping with

NP-hard problems, and particularly in the realm of Parameterized Complexity. Recall

that, in this problem, given a graph G and an integer k, the objective is to decide if there

is S ⊆ V (G) of size at most k, such that G− S is a forest. FVS has received a lot of

attention in the realm of Parameterized Complexity. This problem is known to be in

FPT, and the best known algorithm for it runs in time O?(2.7k) [77]. Several variant and

generalizations of FEEDBACK VERTEX SET such as WEIGHTED FEEDBACK VERTEX

SET [3, 26], INDEPENDENT FEEDBACK VERTEX SET [2, 90], CONNECTED FEEDBACK

VERTEX SET [91], and SIMULTANEOUS FEEDBACK VERTEX SET [4, 20] have been

studied from the viewpoint of Parameterized Complexity.

In Chapter 3 we defined a generalization of well-studied vertex deletion problems

65

– in particular for FVS. Recall that, the CF-FEEDBACK VERTEX SET (CF-FVS, for

short) problem takes as input graphs G and H, and an integer k, and the objective is to

decide if there is a set S ⊆ V (G) of size at most k, such that G− S is a forest and S is

an independent set in H. The graph H is also called a conflict graph. Observe that the

CF-FVS problem generalizes classical graph problems, FEEDBACK VERTEX SET and

INDEPENDENT FEEDBACK VERTEX SET. In Chapter 3 we defined CF-FVS by fixing a

family F from which the conflict graph H is allowed to belong. Thus, for every fixed F

we get a new CF-FVS problem. We recall the definition here.

F -CF-FEEDBACK VERTEX SET (F -CF-FVS) Parameter: k

Input: A graph G, a graph H ∈F (where V (G) =V (H)), and an integer k.

Question: Is there a set S⊆V (G) of size at most k, such that G−S is a forest and S is

an independent set in H?

In Chapter 3, we showed that F -CF-FVS is W[1]-hard when F is a family of

all graphs and admits FPT algorithm when the input graph H is from the family of d-

degenerate graphs and the family of nowhere dense graphs. The most natural question that

arises here is the following.

Question 1: For which graph families F , F -CF-FVS is FPT?

In this chapter we start by exploring Question 1. We obtain a complete dichotomy

result on the Parameterized Complexity of the problem F -CF-FVS (for hereditary F)

in terms of another well-studied problem, namely, the INDEPENDENT SET problem – the

wall of intractability. Towards stating our results in the chapter, we start by defining the

problem F+CLUSTER IS, which is of independent interest. A cluster graph is a graph

formed from the disjoint union of complete graphs (or cliques).

66

F+CLUSTER INDEPENDENT SET (F+CLUSTER IS) Parameter: k

Input: A graph G ∈F , a cluster graph H (where V (G) = V (H)), and an integer k,

such that H has exactly k connected components.

Question: Is there a set S⊆V (G) of size k, such that S is an independent set in both G

and in H?

We note that F+CLUSTER IS is the INDEPENDENT SET problem on the edge union

of two graphs, where one of the graphs is from the family of graphs F and the other one is

a cluster graph. Here, additionally we know the partition of edges into two sets, E1 and E2

such that the graph induced on E1 is in F and the graph induced on E2 is a cluster graph.

We note that F+CLUSTER IS has been studied in the literature for F being the family

of interval graphs (with no restriction on the number of clusters) [106]. They showed the

problem to be FPT. Recently, Bentert et al. [10] generalized the result from interval graphs

to chordal graphs. This problem arises naturally in the study of scheduling problems. We

refer the readers to [106, 10] for more details on the application of F+CLUSTER IS.

In this chapter, we show that F -CF-FVS is in FPT if and only if F+CLUSTER IS is

in FPT, where F is a family of hereditary graphs. We obtain a complete characterization

of when the F -CF-FVS problem is in FPT, for hereditary graph families. To prove the

forward direction, that is, showing that F+CLUSTER IS is in FPT implies F -CF-FVS is

in FPT, we design a branching based algorithm, which at the base case generates instances

of F+CLUSTER IS, which is solved using the assumed FPT algorithm for F+CLUSTER

IS. Thus, we give “fpt-turing-reduction” from F -CF-FVS to F+CLUSTER IS. It is worth

to note that there are very few known reductions of this nature. To show that F -CF-FVS

is in FPT implies that F+CLUSTER IS is in FPT, we give an appropriate reduction from

F+CLUSTER IS to F -CF-FVS, which proves the statement. We note that our result

that F -CF-FVS is in FPT implies F+CLUSTER IS is in FPT, holds for all families of

graphs.

Next, we consider two families of graphs. We first design FPT algorithm for the

67

corresponding F+CLUSTER IS problem. For the second class we give a hardness

result. First, we consider the problem Ki, j-free+CLUSTER IS, which is the F+CLUSTER

IS problem for the family of Ki, j-free graphs. We design an FPT algorithm for Ki, j-

free+CLUSTER IS based on branching together with solving the base cases using a greedy

approach. This adds another family of graphs, apart from interval and chordal graphs, such

that F+CLUSTER IS is FPT.

We note that Ki, j-free graphs have at most n2−ε edges, where n is the number of

vertices in the input graph and ε = ε(i, j)> 0 [103, 56]. We complement our FPT result

on Ki, j-free+CLUSTER IS with the W[1]-hardness result of the F+CLUSTER IS problem

when F is the family of graphs with at most n2−ε edges. This result is obtained by giving

an appropriate reduction from the problem MULTICOLORED BICLIQUE, which is known

to be W[1]-hard [29, 48]. We also show that the F+CLUSTER IS problem is W[1]-hard

when F is the family of bipartite graphs. Again, this result is obtained via a reduction

from MULTICOLORED BICLIQUE.

4.2 Preliminaries

In this section, we state some basic definitions and terminologies from Graph Theory

that are used in this chapter. For the graph related terminologies which are not explicitly

defined here, we refer the reader to the book of Diestel [40].

Graphs Consider a graph G. By V (G) and E(G) we denote the set of vertices and edges

in G, respectively. When the graph is clear from the context, we use n and m to denote the

number of vertices and edges in the graph, respectively. For X ⊆V (G), by G[X] we denote

the subgraph of G with vertex set X and edge set {uv ∈ E(G) | u,v ∈ X}. Moreover, by

G−X we denote graph G[V (G)\X]. For v∈V (G), NG(v) denotes the set {u | uv∈ E(G)},

and NG[v] denotes the set NG(v)∪{v}. By degG(v) we denote the size of NG(v). A path

68

P = (v1, . . . ,vn) is an ordered collection of vertices, with endpoints v1 and vn, such that

there is an edge between every pair of consecutive vertices in P. A cycle C = (v1, . . . ,vn)

is a path with the edge v1vn. Consider graphs G and H. We say that G is an H-free graph

if no subgraph of G is isomorphic to H. For u,v ∈V (G)∩V (H), we say that u and v are

in conflict in G with respect to H if uv ∈ E(H).

A clique is a subgraph of an undirected graph such that every two distinct vertices

in it are adjacent. A connected component of an undirected graph is a (vertex) maximal

induced subgraph in which every two vertices are connected by a path. If a graph has only

one connected component then it is called a connected graph. A graph is a cluster graph

if each of its connected components are cliques. For k ∈ N, a k-cluster graph is cluster

graph with exactly k connected components. Let C be the set of connected components in

cluster graph. We define vertex set of C as follows: V (C) = ∪C∈C ′V (C). A graph G is a

complete bipartite graph if its vertex set can be partitioned into two disjoint (independent)

sets X and Y , such that E(G) = {xy | x ∈ X ,y ∈ Y}. For x,y ∈ N, by Kxy we denote the

complete bipartite graph on x+ y vertices which admits a vertex bipartition into sets X and

Y of sizes x and y, respectively, such that E(Kxy) = {xy | x ∈ X ,y ∈ Y}.

Sets We denote the set of natural numbers and real numbers by N and R, respectively.

For k ∈ N, by [k] we denote the set {1,2, . . . ,k}. For a,b ∈ R, a half open interval denoted

by (a,b] is the set of all real numbers x, such that a < x≤ b. For a set X , by 2X we denote

the power set of X , that is, the set comprising of all subsets of X .

4.3 W-hardness of F -CF-FVS Problems

This section is devoted to showing W-hardness results for F -CF-FVS problems for certain

graph classes, F . In Section 4.3.1, we show one direction of our dichotomy result. That is,

if for a family of graphs F , F+CLUSTER IS is not in FPT when parameterized by the size

69

of solution then F -CF-FVS is also not in FPT when parameterized by the size of solution.

This result is obtained by giving a parameterized reduction from F+CLUSTER IS to F -

CF-FVS. Next, we show that the problem F -CF-FVS is W[1]-hard, when parameterized

by the size of solution, where F is the family of bipartite graphs (Section 4.3.2) or the

family of graphs with sub-quadratic number of edges (Section 4.3.3). These results are

obtained by giving an appropriate reduction from the problem MULTICOLORED BICLIQUE,

which is known to be W[1]-hard [29, 48].

4.3.1 F+CLUSTER IS to F -CF-FVS

In this section, we show that, for a family of graphs F , if F+CLUSTER IS is not in FPT,

then F -CF-FVS is also not in FPT (where the parameters are the solution sizes). To prove

this result, we give a parameterized reduction from F+CLUSTER IS to F -CF-FVS.

Let (G,H,k) be an instance of F+CLUSTER IS. We construct an instance (G′,H ′,k′)

of F -CF-FVS as follows. We have H ′ = G, k′ = k, and V (G′) =V (H). Let C be the set

of connected components in H. Recall that we have |C |= k. For each C ∈ C , we add a

cycle (in an arbitrarily chosen order) induced on vertices in V (C) in G′. This completes the

description of the reduction. Next, we show the equivalence between the instance (G,H,k)

of F+CLUSTER IS and the instance (G′,H ′,k′) of F -CF-FVS.

Lemma 16. (G,H,k) is a yes-instance of F+CLUSTER IS if and only if (G′,H ′, k′) is a

yes-instance of F -CF-FVS.

Proof. In the forward direction, let (G,H,k) be a yes-instance of F+CLUSTER IS, and

S be one of its solution. Since H ′ = G, we have that S is an independent set in H ′. Let

C be the set of connected components in H. As S is a solution, it must contain exactly

one vertex from each C ∈ C . Moreover, G′ comprises of vertex disjoint cycles for each

C ∈ C . Thus S intersects every cycle in G′. Therefore, S is a solution to F -CF-FVS in

(G′,H ′,k′).

70

In the reverse direction, let (G′,H ′,k′) be a yes-instance of F -CF-FVS, and S be one

of its solution. Recall that G′ comprises of k vertex disjoint cycles, each corresponding

to a connected component C ∈ C , where C is the set of connected components in H.

Therefore, S contains exactly one vertex from each C ∈ C . Also, H ′ = G, and therefore,

S is an independent set in G. This implies that S is a solution to F+CLUSTER IS in

(G,H,k).

Now we are ready to state the main theorem of this section.

Theorem 4.3.1. For a family of graphs F , if F+CLUSTER IS is not in FPT when param-

eterized by the solution size, then F -CF-FVS is also not in FPT when parameterized by

the solution size.

Proof. Follows from the construction of instance (G′,H ′,k′) of F -CF-FVS from the

given instance (G,H,k) of F+CLUSTER IS with H ′ = G and Lemma 16.

4.3.2 W[1]-hardness on Bipartite Graphs

In this section, we show that for the family of bipartite graphs, B, the B-CF-FVS

problem is W[1]-hard, when parameterized by the solution size. Throughout this section,

B will denote the family of bipartite graphs. To prove our result, we give a parameterized

reduction from the problem MULTICOLORED BICLIQUE to B-CF-FVS. In the following,

we formally define the problem MULTICOLORED BICLIQUE.

MULTICOLORED BICLIQUE (MBC) Parameter: k

Input: A bipartite graph G, a partition of A into k sets A1,A2, · · · ,Ak, and a partition of

B into k sets B1,B2, · · · ,Bk, where A and B is a vertex bipartition of G.

Question: Is there a set S⊆V (G) such that for each i ∈ [k] we have |S∩Ai|= 1 and

|S∩Bi|= 1, and G[S] is isomorphic to Kk,k?

71

Let (G,A1, · · · ,Ak,B1, · · · ,Bk) be an instance of MULTICOLORED BICLIQUE. We

construct an instance (G′,H ′,k′) of B-CF-FVS as follows. We have V (G′) =V (H ′) =

V (G), and E(H ′) = {uv | u ∈ ∪i∈[k]Ai,v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}. Next, for each i ∈ [k],

we add a cycle (in an arbitrary order) induced on vertices in Ai in G′. Similarly, we add for

each i ∈ [k], a cycle induced on vertices in Bi in G′. Notice that G′ comprises of 2k vertex

disjoint cycles, and H ′ is a bipartite graph. Finally, we set k′ = 2k. This completes the

description of the reduction.

Lemma 17. (G,A1, · · · ,Ak,B1, · · · ,Bk) is a yes-instance of MULTICOLORED BICLIQUE

if and only if (G′,H ′,k′) is a yes-instance of B-CF-FVS.

Proof. In the forward direction, let (G,A1, · · · ,Ak,B1, · · · ,Bk) be a yes-instance of MUL-

TICOLORED BICLIQUE, and S be one of its solution. We will show that S is a solution

to B-CF-FVS in (G′,H ′,k′). Since S is a solution to MULTICOLORED BICLIQUE in

(G,A1, · · · ,Ak,B1, · · · ,Bk), for each i ∈ [k], |S∩Ai| = 1 and |S∩Bi| = 1. Since G′ com-

prises of vertex disjoint cycles corresponding to sets in Ai and Bi, S intersects every cycle in

G′. By the construction of H ′, it follows that S is an independent set in H ′. This concludes

the proof of forward direction.

In the reverse direction, let (G′,H ′,k′) be a yes-instance of B-CF-FVS, and S be one of

its solution. By the construction of G′, for each i ∈ [k] we have |S∩Ai|= 1 and |S∩Bi|= 1

and by the construction of H ′, we have that S is isomorphic to Kk,k in G. Therefore, S is a

solution to MULTICOLORED BICLIQUE in (G,A1, · · · ,Ak,B1, · · · ,Bk).

Now we are ready to state the main theorem of this section.

Theorem 4.3.2. B-CF-FVS parameterized by the solution size is W[1]-hard, where B is

the family of bipartite graphs.

Proof. Follows from the construction of instance (G′,H ′,k′) of B-CF-FVS from the

given instance (G,A1, · · · ,Ak,B1, · · · ,Bk) of MULTICOLORED BICLIQUE, Lemma 17, and

72

W[1]-hardness of MULTICOLORED BICLIQUE [29, 48].

4.3.3 W[1]-hardness on Graphs with Sub-quadratic Edges

In this section, we show that F -CF-FVS is W[1]-hard, when parameterized by the solution

size, where F is the family of graphs with sub-quadratic edges. To formalize the family of

graphs with subquadratic edges, we define the following. Recall that for 0 < ε < 1, Fε is

the family comprising of graphs G, such that |E(G)| ≤ |V (G)|2−ε . We show that for every

0 < ε < 1, the Fε -CF-FVS problem is W[1]-hard, when parameterized by the solution

size. Towards this, for each (fixed) 0 < ε < 1, we give a parameterized reduction from

MULTICOLORED BICLIQUE to Fε -CF-FVS.

Let (G,A1, · · · ,Ak,B1, · · · ,Bk) be an instance of MULTICOLORED BICLIQUE. We

construct an instance (G′,H ′,k′) of Fε -CF-FVS as follows. Let n = |V (G)|, m = |E(G)|,

and X be a set comprising of n
2

2−ε − n (new) vertices. The vertex set of G′ and H ′ is

X ∪V (G). For each i ∈ [k], we add a cycle (in arbitrary order) induced on vertices in Ai

in G′. Similarly, we add for each i ∈ [k], a cycle induced on vertices in Bi in G′. Also,

we add a cycle induced on vertices in X to G′. We have E(H ′) = {uv | u ∈ ∪i∈[k]Ai,v ∈

∪i∈[k]Bi, and uv /∈ E(G)}. Finally, we set k′ = 2k+1. Notice that since |V (H ′)| = n
2

2−ε ,

and |E(H ′)|< n2, it follows that H ∈Fε .

Lemma 18. (G,A1, · · · ,Ak,B1, · · · ,Bk) is a yes-instance of MULTICOLORED BICLIQUE

if and only if (G′,H ′,k′) is a yes-instance of Fε -CF-FVS.

Proof. In the forward direction, let (G,A1, · · · ,Ak,B1, · · · ,Bk) be a yes-instance of MULTI-

COLORED BICLIQUE, and S be one of its solution. Let x∈ X be an arbitrarily chosen vertex

from X . We will show that S∪{x} is a solution to Fε -CF-FVS in (G′,H ′,k′). Since S is

a solution to MULTICOLORED BICLIQUE in (G,A1, · · · ,Ak,B1, · · · ,Bk), for each i ∈ [k],

|S∩Ai|= 1 and |S∩Bi|= 1. Since G′ comprises of vertex disjoint cycles corresponding

to sets in Ai and Bi, and a cycle induced on vertices in X , we have that S∪{x} intersects

73

every cycle in G′. By the construction of H ′ it follows that S∪{x} is an independent set in

H ′. This concludes the proof of forward direction.

In the reverse direction, let (G′,H ′,k′) be a yes-instance of Fε -CF-FVS, and S be one

of its solution. Let S′ = S\X . By construction of G′, for each i ∈ [k] we have |S′∩Ai|= 1

and |S′∩Bi| = 1, and by construction of H ′, we have that S′ is isomorphic to Kk,k in G.

Therefore, S′ is a solution to MULTICOLORED BICLIQUE in (G,A1, · · · ,Ak,B1, · · · ,Bk).

Now we are ready to state the main theorem of this section.

Theorem 4.3.3. For 0 < ε < 1, Fε -CF-FVS parameterized by the solution size is W[1]-

hard.

Proof. Follows from the construction of instance (G′,H ′,k′) of Fε -CF-FVS from the

given instance (G,A1, · · · ,Ak,B1, · · · ,Bk) of MULTICOLORED BICLIQUE, Lemma 18, and

W[1]-hardness of MULTICOLORED BICLIQUE [29, 48].

4.4 FPT algorithms for F -CF-FVS for Restricted Conflict

Graphs

For a hereditary (closed under taking induced subgraphs) family of graphs F , we show that

if F+CLUSTER IS is FPT, then F -CF-FVS is FPT. Throughout this section, whenever

we refer to a family of graphs, it will refer to a hereditary family of graphs. To prove our

result, for a family of graphs F , for which F+CLUSTER IS is FPT, we will design an

FPT algorithm for F -CF-FVS, using the (assumed) FPT algorithm for F+CLUSTER

IS. We note that this gives us a Turing parameterized reduction from F -CF-FVS to

F+CLUSTER IS. Our algorithm will use the technique of compression together with

branching. We note that the method of iterative compression was first introduced by Reed,

74

Smith, and Vetta [102], and in our algorithm, we (roughly) use only the compression

procedure from it.

In the following, we let F to be a (fixed hereditary) family of graphs, for which

F+CLUSTER IS is in FPT. Towards designing an algorithm for F -CF-FVS, we define

another problem, which we call F -DISJOINT CONFLICT FREE FEEDBACK VERTEX SET

(to be defined shortly). Firstly, we design an FPT algorithm for F -CF-FVS using an

assumed FPT algorithm for F -DISJOINT CONFLICT FREE FEEDBACK VERTEX SET.

Secondly, we give an FPT algorithm for F -DISJOINT CONFLICT FREE FEEDBACK

VERTEX SET using the assumed algorithm for F+CLUSTER IS. In the following, we

formally define the problem F -DISJOINT CONFLICT FREE FEEDBACK VERTEX SET

(F -DCF-FVS, for short)

F -DISJOINT CONFLICT FREE FEEDBACK VERTEX SET (F -DCF-FVS)

Input: A graph G, a graph H ∈F , an integer k, a set W ⊆V (G), a set R⊆V (H)\W ,

and a set C , such that the following conditions are satisfied: 1) V (G) ⊆ V (H), 2)

G−W is a forest, 3) the number of connected components in G[W] is at most k, and 4)

C is a set of vertex disjoint subsets of V (H).

Parameter: k

Question: Is there a set S ⊆ V (H) \ (W ∪R) of size at most k, such that G− S is a

forest, S is an independent set in H, and for each C ∈ C , we have S∩C 6= /0?

We note that in the definition of F -DCF-FVS, there are three additional inputs (that

is, W,R and C). The purpose and need for these sets will become clear when we describe

the algorithm for F -DCF-FVS. In Section 4.4.1, we will prove the following theorem.

Theorem 4.4.1. Let F be a hereditary family of graphs for which there is an FPT

algorithm for F+CLUSTER IS running in time f (k)nO(1), where n is the number of

vertices in the input graph. Then, there is an FPT algorithm for F -DCF-FVS running in

time 16k f (k)nO(1), where n is the (total) number of vertices in the input graphs.

In the rest of the section, we show how we can use the FPT algorithm for F -DCF-FVS

75

to obtain an FPT algorithm for F -CF-FVS.

An Algorithm for F -CF-FVS using the algorithm for F -DCF-FVS: Let I = (G,H,k)

be an instance of F -CF-FVS. We start by checking whether or not G has a feedback vertex

set of size at most k, that is, a set Z of size at most k, such that G−Z is a forest. For this

we employ the algorithm for FEEDBACK VERTEX SET running in time O(3.619knO(1)) of

Kociumaka and Pilipczuk [70]. Here, n is the number of vertices in the input graph. Notice

that if G does not have a feedback vertex set of size at most k, then (G,H,k) is a no-instance

of F -CF-FVS, and we can output a trivial no-instance of F -DCF-FVS. Therefore, we

assume that (G,k) is a yes-instance of FEEDBACK VERTEX SET, and let Z be one of its

solution. We note that such a set Z can be computed using the algorithm presented in [70].

We generate an instance IY of F -DCF-FVS, for each Y ⊆ Z, where Y is the guessed

(exact) intersection of the set Z with an assumed (hypothetical) solution to F -CF-FVS

in I. We now formally describe the construction of IY . Consider a set Y ⊆ Z, such that

Y is an independent set in H. Let GY = G−Y , HY = H−Y , kY = k−|Y |, WY = Z \Y ,

RY = (NH(Y)\WY)∩V (HY), and CY = /0. Furthermore, let IY = (GY ,HY ,kY ,WY ,RY ,CY),

and notice that IY is a (valid) instance of F -DCF-FVS. Now we resolve IY using the

(assumed) FPT algorithm for F -DCF-FVS, for each Y ⊆ Z, where Y is an independent

set in H. It is easy to see that I is a yes-instance of F -CF-FVS if and only if there is

an independent set Y ⊆ Z in H, such that IY is a yes-instance of F -DCF-FVS. From the

above discussions, we obtain the following lemma.

Lemma 19. Let F be a family of graphs for which F -DCF-FVS admits an FPT algorithm

running in time f (k)cknO(1), where n is the (total) number of vertices in the input graph.

Then F -CF-FVS admits an FPT algorithm running in time f (k)(1+ c)knO(1), where n is

the number of vertices in the input graphs.

Using Theorem 4.4.1 and Lemma 19, we obtain the main theorem of this section.

Theorem 4.4.2. Let F be a hereditary family of graphs for which there is an FPT

algorithm for F+CLUSTER IS running in time f (k)nO(1), where n is the number of

76

vertices in the input graph. Then, there is an FPT algorithm for F -CF-FVS running in

time 17k f (k)nO(1), where n is the number of vertices in the input graphs of F -CF-FVS.

4.4.1 FPT Algorithm for F -DCF-FVS

The goal of this section is to prove Theorem 4.4.1. Let F be a (fixed) hereditary family of

graphs, for which F+CLUSTER IS admits an FPT algorithm. We design a branching based

FPT algorithm for F -DCF-FVS, using the (assumed) FPT algorithm for F+CLUSTER

IS.

Let I = (G,H,k,W,R,C) be an instance of F -DCF-FVS. In the following we describe

some reduction rules, which the algorithm applies exhaustively, in the order in which they

are stated.

Reduction Rule 5. Return that (G,H,k,W,R,C) is a no-instance of F -DCF-FVS if one

of the following conditions are satisfied:

1. k < 0,

2. k = 0 and G has a cycle,

3. k = 0 and C 6= /0,

4. G[W] has a cycle,

5. |C |> k, or

6. there is C ∈ C , such that C ⊆ R.

Reduction Rule 6. If k = 0, G is acyclic, and C = /0, then return that (G,H,k,W,R,C) is

a yes-instance of F -DCF-FVS.

In the following, we state a lemma, which is useful in resolving those instances where

the graph G has no vertices.

77

Lemma 20. Let (G,H,k,W,R,C) be an instance of F -DCF-FVS, where Reduction

Rules 5 is not applicable and G−W has no vertices. Then, in polynomial time, we can

generate an instance (G′,H ′,k′) of F+CLUSTER IS, such that (G,H,k,W,R,C) is a

yes-instance of F -DCF-FVS if and only if (G′,H ′,k′) is a yes-instance of F+CLUSTER

IS.

Proof. Let VC = (∪C∈CC) \R. We have V (G′) = V (H ′) = VC . For each C ∈ C , we

make C \R a clique in H ′. We set G′ = H[VC], and k′ = |C |. In the following we show

that (G,H,k,W,R,C) is a yes-instance of F -DCF-FVS if and only if (G′,H ′,k′) is a

yes-instance of F+CLUSTER IS.

In the forward direction, let (G,H,k,W,R,C) be a yes-instance of F -DCF-FVS, and

let S be one of its solution. By construction, S is an independent set in G′ and H ′ of size C .

In the reverse direction, let (G′,H ′,k′) be a yes-instance of F+CLUSTER IS, and S be

one of its solution. Since Reduction Rule 5 (item 4) is not applicable on (G,H,k,W,R,C),

we have |C | ≤ k. Therefore, S is of size at most k. By non-applicability of item 6 of

Reduction Rule 5, we have S∩R = /0. By construction, |S∩C|= 1, for each C ∈ C , and

S is an independent set in H. From the above discussions, together with the fact that

G = G[W] is acyclic, implies that S is a solution to F -DCF-FVS in (G,H,k,W,R,C).

This concludes the proof.

Lemma 20 leads us to the following reduction rule.

Reduction Rule 7. If G−W has no vertices, then return the output of algorithm for

F+CLUSTER IS with the instance generated by Lemma 20.

It is easy to see that Reduction Rules 5, 6, and 7 are safe.

Reduction Rule 8. If there is a vertex v ∈V (G) of degree at most one in G, then return

(G−{v},H,k,W \{v},R,C).

78

The safeness of Reduction Rule 8 follows from the fact that a vertex of degree at most

one does not participate in any cycle.

Reduction Rule 9. Let uv ∈ E(G) be an edge of multiplicity greater than 2 in G, and G′

be the graph obtained from G by reducing the multiplicity of uv in G to 2. Then, return

(G′,H,k,W,R,C).

The safeness of Reduction Rule 9 follows from the fact that for an edge, multiplicity of

2 is enough to capture multiplicities of size larger than 2.

Reduction Rule 10. Let v ∈ R be a degree 2 vertex in G with u and w being its neighbors

in G. Furthermore, let G′ be the graph obtained from G by deleting v and adding the

(multi) edge uw. Then, return (G′,H−{v},k,W,R\{v},C).

The safeness of Reduction Rule 10 follows from the fact that a vertex in R cannot be

part of any solution and any cycle (in G) containing v must contain both u and w.

Reduction Rule 11. If there is v ∈ (V (G)∩R), such that v has at least two neighbors in

the same connected component of W, then return that (G,H,k,W,R,C) is a no-instance

of F -DCF-FVS.

Reduction Rule 12. If there is v ∈V (G)\ (W ∪R), such that v has at least two neighbors

in the same connected component of W, then return (G−{v},H −{v},k− 1,W,R∪

NH(v),C).

Reduction Rule 13. Let v∈V (G)∩R, such that NG(v)∩W 6= /0. Then, return (G,H,k,W ∪

{v},R\{v},C).

It is easy to see that Reduction Rules 11, 12, and 13 are safe.

Let η be the number of connected components in G[W]. In the following, we define

the measure we use to compute the running time of our algorithm.

79

µ(I) = µ((G,H,k,W,R,C)) = k+η−|C |

Observe that none of the reduction rules that we described increases the measure, and

a reduction rule can be applied only polynomially many time. When none of the reduction

rules are applicable, the degree of each vertex in G is at least two, multiplicity of each

edge in G is at most two, degree two vertices in G do not belong to the set R, and G[W]

and G−W are forests. Furthermore, for each v ∈V (G)\W , v has at most one neighbor

(in G) in a connected component of G[W].

In the following, we state the branching rules used by the algorithm. We assume that

none of the reduction rules are applicable, and the branching rules are applied in the order

in which they are stated. The algorithm will branch on vertices in V (G)\W .

Case 1. If there is v ∈V (G)\W that has at least two neighbors (in G), say w1,w2 ∈W.

Since Reduction Rule 11 and 12 are not applicable, w1 and w2 belong to different connected

components of G[W]. Also, since Reduction Rule 13 is not applicable, we have v /∈ R. In

this case, we branch as follows.

(i) v belongs to the solution. In this branch, we return (G−{v},H−{v},k−1,W,R∪

NH(v),C).

(ii) v does not belongs to the solution. In this branch, we return (G,H,k,W ∪{v},R,C).

In one branch when v belongs to the solution, k decreases by 1, and η and |C | do not

change. Hence, µ decreases by 1. In other branch when v is moved to W , number of

components in η decreases by at least one, and k and |C | do not change. Therefore, µ

decreases by at least 1. The resulting branching vector for the above branching rule is

(1,1).

If Branching Rule 1 is not applicable, then each v ∈V (G)\W has at most one neighbor

80

(in G) in the set W . Moreover, since Reduction Rule 8 is not applicable, each leaf in G−W

has a neighbor in W .

In the following, we introduce some notations, which will be used in the description of

our branching rules. Recall that G−W is a forest. Consider a connected component T in

G−W . A path Puv from a vertex u to a vertex v in T is nice if u and v are of degree at least

2 in G, all internal vertices (if they exist) of Puv are of degree exactly 2 in G, and v is a leaf

in T . In the following, we state an easy proposition, which will be used in the branching

rules that we design.

Proposition 11. Let (G,H,k,W,R,C) be an instance of F -DCF-FVS, where none of

Reduction Rule 5 to 13 or Branching Rule 1 apply. Then, there are vertices u,v∈V (G)\W,

such that the unique path Puv in G−W is a nice path.

Consider u,v∈V (G)\W , for which there is a nice path Puv in T , where T is a connected

component of G−W . Since Reduction Rule 8 is not applicable, either u has a neighbor in

W , or u has degree at least 2 in T . From the above discussions, together with Proposition 11,

we design the remaining branching rules used by the algorithm. We note that the branching

rules that we describe next is similar to the one given in [4].

Case 2. Let v ∈ V (G) \W be a leaf in G−W for which the following holds. There is

u ∈V (G)\W, such that NG(u)∩W 6= /0 and there is a nice path Puv from u to v in G−W.

Let C = V (Puv) \ {u}, u′ and v′ be the neighbors (in G) of u and v in W, respectively.

Observe that since Reduction Rule 13 is not applicable, we have u,v /∈ R. We further

consider the following cases, based on whether or not u′ and v′ are in the same connected

component of G[W].

Case 2.A. u′ and v′ are in the same connected component of G[W]. In this case,

G[V (Puv)∪W] contains exactly one cycle, and this cycle contains all vertices of V (Puv)

(consecutively). Since vertices in W cannot be part of any solution, either u belongs to the

solution or a vertex from C belongs to the solution. Moreover, any cycle in G containing v

81

must contain all vertices in V (Puv), consecutively. This leads to the following branching

rule.

(i) u belongs to the solution. In this branch, we return (G−{u},H−{u},k−1,W,R∪

NH(u),C).

(ii) u does not belong to the solution. In this branch, we return (G−C,H,k,W,R,C ∪

{C}).

In the first branch k decreases by one, and η and |C | do not change. Therefore, µ decreases

by 1. On the second branch |C | increases by 1, and k and η do not change, and therefore,

µ decreases by 1. The resulting branching vector for the above branching rule is (1,1).

Case 2.B. u′ and v′ are in different connected component of G[W]. In this case, we

branch as follows.

(i) u belongs to the solution. In this branch, we return (G−{u},H−{u},W,k−1,R∪

NH(u),C).

(ii) A vertex from C is in the solution. In this branch, we return (G−C,H,k,W,R,C ∪

{C}).

(iii) No vertex in {u}∪C is in the solution. In this branch, we add all vertices in {u}∪C

to W. That is, we return (G,H,k,W ∪ ({u}∪C),R\ ({u}∪C),C).

In the first branch k decreases by one, and η and |C | do not change. Therefore, µ decreases

by 1. On the second branch |C | increases by 1, and k and η do not change, and therefore,

µ decreases by 1. In the third branch, η decreases by one, and k and |C | do not change.

The resulting branching vector for the above branching rule is (1,1,1).

Case 3. There is u ∈V (G)\W which has (at least) two nice paths, say Puv1 and Puv2 to

leaves v1 and v2 (in G−W). Let C1 =V (Puv1)\{u} and C2 =V (Puv2)\{u}. We further

82

v

w′ w

u v

w′ w

u

N T

W

NT1 T2

W

(a) (b)

Figure 4.1: The cases handled by Branching Rule 2, (a) T is a connected component in
G[W], similarly in (b) T1,T2 are connected components in G[W].

consider the following cases depending on whether or not v1 and v2 have neighbors (in G)

in the same connected component of G[W] and u ∈ R.

Case 3.A. v1 and v2 have neighbors (in G) in the same connected component of G[W]

and u ∈ R. In this case, G[W ∪{u}∪C1∪C2] contains (at least) one cycle, and u cannot

belong to any solution. Therefore, we branch as follows.

(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1,H,k,W,R,C ∪

{C1}).

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2,H,k,W,R,C ∪

{C2}).

Notice that in both the branches µ decreases by 1, and therefore, the resulting branching

vector is (1,1).

Case 3.B. v1 and v2 have neighbors (in G) in the same connected component of G[W]

and u /∈ R. In this case, G[W ∪{u}∪C1∪C2] contains (at least) one cycle. We branch as

follows.

(i) u belongs to the solution. In this branch, we return (G−{u},H−{u},k−1,W,R∪

NH(u),C).

83

(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1,H,k,W,R,C ∪

{C1}).

(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2,H,k,W,R,C ∪

{C2}).

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching

vector is (1,1,1).

Case 3.C. If v1 and v2 have neighbors in different connected components of G[W] and

u ∈ R. In this case, we branch as follows.

(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1,H,k,W,R,C ∪

{C1}).

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2,H,k,W,R,C ∪

{C2}).

(iii) No vertex from C1 ∪C2 belongs to the solution. In this case, we add all vertices

in {u}∪C1 ∪C2 to W. That is, the resulting instance is (G,H,k,W ∪ ({u}∪C1 ∪

C2),R\ ({u}∪C1∪C2),C).

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching

vector is (1,1,1).

Case 3.D. If v1 and v2 have neighbors in different connected components of G[W] and

u /∈ R. In this case, we branch as follows.

(i) u belongs to the solution. In this branch, we return (G−{u},H−{u},k−1,W,R∪

NH(u),C).

(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1,H,k,W,R,C ∪

{C1}).

84

(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2,H,k,W,R,C ∪

{C2}).

(iv) No vertex from {u}∪C1∪C2 belongs to the solution. In this case, we add all vertices

in {u}∪C1 ∪C2 to W. That is, the resulting instance is (G,H,k,W ∪ ({u}∪C1 ∪

C2),R\ ({u}∪C1∪C2),C).

Notice that in all the four branches µ decreases by 1, and therefore, the resulting branching

vector is (1,1,1,1).

u1

w′ w

u2

v

u1

w′ w

u2

v

N T

W

NT1 T2

W

(a) (b)

Figure 4.2: The cases handled by Branching Rule 3, In (a) T is a connected component in
G[W], similarly in (b) T1,T2 are connected components in G[W].

This completes the description of the algorithm. We are now ready to prove Theo-

rem 4.4.1.

Proof of Theorem 4.4.1. Let I = (G,H,k,W,R,C) be an instance of F -DCF-FVS, and n

be the (total) number of vertices in G and H. We prove the correctness of our algorithm by

induction on µ .

When µ ≤ 0, then Reduction Rule 5 or Reduction Rule 6, correctly resolve the given

instance of F -DCF-FVS. This forms the base case of our induction. For the induction

hypothesis, we assume that for some δ ∈ N, for each µ ≤ δ , the algorithm can correctly

resolve the instance. The algorithm either applies one of Reduction Rule 5 to 13 or one of

Branching Rule 1 to 3. Proposition 20 implies that either one of Reduction Rule 5 to 13

85

or Branching Rule 1 is applicable, or one of Branching Rule 2 to 3 is applicable. Each

of the reduction rules are safe, they do not increase the measure, and can be applied only

polynomially many times. Each of our branching rules are exhaustive, and in each of the

branches, the measure strictly decreases. If we apply the reduction rules (exhaustively),

either we completely resolve the instance correctly, or eventually apply a branching rule

(in polynomial number of application of reduction rules). If one of the branching rules

apply, then the measure strictly decreases, and then the induction hypothesis implies the

correctness of the algorithm. This concludes the proof of correctness of the algorithm.

In the following, we prove the claimed running time bound for the algorithm for F -

DCF-FVS. We note that the worst case branching vector is (1,1,1,1) (Branching Rule

3.D). And, whenever the measure drops below zero, we immediately resolve the instance

using one of our reduction rules in time bounded by f (k) · nO(1). The time required to

execute any of the reduction rules is bounded by f (k) ·nO(1). From the above discussions,

the running time of our algorithm is bounded by the following expression.

T (µ,n)≤ 4T (µ−1,n)+ f (µ)nO(1)

From the above expression, we obtain that the running time of our algorithm is bounded

by O(4k f (k) ·nO(1)). This concludes the proof.

4.5 FPT Algorithm for Ki, j-free+CLUSTER IS

In this section, we give an FPT algorithm for Ki, j-free+CLUSTER IS, which is the

F+CLUSTER IS where F is family of Ki, j-free graphs. Here, i, j ∈ N, 1≤ i≤ j. In the

following we consider a (fixed) family of Ki, j-free graphs. To design an FPT algorithm for

F+CLUSTER IS, we define another problem called LARGE Ki, j-free+CLUSTER IS. The

problem LARGE Ki, j-free+CLUSTER IS is formally defined below.

86

LARGE Ki, j-free+CLUSTER IS Parameter: k

Input: A Ki, j-free graph G, a cluster graph H (G and H are on the same vertex set),

and an integer k, such that the following conditions are satisfied: 1) H has exactly k

connected components, and 2) each connected component of H has at least kk vertices.

Question: Is there a set S⊆V (G) of size k such that S is an independent set in both G

and in H?

In Section 4.5.1, we design a polynomial time algorithm for the problem LARGE

Ki, j-free+CLUSTER IS. In the rest of this section, we show how to use the polynomial

time algorithm for LARGE Ki, j-free+CLUSTER IS to obtain an FPT algorithm for Ki, j-

free+CLUSTER IS.

Theorem 4.5.1. Ki, j-free+CLUSTER IS admits an FPT algorithm running in time O(kk2

nO(1)), where n is the number of vertices in the input graph.

Proof. Let (G,H,k) be an instance of Ki, j-free+CLUSTER IS, and let C = {C1,C2, · · · ,Ck}

be the set of connected components in H. If k ≤ 0, we can correctly resolve the instance in

polynomial time (by appropriately outputting yes or no answer). Therefore, we assume

k≥ 1. If for each C ∈ C , we have |V (C)| ≥ kk, then (G,H,k) is also an instance of LARGE

Ki, j-free+CLUSTER IS, and therefore we resolve it in polynomial time using the algorithm

for LARGE Ki, j-free+CLUSTER IS (Section 4.5.1). Otherwise, there is C ∈ C , such that

|V (C)|< kk. Any solution to Ki, j-free+CLUSTER IS in (G,H,k) must contain exactly one

vertex from C. Moreover, if a vertex v ∈V (C) is in the solution, then none of its neighbors

in G and in H can belong to the solution. Therefore, we branch on vertices in C as follows.

For each v∈V (C), create an instance Iv(G−(NH(v)∪NG(v)),H−(NH(v)∪NG(v)),k−1)

of Ki, j-free+CLUSTER IS. If number of connected components in H−N[C] is less than

k−1, then we call such an instance Iv as invalid instance, otherwise the instance is a valid

instance. Notice that for v ∈V (C), if Iv is an invalid instance, then v cannot belong to any

solution. Thus, we branch on valid instances of Iv, for v ∈V (C). Observe that (G,H,k)

is a yes-instance of Ki, j-free+CLUSTER IS if and only if there is a valid instance Iv, for

87

v ∈V (C), which is a yes-instance of Ki, j-free+CLUSTER IS. Therefore, we output the OR

of results obtained by resolving valid instances Iv, for v ∈V (C).

In the above we have designed a recursive algorithm for the problem Ki, j-free+CLUSTER

IS. In the following, we prove the correctness and claimed running time bound of the

algorithm. We show this by induction on the measure µ = k. For µ ≤ 0, the algorithm

correctly resolve the instance in polynomial time. This forms the base case of our induction

hypothesis. We assume that the algorithm correctly resolve the instance for each µ ≤ δ ,

for some δ ∈ N. Next, we show that the correctness of the algorithm for µ = δ +1. We

assume that k > 0, otherwise, the algorithm correctly outputs the answer. The algorithm

either correctly resolves the instance in polynomial time using the algorithm for LARGE

Ki, j-free+CLUSTER IS, or applies the branching step. When the algorithm resolves the

instance in polynomial time using the algorithm for LARGE Ki, j-free+CLUSTER IS, then

the correctness of the algorithm follows from the correctness of the algorithm for LARGE

Ki, j-free+CLUSTER IS. Otherwise, the algorithm applies the branching step. The branch-

ing is exhaustive, and the measure strictly decreases in each of the branches. Therefore,

the correctness of the algorithm follows form the induction hypothesis. This completes the

proof of correctness of the algorithm.

For the proof of claimed running time notice that the the worst case branching vector is

is given by the kk vector of all 1s, and at the leaves we resolve the instances in polynomial

time. Thus, the claimed bound on the running time of the algorithm follows.

4.5.1 Polynomial Time Algorithm for LARGE Ki, j-free+CLUSTER IS

Consider a (fixed) family of Ki, j-free graphs, where 1≤ i≤ j. The goal of this section is

to design a polynomial time algorithm for LARGE Ki, j-free+CLUSTER IS. Let (G,H,k)

be an instance of LARGE Ki, j-free+CLUSTER IS, where G is a Ki, j-free graph and H is a

cluster graph with k connected components. We assume that k > i+ j+2, as otherwise, we

88

can resolve the instance in polynomial time (using brute-force). Let C = {C1,C2, · · · ,Ck}

be the set of connected components in H, such that |V (C1)| ≥ |V (C2)| ≥ · · · ≥ |V (Ck)|.

We start by stating/proving some lemmata, which will be helpful in designing the

algorithm.

Lemma 21. [16] The number of edges in a Ki, j-free graph are bounded by n2−ε , where

ε = ε(i, j) ∈ (0,1].

Lemma 22. Let (G,H,k) be an instance of LARGE Ki, j-free+CLUSTER IS. There exists

v ∈V (C1), such that for each C ∈ C \{C1}, we have |NG(v)∩C| ≤ 2 j|C|
k .

Proof. Consider a connected component C ∈ C \ {C1}, and let x = |C1| and y = |C|.

Furthermore, let E(C1,C) = {uv ∈ E(G) | u ∈C1,v ∈V (C)}. In the following, we prove

some claims which will be used to obtain the proof of the lemma.

Claim 1. |E(C1,C)| ≤ jyi + jx.

Proof. Consider the partition of V (C1) in two parts, namely, C1
h and C1

` , where C1
h = {v ∈

V (C1) | |NG(v)∩V (C)| ≥ i} and C1
` =V (C1)\C1

h .

|E(C1,C)|= ∑
v∈C1

|NG(v)∩V (C)|

= ∑
v∈C1

h

|NG(v)∩V (C)|+ ∑
v∈C1

l

|NG(v)∩V (C)|.

By construction of C1
` , we have ∑v∈C1

`
|NG(v)∩V (C)| < ix. In the following, we bound

∑v∈C1
h
|NG(v)∩V (C)|. Since G is a Ki, j-free graph, therefore, any set of i vertices in V (C)

can have at most j−1 common neighbors (in G) from V (C1), and in particular from C1
h .

Moreover, every v∈C1
h has at least i neighbors in NG(v)∩V (C). Therefore, ∑v∈C1

h
|NG(v)∩

V (C)| ≤ i(j−1)
(y

i

)
. Hence, |E(C1,C)| ≤ i(j−1)

(y
i

)
+ ix≤ i(j−1)yi

i! + ix≤ jyi+ jx.

Let Adeg(C1,C) denote average degree of vertices in set C1 in G[E(C1,C)]. That is,

Adeg(C1,C) = |E(C1,C)|
|C1| . In the following claim, we give a bound on Adeg(C1,C).

89

Claim 2. Adeg(C1,C)≤ 2 jy
k2 .

Proof. From Claim 1, we have |E(C1,C)| ≤ jyi + jx. Therefore, Adeg(C1,C) ≤ j+ jyi

x .

Using Lemma 21, we have Adeg(C1,C)≤ (x+y)2−ε

x ≤ 4x1−ε . To prove the claim, us consider

the following cases:

Case 1. x ≥ k2yi−1. In this case, using the inequality Adeg(C1,C) ≤ j + jyi

x , we have

Adeg(C1,C)≤ j+ jy
k2 . Since y > k2 (and k > 5), we have Adeg(C1,C)≤ 2 jy

k2 .

Case 2. x < k2yi−1. In this case, we use the inequality Adeg(C1,C) ≤ 4x1−ε , to obtain

Adeg(C1,C)< 4k2(1−ε)y(i−1)(1−ε) < 4k2y
y(2−i)+ε(i−1) . Since y≥ kk, we have y(2−i)+ε(i−1) > 2k4

j .

Therefore, we have Adeg(C1,C)< 2 jy
k2 .

In the following, we will give a probabilistic argument on the existence of a vertex with

the desired properties in the lemma statement. For v ∈V (C1), let deg(v,C) denote the size

of |NG(v)∩V (C)|. From Claim 2, we have Adeg(C1,C)≤ 2 jy
k2 . Using Markov’s inequality,

the upper bound on the probability that deg(v,C)≥ 2 jy
k is P(deg(v,C)≥ 2 jy

k)≤ 1
k . Using

Boole’s inequality (the union bound), the probability that deg(v,C) is greater than or equal

to 2 j|C|
k for at least one C ∈ C \ {C1} is bounded by P(∪C∈C \{C1}deg(v,C) ≥ 2 j|C|

k) ≤
1
k .(k−1)< 1. This implies that probability that deg(v,C)≤ 2 j|C|

k , for each C ∈ C \{C1}

is greater than 0. This completes the proof.

We are now ready to describe our algorithm, which is given in Algorithm 1.

Lemma 23. Algorithm 1 for LARGE Ki, j-free+CLUSTER IS is correct and runs in polyno-

mial time.

Proof. We first prove the correctness of the algorithm using induction on, t. The base case

is when 1≤ t ≤ 2 j. The algorithm correctly resolve the instance using brute force. For

the induction hypothesis, we assume that the algorithm is correct for each t ≤ d−1. Next,

we show that the algorithm is correct for t = d. Let C1, · · · ,Cd be the set of connected

90

Algorithm 1 (G,H,k) : Greedy algorithm for LARGE Ki, j-free+CLUSTER IS

1: t = k and S = /0;
2: while t > 2 j do
3: Let C1, · · · ,Ct be the connected components of H, sorted in decreasing order of

their sizes;
4: Let v ∈V (C1) be a vertex which satisfies the condition of Lemma 22;
5: Add v to S;
6: Decrease t by 1;
7: G = G− (NG(v)∪NH [v]) and H = H− (NG(v)∪NH [v]);
8: end while
9: Solve (G,H, t) by a brute force algorithm, as t ≤ 2 j;

components in H, sorted in decreasing order of their sizes. By Lemma 22, there is v ∈C1,

such that for each C ∈ C \{C1}, we have deg(v,C)≤ 2 j|C|
d .

We delete all vertices in NH [v]∪NG(v) from G and H. Observe that from each C ∈

C \ {C1}, we have deleted at most 2 j|C|
d vertices, which are neighbors of v in G. Let

C′ =C \ (NH [v]∪NG(v)) =C \NG(v). It is enough to show that |C′| ≥ (d−1)(d−1). Note

that |C′| ≥ |C|− 2 j|C|
d . As base case is not applicable, we can assume that d > 2 j. Hence,

|C′| ≥ |C|(1− 2 j
d)≥ dd(1− 2 j

d)≥ dd−1(d−2 j)≥ (d−1)(d−1).

This concludes the proof of correctness of the algorithm. At each step we either sort

the components on the basis of their size or find a vertex of lower degree which can be

carried out in polynomial time, or solve the instance using brute force approach, where

the solution size we are seeking for is bounded by a constant (at most 2 j). Moreover, the

algorithm terminates after at most k iterations. Thus, the running time of the algorithm is

bounded by a polynomial in the size of the input.

Using Lemma 23, we obtain the following theorem.

Theorem 4.5.2. The problem LARGE Ki, j-free+CLUSTER IS admits a polynomial time

algorithm.

91

4.6 Conclusion

In this chapter we studied the F -CF-FVS problem, which is a conflict-free variant of

FVS where H belongs the class F . We obtained a complete dichotomy result on the

Parameterized Complexity of the problem F -CF-FVS, when F is a hereditary graph

family by relating F -CF-FVS to the INDEPENDENT SET problem on special classes of

graphs. In particular, we showed that F -CF-FVS is FPT parameterized by the solution

size if and only if F+CLUSTER IS is FPT parameterized by the solution size. Here,

F+CLUSTER IS is the INDEPENDENT SET problem in the (edge) union of a graph

G ∈F and a cluster graph H (G and H are explicitly given). Next, we exploited this

characterization to obtain new FPT results as well as intractability results for F -CF-FVS.

We gave an FPT algorithm for F+CLUSTER IS when F is the family of Ki, j-free graphs.

We showed that for the family of bipartite graph B, B-CF-FVS is W[1]-hard, when

parameterized by the solution size. Finally, we considered, for each 0 < ε < 1, the family

of graphs Fε , which comprise of graphs G such that |E(G)| ≤ |V (G)|2−ε , and showed that

Fε -CF-FVS is W[1]-hard, when parameterized by the solution size, for every 0 < ε < 1.

92

Chapter 5

Exploring the Kernelization Borders for

Hitting Cycles

5.1 Introduction

The quest for designing polynomial kernels for “hitting cycles” in undirected graphs

has played significant role in advancing the field of polynomial time pre-processing –

kernelization. Hitting all cycles, odd cycles and even cycles correspond to well studied

problems of FEEDBACK VERTEX SET (FVS), ODD CYCLE TRANSVERSAL (OCT) and

EVEN CYCLE TRANSVERSAL (ECT), respectively. Alternatively, FVS, OCT and ECT

correspond to deleting vertices such that the resulting graph is a forest, a bipartite graph

and an odd cactus graph, respectively. All these problems, FVS, OCT, and ECT, have

been extensively studied in parameterized algorithms and kernelization.

The earliest known FPT algorithms for FVS go back to the late 80’s and the early

90’s [13, 43] and used the seminal Graph Minor Theory of Robertson and Seymour. On the

other hand the Parameterized Complexity of OCT was open for long time. Only, in 2003,

Reed et al. [102] gave a 3knO(1) time algorithm for OCT. This is also the paper which

93

introduced the method of iterative compression to the field of Parameterized Complexity.

However, the existence of polynomial kernel, for FVS and OCT were open questions

for long time. For FVS, Burrage et al. [18] resolved the question in the affirmative

by designing a kernel of size O(k11). Later, Bodlaender [14] reduced the kernel size

to O(k3), and finally Thomassé [105] designed a kernel of size O(k2). The kernel of

Thomassé [105] is best possible under a well known complexity theory hypothesis. It is

important to emphasize that [105] popularized the method of expansion lemma, one of

the most prominent approach in designing polynomial kernels. While, the kernelization

complexity of FVS was settled in 2006, it took another 6 years and a completely new

methodology to design polynomial kernel for OCT. Kratsch and Wahlström [71] resolved

the question of existence of polynomial kernel for OCT by designing a randomized kernel

of size O(k4.5) using matroid theory.1 As a counterpart to OCT, Misra et al. [92] studied

ECT and designed an O(k3) kernel.

Fruitful and productive research on FVS and OCT have led to the study of several

variants and generalizations of FVS and OCT. Some of these admit polynomial kernels

and for some one can show that none can exist, unless some unlikely collapse happens in

complexity theory. In this chapter we study the kernelization complexity of the conflict-free

generalization of FVS, and OCT, which we defined in previous chapters. We recall the

problems here.

CONFLICT FREE FEEDBACK VERTEX SET (CF-FVS) Parameter: k

Input: An undirected graph G, a conflict graph H on vertex set V (G) and a non-

negative integer k.

Question: Does there exist S⊆V (G), such that |S| ≤ k, G−S is a forest and H[S] is

edgeless?

One can similarly define CONFLICT FREE ODD CYCLE TRANSVERSAL (CF-OCT).

In previous chapters we observed that, if one wants to model “independent” version of

1This foundational paper has been awarded the Nerode Prize for 2018.

94

these problems (where the solution is suppose to be an independent set), then one takes

conflict graph to be same as the input graph. We also observed that these problems are

W[1]-hard on general graphs, a simple reduction from MULTICOLOR INDEPENDENT SET

with each color class being modeled as cycle and the conflict graph being the input graph.

Next, we studied the question that: when does the problem become FPT? To state the

question formally, we let G and H be two families of graphs. Then, (G ,H)-CF-FVS is

same problem as CF-FVS, but the input graph G and the conflict graph H are restricted to

belong to G and H , respectively. It immediately brings several questions: (a) for which

pairs of families the problem is FPT; (b) can we obtain some kind of dichotomy results; and

(c) what could we say about the kernelization complexity of the problem. We believe that

answering these questions for basic problems such as FVS, OCT, and DOMINATING SET

will extend both the tractability as well as intractability tools in Parameterized Complexity

and lead to some fruitful and rewarding research.

A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most

d. For a fixed positive integer d, let Dd denote the set of graphs of degeneracy at most

d. In this chapter we study the (?,Dd)-CF-FVS (Dd-CF-FVS) problem. The symbol

? denotes that the input graph G is arbitrary. One can similarly define Dd-CF-OCT. In

fact, we study, CF-OCT for a very restricted family of conflict graphs, a family of disjoint

union of paths of length at most three and at most two star graphs. We denote this family

as P??
≤3 and this variant of CF-OCT as P??

≤3-CF-OCT.

In the previos chapters we studied conflict-free graph modification problems in the

realm of Parameterized Complexity. We also gave FPT algorithms for Dd-CF-FVS,

Dd-CF-OCT and Dd-CF-ECT using the independence covering families [81]. We also

gave FPT algorithms for these problems when the conflict graph belongs to nowhere dense

graphs. In this chapter we focus on the kernelization complexity of Dd-CF-FVS, and

P??
≤3-CF-OCT obtain the following results.

1. Dd-CF-FVS admits a O(kO(d)) kernel.

95

2. P??
≤3-CF-OCT does not admit polynomial kernel, unless NP⊆ coNP

poly .

Note that D0 denotes edgeless graphs and hence D0-CF-FVS, and D0-CF-OCT are

essentially FVS, and OCT, respectively. Thus, any polynomial kernel for Dd-CF-FVS,

and P??
≤3-CF-OCT, must generalize the known kernels for these problems. We remark

that the above result imply that CF-FVS admits polynomial kernels, when the conflict

graph belong to several well studied graph families, such as planar graphs, graphs of

bounded degree, graphs of bounded treewidth, graphs excluding some fixed graph as a

minor, a topological minor and graphs of bounded expansion etc. (all these graphs classes

have bounded degeneracy).

Strategy for CF-FVS. Our kernelization algorithm for CF-FVS consists of the following

two steps. The first step of our kernelization algorithm is a structural decomposition of the

input graph G. This does not depend on the conflict graph H. In this phase of the algorithm,

given an instance (G,H,k) of CF-FVS we obtain an equivalent instance (G′,H ′,k′) of

CF-FVS such that:

• The minimum degree of G′ is at least 2.

• The number of vertices of degree at least 3 in G′ is upper bounded by O(k3). Let

V≥3 denote the set of vertices of degree at least 3 in G′.

• The number of maximal degree 2 paths in G′ is upper bounded by O(k3). That is,

G′−V≥3 consists of O(k3) connected components where each component is a path.

We obtain this structural decomposition using reduction rules inspired by the quadratic

kernel for FVS [105]. As stated earlier, this step can be performed for any graph H. Thus

the problem reduces to designing reduction rules that bound the number of vertices of

degree 2 in the reduced graph. Note that we cannot do this for any arbitrary graph H as

the problem is W[1]-hard. Once the decomposition is obtained we cannot use the known

reduction rules for FVS. This is for a simple reason that in G′ the only vertices that are

96

not bounded have degree exactly 2 in G′. On the other hand for FVS we can do simple

“short-circuit” of degree 2 vertices (remove the vertex and add an edge between its two

neighbors) and assume that there is no vertices of degree two in the graph. So our actual

contributions start here. The second step of our kernelization algorithm bounds the degree

two vertices in the graph G′. Here we must use the properties of the graph H. We propose

new reduction rules for bounding degree two vertices, when H belongs to the family of

d-degenerate graphs. Towards this we use the notion of d-degeneracy sequence, which is

an ordering of the vertices in H such that any vertex can have at most d forward neighbors.

This is used in designing a marking scheme for the degree two vertices. Broadly speaking

our marking scheme associates a set with every vertex v. Here, set consists of “ paths and

cycles of G′ on which the forward neighbors of v are”. Two vertices are called similar if

their associated sets are same. We show that if some vertex is not marked, then we can

safely contract this vertex to one of its neighbors. We then upper bound the degree two

vertices by O(kO(d)dO(d)), and thus obtain a kernel of this size for Dd-CF-FVS.

At the heart of our kernelization algorithm is a combinatorial tool of “k-independence

preserver”. Informally, it is a set of “important” vertices for a given subset X ⊆V (H), that

is enough to capture the independent set property in H. We show that for d-degenerate

graph independence preserver of size kO(d) exists, and can be used in designing polynomial

kernel. This is our main conceptual contribution.

Strategy for CF-OCT. The kernelization lower bound is obtained by the method of cross-

composition [15]. We first define a conflict version of the s-t-CUT problem, where H

belongs to P??
≤3. Then, we show that the problem is NP-hard and cross composes to itself.

Finally, we give a parameter preserving reduction from the problem to P??
≤3-CF-OCT,

and obtain the desired kernel lower bound.

97

5.2 Preliminaries

Throughout the chapter, we follow the following notions. Let G be a graph, V (G) and

E(G) denote the vertex set and the edge set of graph G, respectively. Let n and m denote

the number of vertices and the number of edges of G, respectively. Let G be a graph and

X ⊆V (G), then G[X] is the graph induced on X and G−X is graph G induced on V (G)\X .

Let ∆ denotes the maximum degree of graph G. We use NG(v) to denote the neighborhood

of v in G and NG[v] to denote NG(v)∪{v}. Let E ′ be subset of edges of graph G, by G[E ′]

we mean the graph with the vertex set V (G) and the edge set E ′. Let X ⊆ E(G), then G−X

is a graph with the vertex set V (G) and the edge set E(G)\X . Let Y be a set of edges on

vertex set V (G), then G∪Y is graph with the vertex set V (G) and the edge set E(G)∪Y .

Degree of a vertex v in graph G is denoted by degG(v). For an integer `, we denote the set

{1,2, . . . , `} by [`]. A path P = {v1, . . . ,vn} is an ordered collection of vertices such that

there is an edge between every consecutive vertices in P and v1,vn are endpoints of P. For

a path P by V (P) we denote set of vertices in P and by E(P) we denote set of edges in

P. A cycle C = {v1, . . . ,vn} is a path with an edge v1vn. We define a maximal degree two

induced path in G as an induced path of maximal length such that all vertices in path are of

degree exactly two in G. An isolated cycle in graph G is defined as an induced cycle whose

all the vertices are of degree exactly two in G. Let G′ and G be graphs, V (G′)⊆V (G) and

E(G′)⊆ E(G), then we say that G′ is a subgraph of G. The subscript in the notations will

be omitted if it is clear from the context.

A graph G has degeneracy d if every subgraph of G has a vertex of degree at most

d. An ordering of vertices σ : V (G)→ {1, · · · ,n} is is called a d-degeneracy sequence

of graph G, if every vertex v has at most d neighbors u with σ(u)> σ(v). A graph G is

d-degenerate if and only if it has a d-degeneracy sequence. For a vertex v in d-degenerate

graph G, the neighbors of v which comes after (before) v in d-degeneracy sequence are

called forward (backward) neighbors of v in the graph G. Given a d-degenerate graph, we

can find d-degeneracy sequence in linear time [87].

98

5.3 A Tool for Our Kernelization Algorithm

In this section, we give a tool, which we believe might be useful in obtaining kernelization

algorithm for “conflict-free” versions of various parameterized problems (admitting ker-

nels), when the conflict graph belongs to the family of d-degenerate graphs. We particularly

use this tool to obtain kernel for Dd-CF-FVS (Section 5.4). For a parameterized problem

Π, consider an instance (G,H,k) of its conflict-free variant, CONFLICT-FREE Π. Then

in the kernelization step where we want to bound the number of vertices, it is seemingly

useful to be able to obtain a set of “important” vertices for a given subset X ⊆V (H) that

will be enough to capture the independent set property in H. The above intuition becomes

clear when we describe the kernelization algorithm for Dd-CF-FVS.

To formalize the notion of “important” set of vertices, we give the following definition.

Definition 12. For a d-degenerate graph H and a set X ⊆V (H), a k-independence preserver

for (H,X) is a set X ′⊆ X , such that for any independent set S in H of size at most k, if there

is v ∈ (S∩X)\X ′, then there is v′ ∈ X ′ \S, such that (S\{v})∪{v′} is an independent set

in H.

Throughout this section, we work with a (fixed) d, which is the degeneracy of the

input graph. The goal of this section will be to obtain an algorithm for computing a

k-independence preserver for (H,X) of “small” size. To quantify the “small” size, we need

the following definition.

Definition 13. For each q ∈ [d], we define an integer nq as follows.

1. If q = 1, then nq = kd + k+1, and

2. nq = knq−1 + kd + k+1, otherwise.

Next, we formally define the problem for which we want to design a polynomial time

algorithm. We call this problem d-BOUNDED INDEPENDENCE PRESERVER (d-BIP, for

short).

99

d-BOUNDED INDEPENDENCE PRESERVER (d-BIP)

Input: A d-degenerate graph H, a set X ⊆V (H), and an integer k.

Output: A set X ′ ⊆ X of size at most nd+1, such that X ′ is a k independence preserver

for (H,X).

In the following, let (H,X ,k) be an instance of d-BIP. We work with a (fixed) d-

degeneracy sequence, σ of H. We recall that such a sequence can be computed in

polynomial time [87]. Forward and backward neighbors of a vertex v are also defined

with respect to the ordering σ . If σ(u)< σ(v), then u is a backward neighbor of v and v

is a forward neighbor of u. By N f
H(v) (N

b
H(v)) we denote the set of forward (backward)

neighbors of the vertex v in H.

To design our polynomial time algorithm for d-BIP, we need the notion of q-reducible

sets, which is formally defined below.

Definition 14. A set Y ⊆V (H) is q-reducible, if for every set U ⊆ Y , for which there is a

set Z ⊆V (H), such that: (i) Z is of size exactly d−q+1 and (ii) for each u ∈U , we have

Z ⊆ N f
H(u), it holds that |U | ≤ nq.

Now, we give our polynomial time algorithm for d-BIP in Algorithm 2.

To prove the correctness of our algorithm, we state the following easy observation, the

proof of which follows from the fact that any vertex can have at most d forward neighbors

in H.

Observation 5.3.1. Let H be a d-degenerate graph and S be an independent set of H of

size at most k. Then, for any set U ⊆V (H), such that for each vertex u ∈U, Nb
H(u)∩S 6= /0,

we have that |U | ≤ kd.

Now we are ready to prove the correctness of our algorithm (Algorithm 2) for d-BIP.

Lemma 24. Algorithm 2 is correct.

100

Algorithm 2 Algo1(H,X)

Input: d-degenerate graph H, X ⊆V (H), and an integer k.
Output: X ′ ⊆ X of size at most nd+1, which is a k-independence preserver of (H,X).

1: For q ∈ [d], set nq = kd +1, when q = 1, and nq = knq−1 + kd + k+1, otherwise.
2: q = 1.
3: while q≤ d do
4: while X is not q-reducible do
5: Find U ⊆X of size nq+1, for which there is Z⊆V (H) of size exactly d−q+1,

such that for each u ∈U , we have Z ⊆ N f
H(u).

6: Let v be an arbitrary vertex in U .
7: X = X \{v}.
8: end while
9: q = q+1.

10: end while
11: while |X |> nd+1 do
12: Let v be an arbitrary vertex in X .
13: X = X \{v}.
14: end while
15: Set X ′ = X .
16: return X ′

Proof. Let (H,X ,k) be an instance of d-BIP, and X ′ be the output returned by Algorithm 2

with it as the input. Clearly, X ′ ⊆ X as we do not add any new vertex to obtain the set X ′,

and size of X ′ is bounded by nd+1, since at Step 10-13 of the algorithm we reduce its size

to (at most) nd+1. Therefore, it remains to show that X ′ is a k-independence preserver of

(H,X). To this end, we consider the following cases.

Case 1: X is q-reducible, for each q ∈ [d]. In this case, the algorithm arbitrarily deletes

vertices (if required) from X to obtain X ′. If X = X ′, then the claim trivially holds.

Therefore, we assume that X ′ is a strict subset of X . To show that X ′ is a k-independence

preserver for (H,X), consider an independent set S in H of size at most k. Furthermore,

consider a vertex v∈ (S∩X)\X ′ (again, if such a vertex does not exists, the claim follows).

To prove the desired result, we want to find a replacement vertex for v in X ′ which can

be added to S (after removing v) to obtain an independent set in H. To this end, we mark

some vertices in X ′. Firstly, mark all the forward neighbors of each s ∈ S in the set X ′.

That is, we let X ′M to be the set (∪s∈SN f
H(s))∩X ′. Also, we add all vertices in S∩X ′ to

101

the set X ′M. By the property of d-degeneracy sequence, we have that |X ′M| ≤ kd + k (see

Observation 5.3.1). Next, we will mark some more vertices in X ′M with the hope to find

a replacement vertex for v in X ′ \X ′M to add to S. Recall that by our assumption X is

q-reducible, for each q ∈ [d], and in particular, it is d-reducible. Thus, for each s ∈ S, the

set Xs = {x ∈ X | s ∈ N f
H(x)} ⊆ X has size at most nd . Based on the above observation,

we describe our second level of marking of vertices in X ′. For each s ∈ S, we add each

vertex in Us to X ′M. From the discussions above, we have that |X ′M| ≤ kd + k+ knd . Since

|X ′|= nd+1, and by definition, nd+1 = knd + kd + k+1, we have X ′ \X ′M 6= /0. Moreover,

no vertex in X ′ has a neighbor in S \ {v}. Therefore, for v′ ∈ X ′ \ X ′M, we have that

S′ = (S\{v})∪{v′} is an independent set in H.

Case 2: X is not q-reducible, for some q ∈ [d]. Let q′ be the smallest integer for which

X is not q′-reducible. Since X is not q′-reducible, there is a set U ⊆ X of size at least

nq + 1, for which there is a set Z ⊆ V (H) of size exactly d− q+ 1, such that for each

u ∈ U , we have Z ⊆ N f
H(u). Consider (first) such pair of sets U,Z considered by the

algorithm in Step 4. Furthermore, let v ∈U be the vertex deleted by the algorithm in Step

6. Let Û = U \ {v}. To prove the claim, it is enough to show that for an independent

set S of size at most k containing v in H, there is v′ ∈ Û such that (S \ {v})∪{v′} is

an independent set in H. Here, we will use the fact that deleting a vertex from a set

does not change a set from being q̃-reducible to a set which is not q̃-reducible, where

q̃ ∈ [d]. In the following, consider an independent set S of size at most k containing v in

H. We construct a marked set ÛM, of vertices in Û . Firstly, we add all the vertices in

(∪s∈S\{v}N
f

H(s))∩Û to ÛM. Also, we add all vertices in S∩Û to ÛM. Notice that at the end

of above marking scheme, we have |X̂M| ≤ kd + k. We will mark some more vertices in Û .

Before stating the second level of marking, we remark that S∩Z = /0. For each s ∈ S\{v},

let Zs = Z∪{s}. Since S∩Z = /0, we have that |Zs|= d− (q−1)+1. For s ∈ S\{v}, let

Ûs = {u ∈ Û | Zs ⊆ N f
H(u)}. Since X is q∗-reducible for each q∗ ≤ q′, we have |Ûs| ≤ nq−1,

for each s ∈ S \ {v}. Now we are ready to describe our second level of marking. For

each s ∈ S \{v}, add all vertices in Us to the set ÛM. Notice that |ÛM| ≤ kd + k+ knq−1.

102

Moreover, |Û | ≥ nq and nq = knq−1 +kd+k+1. Thus, there is a vertex v′ ∈ Û \ÛM, such

that (S\{v})∪{v′} is an independent set in H.

Lemma 25. Algorithm 2 runs in time nO(d).

Proof. Let (H,X ,k) be an instance of d-BIP, and σ be a (fixed) d-degeneracy sequence

of H (which can computed in polynomial time [87]). Using σ , for each v ∈ X , we can

find N f
H(v) in the polynomial time. For each set of size at most d +1, we can find all the

vertices in V (H) that have all of them in their neighborhood in polynomial time. Thus,

Step 4 of the algorithm can be executed in polynomial time (for fixed d). Also, all the other

steps of the algorithm can be performed in time nO(d) time. This completes the proof.

Using Lemma 24 and Lemma 25 we obtain the following theorem.

Theorem 5.3.2. d-BOUNDED INDEPENDENCE PRESERVER admits an algorithm running

in time nO(d).

5.4 A Polynomial Kernel for Dd-CF-FVS

In this section, we design a kernelization algorithm for Dd-CF-FVS. To design a ker-

nelization algorithm for Dd-CF-FVS, we define another problem called F -DISJOINT

CONFLICT FREE FEEDBACK VERTEX SET (F -DCF-FVS, for short). We first define the

problem F -DCF-FVS formally, and then explain its uses in our kernelization algorithm.

103

F -DISJOINT CONFLICT FREE FEEDBACK VERTEX SET (F -DCF-FVS)

Input: An undirected graph G, a graph H ∈ Dd such that V (G) = V (H), a subset

R⊆V (G), and a non-negative integer k.

Parameter: k

Question: Is there a set S⊆V (G)\R of size at most k, such that G−S does not have

any cycle and S is an independent set in H?

Notice that Dd-CF-FVS is a special case of F -DCF-FVS, where R = /0. Given an

instance of Dd-CF-FVS, the kernelization algorithm creates an instance of F -DCF-FVS

by setting R = /0. Then it applies a kernelization algorithm for F -DCF-FVS. Finally, the

algorithm takes the instance returned by the kernelization algorithm for F -DCF-FVS and

generates an instance of Dd-CF-FVS. Before moving forward, we note that the purpose

of having set R is to be able to prohibit certain vertices to belong to a solution. This

is particularly useful in maintaining the independent set property of the solution, when

applying reduction rules which remove vertices from the graph (with an intention of it

being in a solution).

We first focus on designing a kernelization algorithm for F -DCF-FVS, and then

give a polynomial time linear parameter preserving reduction from F -DCF-FVS to Dd-

CF-FVS. If the kernelization algorithm for F -DCF-FVS returns that (G,H,R,k) is a

yes (no) instance of F -DCF-FVS, then conclude that (G,H,k) is a yes (no) instance of

Dd-CF-FVS.In the following, we describe a kernelization algorithm for F -DCF-FVS.

Let (G,H,R,k) be an instance of F -DCF-FVS. The algorithm starts by applying the

following simple reduction rules.

Reduction Rule 14.

(a) If k ≥ 0 and G is acyclic, then return that (G,H,R,k) is a yes-instance of F -DCF-

FVS.

(b) Return that (G,H,R,k) is a no-instance of F -DCF-FVS, if one of the following

104

conditions is satisfied:

(i) k ≤ 0 and G is not acyclic,

(ii) G is not acyclic and V (G)⊆ R, or

(iii) There are more than k isolated cycles in G.

Reduction Rule 15.

(a) Let v be a vertex of degree at most 1 in G. Then delete v from the graphs G,H and the

set R.

(b) If there is an edge in G (H) with multiplicity more than 2 (more than 1), then reduce

its multiplicity to 2 (1).

(c) If there is a vertex v with self loop in G. If v /∈ R, delete v from the graphs G and

H, and decrease k by one. Furthermore, add all the vertices in NH(v) to the set R,

otherwise return that (G,H,R,k) is a no-instance of F -DCF-FVS.

(d) If there are parallel edges between (distinct) vertices u,v ∈V (G) in G:

(i) If u,v ∈ R, then return that (G,H,R,k) is a no-instance of F -DCF-FVS.

(ii) If u ∈ R (v ∈ R), delete v (u) from the graphs G and H, and decrease k by one.

Furthermore, add all the vertices in NH(v) (NH(u)) to the set R.

It is easy to see that the above reduction rules are correct, and can be applied in

polynomial time. In the following, we define some notion and state some known results,

which will be helpful in designing our next reduction rules.

Definition 15. For a graph G, a vertex v ∈V (G), and an integer t ∈ N, a t-flower at v is a

set of t vertex disjoint cycles whose pairwise intersection is exactly {v}.

Proposition 12. [29, 90, 105] For a graph G, a vertex v ∈V (G) without a self-loop in G,

and an integer k, the following conditions hold.

105

(i) There is a polynomial time algorithm, which either outputs a (k+1)-flower at v, or

it correctly concludes that no such (k+ 1)-flower exists. Moreover, if there is no

(k+1)-flower at v, it outputs a set Xv ⊆V (G)\{v} of size at most 2k, such that X

intersects every cycle passing through v in G.

(ii) If there is no (k+1)-flower at v in G and the degree of v is at least 4k+(k+2)2k.

Then using a polynomial time algorithm we can obtain a set Xv ⊆V (G)\{v} and a

set Cv of components of G[V (G)\ (Xv∪{v})], such that each component in Cv is a

tree, v has exactly one neighbor in C ∈ Cv, and there exist at least k+2 components

in Cv corresponding to each vertex x ∈ Xv such that these components are pairwise

disjoint and vertices in Xv have an edge to each of their associated components.

Reduction Rule 16. Consider v ∈V (G), such that there is a (k+1)-flower at v in G. If

v ∈ R, then return that (G,H,R,k) is a no-instance of F -DCF-FVS. Otherwise, delete v

from G,H and decrease k by one. Furthermore, add all the vertices in NH(v) to R.

The correctness of above reduction rule follows from the fact that such a vertex must

be part of every solution of size at most k. Moreover, the applicability of it in polynomial

time follows from Proposition 12 (item (i)).

Reduction Rule 17. Let v ∈ V (G), Xv ⊆ V (G) \ {v}, and Cv be the set of components

which satisfy the conditions in Proposition 12(ii) (in G), then delete edges between v and

the components of the set Cv, and add parallel edges between v and every vertex x ∈ Xv in

G.

The polynomial time applicability of Reduction Rule 17 follows from Proposition 12.

And, in the following lemma, we prove the safeness of this reduction rule.

Lemma 26. Reduction Rule 17 is safe.

Proof. Let (G,H,R,k) be an instance of F -DCF-FVS. Furthermore, let v ∈V (G), Xv ⊆

V (G), and Cv be the tuple for which the conditions of Reduction Rule 17 are satisfied, and

106

(G′,H,R,k) be the instance resulting after application of the reduction rule. We prove that

(G,H,R,k) is a yes-instance of F -DCF-FVS if and only if (G′,H,R,k) is a yes-instance

of F -DCF-FVS.

In the forward direction, let (G,H,R,k) be a yes-instance of F -DCF-FVS and S be one

of its solution. We claim that S is also a solution of F -DCF-FVS for (G′,H,R,k). Suppose

not, then G′−S must contains a cycle as the conflict graphs in both the instances are the

same. Observe that G−{v} is identical to G′−{v}, and G′−Xv is a subgraph of G−Xv,

therefore, if either v ∈ S or Xv ⊆ S, then S is a solution of F -DCF-FVS for (G′,H,R,k).

Next, we assume that neither v /∈ S, nor Xv * S. For x ∈ X , let Wx ⊆ Cv be the set of

components associated with x, which is obtained by the algorithm in Proposition 12(ii).

Observe that, there are at least k+2 disjoint paths from v to each x ∈ Xv passing through

components in Wx in the graph G. Since S is of size at most k, there are at least two (distinct)

connected components say C1,C2 in Wx such that v,x together with C1,C2 creates a cycle

in G−S. This is a contradiction to S being a solution of F -DCF-FVS for (G,H,R,k).

In the reverse direction, let (G′,H,R,k) be a yes-instance of F -DCF-FVS and S′ be

one of its solution. Observe that for each vertex x ∈ Xv, we have parallel edges between

v and x in G′, therefore either v ∈ S′ or Xv ⊆ S′. As observed before G−{v} is identical

to G′−{v}, therefore if v ∈ S′ then S′ is also a solution of F -DCF-FVS in (G,H,R,k).

Next we assume that Xv ⊆ S′. Observe that edges incident to v and a vertex in some

components in Cv are cut edges in G−Xv, by Proposition 12(ii), and hence they do not

participate in any cycle in G−Xv. This concludes that S′ is a solution of F -DCF-FVS for

(G,H,R,k).

In the following state an easy observation, which follows from non-applicability of

Reduction Rule 14 to 17.

Observation 5.4.1. Let (G,H,R,k) be an instance of F -DCF-FVS, where none of

Reduction Rule 14 to 17 apply. Then the degree of each vertex in G is bounded by O(k2).

107

To design our next reduction rule, we construct an auxilary graph G?. Intuitively

speaking, G? is obtained from G by shortcutting all degree two vertices. That is, vertex set

of G? comprises of all the vertices of degree at least three in 3. From now on, vertices of

degree at least 3 (in G) will be refereed to as high degree vertices. For high degree vertex

v ∈ G. For each uv ∈ E(G), where u,v are high degree vertices, we add the edge uv in

G?. Furthermore, for an induced maximal path Puv, between u and v where all the internal

vertices of Puv are degree two vertices in G, we add the (multi) edge uv to E(G?). Next,

we will use the following result to bound the number of vertices and edges in G?.

Proposition 13. [29] A graph G with minimum degree at least 3, maximum degree ∆, and

a feedback vertex set of size at most k has at most (∆+1)k vertices and 2∆k edges.

The above result (together with the construction of G?) gives us the following (safe)

reduction rule.

Reduction Rule 18. If |V (G?)| ≥ 4k2 +2k2(k+2) or |E(G?)| ≥ 8k2 +4k2(k+2), then

return no.

Lemma 27. Let (G,H,R,k) be an instance of F -DCF-FVS, where none of the Reduction

Rules 14 to 18 are applicable. Then we obtain the following bounds:

• The number of vertices of degree at least 3 in G is bounded by O(k3).

• The number of maximal degree two induced paths in G is bounded by O(k3).

Having shown the above bounds, it remains to bound the number of degree two vertices

in G. We start by applying the following simple reduction rule to eliminate vertices of

degree two in G, which are also in R.

Reduction Rule 19. Let v ∈ R, dG(v) = 2, and x,y be the neighbors of v in G. Delete v

from the graphs G,H and the set R. Furthermore, add the edge xy in G.

108

The correctness of this reduction rule follows from the fact that vertices in R cannot be

part of any solution and all the cycles passing through v also passes through its neighbors.

In the polynomial kernel for the FEEDBACK VERTEX SET problem (with no conflict

constraints), we can short-circuit degree two vertices. But in our case, we cannot perform

this operation, since we also need the solution to be an independent set in the conflict

graph. Thus to reduced the number of degree two vertices in G, we exploit the properties

of a d-degenerate graph. To this end, we use the tool that we developed in Section 5.3.

This immediately gives us the following reduction rule.

Reduction Rule 20. Let P be a maximal degree two induced path in G. If |V (P)| ≥

nd+1 + 1, apply Algorithm 2 with input (H,V (P) \R). Let V̂ (P) be the set returned by

Algorithm 2. Let v ∈ (V (P)\R)\V̂ (P), and x,y be the neighbors of v in G. Delete v from

the graphs G,H. Furthermore, add edge xy in G.

Lemma 28. Reduction Rule 20 is safe.

Proof. Let (G,H,R,k) be an instance of F -DCF-FVS and v be a vertex in a maximal

degree two path P with neighbors x and y, with respect to which Reduction Rule 28 is

applied. Furthermore, let (G′,H ′,R,k) be the resulting instance after application of the

reduction rule. We will show that (G,H,R,k) is a yes-instance of F -DCF-FVS if and

only if (G′,H ′,R,k) is a yes-instance of F -DCF-FVS.

In the forward direction, let (G,H,R,k) be a yes-instance of F -DCF-FVS and S be

one of its minimal solution. Consider the case when v /∈ S. In this case, we claim that S

is also a solution of F -DCF-FVS for (G′,H ′,R,k). Suppose not then either S is not an

independent set in H ′ or G′−S contains a cycle. Since, H ′ is an induced subgraph of H,

we have that S′ is also an independent set in H ′. So we assume that G′−S has a cycle, say

C. If C does not contain the edge xy, then C is also a cycle in G−S. Therefore, we assume

that C contains the edge xy. Bu then (C \ {xy})∪{xv,vy} is a cycle in G− S. Next, we

consider the case when v ∈ S. By Lemma 24 we have a vertex v′ ∈V (P)\{v} such that

109

(S \{v})∪{v′} is an independent set in H ′. By using the fact that any cycle that passes

through v also contains all vertices in P (together with the discussions above) imply that

(S\{v})∪{v′} is a solution of F -DCF-FVS for (G′,H ′,R,k).

In the reverse direction, let (G′,H ′,R,k) be a yes-instance of F -DCF-FVS and S′

be one of its minimal solution. We claim that S′ is also a solution of F -DCF-FVS for

(G,H,R,k). Suppose not, then either S is not an independent set in H or G−S contains a

cycle. Since, H ′ is an induced subgraph of H, we have that S′ is also an independent set in

H. Next, assume that there is a cycle C in G−S. The cycle C must contain v, otherwise,

C is also a cycle in G′− S′. Since v is a degree two vertex in G, therefore any cycle

that contians v, must also contain x and y. As observed before, G−{xv,vy} is identical

to G′−{xy}. But then, (C \ {xv,vy})∪{xy} is a cycle in G′− S′, a contradiction. This

concludes that S′ is a solution of F -DCF-FVS for (G,H,R,k).

Lemma 29. Let (G,H,R,k) be an instance of F -DCF-FVS, where none of the Reduction

Rules 14 to 20 are applicable. Then, the number of vertices in a degree two induced path

in G is bounded by O(kO(d)).

Theorem 5.4.2. F -DCF-FVS admits a kernel with O(kO(d)) vertices.

Proof. Let (G,H,R,k) be an instance of F -DCF-FVS, where none of the Reduction

Rules 14 to 20 are applicable. Then, by Lemma 27, the number of vertices of degree at

least 3 and the number of maximal degree two induced paths in G are bounded by O(k3)

and By Lemma 29, the number of vertices in a degree two induced path in G is bounded

by O(kO(d)). Hence, the number of vertices in G is bounded by O(kO(d)). Since, each of

the reduction rules can be applied in polynomial time and each of them either (correctly)

declare that the given instance is a yes or no-instance or (safely) reduce the size of G.

Therefore, the overall running time is polynomial in the input size.

Lemma 30. There is a polynomial time parameter preserving reduction from F -DCF-

FVS to Dd-CF-FVS.

110

Proof. Given an instance (G,H,R,k) of F -DCF-FVS, we generate an instance (G′,H ′,k′)

of Dd-CF-FVS as follows. We let the vertex set of V (G′) and V (H ′) to be V (G)∪{x},

where x is a new vertex. Now, we define the edge sets of G′ and H ′. Initially, E(G′) =E(G).

Additionally, we add a self loop on x in G′. We let E(H ′) = E(H−R)∪{xw | w ∈ R}. We

set k′ = k+1. Clearly, this construction can be carried out in the running time linear in the

size of the input instance. We claim that (G,H,R,k) is a yes-instance of F -DCF-FVS if

and only if (G′,H ′,k+1) is a yes-instance of Dd-CF-FVS.

In the forward direction, let S be a solution to F -DCF-FVS in (G,H,R,k). We claim

that S′ = S∪{x} is a solution to Dd-CF-FVS in (G′,H ′,k+1). Since, G′−{x} is identical

to G, G′−S′ does not contain any cycle. Since, S∩R = /0, S∪{v} is an independent set

in H ′. This completes the proof in the forward direction. In the reverse direction, let

(G′,H ′,k′) be a yes-instance of Dd-CF-FVS and S be one of its solution. Since there is

a self loop at x in G, x ∈ S. We claim that S′ = S \{x} is a solution to F -DCF-FVS in

(G,H,R,k). Clearly, G′−{x} is identical to G, therefore, G− S′ does not contain any

cycle. Since, x ∈ S, none of the vertices in R can belong to S. Since, H −R same as

H− (R∪{x}), S′ is an independent set in H ′ and S′∩R = /0, we have that S′ is a solution

to F -DCF-FVS in (G,H,R,k).

By Theorem 5.4.2 and Lemma 30, we obtain the following result.

Theorem 5.4.3. Dd-CF-FVS admits a kernel with O(kO(d)) vertices.

5.5 Kernelization Complexity of P??
≤3-CF-OCT

In this section, we show that CF-OCT does not admit a polynomial kernel when the

conflict graph belongs to the family P??
≤3. Let P≤3 denotes the family of disjoint union

of paths of length at most three, and P?
≤3 denotes the family of disjoint union of paths

of length at most three and a star graph. We give parameter preserving reduction from

111

P?
≤3-CONFLICT FREE s-t CUT (P?

≤3-CF-s-t CUT) to P??
≤3-CF-OCT. P?

≤3-CF-s-t CUT

is formally defined as follows.

P?
≤3-CONFLICT FREE s-t CUT (P?

≤3-CF-s-t CUT) Parameter: k

Input: An undirected graph G, a graph H ∈P≤3 (V (G) =V (H)), two vertices s and t

and an integer k

Question: Is there a set X ⊆V such that X is a s− t cut in G and H[X] is edgeless?

We first prove that P?
≤3-CF-s-t CUT is NP-hard. Then, we prove that P?

≤3-CF-s-t

CUT does not admit a polynomial compression, unless NP⊆ coNP
poly using the method of

cross-composition. To show the NP-hardness of P?
≤3-CF-s-t CUT, we give a reduction

from the well known NP-hard problem (3,B2)-SAT [11] to P?
≤3-CF-s-t CUT. (3,B2)-SAT

is formally defined as follows.

(3,B2)-SAT

Input: An instance (U,C), where U is the set of boolean variables and C is the set

of clauses such that each clause has exactly three literals, and each literal occurs in

exactly two clauses

Question: Does there exist an assignment to variables such that each clause is satisfied?

5.5.1 NP-hardness of P≤3-CF-s-t CUT

In this section, we prove that P≤3-CF-s-t CUT is NP-hard. Given an instance (U,C) of

(3,B2)-SAT, we construct an instance (G,H,s, t,k) of P≤3-CF-s-t CUT as follows. Let

|U |= n and |C |= m. For each clause C = (v1,v2,v3) ∈ C , add vertices vC
1 ,v

C
2 , and vC

3 in

V (G) and V (H). We also add 2n+2 new vertices s, t, ai and bi in V (G) and V (H), where

i ∈ [n]. Corresponding to each clause C = (v1,v2,v3) ∈ C , we add a path (s,vC
1 ,v

C
2 ,v

C
3 , t)

in G. We also add paths (s,ai,bi, t), for all i ∈ [n]. Now we define edge set of H. Let

xi ∈U . Add edges between ai and vertices corresponding to positive literal of xi and also

between bi and vertices corresponding to negative literal of xi. We set k = n+m. Figure

112

s t

x1

1
x̄1

2
x1

3

x̄2

1
x̄2

2
x2

3

x̄3

1
x3

2
x̄3

3

x4

1
x4

2
x̄4

3

a1 b1

a2 b2

a3 b3

G

a1

x1

1

x4

1

b1

x̄2

1

x̄3

1

a2

x3

2

x4

2

b2

x̄1

2

x̄2

2

a3

x1

3

x2

3

b3

x̄3

3

x̄4

3

s t

H

Figure 5.1: An illustration of construction of graph G and H in NP-hardness of P≤3-CF-
s-t CUT for C = {(x1, x̄2,x2),(x̄1, x̄2,x3),(x̄1,x2, x̄3),(x1,x2, x̄3)}.

5.1 describes the construction of G and H. Clearly, this construction can be carried out in

the polynomial time. In the following lemma, we prove that C is satisfiable if and only if

(G,H) has a conflict-free s− t cut of size n+m.

Lemma 31. (U,C) is a yes-instance of (3,B2)-SAT if and only if (G,H,s, t,k) is a

yes-instance of P≤3-CF-s-t CUT.

Proof. In the forward direction, let C be satisfiable, and φ be a solution. Further, let S

be the set of literals which are set to true in φ . Given S, we construct a solution S′ of

P≤3-CF-s-t CUT in (G,H) as follows. Let vi ∈ S and vi belongs to the clauses C and C′.

Add vC
i and vC′

i to S′. Let PC = (s,vC
1 ,v

C
2 ,v

C
3 , t) be a path in G corresponding to the clause

C. If more than one vertex from PC belongs to S′, delete all but one from S′ arbitrarily. If

variable corresponding to positive literal xi belongs to S′, add bi to S′, otherwise add ai to

S′. Since, there are n+m disjoint paths between s and t and we select exactly one vertex

from each path, |S′|= n+m. Since, C is satisfiable and for each path (s,ai,bi, t) either ai

or bi belongs to S′, S′ is a s− t cut of G. By the construction of S′, it is also an independent

set in H. This completes the proof in the forward direction.

In the reverse direction, let S be a solution to P≤3-CF-s-t CUT in (G,H,s, t,k). Given

S, we construct a satisfyning assignment φ for the instance (U,C) of (3,B2)-SAT as

113

follows. Let v be a literal which occurs in the clauses C and C′. If S∩{vC,vC′} 6= /0, we

assign 1 to v. Since, H[S] is edgeless, if vertex corresponding to positive literal xi belongs

to the solution, bi belongs to the solution and hence vertices corresponding to negative

literal x̄i do not belong to the solution. This implies that both the positive and negative

literal corresponding to a variable are not set to one. If none of them are true, we assign 1

to xi (or to x̄i). By the construction of G, φ is a satisfying assignment for C .

Theorem 5.5.1. P≤3-CF-s-t CUT is NP-hard.

Proof. The proof follows from the construction of an instance of P≤3-CF-s-t CUT,

Lemma 31 and NP-hardness of (3,B2)-SAT.

5.5.2 Lower bound for Kernel of P?
≤3-CF-s-t CUT

In this section, we prove that P?
≤3-CF-s-t CUT does not admit a polynomial compression

unless NP ⊆ coNP
poly which results into the fact that P?

≤3-CF-s-t CUT does not admit

polynomial kernel as well. Towards this, we cross-compose P≤3-CF-s-t CUT into P?
≤3-

CF-s-t CUT parameterized by k, the size of cut. Before going into the details, we define

the notion of cross-composition.

Definition 16. [15, 29] Let Σ be a finite set of alphabets. A polynomial equivalence

relation is an equivalence relation R on Σ? if there is an algorithm that given two strings

x,y ∈ Σ?, decides whether x≡R y in time polynomial in |x|+ |y|. Moreover, the relation

R restricted to the set Σ≤n has at most p(n) equivalence classes, where p(·) is some

polynomial function.

Definition 17. [15, 29] Let L ⊆ Σ? be a language and Q ⊆ Σ?×N be a parameterized

language. We say that L cross-composes into Q if there exists a polynomial equivalence

relation R and an algorithm A satisfying the following conditions. The algorithm A

takes as input a sequence of strings x1, · · · ,xt ∈ Σ? that are equivalent with respect to R,

runs in time polynomial in Σt
i=1|xi|, and outputs one instance (y,k) ∈ Σ?×N such that:

114

(i) k ≤ p(maxi∈[t] |xi|+ log t) for some polynomial p(·), and

(ii) (y,k) ∈ Q if and only if there exists at least one index i ∈ [t] such that xi ∈ L.

Now, we state following known result which will be further used in this section.

Theorem 5.5.2. [15, 29] Let L be an NP-hard language that cross-composes into a

parameterized language Q. Then, Q does not admit a polynomial compression, unless

NP⊆ coNP
poly .

Next, we present a cross-composition of P≤3-CF-s-t CUT into P?
≤3-CF-s-t CUT

parameterized by the solution size.

Lemma 32. There exists a cross-composition from P≤3-CF-s-t CUT into P?
≤3-CF-s-t

CUT parameterized by the cut size.

Proof. By choosing an appropriate polynomial equivalence relation R, we may assume

that we are given q instances (Gi,Hi,si, ti,ki)
q
i=1 of P≤3-CF-s-t CUT, where V (Gi) = n

and ki is same for each i ∈ [q]. More precisely, equivalence relation R is defined as

follows. We put all malformed instances into one equivalent class, while all the well-

formed instances are partitioned with respect to the number of vertices in the graph and the

integer ki, where i ∈ [q]. Two well-formed instances are considered equivalent if number of

the vertices in the graphs and integer ki are same in both the instances. Clearly, the number

of equivalence relation in Σ≤n is bounded by n3+1 and the equivalence of two relations can

be tested in the polynomial time. Hence, R is a polynomial equivalence relation. The cross-

composition algorithm works as follows. Given a set of malformed instances, returns some

trivial no-instance of P?
≤3-CF-s-t CUT, while given a sequence of well-formed instances,

it construct a parameterized instance (G?,H?,s, t,k+1) of P?
≤3-CF-s-t CUT as follows.

Let xi = (i−1)n+1 and yi = xi+n−1. Let V (Gi) =V (Hi) = {si,vxi, · · · ,vyi, ti}. Now, we

construct G? and H? as follows. V (G?) =V (H?) = ∪i∈[q](V (Gi)\{si, ti})∪i∈[q−1] {wi}∪

{a,s, t} and E(G?) = ∪i∈[q]E(Gi−{si, ti}). If s1v ∈ E(G1), add sv in E(G?). Similarly, if

115

tqv ∈ E(Gq), add tv in E(G?). If an edge tiv ∈ E(Gi) or si+1v ∈ E(Gi+1), add an edge wiv

in E(G?), for all i ∈ [q−1]. We also add edges sa and ta in G?. Now we define edge set of

H?. E(H?) = ∪i∈[q]E(Hi−{si, ti}). We also add edge awi, for all i ∈ [q−1]. Since, paths

are closed under vertex deletion, H? belongs to the family P?
≤3. We set parameter k = k1.

Figure 5.2 describes the construction of G and H. We claim that (G?,H?,s, t,k+1) is a

yes-instance of P?
≤3-CF-s-t CUT if and only if one of the input instance of P≤3-CF-s-t

CUT has a conflict-free s− t cut of size k.

In the forward direction, let S be a solution to P?
≤3-CF-s-t CUT in (G?,H?,s, t,k+1).

Since, a∈ S, none of wi belongs to S, where i∈ [q−1]. We claim that S′=(S\{a})∩V (Gi)

is a solution to P≤3-CF-s-t CUT in (Gi,Hi,si, ti,ki), for some i ∈ [q]. Suppose not, then

there exists at least one path between each pair of vertex (si, ti) in Gi, where i ∈ [q].

Let Pi be a path between si and ti in Gi, where i ∈ [q]. Hence, path induced by the

vertex set ∪i∈[q](V (Pi)\{si, ti})∪i∈[q−1] {wi}∪{s, t} yields a path between s and t in G?,

a contradiction. Hence, there is some Gi such that S′ is a s− t cut of Gi. Since Hi[S]

is a induced subgraph of H, Hi[S] is edgeless. This completes the proof in the forward

direction.

In the reverse direction, let one of the input instance (Gi,Hi,si, ti,ki), i ∈ [q] be a yes-

instance of P≤3-CF-s-t CUT and S be one of its solution, that is, Gi \S does not have a

path from si to ti. Clearly, by the construction of G?, G? \ (S∪{a}) does not have a path

from s to t. Since, a is not adjacent to any vertex v ∈ V (H?)∩V (Hi), where i ∈ [q] and

uv ∈ E(H?) if uv ∈ E(Hi), where i ∈ [q], u 6= a and v 6= a, S∪{a} is an independent set in

H. This completes the proof.

Theorem 5.5.3. P?
≤3-CF-s-t CUT does not admit a polynomial compression unless

NP⊆ coNP
poly .

Proof. Since, P≤3-CF-s-t CUT is NP-hard, using Lemma 32 and Theorem 5.5.2, P?
≤3-

CF-s-t CUT, parameterized by the size of cut does not admit a polynomial compression

116

s

a

G1 − {s1, t1}

w1 w2

G2 − {s2, t2}

.
wq−1

t

Gq − {sq, tq}

H1 − {s1, t1}

.....

.....

H2 − {s2, t2}

.....

Hq − {sq, tq}

.....

a

s

t

w2

w1

wq−1

.....

Graph G∗

Graph H∗

Figure 5.2: An illustration of construction of graph G and H in cross-composition from
P≤3-CF-s-t CUT to P?

≤3-CF-s-t CUT

unless NP⊆ coNP
poly .

Corollary 7. P?
≤3-CF-s-t CUT does not admit a polynomial kernel.

Proof. The proof follows from Theorem 5.5.3 and the fact that polynomial kernel is also a

polynomial compression.

5.5.3 Lower Bound for Kernel of P??
≤3-CF-OCT

In this subsection, we prove the main result of this section. We show that there does not

exist a polynomial kernel of P??
≤3-CF-OCT. Towards this we give a parameter preserving

reduction from P?
≤3-CF-s-t CUT to P??

≤3-CF-OCT. Given an instance (G,H,s, t,k) of

P?
≤3-CF-s-t CUT, we construct an instance (G′,H ′,k+1) of P??

≤3-CF-OCT as follows.

Initially, we have V (G′) =V (H ′) =V (G)∪{z,a,b}. Now, for each edge ei ∈ E(G), add a

vertex wi to V (G′) and V (H ′). Now, we define the edge set of G′. Let xi,yi be end points

of ei ∈ E(G). For each ei ∈ E(G), add edges xiwi and yiwi to E(G′). Also, add a self

loop on z in G′ and edges sa,ab and bt to E(G′). To construct the edge set of H ′, we set

117

V (G)

Graph G′ Graph H′
H

xi

yi

xj

yj

s

t

wi

wj

z

a

b

..
.

..
.

..
.

...

z

a

b

w1

w2

..
.

w|E(G)|

Figure 5.3: An illustration of construction of graph G and H in reduction from P?
≤3-CF-s-t

CUT to P??
≤3-CF-OCT.

E(H ′) = E(H−{s, t}). Additionally, we add zs,zt,za,zt, and zwi for each wi ∈V (H ′) to

E(H ′). Figure 5.3 describes the construction of G and H. Clearly, H ′ belongs to P??
3

and this construction can be carried out in the polynomial time. Now, we prove the

equivalence between the instances (G,H,s, t,k) of P?
≤3-CF-s-t CUT and (G′,H ′,k+1)

of P??
≤3-CF-OCT in the following lemma.

Lemma 33. (G,H,s, t,k) is a yes-instance of P?
≤3-CF-s-t CUT if and only if (G′,H ′,k+1)

is a yes-instance of P??
≤3-CF-OCT.

Proof. In the forward direction, let (G,H,s, t,k) be a yes-instance of P?
≤3-CF-s-t CUT

and S be one of its solution. We claim that S∪{z} is a solution to P??
≤3-CF-OCT in

(G′,H ′,k+1). In the graph G′, since we subdivide each edge, all the paths from s− t are

of even length. Since, we subdivide each edge of G, G′−{a,b,z} is a bipartite graph.

Hence, an odd cycle in G′− z consists of an s− t path in G′−{a,b} and edges sa, ab

and bt. Clearly, by the construction of G′, (G′−{a,b})\S does not contain an s− t path

and hence G′− z does not contain an odd cycle. Since, H[S] is edgeless, S∪{z} is an

independent set in H ′. This completes the proof in the forward direction.

In the reverse direction, let S be a solution to P??
≤3-CF-OCT in (G′,H ′,k + 1).

Since, z ∈ S, therefore, s, t,a,b,wi /∈ S for any wi ∈ V (H ′). We claim that S′ = S \

{z} is a solution to P?
≤3-CF-s-t CUT in (G,H,s, t,k). Suppose not, then there ex-

ists a s− t path (s,x1,x2, · · · ,xl, t) in G \ S′. Correspondingly, there exists a s− t path

(s,w1,x1,w2,x2, · · · ,xl,wl+1, t) in G′ of even length which results into an odd cycle

118

(s,w1,x1,w2,x2, · · · ,xl,wl+1, t,b,a) in G′ \ S, a contradiction. This completes the proof.

Now, we present the main result of this section in the following theorem.

Theorem 5.5.4. P??
≤3-CF-OCT does not admit a polynomial kernel. unless NP⊆ coNP

poly .

Proof. Using the construction defined above, given an instance (G,H,s, t,k) of P?
≤3-CF-

s-t CUT, we construct an instance (G′,H ′,k+ 1) of P??
≤3-CF-OCT. Using Lemma 33,

(G,H,s, t,k) is a yes-instance of P?
≤3-CF-s-t CUT if and only if (G′,H ′,k+1) is a yes-

instance of P??
≤3-CF-OCT. We claim that P??

≤3-CF-OCT does not admit a polynomial

kernel. Towards the contrary, suppose that P??
≤3-CF-OCT admits polynomial kernel,

then the instance (G,H,s, t,k) of P?
≤3-CF-s-t CUT admits a polynomial compression, a

contraction to the fact P?
≤3-CF-s-t CUT does not admit polynomial compression unless

NP⊆ coNP
poly .

5.6 Conclusion

In this chapter we studied kernelization complexity of Dd-CF-FVS and Dd-CF-OCT.

We showed that the former admits a polynomial kernel of size kO(d), while Dd-CF-OCT

does not admit any polynomial kernel unless NP⊆ coNP
poly . In fact, the later does not admit

polynomial kernel even for much more specialized problem, namely P??
≤3-CF-OCT. Using

much more involved marking scheme we can show that Dd-CF-ECT admits polynomial

kernel of size kO(d). Similarly, we can extend the known polynomial kernel for OCT

to CF-OCT when the conflict graph H has maximum degree at most one. Two most

interesting questions that still remain open form our work are following: (a) does CF-FVS

admit uniform polynomial kernel on graphs of bounded expansion; and (b) does CF-OCT

admit a polynomial kernel when H is disjoint union of paths of length at most 2.

119

Chapter 6

Parameterized Complexity of

Conflict-Free Matchings and Paths

6.1 Introduction

In the previous chapters, we studied conflict-free variant of some classical combinatorial

optimization problems from the viewpoint of algorithmic complexity. Recal that a typical

input to a conflict-free variant of a classical problem Γ, which we call CONFLICT-FREE Γ,

consists of an instance I of Γ coupled with a graph H, called the conflict graph. A solution

to CONFLICT-FREE Γ in (I,H) is a solution to I in Γ, which is also an independent set

in H. We noticed that conflict-free version of the problem introduces the constraint of

“impossible pairs” in the solution that we seek for. Such a constraint of “impossible pairs”

in a solution arises, for example, in the context of program testing and validation [57, 72].

Gabow et al. [57] studied the conflict-free version of finding paths in a graph, which they

showed to be NP-complete.

In the previous chapters, we initiated the study of conflict-free problems in the realm

of Parameterized Complexity. In particular, we studied CONFLICT-FREE F -DELETION

121

problems for various families F , of graphs such as, the family of forests, independent sets,

bipartite graphs, interval graphs, etc.

MAXIMUM MATCHING and SHORTEST PATH are among the classical graph problems

which are of very high theoretical and practical interest. The MAXIMUM MATCHING

problem takes as input a graph G, and the objective is to compute a maximum sized subset

Y ⊆ E(G) such that no two edges in Y have a common vertex. MAXIMUM MATCHING is

known to be solvable in polynomial time [47, 88]. The SHORTEST PATH problem takes as

input a graph G and vertices s and t, and the objective is to compute a path between s and t

in G with the minimum number of vertices. The SHORTEST PATH problem, together with

its variants such as all-pair shortest path, single-source shortest path, weighted shortest

path, etc. are known to be solvable in polynomial time [41, 9].

Darmann et al. [36] (among other problems) studied the conflict-free variants of

MAXIMUM MATCHING and SHORTEST PATH. They showed that the conflict-free variant

of MAXIMUM MATCHING is NP-hard even when the conflict graph is a disjoint union

of edges (matching). Moreover, for the conflict-free variant of SHORTEST PATH, they

showed that the problem is APX-hard, even when the conflict graph belongs to the family

of 2-ladders.

In this chapter, we study conflict-free (parameterized) variants of MAXIMUM MATCH-

ING and SHORTEST PATH, which we call CONFLICT FREE MAXIMUM MATCHING

(CF-MM, for short) and CONFLICT FREE SHORTEST PATH (CF-SP, for short), respec-

tively. We recall the formal definitions of the problems here.

CONFLICT FREE MAXIMUM MATCHING (CF-MM) Parameter: k

Input: A graph G = (V,E), a conflict graph H = (E,E ′), and an integer k.

Question: Is there a matching M of size at least k in G, such that M is an independent

set in H?

122

CONFLICT FREE SHORTEST PATH (CF-SP) Parameter: k

Input: A graph G = (V,E), a conflict graph H = (E,E ′), two special vertices s and t,

and an integer k.

Question: Is there an st-path P of length at most k in G, such that E(P) is an indepen-

dent set in H?

We show that both CF-MM and CF-SP are W[1]-hard, when parameterized by the

solution size. The W[1]-hardness for CF-MM is obtained by giving an appropriate

reduction from INDEPENDENT SET, which is known to be W[1]-hard, when parameterized

by the solution size [29, 43]. In fact, our W[1]-hardness result for CF-MM holds even

when the graph where we want to compute a matching is itself a matching. We show the

W[1]-hardness of CF-SP by giving an appropriate reduction from a multicolored variant of

the problem UNIT 2-TRACK INDEPENDENT SET (which we prove to be W[1]-hard). We

note that UNIT 2-TRACK INDEPENDENT SET is known to be W[1]-hard, which is used to

establish W[1]-hardness of its multicolored variant. We note that our W[1]-hardness result

of CF-SP holds even when the conflict graph is a unit interval graph.

Having shown the W[1]-hardness results, we then restrict our attention to having

conflict graphs belonging to some families of graphs, where the INDEPENDENT SET

problem is either polynomial time solvable or solvable in FPT time. Two of the very

well-known graph families that we consider are the family of chordal graphs and the family

of d-degenerate graphs. For the CF-MM problem, we give an FPT algorithm, when

the conflict graph belongs to the family of chordal graphs. Our algorithm is based on a

dynamic programming over a “structured” tree decomposition of the conflict graph (which

is chordal) together with “efficient” computation of representative families at each step

of our dynamic programming routine. Notice that we cannot obtain an FPT algorithm

for the CF-SP problem when the conflict graph is a chordal graph. This holds because

unit-interval graphs are chordal, and the problem CF-SP is W[1]-hard, even when the

conflict graph is a unit-interval graph.

123

For conflict graphs being d-degenerate, we obtain FPT algorithms for both CF-MM

and CF-SP. These algorithms are based on the computation of an independence covering

family, a notion which was recently introduced by Lokshtanov et al. [81]. We note that

even for nowhere dense graphs, such an independence covering family can be computed

efficiently [81]. Since our algorithms are based on computation of independence covering

families, hence, our results hold even when the conflict graph is a nowhere dense graph.

Finally, we study a variant of CF-MM and CF-SP, where instead of conflicting

conditions being imposed by independent sets in a conflict graph, they are imposed by

independence constraints in a (representable) matroid. We give FPT algorithms for the

above variant of both CF-MM and CF-SP.

6.2 Preliminaries

Sets and functions. We denote the set of natural numbers and the set of integers by N

and Z, respectively. By N≥1 we denote the set {x ∈ N | x≥ 1}. For n ∈ N, by [n] and [0,n],

we denote the sets {1,2, · · · ,n} and {0,1,2, · · · ,n}, respectively. For a set U and p ∈ N, a

p-family (over U) is a family of subsets of U of size p. A function f : X → Y is injective

if for each x,y ∈ X , f (x) = f (y) implies x = y. For a function f : X → Y and a set S⊆ X ,

f |S : S→ Y is a function such that for s ∈ S, we have f |S(s) = f (s). We let ω denote the

exponent in the running time of algorithm for matrix multiplication, the current best known

bound for it is ω < 2.373 [109].

Graphs. Consider a graph G. By V (G) and E(G) we denote the set of vertices and edges

in G, respectively. For X ⊆V (G), G[X] denotes the subgraph of G with vertex set X and

edge set {uv ∈ E(G) | u,v ∈ X}. For Y ⊆ E(G), G[Y] denotes the subgraph of G with

vertex set ∪uv∈Y{u,v} and edge set Y .

Let G be a graph. An independent set in G is a set X ⊆ V (G) such that for every

124

u,v ∈ X , uv /∈ E(G). A matching in G is a set Y ⊆ E(G) such that no two distinct edges in

Y have a common vertex. A matching M in G is a maximum matching if for any matching

Y in G, |M| ≥ |Y |. A matching M in G saturates a set X ⊆V (G), if every vertex in X is an

end point of an edge in M. For v1,v` ∈V (G), a v1v`-path P = (v1,v2, · · · ,v`−1,v`) in G is

a sequence of (distinct) vertices, such that V (P)⊆V (G) and for each i ∈ [`−1], we have

vivi+1 ∈ E(G). Moreover, the edges in {vivi+1 | i ∈ [`− 1]} are called edges in P. The

length of a path is the number of edges in it. A shortest uv-path is a uv-path with minimum

number of edges.

A chordal graph is a graph with no induced cycles of length at least four. An interval

graph is an intersection graph of line segments (intervals) on the real line, that is, its vertex

set is a set of intervals, and two vertices are adjacent if and only if their corresponding

intervals intersect. A unit-interval graph is an intersection graph of intervals of unit length

on the real line. For d ∈ N, a graph is d-degenerate if every subgraph of it has a vertex of

degree at most d. A clique K in G is an (induced) subgraph, such that for any two distinct

vertices u,v ∈V (K) we have uv ∈ E(G). A vertex set S⊆V (G) is a clique in G if G[S] is

a clique. Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. If V1∩V2 = /0, then disjoint

union of G1 and G2 is the graph G = (V1∪V2,E1∪E2). If V1 = V2, then the edge-wise

union of G1 and G2 is the graph G = (V1,E1∪E2).

In the following we state definitions related to tree decomposition and some results on

them, that are used in our algorithms.

Definition 18. A tree decomposition of a graph H is a pair (T,X), where T is a rooted tree

and X = {Xt | t ∈V (T)}. Every node t of T is assigned a subset Xt ⊆V (H), called a bag,

such that following conditions are satisfied:

•
⋃

t∈V (T)
Xt =V (H), that is, each vertex in H is in at least one bag;

• For every edge uv ∈ E(H), there is t ∈V (T) such that u,v ∈ Xt ;

• For every vertex v ∈V (H) the graph T [{t ∈V (T) | v ∈ Xt}] is a connected subtree

125

of T .

To distinguish between vertices of a graph H and vertices of its tree decomposition

(T,X), we refer to the vertices in T as nodes. Since T is a rooted tree, we have a natural

parent-child and ancestor-descendant relationship among nodes in T . For a node t ∈V (T),

by desc(t) we denote the set descendant of t in T (including t). For a node t ∈V (T) by Vt

we denote the union of all bags in the subtree rooted at t, that is, Vt = ∪d∈desc(t)Xd and by

Ht we denote the graph H[Vt]. A leaf node of T is a node with degree exactly one in T ,

which is different from the root node. All the nodes of T which are neither the root node

nor a leaf node are non-leaf nodes.

We now define a more structured form of tree decomposition that will be used in the

algorithm.

Definition 19. Let (T,X) be a tree decomposition of a graph H with r as the root node.

Then, (T,X) is a nice tree decomposition if for each each leaf ` in T and the root r, we

have that X` = Xr = /0, and each non-leaf node t ∈V (T) is of one of the following types:

1. Introduce node: t has exactly one child, say t ′, and Xt = Xt ′ ∪{v}, where v /∈ Xt ′ .

We say that v is introduced at t;

2. Forget node: t has exactly one child, say t ′, and Xt = Xt ′ \{v}, where v ∈ Xt ′ . We

say that v is forgotten at t;

3. Join node: t has exactly two children, say t1 and t2, and Xt = Xt1 = Xt2 .

Proposition 14. [[29, 69]] Given a tree decomposition (T,X) of a graph H, in polynomial

time we can compute a nice tree decomposition (T ′,X ′) of H that has at most O(k|V (H)|)

nodes, where, k is the size of the largest bag in X. Moreover, for each t ′ ∈V (T ′), there is

t ∈V (T) such that X ′t ′ ⊆ Xt .

A tree decomposition (T,X) of a graph H, where for each t ∈V (T), the graph H[Xt]

126

is a clique, is called a clique-tree. Next, we state a result regarding computation of a

clique-tree of a chordal graph.

Proposition 15. [[58]] Given an n vertex chordal graph H, in polynomial time we can

construct a clique-tree (T,X) of H with O(n) nodes.

Using Proposition 14 and 15 we obtain the following result.

Proposition 16. Given an n vertex chordal graph H, in polynomial time we can construct

a nice tree decomposition which is also a clique-tree (nice clique-tree), (T,X) of H with

O(n2) nodes.

Matroids and representative sets. In the following we state some basic definitions

related to matroids. We refer the reader to [97] for more details. We also state the definition

of representative families and state some results related to them.

Definition 20. A pair M = (U,I), where U is the ground set and I is a family of subsets

of U , is a matroid if the following conditions hold:

• /0 ∈I ;

• If I1 ∈I and I2 ⊆ I1, then I2 ∈I ;

• If I1, I2 ∈I and |I2|< |I1|, then there exists an element x∈ I1\I2, such that I2∪{x}∈

I .

An inclusion-wise maximal set in I is called a basis of M . All bases of a matroid

are of the same size. The size of a basis is called the rank of the matroid. For a matroid

M = (U,I) and sets P,Q⊆U , we say that P fits Q if P∩Q = /0 and P∪Q ∈I .

A matroid M = (U,I) is a linear (or representable) matroid if there is a matrix

A over a field F with E as the set of columns, such that: 1) |E| = |U |; 2) there is an

injective function ϕ : U → E, such that X ⊆U is an independent set in M if and only if

127

{ϕ(x) | x ∈ X} is a set of linearly independent columns (over F). In the above, we say that

M is representable over F, and A is one of its representation.

In the following, we define some matroids and state results regarding computation of

their representations.

Definition 21 ([29, 97]). A matroid M = (U,I) is a partition matroid if the ground set U

is partitioned into sets U1,U2, · · · ,Uk, and for each i ∈ [k], there is an integer ai associated

with Ui. A set S⊆U is independent in M if and only if for each i ∈ [k], |S∩Ui| ≤ ai.

Proposition 17. [[52, 97, 85]] A representation of a partition matroid over Q (the field of

rationals) can be computed in polynomial time.

Definition 22. Let M1 = (U1,I1),M2 = (U2,I2) · · · ,Mt = (Ut ,It) be t matroids with

Ui∩U j = /0, for all 1≤ i 6= j ≤ t. The direct sum M1⊕·· ·⊕Mt , of M1,M2, · · · ,Mt is

the matroid with ground set U = ∪i∈[t]Ui and X ⊆U is independent in M if and only if

for each i ∈ [t], X ∩Ui ∈Ii.

Proposition 18. [[85, 97]] Given matrices A1,A2, · · · ,At (over F) representing matroids

M1,M2, · · · ,Mt , respectively, we can compute a representation of their direct sum, M1⊕

·· ·⊕Mt , in polynomial time.

Next, we state the definition of representative families.

Definition 23. Let M = (U,I) be a matroid, and A be a p-family of U . We say that

A ′ ⊆A is a q-representative for A if for every set Y ⊆U of size q, if there is a set X ∈A ,

such that X ∩Y = /0 and X ∪Y ∈I , then there is a set X ′ ∈A ′ such that X ′∩Y = /0 and

X ′∪Y ∈I . If A ′ ⊆A is a q-representative for A then we denote it by A ′ ⊆q
rep A .

In the following, we state some basic propositions regarding q-representative sets,

which will be used later.

Proposition 19. [[29, 52]] If A1 ⊆q
rep A2 and A2 ⊆q

rep A3, then A1 ⊆q
rep A3.

128

Proposition 20. [[29, 52]] If A1 and A2 are two p-families such that A ′
1 ⊆

q
rep A1 and

A ′
2 ⊆

q
rep A2, then A ′

1 ∪A ′
2 ⊆

q
rep A1∪A2.

Next, we state a result regarding the computation of a q-representative set.

Theorem 6.2.1 ([29, 52]). Given a matrix M (over field F) representing a matroid M =

(U,I) of rank k, a p-family A of independent sets in M , and an integer q such that

p+q = k, there is an algorithm which computes a q-representative family A ′ ⊆q
rep A of

size at most
(p+q

p

)
using at most O

(
|A |

((p+q
p

)
pω +

(p+q
p

)ω−1)) operations over F.

Let A1 and A2 be two families of sets over U and M = (U,I) be a matroid. We

define their convolution as follows.

A1 ?A2 = {A1∪A2 | A1 ∈A1,A2 ∈A2,A1∩A2 = /0 and A1∪A2 ∈I }

Lemma 34. Let M = (U,I) be a matroid, A1 be a p1-family, and A2 be a p2-family. If

A ′
1 ⊆

k−p1
rep A1 and A ′

2 ⊆
k−p2
rep A2, then A ′

1 ?A ′
2 ⊆

k−p1−p2
rep A1 ?A2.

Proof. The proof of this lemma is similar to the proof of Lemma 12.28 in [29]. Let B be

a set of size k− p1− p2. Suppose there exists a set A1∪A2 ∈A1 ?A2 that fits B. Since,

(A1 ∪A2)∩B = /0, we have |B∪A2| = k− p1. This implies that there exists A′1 ∈ A ′
1

which fits B∪A2, that is, (A′1∪B∪A2) ∈I and A′1∩ (B∪A2) = /0 which gives |A′1∪B|=

k− p2. This means, there exists A′2 ∈A ′
2 that fits A′1∪B, that is, (A′2∪A′1∪B) ∈I and

A′2∩(A′1∪B) = /0. Since, A′1∩(B∪A2) = /0 and A′2∩(A′1∪B) = /0, we get (A′1∪A′2)∩B= /0.

Hence, A′1∪A′2 fits B and (A′1∪A′2) ∈A ′
1 ?A ′

2 .

Next, we give a result regarding computation of convolution (?).

Proposition 21. Let M be a matrix over a field F representing a matroid M = (U,I) over

an n-element ground set, A1 be a p1-family, and A2 be a p2-family, where p1 + p2 = k.

Then A1 ?A2 can be computed in time O(2knO(1)).

129

Proof. Consider the standard convolution operation, A1 ◦A2 = {A1∪A2 | A1 ∈A1,A2 ∈

A2 and A1∩A2 = /0} defined in [29, Section 12.3.5]. The family A1 ◦A2 can be computed

in O(2kn3) time [29, Exercise 12.12]. Since, A1 ?A2 = {A1∪A2 | A1 ∈A1,A2 ∈A2,A1∩

A2 = /0, and A1 ∪A2 ∈ I }. Hence, X ∈ A1 ?A2 if and only if X ∈ A1 ◦A2 and X is

a set of linearly independent columns (over F). Testing whether a set of vectors is

linearly independent over a field can be done in time polynomial in size of the set (using

Gaussian elimination). Therefore, testing if an X ∈A1 ◦A2 is linearly independent, can

be done in time O(nO(1)). Since |A1 ◦A2| ≤ |A1||A2|, family A1 ?A2 can be computed

in O((2k + |A1||A2|)nO(1)) time. Since, |A1| ≤ 2p1 and |A2| ≤ 2p2 , the running time is

bounded by O(2knO(1)).

Universal sets and their computation.

Definition 24. An (n,k)-universal set is a family F of subsets of [n] such that for any set

S⊆ [n] of size k, the family {A∩S | A ∈F} contains all 2k subsets of S.

Next, we state a result regarding the computation of a universal set.

Proposition 22. [29, 93] For any n,k ≥ 1, we can compute an (n,k)-universal set of size

2kkO(logk) logn in time 2kkO(logk)n logn.

6.3 W[1]-hardness Results

In this section, we show that CONFLICT FREE MAXIMUM MATCHING and CONFLICT

FREE SHORTEST PATH are W[1]-hard, when parameterized by the solution size.

130

6.3.1 W[1]-hardness of CF-MM

We show that CF-MM is W[1]-hard, when parameterized by the solution size, even when

the graph where we want to find a matching, is itself a matching (disjoint union of edges).

To prove our result, we give an appropriate reduction from INDEPENDENT SET to CF-MM.

In the following, we define the problem INDEPENDENT SET.

INDEPENDENT SET Parameter: k

Input: A graph G and an integer k.

Question: Is there a set X ⊆V (G) of size at least k such that X is an independent set

in G?

It is known that INDEPENDENT SET is W[1]-hard, when parameterized by the size of

an independent set [29, 43].

Theorem 6.3.1. CF-MM is W[1]-hard, when parameterized by the solution size.

Proof. Given an instance (G?,k) of INDEPENDENT SET, we construct an equivalent

instance (G,H,k) of CF-MM as follows. We first describe the construction of G. For

each v ∈ V (G?), we add an edge vv′ to G. Notice that G is a matching. This completes

the description of G. Next, we move to the construction of H. We have V (H) = {ev =

vv′ | v ∈V (G?)}. Moreover, for eu,ev ∈V (H), we add the edge euev to E(H) if and only

if uv ∈ E(G?). We note that H is exactly the same as G?, with vertices being renamed.

This completes the construction of (G,H,k) of CF-MM. Next, we show that (G?,k) is a

yes-instance of INDEPENDENT SET if and only if (G,H,k) is a yes-instance of CF-MM.

In forward direction, let (G?,k) be a yes-instance of INDEPENDENT SET, and S be one

of its solution. Let S′ = {ev | v ∈ S}. We show that S′ is a solution to CF-MM. Notice that

by construction, S′ is a matching in G, and |S′|= |S| ≥ k. Moreover, G? is isomorphic to H,

with the vertex mapping as ϕ : V (G?)→V (H), where for v ∈V (G?), ϕ(v) = ev. Hence,

S′ is an independent set in H.

131

In reverse direction, let (G,H,k) be a yes-instance of CF-MM, and S′ be one of its

solution. Let S = {v | ev ∈ S′}. Using an analogous argument as in the forward direction,

we conclude that S is a solution to INDEPENDENT SET in (G?,k). This concludes the

proof.

6.3.2 W[1]-hardness of CF-SP

We show that CF-SP is W[1]-hard, when parameterized by the solution size, even when the

conflict graph is a proper interval graph. We refer to this restricted variant of the problem

as UNIT INTERVAL CF-SP. To prove our result, we give an appropriate reduction from

a multicolored variant of the problem UNIT 2-TRACK INDEPENDENT SET, which we

call UNIT 2-TRACK MULTICOLORED IS. In the following, we define the problems UNIT

2-TRACK INDEPENDENT SET and UNIT 2-TRACK MULTICOLORED IS.

UNIT 2-TRACK INDEPENDENT SET (UNIT 2-TRACK IS) Parameter: k

Input: Two unit-interval graphs G1 = (V,E1) and G2 = (V,E2), and an integer k.

Question: Is there a set S ⊆V of size at least k, such that S is an independent set in

both G1 and G2?

UNIT 2-TRACK MULTICOLORED IS (UNIT 2-TRACK MIS)

Input: Two unit-interval graphs G1 = (V,E1) and G2 = (V,E2), and a partition

V1,V2, · · · ,Vk of V .

Parameter: k

Question: Is there a set S ⊆V , such that S is an independent set in both G1 and G2,

and for each i ∈ [k], we have |S∩Vi|= 1?

It is known that UNIT 2-TRACK IS is W[1]-hard, when parameterized by the solution

size [65]. We show that the problem UNIT 2-TRACK MIS is W[1]-hard, when parameter-

ized by the number of sets in the partition. We show this by giving an appropriate (Turing)

reduction from UNIT 2-TRACK IS. Finally, we give a reduction from UNIT 2-TRACK

132

MIS to UNIT INTERVAL CF-SP, hence obtaining the desired result.

6.3.3 W[1]-hardness of UNIT 2-TRACK MIS.

We give a (Turing) reduction from UNIT 2-TRACK IS to UNIT 2-TRACK MIS. Moreover,

since we want to rule out existence of an FPT algorithm, we spend FPT time to obtain

FPT many instances of UNIT 2-TRACK MIS.

Before proceeding to the reduction from UNIT 2-TRACK IS to UNIT 2-TRACK MIS,

we define the notion of perfect hash family, which will be used in the reduction.

Definition 25. An (n,k)-perfect hash family F , is a family of functions f : [n]→ [k] such

that for every set S⊆ [n] of size k, there is an f ∈F , such that f |S is injective.

In the following, we state a result regarding computation of an (n,k)-perfect hash

family.

Theorem 6.3.2. [29, 93] For any n,k ≥ 1, an (n,k)-perfect hash family of size

ekkO(logk) logn can be constructed in ekkO(logk)n logn time.

Now we are ready to give a (Turing) reduction from UNIT 2-TRACK IS to UNIT

2-TRACK MIS.

Lemma 35. There is a parameterized Turing reduction from UNIT 2-TRACK IS to UNIT

2-TRACK MIS.

Proof. Let (G1,G2,k) be an instance of UNIT 2-TRACK IS, where V (G1) = V (G2) =

[n]. We construct a family C of instances of UNIT 2-TRACK MIS as follows. We

start by computing an (n,k)-perfect hash family F , of size ekkO(logk) logn, in time

ekkO(logk)n logn, using Theorem 6.3.2. Now, for each f ∈F , we construct an instance

I f = (G1,G2,V
f

1 ,V
f

2 , · · · ,V
f

k) of UNIT 2-TRACK MIS as follows. For i ∈ [k], we set

V f
i = {v ∈V (G1) | f (v) = i}. Finally, we set C = {I f | f ∈F}.

133

We claim that (G1,G2,k) is a yes-instance of UNIT 2-TRACK IS if and only if there is

I f ∈ C such that I f is a yes-instance of UNIT 2-TRACK MIS.

In the forward direction, let (G1,G2,k) be a yes-instance of UNIT 2-TRACK IS, and

S be one of its solution of size k. Consider f ∈F such that f |S is injective, which exists

since F is an (n,k)-perfect hash family. By construction of C , we have I f ∈ C . Moreover,

by construction of f , for each i ∈ [k], we have |S∩Vi|= 1. Hence, S is a solution to I f .

In the reverse direction, let I f ∈ C be a yes-instance of UNIT 2-TRACK MIS, and

S be one of its solution. Clearly, S is a solution to UNIT 2-TRACK IS in (G1,G2,k) as

I f = (G1,G2,V
f

1 ,V
f

2 , · · · ,V
f

k). This concludes the proof.

Theorem 6.3.3. UNIT 2-TRACK MIS is W[1]-hard, when parameterized by the solution

size.

Proof. Follows from Lemma 35 and W[1]-hardness of UNIT 2-TRACK IS.

6.3.4 W[1]-hardness of UNIT INTERVAL CF-SP

We give a parameterized reduction from UNIT 2-TRACK MIS to UNIT INTERVAL CF-SP.

Let (G1,G2,V1, · · · , Vk) be an instance of UNIT 2-TRACK MIS. We construct an instance

(G′,H,s, t,k′) of UNIT INTERVAL CF-SP as follows. For each v ∈V (G1), we add a path

on 3 vertices namely, (v1,v2,v3) in G′. For notational convenience, for v ∈ V (G1), by

e12(v) and e23(v) we denote the edges v1v2 and v2v3, respectively. Consider i ∈ [k− 1].

For u ∈Vi and v ∈Vi+1, we add the edge zuv = u3v1 to E(G′) (see Figure 6.1). Moreover,

by Zi, we denote the set {zuv | u ∈Vi,v ∈Vi+1}. We add two new vertices s and t to V (G′),

and add all the edges in Z0 = {sv1 | v ∈ V1} and Zk = {v3t | v ∈ Vk} to E(G′). Next, we

move to the construction of H. Note that H must be a unit-interval graph on the vertex

set E(G′) = (∪i∈[0,k]Zi)∪ (∪v∈V (G1){e12(v),e23(v)}). In H, each vertex in ∪i∈[0,k]Zi is an

isolated vertex. Let E12 = {e12(v) | v ∈ V (G1)} and E23 = {e23(v) | v ∈ V (G1)}. For

e12(u),e12(v) ∈ E12, we add the edge e12(u)e12(v) to E(H) if and only if uv ∈ E(G1).

134

s

v1 v2 v3

...

...

... t

......

Figure 6.1: An illustration of the construction of G′ in W[1]-hardness of UNIT INTERVAL

CF-SP.

Similarly, for e23(u),e23(v) ∈ E23, we add the edge e23(u)e23(v) to E(H) if and only if

uv ∈ E(G2). Observe that H[E12] is isomorphic to G1, with bijection φ1 : V (G1)→ E12

with φ1(v) = e12(v). Similarly, H[E23] is isomorphic to G2 with bijection φ2 : V (G2)→ E23

with φ2(v) = e23(v). By construction, H is a disjoint union of unit-interval graphs, and

hence is a unit-interval graph. Finally, we set k′ = 3k+1. This completes the description

of the reduction.

In the following lemma we show that the instance (G1,G2,V1, · · · ,Vk) of UNIT 2-

TRACK MIS and the instance (G′,H,s, t,k′) of UNIT INTERVAL CF-SP are equivalent.

Lemma 36. (G1,G2,V1, · · · ,Vk) is a yes-instance of UNIT 2-TRACK MIS if and only if

(G′,H,s, t,k′) is a yes-instance of UNIT INTERVAL CF-SP.

Proof. In the forward direction, let (G1,G2,V1, · · · ,Vk) be a yes-instance of UNIT 2-

TRACK MIS, and S = {v1,v2, · · · ,vk} be one of its solution, such that vi ∈Vi. We claim

that P = (s,v1
1,v

1
2,v

1
3, · · · ,vk

1,v
k
2,v

k
3, t) is a conflict-free path (on 3k+ 1 edges) in G′. By

the construction of G′, it follows that P is a path in G′. Next, we show that E(P) is an

independent set in H. Let v0
3 = s and vk+1

1 = t. By construction, each edge in {vi
3vi+1

1 |

i ∈ [0,k]} ⊆ ∪[0,k]Zi is an isolated vertex in H. Also, for each i ∈ [k], we have that

{e12(vi),e23(vi)} is an independent set in H. Next, consider i, j ∈ [k], where i 6= j. By

construction e12(vi)e23(v j),e23(vi)e12(v j) /∈E(H). Moreover, e12(vi)e12(v j) /∈E(H) since

S in an independent set in G1. Similarly, e23(vi)e23(v j) /∈ E(H) as S is an independent set

in G2. In the above, we have considered every pair of edges in E(P), and argued that no

two of them are adjacent to each other in H. Hence, it follows that P is a solution to UNIT

135

INTERVAL CF-SP in (G′,H,s, t,k′).

In the reverse direction, let P be a solution to UNIT INTERVAL CF-SP in (G′,H,s, t,k′).

By the construction of G′, the path P must be of the form (s,v1
1,v

1
2,v

1
3, · · · , vk

1,v
k
2,v

k
3, t). We

claim that S = {v1,v2, · · · ,vk} is an independent set in both G1 and G2. Suppose not, then

there is an edge viv j, i 6= j and i, j ∈ [k] say, in G1 (the case when it is in G2 is symmetric).

But then e12(vi)e12(v j) is an edge in H, contradicting that E(P) is an independent set in

H. Hence, we have that S is an independent set both in G1 and G2. Moreover, since P is a

path of length at most 3k+1, it must hold that for each i ∈ [k], we have vi ∈Vi. Hence, S

is a solution to UNIT 2-TRACK MIS in (G1,G2,V1, · · · ,Vk).

Theorem 6.3.4. UNIT INTERVAL CF-SP is W[1]-hard, when parameterized by the solution

size.

Proof. Follows from the construction of instance (G′,H,s, t,k′) of UNIT INTERVAL CF-

SP, for the given instance (G1,G2,V1, · · · ,Vk) of UNIT 2-TRACK MIS, Lemma 36, and

Theorem 6.3.3.

6.4 FPT Algorithm for CF-MM with Chordal Conflict

In this section, we show that CF-MM is FPT, when the conflict graph belongs to the family

of chordal graphs. We call this restricted version of CF-MM as CHORDAL CONFLICT

MATCHING. Towards designing an algorithm for CHORDAL CONFLICT MATCHING, we

first give an FPT algorithm for a restricted version of CHORDAL CONFLICT MATCHING,

where we want to compute a matching for a bipartite graph. We call this variant of

CHORDAL CONFLICT MATCHING as CHORDAL CONFLICT BIPARTITE MATCHING

(CCBM). We then employ the algorithm for CCBM to design an FPT algorithm for

CHORDAL CONFLICT MATCHING.

136

6.4.1 FPT algorithm for CCBM

We design an FPT algorithm for the problem CCBM, where the conflict graph is chordal

and the graph where we want to compute a matching is a bipartite graph. The problem

CCBM is formally defined below.

CHORDAL CONFLICT BIPARTITE MATCHING (CCBM) Parameter: k

Input: A bipartite graph G = (V,E) with vertex bipartition L,R, a conflict graph

H = (E,E ′), and an integer k.

Question: Is there a matching M ⊆ E of size k in G, such that M is an independent set

in H?

The FPT algorithm for CCBM is based on a dynamic programming routine over a

tree decomposition of the conflict graph H and representative sets on the graph G. Let

(G,L,R,H,k) be an instance of CF-MM, where G is a bipartite graph on n vertices, with

vertex bipartition L,R, and H is a chordal graph with V (H) = E(G).

In the following, we construct three matroids ML = (E,IL),MR = (Ec,IR), and

M = (E ∪Ec,I). Matroids ML and MR are partition matroids and the matroid M is the

direct sum of ML and MR. The ground set of ML is E = E(G). The set Ec contains a copy

of edges in E, that is, Ec = {ec | e ∈ E}. We create two (disjoint) sets E and Ec, because

M is the direct sum of ML and MR, and we want their ground sets to be disjoint. Next, we

describe the partition E of E into |L| sets and |L| integers, one for each set in the partition,

for the partition matroid ML. For u ∈ L, let Eu = {uv | uv ∈ E}. Notice that for u,v ∈ L,

where u 6= v, we have Eu∩Ev = /0. Moreover, ∪u∈EEu = E. We let E = {Eu | u ∈ L}, and

for each u ∈ L, we set au = 1. Similarly, we define the partition E c of Ec with respect to

set R. That is, we let E c = {Ec
u = {(uv)c | uv ∈ E(G)} | u ∈ R}. Furthermore, for u ∈ R,

we let auc = 1. We define the following notation, which will be used later. For Z ⊆ E, we

let Zc = {ec | e ∈ Z} ⊆ Ec.

Proposition 23. Q⊆ E(G) is a matching in G with vertex bipartition L and R if and only

137

if Q∪Qc is an independent set in the matroid M = ML⊕MR.

Proof. In the forward direction, let Q be a matching in the bipartite graph G=(V,E), where

V = L∪R. Since, ML = (E,IL) is a partition matroid with partition E = {Eu | u ∈ L}

and au = 1, for each u ∈ L, Q∩L is an independent set in ML. Similarly, Qc∩R is an

independent in MR. Since, M = ML⊕MR, it follows that Q∪Qc is an independent set

in M .

In the reverse direction, consider Q⊆ E such that Q∪Qc is an independent set in M .

Since, M = ML ⊕MR , Q is independent in ML and Qc is independent in MR. Since,

Q and Qc both have copies of the same edge, no two edges in Q share an end point in G.

Hence, Q forms a matching in G.

To capture the independence property on the conflict graph, we rely on the fact that a

chordal graph admits a nice clique-tree (Proposition 16). This allows us to do dynamic

programming over a nice clique-tree. At each step of our dynamic programming routine,

using representative sets, we ensure that we store a family of sets which are enough to

recover (some) independent set in M , if a solution exists.

We now move to the formal description of the algorithm. The algorithm starts by

computing a nice clique-tree (T,X) of H in polynomial time, using Proposition 16. Let

r ∈V (T) be the root of the (rooted) tree T . For Xt ∈ X , we let Xt = { /0}∪{{v} | v ∈ Xt}.

Recall that for t ∈V (T), Ht is the graph H[Vt], where Vt = ∪d∈desc(t)Xd .

In the following, we state some notations, which will be used in the algorithm. For

each t ∈V (T), Y ∈Xt , and an integer p ∈ [0,k] we define a family P p
t,Y as follows.

P p
t,Y ={Z∪Zc | Z ⊆V (Ht)(⊆ E), |Z|= p,Z∩Xt = Y,Z∪Zc ∈I and Ht [Z]

is edgeless}

138

For a family F of subsets of E ∪Ec, F is called a paired-family if for each F ∈F ,

there is Z ⊆ E, such that F = Z∪Zc.

In the following definition, we state the entries in our dynamic programming routine.

Definition 26. For each t ∈ V (T), Y ∈ Xt and p ∈ [0,k], we have an entry c[t,Y, p],

which stores a paired-family F (t,Y, p) of subsets of E ∪Ec of size 2p, such that for each

F = Z∪Zc ∈F , the following conditions are satisfied.

1. |Z|= p;

2. Z∩Xt = Y ;

3. Z is a matching in G, that is, Z and Zc are independent sets in ML and MR,

respectively;

4. Z is an independent set in Ht .

Moreover, F 6= /0 if and only if P p
t,Y 6= /0.

Consider t ∈ V (T), Y ∈Xt and p ∈ [0,k]. Observe that P p
t,Y is a valid candidate

for c[t,Y, p], which also implies that (G,H,k) is a yes-instance of CCBM if and only

if c[r, /0,k] 6= /0. However, we cannot set c[t,Y, p] = P p
t,Y as the size of P p

t,Y could be

exponential in n, and the goal here is to obtain an FPT algorithm. Hence, we will store a

much smaller subfamily (of size at most
(2k

2p

)
) of P p

t,Y in c[t,Y, p], which will be computed

using representative sets. Moreover, as we have a structured form of a tree decomposition

(nice clique-tree) of H, we compute the entries of the table based on the entries of its

children, which will be given by recursive formulae. For leaf nodes, which form base cases

for recursive formulae, we compute all entries directly.

Next, we give (recursive) formulae for the computation of the table entries. Consider

t ∈ V (T), Y ∈Xt and p ∈ [0,k]. We compute the entry c[t,Y,k] based on the following

139

cases.

Leaf node: t is a leaf node. In this case, we have Xt = /0, and hence Xt = { /0}. If p = 0,

then P p
t, /0 = { /0}, and P p

t, /0 = /0, otherwise. Since, P p
t, /0 is a valid candidate for c[t,Y, p],

we set c[t,Y, p] = P p
t, /0. Note that c[t,Y, p] has size at most 1≤

(2k
2p

)
, and we can compute

c[t,Y, p] in polynomial time.

Introduce node: Suppose t is an introduce node with child t ′ such that Xt = Xt ′ ∪{e},

where e /∈ Xt ′ . If Y 6= /0 and p < 1, then we set c[t,Y, p] = /0. Otherwise, we compute the

entry as described below. Before computing the entry c[t,Y, p], we first compute a set P̃ p
t,Y

as follows.

(6.1) P̃ p
t,Y =


c[t ′,Y, p] if Y 6= {e};

c[t ′, /0, p−1]?{{e,ec}} otherwise.

Next, we compute P̂ p
t,Y ⊆

2k−2p
rep P̃ p

t,Y of size
(2k

2p

)
, using Theorem 6.2.1. Finally, we

set c[t,Y, p] = P̂ p
t,Y .

Correctness: To show the correctness, it is enough to show that c[t,Y, p]⊆2k−2p
rep P p

t,Y . If

Y 6= /0 and p < 1, then we correctly set c[t,Y, p] = /0. Hereafter, we assume that Y 6= /0

then p≥ 1. If Y 6= {e}, then the claim follows from the fact that c[t,Y, p] = c[t ′,Y, p] and

P p
t,Y = P p

t ′,Y . Therefore, we consider the case when Y = {e}. In this case, we observe the

following towards proving the claim.

1. P p
t,Y = P p−1

t ′, /0 ?{{e,ec}}.

2. c[t ′, /0, p−1]⊆2k−2(p−1)
rep P p−1

t ′, /0 .

From item 1 and 2, and Lemma 34, it follows that c[t ′, /0, p−1]?{{e,ec}} ⊆2k−2p
rep P p

t,Y .

This together with Proposition 19, and the fact that P̂ p
t,Y ⊆

2k−2p
rep c[t ′, /0, p−1]?{{e,ec}}

140

implies that c[t,Y, p] = P̂ p
t,Y ⊆

2k−2p
rep P p

t,Y .

Forget node: Suppose t is a forget node with child t ′ such that Xt = Xt ′ \{e}, where e∈ Xt ′ .

Before computing the entry c[t,Y, p], we first compute a set P̃ p
t,Y as follows.

(6.2) P̃ p
t,Y =


c[t ′,Y, p] if Y 6= /0;

c[t ′, /0, p]∪ c[t ′,{e}, p] otherwise.

Next, we compute P̂ p
t,Y ⊆

2k−2p
rep P̃ p

t,Y of size
(2k

2p

)
, using Theorem 6.2.1. Finally, we

set c[t,Y, p] = P̂ p
t,Y .

Correctness: To show the correctness, it is enough to show that c[t,Y, p]⊆2k−2p
rep P p

t,Y . If

Y 6= /0, then the claim follows from the fact that c[t,Y, p] = c[t ′,Y, p], and P p
t,Y = P p

t ′,Y .

Therefore, we consider the case when Y = /0. In this case, we observe the following towards

proving the claim.

1. c[t ′, /0, p]⊆2k−2p
rep P p

t ′, /0.

2. c[t ′,{e}, p]⊆2k−2p
rep P p

t ′,{e}.

3. P p
t,Y = P p

t ′, /0∪P p
t ′,{e}.

From item 1 to 3, and Proposition 20, it follows that c[t ′, /0, p]∪c[t ′,{e}, p]⊆2k−2p
rep P p

t,Y .

This together with Proposition 19, and the fact that P̂ p
t,Y ⊆

2k−2p
rep c[t ′, /0, p]∪ c[t ′,{e}, p]

implies that c[t,Y, p] = P̂ p
t,Y ⊆

2k−2p
rep P p

t,Y .

Join node: Suppose t is a join node with children t1 and t2, such that Xt = Xt1 = Xt2 . If

Y 6= /0 and p < 1, then we set c[t,Y, p] = /0. Otherwise, we compute the entry as described

below. Before computing the entry c[t,Y, p], we first compute a set P̃ p
t,Y as follows.

141

(6.3) P̃ p
t,Y =


⋃

i∈[0,p]
(c[t1, /0, i]? c[t2, /0, p− i]) if Y = /0;

⋃
i∈[p]

(c[t1,Y, i]? c[t2, /0, p− i]) otherwise.

Next, we compute P̂ p
t,Y ⊆

2k−2p
rep P̃ p

t,Y of size
(2k

2p

)
, using Theorem 6.2.1. Finally, we

set c[t,Y, p] = P̂ p
t,Y .

Correctness: To show the correctness, it is enough to show that c[t,Y, p]⊆2k−2p
rep P p

t,Y . If

Y 6= /0 and p < 1, then we correctly set c[t,Y, p] = /0. Hereafter, we assume that whenever

Y 6= /0, we have p≥ 1. Next, we consider the following cases depending on whether or not

Y = /0.

• Y = /0. In this case, we have P p
t,Y = ∪i∈[0,p](P

i
t1, /0 ?P p−i

t1, /0
). Moreover, for i ∈

[0, p], we have that c[t1, /0, i]⊆2k−2i
rep P i

t1, /0 and c[t2, /0, p− i]⊆2k−2(p−i)
rep P p−i

t1, /0
. Above

arguments together with Proposition 20 and Lemma 34 implies that c[t,Y, p]⊆2k−2p
rep

P p
t,Y .

• Y 6= /0. In this case, we start by arguing that P̂ p
t,Y = ∪i∈[p](c[t1,Y, i] ? c[t2, /0, p−

i])⊆2k−2p
rep P p

t,Y . To this end, consider a set A ∈P p
t,Y of size 2p and a set B⊆ E∪Ec

of size 2k−2p such that A∪B ∈I and A∩B = /0. Observe that by construction

of P p
t,Y , A⊆V (Ht)∪ (V (Ht))

c, A∩Xt = Y . Let A1 = A∩V (Ht1), A2 = A\A1, and

i∗ = |A1|. Since A ∈P p
t,Y , and P p

t,Y is a paired-family, it holds that Ac
1∪Ac

2 ⊆ A.

Let B2 = B∪A1 ∪Ac
1, and note that |B2| = 2k− 2(p− i∗). Moreover, c[t2, /0, p−

i∗]⊆2k−2(p−i∗)
rep P p−i∗

t2, /0
, and therefore, there is Ã2∪ Ãc

2 ∈ c[t2, /0, p− i∗] such that (Ã2∪

Ãc
2)∪B2 ∈I and (Ã2∪ Ãc

2)∩B2 = /0. Next, consider B1 = B∪ (Ã2∪ Ãc
2), and note

that |B1|= 2k−2p+2(p− i∗) = 2k−2i∗. Since, c[t1,Y, i∗]⊆2k−2i∗
rep P i∗

t1,Y , therefore,

there is Ã1∪Ãc
1 ∈ c[t1,T, i∗] such that B1∪(Ã1∪Ãc

1)∈I and B1∩(Ã1∪Ãc
1)= /0. The

above arguments imply that (Ã1∪ Ãc
1)∪ (Ã2∪ Ãc

2) ∈I and (Ã1∪ Ãc
1)∩ (Ã2∪ Ãc

2) =

142

/0. Hence, by definition of the convolution operation (?), we have (Ã1 ∪ Ãc
1)∪

(Ã2∪ Ãc
2) ∈ c[t1,Y, i∗]?c[t2, /0, p− i∗]. Moreover, B∪ (Ã1∪ Ãc

1)∪ (Ã2∪ Ãc
2) ∈I and

B∩(Ã1∪Ãc
1)∪(Ã2∪Ãc

2)= /0. Therefore, ∪i∈[p](c[t1,Y, i]?c[t2, /0, p− i])⊆2k−2p
rep P p

t,Y .

This together with Proposition 19 implies that c[t,Y, p]⊆2k−2p
rep P p

t,Y .

This completes the description of the (recursive) formulae and their correctness for

computing all entries of the table. The correctness of the algorithm follows from the

correctness of the (recursive) formulae, and the fact that (G,H,k) is a yes-instance of

CCBM if and only if c[r, /0,k] 6= /0. Next, we move to the running time analysis of the

algorithm.

Lemma 37. The algorithm presented for CCBM runs in time O(2O(ωk)nO(1)), where n is

the number of vertices in G.

Proof. We do the running time analysis based on time required to compute an entry

c[t,Y,k], for t ∈V (T), Y ∈Xt and p ∈ [0,k]. We consider the following cases.

Leaf node: For leaf nodes the entries c[t,Y,k] can be computed in polynomial time.

Introduce node: The algorithm first computes a family P̃ p
Y,t from Equation 6.1, which

takes 22knO(1) time (using Proposition 21). Moreover, |P̃ p
Y,t | ≤max{

(2k
2p

)
,
(2k

2(p−1)

)
}. The

algorithm then computes P̂ p
Y,t ⊆

2k−2p
rep P̃ p

Y,t using Theorem 6.2.1, which takes time

bounded by O(2O(ωk)nO(1)).

Forget node: The algorithm first computes a family P̃ p
Y,t from Equation 6.1, which takes

at most
(2k

2p

)
time by standard set union operation. Moreover, |P̃ p

Y,t | ≤ 2
(2k

2p

)
. The algorithm

then computes P̂ p
Y,t ⊆

2k−2p
rep P̃ p

Y,t . This takes time |P̃ p
Y,t |
(2k

2p

)ω−1
nO(1) ≤

(2k
2p

)ω
nO(1) ≤

4ωknO(1). Therefore, the time required to compute an entry at forget node is at most

O(2O(ωk)nO(1)).

Join node: The algorithm first computes a family P̃ p
Y,t from Equation 6.3, which takes

at most 22knO(1) time by Proposition 21 and standard set union operation. Moreover,

143

|P̃ p
Y,t | ≤ 2O(ωk). Now the algorithm applies Theorem 6.2.1 on P̃ p

Y,t and computes

P̂ p
Y,t ⊆

2k−2p
rep P̃ p

Y,t . This takes time bounded by O(2O(ωk)nO(1)). Therefore, the time

required to compute an entry at join node is at most O(2O(ωk)nO(1)).

The time to compute an entry c[t,Y,k] is at most O(2O(ωk)nO(1)). Moreover, the

number of entries is bounded by |V (T)| · k · n ∈ nO(1). Thus, the running time of the

algorithm is bounded by O(2O(ωk)nO(1)).

Theorem 6.4.1. CCBM admits an FPT algorithm running in time O(2O(ωk)nO(1)).

6.4.2 FPT algorithm for CHORDAL CONFLICT MATCHING.

We design an FPT algorithm for CHORDAL CONFLICT MATCHING, using the algorithm

for CCBM (Theorem 6.4.1). Let (G,H,k) be an instance of CF-MM, where H is a chordal

graph and G is a graph on n vertices. We assume that G is a graph on vertex set [n], which

can easily be achieved by renaming vertices.

The algorithm starts by computing an (n,2k)-universal set F , using Proposition 22. For

each set A ∈F , the algorithm constructs an instance IA = (GA,LA,RA,HA,k) of CCBM

as follows. We have V (GA) = V (G), LA = A, R = V (G)\A, E(GA) = {uv ∈ E(G) | u ∈

LA,v ∈ RA}, and HA = H[E(GA)]. Note that HA is a chordal graph because chordal graphs

are closed under induced subgraphs and disjoint unions. The algorithm decides the instance

IA using Theorem 6.4.1, for each A ∈F . The algorithm outputs yes if and only if there is

A ∈F , such that IA is a yes-instance of CCBM.

Theorem 6.4.2. The algorithm presented for CF-MM is correct, Moreover, it runs in time

2O(ωk)kO(logk)nO(1), where ω < 2.373 is the exponent of matrix multiplication and n is the

number of vertices in the input graph.

Proof. Let (G,H,k) be an instance of CF-MM, where H is a chordal graph and G is a

graph on vertex set [n]. Clearly, if the algorithm outputs yes, then indeed (G,H,k) is a

144

yes-instance of CF-MM. Next, we argue that if (G,H,k) is a yes-instance of CF-MM then

the algorithm returns yes. Suppose there is a solution M ⊆ E(G) to CF-MM in (G,H,k).

Let S = {i, j | i j ∈M}, and L = {i | there is j ∈ [n] such that i j ∈M and i < j}. Observe

that |S|= 2k. Since F is an (n,2k)-universal set, there is A ∈F such that A∩S = L. Note

that S is a solution to CCBM in IA. This together with Theorem 6.4.1 implies that the

algorithm will return yes as output.

Next, we prove the claimed running time of the algorithm. The algorithm com-

putes (n,2k)-universal set of size O(22kkO(logk) logn), in time O(22kkO(logk) n logn),

using Proposition 22. Then for each A ∈ F , the algorithm creates an instance IA

of CCBM in polynomial time. Furthermore, it resolves the IA of CCBM in time

O(2O(ωk)nO(1)) using Theorem 6.4.1. Hence, the running time of the algorithm is bounded

by 2O(ωk)kO(logk)nO(1).

6.5 FPT algorithms for CF-MM and CF-SP with matroid

constraints

In this section, we study the problems CF-MM and CF-SP, where the conflicting condition

is being an independent set in a (representable) matroid. Due to technical reasons (which

will be clear later) for the above variant of CF-MM, we will only consider the case when

the matroid is repsesentable over Q (the field of rationals).

6.5.1 FPT algorithm for MATROID CF-MM

We study a variant of the problem CF-MM, where the conflicting condition is being an

independent set in a matroid representable over Q. We call this variant of CF-MM as

145

RATIONAL MATROID CF-MM (RAT MAT CF-MM, for short), which is formally defined

below.

RATIONAL MATROID CF-MM (RAT MAT CF-MM) Parameter: k

Input: A graph G, a matrix AM (representing a matroid M over Q) with columns

indexed by E(G), and an integer k.

Question: Is there a matching M ⊆ E(G) of size at most k, such that the set of columns

in M are linearly independent (over Q)?

We design an FPT algorithm for RAT MAT CF-MM. Towards designing an algorithm

for RAT MAT CF-MM, we first give an FPT algorithm for a restricted version of RAT MAT

CF-MM, where the graph in which we want to compute a matching is a bipartite graph.

We call this variant of RAT MAT CF-MM as RAT MAT CF-BIPARTITE MATCHING (RAT

MAT CF-BM). We then employ the algorithm for RAT MAT CF-BM to design an FPT

algorithm for RAT MAT CF-MM.

6.5.1.1 FPT algorithm for RAT MAT CF-BM

We design an FPT algorithm for the problem RAT MAT CF-BM, where the conflicting

condition is being an independent set in a matroid (representable over Q) and the graph

where we want to compute a matching is a bipartite graph. This problem is formally

defined below.

RAT MAT CF-BIPARTITE MATCHING (RAT MAT CF-BM)

Input: A bipartite graph G = (V,E) with vertex bipartition L,R, a matrix AM (repre-

senting a matroid M over Q) with columns indexed by E, and an integer k.

Parameter: k

Question: Is there a matching M ⊆ E of size k in G, such that the set of columns in M

are linearly independent (over Q)?

Our algorithm takes an instance of RAT MAT CF-BM and generates an instance of

3-MATROID INTERSECTION, and then employs the known algorithm for 3-MATROID

146

INTERSECTION to resolve the instance. In the following, we formally define the problem

3-MATROID INTERSECTION.

3-MATROID INTERSECTION Parameter: k

Input: Matrices AM1,AM2 , and AM3 over F (representing matroids M1,M2, and M3,

respectively, on the same ground set E) with columns indexed by E, and an integer k.

Question: Is there a set M ⊆ E of size k, such that M is independent in each Mi, for

i ∈ [3]?

Before moving further, we briefly explain why we needed an additional constraint that

the input matrix is representable over Q. Firstly, we will be using partition matroids which

are representable only on fields of large enough size, and we want all the matroids, that

is, the one which is part of the input and the ones that we create, to be representable over

the same field. Secondly, the algorithmic result (with the desired running time) we use for

3-MATROID INTERSECTION works only for certain types of fields.

Next, we state an algorithmic result regarding 3-MATROID INTERSECTION [79], which

is be used by the algorithm. We note that we only state a restricted form of the algorithmic

result for 3-MATROID INTERSECTION in [79], which is enough for our purpose.

Proposition 24. [Proposition 4.8 [79] (partial)] 3-MATROID INTERSECTION can be solved

in O(23ωk‖AM‖O(1)) time, when the matroids are represented over Q.

We are now ready to prove the desired result.

Theorem 6.5.1. RAT MAT CF-BM can be solved in O(23ωk‖AM‖O(1)) time.

Proof. Let (G = (V,E),L,R,AM ,k) be an instance of RAT MAT CF-BM, where the ma-

trix AM represents a matroid M = (E,I) over Q. Let ML = (E,IL),MR = (E,IR) be

the partition matroids as defined in Section 6.4. Next we compute matrix representations

AML and AMR of matroids ML,MR, respectively, using Proposition 17. Now, we solve

3-MATROID INTERSECTION on the instance (M ,AML ,AMR,k) (over Q) using Proposi-

tion 24, and return the same answer, as returned by the algorithm in it. The correctness

147

follows directly from the following. S ⊆ E is a matching in G if and only if S is an

independent set in ML and MR, that is, S ∈IL∩IR. The claimed running time follows

from Proposition 17 and Proposition 24.

6.5.1.2 FPT algorithm for RAT MAT CF-MM

We design an FPT algorithm for RAT MAT CF-MM, using the algorithm for RAT MAT

CF-BM (Theorem 6.4.1). Let (G,AM ,k) be an instance of RAT MAT CF-MM, where the

matrix AM represents a matroid M = (E,I) over Q. We assume that G is a graph with

the vertex set [n], which can easily be achieved by renaming vertices.

The algorithm starts by computing an (n,2k)-universal set F , using Proposition 22.

For each set X ∈F , the algorithm constructs an instance IX = (GX ,LX ,RX ,AM ,k) of RAT

MAT CF-BM as follows. We have V (GX) = V (G), LX = X , R = V (G) \X , E(GX) =

{uv ∈ E(G) | u ∈ LX ,v ∈ RX}. The algorithm decides the instance IX using Theorem 6.5.1,

for each X ∈F . The algorithm outputs yes if and only if there is X ∈F , such that IX is a

yes-instance of RAT MAT CF-BM.

Theorem 6.5.2. The algorithm presented for RAT MAT CF-MM is correct. Moreover, it

runs in time O(2(3ω+2)kkO(logk)‖AM‖O(1)nO(1)).

Proof. Let (G,AM ,k) be an instance of RAT MAT CF-MM, where matrix AM represent

a matroid M = (E,I) over field F. Clearly, if the algorithm outputs yes, then indeed

(G,AM ,k) is a yes-instance of RAT MAT CF-MM. Next, we argue that if (G,AM ,k) is

a yes-instance of RAT MAT CF-MM then the algorithm returns yes. Suppose there is

a solution M ⊆ E(G) to RAT MAT CF-MM in (G,AM ,k). Let S = {i, j | i j ∈M}, and

L = {i | there is j ∈ [n] such that i j ∈M and i < j}. Observe that |S|= 2k. Since F is an

(n,2k)-universal set, there is X ∈F such that X ∩S = L. Note that S is a solution to RAT

MAT CF-BM in IX . This together with Theorem 6.5.1 implies that the algorithm will

return yes as the output.

148

Next, we prove the claimed running time of the algorithm. The algorithm computes

(n,2k)-universal set of size O(22kkO(logk) logn), in time O(22kkO(logk) n logn), using

Proposition 22. Then for each X ∈F , the algorithm creates an instance IX of RAT MAT

CF-BM in polynomial time. Furthermore, it resolves the IX of RAT MAT CF-BM in

time O(23ωk‖AM‖O(1)) using Theorem 6.5.1. Hence, the running time of the algorithm is

bounded by O(2(3ω+2)kkO(logk)‖AM‖O(1)nO(1)).

6.5.2 FPT algorithm for MATROID CF-SP

In this section, we design an FPT algorithm for MATROID CF-SP. In the following, we

formally define the problem MATROID CF-SP.

MATROID CF-SP Parameter: k

Input: A graph G, (distinct) vertices s, t ∈V (G), a matrix AM (representing a matroid

M , over a field F) with columns indexed by E(G), and an integer k.

Question: Is there a set M ⊆ E(G) of size at most k, such that there is an st-path in

G[M] and the set of columns in M are linearly independent (over F)?

Our algorithm is based on a dynamic programming over representative families. Let

(G,s, t,AM ,k) be an instance of MATROID CF-SP. Before moving to the description of

the algorithm, we need to define some notations.

For distinct vertices u,v ∈V (G) and an integer p, we define the following.

P p
uv ={X ⊆ E(G) | |X |= p, there is a uv-path in G[X] containing all edges

in X , and X ∈I }
(6.4)

149

By the definition of convolution of sets, it is easy to see that

P p
uv =

⋃
wv∈E(G)

P p−1
uw ?{{wv}}

Now we are ready to describe our algorithm Alg-Mat-CF-SP for MATROID CF-SP. We

aim to store, for each v ∈V (G)\{s}, p≤ k, and q≤ k− p, a q-representative set P̂ pq
sv , of

P p
sv, of size

(p+q
q

)
. Notice that for each v∈V (G)\{s}, we can compute P1

sv in polynomial

time, since P1
sv = {sv} if sv ∈ E(G), and is empty otherwise. Moreover, since |P1

sv| ≤ 1,

therefore, we can set P̂1q
sv = P1

sv, for each q≤ k−1. Next, we iteratively compute, for

each p ∈ {2,3, · · · ,k}, in increasing order, for each q≤ k− p, a q-representative P̂ pq
sv , of

P p
sv. The algorithm Alg-Mat-CF-SP is given in Algorithm 3.

Next, we prove a lemma which will be useful in establishing the correctness of Alg-

Mat-CF-SP.

Lemma 38. For each p ∈ [k], q ∈ [0,k− p], and v ∈V (G)\{s}, the family P̂ pq
sv computed

by Alg-Mat-CF-SP is a q-representative of P p
sv, and is of size at most

(p+q
q

)
. Moreover,

the algorithm computes all sets in {P̂ pq
sv | p ∈ [k],q ∈ [0,k− p],v ∈ V (G)\{s}} in time

O(2O(ωk)nO(1)).

Proof. We prove the claim by induction on p. Consider v ∈ V (G)\{s}. For p = 1, the

set P1
sv = {sv} if sv ∈ E(G), and is empty otherwise. Moreover, for each q ∈ [0,k−1],

Alg-Mat-CF-SP sets P̂1q
sv = P1

sv. Hence, for each q ∈ [0,k−1], we have P̂1q
sv ⊆q

rep P1
sv.

Moreover, the set P̂1q
sv is computed by the algorithm in polynomial time.

For induction hypothesis, we assume that for t ∈ N≥1, for each p ≤ t, q ∈ [0,k− p],

and v ∈ V (G) \ {s}, we have P̂ pq
sv ⊆q

rep P p
sv. Next, consider p = t + 1, q ∈ [0,k− (t +

1)], and v ∈ V (G) \ {s}. The step of the algorithm, where it computes P̂
(t+1)q
sv , it has

already computed (correctly), for each p ≤ t, q ∈ [0,k− p], and u ∈ V (G) \ {s}, the set

P̂ pq
su ⊆q

rep P p
su. This follows from the iteration of the algorithm over p from 1 to k in

150

Algorithm 3 Alg-Mat-CF-SP
Input: A graph G, (distinct) vertices s, t ∈V (G), a matrix AM (over F), and an integer k.
Output: If there is M ⊆ E(G) of size at most k, such that there is an s− t path in G[M]

and the set of columns in M are linearly independent (over F) then yes. Otherwise, no.
for each v ∈V (G)\{s} do

if sv ∈ E(G) then
return P1

sv = {sv}
else

P1
sv = /0

end if
for q = 0 to k−1 do

Set P̂1q
sv = P1

sv
end for

end for
for p = 2 to k do

for q = 0 to k− p do
for each v ∈V (G)\{s} do

Let P̃ pq
sv = ∪wv∈E(G)P̂

(p−1)(q+1)
sw ?{{wv}}

Compute P̂ pq
sv ⊆k−p

rep P̃ pq
sv using Theorem 6.2.1

end for
end for

end for
for p = 1 to k do

for q = 0 to k− p do
if P̂ pq

st 6= /0 then
return yes

end if
end for

end for
return no

increasing order at Step 6 (and Step 1). The algorithm sets P̃
(t+1)q
sv =∪wv∈E(G)P̂

(t)(q+1)
sw ?

{{wv}}, and then sets P̂
(t+1)q
sv to be the q-representative set of P̃

(t+1)q
sv returned by

Theorem 6.2.1, which is of size at most
(t+1+q

t+1

)
. If we show that P̃

(t+1)q
sv ⊆q

rep Pt+1
sv , then

by Proposition 19 it will follow that P̂
(t+1)q
sv ⊆q

rep Pt+1
sv . But P̃

(t+1)q
sv ⊆q

rep Pt+1
sv follows

from Lemma 34 and Proposition 20. Also, note that each entry can be computed in time

O(2O(ωk)nO(1)).

Using Lemma 38, we obtain the following theorem.

Theorem 6.5.3. The algorithm Alg-Mat-CF-SP is correct. Moreover, it runs in time

151

O(2O(ωk)nO(1)).

Proof. Let (G,s, t,AM ,k) be an instance of MATROID CF-SP. We claim that (G,s, t,AM ,k)

is a yes-instance of MATROID CF-SP if and only if Alg-Mat-CF-SP outputs yes. In the

forward direction, let (G,s, t,AM ,k) be a yes-instance of MATROID CF-SP. Since, using

Lemma 38, Alg-Mat-CF-SP computes a q-representative of P p
sv of size at most

(p+q
q

)
, for

each p ∈ [k], q ∈ [0,k− p], and v ∈V (G)\{s}, therefore, the algorithm also computes a

q-representative family for Pk
st . By the definition of representative set and construction

of our family Pk
st , P̂k

st also contains a s− t path and hence, the algorithm outputs yes.

In the reverse direction, if the algorithm outputs yes then by construction of family P̂k
st ,

if P ∈ P̂k
st , then it is a conflict-free s− t path in G. This completes the correctness of

our algorithm. Moreover, the running time bound of the algorithm follows from Lemma

38.

Theorem 6.5.3 will also result into an FPT algorithm for CF-SP when the conflict

graph is a cluster graph.

Corollary 8. CONFLICT FREE SHORTEST PATH parameterized by the solution size is

FPT, when the conflict graph is a cluster graph.

Proof. Let (G,H,k) be an instance of CF-SP, where H is a cluster graph. We construct a

partition matroid, MH = (U,I), corresponding to graph H as follows. We define ground

set as U =V (H). Now, partition U as Ui =V (Ci), for each clique Ci in H and ai = 1, for

Ui ∈U . By the construction of MH , we have for S⊆V (H), S is an independent set in H

if and only if S is independent in MH . Next, we compute a matrix M representing MH ,

using Proposition 17 in polynomial time.Now we use Alg-Mat-CF-SP with input (G,M,k),

and return the same output. The correctness of our algorithm follows from correctness

of the algorithm Alg-Mat-CF-SP (Theorem 6.5.3), and by construction of the instance

(G,M,k). Note that the matrix M representing MH can be computed in polynomial time.

152

This together with Theorem 6.5.3 implies the claimed running time bound, This concludes

the proof.

6.6 FPT Algorithm for d-degenerate Conflict Graphs

In this section, we show that CF-MM and CF-SP both are in FPT, when the conflict graph

H is a d-degenerate graphs. These algorithms are based on the notion of independence

covering family, which was introduced in [81].

Before moving onto description of our algorithms, we recall the notion of independence

covering family.

Definition 27 ([81]). For a graph H? and an integer k, a k-independence covering family,

I (H?,k), is a family of independent sets in H? such that for any independent set I′ in H?

of size at most k, there is a set I ∈I (H?,k) such that I′ ⊆ I.

Our algorithms rely on the construction of k-independence covering family, for a

family of graphs. But before dwelling into these details, we first design an algorithm for an

annotated version of the CF-MM and CF-SP problems, which we call ANNOTATED CF-

MM and ANNOTATED CF-SP, respectively. In the ANNOTATED CF-MM (ANNOTATED

CF-SP) problem, the input to CF-MM (CF-SP) is annotated with a k-independence

covering family.

6.6.1 Algorithms for ANNOTATED CF-MM and ANNOTATED CF-SP

In this section, we study the problems ANNOTATED CF-MM and ANNOTATED CF-SP,

which are formally defined below.

153

Algorithm 4 Alg-CF-MM (Alg-CF-SP)

Input: A graph G,((distinct) vertices s, t ∈V (G)), a conflict graph H, an integer k, and a
k-independence covering family F of H.

Output: If there a set M ⊆ E of size k in G such that M is a matching in G (there is an
s− t path in G[M]) and M is an independent set in H, then yes, and no otherwise.
for each I ∈F do

Let GI be the graph with V (GI) =V (G) and E(GI) = I
if GI has a matching (path) of size k then

return yes
end if

end for
return no

ANNOTATED CF-MM Parameter: k+ |F |
Input: A graph G = (V,E), a conflict graph H = (E,E ′), an integer k, and a k-

independence covering family F of H.

Question: Is there a matching M ⊆ E of size k in G such that M is an independent set

in H?

ANNOTATED CF-SP Parameter: k+ |F |
Input: A graph G = (V,E), (distinct) vertices s, t ∈V , a conflict graph H = (E,E ′), an

integer k, and a k-independence covering family F of H.

Question: Is there a set M ⊆ E of size at most k, such that there is an s− t path in

G[M] and M is an independent set in H?

The algorithm that we design for ANNOTATED CF-MM runs in time polynomial in

the size of the input. We give the algorithm Alg-CF-MM (Alg-CF-SP) (Algorithm 4) for

ANNOTATED CF-MM (ANNOTATED CF-SP).

In the following lemma we prove the correctness of Alg-CF-MM (Alg-CF-SP).

Lemma 39. The algorithm Alg-CF-MM (Alg-CF-SP) is correct. Moreover, the algorithm

runs in time polynomial in the size of the input.

Proof. Let (G,(s, t),H,k,F) be an instance of ANNOTATED CF-MM (ANNOTATED

CF-SP). We show that (G,(s, t),H,k,F) is a yes-instance of ANNOTATED CF-MM

154

(ANNOTATED CF-SP) if and only if Alg-CF-MM (Alg-CF-SP) outputs yes.

Note that the reverse direction easily follows from the fact that F is a family of

independent sets in H. Therefore, we only need to prove the forward direction. In

the forward direction, let (G,(s, t),H,k,F) be a yes-instance of ANNOTATED CF-MM

(ANNOTATED CF-SP) and S be one of its solution. Since F is a k-independence covering

family, there is I ∈F such that S⊆ I (see Definition 27). Hence, in the iteration where the

algorithm considers I in its for loop, the graph GI has S as a matching (there is an s− t

path in GI[S]). Therefore, the algorithm outputs yes at this iteration.

The running time analysis follows from the fact that maximum matching (shortest path)

can be computed in polynomial time [47, 88]([41, 9]).

Next, we use Alg-CF-MM (Alg-CF-SP) together with Independence Covering Lemma

of [81] to obtain algorithms for CF-MM (CF-SP) when the conflict graph is d-degenerate

or nowhere dense graph. Towards this, first we recall some lemmas from [81] that we use

in our algorithms.

Proposition 25. [Lemma 1.1,[81]] There is a randomized algorithm running in polynomial

time, that given a d-degenerate graph H? and an integer k as input, outputs an independent

set I, such that for every independent set I′ of size at most k in graph H?, the probability

that I′ ⊆ I is at least (
(k(d+1)

k

)
· k(d +1))−1.

Proposition 26. [Lemmas 3.2 and 3.3,[81]] There are two deterministic algorithms A1 and

A2, which given a d-degenerate graph H? and an integer k, output independence covering

families I1(H?,k) and I2(H?,k), respectively, such that the following conditions are

satisfied.

• A1 runs in time O(|I1(H?,k)| · (n+m)), where |I1(H?,k)|=
(k(d+1)

k

)
·2o(k(d+1)) ·

logn.

• A2 runs in time O(|I2(H?,k)| · (n+m)), where |I2(H?,k)| =
(k2(d+1)2

k

)
· (k(d +

1))O(1) · logn.

155

Next, using Proposition 25 and 26, together with Alg-CF-MM (Alg-CF-SP), we obtain

randomized and deterministic algorithms, respectively for CF-MM (CF-SP), when the

conflict graph is a d-degenerate graph.

Theorem 6.6.1. There is a randomized algorithm, which given an instance (G,H,k) of CF-

MM(CF-SP), where H is a d-degenerate graph, in time
(k(d+1)

k

)
· k(d +1) ·nO(1), either

reports a failure or correctly outputs that the input is a yes-instance of CF-MM(CF-SP).

Moreover, if the input is a yes-instance of CF-MM(CF-SP), then the algorithm outputs

correct answer with a constant probability.

Proof. Let (G,(s, t),H,k) be an instance CF-MM (CF-SP), where H is a d-degenerate

graph.

We repeat the following procedure (
(k(1+d)

k

)
· k(d +1)) many times.

1. The algorithm computes an independent set I in (H,k) using Proposition 25.

2. The algorithm calls Alg-CF-MM (Alg-CF-SP) with input (G,(s, t)H,k,{I}).

The algorithm outputs yes, if in one of the calls to Alg-CF-MM (Alg-CF-SP), it receives

a yes. Otherwise, the algorithm outputs no. The running time analysis of the above

procedure follows from Proposition 25 and Lemma 39. Also, given a yes-instance, the

guarantee on success probability follows from Proposition 25, the number of repetitions,

and Lemma 39. Moreover, from Lemma 39 the yes output returned by the algorithm is

indeed the correct output to CF-MM(CF-SP)for the given instance. This concludes the

proof.

Theorem 6.6.2. CF-MM (CF-SP) admits a deterministic algorithm running in time

min
{(k(d+1)

k

)
·2o(k(d+1)) · logn,

(k2(d+1)2

k

)
· (k(d+1))O(1) · logn

}
·nO(1), when the conflict

graph is a d-degenerate graph.

156

Proof. Let (G,(s, t),H,k) be an instance CF-MM (CF-SP), where H is a d-degenerate

graph. The algorithm starts by computing a k-independence covering family I (H,k) of H,

using Proposition 8. Next, we call Alg-CF-MM (Alg-CF-SP) with the input (G,(s, t),H,k,

I (H,k)). The correctness and running time analysis of the above procedure follows from

Proposition 8 and Lemma 39. This completes the proof.

6.7 Conclusion

We studied conflict-free (parameterized) variants of MAXIMUM MATCHING (CF-MM)

and SHORTEST PATH (CF-SP). We showed that both CF-MM and CF-SP are W[1]-hard,

when parameterized by the solution size. In fact, our W[1]-hardness result for CF-MM

holds even when the graph where we want to compute a matching is itself a matching and

W[1]-hardness result of CF-SP holds even when the conflict graph is a unit interval graph.

Then, we restricted our attention to having conflict graphs belonging to some families

of graphs, where the INDEPENDENT SET problem is either polynomial time solvable or

solvable in FPT time. In particular, we considered the family of chordal graphs and the

family of d-degenerate graphs. For the CF-MM problem, we gave an FPT algorithm,

when the conflict graph belongs to the family of chordal graphs. We observed that, we

cannot obtain an FPT algorithm for the CF-SP problem when the conflict graph is a

chordal graph. This holds because unit-interval graphs are chordal, and the problem

CF-SP is W[1]-hard, even when the conflict graph is a unit-interval graph. For conflict

graphs being d-degenerate, we obtained FPT algorithms for both CF-MM and CF-SP.

Our results hold even when the conflict graph is a nowhere dense graph. Finally, we studied

a variant of CF-MM and CF-SP, where instead of conflicting conditions being imposed

by independent sets in a conflict graph, they are imposed by independence constraints in a

(representable) matroid. We gave FPT algorithms for the above variant of both CF-MM

and CF-SP.

157

An interesting question is to obtain (parameterized) dichotomy results for CF-MM

and CF-SP, based on the families of graphs where the input graphs belong to. Another

direction could be studying kernelization complexity for different families of graphs, and

also to see what all FPT problems remain FPT with the conflicting constraints.

158

Part III

FVS in Hypergraphs

159

Chapter 7

Feedback Vertex Set in Hypergraphs

7.1 Introduction

It would be an understatement to say that VERTEX COVER (VC) (given an undirected graph

G and a positive integer k, does there exist a set S of k vertices which intersects every edge

in G) and FEEDBACK VERTEX SET (FVS) (given an undirected graph G and a positive

integer k, does there exist a set S (called feedback vertex set or in short fvs) of k vertices

which intersects every cycle in G) have played a pivotal role in the development of the field

of Parameterized Complexity. While there has been no improvement in the parameterized

algorithm for VC in the last 14 years [27] (the conference version appeared in MFCS

2006), faster algorithms for FVS have been developed over the last decade. The best known

algorithm for VC runs in time O(1.2738k + kn) [27]. On the other hand, for FVS, the first

deterministic O(cknO(1)) algorithm was designed only in 2005; independently by Dehne

et al. [37] and Guo et al. [59]. It is important to note here that a randomized algorithm for

FVS with running time O(4knO(1)) [8] was known in as early as 1999. The deterministic

algorithms led to the race of improving the base of the exponent for FVS algorithms and

several algorithms [22, 23, 26, 31, 61, 70, 77], both deterministic and randomized, have

been designed. Until few months ago the best known deterministic algorithm for FVS

161

ran in time 3.619knO(1) [70], while the Cut and Count technique by Cygan et al. [31] gave

the best known randomized algorithm running in time 3knO(1). However, just in last few

months both these algorithms have been improved; Iwata and Kobayashi [61, IPEC 2019]

designed the fastest known deterministic algorithm with running time O(3.460kn) and Li

and Nederlof [77, SODA 2020] designed the fastest known randomized algorithm with

running time 2.7knO(1). We would like to remark that many variants of FVS have been

studied in literature such as CONNECTED FVS [31, 91], INDEPENDENT FVS [2, 78, 90],

SIMULTANEOUS FVS [4, 112] and SUBSET FVS [33, 63, 64, 67, 82].

The main objective of this chapter is a study of FVS on hypergraphs. Recall that

hypergraphs are essentially a set family H: we have a universe V (H) and a family of

hyperedges E(H), where each hyperedge (or an edge) is a subset of V (H). When every

hyperedge in E(H) is of size at most d, it is known as a d-hypergraph. Observe that when

each hyperedge is of size exactly two, we get an undirected graph. The natural question is,

how does VC generalize to hypergraphs. Let (G,k) be an instance of VC. Then, we can

view VC as the following problem: Given a hypergraph with vertex set V (G) and the set

of hyperedges E(G), does there exist a set of k vertices that intersects every hyperedge.

Thus, VC is a special case of HITTING SET (HS): Given a hypergraph H and a positive

integer k, does there exist a set of k vertices that intersects every hyperedge. When the size

of each hyperedge is upper bounded by d, we refer to the problem as the d-HITTING SET

(d-HS) problem. Observe that VC is equivalent to the 2-HS problem. It is well known

that HS does not admit an algorithm with running time f (k)nO(1) for any function f that

depends on k alone. That is, the problem is known to be W[2]-hard. On the other hand,

d-HS is solvable in time dknO(1) and admits a kernel of size O(kd) [1, 49]. It is worth to

note that a lower bound of size O(kd−ε) under plausible complexity theory assumptions is

also known [38]. Thus, a generalization of VC on hypergraphs is well studied. However,

there is very little study of FVS on hypergraphs. The only known algorithmic result is a

factor d approximation for FVS on d-hypergraphs [55]. Upper bounds on minimum fvs in

3-uniform linear hypergraphs are studied in [39].

162

The objective of this chapter is to study the hypergraph variant of the FEEDBACK

VERTEX SET problem from the view point of Parameterized Complexity.

One of the main reasons for the lack of study of FVS on hypergraphs is that it is

not quite as natural to define the generalization of FVS in hypergraphs, as it is for the

case of VC (generalizing to HS and d-HS) in hypergraphs. To generalize the notion of

fvs to hypergraphs, we need to have notions of cycles and forests in hypergraphs. For

cycles, we use the same notion as that in graph theory [39]: a cycle in a hypergraph H

is a sequence (v0,e0,v1, . . . ,v`,e`,v0) such that v0, . . . ,v` are distinct vertices, e0, . . . ,e`

are distinct hyperedges, `≥ 1 and vi,v(i+1) mod (`+1) ∈ ei for any i ∈ {0, . . . , `}. Given the

above definition of cycle, a subset S of vertices in a hypergraph H is called a feedback

vertex set, if there does not exist a cycle in the hypergraph obtained after deleting vertices

in S. The next natural question is what do we mean by deletion of a vertex in a hypergraph.

There are two ways to define the vertex deletion operation in hypergraphs:

1. Strong deletion or simply deletion of a vertex v implies deleting v along with all the

hyperedges containing the vertex v.

2. Weak deletion of a vertex v implies deleting v without deleting the hyperedges that

contain v. That is, the hypergraph H ′ obtained after weak deletion of a vertex v from

H has vertex set V (H) and edge set {e ∈ E(H) : v /∈ e}∪{e \ {v} : e ∈ E(H),v ∈

e, |e|> 2}.

For a hypergraph H we use the notation H − S to denote the graph obtained after

(weak/strong) deletion of the vertices in S. Consequently, there are two ways one may

define the FEEDBACK VERTEX SET problem – WEAK FVS and STRONG FVS.

Given a hypergraph H, the incidence graph G corresponding to H is the bipartite graph

with bipartition V (G) = A]B where A = V (H) and B = E(H), and for any v ∈ V (H)

and e ∈ E(H), ve is an edge in G if and only if v ∈ e in H. Observe that WEAK FVS

corresponds to finding a fvs S in G of size at most k, such that S⊆ A and G−S is a forest.

163

Using the best known algorithm for WEIGHTED FVS [3] running in 3.618knO(1) time, we

can solve WEAK FVS in 3.618knO(1) time, by transforming the problem to WEIGHTED

FVS. To transform WEAK FVS to WEIGHTED FVS we assign every vertex in B a weight

of k+1, every vertex in A a weight of 1. Now the problem of finding an fvs of weight at

most k will be equivalent to solving WEAK FVS for the original hypergraph. Thus WEAK

FVS is not challenging as a problem.

Hence, we only consider FVS on hypergraphs with respect to strong deletion. In

particular, we study HYPERGRAPH FEEDBACK VERTEX SET (HFVS). Here, given an

n-vertex hypergraph H and a positive integer k, the objective is to check whether there

exists a set S⊆V (H) of size at most k, such that H−S is acyclic. As in the case of HS, it

is expected that HFVS is W[2]-hard and this can be proven using a parameter preserving

reduction from SET COVER (which is “equivalent” to HS). We prove the following theorem

in Section 7.3.

Theorem 7.1.1. HFVS is W[2]-hard when parameterized by k.

Theorem 7.1.1 is not surprising as such a generalization of even VC is W[2]-hard.

FVS is a deeply studied problem in Parameterized Complexity, and thus, we tried to

generalize the existing algorithms as much as possible. However, considering the problem

on general hypergraphs is pushing it too far (Theorem 7.1.1). This motivated us to look

for families of hypergraphs, which are a strict generalizations of graphs and where FVS

turns out to be tractable. Specifically, we study the problem for the cases when the input is

restricted to linear hypergraphs and d-hypergraphs.

A hypergraph H is linear if |e∩e′| ≤ 1 for any two distinct hyperedges e,e′ ∈E(H). We

show that for both these families, HFVS admits fixed parameter tractable (FPT) algorithms.

Our main result is a randomized algorithm for the case when the input hypergraph is linear,

and the size of the hyperedges is not bounded. Thus our positive results are the following.

Theorem 7.1.2. There exists a deterministic algorithm for HFVS on d-hypergraphs,

164

running in time dO(k)nO(1).

Theorem 7.1.3. There exists an O?(2O(k3 logk)) time1 randomized algorithm for HFVS on

linear hypergraphs, which produces a false negative output with probability at most 1
nO(1) ,

and no false positive output.

The restriction to linear hypergraphs corresponds to exclusion of C4 or K2,2 in the

corresponding incidence graph. Ki, j refers to the complete bipartite graph with partitions

of sizes i and j. There has been extensive work on RED-BLUE DOMINATING SET for Ki, j

free graphs [30, 53, 101, 104]. Theorem 7.1.3 can be viewed as an analog of RED-BLUE

DOMINATING SET results for K2,2 free graphs.

The starting point of both the above mentioned algorithms (Theorems 7.1.2 and 7.1.3)

is recasting HFVS as an appropriate problem on the incidence graph G of the given

hypergraph H. Proof of Theorem 7.1.3 starts with the observation that for any subset

S ⊆ V (H), H−S is acyclic if and only if G−NG[S] is acyclic. Consequently, HFVS is

same as the following problem (see Lemma 41 in appendix for proof).

DOMINATING FVS ON BIPARTITE GRAPHS (DFVSB) Parameter: k

Input: A bipartite graph G with bipartition V (G) = A]B and k ∈ N.

Question: Is there a subset S⊆ A of size at most k such that G−NG[S] is acyclic?

For a bipartite graph G = (A]B,E), we say that a subset S⊆ A is a dominating feedback

vertex set for G if G−N[S] is acyclic. Let G be the incidence graph of a hypergraph H.

Then, notice that H is a d-hypergraph if and only if maxe∈E(H) dG(e)≤ d. Also, H is linear

if and only if G is C4-free. As a result HFVS on d-hypergraphs and linear hypergraphs are

equivalent to DFVSB on bipartite graphs G = (A]B,E) with maxw∈B d(w)≤ d and on

C4-free bipartite graphs, respectively.

Theorem 7.1.2 shows that for d-hypergraphs, HFVS is similar to the case of d-HS.

Proof of Theorem 7.1.2 utilizes iterative compression and the compression step involves
1Polynomial dependency on n is hidden in O? notation.

165

a branching strategy that uses a measure more generalized compared to the one used in

known FVS algorithms for undirected graphs.

Our proof for Theorem 7.1.3 is inspired by the randomized algorithm of Becker et

al. [8] that runs in O(4knO(1)) time and the branching algorithm for POINT LINE COVER

by Langerman and Morin [75]. The algorithm of Becker et al. [8] first preprocesses the

input graph and transforms it into a graph with minimum degree at least 3 and then shows

that for any fvs, at least half the edges in a preprocessed graph are incident to the vertex

set of the fvs. This immediately implies the following algorithm: “pick an edge uniformly

at random, then pick a vertex that is an endpoint of this edge uniformly at random and

add it to a solution, and recurse”. Let G be the incidence graph of a hypergraph H. First

we preprocess G and show that in the preprocessed graph (say G) for any dominating

feedback vertex set S of size at most k, at least 1/poly(k) 2 fraction of all the edges are

incident to N[S]. We call this property α-covering, with α being poly(k). Let S be a

fixed fvs of size at most k. We now compute the probability of finding S. Note that if

we randomly pick an edge f (that is, pick an edge from graph G uniformly at random

and then select f as the hyperedge incident to the selected edge), then with probability

1/poly(k) there exists a vertex incident to f that is contained in S. However, unlike the case

of FVS in graphs, here we cannot randomly select a vertex from f , as the size of f could

be independent of k. However, for now let us assume that we can preprocess G− f such

that α-covering property holds even after we delete f from G. We assume that α-covering

property holds recursively after each iteration of preprocessing. Suppose we do this process

k2 +1 times. Then we have a collection of hyperedges F = { f1, . . . , fk2+1} such that each

of them has a non-trivial intersection with S. Observe that the pairwise intersection of

these hyperedges cannot be more than one, since G excludes C4 as a subgraph (H being a

linear hypergraph). However, S is a solution of size at most k, and hence there exist k+1

hyperedges f ′1, . . . , f ′k+1 among F such that | f ′i ∩ f ′j|= {v}, i 6= j for some v ∈ A =V (H).

This implies that v must belong to S, as each of f ′1, . . . , f ′k+1 has a non-trivial intersection

2poly denotes a polynomial function.

166

with S and if we don’t pick v, then every solution is of size at least k+1. Hence, we delete

v along with all those edges in H that v participates in, and recursively find a solution of

size k−1 in the reduced hypergraph.

However, unlike the case with FVS for graphs, in HFVS we cannot delete degree one

vertices or contract degree 2 vertices directly. When we delete a hyperedge, we need

to remember that we are seeking a solution that is a dominating feedback vertex set as

well as a hitting set for the selected set. To implement this idea in our algorithm, we

maintain a family F such that our solution is a dominating feedback vertex set for G as

well as a hitting set for F . We exploit the fact that |F | ≤ k2 + 1 and design reduction

rules that get rid of a certain degree one vertices and shorten degree 2 paths, as well as

caterpillars (defined later) like degree 2 paths. We can show that after these reduction rules

are performed, the α-covering property holds for the preprocessed graph, α being poly(k).

7.2 Preliminaries

For a positive integer `∈N, we use [`] to denote the set {1,2, . . . , `}. We use the term graph

to denote a simple graph without multiple edges, loops and labels. For the notations related

to graphs that are not explicitly stated here, we refer to the book [40]. For a graph G and a

subset of vertices U ⊆V (G), NG(U) and NG[U] denote the open neighborhood and closed

neighborhood of U , respectively. That is, NG(U) = {v∈V (G) : u∈U and uv∈ E(G)}\U

and NG[U] = NG(U)∪U . If U = {u}, then we write NG(u) = NG(U) and NG[u] = NG[U].

Also, we omit the subscript G, if the graph in consideration is clear from the context. For a

graph G, a vertex subset X ⊆V (G), and an edge subset F ⊆ E(G), we use G[X], G−X ,

and G−F to denote the graph induced by X , the graph induced by V (G)\X , and the graph

with vertex set V (G) and edge set E(G)\F , respectively. Moreover, if X = {v}, then we

write G−v = G−X . For a graph G, X ,Y ⊆V (G), and X ∩Y = /0, E(X ,Y)⊆ E(G) denotes

the set of edges in G whose one endpoint is in X and the other one is in Y . For a graph G

167

and a non-edge uv in G, we use G+uv to denote the graph with vertex set V (G) and edge

set E(G)∪{uv}. A path P in a graph G is a sequence of distinct vertices u1 . . .u` such that

for all i ∈ [`−1], uiui+1 ∈ E(G). We say that a path P = u1 . . .u` in a graph G is a degree

two path in G, if for each i ∈ [`], the degree of ui in G, denoted by dG(ui), is equal to 2.

For a path/cycle P, we use V (P) to denote the set of vertices present in P. A triangle is a

cycle consisting of exactly 3 edges. A bipartite graph G = (A]B,E) is called a d-bipartite

graph if dG(b) ≤ d for all b ∈ B. For two hypergraphs H1 and H2, H1∪H2 denotes the

hypergraph with the vertex set V (H1)∪V (H2) and the edge set E(H1)∪E(H2).

7.3 Feedback Vertex Sets on General Hypergraphs

In order to prove Theorem 7.1.1 we give a polynomial time parameter preserving reduction

from SET COVER to HFVS. In SET COVER (SC), we are given a universe U , a family F

of sets over U , and a positive integer k, and the question is whether there is a subfamily

F ′ ⊆F of size at most k, such that
⋃

F∈F ′ F =U . It is well known that SET COVER is

W[2]-hard [29, Theorem 13.28].

Given an instance (U,F ,k) of SC, we construct an instance (H,k) of HFVS as

follows. For each element u ∈U , let Xu be the family of sets in F that contain u. For each

F ∈F , we add a vertex wF in H. Furthermore, for each u ∈U , we add 2(k+1) vertices

{u1,u′1, . . . ,uk+1,u′k+1} in H. Hence, V (H) = {wF | F ∈F}∪{u1,u′1, . . . ,uk+1,u′k+1 | u∈

U}. Now, we explain the construction of hyperedges of H. For each u ∈U , we introduce a

hyperedge eu = {wF | F ∈ Xu} containing vertices corresponding to the sets in Xu. Also,

for each u ∈U , we add hyperedges eu∪{ui}, {ui,u′i}, eu∪{u′i}, for all i ∈ [k+1]. This

completes the construction. Towards the proof of Theorem 7.1.1, we give the following

lemma.

Lemma 40. (U,F ,k) is a yes-instance of SC if and only if (H,k) is a yes-instance of

HFVS.

168

Proof. In the forward direction, let S be a solution to (U,F ,k) of SC. We claim that

Z = {wF | F ∈S } is a feedback vertex set of size at most k in H. Since |S | ≤ k, we have

that |Z| ≤ k. Next, we prove that Z is a feedback vertex set in H. Since S is a set cover,

the only hyperedges of H present in H−Z are {{ui,u′i} | u ∈U, i ∈ [k+1]}. Notice that

{{ui,u′i} | u ∈U, i ∈ [k+1]} are pairwise disjoint. This implies that H−Z is acyclic.

In the reverse direction, let Z be a solution to (H,k) of HFVS. Let Z′ = Z \

{u1,u′1, . . . ,uk+1,u′k+1 | u ∈ U}. That is, Z′ contains only those vertices of Z that cor-

respond to some set in F . Let S = {F | wF ∈ Z′}. Since |Z′| ≤ |Z| ≤ k, we have

that |S | ≤ k. Next we claim that S is a set cover of (U,F ,k). Towards that, we

choose an arbitrary element u ∈U and prove that there is a set F ∈S which contains

u. Let J be an arbitrary set in F such that u ∈ J. Notice that there are k+ 1 triangles

(wJ,eu∪{ui},ui,{ui,u′i},u′i,eu∪{u′i},wJ),1 ≤ i ≤ k+1, in H. This implies that at least

one vertex wF in eu must belong to the feedback vertex set Z (and Z′). However, u belongs

to F and F is in S . Hence u is covered by S . This completes the proof.

7.4 Equivalence between HFVS and DFVSB

Lemma 41. (H,k) is a yes-instance of HFVS if and only if (G = (A]B,E ′),k) is a

yes-instance of DFVSB, where G is the incidence graph of the hypergraph H.

Proof. In forward direction, let S be a solution to (H,k) of HFVS. We claim that S is

also a solution to (G = (A]B,E ′),k) of DFVSB. Suppose not. Then, there exists a cycle

C = v1e1 . . .v`e`v1 in the graph G−NG[S]. This implies that e1, . . . ,e` are hyperedges in

H−S, and {v1, . . . ,v`} ⊆V (H)\S. Then (v1,e1, . . . ,v`,e`,v1) is a cycle in the hypergraph

H−S. This is a contradiction to the assumption that S is a solution to (H,k).

In reverse direction, let S′ be a solution to (G,k) of DFVSB. We claim that S′

is also a solution to (H,k) of HFVS. Suppose not. Then, there exists a cycle C =

169

(v1,e1, . . . ,v`,e`,v1) in the hypergraph H−S′. This implies that {v1, . . . ,v`} ⊆ A\S′ and

{e1, . . . ,e`} ⊆ B \NG(S′). Therefore, v1e1 . . .v`e`v1 is a cycle in G−NG[S′], which is a

contradiction to the assumption that S′ is a solution to (G,k).

7.5 Feedback Vertex Sets on d-Hypergraphs: Proof of

Theorem 7.1.2

In this section we design an FPT algorithm for HFVS on d-hypergraphs. Towards this, we

will prove the following result about DFVSB, from which Theorem 7.1.2 will follow as a

corollary.

Theorem 7.5.1. There is a deterministic algorithm for DFVSB running in time

O(27kd2k+1n(n+m) + n2(n+m)), where the input is a bipartite graph G with bipar-

tition V (G) = A]B, and d = maxb∈B dG(b).

Towards designing an FPT algorithm for DFVSB, we use the well-known iterative

compression technique [29, Chapter 4]. Usually, the primary step in the technique of

iterative compression involves solving a “disjoint compression version” of the problem. In

our case, the disjoint compression version of the problem is defined as follows.

d-DISJOINT DOMINATING BOUNDED BIPARTITE FVS (d-DDBB-FVS)

Input: A d-bipartite graph G = (A]B,E), a positive integer k, and a vertex subset

W ⊆ A such that G−N[W] is acyclic.

Question: Is there a set S⊆ A\W of at most k vertices such that G−N[S] is acyclic?

We denote an instance of d-DDBB-FVS as (G,k,W), where G is the input graph

with bipartition A]B, k is the parameter (the solution size), and W is a set such that for a

solution S, it holds that S⊆ A\W . The main result of the section is the following lemma.

Lemma 42. Given an instance ((A]B,E),k,W) of d-DDBB-FVS, there exists an al-

gorithm that gives a solution in time O((8d)k+γ(GW)(n + m) + n(n + m)), where d =

170

maxw∈B d(w), n = |V (G)|, m = |E(G)|, and γ(GW) is the number of connected compo-

nents in the subgraph GW = G[W ∪{b ∈ B : N(b)⊆W}].

Assuming Lemma 42 one can prove Theorem 7.5.1, somewhat similar to the way it is

done for FVS on graphs (see Section 4.1 in [29]). We use the following observation in the

proof of Theorem 7.5.1.

Observation 7.5.2. Let (G = (A]B,E),k) be an instance of DFVSB, and B′ ⊆ B. If

(G′ = (A] B′,E(A,B′)),k) is a no-instance of DFVSB, then (G = (A] B,E),k) is a

no-instance of DFVSB.

Proof. Any solution to (G = (A]B,E),k) is also a solution to ((A]B′,E(A,B′)),k).

Now we give a proof sketch of Theorem 7.5.1 assuming Lemma 42.

Proof sketch of Theorem 7.5.1. We employ the method of iterative compression to prove

Theorem 7.5.1. Towards that, we iteratively apply Lemma 42. Let (G = (A]B,E),k) be

the input of DFVSB. Let B = {b1, . . . ,br}. If r ≤ k+1, then any subset A′ ⊆ A of size at

most r−1 that contains a neighbor of bi for all i ∈ [r−1] is a solution to (G,k). That is, if

r ≤ k+1, then (G,k) is a yes-instance. Otherwise, we proceed as follows.

Initially we consider the instance J1 = (G1 = (A]B1),k) of DFVSB, where B1 =

{b1, . . . ,bk+2}. Let W1 = {v1, . . . ,vk+1} be an arbitrary subset of A such that N(b j)∩W1 6=

/0 for all j ∈ [k+ 1]. Clearly, W1 is a dominating feedback vertex set of size k+ 1 for

G1. To compute a dominating feedback vertex set of size at most k, for each subset

S ⊆W1 of size at most k (a potential guess of the intersection of a hypothetical solution

with W1), we use Lemma 42 to check whether there exists a solution to the instance

(G′1 =G1−N[S],k−|S|,W1\S) of d-DDBB-FVS. If no such solution exists for any choice

of the subset of W1, then clearly J1 is a no-instance of DFVSB due to observation 7.5.2.

Otherwise, if there is a subset S1 ⊆W1 of size at most k, such that Q1 is a solution

for (((A \ S1)] (B1 \N(S1)),E(A \ S1,B1 \N(S1))),k−|S1|,W1 \ S1) of d-DDBB-FVS,

171

then S1 ∪Q1 is a solution of size at most k for the instance J1. Next, we construct an

instance J2 = (G2 = (A]B2,E(A,B2)),k) of DFVSB, where B2 = {b1, . . . ,bk+3}. Let

W2 = S1∪Q1∪{v}, where v is an arbitrary vertex in N(bk+3). Notice that G2−N[W2] is

a subgraph of G1−N[S1∪Q1] which is a forest. That is, W2 is a dominating feedback

vertex set of G2 of size at most k+1. Now we repeat the same process as described above

to “compress” the solution size of J2 to at most k. At each iteration, if there exists a

solution Wi of size at most k for the instance Ji, then in step i+1, Wi∪{v} is a dominating

feedback vertex set for Gi+1 = (A]Bi+1,E(A,Bi+1)), where Bi+1 = Bi ∪{bk+2+i} and

v ∈ N(bk+2+i), and we continue the same process.

Finally, notice that Jr−(k+1) is actually the input instance (G,k), and we get a solution

to Jr−(k+1) at the end of the algorithm (if (G,k) is a yes-instance). More formally, at

step i ∈ [r− (k+ 1)], we have an instance Ji = (Gi = (A]Bi,E(A,Bi)),k), where Bi =

{b1, . . . ,bk+1+i}, and a dominating feedback vertex set W ′i of Gi of size at most k+ 1.

Then, by applying Lemma 42 at most 2k+1 times we obtain a solution Wi of size at most

k for the instance Ji (if it exists). If there does not exist a solution for Ji, then (G,k) is a

no-instance.

Since we apply Lemma 42 at most 2k+1|B|−(k+1) times and the number of connected

components of GW in each application of Lemma 42 is at most k+1, the total running

time is upper bounded by O(2k(8d)2k+1n(n+m)+n2(n+m)) = O(27kd2k+1n(n+m)+

n2(n+m)), where n = |V (G)| and m = |E(G)|.

The rest of the section is devoted to the proof of Lemma 42. Towards proving

Lemma 42, we design a branching algorithm consisting of three branching rules and

some simple reduction rules. To bound the running time, we define a measure associated

with an instance of d-DDBB-FVS, and this measure decreases by at least one during each

application of the branching rules. It does not increase during the application of any of the

reduction rules. Moreover, the number of children for each node in the branching tree is

bounded by O(d). For an instance (G = (A]B,E),k,W) of d-DDBB-FVS, recall that

172

GW = G[W ∪{b ∈ B : NG(b)⊆W}], and γ(GW) is the number of connected components

in GW . We define the measure associated with the instance (G,k,W) of d-DDBB-FVS as,

µ(G,k,W) = k+ γ(GW)

For a reduction rule that takes an instance (G,k,W) of d-DDBB-FVS and outputs

another instance (G′,k′,W ′) of d-DDBB-FVS, we say that the reduction rule is safe

if the following holds: (i) (G,k,W) is a yes-instance if and only if (G′,k′,W ′) is a yes-

instance, and (ii) µ(G′,k′,W ′)≤ µ(G,k,W). A branching rule for d-DDBB-FVS, takes

an instance (G,k,W) and outputs a collection of instances (G1,k1,W1), . . . ,(G`,k`,W`).

We say that the branching rule is safe if the following holds: (i) (G,k,W) is a yes-instance

if and only if (Gi,ki,Wi) is a yes-instance for some i ∈ [`], and (ii) for each i ∈ [`],

µ(Gi,ki,Wi)< µ(G,k,W).

Reduction Rule 21. Let (G,k,W) be an instance of d-DDBB-FVS. If k = 0 and G is not

acyclic, then return that (G,k,W) is a no-instance of d-DDBB-FVS.

Reduction Rule 22. Let (G,k,W) be an instance of d-DDBB-FVS. If G is acyclic and

k ≥ 0, then return /0 and STOP.

The correctness of the above reduction rules follows from the fact that (G,k,W) is a

yes-instance of d-DDBB-FVS and /0 is a solution to (G,k,W).

Reduction Rule 23. Let (G,k,W) be an instance of d-DDBB-FVS. Let v ∈V (G) be a

vertex of degree 0 in G. Then, output (G− v,k,W \{v}).

It is easy to see that the above reduction rules are safe and can be applied in polynomial

time.

Reduction Rule 24. Let (G = (A]B,E),k,W) be an instance of d-DDBB-FVS and

b ∈ B be a vertex of degree 1 in G. Then, output (G−b,k,W).

173

Lemma 43. Reduction Rule 24 is safe.

Proof. Since dG(b) = 1, there is no cycle in G containing b. Therefore, any solution

to (G− b,k,W) is also a solution to (G,k,W) and vice versa. Let G′ = G− b. Since

dG(b)≤ 1, γ(G′W)≤ γ(GW). Therefore, µ(G′,k,W)≤ µ(G,k,W) and Reduction Rule 24

is safe.

Reduction Rule 25. Let (G = (A]B,E),k,W) be an instance of d-DDBB-FVS and

v ∈ A\W be a vertex of degree 1 in G. Let NG(v) = {b}. Moreover, either NG(b)\ (W ∪

{v}) 6= /0 or dG(b) = 2. Then, output (G− v,k,W).

Lemma 44. Reduction Rule 25 is safe.

Proof. First consider the case NG(b) \ (W ∪{v}) 6= /0. Since dG(v) = 1, any solution to

(G− v,k,W) is also a solution to (G,k,W). Now suppose that, (G,k,W) is a yes-instance.

Let u be an arbitrary vertex in NG(b)\ (W ∪{v}) and G′ = G−v. First we claim that there

is a solution S to (G,k,W) that does not contain v. If there exists a solution S′ to (G,k,W)

that contains v, then S? = (S′\{v})∪{u} is a solution to (G,k,W), because NG(v)⊆NG(u)

and dG(v) = 1. Let S be a solution to (G,k,W) such that v /∈ S. Then, S is also a solution

to (G′ = G− v,k,W) because G′−NG′[S] = (G−NG[S])− v, and (G−NG[S]) is acyclic.

Notice that G′W = GW . Therefore, µ(G′,k,W)≤ µ(G,k,W).

Next, we consider the case dG(b) = 2. Here, there is no cycle in G that contains

either b or v. This implies that, if S is a solution to (G,k,W), then S \ {v} is a solution

to (G− v,k,W). Since dG(v) = 1, any solution to (G′ = G− v,k,W) is also a solution to

(G,k,W). Also, since G′W = GW , we have that µ(G′,k,W)≤ µ(G,k,W).

Reduction Rule 26. Let (G,k,W) be an instance of d-DDBB-FVS. Let b1v1b2v2b3v3b4

be a path in G such that v1b2v2b3v3 is a degree two path in G, {b1, . . . ,b4} ⊆ B and

{v1,v2,v3} ⊆ A \W. Now, let G′ be the graph obtained by deleting the vertices b2,v2

from G and adding a new edge v1b3, that is, G′ = (G−{v2,b2})+ v1b3. Then, output

(G′,k,W).

174

Lemma 45. Reduction Rule 26 is safe.

Proof. First, we prove that (G,k,W) is a yes-instance of d-DDBB-FVS if and only if

(G′,k,W) is a yes-instance of d-DDBB-FVS. In the forward direction, let S be a solution

to (G,k,W) of d-DDBB-FVS. Suppose that, v2 /∈ S. Then, we claim that S is also a

solution of (G′,k,W). Suppose not, then there exists a cycle C in G′−NG′[S]. If C does

not contain the edge v1b3, then C is also a cycle in G−NG[S], which is a contradiction.

Therefore, C contains the edge v1b3. But, then we get a cycle in G−NG[S] by replacing

the edge v1b3 in C by the path v1b2v2b3. This is a contradiction to the assumption that S

is a solution to (G,W,k). Now, consider the case v2 ∈ S. Then, S′ = (S \{v2})∪{v1} is

a solution to (G′,k,W) because S′∩W = /0 and any cycle in G which contains any of the

vertices in {b2,v2,b3} also contains v1.

For the backward direction, let S? be a solution to (G′,k,W) of d-DDBB-FVS. Clearly,

S? ⊆ A \W . We claim that S? is also a solution to (G,k,W). Suppose not. Then, there

exists a cycle C in G−NG[S?]. If C does not contain any edges from {v1b2,b2v2,v2b3},

then C is also a cycle in G′−NG′[S?], which is a contradiction. Therefore, at least one

edge from {v1b2,b2v2,v2b3} is part of C. Then, since v1b2v2b3v3 is a degree two path in

G, b1v1b2v2b3v3b4 is a subpath in C. Then, we get a cycle C′ in G′−NG′[S?] by replacing

the subpath v1b2v2b3 in C by v1b3. This is a contradiction to the assumption that S? is a

solution to (G′,k,W). Hence, S? is also a solution to (G,k,W).

Next, we prove that µ(G′,k,W ′) ≤ µ(G,k,W). Since v1,v2,v3 /∈W , we have that

b1,b2,b3,b4 /∈ V (GW). Therefore, we have that GW = G′W ′ and hence, µ(G′,k,W ′) =

µ(G,k,W). This completes the proof of the lemma.

Branching Rule 1. Let (G,k,W) be an instance of d-DDBB-FVS and let b∈B be a vertex

such that NG(b)\W 6= /0 and |NG(b)∩W | ≥ 2. Let z,z′ ∈NG(b)∩W be two distinct vertices

and NG(b)\W = {u1, . . . ,u`}. If z and z′ are in the same connected component of GW , then

we branch into the following instances: (G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W). If

z and z′ are in two distinct connected components of GW , then we branch into the following

175

instances: (G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W), and (G,k,W ∪{u1, . . . ,u`}).

Lemma 46. Branching Rule 1 is safe.

Proof. First consider the case that z and z′ are in the same connected component of GW .

If (G,k,W) is a no-instance, then clearly all the instances (G−N[u1],k−1,W), . . . ,(G−

N[u`],k− 1,W) are no-instances. Since z and z′ are in the same connected component

of GW , there is a cycle C in G[V (GW)∪ {b}]. Also, notice that NG(V (C)∩B) \W ⊆

{u1, . . . ,u`}. That is, if (G,k,W) is a yes-instance, then any solution will contain a

vertex from {u1, . . . ,u`}. Therefore, if (G,k,W) is a yes-instance, then at least one of the

instances (G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W) is a yes-instance. Now we prove

that µ(G−N[ui],k−1,W)≤ µ(G,k,W)−1, for all i∈ [`]. Towards that, we fix an arbitrary

i∈ [`]. Let G′=G−N[ui]. Since ui ∈A\W , GW =G′W . This implies that, γ(G′W)= γ(GW).

Therefore, µ(G′,k−1,W) = k−1+ γ(G′W) = k+ γ(GW)−1 = µ(G,k,W)−1.

Next, consider the case that z and z′ are in two different connected components of GW .

If (G,k,W) is a no-instance, then clearly all the instances (G−N[u1],k−1,W), . . . ,(G−

N[u`],k−1,W), and (G,k,W ∪{u1, . . . ,u`}) are no-instances. Suppose that, (G,k,W) is

yes-instance. Let S be a solution to (G,k,W). If S∩{u1, . . . ,u`} 6= /0, then at least one of

(G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W) is a yes-instance. Otherwise, S is a solution

to (G,k,W ∪{u1, . . . ,u`}). The proof of µ(G−N[ui],k− 1,W) ≤ µ(G,k,W)− 1 for all

i ∈ [`], given in the above paragraph holds in this case as well. Finally, we prove that

µ(G,k,W ∪{u1, . . . ,u`})≤ µ(G,k,W)−1. Note that, it is enough to prove that γ(GW ′)≤

γ(GW)−1, where W ′ =W ∪{u1, . . . ,u`}. Observe that, each connected component in GW ′

contains a vertex from W ′, as Reduction Rule 23 is no longer applicable. Moreover, GW is

a subgraph of GW ′ and there is a connected component in GW ′ containing z and z′, because

z,z′ ∈ NG(b) and b ∈ V (GW ′). Also, notice that in this case z and z′ belong to different

connected components in GW . This implies that, γ(GW ′)≤ γ(GW)−1. This completes the

proof of the lemma.

Branching Rule 2. Let (G,k,W) be an instance of d-DDBB-FVS. If there exists a

176

path/cycle P = b0v0 . . .brvrbr+1 in G, such that {v0, . . . ,vr} ⊆ A\W, 0≤ r ≤ 6, and there

is a cycle in the graph G[V (GW)∪V (P)], then we branch into the following instances:

(G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W), where {u1, . . . ,u`}=NG({b0, . . . ,br+1})\

W.

Lemma 47. Branching Rule 2 is safe.

Proof. If (G,k,W) is a no-instance, then clearly all the instances (G − N[u1],k −

1,W), . . . ,(G−N[u`],k−1,W) are no-instances. Now, we prove that if (G,k,W) is a yes-

instance, then at least one of the instances (G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W)

is a yes-instance. Notice that there exists a cycle C in G[V (GW)∪V (P)]. Therefore,

any solution to (G,k,W) contains a vertex from NG(V (C)∩B) \W . Since NG(b) ⊆W

for all b ∈ B ∩V (GW), we have that NG(V (C) ∩ B) \W ⊆ N({b0, . . . ,br+1}) \W =

{u1, . . . ,u`}. Therefore, if (G,k,W) is a yes-instance, then at least one of the instances

(G−N[u1],k−1,W), . . . ,(G−N[u`],k−1,W) is a yes-instance as well.

Next, we prove that µ(G−N[ui],k−1,W) = µ(G,k,W)−1 for all i∈ [`]. Towards that,

we fix an arbitrary i ∈ [`]. Let G′ = G−N[ui]. Since ui ∈ A\W , we have that GW = G′W .

Therefore, µ(G′,k− 1,W) = k− 1+ γ(G′W) = k + γ(GW)− 1 = µ(G,k,W)− 1. This

completes the proof of the lemma.

Branching Rule 3. Let (G,k,W) be an instance of d-DDBB-FVS. Let P= b0v0, . . . ,brvrbr+1

be a path in G, such that 0 ≤ r ≤ 6 and {v0, . . . ,vr} ⊆ A \W. Let z and z′ be two ver-

tices in two distinct connected components of GW . If there is path from z to z′ in the

graph G[V (GW)∪V (P)], then we branch into the following instances: (G−N[u1],k−

1,W), . . . ,(G−N[u`],k−1,W), and (G,k,W ∪{u1, . . . ,u`}), where

{u1, . . . ,u`}= NG({b0, . . . ,br+1})\W.

Lemma 48. Branching Rule 3 is safe.

Proof. If (G,k,W) is a no-instance, then clearly all the instances (G − N[u1],k −

1,W), . . . ,(G−N[u`],k− 1,W) and (G,k,W ∪{u1, . . . ,u`}) are no-instances. Now we

177

prove that if (G,k,W) is a yes-instance, then at least one of the instances (G −

N[u1],k− 1,W), . . . ,(G−N[u`],k− 1,W) and (G,k,W ∪{u1, . . . ,u`}) is a yes-instance.

Let S be a solution to (G,k,W). If S ∩ {u1, . . . ,u`} 6= /0, then at least one of (G−

N[u1],k− 1,W), . . . ,(G−N[u`],k− 1,W) is a yes-instance. Otherwise S is a solution

to (G,k,W ∪{u1, . . . ,u`}).

Next, we prove that µ(G−N[ui],k−1,W)≤ µ(G,k,W)−1, for all i ∈ [`]. Here, the

proof follows the arguments similar to those in the proof of Lemma 47. Now we prove

that µ(G,k,W ∪{u1, . . . ,u`})≤ µ(G,k,W)−1. Towards that, it is enough to prove that

γ(GW ′)≤ γ(GW)−1, where W ′=W ∪{u1, . . . ,u`}. Notice that each connected component

in GW ′ contains a vertex from W ′. Moreover, GW is a subgraph of GW ′ and there is a

connected component in GW ′ containing z and z′, because V (P)⊆V (GW ′). Also, notice

that by our assumption z and z′ belong to different connected components in GW . This

implies that, γ(GW ′)≤ γ(GW)−1. This completes the proof of the lemma.

Now we are ready to complete the proof of Lemma 42.

Proof of Lemma 42. We design a branching algorithm for the problem. Let (G,k,W) be an

instance of d-DDBB-FVS. We prove that we can always apply either one of the reduction

rules or one of the branching rules until we reach a solution or a no-instance. First we test

if any of the Reduction Rules 21, 22, 23, 24, and 25 is applicable. This can easily be tested

in linear time. If any of these reduction rules are applicable, we apply them. Next, we test

whether Reduction Rule 26 is applicable. Towards that, let H be a graph obtained from

G by deleting all the vertices in W and the vertices of degree at least 3 in G. Then, for

any maximal path P such that the internal vertices of P have degree exactly two in G and

V (P)∩W = /0, there exists a component in H which is an induced path containing all the

vertices of P. Thus, we can identify such a path P = b1v1b2v2b3v3b4 in G such that the

internal vertices of P are degree exactly two in G and V (P)∩W = /0 (if it exists) in linear

time. If such a path exists, then we apply Reduction Rule 26. Next, if Branching Rule 1 is

178

applicable, then we apply it. This can be done in linear time as well.

For rest of the proof, we assume that Reduction Rules 21–26, and Branching Rule 1 are

not applicable on (G,k,W). We know that F = G−NG[W] is acyclic. Since dG(b)≥ 2 for

all b ∈ B (because Reduction Rules 23 and 24 are not applicable) and F = G−NG[W], (i)

any vertex u ∈V (F) with degree at most 1 in F (that is, dF(u)≤ 1) belongs to A\W . Now

we claim that (ii) there is no vertex of degree zero in F . Suppose not. Let v∈V (F) be such

that dF(v) = 0. Because of statement (i), we have that v ∈ A\W . Since Reduction Rule 23

is not applicable, we have that dG(v) ≥ 1. If dG(v) = 1, then NG(b) \ (W ∪ {v}) = /0

and dG(b) > 2, where {b} = NG(v), as Reduction Rules 24 and 25 are not applicable.

This implies that, NG(b)\W 6= /0 and |NG(b)∩W | ≥ 2. As a result Branching Rule 1 is

applicable, which is a contradiction. Thus, we have proven statement (ii).

Next we prove that (iii) for each v ∈ V (F) such that degree of v is 1 in F , there is

a vertex b ∈ NG(W) such that vb ∈ E(G). Towards that, it is enough to prove that for

each v ∈ V (F) of degree 1 in F , dG(v) ≥ 2. If dG(v) = 1, then NG(b) \ (W ∪{v}) = /0

and dG(b) > 2, where {b} = NG(v), as Reduction Rules 24 and 25 are not applicable.

This implies that, NG(b)\W 6= /0 and |NG(b)∩W | ≥ 2. As a result Branching Rule 1 is

applicable, which is a contradiction. Thus, we have proven statement (iii).

Let Q be a path in F (of length more than 0) such that the end-vertices of Q have

degree 1 in F , and all but at most one internal vertex of Q has degree exactly 2 in F . Any

forest F containing at least one edge contains such a path and it can be computed in linear

time. Since the end-vertices of Q have degree 1 in F , by statement (i), the end-vertices of

Q belong to A\W . Let Q = v0b1 . . .b`v` for some ` ∈ N, where {v1, . . . ,v`} ⊆ A\W and

{b1, . . . ,b`} ⊆ B\NG(W). Due to statement (iii), there exist vertices b,b′ ∈ NG(W) (not

necessarily distinct), such that bv0,b′v` ∈ E(G).

Case 1: `≤ 6. Let P be the path/cycle bv0b1 . . .b`v`b′. Note that, P is a cycle if b = b′ and

P is a path if b 6= b′. If P is a cycle, then Branching Rule 2 is applicable and we apply it.

Suppose that, b′ 6= b. Notice that b,b′ ∈ NG(W). This implies that, there exist vertices z

179

and z′ in W , such that bz,b′z′ ∈ E(G). If z and z′ belong to the same connected component

in GW , then either Branching Rule 2 is applicable, or Branching Rule 3 will be applicable

due to existence of path P. We apply the branching rule accordingly.

Case 2: ` ≥ 7. Recall that, all but at most one vertex in Q = v0b1 . . .b`v` has degree at

most 2 in F . If all the vertices in Q have degree at most two in F , then either no vertex

vi, i ∈ {1, . . . ,3} has a neighbor in N(W) and Reduction Rule 26 is applicable, or there

exists a vertex vi, i ∈ {1, . . . ,3}, such that vi has a neighbor in N(W) and either Branching

Rule 2, or Branching Rule 3 is applicable. Next, consider that there exists a vertex in Q

with degree more than 2 in F . (a) A vertex in {v1,v2,v3,b1,b2,b3} has degree more than

2 in F . (b) A vertex in {v4,v5,v6,b4,b5,b6,b7} has degree more than 2 in F . Without

loss of generality let us assume (b) (Other case can be argued similarly). That is, each

vertex in {v1,v2,v3,b1,b2,b3,} has degree at most 2 in F . First, we prove that there exists

i ∈ {1, . . . ,3} such that NG(vi)∩NG(W) 6= /0. Otherwise v1b2v2b3v3 is a degree two path

in G, and hence, Reduction Rule 26 is applicable, a contradiction to the assumption that

none of the reduction rules are applicable.

Now, we fix i ∈ {1, . . . ,3} such that NG(vi)∩NG(W) 6= /0. Let b? ∈ NG(W) be such

that vib? ∈ E(G). Let Q? be the subpath of Q between v0 and vi and P? be the path bQ?b?.

Clearly, due to existence of path P?, either Branching Rule 2 or Branching Rule 3 is

applicable. We apply the branching rule accordingly.

Now we do the running time analysis. Let n= |V (G)| and m= |E(G)|. Each application

of a reduction rule takes linear time. Moreover, after each application of a reduction rule,

the number of vertices in the graph drops by at least one. Therefore, the total time taken

to apply all the reduction rules together in one branch of the branching tree is upper

bounded by O(n(n+m)). Each application of a branching rule takes linear time. The

number of branches created during an application of Branching Rules 2 or 3 is at most 8d.

Moreover, after each application of Branching Rules 2 and 3, the measure associated with

the instance drops by at least one. Therefore, the total running time is upper bounded by

180

O((8d)k+γ(GW)(n+m)+n(n+m)). This concludes the proof.

7.6 Feedback Vertex Sets on Linear Hypergraphs

In this section we design an FPT algorithm for HFVS on linear hypergraphs. Towards

this, we prove the following result about DFVSB, from which Theorem 7.1.3 follows as a

corollary.

Theorem 7.6.1. There exists an O?(2O(k3 logk)) time randomized algorithm for DFVSB

on C4-free bipartite graphs, which produces a false negative output with probability at

most 1
nO(1) , and no false positive output.

To prove Theorem 7.6.1, we need to take a detour and define few generalizations of

these problems that appear naturally in the recursive steps. Let F be a family of sets

over a universe A, then we define a bipartite graph GF as follows. Let the bipartition of

V (GF) be AF]BF , where AF = A and BF = F . We define the edge set E(GF) as

the set {{u,Y} : u ∈ A,u ∈ Y ∈F}. Let G be a C4 free bipartite graph with bipartition

V (G) = A]B, and F be a family of sets over the universe A. We define the graph

G∪GF = (A∗]B∗,E∗) as follows. Let A∗ = A,B∗ = B]BF and E∗ = E(G)∪E(GF).

The following problem generalizes HFVS on linear hypergraphs.

HITTING HYPERGRAPH FEEDBACK VERTEX SET (HHFVS) Parameter: k+ |E(H2)|
Input: Two linear hypergraphs H1,H2 such that V (H1) =V (H2), E(H1)∩E(H2) = /0,

and H1∪H2 is a linear hypergraph, k ∈ N.

Question: Does there exist a set S ⊆ V (H1) of size at most k, such that H1− S is

acyclic and S is a hitting set for E(H2)?

Observe that, HHFVS generalizes HFVS. Indeed, HHFVS is the same as HFVS,

when H2 is an empty hypergraph. Next, we define the “graph” version of HHFVS, which

generalizes DFVSB on C4-free graphs.

181

HITTING DOMINATING BIPARTITE FVS (HDBFVS) Parameter: k+ |F |
Input: A C4 free bipartite graph G with bipartition V (G) = A]B, a family F of

subsets of A such that the graph G∪GF is a C4 free bipartite graph, k ∈ N.

Question: Does there exist a set S⊆ A of size at most k, such that G−N[S] is a forest

and S is a hitting set for F ?

We say that an instance (G = (A]B,E),F ,k) is a valid instance of HDBFVS, if F

is a family of subsets of A such that the graph G∪GF is a C4-free bipartite graph.

In the rest of the section, whenever we say (G = (A]B,E),F ,k) is an instance of

HDBFVS, it implies that (G = (A]B,E),F ,k) is a valid instance of HDBFVS. Further,

after each application of a reduction rule, we ensure that the instance remains valid.

Following is a simple observation, and its proof follows from the fact that G∪GF is

C4-free.

Observation 7.6.2. If (G = (A]B,E),F ,k) is an instance of HDBFVS, then (i) pairwise

intersection of sets in F is of size at most 1, and (ii) for every vertex b ∈ B and F ∈F ,

|N(b)∩F | is at most one.

Given an instance (H1,H2,k) of HHFVS, we can obtain an instance, (G,F ,k), of

HDBFVS in a canonical way. Next lemma shows their equivalence.

Lemma 49. (H1,H2,k) is a yes-instance of HHFVS if and only if (G,F ,k) is a yes-

instance of HDBFVS, where G is the incidence graph of the hypergraph H1 and F =

E(H2).

Proof. Observe that, (G = (A]B,E ′),F ,k) is a valid instance of HDBFVS.

In the forward direction, let S be a solution to (H1,H2,k) of HHFVS. We claim that

S is also a solution to (G = (A]B,E ′),F ,k) of HDBFVS. Suppose not. Then, either

there exists a cycle C = v1e1 . . .v`e`v1 in the graph G−NG[S] such that for each i ∈ [`],

vi ∈ A, ei ∈ B and viei ∈ E ′, and e`v1 ∈ E ′, or S does not hit a set Y ∈F . The former

182

case implies that, e1, . . . ,e` are hyperedges in H1−S, and {v1, . . . ,v`} ⊆V (H1)\S. Then,

(v1,e1, . . . ,v`,e`,v1) is a cycle in the hypergraph H1− S. This is a contradiction to the

assumption that H1−S is acyclic. The later case implies that, there is an edge Y in H2−S,

which is a contradiction to the assumption that H2−S is edgeless (that is, S is a hitting set

for H2).

In the backward direction, let S′ be a solution to (G = (A]B,E ′),F ,k). We claim

that S′ is also a solution to (H1,H2,k) of HDBFVS. Suppose not. Then, either there

exists a cycle C = (v1,e1, . . . ,v`,e`,v1) in the hypergraph H1−S′, or there exists an edge

Y ∈H2−S. The former case implies that, {v1, . . . ,v`}⊆A\S′ and {e1, . . . ,e`}⊆B\NG(S′).

Therefore, v1e1 . . .v`e`v1 is a cycle in G−NG[S′], which is a contradiction to the assumption

that G−N[S′] is acyclic. The later case implies that, S′ does not hit the set Y ∈F , a

contradiction to the assumption that S′ is a hitting set for F .

The rest of the section is devoted to designing an FPT algorithm for HDBFVS. Given

an instance (G = (A]B,E),F ,k) of HDBFVS, we first define some notations that will be

used throughout the section. For a vertex v∈ A, by Xv we denote the set {Y |Y ∈F ,v∈Y}.

We distinguish the vertices in A as follows.

• If |Xv| ≥ 2, that is, v is in at least two sets in F , then we say that v is a special vertex.

• If |Xv|= 1, that is, v is contained in exactly one set in F , then we say that v is an

easy vertex.

• Otherwise, we say that v is a trivial vertex.

By V (F) we denote the set {v∈ A | v∈Y for some Y ∈F}. For a graph G?, the notations

V0(G?), V=1(G?), V=2(G?), and V≥3(G?) denote the set of isolated vertices, the set of

vertices of degree 1, the set of vertices of degree 2, and the set of vertices of degree at least

3 in G?, respectively.

Lemma 50. Let (G = (A]B,E),F ,k) be an instance of HDBFVS. Then, the number of

special vertices in A is upper bounded by
(|F |

2

)
.

183

Proof. For the sake of contradiction, assume that the number of special vertices in A is

more than
(|F |

2

)
. Then, by pigeonhole principle there exist two special vertices u,v in

A such that |Xu ∩Xv| ≥ 2. Let Y1,Y2 ∈ Xu ∩Xv. This implies that u,v ∈ Y1 ∩Y2, which

contradicts Observation 7.6.2(i).

Now we state some reduction rules that are applied exhaustively by the algorithm in

the order in which they appear. Let (G,F ,k) be an instance of HDBFVS and (G′,F ′,k)

be the resultant instance after application of a reduction rule. To show that a reduction

rule is safe, we will prove that (G,F ,k) is a yes-instance if and only if (G′,F ′,k) is a

yes-instance.

Reduction Rule 27. If one of the following holds, then return a trivial no-instance: (i)

k < 0; (ii) k = 0 and G is not acyclic; and (ii) k = 0 and F is not empty.

Reduction Rule 28. If k ≥ 0, G is acyclic and F is empty, then return a trivial yes-

instance.

Reduction Rule 29. Let (G = (A]B,E),F ,k) be an instance of HDBFVS and b ∈ B be

a vertex that does not participate in any cycle in G. Then, output (G−b,F ,k).

Reduction Rule 30. Let (G = (A]B,E),F ,k) be an instance of HDBFVS and v ∈ A be

an isolated vertex in G. If v is a trivial vertex, then output (G− v,F ,k).

It is easy to see that the above reduction rules are safe and can be applied in polynomial

time. Observe that, when Reduction Rules 29 and 30 are no longer applicable, then

V0(G) ⊆ A and each isolated vertex in G is either easy or special. Next, we state a

reduction rule that will help to bound the number of easy isolated vertices in G.

Reduction Rule 31. Let (G = (A]B,E),F ,k) be an instance of HDBFVS and v ∈ A be

an isolated vertex in G. Suppose v is an easy vertex, Xv = {Y}, and |Y |> 1. Then output

(G′,F ′,k), where G′ = G− v and F ′ = (F \{Y})∪{(Y \{v})}.

Lemma 51. Reduction Rule 31 is safe.

184

Proof. Observe that, the instance (G′,F ′,k) is a valid instance of HDBFVS.

In the forward direction, let S be a solution to (G,F ,k) of HDBFVS. Observe that, if S

does not contain v, then S is also a solution to (G′,F ′,k), as G′−NG′[S] = (G−NG[S])−v,

(G−NG[S]) is acyclic and S is also a hitting set of F ′. Next, consider the case when v ∈ S.

Let S′ = S\{v}. Since v is an isolated vertex in G, we have that G−N[S′] is acyclic. Let

u ∈Y , u 6= v, then observe that, S′∪{u} is also a solution to (G,F ,k) of HDBFVS, which

does not contain v and hence a solution to (G,F ′,k).

In the backward direction, let S′ be a solution to (G′,F ′,k). Suppose that, G−N[S′]

contains a cycle C. Then, since G′ = G− v, and dG(v) = 0, C is also a cycle in G′−N[S′].

Observe that, F \ {Y} = F ′ \ (Y \ {v}). Therefore, S′ is also a hitting set of F . This

implies that S′ is also a solution to (G,F ,k) of HDBFVS.

Reduction Rule 32. Let (G = (A]B,E),F ,k) be an instance of HDBFVS and v ∈ A be

a vertex of degree 1 in G. If v is a trivial vertex, then output (G′,F ,k), where G′ = G− v.

Lemma 52. Reduction Rule 32 is safe.

Proof. Observe that, the instance (G′,F ,k) is a valid instance of HDBFVS.

In the forward direction, let S be a solution to (G,F ,k) of HDBFVS. If S does not

contain v, then clearly S is also a solution to (G′,F ,k) because G′−NG′[S] = (G−NG[S])−

v and (G−NG[S]) is acyclic. Suppose that, v ∈ S. Let {b} = NG(v). Since Reduction

Rule 29 is no longer applicable, we have that dG(b) > 1. Let u 6= v be an arbitrary

vertex in NG(b). Then, S? = (S \{v})∪{u} is also a solution to (G,F ,k) of HDBFVS

because NG(v)⊆ NG(u) and dG(v) = 1. Then, S? is also a solution to (G′ = G− v,F ,k)

of HDBFVS because G′−NG′ [S?] = (G−NG[S?])− v and (G−NG[S?]) is acyclic.

In the backward direction, let S′ be a solution to (G′,F ,k). Suppose that, G−N[S′]

contains a cycle C. Then, since G′ = G− v, and dG(v) = 1, C is also a cycle in G′−N[S′].

This implies that S′ is also a solution to (G,F ,k) of HDBFVS.

185

When Reduction Rules 27 to 32 are no longer applicable, we obtain the following result.

Lemma 53. Let (G,F ,k) be an instance reduced with respect to Reduction Rules 27 to

32. Then, the following holds.

1. V0(G)∪V=1(G)⊆ A, all vertices in V0(G)∪V=1(G) are either easy or special.

2. |V0(G)| ≤ |F |+
(|F |

2

)
.

Lemma 54. For any vertex b ∈ B, |NG(b)∩V=1(G)| ≤ |F |.

Proof. If there exists a vertex v ∈ NG(b)∩V=1(G) which is a trivial vertex, then Reduction

Rule 32 is applicable. Thus, (i) for all v ∈ NG(b)∩V=1(G), v belongs to some set in F .

Suppose that, for a contradiction, there exists a vertex b ∈ B such that NG(b) contains at

least |F |+1 vertices of degree 1 in G. Then, by pigeonhole principle and statement (i),

at least two degree 1 vertices say u,v ∈ NG(b) are contained in a set Y ∈F , which is a

contradiction to item (ii) of Observation 7.6.2. This completes the proof of the lemma.

Recall the definition of a degree two-path; P is a degree two path in G if each vertex in

P has degree exactly two in G. Next, we state the reduction rules that help us bound the

length of a long degree two path in G−V=1(G), that is, to bound the length of degree two

paths in the graph obtained after deleting vertices of degree 1 from G. Towards this, we

first define the notion of a nice path.

Definition 28. We say that P is a nice path in G, if P does not have any special vertex, and

the degree of each vertex in P in the graph G−V=1(G) is exactly 2. A nice path P in G is

a degree two nice path if each vertex in P has degree exactly 2 in G.

Reduction Rule 33. Let (G = (A]B,E),F ,k) be an instance of HDBFVS, P be a nice

path in G and b,b′ ∈ B be two vertices in P. If there exist two easy vertices u,u′ whose

degree is 1 in G, adjacent to b,b′, respectively, such that Xu = Xu′ = {Y}, then return

(G′,F ′,k), where G′ = G−u, F ′ = (F \{Y})∪{Y \{u}}.

186

Lemma 55. Reduction Rule 33 is safe.

Proof. Observe that, the instance (G′,F ′,k) is a valid instance of HDBFVS.

In the forward direction, let S be a solution to (G,F ,k) of HDBFVS. Suppose that,

u /∈ S. Since dG(u) = 1, we have that u does not participate in any cycle in G. Therefore,

any cycle C in G′−N[S] is also a cycle in G−N[S]. This implies that G′−N[S] is acyclic.

Observe that, F \{Y}= F ′ \{Y \{u}}. This implies that S is a hitting set of F ′. Hence,

S is also a solution to (G′,F ′,k) of HDBFVS. Next, consider that u ∈ S. Since u does not

participate in any cycle in G, u is only used to hit cycles containing b (recall that when

we delete u, we also delete all its neighbors) and to hit the set Y . Since P is a nice path,

any cycle that contains b also contains all the vertices in P and hence contains NG(u′) = b′,

therefore u′ can hit all the cycles containing b. Further, since u′ ∈Y , it holds that u′ hits the

set Y . This implies that S∗ = (S\{u})∪{u′} is also a solution to (G,F ,k) of HDBFVS.

As argued before, S∗ is a solution to (G′,F ′,k) of HDBFVS.

In the backward direction, let S′ be a solution to (G′,F ′,k) of HDBFVS. Since u does

not participate in any cycle, any cycle in G−N[S′] is also a cycle in G′−N[S′]. Hence,

G−N[S′] is acyclic. Also, since F \{Y}= F ′ \{Y \{u}}, we have that S′ is a hitting set

of F . Hence, S′ is also a solution to (G,F ,k) of HDBFVS.

Lemma 56. Let (G = (A]B,E),F ,k) be an instance of HDBFVS reduced with respect

to Reduction Rules 27 to 33. Then, in any nice path P in G, the number of vertices that are

adjacent to a vertex of degree 1 in G is bounded by
(|F |

2

)
+ |F |.

Proof. From statement 1 in Lemma 53, we have that V=1(G)⊆A. This implies, NG(V=1(G))⊆

B. Also, each vertex in V=1(G) is either easy or special. By Lemma 50, the number of

vertices that are special is bounded by
(|F |

2

)
. Therefore, the number of vertices in P that

are adjacent to special degree 1 vertices is at most
(|F |

2

)
. Since Reduction Rule 33 is no

longer applicable, we have that corresponding to each set Y ∈F , there exists at most 1

vertex in P that has a degree 1 neighbor u such that Xu = {Y}. This implies that at most

187

b

u ∈ Y

b′

u′ ∈ Y

...

b b′

u′ ∈ Y

...

(a)

v0 b1 v1

vi−2

bi−1

vi−1

bi

vi ∈ Y

bi+1 vj ∈ Y v`−1b`...

v0 b1 v1 vi−2 bi+1 vj ∈ Y v`−1b`...

(c)

v0 b1 v1

vi−1 bi

vi ∈ Y

bi+1

vj ∈ Y v`−1b`...

v0 b1 v1 vi−1 bi+1 vj ∈ Y v`−1b`...

(b)

b1 v1 b2 v2 b3 v3 b4

b1 v1 b3 v3 b4

(d)

Figure 7.1: (a) is an illustration of Reduction Rule 33, (b) and (c) are illustrations of two
cases of Reduction Rule 34, (d) is an illustration of Reduction Rule 35. In (a), (b) and (c)
blue vertices denote easy vertices, and in (d) green vertices denote trivial vertices.

|F | vertices in P can be adjacent to degree 1 easy vertices, resulting in the mentioned

upper bound.

The next reduction rule helps us in upper bounding the length of degree two paths in G.

Reduction Rule 34. Let (G = (A]B,E),F ,k) be an instance of HDBFVS and P =

v0b1v1 . . .v`−1b` be a degree two nice path in G, where {b1, . . . ,b`} ⊆ B, {v0, . . . ,v`−1} ⊆

A, and ` ≥ 5. Let vi,v j ∈ A∩ (V (P) \ {v0,v1}) be two distinct easy vertices such that

Xvi = Xv j = {Y} for some Y ∈F and i < j.

1. If Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = /0, then let G′ = (G−{bi,vi})+ vi−1bi+1 (that is,

G′ be the graph obtained by deleting the vertices bi,vi from G and by adding a new

edge vi−1bi+1) and F ′ = (F \{Y})∪{Y \{vi}}.

2. Otherwise, Xvi−1 = Xvi+1 = {Y ?}, then let G′ = (G−{bi−1,vi−1,bi,vi})+ vi−2bi+1

(that is, G′ be the graph obtained by deleting the vertices bi−1,vi−1,bi,vi from G and

by adding a new edge vi−1bi+1) and F ′ = (F \{Y,Y ?})∪{Y ? \{vi−1},Y \{vi}}.

188

Return (G′,F ′,k).

Lemma 57. Reduction Rule 34 is safe.

Proof. We first give a proof for Case 1, followed by a proof of Case 2.

Case 1: Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = /0. The vertices vi−1 and bi+1 do not have two

common neighbors in G′, and hence there is no C4 in G′. Observe that G′F ′ is a subgraph

of GF . Further, since GF does not have C4, G′F ′ does not have C4. Now we claim that

there is no C4 in G′∪G′F ′ . There is no C4 in G′, G′F ′ , and G∪GF . Thus, if there is a

C4 in G′ ∪G′F ′ , then there is a set F ∈F ′ such that |(NG′(bi+1)∩F | ≥ 2. Notice that

NG′(bi+1) = {vi−1,vi+1}. Since (Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = /0) and |Xvi−1|, |Xvi+1 | ≤ 1

(because P does not have any special vertex), there is no set F ∈F ′ such that {vi−1,vi+1}⊆

F . Thus, we have proved that there is no C4 in G′∪G′F ′ . This implies that the instance

(G′,F ′,k) is a valid instance of HDBFVS.

In the forward direction, let S be a solution to (G,F ,k) of HDBFVS. Suppose that,

vi /∈ S. Then, we claim that S is also a solution to (G′,F ′,k) of HDBFVS. Suppose not,

then either there exists a cycle C in G′−NG′[S] or there exists a set Z ∈F ′ such that

S∩Z = /0. First consider the former case. If C does not contain the edge vi−1bi+1, then

C is also a cycle in G−NG[S], which is a contradiction. Therefore, C contains the edge

vi−1bi+1. But, then we get a cycle in G−NG[S] by replacing the edge vi−1bi+1 in C by

the path vi−1bivibi+1. This is a contradiction to the assumption that (G−N[S]) is acyclic.

Now, consider the later case. Note that S hits F \{Y} and Y \{vi} (since vi /∈ S). Thus, it

implies that S is a hitting set of F ′. Hence, S is also a solution to (G′,F ′,k) of HDBFVS.

Next, consider that vi ∈ S. Since P is a degree two nice path in G, any cycle that contains a

vertex from N[vi] also contains all the vertices in P. In particular, it contains v j, and v j hits

all the cycles that any vertex in N[vi] hits. Also, observe that, v j ∈ Y and hence v j hits the

set Y . This implies that S? = S\{vi}∪{v j} is also a solution to (G,F ,k) of HDBFVS.

As argued before S? is a solution to (G′,F ′,k) of HDBFVS.

189

In the backward direction, let S′ be a solution to (G′,F ′,k) of HDBFVS. We claim

that S′ is also a solution to (G,F ,k) of HDBFVS. Suppose not. Then, either there exists

a cycle C in G−NG[S′] or there exists a set Z ∈F such that S′∩Z = /0. First consider

the former case. If C does not contain any edge from the path P, then C is also a cycle in

G′−NG′[S′], which is a contradiction. Therefore, at least one edge from the path P is part

of C. Then, since P is a degree two nice path in G, P is a subpath of C. Then, we get a

cycle C′ in G′−NG′[S′] by replacing the subpath vi−1bivibi+1 in C by vi−1bi+1. This is a

contradiction to the assumption that S′ is a solution to (G′,F ′,k). Now, consider the later

case. Since F \{Y}= F ′ \{Y \{vi}} and |Y | ≥ 2, we have that S′ is a hitting set of F .

Hence, S′ is also a solution to (G,F ,k) of HDBFVS.

Case 2: Xvi−1 = Xvi+1 = {Y ∗}. The vertices vi−2 and bi+1 do not have two common

neighbors in G′, and hence there is no C4 in G′. Observe that G′F ′ is a subgraph of GF .

Further, since GF does not have C4, G′F ′ does not have C4. Next we claim that there

is no C4 in G′∪G′F ′ . By item (ii) of Observation 7.6.2, Xvi−2 6= Xvi−1 . This implies that

Xvi−2 6= Xvi+1 . Note that, there is no C4 in G′, G′F ′ , and G∪GF . Thus, if there is a C4

in G′∪G′F ′ , then there exists a set F ∈F ′ such that |(NG′(bi+1)∩F | ≥ 2. Notice that

NG′(bi+1) = {vi−2,vi+1}. Since Xvi−2 6= Xvi+1 and |Xvi−2|, |Xvi+1 | ≤ 1 (because P does not

have any special vertex), there is no set F ∈F ′ such that {vi−2,vi+1} ⊆ F . Thus, we have

proved that there is no C4 in G′∪G′F ′ . This implies that the instance (G′,F ′,k) is a valid

instance of HDBFVS.

In the forward direction, let S be a minimal solution to (G,F ,k) of HDBFVS. Suppose

vi−1 ∈ S or vi ∈ S. Consider the case when vi−1 ∈ S. Then, we claim that S? = (S\{vi−1})∪

{vi+1} is also a solution to (G,F ,k). Since P is a nice path, any cycle that contains a

vertex of P must contain all the vertices of P. Thus, all the cycles containing a vertex

from N[vi−1], also contain vi+1. Therefore vi+1 hits all those cycles that N[vi−1] hits. Since

Xvi−1 = Xvi+1 = {Y ?}, vi+1 and vi−1 hits the same set (only one) from F . Now suppose

that vi ∈ S. Then, we claim that S′ = (S\{vi})∪{v j} is a solution to (G,F ,k). Since all

190

the cycles containing a vertex from N[vi], also contain v j, therefore v j hits all the cycles

that N[vi] hits. Since Xvi = Xv j = {Y ?}, vi and v j hits the same set (only one) from F .

Thus, if (G,F ,k) is a yes-instance, then there is a solution S such that vi−1,vi /∈ S.

Then, we claim that S is also a solution to (G′,F ′,k) of HDBFVS. Suppose not, then

either there exists a cycle C in G′−NG′[S] or there exists a set Z ∈F ′ such that S∩Z = /0.

First consider the former case. If C does not contain the edge vi−2bi+1, then C is also

a cycle in G−NG[S], which is a contradiction. Therefore, C contains the edge vi−2bi+1.

But, then we get a cycle in G−NG[S] by replacing the edge vi−2bi+1 in C by the path

vi−2bi−1vi−1bivibi+1. This is a contradiction to the assumption that (G−N[S]) is acyclic.

Now, consider the later case. Note that S hits F \{Y,Y ?} and {Y ?\{vi−1},Y \{vi}} (since

vi−1,vi /∈ S). Thus, it implies that S is a hitting set of F ′. Hence, S is also a solution to

(G′,F ′,k) of HDBFVS.

In the backward direction, let S′ be a solution to (G′,F ′,k) of HDBFVS. We claim

that S′ is also a solution to (G,F ,k) of HDBFVS. Suppose not. Then, either there exists

a cycle C in G−NG[S′] or there exists a set Z ∈F such that S′∩Z = /0. First consider

the former case. If C does not contain any edge from the path P, then C is also a cycle in

G′−NG′[S′], which is a contradiction. Therefore, at least one edge from the path P is part

of C. Since P is a degree two nice path in G, P is a subpath of C. Thus, we get a cycle C′

in G′−NG′[S′] by replacing the subpath vi−2bi−1vi−1bivibi+1 in C by vi−2bi+1. This is a

contradiction to the assumption that S′ is a solution to (G′,F ′,k). Now, consider the later

case. Since F \{Y,Y ?}= F ′ \{Y ? \{vi−1},Y \{vi}} and |Y |, |Y ?| ≥ 2, we have that S′

is a hitting set of F . Hence, S′ is also a solution to (G,F ,k) of HDBFVS.

Let (G = (A]B,E),F ,k) be an instance of HDBFVS reduced with respect to Reduc-

tion Rules 27 to 34. Observe that, for each set Y ∈F and a degree two nice path P in G,

the number of easy vertices among the last |V (P)|−3 vertices in V (P) that belong to Y , is

upper bounded by one. Reduction Rule 34 leads us to the following observation.

Observation 7.6.3. Let (G = (A]B,E),F ,k) be a reduced instance of HDBFVS with

191

respect to Reduction Rules 27 to 34. Then, in any degree two nice path P of length at least

10 in G, the number of easy vertices is bounded by |F |+2.

Reduction Rule 35. Let (G = (A]B,E),F ,k) be an instance of HDBFVS and P =

b1v1b2v2b3v3b4 be a degree two nice path in G, such that {b1, . . . ,b4}⊆ B, {v1,v2,v3}⊆ A

and v1,v2,v3 are trivial vertices. Then, return (G′,F ,k), where G′ is the graph obtained

by deleting the vertices b2,v2 from G and adding a new edge v1b3 (that is, G′ = (G−

{v2,b2})+ v1b3).

Lemma 58. Reduction Rule 35 is safe.

Proof. Observe that, the instance (G′,F ,k) is a valid instance of HDBFVS.

In the forward direction, let S be a solution to (G,F ,k) of HDBFVS. Suppose that

v2 /∈ S. Then, we claim that S is also a solution to (G′,F ,k) of HDBFVS. Suppose not,

then there exists a cycle C in G′−NG′[S]. If C does not contain the edge v1b3, then C is

also a cycle in G−NG[S], which is a contradiction. Therefore, C contains the edge v1b3.

But, then we get a cycle in G−NG[S] by replacing the edge v1b3 in C by the path v1b2v2b3.

This is a contradiction to the assumption that (G−N[S]) is acyclic. Hence, S is also a

solution to (G′,F ,k) of HDBFVS. Next, consider that v2 ∈ S. Since P is a degree two

nice path, any cycle that contains v2 also contains all the vertices in P and hence contains

v1. Therefore S? = S\{v2}∪{v1} is also a solution to (G,F ,k) of HDBFVS. As argued

before S∗ is a solution to (G′,F ,k) of HDBFVS.

In the backward direction, let S′ be a solution to (G′,F ,k) of HDBFVS. We claim

that S′ is also a solution to (G,F ,k) of HDBFVS. Suppose not. Then, there exists a cycle

C in G−NG[S′]. If C does not contain any edges from the path P, then C is also a cycle in

G′−NG′[S′], which is a contradiction. Therefore, at least one edge from the path P is part

of C. Since P is a degree two nice path in G, P is a subpath in C. Thus, we get a cycle C′

in G′−NG′[S′] by replacing the subpath v1b2v2b3 in C by v1b3. This is a contradiction to

the assumption that S′ is a solution to (G′,F ,k). Hence, S′ is also a solution to (G,F ,k)

192

of HDBFVS.

Next, we have the following observation, which is easily verifiable.

Observation 7.6.4. Let (G = (A] B,E),F ,k) be an instance of HDBFVS and let

(G′ = (A′]B′,E ′),F ′,k′) be the reduced instance of HDBFVS obtained from (G =

(A]B,E),F ,k), by exhaustive applications of Reduction Rules 27 to 35. Then, |F ′|= |F |

and k′ ≤ k.

We now bound the size of degree 2 path, when there is no degree 1 vertex in the graph.

Lemma 59. Let (G = (A]B,E),F ,k) be an instance of HDBFVS reduced with respect

to Reduction Rules 27 to 35. Then, the number of vertices in a degree two path P in

G−V=1(G) is bounded by 63|F |5 +21.

Proof. By Lemma 50, the number of special vertices in P is bounded by
(|F |

2

)
. Let P′ be a

maximum length subpath of P such that P′ is a nice path. That is, P′ does not contain any

special vertices. Then, by Lemma 56, the number of vertices in P′ that are adjacent to a

vertex in V=1(G) in G is bounded by
(|F |

2

)
+ |F |. Let P′′ be a maximum length subpath

of P′ such that P′′ does not contain any vertex that is adjacent to a vertex in V=1(G) in

G. Then, by Observation 7.6.3, either the length of P′′ is bounded by 10, or the number

of easy vertices in P′′ is bounded by |F |+ 2. Let P? be a maximum length subpath

of P′′ such that P? does not contain any easy vertices. Then, since Reduction Rule 35

is no longer applicable, the length of P? is bounded by 7. Therefore, we have that the

length of P′′ is bounded by 7(|F |+ 3). This implies that the length of P′ is bounded

by 7(|F |+3)(
(|F |

2

)
+ |F |+1)≤ (35|F |3 +21). Hence, the length of P is bounded by

(35|F |3 +21)(
(F

2

)
+1)≤ 63|F |5 +21.

From now on, we say that (G = (A]B,E),F ,k) is a reduced instance of HDBFVS if

it is reduced with respect to Reduction Rules 27 to 35. In the following lemma, we observe

193

that, if (G = (A]B,E),F ,k) is a yes-instance of HDBFVS, then a large number of edges

in G is incident to the neighborhood of the solution.

Lemma 60. Let (G = (A]B,E),F ,k) be a reduced instance of HDBFVS where G is not

a forest. Then, for any solution S, at least 1/(445|F |6 +68) fraction of the total edges in

E are incident to N[S].

Proof. Let ES be the set of edges incident to all the vertices of N[S] in G. Observe that,

E(G) =ES]E(G−N[S]). Since G−N[S] is a forest, we have that |E(G−N[S])|< |V (G−

(N[S]∪V0(G)))|. We aim to show that |V (G− (N[S]∪V0(G)))| ≤ (445|F |6 +67) · |ES|.

Let V ? be the set of vertices of degree 1 in G−N[S]. Let V ?
1 ⊆V ? be the set of vertices that

have some neighbor in N[S] and V ?
2 =V ? \V ?

1 . That is, V ?
2 ⊆V=1(G). Since the vertices in

V ?
1 have neighbors in N[S], they contribute at least one edge to the set ES and these edges

are distinct. Hence, |V ?
1 | ≤ |ES|.

Since V ?
2 ⊆ V=1(G), by Lemma 53, we have that V ?

2 ⊆ A. Thus, V ?
2 have neighbors

only in the set B∩V (G−N[S]). Also, by Lemma 54, any vertex in B can be adjacent

to at most |F | vertices of degree 1 in G. Hence, each vertex in B∩V (G−N[S]) can be

adjacent to at most |F | vertices of V ?
2 . Thus, we have that |V ?

2 | ≤ |F | · |B∩V (G−N[S])|.

Let G′ be the graph G− (V0(G)∪V ?
2). Since V0(G)∪V ?

2 ⊆ A, we have that, B ⊆ V (G′)

and B∩V (G−N[S]) = B∩V (G′−N[S]). Hence, we obtain the following.

|V ?
2 | ≤ |F | · |B∩V (G′−N[S])| ≤ |F | · |V (G′−N[S])|(7.1)

|V ?| = |V ?
1 |+ |V ?

2 | ≤ |F | · |V (G′−N[S])|+ |ES| (By (7.1) and |V ?
1 | ≤ |ES|)(7.2)

Since the graph G′ is obtained from G by deleting a subset of vertices that are contained in

V0(G)∪V=1(G)⊆ A, the vertices that are degree 1 in G′−N[S] are either degree 1 vertices

in G−N[S] and are contained in A, in particular in V ?
1 , or they are contained in B and

are neighbors of vertices in V ?
2 in G. Let L be the set of leaves (vertices of degree 1) in

G′−N[S]. We claim that L =V ?
1 . For contradiction, assume that a vertex b ∈ B∩L. Since

194

Reduction Rule 29 is no longer applicable, we have that each vertex in B participates in a

cycle in G and hence, participates in a cycle in G′. Therefore, degree of b is at least 2 in G′.

Observe that b cannot have a neighbor in S, otherwise b ∈ N[S]. This implies that b has 2

neighbors in G′−N[S], which contradicts that b ∈ L. Observe that each vertex in V ?
1 is a

leaf vertex in G′−N[S]. Hence L =V ?
1 . Therefore, we obtain the following.

|L| ≤ |ES|.(7.3)

V≥3(G′−N[S]) ≤ |ES| (Since, G′−N[S] is a forest, V≥3(G′−N[S])≤ |L|)(7.4)

Next we bound |V0(G′−N[S])|. Since, for any vertex v in G′−N[S], dG(v) ≥ 1, we

have that any vertex w ∈ V0(G′−N[S]) is adjacent to some vertex in N[S]. Then, each

vertex in V0(G′−N[S]) contributes at least 1 edge to the set ES and these edges are distinct.

Therefore, we obtain the following.

(7.5) |V0(G′−N[S])| ≤ |ES|.

Let V 1
=2(G

′) be the set of vertices of degree 2 in G′−N[S] that have a neighbor in N[S].

Then, each vertex in V 1
=2(G

′) contributes at least 1 edge to the set ES. Therefore, we obtain

the following.

(7.6) |V 1
=2(G

′)| ≤ |ES|.

Let V 2
=2(G

′) be the set of vertices of degree 2 in G′−N[S], that do not have a neighbor

in N[S]. Then, each vertex in V 2
=2(G

′) is contained in some maximal degree two path

not containing any vertex of V 1
=2(G

′) in G′−N[S]. Observe that, since G′−N[S] is a

forest, (i) the number of maximal degree two paths not containing any vertex of V 1
=2(G

′) in

G′−N[S] is bounded by |L∪V≥3(G′)∪V 1
=2(G

′)| and hence bounded by 3|ES| (because of

(7.3),(7.4), and (7.6)). Observe that a degree two path not containing any vertex of V 1
=2(G

′)

195

in G′−N[S] is also a degree two path in G−V=1(G). By Lemma 59, (ii) the number

of vertices in a degree two path in G−V=1(G) is bounded by 63|F |5 + 21. Therefore,

statements (i) and (ii) imply the following.

(7.7) |V 2
=2(G

′)| ≤ (189|F |5 +63)|ES|

Observe that V=2(G′−N[S]) =V 1
=2(G

′)∪V 2
=2(G

′). By (7.6) and (7.7), we get the following.

(7.8) |V=2(G′−N[S])|= |V 1
=2(G

′)|+ |V 2
=2(G

′)| ≤ (189|F |5 +64)|ES|

Note that, V (G′−N[S]) =V0(G′−N[S])∪L∪V≥3(G′−N[S])∪V=2(G′−N[S]). Hence,

we obtain the following using (7.3), (7.5), (7.4), and (7.8).

|V (G′−N[S])| = |V0(G′−N[S])|+ |L|+ |V≥3(G′−N[S])|+ |V=2(G′−N[S])|

≤ |ES|+ |ES|+ |ES|+(189|F |5 +64)|ES|

≤ (189|F |5 +67)|ES|(7.9)

Using (7.1) and (7.9), we obtain the following.

|V (G− (N[S]∪V0(G)))| ≤ |V (G′−N[S])|+ |V ?
2 |

≤ (|F |+1)|V (G′−N[S])| (By (7.1))

≤ (|F |+1)((189|F |5 +67)|ES|)

≤ (445|F |6 +67)|ES|

Thus, |E(G)|= |ES|+ |E(G−N[S])|

≤ |ES|+ |V (G− (N[S]∪V0(G))| ≤ (445|F |6 +68)|ES|.

This concludes the proof.

Lemma 61. Let (G = (A]B,E),F ,k) be an instance of HDBFVS, where G is a forest

196

and |F | ≤ k2. Then, there exists an algorithm which solves the instance in O?((2k4)
k
)

time.

Proof. The Algorithm first applies Reduction Rules 27 to 35 exhaustively in the order in

which they are stated. If any reduction rule solves the instance, then output yes and no

accordingly. All the reduction rules are safe, and can be applied in polynomial time, and

they can be applied only polynomial many times since each reduction rule decreases the

size of the graph. Let (G′ = (A′]B′,E ′),F ′,k′) be the reduced instance. Since Reduction

Rule 29 is no longer applicable, B′ = /0, and hence G′ is an edge-less graph with vertex

set A′. By Lemma 53, |V (G′)| = |A′| ≤ |F ′|+
(|F ′|

2

)
. By Observation 7.6.4, we have

that |F ′| = |F | ≤ k2 and hence, |V (G′)| ≤ 2k4. We enumerate all the subsets of V (G′)

of size at most k and check if either of them forms a solution; else return that it is a

no-instance. Clearly, this algorithm runs in time
(2k4

k

)
nO(1) = O?((2k4)

k
). This completes

the proof.

Lemma 62. There is a randomized algorithm that takes an instance (G = (A]B,E),F ,k)

of HDBFVS as input, runs in O∗((2k4)
k
) time, and outputs either yes, or no, or an

instance (G? = (A?] B?,E?),F ?,k?) of HDBFVS where k? < k, with the following

guarantee.

• If (G,F ,k) is a yes-instance, then the output is yes or an equivalent yes-instance

(G?,F ?,k?) where k? < k, with probability at least (445k12 +68)−(k
2+1).

• If (G,F ,k) is a no-instance, then the output is no or an equivalent no-instance

(G?,F ?,k?) where k? < k, with probability 1.

Proof. Let (G = (A]B,E),F ,k) be an input instance of HDBFVS. Recall that, for any

v ∈ A, Xv = {F ∈F : v ∈ F}. The algorithm applies the following iterative procedure.

Step 1. If G is acyclic and |F | ≤ k2, then apply Lemma 61 and solve the instance.

Step 2. If |F | ≥ k2 +1;

197

(i) If there exists a vertex v such that |Xv| ≥ k+1, return (G−N[v],F \Xv,k−

1).

(ii) Otherwise, return that (G = (A]B,E),F ,k) is a no-instance of HDBFVS.

Step 3. Apply Reduction Rules 27 to 35 exhaustively in the order in which they are stated.

If any reduction rule solves the instance, then output yes and no accordingly. Let

(G′ = (A′]B′,E ′),F ′,k′) be the reduced instance.

Step 4. Pick an edge e = ub in E(G′) uniformly at random, where u ∈ A′,b ∈ B′. Set

G := G′−b,F := F ′∪{NG′(b)}, and k := k′. Go to Step 1.

Now we prove the correctness of the algorithm. Correctness of Step 1 follows from

Lemma 61. Next assume that |F | ≥ k2 +1. Suppose that, v is a vertex that is contained

in at least k+ 1 sets in F . By Observation 7.6.2, pairwise intersection of two sets in

F is at most 1. Thus, if we do not pick v in our solution, then we have to pick at least

k + 1 vertices to hit sets in Xv. This implies that v is contained in every solution of

(G,F ,k) of HDBFVS. Therefore, we have that (G,F ,k) is a yes-instance of HDBFVS

if and only if (G− v,F \Xv,k− 1) is a yes-instance of HDBFVS, and correctness of

Step 2i follows. Suppose that, each vertex in A is contained in at most k sets in F .

This implies that no set of size at most k can hit k2 +1 sets of F . Therefore, (G,F ,k)

is a no-instance of HDBFVS, and correctness of Step 2ii follows. Correctness of the

Step 3 is implied by the fact that all our reduction rules are safe. Suppose that, the

algorithm does not stop in Step 3. Let (G′,F ′,k′) be the reduced instance, where k′ ≤ k.

Now, let S be a hypothetical solution to (G′,F ′,k′). By Lemma 60, the picked edge

e = ub is incident to a vertex in NG′[S] with probability at least 1/(445|F |6 +68). This

implies that with probability at least 1/(445|F |6 + 68) a vertex in NG′(b) is contained

in S. Therefore, if (G′,F ′,k′) is a yes-instance, then (G′−b,F ′∪{NG(b)},k′) is a yes-

instance, with probability at least 1/(445|F |6 + 68). Also, notice that any solution to

(G′−b,F ′∪{NG(b)},k′) is also a solution to (G′,F ′,k′). Therefore, if (G′,F ′,k′) is a no-

instance, then (G′−b,F ′∪{NG(b)},k′) is a no-instance, with probability 1. Consequently,

198

if (G,F ,k) is a no-instance, then the output is no or a no-instance (G?,F ?,k?) with

probability 1.

Now, suppose that (G,F ,k) is yes-instance. By Observation 7.6.4, we know that

after the application of Reduction Rules 27 to 35, (a) the size of the family F ′ in the

reduced instance is |F |. Therefore, Step 4 is applied at most k2 +1 times. Moreover, each

execution of Step 4 is a success with probability at least 1/(445|F̂ |6 +68), where F̂ is

the family in the instance considered in that step. In Step 4, the size of the family of any

instance is bounded by k2, because of Step 2. Therefore each execution of Step 4 is a

success with probability at least 1/(445k12 +68). This implies that either our algorithm

outputs yes or a yes-instance (G?,F ?,k?) with probability at least (445k12 +68)−(k
2+1).

By Observation 7.6.4, we know that after the application of Reduction Rules 27 to 35, the

parameter k′ in the reduced instance is at most the parameter k in the original instance.

Moreover, if the algorithm outputs an instance, then that will happen in Step 2i and there k

decreases by 1. This implies that k? < k. This completes the proof of correctness of the

algorithm.

By Lemma 61, Step 1 runs in O?((2k4)
k
) time. Observe that, Step 2 runs in polynomial

time. All the reduction rules run in polynomial time, and are applied only polynomially

many times. Step 4 runs in polynomial time, and we have at most k2 + 1 iterations.

Therefore, the total running time is O?((2k4)
k
). This completes the proof.

By applying Lemma 62 at most k times, we can show the the following.

Lemma 63. There exists a randomized algorithm B that takes an instance (G = (A]

B,E),F ,k) of HDBFVS as input, runs in O?((2k4)
k
) time, and outputs either yes or no

with the following guarantee.

• If (G,F ,k) is a yes-instance, then the output is yes with probability at least (445k12+

68)−k(k2+1).

• If (G,F ,k) is a no-instance, then the output is no with probability 1.

199

Let τ(k) = (445k12 +68)k(k2+1)(logn)O(1). To boost the success probability of algorithm

B, we repeat it O(τ(k) logn) times. After applying algorithm B O(τ(k) logn) times, the

success probability is at least

1−
(

1− 1
τ(k)

)O(τ(k) logn)

≥ 1− 1
2O(logn)

≥ 1− 1
nO(1)

.

Thus, we have the following result.

Theorem 7.6.5. There exists a randomized algorithm A that takes an instance (G =

(A]B,E),F ,k) of HDBFVS as input, runs in O?(2O(k3 logk)) time, and outputs either

yes or no with the following guarantee.

• If (G,F ,k) is a yes-instance, then the output is yes with probability at least 1− 1
nO(1) .

• If (G,F ,k) is a no-instance, then the output is no with probability 1.

7.7 Conclusion

In this chapter, we initiated the study of FEEDBACK VERTEX SET problem on hypergraphs.

We showed that the problem is W[2]-hard on general hypergraphs. However, when the input

is restricted to d-hypergraphs and linear hypergraphs, which are a strict generalization

of graphs, FVS turns out to be tractable (FPT). We believe that this opens up a new

direction in the study of parameterized algorithms. That is, extending the study of other

graph problems, in the realm of Parameterized Complexity, to hypergraphs. Designing

substantially faster algorithms for HFVS on linear hypergraphs and designing polynomial

kernels remain interesting questions for the future.

200

Bibliography

[1] Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of

Computer and System Sciences, 76(7):524–531, 2010.

[2] Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma. Im-

proved algorithms and combinatorial bounds for independent feedback vertex set.

In 11th International Symposium on Parameterized and Exact Computation IPEC,

volume 63, pages 2:1–2:14, 2016.

[3] Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A

faster FPT algorithm and a smaller kernel for block graph vertex deletion. In

Theoretical Informatics - 12th Latin American Symposium LATIN, volume 9644 of

LNCS, pages 1–13. Springer, 2016.

[4] Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh.

Simultaneous feedback vertex set: A parameterized perspective. ACM Transactions

on Computation Theory, 10(4):18:1–18:25, 2018.

[5] Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph

S. B. Mitchell, and Marina Simakov. Choice is hard. In 26th International Sympo-

sium on Algorithms and Computation ISAAC, pages 318–328, 2015.

[6] Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph

S. B. Mitchell, and Marina Simakov. Conflict-free covering. In 27th Canadian

Conference on Computational Geometry CCCG, 2015.

205

[7] Aritra Banik, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Fréchet distance

between a line and avatar point set. Algorithmica, 80(9):2616–2636, 2018.

[8] Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the

loop cutset problem. Journal of Artificial Intelligence Research, 12:219–234, 2000.

[9] Richard Bellman. On a routing problem. Quarterly of applied mathematics,

16(1):87–90, 1958.

[10] Matthias Bentert, René van Bevern, and Rolf Niedermeier. (wireless) scheduling,

graph classes, and c-colorable subgraphs. CoRR, abs/1712.06481, 2017.

[11] Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of

short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational

Complexity (ECCC), (049), 2003.

[12] Norman Biggs, E Keith Lloyd, and Robin J Wilson. Graph Theory, 1736-1936.

Oxford University Press, 1986.

[13] Hans L. Bodlaender. On disjoint cycles. In Gunther Schmidt and Rudolf Bergham-

mer, editors, Proceedings on Graph–Theoretic Concepts in Computer Science (WG

’91), volume 570 of LNCS, pages 230–238. Springer, 1992.

[14] Hans L. Bodlaender. A cubic kernel for feedback vertex set. In 24th Annual

Symposium on Theoretical Aspects of Computer Science, STACS, volume 4393 of

LNCS, pages 320–331. Springer, 2007.

[15] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower

bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–

305, 2014.

[16] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.

[17] Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering.

Cham: Springer, 2013.

206

[18] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston,

Shev Mac, and Frances A. Rosamond. The undirected feedback vertex set problem

has a poly(k) kernel. In Parameterized and Exact Computation, Second International

Workshop, IWPEC, volume 4169 of LNCS, pages 192–202. Springer, 2006.

[19] Leizhen Cai. Fixed-parameter tractability of graph modification problems for

hereditary properties. Information Processing Letters, 58(4):171–176, 1996.

[20] Leizhen Cai and Junjie Ye. Dual connectedness of edge-bicolored graphs and

beyond. In International Symposium on Mathematical Foundations of Computer

Science, volume 8635, pages 141–152, 2014.

[21] Yixin Cao. Linear recognition of almost interval graphs. In Proceedings of the 27th

annual ACM-SIAM symposium on Discrete algorithms SODA, pages 1096–1115,

2016.

[22] Yixin Cao. A naive algorithm for feedback vertex set. In 1st Symposium on

Simplicity in Algorithms, SOSA, volume 61, pages 1:1–1:9. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2018.

[23] Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and

new structures. Algorithmica, 73(1):63–86, 2015.

[24] Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM

Transactions on Algorithms, 11(3):21:1–21:35, 2015.

[25] Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorith-

mica, 75(1):118–137, 2016.

[26] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Im-

proved algorithms for feedback vertex set problems. Journal of Computer and

System Sciences, 74(7):1188 – 1198, 2008.

207

[27] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover.

Theoretical Computer Science, 411(40-42):3736–3756, 2010.

[28] Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, and Dániel

Marx. Directed subset feedback vertex set is fixed-parameter tractable. CoRR,

abs/1205.1271, 2012.

[29] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Daniel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.

Springer-Verlag, 2015.

[30] Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for

problems on graphs with small degeneracy. ACM Transactions on Algorithms,

13(3):43:1–43:22, 2017.

[31] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M.

van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parame-

terized by treewidth in single exponential time. In IEEE 52nd Annual Symposium on

Foundations of Computer Science, FOCS, pages 150–159. IEEE Computer Society,

2011.

[32] Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: New

fixed-parameter and exact exponential-time algorithms. Information Processing

Letters, 113(5-6):179–182, 2013.

[33] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk.

Subset feedback vertex set is fixed-parameter tractable. SIAM Journal on Discrete

Mathematics, 27(1):290–309, 2013.

[34] G Dantzig and Delbert Ray Fulkerson. On the max flow min cut theorem of networks.

Linear inequalities and related systems, 38:225–231, 2003.

208

[35] Andreas Darmann, Ulrich Pferschy, and Joachim Schauer. Determining a minimum

spanning tree with disjunctive constraints. In International Conference on Algo-

rithmic Decision Theory ADT, volume 5783 of LNCS, pages 414–423. Springer,

2009.

[36] Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J. Woegin-

ger. Paths, trees and matchings under disjunctive constraints. Discrete Applied

Mathematics, 159(16):1726–1735, 2011.

[37] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A.

Rosamond, and Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected

feedback vertex set problem. Theory of Computing Systems, 41(3):479–492, 2007.

[38] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial spar-

sification unless the polynomial-time hierarchy collapses. Journal of the ACM,

61(4):23:1–23:27, 2014.

[39] Zhuo Diao and Zhongzheng Tang. On the feedback number of 3-uniform hypergraph.

volume abs/1807.10456, 2018.

[40] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in

mathematics. Springer, 2012.

[41] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[42] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-

parameter tractability results for feedback set problems in tournaments. Journal of

Discrete Algorithms, 8(1):76–86, 2010.

[43] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and

completeness. Complexity Theory: Current Research, pages 191–225, 1992.

209

[44] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized

Complexity. Texts in Computer Science. Springer, 2013.

[45] Leah Epstein, Lene M. Favrholdt, and Asaf Levin. Online variable-sized bin packing

with conflicts. Discrete Optimization, 8(2):333–343, 2011.

[46] Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling

with conflicts: online and offline algorithms. Journal of Scheduling, 12(2):199–224,

2009.

[47] Shimon Even and Oded Kariv. An O(n2.5) algorithm for maximum matching in

general graphs. Foundations of Computer Science (FOCS), pages 100–112, 1975.

[48] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette.

On the parameterized complexity of multiple-interval graph problems. Theoretical

computer science, 410(1):53–61, 2009.

[49] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoreti-

cal Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[50] Stéphane Foldes and Peter L Hammer. Split graphs. Universität Bonn. Institut für

Ökonometrie und Operations Research, 1976.

[51] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-

deletion: Approximation, kernelization and optimal FPT algorithms. In IEEE 53rd

Annual Symposium on Foundations of Computer Science FOCS, pages 470–479,

2012.

[52] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient

computation of representative families with applications in parameterized and exact

algorithms. Journal of the ACM, 63(4):29:1–29:60, 2016.

210

[53] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernel-

ization: Theory of Parameterized Preprocessing. Cambridge University Press,

2019.

[54] Toshihiro Fujito. A unified approximation algorithm for node-deletion problems.

Discrete Applied Mathematics, 86:213–231, 1998.

[55] Toshihiro Fujito. Approximating minimum feedback vertex sets in hypergraphs.

Theoretical Computer Science, 246(1):107 – 116, 2000.

[56] Zoltán Füredi. On the number of edges of quadrilateral-free graphs. Journal of

Combinatorial Theory, Series B, 68(1):1–6, 1996.

[57] Harold N. Gabow, Shachindra N Maheshwari, and Leon J. Osterweil. On two

problems in the generation of program test paths. IEEE Transactions on Software

Engineering, 2(3):227–231, 1976.

[58] Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal

graphs. Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.

[59] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.

Compression-based fixed-parameter algorithms for feedback vertex set and edge

bipartization. Journal of Computer and System Sciences, 72(8):1386–1396, 2006.

[60] Dan Gusfield and Leonard Pitt. A bounded approximation for the minimum cost

2-sat problem. Algorithmica, 8(2):103–117, 1992.

[61] Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching

for feedback vertex set. In 14th International Symposium on Parameterized and

Exact Computation, IPEC, pages 22:1–22:11, 2019.

[62] Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time fpt algorithms via

network flow. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on

Discrete algorithms, pages 1749–1761. SIAM, 2014.

211

[63] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-

branching, and FPT algorithms. SIAM Journal on Computing, 45(4):1377–1411,

2016.

[64] Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all CSPs, half-integral

a-path packing, and linear-time FPT algorithms. In 59th IEEE Annual Symposium on

Foundations of Computer Science, FOCS, pages 462–473. IEEE Computer Society,

2018.

[65] Minghui Jiang. On the parameterized complexity of some optimization problems

related to multiple-interval graphs. Theoretical Computer Science, 411(49):4253–

4262, 2010.

[66] Viggo Kann. Polynomially bounded minimization problems which are hard to

approximate, pages 52–63. Springer Berlin Heidelberg, 1993.

[67] Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for

the subset feedback set problem and the s-cycle packing problem. Journal of

Combinatorial Theory, Series B, 102(4):1020–1034, 2012.

[68] Ken-ichi Kawarabayashi and Bruce Reed. An (almost) linear time algorithm for odd

cycles transversal. In Proceedings of the twenty-first annual ACM-SIAM symposium

on Discrete Algorithms, pages 365–378. SIAM, 2010.

[69] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS.

Springer, 1994.

[70] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set.

Information Processing Letters, 114(10):556–560, 2014.

[71] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized

polynomial kernel for odd cycle transversal. ACM Transactions on Algorithms,

10(4):20:1–20:15, 2014.

212

[72] KW Krause, MA Goodwin, and RW Smith. Optimal software test planning through

automated network analysis. TRW Systems Group, 1973.

[73] Melven R Krom. The decision problem for a class of first-order formulas in which

all disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

[74] Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm

for feedback vertex set in tournaments. In 33rd Symposium on Theoretical Aspects

of Computer Science STACS, volume 47, pages 49:1–49:13, 2016.

[75] Stefan Langerman and Pat Morin. Covering things with things. Discrete & Compu-

tational Geometry, 33(4):717–729, 2005.

[76] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary

properties is NP-complete. Journal of Computer and System Sciences, 20(2):219–

230, 1980.

[77] Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O∗(2.7k)

time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms SODA, pages 971–989. SIAM, 2020.

[78] Shaohua Li and Marcin Pilipczuk. An improved FPT algorithm for independent

feedback vertex set. In 44th International Workshop on Graph-Theoretic Concepts

in Computer Science WG, volume 11159, pages 344–355. Springer, 2018.

[79] Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. De-

terministic truncation of linear matroids. International Colloquium on Automata,

Languages, and Programming (ICALP), pages 922–934, 2015.

[80] Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and

Saket Saurabh. Faster parameterized algorithms using linear programming. ACM

Transactions on Algorithms (TALG), 11(2):1–31, 2014.

213

[81] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav

Zehavi. Covering small independent sets and separators with applications to param-

eterized algorithms. In Proceedings of the 29th Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA, pages 2785–2800, 2018.

[82] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameter-

ized algorithms for subset feedback vertex set. ACM Transactions on Algorithms,

14(1):7:1–7:37, 2018.

[83] Daniel Lokshtanov, MS Ramanujan, and Saket Saurabh. When recursion is better

than iteration: a linear-time algorithm for acyclicity with few error vertices. In

Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms

SODA, pages 1916–1933. SIAM, 2018.

[84] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimiza-

tion problems. Journal of the ACM, 41:960–981, 1994.

[85] Dániel Marx. A parameterized view on matroid optimization problems. Theoretical

Computer Science, 410(44):4471–4479, 2009.

[86] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–

768, 2010.

[87] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. Journal of the ACM, 30(3):417–427, 1983.

[88] Silvio Micali and Vijay V Vazirani. An O(
√
|V ||E|) algorithm for finding maximum

matching in general graphs. Foundations of Computer Science (FOCS), pages 17–27,

1980.

[89] Neeldhara Misra, N. S. Narayanaswamy, Venkatesh Raman, and Bal Sri Shankar.

Solving min ones 2-sat as fast as vertex cover. Theoretical Computer Science,

506:115–121, 2013.

214

[90] Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On

parameterized independent feedback vertex set. Theoretical Computer Science,

461:65–75, 2012.

[91] Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Som-

nath Sikdar. FPT algorithms for connected feedback vertex set. Journal of Combi-

natorial Optimization, 24(2):131–146, 2012.

[92] Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Pa-

rameterized algorithms for even cycle transversal. In Graph-Theoretic Concepts

in Computer Science - 38th International Workshop, WG, volume 7551 of LNCS,

pages 172–183. Springer, 2012.

[93] Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal

derandomization. Foundations of Computer Science (FOCS), pages 182–191, 1995.

[94] Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. Euro-

pean Journal of Combinatorics, 32(4):600–617, 2011.

[95] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and

Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

[96] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford

Lecture Series in Mathematics and its Applications. Oxford University Press, 2006.

[97] James G Oxley. Matroid theory, volume 3. Oxford University Press, 2006.

[98] Ulrich Pferschy and Joachim Schauer. The maximum flow problem with conflict

and forcing conditions. In International Conference on Network Optimization INOC,

volume 6701 of LNCS, pages 289–294. Springer, 2011.

[99] Ulrich Pferschy and Joachim Schauer. The maximum flow problem with disjunctive

constraints. Journal of Combinatorial Optimization, 26(1):109–119, 2013.

215

[100] Ulrich Pferschy and Joachim Schauer. Approximation of knapsack problems with

conflict and forcing graphs. Journal of Combinatorial Optimization, 33(4):1300–

1323, 2017.

[101] Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for

dominating set in graphs of bounded degeneracy and beyond. ACM Transactions on

Algorithms, 9(1):11:1–11:23, 2012.

[102] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals.

Operations Research Letters, 32(4):299–301, 2004.

[103] Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in biclique-free

graphs. In ESA, pages 802–812, 2012.

[104] Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in sparse

graphs and beyond. Theoretical Computer Science, 770:62–68, 2019.

[105] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on

Algorithms, 6(2):32:1–32:8, 2010.

[106] René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval

scheduling and colorful independent sets. Journal of Scheduling, 18(5):449–469,

2015.

[107] Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and

related problems. PhD thesis, Linköping University, Sweden, 2007.

[108] L Wang, EK Egorova, and AV Mokryakov. Development of hypergraph theory.

Journal of Computer and Systems Sciences International, 57(1):109–114, 2018.

[109] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-

winograd. Symposium on Theory of Computing (STOC), pages 887–898, 2012.

[110] Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent

set. Information and Computation, 2017.

216

[111] Mihalis Yannakakis. Node-and edge-deletion NP-complete problems. In STOC,

pages 253–264, New York, NY, USA, 1978. ACM.

[112] Junjie Ye. A note on finding dual feedback vertex set. CoRR, abs/1510.00773, 2015.

217

Homi Bhabha National Institute

Evaluation Report of Ph.D. Viva Voce

Board of Studies in Mathematical Sciences

1. Constituent Institution: Institute of Mathematical Sciences, Chennai

2. Name of the Student: Lawqueen Kanesh

3. Enrolment Number: MATH10201504008

4. Date of Enrolment in HBNI: Aug. 1, 2015

5. Date of Submission of Thesis: June. 06, 2020

6. Title of the Thesis: Parameterized Complexity of Conflict-Free Solutions,

7. Number of Doctoral Committee Meetings held with respective dates:

Number of Meetings held 3.

March 17th, 2017,

July 27th, 2018,

May 21st, 2019

8. Name and A�liation of Examiner 1: Meirav Zehavi, Ben-Gurion University, Israel

Recommendation of the Examiner 1 (Thesis Evaluation) (i) accepted, (ii) accepted after revision,

or (iii) rejected:

9. Name and A�liation of Examiner 2: L. Sunilchandran, Indian Institute of Science, Bangalore

Recommendation of the Examiner 2 (Thesis Evaluation) (i) accepted, (ii) accepted after revision,

or (iii) rejected:

Recommendations of the Viva Voce Board

1. Date of Viva Voce Examination: Dec. 01, 2020

2. Recommendations for the award of the Ph.D. degree: Recommended/ Non Recommended

(If recommended, give summary of main findings and overall quality of the thesis)

In this thesis the candidate studies algorithms mainly in the parameterized complexity framework. In her thesis

she introduced a new variant for some of the classical problems in Graph Algorithms, which is called conflict-

free version, and studied them from the viewpoint of classical and Parameterized Complexity. In the second

part of the thesis she extended the Feedback Vertex Set (FVS) problem to Hypergraphs and studied from the

view point of Parameterized Complexity. The thesis at hand is at the frontier of parameterized algorithms and

complexity and contributes substantially in moving the boundaries forward.

The candidate was asked to give an overview of her research work and was then questioned on the same. The

board of examiners also enquired about the various suggestions and corrections mentioned in the reports of the

thesis referees and assured themselves that these were all addressed and that the necessary modifications were

incorporated in the final copy of the thesis which was submitted at the time of the examination.

• In view of the good quality of the research work,

• in view of the satisfactory reports by the thesis referees (reports attached), and

• in view of the good performance of the candidate in the viva voce examination,

it is recommended that the thesis submitted by Ms Lawqueen Kanesh be accepted for the award of the degree

of Doctor of Philosophy (Ph.D.) by the Homi Bhabha National Institute (HBNI).

Names and signatures of the viva voce board:

S. No. Designation Name Signature Date

1. Chair Venkatesh Raman Dec. 01, 2020

2. Convener/Guide Saket Saurabh Dec. 01, 2020

3. Member 1 R. Ramanujam Dec. 01, 2020

4. Member 2 Geevarghese Philip Dec. 01, 2020

5. Member 3 Vikram Sharma Dec. 01, 2020

6. External member L. Sunilchandran Dec. 01, 2020

Dean Academic, CI

Stamp

Stamp

Thesis Highlight

Name of the Student: Lawqueen Kanesh

Name of the CI/OCC: Dr. Saket Saurabh Enrolment No.: MATH10201504008

Thesis Title: Parameterized Complexity of Conflict-Free Solutions

Discipline: Mathematical Science Subarea of Discipline: Theoretical Computer Science

Date of viva voce: 01/12/2020

In this thesis we introduce and study conflict-free variants of several classical problems in Graph
Algorithms and Parameterized Complexity and study them from the viewpoint of classical and
Parameterized Complexity. We also extend the Feedback Vertex Set (FVS) problem to hypergraphs and
study from the view point of Parameterized Complexity. We first study conflict-free versions of Vertex
Deletion problems. Let Q be a family of graphs (or property) – such as edgeless graphs, forests, cluster
graphs, chordal graphs, interval graphs, bipartite graphs, split graphs or planar graphs. In the Vertex
Deletion problem corresponding to Q (Q-VD), given a graph G, and a non-negative integer k, the goal
is to delete a set S of at most k vertices such that the remaining graph G-S after deletion of S belongs
to the family of graphs Q. In the conflict-free version of the Vertex Deletion problem corresponding to
Q (Q-CF-VD), we are given a conflict graph H together with the graph G and an integer k, and the goal
is to find a set S which is a subset of vertices of the graph G of size at most k, such that S is a solution
to (G,k) of Q-VD and S is an independent set in H. We study the complexity of CF-Q-VD based on the
forbidden set characterization of the property Q. (1) CF-VD is FPT with finite forbidden characterization,
W[1]-hard otherwise. For graph properties with finite forbidden characterization, we show that CF-Q-
VD is FPT and admits a polynomial kernel. For graph properties without finite forbidden
characterization, we show that if Q is characterized by a “well-behaved” infinite family of forbidden
induced subgraphs, then CF-Q-VD is W[1]-hard. In particular, we show that the conflict-free version of
FVS (CF-FVS) is W[1]-hard even when G is a disjoint union of cycles. A similar result holds for the
conflict-free version of Odd Cycle Transversal (CF-OCT), Chordal Vertex Deletion (CF-CVD) and Interval
Vertex Deletion (CF-IVD). (2) CF-VD with infinite forbidden characterizations is FPT for restricted conflict
graphs. We also show that CF-FVS, CF-OCT, CF-CVD, and CF-IVD are FPT, when H belongs to the family
of d-degenerate graphs or nowhere dense graphs. (3) Dichotomy for CF-FVS. We obtain a complete
dichotomy result on the Parameterized Complexity of the problem H-CF-FVS, where the conflict-free
graph H belongs to graph class H (for hereditary H), in terms of the Independent Set problem. We
show that H-CF-FVS is in FPT if and only if H+Cluster Independent Set is in FPT, where H+Cluster
Independent Set is the Independent Set problem on the edge union graph of a cluster graph and a
graph in H. (4) Kernelization complexity for CF-FVS and CF-OCT. We obtain a polynomial kernel for CF-
FVS and show that CF-OCT does not admit a polynomial kernel, when H belongs to the family of d-
degenerate graphs. (5) Parameterized Complexity of conflict-free versions of Maximum Matching and
Shortest Path. We also study conflict-free (parameterized) versions of the Maximum Matching (CF-
MM) and Shortest Path (CF-SP) problems. We show that both CF-MM and CF-SP are W[1]-hard, when
parameterized by the solution size. For the CF-MM problem, we give an FPT algorithm, when the
conflict graph belongs to the family of chordal graphs. For conflict graphs being d-degenerate and
nowhere dense graphs, we obtain FPT algorithms for both CF-MM and CF-SP. We study a variant of
CF-MM and CF-SP, where instead of conflicting conditions being imposed by independent sets in a
conflict graph, they are imposed by independence constraints in a (representable) matroid. We give
FPT algorithms for the above variant of both CF-MM and CF-SP. (6) FVS in hypergraphs. Finally, we
extend our study from problems on graphs to hypergraphs. In particular, we study the Feedback Vertex
Set problem on hypergraphs. We show that FVS on hypergraphs is W[2]-hard, when parameterized by
the solution size. We obtain FPT algorithms for FVS on hypergraphs, when the input hypergraph is
restricted to d-hypergraphs and linear hypergraphs.

	ttp_6525
	cp_6525
	pp_6525
	cntnt_6525
	tbl_fgr_6525
	smry_6525
	synp_6525
	chp1_6525
	chp2_6525
	chp3_6525
	chp4_6525
	chp5_6525
	chp6_6525
	chp7_6525
	chp8_6525
	othr_inf_6525
	ths_hglts_6525

