
Select, Allocate, and Manipulate via Multivariate
Analysis

By

Sanjukta Roy

MATH10201504009

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

March, 2020

27 1 21

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgement

the proposed use of the material is in the interests of scholarship. In all other

instances, however, permission must be obtained from the author.

Sanjukta Roy

DECLARATION

I hereby declare that the investigation presented in the thesis has been carried

out by me. The work is original and has not been submitted earlier as a whole or in

part for a degree / diploma at this or any other Institution / University.

Sanjukta Roy

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Publications in Refereed Journal:

[1] D. Adil, S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Parameterized

algorithms for stable matching with ties and incomplete lists”. In: Theoretical

computer science 723 (2018), pp. 1–10.

[2] S. Gupta and S. Roy. “Stable matching games: manipulation via subgraph

isomorphism”. In: Algorithmica 80.9 (2018), pp. 2551–2573.

[3] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Parameterized algorithms and

kernels for rainbow matching”. In: Algorithmica 81.4 (2019), pp. 1684–1698.

[4] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Quadratic vertex kernel for

rainbow matching”. In: Algorithmica (2020).

Conference Publications:

[1] S. Gupta, S. Roy, P. Jain, S. Saurabh, and M. Zehavi. “Gehrlein stability in

committee selection: parameterized hardness and algorithms”. In: Proceedings

of the 18th international conference on autonomous agents and multiagent

systems, AAMAS 2019, may 13-17, 2019, montreal, canada. 2019, pp. 511–

519.

[2] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Balanced stable marriage: how

close is close enough?” In: Algorithms and data structures - 16th international

symposium, WADS 2019, edmonton, ab, canada, august 5-7, 2019, proceedings.

2019, pp. 423–437.

[3] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Group activity selection

on graphs: parameterized analysis”. In: Algorithmic game theory - 10th in-

ternational symposium, SAGT 2017, l’aquila, italy, september 12-14, 2017,

proceedings. 2017, pp. 106–118.

[4] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “When rigging a tournament, let

greediness blind you”. In: Proceedings of the twenty-seventh international joint

conference on artificial intelligence, IJCAI 2018, july 13-19, 2018, stockholm,

sweden. 2018, pp. 275–281.

[5] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Winning a tournament by any

means necessary”. In: Proceedings of the twenty-seventh international joint

conference on artificial intelligence, IJCAI 2018, july 13-19, 2018, stockholm,

sweden. 2018, pp. 282–288.

Sanjukta Roy

DEDICATIONS

To my parents.

ACKNOWLEDGEMENTS

I would like to acknowledge the immense support, help, and guidance I have

received from my advisor Prof. Saket Saurabh. I am grateful to him for his patience

and constant imposition to achieve higher goals, throughout the metamorphosis

of my Ph.D. work right from infancy. I have learned many things from him both

academically and non-academically. Without his guidance, this Ph.D. thesis would

not have been accomplished. I take this opportunity to extend my humble gratitude

to my co-authors Prof. Sushmita Gupta, Prof. Meirav Zehavi, and Dr. Pallavi Jain

for the countless discussions we have had. I would like to thank Prof. Sushmita

Gupta for the diligence and rigor of correcting my writing for the umpteenth time.

I shall be failing in my duties if I do not acknowledge my doctoral committee

members Prof. Venkatesh Raman, Prof. Meena Mahajan, Prof. R. Ramanujam, and

Prof. G. Philip for their valuable feedback and attention during the review meetings.

If I can mention an enduring framework I have always come to rely upon, it has

to be the experience gained during my course work and TA work in IMSc. I have

had the pleasure of learning various subjects from my advisor Prof. Saket Saurabh,

Prof. Venkatesh Raman, Prof. Meena Mahajan, Prof. V. Arvind, and Prof. R.

Ramanujam. The concepts infused has helped me during my Ph.D. and will be an

endearing companion in my further ventures.

I would like to thank my seniors Pranabendu Mishra, Fahad Panolan, Akanksha

Agrawal, and Sudeshna Koley who have helped me since the days of my graduate

course work. In no small parts, my friends and collogues PrafullKumar Tale, Roohani

Sharma, Jayakrishnan M, Abhishek Sahu, and Lawqueen Kanesh have helped me to

paint a complete picture in several aspects of my academic endeavor.

The entire ordeal would have been devoid of colors and spirit if it was not for

my friends at IMSc, Lawqueen Kanesh, Oorna Mitra, Shivani Singh, and all the

members of the Parameterized Complexity group. I would also like to thank my

friend Niladri Ranjan Das for providing moral support and encouragement.

Last but not the least, my family: my parents, brother, and sister have encouraged

me to peruse my dreams and have always provided me with immense support

spiritually throughout my Ph.D. and life in general. If I were left awry of these, the

journey would never have been complete.

Contents

Summary i

List of Figures v

1 Introduction 1

1.1 Organization of the thesis . 5

2 Preliminaries 7

2.1 Parameterized Complexity . 9

A: Stable Allocation Problems 12

3 Stable Matching with Ties and Incomplete Lists 15

3.1 Preliminaries . 21

3.2 Algorithms for SMTI . 22

3.2.1 Kernel for Max-SMTI . 22

3.2.2 Kernel for Min-SMTI . 26

3.3 Kernel for SRTI . 27

3.4 SMTI and SRTI on planar graphs . 28

3.5 Conclusions . 37

4 Balanced Stable Matching 39

4.1 Preliminaries . 48

4.1.1 Known Results . 50

4.2 Hardness . 52

4.2.1 Formal Description of the Reduction 54

4.2.2 The Parameter . 55

4.2.3 Correctness . 58

4.3 Kernel . 63

4.3.1 Functional Balanced Stable Marriage 63

4.3.2 Balanced Stable Marriage . 85

4.4 Parameterized Algorithm . 88

4.4.1 Bounded Search Tree: An Overview 88

4.4.2 Description of the Algorithm 89

4.4.3 The Procedure Branch . 90

4.4.4 Algorithm . 94

4.5 Conclusion . 95

5 Group Activity Seclection Problem on Graphs(gGASP) 97

5.1 Preliminaries . 104

5.1.1 NP-completeness of Steiner Tree? on graphs of maximum

degree 4. 105

5.2 Hardness . 106

5.2.1 NP-completeness of gNSGA . 106

5.3 An FPT Algorithm for General Graphs 111

5.4 FPT Algorithm for Networks of Bounded Treewidth 118

5.4.1 Computation . 121

5.4.2 Correctness . 123

5.5 Conclusion . 132

B: Selection Problems 132

6 Rainbow Matching 135

6.1 Our Contribution . 136

6.1.1 Overview . 140

6.1.2 Related Work . 141

6.1.3 Preliminaries . 143

6.2 Algorithm for Rainbow Matching on Paths 144

6.3 FPT Algorithm for Rainbow Matching on General Graphs 150

6.4 Kernelization Algorithms . 152

6.4.1 Kernelization on general graphs: Algorithm I 153

6.4.2 Kernelization on graphs of bounded degree 155

6.5 Improved Kernelization Algorithms 157

6.5.1 Decomposing the graph into a vertex cover and an independent

set . 158

6.5.2 Kernelization on Forests . 161

6.5.3 Kernelization on General Graphs: Algorithm II 166

6.6 Conclusion, Discussion and Open Problems 172

7 Stable Committee Selection 175

7.1 Preliminaries . 180

7.2 Structural Observations . 181

7.3 Hardness . 182

7.4 Exact Algorithms for Gehrlein Stable Committee Selection . 186

7.4.1 A polynomial time subcase . 187

7.4.2 Exact exponential time algorithm 189

7.5 FPT Algorithms for GSCS . 191

7.6 A linear vertex kernel for GSCS . 196

7.7 Conclusion . 201

C: Manipulation Problems 201

8 Stable Extension of Partial Matching 205

8.1 Our problem and motivation . 207

8.1.1 Our Contributions . 210

8.2 Preliminaries . 212

8.3 Generalization of Suitor Graph . 213

8.4 Exact Algorithm for SEOPM . 218

8.4.1 Universality of Universal Suitor Graph 220

8.4.2 Rooted Universal Suitor Graph and Valid Subgraphs 222

8.4.3 2O(n) Algorithm for SEOPM 224

8.4.4 A Lower Bound under Exponential Time Hypothesis 228

8.5 Stable extension when lists may not be complete 229

8.5.1 Overview of Algorithm 8.5.1 232

8.6 Concluding thoughts . 237

9 Tournament Fixing Problem 241

9.1 Our Contribution . 246

9.2 Preliminaries . 248

9.3 Greedy Algorithm for TFP . 250

9.3.1 Phase I: Guessing . 253

9.3.2 Phase II: Verification of Guesses 254

9.3.3 Phase III: Greedy Choice for Path Resolution 257

9.3.4 Phase IV: Greedy Choices for Subtree Resolution 266

9.4 Obfuscation Operations . 272

9.5 Combinatorial Result . 275

9.6 Characterization of Yes-Instances . 278

9.7 Exact Algorithms . 281

9.8 Conclusion . 284

Bibliography 284

List of Figures

3.1 After deleting Isolated vertices, mark edges and vertices. Red denotes

marked vertices and edges. The left partition of the independent

set I refers to the top 2k + 1 preferred vertices that are marked for

every vertex in X, the vertex cover. The right partition contains the

remaining vertices. 25

3.2 Delete all unmarked edges . 26

3.3 Apply Reduction Rule 1 again and now delete all the isolated vertices.

This remaining graph is the kernel. 26

5.1 The construction of the underlying graph G. 108

5.2 Depiction of how a nice function f assigns {1, 2} to the vertices of G.

Orange colored parts are assigned 1 by f and the white enclosed parts

are assigned 2 by f . C1, C2, . . . , C5 are the components of G[f�1(1)].

For i 2 [5], the concentric circle outside Ci is N(Ci). It is guaranteed

that f assigns 2 to those vertices. 112

7.1 Example: The blue vertices in the set S is a weakly Gehrlein stable

committee of size 5 for the voting profile given in Table 7.1. 178

v

7.2 Construction of D. Here, n = |V (G)|, the green and blue vertices

are the node vertices and edge vertices respectively, the vertices in

the green set is the set of indicator vertices, and the orange dashed

lines show the directed cycles of length k2 in D. 184

7.3 An illustration of Algorithm 7.5.1 where vertices in the red sets are

in the solution . 192

8.1 (a) Suitor Graph, (b) Rooted Suitor Graph 214

8.2 (a) Universal suitor graph on vertices M = {A,B,C}]X2{D,...,I}

{X i | 4  i  9} and W = {1, . . . , 9}, (b) Rooted universal suitor

graph [described later in Section 8.4.2] for the partial matching µ =

{(A, 1), (B, 2), (C, 3)} with source {4, 9}. Blue vertices are copies of

the unmatched male vertices for each unmatched female vertex. The

outgoing edges from blue vertices are not shown. Black edges represent

the matching edges in µ, red edges represent the preferences of men

matched in µ, while the blue edges represent edges from an unmatched

woman to her own copies of the unmatched men. The green ellipse

represents the set of source vertices, {4, 9}, that are connected from

the root r. 217

9.1 Partition of V (D)\V (K) into types. The arcs in K and the vertices in

V (K) are colored red. For all vi, vj with i < j such that (vj, vi) /2 K,

we suppose that (vi, vj) 2 A(D) (not displayed). 245

9.2 Binomial arborescences of sizes 20, 21, 22 and 23. 248

9.3 The topology T4 of {v⇤, v4, v10, v12, v15, v17} in B (left), and the tem-

plate T ? (right). LCA-vertices are colored blue. 251

vi

9.4 An application of the subtree clean-up operation. In D, displayed arcs

are backward arcs; all other arcs are forward arcs. The sets Rrev and

R0rev are the sets of blue arcs in T and T 0, respectively. In T 0, the

operation is not applicable. 273

9.5 An application of the cyclic shift clean-up operation with D being

the graph in Fig. 9.1 (add vertices to ensure its size is a power of 2,

whose display is irrelevant here). Only parts of the trees T and T 0 are

displayed. Reversed arcs are colored blue. Here, P = v6 ! v7 ! v8,

p0 = v5, p1 = v6, p2 = v7 and p3 = v8. 274

9.6 A 2-removed binomial arborescence on 24 vertices. 281

vii

Bibliography

[1] D. J. Abraham, P. Biró, and D. F. Manlove. “‘‘Almost stable” matchings in

the roommates problem”. In: WOAO. 2006, pp. 1–14.

[2] D. J. Abraham, A. Blum, and T. Sandholm. “Clearing algorithms for barter

exchange markets: enabling nationwide kidney exchanges”. In: EC. 2007,

pp. 295–304.

[3] F. N. Abu-Khzam. “An improved kernelization algorithm for r-set packing”.

In: Information Processing Letters 110 (2010), pp. 621–624.

[4] R. Aharoni and E. Berger. “Rainbow matchings in r-partite r-graphs”. In:

The Electronic Journal of Combinatorics 16.1 (2009), p. 119.

[5] N. Alon. “Multicolored matchings in hypergraphs”. In: Moscow Journal of

Combinatorics and Number Theory 1 (2011), pp. 3–10.

[6] O. Amini, F. V. Fomin, and S. Saurabh. “Counting subgraphs via homomor-

phisms”. In: SIAM Journal on Discrete Mathematics 26.2 (2012), pp. 695–

717.

[7] H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and P. Skowron. “The condorcet

principle for multiwinner elections: from shortlisting to proportionality”. In:

IJCAI. 2017, pp. 84–90.

[8] H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and P. Skowron. “The condorcet

principle for multiwinner elections: from shortlisting to proportionality”. In:

CoRR abs/1701.08023 (2017).

285

[9] H. Aziz, S. Gaspers, S. Mackenzie, N. Mattei, P. Stursberg, and T. Walsh.

“Fixing a balanced knockout tournament”. In: AAAI (Accepted to Artificial

Intelligence Journal (AIJ).) 2014, pp. 552–558.

[10] H. Aziz., R. Savani, and H. Moulin. “Hedonic games. chapter 15 in: handbook

of computational social choice”. In: Handbook of Computational Social Choice.

Ed. by F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D Procaccia.

Cambridge University Press, 2016, pp. 356–376.

[11] R. Bar-Yehuda and S. Even. “A linear-time approximation algorithm for

the weighted vertex cover problem”. In: Journal of Algorithms 2.2 (1981),

pp. 198–203.

[12] N. Betzler. “A multivariate complexity analysis of voting problems”. PhD

thesis. Friedrich-Schiller-Universität Jena, 2010.

[13] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. “Studies in com-

putational aspects of voting - A parameterized complexity perspective”. In:

The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to

Michael R. Fellows on the Occasion of His 60th Birthday. 2012, pp. 318–363.

[14] T. Beyer and S. M. Hedetniemi. “Constant time generation of rooted trees”.

In: SIAM Journal on Computing 9.4 (1980), pp. 706–712.

[15] P. Biró, D. F. Manlove, and E. J. McDermid. “‘‘Almost stable” matchings

in the roommates problem with bounded preference list”. In: Theoretical

Computer Science 432 (2012), pp. 10–20.

[16] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. “Narrow sieves for

parameterized paths and packings”. In: Journal of Computer and System

Sciences 87 (2017), pp. 119–139.

[17] B. Bliem, R. Bredereck, and R. Niedermeier. “Complexity of e�cient and

envy-free resource allocation: few agents, resources, or utility levels”. In: IJCAI.

New York, New York, USA, 2016, pp. 102–108. isbn: 978-1-57735-770-4.

286

[18] H. L. Bodlaender. “A linear-time algorithm for finding tree-decompositions of

small treewidth”. In: SIAM Journal on Computing 25.6 (1996), pp. 1305–1317.

[19] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov,

and M. Pilipczuk. “A ck n 5-approximation algorithm for treewidth”. In:

SIAM Journal on Computing 45.2 (2016), pp. 317–378.

[20] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Handbook

of computational social choice. English. London: Cambridge University Press,

2016. isbn: 9781107060432.

[21] R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and G. Woegin-

ger. “Parameterized algorithmics for computational social choice: nine research

challenges”. In: Tsinghua Science and Technology 19.4, 358 (2014), pp. 358–

373.

[22] G. Chalkiadakis, G. Greco, and E. Markakis. “Characteristic function games

with restricted agent interactions: core-stability and coalition structures”. In:

Artificial Intelligence 232 (2016), pp. 76–113.

[23] J. Chen, D. Hermelin, M. Sorge, and H. Yedidsion. “How hard is it to satisfy

(almost) all roommates?” In: ICALP. 2018, 35:1–35:15.

[24] J. Chen, I. A. Kanj, and G. Xia. “Improved upper bounds for vertex cover”.

In: Theoretical Computer Science 411.40-42 (2010), pp. 3736–3756.

[25] D. Coelho. Understanding, evaluating and selecting voting rules through games

and axioms. Universitat Autònoma de Barcelona, 2005.

[26] M. D. Condorcet. “Essai sur l’application de l’analyse, a la probabilite des

decisions rendues a la pluralite des voix”. In: (1785).

[27] R. A. Connolly and R. J. Rendleman. “Tournament qualification, seeding

and selection e�ciency”. In: Technical report 2011-96, tuck school of business

(2011).

287

[28] A. Cseh and D. F. Manlove. “Stable marriage and roommates problems with

restricted edges : complexity and approximability”. In: SAGT. Vol. 9347.

LNCS. 2015, pp. 15–26.

[29] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh. Parameterized algorithms. Springer, 2015.

[30] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. “On multiway

cut parameterized above lower bounds”. In: ACM Transactions on Algorithms

5.1 (2013), 3:1–3:11.

[31] A. Darmann. “How hard is it to tell which is a condorcet committee?” In:

Mathematical Social Sciences 66.3 (2013), pp. 282–292.

[32] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, and G. Woeginger.

“Group activity selection problem”. In: WINE. Springer, 2012, pp. 156–169.

[33] H. Dell and D. Marx. “Kernelization of packing problems”. In: SODA. 2012.

[34] J. Diemunsch, M. Ferrara, C. Mo↵att, F. Pfender, and P. S. Wenger. “Rainbow

matchings of size\delta (G) in properly edge-colored graphs”. In: arXiv

preprint arXiv:1108.2521 (2011).

[35] R. Diestel. Graph theory, 4th edition. Vol. 173. Graduate texts in mathematics.

Springer, 2012.

[36] R. G. Downey and M. R. Fellows. “Fixed-parameter tractability and com-

pleteness II: on completeness for W[1]”. In: Theoretical Computer Science

141.1&2 (1995), pp. 109–131.

[37] R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity.

Texts in Computer Science. Springer, 2013.

[38] E. A. Durant. Hearing aids and methods and apparatus for audio fitting thereof.

US Patent 7,650,004. 19 2010.

288

[39] J. Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of Mathematics

17.3 (1965), pp. 449–467.

[40] E. Elkind. “Coalitional games on sparse social networks”. In: WINE. 2014,

pp. 308–321.

[41] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. “Properties of multi-

winner voting rules”. In: Social Choice and Welfare 48.3 (2017), pp. 599–

632.

[42] E. Elkind, J. Lang, and A. Sa�dine. “Condorcet winning sets”. In: Social

Choice and Welfare 44.3 (2015), pp. 493–517.

[43] P. Erdős and L. Moser. “On the representation of directed graphs as unions of

orderings”. In: Mathematical Institute of the Hungarian Academy of Sciences

9 (1964), pp. 125–132.

[44] P. Faliszewski and R. Niedermeier. “Parameterization in computational social

choice”. In: Encyclopedia of Algorithms. 2016, pp. 1516–1520.

[45] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. “Multiwinner voting: a

new challenge for social choice theory”. In: Trends in Computational Social

Choice 74 (2017).

[46] T. Feder. “Stable networks and product graphs”. PhD thesis. Stanford Uni-

versity, 1990.

[47] U. Feige. “Faster FAST (Feedback Arc Set in Tournaments)”. In: Corr

abs/0911.5094 (2009).

[48] P. C. Fishburn. “An analysis of simple voting systems for electing committees”.

In: SIAM Journal on Applied Mathematics 41.3 (1981), pp. 499–502.

[49] F. V. Fomin, F. Grandoni, and D. Kratsch. “A measure & conquer approach

for the analysis of exact algorithms”. In: Journal of the ACM 56.5 (2009),

25:1–25:32.

289

[50] F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer Science

& Business Media, 2010.

[51] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. “E�cient compu-

tation of representative families with applications in parameterized and exact

algorithms”. In: Journal of the ACM 63.4 (2016), 29:1–29:60.

[52] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. “Representative

sets of product families”. In: ESA. Vol. 8737. Lecture Notes in Computer

Science. Springer, 2014, pp. 443–454.

[53] F. V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, and B. V. Raghavendra

Rao. “Faster algorithms for finding and counting subgraphs”. In: Journal of

Computer and System Sciences 78.3 (2012), pp. 698–706.

[54] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization:

Theory of parameterized preprocessing. Cambridge University Press, 2018.

[55] S. Fujita, A. Kaneko, I. Schiermeyer, and K. Suzuki. “A rainbow k-matching in

the complete graph with r colors”. In: The Electronic Journal of Combinatorics

16.1 (2009), p. 51.

[56] M. Gairing and R. Savani. “Computing stable outcomes in hedonic games”.

In: SAGT. Vol. 6386. LNCS. Springer, 2010, pp. 174–185.

[57] M. Gairing and R. Savani. “Computing stable outcomes in hedonic games

with voting-based deviations”. In: AAMAS. 2011, pp. 559–566.

[58] D. Gale and L. S. Shapley. “College admissions and the stability of marriage”.

In: The American Mathematical Monthly 69.1 (1962), pp. 9–15.

[59] D. Gale and M. Sotomayor. “Ms. machiavelli and the gale-shapley algorithm”.

In: American Mathematical Monthly 92.4 (1985), pp. 261–268.

[60] D. Gale and M. Sotomayor. “Some remarks on the stable matching problem”.

In: Discrete Applied Mathematics 11.4 (1985), pp. 223–232.

290

[61] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the

theory of NP-completeness. W. H. Freeman, 1979.

[62] M. R. Garey and D. S. Johnson. “The rectilinear steiner tree problem is

NP-complete”. In: SIAM Journal on Applied Mathematics 32 (1977), pp. 826–

834.

[63] S. Garg and G. Philip. “Raising the bar for vertex cover: fixed-parameter

tractability above a higher guarantee”. In: SODA. 2016, pp. 1152–1166.

[64] W. V. Gehrlein. “The condorcet criterion and committee selection”. In: Math-

ematical Social Sciences 10.3 (1985), pp. 199–209.

[65] I. P. Gent and P. Prosser. “An empirical study of the stable marriage problem

with ties and incomplete lists”. In: ECAI. IOS Press. 2002, pp. 141–145.

[66] R. Glebov, B. Sudakov, and T. Szabó. “How many colors guarantee a rainbow

matching?” In: arXiv preprint arXiv:1211.0793 (2012).

[67] C. Groh, B. Moldovanu, A. Sela, and U. Sunde. “Optimal seedings in elimina-

tion tournaments”. In: Economic theory 49.1 (2012), pp. 59–80.

[68] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi. “Group activity selection on

graphs: parameterized analysis”. In: SAGT. 2017, pp. 106–118.

[69] S. Gupta, S. Saurabh, and M. Zehavi. “On treewidth and stable marriage”.

In: CoRR abs/1707.05404 (2017).

[70] D. Gusfield. “Three fast algorithms for four problems in stable marriage”. In:

SIAM Journal on Computing 16.1 (1987).

[71] D. Gusfield and R. W. Irving. The stable marriage problem - structure and

algorithms. Foundations of computing series. MIT Press, 1989. isbn: 978-0-

262-07118-5.

[72] K. Hamada, K. Iwama, and S. Miyazaki. “The hospitals/residents problem

with quota lower bounds”. In: ESA. 2011, pp. 180–191.

291

[73] P. Hell and M. Rosenfeld. “The complexity of finding generalized paths in

tournaments”. In: Journal of Algorithms 4.4 (1983), pp. 303–309.

[74] J. E. Hopcroft and R. M. Karp. “An n5/2 algorithm for maximum matchings

in bipartite graphs”. In: SIAM Journal on Computing 2 (1973), pp. 225–231.

[75] J. Horen and R. Riezman. “Comparing draws for single elimination tourna-

ments”. In: Operations Research 33.2 (1985), pp. 249–262.

[76] J. D. Horton and K. Kilakos. “Minimum edge dominating sets”. In: SIAM

Journal of Discrete Mathematics 6.3 (1993), pp. 375–387.

[77] A. Igarashi, R. Bredereck, and E. Elkind. “On parameterized complexity of

group activity selection problems on social networks”. In: AAMAS. 2017,

pp. 1575–1577.

[78] A. Igarashi and E. Elkind. “Hedonic games with graph-restricted communica-

tion”. In: AAMAS. 2016, pp. 242–250.

[79] A. Igarashi, D. Peters, and E. Elkind. “Group activity selection on social

networks”. In: arXiv preprint arXiv:1611.04524[Appeared in AAAI, 2017]

(2016).

[80] A. Igarashi, D. Peters, and E. Elkind. “Group activity selection on social

networks”. In: AAAI. 2017, pp. 565–571.

[81] R. Impagliazzo and R. Paturi. “On the complexity of k-sat”. In: Journal of

Computer and System Sciences 62.2 (2001), pp. 367–375.

[82] T. Inoshita, R. W. Irving, K. Iwama, S. Miyazaki, and T. Nagase. “Improving

man-optimal stable matchings by minimum changes to preference lists”. In:

Algorithms 6.2 (2013), pp. 371–382.

[83] R. W. Irving. “An e�cient algorithm for the “stable roommates” problem”.

In: Journal of Algorithms 6.4 (1985), pp. 577–595. issn: 0196-6774.

292

[84] R. W. Irving. “Stable marriage and indi↵erence”. In: Discrete Applied Mathe-

matics 48.3 (1994), pp. 261–272.

[85] R. W. Irving, K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita. “Hard

variants of stable marriage”. In: Theoretical Computer Science 276.1-2 (2002),

pp. 261–279.

[86] R. W. Irving, P. Leather, and D. Gusfield. “An e�cient algorithm for the

“optimal” stable marriage”. In: Journal of the ACM 34.3 (1987), pp. 532–543.

[87] R. W. Irving, D. F. Manlove, and G. O’Malley. “Stable marriage with ties

and bounded length preference lists”. In: Journal of Discrete Algorithms 7.2

(2009), pp. 213–219.

[88] A. Itai, M. Rodeh, and S. L. Tanimoto. “Some matching problems for bipartite

graphs”. In: Journal of the ACM 25.4 (1978), pp. 517–525.

[89] B. M. P. Jansen. “Polynomial kernels for hard problems on disk graphs”. In:

SWAT. Vol. 6139. LNCS. Springer, 2010, pp. 310–321.

[90] J. B. Jensen and P. Hell. “Fast algorithms for finding hamiltonian paths and

cycles in in-tournament digraphs”. In: Discrete Applied Mathematics 41.1

(1993), pp. 75–79.

[91] E. Kamwa. “On stable rules for selecting committees”. In: Journal of Mathe-

matical Economics 70 (2017), pp. 36–44.

[92] M. Kano and X. Li. “Monochromatic and heterochromatic subgraphs in

edge-colored graphs-a survey”. In: Graphs and Combinatorics 24.4 (2008),

pp. 237–263.

[93] M. Karpinski and W. Schudy. “Faster algorithms for feedback arc set tourna-

ment, Kemeny rank aggregation and betweenness tournament”. In: ISAAC.

2010, pp. 3–14.

293

[94] A. Kato. “Complexity of the sex-equal stable marriage problem”. In: Japan

Journal of Industrial and Applied Mathematics 10.1 (1993), p. 1. issn: 1868-

937X.

[95] B. Kaymak and M. R. Sanver. “Sets of alternatives as condorcet winners”. In:

Social Choice and Welfare 20.3 (2003), pp. 477–494.

[96] M. P. Kim, W. Suksompong, and V. V. Williams. “Who can win a single-

elimination tournament?” In: AAAI. 2016, pp. 516–522.

[97] M. P. Kim and V. V. Williams. “Fixing tournaments for kings, chokers, and

more”. In: IJCAI. 2015, pp. 561–567.

[98] J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006. isbn:

978-0-321-37291-8.

[99] D. E. Knuth. Stable marriage and its relation to other combinatorial problems :

an introduction to the mathematical analysis of algorithms. CRM proceedings

& lecture notes. Providence, R.I. American Mathematical Society, 1997. isbn:

0-8218-0603-3.

[100] H. Kobayashi and T. Matsui. “Cheating strategies for the gale-shapley algo-

rithm with complete preference lists”. In: Algorithmica 58 (2010), pp. 151–

169.

[101] H. Kobayashi and T. Matsui. “Successful manipulation in stable marriage

model with complete preference”. In: IEICE TRANSACTIONS on Informa-

tion and Systems E92-D.2 (2009), pp. 116–119.

[102] A. Kostochka and M. Yancey. “Large rainbow matchings in edge-coloured

graphs”. In: Combinatorics, Probability and Computing 21.1-2 (2012), pp. 255–

263.

[103] J. Lang, M. S. Pini, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. “Win-

ner determination in voting trees with incomplete preferences and weighted

votes”. In: AAMAS 25.1 (2012), pp. 130–157.

294

[104] J.F. Laslier. Tournament solutions and majority voting. Studies in Economic

Theory. Springer Berlin Heidelberg, 2011. isbn: 9783642645617.

[105] V. B. Le and F. Pfender. “Complexity results for rainbow matchings”. In:

Theoretical Computer Science 524 (2014), pp. 27–33.

[106] H. Lee and V. Williams. “Complexity of the stable invitations problem”. In:

AAAI. 2017, pp. 579–585.

[107] H. Lee and V. Williams. “Parameterized complexity of group activity selec-

tion”. In: AAMAS. 2017, pp. 353–361.

[108] T. D. LeSaulnier, C. Stocker, P. S. Wenger, and D. B. West. “Rainbow

matching in edge-colored graphs”. In: The Electronic Journal of Combinatorics

17.1 (2010), p. 26.

[109] R. J. Lipton and R. E. Tarjan. “A separator theorem for planar graphs”. In:

SIAM Journal on Applied Mathematics 36.2 (1979), pp. 177–189.

[110] D. S. Lita. Method and apparatus for managing billiard tournaments. US

Patent App. 11/789,667. 30 2008.

[111] A. Lo. “Existences of rainbow matchings and rainbow matching covers”. In:

Discrete Mathematics 338.11 (2015), pp. 2119–2124.

[112] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and

S. Saurabh. “Faster parameterized algorithms using linear programming”. In:

TALG 11.2 (2014), 15:1–15:31.

[113] L. Lovász and M. D. Plummer. Matching theory. Vol. 367. American Mathe-

matical Society, 2009.

[114] D. F. Manlove. Algorithmics of matching under preferences. Vol. 2. Theoretical

Computer Science. World Scientific, 2013.

[115] D. F. Manlove. “The structure of stable marriage with indi↵erence”. In:

Discrete Applied Mathematics 122.1-3 (2002), pp. 167–181.

295

[116] D. Marx and I. Schlotter. “Parameterized complexity and local search ap-

proaches for the stable marriage problem with ties”. In: Algorithmica 58.1

(2010), pp. 170–187.

[117] D. Marx and I. Schlotter. “Stable assignment with couples: parameterized

complexity and local search”. In: Discrete Optimization 8.1 (2011), pp. 25–40.

[118] C. K. Mathieu and W. Schudy. “How to rank with few errors”. In: STOC.

2007, pp. 95–103.

[119] N. Mattei, J. Goldsmith, A. Klapper, and M. Mundhenk. “On the complexity

of bribery and manipulation in tournaments with uncertain information”. In:

Journal of Applied Logic 13.4 (2015), pp. 557–581.

[120] N. Mattei and T. Walsh. “Empirical evaluation of real world tournaments”.

In: Corr abs/1608.01039 (2016).

[121] E. McDermid. “A 3/2-approximation algorithm for general stable marriage”.

In: ICALP. Springer. 2009, pp. 689–700.

[122] E. McDermid. “Personal communications between mcdermid and manlove”.

In: 2010.

[123] E. McDermid and R. W. Irving. “Sex-equal stable matchings: complexity and

exact algorithms”. In: Algorithmica 68.3 (2014), pp. 545–570.

[124] K. Meeks and B. Rastegari. “Stable marriage with groups of similar agents”.

In: WINE. 2018, pp. 312–326.

[125] S. Micali and V. V. Vazirani. “An O(
p

|V ||E|) algorithm for finding maximum

matching in general graphs”. In: FOCS. 1980, pp. 17–27.

[126] M. Mnich and I. Schlotter. “Stable marriage with covering constraints-a

complete computational trichotomy”. In: SAGT. 2017, pp. 320–332.

296

[127] D. Munera, D. Diaz, S. Abreu, F. Rossi, V. Saraswat, and P. Codognet.

“Solving hard stable matching problems via local search and cooperative

parallelization”. In: AAAI. 2015.

[128] R. B. Myerson. “Graphs and cooperation games”. In: Mathematics of Opera-

tions Research (1977).

[129] G. O’Malley. “Algorithmic aspects of stable matching problems”. PhD thesis.

University of Glasgow, 2007.

[130] R. Otter. “The number of trees”. In: Annals of Mathematics (1948), pp. 583–

599.

[131] D. Peters. “Graphical hedonic games of bounded treewidth”. In: AAAI. 2016,

pp. 586–593.

[132] M. S. Pini, F. Rossi, B. Venable, and T. Walsh. “Stable marriage problems

with quantitative preferences”. In: arXiv preprint arXiv:1007.5120 (2010).

[133] A. Pokrovskiy. “An approximate version of a conjecture of aharoni and berger”.

In: Advances in Mathematics 333 (2018), pp. 1197–1241.

[134] V. Raman, M. S. Ramanujan, and S. Saurabh. “Paths, flowers and vertex

cover”. In: ESA. 2011, pp. 382–393.

[135] M. S. Ramanujan and S. Szeider. “Rigging nearly acyclic tournaments is

fixed-parameter tractable”. In: AAAI. 2017, pp. 3929–3935.

[136] N. Robertson, P. D. Seymour, and R. Thomas. “Quickly excluding a planar

graph”. In: Journal of Combinatorial Theory, Series B 62.2 (1994), pp. 323–

348.

[137] E. Ronn. “NP-complete stable matching problem”. In: Journal of Algorithms

11 (1990), pp. 285–304.

[138] S. Rosen. “Prizes and incentives in elimination tournaments”. In: The Ameri-

can Economic Review 76.4 (1986), pp. 701–715.

297

[139] A. E. Roth and M. A. O. Sotomayor. Two-sided matching: a study in game-

theoretic modeling and analysis. Business & Economics 18. Cambridge Uni-

versity Press, 1992.

[140] T. Russell and P. V. Beek. “An empirical study of seeding manipulations and

their prevention”. In: IJCAI. 2011, pp. 350–356.

[141] T. Russell and T. Walsh. “Manipulating tournaments in cup and round robin

competitions”. In: ADT. 2009, pp. 26–37.

[142] H. J. Ryser. “Neuere probleme der kombinatorik”. In: Vorträge über Kombi-

natorik, Oberwolfach (1967), pp. 69–91.

[143] D. Ryvkin. “The selection e�ciency of tournaments”. In: European Journal

of Operational Research 206.3 (2010), pp. 667–675.

[144] S. Salvador and D. Coelho. “How to choose a non-controversial list with k

names”. In: Social Choice and Welfare 31.1 (2008), pp. 79–96.

[145] I. Stanton and V. V. Williams. “Manipulating single-elimination tournaments

in the braverman-mossel model”. In: IJCAI Workshop on Social Choice and

Artificial Intelligence. 2011.

[146] I. Stanton and V. V. Williams. “Manipulating stochastically generated single-

elimination tournaments for nearly all players”. In: WINE. 2011, pp. 326–

337.

[147] I. Stanton and V. V. Williams. “Rigging tournament brackets for weaker

players”. In: IJCAI. 2011, pp. 357–364.

[148] L. J. Stockmeyer and V. V. Vazirani. “NP-completeness of some generalizations

of the maximum matching problem”. In: Information Processing Letters 15.1

(1982), pp. 14–19.

[149] Trends in computational social choice. AI Access, 2017.

298

[150] G. Tullock. “Toward a theory of the rent-seeking society”. In: Texas A&M

University Press (1980).

[151] T. Vu, A. Altman, and Y. Shoham. “On the complexity of schedule control

problems for knockout tournaments”. In: AAMAS. 2009, pp. 225–232.

[152] K. Wagner. “Uber eine eigenschaft der ebenen komplexe”. In: Annals of

Mathematics 114 (1937), pp. 570–590.

[153] G. Wang. “Rainbow matchings in properly edge colored graphs”. In: The

Electronic Journal of Combinatorics 18.1 (2011), p. 162.

[154] G. Wang and H. Li. “Heterochromatic matchings in edge-colored graphs”. In:

The Electronic Journal of Combinatorics 15.1 (2008), p. 138.

[155] V. V. Williams. “Fixing a tournament”. In: AAAI. 2010.

[156] V. V. Williams. “Knockout tournaments”. In: Handbook of computational

social choice. Cambridge University Press, 2016, pp. 453–474.

[157] M. Yannakakis and F. Gavril. “Edge dominating sets in graphs”. In: SIAM

Journal on Applied Mathematics 38.3 (1980), pp. 364–372.

[158] M. Zehavi. “Mixing color coding-related techniques”. In: ESA. Vol. 9294.

Lecture Notes in Computer Science. 2015, pp. 1037–1049.

299

Summary

This thesis studies parameterized complexity of some NP-hard optimization prob-

lems related to Stable Matching, Rainbow Matching, and a set of problems

that comes under the umbrella name of Computational Social Choice (COMSOC).

All these problems have been extensively studied from the perspective of classical

complexity and are well known hard problems. We, mainly, explore various combina-

torial structures for the problems. We identify structural parameters that are, in

many cases, much smaller than the size of input of the problem, and develop e�cient

combinatorial algorithms when the parameters are small. Towards this, we delve

deep into the problem and identify which algorithmic tools can be exploited for the

problem.

Specifically, we study two optimization variants of Stable Matching, they

are (i) finding a maximum/ minimum size stable matching when the preference

lists are incomplete and not strict (i.e., it contains ties); (ii) finding a stable

matching that is “balanced” between the men optimal stable matching and the

women optimal stable matchings. The balance of a matching µ is defined as,

balance(µ) = max{
P

(m,w)2µ pm(w),
P

(m,w)2µ pw(m)}, where px(y) denote the posi-

tion of y in x’s preference list. The goal of the problem is to find a stable matching µ

that minimizes balance(µ). For both of these problems, we use marking process and

pre-processing rules to produce an “equivalent” reduced instance of size polynomial

in the parameter in time polynomial in the input size. For the former problem, we

i

develop a non-trivial (better than brute force algorithm on the reduced instance)

“fixed parameter tractable” (FPT) algorithm. We develop an algorithm that runs

in time exponential in treewidth. This result combined with the fact that planar

graphs on n vertices have treewidth at most
p
n, gives a better algorithm when the

acceptability graph is a planar graph. For the latter problem, we study two “above

guarantee parameters”. We give kernel and use the branching technique to give an

FPT algorithm with respect to one parameter. We show hardness with respect to

another smaller parameter.

The third problem we study is the Group Activity Selection (GASP) prob-

lem on graphs (gGASP). Unlike Stable Matching, here agents have preferences

over not only other agents but also groups of agents that include themselves. Here

we identify some natural parameters with respect to which the problem remains hard.

Then we identify structural parameters of the input graph with respect to which the

problem is FPT.

We study another classical problem in matching theory, the Rainbow Matching

problem. Given an edge colored graph, the goal is to find a matching with edges of

distinct colors and of size at least k, for some non-negative integer k. We reduce this

problem to Set Pre-Packing to give a randomized algorithm based on algebraic

technique, running in time O(2k)nO(1). We give a branching algorithm for path

graphs which runs in time O(�k)nO(1), where � is the golden ratio. We develop a

kernel of size k3, then further improve the size to k2 using “expansion lemma”.

A central question in COMSOC is winner determination in voting. Here, we

have a set of candidates and a set of votes which are total order over the candidates.

We study it in the multi-winner setting. The goal is to find a subset of candidates

that forms a Gehrlein-stable committee. We initiate a systematic study of finding

a weakly Gehrlein-stable committee of size k, for some non-negative integer k in

the realm of Parameterized Complexity. This opens the question of studying other

ii

well-known notions of stable committees in the realm of Parameterized Complexity.

Another well-explored branch in COMSOC is the study of manipulation problems

that arise due to the presence of strategic agents. We study manipulation in Stable

Matching in bipartite graphs. Here, we are given a partial matching and the

preference lists (strict) of one side, the goal is to find preference lists for the other

side such that the partial matching is contained in the output of the Gale-Shapley

algorithm. To solve this problem we define “Universal Suitor Graphs”, a polynomial-

size graph that encodes all possible matchings allowed under the manipulation scheme.

We believe such a structure can be used to systematically search stable matchings in

other problems. Finally, we apply the black-box algorithm for graph isomorphism

when the target graph has bounded treewidth. This produces an algorithm running

in time 2O(n)nO(1) where n is the number of vertices in the bipartite graph. Two

other manipulation that we study are Tournament Fixing and Tournament

Bribery problems. We study the combinatorial structures of the problem to give

FPT algorithms.

iii

Chapter 1

Introduction

A matching in a graph is a set of edges without common endpoints. Finding a

matching is one of the important ingredients that lead to defining the complexity

class P. Computational problems that involve matching agents to one another come

with various criteria. In many cases, the agents form two disjoint sets, and the goal

is to allocate the agents in one set to those in the other. Examples include assigning

applicants to colleges/jobs, resident doctors to hospitals, kidney patients to donors,

etc. In this thesis, we focus on the case where agents have ordinal preferences over a

subset of the others. That is, each agent has a first choice, second choice and so on.

For example, an applicant applying for admission to university would not rank all

available universities, but only a small subset of them. Similarly, the universities

would form a ranking of their applicants. The preference lists might not be strictly

ordered: for example, an applicant might prefer two universities equally. Typically,

the universities would not like it if some students leave after admission, which would

lead to vacant seats. So, while matching the students to universities we would like

to have some conditions to prevent such scenarios. Classically, this is enforced by

a “stability” condition. If there is a student university pair such that they are not

matched to each other but prefer each other compared to their current matching,

1

then the pair is said to form a blocking pair. A matching is stable if it does not

have a blocking pair. David Gale and Lloyd Shapley gave an algorithm for finding

stable matchings between two groups of people with preferences over each other, in

a seminal paper in 1962.

The problems in matching theory can be viewed as a part of a larger domain which

is social choice theory. Social choice theorists from a range of di↵erent disciplines,

including mathematics, economics, and political science are interested in the design

and theoretical evaluation of voting rules. Assessing the computational di�culty

of determining a winner of a voting process, or manipulating it, are two prominent

examples of the importation of a concept from the field of social choice to the field

of theoretical computer science. This interdisciplinary view on collective decision

making defines computational social choice as a field. The computational aspects

of social choice theory is a relatively new area. Finding matching between two sets

of agents can be thought of as a precursor of problems that arise in computational

social choice. In this thesis, the problems of this paradigm are discussed as a set of

stable allocation problems. As mentioned before, the preferences of the agents might

not be strict, that is, there can be ties. We study the computational complexity of

finding a stable matching in the presence of ties. In some applications, there are

other constraints in addition to stability. The algorithm given by Gale and Shapley

finds a particular stable matching that is preferred by the agents in one side but

disliked by the other side. Hence, another question that is studied is finding a stable

matching that makes all the agents equally “happy”. Another type of allocation

problem is where one wants to assign a group of agents to a set of activities. Here,

every agent has preference not only over the activities but also over the group size.

We study the following question: can we find an assignment of groups of agents to

activities such that every agent in a group know at least one other agent in the group.

This is modelled by a graph where the vertices are the agents and there is an edge

between two agents if they know each other. The “friendship” property is inherent

2

in a connected set. Moreover, we wish to capture the property that when people

are part of a club or play sports together it is likely that they form a “connected

network” together. So we want each group to be connected. This guarantees that

each member directly knows someone in the network. We also want the assignment

to be individually rational and Nash stable.

Another variety of problems that we study in this thesis is finding a subset of

agents that satisfy some combinatorial properties from a given set of agents. We

categorize these problems as Selection problems. We study, apparently, two very

di↵erent problems here. The first is, given a graph with colored edges, we want to

find a k size subset of edges with distinct colors. The second Selection problem we

study is more in the flavour of Computational Social choice but it can be formulated

as a graph problem as well. Here, we are given a set of candidates and a set of

voters who provide a linear ordering of the candidates. We want to find a subset of

candidates such that each candidate in the subset is preferred by a (weak) majority

of voters over each candidate who is not in the subset. In Social Choice, the problem

of selecting a subset of candidates is known as the Committee Selection problem

or Multi-winner Voting. We explore di↵erent computational aspects of this

problem.

As mentioned previously, manipulation problems are studied in Computational

Social Choice for voting rules and in various other contexts. It is arguably the

second most studied question in COMSOC after winner determination. We study

two di↵erent types of manipulation problems. This thesis started with the study

of stable matching. In this part of the thesis again we go back to the Stable

Matching problem in a bipartite graph. We study how to manipulate the outcome

of the Gale-Shapley algorithm. Particularly, we want a given partial matching to be

part of the output of the Gale-Shapley algorithm.

The theory of social choice has developed an immense variety of voting rules,

3

ranging from simple rules such as plurality to more complicated rules. Many voting

rules can be viewed as tournaments: competitions between the candidates that

determine the winner using some rule based solely on the results of matches, that is,

pairwise comparisons. Besides being used to implement voting rules, tournaments are

also prevalent in many social settings. Few common areas include sports competitions,

patent races [38, 110], hiring employees [143], and even drug trials (these are commonly

referred to as “head-to-head” drug trials). The outcome of the matches in a round

dictates (using some rule) which matches take place in the next round. In the final

round, a winner is determined. The structure of the tournament indicates how

matches in di↵erent rounds are conducted. This, in turn, decides how the final

winner is determined. We study the balanced knockout tournament. In a knockout

tournament, a player is out of the competition if s/he loses a game. A balanced

knockout tournament is governed by an unordered balanced binary tree where the

players are assigned to the leaves of the tree. In the first stage, every two players

mapped to leaves with the same parent compete against each other, and the winner is

mapped to the common parent, and the next round is conducted similarly. We study

two types of manipulation problems in these tournaments. One is the Tournament

Fixing problem where the fixing is done by a central authority. The other involves

bribing individual players to fix a particular match in the competition. These are,

basically, two flavours of manipulation problems that we see in COMSOC. The first

type of problem is called control problems in the literature of Voting theory and the

later is called bribery problem.

Although finding a matching is solvable in polynomial time, i.e., is in the com-

plexity class P. The problems described above are computationally hard, that is

they are NP-complete. The field of theoretical computer science deals with such

problems in mainly two ways. Either try to find an approximate solution e�ciently

or try to find an exact solution in time that is polynomial in input size but depends

exponentially on some other parameter. Studying a problem in the later realm

4

analyses the Parameterized Complexity of the problem as compared to the Classical

Complexity. Over the last two decades, Parameterized Complexity has evolved to

be a central field of research in theoretical computer science. However, the scope of

this field had a strong focus on applications to NP-hard optimization problems on

graphs. There is no inherent reason why this should be the case. Indeed, the main

idea of Parameterized Complexity is very general—measure running time in terms

of both input size and a parameter that captures the structural properties of the

input instance. The idea of a multivariate analysis of algorithms holds the potential

to address the need for a framework for refined algorithm analysis for all kinds of

problems across all domains and subfields of computer science. Recently, techniques

in Parameterized Complexity were successfully applied in the area of Computational

Social Choice Theory. In particular, Voting has become a subject of intensive study

from the viewpoint of Parameterized Complexity, for a few examples, see [149, Chap-

ter 10, 11] and [12]; for more information on the current state-of-the-art, we refer to

excellent surveys such as [13, 21, 20, 44]. However, Voting is only one topic under

the rich umbrella of Computational Social Choice. Parameterized analysis of other

topics has been few and far between; a few examples of notable recent developments

concern rigging a winner of a tournament [135]. In the recent past, a collective e↵ort

to study matching under preferences through the lens of Parameterized Complexity

was initiated [106, 23, 126, 69, 80, 77, 68, 124, 107, 116, 117, 17].

1.1 Organization of the thesis

The thesis is divided into three parts. In the first part, we study the stable allocation

problems. In this part, we study two variants of the Stable Matching problem

and the Group Activity Selection problem on graphs. In the second part of

the thesis, we study a set of problems where the objective is to select a subset of

given elements that satisfy a given constraint. We call the problems in the second

5

part as selection problems. Here, we study Rainbow Matching and Committee

Selection problem. Finally, in the third part, we study manipulation problems.

Manipulation of stable matching and tournaments are studied in the final part of

the thesis.

6

Chapter 2

Preliminaries

Sets. The union of two disjoint sets X and Y is denoted by X] Y . For sets X

and Y , X \ Y denote a set of elements of X that are not in Y ; X4Y denotes the

symmetric di↵erence between X and Y .

Function. We denote the set {1, 2, . . . , n} by [n]. Let f : A ! B be some function.

Given A0 ✓ A, the notation f(A0) = b indicates that for all a 2 A0, it holds that

f(a) = b. An extension f 0 of the function f is a function whose domain A0 is a

superset of A and whose range is B, such that for all a 2 A, it holds that f 0(a) = f(a).

For any A0 ⇢ A, the restriction f |A0 of f is a function from A0 to B such that for

any a 2 A0, f |A0(a) = f(a).

Graph Theory. Given a graph G = (V,E), a matching is a subset of E without

two (or more) edges with a common vertex. For pairwise-disjoint sets S, S 0 ✓ V , let

E(S, S 0) denote the set of edges with one endpoint in S and the other endpoint in S 0.

Given a set S ✓ V , let E(S) denote the set of edges with both endpoints in S. Given

a set of edges Z ✓ E, let V (Z) denote the set of endpoints of the edges in Z. Given

a vertex v 2 V , denote NG(v) = {u 2 V : {u, v} 2 E}. If G is clear from context, we

omit the subscript G. Given a set S ✓ V , denote NS(v) = N(v) \ S. Furthermore,

we denote deg
S
(v) = |NS(v)|. Given a matching µ in G, let µ(v) denote the vertex

7

matched to v in µ. For X ✓ V (G), G�X and G[X] denote subgraphs of G induced

on the vertex set V (G) \X and X, respectively. An edge uv 2 E(G) is present in

E(G[X]) if and only if u, v 2 X. For an edge subset Z ✓ E(G), by G[Z] we mean

the subgraph of G with vertex set V (Z) and edge set Z. The graph G[Z] is also

called the graph induced on Z. For v1, vt 2 V (G), a directed path from v1 to vt

is denoted by P = (v1, v2, · · · , vt), where V (P) ✓ V (G) and for each i 2 [t � 1],

(vi, vi+1) 2 E(G). Given two undirected graph, H and G, we say that H is a minor

of G, if H can be formed from G by executing a sequence of operations, where each

operation either deletes a vertex/edge or contracts an edge. Here, a contraction of

an edge e = (u, v) is the operation that removes e from the graph and unifies the

vertices u and v. A planar graph is a graph that can be embedded in the plane. The

vertices are represented by points in the plane, its edges are represented by lines

between these points, and it can be drawn on the plane in such a way that its edges

intersect only at their endpoints. In other words, it can be drawn in such a way that

no edges cross each other. The notations K5 and K3,3 refer to a complete graph on

five vertices and complete bipartite graph with three vertices in each bipartition,

respectively. By the well-know Wagner’s theorem [152], planar graph is a graph that

excludes K5 and K3,3 as minors. We point the reader to [35] for the definitions of a

minor.

Let G be a directed graph. We denote an arc from u to v by an ordered pair (u, v),

and say that u is an in-neighbor of v and v is an out-neighbor of u. For x 2 V (G),

N�
G
(x) = {y 2 V (G) : (y, x) 2 A(G)} and N+

G
(x) = {y 2 V (G) : (x, y) 2 A(G)}. In

a directed graph G, we say a vertex u is reachable from a vertex v, if there is directed

path from v to u. A graph is called a strongly connected component if every vertex in

the graph is reachable from every other vertex. Let X ✓ V (G). A strongly connected

component, G[X], is called maximal if there does not exist a vertex v 2 V (G)\X such

that G[X[{v}] is also a strongly connected component. Let x 2 V (G). We define two

sets R�
G
(x) and R+

G
(x) as follows. R�

G
(x) = {x}[{y 2 V (G) : x is reachable from y}

8

and R+
G
(x) = {x} [{y 2 V (G) : y is reachable from x}. We call R�

G
(x) and R+

G
(x)

as in-reachability set and out-reachability set of x in G, respectively. For S ✓ V (G),

R�
G
(S) = [v2SR

�
G
(v) and R+

G
(S) = [v2SR

+
G
(v). The subscript in the notation for

the neighborhood and the reachability sets may be omitted if the graph under

consideration is clear from the context. A toplogical ordering of a directed graph

G is an ordering, denoted by ⌧ , of the vertices of V (G) such that for every arc

(u, v) 2 A(G), we have ⌧ (u) < ⌧(v). Given an undirected graphG, complement ofG is

a graph G0 such that V (G0) = V (G) and E(G0) = {uv : u, v 2 V (G) and uv /2 E(G)}.

2.1 Parameterized Complexity

A parameterization of a problem is the association of an integer k with each input

instance, which results in a parameterized problem. For our purposes, we need to recall

three central notions that define the parameterized complexity of a parameterized

problem. The first one is the notion of a kernel. Here, an instance (I , k) of some

parameterized problem ⇧ is said to admit a kernel of size f(k) for some function

f that depends only on k if there exists a polynomial-time algorithm, called a

kernelization algorithm, that translates the input I instance into an “equivalent”1

instance J of the same problem, |J | is bounded by f(k) and such that the value

of the parameter does not increase. In case the function f is polynomial in k, the

problem is said to admit a polynomial kernel. Hence, kernelization is a mathematical

concept that aims to analyze the power of preprocessing procedures in a formal,

rigorous manner.

The second notion that we use is the one of fixed-parameter tractability (FPT).

Here, an instance (I , k) of some parameterized problem ⇧ is said to be FPT if

there is an algorithm that solves it in time f(k) · |I |O(1), where |I | is the size of

1Two instances I and J are said to be equivalent if I is a Yes-instance if and only if J is a
Yes-instance.

9

the input and f is a function that depends only on k. Such an algorithm is called

a parameterized algorithm. In other words, the notion of FPT signifies that it is

not necessary for the combinatorial explosion in the running time of an algorithm

for ⇧ to depend on the input size, but it can be confined to the parameter k. It

is known that if a parameterized problem is FPT then it admits a kernelization

algorithm. This implies that a decidable problem admits a kernel if and only if it

is fixed-parameter tractable. Thus, kernelization can be another way of defining

fixed-parameter tractability. A problem ⇧ is called above-guarantee (below-guarantee)

parameterization if given an instance (I , k) of the problem ⇧ with a guarantee that

a solution of size g(I) exists, we want to decide whether I admits a solution of

size at least (resp. at most) k + g(I). Here, g(I) is usually a lower bound (resp.

upper bound) on the maximum (resp. minimum) size of a solution.

Finally, we recall that Parameterized Complexity also provides tools to refute the

existence of polynomial kernels and parameterized algorithms for certain problems

(under plausible complexity-theoretic assumptions), in which context the notion of

W[1]-hardness is a central one. It is widely believed that a problem that is W[1]-hard is

unlikely to be FPT, and we refer the reader to the books [29, 37] for more information

on this notion in particular, and on Parameterized Complexity in general. The

notation O⇤ is used to hide factors polynomial in the input size.

While designing our kernelization algorithm, we might be able to determine

whether the input instance is a Yes-instance or a No-instance. For the sake of

clarity, in the first case, we simply return Yes, and in second case, we simply return

No. To properly comply with the definition of a kernel, the return of Yes and No

should be interpreted as the return of a trivial Yes-instance and a trivial No-instance,

respectively.

Reduction Rules. To design our kernelization algorithm, we rely on the notion

of a reduction rule. A reduction rule is a polynomial-time procedure that replaces

10

an instance (I, k) of a parameterized problem ⇧ by a new instance (I 0, k0) of ⇧.

The rule is said to be safe if (I, k) is a Yes-instance if and only if (I 0, k0) is a

Yes-instance. Given a list of reduction rules, we always apply the first reduction

rule whose condition is true. Note that the same rule may be applied multiple times

consecutively. Moreover, it is possible that after we exhaustively apply some rule,

the condition of a rule that precedes it on the list would become true.

Kernelization Algorithm. A kernelization algorithm consecutively applies various

reduction rules in order to shrink the instance size as much as possible. Thus, such

an algorithm takes as input an instance (I, k) of ⇧, works in polynomial time, and

returns an equivalent instance (I 0, k0) of ⇧ such that the output size is finite and

bounded by a computable function of the parameter (see [29, 37]).

Treewidth. Treewidth is a structural parameter indicating how much a graph

resembles a tree. Formally,

Definition 2.1.1. A tree decomposition of a graph G is a pair (T, �) of a tree T

and � : V (T) ! 2V (G), such that

1.
S

v2V (T) �(v) = V (G), and

2. for any edge {⇢, ⇢0} 2 E(G) there exists a node v 2 V (T) such that ⇢, ⇢0 2 �(v),

and

3. for any vertex ⇢ 2 V (G), the subgraph of T induced by the set T⇢ = {v 2 V (T) :

⇢ 2 �(v)} is a tree.

The width of (T, �) is maxv2V (T) |�(v)| � 1. The treewidth of G is the minimum

width of a tree decomposition of G.

For v 2 V (T), we say that �(v) is the bag of v, and �(v) denotes the union of the

bags of v and the descendants of v in T . We let tw(G) denote the treewidth of G.

11

We also define a form of a tree decomposition that simplifies the design of DP

algorithms.

Definition 2.1.2 (Nice Tree Decomposition). A tree decomposition (T, �) of a graph

G is nice if for the root r of T , �(r) = ;, and each node v 2 V (T) is of one of the

following types.

• Leaf: v is a leaf in T and �(v) = ;.

• Forget: v has one child, u, and there is a vertex x 2 �(u) such that �(v) =

�(u) \ {x}.

• Introduce: v has one child, u, and there is a vertex x 2 �(v) such that

�(v) \ {x} = �(u).

• Join: v has two children, u and w, and �(v) = �(u) = �(w).

In polynomial time, we transform (T, �) into a nice tree decomposition of the

same width [18]; the number of nodes in this decomposition is bounded by O(n).

According to standard practice in Parameterized Complexity with respect to problems

parameterized by tw, we assume that every input instance is given to us along with

a tree decomposition (of the input graph G) of width O(tw).2

2Otherwise, such a decomposition can be computed in time 2O(tw) · n using the means described
in [19]. In fact, in FPT time, we can also obtain a tree decomposition of width exactly tw [29].

12

Chapter 3

Stable Matching with Ties and

Incomplete Lists

Stable Matching (SM) is a classic problem in economics, computer science and

mathematics. Several books have been dedicated to SM [71]. Moreover, the Nobel

Prize in Economics was awarded to Shapley and Roth in 2012 “for the theory of stable

allocations.” Algorithms for SM are routinely employed to handle a wide-variety of

real-world situations such as the assignment of users to servers in a large distributed

Internet service. In the presence of both incomplete lists and ties, the problem is

called SM with Ties and Incomplete Lists (SMTI). Informally, the input of

SMTI consists of a set of people, each person ranking a subset of people of the

opposite sex in a non-strict manner. The goal is to find a matching that is stable in

the following sense: there does not exist a pair of a man and a woman that strictly

prefer being matched to each other over their current “status”. Here, every person

prefers being matched (to a ranked person) over being unmatched. Every instance

of SMTI has a stable matching, and such a matching can be found in polynomial

time [85]. However, there can be an exponential number of such matchings [71].

Depending on the application at hand, some of these matchings would be better than

15

others. The two (arguably) most natural objectives are to maximize or minimize

the size of the matching as it might be desirable to maintain stability while either

maximizing or minimizing the use of available “resources”. These objectives define

the well-known NP-hard Max-SMTI and Min-SMTI problems [85].

In this chapter, we study Max-SMTI and Min-SMTI in the realm of parame-

terized complexity. Here, each problem instance is associated with a parameter k.

In the context of Max-SMTI and Min-SMTI, we choose the size of the solution

(namely, the number of matched pairs in a solution) as the parameter. In the absence

of ties or when the preference lists are complete, the Rural Hospital Theorem [59]

guarantees that the same set of people is matched by every stable matching. These

guarantees do not hold in the presence of both ties and incomplete lists, thereby

leading to the possibility that even the largest stable matching is arbitrarily smaller

than the size of the instance. In this context, note that our parameterizations are

extremely relevant to practical applications that (even occasionally) realize this

possibility. Furthermore, parameterization by solution size is the classical, most

common one in the field. Let us also remark that very often, the establishment of

fixed-parameter tractability with respect to solution size is not only interesting on

its own right, but it is essential to the study of other parameterizations as well (such

as above-guarantee parameterizations).

Motivating Example. Let us motivate our study in the context of the well studied

example of matching applicants to jobs, where an applicant is assigned to a job. In

particular, we would thus argue that even when the objective is to maximize the size

of the stable matching, solution size is a realistic parameter. First, it is generally not

practical that applicants (or firms hiring applicants for jobs) should have to submit a

ranking of all qualifying jobs (resp. applicants). Instead, a truncated list containing

their top choices is desirable. Second, it is also likely that the agents (applicants or

jobs) would be tied on some of their admitted choices, signifying that the choices

16

are equally good. Assuming that the ordering on tied groups is transitive, we have

the practical realization of the theoretical model behind SMTI. Additionally, any

given job is assigned to one applicant, and any applicant can only accept at most one

position, but the total number of available jobs is likely to be significantly smaller

than the number of applicants who are applying. Therefore, the maximum size of

a matching can be significantly smaller than the size of the instance. To utilize

the available resources, it is imperative for the matching agency (an employment

bureau, headhunter, recruitment firm, etc) to assign as many available jobs to as

many qualifying applicants. These considerations lead us to believe that the size of

the largest stable matching is a realistic parameter for further analysis.

Formulation. We formulate SMTI via bipartite graphs: given a bipartite graph

G = (A,B,E), the men (women) are represented by the vertices in A (resp. B).

Moreover, we have a family of preference lists, LA: for each vertex a 2 A, LA(a) 2 LA

is a (not necessarily strict) ranking over a subset of B. Symmetrically, we have a

family LB. Note that we assume w.l.o.g. that b 2 LA(a) if and only if a 2 LB(b).

Let I = (A,B,LA,LB) is an instance of SMTI.

Definition 3.0.1. Given a matching µ of G, a blocking edge is an edge {a, b} 2 E

where each vertex (a or b) is either unmatched by µ or strictly prefers the other

vertex to its matched partner in µ. If there do not exist blocking edges, then µ is said

to be (weakly) stable.1

In this setting, Max-SMTI and Min-SMTI are defined as follows.

1In the presence of ties, there are two other notions of stability: super stability and strong
stability (see [84, 115]).

17

Input: A bipartite graph G = (A [B,E), and two families of preference

lists, LA and LB and a non-negative integer k.

Parameter: k

Task: Find (if there exists) a weakly stable matching of size at least k

(resp. at most k).

Max(resp. Min)-SMTI

In the broader setting of Stable Roommate with Ties and Incomplete Lists

(SRTI), we are given an arbitrary graph G = (V,E), and a family of preference lists

L. For each vertex v 2 V , L(v) is a (not necessarily strict) ranking over the set of

the neighbors of v in G, denoted by N(v). Clearly, the notion of stability is well

defined also in this setting.

Input: A graph G = (V,E), the family of preference lists L, the size of a

maximum matching `, and a positive integer k.

Parameter: `

Task: Find (if there exists) a weakly stable matching of size at least k.

Max-SRTI

The Parameter `. For the Stable Roommate problem even with complete lists

and without ties, a stable matching may not always exist [83]. Given an instance

of SRTI, merely testing whether there exists a stable matching is NP-hard [137].2

Thus, there does not exist (unless P=NP) any algorithm for Max-SRTI which runs

in time of the form f(k) · |V |O(1) (or even |V |f(k)) where f depends only on k. Indeed,

by setting k = 1, we could employ such an algorithm to test the existence of a stable

2By breaking the ties of an instance of SRTI arbitrarily, we have that if a matching is stable in
the new instance, then it is stable in the original instance. However, it is computationally hard to
decide how to break the ties in order to test the existence of a stable matching.

18

matching in polynomial time. Hence, we introduce an alternative parameterization.

To this end, we note that a stable matching, if one exists, is a maximal matching

in the graph. Furthermore, the size of any maximal matching is at least half the

value of `. Thus, if a stable matching exists, then its size and the value of ` di↵er

by a factor of at most 2. Clearly, this leads us directly to the parameterization of

Max-SRTI by `.

Our Contribution. We employ the method of polynomial-time preprocessing,

known as kernelization. Here, a problem admits a kernel of size f(k) if there exists a

polynomial-time algorithm, called a kernelization algorithm, translating any input

instance into an “equivalent instance” of the same problem whose size is bounded

by f(k). By devising a nontrivial marking scheme, we show that all the above

problems admit a polynomial kernel. For example, in the context of Max-SMTI,

given an instance (I, k) of Max-SMTI, we output (in polynomial time) another

instance (I 0, k) of Max-SMTI where |I 0| = O(k2) and (I, k) is a Yes-instance of

Max-SMTI if and only if (I 0, k) is a Yes-instance of Max-SMTI.

Our kernels also result in the design of FPT algorithms: First obtain an equivalent

instance by applying the kernelization algorithm, where the output graph G0 = (A0 [

B0, E 0) has O(k2) edges. If we solve Max-SMTI, then we enumerate all subsets of

edges of size q in G0, where k  q  2k. Since
P2k

q=k

�|E0|
q

�


P2k
q=k

⇣
e|E0|
q

⌘q

= |E 0|O(k),

the running time is 2O(k log k). If we solve Min-SMTI, then we enumerate all subsets

of edges of size at most k in G0; again, the running time is
P

k

q=1

�|E0|
k

�
= 2O(k log k).

In both cases, for each subset of edges, we test whether it is a stable matching in

polynomial time. Overall, we show that:

Theorem 1. Max-SMTI admits a kernel of size O(k2), and an algorithm with

running time 2O(k log k) + nO(1).

Theorem 2. Min-SMTI admits a kernel of size O(k2), and an algorithm with

running time 2O(k log k) + nO(1).

19

For Max-SRTI, we derive the following theorem.

Theorem 3. Max-SRTI admits a kernel of size O(`2), and an algorithm with

running time 2O(` log `) + nO(1).

Finally, we restrict the input to planar graphs, which are extensively studied

in real-life applications. Intuitively speaking, a representation of 3D objects on a

2D surface, such as construction plans and tra�c maps, are planar. Furthermore,

Peters [131] has recently explicitly asked to study graphical hedonic games (which

subsume matching problems such as SM and Stable Roommate) on bipartite,

planar and H-minor free graph topologies. Specifically, we obtain the following

theorems.

Theorem 4. Max-SMTI (Min-SMTI) on planar graphs admits a kernel of size

O(k) and an algorithm running in time 2O(
p
k log k) + nO(1).

Theorem 5. Max-SRTI on planar graphs admits a kernel of size O(`) and an

algorithm running in time 2O(
p
` log `)+nO(1).

To prove Theorems 4 and 5, we also obtain the following theorem, which might

be of independent interest.

Theorem 6. Max-SMTI, Min-SMTI and Max-SRTI, parameterized by the

treewidth tw of the input graph, admit algorithms running in times nO(tw).

Other Related Works. Max-SMTI is NP-hard even if inputs are restricted to

having ties only in the preference lists of men, preference lists of bounded length,

and symmetry in preference lists [85]. Thus, it is natural to study Max-SMTI

from the perspectives of approximation algorithms and parameterized complexity.

The best known approximation algorithm for Max-SMTI is a 1.5-approximation

algorithm [121]. Marx and Schlotter [116] studied Max-SMTI with many di↵erent

20

parameters, such as the the maximum number of ties in an instance, the maximum

length of ties in an instance, and the total length of the ties in an instance. Unfortu-

nately, they showed that Max-SMTI is unlikely to be FPT with respect to the first

and third of these parameters, which further motivates our study of solution size.

We remark that other results, whose survey is beyond the scope of our study, are

known for the special cases of Max-SMTI as well as hardness of approximation.

Experimental approaches have also been employed to provide algorithms for

Max-SMTI. Munera et.al [127] gave an algorithm based on local search. Gent

and Prosser [65] formulated the problem as a constrained optimization problem and

gave an algorithm via constrained programming for both decision and optimization

version. Finally, by [76], it is known that Min Maximal Matching is NP-hard on

planar cubic graphs. Hence, the reduction in [87] directly implies that Max-SMTI,

Min-SMTI and Max-SRTI are NP-hard on planar graphs.

3.1 Preliminaries

Preferences. Let G = (V,E) be a graph where vertices are associated with

preference lists. Given vertices v, v0, x 2 V , the notation v >x v0 indicates that x

prefers v over v0. Moreover, the notation v �x v0 indicates that either v >x v0 or v

and v0 are tied in x’s preference list. Given a vertex v 2 V , we view the preference

list of v as a strict ordering of ties. For example, a strict preference list is an ordering

of ties such that each tie is of length 1 (length of a tie is the number of vertices in

the tie). In other words, the ordering on ties is transitive. This ordering also defines

the order in which we process the preference list of any vertex, where the internal

order in which we process the vertices in each tie is arbitrary.

Operations Removing Edges/Vertices. Given a graph G = (V,E) where ver-

tices are associated with preference lists, the operations that delete edges and vertices

21

from G are defined as follows. To delete an edge {u, v} = e 2 E, remove the edge e

from G, remove the vertex u from v’s preference list, and remove the vertex v from

u’s preference list. The order in which u and v rank their remaining neighbors is not

altered. Now, to delete a vertex v 2 V , first delete every edge incident to v (in an

arbitrary order), and then remove v itself from G.

3.2 Algorithms for SMTI

In this section we design polynomial kernels for Max-SMTI and Min-SMTI.

3.2.1 Kernel for Max-SMTI

We start by giving a kernel for Max-SMTI with O(k2) vertices and O(k2) edges,

where k is the solution size.

Decomposition Lemma: Given an instance I of max-SMTI, we arbitrarily break

all ties. Then, we compute a stable matching µ in the new instance, I 0, in polynomial

time by invoking the algorithm in [58]. Note that µ is a stable matching in I. Indeed,

if a pair {x, y} is a blocking edge for µ in I, then it is also a blocking edge for µ in I 0.

Overall, we conclude that if |µ| � k, then it is safe to output a trivial Yes-instance.

From now on, we assume that |µ| < k.

For any maximal matching, the set of vertices saturated by the matching edges

forms a vertex cover of the graph. Moreover, µ is a maximal matching, otherwise an

edge outside of µ which is not adjacent to an edge in µ is a blocking edge. Let X

denote the set of vertices saturated by the stable matching µ. Thus, X is a vertex

cover for the input graph, and it holds that |X| < 2k. Furthermore, as the size of a

maximum matching in a graph is at most twice the size of any maximal matching,

k  |X|. Hence, if |X| < k, then we can output a trivial No-instance, and conclude

22

our argument. From now on, we assume that k  |X| < 2k.

Overall, we partition V = A [B into two sets: the vertex cover X and the

independent set I = V \ X. The maximum number of edges inside X is O(k2).

However, to obtain a kernel for max-SMTI, we also need to bound the size of I and

the number of edges in E(X, I). We summarize our argument so far in the following

“decomposition lemma”.

Lemma 3.2.1. Given an instance of Max-SMTI, in polynomial time we can either

conclude that the instance is a No-instance or a Yes-instance, or decompose the

vertex-set V into a vertex cover X and an independent set I = V \ X such that

k  |X| < 2k.

Isolated Vertices: To bound |I| and |E(X, I)|, we first present the following simple

reduction rule.

Reduction Rule 3.2.1. Delete an isolated vertex from G.

Since isolated vertices do not participate in any matching or a blocking edge, this

rule is safe. An exhaustive application of this rule takes O(n) time, where n is the

number of vertices. We are now ready to present our base case.

Base Case: For any x 2 X, consider E({x}, I), the subset of edges whose one

endpoint is x and the other endpoint is a vertex in I. Our base case assumes that

for every x 2 X, it holds that |E({x}, I)|  2k + 1. Then, since there are no

isolated vertices (due to Reduction Rule 3.2.1), it holds that |I|  2k(2k + 1) =

O(k2). Furthermore, |E(X, I)| < 2k(2k + 1) = O(k2). Thus, the total number of

vertices is |X|+ |I|  2k + |X|(2k + 1) = O(k2), and the total number of edges is

|E(X)|+ |E(X, I)|  |X|2+ |X| (2k+1) = O(k2). Overall, the size of the instance is

bounded by O(k2). Hence, in our base case, it is safe to output (I, k). From now on,

we assume that there exists at least one vertex x 2 X such that |E({x}, I)| > 2k+1.

23

Marking Edges: We proceed by marking some of the edges incident to the vertices

in X. For each x 2 X, consider the edges in E({x}, I) that are currently unmarked.

If there are less than 2k + 1 such edges, then mark all of them. Otherwise, mark the

edges incident to the 2k + 1 most preferred neighbors of x in I (where we break ties

arbitrarily).3 The edges with both endpoints in X are considered marked. We say

that a vertex in V that is incident to at least one marked edge is a marked vertex.

Note that if a vertex in X has an unmarked neighbor, then it must have 2k + 1

marked neighbors in I. Moreover, if a vertex in I is unmarked, then all the edges

incident to it are unmarked. Refer to Fig. 1. Let us now present a reduction rule

that utilizes our marking scheme.

Reduction Rule 3.2.2. If there exists x 2 X with more than 2k+1 neighbors in I,

then delete all the unmarked edges in E({x}, I). (Note that no edge in E({x}, X\{x})

is deleted.)

Lemma 3.2.2. Reduction Rule 3.2.2 is safe.

Proof. Given an instance (I, k) of Max-SMTI, let (I 0, k) denote the instance

outputted by Reduction Rule 3.2.2 on I.

(() Let µ0 denote a stable matching in I 0 such that |µ0| � k. For the sake of

contradiction, let us assume that there is a blocking edge for µ0 in I. Clearly this

must be an unmarked edge incident to x, since all other edges are present in I 0. We

denote this edge by {x, y} where y 2 I. Since x has an unmarked neighbor, it must

also have 2k + 1 marked neighbors. Recall that the size of a maximum matching

in I (and in I 0), is at most |X|. Hence, |µ0|  |X|. Therefore, there exists at least

one marked neighbor of x who is unmatched in µ0, denoted by y0. By our marking

scheme, we know that y0 �x y >x µ0(x), so the marked edge {x, y0} is a blocking

edge for µ0; a contradiction. Thus, (() is proved.

3We remark that it is su�cient to mark |X|+ 1  2k+ 1 edges, but we mark 2k+ 1 for the sake
of clarity of presentation.

24

X
Vertex Cover

Independent Set

IMarked Vertices Unmarked Vertices

Figure 3.1: After deleting Isolated vertices, mark edges and vertices. Red denotes
marked vertices and edges. The left partition of the independent set I refers to the
top 2k + 1 preferred vertices that are marked for every vertex in X, the vertex cover.
The right partition contains the remaining vertices.

()) Let µ denote a stable matching in I such that |µ| � k. If every edge in µ is

also present in I 0, then µ is a matching in I 0. Since the graph G0 in I 0 is a subgraph

of the graph G in I, we have that µ (if present in I 0) must also be stable in I 0. For

the sake of contradiction, we assume that at least one of the edges in µ does not

exist in I 0. All missing edges from I 0 are unmarked edges incident to x. Therefore,

µ contains an unmarked edge incident to x, denoted by {x, y}, for some y 2 I. Since

|µ|  |X|  2k, there exists at least one marked neighbor x, denoted by y0, which is

unmatched in µ. As before, we know that y0 �x y, where y = µ(x). Without loss of

generality, we may assume that y0 is the most preferred marked neighbor of x that

is unmatched in µ, i.e. a more preferred neighbor is matched to some other vertex

in µ. Since y0 is a marked neighbor of x, we have that {y0, x} is present in I 0. It is

easy to see that µ0 = µ \ {{x, y}} [{{x, y0}} is a stable matching in I 0. Thus, ())

is proved. ⇧

Each application of Reduction Rule 3.2.2 takes O(n) time (since we scan the

neighborhood of a vertex in X). The rule can be applied at most |X| times, hence

the total time is O(kn). After applying this rule exhaustively, we obtain an instance

(I, k) where every vertex in X has at most 2k + 1 neighbors in I, all of which are

marked. Thus, Theorem 1 is proved.

25

X

I

Figure 3.2: Delete all unmarked edges

X

I

Figure 3.3: Apply Reduction Rule 1 again
and now delete all the isolated vertices.
This remaining graph is the kernel.

3.2.2 Kernel for Min-SMTI

Here, we give a kernel for Min-SMTI with O(k2) vertices and O(k2) edges. As in

Section 3.2, we first obtain a (weakly) stable matching µ in I. However, now we

output a trivial Yes-instance if |µ|  k rather than |µ| � k.

Suppose that |µ| > k, and µ is a maximal matching (otherwise it is not stable).

Recall that the size of a maximum matching in G is at most twice the size of any

maximal matching. Thus, if I is a Yes-instance—that is, there exists a stable

matching (which is maximal) of size at most k—then the size of any maximal

matching in I cannot exceed 2k. Hence, if |µ| > 2k, then we output a trivial

No-instance and conclude our argument. From now on, we assume that k < |µ|  2k.

As in Section 3.2, we obtain a decomposition lemma, using which we may assume

that we can decompose the vertex set V into a vertex cover X and an independent

set I = V \X such that 2k  |X| < 4k. From here on, the construction of the kernel

for Min-SMTI is quite similar to the one presented for Max-SMTI; we will discuss

the main di↵erences, but skip the details.

26

First, note that Reduction Rule 3.2.1 is applicable here, and it is evidently

safe. Then, in our Base Case, we assume that for every x 2 X, it holds that

|E({x}, I)|  k + 1. In this case, we conclude that the total number of vertices

is bounded by 4k(k + 2) = O(k2), and the total number of edges is bounded by

20k2 + 4k = O(k2). Next we apply the following reduction rule, the safeness of

which follows from arguments almost identical to those in the proof of Lemma 3.2.2—

essentially, we replace occurrences of 2k by occurrences of k.

Reduction Rule 3.2.3. Let x 2 X. Mark the most preferred k+1 neighbors of x in

I (if they exist), or else mark as many as possible. Delete (if any) all the unmarked

neighbors of x.

After applying Reduction Rule 3.2.3 exhaustively, we obtain an instance handled

by our Base Case. So, Theorem 2 is proved.

3.3 Kernel for SRTI

The analysis of Max-SRTI di↵ers from that of Max-SMTI since a stable matching

may not exist in an instance of the former.4 Here, we give a polynomial kernel for

Max-SRTI where the parameter ` is the size of a maximum matching of G. Our

kernel has O(`2) vertices and O(`2) edges.

If k > `, then we can output a trivial No-instance, because ` is the size of the

maximum matching in the graph. Thus, we next focus on the case where k  `. Let

µ denote any maximal matching of G. Let X denote a vertex cover obtained by

taking the vertices matched by µ (hence, |X|  2|µ|  2`), and let I = V \X be an

independent set.

We begin our construction by applying Reduction Rule 3.2.1, the safeness of

4In this context, recall that unless P=NP, we cannot obtain an FPT algorithm for Max-SRTI
when the parameter is solution size.

27

which is self-evident. Next, we mark edges as follows. For x 2 X, if E({x}, I) has

less than `+ 1 edges, then mark all of them. Otherwise, mark the edges incident on

the `+ 1 most preferred neighbors of x in I, breaking ties arbitrarily. The vertices

in I that are incident to at least one marked edge are called marked vertices, and

the others are called unmarked vertices.

Reduction Rule 3.3.1. If x 2 X has unmarked neighbors in I, then delete all the

unmarked edges in E({x}, I).

Lemma 3.3.1. Reduction Rule 3.3.1 is safe.

Proof. Note that k  `  |X|, and obviously any matching in the instance obtained

by applying Reduction Rule 3.3.1 has size at most `. Thus, the proof of this lemma

follows from the arguments presented for Lemma 3.2.2. ⇧

Each application of Reduction Rules 3.2.1 and 3.3.1 takes O(n) time, and each of

these rules can be applied at most n times. Thus, the total running time is bounded

by O(n2), yielding a kernel where every vertex in X has at most `+1 neighbors in the

I, all of which are marked. Hence, the kernel has |X|+ |I|  2`+ (`+ 1)2l = O(`2)

vertices, and |E(X)|+ |E(X, I)|  |X|2 + |X| (`+ 1) = O(`2) edges. Therefore, we

output the instance (I 0, k) and conclude our argument. With this we have proven

Theorem 3.

3.4 SMTI and SRTI on planar graphs

Finally, when the input is restricted to planar graphs, we improve the kernels in

Sections 3.2 and 3.3, as well as design faster FPT algorithms for Max-SMTI, Min-

SMTI and Max-SRTI. As the constructions are very similar to each other, we focus

only on Max-SMTI. Given an input instance (I, k) of Max-SMTI, we first apply

Lemma 3.2.1. Thus, we have a decomposition of V into a vertex cover X and an

28

independent set I = V \X such that k  |X| < 2k. We design a kernel such that

both vertex and edge sets are of size O(k).

Towards our goal, partition I = Ideg=1] Ideg=2] Ideg�3. For 1  k  3, define

Ideg=k = {v 2 I | deg
X
(v) = k} and Ideg�k = {v 2 I | deg

X
(v) � k}. Furthermore,

define

Y1 = {N(v) | v 2 I and deg
X
(v)  1}

Y=2 = {N(v) | v 2 I and deg
X
(v) = 2}

Y�3 = {N(v) | v 2 I and deg
X
(v) � 3}

Since I is an independent set, all the neighbors of the vertices in I are in X,

and thus for any v 2 I, we have that deg
V
(v) = deg

X
(v). To upper bound |Ideg=1|,

|Ideg=2| and |Ideg�3|, we employ the following result.

Lemma 3.4.1 ([89]). For a planar graph G with vertex cover X, |{N(v) | v 2 I}| 

6|X|+ 1. In particular, |Y1|  |X|+ 1, |Y=2|  3|X| and |Y�3|  2|X|.

We first give a rule to enable us to bound |Ideg=1|.

Reduction Rule 3.4.1. Let x 2 X, and let u denote x’s most preferred neighbor

(breaking ties arbitrarily) in NI(x)\ Ideg=1. Then, delete all vertices in NI(x)\ Ideg=1

except u.

Lemma 3.4.2. Reduction Rule 3.4.1 is safe.

Proof. Let µ denote a stable matching in I of size at least k. If µ(x) /2 Ideg=1, then

µ is a stable matching in I 0, since I 0 is a subgraph of I. Whenever µ(x) = u, then

also µ is a stable matching in I 0. We are left with the case where µ(x) 6= u and

µ(x) 2 Ideg=1. In this case, u is unmatched in µ. If u >x µ(x), then {u, x} blocks µ

in I, a contradiction. Therefore, u and µ(x) must be in a tie in x’s preference list.

29

But then, the matching µ0 = µ \ {{x, µ(x)}} [{{x, u}} is a matching in I and I 0,

and is stable in I 0. Hence, µ0 (of size at least k) is also a stable matching in I 0. This

proves the ()) direction.

Let µ0 denote a stable matching in I 0 of size at least k. Suppose that there

exists a blocking edge for µ0 in I. Clearly, it must have been deleted during the

application of Reduction Rule 3.4.1. Let {x, w} denote the blocking edge in I, where

w 2 NI(x) \ Ideg=1 \ {u} such that w >x µ0(x). By the definition of u, we know that

u �x w >x µ0(x). Since the edge {x, u} exists in I 0, this implies that {x, u} blocks

µ0 in I 0; a contradiction. Hence, (() is proved. ⇧

The next rule enables us to bound |Ideg=2|. We define an equivalence relation ⇠

on the set Ideg=2 as follows: for a pair of vertices u, v 2 Ideg=2, u⇠v if and only if

NG(u) = NG(v). Let Ei denote the ith equivalence class defined by the relation ⇠.

Let the total number of equivalence classes be N .

Reduction Rule 3.4.2. Let x 2 X. For each equivalence class Ei (1  i  N)

that contains a neighbor of x, mark the two most preferred neighbors (if they exist),

breaking ties arbitrarily. Delete all edges between x and its unmarked neighbors in Ei

(1  i  N).

Lemma 3.4.3. Reduction Rule 3.4.2 is safe.

Proof. Let µ denote a stable matching in I 0 of size at least k. Clearly, µ is a matching

in I. Suppose that µ is not stable in I, then the blocking edge(s) must be (one

of) the deleted edge(s). Let {x, u} denote a blocking edge for µ in I, where u is

an unmarked neighbor of x such that u >x µ(x). The equivalence class containing

u, say Ei, must have two marked neighbors (denoted by ui1 and ui2) that are both

preferred by x at least as much as u. Thus, µ(x) /2 {ui1 , ui2}, and since they are in

Ideg=2, they have exactly two neighbors, one being x. Therefore, at least one of the

30

marked neighbors, say ui1 , must be unmatched in µ. But then, {x, ui1} is a blocking

edge for µ in I 0, a contradiction. Hence, (() direction is proved.

Let µ denote a stable matching in I of size at least k. If µ is also a matching in

I 0 then it is stable in I 0. Therefore, we assume that µ contains an edge incident on x

that was deleted during the application of Reduction Rule 3.4.2. Let {x, u} denote

the edge in µ that does not exist in I 0. Let Ei denote the equivalence class containing

u. As argued in the other direction, x has two marked neighbors in Ei who it prefers

at least as much as u. Furthermore, at least one of the marked neighbors must be

unmatched in µ, denoted by ui1 . Since µ is stable in I, so u and ui1 must be in a tie

in x’s preference list. Thus, we claim that µ0 = µ \ {{x, u}} [{{x, ui1}} is a stable

matching in I. Since µ0 exists in I 0, it is also stable in I 0. This completes the proof

of ()) direction. ⇧

We apply Reduction Rules 3.2.1, 3.4.1, and 3.4.2 exhaustively. Since each of the

reduction rules either deletes an edge or a vertex, the number of times these rules

are applied is bounded by O(n). Furthermore, since each of the reduction rules can

be applied in polynomial time, our kernelization algorithm runs in polynomial time.

Bounding the size. Let (I, k) denote the reduced instance of Max-SMTI. That is,

an instance on which Reduction Rules 3.2.1, 3.4.1, and 3.4.2 are no longer applicable.

Lemma 3.4.4. Max-SMTI parameterized by the solution size k admits O(k) sized

kernel on planar graphs.

Proof. Our objective is to show that

|Ideg=1|  |X|+ 1, |Ideg=2|  12|X| and |Ideg�3|  4|X|.

Once these relations are proved, an application of Reduction Rules 3.2.1, 3.4.1

and 3.4.2 yields an instance (I, k) of Max-SMTI in which the independent set I

31

has size |Ideg=1| + |Ideg=2| + |Ideg�3| = O(|X|). Thus, the vertex set of the kernel

has size |X|+ |I| = O(k). As a planar graph on n vertices has O(n) edges [35], we

conclude that the edge set of the kernel has size O(k).

The first relation follows from Reduction Rule 3.4.1 in conjunction with Lemma 3.4.1.

Recall, that each vertex in each equivalence class sees exactly two neighbours in X.

This implies that after the application of Reduction Rule 3.4.2, each equivalence

class has at most four vertices. Since the number of equivalence classes is upper

bounded by |Y2|, Lemma 3.4.1 yields |Ideg=2|  4|Y2|  12|X|. For the bound on

|Ideg�3|, we note that for any W 2 Y�3, there can be at most two vertices in I whose

neighborhood is W . Otherwise, K3,3 is a minor of G, a contradiction to its planarity.

Thus, |Ideg�3|  2|Y�3|  4|X|, from Lemma 3.4.1. ⇧

We provide details necessary to follow the proof of Theorem 6. A tree decomposi-

tion of a graph G is a pair (T, �) of a tree T and � : V (T) ! 2V (G). We assume T is

rooted. For v 2 V (T), �(v) is the bag of v, and �(v) is the union of the bags of v

and its descendants in T . We let tw(G) denote the treewidth of G. For a detailed

definition, see [29]. Next we define the notion of treewidth which is important in

designing our subexponential algorithms. We recall the definition first.

Definition 3.4.1. A tree decomposition of a graph G is a pair (T, �) of a tree T

and � : V (T) ! 2V (G), such that

1.
S

v2V (T) �(v) = V (G), and

2. for any edge {⇢, ⇢0} 2 E(G) there exists a node v 2 V (T) such that ⇢, ⇢0 2 �(v),

and

3. for any vertex ⇢ 2 V (G), the subgraph of T induced by the set T⇢ = {v 2 V (T) :

⇢ 2 �(v)} is a tree.

The width of (T, �) is maxv2V (T){|�(v)|}� 1. The treewidth of G is the minimum

width of a tree decomposition of G.

32

For v 2 V (T), we say that �(v) is the bag of v, and �(v) denotes the union of the

bags of v and the descendants of v in T . We let tw(G) denote the treewidth of G.

Given an n-vertex graph G and an integer q, in time 2O(q)nO(1), we can either

output a tree decomposition of G of width at most 4q + 4 or conclude that tw(G) >

q [29, 37]. The well-known results of Lipton and Tarjan [109] and Robertson and

Seymour [136] imply that a n-vertex planar graph has treewidth O(
p
n). Thus, using

Lemma 3.4.4, we conclude that the reduced instance of Max-SMTI has treewidth

O(
p
k). In time 2O(

p
k), we then obtain a tree decomposition of I of width O(

p
k).

Thus, to design a subexponential time parameterized algorithm for Max-SMTI on

planar graphs, we need to design a faster algorithm on graphs of bounded treewidth.

In particular, we need Theorem 6.

Proof of Theorem 6. The main idea of the proof in the context of Max-SRTI

(which encompasses Max-SMTI) is as follows. We let (T, �) denote the input tree

decomposition of G. First, in polynomial time, we transform (T, �) into a nice tree

decomposition of the same width [18]; the number of nodes in this decomposition is

bounded by O(n). Briefly, a nice tree decomposition is one where T is a binary tree,

a node with two children has the same bag as its children, and any other node either

has an empty bag or a bag that di↵ers by exactly one vertex from the bag of its

child. Moreover, the bag of the root, denoted by r, is empty. Let µ be a matching in

graph G such that �(v) is a bag in G.

For a function f : �(v) ! V (G), we say µ complies with f if for every x 2 �(v),

f(x) = µ(x).

Our algorithm is based on dynamic programming (DP). Our DP table, N, contains

an entry N[v, f] for every node v of T and injective function f : �(v) ! V (G). Such

an entry stores a value in {0, 1, . . . , bn/2c}[{�1}. The meaning of the entry can be

summarized as follows. N[v, f] should contain the maximum size of a stable matching

33

in G[�(v)], the subgraph of G induced by the vertex-set �(v), which complies with f .

The value �1 indicates that no such stable matching exists.

Once the table is computed correctly, the solution is given by the value stored in

N[r, f] where f is the function whose domain is the empty set. Roughly speaking,

the basis corresponds to leaves (whose bags are empty), and are initialized to store 0.

(Join Node) For a node v with two children v1 and v2, we compute the sum of

the entries associated with these children (where f is consistent), from which we

decrease the number of edges matched by f as they are over counted (not counting

vertices matched to themselves). Let nf = |{x 2 �(v) | f(x) 6= x}|, denoting the

number of edges matched by f but excluding those that represent vertices matched

to themselves. Then,

N[v, f] = N[v1, f] + N[v2, f]� nf .

(Forget Node) Given a node v whose bag contains one fewer vertex than its child

v0, we examine each option of matching this vertex, and take the one that maximizes

the entry of the child. So, for any function f 0 such that when f 0 is restricted to �(v)

we get f = f 0|�(v), then,

N[v, f] = max
f 0

N[v0, f 0]

(Introduce Node) Finally, given a node v whose bag contains one more vertex, x,

than its child v0, we first check if the matching given by f is “locally” stable and

“valid” in the following sense: if x 2 �(v), then either x = f(x), or x and f(x) are

neighbors in G and x = f(f(x)) such that for every neighbor y of x that is present

in �(v), (x, y) does not form a blocking edge. The latter condition can be tested as

the partners of both x and y are given by f . If the answer is negative, we assign

�1. Otherwise, we consider the (unique) entry of the child that is consistent with

the current entry, to which we add 1 if x 6= f(x) and x’s matched partner is not

34

already present in the current bag. Hence, we obtain the following,

N[v, f] =

8
>>>>>><

>>>>>>:

�1 if f is not valid

N[v0, f |�(v0)] if f(x) = x or f(x) 2 �(v)

N[v0, f |�(v0)] + 1 otherwise

The proof of correctness of the formulas is given in the next lemma.

Lemma 3.4.5. The recurrences in the proof of Theorem 6 are correct.

Proof. We analyze the three nodes, Join, Forget and Introduce separately. We begin

by recalling that N[v, f] contains the maximum size of a stable matching in G[�(v)],

the subgraph of G induced by the vertex-set �(v), which complies with f .

Let v be a leaf node. Since, �(v) = ;, we only have one value N[v, ·] = 0. We will

prove that the formulas hold in each of the following cases by showing inequality in

both directions.

Join Node: Let v be a join node with children v1 and v2. So, �(v) = �(v1) = �(v2).

Let µ be the maximum size stable matching that complies with f . Let µ1 and µ2

denote the matchings obtained by restricting µ to G[�(v1)] and G[�(v2)], respectively.

Note that �(v1) \ �(v2) = �(v), and nf is the contribution of �(v) to N[v, f]. Also,

N[vi, f] � |µi|, for each i 2 [2]. So, N[v1, f] + N[v2, f] � |µ1| + |µ2|. However, in

|µ1|+ |µ2| we add the contribution of �(v) twice. Therefore we deduct nf , thereby

yielding N[v1, f] + N[v2, f]� nf � N[v, f].

On the other hand, let µ1 and µ2 denote the matchings which attain the maximum

for N[v1, f] and N[v2, f]. Note that both µ1 and µ2 comply with f . Hence, µ1 [µ2 is

a matching in G[�(v)], and N[v1, f] +N [v2, f]� nf  N[v, f] follow as a consequence.

Thus, we can conclude that N[v1, f] + N[v2, f]� nf = N[v, f].

Forget Node: Let µ be the maximum size stable matching of G[�(v)] that complies

35

with f . Let us define f 0 as follows.

f 0(y) =

8
>><

>>:

f(y) if y 2 �(v)

µ(y) if y = x

Since µ is one of the matchings that is considered in the definition of N[v, f], we

have, maxf 0 N[v0, f 0
µ
] � N[v, f]. Therefore, for a function f 0 such that f 0|v = f , we

have maxf 0 N[v0, f 0] � N[v, f].

On the other hand, observe that, for any function f 0 such that f = f 0|v, each

matching that is considered in the definition of N[v0, f 0] is also considered in the

definition of N[v, f]. This implies, that for any such f 0, N[v, f] � N[v0, f 0]; so

N[v, f] � maxf 0 N[v0, f 0].

Introduce Node: Let v be a node whose bag contains one more vertex, x, than

its child v0. We first consider the case when f is locally stable. That is, for any

neighbor y of x, (x, y) does not form a blocking edge. So, there is a stable matching

that complies with f , call it µ0. The maximum size of µ0 in G[�(v0)] is N[v0, f |�(v0)].

Since �(v) = �(v0) [{x}, the size of the maximum size stable matching in G[�(v)]

is at most N[v0, f |�(v0)] + 1. Hence, N[v, f]  N[v0, f |�(v0)] + 1. For the case where

f(x) = x or f(x) 2 �(v) we note that N[v, f]  N[v0, f |�(v0)].

On the other hand, let µ0 be a matching for which maximum is attained in

the definition of N[v0, f |�(v0)], thus, N[v0, f |�(v0)] = |µ0|. Since f is valid, µ = µ0 [

{(x, f(x))} is a stable matching in G[�(v)]. Also, note that µ complies with f . If x’s

matched partner is not already present in �(v) and f(x) 6= x, then N[v, f] � |µ0|+1 =

N[v0, f |�(v0)] + 1. Otherwise, N[v, f] is at least |µ0|. Then, N[v, f] � N[v0, f |�(v0)].

In the case, where f is not locally stable there is no stable matching that complies

with f . So, we correctly assign �1.

This concludes the description and the proof of correctness of the recursive

36

formulas for computing the values of N[·, ·]. ⇧

Since N contains nO(tw) entries, each computable in time nO(tw), this concludes

the proof of the theorem. ⇧

We thus conclude the proofs of Theorems 4 and 5.

3.5 Conclusions

We designed polynomial kernels and parameterized algorithms for Max-SMTI and

Min-SMTI parameterized by the solution size, and for Max-SRTI parameterized

by the size of a maximum matching. In addition, we studied these problems when

the input is restricted to planar graphs. Our algorithms for general graphs run in

time 2O(k log k) + nO(1). Hence, it would be interesting to either design an algorithm

with running time 2O(k)nO(1), or show an appropriate conditional lower bound.

Moreover, it is an interesting open question to determine whether Max-SMTI,

Min-SMTI and Max-SRTI are FPT parameterized by the treewidth of the input

graph. Finally, our study also gives rise to possible further investigations of above

guarantee parameterizations of these problems.

37

38

Chapter 4

Balanced Stable Matching

In the previous chapter we saw that finding a maximum size stable matching is

NP-hard in presence of ties. In this chapter, we study another NP-hard variant of the

Stable Marriage problem. We study the classical model of Stable Marriage,

that is, when the preference lists are strict linear ordering. The seminal paper [58]

by Gale and Shapely on stable matchings shows that given an instance of Stable

Marriage, a stable matching necessarily exists and can be found in time linear

in the size of the input instance. This algorithm produces only “special kind” of

stable matchings. However, there can be exponentially many stable matchings of the

instance. Finding a stable matching that satisfy certain criteria can be hard, as we

will see in this is chapter.

In the recent past, a collective e↵ort to study matching under preferences through

the lens of Parameterized Complexity was initiated [106, 23, 126, 69, 80, 77, 68,

124, 107, 116, 117, 17]. Along with [17, 23], our work has initiated the study of

kernelization in the context of matchings under preferences. To the best of our

knowledge, our work is the first to introduce “above guarantee parameterization” to

this topic.

In Matching under Preferences, a matching is an allocation (or assignment) of

39

agents to resources that satisfies some predefined criterion of compatibility/acceptability.

Here, (arguably) the best known model is the two-sided model, where the agents

on one side are referred to as men, and the agents on the other side are referred

to as women. A few illustrative examples of real life situations where this model is

relevant include matching residents to hospitals, students to colleges, kidney patients

to donors and users to servers in a distributed Internet service. At the heart of all of

these applications lies the fundamental Stable Marriage problem. In particular,

the Nobel Prize in Economics was awarded to Shapley and Roth in 2012 “for the

theory of stable allocations and the practice of market design.” Moreover, several

books have been dedicated to the study of Stable Marriage as well as optimization

variants of this classical problem such as the Egalitarian Stable Marriage,

Minimum Regret Stable Marriage, Sex-Equal Stable Marriage and

Balanced Stable Marriage problems [71, 99, 114, 70].

The input of Stable Marriage consists of a set of men, M , and a set of

women, W . Each agent a has a set of acceptable partners, A(a), who are subjectively

ranked by a in a strict order. Consequently, each agent a has a so-called preference

list, where pa(b) is the position of b 2 A(a) in a’s preference list. Lower values of

positions are associated with more preferred agents. Without loss of generality, it

is assumed that if an agent a ranks an agent b, then the agent b ranks the agent a

as well. The sets of preference lists of the men and the women are denoted by LM

and LW , respectively. In this context, we say that a pair of a man and a woman,

(m,w), is an acceptable pair if both m 2 A(w) and w 2 A(m). Accordingly, the

notion of a matching refers to a matching between men and women, where two people

matched to one another form an acceptable pair. Roughly speaking, the goal of the

Stable Marriage problem is to find a matching that is stable in the following

sense: there should not exist two people who prefer being matched to one another

over their current “status”. More precisely, a matching µ is said to be stable if it

does not have a blocking pair, which is an acceptable pair (m,w) such that (i) either

40

m is unmatched by µ or pm(w) < pm(µ(m)), and (ii) either w is unmatched by µ or

pw(m) < pw(µ(w)). Here, the notation µ(a) indicates the person to whom µ matches

the person a. Note that a person always prefers being matched to an acceptable

partner over being unmatched.

The seminal paper [58] by Gale and Shapely on stable matchings shows that

given an instance of Stable Marriage, a stable matching necessarily exists, but it

is not necessarily unique. In fact, for a given instance of Stable Marriage, there

can be an exponential number of stable matchings, and they should be viewed as a

spectrum where the two extremes are known as the man-optimal stable matching and

the woman-optimal stable matching. Formally, the man-optimal stable matching,

denoted by µM , is a stable matching such that every stable matching µ satisfies

the following condition: every man m is either unmatched by both µM and µ or

pm(µM(m))  pm(µ(m)). The woman-optimal stable matching, denoted by µW , is

defined analogously. In the µM(resp. µW) the men (resp. women) receive their

best possible partners and women (resp. men) receive their worst possible partners

among the set stable matchings. These two extremes, which give the best possible

solution for one party at the expense of the other party, always exist and can be

computed in polynomial time [58]. Naturally, it is desirable to analyze matchings

that lie somewhere in the middle. Here, the quantity pa(µ(a)) is the “dissatisfaction”

of a in a matching µ, where a smaller value signifies a lesser amount of dissatisfaction.

The most well-known measures are as follows:

• µ is globally desirable if it minimizes
P

(m,w)2µ(pm(µ(m)) + pw(µ(w))), called

the egalitarian stable matching;

• µ is minimum regret if it minimizes max(m,w)2µ{max{pm(µ(m)), pw(µ(w))}},

called the minimum regret stable matching;

• µ is fair towards both sides if it minimizes |
P

(m,w)2µ pm(µ(m))�
P

(m,w)2µ pw(µ(w))|,

called the sex-equal stable matching;

41

• µ is desirable by both sides if it minimizes max{
P

(m,w)2µ pm(w),
P

(m,w)2µ pw(m)},

called the balanced stable matching.

Each notion above leads to a natural, di↵erent well-studied optimization problem

(see Related Work). We focus on the NP-hard Balanced Stable Marriage

(BSM) problem, where the objective is to find a stable matching µ that minimizes

balance(µ) = max{
X

(m,w)2µ

pm(w),
X

(m,w)2µ

pw(m)}.

This problem was introduced in the influential work of Feder [46] on stable matchings,

and was shown to be NP-complete and admitting a 2-approximation algorithm.

Our Contribution. Above guarantee parameterization is a topic of exten-

sive study in Parameterized Complexity [29]. We introduce two “above-guarantee

parameterizations” of BSM. Consider the minimum value OM (OW) of the to-

tal dissatisfaction of men (women) realizable by a stable matching. Formally,

OM =
P

(m,w)2µM
pm(w), and OW =

P
(m,w)2µW

pw(m), where µM (µW) is the man-

optimal (woman-optimal) stable matching. Denote Bal = minµ2SM balance(µ), where

SM is the set of all stable matchings. An input integer k would indicate that our

objective is to decide whether Bal  k. In SM, all stable matchings match the same

set of agents, A? which can be computed in polynomial time. As balance(µ) � |A?|
2

for any stable matching µ, BSM is trivially fixed-parameter tractable (FPT) with

respect to k. In our first parameterization, the parameter is k �min{OM , OW}, and

in the second one, it is k �max{OM , OW}.

42

Input: An instance (M,W,LM ,LW) of Balanced Stable Marriage,

and a non-negative integer k.

Parameter: t = k �min{OM , OW}

Task: Is Bal  k?

Above-Min Balanced Stable Marriage (Above-Min BSM)

Input: An instance (M,W,LM ,LW) of Balanced Stable Marriage,

and a non-negative integer k.

Parameter: t = k �max{OM , OW}

Task: Is Bal  k?

Above-Max Balanced Stable Marriage (Above-Max BSM)

Choice of parameters: Note that the least dissatisfaction the party of men can

hope for (call it minimum dissatisfaction) is OM , and the least dissatisfaction the

party of women can hope for (also call it minimum dissatisfaction) is OW . First,

consider the parameter t = k�min{OM , OW}. Whenever we have a solution such that

the amounts of dissatisfaction of both parties are close enough to the minimum, this

parameter is small. (When the parameter is small, we cannot simply pick µM or µW

since balance(µM) and balance(µW) can be arbitrarily larger than min{OM , OW}.)

Indeed, the closer the dissatisfaction of both parties to the minimum (which is

exactly the case where both parties would find the solution desirable), the smaller

the parameter is, and the smaller the parameter is, the faster a parameterized

algorithm is. In this above guarantee parameterization, the guarantee value (i.e.,

min{OM , OW}) is already quite high—for example, our parameter is significantly

smaller than k � n0, where n0 is the number of men (or women) matched by a stable

matching, since k �min{OM , OW} is (i) never larger than k � n0, and (ii) can be

43

arbitrarily smaller than k � n0, e.g. k � n0 can be of the magnitude of O(n) while

our parameter is 0.

Since we are taking the minimum of {OM , OW}, we need the dissatisfaction of

both parties to be close to optimum in order to have a small parameter. As we are

able to show that BSM is FPT with respect to this parameter, it is very natural to

next examine the case where we take the max of {OM , OW}. In this case, the closer

the dissatisfaction of at least one party to the optimum, the smaller the parameter

is. In other words, now to have a small parameter, the demand from a solution

is weaker than before. In the vocabulary of Parameterized Complexity, it is said

that the parameterization by t = k �max{OM , OW} is “above a higher guarantee”

than the parameterization by t = k � min{OM , OW}, since it is always the case

that max{OM , OW} � min{OM , OW}. Interestingly, as we show in this chapter,

the parameterization by k �max{OM , OW} results in a problem that is W[1]-hard.

Hence, the complexities of the two parameterizations behave very di↵erently. We

remark that in Parameterized Complexity, it is not at all the rule that when one

takes an “above a higher guarantee” parameterization, the problem would become

W[1]-hard, as can be evidenced by the Vertex Cover problem, the classical above

guarantee parameterizations in this field, for which three distinct above guarantee

parameterizations yielded FPT algorithms [63, 112, 30, 134]. Overall, our results

draw a nontrivial line between tractability and intractability of above guarantee

parameterization of BSM.

Finally, the three main theorems that we establish in this study are as follows.

Theorem 7. Above-Max BSM is W[1]-hard.

Theorem 8. Above-Min BSM admits a kernel that has at most 3t men, at most

3t women, and such that each person has at most 2t+ 1 acceptable partners.

Theorem 9. Above-Min BSM can be solved in time1 O⇤(8t).

1O⇤ hides the factors polynomial in input size.

44

Our techniques: The overview of the reduction we develop to prove Theorem 7 is

presented followed by the formal analysis in Section 5.2. The proof of Theorem 8 is

based on the introduction and analysis of a variant of Above-Min BSM which we

will call Functional BSM or Above-Min FBSM . Our kernelization algorithm

consists of several phases, each simplifying a di↵erent aspect of Above-Min BSM,

and shedding light on structural properties of the Yes-instances of this problem. We

stress that the design and order of our reduction rules are very carefully tailored

to ensure correctness. For example, it is tempting to execute Step 2 before Step

1 (see the outline in Section 4.3.1), but this is simply incorrect as it alters the set

of stable matchings. The reduction rules are easy to express for this functional

variant of Above-Min BSM. Hence, we choose to define the reduction rules for

this functional variant of Above-Min BSM instead of Above-Min BSM directly.

Note that Theorem 8 already implies that Above-Min BSM is FPT. To obtain a

parameterized algorithm whose running time is single exponential in the parameter

(Theorem 9), we utilize the method of bounded search trees on top of our kernel in

Section 4.4.

Related Work. The problem of finding an egalitarian stable matching (defined

in page 41), called Egalitarian Stable Marriage (ESM), is known to be

solvable in polynomial time due to Irving et al. [86]. If preference lists have so called

ties or agents do not have genders (i.e., in roommates setting), then ESM is NP-hard

[85]. ESM is one of the most well studied topics in Matching under Preferences

(see [71, 99, 114]), and the survey of these results is outside the scope of our study.

To the best of our knowledge, in the framework of Parameterized Complexity, the

only known work is by Chen et al. [23] (which presents positive FPT results for

the generalizations above). ESM does not distinguish between men and women,

and therefore it does not fit scenarios where it is necessary to di↵erentiate between

the individual satisfaction of each party. In such scenarios, Sex-Equal Stable

45

Marriage (SESM) and BSM come into play.

In the SESM problem, the objective is to find a sex-equal stable matching, a

stable matching that is fair towards both sides by minimizing the di↵erence between

their individual amounts of satisfaction. Unlike EGM, the SESM problem is known

to be NP-hard [94]. At first sight, the balance measure might seem conceptually

similar to the sex-equal measure, but in fact, the two measures are quite di↵erent.

Indeed, BSM does not attempt to find a stable matching that is fair, but one that is

desirable by both sides. In other words, BSM examines the amount of dissatisfaction

of each party individually, and attempts to minimize the worse one among the two.

BSM models the scenario where each party is selfish in the sense that it desires a

matching where its own dissatisfaction is minimized, irrespective of the dissatisfaction

of the other party, and our goal is to find a matching desirable by both parties

by ensuring that each individual amount of dissatisfaction does not exceed some

threshold. However, even if parties are not selfish, a balanced stable matching may

be preferable over a sex-equal one—indeed, in some situations, a sex-equal stable

matching may fit the old phrase “the sorrow of many is the comfort of fools”, as

it can achieve equality not by making one party better o↵ at the expense of the

other, but simply by making both parties worse. Thus, although the amount of

literature devoted to SESM is much greater than the one about BSM, we find

BSM at least as important as SESM. The survey of results about SESM is outside

the scope of our study, but let us remark that in some situations, the minimization

of balance(µ) may indirectly also minimize |�(µ)| where �(µ) =
P

(m,w)2µ pm(µ(m))

�
P

(m,w)2µ pw(µ(w)), but in other situations, this may not be the case. Indeed,

McDermid [122] constructed a family of instances where there does not exist any

matching that is both a sex-equal stable matching and a balanced stable matching

(the construction is also available in the book [114]).

Manlove discusses that BSM also admits a (2� 1/`)-approximation algorithm

46

where ` is the maximum size of a set of acceptable partners [114]. O’Malley [129]

phrased the BSM problem in terms of constraint programming. The parameterized

complexity of BSM with respect to treewidth parameterizations (of graphs associated

with the problem) was studied in [69]. Recently, McDermid and Irving [123] expressed

explicit interest in the design of fast exact exponential-time algorithms for BSM.

McDermid and Irving [123] showed that SESM is NP-hard even if it is only necessary

to decide whether the target � = minµ2SM |�(µ)| is 0 or not [123], where SM is the

set of all stable matchings of the instance. In particular, this means that SESM is

not only W[1]-hard with respect to �, but it is even paraNP-hard with respect to

this parameter.2 In the case of BSM, however, the problem is trivially FPT with

respect to the target Bal = minµ2SM balance(µ).

In the framework of Parameterized Complexity, Chen et al. [23] showed that

deciding whether there exists a matching with at most k blocking pairs in the

roommates setting is W[1]-hard. In addition to BSM, Gupta et al. [69] also considered

treewidth parameterizations of other optimization variants of Stable Marriage.

Mnich and Schlotter [126] inspected the parameterized complexity of an optimization

variant of Stable Marriage where blocking pairs were allowed to exist in order

to ensure that some agents will be matched by the output matching. Meeks and

Rastegari [124] introduced a parameterization regarding “agent types” and studied

several optimization variants of Stable Marriage with respect to it. Marx and

Schlotter [116] studied size optimization variants of Stable Marriage in the

presence of ties, where the parameters are the total length, maximum length, and

number of ties. In addition, Marx and Schlotter [117] studied a generalization

of Stable Marriage, called Hospitals/Residents with Couples, with the

number of couples as a parameter. Other studies of parameterized complexity of

problems (less closely) related to Stable Marriage are of the Group Activity

2If a parameterized problem is NP-hard even when the value of the parameter is a fixed constant
(that is, independent of the input), then the problem is said to be paraNP-hard.

47

Selection problem [80, 77, 68] and of the Stable Invitations problem [106].

Some works that are not directly related to our work but study the parameterized

complexity of problems that involve restricted preference lists are [82, 1, 15, 72, 87].

4.1 Preliminaries

Throughout the chapter, whenever the instance I of BSM under discussion is not

clear from context or we would like to put emphasis on I, we add “(I)” to the

appropriate notation. For example, we use the notation t(I) rather than t. When

we would like to refer to the balance of a stable matching µ in a specific instance I,

we would use the notation balanceI(µ). A matching is called a perfect matching if it

matches every person (to some other person).

A Functional Variant of Stable Marriage. To obtain our kernelization

algorithm for Above-Min BSM, it will be convenient to work with, as explained

below, a “functional” definition of preferences, resulting in a “functional” variant

of this problem which we call Above-Min FBSM. Here, instead of the sets of

preferences lists LM and LW , the input consists of sets of preference functions

FM and FW , where FM replaces LM and FW replaces LW . Specifically, every

person a 2 M [W has an injective (one-to-one) function fa : A(a) ! N, called

a preference function. Similar models are known in literature[132]. Intuitively, a

lower function value corresponds to a higher preference. The preference functions are

injective because each person’s preference list is a strict order of his/her acceptable

partners. Consequently, every preference function defines a total ordering over a set

of acceptable partners. Note that all of the definitions presented in the introduction

extend to our functional variant in the natural way. For the sake of formality, we

will specify the necessary adaptations. Our kernelization algorithm for Above-Min

48

BSM works as follows: Firstly, we creates an instance of Above-Min FBSM,

secondly, we run the kernelization algorithm for Above-Min FBSMto obtain a

kernel for our instance; and finally, we transform that kernel into a kernel for the

original instance of Above-Min BSM.

We adapt standard definitions presented for Above-Min BSM to the case

where preferences are specified by functions rather than lists. The input of the

Functional Stable Marriage problem consists of a set of men, M , and a set of

women, W . Each person a has a set of acceptable partners, denoted by A(a), and

an injective function fa : A(a) ! N called a preference function. Without loss of

generality, it is assumed that if a person a belongs to the set of acceptable partners

of a person b, then the person b belongs to the set of acceptable partners of the

person a. The set of preference functions of the men and the women are denoted by

FM and FW , respectively. A pair of a man and a woman, (m,w), is an acceptable

pair if both m 2 A(w) and w 2 A(m). Accordingly, the notion of a matching refers

to a matching between men and women, where two people that are matched to one

another form an acceptable pair. A matching µ is stable if it does not have a blocking

pair, which is an acceptable pair (m,w) such that (i) either m is unmatched by µ or

fm(w) < fm(µ(m)), and (ii) either w is unmatched by µ or fw(m) < fw(µ(w)). The

goal of the Functional Stable Marriage problem is to find a stable matching.

The man-optimal stable matching, denoted by µM , is a stable matching such

that every stable matching µ satisfies the following condition: every man m is

either unmatched by both µM and µ or fm(µM(m))  fm(µ(m)). The woman-

optimal stable matching, denoted by µW , is defined analogously. Given a stable

matching µ, define balance(µ) = max{
P

(m,w)2µ fm(w),
P

(m,w)2µ fw(m)}. Moreover,

Bal = minµ2SM balance(µ), where SM is the set of all stable matchings, OM =
P

(m,w)2µM
fm(w), and OW =

P
(m,w)2µW

fw(m). Finally, Above-Min FBSM is

defined as follows.

49

Input: An instance (M,W,FM ,FW) of Functional Balanced Stable

Marriage, and a non-negative integer k.

Parameter: t = k �min{OM , OW}

Task: Is Bal  k?

Above-Min Functional Balanced Stable Marriage (Above-Min FBSM)

Clearly, it is straightforward to turn an instance of Above-Min BSM into an

equivalent instance of Above-Min FBSM as stated in the following observation.

Observation 4.1.1. Let I = (M,W,LM ,LW , k) be an instance of Above-Min

BSM. For each a 2 M [W , define fa : A(a) ! N by setting fa(b) = pa(b) for

all b 2 A(a). Then, I is a Yes-instance of Above-Min BSM if and only if

(M,W,FM = {fm}m2M ,FW = {fw}w2W , k) is a Yes-instance of Above-Min

FBSM.

4.1.1 Known Results

Here, we state several classical results, which were originally presented in the context

of Stable Marriage. By their original proofs, these results also hold in the

context of Functional Stable Marriage. To be more precise, given an instance

of Functional Stable Marriage, we can construct an equivalent instance of

Stable Marriage, by ranking the acceptable partners in the order of their function

values, where a smaller value implies a higher preference. The instances are equivalent

in the sense that they give rise to the exact same set of stable matchings. Hence, all

the structural results about stable matchings in the usual setting (modeled by strict

preference lists) apply to the generalized setting, modeled by injective functions.

Proposition 4.1.1 ([58]). For any instance of Stable Marriage (or Func-

tional Stable Marriage), there exist a man-optimal stable matching, µM , and

50

a woman-optimal stable matching, µW , and both µM and µW can be computed in

polynomial time.

The following powerful proposition is known as the Rural-Hospital Theorem (and

notably does not hold for instances that have ties).

Proposition 4.1.2 ([60] Theorem 1). Given an instance of Stable Marriage

(or Above-Min FBSM), the set of men and women that are matched is the same

for all stable matchings.

We further need a proposition regarding the man-optimal and woman-optimal

stable matchings that implies Proposition 4.1.2 [60].

Proposition 4.1.3 ([71]). For any instance of Stable Marriage (or Func-

tional Stable Marriage), every stable matching µ satisfies the following con-

ditions: every woman w is either unmatched by both µM and µ or pw(µM(w)) �

pw(µ(w)), and every man m is either unmatched by both µW and µ or pm(µW (m)) �

pm(µ(m)).

While designing our kernelization algorithm, we might be able to determine

whether the input instance is a Yes-instance or a No-instance. For the sake of

clarity, in the first case, we simply return Yes, and in second case, we simply return

No. To properly comply with the definition of a kernel, the return of Yes and No

should be interpreted as the return of a trivial Yes-instance and a trivial No-instance,

respectively. Here, a trivial Yes-instance can be the one in which M = W = ;

and k = 0, where the only stable matching is the one that is empty and whose

balance is 0, and a trivial No-instance can be the one where M = {m}, W = {w},

A(m) = {w}, A(w) = {m} and k = 0.

51

4.2 Hardness

In this section, we prove Theorem 7. For this purpose, we give a reduction from a

W[1]-hard problem, Clique [36]. Thus, to prove Theorem 7, it is su�cient to prove

the next lemma. First, we define Clique formally.

Clique

Input: A graph G = (V,E), and a positive integer k.

Question: Does G contain a complete graph on k vertices?

Parameter: k.

Lemma 4.2.1. Given an instance I = (G = (V,E), k) of Clique, an equivalent

instance bI = (M,W,LM ,LW ,bk) of Above-Max BSM with parameter t = 6k +

3k(k � 1) can be constructed in time f(k) · |I|O(1) for some function f .

The goal is to construct (in “FPT time”) an instance bI = (M,W,LM ,LW ,bk) of

Above-Max BSM. The following subsections contain an informal explanation of

the intuition underlying the gadget construction followed by the formal description

and the analysis.

Reduction. Let I = (G = (V,E), k) be some instance of Clique. We select

arbitrary orders on V and E, and accordingly we denote V = {v1, v2, . . . , v|V |} and

E = {e1, e2, . . . , e|E|}.

First, to construct the sets M and W , we define three pairwise-disjoint subsets of

M , called MV ,ME and fM , and three pairwise-disjoint subsets of W , called WV ,WE

and fW . Then, we set M = MV]ME] fM] {m⇤} and W = WV]WE]fW] {w⇤},

where m⇤ and w⇤ denote a new man and a new woman, respectively.

• MV = {mi

v
: v 2 V, i 2 {1, 2}}; WV = {wi

v
: v 2 V, i 2 {1, 2}}.

• ME = {mi

e
: e 2 E, i 2 {1, 2}}; WE = {wi

e
: e 2 E, i 2 {1, 2}}.

52

• Let � = 2(|V |+ |E|+ |V ||E|+ |V ||E|2)� k(4 + 4k + 2|E|+ (k � 1)|V ||E|).

Then, fM = {emi : i 2 {1, 2, . . . , �}} and fW = { ewi : i 2 {1, 2, . . . , �}}.

Note that |M | = |W |. We remark that in what follows, we assume w.l.o.g. that

� � 0 and |V | > k + k(k � 1)/2, else the size of the input instance I of Clique is

bounded by a function of k and can therefore, by using brute-force, be solved in FPT

time.

Roughly speaking, each pair of men, m1
v
and m2

v
, represents a vertex, and we

aim to ensure that either both men will be matched to their best partners (in the

man-optimal stable matching) or both men will be matched to other partners (where

there would be only one choice that ensures stability). Accordingly, we will guarantee

that the choice of matching these two men to their best partners translates to not

choosing the vertex they represent into the clique, and the other choice translates to

choosing this vertex into the clique.

Now, having just the set MV , we can encode selection of vertices into the clique,

but we cannot ensure that the vertices we select indeed form a clique. For this

purpose, we also have the set ME which, in a manner similar to MV , encodes selection

of edges into the clique. By designing the instance in a way that the situation of

the men in the man-optimal stable matching is significantly worse than that of the

women in the women-optimal stable matching, we are able to ensure that at most

2 (k + k(k � 1)/2) men in MV [ME will not be assigned their best partners (here,

we exploit the condition that balance(µ)  bk for a solution µ). Here the man m⇤

plays a crucial role—by using dummy men and women (in the sets fM and fW) that

prefer each other over all other people, we ensure that the situation of m⇤ is always

“extremely bad” (from his viewpoint), while the situation of his partner, w⇤, is always

“excellent” (from her viewpoint).

At this point, we first need to ensure that the edges that we select indeed connect

53

the vertices that we select. For this purpose, we carefully design our reduction so

that when a pair of men representing some edge e obtain partners worse than those

they have in the man-optimal stable matching, it must be that the men representing

the endpoints of e have also obtained partners worse than those they have in the

man-optimal stable matching, else stability will not be preserved—the partners of

the men representing the endpoints of e will form blocking pairs together with the

men representing e.

Finally we observe that we still need to ensure that among our 2 (k + k(k � 1)/2)

distinguished men in MV [ME, which are associated with k + k(k � 1)/2 selected

elements (vertices and edges), there will be exactly 2k distinguished men from MV

and exactly k(k� 1) distinguished men from ME, which would mean we have chosen

k vertices and k(k � 1)/2 edges. For this purpose, we construct an instance where

for the women, it is only somewhat “beneficial” that the men in MV will not be

matched to their best partners, but it is extremely beneficial that the men in ME

will not be matched to their best partners. This objective is achieved by carefully

placing dummy men (from fM) in the preference lists of women in WE. By again

exploiting the condition that balance(µ)  bk for a solution µ, we are able to ensure

that there would be at least k(k� 1) distinguished men from ME. We are now ready

to present the formal details.

4.2.1 Formal Description of the Reduction

Next, we proceed with the formal presentation of our reduction by defining preference

of every man m 2 M , and thus constructing LM , given in Table 4.1. Accordingly, we

define preference of every woman w 2 W , and thus construct LW , given in Table 4.2.

Finally, we define bk = |M | + � + 6(k +
k(k � 1)

2
). It is clear that the entire

construction (under the assumptions that � � 0 and |V | > k +
k(k � 1)

2
) can be

54

M Preference List

m1
v

w1
v
, ew1, ew2, w2

v
for all m1

v
2 MV

m2
v

w2
v
, ew1, ew2, w1

v
for all m2

v
2 MV

m1
{u,v} w1

{u,v}, w
1
u
, w1

v
, w2

{u,v} for all m1
{u,v} 2 ME

where3 u < v

m2
{u,v} w2

{u,v}, w
2
u
, w2

v
, w1

{u,v} for all m2
{u,v} 2 ME

where u < v

emi ewi, w1
e1
, w1

e2
, . . . , w1

e|E|
, w2

e1
, w2

e2
, . . . , w2

e|E|
, [X] for all emi 2 fM

such that i  |V ||E|, X = {wj

v
2 WV : emi 2 A(wj

v
), j 2 {1, 2}}

emi ewi for all emi 2 fM
such that i > |V ||E|

m⇤ ew1, ew2, . . . ew�, w⇤

Table 4.1: Preference list for every man m 2 M , and thus constructing LM . Here,
[X] denotes a fixed permutation of X.

performed in polynomial time.

4.2.2 The Parameter

Our current objective is to verify that t is indeed bounded by a function of k. For

this purpose, we first observe that for all i 2 {1, 2, . . . , �}, it holds that pemi(ewi) =

p ewi(emi) = 1. Therefore, for all µ 2 SM(bI) and i 2 {1, 2, . . . , �}, we have that

µ(emi) = ewi, else (emi, ewi) would have formed a blocking pair for µ in bI.

Observation 4.2.1. For all µ 2 SM(bI) and i 2 {1, 2, . . . , �}, it holds that µ(emi) =

ewi.

Now, note that A(m⇤) = fW [{w⇤}. Thus, by Observation 4.2.1, we have that for

all µ 2 SM(bI), either m⇤ is unmatched or µ(m⇤) = w⇤. However, A(w⇤) = {m⇤},

which implies that in the former case, (m⇤, w⇤) forms a blocking pair. Thus, we also

have the following observation.

3Recall that we have defined an order on V .

55

W Preference List

w1
v

m2
v
, [{m1

e
2 ME : v 2 e}], [{emi 2 fM : i  |E|� deg

G
(v)}],m1

v
for all w1

v
2 WV

w2
v

m1
v
, [{m2

e
2 ME : v 2 e}], [{emi 2 fM : i  |E|� deg

G
(v)}],m2

v
for all w2

v
2 WV

w1
e

m2
e
, em1, em2, . . . , em|V ||E|,m1

e
for all w1

e
2 WE

w2
e

m1
e
, em1, em2, . . . , em|V ||E|,m2

e
for all w2

e
2 WE

ewi emi,m⇤,m1
v1
,m1

v2
. . . ,m1

v|V |
,m2

v1
,m2

v2
. . . ,m2

v|V |
for ewi 2 fW ,

i 2 {1, 2}

ewi emi,m⇤ for all ewi 2 fW
such that i > 2

w⇤ m⇤

Table 4.2: Preference list for every woman w 2 W , and thus constructing LW . For
any set X, [X] denotes a fixed permutation of X. Here, deg

G
(v) denotes the degree

of the vertex v in G.

Observation 4.2.2. For all µ 2 SM(bI), it holds that µ(m⇤) = w⇤.

Let us proceed by identifying the man-optimal µM and the woman-optimal µW

stable matchings. For this purpose, we first define a matching µ0
M

as follows.

• For all mi

v
2 MV : µ0

M
(mi

v
) = wi

v
.

• For all mi

e
2 ME: µ0

M
(mi

e
) = wi

e
.

• For all emi 2 fM : µ0
M
(emi) = ewi.

• µ0
M
(m⇤) = w⇤.

Lemma 4.2.2. It holds that µM = µ0
M
.

Proof. Since for all i 2 {1, 2, . . . , �}, it holds that µ0
M
(emi) = ewi and pemi(ewi) =

p ewi(emi) = 1, we have that there cannot exist a blocking pair with at least one person

from fM [fW . Now, notice that for every m 2 M , including m⇤, the woman most

preferred by m who is outside fW is also the one with whom it is matched. Therefore,

there cannot exist any blocking pair for µ0
M
, and by Observation 4.2.1, we further

conclude that indeed µM = µ0
M
. ⇧

56

Now, we define a matching µ0
W

as follows.

• For all w1
v
2 WV : µ0

W
(w1

v
) = m2

v
, and for all w2

v
2 WV : µ0

W
(w2

v
) = m1

v
.

• For all w1
e
2 WE: µ0

W
(w1

e
) = m2

e
, and for all w2

e
2 WE: µ0

W
(w2

e
) = m1

e
.

• For all ewi 2 fW : µ0
W
(ewi) = emi.

• µ0
W
(w⇤) = m⇤.

Lemma 4.2.3. It holds that µW = µ0
W
.

Proof. In the matching µ0
W
, every woman is matched with the man she prefers the

most. Thus, it is immediate that µW = µ0
W
. ⇧

As a corollary to Lemmata 4.2.2 and 4.2.3, we obtain the following result.

Corollary 4.2.1. OM = |M |+ � and OW = |W |.

Proof. First, note that

OM =
X

(m,w)2µM

pm(w)

= pm⇤(µM(m⇤)) +
X

m2M\{m⇤}

pm(µM(m)) = (� + 1) + (|M |� 1) = |M |+ �.

Second, note that

OW =
X

(m,w)2µW

pw(m) =
X

w2W

pw(µW (w)) = |W |.

⇧

We are now ready to bound t.

Lemma 4.2.4. The parameter t associated with bI is equal to 6(k +
k(k � 1)

2
).

57

Proof. By the definition of t, we have that

t = bk �max{OM , OW}

= |M |+ � + 6(k +
k(k � 1)

2
)�max{|M |+ �, |W |} = 6(k +

k(k � 1)

2
).

⇧

4.2.3 Correctness

First, from Lemma 4.2.2 and Proposition 4.1.2 we derive the following useful obser-

vation.

Observation 4.2.3. Every µ 2 SM(bI) matches all people in M [W .

Next, we proceed to state the first direction necessary to conclude that the input

instance I of Clique and our instance bI of Above-Max BSM are equivalent.

Lemma 4.2.5. If I is a Yes-instance, then bI is a Yes-instance.

Proof. Suppose that I is a Yes-instance, and let U be the vertex set of a clique on

k vertices in G. We denote MU

V
= {mi

v
2 MV : v 2 U} and MU

E
= {mi

{u,v} 2 ME :

u, v 2 U}. Then, we define a matching µ as follows.

• For all mi

v
2 MV :

– If mi

v
2 MU

V
: µ(mi

v
) = w3�i

v
.

– Else: µ(mi

v
) = wi

v
.

• For all mi

e
2 ME:

– If mi

e
2 MU

E
: µ(mi

e
) = w3�i

e
.

– Else: µ(mi

e
) = wi

e
.

58

• For all emi 2 fM : µ(emi) = ewi.

• µ(m⇤) = w⇤.

We claim that µ 2 SM(bI) and balance(µ)  bk, which would imply that bI is aYes-

instance. To this end, we first show that µ 2 SM(bI). Since for all i 2 {1, 2, . . . , �},

it holds that µ(emi) = ewi and pemi(ewi) = p ewi(emi) = 1, we have that there cannot exist

a blocking pair with at least one person from fM [fW . Thus, there can also not be a

blocking pair with any person from {m⇤, w⇤}.

On the one hand, notice that for every m 2 (MV \MU

V
) [(ME \MU

E
) [{m⇤},

the woman most preferred by m who is outside fW is also the one with whom it is

matched. Thus, no man in (MV \MU

V
)[(ME \MU

E
)[{m⇤} can belong to a blocking

pair. Moreover, the set of acceptable partners of any woman in WE matched to a

man in ME \MU

E
is a subset of fM [(ME \MU

E
), and therefore such a woman cannot

belong to a blocking pair. On the other hand, let W 0 denote the set of every woman

that is matched to a man m 2 MU

V
[MU

E
. Then, for every w 2 W 0, the man most

preferred by w is also the one with whom she is matched. Therefore, no woman in

W 0 can belong to a blocking pair. Hence, we also conclude that no woman in WE

can belong to a blocking pair.

Thus, if there exists a blocking pair, it must consist of a man m 2 MU

V
[MU

E
and

a woman w 2 WV \W 0. Suppose, by way of contradiction, that there exists such a

blocking pair (m,w). First, let us assume that m = mi

v
2 MU

V
. In this case, since

apart from wi

v
, all women in A(mi

v
) belong to fW [{µ(mi

v
)}, we deduce that w = wi

v
.

However, wi

v
prefers µ(wi

v
) over mi

v
, and thus we reach a contradiction. Next, we

assume that m = mi

{u,v} 2 MU

E
. In this case, it must hold that w is either wi

v
or wi

u
.

Without loss of generality, we assume that w = wi

v
. However, since mi

{u,v} 2 MU

E
, we

have that v 2 U . Therefore, µ(wi

v
) = m3�i

v
. Since wi

v
prefers m3�i

v
over mi

{u,v}, we

reach a contradiction.

59

It remains to prove that balance(µ)  bk. To this end, we need to show that

max{
X

(m,w)2µ

pm(w),
X

(m,w)2µ

pw(m)}  |M |+ � + 6(k +
k(k � 1)

2
).

First, note that

X

(m,w)2µ

pm(w) =
X

m2MU
V

pm(µ(m)) +
X

m2MV \MU
V

pm(µ(m)) +
X

m2MU
E

pm(µ(m))

+
X

m2ME\MU
E

pm(µ(m)) +
X

m2fM

pm(µ(m)) + pm⇤(µ(m⇤))

= 4|MU

V
|+ |MV \MU

V
|+ 4|MU

E
|+ |ME \MU

E
|+ |fM |+ � + 1

= |M |+ � + 3(|MU

V
|+ |MU

E
|) = |M |+ � + 6(k +

k(k � 1)

2
).

Second, note that

X

(m,w)2µ

pw(m) =
X

m2MU
V

pµ(m)(m) +
X

m2MV \MU
V

pµ(m)(m) +
X

m2MU
E

pµ(m)(m)

+
X

m2ME\MU
E

pµ(m)(m) +
X

m2fM

pµ(m)(m) + pµ(m⇤)(m
⇤)

= |MU

V
|+ |MV \MU

V
|(|E|+ 2) + |MU

E
|

+|ME \MU

E
|(|V ||E|+ 2) + |fM |+ 1

= |M |+ 2(|V |� k)(|E|+ 1) + 2(|E|� k(k � 1)

2
)(|V ||E|+ 1)

= |M |+ � + 6(k +
k(k � 1)

2
).

This concludes the proof of the lemma. ⇧

We now turn to prove the second direction.

Lemma 4.2.6. If bI is a Yes-instance, then I is a Yes-instance.

Proof. Suppose that bI is a Yes-instance, and let µ be a stable matching such that

60

balance(µ)  bk. By Observations 4.2.1 and 4.2.2, it holds that

• For all i 2 {1, 2, . . . , �}: µ(emi) = ewi.

• µ(m⇤) = w⇤.

Thus, since Observation 4.2.3 implies that all vertices in MV should be matched

by µ, we deduce that

• For all v 2 V : Either both µ(m1
v
) = w1

v
and µ(m2

v
) = w2

v
or both µ(m2

v
) = w1

v

and µ(m1
v
) = w2

v
.

Let U denote the set of every v 2 V such that µ(m2
v
) = w1

v
and µ(m1

v
) = w2

v
.

Moreover, denote MU

V
= {mi

v
2 MV : v 2 U}. By the item above, and since all

vertices in ME should also be matched by µ, we further deduce that

• For all e 2 E: Either both µ(m1
e
) = w1

e
and µ(m2

e
) = w2

e
or both µ(m2

e
) = w1

e

and µ(m1
e
) = w2

e
.

Let S denote the set of every e 2 E such that µ(m2
e
) = w1

e
and µ(m1

e
) = w2

e
.

Moreover, denote MS

E
= {mi

e
2 ME : e 2 S}. If there existed {u, v} 2 S such that

u /2 U , then (m1
{u,v}, w

1
u
) would have formed a blocking pair, which contradicts the

fact that µ is a stable matching. Thus, we have that the set of endpoints of the edges

in S is a subset of U .

We claim that |U | = k and that U is the vertex set of a clique in G, which would

imply that I is a Yes-instance. Since we have argued that the set of endpoints of the

edges in S is a subset of U , it is su�cient to show that |U |  k and |S| � k(k � 1)

2

(note that |S| � k(k � 1)

2
implies that |U | � k), as this would imply that U is indeed

the vertex set of a clique on k vertices in G. First, since balance(µ)  bk, we have

61

that
X

(m,w)2µ

pm(w)  |M |+ � + 6(k +
k(k � 1)

2
). Now, note that

X

(m,w)2µ

pm(w) =
X

m2MU
V

pm(µ(m)) +
X

m2MV \MU
V

pm(µ(m)) +
X

m2MS
E

pm(µ(m))

+
X

m2ME\MS
E

pm(µ(m)) +
X

m2fM

pm(µ(m)) + pm⇤(µ(m⇤))

= 4|MU

V
|+ |MV \MU

V
|+ 4|MS

E
|+ |ME \MS

E
|+ |fM |+ � + 1

= |M |+ � + 6(|U |+ |S|).

Thus, we deduce that |U | + |S|  k +
k(k � 1)

2
. Now, observe that since

balance(µ)  bk, we also have that
X

(m,w)2µ

pw(m)  |M |+ � + 6(k +
k(k � 1)

2
). Here,

on the one hand we note that

X

(m,w)2µ

pw(m) =
X

m2MU
V

pµ(m)(m) +
X

m2MV \MU
V

pµ(m)(m) +
X

m2MS
E

pµ(m)(m)

+
X

m2ME\MS
E

pµ(m)(m) +
X

m2fM

pµ(m)(m) + pµ(m⇤)(m
⇤)

= |MU

V
|+ |MV \MU

V
|(|E|+ 2) + |MS

E
|

+|ME \MS

E
|(|V ||E|+ 2) + |fM |+ 1

= |M |+ 2(|V |� |U |)(|E|+ 1) + 2(|E|� |S|)(|V ||E|+ 1)

= |M |+ 2(|V |+ |E|+ |V ||E|+ |V ||E|2)

�2|U |(|E|+ 1)� 2|S|(|V ||E|+ 1).

On the other hand, we note that

bk = |M |+ � + 6(k +
k(k � 1)

2
)

= |M |+ 2(|V |+ |E|+ |V ||E|+ |V ||E|2)� k(4 + 4k + 2|E|+ (k � 1)|V ||E|)

+6(k +
k(k � 1)

2
)

= |M |+ 2(|V |+ |E|+ |V ||E|+ |V ||E|2)� 2k(|E|+ 1)� k(k � 1)(|V ||E|+ 1).

62

Thus, we have that

|U |(|E|+ 1) + |S|(|V ||E|+ 1) � k(|E|+ 1) +
k(k � 1)

2
(|V ||E|+ 1)

Recall that we have also shown that |U |+ |S|  k +
k(k � 1)

2
. Thus, since |U | 

k +
k(k � 1)

2
� |S|, to satisfy the above equation it must hold that |S| � k(k � 1)

2
.

Since |U | + |S|  k +
k(k � 1)

2
, we deduce that |U |  k. This, as we have argued

earlier, finished the proof. ⇧

This concludes the proof of Theorem 7.

4.3 Kernel

In this section, we design a kernelization algorithm for Above-Min BSM. More

precisely, we prove Theorem 8.

4.3.1 Functional Balanced Stable Marriage

To prove Theorem 8, we first prove the following result for the Above-Min FBSM

problem.

Lemma 4.3.1. Above-Min FBSM admits a kernel with at most 2t men, at most

2t women, and such that the image of the preference function of each person is a

subset of {1, 2, . . . , t+ 1}.

To obtain the desired kernelization algorithm, we execute the following plan

if t � 0. (If t < 0, then k < min{OM , OW}  max{OM , OW}. We prove in

Lemma 4.3.2 that it is a No-instance.)

63

1. Cleaning Prefixes and Su�xes. Simplify the preference functions by “clean-

ing” su�xes and thereby also “cleaning” prefixes.

In this step, we remove from a person a’s set of acceptable partners, A(a), an

individual who will never be matched to the former in any stable matching of

the given instance. Intuitively speaking, we remove people who are either in

the prefix or the su�x of from a’s preference list. A prefix for a man (woman)

consists of women (men) who are ranked better than his (her) man (woman)

optimal stable partner. Analogously, a su�x for a man (woman) consists of

women (men) who are ranked lower than his (her) woman (man) optimal stable

partner. For a man m, we execute this step by removing from A(m) all those

women whose fm–value is either lower than fm(µM(m)), the function value

of m’s man-optimal stable matching partner, or higher than fm(µW (m)), the

function value of m’s woman optimal stable matching partner. Symmetrically,

for woman w, we reduce A(w) by removing all those men whose fw–value

is lower than fw(µW (w)) or higher than fw(µM(w)). Since the domain of a

preference function fa is the set of acceptable partners A(a), this step restricts

the preference function itself.

2. Perfect Matching. Zoom into the set of people matched by every stable

matching.

When the preferences are complete, that is, each person is an acceptable

partner for every individual on the other side, then the stable matchings are

perfect. Otherwise, we know that by the Rural Hospital theorem [59], if

a person (man/woman) is unmatched in the man optimal stable matching,

then that person will be unmatched in every stable matching in the instance.

Consequently, we can remove such people the instance and restrict the preference

functions appropriately. This ensures that in the resulting instance, every stable

matching is a perfect matching.

3. Overcoming Sadness. Bound the number of “sad” people. A person is sad

64

if s/he is not a “happy” person, defined to be one who has the same partner in

every stable matching. Thus, an individual a is sad if a’s best stable matching

partner is also not a’s worst stable matching partner.

In this step, we take an accounting of the progress we have made so far in

reducing the size of the instance, namely by reducing the number of men

and the number of women. We show that after when the first two steps are

not applicable, then the number of sad people in the instance convey useful

properties about the instance. Specifically, if the number of sad women/ men

in the instance is more than 2t, then it is a No-instance. Conversely, if there

are no sad men (or women) in the instance, then it is a Yes-instance if and

only if the balance()-value of the man optimal stable matching is at most k.

4. Marrying Happy People. Remove “happy” people from the instance.

Note that a happy man is always matched to the same happy woman in

every stable matching; such a pair is better known as a fixed pair in the

stable matching literature. By removing a fixed pair, say (mh, wh), from the

instance, we are creating a new instance in which the set of stable matchings

are in bijective correspondence with the set of stable matchings in the original

instance. The balance values of each matchings, however, will goes down by

a fixed and known quantity, fmh
(wh) or fwh

(mh). So when when we remove

stable pair from our instance, we transfer its contribution to the balance()-value

of the original instance to the new instance. This ensures that the balance

values of each of the matchings in the new instance is same as the value of the

corresponding matching in the original instance.

5. Removing High Value Partners. Obtain “compact” preference functions

by truncating “high-values”.

For each person, the goal is to remove acceptable partners who if matched to

(in a stable matching) will inexorably raise the balance value of the resulting

65

matching to higher than k, irrespective of the other matching pairs. Thus,

it follows that such a matching cannot be a yes certificate (the reason it is

a Yes-instance) for our instance. Moreover, if it is a No-instance, then the

balance value of every stable matching must be higher than k. Hence, removing

a very high value stable matching from the instance (as long as there are others

in the instance4) will not destroy the equivalence property of the resulting

instance.

Specifically, we know that if for a man m and woman w, who are each others

acceptable partner, we either have fm(w) > fm(µM (m))+(k�OM) or fw(m) >

fw(µW (w))+ (k�OW), then any stable matching that contains the pair (m,w)

will have balance()-value greater than k. Hence, it is safe to remove w from

the set A(m) and m from A(w).

Since we cleaned the prefixes, it may be that for some man m and woman w,

the pre-images f�1
m

(1) and f�1
w

(1) may not be m’s man optimal stable matching

partner and w’s woman optimal stable partner, respectively. In this scenario

we perform the following step.

6. Shrinking Gaps. Shrink some of the gaps created by previous steps.

We perform this step by decreasing fm(w0) by 1 for every woman w0 2 A(m).

Similarly, for every m0 2 A(w), we decrease fw(m0) by 1. Since, we are reducing

the preference function value of m and w’s best stable matching partner, and

by Step 1 we know that both of them will be matched in every stable matching,

it is necessary that we reduce the value of k (the target balance()-value) by 1.

This would complete the construction of the kernel for Above-Min FBSM.

One way to see the intuition behind the safeness of each of our reduction rules is

to see their e↵ect on the stable matching lattice of the original instance.

4Since our instance only contains sad men and women, it follows readily that there are more
than one stable matchings

66

E↵ect on the stable matching lattice: Let I denote the initial instance. The

applications of Steps 1–3 leaves the stable matching lattice of I intact. Step 4 creates

an instance, denoted by J , whose stable matching lattice consists of submatchings

of the original instance such that the stable matchings in the two instances are in

bijective correspondence. Specifically, each stable matching µ in I gives rises to a

stable matching µ0 in J such that µ\µ0 is the set of fixed pairs in I. Step 5 actually

results in a lattice that is a subset of the lattice of the initial instance. Finally it is

easy to see to that Step 6, which does not remove or alter partnerships, and thus

does not have any a↵ect on the stable matching lattice of the initial instance.

Obtaining a kernel for Above-Min BSM: Using the kernel for Above-Min

FBSM, we obtain a kernel for Above-Min BSMby interpreting the preference

functions as preference lists. The main roadblock towards this as that the preference

functions may have “gaps” in the function values, i.e the function fm (fw) for some

man m (woman w) may not be surjective in the range [fm(µM(m)), fm(µW (m))]

([fw(µW (w)), fw(µM(w))]). Notably, while creating the preference list for m, we

cannot have gaps in the preference list of m.

7. Maximum function value is bounded. Since Step 5 is not applicable, for

any pair (m,w) who are each others acceptable partner, we have

fm(w)  fm(µM(m))+(k�OM)  fm(µM(m))+k�min{OM , OW} = fm(µM(m))+t

Symmetrically, we have fw(m)  fw(µM(m)) + t.

Since Step 6 is not applicable, it follows that fm(µM (m)) = 1 andfw(µW (w)) =

1. Hence, we have ensured that t + 1 is the maximum value any preference

function can take.

8. Filling the “gaps” in the preference function. For a man m, consider

67

its preference function values in increasing order: fm(x1), fm(x2),fm(xt0),

where t0  t+ 1, due to Step 7.

If any of these two adjacent values are not actually consecutive, then we have a

“gap” in our preference function. For some i 2 [t0] let si = fm(xi+1)�fm(xi) > 1,

then we fill the “gap” between fm(xi) and fm(xi+1) by s dummy women

y1, . . . ysi , where si  t0 � 1  t. We do this for every gap that exists in the

preference function of m. Since the maximum value of fm(·) is at most t+ 1,

thus we require no more than t dummy women to fill the gaps in m’s preference

function. Note that the same set of t dummy women can be used to fill the gaps

in each man’s preference function. Formally, this is done by defining another

preference function gm which extends the domain of fm such that there are no

gaps in gm. The preference function gm can be interpreted as a preference list

in a straightforward fashion: [x1, . . . , xi, y1, . . . , ys, xi+1, . . . , xt0]. Doing this for

every agent man/woman whose preference function has ”gaps” leads to a kernel

for Above-Min BSM. Thus, overall the kernel for Above-Min BSMhas t

additional men and women each.

In our upcoming discussion, we elaborate on each of these reduction rules formally.

In what follows, we let I denote our current instance of Above-Min FBSM. Initially,

this instance is the input instance, but as the execution of our algorithm progresses,

the instance is modified. The reduction rules that we present are applied exhaustively

in the order of their presentation. In other words, at each point of time, the first rule

whose condition is true is the one that we apply next. In particular, the execution

terminates once the value of t drops below 0, as implied by the following rule.

It is worth mentioning that the phenomenon captured by some of our initial

Reduction Rules such as 4.3.2 and 4.3.3 have previously been studied (see [71]

Theorem 1.2.5 and 1.4.2), albeit in a di↵erent context or language. The safeness of

those rules, therefore, may well be a foregone conclusion for some readers. However,

68

we present all the proofs here for the sake of completeness. From Proposition 4.1.1

we can infer that each of our reduction rules can indeed be implemented in time

polynomial in number of men and women.

Reduction Rule 4.3.1. If k < max{OM , OW}, then return No.

Lemma 4.3.2. Reduction Rule 4.3.1 is safe.

Proof. For every µ 2 SM, it holds that balance(µ) � max{OM , OW}. Thus, if

k < max{OM , OW}, then every µ 2 SM satisfies balance(µ) > k. In this case, we

conclude that Bal > k, and therefore I is a No-instance. ⇧

Note that if t < 0, then k < min{OM , OW}  max{OM , OW}.

Cleaning Prefixes and Su�xes. We begin by modifying the images of the

preference functions. We remark that it is necessary to perform this step first as

otherwise the following steps would not be correct. To clean prefixes while ensuring

both safeness and that the parameter t does not increase, we would actually need to

clean su�xes first. Formally, we define su�xes as follows.

Definition 4.3.1. Let (m,w) denote an acceptable pair. If m is matched by µW and

fm(w) > fm(µW (m)), then we say that w belongs to the su�x of m. Similarly, if w

is matched by µM and fw(m) > fw(µM (w)), then we say that m belongs to the su�x

of w.

By Proposition 4.1.3, we have the following observation.

Observation 4.3.1. Let (m,w) denote an acceptable pair such that one of its

members belongs to the su�x of the other member. Then, there is no µ 2 SM(I)

that matches m with w.

69

For every person a, let worst(a) be the person in A(a) to whom fa assigns its

worst preference value. More precisely, worst(a) = argmax
b2A(a)fa(b). We will now

clean su�xes.

Reduction Rule 4.3.2. If there exists a person a such that worst(a) belongs to the

su�x of a, then define the preference functions as follows.

• f 0
a
= fa|A(a)\{worst(a)} and f 0

worst(a) = fworst(a)|A(worst(a))\{a}.

• For all b 2 M [W\{a,worst(a)}: f 0
b
= fb

The new instance is J = (M,W, {f 0
m0}m02M , {f 0

w0}w02W , k).

Lemma 4.3.3. Reduction Rule 4.3.2 is safe, and t(I) = t(J).

Proof. By the definition of the new preference functions, we have that for ev-

ery µ 2 SM(I) \ SM(J), it holds that
P

(m,w)2µ fm(w) =
P

(m,w)2µ f
0
m
(w) and

P
(m,w)2µ fw(m) =

P
(m,w)2µ f

0
w
(m). In particular, this means that to conclude that

Bal(I) = Bal(J) (which implies safeness) as well as that OM(I) = OM(J) and

OW (I) = OW (J) (which implies that t(I) = t(J)), it is su�cient to show that

SM(I) = SM(J). For this purpose, first consider some µ 2 SM(I). By Observation

4.3.1, it holds that (a,worst(a)) /2 µ. Hence, µ is a matching in J . Moreover, if µ

has a blocking pair in J , then by the definition of the new preference functions, it is

also a blocking pair in I. Since µ is stable in I, we have that µ 2 SM(J).

In the second direction, consider some µ 2 SM(J). Then, it is clear that µ is a

matching in I. Moreover, if µ has a blocking pair (m,w) in I that is not (a,worst(a)),

then (m,w) is an acceptable pair in J , and therefore by the definition of the new

preference functions, we have that (m,w) is also a blocking pair in J . Hence, since

µ is stable in J , the only pair that can block µ in I is (a,worst(a)). Thus, to show

that µ 2 SM(I), it remains to prove that (a,worst(a)) cannot block µ in I. Suppose,

70

by way of contradiction, that (a,worst(a)) blocks µ in I. In particular, this means

that fa(worst(a)) < fa(µ(a)). However, this contradicts the definition of worst(a). ⇧

By cleaning su�xes, we actually also accomplish the objective of cleaning prefixes,

which are defined as follows.

Definition 4.3.2. Let (m,w) denote an acceptable pair. If m is matched by µM and

fm(w) < fm(µM (m)), then we say that w belongs to the prefix of m. Similarly, if w

is matched by µW and fw(m) < fw(µW (w)), then we say that m belongs to the prefix

of w.

Lemma 4.3.4. Let I be an instance of Above-Min FBSM on which Reduction

Rules 4.3.1 to 4.3.2 have been exhaustively applied. Then, there does not exist an

acceptable pair (m,w) such that one of its members belongs to the prefix of the other

one.

Proof. Suppose, by way of contradiction, that there exists an acceptable pair (m,w)

such that one of its members belongs to the prefix of the other one. Without loss of

generality, assume that w belongs to the prefix of m. Then, fm(w) < fm(µM(m)).

Since µM is a stable matching, it cannot be blocked by (m,w), which means that w

is matched by µM and fw(µM(w)) < fw(m). Thus, we have that m belongs to the

su�x of w, which contradicts the assumption that Reduction Rule 4.3.2 was applied

exhaustively. ⇧

Corollary 4.3.1. Let I be an instance of Above-Min FBSM on which Reduction

Rules 4.3.1 to 4.3.2 have been exhaustively applied. Then, for every acceptable pair

(m,w) in I where m and w are matched (not necessarily to each other) by both

µM and µW , it holds that fm(µM(m))  fm(w)  fm(µW (m)) and fw(µW (w)) 

fw(m)  fw(µM(w)).

71

Perfect Matching. Having Corollary 4.3.1 at hand, we are able to provide a

simple rule that allows us to assume that every solution matches all people.

Reduction Rule 4.3.3. If there exists a person unmatched by µM , then let M 0 and

W 0 denote the subsets of men and women, respectively, who are matched by µM . For

each a 2 M 0 [W 0, denote A0(a) = A(a) \ (M 0 [W 0), and define f 0
a
= fa|A0(a). The

new instance is J = (M 0,W 0, {f 0
m
}m2M 0 , {f 0

w
}w2W 0 , k).

Note that if a person is unmatched in µM , then, due to Proposition 4.1.2, s/he is

unmatched in every stable matching in I. To prove the safeness of this rule, we first

prove the following lemma.

Lemma 4.3.5. Let I be an instance of Above-Min FBSM on which Reduction

Rules 4.3.1 to 4.3.2 have been exhaustively applied. Then, for every person a not

matched by µM , it holds that A(a) = ;.

Proof. Let a be a person not matched by µM . Then, by Proposition 4.1.2, it holds

that a is not matched by any stable matching. We assume w.l.o.g. that a is a man,

say m. First, note that A(m) cannot contain any woman w that is not matched by

some stable matching, else (m,w) would have formed a blocking pair for that stable

matching. Second, we claim that A(m) cannot contain a woman w that is matched

by some stable matching. Suppose, by way of contradiction, that this claim is false.

Then, by Proposition 4.1.2, it holds that A(m) contains a woman w that is matched

by µM . We have that w prefers µM(w) over m, else (m,w) would have formed a

blocking pair for µM , which is impossible as µM is a stable matching. However,

this implies that m belongs to the su�x of w, which contradicts the supposition

that Reduction Rule 4.3.2 has been exhaustively applied. We thus conclude that

A(a) = ;. ⇧

Lemma 4.3.6. Reduction Rule 4.3.3 is safe, and t(I) = t(J).

72

Proof. By the definition of the new preference functions, we have that for ev-

ery µ 2 SM(I) \ SM(J), it holds that
P

(m,w)2µ fm(w) =
P

(m,w)2µ f
0
m
(w) and

P
(m,w)2µ fw(m) =

P
(m,w)2µ f

0
w
(m). To conclude that the lemma is correct, it is

thus su�cient to argue that SM(I) = SM(J). For this purpose, first consider some

µ 2 SM(I). By Proposition 4.1.2, we have that µ is also a matching in J .

Moreover, if µ has a blocking pair in J , then by the definition of the new

preference functions, it is also a blocking pair in I. Since µ is stable in I, we have

that µ 2 SM(J).

In the second direction, consider some µ 2 SM(J). Then, it is clear that µ is

a matching in I. By Lemma 4.3.5, if µ has a blocking pair (m,w) in I, then both

m 2 M 0 and w 2 W 0. However, for such a blocking pair (m,w), we have that (m,w)

is an acceptable pair in J , and therefore by the definition of the new preference

functions, we have that (m,w) is also a blocking pair in J . Hence, since µ is stable

in J , we conclude that µ is also stable in I. ⇧

By Proposition 4.1.2, from now onwards, we have that for the given instance,

any stable matching is a perfect matching. Due to this observation, we can denote

n = |M | = |W |, and for any stable matching µ, we have the following equalities.

(I)
X

(m,w)2µ

fm(w) =
X

m2M

fm(µ(m));
X

(m,w)2µ

fw(m) =
X

w2W

fw(µ(w)).

Overcoming Sadness. As every stable matching is a perfect matching, every

person is matched by every stable matching, including the man-optimal and woman-

optimal stable matchings. Thus, it is well defined to classify the people who do not

have the same partner in the man-optimal and woman-optimal stable matchings as

“sad”. That is,

Definition 4.3.3. A person a 2 M [W is sad if µM(a) 6= µW (a).

73

We let MS and WS denote the sets of sad men and sad women, respectively.

People who are not sad are termed happy. Accordingly, we let MH and WH denote

the sets of happy men and happy women, respectively. Note that MS = ; if and only

if WS = ;. Moreover, note that by the definition of µM and µW , for a happy person

a it holds that a and µM(a) = µW (a) are matched to one another by every stable

matching. Let us now bound the number of sad people in a Yes-instance.

Reduction Rule 4.3.4. If |MS| > 2t or |WS| > 2t, then return No.

Lemma 4.3.7. Reduction Rule 4.3.4 is safe.

Proof. We only prove that if |MS| > 2t, then I is a No-instance, as the proof of the

other case is symmetric to this one. Let us assume that |MS| > 2t. Suppose, by way

of contradiction, that I is a Yes-instance. Then, there exists a stable matching µ

such that balance(µ)  k. Partition MS = M 0
S
]M 00

S
as follows. Set M 0

S
to be the

set of all m in MS such that m is not the partner of µ(m) in µW .

M 0
S
= {m 2 MS | fµ(m)(m) > fµ(m)(µW (µ(m)))}.

Accordingly, set M 00
S
= MS \ M 0

S
. Since |MS| > 2t, at least one among |M 0

S
| and

|M 00
S
| is (strictly) larger than t. Let us first handle the case where |M 0

S
| > t. Then,

X

w2W

fw(µ(w)) =
X

{w |µ(w)2M 0
S}

fw(µ(w)) +
X

{w |µ(w)/2M 0
S}

fw(µ(w))

�
X

{w |µ(w)2M 0
S}

[fw(µW (w)) + 1] +
X

{w |µ(w)/2M 0
S}

fw(µW (w))

=
X

w2W

fw(µW (w)) +
X

{w |µ(w)2M 0
S}

1 = OW + |M 0
S
|

> OW + t � k.

Here, the first inequality followed directly from the definition of M 0
S
. As we have

74

reached a contradiction, it must hold that |M 00
S
| > t. However, we now have that

X

m2M

fm(µ(m)) =
X

m2M 00
S

fm(µ(m)) +
X

m/2M 00
S

fm(µ(m))

�
X

m2M 00
S

[fm(µM(m)) + 1] +
X

m/2M 00
S

fm(µM(m))

=
X

m2M

fm(µM(m)) +
X

{m |m2M 00
S}

1 = OM + |M 00
S
|

> OM + t � k.

Here, the first inequality followed from the definition of M 00
S
. Indeed, for all

m 2 M 00
S
, we have that fµ(m)(m)  fµ(m)(µW (µ(m))), else m would have belonged to

M 0
S
. However, in this case we deduce that m = µW (µ(m)), and since m 2 MS, we

have that µ(m) 6= µM(m), which implies that fm(µ(m)) � fm(µM(m)) + 1. As we

have again reached a contradiction, we conclude the proof. ⇧

Marrying Happy People. Towards the removal of happy people, we first

need to handle the special case where there are no sad people. In this case, there is

exactly one stable matching, which is the man-optimal stable matching (that is equal,

in this case, to the woman-optimal stable matching). This immediately implies the

safeness of the following rule.

Reduction Rule 4.3.5. If MS = WS = ;, then return Yes if balance(µM)  k and

No otherwise.

Observation 4.3.2. Reduction Rule 4.3.5 is safe.

We now turn to discard happy people. When we perform this operation, we need

to ensure that the balance of the instance is preserved. This is because we do not

know which side (men or women) attains the Bal(I) value, hence we cannot reduce

the quantity k by the dissatisfaction of the happy people on that side. Consequently,

we need to ensure that Bal(I) = Bal(J), where J denotes the new instance resulting

75

from the removal of some happy people. Towards this, we let (mh, wh) denote a happy

pair, which is simply a pair of a happy man and happy woman who are matched to

each other in every stable matching.5 Then, we redefine the preference functions in

a manner that allows us to transfer the “contributions” of mh and wh from Bal(I)

to Bal(J) via some sad man and woman. We remark that these sad people exist

because Reduction Rule 4.3.5 does not apply. The details are as follows.

Reduction Rule 4.3.6. If there exists a happy pair (mh, wh), then proceed as

follows. Select an arbitrary sad man ms and an arbitrary sad woman ws. Denote

M 0 = M\{mh} and W 0 = W\{wh}. For each person a 2 M 0[W 0, the new preference

function f 0
a
: A(a)\{mh, wh} ! N is defined as follows.

• For each w 2 A(ms)\{wh}: f 0
ms

(w) = fms(w) + fmh
(wh).

• For each m 2 A(ws)\{mh}: f 0
ws
(m) = fws(m) + fwh

(mh).

• For each w 2 W 0\{ws}: f 0
w
= fw|M 0, and for each m 2 M 0\{ms}: f 0

m
= fm|W 0.

The new instance is J = (M 0,W 0, {f 0
m
}m2M 0 , {f 0

w
}w2W 0 , k).

The following lemma proves the forward direction of the safeness of Reduction

Rule 4.3.6.

Lemma 4.3.8. Let µ 2 SM(I) and J be the instance produced by Reduction

Rule 4.3.6. Then, µ0 = µ \ {(mh, wh)} is a stable matching in J such that

balanceJ (µ0) = balanceI(µ).

Proof. We first show that µ0 2 SM(J), i.e., µ0 is stable in J . Then, we show that

balanceJ (µ0) = balanceI(µ). By Reduction Rule 4.3.3, it holds that µ is a perfect

matching in I. Since (mh, wh) is a happy pair, it is clear that (mh, wh) 2 µ, and

therefore µ0 is a perfect matching in J . Let (m,w) /2 µ0 be some acceptable pair in

5Such a pair is often referred to as fixed pair in literature.

76

J . Since µ 2 SM(I) and it is a perfect matching, it holds that fm(w) > fm(µ(m))

or fw(m) > fw(µ(w)). Let us consider these two possibilities separately.

• Suppose that fm(w) > fm(µ(m)). If m 6= ms, then f 0
m
(w) = fm(w) and

f 0
m
(µ0(m)) = fm(µ(m)), and therefore f 0

m
(w) > f 0

m
(µ0(m)). Else, f 0

m
(w) =

fm(w) + fmh
(wh) and f 0

m
(µ0(m)) = fm(µ(m)) + fmh

(wh), and therefore again

f 0
m
(w) > f 0

m
(µ0(m)).

• Suppose that fw(m) > fw(µ(w)). Analogously to the previous case, we get

that f 0
w
(m) > f 0

w
(µ0(w)).

Since the choice of (m,w) was arbitrary, we conclude that µ0 does not have

a blocking pair in J , and therefore µ0 2 SM(J). To show that balanceJ (µ0) =

balanceI(µ), note that

balanceJ (µ
0) = max{

X

m2M\{mh}

f 0
m
(µ0(m)),

X

w2W\{wh}

f 0
w
(µ0(w))}

= max{f 0
ms

(µ0(ms)) +
X

m2M\{mh,ms}

f 0
m
(µ0(m)),

f 0
ws
(µ0(ws)) +

X

w2W\{wh,ws}

f 0
w
(µ0(w))}

= max{fms(µ(ms)) + fmh
(wh) +

X

m2M\{mh,ms}

fm(µ(m)),

fws(µ(ws)) + fwh
(mh) +

X

w2W\{wh,ws}

fw(µ(w))}

= max{
X

m2M

fm(µ(m)),
X

w2W

fw(µ(w))} = balanceI(µ).

This concludes the proof. ⇧

The following observation helps to prove the reverse direction of the safeness of

Reduction Rule 4.3.6.

77

Observation 4.3.3. Let I be an instance of Above-Min FBSM on which Reduction

Rules 4.3.1 to 4.3.2 have been exhaustively applied. Then, for every happy pair

(mh, wh), it holds that A(mh) = {wh} and A(wh) = {mh}.

Lemma 4.3.9. Let µ0 2 SM(J). Then, µ = µ0 [{(mh, wh)} is a stable matching in

I such that balanceI(µ) = balanceJ (µ0).

Proof. We first show that µ 2 SM(I). By Reduction Rule 4.3.3, it holds that µ0 is a

perfect matching in J . Since (mh, wh) is a happy pair and by Observation 4.3.3, we

have that µ is a perfect matching in I such that neither mh nor wh participate in any

pair that blocks µ (if such a pair exists). Let (m,w) /2 µ0 be some acceptable pair in

I such that m 6= mh and w 6= wh. Since µ0 2 SM(J) and it is a perfect matching,

it holds that f 0
m
(w) > f 0

m
(µ0(m)) or f 0

w
(m) > f 0

w
(µ0(w)). Let us consider these two

possibilities separately.

• Suppose that f 0
m
(w) > f 0

m
(µ(m)). If m 6= ms, then fm(w) = f 0

m
(w) and

fm(µ(m)) = f 0
m
(µ0(m)), and therefore fm(w) > fm(µ(m)). Else, fm(w) =

f 0
m
(w)� fmh

(wh) and fm(µ(m)) = f 0
m
(µ0(m))� fmh

(wh), and therefore again

fm(w) > fm(µ(m)).

• Suppose that f 0
w
(m) > f 0

w
(µ0(w)). Analogously to the previous case, we get

that fw(m) > fw(µ(w)).

Since the choice of (m,w) was arbitrary, we conclude that µ does not have

a blocking pair in I, and therefore µ 2 SM(I). To show that balanceI(µ) =

balanceJ (µ0), we follow the exact same argument as the one present in the proof of

Lemma 4.3.8. ⇧

We now turn to justify the use of Reduction Rule 4.3.6. By Lemmata 4.3.8

and 4.3.9, it holds that Bal(I) = Bal(J), and that both balanceI(µM(I)) =

78

balanceJ (µM(J)) and balanceI(µW (I)) = balanceJ (µW (J)). As the argument k

remained untouched, we have the following lemma.

Lemma 4.3.10. Reduction Rule 4.3.6 is safe, and t(I) = t(J).

Before we examine the preference functions more closely, we prove the following

result.

Lemma 4.3.11. Given an instance I of Above-Min FBSM, one can exhaustively

apply Reduction Rules 4.3.1 to 4.3.6 in polynomial time to obtain an instance J such

that t(J)  t(I). All people in J are sad and matched by every stable matching,

and there exist at most 2t men and at most 2t women.

Proof. Notice that each one of Reduction Rules 4.3.1 to 4.3.6 can be applied in

polynomial time. By applying them sequentially and exhaustively, the process either

terminates by outputting a trivial Yes (No)-instance or it shrinks the size of the

instance in each step. Hence, it is clear that the instance J is obtained in polynomial

time, and the claim that t(J)  t(I) follows from Lemmata 4.3.6 and 4.3.10. Due to

Reduction Rules 4.3.3 and 4.3.6, we know that each person in J is sad and matched

by every stable matching. Thus, due to Reduction Rule 4.3.4, we also know that

there exist at most 2t men and at most 2t women. ⇧

Truncating High-Values. So far we have bounded the number of people.

However, the images of the preference functions can contain integers that are not

bounded by a function polynomial in the parameter. Thus, even though the number

of people is upper bounded by 4t, the total size of the instance can be huge. Hence,

we need to process the images of the preference functions.

The intuition behind the Reduction Rule 4.3.7 (and thus the proof of Lemma

4.3.12) can be described as follows. Recall that we have already modified preference

79

functions in Reduction Rule 4.3.2 so that they would not contain irrelevant informa-

tion in the prefixes and su�xes. Our current goal is to truncate “high-values” of

preference functions. Suppose that there exists a stable matching µ and a man m such

that fm(µ(m)) > t+fm(µM (m)). That is, µ matches m to a woman whose functional

value in fm is larger than the functional value of the woman with whom m is matched

by µM by at least t units. Then, balance(µ) �
P

m02M fm0(µ(m0)) > OM + t � k.

Hence, irrespective of whether or not the current instance is a Yes-instance, we

know that µ is not a yes-certificate for our problem. We thus observe that we should

delete all those acceptable pairs whose presence in any stable matching prevents its

balance from being upper bounded by k. Formally, we have the following rule.

Reduction Rule 4.3.7. If there exists an acceptable pair (m,w) such that fm(w) >

(k�OM)+fm(µM (m)) or fw(m) > (k�OW)+fw(µW (w)), then define the preference

functions as follows:

• f 0
m
= fm|A(m)\{w} and f 0

w
= fw|A(w)\{m}.

• For all a 2 M [W\{m,w}: f 0
a
= fa.

The new instance is J = (M,W, {f 0
m0}m02M , {f 0

w0}w02W , k).

Lemma 4.3.12. Reduction Rule 4.3.7 is safe, and t(I) � t(J).

Proof. Without loss of generality, suppose that fm(w) > (k �OM (I)) + fm(µM (m)).

Due to Reduction Rule 4.3.1, we have that k �OM(I) � 0, and therefore fm(w) >

fm(µM(m)), which implies that w 6= µM(m). That is, (m,w) /2 µM . Since fm and

f 0
m
di↵er only at w and fw and f 0

w
di↵er only at m, we have that µM(I) is also a

matching in J , and due to Corollary 4.3.1, we deduce that µM(I) = µM(J). First,

we would like to show that t(I) � t(J). For this purpose, it is su�cient to show

that OM(I)  OM(J) and OW (I)  OW (J). Since µM(I) = µM(J), it is clear

that OM(I) = OM(J). By Reduction Rule 4.3.3, µM(I) matches all people in I.

80

Thus, by Proposition 4.1.2 and since µM (I) = µM (J), we have that µW (J) matches

all people in J , and hence all people in I. By Corollary 4.3.1, for any woman w0

and the man m0 most preferred by w0 in J , it holds that w0 does not prefer m0

over µW (w0) in I. Thus, by the definition of the preference functions, we have that

OW (I)  OW (J).

To show that the rule is safe, we need to show that Bal(I)  k if and only if

Bal(J)  k. For this purpose, let us first suppose that Bal(I)  k. Then, there

exists µ 2 SM(I) such that balanceI(µ)  k. Notice that if µ(m) = w, then since

fm(w) > (k �OM) + fm(µM (m)) and by the equation (I) in “Perfect Matching”, we

have that

k � balanceI(µ) �
X

m02M

fm0(µ(m0))

> (k �OM(I)) +
X

m02M

fm0(µM(m0)) = (k �OM(I)) +OM(I),

which is a contradiction. Hence, (m,w) /2 µ. Therefore, µ is a matching in J .

By the definition of the new preference functions, if µ has a blocking pair in J ,

then this pair also blocks µ in I. Since µ is stable in I, we have that µ is also

stable in J . Now, by our definition of the new preference functions, we have

that balanceI(µ) = balanceJ (µ). Since balanceI(µ)  k, we thus conclude that

Bal(J)  k.

In the second direction, suppose that Bal(J)  k. Then, there exists µ 2 SM(J)

such that balanceJ (µ)  k. Clearly, µ is also a matching in I. Moreover, by the

definition of the preference functions, every acceptable pair in I that is also present

in J cannot block µ in I, else it would have also blocked µ in J . Thus, if µ has

a blocking pair in I, then this pair must be (m,w). We claim that (m,w) cannot

block µ in I, which would imply that µ 2 SM(I). Suppose, by way of contradiction,

that this claim is not true. Recall that we have already proved that µM (I) = µM (J).

Let us denote µM = µM(I). We have that µ matches m, which implies that

81

fm(µ(m)) > fm(w). Since fm(w) > (k � OM(I)) + fm(µM(m)), we deduce that

fm(µ(m)) > (k �OM (I)) + fm(µM (m)). Furthermore, since f 0
m
(µ(m)) = fm(µ(m)),

f 0
m
(µM(m)) = fm(µM(m)) and OM(I) = OM(J), we get that f 0

m
(µ(m)) > (k �

OM(J)) + f 0
m
(µM(m)). However, we then have that

k � balanceJ (µ) �
X

m02M

f 0
m0(µ(m0))

> (k �OM(J)) +
X

m02M

f 0
m0(µM(m0)) = (k �OM(J)) +OM(J),

which is a contradiction. Therefore, µ 2 SM(I). The definition of the new preference

functions imply that balanceI(µ) = balanceJ (µ). Since balanceJ (µ)  k, we may

conclude that Bal(I)  k. ⇧

Shrinking Gaps. Currently, there might still exist a man m or a woman w

such that fm(µM (m)) > 1 or fw(µW (w|)) > 1, respectively. In the following rule, we

would like to decrease some values assigned by the preference functions of such men

and women in a manner that preserves equivalence.

Reduction Rule 4.3.8. If there exist m 2 M and w 2 W such that fm(µM (m)) > 1

and fw(µW (w)) > 1, then define the preference functions as follows.

• For all w 2 A(m): f 0
m
(w) = fm(w) � ↵ and for all m 2 A(w): f 0

w
(m) =

fw(m)� ↵, where ↵ = min{fm(µM(m)), fw(µW (w))}.

• For all a 2 M [W\{m,w}: f 0
a
= fa.

The new instance is J = (M,W, {f 0
m0}m02M , {f 0

w0}w02W , k � ↵).

Lemma 4.3.13. Reduction Rule 4.3.8 is safe, and t(I) = t(J).

Proof. Let us first observe that the set of acceptable pairs in I is equal to the set of

acceptable pairs of J . Furthermore, for every person a, including the cases where

82

this person is either m or w, any two acceptable partners b and b0 of a that satisfy

fa(b) < fa(b0) also satisfy f 0
a
(b) < f 0

a
(b0), and vice versa. Indeed, this observation

follows directly from our definition of the new preference functions. In other words,

if a person prefers some person over another in I, then this person also has the same

preference order in J , and vice versa. We thus deduce that SM(I) = SM(J).

We proceed by claiming that for all µ 2 SM(I), we have that balanceI(µ) =

balanceJ (µ) + ↵. Indeed, by the definition of the new preference functions and the

equation (I) in “Perfect Matching”, we have that balanceI(µ)

= max{
X

m2M

fm(µ(m)),
X

w2W

fw(µ(w))}

= max{fm(µ(m)) +
X

m2M\{m}

fm(µ(m)), fw(µ(w)) +
X

w2W\{w}

fw(µ(w))}

= max{f 0
m
(µ(m)) + ↵ +

X

m2M\{m}

f 0
m
(µ(m)), f 0

w
(µ(w)) + ↵ +

X

w2W\{w}

f 0
w
(µ(w))}

= max{
X

m2M

f 0
m
(µ(m)),

X

w2W

f 0
w
(µ(w))}+ ↵ = balanceJ (µ) + ↵.

Furthermore, the arguments above also show that OM(I) = OM(J) + ↵ and

OW (I) = OW (J) + ↵. Hence, we have that Bal(I) = Bal(J) + ↵. Since k was

decreased by ↵, we may conclude that the rule is safe and that t(I) = t(J). ⇧

After the exhaustive application of Reduction Rule 4.3.8, no more than O(t2)

number of times, at least one of the two parties does not have any member without

a person assigned 1 by his/her preference function. Thus,

Observation 4.3.4. Let I be an instance of Above-Min FBSM that is reduced

with respect to Reduction Rules 4.3.1 to 4.3.8. Then, either (i) for every m 2 M , we

have that fm(µM(m)) = 1, or (ii) for every w 2 W , we have that fw(µW (w)) = 1.

In particular, either (i) OM = |M | or (ii) OW = |W |.

83

This concludes the description of our reduction rules. We are now ready to prove

Lemma 4.3.1.

Proof of Lemma 4.3.1. Given an instance I ofAbove-Min FBSM, our kernelization

algorithm exhaustively applies Reduction Rules 4.3.1 to 4.3.8, after which it outputs

the resulting instance, J , as the kernel. Notice that each rule among Reduction

Rules 4.3.1 to 4.3.8 can be applied in polynomial time, and it either terminates the

execution of the algorithm or shrinks the size of the instance. Hence, it is clear

that the instance J is obtained in polynomial time. The claims that J and I are

equivalent and that t(J)  t(I) follow directly from the lemmata that prove the

safeness of each rule as well as argue with respect to the parameter. By Lemma

4.3.11, we also have that the instance contains at most 2t (sad) men and at most 2t

(sad) women.

It remains to show that the image of the preference function of each person is a

subset of {1, 2, . . . , t+1}. Since the domain of the preference function of each person

is the set of acceptable partners for that person, it is su�cient to show that every

acceptable pair (m,w) satisfies fm(w)  t+1 and fw(m)  t+1. By Reduction Rule

4.3.7, every acceptable pair (m,w) satisfies fm(w)  (k � OM) + fm(µM(m)) and

fw(m)  (k �OW) + fw(µW (w)). Moreover, for any man m and woman w, it holds

that fm(µM (m))  OM � (|M |� 1) and fw(µW (w))  OW � (|W |� 1). Thus, every

acceptable pair (m,w) satisfies fm(w)  k�(|M |�1) and fw(m)  k�(|W |�1). By

Reduction Rule 4.3.3 and Observation 4.3.4, we have that t = k �min{OM , OW} =

k � |M | = k � |W |. Hence, we further conclude that every acceptable pair (m,w)

satisfies fm(w)  t+ 1 and fw(m)  t+ 1. Thus, the proof is complete. ⇧

84

4.3.2 Balanced Stable Marriage

Having proved Lemma 4.3.1, we have a kernel for Above-Min FBSM. We would

like to employ this kernelization algorithm to design one for Above-Min BSM. For

this purpose, we need to remove gaps from preference functions. Once we do this,

we can view preference functions as preference lists and obtain the desired kernel.

Hence, the following lemma concludes the proof of Theorem 8.

Lemma 4.3.14. Above-Min BSM admits a kernel that has at most 3t men among

whom at most 2t are sad and at most t are happy, at most 3t women among whom

at most 2t are sad and at most t are happy. Additionally, each happy person has at

most 2t + 1 acceptable partners and each sad person has at most t + 1 acceptable

partners. Moreover, every stable matching in the kernel is a perfect matching.

In what follows, we describe our kernelization algorithm for Above-Min BSM.

Let K = (M 0,W 0,LM 0 ,LW 0 , k0) be the input instance, which is an instance of Above-

Min BSM. Our algorithm begins by applying the reduction given by Observation

4.1.1 to translate K into an instance I 0 = (M 0,W 0,FM 0 ,FW 0 , k0) of Above-Min

FBSM. Then, our algorithm applies the kernelization algorithm given by Lemma

4.3.1 to I 0, obtaining a reduced instance I = (M,W,FM ,FW , k) of Above-Min

FBSM. By Lemma 4.3.1, this instance has at most 2t men, at most 2t women, and

the image of the preference function of each person is a subset of {1, 2, . . . , t+ 1}.

To eliminate “gaps” in the preference functions, the algorithm proceeds as described

below. Note that we no longer apply any reduction rule from Section 4.3.1 (even if

its condition is satisfied), as we currently give a new kernelization procedure rather

than an extension of the previous one. Let us first formally define the notion of a

gap.

Definition 4.3.4. Let a 2 M [W , and i be a positive integer outside the image of

f . If there exists an integer j > i that belongs to the image of f , then fa is said to

have a gap at i.

85

Inserting Dummies. We have ensured that the largest number in the image

of any preference function is at most t + 1. As every person is sad, every person

must have at least two acceptable partners. Hence, it follows that there are at

most t� 1  t gaps. To handle the gaps of all people, we create a set of t dummy

men and t dummy women. Our objective is to introduce these dummy people as

acceptable partners for people who have gaps in their preference functions, such that

the function values of the dummy people would fill the gaps. Moreover, currently

there are no happy people in the kernel, but after insertion the dummy people will

be the happy people of the instance and create at most t happy pairs; and so the

following rule would be applied only once.

Reduction Rule 4.3.9. If there do not exist happy people, then let X = {x1, x2, . . . , xt}

denote a set of new (dummy) men, and Y = {y1, y2, . . . , yt} denote a set of new

(dummy) women. For each i 2 {1, 2, . . . , t}, initialize A(xi) = {yi}, A(yi) = {xi} and

fxi(yi) = fyi(xi) = 1. The new instance is J = (M[X,W[Y, {fm}m2M[X , {fw}w2W[Y , k+

t).

We note that for all i 2 {1, 2, . . . , t}, it holds that (xi, yi) is a happy pair.

Lemma 4.3.15. Reduction Rule 4.3.9 is safe, and t(I) = t(J).

Proof. For all i 2 {1, 2, . . . , t}, it holds that (xi, yi) is a happy pair, and therefore it is

present in every stable matching in J . By our definition of the new preference func-

tions, it is clear that if µ is a stable matching in I, then µ0 = µ[{(x1, y1), . . . , (xt, yt)}

is a stable matching in J . Moreover, if µ0 is a stable matching in J , then

µ = µ0 \ {(x1, y1), . . . , (xt, yt)} is a stable matching in I. Hence, since for all

i 2 {1, 2, . . . , t}, it holds that fxi(yi) = fyi(xi) = 1, our definition of the new prefer-

ence functions directly implies that Bal(I) + t = Bal(J), OM(I) + t = OM(J) and

OW (I) + t = OW (J). Hence, t(I) = t(J), which concludes the proof. ⇧

86

Reduction Rule 4.3.10. [Male version] If there exists m 2 M such that fm has a

gap at some j, then select some yi 2 Y \A(m), and set A0(m) = A(m) [{yi} and

A0(yi) = A(yi) [{m}. The preference functions are defined as follows.

• The preference function of m: f 0
m
(yi) = j, and for all a 2 A(m), f 0

m
(a) =

fm(a).

• The preference function of yi: f 0
yi
(m) = max

m02A(yi)
(fyi(m

0) + 1), and for all

a 2 A(yi), f 0
yi
(a) = fyi(a).

• For all a 2 (M [W) \ {m, yi}: f 0
a
= fa.

The new instance is J = (M,W, {f 0
m0}m02M , {f 0

w0}w02W , k).

Lemma 4.3.16. Reduction Rule 4.3.10 is safe, and t(I) = t(J).

Proof. The only modifications that are performed are the insertion of m into the set

of acceptable partners of yi as the least preferred person, and the insertion of yi into

the set of acceptable partners of m in a location that previosuly contained a gap.

Let us first observe that since fxi(yi) = fyi(xi) = 1 and f 0
xi
(yi) = f 0

yi
(xi) = 1, it holds

that (xi, yi) is a happy pair in both I and J . Hence, it is clear that SM(I) = SM(J),

OM(I) = OM(J), OW (I) = OW (J), and that the balance of any stable matching

in I is equal to its balance in J . We thus conclude that the rule is safe and that

t(I) = t(J). ⇧

Analogously, we have a female version of Reduction Rule 4.3.10 where we fill a gap

in the preference function of some woman w 2 W . We do not repeat our arguments

again, and straightaway state the following result, which follows directly from the

safeness of Reduction Rule 4.3.9 and the male and female version of Reduction Rule

4.3.10.

87

Lemma 4.3.17. Above-Min FBSM admits a kernel that has at most 3t men

among whom at most 2t are sad, at most 3t women among whom at most 2t are sad,

and such that each happy person has at most 2t+ 1 acceptable partners and each sad

person has at most t+ 1 acceptable partners. Moreover, the kernel contains at most

t happy pairs and the none of the preference functions contain any gaps.

Finally, we translate the kernel for Above-Min FBSM to an instance of Above-

Min BSM as follows. For all a 2 M [W and b 2 A(a), we set pa(b) = fa(b).

The new instance is J = (M,W, {pm}m2M , {pw}w2W , k). Clearly, we thus obtain an

equivalent instance, which leads us to say that Lemma 4.3.14 is proved.

4.4 Parameterized Algorithm

In this section, we design a parameterized algorithm for Above-Min BSM, and

prove Theorem 9. As our algorithm is based on the method of bounded search trees,

first we will give a brief description of this technique and then describe the procedure.

4.4.1 Bounded Search Tree: An Overview

The running time of an algorithm that uses bounded search trees can be analyzed as

follows (see, e.g., [29]). Suppose that the algorithm executes a branching rule which

has ` branching options (each leading to a recursive call with the corresponding

parameter value), such that, in the ith branch option, the current value of the

parameter decreases by bi. Then, (b1, b2, . . . , b`) is called the branching vector of this

rule. For this branching vector the upper bound T (k) on the number of leaves in the

search tree is given by the following linear recurrence: T (k) = T (k � b1) + T (k �

b2) + . . .+ T (k � b`), where k is the parameter.

We say that ↵ is the root of (b1, b2, . . . , b`) if it is the (unique) positive real root

88

of xb
⇤
= xb

⇤�b1 + xb
⇤�b2 + · · ·+ xb

⇤�b` , where b⇤ = max{b1, b2, . . . , b`}. If r > 0 is the

initial value of the parameter, and the algorithm (a) returns a result when (or before)

the parameter is negative, and (b) only executes branching rules whose roots are

bounded by a constant c > 0, then its running time is upper bounded by O⇤(cr). In

particular, this yields a O⇤(↵r)-time algorithm, where ↵ is the root of the branching

vector of our algorithm.

4.4.2 Description of the Algorithm

Given an instance bI = (cM,cW, bLM , bLW ,bk) of Above-Min BSM, we begin by

using the procedure given by Lemma 4.3.14 to obtain (in polynomial time) a kernel

I = (M,W,LM ,LW , k) of Above-Min BSM such that I has at most 3t men

among whom at most 2t are sad, at most 3t women among whom at most 2t are

sad. We denote the happy pairs in I by (x1, y1), . . . , (xh, yh) for some h  t, where

X = {x1, . . . , xt} and Y = {y1, . . . , yt}. We denote the set of sad men by MS, and

for that we have |MS|  2t.

We proceed by executing a loop where each iteration corresponds to a di↵erent

subsetM 0 ✓ MS. For a specific iteration, our goal is to determine whether there exists

a stable matching µ such that the following conditions are satisfied: balance(µ)  k;

for all sad men m 2 M 0, µ(m) 6= µM (m); and for all sad men m 2 MS \M 0, µ(m) =

µM(m). (Also, we recall that for any happy man xi, we have µ(xi) = µM(xi) = yi.)

A stable matching satisfying these conditions (in the context of the current iteration)

is said to be valid. We denote r = k � OM , and observe that r  t because

t = k �min{OM , OW}.

Let us now consider some specific iteration. To determine whether there exists a

valid stable matching, our plan is to execute a branching procedure, called Branch

(depicted in Algorithm 4.4.2), which outputs every set F of pairs of a man and a

89

woman, where the man is in M 0 and the following conditions are satisfied.

1. Every man m in M 0 participates in exactly one pair (m,w) of F , and for that

unique pair, it holds that w 2 A(m) and pm(w) > pm(µM(m)).

2.
X

m2M 0
(m,w)2F

(pm(w)� pm(µM(m)))  r.

Algorithm 4.4.1: FPT Algorithm
Data: I, k

Result: A matching µ such that balance(µ)  k

1 for M 0 ✓ MS do

2 Set r = k �OM .

3 Set F = ;.

4 F = Branch(0, ;).

5 for F 2 F do

6 Let

µ = F[{(x1, y1), (x2, y2), . . . , (xh, yh)}[{(m,µM (m)) : m 2 MS\M 0}

7 if µ is a stable matching in I then

8 if balance(µ)  k then

9 return µ

10 end

11 end

12 end

13 end

14 return ;.

4.4.3 The Procedure

We now present the description of the procedure Branch in the context of some set

M 0 ✓ MS. Let us denote M 0 = {m1,m2, . . . ,mp} for an appropriate choice of p.

90

Each call to our procedure is of the form Branch(i,P) where i 2 {0, 1, . . . , p+ 1}

and P is a set of pairs of a man in {m1,m2, . . . ,mi} and a (sad) woman, such that

the following conditions are satisfied.

(I) Each man m in {m1,m2, . . . ,mi} participates in exactly one pair (m,w) of P,

and for that unique pair, it holds that w 2 A(m) and pm(w) > pm(µM(m)). We

define µP as the function whose domain is Mi = {m1,m2, . . . ,mi} and which assigns

to each man m in its domain the unique woman w such that (m,w) 2 P .

(II) Define balance(P) =
X

m2{m1,...,mi}

(pm(µP(m))� pm(µM(m))). Then, balance(P) 

r.

Note that for the case i = 0, we have P = ;, and the algorithm calls the procedure

Branch(0, ;).

The objective of a call to Branch(i,P) is to return a family of sets, F , where

each set F 2 F is a set of pairs of a man in {mi+1,mi+2, . . . ,mp} and a woman such

that the following conditions are satisfied.

(III) Every man m in {mi+1,mi+2, . . . ,mp} participates in exactly one pair (m,w) of

F , and for that unique pair, it holds that w 2 A(m) and pm(w) > pm(µM(m)). We

define µF as the function whose domain is {mi+1,mi+2, . . . ,mp} and which assigns

to each man m in its domain the unique woman w such that (m,w) 2 F .

(IV) balance(P) +
X

m2{mi+1,mi+2,...,mp}

(pm(µF (m))� pm(µM(m)))  r.

Thus, each member of the family F returned by Branch(i,P) extends the matching

µP such that the resulting matching satisfies our stated goal, condition 2 (page 90).

Measure: We use (r� balance(P)) as the measure to analyze the Branch procedure.

The measure is initially equal to r because initially P = ;. Therefore, according to

the method of bounded search trees (see Section 4.4.1), in order to derive the O⇤(2r)

91

Algorithm 4.4.2: Branch(i,P)

Data: A pair (i,P) satisfying conditions (I) and (II)
Result: A family of sets of man-woman pairs that satisfy conditions (III)

and (IV)
1 if r < 0 then
2 return ;.
3 else if i = p then
4 return {;}.
5 else

6 Let fW = {w 2 A(mi+1) \ Y : pmi+1(w) > pmi+1(µM(mi+1))}
7 fW = fW \ ({w : (m,w) 2 P} [{µM(m) : m 2 MS\M 0})
8 if |fW | < r then

9 W ⇤ = fW .
10 else

11 Let W ⇤ be the set of r women in fW who are most preferred by mi+1.
12 end
13 Let W ⇤ = {w1, w2, . . . , wq}.

// Note that q  r
14 for j 2 {1, 2, . . . , q} do
15 r = r � (pmi+1(wj)� pmi+1(µM(mi+1))).

// since it is the increase in balance(P) if (mi+1, wj) is
added to P

16 Let Fj= Branch(i+ 1,P [{(mi+1, wj)}).
// Fj is the family of sets of pairs that is returned by

the recursive call
17 F = F

S
{F [{(mi+1, wj)} : F 2 Fj}.

18 end
19 end
20 return F .

running time, it is su�cient to ensure that Branch (a) returns a result when (or

before) the measure r is negative, and (b) only executes branching rules whose roots

are bounded by 2.

When the measure r is negative, we simply return F = ;, as there does not exist

a set F satisfying the conditions above. Otherwise, when i = p, we return F = {;}.

The time complexity analysis is presented in the proof of Claim 4.4.2.

We describe the Branch procedure in words for the sake of exposition.

Overview of Algorithm 4.4.2: Consider a call Branch(i,P) where r � 0 and

92

i < p. We define fW to be the subset of sad women who are neither part of any

pair in P nor are they matched to any man in MS \ M 0 under the man-optimal

stable matching. That is, fW = {w 2 A(mi+1) \ Y : pmi+1(w) > pmi+1(µM(mi+1))} \

({w : (m,w) 2 P} [{µM(m) : m 2 MS\M 0}).

We further refine fW by letting W ⇤ denote the set of r women in fW who are

most preferred by mi+1. In case |fW | < r, we simply denote W ⇤ = fW . Let us

also denote W ⇤ = {w1, w2, . . . , wq} for the appropriate value of q  r. Then, our

procedure executes q branches. At the jth branch, Branch calls itself recursively with

(i+1,P[{(mi+1, wj)}). Eventually, Branch returns
S

q

j=1{{(mi+1, wj)}[F : F 2 Fj}

where for each j 2 {1, 2 . . . , q}, we set Fj to be the family of sets of pairs that was

returned by the recursive call of the jth branch.

Correctness of the procedure. The correctness follows from the obser-

vation that we are conducting an exhaustive search. More precisely, if there exists a

set F satisfying Conditions (III) and (IV), then it must include exactly one of the

pairs in {(mi+1, wj) : j 2 {1, 2, . . . , q}}, hence the manner in which the family F

and the measure r are updated follow straightforwardly. We prove it formally in the

following claim.

Claim 4.4.1. Let F denote the output of Branch(i,P). Suppose that the matching

µP satisfies Conditions (I) and (II). Then each set F 2 F outputted by Branch(i,P)

yields a matching µF that satisfies Conditions (III) to (IV).

Proof. Note that due to the condition in Line 4 of the algorithm, the output of the

call Branch(p, ·) is ;. Hence, a pair (mi+1, wj) is added to F if p � i+ 1 and r � 0.

Since M 0 = {m1,m2, . . . ,mp}, we have that F satisfies Condition (I).

In each iteration we add one (man,woman) pair to P and reduce r by the increase

in balance(P). Due to Line 2 of the algorithm, the process stops if r becomes negative.

Hence, balance(P)  r, that is Condition (II) is satisfied.

93

For each man m 2 {m1, . . . ,mp}, a pair involving m is added to F once at

Line 17. Also, if (m,w) is added to F , then w 2 W ? which ensures Condition (III)

holds. In a branch, if we add (mi+1, wj) to F , we have already reduced r by

pmi+1(wj)� pmi+1(µM(mi+1)). Hence, Condition (IV) is maintained as an invariant.

⇧

Claim 4.4.2. Procedure Branch has a running time of O⇤(2r).

Proof. As noted before, the measure (r � balance(P)) is initially r > 0 because

P = ;. We observe that at the jth branch, the measure changes from r � balance(P)

to r � balance(P [{(mi+1, wj)}). By our definition of wj, we have pmi+1(wj) �

pmi+1(µM (mi+1))) � j. Hence, at the worst case, the branching vector is (1, 2, . . . , r).

Since the polynomial xr �
P

r�1
i=1 x

i � 1 = 0 attains the global minima at x = 2r
r+1

which approaches 2 as r ! 1, we can conclude that 2 is the best upper bound for

the branching vector. ⇧

Thus, the correctness and the time complexity of the procedure Branch is complete.

⇧

4.4.4 Algorithm

Here, we describe the last step of the algorithm and we will argue that by having

the branching procedure Branch, we can conclude the proof of the correctness of the

algorithm.

We examine each set F in the outputted family of sets. Then, we check whether the

pairs in F , together with (x1, y1), (x2, y2), . . . , (xh, yh) and every pair in {(m,µM (m)) :

m 2 MS \M 0} form a stable matching whose balance is at most k. If the answer

is positive, then we terminate the execution and accept.At the end, if we did not

accept in any iteration, we reject.

94

Correctness. To see why the decision made in the above step is correct, suppose

that there exists a stable matching µ whose balance is at most k. In this case,

due to our exhaustive search, there exists some iteration in which µ is also valid.

In that iteration is associated with some M 0 ✓ MS. Observe that the set of pairs

{(m,µ(m)) : m 2 M 0} is one of the sets in the outputted family F . Indeed, the

satisfaction of Condition 1 (Section 4.4) follows from the fact that µ is a stable

matching satisfying Conditions (I) and (III) of validity. Condition 2 (Section 4.4) is

satisfied because of the fact that µ satisfies the Condition (II) and (IV) of validity.

Claim 4.4.3. The time complexity of our algorithm to solve Above-Min BSM is

O⇤(8t).

Proof. Let us denote by T the running time of the procedure Branch. Then, the

total running time of our algorithm is bounded by O⇤(2|MS | · T) = O⇤(4t · T).

Recall that r = k �OM , and t = k �minOM , OW , hence r  t. Hence, to derive

the running time in Theorem 9, it is su�cient to ensure that T = O⇤(2r), as proved

in Claim 4.4.2. Thus, the time complexity of our algorithm is O⇤(4t · 2r) = O⇤(8t)

since r  t. ⇧

Thus, Theorem 9 is proved. ⇧

4.5 Conclusion

In this chapter we studied an optimization variant of the famous stable matching

problem in the realm of parameterized complexity. Balanced Stable Matching

is a constrained stable matching that lies in between the two extremes i.e., the men

optimal and the women optimal stable matchings, being globally desirable and fair

to both sides. Mainly we studied the problem with respect to two above-guarantee

parameters. We showed dichotomous results with respect to these two parameters.

95

To show the problem is FPT with respect to the first parameter, we designed a

kernelization algorithm for the problem instead of directly designing a FPT algorithm.

We believe this idea can be used to show fixed parameter tractability for other

NP-hard problems in this area.

96

Chapter 5

Group Activity Seclection

Problem on Graphs(gGASP)

We have studied the complexity of two variants of the Stable Matching problem

in the previous chapters. We shift our focus to a di↵erent allocation problem where

only one side (agents) has preference over the elements from the other side (activities).

However, a agent’s preference for an activity also depends on how many other agents

are allocated to that activity. We ask if an activity should be assigned to a group of

agents such that no agent wants leave his/her assigned group. In fact, this setting

is common in many practical applications ranging from carpooling to workload

delegation. Our previous notion of stability does not apply here directly. We study

a di↵erent notion of stability called Nash stability. It formally enforces the condition

that no agent wants to leave his/her assigned group.

Division of labor is required in varied real-world situations. For a task to be

accomplished, be it the construction of a building or the development of a product, it

is necessary to assign agents (such as people or companies) to appropriate activities,

and those agents must be willing to contribute towards the common goal. Though

workload delegation is perhaps the first example that comes to mind, management of

97

cooperation—or more precisely, formation of groups by agents participating in specific

activities—is ubiquitous in almost all aspects of life. Indeed, other examples range

from carpooling and seating arrangements to hobbies such as tennis or basketball. All

such situations are neatly captured by the Group Activity Selection Problem (GASP)

introduced in [32].

An instance of GASP is given by a finite set of agents N , where |N | = n, a finite

set of activities A = A? [{a;}, where A? = {a1, . . . , ap} and a; is a void activity,

and a profile (⌫v)v2N of complete and transitive preference relations over the set of

alternatives X = (A? ⇥ {1, 2, . . . , n}) [{(a;, 1)}.1 Each alternative is a two sized

tuple indicating an activity and a size of the group performing the activity. The void

activity a; is introduced to allow agents to avoid undertaking activities, which also

enables agents to be independent. For example, in the case of the development of

a product, the set N may consist of employees of some company, each activity in

the set A may correspond to the design of a certain component of the product, and

the profile (⌫v)v2N may be constructed according to the skills/personal preferences

of the employees and their abilities/willingness to function in groups of varied sizes.

The void activity would allow to exclude employees from the current project in case

no suitable activities can be assigned to them.

The outcome of GASP is defined as an assignment, which is simply a function

⇡ : N ! A. Clearly, an arbitrary assignment is extremely undesirable unless the

profile (⌫v)v2N is completely meaningless. To take the profile into account, it is

first natural to request that ⇡ would at least be individually rational (IR), which

means that for every agent v 2 N with ⇡(v) = a (6= a;), we have (a, |⇡a|) ⌫v (a;, 1),

where ⇡a = ⇡�1(a) = {v 2 N : ⇡(v) = a}.2 That is, no agent v would rather “be

alone” than being part of a group of size |⇡v| that performs activity a = ⇡(v), where

⇡v = ⇡a (that is, ⇡v is the set of all those agents that have been assigned the same

1For the sake of consistency, we follow the notations and definitions of [80].
2As we would always work with IR assignments, when specifying preference profiles, we would

only explicitly state the alternatives that are preferred more than a;.

98

activity as v). In addition, to enforce the execution of the activities in practice, no

individual should desire to act on its own by deserting its group in favor of joining

another group. In other words, we would like the assignment to be Nash stable.

Formally, an agent v 2 N is said to have an NS-deviation to an activity a 2 A? if

a 6= ⇡(v) and (a, |⇡a| + 1) �v (⇡(v), |⇡v|), that is, v prefers to join the activity a,

given everyone else plays the same activity as before. Accordingly, ⇡ is said to be

Nash stable if it is individually rational and no agent has an NS-deviation. Darmann

et al [32] showed that if an assignment is individually rational, the only agents who

can profitably deviate are the ones assigned to the void activity. The requirement

of Nash stability is much stronger than that of individual rationality, and there are

cases where a Nash stable assignment does not exist.

Let us take a step back and observe that if an assignment ⇡ is Nash stable,

then the only implication is that no agent has an alternative more preferred than

the situation assigned to it by ⇡. However, we do not ensure by any means that

the agent would actually be able/willing to cooperate with other members in its

group, so that the assignment can actually be executed in a satisfactory manner.

Notably, relevant relations among agents, such as acquaintanceship, compatibility or

geographical distance, can often be modeled naturally using graphs. To exploit this

modeling ability, Igarashi et al. [80] introduced gGASP. Specifically, it is required

that each group would correspond to a connected set of the underlying graph. For a

deeper understanding of the rationale underlying this requirement, let us consider

the case where the graph is a social network. Then, by ensuring that each group is a

connected set, we ensure that each individual in the group would be acquainted with

at least one other person in the group. The desirability of such property is clear

when discussing activities such as carpooling, seating arrangements or sports as it is

conceivable that people would prefer to share a taxi/sit next to/play with at least

one other person whom they know. In the context of workload delegation, apart

from a social aspect, it is likely that agents who are familiar with each other would

99

also be able to work more e�ciently with each other, with each agent having at least

one other agent as a comfortable communication link or a source to “count on”.

Formally, an instance of gGASP [80] consists of an instance (N, (⌫v)v2N , A) of

GASP and a set of communication links between agents, L ✓ {{u, v} | u, v 2 N, u 6=

v}. Thus, we assume that we are also given a graph G with vertex set V (G) = N and

E(G) = L. Here, G is called underlying network (or graph) of gGASP. A set S ✓ N

of agents is said to be a coalition, and it is a feasible coalition if G[S] is connected

where G[S] is the graph induced on the vertices in S. Now, an NS-deviation by an

agent v to an activity a 2 A? is called a feasible NS-deviation if ⇡a [{v} is a feasible

coalition. Thus, in the context of gGASP, an assignment ⇡ is said to be Nash stable

if it is individually rational and no agent has a feasible NS-deviation. We would be

interested in the following question.

Input: An instance I = (N, (⌫v)v2N , A,G) of gGASP.

Task: Does I have a feasible Nash stable assignment (fNsa) ?

Nash Stable gGASP (gNSGA)

Igarashi et al. [80] showed that gNSGA is NP-complete even when the underlying

graph is a path, a star, or if the size of each connected component is bounded by

a constant. In addition, they exhibit FPT algorithms (for the same graph classes)

when parameterized by the number of activities. In a more recent work by Igarashi et

al. [77], the authors show that when parameterized by the number of players, gNSGA

is W[1]-hard on cliques (the classical setting of GASP), but admits an XP-algorithm

for the same graph classes. Furthermore, when the underlying graph is a clique,

gNSGA is W[1]-hard when parameterized by the number of activities. They also

give an FPT algorithm for acyclic graphs, parameterized by the number of activities.

Specifically, Igarashi et al. [80] posed the following open question.

For general graphs, the exact parameterized complexity of determining the

100

existence of stable outcomes is unknown... for other networks, including

trees, it is not even clear whether our problem is in XP with respect to

the number of activities.

Our Contribution. Given that gNSGA is NP-hard even on paths and stars [80],

and as this problem inherently encompasses parameters that can be often expected

to be small in practice, it is indeed very natural to examine it from the viewpoint

of parameterized complexity.3 In this context, we take the line of investigation

initiated by the studies [80, 77] several steps forward, significantly advancing the

state-of-the-art. In fact, as we explain below, we push some boundaries to their

limits, and along the way, we give answer to questions posed by Igarashi et al. [80]

that are even stronger than requested.

Hardness: Firstly, we consider p = |A?|, the number of activities, as the parameter.

Here, we show that gNSGA is NP-hard even when merely one activity is present, that

is, p = 1. More precisely, we prove the following theorem. Here, � is the maximum

degree of the graph G.

Theorem 10. The gNSGA problem is NP-hard even when p = 1 and � = 5.

Recall that Igarashi et al. [80] contemplated whether gNSGA is fixed-parameter

tractable (FPT) with respect to p. We show that even if p = 1, the problem is already

NP-hard, and in fact it remains NP-hard even on graphs where the maximum degree

� is as small as 5. In particular, we derive that gNSGA is para-NP-hard when the

parameter is p + �. That is, Theorem 10 implies that we do not expect to have

an FPT algorithm, or even merely an XP algorithm, on general graphs with respect

to both p and � together. Indeed, the existence of an XP algorithm, that is, an

algorithm with running time nf(p,�), where n = |N | and f is any function depending

only on p and �, would contradict Theorem 10.

3For standard definitions concerning parameterized complexity, see [29] or Section 2.

101

FPT Algorithm on General Graphs: In light of Theorem 10, we consider an

additional parameter t—the maximum size of any group that can form a feasible

coalition. Having this parameter at hand, we are able to design an FPT algorithm

that handles general graphs. Before we state our theorem formally, note that t is a

natural choice for a parameter. Indeed, sport teams/matches usually involve only

few players, a taxi or a table have only limited space, and certain tasks are clearly

suitable, or best performed, when only few people undertake them. We remark that

� can also often be expected to be small. For example, when most people in an

event (say, a donation evening) do not know each other well, this would indeed be

the case when planning a seating arrangement. In addition, when new participants

sign-up to organized sport activities, they might only know those friends that are

also interested in those exact activities. Moreover, when a company operating across

di↵erent countries would like to undertake some task, while employees generally

know only those other employees with whom they share the same floor, we again

arrive at a situation where � is small.

Theorem 11. gNSGA on general graphs is solvable in time O((�p)O(tp) · n log n).

The proof of Theorem 11 uses the idea of an n-p?-q?-lopsided-universal family,

introduced in [51], to “separate” agents that are assigned non-void activities from

their neighbors. Once this is done, a non-trivial dynamic programming algorithm is

developed to test whether there exists an fNsa.

FPT Algorithm for Graphs of Bounded Treewidth: Igarashi [80] designed

FPT algorithms for gNSGA on paths, stars and graphs whose connected components

are restricted to have constant size. In a more recent article, Igarashi et al. [77]

designed an FPT algorithm with running time O(pp · (n + p)O(1)) for gNSGA on

acyclic graphs (i.e. forests). We generalize this result to a substantially wider class

of graphs that includes all the above classes of graphs, namely, graphs of bounded

treewidth. This class includes graphs that have an unbounded number of cycles, and

102

in fact it even generalizes the class of all graphs whose feedback vertex set number is

small. Formally, we derive the following theorem.

Theorem 12. The gNSGA problem on graphs of treewidth tw is solvable in time

O(4p · (n+ p)O(tw)).

Notably, our algorithm solves gNSGA on trees (where tw = 1) in time O(4p ·

(n+ p)O(1)), that is, significantly faster than the specialized algorithm by Igarashi et

al. [77]. In fact, its running time also matches the running time of the even more

specialized algorithm by Igarashi et al. [77] for paths.

Related works. Papers [80, 77] that specifically solve gNSGA on restricted classes

of graphs were discussed in some details earlier. Here, we give a brief (non-

comprehensive) survey of a few results related to problems of flavor similar to

that of gGASP, so as to understand the well established roots of gNSGA.

The literature on graph based cooperative games, to which gGASP is a new

addition, can be traced back to Myerson’s seminal paper [128] which introduced the

graph theoretic model of cooperation, where vertices represent agents participating

in the game and edges between pairs of vertices represent cooperative relationship

between agents corresponding to the vertices. In cooperative games, there are two

basic notions of stability, one based on the individual and the other on the group. The

latter notion corresponds to what is known as core stability. Hedonic games [10, 56,

57] form a domain similar to that of GASP where agents have preferences over other

agents, but also groups of agents that include themselves. The primary challenges

of designing e�cient algorithms in hedonic games is that the space requirement for

just storing/representing the preference profile is (in general) exponential in the

number of agents in the game. Consequently, people have studied the problem in

sparse graphs such as trees, or those with a small number of connected components,

Igarashi and Elkind’s [78] is a recent work in this direction. Papers such as [22, 40,

78] explore stability in di↵erent kinds of cooperative games; but the central findings

103

of these papers are in stark contrast with that of [80] showing that restricted graph

classes, such as paths, trees, stars etc, are amenable for algorithms that e�ciently

compute stable solutions. Building on the work of [80], Igarashi et al. [77] studied

the parameterized complexity of Nash stability, core stability, as well as individual

stability in gGASP with respect to parameters such as the number of activities and

the number of players. Finally, we conclude our discussion by pointing the reader to

a vast array of literature on coalition formation games. We refer the reader to [114,

pg 222-223, 330] for an extensive discussion on the topic.

5.1 Preliminaries

For standard graph theoretic notation we refer to [35]. For a detailed definition of

(nice) tree decomposition, see Section 2 or [29, pg 161]. For easy reference, we provide

the relevant definitions.

We will give a polynomial time many-to-one reduction from the Steiner Tree?

problem (defined below) on graphs of maximum degree at most 4 to prove Theorem 10.

Towards this we prove that the Steiner Tree? problem is NP-complete.

Input: An undirected graph G? on n vertices, K ✓ V (G?) (called terminals)

and a positive integer `.

Task: Does there exist H ✓ V (G?) such that G?[H] is a tree, K ✓ H and

|H| = `?

Steiner Tree?

Steiner Tree? di↵ers from the usual Steiner Tree problem as follows: here

we demand the size of |H| to be exactly equal to ` rather than at most `. For the

sake of completeness, first, we give a polynomial time many-to-one reduction to

104

show that the Steiner Tree? problem on graphs of maximum degree at most 4 is

NP-complete.

5.1.1 NP-completeness of ? on graphs of max-

imum degree 4.

One of the known NP-completeness reductions [61] for Steiner Tree is given by a

polynomial time many one transformation from Exact Cover by 3-Sets (X3C).

In this problem we are given a set X = {x1, . . . , x3q} of elements and a collection

S = {S1, . . . , Sn} of 3-element subsets of X and the objective is to check whether

there exists a subcollection C ✓ S such that every element of X is included in exactly

one subset S 2 C. The problem is hard even if each element of X appears in at

most three sets of S [61]. To show that Steiner Tree is NP-complete on graphs of

maximum degree 4 we restrict ourselves to the instances of X3C where each element

of X appears in at most three sets of S. Next we give the known reduction from

X3C to Steiner Tree. Given an instance (X ,S) we build an instance (G,K, `)

as follows. The vertex set V (G) = X [S [vsp. That is, we have a vertex for each

element in X and each set in S. Finally, we have a special vertex vsp. The edge set

E(G) consists of the following:

E(G) = {vspS1, . . . , vspSn}
[

j2{1,...,n}

{xSj | x 2 Sj}.

That is, there is an edge from vsp to each vertex corresponding to sets in S and an

edge xSj if x appears in the set Sj. The set of terminals K is given by {vsp} [X .

From here, one can show that (X ,S) is a Yes-instance of X3C if and only of

(G,K, 4q + 1) is a Yes-instance of Steiner Tree. Observe that since we started

with an instance of X3C where each element of X appears in at most three sets of

S we have that every vertex except vsp has degree at most 4. Thus, to make the

105

instance (G,K, 4q + 1) of maximum degree at most 4, we replace vsp with a binary

tree T that has n leaves. We uniquely assign each leaf w of T to a vertex S 2 S and

give an edge between w and S. Finally, make all the nodes in the binary tree as well

as those present in X as the terminal set. Also, set ` = |V (T)|+ 4q. This completes

the reduction.

A simple reduction from Steiner Tree (on graphs of maximum degree 4) that

maps an instance to itself shows that Steiner Tree? (on graphs of maximum

degree 4) is NP-complete as well.

5.2 Hardness

In this section, we show that gNSGA is NP-complete even when there is only one

activity and the maximum degree of the underlying graph is at most 4. Towards this,

we give a polynomial time many-to-one reduction from Steiner Tree? on graphs

of maximum degree at most 4 to gNSGA.

5.2.1 NP-completeness of gNSGA

We give our construction that given an instance (G?, K, `) of Steiner Tree?,

produces an instance of gNSGA in polynomial time.

Construction. We first show how to construct the underlying graph G from G?.

To this end, we take a copy of G? and make the following additions to construct

G. For every w 2 K, we construct a path Pw on n+ 1 dummy vertices and add an

edge between an end-point of Pw and the terminal vertex w. Now, for each vertex

u 2 V (G?) \ K, we add a new vertex u0 and connect u0 to u. The vertex u0 will

act as a stalker for the vertex u. A vertex x 2 V (G) is called (i) a terminal vertex

if x 2 K, (ii) a non-terminal vertex if x 2 V ? = V (G?) \K, (iii) a dummy vertex

106

if x 2 Dummy = [w2KPw, and (iv) a stalker vertex if x 2 Stalker = {u0 | u 2 V ?}.

This completes the construction of G.

Intuitively, a vertex in Stalker is connected to only one vertex in V ? and will prefer

to form a coalition of size two than staying alone. Whereas, the neighboring vertex in

V ? prefers to either join a large coalition or stay alone. So no stable assignment can

assign a vertex from Stalker in a coalition of size two. The behaviour of the vertices

in Stalker is similar to the vertices in Stalker Game [79]. The Dummy vertices and

vertices in K prefers to join a large coalition as well. We will show that K [Dummy

along with `�k vertices from V ? forms a stable coalition. This coalition is connected

and hence gives a steiner tree.

Having constructed G, the instance I of gNSGA is defined as follows:

• The set of agents is N = V (G) and the set of activities is A = {a}. That is,

we only have one activity (in addition to the void activity a;).

• Now we define the preference profiles (⌫v)v2N of the agents. Let |K| = t and

� = (n+2)t+(`� t). Since (a;, 1) is last assignable activity, we do not need to

describe the activities that are less preferred than (a;, 1) in �v. For an agent

v 2 N , the preference profile is

⌫v:=

8
>>>>>>>>>><

>>>>>>>>>>:

h(a, �), (a;, 1)i if v 2 K

h(a, �), (a, 1), (a;, 1)i if v 2 V ?

h(a, �), (a, � + 1), (a;, 1)i if v 2 Dummy

h(a, 2), (a;, 1)i if v 2 Stalker

This completes the description of the instance of gNSGA.

Correctness. For correctness we show the following equivalence.

Lemma 5.2.1. (G?, K, `) is a Yes-instance of Steiner Tree? if and only if I is

107

Dummy K V ? Stalker

Figure 5.1: The construction of the underlying graph G.

a Yes-instance of gNSGA.

Proof. For the forward direction, assume that there exists H ✓ V (G?) such that

G?[H] is connected, K ✓ H and |H| = `. Using the solution graph H, we define an

assignment ⇡ : N ! A as follows. For an agent v 2 N ,

⇡(v) :=

8
>><

>>:

a if v 2 (H [Dummy)

a; otherwise

Next, we prove that ⇡ is an fNsa; with that the forward direction is proved.

Claim 5.2.1. ⇡ is an fNsa.

Proof. Notice that the following � agents are assigned to the activity a: the vertices

in H [Dummy. Indeed, |H [Dummy| = |H|+ |Dummy| = (`� t) + t+ (n+ 1)t = �.

Let Z = H [Dummy. Any agent u 2 Z does not want to deviate since (a, �) is their

most preferred option. Now, for any vertex u 2 V (G) \ V (K) [Z (non-terminal

vertices not appearing in H and the stalker vertices), (a;, 1) �u (a, � +1). Therefore,

no vertex of V (G0) wants to deviate to another activity to which a neighbor is

assigned. Hence, ⇡ is Nash stable. Now we show that it is fNsa. Now the vertices in

⇡a are the vertices of H and Dummy. Since G? is an induced subgraph of G, we have

that G[H] is connected and it contains all the terminal vertices (K). The dummy

vertices are connected to the terminals via paths and thus G[⇡a] is connected. All

108

other agents are assigned to a;, and thus by definition they are connected. This

implies that for every agent v 2 N , ⇡v is a feasible coalition. Hence, ⇡ is an fNsa. ⇧

Now we will show the other direction. Let ⇡ : N ! A be an fNsa. We first derive

properties of ⇡.

Property 1: For every vertex v0 2 Stalker, ⇡(v0) = a;. For a contradiction assume

that ⇡(v0) = a. Since v0 would not join the activity a alone, the vertex v in V ?

joins the activity a. That is, ⇡(v) = a. But (a;, 1) �v (a, 2). Hence, v wants

to deviate to the void activity a;, a contradiction to the stability of ⇡.

Property 2: ⇡a 6= ;. For a contradiction assume that no vertex is assigned to

activity a. Let v 2 V ?, then (a, 1) �v (a;, 1). That is, v has an NS-deviation

to the activity a, again contradicting the stability of ⇡.

Property 3: If there exists a vertex v 2 V ? such that v 2 ⇡a, then |⇡a| > 1. For a

contradiction assume that |⇡a| = 1 (by Property 2 we know that ⇡a 6= ;). Then,

the stalker vertex v0 has an NS-deviation to the activity a as (a, 2) �w0 (a;, 1).

Property 4: |⇡a| 2 {�, � + 1}. By Properties 1 and 2, we know that there is a

vertex v 2 V ? [K [Dummy such that v 2 ⇡a. Thus, if there exists a vertex

v 2 (K [Dummy) \ ⇡a, then since (a, �) �v (a;, 1) or (a, � + 1) �v (a;, 1) (if

v 2 Dummy) we have that |⇡a| 2 {�, � + 1}. Furthermore, by Property 3, we

know that if v 2 V ?\ 2 ⇡a then |⇡a| > 1. However, (a, �) �v (a;, 1), thus

|⇡a| 2 {�, � + 1}.

Property 5: For every v 2 K, ⇡(v) = a and |⇡a| = �. For a contradiction assume

that there exists a vertex v 2 K such that ⇡(v) 6= a. Then, since G[⇡a] is

connected, we have that all the dummy vertices in the path Pv is not in ⇡a.

This implies that |⇡a|  (|V ?|+ |K|�1+(|K|�1)(n+1) < �. This contradicts

Property 4. Finally, since a vertex v 2 K \ ⇡a (in fact every vertex of K is in

⇡a) and (a, �) �v (a;, 1), we have that |⇡a| = �.

109

Property 6: For every v 2 Dummy, ⇡(v) = a. Indeed, otherwise consider a vertex

v 2 Dummy such that it has a neighbor in ⇡a (the fact that K ✓ ⇡a ensures

an existence of such a vertex). Then the fact that (a, � + 1) �v (a;, 1) together

with Property 5 imply that ⇡ is not stable, a contradiction.

Now we are ready to show the reverse direction of the proof. LetW = ⇡a\(V ?[K).

Since G[⇡a] is connected, we have that G[W] is connected. The last assertion follows

from the fact that if we take a spanning tree L of G[⇡a], then the paths hanging

from the vertices of K can be thought of as “long leaves” and by removing leaves we

do not disconnect a tree. Furthermore, since G[V ? [K] is same as G?, we have that

G?[W] is connected and contains all the terminals. Finally, for our proof the only

thing that remains to show is that |W | = `. This follows from the fact that |⇡a| = �

and while constructing W we have removed exactly (n+ 1)t dummy vertices. This

concludes the proof.

⇧

Notice that G has maximum degree bounded by 5. We started with a graph G?

of maximum degree 4 and we have not added more than one new neighbor to any

vertex. So the degree of any vertex in G is at most 5. Thus, our construction and

Lemma 5.2.1 imply the proof of Theorem 10.

Our proof of Theorem 10 is robust in the sense that one can start with a family

of graphs on which the Steiner Tree? problem is NP-complete and then do the

reduction in a way that we remain inside the family of graphs we started with. For

example, it is known that Steiner Tree? remains NP-complete on planar graphs of

maximum degree 4 [62], and thus our reduction imply that gNSGA is NP-complete

even when there is only one activity and the underlying network is a planar graph of

max degree 5.

110

5.3 An FPT Algorithm for General Graphs

In the last section we established that gNSGA remains NP-complete even when the

number of activities is one and the maximum degree of the underlying network is

at most 4. As discussed in the introduction this immediately implies that we can

not even have an XP algorithm parameterized by p and the maximum degree � of

the underlying network. However, with an additional parameter t – the maximum

size of any group that can form in an fNsa—we are able to design an FPT algorithm.

We use this notation, let f : A ! B be some function. Given A0 ✓ A, the notation

f(A0) = b indicates that for all a 2 A0, it holds that f(a) = b.

Let I = (N, (⌫v)v2N , A,G) be an instance of gNSGA where the maximum degree

of G is at most �. Our algorithm has two phases: (a) Separation Phase and (b)

Validation Phase. We first outline the phases. We start with the Separation Phase.

Let ⇡ : N ! A be a hypothetical fNsa for the given input I. For our algorithm we

would like to have a function f from N = V (G) to {1, 2} with the following property:

(P1) Let N 0 ✓ N be the set of agents who are assigned a non-null activity (that is

an activity in A?) by ⇡. Then, f labels 1 to every agent in N 0 and labels 2 to

all the agents in NG(N 0) (neighbors of N 0 in G that are not in N 0).

A function f that satisfies the property (P1) with respect to a fNsa ⇡ is called nice

with respect to ⇡. Furthermore, a function f from V (G) to {1, 2} is called nice if f

satisfies the property (P1) for some fNsa ⇡0 for I.

In the validation phase, given a nice function f , we construct a fNsa (if it exists),

⇡ : N ! A, such that all the agents that have been labeled 2 are assigned null

activity a;. In other words, the only agents that get assigned an activity from A?

are those which are labeled 1 by f . It is possible that ⇡ assigns a; to some agent

that have been labeled 1 by f . To construct an assignment ⇡, if it exists, we employ

111

C1

C2

C5

C4

C3

Figure 5.2: Depiction of how a nice function f assigns {1, 2} to the vertices of G.
Orange colored parts are assigned 1 by f and the white enclosed parts are assigned
2 by f . C1, C2, . . . , C5 are the components of G[f�1(1)]. For i 2 [5], the concentric
circle outside Ci is N(Ci). It is guaranteed that f assigns 2 to those vertices.

a dynamic programming procedure. Now we describe both the phases in details.

Seperation Phase. We first show the existence of a small sized family of functions

such that given an instance of gNSGA on n agents such that it has a fNsa, then there

exists a function that is nice with respect to this. Towards this we first introduce

the notion of n-p?-q?-lopsided-universal family. Given a universe U and an integer `

by
�
U

`

�
we denote all the `-sized subsets of U . We say that a family F of sets over

a universe U of size n is an n-p?-q?-lopsided-universal family if for every A 2
�
U

p?

�

and B 2
�
U\A
q?

�
there is an F 2 F such that A ✓ F and B \ F = ;. An alternative

definition that is easily seen to be equivalent is that F is n-p?-q?-lopsided-universal

family if for every subset A 2
�

U

p?+q?

�
and every subset A0 2

�
A

p?

�
, there is an F 2 F

such that F \ A = A0.

Lemma 5.3.1. ([51]) There is an algorithm that given n, p? and q? constructs an

n-p?-q?-lopsided-universal family F of cardinality
�
p
?+q

?

p?

�
· 2o(p?+q

?) · log n in time

O(
�
p
?+q

?

p?

�
· 2o(p?+q

?) · n log n).

We now show that there exists a family of functions, H(I), from N to {1, 2}

such that if I has a fNsa, ⇡, then there exists a function f 2 H such that f is nice

with respect to ⇡. We call the family of functions H(I), a nice family with respect

to I. Let the vertex set N = V (G) of the graph G be denoted by {v1, . . . , vn}. We

identify the vertex vi with an integer i and thus we can view the vertex set as [n]. To

construct the function f , we use Lemma 5.3.1. We apply Lemma 5.3.1 with universe

U = {1, 2, . . . , n}, p? = tp and q? = �tp = �p? and obtain a n-p?-q?-lopsided-

112

universal family F of size
�
p
?+q

?

p?

�
·2o(p?+q

?) · log n in time O(
�
p
?+q

?

p?

�
·2o(p?+q

?) ·n log n).

Given F , we define H(I) as follows. For every set X 2 F , fX is defined as follows:

fX(x) =

8
>><

>>:

1 if x 2 X

2 otherwise.

Thus, H(I) := {fX | X 2 F}. Now we show that H(I) is a nice family. Suppose

I has a fNsa ⇡. Let N 0 be the set of agents that are assigned non-null activity by ⇡

and W = NG(N 0). Since the size of any group is upper bounded by t we have that

|N 0|  tp and since the maximum degree of G is upper bounded by � we have that

|W |  �tp. Now by the property of n-p?-q?-lopsided-universal family F , we know

that there exists a set X 2 F such that N 0 ✓ X and W \X = ;. By construction

the function fX is nice with respect to ⇡. This brings us to the following lemma.

Lemma 5.3.2. Let I be an instance of gNSGA. Then, in time O(
�
p
?+q

?

p?

�
· 2o(p?+q

?) ·

n log n) we can construct a nice family H(I) of size
�
p
?+q

?

p?

�
· 2o(p?+q

?) · log n. Here,

p? = tp and q? = �p?.

Validation Phase Now, we give an algorithm that given a function f : N ! {1, 2}

tests whether f is a nice function. In other words either it correctly concludes that f

is not a nice function or outputs a fNsa, ⇡ : N ! A, such that f is nice with respect

to ⇡.

Lemma 5.3.3. Let I be an instance of gNSGA and f : N ! {1, 2} be a function.

Then in time, O(n4p(p+ 1)tp), we can test whether or not f is nice. Moreover, if f

is nice, then in the same time we can output an fNsa, witness to the property that f

is nice.

Proof. Let I = (N, (⌫v)v2N , A,G) denote an instance of gNSGA. We start by guessing,

AX ✓ A?, the set of activities that will not be assigned to any agent. Next, we

describe an algorithm that tests whether f is nice with respect to the guess. That is,

does there exists a fNsa, ⇡ : N ! A, such that ⇡ assigns

113

(a) every activity in A! = A? \ AX to at least one agent;

(b) none of the activities in AX to any agent;

(c) a; to every vertex labeled 2 by f ;

(d) a; to every vertex in every connected component C of G[f�1(1)] such that

|C| > tp.

(e) a; to either every vertex in a connected component C of G[f�1(1)] or no vertex

in the the connected component C.

Such a fNsa is called an A!-compatible fNsa. A search for A!-compatible fNsa leads

us to the following simple test:

For every v 2 N and ax 2 AX , if f(v) = 2 or f(v) = 1 and it is part

of a component C of G[f�1(1)] such that |C| > tp then check whether,

(a;, 1) ⌫v (ax, 1). That is, if f is nice then we know that all the agents

that have been labeled 2 by f or are part of large components in G[f�1(1)]

must be assigned a; by ⇡.

If this test fails then we return that f is not nice with respect to A!-compatible

fNsa. From now onwards we assume that the test succeeded. Also we modify f so

that every vertex in the connected component C of G[f�1(1)] such that |C| > tp is

assigned 2. This just helps simplifying the notations later. Thus, from now onwards

we assume that the size of every component of G[f�1(1)] is at most tp.

Let Gi = G[f�1(i)], i 2 [2] and let C1, . . . , Cr be the components of G1. For

i 2 [r], let Hi denote the vertex set V (G2) [i

j=1 Cj) and Qi denote the vertex set

V (G2)[Ci. Furthermore, given a function h : Ci ! A† [AX [{a;}, where A† ✓ A!,

by ĥ we denote the function from Qi to A† [AX [{a;} such that ĥ|Ci = h and for

all vertices in V (G2) it assigns a;. Now we describe a dynamic programming (DP)

114

algorithm that tests whether there exists an A!-compatible fNsa. Towards this we

have a two dimensional table M [?, ?] with each entry being indexed with A0 ✓ A!

and i 2 {0, . . . , r} and M takes values from {0, 1} (i.e. true or false). In particular,

we have the following definition.

Definition 5.3.1. M [A0, i] is set to 1, if there exists an assignment ⇡i : Hi !

A0 [AX [{a;} such that ⇡i is an A0-compatible fNsa for (Hi, (⌫v)v2Hi , A
0 [AX [

{a;}, G[Hi]).

If M [A!, r] = 1 then we know that there exists an A!-compatible fNsa for N ,

and thus we can conclude that I is a Yes-instance. To compute the DP table we

use the following recurrence. We first give the recurrence for the base case.

M [A0, 0] =

8
>><

>>:

1 if A0 = ;

0 if A0 6= ;

Recursive formula. Now assume that i � 1 and A0 ✓ A!, then we set M [A0, i] = 1,

if there exists a subset A00 ✓ A0 and a function h : Ci ! (A0 \ A00) [{a;} such that

M [A00, i� 1] = 1 and ĥ is (A0 \A00)-compatible fNsa for (Qi, (⌫v)v2Qi(A
0 \A00)[AX [

{a;}, G[Qi]). Otherwise, we set M [A0, i] = 0.

In Lemma 5.3.4 we prove the correctness of the recurrence formally. Intuitively,

the idea is the following. Every component of G1 for which we have not fixed an

assignment yet has size at most tp. So the number of distinct functions from Ci to a

subset of A! [{a;} is upper bounded by (p+ 1)|Ci|. And across all the components

it is upper bounded by
P

r

j=1(p+ 1)|Cj |  n⇥ (p+ 1)tp. By DP we are trying to glue

these partial functions (which also includes fNsa for Hi) to obtain the desired A!-

compatible fNsa. For the correctness we use the fact that the connected components

have a “bu↵er” around themselves – the neighbors that have been assigned 2. Thus,

this allows us to “disjointly” glue partial functions across di↵erent components. The

115

running time follows from the fact that the size of M [?, ?] is at most r · 2p+1 and each

entry can be filled in time O(2p+1(p+ 1)tp). The algorithm can be made to output a

witnessing fNsa, ⇡, using the usual backtracking technique. This concludes the proof.

⇧

Next, we present the proof of the following lemma.

Lemma 5.3.4. The recurrence correctly computes the table entries M [A0, i] for all

A0 ✓ A! and Hi, for i 2 {0, . . . , r}.

Proof. First we prove the base cases, that is, the values for M [A0, j] for A0 ✓ A!

and j = 0 are correct. Observe that, if j = 0, then a fNsa ⇡ : V (G2) ! a;. That

is a fNsa is an assignment that assigns {a;} to all vertices of H0. Hence, if A0 is ;,

we have an A0-compatible fNsa for (H0, (⌫v)v2H0 , A
0 [AX [{a;}, G[H0]). If A0 6= ;,

then there is no fNsa for (H0, (⌫v)v2H0 , A
0 [AX [{a;}, G[H0]). We prove that the

value of M defined in Definition 5.3.1 and value given by the recursive formula are

equal by proving inequalities in both directions.

For one direction, suppose, there is an assignment ⇡i : Hi ! A0 [AX [{a;}

such that ⇡i is an A0-compatible fNsa for (Hi, (⌫v)v2Hi , A
0 [AX [{a;}, G[Hi]). Let

⇡i|Hi�1 is a solution for M [A00, i� 1] for some A00 ✓ A0. Since the given f is nice,

⇡i assigns a; to the vertices in G2. Therefore, for any v 2 Ng(Ci), ⇡i(v) = a;.

Now, ⇡i either assigns a; to all the vertices of Qi or it assigns some activities from

A0 to the vertices of Ci. In the former case, ⇡i is a solution for M [A0, i � 1]. So,

M [A0, i� 1] = 1. In the later case, since ⇡i is stable, ĥ is (A0 \ A00)-compatible fNsa

for (Qi, (⌫v)v2Qi(A
0 \ A00) [AX [{a;}, G[Qi]). Hence, M [A0, i] = 1.

For the other direction, suppose M [A0, i] evaluates true using the recurrence. We

divide it into two cases.

116

Case 1: If M [A0, i�1] is true, then there is a feasible assignment ⇡i�1 for G[Hi�1].

We claim, ⇡i defined as follows is a solution for components in G[Hi].

⇡i(v) =

8
>><

>>:

⇡i�1(v) if v 2 Hi�1

a; if v 2 Qi \Hi�1

Claim 5.3.1. ⇡i is a fNsa for (Hi, (⌫v)v2Hi , A
0 [AX [{a;}, G[Hi])

Proof. Since ⇡i�1 is stable, for any v 2 Hi�1 we have (⇡i�1(v), |⇡i�1v |) ⌫v (a;, 1)

which directly implies, (⇡i(v), |⇡iv |) ⌫v (a;, 1). Therefore, we need to show that no

vertex in Hi�1 \Hi has a feasible NS-deviation. Since f is nice, from property (P1),

for v 2 Ng(Ci), v should be assigned to a; by any solution. For any v 2 Ci, since all

the neighbors of v are assigned to a; there is no feasible NS-deviation by v. Hence

⇡i is stable. ⇧

Case 2: For some A00 ⇢ A0 the entry M [A00, i� 1] is true and there exists an

assignment for the component Ci i.e., h : Ci ! (A0 \A00)[{a;} such that ĥ is stable

in (Qi, (⌫v)v2Qi(A
0 \A00) [AX [{a;}, G[Qi]). We claim that ⇡i defined as follows is

a solution for M [A0, i]. As before, let ⇡i�1 be the solution for M [A00, i� 1]. Then,

⇡i(v) =

8
>><

>>:

⇡i�1(v) if v 2 Hi�1

ĥ(v) if v 2 Qi \Hi�1.

Claim 5.3.2. ⇡i is a fNsa for J = (Hi, (⌫v)v2Hi , A
0 [AX [{a;}, G[Hi]).

Proof. Note, both ⇡i�1 and ĥ are stable. So there can not be a Nash deviation for

⇡i�1 or ĥ. Let u, v 2 E(G[Hi]) and u 2 Hi�1, v 2 Qi \Hi�1. Since u and v are not

in the same component of G1, either f(u) = 2 or f(v) = 2 or both. Since f is nice,

either, f(u) = a; or f(v) = a; or both. Therefore, u (or v) has no deviation to ⇡i(v)

(or ⇡i(u)). Hence, ⇡i is stable, and is a solution for M [A0, i]. ⇧

117

Hence, we have proved both the directions; and the lemma is proved. ⇧

Proof of Theorem 11. Our algorithm works as follows. Given an instance I,

it first applies Lemma 5.3.2 and in time O(
�
p
?+q

?

p?

�
· 2o(p?+q

?) · n log n) constructs a

nice family H(I) of size
�
p
?+q

?

p?

�
· 2o(p?+q

?) · log n. Here, p? = tp and q? = �p?. Now

for every function f 2 H(I), it applies Lemma 5.3.3 and in time, O(n4p(p+ 1)tp),

tests whether f is nice. Moreover, if f is nice then in the same time it outputs a

fNsa witnessing that f is nice. This concludes the description of the algorithm. The

correctness of the algorithm follows from Lemmas 5.3.2 and 5.3.3. The running time

of the algorithm is upper bounded by the size of H(I) and the time taken to test

niceness. Thus, it is upper bounded by O(n4p(p+ 1)tp)·
�
p
?+q

?

p?

�
· 2o(p?+q

?) · n log n. A

simplification of this gives the desired running time. ⇧

Using Lemma 5.3.3 we can complete the proof of Theorem 11.

5.4 FPT Algorithm for Networks of Bounded Treewidth

In this section, we prove Theorem 12. First, recall in time 2tw · n we can obtain

a nice tree decomposition of the network G whose width is ⌘ = O(tw). In what

follows, we let (T, �) denote such a decomposition; and then apply the method of

dynamic programming as described in the following subsections.

The DP Table. Let us begin by describing our DP table, which we denote by M.

Each entry of this table is of the form [x,B, bB, fact, ftot, fcur, P] for any choice of

arguments as follows.

• A node x 2 V (T), which indicates that the partial solutions corresponding to

the current entry would only assign activities only to those vertices that belong

to �(x).

118

• A subset of activities B ✓ A such that a; 2 B, which indicates that only

activities from B can be assigned to those vertices that belong to �(x). Let us

denote B? = B \ {a;}.

• A subset of activities bB ✓ B such that a; 2 bB, which indicates that each

activity in bB? = bB \ {a;} has been assigned to at least one vertex in �(x).

• A function fact : �(x) ! bB, which specifies exactly how to assign activities to

those vertices that belong to �(x).

• A function ftot : �(x) ! [n], which specifies exactly, for every vertex v in �(x),

how many vertices in total (i.e. in V (G)) should participate in the same activity

as v. Here, the void activity is an exception as for any vertex v assigned to

the void activity, we would demand that ftot(v) is set to 1, irrespective of how

many vertices participate in this activity.

• A function fcur : �(x) ! [n], which specifies exactly, for every vertex v in

�(x), how many vertices have so far (i.e. in �(x)) have been determined to

participate in the same activity as v. Here, the void activity is an exception in

the same sense as the one specified for ftot.

• A partition P of �(x), which is interpreted as follows. For the sake of clarity,

we let fP : �(x) ! 2�(x) denote the function that, for every vertex v in �(x),

assigns the set in P to which v belongs. Then, the information captured by

P is the specification that for every pair of (distinct) vertices in �(x), u and

v, satisfying fP (u) = fP (v), u and v participate in the same non-void activity,

and there exists a path in G[�(x)] between u and v such that all of the vertices

of this path participate in the same activity as u and v.

We would say that an entry M[x,B, bB, fact, ftot, fcur, P] is legal if the following

conditions are satisfied.

119

1. For all u, v 2 �(x) such that fact(u) = fact(v), it holds that ftot(u) = ftot(v)

and fcur(u) = fcur(v).

2. For all v 2 �(x), it holds that fcur(v)  ftot(v).

3. For all (distinct) u, v 2 �(x) such that fP (u) = fP (v), it holds that fact(u) =

fact(v) 6= a;.

4. For all u, v 2 �(x) such that fcur(u) = ftot(u) and fact(u) = fact(v), it holds

that fP (u) = fP (v).

5. For all v 2 �(x) such that fact(v) = a;, it holds that ftot(v) = 1.

6. For all v 2 �(x) such that fact(v) 6= a;, it holds that (fact(v), ftot(v)) �v (a;, 1).

7. For all v 2 �(x), it holds that (fact(v), ftot(v)) �v (a, 1) for every a 2 A \B.

8. For all v 2 �(x), there does not exist u 2 NG[�(x)](v) such that fact(v) 6= fact(u),

fact(u) 6= a; and (fact(u), f⇡

tot
(u) + 1) �v (⇡(v), f⇡

tot
(v)).

Formally, we would say that the table M has been computed correctly if each of its

entries [x,B, bB, fact, ftot, fcur, P] stores either 0 or 1, and it stores 1 if and only if this

entry is legal and there exists an assignment ⇡ : �(x) ! B that satisfies the following

conditions. Here, for all v 2 �(x), we would define f⇡

tot
(v) = |⇡v| if ⇡v \ �(x) = ;,

and f⇡

tot
(v) = ftot(u) for any u 2 ⇡v \ �(x) otherwise. Since the entry is legal and in

particular satisfies Condition 1, this notation is well defined.

I. For all a 2 B?, there exists v 2 �(x) such that ⇡(v) = a.

II. For all v 2 �(x), it holds that ⇡(v) = fact(v).

III. For all v 2 �(x), it holds that |⇡v| = fcur(v).

IV. For all v 2 �(x) such that ⇡(v) 6= a;, it holds that (⇡(v), f⇡

tot
(v)) �v (a;, 1).

V. For all v 2 �(x), it holds that (⇡(v), f⇡

tot
(v)) �v (a, 1) for every a 2 A \B.

120

VI. For all v 2 �(x), there does not exist u 2 NG[�(x)](v) such that fact(v) 6= fact(u),

fact(u) 6= a; and (fact(u), f⇡

tot
(u) + 1) �v (⇡(v), f⇡

tot
(v)).

VII. For all u, v 2 �(x) such that fP (u) = fP (v), it holds that there exists a path

in G[⇡v] between v and u.

VIII. For all v 2 �(x) such that ⇡v \ �(x) = ;, it holds that ⇡v is a feasible coalition.

We call an assignment as specified above a witness for [x,B, bB, fact, ftot, fcur, P].

5.4.1 Computation

The order of the computation of the entries corresponds to a postorder traversal

with respect to the first argument, where the order between entries having the same

first argument is arbitrary. For every entry that is not legal, we simply assign 0. In

what follows, we present the computation for legal entries [x,B, bB, fact, ftot, fcur, P],

considering di↵erent cases according to the type of the node x.

Leaf Node. Notice that as in this case �(x) = ;, the domains of fact, ftot and fcur

are all empty, and P = (). We set M[x,B, bB, fact, ftot, fcur, P] to 1 if bB? = ;, and to

0 otherwise.

Forget Node. Let y denote the child of x in T . Recall that |�(y) \ �(x)| = 1.

Moreover, let w denote the unique vertex in �(y) \ �(x). Then, let Fact denote the

set of all functions f : �(y) ! bB such that f |�(x) = fact, let Ftot denote the set of

all functions f : �(y) ! bB such that f |�(x) = ftot, and let Fcur denote the set of all

functions f : �(y) ! bB such that f |�(x) = fcur. Moreover, let P denote the set of

every partition Q of �(y) such that for all u, v 2 �(x), it holds that fP (u) = fP (v) if

and only if fQ(u) = fQ(v). Now, we compute the entry M[x,B, bB, fact, ftot, fcur, P]

as follows.

121

1. If there exist f 0
act

2 Fact, f 0
tot

2 Ftot, f 0
cur

2 Fcur and Q 2 Q such that the three

following conditions hold, then we set M[x,B, bB, fact, ftot, fcur, P] to 1.

(a) M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1.

(b) If f 0
act
(w) 6= a; and there does not exist a vertex v 2 �(x) such that

fact(v) = f 0
act
(w), then f 0

tot
(w) = f 0

cur
(w).

(c) If f 0
act
(w) 6= a; and there does not exist a vertex v 2 �(x) such that

fP (v) = f 0
P
(w), then there does not exist a vertex v 2 �(x) such that

fact(v) = f 0
act
(w).

2. Otherwise, we set M[x,B, bB, fact, ftot, fcur, P] to 0.

Introduce Node. Let y denote the child of x in T . Recall that |�(x) \ �(y)| = 1.

Moreover, let w denote the unique vertex in �(x)\�(y). First, if there exists v 2 �(y)

satisfying fP (v) = fP (w) such that there does not exist u 2 NG[�(x)](w) for which

fP (u) = fP (v), then we set M[x,B, bB, fact, ftot, fcur, P] to 0. Next, suppose that the

above condition is false.

Denote f 0
act

= fact|�(y), f 0
tot

= ftot|�(y), f 0
cur

= fcur|�(y). Moreover, let P denote the

set of partitions Q of �(y) that satisfy the following two conditions.

1. For all u, v 2 �(y) such that fP (u) = fP (v) 6= fP (w), it holds that fP (u) =

fP (v) if and only if fQ(u) = fQ(v).

2. For all v 2 �(y) such that fP (v) = fP (w) and v /2 NG[�(x)](w), there exists

u 2 NG[�(x)](w) such that fQ(v) = fQ(u).

Now, we compute M[x,B, bB, fact, ftot, fcur, P] as follows.

1. If fact(w) = a; or there exists v 2 �(y) such that fact(v) = fact(w),

then M[x,B, bB, fact, ftot, fcur, P] is set to 1 if there exists Q 2 P such that

M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1, and to 0 otherwise.

122

2. Otherwise (if fact(w) 6= a; and there does not exist v 2 �(y) such that

fact(v) = fact(w)), then M[x,B, bB, fact, ftot, fcur, P] is set to 1 if there exists

Q 2 P such that M[y, B, bB\{fact(w)}, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1, and to 0 otherwise.

Join Node. Let y and z denote the children of x in T . Recall that �(x) =

�(y) = �(z). Let bB = {B0 2 2 bB : a; 2 B0}. We say that two sets B0, B00 2 bB

are compatible if B0 = (bB \ B00) [{fact(v) : v 2 �(x)}. Let Fcur be the set of all

functions f : �(x) ! [n] such that for all v 2 �(x), it holds that f(v)  fcur(v).

We say that two function f, f 0 2 Fcur are compatible if for all v 2 �(x), it holds

that f(v) + f 0(v) = fcur(v) + |{u 2 �(x) : fcur(u) = fcur(v)}|. Let P denote the

set of all partitions Q of �(x) such that for all u, v 2 �(x), if fQ(u) = fQ(v), then

fP (u) = fP (v). We say that two partitions Q,Q0 2 P are compatible if for all

u, v 2 �(x) such that fP (u) = fP (v), at least one of the two following conditions

holds: (i) fQ(u) = fQ(v); (ii) fQ0(u) = fQ0(v).

Now, we compute M[x,B, bB, fact, ftot, fcur, P] as follows. If there exist compat-

ible B0, B00 2 bB, compatible f, f 0 2 Fcur and compatible Q,Q0 2 P such that

M[x,B0, bB, fact, ftot, f, Q] = M[x,B00, bB, fact, ftot, f 0, Q0] = 1, then set M[x,B, bB,

fact, ftot, fcur, P] to 1. Otherwise, set this entry to 0.

5.4.2 Correctness

First, we note that the following observation clearly holds.

Observation 5.4.1. The computation of every entry of M that is not legal is correct

and can be performed in polynomial time.

Now, by Condition in the definition of a correct computation, we also have the

following observation.

123

Observation 5.4.2. The computation of every legal entry of M whose first argument

is a leaf of T is correct and can be performed in polynomial time.

Let us proceed to consider the cases of a forget node, an introduce node and a

join node. Here, when we consider some specific entry, we would assume that all

entries computed before it have been computed correctly (that will be our inductive

hypothesis).

Lemma 5.4.1. (Forget node) The computation of every legal entry

[x,B, bB, fact, ftot, fcur, P] of M whose first argument x is a forget node of T is correct,

and can be performed in polynomial time.

Proof. Let us first observe that |Fact| = p+1, |Ftot| = n, |Fcur| = n and |P|  tw+1,

and therefore it is clear that the computation can be performed in polynomial time.

Next, we consider the correctness of the computation.

In the first direction, suppose that a correct computation of the entry M[x,B,

bB, fact, ftot, fcur, P] should set it to 1. Then, there exists an assignment ⇡ :

�(x) ! B that is a witness for M[x,B, bB, fact, ftot, fcur, P]. To show that we set

M[x,B, bB, fact, ftot, fcur, P] to 1, we need to show that there exist f 0
act

2 Fact, f 0
tot

2

Ftot, f 0
cur

2 Fcur and Q 2 Q such that the three following conditions hold.

1. M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1.

2. If f 0
act
(w) 6= a; and there does not exist a vertex v 2 �(x) such that fact(v) =

f 0
act
(w), then f 0

tot
(w) = f 0

cur
(w).

3. If f 0
act
(w) 6= a; and there does not exist a vertex v 2 �(x) such that fP (v) =

f 0
P
(w), then there does not exist a vertex v 2 �(x) such that fact(v) = f 0

act
(w).

First, define f 0
act

as the (unique) function in Fact that satisfies f 0
act
(w) = ⇡(w).

Second, define f 0
tot

as the (unique) function in Ftot that satisfies f 0
tot
(w) = f 0

tot
(v)

124

for any v 2 �(x) satisfying fact(v) = ⇡(w) if such a vertex v exists (since

M[x,B, bB, fact, ftot, fcur, P] is legal, and in particular satisfies Condition 1 (pg 120) of

that definition, this is well defined), and otherwise it satisfies f 0
tot
(w) = |⇡w|. Third,

define f 0
cur

as the (unique) function in Fact that satisfies f 0
cur

(w) = |⇡w|. Finally,

define Q as a partition in P such that if there exists v 2 ⇡w such that there exists a

path in G[⇡w] between v and w, then arbitrarily choose such a vertex v and define

fQ(w) = fQ(v), and otherwise let w form a singleton set in Q. To conclude the proof

of the first direction, we next show that the three conditions above are satisfies with

respect to f 0
act

2 Fact, f 0
tot

2 Ftot, f 0
cur

2 Fcur and Q 2 Q which we have just defined.

1. Since M[x,B, bB, fact, ftot, fcur, P] is legal and ⇡ is a witness for M[x,B, bB, fact,

ftot, fcur, P], our definition of f 0
act
, f 0

tot
, f 0

cur
and Q directly implies that

M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] is legal. Thus, by the inductive hypothesis, it

is su�cient to show that there exists ⇡0 that satisfies Conditions I. to VIII.

required to be a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q]. We claim that such

⇡0 is simply ⇡. Indeed, the satisfaction of each individual condition by ⇡0

with respect to M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] directly follows from the fact that

⇡ satisfies that condition with respect to M[x,B, bB, fact, ftot, fcur, P] and from

our definition of f 0
act
, f 0

tot
, f 0

cur
and Q.

2. The satisfaction of this condition directly follows from our definition of f 0
cur

and f 0
tot
.

3. The satisfaction of this condition directly follows from our definition of f 0
act

and Q, and since ⇡ satisfies Condition VIII. required for it to be a witness for

M[x,B, bB, fact, ftot, fcur, P].

In the second direction, suppose that we set the entry M[x,B, bB, fact, ftot, fcur,

P] to 1. Then, there exist f 0
act

2 Fact, f 0
tot

2 Ftot, f 0
cur

2 Fcur and Q 2 Q such that

the three following conditions hold.

125

1. M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1.

2. If f 0
act
(w) 6= a; and there does not exist a vertex v 2 �(x) such that fact(v) =

f 0
act
(w), then f 0

tot
(w) = f 0

cur
(w).

3. If f 0
act
(w) 6= a; and there does not exist a vertex v 2 �(x) such that fP (v) =

f 0
P
(w), then there does not exist a vertex v 2 �(x) such that fact(v) = f 0

act
(w).

From the first condition above, by the inductive hypothesis, we have that

M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] is legal and there exists ⇡0 that is a witness for this entry.

Define ⇡ = ⇡0|�(x). We claim that ⇡ is a witness for M[x,B, bB, fact, ftot, fcur, P]. By

the second condition above and since ⇡0 is a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q],

we have that (⇡(w), f⇡

tot
(w)) �w (a, 1) for every a 2 A \B, that if ⇡(w) 6= a;, it holds

that (⇡(v), f⇡

tot
(v)) �v (a;, 1), and that there does not exist u 2 NG[�(x)](w) such that

fact(w) 6= fact(u), fact(u) 6= a; and (fact(u), f⇡

tot
(u)+1) �w (⇡(w), f⇡

tot
(w)). Moreover,

by the third condition above and since ⇡0 is a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q],

we have that if ⇡w \ �(x) = ;, then ⇡w is a feasible coalition. In light of these

arguments, the satisfaction of each of the required conditions by ⇡ to be a witness

for M[x,B, bB, fact, ftot, fcur, P] directly follows from the fact that ⇡0 satisfies that

condition with respect to M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q]. This concludes the proof. ⇧

Lemma 5.4.2. (Introduce Node)The computation of every legal entry

[x,B, bB, fact, ftot, fcur, P] of M whose first argument x is an introduce node of T is

correct; and can be performed in time O(twO(tw) · (n+ p)O(1)).

Proof. Let us first observe that |P| = twO(tw), and therefore it is clear that the

computation can be performed in time O(twO(tw) · (n+ p)O(1)). Next, we consider

the correctness of the computation.

In the first direction, suppose that a correct computation of the entry M[x,B,

bB, fact, ftot, fcur, P] should set it to 1. Then, there exists an assignment ⇡ :

126

�(x) ! B that is a witness for M[x,B, bB, fact, ftot, fcur, P]. To show that we set

M[x,B, bB, fact, ftot, fcur, P] to 1, we first need to show that for all v 2 �(y) satisfying

fP (v) = fP (w), there exists u 2 NG[�(x)](w) for which fP (u) = fP (v). However, this

follows directly from the fact that ⇡ satisfy Condition VII. of being a witness for

M[x,B, bB, fact, ftot, fcur, P] and from the definition of a tree decomposition. Next, it

remains to show that the appropriate condition among the following two conditions

is satisfied.

1. If fact(w) = a; or there exists v 2 �(y) such that fact(v) = fact(w), then there

exists Q 2 P such that M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1.

2. Otherwise (if fact(w) 6= a; and there does not exist v 2 �(y) such that

fact(v) = fact(w)), then there exists Q 2 P such that M[y, B, bB \ {fact(w)},

f 0
act
, f 0

tot
, f 0

cur
, Q] = 1.

Define Q as the partition of �(y) that satisfies the following two conditions.

1. For all u, v 2 �(y) such that fP (u) = fP (v) 6= fP (w), it holds that fP (u) =

fP (v) if and only if fQ(u) = fQ(v).

2. For all u, v 2 �(y) such that fP (u) = fP (v) = fP (w), it holds that fQ(u) =

fQ(v) if and only if G[⇡u \ {w}] contains a path between u and v.

Notice that since ⇡ satisfies Condition VII. as a witness for M[x,B, bB, fact, ftot,

fcur, P] and by the definition of a tree decomposition, we have that for all v 2 �(y)

such that fP (v) = fP (w) and v /2 NG[�(x)](w), there exists u 2 NG[�(x)](w) such

that fQ(v) = fQ(u). Hence, Q 2 P . Let us now turn to show that the appropriate

required condition is satisfied.

1. First, suppose that fact(w) = a; or there exists v 2 �(y) such that fact(v) =

fact(w). By the inductive hypothesis, it is su�cient to show that there exists

127

⇡0 that is a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q]. We claim that such ⇡0 is

simply ⇡|�(y). Thus, the satisfaction of each individual condition by ⇡|�(y)

with respect to M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] directly follows from the fact that

⇡ satisfies that condition with respect to M[x,B, bB, fact, ftot, fcur, P] and from

our definition of f 0
act
, f 0

tot
, f 0

cur
and Q, where the satisfaction of Condition I. also

relies on the condition of the current case.

2. Second, suppose that fact(w) 6= a; and there does not exist v 2 �(y) such

that fact(v) = fact(w). Then, since ⇡ satisfies Conditions I., II. and VIII.

of being a witness for M[x,B, bB, fact, ftot, fcur, P], and by the definition of a

tree decomposition, we have that there does not exist v 2 �(y) such that

⇡(v) = fact(w). Thus, the satisfaction of each individual condition by ⇡|�(y)

with respect to M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] directly follows from the fact that

⇡ satisfies that condition with respect to M[x,B, bB, fact, ftot, fcur, P] and from

our definition of f 0
act
, f 0

tot
, f 0

cur
and Q.

In the second direction, suppose that we set the entry M[x,B, bB, fact, ftot, fcur,

P] to 1. Then, we have that (*) for all v 2 �(y) satisfying fP (v) = fP (w), there

exists u 2 NG[�(x)](w) for which fP (u) = fP (v). Moreover, the appropriate condition

among the following two conditions is satisfied. (Here, we would implicitly rely on

the fact that the current entry M[x,B, bB, fact, ftot, fcur, P] is legal.)

1. If fact(w) = a; or there exists v 2 �(y) such that fact(v) = fact(w), then there

exists Q 2 P such that M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1. By the inductive

hypothesis, there exists ⇡0 that is a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1.

We define ⇡ as the assignment such that ⇡|�(y) = ⇡0 and ⇡(w) = fact(w). We

claim that ⇡ is a witness for M[x,B, bB, fact, ftot, fcur, P]. Since fact(w) = a;

or there exists v 2 �(y) such that fact(v) = fact(w), and ⇡0 satisfies Condi-

tion I. as a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q], we have that ⇡ satisfies

this condition with respect to M[x,B, bB, fact, ftot, fcur, P]. Moreover, by (*),

128

since Q 2 P and because ⇡0 satisfies Conditions VII. and VIII. as a wit-

ness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q], we have that ⇡ satisfies these conditions

with respect to M[x,B, bB, fact, ftot, fcur, P]. The satisfaction of each remain-

ing individual condition by ⇡ with respect to M[x,B, bB, fact, ftot, fcur, P] di-

rectly follows from the fact that ⇡0 satisfies that condition with respect to

M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q] and from our definition of f 0

act
, f 0

tot
, f 0

cur
and Q.

2. Otherwise (if fact(w) 6= a; and there does not exist v 2 �(y) such that

fact(v) = fact(w)), then there exists Q 2 P such that M[y, B, bB \ {fact(w)},

f 0
act
, f 0

tot
, f 0

cur
, Q] = 1. By the inductive hypothesis, there exists ⇡0 that is a

witness for M[y, B, bB \ {fact(w)}, f 0
act
, f 0

tot
, f 0

cur
, Q] = 1. We define ⇡ as the

assignment such that ⇡|�(y) = ⇡0 and ⇡(w) = fact(w). We claim that ⇡ is

a witness for M[x,B, bB, fact, ftot, fcur, P]. Since fact(w) 6= a; and there does

not exist v 2 �(y) such that fact(v) = fact(w), and ⇡0 satisfies Conditions

I. and VIII. as a witness for M[y, B, bB, f 0
act
, f 0

tot
, f 0

cur
, Q], the definition of a

tree decomposition implies that ⇡ satisfies this condition with respect to

M[x,B, bB, fact, ftot, fcur, P]. The rest of the argument for this case proceeds

exactly as in the previous case.

This concludes the proof.

⇧

Lemma 5.4.3. (Join Node) The computation of every legal entry

[x,B, bB, fact, ftot, fcur, P] of M whose first argument x is a join node of T is correct;

and can be performed in time O(2| bB| · twO(tw)(n+ p)O(1)).

Proof. Let us first observe that the number of pairs of compatible sets in bB is upper

bounded by | bB| = 2| bB|. Moreover, |Fcur| = nO(tw) and |P| = nO(tw), and therefore it

is clear that the computation can be performed in time O(2| bB| · twO(tw)(n+ p)O(1)).

Next, we consider the correctness of the computation.

129

In the first direction, suppose that a correct computation of the entry M[x,B,

bB, fact, ftot, fcur, P] should set it to 1. Then, there exists an assignment ⇡ :

�(x) ! B that is a witness for M[x,B, bB, fact, ftot, fcur, P]. To show that we

set M[x,B, bB, fact, ftot, fcur, P] to 1, we need to show that there exist compati-

ble B0, B00 2 bB, compatible f, f 0 2 Fcur and compatible Q,Q0 2 P such that

M[x,B0, bB, fact, ftot, f, Q] = M[x,B00, bB, fact, ftot, f 0, Q0] = 1.

For this purpose, denote ⇡0 = ⇡|�(y) and ⇡00 = ⇡|�(z). Moreover, denote the

image of ⇡0 by B0 and the image of ⇡00 by B00. By the definition of a tree de-

composition, and since ⇡ satisfies Conditions I., II., VII. and VIII. as a witness

for M[x,B, bB, fact, ftot, fcur, P], we have that B0 and B00 are compatible sets in bB.

Now, define f : �(y) ! [n] by setting f(v) = |⇡0
v
| for all v 2 �(y), and define

f 0 : �(y) ! [n] by setting f 0(v) = |⇡00
v
| for all v 2 �(y). By the definition of

a tree decomposition, and since ⇡ satisfies Conditions II. and III. as a witness

for M[x,B, bB, fact, ftot, fcur, P], we have that f 0 and f 00 are compatible functions

in Fact. Next, let Q (resp. Q0) denote the partition of �(x) such that for all

u, v 2 �(x), it holds that fQ(u) = fQ(v) if and only if fP (u) = fP (v) and there

exists a path between u and v in G[⇡0
u
] (resp. G[⇡00

v
]). By the definition of a tree

decomposition, since ⇡ satisfies Conditions VII. and VIII. as a witness for M[x,B,

bB, fact, ftot, fcur, P], we have that Q and Q0 are compatible partitions in P . Finally,

notice that the satisfaction of each individual condition by ⇡0 to be a witness for

M[x,B0, bB, fact, ftot, f, Q] directly follows from the fact that ⇡ satisfies that condition

with respect to M[x,B, bB, fact, ftot, fcur, P] and from our definition of B0, f and Q.

Similarly, we derive that ⇡00 is a witness for M[x,B00, bB, fact, ftot, f 0, Q]. Thus, by the

inductive hypothesis, M[x,B0, bB, fact, ftot, f, Q] = M[x,B00, bB, fact, ftot, f 0, Q0] = 1.

This concludes the proof of the forward direction.

In the second direction, suppose that we set the entry M[x,B, bB, fact, ftot, fcur,

P] to 1. Then, there exist compatible B0, B00 2 bB, compatible f, f 0 2 Fcur and

130

compatible Q,Q0 2 P such that M[x,B0, bB, fact, ftot, f, Q] = M[x,B00, bB, fact, ftot,

f 0, Q0] = 1. By the inductive hypothesis, there exist a witness ⇡0 for M[x,B0, bB, fact,

ftot, f, Q] and a witness ⇡00 for M[x,B00, bB, fact, ftot, f 0, Q0]. Since ⇡0 and ⇡00 satisfy

Condition II. as witnesses, it is well defined to let ⇡ : �(x) ! bB denote the assignment

such that for all v 2 �(y), ⇡(v) = ⇡0(v), and for all v 2 �(z), ⇡(v) = ⇡00(v). Since B0

and B00 are compatible, f and f 0 are compatible and Q and Q00 are compatible, we

have that as ⇡0 and ⇡00 are witnesses and by the definition of a tree decomposition, it

holds that ⇡ is a witness for M[x,B, bB, fact, ftot, fcur, P]. This concludes the proof. ⇧

We now turn to prove the correctness and running time of the dynamic program-

ming computation.

Lemma 5.4.4. The table M is correctly filled in time O(4p · (n+ p)O(tw)).

Proof. The statement that the table M is filled correctly directly follows from

Observation 5.4.1 and 5.4.2 and from Lemmata 5.4.1, 5.4.2 and 5.4.3. Let us now

turn to analyze the running time. For this purpose, from Observation 5.4.1 and 5.4.2

and from Lemmata 5.4.1, 5.4.2 and 5.4.3, we have that the running time to compute

an entry M[x,B, bB, fact, ftot, fcur, P] is upper bounded by O(2| bB| · twO(tw)(n+p)O(1)).

Observe that for every fixed B and bB, the number of entries of M with B and bB

as the second and third arguments is upper bounded by (n+ p)O(tw). Thus, since

|A| = p+ 1, the total running time is upper bounded by

X

B✓A

X

bB✓B

2|
bB| · twO(tw)(n+ p)O(1) = 4p · (n+ p)O(tw).

This concludes the proof of the lemma. ⇧

Proof of Theorem 12. Our algorithm computes the tree decomposition (T, �)

and then fills the table M. Finally, it determines that the input is a yes-instance if

and only if there exists B ✓ A containing a; s.t. M[r, B,B, h, h, h, ()] = 1, where r

131

is the root of T and h is the function h : ; ! ;. In this context, we remind that as

(T, �) is a nice tree decomposition, we have that �(r) = ;.

By Lemma 5.4.4 and as (T, �) is computed in time 2O(tw) · n, the total running

time is bounded by O(4p · (n + p)O(tw)). Now, for all B ✓ A containing a;, by

Lemma 5.4.4, Conditions I., IV., V., VI. and VIII., M[r, B,B, h, h, h, ()] = 1 holds

if and only if there exists an fNsa whose image is precisely B (that is a witness for

[r, B,B, h, h, h, ()]). Hence, we conclude that our algorithm is correct. ⇧

5.5 Conclusion

In this chapter, we resolved several open problems posed in [80]. It would be

interesting to determine whether gNSGA is FPT when parameterized by tw and the

size of the set of activities p. That is, does there exist an algorithm with running time

f(p, tw) · nO(1). Another direction to pursue would be to determine the kernelization

complexity of gNSGA when parameterized by p and the underlying network is a path,

or a star or a tree. Finally, finding parameters which could make gNSGA tractable

on broader classes of graph is an interesting research avenue.

132

Chapter 6

Rainbow Matching

In the first part of the thesis we studied various allocation problems and mainly two

notions of stability. In this part, instead of seeking an assignment from one set to

another, we aim to select a subset of elements which satisfy some criteria.

The classical notion of matching has been extensively studied for several decades

in the area of Combinatorial Optimization [39, 113]. Given an undirected graph G,

a set of edges is called a matching if the edges are pairwise non-adjacent. That is,

no two edges share a common vertex. In the Maximum Matching problem, the

objective is to find a matching of maximum size. The first polynomial time algorithm

for Maximum Matching was given by Edmonds [39] in his classic paper Paths,

Trees and Flowers. It is important to remark that this is the paper which underlined

the importance of study of polynomial time algorithms for the first time. After a

series of improvements, the current fastest algorithm for Maximum Matching was

given by Micali and Vazirani and it runs in time O(m
p
n) [125]. However, finding a

matching that satisfies some additional constraints often immediately becomes NP-

complete, where three notable examples are Minimum Maximal Matching [157],

Induced Matching [148] and Multiple Choice Matching [88]. In this chapter,

we study the NP-hard variant of Maximum Matching called Multiple Choice

135

Matching from the viewpoint of parameterized complexity.

The Multiple Choice Matching problem, also called Rainbow Matching,

is one of the NP-hard variants of Maximum Matching mentioned in the classical

book by Garey and Johnson [61, Problem GT55]. In this work, we will stick to the

name Rainbow Matching. This problem is formally defined as follows.

Rainbow Matching Parameter: k

Input: An undirected graph G, a coloring function � : E(G) ! {1, . . . , q} and

a positive integer k.

Question: Does there exist a matching of size at least k such that all the edges

in the matching have distinct colors?

A matching where all the edges have distinct colors will be called colorful matching.

Itai et al. [88] showed, already in 1978, that Rainbow Matching is NP-complete

on (edge-colored) bipartite graphs. Close to three decades later, Le and Pfender [105]

revisited the computational complexity of this problem. Specifically, they showed

that the Rainbow Matching problem is NP-complete even on (edge-colored)

paths, complete graphs, P8-free trees in which every color is used at most twice,

P5-free linear forests in which every color is used at most twice, and P4-free bipartite

graphs in which every color is used at most twice. In this chapter, we consider this

problem from the parameterized rather than classical complexity perspective. The

notation O?(·) is used to hide factors polynomial in the input size.

6.1 Our Contribution

Our starting point is the FPT algorithm mentioned in the article of Le and Pfender [105].

This algorithm is based on the connection between Rainbow Matching and 3-Set

Packing. In the 3-Set Packing problem, we are given a universe U , a set family

136

F consisting of subsets of U of size at most 3 and an integer k, and the objective is to

check whether there exists a subfamily F 0 ✓ F containing at least k pairwise-disjoint

sets. Observe that given an instance I = (G,�, k) of Rainbow Matching, we can

view I as an instance of 3-Set Packing by setting U = V (G) [{1, . . . , q}, and

letting F contain every set {u, v,�(e)} corresponding to an edge e = uv 2 E(G).

Now, observe that (G,�, k) is a yes-instance of Rainbow Matching if and only

if (U,F , k) is a yes-instance of 3-Set Packing. This immediately implies that

known algorithms for 3-Set Packing can be employed to solve Rainbow Match-

ing. In particular, using the known algorithms for 3-Set Packing, we obtain

the following algorithms for Rainbow Matching: (1) a deterministic algorithm

running in time O?(8.097k) [158]; (2) a randomized algorithm running in time

O?(1.49533k) = O?(3.3434k) [16].

Rainbow Matching on Paths. Our first contribution concerns the Rainbow

Matching problem on paths. Recall that the problem is NP-hard even on paths [105].

We obtain the following algorithm, which is faster than the one that we design later

for general graphs.

Theorem 13. There exists a deterministic algorithm for Rainbow Matching on

paths that runs in time O?

0

@

1 +

p
5

2

!k
1

A and uses polynomial space.

The proof of Theorem 13 is based on a combination of the classical method

of bounded search trees [29, 37, 49, 50] together with a “divide-and-conquer-like”

approach. The algorithm always maintains a family of vertex-disjoint paths S and a

path P (vertex disjoint from S), and the objective is to find a colorful matching of

size k that uses exactly one edge from each path in S and k � |S| edges from P . We

call this variant of Rainbow Matching the Disjoint Set Rainbow Matching

problem. Observe that when S = ;, then Disjoint Set Rainbow Matching is

precisely Rainbow Matching. To compactly represent potential partial solutions

to our problem at every step of the recursion, that is, partial witnesses that there

137

may indeed exist a colorful matching that uses exactly one edge from each path in

S, our algorithm works as follows. The algorithm uses an auxiliary bipartite graph

where we maintain a partial solution to our problem, in terms of a matching in this

bipartite graph. This has the additional benefit that the measure becomes very

simple: we just measure the size left to cover, i.e. k � t, where t = |S| denotes the

size of the partial solution. (We remark that we are able to construct a solution in the

same time as it takes to solve the decision version of the Disjoint Set Rainbow

Matching problem.)

Rainbow Matching on General Graphs. Our second contribution is an algo-

rithm on general graphs that is better than the known algorithms for 3-Set Packing.

In particular, we obtain the following result.

Theorem 14. There exists a randomized algorithm for Rainbow Matching with

constant, one-sided error that runs in time O?(2k) and uses polynomial space.1

The proof of Theorem 14 is based on the general method described in [16] for

solving various packing and matching problems. We tailor the analysis of Bjorklund

et al. [16] to the Rainbow Matching problem. This gives us the desired saving

over the algorithm for 3-Set Packing.

Kernelization. Finally, we turn to consider the question of kernelization. Here,

we exploit the connection between our problem and 3-Set Packing to design a

kernelization algorithm. We also design a smaller kernel for Rainbow Matching

on paths, or more generally, for graphs of bounded degree.

Theorem 15. Rainbow Matching admits a kernel of size O(k3) on general

graphs. Moreover, it admits a kernel of size O(d2k2) on graphs of maximum degree d.

In the next section we strengthen our last result. Observe that since we have

1Specifically, if the algorithm determines that an input instance is a yes-instance, then this
answer is necessarily correct.

138

a kernel of size O(dk2) for graphs with degree upper bounded by d, it follows that

there is a kernel of size O(k2) for paths. We generalize the result on paths to any

family of sparse graphs.

Theorem 16. Rainbow Matching on general graphs admits a kernel with O(k2)

vertices and O(k3) edges. Moreover, the kernel can be found in time O(n2m), where

n and m denote the number of vertices and edges in the input graph, respectively.

Note that the statement of Theorem 16 does not readily imply that when the

input graph is a forest, we have a kernel of size O(k2). This is because, a kernelization

algorithm for Rainbow Matching on general graphs may not return a forest as

part of the output instance, even if the input instance contains a forest. Hence, the

bound alone does not imply the desired bound for forests. A closer look, however,

at our reduction rules will reveal that at every step we either delete an edge or a

vertex. Thus, the resulting subgraph will be a forest if the input graph is a forest.

In fact, this observation allows us to state as a corollary of Theorem 16 : Rainbow

Matching admits a kernel of size O(k2) for a family of graphs G, that is both (a)

sparse (i.e. the number of edges is at most O(n), where n is the number of vertices)

and (b) subgraph closed (i.e. if G is in G then any subgraph of G is in G).

We will present a separate kernelization algorithm for forests in Section 6.5.2 that

is conceptually simpler than the above. We define it as a separate problem, since the

input graph is a special class of graphs, and hence the output of the kernelization

algorithm must also belong to the same class of graphs.

Rainbow Matching on Forests Parameter: k

Input: An undirected forest G, a coloring function � : E(G) ! {1, . . . , q} and

a positive integer k.

Question: Does there exist a matching in G of size at least k such that all the

edges in the matching have distinct colors?

139

The kernelization algorithm for Rainbow Matching on Forests uses high-

degree reduction rules that follow from fairly straight-forward counting arguments.

Formally stated, we prove the following result.

Theorem 17. Rainbow Matching on Forests admits a kernel of size O(k2).

Moreover, the kernel can be found in time O(n3), where n denotes the number of

vertices in the input graph (forest).

6.1.1 Overview

The proof of Theorem 16 works as follows. Let (G,�, k) be an instance of Rainbow

Matching. Let Ei denote the subset of E(G) that are assigned color i by �. Let Gi

denote the subgraph of G with vertex set V (G) and edge set Ei.

We start by applying a reduction rule that ensures that there are at most

2(k � 1) + 1 distinct colors on the edges incident to any vertex in G. The rule is

simply to delete an (arbitrary) edge incident on a vertex v with the 2(k � 1) + 2nd

color. This reduces the “color-degree” of every vertex to O(k).

The next reduction rule removes all the edges of Ei, if Gi satisfies some property.

In particular, we check if the size of the maximum matching in Gi is at least 2k � 1,

if the answer is yes, then we delete Ei and reduce the parameter by 1.

Next, we greedily try to find a colorful matching of size k. If we succeed we are

done, else, we know that the greedy algorithm produces a colorful matching, denoted

by M , that has size at most k � 1. Let U denote the colors used by � that do not

appear on the edges of the matching M . We observe that V (M) is a vertex cover

(includes at least one end-point of every edge) of the graph G? = [i2UGi. On the

other hand for every Gi, i /2 U , the size of the maximum matching in Gi is at most

2k � 2 (because the previous rule cannot be applied). Hence, Gi has a vertex cover,

140

Ci, of size at most 4k � 4. Observe that we can obtain Ci greedily. It follows that

C = V (M)
[

[i/2UCi

is a vertex cover of G of size O(k2).

Let I be V (G) \C. Our next reduction rule finds an “irrelevant vertex” in I and

deletes it. This is done by applying a well-known combinatorial result, called the

p-Expansion lemma, [29, pg 32], in the following manner. We define an auxiliary

bipartite graph where vertices in one side, denoted by B, correspond to vertices in

I and the vertices on the other side, denoted by A, correspond to (vertex, color)

pairs. The vertices in A have the property that for every edge uv in G and color

j = �(uv), A contains a vertex corresponding to either (v, j) or (u, j). Additionally,

our reduction rule ensures that the size of A is O(k2).

Next, we show that if |B| > |A|, then there is an irrelevant vertex in I. Thus,

when none of the reduction rules apply, we have |B|  |A|. Hence, we may conclude

that the size of I is at most O(k2). Consequently, the size of whole vertex set in the

resulting instance is upper bounded by O(k2).

6.1.2 Related Work

Le and Pfender [105] gave a factor (23 � ✏) approximation algorithm for Rainbow

Matching on general graphs for every ✏ > 0. They also designed a few polynomial

time algorithms when the instances of Rainbow Matching are restricted to special

graph classes. As stated before, Le and Pfender [105] also related this problem to

3-Set Packing, and showed that the problem is FPT. Moreover, they showed that

the problem is FPT on P5 free forests parameterized by the number of components.

Colorful matchings have also been studied from graph theoretic and combinatorial

perspectives. For example, they are related to Ryser’s famous conjecture regarding

141

Latin transversal [142]. In the language of colorful matchings, the conjecture says

that every proper edge coloring of the complete bipartite graph K2n+1,2n+1 with

2n+1 colors contains a rainbow matching with 2n+1 edges. Additional examples are

studies of su�cient conditions for edge-colored graphs to guarantee the existence of

a colorful matching of a certain size. Moreover, previous studies also examined what

is the size of the largest colorful matching in an edge-colored graph with additional

restrictions. For more information on these topics, we refer to [105] and references

therein.

Wang and Li [154] conjectured that for k > 4, every edge colored graph with

minimum color degree (the number of edges of the distinct colors incident on a vertex

in the graph) at least k contains a rainbow matching of size at least dk/2e. LeSaulnier

and Stocker et al. [108] gave su�cient conditions for a rainbow matching of size at

least dk/2e that holds for even value of k. Kostochka and Yancey [102] proved the

conjecture of Wang and Li in full. Lo [111] showed that every edge-coloured graph

on n � 7k/2 + 2 vertices with color degree at least k contains a rainbow matching of

size at least k. Lo also showed that the graph can be edge-decomposed into at most

btn/2c rainbow matchings, where t � 11 and the maximum color degree is upper

bounded by t. Aharoni and Berger [4] studied the problem of finding the minimum

number of colors which guarantees a rainbow matching in r-partite r-graphs. Alon [5]

gave an exponential bound on the maximum k for which there exists a collection of k

matchings, each of size t, in some r-partite r-uniform hypergraph, such that there is

no rainbow matching of size t. This bound was improved by Glebov, Sudakov et al.

[66], in particular for every fixed r, they gave an upper bound which is polynomial in

t. Aharoni and Berger conjectured that in every proper edge coloring of a bipartite

multigraph by q colors, where each color is used on at least q + 1 edges there is

a rainbow matching that uses every color. Recently, an approximate version of

this conjecture has been proved [133]. An exactly q-edge-coloring of a graph is an

q-edge-coloring of the graph that uses all q colors. Fujita and Kaneko et al. [55]

142

showed that an exactly q-edge-colored complete graph of order n has a rainbow

matching of size k(� 2) if q � max{
�
2k�3
2

�
+2,

�
k�2
2

�
+(k� 2)(n�k+2)+2}, where

k � 2 and n � 2k + 1; and this bound on q is optimal. There are other works that

have examined the size of the largest colorful matching in an edge-colored graph with

additional restrictions. For more information on these topics, we refer to [105] and

references therein. Rainbow matchings have been studied in properly edge colored

graphs as well [34, 153].

Finally, we note that colorful matchings belong to a family of problems called

rainbow subgraph problems. A rainbow subgraph of an edge-colored graph is a

subgraph whose edges have distinct colors. We refer to [92] for a survey containing

results and questions regarding rainbow subgraphs.

For a comprehensive treatment of p-Expansion Lemma, and its usefulness in

designing kernelization algorithms, we refer the interested reader to the book by

Fomin, Lokshtanov et al. [54].

6.1.3 Preliminaries

p-Expansion Let G be a bipartite graph with vertex bipartition (A,B). For a

positive integer p, a set of edges M ✓ E(G) is called a p-expansion of A into B if

• every vertex of A is incident to exactly p edges of M ;

• M saturates exactly p|A| vertices in B.

The following result is a slight modification of the one presented in Lemma 2.18

in the book [29]. The proof, however, is identical to the one presented in the book.

Proposition 1 (p-Expansion Lemma, [29, Lemma 2.18]). Let p � 1 be a positive

integer and H be a bipartite graph with vertex bipartition (A,B), on n vertices and

143

m edges, such that (i) |B| > p|A|, and (ii) there are no isolated vertices in B. Then,

there exist nonempty vertex sets X ✓ A and Y ✓ B with |X| < |Y | such that

• there is a p-expansion of X into Y , and

• no vertex in Y has a neighbor outside X, i.e. N(Y) ✓ X.

Furthermore, the sets X and Y can be found in time O(pnm
p
pn).

6.2 Algorithm for Rainbow Matching on Paths

In this section we give a deterministic algorithm for Rainbow Matching on paths

that is faster than the algorithm we will present for Rainbow Matching on general

graphs in the next section. Towards that we will solve the following general problem,

and from there solve Rainbow Matching in paths.

Input: A path P , a collection S of (vertex disjoint) paths (vertex disjoint

from P) of arbitrary lengths, a edge coloring � : E(G) ! [q] (where

G is the disjoint union of P and the paths in S), and a positive

integer k.

Parameter: k

Task: Does there exist a colorful matching of size k that uses exactly one

edge from each path in S and k � |S| edges from P?

Disjoint Set Rainbow Matching

Note that Rainbow Matching is a special case of Disjoint Set Rainbow

Matching, where P is the input graph (a path), S = ; and k is the parameter.

Thus, solving Disjoint Set Rainbow Matching will yield an algorithm for

Rainbow Matching.

144

Overview. To solve Disjoint Set Rainbow Matching, whenever possible we

apply reduction rules, or solve the instance in polynomial time. In the absence of

either of these, the algorithm branches on an edge, based on whether it is part of

the solution or not.

Measure. We associate the measure µ(P,S, k) = k � |S| to the instance (P,S, k).

We will use this measure to bound the number of nodes in the search tree. When

the instance is clear from the context, we will simply use µ.

Auxiliary bipartite graph. At every step of the search we maintain a bipartite

graph B(S) on the vertex set ([q],S) and edge set containing pairs cP 0 2 [q]⇥S such

that color c appears on an edge in the path P 0 in (the collection) S.

We first prove a lemma which allows us to solve the Disjoint Set Rainbow

Matching problem when the measure is at most one.

Lemma 6.2.1. If µ(P,S, k)  1, then we can test if (P,S, k) is a yes-instance in

polynomial time.

Proof. We divide the proof based on whether µ(P,S, k) < 0 or µ(P,S, k) = 0 or

µ(P,S, k) = 1. If µ(P,S, k) < 0, then k < |S| and so clearly no matching of size k

can exist which chooses exactly one edge from each path in S.

If µ(P,S, k) = 0, then k = |S|. Let Q1, . . . , Qk denote the paths in S. We will

show that there exists a colorful matching of size k that uses exactly one edge from

each path in S if and only if there is a matching in B(S) that saturates S. Let M

be a colorful matching of size k that uses exactly one edge from each path in S.

Furthermore, for each i (1  i  k) let mi 2 M be the edge that is part of path

Qi. Then {�(mi)Qi | i 2 [k]} forms a matching that saturates S in B(S). In the

reverse direction given a matching M0 in B(S) that saturates S, we obtain a colorful

matching M that uses exactly one edge from each path Qi in S, as follows. Since M0

saturates S we have that for every path Qi 2 S there is an edge jQi for some j 2 [q].

145

This implies that there is an edge, say mi on Qi such that �(mi) = j, i.e. mi has

color j. Since, the paths in S are pairwise vertex disjoint, the set M? = {mi | i 2 [k]}

forms a matching in the graph G. Recall that M0 is a matching in B(S) in which

one of the endpoints of the edges are from the set [q], thus, it follows that M? is a

colorful matching of size k that uses exactly one edge from each path in S. Thus,

implying that in this case we can check whether or not (P,S, k) is a yes-instance

in polynomial time by checking if the bipartite graph B(S) has a matching that

saturates S [74].

If µ(P,S, k) = 1, then k = |S|+ 1. In this case, we consider every edge e = uv

on P . Let us now consider a specific iteration concerning an edge e = uv on P .

Then, we construct B(S [{uv}). Similar to the case of µ(P,S [{uv}), k) = 0, we

have now reduced the problem into checking whether or not, there is a matching in

B(S [{uv})) that saturates S [{uv}. This condition can be tested in polynomial

time. If in at least one iteration, we found a saturating matching then we have a

yes-instance, and otherwise we have no-instance. This completes the proof. ⇧

Lemma 6.2.1 yields the following reduction rule.

Reduction Rule 6.2.1. If µ(P,S, k)  1, then using Lemma 6.2.1 test whether or

not (P,S, k) is a yes-instance. If Lemma 6.2.1 returns yes, then return that (P,S, k)

is a yes-instance; else, return that (P,S, k) is a no-instance.

The safeness of Reduction Rule 6.2.1 follows from Lemma 6.2.1. The next

reduction rule allows us to identify a prefix of the path P such that there exists a

colorful matching of size at least k that contains exactly one edge from the prefix. If

P has three vertices, then a colorful matching of size at least k can contain exactly

one edge from P . Otherwise, we apply the following rule.

Reduction Rule 6.2.2. In the instance (P,S, k), let P = v1, v2, . . . , vn�1, vn. Sup-

pose that for every index i 2 [n� 1] the following property is true: when the subpaths

146

Pi�1 = v1, . . . , vi�1 and P 0 = vi, vi+1 of P are added to S, the size of a maximum

matching in the new bipartite graph B(S [{Pi�1, P 0}) (obtained after the addition of

Pi�1 and P 0 to S, and suitable edges) is at most |S|+ 1. Then, return that (P,S, k)

is a no-instance.

Next we show the correctness of Reduction Rule 6.2.2.

Lemma 6.2.2. Reduction Rule 6.2.2 is safe.

Proof. For the sake of contradiction, we assume that (P,S, k) is a yes-instance. In

this case we will show that there exists an index i 2 [n � 1] with the following

property: when the subpaths Pi�1 = v1, . . . , vi�1 and P 0 = vi, vi+1 of P are added to

S, the size of a maximum matching in the new bipartite graph B(S [{Pi�1, P 0}) is

|S|+ 2. This will be contradiction, and thereby prove the lemma.

Since (P,S, k) is a yes-instance there exists a colorful matching of size k, denoted

by M, that uses k colors from [q], exactly one edge from each path in S, and k� |S|

edges from P . Thus, there is a maximum matching in the bipartite graph on B(S)

that saturates every vertex in the S-side. It is obtained by taking edges that connect

a vertex in the S-side (i.e. a path in the collection S) with the color that appears

on the matching edge in M that is part of the same path. We use M0 to denote this

bipartite matching.

Let {ej1 , ej2 , . . . , ejk�|S|} denote the matching edges in M as they appear left to

right in P . For some i � 3, let vivi+1 denote the edge ej2 (the matching edge with

the second smallest index in P). It follows that edge ej1 appears in the subpath

Pi�1 = v1, . . . , vi�1. Note that the vertex �(ej2) 2 [q] is not saturated by M0 in B

because ej2 is part of the matching M while it is inside P . Similarly, the vertex

�(ej1) 2 [q] is also not saturated by M0 in B. Hence, when paths Pi�1 and P 0 are

added to the bipartite graph, M0 can be extended by exactly two more edges: edges

between �(ej1) and Pi�1 and �(ej2) and P 0. Thus, the new bipartite graph has a

147

matching of size |S|+ 2. ⇧

The safeness of Reduction Rule 6.2.2, leads us to the following conclusion.

Lemma 6.2.3. If (P,S, k) is a yes-instance on which Reduction Rules 6.2.1 and

6.2.2 are not applicable, then there exists an index i 2 [n� 1] such that there exists a

colorful matching of size k that uses exactly one edge from the subpath Pi = v1, . . . , vi

of P . Furthermore, such an index i can be found in polynomial time.

Proof. Since Reduction Rules 6.2.1 and 6.2.2 are not applicable we have that

µ(P,S, k) � 2. This implies that k � |S| + 2. Let i denote the smallest inte-

ger in [n� 1] for which the following holds:

Property (??) when the subpaths Pi�1 = v1, . . . , vi�1 and P 0 = vi, vi+1 of P are

added to M, the size of a maximum matching in the new bipartite graph

B(S[{Pi�1, P 0}) (obtained after the addition of Pi�1 and P 0 to S, and suitable

edges) is |S|+ 2.

Observe that since k � |S|+ 2 � 2, such an integer i must exist.

Note that any colorful matching of size k uses at most one edge from Pi, else, it

contradicts the fact that i is the smallest integer that satisfies Property (??). Also

note that since we have a colorful matching of size at least two in Pi+1, so i � 3.

Note that there always exists a colorful matching of size k that uses one of the

first two edges of the path P . If none of the first two edges of P is contained in a

colorful matching of size k, then, since P is a path, at least one of these two edges

is vertex disjoint from the matching. Let this edge be denoted by e. We produce a

new colorful matching of size at least k by adding e to the matching and removing

the edge of color �(e) (if any present) from the matching. Hence, we can conclude

that there alwyas exists a colorful matching of size k that must use one of the edges

on Pi. Clearly, we can find the smallest integer described in the statement of the

lemma in polynomial time. This concludes the proof. ⇧

148

Lemma 6.2.3 yields a branching rule that can be described as follows. Let Pi be

the subpath of P (given by Lemma 6.2.3) such that there exists a colorful matching

of size k that uses exactly one edge from it. We recursively solve two subproblems

one where we assume that edge vivi+1 is in the colorful matching of size k we are

constructing, and the other where we assume that edge vivi+1 is not part of the

solution we are constructing. Note that this rule is exhaustive because an edge (in

particular, vivi+1) can either belong to a matching, or it does not.

Algorithm. Now we can describe the branching rule in detail along with the

recursive call to a subproblem. Let I = (P = v1, . . . , vn,S, k) be the instance of

Disjoint Set Rainbow Matching, where none of the Reduction Rules 6.2.1 or

6.2.2 are applicable. Let Pi be the subpath of P as described in Lemma 6.2.3.

Branch 1: (The edge vivi+1 belongs to a colorful matching of size k.)

We recursively solve the problem on the instance (P\{v1, . . . , vi+1},S[{Pi�1}[

{[vivi+1]}, k). Since the size of S increases by 2, the measure µ decreases by 2.

Observe that by Lemma 6.2.3 we know that there exists a colorful matching of

size k that uses exactly one edge from the subpath Pi. However, since we have

assumed that the edge vivi+1 belongs to the colorful matching of size k, thus,

edge vi�1vi cannot be part of the same matching, and so one of the edges in

Pi�1 must be part of the matching as well. Thus, in this case we know that

two of the edges in our matching are due to the edge vivi+1 and the other is

from Pi�1.

Branch 2: (The edge vivi+1 does not belong to a colorful matching of size

k.)

In this case we recursively solve the problem on (P\{v1, . . . , vi},S [{Pi}, k).

Since the size of S increases by 1 and k remains the same, the measure µ

decreases by 1. The correctness of this step follows from Lemma 6.2.3.

149

If either of the branches returns “yes”, we return the same. Else, we return that the

given instance is a no-instance.

The resulting branching vector for this algorithm is (2, 1). Thus, solving the

polynomial x2 � x+ 1 for a positive root yields x � 1
2(1 +

p
5) = 1.6181. This upper

bounds the running time of our algorithm. The correctness of the algorithm follows

from Lemmas 6.2.1, 6.2.2 and 6.2.3.

Recall that as explained at the very onset of our discussion: SinceRainbow Matching

is a special case of Disjoint Set Rainbow Matching, hence our algorithm can

solve Rainbow Matching by using the algorithm for the latter on the instance

(G,S = ;, k). This completes the proof of Theorem 13.

6.3 FPTAlgorithm for Rainbow Matching on Gen-

eral Graphs

This section is inspired by the proof of Theorem 4 in [16], which solves 3-Set

Packing in time O?(3.3434k). We show that by an analysis tailored to Rainbow

Matching, we improve upon the time complexity O?(3.3434k). More precisely, the

objective of this section is to prove Theorem 14.

Towards the proof of Theorem 14, we need to consider a problem called 3-Set

Prepacking, which was introduced in [16]. The input of this problem consists of

an n-element universe U , an n1-element subuniverse U1 ✓ U , a family F of 3-sets, a

positive integer k, and three non-negative integers p0, p1 and p2 whose sum is k. The

task is to determine whether there exists a subfamily F 0 ✓ F of size k such that the

3-sets in F 0 are pairwise-disjoint, and for all i 2 {0, 1, 2}, there exist exactly pi sets

S in F 0 such that |S \ U1| = i. We would need to rely on the following result.

Proposition 6.3.1. [16] There exists a randomized algorithm for 3-Set Prepack-

150

ing with constant, one-sided error that runs in time O?(23p0+2p1+p2) and uses poly-

nomial space. Specifically, if the algorithm determines that an input instance is a

yes-instance, then this answer is necessarily correct.

Let us denote the algorithm given by Proposition 6.3.1 by PrepackAlg. We present

a reduction from our problem to 3-Set Prepacking. For this purpose, we describe

a procedure Reduce that given an instance (G,� : E(G) ! [q], k) of Rainbow

Matching, constructs an instance reduce(G,�, k) = (U,U1,F , k, p0, p1, p2) of 3-Set

Prepacking with the same parameter k. Let us denote n1 = |V (G)| = n� q, where

n would denote |U |. First, Reduce sets U = V (G) [[q], F = {{u, v,�(uv)} : uv 2

E(G)}, p0 = 0, p1 = 0 and p2 = k. Second, Reduce sets U1 = V (G). Let us now

argue that we obtain an equivalent instance.

Lemma 6.3.1. Let (G,� : E(G) ! [q], k) be an instance of Rainbow Match-

ing. Then, Reduce (G,�, k) = (U,U1,F , k, p0, p1, p2) is a yes-instance of 3-Set

Prepacking if and only if (G,� : E(G) ! [q], k) is a yes-instance of Rainbow

Matching.

Proof. In the first direction suppose that Reduce (G,�, k) = (U,U1,F , k, p0, p1, p2) is

a yes-instance of 3-Set Prepacking. In particular, we then have that there exists

a subfamily F 0 ✓ F of size k such that the 3-sets in F 0 are pairwise-disjoint. Let

us denote M = {uv 2 E(G) : 9S 2 F 0 s.t. {u, v} ✓ S}. Since |F 0| = k, we have

that |M| = k, and since the 3-sets in F 0 are pairwise-disjoint, we have that M is

a colorful matching. Thus, (G,� : E(G) ! [q], k) is a yes-instance of Rainbow

Matching.

In the other direction suppose (G,� : E(G) ! [q], k) is a yes-instance of Rainbow

Matching. Then there exists a colorful matching M of size k. Let us denote

F 0 = {{u, v,�(uv)}| uv 2 M}. Since the size of M is k, we have that the size of

F 0 is k and since M is a colorful matching we have that the sets in F 0 are pairwise

151

disjoint. Notice that every set in F 0 has exactly two elements from U1. Therefore,

for all i 2 {0, 1, 2}, there exist exactly pi sets S in F 0 such that |S \ U1| = i. Thus,

(U,U1,F , k, p0, p1, p2) is a yes-instance of 3-Set Prepacking. ⇧

Let us now prove Theorem 14.

Proof of Theorem 14. Given an instance (G,� : E(G) ! [q], k) ofRainbow Match-

ing, we construct the instance Reduce (G,�, k) = (U,U1,F , k, p0, p1, p2) of 3-Set

Prepacking. Then, we run the algorithm given by Proposition 6.3.1. We accept if

and only if the algorithm from Proposition 6.3.1 accepted. The correctness follows

from Proposition 6.3.1 and Lemma 6.3.1. Since, p0 = p1 = 0 and p2 = k, by

Proposition 6.3.1, the total running time is O?(2k). ⇧

6.4 Kernelization Algorithms

In this section we give a proof for Theorem 15. We first describe a kernel on

general graphs. The kernelization algorithm on general graphs is actually a known

kernel for 3-Set Packing given in [29, Theorem 12.20] (also see [3, 33]). The

best known kernel for 3-Set Packing is given by Abu-Khzam [3] and it has O(k2)

elements and O(k3) sets. However, as we explain now, we cannot use the kernel

given by Abu-Khzam [3] directly for our purposes. This is in contrast to the fact

that one can use the best known parameterized algorithms for 3-Set Packing

to design parameterized algorithms for Rainbow Matching. Given an instance

(G,�, k) of Rainbow Matching, we can transform it to an instance (U,F , k)

of 3-Set Packing as explained in the introduction. Recall that a kernelization

algorithm always returns an equivalent instance of the same problem. So, if we

apply a kernelization algorithm for 3-Set Packing, then it will return an equivalent

instance (U 0,F 0, k0) of 3-Set Packing and not of Rainbow Matching. A priori, it

152

is not clear how we can transform (U 0,F 0, k0) to an instance of Rainbow Matching

without increasing the size bounds on the kernel we obtain for Rainbow Matching.

Thus, to design a kernelization algorithm for Rainbow Matching we give a

kernelization algorithm for 3-Set Packing such that it is easy to transform an

instance of the latter to an instance of Rainbow Matching. This kernel is given

here mainly for completeness.

6.4.1 Kernelization on general graphs: Algorithm I

Now we give the kernelization algorithm alluded to in the first part of Theorem 15.

Towards that we will use the sunflower lemma – a classical result of Erdős and Rado.

We first define the terminology used in the statement of the lemma. A sunflower

with k petals and a core Y is a collection of sets S1, . . . , Sk such that Si \ Sj = Y for

all i 6= j; the sets Si \ Y are petals and we require none of them to be empty. Note

that a family of pairwise disjoint sets is a sunflower (with an empty core).

Proposition 6.4.1. [29, pg 38] (Sunflower lemma) Let A be a family of sets

(without duplicates) over a universe U , such that each set in A has cardinality exactly

d. If |A| > d!(k�1)d, then A contains a sunflower with k petals and such a sunflower

can be computed in time polynomial in |A|, |U |, and k.

Proof of first part of Theorem 15. Given an instance (G,�, k) ofRainbow Matching,

we view this as an instance J of 3-Set Packing as follows: U = V (G) [[q] and F

consists of a set {u, v,�(uv)} corresponding to every edge e = uv 2 E(G).

Reduction Rule 6.4.1. Let (U,F , k) be an instance of 3-Set Packing and suppose

that F contains a sunflower Ŝ = {S1, . . . , S3(k�1)+2} of cardinality 3k � 1 with core

Y . Then, return (U 0,F 0, k), where U 0 =
S

X2F 0 X, and F 0 = (F \ {S1}) is obtained

by deleting the set S1 from F .

153

To show the correctness of Reduction Rule 6.4.1, we need to show the following

lemma.

Lemma 6.4.1. Reduction Rule 6.4.1 is safe.

Proof. We will prove that (U,F , k) is a yes-instance of 3-Set Packing if and only

if (U 0,F 0, k) is a yes-instance of 3-Set Packing. It is clear that if (U 0,F 0, k) is a

yes-instance of 3-Set Packing then so is (U,F , k); so the backward direction holds

straightaway.

For the forward direction, we assume that we have a solution S to (U,F , k), i.e.

, a set of k pairwise disjoint sets. If S does not contain S1, then it is also a solution

for (U 0,F 0, k). So let us assume that S1 2 S. Observe that the number of elements

appearing in the sets in S, apart from those present in S1, is 3(k�1). Also, note that

no set in S \ {S1} intersects the core Y since Y ⇢ S1 and the sets in S are pairwise

disjoint. Thus, the number of sets in the sunflower Ŝ that intersects a set of S is

upper bounded by 1 + 3(k � 1) (the first one for S1). This implies there exists a set

S? 2 Ŝ that is pairwise disjoint with every set in S \ {S1}. Thus, (S \ {S1}) [{S?}

is a solution of size k for (U 0,F 0, k). This completes the proof. ⇧

Now, we are ready to describe the kernelization algorithm. If the number of sets

in F is more than 6(3k � 2)3, then the kernelization algorithm applies the sunflower

lemma to find a sunflower of size 3k � 1, and applies Reduction Rule 6.4.1 on this

sunflower.

The algorithm applies this procedure exhaustively, and obtains a new family of

sets F 0 of size at most 6(3k � 2)3. This concludes the size bound on the family

(U 0,F 0, k) of 3-Set Packing. Observe that throughout the process, we have never

reduced the size of any set in the family and each set in the family still corresponds

to an edge and its color. Thus, given (U 0,F 0, k), let W be the vertices present in U 0.

Then we return (G[W],�0, k), where edge coloring �0 is the restriction of � to the

154

edges present in G[W]. This concludes the description of the kernelization algorithm.

⇧

6.4.2 Kernelization on graphs of bounded degree

In this section we design a small kernel for Rainbow Matching on graphs of

bounded degree. Let (G,�, k) be an instance of Rainbow Matching. Throughout

this section we assume that the maximum degree of G is upper bounded by a fixed

constant d.

For i 2 [q], let Ei = {e 2 E(G) | �(e) = i}. We call the set of edges Ei as a color

class with color i. We first prove the following useful observation.

Observation 6.4.1. Let M be a matching of size t of G. Then V (M) contains

endpoints of at most 2t(d� 1) edges from E(G) \M.

Proof. Observe that M has 2t distinct vertices and each vertex has degree at most d.

Therefore, each vertex in V (M) has at most d� 1 neighbors outside M. So, there

are at most 2t(d� 1) neighbors of vertices of V (M) outside M. That is, there are

at most 2t(d� 1) edges incident to the vertices of V (M) that are from E(G) \M. ⇧

Next we give reduction rule that bounds the size of each color class.

Reduction Rule 6.4.2. If there exists i 2 [q] such that |Ei| � 2(d� 1)(k � 1) + 1

then delete Ei and reduce k by 1. That is, we obtain an instance (G0,�0, k� 1). Here,

G0 is obtained by deleting all the edges in Ei and edge coloring �0 is obtained by

restricting � to the edges in G0.

Lemma 6.4.2. Reduction Rule 6.4.2 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G0 has

a colorful matching of size k � 1. We first prove the forward direction. If G has a

155

colorful matching M of size k that contains an edge uv 2 Ei, then M\ {uv} is a

colorful matching of size k � 1 in the graph G0. If M does not have an edge of color

i, then M itself is a colorful matching of size at least k � 1 for G0.

For the backward direction, let M0 be a colorful matching of size k � 1 of G0.

Due to Observation 6.4.1, at most 2(d� 1)(k � 1) edges from Ei can share vertices

with M0. Since, |Ei| � 2(d� 1)(k � 1) + 1, Ei has at least one edge that does not

share a vertex with M0. Let that edge be uv. Then, it follows that M0 [{uv} is a k

size colorful matching of G, and our proof is complete. ⇧

We apply Reduction Rule 6.4.2 exhaustively. If the premise of the rule is not

satisfied, then for each color i, we have that |Ei|  2(d� 1)(k � 1). Next we give a

polynomial time procedure that either outputs a colorful matching of size at least k

or bounds the number of colors.

Lemma 6.4.3. Let (G,�, k) be an instance of Rainbow Matching for which

Reduction Rule 6.4.2 is not applicable. Then, in polynomial time either we can

conclude that (G,�, k) is a yes-instance or the number of distinct colors in the

instance is upper bounded by 2(d� 1)(k � 1).

Proof. We iteratively try to build a colorful matching of size k. If we fail to do so,

then it will enable us to bound the number of color classes. Let M be an empty set.

We repeat the below procedure until the graph is empty.

1. Pick an edge uv of G arbitrarily, and add it to M. Let the edges incident on u

have colors c1
u
, c2

u
, . . . , c`

u
and the edges incident on v have colors c1

v
, c2

v
, . . . , cp

v
.

2. Delete all the edges in
S

`

i=1 Eciu
and

S
p

i=1 Eciv
. Let the resulting graph be also

called G.

If we can continue the above process for k steps (i.e. |M| � k) then M is a

colorful matching of size at least k. In this case we output M as the desired colorful

156

matching. To see its correctness, observe that in every iteration we deleted the edges

incident on both the endpoints of the added to M. So, the edges we added to M are

indeed pairwise vertex disjoint. Also, note that we delete all the edges with colors

that are used on the edges that are incident to the edges that were added to M.

Hence, the edges in M have distinct color.

Otherwise, our procedure ends within at most k � 1 steps, and so |M|  k � 1.

Due to Observation 6.4.1, the number of edges incident to a vertex in V (M) is at

most 2(d� 1)(k � 1). Therefore, the number of color classes that contain a vertex

from V (M) is at most 2(d� 1)(k � 1). Following this we are left with an an empty

graph and every edge we deleted or picked in M is incident to V (M). Thus, we

have shown that in this case, we can have at most 2(d� 1)(k � 1) color classes. ⇧

Lemmas 6.4.2 and 6.4.3 together prove second part of Theorem 15.

6.5 Improved Kernelization Algorithms

In this section we design a polynomial kernel for Rainbow Matching on general

graphs. In particular, we give a proof of Theorem 16.

The section is organized as follows. We first give a few reduction rules and then

use them to a give a graph decomposition. Next, we use the graph decomposition

along with some elementary reduction rules to design an O(k2) kernel for Rainbow

Matching on Forests. Finally, by applying a reduction rule based on the p-

Expansion Lemma, we give an O(k2) kernel for Rainbow Matching on general

graphs.

Let (G,�, k) denote an input to Rainbow Matching. Throughout this section,

n and m denote the number of vertices and edges in G, respectively. For a subgraph

G0 of G, we use �|G0 to denote � when restricted to the edges of G0. Furthermore,

157

we will use Ei to denote the set of edges in E(G) that have been assigned color i

by �. The graph induced by Ei will be denoted by G[Ei]. We will assume that �

assigns an integer in [q].

6.5.1 Decomposing the graph into a vertex cover and an

independent set

We start with the following simple reduction rule.

Reduction Rule 6.5.1. If there is an isolated vertex v in G, then delete v. The

resulting instance is (G0 = G� {v},�|G0 , k).

This reduction rule is safe because an isolated vertex cannot be part of any

matching. Clearly, Reduction Rule 6.5.1 can be executed in time O(n2) using

adjacency matrix representation of G. In order to decompose our graph into a vertex

cover and an independent set we need a bound on the vertex cover of the graph.

Towards this we give the following reduction rule.

Reduction Rule 6.5.2. Suppose that there exists i 2 [q] such that the size of a

maximum matching in G[Ei] is at least 2k � 1. Then, delete all the edges in Ei and

reduce k by 1. The resulting instance is denoted by (G0,�|G0 , k � 1).

Lemma 6.5.1. The Reduction Rule 6.5.2 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G0 has

a colorful matching of size k � 1. We first prove the forward direction. If G has a

colorful matching M of size k that contains an edge uv of color i then M \ {uv} is a

colorful matching of size k � 1 in the graph G0. If M does not have an edge of color

i, then M itself is a colorful matching of size at least k � 1 for G0.

For the reverse direction, let M 0 be a colorful matching of size k� 1 of G0. Recall

that the size of maximum matching of G[Ei] is at least 2k � 1, i.e, there are 2k � 1

158

pairwise vertex disjoint edges of color i. Since M 0 has 2(k� 1) distinct vertices, there

is at least one edge in Ei that is not incident to any vertex in V (M 0). Let uv denote

that edge. Then, since the edges of color i are not present in G0, we can infer that

M 0 [{uv} is a colorful matching of size k in G. This completes the proof. ⇧

We can construct the graph G[Ei], for each i 2 [q] in time O(m) and find

maximum matching in G[Ei] in time O(m
p
n). The edge set of G can be reduced

in time O(n2) using the adjacency matrix representation of G. Hence, Reduction

Rule 6.5.2 can be executed in time O(qm
p
n+ n2).

When Reduction Rule 6.5.2 cannot be applied to the current instance, then we

know that for each color i 2 [q], the size of the maximum matching in G[Ei] is at

most 2(k � 1). Next, we describe a polynomial time procedure that either outputs a

colorful matching of size at least k or gives an upper bound on the size of a vertex

cover of a graph on which Reduction Rule 6.5.2 is not applicable.

Lemma 6.5.2. Let (G,�, k) be an instance of Rainbow Matching on which

Reduction Rule 6.5.2 is not applicable. Let n and m denote the number of vertices

and edges in G, respectively. Then, in time O(n2m) either we can conclude that

(G,�, k) is a Yes-instance or that G has a vertex cover of size at most 4(k � 1)2 +

2(k � 1). Furthermore, in the later case, we can output a vertex cover X of G of

size 4(k � 1)2 + 2(k � 1) in time O(n2m).

Proof. We iteratively try to build a colorful matching of size k. If we fail to do so, then

we can exhibit a vertex cover in G whose size is upper bounded by 4(k�1)2+2(k�1).

We begin by initializing M to be an empty set. We repeat the following procedure

until the graph has no edge, i.e it is an independent set.

(1) Pick an edge uv of G arbitrarily and add it to M.

159

(2) Delete the edges incident on the endpoints u and v, and the edges in the color

class E�(uv). Let the resulting graph be denoted by G.

If we can continue the above process for k steps (i.e. |M| � k), then M is a

colorful matching of size at least k. In this case we output M as the desired colorful

matching and exit.

Before we prove the correctness of the procedure, we note that it takes time

O(n2m). This is because step (2) of the procedure takes O(n2) and is executed at

most m times.

To see the proof of correctness of the procedure, we observe that in every iteration

we deleted the edges incident on the endpoints of the edge (most recently) added

to M. Hence, the edges we pick in M are indeed pairwise vertex disjoint. Also,

note that we deleted all the edges that have the same color as uv, thereby ensuring

that no two edges of the same color class are picked twice. Thus, M is a colorful

matching of size at least k. Let V (M) denote the set of vertices obtained by taking

the end-points of the edges in M.

If the process cannot continue beyond the first k � 1 steps, then |M|  k � 1.

Without loss of generality, we may assume that for some `  k � 1, the set of

colors on the edges in M is denoted by [`]. Note that during the procedure, for any

i 2 [q]\[`], only the edges in Ei that are incident on a vertex in V (M) have been

deleted, and yet at the end we have an independent set. Thus, it follows that every

edge in the induced subgraph G[[j2[q]\[`]Ej] shares a vertex with an edge in M. In

other words, the set V (M) is a vertex cover of G[[j2[q]\[`]Ej]. Recall that for each

i 2 [q], the size of a maximum matching in G[Ei] is at most 2(k � 1) and thus, has

a vertex cover of size at most 4(k � 1) – just take the end-points of any maximal

matching. In particular, for each i 2 [`], the induced subgraph G[Ei] has a vertex

cover of size at most 4(k � 1). Therefore, G must have a vertex cover of size at most

160

P
i2[`] 4(k � 1) + |V (M)|  4(k � 1)(k � 1) + 2(k � 1).

It is easy to see that we can get a vertex cover of G, denoted by X , of size

4(k � 1)2 + 2(k � 1) in polynomial time: the vertices in V (M) and for each i 2 [`] a

vertex cover for G[Ei], obtained by taking the end-points of a maximal matching in

G[Ei]. This concludes the proof. ⇧

Decomposition of the graph. Let (G,�, k) be an instance on which Reduction

Rule 6.5.2 is not applicable and Lemma 6.5.2 does not return that it is an Yes-

instance. Then, we show that an application of Lemma 6.5.2 yields a vertex cover X .

The following lemma follows from the details of the proof of Lemma 6.5.2.

Lemma 6.5.3. Let (G,�, k) be an instance of Rainbow Matching. Let n and m

denote the number of vertices and edges in G, respectively. Then, in time O(n2m)

either we can conclude that (G,�, k) is a Yes-instance or output a vertex cover X

of G such that the following conditions hold.

• X = [i2[`]Xi[V (M) where M is a colorful matching containing edges of color

{1, . . . , `} for some `  k � 1.

• Each Xi is a vertex cover of the induced subgraph Gi = G[Ei] such that

|Xi|  4(k � 1).

• Furthermore, V (M) is the vertex cover of the induced subgraph G[[q

i=`+1Ei].

We will denote the complement of X , the set V (G) \ X , an independent set by I.

6.5.2 Kernelization on Forests

In this section, we will design a kernel for Rainbow Matching on Forests of size

O(k2). This kernel is based on Lemma 6.5.3 and some elementary reduction rules.

Recall that for general graphs, Theorem 15 gives a bound of O(k3). Let (G,�, k) be

161

an instance of Rainbow Matching on Forests on which Reduction Rules 6.5.1

and 6.5.2 do not apply. Furthermore, assume that an application of Lemma 6.5.3

gives us the decomposition of V (G) into X and I where the size of X is O(k2). Thus,

to get the desired kernel all we need is to reduce the size of I to O(k2).

We start with the following observation which is a direct consequence of the

decomposition of G, a forest.

Lemma 6.5.4. Let V�2 = {v 2 I | deg(v) � 2}. Then, |V�2|  |X |  4k(k � 1) +

2(k � 1)� 1.

Proof. Towards the proof consider the induced subgraph G[V�2 [X]. Let v 2 V�2

such that {x, y} ✓ X are two of its neighbors. We put an edge between x and y,

and delete v. This operation can also be viewed as contracting the vertex v to one

of its neighbors. Thus, what we get is a minor of a forest and hence a forest. This

gives a forest on |X | vertices, and a subset of edges that correspond to vertices in

V�2. Since this forest has at most |X |� 1 edges, we can conclude that |V�2|  |X |.

From Lemma 6.5.2 we know that |X |  4k(k � 1) + 2(k � 1)� 1, and so the proof is

complete. ⇧

To bound the size of the independent set I, we need to bound V=1 = I \ V�2 =

{v 2 I| deg(v) = 1}. In the upcoming discussion, we will solely focus on V=1. The

following reduction rule allows us to reduce the multiplicity of colors on vertices in

X .

Reduction Rule 6.5.1. Let u 2 X . Suppose that for a color c 2 [q], there are

at least two edges of color c in E({u}, V=1). Then, delete an edge of color c from

E({u}, V=1). The resulting instance is denoted by (G0,�|G0 , k)

Lemma 6.5.5. Reduction Rule 6.5.1 is safe.

Proof. Let (G,�, k) denote the instance before application of the reduction rule. We

162

will prove that G has a colorful matching of size k if and only if G0 has a colorful

matching of size k.

Let M be a solution for the instance (G,�, k). Let uv be the deleted edge. If

uv 2 E(G)\M , then M is a solution for (G0,�|G0 , k). Suppose that uv 2 M . Note

that, there is at least 1 edge of color c in E({u}, V=1 \ {v}). Let this edge be denoted

by uv0. We claim that M 0 = M \{uv}[{uv0} is a colorful matching of size k. Notice

that M 0 is matching because M \ {uv} is a matching, and neither u nor v0 is incident

to any edge in M\{uv}. So the edges of M 0 are pairwise vertex disjoint. It is a

colorful matching because M\{uv} is colorful matching and c = �(uv) = �(uv0).

Moreover, |M | = |M 0|. Therefore, M 0 is a solution for (G0,�|G0 , k).

For the reverse direction, we note that G0 is an induced subgraph of G, and so

any solution in (G0,�|G0 , k) is also a solution of (G,�, k). ⇧

The next reduction rule enables us to reduce the number of colors (on edges)

incident to vertices in X .

Reduction Rule 6.5.2. Let u 2 X . Suppose that the subset E({u}, V=1) has at

least k + 1 edges of distinct colors. Then, delete an edge from E({u}, V=1). The

resulting instance is denoted by (G0,�|G0 , k).

Lemma 6.5.6. The Reduction Rule 6.5.2 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G0 has a

colorful matching of size k.

We first prove the forward direction. Let M be a solution for the instance (G,�, k).

Let uv be the deleted edge. If uv 2 E(G)\M , then M is a solution for (G0,�|G0 , k).

Suppose that uv 2 M . If |M | � k + 1, then M \ {uv} is a solution for (G0,�|G0 , k).

Suppose that |M | = k. Then, we will show a colorful matching of size k exists in G0

by adding an edge to M \ {uv}.

163

After we delete the edge uv there are at least k distinct colors that appear on

edges adjacent to u. Therefore, at least one of these colors is not present in M \{uv}.

Let uv0 denote this edge. We claim that M 0 = M \{uv}[{uv0} is a colorful matching

of size k.

Note that M 0 is matching because M \ {uv} is a matching, and neither u nor v0

is incident to any edge in M\{uv}. So the edges of M 0 are pairwise vertex disjoint,

and so it is a matching. It is a colorful matching because M \ {uv} is colorful and

the �(uv0) is not present in the set M \ {uv}. Moreover, |M 0| = |M | = k. Therefore,

M 0 is a solution for (G0,�|G0 , k).

For the reverse direction, let M 0 be a colorful matching of size k of G0. Since

every edge in G0 is an edge in G, M 0 is a solution for (G,�, k) This completes the

proof. ⇧

As a corollary to our color reducing rule and reducing edges of the same color we

get the following.

Corollary 6.5.1. If both Reduction Rules 6.5.1 and 6.5.2 are not applicable, then

for any vertex u 2 X , we have deg
V=1

(u)  k.

Notice that each vertex u 2 X along with its neighbors in V=1 forms a star.

Intuitively speaking, we will bound the size of each star. Recall that the vertices of

the matching that we constructed in Lemma 6.5.3 (or Lemma 6.5.2) is denoted by

V (M). Notice that V (M) ✓ X and is the vertex cover for the subgraph G[[i2[q]\[`]Ei]

which implies that none of the edges in color classes [i2[q]�[`]Ei have any neighbors

in X \ V (M).

Lemma 6.5.7. Let V `+
=1 = {v 2 V=1|N(v) \ V (M) 6= ;}.Then, |V `+

=1 | = O(k2).

Proof. Recall that |V (M)|  2(k � 1). From Corollary 6.5.1, for each u 2 V (M),

deg
V=1

(u)  k. Therefore |NV=1(V (M))|  2(k � 1)k. The set NV=1(V (M)) is the

164

set vertices in V=1 that has a neighbor in V (M). That is, V `+
=1 = NV=1(V (M)), and

so the lemma is proved. ⇧

Next, for a fixed color i 2 [q], we bound the size of the set V (Ei) \ V=1. We do

so by identifying several stars centered on X but with leaves in V=1 such that each

one has an edge of color i.

Reduction Rule 6.5.3. Let i 2 [q]. If there are at least 2k vertices in X that are

adjacent to (some edges in) Ei, then delete an edge in Ei. The resulting instance is

denoted by (G0,�|G0 , k)

Lemma 6.5.8. The Reduction Rule 6.5.3 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G0 has a

colorful matching of size k.

Let M be a solution for the instance (G,�, k). Let uv be the deleted edge. If

uv 2 E(G)\M , then M is a solution for (G0,�0, k). Furthermore, we assume that

|M | = k, or else M\{uv} is a solution for (G0,�0, k). We will produce a colorful

matching of size k in G0. Let M 0 = M\{uv}.

Since |M 0| = k� 1, we have |V (M 0)| = 2(k� 1). Thus, |V (M 0)\X|  |V (M 0)| =

2(k � 1). Note that |V (M 0) \ V=1|  k � 1 because at most one of the endpoints in

the k� 1 edges in M 0 can be in the independent set V=1. Thus, there can be at most

2(k � 1) edges in E(X , V=1) that have at least one endpoint in V (M 0). In particular,

there can be at most 2(k � 1) edges of color i in E(X , V=1) that have at least one

endpoint in V (M 0).

Thus, it follows that there is at least one edge in Ei whose both the endpoints

are in V (G0)\V (M 0). Let xy denote this edge. We claim that M 00 = M 0 [{xy}

is a colorful matching of size k. Since {x, y} ✓ V (G0)\V (M 0), the edges of M 00

are pairwise vertex disjoint, so M 00 is indeed a matching. It is a colorful matching

165

because M is a colorful matching and uv, xy 2 Ei, meaning that they both have

color i. Moreover, |M | = |M 00|. Hence, we can conclude that M 00 is a solution for

(G0,�|G0 , k).

For the other direction, we note that G0 is a induced subgraph of G. Thus, if M

is a solution for (G0,�, k), then M is a solution for (G,�, k). ⇧

Finally, we bound the number of remaining vertices in V=1 i.e., the vertices in

V=1 \ V `+
=1 .

Lemma 6.5.9. |V=1 \ V `+
=1 | = O(k2).

Proof. Observe that V `+
=1 = {v 2 V=1|N(v) 2 V (M)}. Since V (M) is the vertex

cover of G[[i2[q]\[`]Ei], it follows that V `+
=1 contains each of the vertices in V=1 that is

incident on an edge with color i 2 [q]\[`]. Therefore, the remaining set, V=1 \ V `+
=1 , is

contained in the set of vertices which are incident on edges that have color i 2 [`].

That is, V=1 \ V `+
=1 ✓ [`

i=1V (Ei) \ V=1. Due to Reduction Rule 6.5.3, for each i 2 [`],

|V (Ei) \ V=1|  2(k � 1) + 1. Since `  k � 1, the lemma follows. ⇧

Note that we can find an edge that satisfy the premise of Reduction Rule 6.5.1

in time O(n). The graph can be updated in time O(n2). Hence, an application of

the rule takes time O(n2). Similarly, an application of Reduction Rule 6.5.2 and

6.5.3 can be executed in time O(n2). Hence, Theorem 17 follows by combining

Lemmas 6.5.3, 6.5.7 and 6.5.9.

6.5.3 Kernelization on General Graphs: Algorithm II

In this section we describe a kernel on general graphs. That is, we give a proof of

Theorem 16. Recall that by 15 we know that Rainbow Matching admits a kernel

with O(k3) edges and vertices. Let (G,�, k) be an instance of Rainbow Matching.

166

We start by applying the kernelization algorithm described in Section 6.4.1 on

(G,�, k) and obtain an equivalent instance (G0,�0, k0) such that G0 has O(k3) edges

and k0  k. For the sake of clarity of presentation we will denote the reduced instance

also by (G,�, k). Each application of the reduction rules in this section either deletes

an edge or deletes a vertex. Hence, the number of edges in the resulting instance

cannot increase. Hence, from now onwards we assume that the instance returned by

our kernelization algorithm has O(k3) edges.

Let (G,�, k) be an instance of Rainbow Matching. In the next reduction rule,

we bound the the number of colors (on edges) incident on a vertex. Observe that we

had similar rule on forests but those were only applicable to “star” kind of vertices.

Reduction Rule 6.5.4. Let v 2 V (G). If the number of distinct colors incident

on v is at least 3k � 1, then delete an edge incident on v. The resulting instance is

denoted by (G0,�|G0 , k)

Lemma 6.5.10. The Reduction Rule 6.5.4 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G0 has a

colorful matching of size k.

We first prove the forward direction. Let M denote a solution for the instance

(G,�, k). Let uv denote the deleted edge. If uv 2 E(G)\M , then M is a solution

for (G0�0, k). Suppose that uv 2 M . If |M | � k + 1, then M \ {uv} is a solution for

(G0,�0, k). Suppose that |M | = k. We will produce a new colorful matching of size

k by adding an edge to M \ {uv}. Let M 0 denote the colorful matching M \ {uv},

and let V (M 0) denote the set of vertices incident on edges in M 0. Thus, we have

|V (M 0)| = 2(k � 1).

Note that after we delete uv there are at least 3k � 2 edges of distinct color

that are incident on v. So we can infer that at least k of the edges incident on v

in G0 are not incident on a vertex in V (M 0) and are of distinct colors. We denote

167

these edges by {vu1, . . . , vuh}, where h � k and {ui | 1  i  h} \ V (M 0) = ;. By

definition, edges vu1, . . . , vuh have distinct colors. Since there are k� 1 colors in M 0,

there exists j 2 [h] such that none of the edges in M 0 have the color �(vuj). Let

M 00 = M 0 [{vuj}. Clearly, M 00 has edges of distinct colors because of the choice

of �(vuj) and the fact that M 0 is a colorful matching. To see that M 00 is indeed a

matching, that is, it is a set of vertex-disjoint edges we note that M 0 is a matching

and that {v, uj} \ V (M 0) = ;. Thus, M 00 is a colorful matching of size k, and so is a

solution for (G0,�0, k).

For the reverse direction, let M 0 denote a colorful matching of size k in G0. Since

every edge in G0 is an edge in G, M 0 is a solution for (G,�, k) This completes the

proof. ⇧

Next we will use Proposition 1 to bound the size of the independent set I. But

prior to that, we will create a more enriched set from X .

An “expansion graph”

We begin by recalling the graph decomposition described in Lemma 6.5.3: X =

[i2[`]Xi [V (M) is a vertex cover and I = V \X is the resulting independent set in

G.

For each v 2 V (M), we define C(v) to be a inclusion-wise maximal set of distinct

colors incident on v. We define a bipartite (helper) graph HG with the vertex

bipartition (A,B) where B = I and the subset A is defined as follows: For each

vertex x 2 Xj, j 2 [`], A contains the vertex xj. Additionally, for each x 2 V (M)

and each j 2 C(x), Acontains the vertex xj. Observe that vertices xi and xj are

distinct if i 6= j. Indeed, a vertex can appear in both Xi and V (M) and thus we

might get duplicates of a vertex in A, in which case we delete all but one copy of a

vertex. We define the edges as follows. For ai 2 A and b 2 I, aib 2 E(HG) if and

168

only if ab 2 E(G) and color �(ab) = i.

Now we show the following properties about the graph HG.

Lemma 6.5.11. |A| = O(k2).

Proof. Since we apply Reduction Rule 6.5.4 exhaustively, for any vertex v 2 V (G),

the set of edges with distinct colors incident on v is at most 3k � 2. Thus, for any

v 2 V (M), |C(v)|  3k � 2. Hence, | [x2V (M) C(x)|  2(k � 1)(3k � 2) because

|V (M)|  2(k � 1).

Moreover, from Lemma 6.5.3, we know that |Xi|  4(k�1), for each i 2 [`]. Hence,

|{xi | x 2 Xi}|  4(k�1), for each i 2 [`]. Thus, |[i2[`]{xi | x 2 Xi}|  4(k�1)(k�1)

because `  k � 1. Hence, |A| = | [i2[`] {xi | x 2 Xi} [x2V (M) C(x)|  4(k � 1)2 +

2(k � 1)(3k � 2) = O(k2). ⇧

Lemma 6.5.12. B does not have an isolated vertex.

Proof. We recall that B = I. Let b 2 B. Due to Reduction Rule 6.5.1, b is not an

isolated vertex in G. That is, NG(b) 6= ;. Let u 2 NG(b) and j = �(ub). Since,

B ✓ I and X is a vertex cover of G, it follows that NG(b) ✓ X . We claim that

uj 2 A, and therefore, ujb 2 E(HG). We prove the claim as follows.

If j 2 [`], then consider the graph G[Ej], it contains the edge ub. Due to the

fact that b 2 I, it is clear that the vertex cover Xj of G[Ej] must contain the vertex

u. Hence, uj 2 A follows straightaway. Suppose that j 2 {`+ 1, . . . , q}. Then, the

edge ub is in the subgraph G[[j2[q]\[`]Ej]. Recall that V (M) is a vertex cover for the

graph G[[j2[q]\[`]Ej]. Thus, the edge ub must be “covered” by some vertex in V (M).

Since V (M) ✓ X and b 2 I, it follows that u 2 V (M)\ [i2[`] Ei. Thus, it follows

that �(uv) = j 2 C(u). This implies that uj 2 A, and so our proof is complete. ⇧

Using Lemma 6.5.12, there is no isolated vertices in B. Moreover, if |B| > |A|,

then we apply 1-Expansion Lemma (Proposition 1) on HG to find a redundant vertex

169

that can be deleted. The details are presented in the following reduction rule. Note

that the conditions required to apply the algorithm provided by the lemma are

satisfied.

Reduction Rule 6.5.5. Suppose that in the bipartite graph HG, we have |B| > |A|.

Then, we invoke Proposition 1 to compute sets X ✓ A and Y ✓ B with |X| < |Y |

such that X has a 1-expansion, denoted by M?, into Y in HG and N(Y) ✓ X. Let

y 2 Y \V (M?), a vertex that is not incident to any edges in M?.

The resulting instance is denoted by (G0,�|G0 , k), where G0 is the graph obtained

from G by deleting y and all edges incident on it.

Next we prove the correctness of Reduction Rule 6.5.5.

Lemma 6.5.13. Reduction Rule 6.5.5 is safe.

Proof. We will prove that G has a colorful matching of size k if and only if G0 has

a colorful matching of size k. We first prove the forward direction. Let M be a

solution for the instance (G,�, k).

If the deleted vertex y 2 V (G)\V (M), then M does not contain any edge that was

deleted from G. Thus, M is also a solution of (G0,�|G0 , k). Suppose that y 2 V (M),

there exists an edge uy 2 M and |M | = k. Using the 1-expansion of X into Y

(denoted by M?) we will show that there exists a colorful matching of size k in

G0. Given a graph G, a matching L and a vertex v 2 V (L) by L(v) we denote the

matching partner of the vertex v. In other words, the other end-point of the edge in

which the vertex v appears.

Let M = {xiyi | 1  i  k}, where yk = y denotes the deleted vertex. Thus,

it follows that yk 2 Y . Furthermore, let the color ci = �(xiyi) for each i 2 [k].

Since N(Y) ✓ X, we can infer that xck
k

2 X. We conclude that the set of edges

{xci
i
yi | i 2 [k], ci = �(xiyi)} is present in HG. The 1-expansion M? in HG yields

170

the set {xcM?(xc) | xc 2 X and M?(xc) 2 Y } in HG.We will use a subset of this to

exhibit a colorful matching in G0.

Consider XG = {x | 9j 2 [q], xj 2 X}, the set of vertices in G that correspond

to vertices in X ✓ A. Since xck
k

2 X, it follows that xk 2 XG. Without loss of

generality, let V (M) \XG be denoted by {xi | i 2 [k]\[r]} for some r � 1. Then, it

follows that {xci
i
| i 2 [k]\[r]} ✓ X. It follows that {M?(xci

i
) | i 2 [k]\[r]} ✓ Y , and

that G0 contains the edges {xiM?(xci
i
) | xi 2 XG \ V (M)}.

The following claim completes the proof of the forward direction.

Claim 1. fM = M\{xiyi | i 2 [k]\[r]}[{xiM?(xci
i
) | i 2 [k]\[r]} is a colorful matching

of size k in G0.

Proof. We will first prove that fM is a set of pairwise vertex-disjoint edges, i.e. fM is

indeed a matching. First we note that M\{xiyi | i 2 [k]\[r]} = {xiyi | i 2 [r]} is a set

of pairwise vertex-disjoint edges. Clearly, these edges do not share any vertex with

{xi | i 2 [k]\[r]}. We claim that nor do they share a vertex with {M?(xci
i
) | i 2 [k]\[r]},

that in fact, {yi | i 2 [r]} \ {M?(xci
i
) | i 2 [k]\[r]} = ;.

For the sake of contradiction, we assume that ya = M?(xcb
b
) where a 2 [r] and

b 2 [k]\[r]. We know that in the graph HG, M?(xcb
b
) 2 Y , so now ya 2 Y . Since

NHG(Y) ✓ X, it follows that xca
a

2 X because xca
a

2 NHG(ya). Thus, in the graph G,

we have xa 2 XG. Furthermore, xa 2 V (M) \XG because edge xaya 2 M . But, by

definition V (M) \XG = {xi | i 2 [k]\[r]}, a contradiction. Hence, we can conclude

that fM is a matching and |M̃ | = |M | = k.

Next we will prove that fM is colorful. Clearly, M\{xiyi | i 2 [k]\[r]} is colorful

because M is colorful. The set of colors appearing in the set {xiM?(xci
i
) | i 2 [k]\[r]}

is same as that in {xiyi | i 2 [k]\[r]} which is in fact, {ci | i 2 [k]\[r]}. Thus, fM has

the exact same colors as M .

171

Hence, the claim is proved. ⇧

For the reverse direction, let M 0 be a colorful matching of size k of G0. Since

every edge in G0 is an edge in G, M 0 is a solution for (G,�, k) This completes the

proof. ⇧

If we cannot apply Reduction Rule 6.5.5 on an instance (G,�, k), then |B|  |A|

in the graph HG. Hence, |B|  |A| = O(k2), by Lemma 6.5.11, and G has O(k2)

vertices. An application of Reduction Rule 6.5.4 takes time O(n2). We can construct

the helper bipartite graph in time O(qn). Hence, Reduction Rule 6.5.5 can be

executed in time O(nm
p
n). Thus, Theorem 16 is proved.

6.6 Conclusion, Discussion and Open Problems

In this chapter, we considered Rainbow Matching from the viewpoint of parame-

terized complexity, and designed faster parameterized algorithms as well as kernels for

this problem. Rainbow Matching is easily seen as a generalization of another well

studied problem in parameterized algorithms, namely 3-Dimensional Matching,

when we allow the input graph to be a multigraph. In this problem, we are given

a set family (U,F), together with a partition U =]3
i=1Ui and a positive integer k.

Here, every set F 2 F has the property that for all i 2 [3], |F \Ui| = 1. The question

is whether there exists a subfamily F 0 ✓ F containing k pairwise-disjoint sets. We

first show that Rainbow Matching is indeed a generalization of 3�Dimensional

Matching. Towards proving this, we give a polynomial time parameter-preserving

reduction from 3�Dimensional Matching to Rainbow Matching. That is, we

give the following ppt reduction,

3�Dimensional Matching ppt Rainbow Matching.

Here, let us only present a rough sketch of the proof. The idea of the con-

172

struction is as follows. In the bipartite graph of the constructed instance of

Rainbow Matching, one side represents the elements of U1, and the other side

represents the elements of U2. Then, for every set {u1, u2, u3} in F , where ui 2 Ui

for all i 2 [3], we add an edge between u1 and u2 whose color is u3. It is easy to

see that a solution for the original problem instance can be directly translated to a

solution for the new problem instance, and vice versa. Moreover, the parameter k in

both instances is set to be the same.

We also saw that there is a ppt reduction from Rainbow Matching to 3-Set

Packing and thus we have the following chain of reductions.

3�Dimensional Matching ppt Rainbow Matching ppt 3�Set Packing.

It is known that 3-Dimensional Matching admits a randomized algorithm

with running time O?(2k) [16] and a deterministic algorithm with running time

O?(2.59612k) = O?(6.7398k) [158]. We gave in the introduction a deterministic

algorithm for Rainbow Matching that is the same as the one for 3-Set Packing.

However, we remark that the algorithm for 3-Dimensional Matching given in [158]

can actually be used to solve Rainbow Matching in O?(6.7398k) time. Can we

design a faster randomized or deterministic algorithm for Rainbow Matching or

even 3-Dimensional Matching?

We designed a kernel with O(k2) vertices on general graphs. This also implied a

kernel with O(k2) vertices on paths, forests and planar graphs. We conclude with

the following open problems. Does there exist a linear kernel on paths or forests? Is

the O(k3) bound on the edges of the kernel for Rainbow Matching optimal for

general graphs?

Finally, by a direct application of our randomized parameterized algorithm for

Rainbow Matching running in time O?(2k), we have that there exists a randomized

173

algorithm for Rainbow Matching running in time O?(2n/2) = O?(1.4143n). Here,

n is the number of vertices in the input graph and the n/2 is an upper bound

on the maximum size of a colorful matching in a graph. Using a simple dynamic

programming algorithm, it is possible to design a O?(2n) algorithm for Rainbow

Matching. Designing a deterministic algorithm for Rainbow Matching running

in time (2� ✏)n for some fixed ✏ > 0 is another interesting open problem.

174

Chapter 7

Stable Committee Selection

In the previous chapter we gave kernel and FPT algorithms for a type of matching

problem. Here, we shift our attention from graph theoretic problem to a problem in

computational social choice. We will give an algorithm to select a subset of vertices

(candidates) that satisfy some criteria. Whereas, in the previous chapter we wanted

the selected set of edges to be colorful, here we want the selected set of vertices to

satisfy a stability condition. This stability condition is di↵erent from the ones we

have seen in Part I of the thesis.

An important question in social choice theory is—“how to choose a non-controversial

committee of size k?” Such a question arises while electing parliaments in modern

democracies, selecting a group of representatives in an organization, in taking business

decisions or shortlisting tasks. In voting theory, all these scenarios can be captured

by multiwinner elections. In particular, the problem of selecting a committee can

be formulated as follows. Given a set of candidates and a set of voters with strict

preference ranking over the candidates, find a committee of size k satisfying certain

acceptability criteria. However, what acceptability criteria should be chosen? For a

single winner election, Condorcet [26] suggested that a candidate can be considered

as winner if s/he is preferred by at least half of the voters over every other candidate.

175

Of course, such a candidate may not exist. Fishburn [48] generalized the idea of

Condorcet from a single winner election to a committee. This definition of Condorcet

committee requires that each voter has explicit preferences over the committees, or

there is some way to infer these preferences. According to Fishburn, a committee

is a Condorcet committee if it is preferred by at least half of the voters over any

other committee of the same size. Darmann [31] defined two notions of Condorcet

committee, weak and strong, where preferences over the committees are implicit.

Specifically, a committee of a given size k is weak (strong) Condorcet, if it is preferred

over any other committee of size k by at least (more than) half of the voters. He

used scoring functions, which are used in multiwinner voting rules, for comparing

two committees. The problems corresponding to finding a weak (strong) Condorcet

committee of size k are Weak (Strong) Condorcet k-Committee.

Gehrlein [64] defined a new notion of Condorcet committee by considering each

candidate of the committee instead of whole committee. According to his definition,

a committee is Condorcet if a candidate in the committee is preferred by at least

half of the voters to each non-member. Note that such a committee might not exist.

Moreover, a committee is called weakly (strongly) Gehrlein-stable if every candidate c

in the committee is preferred by at least (more than) half of the voters in the pairwise

election between c and every non-committee member d. We would like to point out

here that when the number of voters is odd, weakly and strongly Gehrlein-stable

committees are equivalent. However, this is not the case when the number of voters

is even. We remark that, in the literature, there are also other notions of Condorcet

committee [42, 95].

For the committee selection problem, extensive research has been conducted to

study voting rules and their stability in the context of selecting a committee [25, 41, 91,

144]. Darmann [31] analyzed the computational complexity of Weak and Strong

Condorcet k-Committee. He studied the problem with di↵erent voting rules,

176

including Borda voting, plurality voting, antiplurality voting, and t-approval, where

t � 2. Specifically, he proved that Weak and Strong Condorcet k-Committee

are coNP-hard under Borda and 2-approval voting schemes. Furthermore, he showed

that Weak and Strong Condorcet k-Committee are polynomial time solvable

under plurality and antiplurality voting schemes. For more literature on multiwinner

elections, we refer to [45].

Recently, Aziz et al. [7, 8] studied the computational complexity of finding a

Gehrlein-stable committee of size k. They proved that finding a strongly Gehrlein-

stable committee of size k (and determining that one exists) can be done in polynomial

time. However, computing a weakly Gehrlein-stable committee of size k is NP-hard.

Aziz et al. [7, 8] proposed to study this problem from the perspective of parameterized

complexity and exact exponential time algorithms. In this article, we initiate a

systematic study of finding a weakly Gehrlein-stable committee of size k in the

realm of parameterized complexity. We call this problem as Gehrlein Stable

Committee Selection (GSCS).

We first show that GSCS is W[1]-hard when parameterized by the size of the

committee. That is, the problem is unlikely to admit an algorithm with running

time f(k)nO(1). To overcome this intractability result, we seek relevant alternate

parameters that could lead to tractable algorithms. To achieve this, we consider

a model of GSCS as a problem on directed graphs and then use parameters that

measure the “structure” of these directed graphs. In particular, we consider the

majority graph [104], defined as follows. Given any election E = (C,V), we define

the majority graph ME = (C,A) on the vertex set C and an arc (c, c0) 2 A if and

only if candidate c is more popular than c0 in the election E (denoted by c >E c0).

In other words, (c, c0) 2 A if and only if the number of voters that prefer c over c0 is

strictly more than those preferring c0 over c. For example, Figure 7.1 illustrates the

majority graph corresponding to the election in Table 7.1.

177

Table 7.1: Example: Voting profile; v1,v2,v3,v4 are the voters, {1, 2, · · · , 10} is the
set of candidates.

Voters Preference Ranking over the Candidates
v1 6 3 7 8 5 1 2 4 9 10
v2 6 1 7 4 9 5 8 3 10 2
v3 2 10 8 9 1 5 7 6 3 4
v4 2 10 4 5 3 8 7 1 6 9

1

2

3

4

5

6

7

8
9

10

Figure 7.1: Example: The blue vertices in the set S is a weakly Gehrlein stable
committee of size 5 for the voting profile given in Table 7.1.

Now, note that if a committee S of size k is stable in an election E = (C,V), then

there does not exist a candidate u 2 C \ S that is preferred over any candidate in S

in the pairwise election between u and the candidates of S. This implies that there

does not exist a vertex u 2 C \ S such that (u, v) 2 A(ME) for some v 2 S. Hence,

for any v 2 S, all the in-neighbors of v in the graph ME belong to S. Thus, the

problem of finding WGS committee of size k corresponds to finding a vertex subset

X of size k in the majority graph with the following property: the set X contains

no vertex that has an in-neighbor outside X. We will use this formulation of the

problem in the chapter. In particular, we will study the following problem.

Input: A majority graph ME = (C,A) for an election E and a positive

integer k such that k  |C|.

Task: Does there exist a subset of vertices S ✓ C, |S| = k such that for

every v 2 S, each of the in-neighbors of v (if any) lies in S?

Gehrlein Stable Committee Selection (GSCS)

178

Such a set S is a solution to the problem.

Our algorithmic contributions. One way to discover relevant parameters for

studying a graph problem is to find a family of graphs, say F , where the problem is

polynomial time solvable; then, the problem is studied with an edit distance—the

number of vertices/edges deleted (or edges added) to transform the input graph into

a graph in F—as a parameter. Aziz et al. [7, 8] showed that GSCS is polynomial

time solvable when the number of voters is odd. Note that when the number of

voters is odd, then the majority graph is a tournament. Thus, natural parameters

to study our problem correspond to vertex/edge editing operations into the family

of tournaments. We study GSCS with two “editing parameters”: the number of

missing arcs in the given directed graph (l) and the size of a tournament vertex

deletion set (tvd)(q)—that is, a subset of vertices whose deletion from the given

directed graph results in a tournament. The number l corresponds to the number of

pairs of candidates which are tied among each other in the pairwise election and q

could be thought of as the smallest subset of candidates who are in a tie with some

candidate(s) such that the deletion of this subset will render the resulting majority

graph a tournament. Since tvd is smaller than the number of candidates who are in

a tie, it makes tvd a natural parameter to study from a computational perspective.

Note that tvd is a vertex cover (a set of vertices such that each edge is incident to

at least one vertex of the set) of the complement graph of the underlying undirected

graph of ME . Hence, it can be computed using the FPT algorithm proposed by

Chen et al. [24] in time O?(1.2738q).We show that the problem is fixed parameter

tractable (FPT) and admits linear kernels with respect to the parameters l and q. In

particular, we obtain the following results.

• GSCS can be solved optimally in O?(1.2207n)1 time. Here, n denotes the

number of candidates (|C|). This resolves a question asked in the conclusion of

1The O? notation suppresses the polynomial dependence on the input size.

179

Aziz et al. [8].

• GSCS admits an FPT algorithm with running time O?(1.2738q).

• GSCS admits a kernel with 4q + 1 vertices. That is, there is a polynomial

time algorithm that given an instance (ME , k) of GSCS returns an instance

(M0
E , k

0) of GSCS such that (ME , k) is a Yes-instance if and only if (M0
E , k

0)

is a Yes-instance and |V (M0
E)|  4q + 1.

• GSCS admits an algorithm with running time O?(1.2207l) and has a kernel

with 2l + 1 vertices. These results are obtained as corollaries to the results for

the parameter q.

7.1 Preliminaries

We recall some of the basic notations for directed graphs here.

Graphs. Let G be a directed graph. We denote an arc from u to v by an ordered

pair (u, v), and say that u is an in-neighbor of v and v is an out-neighbor of u. For

x 2 V (G), N�
G
(x) = {y 2 V (G) : (y, x) 2 A(G)} and N+

G
(x) = {y 2 V (G) : (x, y) 2

A(G)}. For X ✓ V (G), G � X and G[X] denote subgraphs of G induced on

the vertex set V (G) \ X and X, respectively. For v1, vt 2 V (G), a directed path

from v1 to vt is denoted by P = (v1, v2, · · · , vt), where V (P) ✓ V (G) and for

each i 2 [t � 1], (vi, vi+1) 2 A(G). In a directed graph G, we say a vertex u is

reachable from a vertex v, if there is directed path from v to u. A graph is called a

strongly connected component if every vertex in the graph is reachable from every

other vertex. Let X ✓ V (G). A strongly connected component, G[X], is called

maximal if there does not exist a vertex v 2 V (G) \ X such that G[X [{v}] is

also a strongly connected component. Let x 2 V (G). We define two sets R�
G
(x)

and R+
G
(x) as follows. R�

G
(x) = {x} [{y 2 V (G) : x is reachable from y} and

180

R+
G
(x) = {x} [{y 2 V (G) : y is reachable from x}. We call R�

G
(x) and R+

G
(x) as

in-reachability set and out-reachability set of x in G, respectively. For S ✓ V (G),

R�
G
(S) = [v2SR

�
G
(v) and R+

G
(S) = [v2SR

+
G
(v). The subscript in the notation for

the neighborhood and the reachability sets may be omitted if the graph under

consideration is clear from the context. A toplogical ordering of a directed graph

G is an ordering, denoted by ⌧ , of the vertices of V (G) such that for every arc

(u, v) 2 A(G), we have ⌧ (u) < ⌧(v). Given an undirected graphG, complement ofG is

a graph G0 such that V (G0) = V (G) and E(G0) = {uv : u, v 2 V (G) and uv /2 E(G)}.

7.2 Structural Observations

We start by making some simple observations that are crucial for most of our

arguments. The proof of the next lemma follows from the definition of solution.

Lemma 7.2.1. Let (ME , k) be a Yes-instance of GSCS, and let S be a solution.

Furthermore, let v1 and vt denote two vertices in ME such that there exists a path

from v1 to vt in ME . If vt 2 S, then v1 2 S.

Proof. Let (v1, · · · , vt) denote a path from v1 to vt. Suppose that vt 2 S and v1 /2 S.

Then, there exists some i (2  i  t) such that {vj : i  j  t} ✓ S, and vi�1 /2 S.

But then the arc (vi�1, vi) contradicts the definition of S. ⇧

As a corollary to Lemma 7.2.1, we get the following.

Corollary 7.2.1. Let (ME , k) be a Yes-instance of GSCS, and let S be a solution.

Furthermore, let X denote a maximal strongly connected component in ME .

• If S \ V (X) 6= ;, then V (X) ✓ S

• If the vertex v 2 S, then R�
ME

(v) ✓ S. Also, for every vertex v 2 V (ME)\S,

we have that R+
ME

(v) \ S = ;.

181

We also need the following hereditary property of the solution.

Lemma 7.2.2. Let S be a solution of GSCS for (ME , k) and G be a subgraph of

ME . Then, S 0 = S \ V (G) is a solution of GSCS for (G, |S 0|).

Proof. Towards the contradiction, suppose that S 0 is not a solution of GSCS for

(G, |S 0|). Then, there exists vertices w 2 S 0 and w0 2 V (G) \ S 0 such that (w0, w) 2

A(G). Since w0 2 V (G) \ S 0, w0 2 V (ME) \ S. Furthermore, since G is a subgraph

of ME , (w0, w) 2 A(ME), this contradicts the fact that S is a solution to (ME , k).

⇧

7.3 Hardness

In this section, we show that GSCS is W[1]-hard when parameterized by the solution

size k. Towards this, we give a parameterized reduction from Clique, a well-known

W[1]-hard problem [36], to GSCS running in polynomial time. Clique is formally

defined as follows.

Input: A graph G, and an integer k

Parameter: k

Task: Does there exist a set Z ✓ V (G) of size at least k such that G[Z] is

a clique?

Clique

Given an instance of Clique, we create an instance of GSCS as follows.

Construction. Let (G, k) be an instance of Clique. We construct the majority

graph D in the following way (see Fig. 7.2).

182

1. For each vertex v 2 V (G), we introduce a vertex v and a directed cycle Cv

passing through v of size k2 in D. We call the vertex v as the node vertex, and

vertices of Cv (including v) as the indicator vertices of v.

2. For each e 2 E(G), we introduce a vertex we. We will refer to these vertices as

edge vertices.

3. For each edge e 2 E(G) with endpoints u and v, we introduce the arcs uwe

and vwe in D.

We set the size of the solution to be k0 = k3+ k(k� 1)/2. It is a well known fact that

every directed graph is a majority graph of some election [43]. So D is a majority

graph. This completes the description of the construction of an instance (D, k0) of

GSCS. Note that the steps of the reduction can be executed in polynomial time.

The intuitive idea of the reduction is the following. The construction enforces

that when an edge vertex we is selected in a solution, both the endpoints of e are

selected in the solution of GSCS. Moreover, when a node vertex v is selected, the

directed cycle Cv is also selected in the solution. Intuitively, this indicates that v is in

the solution to Clique. The edge vertices in the solution of GSCS correspond to the

edges that are in the solution of Clique. We will show that due to size constraint

of the solution there are exactly k3 indicator vertices and k(k � 1)/2 edge vertices.

Now, we formally prove the equivalence between the instance (G, k) of Clique

and (D, k0) of GSCS.

Correctness. We start by observing following property of D.

Observation 7.3.1. V (D) =
U

v2V (G)

Cv]
U

e2E(G)

we.

Now for the correctness we show the following equivalence.

Lemma 7.3.1. (G, k) is a Yes-instance of Clique if and only if I = (D, k0) is a

Yes-instance of GSCS.

183

Cv2

Cvn

Cv1

v2 wv1v2

v1

wv2vn

vn

Figure 7.2: Construction of D. Here, n = |V (G)|, the green and blue vertices are
the node vertices and edge vertices respectively, the vertices in the green set is the
set of indicator vertices, and the orange dashed lines show the directed cycles of
length k2 in D.

Proof. For the forward direction, suppose that Z = {v1, v2, · · · , vk} is a solution to

(G, k). We construct a set S ✓ V (D) from Z as follows.

S =
]

i2[k]

V (Cvi)]
]

{i,j}✓[k]

wvivj .

Now, we prove that S is a solution to (D, k0). Note that |S| = k3 + k(k � 1)/2.

Therefore, it is su�cient to prove that there is no arc (x, y) inD such that x 2 V (D)\S

and y 2 S. Equivalently, we prove that for each y 2 S, N�(y) ✓ S, by considering

the type of the vertex y.

If y is an indicator vertex, i.e., y 2 V (Cvi), for some i 2 [k], then, by the

construction of D, y has exactly one in-neighbor which is in the cycle Cvi . Hence,

N�(y) ✓ V (Cvi), i.e., N
�(y) ✓ S. Suppose that y is an edge vertex. Let y = wvivj .

Then, the in-neighbors of y are vi and vj (see Fig. 7.2). Notice that vi, vj are in the

clique. Hence, both of them are in S. Therefore, for both the cases, N�(y) ✓ S.

This proves the forward direction.

For the reverse direction, let S be a solution to (D, k0). Let I 0 = S\]v2V (G)V (Cv),

and E 0 = S \]e2E(G)we. Due to Observation 7.3.1, I 0 and E 0 are mutually disjoint.

That is, S = I 0] E 0. Also, note that since for each vertex v 2 V (G), Cv is a strongly

184

connected component, by Corollary 7.2.1, if V (Cv) \ S 6= ;, then V (Cv) ✓ S.

Now we define V ? = {v 2 V (G) : V (Cv) ✓ I 0} and E? = {e 2 E(G) : we 2 E 0}.

We will prove that G0 = (V ?, E?) is a solution to Clique to (G, k).

Claim 7.3.1. |V ?| = k.

Proof. Suppose |V ?| = k? < k. For each v 2 V ?, V (Cv) ✓ I 0. Hence, the number

of indicator vertices in S is k?k2, which is less than k3. Since k0 = k3 + k(k � 1)/2,

there must be strictly more than k(k � 1)/2 edge vertices in S. However, since each

edge vertex has two node vertices as in-neighbors, and there are k? node vertices

in S, there are at most
�
k
?

2

�
edge vertices in S. So the number of vertices in S is

k?k2 +
�
k
?

2

�
. This contradicts that the size of S is at most k0 = k3 + k(k � 1)/2.

Now, suppose |V ?| = k? > k. Then, there are at least k?k2 vertices in S. Since

k?k2 � (k + 1)k2, we have that |S| > k0, a contradiction. ⇧

Claim 7.3.2. |E?| = k(k � 1)/2.

Proof. From Claim 7.3.1, there are k node vertices in S. Therefore, S has k3 many

indicator vertices. From Observation 7.3.1, we know that the remaining vertices of S

are from the set of edge vertices. Since |S| = k3 + k(k � 1)/2, there are k(k � 1)/2

edge vertices. ⇧

Now, we prove that the vertices are consistent with the edges. That is, we prove

that if the edge uv 2 E?, then the vertices u, v 2 V ?. Note that if wuv 2 S, then

since u, v are the in-neighbors of the edge vertex wuv, we have that u, v 2 S. Hence,

V (Cu) ✓ S and V (Cv) ✓ S. Therefore, if uv 2 E?, then u, v 2 V ?. Moreover, since

G0 = (V ?, E?), |E?| = k(k � 1)/2, and |V ?| = k, we can infer that G0 is a clique of

size k. ⇧

Hence, we have proved the following theorem.

185

Theorem 18. GSCS is W[1]-hard when parameterized by the size of solution.

7.4 Exact Algorithms for Gehrlein Stable Com-

mittee Selection

Let (ME = (C,A), k) be an instance of GSCS. Furthermore, let n denote the number

of candidates or the number of vertices in ME . Observe that we can design an

algorithm for GSCS by enumerating all vertex subsets of size k and checking whether

it forms a solution. This algorithm runs in time O?(
�
n

k

�
) = O?(2n). So a natural

question is whether we can design an exact algorithm that improves over this

brute-force enumeration algorithm.

In this section, we design a non-trivial exact algorithm for GSCS running in

time O?(1.2207n). The main idea of the algorithm is inspired by Corollary 7.2.1.

We find a subset of vertices with the property that either all of them go to the

solution or none of them go to the solution. Once we have identified such a subset we

recursively solve two subproblems, one where these vertices are part of a solution we

are constructing, and the other where none of these vertices are part of the solution.

Observe that a maximal strongly connected component provides a natural candidate

of subset vertices. The algorithm indeed branches on strongly connected component

of su�ciently large size and when we do not have a maximal strongly connected

component of su�ciently big size we solve the problem in polynomial time. We first

give the polynomial time subcase of our problem and then design the promised exact

algorithm.

186

7.4.1 A polynomial time subcase

In this section, we give a polynomial time algorithm for GSCS when the majority graph,

ME , is a disjoint union of directed acyclic graphs and strongly connected components.

That is, if we look at the connected components of underlying undirected graph

of majority graph (that is, consider majority graph without the edge orientations),

then they are either a directed acyclic graph or a strongly connected component in

the majority graph. We denote such a family of graphs by Fdag+scc. Furthermore,

let Fscc denote the family of disjoint union of strongly connected components, and

Fdag denote the family of disjoint union of directed acyclic graphs.

We first give algorithms for GSCS on Fscc and Fdag, and then use these to give

our algorithm on Fdag+scc. We design an algorithm for GSCS on Fscc, by reducing

it to the well-known Subset Sum problem. In the Subset Sum problem, given a

set of integers X = {x1, · · · , xn}, and an integer W , the goal is to find a set X 0 ✓ X

such that
P

xi2X0 xi = W .

Lemma 7.4.1. GSCS on Fscc can be reduced to Subset Sum in O(n) time.

Proof. Given an instance (ME , k) of GSCS such that ME 2 Fscc, we construct an

instance (X,W) of Subset Sum as follows. Let ME =]i2[p]Ci. Then, X = {xi =

|V (Ci)| : |V (Ci)|  k, i 2 [p]}, and W = k. Note that the instance (X,W) can be

constructed in O(n) time. Next, we show the equivalence between the instance

(ME , k) of GSCS and (X,W) of Subset Sum. In the forward direction, suppose

that S is a solution to (ME , k). By Corollary 7.2.1, we know that if S \ V (Ci) 6= ;,

then V (Ci) ✓ S. Let X 0 = {xi 2 X : V (Ci) ✓ S}. Since |S| = k, it follows that
P

xi2X0 xi = k. This completes the proof in the forward direction. In the backward

direction, let X 0 ✓ X such that
P

xi2X0 xi = k. Let S = {V (Ci) : xi 2 X 0}. Note

that |S| = k, and either S \ V (Ci) = ;, or V (Ci) ✓ S, i 2 [p]. Moreover, since ME

belongs to Fscc, it follows that S is a solution to GSCS. ⇧

187

Lemma 7.4.2. [98] Given an instance (X,W) of Subset Sum, there exists an

algorithm that solves Subset Sum in O(nW) time, where n = |X|.

Using Lemmas 7.4.1 and 7.4.2, we get the following result.

Lemma 7.4.3. GSCS can be solved in O(nk) time on Fscc. Here, n is number of

vertices in the input graph, and k is the size of solution.

Now, we give a polynomial time algorithm for GSCS on Fdag. The algorithm

just selects the first k vertices of the topological ordering in the solution.

Lemma 7.4.4. GSCS can be solved in O(n + m) time on Fdag. Here, n is the

number of vertices in the input graph, and m is the number of arcs in the graph.

Proof. Given an instance (ME , k) of GSCS, where ME 2 Fdag, we first find a

topological ordering ⌧ of ME . Let S = {v 2 V (ME) : ⌧(v)  k}. Note that |S| = k.

We also note that if u 2 V (ME) \ S, then by the construction of S, ⌧ (u) > ⌧(v), for

all v 2 S. Since ⌧ is a topological ordering, (v, u) /2 A(ME). Hence, S is a solution

to (ME , k). ⇧

Now, we are ready to give a polynomial time algorithm for GSCS on Fdag+scc.

The algorithm first guesses how many vertices a solution contains from strongly

connected components and directed acyclic graphs, respectively. Then, it runs the

algorithms given in Lemmas 7.4.3 and 7.4.4 and compute the desired solution.

Theorem 19. GSCS can be solved in O(nk2 +m) time on Fdag+scc. Here, n and

m are the number of vertices and arcs in the input graph, respectively, and k is the

size of solution.

Proof. Let (ME , k) be an instance of GSCS where ME 2 Fdag+scc. Furthermore,

let ME = C]D, where C belongs to Fscc, and D belongs to Fdag. We first guess

the number of vertices k1 in the solution from V(D). Clearly, k � k1 vertices in

188

the solution are from V(C). Let S be a solution for (ME , k) containing k1 vertices

from V(D), and k � k1 vertices from V(C). Then using Lemma 7.2.2, S \ V (C) is

a solution for (C, k � k1), and S \ V (D) is a solution for (D, k1). Therefore, using

Lemmas 7.4.3 and 7.4.4, we find a solution S1 for (D, k1), and S2 for (C, k � k2).

Now, S = S1] S2 is a solution for (ME , k) as ME is the disjoint union of C and D.

The running time of the algorithm follows from Lemmas 7.4.3 and 7.4.4, and the

fact that there are at most k choices for k1 as the solution size is k, and we only

need to compute topological ordering once. ⇧

7.4.2 Exact exponential time algorithm

Now, we proceed towards presenting the exact exponential algorithm for GSCS.

Towards this, we first prove the following structural result.

Lemma 7.4.5. Let (ME , k) be an instance of GSCS such that ME /2 Fdag+scc.

Then, ME has a strongly connected component X of size at least three such that

either |R�(X)| � 4 or |R+(X)| � 4.

Proof. If there does not exist a strongly connected component of ME of size at least

three, then since ME does not contain parallel edges and self loops, ME is a dag, a

contradiction to the fact that ME does not belong to Fdag+scc. Thus, we know that

there exists a strongly connected component of size at least 3.

Let X be a maximal strongly connected component of ME such that |X| is

maximized. If |X| � 4, we are done. Furthermore, observe that if there exists a

maximal strongly connected componentX, such that |X| = 3, and either |R�(X)| � 4

or |R+(X)| � 4, we are done. This implies that every maximal strongly connected

component of size 3 is a connected component in itself in the underlying undirected

graph of ME . If we remove these components from ME we get a directed graph

that does not have any strongly connected component and hence it is a dag. This

189

implies that ME belongs to Fdag+scc, a contradiction. This concludes the proof. ⇧

Now, we are ready to present the algorithm. Let (ME , k) be an instance of GSCS.

We apply the following branching rule exhaustively.

Branching Rule 7.4.1. Suppose that X is a strongly connected component in ME

such that |X| � 3 and either |R�(X)| � 4 or |R+(X)| � 4. Branch by adding

R�(X) to the solution or deleting R+(X) from ME . Recurse on the instances

(ME �R�(X), k � |R�(X)|) and (ME �R+(X), k), respectively.

Lemma 7.4.6. Branching Rule 7.4.1 is correct.

Proof. We claim that (ME , k) is a Yes-instance of GSCS if and only if either (ME �

R�(X), k� |R�(X)|) is a Yes-instance of GSCS or (ME �R+(X), k) is a Yes-instance

of GSCS. In the forward direction, let (ME , k) be a Yes-instance of GSCS and S be one

of its solutions. Consider a strongly connected component, X, of ME . If x 2 S \X,

then by Corollary 7.2.1, we have that R�(X) ✓ S. Using Lemma 7.2.2, S \R�(X) =

S \ V (ME �R�(X)) is a solution of GSCS for (ME �R�(X), k � |R�(X)|). Now,

suppose that X \ S = ;. By Corollary 7.2.1, R+(X) \ S = ;. Therefore, by Lemma

7.2.2, S is also a solution to (ME � R+(X), k). This completes the proof in the

forward direction.

In the backward direction, let S be a solution to GSCS for (ME � R�(X), k �

|R�(X)|). We claim that S 0 = S[R�(X) is a solution to (ME , k). Suppose not, then

there exists u 2 S 0 and v 2 V (ME) \ S 0 such that (v, u) 2 A(ME). If u /2 R�(X),

then (v, u) also belongs to A(ME � R�(X)), a contradiction to the fact that S is

a solution to (ME � R�(X), k � |R�(X)|). Now, suppose that u 2 R�(X). Since

v /2 S 0, v /2 R�(X), a contradiction to the fact that (v, u) 2 A(ME). This proves

that S 0 is a solution to (ME , k). Now suppose that S is a solution to GSCS for

(ME �R+(X), k). We claim that S is also a solution to (ME , k). Suppose not, then

there exists u 2 S and v 2 V (ME) \ S such that (v, u) 2 A(ME). If v /2 R+(X),

190

then (v, u) also belongs to A(ME �R+(X)), a contradiction to that S is a solution

to (ME � R+(X), k). Now, suppose that v 2 R+(X). Since u 2 S, u /2 R+(X), a

contradiction to that (v, u) 2 A(ME). ⇧

Theorem 20. GSCS can be solved in O?(1.2207n) time optimally, where n is the

number of vertices in ME .

Proof. Given an instance (ME , k) of GSCS, we first check whether ME belongs

to the family Fdag+scc. If yes, then we can solve the problem in polynomial time

using Theorem 19. Otherwise, using Lemma 7.4.5 there exists a strongly connected

component, X of size at least three such that either |R�(X)| � 4 or |R+(X)| � 4.

Now, we apply Branching Rule 7.4.1. The safeness of algorithm follows from the

safeness of branching rule. The running time of the algorithm is governed by the

recurrence, T (n)  T (n� 3) + T (n� 4), which solves to O?(1.2207n). ⇧

7.5 FPT Algorithms for GSCS

Given an instance (ME , k) of GSCS, let q be the size of tvd of ME and l =
�
n

2

�
� |A(ME)|. In this section, we design fixed parameter algorithms for GSCS with

respect to parameters q and l.

We first give an FPT algorithm (Algorithm 7.5.1) for GSCS when parameterized

by q. First, we state a known result which is the starting point of our algorithm.

Proposition 7.5.1. [7] GSCS can be solved in the polynomial time if the majority

graph ME is a tournament. Moreover, such a solution is unique, if exists.

Let X be a tvd of ME . Note that X is a vertex cover - a set of vertices such that

each edge is incident to at least one vertex of the set - of the complement graph of

the underlying undirected graph of ME . Hence, it can be computed in O?(1.2738q)

191

X 0

S2

S1

Q

T X

ST

Figure 7.3: An illustration of Algorithm 7.5.1 where vertices in the red sets are in
the solution

time, where q = |X|, using the FPT algorithm proposed by Chen et al. [24]. Note

that T = ME �X is a tournament. Proposition 7.5.1 says that every tournament

has a unique solution. Thus, for our algorithm we first guess how many vertices

from T are present in our potential solution to (ME , k). Once, we have guessed

this number k1, we run the algorithm mentioned in Proposition 7.5.1 and find the

unique solution of size k1, say ST , if exists. Having found the set ST , we know that

no vertex of T � ST goes into the solution. Hence, we now apply Corollary 7.2.1 and

reduce the problem to a directed graph induced on a subset of X. At this stage we

run the exact exponential time algorithm described in Theorem 20 and we are done.

See Fig. 7.3 for illustration of the algorithm. A detailed description of the algorithm

is given in Algorithm 7.5.1.

Algorithm 7.5.1: FPT for GSCS
Input: A majority graph ME , a tvd, X of ME , and an integer k.
Output: S, which is a solution of GSCS for (ME , k), if non-empty

1 S1 = ;, Q = ;;
2 for each k1 2 [k] do
3 if T has a solution of GSCS of size k1 then
4 let ST be the solution of (T, k1) computed using Proposition 7.5.1;

S1 = R�
ME

(ST) \X, S2 = R+
ME

(V (T) \ ST) \X;
5 if S1 \ S2 = ; then
6 X 0 = X \ (S1 [S2), k2 = k � |ST] S1|;
7 if ME [X 0] has a solution of GSCS of size k2 then
8 let Q be a solution of (ME [X 0], k2) computed using Theorem

20;
9 S = ST] S1]Q;

10 return S.

11 return S = ;

192

Now, we prove the correctness of this algorithm.

Lemma 7.5.1. Algorithm 7.5.1 is correct.

Proof. To prove the correctness of algorithm, we prove that if Algorithm 7.5.1 returns

a non-empty set S, then it is a solution of GSCS for (ME , k), otherwise (ME , k)

does not have a solution of GSCS.

Case A : Suppose that S 6= ;. We claim that S is a solution to (ME , k). Suppose

not, then either |S| 6= k or there exists w 2 S, and w0 2 V (ME) \ S such that

(w0, w) 2 A(ME). By the construction of S, if S 6= ;, then |S| = k. Now,

suppose that there exists w 2 S and w0 2 V (ME) \ S such that (w0, w) 2

A(ME). Following four cases are possible.

Case 1 : Suppose that w,w0 2 V (T). Since S \ V (T) = ST , w 2 ST and

w0 /2 ST . Since T is an induced subgraph of ME , (w0, w) 2 A(T), this

contradicts the fact that ST is a solution to (T, |ST |).

Case 2 : Suppose that w,w0 2 X. Note that by the construction of X 0,

X \X 0 = S1] S2. Note that S1 ✓ S and S2 \ S = ;. Following four cases

are possible.

Case(i) : Suppose that w,w0 2 X \ X 0. Since w 2 S, it follows that

w 2 S1. Since w0 /2 S, w0 2 S2. Since (w0, w) 2 A(ME), and w is in

the in-reachability set of ST in ME , w0 also belongs to in-reachability

set of ST in ME . Hence, w0 2 S1, a contradiction to the fact that S1

and S2 are disjoint.

Case(ii) : Suppose that w 2 X \X 0 and w0 2 X 0. Since w 2 S, w 2 S1.

As argued above, since (w0, w) 2 A(ME), w0 also belongs to S1, a

contradiction to that X 0 and S1 are disjoint.

Case(iii) : Suppose that w 2 X 0 and w0 2 X \X 0. Since w0 /2 S, we have

that w0 2 S2. Since (w0, w) 2 A(ME), and w0 is in out-reachability

193

set of V (T) \ ST in ME , w also belongs to out-reachability set of

V (T) \ ST in ME and hence w 2 S2, a contradiction to that X 0 and

S2 are disjoint.

Case(iv) : Suppose that w,w0 2 X 0. Since Q ✓ S, w 2 Q and w0 /2 Q.

Since ME [X 0] is an induced subgraph of ME , we have that (w0, w) 2

A(ME [X 0]), this contradicts that Q is a solution to (ME [X 0], |Q|).

Case 3 : Suppose that w 2 V (T) and w0 2 X. Since w 2 S, w 2 ST . Since

w0 /2 S, there are two cases, either w0 2 S2 or w0 2 X 0 \ Q. Since

(w0, w) 2 A(ME) and w 2 ST , w0 belongs to the in-reachability set of ST

in ME and hence w0 2 S1. If w0 2 S2, then it contradicts that S1 and S2

are disjoint. If w0 2 X 0, then it contradicts that S1 and X 0 are disjoint.

Case 4 : Suppose w 2 X and w0 2 V (T). Since w 2 S, w either belongs to

S1 or Q. Since (w0, w) 2 A(ME) and w0 2 V (T) \ S, clearly, w belongs

to the out-reachability set of V (T) \ S in ME . Therefore, w 2 S2. If

w 2 S1, then it contradicts that S1 and S2 are disjoint. If w 2 Q, then it

contradicts that Q and S2 are disjoint.

Case B : Suppose that S = ;. We claim that (ME , k) does not have a solution of

GSCS. Towards the contrary, let Z be a solution to (ME , k). Let ZT = V (T)\Z

and k0 = |ZT |. Using Lemma 7.2.2, ZT is a solution to (T, k0). Since T is

a tournament, by uniqueness of solution of tournament (Proposition 7.5.1),

ST = ZT , where ST is a set returned in Step 4 of Algorithm 7.5.1 when k1 = k0.

Let Z1 = R�
ME

(ZT) \ X and Z2 = R+
ME

(V (T) \ ZT) \ X. Using Corollary

7.2.1, Z1 ✓ Z and Z2 \ Z = ;. Therefore, Z1 and Z2 are disjoint. Clearly,

S1 = Z1 and S2 = Z2 in Step 4 of Algorithm 7.5.1. Let X 0 = X \ (Z1 [Z2).

Note that X = X 0] Z1] Z2. Since Z1 ✓ Z and Z2 \ Z = ;, Z \ X =

Z1] (Z \X 0). Using Lemma 7.2.2, Z 0 = Z \X 0 is a solution to (ME [X 0], |Z 0|).

Since there exist a solution to (ME [X 0], |Z 0|), algorithm finds a solution Q

194

to (ME [X 0], |Z 0|) in Step 8. Since Z = ZT] (Z \X) and Z \X = Z1] Z 0,

|Z 0| = k � |ZT] Z1| = k � |ST] S1|. Therefore, Algorithm 7.5.1 returns

S = ST] S1]Q, a contradiction to that S = ;.

⇧

Lemma 7.5.2. The running time of Algorithm 7.5.1 is O?(1.2207q), where q is the

size of tvd of majority graph ME .

Proof. In the algorithm, set ST (Step 4) can be computed in polynomial time using

Proposition 7.5.1 and set Q (Step 8) can be obtained using Theorem 20 in O?(1.2207q)

time. Hence, the running time of the algorithm is O?(1.2207q). ⇧

Theorem 21. GSCS can be solved in O?(1.2738q) time, where q is the size of tvd

of majority graph ME .

Proof. Given an instance (ME , k) of GSCS, we first compute vertex cover, X, of the

complement graph of underlying undirected graph of ME using an FPT algorithm

which runs in O?(1.2738q) time, where q is the size of vertex cover [24]. Now using

Algorithm 7.5.1, we compute a solution S of GSCS to (ME , k), if exists. The

correctness of algorithm follows from Lemma 7.5.1. Since using Lemma 7.5.2, the

running time of Algorithm 7.5.1 is O?(1.2207q), and we compute X in O?(1.2738q)

time, it follows that GSCS can be solved in O?(1.2738q) time. ⇧

Now, we give an FPT algorithm for GSCS when the number of pairs of candidates

which are tied among each other in the pairwise majority contest is bounded.

Theorem 22. GSCS can be solved in O?(1.2207l) time when the number of missing

arcs in majority graph is l.

Proof. Given an instance (ME , k) of GSCS, let X be a set of vertices obtained by

adding a vertex from each of the missing arcs. Note that X is a tvd of ME , and

195

|X|  l. Now, using Algorithm 7.5.1, we compute a solution S of GSCS for (ME , k),

if exists. The correctness of algorithm follows from Lemma 7.5.1. Since |X|  l,

using Lemma 7.5.2, we can solve GSCS in O?(1.2207l) time. ⇧

7.6 A linear vertex kernel for GSCS

In this section, we show that GSCS admits a kernel with O(q) vertices, where q is

the size of tvd of ME . That is, we give a polynomial time algorithm that given an

instance (ME , k) of GSCS returns an instance (ME 0 , k0) of GSCS such that (ME , k)

is a Yes-instance of GSCS if and only if (ME 0 , k0) is a Yes-instance of GSCS and

|V (ME 0)|  4q + 1.

Let (ME , k) be an instance of GSCS. Let X be a set such that T = ME �X is a

tournament. Let t = |V (T)|. We know that every tournament T has a Hamiltonian

path—a path that visits every vertex exactly once. Furthermore, a Hamiltonian path

in tournament can be computed in polynomial time [73]. Let H = (v1, v2, · · · , vt) be

one such path. Now notice that no vertex in {vk+1, · · · , vt} belongs to any solution

to (ME , k) and thus, we should be able to find a reduction rule that can reduce the

size of T to k + 1. However, this is still not the desired kernel. Next, we change our

perspective and see which vertices from T must be in a solution of size k. Once we

detect such a vertex, we can use Corollary 7.2.1 to find a desired reduction rule.

Before diving into the details of the algorithm, we give an alternate polynomial

time algorithm to find a solution of GSCS, when the majority graph is a tournament.

This will be crucially used in designing the kernelization algorithm.

Lemma 7.6.1. Let (G, k) be an instance of GSCS, where G is a tournament. Let

|V (G)| = t, and H = (v1, v2, · · · , vt) be a Hamiltonian path in G. Furthermore,

let S = {v1, v2, · · · , vk}. If |R�
G
(S)| = k, then S is a solution of GSCS to (G, k).

Moreover, it is the unique solution and can be computed in polynomial time.

196

Proof. Since |R�
G
(S)| = k, for every v 2 S, N�

G
(v) ✓ S. Hence, S is a solution of

GSCS to (G, k). Next, we will prove that it is the unique solution. Suppose not, then

let S 0(6= S) be a solution of GSCS for (G, k). Since |S 0| = |S|, there exists a vertex

v? 2 S 0 \ S, i.e., v? 2 {vk+1, · · · , vt}. Note that P = (v1, v2, · · · , v?) is a subpath of

H. Each vertex in P can reach v? via the path P . Hence, V (P) ✓ R�
G
(v?). Also,

since v? /2 {v1, v2, · · · , vk}, the number of vertices in P is at least k + 1. Hence,

|R�
G
(v?)| � k + 1. Since v? 2 S 0, using Corollary 1, R�

G
(v?) ✓ S 0, this contradicts

that S 0 is a solution to (G, k). Since the Hamiltonian path in a tournament can be

found in polynomial time [90], S can be computed in polynomial time. ⇧

Now, we are ready to give the detailed description of the algorithm. First, we

describe how to find a tvd, X, of size at most 2q. Recall that every tvd of ME is

also a vertex cover of the complement graph, G, of the underlying undirected graph

of ME . Thus, to get the desired X, we find a vertex cover of G using a well-known

factor 2-approximation algorithm for the Vertex Cover problem [11]. Note that

T = ME �X is a tournament. Next, we define a sequence of reduction rules. At any

point of time we apply the lowest indexed reduction rule that is applicable. That

is, a rule is applied only when none of the preceding rules can be applied. After an

application of any rule, we reuse the notation ME to denote the reduced majority

graph.

Reduction Rule 7.6.1. Let (ME , k) be an instance of GSCS and let T = ME �X.

Furthermore, let H = (v1, v2, · · · , vt) be a Hamiltonian path in T . If t > k + 1, then

construct the majority graph ME 0 as follows. Initially, ME 0 = ME � {vt}. Then,

update the out-neighborhood of vt�1 as N+
ME 0 (vt�1) = N+

ME
(vt�1) [N+

ME
(vt) \ {vt�1}.

The resulting instance is (ME 0 , k).

Lemma 7.6.2. Reduction Rule 7.6.1 is safe.

Proof. Suppose that (ME , k) is a Yes-instance of GSCS and S is a solution to

197

(ME , k). We prove that S is also a solution to (ME 0 , k). To prove this, first, we

claim that vt /2 S. By Lemma 7.2.2, S \ V (T) is a solution to (T, |S \ V (T)|) and

by Lemma 7.6.1, we know that it is the unique solution to (T, |S \ V (T)|). Since

t > k + 1, by Lemma 7.6.1, we have that vt /2 S \ V (T). Since vt 2 V (T), it

follows that vt /2 S. Suppose S is not a solution to (ME 0 , k), then there exists

x 2 S, and y 2 V (ME 0) \ S such that (y, x) 2 A(ME 0). If y 6= vt�1, then (y, x)

also belongs to A(ME), a contradiction to the fact that S is a solution to (ME , k).

Suppose y = vt�1, then by the construction of ME 0 , either (vt�1, x) 2 A(ME) or

(vt, x) 2 A(ME). If (vt�1, x) 2 A(ME), then it contradicts the fact that S is a

solution to (ME , k). Suppose (vt, x) 2 A(ME). Since we have already shown that

vt /2 S, we get a contradiction to the fact that S is a solution to (ME , k).

For the other direction, suppose S 0 is a solution to (ME 0 , k). We prove that S 0 is

also a solution to (ME , k). Suppose not, then there exists x 2 S 0, and y 2 V (ME)\S 0

such that (y, x) 2 A(ME). If y 6= vt, then (y, x) also belongs to A(ME 0), a

contradiction to that S 0 is a solution to (ME 0 , k). Suppose y = vt. Since (v1, · · · , vt�1)

is a path in T , then (vt�1, vt) 2 A(ME). Therefore, x 6= vt�1. Since y = vt, and

(y, x) 2 A(ME 0), by construction of ME 0 , we have that (vt�1, x) 2 A(ME 0). Now,

since vt�1 /2 S 0, it contradicts that S 0 is a solution to (ME 0 , k). ⇧

If Reduction Rule 7.6.1 is not applicable, then |V (T)|  k + 1. Since |X|  2q,

we have that ME has at most 2q + k + 1 vertices. Hence, the next lemma follows.

Lemma 7.6.3. If k  2q, and Reduction Rule 7.6.1 is not applicable, then

|V (ME)|  4q + 1.

Now, it remains to bound the number of vertices in T by O(q) when k > 2q.

Reduction Rule 7.6.2. Let (ME , k) be an instance of GSCS and let T = ME �X.

Furthermore, let H = (v1, v2, · · · , v|V (T)|) be a Hamiltonian path in T . If k > 2q and

|R�
T
({v1, · · · , vk�2q})| > k, then output a No instance of constant size.

198

Lemma 7.6.4. Reduction Rule 7.6.2 is safe.

Proof. Suppose that k > 2q, and |R�({v1, · · · , vk�2q})| > k. We prove that (ME , k)

is a no instance of GSCS. Suppose not, let S be a solution of GSCS for (ME , k).

Since k > 2q, and |X|  2q, we have that any k size solution for ME must contain

vertices outside X. That is, it must contain at least k � 2q vertices of T . Note

that using Lemma 7.2.2, S \ V (T) is a solution for (T, |S \ V (T)|) and using

Lemma 7.6.1, it is the unique solution for (T, |S \V (T)|). Since |S \V (T)| � k� 2q,

using Lemma 7.6.1, {v1, · · · , vk�2q} ✓ S \ V (T). Hence {v1, · · · , vk�2q} ✓ S. Since

R�
T
({v1, · · · , vk�2q}) > k, |S| > k, a contradiction to that S is a solution to (ME , k).

⇧

Reduction Rule 7.6.3. Let (ME , k) be an instance of GSCS and let T = ME �X.

Furthermore, let H = (v1, v2, · · · , vt) be a Hamiltonian path in T . If k > 2q,

then delete R�
ME

(v1) from ME . The reduced instance is (ME 0 , k0), where ME 0 =

ME �R�
ME

(v1) and k0 = k � |R�
ME

(v1)|.

Lemma 7.6.5. Reduction Rule 7.6.3 is safe.

Proof. Suppose that (ME , k) is a Yes instance of GSCS and S is one of its solutions.

Since k > 2q, and |X|  2q, S must contain vertices of T . Therefore, by Lemma 7.6.1,

the first vertex in H must be in S. Hence, by Corollary 7.2.1, R�
ME

(v1) ✓ S.

Therefore, by Lemma 7.2.2, S \ V (ME 0) = S \R�
ME

(v1) is a solution to (ME 0 , k0).

For the reverse direction, suppose that S 0 is a solution to (ME 0 , k0). We claim that

S = S 0 [R�
ME

(v1) is solution to (ME , k). Suppose not, then there exists x 2 S and

y 2 V (ME)\S such that (y, x) 2 A(ME). Since R
�
ME

(v1) ✓ S, and y /2 S, it follows

that y /2 R�
ME

(v1). This implies that x /2 R�
ME

(v1). Hence, x 2 S 0, and y 2 V (ME 0).

Since ME 0 is an induced subgraph of ME , (y, x) 2 A(ME 0), a contradiction to the

fact that S 0 is a solution to (ME 0 , k0). ⇧

199

Now, we give the main result of this section.

Theorem 23. GSCS admits a kernel with 4q + 1 vertices.

Proof. Consider an instance (ME , k) of GSCS. Let G denote the complement graph

of underlying undirected graph of ME . We first find a vertex cover, X, of G of

size at most 2q using factor 2-approximation algorithm for Vertex Cover [11].

Note that X is a tvd of ME . Therefore, T = ME �X is a tournament. Suppose

that Reduction Rule 7.6.1 is not applicable, then |V (T)|  k + 1. If k  2q, then

using Lemma 7.6.3, |V (ME)|  4q + 1. Now, suppose that k > 2q. Then, either

Reduction Rule 7.6.2 or 7.6.3 is applicable. After exhaustive application of Reduction

Rules 7.6.2 and 7.6.3, either we return a no-instance of constant size or k  2q. As

argued above if k  2q, we have that |V (ME)|  4q + 1. Note that each of the

reduction rules can be applied in polynomial time, and each of them either declare

that the given instance is a No instance or reduces the size of the graph. Therefore,

the overall running time is polynomial in the input size. ⇧

Using Theorem 23, we get the following result.

Corollary 7.6.1. GSCS admits a kernel with 2l + 1 vertices, where l is the number

of missing arcs in the majority graph.

Proof. Let X be a set of vertices obtained by adding a vertex from each of the

missing arcs. Note that X is a tvd of ME , and |X|  l. Note that in the proof

of Theorem 23, by the exhaustive application of Reduction Rules 7.6.1 to 7.6.3, we

bound the number of vertices in ME by 2|X| + 1. Hence, we obtain the desired

kernel. ⇧

200

7.7 Conclusion

In this chapter we studied Gehrlein Stable Committee Selection problem in

the realm of parameterized complexity. We put forward a parameterized complexity

map of the problem, by way of W-hardness, fixed-parameterized tractability, and

kernelization. We showed that the problem is W[1]-hard when parameterized by the

size of the committee, yet it admits fixed parameter tractable algorithms and linear

kernels with respect to alternate structural parameters which encode the “closeness”

of the underlying majority graph of the given election to a tournament. Another

natural direction is to study the problem with respect to other relevant parameters.

201

202

Chapter 8

Stable Extension of Partial

Matching

In the previous parts we gave algorithms for finding stable assignment or stable

selection. In this part we give algorithms to manipulate an input instance so that

our desired outcome is stable.

We first consider the Stable Matching problem and give algorithms to manip-

ulate an instance of Stable Matching so that a given matching is produced as an

output of the Gale-Shapley algorithm in the modified instance. We give algorithms

for both the case of complete and incomplete preference lists. We first develop a

structure to study the problem in Section 8.3. In Section 8.4 we give an algorithm

for complete preference lists and also prove matching lower bounds for this algorithm.

In Section 8.5 we extend our algorithm for incomplete lists.

Stable Matching together with its in numerous variants are among the most

well-studied problems in matching theory, driven by applications to economics,

business, and more recently to medical sciences such as organ donation and exchange,

[2]. Roth and Sotomayor in [139] give a detailed exposition on the applications of

stable matching in economics and business. The model of the two-sided Stable

205

Matching problem that we study in this chapter is slightly more restricted than

the ones we studied in Chapters 3 and 4. Here, we are given two sets of agents of

equal size. Recall that the sets ate refereed as men and women, where each person

submits a ranked list of all the members of the opposite sex.

Ever since the theoretical framework for Stable Matching was laid down by

Gale and Shapley [58] to study the then current heuristic used to assign medical

residents to hospitals in New England, the topic has received considerable attention

from theoreticians and practitioners alike. In particular, it is one of the foundational

problems in social choice theory, where a matching is viewed as an allocation or

assignment of resources to relevant agents, whereby the nature of the assignment can

vary greatly depending on the scenario/marketplace they are modeling. We refer the

reader to books [71, 139, 114] for an in-depth introduction to stable matching and

its variants.

As stated in earlier chapters, Gale and Shapley [58] showed that every instance

of the Stable Matching problem admits a stable matching. In other words, given

any set of preference lists of men and women there exists at least one stable matching.

In fact, they gave a polynomial time algorithm to find a stable matching. This

algorithm is widely used in both practice and theory, and it exists in two versions: the

men-proposing and the women-proposing. The men (respectively, women)-proposing

algorithm produces a men-optimal (respectively, women-optimal) stable matching,

so named to emphasize the fact that one side prefers one matching over the other.

Both variants are defined analogously. As the name suggests, the men-optimal stable

matching is a stable matching that is no worse than any other stable matching,

in terms of the preferences of the men. In other words, no man can get a better

partner in any other stable matching when compared to the men-optimal stable

matching.The men-proposing version of the algorithm works as follows. A man who

is not yet matched to a woman, proposes to the woman who is at the top of his

206

current list, which is obtained by removing from his original preference list, all the

women who have rejected him at an earlier step. On the woman’s side, when a

woman w receives a proposal from a man m, she accepts the proposal if it is her

first proposal, or if she prefers m to her current partner. If w prefers her current

partner to m, then w rejects m. If m is rejected by w, then m removes w from his

list. This process continues until there is no unmatched man. The output of this

algorithm is the men-optimal stable matching. For more details, see [71]. It has

been customary to use the men-proposing version of the algorithm, and our analysis

here will stick to that convention. Henceforth, unless explicitly stated otherwise,

any mention of a stable matching should be interpreted by the reader as such. We

will use (LM ,LW) to denote the set of preference lists of men and women, and the

men-optimal matching with respect to these lists is denoted by GS(LM ,LW).

8.1 Our problem and motivation

Kobayashi and Matsui [101, 100] studied manipulation in the stable matching model,

where agents are manipulating with the goal of attaining a specific matching target.

Formally speaking, they considered the following class of problems. An input consists

of two sets M and W of men and women, respectively, each of size n; along with the

preference list of every man (expressed as a strict ordering on the set of women) ,

denoted by LM , and a matching on (M,W). The said matching can either be perfect

(if it contains n pairs), or partial (possibly, fewer than n pairs). Furthermore, for

a couple of problems, we are given a set of preference lists of women, LW
0
, where

W 0 ✓ W . The goal is to decide if there exists a set of preference lists of women,

LW , containing LW
0
, such that the men-optimal stable matching algorithm when

used in conjunction with LM yields a matching that contains all the pairs in the

stated matching. Of these problems, two are directly related to our work in this

chapter. Let us consider the following two problems, and compare and contrast their

207

computational complexity.

Input: A set of preference lists LM of men over women W , and a perfect

matching µ on (M,W).

Task: Does there exist a set of preference lists of women LW , such that

GS(LM ,LW) = µ?

Attainable Stable Matching (ASM)

Kobayashi and Matsui in [101, 100] showed that ASM is polynomial time solvable,

and exhibited an O(n2) algorithm that computes the set LW , if it exists. Or else,

reports “none exists”. The following problem is identical to the above, except in

one key aspect: the target matching need not be perfect. The authors show that this

problem is NP-complete.

Input: A set of preference lists LM of men M over women W , and a partial

matching µ0 on (M,W).

Task: Does there exist preferences of women LW , such that µ0 ✓

GS(LM ,LW)?

Stable Extension of Partial Matching (SEOPM)

These two problems and their di↵ering computational complexities represent a

dichotomy with respect to the size of target matching. Kobayashi and Matsui solve

ASM by designing a novel combinatorial structure called the suitor graph, which

encodes enough information about the men’s preferences and the matching pairs,

that it allows an e�cient search of the possible preference lists of women, which are

n · n! in number. The same approach falls short when the stated matching is partial.

Our work falls thematically within the area of strategic results relating to the

stable matching problem. There is a long history of results centered around the

208

question as to whether an individual agent, or a coalition of agents can misstate

their true preference lists (either by truncating, or by permuting the list), with the

objective of obtaining a better partner (assessed in terms of the true preferences of

the manipulating agents) than would otherwise be possible under the men-optimal

stable matching algorithm. SEOPM is to be viewed as a manipulation game in

which a coalition of agents (in this case the subset of women who are matched

under the partial matching) have decided upon a specific partner. These agents are

colluding, with co-operation from the other women who are not matched, to produce

a perfect matching, which gives each of the manipulating agents their target partners.

There exists a strategy to attain this objective if and only if there exists a set of

preference list of women that yields a perfect matching that contains the partial

matching.

It is to be noted that a (successful) manipulation strategy for one game need not

be a (successful) manipulation strategy for a game induced by some other mechanism.

That is, manipulation strategies can only be defined for a known game, one where

the mechanism is pre-defined. Alternately stated, a manipulation game is induced

by a fixed mechanism. Gale-Shapley algorithm is perhaps the best known stable

matching algorithm in theory and practice; its use in the manipulation games is

ubiquitous. Our analysis in this chapter is about a manipulation game induced by

the Gale-Shapley algorithm.

Combinatorial tools such as the suitor graph are by construction inextricably

related to the men-optimal stable matching. However, it is not infeasible that

for other notions of stable matchings we can design an equivalent combinatorial

characterization such as a suitor graph, and a succinct description of all possible

stable extensions of partial matchings such as our universal suitor graph.

Since SEOPM has been shown to be NP-complete, it is natural to study this

problem in computational paradigms that are meant to cope with NP-hardness. We

209

attempt such a study in the area of exact exponential time algorithms. Manipulation

and strategic issues in voting have been well-studied in the field of exact algorithms

and parameterized complexity; see the survey [21] for an overview. But one cannot

say the same regarding the strategic issues in the stable matching model. These

problems hold a lot of promise and remain hitherto unexplored in the light of exact

algorithms and parameterized complexity, with exceptions that are few and far

between [116, 117].

To the best of our knowledge, Cseh and Manlove [28] initiated this type of

analysis by studying an NP-hard variant of the stable marriage and stable roommates

problems1 where the input consists of each of the preference lists, as well two subsets

of (not necessarily pairwise disjoint) pairs of agents, representing the forbidden pairs

and the forced pairs. The goal is to find a matching that does not contain any

of the forbidden pairs, and contains each of the forced pairs, while simultaneously

minimizing the number of blocking pairs.

8.1.1 Our Contributions

Throughout the article, n is used to denote n = |M | = |W |. The most basic algorithm

for SEOPM would be to guess the set of permutations for all women (that is, the

set of preferences of women, LW) and check whether µ0 ✓ GS(LM ,LW). However,

this algorithm will take (n!)nn2 = 2O(n2 logn). One can obtain an improvement over

this näıve algorithm by using the polynomial time algorithm for ASM [100]. That is,

using the algorithm for ASM, which given a matching µ can check in polynomial

time whether there exists LW such that µ = GS(LM ,LW). The faster algorithm

for SEOPM, using the algorithm for ASM, tries all possible extensions µ of the

1In the stable roommates problem, the matching market consists of agents of the same type, as
opposed to the market modeled the stable marriage problem that consists of agents of two types,
men and women. Roommates assignments in college housing facilities is a real world application of
the stable roommates problem.

210

partial matching µ0 and checks in polynomial time whether there exists LW such that

µ = GS(LM ,LW). Thus, if the size of the partial matching is k, this algorithm would

have to try (n�k)! possibilities. In the worst case this can take (n!)nO(1) = 2O(n logn).

In this article we give a 2O(n) algorithm, which not only breaks the näıve bound,

but also uses an idea which connects SEOPM to the problem of Colored Sub-

graph Isomorphism (given two graphs G and H, the objective is to test whether

H is isomorphic to some subgraph of G). We establish this connection by introducing

a combinatorial tool, the universal suitor graph that extends the notion of the rooted

suitor graph devised by Kobayashi and Matsui in [101, 100], to solve ASM. It is

shown in [100] that an input instance (LM , µ) of ASM is a Yes-instance if and only

if the corresponding rooted suitor graph has an out-branching : a spanning subgraph

in which every vertex has at most one in-coming arc, and is reachable from the

root. The universal suitor graph satisfies the property that (LM , µ0), an instance of

SEOPM is a Yes-instance if and only if the corresponding universal suitor graph

contains a subgraph that is isomorphic to the out-branching corresponding to (LM , µ)

where µ is the perfect matching that “extends” µ0. Thus, the universal suitor graph

succinctly encodes all “possible suitor graphs” and is only polynomially larger than

the size of a suitor graph. That is, the size of universal suitor graph is O(n2). This

is our main conceptual contribution and we believe that the concept of the universal

suitor graph is likely to be of independent interest, useful in characterizing existence

of strategies in other manipulation games.

Using ideas from exact exponential algorithms and parameterized complexity; in

particular by using as a subroutine the algorithm that enumerates all non-isomorphic

out-branchings in a (given) rooted directed graph [14, 130], and a parameterized

algorithm for Colored Subgraph Isomorphism [52, 53], we can search for

a subgraph in the universal suitor graph that is isomorphic to an out-branching

corresponding to an extension of µ0. We complement our algorithmic finding by

211

showing that unless Exponential Time Hypothesis (ETH) fails, our algorithm is

asymptotically optimal. That is, unless ETH fails, there is no algorithm for SEOPM

running in time 2o(n). Using the tools developed for SEOPM we can solve SEOPMI,

the problem of finding a stable extension of a partial matching when the preference

lists of men are not necessarily complete. This problem is stated in Section 8.5

8.2 Preliminaries

As introduced earlier, M and W denote the set of men and women, respectively,

and we assume that |M | = |W | = n. Each m 2 M has a preference list, denoted

by P (m), which is a total ordering of W . The set of preference lists of all men is

denoted by LM . Similarly, each w 2 W has a preference list, denoted by P (w) which

is a total ordering of M . The set of preference lists of all women is denoted by LW .

It is helpful to view (M,W) as the bipartitions of a complete bipartite graph, and

a perfect matching in (M,W) as a set of vertex disjoint edges that matches every

vertex in M [W . Similarly, a partial matching in (M,W) can be viewed as a set of

vertex disjoint edges that does not necessarily match every vertex in M [W . Given a

matching µ (perfect or partial), and a vertex v 2M [W , µ(v) denotes the matched

partner of the man/woman v. We note that for a perfect matching µ: m 2M if and

only if µ(m) 2 W , and similarly w 2 W if and only if µ(w) 2M . But, when we have

a partial matching, µ, it may be that some vertices (male or female) are not matched

under it, we denote that symbolically as µ(v) = v for any man/woman v 2M [W

who is not matched in µ. A matching µ is said to be an extension of a matching

µ0 if µ0 ✓ µ, that is µ contains the set of edges in µ0. For any matching µ, and a

man m matched in µ, we define �+(m) = {w 2 W |m strictly prefers w to µ(m)},

and conversely for any woman w 2 W (not necessarily matched in µ) we define

��(w) = {m 2M |m strictly prefers w to µ(m)}; all preferences are in terms of lists

in LM and LW .

212

Throughout the chapter, we use the standard notations about directed graphs.

Given a directed graph D, and a vertex v 2 V (D), we use N�(v) to denote the

set of vertices that are in-neighbors of v: N�(v) = {u | (u, v) 2 E(D)}. Similarly,

we use N+(v) to denote the set of vertices that are out-neighbors of v: N+(v) =

{u | (v, u) 2 E(D)}. Following the usual notations, a source is a vertex v such that

N�(v) = ; and a sink is a vertex v such that N+(v) = ;. An out-branching is a

directed graph with a special vertex, called the root, where each vertex is reachable

from the root by exactly one directed path. Essentially, this is a rooted tree with all

arcs oriented away from the root. For any directed edge or an arc, tail is the vertex

from where the arc originates and the head is the vertex at which it ends.

8.3 Generalization of Suitor Graph

The main tool we use to obtain our exact exponential time algorithm is the notion

of a universal suitor graph – a generalization of the suitor graph introduced by

Kobayashi and Matsui [100]. We start the section by introducing the definition of a

suitor graph, followed by the definition of a universal suitor graph.

Suitor Graph and Rooted Suitor Graph. Given a set of preference lists LM of

men over set of women W and a partial matching µ0, G(LM , µ0) denotes a directed

bipartite graph, called a suitor graph, where V (G) = M [W and a set of directed

arcs E(G) defined as follows,

E(G) =
n
(w, µ0(w)) 2 W ⇥M | w is matched in µ0

o

[
n
(m,w) 2M ⇥W | m is matched in µ0, w 2 �+(m)

o

Observe that the arcs for which a woman is the tail are the (only) arcs that correspond

to the matched pairs in µ0.

213

A
B
C
D
E
F
G
H
I

1
2
3
4
5
6
7
8
9

(a)

A
B
C
D
E
F
G
H
I

1
2
3
4
5
6
7
8
9

r

(b)

Figure 8.1: (a) Suitor Graph, (b) Rooted Suitor Graph

For a given suitor graph G(LM , µ0), the associated rooted suitor graph is a directed

graph G(LM , µ0) defined as follows. We introduce an artificial vertex r, called the

root, to G(LM , µ0) and add arcs (r, w) for every woman w 2 W who has no incoming

arc in G(LM , µ0); such a vertex w is called a source in G(LM , µ0). We give an example

of a suitor graph and a rooted suitor graph. Figure 8.1 shows the suitor graph and

the rooted suitor graph for the preference lists given in Table 8.1 and the partial

matching {(A, 1), (B, 2), (C, 3)}. The vertex marked as r is the root vertex.

Man Preference over women
A 3 7 6 5 1 9 8 4 2
B 1 2 4 3 9 5 8 7 6
C 2 7 6 8 3 4 9 1 5
D 2 7 6 8 3 4 9 1 5
E 3 7 6 5 1 9 8 4 2
F 1 2 4 3 9 5 8 7 6
G 3 7 6 5 1 9 8 4 2
H 1 2 4 3 9 5 8 7 6
I 2 7 6 8 3 4 9 1 5

Table 8.1: Example: Preference List of Men over Women

Our main motivation for suitor graph and its generalization is the following result

proved by Kobayashi and Matsui [100].

Proposition 8.3.1. [100, Theorem 2]Let LM be a set of preference lists for M , and

µ be a perfect matching between (M,W), then the following holds: There exists LW ,

214

a set of preference lists for W such that GS(LM ,LW) = µ if and only if the rooted

suitor graph G
�
LM , µ

�
has an out-branching.

There exists a polynomial time algorithm (Algorithm Q1 in [100]) that takes

as input (LM , µ) and outputs LW (if one exists) such that GS(LM ,LW) = µ. Oth-

erwise, it reports “none exists”. We remark that the preference lists in LM and

LW (if it exists) are complete. We will be using Algorithm Q1 as a subroutine in

Algorithm 8.4.2.

Universal Suitor Graph. Next we define universal suitor graph (USG). The idea

is to construct a graph that given a set of preference lists LM of men over women

captures all possible suitor graphs succinctly. Then we make use of this to solve our

problem. Formally, given a set of preference lists LM of men over women, universal

suitor graph, U(LM), is defined as follows. We make n di↵erent copies of each

man mi 2 M , denoted by Mi = {m1
i
, . . . ,mn

i
}. Recall that for every mi 2 M , the

preference list P (mi) 2 LM is given. We define P (mj

i
) = P (mi), for 1  j  n. Thus,

the vertex set of the graph is V (U(LM)) =
U

n

i=1 Mi [W. The arc set, E(U(LM)),

is defined as follows. For every wi 2 W , the graph contains arcs (wi,mi

j
) for all

1  j  n. Additionally, the graph contains the arc (mi

j
, wk) if mj prefers wk to wi

in P (mj), where wk, wj 2 W . This condition is depicted notationally as wk >mj wi.

The intuition behind the construction is the following: for any matching µ, the

possibility that man mj will be matched with woman wi, is captured by the edge

(wk,mk

j
). Furthermore, using other copies of mj we imitate connections with women

whom he prefers to wk. In particular, the ith copy of every man is “paired” to wi, i.e.,

N+(wi) = {mi

1,m
i

2, . . . ,m
i

n
}. This idea of pairing is captured by the fact that every

male vertex in USG (consider mi

k
) has a unique in-neighbor (the female vertex wi).

Universal Suitor Graph for a Partial Matching. For a given partial matching

µ on the set (M,W), we define the graph, U(LM , µ), as follows. A man m 2M is

matched under µ if and only if µ(m) 2 W , and analogously for a woman w 2 W ,

215

w is matched under µ if and only if µ(w) 2 M . We refer to the following set of

operations collectively as the pruning of U(LM) w.r.t. µ.

Matched Women : Let µ(wi) = mj . Then delete vertices {mi

k
| 1  k  n, k 6= j},

from the graph. This ensures that every matched female vertex wi, has a unique

out-going arc to the ith copy of the man µ(wi). In other words, only the arc

(wi,mi

j
), where µ(wi) = mj, survives.

Unmatched Women : Let µ(wi) 62 M . Then delete vertices {mi

k
| 1  k 

n, µ(mk) 2 W}. That is, delete the ith copy of a man who is matched under

µ. This ensures that in the subgraph, every unmatched female vertex wi has

out-going arcs to the vertices in the set {mi

k
| mk is unmatched in µ}.

This completes the description of the pruning operations. Thus, to obtain the graph

U(LM , µ) we start with U(LM) and apply the pruning operations defined above

with respect to the matching µ. Edges in U(LM) that are not deleted during the

above pruning operations, are said to have survived pruning w.r.t. µ. We give

an example of a universal suitor graph for a partial matching. Figure 8.2 shows

the universal suitor graph and the rooted universal suitor graph [described later in

Section 8.4.2] for the preference lists given in Table 8.1, and for the partial matching

µ = {(A, 1), (B, 2), (C, 3)}. To keep the figure clear, we only show the copies of male

vertices for two women. The edges going out of these copies of the male vertices are

omitted.

We conclude this discussion with a useful lemma that will be invoked in several

arguments.

Lemma 8.3.1. Let µ denote a partial matching. If a male vertex mi

j
survives

pruning w.r.t. µ, then either µ(mj) = wi, or else both mj and wi are unmatched

in µ. Furthermore, the out-going arcs from mi

j
are also not deleted during pruning

operations.

216

A
B
C

D4

E4

F 4

G4

H4

I4

D9

E9

F 9

G9

H9

I9

1
2
3
4
5
6
7
8
9

(a)

A
B
C

D5

E5

F 5

G5

H5

I5

D9

E9

F 9

G9

H9

I9

1
2
3
5
6
7
8
4
9S

r

(b)

Figure 8.2: (a) Universal suitor graph on vertices M = {A,B,C}]X2{D,...,I} {X i |
4  i  9} and W = {1, . . . , 9}, (b) Rooted universal suitor graph [described later in
Section 8.4.2] for the partial matching µ = {(A, 1), (B, 2), (C, 3)} with source {4, 9}.
Blue vertices are copies of the unmatched male vertices for each unmatched female
vertex. The outgoing edges from blue vertices are not shown. Black edges represent
the matching edges in µ, red edges represent the preferences of men matched in µ,
while the blue edges represent edges from an unmatched woman to her own copies of
the unmatched men. The green ellipse represents the set of source vertices, {4, 9},
that are connected from the root r.

Proof. We begin by noting that if wi is matched to someone other that mj , then the

vertex mi

j
must be deleted during the pruning step; this is a contradiction. Suppose

that wi is unmatched, and µ(mj) = w`. Then, the arc (w`,m`

j
) survives, but the

vertex mi

j
must be deleted, again a contradiction. Hence, the fact that mi

j
survives

pruning w.r.t. µ, implies that either µ(mj) = wi, or both mj, wi are unmatched.

Additionally, we note that if µ(mj) = wi, then mi

j
is the sole member of Mj that

survives the pruning steps. Also note that regardless of whether mj is matched or

unmatched, the out-going arcs from mi

j
survive the pruning process. ⇧

217

8.4 Exact Algorithm for SEOPM

In this section we design a moderately exponential time algorithm for SEOPM.

Towards this we will combine the following three ingredients:

• the notion of a universal suitor graph defined in the previous section;

• a parameterized algorithm for Subgraph Isomorphism when the pattern

graph has bounded treewidth; and

• the fact that the number of non-isomorphic (i.e. unlabelled) trees on n vertices

is at most 2.956nnO(1).

We start this section by giving an overview of our algorithms. Towards this we

first give the relevant notions and definitions.

Definition 8.4.1. Two digraphs G1 and G2 are said to be isomorphic if there is a

function f : V (G1)! V (G2) that satisfies the following properties:

1. f is a bijective function, i.e., f�1 is a function from V (G2) to V (G1);

2. for every edge (u, v) 2 E(G1), we have (f(u), f(v)) 2 E(G2).

A function such as f is called an isomorphism function. This function can be extended

to sets of vertices analogously. That is, for all V1 ✓ V (G1), f(V1) = {f(v) | v 2

V1} ✓ V (G2). We write G1 ' G2 to denote the two graphs are isomorphic.

Now we are ready to define the Colored Subgraph Isomorphism problem.

The Colored Subgraph Isomorphism problem is formally defined as follows.

218

Input: A host graph G, a pattern graph H, and a coloring � : V (G) !

{1, 2, . . . , |V (H)|}.

Parameter: |V (H)|

Task: Is there a subgraph G0 in G such that G0 ' H, and the vertices of

G0 have distinct colors?

Colored Subgraph Isomorphism (Col-Sub-Iso)

We obtain the desired algorithm by making 2O(n) instances of the Col-Sub-Iso

problem where the pattern graph has size 2n + 3 and treewidth 3, and the given

instance of SEOPM is a Yes instance if and only if one of the constructed instances

is a Yes instance of the Col-Sub-Iso problem. Our host graph will be a universal

suitor graph (of size O(n2)) corresponding to an instance of SEOPM. We refer

the reader to [29] for definitions of treewidth and tree decomposition. To solve

Col-Sub-Iso we will use known algorithms, in particular, the algorithm alluded to

in the following result by Amini, Fomin, and Saurabh [6, Theorem 15].

Proposition 8.4.1 ([6]). Let G and H denote two graphs on N and q vertices,

respectively such that the treewidth of H is at most t. Furthermore, there is a coloring

� : V (G) ! [q] of G. Then, there is a deterministic algorithm for Col-Sub-Iso

that runs in time 2q(Nt)t+O(1), and outputs (if there exists one) a subgraph of G that

has a distinct color on every vertex, and is isomorphic to H.

To give the desired reduction to Col-Sub-Iso we essentially enumerate all

non-isomorphic trees on 2n + 1 vertices. In the past, rooted (undirected) trees

have been studied mainly, not much study has taken place on rooted directed trees

or out-branchings. However, every rooted tree can be made an out-branching by

orienting every edge away from the root and every out-branching can be transformed

into a rooted tree by disregarding all edge orientations. Thus, rooted trees and

out-branchings are equivalent, and thus, the results obtained for the former are

219

applicable to the latter. Otter [130] showed that the number of non-isomorphic

out-branchings on n vertices is tn = 2.956nnO(1). We can generate all non-isomorphic

rooted trees on n vertices using the algorithm of Beyer and Hedetniemi [14] of runtime

O(tn). We summarize the above in the following result.

Proposition 8.4.2 ([14, 130]). The number of non-isomorphic out-branchings on

n vertices is tn = 2.956nnO(1). Furthermore, we can enumerate all non-isomorphic

rooted trees on n vertices in time O(tn).

8.4.1 Universality of Universal Suitor Graph

In this section we show the “universality” of the universal suitor graph. That is,

how given a set of preference lists, LM , of men over women, universal suitor graph

encodes all potential suitor graphs. Universal suitor graph for a partial matching

encodes all suitor graphs of all potential extensions of the given partial matching. In

particular, we show the following result.

Lemma 8.4.1. Let LM denote a set of preference lists of men over women and let

µ0 denote a partial matching on the set (M,W). If there exists a perfect matching µ

such that µ0 ✓ µ (as a set of edges), then U(LM , µ) is a subgraph of U(LM , µ0), and

is isomorphic to the suitor graph G
�
LM , µ

�
.

Proof. Let M 0 and W 0 denote the subset of men and women who are matched under

µ0, respectively. Let µ0 ✓ µ, in terms of a subset of edges. We will refer to the suitor

graphs G
�
LM , µ0� and G

�
LM , µ

�
as simply suitor graphs for µ0 and µ, respectively.

Consider the universal suitor graph for µ, denoted by U(LM , µ), obtained from

U(LM) by pruning w.r.t. µ. Since µ0 ✓ µ for every w 2 W 0 (m 2 M 0) we have

µ(w) = µ0(w) (µ(m) = µ0(m)). Thus, it is easy to see that U(LM , µ) is a subgraph of

U(LM , µ0), and can be obtained from the latter by applying the pruning operation to

every female vertex wi 2 W\W 0. The next claim completes the proof of the lemma

220

because it leads to the conclusion that the suitor graph G
�
LM , µ

�
is isomorphic to

the universal suitor graph U(LM , µ).

Claim 2. Suitor graph G
�
LM , µ

�
is isomorphic to U(LM , µ).

Proof. By the construction of G
�
LM , µ

�
, we know the suitor graph of µ has arcs

(w, µ(w)) for every w 2 W . Since U(LM , µ) is obtained from U(LM) by pruning

w.r.t. µ, hence we know that U(LM , µ) contains 2 |µ| vertices

]

wi2W

{wi,m
i

j
| µ(wi) = mj}.

We use Mµ to denote the male vertices in U(LM , µ).

Let µ : M [W ! Mµ [W denote a function between the vertex sets of

G
�
LM , µ

�
and U(LM , µ). For every wi 2 W , we define µ(wi) = wi, and for every

mi 2 M , we define µ(mi) = mj

i
, where µ(mi) = wj. We will prove that the map

 µ is an isomorphism.

We begin with the observation that both graphs are bipartite, with vertex set

(M,W) and (Mµ,W). Thus, to prove that µ is an isomorphism, it is su�cient to

prove that for every w 2 W,m 2 M , (w,m) is an arc in G
�
LM , µ

�
if and only if

(w, µ(m)) is an arc in U(LM , µ), and similarly (m,w) is an arc in G
�
LM , µ

�
if and

only if (µ(m), w) is an arc in U(LM , µ).

Let (wi,mj) be an arc in G
�
LM , µ

�
. Thus, we have µ(wi) = mj , and so µ(mj) =

mi

j
. The construction of U(LM , µ) (that is pruning w.r.t. µ) ensures that (wi,mi

j
) is

an arc in U(LM , µ). Conversely, if (wi,mi

j
) is an arc in U(LM , µ) then since µ is a

perfect matching, by Lemma 8.3.1, we can conclude that µ(wi) = mj , and so (wi,mj)

is an arc in G
�
LM , µ

�
. This completes the proof of the if and only if statement

about female to male arcs.

Let (mi, wk) be an arc in G
�
LM , µ

�
i.e., µ(mi) = wj. Thus, wk >mi wj (mi

221

prefers wk to wj in LM). The vertex mj

i
= µ(mi) and the arc (mj

i
, wk) exists

in the universal suitor graph U(LM). If we can show that mj

i
exists in U(LM , µ),

then by the additional condition of Lemma 8.3.1, we know that the arc (mj

i
, wk)

exists in U(LM , µ). We note that mj

i
must survive the pruning of U(LM) w.r.t. µ

because (wj,mi) is an arc in G
�
LM , µ

�
and so from the earlier part we know that

(wj,m
j

i
) is an arc in U(LM , µ). Hence, mj

i
must be a vertex in U(LM , µ), and so we

conclude that (µ(mi), wk) is an arc in U(LM , µ). Conversely, if (mj

i
, wk) is an arc

in U(LM , µ), then the presence of mj

i
in the graph allows us to invoke Lemma 8.3.1

to conclude that µ(mi) = wj . This implies that wk >mi wi, hence (mi, wk) must also

be an arc in G
�
LM , µ

�
. This completes the proof of the if and only if statement

about male to female arcs. Hence, our proof is complete.

⇧

Thus, lemma is proved.

⇧

8.4.2 Rooted Universal Suitor Graph and Valid Subgraphs

For a given universal suitor graph U(LM , µ0) and a subset S ✓ W , we define the

corresponding rooted universal suitor graph with sources in S, as follows. For

a vertex w 2 S, if w is a source in U(LM , µ0) (i.e. N�(w) = ;) then we add the arc

(r, w). Otherwise, we delete all the male vertices in N�(w), and add the arc (r, w).

The resulting graph is the rooted universal suitor graph with sources in S, and is

denoted by U(LM , µ0, S). We refer the reader to Figure 8.2(b) for an example of a

rooted universal suitor graph. The set of vertices marked as S is the set of source

vertices that are connected to the root.

Recall that in a universal suitor graph for a partial matching there may be

222

multiple copies of a male vertex, and that brings us to the notion of a valid subgraph.

A subgraph of U(LM , µ0) is said to be a valid subgraph if it contains every female

vertex, and exactly one copy of every male vertex, i.e. |U(LM , µ0)\Mi| = 1 for each i

(1  i  n). The definition can be extended to the rooted subgraphs of U(LM , µ0, S),

where S ✓ W , and a valid rooted subgraph contains the root, every female vertex

and exactly one copy of every male vertex.

Consider a rooted tree, such that the root is considered to be in layer 0. A vertex

v is said to be in layer i in the tree, if the (unique) path from the root to v contains

i arcs. A rooted tree is called a matching tree if every vertex in an odd layer

has a unique child in the tree. If a matching tree is a valid subgraph of U(LM , µ0)

then it is called a valid matching tree. We note that a matching tree is also an

out-branching.

Given a matching tree T , we construct the triangular matching tree T4, by

adding two new vertices r1 and r2 to T and adding the arcs (r, r1), (r1, r2) and (r2, r).

Similarly, for any given rooted universal suitor graph U(LM , µ0, S), we construct the

triangular rooted universal suitor graph, U4(LM , µ0, S), by adding two new

vertices r1 and r2 to T and adding the arcs (r, r1), (r1, r2) and (r2, r).

Finally, we define the special coloring �sp used to color the vertices of a triangular

rooted universal suitor graph: �sp uses 2n + 3 colors, giving distinct colors to

r, r1, r2, w1, . . . , wn, and using the remaining n colors such that the subset of copies

of the same male vertex gets a distinct color. That is, for each i (1  i  n) the

subset of {m1
i
, . . . ,mn

i
} that exists in the universal suitor graph gets the n+ 3 + ith

color.

223

8.4.3 2O(n) Algorithm for SEOPM

In this section we combine all the results we have developed so far and design our

algorithm.

Overview of Algorithm 8.4.1: Let (LM , µ0) be an input instance of SEOPM. If µ0

can be extended to µ, then (by Lemma 8.4.1), we know that G
�
LM , µ

�
is isomorphic

to a subgraph in U(LM , µ0). If µ0 cannot be extended, then by Proposition 8.3.1 we

know that for any perfect matching µ ◆ µ0, the graph G
�
LM , µ

�
does not contain

an out-branching rooted at r. In other words, there exists a vertex v that is not

reachable from r in the graph G
�
LM , µ

�
. Consequently, to “solve” SEOPM on

(LM , µ0), it is necessary and su�cient to look for a valid out-branching or matching

tree in the universal suitor graph U(LM , µ0). If the algorithm finds one, we can

conclude that µ0 can be extended, else it answers that µ0 cannot be extended. We

implement these ideas by constructing an appropriate instance of Col-Sub-Iso.

The algorithm works as follows. Assume that we have a stable matching µ that

extends µ0. Then consider the graph G
�
LM , µ

�
and let S denote the subset of female

vertices that are sources in the graph. Our algorithm implements this by enumerating

all subsets S of W in the first loop. Furthermore, by Proposition 8.3.1 there is a

matching tree, T , rooted at r in G
�
LM , µ

�
. To “guess” the tree T , we enumerate

all non-isomorphic out-branchings on 2n+ 1 vertices and first check whether it is a

matching tree. If the enumerated tree is a matching tree then we create an instance

of Col-Sub-Iso, where the host graph is U4(LM , µ0, S), with its vertices colored

by �sp, and the pattern graph is T4. Finally, using an algorithm for Col-Sub-Iso

described in Proposition 8.4.1, we test whether, or not (U4(LM , µ0, S), T4,�sp) is

a Yes-instance of Col-Sub-Iso. If the algorithm returns T ⇤, we can conclude

that a stable matching µ extends µ0. If the outermost for-loop terminates without

finding a Yes-instance of Col-Sub-Iso, then we return that “no valid out-branching

exists” (and hence no stable extension exists). This concludes the description of

224

Algorithm 8.4.1: Subroutine for solving SEOPM.

Input: A set of men and women vertices (M,W), preferences of men LM ,
and a partial matching µ0

1

2 Let F {non-isomorphic out-branchings on 2n+ 1 vertices}
3 forall S ✓ W do
4 forall matching tree T 2 F do
5 Using Proposition 8.4.1 test whether (U4(LM , µ0, S), T4,�sp) is a

Yes-instance of Col-Sub-Iso.
6 if the algorithm returns a subgraph T ⇤ then
7 return T ⇤

8 end
9 end

10 end
11 return “No valid out-branching exists”

the algorithm. We refer the reader to Algorithm 8.4.1 for further details. The next

lemma argues the correctness of Algorithm 8.4.1.

Lemma 8.4.2. Let (LM , µ0) be an instance of SEOPM. Then (LM , µ0) is a Yes-

instance of SEOPM if and only if Algorithm 8.4.1 returns a graph (valid triangular

matching tree) on the input (LM , µ0).

Proof. Let (LM , µ0) be a Yes-instance, i.e., there exists LW such that µ0 ✓ µ =

GS(LM ,LW). Note that since the preference lists in LM and LW are complete, every

stable matching w.r.t. (LM ,LW) (such as µ) is a perfect matching. By Lemma 8.4.1,

we know that G
�
LM , µ

�
is isomorphic to a subgraph in U(LM , µ0). Let eT denote

the out-branching in G
�
LM , µ

�
(rooted at r), as described by Proposition 8.3.1. By

Lemma 8.4.1, we know that G
�
LM , µ

�
is isomorphic to a subgraph in U(LM , µ0).

Consequently, the rooted suitor graph U(LM , µ0, S⇤), where S⇤ denotes the set of

sources in G
�
LM , µ

�
, must contain a valid matching tree T 0 that is isomorphic to eT .

If we delete the labels on the vertices in T 0 (or eT) , we get an out-branching (in fact,

a matching tree) on 2n+ 1 vertices, denoted by T . Thus, T 2 F , and we conclude

that Algorithm 8.4.1 will find T ⇤, a valid triangular matching tree of U4(LM , µ0, S⇤)

that is isomorphic to T4. Hence, the algorithm will return T ⇤.

225

Suppose that Algorithm 8.4.1 outputs T ⇤. Then there exists a subset S ✓ W ,

and an out-branching on 2n + 1 vertices T , such that U4(LM , µ0, S) contains T ⇤

as a (colored) subgraph such that T ⇤ is isomorphic to the triangular matching tree

T4. Observe that U4(LM , µ0, S) has a unique triangle r, r1, r2 and thus due to the

isomorphism, T ⇤ contains the triangle r, r1, r2. This implies that every vertex in T ⇤

is reachable from the root of U(LM , µ0, S). Since male vertices are only reachable

from a female vertex, this means that every male vertex has an in-coming female

neighbor. Since, T ⇤ \{r1, r2} is a valid matching tree of U(LM , µ0, S), there is exactly

one copy of every male vertex and every female vertex has a unique out-neighbor.

Thus, if (wi,mi

k
) is a female to male arc in T ⇤, then T ⇤ does not contain any other

out-going arc from wi. Thus, the female to male arcs in T ⇤ yield a perfect matching.

We denote it by µ. Note that µ0 ✓ µ because U(LM , µ0) contains a unique out-going

arc for every matched woman in µ0, hence those arcs must also be part of T ⇤. Hence,

we can conclude that T ⇤ \ {r1, r2} is an out-branching in the graph G
�
LM , µ

�
. By

Proposition 8.3.1, this means that (LM , µ0) is a Yes-instance of SEOPM. This

concludes the proof.

⇧

The next lemma gives the running time of Algorithm 8.4.1.

Lemma 8.4.3. Let (LM , µ0) be an instance of SEOPM, where |M | = n. Then,

Algorithm 8.4.1 decides whether (LM , µ0) is a Yes-instance to SEOPM in time

2O(n).

Proof. The running time of the algorithm is upper bounded by the following formula

|{S ✓ W}|⇥ |F|⇥ Time taken by Col-Sub-Iso algorithm

By applying Proposition 8.4.2 we upper bound |F| by 2.9562n+1nO(1). It is a well-

known fact that the treewidth of a tree is one, from that it is easy to show that

226

the treewidth of a triangular matching tree is at most 3. (One can first find the

tree-decomposition of the tree and then add the two vertices r1, r2 to every bag

and thus increasing the treewidth by at most two. See [29, Chapter 7] for more

details regarding treewidth.) Thus, when we apply Proposition 8.4.1, we have a host

graph that has at most n+ n2 + 3 vertices, and a pattern graph that has size 2n+ 3

and treewidth at most 3. Therefore, the running time for using the subroutine for

Col-Sub-Iso is 22n+3nO(1). Multiplying all these values together, gives the overall

running time to be 2n ⇥ 2.9562n+1nO(1) ⇥ 22n+3nO(1) = 2O(n).

⇧

Combining Lemmas 8.4.2 and 8.4.3 we get the following theorem.

Algorithm 8.4.2: Solves SEOPM

Input: A set of men and women vertices (M,W), preferences of men LM ,
and a partial matching µ0

1

2 if Algorithm 8.4.1 on (LM , µ0) returns “No valid out-branching exists” then
3 return “No stable extension exists”
4 end
5 if Algorithm 8.4.1 on (LM , µ0) returns a graph T ⇤ then
6 . T ⇤ is a valid triangular matching tree in U4(LM , µ0, S) for some subset

S ✓ W , with triangle {r, r1, r2}.
7 T T ⇤\{r1, r2}
8 end
9 Compute matching µ by pairing every woman in T to her unique

out-neighbor.
10 Invoke Algorithm Q1 in [100] on input (LM , µ) to obtain a set of

preferences LW .
11 return (LW , µ)

Theorem 24. Algorithm 8.4.2 solves SEOPM In time 2O(n).

Proof. Correctness and running time of Algorithm 8.4.2 follow from Lemmas 8.4.2

and 8.4.3.

⇧

227

8.4.4 A Lower Bound under Exponential Time Hypothesis

In this section we show that Theorem 24 is asymptotically optimal. That is, barring

an unlikely scenario occurring in complexity theory, there cannot be a better algorithm

for SEOPM. To prove this we will invoke the Exponential Time Hypothesis (ETH)

[81], and use the well-known NP-hardness reduction from SAT to SEOPM.

Exponential Time Hypothesis (ETH): Let ⌧ denote the infimum of

the set of constants c for which there exists an algorithm solving 3-SAT

in time O(2cnnO(1)). Then, ⌧ > 0.

ETH introduced by Impagliazzo and Paturi [81] has been extensively used recently to

obtain tight lower bounds for several problems. We use this here to get a lower bound

on the running time possible for SEOPM. To this end we will use the following

result stated in [29, Theorem 14.4].

Theorem 25 (Sparsification Lemma [29]). Unless ETH fails, there exists a constant

c > 0 such that no algorithm for 3-SAT can achieve running time O(2c(n+m)nO(1)).

In particular, 3-SAT cannot be solved in time 2o(n+m). Here, n and m denote the

number of variables and clauses in the input formula to 3-SAT.

Using Theorem 25 we show the next result.

Theorem 26. Unless ETH fails, there is no algorithm for SEOPM running in time

2o(n).

Proof. Let us assume that we have an algorithm A that solves SEOPM in time

2o(n)) where n is the number of men/ women. In [100], Kobayashi and Matsui showed

that SEOPM is NP-complete, by giving a reduction from SAT to SEOPM. In

particular, given a SAT instance with n variables and m clauses, they reduce it to

an instance of SEOPM with 2m+ 3n men (and women). The reduction given by

228

Kobayashi and Matsui [100] to reduce SAT to SEOPM works identically to reduce

3-SAT to SEOPM. It gives rise to an instance with 2m+ 3n men (and women).

Next, we show how to design an algorithm for 3-SAT running in time 2o(n+m) using

algorithm A. Given an instance � of 3-SAT, we start by applying the polynomial

time reduction given in [100] and obtain an instance of SEOPM with 2m+ 3n men

and 2m+ 3n women. Now we solve this instance of SEOPM using algorithm A in

time 2o(m+n). Using the solution to an instance of SEOPM we decide in polynomial

time whether � is satisfiable or not. Thus, we have given an algorithm for 3-SAT

running in time 2o(n+m), contradicting Theorem 25. This concludes the proof.

⇧

8.5 Stable extension when lists may not be com-

plete

In this section we will consider an extension of SEOPM. As before, we are given

a family of preference lists, LM and LW , for the vertices in M and W respectively.

However, unlike SEOPM, for each m 2M the preference list P (m) is a total order

on a subset of W . Similarly, for each w 2 W the preference list P (w) is a total

order on a subset of M . We assume that woman w is in P (m) for man m if and

only if m is in P (w). We will denote the subset of men who have woman w in their

preference list by �(w). This setup is commonly referred as stable matching with

incomplete lists or SMI.

229

Input: A set of (incomplete) preference lists LM of men M over women W ,

and a partial matching µ0 on (M,W).

Task: Does there exist a set of preference lists of women on men LW such

that µ0 ✓ GS(LM ,LW)?

Stable Extension of Partial Matching with Incomplete Lists (SEOPMI)

We assume that an input instance (LM , µ0) of SEOPMI satisfies the criterion of

being individually rational: if (m,w) 2 µ0 then w is in the preference list of m.

Note that the NP-complete problem SEOPM is a special case of SEOPMI.

Hence, we can conclude that SEOPMI is NP-complete as well. We design an exact

exponential algorithm for the problem Stable Extension of Partial Matching

with Incomplete Lists (SEOPMI) using Algorithm 8.4.2 given for SEOPM.

We wish to point out that the Algorithm Q1 invoked therein on the input (LM , µ)

implicitly assumes that µ is a perfect matching and the set of preference lists LW

constructed by it contain complete lists for every woman. The matching µ obtained

in an earlier step of the algorithm is guaranteed to be perfect since it is inferred from

a spanning subgraph of a suitable universal suitor graph, ensuring that all women

have a matching partner. In our analysis of SEOPMI, we will begin by assuming

that there exists a perfect matching µ such that µ0 ✓ µ = GS(LM ,LW). We can

relax that condition on the preference lists in the following manner to produce a set

of preference lists which satisfy the condition that m is in the preference lists of w if

and only w is in the preference list of m. The preference lists {P (w) | w 2 W} = LW

are constructed from an out-branching in the rooted suitor graph G
�
LM , µ

�
, where

µ is a perfect matching. For every female vertex w 2 W we define P (w) to be

a strict ordering on the set �(w), where the most preferred man is µ(w). In the

out-branching, w has a unique in-neighbor, denoted by prt(w). If prt(w) 2 M ,

then the second most preferred man in P (w) is prt(w), followed by an arbitrary

230

total ordering of the set �(w)\{µ(m), prt(w)}. If prt(w) is the root, then µ(w) is

followed by an arbitrary total ordering of the set �(w)\{µ(m)}. This completes the

description of the construction of the preference lists for women with respect to a

perfect matching.

We begin our analysis with the following observation.

Observation 8.5.1. Let (LM , µ0) be an instance of SEOPMI on M and W . Then

the suitor graph G
�
LM , µ0� and the universal suitor graph U(LM , µ0) can be con-

structed as usual. Furthermore, let µ be a perfect matching between (M,W) such

that (LM , µ) satisfies the individually rational criterion. Then, Proposition 8.3.1 and

the conclusion of Lemma 8.4.1 hold as follows:

• There exists LW , a set of preference lists for W such that GS(LM ,LW) = µ if

and only if the rooted suitor graph G
�
LM , µ

�
has an out-branching.

• If µ0 ✓ µ, then U(LM , µ) is a subgraph of U(LM , µ0), and U(LM , µ) is isomor-

phic to the suitor graph G
�
LM , µ

�
.

Proof. The proof of both the items are identical to the ones given for Proposition 8.3.1

in [100, Theorem 2] and Lemma 8.4.1 for complete preference lists, under the following

properties: Both (LM , µ0) and (LM , µ) satisfy the individually rational criterion; and

for any m 2 M and w 2 W , m is in the preference lists of w if and only if m is in

the preference list of w. We skip the details of the proofs.

⇧

The following result is the incomplete-list version of Lemma 8.4.2.

Lemma 8.5.1. Let (LM , µ0) be an instance of SEOPMI on M and W . There exists

a set of preference lists LW such that µ0 ✓ µ = GS(LM ,LW) and µ is a perfect

matching between (M,W) if and only if Algorithm 8.4.1 returns a graph on the input

(LM , µ0).

231

Proof. Suppose that there exists a set of preference lists LW such that µ0 ✓ µ =

GS(LM ,LW) and µ is a perfect matching between (M,W). Therefore, Observa-

tion 8.5.1 can be invoked. The rest of the proof for the forward direction is identical

to the one presented for Lemma 8.4.2 which uses Proposition 8.3.1 and Lemma 8.4.1.

The proof of the converse is identical to the one presented for Lemma 8.4.2, where

instead of invoking Proposition 8.3.1 we invoke Observation 8.5.1. The rest of the

details are the same.

⇧

Corollary 8.5.1. Let (LM , µ0) be an instance of SEOPMI on M and W . If

Algorithm 8.4.1 returns a graph on the input (LM , µ0), then Algorithm 8.4.2 on

the input (LM , µ0) returns (LW , µ) where µ0 ✓ µ = GS(LM ,LW) and µ is a perfect

matching.

Proof. This follows directly from Theorem 8.4.2 and our initial discussion on the

construction of (possibly incomplete) preference lists in from a perfect matching

between (M,W).

⇧

8.5.1 Overview of Algorithm 8.5.1

We design the algorithm following the lead from Observation 8.5.1 and Lemma 8.5.1.

We intend to utilize the tools that we used for developing the algorithm for SEOPM

in Section 8.4. The main aspect in which SMI di↵ers from SM with complete lists

is that some men and women may not get matched by any stable matching. Given

an instance (LM , µ0) of SEOPMI, we do not know which men and women will be

matched by a stable extension of the partial matching µ0. So we enumerate over all

possible subsets of men and women who will be matched by a stable extension of

232

µ0. In the Algorithm 8.5.1, we guess the subsets M 0 ✓M and W 0 ✓ W who will be

matched by the stable extension. Next, we truncate the preference list for a man in

M 0 to contain women from W 0 who are preferred more by m than any woman in

W \W 0. This set of truncated list is denoted by eLM
0
. The choice of M 0 [W 0 ensures

that the solution (if the guess is correct) is a perfect matching between M 0 and W 0

that extends µ0. To find such a solution we invoke Algorithm 8.4.2. If (eLM
0
, µ0) is an

Yes-instance of SEOPMI, then we obtain a matching µ ◆ µ0 and set of preference

lists for every woman in V (µ) \W . These preference lists are strict ordering of men

in V (µ) \M . In the next step we modify the preference list of each w 2 V (µ) \W

by adding the set of men in �(w)\V (µ) to the end of the list in an arbitrary strict

order. Next, we define the preference list for each w 2 W \V (µ) to be some arbitrary

ordering of the men in �(w). This gives the set of preference lists LW . Finally, we

check if the matching µ is stable w.r.t. (LM ,LW). If (LM , µ) is a No-instance of

SEOPMI, then none of our guesses will yield a stable extension; so at the end of our

exhaustive search of all possible subsets of M and W we can return that no stable

extension exists.

Lemma 8.5.2 proves the correctness of Algorithm 8.5.1. But before we present

the proof, we must discuss a very well known result by the name of Rural Hospital

Theorem, attributed to Gale and Sotomayor [59] which states that for any instance of

the stable matching problem with strict preference lists that are possibly incomplete,

every stable matching matches the exact same set of vertices between (M,W). We

will invoke this property of stable matchings in the following proof.

Lemma 8.5.2. Let (LM , µ0) be the input to SEOPMI. Then (LM , µ0) is a Yes-

instance of SEOPMI if and only if Algorithm 8.5.1 returns (LW , µ).

Proof. ()) Suppose (LM , µ0) is a Yes-instance of SEOPMI. That is, there exists

LW such that µ0 ✓ µ00 = GS(LM ,KW). We will prove that Algorithm 8.5.1 will

output a pair (LW , µ) such that µ0 ✓ µ = GS(LM ,LW).

233

Consider the iteration of Algorithm 8.5.1 when M 0 = M \ V (µ00) and W 0 =

W \ V (µ00). In other words, µ00 is a perfect matching between (M 0,W 0).

Claim 3. Algorithm 8.4.1 on the input (eLM
0
, µ0) will return a graph.

Proof. We will prove that there exists eKW
0
such that µ0 ✓ GS(eLM

0
, eKW

0
). That will

allow us to invoke Lemma 8.5.1 on the instance (eLM
0
, µ0) to conclude that Algorithm

8.4.1 on the input (eLM
0
, µ0) will return a graph.

We begin the proof by observing that µ00 matches every vertex in M 0. From the

preference lists KW = {Q(w) | w 2 W}, we construct the set eKW
0
= {Q(w) \M 0 |

w 2 W 0}. We define µ⇤ = GS(eLM
0
, eKW

0
), i.e, µ⇤ is the man-optimal stable matching

w.r.t. (eLM
0
, eKW

0
) . We will prove that µ0 ✓ µ⇤.

It is easy to see that µ00 is stable w.r.t. (eLM
0
, eKW

0
). By definition, µ00 is perfect

matching between (M 0,W 0). Therefore, (by Rural Hospital Theorem) every matching

stable w.r.t. (eLM
0
, eKW

0
) must also be perfect. In particular, µ⇤ = GS(eLM

0
, eKW

0
) is

a perfect matching between (M 0,W 0). Next we will prove that µ⇤ is stable w.r.t.

(LM ,KW). Once that is proved, we can deduce that for all m 2M 0, µ00(m) �m µ⇤(m)

in preferences in LM because µ00 is the man-optimal stable matching w.r.t. (LM ,KW).

Additionally, for all m 2M 0, we know that µ⇤(m) �m µ00(m) in preferences in eLM

because µ⇤ is the man-optimal stable matching w.r.t. (eLM , eKW
0
), and µ00 is stable

w.r.t. (eLM
0
, eKW

0
). Together these two conditions imply that µ00(m) = µ⇤(m) for all

m 2M 0; and so µ00 = µ⇤ follows as a result.

Now we will prove that µ⇤ is stable w.r.t. (LM ,KW). Suppose that for the sake

of contradiction, µ⇤ is not stable w.r.t. (LM ,KW), and (mb, wb) denotes a blocking

pair. Then, wb >mb
µ⇤(mb) and mb >wb

µ⇤(wb) in the preference list in LM and KW ,

respectively. By definition, µ⇤ is the man-optimal stable matching w.r.t. (eLM
0
, eKW

0
),

and µ00 is stable w.r.t. (eLM
0
, eKW

0
), thus µ⇤(mb) �mb

µ00(mb) in the preference list in

eLM
0
. Note that mb’s preference lists in eLM

0
is identical to that in LM at least up to

234

the appearance of µ00(mb). Thus, we can conclude that wb >mb
µ⇤(mb) �mb

µ00(mb) in

both LM and eLM
0
. But then µ00(wb) >wb

mb >wb
µ⇤(wb) in the preference list in KW ,

otherwise (mb, wb) is a blocking pair in µ00 w.r.t. (LM ,KW), a contradiction. Since the

preference lists in KW and eKW
0
(by our definition) have the same relative order for the

men in M 0, we can conclude that µ00(wb) >wb
mb >wb

µ⇤(wb) holds for wb’s preference

list eKW
0
, as well. Recall that earlier we had proved that wb >mb

µ⇤(mb) �mb
µ00(mb)

in eLM
0
. But then, (mb, wb) is a blocking pair of µ⇤ w.r.t. (eLM

0
, eKW

0
), a contradiction.

Therefore, we can conclude that µ⇤ is stable w.r.t. (LM ,KW).

As discussed earlier, this completes the proof that µ00 = µ⇤. Therefore we have

shown that µ0 ✓ µ⇤ = GS(eLM
0
, eKW

0
), where µ⇤ is a perfect matching between

(M 0,W 0). Lemma 8.5.1 applied to the instance (eLM
0
, µ0) completes the proof of the

claim.

⇧

By Corollary 8.5.1, Algorithm 8.4.2 on the input (eLM
0
, µ0) will return a set of

preference lists, and a stable extension of µ0 that is a perfect matching between

(M 0,W 0). We denote it by (eLW
0
, µ), and note that µ = GS(eLM

0
, eLW

0
). In the next

claim we show that µ is stable w.r.t. (LM ,LW), where LW is constructed from eLW
0

as described in (the last forall-loop in) Algorithm 8.5.1.

Before we present the proof of the next claim, we wish to emphasize an important

property about the preference lists in eLW
0
and LW that is used in the upcoming proof.

For any w 2 W 0, man µ(w) appears at the front of w’s preference list in eLW
0
. This

is due to the property of Algorithm Q1 in [100], used by our Algorithm 8.4.2 as a

subroutine to compute the necessary preference lists. Considering the construction

of the preference lists in LW (by our algorithm), it holds that for every w 2 W 0, the

same property holds for w’s preference lists in LW . Now we are ready to present the

proof.

235

Claim 4. Matching µ = GS(eLM
0
, eLW

0
) is stable w.r.t. (LM ,LW).

Proof. Suppose that (mb, wb) is a blocking pair of µ w.r.t. (LM ,LW). If wb 2 W 0,

then µ(wb) appears at the first position in wb’s preference list in LW . Therefore, if

wb 2 W 0, then (mb, wb) cannot block µ⇤ w.r.t. (LM ,LW). Suppose that wb 2 W\W 0

and mb 2 M 0, implying that wb is unmatched in µ and wb >mb
µ(mb) in mb’s

preference list in LM . The preference list of mb in eLM
0
is the prefix of the preference

list of mb in LM up to (but not including) the first woman from W\W 0. Therefore,

µ(mb) does not even exist in mb’s preference list in eLM
0
. This contradicts definition

that µ = GS(eLM
0
, eLW

0
). This leaves the case that mb 2M\M 0 and wb 2 W\W 0, yet,

wb is in mb’s preference list in LM and so mb 2 �(wb). This is a contradiction to the

choice of M 0 and W 0, in our algorithm. Hence, we can conclude that (mb, wb) cannot

block µ w.r.t. (LM ,LW). This completes the proof that µ is stable w.r.t. (LM ,LW).

⇧

Thus, we can conclude that Algorithm 8.5.1 on the input (LM , µ0) returns the

output (LW , µ) such that µ = GS(LM ,LW); ()) is proved.

(() Suppose that (LW , µ) is the output of Algorithm 8.5.1. Then there exists

M 0 ◆ V (µ0) \M such that Algorithm 8.4.2 on the input (eLM
0
, µ0) returns (eLW

0
, µ).

Thus, implying that µ0 ✓ µ = GS(eLM
0
, eLW

0
), and µ is also stable w.r.t. (LM ,LW).

We will prove that in fact, µ is the man-optimal stable matching w.r.t. (LM ,LW),

and thereby direction (() will be proved.

Claim 5. Matching µ = GS(LM ,LW)

Proof. Note that V (µ) = M 0 [W 0. Suppose that µ⇤ = GS(LM ,LW) and µ⇤ 6= µ.

Since both µ and µ⇤ are stable w.r.t. (LM ,LW), (by Rural Hospital Theorem) µ⇤

must be a perfect matching between (M 0,W 0), i.e. V (µ⇤) = M 0 [W 0.

Now, since µ 6= µ⇤, there exists m 2 M 0 such that µ(m) 6= µ⇤(m). Since µ⇤

236

is the men-optimal matching, hence µ⇤(m) >m µ(m) in m’s preference list in LM .

Every preference list in eLM
0
is a restriction of the corresponding man’s list in LM

up to the appearance of the first woman in W\W 0. Specifically, this implies that

µ⇤(m) >m µ(m) in eLM
0
as well. But this contradicts the property that µ is the

man-optimal stable matching w.r.t. (eLM
0
, eLW

0
), and so µ(m) >m µ⇤(m) in m’s

preference list in eLM
0
. Thus, we can conclude that µ = µ⇤ = GS(LM ,LW).

⇧

This concludes the proof of the lemma.

⇧

Lemma 8.5.3. Algorithm 8.5.1 solves SEOPMI in 2O(n) time.

Proof. The correctness of Algorithm 8.5.1 is given by Lemma 8.5.2. We invoke the

Algorithm 8.4.2 for each subset of M and W . From Theorem 24, we know that each

invocation of Algorithm 8.4.2 takes 2O(n) time. All other computations can be done

in time O(n2). So in total Algorithm 8.5.1 takes 2O(n) ⇥ 2n ⇥ 2n = 2O(n) time.

⇧

8.6 Concluding thoughts

In this chapter we designed an exact algorithm for Stable Extension of Partial

Matching running in time 2O(n). We complemented this result by showing that

unless ETH fails the running time bound is asymptotically optimal. There are several

problems in the stable matching model that are NP-complete and have been studied

from the perspective of approximation algorithms. However, there is almost no study

about these problems either from the view point of moderately exponential time

237

algorithms or parameterized complexity. The area needs a thorough study in these

algorithmic paradigms and is waiting to be explored.

238

Algorithm 8.5.1: Solves SEOPMI

Input: A set of men and women vertices (M,W), preferences of men LM ,
and a partial matching µ0 between (M,W)

forall w 2 W do
�(w) = {m | m has w in his preference list in LM}

end
forall M 0 ✓M and W 0 ✓ W such that V (µ0) \M ⇢M 0 and
V (µ0) \W ⇢ W 0 do

. Guessing (M 0,W 0) s.t. (eLM
0
, µ0) is an instance of SEOPM, where eLM

0

is an appropriate restriction of LM on (M 0,W 0).

if m 2M\M 0 and w 2 W\W 0 such that m 2 �(w) then
break . Guess the subsets again

end

Let eLM
0 ; and LW ; . Initializing empty sets

forall m 2M 0 do
P (m)
[m’s preference list up to (not including) the first w 2 W\W 0].
eLM

0 eLM
0 [{P (m)} . Lists are restricted to women in W 0.

end

if Algorithm 8.4.2 on input (eLM
0
, µ0) returns (eLW

0
, µ) then

forall w 2 W do
if w 2 W 0 then

P (w) [Preference list of w in eLW
0
], [�(w)\M 0]

end
else

P (w) [�(w) in any arbitrary order]
end
LW LW [{P (w)}

end
end
if µ is stable w.r.t. (LM ,LW) then

return (LW , µ)
end

end
return “No stable extension exists”

239

240

Chapter 9

Tournament Fixing Problem

In the previous chapter we gave an algorithm to manipulate an instance of a Stable

Matching. We continue our exploration in manipulation problems in the realm on

computational social choice. Specifically, we give algorithms for rigging a knockout

tournament.

A knockout tournament is a standard format of competition, consisting of several

rounds. In each round, all players that have not yet been eliminated are paired

up into matches. Losers are eliminated, and winners are raised to the next round,

until only a single winner exists. For an illustrative example, consider Wimbledon

Men’s tennis tournament (having 128 players). In fact, knockout tournament is the

most widely-used format of competition in sports [75, 27, 67]. Apart from sports

and popular culture, knockout tournaments are also prevalent in elimination-based

election and decision making schemes. Specifically, they received notable attention

from the viewpoints of artificial intelligence [151, 155, 147, 146, 145, 9, 96, 97, 135]

as well as economics and operation research [138, 150, 104].

Having a favorite player v? in mind, is there a way to conduct the competition

so that v? wins? To formulate this question formally, note that the execution of a

knockout tournament with a set N of N players is governed by a complete (unordered)

241

binary tree T with n leaves and a mapping ' : N ! leaves(T), called a seeding. In

the first round, every two players mapped to leaves with the same parent compete

against each other, and the winner is mapped to the common parent. The leaves

are then deleted from the tree, and the next round is conducted similarly. The

execution stops when the tree contains a single vertex, mapped to a player who is

declared the winner. The question of making v? a winner is sensible when we have

predictive information about outcomes of matches. Specifically, we assume we have

a tournament D = (V,A) (not to be confused with the competition itself that is also

termed a tournament), which is a digraph where either (u, v) 2 A or (v, u) 2 A for

all u, v 2 V . This encodes predictive information as follows : V = N , and for every

u, v 2 N , we predict that in a match between u and v, u would beat v if and only if

(u, v) 2 A.

Now, our question is formalized as follows.

Input: A tournament D = (V,A), and a vertex v? 2 V .

Parameter: The feedback arc set number k? of D.

Task: Is there a seeding of the n = |V | players such that v? wins the

resulting knockout tournament?

Tournament Fixing Problem (TFP)

The problem of rigging a knockout tournament was introduced by Vu et al. [151].

This work led to a flurry of research of structural properties of D that guarantee that

v? wins [96, 97, 147, 146, 145, 9, 96, 155]. Additional information can be found in

surveys such as [156]. The question of whether TFP is NP-hard was posed in several

works, including [151, 155, 140, 146, 147, 145, 103]. It was finally resolved in the

a�rmative by Aziz et al. [9], showing that it can be solved in time O(2.83n). Later,

Kim and Williams [97] gave an O(2n) time and space algorithm. Even for a small

number of players, such a running time is prohibitive. Moreover, approximation of

242

TFP does not make sense.

In light of the discussion above, a most natural framework to study TFP is

parameterized complexity. Specifically, Aziz et al. [9] considered the feedback arc

set number of D as the parameter k?. This parameter has a natural interpretation.

It is likely that in real world scenarios, there is an approximate ranking of players’

strengths (e.g., Wimbledon), so that a player of a certain rank is expected to

beat players of a lower rank. The number of matches where we guess (before the

competition begins) that a player of a certain rank will beat a player of higher rank,

which upper bounds k?, is significantly smaller than n.

Aziz et al. [9] showed that TFP is XP, which means solvability in time nf(k?) for

some function f of k?. They gave a clever dynamic programming algorithm that

runs in time nO(k?). Assuming that k? is not fixed (i.e., independent of n), such a

running time is again prohibitive. The question of whether TFP is fixed-parameter

tractable with respect to k?, that is, solvable in time f(k?)nO(1) for some function

f , was later resolved by Ramanujan and Szeider [135]. They showed that TFP is

solvable in time 2O(k?2 log k?)nO(1). This means that whenever k?2 log k? = O(log n),

TFP is solvable in polynomial time.

In addition, TFP received significant attention from a structural point of view—

an array of works exhibited structural properties of D that guarantee that v? wins [96,

97, 147, 146, 155]. Let us review some of the results that are closer to our study

(with emphasis on non-probabilistic structural statements), and refer the reader to

the survey [156] for more information. Vassilevska Williams [155] studied the case

where v? is a king (resp. super king), that is, every player is either beaten by v? or

beaten by a player that is beaten by v? (resp. log n players that are beaten by v?).

In particular, she showed that for a king v? that beats at least half the players, there

always exists a fixing that makes v? the winner, while for a king v? that beats less

than half the players, there might not exist a fixing that makes v? the winner. In

243

addition, she showed that if v? is a super king, then there exists a fixing that makes

v? win.

Later, Stanton andWilliams [146] strengthened the work by Vassilevska Williams [155]

with respect to her results for a probabilistic model, and by extending her condi-

tion that ensures that a king can always win. In a di↵erent work, Stanton and

Williams [147] exhibited su�cient and necessary conditions that ensure that for any

player v? among the K players that have the largest out-degrees in D (for certain

choices of K), there exists a fixing that makes v? the winner. More recently, Kim

and Williams [97] proved that TFP is NP-hard even if v? is a king that beats n/4

players, or if v? is a so called 3-king (that is not as strong as a king) that beats half

the players. They also provided a su�cient condition to ensure that a 3-king can win

the tournament. Later, Kim et al. [96] further extended and generalized previous

structural results, including the study of the power of 3-kings. We remark that a

certain argument in one of our proofs may be viewed in the terms of a king (see

Section 9.6), but apart from this curiosity, the notions we introduce are incomparable

to those of kings and of the K best players by [147] (see Section 9.5).

In addition, several studies present empirical results. For example, Mattei and

Walsh [120] showed that although TFP is NP-hard, real world soccer and tennis

instances (English Premier League, the German Bundesliga, and the ATP World

Tour) are easily solvable. Indeed, real world instances are generally structured,

hinting at the relevance of appropriate parameterizations to capture these structures.

Another empirical study on TFP was conducted by Russell and Beek [140], which

focused on restrictions on the space of possible seedings. Here, the motivation is that

real cup competitions often place restrictions to ensure fairness and wide geographic

interest, which make the problem harder to solve in practice.

Kim and Williams [97] introduced a more general question, called Bribery TF

(BTF). Given N , D, v? 2 N and ` 2 N[{0}, BTF asks if it is possible to reverse at

244

1v 2v 3v 4v 5v 6v 7v 8v 9v 01v 11v 21v 31v 41v 51v 61v 71v 81v 91v 02v 12v 22v 32v
Type 0 Type 1 Type 2 Type 4 Type 5 Type 6

Figure 9.1: Partition of V (D) \ V (K) into types. The arcs in K and the vertices in
V (K) are colored red. For all vi, vj with i < j such that (vj, vi) /2 K, we suppose
that (vi, vj) 2 A(D) (not displayed).

most ` arcs in D (that is, change the outcome of at most ` matches) so that afterwards

there is a way to fix the tournament that makes v? wins. TFP is the special case

of BTF where ` = 0, which implies that BTF is NP-hard. Kim and Williams [97]

proved that for any fixed ✏ > 0, BTF is NP-hard even if ` < (1� ✏) log2 n. On the

other hand, they observed that if ` � log2 n, then the input is a Yes-instance. The

problem is formally defined as follows.

Input: A tournament D = (V,A), a vertex v? 2 V , and ` 2 N [{0}.

Parameter: The feedback arc set number k? of D.

Task: Is it possible to reverse at most ` arcs in D so that afterwards there

is a seeding of the n = |V | players such that v? wins the resulting

knockout tournament?

Bribery TF(BTF)

Prior to [97], bribery has already been studied with respect to tournaments

whose seeding is fixed in advance. The computational complexity of this problem

is significantly simpler than that of TFP. In particular, Russell and Walsh [141]

showed that this problem is solvable in polynomial time. In fact, this result was

proved in a more general setting where we have a coalition (a set of players) such that

all manipulations must involve a lose of one of its members. Additionally, Mattei et

al. [119] showed that even in a probabilistic model, where we want to make v? have

a nonzero probability of winning, the problem is still solvable in polynomial time.

245

9.1 Our Contribution

The main component of the algorithm by Ramanujan and Szeider [135] is the

translation of TFP into an algebraic system of equations, solved in a black box

fashion by an ILP solver. In particular, the algorithm (and not just the proof of

correctness) by Ramanujan and Szeider [135] is thus both complicated and not

self-contained. We present a fresh greedy solution whose correctness relies on new

insights into TFP itself. The advantages of our algorithm are as follows.

First, our algorithm is purely combinatorial (unlike the algebraic algorithm of

[135]). While the analysis of our algorithm is intricate, the algorithm itself is simple

and easily implementable. Essentially, after we “guess” a template tree (similarly

to [135]), our algorithm merely iterates over the paths and subtrees that are not

already determined by the guess, and fills them up in a greedy manner. We find

it both surprising and pleasing that such a strategy just works. From our proof of

correctness, the reasons for the validity of this strategy are revealed, but at first

glance, we do not find them apparent.

Second, our solution is completely self-contained. We do not invoke any black-box

([135] invokes a big hammer, i.e., an ILP solver).

Third, our algorithm is substantially faster than that of [135]. Specifically, our

running time bound is 2O(k? log k?)nO(1) rather than 2O(k?2 log k?)nO(1). The di↵erence is

clear already for values as small as k? = 8, where 2k
? log2 k

?
= 224 while 2k

?2 log2 k
?
= 2192.

Even for k? = 4, 2k
?2 log2 k

?
= 232 >> 224. Thus, it is very plausible that our

improvement constitutes the di↵erence between being practically infeasible and

feasible for social choice applications, where n typically ranges between a few tens to

a few hundreds, if k? is presumed to be, say, 5% of n. In a di↵erent view, our result

also proves that whenever k? log k? = O(log n), TFP is solvable in polynomial time.

Our contribution in the study of BTF is fourfold. First, we present two

246

“obfuscation operations”, whose input is a solution, i.e. a set of at most ` arcs to

reverse and a fixing of the tournament (with these arcs reversed). If the operation

is applicable, it returns (in polynomial time) a di↵erent solution. These operations

are relevant when: (i) the deceit in the current solution is too conspicuous; (ii)

the current solution could not be realized (e.g., some player refused to be bribed).

Moreover, we use these two operations as building blocks in our proofs.

Secondly, we present a combinatorial result, which states that there always exists

a solution with all reversals incident to v? and “elite players”. Roughly speaking,

given a feedback arc set K of D with k = |V (K)|, we partition V (D) \ V (K) into

k + 1 modules. Each of these modules induces a DAG, and an elite club roughly

refers to a set of players of “highest rank” in the topological order of each of these

DAGs (the formal definition is more general and robust, see Definition 9.5.1). Our

definition of an elite club in incomparable to the notions discussed earlier (see the

explanation in Section 9.5).

Third, we give a closed formula (based on our combinatorial result) that resolves

the special case of BTF where D is a DAG. More precisely, the formula is satisfied

if and only if the input instance of BTF is a Yes-instance. The formula can be

verified in polynomial time. Moreover, its proof is constructive (the satisfaction of

the formula indicates that a certain candidate to be a solution is indeed a solution).

In addition, we generalize our formula to characterize all Yes-instances also for the

general case. Of course, the general characterization cannot be verified in polynomial

time.

Finally, we present exact algorithms for the general case of BTF. (Recall that

in its full generality, BTF is NP-hard.) Specifically, we develop an algorithm that

runs in time 2nnO(1) and has a polynomial space complexity (which improves upon

the algorithm by Kim and Williams [97] in the special case of TF), as well as a

parameterized algorithm that runs in time 2O(k? log k?)nO(1), where k? is the feedback

247

Figure 9.2: Binomial arborescences of sizes 20, 21, 22 and 23.

arc set number of D. The latter algorithm implies that BTF is FPT parameterized

by k? alone.

9.2 Preliminaries

Given a tournament D, let V (D) and A(D) denote its vertex set and arc set,

respectively. For a pair of vertices u, v, by (u, v) we denote an arc from u to v, and

say that u is an in-neighbor of v and v is an out-neighbor of u. A uv-path is a path

from u to v. Given X ✓ V (D), by D[X] we denote the subtournament of D induced

by X and N(X) is the set of neighbors of the vertices in X outside X. For a rooted

tree T and a vertex v 2 V (T), by Tv we denote the subtree of T rooted at v. An

arborescence is a rooted directed tree such that all arcs are directed away from the

root.

We now discuss the notion of a binomial arborescence and its relevance to our

work (see Fig. 9.2.).

Definition 9.2.1. An unlabeled binomial arborescence (usba) T rooted at v 2 V (T)

is defined recursively as follows:

• A single node v is a binomial arborescence rooted at v.

• Given two vertex disjoint binomial arborescences of equal size, Tv rooted at v

and Tu rooted at u, adding an arc from v to u results in a binomial arborescence

T rooted at v.

Let D be a directed graph. If T is a subgraph of D with V (T) = V (D), then T is a

248

labeled spanning binomial arborescence (sba) of D.

Given an integer n = 2j , there exists a unique usba, denoted by Bn, on n vertices.

For our purpose, we fix a labelling of the vertices of Bn from [n], that is, a function

� : V (Bn) ! [n]. Whenever we refer to an usba on n vertices, we always mean

Bn, where the vertices are labeled by �. Our interest in sba is due to the following

connection between sba and finding a seeding of the vertices in D that results in a

specific vertex being the winner.

Proposition 9.2.1 ([155]). Let D be a tournament with v? 2 V (D). There is a

seeding of the vertices in D such that the resulting knockout tournament is won by

v? if and only if D has a sba rooted at v?.

Proposition 9.2.1 reduces TFP to the problem of finding a sba rooted at v?.

BTF is equivalent to the following question: Is there R ✓ A(D) of size at most `

such that DR has a spanning binomial arborescence rooted at v?? Unless written

otherwise, we take this point of view. In this context, the following lemma will be

useful.

Lemma 9.2.1. Let D be a tournament, X ✓ V (D) such that D[X] is acyclic, and T

be arborescence on |X| vertices. Then, D[X] contains (as a subgraph) an arborescence

isomorphic to T that can be computed in polynomial time.

Proof. Observe that since D[X] is acyclic tournament, there is an unique topological

ordering � on X. The first vertex v in � beats every other vertex in X. The second

vertex in � beats every other vertex other than v, and so on. We can construct an

arborescence isomorphic to T in top down fashion. Assign the first vertex v in � as

the root of T , and delete v from �. We recursively continue the process for each

child of v in T . For the correctness of the first step, note that since v beats every

vertex in �, v beats the vertices that are assigned as it’s children in the following

249

step. This invariant is maintained in each step of the assignment. Hence, we produce

an arborescence isomorphic to T . ⇧

Next, we give some simple properties of sba.

Observation 9.2.1 ([135]). Let T be a binomial arborescence on n � 2 vertices.

Then, for every vertex v 2 V (T), it holds that Tv is a spanning binomial arborescence

of D[V (Tv)] and in particular |V (Tv)| is a power of 2.

Let B be an sba on n vertices. Then, the height of B (the maximum length of a

path from root to leaf) is log n.

Moreover, the root of T has exactly log n children, v1, v2, . . . , vlogn, with |V (Tvi)| =

2i�1 for all i 2 {1, 2, . . . , log n}.

9.3 Greedy Algorithm for TFP

As stated earlier, due to Proposition 9.2.1, we study the following equivalent question:

Does there exist an sba rooted at v? in D? We start by computing a minimum sized

feedback arc set, F , of D. It is well known that a tournament has a directed cycle if

and only if it has a directed triangle. Furthermore, a subset F of A(D) is a minimal

feedback arc set if and only if the tournament Drev obtained after reversing the arcs

in F is acyclic. Using these two facts, one can design a trivial branching algorithm

for finding F running in time 3k
?
nO(1). That is, while there exists a triangle in the

given tournament, find one and recursively try to find a smaller sized solution by

reversing an arc of the triangle. See [29] for further details. In fact one can find a

minimum sized feedback arc set, F , of D in time 2O(
p
k?)nO(1) [47, 93]. From now

onwards, we assume that we have a feedback arc set F at hand.

Let � be the topological ordering of D after reversing the arcs in the feedback

arc set F . Throughout the chapter, we always work with the topological ordering �.

250

15v

2v

3v

17v

14v

12v

4v

10v

v*

8v 7v

13v

9v

1v

5v

11v

16v

6v

B

15v

2v 3v

17v 12v 4v

10v

v*

15v 17v 12v 4v

10v

v*

Figure 9.3: The topology T4 of {v⇤, v4, v10, v12, v15, v17} in B (left), and the template
T ? (right). LCA-vertices are colored blue.

If a vertex v precedes u in �, then we write v �� u. Given V 0 ✓ V (D), the highest

vertex in V 0 is the vertex that precedes all other vertices of V 0 in the ordering �.

Furthermore, for any arc (u, v), we say that u beats v (equivalently, v is beaten by u).

We now give a few basic definitions central to our algorithm.

Definition 9.3.1. (LCA closure) For a rooted tree T and a vertex subset M ✓

V (T), the least common ancestor-closure (LCA-closure) LCA(M) is obtained by the

following process. Initially, set M 0 = M . Then, as long as there are vertices x and y

in M 0 whose least common ancestor w in T is not in M 0, add w to M 0. When the

process terminates, output M 0 as the LCA-closure of M .

The following folklore lemma (see, e.g., [29]) summarizes two basic properties of

LCA closures.

Lemma 9.3.1. Let T be a rooted tree, M ✓ V (T) and M 0 = LCA(M). Then

|M 0|  2|M | and for every connected component C of T \M 0, |N(C)|  2.

Our algorithm will “guess” some information about a solution (if one exists), and

then greedily complete the parts unknown. To discuss these guesses (Phase 1), we

require the following definition (see Fig. 9.3).

251

Definition 9.3.2. (Topology and Template) Let B be an sba rooted at v? and

let X ✓ V (B). We construct a tree T4 from B as follows. First delete all vertices

that do not lie on any v?u-path in B for any u 2 LCA(X). Now, as long as there

is a vertex u 2 V (B) \ LCA(X) with exactly one in-neighbor u� and exactly one

out-neighbor u+, delete the vertex u and add the arc (u�, u+). Then T4 is a tree

obtained at the end of this process, it is called the topology of X in B. The template

tree of X in B is a tree obtained from T4 by deleting the labels of all vertices in

LCA(X) \X. A tree T ? is a template of X if it is a template of X in at least one

sba B rooted at v?.

Before going further, we recall some notation.

Let F denote the feedback arc set and VF denote the set of vertices that are adjacent

to arcs in F . We denote k = |VF |. Observe that k  2k?. Furthermore, � denote

the topological ordering of D after reversing the arcs in F .

For the phases where we complete missing information, the following definition

will be crucial.

Definition 9.3.3. (Fas-vertex, Fas-parent and Fas-child) Let T ? be a template

of VF [{v?}. Vertices in VF [{v?} are called fas-vertex. Let v 2 V (D). The

fas-parent of v is the last fas-vertex w not equal to v on the v?v-path in T ?. An

fas-child of v is an fas-vertex w, that is the first fas-vertex not equal to v on the vw

path in T ?. The set of fas-children of v in T ? is denoted by faschild(v).

As a first step, our algorithm would need to enumerate all templates of VF [{v?}.

Due to Lemma 9.3.1, a template of VF [{v?} in any sba is a rooted tree T on at

most 2k + 1 vertices with some of its vertices labeled with the vertices in VF [{v?}

and the others unlabeled, beings placeholder for LCA vertices. We can therefore

enumerate a superset of templates by enumerating every rooted tree on at most 2k+1

vertices with a surjective mapping of some of its vertices to vertices in VF [{v?}

252

such that the root is mapped to v?, and all the leaves are mapped as well (to vertices

in VF [{v?}):

Observation 9.3.1. A superset of the set of templates of VF [{v?} of size kO(k)

can be enumerated in time kO(k).

Intuition. Our algorithm proceeds in four steps. First, we guess a partial structure

of the sba. Second, we verify that the guesses made in the previous step are

“realizable”. These two steps are straightforward, and are also present in a similar

form in [135]. Then, we turn to the heart of our algorithm. Here, we design a

“greedy” procedure to complete the partial sba in two steps. The first fills up paths

corresponding to edges of the template at hand. Roughly speaking, here we always

select a yet “unhandled” fas-vertex v that is highest in V (D) with respect to �. Then,

we greedily fill the path between v and its fas-parent using the highest “available”

vertices that are “between” v and its fas-parent (i.e., beat v and beaten by the

parent). This is a slight simplification since when we look at the path between v

and its fas-parent, a part of it (closer to the parent) is already filled. However, by

considering lca vertices this technicality is easily handled. The second phase fills-up

the subtrees hanging from the paths we have just filled. Roughly speaking, while

we still have an unfilled subtree, we pick one that hangs from a vertex v that is

highest. We greedily fill the subtree with “available” vertices that are the highest

ones beaten by v. If the greedy procedure ever gets stuck, we move to the next

partial sba. While the procedure itself is very simple, correctness is surprising, and

indeed the proof is quite intricate.

9.3.1 Phase I: Guessing

We first intuitively explain what we intend to achieve by guessing. Suppose I =

(D, v?, k) is a Yes-instance of TFP. Then, there exists an sba B rooted at v?. We

253

first guess the template T ? of VF [{v?} in B. Given T ?, for each arc (u, v), we guess

a length, denoted by len(u, v), that is the number of internal vertices on the unique

uv-path in B. Then, for each vertex v 2 VF , we guess the size of the subtree rooted

at v in B, denoted by siz(v). Due to Observation 9.2.1, len(u, v) 2 {0, · · · , log n}

and siz(v) 2 {20, 21, · · · , 2logn}. Formally, in this phase we guess the following.

1. Using Proposition 9.3.1, we iterate over all templates of VF [{v?}. Let T ?

denote one such template.

2. For each arc (u, v) in A(T ?), guess an integer in {0, · · · , log n}. Formally, we

enumerate over all possible “length functions” len : A(T ?) ! {0, · · · , log n}.

3. Next, we guess the “size function”. That is, we enumerate all possible functions

siz : VF ! {20, · · · , 2logn}.

Definition 9.3.4. An sba B complies with (T ?, len, siz) if (i) the template of VF[{v?}

in B is T ?, (ii) for each arc (u, v) 2 A(T4) where T4 is the topology of VF [{v?}

in B,the number of internal vertices on the unique uv-path in B is len(u, v), and (iii)

for every v 2 VF [{v?}, the size of the subtree rooted at v in B is siz(v).

As we do exhaustive guessing, the following is immediate.

Lemma 9.3.2. If (D, v?, k) is a Yes-instance of TFP, there exists an sba B that

complies with some tuple (T ?, len, siz) we enumerate.

9.3.2 Phase II: Verification of Guesses

In this section, we give an algorithm to check whether a guessed tuple (T ?, len, siz)

is “realizable”. We first define the verification operations we perform on a tuple

(T ?, len, siz).

254

Definition 9.3.5 (Realizability). A tuple (T ?, len, siz) is realizable if there is a

usba B on n vertices with an injective function � : V (T ?) ! [n] satisfying the

properties below.1

1. v? is the root of B, that is, � maps v? to the root of B.

2. T ? is the template of VF [{v?} in B.

3. For each (u, v) 2 A(T ?), len(uv) is equal to the number of internal vertices on

the uv-path in B.

4. For each v 2 VF [{v?}, siz(v) is equal to the size of the subtree rooted at v in

B.

We say that (T ?, len, siz) is realizable by the pair (B,�).

To check whether a tuple (T ?, len, siz) is realizable by at least one pair (B,�),

we give a dynamic programming (DP) algorithm. Let B be a usba on n vertices.

For a vertex u 2 V (T ?), let `(u) denote the number of children of u in T ?, and let

x(1, u), . . . , x(`(u), u) denote the children themselves. Here, we refer to x(i, u) as

the ith child of u. Furthermore, by T ?

u,x(i,u) we denote the subtree of Tu from which

we have deleted all the subtrees rooted at x(i+ 1, u), . . . , x(`(u), u). Whenever it is

clear from the context, we use xi to denote x(i, u). We define x0 = nil, and T ?

u,nil to

be the subtree of Tu with a single vertex, u. For a vertex v 2 V (B), by Cv we denote

the set of children of v. For a vertex v 2 V (B) and C ✓ Cv, by Bv,C we denote

the subtree of Bv rooted at v from which we have deleted all the subtrees rooted at

vertices in Cv \ C.

We use a multi-dimensional arrayM with an entryM [u, v, xi, C] for all u 2 V (T ?),

v 2 V (B) = [n], xi that is either x0 = nil or the ith child of u, and C ✓ Cv.

The entry M [u, v, xi, C] is assigned 1 if and only if T ?

u,xi
is realizable by Bv,C . In

1 Here, we abuse notation: if a vertex v in T ? is mapped (by �) to some vertex i 2 [n] in B, we
refer to i as v.

255

particular, note that (T ?, len, siz) is realizable by some pair (B,�) if and only if

M [v?, r, x(`(v?), v?), Cr] is 1. Here, r is the root of B.

Lemma 9.3.3. There is a polynomial-time algorithm that checks whether a given

tuple (T ?, len, siz) is realizable by at least one pair (B,�), and if the answer is positive,

outputs such a pair.

Proof. As we discussed above, it su�ces to show that M can be filled-up correctly

in polynomial time. To derive a pair (B,�) as required (if the answer is positive),

simply use standard backtracking on the computation that follows. The number

of choices of u, v, xi is clearly polynomial in n. Here, the crucial point is that by

Observation 9.2.1, the number of choices for C is at most 2logn = n. Thus, the size

of the array is polynomial in n, and it remains to show how to compute each of its

entries in polynomial time. As the following approach is quite standard, we only

briefly sketch the computation itself. The entries are filled up in post-order traversal

of T ?. Furthermore, when we consider an entry corresponding to a vertex u 2 V (T ?),

we first fill all entries corresponding to M [u, ?1, x1, ?2], then M [u, ?1, x2, ?2] and so

on. Here, ?1 corresponds to a vertex in V (T ?) and ?2 corresponds to a subset of C?1 .

For a rooted tree T and two vertices a, b 2 V (T), by distT (a, b) we denote the

number of internal vertices on the ab-path in T . For example if (a, b) 2 A(T) then

dist(a, b) = 0.

In the base case, where xi = nil (that is, i = 0), M [u, v, x0, C] is set to 1 if and

only if the size of the subtree Bv,C is siz(u). Observe that, here we are mapping u

to v and since u is a leaf of T ?, the only way T ?

u,x0
can be realized by Bv,C , if the

number of vertices in the subtree Bv,C is siz(u).

In the recursive step, we apply the first step that is applicable:

M [u, v, xi, C] is set to 0 if u is a fvs-vertex and |V (Bv,C)| is not equal to siz(v). The

256

correctness of this step is evident.

M [u, v, xi, C] =
_

c2C
w2V (Bv,C)

distBv,C
(v,w)=len(u,xi)

M [u, v, xi�1, C \ {c}]

^
M [u, v, x(`(xi), xi), Cw]

The idea of this recursive formula is the following: T ?

u,xi
is realizable by Bv,C if and

only if there exists a child c 2 C and a vertex w 2 Bc such that T ?

u,xi�1
is realizable

by Bv,C\{c}, T ?

xi,x(`(xi),xi)
is realizable by Bw,Cw and the distBv,C (v, w) = len(u, xi). In

this recursive step we implement this idea. When we are processing the vertex u and

its ith child, xi, we have already processed the first i� 1 child of u. We also know

that either u is not a fvs-vertex or |V (Bv,C)| = siz(v). In this case, idea is that we

map u to v and want to test whether T ?

u,xi
is realizable by Bv,C . In order to do this

we need to find the place where xi can be mapped to. Towards this, we first guess

in which subtree of Bv,C , rooted at a vertex in C, does xi is mapped to. Note that

every child of u is mapped in a di↵erent subtree of Bv,C , rooted at a vertex in C.

Next, we guess on which vertex of V (Bv,C) does xi is mapped to. Finally, we check

whether distBv,C (v, w) = len(u, xi). That is, whether the number of internal vertices

on the vw-path is equal to the integer given by len(u, xi). we check whether T ?

u,xi
. ⇧

9.3.3 Phase III: Greedy Choice for Path Resolution

Given a tuple (T ?, len, siz), we use a greedy strategy to construct an sba B such

that (T ?, len, siz) is realizable by B (if one exists). As a preprocessing step, for every

arc (u, v) 2 A(T ?) with u, v 2 VF [{v?} and len(u, v) = 0, we check that indeed

(u, v) 2 A(D). If this is not the case, then we conclude that there is no sba that

complies with (T ?, len, siz).

Now, recall that our greedy algorithm proceeds in two steps. First, we substitute

257

PathGreedy:

1. Let v be the highest unresolved fas-vertex in T ? and w be its fas-parent.

2. Consider the wv-path (Pwv) in T (not in T ?). Note that in each step we
always resolve all the arcs of a path simultaneously. So the set of unresolved
arcs on the path Pwv form a subpath of Pwv that ends at v. Let x be the first
vertex on the path Pwv such that the no arc on the unique xv-path (Pxv) in
T is resolved.

3. Let H be the set of available vertices between x and v in the ordering �. If
|H| � ⌘ =

P
(a,b)2A(Pxv)

(len(ab) + 1)� 1, then let H 0 denote the subset of H
consisting of highest ⌘ vertices in it. Then, we replace the path Pxv by the
path P 0

xv
, which consists of vertices in H 0: in the path P 0

xv
, the vertices in H 0

are ordered from highest to lowest rank.

4. If |H| < ⌘, return that there is no sba that complies with (T ?, len, siz).

each arc (v, u) in T ? by a path, which brings us closer to uncovering some sba B.

In this section, we only consider the procedure to fill-up these paths. Specifically,

given the template T ?, we will construct a tree T that is a template of a superset of

VF [{v?}. In particular, it will be a template of V (T) itself.

The tree we construct in the process is referred to as T . Initially, T = T ?. For

an arc (u, v) 2 A(T ?), we call (u, v) resolved if it has been replaced by a path in T

that has len(uv) internal vertices. An fas-vertex v is called resolved if either it is the

root (v?) or all the arcs on the path from its fas-parent, w, to v are resolved. We

call a vertex v 2 V (D) \ VF available if v 2 V \ V (T). That is, as vertices are added

to T to fill the paths corresponding to arcs in V (T ?), they become unavailable. A

vertex is the highest available vertex in X ✓ V (D) if it precedes all other available

vertices in X according to �.

With this notation, we repeat procedure PathGreedy until all arcs are resolved.

Note that in one step (that is, one execution of the procedure), several arcs of A(T ?)

can be resolved.

Let T i denote the tree T that we had at hand immediately after we resolved

the ith vertex. The root is automatically resolved, and hence T 1 = T ?. Note that

258

T k+1 = T . We say that PathGreedy fails in step i, if it concludes in ith step (step

in which it resolves the ith vertex) that no sba complies with (T ?, len, siz), and else

we say that it succeeds in ith step. We say that PathGreedy fails if it concludes that

no sba complies with (T ?, len, siz) in some step, and else we say that it succeeds. To

argue about the correctness of our greedy choices, we need to extend Definition 9.3.4.

Definition 9.3.6. An sba B complies with T i if it complies with (T ?, len, siz) and

the template of V (T i) \ V (D) in B is T i.

The main components of proof are Lemmata 9.3.4 and 9.3.5.

Lemma 9.3.4. Suppose that PathGreedy succeeds up to step i for some i 2 [k]. Let

B be an sba that complies with T i. Then, PathGreedy succeeds at step i+ 1.

Proof. Let v be the highest unresolved fas-vertex in T ? that we consider in step

i + 1 and let w be its fas-parent. Furthermore, let x be the first vertex on the

path Pwv in T i (= T) such that the no arc on the unique xv-path (Pxv) in T i is

resolved. In order to prove the lemma we need to show that when PathGreedy

resolves v in step i + 1 then there is su�cient number of available vertices. In

particular, let H be the set of available vertices between x and v in the ordering �.

Let ⌘ =
P

(a,b)2A(Pxv)
(len(ab) + 1)� 1. Then we need to show that there is at least ⌘

available vertices between x and v.

By the premise of the lemma, we know that B is an sba that complies with

T i. Thus, it complies with (T ?, len, siz) and the template of V (T i) \ V (D) in B is

T i. Since, it complies with (T ?, len, siz) we have that for each arc (u, v) 2 A(T4),

the number of internal vertices on the unique uv-path in B is len(u, v). For every

arc (a, b) on the path Pxv, we have the corresponding arc (a4, b4) in A(T4) such

that the number of internal vertices on the unique uv-path in B is len(u, v). Since

the template of V (T i) \ V (D) in B is T i, we have that for any two arcs (a1, b1)

and (a2, b2) in A(Pxv), the corresponding a41 b
4
1 -path in B and a42 b

4
2 -path in B are

259

internally pairwise vertex disjoint. Let Pxv = x ! v1 ! · · · ! v⌘ ! v. Then

consider the path in B corresponding to arcs on P4
xv

= x ! v41 ! · · · ! v4
⌘

! v.

Observe that, in B, we can concatenate the paths corresponding to each arc on P4
xv

and obtain a xv-path in B that has
P

(a,b)2A(Pxv)
(len(ab) + 1)� 1 number of internal

vertices. Since B complies with T i we have that each vertex on xv-path in B is

available. Furthermore, since there is no internal fas-vertex on the path Pxv we have

that there is no fas-vertex on xv-path in B. Thus, every vertex on xv-path in B

is between x and v with respect to �. Thus, since every vertex on xv-path in B is

available, we have that there is at least ⌘ available vertices between x and v when

PathGreedy performs step i+ 1. This concludes the proof. ⇧

For the sake of clarity, before we present Lemma 9.3.5, we define a procedure

used only for analysis. Suppose that PathGreedy succeeds up to step i + 1. Here,

suppose we have some sba B that complies with T i for some i 2 [k]. As PathGreedy

succeeds at step i+ 1, T i+1 is well defined. Let v, x,H 0, Pxv and P 0
xv

be as defined in

step i+ 1 of PathGreedy. Now, supposing that B does not comply with T i+1, there

exists a vertex p on the unique xv-path in B that does not belong to H 0, and a vertex

q 2 H 0 that does not belong to the unique xv-path in B. Since the length of these

paths are same we have that the only way the last assertion can be violated if both

these paths use the same set of vertices but in di↵erent order. However, this is not

possible since D[H 0] is a transitive tournament and thus there is a unique directed

path spanning all the vertices in H 0. Having these (hypothetical) elements at hand,

we consider procedure PathAnalysis.

Lemma 9.3.5. Assume PathGreedy succeeds up to step i+ 1, and let B, v, x, H 0,

Pxv, P 0
xv
, p and q be defined as in the procedure PathAnalysis. If B does not

comply with T i+1, then if these elements are the input to PathAnalysis, it returns B?

that is an sba with the following properties: (i) it complies with T i; (ii) the number

of vertices on the unique xv-path in B? from H 0 is larger by 1 than the number of

260

PathAnalysis:

1. Let Q = x ! u1 ! · · · ! u⌘ ! v be the unique xv-path in B. (This is well
defined as B complies with T i.)

2. For all i 2 [⌘], let u0
i
be the ith highest vertex in ({u1, . . . , u⌘} \ {p}) [{q}

according to �.

3. For all i 2 [⌘], put u0
i
in place of ui in B, and put p in (the original) place of

q in B. Denote the result by B0.

4. As long as p has a child r0 in B0 such that (r0, p) 2 A(D), let r be the highest
such child according to �, and swap p and r. Denote the result by B?.

5. Return B?.

vertices on the unique xv-path in B from H 0.

Proof. Let Q = x ! u1 ! · · · ! u⌘ ! v be the unique xv-path in B and let Q0

denote the unique xv-path in B0 that we obtained in the third step of the procedure

PathAnalysis. An arc (u, v) of B or B? is called a bad arc, if u is a child of v (that is,

if we forget the direction then v is more closer to the root than u). Observe that if

we orient all the arcs in B? away from v? then it is a sba. Thus, the only reason B?

is not an sba is because there exist a bad arc. Through several claims we first show

that there is no bad arc in B?. By our choice of H 0 the next claim follows.

Claim 9.3.1. q is higher than p in �.

Another simple claim is the following.

Claim 9.3.2. Let a be a non fas-vertex. Then a beats b if and only if a is higher

than b in �.

In the next five claims we prove some invariants of the algorithm that will finally

help us prove the lemma.

Claim 9.3.3. In B0 the only bad arcs that are possible are between p and some of

its children.

Proof. An arc that could become a bad arc in B0 is of following types: (a) an arc

261

on the path Q0; (b) an arc between a vertex u0
i
on Q0 and its child wj; (c) an arc

between the parent of p and p and (d) an arc between p and some of its children. We

show that the first three types of bad arcs can not exist. Observe that all the vertices

in H 0 as well as on the path Q lies between x and v on �. Furthermore, between

x and w there are no fas-vertex and hence D[H 0 [V [Q] is a transitive tournament.

The path Q0 is obtained from ({u1, . . . , u⌘} \ {p}) [{q} by following the ordering

given by � on D[H 0 [V [Q] and thus there is no bad arc on Q0. For the second type,

observe that there is an arc from ui to wj, since B is an sba. Furthermore, since ui

is not a fas-vertex we have that wj is lower than ui. However, u0
i
is higher than ui

and u0
i
is not a fas-vertex and thus there is an arc (u0

i
, wj). This implies that there is

no bad arc of second type. For the non-existence of bad arc of third type, we argue

as follows. By Claim 9.3.1, we know that q is higher than p in �. Furthermore, since

q is not a fas-vertex we have that parent of q in B is higher than q in �. However,

the parent of q in B is same as the parent of p in B0 and thus it beats p. This proves

that the there is no-bad arc of third type. This proves the claim. ⇧

Claim 9.3.4. Let faschildB(q) be the set of fas-children of q in B. Then no vertex

in faschild(p) is resolved upto step i+ 1.

Proof. Let w0 be the fas-parent of q in B. Assume that there is a vertex v0 in

faschild(q) that has been resolved earlier. Then this implies that the path resolving

w0v0-path in T j for some j  i is present in T i. However, since B complies with T i

we have that this path is also present in B. But the w0v0-path in B contains q. This

implies that q 2 V (T i). But, we know that the vertices in H 0 are available at step

i+ 1. Since, q 2 H 0 we have that q /2 V (T i). This contradicts the existence of v0 in

faschild(q) that has been resolved earlier. This concludes the proof. ⇧

Claim 9.3.5. Let faschildB0(p) be the set of fas-children of p in B0. Then, p beats

all of them.

262

Proof. By Claim 9.3.4 we know that no vertex in faschild(q) is resolved until step

i+1. Since, faschildB0(p) is same as faschildB(q) we know that no vertex in faschild(p)

is resolved until step i+ 1. However, in step i+ 1 PathGreedy chooses v to resolve

and thus, we know that every vertex in faschild(p) is lower than v. However, p beats

v and thus p is higher than v. Now since p is a non-fas vertex by Claim 9.3.2, we

have that p beats every vertex in faschild(p). ⇧

Claim 9.3.6. During the entire procedure of PathAnalysis, p is neither swapped with

an fas-vertex, nor any other vertex in V (T i) \ V (D).

Proof. Look at the step 4 of the procedure PathAnalysis. In this step as long as

p has a child r0 in B0 such that (r0, p) 2 A(D), let r be the highest such child

according to �, and swap p and r. By, Claim 9.3.5 we know that p beats all vertices

in faschildB0(p) and thus it will never swap with any vertex in faschildB0(p). Since,

before encountering any other fas-vertex, p will encounter a vertex in faschildB0(p)

we have that p is never swapped with an fas-vertex. The proof that p is not swapped

with any vertex in V (T i) \ V (D) follows by the execution of PathGreedy. That is,

the way PathGreedy resolves vertices. This concludes the proof. ⇧

Recall that because of Claim 9.3.3 we know that all the bad arcs in B0 are

confined to p and some of its children. In the next claim we will show that this

property remains invariant even after each swap operation in fourth step of procedure

PathAnalysis. Suppose that swap operation occurs s times in PathAnalysis, starting

from B0. Let B0
0 = B0 and B0

j
, j 2 [s], denote the “tree” obtained after the jth swap

operation applied on B0
j�1.

Claim 9.3.7. Suppose that swap operation happens s times in PathAnalysis. For

each integer j 2 {0, . . . , s}, the only bad arcs that may occur in B0
j
are between p

and some of its children.

263

Proof. We prove this by induction on j. The base case follows from Claim 9.3.3.

For the inductive step assume that this holds for some 0  j < s. By induction

hypothesis we know that the only bad arcs that may occur in B0
j
are between p

and some of its children. Now suppose we swap p with child r0 in B0
j
such that

(r0, p) 2 A(D). Observe that in B0
j+1 the only bad arcs that potentially can occur

are either between p and some of its children or between the parent of p, parent(p)

and r. Consider the path, P ?, between parent(q) and r in B. Observe that this does

not contain any fas-vertex and thus D[V (P ?)] is transitive tournament and hence

has a unique path spanning all the vertices. In particular, this implies that every

vertex appearing on the path beats every other vertex that appears after it. Observe

that parent(p) appears before r on this path and thus beats it. This implies that

there is no bad arc between parent(p) and r in B0
j+1. This concludes the proof. ⇧

By Claim 9.3.7, we know that in each swap operation the only bad arcs that may

occur are confined to p and its children. Thus, when the swapping operation finishes

either p becomes a leaf vertex or there are no bad arcs incident to p. This proves

that indeed B? is indeed an sba. By Claim 9.3.6 it follows that B? complies with

T i. To see the last claim observe that the only way it can get violated is that p is

swapped back to the path Q0. However, for this to happen p must be swapped with

an fas-vertex. But, due to Claim 9.3.6 we know that p is never swapped with an

fas-vertex. This proves the third part of the lemma and concludes the proof. ⇧

From Lemma 9.3.5, we derive the following consequence.

Corollary 9.3.1. Suppose that PathGreedy succeeds up to step i+ 1. If there is an

sba B that complies with T i, then there is an sba B? that complies with T i+1.

Proof. We prove by contradiction. Among all sba that comply with T i, let B be an

sba that has the largest number of vertices on the unique xv-path in B from H 0. If

B does not comply with T i+1, then by Lemma 9.3.5 we have that there exists an

264

sba B? that complies with T i; and the number of vertices on the unique xv-path in

B? from H 0 is larger by 1 than the number of vertices on the unique xv-path in B

from H 0. This contradicts our choice of B. ⇧

Having the lemma above at hand, our proof is done by induction. For the sake of

clarity, let us extract the claim.

Lemma 9.3.6. For all i 2 [k+ 1], if there is an sba B complying with (T ?, len, siz),

then (i) PathGreedy succeeds up until step i, and (ii) there is an sba that complies

with T i.

Proof. We prove this case by induction on i. At the base case, where i = 1, our

greedy procedure has not yet begun, and hence it could not have yet failed. Moreover,

T 1 = T ?, and thus an sba complying with (T ?, len, siz) also complies with T 1. Thus,

the base case is trivially correct. In what follows, suppose that the lemma is correct

for some i 2 [k], and let us prove it for i+ 1.

By induction hypothesis we know that PathGreedy succeeds up until step i, and

(ii) there exists an sba that complies with T i. Now by Lemma 9.3.4 PathGreedy

succeeds in step i+ 1. Now by Corollary 9.3.1 the proof of the lemma follows. ⇧

As a corollary to Lemma 9.3.6, we obtain the following.

Corollary 9.3.2. If there is an sba B complying with (T ?, len, siz), then (i) Path-

Greedy succeeds, and (ii) there exists an sba that complies with T .

Let us also explicitly state an observation that directly follows from our construc-

tion. (Here, correctness also relies on our preprocessing step.)

Observation 9.3.2. If PathGreedy succeeds, then T is a subtree of D, and in

particular A(T) ✓ A(D).

265

9.3.4 Phase IV: Greedy Choices for Subtree Resolution

Because we managed to reach this phase, we have at hand (i) a pair (B,�) that

realizes (T ?, len, siz) (from Phase II), and (ii) the tree T outputted by GreedyPaths

(from Phase III). Before we proceed to our greedy choices, let us first update (B,�)

to (B?,�?) as follows. First, initialize B? = B. Second, define �? : V (T) ! [n] as

the injective function such that for all v 2 V (T ?), we have �?(v) = �(v), and for

all v 2 V (T) \ V (T ?), we have �?(v) = i where i is the jth vertex on the unique

�(v?)�(w)-path in B? for w being the fas-child of v in T ? of highest rank and j being

the position of v on the unique v?w-path of T . We remark that this notation is well

defined because (B,�) realizes (T ?, len, siz) and by our construction of T . The choice

of w as the fas-child of highest rank does not matter in the sense that any choice of

an fas-child w of v would have resulted in the same �?(v).

A central notion in our greedy choices is of private vertices, defined as follows.

Definition 9.3.7. Let bT be a rooted tree where VF [{v?} ✓ V (bT). The set of

private vertices of a vertex v 2 VF [{v?} in bT , denoted by priv bT (v), is the set of

vertices that belong to bTv, but not to bTu rooted at a descendant u 2 VF \ {v} of v.In

case bT = T , denote priv(v) = priv
T
(v).

We are now ready to describe our second phase of greedy choices. In this phase,

each fas-vertex v has a “bucket”, which is a set Wv that is initially empty. Moreover,

for each fas-vertex v, denote ↵v = siz(v) �
P

u2faschildT? (v)\VF
siz(u). In addition,

denote �v = ↵v � |priv(v)|. Here, we say that an fas-vertex v is unresolved if its set

Wv has not yet been updated. Moreover, we say that a vertex u 2 V (D) is available

if u /2 V (T) [(
S

v2VF[{v?} Wv). As long as there is an unresolved vertex, we apply

the steps of procedure SubtreeGreedy.

We say that SubtreeGreedy fails if it concludes that no sba complies with

(T ?, len, siz), and else we say that it succeeds. For i 2 [k + 1], let vi be the fas-

266

SubtreeGreedy:

1. Let v be the highest unresolved fas-vertex.

2. Let H be the set of the �v highest available vertices beaten by v. If not
enough such vertices are found, return that no sba complies with (T ?, len, siz).

3. Update Wv to be equal to H.

vertex considered at step i. To argue about the correctness of our greedy choices, we

need to further extend Definition 9.3.6.

Definition 9.3.8. An sba B complies with vi if it complies with T and privB(v) =

Wvi [priv(vi). Moreover, B complies with vi if it complies with all the vertices

v1, . . . , vi.

The main argument in our proof are summarized in Lemmata 9.3.7, 9.3.9 and

9.3.10.

Lemma 9.3.7. Suppose that SubtreeGreedy succeeds up to step i. Let B be an sba

that complies with vi for some i 2 [k + 1]. Then, SubtreeGreedy succeeds at step

i+ 1.

Proof. Denote v = vi+1. To show that SubtreeGreedy succeeds at step i+1, it su�ces

to show that in the beginning of that step, there exist �v available vertices beaten by

v. Let X = privB(v) \ V (T). Then, by the definition of priv, for every vertex x 2 X

there is a directed path from v to x in B whose only fas-vertex is B. In particular,

this means that v beats x. In addition, since B compiles with vi, and for all j  i,

we have privB(v)\privB(v
j) = ;, we have that all the vertices in X \{v} are available

in the beginning of step i. As |X| is precisely �v, this completes the proof. ⇧

Towards Lemma 9.3.9, we need yet another lemma.

Lemma 9.3.8. For all i 2 [k+1] and u 2 priv(vi), the vertex u beats all the vertices

in Wvi.

267

Proof. Choose i 2 [k + 1] and u 2 priv(vi) arbitrarily. Let w be some vertex in Wvi .

Then, because u 2 priv(vi), we have that the vertex u became unavailable in some

iteration of PathGreedy. In that iteration u was chosen to a set H 0, which contained

the highest available vertices beaten by v at that point of time. As all the vertices in

Wvi are beaten by v and remained available at the end of that iteration, we conclude

that u beats all of them. ⇧

We are now ready to state Lemma 9.3.9.

Lemma 9.3.9. Suppose that PathGreedy succeeds up to step i+1 for some i 2 [k+1].

Let B be an sba that complies with vi. Then, there is an sba that complies with

vi+1.

Proof. Let B be an sba that complies with vi and which maximized Wvi+1 \

privB(v
i+1). Suppose that B does not comply with vi+1, else we are done. Thus,

there exists a vertex p 2 privB(v
i+1) that does not belong to Wvi+1 , and a vertex

q 2 Wvi+1 that does not belong to privB(v
i+1). Let u be the fas-vertex such that

q 2 privB(u). By Lemma 9.3.8, we have that all vertices in priv(vi+1) beat q.

Note that, by the specification of our algorithm, Wvj \Wvi+1 = ;. Since u 6= vi+1,

q 2 privB(u), B complies with vi, this means that u = vj for some j > i + 1.

Therefore, vi+1 is ranked higher than u. This means that vi+1 beats p (because u

beats p). Then, by the definition of Wvi+1 , we deduce that every vertex in Wvi+1 ,

and in particular q, beats p. Thus, because q beats p while u beats q (because

q 2 privB(u)), we have that u beats p. Using the arguments in the proof of Lemma

9.3.8, we further conclude every vertex in priv(u) beats p. Let v0 be the vertex in

priv(v) of maximum distance from the root in B such that p belongs to the subtree

of v0 in B, and let u0 be the vertex in priv(u) of maximum distance from the root in

B such that q belongs to the subtree of u0 in B. Now, let Uv0 be the set of all the

vertices in the subtree of v0 that do not belong to the subtree of any other vertex in

268

V (T). Similarly, define Uu0 .

Note that both D[{v0} [(Uv0 \ {p}) [{q}] and D[{u0} [(Uu0 \ {q}) [{p}] are

acyclic, and by the arguments above and Lemma 9.3.8, we deduce that in the first

one, v0 is the highest vertex (according to �), and in the second one, u0 is the highest

vertex. By Lemma 9.2.1, D[{v0} [(Uv0 \ {p}) [{q}] contains (as a subgraph) an

bAv0 arborescence isomorphic to B[{v0} [Uv0]. Similarly, D[{u0} [(Uu0 \ {q}) [{p}]

contains (as a subgraph) an bAu0 arborescence isomorphic to B[{u0} [Uu0]. Thus, by

replacing B[{v0} [Uv0] by bAv0 and B[{u0} [Uu0] by bAu0 in B, we obtain an sba B0

that complies with vi and such that |W v
i+1 \ privB0(vi+1)| > |W v

i+1 \ privB(v
i+1)|,

which is a contradiction. ⇧

Towards the presentation of Lemma 9.3.10, we need the SubtreeCompletion

procedure. Lemmata 9.3.7 and 9.3.9 are not su�cient to complete the proof, since

they are based on the supposition that there exists an sba that complies with

(T ?, len, siz), which is precisely the information we need to determine. From these

lemmata alone, we would only be able to conclude that if there is an sba B complying

with (T ?, len, siz), then SubtreeGreedy succeeds, but not that if SubtreeGreedy succeeds,

then there is an sba B complying with (T ?, len, siz). The reverse direction will be

ensured using Lemma 9.3.10. In case we do not only want to determine whether

there exists an sba that makes v? the winner, but also compute one such sba, the

procedure below should be performed (that is, in that case this procedure is not

given only for the sake of analysis). Here, it will also become apparent why we had

to have at hand a pair (B,�) that realizes our initial guess. A surprising implication

of the proof below is that, although there can be many pairs that realize our initial

guess, for the sake of exhibiting an sba that complies with our initial guess, taking

any one of them would work. Initialize (B0,�0) = (B?,�?). For i = 1, 2, . . . , k + 1,

Bi = Bi�1, and the procedure executes SubtreeCompletion.

The arguments given in the presentation of the procedure above directly imply

269

SubtreeCompletion:

1. Initialize �i to be �i�1, and U to be Wvi .

2. For all u 2 priv(vi), execute the following operations:

(a) Let bBu be the subtree of Bi

u
from which we remove the subtree of t

for all t 2 [n] for which there is a vertex w 2 V (T) \ {u} such that
�i(w) = t.

(b) Let Uu be some subset of |V (bBu)|� 1 vertices from U , and update U to
be U \ Uu.

(c) Note that D[{u}[Uu] is acyclic. By Lemma 9.2.1, D[{u}[Uu] contains
(as a subgraph) an bAu arborescence isomorphic to bBu that is computable
in polynomial time. Observe that u is the root of bAu, else u were been
beaten by at least one vertex in Uu, contradicting Lemma 9.3.8.

(d) We update �i to label the vertices of bBu according to their “copies” in
bAu. (More precisely, let f be an isomorphism from bBu to bAu. Then, for
all t 2 V (bBu), define �i(t) = f(t).)

the correctness of the following lemma.

Lemma 9.3.10. Suppose that SubtreeGreedy succeeds up to step i. Then, (1) for all

(u, v) 2 A(Bi+1) such that both u, v are in the image of �i+1 and are private vertices

of vi in Bi, we have (�i(x),�i(y)) 2 A(D), and (2) �i extends �i�1, and it injectively

maps all the vertices in Wvi.

Proof. The correctness of condition (1) is immediate since for every u 2 priv(vi), we

argued that bAu is arborescence of D[{u} [Uu] isomorphic to bBu and rooted at u.

Condition (2) also directly follows from the definition of the procedure, and because
S

u2priv(vi) = Wvi and Uu \ Uu0 = ; for all distinct u, u0 2 priv(vi). ⇧

From Lemmata 9.3.7, 9.3.9 and 9.3.10, we have the following lemma.

Lemma 9.3.11. For all i 2 [k + 1] [{0}, if there is an sba B complying with

(T ?, len, siz), then (i) SubtreeGreedy succeeds up until step i and there exists an sba

complying with vi, (ii) for all (u, v) 2 A(Bi) such that both u, v are in the image of

�i, we have (x, y) 2 A(D) where �i(x) = u and �i(y) = v, and (iii) �i extends �j for

all j < i, and it injectively maps all the vertices in V (T) [Wv1 [. . .Wvi.

270

Proof. The proof is by induction on the step i. In the base case, i = 0. Then,

condition (i) vacuously holds. Condition (ii) is satisfied by Observation 9.3.2, and

condition (iii) trivially holds.

Now, suppose that the claim is true for i, and let us prove it for i+ 1. Then, by

the inductive hypothesis there exists an sba complying with vi, and hence Lemma

9.3.7, SubtreeGreedy succeeds at step i+1. Combined with Lemma 9.3.9, this further

means that there exists an sba complying with vi+1, and therefore condition (i) is

satisfied. Moreover, the satisfaction of conditions (ii) and (iii) directly follows from

the inductive hypothesis and Lemma 9.3.10. ⇧

From Lemma 9.3.11, we derive the following corollary.

Corollary 9.3.3. If there is an sba B complying with (T ?, len, siz), then Subtree-

Greedy succeeds and Bk+1 (where we abuse notation such that each vertex i is labelled

by �k+1�1
(i)) is an sba rooted at v?.

Proof. Suppose there is an sba B complying with (T ?, len, siz). Then, by condition (i)

of Lemma 9.3.11, SubtreeGreedy succeeds. Note that V (T)\Wvi = ; for all i 2 [k+1],

and Wvi \Wvj = ; for all i 2 [k+1]. Since |V (T)|+[v 2 VD [{v?}�v = n, we thus

conclude from condition (iii) that �k+1 injectively maps all vertices in V (D) and the

root of Bk+1 is v?. By condition (ii), we further have that Bk+1 is a subtree of D.

Thus, as we started from a usba, we conclude that Bk+1 is an sba rooted at v?. ⇧

Finally, the correctness of our main result, summarized in the theorem below,

directly follows from Lemma 9.3.2 and Corollary 9.3.3. We remark that here we

rely on the straightforward observation that given an sba where v? is the root, a

seeding to make v? win can be computed in polynomial time. The running time

of the algorithm is dominated by the guesses (kO(k)) in the first phase, as all other

phases run in polynomial time.

271

Theorem 27. TFP is solvable in time 2O(k? log k?)nO(1). Moreover, for a Yes-

instance (D, v?, k?), a seeding to make v? win can be constructed within this time

bound.

Next, we develop an algorithm for BTF that runs in time 2nnO(1) and has a

polynomial space complexity, as well as a parameterized algorithm that runs in time

2O(k? log k?)nO(1).

9.4 Obfuscation Operations

We give two operations to turn one solution into another. In each operation, we

have a tournament D, a subset R ✓ A(D) of size at most `, and a spanning

binomial arborscence T of DR rooted at v?. Without loss of generality, suppose

Rrev = A(T)\A(D). We say that an operation is valid if it returns a subset R0 ✓ A(D)

of size at most `, and a spanning binomial arborscence T 0 of DR
0
rooted at v?.

Subtree clean-up. Our first operation is called “subtree clean-up” (see Fig. 9.4).

We say that this operation is applicable if there exists a vertex v 2 V (T) \ {v?}

such that A(Tv) \Rrev 6= ;. Given such a vertex v 2 V (T) \ {v?}, the operation is

performed as follows.

First, since |V (Tv)| is a power of 2 (see Observation 9.2.1), we have that D[V (Tv)]

admits a spanning binomial arborescence T 0
u
, rooted at some vertex u. To see this,

arbitrarily fix a tournament on D[V (Tv)], conduct the competition, and let T 0
u
be

the spanning binomial arborescence obtained by taking all arcs of D[V (Tv)] that

correspond to the matches that took place. Note that the root u of T 0
u
might be v

itself. However, T 0
u
6= Tv because T 0

u
is a subtree of D while A(Tv) \Rrev 6= ; (which

means that Tv is not a subtree of D). Let p be the parent of v in T (since v 6= v?, this

parent exists). Now, if (p, u) 2 A(D) then define R0 = R \A(Tv)rev, and otherwise (if

272

w

v

u

w a v u b c d e

d

e c

b

a

D

v

u d

e c b

a

w T T'

Figure 9.4: An application of the subtree clean-up operation. In D, displayed arcs
are backward arcs; all other arcs are forward arcs. The sets Rrev and R0rev are the
sets of blue arcs in T and T 0, respectively. In T 0, the operation is not applicable.

(u, p) 2 A(D)) define R0 = (R \ A(Tv)rev) [{(u, p)}. We define T 0 from T as follows:

remove the tree Tv and the arc (p, v), and then add the tree T 0
u
and the arc (p, u).

Lemma 9.4.1. The subtree clean-up operation is valid.

Proof. Since Tv is a spanning binomial arborescence of DR[V (Tv)] (see Observation

9.2.1), we have that T 0
u
is isomorphic to Tv. This observation implies that T 0 is

a spanning binomial arborescence of DR
0
rooted at v?. Moreover, |R0|  |(R \

A(Tv)rev) [{(u, p)}|  |R| � |R \ A(Tv)rev| + 1  |R|. Thus, the validity of our

operation follows. ⇧

Cyclic shift. Our second operation is called “cyclic shift” (see Fig. 9.5), where

we assume that we are given a feedback arc set K of D with |V (K)| = k, and

the topological order < of DK . We say that a directed subpath of T , denoted by

P = p1 ! p2 ! · · · ! pq, enables a cyclic shift if p1, p2, . . . , pq /2 V (K) [{v?}

1. are vertices of the same type t 2 {0, 1, . . . , k},

2. which are consecutive (that is, pi is the predecessor of pi+1 for all i 2

{1, 2, . . . , q � 1}), and

3. the predecessor of p1 exists, it is not the parent of p1 in T , and it is also of

type t.

273

6v

7v

8v 5v

11v

9v

23v

4v

2v

5v

6v

7v 8v

11v

9v

23v

4v

2v

Figure 9.5: An application of the cyclic shift clean-up operation with D being the
graph in Fig. 9.1 (add vertices to ensure its size is a power of 2, whose display is
irrelevant here). Only parts of the trees T and T 0 are displayed. Reversed arcs are
colored blue. Here, P = v6 ! v7 ! v8, p0 = v5, p1 = v6, p2 = v7 and p3 = v8.

We say that the cyclic shift operation is applicable if we have a directed subpath of

T that enables a shift. Given such a subpath P = p1 ! p2 ! · · · ! pq, the operation

is performed as follows. Let p0 denote the predecessor of p1. Then, as the name

of the operation suggests, we define T 0 from T as follows: for all i 2 {0, 1, . . . , q},

replace the vertex pi by the vertex p(i�1)mod(q+1). Denote R0 = (A(T 0) \A(D))rev. We

now argue why this operation is valid.

Lemma 9.4.2. The cyclic shift operation is valid.

Proof. First, note that T 0 is obtained from T by “permuting” vertices, all of which

belong to {p0, p1, . . . , pq} and none of which is v?. Hence, T 0 is a spanning binomial

arborescence of DR
0
rooted at v?. To prove that |R0|  |R|, it su�ces to show that

the number of arcs incident to {p0, p1, . . . , pq} in T 0 that do not belong to A(D) is

upper bounded by the number of arcs incident to {p0, p1, . . . , pq} in T that do not

belong to A(D). To this end, we claim that for all i 2 {0, 1, . . . , q}, the number of

arcs incident to pi in T 0 that do not belong to A(D) is upper bounded by the number

of arcs incident to p(i+1)mod(q+1) in T that do not belong to A(D). To complete the

proof, we will verify this claim for p0. The claim for the other vertices can be verified

similarly. Let x denote the parent of p1 in T . Because p0 is not the parent of p1

in T , we have that x /2 {p0, p1, . . . , pq}. In particular, this means that x is also the

parent of p0 in T 0. Since p0 is the predecessor of p1 and both vertices do not belong

to V (K), we have that x beats p0 if and only if x beats p1. Every child of p0 in T 0 is

274

either p1 or a child of p1 in T . Since p0 is the predecessor of p1 and both vertices do

not belong to V (K), we have that p0 beats p1, and every other child of p0 in T 0 is

beaten by p0 if and only if it is beaten by p1. ⇧

9.5 Combinatorial Result

In this section, we show that if the input instance of BTF is a Yes-instance, then it

admits a solution with two very specific properties. Apart from being a combinatorial

result of independent interest, it is also useful practically as it significantly shrinks

our search space. Only the second property assumes the presence of a feedback arc

set K. If one is interested only in the first property, s/he can set K = A(D), and

otherwise K can be obtained by either a polynomial-time approximation scheme

(PTAS) [118], or an 2O(
p

|K|)nO(1)-time parameterized algorithm [93, 47].

To formulate the second property, we introduce the following definition (examples

are given below).

Definition 9.5.1. Let D be a tournament with a feedback arc set K. Let < be

the topological order of DK. A set C ✓ V (D) is an elite club if for all types

i 2 {0, . . . , |V (K)|}, there do not exist two vertices u, v of type i such that u < v,

u /2 C and v 2 C. That is, if a vertex v of type i belongs to C, then all vertices u of

type i that beat v also belong to C.

For v? 2 V (D), an elite club C is a v?-elite club if (v, v?) 2 A(D) for all v 2 C.

That is, all members of C beat w.

For example, in Fig. 9.1, C1 = {v1, v3, v4, v5, v13, v14, v15, v18} is an elite club, while

C2 = {v1, v3, v4, v6, v13, v14, v15, v18} is not since it contains v6 but not its predecessor

v5 that belongs to the same type. It is easy to see that our notion of an elite club

is incomparable to both the notion of kings and the best players defined by [147].

275

For example, a vertex v last of its type is a king if it beats, say, a vertex that beats

any other vertex, and it is “likely to be” a best player if it belongs to one of the

first types, but it belongs to an elite club C only if all vertices of the same type as v

belong to C. Similarly, a vertex in an elite club (even if it is first of its type) can be

neither a king nor a best player.

Our main combinatorial result says that if there is a way to make v? win, then there

is also such a way where all matches necessary to alter involve v? itself. Moreover, it

further says that all of the other players that are involved in these matches belong

to a group of “top players” (among those of each type). We think these two findings

are of philosophical interest as well. Formally, this is stated as follows.

Theorem 28. Let (D, v?, `) be a Yes-instance of BTF. Let K be a feedback arc set

of D with |V (K)| = k, and let < be the topological order of DK. Then, there exists

R ✓ A(D) with |R|  ` and a spanning binomial arborscence T of DR rooted at v?,

which satisfy both properties below.

1. Every arc in R has v? as an endpoint.

2. There exists a v?-elite club C of size at most ` such that every arc in R has an

endpoint in C.

Proof. Let R ✓ A(D) be a subset of size at most ` such that DR has a spanning

binomial arborscence T rooted at v?. We first show how to transform (R, T) into a

solution that satisfies property 1. As long as v? has a child v in T with A(Tv)\Rrev 6= ;,

apply the subtree clean-up operation (from Section 9.4) to obtain another solution,

and update (R0, T 0) to be that solution. By Lemma 9.4.1 and the specification of this

operation, it can be easily verified that this process terminates after at most log n

steps (since v? has log n children by Observation 9.4.1), and when it does, no subtree

rooted at a child of v? contains a reversed arc, implying that property 1 is satisfied.

276

Now, we proceed to show how to transform (R, T) into a solution that also

satisfies property 2. As long as this property is not satisfied (and because property 1

is satisfied), v? has a child v /2 V (K) such that the predecessor u of v is of the same

type as v, but (v, v?) 2 A(D) while u is not incident to an arc in R. In particular,

u 6= v?, and hence u is not the parent of v in T . Then, we perform the cyclic shift

operation (from Section 9.4) with P = p1 = v (that is, our path consists of a single

vertex) and p0 = u. Observe that this operation maintains property 1. Moreover, by

Lemma 9.4.2 and from the specification of this operation, we have that this process

terminates after less than n2 steps, and when it does, property 2 is satisfied. ⇧

In case we have power to alter the outcome of at least log n matches, the following

result states that we can always make our favorite player win. While this theorem is

subsumed by Theorem 32 (given in Section 9.6), we think it merits its own statement,

and present a simplified proof for this special case.

Theorem 29. Let (D, v?, `) be an instance of BTF. If ` � log n, then (D, v?, `) is

a Yes-instance. Moreover, a solution can be found in polynomial time.

Proof. Fix an arbitrary tournament (competition), and let v be its winner. Let T 00

be the spanning binomial arborescence of D, rooted at v, that corresponds to this

competition. Now, swap v with v? to obtain a spanning binomial arborescence T 0

of DR
0
, rooted at v?, for some R0 ✓ A(D). By performing the subtree clean-up

operation for every child of v? in T whose subtree contains a reversed arc (like it is

done in the proof of Theorem 28), we obtain a binomial arborescence whose reversed

arcs are all incident to v?. As v? has at most log n children, this is a spanning

binomial arborescence of DR for some R ✓ A(D) of size at most log n  `. ⇧

277

9.6 Characterization of Yes-Instances

In this section, we present two (related) characterizations of Yes-instances, along

with one implication. First, based on Theorem 28 and Observation 9.2.1, we present

a closed formula that resolves the special case of BTF where D is a DAG. To this

end, we need the following definition.

Definition 9.6.1. Let D be a tournament. The victory count of a vertex v 2 V (D),

denoted by victory(v), is defined by

victory(v) = |{u 2 V (D) : (v, u) 2 A(D)}|.

That is, victory(v) is the number of players beaten by v.

If D is acyclic, then victory(v) = |{u 2 V (D) : v < u}|.

We are now ready to state our formula. While the statement is existential, the

proof is constructive and implies how a solution, if one exists, can be found.

Theorem 30. Let (D, v?, `) be an instance of BTF where D is a DAG. Then,

(D, v?, `) is a Yes-instance if and only if the expression [victory(v?) � n

2` � 1] is true.

In case the expression is true, a solution can be found in polynomial time.

Proof. In one direction, suppose that victory(v?) � n

2` � 1 is true. Let S be a

set of exactly n

2` � 1 vertices beaten by v?. Arbitrarily partition S into log n � `

sets, U1, . . . , Ulogn�`, such that |Ui| = 2i�1 for all i 2 {1, . . . , log n � `}. Since
Plogn�`

i=1 2i�1 = n

2` � 1, this is possible. Moreover, arbitrarily partition V (D) \ (U [

{v?}) into ` sets, Ulogn�`+1, . . . , Ulogn, such that |Ui| = 2i�1 for all i 2 {log n � ` +

1, . . . , log n}. Now, for all i 2 {1, . . . , log n}, fix a tournament (competition) for

D[Ui], and let Ti denote the corresponding spanning binomial arborescence of D[Ui]

rooted at some vertex wi. Define T by V (T) = V (T1) [. . . [V (Tlogn) [{v?} and

278

A(T) = A(T1) [. . . [A(Tlogn) [{(v?, wi) : i 2 {1, . . . , log n}}. Moreover, define

R = {(wi, v?) 2 A(D) : i 2 {log n � ` + 1, . . . , log n}}. Then, |R|  `. From the

definition of A(T), T is rooted at v?. For each i 2 {1, . . . , log n}, Ti is a spanning

binomial arborescence. Therefore, T is a spanning binomial arborescence of DR

rooted at v?. The proof also indicates how to construct a solution in polynomial

time.

In the other direction, suppose that (D, v?, `) is a Yes-instance. Let (R, T) be

a solution that satisfies property 1 in Theorem 28. Let X be the set of children v

of v? in T such that (v?, v) 2 A(D), and denote U =
S

v2X V (Tv). Since |R|  `,

we have that |X| � log n � `. Thus, by Observation 9.2.1, |U | =
P

v2X |V (Tv)| �
Plogn�`

i=1 2i�1 = n

2` � 1. Moreover, since (R, T) satisfies property 1, we have that

A(Tv) \Rrev = ; for all v 2 X. Thus, since (v?, v) 2 A(D) for all v 2 X and D is a

DAG, we have that v? beats all the vertices in U . ⇧

In our proof of the forward direction above, it can be shown that v? is made a

king by reversing ` arcs. The spirit of the proof of Theorem 30 is not limited to the

special case of DAGs. Indeed, we have a characterization of Yes-instances also for

general tournaments. However, this characterization is not nice in the sense that it

cannot be verified in polynomial time. Nevertheless, we find it of theoretical interest,

and it will be used later. In this context, recall that BTF is NP-hard even when

` = 0, and hence we do not expect it to admit an easy to verify characterization.

Theorem 31. Let (D, v?, `) be an instance of BTF. Then, (D, v?, `) is a Yes-

instance if and only if there exists U ✓ V (D) of size exactly n

2` � 1 so that there is

a fixing of D[U [{v?}] that makes v? win. Given such U with its fixing, a solution

can be found in polynomial time.

Proof. In one direction, suppose that there exists U ✓ V (D) of size exactly n

2` � 1

so that there is a fixing of D[U [{v?}] that makes v? win, and let T 0 be the

279

corresponding binomial arborescence ofD[U[{v?}] rooted at v?. Arbitrarily partition

V (D) \ (U [{v?}) into ` sets, Ulogn�`+1, . . . , Ulogn, such that |Ui| = 2i�1 for all

i 2 {log n� `+ 1, . . . , log n}. For all i 2 {log n� `+ 1, . . . , log n}, fix a tournament

(competition) for D[Ui], and let Ti denote the corresponding spanning binomial

arborescence of D[Ui] rooted at some vertex wi. Define T by V (T) = V (Tlogn�`+1)[

. . . [V (Tlogn) [V (T 0) and A(T) = A(Tlogn�`+1) [. . . [A(Tlogn) [{(v?, wi) : i 2

{log n � ` + 1, . . . , log n}} [A(T 0). Moreover, define R = {(wi, v?) 2 A(D) : i 2

{log n � ` + 1, . . . , log n}}. Similarly to the proof of Theorem 30, we have that T

is rooted at v? (from the definition of A(T)). For each i 2 {1, . . . , log n}, Ti is a

spanning binomial arborescence. Therefore, the forward direction follows. This proof

also indicates how to construct a solution in polynomial time.

In the other direction, suppose that (D, v?, `) is a Yes-instance. Let (R, T) be a

solution that satisfies property 1 in Theorem 28. Let X 0 be the set of children v of v?

in T such that (v?, v) 2 A(D). Since |R|  `, we have that |X 0| � log n� `, and we

denote by X some subset of X 0 of size exactly log n� `. Order X = {x1, . . . , xlogn�`}

such that |V (Txi)|  |V (Txi+1)| for all i 2 {1, . . . , log n� `�1}. Since (R, T) satisfies

property 1, we know that Txi is a spanning binomial arborescence of D[V (Txi)] for

all i 2 {1, . . . , log n� `}. By Observation 9.2.1, it can be verified that there exists a

subtree T 0
xi

of Txi on exactly 2i�1 vertices that is a spanning binomial arborescence

of D[V (T 0
xi
)] rooted at xi (the idea is to truncate the subtrees of the children of

xi that are largest). Now, denote U = V (T 0
x1
) [. . . [V (T 0

xlogn�`
). Observe that

|U | =
Plogn�`

i=1 |V (T 0
xi
)| =

Plogn�`

i=1 2i�1 = n

2` �1. Thus, by taking all the arborescences

T 0
xi

and adding the arcs (v?, xi) (which belong to A(D) by our choice of X), we

exhibit a spanning binomial arborescence of D[U [{v?}] that is rooted at v?. ⇧

In our proof of the forward direction above, it can be shown that v? is not

necessarily made a king by reversing ` arcs. As a corollary of Theorem 31, we have

the following one-way statement (which is constructive).

280

r

Figure 9.6: A 2-removed binomial arborescence on 24 vertices.

Theorem 32. Let (D, v?, `) be an instance of BTF. If victory(v?) � n

2` � 1, then

(D, v?, `) is a Yes-instance. In this case, a solution can be found in polynomial time.

Proof. Suppose that victory(v?) � n

2` � 1, and let U be a set of exactly n

2` � 1 vertices

beaten by v?. We fix a tournament (competition) for D[U [{v?}], and let T denote

the corresponding spanning binomial arborescence of D[U [{v?}]. Because v? beats

every vertex in U , it must be the root of T . By the reverse direction of Theorem 31,

the proof is complete. ⇧

9.7 Exact Algorithms

Our exact algorithms are based on translating the characterization in Theorem 31

into the language of spanning binomial arborscences. To this end, we introduce a

new definition (see Fig. 9.6). The validity of the sizes mentioned in this definition

follows from Observation 9.2.1.

Definition 9.7.1. Let ` 2 N. Let T be a binomial arborescence of size n with

log n � `. Let the children of its root r be vi, i 2 [log n], where |V (Tvi)| = 2i�1 for all

i 2 {1, . . . , log n}. An `-removed binomial arborescence T 0 of size n is the digraph

obtained from T by deleting the arcs (r, vi) for all i 2 {log n� `+ 1, . . . , log n}. The

vertex r is the root of T 0.2

2Although T 0 contains `+ 1 vertices of in-degree 0, there is only one vertex that we define as
the root.

281

Note that up to isomorphism, an `-removed binomial arborescence of size n is

unique. We now give the promised translation of Theorem 31.

Lemma 9.7.1. Let (D,w, `) be an instance of BTF. Then, (D,w, `) is a Yes-

instance if and only if D contains a spanning `-removed binomial arborescence T

rooted at w.

Proof. In one direction, suppose that D contains a spanning `-removed binomial

arborescence T rooted at w. Let T 0 denote the tree of T that is rooted at w. Then,

|V (T 0) \ {w}| = n� 1�
Plogn

i=logn�`+1 2
i�1 = n

2` � 1 (by Observation 9.2.1) and T 0 is a

spanning binomial arborescence of D[V (T 0)] rooted at w. Denoting U = V (T 0)\{w},

the claim follows from the reverse direction of Theorem 31.

In the other direction, suppose that (D,w, `) is a Yes-instance. By the forward

direction of Theorem 31, there exists U ✓ V (D) of size exactly n

2` � 1 so that

there is a fixing of D[U [{w}] that makes w win. Let T 0 be a spanning binomial

arborescence of D[U [{w}] rooted at w. Arbitrarily partition V (D) \ (U [{w}) into

` sets, Ulogn�`+1, . . . , Ulogn, such that |Ui| = 2i�1 for all i 2 {log n� `+ 1, . . . , log n}.

For all i 2 {log n� `+ 1, . . . , log n}, fix a tournament (competition) for D[Ui], and

let Ti denote the corresponding spanning binomial arborescence of D[Ui] rooted at

some vertex wi. Define T by V (T) = V (Tlogn�`+1) [. . . [V (Tlogn) [V (T 0) and

A(T) = A(Tlogn�`+1) [. . . [A(Tlogn) [A(T 0), and let w be its root. Then, it is easy

to verify that T is a spanning `-removed binomial arborescence of D rooted at w. ⇧

Towards the presentation of our first algorithm, we show how to detect `-removed

binomial arborescences.

Lemma 9.7.2. Let D be a digraph, w 2 V (D), and ` 2 N. We can decide in

time 2nnO(1) and polynomial space if D contains a spanning `-removed binomial

arborescence T rooted at w. If the answer is positive, we output T .

282

Proof. Amini et al. [6] proved the following result. Suppose that we have two

digraphs, D on n vertices and H on k vertices, such that the treewidth of the

underlying undirected graph of H is t. Moreover, suppose that each vertex in D

has a color from a set of k colors. Then, it can be decided in time 2knt+O(1) and

polynomial space if D has a colorful subgraph isomorphic to H. This algorithm can

be immediately adapted to also solve the case where each digraph among D and

H has a distinguished vertex, say, d and h, so that the isomorphism must match d

and h. In our setting, H is the (unique) `-removed binomial arborescence T on n

vertices (that is, k = n), whose underlying undirected graph is a forest and hence

has treewidth 1. The coloring is simply the identity function (that is, every vertex

in D gets a unique color), d = w and h is the root of T . As the algorithm in [6]

also outputs a copy of H in D (if one exists) in the same running time bound, the

correctness of our lemma follows. ⇧

Having Lemmata 9.7.1 and 9.7.2, we are ready to present our exponential-time

algorithm.

Theorem 33. BTF can be solved in time 2nnO(1) and polynomial space. In the case

of a Yes-instance, a solution can be found in the same running time bound.

Proof. Given an instance (D,w, `) of BTF, call the algorithm in Lemma 9.7.2 to

decide if D contains an `-removed binomial arborescence T 0 of size n rooted at w.

If the answer is negative, return No. Else, let T 0 be the output. Define T as the

binomial arborescence obtained from T 0 by adding arcs from w to all other vertices in

T 0 of in-degree 0. Moreover, define R = (A(T) \ A(D))rev, and observe that |R|  `.

The correctness of the algorithm then follows from Lemma 9.7.1. ⇧

Replacing Lemma 9.7.2 by Theorem 27 proves the following.

Theorem 34. BTF can be solved in time 2O(k? log k?)nO(1) and polynomial space,

283

where k? is the feedback arc set number of the input tournament. In case of a

Yes-instance, a solution can be found in the same running time bound.

9.8 Conclusion

In this chapter, we studied BTF and gave combinatorial results, polynomial-time

algorithms for special cases, and exact exponential-time algorithms for the general

case. One of our results imply that the problem is FPT parameterized by k?, the

size of a feedback arc set of the input tournaments. A natural question, therefore, is

whether the problem admits a polynomial kernel. Another open question is whether

BTF (or even Tournament Fixing) is FPT when parameterized by the size of a

feedback vertex set of the input tournament.

284

Stable Allocation Problems

13

14

Selection Problems

133

134

Manipulation Problems

203

204

Thesis Highlight
Name of the Student: Sanjukta Roy
Name of the CI/OCC: Dr. Saket Saurabh Enrolment No.:MATH10201504009
Thesis Title: Select, Allocate, and Manipulate via Multivariate Analysis
Discipline:Mathematical Science Subarea of Discipline: Theoretical Computer Science
Date of viva voce: 25/01/2021
This thesis studies parameterized complexity of some NP-Hard optimization problems related toStable Matching, Rainbow Matching, and a set of problems that comes under the umbrella name ofComputational Social Choice (COMSOC). All these problems have been extensively studied from theperspective of classical complexity and are well known hard problems. We, mainly, explore thecombinatorial structures of the problems. We identify structural parameters that are, in many cases,much smaller than the size of input of the problem, and develop efficient combinatorial algorithmswhen the parameters are small. Towards this, we delve deep into the problem and identify whichalgorithmic tools can be exploited for the problem.
We study two optimization variants of Stable Matching, they are (i) finding a maximum/ minimumsize stable matching when the preference lists are incomplete and not strict (i.e., it contains ties); (ii)finding a stable matching that is ``balanced'' between the men optimal stable matching and thewomen optimal stable matchings. For both of these problems, we use marking schemes to producean ``equivalent" reduced instance of size polynomial in the parameter in time polynomial in theinput size. For the former problem, we develop a non-trivial ``fixed parameter tractable" (FPT)algorithm. We develop an algorithm that runs in time exponential in treewidth of the acceptabilitygraph. This result gives a better algorithm when the acceptability graph is planar. For the latterproblem, we study two ``above guaranty parameters". We give kernel with respect to one and showW-hardness with respect to the other parameter. The third problem we study is the Group ActivitySelection(GASP) problem on graphs (gGASP). Unlike Stable Matching, here agents have preferencesover not only other agents but also groups of agents that include themselves based on the size ofthe group. We identify some natural parameters with respect to which the problem remains hard.Then we identify structural parameters of the input graph with respect to which the problem is FPT.
We study another classical problem in matching theory, the Rainbow Matching problem. Given anedge colored graph, the goal is to find a matching with edges of distinct colors and of size at least k,for some non-negative integer k. We reduce this problem to Set Pre-Packing to give a randomizedFPT algorithm based on algebraic technique with respect to the parameter k. We give a branchingalgorithm for path graphs with a better running time. We develop a kernel of size cubic in k, thenfurther improve the size to quadratic in k using ``expansion lemma". A central question in COMSOCis the winner determination in voting. Here, the input is a set of candidates and a set of votes whichare total order over the candidates. We study it in the multi-winner setting. The goal is to find asubset of candidates that forms a Gehrlein-stable committee. We initiate a systematic study ofparameterized complexity of finding a weakly Gehrlein-stable committee of fixed size. This opensthe questions of studying other well-known notations of stable committees in this realm.
Another well-explored branch in COMSOC is the study of manipulation problems that arise due tothe presence of strategic agents. We study manipulation in Stable Matching in bipartite graphs.Here, we are given a partial matching and preference lists (strict) of one side, the goal is to findpreference lists for the other side such that the partial matching is a subset of the matchingproduced by Gale-Shapley algorithm. To solve this problem we define ``Universal Suitor Graphs", apolynomial-size graph that encodes all possible matchings allowed under the manipulation scheme.We believe such a structure can be used to systematically search stable matchings in otherproblems. Two other manipulation that we study are Tournament Fixing and Tournament Briberyproblems. We study the combinatorial structures of the problems to give FPT algorithms.

	ttp_6524
	cp_6524
	pp_6524
	cntnt_6524
	tbl_fgr_6524
	smry_6524
	synp_6524
	chp1_6524
	chp2_6524
	chp3_6524
	chp4_6524
	chp5_6524
	chp6_6524
	chp7_6524
	chp8_6524
	chp9_6524
	othr_inf_6524
	ths_hglts_6524

