
Advancing the Algorithmic Tool-kit for
Parameterized Cut Problems

By

Roohani Sharma

MATH10201504012

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

August, 2020

Homi Bhabha National Institute

Recommendations of the Viva Voce Committee

As members of the Viva Voce Committee, we certify that we have read the

dissertation prepared by Roohani Sharma entitled “Advancing the Algorithmic Tool-

kit for Parameterized Cut Problems” and recommend that it may be accepted as

fulfilling the thesis requirement for the award of Degree of Doctor of Philosophy.

Date:

Chairman - Venkatesh Raman

Date:

Guide/Convenor - Saket Saurabh

Date:

Examiner - Manu Basavaraju

Date:

Member 1 - Meena Mahajan

Date:

Member 2 - Vikram Sharma

Date:

Member 3 - Geevarghese Philip

Final approval and acceptance of this thesis is contingent upon the candidate’s

submission of the final copies of the thesis to HBNI.

I hereby certify that I have read this thesis prepared under my direction and

recommend that it may be accepted as fulfilling the thesis requirement.

Date: August 13, 2020

Place: Chennai Saket Saurabh (Guide)

13 Aug 2020

13 August 2020

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for

an advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in

the Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgement

the proposed use of the material is in the interests of scholarship. In all other

instances, however, permission must be obtained from the author.

Roohani Sharma

Roohaji

Contents

Summary i

List of Figures v

I Introduction 1

1 About the Thesis 3

1.1 Digraph Cut Problems: Advancing the Otherwise Limited Tool-Kit . 5

1.1.1 Towards a Polynomial Kernel for DFV/AS 6

1.1.1.1 DFAS: Restricting the Input 8

1.1.1.2 DFVS: Enriching the Parameter 9

1.1.1.3 DFVS: Restricting the Output 10

1.1.2 Sub-Exponential FPT Algorithms Beyond Tournaments 11

1.2 Undirected Cut Problems: Exploring and Extending the Rich Tool-Kit 14

1.3 Towards the Re-Usability of Algorithms 15

1.4 Organization of the Thesis . 17

2 Preliminaries 19

2.1 Parameterized Complexity and Kernelization 19

2.2 Notations and Basic Definitions . 20

2.3 Degeneracy of Graphs . 23

2.4 Graph (Important) Separators . 23

2.5 Treewidth . 24

2.6 Branching Algorithms . 26

II Polynomial Kernels For Directed Feedback Vertex/Arc
Set And Its Variants 27

3 Kernel for DFAS on Bounded Independence Number Digraphs via
Reachability Preserving Fault-Tolerant Subgraphs 29

3.1 Reachability Preserving Fault-Tolerant Subgraphs 29

3.2 Introducing Cut Preserving Sets . 32

3.2.1 Computing k-Cut Preserving Sets: The Ideas 33

3.3 Prelude to the Technical Details . 34

3.4 Finding Small k-Cut Preserving Sets 35

3.4.1 Finding a Small k-Cut Preserving Set for a Pair with a Large
Flow . 41

3.4.2 Finding a Small k-Cut Preserving Set for a Pair in a Tournament 41

3.4.3 Finding a small k-Cut preserving set for a pair in a D ∈ Dα . 44

3.4.4 k-Cut Preserving Sets for a Set of Vertices 46

3.5 Applications of the k-Cut Preserving Lemma 47

3.5.1 Fault-Tolerant (S, S)-Reachability 47

3.5.2 Kernel for DFAS on Dα . 50

4 Kernel for DEOCT on Bounded Independence Number Digraphs
via Parity Reachability Preserving Fault-Tolerant Subgraphs 53

4.1 NP-hardness of DEOCT on Tournaments 54

4.2 Parity Preserving Fault-Tolerant Subgraphs 57

4.3 Introducing Parity Preserving Sets 58

4.3.1 Preserving Path Length Modulo p: The Ideas 59

4.4 Prelude to the Technical Details . 59

4.5 Computing Parity Preserving Sets . 60

4.6 Applications of Parity Preserving Sets 63

4.6.1 Fault-Tolerance (S, S)-Parity Reachability 63

4.6.2 Kernel for mod(p)-DCT in Dα 65

5 Polynomial Kernel for DFVS Parameterized by the Solution Size
Plus the Size of a Treewidth-η Modulator 67

5.1 Overview of the Kernelization Algorithm 69

5.2 Prelude to the Technical Details . 72

5.3 Decomposing the Graph . 72

5.4 Reducing Each Part: k-DFVS Representative Marking 76

5.4.1 Revisiting the Relation with the Skew Multicut Problem . . . 77

5.4.2 Computing Solutions for All Instances of Skew Multicut . 80

5.4.2.1 Proof of the k-SMC Representative Marking Lemma 84

5.4.2.2 Proof of the k-DFVS Representative Marking Lemma 87

5.5 Reduction Rules . 88

5.5.1 Limiting the Interaction Between M and Z 89

5.5.2 Protrusion Replacement and Proof of the Main Theorem . . . 91

5.6 Towards the Proof of the Protrusion Replacer Lemma 93

5.6.1 Counting Monadic Second Order Logic and its Properties . . . 94

5.6.2 Boundaried Graphs . 95

5.6.3 Finite Integer Index . 95

5.6.4 Proof of the Protrusion Replacer Lemma 97

6 Kernel for Deletion to Out-Forest 99

6.1 Improved Kernel for Out-Forest Vertex Deletion Set 100

6.1.1 Some Prerequisites . 100

6.1.2 Approximation Algorithm for Out-Forest Vertex Dele-

tion Set . 101

6.1.3 Kernelization Algorithm for Out-Forest Vertex Dele-

tion Set . 102

6.2 Kernel Lower Bound for Out-Forest Vertex Deletion Set . . . 106

7 Kernel for Deletion to Pumpkin 109

7.1 Outline of the Kernelization Algorithm for Pumpkin Vertex Dele-

tion Set . 109

7.2 The Simplification Phase . 110

7.3 The Marking Approach . 115

8 Faster FPT Algorithms for Deletion to Out-Tree, Out-Forest and
Pumpkin 121

8.1 FPT Algorithm for Pumpkin Vertex Deletion Set 123

8.2 FPT Algorithm for Out-Tree Vertex Deletion Set 133

8.3 FPT Algorithm for Out-Forest Vertex Deletion Set 144

9 Kernel for Deletion to Bounded Treewidth DAGs 155

III Sub-Exponentiality Beyond Tournaments 161

10 Sub-Exponential FPT Algorithms for DFAS, Directed Cutwidth
and Optimal Linear Arrangement in Digraphs of Bounded Inde-
pendence Number 163

10.1 Our Methods and k-Cuts . 164

10.2 Proof Outline for Our Results . 166

10.3 Bounding the Number of k-Cuts for Digraphs in Dα 168

10.4 Improved Bounds on the Number of k-Cuts for Digraphs in Dα with
Bounded Out-Degeneracy . 173

10.5 Sub-Exponential FPT Algorithms for DFAS, Directed Cutwidth

and OLA for Digraphs in Dα . 178

10.5.1 Sub-Exponential Algorithm for DFAS 179

10.5.2 Sub-Exponential Algorithm for Directed Cutwidth 181

10.5.3 Sub-Exponential Algorithm for OLA 182

11 Improved Sub-Exponential FPT Algorithms for DFAS and DE-
OCT on Bounded Independence Number Digraphs 187

11.1 Improved Sub-Exponential FPT Algorithm for DFAS on Dα. 188

11.2 Sub-Exponential FPT Algorithm for DEOCT on Dα 188

IV Undirected Cut Problems: Exploring and Extending
the Tool-Kit 193

12 Balanced Judicious Bipartition is FPT 195

12.1 Some Preliminaries . 200

12.2 Solving Balanced Judicious Bipartition 201

12.3 Solving Annotated Bipartite-BJB 204

12.4 Solving Annotated Bipartite Connected-BJB 206

12.5 Solving Favorable Instances of Hypergraph Painting 222

12.5.1 Color Coding The Instance . 222

12.5.1.1 Classifying Hyperedges 223

12.5.1.2 Introducing Good Assignments 224

12.5.1.3 Associating the Graph Lp with an Assignment p . . . 226

12.5.1.4 Rules to Modify a Good Assignment 228

12.5.1.5 Constructing a Supergraph L∗p of Lp 231

12.5.2 Dynamic Programming . 233

13 Degeneracy Reduction Preserving Minimal Multicuts 241

13.1 Outline of the Proof . 242

13.2 Identifying Vertices Irrelevant to Digraph Pair Cuts 246

13.3 Covering Small Multicuts in a Subgraph Without Highly Connected
Set . 252

13.4 Finding Large Connected Sets . 254

V Vertex Deletion Problems With An Independence Con-
straint 261

14 Faster Algorithms and Combinatorial Bounds for Independent Feed-
back Vertex Set 263

14.1 Some Preliminaries . 265

14.2 FPT Algorithm for Independent Feedback Vertex Set 266

14.2.1 Algorithm for Disjoint Independent Feedback Vertex

Set. 267

14.2.2 A Family of Counter Examples to Song’s Algorithm for IFVS 277

14.3 Exact Algorithm for Independent Feedback Vertex Set 277

14.4 On the Number of Minimal Independent Feedback Vertex Sets 281

15 Independent Set Covering Family- Recycling Algorithms for Inde-
pendent Vertex Deletion Problems 287

15.1 Independence Covering Family and Lemma 290

15.1.1 Extensions . 293

15.1.2 Nowhere Dense Graphs . 294

15.1.3 Barriers . 295

15.2 Algorithms for Bounded Degeneracy Graphs: Trading Independence
for Annotations . 297

16 Applications of the Independent Set Covering Lemma and Degen-
eracy Reduction Preserving Minimal Multicuts 303

16.1 Single-Exponential FPT Algorithms for Stable s-t Separator and
Stable Odd Cycle Transversal 304

16.2 Stable Multicut is FPT . 307

VI Conclusion 309

17 Concluding Remarks and Further Directions 311

Bibliography 316

List of Figures

3.1 (c1, c2) is a (u, v) vertex-cut, the green parts correspond to the Z(ci, v)

and the blue vertices are the vertices ofX. P1 is a path of Type (u,�),
P2 is a path of Type (�,�) and P3 is a path of Type (�,�, v) with
y ∈ Y . 37

4.1 A directed edge odd cycle transversal (in blue) that is not a directed
feedback arc set. 54

7.1 (A) An instance of PVDS. (B) The graph H−v . The bold edges cor-
respond to a maximum matching. (C) An application of Rule 7.2.1. . 111

7.2 (A) An instance of PVDS. The gray vertex belongs to HI, and the
black vertices belong to HO. (B) An application of Rule 7.2.6. 115

8.1 The structures in the branching rules of PVDS 126

8.2 The structures in the branching rules of OTVDS 136

8.3 The structures in the branching rules of OFVDS 147

10.1 The Vertex Partition for the Sub-exponential XP bound. P = {P1]
· · ·]Pq} is the vertex partition obtained using chromatic coding and
Pi = Pi1] · · ·] Pi` is the partition obtained using Gallai-Milgram’s
Theorem. Each Pij contains a Directed Hamiltonian Path. The cut
arcs of all the cuts that respect P are marked in blue. 172

10.2 The vertex partition for the Sub-exponential FPT bound. Here the
vertices are arranged in the linear order respecting the d-out-degeneracy
sequence of D. Here k = 2 and the partition of the vertices into the
respective sets is demonstrated using appropriate colors. 177

v

12.1 The construction in the proof of Theorem 12.0.1. 203

13.1 The graphs G,D and D′ are displayed in left-to-right order, T =

{{s, t}, {s, t′′}, {s′, t′}} and T ′ = {{s1, t1}, {s2, t
′′
1}, {s′1, t′1}}. 248

13.2 Here, the ellipse contains the set of vertices reachable from t in D′−S,
denoted by Rt. The rectangle colored grey represents N+(Rt) which
includes v . 250

13.3 The graph at the right hand side is obtained by the reduction on the
graph at the left hand side, where k = 3 and Y is the set of black
colored vertices. Thick lines represents all possible edges between two
sets of vertices. 252

14.1 Reduction Rule 2 . 268

14.2 Illustration of Reduction Rule 14.2.8. 269

vi

Chapter 17

Concluding Remarks and Further
Directions

In Chapters 3 and 4, we presented a sparsification procedure for the class of acyclic
digraphs (or more generally, “almost” acyclic) of bounded independence, to preserve,
both normal and parity-based, reachability from a given terminal set S to a given
terminal set T under the failure of any set of at most k arcs. In particular, it out-
puts a digraph whose size is completely independent of n and polynomial in k, while
even the simple classes of directed paths and tournaments admit no sparsifier whose
output is a digraph of less than n−1 arcs already when k = 1. Apart from being in-
teresting on its own from the perspective of fault tolerance, we also showed that our
sparsification procedure finds applications in kernelization. Specifically, we proved
that the classic Directed Feedback Arc Set problem as well as Directed

Edge Odd Cycle Transversal (which, in sharp contract, is W[1]-hard on gen-
eral digraphs) admit polynomial kernels on bounded independence number digraphs.
In fact, for any p ∈ N, we designed a polynomial kernel for hitting all cycles of length
` where (` mod p = 1). Additionally, we derived complementary results that assert
the NP-hardness of DEOCT on tournaments, as well as its admittance of a sub-
exponential time parameterized algorithm on digraphs of bounded independence.
Our result, currently, holds when the input digraph D is “almost acyclic” and has
bounded independence number. From the example of the tournament described in
the chapter (the one that is obtained by taking a transitive tournament and re-
versing the arcs along the Hamiltonian path defined by its topological ordering), it
seems that some notion of “almost acyclic” might be necessary to have fault toler-
ant subgraphs whose size avoid the dependence on n. On the other hand, it might
be possible to ask for something weaker than bounded independence number. For

311

example, forbidding the existence of an induced Pα, the directed path on α vertices.

Question 1: Does FTR(S, S) admit a subgraph of size independent of n on digraphs
that are “almost acyclic” and have no induced Pα, for some fixed positive integer α?

It is not very difficult to observe that our results (Lemmas 3.1.1 and 4.2.1) also
hold when the input graph is undirected and has bounded independence number. It
would be interesting (because of the arguments discussed earlier) if one could obtain
similar results when the input undirected graph has no induced Pα.

Question 2: Does FTR(S, S) admit a subgraph of size independent of n when the
input graph is undirected and has no induced Pα, for some fixed positive integer α?

It would also be interesting to discover other (di)graph classes where the depen-
dence on n of the size of the output subgraph can be sublinear, for example, log n,
for FTR(S, S) and also for other fault tolerant graph properties.

Question 3: Apart from Directed Edge Odd Cycle Transversal, which
other problems that are W[1]-hard on general digraphs become FPT (or even admit
a polynomial kernel) on digraphs of bounded independence?

In Chapter 5, we studied DFVS by parameterizing it by the distance of the input
graph to a graph of bounded treewidth, in addition to the solution size.

Question 4: Does DFVS/DFVS+Tw-η Mod admits a uniform kernel? That
is, whether there exists a kernel of size f(η)(k`)c for DFVS/DFVS+Tw-η Mod,
where c is a fixed constant that does not depend on η.

We remark that although our kernel has size (k`)O(η2), the kernelization algorithm
runs in time g(η)nO(1) for some function g that depends only on η. Second, another
interesting direction of work is to consider the kernelization complexity of DFVS

with various other structural parameters. One can also consider the question of
designing a 2O(k)nO(1)-time algorithm for DFVS in these settings. In particular,
consider the following question.

Question 5: Does DFVS/DFVS+Tw-η Mod admit 2O(k+`)nO(1)-time algorithm?

Finally, we reiterate the famous open questions.

Question 6: (i) Does DFVS admit a polynomial kernel, and (ii) does there exist a
2O(k)nO(1) time algorithm for DFVS?

In Chapters 6 and 7, we showed that OFVDS admits a kernel of size O(k2),
and that unless coNP ⊆ NP/poly, this bound is essentially tight. Furthermore, we

312

showed that PVDS admits a kernel of size O(k3). This result significantly improves
upon the one by Mnich and van Leeuwen [164], who showed that PVDS admits a
kernel of size O(k18).

Question 7: Does PVDS admit a kernel of size O(k2)?

In Chapter 10, we designed sub-exponential time parameterized algorithms for
DFAS, Directed Cutwidth and OLA on digraphs of bounded independence
number. We thus significantly generalized known results for the restricted case of
input digraphs that are tournaments. Towards this, we obtained an upper bound
on the number of k-cuts in digraphs in Dα. This bound is our main contribution,
which we believe will find further implications in the future, and will be of inde-
pendent interest. On the kernelization front of these problems, we already gave a
polynomial kernel for DFAS on digraphs of bounded independence number and a
polynomial kernel for OLA already exists for general digraphs [14]. Also, Directed

Cutwidth cannot admit a polynomial kernel on semi-complete digraphs but ad-
mits a polynomial Turing kernel on semi-complete digraphs [14]. Along these lines
an answer to the following question would close the kernelization picture for these
problems on the class of bounded independence number digraphs.

Question 8: Does Directed Cutwidth admit a polynomial Turing kernel onDα?

In Chapter 14, we studied the Independent Feedback Vertex Set problem
in the realm of parameterized algorithms, moderately exponential time algorithms
and combinatorial upper bounds. We gave a deterministic algorithms for the prob-
lem running in times O∗(4.1481k) and O∗(1.5981n). Finally, we showed that the
number of minimal ifvses in any graph on n vertices is upper bounded by 1.7480n.
We also complemented the upper bound result by obtaining a family of graphs where
the number of minimal ifvses is at least 3n/3. We state a few concrete open problems
in this context below.

Question 9: Does Independent Feedback Vertex Set admit a kernel of size
O(k2)?

Question 10: Could we close the gap (or even bring it closer) between the upper
bound and the lower bounds on the number of minimal ifvses in any graph on n

vertices?

In Chapters 13 and 15, we presented two new combinatorial tools for the design of
parameterized algorithms. The first was a simple linear time randomized algorithm
that given as input a d-degenerate graph G and integer k, outputs an independent

313

set Y , such that for every independent set X in G of size at most k the probability

that X is a subset of Y is at least
((

(d+1)k
k

)
· k(d+ 1)

)−1

. We also introduced the
notion of a k-independence covering family of a graph G. The second tool was a new
(deterministic) polynomial time graph sparsification procedure that given a graph G,
a set T = {{s1, t1}, {s2, t2}, . . . , {s`, t`}} of terminal pairs, and an integer k returns
an induced subgraph G? of G that maintains all of the inclusion minimal multicuts
of G of size at most k, and does not contain any (k + 2)-vertex connected set of
size 2O(k). Our new tools yields new FPT algorithms for Stable s-t Separator,
Stable Odd Cycle Transversal, and Stable Multicut on general graphs
(contained in Chapter 16), and for Stable Directed Feedback Vertex Set

on d-degenerate graphs (Chapter 15), resolving two problems left open by Marx et
al. [159]. Observe that similar results will hold for a variant of these problems where
instead of the solution being independent, one asks for a solution that induces an
r-partite graph, for some fixed r. To get this, one can first find a k-independent set
covering family and then guess/choose r sets in this family such that each partition
of the r-partite solution is contained inside exactly one of the chosen sets. By doing
so, we again reduce our problem to an annotated problem where one needs to find
a solution which is contained in the union of the r chosen sets. One of the most
natural direction to pursue further is to find more applications of our tools than
given by us. Apart from this there are several natural questions that arise from our
work.

Question 11: In the Stable Multicut problem we ask for a multicut that forms
an independent set. Instead of requiring that the solution S is independent, we could
require that it induces a graph that belongs to a hereditary graph class G. Thus,
corresponding to each hereditary graph class G, we get the problem G-Multicut.
Is G-Multicut FPT? Concretely, if S is the set of forests then is S-Multicut FPT?

Question 12: Given a hereditary graph class G, we can define the notion of k-G
covering family, similar to k-independence covering family. Does there exist other
hereditary families, apart from the family of independent sets, such that k-G covering
family of FPT size exists?

Observe that for all the problems whose non-stable version admits a 2O(k)nO(1)

time algorithm on general graphs, such as s-t Separator and Odd Cycle Transver-

sal, we get a 2O(k)nO(1) time algorithm for these problems on graphs of bounded
degeneracy. As a corollary, we get a 2O(k)nO(1) time algorithm for these problems on
planar graphs, graphs excluding some fixed graph H as minor or a topological minor
and graphs of bounded degree. A natural question in this regard is the following.

314

Question 13: Do Stable s-t Separator and Stable Odd Cycle Transver-

sal admit a 2O(k)nO(1) time algorithm on general graphs?

315

Summary

With this thesis we advance the algorithmic tool-kit, and contribute to the existing
literature concerning parameterized (di)graph cut problems. The study has been
conducted from three broad perspectives. The first is the urge to understand and
contribute to the otherwise limited algorithmic tool-kit available to tackle digraph
(cut) problems. The second concerns the exploration of the rich structural and algo-
rithmic tool-kit available to tackle undirected graph cut problems, thereby resulting
in engineering some of the existing techniques and exhibiting a broader scope of
their applicability, together with contributing more advanced tools to the existing
machinery. The third concerns building tools that allow “re-usability” of algorithms
to solve problems under the presence of certain additional constraints.

Towards the above objectives, the concrete questions that are addressed in the
thesis are inspired from some major open problems and concerns in the field of
parameterized complexity and kernelization. Some of these being the famously ac-
tive open problem of the existence of a polynomial kernel for Directed Feedback
Vertex/Arc Set, sub-exponential parameterized algorithms for digraph problems be-
yond tournaments, parameterized algorithms for partitioning problems beyond the
classical partitioning problems, the existence of single exponential FPT algorithms
for stable versions of classical cut problems and the parameterized complexity of
Stable Multicut. We address the above questions either in full or extend the
results known in literature that take steps to come closer to resolving the actual
question. Below we describe the specific results that we obtain. We also remark
that the below mentioned results, in several cases, lead to various enticing insights.
In particular, through one of our results, we establish connections between kernel-
ization and fault-tolerant subgraphs. Another result is based on a novel application
of important separators in the design of polynomial kernels, which is a rare sight in
kernelization. Yet other results give an interesting and useful combinatorial insight
about the problem at hand.

i

The question of the existence of a polynomial kernel for Directed Feedback

Vertex/Arc Set (DFV/AS) in general still remain open. We generalize all the
results that exist in literature that attempt to come closer to answering this big
open question in some way. In particular, the study for the polynomial kernel for
DFV/AS has been conducted on three fronts: by restricting the input digraph, by
enriching the parameter and by restricting the output DAG. In the first category,
positive answers are known for DFAS when the input is a tournament or some vari-
ation of it. We extend this result by designing a polynomial kernel for DFAS when
the input digraph has a bounded independence number. In the second category,
DFVS has been shown to admit a polynomial kernel when the parameter is the
feedback vertex set of the underlying undirected graph. We generalize this result by
showing that DFVS admits a polynomial kernel when the parameter is the solution
size plus the size of a treewidth-η modulator of the underlying undirected graph, for
any positive integer η. In the third category, polynomial kernels have been shown for
the deletion to out-tree, out-forest and pumpkin problems. We first give improved
kernels for the deletion to out-forest and pumpkin problems. We later show that
deletion to DAGs of bounded treewidth admit a polynomial kernel.

The second question concerns the non-availability of sub-exponential FPT algo-
rithms for digraph problems beyond tournaments. Towards this, we extend the de-
sign of sub-exponential FPT algorithms for various problems on digraphs of bounded
independence number.

Towards our study concerning the undirected cut problems, we extend the scope
of applicability of the special tree decomposition designed by Cygan et al. [69] to
prove that Minimum Bisection is FPT. Bollobás and Scott coined the terms clas-
sical and judicious partitioning problems. In classical partitioning problems, the
goal is to find a partition that minimizes or maximizes some objective. In judicious
partitioning problems, the goal is to find a partition that minimizes or maximizes
several objectives simultaneously. Clearly, going by the definition of these parti-
tioning problems, judicious partitioning problems are harder (in terms of finding
algorithms) than classical partitioning problems. We study a judicious partitioning
problem called Balanced Judicious Bipartition (BJB) and show, using the
special tree decomposition of Cygan et al. [69] together with layers of randomized
contractions, that BJB is FPT. Thus, we broaden the scope of applicability of the
special tree decomposition of Cygan et al. [69] from designing an FPT algorithm
for a classical partitioning problem (Minimum Bisection) to a judicious partition-
ing problem. Another tool of our study is the treewidth reduction lemma by Marx

ii

et al. [159] that preserves minimal separators of a certain size while bounding the
treewidth of the graph as a function of the separator size. The treewidth reduction
lemma of Marx et al. [159] also preserves all minimal multicuts of a fixed size but
in this case the treewidth of the resulting graph is bounded in terms of both the
multicut size and the number of terminal pairs in the input. We design a sparsi-
fication procedure that preserves minimal multicuts and does degeneracy reduction
where the degeneracy is bounded only in terms of the solution size. We later develop
another tool that together with the newly designed degeneracy reduction resolves
one of the open problems posed by Marx et al. [159].

Finally, we consider vertex deletion problems with an additional constraint of
independence on the solution. Towards this, we first design an improved FPT al-
gorithm for Independent Feedback Vertex Set (IFVS) with running time
O?(4.1481k)1 that beat the then best known algorithm for IFVS that ran in time
O?(5k).We then designed a tool that allows to trade the additional constraint of
independence with annotations for the design of FPT algorithms for Independent

Vertex Deletion problems on bounded degeneracy graphs. Typically, annota-
tions are easy to deal with, compared to the independence constraint, specially for
cut problems where a torso of some kind usually work to take care of annotations.
With this newly established tool and our tool of degeneracy reduction (from the
previous paragraph), and treewidth reduction of Marx et al. [159], we resolve all the
open problems posed by Marx et al. in [159], viz. the existence of single-exponential
algorithms for Stable s-t Separator and Stable Odd Cycle Transversal,
and an FPT algorithm for Stable Multicut.

1O? hides polynomial factors.

iii

Chapter 1

About the Thesis

(Di)Graph cut problems constitute a class of problems where given a graph the
goal is to find a minimum number of vertices or edges whose deletion makes the
resulting graph satisfy some global separation property. A fundamental (di)graph
cut problem is the s-t Separator/Cut problem, where given a (di)graph and two
fixed vertices s, t of the graph, the goal is to find a minimum number of vertices/edges
whose deletion disconnects s from t. It is a classical polynomial time problem whose
several natural generalizations turns out to be NP-hard. For example, consider the
Multiway Cut (MWC) problem where instead of being given two vertices s, t, one
is given a set of vertices {t1, . . . , tp} and the goal is to delete a minimum number
of edges such that the resulting graph has no path from ti to tj, for any i, j ∈
{1, . . . , p}, i 6= j. Clearly, when p = 2, the MWC is exactly the s-t Cut problem.
Another classical cut problem that generalizes both s-t Cut and MWC is the
Multicut (MC) problem. In the MC problem one is given a set of pairs of vertices
{(s1, t1), . . . , (sp, tp)} and the goal is to delete a minimum number of edges such that
the resulting graph has no path from si to ti, for every i ∈ {1, . . . , p}. Moreover,
there are many other graph problems like the Feedback Vertex Set (FVS) and
Odd Cycle Transversal (OCT) problems, where the goal is to delete vertices
such that the resulting graph has no cycles and odd cycles respectively. This at the
first sight may not resemble the traditional cut problem formulations, but it turns
out that appropriate combinatorial viewpoints of the problem exhibits that at the
heart of these problems lie a cut problem [51, 187]. We will elaborate and explore
these relations later in the thesis. Yet another is the Minimum Bisection problem
where is goal is to partition the vertex set of the input graph into (roughly) equal
parts such that the number of edges with one endpoint in each part is minimized [69].

3

The broad goal of this thesis is to conduct an algorithmic study of these (di)graph
cut problems in the milieu of parameterized complexity and kernelization. Param-
eterized complexity is the study of multivariate analysis of algorithms for NP-hard
problems. Classically the growth of the running time of algorithms is measured as
a function of the input size. Typically, the notion of efficiency is associated with
algorithms whose running time growth is a polynomial function of the size of the
input. For NP-hard problems, unless P = NP , there cannot be efficient algorithms.
The role of parameterized complexity is to segregate the running time analysis of
the algorithms into two separate components – one that measures the growth of the
running time as a function of the input size and second that measures the growth as
a function of a fixed parameter. Typically, the goal is to design algorithms where the
first component described above grows polynomially or show that such algorithms
do not exist. Formally speaking, an instance of a parameterized problem is a pair
(I, k), where I denotes an instance of the problem and k is a parameter. An algo-
rithm for this parameterized problem is said to be fixed-parameter tractable (FPT)
if its running time is f(k) · |I|O(1), where f() is a function that depends on the pa-
rameter k alone. If a parameterized problem Π admits such an algorithm then it is
said to be FPT with respect to the parameter k. There is also a hardness theory for
fixed-parameter tractability. Some problems are unlikely to admit FPT algorithms,
under certain complexity theoretic assumptions. For the purposes of this thesis, we
call such problems W-hard. FPT algorithms do not just yield efficient algorithms
when the input instance has a small parameter but also give an insight as to what
makes the problem hard. A field very closely related to parameterized complexity
is the field of kernelization. Simply put, kernelization is efficient pre-processing with
guarantees for parameterized problems. Formally, kernelization of a parameterized
problem Π is a polynomial time algorithm that takes an instance (I, k) of Π and
returns an equivalent instance (I ′, k′) such that |I ′|, k′ ≤ g(k), where g(·) is some
function that only depends on the parameter k. In this case, the problem Π is said
to admit a kernel of size g(k). If g(k) is a polynomial function, then Π is said to
admit a polynomial kernel. The connection between FPT and kernelization is made
precise with the following theorem that says that a decidable problem is FPT if and
only if it admits a polynomial kernel [83]. In fact, if a parameterized problem admits
an algorithm with running time f(k) · |I|O(1), then it admits a kernel of size f(k).

The typical questions around which the study in this thesis has been conducted
concern the existence of FPT algorithms or polynomial kernels for various (di)graph
cut problems, or improving the f(k) factor in the running time or the size of the
polynomial kernel of the existing algorithms. An important remark to make here is

4

that the above set of goals were achieved, even though at the forefront, the motives
behind the study were more generic. We describe the broad objectives under which
the study in this thesis was conducted. These can be classified into 3 categories
which are briefed below. We will elaborate on them later.

The first objective was to understand the otherwise mysterious and complex na-
ture of digraphs. A lot of problems on digraphs generally tend to be more difficult to
attack than their undirected counterparts. This difficulty is visibly obvious consid-
ering the dearth of algorithmic tool-kit for digraph problems. The goal here was to
contribute to the otherwise limited understanding of some digraph (cut) problems.
This study led to improved and powerful results while establishing new connections
between varied fields.

The motivations of the second objective stems from the contrasting rich and tool-
kit available for undirected cut problems. The area has received notable attention
and has led to the creation and invention of promising techniques. In the second
part, we explore some of these promising tools, resulting in engineering some of
them to solve harder problems thereby showcasing their wider applicability. We
also develop some new tools that finds application in our third part and together
with our tools from the next part, resolve all the open problems posed by Marx et
al. in [159].

The third objective was to deal with an arguably unlikable trait of algorithms
which is their non-reusability under a slight change in the question that they are
designed to solve. We design a tool that allows re-usability of algorithms of vertex
deletion problems to solve certain variants of it.

The above three objectives are studied in three parts of the thesis. We elaborate
on the study towards each of these objectives below.

1.1 Digraph Cut Problems: Advancing the Other-

wise Limited Tool-Kit

Even though digraphs model a lot of real life problems so naturally, we are still a long
way in understanding the behaviour of problems on general digraphs. Directed vari-
ants of most of the cut problems described above viz. Directed MWC (DMWC),
Directed MC (DMC), Directed FVS (DFVS) and Directed OCT (DOCT)

are exceptionally hard in the sense that the problems are not just NP-hard but also

5

APX-hard [47, 86, 150, 131, 124, 78]. In the area of parameterized complexity, the
problems have been open for a very long time and recently their FPT statuses have
been resolved. DMWC and DFVS have been shown to be FPT [57, 51] while the
other two are W-hard [178, 150]. On the kernelization complexity front, it is known
that DMWC cannot admit a polynomial kernel even when the number of termi-
nals is two [67], whereas the question for DFVS still remains open. Again, on the
algorithm design front, the race for asymptotically better running times exist. In
particular, the question of the existence of an algorithm for DFV/AS (Directed

Feedback Arc Set (DFAS) is the arc deletion version of DFVS) that runs in
time O∗(2O(k)) has been long standing. Yet another looked out algorithms are the
ones that run in sub-exponential FPT time, that is, algorithms with running time
O∗(2o(k)). Sub-exponentiality in FPT is a rare trait and in the case of digraph
problems, it is known only when certain problems are restricted to tournaments.

The first two parts of the thesis is motivated by the open questions concerning the
existence of a polynomial kernel for DFV/AS, a O∗(2O(k)) algorithm for DFVS and
the design of sub-exponential FPT algorithms beyond tournaments. We formally
define the DFV/AS problem here.

Directed Feedback Vertex/Arc Set (DFV/AS) Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist S ⊆ V (D)/ S ⊆ E(D) of size at most k such that
D − S is a DAG?

1.1.1 Towards a Polynomial Kernel for DFV/AS

Feedback Set problems form a family of fundamental combinatorial optimization
problems. The input for Directed Feedback Vertex Set (DFVS) (Directed

Feedback Arc Set (DFAS)) consists of a directed graph (digraph) D and a
positive integer k, and the question is whether there exists a subset S ⊆ V (D)

(S ⊆ E(D)) such that the graph obtained after deleting the vertices (edges) in S is
a directed acyclic graph (DAG). Similarly, the input for Undirected Feedback

Vertex Set (UFVS) (Undirected Feedback Edge Set (UFES)) consists of
an undirected graph G and a positive integer k, and the question is whether there
exists a subset S ⊆ V (G) (S ⊆ E(G)) such that the graph obtained after deleting
the vertices (edges) in S is a forest.

6

All of these problems, excluding Undirected Feedback Edge Set, are
NP-complete. Furthermore, Feedback Set problems are among Karp’s 21 NP-
complete problems and have been topic of active research from algorithmic [9, 12,
18, 39, 46, 48, 51, 54, 70, 72, 90, 114, 122, 126, 132, 182, 121] as well as struc-
tural points of view [88, 123, 127, 180, 186, 192, 193]. In particular, such problems
constitute one of the most important topics of research in Parameterized Complex-
ity [39, 48, 51, 54, 70, 72, 126, 122, 132, 182, 121], spearheading development of new
techniques.

For over a decade, resolving the parameterized complexity of DFV/AS was
considered one of the most important open problems in parameterized complexity
(On general digraphs, the problems DFVS annd DFAS are equivalent [65].) . In
fact, this question was posed as an open problem in the first few papers on fixed-
parameter tractability (FPT) [80, 81]. In a breakthrough paper, DFVS was shown
to be fixed-parameter tractable parameterized by the solution size k by Chen et
al. [51] in 2008. Specifically, Chen et al. [51] developed an algorithm that solves
DFAS in time O(k! · 4k · k4 · nO(1)), based on the powerful machinery of important
separators [65]. Subsequently, it was observed that, in fact, the running time of
this algorithm is O(4k · k! · k4 · nm) (see, e.g., [65]). Since then, the quest to assert
the existence of a polynomial kernel for this problem has been unfruitful. Over
the years, it has been repeatedly posed as a major challenge in the subfield of
Kernelization [65, 83, 158, 155] (also see [1] for a number of workshops and schools
where it was posed as an open problem). In fact, the two specific problems whose
polynomial kernelization complexity is completely unknown and their resolution is
raised most frequently are DFAS and Multiway Cut [65, 83]. The existence of a
polynomial kernel for DFVS is open even when the input digraph is a planar digraph.
At the front of parameterized algorithms, the recent work by Lokshtanov et al. [149]
improved upon the polynomial factor of the aforementioned algorithm by the design
of an O(k!4kk5(m + n))-time algorithm. It is known that unless the Exponential
Time Hypothesis (ETH) is false, parameterized by the treewidth tw of the underlying
undirected graph, DFAS cannot be solved in time 2o(tw log tw) · nO(1) [33]. However,
it is unknown whether DFAS is solvable in time 2o(k log k) · nO(1). In this regard, the
only lower bound known is of 2Ω(k) · nO(1) under the ETH [65, 149].

Particular attention has been given to the parameterized complexity of DFAS on
tournaments. The classical complexity (NP-hardness) of DFAS on tournaments has
a curious history. More than two decades ago, this problem was conjectured to be
NP-hard by Bang-Jensen and Thomassen [11]. In 2008, Ailon et al. [4] proved that

7

this problem does not admit a polynomial-time algorithm unless NP⊆BPP. Later,
the reduction of Ailon et al. [4] was derandomized independently by Alon [5] and
Charibt et al. [41], to prove that DFAS on tournaments is NP-hard. With respect
to Parameterized Complexity, Alon et al. [7] proved that DFAS on tournaments
admits a sub-exponential time parameterized algorithm. We talk about this set
of literature in more detail in the next section. On tournaments, Bessy et al. [20]
have proved that DFAS admits a linear-vertex kernel (improving upon polynomial
kernels given in [7, 79]).

As of now, the question regarding the polynomial kernel for DFV/AS has been
attacked at from the following different viewpoints. Various restrictions have been
considered like restricting the input of the problem, enriching the parameter or
restricting the output. We explore and extend the results obtained in all these
different directions.

1.1.1.1 DFAS: Restricting the Input

Polynomial kernels have been known for DFAS when the input digraph is restricted
to be a tournament or certain variation of a tournament like a semi-complete digraph,
a bipartite tournament [163], a locally tournament [10] or some Φ-decomposable
digraphs including quasi-transitive digraphs [10]. In this thesis, we extend the poly-
nomial kernel result for DFAS to the class of digraphs of bounded independence
number. This class of digraphs was first considered by Fradkin and Seymour to
extend the polynomial time algorithm result for the Edge Disjoint Paths prob-
lem for fixed number of paths, beyond tournaments [106]. Our result is obtained by
establishing connections of kernelization with fault-tolerant subgraphs. In particular,
to design a polynomial kernel for DFAS on the class of bounded independence num-
ber digraphs, we establish its connection with reachability preserving fault-tolerant
subgraphs and prove results for reachability preserving fault-tolerant subgraphs. We
take this connection further by proving similar results for parity reachability fault-
tolerant subgraphs thereby leading to a polynomial kernel for Directed Edge Odd

Cycle Transversal (DEOCT) problem (defined below) when the input digraph
has bounded independence number.

Directed Edge Odd Cycle Transversal (DEOCT) Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S has no
directed odd cycles?

8

This is the first polynomial kernel that has been designed for the DEOCT prob-
lem. Also these connections have extended their contributions to the field of fault-
tolerant subgraphs too. The kernelization result of DEOCT is complemented by
showing that DEOCT is NP-hard on tournaments. We obtain this result by proving
that DEOCT on tournaments is equivalent to DFAS on tournaments. This set of
results appeared in the proceedings of the 11th Innovations in Theoretical Computer
Science (ITCS) 2020.

In addition to the rich history of the DFAS problem in theoretical studies, the
elimination of directed feedback loops is highly relevant to rank aggregation, Vot-
ing Theory, the resolution of inconsistencies in databases, and the prevention of
deadlocks [195, 20, 110, 130, 51, 92]. While in a wide-variety of applications, most
relations between the entities in a network are both present and known, it is gen-
erally unrealistic (in real-world partial and noisy data) that all relations will be so.
Then, the usage of a bounded independence digraphs naturally comes into play.

1.1.1.2 DFVS: Enriching the Parameter

Bergougnoux et al. [19] studied the DFVS problem with a possibly bigger parameter
(bigger than the solution size), the size of the feedback vertex set (fvs) of the underly-
ing undirected graph. They designed a polynomial kernel for DFVS parameterized
by fvs. In this thesis, we design a polynomial kernel for DFVS parameterized by the
solution size plus the size of a treewidth-η modulator of the underlying undirected
graph, for any positive integer η. A treewidth-η modulator of an undirected graph
is a set of vertices whose deletion results in a graph of treewidth at most η. Observe
that fvs is a treewidth-1 modulator. Since parameterized by the size of a treewidth-
η modulator alone, for any η ≥ 2, DFVS cannot have a polynomial kernel (under
reasonable complexity assumptions) [68], our polynomial kernel result for DFVS

generalizes that of Bergougnoux et al. [19]. The main highlight of our result is a
polynomial time procedure that computes the union of solutions of exponentially
many instances of Skew Multicut that have small solutions. We believe that
this procedure could be of independent interest when considering the design of a
“real” polynomial kernel for DFVS. This result appeared as a brief announcement
in the proceedings of the 45th International Colloquium on Automata, Languages,
and Programming (ICALP 2018) and in the proceedings of the Algorithms and Data
Structures Symposium (WADS 2019).

9

1.1.1.3 DFVS: Restricting the Output

Mnich and Leewan [164] started the study of problems of deletion to classes of
acyclic digraphs. In particular, they considered the classes of out-forests, out-trees
and (directed) pumpkins. An out-tree is a digraph where each vertex has in-degree
at most 1 and the underlying (undirected) graph is a tree. An out-forest is a disjoint
union of out-trees. A digraph is a pumpkin if it consists of a source vertex s and a
sink vertex t, s 6= t, together with a collection of internally vertex-disjoint induced
directed paths from s to t. Here, all vertices except s and t have in-degree 1 and
out-degree 1. The corresponding deletion problems are defined below.

Out-Forest Vertex Deletion Set (OFVDS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that F = D− S is an
out-forest?

Out-Tree Vertex Deletion Set (OTVDS) and Pumpkin Vertex Dele-

tion Set (PVDS) are defined in a similar manner, where instead of an out-forest,
F should be an out-tree or a pumpkin, respectively. Mnich and van Leeuwen [164]
showed that OFVDS and OTVDS admit kernels of size O(k3) and PVDS admits a
kernel of size O(k18). The intention of their project was that restricting the output
digraph to be a special kind of a DAG could bring us closer to understanding the
DFVS (deletion to DAGs) problem. We initially improved their kernel results by
designing kernels of size O(k2) and O(k3) for Out-forest and Pumpkin deletion
respectively. We also prove that the size O(k2) is asymptotically tight under reason-
able complexity assumptions. These results appeared at the Journal of Computer
and System Sciences (JCSS 2017) and in the proceedings of the 27th International
Symposium on Algorithms and Computation (ISAAC 2016).

For the mentioned problems, we also designed faster FPT algorithms with run-
ning times O∗(2.732k), O∗(2.562k) and O∗(2.562k) for Out-forest, Out-tree

and Pumpkin deletion problems respectively. These results appeared at the Theory
of Computing Systems (TOCS 2018).

We later designed an algorithm using the existing tools from the protrusion
machinery and showed that in fact, the problem of deletion to DAGs of bounded
treewidth (Fη-Vertex Deletion, defined below) admits a polynomial kernel.
Here, by treewidth of a directed graph we mean the treewidth of its underlying

10

undirected graph. Observe that all out-forest, out-tree and pumpkin have treewidth
at most 2. This result appeared in the proceedings of the Algorithms and Data
Structures Symposium (WADS 2019). For a positive integer η > 0, let Fη denote
the family of digraphs of treewidth at most η.

Fη-Vertex Deletion Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist a set of at most k vertices, say S, such that
D − S ∈ Fη?

1.1.2 Sub-Exponential FPT Algorithms Beyond Tournaments

The next question we address concerns sub-exponential FPT algorithms. These are
the algorithms whose running times are of the form 2o(k) · nO(1), where k is the pa-
rameter and n is the input size. Sub-exponential FPT algorithms for problems on
digraphs had so far only been known for certain problems when the input digraph
is a tournament. We extend this barrier and designed sub-exponential FPT algo-
rithms for certain digraph problems (including DFAS and DEOCT) when the input
digraph has bounded independence number. Further motivations of this study are
elaborated below.

Tournaments form one of the most well studied families of digraphs, both al-
gorithmically and structurally. In particular, whenever we try to generalize results
that hold for undirected graphs to digraphs, arguably, one of the first families to
consider is that of tournaments. Indeed, this has been the case when designing
parameterized algorithms or approximation algorithms. Two problems that have
been extensively studied on tournaments are Directed Feedback Vertex Set

(DFVS) and Directed Feedback Arc Set (DFAS).

In the realm of approximation, we know that DFVS admits a 7/2-approximation
algorithm on tournaments [165]. Recently it has been shown that DFVS admits a
2-approximation via a randomized algorithm and a 2-approximation in deterministic
quasi-polynomial time [142]. On the other hand, DFAS admits a PTAS on tourna-
ments [130]. For DFVS on tournaments, the best known parameterized algorithm
runs in time 1.618k · nO(1) [137]. Prior to this the fastest known parameterized al-
gorithm for DFVS ran in time 2k · nO(1) [79], based on iterative compression. As in
the case of approximation, from the viewpoint of Parameterized Complexity, DFAS

11

on tournaments is “easier” than DFVS on tournaments. Here, we mean that for
DFAS on tournaments, sub-exponential time parameterized algorithms are known.
The quest for sub-exponential time parameterized algorithms for DFAS has a rich
history. For a long time (even after the 2k ·nO(1)-time algorithm for DFVS was dis-
covered), the question of the existence of an algorithm for DFAS that runs in time
2k ·nO(1) was still being posed as an open problem. Based on a generic method called
chromatic coding, Alon et al. [7] gave the first sub-exponential time parameterized
algorithm for DFAS, which runs in time 2O(

√
k log2 k) · nO(1). This was the the first

problem not confined to planar graphs (or generalizations such as apex-minor-free
graphs) that was shown to admit a sub-exponential time parameterized algorithm.
Later, simultaneously and independently, Feige [91] and, Karpinski and Schudy [125]
gave faster algorithms that run in time 2O(

√
k) · nO(1). Fomin and Pilipczuk [102]

presented a general approach, based on a bound on the number of k-cuts (defined
below) in transitive tournaments, that achieved the same running time for DFAS.
Using this framework they also designed the first sub-exponential time algorithms
for Directed Cutwidth and Optimal Linear Arrangement (OLA) (defined
below) on semi-complete digraphs.

Towards the definition of Directed Cutwidth, letD be a digraph. ForX, Y ⊆
V (D), let E(X, Y) = {(u, v) ∈ E(D) | u ∈ X, v ∈ Y } denote the set of arcs from X

to Y . For an integer q, denote [q] = {1, . . . , q}. The width of an ordering (v1, . . . , vn)

of V (D) is maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|. The cutwidth of D, denoted
by ctw(D), is the smallest possible width of an ordering of V (D). Now, Directed

Cutwidth is defined as follows.

Directed Cutwidth Parameter: k
Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

Towards the definition of OLA, let D be a digraph. For two integers i, j, let [i >

j] evaluate to 1 if i > j, and to 0 otherwise. The cost of an ordering σ = (v1, . . . , vn)

of V (D) is
∑

(vi,vj)∈E(D)(i − j) · [i > j]. In other words, every arc (vi, vj) directed
backward in σ costs a value equal to its length, where the length of (vi, vj) is the
distance between vi and vj in σ. Our last problem seeks an ordering of cost at most
k.

12

Optimal Linear Arrangement (OLA) Parameter: k
Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

Barbero et al. [14] studied Directed Cutwidth and OLA on semi-complete
digraphs (that is, digraphs where for any two vertices u and v, at least one of the
arcs (u, v) and (v, u) is present) and showed that these problems are NP-complete
on semi-complete digraphs. Furthermore, they showed that Directed Cutwidth

does not a admit polynomial kernel on semi-complete digraphs but admits a polyno-
mial Turing kernel. Finally, they obtained a linear vertex kernel for OLA on general
digraphs.

The measure of directed cutwidth plays a key role in the work of Chudnovsky
and Seymour [60] where it is shown that tournaments are well-quasi-ordered un-
der immersion. This measure was considered by Chudnovsky et al. [59] also in
their algorithmic study of Immersion on tournaments. Later, Fradkin and Sey-
mour [105] showed that the Directed Pathwidth and Topological Contain-

ment problems on tournaments are fixed parameter tractable (FPT). Fomin and
Pilipczuk [101, 102], and Pilipczuk [179] revisited these problems and gave the best
known algorithms for them on tournaments. Fradkin and Seymour [107], in order to
generalize their results from tournaments to broader families of graphs, introduced
the idea of digraphs that have bounded independence number. In particular, tour-
naments have independence number 1. They showed that Edge disjoint Paths

admits an XP algorithm (that is, an algorithm with running time of the form of
nf(k), where n is the number of vertices in the input graph and k is the number
of pairs between which one is asked to find edge-disjoint paths) on this family of
graphs.

We study well-known cut problems (DFAS, Directed Cutwidth and OLA)
on digraphs of bounded independence number. Our main contribution is proving
a sub-exponential FPT bound on the number of k-cuts (defined below) in the Yes

instances of these problems, which shows that the sub-exponential behaviour of
these problems on tournaments generalizes to digraphs of bounded independence
number. The running times of all these algorithms have a dependence of the size
of the largest input set in the input digraph, on the exponent of n. These results
appeared in the proceedings of the 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2018).

13

Later, using our kernelization results of Section 1.1.1.1, we give a sub-exponential
FPT algorithm for DEOCT on digraphs of bounded independence number. We also
design a new sub-exponential FPT algorithm for DFAS on digraphs of bounded
independence number. The running times of both these algorithms do not have any
dependence of the size of the maximum independent set in the input digraph, on
the exponent of n (where n is the number of vertices in the input digraph). This
result for DFAS clearly improves our previous result in terms of the asymptotic
running time. These results appeared in the proceedings of the 11th Innovations in
Theoretical Computer Science (ITCS) 2020.

1.2 Undirected Cut Problems: Exploring and Ex-

tending the Rich Tool-Kit

In contrast to digraphs, the undirected cut problems have a rich and promising algo-
rithmic tool-kit. We focus on the tools and techniques developed for parameterized
algorithms for undirected cut problems over the last decade. We mainly focus on
three of them: the randomized contractions of Chitnis et al. [164], the special tree
decomposition with highly connected bags of Cygan et al. [69] and the treewidth
reduction preserving minimal separators of Marx et al. [159]. With respect to the
special tree decomposition of Cygan et al., the tree decomposition was designed to
resolve the FPT status of a classical partitioning problem, the Minimum Bisection

problem [69]. Applications of this tree decomposition were not known beyond this
problem until our work. We extend the utility of this tree decomposition by using
it, with layers of randomized contractions, to prove that Balanced Judicious

Bipartition (BJB) is FPT.

Balanced Judicious Bipartition (BJB) Parameter: k1 + k2

Input: A multi-graph G, and integers µ, k1 and k2

Question: Does there exist a partition (V1, V2) of V (G) such that |V1 − V2| ≤ 1

and for all i ∈ {1, 2}, it holds that |E(G[Vi])| ≤ ki?

BJB is a judicious partitioning problem, a term coined by Bollobas and Scott, [25],
where unlike classical partitioning problems, the goal is to find a partition of the
graph which minimizes/maximizes over several sets of constraints simultaneously.
This criteria of minimizing/maximizing over several sets together makes judicious

14

partitioning problems harder compared to the classical partitioning problems. Thus,
we broaden the scope of applicability of the special tree decomposition of [69]. This
result appeared at SIAM Journal of Discrete Mathematics (SIDMA 2019) and in
the proceedings of the 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2017).

The treewidth reduction of Marx et al. [159] is an algorithm that preserves all
minimal s-t separators of size at most k of the given graph in a graph of treewidth
at most 2O(k). We design a tool that, given a graph G and a set of pairs of vertices
T = {(s1, t1), . . . , (sp, tp)} preserves all minimal T -multicuts of G of size at most k
in an induced subgraph of degeneracy at most 2O(k). A T -multicut of G is a set
of vertices whose deletion results in a graph that has no path from si to ti for any
i ∈ {1, . . . , `}. We call this Degeneracy Reduction Preserving Multicuts. This tool
finds useful applications in the last part of the thesis where we resolve all the open
problems posed by Marx et al. in [159]. This result appeared at the Transactions on
Algorithms 2020 (TALG 2020) and in the proceedings of the ACM-SIAM Symposium
on Discrete Algorithms 2018 (SODA 2018).

1.3 Towards the Re-Usability of Algorithms

In this section, we study vertex deletion problems where the solution additionally
has a constraint that it is required to form an independent set. Towards this, we
first study the Independent Feedback Vertex Set (IFVS) problem.

Independent Feedback Vertex Set (IFVS) Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Is there a set S of size at most k such that G− S has no cycles and
S is an independent set in G?

We gave a O?(4.1481k) algorithm for IFVS beating the then best algorithm
that ran in time O?(5k) (the current best known algorithm for this problem runs
in time O?((1 + φ2)k) where φ < 1.619 is the golden ratio). This result was also
complemented by other results for IFVS viz. an exact algorithm with running time
O?((1.5981)n) and an upper bound of 1.7485n on the number of minimal independent
feedback vertex sets in a graph of n vertices. These result appeared in the proceed-
ings of the 11th International Symposium on Parameterized and Exact Computation
(IPEC 2016).

15

Our parameterized algorithm (and also the existing parameterized algorithm) for
IFVS had to be designed from scratch and the additional constraint of independence
on the solution could not be tackled while re-using the existing algorithms for FVS.
This concern of not being able to use existing algorithms to solve the same problem
with some additional constraint (in this case the constraint being that the solution
is also required to form an independent set) led to the development of our next
tool. We call it the Independence Set Covering Lemma (ISCL). Using this tool,
one can re-use algorithms of vertex deletion problems, especially cut problems, for
designing algorithms for their variant with the independence constraint. Using our
ISCL, our degeneracy reduction preserving minimal multicuts and Marx et al. [159]
treewidth reduction preserving minimal separators, we resolve all the open problems
posed by Marx et al. [159], viz. the design of single exponential FPT algorithms for
Stable s-t Separator (defined below) and Stable Odd Cycle Transversal

(defined below), and also the design of an (single-exponential) FPT algorithm for
Stable Multicut (defined below). These results appeared in the proceedings of
the ACM-SIAM Symposium on Discrete Algorithms 2018 (SODA 2018).

Stable s-t Separator Parameter: k
Input: An undirected graph G, vertices s, t of G and a positive integer k.
Question: Is there a set S of at most k vertices of G such that G − S has no
path from s to t and S is an independent set in G?

Stable Odd Cycle Transversal Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Is there a set S of at most k vertices of G such that G − S has odd
cycle, that is, G− S is bipartite and S is an independent set?

Stable Multicut Parameter: k
Input: An undirected graph G, a set T = {(s1, t1), . . . , (s`, t`)} of pairs of vertices
of G and a positive integer k.
Question: Is there a set S of at most k vertices of G such that G − S has no
path from si to ti for any i ∈ {1, . . . , `} and S is an independent set?

16

1.4 Organization of the Thesis

Part II contains the results discussed in Section 1.1.1. Part III contains the results
discussed in Section 1.1.2. Part IV contains the results discussed in Section 1.2.
Part V contains the results discussed in Section 1.3. Finally, Part VI winds up the
thesis with concluding remarks.

17

Chapter 2

Preliminaries

2.1 Parameterized Complexity and Kernelization

We begin by defining the notion of a parameterized problem.

Definition 2.1.1 (Parameterized Problem). A parameterized problem is a language
L ⊆ Σ∗ × N, where Σ is a fixed and finite alphabet. Any (I, k) ∈ Σ∗ × N is called
an instance of L. (I, k) is called a Yes instance of L if (I, k) ∈ L, otherwise it is
called a No instance. For an instance (I, k), k is called the parameter.

We now define fixed-parameter tractability.

Definition 2.1.2 (Fixed-Parameter Tractability). Let L ⊆ Σ∗ × N be a parame-
terized problem. We say that L is fixed-parameter tractable (FPT) if there exists a
computable function f : N→ N, a constant c and an algorithm A that takes as input
an instance (I, k) of L, runs in time f(k) · |I|c and correctly decides if (I, k) ∈ L.

We next define kernelization.

Definition 2.1.3 (Kernelization). Let L ⊆ Σ∗×N be a parameterized problem. We
say that L admits a kernelization algorithm or kernel, if there exists a computable
function f : N→ N, a constant c and an algorithm A that takes as input an instance
(I, k) of L and outputs another instance (I ′, k′) in time |I|c with the following
properties.

• (I, k) ∈ L if and only if (I ′, k′) ∈ L, and

19

• |I ′|+ k′ = f(k).

If f(k) is a polynomial function in k, we say that L admits a polynomial kernel.

While designing our kernelization algorithm, we might be able to determine
whether the input instance is a Yes instance or a No instance. For the sake of
clarity, in the first case, we simply return Yes, and in second case, we simply return
No. To properly comply with the definition of a kernel, the return of Yes and
No should be interpreted as the return of a trivial Yes instance and a trivial No

instance, respectively.

To design our kernelization algorithm, we rely on the notion of a reduction rule.
A reduction rule is a polynomial-time procedure that replaces an instance (I, k) of
a parameterized problem L by another instance (I ′, k′) of L. Roughly speaking, a
reduction rule is useful when the instance I ′ is in some sense “simpler” than the
instance I. In particular, it is desirable to ensure that k′ ≤ k. If a parameterized
problems admits a kernelization algorithms that comprise of only useful (as defined
above) reduction rules, then it is said to admit a proper kernel. The rule is said to
be safe if (I, k) is a Yes instance of L if and only if (I ′, k′) is a Yes instance of L.

Today parameterized complexity is an established and dynamically developing
area of algorithms and various monographs and textbooks are available on this topic.
More familiarity can be gained in this field by referring to the books of Downey and
Fellows [82], Flum and Grohe [93], Niedermeier [173], and the more recent books by
Cygan et al. [65] and Fomin et al. [100].

2.2 Notations and Basic Definitions

To describe the running times of our algorithms, we will use the O? notation. Given
f : N→ N, we define O?(f(n)) to be O(f(n) · p(n)), where p(·) is some polynomial
function. That is, the O? notation suppresses polynomial factors in the running-time
expression.

General Notation. We use N to denote the set of natural numbers starting from
0. For i, j ∈ N, [i], [i]0, [i, j] are shorthands for {1, . . . , i}, {0, 1, . . . , i} and {i, i +

1, . . . , j} respectively. For a set S, S2 denotes the set of ordered pairs of S, that
is S2 = {(u, v) | u ∈ S, v ∈ S}. For two sets A,B, A] B denotes the disjoint
union of A and B. For a set A and t ∈ N, we use 2A and

(
A
t

)
to denote the

20

power set of A and the set of subsets of A of size t, respectively. For a partition
P = P1] · · ·] P`, each Pi is referred to as a part of P . Let f : A → B be some
function. Given X ⊆ A, the notation f(X) = b indicates that for all a ∈ X, it holds
that f(a) = b. The restriction f |X of f is a function from X to B such that for
any a ∈ X, f |X(a) = f(a). An extension f ′ of the function f is a function whose
domain, Y , is a superset of A and whose range is B, such that for all a ∈ A, it
holds that f ′(a) = f(a). For a function f : D → R, X ⊆ D and Y ⊆ R, we denote
f(X) = {f(x) : x ∈ X} and f−1(Y) = {d : f(d) ∈ Y }. The following fact follows
from Stirling’s approximation.

Fact 2.2.1 ([62]). For all positive integers n, k, k ≤ n,

1

n

[(
k

n

)−k(
n− k
n

)−(n−k)
]
≤
(
n

k

)
≤
[(

k

n

)−k(
n− k
n

)−(n−k)
]

.

(Di)graphs: For a (di)graphD, V (D) denotes the vertex set ofD and E(D) denotes
the edge set of D. An edge of D is represented by either (u, v) or uv. If (u, v) (or
uv) is an edge of a digraph then u is the tail of this edge and v is the head of this
edge. For any X ⊆ V (D) (resp. X ⊆ E(D)), D−X denotes the (di)graph obtained
by deleting the vertices (resp. edges) of X and D[X] is the subgraph of D induced
by X. We sometimes denote D −X by D \X too. When X = {v}, we use D − v
to denote the graph D − {v}. For a graph G and an edge e ∈ E(G), G/e denotes
the graph obtained after contracting e in G. By

←−
D , we denote the digraph obtained

from D by reversing each of its arcs. If D is an undirected graph, for any v ∈ V (D),
ND(v) denotes the neighbors of v in D, that is, ND(v) = {u : uv ∈ E(D)}. For
a subset X ⊆ V (G), N(X) = ∪v∈XN(v) \ X. The degree of a vertex v in D,
denoted by degD(v) or dD(v), is equal to the number of neighbors of v in D, that is,
degD(v) = |ND(v)|. The minimum degree of D is the minimum over the degrees of
all its vertices. For X ⊆ V (D), we denote by δD(X) the set of boundary vertices of
X in D, that is, δD(X) = {v ∈ X : there exists u ∈ V (G) \ X such that {u, v} ∈
E(G)}. Whenever the graph D is clear from the context, we drop the subscript D
in ND(v), dD(v), degD(v), δD(X). For any positive integers a, b, we denote by Ka,b

the (undirected) complete bipartite graph with a vertices in one part and b vertices
in the other part.

If D is a digraph, then for any v ∈ V (D), N+
D (v) (resp. N−D (v)) denotes the

set of out-neighbours (resp.in-neighbours) of v in D, that is N+
D (v) = {u ∈ V (D) |

(v, u) ∈ E(D)} (resp. N−D (v) = {u ∈ V (D) | (u, v) ∈ E(D)}). We denote the

21

in-degree of a vertex v by d−D(v) = |N−(v)| and its out-degree by d+
D(v) = |N+(v)|.

Whenever the (di)graph D is clear from the context, we drop the subscript D in
N+
D (v), N−D (v), d−D(v), d+

D(v), degD(v), dD(v). For a set X ⊆ V (D), we let N−X (v)

(resp. N+
X (v)) denote the set of in-neighbors (resp. out-neighbors) of v in X, that

is, N−X (v) = N−D (v) ∩ X (respectively, N+
X (v) = N+

D (v) ∩ X). For any X, Y ⊆
V (D), E(X, Y) denotes the set of arcs of D with tail in X and head in Y , that is,
E(X, Y) = {(u, v) ∈ E(D) | u ∈ X, v ∈ Y }. By dD(X, Y) we denote the number
of edges from X to Y in D, that is, dD(X, Y) = |ED(X, Y)|. When X = {u} and
Y = {v} are singleton sets, we denote dD{u}, {v} by dD(u, v). A digraph D is called
strongly connected if for each u, v ∈ V (D) there is a path from u to v and, a path
from v to u in D. A set X ⊆ V (D) is called a strongly connected component of
D if D[X] is a strongly connected digraph and for each X ′ ⊇ X, D[X ′] is not a
strongly connected digraph. A tournament is a digraph where there is exactly one
arc between each pair of vertices. A digraph with no cycles is called a directed acyclic
graph (DAG). A tournament with no cycles is called a transitive tournament. For a
directed graph D, by the underlying undirected graph of D we refer to the simple,
undirected graph with vertex set V (D) and arc set E(D). For a directed graph D,
by the (weakly) connected components of D, we refer to the connected components
of the underlying undirected graph of D. Let C be an induced subgraph of D. A
set X ⊆ V (D) is called an independent set of D if for any u, v ∈ X, (u, v) 6∈ E(D)

and (v, u) 6∈ E(D). In other words, X is an independent set in the underlying
undirected graph of D. The independence number of a digraph is equal to the size
of the maximum independent set it contains.

Paths: A path P is a (di)graph such that there exists an ordering (v1, . . . , vq) of its
vertex set V (P) such that E(P) = {(vi, vi+1) | i ∈ [q − 1]}. Such a path is called
a (v1, vq)-path, v1, vq are called the end-points of P and v2, . . . , vq−1 are called the
internal vertices of P . A path P is even (resp. odd) if the number of arcs/edges in
it is even (resp. odd). For any X, Y ⊆ V (D), a path from X to Y refers to a path
from some vertex in X to some vertex in Y . We say that P is a path in the digraph
D if P is a subgraph of D. We say that P is an induced path in D if P is an induced
subgraph of D. For paths P and P ′, by P ◦ P ′ we denote the composition of P and
P ′, that is, the path obtained by appending P ′ after P . For paths P, P1, P2, . . . , Pq

such that P = P1 ◦ P2 ◦ . . . ◦ Pq, we say that P1 ◦ P2 ◦ . . . ◦ Pq is a partition of P .
Paths {P1, . . . , Pq} are internally vertex-disjoint if for all distinct i, j ∈ [q], the sets
of internal vertices of Pi and Pj are disjoint. A directed Hamiltonian path in D is a
directed simple path on all vertices in D.

22

2.3 Degeneracy of Graphs

For a non-negative integer d, a graph G is called a d-degenerate graph if for every
subgraph H of G there exists v ∈ V (H) such that degH(v) ≤ d. The degeneracy
of a graph G, denoted by degeneracy(G), is the least integer d, for which G is d-
degenerate. If for each subgraph H of G, the minimum degree of H is at least d, we
say that the degeneracy ofG is at least d. For a d-degenerate graphG, a d-degeneracy
sequence of G is an ordering of the vertices of G, say σ : V (G)→ [|V (G)|], such that
σ is a bijection and, for any v ∈ V (G), |NG(v)∩{u : σ(u) > σ(v)}| ≤ d. For a given
degeneracy sequence σ and a vertex v ∈ V (G), the vertices in NG(v) ∩ {u : σ(u) >

σ(v)} are called the forward neighbors of v in σ, and this set of forward neighbors
is denoted by N f

G,σ(v). The following proposition says we can find d-degeneracy
sequence of a graph in linear time.

Proposition 2.3.1 ([161]). If G is a d-degenerate graph, for some non-negative
integer d, then a d-degeneracy sequence of G exists and can be found in time O(n+

m).

2.4 Graph (Important) Separators

For a (di)graph G, X, Y ⊆ V (G), an X-Y -separator in G is a subset C ⊆ V (G),
such that there is no path from a vertex in X \C to a vertex in Y \C in G−C. For
s, t ∈ V (G) an s-t-separator in G is a subset C ⊆ V (G) \ {s, t} such that there is
no path from s to t in G− C. The size of a separator is equal to the cardinality of
the separator. A minimum s-t-separator in G is the one with the minimum number
of vertices. A set Y ⊆ V (G) is a mincut of G if Y is a smallest set of vertices such
that G− Y has at least two components.

Since, checking whether there is an s-t-separator of weight at most k (here a
non-negative integer weight function on V (G) is given) can be done by running at
most k rounds of the classical Ford-Fullkerson algorithm, Proposition 2.4.1 follows.

Proposition 2.4.1. Given a (di)graph G, s, t ∈ V (G), an integer k and w : V (G)→
N, an s-t-separator of weight at most k, if it exists, can be found in time O(k · (n+

m)). Also, a minimum s-t-separator can be found in time O(mn).

The following proposition follows directly from the standard reduction that re-
duces finding minimum vertex separators to finding minimum edge cuts in directed

23

graphs and the result about the later in [118].

Proposition 2.4.2 ([118]). A mincut of a (di)graph G can be found in time O(mn

log n).

Important Separators. Roughly speaking, an important separator for setsX, Y ⊆
V (D) is an (X, Y)-separator that cannot be “pushed” towards Y without increasing
its size. Formally, this notion is defined as follows.

Definition 2.4.1 (Important Separators). Let D be a directed graph and X, Y ⊆
V (D). Let S ⊆ V (D)\(X∪Y) be an (X, Y)-separator and let R be the set of vertices
reachable from X in D − S. We say that S is an important (X, Y)-separator if it
is inclusion-wise minimal and there is no (X, Y)-separator S ′ ⊆ V (D) \ (X ∪ Y),
such that |S ′| ≤ |S| and R ⊂ R′, where R′ is the set of vertices reachable from X in
D − S ′.

Proposition 2.4.3 ([49]). Let D be a directed graph, X, Y ⊆ V (D) and k ∈ N∪{0}.
Then, D has at most 4k important (X, Y)-separators of size at most k. In fact, the
set of all important (X, Y)-separators in D can be constructed in time O(4k · k2 ·
(n+m)).

2.5 Treewidth

Roughly speaking, the treewidth of an undirected graph is a structural parameter
indicating how much a graph resembles a tree. To define treewidth formally, we first
need to define the concept of a tree decomposition.

Definition 2.5.1. A tree decomposition of a graph G is a pair (T, β), where T is
a rooted tree and β : V (T)→ 2V (G), that satisfies the following properties:

1. Edge Covering Property: For any edge {u, v} ∈ E(G) there exists a node
t ∈ V (T) such that x, y ∈ β(t), and

2. Connectivity Property: For any vertex u ∈ V (G), the subgraph of T in-
duced by the set Xu = {t ∈ V (T) : u ∈ β(t)} is a non-empty tree.

The width of (T, β) is maxt∈V (T){|β(t)|}−1. The treewidth of G, denoted by tw(G),
is the minimum width over all tree decompositions of G.

24

Given t, t̂ ∈ V (G), the notation t̂ � t indicates that t̂ is a descendant of t in T .
Note that t is a descendant of itself. For any t ∈ V (T), let t′ denote the unique
parent of t in T . We also need the standard notations σ(t) = β(t) ∩ β(t′) and
γ(t) =

⋃
t̂�t
β(t̂).

Proposition 2.5.1 (Folklore). Let (T, β) be a tree decomposition of a graph G.
Given a node t ∈ V (T), let t1, . . . , ts denote the children of t in T , and for all i ∈ [s],

define Vti = γ(ti) \ β(t). Let Vt′ = V (G) \ (β(t) ∪
s⋃
i=1

Vti). Then, the vertex-set of

each connected component of G \ β(t) is a subset of one of Vt1 , . . . , Vts , Vt′.

The following proposition gives an algorithm to compute a tree decomposition
of a particular width of a graph.

Proposition 2.5.2 (Computing a Tree decomposition, [23]). Given a graph G and
t ∈ N, there is an O(tO(t3) · n)-time algorithm that computes a tree decomposi-
tion (T, β) of G of treewidth at most t (if such a decomposition exists). Moreover,
|V (T)| = O(|V (G)|).

We now define a special kind of tree decomposition, called a nice tree decompo-
sition.

Definition 2.5.2 (Nice Tree Decomposition). A tree decomposition (T, β) of a graph
G is nice if T is a rooted, binary tree with root r, such that β(r) = ∅ and every node
t ∈ V (T) is of the one of the following types.

• Leaf: t is a leaf in T and β(t) = ∅.

• Forget: t has exactly one child, say t′, and β(t) = β(t′)\{v}, where v ∈ β(t′).

• Introduce: t has exactly one child, say t′, β(t) = β(t′)∪{v}, where v 6∈ β(t′).

• Join: t has exactly two children, say t1 and t2, and β(t) = β(t1) = β(t2).

Whenever we work with a tree decomposition of a graph, we will work with the
nice tree decomposition, mainly because the tree T in the nice tree decomposition
(T, β) is a rooted, binary tree. Given a tree decomposition (T, β) of a graph G,
Bodlaender [23] showed how to construct a nice tree decomposition of G of the
same width as (T, β).

Proposition 2.5.3 ([23]). Given a tree decomposition (T, β) of the graph G of width
t, a nice tree decomposition (T ′, β′) of G on at most O(t · |V (G)|) nodes and also of
width at most t, can be computed in time O(t2 ·max{|V (T)|, |V (G)|}).

25

For a directed graph D, by treewidth of D (tw(D)) and by a (nice) tree de-
composition of D, we will refer to the treewidth of the underlying undirected graph
of D and a (nice) tree decomposition of the underlying undirected graph of D,
respectively. For any X ⊆ V (D), we say that X is a η-treewidth modulator if
tw(D −X) ≤ η.

2.6 Branching Algorithms

For all our purposes, a branching algorithm is an ordered list of reduction rules
and branching rules. A reduction rule takes an instance of a problem and outputs
another equivalent instance of the same problem. Two instances are equivalent only
when one is a Yes instance if and only if the other is a Yes instance. Formally,
a reduction rule is a polynomial time procedure replacing an instance (I, k) of a
parameterized language L by a new one (I ′, k′). It is safe if (I, k) ∈ L if and
only if (I ′, k′) ∈ L. A branching rule takes an instance (I, k) of a parameterized
language L and produces several instances, (I1, k1), . . . , (Il, k`) of the same problem.
A branching rule is exhaustive if (I, k) is a Yes instance if and only if at least one
of (I1, k1), . . . , (Il, k`) is a Yes instance.

The branching algorithm applies the reduction rules and branching rules in the
following preference. A branching rule can be applied only when none of the reduc-
tion rules are applicable. Reduction rule i can be applied only when none of the
reduction rules from 1 to i−1 are applicable. Similarly, branching rule i is applicable
only when none of the branching rules from 1 to i− 1 are applicable.

Analysing the running time of branching algorithms - Bounded Search
Trees. The running time of a branching algorithm can be analyzed as follows (see,
e.g., [65, 82]). Suppose that the algorithm executes a branching rule which has `
branching options (each leading to a recursive call with the corresponding param-
eter value), such that, in the ith branch option, the current value of the parameter
decreases by bi. Then, (b1, b2, . . . , b`) is called the branching vector of this rule. We
say that α is the root of (b1, b2, . . . , b`) if it is the (unique) positive real root of
xb
∗

= xb
∗−b1 + xb

∗−b2 + · · · + xb
∗−b` , where b∗ = max{b1, b2, . . . , b`}. If r > 0 is the

initial value of the parameter, and the algorithm (a) returns a result when (or be-
fore) the parameter is negative, and (b) only executes branching rules whose roots
are bounded by a constant c > 0, then its running time is bounded by O∗(cr).

26

Chapter 3

Kernel for DFAS on Bounded
Independence Number Digraphs via
Reachability Preserving
Fault-Tolerant Subgraphs

In this chapter, we design a polynomial kernel for DFAS problem on digraphs of
bounded independence number. This result is achieved by establishing a relationship
between this problem and the problem of parity reachability fault-tolerance. We
begin by discussing the area of fault tolerance below.

3.1 Reachability Preserving Fault-Tolerant Subgraphs

In most real-life applications, even the most reliable networks are highly prone to
unexpected failures of a small number of links that connect their nodes. In the past
decade, the design of fault tolerant data structures for networks has become a central
topic of research [15, 17, 40, 177, 174, 22, 43, 44, 45, 21, 77, 176, 175]. Generally, the
scenario under study concerns the design of a structure that, after the failure of any
set F of at most k ≥ 1 arcs (representing links) in a given digraph D (representing
a network), should provide a fast answer to certain types of queries that address the
properties of D−F . The most common queries of this form address the reachability
between two vertices, or, more generally, the length of a shortest path existent, if
any, between them. Indeed, reachability (or, more generally, distance preservation)

29

is the most basic requirement to maintain to ensure that the network functions
properly. In this context, particular attention has been given to the case where
the data structure should consist of a subgraph or a minor of D with as fewest
arcs/vertices as possible [15, 177, 17, 21, 16, 176, 40]. Then, queries can be answered
by standard means as the usage of BFS or Dijkstra’s algorithm. In particular, these
simple data structures are of interest as they also double as sparsifiers. The study
of various graph sparsifiers—such as flow-sparsifiers [139] which are closely related
to the aforementioned data structures—is a fundamental, active area of research in
computer science and structural graph theory [61, 8, 87, 139, 42].

More concretely, in the Fault-Tolerance (S, T)-Reachability problem (or
FTR(S, T) for short), we are given a digraph D, two (not necessarily disjoint) ter-
minals sets S, T ⊆ V (D), and a positive integer k. The objective is to construct a
subgraph H of D with minimum number of arcs/vertices such that, after the failure
of any set of at most k arcs in D, the following property is preserved for any two
vertices s ∈ S and t ∈ T : if there still exists a directed path from s to t in D, then
there also still exists a directed path from s to t in H. Clearly, a trivial lower bound
on the number of arcs in H is m = O(n2), where n = |V (D)| and m = |E(D)|. For
the case where |S| = 1 and T = V (D), Baswana et al. [17] presented a construction
of a subgraph H with O(2kn) arcs in time O(2knm). Additionally, they gave a tight
matching lower bound: for any n, k ∈ N where n ≥ 2k, there exists a digraph on n
vertices where H must have Ω(2kn) arcs.

Naturally, the question of the improvement of the dependency on k arises for
special classes of digraphs. However, an arguably more radical research direction to
pursue concerns the dependency on n.

Which are the largest classes of digraphs for which FTR(S, T) admits sub-
graphs whose size dependency on n can be made sublinear, logarithmic or even
constant?

At first glance, when we consider the simplest sparsest digraph existent, this
pursuit seems futile. Indeed, already in the case where S = {s}, T = {t}, k = 1 and
D is a directed path from s to t, the only solution is to choose H = D. At second
glance, when we consider the simplest densest digraph existent, again we reach a
dead-end: for S, T and k as before, define D as the tournament obtained by adding,
to a directed path s = v1 → v2 → . . .→ vn = t, all arcs going from vi to vj for every
j + 1 < i; then, to construct H, we must select the entire path.

30

We show that “almost acyclicity” suffices to eliminate the dependency on n

entirely for a broad class of dense digraphs called bounded independence number
digraphs. Furthermore, one can achieve a polynomial dependence in terms of k
for this digraph class.

To step beyond the strict confinement of tournaments where all relations (arcs)
between the input entities (vertices) must be both present and known, Fradkin and
Seymour [106] initiated the study of bounded independence digraphs. Formally, for
any integer α ≥ 1, the class of α-bounded independence digraphs, denoted by Dα,
is defined as follows. Let max-is(D) denote the size of a maximum independent set
in D.

Dα = {D | D is a digraph and max-is(D) ≤ α}.

For this class of digraphs, Fradkin and Seymour [106] studied the k-Disjoint Paths

problem, and showed that it admits a polynomial time algorithm for any fixed value
of k. Observe that Dα is hereditary, and for α = 1, it coincides with the class
of tournaments. Furthermore, even for α = 2, it contains digraphs with a linear
fraction of vertex pairs that have no arc between them—thus, it can accommodate
the lack of a large number of links/relations.

Our main technical contribution is the following combinatorial lemma.

Lemma 3.1.1. Given a digraph D ∈ Dα, positive integers k and `, and S ⊆ V (D)

such that every strongly connected component of D − S has at most ` vertices, the
Fault-Tolerance (S, S)-Reachability (FTR(S, S)) problem admits a solution
H on |S|2(k`)O(4α`

2
) vertices. Furthermore, such a solution H can be found in poly-

nomial time.

In particular, when D − S is acyclic, ` = 1. Thus, if |S| and ` are independent
of n (such as the case where |S| = |T | = ` = 1 discussed earlier), the dependency
on n is eliminated. (We remark that a solution for Fault-Tolerance (S, T)-

Reachability where S 6= T is subsumed by a solution for Fault-Tolerance

(S ∪ T, S ∪ T)-Reachability.) Note that we extend the class of digraphs dealt
with beyond acyclicity at two fronts: enabling S to be a modulator, thusD−S rather
than D should be “almost acyclic”; enabling the strongly connected components to
be of size that is (“small” but) larger than 1.

Based on our combinatorial lemma (Lemma 3.1.1), we establish the following
theorem.

Theorem 3.1.1. DFAS on Dα admits a kernel of size kO(4α).

31

3.2 Introducing Cut Preserving Sets

The most central notion in this chapter is of a cut preserving set. Informally, for
a digraph D, a pair of vertices s, t and an integer k, a set Z ⊆ V (D) is called a
k-cut preserving set1 for (s, t) in D if it preserves all (s, t)-arc cuts of size at most
k. That is, A is an (s, t)-arc cut with at most k arcs in D if and only if A is a
such a cut in D[Z]. Observe that the graph induced on such a k-cut preserving
set Z is a candidate solution for FTR({s}, {t}) problem. Clearly V (D) is a k-cut
preserving set for any pair of vertices s, t. The intent is to have such a set of “small”
size. Towards this, let us discuss some properties that suffice for Z to be a k-cut
preserving set for (s, t) in D.

Since Z ⊆ V (D), any (s, t)-arc cut of D is an (s, t)-arc cut of D[Z]. For the
other direction, we need the property that, for any A ⊆ E(D) of size at most k, the
existence of an (s, t)-path inD−A implies the existence of an (s, t)-path inD[Z]−A.
Let us now see which properties suffice to imply the above property. We begin with
a special case. Suppose there is a “large” flow from s to t in D. In particular, suppose
there are at least k + 1 internally vertex-disjoint (s, t)-paths in D. Then, in Z it is
enough to keep the vertices of some k + 1 vertex-disjoint (s, t)-paths, as no arc set
of size at most k can hit all these paths. The more involved case occurs when the
flow from s to t in D is at most k. Consider any (s, t)-path P in D. Ideally (if we
did not have a size constraint on Z) we would have preserved all the vertices of P
in Z. Clearly, this can be expensive in terms of the size of Z. Nevertheless, we can
merge the ideas above (the “large-flow idea” and the “keep-full-path idea”) to get the
desired result. To see this, let P be a (s, t)-path in D. Let Z be a set of vertices
such that, either all the vertices of P are in Z or if the vertices of a (u, v)-subpath of
P are not in Z, then there are k + 1 internally vertex-disjoint (u, v)-paths in D[Z].
That is, if the vertices of a subpath are missing in Z, then Z contains a witness of
a large flow for the endpoints of this subpath. Observe that such a set Z suffices
to be a k-cut preserving set for (s, t) in D. This is because if P is an (s, t)-path in
D−A(A ⊆ E(D) and |A| ≤ k), then either all the vertices of P are in Z or for any
missing (u, v)-subpath of P , since there are k+1 vertex-disjoint (u, v)-paths in D[Z],
at least one still remains in D[Z]−A. Thus, in D[Z]−A, one can find an (s, t)-path:
for the missing subpaths of P in Z, there exists some (other) path between the same
endpoints in D[Z]−A which together yield an (s, t)-walk (and hence an (s, t)-path)
in D[Z]− A. These properties are formalized in Definition 3.4.1.

1This is not the way it is defined later. However, for the sake of exposition, we start with this
definition and refine it to have properties that also guarantee this property implicitly.

32

3.2.1 Computing k-Cut Preserving Sets: The Ideas

Next we give an intuition for how one can compute such k-cut preserving sets for a
digraph D ∈ Dα, each of whose strongly connected component has size at most `.
For exposition purposes, consider (for now), only the case where D is acyclic (i.e.,
` = 1). With a certain technical argument, the general case reduces to this one.
Moreover, we use the definition of a k-cut preserving set from the beginning of this
section for this illustration as it allows us to convey our ideas in a clearer manner.

The proof will use induction on α. As the base case, consider the case when
α = 1, that is, D is a transitive tournament. As D is transitive, there exists a
topological ordering of the vertices of D. Consider the set S of vertices between s
and t in this ordering. Note that any path from s to t only uses vertices in S. So,
either S is smaller than k+ 1, and then S ∪{s, t} is a k-cut preserving set for (s, t),
or it can be seen that there is no arc-cut for (s, t) of size at most k. In the latter
case, the union of {s, t} and any subset of k + 1 vertices of S is a k-cut preserving
set for (s, t); indeed, in the subgraph induced by the union there is still no arc-cut
for (s, t) of size at most k.

Now, let us hint at how the inductive step of the proof works. First, we note that,
if P1, . . . , Pk+1 are k+ 1 internally vertex-disjoint (s, t)-paths, then Z = ∪i∈[k+1]Pi is
a k-cut preserving set for the pair (s, t), because there is no arc-cut of (s, t) in both
D and D[Z] of size at most k. Moreover, since D is acyclic and D ∈ Dα, if these
paths exist, then Observation 3.3.1 implies that we can assume that all these paths
are shorter than 2α + 1 and thus |Z| ≤ k(2α + 1).

The last argument means that we can assume the existence of a (s, t)-vertex cut
of size at most k. For simplicity, suppose that {c1, c2} is a minimal (s, t)-vertex
-cut. Since {c1, c2} is a vertex cut, any path from s to t in D can be decomposed
as a path from s to ci, a path from ci to cj and then a path from cj to t, where i
and j are two indices (possibly equal) in {1, 2}. Here, we mean that none of the
three paths contains ci (or cj) as an internal vertex. For i ∈ {1, 2}, let Si be the
union of the set of vertices of the paths from s to ci that intersect {c1, c2} only on
the last vertex, and Ti be the union of the set of vertices of the paths from ci to t
that intersect {c1, c2} only on the first vertex. Finally, for distinct i, j ∈ {1, 2}, let
Ci,j be the union of the set of vertices of the paths from ci to cj. Because of the
last remark on how any path from s to t can be decomposed, taking the union of
six k-cut preserving sets-namely, for each i, j ∈ {1, 2}, i 6= j, for (s, ci) in D[Si],
(ci, t) in D[Ti] and (ci, cj) in D[Ci,j]- gives a k-cut preserving set for (s, t) in D.

33

Now, the question is how to use the induction hypothesis to find a k-cut preserving
set for each of these pairs. Consider first the digraph induced by the vertices in
S1. Because {c1, c2} is a minimal (s, t)-vertex cut, the only vertices of S1 that can
possibly have “outgoing arcs towards” t in S1 are s and c1. Moreover, since {c1, c2}
is a minimal (s, t)-vertex cut, there exists a path from c1 to t in D and thus t is
reachable from any vertex of S1. However, since D is acyclic, this means that there
is no arc from t to any of the vertices of S1, else we would get a closed walk and thus
a cycle. This implies that D[S1\{s, c1}] ∈ Dα−1 as any independent set of S1\{s, c1}
can be extended with t. We cannot apply the induction hypothesis to find a k-cut
preserving set for (s, c1) in S1 because the independence number of D[S1] could be
equal to α, however the above shows the spirit of the arguments that will be used to
find subgraphs with smaller independence number where we can apply the induction
hypothesis. A similar argument would also give that the independence number of
D[T1 \ {c1, t}] is at most α− 1 as any independent set can be extended using s.

The previous argument does not apply to C1,2, because the vertices of C1,2 can
be adjacent to s or t (some vertices of C1,2 can be adjacent to s and some can be
adjacent to t). This is the case that requires a stronger and more technical definition
for a k-cut preserving set. In particular, we need to understand what happens to the
vertices of D that are on a path from s to t but do not belong to a k-cut preserving
set for this pair.

In the next section we give some notations and simple results and observations
that will be used to give the technical details of this chapter.

3.3 Prelude to the Technical Details

For a digraph D and X ⊆ V (D), we say that a (u, v)-path P in D is X-free if none
of the internal vertices of P are from X. The X-based partition of P in D is the
partition P = P1 ◦ . . . ◦ Pq such the union of the end-points of Pi, i ∈ [q], is exactly
the set (X ∩ V (P)) ∪ {u, v}. A semi-X-based partition of P , P = P1 ◦ . . . ◦ Pq, is
such that the end-points of the paths Pi, i ∈ [q], are a subset of (X ∩V (P))∪{u, v}.

Vertex and Arc Cuts: For a digraph D and u, v ∈ V (D), a (u, v)-arc cut is a
set of arcs of D, say X, such that D −X has no (u, v)-path. A (u, v)-vertex cut is
a set of vertices of D, say Y , such that D − Y has no (u, v)-path and u, v 6∈ Y if
(u, v) 6∈ E(D).

34

We now give some simple results concerning the class Dα that will be used
throughout this chapter and the next chapter.

Observation 3.3.1. Let D ∈ Dα. The length of the shortest cycle in D is at most
2α + 1. Also, the length of any induced path in D is at most 2α + 1.

Lemma 3.3.1. If D ∈ Dα, then |E(D)| ≥ n
2
(n
α
− 1).

Proof. The proof follows from Turan’s theorem [76], which states that any graph on
n vertices that does not contain a clique of size α + 1 has at most (1− 1

α
)n

2

2
edges.

Thus the number of edges in D is at least n2

2
− (1− 1

α
)n

2

2
= n

2
(n
α
− 1).

3.4 Finding Small k-Cut Preserving Sets

We give the precise definition of a k-cut preserving set.

Definition 3.4.1 (k-Cut Preserving Set). For digraph D, an ordered pair (u, v) of
vertices of D and a positive integer k, {u, v} ⊆ Z ⊆ V (D) is a k-cut preserving
set for (u, v) in D if the following holds. For any (u, v)-path P in D, there exists a
semi-Z-based partition P1 ◦ . . . ◦Pd of P with the following two properties. For each
i ∈ [d], Pi is an (si, ti)-path in D with si, ti ∈ Z. Moreover, either V (Pi) ⊆ Z or
there exists a list Li of k+1 internally vertex-disjoint (si, ti)-paths in D[Z]. A list Li
with the above property is called a replacement kit for Pi in Z. Such a semi-Z-based
partition of P is called a Z-replacement witness for P .

Before moving to the computational aspects of a k-cut preserving set, we give
the following lemma that can be considered as the main utility of k-cut preserving
sets, and relate to the intuition we gave in the previous section.

Lemma 3.4.1. Let D be a digraph, u, v ∈ V (D) and Z be a k-cut preserving set for
(u, v) in D. For any set A ⊆ E(D) of at most k arcs, if there exists a (u, v)-path in
D − A, then there also exists one in D[Z]− A.

Proof. Consider some A ⊆ E(D) such that |A| ≤ k. Suppose there exists a (u, v)-
path P in D−A . Since Z is a k-cut preserving set for the pair (u, v), there exists a
semi-Z-based partition P = P1 ◦ . . . ◦ Pd such that for each j ∈ [d], Pj is an (sj, tj)-
path, sj, tj ∈ Z and, either V (Pj) ⊆ Z, in which case Pj is a path in D[Z]− A, or
there exist k + 1 internally vertex- disjoint (sj, tj)-paths in D[Z]. In the later case,

35

at least one of the k + 1 paths is in D[Z] − A (because |A| ≤ k). This implies the
existence of a walk from u to v (and hence also a (u, v)-path) in D[Z] − A. This
concludes the proof.

The main goal of this section is to prove the following lemma.

Lemma 3.4.2 (k-Cut Preserving Lemma). Let D be an acyclic digraph, and u, v ∈
V (D) be such that N−(u) = N+(v) = ∅. Additionally, let D − {u, v} ∈ Dα. Then
there exists a k-cut preserving set for (u, v) in D of size at most f(α), where f(1) =

k3 + 5k2 + 3k and for α > 1, f(α) = k2g(α) + 2kh(α), g(α) = (2k + (k + kf(α −
1))2)f(α − 1) and h(α) = (k2 + k)g(α) + kf(α − 1). Moreover, such a set can be
found in time nO(1), where n = |V (D)|.

Note that V (D) is always a k-cut preserving set for any pair of vertices (u, v)

in D, for any k. We now define a notation, for the sake of convenience, that will
be used throughout this section. For any digraph D, u, v ∈ V (D) and X ⊆ V (D),
let verD(u, v;X) denote the union of the sets of vertices of all X-free (u, v)-paths in
D. Observe that verD(u, v;X) ∩ X ⊆ {u, v}. We begin by making an observation
that forms the base line for computing small sized k-cut preserving sets using an
appropriate induction.

Observation 3.4.1. Let D be a digraph, u, v ∈ V (D), Z ⊆ V (D) and k be a
positive integer. Let P be a (u, v)-path in D, and P = P1 ◦ . . .◦Pd be a semi-Z-based
partition of P . If for each i ∈ [d], there is a Zi-replacement witness for Pi in Di,
for some Zi ⊆ Z and Di subgraph of D, then there is a Z-replacement witness for
P .

Proof. For each i ∈ [d], let PI = Pi,1 ◦ . . .◦Pi,ci be a Zi-replacement witness for Zi in
Di. Then, consider the semi-Z-based partition P = P1,1 ◦ . . .◦P1,c1 ◦P2,1 ◦ . . .◦P2,c2 ◦
. . . ◦ Pd,1 ◦ . . . ◦ Pd,cd . Then, for each i ∈ [d] and j ∈ [ci], either V (Pi,j) ⊆ Zi ⊆ Z,
or there exists a list Zi,j containing k+ 1 internally vertex-disjoint (V (Di) \Zi)-free
(xi,j, yi,j)-paths in Di such that Pi,j is a (xi,j, yi,j)-path. Since Zi ⊆ Z and Di is a
subgraph of D, the paths in Li,j are (V (D) \ Z)-free and exist in D.

Next, we give two lemmas (Lemmas 3.4.3 and 3.4.4) that basically use Observa-
tion 3.4.1 in a more concrete setting required to prove the k-Cut Preserving Lemma
by induction on the size of the maximum independent set in the digraph.

Lemma 3.4.3. Let D be a digraph, u, v ∈ V (D) and k be a positive integer. Let C
be some (u, v)-vertex cut in D. For each c ∈ C, let Z(u, c) (resp. Z(c, v)) be a k-cut

36

preserving set for (u, c) (resp. (c, v)) in D[verD(u, c;C)] (resp. D[verD(c, v;C)]).
For each (c, c′) ∈ C2, c 6= c′, let Z(c, c′) be a k-cut preserving set for (c, c′) in
D[verD(c, c′;C)]. Then, Z :=

⋃
c∈C(Z(u, c) ∪ Z(c, v)) ∪ ⋃(c,c′)∈C2,c 6=c′ Z(c, c′) is a

k-cut preserving set for (u, v) in D.

Proof. First observe, from the definition of a k-cut preserving set and the construc-
tion of Z, that C ⊆ Z. Consider any (u, v)-path P in D. Let P = P1 ◦ . . . ◦ Pq be
the C-based partition of P . Since C ⊆ Z, P1 ◦ . . .◦Pq is a semi-Z-based partition of
P . Then P1 is a C-free (u, c1)-path in D for some c1 ∈ C, Pq is a C-free (c2, v)-path
in D for some c2 ∈ C, and for each i ∈ [2, q − 1], Pi is a C-free (cji , cji′)-path in D,
for some cji , cji′ ∈ C, ji 6= ji

′. Thus, P1 is a (u, c1)-path in D[verD(u, c1;C)], Pq is
a (c2, v)-path in D[verD(c2, v;C)], and for each i ∈ [2, q − 1], Pi is a (cji , cji′)-path
in D[verD(cji , cji′ ;C)]. Since Z(u, c1),Z(c2, v),∪i∈[2,q−1]Z(cji , cji′) ⊆ Z, we are done
by Observation 3.4.1.

u v

c1

c2 y

P1

P2

P3

Figure 3.1: (c1, c2) is a (u, v) vertex-cut, the green parts correspond to the Z(ci, v)
and the blue vertices are the vertices of X. P1 is a path of Type (u,�), P2 is a path
of Type (�,�) and P3 is a path of Type (�,�, v) with y ∈ Y .

Lemma 3.4.4. Let D be a digraph, u, v ∈ V (D), and k be a positive integer. Let C
be some (u, v)-vertex cut in D. For each c ∈ C, let Z(u, c) (resp. Z(c, v)) be a k-cut
preserving set for (u, c) (resp. (c, v)) in D[verD(u, c;C)] (resp. D[verD(c, v;C)]). Let
X = N−D (v)∩⋃c∈C Z(c, v). For each (a, b) ∈ (C ∪X)2, a 6= b, let Z(a, b) be a k-cut
preserving set for (a, b) in D[verD(a, b;C ∪ N−D (v))]. Then, Z :=

⋃
c∈C(Z(u, c) ∪

Z(c, v)) ∪⋃(a,b)∈(C∪X)2,a6=bZ(a, b) is a k-cut preserving set for (u, v) in D.

Proof. First observe that {u, v} ∪ C ∪ X ⊆ Z. Let Y = N−D (v) \ X. We begin by
defining some special types of paths (see Figure 3.1).

37

1. A path P is of Type (u,�) (resp. (�, v)) if it is a C-free (u, c)-path (respec-
tively (c, v)-path) in D for some c ∈ C.

2. A path P is of Type (�,�) if it is a (C∪N−D (v))-free (a, b)-path in D for some
(a, b) ∈ (C ∪X)2.

3. A path P is of Type (�,�, v) if it is a (c, v)-path in D for some c ∈ C and
there exists y ∈ V (P) ∩ Y such that the (c, y)-subpath of P is C-free.2

We now begin with the proof of the lemma. Let P be some (u, v)-path. We need
to show that there is a Z-replacement witness for P . Let P = P ′1 ◦ . . . ◦ P ′q be
the (C ∪ X)-based partition of P . If P is not Y -free, that is, V (P) ∩ Y 6= ∅, let
s′ ∈ [q] be the least integer such that V (P ′s′) ∩ Y 6= ∅. If P is Y -free, let s′ = q.
Let s ≤ s′ be the largest integer such that Ps is an (a, b)-path, where a ∈ C and
b ∈ C ∪X ∪ {v}. We first show that such an s always exists. From the definition
of s′, either there exists some y ∈ Y in V (P ′s′) or v ∈ V (P ′s′). In the later case,
since C is a (u, v)-vertex cut, there exists c ∈ C such that c appears on P . Since
P = P ′1 ◦ . . . ◦ P ′q is a C ∪X-based partition of P , there exists s ≤ s′ such that Ps
is a (a, b)-path where a ∈ C. In the former case again, since y ∈ Y ⊆ N−D (v) and
C is a (u, v)-vertex cut using previous arguments the existence of the desired s is
guaranteed.

Consider the partition P = P1 ◦ . . . ◦ Ps, such that Pi = P ′i , if i < s and
Ps = P ′s ◦ P ′s+1 ◦ . . . ◦ P ′q. Observe that, since C ∪ X ⊆ Z, P = P1 ◦ . . . ◦ Ps is a
semi-Z-based partition of P .

Claim 3.4.1. P1 is a Type (u,�) path, for each i ∈ [2, s − 1], Pi is a Type (�,�)

path and, Ps is either a Type (�, v) or Type (�,�, v) path.

Proof. Recall that P = P ′1 ◦ . . . ◦ P ′q is the (C ∪X)-based partition of P . Thus, we
have the following.

1. For each i ∈ [q], P ′i is (C ∪X)-free path.

2. For each i ∈ [2, q − 1], P ′i is a (a, b)-path, where (a, b) ∈ (C ∪X)2.

3. Since C is a (u, v)-vertex cut in D and X ⊆ N−D (v), P ′1 is a (u, c)-path for
some c ∈ C.

2Specifically, if there exists y ∈ V (P) ∩ Y with this property, then the first vertex of P that
belongs to Y also has that property.

38

4. From the choice of s, for each i ∈ [s− 1], V (P ′i)∩ Y = ∅. Since for i ∈ [s− 1],
Pi = P ′i and X ∪ Y = N−D (v), Pi is (C ∪N−D (v))-free.

Thus, from Points 2 and 4, for each i ∈ [s− 1], Pi is of Type (�,�). Also, from
Points 3 and 4, P1 is of Type (u,�). We now show that Ps is of Type (�, v) or
(�,�, v). From the choice of s and the construction of Ps, Ps is a (c, v)-path for
some c ∈ C. If P is Y -free, then Ps is of Type (�, v), otherwise, Ps is of Type
(�,�, v).

For each i ∈ [s], define Zi and Di as follows.

Zi =

Z(u, c) if i = 1, P1 is a (u, c)-path, c ∈ C
Z(a, b) if i ∈ [2, s− 1], Pi is a (a, b)-path, (a, b) ∈ (C ∪X)2

Z(c, v) if i = s, Ps is a (c, v)-path, c ∈ C

Di =

D[verD(u, c;C)] if i = 1, P1 is a (u, c)-path, c ∈ C
D[verD(a, b; (C ∪N−D (v))] if i ∈ [2, s− 1], Pi is a (a, b)-path, (a, b) ∈ (C ∪X)2

D[verD(c, v)] if i = s, Ps is a (c, v)-path, c ∈ C

Recall the construction of Z from the lemma statement. Observe that for each
i ∈ [s], Zi ⊆ Z. From Observation 3.4.1, to give a Z-replacement witness for P ,
it is enough to give a Zi-replacement witness for each Pi, in Di, i ∈ [s]. Thus, the
following claim will finish the proof of the lemma.

Claim 3.4.2. For each i ∈ [s], Pi has a Zi-replacement witness in Di.

Proof. We prove the claim using the following cases.

• Case i = 1: From Claim 3.4.1, P1 is a C-free (u, c)-path in D for some c ∈ C.
Thus, P1 is a (u, c)-path in D1. Since Z1 is a k-cut preserving set for (u, c) in
Di, there exists a Z1-replacement witness for P1 in D1.

• Case i ∈ [2, s − 1]: From Claim 3.4.1, when i ∈ [2, s − 1], then Pi is a
(C ∪N−D (v))-free (a, b)-path in D for some (a, b) ∈ (C ∪X)2. Thus, Pi is an

39

(a, b)-path in Di. Since Zi is a k-cut preserving set for (a, b) in Di, there exists
a Zi-replacement witness for Pi in Di.

• Case i = s: From Claim 3.4.1, Ps is of either Type (�, v) or Type (�,�, v).

− Ps is of Type (�, v): From the definition of Type (�, v), Ps is a C-free
(c, v)-path in D, for some c ∈ C. Thus, Ps is a (c, v)-path in Ds. Since
Zs is a k-cut preserving set for (c, v) in Ds, there exists a Zs-replacement
witness for Ps in Ds.

− Ps is of Type (�,�, v): From the definition of Type (�,�, v), Ps is a
(c, v)-path in D, for some c ∈ C, and there exists y ∈ V (P) ∩ Y such
that the (c, y)-subpath of P is C-free. Let P †s be the (c, y)-subpath of
P . Recall that Y = N−D (v) \X. Consider the (c, v)-path in D, denoted
by P̃s, obtained by appending the arc (y, v) at the end of P †s . That is,
P̃s = P †s ◦ (y, v). Since P †s is a C-free path, so is P̃s. Thus P̃s is a (c, v)-
path in Ds. Since Zs is a k-cut preserving set for (c, v) in Ds, there
exists a semi-Zs-based partition of P̃s which is a Zs-replacement witness
for P̃s in Ds. Let P̃s = P̃s,1 ◦ . . . ◦ P̃s,r be one such partition. Since
y ∈ Y = N−D (v) \X and Zs ⊆ X, y 6∈ Zs. Thus, y is an internal vertex of
P̃s,r. Let P̃s,r be an (x, v)-path. Clearly, x ∈ Zs because P̃s = P̃s,1◦. . .◦P̃s,r
is a semi-Zs-based partition. Let P †s,r be the (x, v)-subpath of Ps,r. We
claim that Ps = P̃s,1 ◦ . . . ◦ P̃s,r−1 ◦ P †s,r is a semi-Zs-based partition of
Ps and is also a Zs-replacement witness for Ps in Ds. It is clear from
the discussion above that Ps = P̃s,1 ◦ . . . ◦ P̃s,r−1 ◦ P †s,r is a semi Zs-based
partition of Ps. We will now show that it is a Zs-replacement witness for
Ps in Ds.

Since P̃s = P̃s,1◦ . . .◦ P̃s,r is a Zs-replacement witness for P̃s, we have that
for each j ∈ [r], either V (P̃s,j) ⊆ Zs or there exists a list Lj containing
k+ 1 vertex disjoint paths from the start vertex of P̃s,j to its end vertex.
Also, since y 6∈ Zs and y is an internal vertex of P̃s,r, V (P̃s,r) 6⊆ Zs. Thus,
there is a list Lr containing k + 1 vertex disjoint (x, v)-paths (recall x
and v are the start and end vertices, respectively, of P̃s,r). Since Ps =

P̃s,1◦ . . .◦P̃s,r−1◦P †s,r, and P †s,r is an (x, v)-path, from the above discussion
for each j ∈ [r−1], either V (P̃s,j) ⊆ Zs or there exists a list Lj containing
k+ 1 vertex disjoint paths from the start vertex of P̃s,j to its end vertex.
Also, there exists a list, Lr, containing k + 1 vertex disjoint paths from
the start vertex of P †s,r to its end vertex. This completes the proof of the
claim.

40

As argued earlier, this completes the proof of the lemma.

3.4.1 Finding a Small k-Cut Preserving Set for a Pair with a

Large Flow

As explained in Section 3.2, the proof of Lemma 3.4.2 will distinguish whether there
is a k vertex-cut for (s, t) or not. The case where there is a no k vertex-cut is the
easiest one, and will be dealt with the following lemma by simply keeping k + 1

vertex disjoint paths.

Lemma 3.4.5. Let D ∈ Dα be an acyclic digraph and u, v ∈ V (D) be such that
each (u, v)-vertex cut in D has size at least k + 1. Then, a k-cut preserving set for
(u, v) in D of size at most (2α−1)(k+1)+2 exists and is computable in nO(1) time,
where n = |V (D)|.

Proof. Since every (u, v)-vertex cut in D has size at least k + 1, from Menger’s
Theorem, there are at least k+1 vertex-disjoint (u, v)-paths in D. Let Q′1, . . . , Q′k+1

be a collection of some k + 1 of these paths. We will now obtain a collection of
Q1, . . . Qk+1 vertex disjoint paths where the length of each Qi is at most 2α + 1.
To this end, we define each Qi as some shortest (u, v)-path using the vertices of
V (Q′i). We first claim that the length of Qi is at most 2α + 1. For the sake of
contradiction, suppose not. Then, from Observation 3.3.1, there exist x, y ∈ V (Qi)

such that (x, y) ∈ E(D). Since D is acyclic, x appears before y in the path Qi.
This contradicts that Qi is a shortest (u, v)-path in V (Q′i). Let Z =

⋃
i∈[k+1] V (Qi).

Clearly, {u, v} ⊆ Z and |Z| ≤ (2α− 1)(k + 1) + 2. The size bound follows because
the length of each Qi is at most 2α+1, and u, v are the vertices common in each Qi.
To show that Z is a k-cut preserving set for (u, v) in D, consider the semi-Z-based
partition of P that is P itself. Then, {Q1, . . . , Qk+1} is the list for P containing
k + 1 internally vertex-disjoint (V (D) \ Z)-free (u, v)-paths.

3.4.2 Finding a Small k-Cut Preserving Set for a Pair in a

Tournament

As explained before, the proof of Lemma 3.4.2 will use induction on α. The next
lemma handles the base case where α = 1. It is somewhat more complicated com-

41

pared to the arguments in Section 3.2; the reason for the complication is that we
consider the digraph D such that the D − {u, v} ∈ Dα. Thus D is not “exactly” a
tournament. This is required in the inductive case for the proof of Lemma 3.4.2.

Lemma 3.4.6. Let D be an acyclic digraph. Let u, v ∈ V (D) be such that N+(u) =

N−(v) = ∅ and D − {u, v} is a tournament. Then, a k-cut preserving set for (u, v)

in D of size at most k3 + 5k2 + 3k exists and is computable in polynomial time.

Proof. If all (u, v)-vertex cuts in D have size at least k + 1, then the correctness
follows from Lemma 3.4.5. Thus, for the rest of the proof assume that there is a
(u, v)-vertex-cut in D of size at most k. Let C = {c1, . . . , c`} be a minimal (u, v)-
vertex cut in D of size ` ≤ k.

Claim 3.4.3. C ⊆ N+
D (u) ∪N−D (v).

Proof. Suppose not. Then, there exists ci ∈ C such that ci 6∈ N+(u)∪N−(v). Since
C is a minimal (u, v)-vertex cut in D, there exists a path, say P , from u to v in
D − (C \ {ci}). Let u′ be the first vertex on P after u and v′ be the last vertex
of P before v. Since D − {u, v} is an acyclic tournament, (u′, v′) ∈ E(D). Since
u′, v′ 6∈ C, we get a (u, v)-path in D−C, contradicting that C is a (u, v)-vertex cut
in D.

Let I = {i ∈ [`] | ci ∈ N−D (v)} and J = {j ∈ [`] | cj ∈ N+
D (u)}. For all i ∈ I,

let Ui = verD(u, ci;C) and Di = D[Ui]. For all j ∈ J , let Vj = verD(cj, v;C) and
Dj = D[Vj]. For all (i, j) ∈ [`]2, i 6= j, let Qi,j = verD(ci, cj; ∅) and Di,j = D[Qi,j].

For each i ∈ I (resp. j ∈ J , resp. (i, j) ∈ [`]2, i 6= j), we will compute a k-cut
preserving set Zi (resp. Zj, resp. Zi,j) of (u, ci) (resp. (cj, v), resp. (ci, cj)) in Di

(resp. Dj, resp. Di,j) of size at most 2k+3 (resp. 2k+3, resp. k+3). The procedure
to do so is as follows.

• Computing Zi, i ∈ I: First observe that Ui is a candidate for Zi. Thus, if
|Ui| ≤ 2(k + 1), set Zi = Ui. Otherwise, we have that |Ui| ≥ 2k + 3. Since
D − {u, v} is an acyclic tournament, let π be the unique topological ordering
of D − {u, v}. We divide this case further into two cases.

Case 1: |N+(u) ∩ Ui| ≤ k: Let Ũi be the last k+1 vertices of Ui in π. Observe
that Ũi ⊆ N−(ci) ∩ Ui. Define Zi = (N+(u) ∩ Ui) ∪ Ũi ∪ {u, ci}. Clearly,
|Zi| ≤ 2k + 3. To prove that Zi is a k-cut preserving set for (u, ci) in

42

Di, consider some (u, ci)-path P in Di, such that V (P) 6⊆ Zi. We will
show a Zi-replacement witness for P in Di. Consider the semi-Zi-based
partition of P , P = P1] P2, where P1 is the arc (u, x) ∈ E(P), for some
x ∈ N+(u) ∩ Ui and P2 is the (x, ci)-subpath of P . Clearly, V (P1) ⊆ Zi.
We claim that there are k + 1 vertex-disjoint (x, ci)-paths in Zi. To see
this, consider the following argument. Since V (P) 6⊆ Zi, there exists a
vertex y ∈ V (P) such that y 6∈ Zi. Then, y ∈ V (P2). Since y 6∈ Zi, it in
particular holds that y 6∈ Ũi. Thus, all the vertices of Ũi appear after y
in π. Since there is a (x, y)-path in Di, x appears before y in π. Thus,
x appears before all the vertices of Ũi in π. Thus, because D − {u, v} is
a tournament, Ũi ⊆ N+(x) ∩ Ui. Since Ũi ⊆ N−(ci) ∩ Ui, there are |Ũi|
many vertex disjoint (x, ci)-paths in Z. This completes the proof.

Case 2: |N+(u) ∩ Ui| > k: First observe that all the vertices of N+(u) ∩ Ui
appear before ci in π. Since π is a topological ordering of D − {u, v},
there are |N+(u)∩Ui| > k vertex-disjoint (u, ci)-paths in Zi. Thus, each
(u, ci)-vertex-cut in Di has size at least k + 1. In this case, let Zi be the
k-cut preserving set for (u, ci) in Di obtained from Lemma 3.4.5. Observe
that |Zi| ≤ k + 3.

• Computing Zj, j ∈ J: Zj can be computed using arguments symmetric to
the previous case.

• Computing Zi,j, (i, j) ∈ [`]2, i 6= j: First observe that all the vertices of
Qi,j \ {ci, cj} appear after ci and before cj in π. Thus, there are |Qi,j \ {ci, cj}|
many vertex-disjoint (ci, cj)-paths in Di,j. If |Qi,j| ≤ k− 2, then set Zi = Qi,j,
otherwise let Zi be the k-cut preserving set for (ci, cj) in Di,j obtained from
Lemma 3.4.5. In either case, |Zi| ≤ k + 3.

Let Z :=
⋃
i∈I Zi ∪

⋃
j∈J Zj ∪

⋃
(i,j)∈[`]2,i 6=j Zi,j. Observe that C ⊆ Z. First note

that |Z| ≤ |I|(2k+ 3) + |J |(2k+ 3) + `2(k+ 3) ≤ k3 + 5k2 + 3k2 (the last inequality
holds because |I|+|J | = ` and ` ≤ k). We will now show that Z is a k-cut preserving
set for (u, v) in D. To see this, consider some(u, v)-path P , in D. Since C is a (u, v)-
vertex-cut in D there exists a vertex of C on P . Let ci be the first vertex of C on
P and cj be the last vertex of C on P (ci could be the same as cj). Let P1 be the
(u, ci)-subpath of P , P2 be the (ci, cj)-subpath of P and P3 be the (cj, v)-subpath of
P (if ci is the same as cj, then P2 is empty). Thus, P = P1◦P2◦P3 is a semi-Z-based
partition of P (as C ⊆ Z). Since Zi is a k-cut preserving set for (u, ci) in Di, Zi is
a k-cut preserving set for (cj, v) in Dj and Zi,j is a k-cut preserving set for (ci, cj)

43

in Di,j, and Zi,Zj,Zi,j ⊆ Z, from Observation 3.4.1, Z is a k-cut preserving set for
(u, v) in D.

3.4.3 Finding a small k-Cut preserving set for a pair in a

D ∈ Dα

We are now ready to prove Lemma 3.4.2.

Lemma 3.4.2 (k-Cut Preserving Lemma). Let D be an acyclic digraph, and u, v ∈
V (D) be such that N−(u) = N+(v) = ∅. Additionally, let D − {u, v} ∈ Dα. Then
there exists a k-cut preserving set for (u, v) in D of size at most f(α), where f(1) =

k3 + 5k2 + 3k and for α > 1, f(α) = k2g(α) + 2kh(α), g(α) = (2k + (k + kf(α −
1))2)f(α − 1) and h(α) = (k2 + k)g(α) + kf(α − 1). Moreover, such a set can be
found in time nO(1), where n = |V (D)|.

Proof. We prove this lemma using induction on α. When α = 1, the proof follows
from Lemma 3.4.6.

Claim 3.4.4. Let x, y ∈ V (D) \ {u, v}. Then, a k-cut preserving set for (x, y) of
size g(α) in any digraph D′ that is a subgraph of D where u, v 6∈ V (D′), can be found
in polynomial time.

Proof. Let W be a minimum (x, y)-vertex-cut in D′. If |W | > k, then the claim
follows from Lemma 3.4.5. Thus, we are now in the case where |W | ≤ k. For each
w ∈ W , let Z(x,w) (resp. Z(w, y)) be a k-cut preserving set for (x,w) (resp. (w, y))
in D′[verD′(x,w;W)] (resp. D′[verD′(w, y;W)]). Let B = N−D′(y) ∩⋃w∈W Z(w, y).
For each (a, b) ∈ (W ∪ B)2, let Z(a, b) be a k-cut preserving set for (a, b) in
D′[verD′(a, b;W ∪ N−(y))]. Then, from Lemma 3.4.4, Z(x, y) :=

⋃
w∈W (Z(x,w) ∪

Z(w, y)) ∪⋃(a,b)∈(W∪B)2 Z(a, b) is a k-cut preserving set for (x, y) in D′.

We will now show that for any w ∈ W and (a, b) ∈ (W ∪ B)2, each digraph
among D′[verD′(x,w;W)], D′[verD′(w, y;W)] and D′[verD′(a, b;W ∪ N−D′(y))] has
independence number strictly smaller than α. Then, from induction hypothesis
and the expression for Z(x, y) written above, we will conclude that a k-cut pre-
serving set for (x, y) in D′ of size g(α) can be found in polynomial time. To see
that the independence number of D′[verD′(x,w;W)] is strictly less than α, observe
that y is not adjacent to any vertex in verD′(x,w;W), as W is an (x, y)-vertex
cut in D′. Thus, any independent set of D′[verD′(x,w;W)] together with y is an

44

independent set of D′ and hence of D. Since y 6∈ {u, v}, u, v 6∈ V (D′) and the
independence number of D − {u, v} is α, we have that the independence num-
ber of D′[verD′(x,w;W)] is strictly smaller than α. A similar argument holds for
D′[verD′(w, y;W)] as in this case x is not adjacent to any vertex of verD′(w, y;W).
For D′[verD′(a, b;W ∪N−D′(y))], since verD′(a, b;W ∪N−D′(y)) ∩N−D′(y) = ∅, u, v 6∈
V (D′) and N+

D′(y) = ∅, any independent set of D′[verD′(a, b;W ∪N−D′(y))] together
with y is an independent set in D−{x, y}. Since D−{x, y} has independence num-
ber α, D′[verD′(a, b;W ∪ N−D′(y))] has independence number strictly smaller than
α.

Let C be a minimum (u, v)-vertex-cut in D. If |C| > k, then the lemma follows
from Lemma 3.4.5. Thus, for the remainder of the proof we assume that |C| ≤ k.
For each c ∈ C, let Uc = verD(u, c;C), Vc = verD(c, v;C), Z(u, c) be a (u, c) k-cut
preserving set in D[Uc], and Z(c, v) be a (c, v) k-cut preserving set in D[Vc]. For each
(c, c′) ∈ C2, c 6= c′, let Qc,c′ = verD(c, c′;C), and Z(c, c′) be a k-cut preserving set in
D[Qc,c′]. Then from Lemma 3.4.3, Z :=

⋃
c∈C Z(u, c)∪Z(c, v)∪⋃(c,c′)∈C2,c 6=c′ Z(c, c′)

is a k-cut preserving set for (u, v) in D. Since C ∩ {u, v} = ∅, from Claim 3.4.4, for
each (c, c′) ∈ C2, c 6= c′, Z(c, c′) of size g(α) can be computed in polynomial time.
In the remainder of the proof, we will show how to compute Z(u, c) and Z(c, v), for
any c ∈ C, of the desired size. We will only give the proof of construction of Z(u, c)

as the proof for Z(c, v) is symmetrical.

Claim 3.4.5. For any c ∈ C, Z(u, c) of size h(α) can be computed in polynomial
time.

Proof. For ease of notation, let D̂ = D[Uc]. Let A be a minimum (u, c)-vertex-cut
in D̂. First note that A ∩ {u, v} = ∅. If |A| > k, then the claim follows from
Lemma 3.4.5. Thus, for the remainder of the proof, assume that |A| ≤ k.

For each a ∈ A, let Ûa = verD̂(u, a;A), V̂a = verD̂(a, c;A), Ẑ(u, a) be a (u, a)

k-cut preserving set in D̂[Ûa] and Ẑ(a, c) be a (a, c) k-cut preserving set in D̂[V̂a].
For each (a, a′) ∈ A2, a 6= a′, let Ra,a′ = verD̂(a, a′;A) and Ẑ(a, a′) be a k-cut
preserving set in D̂[Ra,a′]. Then from Lemma 3.4.3, Z(u, c) :=

⋃
a∈A(Ẑ(u, a) ∪

Ẑ(a, c)) ∪⋃(a,a′)∈A2,a6=a′ Ẑ(a, a′) is a k-cut preserving set for (u, c) in D. Since A ∩
{u, v} = ∅ and c ∈ {u, v}, from Claim 3.4.4, for each a ∈ A, (a, a′) ∈ A2, a 6= a′,
Ẑ(a, c) and Ẑ(a, a′) of size g(α) can be computed in polynomial time. Moreover,
the independence number of D̂[Ûa]−{u, a} is strictly smaller than α because c(6= v)

is not adjacent to any vertex in Ûa, besides possibly u and a. Thus, for each a ∈ A,

45

a set Ẑ(u, a) of size f(α− 1) can be computed in polynomial time by the induction
hypothesis. This finishes the proof of the claim.

Thus, from the previous arguments and Claim 3.4.5, we have that Z is a k-cut
preserving set for (u, v) in D of size at most k2g(α) + 2kh(α).

A rough computation gives that, for any k, g(α) ≤ 6k2f(α − 1) and h(α) ≤
8k4f(α − 1). This imply that f(α) ≤ 22k5f(α − 1)3. By noting that f(1) ≤ 22k5,
we can show the following observation.

Observation 3.4.1. For any α and k, there exists a k-cut preserving set of size
smaller than f(k, α) = (22k5)4α.

3.4.4 k-Cut Preserving Sets for a Set of Vertices

Below we also define a notion of k-cut preserving sets for a set of vertices. Such a
notion will come handy in our applications. Given a digraph D and X ⊆ V (D),
for each (u, v) ∈ X2, we define the digraph DX

(u,v) as follows (note that u could be
equal to v). Let R = V (D) −X. Then, DX

(u,v) is the supergraph of D[R] obtained
by adding two new vertices u+ and v− together with the following set of additional
arcs: {(u+, x) : x ∈ R, (u, x) ∈ E(D)} ∪ {(x, v−) : x ∈ R, (x, v) ∈ E(D)} .

Definition 3.4.2 (k-Cut Preserving Set for a Set of Vertices). For any digraph D, a
positive integer k and X ⊆ V (D), we say that X ⊆ Z ⊆ V (D) is a k-cut preserving
set for X, if for all (u, v) ∈ X2, Z is a k-cut preserving set for (u, v) in DX

(u,v).

Lemma 3.4.7. For any digraph D ∈ Dα, a positive integer k, and S ⊆ V (D) such
that D − S is a acyclic, a k-cut preserving set for S of size at most |S|2f(k, α) can
be found in polynomial time, where f(k, α) ≤ (22k5)4α.

Proof. For each pair (u, v) ∈ S2 (u and v could be equal), let Z(u,v) be the a k-cut
preserving set for (u+, v−) in DS

(u,v) obtained from Lemma 3.4.2. From the definition
of k-cut preserving set for S, Z =

⋃
(u,v)∈S2 Z(u,v) is a k-cut preserving set for S.

From Observation 3.4.1, for any (u, v) ∈ S2, |Z(u,v)| ≤ f(k, α). Thus, we conclude
the correctness of the lemma.

46

3.5 Applications of the k-Cut Preserving Lemma

3.5.1 Fault-Tolerant (S, S)-Reachability

In this section, we prove Lemma 3.1.1. Recall that (D,S, `, k) is an instance of
FTR(S, S) where D ∈ Dα, S ⊆ V (D) and `, k are positive integers such that each
strongly connected component of D− S has size at most `. The goal is to compute
a subgraph H of D of size k2O(α) such that, for any A ⊆ E(D) of size at most k, for
any s, t ∈ S, if D−A has an (s, t)-path, then so does H−A. It is not difficult to see
from Lemma 3.4.1 that if Z is a k-cut preserving set for S in D, then H = D[Z] is a
solution for (D,S, `, k) (for any `). When ` = 1, D− S is acyclic and hence a k-cut
preserving set for S can be computed using Lemma 3.4.7. When ` > 1, in order to
use Lemma 3.4.7 we modify the digraph D to turn D− S acyclic. We now describe
the operation, which we call dagify, that is used to turn D − S acyclic. Informally,
for each strongly connected component SC of D we turn it into an independent set
while preserving the paths in D that use the vertices of SC. This is achieved by
creating a new vertex for every ordered pair of vertices (say, (u, v)) in SC. Such a
vertex represents the existence of a (u, v)-path in the strongly connected component
SC. In fact, in the path in the modified graph, each new vertex corresponding to
some pair (u, v) can be replaced by some (u, v)-path from the strongly connected
component SC to yield a path in the original graph. Then, arcs between two vertices
in this newly constructed vertex set are put in such a way that the concatenation
of the paths corresponding to these new vertices gives a path in D. This idea is
formalized below.

Definition 3.5.1 (dagify(D,R)). Let D be a digraph, R ⊆ V (D) and S = V (D)\R.
Let SC1, . . . , SCd be the strongly connected components of D[R]. For a ∈ [d], let
V (SCa) = {va1 , . . . , vana}, where na = |V (SCa)|. Then, D†R := dagify(D,R) is the
digraph defined as:

Vertex set of D†R: For each a ∈ [d], let SC†a = {vaij | (vai , v
a
j) ∈ {SCa}2, i, j ∈

[na]}. Let R† = ∪a∈[d]SC
†
a and V (D†R) = R† ∪ S.

Arc set of D†R: It contains all the arcs of D with both end-points in S. For each a ∈
[d], SC†a is an independent set in D†R. For any a ∈ [d], s ∈ S and i, j ∈ [na],
(s,vaij) ∈ E(D†R) if and only if (s, vai) ∈ E(D). Similarly, (vaij, s) ∈ E(D†R) if
and only if (vaj , s) ∈ E(D). We put the arcs between SC†a and SC

†
b , for distinct

a, b ∈ [d] as follows. For any i, j ∈ [na] and i′, j′ ∈ [nb], (vaij,v
b
i′j′) ∈ E(D†R) if

and only if (vaj , v
b
i′) ∈ E(D).

47

For a set of vertices of X† ⊆ D†R, full-comp(X
†) denotes the set of vertices of

V (D) such that, for each vai,j ∈ X†, all the vertices of SCa belong to full-comp(X†).
Also all the vertices of S that belong to X†, belong to full-comp(X†). Observe that
|full-comp(X†)| ≤ `2 · |X†|, where ` is the upper bound on the size of each SCa.
Note from the construction above that, for any s, t ∈ S and an (s, t)-path P † in D†R,
there exists an (s, t)-path P in D such that V (P) ⊆ full-comp(P †). The following
observations state a few properties of the digraph D†R that would be useful when we
want to find a k-cut preserving set for D†R using Lemma 3.4.7.

Observation 3.5.1. D†R[R†] is acyclic.

Proof. Recall, from the construction ofD†R, that R
† =

⋃
a∈[d] SC

†
a and each SC†a is an

independent set in D†R. Without loss of generality, let SC1, . . . , SCd be the strongly
connected components of D[R] ordered as in their topological ordering. Then, there
is no arc from a vertex of SCb to a vertex of SCa, for any b > a, in D. Thus, from
the construction of D†R, there is no arc from any vbij to any vai′j′ (b > a). This shows
that D†R[R†] is acyclic.

Observation 3.5.2. If D ∈ Dα and every strongly connected component of D[R]

has size at most `, then D†R ∈ D`2α.

Proof. Recall that R† =
⋃
a∈[d] SC

†
a andD†R[SC†a] has no arc. From the construction

of D†R, for each a ∈ [d], |SC†a| ≤ `2. Finally, since D ∈ Dα, from the construction of
D†R, the size of any maximum independent set in D†R is at most maxa∈[d] |SC†a| ·α ≤
`2α.

We define some terminology that would come handy later. For any A ⊆ E(D),
we say that a vertex v ∈ V (D) is affected by A if there exists some arc of A that is
incident on v. The set affected by A in D†R is the set of vertices of D†R containing the
union of the vertices in SC†a, for each a ∈ [d] such that a vertex in SCa is affected
by A in D.

Observation 3.5.3. Let D be a digraph, R ⊆ V (D) and S = V (D) \ R. Let
A ⊆ E(D) of size at most k. Let A† be the set affected by A in D†R. Recall the
construction of D†R from Definition 3.5.1. For some vaij,v

b
i′j′ ∈ R†, let P † be an

A†-free (vaij,v
b
i′j′)-path in D†R. Then there exists a (vai , v

b
j′)-path P in D such that:

V (P) ⊆ full-comp(P †) and, P does not use any arc of A.

Proof. Recall the construction of dagify(D,R). Consider any path P obtained from
P † by replacing all the vertices of R† as follows. If for any c ∈ [d], i∗, j∗ ∈ [nc], vci∗j∗ ∈

48

V (P †), then replace vci∗j∗ in P † by any (vci∗ , v
c
j∗)-path in the strongly connected

component SCc. Clearly, the path P obtained is a (vai , v
b
j′)-path in D and V (P) ⊆

full-comp(P †). Also from the definition of A† and the fact that P † is A†-free, we
get that P cannot use an arc of A.

From the construction in Definition 3.5.1, for any s, t ∈ S, for an (s, t)-path P in
D, we can associate a unique (s, t)-path P † in D†R. This is elaborated below. Con-
sider the digraph D†R obtained by dagify(D,R). (vai , v

a
j) ∈ SC2

a for some component
SCa of D[R]. Let s, t ∈ S. Let P be an S-free (s, t)-path in D. For any such path
P , we define the notion of a reduced path of P in D†R as follows. Consider the unique
partition P = Ps ◦Pi1 ◦ . . . ◦Piq ◦Pt such that Ps is an arc (s, u) where u ∈ V (SCi1),
Pt is an arc (v, t) where v ∈ V (SCiq) and for each j ∈ [q], V (Pij) ⊆ V (SCij), where
i1, . . . , ij ∈ [d] and i1 < . . . < iq. For each j ∈ [q], let Pij be a (v

ij
pj , v

ij
rj)-path.

Consider the vertex v
ij
pj ,rj in Vij ⊆ R† ⊆ V (D†R). From the construction of D†R, we

get the (s, t)-path P † = s ◦ vi1p1,r1
◦ vi2p2,r2

◦ . . . ◦ viqpq ,rq ◦ t in D†R. This (s, t)-path P †

in D†R is called the reduced path of P in D†R.

Proof of Lemma 3.1.1 Recall (D,S, `, k) is an instance of FTR(S, S). Let R =

V (D) \ S. Let D†R be obtained by dagify(D,R). From Observations 3.5.1 and 3.5.2,
Lemma 3.4.7 can be used to compute a (2k`2 + 1)-cut preserving set for S in D†R.
Let Z† be such a set. Let Z = full-comp(Z†). We claim that H = D[Z] is a
solution to the instance (D,S, `, k). (First note that the size bound on H follows
from Lemma 3.4.7 and the fact that each strongly connected component of R has
size at most `.)

Towards this let A ⊆ E(D) of size at most k, s, t ∈ S and P be an (s, t)-path
in D − A. We need to show that there is some (s, t)-path in H − A too. Let
P = P1 ◦ . . . ◦ Pq be the S-based partition of P such that each Pi is an (si, ti)-path.
Then it suffices to show that for each fixed i ∈ [q], there is some (si, ti) path in
H − A (these paths would yield a closed walk from s to t in H − A and hence an
(s, t)-path in H −A). In the remaining part of the proof, we focus on proving this.
Note that each Pi is S-free. Fix any i ∈ [q]. For the ease of notation, let us call the
path Pi as P , vertices si, ti as s, t respectively.

Let P † be the reduced path corresponding of P inD†R. Since Z† is a (2k`2+1)-cut
preserving set for P † in D†R, consider a Z†-witnessing replacement P † = P †1 ◦ . . .◦P †r .
Recall the notation from the construction in Definition 3.5.1.

For an arbitrary c ∈ [r], let P †c be a (vaij,v
b
i′,j′)-path (or (s,vaij)-path or (vaij, s)-

path). Observe that, since P † is the reduced path of P , to finish the proof of the

49

lemma, it is enough to show a (vai , v
b
j)-path (or (s, vai)-path or (vai , s)-path) exists in

H −A. Without loss of generality, let P †c be a (vaij,v
b
i′,j′)-path, the other cases hold

due to similar arguments.

As P † = P †1 ◦ . . . ◦ P †d is a Z†-witnessing replacement, one of the following cases
arises.

1. V (P †c) ⊆ Z†. Since P † is the reduced path of P , consider the (vai , v
b
j)-subpath,

say P ′c, of P . Then, V (P ′c) ⊆ full-comp(P †c) ⊆ Z (because V (P †c) ⊆ Z†). Also
since P does not have an arc in A, so does P ′c. Thus, by the construction of
H, P ′c is a path in H − A.

2. There is a list Li of 2k`2 + 1 internally vertex-disjoint (vaij,v
b
i′j′)-paths in

D†R[Z†]. Let A† be the set of affected vertices of A in D†R. Clearly, |A†| ≤ 2k`2.
Then there exists a path in Li that is A†-free. Then from Observation 3.5.3,
there exists a (vai , v

b
j)-path, say P ′c, such that V (P ′C) ⊆ full-comp(P †c) ⊆ Z

and, that does not use an arc of A. From the construction of H, P ′c is a path
in H − A.

This finishes the proof of the lemma.

3.5.2 Kernel for DFAS on Dα

In this section, we give a polynomial kernel for DFAS on Dα, that is, we prove
Theorem 3.1.1.

Theorem 3.1.1. DFAS on Dα admits a kernel of size kO(4α).

We achieve this in two steps. In the first step, we find a set of vertices S of size
O(αk) whose removal results in an acyclic digraph. We then show that it is enough
to keep the vertices of a k-cut-preserving set for S to get a kernel.

Lemma 3.5.1. Let (D, k) be an instance of DFAS and let D ∈ Dα. In polynomial
time, one can either correctly conclude that (D, k) is a No instance of DFAS, or
output a set S ⊆ V (D) such that |S| ≤ (2α + 1)k and D − S is acyclic.

Proof. Since D ∈ Dα, if there exists a cycle in D, then from Observation 3.3.1 there
exists a cycle of length at most 2α + 1. Thus, one can greedily find vertex-disjoint
cycles each of length at most 2α+1. To see this, notice that after the removal of any

50

vertex set, the resulting digraph remains in Dα and hence our previous argument
reapplies. If one finds more than k such cycles, then any dfas of S has size at least
k + 1, in which case report that (D, k) is a No instance. Otherwise, one finds a
collection C of at most k cycles of length at most 2α+ 1 each such that every cycle
of D intersects in some vertex of one of the cycles in C. In this case, output S as
the union of the vertex sets of the cycles in C.

Lemma 3.5.2. Let (D, k) be an instance of DFAS where D ∈ Dα. Let S be a set
computed by Lemma 3.5.1 on input (D, k). Let Z be a k-cut preserving set for S in
D computed by Lemma 3.4.7. Then, (D, k) is a Yes instance of DFAS if and only
if (D[Z], k) is a Yes instance.

Proof. Since D[Z] is a subgraph of D, the forward direction is trivial. For the
backward direction, let A be a dfas of D[Z] of size at most k. We will prove that
A is also a dfas of D. For the sake of contradiction, suppose that A is not a dfas of
D, that is, there is some cycle C in D −A. Since D − S is acyclic, C must contain
some vertex from S. Let v0, . . . , v` be the vertices in V (C) ∩ S, appearing in this
order along C (the choice of which vertex is denoted v0 is arbitrary).

For any pair (vi, vi+1), the (vi, vi+1)-subpath of C is S-free. Recall the construc-
tion of the digraph DS

(vi,vi+1) before Definition 3.4.2. From the definition of Z (by
Definition 3.4.2), Z contains a k-cut preserving set for (vi, vi+1) in DS

vi,vi+1
, for each

i ∈ [0, `]. From Lemma 3.4.1, there exists a path P ′i from vi to vi+1 in D[Z] − A.
Thus, we conclude that for each i ∈ [`]0, there exists a (vi, vi+1)-path (where addi-
tion is modulo `) in D[Z] − A. Since C is a cycle, these paths give a closed walk
(and hence also a cycle) in D[Z]− A.

Proof of Theorem 3.1.1: Its correctness follows from Lemmas 3.4.7 and 3.5.2 by
noting that the size of the set Z obtained is smaller than ((2α + 1)k)2f(k, α) .

51

Chapter 4

Kernel for DEOCT on Bounded
Independence Number Digraphs via
Parity Reachability Preserving
Fault-Tolerant Subgraphs

The Directed Edge Odd Cycle Transversal (DEOCT) problem is the
parity-based version of DFAS, formally defined as follows. (On general digraphs,
the vertex and arc versions of the problem are equivalent [150]).

Directed Edge Odd Cycle Transversal (DEOCT) Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S has
no odd cycle?

In this chapter, we first prove that DEOCT is NP-hard on tournaments. We later
prove that DEOCT admits a polynomial kernel on the class of digraphs of bounded
independence number. The later result is obtained by building a connection of this
problem with parity reachability preserving fault-tolerant subgraphs.

53

Figure 4.1: A directed edge odd cycle transversal (in blue) that is not a directed
feedback arc set.

4.1 NP-hardness of DEOCT on Tournaments

Observe that a tournament has no directed cycle if and only if it has no directed
triangle (a cycle on three vertices). In turn, this simple observation implies that,
given a tournament D, any subset S of the vertices of D has the following property:
D−S is a DAG if and only if it has no directed odd cycle. Thus, the vertex versions
of DFAS and DEOCT on tournaments are equivalent. However, for DFAS and
DEOCT the situation is not so clear. Indeed, it is not difficult to come up with
a tournament D and a subset of arcs S of D such that D − S is not a DAG, yet
it has no directed odd cycle (see, e.g., Fig. 4.1). Nonetheless, we are able to prove
that given a tournament D and a subset S of the arcs of D such that D− S has no
directed odd cycle, there exists a subset of arcs S ′ of D such that D − S ′ is a DAG
and |S ′| ≤ |S|. In particular, we show that DEOCT on tournaments is equivalent
to DFAS on tournaments. We thus establish the following result.

Theorem 4.1.1. DEOCT on tournaments is NP-hard.

Given a digraph D, observe that any directed feedback arc set solution (dfas) of
D is also a directed odd cycle transversal (deoct) of D. But the converse may not
always be true. But what we can prove in the converse case is that if |S| is an deoct
of D, then there exists a vertex set |S ′| such that |S ′| ≤ |S| and S ′ is a dfas of D.
Lemma 4.1.2 proves this. The following lemma from [181] will be used in the proof
of Lemma 4.1.2.

Lemma 4.1.1 ([181] Lemma 11). Let D be a tournament on n vertices and m arcs.
Then D has a dfas of size at most m

2
− 1

2
dn−1

2
e.

Lemma 4.1.2. Let D be a tournament. If S is a deoct of D, then there exists a
dfas of D of size at most |S|.

Proof. Consider the digraph D−S. Let C1, . . . , Ct be the set of strongly connected
components of D − S. For ease of notation, let us denote D[Ci] by Di. Let Si =

54

S ∩E(Di). For each i ∈ [t], we will now construct a set Xi such that Xi is a dfas of
Di such that |Xi| ≤ |Si|. Since Di is a strongly connected digraph and has no odd
directed cycles, from Observation 4.4.1, Di is bipartite. Let (Ai, Bi) be a bipartition
of Di. Let |Ai| = na and |Bi| = nb.

Claim 4.1.1. |Si| ≥
(
na
2

)
+
(
nb
2

)
.

Proof. Since (Ai, Bi) is a bipartition of Di, Di[Ai] and Di[Bi] are independent. Since
Di is an induced subgraph of D−S and D is a tournament, all the arcs whose both
end-points are either in Ai or in Bi, are in S. Thus, the claim follows.

Let Xa
i and Xb

i be the dfas of D[Ai] and D[Bi] obtained from Lemma 4.1.1.
Then |Xa

i | ≤ 1
2

(
na
2

)
− 1

2
dna−1

2
e and |Xb

i | ≤ 1
2

(
nb
2

)
− 1

2
dnb−1

2
e. Consider E(Ai, Bi) and

E(Bi, Ai). If |E(Ai, Bi)| ≤ |E(Bi, Ai)|, then let Xab
i = E(Ai, Bi). Otherwise, let

Xab
i = E(Bi, Ai). Observe that |Xab

i | ≤ nanb
2

. Let Xi = Xa
i ∪Xb

i ∪Xab
i .

Claim 4.1.2. Xi is a dfas of Di.

Proof. Suppose not. Then there is a cycle, say Q, in Di − Xi. Recall (Ai, Bi) is
a bipartition of Di. Since Xa

i is a dfas of D[Ai] and Xa
i ⊆ Xi, Q is not entirely

contained in Ai. Similarly, Q is not entirely contained in Bi. Thus, if such a cycle
Q exists, it has to intersect both Ai and Bi. This implies there exists two distinct
arcs of Q, say e1 and e2, such that e1 ∈ E(Ai, Bi) and e2 ∈ E(Bi, Ai). But this is
not possible, because Xab

i ⊆ X.

Claim 4.1.3. |Xi| ≤ |Si|.

Proof. From the construction of Xi, we have |Xi| = |Xa
i |+ |Xb

i |+ |Xab
i . Thus,

|Xi| ≤
1

2

(
na
2

)
− 1

2
dna − 1

2
e+

1

2

(
nb
2

)
− 1

2
dnb − 1

2
e+

nanb
2

=
n2
a

4
− na

4
− 1

2
dna − 1

2
e+

n2
b

4
− nb

4
− 1

2
dnb − 1

2
e+

nanb
2

≤ n2
a

4
− na

4
− 1

2
(
na
2
− 1

2
) +

n2
b

4
− nb

4
− 1

2
(
nb
2
− 1

2
) +

nanb
2

Since nanb ≤ n2
a+n2

b

2
, we have the following.

55

|Xi| ≤
n2
a

2
+
n2
b

2
− na

2
− nb

2
+

1

8
=

(
na
2

)
+

(
nb
2

)
+

1

8

Since,
(
na
2

)
+
(
nb
2

)
is an integer and the size of the set Xi is an integer, we have

that |Xi| ≤
(
na
2

)
+
(
nb
2

)
≤ |S|. The last inequality follows from Claim 4.1.1.

Let S ′ = S \ ∪i∈[t]Si. Observe that S = S ′] S1] . . .] St. Let X = ∪i∈[t]Xi ∪ S ′.

Claim 4.1.4. |X| ≤ |S|.

Proof. Since X = ∪i∈[t]Xi ∪ S ′, |X| = ∪i∈[t]|Xi| + |S ′|. Thus, from Claim 4.1.3,
|X| ≤ ∪i∈[t]|Xi|+ |S ′| ≤ |S|.

Claim 4.1.5. X is a dfas of D.

Proof. For the sake of contradiction, suppose there is a cycle, say Q, in D − X.
Recall that C1, . . . , Ct are the strongly connected components of D − S. Also, S ′

is the set of those arcs of S whose one endpoint belong to Ci and the other in Cj,
for some i, j ∈ [t], i 6= j. Since S ′ ⊆ X, the vertex set of Q cannot intersect both
Ci and Cj for some i, j ∈ [t], i 6= j. Thus, the vertex set of Q is fully contained in
some Ci. Since Xi ⊆ X and Xi is a dfas of Di (from Claim 4.1.2), there is no cycle
in Di −X. This proves the claim.

Claim 4.1.4 and 4.1.5 prove the lemma.

Lemma 4.1.3. Let D be a tournament. For any integer k, D has a dfas of size at
most k if and only if D has a deoct of size at most k.

Proof. Clearly, any dfas of D is also a deoct of D. The other direction follows from
Lemma 4.1.2.

Since DFAS on tournaments is NP-hard [197], from Lemma 4.1.3 it follows that,
DEOCT on tournaments in NP-hard. This proves Theorem 4.1.1.

56

4.2 Parity Preserving Fault-Tolerant Subgraphs

The question of the parameterized complexity of DEOCT was explicitly stated as
an open problem [75] for the first time in 2007, immediately after the announcement
of the first parameterized algorithm for DFAS. Since then, the problem has been re-
stated several times [53, 56, 158, 155]. Recently, Lokshtanov et al. [150] proved that
DEOCT is W[1]-hard. Specifically, this means that DEOCT is highly unlikely to be
FPT or admit a kernel of any size (even exponential in k). Based on the parity-based
generalization of our combinatorial lemma (Lemma 4.2.1), we establish a polynomial
kernel for DEOCT on Dα, which stands in sharp contrast to its aforementioned
status on general digraphs.

Theorem 4.2.1. DEOCT on Dα admits a kernel of size (αk)O(44α3
).

As in Chapter 3, the proof of Theorem 4.2.1 is established via fault-tolerant
subgraphs. In this case, we define a parity version of the fault-tolerant subgraph
problem. In the Fault-Tolerance (S, T)-Parity Reachability problem, we
are given a digraph D, two terminal sets S, T ⊆ V (D), positive integers k and p, and
a non-negative integer r. The objective is to construct a subgraph H of D with as
few arcs/vertices as possible, such that, after the failure of any set of at most k arcs
in D, the following property is preserved for any two vertices s ∈ S and t ∈ T : if
there exists a directed path from s to t in D whose length q satisfies (q mod p = r),
then there also exists a directed path from s to t in H whose length q′ satisfies (q′

mod p = r). We prove the following combinatorial lemma which aids the proof of
Theorem 4.2.1.

Lemma 4.2.1. Given a digraph D ∈ Dα, positive integers k, `, p, a non-negative
integer r, and S ⊆ V (D) such that every strongly connected component of D−S has
at most ` vertices, the Fault-Tolerance (S, S)-Parity Reachability problem
admits a solution H on (|S|α`pk)O(4α`

2
) vertices. Furthermore, such a solution H

can be found in polynomial time.

In fact, we present combinatorial results stronger than Lemma 4.2.1 that yield a
polynomial kernel for a more general version of DEOCT, where instead of hitting
directed odd cycles, the objective is to hit directed cycles whose length ` satisfies (`

mod p = 1) for an integer p ∈ N given as input. Note that a fundamental difference
between this result and Lemma 4.2.1 is that the latter works for any modulo and
not just 1. The reason for this is explained in Section 4.6.

57

Modulo p Directed Cycle Transversal (mod(p)-DCT) Parameter: k
Input: A digraph D and non-negative integers k and p.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S has no
cycle of length 1 mod p?

Theorem 4.2.2. mod(p)-DCT on Dα admits a kernel of size (pαk)O(4α
3p2).

4.3 Introducing Parity Preserving Sets

One of the main tools employed for the proof of Lemma 3.1.1 and Theorem 3.1.1
was Lemma 3.4.1, which says that if Z is a k-cut preserving set for (u, v) and A

is a set of at most k arcs, then the existence of a (u, v)-path in D − A implies the
existence of one in D[Z] − A. To prove Lemma 4.2.1 and Theorem 4.2.2, we need
to take into account not only the existence of a path, but also its length modulo a
certain integer p. For this reason, we introduce a notion of parity preserving sets.
Vaguely speaking, in the a parity preserving set, like the cut preserving set, we need
to keep witnesses for paths. In the case of cut preserving sets keeping a list of k+ 1

paths was enough to ensure the existence of one of them after the removal of at
most k arcs, as one path from each of the lists, together would yield a walk which
was sufficient for the cut-preserving purposes. In this case, since a walk doesn’t
necessarily yield the required parity path, we need to have witness lists of large
enough size that ensure the existence of enough paths such that a disjoint witness of
required parity can be found for each piece to yield a witnessing path for the given
path. Also, the size of the list of paths required as a witness then also becomes a
function of the size of the original path. This is formalized in the definition below.

Definition 4.3.1 ((k, p, q, t)-parity preserving set for a collection of pairs). For any
digraph D, positive integers k, p, q, t, and a collection of pairs of vertices V ⊆ V (D)2,
a set Z is called a (k, p, q, t)-parity preserving set for V if for any A ⊆ E(D) of size
at most k, if there exists V ′ ⊆ V, |V ′| ≤ q, V ′ = {(ui, vi) : i ∈ [q′], q′ ≤ q} such that,

1. for each (ui, vi) ∈ V ′, there is a (ui, vi)-path Pi of length at most t in D − A,

2. for each i, j ∈ [q′], i 6= j, the paths Pi, Pj described above are internally
vertex-disjoint,

3. for each i ∈ [q′], the internal vertices of Pi are disjoint from the set of vertices
in the pairs of V,

58

then for each i ∈ [q′], there exists a (ui, vi)-path P ∗i in D[Z]− A such that,

1. length of Pi modulo p is equal to length of P ∗i modulo p,

2. for each i, j ∈ [q′], i 6= j, the paths Pi and P ∗j are internally vertex-disjoint.

4.3.1 Preserving Path Length Modulo p: The Ideas

The notion of cut preserving sets from the last chapter can also be used to preserve
paths of certain length modulo some integer p under the failure of k arcs. The
argument follows the same lines as the previous chapter; what we additionally need
is the following observation. Suppose s and t are two vertices of a digraph D ∈ Dα
and there exists p2α vertex-disjoint (s, t)-paths in D. By the pigeon hole principle,
pα of those paths must have the same length modulo p. Let P1, . . . , Ppα denote those
paths and X denote the set of vertices appearing just after s on these paths. The
size of X is pα, and since the largest independent set of D has size at most α, it
means that the chromatic number of D[X] is at least p. By Gallai-Roy Theorem
[108, 189], there exists a path P of length p − 1 in D[X]. Using this path and the
path Pi, we can find a path of length i modulo p from s to t (see the proof of Lemma
4.4.1 for full details). This implies that if s and t are two vertices with more than
p2α + k vertex-disjoint paths from s to t, then preserving exactly p2α + k of these
paths is enough for our purpose. Indeed, after the removal of k arcs, there will still
be p2α vertex-disjoint (s, t)-paths and thus a path of every parity. This purpose can
again be achieved using cut preserving sets.

4.4 Prelude to the Technical Details

Lemma 4.4.1. Let D ∈ Dα be a digraph and p be a positive integer. For s, t ∈ V (D),
if P is a collection of p2α internally vertex-disjoint (s, t)-paths in D, then for each
i ∈ {0, . . . , p− 1}, there exists an (s, t)-path of length i mod p in D[V (P)].

Proof. By the pigeonhole principle, there exist pα paths in P of the same length
(without loss of generality, say 0) modulo p. Let P1, . . . , Ppα denote these paths. For
each j ∈ [pα], let vj be the vertex of Pj that appear after s in Pj. Since ∪i∈[pα]Pi is
a collection of internally vertex-disjoint paths, the set X = {v1, . . . , vpα} is a set of
pα vertices. Since D[X] ∈ Dα, it means that χ(D[X]) ≥ p and thus, by Gallai-Roy
Theorem [108, 189], there exists a path of length p − 1 in D[X]. Without loss of

59

generality, let P = (v1, v2, . . . , vp) be this path. Then for each i ∈ [2..p], consider
the path Qi obtained as follows. Let R1 be the (s, v1)-subpath of P1, that is R1 is
the arc (s, v1). Let R2 be (v1, vi)-subpath of P and let R3 be the (vi, t)-subpath of
Pi. Then, Qi = R1 ◦ R2 ◦ R3 is an (s, t)-path. Clearly, the length of Qi is i − 1

mod p.

The following proposition relates the absence of directed cycles in a strongly
connected digraph with its absence in its undirected counterpart. This will be
crucially used during the NP-hardness proof of DEOCT on tournaments.

Observation 4.4.1. If D is a strongly connected digraph with no odd directed cycles,
then the underlying undirected graph of D has no odd cycles, that is, it is bipartite.

Proof. For the sake of contradiction, suppose that D is not bipartite, that is, it
contains an undirected odd cycle, say C. Let C = (v0, . . . , vt−1). If for all i ∈ [t−1],
(vi, vi+1) ∈ E(D) (here addition is modulo t), then C is also a directed odd cycle
in D, which is a contradiction. Otherwise, consider any pair vi, vi+1, such that
(vi+1, vi) ∈ E(D). Since D is a strongly connected digraph, there is path, say Pi
from vi to vi+1 in D. If Pi is an even path then Pi together with the arc (vi+1, vi) is
an odd cycle in D (which is again a contradiction). Otherwise, for all pairs vi, vi+1

such that (vi+1, vi) ∈ E(D), there is an odd (vi, vi+1)-path Pi. For each pair vi, vi+1

such that (vi+1, vi) ∈ E(D), replace the arc (vi+1, vi) ∈ E(D) with the path Pi,
in C, to obtain a directed closed odd walk. Since every directed closed odd walk
contains a directed odd cycle, we conclude that D contains an odd cycle, which is a
contradiction.

4.5 Computing Parity Preserving Sets

We now show how to a find (k, p, q, t)-parity preserving sets using cut preserving sets.
For this, first recall the definition of dagify(D,R) (Definition 3.5.1). Recall that, the
strongly connected components of R are denoted by SCi and their corresponding
vertices in R† are denoted by SC†i .

Lemma 4.5.1. Let k, p, q, t, ` be positive integers. Let D ∈ Dα be a digraph, S ⊆
V (D) and R = V (D) − S. Suppose that every strongly connected component of
D[R] contains at most ` vertices. Let β = qt(2`2α+ 1)p2α`2 + (qt+ 2k)`2 +p2α. Let
Z† be a β-cut preserving set for S in dagify(D,R) = D†R, and let Z = S ∪ {SCi |

60

there exists v ∈ SC†i such that v ∈ Z†}. Then, Z is a (k, p, q, t)-parity preserving
set for S2 in D. Moreover, such a set Z of size at most |S|2f(β, α`2)`2 can be
computed, where f is as defined in Lemma 3.4.7.

Proof. From Observation 3.5.2, D†R ∈ D`2α, which together with Lemma 3.4.7, im-
plies that β-cut preserving set Z† for S in D†R of size at most |S|2f(β, α`2) can be
computed. Thus, |Z| ≤ |S|2f(β, α`2)`2. It remains to show that Z is a (k, p, q, t)-
parity preserving set for S2 in D. For simplicity of notation, let D† denote D†R.

Recall the notation above Lemma 3.4.7. Notice that Z† is the union of β-cut
preserving sets, specifically, a cut Cu,v for (u+, v−) in D†

S
u,v for all u, v ∈ S. For

convenience, we will consider that any vertex s ∈ S of D†R corresponds to the pair
of vertices (s, s) of D. Because of this, any vertex v of D†R corresponds to a pair of
vertices of D. In some arguments ahead, for a vertex (a1, b1) of D†R, we will want
to consider a (a1, b1)-path in the component of D[R] containing a1 and b1. When
a1 = b1 = s ∈ S, it will be always safe to take the single vertex s as this path.

Let A ⊆ E(D) be of size at most k. Let {(u1, v1), . . . , (uc, vc)} be some pairs of
vertices of S, where c ≤ q and let P1, . . . , Pc be a set of paths such that,

1. for each i ∈ [c], Pi is a (ui, vi)-path of length at most t in D − A,

2. for each i, j ∈ [c], i 6= j, the paths Pi, Pj are internally vertex-disjoint,

3. for every i ∈ [c], the internal vertices of Pi are disjoint from S.

We want to show the existence of a set of paths P ∗1 , . . . , P ∗c such that every P ∗i is a
(ui, vi)-path in D[Z]−A, the length of Pi modulo p is the same as the length of P ∗i
modulo p and, all the P ∗i ’s are internally vertex-disjoint.

For each i ∈ [c], let P †i be the reduced path of Pi in D†. Note that P †i is a
(ui, vi)-path in D†. Since, Z† is a β-cut preserving set for (ui, vi) in D†, there exists
a semi-Z†-based partition of P †i , P

†
i = P †i,1 ◦ · · · ◦ P †i,ai , such that for each j ∈ [ai],

either V (P †i,j) ⊆ Z† or there exists a list L†i,j of size β containing paths between the
same endpoints as P †i,j.

Note 4.5.1. For each i ∈ [c], since the length of Pi is at most t, ai ≤ t.

Claim 4.5.1. Without loss of generality, for each i ∈ [c], j ∈ [ai], all the paths in
L†i,j have length at most 2`2α + 1.

61

Proof. Recall from Observation 3.5.2 that D† ∈ D`2α. Thus, from Observation 3.3.1,
we can safely assume that all the paths in L†i,j have length at most 2`2α + 1.

For each path P †i,j in D†, we will now associate a path Pi,j in D with it. The path
Pi,j is basically the subpath of Pi with the endpoints corresponding to the endpoints
of P †i,j, that is, Pi,j is obtained from P †i,j by replacing each vertex vzx,y in P †i,j by
some (vx, vy)-path in SCz. Consider the collection of paths {Pi,j | i ∈ [c], j ∈ [ai]}.
Observe that our goal reduces to finding another collection {P ∗i,j | i ∈ [c], j ∈ [ai]}
such that,

1. the vertex sets of the internal vertices of P ∗i,j and P ∗i′,j′ are disjoint, for each
i, i′ ∈ [c], j ∈ [ai], j′ ∈ [ai′], i 6= i′, j 6= j′,

2. for each i ∈ [c], j ∈ [ai], the length of the path Pi,j modulo p is the same as
the length of the path P ∗i,j modulo p.

It is enough to prove the above because the collection P ∗i = P ∗i,1 ◦ · · · ◦ P ∗i,ai , for
each i ∈ [c] is the desired collection.

If V (P †i,j) ⊆ Z†, then let P ∗i,j = Pi,j. Note that, in this case, V (Pi,j) = V (P ∗i,j) ⊆
Z. Thus, P ∗i,j is a path in D[Z]−A. In the other case, when there exists a list L†i,j
of paths of size β for P †i,j, we clean this list as follows. First, since c ≤ q, all the
Pi’s are of length at most t, each strongly connected component in D[R] contains
at most ` vertices and |A| ≤ k, we need to remove only (qt+ 2k)`2 paths from each
list L†i,j so that the internal vertices of the remaining paths correspond to strongly
connected components of D[R] not containing any of the vertices in any of the Pi’s
or any vertex adjacent to any edge in A. Since the number of lists L†i,j is bounded
by ct (refer Note 4.5.1), and each path is smaller than 2`2α + 1, we can remove
at most qt(2`2α + 1)p2α`2 further paths from each list so that the remaining lists,
which we denote as L̂†i,j’s, consist of p2α internally vertex-disjoint paths of D†Sui,vi ,
such that if SCr is a strongly connected component of D[R] and a pair of vertices
(x1, x2) ∈ V (SCr) is used in a path of L̂†i,j, then no other path of any other Lx,q
can use a pair of vertices of V (SCr) as an internal vertex.

Let Qa
i,j = x1 ◦ x2 ◦ · · · ◦ xf be a path of Li,j, with all the xi’s being vertices

of Cui,vi . We will construct a path T ai,j of D[Z] − A as follows: x1 is a vertex of
P †i which corresponds in Pi to a path in some strongly connected component SCr
from some vertex a1 to a vertex b1. Let K1 be this path. Likewise, xf is a vertex of
P †i which corresponds in Pi to a path in some strongly connected component SCr′

62

from some vertex af to a vertex bf . Let Kf be this path. Each of the other xi’s
corresponds to a pair of vertices (ai, bi) in some strongly connected component SCri
of D[R], let Ki be any (ai, bi)-path in this component. By definition of the digraph
D†R, it is clear that the concatenation of the Ki using the additional arcs from br to
ar+1 for r ∈ [f − 1] is a (a1, bf)-path in D[Z]. Moreover, because of the cleaning
part of our argument, we know that none of the xr for r ∈ [2, f − 1] belong to
strongly connected component adjacent to arcs of S, which means that all the Kr

for r ∈ [2..f − 1] are in D[Z]− A. Since K1 and Kf are subpaths of Hi, and don’t
contain any vertex not in Cui,vi , they also belong to D[Z]− A.

Let Qa
i,j be a path of some L̂†i,j, Qa′

i′,j′ a path of some Li′.j′ (possibly i = i′ and
j = j′) and T ai,j and T a

′
i′,j′ the paths of D[Z]−A associated. Because of the cleaning

part of our procedure, the internal vertices of Qa
i.j and Qa′

i′,j′ belong to different
strongly connected components of D[R]. This implies that the paths T ai,j and T a

′
i′,j′

are internally vertex-disjoint. For a similar reason, they are also internally vertex
disjoint from all the vertices of all the other Pj. It means that, for any fixed i, j such
that P †i,j does not belong to Cui,vi , the only thing we have left to argue is that there
exists, among the paths T ai,j, a path of the same length modulo p as P ∗i,j. This is done
by Lemma 4.4.1, as there is at least p2α of those paths. This ends the proof.

4.6 Applications of Parity Preserving Sets

In this section we show how to utilize Lemma 4.5.1 to prove Lemma 4.2.1 and
Theorem 4.2.2.

4.6.1 Fault-Tolerance (S, S)-Parity Reachability

In order to prove Lemma 4.2.1, we need a way to bound the size of the paths that
we consider. This is the purpose of the next two lemmas.

Lemma 4.6.1. Let D ∈ Dα, p be some positive integer and u and v be two vertices
such that any strongly connected component in D−{u, v} has size at most `. If there
exists a path P from u to v of length q such that q mod p = r for some r ∈ [p− 1]

and q ≥ αp` + 2, then there exists a path P ′ from u to v of length q′ such that q′

mod p = (r + 1) and q − αp` ≤ q′ < q. Moreover, V (P ′) ⊂ V (P).

Proof. Suppose P = x0, . . . , xq−1 and consider the set of vertices S = ∪i∈[0,α]x1+ip`.

63

Because D ∈ Dα and S is a set of size α + 1, there is an arc between two vertices
x1+ip` and x1+jp` for some 0 ≤ i < j ≤ α. This arc has to be oriented from x1+ip`

to x1+jp` or it would create with the subpath of P from x1+ip` to x1+jp` a cycle of
length greater than ` in D−{u, v}. Thus the path P ′ obtained from P by replacing
the subpath of P from x1+ip` to x1+jp` by the arc (x1+ip`, x1+jp`) satisfies all the
properties required.

If P is a path of length at least αp2`, it means we can apply Lemma 4.6.1 p times
to get a path of the same parity. This gives the following lemma.

Lemma 4.6.2. Let D be a digraph in Dα, p some positive integer and u and v

two vertices such that any strongly connected component in D − {u, v} has size at
most `. If there exists a path P from u to v of length q such that q mod p = r for
some r ∈ [p − 1], then there exists a path P ′ from u to v of length q′ such that q′

mod p = r and q′ ≤ αp2`+ 2. Moreover, V (P ′) ⊂ V (P).

We are now ready to prove the parity version of our fault-tolerant result.

Lemma 4.2.1. Given a digraph D ∈ Dα, positive integers k, `, p, a non-negative
integer r, and S ⊆ V (D) such that every strongly connected component of D−S has
at most ` vertices, the Fault-Tolerance (S, S)-Parity Reachability problem
admits a solution H on (|S|α`pk)O(4α`

2
) vertices. Furthermore, such a solution H

can be found in polynomial time.

Proof. Let Z ′ be a (k, p, |S|, αp2` + 2)-parity-preserving set obtained by applying
Lemma 4.5.1 to D and S. A rough computation would show that the β defined in
Lemma 4.5.1 is then smaller than 20|S|α3`5p5 + 2k`2, which gives that:

|Z ′| ≤ |S|2`2(22(20|S|α3`5p5 + 2k`2)5)4α`
2

.

Let us now show that Z ′ is a solution to the Fault-Tolerance (S, S)-Parity

Reachability problem. Let A be a set at most k arcs, s and t two vertices of
S, and P a path from s to t in D − A. Let s1, . . . , se denote the vertices in the
intersection of P with S, in the order as they appear on P , and for every i ∈ [e− 1],
Pi denote the subpath of P from si to si+1. As P is a path, e ≤ |S|. By applying
Lemma 4.6.2, we can assume that all the Pi’s are smaller than αp2` + 2. Thus, by
definition of a (k, p, |S|, αp2`+ 2)-parity-preserving set, for every i ∈ [e] there exists
a path P ′i in D[Z ′]−A from si to si+1 of the same length modulo p as Pi and such

64

that all the P ′i are internally vertex-disjoint. Taking the union of the P ′i gives the
desired (s, t)-path in D[Z ′]− A.

4.6.2 Kernel for mod(p)-DCT in Dα

In this section, we present a proof of Theorem 4.2.2. The proof follows the same
structure as the proof of Theorem 3.1.1. First we need to find an approximate
solution of polynomial size. For this we need the following result, due to Chen et
al. [52]

Theorem 4.6.1. Let l ≥ 2 be an integer. If a strongly connected digraph D contains
no directed cycle of length 1 mod p, then χ(D) ≤ p.

Remember that, when D ∈ Dα, χ(D) ≤ p implies that |D| ≤ αp.

Lemma 4.6.3. Let D ∈ Dα and p a positive integer. Then either D does not contain
a cycle of length 1 mod p, or such a cycle on fewer than p(α + 1)2 vertices exists.

Proof. Suppose C is the smallest cycle of length 1 mod p, and |C| = q ≥ (α+ 1)2p.
Let C = x0, . . . , xq−1 denote the vertices of C. Consider the set of vertices A =

∪i∈[0,α]{xiαp}. Because A contains more than α vertices, there is an arc between two
vertices of A, say from xiαp to xjαp. However, since q ≥ (α+ 1)2p, the subpath of C
from xjαp to xiαp contains more than αp vertices. Let C ′ denote the vertices on this
path. D[C ′] is a strongly connected graph on more than αp vertices. Theorem 4.6.1
implies the existence of a cycle of length 1 mod p in D[C ′] which is a contradiction
as C ′ is smaller than C.

With the previous lemma, one can easily adapt the proof of Lemma 3.5.1 to show
the following:

Lemma 4.6.4. Let (D, k) be an instance of mod(p)-DCTand let D ∈ Dα. In
polynomial time, one can either correctly conclude that (D, k) is a No instance of
mod(p)-DCT, or output a set S ⊆ V (D) such that |S| ≤ (α + 1)2pk and D − S

does not have any cycle of length 1 mod p.

We are now ready to prove the existence of a kernel for mod(p)-DCT:

Theorem 4.2.2. mod(p)-DCT on Dα admits a kernel of size (pαk)O(4α
3p2).

65

Proof. Let (D, k) be an instance mod(p)-DCT. By applying Lemma 4.6.4, we can
either find k + 1 vertex disjoint cycles of length 1 mod p, and conclude that (D, k)

is a No instance, or find a set S of size at most k(α + 1)2p vertices such that
D − S doesn’t contain any cycle of length 1 mod p. Let R = V (D) − S and
note that Theorem 4.6.1 implies that the strongly connected component of D[R]

have at most αp vertices. Let Z be a (k, p, p(α + 1 + k)2, p(α + 1 + k)2)-parity
preserving set for S obtained from applying Lemma 4.5.1 to D and S. Note that,
the β defined in Lemma 4.5.1 is then smaller than 10p8α10k4 and thus |Z| ≤ (k(α+

1)2p)2(22(10p8α106k4)5)4α
3p2 . We claim that (D, k) is a Yes instance of mod(p)-

DCT if and only if (D[Z], k) is a Yes instance of mod(p)-DCT.

For the ease of notation, let D′ = D[Z]. Since D′ is a subgraph of D, the forward
direction is trivial. For the backward direction, let A be a set of at most k arcs such
that of D′ − A has no cycle of length 1 mod p. We will now prove that D′ − A

also has no cycle of length 1 mod p. For the sake of contradiction, suppose there
is a cycle of length 1 mod p in D − A and let C be the smallest such cycle. Since
D ∈ Dα and |A| ≤ k, D − A ∈ Dα+k. Then by Lemma 4.6.3, the length of C is at
most p(α + 1 + k)2.

Since D[R] has no cycle of length 1 mod p, C ∩ S 6= ∅. Let v1, . . . , vq be the
vertices of C ∩ S in the order as they appear on C. Note that q ≤ p(α + 1 + k)2.
Then, for each i ∈ [q], there is a subpath Pi,i+1 (count q + 1 as 1) from vi to vi+1,
such that Pi,i+1 is S-free. Note that all the length of each of these paths is at most
the length of the cycle C which is at most p(α + 1 + k)2.

Claim 4.6.1. For each i ∈ [q], there exists a path P ′i,i+1 from vi to vi+1 in D′ − A
such that:

1. the length modulo p of P ′i,i+1 is the same as the one of Pi,i+1, and

2. for any i, j ∈ [q], i 6= j, the set of internal vertices of P ′i,i+1 and P ′j,j+1 are
disjoint.

Proof. Since Z is a (k, p, p(α+ 1 + k)2, p(α+ 1 + k)2)-parity-preserving set for S2 in
D and

⋃
i∈[q](vi, vi+1) ⊆ S2, the claim follows from the definition of (k, p, p(α + 1 +

k)2, p(α + 1 + k)2)-parity-preserving set for S2.

Consider the cycle C ′ formed by taking the union of all the paths P ′i,i+1, for all
i ∈ [q]. From Claim 4.6.1, C ′ exists in D′−A and has the same length modulo p as
C. This contradicts the definition of A and ends the proof.

66

Chapter 5

Polynomial Kernel for DFVS
Parameterized by the Solution Size
Plus the Size of a Treewidth-η
Modulator

Recently, in order to shed some light on the kernelization complexity of DFVS,
Bergougnoux et al. [19] studied the kernelization complexity of DFVS where, in
addition to the solution size, they parameterized the problem by the size of the
feedback vertex set of the underlying undirected graph (that is, a modulator to
a graph of treewidth 1). In this chapter, we give a polynomial kernel for DFVS

parameterized by the solution size plus the size of a treewidth-η modulator, for any
fixed integer η. Formally, for a directed graph D, a subset M ⊆ V (D) is called a
treewidth η-modulator if D−M has treewidth at most η. We consider the following
parameterized problem parameterized by k + `.

DFVS/DFVS+Treewidth-η Modulator (Tw-η Mod)
Input: A digraph D, k ∈ N, M ⊆ V (D) where |M | = ` and D − M has
treewidth at most η.
Question: Is there S ⊆ V (D) where |S| ≤ k and D − S is a DAG?

Observe that DFVS/DFVS+Tw-η Mod is the same problem as DFVS with
just a different parameter. We design a kernel for DFVS/DFVS+Tw-η Mod

parameterized by k+ `. An additional feature of our kernelization algorithm is that
given an instance (D,M, k) of DFVS/DFVS+Tw-η Mod, in polynomial time, it

67

outputs an equivalent instance (D′,M., k′) of DFVS/DFVS+Tw-η Mod such that
the size of D′ is a polynomial function in k and ` (assuming fixed η), M ′ ⊆ M and
k′ ≤ k. In literature, such kernels, where the parameter of the reduced instance
does not increase (implied by assuming that M ′ ⊆M and k′ ≤ k) are called proper
kernels [2]. The additional requirement of the non-increase in the parameter of the
reduced instance is backed by the intuition that kernelization algorithms are meant
to output a smaller instance (compared to the input instance), and an increase in
even the parameter would counter this intuition. Thus, proper kernels are a neat
formalization of the heuristic based idea of pre-processing that has been extremely
successful in practice. Our main contribution is the following theorem.

Theorem 5.0.1. DFVS/DFVS+Tw-η Mod admits a proper kernel of size (k ·
`)O(η2).

Notably, our result can be viewed as a proof that DFVS parameterized only by
k, admits a polynomial kernel on the class of all graphs whose treewidth can be made
constant by the removal of kO(1) vertices. Yet another justification for our choice
of the parameter is the following. Parameterized by k alone, the problem has been
open for a very long time. On the other hand, parameterized by ` alone, it can be
easily seen that unless NP ⊆ coNP/poly, the problem does not exhibit a polynomial
kernel. This follows from an easy reduction from Vertex Cover parameterized by the
size of a treewidth-2 modulator, which is shown to not admit a polynomial kernel
unless NP ⊆ coNP/poly [68]. Thus, k + ` is a natural parameter to explore.

We also remark that the proof of Theorem 5.0.1 required the development of a
novel use of important separators, among other ideas for finding protrusions and
using the state-of-the-art protrusion machinery. Thus, as a side reward, the ideas
developed in this article may be insightful, helping to design reduction rules for
a polynomial kernel of DFVS. Lastly, our result encompasses the recent result of
Bergougnoux et al. [19], where they studied DFVS parameterized by the feedback
vertex set number of the underlying undirected graph, and gave a polynomial kernel
for this problem. Specifically, they gave a kernel of size O(fvs4), where fvs is the
feedback vertex set number of the underlying undirected graph of D. Note that
our parameter k + ` is not only upper bounded by O(fvs), but it can be arbitrarily
smaller than fvs. We also remark that DFVS has already been parameterized
by treewidth in the literature (not for kernelization purposes)—recently, Bonamy et
al. [33] showed that DFVS parameterized by the treewidth of the input graph, t, can
be solved in time 2O(t log t)nO(1), and that unless the Exponential Time Hypothesis
fails, it cannot be solved in time 2o(t log t)nO(1).

68

5.1 Overview of the Kernelization Algorithm

Our kernelization algorithm of Theorem 5.0.1 can be divided into three main phases.
We give a brief summary of each phase here.

1. Computing a zone decomposition of the directed graph: We first compute
a decomposition of D into three components: the vertex set M (modulator), a
collection of O(k`2) vertex sets Z (zones), and a vertex set R (remainder) of size
O(k`2). All of these sets are pairwise disjoint and form a partition of V (D). The
aim of this decomposition is to achieve a few properties with respect to each zone
Z ∈ Z, which we will later exploit to design reduction rules to bound the size of
each zone. Since the number of zones in the decomposition and the size of R is
O(k`2), in order to get the desired kernel, it would be enough to bound the size of
each zone Z ∈ Z by k`O(η2), after such a decomposition is constructed.

Let us mention three important properties of a zone Z ∈ Z that this decomposi-
tion achieves, and which play a critical role in helping us bound the size of Z. The
first property is that if D has a directed feedback vertex set of size at most k, then
there exists a directed feedback vertex set, say S, in D of size at most k, whose in-
tersection with Z is of constant size. The second property is that the neighborhood
of Z is entirely contained in M ∪ R and the size of the neighborhood of Z in R is
bounded by some constant. Finally, for any two vertices in the neighborhood of Z in
M , the maximum value of a directed flow from one to the other is either extremely
high or zero. We will exploit the first property to mark a “small” set of vertices in Z
that in some sense “represents” all partial solutions in Z. Such a set, which is called
ΓDFVS, is then used to design reduction rules that eliminate arcs between Z \ΓDFVS

and M . The third property is critically used in these reduction rules. Then, from
the second property, all the vertices in Z \ΓDFVS have a constant-sized neighborhood
outside Z. Having this information at hand, we further partition Z into small slices,
each of which is then replaced by constant sized sets by using protrusion machinery.

Though at first glance this decomposition of the graph may look very similar to
the near-protrusion decomposition of [99], it is not a near-protrusion decomposition.
In fact, for this problem we cannot find a near-protrusion decomposition.

2. Computing a k-DFVS Representative Set in Z: A k-DFVS representative
in a zone Z is a subset of vertices of Z (say, ΓDFVS) with the following property: If D
has a directed feedback vertex set of size at most k, then there is a directed feedback
vertex set S in D of size at most k and S ∩ Z ⊆ ΓDFVS. We aim to compute such

69

a set whose size is bounded by some polynomial in k and `. For this purpose, we
first revisit the relation between our problem and Skew Multicut. In particular,
we see that for any directed feedback vertex set S in D, S ∩ Z is a solution to an
“appropriate” instance of the Skew Multicut problem. Thus, if we can compute
solutions to all possible appropriate instances of Skew Multicut, then we can set
ΓDFVS to be the union of all these solutions. In this overview, we prefer to keep the
notion of an appropriate instance abstract.

Unfortunately, a single instance of our problem gives rise to a huge number of
appropriate instances. In particular, if we naively construct ΓDFVS by individually
computing a solution for each possible choice for an appropriate instance, we do not
obtain a set whose size is bounded by a polynomial function in k and `. So, in the
second step, we invest significant efforts to construct a set ΓDFVS of the desired small
size, which contains a solution for each possible choice of an appropriate instance.
To this end, we observe that if such a set of the desired size exists, then solutions of
“many” possible appropriate instances intersect a lot. Very roughly speaking, we aim
to identify a small set of vertices that is guaranteed to be contained in solutions of
“many” instances. If we can identify such a set, then we delete it from all appropriate
instances in which it is guaranteed to be present in some solution, and recurse on
the resulting instances. (Here, only one recursive call is performed.) From the
properties of a zone decomposition, we are able to derive that there is a solution
to our original problem whose intersection with Z is small, which in turn leads us
to the observation that we can only focus on small solutions for each appropriate
instance. Hence, we can bound the depth of the recursion. Though this description
roughly conveys the broad picture, the implementation of these ideas is significantly
more complex. For example, we are unable to find a small set of vertices that is
contained in some solution for “many” instances. Instead, we find a collection of
small sets such that at least one among them is the set that we want, though we do
not know which one.

These abstract ideas are materialized with the help of important separators (de-
fined in Section 5.2), the Pushing Lemma for Skew Multicut and a new (simple)
lemma, which we call the Important Separator Preservation (via Small Sink Set)
Lemma. This lemma says that if S is an important (X, Y)-separator of size α in
some digraph, then S is also an important (X, Y ′)-separator for some subset Y ′ of
Y of size at most α + 1, where Y \ Y ′ is removed from that digraph. We mainly
use this lemma in situations (that arise when we try to compute the collection of
sets mentioned above) that require guessing the set Y when X is given, so that we

70

can compute important (X, Y)-separators. In these situations, since it is enough to
guess Y ′ to compute all important (X, Y)-separators (from the Important Separator
Preservation Lemma), the fact that Y ′ is small significantly reduces the search space
for Y ′ compared to that for Y .

3. Reduction Rules for bounding the size of each zone Z: After computing
a small set that is a k-DFVS representative in a zone in our zone decomposition,
our final objective is to bound its size. To this end, we design reduction rules that
decompose a zone Z into a “small” number of protrusions. (Roughly speaking, a
protrusion in a graph G is an induced subgraph G[U] of G for a subset U ⊆ V (G)

that has constant treewidth and only a constant number of vertices with neighbors
in G− U .) More precisely, we first design a set of reduction rules that only bounds
the size of the neighborhood of every zone Z (with ΓDFVS removed) outside Z by
a constant. Then, by computing a nice tree decomposition of D[Z] and relying
on properties of an LCA-closure in that tree, we decompose the set Z as Z =

Γ̃DFVS]
⊎
U∈U U such that ΓDFVS⊆ Γ̃DFVS, the size of U is “small”, and each set

U ∈ U induces a protrusion. We then replace each protrusion D[U] by a “small”
digraph such that the resulting digraph is a “minor” of the original digraph, and the
input modulator M is also a treewidth-η modulator in the resulting digraph. This
concludes our kernelization algorithm.

We remark that the operations of the last step of our kernelization algorithm
ensure that the input modulatorM remains a modulator in the final returned kernel.
If we allow the modulator in the returned instance to be of size larger than |M | (that
is, if we allowed non-proper kernel), then we can bypass all of these reduction rules
and the protrusion machinery, and directly create the kernelized instance by taking
the torso of the set S that is the union of M , R and a k-DFVS representative set in
each Z. Here, by torso we mean that for every two vertices u, v ∈ S with a directed
path from u to v whose internal vertices do not belong to S, we add an arc from
u to v. Since the set S is of small size (polynomial in k and `), we directly obtain
a kernel by omitting the vertices outside S. However, when we perform the torso
operation, we lose the property that M is a modulator for the final instance, which
means that the parameter can increase to be of the magnitude of the entire kernel.

71

5.2 Prelude to the Technical Details

For any X, Y ⊆ V (D), an (X, Y)-separator in D is a set of vertices, say S ⊆
V (D) \ (X ∪Y), such that there is no path from any vertex in X to any vertex in Y
in D−S. Notice that the separator should have an empty intersection with X ∪ Y .

Let D be a directed graph and let V (D) = {v1, . . . , vn}. A topological ordering of
D is an ordering π of V (D) such that if (vπ(i), vπ(j)) ∈ E(D), then i > j. We stress
that here we suppose that no arc is directed from a vertex v to a vertex
u that occurs before v, while it might be more standard to consider the
symmetric condition. It is well known that a digraph has a topological ordering
if and only if it is acyclic. A set S ⊆ V (D) whose deletion makes the digraph acyclic
is called a directed feedback vertex set of D. Given a topological ordering π of D, for
any X ⊆ V (D), we say πX is an ordering induced by π if the vertices of X appear
in the same order in πX and in π.

LCA-closure. For a rooted tree T and a subset M ⊆ V (T), the least common
ancestor-closure of M , LCA-closure(M) is obtained by the following process. Ini-
tially, set M ′ = M . As long as there are vertices x and y in M ′ whose least common
ancestor w is not in M ′, add w to M ′. When the process terminates, output M ′ as
the LCA-closure of M .

Proposition 5.2.1 (Lemma 1, [99]). Let T be a rooted tree, M ⊆ V (T) and M ′ =

LCA-closure(M). Then |M ′| ≤ 2|M | and for every connected component C of
T −M ′, |N(C)| ≤ 2.

5.3 Decomposing the Graph

Let (D, k,M) be an instance of DFVS/DFVS+Tw-η Mod. Informally, the ob-
jective of this section is to compute a decomposition of D that consists of three
components: the vertex set M (modulator), a collection of vertex sets Z (zones),
and a vertex set R (remainder). All of these sets would be pairwise disjoint. The
crux is to “divide-and-conquer” D so that each zone—that is, a set Z ∈ Z—would
correspond to a subproblem that is easier to solve than (D, k,M) because (1) the
intersection of a minimum solution with Z would be necessarily small, and (2) the
interaction of Z is “well-structured” with respect to M , “limited” with respect to R
, and “non-existent” with respect to any other zone.

72

Towards the computation of R, we need to compute three sets: (i) a solution S in
D−M ; (ii) a set F to separate vertices inM that have low-flow; (iii) an LCA-closure
of bags derived from S ∪ F . The arguments we provide along the way to construct
these sets will only partially prove that we have indeed derived the decomposition
we desire. At the end, we complete the proof by focusing on the property regarding
the intersection of a minimum solution with each zone. In what follows, we execute
this plan.

Phase I: Solution S. The first phase of our proof is simple. Recall that the
treewidth of D −M is upper bounded by η. Furthermore, Bonamy et al. [33] have
shown that, given a (di)graph D′ of treewidth t, a smallest size set S ′ such that
D′ − S ′ is a DAG can be computed in time 2O(t log t)nO(1). In particular, this means
that in time 2O(η log η)nO(1)—that is, polynomial time—we can compute a subset
S ⊆ V (D) of smallest size such that D − (M ∪ S) is a DAG. In case |S| > k, we
directly conclude that (D, k,M) is a No instance of DFVS/DFVS+Tw-η Mod.
Otherwise, we proceed as described below.

Phase II: Flow-Blocker F . The purpose of the second phase is to compute a
subset F ⊆ V (D) that governs the flow between all pairs of vertices in M . Having
this subset at hand will be crucial when we later argue about the intersection of a
minimum directed feedback vertex set with each zone. Specifically, for every pair
of vertices in M , if we can easily separate them—we simply do that; otherwise, no
solution of size at most k can separate these vertices, which is again beneficial for
our arguments. Let us now proceed to the formal description of the computation of
F .

Formally, for every ordered pair (u, v) of (not necessarily distinct) vertices u, v ∈
M such that (u, v) /∈ E(D), we compute a subset C(u,v) ⊆ V (D) \ ((M ∪S) \ {u, v})
of minimum size such that D− ((M ∪S ∪C(u,v)) \ {u, v}) has no directed path from
u to v (that consists of more than one vertex), that is, C(u,v) is a vertex cut. The
computation of each such set C(u,v) can be executed in polynomial time by using, for
example, Ford-Fulkerson algorithm [104]. Having all vertex cuts at hand, we define
F =

⋃
(u,v)∈M×M\E(D),|C(u,v)|≤k C(u,v). In words, we take the union of all cuts C(u,v) of

size at most k. Note that |F | ≤ k`2.

Before we turn to further enriching the set S ∪ F , let us formally summarize
the structural properties already induced by this set on D − (M ∪ S ∪ F). To
this end, note that by the classic Menger’s theorem, the size of C(u,v) for a pair
(u, v) ∈ M ×M \ E(D) equals the number of internally vertex-disjoint paths from

73

u to v in C(u,v) ⊆ V (D) \ (M ∪S ∪{u, v}). Thus, the correctness of our observation
is an immediate consequence of the construction of S and F .

Observation 5.3.1. The digraph D − (M ∪ S ∪ F) is a DAG such that for every
pair (u, v) ∈ M × M \ E(D), either there is no path from u to v in the digraph
D− ((M ∪S∪F)\{u, v}), or there are at least k+1 internally vertex-disjoint paths
from u to v in D.

Phase III: LCA-Closure to Derive R. Having that the set M ∪ S ∪ F is not
sufficient for us—the vertices of D − (M ∪ S ∪ F) can have many neighbors in
M ∪ S ∪ F while Observation 5.3.1 provides us a handle only for those neighbors
in M . However, we can compute a subset R ⊆ V (D) \ M that contains S ∪ F ,
such that no vertex of D− (M ∪R) has many neighbors in R. In fact, we require a
stronger claim—we will bound the neighborhood not only of each individual vertex,
but also of entire sets of vertices that will later be called zones. For this purpose,
we rely on the fact that the treewidth of D −M is at most η. Specifically, we will
“highlight” a small set of bags (in a tree decomposition) that captures S ∪ F , and
since bags are separators and the size of each bag is small, we will be able to derive
the desired set R.

Towards the computation of R, we first obtain a nice tree decomposition (T, β)

of D−M of width at most η. This step is done in time O(n) using the algorithms of
Propositions 2.5.2 and 2.5.3 because η = O(1). Now, we highlight bags that capture
the vertices in S ∪ F as follows. For every vertex v ∈ S ∪ F , select (arbitrarily) a
node tv ∈ V (T) such that v ∈ β(t). Then, we define B as the set of all selected
nodes, that is, B = {tv : v ∈ S ∪ F}. Next, keeping in mind that our eventual
goal is to control sizes of neighborhoods, we define B? as the LCA-closure of B in
T . From Proposition 5.2.1, |B?| ≤ 2 · |B| ≤ 2(|S| + |F |) ≤ 2k(`2 + 1). Having B?

at hand, we define R as the union of all bags corresponding to its vertices, that is,
R =

⋃
t∈B? β(t). Then, the following observation is immediate.

Observation 5.3.2. |R| ≤ 2k(η + 1)(`2 + 1).

Decomposition. Having already computed R, it remains to partition V (D)\ (M ∪
R) into zones. To this end, we first define C as the set of connected components
(subtrees) of the forest T −B?. Since (T, β) is a nice tree decomposition, the degree
of every node is at most 3, which means that |C| ≤ 3|B?| ≤ 6k(`2 + 1). Now,
for every tree C ∈ C, we define ZC =

⋃
t∈V (C) β(t) and Z?

C = ZC \ R. Finally,
the collection of zones is given by Z = {Z?

C : C ∈ C}. Because (T, β) is a tree

74

decomposition, for every vertex v ∈ V (D), the set of nodes whose bags contain v

induce a tree, and hence it is immediate that for all distinct C,C ′ ∈ C, we have that
Z?
C ∩ Z?

C′ = ∅. Furthermore, because (T, β) is a tree decomposition, for every arc
(u, v) ∈ E(D−M), there exists t ∈ V (T) such that u, v ∈ β(t), and hence it is also
immediate that for all Z?

C ∈ Z, N(ZC) ∩ R is a subset of the bags of the nodes in
N(C) (that is, the neighbors of the nodes in C in T); because we have defined B? as
the LCA-closure of B, |N(C)| ≤ 2 (see Proposition 5.2.1). Specifically, this means
that for all Z?

C ∈ Z, N(Z?
C) ⊆M ∪R and |N(Z?

C) ∩R| ≤ 2(η + 1).

Let us summarize the properties of our decomposition, as well as its construction,
in the following definition and lemma.

Definition 5.3.1. Let (D, k,M) be an instance of DFVS/DFVS+Tw-η Mod. A
partition V (D) = M]R] (

⊎
Z∈Z Z) is a zone-decomposition if:

1. D − (M ∪R) is a DAG.

2. For all Z ∈ Z, we have N(Z) ⊆M ∪R, and |N(Z) ∩R| ≤ 2(η + 1).

3. For all (u, v) ∈M ×M \E(D), the digraph D− ((M ∪R) \ {u, v}) either has
at least k + 1 internally vertex-disjoint paths from u to v, or it has no path
from u to v (that consists of more than one vertex).

Lemma 5.3.1. There is a polynomial-time algorithm that, given an instance (D, k,

M) of DFVS/DFVS+Tw-η Mod, either correctly decides that (D, k,M) is a
Noinstance, or constructs a zone-decomposition V (D) = M] R] (

⊎
Z∈Z Z) with

|Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1).

Small Intersection Property. We are now ready to argue that if (D, k,M) is
a Yes instance, then the size of the intersection of every minimum(-size) solution
with every zone is merely a constant. Formally, we have the following lemma.

Lemma 5.3.2. Let (D, k,M) be a Yes instance of DFVS/DFVS+Tw-η Mod

with zone-decomposition V (D)=M]R](
⊎
Z∈ZZ). For any minimum-sized directed

feedback vertex set S of D, we have |S∩Z|≤|N(Z)∩R|≤2(η+1) for all Z∈Z.

Proof. Let S be a directed feedback set of D of minimum size. Since (D, k,M) is a
Yes instance, we have that |S| ≤ k. Suppose, by way of contradiction, that there
exists Z ∈ Z such that |S∩Z| > |N(Z)∩R|. Let S? = (S\Z)∪(N(Z)∩R). Clearly,
|S?| < |S|. However, this means that S? is not a directed feedback vertex set of D.

75

Thus, there exists a directed cycle C in D− S?. Note that V (C) ∩ (N(Z) ∩R) = ∅
because N(Z) ∩R ⊆ S?.

Since D − S is a DAG and S \ Z ⊆ S?, we have that V (C) ∩ Z 6= ∅. Moreover,
D[Z] is a DAG since D− (M ∪R) is a DAG (by Definition 5.3.1). Because V (C)∩
(N(Z) ∩R) = ∅ and N(Z) ⊆M ∪R (by Definition 5.3.1), this means that V (C) ∩
(N(Z) ∩ M) 6= ∅. In turn, this means that the directed cycle C is of the form
C = u1 − Pu1,u2 − u2 − Pu2,u3 − . . .− ur−1 − Pur−1ur − ur for some r ≥ 1, such that
u1 = ur, u1, . . . , ur ∈ N(Z) ∩M , and for all i ∈ {1, . . . , r}, ui − Puiui+1

− ui+1 is a
directed path from ui to ui+1 in D whose internal vertices either all belong to Z or
all belong to V (D) \ (M ∪ R ∪ Z). Consider any non-empty path Puiui+1

where all
the vertices belong to Z. By Definition 5.3.1 (Condition 3), there are at least k + 1

internally vertex-disjoint paths from ui to ui+1. Since |S| ≤ k, there exists a path,
say ui−P ′uiui+1

−ui+1, all of whose internal vertices do not belong to S. This means
that we can replace (in C) each non-empty path Puiui+1

whose vertices belong to
Z by the corresponding path P ′uiui+1

as defined above, thereby getting a directed
closed walk C ′ in D − S. As a directed closed walk contains a directed cycle, this
contradicts the choice of S as a directed feedback set of D.

Important Note. From now onwards, we denote by V (D) = M] R] (
⊎
Z∈Z Z)

a zone-decomposition as computed by the algorithm of Lemma 5.3.1. Recall that
|M | = `, |Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1), and thus to derive our
polynomial kernel, it is next sufficient to upper bound the size of each set Z ∈ Z
individually. For this purpose, from now onwards, we fix an arbitrary set Z ∈ Z,
and argue how the size of Z can be bounded. As the choice of Z is arbitrary, we
can thus bound the size of every set in Z. When we eventually formally prove
Theorem 5.0.1, we shall zoom out of the view of a specific Z ∈ Z, but until we reach
this (short) proof, we suppose that Z is fixed.

5.4 Reducing Each Part: k-DFVS Representative

Marking

For an instance (D, k,M) of DFVS/DFVS+Tw-η Mod, the kernelization algo-
rithm starts by applying Lemma 5.3.1 and either concludes that (D, k,M) is a No

instance, or obtains a zone decomposition V (D) = M] R] (
⊎
Z∈Z Z) with the

properties in Lemma 5.3.1. In this section, we fix an arbitrary zone Z ∈ Z and give

76

a polynomial time algorithm (Lemma 5.4.1) to mark a small set of vertices in Z

which in some sense “represents” all partial solutions in Z. Such a set will then be
used to design reduction rules that bound the degree of the vertices in Z that are
not in the representative, which will further be useful to decompose Z into a small
number of protrusions. We now formally define the desired set.

Definition 5.4.1 (k-DFVS Representative in Z). For a digraph D, Z ⊆ V (D) and
an integer k, we say that ΓDFVS ⊆ Z is a k-DFVS representative in Z if the following
holds. If D has a directed feedback vertex set of size at most k, then it also have a
directed feedback vertex set S of size at most k where S ∩ Z ⊆ ΓDFVS.

Lemma 5.4.1 (k-DFVS Representative Marking Lemma). There is an algorithm
that given a digraph D, Z ⊆ V (D) and an integer k, runs in time 2O(η2) · (k`)O(η2) ·
(n+m), and returns a set ΓDFVS ⊆ Z of size (k`)O(η2) such that ΓDFVS is a k-DFVS
representative in Z.1

We prove Lemma 5.4.1 in two parts. In Section 5.4.1, we revisit the relation be-
tween DFVS and Skew Multicut (defined later). Using this relation, we conclude
that ΓDFVS can be computed by taking the union of skew multicuts of “appropri-
ate” instances of Skew Multicut. The problem at this stage stems from the fact
that the set of appropriate instances that we need to consider is not polynomially
bounded, and hence a naive approach of finding a solution to each of these instances
and taking their union does not work. This issue is tackled in Section 5.4.2.

5.4.1 Revisiting the Relation with the Skew Multicut Prob-

lem

Towards the definition of Skew Multicut, we first define a skew multicut in a
digraph. Let D be a digraph, and P = ((s1, t1), . . . , (sp, tp)) be an ordered set of
pairs of vertices (called terminals) of D. A skew multicut in D with respect to P is
a set S of non-terminal vertices of D such that for all i, j ∈ {1, . . . , p} with i ≤ j,
there is no path from si to tj in D − S. 2 In Skew Multicut (SMC), the input
is a digraph D, an ordered set P = ((s1, t1), . . . , (sp, tp)) and an integer k. The goal
is to decide whether D has a skew multicut of size at most k with respect to P . In
order to state the relation between our problem and Skew Multicut, the following

1Throughout the chapter, we do not hide constants that depend on η in the O notation.
2In the standard definition of a skew multicut, the latter condition is replaced by the following

symmetric condition: For all i, j ∈ {1, . . . , p} with j ≤ i, there is no path from si to tj in D − S.
Here, it is convenient to use i ≤ j rather than j ≤ i.

77

notation will come handy. Informally, for a digraph D and a subset B ⊆ V (D), we
“split” each vertex in B into two distinct vertices, and thereby define the digraph
D†B. The two fractions of each split vertex will latter correspond to a terminal pair.
Formally, we construct D†B as follows.

Definition 5.4.2. Let D be a digraph and B ⊆ V (D). The digraph D†B is obtained
from D as follows. Replace each vertex v ∈ B by two new vertices vout and vin,
add the arc (vin, vout) and replace each arc (u, v) ∈ E(D) by (u, vin) and each arc
(v, u) ∈ E(D) by (vout, u).

Lemmas 5.4.2 and 5.4.3 show that any DFVS solution restricted to Z is a skew
multicut solution to an appropriate instance of Skew Multicut and vice versa.

Lemma 5.4.2. Let D be a digraph, Z ⊆ V (D) and k ∈ Z. Let S be a directed
feedback vertex set in D of size at most k. Let B = N(Z) \ S, and let πB =

(v1, . . . , vb) be an ordering of B induced by a topological ordering π of D−S. Denote
D′ = D[Z ∪ B]†B, P = ((vout1 , vin1), . . . , (voutb , vinb)) and k′ = |S ∩ Z|. Then, there is
a skew multicut in D′ with respect to P of size at most k′, that is, (D′,P , k′) is a
Yes instance of Skew Multicut.

Proof. We claim that S ′ = S ∩ Z is a solution to the Skew Multicut instance
(D′,P , k′). Observe that the intersection of S ′ with the set of terminals in P is
empty. Clearly, |S ′| ≤ k′. Suppose, for the sake of contradiction, that S ′ is not a
skew multicut in D′ with respect to P . Then, there exist vouti and vinj , i < j, such
that there is a path from vouti to vinj in D′ − S ′. From the construction of D′, there
is a path from vi to vj in D − S. This is a contradiction because πB is induced by
some topological ordering of D−S, and hence there cannot be a path from vi to vj,
i < j, in D − S.

Lemma 5.4.3. Let D be a digraph, Z ⊆ V (D) and k ∈ Z. Let S be a directed
feedback vertex set in D of size at most k. Let B = N(Z)\S and let πB = (v1, . . . , vb)

be an ordering of the vertices of B induced by a topological ordering π of D − S.
Denote D′ = D[Z ∪ B]†B, and P = ((vout1 , vin1), . . . , (voutb , vinb)). Let S ′ be any skew
multicut in D′ with respect to P. Then, S∗ = (S \ Z) ∪ S ′ is a directed feedback
vertex set in D.

Proof. Suppose, for the sake of contradiction, that S∗ is not a directed feedback
vertex set in D. Then, there exists a directed cycle C in D − S∗. Since D[Z] is
acyclic (from Lemma 5.3.1) and S∗ \ Z = S \ Z, we have that C ∩ B 6= ∅ and

78

C ∩ Z 6= ∅. Let us first consider the case where |C ∩ B| = 1. In this case, let
C ∩ B = {vi}. Since C is a cycle in D − S∗ and S∗ ∩ Z = S ′, we observe (from
the construction of D′) that there is path from vouti to vini in D′ − S ′. This is a
contradiction to the assumption that S ′ is a skew multicut in D′ with respect to P .
Henceforth, we assume that |C ∩B| ≥ 2.

Let P be some directed path of the cycle C such that the endpoints of P are in
B = {v1, . . . , vb} and all its internal vertices are in Z. Let the first vertex of P be vi
and the last vertex of P be vj. Since S ′ is a skew multicut solution of the instance
stated in the lemma, and because S ′ ⊆ S∗, we have that j < i. Since P is a path of
the cycle C, there exists another path P ′ from vj to vi in D−S∗, such that the union
of the sets of arcs of P and P ′ forms the cycle C. We will show that the existence of
the path P ′ from vj to vi in D−S∗ (with j < i) implies that there exists a path P ′′

from some vq to some vr with q < r, such that either (i) all the internal vertices of
P ′′ belong to Z \ S∗ (which includes the case where P ′′ has no internal vertices), or
(ii) all the internal vertices of P ′′ belong to (V (D) \Z) \ S∗. Let us first show why,
to complete the proof, it suffices to prove the existence of such a path P ′′. In the
first case, from the construction of D′ and because S∗ ∩ Z = S ′, we have that there
is a path from voutq to vinr in D′ − S ′. Such a path cannot exist because S ′ is a skew
multicut solution in D′ with respect to P . In the second case, since the ordering
{v1, . . . , vb} is induced by some topological ordering of D − S and S∗ \ Z = S \ Z,
the path P ′′ again should not exist. Thus, both cases lead to a contradiction.

Let us now describe how to obtain the path P ′′ from P ′. Recall that P ′ is a
path from vj to vi (with j < i) in D − S∗. Let vr be the first internal vertex of
P ′ such that vr ∈ B and j < r (such a vertex exists because vi ∈ B and j < i).
Now consider this sub-path of P ′ from vj to vr. Let vq be the last vertex on this
path that belongs to B and which is not equal to vr (q could be equal to j). Now,
consider the subpath of P ′ from vq to vr. We claim that this subpath is the desired
path P ′′. Since vq is the last vertex that belongs to B on the path from vj to vr
that is not vr itself, the set of internal vertices of P ′′ has an empty intersection with
B. If there are at least two internal vertices in P ′′, say x, y, such that x ∈ Z \ S∗,
y ∈ (V (D) \ Z) \ S∗ and there is a path from x to y in P ′′, then this path has to
pass through a vertex of B (because N(Z) \ S = B and S∗ \ Z = S \ Z). Thus,
we have reached a contradiction. The other case, where x ∈ (V (D) \ Z) \ S∗ and
y ∈ Z \ S∗, is symmetric. This shows that P ′′ must satisfy one of the conditions (i)
and (ii), and hence the proof is complete.

The number of guesses for the Skew Multicut instance for which the in-

79

tersection of a potential DFVS solution with Z is a skew multicut solution is
2|N(Z)| · |N(Z)||N(Z)|. This is not polynomially bounded in k and `. In the next
section, we see how to compute a set containing some skew multicut solution to
each of these instances without having to go over the instances individually.

5.4.2 Computing Solutions for All Instances of Skew Mul-

ticut

We formalize the notion of “all possible choices for the appropriate instance of Skew

Multicut”, by defining a family of instances of Skew Multicut denoted by FSMC.
To simplify notation, for a digraph D and a (not necessarily ordered) set P of
terminal pairs, let D −P be the digraph obtained from D by deleting all terminals
in P . Similarly, for a subset X ⊆ V (D), let X − P be the set of vertices obtained
from X by deleting all terminals in P . To improve readability, unordered sets of
terminal pairs will be denoted by Q rather than P . We also stress that in what
follows, k should be thought of as a small constant, because here it does not refer
to the original k in the input instance of DFVS, but to the parameter set up when
we construct an instance of Skew Multicut.

Definition 5.4.3. Given a digraph D, an unordered set Q = {(si, ti) : i ∈ {1, . . . ,
p}, si, ti ∈ V (D)} and an integer k, FSMC(D,Q, k) is a family of instances of Skew

Multicut such that for each P ∗ ⊆ {1, . . . , p}, for each ordering π of P ∗ and for
each k′ ≤ k, the instance (D − (Q \ P∗),P∗, k′) belongs to FSMC(D,Q, k) where
P∗ = ((sπ(i), tπ(i)) : i ∈ P ∗).

We clarify that the above notation P∗ = ((sπ(i), tπ(i)) : i ∈ P ∗) means that for all
i, j ∈ P ∗, we have that (sπ(i), tπ(i)) is ordered before (sπ(j), tπ(j)) if and only if i < j.
Similar to the notion of a k-DFVS representative of Z, we first define the notion of
a k-SMC representative. The construction of a set that, for any instance in FSMC,
contains some solution for that instance, is captured by the Lemma 5.4.4.

Definition 5.4.4 (k-SMC Representative). Given a digraph D, a set Q = {(si, ti) :

i ∈ {1, . . . , p}, si, ti ∈ V (D)} and an integer k, a k-SMC representative in D

with respect to Q is a subset ΓSMC⊆ D such that each Yes instance in the fam-
ily FSMC(D,Q, k) has a solution that belongs to ΓSMC.

Lemma 5.4.4 (k-SMC Representative Marking Lemma). There is an algorithm
that, given a digraph D p, k ∈ N and Q = {(si, ti) : i ∈ {1, . . . , p}, si, ti ∈ V (D)},

80

runs in time pO(k2) · (n + m) time and outputs a k-SMC representative in D with
respect to Q of size at most k2(k + 1)k · pk(k+2) · 4k2.

The rest of this section concerns the proof of Lemma 5.4.4. We first explain
(intuitively) how the algorithm of Lemma 5.4.4 works. Since |FSMC(D,Q, k)| is
exponential in p, if a k-SMC representative in D with respect to Q, say ΓSMC, of the
desired size exists, then the solutions of “many” instances in FSMC(D,Q, k) intersect
“a lot”. This is exactly what we want to exploit. Roughly speaking, we want to
recursively apply the following step. In each recursive call, partition the instances of
FSMC(D,Q, k) into pO(k) classes, and for each class find a set that is guaranteed to be
contained in some solution for each of the instances in the class. Delete this set from
the instances in the class, and recurs. Note that we keep track of deleted vertices,
since they are precisely the vertices that will form ΓSMC. Since we are looking for
a k-sized solution in each instance in FSMC(D,P , k), the depth of the recursion is
at most k and hence, we can form the set ΓSMC of the desired size (i.e., O(pg(k)) for
some function g of k).

Now, we try to formalize this approach; depending on the obstacles faced, we
add layers and machinery to the outline above. First consider the step of parti-
tioning the instances of FSMC(D,Q, k) into some pO(k) classes, such that for each
class there is a set guaranteed to be contained in some solution for each of the in-
stances in the class. To this end, we first try the power of the Pushing Lemma for
Skew Multicut, defined below. Roughly speaking, this lemma states that any
Yes instance (D, ((si, ti) : i ∈ {1, . . . , a}), k) of Skew Multicut (for instances in
FSMC(D,Q, k), we have a ≤ p) has a solution of size at most k that contains an
important ({s1}, {t1, . . . , ta})-separator of size at most k.

Proposition 5.4.1 (Pushing Lemma for Skew Multicut, [49]). For a Yes-
instance (D,P = ((s1, t1), . . . , (sp, tp)), k) of Skew Multicut, there is a solution
S∗ containing an important ({s1}, {t1, . . . , tp})-separator in D of size at most k.

Now, consider any P ∗ ⊆ {1, . . . , p}. Assume w.l.o.g. that P ∗ = {1, . . . , p∗}.
Consider all Yes instances in FSMC(D,P , k) where the first terminal pair is (s1, t1)

and the other terminal pairs are {(s2, t2), . . . , (sp∗ , tp∗)} in some order. Then, by
Proposition 5.4.1, for each of these instances there exists a solution containing some
important ({s1}, {t1, . . . , tp∗})-separator of size at most k. This is not exactly what
we wanted (since we do not obtain a single set that is contained in some solution for
each of the instances), but we can still work with this as the number of important
separators of size at most k is at most 4k (from Proposition 2.4.3). Then, we can

81

branch on which important separator to add to ΓSMC. Thus, Proposition 5.4.1 seems
to give a way to go about constructing ΓSMC.

However, we are not done yet because if we naively utilize the Pushing Lemma
approach, we need to partition FSMC(D,P , k) into 2p · p classes. Indeed, we have
2p possibilities to choose a subset P ∗ ⊆ {1, . . . , p} (which captures the indices of
the terminals pairs in P that should not be deleted), and p∗ ≤ p choices for which
is the index in P ∗ of the first terminal pair (from which we push our solution as
described above). For us, 2p · p is a huge number. To handle this issue, we in-
troduce another tool, called the Important Separator Preservation (via Small Sink
Set) Lemma (formally defined later). Intuitively, this lemma says that if I is an
important (X, Y)-separator, then I is also an important (X, Y ′)-separator for some
Y ′ ⊆ Y where the size of Y ′ is at most the size of I plus one.

Lemma 5.4.5 (Important Separator Preservation (via Small Sink Set) Lemma). Let
D be a digraph with X, Y ⊆ V (D) and an important (X, Y)-separator S ⊆ V (D) of
size α. There is Y ′ ⊆ Y of size α+ 1 such that S is an important (X, Y ′)-separator
in D − (Y \ Y ′).

Proof. LetR be the set of vertices reachable fromX inD−S, and denoteRS = R∪S.
Let S∗ ⊆ V (D) be such that S∗ ∩ RS (S, S∗ ∩ Y = ∅ and there is no path from
RS \ S∗ to Y in D − S∗. Since S is an important (X, Y)-separator of size α and
R (RS, any such S∗ has size at least α+ 1. From Menger’s Theorem, there are at
least α+ 1 internally vertex disjoint paths from RS \ S∗ to Y , all of whose internal
vertices are in D − ((RS \ S∗) ∪ Y). Consider an arbitrary collection of exactly
α + 1 of these paths. Let Y ′ be the subset of Y which contains the endpoints in Y
of the α + 1 paths in this collection. Observe that these α + 1 paths exist even in
D − (Y \ Y ′). Since there are α + 1 internally vertex disjoint paths from RS \ S∗
to Y ′ in D − (Y \ Y ′), from Menger’s Theorem, any set S∗ with S∗ ∩ RS (S and
S∗ ∩ Y ′ = ∅, that kills all paths from RS \ S∗ to Y ′ in D− (Y \ Y ′), is of size α+ 1.

Suppose, for the sake of contradiction, that S is not an important (X, Y ′)-
separator in D − (Y \ Y ′). Then there exists S ′ such that (i) |S ′| ≤ |S| = α,
(ii) S ′ is an (X, Y ′)-separator in D− (Y \ Y ′), and (iii) R (R′ (where R is the set
of vertices reachable from X in D − S and R′ is the set of vertices reachable from
X in D−S ′). Note that S ′∩RS (S (because R (R′ and S 6= S ′) and S ′∩Y ′ = ∅.
Also, S ′ kills all paths from RS \S ′ to Y ′ in D− (Y \Y ′). But this is a contradiction
because we have already proved that any such S ′ has size at least α + 1.

82

The observation that we can exploit this lemma in our setting is a crucial insight
in the design of our kernel. Recall that by Proposition 5.4.1, we can conclude that
for some class of instances, the following property holds: There exists a pair (X, Y),
where X = {si} and Y is some set of terminals tj, such that there is an important
(X, Y)-separator of size at most k that is contained in some solution for each of the
instances in the class. Since the number of important (X, Y)-separators of size at
most k is small, we could branch on them. Basically, we combine Lemma 5.4.5 with
Proposition 5.4.1 to add another layer of branching. Below, we briefly discuss the
meaning of this extra layer.

Here, we partition our instances into p classes: All instances that have (si, ti) as
the first terminal pair (recall that the set of terminal pairs in Skew Multicut is
ordered) belong to the same class. While before we had a refined partition with 2p ·p
classes, here we only have p classes, but which at first glance seem non-informative.
However, we show that (by Lemma 5.4.5) not much additional information is needed.
More precisely, we argue that for all Yes instances in the same class of our rough
partition, there exists some pO(k) sized collection of pairs {(Xi, Yi) : i ∈ pO(k)} with
the following property: For any instance in the class, there exists a pair in this
collection, say (Xi, Yi), such that there exists an important (Xi, Yi)-separator of size
at most k that is contained in some solution of that instance. Since the size of the
collection is pO(k), and for each pair in it there are at most 4k important separators
of size at most k, we branch into at most pO(k) · 4k branches for each class. Since
pO(k) · 4k is small enough to obtain a kernel—recall that in Skew Multicut, k
is small (constant) but p is large—let us move ahead to see how we obtain the
collection {(Xi, Yi) : i ∈ pO(k)}.

We claim that for any class, whose first terminal pair is some (si, ti), the collection
{(si, T) : T ⊆ {t1, . . . , tp}, |T | ≤ k+ 1} is precisely that collection that we want. To
see this, consider any Yes instance (D,P∗, k) whose first terminal pair is (si, ti). Let
P ∗ denote the set of indices of the pairs in P∗. By the Pushing Lemma for Skew

Multicut, there exists a solution to this instance that contains some important
({si}, {tj | j ∈ P ∗})-separator of size at most k. In turn, by the Important Separator
Preservation Lemma, there exists T ⊆ {tj | j ∈ P ∗} of size at most k + 1, such
that any important ({si}, {tj | j ∈ P ∗})-separator is also an important ({si}, T)-
separator! Thus, we conclude that for each Yes instance in FSMC(D,P , k) whose
first terminal pair is (si, ti), there exists a pair in the collection {(si, T) : T ⊆
{t1, . . . , tp}} such that one of the important separators of size at most k of this pair
is contained in some solution for this instance.

83

We formalize the approach above in the proof of Lemma 5.4.4 below. Having
this lemma at hand, we give a short proof for Lemma 5.4.1 .

5.4.2.1 Proof of the k-SMC Representative Marking Lemma

In this section, we prove Lemma 5.4.4. We start by describing the proposed algo-
rithm for Lemma 5.4.4.

Description of the Algorithm. Our algorithm is a branching (recursive) algo-
rithm. (Here, by branching tree we refer to the tree whose root is the initial call
to the algorithm, and which described the relationships between the calls to the
algorithm as excepted, that is, the children of a node correspond to the recursive
calls made by that node.) Each node of the branching tree corresponds to a triple
(D,Q, k) where D is a directed graph, Q is an unordered set of vertex pairs in D,
and k is an integer. The measure to analyze the size of the branching tree is k. The
algorithm initializes ΓSMC= ∅ and updates ΓSMC at the end of each branch. The
base case occurs when k ≤ 0. Whenever k > 0, the algorithm branches into the
branches described below and updates ΓSMC.

Consider a node of the branching tree labelled by (D,Q, k). We fix some notation
before we proceed further. Let Q = {(si, ti) : i ∈ {1, . . . , p}}. By T we denote the
set T = {ti : i ∈ {1, . . . , p}}. For any P ′ ⊆ {1, . . . , p}, by TP ′ we denote the set
TP ′ = {ti : i ∈ P ′}, and by QP ′ we denote QP ′ = {(si, ti) : i ∈ P ′}. We will now
describe the branches of the algorithm at the node (D,Q, k) of the branching tree.
For each i ∈ {1, . . . , p}, for each P ′ ⊆ {1, . . . , p} of size at most k + 1 and for each
I 6= ∅ which is an important (si, TP ′)-separator in D−(Q\QP ′∪{i}) of size at most k,
there is a branch that corresponds to the triple (i, P ′, I). A branch (i, P ′, I) at a node
(D,Q, k) results in a node that corresponds to the triple (D−I,Q\{(si, ti)}, k−|I|).
Also, at the end of this branch, ΓSMC is updated as ΓSMC = ΓSMC ∪ I. Observe that
the measure in each branch drops by at least 1 because I 6= ∅.

The size of the branching tree. Since the number of important separators of
size at most k is at most 4k (Proposition 2.4.3), observe that at any node of the
branching tree, the number of branches, w ≤ p ·∑k+1

i=0

(
p
i

)
· 4k ≤ (k + 1) · pk+2 · 4k.

Since the measure of the branching tree is k, the branching algorithm halts when
k ≤ 0 and in each branch the measure strictly decreases, the depth of the branching
tree is at most k. Thus, the number of nodes in the branching tree is at most∑

i∈{1,...,k}w
i ≤ k ·wk ≤ k(k+ 1)k · pk(k+2) · 4k2 . Since, at each node of the branching

tree, the size of ΓSMC increases by at most k, |ΓSMC| = k2(k + 1)k · pk(k+2) · 4k2 .

84

Running Time. At any node (D,Q, k), for each i ∈ {1, . . . , p} and P ′ ⊆ {1, . . . , p}
of size at most k+1, we need to compute the set of appropriate important separators
of size at most k. From Proposition 2.4.3, this takes time, say t = p ·∑k+1

i=0

(
p
i

)
·

O(4k · k2 · (n + m)) = O(pk+2 · 4k · k3 · (n + m)). Recall that at any node of the
branching tree, the number of branches is w ≤ (k + 1) · pk+2 · 4k. Let T (k) be
the time taken by the algorithm when the input triple (D,Q, k) has measure k.
Then, we have the following recurrence relation: if k ≤ 0, T (k) = 1; otherwise,
T (k) ≤ wT (k − 1) + t. Solving this recurrence, we get that T (k) ≤ wk · t =

O(p(k+1)(k+2) · 4k(k+1) · (k + 1)k · k3 · (n+m)).

Correctness. Suppose that the algorithm takes as initial input the instance (D,Q, k).
Consider an instance (D,P∗, k∗) in FSMC(D,P , k) which is a Yes instance of Skew

Multicut. Without loss of generality, let P∗ = ((si, ti) : i ∈ {1, . . . , p∗}). We
need to show that there exists a skew multicut solution of the instance (D,P∗, k∗)
contained inside ΓSMC. Let µ be the depth of the algorithm. For any d ≤ µ, let
ΓSMCd be the partial set (subset of ΓSMC) constructed by the algorithm at the end
of the last branch at depth d of its branching tree. We will now prove the following
claim by induction on d, and then later show how the correctness of the algorithm
follows from this claim.

Claim 5.4.1. For any d ≤ µ, there exists Sd ⊆ΓSMCd with the following properties.

1. There is a solution S to the instance (D,P∗, k∗) of Skew Multicut such
that Sd ⊆ S.

2. For all i ∈ {1, . . . , d}, j ∈ {1, . . . , p∗} with j ≥ i, there is no path from si to
tj in D − Sd.

3. There is a path from the root of the branching tree to one of its nodes at depth
d such that Sd is the union of the sets added to ΓSMC at each node along this
path.

Proof. We will prove this claim by induction on d, that is, the depth of the branching
tree.

Base Case. Suppose d = 1. Since (D,P∗, k∗) is a Yes instance of Skew Multi-

cut, from Proposition 5.4.1, there exists an important (s1, {t1, . . . , tp∗})-separator,
say I, of size at most k∗ (≤ k) in D such that there is no path in D − I from s1

to tj, for all j ∈ P ∗, and there exists a solution S to the instance (D,P∗, k∗) such
that I ⊆ S. We will now prove that I ⊆ ΓSMC1. From Lemma 5.4.5, there exists

85

T ⊆ {t1, . . . , tp∗} such that |T | ≤ k + 1 and I is an important (si, T)-separator in
D− (P∗ \{(si, ti) : ti ∈ T}) of size at most k. Consider the branch that corresponds
to the triple (i, {j : tj ∈ T}, I). At the end of this branch, ΓSMC is updated as ΓSMC

= ΓSMC ∪I. This proves the base case.

Inductive Step: Suppose that the claim holds for d− 1. By the induction hypoth-
esis, there exists a set Sd−1 ⊆ ΓSMCd−1 with the properties mentioned in Claim 5.4.1.
Let (D′,Q′, k′) be the triple corresponding to the node at level d − 1 which is the
end-point of the path in the branching tree along which Sd−1 is constructed. Observe
that Q′ = {(si, ti) : i ∈ {1, . . . , p∗}, i ≥ d}, D′ = D − Sd−1 and k′ = k − |Sd−1|. We
now prove the three properties stated in the claim.

Property 1. Let S ′ be a solution to the Skew Multicut instance (D′, ((si, ti) : i ∈
{1, . . . , p∗}, i ≥ d), k′). We first claim that Sd−1∪S ′ is a solution to the Skew Mul-

ticut instance (D,P∗, k∗). From the induction hypothesis, for all i ∈ {1, . . . , d−1},
j ∈ {1, . . . , p∗} with j ≥ i, there is no path from si to tj in D − Sd−1. Since S ′ is a
skew multicut solution to (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥ d), k′) andD′ = D−Sd−1,
for all i, j ∈ {1, . . . , p∗} with j ≥ i, there is no path from si to tj in D− (Sd−1 ∪S ′).
We now need to show that |Sd−1 ∪ S ′| ≤ k∗, that is, |Sd−1| + k′ ≤ k∗. To prove
this, note that, from the induction hypothesis, there exists a solution, say S, of
(D,P∗, k∗), such that Sd1 ⊆ S. Since k′ = k − |Sd−1| ≥ k∗ − |Sd−1|, we conclude
that k∗ ≥ k′ + |Sd−1|.

Thus, we have proved that there exists a solution, say S, to the Skew Multi-

cut instance (D,P∗, k∗) such that S = Sd−1 ∪ S ′, where S ′ is any solution to the
Skew Multicut instance (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥ d), k′). From Proposi-
tion 5.4.1, we know that there exists a skew multicut solution S ′ for (D′, ((si, ti) : i ∈
{1, . . . , p∗}, i ≥ d), k′) which contains an important (si, {ti : i ∈ {1, . . . , p∗}, i ≥ d})-
separator, say I, in D′. Let S ′ be such a solution to (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥
d), k′). From Lemma 5.4.5, there exists T ⊆ {td . . . , tp∗} of size at most k + 1

such that I is an important (sd, T)-separator in D′ − (Q′ \ {(si, ti) : i ∈ T}) of
size at most k. Consider the branch at (D′,Q′, k′) that corresponds to the triple
(d, {(si, ti) : i ∈ T}, I). At the end of this branch, I is added to ΓSMC. Let
Sd = Sd−1 ∪ I.

Since Sd ∪ S ′ is a solution to the Skew Multicut instance (D,P∗, k∗), where
S ′ is any solution of the Skew Multicut instance (D′, ((si, ti) : i ∈ {1, . . . , p∗}, i ≥
d), k′), and there exists a solution S ′ to the Skew Multicut instance (D′, ((si, ti) :

i ∈ {1, . . . , p∗}, i ≥ d), k′) such that I ⊆ S ′, we conclude that there exists a solution

86

S to the Skew Multicut instance (D,P∗, k∗), such that Sd−1 ∪ I ⊆ S. Since
Sd = Sd−1 ∪ I, we conclude that Sd ⊆ S.

Property 2. Since, for any i ∈ {1, . . . , d − 1} and for all j ∈ {1, . . . , p∗} with
j ≥ d− 1 there are no paths from si to tj in D− Sd−1 (from induction hypothesis),
and I is an (sd, {td, . . . , tp∗})-separator inD−Sd−1, we have that for all i ∈ {1, . . . , d}
and for all j ∈ {1, . . . , p∗} with j ≥ d, there is no path from si to tj in D − Sd.

Property 3. Consider the path in the branching tree along which Sd−1 is con-
structed. Such a path exists because of induction hypothesis. Since (D′,Q′, k′) is
the last node on this path, the set I is added to ΓSMC at one of the branches from
(D′,Q′, k′), we have that Sd is the union of the sets added to ΓSMC along a path in
the branching tree. This concludes the proof of the claim.

If µ is the depth of the branching tree of the algorithm, consider the set Sµ as
defined in Claim 5.4.1. Consider the path in the branching tree that corresponds to
the construction of Sµ. Since µ is the depth of the branching tree of the algorithm
and the algorithm terminates only when k∗ ≤ 0, |Sµ| ≥ k∗. From Claim 5.4.1, there
exists a solution S to the instance (D∗,P∗, k∗) such that Sµ ⊆ S. Since |S| ≤ k∗,
|Sµ| ≥ k∗ and Sµ ⊆ S, we have that Sµ = S. Since Sµ ⊆ ΓSMC, we have that S ⊆
ΓSMC.

5.4.2.2 Proof of the k-DFVS Representative Marking Lemma

Recall that the input for the algorithm is a digraph D, an integer k and a set Z.
We run the algorithm of Lemma 5.4.4 on the input (D[N [Z]]†N(Z), {(vout, vin) : v ∈
N(Z)}, 2(η + 1)). Let ΓSMC be the output of this algorithm. We claim that it is
safe to set ΓDFVS = ΓSMC, that is, ΓSMC is a k-DFVS representative in Z. First
observe that, from Lemma 5.4.4, |ΓSMC| = |N(Z)|O(η2) = |M ∪R|O(η2) = (k · `)O(η2).
Next, suppose that (D, k,M) is a Yesinstance of DFVS/DFVS+Tw-η Mod. We
now show that there is a solution S∗ such that S∗ ∩ Z ⊆ ΓSMC. Since (D, k,M)

is a Yes instance of DFVS/DFVS+Tw-η Mod, from Lemma 5.3.2, there exists
a solution S such that |S ∩ Z| ≤ 2(η + 1). If S ∩ Z ⊆ ΓSMC, then S = S∗.
Otherwise, let B = N(Z) \ S and let πB = {v1, . . . , vb} be an ordering of the
vertices of B induced by some topological ordering of D− S. Consider the instance
(D[Z ∪ B]†B, {(vouti , vini) : i ∈ {1, . . . , b}}), 2(η + 1)) of Skew Multicut. If this is
a Yes instance, then there exists S ′ ⊆ Z such that S ′ is a solution of the instance
(D[Z ∪B]†B, {(vouti , vini) : i ∈ {1, . . . , b}}), 2(η + 1)) and S ′ ⊆ ΓSMC.

87

Since |S∩Z| ≤ 2(η+ 1), from Lemmas 5.4.2 and 5.4.3, (D[Z ∪B]†B, {(vouti , vini) :

i ∈ {1, . . . , b}}), 2(η + 1)) is indeed a Yes instance of Skew Multicut and S∗ =

(S \ Z) ∪ S ′ is a solution to the instance (D, k,M) of directed feedback vertex set.
Thus, we conclude that S∗ ∩ Z ⊆ ΓSMC.

5.5 Reduction Rules

In this section we give reduction rules to reduce the size of each “zone”. More
precisely, we first apply the algorithm of Lemma 5.3.1 which either correctly decides
that (D, k,M) is a No instance, or constructs a zone-decomposition V (D) = M]
R] (

⊎
Z∈Z Z) with |Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1). For a fixed zone

Z ∈ Z, we concentrate on reducing the size of Z. Once we are able to bound the
size of each zone by a polynomial function of k and `, we obtain a polynomial kernel
for our problem. Thus, from now onwards we concentrate on bounding the size of a
single zone Z.

For the rest of this section, consider the zone-decomposition V (D) = M] R]
(
⊎
Z∈Z Z) computed by the algorithm of Lemma 5.3.1 on input (D, k,M). Let

Z ∈ Z be an arbitrarily fixed zone and let ΓDFVS be a k-DFVS representative in Z,
computed using the algorithm of Lemma 5.4.1. We bound the size of Z in a two
step procedure. In the first step, described in Section 5.5.1, we design reduction
rules that remove all the arcs between M and Z \ ΓDFVS (at the cost of adding
arcs between M and ΓDFVS). Once this is done, we have that Z interacts with the
“outside world” in a limited fashion via ΓDFVS alone. After we have achieved this,
in the second step, described in Section 5.5.2, we will be able to partition Z \ΓDFVS

into a “small” number of slices such that each slice has treewidth at most η and has
at most O(η) neighbors outside (that is, the slice is an O(η)-protrusion). Each such
slice can then be replaced by a constant size equivalent slice using the protrusion
replacement machinery. We will finally conclude this section with the proof of our
main theorem, Theorem 5.0.1.

In the upcoming subsections, we give several reduction rules. These rules are
applied in the given order, exhaustively. That is, at any point of time we apply the
lowest numbered reduction rule that is applicable. In all our reduction rules, we
reduce an instance (D, k,M) to (D′, k′,M ′), M ′ ⊆M and k′ ≤ k.

88

5.5.1 Limiting the Interaction Between M and Z

Recall that our goal is to design reduction rules that eventually remove all arcs
between M and Z \ ΓDFVS. This is achieved at the cost of adding arcs among the
vertices of M , and between vertices in M and vertices in ΓDFVS. The first set of
reduction rules ensures that the addition of this set of arcs is safe. Using this, we
then design reduction rules that delete the arcs between M and Z \ ΓDFVS.

Reduction Rule 5.5.1. If there exist u, v ∈ N(Z) ∩M (here, u may be the same
vertex as v) such that there is a path from u to v, all of whose internal vertices are
in Z \ ΓDFVS, then add the arc (u, v) to D, if it does not already exist. That is,
reduce the instance (D, k,M) to (D ∪ {(u, v)}, k,M).

Lemma 5.5.1. Reduction Rule 5.5.1 is safe.

Proof. The backward direction is trivial. For ease of notation, let us denote D ∪
{(u, v)} by D′. For the forward direction, first observe thatM is also an η-treewidth
modulator in the graph D′, that is, tw(D′−M) ≤ η, because D′−M = D−M . If
(D, k,M) is a Yes instance, then from Lemma 5.4.1, there exists a directed feedback
vertex set S in D of size at most k such that S ∩ Z ⊆ ΓDFVS. We claim that S
is also a directed feedback vertex set in D′. Suppose not. Then there is a cycle C
in D′ − S that uses the arc (u, v). Since there is a path from u to v, all of whose
internal vertices are in Z \ ΓDFVS and the arc (u, v) is not present in D, there are
at least k+ 1 internally vertex disjoint paths from u to v in D (from Lemma 5.3.1).
Since |S| ≤ k, there is a path from u to v in D − S. Replacing the arc (u, v) by
this path in C, we get a closed walk in D − S, which contradicts the fact that S is
a directed feedback vertex set in D.

Observe that when u and v are the same vertex in Reduction Rule 5.5.1, the
resulting digraph will have self-loops. The next reduction rule removes all self-loops
in the digraph. It is easy to see that Reduction Rule 5.5.2 is safe.

Reduction Rule 5.5.2. If there exists v ∈ V (D) with a self-loop, then delete v and
reduce k by 1. That is, reduce the instance (D, k,M) to (D − {v}, k − 1,M \ {v}).

The next reduction rule gives a sufficient condition in which we can add an arc
between a vertex in M and a vertex in ΓDFVS.

Reduction Rule 5.5.3. Suppose that there exist u ∈ M and v ∈ Z \ ΓDFVS such
that (u, v) ∈ E(D), and x ∈ ΓDFVS such that there exists a path from v to x, all of

89

whose internal vertices are in Z \ ΓDFVS. Let D′ = D ∪ {(u, x)}. Reduce (D, k,M)

to (D′, k,M).

Lemma 5.5.2. Reduction Rule 5.5.3 is safe.

Proof. The backward direction is trivial. For the forward direction, first observe
that, M is also a treewidth modulator for the graph D′, that is, tw(D′ −M) ≤ η,
because D′−M = D−M . If (D, k,M) is a Yes instance, from Lemma 5.4.1, there
exists a directed feedback vertex set S inD of size at most k such that S∩Z ⊆ ΓDFVS.
We claim that S is also a directed feedback vertex set in D′. Suppose not. Then
there is a cycle C in D′ − S that uses the arc (u, x). Consider the path from u to
x in D, all of whose internal vertices are in Z \ ΓDFVS. From the choice of S, such
a path exists in D − S. Replacing the arc (u, x) in C by this path we get a closed
walk in D − S, which contradicts the fact that S is a directed feedback vertex set
in D.

Reduction Rule 5.5.4. Suppose there exist u ∈ M and v ∈ Z \ ΓDFVS such that
(v, u) ∈ E(D), and x ∈ ΓDFVS such that there is a path from x to v, all of whose
internal vertices are in Z \ ΓDFVS. Let D′ = D ∪ {(x, u)}. Reduce (D, k,M) to
(D′, k,M).

The proof of safeness of Reduction Rule 5.5.4 is analogous to the proof of safeness
of Reduction Rule 5.5.3 and thus omitted.

The next reduction rules delete arcs between M and Z \ ΓDFVS.

Reduction Rule 5.5.5. If there exists u ∈M and v ∈ Z \ΓDFVS such that (u, v) ∈
E(D), then reduce (D, k,M) to (D′, k,M), where D′ = D \ {(u, v)}.

Lemma 5.5.3. Reduction Rule 5.5.5 is safe.

Proof. The forward direction is trivial. For the backward direction, let S be a
directed feedback vertex set of D′ of size at most k. We claim that S is also a
directed feedback vertex set in D. Suppose not. Then there is a cycle C in D − S
that uses the arc (u, v). Since C uses the arc (u, v), C passes through Z. Let P
be the unique path u to some vertex w ∈ N(Z), all of whose internal vertices are
in C and none in N(Z). Observe that u ∈ N(Z). If all the internal vertices of P
are in Z \ ΓDFVS, then, since Reduction Rule 5.5.1 has been applied, there is an arc
(u,w) ∈ E(D). Consider the closed walk C ′ obtained from C after replacing the
path P by (u,w). Since C ′ is a closed walk in D′ − S, this contradicts that S is a

90

directed feedback vertex set in D′. In the other case, there exists an internal vertex
of P that belongs to ΓDFVS. Let x be the first vertex of P that belongs to ΓDFVS.
Since Reduction Rule 5.5.3 has been applied, there exists an arc (u, x) ∈ E(D) and
hence in E(D′ − S). Consider the sub-path P ′ of P from u to x. Replacing P ′ in
C by the arc (u, x), we get a closed walk in D′ − S, which contradicts that S is a
directed feedback vertex set in D′.

Reduction Rule 5.5.6. If there exists u ∈M and v ∈ Z \ΓDFVS such that (v, u) ∈
E(D), then reduce (D, k,M) to (D′, k,M), where D′ = D \ {(v, u)}.

The proof of safeness of Reduction Rule 5.5.6 is symmetric to the proof of safeness
of Reduction Rule 5.5.5 and thus omitted. Observe that each of the Reduction
Rules 5.5.1-5.5.6 can be applied in polynomial time (by using the algorithms for
computing shortest path in directed graphs). We conclude this subsection with the
following observation.

Observation 5.5.1. If Reduction Rules 5.5.5 and 5.5.6 are no longer applicable,
then N(Z \ ΓDFVS) ∩M = ∅.

5.5.2 Protrusion Replacement and Proof of the Main Theo-

rem

Recall that the goal now is to slice up Z \ ΓDFVS into pieces each of which has
treewidth η and O(η) neighbors outside it. Such a slice is what we call an O(η)-
protrusion. For any positive integer r, the formal definition of an r-protrusion is
given below.

Definition 5.5.1 (r-Protrusion). For any r ∈ Z+, an r-protrusion in a graph D is
a set of vertices X ⊆ V (D) such that |N(X)| ≤ r and tw(D[X]) ≤ r.

We need the following lemma which says that if there exists a large enough
protrusion, then it can be replaced with an equivalent one of constant size in linear
time. As the proof of the lemma requires the introduction of several concepts only
relevant to it, we present this proof separately in Section 5.6.

Lemma 5.5.4 (Protrusion Replacer Lemma). For every t ∈ Z+, there exists c ∈
Z+ (depending only on t), and an algorithm that, given an instance (D, k,M) of
DFVS/DFVS+Tw-η Mod and a t-protrusion X in D such that |X| > c and
X ∩M = ∅, outputs, in time O(|X|), a digraph D′ and integer k′, such that:

91

1. |V (D′)| < |V (D)| and k′ ≤ k,

2. D′ is obtained from D by deleting some vertices/arcs of X and/or contracting
some edges of X, and

3. D has a directed feedback vertex set of size at most k if and only if D′ has a
directed feedback vertex set of size at most k′.

Observe that the graph D′ in Lemma 5.5.4 is a minor of D (for a directed graph
D, by a minor of D we refers to a minor in the underlying undirected graph of
D). In fact, if M is a treewidth-η modulator in D, then M is also a treewidth-η
modulator in D′. Note that Lemma 5.5.4 is not replacing a big enough protrusion by
any arbitrary smaller protrusion, rather the replacement is such that the resulting
graph is a minor of the original graph. This is necessary to ensure that the size of
the treewidth-η modulator (a component in the parameter of our problem) does not
increase after this replacement.

Henceforth, c is the constant of Lemma 5.5.4 when t = 4(η + 1). For a given
set B ⊆ V (D), define XB to be the set of vertices that are either in B or in some
connected component of D − B that has treewidth at most η. From Lemma 5.3.1,
tw(D[Z]) ≤ η. Let (T, β) be a nice tree decomposition of D[Z], computed using
the algorithms of Propositions 2.5.2 and 2.5.3. Let BΓDFVS

⊆ V (T) be such that for
each u ∈ ΓDFVS, there exists t ∈ BΓDFVS

such that u ∈ β(t). Observe that |BΓDFVS
| ≤

|ΓDFVS|. Let B′ΓDFVS
be the LCA-closure of BΓDFVS

in T . From Proposition 5.2.1,
|B′ΓDFVS

| ≤ 2|BΓDFVS
| ≤ 2|ΓDFVS|. Let C be the collection of connected components of

T−B′ΓDFVS
. Since (T, β) is a nice tree decomposition, for any t ∈ V (T), the degree of t

in T is at most 3. Hence, |C| ≤ 3 · |B′ΓDFVS
| ≤ 6|ΓDFVS|. Let Γ̃DFVS =

⋃
t∈B′ΓDFVS

β(t).

Observe that ΓDFVS ⊆ Γ̃DFVS. For each Ci ∈ C, define Ui ⊆ Z \ ΓDFVS as Ui =⋃
t∈Ci β(t)\Γ̃DFVS. Since (T, β) is a tree decomposition of width at most η, |Γ̃DFVS| ≤

(η + 1) · |B′ΓDFVS
| ≤ 2(η + 1) · |ΓDFVS|. Observe that Z = Γ̃DFVS]

⋃
i∈{1,...,|C|} Ui.

From Proposition 5.2.1, and the edge covering and connectivity properties of a tree
decomposition, we have that for each Ui ∈ C, |N(Ui) ∩ Z| ≤ 2(η + 1). Since
|N(Z) ∩ R| ≤ 2(η + 1) (from Lemma 5.3.1), |N(Ui) ∩ R| ≤ 2(η + 1). Furthermore,
from Observation 5.5.1, |N(Ui)∩M | = 0. Since N(Z) ⊆M ∪R (from Lemma 5.3.1)
and Ui ⊆ Z, we conclude that |N(Ui)| ≤ 4(η + 1). Also, since tw(D[Z]) ≤ η and
Ui ⊆ Z, we conclude that Ui is a 4(η + 1)-protrusion in D.

Reduction Rule 5.5.7 (Protrusion Replacement Reduction Rule). If there exists
i ∈ {1, . . . , |C|}, such that |Ui| > c, then apply the algorithm of Lemma 5.5.4 on the

92

instance (D, k,M) along with the 4(η + 1)-protrusion Ui. Let D′, k′ be the digraph
and integer, respectively, outputted by this algorithm. Then reduce (D, k,M) to
(D′, k′,M).

The safeness of Reduction Rule 5.5.7 follows from Lemma 5.5.4. Also, from
the construction of Ui and Lemma 5.5.4, Reduction Rule 5.5.7 can be applied in
polynomial time.

Lemma 5.5.5. When none of the reduction rules is applicable, |Z| = (k`)O(η2).

Proof. Since Z = Γ̃DFVS]
⋃
i∈{1,...,|C|} Ui, |C| ≤ 6|ΓDFVS|, |Γ̃DFVS| ≤ 2(η+ 1) · |ΓDFVS|

and |Ui| ≤ c (after the application of Reduction Rule 5.5.7), we have that |Z| =

(k`)O(η2) (from Lemma 5.4.1).

Now that we have bounded the size of each zone Z, we are ready to prove
Theorem 5.0.1.

Proof of Theorem 5.0.1. Let (D, k,M) be an instance to DFVS/DFVS+Tw-η Mod.
Now we apply Lemma 5.3.1 and either correctly decide that (D, k,M) is a No

instance, or construct a zone-decomposition V (D) = M] R] (
⊎
Z∈Z Z) with

|Z| ≤ 6k(`2 + 1) and |R| ≤ 2(η + 1)k(`2 + 1). For each Z ∈ Z, we do the fol-
lowing. We compute a k-DFVS representative in Z and call it ΓDFVS. We then
apply all the reduction rules of Section 5.5 exhaustively. From Lemma 5.5.5, when
none of the reduction rules are applicable |Z| = (k`)O(η2). Thus, for each Z ∈ Z,
when none of the reduction rules are applicable, |V (D)| ≤ |M |+ |R|+(k`)O(η2) · |Z|.
Thus, from Lemma 5.3.1, |V (D)| = (k · `)O(η2).

5.6 Towards the Proof of the Protrusion Replacer

Lemma

In this section we give a proof of Lemma 5.5.4. We start with some notations and
definitions. The next two subsections are taken from [24].

93

5.6.1 Counting Monadic Second Order Logic and its Proper-

ties

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical
connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of
edges, the quantifiers ∀, ∃ that can be applied to these variables, and the following
five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpre-
tation is that the edge d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u
and v are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of
edges.

In addition to the usual features of monadic second-order logic, if we have atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q
and r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO
is called the counting monadic second-order logic. Thus CMSO is MSO with the
following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

The p-min-CMSO problem defined by formula ψ is denoted by p-min-CMSO[ψ]

and defined as follows.

p-min-CMSO[ψ]

Input: A graph G (or digraph D) and an integer k
Parameter: k
Question: Is there a subset S ⊆ V (G) such that |S| ≤ k and
(G,S) |= ψ?

In other words, p-min-CMSO[ψ] is a subset Π of Σ∗ × Z where for every (x, k) ∈
Σ∗ × Z+, (x, k) ∈ Π if and only if there exists a set S ⊆ V where |S| ≤ k such

94

that the graph G encoded by x together with S satisfy ψ, i.e., (G,S) |= ψ. For
(x, k) ∈ Σ∗ × Z− we know that (x, k) /∈ Π.

5.6.2 Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.

Definition 5.6.1. [Boundaried Graphs] A boundaried graph is a graph G with a
set B ⊆ V (G) of distinguished vertices and an injective labelling λ from B to the set
Z+. The set B is called the boundary of G and the vertices in B are called boundary
vertices or terminals. Given a boundaried graph G, we denote its boundary by δ(G),

we denote its labelling by λG, and we define its label set by Λ(G) = {λG(v) | v ∈
δ(G)}. Given a finite set I ⊆ Z+, we define FI to denote the class of all boundaried
graphs whose label set is I. Similarly, we define F⊆I =

⋃
I′⊆I FI′. We also denote

by F the class of all boundaried graphs. Finally we say that a boundaried graph is a
t-boundaried graph if Λ(G) ⊆ {1, . . . , t}.

Definition 5.6.2. [Gluing by ⊕] Let G1 and G2 be two boundaried graphs. We
denote by G1 ⊕G2 the graph (not boundaried) obtained by taking the disjoint union
of G1 and G2 and identifying equally-labeled vertices of the boundaries of G1 and
G2. In G1⊕G2 there is an edge between two labeled vertices if there is either an edge
between them in G1 or in G2.

Definition 5.6.3. Let G = G1 ⊕ G2 where G1 and G2 are boundaried graphs. We
define the glued set of Gi as the set Bi = λ−1

Gi
(Λ(G1) ∩ Λ(G2)), i = 1, 2. For a

vertex v ∈ V (G1) we define its heir h(v) in G as follows: if v 6∈ B1 then h(v) = v,
otherwise h(v) is the result of the identification of v with an equally labeled vertex
in G2. The heir of a vertex in G2 is defined symmetrically. The common boundary
of G1 and G2 in G is equal to h(B1) = h(B2) where the evaluation of h on vertex
sets is defined in the obvious way. The heir of an edge {u, v} ∈ E(Gi) is the edge
{h(u), h(v)} in G.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say
that a boundaried graph belongs to a graph class G if the underlying graph belongs
to G.

5.6.3 Finite Integer Index

Definition 5.6.4. [Canonical equivalence on boundaried graphs.] Let Π be

95

a parameterized graph problem whose instances are pairs of the form (G, k). Given
two boundaried graphs G1, G2 ∈ F , we say that G1 ≡Π G2 if Λ(G1) = Λ(G2) and
there exist a transposition constant c ∈ Z such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that the relation ≡Π is an equivalence relation. Observe that c could be
negative in the above definition. This is the reason we extended the definition of
parameterized problems to include negative parameters also.

Next we define a notion of “transposition-minimality” for the members of each
equivalence class of ≡Π .

Definition 5.6.5. [Progressive representatives, [24]] Let Π be a parameterized
graph problem whose instances are pairs of the form (G, k) and let C be some equiv-
alence class of ≡Π. We say that J ∈ C is a progressive representative of C if for
every H ∈ C there exists c ∈ Z−, such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π⇔ (J ⊕ F, k + c) ∈ Π.(5.1)

The following lemma guaranties the existence of a progressive representative for
each equivalence class of ≡Π.

Lemma 5.6.1 ([24]). Let Π be a parameterized graph problem whose instances are
pairs of the form (G, k). Then each equivalence class of ≡Π has a progressive repre-
sentative.

Definition 5.6.6. [Finite Integer Index, [24, 99]] For a parameterized problem Π and
two t-boundaried graphs G1 and G2, we say that G1 ≡Π G2 if there exists a constant
c such that for every t-boundaried graph G and for every integer k, (G1⊕G2, k) ∈ Π

if and only if (G2 ⊕ G, k + c) ∈ Π. For every t, the relation ≡Π on t-boundaried
graphs is an equivalence relation, and we call ≡Π the canonical equivalence relation
of Π. We say that a problem Π has Finite Integer Index if for every t, ≡Π has a
finite index on t-boundaried graphs.

Let G be a graph class. We say that G is CMSO-definable if there exist a sentence
ψ on graphs such that G = {G | G |= ψ} and, in such a case, we say that ψ defines
the class G. Given a parameterized graph problem Π and a graph class G, we denote
by ΠeG the problem obtained by removing from Π all instances that encode graphs
that do not belong to G.

96

We would like to show that DFVS/DFVS+Tw-η Mod has Finite Integer Index
(FII) property over Fη. Observe that a digraph D ∈ Fη if and only if the underlying
undirected graph has treewidth at most η. Thus, Fη can be characterized by finite
forbidden set of minors. Since minor testing can be expressed into CMSO we have
that Fη is CMSO-definable. Let Π denote the DFVS. The problem Π is p-min-

CMSO[ψ] and is strongly monotone (see [24] for definition). A proof for this fact
is analogous to the proof of [24, Lemma 8.4]. Thus, by [24, Lemmas 7.3 and 7.4] we
get the following.

Lemma 5.6.2. Π e Fη has FII. Here, Π is DFVS/DFVS+Tw-η Mod.

5.6.4 Proof of the Protrusion Replacer Lemma

Proof. The proof is essentially as in [24, Lemma 5.18]. We just adapt it here for our
purposes. Our problem is Π e Fη where Π is DFVS/DFVS+Tw-η Mod.

We denote by S⊆{1,...,2t+1} a set of (progressive) representatives for ≡Π restricted
to boundaried graphs with label sets from {1, . . . , 2t+ 1}. Let

c = max
{
|V (Y)|

∣∣ Y ∈ S⊆{1,...,2t+1}
}
.

Our algorithm has in its source code hard-wired a table that stores for each
boundaried graph GY in F⊆{1,...,2t+1} on at most 2c vertices a boundaried graph
G′Y ∈ S⊆{1,...,2t+1} and a constant µ ≤ 0 such that GY ≡Π G′Y , and specifically

∀(F, k) ∈ F × Z : (GY ⊕ F, k) ∈ (Π e Fη) ⇐⇒ (G′Y ⊕ F, k + µ) ∈ (Π e Fη).
(5.2)

The existence of such a constant µ ≤ 0 is guaranteed by the fact that S⊆{1,...,2t+1} is
a set of progressive representatives.

We now apply [24, Lemma 5.5] and find a (2t + 1)-protrusion Y of D where
c < |Y | ≤ 2c. Split D into two boundaried graphs DY = D[Y ∪ N(Y)] and DR =

D[(V (G)\Y)] as follows. BothDR andDY have boundaryN(Y), and since |N(Y)| ≤
2t+ 1 we may label the boundaries of DY and DR with labels from {1, . . . , 2t+ 1}
such that D = DY ⊕DR. As c < |V (GY)| ≤ 2c the algorithm can look up in its table
and find a D′Y ∈ S⊆{1,...,2t+1} and a constant µ such that DY ≡ D′Y and DY , D′Y and
µ satisfy Equation 5.2. Observe that since the initial protrusion X is disjoint from

97

M we have that the vertex set of M remains in D′. The algorithm outputs

(D′, k′,M) = (D′Y ⊕DR, k + µ,M).

Since |V (D′Y)| ≤ c < |V (DY)| and k′ ≤ k + µ ≤ k it remains to argue that the
instances (D, k,M) and (D′, k′,M) are equivalent. However, this is directly implied
by Equation 5.2. In particular, by Equation 5.2 we have that D has a directed
feedback vertex set of size at most k if and only if D′ has directed feedback vertex
set of size at most k′. Now we show that D′ −M has treewidth at most η. Let
DM
R = DR − M . Now since, DY ≡ D′Y with respect to Π e Fη we have that

(DY ⊕ DM
R , k

∗) is in Π e Fη if and only if (D′Y ⊕ DM
R , k

∗) is in Π e Fη. Since
tw(DY ⊕ DM

R) ≤ η we have that tw(D′Y ⊕ DM
R) has treewidth at most η. This

completes the proof.

98

Chapter 6

Kernel for Deletion to Out-Forest

In this chapter (and the next), we study the parameterized complexity of restrictions
of DFVS. Recently, in a very interesting article, to make progress on the question
of the existence of a polynomial kernel for DFVS, Mnich and van Leeuwen [164]
considered DFVS with an additional restriction on the output rather than the input.
Essentially, the basic philosophy of their program is the following: What happens
to the kernelization complexity of DFVS when we consider subclasses of DAGs?

Mnich and van Leeuwen [164] inspected this question by considering the classes
of out-forests, out-trees and (directed) pumpkins. An out-tree is a digraph where
each vertex has in-degree at most 1 and the underlying (undirected) graph is a tree.
An out-forest is a disjoint union of out-trees. On the other hand, a digraph is a
pumpkin if it consists of a source vertex s and a sink vertex t, s 6= t, together with
a collection of internally vertex-disjoint induced directed paths from s to t. Here,
all vertices except s and t have in-degree 1 and out-degree 1. The examination
of the classes of out-forests and out-trees was also motivated by the corresponding
questions of UFVS and Tree Deletion Set in the undirected settings. Formally,
Mnich and van Leeuwen [164] studied the following problems.

Out-Forest Vertex Deletion Set (OFVDS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that F = D− S is an
out-forest?

Out-Tree Vertex Deletion Set (OTVDS) and Pumpkin Vertex Deletion

Set (PVDS) are defined in a similar manner, where instead of an out-forest, F

99

should be an out-tree or a pumpkin, respectively. Mnich and van Leeuwen [164]
showed that OFVDS and OTVDS admit kernels of size O(k3) and PVDS admits
a kernel of size O(k18).

The objective of this chapter is to prove the following results.

• OFVDS admits an O(k2) kernel. This result improves upon the best known
upper bound of O(k3).
• For any ε > 0, OFVDS does not admit a kernel of size O(k2−ε) unless coNP ⊆

NP/poly.
In the next chapter, we give a O(k3) kernel for PVDS.

To get the improved kernel for OFVDS we incorporate the Expansion Lemma as
well as a factor 3-approximation algorithm for OFVDS in the kernelization routine
given in [164]. The significance of this improvement also lies in the fact that it is
essentially tight.

6.1 Improved Kernel for Out-Forest Vertex Dele-

tion Set

The aim of this section is to present an O(k2) kernel for OFVDS. In Section 6.1.1
we state definitions and results relevant to our kernelization algorithm. Next, in
Section 6.1.2, we design an algorithm for OFVDS that outputs a 3-approximate
solution, which will also be used by our kernelization algorithm. Finally, in Sec-
tion 6.1.3, we present our kernelization algorithm.

6.1.1 Some Prerequisites

A collision is a triplet (u,w, v) of distinct vertices such that (u,w), (v, w) ∈ E(D).
We start by giving the definition of a q-expansion and the statement of the Expansion
Lemma.

Definition 6.1.1 (q-Expansion). For a positive integer q, a set of edges M ⊆ E(G)

is a q-expansion of A into B if (i) every vertex in A is incident to exactly q edges
in M , and (ii) M saturates exactly q|A| vertices in B (i.e., there is a set of q|A|
vertices in B which are incident to edges in M).

Lemma 6.1.1 (Expansion Lemma [65, 201]). Let q be a positive integer and G be an
undirected bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A|, and

100

there are no isolated vertices in B. Then, there exist non-empty vertex sets X ⊆ A

and Y ⊆ B such that there exists a q-expansion of X into Y , and no vertex in Y

has a neighbor outside X (i.e., N(Y) ⊆ X). Furthermore, the sets X and Y can be
found in time polynomial in the size of G.

We will also need to rely on the well-known notion of l-flowers.

Definition 6.1.2 (l-Flower). An undirected graph G contains an l-flower through
v if there is a family of cycles {C1, . . . , Cl} in G such that for all distinct i, j ∈ [l],
V (Ci) ∩ V (Cj) = {v}.

Lemma 6.1.2 ([65, 201]). Given an undirected graph G and a vertex v ∈ V (G),
there is a polynomial-time algorithm that either outputs a (k + 1)-flower through v
or, if no such flower exists, outputs a set Zv ⊆ V (G) \ {v} of size at most 2k that
intersects every cycle that passes through v in G.

6.1.2 Approximation Algorithm for Out-Forest Vertex Dele-

tion Set

This section presents a 3-factor approximation algorithm for OFVDS. Given an
instance of OFVDS, let OPT be the minimum size of a solution. Formally, we
solve the following.

3-Approximate Out-Forest Vertex Deletion Set (Approx-OFVDS)
Input: A directed graph D.
Output: A subset X ⊆ V (D) such that D−X is an out-forest and |X| ≤ 3·OPT .

Given three distinct vertices u1, u2, u3 ∈ V (D), we say (u1, u2, u3) is a collision if
u1 and u2 are in-neighbors of u3. Observe that any solution to OFVDS (and hence,
Approx-OFVDS) must intersect any collision in at least 1 vertex. Moreover, it
must intersect any cycle in at least 1 vertex. These observations form the basis of
this algorithm.

Lemma 6.1.3. Approx-OFVDS can be solved in polynomial time.

Proof. Given a digraph D, the algorithm first constructs (in polynomial time) a
family F of collisions and induced cycles in D such that the vertex sets of the
entities in this family are pairwise disjoint. To do this, it initializes F = ∅. Then, as

101

long as there exists a vertex v ∈ V (D) with at least two in-neighbors, u1 and u2, it
inserts (v, u1, u2) into F and removes v, u1 and u2 fromD (only for the purpose of the
construction of F). Once there is no vertex v ∈ V (D) such that d−(v) ≥ 2, observe
that all the directed cycles in the resulting digraph are pairwise vertex disjoint. F
additionally contains all these pairwise vertex disjoint directed cycles..

Let us now construct a solution, Sapp, for Approx-OFVDS. For every collision
in F , we let Sapp contain each of the three vertices of this collision. From every cycle
C in F we pick an arbitrary vertex and insert it into Sapp. Clearly, |Sapp| ≤ 3|F|.
Since F is a collection of pairwise vertex disjoint collisions and directed cycles,
|F| ≤ OPT . Thus, |Sapp| ≤ 3 ·OPT . It is now sufficient to prove that D−Sapp is an
out-forest. Observe that no vertex v in D − Sapp has in-degree at least 2, otherwise
the collision consisting of v and two of its in-neighbors would have been inserted
into F and hence also into Sapp. Moreover, there is no directed cycle C in D−Sapp.
Indeed, if the cycle C intersects an collision in F , it is clear that it cannot exist in
D − Sapp, and otherwise it would have been inserted into F and hence one of its
vertices would have been inserted into Sapp. We thus conclude that the theorem is
correct.

6.1.3 Kernelization Algorithm for Out-Forest Vertex Dele-

tion Set

We are now ready to present our kernelization algorithm. Let (D, k) be an instance
of OFVDS. We note that during the execution of our algorithm, D may become a
multigraph.

Preprocessing. We start by applying the following reduction rules exhaustively,
where a rule is applied only if its condition is true and the conditions of all of the
preceding rules are false. Rule 6.1.4 is given in [164], and its correctness is proven
in that paper. It will be clear that the first five rules can be applied in polynomial
time, whereas, for applying the last rule, we call the algorithm given by Lemma 6.1.2.
Moreover, it is straightforward to verify that each of these rules, except Rule 6.1.4
(whose safeness follows from [164]), is safe (i.e., the instance it returns is equivalent
to the input instance).

Reduction Rule 6.1.1. If there exists a vertex v ∈ V (D) such that d+(v) = 0 and
d−(v) ≤ 1, remove v from D.

Reduction Rule 6.1.2. If there exists a directed path P = (w0, w1, . . . , wl, wl+1) in

102

D such that l ≥ 2 and for all i ∈ [l], d−(wi) = d+(wi) = 1, remove each vertex in
{w1, . . . , wl−1} from D and add the edge (w0, wl) to D.

Reduction Rule 6.1.3. If there exists an edge (u, v) ∈ E(D) with multiplicity at
least 3, remove all but two copies of it.

Reduction Rule 6.1.4. If there exist k+1 collisions (u1, w1, v), . . . , (uk+1, wk+1, v)

that pairwise intersect only at v, remove v from D and decrease k by 1.

Reduction Rule 6.1.5. If there exists a vertex v ∈ V (D) such that d−(v) ≥ k+ 2,
remove v from D and decrease k by 1.

Reduction Rule 6.1.6. Let G be the underlying graph of D. If there exists a vertex
v ∈ V (G) such that there is a (k + 1)-flower through v in G, remove v from D and
decrease k by 1.

Bounding Out-Degrees. Next, we aim to bound the maximum out-degree of
a vertex in D. To this end, suppose that there exists a vertex v ∈ V (D) with
d+(v) ≥ 16k. Let G be the underlying graph of D. Since Reduction Rule 6.1.6
is not applicable, we let Zv be the set obtained by calling the algorithm given by
Lemma 6.1.2. Moreover, we let Sapp be a 3-factor approximate solution obtained
by calling the algorithm given by Theorem 6.1.3. We can assume that |Sapp| ≤ 3k,
since otherwise the input instance is a No instance. Denote Xv = (Sapp ∪Zv) \ {v}.
Since |Zv| ≤ 2k, we have that |Xv| ≤ 5k.

We proceed by examining the set Cv = {C1, C2, . . . , C|Cv |} of the connected com-
ponents in G − (Xv ∪ {v}). Since Sapp is an approximate solution, each com-
ponent Ci ∈ Cv is an out-tree. Moreover, for any component Ci ∈ Cv, v has
at most one neighbor in Ci, since otherwise there would have been cycle passing
through v in G − Zv, contradicting the definition of Zv. For each component
Ci ∈ Cv, let ui be the root of Ci. Let Dv = {Ci | Ci ∈ Cv, (v, ui) ∈ E(D)}
and D̃v = {Ci | Ci ∈ C, (v, u) ∈ E(D), u ∈ V (Ci), u 6= ui}. Observe that
d+(v) ≤ |Dv| + |D̃v| + |Xv|. Moreover, since Reduction Rule 6.1.4 is not appli-
cable, |D̃v| ≤ k. Since d+(v) ≥ 16k, we have that |Dv| ≥ 10k. Without loss of
generality, let Dv = {C1, . . . , Cp} where p = |Dv|. Since Reduction Rule 8.3.3 is
not applicable, for any component Ci ∈ Dv there exists an edge in E(G) with one
endpoint in Ci and the other in Xv.

We now construct an auxiliary (undirected) bipartite graph H with bipartition
(A,B), where A = Xv and B is a set of new vertices denoted by b1, . . . , bp. For any
u ∈ A and bi ∈ B, (u, bi) ∈ E(H) if and only if there exists an edge in G between

103

u and some vertex in Ci. Since |B| ≥ 2|A| and there are no isolated vertices in B,
we can use the algorithm given by Lemma 6.1.1 to obtain non-empty vertex sets
X ′v ⊆ A and Y ′v ⊆ B such that there is a 2-expansion of X ′v into Y ′v and N(Y ′v) ⊆ X ′v.
Let D′v = {Ci | bi ∈ Y ′v}.

Reduction Rule 6.1.7. Remove each of the edges in D between v and any vertex
in a component in D′v. For every vertex xi ∈ X ′v, insert two copies of the edge (v, xi)

into E(D).

Lemma 6.1.4. Reduction Rule 6.1.7 is safe.

Proof. Let D′ be the graph resulting from the application of the rule. We need to
prove that (D, k) is a Yes instance if and only if (D′, k) is a Yes instance.

Forward Direction. For the forward direction, we first claim that if (D, k) has
a solution S such that v 6∈ S, then it has a solution S ′ such that X ′v ⊆ S ′. To
this end, suppose that (D, k) has a solution S such that v 6∈ S. Let S ′ = (S \⋃
Ci∈D′v V (Ci)) ∪X ′v. It holds that |S ′| ≤ |S| since for each x ∈ X ′v \ S, at least one

vertex from at least one of the two components in its expansion set must belong
to the solution. Suppose for the sake of contradiction that F = D − S ′ is not an
out-forest. First, assume that there exists a vertex in F with in-degree at least 2.
Note that V (D) =

⋃
Ci∈Cv V (Ci) ∪Xv ∪ {v}. Recall that the neighborhood of each

of the vertices in the connected components that belong to D′v, outside their own
component, is contained in {v} ∪ X ′v. Moreover, v only has out-neighbors in the
components that belong to D′v and each Ci ∈ Cv is an out-tree. Therefore, since
D−S has no vertex of in-degree at least 2, so does D−S ′. Now, assume that there
is a cycle C in F . Then, if V (C)∩ (S ∩⋃Ci∈D′ V (Ci)) = ∅, then C is also a cycle in
D − S, which is a contradiction. Thus, V (C) ∩ (S ∩⋃Ci∈D′ V (C)i) 6= ∅. However,
any cycle that passes through a component in D′v also passes through v and a vertex
in X ′v. Since X ′v ⊆ S ′, no such cycle exists. This finishes the proof of the claim.

Let S be a solution to (D, k). If v ∈ S, then it is clear that D′ − S is an out-
forest. Otherwise, if v 6∈ S, our claim implies that (D, k) has a solution S ′ such that
X ′v ⊆ S ′. Then, D′ − S ′ is an out-forest.

Backward Direction. For the backward direction, let us prove the following claim.
If (D′, k) has a solution S such that v 6∈ S, then X ′v ⊆ S. Suppose, by way of
contradiction, that the claim is incorrect. Then, there exists x ∈ X ′v such that
x 6∈ S. However, this implies that D′ − S is not an out-forest as it contains the
double edges (v, xi).

104

Now, let S be a solution to (D′, k), and denote F = D′ − S. Suppose v ∈ S.
Then observe that, D−S = D′−S is an out forest and thus S is solution to (D, k).
If v 6∈ S, then by our previous claim, X ′v ⊆ S. Recall that for each Ci ∈ Cv, Ci is an
out-tree and ui is the root of the out-tree Ci. Observe that for each Ci ∈ D′v such
that ui 6∈ S, ui is a root of some out-tree in F . This, is because the neighborhood of
such a ui in D−Ci, is contained in X ′v ∪ {v}, X

′
v ⊆ S and each edge between v and

any vertex in D′v is absent in D′. Also observe that, each such vertex ui and v belong
to different out-trees of F because in D′, the edges between v and any vertex in D′v
are absent. This implies that if we add (to D′) the edges between v and each vertex
ui that have been removed by the application of the rule, V (F) will still induce an
out-forest. Thus, S is a solution to (D, k).

After an exhaustive application of Reduction Rule 6.1.7, the out-degree of each
vertex in D is at most 16k− 1. However, since this rule inserts edges into E(G), we
need the following lemma.

Lemma 6.1.5. The total number of applications of the reduction rules is bounded
by a polynomial in the input size.

Proof. We associate the measure µ(D, k) = |V (D)| + |E1(D)| with every instance,
where E1(D) are those edges in E(D) that have multiplicity 1. Initially, this measure
is bounded by a polynomial in the input size. We maintain the invariant that the
measure is always positive and it strictly decreases whenever any of the reduction
rules is applied. We thus conclude that the lemma is correct.

Correctness. By relying on counting arguments as well as Lemmas 6.1.4 and 6.1.5,
we obtain the main result of this section.

Theorem 6.1.1. OFVDS admits an O(k2)-kernel.

Proof. Since our reduction rules are safe and can be applied only polynomially many
times, we next assume that none of them is applicable, and turn to bound the
number of vertices and edges in the resulting instance (D, k). To this end, suppose
that (D, k) is a Yes instance. Let S be a solution, and denote F = D − S. Let
V≤1 be the vertices in F that have degree at most 1 (in F), V=2 be the vertices in F
that have degree exactly 2, and V≥3 be the vertices in F that have degree at least
3. Note that |V (F)| = |V≤1|+ |V=2|+ |V≥3|.

Since Reduction Rules 6.1.5 and 6.1.7 are not applicable, the total degree of any
vertex is bounded by O(k). In particular, the number of neighbors in F of each

105

vertex in S is bounded by O(k). Therefore, the total number of vertices in F that
have a neighbor in S is bounded by O(k2). Observe that each vertex in V≤1 is either
a leaf in F or a root in F . Also all leaf vertices of F are in V≤1. If a vertex in V≤1

is a leaf in F , then such a vertex must have at least one neighbor in S, as otherwise
Reduction Rule 8.3.3 would have been applicable. Thus, the total number of leaf
vertices in |V≤1| is bounded by O(k2). Since the total number of vertices that are a
root of some out-tree in F are at most the number of leaves in F , V≤1 is bounded by
O(k2). Since the underlying graph of F is a forest, |V≥3| < |V≤1|. Thus, V≥3 is also
bounded by O(k2). Let us mark each of the vertices in F which has a neighbor in
S as well as the vertices in V≥3. Note that all other vertices are degree-2 vertices in
D. Let P be the set maximal degree-2 paths in F whose endpoints are not marked.
Observe that |P| is bounded by O(k2). Moreover, the length of a maximal degree-2
path in P is at most 1, else Reduction Rule 8.3.4 is applicable.

We deduce that the number of vertices in D should be bounded by O(k2),
otherwise we can conclude that (D, k) be a No instance. Since F is a forest,
|E(F)| < |V (F)|. Moreover, the number of edges incident to vertices in S is bounded
by O(k2). Therefore, the number of edges in D should be bounded by O(k2).

In the next section, we prove that the size of the kernel given in Theorem 6.1.1 is
tight, that is OFVDS does not admit an O(k2−ε) size kernel unless coNP ⊆ NP/poly.

6.2 Kernel Lower Bound for Out-Forest Vertex

Deletion Set

In this section we show that the size of our kernel for OFVDS is optimal i.e., there
is no kernel for OFVDS which can be encoded into O(k2−ε) bits for any ε > 0 unless
co-NP ⊆ NP/poly. To this end, we will rely on the fact that Vertex Cover (VC)
does not admit a kernel which can be encoded into O(k2−ε) bits for any ε > 0 unless
co-NP ⊆ NP/poly [74].1

We give a polynomial-time reduction from VC to OFVDS. Let (G, k) be an
instance of VC. We construct an instance of (D, k′) of OFVDS as follows. Initially,
V (D) = V (G) and E(D) = ∅. For each edge {u, v} ∈ E(G), we add a vertex euv to
V (D), and we add the edges (u, euv) and (v, euv) to E(D). Finally, we set k′ = k.

1Given a graph G and a parameter k, VC asks whether one can remove at most k vertices from
G so that the resulting graph will be edge-less.

106

Lemma 6.2.1. (G, k) is a Yes instance of VC if and only if (D, k′) is a Yes

instance of OFVDS.

Proof. In the forward direction, consider a vertex cover S of G of size at most k.
We claim that D − S is an out-forest. By construction, each vertex v ∈ V (D) that
also belongs to G has in-degree 0 in D. For each vertex euv ∈ V (D), {u, v} ∈ E(G),
and therefore at least one vertex among u and v must belong to S. Moreover, u
and v are the only in-neighbors of euv. Therefore, for all euv ∈ V (D), the in-degree
of euv is at most 1 in D − S. Note that V (G) ⊆ V (D) is an independent set in
D. Similarly, V (D) \ V (G) is an independent set in D. Moreover, each vertex in
V (D) \ V (G) has out-degree 0. Therefore, D −X is acyclic.

In the reverse direction, consider an out-forest deletion set X of D of size at most
k. Observe that if euv ∈ X, then (X \ {euv}) ∪ {u} is also an out-forest deletion
set in D. Hence, without loss of generality assume that X ⊆ V (G). Suppose, by
way of contradiction, that X is not a vertex cover of G. Then, there is an edge
(u, v) ∈ E(G) such that X ∩ {u, v} = ∅. By assumption X does not contain euv.
Therefore, euv is a vertex with in-degree 2 in D −X, which contradicts the choice
of X.

We will use the Theorem 6.2.1 along with Lemma 6.2.1 to rule out an O(k2−ε)

kernel for OFVDS. For this purpose, we first state the definition of Oracle Commu-
nication Protocol [74].

Definition 6.2.1. An oracle communication protocol for a language L is a commu-
nication protocol between two players. The first player is given the input x and has
to run in time polynomial in the length of the input; the second player is compu-
tationally unbounded but is not given any part of x. At the end of the protocol the
first player should be able to decide whether x ∈ L. The cost of the protocol is the
number of bits of communication from the first player to the second player.

Theorem 6.2.1 (Theorem 2 [74]). Let d ≥ 2 be an integer and ε a positive real
number. If coNP 6⊆ NP/poly, there is no protocol of cost O(nd−ε) to decide whether
a d-uniform hypergraph on n vertices has a vertex cover of at most k vertices, even
when the first player is co-nondeterministic.

Theorem 6.2.2. Let ε > 0. OFVDS does not admit an oracle communication
protocol of cost O(k2−ε) for deciding (D, k) unless coNP ⊆ NP/poly.

107

Proof. Suppose OFVDS admits an oracle communication protocol of cost O(k2−ε)

for deciding (D, k). Combining this supposition with Lemma 6.2.1, we get a protocol
of cost O(k2−ε) for VC. By Theorem 6.2.1, this implies that coNP ⊆ NP/poly.

We are now ready to prove the main result of this section.

Theorem 6.2.3. OFVDS does not admit a kernel of size O(k2−ε) for any ε > 0

unless coNP ⊆ NP/poly.

Proof. If OFVDS admits a kernel of sizeO(k2−ε), then the computationally bounded
player computes the kernel and sends it to the computationally unbounded player
who can correctly compute and return one bit answer. The cost of this protocol is
O(k2−ε). Therefore, by Theorem 6.2.2 it implies that coNP ⊆ NP/poly.

108

Chapter 7

Kernel for Deletion to Pumpkin

Recall from the last chapter that a digraph is a pumpkin if it consists of a source
vertex s and a sink vertex t, s 6= t, together with a collection of internally vertex-
disjoint induced directed paths from s to t. Here, all vertices except s and t have
in-degree 1 and out-degree 1. The Pumpkin Vertex Deletion Set problem is
defined again below.

Pumpkin Vertex Deletion Set (PVDS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that F = D− S is an
out-forest?

Recall the motivations of designing an improved kernel for PVDS from the last
chapter. In this chapter, we prove the following theorem.

Theorem 7.0.1. PVDS admits an O(k3)-vertex kernel.

7.1 Outline of the Kernelization Algorithm for Pump-

kin Vertex Deletion Set

The kernelization algorithm for PVDS given in [164] works roughly as follows. It
has two phases: (a) first it gives an O(k5) kernel for a variant of the problem
where we know the source and the sink of the pumpkin obtained after deleting
the solution vertices; and (b) in the second phase, it reduces PVDS to polynomially
many instances of a variant of the problem mentioned in item (a) and then composes
these instances to get a kernel of size O(k18). In fact given an instance (D, k) of
PVDS, the kernelization algorithm of [164] outputs an equivalent instance (D′, k′)

such that k′ = O(k18). We take a completely different route and use “sun-flower

109

style” reduction rules together with a marking strategy to obtain an equivalent
instance (D′, k′) such that |V (D′)| + |E(D′)| = O(k3) and k′ ≤ k. We believe
the method applied in this algorithm could be useful also in other kernelization
algorithms.

Let (D, k) be an instance of PVDS. We assume that |V (D)| ≥ k3, else we are
done. Let HO = {v ∈ V | d+(v) ≥ k+2} and HI = {v ∈ V | d−(v) ≥ k+2}. That is,
HO and HI are vertices of high out-degrees and high in-degrees, respectively. Mnich
and Leeuwen [164] proved that the following reduction rule is safe.

Reduction Rule 7.1.1. If |HO| > k+ 1 or |HI| > k+ 1, return that (D, k) is a No

instance.

For the sake of clarity, we divide the presentation of the kernelization algorithm
into two subsections. At the end of Section 7.2, we will simplify the instance in a way
that will allow us to assume that if there is a solution S, then both the source and
sink of the pumpkin D− S belong to HO ∪HI (Assumption 7.2.1). This assumption
will be at the heart of the “marking approach” of Section 7.3, which will handle
instances which have been reduced with respect to the reduction rules in Section
7.2. An intuitive explanation of the necessity of our marking process is given at the
beginning of Section 7.3. Throughout this section, if k becomes negative, we return
that (D, k) is a No instance, and if D becomes a pumpkin and k is positive or zero,
we return that (D, k) is a Yes

instance.

7.2 The Simplification Phase

For any v ∈ V (D), denote by Xv the set of in-neighbors of v, that is, Xv = N−(v)

and by Yv the set of every vertex y ∈ V (D) \ {v} for which there exists a vertex
x ∈ Xv such that (x, y) ∈ E(D). Note that Xv and Yv may or may not be disjoint
sets. We now give a construction of an auxiliary graph that will be used to prove the
safeness of the upcoming reduction rule. For this, consider a set Y ′v of new vertices
such that there is exactly one vertex y′ ∈ Y ′v for any y ∈ Yv. That is, Y ′v is a set
containing a copy for each of the vertex in Yv. By construction, Xv and Y ′v are
disjoint sets. Let H−v be the (undirected) bipartite graph on the vertex set Xv ∪ Y ′v
where for all x ∈ Xv and y′ ∈ Y ′v , {x, y′} ∈ E(H−v) if and only if (x, y) ∈ E(D) (see
Fig. 7.1). Let match−(v) be the size of a maximum matching in H−v .

110

G

v

a b c d e f g

(A)

a b c d e f g

x

k = 2

y z

b’ c’ x (B) d’ f’ g’ z y

G
a b c d e f g

(C) x

k = 1

y z

Xv

Y’v

Figure 7.1: (A) An instance of PVDS. (B) The graph H−v . The bold edges corre-
spond to a maximum matching. (C) An application of Rule 7.2.1.

An application of the next rule is illustrated in Fig. 7.1.

Reduction Rule 7.2.1. If there exists a vertex v ∈ V (D) such that match−(v) ≥
2(k + 1), remove v from D and decrease k by 1.

Lemma 7.2.1. Reduction Rule 7.2.1 is safe.

Proof. For the backward direction, trivially if S is a pumpkin deletion set in D−{v}
of size at most k − 1, then S ∪ {v} is a pumpkin deletion set in D of size at most
k. For the forward direction, it is sufficient to show that if (D, k) is a Yes instance
then every solution S contains v. For a contradiction, assume that there exists a
solution S that does not contain v. Let M be a maximum matching in the graph
H−v . Observe that for every edge {x, y′} ∈ M where x ∈ Xv, if x is not the source
of the pumpkin D−S, it holds that |S ∩{x, y}| ≥ 1 (otherwise the pumpkin D−S
contains a vertex, which is not its source, and has at least two out-neighbors).
Moreover, for every edge {x, y′} ∈ M where x ∈ Xv, if y is the source of the
pumpkin D − S, it holds that x ∈ S. We thus deduce that for all but one of the
edges {x, y′} ∈ M , we have that |S ∩ {x, y}| ≥ 1. Since M is a matching, for every
vertex u ∈ S, the vertex u can belong to at most one edge in M , and the vertex u′

(if it belongs to Y ′v) can also belong to at most one edge in M . However, |S| ≤ k,

111

and therefore S ∪ {y′ ∈ Y ′v : y ∈ S} can intersect at most 2k edges in M . Since
S ∪ {y′ ∈ Y ′v : y ∈ S} must intersect all but one edge of M and |M | ≥ 2(k + 1), we
obtain a contradiction.

Now, to present the symmetric rule, for any vertex v ∈ V (D), denote by Xv

the set of out-neighbors of v, that is, Xv = N+(v). Let Yv be the set of vertices
y ∈ V (D) for which there exists a vertex x ∈ Xv such that (y, x) ∈ E(D). Let Y ′v
be a set containing a copy y′ of each vertex y ∈ Y . Let H+

v be the bipartite graph
on the vertex-set Xv ∪ Y ′v which for all x ∈ Xv and y′ ∈ Y ′v contains the edge {x, y′}
if and only if (y, x) ∈ E(D). Let match+(v) be the size of a maximum matching in
H+
v . Then, the following reduction rule is safe.

Reduction Rule 7.2.2. If there exists a vertex v ∈ V (D) such that match+(v) ≥
2(k + 1), remove v from D and decrement k by 1.

We also need the following rule, proved by Mnich and Leeuwen [164].

Reduction Rule 7.2.3. Let P = (w0, · · · , w`) be an induced directed path, that is
for all i ∈ [l − 1] d−(wi) = d+(wi) = 1, with ` > k + 2 in D. Then, delete w1 from
D and add the edge (w0, w2).

Consider some hypothetical solution S (if such a solution exists). Let s and t

denote the source and sink, respectively, of the pumpkin D−S. Let A (or B) denote
the set of out-neighbors (resp. in-neighbors) of s (resp. t) in the pumpkin. Clearly,
|A| = |B|. Let C = V (D) \ (S ∪ A ∪ B ∪ {s, t}). Next, we prove a series of useful
claims relating to S.

Lemma 7.2.2. (i) Every vertex in {s} ∪ A ∪ B ∪ C has in-degree (in D) at most
k+ 1, and (ii) every vertex in {t} ∪A∪B ∪C has out-degree (in D) at most k+ 1.

Proof. The correctness of the claim follows from the observation that every vertex
in {s} ∪A∪B ∪C has at most one in-neighbor in the pumpkin D− S and at most
|S| ≤ k in-neighbors outside this pumpkin, and every vertex in {t} ∪A∪B ∪C has
at most one out-neighbor in this pumpkin and at most |S| ≤ k in-neighbors outside
this pumpkin.

Lemma 7.2.3. For any vertex v ∈ V (D), |N−(v) ∩ C|, |N+(v) ∩ C| ≤ 2(k + 1).

Proof. We only show that |N−(v) ∩ C| ≤ 2(k + 1), since the proof of the other
inequality is symmetric. Clearly, any vertex v ∈ {s, t} ∪ A has no in-neighbor

112

among the vertices in C and any vertex v ∈ C ∪ B has at most one in-neighbor
among the vertices in C. Thus, we are left with showing the claim only for vertices
belonging to S. Let v ∈ S and for a contradiction assume that |N−(v)∩C| > 2k+2.
We will show that in this case Rule 7.2.1 is applicable. Let XC

v denote the set of
in-neighbors of v in C. That is, XC

v = N−(v) ∩ C. Consider the graph H−v . Now
observe that XC

v ⊆ Xv and all the out-neighbors of vertices in XC
v that belong to

D−S are in C ∪B (recall that S is the hypothetical solution we are working with).
Observe that each vertex in C has a unique out-neighbor in D−S and in particular
they belong to C ∪ B. Thus, all the out-neighbors of vertices in XC

v belonging to
C ∪ B, say Y C

v , belong to Yv. Recall that H−v is a bipartite graph with the vertex
bipartition Xv and Y ′v (where in Y ′v we make a copy for each of the vertices in Yv),
and thus we have that |match−(v)| ≥ |XC

v | > 2(k + 1). Therefore, it is not possible
that |XC

v | = |N−(v) ∩ C| > 2k + 2, since in this case Rule 7.2.1 is applicable. This
completes the proof.

The set of in-neighbors (or out-neighbors) of any vertex v ∈ V (D) is contained
in A∪B ∪C ∪ S ∪ {s, t}. Since |A| ≤ d+(s), |B| ≤ d−(t) and |S| ≤ k, Lemma 7.2.3
gives us the following corollary.

Corollary 7.2.1. For any vertex v ∈ V (D), d−(v), d+(v) ≤ 3k+ d+(s) + d−(t) + 4.

We further strengthen this corollary to obtain the following result.

Lemma 7.2.4. For any vertex v ∈ V (D), d−(v), d+(v) ≤ min{4k+2d+(s)+4, 4k+

2d−(t) + 4}.

Proof. Let v ∈ V (D). By Corollary 7.2.1, d−(v), d+(v) ≤ 3k + d+(s) + d−(t) + 4.
Thus, to prove the claim, it is sufficient to show that (i) d−(t) ≤ d+(s) + k, and (ii)
d+(s) ≤ d−(t)+k. We only consider the first item, since the proof of the second one
is symmetric. Observe that the pumpkin D − S contains at most d+(s) internally
vertex disjoint paths from s and t. Therefore, since at most k in-neighbors of t can
belong to S, t has (in D) at most d+(s) + k in-neighbors.

LetM = maxv∈V (D){d+(v), d−(v)}. The next corollary (Corollary 7.2.2), derived
from Lemma 7.2.4, and rule (Reduction Rule 7.2.4) will bring us to the main goal
of this subsection, summarized in Assumption 7.2.1 below.

Corollary 7.2.2. If M > 6k + 6, then s ∈ HO and t ∈ HI.

113

Proof. Suppose that M > 6k + 6. Let v ∈ V (D) be a vertex such that 6k + 6 <

M = max{d+(v), d−(v)}. By Lemma 7.2.4, d−(v), d+(v) ≤ min{4k+2d+(s)+4, 4k+

2d−(t) + 4}, and therefore 6k+ 6 < min{4k+ 2d+(s) + 4, 4k+ 2d−(t) + 4}. We thus
get that d+(s), d−(t) > k + 1, which implies that s ∈ HO and t ∈ HI.

Reduction Rule 7.2.4. If |V (D)| > 2k2M + 4kM + k + 2, return (D, k) is a No

instance.

Lemma 7.2.5. Reduction Rule 7.2.4 is safe.

Proof. Suppose that the instance is a Yes instance. Let S be a solution. Then,
the pumpkin D − S contains at most 2M |S| ≤ 2Mk vertices with at least one
neighbor in S. Let Z be the set of these vertices. Then, V (D) \ (S ∪ Z ∪ {s, t})
is a collection of at most (2k + 1)M paths whose vertices (including the endpoints)
are vertices of in-degree 1 and out-degree 1 in D. By Rule 7.2.3, each such path
contains at most k vertices. Therefore, |V (D)| ≤ (2k + 1)kM + |Z|+ |S ∪ {s, t}| ≤
(2k + 1)kM + 2kM + k + 2 = 2k2M + 4kM + k + 2.

By Rule 7.2.4, if M ≤ 6k + 6, we obtain the desired kernel. Thus, by Corollary
7.2.2, we have the following observation.

Assumption 7.2.1. From now on, we can assume that if a solution exists, in the
resulting pumpkin the source belongs to HO and the target belongs to HI.

Next, it will be convenient to assume that HI and HO are disjoint sets. To this
end, we apply the following rule exhaustively, where safeness follows directly from
Lemma 7.2.2.

Reduction Rule 7.2.5. Remove all vertices in HI∩HO and decrease k by |HI∩HO|.

We will also assume that the following rule, illustrated in Fig. 7.2, has been
applied exhaustively. This assumption will be used at the end of the following
subsection (in the proof of Lemma 7.3.7).

Reduction Rule 7.2.6. If there exists a vertex v 6∈ HI ∪ HO such that N−(v) ∩
(V (D) \HI) = ∅ or N+(v)∩ (V (D) \HO) = ∅, delete v from D and decrease k by 1.

Lemma 7.2.6. Reduction Rule 7.2.6 is safe.

Proof. We only consider the case where there exists a vertex v /∈ HI ∪ HO without
any in-neighbor from V (D) \ HI since the proof of the second one is symmetric.

114

G

k = 3

v (A)

G

k = 2

(B)

Figure 7.2: (A) An instance of PVDS. The gray vertex belongs to HI, and the black
vertices belong to HO. (B) An application of Rule 7.2.6.

In this case, by Assumption 7.2.1, if there exists a solution S, it does not contain
exactly one vertex from HO, which will be a source, and exactly one vertex from HI,
which will be the target. Indeed, if S does not contain at least two vertices from
HO (HI), then since |S| ≤ k, the pumpkin D − S will contain at least two vertices
with out-degree (in-degree) at least two. Suppose v 6∈ S. Since v 6∈ HI ∪ HO, from
Assumption 1, v is neither the source nor the target of the pumpkin D − S. Thus,
there exists a vertex u ∈ N−(v), such that u 6∈ S. Since N−(v) ⊆ HI, u ∈ HI. Since
u ∈ HI and u 6∈ S, from Assumption 1, u is the target vertex of the pumpkin D−S,
which is a contradiction because u has an out-neighbor v in D − S.

7.3 The Marking Approach

We are now ready to present our marking approach, handling instances to which
Assumption 7.2.1 applies and none of the rules in Section 7.2 is applicable. Let
P∗ be the set of connected components in D − (HO ∪ HI) that are directed paths
whose internal vertices have in-degree 1 and out-degree 1 in D, and let V ∗ be the
union of the vertex-sets of the paths in P∗. It turns out that by relying on Lemma
7.2.3 and Rule 7.2.3, one can directly bound the number of vertices in V (D)\V ∗ by
O(k3), assuming that the input instance is a Yes instance (see the proof of Lemma
7.3.5). However, bounding the size of V ∗ is more tricky, and our marking process
is devoted to this cause. In this process, we will mark O(k3) vertices from V ∗, and
prove that because we are handling instances to which Assumption 7.2.1 applies,
all of the vertices that are not marked are essentially irrelevant. We will perform

115

two “rounds” of marking. Roughly speaking, for each pair of vertices in HO (or HI)
the first round aims to capture enough vertices of paths that describe the relation
between the vertices in this pair, or, more precisely, why one of the vertices of the
pair is a “better choice” than the other when one should decide which vertex (from
HO) is the source of the pumpkin. However, this round is not sufficient, since some
vertices in HO (or HI) have conflicts (independent of the other vertices in HO ∪ HI)
relating to the endpoints of the paths in P∗. In the second round of marking, for
each vertex in HO ∪ HI, we mark enough vertices from these problematic paths.

First Round of Marking. Towards the performance of the first round, we need
the following notations. For each vertex v ∈ V (D) \ (HI ∪ HO), let P̂ (v) denote the
connected component in D − (HI ∪ HO) containing v. For each s ∈ HO, let N̂(s)

denote the set of each out-neighbor v ∈ V (D) \ (HI ∪HO) of s such that P̂ (v) ∈ P∗
and the first vertex of (the directed path) P̂ (v) is v. Symmetrically, for each t ∈ HI,
let N̂(t) denote the set of each in-neighbor v ∈ V (D) \ (HI ∪ HO) of t such that
P̂ (v) ∈ P∗ and the last vertex of P̂ (v) is v. By Rule 7.2.5, HI ∩ HO = ∅, and
therefore these notations are well defined (i.e., we have not defined N̂ twice for the
same vertex). Given u ∈ (HI ∪ HO), we also denote P̂(u) = {P̂ (v) | v ∈ N̂(u)}.
Observe that the paths in P̂(u) are pairwise vertex-disjoint.

Next, we identify enough vertices from paths that capture the relation between
each pair of vertices in HO (or HI). For each pair (s, s′) ∈ HO×HO, let M̂KP (s, s′)

be an arbitrarily chosen set of minimal size of paths from P̂(s) \ P̂(s′) that together
contain at least k + 1 vertices not having s′ as an in-neighbor. In this context,
observe that only the last vertex on a path in P̂(s) \ P̂(s′) can have s′ as an in-
neighbor. In this case, the path must contain at least two vertices (since its first
vertex cannot have s′ as an in-neighbor), and while we insert the entire path into
M̂KP (s, s′), its last vertex is not “counted” when we aim to obtain at least k + 1

vertices not having s′ as an in-neighbor. If there are not enough paths to obtain at
least k + 1 such vertices, let M̂KP (s, s′) = P̂(s) \ P̂(s′). Symmetrically, for each
pair (t, t′) ∈ HI × HI, let M̂KP (t, t′) be an arbitrarily chosen minimal set paths
from P̂(t) \ P̂(t′) that together contain at least k + 1 vertices not having t′ as an
out-neighbor. If there are not enough paths, let M̂KP (t, t′) = P̂(t) \ P̂(t′).

Finally, given a pair (v, v′) ∈ (HO × HO) ∪ (HI × HI), let M̂K(v, v′) denote the
union of the vertex-sets of the paths in M̂KP (v, v′). We have the following claim.

Lemma 7.3.1. For each pair (v, v′) ∈ (HO×HO)∪(HI×HI), |M̂K(v, v′)| ≤ 3(k+1).

Proof. For each path inserted into M̂KP (v, v′), at most one vertex is not counted in

116

order to reach the desired size k + 1 (and at least one vertex is counted in order to
reach this size). Once we reach the threshold k + 1 (after marking at most 2(k + 1)

vertices), we may need to add k+1 additional vertices, since we insert entire vertex-
sets of paths in P̂(s)\ P̂(s′), and by Rule 7.2.3, each such path may contain at most
k + 2 vertices.

Second Round of Marking. We proceed to the second round of marking. For
this purpose, we need the following notation. For each u ∈ HI ∪ HO, let M̃KP (u)

denote the set of each directed path in P∗ whose first and last vertices are both
neighbors of u.

Reduction Rule 7.3.1. If there exists u ∈ HI ∪ HO such that |M̃KP (u)| > k + 1,
delete u from D and decrease k by 1.

Lemma 7.3.2. Reduction Rule 7.3.1 is safe.

Proof. To prove that the rule is correct, it is sufficient to show that if there exists
a solution S, it contains u. Indeed, if S does not contain u, then it must contain
at least one vertex from each path in P̃(u), except perhaps one path, since together
with u each such path forms a cycle and these cycles intersect only at the vertex u.
Since |P̃(u)| > k+1 and the paths in P̃(u) are vertex-disjoint, the claim follows.

For each u ∈ HI∪HO, let M̃K(u) be the union of the vertex-sets of the paths in
M̃KP (u). Since at this point, Rules 7.2.3 and 7.3.1 are not applicable, we have the
following lemma.

Lemma 7.3.3. For each u ∈ HI ∪ HO, |M̃K(u)| ≤ (k + 1)(k + 2).

The Size of the Kernel. For the sake of abbreviation, we define the following
sets.

• MKP = (
⋃

(u,u′)∈(HO×HO)∪(HI∪HI) M̂KP (u, u′)) ∪ (
⋃
u∈HO∪HI M̃KP (u)), and

• MK = (
⋃

(u,u′)∈(HO×HO)∪(HI∪HI) M̂K(u, u′)) ∪ (
⋃
u∈HO∪HI M̃K(u)).

By Lemmas 7.3.1 and 7.3.3, and since Rule 7.1.1 is not applicable, we bound
|MK| as follows.

Lemma 7.3.4. |MK| ≤ 2 · (3(k + 1)3 + (k + 1)2(k + 2)) ≤ 8(k + 2)3.

117

Let V R denote the set of unmarked vertices in V ∗, i.e., V ∗ \MK. We construct
the graph D′ by removing from D all of the vertices in V R, adding a set Nk+2 of
k+2 new vertices, and for each of the new vertices, adding an edge from each vertex
in HO as well as an edge to each vertex in HI. If V (D′) contains at most 2k + 4

vertices, add to it one-by-one a vertex-set of a path in P∗ until its size becomes at
least 2k+5 (by Rule 7.2.3, the size will not exceed 3k+6, and because |V (D)| ≥ k3,
we will reach the desired size).

Lemma 7.3.5. If |V (D′)| > 30(k + 2)3, (D′, k) is a No instance of PVDS.

Proof. If there exists a solution S, the pumpkinD′−S contains at most 2(k+1)|S| ≤
2(k+ 1)k vertices with at least one neighbor in S \ (HI∪HO). Moreover, by Lemma
7.2.3, the set C associated with D′ − S contains at most 4(k + 1)|S| ≤ 4(k + 1)k

vertices with at least one neighbor in S. Let Z be the set of vertices of these two
types. Then, D′− (S ∪Z ∪{s, t}) is a collection of paths. Among these paths, there
are at most k + 2 paths that are isolated vertices corresponding to the set Nk+2

of vertices added to D′ at its construction. There are at most 2|Z| ≤ 12(k + 1)k

additional paths that are not paths in P∗. By Rule 7.2.3, these additional paths
together contain at most 12(k + 1)k(k + 2) vertices. Moreover, from the union of
the vertex-sets of paths in P∗, D′ contains only vertices from MK, and by Lemma
7.3.4, |MK| ≤ 8(k + 2)3. Summing up, we get that |V (D)′| ≤ (k + 2) + 12(k +

1)k(k + 2) + 8(k + 2)3 + |Z|+ |S|+ 2 ≤ 30(k + 2)3.

Correctness. Finally, Theorem 7.0.1 follows from Lemma 7.3.5 and the two lem-
mas below.

Lemma 7.3.6. If (D, k) is a Yes instance then (D′, k) is a Yes instance.

Proof. Let S be a solution to (D, k). Let s and t be the source and sink, respectively,
of the pumpkinD−S. By Assumption 7.2.1, s ∈ HO and t ∈ HI. Let S ′ = S∩V (D′).
Note that each path in P∗ must either have its vertex-set contained in S or it must
be a path from an out-neighbor of s to an in-neighbor of t which belongs to the
pumpkin D − S (rather than only a subpath of a path from an out-neighbor of s
to an in-neighbor of t which belongs to this pumpkin). Moreover, the set Nk+2 of
vertices added to D′ at its construction are vertices of in-degree one and out-degree
one, where s is an in-neighbor and t is an out-neighbor. Therefore, D′ − S ′ is a
pumpkin.

Lemma 7.3.7. If (D′, k) is a Yes instance then (D, k) is a Yes instance.

118

Proof. Let S be a solution to (D′, k). Let s and t be the source and target, respec-
tively, of the pumpkin D′ − S. Because of the set Nk+2 of k + 2 vertices added to
D′ at its construction, and since |S| ≤ k, s ∈ HO and t ∈ HI. Moreover, by the
definition of HO and HI, (HO∪HI)\{s, t} ⊆ S. We can also assume that S does not
contain any vertex added to D′ at its construction since by removing such a vertex
from S, we still have a pumpkin. Our goal will be to show that S is also a solution
to (D, k), which will imply that the lemma is correct. To this end, we will show
that D − S is a pumpkin with source s and sink t.

First, note that we can assume that in D − S there exists a path from s to t.
Indeed, if this is not true, then D′−S consists only of s, t and newly added vertices.
That is, V (D′) contains at most 2k + 4 vertices, which contradicts its construction.
By the definition of P∗, each path in P∗ has only internal vertices that have in-
degree 1 and out-degree 1 in D , and its endpoints can only be adjacent to vertices
in HI∪HO and in the path itself. Thus, to prove the lemma, it is sufficient to show
that for each path in P∗ \MKP , its first vertex has s as an in-neighbor, its last
vertex has t as an out-neighbor, and if it contains at least two vertices, its first
vertex is not a neighbor of t and its last vertex is not a neighbor of s.

Consider some path P ∈ P∗\MKP . First suppose, by way of contradiction, that
the first vertex v of P does not have s as an in-neighbor. Because Rule 7.2.6 is not
applicable, v has at least one in-neighbor s′ ∈ HO. Thus, since v /∈MK, MK(s′, s)

contains at least k + 1 vertices that are not out-neighbors of s and such that each
of them belongs to a path in P∗ whose first vertex is not an out-neighbor of s. The
vertices in MK(s′, s) belong to D′. Since |S| ≤ k, at least one of these vertices, say
some u, should belong to the pumpkin D′ − S. However, in D′ − ((HI ∪HO) \ {s}),
which is a supergraph of D′− S, u cannot be reached from s, which contradicts the
fact that D′ − S is a pumpkin. Symmetrically, it is shown that the last vertex of P
has t as an out-neighbor.

Now assume that P contains at least two vertices. Suppose, by way of contra-
diction, that the first vertex of P has t as a neighbor. We have already shown that
the last vertex of P is also a neighbor of t, and therefore P ∈ M̃KP (t). However,
M̃KP (t) ⊆ MKP , which contradicts the fact that P ∈ P∗ \MKP . Symmetrically,
it is shown that the last vertex of P does not have s as a neighbor, concluding the
proof of the lemma.

119

Chapter 8

Faster FPT Algorithms for Deletion
to Out-Tree, Out-Forest and
Pumpkin

Recall the definitions of out-tree, out-forest and pumpkin from Chapter 6. In this
chapter, we complement the kernelization results of Mnich and van Leeuwen [164] by
designing faster FPT algorithms for the Out-Forest, Out-Tree and Pumpkin

Deletion problems. In particular, we give FPT algorithms for OFVDS, OTVDS and
PVDS (recall these definitions from Chapter 6) with running times O?((1+

√
3)k) =

O?(2.732k), O?(2.562k) and O?(2.562k) respectively.

Problem Deterministic Randomized
UFVS 3.619k 3k

OFVDS (1 +
√

3)k -
TDS 5k -
OTVDS 2.562k -
PVDS 2.562k -

Table 8.1: Problems with the best known deterministic and randomized FPT running
times.

An underlying undirected graph for both an out-forest and a out-tree does not
contain a cycle and thus they are very close to forest and tree, respectively. Thus,
it is imperative on us to compare the running time of our FPT algorithms for
OFVDS and OTVDS with UFVS and Tree Deletion Set (TDS), respectively.
The best known deterministic and randomized algorithms for UFVS run in times

121

O?(3.619k) and O?(3k), respectively [132, 70]. It is a well-known open problem
in the area whether one can achieve a deterministic algorithm for UFVS match-
ing the running time of the randomized algorithm. On the other hand the best
known algorithm for TDS runs in time O?(5k) [183]. In contrast to these results,
we obtain deterministic algorithms for OFVDS and OTVDS with running times
O?((1 +

√
3)k) = O?(2.732k) and O?(2.562k) respectively. The main observation

which enables us to design all our FPT algorithms is the following:

Every vertex, except one (in the case of PVDS), in an out-tree, an out-
forest or pumpkin has in-degree at most one; in pumpkin every vertex
except s and t has in-degree one and out-degree one. Thus for any
vertex v, amongst v and any two of its in-neighbors, say x and y, one
of the vertices must belong to the deletion set. We will call this 3-
hitting set property. This results is a 3 way branching. When such a
structure does not exist, in the case of Out-forest and Out-tree

vertex deletion set problems, each vertex has in-degree at most 1, and
in the case of the Pumpkin vertex deletion set problem, each vertex,
except for one, has indegree at most 1. In the former case, observe that,
when each vertex in a digraph has in-degree at most 1, then the digraph
is a disjoint collection of out-trees and directed cycles. In the later case,
if the input digraph is a Yes instance, then the resulting digraph is a
disjoint collection of a pumpkin, out-trees and directed cycles. In either
case, the corresponding problem on the resulting digraph can be solved
in polynomial time. This already gives us deterministic algorithms with
running time O?(3k) for OFVDS, OTVDS, and PVDS. We exploit this
hitting set property together with the fact that out-forest, out-tree and
pumpkin are all almost acyclic graphs, to design FPT algorithms faster
than O?(3k).

Here we would also like to mention the corresponding extension problems of the
problems considered in the article, which we define as follows.

OFVDS/ OTVDS/ PVDS- Extension Parameter: k
Input: A directed graph D, X ⊆ V (D) and a positive integer k.
Question: Is there a set S ⊆ V (D)\X of size at most k such that F = D−(S∪X)

is an out-forest/ out-tree/ pumpkin?

Observe that if we have FPT algorithms for OFVDS/ OTVDS/ PVDS then

122

to solve instances (D,X, k) of OFVDS/ OTVDS/ PVDS- Extension problems,
we can run the FPT algorithms of Out-forest/Out-tree/Pumpkin Vertex

Deletion Set problems on the instance (D −X, k − |X|). Thus, FPT algorithms
for Out-forest/Out-tree/Pumpkin Vertex Deletion Set problems imply
FPT algorithms for Out-forest/Out-tree/Pumpkin Vertex Deletion Set

- Extension problems. Combining this observation with Theorem 2 of [94] (which
roughly states that if there an FPT algorithm for a vertex-deletion extension prob-
lem with running time cknO(1) then there is an exact algorithm for the correspond-
ing vertex-deletion problem with running time

(
2− 1

c

)n
nO(1)), we get exact algo-

rithms with running time O∗(1.634n), O∗(1.610n) and O∗(1.610n) respectively, for
OFVDS/ OTVDS/ PVDS.

As mentioned before, for all the problems considered in this chapter, an O∗(3k)
algorithm is trivial. The non-trivial running times are obtained by choosing an
appropriate vertex to branch on. The order of the branching rules imposes a lot of
structure in the cases that appear later. This structure is exploited to achieve the
target running time.

In all our algorithms, if there exists a pair of vertices u, v in the input digraph
such that both (u, v) and (v, u) belong to the arc set of the digraph, then observe
that at least one of u and v belong to the solution. Thus, we branch on such vertex
pairs, reducing the budget by one in each branch and stopping whenever the budget
is zero or negative. Henceforth, without loss of generality, we assume that in the
input digraph, for any pair u, v of vertices there is at most of arcs (u, v) or (v, u).

8.1 FPT Algorithm for Pumpkin Vertex Dele-

tion Set

In this section, we give a branching algorithm for Pumpkin Vertex Deletion

Set. Let (D, k) be an instance of PVDS. The algorithm starts by guessing the
source vertex s and the sink vertex t in the graph obtained after the deletion of the
solution vertices. There are O(|V (D)|2) choices for s and t. After this guesswork,
we want to solve the problem where we are given a digraph D, a positive integer k
and two vertices s and t, and the question is does there exist a set S of the vertices
of D of size at most k such that D−S is a pumpkin with s as the source vertex and
t as the sink vertex. We call this new problem Restricted Pumpkin Vertex

Deletion Set (RPVDS) and in the rest of this section we develop an algorithm
for solving it. This algorithm together with the guessing step will give an FPT

123

algorithm for PVDS. Formally, RPVDS is defined as follows.

Restricted Pumpkin Vertex Deletion Set (RPVDS) Parameter: k
Input: A directed graph D, two distinct vertices s, t ∈ V (D) and a positive
integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that D − S is a
pumpkin with s as the source vertex and t as the sink vertex?

Broadly speaking, our strategy is to branch on vertices having in-degree at least
2 or out-degree at least 2. The reduction rules and branching rules are so designed
that when none of them is applicable, all vertices in the resulting digraph, except
for s and t, have in-degree exactly 1 and out-degree exactly 1 and, s has in-degree
0 and t has out-degree 0. Such an instance becomes trivial to solve. To achieve this
trivial instance, the algorithm systematically deals with vertices that do not satisfy
the constraints of this trivial instance.

We now give the formal description of the algorithm. The measure µ that will
be used to bound the depth of the search tree of our branching algorithm is the
solution size, that is, µ(D, k, s, t) = k.

With a slight abuse of notation, in the following, during the application of any
reduction/branching rule we will refer to (D, k, s, t) as the instance that is reduced
with respect to the rules in higher preference order. We first list the reduction rules
used by the algorithm.

Reduction Rule 8.1.1. If k < 0, return (D, k, s, t) is a No instance.

Reduction Rule 8.1.2. If k = 0 and D is not a pumpkin with source s and sink
t, return (D, k, s, t) is a No instance.

Reduction Rule 8.1.3. If k ≥ 0 and D is a pumpkin with source s and sink t,
return (D, k, s, t) is a Yes instance.

Reduction Rule 8.1.4. If there exists v ∈ V (D) \ {s} such that d−(v) = 0 then
delete v from D and decrease k by 1. That is, the resulting instance is (D−{v}, k−
1, s, t).

Reduction Rule 8.1.5. If there exists v ∈ V (D) \ {t} such that d+(v) = 0 then
delete v from D and decrease k by 1. That is, the resulting instance is (D−{v}, k−
1, s, t).

Reduction Rule 8.1.6. If there exists v ∈ V (D) such that s ∈ N+(v) then delete v
from D and decrease k by 1. That is, the resulting instance is (D− {v}, k− 1, s, t).

124

Reduction Rule 8.1.7. If there exists v ∈ V (D) such that t ∈ N−(v) then delete v
from D and decrease k by 1. That is, the resulting instance is (D− {v}, k− 1, s, t).

Reduction Rule 8.1.8. If C is a weakly connected component of D such that either
s 6∈ V (C) or t 6∈ V (C), then the resulting instance is (D − V (C), k − |C|, s, t).
Reduction Rule 8.1.9. If s /∈ V (D) or t /∈ V (D), return (D, k, s, t) is a No

instance.

It is easy to see that reduction rules 8.1.1 to 8.1.9 are safe and can be applied in
polynomial time.

We now describe the branching rules used by the algorithm. The algorithm
branches on some vertex based on its in-degree and/or out-degree as per one of the
5 branching rules described later. Before giving the details of the branching rules,
we first mention the invariants maintained by the algorithm after the exhaustive
application of each of the branching rules.

More precisely, the invariant maintained at the end of branching rule i is a
condition which always holds when none of the reduction rules and branching rules
1 to i are applicable.

Branching Rule 1: For all v ∈ V (D) \ {s, t}, if d−(v) ≥ 2, then s 6∈ N−(v).
Symmetrically, if d+(v) > 1, then t 6∈ N+(v).

Branching Rule 2: For all v ∈ V (D) \ {s, t}, d−(v) ≤ 2. Symmetrically, d+(v) ≤
2.

Branching Rule 3: For all v ∈ V (D) \ {s, t}, if d−(v) = 2, then d+(v) ≤ 1.
Symmetrically, if d+(v) = 2, then d−(v) ≤ 1.

Branching Rule 4: For all v ∈ V (D) \ {s, t}, if d−(v) = 2 and d+(v) = 1, then
N+(v) = {t}. Symmetrically, if d+(v) = 2 and d−(v) = 1, then N−(v) = {s}.

Branching Rule 5: For all v ∈ V (D) \ {s, t}, if d−(v) = 2 then d+(v) = 0. Sym-
metrically, if d+(v) = 2, then d−(v) = 0.

We now give the description of the branching rules. From the description of the
branching rules it is easy to see that each branching rule is exhaustive.

Branching Rule 1 If there is v ∈ V (D) such that d−(v) ≥ 2 (or d+(v) ≥ 2) and
s ∈ N−(v) (or t ∈ N+(v)), then let u be the other in-neighbour (or out-neighbour)
of v. In this case the algorithm branches as follows.

125

s u

v v

u1 u2 u3

v

u1 u2

v

u1 u2

u1 u2

v

BR 1 BR 2

BR 4.bBR 4.a

BR 5.a

v

u1 u2

w2w1

BR 3

x

w w

t

u1 u2

v

BR 5.b.ii

t

u1 u2

v

BR 5.b.i

t

v′

Figure 8.1: The structures in the branching rules of PVDS

126

• When v belongs to the solution, then the resulting instance is (D − {v}, k −
1, s, t).

• When v does not belong to the solution, then u must belong to the solution
as otherwise, v, u and s (or t) will belong to the pumpkin obtained after the
solution vertices are deleted, which is not possible. Therefore, the resulting
instance is (D − {u}, k − 1, s, t).

The branching vector for this rule is (1, 1).

Branching Rule 2 If there is v ∈ V (D) such that d−(v) ≥ 3 (or d+(v) ≥ 3), v 6= t

(or v 6= s), then let u1, u2, u3 be some three distinct in-neighbors (or out-neighbors)
of v. Note that none of u1, u2, u3 is the same as s (or t), as otherwise branching rule
1 would be applicable. In this case, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D−{v}, k− 1, s, t).

• When v does not belong to the solution, then note that at least 2 of u1, u2

and u3 must belong to the solution. Thus, the algorithm further branches as
follows.

− When u1 and u2 belong to the solution, the resulting instance is (D −
{u1, u2}, k − 2, s, t).

− When u2 and u3 belong to the solution, the resulting instance is (D −
{u2, u3}, k − 2, s, t).

− When u1 and u3 belong to the solution, the resulting instance is (D −
{u1, u3}, k − 2, s, t).

The branching vector for this rule is (1, 2, 2, 2).

Branching Rule 3 If there is v ∈ V (D)\{s, t} such that d−(v) = 2 and d+(v) = 2,
then let u1, u2 be the in-neighbors of v and w1, w2 be the out-neighbors of v. Observe
that neither u1 nor u2 is the same as t, as otherwise branching rule 1 would be
applicable. Similarly, neither w1 nor w2 is the same as s. In this case, the algorithm
branches as follows.

• When v belongs to the solution, the resulting instance is (D−{v}, k− 1, s, t).

127

• When v does not belong to the solution, then note that at least one of u1 or u2

and, at least one of w1 or w2 must belong to the solution. Thus, the algorithm
further branches as follows.

− When u1 and w1 belong to the solution, the resulting instance is (D −
{u1, w1}, k − 2, s, t).

− When u1 and w2 belong to the solution, the resulting instance is (D −
{u1, w2}, k − 2, s, t).

− When u2 and w1 belong to the solution, the resulting instance is (D −
{u2, w1}, k − 2, s, t).

− When u2 and w2 belong to the solution, the resulting instance is (D −
{u2, w2}, k − 2, s, t).

The branching vector for this rule is (1, 2, 2, 2, 2).

Branching Rule 4 If there is v ∈ V (D)\{s, t} such that d−(v) = 2 (or d+(v) = 2),
d+(v) = 1 (or d−(v) = 1) and the unique out-neighbor (or in-neighbor), say w of v, is
not t (or s), then let u1, u2 be the two in-neighbors (or out-neighbors) of v. Observe
that none of u1 or u2 is the same as s. The algorithm considers the following cases
depending on the in-degree (or out-degree) of w.

Case 4.a. If d−(w) = 2 (or d+(w) = 2), then let x be the other in-neighbor (or
out-neighbor) of w different from v. Here x may or may not be equal to u1 or u2.
In this case, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D−{v}, k− 1, s, t).

• When v does not belong to the solution, then note that w does not belong
to the solution (because if it does, then v must be a sink vertex and hence
v = t, which is not true). Since w 6= t, and both v and w do not belong to
the solution, x must belong to the solution. Therefore, the resulting instance
is (D − {x}, k − 1, s, t).

The branching vector in this case is (1, 1).

Case 4.b. If d−(w) = 1 (or d+(w) = 1), the algorithm branches as follows.

128

• When v belongs to the solution, then delete v from the graph. In the resulting
graph d−(w) = 0. Since w 6= s, reduction rule 8.1.4 is applicable. Therefore,
the resulting instance is (D − {v, w}, k − 2, s, t).

• When v does not belong to the solution, then at least one of u1 or u2 must
belong to the solution. Hence, the algorithm branches further into 2 cases. In
the first case, the resulting instance is (D−{u1}, k− 1, s, t) and in the second
case the resulting instance is (D − {u2}, k − 1, s, t).

The branching vector in this case is (2, 1, 1).

Branching Rule 5 If there is v ∈ V (D)\{s, t} such that d−(v) = 2 (or d+(v) = 2),
d+(v) = 1 (or d−(v) = 1) and t (or s) is the unique out-neighbor (or in-neighbor)
of v, then let u1, u2 be the two in-neighbors (or out-neighbors) of v. Observe that
none of u1 or u2 is same as s (or t), otherwise branching rule 1 would be applicable.
The algorithm considers the following cases based on the out-degree (or in-degree)
of u1 and u2.

Case 5.a.If either d+(u1) = 1 or d+(u2) = 1 (d−(u1) = 1 or d−(u2) = 1), then
without loss of generality assume that d+(u1) = 1 (or d−(u1) = 1).

Observe that u1 is distinct from t (or s) because u1 is an in-neighbor (or out-
neighbor) of v and t (or s) is an out-neighbor of v. In this case, the algorithm
branches as follows.

• When u1 belongs to the solution, then delete u1 from the graph. Thus the
resulting instance is (D − {u1}, k − 1, s, t).

• When u1 does not belong to the solution, since d+(u1) = 1, and N+(u1) = {v},
v does not belong to the solution. Since v 6= t, and u2 ∈ N−(v), u2 belongs to
the solution. Thus, the resulting instance is (D − {u2}, k − 1, s, t).

The branching vector for this case is (1, 1).

Case 5.b. If d+(u1) = 2 and d+(u2) = 2 (d−(u1) = 2 and d−(u1) = 2), let v′ be the
other out-neighbor (or in-neighbor) of u1. In this case, the algorithm considers the
following sub-cases.

Sub-case 5.b.i. If v′ is different from u2 and t, then the algorithm branches as

129

follows.

• When v belongs to the solution, the resulting instance is (D−{v}, k− 1, s, t).

• When v does not belong to the solution, then observe that at least one of u1

and u2 must belong to the solution. Thus, the algorithm branches as follows.

− When u1 belongs to the solution, the resulting instance is (D−{u1}, k−
1, s, t).

− When u1 does not belong to the solution, then u2 must belong to the
solution. Also v′ must belong to the solution (because u1 is distinct from
s). Therefore, the resulting instance is (D − {u2, v

′}, k − 2, s, t).

The branching vector for this case is (1, 1, 2).

Sub-case 5.b.ii. If v′ is the same as t, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D−{v}, k− 1, s, t).

• When v does not belong to the solution then u1 must belong to the solution
(because u1 6= s). Therefore, the resulting instance is (D − {u1}, k − 1, s, t).

The branching vector for this case is (1, 1).

Sub-case 5.b.iii. If v′ is the same as u2, then we know that d+(u2) = 2, and
therefore, one of case 5.a.i or case 5.a.ii would be applicable.

This ends the description of the branching rules. In the upcoming lemma, we
show that when all the reduction rules and branching rules have been applied ex-
haustively, that is when none of them is no longer applicable, all the vertices of the
resulting instance, possibly except for s and t, have in-degree exactly 1 and out-
degree exactly 1. In the later lemma we show that such an instance can be solved in
polynomial time. Thus, after the exhaustive application of the reduction rules and
the above mentioned branching rules, the algorithm uses the procedure described in
Lemma 8.1.2 to solve the instance.

Lemma 8.1.1. Let (D, k, s, t) be the instance where none of the above-mentioned
reduction rules or branching rules are applicable. Then, for all v ∈ V (D) \ {s, t},
d−(v) = 1, d+(v) = 1, d−(s) = 0 and d+(t) = 0.

130

Proof. Since reduction rules 8.1.6 and 8.1.7 are no longer applicable, we have d−(s) =

0 and d+(t) = 0. Also since reduction rules 8.1.4 and 8.1.5 are not applicable,
d−(v) > 0 and d+(v) > 0, for all v ∈ V (D) \ {s, t}. To show that for any vertex
v ∈ V (D) \ {s, t}, d−(v) = 1 we proceed as follows.

Let v be some vertex in V (D)\{s, t}. For the sake of contradiction, let d−(v) > 1.
If d−(v) > 1 and s ∈ N−(v), then branching rule 1 would be applicable. Thus, we
can safely assume that s 6∈ N−(v).

We split the situation that d−(v) > 1, into 2 cases as follows.

• If d−(v) ≥ 3, then branching rule 2 would be applicable.

• Otherwise 1 < d−(v) ≤ 2, that is, d−(v) = 2. We split this situation into the
following 3 exhaustive cases.

− If d+(v) ≥ 2, then branching rule 3 would be applicable.

− If d+(v) = 1, then based on whether the unique out-neighbour of v is t
or not, either branching rule 4 or branching rule 5 would be applicable.

− If d+(v) = 0, then reduction rule 8.1.5 would be applicable.

Since, none of the reduction rules or branching rules are applicable, we conclude
that for all v ∈ V (D) \ {s, t}, d−(v) = 1. Using the same case analysis we can show
that for any vertex v ∈ V (D) \ {s, t}, d+(v) = 1.

Lemma 8.1.2. Let (D, k, s, t) be an instance of Restricted Pumpkin Vertex

Deletion Set such that for all v ∈ V (D) \ {s, t}, d−(v) ≤ 1, d+(v) ≤ 1 and,
d−(s) = 0 and d+(t) = 0. Then the instance (D, k, s, t) can be solved in O(nO(1))

time, where n = |V (D)|.

Proof. Since reduction rule 8.1.8 and 8.1.9 are not applicable, D is weakly connected
and both s and t belong to D. Since, for all v ∈ V (D) \ {s, t}, d−(v) = 1, d+(v) = 1

and, d−(s) = 0 and d+(t) = 0, and observe that (D, k, s, t) is a Yes instance if
and only if D is a pumpkin with s as the source vertex, t as the sink vertex and
k ≥ 0.

In the next lemma, we formally prove the correctness of our algorithm.

Lemma 8.1.3. The algorithm presented for Restricted Pumpkin Vertex Dele-

tion Set is correct.

131

Branching Rule (BR) Case/Sub-Case Branch Vector cµ

BR 1 (1, 1) 2µ

BR 2 (1, 2, 2, 2) 2.30278µ

BR 3 (1, 2, 2, 2, 2) 2.56156µ

BR 4 a (1, 2, 1) 2.41422µ

b (2, 1, 1) 2.41422µ

BR 5 a (1, 1) 2µ

b.i (1, 1, 2) 2.41422µ

b.ii (1, 1) 2µ

Table 8.2: The branch vectors and their corresponding running times for RPVDS.

Proof. Let I = (D, k, s, t) be an instance of RPVDS. We prove the correctness of
the algorithm by induction on µ = µ(I) = k. The base case occurs in one of the
following cases.

• If one of s or t does not belong to V (D), the algorithm correctly concludes
that (D, k, s, t) is a No instance from reduction rule 8.1.8.

• If µ <= 0, the algorithm correctly concludes whether (D, k, s, t) is a yes in-
stance or not by reduction rules 8.1.1 to 8.1.3.

• If µ >= 0 and D is a pumpkin, the algorithm correctly concludes that
(D, k, s, t) is a Yes instance.

• If µ ≥ 0 and for all v ∈ V (D) \ {s, t}, d−(v) = 1, d+(v) = 1 and, d−(s) = 0,
d+(t) = 0, then from Lemma 8.1.1 the algorithm solves the instance correctly.

By induction hypothesis we assume that for all µ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when µ = l + 1. The algorithm
performs one of the following actions. If possible, it applies one of the reduction
rules. By the safeness of the reduction rules we either correctly conclude that I is a
Yes/No instance or produce an equivalent instance I ′ with µ(I ′) ≤ µ(I). If µ(I ′) <

µ(I), then by induction hypothesis and safeness of the reduction rules the algorithm
correctly decides if I is a Yes instance or not. Otherwise, µ(I ′) = µ(I). If none
of the reduction rules are applicable then the algorithm applies the first applicable
Branching Rule. If some branching rule is applicable then, since µ decreases in each
branch by at least one, by induction hypothesis the algorithm correctly concludes
that I is a Yes/ No instance. If none of the branching rules is applicable, then from
Lemma 8.1.2, if I = (D, k, s, t), then for all v ∈ V (D) \ {s, t}, d−(v) = 1, d+(v) = 1

132

and, d−(s) = 0, d+(t) = 0. Thus, in this situation we handle a base case correctly
and hence, we conclude that the algorithm always outputs the correct answer.

Next, we analyze the running time of our algorithm.

Theorem 8.1.1. The presented algorithm solves Restricted Pumpkin Vertex

Deletion Set in time O?(2.562k).

Proof. Observe that reduction rules 8.1.1 to 8.1.9 can be applied in time polynomial
in the input size and are never applied more than polynomial number of times.
Also, at each of the branches we spend a polynomial amount of time. At each of the
recursive calls in a branch, the measure µ decreases by at least by 1. When µ ≤ 0,
then we are able to solve the instance in polynomial time or correctly conclude that
the corresponding branch cannot lead to a solution. At the start of the algorithm
µ = k.

The worst-case branching vector for the algorithm is (1, 2, 2, 2, 2) (see Table 14.1).
The recurrence for the worst case branching vector is

T (µ) ≤ T (µ− 1) + 4T (µ− 2)

The running time corresponding to the above recurrence relation is O?(2.562k).

As mentioned at the starting of the section, given an instance (D, k) of PVDS,
one can design an algorithm for PVDS which guesses the source and sink vertices,
s and t respectively, of the resulting pumpkin and for each such guess runs the
algorithm for RPVDS on (D, k, s, t). Note that (D, k) is a Yes instance of PVDS

if and only if (D, k, s, t) is a Yes instance of RPVDS for some guess of s and t.
Since there are at most |V (D)|2 choices for the pair s and t, Theorem 8.1.1 gives us
the following theorem.

Theorem 8.1.2. Pumpkin Vertex Deletion Set can be solved in time O?(2.562k).

8.2 FPT Algorithm for Out-Tree Vertex Dele-

tion Set

In this section, we give a branching algorithm for Out-Tree Vertex Deletion

Set (OTVDS). In the broader picture, this algorithm is in the same spirit as the one

133

for PVDS with a difference only in the details of the reduction rules and branching
rules.

Let (D, k) be an instance of OTVDS. The algorithm starts by guessing the root
vertex r of the out-tree obtained after the deletion of the solution vertices. Note
that there are |V (D)| choices for r. After this guesswork, we would like to solve the
following problem. Given a digraph D, an integer k and a vertex r of the digraph,
does there exist a set of at most k vertices whose deletion results in an out-tree with
root r. We call this new problem Restricted Out-Tree Vertex Deletion

Set and give an FPT algorithm for this problem parameterized by the solution size.
Note that the algorithm for this new problem combined with the original guess of the
vertex r gives an FPT algorithm for OTVDS. Formally, Restricted Out-Tree

Vertex Deletion Set is defined as follows.

Restricted Out-Tree Vertex Deletion Set (ROTVDS) Parameter: k
Input: A directed graph D, a vertex r ∈ V (D) and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that D − S is an
out-tree with r as the root vertex?

We first give an outline of the algorithm for ROTVDS. Let (D, k, r) be an
instance of OTVDS. The reduction rules and branching rules for this algorithm
are so designed that after the exhaustive application of these rules, all vertices in
the resulting instance, except r, have in-degree exactly 1 and the in-degree of r is
0. Such an instance becomes trivial to solve. To achieve this trivial instance, the
algorithm systematically deals with vertices that do not satisfy the constraints of
this trivial instance.

We now give the formal description of the algorithm. The measure µ that will be
used to bound the depth of the search tree of our branching algorithm is the solution
size, that is, µ(D, k, s, t) = k. With a slight abuse of notation, in the following,
during the application of any reduction/branching rule we will refer to (D, k, s, t)

as the instance that is reduced with respect to the rules in higher preference order.
We first list the reduction rules used by the algorithm.

Reduction Rule 8.2.1. If k < 0, then (D, k, r) is a No instance.

Reduction Rule 8.2.2. If k = 0 and D is not an out-tree, return (D, k, r) is a No

instance.

Reduction Rule 8.2.3. If k ≥ 0 and D is an out-tree, return (D, k, r) is a Yes

instance.

134

Reduction Rule 8.2.4. If there exists v ∈ V (D) \ {r} such that d−(v) = 0 then
delete v from D and decrease k by 1. That is, the resulting instance is (D−{v}, k−
1, r).

Reduction Rule 8.2.5. If there exists v ∈ V (D) such that r ∈ N+(v) then delete
v from D and decrease k by 1. That is, the resulting instance is (D−{v}, k− 1, r).

Reduction Rule 8.2.6. If there exists a weakly connected component C not con-
taining r, then delete all the vertices in C. That is, the resulting instance is
(D − V (C), k − |V (C)|, r).

Reduction Rule 8.2.7. If r /∈ V (D), return (D, k, r) is a No instance.

The algorithm applies reduction rules 8.2.1 to 8.2.7 (in order) exhaustively. It
is easy to see that reduction rules 8.2.1 to 8.2.7 are safe and can be applied in
polynomial time.

We now describe the branching rules used by the algorithm. The algorithm
branches on some vertex based on its in-degree and/or out-degree as per one of the
5 branching rules described later. Before giving the details of the branching rules,
we first mention the invariants maintained by the algorithm after the exhaustive
application of each of the branching rules.

Branching Rule 1: For all v ∈ V (D) \ {r}, if d−(v) ≥ 2, then r 6∈ N−(v).

Branching Rule 2: For all v ∈ V (D) \ {r}, d−(v) ≤ 2.

Branching Rule 3: For all v ∈ V (D) \ {r}, if d−(v) = 2, then d+(v) = 0.

Branching Rule 4: For all v ∈ V (D) \ {r}, if d−(v) = 2 and d+(v) = 0, then
for all u ∈ V (D), u 6= v, if d−(u) = 2 and d+(u) = 0, then v and u have no
common in-neighbour.

Branching Rule 5: For all v ∈ V (D) \ {r}, d−(v) ≤ 1.

We now give the description of the branching rules. From the description of the
branching rules it is easy to see that each branching rule is exhaustive.

Branching Rule 1 If there exists v ∈ V (D) such that d−(v) ≥ 2 and r ∈ N−(v),
let u be one of the other in-neighbours of v. In this case, the algorithm branches as
follows.

135

u w

v v

u1 u2 u3

v

u1 u2

w

v

u1 u2

w

x v

u1 u2

w

u1 u2

v1 v2

u1 u2

v1 v2

u

u1 u2

vx

u1 u2

v

BR 1 BR 2

BR 3.a.i BR 3.a.iiiBR 3.a.ii

BR 4.a BR 4.b

BR 5.a BR 5.b

Figure 8.2: The structures in the branching rules of OTVDS

136

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).

• When v does not belong to the solution, then u must belong to the solution.
Therefore, the resulting instance is (D − {u}, k − 1, r).

The branching vector for this rule is (1, 1).

Branching Rule 2 (In-degree at least 3 Rule) If there is v ∈ V (D) such that
d−(v) ≥ 3, let u1, u2, u3 be some distinct in-neighbours of v. Note that none of
u1, u2, u3 is same as r, as otherwise branching rule 1 would be applicable. In this
case, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).

• When v does not belong to the solution then observe that at least 2 of u1, u2, u3

must belong to the solution. Thus, the algorithm branches as follows.

− When u1 and u2 belong to the solution, the resulting instance is (D −
{u1, u2}, k − 2, r).

− When u2 and u3 belong to the solution, the resulting instance is (D −
{u2, u3}, k − 2, r).

− When u1 and u3 belong to the solution, the resulting instance is (D −
{u1, u3}, k − 2, r).

The branching vector for this rule is (1, 2, 2, 2).

After the exhaustive application of reduction rule 8.2.1 to 8.2.7 and when branch-
ing rules 1 and 2 are no more applicable, for all v ∈ V (D) \ {r}, 1 ≤ d−(v) ≤ 2 and
d−(r) = 0.

Branching Rule 3 If v ∈ V (D) be such that d−(v) = 2 and d+(v) ≥ 1, let u1, u2

be the two in-neighbours and w be one of the out-neighbours of v. The algorithm
considers the following cases depending on the in-degree of w.

Case 3.a. If d−(w) = 2, let x be the other in-neighbour of w. The algorithm further
considers the following sub-cases.

Sub-case 3.a.i. If x is the same as u1 (symmetrically u2), then the algorithm
branches as follows.

137

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).

• When v does not belong to the solution, the algorithm branches on u1 as
follows.

− When u1 belongs to the solution, the resulting instance is (D−{u1}, k−
1, r).

− When u1 does not belong to the solution, then observe that both u2 and
w must belong to the solution. Thus, the resulting instance is (D −
{u2, w}, k − 2, r).

The branching vector for this case is (1, 1, 2).

Sub-case 3.a.ii. Otherwise, x is distinct from u1 and u2. In this case, the algorithm
branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).

• When v does not belong to the solution then observe that at least one of u1, u2

and at least one of w, x must belong to the solution. Thus, the algorithm
branches as follows.

− When u1 and w belongs to the solution, the resulting instance is (D −
{u1, w}, k − 2, r).

− When u1 and x belongs to the solution, the resulting instance is (D −
{u1, x}, k − 2, r).

− When u2 and w belongs to the solution, the resulting instance is (D −
{u2, w}, k − 2, r).

− When u2 and x belongs to the solution, the resulting instance is (D −
{u2, x}, k − 2, r).

The branching vector for this case is (1, 2, 2, 2, 2).

Case 3.b. If d−(w) = 1, then observe that w are r are distinct because d−(r) = 0

(as reduction rule 8.2.5 is no longer applicable). In this case, the algorithm branches
as follows.

138

• When v belongs to the solution, then delete v from the graph. Observe that
in the resulting graph d−(w) = 0 and hence, reduction rule 8.2.4 would be
applicable. Therefore, the resulting instance in this case is (D−{v, w}, k−2, r).

• When v does not belong to the solution then branch on u1 as follows.

− When u1 belongs to the solution, the resulting instance is (D−{u1}, k−
1, r).

− When u1 does not belong to the solution, then u2 must belong to the
solution. Thus the resulting instance is (D − {u2}, k − 1, r).

The branching vector in this case is (2, 1, 1).

We now consider the case when there are two vertices of in-degree 2 that have a
common in-neighbour.

Branching Rule 4 If v1, v2 ∈ V (D) such that d−(v1) = d−(v2) = 2, d+(v1) =

d+(v2) = 0 and there exists at least one common in-neighbour of v1 and v2, then the
algorithm considers the following sub-cases.

Case 4.a. If v1 and v2 have two common in-neighbours, say u1, u2, then the algo-
rithm branches as follows.

• When u1 belongs to the solution, then the resulting instance is (D−{u1}, k−
1, r).

• When u1 does not belong to the solution, then the algorithm further branches
as follows.

− When u2 belongs to the solution, then the resulting instance is (D −
{u2}, k − 1, r).

− When u2 does not belong to the solution, then observe that both v1 and
v2 must belong to the solution. Thus the resulting instance is (D −
{v1, v2}, k − 2, r).

The branching vector for this case is (1, 1, 2).

Case 4.b. Otherwise, v1, v2 have exactly one common in-neighbour, say u, and
x1, x2 are the other in-neighbours of v1, v2 respectively (x1 6= x2). In this case, the
algorithm branches as follows.

139

• When u belongs to the solution, the resulting instance is (D − {u}, k − 1, r).

• When u does not belong to the solution, then observe that at least one of v1

or x1, and at least one of v2 or x2 must belong to the solution. Therefore, the
algorithm branches as follows.

− When v1, v2 belong to the solution, the resulting instance is (D−{v1, v2}, k−
2, r).

− When v1, x2 belong to the solution, the resulting instance is (D−{v1, x2}, k−
2, r).

− When x1, v2 belong to the solution, the resulting instance is (D−{x1, v2}, k−
2, r).

− When x1, x2 belong to the solution, the resulting instance is (D−{x1, x2}, k−
2, r).

The branching vector for this case is (1, 2, 2, 2, 2).

Hereafter, we assume that no two vertices of in-degree 2 have a common in-
neighbour. We consider the following cases based on the degree of the in-neighbours
of vertices with in-degree 2.

Branching Rule 5 If v ∈ V (D) such that d−(v) = 2 and d+(v) = 0, let u1, u2

be the two in-neighbours of v. In this case, the algorithm considers the following
sub-cases based on the out-degrees of u1 and u2.

Case 5.a. If at least one of u1, u2 has out-degree at least 2 (without loss of generality,
let d+(u1) ≥ 2), let x be the other out-neighbour of u1.

Observe that d−(x) = 1, as otherwise x and v are two vertices of in-degree 2

and u1 is a common in-neighbour of x and v, and hence, case 4 would be applicable.
Also x 6= r because d−(r) = 0 otherwise reduction rule 8.2.5 would be applicable.
In this case, the algorithm branches as follows.

• When u1 belongs to the solution, then delete u1 from the graph. In the result-
ing graph d−(x) = 0 and hence reduction rule 8.2.4 is applicable. Thus the
resulting instance is (D − {u1, x}, k − 2, r).

• When u1 does not belong to the solution, then either u2 belongs to the solution
or v belongs to the solution. Therefore, the algorithm branches as follows. In

140

the first branch the resulting instance is (D−{u2}, k− 1, r) and in the second
branch the resulting instance is (D − {v}, k − 1, r).

The branching vector for this case is (2, 1, 1).

Case 5.b. Otherwise, both u1 and u2 have out-degree 1. In this case, we first prove
that if there is an out-tree deletion set in D, say S, of size at most k such that
v ∈ S and u1, u2 6∈ S, then S ′ = (S \ {v}) ∪ {u1} is also an out-tree deletion set
in D. Let F = D − S. Note that u1 and u2 are leaves in the out-tree F . Let F ′

be the out-tree obtained from F after deleting u1 and adding the vertex v and the
edge (u2, v). Clearly F ′ is an out-tree and F ′ = D−S ′. Therefore, S ′ is an out-tree
deletion set of D.

Thus, it is enough to branch as follows.

• When u1 belongs to the solution, the resulting instance is (D−{u1}, k− 1, r).

• When u2 belongs to the solution, the resulting instance is (D−{u2}, k− 1, r).

The branching vector for this case is (1, 1).

In the upcoming lemma, we show that when all the reduction rules and branching
rules have been considered exhaustively, all the vertices of the resulting instance,
except r, have in-degree exactly 1 and in-degree of r is 0. In the later lemma we show
that such an instance can be solved in polynomial time. Thus, after the exhaustive
application of the reduction rules and the above mentioned branching rules, the
algorithm uses the procedure described in Lemma 8.2.2 to solve the instance.

Lemma 8.2.1. Let (D, k, r) be the instance where none of the above-mentioned
reduction rules or branching rules are applicable. Then, for all v ∈ V (D) \ {r},
d−(v) = 1 and d−(r) = 0.

Proof. Since reduction rule 8.2.5 is no longer applicable, we have d−(r) = 0. Also
since reduction rules 8.2.4 is not applicable, d−(v) > 0, for all v ∈ V (D) \ {r}. To
show that for any vertex v ∈ V (D) \ {r}, d−(v) = 1 we proceed as follows.

Let v be some vertex in V (D)\{r}. For the sake of contradiction, let d−(v) > 1.
If d−(v) > 1 and r ∈ N−(v), then branching rule 1 would be applicable. Thus, we
can safely assume that r 6∈ N−(v).

We split the situation that d−(v) > 1, into the following cases.

141

• If d−(v) ≥ 3, then branching rule 2 would be applicable.

• Otherwise 1 < d−(v) ≤ 2, that is, d−(v) = 2. We split this situation into the
following 3 exhaustive cases.

− If d+(v) ≥ 1, then branching rule 3 would be applicable.

− Otherwise, d+(v) = 0. In this situation, if the graph has some 2 ver-
tices of in-degree 2 with a common in-neighbour then branching rule 4 is
applicable, otherwise branching rule 5 would be applicable.

Since, none of the reduction rules or branching rules are applicable, we conclude
that for all v ∈ V (D) \ {r}, d−(v) = 1.

Lemma 8.2.2. Let (D, k, r) be an instance of Restricted Pumpkin Vertex

Deletion Set such that for all v ∈ V (D) \ {r}, d−(v) = 1, and d−(r) = 0. Then
the instance (D, k, s, t) can be solved in O(nO(1)) time, where n = |V (D)|.

Proof. Since, for all v ∈ V (D) \ {r}, d−(v) = 1 and d−(r) = 0, and observe that
(D, k, r) is a Yes instance if and only if D is an out-tree with r as the root vertex
and k ≥ 0.

In the next lemma, we formally prove the correctness of our algorithm.

Lemma 8.2.3. The algorithm for Restricted Out-Tree Vertex Deletion

Set described above is correct.

Proof. Let I = (D, k, r) be an instance of ROTVDS. We prove the correctness of
the algorithm by induction on µ = µ(I) = k. The base case occurs in one of the
following cases.

• If µ ≤ 0, the algorithm correctly concludes whether (D, k, r) is a Yes / No

instance from reduction rules 8.2.1 to 8.2.3.

• If µ ≥ 0 andD is an out-tree, the algorithm correctly concludes that (D, k, s, t)

is a Yes instance from reduction rule 8.2.3.

• If for all v ∈ V (D) \ {r}, d−(v) = 1 and d−(r) = 0, then from Lemma 8.2.2,
(D, k, r) is a Yes instance if and only if k ≥ 0 and D is an out-tree with r as
its root vertex.

142

Branching Rule (BR) Case/Sub-Case Branch Vector cµ

BR 1 (1, 1) 2µ

BR 2 (1, 2, 2, 2) 2.303µ

BR 3
a.i (1, 1, 2) 2.41422µ

a.ii (1, 2, 2, 2, 2) 2.562µ

b (2, 1, 1) 2.41422µ

BR 4 a (1, 1, 2) 2.41422µ

b (1, 2, 2, 2, 2) 2.562µ

BR 5 a (2, 1, 1) 2.41422µ

b (1, 1) 2µ

Table 8.3: The branch vectors and their corresponding running times for ROTVDS.

• If r does not belong to V (D), the algorithm correctly concludes that (D, k, r)

is a No instance from reduction rule 8.2.7.

By induction hypothesis we assume that for all µ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when µ = l + 1. The algorithm
does one of the following. Either applies one of the reduction rules if applicable.
By the safeness of the reduction rules we either correctly conclude that I is a Yes/
No instance or produces an equivalent instance I ′ with µ(I ′) ≤ µ(I). If µ(I ′) <

µ(I), then by induction hypothesis and safeness of the reduction rules the algorithm
correctly decides if I is a Yes instance or not. Otherwise, µ(I ′) = µ(I). If none
of the reduction rules are applicable then the algorithm applies the first applicable
Branching Rules. If some branching rule is applicable then, since µ decreases in
each of the branch by at least one, by induction hypothesis the algorithm correctly
concludes that I is a Yes/ No instance. If none of the branching rules are applicable,
then from Lemma 8.2.2, if I = (D, k, s, t), then for all v ∈ V (D) \ {r}, d−(v) = 1

and d−(r) = 0. Thus, in this case the base case appears and hence, we conclude
that the algorithm always outputs the correct answer.

Next, we analyse the running of the algorithm presented.

Theorem 8.2.1. The algorithm described above solves Restricted Out-Tree

Vertex Deletion Set in time O?((1 +
√

3)k).

Proof. The reduction rules 8.2.1 to 8.2.7 can be applied in time polynomial in the
input size. Also, at each of the branch we spend a polynomial amount of time.
At each of the recursive calls in a branch, the measure µ decreases at least by 1.
When µ ≤ 0, then we are able to solve the remaining instance in polynomial time

143

or correctly conclude that the corresponding branch cannot lead to a solution. At
the start of the algorithm µ = k.

The worst-case branching vector for the algorithm is (1, 2, 2, 2, 2) (see Table 8.3).
The recurrence for the worst case branching vector is:

T (µ) ≤ T (µ− 1) + 4T (µ− 2)

The running time corresponding to the above recurrence relation is O?(2.562k).

Theorem 8.2.1 together with the guessing step of r described in the beginning of
the section gives us the following theorem.

Theorem 8.2.2. Out-Tree Vertex Deletion Set can be solved in time O?((1+√
3)k).

8.3 FPT Algorithm for Out-Forest Vertex Dele-

tion Set

In this section, we give a branching algorithm for Out-Forest Vertex Deletion

Set (OFVDS). We start with a small description of our algorithm. Let (D, k) be
an instance of OTVDS. Unlike our algorithm for PVDS or OTVDS, this algorithm
does not require the initial guessing step. Also, the reduction rules and branching
rules are designed so that when they are not applicable, the graph is empty. In other
words, at any point of time, there always exists a vertex for which some reduction rule
or branching rule is applicable. To achieve this trivial base case, the algorithm first
eliminates (by branching over them) all vertices with in-degree at least 3, followed
by the elimination of vertices with in-degree 0, then in-degree 1 vertices and finally
vertices with in-degree 2. In the intermediate cases, it branches on vertices based
on other factors like their out-degree and common-neighbors. These intermediate
cases help the algorithm to branch in the main cases efficiently.

Next, we proceed to the details of the algorithm. The measure µ that is used to
bound the depth of the search tree is the solution size, that is µ(D, k) = k.

With a slight abuse of notation, in the following, during the application of any
reduction/branching rule we will refer to (D, k, s, t) as the instance that is reduced
with respect to the rules in higher preference order. The algorithm first applies the
following reduction rules exhaustively.

144

Reduction Rule 8.3.1. If k < 0, or k = 0 and D is not an out-forest, then return
(D, k) is a No instance.

Reduction Rule 8.3.2. If k ≥ 0 and D is an out-forest, then return (D, k) is a
Yes instance.

The safeness of reduction rule 8.3.1 and 8.3.2 is easy to see. Next we give some
of the reduction rules which will eliminate certain irrelevant vertices in the digraph.

Reduction Rule 8.3.3. For any v ∈ V (D), if d+(v) = 0 and d−(v) ≤ 1 then delete
v. That is, the resulting instance is (D − {v}, k).

Reduction Rule 8.3.4. Let (u, v) ∈ E(D) such that d−(v) = 1, d+(u) = 1 and
all the out-neighbours of v have in-degree exactly 1. Let {w1, . . . , wl} be the out-
neighbours of v. Delete v from the graph and add the edges {(u,wi) | i ∈ [l]} to the
graph. Let D′ be the resulting graph. That is, the resulting instance is (D′, k).

Reduction Rule 8.3.5. Let v ∈ V (D) such that d−(v) = 0 and all out-neighbours
of v have in-degree exactly 1. Then delete v from the graph. That is, the resulting
instance is (D − {v}, k).

Observe that each of the above-mentioned reduction rules can be applied in poly-
nomial time. The safeness of reduction rules 8.3.3 to 8.3.5 is given by Lemma 8.3.1
to Lemma 8.3.3.

Lemma 8.3.1. Reduction rule 8.3.3 is safe.

Proof. Let v ∈ V (D) be a vertex such that d+(v) = 0 and d−(v) ≤ 1. Let D′ =

D − {v}. We need to prove that (D, k) is a Yes instance if and only if (D′, k) is a
Yes instance. For the forward direction, let S be an out-forest deletion set in D of
size at most k. Since D′ − (S \ {v}) is a sub-graph of D − S, therefore, it follows
that S \ {v} is an out-forest deletion set in D′.

For the backward direction, let S be an out-forest deletion set in D′ of size
at most k. If d−(v) = 0, then clearly, S is also an out-forest deletion set in D.
Otherwise, let u be the unique in-neighbour of v in D. If u ∈ S, then (D′−S)∪{v}
is an out-forest with v as an isolated vertex. Otherwise, u 6∈ S, then (D′− S)∪ {v}
is an out-forest where v is in the out-tree of D′− S that contains u. Therefore, S is
an out-forest deletion set in D.

Lemma 8.3.2. Reduction rule 8.3.4 is safe.

145

Proof. Let (u, v) ∈ E(D) such that d−(v) = 1 and all the out-neighbours of v have
in-degree exactly 1. Let {w1, . . . , wl} be the out-neighbours of v. Also, D′ be the
graph obtained after deleting v from D and adding the edges {(u,wi) | i ∈ [l]} to
D. We need to prove that (D, k) is a Yes instance if and only if (D′, k) is a Yes

instance. For the forward direction, let S be an out-forest deletion set in D of size
at most k, F = D− S and W = {w1, . . . , wl} \ S. If u ∈ S, then F −{v} = D′− S.
Thus, S is an out-forest of D′. If u 6∈ S and v ∈ S, then let S ′ = (S \ {v}) ∪ {u}.
Then F − {u} = D′ − S ′. Hence, S ′ is an out-forest deletion set in D′ of size at
most k. Otherwise, u, v 6∈ S. Let F ′ be a digraph where V (F ′) = V (F) \ {v} and
E(F ′) = (E(F) \ (u, v)) ∪ {(u,wi) | wi ∈ W}. Observe that F ′ is obtained after
contracting the edge (u, v) and out-forests are closed under contraction. Therefore,
F ′ is an out-forest and F ′ = D′ − S. Hence S is an out-forest deletion set of D′.

For the backward direction, let S be an out-forest deletion set in D′ of size at
most k, F = D′−S and W = {w1, . . . , wl}\S. Suppose u 6∈ S. Let F ′ be a digraph
where V (F ′) = V (F) ∪ {v} and E(F ′) = (E(F) \ {(u,wi) | wi ∈ W}) ∪ {(v, wi) |
wi ∈ W} ∪ (u, v). Clearly F ′ is an out-forest and F ′ = D − S. Therefore, S is an
out-forest deletion set in D. On the other hand, if u ∈ S then, since each wi ∈ W
has in-degree exactly 1 in D′, each wi ∈ W is a root in F . Let F ′ be a digraph
where V (F ′) = V (F) ∪ {v} and E(F ′) = E(F) ∪ {(v, wi) | wi ∈ W}. Clearly F ′ is
an out-forest and F ′ = D − S. Hence S is an out-forest deletion set of D.

Lemma 8.3.3. Reduction rule 8.3.5 is safe.

Proof. Let v ∈ V (D) such that d−(v) = 0, w1, . . . , wl are the out-neighbours of v
such that for all i ∈ [l], d−(wi) = 1. Let D′ = D − v. We need to prove that
(D, k) is a Yes instance if and only if (D′, k) is a Yes instance. For the forward
direction, let S be an out-forest deletion set in D of size at most k. Then S \ {v}
is an out-forest deletion set of D − v. For the backward direction, let S be an out-
forest deletion set in D′ of size at most k, F = D − S and W = {w1, . . . , wl} \ S.
Note that for all i ∈ [l], wi has in-degree 0 in D′. For all wi ∈ W , let Ti be the
out-tree of F containing wi. Note that there is a unique Ti for each wi and wi is
the root of Ti. Consider another out-tree T where V (T) = ∪wi∈WV (Ti) ∪ {v} and
E(Ti) = ∪wi∈WV (Ti) ∪ {(v, wi) | wi ∈ W}. Clearly (F − ∪wi∈WV (Ti)) ∪ T is an
out-forest of D − S. Hence S is an out-forest deletion set of D.

We now describe the branching rules used by the algorithm. Our algorithm
applies 5 branching rules in order. Before giving the details of the branching rules,

146

v

BR 2

BR 1

u1 u2

BR 3

v

w1 wl

x vx

w

BR 4

v

w1 w2

BR 5.a BR 5.b

v

w1

x

w2

z1

y

v1 v2 v3

x

v4

v1

v2

v3

x v4 v1 v2

v3
x

v4

Figure 8.3: The structures in the branching rules of OFVDS

we first mention the invariants maintained by the algorithm after the exhaustive
application of each of the branching rules.

Branching Rule 1 For all v ∈ V (D), d−(v) ≤ 2. Also, if for any v1, v2 ∈ V (D)

such that d−(v1) = d+(v2) = 2, then v1 and v2 have no common in-neighbour.

Branching Rule 2 For all v ∈ V (D), d+(v) ≥ 1.

Branching Rule 3 For all v ∈ V (D), d−(v) ≥ 1.

Branching Rule 4 For all v ∈ V (D), if d−(v) = 1, then d+(v) ≥ 2.

Branching Rule 5 D is an empty graph.

Since after the exhaustive application of branching rules 1−5, the graph is empty,
either reduction rule 8.3.1 or 8.3.2 would be applicable. In other words, when none
of the branching rules are applicable, the input instance will be trivial to solve.

We now give the description of the branching rules. From the description of the
branching rules it is easy to see that each branching rule is exhaustive.

We first define a hitting triplet. For any v1, v2, v3 ∈ V (D), (v1, v2, v3) is called a
hitting triplet in D if there exists i ∈ [3] such that vi has in-degree at least 2 and

147

vj, v`, j, ` ∈ [3] \ {i}, are some in-neighbours of vi. Observe that if (v1, v2, v3) is a
hitting triplet in D, then any out-forest deletion set of D contains at least one of
v1, v2 or v3.

Branching Rule 1 If (v1, v2, x) and (v3, v4, x) are two distinct hitting triplets in D
then branch as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).

• When x does not belong to the solution, at least one of v1, v2 and one of v3, v4

belongs to the solution. When v1, v2, v3, v4 are distinct, the resulting instances
in the respective branches are as follows.

− When v1, v3 belongs to the solution, the resulting instance is (D−{v1, v3}, k−
2).

− When v1, v4 belongs to the solution, the resulting instance is (D−{v1, v4}, k−
2).

− When v2, v3 belongs to the solution, the resulting instance is (D−{v2, v3}, k−
2).

− When v2, v4 belongs to the solution, the resulting instance is (D−{v2, v4}, k−
2).

We are now in the case when v1, v2, v3, v4 are not all distinct. Since (v1, v2, x)

and (v3, v4, x) are hitting triplets, v1 6= v2 and v3 6= v4. Without loss of
generality, let v1 = v3 (the other cases are symmetric). Since (v1, v2, x) and
(v3, v4, x) are distinct hitting triplets and v1 = v3, v2 6= v4. In this case, the
resulting instances in the respective branches are as follows.

− When v1 belongs to the solution, the resulting instance is (D−{v1}, k−1).

− When v1 does not belong to the solution (and x does not belong to the
solution), both v2 and v4 belong to the solution. In this case, the resulting
instance is (D − {v2, v4}, k − 2).

The branching vector for this rule is either (1, 2, 2, 2, 2) or (1, 1, 2) depending on
the case we are in.

Observe that after the application of Branching Rule 1, for each v ∈ V (D),
d−(v) ≤ 2. Suppose not. Let x, y, z be some three in-neighbours of v, then (v, x, y)

148

and (v, x, z) form hitting triplets in D and hence Branching Rule 1 is applicable.
Also, after the application of this branching rule, for any v1, v2 ∈ V (D) such that
d−(v1), d−(v2) = 2, v1 and v2 have no common in-neighbour.

Branching Rule 2 If v ∈ V (D) is such that d+(v) = 0, then since reduction rule
8.3.3 and branching rule 1 are not applicable, d−(v) = 2.

Let u1, u2 be the in-neighbours of v. Note that one of v, u1, u2 must belong to
the solution. Now observe that if there is an out-forest deletion set of D, say S,
such that v ∈ S then (S \ {v}) ∪ {ui}, for any i ∈ [2], is also an out-forest deletion
set of D. Thus in this case it is enough to branch as follows.

• When u1 belongs to the solution, the resulting instance is (D − {u1}, k − 1).

• When u2 belongs to the solution, the resulting instance is (D − {u2}, k − 1).

The branching vector for this rule is (1, 1).

The next rule handles vertices that have in-degree 0. Note that if there is a
vertex with in-degree 0 and its out-degree is 0 then reduction rule 8.3.3 would be
applicable. If its in-degree is 0 and all its out-neighbours have in-degree exactly 1

then reduction rule 8.3.5 would be applicable. If two of its out-neighbours have in-
degree 2 then Branching Rule 1 would be applicable. Thus, if none of the reduction
rules and the above-mentioned branching rules are applicable, then any vertex which
has in-degree 0 has at least one out-neighbour and exactly one of its out-neighbours
has in-degree exactly two.

Branching Rule 3 If v ∈ V (D) such that d−(v) = 0, {w1, . . . , wl} are the out-
neighbours of v (l ≥ 1), for all i ∈ {2, . . . , l}, d−(wi) = 1 and d−(w1) = 2, then let
x be the other in-neighbour of w1 (x may be one of wi).

In this case, we claim that if S is an out-forest deletion set of D that contains
v then (S \ {v}) ∪ {w1} is also an out-forest deletion set of D. For the proof of
this, observe that each wi ∈ {w1, . . . , wl} \ S is a root in D − S(= F , say), except
probably w1. Also d−(v) = 0. Therefore (F ∪{v})\{w1} is also an out-forest. Thus,
S ′ is an out-forest deletion set of D. Therefore, it is enough to branch as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).

• When w1 belongs to the solution, the resulting instance is (D − {w1}, k − 1).

149

The branching vector in this branching rule is (1, 1). Again, note that hereafter,
every vertex in the digraph has in-degree either 1 or 2. The upcoming branching
rules 4 and 5, deal with vertices that have in-degree 1.

If v ∈ V (D) such that d−(v) = 1 and d+(v) = 1, then if the unique out-neighbour,
say w, of v has out-degree 0, then either reduction rule 8.3.3 or branching rule 2
would be applicable. If d−(w) = 1 then, if d+(w) = 1 then reduction rule 8.3.4 would
be applicable, and if d+(w) ≥ 2 then reduction rule 8.3.4 would be applicable. Thus
the case when in-degree of w is 1, is handled.

Branching rule 4 deals with the situation when there is a vertex v with in-degree
1 and out-degree 1 and its unique out-neighbour has in-degree 2. Thus, when none
of the reduction rules and branching rules 1 to 4 are applicable, for any vertex v,
either d−(v) = 2 and d+(v) ≥ 1, or if d−(v) = 1 then d+(v) ≥ 2.

Branching Rule 4 If v ∈ V (D) such that d−(v) = 1 and d+(v) = 1, then if the
unique out-neighbour, say w, has in-degree 2, then let x be the other in-neighbour
of w.

We first make the following claim. If S is an out-forest deletion set in D such
that v ∈ S, then (S \ {v})∪ {w} is also an out-forest deletion set in D. This is true
because if F = D−S is an out-forest then so is (F −{w})∪{v}. Thus, in this case,
the algorithm branches on x as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).

• When w belongs to the solution, the resulting instance is (D− {w}, k − 1).

The branching vector for this rule is (1, 1). Recall that, when none of the re-
duction rules and branching rules 1 to 4 are applicable, for any vertex v, either
d−(v) = 2 and d+(v) ≥ 1, or if d−(v) = 1 then d+(v) ≥ 2.

Let v be a vertex with in-degree 1 and out-degree at least 2. Let {w1, . . . , wl}
be the out-neighbours of v. Then if all the out-neighbours of v have in-degree
exactly 1, reduction rule 8.3.4 would be applicable. Also, if two of the in-neighbours
have in-degree 2, then branching rule 1 would be applicable. Thus, without loss
of generality assume that d−(w1) = 2 and for all i ∈ {2, . . . , l} d−(wi) = 1. Let x
be the other in-neighbour of w1. The case when x = w2 will be handled in case
5.a. Otherwise, x, v, w1, w2 are all distinct. Now observe that d+(w2) ≥ 2, otherwise
branching rule 4 was applicable on w2. Also, all the out-neighbours of w2 except 1

150

have in-degree 1, otherwise either reduction rule 8.3.4 was applicable or branching
rule 1 was applicable on w2. Let z1 be the out-neighbour of w2 of in-degree 2. Let
y be the other in-neighbour of z1. Observe that (v, w1, x) and (w2, z1, y) are hitting
triplets in D. If (v, w1, x) and (w2, z1, y) are not distinct hitting triplets, then x = w2

and we are in Case 5.a. Otherwise, since Branching Rule 1 is not applicable, all of
v, w1, x, w2, z1, y are distinct. This case is handled in Case 5.b.

After presenting the Cases 5.a and 5.b, we will discuss why after the exhaustive
application of all the described reduction and branching rules, there is no vertex v
such that either d−(v) = 2 and d+(v) ≥ 1. This will show that after the exhaustive
application of all the described reduction and branching rules, the graph is empty.

Branching Rule 5 Let v ∈ V (D) be such that d−(v) = 1 and d+(v) = l ≥ 2. Let
{w1, . . . , wl} be the set of out neighbours of v and let d−(w1) = 2 and d−(wi) = 1 for
all i ∈ {2, . . . , l}. Let x be the other in-neighbour of w1. Let d+(w2) = p ≥ 2. Let
{z1, . . . , zp} be the out-neighbours of w2 and let d−(z1) = 2 and for all i ∈ {2, . . . , p},
d−(zi) = 1. Let y be the other in-neighbour of z1.

In this case, the algorithm considers the following sub-cases.

Case 5.a. If x = w2, then observe that (w2, w1) ∈ E(D). In this case, the algorithm
proceeds as follows.

We first claim the following. If S is an out-forest deletion set of D such that
w2 ∈ S, then S ′ = (S \ {w2})∪{v} is an out-forest deletion set of D. To prove this,
let F = D − S. Note that each out-neighbour of w2 in F except possibly w1, is a
root of some out-tree in F . This is because for all the out-neighbours of w2, except
w1, w2 is their unique in-neighbour. In fact, in D − (S ∪ {v}), every neighbour of
w2 in D − (S ∪ {v}) is an out-neighbour of w2 in D and is a root of some out-tree
in D− (S ∪{v}). Therefore, D \ ((S ∪{v}) \ {w2}) is an out-forest. In other words,
(S ∪ {v}) \ {w2} is a solution of size at most k in D. This finishes the proof of the
claim.

Thus, the algorithm branches as follows.

• When w1 belongs to the solution, the resulting instance is (D − {w1}, k − 1).

• When w1 does not belong to the solution and (D, k) is a Yes instance, then
there is a solution that contains v. Therefore the resulting instance is (D −
{v}, k − 1).

151

The branching vector in this case is (1, 1).

Case 5.b. Let v, w1, x, w2, z1, y be all distinct vertices. In this case, the algorithm
branches as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).

• When x does not belong to the solution, the algorithm branches on w1 as
follows.

− When w1 belongs to the solution, the resulting instance is (D−{w1}, k−
1).

− When w1 does not belong to the solution, then v must belong to the
solution. Therefore delete v. Note that after deleting v from the graph
w2 becomes an in-degree 0 vertex and all its out-neighbours have in-
degree exactly 1 except for z1. Therefore as argued before, if there is a
solution that contains w2 then there is another solution that avoids w2

and contains z1. Thus, the algorithm branches as follows.

∗ When y belongs to the solution, the resulting instance is (D−{v, y}, k−
2).

∗ When y does not belong to the solution, delete z1 from the graph,
that is, the resulting instance is (D − {v, z1}, k − 2).

The branching vector in this case is (1, 1, 2, 2).

Let v ∈ V (D) be such that d−(v) = 2 and d+(v) ≥ 1. Let w be some out-
neighbour of v. If in-degree of w is 1, then reduction rule 8.3.3, branching rule 4

or branching rule 5 would have applied on w. Otherwise, in-degree of w is 2. Let
x be the other in-neighbour of w and u1, u2 be the in-neighbours of v. In this case,
observe that (x,w, v) and (v, u1, u2) are hitting triplets in D and hence Branching
Rule 1 is applicable.

Observe that when none of the above-mentioned reduction rules and cases are
applicable, the graph is empty, that is there are no-vertices in the graph.

The following theorem proves the correctness of the algorithm presented.

Theorem 8.3.1. The presented algorithm for Out-Forest Vertex Deletion

Set is correct.

152

Branching Rule (BR) Case/Sub-Case Branch Vector cµ

BR 1 (1, 2, 2, 2) 2.303µ

(1, 1, 2) 2.41422µ

BR 2 (1, 1) 2µ

BR 3 (1, 1) 2µ

BR 4 (1, 1) 2µ

BR 5 a (1, 1) 2µ

b (1, 1, 2, 2) 2.7321µ

Table 8.4: The branch vectors and their corresponding running times for OFVDS.

Proof. Let I = (D, k) be an instance of Out-Forest Vertex Deletion Set.
We prove the correctness of the algorithm by induction on µ = µ(I) = k. The base
case occurs in one of the following cases.

• µ <= 0 we correctly conclude whether (D, k) is a yes instance or not by
reduction rule 8.3.1 or reduction rule 8.3.2.

• µ > 0 and D is an out-forest then we correctly conclude that (D, k) is a Yes

instance by reduction rule 8.3.2.

By induction hypothesis we assume that for all µ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when µ = l + 1. The algorithm
does the following. It applies one of the reduction rules if applicable. By the
safeness of the reduction rules the algorithm either correctly concludes that I is
a Yes/ No instance or produce an equivalent instance I ′ with µ(I ′) ≤ µ(I). If
µ(I ′) < µ(I), then by induction hypothesis and safeness of the reduction rules the
algorithm correctly decides if I is a yes instance or not. Otherwise, µ(I ′) = µ(I).
If none of the reduction rules are applicable then the algorithm applies the first
applicable Branching Rules. Branching Rules are exhaustive and covers all possible
cases. Furthermore, µ decreases in each of the branch by at least one. Therefore, by
the induction hypothesis, the algorithm correctly decides whether I is a yes instance
or not.

Theorem 8.3.2. Out-Forest Vertex Deletion Set can be solved in O∗((1 +√
3)k).

Proof. The reduction rules 8.3.1 to 8.3.5 can be applied in time polynomial in the
input size. Also, at each of the branch we spend a polynomial amount of time.
At each of the recursive calls in a branch, the measure µ decreases by at least 1.

153

When µ ≤ 0, then reduction rule 8.3.1 or 8.3.2 is applicable and hence the algorithm
correctly returns the answer and terminate. At the start of the algorithm µ = k.

The worst-case branching vector for the algorithm is (1, 1, 2, 2) (see Table 8.4).
The recurrence for the worst case branching vector is:

T (µ) ≤ 2T (µ− 1) + 2T (µ− 2)

The running time corresponding to the above recurrence relation is O?((1 +
√

3)k).

154

Chapter 9

Kernel for Deletion to Bounded
Treewidth DAGs

Recall the objective of the paper of Mnich and van Leeuwen [164] from Chapter 6.
To make progress on the question of the existence of a polynomial kernel for DFVS,
Mnich and van Leeuwen [164] considered DFVS with an additional restriction on
the output rather than the input. Specifically, the output digraphs considered where
out-forest, out-tree and pumpkin. Note that all these output digraphs are acyclic
digraphs with treewidth at most 2 (throughout the chapter, by treewidth of a digraph
we mean the treewidth of its underlying undirected graph.) In this chapter we, in
a way, unify and extend the results of Mnich and van Leeuwen [164] by giving
an outline of a kernel for the problem of deletion to DAGs of bounded treewidth.
Towards doing this, we observe that the existing machinery can already be harnessed
to resolve this problem affirmatively. Nevertheless, as this finding already generalizes
some results in the literature, we give an outline of this result here.

We would also like to remark that the study of the DFVS problem by restricting
the input digraph class (as done in Chapter 3) or by parameterizing it by a non-
trivial structural parameter that is larger than solution size (as done in Chapter 5)
has a major advantage over studying the DFVS problem by restricting the resulting
DAG. This is because the first two restrictions do not alter the problem at hand,
namely, the focus is still aimed at DFVS itself rather than at a variant of DFVS.
More precisely, the later approach may actually derail us from the track of resolving
the kernelization complexity of DFVS as each restriction of the output DAG results
in its own definition of a variant of DFVS that may have its own properties. Thus, if
the ultimate goal is to design a polynomial kernel for DFVS itself (or prove that such

155

a kernel does not exist), we find the first approach more suitable. Nevertheless, it is
also important to note that the questions raised by restricting the output, namely,
the study of the variants of DFVS, may be interesting in their own right. We now
proceed to the main result in this chapter.

For a positive integer η > 0, let Fη denote the family of digraphs of treewidth
at most η.

Fη-Vertex Deletion Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist a set of at most k vertices, say S, such that D−S ∈
Fη?

Theorem 9.0.1. Fη-Vertex Deletion problem admits a polynomial kernel.

The kernelization algorithm for Fη-Vertex Deletion problem follows along
the lines of kernel for Planar-F-Deletion given in [99]. We follow the steps of
kernelization algorithm given for Planar-F-Deletion in [99] to design a polyno-
mial kernel for Fη-Vertex Deletion Set.

Let D be a digraph and let S be a vertex subset such that D − S is a DAG
and has treewidth at most η. Then, we call such S a DAG-treewidth η-modulator
set. Towards kernelization, we begin by showing that any Yes instance (D, k) to
Fη-Vertex Deletion Set has a set X of kO(1) vertices such that every connected
component C of D−X is a near-protrusion. Recall that a r-protrusion C in a graph
D is a vertex set such that |N(C)| ≤ r and tw(G[C]) ≤ r. The components of D−X
will not necessarily be protrusions, however we will prove that there is a constant r
such that if (D, k) is a yes instance, then for any DAG-treewidth η-modulator set S
of size at most k, C \ S is a r-protrusion of D − S.

For our kernelization algorithm we also need an approximation algorithm for
Fη-Vertex Deletion Set. To obtain a factor c-approximation algorithm for Fη-
Vertex Deletion Set we do as follows. Towards computing an approximate
solution for Fη-Vertex Deletion Set, we run the constant factor approximation
algorithm for Treewidth-η-Modulator given in [99], on the underlying undi-
rected graph of D. Let us recall that in the Treewidth-η-Modulator problem,
we are given an undirected graph G and the objective is to find a minimum sized
vertex setW such that tw(G−W) ≤ η. Let,W be a c′ ·OPT sized approximation to
the Treewidth-η-Modulator problem when run on the underlying undirected

156

graph of D. Here, OPT is the size of a minimum sized vertex set W such that
tw(D −W) ≤ η. Furthermore, let OPTdag be the size of a minimum sized set W ?

such that D−W ? is a DAG in Fη. Observe that OPT ≤ OPTdag. Note that D−W
is in Fη, though DW may not be DAG. To make D −W a DAG we now find a set
of vertices such that it is a directed feedback vertex set. We compute a smallest size
directed feedback vertex set, Wdfvs, in D−W by calling the algorithm for DFVS pa-
rameterized by treewidth given in [33]. Since, an optimum solution to Fη-Vertex

Deletion Set is also a directed feedback vertex set we have that |Wdfvs| ≤ OPTdag.
Now observe that W ∪Wdfvs is a solution to Fη-Vertex Deletion Set of size at
most (c′ + 1)OPTdag. Thus, this gives a factor c = (c′ + 1) approximation algo-
rithm for Fη-Vertex Deletion Set. Let this factor c approximation algorithm
for Fη-Vertex Deletion Set be called Approx-Fη-VDS.

The kernelization algorithm begins by running Approx-Fη-VDS, a c-approximation
algorithm, for Fη-Vertex Deletion Set. If the solution returned by the approx-
imation algorithm is more than ck, the kernelization algorithm returns a trivial no
instance. Otherwise, let W denote the approximate solution. Based on W , and
exploiting the fact that D − X has treewidth at most η, we are able to construct
R ⊆ (D −W) on kO(1) vertices such that: (a) for every connected component C of
D \ (W ∪ R), |N(C) ∩ R| ≤ 2(η + 1), and (b) for every connected component C
of D \ (W ∪ R), and u, v ∈ N(C) ∩W there are at least k + η + 3 vertex disjoint
paths from u to v in the underlying undirected graph of D. Now we can combine
these components (or rather near protrusions) to get the following partition of V (D)

satisfying the below stated properties. That is,

V (D) = W]R]
⋃

i∈{1,...,q}
Zi(9.1)

The properties satisfied by the partition given in Equation 9.1 are as follows.

1. |R| ≤ kO(1).

2. for each i ∈ {1, . . . , q}, D[Zi] is acyclic and tw(D[Zi]) ≤ η,

3. for each i ∈ {1, . . . , q}, N(Zi) ⊆ W ∪R,

4. for each i ∈ {1, . . . , q}, |N(Zi) ∩R| ≤ 2(η + 1), and

5. for each i ∈ {1, . . . , q}, Zi is a O(η)-near protrusion.

The proof for the partition given in Equation 9.1 is similar to the decomposition

157

algorithm given in Lemma 5.3.1, and in fact identical to the proof of Lemma 25 of
Fomin et al. [99].

The next step of the kernelization algorithm is to bound the number q of con-
nected components of D − (W ∪ R) by a polynomial in k. Towards this we can
proceed in a manner identical to Lemma 36 of Fomin et al. [99]: Here it is proved
that, if W ∪R satisfies properties 2-5 then one can mark in polynomial time a kO(1)

size subset of the connected components with the following properties.

For every connected component Zi that is not marked, every subset S ⊆ V (D)

such that |S| ≤ k + 1 and tw(D − (S ∪ {v})) ≤ η, we have that tw(D − S) ≤ η.

In other words, all vertices in all of the unmarked connected components are
irrelevant with respect to the treewidth of D − S for a potential solution S. In our
setting, such vertices v may still be relevant because D− (S∪{v}) could be a DAG,
while D−S is not. However, this can be remedied by essentially the same strategy:
For each pair u, v of vertices in W ∪ R (including the pairs where u = v), mark at
most k+10 connected components of D−(W ∪R) that contain a directed path from
an out-neighbor of u to an in-neighbor of v. This results in at most kO(1) additional
components being marked. A proof following the lines of the proof of Lemma 36 of
Fomin et al. [99] (but simpler, because directed paths are easier than rooted minors)
shows every vertex v in an unmarked component is irrelevant in the following sense:
For every subset S ⊆ V (D) such that |S| ≤ k+1 and D−S∪{v} ∈ Fη we have that
D−S ∈ Fη. This leads to a reduction rule that, provided the number of components
of D− (W ∪R) is more than kO(1), selects any vertex v in an unmarked component
and deletes it. After this rule is exhaustively applied we can also conclude that the
number q of connected components of D − (W ∪R) is at most kO(1).

Having bounded the number of connected components of D− (W ∪R), next we
need to bound their size. However, instead of bounding the size of the connected
components we instead bound the bitsize of a representation of the component. This
leads to a compression rather than a kernel, but because the compression is into a
problem in NP, we can use NP-completeness to reduce back to our problem and
obtain a polynomial kernel.

For each component Zi, define its boundary Bi = N(Zi) \ S. We know that
|Bi| = βi = O(η) for any solution S of size at most k. Define Di to be a boundaried
graph D[N [Zi] \ S] with boundary |N(Zi) \ S|. Since the class Fη has finite state
(see e.g. Bodlaender et al. [24]) the canonical equivalence relation for Fη restricted
to the set of βi-boundaried graphs has a finite set of representatives. Let D′i be

158

the representative for Di. We have that (D − Zi ∪ S) ⊕ D′i is in Fη if and only if
D − S ∈ Fη.

We may think of the selection of D′i given S as a function of Bi and Si = S ∩Zi,
and write D′i(Bi, Si) for this function. Similarly, Bi(S) = N(Zi) \ S and Si(S) =

S ∩ Zi can be thought of as functions of S. The equivalence above shows that, for
any two sets S1 and S2 of size at most k, if S1 ∩ (W ∪ R) = S2 ∩ (W ∪ R) and for
every i, D′i(Bi(S

1), Si(S
1)) = D′i(Bi(S

2), Si(S
2)) then D − S1 ∈ Fη if and only if

D − S2 ∈ Fη.

Thus, for every connected component Zi it is sufficient to store for every Bi ⊆
N(Zi) of size O(η), for every representative D′i of the canonical equivalence relation
for Fη restricted to the set of O(η)-boundaried graphs, the size of the smallest set
Si such that D′i(Bi, Si) = D′i (or ∞ if no such set exists or is larger than k). Hence,
for each of the connected components Zi we store a number between 0 and k+ 1 for
each of the kO(1) choices of Bi and each of the O(1) choices of D′i.

159

Chapter 10

Sub-Exponential FPT Algorithms for
DFAS, Directed Cutwidth and
Optimal Linear Arrangement in
Digraphs of Bounded Independence
Number

In this chapter, we design sub-exponential FPT algorithms for various cut problems
on the class of digraphs of bounded independence number. For a simple digraph D
(every pair of vertices has at most one arc), denote n = |V (D)| and m = |E(D)|.
Let us formally define the class of digraphs relevant to our work in this chapter.
Given a digraph D, a vertex subset I ⊆ V (D) is called an independent set if there
are no arcs between any pair of vertices in I. For any positive integer α, let

Dα = {D | maximum independent set in D has size at most α}.

Observe that for α = 1, Dα is a family of tournaments. For simplicity, we assume
to work with simple digraphs. However, all our results hold also when the digraph is
not simple. That is, for any pair of vertices u, v, both the arcs (u, v) and (v, u) can
be present in the digraph.

Our first theorem gives a sub-exponential time algorithm for DFAS on Dα.

Theorem 10.0.1. DFAS on Dα is solvable in time 2O(α2
√
k log(αk)) · nO(α).

163

Towards the definition of the second problem, let D be a digraph. For X, Y ⊆
V (D), let E(X, Y) = {(u, v) ∈ E(D) | u ∈ X, v ∈ Y } denote the set of arcs from X

to Y . For an integer q, denote [q] = {1, . . . , q}. The width of an ordering (v1, . . . , vn)

of V (D) is maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|. The cutwidth of D, denoted
by ctw(D), is the smallest possible width of an ordering of V (D). Now, the second
problem is defined as follows.

Directed Cutwidth Parameter: k
Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

We present a sub-exponential time algorithm for Directed Cutwidth on Dα.

Theorem 10.0.2. Directed Cutwidth on Dα is solvable in time 2O(α2
√
k log(αk)) ·

nO(α).

Towards the definition of the third problem, let D be a digraph. For two integers
i, j, let [i > j] evaluate to 1 if i > j, and to 0 otherwise. The cost of an ordering
σ = (v1, . . . , vn) of V (D) is

∑
(vi,vj)∈E(D)(i − j) · [i > j]. In other words, every arc

(vi, vj) directed backward in σ costs a value equal to its length, where the length of
(vi, vj) is the distance between vi and vj in σ. Our last problem seeks an ordering
of cost at most k.

Optimal Linear Arrangement (OLA) Parameter: k
Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

Our third theorem gives a sub-exponential time algorithm for OLA on Dα.

Theorem 10.0.3. OLA on Dα is solvable in time 2O(α2k
1
3 log(αk)) · nO(α).

10.1 Our Methods and k-Cuts

Our algorithms are based on the general framework of Fomin and Pilipczuk [102]
to design parameterized sub-exponential time algorithms. The main ingredient to
prove in order to employ this framework is a combinatorial upper bound on the
number of “k-cuts” in graphs that are Yes instances of the problem at hand. The

164

proof for the combinatorial bound in our case is completely different from the proof
given by Fomin and Pilipczuk [102] for transitive tournaments. The bound of Fomin
and Pilipczuk [102] is achieved by mapping the set of k-cuts in a transitive tourna-
ment to the set of partitions of the integer k. Then, an asymptotic bound on the
partition number of an integer yields a bound on the number of k-cuts in a transitive
tournament. In the case of digraphs with bounded independence number, we do not
know how to attain the desired bound by utilizing such partitions of integers.

Before we go further, we define the notion of k-cuts.

Definition 10.1.1 (k-cut). A k-cut in a digraph D is a partition of V (D) into two
parts L and R (that is, V (D) = L] R) such that |E(R,L)| ≤ k. The k-cut is
denoted by the ordered pair (L,R). The set L is called the left part of the cut, and
the set R is called the right part of the cut. The arcs in E(R,L) are the cut-arcs of
(L,R).

Our first technical contribution is an upper bound on the number of k-cuts in
Dα.

Lemma 10.1.1. If D ∈ Dα, then for any positive integer k, the number of k-cuts
in D is at most 2c

√
k log k · (n+ 1)2αd

√
ke · log n, where c is a fixed absolute constant.

The upper bound in Lemma 10.1.1 is of the form nO(f(α)
√
k). That is, it shows

that the number of k-cuts in digraphs in Dα is upper bounded by a sub-exponential
function in n. Clearly, such a bound is not sufficient to design sub-exponential time
parameterized algorithms. If any of the problems DFAS, Directed Cutwidth or
OLA on Dα admits a polynomial kernel, then Lemma 10.1.1 can readily yield a sub-
exponential time parameterized algorithm for the corresponding problem. However,
we do not know whether these problems admit such kernels, and the resolution of
these questions remains an interesting open problem.

Our second main technical contribution is an upper bound on the number of
k-cuts in a subfamily of Dα. This bound suffices to prove Theorems 10.0.1, 10.0.2
and 10.0.3 by embedding it in the framework of Fomin and Pilipczuk [102]. Let us
first define this subfamily. Given a vertex v ∈ V (D), denote the set of out-neighbors
of v in D by N+

D (v) = {u ∈ V (D) | (v, u) ∈ E(D)}.

Definition 10.1.2 (d-out-degenerate digraph). For any positive integer d, a digraph
D is d-out-degenerate if for every subgraph H of D, there exists a vertex v ∈ V (H)

such that d+
H(v) ≤ d. An ordering (v1, . . . , vn) of the vertex set of D is a d-out-

degeneracy sequence of D if for any i ∈ {2, . . . , n}, |N(vi) ∩ {vj | j < i}| ≤ d.

165

Observe that a digraph is d-out degenerate if and only if it has a d-out-degeneracy
sequence, that is there is an ordering of the vertex set of the digraph such that each
vertex has at most d edges to the vertices before it. Also observe that DAGs are
0-out-degenerate. Next, we define a class of digraphs having small independence
number and bounded out-degeneracy. Formally, Dα,d = {D | D ∈ Dα and D is
d-out-degenerate}. Note that if D ∈ Dα,d, then every induced subgraph D′ of D
belongs toDα,d. Our second main technical contribution is formally stated as follows.

Lemma 10.1.2. If D ∈ Dα,d, then for any positive integer k, the number of k-cuts
in D is at most 2c(α+1)

√
k log k · (d+1+α(2k+1))2α(α+1)d

√
ke · log(d+α(2k+1)) ·nα+1,

where c is a fixed absolute constant.

One can easily see that if (D, k) is a Yes instance of DFAS,
Directed Cutwidth or OLA, then D is k-out-degenerate. Thus, Lemma 10.1.2
implies a sub-exponential (in k) upper bound on the number of k-cuts for Yes-
instances of these problems. In fact, for OLA one can show that D is 2k2/3-out-
degenerate, and thus obtain an improved upper bound on the number of k-cuts for
Yes instances. Since the k-cuts of any digraph can be enumerated with polynomial
delay [102], hence the upper bounds in Lemmas 10.1.1 and 10.1.2 are constructive.

10.2 Proof Outline for Our Results

In what follows, we present our proof strategies for the results stated above.

Proof Strategy of Lemma 10.1.1: We first make a very simple observation, which
serves as the starting point of our proof. Let V (D) = V1] · · ·]V` be some partition
of V (D). Then, the number of k-cuts in D is upper bounded by the product of the
number of k-cuts in the digraph induced by each Vi. Thus, we aim to partition V (D)

into parts that induce “sufficiently structured” subdigraphs—we want the number
of k-cuts in D[Vi], for any i ∈ [`], to be “easier” to upper bound than the number
of k-cuts in D directly. Moreover, since our aim is to achieve a bound of no(k) for
the total number of k-cuts in D, we want a partition V (D) = V1] · · ·] V` where
` = o(k). To this end, we utilize Gallai-Milgram’s Theorem (explained next) under
the canvas of chromatic coding.

On the one hand, Gallai-Milgram’s Theorem states that if the size of a maximum
independent set in a digraph is α, then its vertex set can be partitioned into at
most α parts such that the digraph induced by each of these parts has a directed

166

Hamiltonian path. On the other hand, chromatic coding (in its derandomized form)
provides a family F of partitions of V (D) such that (i) |F| = 2o(k) log n, (ii) for each
k-cut (L,R) in D, there exists a partition P ∈ F such that all the cut arcs of (L,R)

go across the parts of P , and (iii) the number of parts of each partition in F is
upper bounded by O(

√
k). If the cut-arcs of (L,R) go across the parts of a partition

P , we say that (L,R) respects P . To see how to combine these two tools, let F
be a family provided by chromatic coding. Since the number of partitions in F is
2o(k) log n, and for each k-cut (L,R) there exists a partition in F that it respects, it
suffices to bound the number of k-cuts that respect a particular (arbitrary) partition
in F . Then, the total number of k-cuts in the digraph will be the product of the
number of k-cuts that respect a partition in F , over all partitions in F .

Consider an arbitrary partition P ∈ F (of V (D)). Let P = P1] · · ·]P`. Recall
that ` = O(

√
k), and the number of k-cuts inD is at most the product of the number

of k-cuts in D[Pi], over all i ∈ [`]. Here, a crucial insight is that the number of k-cuts
in D that respect P is at most the product of the number of 0-cuts in D[Pi], over
all i ∈ [`]. Thus, we have reduced our problem to upper bounding the number of
0-cuts in a digraph. Now, to upper bound the number of 0-cuts in D[Pi] by no(k),
we utilize Gallai-Milgram’s Theorem. Since D[Pi] ∈ Dα, Gallai-Milgram’s Theorem
implies that Pi can be partitioned into at most α parts, say Pi = Pi1] . . .] Piq,
q ≤ α, such that for each j ∈ [q], D[Pij] has a directed Hamiltonian path. Thus, we
have finally reduced our problem to finding 0-cuts in digraphs that have a directed
Hamiltonian path. As we will see later, the number of 0-cuts in such digraphs is
linear in its number of vertices. Combining everything together, we are able to
bound the number of k-cuts in D by nO(α

√
k).

Proof Strategy of Lemma 10.1.2: Each vertex in a digraph D has two choices of
how to participate in a cut—it can belong either to its left side or to its right side.
Thus, if |V (D)| = n, a trivial upper bound on the total number of k-cuts in D is 2n.
Suppose that we have (somehow) reached a “situation” where most of the vertices
must belong to only one of the sides of a k-cut. Then, the arguments to attain the
2n bound imply that the number of k-cuts is at most 2q, where q is the number of
vertices which possibly have both choices. By the bound in Lemma 10.1.1, we can
further conclude that the number of k-cuts is, in fact, at most qO(α

√
k). Thus, if

q = kO(1) (that is, only kO(1) vertices can choose a side), we get a bound of 2o(k).

On a different note, suppose that we can identify a set of vertices in D, say V1,
such that D[V1] has at most 2o(k) k-cuts. If V1 is large enough, say |V1| is such that
|V (D)\V1| = kO(1), then we can bound the number of k-cuts in D[V (D)\V1] by 2o(k)

167

(by Lemma 10.1.1). Since the number of k-cuts in D is bounded by the product of
the number of k-cuts in D[V1] and the number of k-cuts in D[V (D) \ V1], we attain
the bound of 2o(k) on the number of k-cuts in D.

Our algorithm combines the two ideas above to obtain the desired bound. For
any vertex v ∈ V (D), we aim to bound the number of k-cuts in D where v is “forced”
to belong to the left part. We exploit the position of v in a fixed d-out-degeneracy
sequence of D to conclude that a large number of vertices are forced to belong to
one side of these cuts. Then, building on the second idea, we inductively find a set
of vertices such that the digraph induced on it has independence number strictly
smaller than the independence number of D. For such a set of vertices, we can
inductively assume that the number of k-cuts in the digraph induced by them is
2o(k). Having this bound at hand, we are able to conclude the proof.

Proof Strategy of Theorems 10.0.1, 10.0.2 and 10.0.3: To obtain sub-exponential
FPT algorithms for DFAS, Directed Cutwidth and OLA on Dα, we first use
Lemma 10.1.2 to bound the number of k-cuts in the digraphs of the Yes instances
of these problems by 2o(k). Here, we rely on the observation that these digraphs
must be k-out-degenerate. Though we do not explicitly state this, the procedures
to bound the number of k-cuts in both Lemmas 10.1.1 and 10.1.2 are constructive.
However, constructiveness is not necessary since a standard branching procedure
can also enumerate all k-cuts in a digraph with polynomial delay [102]. To actually
solve any of the three problem, we rely on dynamic programming procedures over
the k-cuts in the input digraph.

The last two steps of this proof (namely, the enumeration and the dynamic
programming procedures) are quite standard, based on the work by Fomin and
Pilipczuk [102] to obtain sub-exponential FPT algorithms for DFAS, Directed

Cutwidth and OLA on tournaments.

For a set of vertices {v1, . . . , vn}, let (v1, . . . , vn) denote the ordering where for
any i ∈ [n], vi is the ith vertex of the ordering.

10.3 Bounding the Number of k-Cuts for Digraphs

in Dα

In this section, we prove that the number of k-cuts in any digraph on n vertices
with bounded independence number is no(k). In particular we prove Lemma 10.1.1.

168

Let us recall that a k-cut in a directed graph D is a partition of the vertex set of D
into two parts, V (D) = L]R, such that |E(R,L)| ≤ k. Let us note that a 0-cut in
a digraph D is a partition (L,R) of the vertex set V (D) such that there are no arcs
from R to L in D.

At the heart of the proof of Lemma 10.1.1 is a simple observation that helps us
focus on parts of the digraph for which bounding the number of k-cuts is easier.
This simple observation is then exploited to its fullest using two main tools - (1) the
Gallai-Milgram’s Theorem and (2) chromatic coding. Let us state them formally.
We begin by stating this key observation, followed by formally defining both these
ideas.

Lemma 10.3.1. Let D be a digraph and k ∈ Z+. Let V (D) = V1] . . .] Vq be some
partition of V (D). For any i ∈ [q], let Ni be the number of k-cuts in D[Vi], then the
number of k-cuts in D is at most

∏
i∈[q] Ni.

Proof. To prove the lemma, observe that, it is enough to prove that for any k-
cut (L,R) in D, there exists k-cuts (Li, Ri), for each i ∈ [q], in D[Vi], such that
L = ∪i∈[q]Li and R = ∪i∈[q]Ri. To see this, for any i ∈ [q], let Li = L ∩ Vi and
Ri = R ∩ Vi. Observe that, each (Li, Ri) is a k-cut in D[Vi], otherwise (L,R) is not
a k-cut in D.

Thus, if we can partition the vertex set of D into o(k) parts such that it is “easier”
to bound the number of k-cuts in each of these parts, then we are done. At a high
level, we will first partition the vertex set of D using chromatic coding, and then
further partition each part of this partition using Gallai-Milgram’s Theorem. We
will then conclude by proving that the number of k-cuts in each of the sub-parts
is linear in the number of vertices. We now state the Gallai-Milgram’s Theorem
formally.

Proposition 10.3.1 ([109], Gallai-Milgram Theorem, 1960). For any α ∈ Z+ and
D ∈ Dα, there exists a partition of V (D) = V1] . . .] Vq, such that q ≤ α and for
each i ∈ [q], D[Vi] has a directed Hamiltonian path.

Next, we state the technique of chromatic coding in its derandomized form. To
this end, we first define universal (n, k, r)-coloring family and then state the known
results about the existence of such a families of bounded size. This result is called
the chromatic coding lemma. For any graph G, a proper vertex coloring of G is a
function f : V (G)→ Z+, such that for any (u, v) ∈ E(G), f(u) 6= f(v).

169

Definition 10.3.1 ([7], Universal (n, k, r)-Coloring Family). For integers n, k and
r, a family H of functions from [n] to [r] is called a universal (n, k, r)-coloring family,
if for any graph G on the vertex set [n] with at most k edges, there exists an h ∈ H
which is a proper vertex coloring of G.

Observe that the above mentioned definition holds for digraphs too, where the
notion of proper vertex coloring is defined on its underlying undirected graph.

Proposition 10.3.2 ([7], Chromatic Coding Lemma). For any n, k ≥ 1, there exists
a universal (n, k, 2d

√
ke)-coloring family of size at most 2O(

√
k log k) · log n.

A formulation of the Chromatic Coding lemma, in the way that is useful to us,
can be seen in the following corollary.

Corollary 10.3.1. For any digraph D on n vertices, and an integer k, there exists
a family F of partitions of V (D) into at most 2

√
k parts, such that,

1. for any k-cut (L,R) in D, there exists a partition P = {P1, . . . , Pq} in the
family F , such that for any cut-arc (u, v) of (L,R), there exists i, j ∈ [q],
i 6= j, such that u ∈ Pi and v ∈ Pj, and

2. |F| = 2O(
√
k log k) · log n.

Proof. Let H be a (n, k, 2d
√
ke)-universal coloring family from Proposition 10.3.2,

of size at most 2O(
√
k log k) · log n. We construct a family F of partitions of V (D) from

the family H as follows. For each h ∈ H, there is a partition Ph = P1] · · ·] Pd2√ke
in F , where for any i ∈ [2d

√
ke], Pi = h−1(i). Here, if for a certain i, Pi = ∅, then

we discard this part from the partition Ph.

We will now show that F is indeed the family with the required properties. Since
|H| = 2O(

√
k log k) · log n, clearly |F| = 2O(

√
k log k) · log n. Let (L,R) be some k-cut in

D. Consider the digraph, say D(L,R), on the vertex set of D with only the cut-arcs
of (L,R). Note that |E(D(L,R))| ≤ k. Thus, from the definition of (n, k, 2d

√
ke)-

universal coloring family, there exists a function h : V (D(L,R)) → [2d2
√
ke] in H,

such that h is a proper vertex coloring of D(L,R). Consider the partition Ph ∈ F . Let
Ph = P1] · · ·] P2d

√
ke. Since h is a proper coloring of D(L,R) and all the cut-arcs of

(L,R) are in D(L,R), for any cut-arc (u, v) of (L,R), h(u) 6= h(v). Thus, if h(u) = i

and h(v) = j, i 6= j, then u ∈ Pi and v ∈ Pj.

170

For the rest of this section, let F denote the family described in Corollary 10.3.1
for the digraph D and integer k. For any arc (u, v) of a digraph and a partition
P = P1] · · ·] Pq of the vertex set of the digraph, we say that the arc (u, v) goes
across the parts of this partition P , if u ∈ Pi, v ∈ Pj and i 6= j. For any partition
P of the vertex set of the digraph D, we say that a k-cut (L,R) in D respects P if
all the cut-arcs of (L,R) go across the parts of P . The next lemma states that, the
number of k-cuts in D is at most the sum of the number of k-cuts that respect a
partition P , over all partitions P ∈ F . Since |F| = 2o(k), it is enough to bound the
number of k-cuts that respect an arbitrary partition in F by no(k). For the digraph
D, an integer k and P ∈ F , let NP be the number of k-cuts in D that respect P .

Lemma 10.3.2. The total number of k-cuts in D is at most
∑
P∈F NP .

Proof. To prove the lemma, we need to prove that for any k-cut (L,R) in D, there
exists P ∈ F such that (L,R) respects P . This follows from Corollary 10.3.1.

Henceforth, let us fix P = P1] · · ·] Pq, q ≤ 2d
√
ke, where P is an arbitrary

partition in F . We are now only interested in bounding the number of k-cuts in D
that respect P . It follows from Lemma 10.3.1, that to bound the total number of
k-cuts in D, it is sufficient to bound the number of k-cuts in D[Pi], for each i ∈ [q].
We now have the following lemma, that says something much stronger. To bound
the number of k-cuts in D that respect P , it is sufficient to bound the number of
just the 0-cuts in D[Pi], for all i ∈ [q].

Lemma 10.3.3. For any digraph D, let P = P1] . . .] Pq be some partition of the
vertex set of D. For any i ∈ [q], let Ni be the number of 0-cuts in D[Pi]. Then the
number of k-cuts in D that respect P is at most

∏
i∈[q] Ni.

Proof. Observe that to prove the lemma it is enough to prove that for any k-cut
(L,R) of D that respects P , there exists 0-cuts (Li, Ri) in D[Pi], for each i ∈ [q]

such that L = ∪i∈qLi and R = ∪i∈[q]Ri. Let (L,R) be some k-cut in D that respects
P . For each i ∈ [q], let Li = L ∩ Pi and Ri = R ∩ Pi. Observe that, for each i ∈ [q],
(Li, Ri) is a 0-cut in D[Pi]. Suppose not. Then there exists a cut-arc of (Li, Ri), say
(u, v), such that u, v ∈ Pi and u ∈ Ri, v ∈ Li. Since L = ∪i∈[q]Li and R = ∪i∈[q]Ri,
u ∈ R and v ∈ L. This contradicts that (L,R) respects P .

Thus, we have further narrowed down the class of k-cuts that we want to bound.
More precisely, we are now interested in bounding the number of 0-cuts in D[Pi],
for any part Pi of P . Since D ∈ Dα, for any Pi ∈ P , D[Pi] ∈ Dα. Thus, from

171

P1`

P1 P2 Pq

P21

P2`

P11 Pq1

Pq`

Figure 10.1: The Vertex Partition for the Sub-exponential XP bound. P = {P1]· · ·]
Pq} is the vertex partition obtained using chromatic coding and Pi = Pi1] · · ·] Pi`
is the partition obtained using Gallai-Milgram’s Theorem. Each Pij contains a
Directed Hamiltonian Path. The cut arcs of all the cuts that respect P are marked
in blue.

Gallai-Milgram Theorem, the vertex set of Pi can be partitioned into at most α
parts, say Pi = Pi1]· · ·]Pi`, ` ≤ α, such that for each j ∈ [`], D[Pij] has a directed
Hamiltonian path. We will now prove that for any digraph that has a directed
Hamiltonian path, the number of 0-cuts in it are linear in the number of its vertices.

Lemma 10.3.4. Let D be a digraph on n vertices that has a directed Hamiltonian
path. Then the number of 0-cuts in D is n+ 1.

Proof. Since D has a directed Hamiltonian path, let {v1, . . . , vn} be the vertex set
of D such that for each i ∈ [n− 1], (vi, vi+1) ∈ E(D). Consider any 0-cut (L,R) in
D. Let i be the smallest integer such that vi ∈ R. By the choice of i, for all j < i,
vj ∈ L. We now claim that, for all j > i, vj ∈ R. Suppose not. Then there exist a
j > i, such that vj ∈ L. Since j > i, and vi appears before vj in the Hamiltonian
path ordering. Thus, there is a directed path from vi to vj in D. Since vi ∈ R and
vj ∈ L, an arc of this directed path is a cut-arc for (L,R), which contradicts that
(L,R) is a 0-cut.

Thus, for any i ∈ [n], the number of 0-cuts in D where vi is the first vertex in the
ordering (v1, . . . , vn) that belongs to the right part of these cuts is exactly 1. Since
any cut in D, either does not contain any vertex in its right part (there is only one
such cut) or contains some vertex, the total number of 0-cuts in D is n+ 1.

We are now ready to prove Lemma 10.1.1. An illustration depicting the parti-
tioning used in the proof of Lemma 10.1.1 is given in Figure 10.1.

Proof of Lemma 10.1.1: Let N be the total number of k-cuts in D. Consider the
family F of Corollary 10.3.1 for the digraph D and integer k. From Corollary 10.3.1,
|F| ≤ 2O(

√
k log k) · log n. For each partition P ∈ F , let NP be the number of k-cuts

172

in D that respect P . From Lemma 10.3.2, N ≤∑P∈F NP . Consider any arbitrary
partition P ∈ F . Let P = P1] . . .] Pq, and from Corollary 10.3.1 we have
q ≤ 2d

√
ke. For any i ∈ [q], let NPi be the number of 0-cuts in D[Pi]. From

Lemma 10.3.3, NP ≤
∏

i∈[q] NPi . Since D ∈ Dα, for any Pi, D[Pi] ∈ Dα. Thus,
from Gallai-Milgram Theorem, the vertex set of Pi can be partitioned into at most
α parts, say Pi = Pi1] . . .] Pi`, ` ≤ α, such that such that for each j ∈ [`], D[Pij]

has a directed Hamiltonian path. From Lemma 10.3.4, the number of 0-cuts in
D[Pij] is n + 1. From Lemma 10.3.1, NPi ≤

∏
j∈[`](n + 1) ≤ (n + 1)` ≤ (n + 1)α.

Combining everything stated above, we get that, N ≤ |F| ·NP ≤ |F| · (NPi)
2d
√
ke ≤

|F| · (n+ 1)2αd
√
ke ≤ 2O(

√
k log k) · (n+ 1)2αd

√
ke · log n).

10.4 Improved Bounds on the Number of k-Cuts for

Digraphs in Dα with Bounded Out-Degeneracy

In this section we give the proof of Lemma 10.1.2. Recall from the introduction
that a digraph D is said to be d-out-degenerate, if for every subgraph H of D, there
exists a vertex v ∈ V (H), such that d+

H(v) ≤ d. Furthermore, a digraph D d-out
degenerate if and only if it has a d-out-degeneracy sequence.

Throughout this section, D is a digraph on n vertices and D ∈ Dα,d. Let
(v1, . . . , vn) be a d-out-degeneracy sequence of D. For any i ∈ [n], we say that
a k-cut (L,R) in D is of type-i, if vi ∈ L and for all j > i, vj ∈ R. We say that a
k-cut (L,R) in D is of type-0 if L = ∅. Note that the collection of the sets of type-i
cuts for all i ∈ [n]0, forms a partition of the set of all the k-cuts. Observe that there
is exactly 1 type-0 cut in any digraph.

Observation 10.4.1. For any i ∈ [n]0, let Ni be the number of k-cuts in D of
type-i. Then the number of k-cuts in D is at most

∑
i∈[n]0

Ni.

Henceforth, our goal is to bound the number of k-cuts in D of type-i, for an
arbitrary i ∈ [n]. Recall from Lemma 10.3.1 that if V (D) = V1] · · ·] Vc is a
partition of the vertex set of D, then to bound the number of k-cuts in D, it is
enough to bound the number of k-cuts in each D[Vj], j ∈ [c]. This remains our
underlying strategy. However, this time we use a different partition of the vertex
set of D, where the number of parts of this partition is 4, compared to o(k) in
Lemma 10.1.1. This partition of the vertex set, is presented in Lemma 10.4.1.

173

Lemma 10.4.1. For a digraph D ∈ Dα,d and any positive integer k, for any fixed
i ∈ [n], there exists a partition V (D) = Vinduct] VforceL] VforceR] Vsmall such that:

1. If α = 1, then Vinduct = ∅, otherwise D[Vinduct] ∈ Dα′,d, where α′ < α.

2. For any k-cut (L,R) in D of type-i, VforceL ⊆ L.

3. For any k-cut (L,R) in D of type-i, VforceR ⊆ R.

4. |Vsmall| ≤ d+ α(2k + 1).

Lemma 10.4.1 states that the vertex set of D can be partitioned into 4 parts
with the following properties. The digraph induced on the first part is either empty
or belongs to Dα′,d, for α′ < α. To bound the number of k-cuts in such a digraph
we will use an induction on α. For the second part of this partition, we prove that
for any k-cut (L,R) of type-i, all the vertices of this part belong to L. Similarly,
for the third part of this partition, we prove that for any k-cut (L,R) of type-i, all
the vertices of this part belong to R. Therefore, there is a unique k-cut of type-i
in the digraph induced by the second and third part. The last part of the partition
has the property that the number of vertices in this part is “small”. For the digraph
induced by this part, we will get the desired bound by using Lemma 10.1.1 on this
digraph.

The proof of Lemma 10.4.1 is deferred for later. We will now proceed towards the
proof of Lemma 10.1.2 using Lemma 10.4.1 and induction on α. At any inductive
step we use the partition of Lemma 10.4.1 and bound the number of k-cuts of type-i
in the digraph induced on each part of the partition, thereby bounding the number
of k-cuts in D because of Observation 10.4.1.

Proof of Lemma 10.1.2. We prove the lemma using induction on α. For any positive
integer α, let us denote the bound of Lemma 10.1.1 on the number of k-cuts in
D ∈ Dα, on at most d + α(2k + 1) vertices, by η(α, d, k). That is, η(α, d, k) =

2c
√
k log k ·(d+1+α(2k+1))2αd

√
ke · log(d+α(2k+1)), where c is the absolute constant

hidden in the O notation of the expression in Proposition 10.3.2. Let Nk(n, α, d)

denote the maximum number of k-cuts in D for any digraph D ∈ Dα,d on n vertices.
We claim that for any positive integers n, d and α > 1, Nk(n, 1, d) ≤ 1 +n ·η(1, d, k)

and Nk(n, α, d) ≤ 1 +Nk(n, α− 1, d) · η(α, d, k) · n. Solving the recurrence, we will
get the desired bound on the number of k-cuts in D.

174

Let us first prove that for any positive integers n and d, Nk(n, 1, d) ≤ 1 + n ·
η(1, d, k). If the independence number of the digraphD is 1, then from Lemma 10.4.1,
there exists a partition V (D) = VforceL] VforceR] Vsmall of D such that for any k-
cut (L,R) in D of type-i, VforceL ⊆ L and VforceR ⊆ R. Thus, from Lemma 10.3.1,
we conclude that the number of k-cuts of type-i in D is at most the number of
k-cuts in D[Vsmall]. Since D[Vsmall] is an induced subgraph of D, the independence
number of D[Vsmall] is at most α and D[Vsmall] is a digraph on d + 2k + 1 vertices.
Thus, we conclude that the number of k-cuts in D of type-i are at most η(1, d, k).
From Observation 10.4.1, we conclude that the number of k-cuts in D are at most
1 + η(1, d, k) · n.

By induction hypothesis, let us assume that for any positive integers n, d and for
all α′ < α, the number of k-cuts in any digraph D′ ∈ Dα′,d on at most n vertices is
Nk(n, α′, d). We will now prove that the number of k-cuts in the digraph D ∈ Dα,d
is Nk(n, α, d) ≤ 1 +Nk(n, α − 1, d) · η(α, d, k). From Lemma 10.4.1, there exists a
partition V (D) = Vinduct] VforceL] VforceR] Vsmall, such that for any k-cut (L,R) in
D of type-i, VforceL ⊆ L and VforceR ⊆ R. Thus, from Lemma 10.3.1, the number of
k-cuts of type-i in D is at most the product of the number of k-cuts in D[Vinduct]

and the number of k-cuts in D[Vsmall]. Since D[Vinduct] ∈ Dα′,d, where α′ < α,
from inductive hypothesis we get that the number of k-cuts in D[Vinduct] is at most
Nk(n, α′, d) ≤ Nk(n, α − 1, d). Since |Vsmall| ≤ d + α(2k + 1), from Lemma 10.1.1,
the number of k-cuts in D[Vsmall] is at most η(α, d, k). Thus, the number of k-cuts
of type-i in D is at most Nk(n, α − 1, d) · η(α, d, k). From Observation 10.4.1, we
conclude that the number of k-cuts inD is at most 1+Nk(n, α−1, d)·η(α, k, d)·n.

Proof of Partitioning Lemma. We start by a lemma that gives an upper bound
on the size of a digraph in Dα when every vertex has small out-degree.

Lemma 10.4.2. For any digraph D ∈ Dα and a positive integer k, if for all v ∈
V (D), d+(v) ≤ k, then |V (D)| ≤ α(2k + 1).

Proof. Let |V (D)| = n. We will first prove that if D ∈ Dα, then there exists
v ∈ V (D) such that d+(v) ≥ (n−α)

2α
. Since d+(v) ≤ k, for all v ∈ V (D), this implies

that (n−α)
2α
≤ k, thereby implying that n ≤ α(2k + 1).

To prove the above-mentioned claim, we invoke Turan’s Theorem ([76]), which
states that for any graph G and integer r, if G does not contain a clique of size r+1,
then |E(G)| ≤ (1− 1

r
) · |V (G)|2

2
. Let G be the underlying undirected graph of D. Let

Ḡ be the complement graph of G. Since D ∈ Dα, Ḡ does not contain a clique of size

175

α+ 1. Thus, by Turan’s Theorem, |E(Ḡ)| ≤ (1− 1
α

) · n2

2
. Since Ḡ is the complement

graph of G, |E(G)| ≥ n(n−1)
2
− (1 − 1

α
) · n2

2
≥ (n2−nα)

2α
. Since G is the underlying

undirected graph of D, |E(D)| ≥ (n2−nα)
2α

. Since |E(D)| = ∑v∈V (D) d
+(v) ≥ (n2−nα)

2α
,

there exists v ∈ V (D), such that d+(v) ≥ (n−α)
2α

.

Intuitive Ideas for the proof Lemma 10.4.1. Let us begin by recalling that
(v1, . . . , vn) is a d-out-degeneracy sequence of D. Also recall that, the aim of proving
Lemma 10.4.1 is to be able to use it to bound the number of k-cuts in D of type-i.
Consider any k-cut in D of type-i. By definition, vi ∈ L and for all j > i, vj ∈ R.
Thus, vi ∈ VforceL and {vj | j > i} ⊆ VforceR. Thus, to prove Lemma 10.4.1, we
essentially need to partition the vertices that appear before vi in (v1, . . . , vn). Con-
sider the non-neighbors of vi. They induce a digraph whose independence number
is strictly less than the independence number of D. Thus, they go to Vinduct. Thus,
we are now left with the goal of partitioning the set of neighbors of vi that appear
before vi in (v1, . . . , vn). Since (v1, . . . , vn) is a d-out-degeneracy sequence of D, the
number of out-neighbors of vi that appear before vi in (v1, . . . , vn) is at most d.
This set of neighbors goes to the set Vsmall. Finally, we are left with the set, say
X, of vertices that appear before vi in (v1, . . . , vn) and are in-neighbors of vi. Here,
we observe that, if any vertex v ∈ X has out-degree at least k + 1 in D[X], then
there are at least k + 1 arc-disjoint paths from v to vi in D[X ∪ {vi}], and hence
in D. Thus, such a vertex v should always belong to same part as vi in any k-cut.
Thus, such vertices goes to VforceL. Finally, the remaining vertex set, say X ′, has
the property that each vertex in X has out-degree at most k. By Lemma 10.4.2, in
such a case the size of X ′ is at most α(2k + 1), and hence X ′ goes to Vsmall. We are
now ready to prove Lemma 10.4.1 formally.

Proof of Lemma 10.4.1. Let (v1, . . . , vn) be a d-out-degeneracy sequence of D. Con-
sider the partition of V (D) into three parts: {vi}, the predecessors of vi in this or-
dering, VP and the successors of vi in this ordering VS. Formally, consider V (D) =

{vi}] VP] VS, where VP = {vj : j < i} and VS = {vj : j > i}. Further con-
sider the partition of VP into the set of vertices of VP that are neighbors of vi, say
V N
P , and the set of vertices of VP that are non-neighbors of vi, say V NN

P . That is,
V (P) = V N

P] V NN
P . Next consider the partition of V N

P into two parts: V ON
P and

V IN
P such that V ON

P is the set of vertices in V N
P that are out-neighbors of vi and V IN

P

is the set of vertices in V N
P that are in-neighbors of vi. Finally, consider the digraph

induced on V IN
P . We partition the set V IN

P based on the out-degree of the vertices
in D′ = D[V IN

P ∪ {vi}]. We partition the set V IN
P into two parts: V IN

P,L and V IN
P,S , in

the following way. If d+
D′(v) ≥ k+ 1, v ∈ V IN

P,L , otherwise v ∈ V IN
P,S . Observe that, for

176

vi

Vinduct VforceL

VforceR Vsmall

Figure 10.2: The vertex partition for the Sub-exponential FPT bound. Here the
vertices are arranged in the linear order respecting the d-out-degeneracy sequence
of D. Here k = 2 and the partition of the vertices into the respective sets is
demonstrated using appropriate colors.

each v ∈ V IN
P,S , d

+
D′′(v) ≤ k, where D′′ = D[V IN

P,S ∪ {vi}]. We have the following from
the above discussion.

V (D) = {vi}] VP] VS = {vi}] V N
P] V NN

P] VS = {vi}] V ON
P] V IN

P] V NN
P] VS

= {vi}] V ON
P] V IN

P,L] V IN
P,S] V NN

P] VS.

We now claim that the desired partition V (D) = Vinduct] VforceL] VforceR] Vsmall

is such that, (1) Vinduct = V NN
P , (2) VforceL = {vi} ∪ V IN

P,L , (3) VforceR = VS, and (4)

Vsmall = V ON
P ∪ V IN

P,S . An illustration depicting this partitioning can be found in
Figure 10.2. Let us now prove that the sets Vinduct, VforceL, VforceR and Vsmall satisfy
the desired properties.

1. Vinduct: Observe that when α = 1, that is, when D is a tournament, V NN
P = ∅.

Therefore, in this case, Vinduct = ∅. Otherwise, since D[Vinduct] is a subgraph
of D and D ∈ Dα,d, D[Vinduct] ∈ Dα,d. Since Vinduct only contains vertices that
are non-neighbors of vi, if D[Vinduct] has an independent set, say X, of size
α then X ∪ {vi} is an independent set in D of size α + 1, which contradicts
the fact that the size of any independent set in D is bounded by α. Thus,
D[Vinduct] ∈ Dα′,d, where α′ < α.

2. VforceL: By the definition of a type-i cut, for any k-cut (L,R) of type-i in D,
vi ∈ L. We will now show that for any vj ∈ V IN

P,L , there exists k+1 arc-disjoint
paths from vj to vi. Thus, if (L,R) is a k-cut in D and vi ∈ L, then for all
vj ∈ V IN

P,L , vj ∈ L. Consider any vj ∈ V IN
P,L . Recall that d

+
D′(vj) ≥ k + 1 where

D′ = D[V IN
P ∪ {vi}] and V IN

P is the set of in-neighbors of vi in VP . Consider
the set of out-neighbours of vj in D′. Since the number of such out-neighbors

177

is at least k + 1 and each of these out-neighbors is an in-neighbor of vi, we
conclude that there are at least k + 1 arc-disjoint paths from vj to vi.

3. VforceR: By the definition of type-i cut, VS ⊆ R, for any type-i cut (L,R).

4. Vsmall: Since (v1, . . . , vn) is a d-out-degeneracy sequence of D, |V NO
P | ≤ d. We

need to show that |V IN
P,S | ≤ α(2k+1). Recall that, as observed before, for each

v ∈ V IN
P,S , d

+
D′′(v) ≤ k, where D′′ = D[V IN

P,S ∪ {vi}]. Since D′′ is an induced
subgraph of D, D′′ ∈ Dα,d. Also for each v ∈ V (D′′), d+

D′′(v) ≤ k. Thus, from
Lemma 10.4.2, |V (D′′)| ≤ α(2k + 1). This proves that |V IN

P,S | ≤ α(2k + 1).

This concludes the proof.

10.5 Sub-Exponential FPT Algorithms for DFAS,

Directed Cutwidth and OLA for Digraphs

in Dα

In this section, we will give sub-exponential FPT algorithms for DFAS, Directed

Cutwidth and Optimal Linear Arrangement when the input graph belongs
to Dα, for some positive integer α. All these algorithms are based on a three step
procedure. The first is observing that the digraphs that are Yesinstances of these
problems have sub-exponential FPT many k-cuts. The proofs for DFAS and Di-

rected Cutwidth are based on showing that the digraph in the Yes instances of
the problems are k-out-degenerate, and hence, the bounds follow from Lemma 10.1.2.
For OLA, we show that if there is an ordering of the vertex set of a digraph of cost
at most k then the cutwidth of this digraph is O(k2/3). Hence, from the results
for Directed Cutwidth, the number of k-cuts in the Yes instances of OLA is
also bounded. The second step is a procedure to enumerate all k-cuts of the in-
put digraph. And the third is to do some dynamic programming procedure over
these enumerated cuts to solve the respective problems. The last part of the algo-
rithm (doing dynamic programming over k-cuts) is standard and is identical to the
algorithm given by Fomin and Pilipczuk [102]. Proofs are given for completeness.

Before proceeding further, we make a small remark that the proofs of Lemma 10.1.1
and 10.1.2 can be made constructive by using the constructive versions of the Gallai-
Milgram’s Theorem, Chromatic Coding lemma and a polynomial time procedure to
output a d-out-degeneracy sequence of a digraph. Thus, one can actually enumerate

178

all the k-cuts in the input digraphs of these Lemmas using our algorithm. How-
ever, for the sake of completeness, we state in Lemma 10.5.1, a different procedure
that using a standard branching, enumerates all the k-cuts in any digraph with
polynomial delay.

Lemma 10.5.1 (Lemma 7, [102]). k-cuts of a digraph D can be enumerated with
polynomial-time delay.

10.5.1 Sub-Exponential Algorithm for DFAS

Let (D, k) be an instance of DFAS. Any solution S to this instance is called a dfas of
D. Observe that, a digraph D has a dfas of size at most k if and only if there exists
an ordering, say (v1, . . . , vn), of V (D) such that |∑i∈[n] N

+(vi) ∩ {vj | j < i}| ≤ k,
that is, the number of backward arcs in this ordering is at most k. Below we bound
the number of k-cuts in the Yes instances of DFAS.

Lemma 10.5.2. If (D, k) is a Yes instance of DFAS and D ∈ Dα, then the number
of k-cuts in D is at most 2c(α+1)

√
k log k · 22α(α+1)d

√
ke log((k(2α+1)+α+1)) · log(k + α(2k +

1)) · nα+1, where c is a fixed absolute constant.

Proof. Since (D, k) is a Yes instance of DFAS, there exists an ordering, say (v1, . . . , vn),
of V (D), such that |∑i∈[n] N

+(vi)∩ {vj | j < i}| ≤ k. In particular, for any i ∈ [n],
|N+(vi) ∩ {vj | j < i}| ≤ k. Thus, (v1, . . . , vn) is a k-out-degeneracy sequence of
V (D). Therefore, the bound follows from Lemma 10.1.2.

Now we give the proof of Theorem 10.0.1.

Proof of Theorem 10.0.1. Using the algorithm of Lemma 10.5.1, we enumerate all
k-cuts in D. If during the enumeration we exceed the bound given in Lemma 10.5.2,
then we correctly conclude that (D, k) is a No instance of DFAS. Otherwise, from
Lemma 10.5.1, in time 2O(α2

√
k log(αk)) ·nO(α), we would have enumerated the set of all

k-cuts in D. Let us denote this set by C. We will solve the DFAS problem by doing a
dynamic programming over the set C of k-cuts. Let T be the dynamic programming
table indexed by a k-cut (L,R) ∈ C and an integer i ∈ [k]. For any (L,R) ∈ C and
i ∈ [k], we want T ((L,R), i) to store the following information.

179

T ((L,R), i) =

1 if there exists an ordering (v1, . . . , v`) of L

witnessing that D[L] has a dfas of size i, and

(L \ {v`}, R ∪ {v`}) ∈ C
0 otherwise

Note that T ((V (D), ∅), k) = 1 if and only if D has a dfas of size at most k. We
now describe how we compute T ((L,R), i), for any (L,R) ∈ C and i ∈ [k]. For all
i ∈ [k], T ((∅, V (D)), i) = 1. For any (L,R) ∈ C, such that L 6= ∅, and any i ∈ [k],
T ((L,R), i) = 1 if and only if there exists v ∈ L such that (L \ {v}, R ∪ {v}) ∈ C
and, if |N+

L (v)| = j, then T ((L \ {v}, R ∪ {v}), i− j) = 1.

We now prove that for any (L,R) ∈ C and i ∈ [k], T ((L,R), i) = 1 if and only
if there exists an ordering (v1, . . . , v`) of L witnessing that D[L] has a dfas of size i,
and (L \ {v`}, R∪{v`}) ∈ C. We prove this by induction on |L|. When |L| = 0, this
is true because of the base case. By inductive hypothesis, assume that it holds for
any (L′, R′) ∈ C such that |L′| = `−1, and for any i ∈ [k]. We will first prove that if
T ((L,R), i) = 1, then there exists an ordering (v1, . . . , v`) of L witnessing that D[L]

has a dfas of size i, and (L \ {v`}, R ∪ {v`}) ∈ C.

Since T ((L,R), i) = 1, there exists a vertex, say v` ∈ L, such that (L \ {v`}, R ∪
{v`}) ∈ C and if |N+

L (v`)| = j then T ((L \ {v`}, R ∪ {v`}), i − j) = 1. Since
T ((L \ {v`}, R ∪ {v`}), i− j) = 1, from induction hypothesis, D[L \ {v`}] has a dfas
of size at most i−j. Let (v1, . . . , v`−1) be the ordering of L\{v`} witnessing this, that
is,
∑

p∈[`−1] |N+(vp)∩{vq | q < p}| ≤ i−j. Since |N+
L (v`)| = j,

∑
p∈[`] |N+(vp)∩{vq |

q < p}| ≤ i. Thus, the ordering (v1, . . . , v`−1, v`) is a witness to the fact that D[L]

has a dfas of size at most i.

We will now prove that if D[L] has a dfas of size at most i and (v1, . . . , v`) is an
ordering witnessing this such that (L \ {v`}, R ∪ {v`}) ∈ C, then T ((L,R), i) = 1.
Clearly, if |N+(v`)| = j, then the ordering (v1, . . . , v`−1) witnesses that D[L \ {v`}]
has a dfas of size at most i− j. Thus, T ((L \ {v`}, R ∪ {v`}), i− j) = 1.

180

10.5.2 Sub-Exponential Algorithm for Directed Cutwidth

LetD be a digraph. For an ordering (v1, . . . , vn) of V (D), the width of this ordering is
maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|. The cutwidth of D, denoted by ctw(D),
is the smallest possible width of an ordering of V (D).

Directed Cutwidth Parameter: k
Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

Next we bound the number of k-cuts in the Yes instances of DFAS.

Lemma 10.5.3. If (D, k) is a Yes instance of Directed Cutwidth and D ∈ Dα,
then the number of k-cuts in D is at most 2c(α+1)

√
k log k ·22α(α+1)d

√
ke log((k(2α+1)+α+1)) ·

log(k + α(2k + 1)) · nα+1, where c is a fixed absolute constant.

Proof. If (D, k) is a Yes instance of DFAS, then there is an ordering, say (v1, . . . ,

vn), of V (D) of width at most k. Recall that, the width of an ordering (v1, . . . , vn) is
maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|. Observe that if maxi∈[n−1] |E({v1, . . . , vi},
{vi+1, . . . , vn})| ≤ k, then for each i ∈ [n], |N+(vi) ∩ {vj : j < i}| ≤ k. Thus, D is
k-out-degenerate. Thus, the bound follows from Lemma 10.1.2.

Now we give the proof of Theorem 10.0.2.

Proof of Theorem 10.0.2. Using the algorithm of Lemma 10.5.1, we enumerate all
k-cuts in D. If during the enumeration we exceed the bound given in Lemma 10.5.3,
then we correctly conclude that (D, k) is a No instance of Directed Cutwidth.
Otherwise, from Lemma 10.5.1, in time 2O(α2

√
k log(αk)) · nO(α), we would have enu-

merated the set of all k-cuts in D. Let us denote this set by C. We will solve the
Directed Cutwidth problem by doing a dynamic programming over the set C
of k-cuts. Let T be the dynamic programming table indexed by a k-cut (L,R) ∈ C.
For any (L,R) ∈ C, we want T ((L,R)) to store the following information.

T ((L,R)) =

1 if there exists an ordering of L, say (v1, . . . , v`),

such that for all j ∈ [`− 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k

0 otherwise

181

Note that T ((V (D), ∅)) = 1 if and only if ctw(D) ≤ k. We now describe
how we compute T ((L,R)) for any (L,R) ∈ C. Set T ((∅, V (D))) = 1. For any
(L,R) ∈ C such that L 6= ∅, T ((L,R)) = 1 if and only if there exists v ∈ L such
that (L \ {v}, R ∪ {v}) ∈ C and T ((L \ {v}, R ∪ {v})) = 1.

We now prove that for any (L,R) ∈ C, T ((L,R)) = 1 if and only if there exists
an ordering of L, say (v1, . . . , v`), such that for all j ∈ [` − 1], |E({vj+1, . . . , vn},
{v1, . . . , vj})| ≤ k. We prove this by induction on |L|. When |L| = 0, this is true
because of the base case. By inductive hypothesis, assume that for any (L′, R′) ∈ C,
such that |L′| = ` − 1, T ((L′, R′)) = 1 if and only if there exists an ordering of L′,
say (v1, . . . , v`−1), such that for all j ∈ [`− 2], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k.
Let (L,R) ∈ C be such that |L| = `. We will first prove that if T ((L,R)) = 1,
then there exists an ordering of L, say (v1, . . . , v`), such that for all j ∈ [` − 1],
|E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k. Since T ((L,R)) = 1, there exists a vertex in
L, say v`, such that (L\{v`}, R∪{v`}) and T ((L\{v`}, R∪{v`})) = 1. Since T ((L\
{v`}, R∪{v`})) = 1, from inductive hypothesis, there exists an ordering of L \ {v`},
say (v1, . . . , v`−1), such that for all j ∈ [`− 2], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k.
Also, since (L \ {v`}, R ∪ {v`}) ∈ C, |E({v`, . . . , vn}, {v1, . . . , v`−1})| ≤ k. Thus, for
the ordering (v1, . . . , v`) of L, for all j ∈ [`−1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k.

We will now prove that if there exists an ordering of L, say (v1, . . . , v`), such
that for all j ∈ [` − 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k, then T ((L,R)) = 1.
Since |E({v`, . . . , vn}, {v1, . . . , v`−1})| ≤ k, (L\{v`}, R∪{v`}) ∈ C. Also, since for all
j ∈ [`−2], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k, therefore, T ((L\{v`}, R∪{v`})) = 1.
Thus, T ((L,R)) = 1. This concludes the proof.

10.5.3 Sub-Exponential Algorithm for OLA

Let D be a digraph. For an ordering σ = (v1, . . . , vn) of V (D), the cost of σ is

∑

(vi,vj)∈E(D)

(i− j) · [i > j],

that is, every arc directed backward in the ordering contributes a cost that is equal
to the length of this arc, which is the distance between the end-points of this arc in
the ordering. Recall that [i > j], evaluates to 1 if i > j, to 0 otherwise.

182

Optimal Linear Arrangement (OLA) Parameter: k
Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

The following proposition gives an alternate definition of the cost of an ordering.

Proposition 10.5.1 ([102]). For a digraph D and an ordering (v1, . . . , vn) of V (D),
the cost of this ordering is equal to

∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|.

Lemma 10.5.4 shows a relation between the cost of an ordering and its width.
Note that this lemma was already proved in [102], but the authors state the result
for the case when the input digraph is a semi-complete digraph. We observe that
the same proof works for any digraph. For the sake of completeness, we give the
same proof here.

Lemma 10.5.4. For any digraph D, if there is an ordering say (v1, . . . , vn) of V (D),
of cost at most k, then ctw(D) ≤ (2k)

2
3 .

Proof. Since (v1, . . . , vn) is an ordering of cost at most k, from Proposition 10.5.1,∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})| ≤ k. Fix an arbitrary i ∈ [n − 1]. We will

show that |E({vi+1, . . . , vn}, {v1, . . . , vi})| ≤ (2k)
2
3 . Let |E({vi+1, . . . , vn},

{v1, . . . , vi})| = `. For any arc (vp, vq) ∈ E(D), such that p < q, the length of the
arc (vp, vq) is equal to q − p. Observe that, for any r, the number of arcs of length
exactly r with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi} is at most r. Thus,
for any r, the total number of arcs of length at most r, with tail in {vi+1, . . . , vn}
and head in {v1, . . . , vi}, is at most r(r+1)

2
. In particular, the number of arcs of

length at most
√
` − 1, with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi} is at

most
√
`(
√
`−1)

2
≤ `

2
. Since |E({vi+1, . . . , vn}, {v1, . . . , vi})| = `, the number of arcs of

length at least
√
` with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi} is at least `

2
.

Since
∑

i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})| ≤ k, we have that k ≥
√
` · `

2
. Thus,

` ≤ (2k)
2
3 .

Next we bound the number of k-cuts in the Yes instances of OLA.

Lemma 10.5.5. If (D, k) is a Yes instance of OLA and D ∈ Dα, then the number
of k-cuts in D is at most 2c(α+1)k

1
3 log k · 22α(α+1)dk 1

3 e log((k(2α+1)+α+1)) · log(k + α(2k +

1)) · nα+1, where c is a fixed absolute constant.

183

Proof. Since D is a Yes instance of OLA, from Lemma 10.5.4, ctw(D) ≤ (2k)
2
3 .

Thus, (D, (2k)
2
3) is a Yesinstance of Directed Cutwidth. Hence, from Lemma 10.5.3,

the number of k-cuts in D are bounded by the desired function.

Proof of Theorem 10.0.3. Using the algorithm of Lemma 10.5.1, we enumerate all
k-cuts in D. If during the enumeration we exceed the bound given in Lemma 10.5.5,
then we correctly conclude that (D, k) is a No instance of OLA. Otherwise, from
Lemma 10.5.1, in time 2O(α2k

1
3 log(αk)) · nO(α), we would have enumerated the set of

all k-cuts in D. Let us denote this set by C. We will solve OLA by doing a dynamic
programming over the set C of k-cuts. Let T be the dynamic programming table
indexed by a k-cut (L,R) ∈ C and an integer i ∈ [k]. For any (L,R) ∈ C and i ∈ [k],
we want T ((L,R), i) to store the following information.

T ((L,R), i) =

1 if there exists an ordering of L, say (v1, . . . , v`),

such that
∑

j∈[`] |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i

0 otherwise

Note that T ((V (D), ∅), k) = 1 if and only if D has an ordering of cost at most
k. We now describe how we compute T ((L,R), i) for any (L,R) ∈ C and i ∈ [k].
For all i ∈ [k], T ((∅, V (D)), i) = 1. For any (L,R) ∈ C such that L 6= ∅, and any
i ∈ [k], T ((L,R)) = 1 if and only if there exists v ∈ L such that (L \ {v`}, R∪ {v`})
and T ((L \ {v}, R ∪ {v}), i− j) = 1, where j = |E(R,L)|.

We now prove that for any (L,R) ∈ C and integer i ∈ [k], T ((L,R), i) =

1 if and only if there exists an ordering of L, say (v1, . . . , v`), such that
∑

j∈[`]

|E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i. We prove this by induction on |L|. When |L| =
0, this is true because of the base case. By inductive hypothesis, assume that for any
(L′, R′) ∈ C such that |L′| = `− 1, and for any p ∈ [k], T ((L′, R′), p) = 1 if and only
if there exists an ordering of L, say (v1, . . . , v`), such that

∑
j∈[`] |E({vj+1, . . . , vn},

{v1, . . . , vj})| ≤ i. Let (L,R) ∈ C be such that |L| = ` and i ∈ [k]. We will first
prove that if T ((L,R), i) = 1, then there exists an ordering of L, say (v1, . . . , v`),
such that

∑
j∈[`] |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i. Let j = |E(R,L)|. Since

T ((L,R), i) = 1, there exists a vertex in L, say v`, such that (L \ {v`}, R∪{v`}) ∈ C
and T ((L \ {v`}, R ∪ {v`}), i − j) = 1. From inductive hypothesis, there exists
an ordering of L \ {v`}, say (v1, . . . , v`−1), such that

∑
p∈[`−1] |E({vp+1, . . . , vn},

{v1, . . . , vp})| ≤ i− j. Since j = |E(R,L)|, for the ordering (v1, . . . , v`) of L,
∑

p∈[`]

184

|E({vp+1, . . . , vn}, {v1, . . . , vp})| ≤ i.

We will now prove that if there exists an ordering of L, say (v1, . . . , v`), such
that

∑
j∈[`] |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i, then T ((L,R), i) = 1. Observe

from the definition of this ordering (v1, . . . , v`) that (L \ {v`}, R ∪ {v`}) is an i-
cut in D. Since i ≤ k, (L \ {v`}, R ∪ {v`}) ∈ C. Clearly, if |E(R,L)| = j, then∑

p∈[`−1] |E({vp+1, . . . , vn}, {v1, . . . , vp})| ≤ i−j. Thus, T ((L\{v`}, R∪{v`}), i−j) =

1 implying that T ((L,R), i) = 1. This concludes the proof.

185

Chapter 11

Improved Sub-Exponential FPT
Algorithms for DFAS and DEOCT

on Bounded Independence Number
Digraphs

In this chapter, we improve the sub-exponential FPT algorithm for DFAS on bounded
independence number digraphs that was designed in Chapter 10 by omitting the
dependence of α (recall α is the size of the largest independent set in the input
digraph) from the exponent of n. We also design a sub-exponential FPT algorithm
for DEOCT on digraphs of bounded independence number. Formally, we prove the
following theorems.

Theorem 11.0.1. DFAS on Dα can be solved in 2f(α)
√
k log k · nO(1), where f(α) is

some function of α and n is the number of vertices in D.

Theorem 11.0.2. DEOCT on Dα admits an algorithm with running time 2O(f(α)
√
k log k)·

nO(1), where f(α) is a function of α and n is the number of vertices in D.

Recall from Chapter 10 that a k-cut of a digraph D is a partition of the vertex
set of D into two parts, V (D) = L] R, such that |E(R,L)| ≤ k. Also recall the
bound of Lemma 10.1.1 on the number of k-cuts in any digraph D ∈ Dα. Further,
the k-cuts in any digraph can be enumerated by polynomial delay (Lemma 10.5.1).

187

11.1 Improved Sub-Exponential FPT Algorithm for

DFAS on Dα.

A sub-exponential FPT algorithm for DFAS was presented in Chapter 10 with
running time 2α

2
√
k log (αk)nO(α). This algorithm is obtained by a dynamic program-

ming on the number of k-cuts in an input instance (D, k). The above running
time directly follows from the number of k-cuts in a digraph D ∈ Dα of bounded
out-degeneracy (Lemma 10.1.2). We can obtain a faster algorithm by first apply-
ing Theorem 3.1.1 to the input instance (D, k) to obtain a kernel (D′, k′), and
then applying Lemma 10.1.1 to (D′, k′). This procedure gives a running time of
2O(f(α)

√
k log k) · nO(1) for some function f , of α), thereby proving Theorem 11.0.1.

11.2 Sub-Exponential FPT Algorithm for DEOCT

on Dα

In this section, we prove Theorem 11.0.2.

Theorem 11.0.2. DEOCT on Dα admits an algorithm with running time 2O(f(α)
√
k log k)·

nO(1), where f(α) is a function of α and n is the number of vertices in D.

Our approach is similar to the design of algorithms in Chapter 10, but requires
some additional work to handle the even cycles that remain after removing a solution.

For a digraph D, let us define a γ-vertex sequence of D as a sequence of vertex
sets of D say (C1, . . . , Ct), such that,

1. for all i, j ∈ [t], i 6= j, Ci ∩ Cj = ∅ and C1] . . .] Ct = V (D), and

2. for all i ∈ [t], |Ci| ≤ γ,

For any subset Ci ⊆ V (D), deoct(Ci) denotes the size of the minimum de-
oct of D[Ci]. The cost of a γ-vertex sequence (C1, . . . , Ct) of D is defined as∑

i∈[t]deoct(Ci) + |{(u, v) : (u, v) ∈ E(D), u ∈ Cj, v ∈ Ci, j > i}|. For the rest
of the section, fix γ = α +

√
α2 + 8αk.

Lemma 11.2.1. Let D ∈ Dα. For any positive integer k, (D, k) is Yes instance of
DEOCT if and only if there exists a γ-vertex sequence of D of cost at most k.

188

Proof. For the forward direction, let (D, k) be a Yes instance of DEOCT. Let S
be a deoct of D of size at most k. Consider the digraph D − S. Note that the
vertex set of D − S is the same as the vertex set of D. Let (C1, . . . , Ct) be the
topological ordering of the strongly connected components of D−S, that is, each Ci
is a strongly connected component of D − S and if there exists (u, v) ∈ E(D − S),
such that u ∈ Cj and v ∈ Ci, then j > i. We will now show that (C1, . . . , Ct) is a
γ-vertex sequence of D of cost at most k. First observe that C1] . . . Ct = V (D).
We will now show that for each i ∈ [t], |Ci| ≤ γ and cost of (C1, . . . , Ct) is at most
k.

Claim 11.2.1. For any i ∈ [t], |Ci| ≤ γ.

Proof. Since Ci is a strongly connected component of D − S and S is a deoct of D,
from Proposition 4.4.1 Ci is a bipartite graph in D−S. Let (Ai, Bi) be a bipartition
of Ci. We will now show that |Ai|, |Bi| ≤ γ

2
. This will prove the claim. Let us

argue that |Ai| ≤ γ
2
, the other case is symmetric. Since D[Ai] is a subgraph of D,

D[Ai] ∈ Dα. Thus, from Lemma 3.3.1, E(D[Ai]) ≥ |Ai|2
2α
− |Ai|

2
. Since, Ai is an

independent set in D − S, |S| ≥ E(D[Ai]) ≥ |Ai|2
2α
− |Ai|

2
. Then if |Ai| > γ

2
, the we

have that |S| > k, which is a contradiction. The same argument holds for Bi too.
Thus, we conclude that |Ci| ≤ γ.

Claim 11.2.2. The cost of (C1, . . . , Ct) is at most k.

Proof. To show this, we will prove that the cost of (C1, . . . , Ct) is at most |S|. Recall
that cost of (C1, . . . , Ct) is

∑
i∈[t]deoct(Ci) + |{(u, v) : (u, v) ∈ E(D), u ∈ Cj, v ∈

Ci, j > i}|. Let us denote Eback = {(u, v) : (u, v) ∈ E(D), u ∈ Cj, v ∈ Ci, j > i}.
Since (C1, . . . , Ct) is a topological ordering of the strongly connected components of
D − S, Eback ⊆ S. Also, for any i ∈ [t], |deoct(Ci)| ≤ |S ∩ E(D[Ci])|. Thus, cost of
(C1, . . . , Ct) is at most |S|.

Claims 11.2.1 and 11.2.2 prove the forward direction of the lemma. We now
prove the backward direction. Let (C1, . . . , Ct) be a γ-vertex sequence of D of cost
at most k. Let Eback = {(u, v) : (u, v) ∈ E(D), u ∈ Cj, v ∈ Ci, j > i}. We will now
show that S = ∪i∈[t]deoct(Ci)∪Eback is a deoct of D. Observe that |S| is equal to the
cost of (C1, . . . , Ct). Suppose S is not a deoct of D. Then there exists an odd cycle
in D−S. Since, for all i ∈ [t], deoct(Ci) ⊆ S, such a cycle cannot be fully contained
in any Ci. Therefore, there exists an arc of this cycle, say (u, v), such that u ∈ Cj
and v ∈ Ci, j > i. This violates that Eback ⊆ S.

189

Let (D, k) be the input instance of DEOCT. The algorithm of Theorem 11.0.2
applies the kernelization algorithm of Theorem 4.2.1 to obtain an equivalent instance
(D′, k′). This is followed by a dynamic programming procedure over the k′-cuts in
D′ to obtain a γ-vertex sequence of D′ of cost at most k.

Proof of Theorem 11.0.2. We will solve DEOCT by doing a dynamic pro-
gramming over the set C of k-cuts. Let (D, k) be the input instance. Apply the
kernelization algorithm of Theorem 4.2.1 to obtain an equivalent instance (D′, k′)

where the number of vertices in D′ is kf(α). Since (D′, k′) is equivalent to (D, k),
it is enough to solve the problem on (D′, k′). For ease of notation, we will denote
(D′, k′) by (D, k).

From Lemma 10.1.1, the number of k-cuts in D is at most η = 2c
′√k log k · (kf(α) +

1)2αd
√
ke · log k, where c′ is a fixed absolute constant. From Lemma 10.5.1, all these

k-cuts can be enumerated in η · kO(1) time. Let us denote by C, the set of k-cuts of
D.

Let T denote the dynamic programming table indexed by cuts in and integers
{0, . . . , k}. For any k-cut (L,R) ∈ C and i ∈ {0, . . . , k}, we T ((L,R), i) is defined
as follows.

T ((L,R), i) =

1 if there exists a γ-vertex sequence (C1, . . . , C`) of D[L]

of cost at most i, and (L \ {C`}, R ∪ {C`}) ∈ C
0 otherwise

Note that T ((V (D), ∅), k) = 1 if and only if D has a deoct of size at most k. This
follows from Lemma 11.2.1.

We now describe how we compute T ((L,R), i), for any (L,R) ∈ C and i ∈ [k].
For all i ∈ [k], T ((∅, V (D)), i) = 1. For any (L,R) ∈ C, such that L 6= ∅, and any
i ∈ [k], T ((L,R), i) = 1 if and only if the following holds: there exists C ⊆ L such
that (L\C,R∪C) ∈ C, and T ((L\C,R∪C), i−j) = 1 where j =deoct(C)+|{(u, v) :

u ∈ C, v ∈ L \ C}|. Observe that the above describes a recursive procedure that
computes all entries in T in time 2c

∗f(α)
√
k log k where c∗ is an absolute constant. In

total the running time of our algorithm is 2cf(α)
√
k log k · nO(1) where c is an absolute

constant.

It only remains to prove the correctness of the above procedure. We now prove
that for any (L,R) ∈ C and i ∈ [k], T ((L,R), i) = 1 if and only if there exists a γ-

190

vertex sequence (C1, . . . , C`) of D[L] of cost at most i, and (L\{C`}, R∪{C`}) ∈ C.
We prove this by induction on |L|. When |L| = 0, this is true because of the base
case.

In the forward direction, we will show that if T ((L,R), i) = 1 then there exists a
γ-vertex sequence (C1, . . . , C`) ofD[L] of cost at most i, and (L\{C`}, R∪{C`}) ∈ C.
In the above procedure for computing the table T , we set T ((L,R), i) = 1 only if
there exists C` ⊆ L, such that (L\{C`}, R∪{C`}) ∈ C and T ((L\C,R∪C), i−j) = 1

where j = deoct(C) + |{(u, v) : u ∈ C, v ∈ L \C}|. Since T ((L \ {C`}, R∪{C`}), i−
j) = 1, by the induction hypothesis, D[L \ {C`}] has a γ-vertex sequence of cost at
most i−j. Let (C1, . . . , C`−1) be the ordering of L\{C`} witnessing this, that is, cost
of this ordering is at most i−j. Since deoct(C)+|{(u, v) : u ∈ C, v ∈ L\C}| = j, the
cost of (C1, . . . , C`) is at most i. Thus, the (C1, . . . , C`−1, C`) is a γ-vertex sequence
of D[L] of cost at most i.

In the reverse direction, we will show that if D[L] has a γ-vertex sequence of cost
at most i and (L \ {C`}, R ∪ {C`}) ∈ C, then T ((L,R), i) = 1. Let (C1, . . . , C`) be
a γ-vertex sequence in D[L] of cost at most i such that (L \ {C`}, R ∪ {C`}) ∈ C.
Let j =deoct(C) + |{(u, v) : u ∈ C, v ∈ L \ C}|. Then the sequence (C1, . . . , C`−1)

is a γ-vertex sequence of D[L \ {C`}] of cost at most i− j. Thus, T ((L \ {C`}, R ∪
{C`}), i− j) = 1. Then it follows that our recursive procedure sets T ((L,R), i) = 1.
This concludes the proof.

191

Chapter 12

Balanced Judicious Bipartition is
FPT

More than twenty years ago, Bollobás and Scott [25] defined the notion of judicious
partitioning problems. Since then, the family of judicious partitioning problems has
been extensively studied in the field of Extremal Combinatorics, as can be evidenced
by the abundance of structural results described in surveys such as [29, 191]. This
rich realm of problems aims to counterbalance the objectives of classical partitioning
problems such as Min Cut, Min Bisection, Max Cut and Max Bisection.
While these classical problems focus solely on the minimization/maximization of the
number of edges crossing the cut (or alternately, the total number of edges inside the
parts of the partition), judicious (bi)partitioning problems ask the natural questions
of the minimization/maximization of the number of edges lying inside each part of
the partition simultaneously. Another significant feature of judicious partitioning
problems that also distinguishes them from other classical partitioning problems is
that they inherently and naturally encompass several objectives, aiming to minimize
(or maximize) the number of edges in several sets simultaneously.

In this chapter, we shed light on properties of judicious partitioning problems
from the viewpoint of the design of algorithms. Up until now, the study of such
problems has essentially been overlooked at the algorithmic front, where one of the
underlying reasons for this discrepancy might be that standard machinery does not
seem to handle them effectively. Specifically, we focus on the Judicious Bipar-

tition problem, where we seek a bipartition that is “judicious” in the sense that
neither side has too many edges that lie entirely inside it, and on the Balanced

Judicious Bipartition problem, where we also require that the sizes of the sides

195

themselves are “balanced” in the sense that the number of vertices in both the parts
are almost same. Both of these problems were defined in the work by Bollobás
and Scott, and have received notable scientific attention since then. Formally, Bal-

anced Judicious Partition is defined as follows.

Balanced Judicious Bipartition (BJB) Parameter: k1 + k2

Input: A multigraph G, and integers µ, k1 and k2

Question: Does there exist a partition (V1, V2) of V (G) such that |V1| = µ and
for all i ∈ {1, 2}, it holds that |E(G[Vi])| ≤ ki?

We note that in the literature, the term BJB refers to the case where µ =

d |V (G)|
2
e, and hence it is more restricted then the definition above. By dropping

the requirement that |V1| = µ, we get the Judicious Bipartition (JB) problem.
By using new crucial insights into these problems on top of the most advanced
machinery in Parameterized Complexity to handle partitioning problems,1 we are
able to resolve the question of the Parameterized Complexity of BJB (and hence
also of JB). In particular, we prove the following theorem.

Theorem 12.0.1. BJB can be solved in time 2k
O(1) · |V (G)|O(1).

Structural Results. Denote n = |V (G)| and m = |E(G)|. To survey several
structural results about judicious partitioning problems, we first define the notions
of t-cut and max (min) t-judicious partitioning. Given a partition of V (G) into t
parts, a t-cut is the number of edges going across the parts, while a max (min)
judicious t-partitioning is the maximum (minimum) number of edges in any of the
parts. When t = 2, we use the standard terms bipartite-cut and judicious bipartition-
ing, respectively. Furthermore, by t-judicious partitioning we mean max t-judicious
partitioning. As stated earlier, Bollobás and Scott [25] defined the notion of ju-
dicious partitioning problems in 1993. In that paper, they showed that for any
positive integer t and graph G, we can partition V (G) into t sets, V1, . . . , Vt, so
that |E(G[Vi])| ≤ t

t+1
m for all i ∈ {1, . . . , t}. Bollobás and Scott also studied this

problem on graphs of maximum degree ∆, and showed that there exists a partition
of V (G) into t sets V1, . . . , Vt so that it simultaneously satisfies an upper bound and
a lower bound on the number of edges in each part as well as on edges between every
pair of parts. Later, Bollobás and Scott [29] gave several new results concerning the
extremal bounds of the k-judicious partitioning problem, leaving open other new

1To the best of our knowledge, up until now, this machinery has actually only been proven
useful to solve one natural problem which could not have been tackled using earlier tools.

196

questions concerning the tightness of theirt bounds in general and special cases.
In [30] they showed an optimal bound for the number of edges inside a part for
the judicious partitioning problem on bounded-degree graphs. These problems have
also been studied on general hypergraphs [26], uniform hypergraphs [119], 3-uniform
hypergraphs [28] and directed graphs [138].

The special cases of judicious partitioning problems called judicious bipartition-
ing and balanced judicious bipartitioning problems have also been studied inten-
sively. Bollobás and Scott [27] proved an upper bound on judicious bipartitioning
and proved that every graph that achieves the essentially best known lower bound on
bipartite-cut, given by Edwards in [84] and [85], also achieves this upper bound for
judicious bipartitioning. In fact, they showed that this is exact for complete graphs
of odd order, which are the only extremal graphs without isolated vertices. Alon et
al. [6] gave a non-trivial connection between the size of a bipartite-cut in a graph
and judicious partitioning into two sets. In particular, they showed that if a graph
has a bipartite-cut of size at least m

2
+ δ where δ ≤ m/30, then there exists a bipar-

tition (V1, V2) of V (G) such that |E(G[Vi])| ≤ m
4
− δ

2
+ 10δ2

m
+ 3
√
m for i ∈ {1, 2}.

They complemented these results by showing an upper bound on the number of
edges in each part when δ > m/30. Bollobás and Scott [31] studied similar relations
between t-cuts and t-judicious partitionings for t ≥ 3. Recently, these results were
further refined [204, 151]. Xu et al. [203] and Xu and Yu [205] studied balanced
judicious bipartitioning where both parts are of almost equal size (that is, one of
the sizes is dn

2
e). Both of these papers concern the following conjecture of Bollobás

and Scott [29]: if G is a graph with minimum degree of at least 2, then V (G) admits
a balanced bipartition (V1, V2) such that for each i ∈ {1, 2}, |E(G[Vi])| ≤ m

3
. For

further results on judicious partitioning, we refer to the surveys [29, 191].

Algorithmic Results. While classical partitioning problems such as Min Cut,
Min Bisection, Max Cut and Max Bisection have been studied extensively
algorithmically, the same is not true about judicious partitioning problems. Apart
from Min Cut, all the above mentioned partitioning problems are NP-complete.
These NP-complete partitioning problems were investigated by all algorithmic paradigms
meant for coping with NP-completeness, including approximation algorithms and
parameterized complexity. In what follows, we discuss known results related to these
problems in the realm of parameterized complexity.

First, note that for every graph G, there always exists a bipartition of the vertex
set into two parts (in fact equal parts [116, Corollary 1]) such that at least m/2
edges are going across. This immediately implies that Max Cut and Max Bi-

197

section are FPT when parameterized by the cut size (the number of edges going
across the partition). This led Mahajan and Raman [153] to introduce the notion of
above-guarantee parameterization. In particular, they showed that one can decide
whether a graph has a bipartite-cut of size m

2
+ k in time O(m + n + k4k). How-

ever, Edwards [84] showed that every connected graph G has a bipartite-cut of size
m
2

+ n−1
4
. Thus, a more interesting question asks whether finding a bipartite-cut of

size at least m
2

+ n−1
4

+ k is FPT. Crowston et al. [64] showed that indeed this is
the case as they design an algorithm with running time O(8kn4). Recently, Etscheid
and Mnich [89] discovered a kernel with a linear number of vertices (improving upon
a kernel by Crowston et al. [63]), and the aforementioned algorithm was sped-up
to run in time O(8km) [89]. Gutin and Yeo studied an above-guarantee version of
Max Bisection [116], proving that finding a balanced bipartition such that it has
at least m

2
+ k edges is FPT (also see [166]).2 In this context Max Bisection, it is

also relevant to mention the (k, n− k)-Max Cut, which asks for a bipartite-cut of
size at least p where one of the sides is of size exactly k. Parameterized by k, this
problems is W[1]-hard [38], but parameterized by p, this problem is solvable in time
O∗(2p) [190] (this result improved upon algorithms given in [34, 194]).

Until recently, the parameterized complexity of Min Bisection was open. Ap-
proaches to tackle this problem materialized when the parameterized complexity of
`-Way Cut was resolved. Here, given a graph G and positive integers k and `, the
objective is to delete at most k edges from G such that it has at least ` components.
Kawarabayashi and Thorup [129] showed that this problem is FPT (parameterized
by k). Later, Chitnis et al. [55] developed a completely new tool based on this,
called randomized contractions, to deal with plethora of cut problems. Other cut
problems that have been shown to be FPT include the generalization of Min Cut to
Multiway Cut and Multicut [50, 156, 160]. Eventually, Cygan et al. [69], com-
bining ideas underlying the algorithms developed for Multiway Cut, Multicut,
`-Way Cut and randomized contractions together with a new kind of decompo-
sition, showed Min Bisection to be FPT. Finally, let us also mention the min
c-judicious partitioning (which is a maximization problem), called c-Load Color-

ing, where given a graph G and a positive integer k, the goal is to decide whether
V (G) can be partitioned into c parts so that each part has at least k edges. Barbero
et al. [13] showed that this problem is FPT (also see [115]).

Despite the abundance of work described above, the parameterized complexity
of JB and BJB has not yet been considered. We fill this gap in our studies by

2We refer to surveys [154, 117] for details regarding above-guarantee parameterizations.

198

showing that both of these problems are FPT. It is noteworthy to remark that one
can show that the generalization of Min Bisection to c-Min Bisection, where
the objective is to find a partition into c-parts such that each of the parts are of
almost the same size and there are at most k edges going across different parts,
is FPT [69]. However, such a generalization is not possible for either JB or BJB.
Indeed, even the existence of an algorithm with running time nf(k), for any arbitrary
function f , would imply a polynomial-time algorithm for 3-Coloring, where k is
set to 0.

Our Approach. For the sake of readability, our strategy of presentation of our
proof consists of the definition of a series of problems, each more “specialized” (in
some sense) than the previous one, where each section shows that to eventually solve
BJB, it is sufficient to focus on some such problem rather than the previous one.
We start by showing that we can focus on the solution of the case of BJB where
the input graph is bipartite at the cost of the addition of annotations. For this
purpose, we present a (not complicated) Turing reduction that employs a known
algorithm for the Odd Cycle Transversal problem (see Section 12.2). The
usefulness of the ability to assume that the input graph is bipartite is a key insight
in our approach. In particular, the technical parts of our proof crucially rely on
the observation that a connected bipartite graph has only two bipartitions (here,
we consider bipartitions as ordered pairs). Keeping this intuition in mind, our next
step is to reduce the current annotated problem to one where the input graph is
also assumed to be connected (this specific argument relies on a simple application
of dynamic programming).

Having at hand an (annotated) problem where the input graph is assumed to be
a connected bipartite graph, we proceed to the technical part of our proof, which
employs the (heavy) machinery developed by Cygan et al. [69]. While this machinery
primarily aims to tackle problems where one seeks small cuts in addition to some
size constraint, our problem involves a priori seemingly different type of constraints.
Nevertheless, we observe that once we handle a connected graph, the removal of
any set of k edges (to deal with the size constraint and annotations) would not
break the graph into more than k + 1 connected components, and each of these
components would clearly be a bipartite graph. Hence, we can view (in some sense)
our problem as a cut problem. In practice, the relation between our problem and
a cut problem is quite more intricate, and to realize our idea, we crucially rely on
the fact that the connected components are bipartite graphs, which allows us to
“guess” a binary vector specifying the biparition of their vertex sets in the final

199

solution. This operation entails the employment of coloring functions (employing
k+ 1 colors) and their translation into bipartitions (which at a certain point in this
chapter, we would start viewing as colorings employing two colors). Let us remark
that the machinery introduced by [69] is the computation of a special type of tree
decomposition. Accordingly, our approach would eventually involve the introduction
of a specialization of BJB that aims to capture the work to perform when handling
a bag of the tree decomposition. The definition of this specific problem is very
technical, and hence we defer the description of related intuitive explanations to the
appropriate locations in Section 12.4, where we have already set up the required
notations to discuss it.

12.1 Some Preliminaries

Bold face lowercase letters are used to denote tuples (vectors). For any tuple v, we
let v[i] denote the ith coordinate of v. Given some condition ψ, we define [ψ] = 1

if ψ is true and [ψ] = 0 otherwise.

A bipartite graph is a graph G such that there exists a bipartition (X, Y) of V (G)

where X and Y are independent sets. In this chapter, we treat such bipartitions
as ordered pairs. That is, if (X, Y) is a bipartition of some bipartite graph G,
then (Y,X) is assumed to be a different bipartition of the graph G. For connected
bipartite graphs, we have the following simple yet powerful insight.

Proposition 12.1.1 (Folklore). Any connected bipartite graph G has exactly 2 bi-
partitions, (X, Y) and (Y,X).

Let H be some hypergraph. A spanning forest of H is a subset E ′ ⊆ E(H) of
minimum size such that the hypergraph induced on E ′ has the same components
as H.

Unbreakability. A separation of a graph G is a pair (X, Y) such thatX, Y ⊆ V (G),
X ∪ Y = V (G) and there is no edge with one endpoint in X \ Y and the other in
Y \X. The order of a separation (X, Y) is equal to |X ∩ Y |.

Definition 12.1.1. Let G be a graph, A ⊆ V (G), and q, k ∈ N. The set A is said
to be (q, k)-unbreakable in G if for every separation (X, Y) of G of order at most k,
either |(X \ Y) ∩ A| ≤ q or |(Y \X) ∩ A| ≤ q.

We also define a notion of unbreakability in the context of functions.

200

Definition 12.1.2. A function g : U → [k]0 is called (q, k)-unbreakable if there
exists i ∈ [k]0 such that

∑
j∈[k]0\{i}

|g−1(j)| ≤ q.

Let us now claim that there do no exist “too many” (q, k)-unbreakable functions.

Lemma 12.1.1. For all q, k ∈ N, the number of (q, k)-unbreakable functions from

a universe U to [k]0 is upper bounded by
q∑
l=0

(|U |
l

)
· qk · (k + 1).

Proof. Let g : U → [k]0 be some (q, k)-unbreakable function. By the definition of a
(q, k)-unbreakable function, there exists i ∈ [k]0 such that

∑
j∈[k]0\i

|g−1(j)| ≤ q. There

are (k + 1) ways of choosing such an index i,
q∑
l=0

(|U |
l

)
ways of choosing at most q

elements that are not mapped to i, and at most qk ways of partitioning this set of at
most q elements into k parts. Thus, the total number of such functions g is upper

bounded by
q∑
l=0

(|U |
l

)
qk(k + 1).

12.2 Solving Balanced Judicious Bipartition

In this section, we prove Theorem 12.0.1 under the assumption that we are given an
algorithm for an annotated, yet restricted, variant of BJB. Throughout this section,
an instance of BJB is denoted by BJB(G, µ, k1, k2), and we define k = k1 + k2.
Given a partition (V1, V2) that witnesses that an instance BJB(G, µ, k1, k2) is a Yes

instance, we think of the vertices in V1 as colored 1 and the vertices in V2 as colored
2; hence, we call such a partition a witnessing coloring of BJB(G, µ, k1, k2). To
prove Theorem 12.0.1, we first define the Odd Cycle Transversal problem.
Here, given a graph G, a set S ⊆ V (G) is called an odd cycle transversal if G \ S is
a bipartite graph.

Odd Cycle Transversal (OCT) Parameter: k
Input: An undirected multigraph G, and an integer k.
Output: An odd cycle transversal of G of size at most k, if it exists, otherwise
report NO.

An instance of Odd Cycle Transversal is denoted by OCT(G, k). We say
OCT(G, k) is a No instance if there is no odd cycle transversal of G of size at most

201

k. The algorithm given by the result below shall be a central component in the
design of our algorithm for BJB.

Proposition 12.2.1 ([143]). Odd Cycle Transversal can be solved in time
2.3146knO(1).

Apart from OCT, we also need to define an auxiliary problem that we call An-

notated Bipartite-BJB (AB-BJB). As we proceed with our proofs, we shall
continue defining auxiliary problems, where each problem captures a task more spe-
cific and technically more challenging than the previous one. The choice of this
structure aims to ease the readability of this chapter. Intuitively, AB-BJB is basi-
cally the BJB problem on bipartite graphs, with an extra constraint that demands
that certain vertices are assigned a particular color by the witnessing coloring. We
remark that the necessity of the reduction to bipartite graphs stems from the fact
that we would like to employ Proposition 12.1.1 later. The formal definition of
AB-BJB is given below.

Annotated Bipartite-BJB (AB-BJB) Parameter: k1 + k2

Input: A bipartite multigraph G with bipartition (P,Q), A,B ⊆ V (G) such that
A ∩B = ∅, and integers µ, k1 and k2.
Question: Does there exist a partition (V1, V2) of V (G) such that A ⊆ V1,
B ⊆ V2, |V1| = µ and for i ∈ {1, 2}, |E(G[Vi])| ≤ ki?

An instance of AB-BJB is denoted by AB-BJB(G,A,B, µ, k1, k2). A partition
(V1, V2) satisfying the above properties is called a witnessing coloring of
AB-BJB(G,A,B, µ, k1, k2). Furthermore, we need the following theorem, proven
later in this chapter.

Theorem 12.2.1. AB-BJB can be solved in time 2k
O(1) · nO(1).

Let us now turn to focus on the proof of Theorem 12.0.1.

Proof of Theorem 12.0.1. Given an instance BJB(G, µ, k1, k2), call the algorithm
given by Proposition 12.2.1 with the instance OCT(G, k) as input (recall that k =

k1 + k2).

Claim 12.2.1. If OCT(G, k) is a No instance, then BJB(G, µ, k1, k2) is a
No instance.

202

P

G

F

S \ F

P
wF

xF

yF

zF

ExF

EyF

EwF

EzF

GF

QQ

Figure 12.1: The construction in the proof of Theorem 12.0.1.

Proof. Suppose BJB(G, µ, k1, k2) is a Yes instance. Let (V1, V2) be a witnessing
coloring for this instance. Let E ′ = E(G[V1])∪E(G[V2]). Then, observe that G \E ′
is a bipartite graph. Let V ′ be a set of vertices of minimum size such that every
edge in E ′ has at least one endpoint in V ′. Since |E ′| ≤ k, it holds that |V ′| ≤ k.
Moreover, G \ V ′ is bipartite. Therefore, V ′ is an odd cycle transversal of G of size
at most k. Thus, OCT(G, k) is a Yesinstance.

Henceforth, let S be an odd cycle transversal of G of size at most k. Then, G\S
is a bipartite graph. Fix some bipartition (P,Q) of G \ S. Let F be the family
of all subsets of S, that is, F = 2S. For any F ∈ F , denote lF1 = |E(G[F])| and
lF2 = |E(G[S \ F])|, and let GF be the graph constructed as follows (see Fig. 12.1).

• V (GF) = V (G \ S) ∪ {wF , xF , yF , zF}, where wF , xF , yF , zF are new distinct
vertices.

• E(GF) = E(G\S)∪EwF ∪ExF ∪EyF ∪EzF , where the multisets EwF , ExF , EyF
and EzF are defined as follows.

− for each edge (u, v) ∈ E(G), such that u ∈ F and v ∈ P , there is an edge
(wF , v) ∈ EwF ,

− for each edge (u, v) ∈ E(G), such that u ∈ F and v ∈ Q, there is an edge
(xF , v) ∈ ExF ,

− for each edge (u, v) ∈ E(G), such that u ∈ S and v ∈ Q, there is an edge
(yF , v) ∈ EyF ,

− for each edge (u, v) ∈ E(G), such that u ∈ S and v ∈ P , there is an edge
(zF , v) ∈ EzF .

Observe that GF is a bipartite graph with (P ∪ {xF , yF}, Q ∪ {wF , zF}) as a
bipartition.

203

Claim 12.2.2. BJB(G, µ, k1, k2) is a Yes instance if and only if there exists F ∈ F
such that AB-BJB(GF , {wF , xF}, {yF , zF}, µ − |F | + 2, k1 − lF1 , k2 − lF2) is a Yes-
instance.

Proof. In the forward direction, suppose that BJB(G, µ, k1, k2) is a Yes instance,
and let (V1, V2) be a witnessing coloring for BJB(G, µ, k1, k2). Moreover, let F = V1∩
S. Now, we define a partition (V ′1 , V

′
2) of V (GF) as follows: V ′1 = (V1 \S)∪{wF , xF}

and V ′2 = (V2 \S)∪{yF , zF}. Let us now argue that (V ′1 , V
′

2) is a witnessing coloring
for AB-BJB(GF , {wF , xF}, {yF , zF}, µ − |F | + 2, k1 − lF1 , k2 − lF2). First, by the
construction of (V ′1 , V

′
2), we have that {wF , xF} ⊆ V ′1 and {yF , zF} ⊆ V ′2 . Second,

as V ′1 = (V1 \ S) ∪ {wF , xF}, we also have that |V ′1 | = |V1| − |F | + 2 = µ + |F | + 2.
Third, observe that for any |E(G[V ′1])| = |E(G[V1])| − |E(G[F])| and |E(G[V ′2])| =

|E(G[V2])| − |E(G[S \ F])|. Thus, for i ∈ [2], |E(G[Vi])| ≤ ki − lFi .

In the backward direction, suppose that there exists an F ∈ F such that
AB-BJB(GF , {wF , xF}, {yF , zF}, µ − |F | + 2, k1 − lF1 , k2 − lF2) is a Yes instance,
and let (V ′1 , V

′
2) be a witnessing coloring for this instance. We now define a partition

(V1, V2) of V (G) as follows: V1 = (V ′1∩V (G))∪F and V2 = (V ′2∩V (G))∪(S\F). Let
us now argue that (V1, V2) is a witnessing coloring for BJB(G, µ, k1, k2). From the
definition of V1, and since V (G) = (V (GF)\{wF , xF , yF , zF})∪S and S∩V (GF) = ∅,
we have that |V1| = |V ′1 | − |{xF , yF}|+ |F | = µ− |F |+ 2− 2 + |F | = µ. Moreover,
observe that |E(G[V1])| = |E(G[V ′1])| + |E(G[F])| ≤ k1 + lF1 and |E(G[V2])| =

|E(G[V ′2])|+ |E(G[S \ F])| ≤ k2 + lF2 . This concludes the proof of the claim.

Thus, to solve an instance of BJB, it is enough to solve 2|S| ≤ 2k instances of
AB-BJB. Hence, by Theorem 12.2.1, BJB can be solved in time 2k

O(1)
nO(1).

12.3 Solving Annotated Bipartite-BJB

Recall the problem definition of Annotated Bipartite-BJB (AB-BJB) from
Section 12.2. In this section, we prove Theorem 12.2.1. For this purpose, let us define
another auxiliary problem, which we call Annotated Bipartite Connected-

BJB (ABC-BJB). Intuitively, ABC-BJB is exactly the same problem as AB-BJB

where we are interested in an answer for every choice of µ ∈ [n]0, l1 ∈ [k1]0 and
l2 ∈ [k2]0, and additionally we demand the input graph to be connected.

204

Annotated Bipartite Connected-BJB (ABC-BJB) Parameter: k1 + k2

Input: A connected bipartite multigraph G = (P,Q), A,B ⊆ V (G) such that
A ∩B = ∅, and integers k1 and k2.
Output: For all µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, output a binary value,
aJP[µ, l1, l2], which is 1 if and only if there exists a partition (V1, V2) of V (G) such
that

• A ⊆ V1 and B ⊆ V2,

• |V1| = µ, and

• for i ∈ {1, 2}, |E(G[Vi])| ≤ li.

For any µ ∈ [n]0, l1 ∈ [k1]0, l2 ∈ [k2]0, a partition witnessing that aJP[µ, l1, l2] = 1

is called a witnessing coloring for aJP[µ, l1, l2] = 1. Moreover, an instance of ABC-

BJB is denoted by ABC-BJB(G,A,B, k1, k2). In the rest of this chapter, we prove
the following theorem.

Theorem 12.3.1. ABC-BJB can be solved in time 2k
O(1) · nO(1).

Having Theorem 12.3.1 at hand, a simple application of the method of dynamic
programming results in the proof of Theorem 12.2.1.

Proof of Theorem 12.2.1. Let AB-BJB(G,A,B, µ, k1, k2) be an instance of
AB-BJB. Let C1, . . . , Cr be the connected components of G. For all i ∈ [r], let
Ai = A ∩ Ci and Bi = B ∩ Ci. Let Ii = ABC-BJB(Ci, Ai, Bi, k1, k2). Let aJPi be
the output table for the instance Ii, returned by the algorithm of Theorem 12.3.1.
For any j ∈ [r], let Gj = G[

⋃
i∈[j]

Ci]. Note that G = Gr. Let us define a 4-

dimensional binary table M in the following way. For all i ∈ [r], µ′ ∈ [|V (G)|]0,
l1 ∈ [k1]0 and l2 ∈ [k2]0, M[i, µ′, l1, l2] = 1 if and only if there exists a partition
(V1, V2) of V (Gi) such that (A ∩ Gi) ⊆ V1, (B ∩ Gi) ⊆ V2, |V1| = µ′ and for
j ∈ {1, 2}, |E(G[Vj])| ≤ lj. Observe that AB-BJB(G,A,B, µ, k1, k2) is a Yes-
instance if and only if M[r, µ, k1, k2] = 1. We now compute M[r, µ, k1, k2] recursively
using the following recurrences.

M[1, µ′, l1, l2] = aJP1(µ′, l1, l2)

205

For all i ∈ {2, . . . , r}, µ′ ∈ [|V (G)|]0, l1 ∈ [k1]0 and l2 ∈ [k2]0,

M[i, µ′, l1, l2] =
∨

µ′=µ1+µ2

l1=l11+l21
l2=l12+l22

(M[i− 1, µ1, l11, l
1
2] ∧ aJPi[µ2, l21, l

2
2]),

where for all j ∈ {1, 2}, µj, lj1 and lj2 are non-negative integers.

Note that the time taken to compute M[r, µ, k1, k2] is at most (r · n2 · k2
1 · k2

2 · τ),
where τ is the time taken to solve an instance of ABC-BJB. Since from Theorem
12.3.1, an instance of ABC-BJB can be solved in time 2k

O(1) · nO(1) and r ≤ n,
AB-BJB can be solved in time 2k

O(1) · nO(1).

12.4 Solving Annotated Bipartite Connected-

BJB

Recall the problem definition of ABC-BJB from Section 12.3. In this section, we
prove Theorem 12.3.1. Let us start by stating a known result that is a crucial
component of our proof. By this result, we would have an algorithm that efficiently
computes a special type of tree decomposition, that we call a highly connected tree
decomposition, where every bag is “highly-connected” rather than “small” as in the
case of standard tree decompositions. While this property is the main feature of
this decomposition, it is also equipped with other beneficial properties, such as a
(non-trivial) upper bound on the size of its adhesions, which are all exploited by our
algorithm.

Theorem 12.4.1 ([69]). There exists an 2O(k2)n2m-time algorithm that, given a
connected graph G together with an integer k, computes a tree decomposition (T, β)

of G with at most n nodes such that the following conditions hold, where η = 2O(k).

1. For each t ∈ V (T), the graph G[γ(t) \ σ(t)] is connected and N(γ(t) \ σ(t)) =

σ(t).

2. For each t ∈ V (T), the set β(t) is (η, k)-unbreakable in G[γ(t)].

3. For each non-root t ∈ V (T), we have that |σ(t)| ≤ η and σ(t) is (2k, k)-
unbreakable in G[γ(parent(t))].

206

In order to process such a tree decomposition in a bottom-up fashion, relying
on the method of dynamic programming, we need to address a specific problem
associated with every bag, called Hypergraph Painting (HP). We chose the
name HP to be consistent with the choice of problem name in [69], yet we stress
that our problem is more general than the one in [69] (since the handling of a bag
in our case is more intricate than the one in [69]).

Roughly speaking, an input of HP would consist of the following components.
First, we are given “budget” parameters k1 and k2 as in an instance of ABC-BJB.
Second, we are given an argument b which would simply be n (to upper bound
|γ(t)|) when we construct an instance of HP while processing some node t in the
tree decomposition. Third, we are given a hypergraph H which would essentially
be the graph G[β(t)] to which we add hyperedges. Each hyperedge F of H is
supposed to represent the sets σ(t̂) for each child t̂ of t. Fourth, we are given an
integer q whose purpose is clarified in the discussion below the definition of HP

(in Definition 12.4.3). Finally, for every hyperedge F , we are given a function
fF : [k]F0 × [b]0 × [k1]0 × [k2]0 → {0, 1}. To roughly understand the meaning of
this function, first recall that F is supposed to represent σ(t̂) for some child t̂ of t.
Now, the function fF aims to capture all information obtained while we processed
the child t̂ of t that might be relevant to the node t. In particular, let us give
an informal, intuitive interpretation of an element (Γ, µ, l1, l2) in the domain of fF .
For this purpose, note that when we remove at most k edges from the (connected)
graph G[γ(t̂)], we obtain at most k+1 connected components. The function Γ can be
thought of as a method to assign to each vertex in σ(t̂) the connected component in
which it should lie. Such information is extremely useful since each such connected
component is in particular a bipartite graph, and hence by relying on Proposition
12.1.1 and an exhaustive search, we would be able to use it to extract a witnessing
coloring for an instance of ABC-BJB. The arguments µ, l1 and l2 can be thought of
as those in the definition of an output of ABC-BJB. Now, the value fF (Γ, µ, l1, l2)

aims to indicate whether Γ, µ, l1 and l2 are “realizable” in the context of the child
t̂ (the precise meaning of this value would become clearer later, once we establish
additional necessary definitions).

Let us now give the formal definition of HP. In this definition, we denote k =

k1 + k2.

207

Hypergraph Painting (HP)
Input: Integers k1, k2, b, d and q, a multi-hypergraph H with hyperedges of size
at most d, and for all F ∈ E(H), a function fF : [k]F0 ×[b]0×[k1]0×[k2]0 → {0, 1}.
Question: For all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1, 0 ≤ l2 ≤ k2, output the binary value

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0

∨

{µF }|F∈E(H)

{lF1 }|F∈E(H)

{lF2 }|F∈E(H)

∧

F∈E(H)

fF (Υ|F , µF , lF1 , lF2),

where
∑

F∈E(H)

µF = µ,
∑

F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)

lF2 ≤ l2 and each of µF , lF1 and lF2

is a non-negative integer.

For a particular choice of µ, l1 and l2, a function Υ witnessing that aHP[µ, l1, l2] =

1 is called a witnessing coloring for aHP[µ, l1, l2]. An instance of Hypergraph

Painting is denoted by HP(k1, k2, b, d, q,H, {fF}|F∈E(H)). Observe that, q is part
of the input to an instance of HP, but does not appear in the problem definition. The
reason for putting q in the input will become clear when we define favorable instances
of HP. These are the instances that will be of interest to us throughout this article.
Although we are not able to tackle HP efficiently at its full generality, we are still
able to solve those instances that are constructed when we would like to “handle” a
single bag in a highly connected tree decomposition. Such instances are formalized
as favorable instances. For the sake of clarity, let us now address the beneficial
properties that these instances satisfy individually, where each of them ultimately
aims to ease our search for a witnessing coloring. The first property, called local
unbreakability, unconditionally restricts the way a function Γ : F → [k]0, to be
thought of as a restriction of the witnessing coloring we seek, can color a hyperedge
F so that the value of fF is 1.3

Definition 12.4.1 (Local Unbreakability). An instance

HP(k1, k2, b, d, q,H, {fF}|F∈E(H))

is locally unbreakable if every F ∈ E(H) satisfies the following property: for any
Γ : F → [k]0 that is not (3k2, k)-unbreakable, fF (Γ, µ, l1, l2) = 0 for all 0 ≤ µ ≤ b,
0 ≤ l1 ≤ k1 and 0 ≤ l2 ≤ k2.

The second property, called connectivity, implies that if we would like to use a
function Γ : F → [k]0 to color a hyperedge (as a restriction of a witnessing coloring)

3In this context, it may be insightful to recall Lemma 12.1.1.

208

with more than one color, then we would have to “pay” at least 1 from our budget
l1 + l2.

Definition 12.4.2 (Connectivity). An instance HP(k1, k2, b, d, q,H, {fF}|F∈E(H)) is
connected if every F ∈ E(H) satisfies the following property: for any Γ : F → [k]0

for which there exist distinct i, j ∈ [k]0 such that |Γ−1(i)|, |Γ−1(j)| > 0, it holds that
fF (Γ, µ, l1, l2) = 1 only if l1 + l2 ≥ 1.

The third property, called global unbreakability, directly restricts our “solution
space” by implying that we only need to determine whether there exists a (q, k)-
unbreakable witnessing coloring.

Definition 12.4.3 (Global Unbreakability). An instance

HP(k1, k2, b, d, q,H, {fF}|F∈E(H))

is globally unbreakable if for all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1, 0 ≤ l2 ≤ k2: if
aHP[µ, l1, l2] = 1, then there exists a witnessing coloring Υ : V (H) → [k]0 that
is (q, k)-unbreakable.

An instance HP (k1, k2, b, d, q,H, {fF}|F∈E(H)) is called a favorable instance of
HP if it is locally unbreakable, connected and globally unbreakable. For such in-
stances we have the following theorem.

Theorem 12.4.2. HP on favorable instances is solvable in time

2O(min(k,q) log(k+q))dO(k3)|E(H)|O(1).

The proof of this theorem is very technical, involving non-trivial analysis of a
very “messy” picture obtained by guessing part of a hypothetical witnessing coloring
via the method of color coding. We defer the proof of Theorem 12.4.2 to Section 12.5.

From now onwards, to simplify the presentation of arguments ahead with respect
to ABC-BJB, we would abuse notation and directly define a witnessing coloring as
a function rather than a partition. More precisely, the term witnessing coloring
for aJP[µ, l1, l2] = 1 would refer to a function col : V (G) → {V1, V2} such that
A ⊆ V1, B ⊆ V2, |V1| = µ and for i ∈ {1, 2}, |E(G[Vi])| ≤ li. To proceed to our
proof of Theorem 12.3.1, we first need to introduce an additional notation. Roughly
speaking, this notation translates a coloring Υ of the form that witnesses some
aHP[µ, l1, l2] = 1 to a coloring of the form that witnesses aJP[µ, l1, l2] = 1 via some
tuple v ∈ {0, 1}k+1. Formally,

209

Definition 12.4.4. For a tuple v ∈ {0, 1}k+1, bipartite graph G with bipartition
(P,Q), X ⊆ V (G) and Υ : X → [k]0, define Υ̂v : X → {V1, V2} as follows.

• For all v ∈ P ∩X, Υ̂v(v) = V1 if and only if v[Υ(v)] = 0.

• For all v ∈ Q ∩X, Υ̂v(v) = V1 if and only if v[Υ(v)] = 1.

Suppose we are given an instance ABC-BJB(G,A,B, k1, k2). Fix some biparti-
tion (P,Q) of G. Let (T, β) be the highly connected tree decomposition computed
by the algorithm of Theorem 12.4.1, and let r be the root of T . In what follows,
η = 2O(k) as in Theorem 12.4.1, and q = (η + k)k. We now proceed to define a
binary variable that is supposed to represent the answer we would like to compute
when we process the bag of a specific node of the tree. Hence, one of the arguments
is a node t, and three additional arguments are µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0.
However, we cannot be satisfied with one answer, but need an answer for every
possible “interaction” between the bag of t and the bag of its parent t′. Thus, the
definition also includes a coloring of σ(t). The tuple v ∈ {0, 1}k+1 is necessary for
the translation process described in Definition 12.4.4 (the way in which we shall
obtain such a “right” tuple later in the proof would essentially rely on brute-force).

Definition 12.4.5. Given t ∈ V (T), a (3k2, k)-unbreakable function Υσ : σ(t) →
[k]0, a tuple v ∈ {0, 1}k+1, and integers µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, the binary
variable y[t,Υσ,v, µ, l1, l2] is 1 if and only if there exists Υ : γ(t) → [k]0 extending
Υσ such that

1. The translation Υ̂v maps to V1 exactly µ vertices, that is, |Υ̂−1
v (V1)| = µ.

2. The translation Υ̂v maps A∩γ(t) to V1 and B∩γ(t) to V2, that is, A∩γ(t) ⊆
Υ̂−1

v (V1) and B ∩ γ(t) ⊆ Υ̂−1
v (V2).

3. For all i ∈ {1, 2}, it holds that |E(G[Υ̂−1
v (Vi)])| ≤ li.

4. The set of edges between vertices receiving different colors by Υ is exactly the
set of edges between vertices that are mapped to the same side by the translation
Υ̂v, that is,

⋃

i,j∈[k]0,i 6=j
E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1

v (V1)]) ∪ E(G[Υ̂−1
v (V2)]).

A function Υ as above is called a witnessing coloring for y[t,Υσ,v, µ, l1, l2]. Recall
r refers to the root of the tree decomposition (T, β).

210

Lemma 12.4.1. For any µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, aJP[µ, l1, l2] = 1 if and
only if there exists v ∈ {0, 1}k+1 such that y[r, ∅,v, µ, l1, l2] = 1.

Proof. Let us prove the backward direction first. Let v ∈ {0, 1}k+1 be such that
y[r, ∅,v, µ, l1, l2] = 1 and let Υ : V (G)→ [k]0 be one of its witnessing coloring. Then,
Definition 12.4.5 directly implies that Υ̂v is a witnessing coloring for aJP[µ, l1, l2] = 1.

For the forward direction, let col : V (G) → {V1, V2} be a witnessing coloring
for aJP[µ, l1, l2]. Let X = E(G[col−1(V1)]) ∪ E(G[col−1(V2)]). Let C0, . . . , Cs be the
connected components of G \X. Since X ⊆ E(G) and |X| ≤ l1 + l2 ≤ k1 + k2 = k,
G\X has at most k+1 connected components, therefore s ≤ k. For any i ∈ [s]0, let
(Pi = (P ∩ Ci), Qi = (Q ∩ Ci)) be a bipartition of Ci (recall that G is a connected
bipartite graph with fixed bipartition (P,Q)).

Claim 12.4.1. For any i ∈ [s]0, either both Pi ⊆ col−1(V1) and Qi ⊆ col−1(V2) or
both Pi ⊆ col−1(V2) and Qi ⊆ col−1(V1).

Proof. Consider a bipartition (P ′i, Q′i) of Ci, where P ′i = col−1(V1) ∩ Ci and Q′i =

col−1(V2) ∩ Ci. Since Ci is connected, from Proposition 12.1.1, either Pi = P ′i and
Qi = Q′i, or Pi = Q′i and Qi = P ′i. Hence the claim follows.

Let us now construct a k-length binary string, v, as follows. For any i ∈ [s]0,
v[i] = 0 if and only if Pi ⊆ col−1(V1) and Qi ⊆ col−1(V2). For i ∈ {s + 1, . . . , k},
v[i] = 0.

Define Υ : V (G) → [k]0 as follows. For any v ∈ V (G), Υ(v) = i if and only if
v ∈ Ci.

Claim 12.4.2. Υ̂v = col.

Proof. Consider some vertex v ∈ V (G). Denote Vj = col(v), i = Υ(v) and b = v[i],
and note that j ∈ {1, 2}, i ∈ [k]0 and b ∈ {0, 1}. We divide the argument into two
cases corresponding to whether v ∈ Pi or v ∈ Qi. Since v ∈ col−1(Vj), if v ∈ Pi, then
by Claim 12.4.1, Pi ⊆ col−1(Vj) and Qi ⊆ col−1(V3−j). Thus, by the construction of
v, b = j − 1. Hence, by the definition of Υ̂v, Υ̂v(v) = Vj. Similarly, if v ∈ Qi, then
by Claim 12.4.1, Qi ⊆ col−1(Vj) and Pi ⊆ col−1(V3−j). Thus, by the construction of
v, b = 2− j. Hence, by the definition of Υ̂v, Υ̂v(v) = Vj.

Since the choice of v was arbitrary, by the definition of Υ̂v, we have that Υ̂v(v) =

Vj.

211

Claim 12.4.3. For the binary string v constructed as above, the function Υ con-
structed above is a witnessing coloring for y[r, ∅,v, µ, l1, l2] = 1.

Proof. Since Υ̂v = col, from the definition of col, we have that |Υ̂−1
v (V1)| = µ,

A ⊆ Υ̂−1
v (V1), B ⊆ Υ̂−1

v (V2), and for all i ∈ {1, 2}, |E(G[Υ̂−1
v (Vi)])| ≤ li. Observe

that
⋃

i,j∈[k]0,i 6=j
E(Υ−1(i),Υ−1(j)) = X. Therefore,

⋃
i,j∈[k]0,i 6=j

E(Υ−1(i),Υ−1(j)) =

E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]). Thus, Υ is a witnessing coloring for

y[r, ∅,v, µ, l1, l2] = 1

.

This concludes the proof of the lemma.

By Lemma 12.4.1, it is sufficient to compute y[r, ∅,v, µ, l1, l2] for all µ ∈ [n],
l1 ∈ [k1]0 and l2 ∈ [k2]0. To this end, we need to compute y[t,Υσ,v, µ, l1, l2] for every
node t ∈ V (T), function Υσ : σ(t) → [k]0 that is (3k2, k)-unbreakable, tuple v ∈
{0, 1}k+1, and integers µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0. Here, we employ bottom-up
dynamic programming over the tree decomposition (T, β). Let us now zoom into
the computation of y[t,Υσ,v, µ, l1, l2] for all µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0, for
some specific t,Υσ and v. Note that we now assume that values corresponding to the
children of t (if such children exist) have been already computed correctly. Moreover,
note that |σ(t)| ≤ η, the number of (3k2, k)-unbreakable functions Υσ : σ(t)→ [k]0

is at most |η|kO(1)
= 2k

O(1) (by Lemma 12.1.1), and the number of binary vectors
of size k + 1 is at most 2k+1. Thus, the total running time would consist of the
computation time of (T, β), and at most 2k

O(1) ·n2 times the computation time for a
set of values as the one we examine now. Hence, it remains to show how to compute
the current set of values in time 2k

O(1) · nO(1).

To compute our current set of values, let us construct an instance

HP(k1, k2, n, η, q,H, {fF}|F∈E(H))

of HP where V (H) = β(t), and E(H) and {fF}|F∈E(H) are defined as follows.

1. Type-1 Hyperedges. For all v ∈ β(t), insert F = {v} into E(H). Define

212

fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =

0, if v ∈ σ(t) and Γ(v) 6= Υσ(v)

1, if v ∈ A, Γ̂v(F) = V1, l1 = l2 = 0 and µ = 1

1, if v ∈ B, Γ̂v(F) = V2, l1 = l2 = 0 and µ = 0

1, if v 6∈ A ∪B, l1 = l2 = 0 and µ = [Γ̂v(F) = V1]

0, otherwise

Informally speaking, we introduce this kind of hyperedges to account for the
number of vertices in β(t) that go to V1 (and hence contribute to µ).

2. Type-2 Hyperedges. For all (u, v) ∈ E(G[β(t)]), add F = {u, v} in E(H).
Define fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =

0, if µ 6= 0

1, if Γ̂v(u) 6= Γ̂v(v) and Γ(u) = Γ(v)

1, if Γ̂v(u) = Γ̂v(v) = V1, l1 ≥ 1 and Γ(u) 6= Γ(v)

1, if Γ̂v(u) = Γ̂v(v) = V2, l2 ≥ 1 and Γ(u) 6= Γ(v)

0, otherwise

We introduce this kind of hyperedges to account for the number of edges in
G[β(t)] that contribute towards the budget k1 and k2.

3. Type-3 Hyperedges. For all t̂ ∈ V (T) that is a child of t in the tree T ,
insert F = σ(t̂) into E(H). Define fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =

0, if Γ is not (3k2, k)-unbreakable or

y[t̂,Γ,v, µ+ µ′, l1 + l′1, l2 + l′2] = 0

1, otherwise

where µ′ = |Γ̂−1
v (V1)|, and l′i = |{{u, v} ∈ E(G[σ(t̂)]) : Γ̂v(u) = Γ̂v(v) = Vi}|

for i ∈ [2].

This kind of hyperedges encapsulate the partial partitions of the graphs in-
duced by γ(t̂), where t̂ is a child of t.

Let us first claim that witnessing colorings related to HP(k1, k2, n, η, q,H,

{fF}|F∈E(H)) are useful in the sense that they can be extended to witnessing colorings

213

for the binary values in which we are interested.

Lemma 12.4.2. For all µ ∈ [n], l1 ∈ [k1]0, and l2 ∈ [k2]0, if aHP[µ, l1, l2] = 1, then
y[t,Υσ,v, µ, l1, l2] = 1. In fact, for any witness Υ : β(t) → [k]0 of aHP[µ, l1, l2] =

1, there exists a function Υ′ : γ(t) → [k]0 that extends Υ and witnesses y[t,v,

Υσ, µ, l1, l2] = 1.

Proof. If aHP[µ, l1, l2] = 1, let Υ : β(t)→ [k]0 be a witnessing coloring for aHP[µ, l1,

l2] = 1. Then, there exist
∑

F∈E(H)

µF = µ,
∑

F∈E(H)

lF1 ≤ l1 and
∑

F∈E(H)

lF2 ≤ l2, such

that for all F ∈ E(H), fF (Υ|F , µF , lF1 , lF2) = 1. In particular, the following holds.

1. Since for any type-1 hyperedge F , it holds that fF (Υ|F , µF , lF1 , lF2) = 1, we
overall have that Υσ ⊆ Υ, A ∩ β(t) ⊆ Υ̂−1

v (V1), B ∩ β(t) ⊆ Υ̂−1
v (V2) and

∑

F is a type-1 hyperedge

µF = |Υ̂−1
v (V1) ∩ β(t)|.

2. Since for any type-2 hyperedge F and i ∈ {1, 2}, it holds that
fF (Υ|F , µF , lF1 , lF2) = 1, we overall have that

|E(G[Υ̂−1
v (Vi) ∩ β(t)])| ≤

∑

F is a type-2 hyperedge

lFi .

3. For any type-3 hyperedge F = σ(ti), since fF (Υ|F , µF , lF1 , lF2) = 1, we have
that Υ|F is (3k2, k)-unbreakable and y[ti,Υ|F ,v, µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1,

where µ′ = |Υ̂−1
v (V1) ∩ F |, l′1 = |{(u, v) ∈ E(G[σ(ti)])|Υ̂v(u) = Υ̂v(v) = V1}|

and l′2 = |{(u, v) ∈ E(G[σ(ti)])|Υ̂v(u) = Υ̂v(v) = V2}|.

We thus derive that there exists a witnessing coloring Υi : γ(ti)→ [k]0 for the
condition y[ti,Υ|F ,v, µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1. Specifically, the following

conditions are satisfied.

(a) Υi extends Υ|F .

(b) |Υ̂i
−1

v (V1)| = µF + µ′.

(c) A ∩ γ(ti) ⊆ Υ̂i
−1

v (V1) and B ∩ γ(ti) ⊆ Υ̂i
−1

v (V2).

(d) |E(G[Υ̂i
−1

v (V1)])| ≤ lF1 + l′1, and |E(G[Υ̂−1
v (V2)])| ≤ lF2 + l′2.

(e)
⋃

`,j∈[k]0,`6=j
E(Υi−1

(`),Υi−1
(j)) = E(G[Υ̂i

−1

v (V1)]) ∪ E(G[Υ̂i
−1

v (V2)]).

214

Keeping the above items in mind, we proceed to identify a witnessing coloring for
y[t,Υσ,v, µ, l1, l2] = 1. We construct such a coloring Υ′ : γ(t) → [k]0 as follows.
For all v ∈ γ(t), if v ∈ β(t), then define Υ′(v) = Υ(v), and otherwise there exists a
unique child ti of t such that v ∈ γ(ti), in which case we define Υ′(v) = Υi(v). For
the sake of clarity, let us extract the required argument to the proof of a separate
claim.

Claim 12.4.4. The aforementioned Υ′ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2] =

1.

Proof. First, note that by Item 1 in the proof of Lemma 12.4.2, we have that Υσ ⊆
Υ and therefore Υσ ⊆ Υ′. Let us now verify that all the conditions specified in
Definition 12.4.5 are satisfied.

• Let us first prove Condition 1. To this end, we observe that by Items 1, 3a
and 3b, we have that the three following equalities hold.

− |Υ̂′−1

v (V1)| = |Υ̂′−1

v (V1)∩β(t)|+ ∑
ti is a child of t in T

|Υ̂′−1

v (V1)∩ (γ(ti)\σ(ti))|.

− |Υ̂′−1

v (V1) ∩ β(t)| = |Υ̂−1
v (V1) ∩ β(t)| = ∑

F is a type-1 hyperedge
µF .

− For every child ti of t, |Υ̂′
−1

v (V1) ∩ (γ(ti) \ F)| = µF , where F = σ(ti).

Thus, since
∑

F is a type-2 hyperedge
µF = 0, we conclude that

|Υ̂′−1

v (V1)| = ∑
F∈E(H)

µF = µ.

• Next, we prove Condition 2. However, by Items 1 and 3c, we directly deduce
that both A ∩ γ(t) ⊆ Υ̂′

−1

v (V1) and B ∩ γ(t) ⊆ Υ̂′
−1

v (V2) as required.

• We now turn to prove Condition 3. First observe that there are no edges
between a vertex of β(t) \ σ(ti) and a vertex of γ(ti) \ σ(ti). In light of Item
3a, note that

|E(G[Υ̂′
−1

v (V1)])| = |E(G[Υ̂′
−1

v (V1) ∩ β(t)])|+
∑

ti is a child of t in T

|E(G[Υ̂′
−1

v (V1) ∩ γ(ti)])| −
∑

ti is a child of t in T

|E(G[Υ̂′
−1

v (V1) ∩ σ(ti)])|.

Now, observe that by Items 2, 3a and 3d, the two following equations hold.

215

− |E(G[Υ̂′
−1

v (V1) ∩ β(t)])| = |E(G[Υ̂−1
v (V1) ∩ β(t)])| ≤∑

F is a type-2 hyperedge
lF1 .

− For every child ti of t, |E(G[Υ̂′
−1

v (V1) ∩ γ(ti)])| = lF1 + |E(G[Υ̂′
−1

v (V1) ∩
σ(ti)])|, where F = σ(ti).

Since
∑

F is a type-1 hyperedge
lF1 = 0, we conclude that

|E(G[Υ̂′
−1

v (V1)])| ≤
∑

F∈E(H)

lF1 ≤ l1.

Similarly, we derive that |E(G[Υ̂′
−1

v (V2)])| ≤ ∑
F∈E(H)

lF2 ≤ l2.

• Finally, we prove Condition 4. In the first direction, consider some edge
e ∈ E(G[Υ̂′

−1

v (V1)]) ∪E(G[Υ̂′
−1

v (V2)]). Let us denote e = {u, v}, and ob-
serve that Υ̂′v(v) = Υ̂′v(u). If u, v ∈ γ(ti) for some child ti of t, then by Item
3e, we have that e ∈ ⋃

i,j∈[k]0,
i 6=j

E(Υ′−1(i),Υ′−1(j)). Otherwise, from point 1 of

Theorem 12.4.1, u, v ∈ β(t), and thus e is some type-2 hyperedge F . Since
fF (Υ|F , µF , lF1 , lF2) = 1, the definition of fF (Υ|F , µF , lF1 , lF2) directly implies
that Υ(u) 6= Υ(v), and therefore again e ∈ ⋃

i,j∈[k]0,
i 6=j

E(Υ′−1(i),Υ′−1(j)).

In the other direction, consider some edge e ∈ ⋃
i,j∈[k]0,
i 6=j

E(Υ′−1(i),Υ′−1(j)). Let

us denote e = {u, v}, and observe that Υ′(v) 6= Υ′(u). If u, v ∈ γ(ti) for
some child ti of t, then by Item 3e, we have that e ∈ E(G[Υ̂′

−1

v (V1)]) ∪
E(G[Υ̂′

−1

v (V2)]). Otherwise, from point 1 of Theorem 12.4.1, u, v ∈ β(t), and
thus e is some type-2 hyperedge F . Since fF (Υ|F , µF , lF1 , lF2) = 1, the defini-
tion of fF (Υ|F , µF , lF1 , lF2) directly implies that Υ̂′v(v) = Υ̂′v(u), and therefore
again e ∈ E(G[Υ̂′

−1

v (V1)]) ∪ E(G[Υ̂′
−1

v (V2)]).

Thus, we have proved that Υ′ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2]. More-
over, Υ′, which extends Υ, is the desired function for the second part of the lemma.

This concludes the proof of the lemma.

In light of Lemma 12.4.2, we now turn to verify that HP(k1, k2, n, η, q,H,

{fF}|F∈E(H)) is of the form that we are actually able to solve.

216

Lemma 12.4.3. HP(k1, k2, n, η, q,H, {fF}|F∈E(H)) is a favorable instance of HP.

Proof. First note that HP(k1, k2, n, η, q,H, {fF}|F∈E(H)) is indeed a favorable in-
stance of HP. This is clear from the construction of {fF}|F∈E(H) and the fact that
each edge of F ∈ E(H) has size at most η because of point 3 of Theorem 12.4.1. Let
us now verify that each of the three properties of a favorable instance is satisfied.

• Local Unbreakability: Let us choose an arbitrary F ∈ E(H). If F is a type-
1 or a type-2 hyperedge, then since |F | ≤ 2, we have that local unbreakability is
trivially satisfied. Otherwise, if F is a type-3 hyperedge, then the satisfaction
of local unbreakability directly follows from the construction of fF .

• Connectivity: Choose an arbitrary F ∈ E(H) along with a tuple (Γ, µ, l1, l2)

in the domain of fF such that fF (Γ, µ, l1, l2) = 1. If F is a type-1 hyperedge,
then connectivity trivially holds. If F is a type-2 hyperedge, then connectivity
follows from the construction of fF . Indeed, to see this, let us denote F =

{u, v}. Then, if Γ(u) 6= Γ(v), by the second through last case in the definition
of fF , we deduce that Γ̂v(u) = Γ̂v(v), else we contradict the supposition that
fF (Γ, µ, l1, l2) = 1. Then, connectivity directly follows from the third and
fourth cases.

Now, suppose that F = σ(t̂) is a type-3 hyperedge, and say Γ : F → [k]0 is
such that there exist i, j ∈ [k]0, i 6= j, satisfying |Γ−1(i)| > 0 and |Γ−1(j)| > 0.
We need to show that l1 + l2 ≥ 1. Since fF (Γ, µ, l1, l2) = 1, it holds that
y[t̂,Γ,v, µ + µ′, l1 + l′1, l2 + l′2] = 1, where µ′, l′1 and l′2 are as defined at the
construction of fF . Let Υ : γ(t̂)→ [k]0 denote some witnessing coloring for this
condition. Since (T, β) is a highly connected tree decomposition, the Property 1
of such a decomposition implies that G∗ = G[γ(t̂)] \ E(G[σ(t̂)]) is connected
and that every vertex in σ(t̂) is adjacent in G to some vertex in γ(t̂) \ σ(t̂).
Since only the edges internal to σ(t̂) were removed in forming G∗, it follows
that every two vertices in σ(t̂) are connected by a path in G∗ Let u ∈ Γ−1(i)

and v ∈ Γ−1(j). Note that u 6= v and i 6= j. Since u and v are connected by a
path in G∗, we derive that G∗ has an edge e such that

e ∈

 ⋃

c,d∈[k]0,c 6=d
E(Υ−1(c),Υ−1(d))

 \ E(G[σ(t′)]).

Recall that
⋃

c,d∈[k]0,
c 6=d

E(Υ−1(c),Υ−1(d)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]).

217

Therefore, we have that e ∈ (E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)])) \ E(G[σ(t̂)]).
Thus, l1 + l2 ≥ 1.

• Global Unbreakability: Suppose that aHP[µ, l1, l2] = 1. Then, by Lemma
12.4.2, there exists Υ′ : γ(t) → [k]0 satisfying the properties listed in that
lemma. From here, we get that

∑
i,j∈[k]0,i<j

|E(Υ′−1(i),Υ′−1(j))| ≤ l1 + l2 ≤ k1 +

k2 ≤ k. We argue that Υ′|β(t) is a witnessing coloring for global unbreakability,
that is, this function is (q, k)-unbreakable. In this context, we remind the
reader that q = (η + k)k. To prove our argument, we first prove the following
claim.

Claim 12.4.5. Suppose that there exists i ∈ [k]0 such that |Υ′−1(i) ∩ β(t)| >
η + k. Then,

∑
j∈[k]0,i 6=j

|Υ′−1(j) ∩ β(t)| ≤ η + k.

Proof. Suppose that the claim is false. Then, both |Υ′−1(i) ∩ β(t)| > η + k

and
∑

j∈[k]0,i 6=j
|Υ′−1(j) ∩β(t)| > η + k. Thus,

(
X = Υ′

−1
(i) ∩ β(t), Y =

(⋃

j∈[k]0,i 6=j
Υ′
−1

(j) ∩ β(t)

)
∪ δ(Υ′−1

(i) ∩ β(t))

)

is a separation of order at most k of G[γ(t)] as we have already shown that

∑

i,j∈[k]0,i≤j
|E(Υ′

−1
(i),Υ′

−1
(j))| ≤ l1 + l2 ≤ k1 + k2 ≤ k.

Moreover, |(X \ Y) ∩ β(t)| > η and |(Y \ X) ∩ β(t)| > η, which contradicts
point 2 of Theorem 12.4.1, that β(t) is (η, k)-unbreakable in G[γ(t)].

Thus, if there exist i ∈ [k]0 as defined in Claim 12.4.5, then we are done. That
is, we conclude that Υ′|β(t) is (q, k)-unbreakable. Otherwise, for all i ∈ [k]0, it
holds that |Υ′−1(i)| ≤ η + k. In particular, for any i ∈ [k]0,∑
j∈[k]0,i 6=j

|Υ′−1(j)| ≤ (η + k)k = q. Thus, we again conclude that Υ′|β(t) is

(q, k)-unbreakable.

Finally, we turn to address the statement complementary to the one of Lemma
12.4.2.

218

Lemma 12.4.4. For all µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0, if y[t,Υσ,v, µ, l1, l2] = 1,
then aHP[µ, l1, l2] = 1.

Proof. Fix some µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0 such that y[t,Υσ,v, µ, l1, l2] = 1.
Our objective is to show that aHP[µ, l1, l2] = 1. To this end, let Υ be a witnessing
coloring for y[t,Υσ,v, µ, l1, l2] = 1. We would like to prove that Υ|β(t) is a witnessing
coloring for aHP[µ, l1, l2] = 1, which would complete the proof of the lemma. To do
so, we proceed as follows.

First, for any hyperedge F ∈ E(H), let us define µF , l1F and l2F as follows.

• If F is a type-1 hyperedge: Set µF = 1 if Υ̂v(F) = V1, and µF = 0

otherwise. Set lF1 = 0 and lF2 = 0.

• If F = {u, v} is a type-2 hyperedge: Set µF = 0. If Υ̂v(u) 6= Υ̂v(v) and
Υ(u) = Υ(v), set l1F = l2

F = 0. Otherwise, if Υ̂v(u) = Υ̂v(v) = V1, set
l1
F = 1 and l2

F = 0, and if Υ̂v(u) = Υ̂v(v) = V2, set l1F = 0 and l2
F = 1.

The other cases cannot arise. Indeed, since Υ is a witnessing coloring for
y[t,Υσ,v, µ, l1, l2] = 1, we have that
⋃

i,j∈[k]0,i 6=j
E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1

v (V1)]) ∪ E(G[Υ̂−1
v (V2)]).

• If F is a type-3 hyperedge: Denote F = σ(t̂), where t̂ is a child of t in T.
Set µF = |Υ̂−1

v (V1)∩(γ(t̂)\σ(t̂))|, lF1 = |E(G[Υ̂−1
v (V1)∩γ(t̂)])|−|E(G[Υ̂−1

v (V1)∩
σ(t̂)])| and lF2 = |E(G[Υ̂−1

v (V2) ∩ γ(t̂)])| − |E(G[Υ̂−1
v (V2) ∩ σ(t̂)])|.

Let us proceed by proving three claims that would together imply that Υ|β(t) is a
witnessing coloring for aHP[µ, l1, l2] = 1.

Claim 12.4.6. Let t̂ be a child of t in T , and let i ∈ [k]0 be such that |Υ−1(i)∩σ(t̂)| >
3k. Then,

∑
j∈[k]0,i 6=j

|Υ−1(j) ∩ σ(t̂)| ≤ 3k.

Proof. Suppose, by way of contradiction, that the claim is false. That is, we have
that both |Υ−1(i)∩ σ(t̂)| > 3k and

∑
j∈[k]0,i 6=j

|Υ−1(j)∩ σ(t̂)| > 3k. Consider the sepa-

ration (X, Y) of G[γ(t)], where X = Υ−1(i) and Y = (γ(t)\Υ−1(i))∪δ(Υ−1(i)). Ob-
serve that X∩Y = δ(Υ−1(i)). Since Υ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2],
we have that

⋃

i,j∈[k]0,i 6=j
E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1

v (V1)]) ∪ E(G[Υ̂−1
v (V2)])

219

and |E(G[Υ̂−1
v (V1)])∪E(G[Υ̂−1

v (V2)])| ≤ l1+l2 ≤ k1+k2 ≤ k. Therefore, |δ(Υ−1(i))| ≤
k, and thus the order of the separation (X, Y) is at most k. Moreover, since
|Υ−1(i) ∩ σ(t̂)| > 3k, we have that |(X \ Y) ∩ σ(t̂)| > 3k − k = 2k, and since∑
j∈[k]0,i 6=j

|Υ−1(j) ∩ σ(t̂)| > 3k, we also have that |(Y \X) ∩ σ(t̂)| > 3k. This implies

that σ(t̂) is not (2k, k)-unbreakable in G[γ(t)], which means that σ(t̂) is not (2k, k)-
unbreakable in G[γ(parent(t̂))]. This is a contradiction to the fact that (T, β) is
a highly connected tree decomposition—specifically, it should satisfy Property 3 in
Theorem 12.4.1.

Having Claim 12.4.6 at hand, we now verify that each function fF assigns 1 to the
required tuple.

Claim 12.4.7. For any F ∈ E(H), fF (Υ|F , µF , lF1 , lF2) = 1.

Proof. First, note that since Υ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2] = 1,
we have that Υ ⊆ Υσ, A ∩ γ(t) ⊆ Υ̂−1

v (V1) and B ∩ γ(t) ⊆ Υ̂−1
v (V2). Thus, from

the construction of a type-1 hyperedge F and the corresponding function fF with
respect to HP (k1, k2, n, η, q,H, {fF}F∈E(H)), it is clear that fF (Υ|F , µF , lF1 , lF2) = 1.
Second, suppose F is a type-2 hyperedge. The specifications of fF , together with
our definition of µF , lF1 and lF2 , directly implies that fF (Υ|F , µF , lF1 , lF2) = 1.

Third, suppose that F is a type-3 hyperedge, and denote F = σ(ti) for some
ti that is a child of t in T . Note that y[ti,Υ|F ,v, µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1

because Υ|γ(ti) is a witnessing coloring for this equality, where µ′ = |Υ̂−1
v (V1)∩σ(t̂)|,

l′1 = |E(G[Υ̂−1
v (V1) ∩ σ(t̂)])| and l′2 = |E(G[Υ̂−1

v (V2) ∩ σ(t̂)])|. We now need to
show that Υ|F is (3k2, k)-unbreakable, as then we would be able to conclude that
fF (Υ|F , µF , lF1 , lF2) = 1. By Claim 12.4.6, if there exists i ∈ [k]0 such that |Υ−1(i) ∩
σ(t̂)| > 3k, then we deduce that Υ|σ(t̂) is (3k2, k)-unbreakable. Otherwise, for all
i ∈ [k]0, |Υ−1(i)∩ σ(t̂)| ≤ 3k. Hence, for any i ∈ [k]0,

∑
j∈[k]0,i 6=j

|Υ−1(j)∩ σ(t̂)| ≤ 3k2.

Thus, we have proved that Υ|F is (3k2, k)-unbreakable.

Finally, we present our third claim.

Claim 12.4.8. µ =
∑

F∈E(H)

µF ,
∑

F∈E(H)

lF1 ≤ l1 and
∑

F∈E(H)

lF2 ≤ l2.

By the property of (T, β) being a tree decomposition, for any two children ti and
tj of t in T , γ(ti) ∩ γ(tj) ⊆ β(t), and also by the definition, σ(ti) ⊆ β(t) for any
child ti of t. Now, note that µ = |Υ̂−1

v (V1)|. Thus, to show that µ =
∑

F∈E(H) µ
F ,

220

it is sufficient to show that |Υ̂−1
v (V1)| =

∑
F∈E(H) µ

F . However, keeping the above
argument in mind, the claim that |Υ̂−1

v (V1)| = ∑F∈E(H) µ
F directly follows from the

satisfaction of the three following conditions. We remark that the satisfaction of
these conditions is a direct consequence of the supposition that Υ is a witnessing
coloring for y[t,Υσ,v, µ, l1, l2] = 1, together with our definition of the values µF , lF1
and lF2 .

1. For any type-1 hyperedge F , we have that µF = 1 only if Υ̂v(F) = V1. In
particular,

∑
F∈E(H) of type-1

µF = |Υ̂−1
v (V1) ∩ β(t)|.

2. For any type-2 hyperedge F , µF = 0. Thus,
∑

F∈E(H) of type-2
µF = 0.

3. For any type-3 hyperedge F = σ(ti), µF = |Υ̂−1
v (V1) ∩ (γ(ti) \ σ(ti))|.

Similarly, let us observe that |E(G[Υ̂−1
v (V1)])| ≤ l1. Thus, to show that

∑
F∈E(H) l

F
1 ≤

l1, it is sufficient to show that
∑

F∈E(H) l
F
1 ≤ |E(G[Υ̂−1

v (V1)])|. However, the latter
inequality directly follows from the satisfaction of all of the following conditions.

1. For any type-1 hyperedge F , lF1 = 0. Thus,
∑

F∈E(H) of type-1
lF1 = 0.

2. For any type-2 hyperedge F = {u, v}, l1F = 1 only if Υ̂v(u) = Υ̂v(v) = V1. In
particular,

∑
F∈E(H) of type-2

lF1 = |E(G[Υ̂−1
v (V1)]) ∩ E(G[β(t)])|.

3. For any type-3 hyperedge F = σ(ti), |E(G[Υ̂−1
v (V1) ∩ (γ(ti) \ σ(ti))])| ≤ lF1 .

Symmetrically,
∑

F∈E(H) l
F
2 ≤ l2. This concludes the proof of the claim. �

As we have proved Claims 12.4.7 and 12.4.8, we derive that Υ|β(t) is a witnessing
coloring for aHP[µ, l1, l2] = 1. This concludes the proof of the lemma.

Recall that we have argued that to prove Theorem 12.3.1, it is sufficient to
show that the current set of values y[t,Υσ,v, µ, l1, l2] can be computed in time
2k
O(1)

nO(1). Here, n refers to |V (G)|. By Lemmas 12.4.2 and 12.4.4, this set of
values can be derived from the solution of HP(k1, k2, n, η, q,H, {fF}|F∈E(H)). Since
HP(k1, k2, n, η, q,H, {fF}|F∈E(H)) is a favorable instance of HP (by Lemma 12.4.3),
it can be solved in time 2O(min(k,q) log(k+q))ηO(k3)|E(H)|O(1) = 2k

O(1)
nO(1), using The-

orem 12.4.2.

221

12.5 Solving Favorable Instances of Hypergraph

Painting

Recall the problem statement of Hypergraph Painting (HP) and the definition
of a favorable instance of HP from Section 12.4. In this section, we prove Theorem
12.4.2. We prove this theorem in two steps. In the first step we prove Lemma 12.5.1.
In the second step, we perform a dynamic programming procedure exploiting the
structure given in Lemma 12.5.1.

12.5.1 Color Coding The Instance

Again, recall that our goal is to solve the HP problem on a favorable instance. In
this section, given a hypergraph, our goal is to somehow partition the vertex set
of the hypergraph such that, if the given instance of HP is a Yes instance, then
the witnessing coloring for it does not color the parts of this partition in a very
"unpredictable" way. This is formally captured in the conditions of Lemma 12.5.1.
Before stating the lemma, we first define what we mean by a sets-colorings tuple.

A sets-colorings tuple of a hypergraph H, is a tuple consisting of a partition of
V (H), V (H) = C0] C11] . . .] C1a] C21] . . .] C2b (C0, C11, . . . , C1a, C21, . . . , C2b

are called the sets of this tuple), and coloring functions Φi : C1i → [k]0, for all
i ∈ [a], such that for each F ∈ E(H), either F is contained in some set of this
tuple, or intersects at most 2 sets of this tuple, one of which necessarily being
C0 and the other being one of {C11, . . . , C1a}. A sets-colorings tuple looks like
(C0] C11] . . .] C1a] C21] . . .] C2b,Φ1, . . . ,Φa).

Lemma 12.5.1. Let H = (V (H), E(H)) be a hypergraph and k, d, x, y, q be positive
integers. For each F ∈ E(H), let |F | ≤ d. Let Υ : V (H) → [k]0 be a coloring of
V (H) satisfying the following conditions.

1. The number of hyperedges F ∈ E(H), such that F is not monochromatic under
Υ, is at most x.

2. For each F ∈ E(H), Υ|F is (y, k)-unbreakable. This condition is called the
local unbreakability condition of Υ.

3. Υ is (q, k)-unbreakable. This condition is called the global unbreakability con-
dition of Υ. Let 0 be the globally dominant color of Υ with respect to this global
unbreakability.

222

Then, given H, k, d, x, y, q, one can, in time O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · |E(H)|O(1)), find a family of size O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · logO(1)|E(H)|), consisting of sets-colorings tuples of H, such
that there exists a tuple t = (C0, C11] . . .]C1a]C21] . . .]C2b,Φ1, . . . ,Φa) in the
family where,

1. Υ|C0 = 0,

2. for each i ∈ [b], Υ|C2i
is monochromatic in Υ,

3. for each i ∈ [a], either Υ|C1i
= 0, or Υ|C1i

= Φi,

A sets-colorings tuple satisfying the properties mentioned in Lemma 12.5.1 is
called a good sets-colorings tuple for Υ. The rest of the section is devoted to the
proof of Lemma 12.5.1.

Outline of the proof of Lemma 12.5.1 We begin by classifying the hyperedges
of H based on Υ. The algorithm highlights a set of hyperedges and the colorings
of them as given by Υ using color coding. In the next phase, based on this high-
lighting, an auxiliary graph is constructed and later tweaked to clean the unwanted
highlighting - the side effect of color coding. Eventually another auxiliary graph is
constructed which is finally exploited to give the desired output.

12.5.1.1 Classifying Hyperedges

By the global unbreakability of Υ : V (H) → [k]0,
∑

j∈[k]0,j 6=i
|Υ−1(j)| ≤ q for some

index i ∈ [k]0. Without loss of generality, suppose that i = 0 is such an index, that is,∑
j∈[k] |Υ−1(j)| ≤ q. We first categorize the hyperedges ofH into the following types,

based on the coloring Υ. In this context, we remind that the notation f(A′) = b

indicates that for all a ∈ A′, it holds that f(a) = b (see Section 12.1).

• Let Eb = {F ∈ E(H) : Υ(F) = 0}. Here, ‘b’ stands for big.

• For each i ∈ [k], let Esi = {F ∈ E(H) : Υ(F) = i}. Here, ‘s’ stands for small.

• Let Em = {F ∈ E(H) : there exist u, v ∈ F such that Υ(u) 6= Υ(v)}. Here,
‘m’ stands for multichromatic.

223

Observe that each hyperedge F ∈ E(H) belongs to exactly one of the sets
Eb, Em, Es1 , . . . , Esk . Furthermore, let E ′si denote the edge set of some arbitrary
spanning forest of the hypergraph on the vertex set V (H) and the edge set Esi .
Let Es =

⋃
i∈[k] E

′
si

denote the union of these edge sets. From the properties of Υ,
|Em| ≤ x. Also, as we will see in Lemma 12.5.2, |Es| ≤ q. We exploit these bounds
to highlight the hyperedges in Em and Es (Lemma 12.5.4) efficiently. In addition to
this, as we shall see in Lemma 12.5.3, the total number of possible restrictions of Υ

on any hyperedge can also be bounded effectively. Thus, we cannot only highlight
the hyperedges in Em and Es, but we can also guess the restrictions of Υ to these
hyperedges. The proof of Lemma 12.5.4 would capture the idea of the performance of
highlighting and guessing. As one would expect, this highlighting does not conclude
our arguments, as it does not just highlight the hyperedges in Em and Es, but also
some hyperedges from Eb. We deal with the inherent challenges of handling such a
“messy picture” later in our proof.

Lemma 12.5.2. |Es| ≤ q.

Proof. Recall that for each i ∈ [k], we defined E ′si as the edge set of a spanning
forest of the hypergraph with the vertex set V (H) and the edge set Esi . Hence,
by this definition, |E ′si | ≤ |Υ−1(i)|. Now, recall that since Υ is (q, k)- unbreakable,
we assumed w.l.o.g. that

∑
i∈[k] |Υ−1(i)| ≤ q. We thus have that

∑
i∈[k] |E ′si | ≤ q.

Therefore, |Es| ≤ q.

12.5.1.2 Introducing Good Assignments

Let us first note that by Lemma 12.1.1, for any hyperedge F ∈ E(H), the number
of (y, k)-unbreakable functions (that we call (y, k)-unbreakable colorings) from F

(recall |F | ≤ d) to [k]0 is at most α =
y∑
l=1

(
d
l

)
· yk · (k+ 1) = max{d, y}O(max{y,k}). For

each hyperedge F , let us arbitrarily order all possible (y, k)-unbreakable colorings.
For each i ∈ [α], let λF,i denote the i-th such coloring. If for an hyperedge F , the
number of such colorings is strictly smaller than α, then we extend its list of possible
colorings to be of size α by letting some colorings be present multiple times. Thus,
for each F ∈ E(H) and i ∈ [α], we ensure λF,i is well-defined.

Lemma 12.5.3. For any F ∈ E(H), there exists i ∈ [α] such that Υ|F = λF,i.

Proof. This follows from the fact that Υ|F is (y, k)-unbreakable.

224

Here, we are interested in assignments that are functions associating each hyper-
edge F ∈ E(H) with a coloring λF,i. Let us proceed by defining which assignments
would be useful for us to have at hand.

Definition 12.5.1. An assignment p : E(H)→ [α]0 is said to be a good assignment
if the following conditions hold.

1. For all F ∈ Es, p(F) = 0.

2. For all F ∈ Em, p(F) = i > 0 and Υ|F = λF,i.

To employ color coding, we first mention the required derandomization tools.

Proposition 12.5.1 (Lemma 1.1, [?]). Given a set U of size n and c, d ∈ [n]0, we
can construct in time O(2O(min(c,d) log(c+d))n log n) a family F of at most
O(2O(min(c,d) log(c+d)) log n) subsets of U , such that the following holds: for all sets
C,D ⊆ U such that C ∩D = ∅, |C| ≤ c and |D| ≤ d, there exists a set S ∈ F with
C ⊆ S and D ∩ S = ∅.

Definition 12.5.2 ((N, r)-perfect family). For any universe N , an (N, r)-perfect
family is a family of functions from N to [r], such that for any subset X ⊆ N of
size r, there exists a function in the family that is injective on X.

Proposition 12.5.2 ([168]). An (N, r)-perfect family of size O(errO(log r) log |N |)
can be computed in time O(errO(log r)|N | log |N |).

We are now ready to present our color coding phases.

Lemma 12.5.4. There exists a set A of assignments from E(H) to [α]0, such that
|A| ≤ 2O(min(x,q) log(x+q)) ·max{d, y}O(max{xy,xk}) · log2|E(H)| and there exists a good
assignment in A. Moreover, such a set A is computable in time O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · |E(H)|O(1)).

Proof. We start by defining three families, which would guide us through the con-
struction of A. For U = E(H), c = x and d = q, let F = {S1, . . . , Sν} be the
family of size ν = 2O(min(x,q) log(x+q)) log |E(H)| obtained by calling the algorithm of
Proposition 12.5.1. For each j ∈ [ν], let Pj be a (E(H) \Sj, x)-perfect family of size
at most ζ ≤ exxO(log x) log |E(H)| computed by the algorithm of Proposition 12.5.2.
Let Q be the family of all possible functions from [x] to [α]. Observe that |Q| = αx.

225

For each set Sj ∈ F , function κ ∈ Pj and function κ0 ∈ Q, let p[Sj, κ, κ0] :

E(H)→ [α]0 be defined as follows.

p[Sj, κ, κ0](F) =

0, if F ∈ Sj
κ0(κ(F)) otherwise

Let A = {p[Sj, κ, κ0] : Sj ∈ F , κ ∈ Pj, κ0 ∈ Q}. We claim that there exists a
good assignment in A. Since |Em| ≤ x (from the preconditions of Lemma 12.5.1)
and |Es| ≤ q (from Lemma 12.5.2), from Proposition 12.5.1 there exists Sj ∈ F
such that Es ⊆ Sj and Em ∩ Sj = ∅. By Proposition 12.5.2, there exists a function
κ ∈ Pj which is injective on Em. Let Em = {F1, . . . , Fc} where c ≤ x. Without
loss of generality, κ(Fy) = y for all y ∈ [c]. Since Q contains all possible functions
from [x] to [α], and for each F ∈ Em there exists i ∈ [α] such that Υ|F = λF,i (from
Lemma 12.5.3), there exists κ0 ∈ Q such that for each F ∈ Em, Υ|F = λF,κ0(κ(F)).
Moreover, since Es ⊆ Sj, we have that p[Sj, κ, κ0](Es) = 0. Thus, p[Sj, κ, κ0] ∈ A is
a good assignment.

Recall that α = max{d, y}O(max{y,k}). Now, as we have upper bounded ν and
ζ, we observe that |A| ≤ νζαx = 2O(min(x,q) log(x+q))exxO(log x)max{d, y}O(max{xy,xk})

log2|E(H)|. This proves the desired bound on the size of A.

The time taken to compute A is proportional to the time taken to compute F ,Pj
for each j ∈ {ν} and Q. By Propositions 12.5.1 and 12.5.2, we thus derive that
the running time is upper bounded by O(2O(min(x,q) log(x+q)) ·max{d, y}O(max{xy,xk}) ·
|E(H)|O(1)).

In the next section, we work with a fixed assignment p ∈ A. For each such
assignment, we eventually compute a sets-colorings tuple of H. The family as de-
scribed in Lemma 12.5.1, is then the union of these tuples for each p ∈ A. We also
prove that if p is a good assignment, then the sets-colorings tuple corresponding to
it is a good sets-colorings tuple for Υ. Since, from Lemma 12.5.4, there exists a
p ∈ A, such that p is good, the family of sets-colorings tuples obtained in the end
contains a good sets-colorings tuple for Υ.

12.5.1.3 Associating the Graph Lp with an Assignment p

For our assignment p : E(H) → [α]0, let us now construct an undirected simple
graph Lp with V (Lp) = V (H). For each F ∈ E(H) such that p(F) = 0, make F a

226

clique in Lp. We say that the edges of this clique are the edges that correspond to
the hyperedge F . For any F ∈ E(H) such that p(F) = i > 0, for each j ∈ [k]0, make
the set λF,i−1(j) a clique in Lp. We say that the edges of all such cliques are the
edges that correspond to the hyperedge F . Since we want Lp to be a simple graph,
between any two vertices of Lp we retain at most one copy of the edge between them
(if one exists). If a deleted copy of some edge e in Lp corresponds to some hyperedge
F , then in the simple graph the retained copy of that edge e is the one that is said
to correspond to that hyperedge F (even if we originally added the retained copy of
e due to a different hyperedge). Note that it may thus be the case that one edge in
Lp corresponds to several hyperedges in E(H).

We proceed by analyzing the connected components of Lp. Informally, we first
argue if p is a good assignment, then every connected component of Lp behaves as
a single unit with respect to Υ.

Lemma 12.5.5. Let p be a good assignment and let D be any connected component
of Lp. Then, Υ(D) = i for some i ∈ [k]0, that is, all the vertices in D are assigned
the same color by Υ.

Proof. For any F ⊆ E(H), let Lp[F] be the simple graph on the same vertex set
as Lp, whose edge set contains only those edges of Lp that correspond to some
hyperedge in F . Observe that Lp[E(H)] = Lp. Moreover, observe that if a set of
vertices is connected in Lp[F] then it is also connected in Lp[F ′] for any F ′ ⊇ F .

Let E(H) = {F1, . . . , Fr}. Moreover, for any j ∈ [r], denote Fj =
j⋃
c=1

Fc. Let us

prove by induction on j that for each component D of Lp[Fj], we have that Υ(D) = i

for some i ∈ [k]0. The proof of this claim would conclude the proof of the lemma,
as by setting j = r, we thus derive that for each component D of Lp[Fr] = Lp, we
have that Υ(D) = i for some i ∈ [k]0. Hence, we next focus only on the proof of the
claim.

To prove the base case, where j = 1, consider the graph Lp[F1]. If F1 6∈ Em, then
Υ(F1) = i for some i ∈ [k]0 (by the definition of Em). Hence, for each connected
component D of Lp[F1], Υ(D) = i for some i ∈ [k]0. Otherwise, F1 ∈ Em. In this
case, let p(F1) = s > 0. Since p is a good assignment, λF1,s = Υ|F1 . Since each
component D of Lp[F1] is either an isolated vertex or λ−1

F1,s
(i) for some i ∈ [k]0, we

conclude that Υ(D) = i for some i ∈ [k]0.

We now suppose that j ≥ 2. By induction hypothesis, for each connected com-
ponent D of Lp[Fj−1], we have that Υ(D) = i for some i ∈ [k]0. Let us now examine

227

the graph Lp[Fj] and the hyperedge Fj. Note that Fj = Fj \Fj−1. If Fj 6∈ Em, then
Υ(Fj) = i for some i ∈ [k]0 (from the definition of Em). Let D be the collection
of every connected components of Lp[Fj−1] which intersects Fj. Then, the defini-
tion of Lp and the inductive hypothesis directly imply that Υ(

⋃D) = i for some
i ∈ [k]0. Thus, by the inductive hypothesis, for each connected component D of
Lp[Fj], we have that Υ(D) = i for some i ∈ [k]0. Otherwise, Fj ∈ Em. Then, denote
p(F1) = s > 0. Since p is a good assignment, λF1,s = Υ|F1 . For each i ∈ [k]0, let
Di be the collection of all connected components of Lp[Fj−1] that intersect λ−1

Fj ,s
(i).

Then, the definition of Lp and the inductive hypothesis directly imply Υ(Di) = i.
Hence, by the inductive hypothesis, for each connected component D of Lp[Fj], we
have that Υ(D) = i for some i ∈ [k]0.

Roughly speaking, we now show that given a good assignment p, if a hyperedge
F of H intersects multiple components of Lp and, Υ assigns a color i > 0 to at least
one of the components, then F ∈ Em.

Lemma 12.5.6. Let p be a good assignment and let D be any connected component
of Lp such that Υ(D) = i > 0 for some i ∈ [k]. For any F ∈ E(H) such that
F ∩D 6= ∅ and F \D 6= ∅, then F ∈ Em.

Proof. Suppose that the statement is false, that is, there exists F ∈ E(H)\Em such
that F ∩ D 6= ∅ and F \ D 6= ∅. Since F /∈ Em, F ∩ D 6= ∅ and Υ(D) > 0, there
exists j ∈ [k] such that F ∈ Esj . Since F ∩ D 6= ∅ and Υ(D) = i, we have that
j = i, that is, F ∈ Esi . Recall that E ′si is a spanning forest of the hypergraph with
vertex set V (H) and edge set Esi . Observe that, since p is a good assignment, by
the definition of Lp, for any spanning forest E ′si , all vertices of F lie in the same
component of Lp, which contradicts that F \D 6= ∅.

12.5.1.4 Rules to Modify a Good Assignment

We now modify the assignment p by applying the following rule exhaustively. Note
that whenever we change p, we update Lp accordingly.

Rule 1: If there exist a connected component D of Lp and a hyperedge
F ∈ E(H) such that F ⊆ D and p(F) > 0, then update p(F) = 0.

Lemma 12.5.7. If p was a good assignment, then after any application of Rule 1,
it remains a good assignment.

228

Proof. From Lemma 12.5.5, Υ(D) = i for some i ∈ [k]0. Thus, if F ⊆ D, then
F 6∈ Em. Hence, when we redefine p(F) = 0, p remains a good assignment.

For each connected component D of Lp, let us now define a label set L(D) ⊆ [k]0

as follows. For any i ∈ [k]0, we insert i into L(D) if and only if there exists F ∈ E(H)

such that F ∩D 6= ∅, p(F) = j > 0 and λF,j(F ∩D) = i. Observe that L(D) could
be empty.

Let us now turn to analyze the label sets we have just defined.

Lemma 12.5.8. For any assignment p, let D be a connected component of Lp such
that L(D) = ∅. Then, for any F ∈ E(H) such that F ∩D 6= ∅, F \D = ∅.

Proof. Observe that if there exists F ∈ E(H) such that p(F) > 0 and F ∩ D 6=
∅, then |L(D)| ≥ 1. Therefore, if L(D) = ∅, then for all F ∈ E(H) such that
F ∩D 6= ∅, we have that p(F) = 0. Thus, from the construction of Lp, we have that
F \D = ∅.

Lemma 12.5.9. Let p be a good assignment such that Rule 1 is no longer applicable
to Lp. Then, for any connected component D of Lp, if Υ(D) = i > 0, then either
L(D) = ∅ or L(D) = {i}.

Proof. Suppose that L(D) 6= ∅. Then, there exists F ∈ E(H) such that F ∩D 6= ∅
and p(F) = j > 0. Let λF,j(F ∩D) = s. We will now show that s = i. First of all,
let us argue that F \D 6= ∅. Indeed, if F \D = ∅, then F ⊆ D. In this case, since
p is a good assignment, where Rule 1 has been exhaustively applied, p(F) should
be equal to 0, which is a contradiction. Thus, since Υ(D) = i > 0, F ∩ D 6= ∅
and F \ D 6= ∅, from Lemma 12.5.6, we have that F ∈ Em. Then, since p is a
good assignment, λF,j(F ∩ D) = Υ|F∩D. Since Υ(D) = i, we derive that indeed
λF,j(F ∩D) = i. Thus, L(D) = {i}.

By Lemma 12.5.9, we have that if p is a good assignment and D is a connected
component of Lp such that either L(D) = {0} or |L(D)| ≥ 2, then Υ(D) = 0.

Lemma 12.5.10. If p is a good assignment such that Rule 1 is no longer applicable
to Lp, and D is a connected component of Lp such that L(D) = {ld}, then either
Υ(D) = ld or Υ(D) = 0.

Proof. Since L(D) = {ld}, there exists F ∈ E(H) such that p(F) = i > 0, F ∩D 6= ∅
and λF,i(F ∩D) = ld. Since Rule 1 has been applied exhaustively, F \D 6= ∅. Denote

229

Υ(D) = j, and suppose that j 6= 0, else we are done. Since j 6= 0, from Lemma
12.5.6 we have that F ∈ Em. Then, since p is a good assignment, λF,i = Υ|F .
Finally, since all the vertices of D are assigned the same color by Υ (by Lemma
12.5.5), we have that Υ(D) = ld.

For a connected component D of Lp such that |L(D)| ≥ 2, let us redefine the
label set of D to be L(D) = {0}. Now, for any connected component D of Lp,
|L(D)| ≤ 1. Moreover, if p is a good assignment and L(D) = {0}, then Υ(D) = 0

(by Lemma 12.5.9). We call a connected component D of Lp such that L(D) = {0}
a 0-component. Thus, from Lemma 12.5.9, if p is a good assignment and D is a
0-component of Lp, then Υ(D) = 0.

Let us continue modifying the assignment p, now with the following rule. Again,
whenever we modify p, we update Lp accordingly.

Rule 2: If there exist F ∈ E(H) and two distinct 0-components of Lp, D1

and D2, such that F ∩D1 6= ∅ and F ∩D2 6= ∅, then update p(F) = 0.

Lemma 12.5.11. If p is a good assignment then after the application of Rule 2, it
remains good.

Proof. To prove the lemma, it is sufficient to show that F /∈ Em. Suppose that
this claim is false, that is, F ∈ Em and hence after the update, we obtain an
assignment that is not good. Since (the original) p is a good assignment, we have
that p(F) = i > 0 such that λF,i = Υ|F . Since D1 and D2 are different connected
components of Lp, (F ∩D1) ⊆ λ−1

F,i(j1), (F ∩D2) ⊆ λ−1
F,i(j2) and j1 6= j2. However,

since D1 and D2 are 0-components of Lp, Υ(D1) = 0 and Υ(D2) = 0. Hence,
λF,i(F ∩ (D1 ∪D2)) = 0, and so, F ∩ (D1 ∪D2) is a clique in Lp. This contradicts
that D1 and D2 are two different components of Lp.

To further analyze 0-components, define B as the set containing every vertex
v ∈ V (H) such that Υ(v) = 0 and there exists F ∈ Em that is incident to v.

Lemma 12.5.12. Let p be a good assignment and let D be a connected component
of Lp containing a vertex v ∈ B. Then, D is a 0-component.

Proof. From the definition of the set B, there exists F ∈ Em such that v ∈ F . Since
p is a good assignment, p(F) = i > 0 such that λF,i = Υ|F . Since Υ(v) = 0, v ∈ F

230

and v ∈ D, we have that λF,i(F ∩D) = 0. Hence, 0 ∈ L(D). Therefore, by Lemma
12.5.9, we conclude that D is a 0-component of Lp.

12.5.1.5 Constructing a Supergraph L∗p of Lp

Let us now construct another simple undirected graph L∗p, which is a supergraph of
Lp with the same vertex set as of Lp and the following additional edges. If there
exists F ∈ E(H) and two distinct connected components of Lp, D1 and D2, such
that F ∩D1 6= ∅, F ∩D2 6= ∅, L(D1) 6= {0} and L(D2) 6= {0}, then insert an edge
between some vertex of D1 and some vertex of D2 into L∗p. Clearly, any connected
component D of Lp is contained in some connected component of L∗p. This leads us
to the following definition.

Definition 12.5.3. Given a connected component D∗ of L∗p, we say that a connected
component D of Lp is a constituent of D∗ if D ⊆ D∗.

A component D∗ of L∗p is called a 0-component of L∗p if it has only one constituent
component and that constituent component is a 0-component in Lp. We now proceed
to analyze the new graph L∗p.

Lemma 12.5.13. Let D∗ be some connected component of L∗p that has a constituent
component D such that L(D) = ∅ or L(D) = {0}. Then, D is the only constituent
component of D∗, that is, D∗ = D.

Proof. When L(D) = {0}, the lemma follows from the construction of L∗p. When
L(D) = ∅, by Lemma 12.5.8, for any F ∈ E(H) such that F ∩D 6= ∅, we have that
F \D = ∅. Thus, by the construction of L∗p, it holds that D∗ = D.

From Lemma 12.5.13, we have that a component of L∗p is a 0-component of L∗p if
and only if it is a 0-component of Lp.

Lemma 12.5.14. Let D∗ be a connected component of L∗p. Let D be some con-
stituent component of D∗. If Υ(D) = 0, then Υ(D∗) = 0.

Proof. If D∗ = D, then we are done. Otherwise, for the sake of contradiction,
suppose that Υ(D∗) 6= 0. Then there exists a constituent component D̃ of D∗ such
that Υ(D̃) 6= 0. Since Υ(D) = 0 and D∗ is connected, there exists constituent
components D′, D′′ of D∗, D′ 6= D′′, such that there is an edge between D′ and D′′

in D∗ and, Υ(D′) = 0 and Υ(D′′) 6= 0. Since there is an edge between D′ and D′′ in

231

D∗, from the construction of L∗p, there exists F ∈ E(H) such that F ∩D′ 6= ∅ and
F ∩D′′ 6= ∅. Since Υ(D′) = 0, Υ(D′′) 6= 0, F ∩D′ 6= ∅ and F ∩D′′ 6= ∅, F ∈ Em.
Since p is a good assignment, from the construction of Lp and the assigning of label
sets, L(D′) = {0}. From Lemma 12.5.13, this implies that D′ is the only constituent
component of D∗, which is a contradiction.

Lemma 12.5.15. For any F ∈ E(H), F intersects exactly one non 0-component of
L∗p.

Proof. If there exists F ∈ E(H) which intersects two non 0-components of L∗p, then
from the construction of L∗p, those two components are joined by an edge in L∗p and
hence, are the same component in L∗p. If there exists F ∈ E(H) which intersects
two 0-components of L∗p, then this violates that Rule 2 has been applied.

We are now ready to output the sets-colorings tuple tp = (C0]C11] . . .]C1a]
C21] . . .]C2b,Φ1, . . . ,Φa) corresponding to the assignment p. The sets of tp corre-
spond to the connected components of L∗p, C0 is the collection of the 0-components
of L∗p, {C11, . . . , C1a} are the components of L∗p whose constituents have non-empty
label set and {C21, . . . , C2b} are the components of L∗p whose unique constituent has
an empty label set. For any i ∈ [a], Φi : C1i → [k]0 is defined as follows. Since C1i

is a connected component of L∗p, let C1
1i, C

2
1i, . . . , C

j
1i be its constituent components.

Then for any r ∈ [j], Φi(C
r
1i) = L(Cr

1i) (recall L(Cr
1i) has a unique label for the con-

stituent component Cr
1i). From Lemma 12.5.15, each hyperedge intersects at most

one of {C11, . . . C1a, C21, . . . , C2b}. Also, from Lemma 12.5.9 and Lemma 12.5.8, if
F ∩C2i 6= ∅, then F \C2i = ∅. This, proves that the tuple tp is indeed a sets-colorings
tuple for H.

We will now prove that if p is a good assignment, then tp is the tuple with the
properties desired in Lemma 12.5.1.

Lemma 12.5.16. If p is a good assignment, then the sets-colorings tuple tp corre-
sponding to it is a good tuple for Υ.

Proof. We show that tp satisfies all the properties described in Lemma 12.5.1.

1. By the definition of C0, 0-component of L∗p, 0-component of Lp and Lemma 12.5.9,
Υ|C0 = 0.

2. From Lemma 12.5.13 and the definition of C2i, C2i is some connected compo-
nent of Lp. Thus, from Lemma 12.5.5, Υ|C2i

is monochromatic in Υ.

232

3. Consider any C1i. From the construction of C1i, C1i is a connected component
of L∗p each of whose constituent components have a non-empty label set. Thus,
from Lemma 12.5.10 and 12.5.14, either Υ|C1i

= 0, or Υ|C1i
= Φi.

Thus, the algorithm for Lemma 12.5.1, for each p ∈ A, constructs L∗p and com-
putes a corresponding sets-colorings tuple as discussed before. Here, A is the family
in Lemma 12.5.4. It then outputs the family containing these sets-colorings tuples
for each p ∈ A. From Lemma 12.5.4, there exists a p ∈ A, such that p is a good
assignment. Also, from Lemma 12.5.16, if p is a good assignment then tp is a good
tuple for Υ. Thus, the output family of sets-colorings tuples contains a good tuple
for tp. We are now left to analyse the running time of the algorithm.

Running Time Analysis. The algorithm begins by computing a family A of assign-
ments from E(H) to [α]0 using Lemma 12.5.4. Then for each assignment p ∈ A, the
algorithm constructs the graph Lp (in polynomial time), modifies it using Rule 1

and 2 (in polynomial time), assigns it labels (in polynomial time), constructs L∗p (in
polynomial time) and finally constructs the sets-colorings tuple for it (in polynomial
time). Since, from Lemma 12.5.4, |A| = O(2O(min(x,q) log(x+q))max{d, y}O(max{xy,xk}) ·
log2|E(H)|) and the time taken to compute |A| is O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · |E(H)|O(1)), the total time taken by the algorithm is
O(2O(min(x,q) log(x+q)) ·max{d, y}O(max{xy,xk}) · |E(H)|O(1)).

12.5.2 Dynamic Programming

Recall that our aim is to prove Theorem 12.4.2, that is, we need to design an al-
gorithm to solve favorable instances of HP. To do so, we will use Lemma 12.5.1
followed by a dynamic programming procedure for each sets-colorings tuple in the
family returned by the algorithm of Lemma 12.5.1. Recall a favorable instance of
HP, I = (k1, k2, b, d, q,H, {fF}|F∈E(H)). If aHP[µ, l1, l2] = 1, then there exists a wit-
nessing coloring Υ : V (H) → [k]0 for aHP[µ, l1, l2]. We will show that since I is a
favorable instance of HP, Υ satisfies the prerequisites of Lemma 12.5.1. Then, for
each sets-colorings tuple in the family returned by Lemma 12.5.1, we define k+1 col-
oring functions for each hyperedge of H. These coloring functions are defined in such
a way, that when we later compute aHP[µ, l1, l2] using dynamic programming, these
coloring functions together give a coloring for V (H). Moreover, if aHP[µ, l1, l2] = 1,

233

then since there exists a witnessing coloring Υ for aHP[µ, l1, l2] that satisfies the pre-
conditions of Lemma 12.5.1, the dynamic programming procedure corresponding to
the sets-colorings tuple that satisfies the conditions of Lemma 12.5.1, will return 1

(or Yes).

Proof of Theorem 12.4.2. Given a favorable instance I = (k1, k2, b, d, q,H, {fF}|F∈E(H))

of HP, our algorithm proceeds by calling the algorithm of Lemma 12.5.1 on the in-
stance (H, k, d, x, y, q), where k = k1 + k2, x = k and y = 3k2. The output is a
family, say, T , of sets-colorings tuples of H.

For each sets-colorings tuple t ∈ T , for each F ∈ E(H), we define k+ 1 coloring
functions from F to [k]0, Ψ1

F , . . . ,Ψ
k+1
F (defined later). Let t = (C0]C11] . . .]C1a]

C21] . . .]C2b,Φ1, . . .Φa). Rename the sets in the tuple t as {S0, S1, . . . , Sz}, where
z = a+ b, such that S0 = C0, for all i ∈ [a], Si = C1i and for all i ∈ [b], Sa+i = C2i.
For each i ∈ [z] and j ∈ [k]0, define a function Ψj

i : Si → [k]0 as follows. Ψj
0(S0) = 0,

for all j ∈ [k]0. For each i ∈ [a], Ψ0
i (Si) = 0 and Ψj

i (Si) = Φi, for all j ∈ [k]. For each
i ∈ {a + 1, . . . , z} and j ∈ [k]0, Ψj

i (Si) = j. Based on these coloring functions for
the sets in the tuple, we now define coloring functions for the hyperedges of H. For
that, let us first classify the hyperedges of H based on the sets in the tuple t. For
each i ∈ {0, a+1, a+2, . . . , z}, let ESi = {F ∈ E(H) : F ⊆ Si}. For each i ∈ [a], let
ESi = {F ∈ E(H) : F ∩ Si 6= ∅}. Since t is a sets-colorings tuple and S0, S1, . . . , Sz

are the sets of this tuple, renamed as described above, E(H) =]i∈[z]0ESi . We now
define the coloring functions for the hyperedges of H. For each i ∈ {0, a+ 1, . . . , z},
F ∈ ESi and j ∈ [k]0, Ψj

F = Ψj
i |F . For each i ∈ [a], for each F ∈ ESi and j ∈ [k]0,

Ψj
F (v) = Ψj

i (v), if v ∈ Si; Ψj
F (v) = 0, if v ∈ S0.

This finishes the description of the coloring functions for the sets of the tuples
and the hyperedges of H. Observe that the colorings Ψ defined for hyperedges are
consistent with V (H), that is, for each F ∈ E(H), no matter which coloring out of
Ψj
F , j ∈ [z]0 is picked, it together colors V (H) where each vertex in V (H) gets a

unique color (assuming V (H) = ∪F∈E(H)V (F), where V (F) denotes the vertices in
the hyperedge F). This is true because t is a sets-colorings tuple and ΨS0 = 0.

For each i ∈ [z], let ESi = {Fi,1, . . . , Fi,zi}. Fix a set Si and j ∈ [k]0, and define

hji [µ
′, l′1, l

′
2] =

∨

(µr)r∈[zi]

(lr1)r∈[zi]

(lr2)r∈[zi]

∧

r∈[zi]

fFi,r(Ψ
j
Fi,r
, µr, l1

r, l2
r)

234

where
∑
r∈[zi]

µr = µ′,
∑
r∈[zi]

lr1 ≤ l′1,
∑
r∈[zi]

l2
r ≤ l′2, and each µr, lr1, lr2 is a non-negative

integer.

Now define H[i, µ′, l′1, l
′
2] =

∨
j∈[k]0

hji [µ
′, l′1, l

′
2].

Let
computeHP[µ, l1, l2] =

∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧

i∈[z]0

H[i, µi, li1, l
i
2]

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a non-negative

integer. Note that each of the functions Ψj
i ,Ψ

j
F , h

j
i ,H and computeHP are defined

with respect to a sets-colorings tuple t.

Lemma 12.5.17. Suppose aHP[µ, l1, l2] = 1. Then there exists a sets-colorings tuple
t ∈ T , such that, for this tuple t, computeHP[µ, l1, l2] = 1.

Proof. Recall that

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0

∨

(µF)|F∈E(H)

(lF1)|F∈E(H)

(lF2)|F∈E(H)

∧

F∈E(H)

fF (Υ|F , µF , lF1 , lF2),

where
∑

F∈E(H)

µF = µ,
∑

F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)

lF2 ≤ l2 and each of µF , lF1 and lF2 is a

non-negative integer.

Since E(H) =]i∈[z]0ESi , we have the following.

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0
(µF)F∈E(H)

(lF1)F∈E(H)

(lF2)F∈E(H)

∧

i∈[z]0

∧

F∈ESi

fF (Υ|F , µF , lF1 , lF2),

where
∑

F∈E(H)

µF = µ,
∑

F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)

lF2 ≤ l2, and for all F ∈ E(H), µF , lF1

and lF2 are non-negative integers.

Since aHP[µ, l1, l2] = 1, there exists a witnessing assignment Υ : V (H) → [k]0.
Since I is a favorable instance of HP, Υ clearly satisfies the local unbreakability and
global unbreakability conditions of Lemma 12.5.1 (when the input to the algorithm
of Lemma 12.5.1 is (H, k, d, k, 3k2, q)). We first show that, Υ also satisfies the first

235

precondition of Lemma 12.5.1 with x = k. That is, the number of hyperedges of H
that are non-monochromatic under Υ is at most k. Since aHP[µ, l1, l2] = 1, for all
F ∈ E(H) there exist µF , lF1 and lF2 such that fF (Υ|F , µF , lF1 , l

F
2) = 1. Hence, the

connectivity property of Υ (which exists because I is a favorable instance) implies
that for each F that is not monochromatic in Υ, we have that lF1 + lF2 ≥ 1. However,∑

F∈E(H) l
F
1 + lF2 ≤ l1 + l2 ≤ k1 + k2 = k. Thus, the number of non-monochromatic

hyperedges under Υ is at most k.

Thus, from Lemma 12.5.1, there exists a good tuple t ∈ T , for Υ. Consider
computeHP[µ, l1, l2] (and thus corresponding hji ,Ψ

j
F ,Ψ

j
i) defined for this good tuple.

From the definition of a good tuple and Ψj
i , for each i ∈ [z]0, Υ|Si = Ψj

i , for some
j ∈ [k]0. Also, since t is a sets-colorings tuple, for each F ∈ E(H), Υ|F = Ψj

F , for
some j ∈ [k]0.

Thus, if aHP[µ, l1, l2] = 1, we get the following.

aHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧

i∈[z]0

H[i, µi, li1, l
i
2] = computeHP[µ, l1, l2],

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a non-negative

integer.

Lemma 12.5.18. If, there exists a tuple t ∈ T , such that, for this tuple t,
computeHP[µ, l1, l2] = 1, then aHP[µ, l1, l2] = 1.

Proof. From the definition of computeHP, we have the following.

computeHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧

i∈[z]0

H[i, µi, li1, l
i
2] = 1,

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a non-negative

integer.

Since H[i, µ′, l′1, l
′
2] =

∨
j∈[k]0

hji [µ
′, l′1, l

′
2], we get the following for some j0, . . . , jz ∈

[k]0.

236

∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧

i∈[z]0

hjii [µi, li1, l
i
2] = 1

From the definition of hjii , we get the following.

∨

(µFi,r)|i∈[z]0,r∈[zi]

(l
Fi,r
1)|i∈[z]0,r∈[zi]

(l
Fi,r
2)|i∈[z]0,r∈[zi]

∧

i∈[z]0

∧

r∈[zi]

fFi,r(Ψ
ji
Fi,r
, µFi,r , l

Fi,r
1 , l

Fi,r
2) = 1,

where
∑

i∈[z]0,r∈[zi]

µFi,r = µ,
∑

i∈[z]0,r∈[zi]

l
Fi,r
1 ≤ l1,

∑
i∈[z]0,r∈[zi]

l
Fi,r
2 ≤ l2 and each of µF , lF1

and lF2 is a non-negative integer.

Since Ψ for hyperedges gives a consistent coloring for V (H), let this coloring be
Υ : V (H)→ [k]0. This coloring Υ then witnesses the following.

∨

(µFi,r)|i∈[z]0,r∈[zi]

(l
Fi,r
1)|i∈[z]0,r∈[zi]

(l
Fi,r
2)|i∈[z]0,r∈[zi]

∧

i∈[z]0

∧

r∈[zi]

fFi,r(Υ|Fi,r , µFi,r , l
Fi,r
1 , l

Fi,r
2) = 1

where
∑

i∈[z]0,r∈[zi]

µFi,r = µ,
∑

i∈[z]0,r∈[zi]

l
Fi,r
1 ≤ l1,

∑
i∈[z]0,r∈[zi]

l
Fi,r
2 ≤ l2 and each of µF , lF1

and lF2 is a non-negative integer.

Since E(H) =]i∈[z]0ESi , we get the following.

∨

(µF)|F∈E(H)

(lF1)|F∈E(H)

(lF2)|F∈E(H)

∧

F∈E(H)

fF (Υ|F , µF , lF1 , lF2) = 1,

where
∑

F∈E(H)

µF = µ,
∑

F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)

lF2 ≤ l2, and for all F ∈ E(H), µF , lF1

and lF2 are non-negative integers.

Thus, we conclude that aHP[µ, l1, l2] = 1.

From Lemma 12.5.17 and Lemma 12.5.18, we conclude that, to compute aHP[µ, l1, l2],
it is enough to compute computeHP[µ, l1, l2] for each tuple t ∈ T . In the upcom-

237

ing lemmas we analyse the time taken to compute computeHP[µ, l1, l2] for any tuple
t ∈ T .

Lemma 12.5.19. For any i ∈ [z]0, j ∈ [k]0, µ
′ ≤ µ, l′1 ≤ l1 ≤ k1, l

′
2 ≤ l2 ≤ k2,

hji [µ
′, l′1, l

′
2] can be computed in time O(zi · (µ · k1 · k2)2).

Proof. Recall

hji [µ
′, l′1, l

′
2] =

∨

(µr)r∈[zi]

(lr1)r∈[zi]

(lr2)r∈[zi]

∧

r∈[zi]

fFi,r(Ψ
j
Fi,r
, µr, l1

r, l2
r)

where
∑
r∈[zi]

µr = µ′,
∑
r∈[zi]

lr1 ≤ l′1,
∑
r∈[zi]

l2
r ≤ l′2, and each µr, lr1, lr2 is a non-negative

integer.

For any c ∈ [zi], µ
′, l′1 and l′2, let

hji [c, µ
′, l′1, l

′
2] =

∨

(µr)r∈[c]

(lr1)r∈[c]

(lr2)r∈[c]

∧

r∈[c]

fFi,r(Ψ
j
Fi,r
, µr, l1

r, l2
r)

where
∑
r∈[c]

µr = µ′,
∑
r∈[c]

lr1 ≤ l′1,
∑
r∈[c]

l2
r ≤ l′2, and each µr, lr1, lr2 is a non-negative

integer.

Then hji [zi, µ
′, l′1, l

′
2] can be computed using the following recurrences in time

O(zi · (µ · k1 · k2)2).

hji [1, µ
′, l′1, l

′
2] = fFi,1(Ψj

Fi,1
, µ′, l′1, l

′
2)

For all c ∈ {2 . . . , zi},

hji [c, µ
′, l′1, l

′
2] =

∨

µ′=µ1+µ2

l′1≥l11+l21
l′2≥l12+l22

hji [c− 1, µ1, l11, l
1
2] ∧ fFi,c(Ψj

Fi,c
, µ2, l21, l

2
2)

Observe that hji [µ′, l′1, l′2] = hjI [zi, µ
′, l′1, l

′
2]. This concludes the proof.

Since H[i, µ′, l′1, l
′
2] =

∨
j∈[k]0

hji [µ
′, l′1, l

′
2], from Lemma 12.5.19, for any i, µ′, l′1, l′2,

238

H[i, µ′, l′1, l
′
2] can be computed in time O(zi · (µ)2 · (k1 + k2)3).

Lemma 12.5.20. For any tuple t ∈ T , for any µ′ ≤ µ, l′1 ≤ l1 ≤ k1, l′2 ≤ l2 ≤ k2,
computeHP[µ′, l′1,

′
2] can be computed in time z · zi · (µ · (k1 + k2)O(1)).

Proof. Recall

computeHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧

i∈[z]0

H[i, µi, li1, l
i
2],

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a non-negative

integer.

For any c ∈ [z]0, µ
′, l′1 and l′2, let

computeHP[c, µ, l1, l2] =
∨

(µi)i∈[c]0

(li1)i∈[c]0

(li2)i∈[c]0

∧

i∈[c]0

H[i, µi, li1, l
i
2],

where
∑
i∈[c]

µi = µ,
∑
i∈[c]

li1 ≤ l1,
∑
i∈[c]

li2 ≤ l2, and each µi, li1, li2 is a non-negative integer.

Then computeHP[z, µ, l1, l2] can be computed using the following recurrences.

computeHP[0, µ, l1, l2] = H[0, µ, l1, l2]

For all c ∈ [z],

computeHP[c, µ, l1, l2] =
∨

µ′=µ1+µ2

l′1≥l11+l21
l′2≥l12+l22

computeHP[c− 1, µ1, l11, l
1
2] ∧H[c, µ2, l21, l

2
2]

Observe that computeHP[µ, l1, l2] = computeHP[z, µ, l1, l2]. From Lemma 12.5.19,
for any i, µ, l1, l2, H[i, µ, l1, l2] can be solved in time O(zi · (µ)2) · (k1 + k2)3. Thus,
computeHP[µ, l1, l2] can be solved in time z · zi · (µ · (k1 + k2)O(1)). This concludes
the proof.

239

From Lemma 12.5.1, the number of tuples in T is bounded and for each tuple,
the time taken to compute computeHP[µ, l1, l2] is given by Lemma 12.5.20. Thus,
Lemma 12.5.1 and Lemma 12.5.20 together give the desired running time bound of
Theorem 12.4.2.

240

Chapter 13

Degeneracy Reduction Preserving
Minimal Multicuts

We begin by defining the Multicut problem.

Multicut
Input: An (undirected) graph G, a set T = {{s1, t1}, {s2, t2}, . . . , {s`, t`}} of
terminal pairs and an integer k.
Question: Does there exist S ⊆ V (D) of size at most k such that for every
i ≤ `, si and ti are in distinct connected components of G− S?

Such a set S is called a multicut of T in G. In this chapter, we show that all
the minimal multicuts of any graph G are, confined inside a subgraph of bounded
degeneracy. In fact, such a subgraph can be found in polynomial time. More
specifically, we prove the following theorem.

Theorem 13.0.1 (Degeneracy Reduction Theorem). There exists a polynomial time
algorithm that given a graph G, a set T = {{s1, t1}, {s2, t2}, . . . , {s`, t`}} of terminal
pairs and an integer k, returns an induced subgraph G? of G and a subset T ? of T
which have the following properties.

• every minimal multicut of T in G of size at most k is a minimal multicut of
T ? in G?,

• every minimal multicut of T ? in G? of size at most k is a minimal multicut of
T in G, and

• G? does not contain a (k + 2)-connected set of size O(64k · k2).

241

We remark that excluding a (k + 2)-connected set of size O(64k · k2) implies
that G? excludes a clique of size O(64k · k2) as a topological minor (and hence, the
degeneracy of G? is bounded by 2O(kO(1))). In fact, the property of excluding a large
(k + 2)-connected set puts considerable extra restrictions on the graph, on top of
being topological minor free, as there exist planar graphs that contain arbitrarily
large (k+ 2)-connected sets. The proof of Theorem 13.0.1 uses the irrelevant vertex
technique of Robertson and Seymour [188], however, instead of topological argu-
ments for finding an irrelevant vertex we rely on a careful case distinction based on
cut-flow duality together with counting arguments based on important separators.

13.1 Outline of the Proof

Towards the proof of Theorem 13.0.1, we describe an algorithm that given G, the
set T of terminal pairs, an integer k and a (k + 2)-connected set W of size at least
64k+2 · (k + 2)2, computes a vertex v that does not appear in any minimal multicut
of size at most k + 1. One can show that such a vertex v is irrelevant in the sense
that G, T has exactly the same family of minimal multicuts of size at most k as
the graph G − v with the terminal set T ′ = {{si, ti} ∈ T : v /∈ {si, ti}}. The
proof of Theorem 13.0.1 then follows by repeatedly removing irrelevant vertices,
until |W | ≤ 64k+2 · (k + 2)2.

Degree 1 Terminals Assumption. In order to identify an irrelevant vertex it is
helpful to assume that every terminal si or ti has degree 1 in G, and that no vertex
in G appears in more than one terminal pair. To justify this assumption one can,
for every pair {si, ti} ∈ T , add k+ 2 new degree 1 vertices s1

i , s
2
i , . . . , s

k+2
i and make

them adjacent to si, and k + 2 new degree 1 vertices t1i , t2i , . . . , t
k+2
i and make them

adjacent to ti. Call the resulting graph G′, and make a terminal pair set T ′ from T

by inserting for every pair {si, ti} ∈ T the set {{sji , tji} : 1 ≤ j ≤ k + 2} into T ′. It
is clear that the set of (minimal) multicuts of T ′ in G′ of size at most k + 1 is the
same as the set of (minimal) multicuts of T in G of size at most k + 1.

Detecting Irrelevant Vertices. In order to identify an irrelevant vertex we inves-
tigate the properties of all vertices v ∈ W for which there exists a minimal multicut
of size at most k+ 1 containing v. We will call such vertices relevant. Let v ∈ W be
a relevant vertex and let S be a minimal multicut of size at most k + 1 containing
v. Since W is a (k + 2)-connected set and |S| ≤ k + 1, W \ S is contained in some
connected component C of G−S. Since S is a multicut we also have that S is a pair

242

cut for T with respect to W in the following sense: for each terminal pair {si, ti} at
most one of si and ti can reach W \ S in G − S. This is true because all vertices
of W \ S lies in the same connected component of G − S. Furthermore, S \ {v}
cannot be a pair cut for T with respect to W , because if it happened to be a pair
cut, then we can show that S \ {v} would also have been a multicut, contradicting
the minimality of S. We say that v ∈ W is essential if there exists some pair cut S
for T with respect to W such that |S| ≤ k + 1, v ∈ S and S \ {v} is not a pair cut
for T with respect to W . The above argument shows that every relevant vertex is
essential, and it remains to find a vertex v ∈ W which is provably not essential.

The algorithm that searches for a non-essential vertex v crucially exploits im-
portant separators, defined by Marx [156]. Given a graph G and two vertex sets A
and B, an A-B-separator is a vertex set S ⊆ V (G) such that there is no path from
A \ S to B \ S in G− S. An A-B-separator S is called a minimal A-B-separator if
no proper subset of S is also an A-B-separator. Given a vertex set S, we define the
reach of A in G− S as the set RG(A, S) of vertices reachable from A by a path in
G− S. We can now define a partial order on the set of minimal A-B separators as
follows. Given two minimal A-B separators S1 and S2, we say that S1 is “at least
as good as” S2 if |S1| ≤ |S2| and RG(A, S2) (RG(A, S1). In plain words, S1 “costs
less” than S2 in terms of the number of vertices deleted and S1 “is pushed further
towards B” than S2 is. A minimal A-B-separator S is an important A-B-separator
if no minimal A-B-separator other than S is at least as good as S. A key insight
behind many parameterized algorithms [51, 54, 57, 72, 135, 141, 145, 148, 147, 160]
is that for every k, the number of important A-B-separators of size at most k is
at most 4k [50]. We refer the reader to Marx [156] and the textbook by Cygan et
al. [65] for a more thorough exposition of important separators.

The algorithm that searches for a non-essential vertex v makes the following
case distinction. Either there exists a small T -W -separator Z, or there are many
vertex disjoint paths from T to W . Here, we have abused notation by treating
T as a set of vertices in the terminal pairs rather than a set of terminal pairs.
As pointed out by an anonymous reviewer, in both the cases, the essence of the
arguments is to set up the stage for the application of the anti-isolation lemma of
Marx [157], which appeared in [178], to mark relevant vertices and relevant terminal
pairs respectively. In the first case, when there exists a T -W -separator Z of size at
most ζ = 16k+1 ·64(k+2), we show that every relevant vertex v ∈ W is contained in
some important z-W -separator of size at most k+1, for some z ∈ Z. Since there are
at most 4k+1 such important separators and we can enumerate them efficiently [50],

243

the algorithm simply marks all the vertices in W appearing in such an important
separator and outputs one vertex that is not marked.

Many Disjoint Paths. If there are at least 16k+1 · 64(k + 2) vertex disjoint paths
from T toW we identify a terminal pair {si, ti} such that, for every minimal multicut
S of size at most k+ 1 for the instance G with terminal set T \ {{si, ti}}, S is also a
minimal multicut for G with terminal set T . Such a terminal pair is irrelevant in the
sense that removing {si, ti} from T does not change the family of minimal multicuts
of size at most k + 1. Thus, if we later identify a vertex v ∈ W that is irrelevant
with the reduced terminal set, then v is also irrelevant with respect to the original
terminal set. We will say that a terminal pair that isn’t irrelevant is relevant.

To identify an irrelevant terminal pair we proceed as follows. Without loss of
generality, there are ζ/2 vertex disjoint paths from A = {s1, s2, . . . sζ/2} toW . Thus,
for any set S of at most k+ 2 vertices, all of A except for at most k+ 2 vertices can
reach W \ S in G− S. Let B = {t1, t2, . . . tζ/2}. We have that for every pair cut S
for T with respect to W , at most k + 2 vertices of B \ S are reachable from W in
G− S.

Consider a pair {si, ti} with si ∈ A and ti ∈ B. If {si, ti} is relevant, then there
must exist a set S of size at most k+1 that is a minimal pair cut for G with terminals
T \ {{si, ti}} with respect to W , but is not a pair cut with terminal pair set T . We
have that ti is reachable from W \ S in G− S, and that S ∪ {ti} is a pair cut for T .
Let B̂ ⊆ B be the set of vertices in B that are reachable from W in G− (S ∪ {ti}).
From the discussion in the previous paragraph it follows that |B̂| ≤ k + 2. Thus,
S ∪ {ti} ∪ B̂ is a W -B separator of size at most 2(k + 2). Pick any minimal W -B
separator Ŝ ⊆ S ∪ {ti} ∪ B̂.

We argue that ti ∈ Ŝ. To that end we show that there exists a path P from W

to ti in G− (S ∪ B̂). Thus, if ti /∈ Ŝ then Ŝ would be a subset of S ∪ B̂ and P would
be a path from W to B in G − Ŝ, contradicting that Ŝ is a W -B-separator. We
know that there exists a path P from W to ti in G − S and that P does not visit
any vertex in B̂ on the way to ti because all vertices in B̂ have degree 1. Hence P
is disjoint from Ŝ, yielding the desired contradiction. We conclude that ti ∈ Ŝ.

With all of this hard work we have, under the assumption that {si, ti} is a relevant
pair with ti ∈ B, exhibited a minimalW -B-separator Ŝ that contains ti. There must
exist some important W -B-separator S? that is at least as good as Ŝ. Since all the
vertices of P (except ti) are reachable from W in G− Ŝ it follows that ti ∈ S?. We
have now shown that if {si, ti} is a relevant pair with ti ∈ B, then there exists a W -

244

B important separator of size at most 2(k+ 2) that contains ti. The algorithm goes
over all W -B important separators of size at most 2(k + 2) and marks all vertices
appearing in such important separators. Since ζ/2 > 42(k+2) ·2(k+ 2) it follows that
some vertex ti in B is left unmarked. The pair (si, ti) is then an irrelevant pair. This
concludes the proof sketch that there exists a polynomial time algorithm that given
G, T , k and W finds an irrelevant vertex in W , provided that W is large enough.
We would like to remark here (as pointed out by an anonymous reviewer) that this
process is similar in principle to the anti-isolation lemma of Marx [157] (which also
appeared in [178]).

Finding a Large (k + 2)-Connected Set. We have shown how to identify an
irrelevant vertex given a (k + 2)-connected set W of large size. But how to find
such a set W , if it exists? Given G we can in polynomial time build an auxiliary
graph G? that has the same vertex set as G. Two vertices in G? are adjacent if
there are at least k + 2 internally vertex disjoint paths between them in G. Clearly
(k+2)-connected sets in G are cliques in G? and vice versa. However, finding cliques
in general graphs is W [1]-hard, and is believed to not have an approximation even
in FPT time. To get around this obstacle we exploit the special structure of G?.

A (k + 2)-connected set W in G of size at least 64k+2 · 4(k + 2)2 induces a
subgraph of G? where every vertex has degree at least (k+ 2). Thus the degeneracy
of G? is at least 64k+2 · 4(k + 2)2. A modification of a classic result of Mader [152]
(see also Diestel [76] and lecture notes of Sudakov [199]) shows that every graph of
degeneracy at least 4d contains a (d + 1)-connected set of size at least d + 2, and
that such a set can be computed in polynomial time. We apply this result with
d = 64k+2 · (k+2)2−1 to obtain a (64k+2 · (k+2)2)-connected set inW ? in G? of size
at least 64k+2 ·(k+2)2. A simple argument shows thatW ? is also a (k+2)-connected
set in G. We may now apply the algorithm to detect irrelevant vertices using W ?.
This concludes the proof sketch of Theorem 13.0.1.

The remaining chapter is organized as follows. We start by showing how to
efficiently find some vertices that are irrelevant to “small” digraph pair cuts (defined
in Section 13.2), assuming that the input graph has a sufficiently large number of
vertices that are in-neighbors of the root. Afterwards, having a method to identify
such irrelevant vertices at hand, we develop (in Section 13.3) an efficient algorithm
that given a graph G, a set of terminal pairs T and a positive integer k, outputs an
induced subgraph G? of G and a subset T ? ⊆ T such that the following conditions
are satisfied. First, any set S ⊆ V (G) of size at most k is a minimal multicut of T
in G if and only if S ⊆ V (G?) and it is a minimal multicut of T ? in G?. Second, G?

245

does not contain any “large” (k + 2)-connected set.

13.2 Identifying Vertices Irrelevant to Digraph Pair

Cuts

The notion of a digraph pair cut was defined by Kratsch and Wahlström in [136].
This notion was used to derive randomized polynomial kernels for many problems,
including Almost 2-SAT and Multiway Cut with Deletable Terminals.
Towards defining which vertices are irrelevant to “small” digraph pair cuts, we first
formally define what is a digraph pair cut.

Definition 13.2.1. Let D be a digraph, T be a set of pairs of vertices (called terminal
pairs), and r ∈ V (D). We say that S ⊆ V (D) \ {r} is an T -r-digraph pair cut if
for every terminal pair {s, t} ∈ T , S is an s-r-separator or a t-r-separator.1

The problem Digraph Pair Cut takes as input a digraph D, a set of terminal
pairs T , r ∈ V (D) and k ∈ N, and the task is to output Yes if and only if there
is an T -r-digraph pair cut in G of size at most k. We say that a vertex v ∈ V (D)

is irrelevant to the instance (D,T, r, k) if there is no minimal T -r-digraph pair cut
of size at most k in D that contains v. If a vertex is not irrelevant to (D,T, r, k),
then we say that it is relevant to (D,T, r, k). In the following lemma, which is the
main result of this subsection, we show that for an instance (D,T, r, k) of Digraph

Pair Cut, the number of in-neighbors of r that belong to at least one minimal
T -r-digraph pair cut of size at most k is upper bounded by 64k+1(k + 1)2. In other
words, we bound the number of in-neighbors of r that are relevant.

Lemma 13.2.1. Let (D,T, r, k) be an instance of Digraph Pair Cut. The num-
ber of vertices in N−D (r) that are relevant to (D,T, r, k) is at most 64k+1(k + 1)2.
Moreover, there is a deterministic algorithm that given (D,T, r, k), runs in time
O(|T | ·n(n

2
3 +m)), and outputs a set R ⊆ N−D (r) of size at most 64k+1(k+1)2 which

contains all relevant vertices to (D,T, r, k) in N−D (r). 2

Towards the proof of Lemma 13.2.1, we first define which terminal pairs are
irrelevant.

1The definition of digraph pair cut used here is same as that of Kratsch and Wahlström [136]
where we reverse the directions of the arcs of the graph.

2In other words, the vertices in N−
D (r) \R are irrelevant to (D,T, r, k).

246

Definition 13.2.2. Let (D,T, r, k) be an instance of Digraph Pair Cut. A
terminal pair {s, t} ∈ T is irrelevant to (D,T, r, k) if any minimal (T \ {{s, t}})-r-
digraph pair cut in D of size at most k is also a minimal T -r-digraph pair cut in
D.

The following observation directly follows from the definition of irrelevant ter-
minal pairs.

Observation 13.2.1. Let D be a digraph, T be a set of terminal pairs, r ∈ V (D)

and k ∈ N. If {s, t} ∈ T is a terminal pair irrelevant to (D,T, r, k), then any vertex
relevant to (D,T, r, k) is also a vertex relevant to (D,T \ {{s, t}}, r, k).

We now define important separators, which have played an important role in the
context of existing literature concerning cut related problems.

Definition 13.2.3 (Important Separators, [156]). Let D be a digraph. For subsets
X, Y, S ⊆ V (D), the set of vertices reachable from X \ S in D − S is denoted by
RD(X,S). An X-Y -separator S dominates an X-Y -separator S ′ if |S| ≤ |S ′| and
RD(X,S ′) (RD(X,S). A subset S is an important X-Y -separator if it is minimal,
and there is no X-Y -separator S ′ that dominates S. For two vertices s, t ∈ V (D),
the term important s-t-separator refers to an important N+

D (s)-N−D (t)-separator in
D − {s, t}. For r ∈ V (D) and Y ⊆ V (D), the term important Y -r-separator refers
to an important Y -N+

D (r)-separator in D − r.

Lemma 13.2.2 ([50, 156]). Let D be a digraph, X, Y ⊆ V (D), and k ∈ N. The
number of important X-Y -separators of size at most k is upper bounded by 4k, and
these separators can be enumerated in time O(4k · k · (n+m)).

The rest of this subsection is dedicated to the proof of Lemma 13.2.1. That is,
we design an algorithm, called A, that finds a set R with the properties specified by
Lemma 13.2.1. If |N−D (r)| ≤ 64k+1(k+ 1)2, then N−D (r) is the required set R. Thus,
from now on, we assume that |N−D (r)| > 64k+1(k + 1)2. Algorithm A is an iterative
algorithm. In each iteration, A either terminates by outputting the required set R,
or finds an irrelevant terminal pair for the input instance, removes it from the set
of terminal pairs, and then repeats the process.

As a preprocessing step preceding the first call to A, we modify the graph D and
the set of terminal pairs T as described below. The new graph D′ and set of terminal
pairs T ′ would allow us to accomplish our task while simplifying some arguments in
the proof. We set D′ to be the digraph obtained from D by adding two new vertices,

247

• • • • •s s′ t t′ t′′

Y

•
•

(a) Let Y be a (k + 1)-
connected set in G.

r

• • • • •s s′ t t′ t′′

Y

•
•

(b) Constructing D from
G. Here, Y = N−(r).

r

• • • • •s s′ t t′ t′′

Y

•
•

• • • • • •s1 s2s′1 t1 t′1 t′′1

(c) Constructing D′ from
D.

Figure 13.1: The graphs G,D and D′ are displayed in left-to-right order, T =
{{s, t}, {s, t′′}, {s′, t′}} and T ′ = {{s1, t1}, {s2, t

′′
1}, {s′1, t′1}}.

s′ and t′, and two new edges, s′s and t′t, for each terminal pair {s, t} ∈ T . The
modification is such that if a vertex u ∈ V (D) belonged to ` terminal pairs in T , then
D′ would have ` distinct vertices corresponding to u. Now, the new set of terminal
pairs is defined as T ′ = {{s′, t′} | {s, t} ∈ T}. It is easy to see that any minimal
T -r-digraph pair cut in D is also a minimal T ′-r-digraph pair cut in D′. Thus, to
find a superset of relevant vertices for (D,T, r, k) in the set N−D (r), it is enough to
find a superset of relevant vertices for (D′, T ′, r, k) in the set N−D′(r). Therefore,
from now on we can assume that our input instance is (D′, T ′, r, k), where the pairs
in the set T ′ are pairwise disjoint (see Figures 13.1b and 13.1c for an illustration).
Henceforth, whenever we say that a vertex is relevant (or irrelevant), we mean that
it is relevant (or irrelevant) for the instance (D′, T ′, r, k). The description of A is
given in Algorithm 1.

The correctness of Algorithm 1 as exhibited in Lemma 13.2.3 is essentially based
on creating a set up that allows the applicability of the anti-isolation lemma of
Marx [157], which appeared at [178], to find and mark relevant vertices and relevant
terminal pairs.

Lemma 13.2.3. Algorithm 1 outputs a set R of size at most 64k+1(k + 1)2, which
contains all relevant vertices in N−D (r).

Proof. Notice that Algorithm 1 returns a set R either in Line 2 or in Line 8 thus, by
Lemma 13.2.2, the size of the returned set is at most |Z| · 4kk+ |Z| ≤ 64k+1(k+ 1)2.
We now prove the correctness of the algorithm using induction on |T ′|. When

248

Algorithm 1: Input is (G′, T ′, r, k), where T ′ is pairwise disjoint
1 if |T ′| = 0 then
2 return ∅
3 T̂ := {s′, t′ | {s′, t′} ∈ T ′}.
4 Compute a minimum T̂ -r-separator Z.
5 if |Z| ≤ 16k · 64(k + 1) then
6 For each z ∈ Z, compute all important z-r-separators of size at most k.
7 Mark all the vertices in N−D′(r), which are either part of the computed

important separators or part of Z.
8 return the set of marked vertices (call it R)

9 else
10 Compute a maximum set P of vertex disjoint paths from T̂ to r (any

pair of paths intersects only at r).
11 Let X = V (P) ∩ T̂ . Let A be a maximum sized subset of X such that

for any {s′, t′} ∈ T ′, |A ∩ {s′, t′}| ≤ 1.
12 Let B = {w | there exists w′ ∈ A such that {w,w′} ∈ T ′}. That is, B is

the set of vertices that are paired with vertices of A in the set of pairs
T ′.

13 Compute all important r-B-separators of size at most 2k + 2 in
←−
D′.

14 Mark all vertices from B which are part of the computed important
separators.

15 Let q ∈ B be an unmarked vertex and let {q, q′} ∈ T ′.
16 T ′ := T ′ \ {{q, q′}} and repeat from Step 2.

|T ′| = 0, then no vertex in N−D (r) is relevant and the algorithm returns the correct
output. Now consider the induction step where |T ′| > 0. We have two cases based
on the size of the separator Z computed in Line 4.

Case 1: |Z| ≤ 16k · 64(k + 1). In this case, Lines 6-8 will be executed and Al-
gorithm 1 will output a set R. We prove that R contains all relevant vertices in
N−D′(r). Towards this, we show that if S is a minimal T ′-r-digraph pair cut of size
at most k and v ∈ N−D′(r) ∩ S, then v belongs to R. Let S ′ = S \ {v}. Since S
is a minimal T ′-r-digraph pair cut, S ′ is not a T ′-r-digraph pair cut. Since S is a
T ′-r-digraph pair cut and S ′ is not a T ′-r-digraph pair cut, there is a vertex t ∈ T̂
such that (i) v is reachable from t in D′ − S ′, and (ii) r is not reachable from t in
D′ − S. If v ∈ Z, then v is marked and belongs to R. Therefore, if v ∈ Z, we are
done. Thus, from now on, assume that v /∈ Z.

Claim 13.2.1. There is a vertex z ∈ Z that belongs to RD′(t, S).

249

• •

•

t v

r

T̂ S

Rt = RD′(t, S)

N+(Rt)

Figure 13.2: Here, the ellipse contains the set of vertices reachable from t in D′−S,
denoted by Rt. The rectangle colored grey represents N+(Rt) which includes v

Proof. From (i), we have that v ∈ RD′(t, S
′). Since Z is a minimum T̂ -r-separator,

t ∈ T̂ , and v ∈ RD′(t, S
′), we have that all paths from t to v passes through some

vertex in Z. Also, since v ∈ N−D′(r) and v ∈ RD′(t, S
′) and v /∈ Z, there is a vertex

z ∈ Z that belongs to RD′(t, S).

Let Rt = RD′(t, S) and C = N+
D′(Rt). Observe that C ⊆ S, v ∈ C and v is

reachable from z in D′− (C \{v}). We claim that C is a z-r-separator. If C is not a
z-r-separator, then there is a path from z to r in D′ − S. Also, since z ∈ RD′(t, S),
there is a path from t to z in D′−S. This implies that there is a path from t to r in
D′−S which is a contradiction to the statement (ii). Since v is reachable from z in
D′−(C \{v}), there is a minimal z-r-separator that contains v and is fully contained
in C. Let C ′ ⊆ C be a minimal z-r-separator that contains v. Since v ∈ N−D′(r)

and C ′ is a minimal z-r-separator, either C ′ is an important z-r-separator or there
is an important z-r-separator of size at most k containing v which dominates C ′. In
either case, v is marked in Line 8 and hence, it will be in the set R (see Figure 13.2
for an illustration).

Case 2: |Z| > 16k · 64(k + 1). In this case, we prove that there, indeed, exists an
unmarked vertex q ∈ B and the pair {q, q′} is an irrelevant terminal pair. Notice
that in Line 13, we have computed all important r-B-separators of size at most
2k + 2 for some B. By Lemma 13.2.2, the total number of vertices in all these
separators together is at most 16k · 32(k + 1). So we should have marked at most
16k · 32(k+ 1) vertices in B. We first claim that |B| > 16k · 32(k+ 1), which ensures
the existence of an unmarked vertex in B. By the definition of A, the size of A is
at least |Z|/2 > 16k · 32(k + 1), because there are |Z| vertex disjoint paths from T̂

250

to r, only intersecting at r. By the definition of B, |B| = |A| > 16k · 32(k + 1).
Since we proved that we have only marked at most 16k · 32(k+ 1) vertices in B, this
implies that there is an unmarked vertex q in B. Let q′ be the unique vertex such
that {q, q′} ∈ T ′ (such a unique vertex exists because T ′ is pairwise disjoint).

Now we show that {q, q′} is an irrelevant terminal pair. Let S be a minimal
(T ′ \ {{q, q′}})-r-digraph pair cut of size at most k. We need to show that S is also
a T ′-r-digraph pair cut. We know that there are |Z| vertex disjoint paths P from
T̂ to r, where the paths intersect only at r. Since Z is a minimum T̂ -r-separator,
|T̂ | ≥ |Z|. Recall the definition of A and B from the description of the algorithm.
Let Ar be the set of vertices in A \ {q′} such that r is reachable from each vertex
in Ar in D′ − S, that is, Ar = {u ∈ A \ {q′} | r ∈ RD′(u, S)}. Let Br be the set of
vertices in B such that r is reachable from each vertex in Br in the graph D′−S, that
is, Br = {u′ ∈ B | r ∈ RD′(u

′, S)}. Since there are |A| vertex disjoint paths from
A to r (which intersect only at r) and |S| ≤ k, we have |Ar| ≥ |A| − (k + 1). Since
S is an (T ′ \ {{q, q′}})-r-digraph pair cut, the vertices in B which are paired with
a vertex in Ar are not reachable from r in

←−
D′ − S. This implies that |Br| ≤ k + 1.

Let Q = S ∪ Br ∪ {q}. Notice that q ∈ Q and Q is a r-B-separator in
←−
D′ of size at

most 2k+ 2. If q is not reachable from r in
←−
D′−S, then S is, indeed, a T ′-r-digraph

pair cut, because S is a (T ′ \ {{q, q′}})-r-digraph pair cut. In what follows we show
that it is always the case, that is, q is not reachable from r in

←−
D′ − S. Suppose

not. Since q is reachable from r in
←−
D′ − S and all the vertices in Q \ S have no

out-neighbors in
←−
D′ (by construction of D′), any path from r to q in

←−
D′−S will not

contain any vertex from Q\{q}. This implies that there is a minimal r-B-separator
Q′ ⊆ Q containing q. Hence, either Q′ is an important r-B-separator of size at most
2k + 2 or all the important r-B-separators which dominate Q′ will contain q. This
is implies that q is marked, which is a contradiction.

Thus, we have shown that in this case there is an irrelevant terminal pair {q, q′} ∈
T ′, and by Observation 13.2.1 and induction hypothesis, Algorithm 1 will output
the required set.

Lemma 13.2.4. Algorithm 1 runs in time O(|T ′| · n(n
2
3 +m)).

Proof. The number of times each step of the algorithm will get executed is at most
|T ′|. By Proposition 2.4.1, Line 4 takes time O(mn). By Lemma 13.2.2, the time
required to enumerate important separators in Lines 6 and 13 is bounded byO(42k·k·
(n+m)). The time required to compute P in Line 13 is O(mn) by Proposition 2.4.1.
Thus, the total running time of Algorithm 1 is O(|T ′|(mn + 42k · k · (n + m))).

251

•

• ◦

◦ •

• ◦
◦
◦
◦

◦
◦
◦
◦

Figure 13.3: The graph at the right hand side is obtained by the reduction on the
graph at the left hand side, where k = 3 and Y is the set of black colored vertices.
Thick lines represents all possible edges between two sets of vertices.

Recall that, we could safely assume that |V (D′)| = n > 64k+1(k + 1)2. Since,
n > 64k+1(k + 1)2, 42k · k < n

2
3 . Hence, the claimed running time of the algorithm

follows.

13.3 Covering Small Multicuts in a Subgraph With-

out Highly Connected Set

In this section, we prove that given a graphG, a set of terminal pairs T = {{s1, t1}, . . . ,
{s`, t`}} and an integer k, there is a polynomial time algorithm which finds a pair
(G?, T ?), where G? is an induced subgraph of G such that it has no (k+2)-connected
sets of size 2O(k) and T ? ⊆ T such that for any S ⊆ V (G) of size at most k, S is
a minimal multicut of T in G if and only S is a subset of V (G?) and S is a min-
imal multicut of T ? in G?. This statement is formalized in Lemma 13.3.1. Before
stating Lemma 13.3.1, we give definitions of a k-connected set in a graph G and a
k-connected graph.

Definition 13.3.1 (k-connected set and graphs). For any k ∈ N and a graph G, a
subset Y of the vertices of G is called a k-connected set in G, if for any u, v ∈ Y
there are at least k internally vertex disjoint paths from u to v in G. The graph G
is called a k-connected graph if V (G) is a k-connected set in G. Equivalently, the
graph G is k-connected, if the size of a mincut in G is at least k.

Lemma 13.3.1 (Degeneracy Reduction Lemma). Let G be a graph, T be a set of
terminal pairs and k ∈ N. Let C be the set of all minimal multicuts of T of size at
most k in G. There is a deterministic algorithm which runs in time O(|T | ·n2(n

2
3 +

m) + n5 log n) and outputs an induced subgraph G? of G and a subset T ? ⊆ T such
that

252

1. for any S ⊆ V (G) with |S| ≤ k, S is a minimal multicut of T in G if and only
if S ⊆ V (G?) and S is a minimal multicut of T ? in G?, and

2. there is no (k + 2)-connected set of size at least 64k+2 · 4(k + 2)2 in G?.

The proof of Lemma 13.3.1 requires some auxiliary lemmas which we discuss
below. Recall the definition of the problem Multicut from Section 15.2. Let
(G, T, k) be an instance of Multicut. We say that a vertex v ∈ V (G) is irrel-
evant to (G, T, k) if no minimal multicut of G of size at most k in G contains v.
Lemma 13.3.2 states that if a graph has a sufficiently large (k + 2)-connected set,
then many of its vertices are irrelevant to the given Multicut instance. Such a
statement is deduced by establishing a relation between the multicuts of the given
instance and the digraph pair cuts of practically the same instance. This relationship
then relates the irrelevant vertices to the instance of Multicut with the irrelevant
vertices to the instance for Digraph Pair Cut.

Lemma 13.3.2. Let G be a graph, T be a set of terminal pairs, k ∈ N and Y be a
(k + 1)-connected set in G. Let D be a digraph obtained by adding a new vertex r,
whose in-neighbors are the vertices of Y , and replacing each edge of G by two arcs
with the same endpoints and opposite orientations. Then, any irrelevant vertex of
Y to the instance (D,T, r, k) of Digraph Pair Cut is also an irrelevant vertex to
the instance (G, T, k) of Multicut.

Proof. The construction of D from G is illustrated in Figures 13.1a and 13.1b.
Suppose there exists v ∈ Y which is relevant to the instance (G, T, k) of Multicut.
Then, there exists a minimal multicut, say C, of T in G of size at most k such that
v ∈ C. We first claim that C is an T -r-digraph pair cut in D. Suppose not. Then,
there is a pair {s, t} ∈ T such that there is a path from s to r and t to r in D − C.
Since the in-neighbors of r are the vertices of Y , there exist u1, u2 ∈ Y , u1 may be
equal to u2, such that there are two paths, one from s to u1 and other from t to
u2, in G − C. If u1 = u2, then s and t are in the same connected component of
G−C, which is a contradiction. Otherwise, since Y is a (k+ 1)-connected set in G
and u1, u2 ∈ Y , there are k + 1 internally vertex disjoint paths from u1 to u2. Since
|C| ≤ k, there exists a path between u1 and u2 in G−C, and hence a path between
s and t in G− C, which is a contradiction.

We next show that there exists C ′ ⊆ C such that v ∈ C ′ and C ′ is a minimal T -
r-digraph pair cut in D. This will prove that v is relevant to the instance (D,T, r, k)

of Digraph Pair Cut thereby proving the claim. Since C is an T -r-digraph pair

253

cut in D, there exists C ′ ⊆ C such that C ′ is a minimal T -r-digraph pair cut in D.
Suppose v 6∈ C ′. Since C is a minimal multicut of T in G, there exists a terminal
pair (s, t) ∈ T such that there is a path from s to t in G− (C \ {v}). In particular,
there is a path from s to v and t to v in G − (C \ {v}). Since v ∈ Y , by the
construction of D, v is an in-neighbor of r. Hence, there is a path from s to r and
t to r in D − (C \ {v}). Thus, if v 6∈ C ′, then C ′ is not an T -r-digraph pair cut in
D, which is a contradiction.

Using Lemmas 13.2.1 and 13.3.2, one can find irrelevant vertices to the given
instance of Multicut, if the graph in the instance has a (k+ 1)-connected set Y of
size strictly more than 64k+1(k + 1)2 and the set Y is explicitly given as input. So
the next task is to design an algorithm that finds a (k+ 1)-connected set in a graph
of a given size, if it exists.

13.4 Finding Large Connected Sets

The goal of this section is to prove Lemma 13.4.1.

Lemma 13.4.1. There is an algorithm which given a graph G and k, d ∈ N, k ≤ d,
runs in time O(n4 log n), and either concludes that there is no k-connected set of
size at least 4d in G or outputs a k-connected set in G of size at least d+ 1.

The proof of Lemma 13.4.1 requires an auxiliary lemma (Lemma 13.4.3) which
we prove next. Lemma 13.4.3 is an algorithmic version of the following famous result
of Mader [152] which says that if a graph has large average degree (or degeneracy),
then it contains a (d+ 1)-connected subgraph.

Lemma 13.4.2 ([152]). Let d ∈ N\{0}. Every graph G with average degree at least
4d has a (d+ 1)-connected subgraph.

The proof of Lemma 13.4.2 given in [76, 199] can be modified to get a polynomial
time algorithm. The following lemma, an algorithmic version of Lemma 13.4.2, is
written in terms of the degeneracy of the graph.

Lemma 13.4.3. There is an algorithm which, for any d ∈ N \ {0}, given a graph
G with degeneracy at least 4d, runs in time O(n2m log n) and outputs a (d + 1)-
connected subgraph of G.

254

Proof. The algorithm first constructs a subgraph H of G which has minimum degree
at least 4d. To do so, first set H := G. If the minimum degree of H is at least 4d,
then we are done. Otherwise, let v be a vertex of H of degree at most 4d − 1. Set
H := H − v and repeat this process. Since the degeneracy of G is at least 4d, the
procedure will end up in a subgraph of G that has minimum degree at least 4d. The
naive implementation of the above procedure takes time O(mn).

Claim 13.4.1. For any d ∈ N−{0}, if the minimum degree of a graph H is at least
4d, then |V (H)| ≥ 2d+ 1 and |E(H)| ≥ 2d(|V (H)| − d− 1

2
).

Proof. Since minimum degree of H is at least 4d, clearly |V (H)| ≥ 4d + 1 ≥ 2d +

1. Also, since
∑

v∈V (H) degG(v) = 2|E(H)| and for all v ∈ V (H) degG(v) ≥ 4d,
|E(H)| ≥ 2d|V (H)| ≥ 2d(|V (H)| − d− 1

2
).

From Claim 13.4.1, we conclude that |V (H)| ≥ 2d+1 and |E(H)| ≥ 2d(|V (H)|−
d − 1

2
). Thus, from the following claim (Claim 13.4.2), one can infer that H has a

(d + 1)-connected subgraph. Using this claim, we will later give an algorithm that
actually computes a (d+ 1)-connected subgraph of H, whose correctness will follow
from the proof of Claim 13.4.2.
Claim 13.4.2. Let H be any graph and d ∈ N \ {0} such that |V (H)| ≥ 2d+ 1 and
|E(H)| ≥ 2d(|V (H)| − d− 1

2
). Then H has a (d+ 1)-connected subgraph.Proof. We prove the claim using induction on |V (H)|. The base case of the induction

is when |V (H)| = 2d + 1. From the premises of the claim, if |V (H)| = 2d + 1,
|E(H)| ≥ 2d(2d+ 1− d− 1

2
) = 2d(d+ 1

2
) =

(
2d+1

2

)
. Since a graph on 2d+ 1 vertices

can have at most
(

2d+1
2

)
edges, H is a clique on 2d+ 1 vertices, which is a (d + 1)-

connected graph. Now consider the induction step where |V (H)| > 2d+ 1. Suppose
there is a vertex v ∈ V (H) such that degH(v) ≤ 2d. Then |V (H − v)| ≥ 2d + 1

and |E(H − v)| ≥ |E(H)| − 2d ≥ 2d(|V (H − v)| − d− 1
2
). Thus, from the induction

hypothesis, there is a (d + 1)-connected subgraph in H − v. From now on, we can
assume that the degree of each vertex in H is at least 2d+ 1. Suppose H itself is a
(d+1)-connected graph, then we are done. If not, then there exists a mincut, say Z,
of H, of size at most d. Let U1]U2 be a partition of V (G) \Z such that there is no
edge between a vertex in U1 and a vertex in U2, and U1, U2 6= ∅. Let A = Z∪U1 and
B = Z ∪ U2. We claim that either H[A] or H[B] satisfy the premises of the claim.
Notice that all the neighbors of any vertex s ∈ U1 are in A and all the neighbors
of any vertex t ∈ U2 are in B. Also since, degH(s), degH(t) ≥ 2d + 1, we have that
|A| ≥ 2d+ 1 and |B| ≥ 2d+ 1. Thus,the vertex set cardinality constraint stated in
the premise of the claim is met for both H[A] and H[B]. Suppose that, the edge set
cardinality constraint stated in the premise of the claim is not met for both H[A]

255

and H[B]. Then we have the following.

|E(H)| ≤ |E(H[A])|+ |E(H[B])|
< 2d(|A| − d− 1

2
) + 2d(|B| − d− 1

2
)

= 2d(|A|+ |B| − 2d− 1)

≤ 2d(|V (H)|+ d− 2d− 1)

< 2d(|V (H)| − d− 1

2
).

This is a contradiction to the fact that |E(H)| ≥ 2d(|V (H)|−d− 1
2
). Therefore, either

H[A] or H[B] satisfy the premises of the claim. Moreover, notice that |A| < |V (H)|
and |B| < |V (H)|, because U1, U2 6= ∅. Thus, by the induction hypothesis the claim
follows.

The above proof can easily be turned into an algorithm. This is explained below.
Our algorithm for finding a (d+1)-connected subgraph of H works as follows. It first
tests whether H itself is a (d+ 1)-connected graph - this can be done by computing
a mincut of H (using the algorithm of Proposition 2.4.2) and then testing whether
the size of a mincut of H is at least d+1. If H is a (d+1)-connected graph, then our
algorithm outputs V (H). Otherwise, if there is a vertex of degree at most 2d in H,
then it recursively finds a (d+ 1)-connected subgraph in H − v. If all the vertices in
H have degree at least 2d+ 1, then it finds a mincut Z in H (using the algorithm of
Proposition 2.4.2). It then constructs vertex sets A and B as mentioned in the proof
of Claim 13.4.2. It is proved in Claim 13.4.2 that either H[A] or H[B] satisfy the
premises of Claim 13.4.2, and it can be tested in linear time whether a graph satisfies
the premises of Claim 13.4.2. If H[A] satisfies the premises of Claim 13.4.2, then
our algorithm recursively finds a (d + 1)-connected subgraph in H[A]. Otherwise,
our algorithm recursively find a (d+ 1)-connected subgraph in H[B].

Note that this algorithm makes at most n recursive calls and in each recursive
call it runs the algorithm of Proposition 2.4.2 and does some linear time testing.
Thus, given a graph H of minimum degree at least 2d, this algorithm runs in time
O(mn2 log n) and outputs a (d+1)-connected subgraph ofH. The algorithm claimed
in the lemma first constructs a subgraph H of G of minimum degree at least 2d, as
described earlier, in time O(mn) and takes additional O(n2m log n) time to output
a (d + 1)-connected subgraph of H. Thus, the total running time of this algorithm
is O(n2m log n).

We are now ready to give the proof of Lemma 13.4.1.

256

Proof of Lemma 13.4.1. The algorithm first constructs an auxiliary graph G? as
follows. The vertex set of G? is V (G) and for any u, v ∈ V (G?),uv ∈ E(G?) if and
only if the size of a minimum u-v-separator in G is at least k (that is, there are at
least k internally vertex disjoint paths from u to v in G). It then checks whether
the degeneracy of G? is at least 4d − 1 or not. If the degeneracy of G? is strictly
smaller than 4d− 1, then the algorithm outputs that there is no k-connected set in
G of size at least 4d. Otherwise, the degeneracy of G? is at least 4d− 1 ≥ 4(d− 1).
In this case, the algorithm applies the algorithm of Lemma 13.4.3 for (G?, d − 1),
which outputs a d-connected subgraph H of G?. Since H is a d-connected subgraph,
|V (H)| ≥ d+1. Since, k ≤ d, H is k-connected in G?. The algorithm outputs V (H)

as the k-connected set in G.

To prove the correctness of the algorithm, we need to prove the following two
statements.

1. When our algorithm reports that there is no k-connected set in G of size at
least 4d, that is, when degeneracy of G? is at most 4d − 2, then the graph G
has no k-connected set of size at least 4d.

2. When our algorithm outputs a set, that is, when degeneracy of G? is at least
4d− 1, then the set outputted is a k-connected set in G of size at least d+ 1.
In other words, if degeneracy of G? is at least 4d − 1, then the set V (H) is
k-connected in G and has size at least d+ 1.

For the proof of the first statement, observe that when G has a k-connected set,
say Y , of size at least 4d, then G?[Y] is a clique. Hence, the degeneracy of G? is at
least 4d − 1. For the proof of the second second, we have already argued that the
size of V (H) is at least d + 1 and that V (H) is a k-connected set in G?. We will
now prove V (H) is a k-connected set in G.

Claim 13.4.3. V (H) is a k-connected set in G.

Proof. Observe that, it is enough to show that for any u, v ∈ V (H) and any C ⊆
V (G) \ {u, v} of size strictly smaller than k, there is a path from u to v in G − C.
Since H is a k-connected subgraph of G?, there is a path from u to v in G?−C. Let
w1w2 . . . w`, where w1 = u and v = w`, be a path from w1 to w` in G? − C. Since
for any i ∈ [` − 1], wiwi+1 ∈ E(G?), there are at least k vertex disjoint paths from
wi to wi+1 in G. Also, since |C| < k, there is a path from wi to wi+1 in G−C. This
implies that there is a path from w1 = u to w` = v in G − C, proving that H is a
k-connected set in G.

257

This finishes the proof of correctness of our algorithm. We now analyze the
total running time of the algorithm. The graph G? can be constructed in time
O(k · n2(n + m)) using Proposition 2.4.1. Also, checking whether the graph has
degeneracy at least 4d− 1 can be done in time O(mn). Since G? could potentially
have O(n2) edges, by Lemma 13.4.3 the subgraph H can be computed in time
O(n4 log n). Thus the total running time of our algorithm is O(n4 log n).

Lemma 13.4.4. There is an algorithm that given a graph G, a set of terminal pairs
T and k ∈ N, runs in time O(|T |·n(n

2
3 +m)+n4 log n) and, either correctly concludes

that G does not contain a (k + 1)-connected set of size at least 64k+1 · 4(k + 1)2 or
finds an irrelevant vertex for the instance (G, T, k) of Multicut.

Proof. Let d = 64k+1(k+1)2. Our algorithm first runs the algorithm of Lemma 13.4.1
on the instance (G, k + 1, d). If this algorithm (of Lemma 13.4.1) concludes that
there is no (k+ 1)-connected set in G of size at least 4d, then our algorithm returns
the same. Otherwise, the algorithm of Lemma 13.4.1 outputs a (k+1)-connected set
Y in G of size at least d+ 1. Our algorithm then creates a digraph D as mentioned
in Lemma 13.3.2. It then applies the algorithm of Lemma 13.2.1 and computes a set
Z of irrelevant vertices for the instance (D,T, r, k) of Digraph Pair Cut in the set
Y . From Lemma 13.3.2, Z is also a set of irrelevant vertices for the instance (G, T, k)

of Multicut. Since |Y | ≥ d+ 1 and the number of relevant vertices for (D,T, r, k)

in the set Y is at most d (from Lemma 13.2.1), Z 6= ∅. Our algorithm then outputs
an arbitrary vertex v from the set Z as an irrelevant vertex for (G, T, k).

By Lemmas 13.2.1 and 13.4.1, the total running time of our algorithm is O(|T | ·
n(n

2
3 +m) + n4 log n).

Lemma 13.4.5. There is an algorithm which given as input a graph G, a set of
terminal pairs T and k ∈ N, runs in time O(|T | · n(n

2
3 + m) + n4 log n) and either

concludes that there is no (k + 2)-connected set of size at least 64k+2 · 4(k + 2)2 in
G, or outputs a vertex v ∈ V (G) such that for any S ⊆ V (G) with |S| ≤ k, S is
a minimal multicut of T in G if and only if S ⊆ V (G) \ {v} and S is a minimal
multicut of T ′ = {{s, t} ∈ T | v /∈ {s, t}} in G− v.

Proof. This algorithm runs the algorithm of Lemma 13.4.4 on the instance (G, T, k+

1). If the algorithm of Lemma 13.4.4 outputs that there is no (k+ 2)-connected set
of size 64k+2 · 4(k + 2)2 in G, then our algorithm reports the same. Otherwise, let
v be the vertex returned by the algorithm of Lemma 13.4.4, which is irrelevant for
(G, T, k + 1) (from Lemma 13.4.4), then it also returns v. The running time of our
algorithm follows from Lemma 13.4.4.

258

We now prove the correctness of this algorithm. For the forward direction, let
S ⊆ V (G) be such that |S| ≤ k and S is a minimal multicut of T in G. By the
definition of an irrelevant vertex for the instance (G, T, k + 1), we conclude that
S ⊆ V (G) \ {v}. Since T ′ ⊆ T and G is a supergraph of G− v, S is a multicut of T ′

in G − v. Suppose, for the sake of contradiction, that S is not a minimal multicut
of T ′ in G− v. Then, there exists S ′ (S such that S ′ is a minimal multicut of T ′ in
G− v. If S ′ is multicut of T in G, then we contradict the fact that S is a minimal
multicut of T in G. Otherwise, there exists S ′′ ⊆ S ′ ∪ {v} and v ∈ S ′′, such that S ′′

is a minimal multicut of T in G, which contradicts that v is an irrelevant vertex for
(G, T, k + 1). Hence we have proved that S is a minimal multicut of T ′ in G− v.

For the backward direction, let S ⊆ V (G) \ {v} be such that S is a minimal
multicut of T ′ in G − v. If S is a multicut of T in G, then S has to be a minimal
multicut of T in G, as otherwise it would contradict that S is a minimal multicut
of T ′ in G− v. Otherwise, S ∪ {v} is a multicut of T in G, because all the terminal
pairs in T \ T ′ contain v. Let S ′ ⊆ S ∪ {v} be a minimal multicut of T in G. Note
that v ∈ S ′ and |S ′| ≤ k+ 1. This contradicts the fact that v is an irrelevant vertex
for (G, T, k + 1).

Lemma 13.3.1 can easily be proved by applying Lemma 13.4.5 at most n times.

259

Chapter 14

Faster Algorithms and Combinatorial
Bounds for Independent Feedback
Vertex Set

In this chapter, we design two fast algorithms for Independent Feedback Ver-

tex Set (IFVS) - an FPT algorithm and a moderately exponential time algorithm.
We also give a combinatorial bound on the number of minimal independent feedback
vertex sets in a graph. We begin by formally defining the problem.

Independent Feedback Vertex Set (IFVS) Parameter: k
Input: An undirected graph G on n vertices and a positive integer k.
Question: Is there a set S of vertices of size at most k such that G− S has no
cycles and S is an independent set in G?

Such a set S is called an independent feedback vertex set of G.

IFVS and Parameterized Complexity. FVS together with Vertex Cover is
one of the most well studied problem in the field of parameterized complexity [39,
48, 132, 182]. The other variants of FVS on undirected graphs that have been
studied extensively, include, Subset FVS [72, 148, 121], Group FVS [71, 113, 121],
Connected FVS [162], Simultaneous FVS [3] and indeed IFVS [162, 196, 200].
The current champion algorithms for FVS are: a randomized algorithm with running
time O?(3k) [70] and a deterministic algorithm running in time O?(3.619k) [132].
Misra et al. [162] introduced IFVS in 2011 (in the conference version of the cited
paper) as a generlization of FVS and gave an algorithm with running time O?(5k).

263

They also designed a polynomial kernel of size O(k3) for the problem. Later, Song
claimed a deterministic algorithm with running time O?(4k) for the problem [196].
However, the algorithm of Song [196] does not seem to be correct. We give a sketch
of the fundamental problem in the arguments used and a family of counter-examples
to his algorithm in the Section 14.2.2. Tamura et al. [200] studied IFVS on special
graph classes and showed that the problem remains NP-complete even on planar
bipartite graphs of maximum degree four. They also designed linear time algorithms
for graphs of bounded treewidth, chordal graphs and cographs. Finally, they gave
an algorithm with running time O(2O(

√
k log k)n) for IFVS on planar graphs. Our

first main result is the following result regarding IFVS.

Theorem 14.0.1. There is an algorithm for IFVS running in time O?(4.1481k).

We would like to point out that more recently, our result in Theorem 14.0.1 has
been improved by Li and Pilipczuk [140], who designed an algorithm for IFVS with
running time O?((1 + φ2)k), where φ is the golden ratio, φ < 1.619. This running
time matches the running time of the best known algorithm for FVS.

Our new algorithm is based on iterative compression and the subroutine for
iterative compression is based on branching. The branching algorithm itself exploits
(a) the fact that once we select a vertex in the independent feedback vertex set then
all its neighbors must be in the forest; and (b) an interesting variation of measure
used for analyzing the fastest known deterministic algorithm for FVS [132]. Finally,
we also observe that the randomized algorithm designed for FVS, running in time
O?(3k) [70], can be adapted to design a randomized O?(3k) time algorithm for IFVS.

IFVS and Exact Exponential Time Algorithms. In exact exponential time
algorithms, the objective is to design an algorithm for optimization version of a prob-
lem that is better than the naïve brute force algorithm. In particular, for FVS the
goal will be to design an algorithm that runs in time cn, c < 2 a constant, and finds
a minimum sized set S such that G− S is a forest. We refer to the book of Fomin
and Kratsch for more details regarding moderately exponential time algorithms [98].
Obtaining a non-trivial exact algorithm for FVS was open for quite some time before
Razgon obtained an algorithm with running time O(1.8899n) [185]. Later this algo-
rithm was improved to O?(1.7347n) [103]. Recently, Fomin et al. [94] obtained an
interesting result relating parameterized algorithms and exact algorithms. Roughly
speaking, they showed that if a problem (satisfying some constraints) has O?(ck)
time algorithm parameterized by the solution size, then there is an exact algorithm
running in time O?(

(
2− 1

c

)n
). Both FVS and IFVS satisfies the required con-

264

straints and thus we immediately obtain the following exact algorithm for IFVS:
(a) a randomized algorithm running in time O?(

(
2− 1

3

)n
) = O?(1.6667n); and (b) a

deterministic algorithm running in time O?(
(
2− 1

4.1481

)n
) = O?(1.7590n). We give

a recursive algorithm based on classical measure and conquer [96, 98] and design
faster algorithm than the both mentioned algorithms. In particular, we prove the
following theorem.

Theorem 14.0.2. There is an algorithm for IFVS running in time O?(1.5981n).

Combinatorial Upper Bounds. In our final section we address the following
question: How many minimal ifvses are there in any graph on n vertices? Proving
an upper bound on the number of combinatorial structures is an old and vibrant
area. Some important results in this area include an upper bound of

• 3n/3 on the number of maximal independent sets in a graph [167].

• 1.667n on the number of minimal feedback vertex sets in a tournament [94].

• 1.8638n on the number of minimal feedback vertex sets in a graph [95, 97].

One can easily observe that every minimal ifvs is also a minimal feedback vertex
set. Thus, an upper bound of 1.8638n on the number of minimal ifvses in any graph
on n vertices follows by [95]. As our final result, we give an improved upper bound
on the number of minimal ifvses in any graph on n vertices.

Theorem 14.0.3. A graph G on n vertices has at most 1.7480n minimal ifvses.

Let n be divisible be 3 and G be a graph that is union of n/3 vertex disjoint triangles.
Then any minimal ifvs must contain exactly one vertex from each of n/3 triangles
and thus G has 3n/3 number of minimal ifvses. Closing the gap between 3n/3 and
1.7480n remains an interesting open problem.

14.1 Some Preliminaries

In this chapter, we consider finite graphs possibly having loops and multi-edges. We
also use the convention that a loop at a vertex v contributes two to its degree. We
note that both a double edge and a loop are cycles. A tree T rooted at r ∈ V (T) is
called as a star if E(T) = {(v, r) | v ∈ V (T) \ {r}}.

265

Let W ⊆ V (G) and H = G −W . We define certain useful vertices in V (H).
We call a vertex v ∈ V (H), a nice vertex if dH(v) = 0 and dG(v) = 2 i.e., both the
neighbours of v belong to the set W . Similarly, we call a vertex v ∈ V (H), a tent
if dH(v) = 0 and dG(v) = 3. A feedback vertex set is a subset S ⊆ V (G) such that
G− S is a forest.

14.2 FPT Algorithm for Independent Feedback

Vertex Set

In this section we give an FPT algorithm for IFVS running in time O?(4.1481k).
Given an input (G, k), the algorithm starts by computing a feedback vertex set Z
in G. A feedback vertex set in G of size at most k (if it exists) can be computed in
time O?(3.619k) using the algorithm given in [133]. If there is no feedback vertex
set of size at most k, then we conclude that (G, k) is a No instance of ifvs since an
ifvs is also a feedback vertex set in G.

We let H = G− Z. The algorithm either outputs an ifvs in G of size at most k
or correctly conclude that (G, k) is a No instance of IFVS. The algorithm guesses a
subset Z ′ ⊆ Z, such that for an ifvs X in G, X ∩ Z = Z ′. For each of the guess Z ′,
the algorithm does the following. If G[Z ′] is not an independent set then it concludes
that there is no ifvs X in G such that Z ′ ⊆ X. Otherwise, G[Z ′] is an independent
set. Let W = Z \ Z ′. If G[W] is not a forest, then their is no ifvs X such that,
X ∩ Z = Z ′. Therefore, the guess Z ′ is not correct and the algorithm rejects this
guess. Otherwise, it deletes the vertices in Z ′ and tries to find an ifvs S ⊆ V (H)\W
of size at most k − |Z ′|. Note that any vertex v ∈ NH(Z ′) cannot be part of the
solution. Therefore, the algorithm adds the vertices in NH(Z ′) to a set R. The set
R consists of those vertices which cannot be included in ifvs in order to maintain
the independence of the vertices included in the solution. The algorithm calls the
sub-routine Disjoint Independent Feedback Vertex Set (Dis-IFVS) on the
instance (G,W,R, k − |Z ′|) to find an ifvs X ⊆ V (H) \ (W ∪R). In Section 14.2.1
we give an algorithm for Dis-IFVS, which given an instance (G,W,R, k) either
finds an ifvs S ⊆ V (G) \ (W ∪R) of size at most k or correctly concludes that there
does not exits such an ifvs. Moreover, the algorithm for Dis-IFVS runs in time
O?(3.1481k).

Theorem 1. There is an algorithm for IFVS running in time O?(4.1481k).

266

Proof. Given an instance (G, k) of IFVS, the algorithm computes a feedback vertex
set Z in G of size at most k (if it exists) in time O?(3.619k). If there is no feedback
vertex set of size at most k, it correctly concludes that (G, k) is a No instance.
Otherwise, for each Z ′ ⊆ Z, either it correctly concludes that Z ′ is a wrong guess
(for extending it to an ifvs) or runs the algorithm for Dis-IFVS on the instance
(G,W,R, k−|Z ′|). Here, the instance (G,W,R, k−|Z ′|) is created as described above
in the description of the algorithm. The correctness of the algorithm follows from the
correctness of the algorithm for Dis-IFVS and the fact that all possible intersections
of the solution with Z are considered. The running time of the algorithm is given by
the following equation: 3.619k · nO(1) +

∑k
i=0

(
k
i

)
· 3.1481k−i · nO(1) ≤ 4.1481k · nO(1).

This concludes the proof.

14.2.1 Algorithm for Disjoint Independent Feedback Ver-

tex Set.

We give an algorithm for Disjoint Independent Feedback Vertex Set run-
ning in time O?(3.1481k).

Disjoint Independent Feedback Vertex Set (Dis-IFVS) Parameter: k
Input: An undirected (multi) graph G, a fvs W in G, R ⊆ V (G) \W and, an
integer k.
Question: Does G has an ifvs S ⊆ V (G) \ (W ∪R) such that |S| ≤ k?

The algorithm for Dis-IFVS either applies some reduction rules or branches on
a vertex in V (G) \W . The algorithm branches on a vertex in V (G) \W only when
(a) none of the reduction rules are applicable; and (b) we are not in the case where
we can solve the problem in polynomial time. Let H = G−W . We arbitrary root
the trees in H at some vertex (preferably a vertex v with dH(v) > 2). We will be
using the following measure µ associated with the instance (G,W,R, k) to bound
the number of nodes of the search tree.

µ = µ(G,W,R, k) = 2k + ρ(W)− (η + 2τ)

Here, ρ(W) is the number of connected components in W , η denotes the number
of nice vertices in V (H) \ R and τ denotes the number of tents in V (H) \ R. See
preliminaries for the definitions of nice vertices and tents.

267

yu v

x yv

u v

x

x

v

x

Figure 14.1: Reduction Rule 2

Now we describe all the reduction rules that will be used by the algorithm. The
first two reduction rules get rid of vertices of degree at most one and consecutive
vertices of degree two in the graph. The safeness of these reduction rules follow
from [162]. The safeness of first two reduction rules follow from [162].

Reduction Rule 14.2.1. Delete vertices of degree at most one since they do not
participate in any cycle.

Reduction Rule 14.2.2. Let u, v be two adjacent degree two vertices in the input
graph G, and x, y be the other neighbors of u, v respectively. If u ∈ R, then delete u
and add the edge (x, v). Otherwise, delete v and add the edge (x, v) (see Figure 14.1).

When applying Reduction Rule 14.2.2, if both the degree two vertices belong to
R, then the choice of deleting one of them and adding an edge between its neighbors
is arbitrary. Observe that the measure µ does not increase after the application of
Reduction Rules 14.2.1 or 14.2.2.

Reduction Rule 14.2.3. If k < 0, then return that (G,W,R, k) is a No instance.

Reduction Rule 14.2.4. If there is a vertex v ∈ R such that v has 2 neighbors in
the same component of W . Then, return that (G,W,R, k) is a Noinstance.

Reduction Rule 14.2.5. If there is a vertex v ∈ R such that v has a neighbor
in W , then remove v from R and add v to W . That is, we solve the instance
(G,W ∪ {v},R \ {v}, k).

Observe that by moving v to W we do not increase the number of connected
components of G[W ∪ {v}].

Reduction Rule 14.2.6. If there is a vertex v ∈ V (H) \ R such that v has at
least 2 neighbors in the same connected component of W , then remove v from G and
add the vertices in NH(v) to R. That is, the resulting instance is (G− {v},W,R∪
NH(v), k − 1).

268

u

x

wv

u

x
w

v

u

wv

u

w
v

Figure 14.2: Illustration of Reduction Rule 14.2.8.

In this case it is easy to observe that v must belong to any ifvs.

Reduction Rule 14.2.7. If there is a vertex u ∈ R such that there is a leaf v in
H adjacent to u and dW (v) ≤ 2. Then remove u from R and include u in W i.e.,
the resulting instance is (G,W ∪ {u},R \ {u}, k).

Reduction Rule 14.2.8. Let T be a (rooted) tree in H and u ∈ V (T) \ R. Fur-
thermore, let Tu be the subtree in T rooted at u, and Vu be the set of leaves (not
including u) in Tu. Suppose that Tu satisfies the following conditions:

1. Tu is a star such that 1 ≤ |Vu| ≤ 2;

2. For each x ∈ Vu, we have |NW (x)| = 1;

3. Either T = Tu or, the (unique) parent x of u in T belongs to the set R.

Let X = {x} if x exists, otherwise, X = ∅. Then, add the vertices in Vu ∪X to W
and remove X from R i.e., the resulting instance is (G,W ∪ Vu ∪X,R \X, k).

Lemma 14.2.1. Reduction Rule 14.2.4 is safe.

Proof. Let x, y be two neighbors of v ∈ R that are present in the same component
ofW . Since x, y belong to the same component ofW , there is a path P inW from x

to y. But then, G[V (P)∪ {v}] contains a cycle, with v being the only vertex not in
W . Therefore, there cannot exist an ifvs, S ⊆ V (G)\ (W ∪R) in G. This concludes
the proof.

269

Lemma 14.2.2. Reduction Rule 14.2.5 is safe. Furthermore, the measure µ does
not increase after application of Reduction Rule 14.2.5.

Proof. Let v ∈ R be a vertex such that v has a neighbor in W . Note that any ifvs,
S ⊆ V (G) \ (W ∪R) in G does not contain v. Moreover, since v has a neighbor in
W , adding v to W does not increase the number of connected components in W .
This implies that µ does not increase.

Lemma 14.2.3. Reduction Rule 14.2.6 is safe. Furthermore, the measure µ does
not increase after application of Reduction Rule 14.2.6.

Proof. Let v ∈ V (H) \ R be a vertex such that v has 2 neighbors, say x, y, in the
same connected component of W . Since x, y belong to the same component of W ,
there is a path P in W from x to y. But then, G[V (P)∪{v}] contains a cycle, with
v being the only vertex not in W . Therefore, any ifvs S ⊆ W must include v and
hence avoid NH(v).

When we delete v from G and decrease k by 1, the number of connected compo-
nents in W remains the same. If v was either a nice vertex or a tent then η+ 2τ can
decrease at most by 2. Therefore, the measure µ in the resulting instance cannot
increase. This concludes the proof.

Lemma 14.2.4. Reduction Rule 14.2.7 is safe and the measure µ does not increase
after its application.

Proof. Let u ∈ R be a vertex such that there is a leaf v in H adjacent to u such
that dW (v) ≤ 2. Observe that no solution to Dis-IFVS can contain u. Therefore,
we only need to show that the measure µ does not increase. When we add u to W ,
the number of components in W can increase by 1. But then v becomes either a
nice vertex or a tent. Therefore, η + 2τ decreases at least by 1. This together with
the fact that k remains the same imply that µ cannot increase.

Lemma 14.2.5. Reduction Rule 14.2.8 is safe and the measure µ does not increase
after its application.

Proof. Let T be a tree in H and u ∈ V (T) ∩ (V (H) \ R) such that the tree, Tu,
rooted at u is a star. That is, all the children of u are leaves of T . Furthermore,
the vertices in Vu = V (Tu) \ {u} (all the children of u) have exactly one neighbor
in W and 1 ≤ |Vu| ≤ 2. Also, either V (T) \ V (Tu) = ∅ or the parent x of u is
in R. To prove the lemma, we will show that if (G,W,R, k) is a Yes instance of

270

Dis-IFVS then there is an ifvs, S ⊆ V (H) \ (W ∪ R), of size at most k in G such
that S ∩ Vu = ∅. Observe that x (if it exists) cannot belong to S.

Let S ⊆ V (H) \ (W ∪ R) be an ifvs in G of size at most k. If S ∩ Vu = ∅ then
S is the desired solution. Otherwise, let S ′ = (S \ Vu) ∪ {u}. Since S ∩ Vu 6= ∅,
we have that u does not belong to S and thus the size of S ′ is also at most k. We
claim that S ′ is an ifvs of the desired form. Notice that S ′ ⊆ V (H)\ (W ∪R) holds.
Also, S ′ is an independent set since neighbors of u do not belong to S ′ and S \ Vu is
an independent set. Therefore, we only need to prove that S ′ is a feedback vertex
set in G. Suppose not, then there is a cycle C in G − S ′. If C does not contain
any vertex from Vu ∪ {x}, then C is also a cycle in G − S, contradicting that S in
an ifvs in G. If C contains x, but does not contain any other vertex from Vu, then
we can conclude that C is a cycle in G − S, since x /∈ S. Otherwise, C contain a
vertex say, v ∈ Vu. Note that v is a degree 2 vertex in G. This implies that any
cycle containing v must contain both the neighbors of v. But then u belongs to C
contradicting that C is a cycle in G− S ′. This proves the safeness of the reduction
rule.

When we add Vu ∪ {x} to W the number of components can increase at most
by 1. Note that none of the vertices in Vu ∪ {x} is a tent. Therefore, the number of
nice vertices does not decrease and u becomes a tent. This implies that the measure
µ does not increase. This concludes the proof.

Algorithm Description. We give an algorithm only for the decision variant of
the problem. It is straightforward to modify the algorithm so that it actually finds
a solution, provided there exists one.

We will follow a branching strategy with a non-trivial measure function. Let
(G,W,R, k) be the input instance. The algorithm first applies Reduction Rules 14.2.1-
14.2.8, in this order, exhaustively. That is, at any point of time we apply the lowest
numbered applicable Reduction Rule. For clarity we denote the reduced instance
(the one on which Reduction Rules 14.2.1-14.2.8 do not apply) by (G,W,R, k).

We now check whether every vertex in V (G)\ (W ∪R) is either nice or a tent. If
this is the case, then in polynomial time we check whether there is an ifvs contained
in V (G) \ (W ∪R) of size at most k and return accordingly by Lemma 14.2.6.

Lemma 14.2.6. Let (G,X) be an instance of IFVS where every vertex in V (G)\X
is either nice or is a tent. Then in polynomial time we can find a minimum sized
ifvs S ⊆ V (G) \X in G.

271

The proof of Lemma 14.2.6 follows from Lemma 4.10 in [65], which is based on
a polynomial time algorithm for FVS in subcubic graphs by Ueno et at. [202] and
the fact that the algorithm described in [65] for finding feedback vertex set on the
instances of described type always returns an independent feedback vertex set (if it
exists).

Finally, we move to the branching step of the algorithm. We never branch on a
nice vertex or a tent. We will branch on the vertices in V (H) \ R based on certain
criteria. We consider the following three scenarios.

• Scenario A – There is a vertex which in not a tent and has at least 3 neighbors
in W .

• Scenario B – There is a leaf which is not a nice vertex and has exactly 2

neighbors in W , but no leaf has more than 2 neighbors in W .

• Scenario C – All the leaves have exactly one neighbor in W .

Scenario A. If there is a vertex v ∈ V (H) which is not a tent and has at least 3

neighbors in W . Note that v /∈ R as the Reduction Rule 14.2.5 is not applicable.
In this case we branch on v as follows.

• When v belongs to the solution, then all the vertices in NH(v) cannot belong
to the solution. Therefore, we add all the vertices in NH(v) to the set R. The
resulting instance is (G−{v},W,R∪N(v), k− 1). In this case k decreases by
1 and ρ(W), η, τ remains the same. Therefore, µ decreases by 2.

• When v does not belong to the solution, then we add v to W . The resulting
instance is (G,W ∪ {v},R, k). Note that v cannot have two neighbors in the
same component of W , otherwise Reduction Rule 14.2.6 would be applicable.
Therefore, G[W ∪ {v}] has at most ρ(W) − 2 components. Also, k does not
change and η, τ does not decrease. Therefore, µ decreases at least by 2.

The resulting branching vector for this case is (2, 2). When none of the Reduction
rules are applicable and we cannot branch according to Scenario A, then we can
assume that there is no vertex v ∈ V (H), such that v has more than 2 neighbors in
W . Of course a tent could have three neighbors in W but as stated before we never
branch on a nice vertex or a tent. For each tree T (a connected component) in H,
for a vertex v ∈ V (T) we define the level `(v) of v to be the distance of v from the

272

root of T . The root r in a tree has `(r) = 0. We call a leaf vertex v ∈ V (T) as a
deep leaf if `(v) 6= 0 and for all leaves v′ ∈ V (T), `(v′) ≤ `(v).

Scenario B. Let v be a leaf in some tree T in H with the unique neighbor u ∈ V (H)

such that v has exactly two neighbors in W . Observe that u /∈ R since Reduction
Rule 14.2.7 is not applicable. We branch on u as follows.

• When u belongs to the solution, then all the vertices in NH(u) cannot belong
to the solution. We add all the vertices in NH(u) \ {v} to the set R. We add
the vertex v to W . The resulting instance is (G−{u},W ∪ {v},R∪ (NH(u) \
{v}), k − 1). In this case k decreases by 1, and η, τ do not decrease. The
number of components in G[W ∪ {v}] is ρ(W)− 1, since v has 2 neighbors in
different components of W . Therefore, µ decreases by 3.

• When u does not belong to the solution, then we add u to W . The resulting
instance is (G,W ∪{u},R, k). Note that when we add u toW then v becomes
a tent. The number of components in G[W ∪ {u}] is at most ρ(W) + 1. Note
that k does not increase, η does not decrease and τ increases at least by 1.
Therefore, µ decreases by at least 1.

The resulting branching vector for this case is (3, 1).

We now assume that all the leaves in H have exactly one neighbor in W .

Scenario C. Let v be a deep leaf in some tree T in H. Let the unique neighbor of
v in H be u. We note that the sub-tree Tu rooted at u is a star i.e., u is the only
vertex in Tu which can possibly have degree more than one. This follows from the
fact that v is a deep leaf. Also, u /∈ R since Reduction Rule 14.2.7 is not applicable.
We consider the following cases depending on the number of leaves in the sub-tree
Tu rooted at u.

Case 1. If Tu has at least two more leaves, say x, y other than v. We branch on the
vertex u as follows.

• When u belongs to the solution, then the vertices in NH(u) does not belong
to the solution. We add all the vertices in NH(u) to the set R. The resulting
instance is (G− {u},W,R∪NH(u), k − 1). In this case k decreases by 1 and
η, τ, ρ(W) does not change. Therefore, µ decreases at least by 2.

• When u does not belong to the solution, we add u toW . The resulting instance
is (G,W ∪{u},R, k). Observe that when we add u to W then, v, x, y becomes

273

nice vertices and the number of components in G[W ∪{u}] is at most ρ(W)+1.
Therefore, µ decreases at least by 2.

The resulting branching vector for this case is (2, 2).

Case 2. If Tu has at most one more leaf other than v. We let x to be the parent of
u in T . Note that x exists and x /∈ R because each leaf has exactly one neighbor in
W and Reduction Rules 14.2.2 and 14.2.8 are not applicable. In this case we branch
on x.

• When x belongs to the solution, then the vertices in NH(x) does not belong to
the solution. We add all the vertices in NH(x)\{u} to the set R and add u to
the setW . The resulting instance is (G−{x},W∪{u},R∪(NH(x)\{u}), k−1).
Observe that Reduction Rule 14.2.2 is not applicable. Therefore, at least one
of the following holds.

—u has a neighbor in W .

—u has one more leaf v′ other than v.

In the former case, when we add u to W , the number of components in G[W ∪
{u}] is at most ρ(W). Also, v becomes a nice vertex. Therefore, η increases
at least by 1 and τ does not decrease. Therefore, µ decreases at least by 3. In
the latter case when we add u to W , v, v′ becomes nice vertices. In this case
k decreases by 1, η increases by 2, τ does not decrease, and ρ(W) can increase
at most by 1. Therefore, µ decreases at least by 3.

• When x does not belong to the solution, we add x to W . But then Tu is a
star and u does not have a parent. Therefore, we can apply the Reduction
Rule 14.2.8. That is, we can add v, v′ to W . The resulting instance would
be (G,W ∪ {x, v, v′},R, k). Observe that u becomes a tent. In this case k, ρ
remains the same, while τ increases by 1 and ρ(W) can increase at most by 1.
Therefore, µ decreases at least by 1.

The resulting branching vector for this case is (3, 1).

This completes the description of the algorithm.

Analysis and Correctness of the Algorithm. The following Lemma which will
be used to prove the correctness of the algorithm.

274

Scenario Cases Branch Vector cµ

Scenario A (2, 2) 1.4142µ

Scenario B (3, 1) 1.4656µ

Scenario C Case 1 (2, 2) 1.4142µ

Case 2 (3, 1) 1.4656µ

Table 14.1: The branch vectors and the corresponding running times.

Lemma 14.2.7. For an instance I = (G,W,R, k) of Dis-IFVS, if µ < 0, then I

is a Noinstance.

Proof. Let us assume for contradiction that I is a Yes instance and µ < 0. Let
S ⊆ V (G) \ (W ∪ R) be an ifvs in G of size at most k. Therefore, F = G − S

is a forest. Let N ⊆ V (G) \ (W ∪ R), T ⊆ V (G) \ (W ∪ R) be the set of nice
vertices and tents in V (G) \ (W ∪R), respectively. Since F is a forest we have that
G′ = G[(W ∪ N ∪ T) − S] is a forest. In G′, we contract each of the connected
components in W to a single vertex to obtain a forest F̃ . Observe that F̃ has
at most |V (F̃)| ≤ ρ(W) + |N \ S| + |T \ S| vertices and thus can have at most
ρ(W)+|N \S|+|T \S|−1 many edges. The vertices in (N∪T)\S ⊆ V (G)\(W ∪R)

forms an independent set in F̃ , since they are nice vertices or tents. The vertices in
N \ S and T \ S have degree 2 and degree 3 in F̃ , respectively, since their degree
cannot drop while contracting the components of G[W]. This implies that,

2|N \ S|+ 3|T \ S| ≤ |E(F̃)| ≤ ρ(W) + |N \ S|+ |T \ S| − 1.

Therefore, |N \ S|+ 2|T \ S| < ρ(W). But N ∩ T = ∅ and thus

|N |+ 2|T | < ρ(W) + 2|S| ≤ ρ(W) + 2k.(14.1)

However, by our assumption, µ(I) = ρ(W) + 2k − (|N | + 2|T |) < 0 and thus
|N | + 2|T | > ρ(W) + k. This, contradicts the inequality given in Equation 14.1
contradicting our assumption that I is a Yes instance.

Lemma 14.2.8. The algorithm presented for Dis-IFVS is correct.

Proof. Let I = (G,W,R, k) be an instance of Dis-IFVS. We prove the correctness
of the algorithm by induction on µ = µ(I) = 2k + ρ(W)− (η + 2τ). The base case
occurs in one of the following cases.

275

• µ < 0. By Lemma 14.2.7, when µ < 0, we can correctly conclude that I is a
No instance.

• k < 0. By Reduction Rule 14.2.3 it follows that when k < 0, we can correctly
conclude that I is a No instance.

• When none of the Reduction Rules and Branching Rules are applicable. In
this case we are able to solve the instance in polynomial time.

By induction hypothesis we assume that for all µ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when µ = l + 1. The algorithm
does one of the following. Either applies one of the Reduction Rules if applicable.
By Lemma 14.2.1 to Lemma 14.2.5 we know that the Reduction Rules correctly
concludes that I is a No instance or produces an equivalent instance I ′ with µ(I ′) ≤
µ(I). If µ(I ′) < µ(I), then by induction hypothesis and safeness of the Reduction
Rules the algorithm correctly decides if I is a yes instance or not. Otherwise,
µ(I ′) = µ(I). If none of the Reduction Rules are applicable then the algorithm
applies one of the Branching Rules. Branching Rules are exhaustive and covers
all possible cases. Furthermore, µ decreases in each of the branch by at least one.
Therefore, by the induction hypothesis, the algorithm correctly decides whether I
is a Yes instance or not.

Theorem 14.2.1. The algorithm presented solves Disjoint Independent Feed-

back Vertex Set in time O?(3.1481k).

Proof. The Reduction Rules 14.2.1 to 14.2.8 can be applied in time polynomial in
the input size. Also, at each of the branch we spend a polynomial amount of time.
At each of the recursive calls in a branch, the measure µ decreases at least by 1.
When µ ≤ 0, then we are able to solve the remaining instance in polynomial time or
correctly conclude that the corresponding branch cannot lead to a solution. At the
start of the algorithm µ ≤ 3k. The worst-case branching vector for the algorithm is
(3, 1) (see Table 14.1). The recurrence for the worst case branching vector is:

T (µ) ≤ T (µ− 3) + T (µ− 1)

The running time corresponding to the above recurrence relation is 3.1481k.

276

14.2.2 A Family of Counter Examples to Song’s Algorithm

for IFVS

A fundamental problem in Song’s algorithm [196] is the following. As a consequence
of the technique of iterative compression, in a typical case (ignoring some details that
are irrelevant here) the problem reduces to its disjoint version where additionally
given a feedback vertex set F of the input graph G, the goal is to find a solution
that is disjoint from F . In this situation, say T1, . . . , Tp are the trees of the forest of
G−F , the author assumes that it is enough to look for a disjoint (from F) solution
in G[F ∪ Ti], for each i ∈ [p] and return the union of these solutions as the final
solution. This assumption is blatantly wrong as solutions obtained this way do not
kill cycles that pass through more than one tree Ti. This is formalized below where
we give a family of counter examples to Song’s algorithm.

Let F be the family of even cycles. For any C ∈ F , let (CW , CH) be a bipartition
of C. Given a graph G and a feedback vertex set F in G, Lemma 3.1 of [196] claims
to output a minimum IFVS in G. But for G = C and F = CW , where C ∈ F , the
algorithm of Lemma 3.1 always returns φ.

14.3 Exact Algorithm for Independent Feedback Ver-

tex Set

In this section we give an exact algorithm for IFVS running in time O?(1.5981n)

using the technique of measure and conquer. To solve IFVS, in fact we will solve
the following generalization of IFVS.

Excluded-Independent Feedback Vertex Set (Exc-IFVS)
Input: An undirected (multi) graph G, a set M ⊆ V (G)

Output: A minimum sized set S ⊆ V (G) \M such that S is an independent set
and G− S is a forest, if it exists. Otherwise, return ∞.

Observe that IFVS is a special case of Exc-IFVS when M = ∅. Given a graph G
and a set M , a subset S ⊆ V (G) \M is called an M-ifvs, if S is an independent set
and G− S is a forest.

The algorithm for Exc-IFVS is recursive and apart from branching on a care-

277

fully selected vertex it applies Reduction Rules 14.2.1 and 14.2.2, described in Sec-
tion 14.2. We note that when applying Reduction Rule 14.2.2 we prefer deleting
a vertex in M and adding an edge between its neighbours. Along with Reduction
Rules 14.2.1 and 14.2.2, we will also need the following two new reduction rules for
our exact algorithm.

Reduction Rule 14.3.1. If G[M] contains a cycle then return ∞.

The correctness of the Reduction Rule 14.3.1 follows from the fact that if G[M]

contains a cycle then there is no M -ifvs and thus we return ∞.

Reduction Rule 14.3.2. If there is (u, v) ∈ E(G) such that u, v ∈M , then contract
the edge (u, v). Let v? be the vertex obtained after contracting (u, v) in G. The
resulting instance is (G/(u, v), (M \ {u, v}) ∪ {v?}).

Observe that there is an one-to-one correspondence between cycles in G and
G/e; which implies the correctness of the Reduction Rule 14.3.2. A more formal
argument is presented in the next lemma.

Lemma 14.3.1. Reduction Rule 14.3.2 is safe.

Proof. Let (u, v) ∈ E(G) such that u, v ∈ M . Let G? = G/e and v? ∈ V (G?) be
the vertex obtained after contracting (u, v) in G. We will show that (G,M) has
an ifvs S ⊆ V (G) \M of size k if and only if (G?, (M \ {u, v}) ∪ {v?}) has an ifvs
S ′ ⊆ V (G/e) \M of size k.

In the forward direction let S ⊆ V (G) \M be an ifvs in G such that |S| ≤ k.
Observe that S ⊆ V (G?) \M and S is an independent set in G?. We will show
that S is an fvs in G?. Suppose not, then there is a cycle C in G?. If C does not
contain v? then C is a cycle in G, contradicting that S is an ifvs in G. Therefore,
we assume that C contains v?. Let x, y be neighbours of v? in C. If x, y ∈ NG(u)

then, we get a cycle C ′ in G by replacing v? by u. A similar argument can be given
when x, y ∈ NG(v). Otherwise, exactly one of x, y is a neighbour of u in G and the
other is a neighbour of v. Therefore, we can replace v? in C by the edge (u, v) and
obtain a cycle in G, contradicting that S was an ifvs in G.

In the reverse direction consider an ifvs S? in G?. We claim that S? is an ifvs in
G. Observe that S? ⊆ V (G) \M and S? is an independent set in G. We only need
to prove that S? is an fvs in G. Suppose not, then there is a cycle C in G− S?. If
none of {u, v} belongs to the cycle C then, C is also a cycle in G?, contradicting

278

the assumption that S? is an ifvs in G?. Hence, C contains at least one of {u, v}.
Suppose that C either contains exactly one of {u, v} or it contains the edge (u, v).
Then we get a cycle in G? by replacing u (or v) or the edge (u, v) by v?. Suppose
that C contains both {u, v} but not the edge (u, v). In this case, C has a path P
from u to v (which is not an edge). But then, V (P) \ {u, v} along with v? forms a
cycle in G?, contradicting the assumption that S? is an ifvs in G?. Hence the result
is proved.

In fact, the proof of Lemma 14.3.1 implies the following result which will be used
crucially in the next section when we upper bound the number of minimal ifvses in
a graph on n vertices.

Lemma 14.3.2. Let G be a graph,M ⊆ V (G) and e = (u, v) ∈ E(G) with u, v ∈M .
Furthermore, let G? = G/e, v? ∈ V (G?) be the vertex obtained after contracting
(u, v) and M? = M \ {u, v} ∪ {v?}. Then a set S ⊆ V (G) \M is a minimal M-ifvs
in G if and only if S is a minimal M?-ifvs in G?.

We start with a few definitions. Let (G,M) be an instance of Exc-IFVS and
U = V (G)\M . Recall that, a vertex v ∈ U is called a tent if its degree in G is 3 and
all its neighbours are in M . In other words, v has degree 3 in G and is an isolated
vertex in G[U]. We call a vertex v ∈ U nice if its degree in G is 2 and both of its
neighbours are in M . Lemma 14.2.6 explains our interest in nice vertices and tents.

Lemma 14.3.3. Exc-IFVS can be solved in time O?(1.5981n).

Proof. We give an algorithm for the variant of the problem, where we return the size
of a minimum sized ifvs, if it exists. It is straightforward to modify the algorithm
so that it actually finds a solution, provided that one exists.

We will follow a branching strategy with a nontrivial measure function. Let
(G,M) be the input instance. The algorithm first applies Reduction Rules 14.2.1,
14.2.2, 14.3.1 and 14.3.2, in that order, exhaustively. That is, at any point of time we
apply the lowest numbered applicable Reduction Rule. For simplicity of notation,
we denote the reduced instance (the one on which Reduction Rules 14.2.1, 14.2.2,
14.3.1 and 14.3.2 do not apply) by (G,M).

We then check whether every vertex in V (G) \M is either nice or a tent. If this
is the case, we apply Lemma 14.2.6 and solve the problem in polynomial time.

Otherwise, we move to the branching step of the algorithm. We will call a vertex
v ∈ V (G)\M branchable if either dG(v) ≥ 4 or, dG(v) = 3 and there exist u ∈ N(v)

279

degree of v uv mv Worst case branching vector Running time (cµ)

degree of v = 3
1 2 (67, 56) 1.01137µ

2 1 (93, 41) 1.011µ

3 0 (119, 26) 1.01149µ

degree of v ≥ 4

0 ≥ 4 (41, 86) 1.0115µ

1 ≥ 3 (67, 71) 1.0101µ

2 ≥ 2 (93, 56) 1.00956µ

3 ≥ 1 (119, 41) 1.00955µ

≥ 4 ≥ 0 (145, 26) 1.01016µ

Table 14.2: The branch vectors and the corresponding running times.
such that u 6∈ M . The algorithm has only one branching rule which is as follows:
Pick a branchable vertex v of largest degree and branch.

We branch by including v in the solution in one branch, and excluding it in the
other branch. That is, we call the algorithm on instances (G− {v},M ∪N(v)) and
(G,M ∪{v}). Let α and β be the values returned by the algorithm when run on the
instances (G− {v},M ∪N(v)) and (G,M ∪ {v}), respectively. Finally, we return

min{α + 1, β}.

The correctness of this algorithm follows from the safeness of reductions and the
fact that the branching is exhaustive.

To estimate the running time of the algorithm, for instance I = (G,M), we
define its measure µ = µ(G,M) = 15|M | + 41|U |, where U = V (G) \ M . Let
mv = |N(v) ∩M | and uv = |N(v)| −mv. Branching on v leads to following cases.

• When v belongs to the solution then none of the vertices in N(v) belong to the
solution. Therefore, we add all the vertices in N(v) to the setM . The resulting
instance is (G−{v},M∪N(v)). In this case |U | decreases by at least uv+1 and
|M | increases by uv. Consequently, µ decreases by 41(uv+1)−15uv = 26uv+41.

• When v does not belong to the solution, we add v to M . Observe that since
Reduction Rule 14.3.2 is not applicable, N(v)∩M is an independent set in G.

Thus, once we add v to M Reduction Rule 14.3.2 applies |N(v) ∩M | times.
Each application of Reduction Rule 14.3.2 decreases |M | by 1. We note that
when we add v to M , |M | increased by 1. Therefore, at this branch after
exhaustive application of Reduction Rule 14.3.2, |M∪{v}| decreases bymv−1.
Also, |U | decreases by 1. Therefore, the measure µ decreases by 26 + 15mv

The resulting branching vector for this case is (26uv + 41, 26 + 15mv).

280

Corresponding to the different values that uv and mv can take, the exact branch-
ing vector and the corresponding running time is given in Table 14.2. The worst
case branching vector is given by dG(v) = 4 and mv = 4. The recurrence relation
corresponding to the worst case branching vector is the following :

T (µ) ≤ T (µ− 41) + T (µ− 86).

The running time obtained from the above recurrence relation is 1.5981n. To upper
bound the running time of the algorithm, we now bound the number of times any
reduction rule is applied and the amount of time it takes to apply any reduction
rule. It is evident that each of the reduction rule can be applied in polynomial time.
Furthermore, each time a reduction rule is applied either the number of vertices or
the number of edges in the newly obtained instance drops by 1 or we conclude that
it is a no instance. Hence, the reduction rules can be applied at most O(n2) times.
Thus the total number of nodes in the search tree is upper bounded by O?(1.5981n)

and on each node the algorithm takes nO(1) time, resulting in the desired running
time for the algorithm.

As an immediate corollary of Lemma 14.3.3 we obtain the following theorem.

Theorem 2. IFVS can be solved in time O?(1.5981n).

14.4 On the Number of Minimal Independent Feed-

back Vertex Sets

In this section we use the method of measure and conquer (as in the previous section)
to obtain an upper bound of 1.7480n for the number of minimal independent feedback
vertex sets (minimal-ifvs) in a graph G on n vertices. We start by defining some
auxiliary notions that will be useful for our purpose.

Definition 14.4.1. For a graph G, and a subset M ⊆ V (G), we define IG(M) to
be the set of all minimal-ifvs S in the graph G such that S ⊆ V (G) \M . In other
words, S is a minimal M-ifvs. We will refer to M as the marked set.

Thus, the problem of upper bounding the number of minimal-ifvses in G can be
stated as finding an upper bound on |IG(∅)|.

281

For a graph G, and a subset M ⊆ V (G), to upper bound the size of IG(M),
we will give an inductive proof which mimics the recursive algorithm described in
Lemma 14.3.3. The proof will also use Reduction Rules 14.2.1 and 14.3.2. For our
proof we also need an upper bound on the number of minimal-ifvses of a special
instance.

Definition 14.4.2. An instance I = (G,M) is called special if (a) G is connected;
(b) every vertex v ∈ V (G) has degree at least 2; (c) every vertex v ∈ (U = V (G)\M)

has degree exactly 2; and (d) the sets M and U are independent. Let Gsp denote
the graph with vertex set M and edge set E(Gsp), where for every vertex v ∈ U ,
there is an edge ev between the neighbors of v. Observe that there is an one-to-one
correspondence between edges in E(Gsp) and vertices in U (we keep multi-edges).

In the following lemmas we characterize minimal-ifvses of a special instance and
we upper bound the size of IG(M). For a special instance (G,M) and S ⊆ V (G)

by ES we will denote the set of edges in Gsp corresponding to the vertices in S and
U = V (G) \M .

Lemma 14.4.1. Let I = (G,M) be a special instance. Then G is a bipartite graph,
such that |U | ≥ |M |.

Proof. The assertion that G is a is a bipartite graph follows from the definition
of special instance. Next we show that |U | ≥ |M |. Note that every vertex in
U must have degree exactly 2. But a vertex in M has degree at least 2. Since∑

u∈U dG(u) =
∑

v∈M dG(v), we conclude that 2|U | =
∑

v∈M dG(v) ≥ 2|M |. Thus,
|U | ≥ |M |, is proved.

Lemma 14.4.2. Let I = (G,M) be a special instance and S ⊆ U . Then S is a
M-ifvs in G if and only if Gsp − ES is a forest.

Proof. In the forward direction let S be a M -ifvs in G. We show that Gsp − ES is
acyclic. Suppose not, then there is a cycle C = (m0,m1, . . . ,m`) in Gsp − ES. An
edge (mi,m(i+1) mod (`+1)), 0 ≤ i ≤ `, corresponds to a degree 2 vertex ui in U with
neighbours mi,m(i+1) mod (`+1) in G. Therefore, (m0, u0,m1, u2, . . . ,m`, u`) forms a
cycle in G, contradicting that S is a M -ifvs in G. In the reverse direction suppose
Gsp − ES is a forest and G − S contains a cycle say C. But then if we delete the
vertices of U from C, and add edges between its neighbours, we obtain a cycle in
Gsp − ES, contradicting that it was a forest. This concludes the proof.

282

Lemma 14.4.3. Let I = (G,M) be a special instance and S be a minimal M-ifvs
in G. Then, the edges corresponding to U \ S forms a spanning tree in Gsp.

Proof. We first note that sinceG is connected, Gsp is also connected. From Lemma 14.4.2,
it follows that Gsp − ES is a forest. We show that Gsp − ES is connected. Assume
otherwise, then Gsp − ES has at least two connected components. Let C be one
of the connected components in Gsp − ES. Observe that V (C) and M \ V (C) 6= ∅
is a partition of vertices in M and there is at least one vertex in U which has a
neighbour in V (C) as well asM \V (C). Let X be the set of vertices in U which have
a neighbour in V (C) as well asM \V (C). Since, Gsp−ES is not connected, therefore
S must contain a vertex x ∈ X. But then, Gsp − (ES \ {x}) is a forest. From
Lemma 14.4.2, it implies S \ {x} is also a M -ifvs in G, contradicting the minimality
of S.

Lemma 14.4.4. Let I = (G,M) be a special instance. Then every minimal M-ifvs
in G is also a minimum M-ifvs with size |U | − (|M | − 1).

Proof. Observe that the number of edges in Gsp is |U |. From Lemmata 14.4.1
and 14.4.3 it follows that |S| = |U | − (|M | − 1). Therefore, every minimal M -ifvs is
a minimum M -ifvs in G with size |U | − (|M | − 1).

Lemma 14.4.5. Let I = (G,M) be a special instance on an n-vertex graph. Then,
|IG(M)| ≤

(
2α

1−α
)(1−α)n, where |M | = (1− α)n and 1

2
≤ α ≤ 1.

Proof. Our assumption implies that |U | = αn, where 1
2
≤ α ≤ 1. Thus, we have

that |M | = (1 − α)n. By Lemma 14.4.4, the number of minimal (which is same
as minimum) M -ifvs is same as the number of spanning trees of Gsp. Let ζ(H)

denote the number of spanning trees of a graph H. Grimmett [111] showed that for
a connected graph H on n∗ vertices and m∗ edges

ζ(H) ≤ 1

n

(
2m∗

n∗ − 1

)n∗−1

.

For n∗ ≥ 2 one can easily show that

ζ(H) ≤ 1

n

(
2m∗

n∗ − 1

)n∗−1

≤
(

2m∗

n∗

)n∗
.(14.2)

If n = 1 then |IG(M)| ≤ 1, so from now onwards we assume that n ≥ 2. By

283

Equation 14.2 we know that the

|IG(M)| ≤
(

2αn

(1− α)n

)(1−α)n

≤
(

2α

1− α

)(1−α)n

.

This completes the proof.

Lemma 14.4.6. An instance I = (G,M) contains at most 1.7480n minimal M-ifvs,
where n = |V (G)|. That is, |IG(M)| ≤ 1.7480n.

Proof. To estimate the upper bound on |IG(M)|, for instance I = (G,M), we define
its measure µ = µ(G,M) = 33|M | + 67|U |, where U = V (G) \M . Let f(G,M) =

|IG(M)| and let f(µ) be a maximum f(G,M) among all pairs (G,M) of measure at
most µ. We claim that for x = 1.00837, f(µ) ≤ xµ. We will prove the claim using
induction on µ. Observe that for µ ≤ 67, either the graph has exactly one vertex in
U or has at most 2 vertices in M . Thus, f(µ) ≤ 1 and the claim holds. Thus, by
induction hypothesis assume that f(`) ≤ x` for every ` < µ. Let I = (G,M) be an
instance of measure µ.

Our proof is based on several cases and we apply the first applicable case. That
is, when we are in Case i, we assume that all the cases with index strictly less than
i are not applicable.

Case 1: G is not connected. Let G1, . . . , G` denote the connected components
of G. Furthermore, let Mi denotes V (Gi) ∩M , i ∈ {1, . . . , `}. Observe that
µ(Gi,Mi) < µ and any minimal M -ifvs is formed by the union of minimal
Mi-ifvs of Gi, respectively. Thus, by the induction hypothesis we have the
following:

f(µ) =
∏̀

i=1

f(Gi,Mi) ≤
∏̀

i=1

xµ(Gi,Mi) ≤ x
∑`
i=1 µ(Gi,Mi) = xµ.

Case 2: Reduction Rules 14.2.1 and 14.3.2 are applicable. Suppose Reduc-
tion Rule 14.2.1 applies on a vertex v. Then, since v has degree one, it does
not participate in any cycle in G and thus IG(M) = IG\{v}(M \ {v}). Fur-
thermore, µ(G \ {v},M \ {v}) < µ and thus by induction hypothesis we have
that

f(µ) = f(G \ {v},M \ {v}) ≤ xµ(G\{v},M\{v}) ≤ xµ.

Now let us assume that Reduction Rule 14.3.2 applies on e = (u, v) ∈ E(G)

such that u, v ∈ M . In this case we contract the edge (u, v) to a vertex v?.

284

degree of v uv mv Worst case branch vector Running time (cµ)

degree of v = 2
1 1 (134, 67) 1.00721µ

2 0 (201, 34) 1.00748µ

degree of v ≥ 3

0 ≥ 3 (67, 133) 1.00724µ

1 ≥ 2 (101, 100) 1.00692µ

2 ≥ 1 (135, 67) 1.00718µ

≥ 3 ≥ 0 (169, 34) 1.00834µ

Table 14.3: The branch vectors and the corresponding upper bound on the number
of minimal minimal M -ifvs.

Let G? = G/e and M? = M \ {u, v} ∪ {v?}. Then, by Lemma 14.3.2, we
have that IG(M) = IG?(M?). Observe that IG(M) = IG?(M?). Furthermore,
µ(G?,M?) < µ. Now similar to the case of Reduction Rule 14.2.1, one can
show that f(µ) ≤ xµ.

Case 3: Branchable Vertex. We will call a vertex v ∈ U branchable if either
dG(v) ≥ 3 or, or dG(v) = 2, and there exists u ∈ N(v) such that u 6∈ M . For
an upper bound we proceed as follows: Select a branchable vertex v of largest
degree. Every, minimal M -ifvs either contains v, or does not. Thus, the
number of minimal M -ifvses of G is equal to the number of minimal M -ifvses
of G containing v, that is f(G \ {v},M ∪N(v)), plus the number of minimal
M -ifvses of G not containing v, that is f(G,M ∪ {v}). Let mv = |N(v) ∩M |
and uv = |N(v)| −m. This case analysis on v leads to the following sub-cases.
We first deal with the case when dG(v) ≥ 3.

• Case A: When v belongs to the solution then none of the vertices in
N(v) belong to the solution. Therefore, we add all the vertices in N(v)

to the set M . The resulting instance is (G \ {v},M ∪N(v)). In this case
|U | decreases by at least uv + 1 and |M | increases by uv. Therefore, µ
decreases by 67(uv + 1)− 33uv = 34uv + 67.

• Case B:When v does not belong to the solution, we add v toM . Observe
that since Reduction Rule 14.3.2 is not applicable, we have that N(v) ∩
M is an independent set in G. Thus, once we add v to M , Reduction
Rule 14.3.2 applies |N(v) ∩ M | times. Each application of Reduction
Rule 14.3.2 decreases |M | by 1. We note that when we add v to M , |M |
increased by 1. Therefore, at this branch after exhaustive application of
Reduction Rule 14.3.2, |M∪{v}| decreases by mv−1. Also, |U | decreases
by 1. Therefore, the measure µ decreases by 34 + 33mv

The resulting branching vector for this case is (34uv + 67, 34 + 33mv).

285

When dG(v) = 2, then we know that there is no vertex in U , that has degree at
least three. Thus, in this case when we include v in the perspective solution,
that is when we are in Case A, the neighbors of v that are present in U

become degree one and hence Reduction Rule 14.2.1 removes them. Thus
when dG(v) = 2, the branching vector is (67(1 + uv), 34 + 33mv).

Corresponding to the different values uv and mv can take, the exact branching
vector and the corresponding upper bound is given in Table 14.3.In every case
we have f(µ) ≤ xµ.

Case 4: Special Instance. Observe that since Cases 1 − 3 do not apply, the
instance I = (G,M) is special. Let |U | = αn, where 1

2
≤ α ≤ 1. Then, the

measure µ(G,M) = 67αn+ 33(1− α)n = n(34α + 33). Thus,

f(µ) ≤ max
1
2
≤α≤1

{(
2α

1− α

)(1−α)n
}
≤ max

1
2
≤α≤1

{(
2α

1− α

) (1−α)µ
34α+33

}

For 0.5 ≤ α ≤ 1, the function
(

2α
1−α
) (1−α)

34α+33 achieves its maximum at α =

0.641541 and the corresponding value is upper bounded by 1.00837. Thus, in
this case also we have that f(µ) ≤ xµ.

By the above case analysis we get that f(µ) ≤ xµ ≤ 1.0083767n ≤ 1.7480n. Observe
that since spanning trees of a graph can be enumerated in a polynomial delay, we
have that our upper bound proof is algorithmic. That is, in time O∗(1.7480n) one
can enumerate all M -ifvses of G. This concludes the proof.

As an immediate corollary of Lemma 14.4.6 we get the following theorem.

Theorem 14.4.1. A graph G on n vertices has at most 1.7480n minimal ifvses.

286

Chapter 15

Independent Set Covering Family-
Recycling Algorithms for
Independent Vertex Deletion
Problems

In this chapter, we present a new combinatorial tool for designing parameterized
algorithms. It is a simple linear time randomized algorithm that given as input a
d-degenerate graph G and an integer k, outputs an independent set Y , such that for
every independent set X in G of size at most k, the probability that X is a subset

of Y is at least
((

k(d+1)
k

)
· k(d+ 1)

)−1

. Here, an independent set in a graph G is
a vertex set X such that no two vertices in X are connected by an edge, and the
degeneracy of an n-vertex graph G is the minimum integer d such that there exists
an ordering σ : V (G)→ {1, . . . , n} such that every vertex v has at most d neighbors
u with σ(u) > σ(v). Such an ordering σ is called a d-degeneracy sequence of G. We
say that a graph is d-degenerate, if G has a d-degeneracy sequence. More concretely,
we prove the following result.

Lemma 15.0.1. There exists a linear1 time randomized algorithm that given as
input a d-degenerate graph G and an integer k, outputs an independent set Y , such
that for every independent set X in G of size at most k the probability that X is a

subset of Y is at least
((

k(d+1)
k

)
· k(d+ 1)

)−1

.

Proof. Given G, k and a d-degeneracy sequence σ of G the algorithm sets p =

1The time is purely linear in terms of k and d too.

287

1
d+1

and colors the vertices of G black or white independently with the following
probability : a vertex gets color black with probability p and white with probability
1− p. The algorithm then constructs the set Y which contains every vertex v, such
that v is colored black and all the neighbors u of v with σ(u) > σ(v) are colored
white. We first show that Y is an independent set. Suppose not. Let u, v ∈ Y , such
that σ(u) < σ(v) and uv ∈ E(G). Since u ∈ Y , by the construction of Y , v has to
be colored white. This contradicts that v ∈ Y because every vertex in Y is colored
black.

We now give a lower bound on the probability with which a given independent
set X of size at most k is contained in Y . Define Z to be the set of vertices u such
that u has a neighbor x ∈ X with σ(x) < σ(u). Since every x ∈ X has at most
d neighbors u with σ(x) < σ(u), it follows that |Z| ≤ kd. Observe that X ⊆ Y

precisely when all the vertices in X are colored black and all the vertices in Z are
colored white. This happens with probability

p|X|(1− p)|Z| ≥
(

k

k(d+ 1)

)k
·
(

kd

k(d+ 1)

)kd
≥
[(

(d+ 1)k

k

)
· k(d+ 1)

]−1

.

Here, the last inequality follows from the fact that binomial distributions are cen-
tered around their expectation. This concludes the proof.

Lemma 15.0.1 allows us to reduce many problems with an independence con-
straint to the same problem without the independence requirement. For an example,
consider the following four well-studied problems:

• Minimum s-t Separator: Here, the input is a graph G, an integer k and
two vertices s and t, and the task is to find a set S of at most k vertices such
that s and t are in distinct connected components of G− S. This is a classic
problem solvable in polynomial time [104, 198].

• Odd Cycle Transversal: Here, the input is a graph G and an integer k,
and the task is to find a set S of at most k vertices such that G−S is bipartite.
This problem is NP-complete [58] and has numerous fixed-parameter tractable
(FPT) algorithms [187, 144]. For all our purposes, the O(4k · kO(1) · (n + m))

time algorithms of Iwata et al. [120] and Ramanujan and Saurabh [184] are
the most relevant.

• Multicut: Here, the input is a graphG, a set T = {{s1, t1}, {s2, t2}, . . . , {s`, t`}}
of terminal pairs and an integer k, and the task is to find a set S on at most

288

k vertices such that for every i ≤ `, si and ti are in distinct connected com-
ponents of G − S. Such a set S is called a multicut of T in G. This problem
is NP-completeeven for 3 terminal pairs, that is, when l = 3 [73], but it is
FPT [35, 160] parameterized by k, admitting an algorithm [146] with running
time 2O(k3) ·mn log n.

• Directed Feedback Vertex Set: Here, the input is a directed graph D
and an integer k, and the task is to find a set S on at most k vertices such
that D − S is acyclic. This problem is also NP-complete [124] and FPT [51]
parameterized by k, admitting an algorithm [146] with running time O(k! ·4k ·
k5 · (n+m)).

In the “stable” versions of all of the above-mentioned problems, the solution set
S is required to be an independent set. Independent sets are sometimes called stable
sets in the literature. In this thesis we stick to independent sets, except for problem
names, which are inherited from Marx et al. [159].

Lemma 15.0.1 only applies to graphs of bounded degeneracy. Even though the
class of graphs of bounded degeneracy is quite rich (it includes planar graphs, and
more generally all graphs excluding a topological minor) it is natural to ask whether
Lemma 15.0.1 could be generalized to work for all graphs. However, if G consists of
k disjoint cliques of size n/k each, the best success probability one can hope for is
(k/n)k, which is too low to be useful for FPT algorithms.

The algorithms based on Lemma 15.0.1 are randomized, however they can be
derandomized using a new combinatorial object, that we call k-independence cov-
ering families, which may be of independent interest. We call an independent set
of size at most k a k-independent set, and we call a family of independent sets an
independent family. An independent family F covers all k-independent sets of G,
if for every k-independent set X in G there exists an independent set Y ∈ F such
that X ⊆ Y . In this case, we call F a k-independence covering family. An algo-
rithm based on Lemma 15.0.1 can be made deterministic by first constructing a
k-independence covering family F, and then looping over all sets Y ∈ F instead of
repeatedly drawing Y at random using Lemma 15.0.1.

Since a graph G contains at most nk independent sets of size at most k, drawing
O(
(
k(d+1)
k

)
· kd · log n) sets using Lemma 15.0.1 and inserting them into F will result

in a k-independence covering family with probability at least 1/2. Hence, for every
d and k, every graph G on n vertices of degeneracy at most d has a k-independence
covering family of size at mostO(

(
k(d+1)
k

)
·kd·log n). By direct applications of existing

289

pseudo-random constructions (of (n, (r, s))-cover free families) we show that given a
graph G of degeneracy d and integer k one can construct a k-independence covering
family of size not larger than O(

(
k(d+1)
k

)
· kd · log n) in time roughly proportionate

to its size.

Additionally, we also show that for any nowhere dense graph class [169, 170],
there exists a function f such that given an n-vertex graph from this graph class,
any real ε and any positive integer k, one can construct a k-independence covering
family for this graph of size f(k, ε) · nε. This construction immediately yields FPT
algorithms for the considered problems on nowhere dense classes of graphs.

15.1 Independence Covering Family and Lemma

In this section we give constructions of k-independence covering families, which
are useful in derandomizing algorithms based on Lemma 15.0.1. Towards this we
first formally define the notion of k-independence covering family – a family of
independent sets of a graph G which covers all independent sets in G of size at most
k.

Definition 15.1.1 (k-Independence Covering Family). For a graph G and k ∈ N, a
family of independent sets of G is called an independence covering family for (G, k),
denoted by F(G, k), if for any independent set X in G of size at most k, there exists
Y ∈ F(G, k) such that X ⊆ Y .

Observe that for any pair (G, k), there exists an independence covering family
of size at most

(
n
k

)
containing all independent sets of size at most k. We show that,

if G has bounded degeneracy, then k-independence covering family of “small” size
exists. In fact, we give both randomized and deterministic algorithms to construct
such a family of “small” size for graphs of bounded degeneracy. In particular, we
prove that if G is d-degenerate, then one can construct an independent set covering
family for (G, k) of size f(k, d) · log n, where f is a function depending only on k and
d. We first give the randomized algorithm for constructing k-independence covering
family. Towards this we use the algorithm described in Lemma 15.0.1. For an ease
of reference we present the algorithm given in Lemma 15.0.1 here.

Lemma 15.1.1 (Randomized Independence Covering Lemma). There is an algo-
rithm that given a d-degenerate graph G and k ∈ N, outputs a family F(G, k) such
that (a) F(G, k) is an independence covering family for (G, k) with probability at

290

Algorithm 2: Input is (G, k), where G is a d-degenerate graph and k ∈ N

1 Construct a d-degeneracy sequence σ of G, using Proposition 2.3.1.
2 Set p = 1

d+1
. Independently color each vertex v ∈ V (G) black with

probability p and white with probability (1− p).
3 Let B and W be the set of vertices colored black and white, respectively.
4 Z := {v ∈ B | N f

G,σ(v) ∩B = ∅}.
5 return Z

least 1 − 1
n
, (b) |F(G, k)| ≤

(
k(d+1)
k

)
· 2k2(d + 1) · lnn, and (c) the running time of

the algorithm is O(|F(G, k)| · (n+m)).

Proof. Let t =
(
k(d+1)
k

)
· k(d + 1). We now explain the algorithm to construct

the family F(G, k) mentioned in the lemma. We run Algorithm 2 (Lemma 15.0.1)
γ = t · 2klnn times. Let Z1, . . . , Zγ be the sets that are output at the end of each
iteration of Algorithm 2. Let F(G, k) be the collection of distinct Zi

′
s. Clearly,

|F(G, k)| ≤ t · 2k lnn =
(
k(d+1)
k

)
· 2k2(d+ 1) · lnn. Thus condition (b) is proved. The

running time of the algorithm (condition (c)) follows from Lemma 15.0.1.

Now we prove condition (a) of the lemma. Fix an independent set X in G of
cardinality at most k. By Lemma 15.0.1, we know that for any Z ∈ F(G, k), Pr[X ⊆
Z] ≥ 1

t
. Thus the probability that there does not exist a set Z ∈ F(G, k) such that

X ⊆ Z is at most (1 − 1
t
)|F(G,k)| ≤ e−2klnn = n−2k. The last inequality follows

from a well-known fact that (1− a) ≤ e−a for any a ≥ 0. Since the total number of
independent sets of size at most k in G is upper bounded by nk, by the union bound,
the probability that there exists an independent set of size at most k which is not
a subset of any set in F(G, k) is upper bounded by n−2k · nk = n−k ≤ 1/n. This
implies that F(G, k) is an independence covering family for (G, k) with probability
at least 1− 1

n
.

Remark 15.1.1. From Fact 2.2.1 and the fact that the number of edges in an n-
vertex d-degenerate graph is at most dn, the algorithm of Lemma 15.1.1 runs in time
2O(k log d) ·n log n and outputs a k-independence covering family of size 2O(k log d) ·log n.

Deterministic Construction. The deterministic algorithm that we give is ob-
tained from the randomized algorithm presented in Lemma 15.1.1 by using the
(n, (r, s))-cover free family [37]. The deterministic construction basically replaces
the random coloring of the vertices in Line 2 of Algorithm 2 by a coloring defined
by a bit string in the (n, (r, s))-cover free family. In the following, we first define
the (n, (r, s))-cover free family, state Proposition 15.1.1 (an algorithm to construct

291

an (n, (r, s))-cover free family of “small” size) which is followed by our deterministic
algorithm (Lemma 15.1.2).

Definition 15.1.2 ((n, (r, s))-cover free family [37]). Fix positive integers r, s, n with
r, s ≤ n and let p := r + s. An (n, (r, s))-cover free family is a set F ⊆ {0, 1}n such
that for every 1 ≤ i1 < i2 < . . . < ip ≤ n and every J ⊂ [p] of size r, there exists
a ∈ F such that aij = 1 for all j ∈ J and aik = 0 for all k 6∈ J . Here, aij denotes
the ij-th bit of the bit vector a.

In the following, for any positive integers r, s and p = r+ s, the function N(r, s)

is defined as N(r, s) =
p(pr)

log (pr)
.

Proposition 15.1.1 (Theorem 1, [37]). Fix any integers r < s < p with p =

r + s. There is an (n, (r, s))-cover free family of size N(r, s)1+o(1) · log n that can be
constructed in time N(r, s)1+o(1) · n log n.

Lemma 15.1.2 (Deterministic Independence Covering Lemma). There is an algo-
rithm that given a d-degenerate graph G and k ∈ N, runs in time N(k, kd)1+o(1)(n+

m) log n and outputs a k-independence covering family for (G, k) of size at most
N(k, kd)1+o(1) · log n.

Proof. Let n = |V (G)|. Without loss of generality, let n ≥ k(d+1), as otherwise the
lemma follows trivially. Let us rename the vertex set of the graph to take indices
from [n], where n = |V (G)|. Let F be the (n, (r, s))-cover free family constructed
using Proposition 15.1.1 for r = k and s = kd. For each a ∈ F , we run Algorithm 2,
where Line 2 is replaced as follows: we color the vertex i black if ai = 1, and white
otherwise. More precisely, we run Algorithm 2 for each a ∈ F , replacing Line 2
by the procedure just defined, and output the collection F(G, k) of sets returned
at the end of each iteration. The size bound on |F(G, k)| follows from Proposi-
tion 15.1.1 and the running time of the algorithm follows from the fact that each
run of Algorithm 2 takes O(n+m) time.

We now show that F(G, k) is, indeed, an independent set covering family for
(G, k). Let X be an independent set of cardinality at most k in G. Let σ be the
d-degenerate sequence constructed in Line 1 of Algorithm 2. Let Y = ∪v∈XN f

G,σ(v).
Since X is independent, X∩Y = ∅. Furthermore, since σ is a d-degeneracy sequence
and |X| ≤ k, we have that |Y | ≤ kd. If |X| < k (or |Y | < kd), then let X ′ (resp. Y ′)
be a some superset of X (resp. Y) such that X ′ ∩ Y ′ = ∅ and, |X ′| = k, |Y ′| = kd.
Since n ≥ k(d + 1) such sets X ′, Y ′ exist. Let X ′ ∪ Y ′ = {i1, i2, . . . , ip}, where

292

p = k(d + 1) and let J ⊂ [p] be such that J = {j : ij ∈ X ′, j ∈ [p]}. By the
definition of (n, (k, kd))-cover free family, there is a bit vector a ∈ F such that
aij = 1 when ij ∈ X ′ and aij = 0, when ij ∈ Y ′. Consider the run of Algorithm 2
for the bit vector a. In this run, we have that X ⊆ B and Y ⊆ W . From the
definition of X, Y and Z (set constructed in Line 4), we have that X ⊆ Z. This
implies that F(G, k) is an independence covering family of (G, k). This completes
the proof.

Remark 15.1.2. From Fact 2.2.1 and the fact that the number of edges in an n-
vertex d-degenerate graph is at most dn, the algorithm of Lemma 15.1.2 runs in
time 2O(k log d) · n log n and outputs a k-independence covering family for (G, k) of
size 2O(k log d) · log n.

15.1.1 Extensions

For some graphs, whose degeneracy is not bounded, it may still be possible to find
a “small” sized independence covering family. This is captured by Corollary 15.1.1.

Corollary 15.1.1. Let d, k ∈ N and G be a graph. Let S ⊆ V (G) be such that
G−S is d-degenerate. There is an algorithm which given d, k ∈ N, G and S, run in
time 2|S| · 2O(k log d) · (n + m) log n and outputs an independence covering family for
(G, k) of size at most 2|S| · 2O(k log d) · log n

Proof. Let G′ = G−S. By the property of S, we know that G′ is d-degenerate. We
first apply Lemma 15.1.2 and get a k-independent set covering family F ′ for (G′, k).
Then we output the family

F(G, k) = {(A ∪B) \NG(B) | A ∈ F ′ , B ⊆ S is an independent set in G}.

We claim that F(G, k) is a k-independence covering family for (G, k). Towards that,
first we prove that all sets in F(G, k) are independent sets in G. Let Y ∈ F . We
know that Y = (A∪B)\NG(B), for some A ∈ F ′ and B ⊆ S which is an independent
set in G. By the definition of F ′ , A is an independent set in G. Since A and B

are independent sets in G, Y = (A ∪ B) \NG(B) is an independent set in G. Now
we show that for any independent set X in G of cardinality at most k, there is an
independent set containing X in F(G, k). Let X = X ′]X ′′, where X ′ = X \ S and
X ′′ = X ∩S. By the definition of F ′ , there is a set Z ∈ F ′ such that X ′ ⊆ Z. Then
the set (Z ∪X ′′) \NG(X ′′) ∈ F(G, k) is the required independent set containing X.

293

Observe that |F(G, k)| ≤ |F ′ | ·2|S|. Also, the running time of this algorithm is equal
to the time taken to compute F ′ plus |F(G, k)| · (n + m). Thus, the running time
and the bound on the cardinality of F(G, k) as claimed in the lemma follows from
Lemma 15.1.2 and Remark 15.1.2.

Remark 15.1.3. An alternate independence covering family for the situation in
Corollary 15.1.1 can be obtained directly from Lemma 15.1.2 by observing that the
input graph has degeneracy at most d + |S|. This procedure gives an independence
covering family whose size (in terms of the dependence on |S|) has a factor of |S|O(k)

in contrast to 2|S| in Corollary 15.1.1. Thus, the result of Corollary 15.1.1 is relevant
only when d� |S| � k.

15.1.2 Nowhere Dense Graphs

In this section, we show that for any nowhere dense graph class [169, 170], there
exists a function f such that given an n-vertex graph from this graph class, any real
ε and any positive integer k, one can construct a k-independence covering family for
this graph of size f(k, ε) ·nε. The class of graphs that is nowhere dense is a common
generalization of proper minor closed classes, classes of graphs with bounded degree,
graph class locally excluding a fixed graph H as minor and classes of bounded
expansion (see [170, Figure 3]). Also, they are incomparable to the class of bounded
degeneracy graphs [172, 36]. In order to define nowhere denseness, we need several
new definitions.

Definition 15.1.3 (Shallow minor). A graphM is an r-shallow minor of G, where r
is an integer, if there exists a set of disjoint subsets V1, . . . , V|M | of V (G) such that

1. each graph G[Vi] is connected and has radius at most r, and

2. there is a bijection ψ : V (M) → {V1, . . . , V|M |} such that for every edge uv ∈
E(M) there is an edge in G with one endpoint in ψ(u) and second in ψ(v).

The set of all r-shallow minors of a graph G is denoted by GO r. Similarly, the
set of all r-shallow minors of all the members of a graph class G is denoted by
G O r = ∪G∈G(GO r).

We first introduce the definition of a graph class that is nowhere dense; let ω(G)

denotes the size of the largest clique in G and ω(G) = supG∈G ω(G).

294

Definition 15.1.4 (Nowhere dense). A graph class G is nowhere dense if there
exists a function fω : N→ N such that for all r we have that ω(G O r) ≤ fω(r).

We refer the readers to the book by Nesetril and Ossona de Mendez [171] for a
detailed exposition of nowhere dense classes of graphs, their alternate characteriza-
tions and several properties of them. See also [112]. We rely on the following result
that bounds the degeneracy of any class of graphs that is nowhere dense, to give a
construction for independence covering family for such graph classes.

Proposition 15.1.2 (Corollary 2.6, [112]). Let G be a class of graphs that is nowhere
dense. Then for any real ε > 0, for any G ∈ G, there exists a function f such that
the degeneracy of G is f(ε) · nε.

We now give the construction of independence covering family for the class of
graphs that are nowhere dense.

Lemma 15.1.3. Let G be a class of graphs that is nowhere dense. For any k ∈ N,
any δ ∈ R such that δ > 0 and for any G ∈ G, there is a deterministic algorithm that
runs in time f(ε)O(k) · n1+δ log n and outputs a k-independence covering family for
(G, k) of size f(ε)O(k) ·nδ log n, where f is the function defined in Proposition 15.1.2.

Proof. Set ε = δ
2k
. From Remark 15.1.2, an independence covering family for G of

size 2O(k log d) log n can be computed in time 2O(k log d)n log n, where d is the degen-
eracy of G. Since G ∈ G and G is a class of graphs that are nowhere dense, from
Proposition 15.1.2, d = f(ε) · nε, for some function f . Thus, we obtain an indepen-
dence covering family for G of size f(ε)O(k) ·nδ log n in time f(ε)O(k) ·n1+δ log n.

15.1.3 Barriers

In this subsection we show that we cannot get small independence covering families
on general graphs. We also show that we cannot get small covering families when
we generalize the notion of “independent set” to something similar even on graphs
of bounded degeneracy.

Independence covering family for general graphs. Let k be a positive inte-
ger. Consider the graph G on n vertices, where n is divisible by k, which is a disjoint
collection of k cliques on n

k
vertices each. Let C1, . . . , Ck be the disjoint cliques that

comprise G. Let F(G, k) be a k-independence covering family for (G, k). Then, we

295

claim that, |F(G, k)| ≥
(
n
k

)k. Consider the family I of independent sets of G of size
at most k defined as I = {{v1, . . . , vk} : ∀i ∈ [k], vi ∈ Ci}. Note that |I| =

(
n
k

)k.
We now prove that it is not the case that there exists Y ∈ F(G, k) such that for
two distinct sets X1, X2 ∈ I, X1, X2 ⊆ Y . This would imply that |F(G, k)| ≥

(
n
k

)k.
Suppose, for the sake of contradiction, that there exists Y ∈ F(G, k) and X1, X2 ∈ I
such that X1 6= X2, X1 ⊆ Y and X2 ⊆ Y . Since X1 6= X2, there exist u ∈ X1 and
v ∈ X2 such that u, v ∈ Ci for some i ∈ [k]. Since X1 ⊆ Y and X2 ⊆ Y , u, v ∈ Y ,
which contradicts the fact that Y is an independent set in G (because uv ∈ E(G)).

Induced matching covering family for disjoint union of stars. We show
that if we generalize independent set to induced matching, then we cannot hope for
small covering families even on the disjoint union of star graphs, which are graphs
of degeneracy one.

Definition 15.1.5 (Induced Matching Covering Family). For a graph G and a
positive integer k, a family M ⊆ 2V (G) is called an induced matching covering
family for (G, k) if for all Y ∈ M, G[Y] is a matching, that is, each vertex of Y
has degree exactly one in G[Y], and for any induced matching M in G on at most
k vertices, there exists Y ∈M such that V (M) ⊆ Y .

Let k be a positive integer. Consider the graph G on n vertices, where 2n is
divisible by k, which is a disjoint collection of k

2
stars on 2n

k
vertices (K1, 2n

k
−1).

That is each connected component of G is isomorphic to K1, 2n
k
−1. Let R be the

set of all maximal matchings in G. Each matching in R consists of k
2
edges, one

from each connected component. Observe that all these matchings are induced
matchings in G. Union of any two distinct matchings in R will have a P3. This
implies that the cardinality of any induced matching covering family for (G, k) is at
least |R| = (2n

k
− 1)

k
2 .

r-independent covering family for disjoint union of stars. Let G be a graph.
For any r ∈ N, X ⊆ V (G) is called an r-independent set in G, if for any u, v ∈ V (G),
dG(u, v) > r. An independent set in G is a 1-independent set in G.

Definition 15.1.6 (r-independent Covering Family). For any r ∈ N, for a graph
G and a positive integer k, a family S ⊆ 2V (G) is called a r-independent covering
family for (G, k) if for all Y ∈ S, Y is an r-independent set in G and for any
X ⊆ V (G) of size at most k such that X is an r-independent set in G, there exists
Y ∈ S such that X ⊆ Y .

296

Let k be a positive integer. Consider the graph G on n vertices, where n is divisi-
ble by k, which is a disjoint collection of k stars on n

k
vertices (K1,n

k
−1). That is each

connected component of G is isomorphic to K1,n
k
−1. Notice that G is a 1-degenerate

graph. Let C1, . . . , Ck be the components of G. Define I = {{v1, . . . , vk} : ∀i ∈
[k], vi ∈ Ci}. Clearly each set in IG() is a r-independent set for any r ∈ N. More-
over, the union of any two distinct sets in IG() is not a 2-independent set. This
implies that the cardinality of any r-independent covering family for (G, k) is at
least |I| =

(
n
k

)k for any r ≥ 2.

Acyclic covering family for 2-degenerate graphs. We show that covering
families for induced acyclic subgraphs on 2-degenerate graphs will have large cardi-
nality.

Definition 15.1.7 (Acyclic Set Covering Family). For a graph G and a positive
integer k, a family A ⊆ 2V (G) is called an acyclic set covering family for (G, k) if
for all Y ∈ M, G[Y] is a forest and for any X ⊆ V (G) of size at most k such that
G[X] is a forest, there exists Y ∈ A such that X ⊆ Y .

Let k be a positive integer. Consider the graph G on n vertices, where 3n is
divisible by k, which is a disjoint union of k

3
complete bipartite graphs K2, 3n

k
−2. The

degeneracy of G is 2. Without loss of generality assume that 3n
k
is strictly more than

2. Let H1, . . . , H k
3
be the connected components of G. Let Hi = (Li]Ri, Ei), where

|Li| = 2. Now consider the family of sets I = {L1∪ . . .∪L k
3
∪{v1, . . . , v k

3
} | vi ∈ Ri}.

Each set in IG() induces a collection of induced paths on 3 vertices (P3). Also, the
union of any two sets in IG() contains a cycle on 4 vertices and hence, not acyclic.
This implies that the cardinality of any acyclic set covering family for (G, k) is at
least |I| =

(
3n
k
− 2
) k

3 .

15.2 Algorithms for Bounded Degeneracy Graphs:

Trading Independence for Annotations

In this section we give FPT algorithms for Stable s-t Separator, Stable Odd

Cycle Transversal, Stable Multicut and for Stable Directed Feedback

Vertex Set on d-degenerate graphs, by applying Lemmas 15.0.1 and 15.1.2. All
these algorithms, except the one for Stable Directed Feedback Vertex Set,
are later used as a subroutine to design FPT algorithms on general graphs.

297

We begin by defining a general algorithmic framework that will be applicable to
each of the algorithms in this section. To this end, we define Π-Vertex Deletion,
Annotated Π-Vertex Deletion and Stable Π-Vertex Deletion problems,
for any graph class Π.

Π-Vertex Deletion Parameter: k
Input: An instance I of a graph problem containing a graph G, an integer k
Question: Does there exist S ⊆ V (G), such that |S| ≤ k and G− S ∈ Π?

Annotated Π-Vertex Deletion Parameter: k
Input: An instance I of a graph problem containing a graph G, a subset Y ⊆
V (G), an integer k
Question: Does there exist S ⊆ Y , such that |S| ≤ k and G− S ∈ Π?

Stable Π-Vertex Deletion Parameter: k
Input: An instance I of a graph problem containing a graph G, an integer k
Question: Does there exist S ⊆ V (G), such that |S| ≤ k, S is an independent
set and G− S ∈ Π?

Using our constructions of the independence covering families, the following
lemma describes a procedure to design FPT algorithms for Stable Π-Vertex

Deletion problems using FPT algorithms for Annotated Π-Vertex Deletion,
for graphs of bounded degeneracy. in the following, for any positive integers r, s and

p = r + s, N(r, s) =
p(pr)

log (pr)
.

Lemma 15.2.1. If there is an algorithm that solves Annotated Π-Vertex Dele-

tion on a d-degenerate graph on n vertices in time T (d, n), then Stable Π-Vertex

Deletion on d-degenerate graphs can be solved by,

1. a randomized algorithm with worst case running time (T (d, n) + (n + m)) ·(
k(d+1)
k

)
·k2(1+d) that always outputs correctly if the instance is a No instance

and makes an error with probability at most 1− 1/e if it is Yes instance; and

2. a deterministic algorithm that runs in time (T (d, n)+(n+m))·N(k, kd)1+o(1) log n.

Proof. We first begin by describing our randomized algorithm2. Let (I, k) be an
instance of Stable Π-Vertex Deletion and let G be the graph of the instance

2To shave off the log factor in the randomized algorithm, that we would get if we construct

298

I. Our algorithm runs the following two step procedure
(
k(1+d)
k

)
· k(1 + d) many

times.

1. Run Algorithm 2 on (G, k) and let Z be its output.

2. Run the algorithm of Annotated Π-Vertex Deletion on the instance
(I, k, Z).

Our algorithm will output Yes, if Step 2 returns Yes at least once. Otherwise, our
algorithm will output No. We now prove the correctness of our algorithm. Since in
Step 1 the output set Z is always an independent set of G, if the algorithm returns
Yes, the input instance is a Yes instance. For the other direction, suppose the input
instance is a Yes instance. Let X be a solution to it. Since X is an independent set,
from Lemma 15.0.1, X ⊆ Z with probability at least p = 1

(k(d+1)
k)·(k(d+1))

. Thus, the

probability that in all the executions of Step 1, X 6⊆ Z is at most (1− p)1/p ≤ 1/e.
Therefore, the probability that in at least one execution of Step 1, X ⊆ Z, is at
least 1 − 1/e. Now, consider the iteration of the algorithm when X ⊆ Z. For
this iteration, (I, k, Z) is a Yes instance of Annotated Π-Vertex Deletion,
and thus, our algorithm will output Yes in this iteration. Therefore, if the input
instance is a Yes instance, our algorithm will output Yes with probability at least
1 − 1/e. The running time of our algorithm follows from Lemma 15.0.1 and the
running time for Annotated Π-Vertex Deletion.

For our deterministic algorithm, the algorithm first computes a k-independence
covering family for (G, k), F(G, k), using the algorithm of Lemma 15.1.2. For each
Z ∈ F(G, k), it then solves the instance (I, k, Z) of Annotated Π-Vertex Dele-

tion. If the algorithm of Annotated Π-Vertex Deletion returns Yes on either
of the instances, then our algorithm reports Yes, otherwise it reports No. The cor-
rectness of the algorithm follows from the definition of independent set covering
family and discussion done in the above paragraph. The running time of the al-
gorithm follows from Lemma 15.1.2 and the running time to solve Annotated

Π-Vertex Deletion.

The rest of the section focuses on four Π-Vertex Deletion problems viz. s-t-
Separator, Odd Cycle Transversal (OCT), Directed Feedback Vertex

Set (DFVS) and Multicut. In s-t-Separator, the instance I contains a graph

an independent set covering family using the algorithm of Lemma 15.1.1, we use Algorithm 2
in our algorithm instead of constructing the whole F(G, k) before hand using multiple rounds of
Algorithm 2.

299

G and s, t ∈ V (G), and Π is the class of graphs which contain the vertices s, t and,
s and t belong to different connected components. In OCT, the instance I contains
a graph G, and Π is the collection of all bipartite graphs. In DFVS, the instance I
contains a directed graph D, and Π is the collection of all acyclic directed graphs.
In Multicut, the instance I contains a graph G and a set T = {(si, ti) : i ∈ [p]} of
terminal pairs, and Π is the collection of graphs where there is no path from si to
ti for each i ∈ [p]. In this chapter, we abuse the notation a little and whenever we
refer to the degeneracy of a directed graph, we mean the degeneracy of its underlying
undirected graph.

Using the framework of Lemma 15.2.1 and by designing simple algorithms for
the Annotated Π-Vertex Deletion problems corresponding to the above men-
tioned problems from the algorithms of the corresponding Π-Vertex Deletion

problems, we get the following theorem.

Theorem 15.2.1. There is a randomized algorithm with one-sided error probability
1/e and a deterministic algorithm for

1. Stable s-t Separator (SSTS) and Stable Odd Cycle Transversal

(SOCT) on d-degenerate graphs that run in time 2O(k log d) · n and 2O(k log d) ·
n log n respectively,

2. Stable Directed Feedback Vertex Set (SDFVS) on d-degenerate graphs
that run in time (k+1)! ·2O(k log d) ·n and (k+1)! ·2O(k log d) ·n log n respectively,
and

3. Stable Multicut on d-degenerate graphs that run in time 2O(k3+k log d) ·
mn log2 n.3

To prove Theorem 15.2.1, it is enough to design appropriate algorithms for the
annotated versions of these problems which we do below. Henceforth, an instance of
Annotated s-t-Separator (ASTS), Annotated OCT (AOCT), Annotated

DFVS (ADFVS) and Annotated Multicut is (G, s, t, Y, k), (G, Y, k), (D, Y, k)

and (G, T, Y, k) respectively.

Lemma 15.2.2. ASTS can be solved in time O(k · (n+m)).

Proof Sketch. To prove the lemma, we apply Proposition 2.4.1 on (G, s, t, w, k),
where w is defined as follows: w(v) = 1 if v ∈ Y and k + 1 otherwise.

3The randomized algorithm for Stable Multicut does not give any better running time
than the deterministic one, so for the sake of soundness of the sentence we may assume that the
randomized algorithm is the same as the deterministic algorithm.

300

We will need the following result about OCT.

Proposition 15.2.1 ([184]). OCT can be solved in time O(4k · k4 · (n+m)).

Using Proposition 15.2.1, we can get the following result about AOCT.

Lemma 15.2.3. AOCT can be solved in time O(4k · k6 · (n+m))

Proof sketch. We give a polynomial time reduction from AOCT to OCT as follows.
We replace each v ∈ V (G)\Y , with k+1 vertices v1, . . . vk+1 with same neighborhood
as v, that is, the neighborhood of v1, . . . vk+1 are same in the resulting graph (see
Figure 13.3 for an illustration). Let G′ be the resulting graph. Then any minimal
odd cycle transversal which contain a vertex from {v1, . . . , vk+1} will also contain all
the vertices in {v1, . . . , vk+1}. Thus to find a k sized solution for AOCT, it is enough
to find an odd cycle transversal of size k in G′. The total number of vertices in G′

is at most k|V (G)| and the total number of edges in G′ is at most (k + 1)2|E(G)|.
Thus the running time of the algorithm follows from Proposition 15.2.1.

We need to use the following known algorithm for DFVS/DFVS+Tw-η Mod.

Lemma 15.2.4 ([146]). DFVS/DFVS+Tw-η Mod can be solved in time O((k +

1)! · 4k · k5 · (n+m)).

Lemma 15.2.5. ADFVS can be solved in O((k + 1)! · 4k · k7 · (n+m)) time.

Proof Sketch. Construct G′ as in Lemma 15.2.3, that is, add k + 1 copies for each
vertex in V (G)\Z to the graph G such that all of them have the same neighborhood
in the resulting graph. Then apply Lemma 15.2.4 on (G′, k). The proof of correctness
of this algorithm is similar in arguments to the proof of Lemma 15.2.3.

Next we state an algorithmic result for Multicut that is used by our algorithm.

Lemma 15.2.6 ([156, 146]). Multicut can be solved in 2O(k3) ·mn log n time.

Lemma 15.2.7. Annotated Multicut can be solved in time 2O(k3) ·mn log n.

Proof sketch. We first give a polynomial time reduction from Annotated Multi-

cut to Multicut which is described below.

Let (G, T, Y, k) be an instance of Annotated Multicut. Construct a graph
G′ from G by replace each v ∈ V (G) \ Y , with k + 1 vertices v1, . . . vk+1 with

301

same neighborhood as v. That is, the neighborhood of v1, . . . vk+1 are same in the
resulting graph G′. We call the set of vertices that are added for v in G′ as the block
for v. We now construct the set of terminal pairs T ′ from the set of terminals T as
follows. If {s, t} ∈ T and {s, t} ⊆ Y , we add {s, t} to T ′. Suppose {s, t} ∈ T and
{s, t}∩Y = {t}. Let s1, . . . , sk+1 be the block for s in G′. We add {s1, t}, . . . {sk+1, t}
to T ′. Suppose {s, t} ∈ T and {s, t} ⊆ V (G) \ Y . Let s1, . . . , sk+1 and t1, . . . , tk+1

be the blocks for s and t, respectively. We add {{si, tj} | i, j ∈ [k + 1]} to T ′.

We will now show that (G, T, Y, k) is a Yes instance of Annotated Multicut

if and only if (G′, T ′, k) is a Yes instance of Multicut. For the forward direction,
let C be a multicut of size at most k in G such that C ⊆ Y . We claim that C is a
multicut of T ′ in G′. Suppose not. Then, there is a path from s′ to t′ in G′ − C,
where {s′, t′} ∈ T ′. Let s and t be the vertices in V (G) such that s′ and t′ are
the vertices corresponding to them, respectively, that is, if s′ ∈ Y , then s = s′,
otherwise let s be the vertex such that s′ is in the block of vertices constructed for
the replacement of s in G′. By replacing each vertex in the s′− t′ path in G′ by the
corresponding vertex in G, we get a walk from s to t in G − C, which contradicts
the fact that C is a multicut of T in G. For the backward direction, suppose C ′

is a minimal multicut of T ′ in G′ of size at most k. Since, for any v ∈ V (G) \ Y ,
the neighborhood of v1, . . . vk+1 in G′ is the same as that of v in G and |C ′| ≤ k,
C ′ ∩ {v1, . . . , vk+1} = ∅. Thus, C ′ ⊆ Y . Since G′ is a supergraph of G and T ⊆ T ′,
C ′ is a multicut of T in G.

Thus, to find a k sized multicut of T in G which is fully contained in Y , it is
enough to find a multicut of T ′ in G′. The total number of vertices in G′ is at most
k|V (G)| and the total number of edges in G′ is at most (k + 1)2|E(G)|. Thus, the
running time of the algorithm follows from Lemma 15.2.6. This completes the proof
sketch of the lemma.

The proof of Theorem 15.2.1 follows from Lemmas 15.2.1, 15.2.2, 15.2.3, 15.2.5
and 15.2.7 and the fact that the number of edges in an n-vertex d-degenerate graph
is at most dn.

302

Chapter 16

Applications of the Independent Set
Covering Lemma and Degeneracy
Reduction Preserving Minimal
Multicuts

Fernau [75] posed as an open problem whether Stable Odd Cycle Transversal

is FPT. This problem was resolved by Marx et al. [159], who gave FPT algorithms for
Stable s-t Separator running in time 22k

O(1)

· (n+m) and Stable Odd Cycle

Transversal running in time 22k
O(1)

· (n+m) +O(3k · nm). Here, the O(3k · nm)

term in the running time comes from a direct invocation of the algorithm of Reed
et al. [187] for Odd Cycle Transversal. Furthermore, Marx et al. [159] gave
an algorithm for Stable Multicut with running time f(k, |T |)(n + m) for some
function f . They posed as open problems, the problem of determining whether there
exists an FPT algorithm for Stable Multicut parameterized by k only, and the
problem of determining whether there exists an FPT algorithm for Stable Odd

Cycle Transversal with running time 2k
O(1) ·(n+m). The problem of determin-

ing whether there exists an FPT algorithm for Stable Multicut parameterized
by k was restated by Michał Pilipczuk at the update meeting on graph separation
problems in 2013 [66].

Subsequently, algorithms for Odd Cycle Transversal with running time
4kkO(1) · (n + m) were found, independently by Iwata et al. [120] and Ramanujan
and Saurabh [184]. Replacing the call to the algorithm of Reed et al. [187] in the
algorithm of Marx et al. [159] for Stable Odd Cycle Transversal by either of

303

the two 4k · kO(1) · (n+m) time algorithms for Odd Cycle Transversal yields a
22k

O(1)

· (n+m) time algorithm for Stable Odd Cycle Transversal. However,
obtaining a 2k

O(1)
(n+m) time algorithm still remained an open problem.

Using Lemma 15.1.2, we directly obtained FPT algorithms for Stable s-t Sep-

arator, Stable Odd Cycle Transversal, Stable Multicut and Stable

Directed Feedback Vertex Set on d-degenerate graphs. At a glance the ap-
plicability of Lemma 15.0.1 seems to be limited to problems on graphs of bounded
degeneracy. However, there already exist powerful tools in the literature to reduce
certain problems on general input graphs to special classes. For us, the treewidth
reduction of Marx et al. [159] is particularly relevant, since a direct application
of their main theorem reduces Stable s-t Separator and Stable Odd Cycle

Transversal to the same problems on graphs of bounded treewidth. Since graphs
of bounded treewidth have bounded degeneracy, we may now apply our algorithms
for bounded degeneracy graphs, obtaining new FPT algorithms for Stable s-t Sepa-

rator and Stable Odd Cycle Transversal on general graphs. Our algorithms
have running time 2k

O(1) · (n+m), thus resolving, in the affirmative, one of the open
problems of Marx et al. [159].

One of the reasons that the parameterized complexity of Stable Multicut

parameterized by the solution size was left open by Marx et al. [159] was that their
treewidth reduction does not apply to multi-terminal cut problems when the number
of terminals is unbounded. Our degeneracy reduction preserving minimal multicuts
from Chapter 13 works for such multi-terminal cut problems.

In this chapter, we resolve all the open problems stated by Marx et al. in [159],
viz. the design of single-exponential FPT algorithms for Stable s-t Separator

and Stable Odd Cycle Transversal, and the design of an FPT algorithm for
Stable Multicut.

16.1 Single-Exponential FPT Algorithms for Sta-

ble s-t Separator and Stable Odd Cycle

Transversal

For our algoirthms of Stable s-t Separator and Stable Odd Cycle Transver-

sal on general graphs, the core is the Treewidth Reduction Theorem of [159] and
our algorithms for SSTS and SOCT on bounded degeneracy graphs from Theo-

304

rem 15.2.1. We begin by stating the Treewidth Reduction Theorem.

Theorem 16.1.1 (Treewidth Reduction Theorem, Theorem 2.15 [159]). Let G be
a graph, T ⊆ V (G) and k ∈ N. Let C be the set of all vertices of G participating in
a minimal s-t-separator of cardinality at most k for some s, t ∈ T . For every k and
|T |, there is an algorithm that computes a graph G? having the following properties,
in time 2(k+|T |)O(1) · (n+m).

1. C ∪ T ⊆ V (G?),

2. for every s, t ∈ T , a set K ⊆ V (G?) with |K| ≤ k is a minimal s-t-separator
of G? if and only if K ⊆ C ∪ T and K is a minimal s-t-separator of G,

3. the treewidth of G? is at most 2(k+|T |)O(1)

, and

4. G?[C ∪ T] is isomorphic to G[C ∪ T].

We remark here that Theorem 2.15 in [159] does not state the explicit dependence
on k and |T | in the running time of the algorithm and the treewidth of G?.

Stable s-t Separator. Let (G, k) be an instance of SSTS. To solve SSTS on
general graphs, we first apply the Treewidth Reduction Theorem (Theorem 16.1.1)
on G, T = {s, t} and k to obtain a graph G? with treewidth upper bounded by
2k
O(1) . From [159], to solve SSTS, it is enough to work with this new graph G?. By

conditions 2 and 4, to find a minimal independent s-t-separator separator in G, it is
enough to find a minimal independent s-t-separator in G?. Since treewidth of any
graph is at most its degeneracy, we have that the degeneracy of G? is at most 2k

O(1) ,
and hence we apply Theorem 15.2.1 to get a solution of SSTS on (G, k). That is,
we get the following theorem.

Theorem 16.1.2. There is a randomized algorithm that solves SSTS in time 2k
O(1)

(n+

m) with success probability at least 1 − 1
e
. There is a deterministic algorithm that

solves SSTS in time 2k
O(1)

(n+m) log n.

Stable Odd Cycle Transversal. By using Theorem 16.1.2 and Proposition 15.2.1
we get a 2k

O(1)
(n + m) time (FPT linear time) algorithm for SOCT. Towards that,

in Theorem 4.2 of Marx et al. [159] we replace the algorithm of Kawarabayashi and
Reed [128] with Proposition 15.2.1 and the algorithm for SSTS with Theorem 16.1.2.
For completeness we include the proof here.

305

Proposition 16.1.1 (Lemma 4.1, [159]). Let G be a bipartite graph and let (B′,W ′)

be a proper 2-coloring of the vertices. Let B and W be two subsets of V (G). Then,
for any S ⊆ V (G), the graph G − S has a 2-coloring where B \ S is black and
W \ S is white if and only if S separates X := (B ∩ B′) ∪ (W ∩ W ′) and Y :=

(B ∩W ′) ∪ (W ∩B′).

Theorem 16.1.3. There is a randomized algorithm that solves SOCT in time
2k
O(1)

(n + m) with success probability at least 1 − 1
e
. There is a deterministic al-

gorithm that solves OCT in time 2k
O(1)

(n+m) log n.

Proof. Using the algorithm of Proposition 15.2.1, find a set S0 ⊆ V (G) of size at
most k such that G \ S0 is a bipartite graph. Observe that if such a set does not
exist, then (G, k) is a No instance of SOCT. Henceforth, we can assume that such
a set S0 exists. Next, we branch into 3|S0| cases, where each branch has the following
interpretation. If we fix a hypothetical solution S and a proper 2-coloring of G−S,
then each vertex of S0 is either removed (that is, belongs to S), colored with the
first color, say black, or colored with the second color, say white. For a particular
branch, let R be the vertices of S0 to be removed (in order to get the hypothetical
solution S) and let B0 (respectively W0) be the vertices of S0 getting color black
(respectively white) in a proper 2-coloring of G−S. A set S is said to be compatible
with the partition (R,B0,W0), if S∩S0 = R and G\S has a proper 2-coloring, with
colors black and white, where the vertices in B0 are colored black and the vertices
in W0 are colored white. Observe that (G, k) is a Yes instance of SOCT if and
only if for at least one branch corresponding to a partition (R,B0,W0) of S0, there
is a set S compatible with (R,B0,W0) of size at most k and S is an independent
set. Note that we need to check only those branches corresponding to the partition
(R,B0,W0) where G[B0] and G[W0] are edgeless graphs.

The next step is to transform the problem of finding a set compatible with
(R,B0,W0) into a separation problem. Let (B′,W ′) be a 2-coloring of G− S0. Let
B = N(W0) \ S0 and W = N(B0) \ S0. Let X and Y be the sets as defined in
Proposition 16.1.1. That is, X = (B∩B′)∪ (W ∩W ′) and Y = (B∩W ′)∪ (W ∩B′).
Construct a graph G′ that is obtained from G by deleting the set B0∪W0, adding a
new vertex s adjacent with X ∪R and adding a new vertex t adjacent with Y ∪R.
Notice that every s-t-separator in G′ contains R. By Proposition 16.1.1, a set S
is compatible with (R,B0,W0) if and only if S is an s − t separator in G. Thus,
we need to decide whether there is an s-t-separator S of size at most k such that
G′[S] = G[S] is an edgeless graph and this step can be done by Theorem 16.1.2.

306

Towards the run time analysis, we run the algorithm of Proposition 15.2.1 once,
which takes time 2O(k)(m + n). Then we apply Theorem 16.1.2 at most 3k times.
Thus, we get the required running time.

16.2 Stable Multicut is FPT

Using our algorithm of Theorem 15.2.1 for Stable Multicut on bounded degen-
eracy graphs and the Degeneracy Reduction Lemma (Lemma 13.3.1), we are now
ready we prove that Stable Multicut is FPT. Theorem 13.0.1 reduces the Sta-

ble Multicut problem on general graphs to graphs excluding a clique of size 2O(k)

as a topological minor. Since such graphs have bounded degeneracy [32, 134], our
algorithm for Stable Multicut on graphs of bounded degeneracy yields an FPT
algorithm for the problem on general graphs. ,

The following lemma establishes a relationship between the degeneracy of the
graph and the k-connected sets in the graph.

Lemma 16.2.1. Let k, d ∈ N be such that k ≤ d + 1. Let G be a graph which does
not contain a k-connected set of size at least d. Then the degeneracy of G is at most
4d− 1.

Proof. For the sake of contradiction, assume that the degeneracy of G is at least
4d. Then, by Lemma 13.4.3, there is a (d + 1)-connected subgraph H of G. Since
k ≤ d+ 1 and |V (H)| ≥ d+ 2, we have that V (H) is a k-connected set in G of size
at least d+ 2, which is a contradiction.

Theorem 16.2.1. Stable Multicut can be solved in time 2O(k3) · n6 log n.

Proof. Let (G, k) be an instance of Stable Multicut. First, we apply Lemma 13.3.1
and get an equivalent instance (G?, T ?), where G? does not contain any (k + 2)-
connected set of size 64k+2 · 4(k + 2)2. Then, by Lemma 16.2.1, the degeneracy
of G? is at most 64k+2 · 16(k + 2)2 − 1. Then, using Theorem 15.2.1 we get the
solution. The running time of the algorithm follows from Lemma 13.3.1 and Theo-
rem 15.2.1.

307

Bibliography

[1] Open Problems in Parameterized Complexity. http://fpt.wikidot.com/

open-problems.

[2] Faisal N Abu-Khzam and Henning Fernau. Kernels: Annotated, proper and
induced. In International Workshop on Parameterized and Exact Computation
(IWPEC), pages 264–275. Springer, 2006.

[3] Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket
Saurabh. Simultaneous Feedback Vertex Set: A Parameterized Perspective. In
Symposium on Theoretical Aspects of Computer Science (STACS), volume 47,
pages 7:1–7:15, 2016.

[4] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM), 55(5):1–27,
2008.

[5] Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics
(SIDMA), 20(1):137–142, 2006.

[6] Noga Alon, Béla Bollobás, Michael Krivelevich, and Benny Sudakov. Maxi-
mum cuts and judicious partitions in graphs without short cycles. Journal of
Combinatorial Theory, Series B (JCTB), 88(2):329–346, 2003.

[7] Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Inter-
national Colloquium on Automata, Languages, and Programming (ICALP),
pages 49–58, 2009.

[8] Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1+ε)-
approximate flow sparsifiers. In ACM-SIAM symposium on Discrete algo-
rithms (SODA), pages 279–293, 2014.

317

[9] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation al-
gorithm for the undirected feedback vertex set problem. SIAM Journal on
Discrete Mathematics (SIDMA), 12(3):289–297, 1999.

[10] Jørgen Bang-Jensen, Alessandro Maddaloni, and Saket Saurabh. Algorithms
and kernels for feedback set problems in generalizations of tournaments. Al-
gorithmica, 76(2):320–343, 2016.

[11] Jørgen Bang-Jensen and Caresten Thomassen. A polynomial algorithm for
the 2-path problem for semicomplete digraphs. SIAM Journal on Discrete
Mathematics (SIDMA), 5(3):366–376, 1992.

[12] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M Roth. Approx-
imation algorithms for the feedback vertex set problem with applications to
constraint satisfaction and Bayesian inference. SIAM Journal on Computing
(SICOMP), 27(4):942–959, 1998.

[13] Florian Barbero, Gregory Gutin, Mark Jones, and Bin Sheng. Parameterized
and approximation algorithms for the load coloring problem. Algorithmica,
pages 1–19, 2015.

[14] Florian Barbero, Christophe Paul, and Michał Pilipczuk. Exploring the com-
plexity of layout parameters in tournaments and semi-complete digraphs.
In International Colloquium on Automata, Languages, and Programming
(ICALP), volume 80, pages 70:1–70:13, 2017.

[15] Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty.
Approximate Single-Source Fault Tolerant Shortest Path. ACM Transactions
on Algorithms (TALG), 16(4):1–22, 2020.

[16] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant reach-
ability for directed graphs. In International Symposium on Distributed Com-
puting, pages 528–543. Springer, 2015.

[17] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-tolerant sub-
graph for single-source reachability: General and optimal. SIAM Journal on
Computing (SICOMP), 47(1):80–95, 2018.

[18] Ann Becker and Dan Geiger. Optimization of Pearl’s method of conditioning
and greedy-like approximation algorithms for the vertex feedback set problem.
Artificial Intelligence, 83(1):167–188, 1996.

318

[19] Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak,
and M. S. Ramanujan. Towards a polynomial kernel for directed feedback ver-
tex set. In International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), volume 83, pages 36:1–36:15. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[20] Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony
Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for feedback arc set in
tournaments. Journal of Computer and System Sciences (JCSS), 77(6):1071–
1078, 2011.

[21] Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido
Proietti. Improved purely additive fault-tolerant spanners. In European Sym-
posium on Algorithms (ESA), pages 167–178. Springer, 2015.

[22] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-
tolerant approximate shortest-path trees. In European Symposium on Algo-
rithms (ESA), pages 137–148. Springer, 2014.

[23] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing (SICOMP), 25(6):1305–1317,
1996.

[24] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx,
Saket Saurabh, and Dimitrios M. Thilikos. (Meta) Kernelization. Journal pf
the ACM (JACM), 63(5):44:1–44:69, 2016.

[25] Béla Bollobás and Alex D. Scott. Judicious partitions of graphs. Periodica
Mathematica Hungarica, 26(2):125–137, 1993.

[26] Béla Bollobás and Alex D. Scott. Judicious partitions of hypergraphs. Journal
of Combinatorial Theory, Series A (JCTA), 78(1):15–31, 1997.

[27] Béla Bollobás and Alex D. Scott. Exact bounds for judicious partitions of
graphs. Combinatorica, 19(4):473–486, 1999.

[28] Béla Bollobás and Alex D. Scott. Judicious partitions of 3-uniform hyper-
graphs. European Journal of Combinatorics, 21(3):289–300, 2000.

[29] Béla Bollobás and Alex D. Scott. Problems and results on judicious partitions.
Random Structures & Algorithms, 21(3-4):414–430, 2002.

319

[30] Béla Bollobás and Alex D. Scott. Judicious partitions of bounded-degree
graphs. Journal of Graph Theory, 46(2):131–143, 2004.

[31] Béla Bollobás and Alex D. Scott. Max k-cut and judicious k-partitions. Dis-
crete Mathematics, 310(15):2126–2139, 2010.

[32] Béla Bollobás and Andrew Thomason. Proof of a conjecture of Mader, Erdös
and Hajnal on topological complete subgraphs. European Journal of Combi-
natorics, 19(8):883–887, 1998.

[33] Marthe Bonamy, Łukasz Kowalik, Jesper Nederlof, Michał Pilipczuk, Arka-
diusz Socała, and Marcin Wrochna. On directed feedback vertex set parame-
terized by treewidth. In International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), pages 65–78. Springer, 2018.

[34] Edouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourni-
aire. Multi-parameter analysis for local graph partitioning problems: Using
greediness for parameterization. Algorithmica, 71(3):566–580, 2015.

[35] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT.
SIAM Journal on Computing (SICOMP), 47(1):166–207, 2018.

[36] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes:
A Survey. Society for Industrial and Applied Mathematics, 1999.

[37] Nader H. Bshouty and Ariel Gabizon. Almost optimal cover-free families. In
International Conference on Algorithms and Complexity (CIAC), pages 140–
151. Springer, 2017.

[38] Leizhen Cai. Parameterized complexity of cardinality constrained optimization
problems. The Computer Journal, 51(1):102–121, 2008.

[39] Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure
and new structures. Algorithmica, 73(1):63–86, 2015.

[40] Diptarka Chakraborty and Debarati Das. Sparse weight tolerant subgraph
for single source shortest path. In Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), pages 15:1–15:15. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[41] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback
arc set problem is NP-hard for tournaments. Combinatorics, Probability &
Computing, 16(1):1–4, 2007.

320

[42] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers
and abstract rounding algorithms. In Symposium on Foundations of Computer
Science (FOCS), pages 265–274. IEEE, 2010.

[43] Shiri Chechik. Fault-tolerant compact routing schemes for general graphs.
In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 101–112. Springer, 2011.

[44] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tol-
erant spanners for general graphs. SIAM Journal on Computing (SICOMP),
39(7):3403–3423, 2010.

[45] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. F-sensitivity
distance oracles and routing schemes. Algorithmica, 63(4):861–882, 2012.

[46] Chandra Chekuri and Vivek Madan. Constant factor approximation for subset
feedback set problems via a new LP relaxation. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 808–820, 2016.

[47] Chandra Chekuri and Vivek Madan. Simple and fast rounding algorithms
for directed and node-weighted multiway cut. In ACM-SIAM symposium on
Discrete algorithms (SODA), pages 797–807. SIAM, 2016.

[48] Jianer Chen, Fedor V Fomin, Yang Liu, Songjian Lu, and Yngve Villanger.
Improved algorithms for feedback vertex set problems. Journal of Computer
and System Sciences (JCSS), 74(7):1188–1198, 2008.

[49] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algo-
rithm for the minimum node multiway cut problem. Algorithmica, 55(1):1–13,
2009.

[50] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algo-
rithm for the minimum node multiway cut problem. Algorithmica, 55(1):1–13,
2009.

[51] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon.
A fixed-parameter algorithm for the directed feedback vertex set problem.
Journal of the ACM (JACM), 55(5):21, 2008.

[52] Zhibin Chen, Jie Ma, and Wenan Zang. Coloring digraphs with forbidden
cycles. Journal of Combinatorial Theory, Series B, 115:210–223, 2015.

321

[53] Rajesh Chitnis. Directed Graphs: Fixed-Parameter Tractability & Beyond.
PhD thesis, 2014.

[54] Rajesh Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel
Marx. Directed subset feedback vertex set is fixed-parameter tractable. ACM
Transactions on Algorithms (TALG), 11(4):28, 2015.

[55] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin
Pilipczuk, and Michał Pilipczuk. Designing FPT algorithms for cut prob-
lems using randomized contractions. SIAM Journal on Computing (SICOMP),
45(4):1171–1229, 2016.

[56] Rajesh Chitnis and Mohammad Taghi Hajiaghayi. Shadowless solutions for
fixed-parameter tractability of directed graphs. Encyclopedia of Algorithms,
pages 1–5, 2008.

[57] Rajesh Chitnis, Mohammad Taghi Hajiaghayi, and Dániel Marx. Fixed-
parameter tractability of directed multiway cut parameterized by the size of
the cutset. SIAM Journal on Computing (SICOMP), 42(4):1674–1696, 2013.

[58] Hyeong-Ah Choi, Kazuo Nakajima, and Chong S. Rim. Graph bipartization
and via minimization. SIAM Journal on Discrete Mathematics (SIDMA),
2(1):38–47, 1989.

[59] Maria Chudnovsky, Alexandra Ovetsky Fradkin, and Paul D. Seymour. Tour-
nament immersion and cutwidth. Journal of Combinatorial Theory, Series B
(JCT B), 102(1):93–101, 2012.

[60] Maria Chudnovsky and Paul D. Seymour. A well-quasi-order for tournaments.
Journal of Combinatorial Theory, Series B (JCT B), 101(1):47–53, 2011.

[61] Julia Chuzhoy. On vertex sparsifiers with steiner nodes. In ACM Symposium
on Theory of Computing (STOC), pages 673–688, 2012.

[62] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[63] Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia. Max-
imum balanced subgraph problem parameterized above lower bound. Theo-
retical Computer Science, 513:53–64, 2013.

[64] Robert Crowston, Mark Jones, and Matthias Mnich. Max-cut parameterized
above the Edwards-Erdős bound. Algorithmica, 72(3):734–757, 2015.

322

[65] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[66] Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. Open prob-
lems from the update meeting on graph separation problems.
http://worker2013.mimuw.edu.pl/slides/update-opl.pdf, 2013.

[67] Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Mag-
nus Wahlström. Clique cover and graph separation: New incompressibility
results. ACM Transactions on Computation Theory (TOCT), 6(2):1–19, 2014.

[68] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and
Saket Saurabh. On the hardness of losing width. Theory of Computing Sys-
tems, 54(1):73–82, 2014.

[69] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and
Saket Saurabh. Minimum bisection is fixed-parameter tractable. SIAM Jour-
nal on Computing (SICOMP), 48(2):417–450, 2019.

[70] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Joham
M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity prob-
lems parameterized by treewidth in single exponential time. In Symposium on
Foundations of Computer Science (FOCS), pages 150–159. IEEE, 2011.

[71] Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. On group feedback
vertex set parameterized by the size of the cutset. Algorithmica, 74(2):630–642,
2016.

[72] Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wo-
jtaszczyk. Subset feedback vertex set is fixed-parameter tractable. SIAM
Journal on Discrete Mathematics (SIDMA), 27(1):290–309, 2013.

[73] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Sey-
mour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM
Journal on Computing (SICOMP), 23:864–894, 1994.

[74] Holger Dell and Dieter Van Melkebeek. Satisfiability allows no nontrivial
sparsification unless the polynomial-time hierarchy collapses. Journal of the
ACM (JACM), 61(4):23, 2014.

323

[75] Erik Demaine, Gregory Gutin, Dániel Marx, and Ulrike Stege. 07281 Open
problems–structure theory and FPT algorithmcs for graphs, digraphs and
hypergraphs. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2007.

[76] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[77] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and
simpler. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 169–178, 2011.

[78] Irit Dinur and Shmuel Safra. The importance of being biased. In ACM Sym-
posium on Theory of Computing (STOC), pages 33–42, 2002.

[79] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß.
Fixed-parameter tractability results for feedback set problems in tournaments.
Journal of Discrete Algorithms, 8(1):76–86, 2010.

[80] Rodney G. Downey and Michael R. Fellows. Fixed-parameter intractability.
In Structure in Complexity Theory Conference, pages 36–37. IEEE Computer
Society, 1992.

[81] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability
and completeness I: Basic results. SIAM Journal on Computing (SICOMP),
24(4):873–921, 1995.

[82] Rodney G. Downey and Michael R. Fellows. Parameterized complexity.
Springer Science & Business Media, 2012.

[83] Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized
complexity, volume 4. Springer, 2013.

[84] Christopher S. Edwards. Some extremal properties of bipartite subgraphs.
Canadian Journal of Mathematics, 25(3):475–483, 1973.

[85] Christopher S. Edwards. An improved lower bound for the number of edges in
a largest bipartite subgraph. In Czechoslovak Symposium on Graph Theory,
Prague, pages 167–181, 1975.

[86] Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symme-
try gap: Approximability of multiway partitioning problems. In ACM-SIAM
Symposium on Discrete algorithms (SODA), pages 306–325, 2013.

324

[87] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Racke, Inbal
Talgam-Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old
techniques. SIAM Journal on Computing (SICOMP), 43(4):1239–1262, 2014.

[88] P Erdős and L Pósa. On independent circuits contained in a graph. Canadian
Journal of Mathematics, 17:347–352, 1965.

[89] Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algo-
rithms for finding large cuts. In International Symposium on Algorithms and
Computation, (ISAAC), pages 31:1–31:13, 2016.

[90] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximat-
ing minimum feedback sets and multicuts in directed graphs. Algorithmica,
20(2):151–174, 1998.

[91] Uriel Feige. Faster FAST (feedback arc set in tournaments). arXiv preprint
arXiv:0911.5094, 2009.

[92] Paola Festa, Panos M. Pardalos, and Mauricio G. C. Resende. Feedback
set problems. In Handbook of Combinatorial Optimization, pages 209–258.
Springer, 1999.

[93] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2006.

[94] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact
algorithms via monotone local search. Journal of the ACM (JACM), 66(2):1–
23, 2019.

[95] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the
minimum feedback vertex set problem: Exact and enumeration algorithms.
Algorithmica, 52(2):293–307, 2008.

[96] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Measure & Con-
quer approach for the analysis of exact algorithms. Journal of the ACM
(JACM), 56(5), 2009.

[97] Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and
Yngve Villanger. Enumerating minimal subset feedback vertex sets. Algorith-
mica, 69(1):216–231, 2014.

[98] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010. An EATCS Series: Texts in Theoretical Computer Science.

325

[99] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
Planar F-deletion: Approximation, kernelization and optimal FPT algorithms.
In Symposium on Foundations of Computer Science (FOCS), pages 470–479.
IEEE, 2012. See http://www.ii.uib.no/ daniello/papers/PFDFullV1.pdf for
the full version.

[100] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Kernelization: Theory of parameterized preprocessing. Cambridge University
Press, 2018.

[101] Fedor V Fomin and Michał Pilipczuk. Jungles, bundles, and fixed-parameter
tractability. In ACM-SIAM symposium on Discrete Algorithms (SODA), pages
396–413, 2013.

[102] Fedor V. Fomin and Michał Pilipczuk. Subexponential parameterized algo-
rithm for computing the cutwidth of a semi-complete digraph. In European
Symposium on Algorithms (ESA), pages 505–516. Springer, 2013.

[103] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs
via triangulations and CMSO. SIAM Journal on Computing, 44(1):54–87,
2015.

[104] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8(3):399–404, 1956.

[105] Alexandra O. Fradkin and Paul D. Seymour. Tournament pathwidth and
topological containment. Journal of Combinatorial Theory, Series B (JCTB),
103(3):374–384, 2013.

[106] Alexandra O. Fradkin and Paul D. Seymour. Edge-disjoint paths in digraphs
with bounded independence number. Journal of Combinatorial Theory, Series
B (JCTB), 110:19–46, 2015.

[107] Alexandra O. Fradkin and Paul D. Seymour. Edge-disjoint paths in digraphs
with bounded independence number. Journal of Combinatorial Theory, Series
B (JCTB), 110:19–46, 2015.

[108] Tibor Gallai. On directed paths and circuits. Theory of graphs, 38:2054, 1968.

[109] Tibor Gallai and Arthur Norton Milgram. Verallgemeinerung eines graphen-
theoretischen satzes von rédei: Ladislaus rédei zum 60. geburtstag. Acta sci-
entiarum mathematicarum, 21(3-4):181–186, 1960.

326

[110] Georges Gardarin and Stefano Spaccapietra. Integrity of databases: A general
lockout algorithm with deadlock avoidance. In IFIP Working Conference on
Modelling in Data Base Management Systems, pages 395–412, 1976.

[111] Geoffrey R Grimmett. An upper bound for the number of spanning trees of a
graph. Discrete Mathematics, 16(4):323–324, 1976.

[112] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Characterisations
of nowhere dense graphs (Invited Talk). In IARCS Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2013.

[113] Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal
problems. Discrete Optimization, 8(1):61–71, 2011.

[114] Venkatesan Guruswami and Euiwoong Lee. Inapproximability of H-
transversal/packing. SIAM Journal on Discrete Mathematics (SIDMA),
31(3):1552–1571, 2017.

[115] Gregory Gutin and Mark Jones. Parameterized algorithms for load coloring
problem. Information Processing Letters, 114(8):446–449, 2014.

[116] Gregory Gutin and Anders Yeo. Note on maximal bisection above tight lower
bound. Information Processing Letters, 110(21):966–969, 2010.

[117] Gregory Gutin and Anders Yeo. Constraint satisfaction problems parameter-
ized above or below tight bounds: A survey. In The Multivariate Algorithmic
Revolution and Beyond, pages 257–286. Springer, 2012.

[118] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum
cut in a graph. In ACM-SIAM symposium on Discrete algorithms (SODA),
pages 165–174, 1992.

[119] John Haslegrave. Judicious partitions of uniform hypergraphs. Combinatorica,
34(5):561–572, 2014.

[120] Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms
via network flow. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1749–1761, 2014.

[121] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-
branching, and fpt algorithms. SIAM Journal on Computing (SICOMP),
45(4):1377–1411, 2016.

327

[122] Naonori Kakimura, Ken-ichi Kawarabayashi, and Yusuke Kobayashi. Erdős-
pósa property and its algorithmic applications—parity constraints, subset
feedback set, and subset packing. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1726–1736, 2012.

[123] Naonori Kakimura, Ken-ichi Kawarabayashi, and Dániel Marx. Packing cycles
through prescribed vertices. Journal of Combinatorial Theory, Series B (JCT
B), 101(5):378–381, 2011.

[124] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, pages 85–103. Springer, 1972.

[125] Marek Karpinski and Warren Schudy. Faster algorithms for feedback arc set
tournament, Kemeny rank aggregation and betweenness tournament. In Inter-
national Symposium on Algorithms and Computation (ISAAC), pages 3–14.
Springer, 2010.

[126] Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability
for the subset feedback set problem and the S-cycle packing problem. Journal
of Combinatorial Theory, Series B (JCT B), 102(4):1020–1034, 2012.

[127] Ken-ichi Kawarabayashi, Daniel Král’, Marek Krcál, and Stephan Kreutzer.
Packing directed cycles through a specified vertex set. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 365–377, 2013.

[128] Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm
for odd cycles transversal. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 365–378, 2010.

[129] Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of
bounded size is fixed-parameter tractable. In Symposium on Foundations of
Computer Science, pages 160–169. IEEE, 2011.

[130] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In
ACM Symposium on Theory of Computing (STOC), pages 95–103, 2007.

[131] Subhash A Khot and Nisheeth K Vishnoi. The unique games conjecture,
integrality gap for cut problems and embeddability of negative-type metrics
into `1. Journal of the ACM (JACM), 62(1):8, 2015.

[132] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback ver-
tex set. Information Processing Letters, 114(10):556–560, 2014.

328

[133] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback ver-
tex set. Information Processing Letters, 114(10):556–560, 2014.

[134] János Komlós and Endre Szemerédi. Topological cliques in graphs II. Combi-
natorics, Probability & Computing, 5:79–90, 1996.

[135] Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.
Fixed-parameter tractability of multicut in directed acyclic graphs. SIAM
Journal on Discrete Mathematics (SIDMA), 29(1):122–144, 2015.

[136] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant
vertices: New tools for kernelization. Journal of the ACM (JACM), 67(3):16:1–
16:50, 2020.

[137] Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized
algorithm for feedback vertex set in tournaments. In Symposium on Theoretical
Aspects of Computer Science, (STACS), volume 47, pages 49:1–49:13, 2016.

[138] Choongbum Lee, Po-Shen Loh, and Benny Sudakov. Judicious partitions of
directed graphs. Random Structures & Algorithms, 48(1):147–170, 2016.

[139] Frank Thomson Leighton and Ankur Moitra. Extensions and limits to vertex
sparsification. In ACM Symposium on Theory of Computing (STOC), pages
47–56, 2010.

[140] Shaohua Li and Marcin Pilipczuk. An improved FPT algorithm for inde-
pendent feedback vertex set. In International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), pages 344–355. Springer, 2018.

[141] Daniel Lokshtanov and Dániel Marx. Clustering with local restrictions. In-
formation and Computation, 222:278–292, 2013.

[142] Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan,
Geevarghese Philip, and Saket Saurabh. A 2-approximating feedback ver-
tex set in tournaments. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1010–1018, 2020.

[143] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanu-
jan, and Saket Saurabh. Faster parameterized algorithms using linear pro-
gramming. ACM Transactions on Algorithms (TALG), 11(2):1–31, 2014.

329

[144] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanu-
jan, and Saket Saurabh. Faster parameterized algorithms using linear pro-
gramming. ACM Transactions on Algorithms (TALG), 11(2):15:1–15:31, 2014.

[145] Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of mul-
tiway cut with parity constraints. In International Colloquium on Automata,
Languages, and Programming (ICALP), pages 750–761. Springer, 2012.

[146] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A linear time
parameterized algorithm for directed feedback vertex set. arXiv preprint
arXiv:1609.04347, 2016.

[147] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A linear
time parameterized algorithm for node unique label cover. arXiv preprint
arXiv:1604.08764, 2016.

[148] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time pa-
rameterized algorithms for subset feedback vertex set. ACM Transactions on
Algorithms (TALG), 14(1):1–37, 2018.

[149] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. When recursion
is better than iteration: A linear-time algorithm for acyclicity with few error
vertices. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1916–1933, 2018.

[150] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Pa-
rameterized complexity and approximability of directed odd cycle transversal.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2181–2200,
2020.

[151] Jie Ma and Xingxing Yu. On judicious bipartitions of graphs. Combinatorica,
36(5):537–556, 2016.

[152] W. Mader. Existenzn-fach zusammenhängender teilgraphen in graphen genü-
gend großer kantendichte. Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg, 37(1):86–97, 1972.

[153] Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed
values: Maxsat and maxcut. Journal of Algorithms, 31(2):335–354, 1999.

[154] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing
above or below guaranteed values. Journal of Computer and System Sciences
(JCSS), 75(2):137–153, 2009.

330

[155] Dániel Marx. Some open problems in parameterized complexity. http://www.
cs.bme.hu/dmarx/papers/marx-dagstuhl2017-open.pdf, 2-17.

[156] Dániel Marx. Parameterized graph separation problems. Theoretical Computer
Science, 351(3):394–406, 2006.

[157] Dániel Marx. Important separators and parameterized algorithms. In Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pages 5–10. Springer, 2011.

[158] Dániel Marx. What’s next? future directions in parameterized complex-
ity. In The Multivariate Algorithmic Revolution and Beyond, pages 469–496.
Springer, 2012.

[159] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators
in linear time via treewidth reduction. ACM Transactions on Algorithms
(TALG), 9(4):30, 2013.

[160] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut pa-
rameterized by the size of the cutset. SIAM Journal on Computing (SICOMP),
43(2):355–388, 2014.

[161] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering
and graph coloring algorithms. Journal of the ACM (JACM), 30(3):417–427,
1983.

[162] Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh.
On parameterized independent feedback vertex set. Theoretical Computer
Science, 461:65–75, 2012.

[163] Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh.
A polynomial kernel for feedback arc set on bipartite tournaments. Theory of
Computing Systems, 53(4):609–620, 2013.

[164] Matthias Mnich and Erik Jan van Leeuwen. Polynomial kernels for deletion
to classes of acyclic digraphs. Discrete Optimization, 25:48–76, 2017.

[165] Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. A 7/3-
approximation for feedback vertex sets in tournaments. In European Sympo-
sium on Algorithms (ESA), pages 67:1–67:14, 2016.

331

[166] Matthias Mnich and Rico Zenklusen. Bisections above tight lower bounds.
In International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), pages 184–193. Springer, 2012.

[167] John W. Moon and Leo Moser. On cliques in graphs. Israel Journal of Math-
ematics, 3(1):23–28, 1965.

[168] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-
optimal derandomization. In Symposium on Foundations of Computer Science
(FOCS), pages 182–191. IEEE, 1995.

[169] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with
bounded expansion I. Decompositions. European Journal of Combinatorics,
29(3):760–776, 2008.

[170] Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs.
European Journal of Combinatorics, 32(4):600–617, 2011.

[171] Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures,
and algorithms, volume 28. Springer Science & Business Media, 2012.

[172] Jaroslav Nešetril and Patrice Ossona de Mendez. From sparse graphs to
nowhere dense structures: Decompositions, independence, dualities and limits.
In European Congress of Mathematics, pages 135–165, 2009.

[173] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

[174] Merav Parter. Dual failure resilient BFS structure. In ACM Symposium on
Principles of Distributed Computing (PODC), pages 481–490, 2015.

[175] Merav Parter. Fault-tolerant logical network structures. Bulletin of EATCS,
1(118), 2016.

[176] Merav Parter. Vertex fault tolerant additive spanners. Distributed Computing,
30(5):357–372, 2017.

[177] Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In European
Symposium on Algorithms (ESA), pages 779–790. Springer, 2013.

[178] Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard,
even for four terminal pairs. ACM Transactions on Computation Theory
(TOCT), 10(3):13, 2018.

332

[179] Michał Pilipczuk. Computing cutwidth and pathwidth of semi-complete di-
graphs via degree orderings. In Symposium on Theoretical Aspects of Computer
Science (STACS), volume 20, pages 197–208, 2013.

[180] Matteo Pontecorvi and Paul Wollan. Disjoint cycles intersecting a set of ver-
tices. Journal of Combinatorial Theory, Series B (JCTB), 102(5):1134–1141,
2012.

[181] Venkatesh Raman and Saket Saurabh. Parameterized algorithms for feedback
set problems and their duals in tournaments. Theoretical Computer Science,
351(3):446–458, 2006.

[182] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed pa-
rameter tractable algorithms for finding feedback vertex sets. ACM Transac-
tions on Algorithms (TALG), 2(3):403–415, 2006.

[183] Venkatesh Raman, Saket Saurabh, and Ondrej Suchý. An FPT algorithm for
tree deletion set. Journal of Graph Algorithms and Applications, 17(6):615–
628, 2013.

[184] M. S. Ramanujan and Saket Saurabh. Linear-time parameterized algorithms
via skew-symmetric multicuts. ACM Transactions on Algorithms (TALG),
13(4):1–25, 2017.

[185] Igor Razgon. Exact computation of maximum induced forest. In candinavian
Workshop on Algorithm Theory (SWAT), volume 4059, pages 160–171, 2006.

[186] Bruce Reed, Neil Robertson, Paul D. Seymour, and Robin Thomas. Packing
directed circuits. Combinatorica, 16(4):535–554, 1996.

[187] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals.
Operations Research Letters, 32(4):299–301, 2004.

[188] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths
problem. Journal of Combinatorial Theory, Series B (JCTB), 63(1):65–110,
1995.

[189] Bernard Roy. Nombre chromatique et plus longs chemins d’un graphe. Revue
française d’informatique et de recherche opérationnelle, 1(5):129–132, 1967.

[190] Saket Saurabh and Meirav Zehavi. (k,n-k)-Max-Cut: An O∗(2p)-time algo-
rithm and a polynomial kernel. Algorithmica, 80(12):3844–3860, 2018.

333

[191] Alex D. Scott. Judicious partitions and related problems. Surveys in Combi-
natorics, 327:95–117, 2005.

[192] Paul D. Seymour. Packing directed circuits fractionally. Combinatorica,
15(2):281–288, 1995.

[193] Paul D. Seymour. Packing circuits in eulerian digraphs. Combinatorica,
16(2):223–231, 1996.

[194] Hadas Shachnai and Meirav Zehavi. Representative families: A unified
tradeoff-based approach. Journal of Computer and System Sciences (JCSS),
82(3):488–502, 2016.

[195] Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating System
Concepts (9th edition). Wiley, 2012.

[196] Yinglei Song. An improved parameterized algorithm for the independent feed-
back vertex set problem. Theoretical Computer Science, 535:25–30, 2014.

[197] Ewald Speckenmeyer. On feedback problems in digraphs. In International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages
218–231. Springer, 1989.

[198] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of
the ACM (JACM), 44(4):585–591, 1997.

[199] Benny Sudakov. Graph theory. Lecture Notes, 2016.

[200] Yuma Tamura, Takehiro Ito, and Xiao Zhou. Algorithms for the indepen-
dent feedback vertex set problem. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 98(6):1179–1188, 2015.

[201] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions
on Algorithms (TALG), 6(2):32:1–32:8, 2010.

[202] Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating in-
dependent set problem and feedback set problem for graphs with no vertex
degree exceeding three. Discrete Mathematics, 72(1-3):355–360, 1988.

[203] Baogang Xu, Juan Yan, and Xingxing Yu. Balanced judicious bipartitions of
graphs. Journal of Graph Theory, 63(3):210–225, 2010.

[204] Baogang Xu and Xingxing Yu. Judicious k-partitions of graphs. Journal of
Combinatorial Theory, Series B (JCTB), 99(2):324–337, 2009.

334

[205] Baogang Xu and Xingxing Yu. On judicious bisections of graphs. Journal of
Combinatorial Theory, Series B (JCTB), 106:30–69, 2014.

335

Thesis Highlight

Name of the Student: Roohani Sharma

Name of the CI/OCC: Dr. Saket Saurabh Enrolment No.: MATH10201504012

Thesis Title: Advancing the Algorithmic Tool-kit for Parameterized Cut Problems

Discipline: Mathematical Science Subarea of Discipline: Theoretical Computer Science

Date of viva voce: 13/08/2020

In this thesis we consider several (di)graph cut problems and study them from the
perspective of parameterized complexity and kernelization. The goal of the study is
three-fold: first to extend the otherwise limited understanding of parameterized cut problems
on directed graphs, second to present novel applications of the rich toolkit available for
undirected cut problems and third to develop tools that allow to reuse the algorithms to solve
the respective problems in the presence of an additional constraint.

The concrete questions addressed in the thesis are inspired from some major open
problems and concerns in the area. Some of these being the famously active open problem
of the existence of a polynomial kernel for Directed Feedback Vertex/Arc Set,
sub-exponentiality in FPT beyond tournaments, parameterized algorithms for partitioning
problems beyond the classical partitioning problems, the existence of single exponential FPT
algorithms for stable versions of classical cut problems and the parameterized complexity of
Stable Multicut. We address the above questions either in full or extend the results known in
literature that take steps to come closer to resolving the actual question. In several cases,
our results lead to various enticing insights. In particular, through one of our results, we
establish connections between kernelization and fault-tolerant subgraphs. Another result is
based on a novel application of important separators in the design of polynomial kernels,
which is a rare sight in kernelization. Yet other results give an interesting and useful
combinatorial insight about the problem at hand.

The concrete results proved in the thesis are as
follows. (1) Directed Feedback Arc Set Directed
Edge Odd Cycle Transversal admit a
polynomial kernel on digraphs of bounded
independence number. (2) Directed Feedback
Vertex Set admits a polynomial kernel
parameterized by the solution size plus the size
of a treewidth-η modulator, for some fixed
positive constant η. (3) Out-Forest Deletion and
Pumpkin Deletion admits kernels of size O(k2) and O(k3) respectively, where k is the solution
size. (4) Deletion to DAGs of bounded treewidth admit a polynomial kernel. (5) Out-Forest
Deletion, Out-Tree Deletion and Pumpkin Deletion admit algorithms with running time
O*(2.732k), O*(2.562k) and O*(2.562k) respectively. (6) Directed Feedback Arc Set, Directed
Edge Odd Cycle Transversal, Directed Cutwidth and Optimal Linear Arrangement admit
sub-exponential FPT algorithms on digraphs of bounded independence number. (7)
Balanced Judicious Bipartition is FPT. (8) Independent Feedback Vertex Set admits an
algorithm with running time O*(4.1481k), where n is the number of vertices in the input graph
and k is the solution size. (9) Stable s-t Separator and Stable Odd Cycle Transversal admit
algorithms of running time 2k^O(1) (n+m) log n, where n and m is the number of vertices and
edges in the input graph, respectively, and k is the solution size. (10) Stable Multicut admit
an algorithm with running time 2O(k^3) n6 log n.

	ttp_6551
	cp_6551
	pp_6551
	cntnt_6551
	tbl_fgr_6551
	smry_6551
	synp_6551
	chp1_6551
	chp2_6551
	chp3_6551
	chp4_6551
	chp5_6551
	chp6_6551
	chp7_6551
	chp8_6551
	chp9_6551
	chp10_6551
	chp11_6551
	chp12_6551
	chp13_6551
	chp14_6551
	chp15_6551
	chp16_6551
	othr_inf_6551
	ths_hglts_6551

